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Chapter 1

Introduction

Figure 1.1: Pressure-induced evolution of
a liquid interface, taken from [24].

The motion of a fluid undergoing environmental influences is

something we experience in many real life situations. Com-

mon examples include condensing water on the bathroom mir-

ror after taking a hot shower, rain patterns forming on win-

dow panes as well as sweating while doing a workout. It is an

ongoing challenge to translate the observed phenomena into

models that use mathematical concepts and language allowing

for precise treatment of the problem. In this dissertation we

discuss the model problem of a purely surface tension driven

evolution of a thin film.

Thin films of liquid appear in a variety of physical applications

in which a thin layer of fluid is deposited onto a bulk material

(substrate) in order to improve the substrate’s properties. This process is ubiquitous in the manufacture of

optics, where thin films are used to create optical surface modifications such as reflective and anti-reflective

coatings. Further applications may also be found in other branches of physical science, prominent examples

being heat sinks and cooling systems, corrosion and oxidation protection, adhesion, gas/liquid sensors and

diffusion barriers which can only be manufactured using special chemical properties of various liquids.

All of these examples can be described by the interaction between the fluid, the surrounding vapor and the

adjacent solid materials. A prevailing trend in modern material science is to make use of the possibility

to control these interactions and, accordingly, it may come as no surprise that specific surface properties

gain increasing importance to physicists, engineers and chemists.

1.1 On Degenerate Diffusion

Working within a certain physical regime, we will derive (see section 1.2 below) the following governing

equation from the Navier-Stokes equations:

η ∂sh + γ∇y ·
((1

3
h3 + b 3−m hm

)
∇y∆y h

)
= 0 , (LE)

the so-called lubrication equation. Here, s represents time, y is the n-dimensional space variable and

h = h(s, y) models the thickness of a liquid film on a plain substrate. The constants η and γ stand for the

viscosity and for surface tension, respectively. At the liquid-solid interface we obtain various slip conditions

depending on the slip length b ≥ 0 and the parameter m ranging over all numbers in the interval (0, 3).

The case b = 0 entails a no-slip condition. Equations of this type can be seen as describing the dynamics

of a liquid film that spreads along a solid surface, a phenomenon we refer to as diffusion.

1



2 CHAPTER 1. INTRODUCTION

Diffusion equations are partial differential equations that often serve as the basis for an introduction to the

area of (nonlinear) PDEs. The heat equation ∂sh = ∆yh is certainly the most important representative in

the classical linear theory. It describes the temperature distribution in a given medium as time progresses.

Before moving on to fourth order problems, it is instructive to take a look at second-order degenerate

diffusion equations first. Here a class of equations that has recently come to be fairly well understood goes

by the name porous medium equation and takes the form

∂sh = ∇y ·
(
hm∇y h

)
in (0,∞)× R

n , (PME)

where m > 0.

There are a number of striking features known about this equation including the following:

1. In regions where h is strictly positive and hence the evolution is uniformly parabolic a solution

becomes instantaneously smooth,

2. there exists a comparison principle for (PME),

3. compactly supported initial data generate solutions that are compactly supported for any fixed time

(finite speed of propagation), in particular, there exists a moving interface, and

4. the Cauchy problem has a unique solution for a wide range of initial data including L1(Rn).

Now we consider the fourth order analogue of (PME),

∂sh + ∇y ·
(
hm∇y∆y h

)
= 0 . (TFE)

In the context of thin films, one can derive this equation from the lubrication equation (LE) as follows.

We may suppose that the film thickness h is small or even h ≪ b. Then the second term in the mobility,

that is b 3−m hm, is the dominant one such that we choose to neglect the term h3. In order to pass to

a parameter-free form of the fourth order diffusion equation, we non-dimensionalize horizontal length y,

vertical length h and time s in such a way that η = 1 and γ b 3−m = 1, although now one is constrained to

measure the vertical length h in terms of the slip length b > 0.

Assuming h models the height of the liquid film, the wetted region at time s is given by the positivity set

Ps(h) = {y ∈ Rn | h(s, y) > 0}. The equation (TFE) is parabolic in this region, while the parabolicity

degenerates at points at which h vanishes. From now on we will refer to (TFE) simply as thin-film equation.

First, note that both equations (PME) and (TFE) can be written in the form of the conservation law

∂sh + ∇y · q(h) = 0 , (1.1.1)

where by q(h) we denote the vector-valued flux of either an ideal gas in a porous medium or a thin layer

of fluid on a flat surface. In the absence of flows across the boundary of the support of h, that is

q(h)
∣∣
∂{h>0} · ~ν = 0 (1.1.2)

with ~ν being the outer normal to ∂{h > 0}, we expect conservation of mass:

∫

Rn

h(s, y) dy ≡ const ∀ s

Moreover, we assume

h
∣∣
∂{h>0} = 0 . (1.1.3)

Thus, with q(h) = hm∇y∆y h, we implicitly deal with a free boundary problem for a fourth-oder equation.

Note that solutions to the initial-boundary-value-problem (1.1.1)–(1.1.3) are not necessarily unique, for a
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counterexample see [16]. Accordingly, we need to impose an additional boundary condition at the moving

contact line. Typically, one prescribes either a zero contact angle (complete wetting) or a fixed positive

contact angle θe (partial wetting). In case of both complete wetting and partial wetting there exists quite

a large variety of literature offering a substantial body of work on existence and qualitative properties of

weak solutions of (TFE). We will discuss some of the results in the section after next.

liquid

a) complete wetting

solid

vapor

y

h

liquid

b) partial wetting

solid

vapor

θe
y

h

Figure 1.2: Wetting regimes

Now the question arises which of the above properties (1)–(4) still hold true in the context of the fourth

order equation (TFE). While the fact that both equations are diffusive guarantees that property (1) is

preserved, a remarkable difference between (PME) and (TFE) is the lack of a comparison (or maximum)

principle for the fourth order equation. In order to see this we consider the non-degenerate case of m = 0

and observe that the fourth order heat kernel has an oscillating tail that changes sign, [7].

At the current state of research it is not entirely clear how to answer the remaining questions (3)–(4). In

this thesis we address some of the issues related to these properties:

• What can be said about the regularity of the moving contact line?

• Which assumptions on the initial data guarantee uniqueness of solutions to the Cauchy problem?

1.2 From Navier-Stokes to Lubrication

The terminology “thin film” originates from the fact that the evolving wetted region is thin and only

slightly sloping. The lubrication approximation uses this separation of vertical and horizontal length scales

to reduce the complexity of the Navier-Stokes equations that describe the motion of liquid substances.

Now, consider a viscous thin film that moves slowly on a horizontal substrate. The film is bounded above

by a boundary layer between the liquid and the encompassing vapor or vacuum. We examine the n-

dimensional case, not only the physically relevant cases n = 2, 3, and aim for an equation for the film

thickness h = h(s, y). The complete fluid is described by the set

Fs :=
{
(y, z) ∈ R

n+1 | y ∈ Ω ∧ 0 < z < h(s, y)
}

for some Ω ∈ Rn, and the free boundary by

Σh :=
{
(y, z) ∈ Rn+1 | y ∈ Ω ∧ z = h(s, y)

}
.

We may assume that the ratio between the average horizontal length Y and the typical vertical length Z

is small:

ε =
Z

Y
≪ 1 .

It remains to find an appropriate time scale S for the evolution and, in the limit ε → 0, equation (LE)
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appears from the Navier-Stokes equations. The (n+ 1)-dimensional Navier-Stokes equations are

∂s

(
v

w

)
+

(
v

w

)
·∇
(
v

w

)
= −∇p + η∆

(
v

w

)
, (1.2.1)

where v ∈ Rn is the flow velocity in the plane, w the velocity of the fluid in vertical direction and p stands

for the pressure. We further suppose that the fluid is incompressible, so it satisfies the condition

∇y · v + ∂zw = 0 . (1.2.2)

In the model case we only take the highest order derivatives into account meaning that we can ignore the

inertia terms, that is the left hand side of the Navier-Stokes equations (1.2.1). Moreover, we assume that

the pressure is constant in the direction perpendicular to the substrate and that its variation in horizontal

direction compensates for the viscosity stress η ∂2
zv. Altogether, this turns (1.2.1) into

0 = −∇yp + η ∂2
zv . (1.2.3)

Denoting the external pressure by pe we have pe − p ∼ γ κ (Laplace’s law), see [21, pp. 6–7], where κ is

the mean curvature of the liquid-vapor interface. In the lubrication regime, the pressure becomes

p = pe − γ∆y h .

Assuming that pe is constant, (1.2.3) reads as

η ∂2
zv = −γ∇y∆y h . (1.2.4)

As this is a system of second-order PDEs, it requires to impose two conditions on the boundary. We choose

v = k(h) ∂zv if z = 0 , (1.2.5)

and

∂zv = 0 if z = h . (1.2.6)

Here, the first condition represents a weighted slip condition near the liquid-solid interface. It demands

that the velocity in the horizontal directions behaves proportionally to its vertical derivative. In case of the

classical Navier slip condition the proportionality factor is equal to the slip length b ≥ 0, while otherwise

the velocity depends on the film thickness h.

On the other hand, the second assumption (1.2.6) appears far more natural to us. It states that the shear

stress generated by the normal derivative of the tangential velocity field ∂zv is continuous near the liquid-

vapor interface. The physical interpretation of this condition is that there are no cross currents vertical to

the fluid’s flow direction v, that is, we have a so-called laminar flow.

Integrating (1.2.4) component-wise over z ∈ (0, h) and using (1.2.5)–(1.2.6) yields the horizontal profile of

v,

v =
γ

η

(
h z − 1

2
z2 + h k(h)

)
∇y∆y h . (1.2.7)

Since the liquid and the solid are in contact, a condition of no penetration must be specified for the contact

zone. We assume that the vertical velocity w is equal to 0 if z = 0. A kinematic relation for v can then be

obtained by integrating the incompressibility property (1.2.2) along z ∈ (0, h). We arrive at

∂sh + ∇y ·
(∫ h

0

v dz
)

= 0 . (1.2.8)
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Plugging (1.2.7) in (1.2.8) we get

∂sh +
γ

η
∇y ·
((1

3
h3 + h2 k(h)

)
∇y∆y h

)
= 0 .

In particular, for k(h) := b3−m hm−2, this yields equation (LE).

Remark: The purpose of this heuristic derivation is to model the evolution of a thin film that is only driven

by surface tension and viscosity. Other external effects such as molecular (Van der Waals) interaction,

gravity, shear forces and rotational forces are neglected. In the thin-film regime, this approach is commonly

refered to as lubrication approximation. The details appeared in [68].

1.3 Related Previous Works and Open Problems

The underlying problem (LE) or rather (TFE) is to be understood as a subclass of the more general

equation

η ∂sh + ∇y ·
(
φb(h)~τ

)
+ γ∇y ·

((1
3
h3 + b 3−m hm

)
∇y∆y h

)
= Q(h) , (1.3.1)

where ~τ denotes the shear stress that might occur at the liquid-vapor interface, and φb(h) is to model the

convection that affects the propagation of the fluid. Finally, Q(h) is a source term that models effects

of vaporization or condensation. For a derivation of (1.3.1) we refer the reader to [68] and the references

therein. A good review appeared in [7].

In the existing literature, one can typically find only parts of the parameters in this equation considered.

For example, let us take again equation (1.3.1) with vanishing surface tension γ and constant shear stress

~τ . Under the classical Navier slip condition (m = 2) we then have φb(h) =
1
2
h2 + bh such that the second

term reads as (h + b)~τ ·∇yh. Hence, equation (1.3.1) turns into a nonlinear wave equation of first order

whose solutions describe waves that propagate in direction of the “wind stress” ~τ ; and as there is no surface

tension present, their amplitude increases with the elapse of time. See [63, 72] for more details. But rather

than considering (1.3.1), we will completely neglect both intermolecular (φb) and external forces (~τ and

Q), and restrict ourselves to the model problem (LE) or, as a matter of fact, to (TFE).

