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Abstract

In the present work, we develop and solve a self-consistent theory for the description of the
simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium
monoxide. We investigate two different types of electron doping, Gadolinium impurities
and Oxygen vacancies. Besides the conduction band occupation, we can identify low
lying spin fluctuations on magnetic impurities as the driving force behind the doping
induced enhancement of the Curie temperature. Moreover, we predict the signatures of
these magnetic impurities in the spectra of scanning tunneling microscope experiments.
By extending the theory to allow for inhomogeneities in one spatial direction, we are able
to investigate thin films and heterostructures of Gadolinium doped Europium monoxide.
Here, we are able to reproduce the experimentally observed decrease of the Curie temper-
ature with the film thickness. This behavior is attributed to missing coupling partners of
the localized 4f moments as well as to an electron depletion at the surface which leads
to a reduction of the number of itinerant electrons. By investigating the influence of
a metallic substrate onto the phase transition in Gadolinium doped Europium monox-
ide, we find that the Curie temperature can be increased up to 20%. However, as we
show, the underlying mechanism of metal-interface induced charge carrier accumulation
is inextricably connected to a suppression of the semiconductor-metal transition.
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1. Introduction

Stoichiometric Europium monoxide (EuO) is a ferromagnetic semiconductor with a large
band gap of 1.2 eV [1, 2] and a Curie temperature of 69K [3]. The magnetization in
the system is mainly due to localized magnetic moments in the Eu 4f orbitals. These
moments interact via virtual excitations into the otherwise empty conduction band [3]
and represent a prototype of a Heisenberg ferromagnet [4]. There is a strong exchange
interaction between the localized moments and the conduction electron spins which re-
sults in a spin splitting of the conduction band [5]. Upon electron doping, the system
becomes metallic in the low temperature phase and exhibits a simultaneous ferromag-
netic semiconductor-metal transition in EuO1−x [6–11] as well as Eu1−xGdxO [12–16].
During the phase transition, the resistivity drops over several orders of magnitude. This
giant magnetoresistance effect makes the material interesting for applications.

In the high temperature phase there is a gap between the conduction band above, and
an impurity induced side band below the Fermi edge [17, 18], which renders the system
insulating. During the ferromagnetic transition, the exchange splitting of the conduction
band sets in, the gap is closed and the majority conduction electron states are populated.
The system becomes half-metallic, i.e. there is nearly 100% spin polarization in the
conduction band which make EuO a promising candidate for spintronics applications
[19, 20].

Depending on whether most of the excess electrons are in a bound or in an itinerant
state, the transition temperature increases with the doping concentration [15] due to the
increased conduction electron mediated RKKY interaction. In that respect, Gadolinium
impurities seem to be more efficient than Oxygen vacancies. Arnold and Kroha [18]
found indications that this can be traced back to the magnetic nature of the Gadolinium
impurities. If the impurity level lies slightly below the Fermi energy, strong on-site
Coulomb repulsion will essentially lead to a singly occupied, and therefore magnetic
impurity. If there is conduction electron spectral weight at the Fermi edge, low lying
spin fluctuations at the impurity site lead to the formation of a Kondo resonance at
the Fermi edge. Even though the Kondo temperature lies far below the ferromagnetic
transition temperature, there is a tendency to transfer spectral weight towards the Fermi
energy. This closes the semiconducting gap even at higher temperatures which results in
an enhancement of the Curie temperature in Eu1−xGdxO.

By Gadolinium doping, transition temperatures up to 130 K are possible [15]. Never-
theless, for possible applications a further increase would be desirable. In this respect, a
coupling of an electron doped EuO film to a metallic substrate with a lower work func-
tion may prove beneficial. We conjecture that electrons will defuse into the EuO and
populate the conduction band, leaving a depletion region in the substrate. Therewith,
the RKKY interaction near the surface is increased, which may outweigh the finite size
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1. Introduction

effects in thin films and increase the Curie temperature. It is obvious that such surface
effects are only relevant in thin films. Indeed, recent experiments on thin stoichiometric
and Oxygen deficient EuO [19–24] have shown a huge impact of the film thickness on the
phase transition.

In the present work, we develop and solve a self-consistent theory for thin films of
electron doped EuO as well as for heterostructures of electron doped EuO and a metallic
substrate. In the course of this, we extend the work of Arnold and Kroha [18,25] in several
respects. First of all, we allow for broken translation symmetry in one direction in order
to describe thin films. Besides Gadolinium impurities, we consider a model for Oxygen
vacancies and go beyond the nearest neighbor approximation by incorporating long range
RKKY interactions in our theory. For the sake of completeness and readability, we will
not review the theory of Arnold and Kroha in a separate section but include them in our
more general derivations.

The first chapter is concerned with a review of the properties of electron doped Eu-
ropium monoxide. In the subsequent chapter, we review some aspects of quantum impu-
rities. In particular, we derive the non-crossing approximation (NCA) which will be part
of our theory for Eu1−xGdxO. Here, we will present our improvements to the numerical
solution of the NCA equations. Chapter 4 contains an introduction to our model for
bulk and heterostructure systems. Afterward, in chapter 5, we derive the self-consistent
theory and discuss the obstacles of its numerical solution. Hereafter, we present our re-
sults in the remaining chapters. We begin with the discussion of the differences between
Gadolinium impurities and Oxygen vacancies in bulk systems in chapter 6. In chapters
7, 8 and 9, we present our results for the heterostructure theory. First, for isolated thin
films of Eu1−xGdxO and then for heterostructures with metallic and ferromagnetic sub-
strates. The presentation of our results is concluded by chapter 10, which is concerned
with the prediction of STS spectra for electron doped Europium monoxide.
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2. Properties of electron doped Europium

Monoxide

Stoichiometric EuO has a rock salt crystal structure, i.e. a face-centered cubic lattice
(FCC) with a lattice constant of a = 5.143Å and a diatomic basis of an Eu2+ and an
O2− ion. The two electrons from the Eu 6s shell fill up the 2p shell of the Oxygen atom.
Therefore, the electronic structure of the Eu2+ ion is 4f75d06s0, while for O2− we have
1s22s22p8 [3].

Figure 2.1.: Schematic representation of the energy levels in EuO, EuS, EuSe and EuTe.
Taken from [3] or [26], respectively.

Figure 2.1 shows a schematic representation of the energy levels in EuO. The valence
band is far below the Fermi energy and comprises the Oxygen 2p orbitals. In between
the valence and the conduction band, there is as a flat 4f band which lies sufficiently far
below the Fermi energy. Due to the localized nature of the 4f orbitals the influence of
the crystal environment is small. Therefore, Hund’s rule applies and all 7 spins in the 4f
shell will align parallel. This leads to the formation of localized magnetic moments with
spin S = 7/2 at the sites of the Eu ions. The conduction band is built out of the 5d and
6s orbitals and remains unoccupied in stoichiometric EuO.

Although the conduction band is empty, there is a ferromagnetic exchange interaction
between the localized 4f moments, mediated by virtual excitations from the 4f levels
to the conduction band [3]. This is why EuO is known as a prototype of a Heisenberg
ferromagnet. Of course the indirect interaction between the 4f moments is much smaller
than the direct exchange interaction with the empty conduction band. Steenenken et.
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2. Properties of electron doped Europium Monoxide

al. [5] have found an exchange splitting of the conduction band of ∆ ≈ 0.6 eV in nearly
stoichiometric EuO by x-ray photoemission spectroscopy (XPS) [5] (see figure 2.2).

Figure 2.2.: Conduction band splitting in nearly stoichiometric EuO as seen in the spin
resolved x-ray absorption spectrum at 20K (left) and the x-ray absorption
spectrum below and above the Curie temperature of 69K (right). Taken
from [5].

The exchange splitting can significantly affect the interaction between the localized 4f
moments only if the conduction band is occupied. This can be achieved by electron dop-
ing, for example by using Oxygen deficient Europium monoxide, EuO1−x. Each missing
Oxygen ion effectively provides two excess electrons. Another common approach is the
doping with Gadolinium, whose electronic structure differs from the one of Europium
only by an additional electron in the d-shell, 4f75d16s2. Here, some of the Eu2+ ions
are replaced by Gd2+ ions with 4f75d16s0. Therefore, in Eu1−xGdxO we have only one
excess electron per unit cell. In both cases however, the lattice of localized magnetic
moments is not changed significantly.

The fundamental question is whether the excess electrons are bound in a localized
impurity state or if they are free to move and thereby mediate the magnetic interaction
between the localized 4f moments. In the former case, no change of the Curie tem-
perature is expected. In the latter case, an enhanced interaction between the localized
moments will lead to an increase of the Curie temperature. This picture is supported
and by experiments of Schoenes and Wachter [12] from the 1970s. Recently, Mairoser et.
al. [15] found a direct relation between the conduction band occupation and the Curie
temperature (see figure 2.6).

Concomitant with the population of the conduction band, the system can become
metallic. A simultaneous semiconductor to metal and para- to ferromagnetic transition
was observed in EuO1−x [6–11, 20, 22, 23] (see figure 2.3) as well as in Eu1−xGdxO [12–
16,27] (see figure 2.4).

There are contradictory reports on the influence of the oxygen vacancy concentration
on the Curie temperature in EuO1−x. Early experiments [6–10] indicate that the Curie
temperature remains constant at TC ≈ 69K if the doping concentration is varied, a
behavior which has recently been confirmed by Altendorf et. al. [11]. However, the
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Figure 2.3.: Simultaneous ferromagnetic semiconductor-metal transition as seen in the
Kerr rotation (left) and the sample resistance (right) of an oxygen deficient
EuO sample. Taken from [5].

underlying reason for these results may be an insufficiently controlled stoichiometry and
crystal structure [11,28]. In contrast, Barbagallo et. al. [22] reported a Curie temperature
enhancement to around TC = 140K upon Oxygen deficiency. Theoretical investigations
of Sinjukow and Nolting [17] found no increase of TC . However, it should be noted that
the model parameters were chosen such that the results match the experimental outcome
of Oliver et. al. [7], who also found no TC enhancement.
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In the Eu1−xGdxO case, the picture is more uniform. All experiments show an increase
of TC with the doping concentration [12–16, 27] (see figures 2.4 and 2.6). Although the
resistivity drop over several orders is present in both, the work of Altendorf [27] and
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2. Properties of electron doped Europium Monoxide

Mairoser et. al. [15], there is a substantial difference in the magnitude of the measured
resistivities between the experiments (see figure 2.5). The theory of Arnold and Kroha
[18] for Gadolinium doped EuO correctly predicts the simultaneous phase transition. It
serves as a basis for the present work and will be discussed in the subsequent chapters.
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2.1. Ultra thin films of electron doped Europium monoxide

By decreasing the film thickness, the influence of the surfaces becomes more and more
significant. Recent experiments on ultra thin films of stoichiometric or Oxygen deficient
EuO show a reduction of the Curie Temperature with the film thickness [19, 21, 23, 24,
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2.1. Ultra thin films of electron doped Europium monoxide

29] (see figure 2.7). Qualitatively, this reduction can be explained by the absence of
neighboring magnetic moments at the surface [21, 23, 24, 30]. However, in [23], we argue
that the observed increase of TC at thicknesses of around 30 nm cannot be explained by
the absence of neighboring spins, even in case one considers long range RKKY interaction.
This indicates an influence of band bending effects and a resulting depopulation of the
conduction band. This hypothesis is supported by the reduced magnetic moment in thin
films which can be explained by a huge band bending and the resulting depopulation of
the 4f band [23] (see figure 2.8).

Figure 2.7.: Decreasing Curie temperature with the film thickness in stoichiometric and
Oxygen deficient EuO. The blue dots and triangles indicate the normal-
ized Curie temperature in stoichiometric EuO [19, 21]. The black dots are
measurements for films with 4% Oxygen vacancies. The inset shows the
corresponding magnetization curves. Taken from [23].

If one neglects effects like surface reconstruction, the direction of the band bending and
resulting population or depopulation in the vicinity of the surface is determined by the
difference of the work functions of both the EuO and the neighboring material. Therefore
it should be possible to increase the transition temperature by a substrate with a smaller
work function than EuO, which can be estimated by photoemission experiments to be
∼ 5eV [2]. Most recently, Klinkhammer et. al. [20] found an increased Curie temperature
of TC ≈ 75K in an ultra thin film of stoichiometric EuO on a substrate of Eu intercalated
Graphene on top of Ir(111). The authors attribute the TC enhancement to the influence
of this substrate (see figure 2.9).
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2. Properties of electron doped Europium Monoxide
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3. Quantum impurities

This chapter is concerned with quantum impurities which play a crucial role in the
physics of electron doped Europium monoxide and constitute an integral part of our
theory. In particular, we review the single impurity Anderson model [31,32], the pseudo-
particle approach and the non-crossing approximation. In the course of this, we directly
follow [33]. Afterwards, we discuss our improvements to the numerical solution of the
non-crossing approximation in the case of a slightly filled conduction band in section 3.4.

3.1. The single impurity Anderson model

In the early sixties, P. W. Anderson developed a model for describing the interaction
of itinerant conduction electrons with a localized magnetic impurity in a metal [31]. In
general, the impurity can be N -fold degenerate and couple to M channels of conduction
electrons. For instance, the former can be the spin degeneracy and the latter the angular
momentum of the conduction electrons [34]. In this work, we will restrict ourselves to
the simplest case of a doubly degenerate impurity (spin S = 1

2 ) and a single conduction
electron channel. In this case, the single impurity Anderson model (SIAM) Hamiltonian
reads

HSIAM =
∑

kσ

εkc
†
kσckσ + Edd

†
σdσ + V

∑

kσ

(
c†kσdσ + d†σckσ

)
+ Ud†↑d↑d

†
↓d↓ , (3.1)

where the chemical potential is chosen to be µ = 0 throughout this chapter. The model
describes the interaction of a conduction band with dispersion εk and an impurity level
at Ed. Due to the hybridization between the two, electrons can hop from the conduction
band into the impurity level and vice versa. This is described by the term containing
the hybridization energy V . The fourth term includes the on-site Coulomb repulsion U
between two electrons with opposite spin at the impurity level.

Since there is no general solution to this model, the application of certain approxi-
mations is necessary. The kind of approximation is chosen in accordance with specific
physical situations which correspond to special subsets of parameters in the Anderson
model. We are particularly interested in the so-called Kondo limit [33,35], in which case,
the impurity level lies sufficiently below the Fermi energy Ed < 0 and Γ/Ed ≪ 1. Here
we have introduced the width of the impurity level Γ = πV 2N0, where N0 is the bare
conduction electron density of states at the Fermi level ω = 0. Furthermore, the on-site
Coulomb repulsion should be sufficiently strong so that Ed+U > 0 and Γ/(Ed+U) ≪ 1.
This means that in the low temperature regime the impurity can be doubly occupied
only by virtual processes. Therefore we are essentially left with a singly occupied, mag-
netic impurity. By treating the hybridization V as a small perturbation, one can apply a

15



3. Quantum impurities

Schrieffer-Wolff transformation [36] and map the Anderson Hamiltonian onto the Kondo
Hamiltonian [35], which reads

HK =
∑

kσ

εkc
†
kσckσ + JKS · σ .

The anti-ferromagnetic interaction between the impurity spin S and the conduction elec-
tron spin σ is given by JK = V 2(1/|Ed|+1/(2Ed +U)). For low temperatures, resonant
spin flip scattering leads to the formation of a very sharp resonance at the Fermi energy,
the so-called Kondo resonance. The width of the resonance is proportional to the Kondo
temperature, which in the limit of U → ∞ is given by [33]

TK =
√
2Γe−π

Ed
2Γ .

3.2. Pseudo-particle representation

The dynamics of an electron which encounters the impurity will strongly depend on
whether the impurity is empty, singly occupied, or doubly occupied. Especially in the
case of strong on-site Coulomb repulsion and low temperatures, double occupancy can
only occur through virtual processes. In this case, it is reasonable to restrict the Hilbert
space to empty and singly occupied states. The theoretical framework which accomplishes
this task is the pseudo-particle representation [34], where new operators are introduced.
First, two bosonic operators b† and a†, which create an empty impurity state |0〉 and a
doubly occupied state |2〉 from the vacuum |vac〉. Second, fermionic operators f †σ, which
create a singly occupied state |σ〉 with spin σ.

b†|vac〉 = |0〉
f †σ|vac〉 = |σ〉
a†|vac〉 = |2〉 .

The relation to the impurity creation operator is given by

d†σ = f †σb + ησa
†f−σ ,

where η↑ = +1 and η↓ = −1. By this procedure, the Hilbert space is extended artificially.
The physical subset of the Hilbert space is determined by the constraint

Q =
∑

σ

f †σfσ + b†b + a†a = 1 .

which means that the number of pseudo-particles Q is conserved and restricted to Q = 1.
We now restrict our discussion to the case of strong on-site Coulomb repulsion U → ∞,
where the operators a† will not show up in the equations anymore. If we write down
the Anderson Hamiltonian (3.1) in terms of pseudo-particle creation and annihilation
operators, we obtain

HSIAM =
∑

kσ

εkc
†
kσckσ +Edf

†
σfσ + V

∑

kσ

(
c†
kσb

†fσ + f †σb ckσ
)
. (3.2)
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3.2. Pseudo-particle representation

f

b

c f b

c

Figure 3.1.: Pseudo-particle vertices for the Anderson model with U → ∞.

The corresponding vertices are shown in figure 3.1. In the considered limit, the pseudo-
particle number constraint reads

Q =
∑

σ

f †σfσ + b†b = 1 . (3.3)

Note, that the conserved pseudo-particle number corresponds to a local gauge symmetry.
This is reflected by the fact, that the pseudo-particle Anderson Hamiltonian (3.2) is
invariant under U(1) gauge transformations, f †σ → eiφ(τ)f †σ and b† → eiφ(τ)b†, with an
arbitrary time-dependent phase φ(τ).

In order to fulfill (3.3), one has to project out the non-physical part of the Hilbert
space in some way. To this end, we consider the grand canonical density operator

ρG =
1

ZG
e−β(H+λQ) ,

with ZG = tr[exp{−β(H + λQ)}]. Here, the chemical potential which corresponds to
the pseudo-particle number Q is given by −λ. In the calculation of the grand canonical
expectation value of some operator A,

〈A〉G = tr[ρGA] ,

one has to sum over all pseudo-particle numbers Q = 0, 1, 2, . . . . In contrast to this,
the physical expectation value 〈A〉 has to be evaluated in the canonical ensemble with
Q = 1. It can be derived from the grand canonical expectation value by first taking
the derivative with respect to the fugacity ζ = e−βλ, separately in numerator and the
denominator, and subsequently taking the limit λ→ ∞:

〈A〉 = lim
λ→∞

∂
∂ζ tr[Ae−β(H+λQ)]

∂
∂ζ tr[e−β(H+λQ)]

= lim
λ→∞

〈QA〉G
〈Q〉G

= lim
λ→∞

〈A〉G
〈Q〉G

.

In the last step, we have assumed that the expectation of the operator A in the Q =
0 subspace is vanishing, A|Q = 0〉 = 0. This is the case for most of the relevant
operators here, like e.g. the physical impurity electron operator d†σ . The physical impurity
Green’s function can be calculated from of the grand canonical impurity Green’s function
Gdσ(ω, λ) via

Gdσ(ω) = lim
λ→∞

Gdσ(ω)

〈Q〉G
. (3.4)

One cannot apply Wick’s theorem and diagrammatic techniques to the physical Green’s
function Gdσ(ω) directly. In fact, this is possible only for the grand canonical Green’s
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3. Quantum impurities

function, Gdσ(ω). In the next section, we will apply diagrammatic techniques in order to
express Gdσ(ω) in terms of the grand canonical pseudo-particle Green’s functions

Gfσ(τ1 − τ2) = −〈T{fσ(τ1)f †σ(τ2)}〉G
Gb(τ1 − τ2) = −〈T{b (τ1)b

†(τ2)}〉G ,

where T is the time-ordering operator. The Fourier transforms of those read

Gfσ(iωn) =
1

iωn − Ed − λ− Σfσ(iωn)
(3.5)

Gb(iωn) =
1

iωn − λ− Σb(iωn)
. (3.6)

During the evaluation of the Feynman diagrams, the projection procedure is carried
out and the physical Green’s functions are obtained. After analytic continuation iω →
ω− i0+, the poles of the pseudo-particle Green’s functions in (3.5) and (3.6) will scale to
infinity together with λ→ ∞. Therefore we shift the energy scale by λ before we apply
the projection procedure and define the physical pseudo-particle Green’s functions as

Gfσ,b(ω − i0+) = lim
λ→∞

Gfσ,b(ω + λ− i0+) .

This is feasible since the resulting impurity Green’s function depends on the difference

of the frequencies appearing as arguments in the pseudo-particle Green’s functions.

3.3. Non-crossing approximation

The numerical calculation of the impurity Green’s function for a given conduction electron
Green’s function is known as an impurity solver. In the following we will review the non-
crossing approximation (NCA). The NCA is a well established impurity solver which is
used for instance in DMFT calculations [37–39]. In particular, it is applicable to arbitrary
conduction electron densities of states and its results are reliable for temperatures well
above the Kondo temperature [33].

Our goal is to apply perturbation theory in the hybridization V , which is assumed
to be small compared to the half conduction band width D0. A precondition for any
perturbative approach is the compliance of the pseudo-particle number condition Q =
1 and the corresponding U(1) symmetry. This is achieved by utilizing a conserving
approximation [40, 41], which is determined by a generating functional Φ. It comprises
all vacuum skeleton diagrams build out of full Green’s functions and the approximation
is defined by the choice of a subset of these diagrams. The simplest choice for the
generating functional, as depicted in figure 3.2, defines the NCA. At the same time it
equals the vacuum skeleton diagram with the lowest order in V , namely second order.
Due to the absence of crossing conduction electron propagators, the approximation was
named non-crossing approximation. Note that the depicted propagators correspond to
the grand-canonical Green’s functions of section 3.2. The grand canonical self-energies
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3.3. Non-crossing approximation

σ

ΣG
fσ = ΣG

b =
σ

σ

ΣG
cσ =

f

b

c
Φ =

σ

Figure 3.2.: Non-crossing approximation as seen in the generating functional (top) and
the corresponding pseudo-fermion, slave-boson and conduction electron self-
energies (bottom).

are then given by the functional derivative of the generating functional with respect to
the corresponding Green’s functions [40, 41]

ΣG
fσ,cσ,b =

δΦ

δGfσ,cσ,b
,

which essentially corresponds to the removal of the corresponding propagator from the
generating functional diagram (see figure 3.2). The grand canonical slave-boson self-
energy reads

ΣG
b (iωn) =

ωl + ωn, σ

ωl, σ

ωn ωn

= (−1)2V 2 1

β

∑

lσ

(
−G0

cσ(iωl)
︸ ︷︷ ︸
∫

dε
A0
cσ(ε)

iωl−ε

)(
−Gfσ(iωl + iωn)
︸ ︷︷ ︸
∫

dα
Afσ(α)

iωl+iωn−α

)

= V 2
∑

σ

∫

dε

∫

dαA0
cσ(ε)Afσ(α)

1

β

∑

l

1

(iωl − ε)(iωl + iωn − α)
︸ ︷︷ ︸

∮

dz
2πi

f(z)
(z−ε)(iωn+z−α)

=
f(ε)

iωn+ε−α
+

f(α−iωn)
α−iωn−ε

= V 2
∑

σ

∫

dε

∫

dαA0
cσ(ε)Afσ(α)

(
f(ε) + f(α)

iωn + ε− α

)

, (3.7)

where we have used the fermionic nature of ωn in the last step and introduced the grand
canonical spectral density Afσ. In order to obtain the physical slave-boson self-energy,
we perform an analytic continuation to real frequencies, shift the energy by λ and take
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3. Quantum impurities

the limit λ→ ∞:

Σb(ω − i0+) = lim
λ→∞

ΣG
b (ω − i0+ + λ)

= lim
λ→∞

V 2
∑

σ

∫

dε

∫

dαA0
cσ(ε)Afσ(α)

(
f(ε) + f(α)

ω + λ+ ε− α− i0+

)

= lim
λ→∞

V 2
∑

σ

∫

dε

∫

dαA0
cσ(ε)Afσ(α+ λ)

(
f(ε) +

λ→∞
→ 0

︷ ︸︸ ︷

f(α+ λ)

ω + ε− α− i0+

)

= V 2
∑

σ

∫

dεf(ε)A0
cσ(ε)

∫

dα
limλ→∞Afσ(α+ λ)

ω + ε− α− i0+

= V 2
∑

σ

∫

dεf(ε)A0
cσ(ε)Gfσ(ω + ε− i0+) . (3.8)

This formula represents the physical slave-boson self-energy in terms of the physical
pseudo-fermion and conduction electron Green’s functions. The evaluation of the pseudo-
fermion self-energy diagram is performed similar to (3.7) and yields

ΣG
fσ(iωn) =

ωn − ωl

ωl, σ

ωn, σ ωn, σ

= (−1)V 2 1

β

∑

l

(
−G0

cσ(iωl)
)
(−Gb(iωn − iωl))

= −V 2

∫

dε

∫

dαA0
cσ(ε)Ab(α)

1

β

∑

l

1

(iωl − ε)(iωn − iωl − α)
︸ ︷︷ ︸

∮

dz
2πi

f(z)
(z−ε)(iωn−z−α)

= f(ε)
iωn−ε−α

− f(iωn−α)
iωn−α−ε

= −V 2

∫

dε

∫

dαA0
cσ(ε)Ab(α)

(
f(ε) + b(−α)
iωn − ε− α

)

.
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3.3. Non-crossing approximation

The physical pseudo-fermion self-energy reads

Σfσ(ω − i0+) = lim
λ→∞

ΣG
fσ(ω − i0+ + λ)

= − lim
λ→∞

V 2

∫

dε

∫

dαA0
cσ(ε)Ab(α)

(
f(ε) + b(−α)

ω + λ− ε− α− i0+

)

= − lim
λ→∞

V 2
∑

σ

∫

dε

∫

dαA0
cσ(ε)Afσ(α+ λ)

(
f(ε) +

λ→∞
→ −1

︷ ︸︸ ︷

b(−α− λ)

ω + ε− α− i0+

)

= V 2
∑

σ

∫

dε[1 − f(ε)]A0
cσ(ε)

∫

dα
limλ→∞Ab(α+ λ)

ω − ε− α− i0+

= V 2
∑

σ

∫

dε[1 − f(ε)]A0
cσ(ε)Gb(ω − ε− i0+) . (3.9)

Finally, the grand canonical conduction electron self-energy is given by

ΣG
cσ(iωn) =

ωl

ωn + ωl, σ

ωn, σ ωn, σ

= (−1)V 2 1

β

∑

l

(−Gb(iωl)) (−Gfσ(iωn + iωl))

= −V 2

∫

dε

∫

dαAb(ε)Afσ(α)
1

β

∑

l

1

(iωl − ε)(iωn + iωl − α)
︸ ︷︷ ︸

−
∮

dz
2πi

b(z)
(z−ε)(iωn+z−α)

=−
b(ε)

iωn+ε−α
+

b(α−iωn)
iωn+ε−α

= V 2

∫

dε

∫

dαAb(ε)Afσ(α)

(
b(ε) + f(α)

ε+ iωn − α

)

= V 2

∫

dεb(ε)Ab(ε)

∫

dα
Afσ(α)

ε+ iωn − α
− V 2

∫

dαf(α)Afσ(α)

∫

dε
Ab(ε)

α− iωn − ε

= V 2

∫

dε {b(ε)Ab(ε)Gfσ(ε+ iωn)− f(ε)Afσ(ε)Gb(ε− iωn)} .

The physical conduction electron self-energy can not be calculated from the above em-
ploying the limit λ→ ∞ since the expectation value of the conduction electron operator
in the Q = 0 subspace does not vanish. Nevertheless, we consider this limit for later use.

21



3. Quantum impurities

It reads

lim
λ→∞

ΣG
cσ(ω − i0+)

ε=ε̃+λ
= lim

λ→∞
V 2

∫

dε̃
{

λ→∞
→ e−β(ε̃+λ)

︷ ︸︸ ︷

b(ε̃+ λ) Ab(ε̃+ λ)Gfσ(ε̃+ λ+ iω − i0+)

− f(ε̃+ λ)
︸ ︷︷ ︸

λ→∞
→ e−β(ε̃+λ)

Afσ(ε̃+ λ)Gb(ε̃+ λ− ω + i0+)
}

= V 2

(

lim
λ→∞

e−βλ

)∫

dε̃e−βε̃
[
Ab(ε̃)Gfσ(ε̃+ iω − i0+)

−Afσ(ε̃)Gb(ε̃− ω + i0+)
]
. (3.10)

In order to derive the impurity Green’s function we consider the full grand canonical
conduction electron Green’s function

Gcσ(iωn) = c

= c + c cd + c cd d c + . . .

= c + c cd

= G0
cσ(iωn)

[
1 + V 2Gdσ(iωn)G0

cσ(iωn)
]
.

By comparing this with Gcσ(iωn) = {[G0
cσ(iωn)]

−1 − ΣG
cσ(iωn)}−1, we can express the

grand canonical impurity Green’s function in terms of the grand canonical conduction
electron self-energy via

Gdσ(iωn) =
ΣG
cσ(iωn)

V 2[1− ΣG
cσ(iωn)G0

cσ(iωn)]
. (3.11)

Now, we can derive the physical impurity Green’s function in the following way:

Gdσ(ω − i0+)
(3.4)
= lim

λ→∞

Gdσ(ω − i0+)

〈Q〉G

= lim
λ→∞

eλβGdσ(ω − i0+)

eλβ〈Q〉G
= lim

λ→∞
eλβGdσ(ω − i0+)

(3.11)
= lim

λ→∞

eλβΣG
cσ(ω − i0+)

V 2[1− ΣG
cσ(ω − i0+)
︸ ︷︷ ︸

with(3.10)
λ→∞
→ 0

G0
cσ(ω − i0+)]

(3.10)
=

∫

dεe−βε
[
Ab(ε)Gfσ(ε+ iω − i0+)−Afσ(ε)Gb(ε− ω + i0+)

]
.

(3.12)

In the third step, we have used

lim
λ→∞

eβλ〈Q〉G = lim
λ→∞

tr(Qe−β[H+λ(Q−1)])

tr(e−β[H+λQ])
= 1 . (3.13)
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3.4. Numerical solution of the NCA equations

For a given conduction electron Green’s function, the equations (3.8), (3.9) and (3.12)
constitute a self-consistent set of equations. They read

Σb(ω − i0+) = V 2
∑

σ

∫

dεf(ε)A0
cσ(ε)Gfσ(ω + ε− i0+) , (3.8)

Σfσ(ω − i0+) = V 2
∑

σ

∫

dε[1 − f(ε)]A0
cσ(ε)Gb(ω − ε− i0+) , (3.9)

Gdσ(ω − i0+) =

∫

dεe−βε
[
Ab(ε)Gfσ(ε+ iω − i0+)−Afσ(ε)Gb(ε− ω + i0+)

]
. (3.12)

The numerical solution of the so-called NCA equations is subject of the next section.

3.4. Numerical solution of the NCA equations

For the numerical evaluation of the NCA equations (3.8), (3.9) and (3.12), two compli-
cations arise. The first problem is given by the fact that the pseudo-particle spectral
densities diverge for T = 0 at a certain energy which can not be predicted [33]. This
problem can be solved in the following way. We consider equation (3.13) and write

1 = lim
λ→∞

eβλ〈Q〉G

= lim
λ→∞

eβλ
∫

dω

[
∑

σ

f(ω)Afσ(ω) + b(ω)Ab(ω)

]

=

∫

dωe−βω

[
∑

σ

Afσ(ω) +Ab(ω)

]

. (3.14)

Next, we shift the energy scale in the pseudo-particle Green’s functions by ω → ω + λ0
before the projection to the physical subspace by the transformation ω → ω+ λ and the
limit λ→ ∞ is performed [33]. With this, the pseudo-particle spectral densities read

Afσ,b(ω) = lim
λ→∞

Afσ,b(ω + λ0 + λ) .

The position of the T = 0 divergence can be shifted by changing λ0. In each iteration
of the self-consistent calculation, λ0 is determined such that (3.14) is fulfilled. This is
equivalent to the problem of finding the roots of the following function:

F (λ0) =

∫

dωe−βω

[
∑

σ

Afσ(ω) +Ab(ω)

]

− 1
!
= 0 .

With this, the T = 0 divergence is fixed to ω = 0 which makes the numerical evaluation
faster and more stable.

The second problem is that the Boltzmann factors e−βω in (3.14) diverge exponentially
for ω < 0. This means that the pseudo-particle spectral densities have to vanish expo-
nentially ∼ eβω for negative frequencies. One can circumvent the problem by separating
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3. Quantum impurities

this behavior and defining modified pseudo-particle spectral densities [33] via

Afσ,b(ω) = f(−ω)Ãfσ,b(ω) ,

Σfσ,b(ω) = f(−ω)Σ̃fσ,b(ω) .

The self-consistent NCA equations (3.8), (3.9) and (3.12) can now be formulated in terms
of the modified spectral densities and the corresponding self-energies. They are given by

ImΣ̃b(ω − i0+) = Γ
∑

σ

∫

dε
f(ε)(1 − f(ω + ε))

f(−ω) A0
cσ(ε)Ãfσ(ω + ε) , (3.15)

ImΣ̃fσ(ω − i0+) = Γ

∫

dε
f(−ε)(1− f(ω − ε))

f(−ω) A0
cσ(ε)Ãb(ω − ε) , (3.16)

Adσ(ω) =

∫

dε [f(ω + ε)f(−ε) + f(−ε− ω)f(ε)] Ãfσ(ω + ε)Ãb(ε) , (3.17)

and

Ãb(ω) =
1

π

ImΣ̃b(ω)

[ω + λ0 − ReΣb(ω)]
2 + [ImΣb(ω)]

2 , (3.18)

Ãfσ(ω) =
1

π

ImΣ̃fσ(ω)

[ω + λ0 − Ed − ReΣfσ(ω)]
2 + [ImΣfσ(ω)]

2 . (3.19)

The corresponding condition for λ0 reads

F (λ0) =

∫

dωf(ω)

[
∑

σ

Ãfσ(ω) + Ãb(ω)

]

− 1
!
= 0 . (3.20)

These equations are solved as follows. One begins with a guess for the pseudo-particle
self-energies (3.15) and (3.16), e. g. a Gaussian of width 2D0, where D0 is the half
width of the bare conduction band. Afterwards the spectral densities are calculated from
the self-energies using (3.18) and (3.19). In the course of this, λ0 is changed during a
root finding algorithm until the condition (3.20) is fulfilled. Since F (λ0) is a monotonic
function one can apply the following scheme to find its root. After starting at the value
of λ0 from the last iteration, its value is increased or decreased stepwise, depending on
the sign of the function. In doing so, the step width is increased exponentially until a
sign change in the function occurs. Afterwards a bisection method is applied for finding
the root. Once the spectral densities which obey (3.20) are found, they are inserted into
(3.15) and (3.16). The new self energies are mixed to the old ones by a small amount to
ensure a careful relaxation of the solution. This process is repeated until the functions
do not change anymore from one iteration to the next. Finally, the impurity spectral
density is calculated with equation (3.17). As the bare conduction band density of states,
we choose

A0
cσ(ω) = e

−
(

ω−∆
D0

)2

The filling of the conduction band is determined by the choice of the band center ∆.
Figure 3.3 shows the results of the self-consistent solution of the NCA equations in the
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3.4. Numerical solution of the NCA equations

case of a half filled Gaussian conduction band (∆ = 0). The corresponding results for
small conduction band fillings are depicted in figure 3.4.

In the following, we will discuss the details of the numerical solution of the NCA equa-
tions. In order to resolve the peaks in the spectral densities Ãb(ω) and Ãfσ(ω), a suitable
integration grid is needed. The width and heights of these peaks are directly related to the
imaginary part of the pseudo-particle Green’s functions ImΣb(ω) and ImΣfσ(ω). Their
position is determined by the real parts ReΣb(ω) and ReΣfσ(ω) and separated roughly
by the impurity level energy Ed. If the conduction electron spectral weight around the
Fermi energy is large enough, the peak in the pseudo-fermion spectral density may be-
come very narrow for very low temperatures, but the slave-boson spectral density peak
remains broad. In this case it is sufficient to use a fixed grid with a logarithmically dense
cluster point at the Fermi energy, and a tangentially dense cluster point at Ed for Adσ(ω)
and at −Ed for Ab(ω) [42].
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Figure 3.3.: Solutions of the NCA equations in the case of a half filled spin degenerate
conduction band ∆ = 0. The impurity, pseudo-fermion and slave-boson
spectral densities are shown for various temperatures through β = 1

kBT .

The numerical solution of the NCA equations becomes more demanding if the con-
duction band spectral weight at the Fermi energy is very small. For example, this is the
case for the gaped conduction band in the high temperature phase of electron doped Eu-
ropium monoxide (see chapter 5). Here, also the peak in the slave-boson spectral density
can become very sharp. Moreover, there will be pronounced features in the slave-boson
spectral density at the position of the pseudo-fermion spectral density peak and vice
versa (see figure 3.4). In order to resolve multiple sharp peaks we developed a highly
versatile integration grid library [43] which is capable of handling an arbitrary number
of logarithmically and tangentially dense as well as equidistant grid regions. Moreover
the position of these grid regions can also be chosen freely. It is even possible to resolve
several neighboring sharp peaks with arbitrarily small distance to each other.

Even if all peaks are properly resolved, their position might change during the iteration
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Figure 3.4.: Pronounced peaks in the pseudo-particle spectral densities in the case of a
small filling in the conduction band. By increasing the band center ∆, which
is given in units of the half conduction band width D0, the filling of the
Gaussian conduction band decreases exponentially.

process. This problem can be overcome by a broad region of dense points only in the
above case of sufficient conduction spectral weight at the Fermi energy. Otherwise, one
has to adapt the integration grid whenever the peak is shifted away from the integration
grid cluster point. For this purpose, we have developed a numerical method which tracks
the peak of a given function during the iteration process. We use our integration grid [43]
which makes it easy to create and change grid regions in an existing integration grid.
The details of this adaptive peak resolution are explained in appendix E. The flexible
integration grid proves beneficial also in the calculation of (3.17), where the integrand
possesses four peaks or pronounced features whose positions will intersect each other
while ω changes. The code of the NCA program can be found at [44].

In order to ensure that the width of these peaks does not fall below machine precision
one can add an artificial constant imaginary part ζ to the pseudo-particle self energies:

ImΣfσ(ω) → ImΣfσ(ω) + ζ

ImΣb(ω) → ImΣb(ω) + ζ .

The size of ζ dictates the accuracy of the resulting solution and should be adapted to
the situation at hand. Note, that for the above results, we used ζ = 0.
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4. Model

In the next two chapters we develop a self-consistent theory for electron doped Europium
monoxide. In doing so, we generalize the theory of Arnold and Kroha [18] for bulk
Eu1−xGdxO in several ways. First of all, we allow for spatial invariance in one direction
in order to describe heterostructures of electron doped EuO. This allows us to describe
the influence of various capping materials on the phase transition. Moreover, different
types of electron doping are realized. Besides Eu1−xGdxO, the model covers oxygen
deficient EuO and stoichiometric EuO. In order to properly describe long range spin
coupling in heterostructures, we extend the theory of Arnold and Kroha to the second
order in the coupling between the conduction electron spin and the 4f spins. For the sake
of completeness, we include the derivation of the bulk Eu1−xGdxO case without long
range coupling as it can be found in [25]. In the present chapter, we introduce the model
Hamiltonians for the bulk and heterostructure case. The derivation of the self-consistent
theory in part of the subsequent chapter 5.

4.1. Bulk

The theory of Arnold and Kroha for bulk Eu1−xGdxO is based on the work of Mauger and
Godart [3] and has some similarities to the theory of Sinjukow and Nolting for Oxygen
deficient EuO [17]. As discussed in chapter 2, the physics of electron doped EuO is
mainly governed by three parts. Firstly the lattice of localized magnetic moments from
the 4f shell, secondly the conduction band which mediates the interaction between the
localized moments and thirdly, the impurities which provide the possibility of transport
through excess electrons. For the bulk Hamiltonian we have

H = H0 +Hcd +Hcf . (4.1)

The conduction band part of the Hamiltonian is given by

H0 =
∑

kσ

(εk − µ)c†kσckσ , (4.2)

where c†
kσ is the conduction electron creation operator, εk is the conduction band disper-

sion and µ is the chemical potential. The impurity part describes Anderson impurities
which are randomly distributed over the Eu sites in the FCC lattice (cf. chapter 3):

Hcd = Ed

∑

{i}σ

d†iσdiσ + V
∑

{i}σ

(
c†iσdiσ + d†iσciσ

)
+ U

∑

{i}

d†i↑di↑d
†
i↓di↓ , (4.3)
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where d†iσ is the creation operator for an electron at the impurity site i, Ed is the impurity
level, V is the hybridization between the conduction band and the impurity level, and
U is the on-site Coulomb repulsion at the impurity sites. The notation {i} indicates the
sum over a fixed but random distribution of impurities over the Eu sites in the FCC
crystal. Finally, the Heisenberg part of the Hamiltonian reads

Hcf = −
∑

〈ij〉

JijSiSj − Jcf
∑

i

σiSi , (4.4)

where Si is the 4f spin operator at the Eu site i. Jij is the coupling between the localized
moments which is independent of the conduction band occupation and therefore respon-
sible for the Curie temperature of 69K in stoichiometric EuO. The second term of Hcf

describes the exchange splitting between the localized 4f moments and the conduction
electron spin σi at site i with the exchange coupling Jcf .

Instead of a specific conduction electron dispersion, we choose the following half circular
bare conduction band density of states

N(ε) =
1

πD0

√

1−
(
ε−∆0

D0

)2

, (4.5)

which reproduces the square root behavior at the band edges that is typical for three
dimensional bands. Here, ∆0 is the band center and D0 the half band width. In the
following we measure all energies in units of the half band width D0.

4.2. Multilayer

In order to describe thin films, we need to extend the bulk theory to allow for broken
translational symmetry in one direction, which we call the z-direction. One can imagine
the system as a number of atomic monolayers extended into the x- and y-direction that
are stacked onto each other. Hence, we speak of a multilayer system. The z direction
is called ’perpendicular’ and any direction in the x-y planes is called ’parallel’. We split
up the lattice vectors into parallel and perpendicular directions R = (R‖i, α). Likewise,
the wavevectors read k = (k‖, q). The multilayer Hamiltonian is similar to the bulk
Hamiltonian except for one additional term which takes the charge distribution in the z
direction into account:

H = H0 +Hcd +Hcf +Hφ . (4.6)

The conduction band part of the Hamiltonian in the basis of parallel momentum eigen-
states and localized Wannier states in the perpendicular direction |α,k‖, σ〉 reads [45]

H0 =
∑

αβ
k‖p‖

σσ′

〈k‖, α, σ|H0|p‖, β, σ
′〉c†k‖ασ

cp‖βσ′

= H‖ +H⊥ , (4.7)
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where H⊥ is the part containing the interlayer summation (α 6= β) and H‖ incorporates
the intralayer (α = β) summation. The latter reads

H‖ =
∑

α
k‖p‖

σσ′

〈k‖, α, σ|H0|p‖, α, σ
′〉

︸ ︷︷ ︸

∝δk‖p‖
δσσ′

c†k‖ασ
c
p‖ασ′

=
∑

αk‖σ

〈k‖, α, σ|H0|k‖, α, σ〉
︸ ︷︷ ︸

=:εα
k‖

c†k‖ασ
ck‖ασ

=
∑

αk‖σ

εαk‖
c†k‖ασ

ck‖ασ
, (4.8)

where we have used the isotropy in the planes and the spin symmetry. The quantity εαk‖

denotes the dispersion of the conduction band electrons with parallel momentum k‖ in
layer α. We use the Fourier transform

|k‖, α, σ〉 =
1

√
N‖

∑

i

e−ik‖R‖i |R‖i, α, σ〉 ,

where N‖ is the number of lattice sites in each plane, to write down the perpendicular
part of the conduction band Hamiltonian in real space:

H⊥ =
∑

α6=β
k‖p‖

σσ′

〈k‖, α, σ|H0|p‖, β, σ
′〉

︸ ︷︷ ︸

∝δσσ′

c†k‖ασ
c
p‖βσ′

=
∑

α6=β
ij
σ

〈i, α, σ|H0|j, β, σ〉
︸ ︷︷ ︸

=:tijαβ

1
√
N‖

∑

k‖

eik‖R‖ic†
k‖ασ

︸ ︷︷ ︸

c†iασ

1
√
N‖

∑

p‖

e−ip‖R‖jc
p‖βσ

︸ ︷︷ ︸

c
jβσ

=
∑

α6=β
ij
σ

tijαβc
†
iασcjβσ .

Here, tijαβ is the hopping matrix element from lattice site (R‖j, β) to (R‖i, α). In nearest
neighbor tight-binding approximation it reduces to

tijαβ =

{

tiiαβ =: tαβ i = j and β = α± 1

0 else
.

If we use the symmetry tαβ = tβα and the notation tαα−1 =: tα for the hopping from
layer α− 1 to layer α, we obtain

H⊥ =
∑

αiσ

(

tαc
†
iασciα−1σ + tα+1c

†
iασciα+1σ

)

. (4.9)
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Note that as long as we are considering a single material, the interlayer hopping will not
depend on the layer index and we have tα =: t.

The electrostatic potential at the perpendicular position α, ϕα, is determined by the
charge density ρα over the Poisson equation

1

ã2
∂2

∂α2
ϕα = −ρα

ε0
,

where ã = a/2 is the interlayer distance. The energy of an electron exposed to the
electrostatic potential ϕα is given by φα = −eϕα. If we further express the charge
density ρα by the charge carrier distribution ∆nα by ρα = −e∆nα

V , the Poisson equation
reads

∂2

∂α2
φα = − e2

ε0a
∆nα , (4.10)

where we have used that the FCC unit cell is given by V = a3/4. We assume that the
electrostatic energy is not strong enough to affect the population of the valence band.
Thus, it will only affect the conduction and impurity electrons and the corresponding
contribution to the Hamiltonian reads

Hφ =
∑

iασ

φαc
†
iασciασ +

∑

{iα}σ

φαd
†
iασdiασ . (4.11)

The impurity and Heisenberg part of the Hamiltonian are equal to the bulk Hamiltonian
parts. Written in the new basis, they read

Hcd = Ed

∑

{iα},σ

d†iασdiασ + V
∑

{iα}

(
c†iασdiασ + d†iασciασ

)
+ U

∑

{iα}

d†iα↑diα↑d
†
iα↓diα↓ , (4.12)

and
Hcf = −

∑

ij
αβ

Jαβ
ij SiαSjβ − Jcf

∑

i

σiαSiα . (4.13)

Finally, the two dimensional bare density of states is chosen to be

N‖(ε) =

{
1

2D‖
for |∆0 − ε| ≤ D‖

0 else
, (4.14)

where the half band width D‖ is chosen such that the half bandwidth of a non-interaction
system of infinitely many layers would be D0. Similar to the tight binding model, we
impose the relation of the half band width to the hopping matrix element to be D0 = 6t
in the three dimensional case, and D‖ = 4t in the two dimensional case. With this, we
obtain D‖ =

2
3D0.
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In this chapter, we develop a self-consistent theory for the solution of the bulk and the
multilayer model, (4.1) and (4.6). As mentioned before, this theory includes the work
of Arnold and Kroha [25] as the special case of bulk Eu1−xGdxO with nearest neighbor
spin coupling. Again, we include this special case in our derivations below.

The self-consistent theory is formulated by diagrammatic Green’s function techniques.
A central part of the theory is the conduction band Green’s function, whose calculation
is non-trivial in the multilayer case. Hence, we begin with a detailed description on how
this calculation is performed in the first section of this chapter. In the second section, for
both the Gadolinium and the Oxygen case, we calculate the impurity contribution to the
conduction band self-energy which stems from (4.3) and (4.12), respectively. The solution
of the Heisenberg lattice ((4.4) and (4.13)) in mean field theory and its contribution to the
conduction band self-energy is discussed in the third section. Afterwards, in the fourth
section, the self-consistent theory is summarized and we discuss its numerical solution.
The chapter is concluded by the derivation of transport properties in the fifth section.

5.1. Conduction band Green’s function

In the following we discuss the calculation of the conduction band Green’s function, first
for the bulk case and then for the multilayer case. We assume that the interaction and
therefore also the self-energy is local.

5.1.1. Bulk conduction band Green’s function

We begin with the retarded Green’s function for a conduction band electron with mo-
mentum k

GR
cσ(k, t− t′) = iΘ(t− t′)〈{c

kσ(t), c
†
kσ(t

′)}〉 .
Since we want to apply diagrammatic techniques at finite temperatures, we take the time
ordered Green’s function, Fourier transform to frequency space and perform an analytic
continuation

Gcσ(k, z) =
1

z − εk + µ− Σcσ(z)
. (5.1)

Note that we assumed the self-energy to be local, i.e. there is no momentum depen-
dence. In section 5.2, 5.3 and 5.4 this assumption will be justified. The corresponding
diagrammatic Dyson equation reads

k, σ

z
=

k, σ

z
+

k, σ k, σ

z z
. (5.2)
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Real space conduction band Green’s function

For the self-consistent theory, we need the real space conduction band Green’s function.
Due to translational invariance, the propagator between to positions r′ and r′′ depends
only on the distance r = r′′ − r′ between the positions and we have

Gcσ(r, z) = Gcσ(r
′′, r′, z) =

1

N

∑

k

eikrGcσ(k, z) , (5.3)

implying for the local Green’s function (r = 0)

Gcσ(z) =
1

N

∑

k

Gcσ(k, z) . (5.4)

Here, we assumed a finite crystal with N lattice sites. The momentum and frequency
dependent Green’s function Gcσ(k, z) is given by (5.1). Since it depends on k only
indirectly via the dispersion, i. e. Gcσ(k, z) = Gcσ(εk, z), our goal is to convert the
wavenumber summation into an energy integral. Due to the isotropy of the system we
assume an isotropic dispersion

εk = ε|k| = εk ,

and go to the continuum limit

1

N

∑

k

continuum→ V
(2π)3

∫

d3k
isotropy→ V

(2π)3

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ kmax

0
dk k2 .

Here we have chosen the integral limits such, that the upper and lower band edges are
reproduced, εk=0 = ∆ − D0 and εkmax = ∆ + D0. The assumption of an isotropic
dispersion is justified due to the sole use of local quantities in our theory and the usage
of a model density of states. The non-local Green’s function now reads

Gcσ(r, z) =
V

(2π)3

∫ 2π

0
dφ

∫ kmax

0
dk k2

∫ π

0
dθ sin θeikr cos θ

︸ ︷︷ ︸
2 sin(kr)

kr

Gcσ(εk, z)

=
V

2π2r

∫ kmax

0
dk k sin(kr)Gcσ(εk, z) , (5.5)

and for the local Green’s function (r = 0) we have

Gcσ(z) =
V
2π2

∫ kmax

0
dk k2Gcσ(εk, z) . (5.6)

In order to convert the wavenumber integral into an energy integral we need to know
the dispersion εk and its inverse mapping corresponding to the bare density of states
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5.1. Conduction band Green’s function

(4.5). To this end, we consider the definition of the density of states as an integral over
equipotential surfaces and make use of the isotropy of the dispersion

N(ε) =
V

(2π)3

∫

dS
dk

dε

=
4πk2V
(2π)3

dk

dε
.

Hence, the dispersion reads
dε

dk
=

Vk2
2π2N(ε)

. (5.7)

In order to obtain the inverse mapping of the dispersion, we separate the variables and
integrate both sides of the above equation from the lower band edge to an energy inside
the band

∫ ε′

∆0−D0

dεN(ε) =
4πk2V
(2π)3

∫ k(ε′)

k(∆0−D0)
dk k2 =

V
6π2

k(ε′)3 ,

where we have chosen k(∆0 −D0) = 0 in the second step. We insert (4.5), evaluate the
integral [46] and solve for k:

k(ε′) =

[

6π2

V

{
∫ ε′

∆0−D0

dεN(ε)

}] 1
3

=

[

12π2(ε′ −∆0)N(ε′) + 24π arcsin

(
ε′ −∆0

D0

)

+ 12π2
] 1

3

︸ ︷︷ ︸

=:k̃(ε′)

1

a
. (5.8)

In (5.8), we have introduced the dimensionless wavenumber k̃(ε′) and used the fact that
the volume of an FCC unit cell is V = a3/4. Finally, we can convert the wavenumber
integrals in (5.5) and (5.6) using

∫

dk =

∫

dε
2π2N(ε)

Vk(ε)2

which yields for the non-local Green’s function

Gcσ(r, z) =

∫

dε
N(ε) sin(k̃(ε)r̃)

k̃(ε)r̃
Gcσ(ε, z) , (5.9)

and for the local Green’s function

Gcσ(z) =

∫

dεN(ε)Gcσ(ε, z) . (5.10)

Here, we have introduced the dimensionless position as r = r̃/a.
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Numerical evaluation

For the self-consistent theory we need the spectral density

Acσ(r, ω) =
1

π
ImGcσ(r, ω − i0+) ,

where we have chosen the advanced Green’s function in order to make the imaginary part
of the self-energy positive. The real part ReGcσ(r, ω − i0+) is then calculated via the
Kramers-Kronig-relation (see appendix D) and we are left with the task of calculating

Acσ(r, ω) =

∫

dε
N(ε) sin(k̃(ε)r̃)

k̃(ε)r̃
Acσ(ε, ω) , (5.11)

and

Acσ(ω) =

∫

dεN(ε)Acσ(ε, ω) . (5.12)

According to (5.1) the momentum dependent spectral density reads

Acσ(ε, ω) =
1

π

ImΣcσ(ω − i0+)

[ω − i0+ − ε+ µ− ReΣcσ(ω − i0+)]2 + [ImΣcσ(ω − i0+)]2
. (5.13)

For slowly varying self-energies, this is approximately a Lorentz curve. Its width is given
by the imaginary part of the conduction band self-energy. If the latter becomes small,
we are left with an extremely narrow peak in the integrand of 5.11 and 5.12. The peak’s
position is given by ω−ε+µ−ReΣcσ(ω−i0+) ≈ 0. In order to evaluate such an integral,
one needs to ensure a proper resolution of the peak. It is a frequently used method to
introduce an artificial imaginary part of the self-energy η to ensure a minimum width of
the resonances in the spectral density.

ImΣcσ(ω − i0+) → ImΣcσ(ω − i0+) + η (5.14)

It is obvious that this will lead to exponential tails in regions where the spectral density
would vanish otherwise. In our theory, spectral weight near the Fermi edge can have a
huge impact on the physical quantities of the system, such as the conductivity. Therefore
it is desirable to reduce the artificial imaginary part of the self-energy as much as possible.
This can be achieved by using an integration grid with a logarithmic cluster point at the
peak’s position, which is given by the above equation. As mentioned before, we developed
a highly versatile integration grid library for this task [43]. See appendix E for details.

If η is chosen to vanish and the imaginary part becomes very small, i.e. comparable to
machine precision, one has to take the limit of (5.13) for vanishing imaginary part of the
self-energy. This yields

Acσ(ε, ω) = δ(ω − ε+ µ− ReΣcσ(ω − i0+)) (5.15)

and the integrals (5.11) and (5.12) can be calculated analytically.
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5.1.2. Multilayer conduction band Green’s function

In this section, we will derive an expression for the conduction band Green’s function
in the case of the inhomogeneous system defined by (4.6). For this purpose, we will
use the Potthoff-Nolting approach [45, 47, 48], which is the standard technique for layer
DMFT [49–52]. Nevertheless, due to increased requirements on the accuracy, a refinement
of this technique became necessary. In the following we present a new approach, specially
suited for the very accurate numerical calculation of the multilayer conduction band
Green’s function.

In 1999, Potthoff and Nolting [45] developed a technique for describing strongly cor-
related layered structures. They used a basis of momentum eigenstates parallel to the
layers and spatially localized states in the direction perpendicular to the layers (see sec-
tion 4.2). We will follow this approach to derive the retarded conduction electron Green’s
function with spin σ and parallel momentum k‖ propagating between layer α and β,

Gαβ,R
cσ (k‖, t− t′) = iΘ(t− t′)〈{c

k‖ασ
(t), c†

k‖βσ
(t′)}〉 .

In order to apply Wick’s theorem and diagrammatic techniques we need the time order
conduction electron Green’s function in frequency space. By Fourier transforming and
analytically continuing to imaginary frequencies z we obtain the quantity of interest, i.e.

Gαβ
cσ (k‖, z) = 〈k‖, α, σ|Ĝc(z)|k‖, α, σ〉 ,

with the Green’s function operator

Ĝc(z) =
1

z − Ĥ0 − Σ̂(z)
, (5.16)

where Ĥ0 is given by (4.7) and the self-energy Σ̂(z) stems from the interaction terms
in (4.6). We take the matrix element of (5.16) between two basis states and insert an
identity operator

δαγ = 〈k‖, α, σ|(z − Ĥ0 − Σ̂(z))Ĝc(z)|k‖, γ, σ〉
=
∑

βp‖σ′

〈k‖, α, σ|(z − Ĥ0 − Σ̂(z))|p‖, β, σ
′〉 〈p‖, β, σ

′|Ĝc(z)|k‖, γ, σ〉
︸ ︷︷ ︸

δk‖p‖
δσσ′G

βγ
cσ (k‖,z)

, (5.17)

where we have implied that all interactions preserve the parallel momentum and spin.
Moreover, if we assume all interactions to be local, i.e.

〈k‖, α, σ|Σ̂(z)|p‖, β, σ
′〉 = δαβδk‖k‖

δσσ′ Σα
cσ(z) , (5.18)

the only remaining non-local contribution stems from the free Hamiltonian

〈k‖, α, σ|(z − Ĥ0)|p‖, β, σ
′〉 = δk‖k‖

δσσ′

{
(z − εαk‖

+ µ)δαβ

+ tαδαβ+1 + tα+1δαβ−1

}
,
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and equation (5.17) becomes
∑

β

[

(z − εαk‖
+ µ− Σα

cσ(z))δαβ + tαδαβ+1 + tα+1δαβ−1

]

︸ ︷︷ ︸

(G−1)αβ
cσ (k‖,z)

Gβγ
cσ (k‖, z) = δαγ .

We have identified the expression for the inverse Green’s function matrix in the layer
indices as

Ĝ−1
cσ (k‖, z) =









z − ε1k‖
+ µ− Σ1

cσ(z) −t2 0 · · ·
−t2 z − ε2k‖

+ µ− Σ2
cσ(z) −t3 · · ·

0 −t3 z − ε3k‖
+ µ− Σ3

cσ(z) · · ·
...

...
. . .









.

(5.19)
In order to obtain the Green’s function itself, we need to invert this matrix. We introduce
the following shorthand notation for the diagonal elements of (5.19)

dα := z − εαk‖
+ µ− Σα

cσ(z) .

According to [53] the lower triangular matrix elements of the inverse of this tridiagonal
symmetric matrix, Gαβ

cσ (k‖, z), read

Gαβ
cσ (k‖, z) =

{

(−1)α+βtβ+1tβ+2 · · · tαΘβ−1Φα+1

ΘN
for α > β

Θα−1Φα+1

ΘN
for α = β

. (5.20)

where the Θα and Φα with α ∈ (1, . . . , N) are the minors of (5.19) and the following
recursion relations hold:

Θα = dαΘα−1 − t2αΘα−2

Θ−1 = 0 , Θ0 = 1

and

Φα = dαΦα+1 − t2α+1Φα+2

ΦN+1 = 1 , ΦN+2 = 0 .

Due to symmetry reasons, the upper triangular matrix elements are given by

Gβα
cσ (k‖, z) = Gαβ

cσ (k‖, z), α > β . (5.21)

In the case of mirror symmetric systems, one can simplify the above equations to some
extent. This is part of appendix C. Note that with this technique, the inversion of the
matrix is an operation of order N . Finally we can write down the diagrammatic Dyson
equation in terms of the local self-energy. It reads

z,k‖, σ

α β
=

z,k‖, σ

α β
+

z,k‖, σ z,k‖, σ

α
γ

β
. (5.22)

36



5.1. Conduction band Green’s function

Real space conduction band Green’s function

Due to the isotropy in the parallel direction, the conduction band propagator between
two positions r′ = (r′‖, β) and r′′ = (r′′‖ , α) depends only on the difference r‖ = r′′‖ − r′‖
and reads

Gαβ
cσ (r‖, z) = Gαβ

cσ (r
′′
‖ , r

′
‖, z) =

1

N‖

∑

k‖

eik‖r‖Gαβ
cσ (k‖, z) . (5.23)

Here, we have assumed a finite (100) FCC monolayer with N‖ lattice sites. For the
diagonal elements, we introduce the shorthand notation Gα

cσ(r‖, z) = Gαα
cσ (r‖, z) . In the

following we will call this function the parallel Green’s function. In contrast to that, for
r‖ = 0 we have

Gαβ
cσ (z) =

1

N‖

∑

k‖

Gαβ
cσ (k‖, z) , (5.24)

which will be called perpendicular Green’s function in the following. Note that (5.24)
also includes the local Green’s function in layer α, Gα

cσ(z) = Gαα
cσ (z). According to

equation (5.19), the conduction band Green’s functions depends on k‖ only indirectly
via the parallel dispersions in all layers, Gαβ

cσ (k‖, z) = Gαβ
cσ (ε1k‖

, ε2k‖
, . . . ; z). Therefore our

goal is to convert the summation over wavenumbers into an energy integral. Due to the
isotropy of the system in the parallel direction we assume

εαk‖
= εα|k‖|

= εαk ∀α ,

and take the continuum limit

1

N‖

∑

k‖

continuum→ V2D

(2π)2

∫

d2k
isotropy→ V2D

(2π)2

∫ 2π

0
dφ

∫ kmax

0
dk k .

With this, we can write the parallel Green’s function as

Gαβ
cσ (r‖, z) =

V2D

(2π)2

∫ kmax

0
dk k

∫ 2π

0
dφeikr cosφ

︸ ︷︷ ︸

2πJ0(kr)

Gαβ
cσ (ε

1
k, ε

2
k, . . . ; z)

=
V2D

(2π)

∫ kmax

0
dk k J0(kr)G

αβ
cσ (ε

1
k, ε

2
k, . . . ; z) , (5.25)

and the perpendicular Green’s function reads

Gαβ
cσ (z) =

V2D

2π

∫ kmax

0
dk kGαβ

cσ (ε
1
k, ε

2
k, . . . ; z) . (5.26)

In equation (5.25), J0 denotes the Bessel function of first kind and order zero. We are
now able to perform the mentioned wavenumber integral substitution. Without loss of
generality, we can choose the dispersion in an arbitrary layer with index β, ν = εβk‖

as an
integration variable. This is feasible, since the dispersion of all other layers εαk depend on
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5. Theory

ν indirectly over the inverse mapping k(ν). The bare density of states in the first layer
is given by

Nβ
‖ (ε) =

V2D

(2π)2

∫

dS‖

dk‖

dν

=
V2Dk

(2π)

dk

dν
.

Hence the dispersion reads
dν

dk
=

V2Dk

2πNβ
‖ (ν)

. (5.27)

Similar to the bulk case, we separate the variables and integrate both sides of (5.27) from
the lower band edge to an energy inside the band

∫ ν′

∆β
0−Dβ

‖

dνN1
‖ (ν) =

V2Dk
2

4π
.

By inserting (4.14) we obtain

ν(k) = εβk =
V2DD

β
‖

2π
k2 +∆β

0 −Dβ
‖ , (5.28)

and the inverse mapping reads

k(ν) =

√

4π

Dβ
‖

(ν −∆β
0 +Dβ

‖ )

︸ ︷︷ ︸

=:k̃(ν)

1

a
. (5.29)

Here, we have introduced the dimensionless wavenumber k̃(ν). In addition, we have
used that the unit cell volume of a (100) monolayer of Europium monoxide is given by
V2D = a2/2, where a is the lattice parameter of the bulk FCC lattice. Note, that by
combining (5.28) and (5.29) the parallel dispersions in all layers can now be written as
functions of ν by

εα(ν) = εα(k(ν)) =
Dα

‖

Dβ
‖

ν −∆β
0 +∆α

0 +Dβ
‖ −Dα

‖ . (5.30)

Now we can substitute the wavenumber integral in (5.25) and (5.26) by
∫

dk =

∫

dν
2πNβ

‖ (ν)

V2Dk(ν)

and obtain for the parallel Green’s function

Gαβ
cσ (r‖, z) =

∫

dνNβ
‖ (ν)J0(k̃(ν)r̃)G

αβ
cσ (ε

1(ν), ε2(ν), . . . ; z) , (5.31)

and for the perpendicular Green’s function

Gαβ
cσ (z) =

∫

dνNβ
‖ (ν)G

αβ
cσ (ε

1(ν), ε2(ν), . . . ; z) . (5.32)

Again, we made use of the dimensionless position r̃ = ra here.

38



5.1. Conduction band Green’s function

Numerical evaluation

In comparison to the bulk case, the numerical evaluation of (5.31) and (5.32) turns out
to be much more difficult. It is advantageous to use the following shorthand notation for
the momentum dependent Green’s function:

Gαβ
cσ (ν, z) ≡ Gαβ

cσ (ε
1(ν), ε2(ν), . . . ; z) . (5.33)

Moreover, we choose ν = ε1k‖
as an integration variable to obtain for the parallel conduc-

tion band spectral density

Aαβ
cσ (r‖, ω) =

∫

dνN‖(ν)J0(k̃(ν)r̃)A
αβ
cσ (ν, ω) , (5.34)

and for the perpendicular conduction band spectral density

Aαβ
cσ (ω) =

∫

dνN‖(ν)A
αβ
cσ (ν, ω) . (5.35)

where we have used the shorthand notation N‖(ν) = N1
‖ (ν) and due to equations (5.19)

and (5.20) the momentum dependent spectral density is given by

Aαβ
cσ (ν, ω) =

1

π
ImGαβ

cσ (ν, ω − i0+)

=
1

π







(−1)α+βtβ+1tβ+2 · · · tαImΘβ−1(ν,ω−i0+)Φα+1(ν,ω−i0+)
ΘN (ν,ω−i0+)

for α > β

ImΘα−1(ν,ω−i0+)Φα+1(ν,ω−i0+)
ΘN (ν,ω−i0+)

for α = β
.

In order to evaluate the integrals in (5.34) and (5.35), it is necessary to investigate the
poles in the ν dependence of the spectral density Aαβ

cσ (ν, ω). In the following, we will skip
the ω dependence of the minors for better readability and introduce the polefunction P
as

Pαβ(ν) :=
ΘN (ν)

Θβ−1(ν)Φα+1(ν)
.

The spectral density can then be written as

Aαβ
cσ (ν, ω) ∝ Im

1

Pαβ(ν)
=

−ImPαβ(ν)

[RePαβ(ν)]2 + [ImPαβ(ν)]2
. (5.36)

In general, Aαβ
cσ (ν, ω) will be comprised of N Lorentz peaks at the positions of the poles

(see figure 5.1). Their width is determined by the imaginary parts of the self-energies
Σα
cσ(ω− i0+). In contrast to the bulk case, there is no analytical formula connecting the

Σα
cσ(ω− i0+) and the width of the individual peaks. In order to ensure a minimum width

of the peaks one has to introduce a very small additional artificial imaginary part η in
the self-energy,

Σα
cσ(ω − i0+) → Σα

cσ(ω − i0+) + η . (5.37)
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Figure 5.1.: Calculation of the local conduction band spectral density in the case of 15
mirror symmetric non-interacting layers with η = 10−5, a temperature of
T = 20K and a band filling of x = 0.01. Aαα

cσ (ν, ω) is evaluated at a fixed
ω0 = 0.4D0 and we chose the middle layer α = 7. Due to the mirror
symmetry, there are 8 distinct resonances of width η which are properly
resolved by our integration grid. The steps in the resulting local spectral
density (bottom left) originate in the “sudden” overlap of the peaks with the
bare density of states N‖(ν) when ω changes.