The mathematical analysis of the Cauchy problem for (TFE) on some domain (0, T ) × Ω in the case of

complete wetting started with the paper [5] by Bernis and Friedman. In one space dimension they succeed

to prove existence and positivity of weak solutions for (LE) for all values m ≥ 1. Aside from conservation

of mass, their findings are essentially built upon the so-called energy identity given by

∂s

∫ T

0

‖∇h(s)‖2L2(Ω) ds = −
∫ T

0

‖um
2 ∇∆h(s)‖2L2(Ω) ds ,

and nonlinear integral estimates, called entropy estimates, which they derive from an identity of the form

c(m) ∂s

∫ T

0

∫

Ω

u(s, y)2−m dy ds =

∫ T

0

‖∆u(s)‖2L2(Ω) . (1.3.2)

Integral estimates from a local version of this entropy identity in space dimensions n = 2, 3 are derived in

[9]. In this paper, the authors basically follow the ideas presented in [16], where a global version of (1.3.2)

for arbitrary n is attained. In both papers these results are used to show existence of weak solutions in the

parameter regime m ∈ ( 1
8
, 3). However, they fail to prove that solutions have a finite speed of propagation

for m ≥ 2. In [38] one can find a different approach in which an interpolation inequality helps to generalize

the energy inequality in such a way that the Cauchy problem for compactly supported nonnegative initial

data can be solved for m ∈ [2, 3). Moreover, the new energy estimate is the key to proving other results
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on the qualitative behavior of weak solutions in that regime such as finite speed of propagation. But even

though there has been tremendous progress in the study of equations of the form of (LE) during recent

years, uniqueness of weak solutions still remains an open problem.

The regime of partial wetting has been studied by Bertsch, Giacomelli and Karali [10]. They reach for a

similar existence result by slightly modifying the notion of solution: When the system of liquid, solid and

vapor comes to rest, the three interfacial energies balance and an equilibrium contact angle θe appears.

This angle is determined by the well known Young’s law (for a full explanation see [61]),

cos θe =
γsv − γls
γlv

.

Here γlv is the surface energy/tension between the liquid and the vapor, γls and γsv are the energies

solid

θe

γlv

γls

liquidvapor

γsv

Figure 1.3: Young’s diagram

at the liquid-solid interface and the solid-vapor interface, respec-

tively. These three energies tend to concentrate at the triple junc-

tion where liquid, solid and vapor meet, which in turn justifies to fix

the dynamic contact angle to be equal to the equilibrium contact

angle θe. In the lubrication regime, this leads to an energy func-

tional Eθe(h) and then to a notion of a weak solution of (LE). It is

possible to show existence if such a solution satisfies the dissipation

(or entropy) inequality

∂s

∫
Eθe

(
h(s)

)
ds ≤ −

∫
‖
√
h3 + hm ∇∆h(s)‖2L2(Ω) ds .

The theory for classical solutions is restricted to the 1-dimensional case so far. This problem is addressed

in [37, 49], where the authors pursue the problem of obtaining unique solutions to (TFE) of maximal

regularity, exclusively for m = 1 (flow in the Hele-Shaw cell). Well-posedness under the classical Navier

slip condition in the case of partial wetting is discussed in [48]. As the qualitative behavior of solutions is

strongly dependent on the mobility parameter m ∈ (0, 3), it might be interesting as well to consider other

values of m. We expect the results to be the same, but well-posedness in the context of classical solutions

has not yet been proven.

Special solutions play an important role in the study of parabolic equations of the type (1.1.1), including

both (PME) and (TFE). A prominent example of such solutions are source type solutions. These are

explicit nonnegative solutions that converge to a multiple of the delta function as time approaches initial

time 0 and exhibit a self-similar behavior while conserving their mass. In [4] the authors investigate such

solutions of (TFE) in dimension n ≥ 2. They use Green functions and a regularization to show that, for

all values of m ∈ (0, 3), there exists a unique nonnegative solution h ∈ C∞ at y = 0.1 More precisely,

by making the ansatz that h(s, y) is of the form s−nαu
(
|y|/sα

)
the source solution appears as the unique

solution of a third order ODE for u(r). There is no explicit formula for this solution known for other values

of m than 1.2 However, its asymptotic behavior at the interface can be established in terms of the mobility

parameter m. Indeed, if a > 0 is the number for which u(r) > 0 on (−a, a) and 0 elsewhere, then there

exists a positive constant c such that

u(r) ∼ c (a− r)β as r → a−

with β = 2 for 0 < m < 3
2
and β = 3

m
for 3

2
< m < 3. Thus the source solution exhibits an interface at

r = r(s) = a sα, where α = 1
4+mn

, which also implies a finite speed of propagation. The 1-dimensional

case is treated in [6, 44]. There also exist traveling wave solutions of the form h(s, y) = H(y − vs) with

1They also proved that such solutions cease to exist for m ≥ 3.
2In dimension n = 1 the explicit formula has been found by Hill and Smyth [42].
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constant velocity v (see e.g. [11]). For 3
2
< m < 3, these have the simple form

h(s, y) =




c (y − vs)

3
m y > vs

0 otherwise ,
v =

( 3

m
− 2
)( 3

m
− 1
) 3

m
cm .

Finally, we note that there are also stationary solutions

h(s, y) = hst(y) =




c1 − c2 |y|2 |y| < c1√

c2

0 otherwise

for all values of m.

1.4 Organization and Results of the Thesis

In chapter 2 we deal with weighted Sobolev spaces, which will be denoted by W k,p(Ω, ω), where k is a

nonnegative integer, p ≥ 1 is a real number, Ω ⊆ Rn is an open set, and ω is a nonnegative (continuous)

weight function defined on Ω. We say that the weight degenerates at the boundary ∂Ω if ω(x) → 0 for

x→ x0 ∈ ∂Ω.

Using the notation

〈u, v〉L2(Ω,ω) =

∫

Ω

u(x) v(x)ω(x) dx ,

the spaceW k,2(Ω, ω) consists of all real-valued functions u whose distributional derivatives of orders |α| ≤ k

satisfy

‖∂αu‖2L2(Ω,ω) = 〈∂αu, ∂αu〉L2(Ω,ω) < ∞ .

Weighted Sobolev spaces provide a wide range of applications in the theory of partial differential equations.

We illustrate their usefulness by a simple example. Let us consider the elliptic linear equation

Lu = −∇·(ω∇u) = f on Ω , (1.4.1)

and let us examine the homogeneous Dirichlet problem for this equation, that is, we impose the boundary

condition

u
∣∣
∂Ω

= 0 .

Testing the equation with u and applying integration by parts, we obtain the so-called energy identity

‖∇u‖2L2(Ω,ω) = 〈f, u〉L2(Ω) =

∫

Ω

f(x)u(x) dx ,

which is associated with the elliptic boundary value problem for the equation Lu = f . It is this identity

which often serves as a starting point of the theory of weak (variational) solutions. Therefore, the weighted

spaces provide an opportunity to investigate equations of the above kind by functional-analytical methods.

In chapter 3 we consider the Cauchy problem for the thin-film equation (TFE). We search for solutions

with prescribed |∇yh| at the free contact line. Much in the spirit of [51], we transform and linearize both

the equation and the geometry resulting in a linear equation for a perturbation u of a stationary solution.

More precisely, fixing a point (s0, y0) in spt h we assume that ∂ynh(s0, y0) > 0. Then we can solve the

equation z = h(s, y) locally with respect to yn giving rise to a function

yn = v(s, y′, z) .

We suppose that h(0) ∼ 1
4
(yn)

2
+ and set h̃ =

√
h, where we consider h as a solution of (TFE). The equation
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then reads

∂sh̃
2 + ∇·

(
h̃2m∇∆h̃2) = 0 .

Now we set

(s, y) 7→
(
s, y′, h̃(s, y)

)
=: (t, x)

interchanging the roles of the independent variable yn and the dependent variable h̃. This leads to an

equation for the now dependent variable v = v(t, x). At the same time, the stationary solution h̃st(y) =
1
2
(yn)+, defined on its positivity set P (h̃st) = P0(h̃st), is transformed into vst(x) = 1

2
xn on a subset of

the fixed domain H = {xn > 0}. We assume that any solution v is a small perturbation of vst by u. This

implies that v = vst + u solves the transformed equation if and only if u satisfies the equation

xn ∂tu + ∇·
(
x 2m+1
n ∇∆u

)
+ 3 x 2m

n ∂xn∆u + 2mx 2m−1
n

(
∆u+ 2 ∂2

xnu
)
= xn f [u] .

All the nonlinear terms are collected in the inhomogeneity f [u] - its precise form will be discussed in section

3.3. For simplicity we only consider the model which undergoes a “linear slip” (m = 1) and the equation

simplifies to

xn (∂t + L0)u = xn f [u] (1.4.2)

with linear spatial part

xn L0u := ∆
(
x 3
n ∆u

)
− 4xn∆

′u .

The spatial part of the linear operator induces a Riemannian metric on the fixed domain H , giving us the

ability to measure the length of curves. The geodesics can be computed. Extended to the boundary ∂H ,

this gives rise to an intrinsic metric (Carnot-Caratheodory metric), denoted by d, on the closed half space

H. The natural measure is µσ := xn
σ dx for σ > −1. It satisfies a doubling condition with respect to d,

i.e. for each intrinsic ball BR(x) there exist constants c, b ≥ 1 such that

0 < µσ
(
BcR(x)

)
≤ b µσ

(
BR(x)

)
< ∞ .

Hence the metric measure spaces
(
H, d, µσ

)
and, taking into account time,

(
R×H, d(t),L × µσ

)
, where

d(t)
(
(t, x), (s, y)

)
= 4
√

|t− s|+ d(x, y)4 ,

define spaces of homogeneous type. In this setting we search for local, in particular pointwise estimates

for solutions of the linear equation and from this we can derive a Gaussian estimate for a general solution,

called Green function, and its derivatives in terms of the intrinsic metric.

Chapter 4 is dedicated to the analysis of the linear equation xn(∂t + L0)u = xnf and addresses issues

regarding existence and uniqueness of weak solutions for this problem. To formulate a definition of a weak

solution, we follow the example (1.4.1) and multiply the equation by a suitable test function ϕ ∈ C∞
c (Ω),

Ω ⊂ H relatively open, integrate the result over Ω and then integrate by parts to get

〈
∂tu(t), ϕ

〉
L2(Ω,xn)

+ a
(
u(t), ϕ

)
=
〈
f(t), ϕ

〉
L2(Ω,xn)

for any 0 ≤ t ≤ T , where

a
(
u(t), ϕ

)
=

∫

Ω

∆u(t)∆ϕx 3
n dx + 4

∫

Ω

∇′u(t) · ∇′ϕxn dx

is the bilinear form associated with xn L0. In order to achieve meaningful use of these expressions, there are

two points about it that deserve further comment. First, all the derivatives are to be understood as regular

distributional derivatives. Second, as our particular interest is the behavior of u towards the boundary of

H , we need to adjust the test function space in such a way as to allow values on ∂H .
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A solution is constructed by a Galerkin approximation. The basic idea of such an existence proof is to

approximate u : [0, T ] → X (here X is a weighted Hilbert space) by functions uN ∈ C
(
[0, T ];VN

)
which

take values in finite dimensional spaces VN . To obtain the functions uN , we project the PDE onto VN .

The problem reduces to an ODE which can be solved by standard ODE theory. Each of the uN satisfies an

a priori estimate for solutions of the PDE, the so-called energy estimate, and so we can pass to the limit

N → ∞ to obtain a general solution. Uniqueness of weak solutions of the Cauchy problem is now a direct

consequence of the continuity in time. Moreover, other energy estimates follow from an integration of the

linear equation by using different test functions.

In the final section of chapter 4 we establish a variety of local results culminating in the pointwise estimate

∣∣u(t, x)
∣∣ . µ1

(
B4√t (x)

)− 1
2 e cncL

4t−Ψ(x) ‖eΨ u(0)‖L2(H,µ1)
.

Here, Ψ is a Lipschitz function with Lipschitz constant cL. Optimizing the estimate with respect to Ψ

and using duality, now leads to one of our main results, the following Gaussian estimate: Let the kernel

distribution G(t, x, s, y) represent the Green function for the Cauchy problem on [0, T ]×H , that is,

u(t, x) =

∫

H

G(t, x, 0, y) g(y)dy

satisfies xn(∂t + L0)u = 0 on [0, T ]×H subject to u(0) = g. Then there exists a constant c(n) > 0 such

that
∣∣∂lt∂αx G(t, x, s, y)

∣∣ ≤ c(n, l, α)
δl,α
(

4
√
t− s, x

)

µ1

(
B4√t−s (x)

) yn e
−c−1

n

(
d(x,y)4

t−s

) 1
3

(1.4.3)

for any 0 ≤ s < t, where δl,α(R, x) = R−4l−|α| (R +
√
xn )

−|α| denotes the derivative coefficient. The

approach to (1.4.3) follows an idea of Fabes and Stroock [28], but now for a degenerate parabolic problem

instead of the non-degenerate case with measurable coefficients. A full proof is provided in chapter 5. In

the further course of this chapter, we discuss several useful consequences of the Gaussian estimate. For

example, it can be used to show that the maps with kernel

y−1
n ∂tG(t, x, s, y) , y−1

n D2
xG(t, x, s, y) , y−1

n xnD
3
xG(t, x, s, y) and y−1

n x 2
n D

4
xG(t, x, s, y) ,

respectively, define singular integral operators from L2(xn) into L
2(xn). Due to Calderón-Zygmund theory

(see appendix A), the operator is then also bounded on all Lp(xn), p ∈ (1,∞). Now, the theory of

Muckenhoupt weights provides us with a tool to dispense with the weight. We get boundedness of the

operators on unweighted Lp-spaces, that is, the inequality

‖∂tu‖Lp + ‖D2
x u‖Lp + ‖xnD3

x u‖Lp + ‖x 2
n D

4
x u‖Lp . ‖f‖Lp (1.4.4)

holds for all p ∈ (1,∞) provided u solves the inhomogeneous equation with vanishing Cauchy data.

Now consider the equation (1.4.2) with nonlinearity f [u] and initial data in an appropriate space: We

assume that the initial data has finite Lipschitz norm ‖g‖Ċ 0,1(H) = ‖∇g‖L∞(H). As a byproduct of the

linear theory, we can also produce a local estimate of the form

‖∇u(t)‖L∞(H) +
∣∣QR(x)

∣∣− 1
p R 4l+|α|−1

(
R +

√
xn
)|α|−2j−1 ‖x jn ∂lt∂αx u‖Lp(QR(x)) . ‖g‖Ċ 0,1(H) .

In view of inequality (1.4.4), this suggests to take
(
j, l, |α|

)
∈
{
(0, 1, 0), (0, 0, 2), (1, 0, 3), (2, 0, 4)

}
and to

introduce a new norm, denoted by Xp, based on time-space cylinders QR(x) :=
(
R4

2
, R4

]
× BR(x) which
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are bounded away from initial time 0. Defining the Yp norm as the set of all functions f for which

sup
R4∈(0,T )

sup
x∈H

∣∣QR(x)
∣∣− 1

p R3 (R+
√
xn
)−1 ‖f‖Lp(QR(x)) < ∞ ,

we prove as intermediate step

‖u‖Xp . ‖f [u]‖Yp .

Consequently,

‖u‖Xp . ‖f [u]‖Yp + ‖g‖Ċ 0,1(H)

by Duhamel’s principle. The next step is to apply a contraction mapping argument. In order to do so, one

needs to impose additional requirements concerning the nonlinearity f [u], the maximal time of existence

T or the initial data g, at least one of which needs to be small. However, if ‖u‖Xp is small enough, then

‖f [u]‖Yp . ‖u‖2Xp
,

and a similar estimate holds for the difference f [u1] − f [u2] provided ‖u1‖Xp and ‖u2‖Xp are sufficiently

small. We conclude that there exist ε, c > 0 such that for every g ∈ Ċ 0,1(H) satisfying ‖g‖Ċ 0,1(H) < ε

there exists a solution u∗ ∈ Xp of the perturbation equation (1.4.2). Moreover, this solution is unique in

the ball BXcε =
{
u ∈ Xp | ‖u‖Xp ≤ c ε

}
. This implies large time stability of solutions v that are initially

close to the stationary solution vst = xn.

This approach originates in work by Koch and Tataru [55] and was subsequently developed further by

Koch and Lamm in their 2012 paper [54] on geometric flows with rough initial data. In the spirit of these

works we reach global existence and uniqueness for the perturbation of the stationary solution, a possibly

optimal result in terms of the regularity of the initial data. Moreover, we use an idea of Koch and Lamm

[54] to obtain analyticity of solutions in time and all tangential directions up to the boundary of its support.

Analyticity in vertical direction, i.e. the xn-direction, is still an open problem.

In a last step, we can use the unique solution u∗, or rather v∗ = vst + u∗, to generate a solution h of the

thin-film equation on its positivity set P (h) =
{
(s, y) ∈ (0, T )× Rn | h(s, y) > 0

}
. For this h, the identity

∫

I

∫

Rn

h ∂sϕ + h∇∆h ·∇ϕdyds = 0 (1.4.5)

holds for all ϕ ∈ C∞
c ((0, T )×Rn), that is, it is a weak solution of (TFE). In fact, the solution obtained in

this manner is unique and we have that

[
√
h ]X1

p
= sup

s∈(0,T )
y∈Ps(h)

∣∣Q4√s (y)
∣∣− 1

p
∑

(j,l,α)∈CZ

4
√
s
4l+|α|−1 ( 4

√
s+ 4

√
h0(y)

)|α|−2j−1 ‖
√
h
j
∂ls∂

α
y

√
h‖Lp(Q4√s

(y))

is finite, where (j, l, α) ∈ CZ means that j, l and |α| are admissible in the above sense.

Main Result: (See theorem 5.2.15.) Suppose T > 0 and ε > 0 small. Given an initial datum h(0) = h0

with ∣∣∇y
√
h0(y)− en

∣∣ < ε ,

there exist a constant c > 0 and a unique weak solution h∗ ∈ C((0, T ) × Rn) of (TFE) with initial value

h0,

‖∇y
√
h∗ − en‖L∞(P (h)) +

[√
h∗
]
X1

p
≤ c ε ,

and h∗ satisfies the equation (1.4.5). Moreover, the level sets of h∗ are analytic.



Chapter 2

Weighted Sobolev Spaces

Here we introduce the ideas of weighted Sobolev spaces and establish the basic notation and terminology

that is needed in the chapters to come. One of the central theorems will be the approximation theorem at

the end of section 2.5. It will enable us to extend several embedding results to weighted function spaces.

Such embeddings will occupy the remainder of this chapter.

2.1 The Half Space and Topology

First of all we fix an integer n ≥ 1. By Rn we denote the n-dimensional real Euclidean space equipped

with the usual topology. A typical element in Rn is the point x = (x1, . . . , xn) and sometimes we write

x = (x′, xn) for x
′ ∈ Rn−1. The (open) upper half space H is then the upper part into which the hyperplane

{x ∈ Rn | xn = 0} divides Rn, i.e.

H = {xn > 0} := {x ∈ R
n | xn > 0} .

In particular, H denotes the closed upper half space {xn ≥ 0}. Their boundary is given by the hyperplane

∂H = ∂H = {xn = 0}. Note that the set H as a subset of Rn is closed with respect to the Euclidean

topology, whereas taken as a subspace by itself it defines a new topological space equipped with the induced

topology. For example, by saying M is open as a subset of H, we mean M is relatively open in H but not

necessarily open in Rn. In particular, the (relatively) open subsets of H can have a nonempty intersection

with ∂H .

Now suppose X is some vector space provided with a metric d : X ×X → [0,∞). The open set

BR(x) = BR(x;d) :=
{
y ∈ X

∣∣ d(x, y) < R
}

is called the d-ball with radius R > 0 and center x ∈ X. If X ⊆ Rn and deu(x, y) = |x− y|, then we write

BeuR (x) := BR(x; deu) to mean the Euclidean ball of radius R and center at x. Moreover, let CR(x) be the

cube of edge length R centered at x whose edges are parallel to the coordinate axes, that is

CR(x) =
{
y ∈ R

n | max
i=1,...,n

|xi − yi| < R
}
.

We note further that we have the following inclusion relation between the cube and the Euclidean ball:

C R√
n
(x) ⊂ B eu

R (x) ⊂ CR(x) .

Throughout x represents space, while t always denotes time. A time interval I is determined by its

11
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endpoints t1 < t2, where we also allow t1 = −∞ and t2 = ∞. Then the closure is to be understood in the

Euclidean topology, i.e. Ī = [t1 , t2] if I is bounded, Ī = (−∞, t2] if t1 = −∞ and t2 is finite, Ī = [t1 ,∞) if

−∞ < t1 < t2 = ∞ and Ī = R if I = R.

2.2 Spaces of Continuous Functions

For k ∈ N0 ∪ {∞} and an arbitrary subset M of Rn endowed with its induced topology, we refer to

Ckc (M) :=
{
ϕ :M → R

∣∣ sptϕ is compact, ϕ can be extended to ϕ̆ ∈ Ckc (R
n)
}

as the space of k times continuously differentiable functions with compact support in M . This definition is

made such that it is consistent with the usual notion of the function space Ckc (M) whenever it is defined,

that is, if k = 0 andM is either open or closed, or if k ≥ 1 andM is open. To see this, let first k ∈ N0∪{∞}
be arbitrary, M ⊆ Rn open and ϕ ∈ Ckc (M). Then, sptϕ is a proper subset of M and ϕ can be extended

by 0 to all of Rn. On the other hand, if k = 0 and M is closed, we can use the Tietze extension theorem

to obtain a continuous mapping ϕ̆ ∈ C(Rn) such that ϕ̆
∣∣
M

= ϕ. Note that in this case, the support of ϕ̆

possibly exceeds M , whereas it still can be chosen as a compact set in Rn. These considerations show that

the above definition generalizes the notion of continuous differentiability to functions defined on arbitrary

sets in the Euclidean space Rn.

We can interpret Ckc (M) as a subspace of the function space Ck(M) consisting of all functions ϕ which,

together with all their derivatives up to order k, are continuous on M . Here differentiation on non-open

sets is to be carried out by means of extension according to the above definition. Moreover, let

C∞(M) =
∞⋂

k=0

Ck(M) .

Let Ω be an open subset of Rn. By equipping the linear space C∞
c (Ω) with a suitable family of seminorms it

is topologized to become the locally convex topological vector space D(Ω) called the space of test functions.

Its dual space is then, accordingly, denoted by D′(Ω) and its elements are referred to as distributions or

generalized functions. The theory of distributions makes it possible to differentiate any u ∈ D′(Ω) even

if the derivative does not exist in the classical sense. Let us illustrate this with the help of a standard

example. Suppose that u : Ω → R is a locally integrable function with respect to the n-dimensional

Lebesgue measure Ln. The corresponding distribution is then defined by the linear mapping

Tu(ϕ) :=

∫

Ω

uϕdLn ∀ϕ ∈ C∞
c (Ω) .

Since u 7→ Tu is injective, we may identify u ∈ L1
loc(Ω,Ln) and Tu ∈ D′(Ω). In particular, we can

understand any u ∈ Lp(Ω,Ln) ⊂ L1
loc(Ω,Ln) for 1 ≤ p ≤ ∞ as a distribution and therefore differentiate it

infinitely many times. The distributional derivatives are given by

∂αx u(ϕ) = (−1)|α|
∫

Ω

u ∂αxϕdLn .

When defining general Sobolev spaces, this weak notion of differentiability will play a central role.
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2.3 Spaces of µ-Integrable Functions

Let (X,Σ, µ) be a measure space and p be a real number satisfying 1 ≤ p < ∞. Consider the set of all

µ-measurable functions u whose modulus to the power of p has finite integral, or equivalently, that

‖u‖Lp(X,µ) =
(∫

X

|u| dµ
) 1

p
< ∞ .