To resolve all peaks in the integrand of (5.34) and (5.35), we use our integration grid
library [43] which allows for an arbitrary number of logarithmically dense grid regions that
can even intersect each other (see appendix E). With this, it is possible to calculate with
an accuracy that is limited only by the size of η and the machine precision, respectively.

Due to equation (5.36) the position of the poles are given by the roots of the real part
of the polefunction. If the imaginary parts of the self-energies are small, the real part of
the polefunction is approximately given by

RePαβ(ν) = Re
ΘN (ν)

Θβ−1(ν)Φα+1(ν)

ImΣ≪1≈ ReΘN (ν)

ReΘβ−1(ν)ReΦα+1(ν)
. (5.38)

Therefore, the necessary condition for the roots of the polefunction reads

ReΘN (ν)
!
= 0 . (5.39)

and a sufficient condition is given by

RePαβ(ν)
!
= 0 . (5.40)

Note that since ΘN (ν) does not depend on the layer indices, the necessary condition
applies for the roots of all polefunctions, Pαβ(ν), ∀α, β. Therefore one has to solve (5.39)
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5.1. Conduction band Green’s function

only once and check if equation (5.40) holds afterwards only at the position where (5.39)
is fulfilled. If the imaginary part is not small, we can still use (5.39) to find the position
of the poles. Due to the increased width of the peaks, a small translation of the center
of the logarithmically dense integration grid region will not affect the resolution of the
peaks.

In the non-interacting limit,

Σα
cσ(ω − i0+) = i0+ , ∀α ,

the imaginary part of the polefunction will also vanish, ImPαβ(ν) = 0+ and the ap-
proximation in equation (5.38) becomes exact. In this limit, the spectral density (5.36)
reduces to a sum of delta functions

Aαβ
cσ (ν, ω) ∝ Im

1

Pαβ(ν)
= π

∑

i

δ(ν − νi)
1

∣
∣ ∂
∂νRePαβ(ν)

∣
∣
ν=νi

, (5.41)

where the {νi} are the roots of RePαβ(ν) which are determined by the equations (5.38),
(5.39) and (5.40).
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Figure 5.2.: Necessary and sufficient condition for the roots of the polefunction for a
system of 15 mirror symmetric non-interacting layers with η = 10−5, a tem-
perature of T = 20K and a band filling of x = 0.01. The functions are
evaluated at a fixed ω = 0.4D0 and we chose the middle layer α = 7.

In the following we will discuss the details of the root-finding algorithm. The minor
ΘN (ν) is the determinant of the N×N inverse Green’s function matrix (5.19). Therefore
it is a polynomial of Nth order and therewith it possesses N roots. The polefunction
itself is a rational function (see figure 5.2). We found that both, the minimal distance be-
tween local maxima and local minima scales with ∆Θmin as well as the minimal distance
between two neighboring poles ∆νmin scale with

∆Θmin ∼ ∆νmin ∼
N∏

α=2

tα .
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5. Theory

With t = 0.01D0, ∆νmin can fall below machine precision at system sizes around N = 17.
Beyond this threshold, we use the multiple precision library MPFR [54] to compute
with arbitrary precision floating point numbers. The price one has to pay for this is a
significant increase in the computation time.

The root-finding algorithm starts at some position far below the first root. Then the
algorithm scans the functions for sign changes in the function itself or its derivative while
increasing ν stepwise. Once a sign change in the function occurs, the intermediate root
is found by the bisection method. If a sign change in the derivative is detected, the
intermediate extremum is determined by the golden section method. Afterwards the
algorithm checks if the extremum has crossed the ν-axis. If this is the case, there must
be two additional roots in between, which are found via the bisection method. If not, the
algorithm proceeds by searching for sign changes in the function. This is repeated until
the whole region is scanned and all N roots are found. The success of the procedure is
ensured by our method even in case of extremely small distances between neighboring
roots. With this, we achieve high precision and reliability. In the non-interacting case
the method is extremely fast due to the absence of numerical integration.

5.2. Impurities

In this section we will discuss the interaction of conduction and impurity electrons de-
scribed by the Hamiltonians (4.4) and (4.13), respectively. In particular, we will derive
their contribution to the conduction electron self-energy in (5.1) and (5.19). The first
part will treat the problem of randomly distributed impurities. Here, we will find that
the contribution to the conduction electron self-energy is given by the impurity Green’s
function. Afterwards, we will show how to calculate the impurity Green’s function in the
case of Oxygen vacancies as well as for Gadolinium impurities.

5.2.1. Dilute impurities

In the following, we will solve the problem of dilute impurities in an Europium monoxide
crystal. We follow [55] and [25] for the bulk case and extend these results to the multilayer
case in the second part of this section. We begin by considering a system with a fixed but
random distribution ofNi impurities throughout the crystal. In this case the translational
symmetry is broken, and according to (4.3) and (4.12) the full conduction electron Green’s
function reads

Gcσ(rb, ra, z) =
z, σ

rb ra

=
z, σ

rb ra
+

z, σ z, σ

rb rj1 rarj1

z, σV V
+ · · ·

= G0
cσ(rb, ra, z) +

∞∑

n=1

G(n)
cσ (rb, ra, z) . (5.42)
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5.2. Impurities

Here, a dashed impurity line correspond to a dressed propagator which incorporates
the on-site Coulomb interaction U but not the hybridization V (cf. (4.3) and (4.12)).
Throughout this section however, we will denote them as bare propagators G0

cσ and
postpone the treatment of the Coulomb interaction to section 5.2.2.

Bulk case

In contrast to the bare conduction electron Green’s function, (5.42) does not depend on
the position difference due to the absence of isotropy in the system. The n-th term of
the perturbative series is given by

G(n)
cσ (rb, ra, z) =

Ni∑

j1,...,jn

G0
cσ(rb − rjn , z)V

2Gjn,0
dσ (z)G0

cσ(rjn − rjn−1 , z) · . . .

. . . · V 2Gj1,0
dσ (z)G0

cσ(rj1 − ra, z)

=
1

N2

∑

kbka

eikbrb−ikara

{ Ni∑

j1,...,jn

1

Nn−1

∑

k1···kn−1

G0
cσ(kb, z)V

2Gjn,0
dσ (z)

·G0
cσ(kn−1, z) · . . . ·G0

cσ(k1, z)

·V 2Gj1,0
dσ (z)G0

cσ(ka, z)e
−i[(kb−kn−1)rjn+···+(k1−ka)rj1 ]

}

︸ ︷︷ ︸

G
(n)
cσ (kb,ka,z)

,

(5.43)

where we have denoted the impurity Green’s function at site rjl by Gjl,0
dσ (z) and inserted

the Fourier transforms G0
cσ(r, z) =

1
N

∑

k e
ikrG0

cσ(k, z) for the bare conduction electron
Green’s functions. Since it is neither desirable nor feasible to determine the position
of all impurities we will consider the average over all possible distributions of impurity
positions over the lattice sites, the so called configurational average [55]. In this process,
the impurity concentration ni = Ni/N , with N being the number of lattice sites, is held
constant. The n-th term of the full conduction electron Green’s function then becomes

G(n)
cσ (rb, ra, z) → 〈G(n)

cσ (rb, ra, z)〉imp =
1

Nn

N∑

j1=1

· · ·
N∑

jn=1

G(n)
cσ (rb, ra, z) .

By the averaging over all possible configurations, translational symmetry is restored and
the impurity Green’s function becomes position independent:

Gjl,0
dσ (z) = G0

dσ(z) .

In addition, we have

〈Gcσ(rb, ra, z)〉imp = Gcσ(rb − ra, z) =
1

N

∑

k

eik(rb−ra)Gcσ(k, z) , (5.44)
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5. Theory

where we have identified the configuration-averaged conduction electron Green’s function
with the translationally invariant Green’s function (5.3) of section 5.1.1. The n-th order
term of this Green’s function is given by

G(n)
cσ (rb − ra, z) = 〈G(n)

cσ (rb, ra, z)〉imp

=
1

Nn

N∑

j1=1

· · ·
N∑

jn=1

Ni∑

j1,...,jn

G0
cσ(rb − ra − rjn , z)V

2G0
dσ(z)

·G0
cσ(rjn − rjn−1 , z) · . . . · V 2G0

dσ(z)G
0
cσ(rj1 − 0, z)

=
1

N

∑

k

eik(rb−ra)

{ N∑

j1=1

· · ·
N∑

jn=1

Ni∑

j1,...,jn

1

N2n

∑

k1···kn

G0
cσ(k, z)

· V 2G0
dσ(z)G

0
cσ(kn, z) · . . . · V 2G0

dσ(z)

· G0
cσ(k1, z) e

−i[(k−kn)rjn+···+(k2−k1)rj1 ]

}

︸ ︷︷ ︸

G
(n)
cσ (k,z)

. (5.45)

For further investigation of the momentum dependent conduction electron Green’s func-
tion, we pull all Green’s functions out of the summation over lattice sites and introduce
the momentum differences qi := ki+1 − ki with qn := k− kn. This yields

G(n)
cσ (k, z) =

1

Nn

∑

k1···kn

G0
cσ(k, z)V

2G0
dσ(z)G

0
cσ(kn, z) · . . . · V 2G0

dσ(z)G
0
cσ(k1, z)

· 1

Nn

N∑

j1=1

· · ·
N∑

jn=1

Ni∑

j1,...,jn

e−i[qnrjn+···+q1rj1 ]

︸ ︷︷ ︸

=:X(q1,...,qn)

. (5.46)

Here, we have defined the function X(q1, . . . ,qn), which contains all the spatial informa-
tion about the random scattering. We proceed by ordering this quantity by the number
of impurities which are involved. The first term corresponds to a process where an elec-
tron is scattered n times at the same impurity, i.e. j1 = j2 = . . . = jn = h1. The second
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5.2. Impurities

term describes the scattering at two different impurities, and so on.

X(q1, . . . ,qn) =
1

N

N∑

h1=1

Ni∑

h1

e
−i

(

∑

j1∈Q qj1

)

rh1

+
∑

Q1∪Q2




1

N

N∑

h1=1

Ni∑

h1

e
−i

(

∑

j1∈Q1
qj1

)

rh1








1

N

N∑

h2=1

Ni∑

h2

e
−i

(

∑

j2∈Q2
qj2

)

rh2





+ . . .

= Niδ0,
∑

j1∈Q qj1
+
∑

Q1∪Q2

Niδ0,
∑

j1∈Q1
qj1
Niδ0,

∑

j2∈Q2
qj2

+ . . .

=
n∑

p=1




∑

Q1∪Q2∪...∪Qp

p
∏

h=1

δ0,
∑

jh∈Qh
qjh
Ni



 .

Here, we have introduced Q = (q1, . . . ,qn), which is the set of all momentum vectors
and Q1 ∪Q2 ∪ . . . ∪Qp = Q denotes the union of all possible p disjoint and non-empty
subsets of Q. By inserting this into (5.46) we obtain for the n = 1 contribution to the
momentum dependent conduction electron Green’s function

G(1)
cσ (k, z) =

1

N

∑

k1

G0
cσ(k, z)V

2G0
dσ(z)G

0
cσ(k1, z)δ0,k−k1Ni

= niG
0
cσ(k, z)V

2G0
dσ(z)G

0
cσ(k, z)

=

k k

,

and for the n = 2 contribution

G(2)
cσ (k, z) =

1

N2

∑

k1k2

G0
cσ(k, z)V

2G0
dσ(z)G

0
cσ(k2, z)V

2G0
dσ(z)G

0
cσ(k1, z)

·
(

δ0,k−k2+k2−k1Ni + δ0,k−k2Ni δ0,k2−k1Ni

)

= niG
0
cσ(k, z)V

2G0
dσ(z)




1

N

∑

k2

G0
cσ(k2, z)



 V 2G0
dσ(z)G

0
cσ(k, z)

+ n2iG
0
cσ(k, z)V

2G0
dσ(z)G

0
cσ(k, z)V

2G0
dσ(z)G

0
cσ(k, z)

=

k k2 k

+

k k k

.

With this, we can identify the following Feynman rules:
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1. The fermion lines
k

denote the bare conduction electron Green’s function

G0
cσ(k, z).

2. The impurity lines denote the bare impurity scattering V 2G0
dσ(z).

3. The scattering vertices are given by and correspond to niδ0,∑jh∈Qh
qjh , where

momentum conservation at each vertex is imposed.

4. All internal momenta are summed over: 1
N

∑

k.

Since the impurity concentration is assumed to be small, it is reasonable to order the
diagrams in powers of ni. Hence, the full conduction electron Green’s function reads

Gcσ(k, z) = k

=

k

+

k k

+ . . .

+

k k2 kk1 k

+

k k1 kk k

+ . . . . (5.47)

The last two diagrams in (5.47) are both of second order in the impurity concentration
ni. Due to the single internal sum in the crossed diagram, the phase space is reduced
in comparison with the non-crossed diagram. Therefore, we will neglect such diagrams.
This approximation is called the single-site-T-matrix approximation [55] and is justified
as long as ni is small. With this, the conduction electron self energy reads

Σcσ(z) = +

k1

+

k1 k2

+ . . .

= niV
2
(
G0

dσ(z) +G0
dσ(z)V

2G0
cσ(z)G

0
dσ(z) + . . .

)

= niV
2
(

d
+

d c d

V V
+ . . .

)

︸ ︷︷ ︸

d

= niV
2Gdσ(z) , (5.48)

Note that within the single-site-T-matrix approximation the conduction electron self
energy becomes momentum independent and therefore local (cf. equation (5.1)).

Multilayer case

The starting point for the derivation of the dilute impurity contribution to the conduc-
tion electron self-energy in the multilayer case is again the system with a fixed, random
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5.2. Impurities

distribution of impurities in the crystal. We Fourier transform the corresponding con-
duction electron Green’s function (5.42) only in the parallel direction. The n-th term of
the perturbative series (5.43) then reads

G(n)
cσ (rb, ra, z) = Gβα,(n)

cσ (r‖b, r‖a, z)

=

Ni∑

j1,...,jn

G
βαjn ,0
cσ (r‖b − r‖jn , z)V

2G
αjn ,0
dσ (r‖jn , z) · . . .

·Gαj2
αj1

,0
cσ (r‖j2 − r‖j1 , z)V

2G
αj1

,0

dσ (r‖j1 , z)G
αj1

α,0
cσ (r‖j1 − r‖a, z)

=
1

N2
‖

∑

k‖bk‖a

eik‖br‖b−ik‖ar‖a

·
{ Ni∑

j1,...,jn

1

Nn−1
‖

∑

k‖1···k‖n−1

G
βαjn ,0
cσ (k‖b, z)V

2G
αjn ,0
dσ (r‖jn , z)

· Gαjnαjn−1
,0

cσ (k‖n−1, z) · . . . ·Gα2α1,0
cσ (k‖1, z)V

2G
αj1

,0

dσ (r‖j1 , z)

· Gαj1
,α,0

cσ (k‖a, z) e
−i[ (k‖b−k‖n−1)r‖jn + ... + (k‖1−k‖a)r‖j1 ]

}

︸ ︷︷ ︸

G
β,α,(n)
cσ (k‖b,k‖a,z)

,

(5.49)

where we have denoted the impurity Green’s function at site rjl = (r‖jl , αjl) byG
αjl

,0

dσ (r‖jl , z)

and inserted the Fourier transform Gαβ,0
cσ (r‖, z) =

1
N‖

∑

k‖
eik‖r‖Gαβ,0

cσ (k‖, z) for the bare
conduction electron Green’s functions.

Again, we define the configurational average by summing over all possible realizations
of impurity positions. However, in contrast to the bulk case, the impurity Green’s func-
tion should differ from layer to layer. Hence, the translational symmetry is restored in
the parallel direction only. We write for the n-th term of the full conduction electron
Green’s function

Gβα,(n)
cσ (r‖b, r‖a, z) → 〈Gβα,(n)

cσ (r‖b, r‖a, z)〉imp =
1

Nn

N∑

j1

· · ·
N∑

jn

Gβα,(n)
cσ (r‖b, r‖a, z) .

At the same time, we require that the impurity Green’s function is still layer dependent
after the configurational average

G
αjl

,0

dσ (r‖jl , z) = G
αjl

,0

dσ (z) ,

and the full conduction electron Green’s function becomes translationally invariant in
the parallel direction

〈Gβα
cσ (r‖b, r‖a, z)〉imp = Gβα

cσ (r‖b − r‖a, z) =
1

N‖

∑

k‖

eik‖(r‖b−r‖a)Gβα
cσ (k‖, z) . (5.50)
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Now we can identify the Green’s function of (5.50) with the multilayer Green’s function
of equation (5.23) and (5.24), respectively. We utilize the translational invariance to
obtain the Fourier transform of the n-th order term of the conduction electron Green’s
function

Gβα,(n)
cσ (r‖b − r‖a, z) = 〈Gβα,(n)

cσ (r‖b, r‖a, z)〉imp

=
1

Nn

N∑

j1

· · ·
N∑

jn

Ni∑

j1···jn

·
{

G
βαjn ,0
cσ (r‖b − r‖a − r‖jn , z)V

2G
αjn ,0
dσ (z) · . . .

· Gαj2
αj1

,0
cσ (r‖j2 − r‖j1 , z)V

2G
αj1

,0

dσ (z)G
αj1

α,0
cσ (r‖j1 − 0‖, z)

}

=
1

N‖

∑

k‖

eik‖(r‖b−r‖a)

·
{

1

Nn

N∑

j1

· · ·
N∑

jn

Ni∑

j1···jn

1

Nn
‖

∑

k‖1···k‖n

· Gβαjn ,0
cσ (k‖, z)V

2G
αjn ,0
dσ (z) · . . .

· Gαj2
αj1

,0
cσ (k‖2, z)V

2G
αj1

,0

dσ (z)G
αj1

,α,0
cσ (k‖1, z)

· e−i[ (k‖−k‖n)r‖jn + ... + (k‖2−k‖1)r‖j1 ]

}

︸ ︷︷ ︸

G
β,α,(n)
cσ (k‖,z)

. (5.51)

Before we proceed with the investigation of the momentum dependent Green’s function,
we split up the sum over the fixed, random configurations into a parallel and perpendic-
ular contribution as follows:

Ni∑

jl

f(rjl) =
∑′

r‖jl

∑′

αjl

f(r‖jl , αjl)

=
∑′

r‖jl

∑′

αjl

g(r‖jl)h(αjl)

=
∑

γ

h(γ)
∑′

r‖jl

∑′

αjl

g(r‖jl)δγαjl

=
∑

γ

h(γ)

Ni∑

jl

g(r‖jl)δγαjl
, (5.52)

where we have introduced the primed sum to indicate the summation of the fixed
configuration of Ni impurities and assumed that the function f can be factorized as
f(r‖jl, αjl) = g(r‖jl)h(αjl).
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Similar to the bulk case, we introduce the momentum differences q‖i := k‖i+1 − k‖i

with q‖n := k‖ − k‖n and separate the summation over parallel positions from the one
over perpendicular positions with the help of (5.52). With this, the parallel momentum
dependent conduction electron Green’s function (5.51) reads

Gβ,α,(n)
cσ (k‖, z) =

1

Nn
‖

∑

k‖1···k‖n

∑

γ1···γn

{

Gβγn,0
cσ (k‖, z)V

2Gγn,0
dσ (z) · . . .

·Gγ2γ1,0
cσ (k‖2, z)V

2Gγ1,0
dσ (z)Gγ1,α,0

cσ (k‖1, z)

·
[

1

Nn

∑

αj1
···αjn

∑

r‖j1 ···r‖jn

Ni∑

j1,··· ,jn

e−i
∑n

l=1 q‖lr‖jl

n∏

l=1

δγlαjl

︸ ︷︷ ︸

=:Y
γ1,··· ,γn
q‖1,...,q‖n

]}

(5.53)

Here, we have defined the function Y γ1,··· ,γn
q‖1,...,q‖n

, which contains all spatial information
about the random scattering. Analogously to the bulk case, we want to order this
quantity by the number of impurities involved. To this end, we introduce the tuple of
parallel momentum vector and perpendicular position (q‖, α). We collect several of these
tuples in the set Q = ((q‖1, α1), . . . , (q‖n, αn)) and the corresponding union of all possible
p disjoint non-empty subsets of Q is given by Q1 ∪Q2 ∪ . . . ∪Qp = Q. We write
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Y γ1,··· ,γn
q‖1,...,q‖n

=
1

N

∑

αh1

∑

r‖h1

Ni∑

h1

e
−i

(

∑

j1∈Q q‖j1

)

r‖h1

n∏

i=1

δγiαh1

+
∑

Q1∪Q2





Ni∑

h1

[
1

N‖

∑

r‖h1

e
−i

(

∑

j1∈Q1
q‖j1

)

r‖h1

][
1

N⊥

∑

αh1

∏

i1∈Q1

δγi1αh1

]




·





Ni∑

h2

[
1

N‖

∑

r‖h2

e
−i

(

∑

j2∈Q2
q‖j2

)

r‖h2

][
1

N⊥

∑

αh2

∏

i2∈Q2

δγi2αh2

]




+ . . .

=
Ni

N⊥
δ0‖,

∑

j1∈Q1
q‖j1

∑

αh1

n∏

i=1

δγiαh1

+
∑

Q1∪Q2




Ni

N⊥
δ0‖,

∑

j1∈Q1
q‖j1

∑

αh1

∏

i1∈Q1

δγi1αh1





·




Ni

N⊥
δ0‖,

∑

j2∈Q2
q‖j2

∑

αh2

∏

i2∈Q2

δγi2αh2





+ . . .

=

n∑

p=1







∑

Q1∪Q2∪...∪Qp

p
∏

h=1




Np

i

Np
⊥

δ0‖,
∑

jh∈Qh
q‖jh

∑

αlh

∏

ih

δγihαlh










, (5.54)

where we have introduced the number of layers N⊥, so that the total number of lattice
sites is given by N = N⊥N‖. By inserting (5.54) into (5.51), we obtain for the n = 1
contribution to the parallel momentum dependent conduction electron Green’s function

Gβα,(1)
cσ (k‖, z) =

Ni

N‖N⊥

∑

γ

∑

k‖1

Gβγ,0
cσ (k‖, z)V

2Gγ,0
dσ (z)G

γ,α,0
cσ (k‖1, z)

∑

αh1

δ0‖,k‖−k‖1
δγαh1

= ni
∑

γ

Gβγ,0
cσ (k‖, z)V

2Gγ,0
dσ (z)G

γ,α,0
cσ (k‖, z)

=

k‖ k‖

γ

αβ

,
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and the n = 2 contribution reads

Gβα,(2)
cσ (k‖, z) =

1

N2
‖

∑

k‖1k‖2

∑

γδ

Gβδ,0
cσ (k‖, z)V

2Gδ,0
dσ (z)G

δ,γ,0
cσ (k‖2, z)V

2Gγ,0
dσ (z)G

γ,α,0
cσ (k‖1, z)

·







Ni

N⊥
δ0‖,k‖−k‖2+k‖2−k‖1

∑

αh1

δγαh1
δδαh1

+
N2

i

N2
⊥

δ0‖,k‖−k‖2
δ0‖,k‖2−k‖1

∑

αh1

δγαh1

∑

αh2

δδαh2







= ni
∑

γ

Gβγ,0
cσ (k‖, z)V

2Gγ,0
dσ (z)




1

N‖

∑

k‖2

Gγγ,0
cσ (k‖, z)



 V 2Gγ,0
dσ (z)G

γα,0
cσ (k‖)

+ n2i
∑

γδ

Gβδ,0
cσ (k‖, z)V

2Gδ,0
dσ (z)G

δ,γ,0
cσ (k‖, z)V

2Gγ,0
dσ (z)G

γ,α,0
cσ (k‖, z)

=

k‖ k‖2 k‖
αβ

γ

+

k‖ k‖ k‖
α

γδ

β

.

With this, we can identify the following Feynman rules:

1. The fermion lines k‖
αβ denote the bare conduction electron Green’s func-

tion from layer α to layer β, Gβα,0
cσ (k‖, z).

2. The impurity lines α denote the bare impurity scattering at layer α, V 2Gα,0
dσ (z).

3. The scattering vertices are given by α and correspond to niδ0‖,
∑

jh∈Qh
q‖jh , where

parallel momentum conservation at each vertex is imposed.

4. All internal parallel momenta are summed over: 1
N‖

∑

k‖
.

Since the impurity concentration is again assumed to be small, we order the diagrams in
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powers of ni. Hence, the full conduction electron Green’s function reads

Gβα
cσ (k‖, z) =

k‖

αβ

=

k‖

αβ +

k‖ k‖

α

γ

β
+ . . .

+

k‖ k‖2 k‖k‖1 k‖

α

γδ

β
+

k‖ k‖1 k‖k‖ k‖

α

γδ

β
+ . . . , (5.55)

Similar to the bulk case, we apply the single-site-T-matrix approximation [55] and
neglect crossed diagrams like the last one in (5.55) due to the reduced phase space in
comparison to the non-crossed diagrams. In this approximation, the conduction electron
self energy becomes independent of the parallel momentum and reads

Σα
cσ(z) =

α

+

k‖1

α

+

k‖1 k‖2

α

+ . . .

= niV
2
(
Gα,0

dσ (z) +Gα,0
dσ (z)V 2Gα,0

cσ (z)Gα,0
dσ (z) + . . .

)

= niV
2
(

d

α
+

d c d

V Vα α α
+ . . .

)

︸ ︷︷ ︸

d

α

= niV
2Gα

dσ(z) . (5.56)

5.2.2. Dynamical impurities

Up to now, we have circumvented the problem of on-site Coulomb interaction by pulling
the interaction into the definition of the bare propagator in (5.42). In the following,
we will solve the impurity problem and show how to calculate the impurity Green’s
function for two different types of parameters in the Anderson Hamiltonian, representing
Gadolinium impurities and Oxygen vacancies, respectively.

According to (4.3) and (4.12), the local impurity Green’s function of an impurity
located at r = (r‖, α) is calculated from the local conduction electron Green’s function
at that particular position. Due to the configurational average and the corresponding
translational symmetry, the problem reduces to the calculation of the local impurity
Green’s function Gdσ(z) from the bare local conduction electron Green’s function G0

cσ(z)
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in the bulk case, and the calculation of the local impurity Green’s function in layer α,
Gα

dσ(z), from the bare local conduction electron Green’s function in layer α, Gα,0
cσ (z), in

the multilayer case. Since the full conduction electron Green’s function in turn depends
on the impurity Green’s function, we can make the equations self-consistent replacing
the bare Conduction electron Green’s function with the full ones. Due to the local nature
of the impurity scattering, it is sufficient to formulate the impurity problem for the bulk
case. The multilayer case is obtained by assigning a layer index to the all occurring
Green’s functions and self-energies.

Gadolinium impurities

As mentioned before, Gadolinium impurities have a strong on-site Coulomb repulsion
and one excess electron per impurity. Therefore, we set U → ∞ in the Anderson Hamil-
tonian ((4.3) and (4.12)). Since double occupancy can now only be realized by virtual
excitations, this essentially leads to a magnetic impurity. The corresponding low lying
spin fluctuations at the impurity sites will lead to the formation of a Kondo resonance at
the Fermi edge. This scenario was already discussed in section 3.1. We use the pseudo-
particle representation (section 3.2) and apply the non-crossing approximation (section
3.3) to calculate the full local impurity Green’s function from the local conduction elec-
tron Green’s function by means of the self-consistent NCA equations (3.15), (3.16) and
(3.17).

ImΣ̃b(ω − i0+) = Γ
∑

σ

∫

dε
f(ε)(1 − f(ω + ε))

f(−ω) Acσ(ε)Ãfσ(ω + ε) , (5.57)

ImΣ̃fσ(ω − i0+) = Γ

∫

dε
f(−ε)(1− f(ω − ε))

f(−ω) Acσ(ε)Ãb(ω − ε) , (5.58)

Adσ(ω) =

∫

dε [f(ω + ε)f(−ε) + f(−ε− ω)f(ε)] Ãfσ(ω + ε)Ãb(ε) , (5.59)

Note that we have replaced the bare conduction electron spectral density A0
cσ(ε) by the

full one Acσ(ε) here. In contrast to the original equations in chapter 3 we do not set the
chemical potential µ to zero at this point of our derivation. With this, the pseudo-particle
spectral densities read

Ãb(ω) =
1

π

ImΣ̃b(ω)

[ω + λ0 − ReΣb(ω)]
2 + [ImΣb(ω)]

2 , (5.60)

Ãfσ(ω) =
1

π

ImΣ̃fσ(ω)

[ω + λ0 + µ− Ed − ReΣfσ(ω)]
2 + [ImΣfσ(ω)]

2 , (5.61)

and the corresponding condition for λ0 is given by

F (λ0) =

∫

dωf(ω)

[
∑

σ

Ãfσ(ω) + Ãb(ω)

]

− 1
!
= 0 . (5.62)

53



5. Theory

Oxygen vacancies

Since Oxygen vacancies provide two excess electrons per vacancy and are assumed to
have a weak on-site Coulomb interaction we will apply perturbation theory in U . The
vertices stemming from the second and third part of the Anderson Hamiltonian (4.3) and
(4.12) are shown in figure 5.3.

d c

V σσ

d

V

c

σ σ σ

σ −σ

−σU

Figure 5.3.: Vertices of the Anderson Hamiltonian

If we expand the impurity Green’s function up to second order in the Coulomb inter-
action U , we obtain

Gdσ(z) =
d

σ

=
d

σ
+

d c

V σσ

d

σV

+

σ σ

−σ

U
+

σ σ

−σ

U

σ

U−σ
.

Note that due to the Pauli principle the diagrams like and do

not occur. In the following, we will evaluate the different contributions to the impurity
self-energy. We begin with the contribution stemming from the hybridization of impurity
and conduction band

Σ
(c)
dσ (iωn) =

c

V σ V

= V 2Gcσ(iωn) . (5.63)

Similar to the Gadolinium case, we have replaced the bare conduction electron Green’s
function by the full one in order to achieve self-consistency. The contribution of leading
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order in U is given by

Σ
(1)
dσ (iωn) =

ωl,−σ

U

= (−1)2U
1

β

∑

l

[−Gd−σ(iωl)]

= −U
∮

C

dz

2πi
f(z)Gd−σ(z)

= −U
∫

dε

2πi
f(ε)

[
Gd−σ(ε+ i0+)−Gd−σ(ε− i0+)

]

︸ ︷︷ ︸

2iImGR
d−σ

(ε)=−2πiAd−σ(ε)

= U

∫

dεf(ε)Ad−σ(ε) . (5.64)

The integration in the third step is performed over a contour shown in figure 5.4. Note
that the first order contribution is frequency independent and purely real. Finally, the

Rez

Imz

C

Figure 5.4.: Contour integration in the calculation of the first order contribution to the
impurity self-energy
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second order contribution reads

Σ
(2)
dσ (iωn) =

ωn + ωl, σ

ωk + ωl,−σ

U U
ωk,−σ

= (−1)2U2 1

β2

∑

lk

[−Gdσ(iωn + iωl)
︸ ︷︷ ︸
∫

dζ
Adσ(ζ)

iωn+iωl−ζ

][−Gd−σ(iωk)
︸ ︷︷ ︸
∫

dα
Ad−σ(α)

iωk−α

][−Gd−σ(iωk + iωl)
︸ ︷︷ ︸

∫

dε
Ad−σ(ε)

iωk+iωl−ε

]

=
−U2

β

∑

l

∫

dζ

∫

dα

∫

dε
Adσ(ζ)Ad−σ(α)Ad−σ(ε)

iωn + iωl − ζ

1

β

∑

k

1

iωk − α

1

iωk + iωl − ε
︸ ︷︷ ︸
∮

dz
2πi

f(z) 1
z−α

1
z+iωl−ε

=
f(α)−f(ε)
iωl+α−ε

= −U2

∫

dζ

∫

dα

∫

dεAdσ(ζ)Ad−σ(α)Ad−σ(ε) [f(α)− f(ε)]

· 1

β

∑

l

1

iωn + iωl − ζ

1

iωl + α− ε
︸ ︷︷ ︸

−
∮

dz
2πi

b(z)
(z+iωn−ζ)(z+α−ε)

=−f(ζ)−b(ε−α)
iωn+ε−ζ−α

= U2

∫

dζ

∫

dα

∫

dεAdσ(ζ)Ad−σ(α)Ad−σ(ε)
[f(α)− f(ε)] [f(ζ) + b(ε− α)]

iωn + ε− ζ − α
.

(5.65)

We further evaluate the imaginary part of the advanced self-energy. The corresponding
real part can be calculated by the Kramers-Kronig relation.

ImΣ
(2)
dσ (ω − i0+) = U2

∫

dζ

∫

dα

∫

dεAdσ(ζ)Ad−σ(α)Ad−σ(ε)

· [f(α)− f(ε)] [f(ζ) + b(ε− α)] Im
1

ω + ε− ζ − α− i0+
︸ ︷︷ ︸

πδ(ζ−ω−ε+α)

= πU2

∫

dα

∫

dεAdσ(ω + ε− α)Ad−σ(α)Ad−σ(ε)

· [f(α)− f(ε)] [f(ω + ε− α) + b(ε− α)] . (5.66)

With this, we can calculate the impurity spectral density from the impurity self-energy
Σdσ = Σ

(c)
dσ +Σ

(1)
dσ +Σ

(2)
dσ by

Adσ(ω) =
1

π

ImΣdσ(ω − i0+)

[ω − Ed + µ− ReΣdσ(ω − i0+)]2 + [ImΣdσ(ω − i0+)]2
. (5.67)
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5.3. Heisenberg lattice

In this section, we will discuss the approximations use for the magnetic subsystem which
consists of the localized 4f spins and the spins of the itinerant conduction electrons.
We will begin with the mean-field approximation for the bulk and the multilayer case.
Afterwards, we will extend the mean-field equations by including long range RKKY
coupling.