Minkowski’s inequality tells us the triangle inequality holds for ‖ · ‖Lp endowing the set of p-th power

integrable functions with a seminorm. In these spaces we generally deal with equivalence classes of func-

tions, rather than with individual functions, where two functions are identified if they differ only on a set

of measure zero. The reason to regard functions that are almost everywhere equal is so that ‖u‖Lp = 0

implies that u = 0. This makes the seminormed spaces into normed vector spaces denoted by Lp(X,µ).

We write u ∈ L∞(X,µ) if u is essentially bounded on X, that is for µ-almost all x ∈ X. The space

Lp(X,µ) is complete in the Lp-norm for all 1 ≤ p ≤ ∞ and hence a Banach space (Riesz-Fischer theorem).

If 1 < p < ∞, then the dual space of Lp(X,µ) has an isomorphism with L
p

p−1 (X,µ) which associates a

function v ∈ L
p

p−1 (X,µ) with the linear functional

Jg : Lp(X,µ) ∋ u 7→
∫

X

u v dµ .

This allows us to identify those two spaces in a natural way. If X is the countable union of sets with finite

µ-measure, then the dual space of L1(X,µ) is naturally identified with L∞(X,µ).

By Lploc(X,µ) we mean the set of all locally integrable functions, i.e. the µ-integral is finite on all compact

subsets K of X. An example that is of particular interest for us is provided by the function ω : x 7→ |xn|σ.
We have ω ∈ L1

loc(R
n,Ln) if and only if σ > −1, and hence by

|M |σ = µσ(M) =

∫

M

|xn|σ dLn(x) =

∫

M

|xn|σ dx

a Radon measure is canonically associated with the weight ω, dµσ = ω dLn. We write |M | = |M |0 to

denote the Lebesgue measure of the set M .

Lemma 2.3.1 If σ > −1, then L∞(Rn, µσ) = L∞(Rn,Ln). Moreover, the dual space of L1(Rn, µσ) has

a natural isomorphism with L∞(Rn).

Proof: We show that µσ and the Lebesgue measure Ln are mutually absolutely continuous. We say µ is

absolutely continuous with respect to ν, and write µ≪ ν, if every ν-null set is also µ-null.

µσ ≪ Ln : This is an immediate consequence of the fact that |xn|σ ∈ L1
loc(R

n,Ln).

Ln ≪ µσ : Let |M |σ = 0 and suppose that |M | > 0. Then either |M ∩ H | > 0 or
∣∣M ∩ (−H)

∣∣ > 0.

Assuming, without loss of generality, the former case to hold, there exist x0 ∈ H and R > 0 such that

BeuR (x0) ⊂ H and
∣∣M ∩ BeuR (x0)

∣∣ > 0. This implies

|M |σ ≥
∣∣M ∩BeuR (x0)

∣∣
σ

≥ min
{
(x0,n −R)σ, (x0,n +R)σ

} ∣∣M ∩BeuR (x0)
∣∣ > 0 .

Thus, by contradiction, M is a Ln-null set.

Given any lattice point x0 ∈ Zn, the volume of the cube C1(x0) with respect to the measure µσ becomes

∣∣C1(x0)
∣∣
σ

=
2n−1

σ + 1





2 if x0,n = 0((
|x0,n|+ 1

)σ+1 −
(
|x0,n| − 1

)σ+1
)

otherwise .
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Moreover,

R
n =

⋃

x0∈Zn

C1(x0) , and
∣∣C1(x0)

∣∣
σ

= c(n, σ, x0,n) < ∞

for all x0 ∈ Zn. But this means that Rn is the countable union of measurable sets with finite µσ-measure

and the second part of the lemma follows. �

Now if M ⊆ X = Rn satisfies

M̊ = M ,

then M is either open or closed. Its boundary is a Ln-null set and accordingly also a µσ-null set. Thus

Lp(M,µσ) = Lp(M̊, µσ) = Lp(M,µσ) ∀ 1 ≤ p ≤ ∞ .

Also, note that Lploc(M,µσ) ( Lploc(M̊, µσ) because the compact subsets of M̊ do not cover all the compact

subsets of M . In fact, for any Radon measure µ and any µ-measurable set M ⊆ Rn, the following

embeddings are continuous:

Lp(M,µ) ⊂ L1
loc(M,µ) ⊂ L1

loc(M,µ) ∀ 1 ≤ p ≤ ∞ .

Mostly, we will consider the case M = H or M = H . Then we sometimes use the notation Lp(µ) instead

of Lp(H,µ), and accordingly we write ‖ · ‖Lp(µ) for ‖ · ‖Lp(H,µ). On the other hand, whenever we leave the

“global” setting to achieve local results, we emphasize the set that is underlying our analysis.

Another important function space includes a time component t ∈ I ⊆ R. The assigned measure on

I ×M will be the product measure L × µσ. A measurable function u : I ×M → R is said to belong to

Lq
(
I ;Lp(M,µσ)

)
if ∫

I

‖u(t, ·)‖qLp(M,µσ) dt < ∞ ,

where 1 ≤ q, p < ∞, with the common alterations for q, p = ∞. This extends the definition of Lebesgue

integrability to functions that take values in the Banach space Lp(M,µσ) (see Bochner integrability).

2.4 Classical versus Weak Derivatives

An n-dimensional vector of the form α = (α1, . . . , αn), where each entry is a nonnegative integer, is called a

multi-index. Given a multi-index α, denote by xα the monomial x α1
1 . . . x αn

n of degree |α| = α1 + · · ·+αn.
Similarly, ∂αx = ∂α1

x1 . . . ∂
αn
xn defines a partial differential operator of order |α|. Sometimes we drop the

subscripted x from the notation and merely write ∂α = ∂αx . The factorial of a multi-index α is defined by

α! = α1! . . . αn!. If β is another multi-index, we write β ≤ α provided βi ≤ αi for i = 1, . . . , n. In this case

α− β is also a multi-index and we can define the binomial coefficient

(
α

β

)
=

α!

β! (α− β)!
.

With the multi-index notation there is a Leibniz formula available,

∂αx
(
u v
)
(x) =

∑

β≤α

(
α

β

)
∂βxu(x) ∂

α−β
x v(x)

valid for all functions u, v that are at least |α| times differentiable at x. If k is a nonnegative integer, we

set

Dk
x u(x) :=

{
∂αx u(x)

∣∣ |α| = k
}
.
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The gradient of u is denoted

∇xu =




∂x1u
...

∂xnu




and its length is given by |∇xu| =
( n∑
i=1

(∂xiu)
2
) 1

2
. For the Laplacian of a scalar function u(x1, . . . , xn) we

write

∆u =
n∑

i=1

∂2
xiu .

In order to define weighted Sobolev spaces of integer order k, we need to develop a notion of how we can

define distributional derivatives in general Lp(M,µ)-spaces. In this context we restrict ourselves to the

case M = Ω, where Ω is an open subset of H , and µ = µσ for σ > −1. We first claim that

L1
loc(Ω, µσ) ⊂ L1

loc(Ω,Ln) .

Then, due to the considerations in section 2.2, every u ∈ Lp(Ω, µσ) has a distributional derivative. Let us

prove the claim: Suppose K is a compact set in H . Then K ∩ ∂H is empty, or more precisely, there exists

a constant c > 1 such that c−1 < xn < c for all x ∈ K. But this implies the assertion since

∫

K

|u| dLn ≤ sup
K

x−σ
n ‖u‖L1(K,µσ) < c|σ| ‖u‖L1(K,µσ) < ∞

for all u ∈ L1
loc(Ω, µσ) and all compact K ⊂ Ω. In light of these results, one can define the Sobolev space

W k,p(Ω, µσ0 , . . . , µσk) :=
{
u ∈ Lp(Ω, µσ0)

∣∣ ∂αx u ∈ Lp(Ω, µσ|α|) ∀ |α| ≤ k
}

for any k ∈ N and all p ≥ 1, where the differentiation is understood in a distributional sense. Using the

norm

‖u‖Wk,p(Ω, µσ0 ,...,µσk
) =





(∑

|α|≤k
‖∂αx u‖pLp(Ω, µσ|α| )

) 1
p

if p ∈ [1,∞) ,

∑

|α|≤k
ess sup

Ω

∣∣∂αx u
∣∣ if p = ∞ ,

these vector spaces become Banach spaces for all p ≥ 1 and for all positive integers k. We summarize this

property in a lemma.

Lemma 2.4.1 Let k be a positive integer, 1 ≤ p ≤ ∞ and σ0, . . . , σk > −1. Then W k,p(Ω, µσ0 , . . . , µσk )

endowed with the norm ‖ · ‖Wk,p(Ω, µσ0 ,...,µσk
) is a Banach space.

Proof: Let (ui)i∈N be a Cauchy sequence in the spaceW k,p(Ω, µσ0 , . . . , µσk ). Then (∂α ui)i∈N is a Cauchy

sequence in Lp(Ω, µ|α|) for 0 ≤ |α| ≤ k. Since Lp(Ω, µ|α|) is a complete space there exist functions v0 = u

and vα such that ∂αui → vα in Lp(Ω, µσ|α| ). Now Lp(Ω, µσ|α|) ⊂ L1
loc(Ω,Ln) and so ∂αui determines the

regular distribution T∂αui ∈ D′(Ω) as above. Now for any 0 ≤ |α| ≤ k we have

∣∣T∂αui(ϕ)− Tvα(ϕ)
∣∣ ≤ c

|σ|α||
p ‖ϕ‖Lp′ (Ω) ‖∂

αui − vα‖Lp(Ω,µσ|α| )

for all ϕ ∈ C∞
c (Ω) by Hölder’s inequality, where c > 1 is the constant such that c−1 < xn < c for all

x ∈ sptϕ and p′ = p
p−1

is the conjugate Hölder exponent of p. Since ∂αui → vα in Lp(Ω, µσ|α|), we get

Tvα(ϕ) = lim
i→∞

T∂αui(ϕ) = (−1)|α| lim
i→∞

Tui(∂
αϕ) = (−1)|α| Tu(∂

αϕ)

for all ϕ ∈ C∞
c (Ω). Thus vα = ∂αu in the sense of distributions on Ω for all 0 ≤ |α| ≤ k, whence it follows

u ∈ W k,p(Ω, µσ0 , . . . , µσk). In particular, ∂αui → ∂αu in Lp(Ω, µσ|α| ) for all 0 ≤ |α| ≤ k, and hence ui
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converges to u in W k,p(Ω, µσ0 , . . . , µσk). �

Also note that

‖u‖2Wk,2(Ω, µσ0 ,...,µσk
) =

(
u | u

)
Wk,2(Ω, µσ0 ,...,µσk

)
,

where (
u | v

)
Wk,2(Ω, µσ0 ,...,µσk

)
=

∑

|α|≤k

∫

Ω

(∂αx u) (∂
α
x v) dµσ|α|

defines a symmetric bilinear form. ThusW k,2(Ω, µσ0 , . . . , µσk ) together with this inner product is a Hilbert

space. A remarkable property is that every Hilbert space has a Schauder basis: Let X be a topological

vector space over R. A sequence {vi}i∈N ⊂ X is called Schauder basis if for any x ∈ X there exists a

unique sequence {λi}i∈N ∈ R such that x =
∑
i λi vi, where the convergence is understood with respect to

the norm topology. This definition is equivalent to say that the set of all finite linear combinations of vi is

dense in X and all finite subsets of {vi}i∈N are linearly independent.

Lemma 2.4.2 Suppose
(
X, (·|·)X

)
and

(
Y, (·|·)Y

)
are Hilbert spaces with X ⊆ Y . Moreover, let {vi}i∈N

be a Schauder basis of X. Then the matrix Am :=
(
(vi | vj)Y

)m
i,j=1

is invertible for any m ∈ N.

Proof: Let ~λ ∈ Rm\{0}. Then we have

~λ TAm ~λ =
m∑

i,j=1

λi
(
vi | vj

)
Y
λj =

( m∑

i=1

λivi |
m∑

j=1

λjvj
)
Y

=: (w | w)Y

with w =
m∑
i=1

λi vi ∈ X ⊆ Y . Thanks to the fact that all finite subsets {vi}mi=1 are linearly independent we

get w 6= 0. Thus, since Y is also a Hilbert space, we find (w | w)Y > 0. This means Am is positive definite

and therefore invertible for any positive integer m. �

2.5 Approximation by Continuous Functions

A key scheme in real analysis is that of studying quite general functions by first approximating them by

functions that are somewhat “nicer”. In the context of PDEs, for example, one naturally deals with weak

solutions which can usually be found in Sobolev spaces rather than in spaces of continuous functions. A

technique that is called “mollification” provides a particularly powerful tool to produce a function that

behaves better than the original one while still remaining close to it. Before proving such approximations

in weighted Sobolev spaces as defined above, we recall the usual regularization procedure on the measure

space (Rn,Ln). Let j be function in C∞
c (Rn) such that

spt j ⊂ Beu1 (0) and

∫

Rn

j dLn = 1 .

For example, take

j(x) =




c exp

(
1

|x|2−1

)
if |x| < 1

0 if |x| ≥ 1 ,

where c > 0 is selected so that the second property is satisfied. If u ∈ L1
loc(R

n) and ε > 0, then the

convolution

jε ∗ u(x) =

∫

Rn

jε(x− y)u(y) dLn(y) ∈ C∞(Rn) ,

where jε(x) := ε−n j(ε−1x), is called a mollifier. To be more precise, for any multi-index α ∈ N n
0 we have

∂αx
(
jε ∗ u

)
(x) = ∂αx jε ∗ u(x) = jε ∗ ∂αx u(x) .
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Since jε ∗ u smoothes out irregularities of u, it is called regularization or mollification of u.

In the unweighted case one usually uses the standard mollification to prove a series of results concerning

the approximation of Sobolev functions by smooth functions. One of the most famous discoveries in this

context is certainly the “H = W ” theorem presented in a two-sided paper by Meyers and Serrin [62].

However, by making only minor modifications, we can adopt their methods to achieve the same result in

the weighted case.

Proposition 2.5.1 Suppose Ω ⊆ H is open and σk ≥ · · · ≥ σ0 > −1. If 1 ≤ p <∞, then we have

Hk,p(Ω, µσ0 , . . . , µσk ) = W k,p(Ω, µσ0 , . . . , µσk) ,

where the left hand side is to be understood as the completion of C∞(Ω) in ‖ · ‖Wk,p(Ω,µσ0 ,...,µσk
).

Proof: (See [62].) Since “H ⊂ W ” is clear from the very definition, it suffices to show that Ck(Ω) ∩
W k,p(Ω, µσ0 , . . . , µσk) is dense in W k,p(Ω, µσ0 , . . . , µσk). Let u ∈ W k,p(Ω, µσ0 , . . . , µσk). If ψ ∈ C∞

c (Ω),

then

‖∂αx (ψ u)‖pLp(Ω,µσ|α| )
.
∑

β≤α
sup

x∈spt ψ

∣∣∂α−βx ψ(x)
∣∣p x σ|α|−σ|β|

n ‖∂βxu‖pLp(Ω,µσ|β| )
. ‖u‖p

Wk,p(Ω,µσ0 ,...,µσk
)

for |α| ≤ k, since σ|β| ≤ σ|α| and xn > c > 0 for all x ∈ sptψ. Thus ψ u ∈ W k,p(Ω, µσ0 , . . . , µσk). Also,

spt (ψ u) is a compact subset of Ω, and hence stays away from its boundary. This implies jε∗(ψ u) ∈ C∞
c (Ω)

and ∂αx
(
jε ∗ (ψ u)

)
= jε ∗∂αx (ψ u) on any open and bounded U with U ⊂ Ω ⊆ H as long as ε > 0 is suitably

small. If we let ε→ 0+, this yields

‖ψ u− jε ∗ (ψ u)‖Wk,p(U,µσ0 ,...,µσk
) → 0 , (∗)

where U is so chosen that spt (ψ u) ⊂ U .

Now let ΩN be an open and bounded set such that ΩN ⊂ Ω and ΩN ⊂ ΩN+1 for any positive integer N ,

and ⋃

N∈N

ΩN = Ω .

(For example, take ΩN = Ω ∩BeuN (0) ∩
{
x ∈ H

∣∣ dist(x, ∂Ω > 1
N
)
}
.) Furthermore, set

Ω−1 := Ω0 := ∅ , Ui := Ωi+2 \ Ωi−2 and Vi := Ωi+1 \ Ωi−1 (i ∈ N) .

Clearly, we have ⋃

i∈N

Ui ,
⋃

i∈N

Vi = Ω and V i ⊂ Ui

for i ∈ N. Additionally,

U i ⊂ Ω
∁

N =⇒ ΩN ⊂ U
∁

i ⊂ V
∁

i

whenever i > N + 2. Let {ψi}i∈N be a partition of unity subordinate to {Vi}i∈N. Then for x ∈ ΩN , it

follows

u(x) =
∑

i∈N

ψi(x)u(x) =

N+2∑

i=1

ψi(x)u(x) ,

as well as
∑

i∈N

jεi ∗
(
ψi u

)
(x) =

N+2∑

i=1

jεi ∗
(
ψi u

)
(x)
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for 0 < εi < dist(Vi, ∂Ui). Now fix δ > 0. Then

‖u−
∑

i∈N

jεi ∗ (ψi u)‖Wk,p(ΩN ,µσ0 ,...,µσk
) ≤

N+2∑

i=1

‖ψi u− jεi ∗ (ψi u)‖Wk,p(Ui,µσ0 ,...,µσk
)

<

N+2∑

i=1

2−i δ = (1− 2−N−2) δ .

by virtue of (∗). Finally, by the dominant convergence theorem we infer that

‖u−
∑

i∈N

jεi ∗ (ψi u)‖Wk,p(Ω,µσ0 ,...,µσk
) = lim

N→∞
‖u−

∑

i∈N

jεi ∗ (ψi u)‖Wk,p(ΩN ,µσ0 ,...,µσk
)

< lim
N→∞

(1− 2−N−2) δ = δ ,

as stated. �

An essential ingredient in the proof of the previous theorem is that of keeping the function u away from

∂Ω (and thus ∂H) by introducing a cut-off function that has compact support in Ω. This is important

because on the boundary of H the weight x σn changes its nature so as to become either unbounded (σ < 0)

or zero (σ > 0). This suggests to adjust the mollification in such a way that it qualifies for our weighted

setting, even when approaching the critical area near ∂H . Suppose u ∈ L1
loc(Ω,Ln), where Ω is again an

arbitrary open subset of H . By abuse of notation we define

jεxn ∗ u(x) :=

∫

Rn

jεxn(x− y) ū(y) dLn(y) (2.5.1)

for all ε > 0 and any x ∈ H , where ū denotes the zero extension of u outside of Ω to all of Rn. In the

following we summarize some useful properties of this “pseudo convolution”.

i) Using a change of coordinates we readily see that

∫

Rn

jεxn (x− y) dy =

∫

Beu
εxn

(x)

jεxn(x− y) dy = 1

for all ε > 0 and for all x ∈ H . Also note that Beuεxn(x) ⊂ H if ε < 1.

ii) Another transformation of the integral shows that

jεxn ∗ u(x) =

∫

Beu
ε (0)

jε(y) ū(x− xn y) dLn(y) ∀ ε > 0 , ∀ x ∈ H .

iii) Since jεxn ∈ C∞(H), one can differentiate under the integral in (2.5.1) on the first factor and get

that jεxn ∗ u is infinitely many times differentiable in x ∈ H . If additionally spt u is compact in Ω,

then jεxn ∗ u ∈ C∞
c (Ω) for suitably small ε > 0.

With all necessary preparations made, it is then crucial to ensure that the next lemma is available.

Lemma 2.5.2 Let p, σ be any numbers satisfying 1 ≤ p <∞ and σ > −1. Then there exists a constant

c = c(σ, p) such that

‖jεxn ∗ u‖Lp(Ω,µσ) ≤ c ‖u‖Lp(Ω,µσ)

whenever 0 < ε ≤ 1
2
and u ∈ Lp(Ω, µσ) with Ω ⊆ H.

Proof: We decompose the upper half space H into

Ai := {x ∈ R
n | 2i < xn ≤ 2i+1} , i ∈ Z .
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With uj := ū χAj , we thus have

‖jεxn ∗ u‖pLp(H,µσ) =
∑

i∈Z

‖jεxn ∗
∑

j∈Z

uj‖pLp(Ai ,µσ) .

Now fix a point x ∈ H . Then there exists an integer i such that x ∈ Ai and, for any y ∈ Beuεxn(x), we get

(1− ε) xn < yn < (1 + ε) xn .

Assuming that ε ≤ 1
2
implies

Beuεxn(x) ⊂
i+1⋃

j=i−1

Aj .

For i ∈ Z this gives

‖jεxn ∗
∑

j∈Z

uj‖pLp(Ai ,µσ)

(i)

≤
i+1∑

j=i−1

∫

Ai

(∫

Rn

jεxn(x− y) dy
)

︸ ︷︷ ︸
=1 by (i)

p−1(∫

Aj

jεxn(x− y)
∣∣uj(y)

∣∣p dy
)
x σn dx ,

where we also applied Hölder’s inequality to j
1− 1

p
εxn j

1
p
εxn |uj |. Since x σn ≤ 2|σ| 2iσ for all x ∈ Ai, we get

∑

i∈Z

‖jεxn ∗ u‖pLp(Ai ,µσ) .
∑

i∈Z

2iσ
i+1∑

j=i−1

∫

Ai

∫

Aj

jεxn(x− y)
∣∣uj(y)

∣∣p dy dx

and using Fubini’s theorem this is equal to

∑

i∈Z

2iσ
i+1∑

j=i−1

∫

Aj

∣∣uj(y)
∣∣p
∫

Ai

jεxn (x− y) dx dy .

For the inner integral, we substitute x−y
xn

by z to find that

∫

Ai

jεxn (x− y) dx =

∫

Ai

xn
yn

jε
(
x−1
n (x− y)

) yn

x n+1
n

dx ≤ 4

∫

Rn

jε(z) dz = 4

for any y ∈ Aj with j ∈ {i− 1, i, i+ 1}. It follows

‖jεxn ∗ u‖pLp(H,µσ) .
∑

i∈Z

2iσ
i+1∑

j=i−1

‖uj‖pLp(Aj)
.
∑

i∈Z

i+1∑

j=i−1

‖ū‖pLp(Aj ,µσ) .
∑

i∈Z

‖ū‖pLp(Ai ,µσ)

as required. This, combined with the identity

∑

i∈Z

‖ū‖pLp(Ai ,µσ) = ‖ū‖pLp(H,µσ) = ‖u‖pLp(Ω,µσ) ,

closes the argument. �

Corollary 2.5.3 Suppose Ω is an open subset of H. If u ∈ Lp(Ω, µσ) for some 1 ≤ p <∞ and σ > −1,

then

‖u− jεxn ∗ u‖Lp(Ω,µσ) → 0

as ε→ 0+. In particular, the set C∞
c (Ω) is dense in Lp(Ω, µσ).

Proof: We note that the assertion is true if u ∈ Cc(Ω): Using (ii) and the fact that
∫
Rn jε(y)dy = 1 we

find ∣∣u(x)− jεxn ∗ u(x)
∣∣ ≤ sup

y∈Beu
ε (0)

∣∣u(x)− u(x− xn y)
∣∣ → 0
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uniformly for all x ∈ Ω as ε→ 0. Thus, for any δ > 0 there exists an ε > 0 such that the following holds:

‖u− jεxn ∗ u‖Lp(Ω,µσ) ≤ |K|
1
p
σ sup

x∈Ω
sup

y∈Beu
ε (0)

∣∣u(x)− u(x− xn y)
∣∣ < δ .