5.3.1. Mean field approximation in the bulk case

The magnetic part of the bulk Hamiltonian is given by equation (4.4). In order to apply
a mean-field approximation [55], we assume the fluctuations of the 4f spins and the
conduction electrons spins to be small, i.e.

∆Si = Si − 〈Si〉 ≪ 1

∆σi = σi − 〈σi〉 ≪ 1 .

By expressing all spin operators in (4.4) in terms of fluctuations and expectation values,
neglecting all higher order terms in the former, and afterwards expressing the fluctuations
in terms of spin operators and expectation values, one obtains

Hcf =−
∑

ij

Jij
(
〈Sj〉Si + Sj〈Si〉 − 〈Sj〉〈Si〉

)

−
∑

i

Jcf
(
〈σi〉Si + σi〈Si〉 − 〈σi〉〈Si〉

)
. (5.68)

Due to translational invariance, the mean-field expectation value cannot depend on the
position. Moreover, if we assume that the conduction electron spin and the 4f spin are
parallel, and pointing into the z-direction, we can write

〈Si〉 = 〈S〉 = 〈S〉 ez and 〈σi〉 = 〈σ〉 = 〈σ〉 ez .

For symmetry reasons, Jij = Jji holds and the magnetic Hamiltonian can be written in
terms of the z components of the 4f spin, Si, and the conduction electron spin, σi, as

Hcf = HS
cf +Hσ

cf +H0
cf (5.69)

with

HS
cf = −

∑

i

(
∑

j

Jij2〈S〉+ Jcf 〈σ〉
)

Si (5.70)

Hσ
cf = −Jcf

∑

i

〈S〉σi (5.71)

H0
cf =

∑

ij

Jij〈S〉2 + Jcf
∑

i

〈σ〉〈S〉 .
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Because of the isotropy of the bulk system, we can introduce the integrated 4f coupling

J4f :=
∑

j

Jij , (5.72)

which is position independent. This coupling is chosen such that the experimentally
observed Curie temperature of around 69K in stoichiometric EuO is reproduced [18,56–
58]. To be consistent with the work of Arnold and Kroha [18, 25], we choose J4f =
7 × 10−5D0 = 5.6 × 10−4eV, which leads to a Curie temperature of 68.3K + 0.01K (see
figure 5.5). With this, we can write the 4f spin dependent part of the Hamiltonian as

HS
cf = −

∑

i

(

2J4f 〈S〉+ Jcf 〈σ〉
)

Si . (5.73)

The 4f spin expectation value can then be calculated by

〈S〉 = tr
{
Se−βH

}

tr {e−βH}

=

∑ 7
2

S=− 7
2

Seβ(2J4f 〈S〉+Jcf 〈σ〉)S

∑ 7
2

S=− 7
2

eβ(2J4f 〈S〉+Jcf 〈σ〉)S
, (5.74)

where we have used that the only 4f spin dependent contribution to the full Hamiltonian
is given by equation (5.73). All other terms lead to non spin dependent factors which
can be pulled out of the sum in both the numerator and the denominator of (5.74) and
hereby cancel each other out. The above equation is self-consistent and can be solved
numerically. The only external parameter is the conduction electron spin expectation
value 〈σ〉. In order to calculate it, we consider the conduction electron spin expectation
value at position r, which reads

〈σ(r)〉 = 〈1
2

∑

σσ′

c†rστ
z
σσ′crσ′〉

=
∑

σ

σ〈c†rσcrσ〉

= −
∑

σ

σ〈crσ(0)c†rσ(0)〉

= −
∑

σ

σ lim
t′→t+0+

〈crσ(t′)c†rσ(t)〉
︸ ︷︷ ︸

iG>
cσ(r,r,t

′−t)=i
∫

dω
2π

ei(ω−i0+)(t′−t)G>
cσ(r, r, ω)
︸ ︷︷ ︸

2πif(ω)Acσ(r,r,ω)

|t=0

=
∑

σ

σ

∫

dωf(ω)Acσ(r, r, ω) . (5.75)

Since the mean-field expectation value cannot depend on the position, we choose the
origin 〈σ〉 = 〈σ(0)〉 and obtain

〈σ〉 = 1

2

∫

dωf(ω) [Ac↑(ω)−Ac↓(ω)] , (5.76)
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which is the difference of spin-up and spin-down occupation of the conduction band.
Now we are able to calculate the spin expectation value for a given conduction band

Green’s function. In order to close the self-consistent logic, we need to calculate the
contribution of the magnetic subsystem to the conduction electron self-energy. Accord-
ing to the mean-field approximation, the only term which involves conduction electron
operators is (5.71)

Hσ
cf = −Jcf

∑

i

〈S〉σi = −Jcf 〈S〉
∑

Rσ

σc†RσcRσ ,

where R are the lattice vectors on the position of the Eu atoms in the FCC lattice. If
we restrict ourselves to this interaction for a moment, the real space conduction band
Green’s function reads

z, σ

r r′
=

z, σ

r r′
+

z, σ z, σr
r′′

r′

−Jcf〈S〉σ
.

Since the real space self-energy is local and position independent, the contribution to the
momentum dependent self-energy in (5.1) can be read of directly (see (B.1)). It is given
by

Σσ(z) = −Jcf 〈S〉σ . (5.77)

5.3.2. Mean field approximation in the multilayer case

In order to apply a mean-field approximation on the multilayer magnetic Hamiltonian
(4.13), we begin with the same assumption of small spin fluctuations as in the bulk case,

∆Siα = Siα − 〈Siα〉 ≪ 1

∆σiα = σiα − 〈σiα〉 ≪ 1 .

Following the procedure that led to (5.68) one can derive the mean-field version of (4.13).
It reads

Hcf =−
∑

ij
αβ

Jαβ
ij

(
〈Sjβ〉Siα + Sjβ〈Siα〉 − 〈Sjβ〉〈Siα〉

)

−
∑

iα

Jcf
(
〈σiα〉Siα + σiα〈Siα〉 − 〈σiα〉〈Siα〉

)
.

Since we have translation symmetry in the parallel direction, we assume all spin ex-
pectation values within a given plane to be equal. Moreover, due to the coupling, it is
reasonable to presume that the spin directions are equal in all layers, and we choose the
z-direction as the magnetic axis. With this, we can write

〈Siα〉 = 〈Sα〉 = 〈Sα〉 ez and 〈σiα〉 = 〈σα〉 = 〈σα〉 ez .
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Again, Jαβ
ij = Jβα

ji holds and therefore the magnetic Hamiltonian can be written in terms
of the z components of the 4f spin, Siα, and the conduction electron spin, σiα. It reads

Hcf = HS
cf +Hσ

cf +H0
cf (5.78)

with

HS
cf = −

∑

iα

(
∑

jβ

Jαβ
ij 2〈Sβ〉+ Jcf 〈σα〉

)

Siα (5.79)

Hσ
cf = −Jcf

∑

iα

〈Sα〉σiα (5.80)

H0
cf =

∑

ij
αβ

Jαβ
ij 〈Sα〉〈Sβ〉+ Jcf

∑

iα

〈σα〉〈Sα〉 .

Due to the isotropy in the parallel direction we can introduce the parallel coupling

J‖α
4f :=

∑

j

Jαα
ij , (5.81)

and the perpendicular coupling

Jαβ
4f :=

∑

j

Jαβ
ij for α 6= β , (5.82)

which are both independent of the parallel position i. Now, the 4f spin dependent part
of the Hamiltonian can be written as

HS
cf = −

∑

iα

(

2J‖α
4f 〈Sα〉+ 2

∑

β 6=α

Jαβ
4f 〈Sβ〉+ Jcf 〈σα〉

)

Siα . (5.83)

With this, the spin expectation values in the different layers can be determined self-
consistently through the calculation of the trace

〈Sα〉 =
tr
{
Sαe

−βH
}

tr {e−βH}

=

∑ 7
2

S=− 7
2

Seβ(2J
‖α
4f 〈Sα〉+2

∑

β 6=α Jαβ
4f 〈Sβ〉+Jcf 〈σα〉)S

∑ 7
2

S=− 7
2

eβ(2J
‖α
4f 〈Sα〉+2

∑

β 6=α Jαβ
4f 〈Sβ〉+Jcf 〈σα〉)S

. (5.84)

Similar to the bulk case, we have used that the only 4f spin dependent contribution to
the full Hamiltonian is given by equation (5.83). Again, all other terms lead to non spin
dependent factors which can be pulled out of the sum in both the numerator and the
denominator of (5.84) and therefore cancel each other out.

Since the coupling Jαβ
ij originates in virtual transitions from the 4f to the 5d shell in the

same or on of the neighboring EuO ions [3], it is reasonable to restrict the perpendicular
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coupling to the nearest neighboring layers (NN). Therefore the simplest approximation
is to set

Jαβ
4f =

{
J⊥
4f for α = β ± 1

0 else
. (5.85)

As 4 of the 12 nearest neighbors in an FCC lattice are in the same (100) monolayer and
4 nearest neighbors are in each neighboring monolayers, we set

J‖α
4f = J⊥

4f =
1

3
J4f (5.86)

for all α in order to get a resulting Curie temperature of 69 Kelvin for stoichiometric EuO.
On the other hand, one can go one step further and assume an inverse cubic behavior
(IC) according to the RKKY coupling in a free band [59] and write

Jαβ
4f =

J0⊥
4f

|α− β|3 , (5.87)

where the constant is chosen such that the bulk limit of the Curie temperature is the
same as in the nearest neighbor case. This holds if

∞∑

β=α

Jαβ
4f

!
= J⊥

4f .

Therefore, we set
J0⊥
4f

J⊥
4f

=

∞∑

α=1

1

α3
= ζ(3) ≈ 1.202 ,

where ζ(x) is the Riemann zeta function. The difference of the nearest neighbor approach
and the inverse cubic ansatz can be seen in the solutions to the self-consistent equation
(5.84) without coupling to the conduction band (Jcf = 0), which are depicted in figure
5.5. The missing coupling partners at the surfaces of the system leads to a decrease of the
Curie temperature with respect to the thickness and to a decrease of the spin expectation
value at the outer monolayers. Moreover, as expected, the presence of a surface has a
greater impact in the case of the inverse cubic approach due to its long range character.
However, the difference is not too profound due to the fast (cubic) decrease of the long
range coupling with the distance. For the same reason the dependence of the mean-field
spin on the layer index and the temperature in the inverse cubic case (not shown) does
not differ significantly from the nearest neighbor case.

For the self-consistent theory including the conduction band, we need to calculated the
conduction electron spin expectation value 〈σα(r‖)〉 at site r = (r‖, α). The calculation
is the same as in (5.75) and yields

〈σα(r‖)〉 =
∑

σ

σ

∫

dωf(ω)Aα
cσ(r‖, r‖, ω) . (5.88)
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Figure 5.5.: Left: Mean-field spin against the monolayer index α for various temperatures
(NN) in a system of 9 monolayers. Center: The spin averaged over all
monolayers S̄ versus the temperature for various numbers of monolayers N
in comparison to the bulk curve (NN). Right: Increasing Curie temperature
TC with the number of monolayers N for the nearest neighbor coupling (NN)
and long range inverse cubic coupling (IC).

Due to the mean-field assumption, we can choose 〈σα〉 = 〈σα(0‖)〉 and obtain

〈σα〉 =
1

2

∫

dωf(ω)[Aα
c↑(ω)−Aα

c↓(ω)] , (5.89)

which is the difference in the spin-up and spin-down conduction band occupation number
in layer α. Similar to the bulk case, the contribution to the conduction electron self-energy
originates in (5.80), which can be written as

Hσ
cf = −Jcf

∑

iα

〈Sα〉σiα = −Jcf
∑

R‖ασ

σ〈Sα〉c†R‖α
cR‖α

,

where the sum runs over all lattice vectors R‖ in the (100) monolayer of an FCC lattice.
The corresponding contribution to the conduction electron Green’s function reads

z, σ

r‖, α r′‖, β
=

z, σ

r‖, α r′‖, β
+

z, σ z, σ

r‖, α R‖, γ r′‖, β

−Jcf〈Sγ〉σ
.

Since the real space self-energy is local and independent of the parallel position, the
contribution to the momentum dependent self-energy in (5.22) can be read off directly
(see (B.2)). It is given by

Σα
cσ(z) = −Jcf 〈Sα〉σ . (5.90)

The multilayer system of conduction band and localized 4f moments can now be solved
self-consistently. The mean-field 4f spins determine the conduction electron Green’s
function via equation (5.90). Using this, one can calculate the conduction electron spin
by applying equation (5.89), which is the only external parameter in the formula for the
mean-field 4f spins (5.84). The special case of mirror symmetric systems is described in
appendix C.
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5.3. Heisenberg lattice

5.3.3. Long range RKKY interaction

Up to now, the conduction band induced coupling between two spatially separated 4f
spins is mediated by the self-consistency described at the end of the last section. For a
more precise treatment of the long range RKKY coupling, one has to go one step further.
In the following we will derive the RKKY coupling between spatially separated 4f spins
and integrate it into the self-consistent theory. In the course of this, we extend the work
of Mauger et. al. [3] and Burg et. al. [60] to multilayer systems. Moreover, our theory is
applicable to an arbitrary conduction band.

We begin by considering the conduction electron spin expectation value in z-direction
at a position r (see (5.75)), which is given by

〈σ(r)〉 =
∑

σ

σ

∫

dωf(ω)Acσ(r, r, ω) ,

in the presence of a lattice of localized spins. The interaction stems from the second term
of (4.4), which reads

H ′ = −Jcf
∑

i

σiSi ,

with σji =
1
2

∑

σσ′ c
†
Riσ

τ jσσ′cRiσ′ . The perturbative expansion of the local Green’s function
then reads

z, σ

r r
=

z, σ

r r
+

z, σ z, σr Ri
r

−JcfSi τ σσ/2

+
z, σ z, σ′r Ri

−JcfSi τ σσ′/2

Rj
z, σ r

−JcfSj τ σ′σ/2

+ . . .

=
z, σ

r r
+

z, σ z, σr Ri
r

−JcfS
z
i σ

+ O(J2
cf ) .

From now on, we will restrict ourselves to the lowest order in the coupling Jcf . The
evaluation of the corresponding diagrams yield for the local spectral density

Acσ(r, r, ω) = A0
cσ(r, r, ω) − Jcf

∑

i

Sz
i σ

1

π
Im
{
[G0

cσ(Ri, r, ω − i0+)]2
}

= A0
cσ(r, r, ω) − 2Jcf

∑

i

Sz
i σA

0
cσ(Ri, r, ω)ReG0

cσ(Ri, r, ω − i0+) .

With this, the conduction electron spin expectation value at lattice site Rj reads

〈σ(Rj)〉 = 〈σ(Rj)〉0 −
Jcf
2

∑

i

Sz
i

∑

σ

∫

dωf(ω)A0
cσ(Ri,Rj , ω)ReG0

cσ(Ri,Rj , ω − i0+) .

(5.91)
Next, we replace the bare Green’s function in the above equation by the full Green’s
function and insert (5.91) into the mean-field Hamiltonian (5.70). Due to the bulk
mean-field approximation, we can use the 〈σ(Ri)〉 = 〈σ〉 in that particular step. With
this, we can identify an additional term in the bulk mean-field Hamiltonian. It reads

HRKKY = −
∑

ij

JRKKY
ij Sz

i S
z
j , (5.92)
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where the RKKY coupling is given by

JRKKY
ij = −

J2
cf

2

∑

σ

∫

dωf(ω)Acσ(Ri,Rj , ω)ReGcσ(Ri,Rj , ω − i0+) . (5.93)

In the following, we will discuss the implications of the additional RKKY coupling for
the mean-field theory from section 5.3.1. The additional Hamiltonian (5.92) corresponds
to the replacement of the coupling Jij in (5.70) by

Jij → Jij + JRKKY
ij .

With this, the integrated coupling in equation (5.72) becomes

J4f =
∑

j

Jij −
J2
cf

2

∑

R
|R|<Rmax

∑

σ

∫

dωf(ω)Acσ(R, ω)ReGcσ(R, ω − i0+) , (5.94)

where the first term is constant and the sum in the second term is restricted to the
nearest neighbors in an FCC lattice at a maximal distance Rmax (see figure 5.6). This
is reasonable, as the RKKY coupling is expected to fall off with the third power in the
distance. With this, not only the conduction electron spin expectation value, but also
the 4f coupling enters the trace formula (5.74) as an external parameter which depends
on the conduction electron Green’s function.

In the multilayer case, we insert (5.91) into (5.79) under use of the mean-field relation
〈σ(R)〉 = 〈σ(R‖i, α)〉 = 〈σα〉. Thus, we obtain an additional term in the multilayer
mean-field Hamiltonian (5.83), which reads

HRKKY = −
∑

ij
αβ

Jαβ,RKKY
ij Sz

iαS
z
jβ . (5.95)

The RKKY coupling is given by

Jαβ,RKKY
ij = −

J2
cf

2

∑

σ

∫

dωf(ω)Aαβ
cσ (R‖i,R‖j, ω)ReGαβ

cσ (R‖i,R‖j, ω − i0+) .

The consequences to the multilayer mean-field theory are the following. The parallel
coupling (5.81) becomes

J‖α
4f =

∑

j

Jαα
ij −

J2
cf

2

∑

R‖

|R‖|<Rmax

∑

σ

∫

dωf(ω)Aα
cσ(R‖, ω)ReGα

cσ(R‖, ω − i0+) . (5.96)

Similar to the bulk case, the first term is constant and the sum in the second term is
restricted to the nearest neighbors in an (100) monolayer of an FCC lattice at a maximal
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Figure 5.6.: Summation of over the nearest neighbors in an (100) monolayer of an FCC
lattice. Due to the cubic decrease of the coupling one can restrict the sum-
mation to an area within a circle of radius Rmax. The generalization to the
bulk case is obvious.

distance Rmax (see figure 5.6). The perpendicular coupling (5.82) becomes

Jαβ
4f =

∑

j

Jαβ
ij −

J2
cf

2

∑

R‖

|R‖|<Rαβ
max

∑

σ

∫

dωf(ω)Aαβ
cσ (R‖, ω)ReGαβ

cσ (R‖, ω−i0+) for α 6= β ,

(5.97)
where the maximum parallel distance Rαβ

max decreases with the interlayer distance |α−β|
according to (see figure 5.6)

Rαβ
max = R|α−β|

max =

√

Rmax −
(a

2
|α− β|

)2
.

As in the bulk case, the introduction of the RKKY couplings (5.96) and (5.97) represents
additional external parameters for the 4f spin expectation value formula (5.84), which
depends on the conduction electron Green’s function.

For the numerical calculation of the RKKY coupling it turns out to advantageous to
make use of

JRKKY
ij = JRKKY(|Ri −Rj |) , (5.98)

which is a consequence of the isotropy in the bulk systems. With this, we can write the
integrated coupling JRKKY

4f , which is the second term of (5.94), as

JRKKY
4f (Rmax) =

∑

j

JRKKY
ij =

∑

R
|R|<Rmax

JRKKY(|R|) =
∑

Rn<Rmax

JRKKY(Rn)W (Rn) .

(5.99)
Here, Rn are the radii of spheres intersecting neighboring points of equal distance to the
origin (see figure 5.6). The number of these points define the weights W (Rn). For instance
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for the nearest neighbors in the FCC lattice, we have R1 = a/
√
2 and W (R1) = 12. In

the multilayer case, we have

Jαα,RKKY
ij = Jαα,RKKY(|R‖i −R‖j|) =: Jα,RKKY(|R‖i −R‖j|) , (5.100)

due to the isotropy in the parallel direction. Analogously to the bulk case, we can simplify
the summation over the parallel positions in (5.96). The second term of (5.96) defines
the integrated parallel coupling in layer α, J‖α,RKKY

4f . It can be written as

J‖α,RKKY
4f (Rα

max) =
∑

j

Jαα,RKKY
ij

=
∑

R‖

|R‖|<Rα
max

Jα,RKKY(|R‖|)

=
∑

Rn<Rα
max

Jα,RKKY(Rn)W (Rn) . (5.101)

Similar to the bulk case, the Rn are the radii of circles intersecting neighboring points
of equal distance to the origin (see figure 5.6). Again, the number of these points define
the weights W (Rn). As an example, we consider the nearest neighbors in the (100)
monolayer of an FCC lattice. Here, we have R1 = a/

√
2 and W (R1) = 4. For later use,

we define the perpendicular RKKY coupling between the layers α and β as the second
term of (5.97). It reads

Jαβ
RKKY = −

J2
cf

2

∑

R‖

|R‖|<Rαβ
max

∑

σ

∫

dωf(ω)Aαβ
cσ (R‖, ω)ReGαβ

cσ (R‖, ω − i0+) for α 6= β .

(5.102)

5.4. Electrostatics

5.4.1. Thomas-Fermi-approximation

In this section we will derive the electrostatic part of our theory under use of the Thomas-
Fermi-approximation [61]. In the bulk case, the system is assumed to be charge neutral.
This means that the excess charge density introduced by the doping has to match the ionic
background in the whole system. Therefore, the following charge neutrality condition
must hold:

nc + nind = ncc , (5.103)

where the conduction band occupation number is given by

nc =
∑

σ

∫

dωf(ω)Acσ(ω) , (5.104)
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and the impurity occupation number reads

nd =
∑

σ

∫

dωf(ω)Adσ(ω) . (5.105)

The number of excess charge carriers in the system depends on the type of the impurity
(cf. chapter 4),

ncc =

{
ni for Eu1−xGdxO
2ni for EuO1−x

. (5.106)

In order to fulfill the charge neutrality condition (5.103), we introduce an energy shift µ0
which is added to the chemical potential in (5.1), (5.61) and (5.67):

µ→ µ+ µ0 . (5.107)

With this, the conduction electron and impurity occupation numbers (5.104) and (5.105)
become functions of µ0, and in order to fulfill the charge neutrality condition one needs
to find the roots of

nc(µ0) + nind(µ0)− ncc .

In the multilayer case the situation is more complicated. As we allow for broken
translational symmetry in the perpendicular direction, we can have a finite charge carrier
density in each layer. Similar to (5.103) it reads

∆nα = nαc + nin
α
d − ncc , (5.108)

where the conduction band occupation number in layer α is given by

nαc =
∑

σ

∫

dωf(ω)Aα
cσ(ω) , (5.109)

and the impurity occupation number in layer α reads

nαd =
∑

σ

∫

dωf(ω)Aα
dσ(ω) . (5.110)

In order to ensure overall charge neutrality,

∑

α

∆nα
!
= 0 (5.111)

has to be fulfilled. Similar to the bulk case, we add an energy shift µ0 to the chemical
potential in (5.19), (5.61) and (5.67):

µ→ µ+ µ0 . (5.112)

With this, the left-hand side of (5.111) becomes a function of µ0 and the task of ensuring
overall charge neutrality reduces to a root finding problem.
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The charge carrier density ∆nα generates an electrostatic potential φα which is deter-
minated by the Poisson equation (4.10)

∂2

∂α2
φα = −κ∆nα ,

with κ = e2

ε0a
. For a given charge carrier density ∆nα, the resulting electrostatic potential

can be calculated by discretizing the derivative in the Poisson equation in the following
way:

∂2

∂α2
φα = φα+1 + φα−1 − 2φα .

Together with the boundary conditions for the electrostatic potential at the positions
outside of the system, φ0 and φN+1, we can write the Poisson equation as a system of
linear equations










−κ∆n1 − φ0
−κ∆n1

...
−κ∆nN−1

−κ∆nN − φN+1










=










−2 1
1 −2 1

. . . . . .
1 −2 1

1 −2



















φ1
φ2
...

φN−1

φN










. (5.113)

Since we want to simulate vacuum outside of our system, the electrostatic boundary
conditions are given by

φ0 = φN+1 = 0 . (5.114)

The mirror symmetric case is discussed in appendix C. We solve the Poisson equation
(5.113) for the electrostatic potential by using Gaussian elimination [62].

The contribution from the electrostatic potential to the conduction electron self energy
originates in the first term of the Hamiltonian (4.11) and is calculated similar to the
magnetic interaction in (5.90) by using (B.2). It reads

Σα
cσ(z) = φα . (5.115)

Analogously, the second term of the Hamiltonian (4.11) leads to an additional term in
the impurity self-energy, which is given by

Σα
dσ(z) = φα . (5.116)

In the Gadolinium case, the energy shift enters the calculation of the impurity Green’s
function as an additional term in the pseudo-fermion self-energy:

Σα
fσ(z) = φα . (5.117)
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5.4.2. Interfaces

If a multilayer system is comprised of more than one type of material, there is an ad-
ditional subtlety in the self-consistent theory that has to be taken into account, the
matching of energy scales. In this work we restrict ourselves to systems with two compo-
nents in the non-mirror-symmetric case and three components in the mirror symmetric
case, respectively. We will mostly consider interfaces of Europium monoxide films and
some metallic substrate. The latter is characterized by omitting the impurity and Heisen-
berg lattice contributions to the self-energy in the substrate layers. The energy scheme
for the isolated components of such a heterostructure is depicted in figure 5.7.

Figure 5.7.: Energy scheme for the isolated components of an EuO-substrate heterostruc-
ture. The work function W = Evac − µ differs for various types of compo-
nents. We consider metallic and insulating substrates. For the latter, the
half insulating gap is given by ∆gap.

The work function is the energy one has to pay in order to remove an electron from
the Fermi edge and bring it to the vacuum W = Evac − µ. We define the work function
difference as

∆W :=WEuO −WSub .

In order to match the energy scales of two components, the chemical potentials of the
isolated systems must obey the following relation:

µSub = µEuO +∆W .

For a moment we will assume that the work function difference is vanishing, µSub = µEuO.
In this case, we can match the chemical potentials in both isolated systems by shifting
the energy of the electrons in both isolated systems according to

εαk‖
→ εαk‖

+ ∆̃0

Ed → Ed + ∆̃0

with ∆̃0 =

{
∆0l for EuO layers
∆0r for Substrate layers

. (5.118)

Here, the energy shifts ∆0l and ∆0r are chosen such that the charge neutrality condition
(5.111) is fulfilled in both isolated systems. Since the energy of the electrons enters
the conduction electron and impurity Green’s functions ((5.19), (5.61) and (5.67)) with
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opposite sign compared to the chemical potential, this is the case if

∆0l = −µ0l
∆0r = −µ0r

holds. Here, µ0l and µ0r denote the energy shift in the isolated systems of Europium
monoxide and substrate, respectively. Therewith, the chemical potential is equal in both
parts of the composite heterostructure. If the work function difference is non-vanishing,
we have

∆0l = −µ0l
∆0r = −µ0r +∆W . (5.119)

To obtain the energy shifts, one has to calculate the solution to both isolated systems.
Afterwards one can shift the energies in (5.19), (5.67) and (5.61) according to (5.118) and
(5.119) in order obtain the correct work function difference to enter a heterostructure
calculation.

5.5. Self consistent theory

5.5.1. Self consistent formulation

In this section, we recall the most important formulas from the previous sections and
combine them to a self-consistent theory. We will formulate the self-consistent theory in
terms of the most general case, the multilayer system with long range RKKY coupling,
and point out the simplifications of special cases during the discussion only if they are
not obvious. The equations for the bulk case are always obtained by dropping the layer
indices in the multilayer equations. Moreover, we set the chemical potential to zero in
all remaining sections of this work. Due to the charge neutrality conditions ((5.103) and
(5.111)) and the corresponding energy shift µ0 (cf. section 5.4), this essentially results in
a replacement of µ by µ0 in all equations.

The central quantity is the local conduction electron self-energy ((5.1) and (5.19)). It
reads

Σα
cσ(z) = niV

2Gα
dσ(z)− Jcf 〈Sα〉σ + φα

The first contribution stems from the hybridization with the randomly distributed impu-
rities (5.48) and (5.56). The second and third contributions come from the ferromagnetic
interaction with the localized 4f spins and the electrostatic energy shift due to charge
variation along the perpendicular direction, respectively ((5.77), (5.90) and (5.115)).
Note that the latter is not present in the bulk case due to the full translational invari-
ance and the corresponding charge neutrality throughout the system. Together with the
bare density of states ((4.5) and (4.14)), the knowledge of the local self-energy enables
us to calculate the local as well as the non-local conduction electrons Green’s function
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from the momentum dependent conduction electron Green’s function (cf. section 5.1).

Ĝ−1
cσ (k‖, z) =









z − ε1k‖
+ µ0 −Σ1

cσ(z) −t2 0 · · ·
−t2 z − ε2k‖

+ µ0 − Σ2
cσ(z) −t3 · · ·

0 −t3 z − ε3k‖
+ µ0 − Σ3

cσ(z) · · ·
...

...
. . .









(5.19)
Note that according to the above discussion, we have replaced the chemical potential µ
by the energy shift µ0 here. The energy shift µ0 has to be chosen such that the charge
neutrality conditions are fulfilled. We will discuss the corresponding procedure below.

Besides the conduction electron self-energy and the corresponding Green’s functions,
the impurity Green’s function plays a central role in the self-consistent theory. Most of
the observables can be calculated solely from these two quantities. In the Gadolinium
case, the pseudo-particle self-energies are calculated directly from the conduction electron
spectral density via (5.57) and (5.58)

ImΣ̃α
b (ω − i0+) = Γ

∑

σ

∫

dε
f(ε)(1 − f(ω + ε))

f(−ω) Aα
cσ(ε)Ã

α
fσ(ω + ε) ,

ImΣ̃α
fσ(ω − i0+) = Γ

∫

dε
f(−ε)(1 − f(ω − ε))

f(−ω) Aα
cσ(ε)Ã

α
b (ω − ε) .

By considering the electrostatic energy shift (5.117) and the energy shift µ0 connected
to the charge neutrality, the pseudo-particle spectral densities are given by

Ãα
b (ω) =

1

π

ImΣ̃α
b (ω)

[
ω + λ0 − ReΣα

b (ω)
]2

+
[
ImΣα

b (ω)
]2 ,

Ãα
fσ(ω) =

1

π

ImΣ̃α
fσ(ω)

[

ω + λ0 + µ0 − Ed − φα − ReΣα
fσ(ω)

]2
+
[

ImΣα
fσ(ω)

]2 ,

where λ0 has to be determined such that

Fα(λ0) =

∫

dωf(ω)

[
∑

σ

Ãα
fσ(ω) + Ãα

b (ω)

]

− 1
!
= 0 (5.120)

holds. Finally, the impurity spectral density can be calculated by

Aα
dσ(ω) =

∫

dε [f(ω + ε)f(−ε) + f(−ε− ω)f(ε)] Ãα
fσ(ω + ε)Ãα

b (ε) .

In contrast, in the Oxygen case, the impurity spectral density can be calculated directly
from the corresponding self-energy under use of (5.67). It reads

Aα
dσ(ω) =

1

π

ImΣα
dσ(ω − i0+)

[
ω − Ed + µ0 − ReΣα

dσ(ω − i0+)
]2

+
[
ImΣα

dσ(ω − i0+)
]2 .
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Considering the electrostatic contribution (5.117) and the impurity contributions (5.63),
(5.64) and (5.66), the impurity self-energy is in total given by

Σα
dσ(ω − i0+) = φα + V 2Gα

cσ(ω − i0+) + U

∫

dεf(ε)Aα
d−σ(ε) + Σ

α,(2)
dσ (ω − i0+) ,

where the imaginary part of the second order term reads

ImΣ
α,(2)
dσ (ω − i0+) = πU2

∫

dα

∫

dεAα
dσ(ω + ε− α)Aα

d−σ(α)A
α
d−σ(ε)

· [f(α)− f(ε)] [f(ω + ε− α) + b(ε− α)] .

The real part is calculated using the Kramers-Kronig relation (see appendix D).
Both the conduction electron and the impurity Green’s function have to be calculated

with such a µ0 that the charge neutrality condition ((5.103) and (5.111)) is obeyed. More-
over, in the Gadolinium case, a λ0 has to be found so that the pseudo-particle number
constraint (5.120) is fulfilled. In order to comply the charge neutrality condition a root
finding algorithm is applied. For given self-energies, the spectral densities are calculated
for several values of µ0 during the procedure. In each iteration, which corresponds to
a fixed value of µ0, another root finding algorithm for finding the correct λ0 is applied.
Both root finding algorithms are combined methods, which rely on the monotonic be-
havior of the function whose root needs to be found (cf. section 3.4). After scanning the
region with increasing step width for two points with opposite signs, a bisection or se-
cant method is applied. In the Gadolinium case, the multiple calculation of the impurity
spectral density for various values of µ0 would have a profound impact on the calculation
time. Therefore, we use the pseudo-particle spectral density to calculate the impurity
occupation number

nαd =
∑

σ

∫

dωf(ω)Aα
dσ(ω) =

∑

σ

∫

dωf(ω)Ãα
fσ(ω) ,

and calculate the impurity spectral density only after the root-finding procedure, i.e.
when the right µ0 is found.

In the following we discuss the spin expectation value 〈Sα〉 and its dependence on the
conduction electron Green’s function (cf. section 5.3). The mean-field formula for the
spin expectation values in layer α is given by

〈Sα〉 =

∑ 7
2

S=− 7
2

Seβ(2J
‖
4f 〈Sα〉+2

∑

β 6=α Jαβ
4f 〈Sβ〉+Jcf 〈σα〉)S

∑ 7
2

S=− 7
2

eβ(2J
‖
4f 〈Sα〉+2

∑

β 6=α Jαβ
4f 〈Sβ〉+Jcf 〈σα〉)S

. (5.84)

Here, the external parameters are the conduction electron spin

〈σα〉 =
1

2

∫

dωf(ω)[Aα
c↑(ω)−Aα

c↓(ω)] , (5.89)
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and, in the case of long range RKKY coupling, the parallel coupling

J‖α
4f =

∑

j

Jαα
ij −

J2
cf

2

∑

R‖

|R‖|<|Rmax

∑

σ

∫

dωf(ω)Aα
cσ(R‖, ω)ReGα

cσ(R‖, ω − i0+) , (5.96)

as well as the perpendicular coupling

Jαβ
4f =

∑

j

Jαβ
ij −

J2
cf

2

∑

σ

∫

dωf(ω)Aαβ
cσ (ω)ReGαβ

cσ (ω − i0+) for α 6= β . (5.97)

Here, similar to (5.85), the constant perpendicular coupling is restricted to the nearest
neighbors by

∑

j

Jαβ
4f =

{
J⊥
4f for α = β ± 1

0 else
.