Here, K = spt (jεxn ∗ u) is a compact set and, since µσ is a Radon measure, |K|σ is in fact finite.

Suppose now u ∈ Lp(Ω, µσ). To complete the proof, we fix some δ > 0 and let ϕ ∈ Cc(Ω) be a function

with ‖u − ϕ‖Lp(Ω,µσ) < δ. Such a function exists because Cc(Ω) is dense in Lp(Ω, µσ).
3 Choosing ε > 0

small enough we can ensure that

‖u− jεxn ∗ u‖Lp(µσ) ≤ ‖u− ϕ‖Lp(µσ) + ‖ϕ− jεxn ∗ ϕ‖Lp(µσ) + ‖jεxn ∗ (ϕ− u)‖Lp(µσ) < (c+ 2)δ ,

where we have used lemma 2.5.2 applied to u− ϕ. Taking only the first two terms of the right hand side,

we immediately see that u is arbitrarily close to jεxn ∗ ϕ which, by property (iii), belongs to C∞
c (Ω). The

corollary follows. �

Next we will show that the mollification jεxn ∗ u converges to u in any weighted Sobolev space.

Lemma 2.5.4 Let 1 ≤ p < ∞ and σ0, . . . , σk > −1. If Ω′ is an open and bounded subset of H with

Ω′ ⊂ Ω ∪ ∂H, then

lim
ε→0+

‖u− jεxn ∗ u‖Wk,p(Ω′,µσ0 ,...,µσk
) = 0

for all u ∈ W k,p(Ω, µσ0 , . . . , µσk).

Proof: Fix x ∈ Ω′. Choosing ε > 0 suitably small, we can guarantee that x−xn y ∈ Ω for all y ∈ Beuε (0).

Setting T : x 7→ x− xn y =: z, we use the representation of jεxn ∗ u from (ii) and the fact that

∂xi
(
u ◦ T

)
(x) =

n∑

j=1

∂zju(z)
∣∣
z=T (x)

(δij − yj δin) ,

where δij is the Kronecker delta, that is δij = 1 if i = j, and δij = 0 otherwise, to establish the formula

∂αx
(
jεxn ∗ u

)
(x) =

αn∑

j=0

(−1)j
(
αn
j

) ∑

|β|=j

∫

Beu
ε (0)

jε(y) ∂
α+β−jen
z u(z)

∣∣∣
z=T (x)

yβ dy

valid for all |α| ≤ k. Note that the first summand (j = 0) gives the expression jεxn ∗ ∂αx u(x), and so we

write

∂αx
(
jεxn ∗ u

)
(x) =: jεxn ∗ ∂αx u(x) + rε,α(x) .

If ε ≤ 1, then

∣∣rε,α(x)
∣∣ ≤

αn∑

j=1

(
αn
j

)
εj
∑

|β|=j

(
jεxn ∗

∣∣∂α+β−jenx u
∣∣
)
(x) ≤ c(αn) ε

∑

|β|=|α|

(
jεxn ∗ |∂βxu|

)
(x) .

By lemma 2.5.2,

‖rε,α‖Lp(Ω′, µσ|α| )
. ε ‖∂αx u‖Lp(Ω′, µσ|α| )

for all multi-indices α with 0 ≤ |α| ≤ k, and the right hand side approaches zero as ε→ 0+. This together

with corollary 2.5.3 completes the proof. �

3In fact this is true for Lp(X, µ), where 1 ≤ p < ∞, X is a locally compact Hausdorff space and µ any Radon
measure.
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We have now finally reached the crucial Sobolev embedding theorem we actually started out for.

Theorem 2.5.5 Suppose 1 ≤ p < ∞ and {σj}kj=0 is a sequence of nonnegative numbers satisfying 0 ≤
σj+1−σj ≤ p. Then the set of restrictions to H of functions in C∞

c (Rn) is dense in W k,p(H,µσ0 , . . . , µσk),

that is,

C∞
c (H) = W k,p(H,µσ0 , . . . , µσk)

holds, where the closure of C∞
c (H) refers to the norm ‖ · ‖Wk,p(H,µσ0 ,...,µσk

).

We mimic the proof of the corresponding statement in the unweighted case in [1]. For weights very much

similar to ours, the result is discussed in greater detail in Kufner’s book [56].

Proof: Let η ∈ C∞
c (Rn) be a cut-off function satisfying

i) η ≡ 1 on Beu1 (0) and spt η ⊂ Beu2 (0). ii)
∣∣∂αx η(x)

∣∣ ≤ c for all x ∈ Rn and 0 ≤ |α| ≤ k.

Moreover, define ηε(x) := η(εx) for ε > 0. Then ηε(x) = 1 if |x| ≤ 1
ε
, ηε(x) = 0 if |x| ≥ 2

ε
and we have

∣∣∂αx ηε(x)
∣∣ ≤ c ε|α| ∀ x and 0 ≤ |α| ≤ k .

With uε := ηεu, we get for all x ∈ H and 0 ≤ |α| ≤ k that

∣∣∂αx uε(x)
∣∣p x σ|α|

n ≤ c(n, k, p)
∑

β≤α
εp
(
|α|−|β|

) (
sup

x∈ spt ηε ∩H
x
σ|α|−σ|β|
n

) ∣∣∂βxu(x)
∣∣p x σ|β|

n .

From the assumptions on σ0, . . . , σk, we deduce that σ|α| − σ|β| ≤ p
(
|α| − |β|

)
for β ≤ α, such that

x
σ|α|−σ|β|
n ≤

(
ε
2

)p(|β|−|α|)
for all x ∈ H with |x| < 2

ε
. Thus there exists a constant c (independent of ε)

such that

‖uε‖Wk,p(H,µσ0 ,...,µσk
) ≤ c ‖u‖Wk,p(H,µσ0 ,...,µσk

) < ∞ ,

that is to say uε belongs to W k,p(H,µσ0 , . . . , µσk ). Moreover, setting Hε =
{
x ∈ H

∣∣ |x| > 1
ε

}
, we find

‖u− uε‖Wk,p(H,µσ0 ,...,µσk
)

(i)
= ‖u− uε‖Wk,p(Hε,µσ0 ,...,µσk

)

≤ ‖u‖Wk,p(Hε,µσ0 ,...,µσk
) + ‖uε‖Wk,p(Hε,µσ0 ,...,µσk

)

(ii)

≤ c ‖u‖Wk,p(Hε,µσ0 ,...,µσk
) → 0

as ε → 0+, since then Hε → ∅. Consequently, as uε has compact support in H and approximates u, we

may assume that u ∈ W k,p(H,µσ0 , . . . , µσk ) has compact support, i.e. K = {x ∈ H | u(x) 6= 0} is bounded.

We explicitly do not exclude the possibility that ∂K intersects with ∂H . Since K is compact, there exist

finite covers U0, . . . , UN and V0, . . . , VN of bounded sets such that V i ⊂ Ui for 0 ≤ i ≤ N ,

K ⊂
N⋃

i=0

Ui but still K ⊂
N⋃

i=0

Vi ,

where U0, V 0 ⊂ H are compact. Now consider a partition of unity {ψi}Ni=0 subordinate to {Vi}Ni=0, that is

ψi ∈ C∞
c (Vi) with

N∑

i=0

ψi(x) = 1 ∀ x ∈ K .

Let ui := ψi u, where we extend u by 0 outside H . Now we claim that for every δ > 0 there exist

ϕi ∈ C∞
c (Rn) such that

‖ui − ϕi‖Wk,p(H,µσ0 ,...,µσk
) <

δ

N + 1
. (∗)
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Since spt u0 ⊂ V0 and V 0 ⊂ U0 ⊂ U0 ⊂ H , for any δ > 0 there exists an ε0 < dist(V0, ∂U0) such that

‖u0 − ϕ0‖Wk,p(H,µσ0 ,...,µσk
) = ‖u0 − ϕ0‖Wk,p(U0,µσ0 ,...,µσk

) <
δ

N + 1

by means of lemma 2.5.4, where ϕ0 := jε0 xn ∗ u0.

For i = 1, . . . , N the situation is different. Here it is not clear whether or not ui is (weakly) differentiable

on ∂H . We only know that ui ∈W k,p
(
Rn \ (Vi ∩ ∂H), µσ0 , . . . , µσk

)
. To see this, let x ∈ Vi ∩H . Then

∣∣∂αx ui(x)
∣∣ ≤ c(α)

∑

β≤α

∣∣∂α−βx ψi(x)
∣∣ ∣∣∂βxu(x)

∣∣

for any 0 ≤ |α| ≤ k by the Leibniz formula. This implies

‖∂αx ui‖pWk,p(Vi ∩H,µσ0 ,...,µσk
)
.
∑

β≤α
sup

x∈Vi ∩H

∣∣∂α−βx ψi(x)
∣∣p x σ|α|−σ|β|

n ‖∂βxu‖pLp(H,µσ|β| )
. ‖u‖p

Wk,p(H,µσ0 ,...,µσk
)

as above. Moreover, by construction of ui, we have ui ≡ 0 on −H ∩ Vi and V ∁

i . On Vi ∩ ∂H , on the

other hand, there is no such statement possible, and so an application of lemma 2.5.4 would not lead to

the desired result. Our strategy will be as follows: We apply lemma 2.5.4 to ui and then translate it by a

small amount in direction of the vector −en. Now we can exploit the property that the translation of the

mollified ui is differentiable on ∂H .

For i = 1, . . . , N , consider the function jεixn ∗ ui extended to be identically zero outside of H . First we

observe that jεixn ∗ ui ∈W k,p(H,µσ0 , . . . , µσk). Since ui ≡ 0 outside Vi, we can find an ε > 0 so that

spt (jεixn ∗ ui) ⊂ Ui ∩H .

Let us define Ω′ = Ui ∩ H . For this choice of Ω′, the assumptions of lemma 2.5.4 are fulfilled and so for

any δ′ > 0 there exists an εi > 0 such that the following inequality holds:

‖∂αx ui − ∂αx (jεixn ∗ ui)‖Lp(Ui ∩H,µσ|α|)
< δ′

for each 1 ≤ i ≤ N and any |α| ≤ k, that is

jεixn ∗ ui → ui in W k,p(H,µσ0 , . . . , µσk) as εi → 0+ .

Let us turn to the translation. Since V i ⊂ Ui, there exists hi > 0 such that x ± h en ∈ Ui for all x ∈ V i

and all h ∈ (0, hi). If εi, hi > 0 are sufficiently small, then we have sptϕi ⊂ Ui ∩ (H − h en), where

ϕi(x) :=
(
jεixn ∗ ui

)
(x + h en) is a smooth function on Ui ∩ (H − h en). Restricted to H , this means

ϕi ∈ C∞(H) and sptϕi ⊂ Ui ∩ H. The important thing is that ϕi can be extended continuously across

the boundary of H and therefore is defines an eligible function.

To finish the proof, we need continuity of the translation operator. Unfortunately, in general this fails to

be true in the weighted Lp-classes, but happens to be true, if σ|α| ≥ 0 and the translation is of the above

kind. That is why we need to impose the positivity condition on σ0, . . . , σk.

Lemma: Suppose u ∈ Lp(H,µσ) for 1 ≤ p < ∞ and some nonnegative σ. Then for any number δ′ > 0

we have

‖u− Th u‖Lp(H,µσ) < 2 δ′

for sufficiently small h > 0, where Th u(x) := u(x+ h en).
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Proof: Fix δ′ > 0 and let ϕ be a function in Cc(H) with ‖u − ϕ‖Lp(µσ) <
δ′
2
. Similarly as in the proof

of corollary 2.5.3, we see that ‖ϕ− Th ϕ‖Lp(µσ) < δ′ provided h > 0 is small. Finally, we consider

∫

H

∣∣Th u(x)− Th ϕ(x)
∣∣p x σn dx =

∫

H+h en

∣∣u(x)− ϕ(x)
∣∣p (xn − h)σ dx ≤

∫

H

∣∣u(x)− ϕ(x)
∣∣p x σn dx .

Herein, the inequality follows from σ ≥ 0 and the fact that xn − h en > 0 on H + h en. Altogether, this

gives

‖u− Th u‖Lp(µσ) ≤ 2 ‖u− ϕ‖Lp(µσ) + ‖ϕ− Th ϕ‖Lp(µσ) < 2 δ′

as stated. �

With the auxiliary lemma we are provided the missing piece to complete the proof of (∗). We obtain

‖∂αx (jεixn ∗ ui)− ∂αxϕi‖Lp(H,µσ|α|)
< 2 δ′

for any 0 ≤ |α| ≤ k, since the translation operator Th commutes with derivatives. We arrive at

‖ui − ϕi‖Wk,p(H,µσ0 ,...,µσk
) = ‖ui − jεixn ∗ ui‖Wk,p(H∩Ui,µσ0 ,...,µσk

) + ‖jεixn ∗ ui − ϕi‖Wk,p(H∩Ui,µσ0 ,...,µσk
)

< c(n, k, p) δ′ ≤ δ

N + 1

provided 0 < h < hi and εi are suitably small. This proves (∗) for 0 ≤ i ≤ N . Putting ϕ =
N∑
i=0

ϕi , we get

‖u− ϕ‖Wk,p(H,µσ0 ,...,µσk
) ≤

N∑

i=0

‖ui − ϕi‖Wk,p(H,µσ0 ,...,µσk
) < δ ,

which amounts to the statement of the theorem. �

2.6 Hardy Inequality

In [39] Hardy formulated the following fundamental result: If f is a nonnegative and integrable function,

then ∫ ∞

0

( 1
x

∫ x

0

u(z) dz
)p
dx < cp

∫ ∞

0

u(x)p dx

unless u ≡ 0. The constant cp =
(

p
p−1

)p
is the best possible. The usefulness of this inequality can be

exemplified in the following way. Setting v(x) :=
∫ x
0
u(z) dz, the Hardy inequality basically states that the

weighted Lp-norm of v is controlled by the (unweighted) Lp-norm of v′ subject to boundary conditions. The

inequality can then be generalized in such a way that weights are included on both sides of the inequality,

and therefore it is well suited for our case of weighted Lp-classes.

Lemma 2.6.1 (global Hardy inequality) Let σ > −1 and 1 ≤ p < ∞. If ∇u ∈ Lp(H,µσ+p), then

we have

‖u− c0‖Lp(H,µσ) ≤ c ‖∇u‖Lp(H,µσ+p)

for some c0 ∈ R and a positive constant c = c(n, σ, p).

Proof: Assume first that p = 1. Then, by the assumptions, ∂xnu(x
′, ·) ∈ L1

(
R+, µσ+1

)
for almost all

x′ ∈ Rn−1, and hence ∂xnu(x
′, ·) ∈ L1

loc(R+). For any b > 0, the fundamental theorem of calculus implies

that

v(x) := −
∫ b

xn

∂zu(x
′, z) dz
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is locally absolutely continuous and we have v′(x) = ∂xnu(x) almost everywhere in (0, b). Moreover, we

obtain

u(x) − u(x′, b) = −
∫ b

xn

∂zu(x
′, z) dz , x ∈ (0, b) .

Thus

lim
b→∞

∣∣u(x′, b)
∣∣ ≤

∣∣u(x)
∣∣ + lim

b→∞
x−(σ+1)
n

∫ b

xn

∣∣∂zu(x′, z)
∣∣ zσ+1 dz < ∞ ,

since σ + 1 > 0 and ∂xnu(x
′, ·) ∈ L1(R+, µσ+1). It follows that there exists a c(x′) that is independent of

xn such that

u(x) − c(x′) = −
∫ ∞

xn

∂zu(x
′, z) dz .

A calculation then gives

‖u− c(x′)‖L1(H ,µσ) = ‖
∫ ∞

xn

∂zu(x
′, z) dz‖L1(H ,µσ) ≤

∫ ∞

0

‖∂zu(· , z)‖L1(Rn−1)

(∫ z

0

x σn dxn
)
dz

=
1

σ + 1
‖∂xnu‖L1(H ,µσ+1)

, (∗)

where we used Fubini’s theorem in the first inequality. Now suppose p ∈ (1,∞). The assumption on ∇u
then assures that u(x′, ·) ∈ ACloc(R+) ⊂ Lploc(R+) for almost every x′ ∈ Rn−1, and consequently

‖∂xnu(x′, ·)p‖L1(K) ≤ p ‖u(x′, ·)‖p−1
Lp(K) ‖∂xnu(x

′, ·)‖Lp(K)

is finite for any compact set K ⊂ R+.

Now applying (∗) to
(
u− c(x′)

)p
and using Hölder’s inequality, we get

‖u− c(x′)‖pLp(µσ) = ‖
(
u− c(x′)

)p‖L1(µσ) ≤ c(σ) ‖∂xn
(
u− c(x′)

)p
)‖L1(µσ+1)

≤ c(σ) p ‖u− c(x′)‖p−1
Lp(µσ) ‖∂xnu‖Lp(µσ+p)

(∗∗)

with ‖ · ‖Lp(µσ) = ‖ · ‖Lp(H,µσ), and it remains to show that c(x′) is independent of x′ ∈ Rn−1. To this

end, let v ∈ Rn−1 and define uv(x) = u(x′ − xn v, xn). We apply (∗∗) to the function uv and obtain

‖u− cv(x
′ + xn v)‖Lp(µσ) = ‖uv − cv(x

′)‖Lp(µσ) . ‖∂xnuv‖Lp(µσ+p) . ‖∇u‖Lp(µσ+p) .

It follows that

‖c(x′)− cv(x
′ + xn v)‖Lp(µσ) . ‖∇u‖Lp(µσ+p) < ∞

by Minkowski’s inequality. Putting v = e′1 = (1, 0, . . . , 0) ∈ Rn−1, we find that

‖c(x1)− cv(x1 + ·)‖Lp(R+,µσ) < ∞

for almost every x′′ = (x2, . . . , xn−1) ∈ Rn−2 and almost every x1. We fix x′′ in the set of full measure as

well as two Lebesgue points s and t of c(x1), where we suppress x′′ in the notation. We have

‖c(s)− cv(s+ ·)‖Lp(R+,µσ) + ‖c(t)− cv(t+ ·)‖Lp(R+,µσ) < ∞ .

Let s < t without loss of generality. Then

‖c(s)− cv(s+ ·)‖Lp([2(t−s),∞),µσ) + ‖c(t)− cv(t+ ·)‖Lp([t−s,∞),µσ) < ∞ .

We shift the integration by t− s in the first norm to find

∫ ∞

t−s

∣∣c(s)− cv(t+ xn)
∣∣p (xn + t− s)σ dxn =

∫ ∞

2(t−s)

∣∣c(s)− cv(s+ xn)
∣∣p x σn dxn < ∞ .
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Now we claim that

(xn + t− s)σ ∼ x σn

for xn > t− s. This follows directly from

0 ≤
∣∣ln(xn + t− s) − ln(xn)

∣∣ ≤ t− s

xn

by exponentiation: If xn > t− s, then 1 ≤ xn+t−s
xn

≤ e
t−s
xn < e, i.e. xn+ t− s ∼ xn. But now we also have

∣∣c(s)− c(t)
∣∣p
∫ ∞

t−s
x σn dxn .

∫ ∞

t−s

(∣∣c(s)− cv(t+ xn)
∣∣p +

∣∣c(t)− cv(t+ xn)
∣∣p
)
x σn dxn < ∞

which is only possible if c(s) = c(t), that is, c(x′) is independent of x1. Proceeding iteratively for all the

other variables xi with i = 2, . . . , n − 1, we get successively c(x′) = c(x′′) = · · · = c0. This concludes the

proof of the lemma. �

For compactly supported u, Hardy’s inequality has the following immediate consequence.

Corollary 2.6.2 If ∇u ∈ Lp(H,µσ+p) and spt u ⊂ H is compact, then c0 in lemma 2.6.1 can be chosen

to be 0.

Proof: Let K ⊂ H denote the support of u. Then, using lemma 2.6.1, we know that

‖∇u‖pLp(H,µσ+p)
& ‖u− c0‖pLp(H,µσ) ≥

∫

H\K
|c0|p dµσ = |c0|p µσ(H \K) .

Since K is compact, we have µσ(H \K) = ∞ and hence |c0|p = 0. �

Next we use Hardy’s inequality to relax the conditions on σj in the density result 2.5.5. More precisely,

the positivity assumption (except for σk) can be dropped from the statement of this theorem.

Remark 2.6.3 Let 1 ≤ p <∞, k be a nonnegative integer, and σk ≥ · · · ≥ σ0 > −1 with σj+1 − σj ≤ p

and σk ≥ 0. Then the statement of theorem 2.5.5 remains valid.

Proof: Let us return to the setting of the proof of theorem 2.5.5. We are given two functions jεixn ∗ ui,
ϕi ∈ C∞(H) with spt (jεixn ∗ ui − ϕi) ⊂ Ui and Ui is bounded. Applying Hardy’s inequality from lemma

2.6.1 to this difference, we obtain

‖jεixn ∗ ui − ϕi‖Lp(H,µσ0 )
. ‖Dx(jεixn ∗ ui − ϕi)‖Lp(H,µσ0+p) = ‖Dx(jεixn ∗ ui − ϕi)‖Lp(Ui∩H,µσ0+p) .

Now the assumptions on σ0, σ1 and p ensure that 0 ≤ σ0 − σ1 + p ≤ p such that on Ui ∩H we have the

estimate

x σ0+pn = x σ0−σ1+pn x σ1n ≤ c(p) x σ1n .

Hence

‖jεixn ∗ ui − ϕi‖Lp(H,µσ0 )
. ‖Dx(jεixn ∗ ui)−Dxϕi‖Lp(H,µσ1 )

.

Repeating this procedure until the upper bound contains a weight with nonnegative exponent σj , this

procedure eventually stops after at most k steps since by assumption σk ≥ 0. But in this new setting

we can use the fact that the translation by h > 0 in the inverse direction of the n-th unit vector en is

continuous. Therefore

‖ui − ϕi‖Wk,p(H,µσ0 ,...,µσk
) ≤ ‖ui − jεixn ∗ ui‖Wk,p(H,µσ0 ,...,µσk

) + ‖jεixn ∗ ui − ϕi‖Wk,p(H,µσ0 ,...,µσk
)
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and the right hand side gets arbitrarily small for h and εi small enough. The rest follows as in the proof

of theorem 2.5.5. �

2.7 Sobolev Inequalities

The term Sobolev inequalities is used for a collection of various embeddings of certain Sobolev spaces into

others. Contributions of mathematicians other than Sobolev such as Morrey, Poincaré, Gagliardo and

Nirenberg are significant here. In order to make them compatible with our needs, we also include weighted

versions of such inequalities.

The classical Sobolev inequality is certainly the following one:

Lemma 2.7.1 (Sobolev inequality) Let p ∈ [1, n). Then there exists a constant c depending on n

and p such that

‖ϕ‖
L

np
n−p (Rn)

≤ c ‖∇ϕ‖Lp(Rn)

for all ϕ ∈ C1
c (R

n).

Proof: Since ϕ has compact support, for all x ∈ Rn and i = 1, . . . , n we have

2
∣∣ϕ(x)

∣∣ =
∣∣
∫ xi

−∞
∂xiϕ(x1, . . . , yi , . . . , xn) dyi −

∫ ∞

xi

∂xiϕ(x1, . . . , yi , . . . , xn) dyi
∣∣

≤
∫

R

∣∣∂xiϕ(x1, . . . , yi , . . . , xn)
∣∣ dyi ,

and hence
∣∣ϕ(x)

∣∣ n
n−1 ≤

(
2−n

n∏

i=1

∫

R

∣∣∂xiϕ(x1, . . . , yi , . . . , xn)
∣∣ dyi

) 1
n−1

.