In the bulk case, the perpendicular coupling is not present and the parallel coupling is
replaced by the three dimensional coupling from equation (5.94).

Finally, we summarize the calculation of the electrostatic potential from the conduction
electron and impurity spectral density discussed in section 5.4. According to equations
(5.108), (5.109) and (5.110), the charge carrier density at layer α reads

∆nα = nαc + nin
α
d − ncc =

∑

σ

∫

dωf(ω) (Aα
cσ(ω) + niA

α
dσ(ω)) − ncc .

The corresponding electrostatic potential is determined by solving the Poisson equation









−κ∆n1 − φ0
−κ∆n1

...
−κ∆nN−1

−κ∆nN − φN+1










=










−2 1
1 −2 1

. . . . . .
1 −2 1

1 −2



















φ1
φ2
...

φN−1

φN










, (5.113)

via Gaussian elimination.
In summary, the main quantities of the self-consistent theory are the conduction elec-

tron Green’s function, Gα
c , the impurity Green’s function Gα

d , the mean-field spin expec-
tation value 〈Sα〉, and the electrostatic potential φα. Their dependencies are listed in
table 5.1.

5.5.2. Numerical solution of the self-consistent theory

In the following, we will explain the details of the numerical solution of the self-consistent
theory. Roughly speaking, a solution is obtained by inserting the quantities of table 5.1
into each other over and over again until these quantities reach a stable point. In this
process, we use the imaginary part of the conduction electron and impurity spectral
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Quantity Dependence
Gα

c Gα
d , 〈Sα〉, φα

Gα
d Gα

c , Gα
d , φα

〈Sα〉 Gα
c

φα Gα
c , Gα

d

Table 5.1.: Quantities of the self-consistent theory and their dependencies.

Green’s function, i.e. the spectral densities. The real part is calculated via the Kramers-
Kronig relation if needed.

We begin with a discussion about the proper resolution of the spectral densities in-
volved. Both, Aα

cσ(ω) and Aα
dσ(ω) are defined on the same integration grid, which pos-

sesses several logarithmic cluster points to resolve the features occurring in both functions
(see appendix E). The minimal resolution of the logarithmic grid regions is equal in order
to ensure a smooth overlap. The first two regions are placed at the two impurity peaks
in Aα

d↑(ω) and Aα
d↓(ω), which are tracked during the iteration procedure and the inte-

gration grid is adapted if necessary. In order to resolve the Fermi function properly, two
logarithmic cluster points are placed at the two inflection points of the Fermi function
log(2±

√
3)/β. Their maximal resolution is chosen to be 0.04/β. While ω changes, each

time a peak in the momentum dependent conduction electron spectral density in the
integral (5.35) overlaps with the bare density of states, a step in the local conduction
electron spectral density occurs (see figure 5.1). The position of the peaks in ν space
are found during the calculation of the conduction electron spectral density (cf. section
5.1.2). Therefore, we can identify the position of the steps in ω space by detecting a
change in the number of peaks in ν space, which overlap with the bare density of states.
Afterwards, each step is resolved by a logarithmic grid region. Obviously, the step po-
sitions will change during the iteration process and the corresponding grid regions must
be adapted accordingly.

In the Gadolinium case, the modified pseudo-particle spectral densities Ãα
fσ and Ãα

b are
used. As discussed in chapter 3, these functions possess two pronounced features at the
position of the respective resonances. Therefore, we calculate the pseudo-particle spectral
densities on a grid which features two logarithmic grid regions for the pseudo-particle
resonances, and two grid regions to resolve the Fermi function similar to the above grid
for the conduction electron and impurity spectral densities. The pseudo-particle peaks
are also tracked during the iteration and the grid is adapted if necessary.

Besides the proper resolution of the spectral densities, the order in which the self-
consistent equations are evaluated is of great importance. For instance, it may be nec-
essary to iterate the conduction band and impurity spectral density for fixed spin and
electrostatic potential value in a sub-loop. In doing so, Gα

c is always calculated from the
Gα

d of the previous iteration and vice versa. The iteration procedure is sketched in figure
5.8. Moreover, a careful course of action during the iteration procedure is mandatory.
This is achieved by mixing only a small fraction of the new solution to the old one in
each iteration step. It is necessary to apply this relaxation on all four quantities of table
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5.1.

〈Sα〉, φα

main-loop

Gα
cσ, G

α
dσ

sub-loop

Gα
cσ, G

α
dσ

Figure 5.8.: Sketch of the iteration procedure for the solution of the self-consistent theory.

The numerical accuracy ∆(∆nα) with which the charge neutrality condition is fulfilled
directly affects how well the doping in the system is realized. Moreover, since the accuracy
of charge carrier density and conduction electron spin are comparable, ∆(∆nα) ≈ ∆σ,
the former has a huge impact on the magnetic properties of the system and therefore on
the exact position of the Curie temperature. In order to increase the accuracy, one has to
either increase the number of integration grid points or introduce an artificial imaginary
part in the conduction electron and impurity self-energy:

ImΣcσ(ω) → ImΣcσ(ω) + η ,

ImΣdσ/fσ(ω) → ImΣdσ/fσ(ω) + ζ .

This effectively broadens the resonances in the conduction band and impurity spectral
densities. In particular, the spectral weight inside the high temperature gap in the
conduction band spectral density is increased. Therefore, one has to decrease the number
of excess charge carriers per Europium site by a small amount,

ncc → xccncc .

Here, xcc . 1 and it is chosen such that the Fermi energy lies exactly in the middle of
the gap in the high temperature phase conduction electron spectral density. Thus, we
ensure that the high temperature phase is indeed insulating.

In view of the similarities in the bulk and multilayer theory, a single program which
incorporates all special cases was created. It can be found in [63]. Especially the calcu-
lation of heterogeneous multilayer systems is extremely demanding with respect to com-
putational resources, due to the multiple calculation of the conduction electron spectral
density. Therefore, we implemented parallelizations at multiple points in the calculation.
In most cases the frequency grid in ω space was split up among the subprocesses in an
alternating fashion. In the case of two subprocesses for instance, the first one would
calculate all even points and the second one all odd points. By this means, we ensure
that the workload is evenly distributed among the subprocesses. This is necessary since
the number of integration grid points strongly depends on the value of ω. As an example,
we consider the calculation of the conduction band spectral density via (5.35). Here, the
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number of resonances in Aαβ
cσ (ν, ω) which overlaps with the bare density of states N‖(ν)

varies with the value of ω (cf. figure 5.1). Therefore, the number of integration grid
points in ν space strongly depends on the value of ω and so does the calculation time.

5.6. Conductivity

After the solution of the self-consistent theory is found, one can calculate the transport
properties solely from the converged solution for the conduction electron Green’s function.
This is the topic of the present section. We begin with a brief review of linear response
theory and proceed to the calculation of the conductivity in the bulk case. Afterwards,
the transport properties in multilayer systems are derived. The section concludes with
details of the numerical calculation of the conductivity in both cases.

The conductivity is defined as the response function of the electric current Je =
(Je

x, J
e
y , J

e
z ) if one applies an external electric field E = (Ex, Ey, Ez):

Je
i (r, t) =

∑

j

∫

d3r

∫

dtσij(r, r
′, t, t′)Ej(r

′, t′) .

Here, σij(r, r′, t, t′) are the conductivity tensor components. In the following, we will use
the shorthand notation

Je(r, t) =

∫

d3r

∫

dtσ̄(r, r′, t, t′)E(r′, t′) . (5.121)

For systems which are not explicitly time dependent, the conductivity depends only on
the time difference,

σ̄(r, r′, t, t′) = σ̄(r, r′, t− t′) .

Furthermore, it turns out to be beneficial to use the Fourier transform

Je(r, t) =

∫

d3r′
∫

dt′ σ̄(r, r′, t− t′)
︸ ︷︷ ︸

∫

dω
2π

eiω(t−t′)σ̄(r,r′,ω)

E(r′, t′)
︸ ︷︷ ︸

∫

dω′

2π
eiω′t′E(r′,ω′)

=

∫

d3r′
∫
dω

2π
eiωtσ̄(r, r′, ω)E(r′, ω) . (5.122)

5.6.1. Linear response theory

In the following, we derive a general expression for the conductivity in linear response
theory. In the course of this, we follow [55, 61]. We consider a system described by the
Hamiltonian H0, which is perturbed by an external electric field. In the gauge where the
external potential vanishes, φ = 0, the perturbing Hamiltonian reads

H ′
t = e

∫

d3rJ(r)At(r) ,
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where J is the particle current (Je = −eJ) and the subscript t indicates the explicit time
dependence due to the external field Et(r) with vector potential At(r). If we switch to
the Heisenberg picture, an additional, implicit time dependence will occur:

H ′
t(t) = e

∫

d3rJ(r, t)At(r) . (5.123)

According to [55], the current is given by a paramagnetic and a diamagnetic contribution

J(r) = J0(r) +
e

m
(A0(r) +A(r)) ρ(r) , (5.124)

where
J0(r) =

~

2mi

(
ψ†(r)∇rψ(r)− [∇rψ

†(r)]ψ(r)
)
,

and A0(r) is the vector potential in the system before the perturbation is applied. In
our case, for vanishing magnetic field, we can set A0(r) to zero. The expectation value
of the current in linear response theory is given by [55,61]

〈J(r)〉t = 〈J(r)〉0 −
i

~

∫ t

∞
dt′〈[J(r, t),H ′

t′ (t
′)]〉0 . (5.125)

By inserting (5.124) into (5.123), and (5.125) and restricting ourselves to contributions
linear in At(r), we obtain

〈J(r)〉t = 〈J(r)〉0 −
i

~

∫ t

∞
dt′〈[J0(r, t), e

∫

d3r′J0(r
′, t)At′(r

′)]〉0 . (5.126)

Using that the paramagnetic current vanishes in the unperturbed system 〈J0(r)〉0 = 0,
the first term of equation (5.126) becomes

〈J(r)〉0 =
e

m
〈ρ(r)〉0 At(r)

︸ ︷︷ ︸
∫

dω
2π

eiωtAω(r)

=

∫

d3r′
∫
dω

2π
eiωt

( e

iωm
δ(r − r′)〈ρ(r)〉0

)

Eω(r) , . (5.127)

where we have used that Aω(r) =
1
iωEω(r). By introducing the current-current correla-

tion function

Π̄R(r, r′, t, t′) = Π̄R(r, r′, t− t′) = −iΘ(t− t′)〈[J0(r, t),J0(r
′, t′)]〉0 ,

the second term of equation (5.126) becomes

〈J(r)〉t − 〈J(r)〉0 =
e

~

∫ ∞

∞
dt′e

∫

d3r′ Π̄R(r, r′, t− t′)
︸ ︷︷ ︸

∫

dω
2π

eiω(t−t′)Π̄R(r,r′,ω)

At′(r
′)

︸ ︷︷ ︸
∫

dω′

2π
eiω′tAω′(r′)

=

∫

d3r′
∫
dω

2π
eiωt

( e

i~ω
Π̄R(r, r′, ω)

)

Eω(r
′) . (5.128)
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Finally, we compare equations (5.127) and (5.128) with (5.122) to read off the conduc-
tivity

σij(r, r
′, ω) =

ie2

~ω
ΠR

ij(r, r
′, ω)− e2

iωm
δ(r − r′)δij〈ρ(r)〉0 . (5.129)

From now on, we will restrict ourselves to the dissipative part of the conductivity. There-
fore, we take the real part of (5.129),

σij(r, r
′, ω) = − e2

~ω
ImΠR

ij(r, r
′, ω) . (5.130)

Thus, we have reduced the problem of calculating the conductivity to the calculation of
the current-current correlation function. From now on, we will skip the subscript in the
paramagnetic current, so that the tensor components of the current-current correlation
function read

ΠR
ij(r, r

′, t, t′) = ΠR
ij(r, r

′, t− t′) = −iΘ(t− t′)〈[Ji(r, t), Jj(r′, t′)]〉0 .

5.6.2. Conductivity in the bulk system

In the following section, we will show how to calculate the conductivity (5.130) in the
bulk case. This was done in [25], but will be performed here in greater detail for the sake
of completeness. In this work, we mainly follow [55]. Since the system is translationally
invariant in all directions, the conductivity tensor becomes diagonal and independent of
the direction,

σij(r, r
′, ω) = δijσ(r, r

′, ω) .

Moreover, it depends only on the spatial difference:

σ(r, r′, ω) = σ(r− r′, ω) . (5.131)

By using (5.131) in equation (5.122) and Fourier transforming, one obtains

Je
i (r, t) =

∫

d3r′
∫
dω

2π
eiωt σ(r− r′, ω)

︸ ︷︷ ︸
∫

d3k
(2π)3

eik(r−r′)σ(k,ω)

Ei(r
′, ω)

︸ ︷︷ ︸
∫

d3k′

(2π)3
eik′r′Ei(k′,ω)

=

∫
d3k

(2π)3

∫
dω

2π
ei(kr+ωt) σ(k, ω)Ei(k, ω)

︸ ︷︷ ︸

Je
i (k,ω)

,

and therefore
Je
i (k, ω) = σ(k, ω)Ei(k, ω) . (5.132)

We are interested in the response of the system to a spatially homogeneous and time
independent electric field

Ei(r, t) =

∫
d3k

(2π)3

∫
dω

2π
ei(kr+ωt)Ei(k, ω) = const. ,
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and we obtain
Ei(k, ω) ∝ δ(k)δ(ω) .

The same holds for the current and the conductivity in (5.132). The quantity of interest
is the DC-conductivity defined by

σ = lim
ω→0

lim
k→0

σ(k, ω) . (5.133)

The resistivity ρ is then given by the inverse of the conductivity. It reads

ρ =
1

σ
. (5.134)

Current-current correlation function

Based on (5.133) and (5.130), we aim to calculate the current-current correlation function
in wavenumber and frequency space for finite temperatures. For this purpose, we begin by
considering the Matsubara current-current correlation function. Since the conductivity
is diagonal and isotropic we will restrict our discussion to the Matsubara current-current
correlation function in x-direction:

Πxx(r, r
′, τ, τ ′) = Πxx(r− r′, τ − τ ′)

=

∫
d3k

(2π)3
eik(r−r′) 1

~β

∑

n

eiωn(τ−τ ′)Π̃xx(k, iωn)

=
1

VN
∑

k

eik(r−r′) 1

~β

∑

n

eiωn(τ−τ ′)Π̃xx(k, iωn) (5.135)

=
1

N

∑

k

eik(r−r′) 1

~β

∑

n

eiωn(τ−τ ′)Πxx(k, iωn) . (5.136)

Here, we have performed the transformation from continuous to discrete momentum
vectors to account for the finite system size (cf. section 5.1.1). Concomitantly, we have
incorporated the factor 1

V in the definition Πxx(k, iωn) in the last step. On the other
hand, if we insert the Fourier transform of the current operators directly, we have

Πxx(r− r′, τ − τ ′) = −〈TτJx(r, τ)Jx(r′, τ ′)〉

= −〈Tτ
1

N

∑

k

1

N

∑

k′

ei(kr+k′r′)

· 1

(~β)2

∑

nm

ei(ωnτ+ωmτ ′)Jx(k, iωn)Jx(k
′, iωm)〉 .

= − 1

N

∑

k

eik(r−r′) 1

~β

∑

n

eiωn(τ−τ ′)

· 1

N

∑

k′

ei(k+k′)r′ 1

~β

∑

m

ei(ωn+ωm)τ ′〈Jx(k, iωn)Jx(k
′, iωm)〉

︸ ︷︷ ︸

Πxx(k,iωn)

.
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In the last step we used that τ − τ ′ ∈ [0, ~β] is already time ordered. Since Πxx(k, iωn)
can not depend on r′ or τ ′ we have k′ = −k and ωm = −ωn, and hence

Πxx(k, iωn) = − 1

Ṽ~β
〈TτJx(k, iωn)Jx(−k,−iωn)〉 . (5.137)

For better readability, we introduced the factor Ṽ = VN .

Current operator

In order to calculate (5.137), we need the current operator in wavenumber and frequency
space. We start with the continuity equation for the particle density

∇r · J(r, t) = − ∂

∂t
ρ(r, t) , (5.138)

and its Fourier transform

iq · J(q, t) = − ∂

∂t
ρ(q, t) .

If we assume that the external electric field is directed in x-direction, we have Jy = Jz = 0
and hence

Jx(q, t) = − 1

iqx

∂

∂t
ρ(q, t)

= − 1

~qx

[
ρ(q, t),H

]

= − 1

~qx

∑

k,σ

(εk − εk−q) c
†
k−qσ(t)ckσ(t) , (5.139)

where the calculation of the commutator in the second step is shown in appendix A.1.
Note that hereby the current operator is restricted to discrete momentum values inside
the Brillouin zone and the transformation in (5.136) is justified. After performing the
analytic continuation to imaginary time, the current operator reads

Jx(q, τ) = − 1

~qx

∑

k,σ

(εk − εk−q) c
†
k−qσ(τ)ckσ(τ)

= − 1

~qx

∑

k,σ

(εk − εk−q)
1

(~β)2

∑

ml

ei(ωl−ωm)τc†
k−qσ(iωm)c

kσ(iωl) . (5.140)

Inserting (5.140) into the Fourier transform yields

Jx(q, iωn) =

∫

dτe−iωnτJx(q, τ)

= − 1

~qx

∑

k,σ

(εk − εk−q)
1

(~β)2

∑

ml

∫
~β

0
dτei(ωl−ωm−ωn)τ

︸ ︷︷ ︸

~βδ(ωl−ωn−ωm)

c†
k−qσ(iωm)c

kσ(iωl)

= − 1

~qx

∑

k,σ

(εk − εk−q)
1

~β

∑

l

c†k−qσ(iωl − iωn)ckσ(iωl) . (5.141)
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According to (5.133), we are interested in the limit q → 0. The energy difference becomes
a derivative and we have

lim
q→0

Jx(±q,±iωn) = −1

~

∑

k,σ

∂εk
∂kx

1

~β

∑

l

c†kσ(iωl ∓ iωn)ckσ(iωl) . (5.142)

Diagrammatic evaluation

We proceed by inserting (5.142) into (5.137) and taking the limit q → 0,

lim
q→0

Πxx(q, iωn) =
−1

Ṽ~5β3
∑

kp
σσ′

∂εk
∂kx

∂εp
∂px

∑

lm

〈c†kσ(iωl−iωn)ckσ(iωl)c
†
pσ′(iωm+iωn)cpσ′(iωm)〉 .

(5.143)
In order to evaluate the expectation value in (5.143) we will use Feynman diagrams. The
task at hand is now to connect the two vertices shown in figure 5.9, i.e. to find all possible

k, iωl − iωn, σ

k, iωl, σ

iωn
∂εk
∂kx

p, iωm, σ
′

p, iωm + iωn, σ
′

iωn
∂εp
∂px

Figure 5.9.: Vertices for the current-current correlation function

contractions of the expectation value in (5.143) according to the bulk model Hamiltonian
(4.1). Since all interactions preserve spin, momentum and energy, we have σ = σ′, k = p

and ωl = ωm+ωn. Moreover, the only interaction which can connect the upper and lower
fermion lines in figure 5.9 is the impurity scattering. Therefore, we can write (5.143) in
terms of dressed Green’s functions

lim
q→0

Πxx(q, iωn) = + + + . . . . (5.144)

The double lines denotes the full propagator (see equation (5.2)). In the following,
we will neglect the vertex corrections and restrict ourselves to the first contribution in
(5.144). We begin with the calculation of the undressed version of this particular diagram.
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Afterwards, we will replace the bare propagators by the full ones.

lim
q→0

Π0
xx(q, iωn) =

k, iωl − iωn, σ

∂εk
∂kx

∂εp
∂px

k, iωl, σ

p, iωm, σ
′

p, iωm + iωn, σ
′

=
−1

Ṽ~5β3
∑

kp
σσ′

∂εk
∂kx

∂εp
∂px

∑

lm

c†kσ(iωl − iωn)ckσ(iωl)c
†
pσ′(iωm + iωn)cpσ′(iωm)

︸ ︷︷ ︸

c
pσ′(iωm)c†

kσ(iωl−iωn)ckσ(iωl)c
†

pσ′(iωm+iωn)(−1)3

=
1

Ṽ~2
∑

kσ

(
∂εk
∂kx

)2 1

~β

∑

m

G0
ckσ(iωm)G0

ckσ(iωm + iωn) ,

where we have used c
kσ(iωl)c

†
pσ′(iωm) ∝ δk‖p‖

δσσ′ and

ckσ(iωl)c
†
kσ(iωm) =

∫

dτ

∫

dτ ′e−i(ωnτ−ωlτ
′) ckσ(τ)c

†
kσ(τ

′)
︸ ︷︷ ︸

−G0
ckσ(τ−τ ′)=− 1

~β

∑

m eiωm(τ−τ ′)G0
ckσ(iωm)

= − 1

~β

∑

m

G0
ckσ(iωm)

∫

dτei(ωm−ωn)τ

︸ ︷︷ ︸

~βδmn

∫

dτ ′ei(ωl−ωm)τ ′

︸ ︷︷ ︸

~βδlm

= −~βδlnG
0
ckσ(iωn) .

By replacing the bare propagators by the full propagators, we obtain

lim
q→0

Πxx(q, iωn) = ∂εk
∂kx

∂εk
∂kx

k, iωm

k, iωm + iωn

=
1

Ṽ~2
∑

kσ

(
∂εk
∂kx

)2 1

~β

∑

m

Gckσ(iωm)Gckσ(iωm + iωn)

=
1

Ṽ~2
∑

kσ

(
∂εk
∂kx

)2 ∫ ∞

−∞
dεf(ε)Ackσ(ε)

[
Gckσ(ε+ iωn) +Gckσ(ε− iωn)

]
.

(5.145)

The evaluation of the Matsubara sum in the second step is shown in appendix A.3. After
analytic continuation back to real frequencies we can calculate the imaginary part of the
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retarded current-current correlation function. This is also shown in A.3 and yields

lim
q→0

ImΠR
xx(q, ω) =

π

Ṽ~2
∑

kσ

(
∂εk
∂kx

)2 ∫

dε [f(ε)− f(ε− ω)]Ackσ(ε)Ackσ(ε− ω) .

(5.146)

Finally, we are able to calculate the DC-conductivity according to (5.133), (5.130) and
(5.146):

σ = lim
q→0

lim
ω→0

σ(q, ω)

= −e
2

~
lim
ω→0

lim
q→0

ImΠxx(q, ω + i0+)

ω

= − e2π

Ṽ~3
∑

kσ

(
∂εk
∂kx

)2 ∫

dε lim
ω→0

f(ε)− f(ε− ω)

ω
Ackσ(ε)Ackσ(ε− ω)

=
e2π

Ṽ~3
∑

kσ

(
∂εk
∂kx

)2 ∫

dε

(

−∂f(ε)
∂ε

)

[Ackσ(ε)]
2 . (5.147)

5.6.3. Parallel and perpendicular conductivity in the multilayer system

In the multilayer system, translational symmetry is broken in the z-direction. There-
fore, we write r = (r‖, α) and the spatial integration becomes

∫
d3r =

∫
dα
∫
d2r. The

calculation will be analogous to the one for the bulk model, except that we will Fourier
transform only in the parallel direction. The conductivity tensor is still diagonal but
differs for directions parallel and perpendicular to the x− y plane.

σij(r, r
′, ω) = δijσi(r, r

′, ω) ,

with
σx(r, r

′, ω) = σy(r, r
′, ω) . (5.148)

Moreover, it depends only on the spatial difference in the x− y plane,

σi(α, r‖, β, r
′
‖, ω) = σi(α, β, r‖ − r′‖, ω) . (5.149)

By using (5.149) in equation (5.122) and Fourier transforming, one obtains

Je
i (α, r‖, t) =

∫

dβ

∫

d2r′
∫
dω

2π
eiωt σi(α, β, r‖ − r′‖, ω)

︸ ︷︷ ︸
∫

d2k
(2π)2

e
ik‖(r‖−r′

‖
)
σi(α,β,k‖,ω)

Ei(β, r
′
‖, ω)

︸ ︷︷ ︸
∫

d2k′

(2π)2
e
ik′

‖
r′
‖Ei(β,k′

‖
,ω)

=

∫
d2k

(2π)2

∫
dω

2π
ei(k‖r‖+ωt)

∫

dβ σi(α, β,k‖, ω)Ei(β,k‖, ω)

︸ ︷︷ ︸

Je
i (α,k‖,ω)

,
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and therefore

Je
i (α,k‖, ω) =

∫

dβ σi(α, β,k‖, ω)Ei(β,k‖, ω) . (5.150)

Since the external electric field is assumed to be time independent and spatially homo-
geneous in the x− y plane, we have

Ei(α,k‖, ω) ∝ δ(k‖)δ(ω) .

By inserting this into (5.150), we see that the quantity of interest is

σi(α, β) = lim
ω→0

lim
k‖→0

σi(α, β,k‖, ω) , (5.151)

which is the DC-conductivity between the layers α and β. We define the parallel con-
ductivity in layer α as

σ‖(α) := σx(α,α) = σy(α,α) , (5.152)

and the perpendicular conductivity between the layers α and β as

σ⊥(α, β) := σz(α, β) . (5.153)

In order to assess the transport properties along the parallel direction, we define the
parallel resistivity as

ρ‖(α) =
1

σ‖(α)
. (5.154)

In an experiment, the perpendicular transport through a multilayer system would be
probed by applying a voltage U⊥ between the outer layers. Moreover, the current density
along the perpendicular direction has to be constant Je

⊥(α) = Je
⊥ [49]. In this case, (5.150)

becomes

Je
⊥ : = lim

ω→0
lim
k‖→0

Je
z (α,k‖, ω)

=

∫

dβ σ⊥(α, β) lim
ω→0

lim
k‖→0

Ez(β,k‖, ω)

︸ ︷︷ ︸

=:E⊥(β)

= ã
∑

β

σ⊥(α, β)E⊥(β)

where the β integral was replaced by the sum over discrete perpendicular positions. The
factor ã = a/2 is the interlayer distance. This is a matrix equation in the layer indices,
which can be solved for the electric field by inverting the conductivity matrix σ⊥(α, β):

E(α) =
1

ã

∑

β

σ−1
⊥ (α, β)Je

⊥ ,
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where σ−1
⊥ (α, β) is the α, β element of the inverse of the conductivity matrix. With this,

we can derive the voltage-current relation

U⊥ = ã
∑

α

Eα = Je
⊥

∑

αβ

(σ⊥)
−1
αβ

︸ ︷︷ ︸
=:ρ⊥

,

where we have introduced the perpendicular resistivity

ρ⊥ =
∑

αβ

(σ⊥)
−1
αβ , (5.155)

as the quantity which is relevant for experiments. In a multilayer system with a surface
area A, the resistance R would be

R =
ρ⊥
A
,

and Ohm’s law U⊥ = RI would hold with a current I = Je
⊥A.

Current-current correlation function

Analogously to the bulk model calculation and based on (5.133) and (5.130), we will
proceed by writing down the Matsubara current-current correlation function and Fourier
transforming in the parallel direction.

Πii(r, r
′, τ, τ ′) = Πii(α, β, r‖ − r′‖, τ − τ ′)

=

∫
d2k

(2π)2
e
ik‖(r‖−r′

‖
) 1

~β

∑

n

eiωn(τ−τ ′)Π̃ii(α, β,k‖, iωn)

=
1

V2DN‖

∑

k‖

e
ik‖(r‖−r′

‖
) 1

~β

∑

n

eiωn(τ−τ ′)Π̃ii(α, β,k‖, iωn) (5.156)

=
1

N‖

∑

k‖

e
ik‖(r‖−r′

‖
) 1

~β

∑

n

eiωn(τ−τ ′)Πii(α, β,k‖, iωn) . (5.157)

Similar to the bulk case, we have performed the transformation to a discrete momentum
sum (cf. section 5.1.2) and incorporated the factor 1

V2D
into the definition of Πii(α, β,k‖, iωn)

in the last step. On the other hand, if we insert the Fourier transform of the current
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operators directly, we have

Πii(α, β, r‖ − r′‖, τ − τ ′) = −〈TτJi(α, r‖, τ)Ji(β, r
′
‖, τ

′)〉

= −〈Tτ
1

N‖

∑

k‖

1

N‖

∑

k′
‖

e
i(k‖r‖+k′

‖
r′
‖
)

· 1

(~β)2

∑

nm

ei(ωnτ+ωmτ ′)Ji(α,k‖, iωn)Ji(β,k
′
‖, iωm)〉 .

= − 1

N‖

∑

k‖

e
ik‖(r‖−r′

‖
) 1

~β

∑

n

eiωn(τ−τ ′)

· 1

N‖

∑

k′
‖

e
i(k‖+k′

‖
)r′

‖
1

~β

∑

m

ei(ωn+ωm)τ ′〈Ji(α,k‖, iωn)Ji(β,k
′
‖, iωm)〉

︸ ︷︷ ︸

Πii(α,β,k‖,iωn)

.

Again, we have used that τ−τ ′ ∈ [0, ~β] is already time ordered in the last step. Moreover,
since Πii(α, β,k‖, iωn) can not depend on r′‖ or τ ′ we have k′

‖ = −k‖ and ωm = −ωn,
and hence

Πii(α, β,k‖, iωn) = − 1

Ṽ2D~β
〈TτJi(α,k‖, iωn)Ji(β,−k‖,−iωn)〉 . (5.158)

Here, we have introduced the factor Ṽ2D = V2DN‖ for notational convenience.

Current operator

In order to calculate the current operators in (5.137), we begin with the Fourier transform
of the continuity equation (5.138) in the parallel direction. In doing so, we introduce the
parallel current J‖ = (Jx, Jy) and obtain

iq‖ · J‖(α,q‖, t) +
1

a

∂

∂α
Jz(α,q‖, t) = − ∂

∂t
ρ(α,q‖, t)

= − i

~

[
ρ(α,q‖, t),H

]
(5.159)

In appendix A.2 the calculation of the commutator for the multilayer Hamiltonian (4.6)
is performed. It reads

[
ρ(α,q‖),H

]
=

1

a

∑

k‖σ

(

εαk‖
− εαk‖−q‖

)

c†
k‖−q‖ασ

c
k‖ασ

+
1

a

∑

k‖σ

(

tαc
†
k‖−q‖ασ

ck‖α−1σ + tα+1c
†
k‖−q‖ασ

ck‖α+1σ

−tαc†k‖−q‖α−1σck‖ασ
− tα+1c

†
k‖−q‖α+1σck‖ασ

)

, (5.160)
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where we have dropped the time dependence for convenience. Again, the current operator
is restricted to discrete momentum values inside the Brillouin zone and the transformation
in (5.157) is justified. By comparing (5.159) and (5.160) we can identify the parallel
contribution to the current as

q‖ · J‖(α,q‖, t) =
1

a

∑

k‖σ

(

εαk‖
− εαk‖−q‖

)

c†k‖−q‖ασ
(t)ck‖ασ

(t) .

Due to (5.148) and without loss of generality, we restrict ourselves to σx and assume that
the electric field is vanishing in the y direction. Then, we have Jy = 0 and hence

Jx(α,q‖, t) = − 1

~qxa

∑

k‖σ

(

εαk‖
− εαk‖−q‖

)

c†k‖−q‖ασ
(t)ck‖ασ

(t) . (5.161)

A calculation similar to the one performed in (5.140) and (5.141) leads to

Jx(α,q‖, iωn) =

∫

dτe−iωnτJx(α,q‖, τ)

= − 1

~qxa

∑

k‖,σ

(

εαk‖
− εαk‖−q‖

) 1

~β

∑

l

c†
k‖−q‖ασ

(iωl − iωn)ck‖ασ
(iωl) ,

and in the limit q‖ → 0 we finally get the following expression for the parallel current
component:

lim
q‖→0

Jx(α,±q‖,±iωn) = − 1

~a

∑

k‖,σ

∂εαk‖

∂kx

1

~β

∑

l

c†
k‖ασ

(iωl − iωn)ck‖ασ
(iωl) . (5.162)

The perpendicular component of the current operator can be obtained in the same
manner by comparing (5.159) and (5.160). We drop the time dependence for a moment
and use the discrete representation of the derivative:

∂

∂α
Jz(α,q‖) = Jz(α+

1

2
,q‖)− Jz(α− 1

2
,q‖)

=
i

~

∑

k‖σ

tα+1

(

c†k‖−q‖α+1σck‖ασ
− c†k‖−q‖ασ

ck‖α+1σ

)

− i

~

∑

k‖σ

tα

(

c†k‖−q‖ασ
ck‖α−1σ − c†k‖−q‖α−1σck‖ασ

)

.

Now we can identify the current operators for positions in between the layers as

Jz(α+
1

2
,q‖) =

i

~

∑

k‖σ

tα+1

(

c†
k‖−q‖α+1σck‖ασ

− c†
k‖−q‖ασ

c
k‖α+1σ

)

,
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and
Jz(α− 1

2
,q‖) =

i

~

∑

k‖σ

tα

(

c†k‖−q‖ασ
ck‖α−1σ − c†k‖−q‖α−1σck‖ασ

)

.

The current operator at the position of a specific layer could be calculated as the average
Jz(α,q‖, t) = 1

2(Jz(α + 1
2 ,q‖, t) + Jz(α − 1

2 ,q‖, t)). Nevertheless, it turns out to be
more convenient to proceed with the current at an interstitial position and calculate the
conductivity between interstitial positions. Therefore, we introduce a shorthand notation
for the interlayer positions,

α+ = α+
1

2
.

Note that in the end we are interested only in the conductivity between the outer layers.
Taking the limit q‖ → 0 yields

lim
q‖→0

Jz(α
+,±q‖, t) =

i

~
tα+1

∑

k‖σ

(

c†k‖α+1σck‖ασ
− c†k‖ασ

ck‖α+1σ

)

.

By going to imaginary times and Fourier transforming similar to (5.140) and (5.141), we
finally obtain

lim
q‖→0

Jz(α
+,±q‖,±iωn) =

i

~
tα+1

∑

k‖σ

1

~β

∑

l

(

c†k‖α+1σ(iωl ∓ iωn)ck‖ασ
(iωl)

−c†k‖ασ
(iωl ∓ iωn)ck‖α+1σ(iωl)

)

. (5.163)

Diagrammatic evaluation for the parallel conductivity

The calculation of the parallel conductivity (5.152) is very similar to the bulk case. We
proceed by inserting (5.162) into (5.158) and take the limit q‖ → 0,

lim
q‖→0

Πxx(α,α,q‖, iωn) =
−1

a2Ṽ2D~
5β3

∑

k‖p‖

σσ′

∂εαk‖

∂kx

∂εαp‖

∂px

·
∑

lm

〈c†k‖ασ
(iωl − iωn)ck‖ασ

(iωl)c
†
p‖ασ′(iωm + iωn)cp‖ασ′(iωm)〉 .

(5.164)

In order to compute the expectation value, we need to find all possible contractions,
i.e. find all diagrams which connect the two vertices shown in figure 5.10.

Similar to the bulk case, we have σ = σ′ and ωl = ωm+ωn. However, in the multilayer
case only the parallel momentum is conserved and k‖ = p‖ holds. If we express (5.164)
in terms of dressed Green’s functions, we can expand it in orders of impurity scattering
since this is the only interaction which can connect the upper and lower fermion lines:

lim
q‖→0

Πxx(α,α,q‖, iωn) = + + + . . . . (5.165)
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α,k‖, iωl − iωn, σ

α,k‖, iωl, σ

iωn
∂εαk‖
∂kx

α,p‖, iωm, σ
′

α,p‖, iωm + iωn, σ
′

iωn
∂εαp‖
∂px

Figure 5.10.: Vertices for the parallel current-current correlation function

Here, the double lines denotes the full propagator (see equation (5.22)). In the following,
we will neglect the vertex corrections and restrict ourselves to the first contribution in
(5.165). After calculating the undressed version of this particular diagram, we will replace
the bare propagators by the full ones.

lim
q‖→0

Π0
xx(α,α,q‖, iωn) =

α,k‖, iωl − iωn, σ

∂εαk‖
∂kx

∂εαp‖
∂px

α,k‖, iωl, σ

α,p‖, iωm, σ
′

α,p‖, iωm + iωn, σ
′

=
−1

a2Ṽ2D~
5β3

∑

k‖p‖

σσ′

∂εαk‖

∂kx

∂εαp‖

∂px

·
∑

lm

c†
k‖ασ

(iωl − iωn)ck‖ασ
(iωl)c

†
p‖ασ′(iωm + iωn)cp‖ασ′(iωm)

︸ ︷︷ ︸

c
p‖ασ′(iωm)c†

k‖ασ(iωl−iωn)ck‖ασ(iωl)c
†

p‖ασ′(iωm+iωn)(−1)3

=
1

a2Ṽ2D~
2

∑

k‖σ

(
∂εαk‖

∂kx

)2
1

~β

∑

m

Gα,0
ck‖σ

(iωm)Gα,0
ck‖σ

(iωm + iωn) ,

where we have used

c
k‖ασ

(iωl)c
†
p‖βσ′(iωm) = −~βδlnδk‖p‖

δσσ′Gαβ,0
ck‖σ

(iωn) (5.166)

and applied the shorthand notation Gαα,0
ck‖σ

(iωn) = Gα,0
ck‖σ

(iωn) for the diagonal elements of
the Green’s function matrix. We insert the full propagators and evaluate the Matsubara
sum (see A.3) and obtain
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lim
q‖→0

Πxx(α,α,q‖, iωn) =
∂εαk‖
∂kx

∂εαk‖
∂kx

α,k‖, iωm

α,k‖, iωm + iωn

=
1

a2Ṽ2D~
2

∑

k‖σ

(
∂εαk‖

∂kx

)2

·
∫ ∞

−∞
dεf(ε)Aα

ck‖σ
(ε)
[
Gα

ck‖σ
(ε+ iωn) +Gα

ck‖σ
(ε− iωn)

]
.

(5.167)

The imaginary part of the retarded current-current correlation function reads (see A.3)

lim
q‖→0

ImΠR
xx(α,α,q‖, ω) =

π

a2Ṽ2D~
2

∑

k‖σ

(
∂εαk‖

∂kx

)2

·
∫

dε [f(ε)− f(ε− ω)]Aα
ck‖σ

(ε)Aα
ck‖σ

(ε− ω) . (5.168)

Combining equations (5.152), (5.130) and (5.168), the resulting parallel conductivity
reads

σ‖(α) = lim
q‖→0

lim
ω→0

σ(α,α,q‖, ω)

= −e
2

~
lim
ω→0

lim
q‖→0

ImΠxx(α,α,q‖, ω + i0+)

ω

=
e2π

a2Ṽ2D~
3

∑

k‖σ

(
∂εαk‖

∂kx

)2 ∫

dε

(

−∂f(ε)
∂ε

)

[Aα
ck‖σ

(ε)]2 . (5.169)
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Diagrammatic evaluation for the perpendicular conductivity

In order to compute the perpendicular conductivity (5.153), we plug (5.163) into (5.158)
and take the limit q‖ → 0:

lim
q‖→0

Πzz(α
+, β+,q‖, iωn) =

tα+1tβ+1

Ṽ2D~
5β3

∑

k‖p‖

σσ′

∑

lm

· 〈c†k‖α+1σ(iωl − iωn)ck‖ασ
(iωl)c

†
p‖β+1σ′(iωm + iωn)cp‖βσ′(iωm)

− c†
k‖ασ

(iωl − iωn)ck‖α+1σ(iωl)c
†
p‖β+1σ′(iωm + iωn)cp‖βσ′(iωm)

− c†
k‖α+1σ(iωl − iωn)ck‖ασ

(iωl)c
†
p‖βσ′(iωm + iωn)cp‖β+1σ′(iωm)

+ c†k‖ασ
(iωl − iωn)ck‖α+1σ(iωl)c

†
p‖βσ′(iωm + iωn)cp‖β+1σ′(iωm)〉 .

(5.170)

We proceed by calculating the contribution from the first term. The calculation of the
other three terms is analogue as they differ from the first contribution only by interchang-
ing the layer indices. First, we need to find all possible contractions in the expectation
value of the first term. This corresponds to finding all possible Feynman diagrams which
connect the two vertices shown in figure 5.11.

α + 1,k‖, iωl − iωn, σ

α,k‖, iωl, σ

iωn tα+1

β,p‖, iωm, σ
′

β + 1,p‖, iωm + iωn, σ
′

iωntβ+1

Figure 5.11.: Vertices for the first contribution to the perpendicular current-current cor-
relation function

As in the parallel case, we have σ = σ′, k‖ = p‖ and ωl = ωm+ωn. Similar to (5.165),
we can express (5.170) in terms of dressed Green’s functions,

lim
q‖→0

Π1
zz(α

+, β+,q‖, iωn) = + + + . . . , (5.171)

and neglect all terms following the first one. We calculate the bare diagram and insert
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the dressed propagators in the end:

lim
q‖→0

Π1,0
zz (α

+, β+,q‖, iωn) =

α + 1,k‖, iωl − iωn, σ

tα+1 tβ+1

α,k‖, iωl, σ

β,p‖, iωm, σ
′

β + 1,p‖, iωm + iωn, σ
′

=
tα+1tβ+1

Ṽ2D~
5β3

∑

k‖p‖

σσ′

∑

lm

· c†
k‖α+1σ(iωl − iωn)ck‖ασ

(iωl)c
†
p‖β+1σ′(iωm + iωn)cp‖βσ′(iωm)

︸ ︷︷ ︸

c
p‖βσ′(iωm)c†

k‖α+1σ(iωl−iωn)ck‖ασ(iωl)c
†

p‖β+1σ′(iωm+iωn)(−1)3

=
−tα+1tβ+1

Ṽ2D~
2

∑

k‖σ

1

~β

∑

m

Gβα+1,0
ck‖σ

(iωm)Gαβ+1,0
ck‖σ

(iωm + iωn) ,

where we have used (5.166). We replace the bare propagators by the full ones and
evaluate the Matsubara sum according to appendix A.3:

lim
q‖→0

Π1
zz(α

+, β+,q‖, iωn) = tα+1 tβ+1

k‖, iωm

k‖, iωm + iωn

α + 1 β

α β + 1

.

=
−tα+1tβ+1

Ṽ2D~
2

∑

k‖σ

∫ ∞

−∞
dεf(ε)

·
(

Aβα+1
ck‖σ

(ε)Gαβ+1
ck‖σ

(ε+ iωn) +Gβα+1
ck‖σ

(ε− iωn)A
αβ+1
ck‖σ

(ε)
)

.

(5.172)

With this, we obtain for imaginary part of the retarded current-current correlation func-
tion (see A.3)

lim
q‖→0

ImΠ1,R
zz (α+, β+,q‖, ω) =

−tα+1tβ+1

Ṽ2D~
2

∑

k‖σ

·
∫

dε [f(ε)− f(ε− ω)]Aαβ+1
ck‖σ

(ε)Aβ,α+1
ck‖σ

(ε− ω) . (5.173)

If we combine (5.153), (5.130) and (5.173), the contribution to the perpendicular con-
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ductivity due to the first term in (5.170) reads

σ1⊥(α
+, β+) = lim

q‖→0
lim
ω→0

σ1(α+, β+,q‖, ω)

= −e
2

~
lim
ω→0

lim
q‖→0

ImΠzz(α
+, β+,q‖, ω + i0+)

ω

=
−e2πtα+1tβ+1

Ṽ2D~
3

∑

k‖σ

∫

dε

(

−∂f(ε)
∂ε

)

Aβα+1
ck‖σ

(ε)Aαβ+1
ck‖σ

(ε) .

The second, third, and fourth contribution of the current-current correlation functions
in (5.170) yield

lim
q‖→0

Πzz(α
+, β+,q‖, iωn) = tα+1 tβ+1

k‖, iωm

k‖, iωm + iωn

α + 1 β

α β + 1

− tα+1 tβ+1

k‖, iωm

k‖, iωm + iωn

α β

α + 1 β + 1

− tα+1 tβ+1

k‖, iωm

k‖, iωm + iωn

α + 1 β + 1

α β

+ tα+1 tβ+1

k‖, iωm

k‖, iωm + iωn

α β + 1

α + 1 β

Hence, the total perpendicular conductivity reads

σ⊥(α
+, β+) =

−e2πtα+1tβ+1

Ṽ2D~
3

∑

k‖σ

∫

dε

(

−∂f(ε)
∂ε

)

·
(

Aβα+1
ck‖σ

(ε)Aαβ+1
ck‖σ

(ε)−Aβα
ck‖σ

(ε)Aα+1β+1
ck‖σ

(ε)

−Aβ+1α+1
ck‖σ

(ε)Aαβ
ck‖σ

(ε) +Aβ+1α
ck‖σ

(ε)Aα+1β
ck‖σ

(ε)
)

Due to equation (5.21) the symmetry relation Aαβ
ck‖σ

(ε) = Aβα
ck‖σ

(ε) holds, and the total
perpendicular conductivity reduces to

σ⊥(α
+, β+) =

2πe2tα+1tβ+1

Ṽ2D~
3

∑

k‖σ

∫

dε

(

−∂f(ε)
∂ε

)

·
(

Aαβ
ck‖σ

(ε)Aα+1β+1
ck‖σ

(ε)−Aα+1β
ck‖σ

(ε)Aαβ+1
ck‖σ

(ε)
)

. (5.174)

5.6.4. Numerical calculation

In this section we will explain the details of the numerical calculation of the bulk con-
ductivity (5.147), the parallel conductivity (5.174), and the perpendicular conductivity
(5.169). In particular, the evaluation of the various wavenumber summations will be
explained. We will proceed in exactly the same way as it was done in the calculation of
the real space conduction band Green’s functions in section 5.1.1 and 5.1.2.
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Bulk conductivity

We begin with the calculation of the bulk conductivity (5.147),

σ =
e2π

V~3
∫

dω

(

−∂f(ω)
∂ω

)
1

N

∑

kσ

(
∂εk
∂kx

)2

[Acσ(k, ω)]
2

︸ ︷︷ ︸

=:X

.

As the wavenumber enters in X only via the dispersion εk, the calculation is similar
to the one for the local Green’s function (5.4) in the bulk case. If one performs the
continuum limit and assumes an isotropic dispersion, one obtains

X =
V
2π2

∫ kmax

0
dk k2

(
∂εk
∂k

)2∑

σ

[Acσ(ǫk, ω)]
2

=
V
2π2

∫

dε k(ε)2
∂εk
∂k
︸︷︷︸

(5.7)
=

Vk(ε)2

2π2N(ε)

∑

σ

[Acσ(ǫ, ω)]
2

=
V2

4π4

∫

dε
k(ε)4

N(ε)

∑

σ

[Acσ(ǫ, ω)]
2

=
V

16π4a

∫

dε
k̃(ε)4

N(ε)

∑

σ

[Acσ(ǫ, ω)]
2

analogously to (5.6), where k(ε) = k̃(ε)/a is the radius of the spherical Brillouin zone
(5.8). The volume of the spherical unit cell was set equal to the volume of the realistic
FCC unit cell V = a3/4. With this, we finally obtain for the conductivity

σ =
e2

16π3a~3

∫

dω

(

−∂f(ω)
∂ω

)∫

dε
k̃(ε)4

N(ε)

∑

σ

[Acσ(ǫ, ω)]
2 . (5.175)

The numerical evaluation of the ε integral is similar to the calculation of the local conduc-
tion band Green’s function in section 5.1.1. Nevertheless, due to the square of the spectral
density in the integrand it is not possible to perform the limit of vanishing imaginary
parts of the self-energy (cf. (5.15)). Therefore a small constant imaginary part η̃ = 10−10

is added to the self-energy (cf. (5.14)) during the calculation of the conductivity.

Parallel conductivity

In the multilayer case, the calculation will be analogously to the calculation of the local
Green’s function in (5.24). The parallel conductivity (5.169) reads

σ‖(α) =
e2π

a2V2D~
3

∫

dω

(

−∂f(ω)
∂ω

)
1

N‖

∑

k‖σ

(
∂εαk‖

∂kx

)2

[Aα
cσ(k‖, ω)]

2

︸ ︷︷ ︸

=:Y

.
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By taking the continuum limit and assuming that the dispersion is isotropic in the plane
parallel to the layers, similar to (5.26) one obtains

Y =
V2D

2π

∫ kmax

0
dk k

(
∂εαk
∂k

)2∑

σ

[Aα
cσ(ε

1
k, ε

2
k, . . . ;ω)]

2 .

Without loss of generality, we choose ν = ε1k as an integration variable. According to
(5.30),

∂εαk
∂k

=
Dα

‖

D1
‖

∂ν

∂k
∀α

holds and hence

Y =
V2D

2π

(
Dα

‖

D1
‖

)2 ∫

dν k(ν)
∂ν

∂k
︸︷︷︸

(5.27)
=

V2Dk(ν)

2πN1
‖
(ν)

∑

σ

[Aα
cσ(ε

1(ν), ε2(ν), . . . ;ω)]2

=
V2
2D

4π2

(
Dα

‖

D1
‖

)2 ∫

dν
k(ν)2

N1
‖ (ν)

∑

σ

[Aα
cσ(ε

1(ν), ε2(ν), . . . ;ω)]2 .

Using the dimensionless wavenumber k̃ = ka, and identifying the volume of the circular
unit cell with the volume of the unit cell in a (100) monolayer of Europium monoxide
(FCC), V2D = a2/2, one obtains

Y =
V2D

8π2

(
Dα

‖

D1
‖

)2 ∫

dν
k̃(ν)2

N1
‖ (ν)

∑

σ

[Aα
cσ(ε

1(ν), ε2(ν), . . . ;ω)]2 .

The parallel conductivity in layer α now reads

σ‖(α) =
e2

8πa2~3

(
Dα

‖

D1
‖

)2 ∫

dω

(

−∂f(ω)
∂ω

)∫

dν
k̃(ν)2

N1
‖ (ν)

∑

σ

[Aα
cσ(ε

1(ν), ε2(ν), . . . ;ω)]2 .

(5.176)

Perpendicular conductivity

Due to the absence of a dispersion in the formula for the perpendicular conductivity
(5.174),

σ⊥(α
+, β+) =

2πe2tα+1tβ+1

V2D~
3

∫

dω

(

−∂f(ω)
∂ω

)

· 1

N‖

∑

k‖σ

(

Aαβ
cσ (k‖, ω)A

α+1β+1
cσ (k‖, ω)−Aα+1β

cσ (k‖, ω)A
αβ+1
cσ (k‖, ω)

)

,
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the calculation can be done in direct analogy to the calculation of the local Green’s
function in 5.1.2. Again, we assume isotropic dispersions, use V2D = a2/2 and choose
ν = ε1k as a integration variable. Similar to (5.32) one obtains

σ⊥(α
+, β+) =

4πe2tα+1tβ+1

a2~3

∫

dω

(

−∂f(ω)
∂ω

)

·
∫

dνN1
‖ (ν)

∑

σ

(

Aαβ
cσ (ν, ω)A

α+1β+1
ck‖σ

(ν, ω)−Aα+1β
ck‖σ

(ν, ω)Aαβ+1
ck‖σ

(ν, ω)
)

.

(5.177)

Here, we used the following shorthand notation for the ν dependence of the spectral
densities:

Aαβ
cσ (ν, ω) = Aαβ

cσ (ε
1(ν), ε2(ν), . . . ;ω).

See section 5.1.2 for further details.
The numerical calculation of the ν integrals in (5.176) and (5.177) is performed anal-

ogously to the calculation of the parallel and perpendicular conduction electron Green’s
function in the multilayer case (cf. section 5.1.2). Similar to the numerical evaluation
of the bulk conductivity, the introduction of a small constant imaginary part in the
self-energy is mandatory due to the square of the spectral density in the integrand.
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Europium monoxide

In this chapter, we present our results for bulk systems of electron doped Europium
monoxide. We begin with a discussion of the ferromagnetic semiconductor-metal tran-
sition in bulk Eu1−xGdxO as well as in EuO1−x with nearest neighbor interaction. In
the course of this, we inspect the differences between the two types of electron doping
in detail. Afterwards, we investigate the influence of long range RKKY coupling on the
bulk Eu1−xGdxO model (cf. section 5.3.3). Here, we fix the coupling parameter Jcf for
the long range RKKY coupling in multilayer systems of Eu1−xGdxO.

6.1. Bulk Eu1−xGdxO

In the following, we discuss the results of the self-consistent theory for bulk Eu1−xGdxO
systems with nearest neighbor interaction as it was presented in chapters 4 and 5. In
accordance with [18], we choose the model parameters as D0 = 8eV, ∆0 = 1.0D0,
Ed = 0.0D0, Γ = 0.05D0, Jcf = 0.05D0, which puts the bare impurity level and the
lower edge of the bare conduction band to the same energy. Moreover, we set the direct
ferromagnetic coupling to J4f = 7 × 10−5D0 in order to obtain a Curie temperature of
TC = 68.3K + 0.01K in the case of vanishing doping concentration (cf. section 5.3.1).

The theory correctly predicts the simultaneous second order phase transition between
a half metallic and ferromagnetic phase at low temperatures and a semiconducting and
paramagnetic phase at high temperatures. Figure 6.1 shows the total magnetization
M = 〈S〉 + 〈σ〉 (cf. section 5.3.1) as well as the bulk resistivity ρ = 1/σ (cf. equation
5.147) against the temperature for various doping concentrations.

Numerically, the Curie temperature is defined as the maximal temperature with a total
magnetization M greater than 0.005µB . The accuracy of the Curie temperature is de-
termined by the minimal temperature step across the phase boundary. If not otherwise
stated, this accuracy is set to 0.1K in all remaining chapters. Apart from numerical
errors, we were able to reproduce the results of Arnold and Kroha [18] who investigated
the model for doping concentrations from ni = 0.003 to ni = 0.018. The numerical noise
on top of the resistivity curves is a result of the strong dependence of the conductivity on
the amount of spectral weight around the Fermi edge. If the conduction band spectral
density is very small in the Fermi region, as it is the case in the high temperature phase,
the numerical error of the integral in the charge neutrality condition (5.103) strongly
increases the inaccuracy in the determination of µ0 (cf. section 5.4). This could result in
a slightly misplaced position of the chemical potential inside the high temperature gap
of the conduction band spectral density (see figure 6.2). Since the resistivity is strongly
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Figure 6.1.: Simultaneous ferromagnetic semiconductor-metal transition in bulk
Eu1−xGdxO as seen in the total magnetization M = 〈S〉 + 〈σ〉 (top) and
the bulk resistivity ρ = 1/σ (bottom) against the temperature for various
doping concentrations.
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Figure 6.2.: Conduction electron and impurity spectral densities for various temperatures
across the phase transition in bulk Eu1−xGdxO. The doping concentration
is x = ni = 0.01
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Figure 6.3.: Curie temperature TC (left) and dopant activation nc/ni at T = 5K (right)
plotted against the doping concentration ni for different impurity level ener-
gies Ed in bulk Eu1−xGdxO. The experimental data is taken from Mairoser
et. al. [15].

influenced by the overlap of the derivative of the Fermi function
(

−∂f(ω)
∂ω

)

with the spec-
tral density, such a misplacement has in turn a huge impact on the value of the resistivity.
Above the Curie temperature, all resistivity curves exhibit a slight decrease of the re-
sistivity with the temperature. This behavior is related to the broadening of the Fermi
function with increasing temperature. Once the Curie temperature is reached, the high
temperature spectral function will not change significantly with increasing temperature
anymore. In contrast, the Fermi region kBT will grow and intersect more and more with
the slopes on both side of the gap.

The simultaneity of the phase transition can be understood by investigating the change
in the impurity and conduction band spectral densities, Adσ(ω) and Acσ(ω), across the
phase transition in figure 6.2. Above the Curie temperature TC , the spectral densities are
spin degenerate. Moreover, there is an interaction induced level repulsion between the
impurity level and the conduction band, which leads to the opening of a gap between a
broad band stemming from the bare density of states and an impurity induced side band
below the Fermi energy. Due to the absence of spectral weight at the Fermi edge, this
gap is responsible for the large resistivity in the high temperature phase. As the temper-
ature is lowered, the ordering of the magnetic moments sets in. Concomitantly, the spin
degeneracy is lifted and the gap is closed, leaving the system in a half metallic state. This
is the reason for the simultaneity of the phase transition. As the doping concentration
increased, the impurity induced side band gets broader, which effectively reduces the gap
width. Therefore the resistivity in the high temperature phase is decreased with increas-
ing doping concentration. This is in agreement with experiments [15, 16] (cf. figures 2.4
and 2.5).

In order to gain more insight into the mechanisms responsible for the doping induced TC
enhancement, we investigate various values of the impurity level Ed. Figure 6.3 shows the
Curie temperature and the dopant activation nc/ni against the doping concentration ni
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Figure 6.4.: Majority impurity spectral density at T = 5K for various doping concentra-
tions ni in bulk Eu1−xGdxO.

for various impurity level energies Ed. Here, nc is the occupation of the conduction band
(cf. section 5.4). The increase of the Curie temperature with the doping concentration
is in qualitative agreement with experiments [15, 16]. As shown by Mairoser et. al. [15],
this behavior is associated with the population of the conduction band. Moreover, these
authors found that the saturation of the Curie temperature for high doping concentrations
is a result of the lack of conduction electrons in this regime. It is reasonable to assume
that these electrons are bound in the localized impurity states. Indeed, our results
support this hypothesis. The experimental data in figure 6.3 exhibits a reduced dopant
activation for low as well as high doping concentrations. For the former, the effect can not
be explained by our theory and the responsible mechanism remains unknown. However,
the decrease of the dopant activation for high concentrations is qualitatively predicted
by our theory.

According to the charge carrier constraint (5.103), the population of the impurity
leads to a depopulation of the conduction band. Figure 6.4 shows the majority impurity
spectral density Ad↑(ω) at T = 5K for various doping concentrations. At low doping
concentration, the impurity is effectively unoccupied. As the doping concentration is in-
creased, the impurity peak gets shifted across the Fermi energy and the impurity becomes
more and more populated. Concomitant with this, the conduction band is depopulated.
Obviously, this process occurs at even lower concentrations as the impurity level is re-
duced (see figure 6.3). This explains the reduction of the Curie temperature with the
impurity level energy Ed.

Besides the population of the conduction band, there is an additional mechanism con-
nected to the magnetic nature of the impurities, which drives the phase transition. From
figure 6.2, one can deduce that there is a strong influence of the impurity spectral den-
sity onto the conduction electron spectral density and vice versa. Due to the magnetic
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nature of the impurity, there is a tendency towards the formation of a Kondo resonance
in Adσ(ω) at the Fermi energy, even for temperatures well above the Kondo temperature.
As the temperature is lowered, the majority impurity spectral density Ad↑(ω) crosses the
Fermi edge. Here, a resonance at ω = µ appears which is associated with the Kondo
resonance. We conjecture that, due to the hybridization, this mechanism is responsible
for the closing of the gap in the conduction electron density of states at elevated temper-
atures and therefore causes the increased transition temperature. This matter is further
investigated in the subsequent section on Oxygen deficient EuO.

6.2. Bulk EuO1−x

As mentioned before, Oxygen vacancies enter our theory as Anderson impurities with
weak on-site Coulomb repulsion (cf. section 5.2.2). However, due to the lack of consistent
experimental data for this material (cf. chapter 2), it is not possible to determine the
impurity parameters on this foundation. Therefore, we investigate the model for EuO1−x

for various values of the impurity level Ed and the on-site Coulomb repulsion U . The
hybridization is held constant at the same value as in the Gadolinium case, Γ = 0.05D0.
Since the perturbation theory in U is valid as long as U ≪ Γ holds (cf. section 5.2.2),
the parameter range for U is restricted by this upper boundary.

Figure 6.5 shows the conduction band and impurity spectral density for various tem-
peratures across the phase transition. Similar to the Gadolinium case, the closing of the
gap triggers the phase transition. However, there is no Kondo resonance at the Fermi
edge in the impurity spectral density. Due to the weak on-site Coulomb repulsion, the
two excess electrons are believed to occupy a non-magnetic singlet state at the position
of the Oxygen vacancies. Therefore there will be no low lying spin fluctuations which
could result in the formation of a Kondo resonance. With this, the tendency for closing
the gap should be weaker than in the Gadolinium case. As the on-site Coulomb repulsion
U is increased, the formation of a singlet becomes less likely and even impossible in the
limit of U → ∞ , which corresponds to the Gadolinium theory. Following this line of
thought, the increase of U should result in an enhancement of the Curie temperature.
Indeed, we observe an increase in TC with the Coulomb repulsion U (see figure 6.6).

On the other hand, the Curie temperature is reduced by lowering the impurity level
energy Ed, which effectively reduces the conduction band occupation similarly to the
Gadolinium case. It is reasonable to assume that one could completely suppress the
doping induced TC enhancement in the U = 0 case, if the impurity level was sufficiently
far below the Fermi energy and therefore all electrons were bound in localized states [17].

Figure 6.7 compares the dopant activation for the Oxygen and the Gadolinium case. It
is remarkable that despite the fact that the dopant activation is nearly twice as large in
the Oxygen case as in the Gadolinium case, the TC enhancement is relatively weak. This
demonstrates how important the spin fluctuations and the associated Kondo resonance
are for the enhancement of the Curie temperature in electron doped EuO.
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6.2. Bulk EuO1−x
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Figure 6.5.: Conduction electron and impurity spectral densities for various temper-
atures across the phase transition in bulk EuO1−x with U = 0.002D0,
Ed = −0.01DO and x = ni = 0.01. The Curie temperature is TC = 75.6K.
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as well as for bulk Eu1−xGdxO.

6.3. Bulk Eu1−xGdxO with long range RKKY coupling

In this section, we discuss the results of the theory for bulk Eu1−xGdxO with the long
range RKKY interaction of section 5.3.3. We use the same parameters as in the nearest
neighbor case of section 6.1, except for the coupling Jcf . The latter is chosen such that
the Curie temperature in the long range case TRKKY

C is comparable to the one in the
nearest neighbor case TNN

C . The left hand side of figure 6.8 shows the ratio TRKKY
C /TNN

C

against the doping concentration for different values of Jcf . We set Jcf = 0.0405D0 in
all remaining long range RKKY calculations, both for bulk and multilayer systems of
electrons doped Europium monoxide.
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Figure 6.8.: Curie temperature ratio TRKKY
C /TNN

C plotted against the doping concentra-
tion ni for different values of the coupling Jcf (left) and total magnetization
M = 〈S〉+ 〈σ〉 against the temperature for various doping concentrations in
bulk Eu1−xGdxO with long range RKKY coupling (right).

Since the coupling Jcf is reduced, the conduction band occupation has an even greater
impact on the indirect interaction between the 4f moments in the long range case than
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6.4. Conclusion

in the nearest neighbor case. Therefore it is plausible that the magnetization remains
high for elevated temperatures and falls off more abruptly than in the nearest neighbor
case, as it can be seen on the right hand side of figure 6.8. This also explains the relative
increase in the Curie temperatures TRKKY

C for low doping concentrations.
In the case of free electrons at zero temperature, the RKKY coupling is proportional

to [cos(kFR) − kFR sin(kFR)]/(kFR)
4, where kF is the Fermi momentum and R is the

distance between the magnetic moments [60]. In particular, the coupling falls off with
the third power in kFR. We expect a similar behavior in the interacting case at finite
temperatures. The top of figure 6.9 shows the RKKY coupling JRKKY(R) (cf. equation
(5.98)) for different temperatures in the case of ni = 0.04. As expected, the magnitude of
the oscillations in JRKKY(R) is reduced together with the population of the conduction
band for elevated temperatures, while the oscillation wavelength remains constant.

In all calculations, the cutoff Rmax has to be chosen sufficiently large, such that J4f and
therefore TRKKY

C does not change significantly. For this purpose, we show the normalized
integrated coupling

J̄RKKY
4f (R) =

JRKKY
4f (R)

JRKKY(Rmax)
,

at T = 20K, for various doping concentrations at the bottom of figure 6.9. Here,
JRKKY
4f (R) is the integrated coupling up to the maximal distance R as it is given in

(5.99). Together with the doping concentration, the Fermi momentum is increased.
Thus, the range of the interaction should be reduced, which is supported by our findings.
For the above calculations, the cutoff distance was set to Rmax = 20a. In the multilayer
calculations, the choice of Rmax has a huge influence on the calculation time, since the
number of non-local Green’s functions grows with the third power of Rmax. In order to
keep the these calculations feasible, we set

Rmax =

{

5a if ni >= 0.01

10a if ni < 0.01

in all multilayer calculations. In doing so, we accept errors in JRKKY
4f up to a few percent

(see figure 6.9).

6.4. Conclusion

We have shown that the simultaneous phase transition in electron doped Europium
monoxide is qualitatively well described by our theory. Moreover, we identified two
mechanisms which are responsible for the increase of the Curie temperature with the
doping concentration. On the one hand, we could support the findings of Mairoser et.
al. that the population of the conduction band is strongly related to the increase in the
transition temperature. In particular, we found that the saturation effect at high doping
concentrations can be attributed to increasingly occupied impurity states. On the other
hand, we demonstrated that the low lying spin fluctuation on magnetic impurities and
the corresponding transfer of spectral weight towards the Fermi edge has an even greater
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6.4. Conclusion

impact on the doping induced TC enhancement. This provides a possible explanation for
the absence of doping induced TC enhancement in oxygen deficient Europium monoxide,
as it reported by several authors [6–11]. With the prospect of describing multilayer sys-
tems beyond the nearest neighbor approximation, we investigated the theory including
long range RKKY interaction and fixed the free parameter Jcf such that the results are
compatible to the nearest neighbor case.
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7. Thin films of Gadolinium doped

Europium monoxide

In this chapter, we investigate the influence of finite size effects onto the phase transition
in thin films of Eu1−xGdxO. To ensure comparability, we make use of the same model
parameters as in the bulk case. However, the film thickness, which is determined by the
number of layers N , and the doping concentration ni remain as variable parameters. In
a systematic investigation, we explore this two dimensional parameter space around a
central point at N = 9 and ni = 0.01. Throughout this chapter, we consider mirror
symmetric systems of N = 2Ñ − 1 monolayers (cf. appendix C). In contrast to the
nomenclature in the appendix, we use α as the layer index with α = 0 denoting the
symmetry plane.

In addition, we investigate thin films of a simple metal for comparison. For this
purpose, we restrict ourselves to the conduction band parts of the Hamiltonian (4.8)
and (4.9), which substantially simplifies the theory of chapter 5 due to the absence of
impurity and 4f moment contributions. The filling of the metal conduction band is then
determined by the parameter ncc (cf. section 5.4).

The chapter is divided into two parts. In the first section, we work out the mechanisms
which influence the simultaneous phase transition in thin films by means of the multilayer
theory with nearest neighbor interaction. Afterwards, in the second part, we compare
the results to the ones for the theory with long range RKKY coupling.

7.1. Nearest neighbor case

In the following we discuss the solution of the multilayer theory with nearest neighbor
magnetic interaction applied to the case of isolated thin films of Eu1−xGdxO. We expose
the most characteristic features by analyzing the prototype system with N = 9 and
ni = 0.01. Afterwards, we investigate the influence of varying film thicknesses and
doping concentrations.

The most important difference to the bulk system is the variation of charge carrier den-
sity along the perpendicular direction ∆nα. It is depicted in figure 7.1 for the prototype
system for various temperatures across the phase transition. There is an electron deple-
tion at the surface and the onset of Friedel oscillations towards the inner layers. This can
be seen by comparison with the results for a thicker metal film, which are depicted in the
inset of figure 7.1. The magnitude of these oscillations decreases with the temperature
since the electrons depopulate the conduction band in favor of the impurity states with
increasing temperature (see bottom left of figure 6.2). This is in contrast to the behavior
in the metal film, where the charge carrier density does not change significantly with
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7. Thin films of Gadolinium doped Europium monoxide

the temperature due to the absence of impurities (not shown). The wavelength of these
oscillations decreases with rising doping concentration, since the Fermi wavenumber is
increased together with the conduction band occupation (cf. figure 8.1). Due to the small
doping concentrations ni, the contribution of the impurity occupation number nαd to the
charge carrier density ∆nα = nαc + nin

α
d −ncc is small. Hence, the behavior of the latter

is mainly governed by the conduction band occupation number nαc . By comparing figures
7.1 and 7.2, we see that electron depletion and accumulation in ∆nα is indeed related
to conduction band occupation reduction and increase, respectively. Concomitantly, the
impurity occupation is enhanced if the conduction band occupation is lowered.

The impact of charge carrier density variations onto the spectral densities can be ob-
served in figure 7.3, where we depict the conduction electron spectral density at different
perpendicular positions in the low temperature phase T = 20K. Due to the finite system
size, the curves acquire a step-like structure (cf. section 5.1.2). The varying occupation
of majority conduction band states in the different layers is mainly responsible for charge
carrier density variations. In other respects, the behavior is quite similar to the bulk
case including the impurity induced side band and the appearance of a gap in the high
temperature phase (cf. figure 6.2).

This can be seen in figure 7.4, where we depict the conduction band spectral density
in the high temperature phase.

We now inspect the ferromagnetic phase transition. To gain insight into the spatial
distribution of the magnetic moments across the perpendicular direction, we depict the
total magnetization in layer α, which is given by Mα = 〈Sα〉 + 〈σα〉, for various tem-
peratures in the left hand side of figure 7.5. For the definition of the Curie temperature
TC we use the average magnetization M̄ = 1

N

∑N
α=1Mα. Similar to the bulk case, TC is

defined as the maximal temperature with M̄ > 0.005µB . In comparison to the bulk value
of TC = 94.8K, the thin film exhibits a substantially decreased transition temperature of
83K in the thin film system of 9 layers (ni = 0.01). The reason for this is twofold. First of
all, the missing coupling partners at the surface lead to a reduction of the magnetization
in the outmost layers. This is similar to the effect in an isolated film of a Heisenberg
lattice (cf. figure 5.5). In addition, the depletion of surface conduction band electrons
leads to a reduction of the indirect coupling between 4f moments, both inside the surface
layer as well as in between different layers near the surface.

The semiconductor-metal transition also occurs in the thin film system, as on can
see in figure 7.6. Here, we depict the parallel resistivity ρ‖(α) (5.154) for various layer
indices α as well as the perpendicular resistivity ρ⊥ (5.155). For low temperatures, the
parallel resistivity is increased at the surface due to the depletion of electrons in the
outer layers. For the same reason, the high temperature gap is shifted more and more
while going from the center to the surface (see figure 7.4). This leads to a decrease of the
parallel resistivity with increasing layer index for high temperatures. The perpendicular
resistivity is sensitive to the strongest resistivity contribution along the perpendicular
direction. This means that whenever there is a gap in the spectral density along the
layers, the overall perpendicular resistivity is high and the system is semiconducting
with respect to the perpendicular direction. As a result, the perpendicular resistivity
roughly follows the maximal values of the parallel resistivities in the different layers.
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Figure 7.1.: Charge carrier density against the layer index for various temperatures in
an isolated mirror symmetric film of Eu1−xGdxO with N = 9 (Ñ = 5) and
ni = 0.01. The insets show the charge carrier density for a metal system
with N = 29 (Ñ = 15) and ncc = 0.01 at T = 20K.
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Figure 7.2.: Conduction band occupation number nαc (left) and impurity occupation num-
ber nαd (right) against the layer index for various temperatures in an isolated
mirror symmetric film of Eu1−xGdxO with N = 9 (Ñ = 5) and ni = 0.01.
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Figure 7.3.: Majority (solid lines) and minority (dashed lines) conduction band spectral
density for different layers at T = 20K in an isolated mirror symmetric film
of Eu1−xGdxO with N = 9 and ni = 0.01.
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Figure 7.4.: Spin degenerate conduction band spectral density for different layers at T =
100K in an isolated mirror symmetric film of Eu1−xGdxO with N = 9 and
ni = 0.01.
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Figure 7.5.: Ferromagnetic phase transition in an isolated mirror symmetric film of
Eu1−xGdxO with N = 9 and ni = 0.01 as seen in the layer dependent
magnetization Mα for various temperatures (left) as well as the average mag-
netization M̄ against the temperature (right).
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Figure 7.6.: Parallel resistivity ρ‖(α) for various layer indices α and perpendicular resis-
tivity ρ⊥ for an isolated mirror symmetric film of Eu1−xGdxO with N = 9
and ni = 0.01.
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Figure 7.7.: Influence of the doping concentration ni on the phase transition in an isolated
mirror symmetric film of Eu1−xGdxO with N = 15 (Ñ = 9) as seen in the
average magnetization M̄ (top left), the parallel resistivity ρ‖(α) = 1/σ‖(α)
at α = 0 (bottom left) and the perpendicular resistivity ρ⊥ (bottom right)
against the temperature for various doping concentrations ni. The Curie
temperature TC against the doping concentration ni is shown in the top
right figure. For comparison, we show the corresponding curves for the bulk
and long range RKKY system.

114



7.1. Nearest neighbor case

-0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06
0

0,05

0,1

0,15

0,2

n
i
=0.001

n
i
=0.005

n
i
=0.01

n
i
=0.02

n
i
=0.03

n
i
=0.04

n
i
=0.05

n
i
=0.1

0 1 2 3 4
-0,004

-0,002

0

0,002

Figure 7.8.: Spin degenerate conduction band spectral density Aα
cσ(ω) in the middle layer

α = 0 of an Eu1−xGdxO film with N = 9 for various doping concentrations
ni. The temperatures T (ni) = TC(ni) + 0.1K are taken slightly above the
Curie temperatures, which are given by TC(0.001) = 69.7K, TC(0.002) =
77.1K, TC(0.01) = 83.0K, TC(0.02) = 92.3K, TC(0.03) = 99.9K, TC(0.04) =
105.6K, TC(0.05) = 111.9K and TC(0.1) = 141.9K.

To investigate the influence of the doping concentration on the phase transition, we
keep the film thickness constant to N = 9 and examine the results for various doping
concentrations in figure 7.7. Similar to the bulk case, the Curie temperature increases
with the doping concentration. On the other hand, there is an overall reduction in TC
around 10%, which can be attributed to the finite size effects. Concomitant with the
ferromagnetic phase transition, there is a semiconductor metal transition in the parallel
resistivity as well as the perpendicular resistivity. However, by increasing the doping
concentration, the resistivity step at the Curie temperature gets weaker and weaker
until, at ni = 0.1, there is no semiconductor-metal transition at all. The reason for this
can be seen in figure 7.8. Since the overall scale of the charge carrier density variations
along the perpendicular direction is increased together with the doping concentration,
the gap in the conduction band spectral density of the middle layer is shifted downwards
more and more while the doping concentration rises. At ni = 0.1, this shift is so strong
that the gap is below the Fermi edge and the system is conducting even in the high
temperature phase.

To further examine the finite size effects, we hold the doping concentration constant
to ni = 0.01 and inspect the results for different film thicknesses N in figure 7.9. We
already saw a TC reduction of around 10% due to the presence of the surface in films
with N = 9. From experiments [19, 21, 23, 24, 29] we know that the impact of the
surface should get stronger the thinner the film is. Indeed, we observe a decrease of the
transition temperature with the film thickness up to TC = 69.9K for a film with N = 3.
However, these results are not directly comparable to the experimental data since the
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Figure 7.9.: Influence of the film thickness N on the Curie temperature in an isolated
mirror symmetric film of Eu1−xGdxO with ni = 0.01 as seen in the average
magnetization M̄ against the temperature for various film thicknesses N
(left) as well as the Curie temperature TC against the film thickness (right).
For comparison, we show the corresponding curve for the long range RKKY
case in the right figure.

measurements were either performed for stoichiometric EuO [19, 21, 24, 29] or a highly
influential substrate was used [23].

7.2. Long range RKKY coupling case

In the bulk case, the effect of including long range RKKY interactions were small, since
we chose Jcf such that the Curie temperatures were approximately equal in the nearest
neighbor and in the long range RKKY case. However, in the multilayer case we expect a
greater impact on the ferromagnetic phase transition. As we have seen in section 6.3, the
range of the RKKY coupling of the size of a few lattice constants, which should make the
physical behavior more sensitive to finite size effects than in the nearest neighbor case.
We conduct the same systematic analysis as in the nearest neighbor case and change the
variables N and ni around the prototype system with N = 9 and ni = 0.01. The increase
of TC with the doping concentration is shown on the right hand side of figure 7.9. The
effect of missing coupling partners and electron depletion at the surface leads to a more
pronounced TC reduction in the RKKY case, due to the longer range of the interaction
(cf. figure 5.5). The general behavior is similar to the nearest neighbor case except for
sharper magnetization curves as they were also observed in the bulk long range RKKY
case (not shown).

The position dependence of the RKKY coupling in a multilayer system can be seen
in figures 7.10 and 7.11, where we depict the parallel coupling (5.100) and the perpen-
dicular coupling (5.102) in an Eu1−xGdxO film with N = 9 and ni = 0.01. There is a
reduction in the overall strength of the coupling at the surface, which is connected to
the electron depletion at the surface and the increase of the conduction band occupation
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Figure 7.10.: Parallel RKKY coupling in the different layers of a system an N = 9
Eu1−xGdxO film with ni = 0.01 at T = 20K. The circles indicate the
positions of the nearest neighbors in an (100) monolayer of an FCC lattice.

towards the inner layers. The charge carrier density shows a similar behavior as in the
nearest neighbor case (not shown). In the region between 2 and 4 lattice constants, the
perpendicular coupling becomes anti-ferromagnetic. However, since the intralayer cou-
pling and the coupling between neighboring layers is ferromagnetic, the overall behavior
remains ferromagnetic and the total magnetization Mα shows the same behavior as in
the nearest neighbor case (see figure 7.5).

7.3. Conclusion

We have shown that the Curie temperature for the simultaneous ferromagnetic semicon-
ductor to metal transition in Eu1−xGdxO is reduced by finite size effects in thin films.
This effect is even more pronounced in the more realistic case of including long range
RKKY interaction in the theory. In all cases, the charge carrier density shows an electron
depletion at the surface and Friedel oscillations inside the system. Towards the surface
layers, the mean field magnetization decreases due to the absence of magnetic moments
in the vacuum and the reduced conduction band occupation at the surface. On the other
hand, all the general characteristics of the phase transition, like the doping induced TC
enhancement and the simultaneity with respect to the semiconductor-metal transition,
are preserved. However, in the case of N = 9 and ni = 0.1, the surface induced charge
carrier variation is so strong, that the system becomes metallic even in the high tempera-
ture phase due to the shift of the gap. The band bending effects in a heterostructure are
expected to have a comparable or even stronger impact on the charge carrier density and
therefore on the fragile occurrence of a semiconducting high temperature phase. This
matter is further investigated in the subsequent chapter.
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Figure 7.11.: Perpendicular RKKY coupling for the different layers of an N = 9
Eu1−xGdxO film with ni = 0.01 at T = 20K. Note that the distance
between to neighboring layers is a/2.
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8. Metal-Eu1−xGdxO-metal

heterostructures

In a metal-metal interface, band bending effects can lead to diffusion of charge carriers
from one material to the other and the formation of a space charge region [64]. In
the simplest approximation, the direction of the charge flow is determined by the work
functions of the two materials. The electrons gain energy by diffusing from the material
with smaller work function to the other one (cf. figure 5.7). We expect similar effects
to occur in an interface of electron doped EuO and an ordinary metal. Moreover, the
electron accumulation or depletion near the surface should have a large effect on the
transition temperature, since we saw that the conduction band occupation is responsible
for the enhancement of the Curie temperature (cf. figures 6.1 and 7.7). Although the
theory neglects effects like surface reconstruction, we expect it to describe the qualitative
features, especially with respect to the phase transition.

In this chapter, we consider mirror symmetric three component heterostructures con-
sisting of an Eu1−xGdxO film with a metal film on top and below. For the Eu1−xGdxO
film, we use the same parameters as in the bulk case of chapter 6 and the case of isolated
films of chapter 7. However, as variable parameters, we use the doping concentration ni
and the number of Eu1−xGdxO layers, which we again denote by N . As mentioned be-
fore, we model a metal by omitting the impurity and magnetic parts of the theory, which
leaves us with a non-interacting conduction band. The filling of the latter is denoted by
nm and the number of metal layers by M . In the metal layers, we use the same value
for the half band width as in the Eu1−xGdxO layers. As a result, the interlayer hopping
tα does not depend on the layer index (cf. chapter 4). In order to apply the multilayer
theory of chapter 5 to such a heterostructure, one has to consider a mirror symmetric two
component system. The self-energy in the first N layers is characterized by the contri-
butions from the impurity (5.56), the 4f moments (5.90) and the electrostatic potential
(5.115). In the following M layers, only the electrostatic contribution (5.115) remains.
Since the self-energy is purely real in the metal layers, we expect extremely narrow peaks
in the momentum dependent conduction electron Green’s function (5.19). Therefore,
the usage of several logarithmically dense regions in the integration grid as well as an
extremely accurate localization of the poles in (5.19) is imperative (cf. section 5.1.2).

The remaining parameter for the heterostructures is the work function difference
∆W = WEuO − WMetal. As it was explained in section 5.4.2, one needs to solve the
theory for the isolated subsystems first, in order to match the energy scales and obtain
the input parameters for the heterostructure theory which correspond to the correct value
of ∆W . Thus, we need to solve the theory for the isolated Eu1−xGdxO film with thick-
ness N and the doping concentration ni as well as the isolated metal film with thickness
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8. Metal-Eu1−xGdxO-metal heterostructures

M and band filling nm, both for the temperature at hand. This procedure is automated
by a set of programs, which store the energy shifts µ0 for the isolated systems in a
database [65]. Whenever a heterostructure calculation is started within this framework,
the database is checked for the corresponding values of the isolated constituent systems.
If the results for one of the subsystems are not present, the corresponding calculation is
initiated. Afterwards, the heterostructure calculation is resumed automatically with the
correct input parameters.

In the first section of this chapter, we perform a thorough investigation on the influence
of the various material parameters on the phase transition in the Eu1−xGdxO film. For
this purpose, we use the nearest neighbor approximation in the magnetic coupling. In
the second part, we include long range RKKY interactions and compare the results to
the nearest neighbor case.

8.1. Nearest neighbor case

In order to assess the variety of phenomena which can occur in such heterostructures,
we conduct a systematic analysis in the parameters N , M , ni, nm and ∆W . Due to the
increased demands of the heterostructure calculation concerning computer resources, we
start with a certain point in parameter space and investigate the behavior along the five
different parameter axes separately. As the central point, which we call the prototype
system, we choose N = 9, M = 9, ni = 0.01, nm = 0.01 and ∆W = 0.125D0 = 1eV.

8.1.1. Influence of the metal band filling

The investigation of different metal band fillings nm provides us with an overview of the
most important mechanisms in a metal-Eu1−xGdxO-metal heterostructure. As one can
see in the top of figure 8.1, the electron depletion at the vacuum-metal interface strongly
depends on the metal band filling, and so does the Friedel oscillation wavelength.

In the case of nm = 1.0, the nodes of the oscillations coincide with the layer position,
so that no oscillation can be observed. Moreover, there is an accumulation of charge
carriers in the outmost layers of the Eu1−xGdxO film and a depletion in the inner metal
layers. This is the result of the positive work function difference ∆W = 0.125D0 = 1eV,
which leads to an upwards band bending in the inner metal layers and a downwards band
bending at the surfaces of the Europium monoxide film.

In order to minimize their energy, electrons pass over from the metal to the Eu1−xGdxO.
This process is more effective the more electrons are available in the metal. Therefore
the charge carrier accumulation increases with the metal band filling nm. On the other
hand, the decrease in ∆nα towards the inner layers is more abrupt for high metal band
fillings than for low ones. It turns out that this behavior is not advantageous for the
TC enhancement. The magnetization Mα follows the behavior of the conduction band
occupation nαc for most of the layer indices, which can be observed in figure 8.2. At the
outmost Eu1−xGdxO layer, the magnetization is reduced due to the missing coupling
partners. However, as a result of the conduction electron accumulation, the reduction
is not as pronounced as in the isolated case. As the metal band filling decreases, the
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Figure 8.1.: Influence of the metal band filling nm on the ferromagnetic phase transition
in a metal-Eu1−xGdxO-metal heterostructure with N = 9, M = 9, ni = 0.01
and ∆W = 1eV as seen in the charge carrier density ∆nα against the layer in-
dex α (top) as well as the average magnetization M̄ against the temperature
(bottom). The inset in the bottom figure depicts the Curie temperature ver-
sus nm. For comparison, we show the results for the corresponding isolated
Eu1−xGdxO film (dashed lines).
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Figure 8.2.: Influence of the metal band filling nm on the ferromagnetic phase transition
in a metal-Eu1−xGdxO-metal heterostructure with N = 9, M = 9, ni = 0.01
and ∆W = 1eV as seen in the conduction band occupation nαc (top) and
the magnetization Mα (bottom) against the layer index, respectively. For
comparison, we show the results for the corresponding isolated Eu1−xGdxO
film (dashed lines).
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Figure 8.3.: Influence of the metal band filling nm on the semiconductor-metal transition
in a metal-Eu1−xGdxO-metal heterostructure with N = 9, M = 9, ni = 0.01
and ∆W = 1eV as seen in the parallel resistivity in the middle layer ρ‖(0)
(left) and the perpendicular resistivity ρ⊥ (right).

strength of the charge carrier accumulation decreases. At the same time however, an
increase in the conduction band occupation over a wider range of layers can be observed.
This leads to an increase of the perpendicular coupling between the inner layers and
therefore to a strong TC enhancement up to TC = 103.3K in the case of nm = 0.005
(see bottom of figure 8.1). Despite the fact that the conduction band accumulation is
maximal for nm = 1.0, there is no TC enhancement in this case. In comparison to the
isolated case, the magnetic interaction is only increased significantly in the outer layer
α = 4. The resulting increase in the magnetic coupling cannot outweigh the missing cou-
pling partners in the metal layers. Moreover, the slight reduction of nαc at α = 3 seems
to have a greater impact on the ferromagnetic transition since the Curie temperature of
TC = 82.6K is even smaller than in the isolated case, where we have TC = 83K.

The price one has to pay for the TC enhancement is the disappearance of the semicon-
ductor metal transition as one can see in figure 8.3. Here, we show the parallel resistivity
in the middle layer and the perpendicular resistivity for the various metal band fillings
nm. While the resistivity step is still present for nm = 1.0, nm = 0.1 and nm = 0.02,
it disappears for lower metal band fillings. In figure 8.4 one can see the origin of this
behavior. We show the spin degenerate conduction band spectral density in the middle
layer slightly above the Curie temperature for the different metal band fillings nm. Due
to charge carrier variations, the gap is shifted such that the system is metallic even in the
high temperature phase for nm = 0.005, nm = 0.01. For the same reason, the resistivity
step is substantially reduced with respect to the isolated system for nm = 0.02, nm = 0.1
and nm = 1.0 (cf. figure 7.6).

8.1.2. Influence of the Eu1−xGdxO film thickness

Since the magnitude of the charge carrier variations falls off towards the inner layers, one
might conjecture that the high temperature gap remains undisturbed far away from the
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Figure 8.4.: Spin degenerate conduction band spectral density in the middle layer
Aα=0

cσ (ω) of a metal-Eu1−xGdxO-metal heterostructure with N = 9, M = 9,
ni = 0.01 and ∆W = 1eV for various metal band fillings nm. The temper-
atures T (nm) = TC(nm) + 0.1K are taken slightly above the Curie tem-
peratures, which are given by TC(0.005) = 103.4K, TC(0.01) = 93.6K,
TC(0.02) = 88.6K, TC(0.1) = 86.3K, TC(1.0) = 82.7K and TC(1.99) =
105.3K. For comparison, we show the corresponding curve for the isolated
system with TC = 83K (dashed line).

interfaces in a very thick sample. On the other hand, the interface induced TC enhance-
ment should be weakened as the Eu1−xGdxO film thickness is increased. In figure 8.5,
we show the impact of varying Eu1−xGdxO film thicknesses on the ferromagnetic phase
transition. With respect to the other parameters, the investigated heterostructures are
equal to the prototype system. In particular, there is a positive work function difference
which yields a charge carrier accumulation in the outer Eu1−xGdxO layers. Together
with the charge carrier density, the conduction band occupation is decreased towards
the inner layers. As a result, the ferromagnetic interaction is not enhanced in the inner
layers of a thick Eu1−xGdxO film. This leads to a decrease of the Curie temperature
with the Eu1−xGdxO film thickness. Moreover, the semiconductor metal transition is
restored for large N , since the perturbation of the gap position in the middle layer is
reduced by increasing the distance to the interface (see figure 8.6). However, the step
in the resistivity remains relatively weak. Note that the scale on the right hand side of
figure 8.6 is linear. Obviously, there is still a small charge carrier density variation in the
middle layer, which strongly affects the transport properties even in the N = 17 case.
This leads us to the conclusion that the TC enhancement via band bending is inevitably
connected to the reduction of the semiconductor metal transition.
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Figure 8.5.: Influence of the Eu1−xGdxO film thickness N on the ferromagnetic phase
transition in a metal-Eu1−xGdxO-metal heterostructure with M = 9, ni =
0.01, nm = 0.01 and ∆W = 1eV as seen in the average magnetization M̄
against the temperature (left), as well as the charge carrier density ∆nα
and the conduction band occupation nαc against the layer index (right), re-
spectively. The inset in the left figure depicts the Curie temperature versus
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Figure 8.6.: Influence of the Eu1−xGdxO film thickness N on the semiconductor-metal
transition in a metal-Eu1−xGdxO-metal heterostructure with M = 9, ni =
0.01, nm = 0.01 and ∆W = 1eV as seen in the parallel resistivity in the
middle layer ρ‖(0) (left) and the perpendicular resistivity ρ⊥ (right).
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Figure 8.7.: Influence of the work function difference ∆W = WEuO −WMetal on the fer-
romagnetic phase transition in a metal-Eu1−xGdxO-metal heterostructure
with N = 9, M = 9, ni = 0.01 and nm = 0.01 as seen in the average mag-
netization M̄ against the temperature (left), as well as the charge carrier
density ∆nα and the conduction band occupation nαc against the layer index
(right), respectively. The inset in the left figure depicts the Curie tempera-
ture versus ∆W . For comparison, we show the results for the corresponding
isolated Eu1−xGdxO film (dashed lines).

8.1.3. Further exploration of the parameter space

So far, we have exposed the most influential mechanisms for the phase transition in
metal-Eu1−xGdxO-metal heterostructures. Here, we continue to explore the parameter
space by variation of the work function difference ∆W , the doping concentration ni and
the metal film thickness M . Selecting nm = 0.01, we have a relatively large penetration
depth of the interface induced disturbance in the charge carrier density. As a result, the
conduction band occupation is shifted to such an extent that the semiconductor-metal
transition is suppressed. Since we would not gain any additional insight from it, we
refrain from showing the transport properties in these system and rather focus on the
ferromagnetic phase transition.

We begin with the variation of the work function difference. In figure 8.7, we see that
there is an electron accumulation or depletion in the outmost Eu1−xGdxO layers depend-
ing on the sign of ∆W . Despite the fact that there is a substantial depletion of electrons
in the case of negative work function differences, the conduction band occupation is still
enhanced in comparison to the isolated case. This is a consequence of the presence of
the metal in comparison to the vacuum. Consequently, we see a reduction in the Curie
temperature only for the strong negative work function difference of ∆W = −1eV . In
all other cases, we have a TC enhancement. Due to the increased amount of conduction
electrons in the Eu1−xGdxO film, the Curie temperature increases with the work function
difference.

In figure 8.8, we see that the doping concentration has a similar effect on the Curie
temperature as in bulk Eu1−xGdxO and isolated films of Eu1−xGdxO (cf. figure 6.1
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Figure 8.8.: Influence of the doping concentration ni on the ferromagnetic phase tran-
sition in a metal-Eu1−xGdxO-metal heterostructure with N = 9, M = 9,
nm = 0.01 and ∆W = 1eV as seen in the average magnetization M̄ against
the temperature (left), as well as the charge carrier density ∆nα and the con-
duction band occupation nαc against the layer index (right), respectively. The
inset in the left figure shows the Curie temperature versus ni and the curve
for the corresponding isolated Eu1−xGdxO systems for comparison (dashed
line).

and figure 7.7). Similarly, the Curie temperature is increased together with the doping
concentration.

Finally, we inspect the effect of various metal film thicknesses M in figure 8.9. The
Friedel oscillations in the metal are interrupted by the interface at different distances from
the metal-vacuum interface. This leads to a diverse behavior with respect to the charge
carrier accumulation in the Eu1−xGdxO film. While the TC enhancement is relatively
weak for M = 5, M = 9 and M = 11, there is a strongly increased Curie temperature
TC = 101.8K in the case of M = 7. Here, the metal-Eu1−xGdxO interface coincides
with a valley in the Friedel oscillation. Hence, the decrease of the metal charge carrier
density at the interface, which already appears as a result of the positive work function
difference, is intensified.

8.2. Long range RKKY coupling case

In this section, we compare the results of the heterostructure theory with and without
the inclusion of long range RKKY interactions. For this purpose, we inspect the results
for the prototype system as well as for a system which differs from the prototype system
by a metal band filling of nm = 1.0. As we saw in the previous section, the latter is char-
acterized by a short penetration depth of the electron accumulation in the Eu1−xGdxO
film, and as a result, the conservation of the semiconductor-metal transition despite the
presence of the metal interface. The results are depicted in figure 8.10. For both metal
band fillings, the conduction band occupation is reduced in the RKKY case. However,
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Figure 8.9.: Influence of the metal film thickness M on the ferromagnetic phase transi-
tion in a metal-Eu1−xGdxO-metal heterostructure with N = 9, ni = 0.01,
nm = 0.01 and ∆W = 1eV as seen in the average magnetization M̄ against
the temperature (left), as well as the charge carrier density ∆nα and the
conduction band occupation nαc against the layer index (right), respectively.
The inset in the left figure depicts the Curie temperature versus M .
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8.3. Conclusion

the magnetization exhibits an enhancement for most of the perpendicular positions. This
is in agreement with the results for the bulk and isolated systems with long range RKKY
coupling. Including the latter, we observed a stronger magnitude of the magnetization at
low temperatures. Due to the strong localization of the electron accumulation at α = 4,
there is no significant TC enhancement with respect to the isolated system for nm = 1.0.
This statement holds for the nearest neighbor case as well as for the long range RKKY
case. In contrast, there is a substantial TC enhancement for nm = 0.01, where we have
TC = 93.5K for the nearest neighbor case and TC = 104.9K for the RKKY case. It is
remarkable that the TC enhancement in the RKKY case is twice as large as in the nearest
neighbor case. From this, we can deduce that the multilayer theory with nearest neighbor
coupling underestimates the conduction band induced TC enhancement, at least in the
case where the conduction band occupation is increased in multiple neighboring layers.

8.3. Conclusion

We performed a systematic analysis on the simultaneous ferromagnetic semiconductor-
metal transition in metal-Eu1−xGdxO-metal heterostructures. In the course of this, we
investigated the influence of the metal band filling and thickness, the doping concen-
tration and thickness in the Eu1−xGdxO film and the work function difference. With
respect to the increase of the simultaneous phase transition temperature, we found two
counteracting mechanisms. On the one hand, the Curie temperature can be substantially
increased up to 20% if the work function difference is positive and the metal band filling
is small. On the other hand, the large penetration depth of the charge carrier accumula-
tion, which is responsible for the TC enhancement, suppresses the semiconductor-metal
transition since the fragile position of the gap is disturbed. Investigating the same het-
erostructures with inclusion of long range RKKY coupling, we found that the nearest
neighbor approximation underestimates the effect of electron accumulation induced TC
enhancement under certain circumstances.
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9. Ferromagnet-Eu1−xGdxO-ferromagnet

heterostructures

In the previous section, we saw that the coupling to a metal film can increase the Curie
temperature up to around 20%. However, this approach of TC enhancement is inextrica-
bly linked to a suppression of the semiconductor metal transition. In the present chapter,
we investigate the approach of increasing the Curie temperature in an Eu1−xGdxO film
by the coupling to a ferromagnet. In contrast to prototype ferromagnets like iron, where
the magnetization is provided by itinerant electrons, we investigate ferromagnets which
are characterized by spatially localized magnetic moments and the indirect exchange in-
teraction between these moments. An example for such a ferromagnet is Gadolinium.
It crystallizes in a hexagonal closed packing with lattice parameters a = 3.636Å and
c = 5.783Å, and has an electronic configuration of 4f75d16s2. The 4f electrons build a
lattice of localized spin 7/2 moments interacting via the conduction band, which consists
of the 5d and 6s states [66–68]. Due to the substantial occupation of the conduction
band, Gadolinium has a Curie temperature around room temperature, TC = 293K [67].
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Figure 9.1.: Ferromagnetic phase transition in a ferromagnetic film of M = 9 layers and
a conduction band occupation of nm = 0.1 as seen in the magnetization
against the layer index Mα for various temperatures (left) and the average
magnetization M̄ against the temperature (right).

In order to assess the qualitative influence of such a ferromagnet onto the phase tran-
sition in Eu1−xGdxO, we consider a heterostructure which consists of an Eu1−xGdxO
film with a ferromagnetic film on top and below. For the ferromagnet, we use the theory
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Figure 9.2.: Magnetization against the layer index for various temperatures in a
ferromagnet-Eu1−xGdxO-ferromagnet heterostructure with N = 9, M = 9,
ni = 0.01, nm = 0.1 and ∆W = 1eV. The inset shows the average magneti-
zation versus the temperatures. For comparison, we depict the correspond-
ing curve for the isolated Eu1−xGdxO film and the metal-Eu1−xGdxO-metal
heterostructure (MEM).

for electron doped EuO, where we omit the impurity contribution given by (4.3) and
(4.12), respectively. Similar to the metal case, the parameter ncc determines the con-
duction band filling. For simplicity, we choose all other parameters to be the same as
in the Eu1−xGdxO film. This includes the arrangement of the localized moments on an
FCC lattice. We do not expect the model to accurately describe the physics of Gadolin-
ium. However, it should provide us with a qualitative description of the influence onto
the phase transition in electron doped Europium monoxide. Analogously to the previous
chapter, the heterostructure parameters are the Eu1−xGdxO film thickness N , the doping
concentration ni, the thickness of the ferromagnet M , the conduction band occupation in
the ferromagnet nm, and the work function difference ∆W =WEuO −WFM. In order to
estimate the influence of a ferromagnet with a much greater transition temperature, we
choose nm = 0.1 which yields a Curie temperature of around TC ≈ 300K in an isolated
ferromagnetic film of M = 9 layers (see figure 9.1). Note that the magnetization falls
below 0.02µB already at around T = 300K but crosses the 0.005µB threshold not until
T = 362K. For the Eu1−xGdxO film, we choose a doping concentration of ni = 0.01
and a film thickness of N = 9. The results for the corresponding heterostructure with a
work function difference of ∆W = 0.125D0 = 1eV are depicted in figure 9.2. Since the
charge carrier distribution does not differ significantly from the one of the corresponding
metal-Eu1−xGdxO-metal heterostructure (see figure 8.1), we refrain from showing it. One
might naively expect the Curie temperature of the Eu1−xGdxO film to be substantially
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increased due to the presence of the high TC ferromagnet. However, in fact, it is the other
way around. Due to the coupling to the reduced magnetic moments in the Eu1−xGdxO
film, the magnetization in the ferromagnet is pulled down so that the magnetization of
the whole heterostructure vanishes at TC = 89K+1K. This is only a slight increase with
respect to the corresponding metal-Eu1−xGdxO-metal heterostructure, where the Curie
temperature is TC = 86.2K + 0.1K. Despite the fact that we have not investigated a
variety of heterostructure parameters, we can already conclude from this example that
the coupling to the magnetic moments of a high TC ferromagnet of this kind does not
significantly increase the transition temperature in Eu1−xGdxO.
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10. Prediction of STS spectra

The content of this chapter is the prediction of scanning tunneling spectroscopy (STS)
spectra in systems of electron doped Europium monoxide. In an STS experiment, the
electrons tunnel from the tip into the probe material or vice versa. Assuming a constant
density of states in the tip, the measured spectra are proportional to the density of
states of the probe ρ(ω). In the case of Europium monoxide with a dilute concentration
of impurities, the density of states is given by the spin integrated full conduction band
spectral density:

ρ(ω) =
∑

σ

Acσ(ω) .

However, in the vicinity of an impurity one expects corrections to the spectra which
should increase with decreasing distance to the impurity. According to Újsághy et. al. [69],
the correction to the local density of states at distance R to the impurity is given by

δρ(R,ω) =
∑

σ

1

π
Im
{
Gcσ(R,ω − i0+)V 2Gdσ(ω − i0+)Gcσ(R,ω − i0+)

}
.

Here, Gdσ(ω) is the local impurity Green’s function and Gcσ(R,ω) = Gcσ(|R|, ω) is the
non-local conduction electron Green’s function (cf. section 5.1). It was assumed that
the spatial dependence of the conduction electron Green’s function is isotropic, which
is conform with our theory. With this, the total density of states at distance R to the
impurity is given by ρ(R,ω) = ρ(ω) + δρ(R,ω).

In the multilayer case, we consider the density of states in layer α, ρα(R,ω) =
∑

σ A
α
cσ(ω) + δρα(R,ω). Here, R is the distance between two points in layer α. We

obtain for the correction to the density of states:

δρα(R,ω) =
∑

σ

1

π
Im
{
Gα

cσ(R,ω − i0+)V 2Gα
dσ(ω − i0+)Gα

cσ(R,ω − i0+)
}
.

At first, we compare the predicted spectra for the two types of impurities, Gadolinium
and Oxygen, by examination of δρ for increasing distances to the impurity in the low
temperature phase. Figures 10.1 and 10.2 show the corresponding results. In both cases,
there are two peaks stemming from the spin split majority and minority resonances in
the impurity spectral density. Moreover, there is a Fano dip which becomes visible for
distances beyond one lattice constant from the impurity. However, due to the magnetic
nature of the Gadolinium impurities, the peaks in δρ are sharper than in the Oxygen
case. This may be used to distinguish between a Gadolinium impurity and an Oxygen
vacancy in experiment.
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Figure 10.1.: Corrections to the conduction band density of states δρ(R,ω), for various
distances R to the impurity position in the low temperature phase (T =
20K) of bulk Eu1−xGdxO with x = ni = 0.01.
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Figure 10.2.: Corrections to the conduction band density of states δρ(R,ω), for various
distances to the impurity position in the low temperature phase (T = 20K)
of bulk EuO1−x with x = ni = 0.01, U = 0.002D0 and Ed = −0.01D0.
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As the temperature is increased towards TC , the spin degeneracy is lifted and the
two peaks merge into a single one. In figure 10.3 we depict δρ at R = 0 for various
temperatures across the phase transition. In the Oxygen case, the spin degenerate peak
is roughly twice as large in comparison to the Gadolinium case since the number of
excess electrons is doubled. The spatial dependence of δρ in the high temperature phase
is similar to the one in the low temperature phase, i.e. the strength of the spin degenerate
peak decreases with the distance R and a Fano dip emerges at greater distances.

In order to demonstrate the influence of finite size effects on the STS spectra, we
show δρ at R = 0 in the low temperature phase for different layers in a film of isolated
Eu1−xGdxO (see figure 10.4). Although only the outer layer can be probed in experi-
ment, this helps us to assess the effect of variations in the charge carrier density and the
magnetic moment as they occur near the surface of a probe. The reduction of the magne-
tization towards the surface can be seen in the decrease of the distance between the two
peaks in δρ with increasing layer index α. Moreover, we observe an increase in the pop-
ulation of the impurity towards the outer layers which is associated with the conduction
band depletion at the surface (cf. figure 7.2). Despite the surface induced changes in δρ,
the characteristic appearance of the two sharp peaks is preserved. Therefore, we expect
that even in very thin films one should be able to observe the spin split peak structure.
Moreover, in principle our results provide a means to distinguish a Gadolinium impurity
from an Oxygen vacancy. However, as the splitting is around 0.02D0 = 0.16eV and the
peak width is roughly 0.01D0 = 0.08eV, this may prove challenging with respect to the
experimentally accessible resolution.
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Figure 10.3.: Corrections to the conduction band density of states δρ(R = 0, ω) at the
position of an impurity for various temperatures across the phase transition
in bulk Eu1−xGdxO (top) and bulk EuO1−x with U = 0.002D0 and Ed =
−0.01D0 (bottom). The doping concentration is x = ni = 0.01 in both
cases.
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Figure 10.4.: Corrections to the conduction band density of states δρα for various layer
indices α in the low temperature phase (T = 20K) of a mirror symmetric
film of Eu1−xGdxO. The film thickness is N = 9 and the doping concen-
tration is x = ni = 0.01. For comparison, we also show the results for the
corresponding bulk system.
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11. Conclusion

In this work, we developed a theory for the simultaneous ferromagnetic semiconductor-
metal transition in heterostructures and bulk systems of electron doped Europium monox-
ide. The theory is based on work of Arnold and Kroha [18] for bulk Eu1−xGdxO, which in
the present work was extended in order to describe systems with spatial inhomogeneities
in one direction. In addition, we adapted the impurity part of the theory for the de-
scription of Oxygen deficient Europium monoxide. In order to obtain a more realistic
theory for the magnetic interaction in spatially inhomogeneous systems, the non-local
character of RKKY interactions between localized magnetic moments was integrated.
By omitting certain parts of the model Hamiltonians ((4.1) and (4.6)), we were able to
simulate metallic and ferromagnetic materials. This proved useful for comparisons to
electron doped EuO systems, as well as for the modeling of different types of substrate
films in heterostructures. In order to apply the correct work function difference for the
latter, it was necessary to solve the theory for the isolated subsystems of a heterostruc-
ture. We implemented a highly stable and flexible computer program for the numerical
solution of the theory, which comprises all different cases in a single program [63]. This
includes the calculation of bulk and multilayer systems, Gadolinium impurities and Oxy-
gen vacancies, long range RKKY and nearest neighbor magnetic interaction as well as
non-interacting systems like metals and ferromagnets. Moreover, we provided a simple
interface for initiating the numerical calculations and managing their results [65].

During our investigation of bulk Eu1−xGdxO systems, we could demonstrate that the
theory qualitatively predicts the simultaneous phase transition as well as the increase
of the transition temperature with the doping concentration. Moreover, we found that
the saturation effect in the doping induced TC enhancement is a result of the increasing
localization of electrons in the impurity states, which is in agreement with experiments of
Mairoser et. al. [15]. In both Eu1−xGdxO and EuO1−x systems, the Curie temperature
is reduced as the bare impurity level is lowered due to the enhanced occupation of the
impurity level in this case. This mechanism represents a possible explanation for the
absence of doping assisted TC enhancement in Oxygen deficient Europium monoxide.
It might also be explained by the absence of magnetic impurities, as we were able to
demonstrate by varying the on-site Coulomb repulsion U and comparing to the results
for the Gadolinium case. By investigating EuO1−x systems with weak on-site Coulomb
repulsion U as well as Eu1−xGdxO systems with U → ∞, we covered the crossover
from a doubly occupied to a singly occupied impurity state. In the latter case, low
lying spin fluctuations lead to a transfer of spectral weight towards the Fermi energy
due to the onset of a Kondo resonance. As a result, the semiconducting gap is closed
at elevated temperatures which leads to an increase of the Curie temperature. This
picture is supported by our findings that the Curie temperature increases with the on-
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11. Conclusion

site Coulomb repulsion U in Oxygen deficient EuO. As U is increased, the impurity
becomes more likely to be single occupied and therefore magnetic. The strong impact of
low lying spin fluctuations onto the TC enhancement was exposed by comparing the Curie
temperature in Eu1−xGdxO to the one of EuO1−x with the same doping concentration.
Despite the fact that the conduction band occupation in the former is reduced by a factor
of two in comparison to the latter, its Curie temperature is substantially increased.

Besides bulk systems, we investigated thin films of Eu1−xGdxO and the implications
of finite size effects onto the phase transition. As a general attribute of the conduction
band in a finite size film, we observed an electron depletion at the interface to the vac-
uum. This leads to Friedel oscillations in the conduction band occupation, which are
damped towards the inside of the film. Due to the strong dependence of the magnetic
subsystem on the number of available itinerant electrons, these oscillations have a sub-
stantial impact on the Curie temperature. In particular, the electron depletion at the
vacuum interface decreases the Curie temperature beyond the effect of missing coupling
partners. As expected, this effect is even more pronounced in the case of long range
RKKY interactions. On the other hand, the interface induced distortion of the conduc-
tion band occupation does not substantially change the gap position in the inside of the
film. As a result, we observe a semiconductor-metal transition concomitantly with the
ferromagnetic transition as well as a doping induced TC enhancement similar to the bulk
case.

In order to examine the influence of a metal interface, we performed a thorough anal-
ysis of metal-Eu1−xGdxO-metal heterostructures. As expected, the presence of a metal
leads to the accumulation or depletion of conduction band electrons in the Eu1−xGdxO
film, depending on the work functions in both materials. We demonstrated that there
can be a significant TC enhancement due to the increased amount of itinerant electrons in
the system. In the case of the more precise inclusion of long range RKKY interaction we
observed an increase of the Curie temperature up to around 20%. However, we found that
the interface induced TC enhancement is inevitably associated with a suppression of the
semiconductor-metal transition. By examining a ferromagnet-Eu1−xGdxO-ferromagnet
heterostructure, we found that the coupling to a high TC ferromagnet can not consider-
ably increase the Curie temperature in Eu1−xGdxO.

Finally, we used the results of the self-consistent theory to predict the STS spectra
in the vicinity of an impurity at the surface of an electron doped Europium monoxide
sample. Here, we were able to identify the signatures of magnetic impurities by comparing
the results for Eu1−xGdxO and EuO1−x.
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A. Conductivity calculation

A.1. Current operator for the bulk model

During the calculation of the current operator for the bulk model (cf. (5.139)), we use
the commutator of the electron density and the bulk Hamiltonian (4.1),

[ρ(q, t),H] =
∑

k,σ

(εk − εk−q) c
†
k−qσ(t)ckσ(t) .

We prove this relation here, employing the following commutator relations for fermionic
operators:

[c†i cj , c
†
kcl ] = c†i cl δjk − c†kcjδil (A.1)

[c†i ci , c
†
jcj] = 0 (A.2)

[c†i ci , cj ] = −δijci (A.3)

[c†i ci , c
†
j ] = δijc

†
i . (A.4)

We begin by considering the electron density operator in real space ρ(r). In order to
establish a connection to the operator basis of discrete Wannier states, we consider the
conduction electron and impurity density operators at lattice site i, ρc,i =

∑

σ c
†
iσciσ and

ρd,i =
∑

σ d
†
iσdiσ, respectively. The relation to the continuous electron density operator

is given by

ρ(r) =
∑

i

δ(r −Ri)ρc,i +
∑

{i}

δ(r −Ri)ρd,i

= ρc(r) + ρd(r) ,

where the second sum runs over the positions of the randomly distributed impurity sites.
The conduction band contribution to the electron density reads

ρc(r) =
∑

σ

∑

i

1

N

∑

p

ei(r−Ri)
1√
N

∑

k

e−ikRic†
kσ

1√
N

∑

k

eiqRicqσ

=
1

N

∑

p

eipr
(
∑

qσ

c†q−pσcqσ

︸ ︷︷ ︸

ρc(p)

)

, (A.5)
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A. Conductivity calculation

and the impurity contribution is given by

ρd(r) =
1

N

∑

p

eipr
(
∑

{i}σ

e−ipRid†iσdiσ

︸ ︷︷ ︸

ρd(p)

)

. (A.6)

Hence, we have an expression for the momentum dependent electron density operator
ρ(q) = ρc(q) + ρd(q) and we can proceed with the calculation of the commutator. The
contribution from the magnetic part of the Hamiltonian after mean-field approximation
(5.69) reads

[ρ(q),Hcf ] =




∑

iσ

e−iqRic†iσciσ +
∑

{i}σ

e−iqRid†iσdiσ, −Jcf
∑

jλλ′

Sj c
†
jλτ

z
λλ′cjλ′





(A.2)
= 0 .

The commutators with the first and third part of the impurity part of the Hamiltonian
(4.3) vanish due to (A.2) and we are left with

[ρ(q),Hcd] = V
∑

λσ

∑

j

∑

{i}

[

c†jλcjλ, c
†
iσdiσ + d†iσciσ

]

e−iqRj

+ V
∑

λσ

∑

{j}

∑

{i}

[

d†jλdjλ, c
†
iσdiσ + d†iσciσ

]

e−iqRj

= V
∑

λσ

∑

j

∑

{i}

{[

c†jλcjλ, c
†
iσ

]

︸ ︷︷ ︸

(A.4)
= δijδσλc

†
iσ

diσ + d†iσ

[

c†jλcjλ, ciσ

]

︸ ︷︷ ︸

(A.3)
= −δijδσλciσ

}

e−iqRj

+ V
∑

λσ

∑

{j}

∑

{i}

{

c†iσ

[

d†jλdjλ, diσ

]

︸ ︷︷ ︸

(A.3)
= −δijδσλdiσ

+
[

d†jλdjλ, d
†
iσ

]

︸ ︷︷ ︸

(A.4)
= δijδσλd

†
iσ

ciσ

}

e−iqRj

= 0 .

The only non-vanishing contribution stems from the conduction band part of the Hamil-
tonian (4.2). It is given by

[ρ(q),H0] = [ρc(q),H0]

=
∑

pk

∑

σλ

(εk − µ)
[
c†p−qσcpσ, c

†
kλckλ

]

︸ ︷︷ ︸

(A.1)
= c†p−qσckλδpkδσλ−c†

kλcpσδp−q,kδσλ

=
∑

kσ

(εk − εk−q)c
†
k−qσckσ .

In the first step, we have used that [ρd(q),H0] = 0 holds due to (A.2). This closes the
proof.
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A.2. Current operator for the multilayer model

In the following, we will prove relation (5.160), which is used during the derivation of
the current operator in the multilayer case. It reads

[
ρ(q‖, α),H

]
=

1

a

∑

k‖σ

(

εαk‖
− εαk‖−q‖

)

c†k‖−q‖ασ
ck‖ασ

+
1

a

∑

k‖σ

(

tαc
†
k‖−q‖ασ

ck‖α−1σ + tα+1c
†
k‖−q‖ασ

ck‖α+1σ

−tαc†k‖−q‖α−1σck‖ασ
− tα+1c

†
k‖−q‖α+1σck‖ασ

)

,

where the multilayer Hamiltonian is given by (4.6). We begin by considering the electron
density operator at the continuous space variable r = (r‖, r⊥). The connection to the con-
duction band and impurity electron density at discrete space position, ρc,iα =

∑

σ c
†
iασciασ

and ρd,iα =
∑

σ d
†
iασdiασ , is given by

ρ(r‖, r⊥) =
∑

iβ

δ(r⊥ − β)δ(r‖ −R‖i)ρc,iβ +
∑

{iβ}

δ(r⊥ − β)δ(r‖ −R‖i)ρd,iβ

= ρc(r) + ρd(r) ,

where we sum over the randomly distributed impurity sites in the second term. Since we
want to evaluate the electron density at a discrete perpendicular position α rather than
at the continuous one r⊥, we write

r⊥ → α

δ(r⊥ − β) → δαβ
a
.

With this, we obtain

ρc(r‖, α) =
1

N‖

∑

p‖

eip‖r‖

(
1

a

∑

q‖σ

c†q‖−p‖ασ
cq‖σ

︸ ︷︷ ︸

ρc(p‖,α)

)

(A.7)

for the conduction band electron density similar to (A.5), and

ρd(r‖, α) =
1

N‖

∑

p‖

eip‖r‖

(
1

a

∑

{iβ}σ

δαβe
−ip‖R‖id†iβσdiβσ

︸ ︷︷ ︸

ρd(p‖,α)

)

for the impurity electron density (cf. (A.6)). On the other hand, from (A.7) we can derive

ρc(p‖, α) =
1

a

∑

iσ

e−ip‖R‖ic†iαciα .
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A. Conductivity calculation

Now, we can calculate the commutator beginning with the mean-field Heisenberg lattice
contribution (5.78):

[ρ(q‖, α),Hcf ] =




∑

iσ

e−iq‖R‖ic†iασciασ , −Jcf
∑

β

〈Sβ〉
∑

jλλ′

c†jβλτ
z
λλ′cjβλ′





+




∑

{iβ}σ

δαβe
−iq‖R‖id†iασdiασ , −Jcf

∑

β

〈Sβ〉
∑

jλλ′

c†jβλτ
z
λλ′cjβλ′





(A.2)
= 0 .

In a similar fashion, it can be shown that the commutator with the electrostatic part of
the Hamiltonian (4.11) vanishes,

[ρ(q‖, α),Hφ] = 0 .

Analogously to the bulk case, the commutators of ρ(q‖, α) with the first and third part
of the impurity Hamiltonian (4.12) vanish due to (A.2) and we are left with

[ρ(q‖, α),Hcd] =
V

a

∑

λσ

∑

j

∑

{iβ}

[

c†jαλcjαλ, c
†
iβσdiβσ + d†iβσciβσ

]

e−iq‖R‖j

+
V

a

∑

λσ

∑

{jγ}

∑

{iβ}

[

d†jγλdjγλ, c
†
iβσdiβσ + d†iβσciβσ

]

δγαe
−iq‖R‖j

=
V

a

∑

λσ
j

∑

{iβ}

{[

c†jαλcjαλ, c
†
iβσ

]

︸ ︷︷ ︸

(A.4)
= δijδαβδσλc

†
iβσ

diβσ + d†iβσ

[

c†jαλcjαλ, ciβσ

]

︸ ︷︷ ︸

(A.3)
= −δijδαβδσλciβσ

}

e−iq‖R‖j

+
V

a

∑

λσ
{jγ}

∑

{iβ}

{

c†iβσ

[

d†jγλdjγλ, diβσ

]

︸ ︷︷ ︸

(A.3)
= −δijδβγδσλdiβσ

+
[

d†jγλdjγλ, d
†
iβσ

]

︸ ︷︷ ︸

(A.4)
= δijδβγδσλd

†
iβσ

ciβσ

}

δαγe
−iq‖R‖j

= 0 .

Finally, we consider the only non vanishing contributions, which stem from the par-
allel and perpendicular part of the conduction band Hamiltonian (4.8) and (4.9). The
contribution from the former reads

[ρ(q‖, α),H‖] = [ρc(q‖, α),H‖]

=
1

a

∑

p‖k‖

β

∑

σλ

(εβk‖
− µ)

[
c†p‖−q‖ασ

cp‖ασ
, c†k‖βλ

ck‖βλ

]

︸ ︷︷ ︸

(A.1)
= c†p‖−q‖ασck‖βλ

δp‖k‖
δαβδσλ−c†

k‖βλ
cp‖ασδp‖−q‖,k‖

δαβδσλ

=
1

a

∑

k‖σ

(εαk‖
− εαk‖−q‖

)c†k‖−q‖ασ
ck‖ασ

.
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A.3. Diagrammatic evaluation of the current-current correlation function

Before being able to calculate the perpendicular contribution, we need to Fourier trans-
form to momentum space,

H⊥ =
∑

αiσ

(

tαc
†
iασciα−1σ + tα+1c

†
iασciα+1σ

)

=
∑

k‖ασ

(

tαc
†
k‖ασ

ck‖α−1σ + tα+1c
†
k‖ασ

ck‖α+1σ

)

.

With this, the commutator reads

[ρ(q‖, α),H⊥] = [ρc(q‖, α),H⊥]

=
∑

k‖σ
p‖βλ

{
tβ
a

[

c†k‖−q‖ασ
ck‖ασ

, c†p‖βλ
cp‖β−1λ

]

︸ ︷︷ ︸

(A.1)
= c†

k‖−q‖ασ
c
p‖β−1λδk‖p‖

δαβδσλ

−c†
p‖βλck‖ασδk‖−q‖,p‖

δαβ−1δσλ

+
tβ+1

a

[

c†
k‖−q‖ασ

c
k‖ασ

, c†
p‖βλ

c
p‖β+1λ

]

︸ ︷︷ ︸

(A.1)
= c†

k‖−q‖ασ
c
p‖β+1λδk‖p‖

δαβδσλ

−c†
p‖βλ

c
k‖ασ

δk‖−q‖,p‖
δαβ+1δσλ

}

=
1

a

∑

k‖σ

{

tαc
†
k‖−q‖ασ

ck‖α−1σ − tα+1c
†
k‖−q‖α+1σck‖ασ

+tα+1c
†
k‖−q‖ασ

ck‖α+1σ − tαc
†
k‖−q‖α−1σck‖ασ

}

.

This proves the above relation.

A.3. Diagrammatic evaluation of the current-current

correlation function

In this part, we perform the evaluation of the Matsubara sum needed for the calculation
of the current-current correlation functions (5.145),(5.167) and (5.172). Denoting the
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upper and lower fermion lines by some placeholder quantum numbers a and b, we have

Πab(iωn) =

a, iωm

b, iωm + iωn

=
1

~β

∑

m

Ga(iωm)Gb(iωm + iωn)

= −
∮

C

dz

2πi
Ga(z)Gb(z + iωn)

= −
∫ ∞

−∞

dǫ

2πi
f(ǫ)

{
Ga(ǫ+ i0+)−Ga(ǫ− i0+)

}
Gb(ǫ+ iωn)

−
∫ ∞

−∞

dǫ

2πi
f(ǫ− iωn)
︸ ︷︷ ︸

f(ǫ)

Ga(ǫ− iωn)
{
Gb(ǫ+ i0+)−Gb(ǫ− i0+)

}

︸ ︷︷ ︸

2iImGR
b (ǫ)=−2πiAb(ǫ)

=

∫ ∞

−∞
dǫf(ǫ)

[
Aa(ǫ)Gb(ǫ+ iωn) +Ga(ǫ− iωn)Ab(ǫ)

]
(A.8)

Here, we used that ωn is a bosonic Matsubara frequency and we transformed the inte-
gration path in the second step according to figure A.1.

Rez

Imz

C

−iωn

0

Figure A.1.: Integration contour for the evaluation of the Matsubara sum in the pair
bubble diagram of the conductivity
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The imaginary part of the retarded current-current correlation function reads

ImΠR
ab(ω) = ImΠab(ω + i0+)

=

∫ ∞

−∞
dεf(ε)




Aa(ε) ImGb(ε+ ω + i0+)

︸ ︷︷ ︸

−πAb(ε+ω)

+ ImGa(ε− ω − i0+)
︸ ︷︷ ︸

πAa(ε−ω)

Ab(ε)






= π

∫

dεf(ε)Aa(ε− ω)Ab(ε) − π

∫

dεf(ε)Aa(ε)Ab(ε+ ω)

︸ ︷︷ ︸
∫

dεf(ε−ω)Aa(ε−ω)Ab(ε)

= π

∫

dε [f(ε)− f(ε− ω)]Aa(ε− ω)Ab(ε) . (A.9)
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B. Local scattering

We derive the contribution to the momentum dependent conduction electron self-energy
(5.1) in the case of a local and position independent self-energy in real space, i.e. Σσ(r, z) =
Σσ(z). The Dyson equation reads

Gcσ(r, r
′, z) =

z, σ

r r′

=
z, σ

r r′
+

z, σ z, σ

r

r′′
r′

= G0
cσ(r, r

′, z) +
∑

r′′

G0
cσ(r, r

′′, z)
︸ ︷︷ ︸

1
N

∑

k eik(r−r′′)G0
cσ(k,z)

Σσ(z) Gcσ(r
′′, r′, z)

︸ ︷︷ ︸
1
N

∑

p eip(r′′−r′)Gcσ(p,z)

= G0
cσ(r, r

′, z) +
1

N2

∑

kp

∑

r′′

eir
′′(p−k)

︸ ︷︷ ︸

Nδkp

eikre−ipr′G0
cσ(k, z)Σσ(z)Gcσ(p, z)

=
1

N

∑

k

eik(r−r′)
(
G0

cσ(k, z) +G0
cσ(k, z)Σσ(z)Gcσ(k, z)

︸ ︷︷ ︸

Gcσ(k,z)

)
. (B.1)

From this, one can conclude that the momentum dependent self-energy from (5.1) and
(5.2) is given by Σσ(k, z) = Σσ(z).

In the multilayer case, we consider a local self-energy in real space, which depends on
the perpendicular position but not on the parallel position, i.e. Σα

σ(r‖, z) = Σα
σ(z). The
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Dyson equation in this case reads

Gαβ
cσ (r‖, r

′
‖, z) =

z, σ

r‖, α r′‖, β

=
z, σ

r‖, α r′‖, β
+

z, σ z, σ

r‖, α
r′′‖, γ

r′‖, β

= Gαβ,0
cσ (r‖, r

′
‖, z) +

∑

r′′
‖
γ

Gαγ,0
cσ (r‖, r

′′
‖ , z)Σ

γ
σ(z)G

γβ
cσ (r

′′
‖ , r

′
‖, z)

︸ ︷︷ ︸

1
N‖

∑

p‖
e
ip‖(r

′′
‖
−r′

‖
)
Gγβ

cσ (p‖,z)

= Gαβ,0
cσ (r‖, r

′
‖, z) +

1

N2
‖

∑

k‖p‖

{
∑

r′′
‖

e
ir′′

‖
(p‖−k‖)

︸ ︷︷ ︸

N‖δk‖p‖

eik‖r‖e
−ip‖r

′
‖

·
∑

γ

Gαγ0cσ(k‖, z)Σ
γ
σ(z)G

γβ
cσ (p‖, z)

}

=
1

N‖

∑

k‖

e
ik‖(r‖−r′

‖
)(
Gαβ,0

cσ (k‖, z) +
∑

γ

Gαγ,0
cσ (k‖, z)Σ

γ
σ(z)G

γβ
cσ (k‖, z)

︸ ︷︷ ︸

Gαβ
cσ (k‖,z)

)
.

(B.2)

Therefore, the momentum dependent self-energy in (5.19) and (5.22) reads Σα
σ(k‖, z) =

Σα
σ(z).
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C. Mirror symmetric systems

In this section, we discuss the implications of mirror symmetry for the self-consistent
theory. First of all, we restrict ourselves to an odd number of monolayers N = 2Ñ − 1
and we introduce an alternative layer index α̃ whose origin is shifted with respect to the
symmetry plane (see figure C.1).

Figure C.1.: Nomenclature for mirror symmetric multilayer systems. The shown example
corresponds to Ñ = 3.

Due to mirror symmetry, the elements of the inverse Green’s function matrix (5.19)
obey the following relations:

dÑ+α = dÑ−α for α ∈ (0, . . . , Ñ − 1)

tÑ+α+1 = tÑ−α for α ∈ (0, . . . , Ñ − 2)
. (C.1)

For instance in the case of N = 5, it reads

Ĝ−1
cσ (k‖, z) =









d1 −t2
−t2 d2 −t3

−t3 d3 −t3
−t3 d2 −t2

−t2 d1









,

where the diagonal elements are given by

dα := z − εαk‖
+ µ− Σα

cσ(z) .

As a direct consequence of (C.1), the minors from section 5.1.2 fulfill

ΘN+1−α = Φα ,

for all α. With this, the elements of the Green’s function matrix (5.20) become

Gαβ
cσ (k‖, z) =

{

(−1)α+βtβ+1tβ+2 · · · tαΘβ−1ΘN−α

ΘN
for α > β

Θα−1ΘN−α

ΘN
for α = β

. (C.2)
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C. Mirror symmetric systems

It is obvious that by this procedure we can restrict ourselves to the calculation of the
conduction electron self-energy in the right hand layers, i.e. α ∈ (Ñ , . . . , N) or α̃ ∈
(0, . . . , Ñ−1). Since the calculations in the self-consistent theory with the greatest impact
on the computation time are of linear order, we can decrease the overall calculation time
by nearly a factor of two by exploiting the mirror symmetry.

In the following, we will discuss the consequences of mirror symmetry for the Heisen-
berg mean-field theory of section 5.3.2. It implies

〈S〉α̃ = 〈S〉−α̃ .

Therefore, we only need to calculate a system of Ñ layers with indices α̃ ∈ (0, Ñ − 1)
and adjust the boundary conditions. In the case of nearest neighbor coupling (5.85), the
boundary condition is given by an additional spin 〈S〉−1 at layer α̃ = −1 with

〈S〉−1 = 〈S〉1 .

In contrast to this, in the case of inverse cubic coupling of section 5.3.2 or the long range
RKKY interaction of section 5.3.3, the interlayer summation in the mean-field equation
(5.84) becomes

2
∑

β 6=α(α̃)

J
α(α̃)β
4f 〈Sβ̃(β)〉 .

Here, α̃ is restricted to the right hand side of the system α̃ ∈ (0, Ñ−1), but the summation
over β runs over all N layers. In addition, we utilize the mapping

α̃(α) =

{
α−N + 1 for α ≥ N − 1
N − 1− α for α < N − 1

and its inverse
α(α̃) = α̃+N − 1 .

Similar to the Heisenberg lattice, the Poisson equation needs to be solved only on the
right hand side of the system. The symmetry dictates

φα̃ = φ−α̃ .

Therefore, the boundary conditions for the electrostatic problem (5.114) become

φ−1 = φ1 and φN+1 = 0 .
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D. Kramers-Kronig-relations

In the self-consistent theory for electron doped Europium monoxide (chapter 5) as well
as for the NCA equations (chapter 3), we use the imaginary part of the Green’s function,
i.e. the spectral density. The real part is only calculated if needed. The corresponding
Kramers-Kronig relation for a retarded Green’s function GR(ω) = G(ω − i0+) reads [61]

ReGR(ω) = P
∫
dε

π

ImGR(ω)

ω − ε
.

A similar equation holds for the self-energies. In order to circumvent the numerical
evaluation of the principal value, we write

ReGR(ω) =

∫ ω+

ω−

dε

π

ImGR(ε) − ImGR(ω)

ω − ε
+ ImGR(ω)P

∫
dε

π

1

ω − ε
︸ ︷︷ ︸

− log
ω+−ω

−ω−+ω

,

where we have assumed that the Green’s function vanishes for ω < ω− and ω > ω+.
Numerically, these limits are defined by the upper and lower limit of the integration
grid. The analytical integral in the second term is calculated once at the beginning of
the numerical calculation and stored for later use. Since the integrand in the first term
vanishes for ε = ω, a special choice of the numerical integration weights is needed in order
to ensure the smoothness of the resulting function ReGR(ω). For a given integration grid
{εi}, with i = 1, . . . , N , ε1 = ω−, εN = ω+, and εj = ω, we choose

∆εi =







εi+1 − εi for i < j
0 for i = j
εi − εi−1 for i > j

as weights for the numerical integration. With this, the resulting real part of the Green’s
function at the grid position ωj reads

ReGR(ωj) =
1

π

∑

i

ImGR(εi)− ImGR(ωj)

ωj − εi
∆εi − log

ωN − ωj

−ω1 + ωj
.

Note that hereby each value of ωj corresponds to a different set of integration weights.
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E. Numerical integration of multiple

peaked functions

In this section we discuss the details of the numerical integration as it occurs in the
self-consistent theory for electron doped EuO (chapter 5) as well as in the solution of the
single impurity Anderson model with U → ∞ within the framework of the non-crossing
approximation (chapter 3). In both cases, one has to deal with the numerical integration
of functions which possess multiple peaks or features whose position may or may not
be known in advance. Moreover, the position of these peaks or features as well as the
peak heights and widths will change during the iterative solution of the self-consistent
equations. Therefore, one needs an integration grid which resolves all peaks and features
properly and is capable of handling crossing peak positions. This is provided by the
numerical integration grid library, called integrid, which was developed specifically for
this purpose [43]. The mathematical formulas used for the logarithmic and tangential
integration grid regions are based on the ones given in [42]. The details of the grid
creation procedure together with the usage instructions can be found in the integrid
user’s guide [43].

For the self-consistent theories, we use an equidistant integration base grid which may
be interrupted by multiple logarithmic grid regions. A logarithmic grid region consists
of three grid regions: one below (I), one around (II) and one above (III) the center point
ωk, which is the point with the highest grid point density (see figure E.1). Region I and

Figure E.1.: Logarithmic grid region.

III are exponential and region II is linear. The half width of the linear region ω0 also
controls the ’sharpness’ of the exponential grid regions. The number of grid points in
region I and III is Nl and Nr + 1, respectively. Both numbers will also influence the
’sharpness’ of the exponential grid regions. The resolution of the linear grid region dωk

equals the maximal resolution in the exponential grid regions and determines the number
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E. Numerical integration of multiple peaked functions

of grid points in region II, Nk (see [43]). The logarithmic grid region is defined as

ω(i) =







− exp(−c1(i− i1)) + ωk i ∈ {0, . . . , Nl − 1}
ωk − ω0 + dωk(i−Nl − 1) i ∈ {Nl, . . . , Nl +Nk − 1}
exp(c2(i− i2 −Nl −Nk)) + ωk i ∈ {Nl +Nk, . . . , Nl +Nk +Nr}

, (E.1)

where the four boundary conditions

ω(0) = ωmin ω(Nl − 1) = ωk − ω0

ω(Nl +Nk) = ωk + ω0 ω(Nl +Nk +Nr) = ωmax (E.2)

determine the four parameters i1, i2, c1 and c2 (see [43]). It turns out to be more
convenient to use the maximal resolution dωmin at ωk and the minimal resolution at the
boundaries dωmax instead of Nl, Nr and ω0. The corresponding relations reads

ω0 =
ω1dωmin

dωmax

Nl = Nr = log

(
ω1

ω0

)
ω1

dωmax
,

where we have symmetrized the logarithmic grid region by setting ωk = (ωmax+ωmin)/2
and introduced the half width ω1 = (ωmax − ωmin)/2. In order to ensure a smooth
behavior as two logarithmic grid regions intersect each other, we fix ω1 = 0.1D0 and
dωmax = 0.01D0. For the sufficient resolution of a Lorentz-like peak of width Γ, we use
dωmin = Γ/Np, where Np is a number between 20 and 100 depending on the desired
quality of the peak resolution. The peak width and position in the imaginary part of a
Green’s function with a simple pole can be estimated by the self-energy. Nevertheless,
it turns out to be necessary to track the peaks position and width during the iteration
procedure and adjust the grid if necessary. This is done in the following way. The peak
position ω̃k is found simply as the maximum point of the function. Beginning from the
peak position one proceeds to the left and to the right and scans the function values for
a threshold of 10% of the peak height. This defines the width Γ. If the cluster point of
the current grid region ωk differs from the current peak position ω̃k by more than 0.1Γ,
the whole integration grid is recreated with the updated logarithmic grid region at ω̃k.
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