We integrate this inequality with respect to x1, . . . , xn and apply Hölder’s inequality repeatedly to get

∫

Rn

∣∣ϕ(x)
∣∣ n
n−1 dx ≤

(
2−n

n∏

i=1

‖∂xiϕ‖L1(Rn)

) 1
n−1

.

By Young’s inequality,
n∏

i=1

|ai| ≤ 1

n

n∑

i=1

|ai|n ,

followed by
∑ |ai| ≤

(
n
∑
a 2
i

) 1
2 , we infer that

‖ϕ‖
L

n
n−1 (Rn)

≤ 1

2
√
n
‖∇ϕ‖L1(Rn) .

This implies the statement of the lemma for p = 1. In case of p ∈ (1, n) we apply the inequality to |ϕ|γ

with γ := (n−1)p
n−p > 1 to find

(∫

Rn

∣∣ϕ(x)
∣∣ np
n−p dx

)n−1
n ≤ γ

2
√
n

∫

Rn

∣∣ϕ(x)
∣∣γ−1 ∣∣∇ϕ(x)

∣∣dx

≤ γ

2
√
n

(∫

Rn

∣∣ϕ(x)
∣∣ (γ−1)p

p−1 dx
)p−1

p
(∫

Rn

∣∣∇ϕ(x)
∣∣p dx

) 1
p

by virtue of Hölder’s inequality. Eventually, the choice of γ makes for a simplification of the involved

exponents, that is, we have (γ−1)p
p−1

= np
n−p =

(
n−1
n

− p−1
p

)−1
. This turns the inequality into the Sobolev

inequality as stated in the lemma. �
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As we can clearly see, lemma 2.7.1 only considers the case p < n. Under the opposite condition p > n ≥ 1

the preceding inequality fails. We shall need another embedding lemma to cover this case, usually known

as Morrey inequality. Here we only formulate a version of this inequality that is somewhat weaker than

the original one but entirely sufficient for our purposes.

Lemma 2.7.2 (Morrey-type inequality) Let k be a positive integer and p ≥ 1 be any number

satisfying the condition kp > n. Then there exists a positive constant c = c(n, k, p) such that

∣∣ϕ(x)
∣∣ ≤ c ‖ϕ‖Wk,p(Rn)

for all x ∈ Rn and all ϕ ∈ Ck(Rn).

Proof: Assume first that k = 1. We fix x ∈ Rn and apply Hölder’s inequality to get

∣∣ϕ(x)
∣∣ ≤ −

∫

Beu
1 (x)

∣∣ϕ(y)
∣∣ dy + −

∫

Beu
1 (x)

∣∣ϕ(x)− ϕ(y)
∣∣ dy

≤
∣∣Beu1 (x)

∣∣− 1
p ‖ϕ‖Lp(Rn) + −

∫

Beu
1 (x)

∣∣ϕ(x)− ϕ(y)
∣∣ dy

with Beu1 (x) =
{
y ∈ Rn

∣∣ |x− y| < 1
}
being the Euclidean unit ball centered at x. This combined with the

inequality

−
∫

Beu
1 (x)

∣∣ϕ(y)− ϕ(x)
∣∣ dy ≤ c(n)

∫

Beu
1 (x)

∣∣∇ϕ(y)
∣∣

|x− y|n−1
dy

yields
∣∣ϕ(x)

∣∣ . ‖ϕ‖Lp(Rn) +
( ∫

Beu
1 (x)

|x− y|−
p(n−1)
p−1 dy

)p−1
p ‖∇ϕ‖Lp(Rn) ,

after another application of Hölder’s inequality. Now, the assumptions on n, p imply p(n−1)
p−1

< n, whence

it follows that

ϕ̃(y) := |x− y|−
n−1
p−1 ∈ Lp

(
Beu1 (x)

)

for any x ∈ Rn. Putting this together, we obtain
∣∣ϕ(x)

∣∣≤ c(n, p) ‖ϕ‖W1,p(Rn).

Suppose now k is any positive integer. Then one can show that there exists a constant c(n, k) such that

∣∣ϕ(x)
∣∣ ≤

k−1∑

j=0

1

j!
−
∫

Beu
1 (x)

∣∣Dj
xϕ(y)

∣∣ dy + c(n, k)

∫

Beu
1 (x)

∣∣Dk
x ϕ(y)

∣∣
|x− y|n−k dy

4

for arbitrary points x ∈ Rn. Similarly as above, we use Hölder’s inequality together with kp > n to find

∣∣ϕ(x)
∣∣ .

k∑

j=0

‖Dj
xϕ‖Lp(Rn) .

This completes the proof of the lemma. �

Corollary 2.7.3 Suppose Ω ⊆ H is open and satisfies the cone condition. Further let p ≥ 1 and k ∈ N

with kp > n. If u ∈ W k,p(Ω), then the assertion of lemma 2.7.2 holds for almost every x ∈ Ω, where this

time the constant c depends on n, k, p and Ω.

4In [27] a proof is provided for k = 1. The general case may be found in [1]. Indeed, this inequality holds on
arbitrary finite cones having their vertex at x ∈ Ω. Hence, lemma 2.7.3 remains valid for all domains that satisfy
the cone condition.
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Proof: Let u ∈ W k,p(Ω), then by proposition 2.5.1 one can find a sequence {ϕi}i∈N in C∞(Ω) with

ϕi → u in W k,p(Ω). For i1, i2 ∈ N, we find

∣∣ϕi1(x)− ϕi2(x)
∣∣ . ‖ϕi1 − ϕi2‖Wk,p(Ω)

for all x ∈ Ω. Since {ϕi}i∈N is in particular a Cauchy sequence in W k,p(Ω),
{
ϕi(x)

}
i∈N

is also a Cauchy

sequence and therefore converges for every x ∈ Ω. By uniqueness of the distributional limit, this implies

ϕ(x) → u(x) for almost every x. But now

∣∣u(x)
∣∣ ≤

∣∣u(x)− ϕi(x)
∣∣ +

∣∣ϕi(x)
∣∣ .

∣∣u(x)− ϕi(x)
∣∣ + ‖ϕi‖Wk,p(Ω)

by lemma 2.7.2, and the right hand side approaches ‖u‖Wk,p(Ω) for almost every x ∈ Ω as i → ∞. The

proof is complete. �

As a next step we present a version of lemma 2.7.1 that includes weights of the form x σn . The presented

inequality interpolates between two well-known inequalities: There is on the one hand the classical Sobolev

inequality in a weighted setting, and on the other hand Hardy’s inequality.

Proposition 2.7.4 Let σ > −1 and 1 ≤ q ≤ p < ∞ be any numbers satisfying the conditions σ > − 1
p

and
1

p
=

1

q
− 1− θ

n
, θ ∈ [0, 1] .

Then we have

‖x σn ϕ‖Lp(H) ≤ c(n, σ, p, q) ‖x σ+θn ∇ϕ‖Lq(H)

for all ϕ ∈ C1
c (H).

Note that we consider the more general case ϕ ∈ C1
c (H). Such functions, in contrast to ϕ ∈ C1

c (H), may

take values towards the boundary of H .

Proof: Assume first that q = 1. For ψ(x) := ϕ(x′, 2xn) − ϕ(x), Ai := {x ∈ Rn | 2i < xn ≤ 2i+1} and

Bi := Ai ·∪ Ai+1 = {x ∈ Rn | 2i < xn ≤ 2i+2}, the fundamental theorem of calculus shows that

‖ψ‖L1(Ai ,µσ) = ‖x σn
∫ 2xn

xn

∂zϕ(· , z) dz‖L1(Ai)
≤
∫ 2i+2

2i
‖∂zϕ(· , z)‖L1(Rn−1)

(∫ z

z
2

x σn dxn
)
dz

≤ 1

σ + 1
‖∂xnϕ‖L1(Bi ,µσ+1)

,

(∗)

where we used Fubini’s theorem in the first inequality. Now once we have established the inequality

‖x σn ψ‖
L

n
n−1 (Ai)

. ‖x σn ∇ϕ‖L1(Bi)
, (∗∗)

we recover the statement of the proposition by interpolation between the spaces L
n

n−1 and L1. Indeed,

‖x σn ψ‖Lp(H) =
∑

i∈Z

‖x σn ψ‖Lp(Ai) ≤
∑

i∈Z

‖x σn ψ‖1−θLr(Ai)
‖x σn ψ‖θLq(Ai)

,

where 1
p
= 1−θ

r
+ θ

q
, and 0 ≤ θ ≤ 1 is to be selected. In order to be able to apply (∗) and (∗∗), we choose

r = n
n−1

and q = 1 such that θ has to be 1 + n
p
− n. This gives

‖x σn ψ‖Lp(H) .
∑

i∈Z

‖x σn ∇ϕ‖1−θ
L1(Bi)

‖x σ+1
n ∇ϕ‖θL1(Bi)

.

Restricted to Bi we have 2i < xn ≤ 2i+2. This implies that the right hand side is (up to a constant)
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bounded by ∑

i∈Z

2i(σ+θ) ‖∇ϕ‖L1(Bi)
≤ c(n, σ, p) ‖x σ+θn ∇ϕ‖L1(H) .

We recall the definition of ψ and arrive at

‖x σn ϕ‖Lp(H) ≤ ‖x σn ϕ(·, 2xn)‖Lp(H) + ‖x σn ψ‖Lp(H)

≤ 2
−σ− 1

p ‖x σn ϕ‖Lp(H) + c(n, σ, p) ‖x σ+θn ∇ϕ‖L1(H)

by the transformation formula and the above estimate. Now the assumption σ > − 1
p
allows us to subtract

2−σ−1/p ‖x σn ϕ‖Lp(H) from both sides and then divide by 1 − 2−σ−1/p > 0. The proposition follows for

q = 1 and θ = 1 + n
(
1
p
− 1
)
. As by assumption 0 ≤ θ ≤ 1, this requires 1 ≤ p ≤ n

n−1
.

The general case can now be reduced to the case q = 1. To see this, let 1 ≤ r ≤ n
n−1

be the number

satisfying 1
r
= θ + (1− θ)n−1

n
with 0 ≤ θ ≤ 1. Using the above estimate and Hölder’s inequality we see

‖x σn ϕ‖
p
r
Lp(H) = ‖x

σp
r

n |ϕ|
p
r ‖Lr(H) . ‖x

σp
r

+θ
n ∇

(
|ϕ|

p
r
)
‖L1(H)

= ‖
(
x σn |ϕ|

) p
r
−1
x σ+θn ∇ϕ‖L1(H) ≤ ‖x σn ϕ‖

p
r
−1

Lp(H) ‖x
σ+θ
n ∇ϕ‖Lq(H) ,

if
(
p
r
− 1
)

q
q−1

= p and q−1
q

= 1
p

(
p
r
− 1
)
. These equalities and the condition on r then demand to take

θ ∈ [0, 1] such that
1

p
=

1

q
− 1− θ

n
.

It remains to prove (∗∗). First we assume that n ≥ 2. If ψ, Ai and Bi are as above, then we have

‖x σn ψ‖
n

n−1

L
n

n−1 (Ai)
=

∫ 2i+1

2i
‖
∣∣x σn ψ(· , xn)

∣∣ ∣∣x σn ψ(· , xn)
∣∣ 1
n−1 ‖L1(Rn−1) dxn

≤
∫ 2i+1

2i
‖x σn ψ(· , xn)‖

L
n−1
n−2 (Rn−1)

‖x σn ψ(· , xn)‖
1

n−1

L1(Rn−1)
dxn

≤
∫ 2i+1

2i
x σn ‖ψ(· , xn)‖

L
n−1
n−2 (Rn−1)

dxn
(

sup
2i<xn<2i+1

x σn ‖ψ(· , xn)‖L1(Rn−1)

) 1
n−1

by Hölder’s inequality with n−2
n−1

+ 1
n−1

= 1. Now, lemma 2.7.1 on Rn−1 yields

∫ 2i+1

2i
x σn ‖ψ(· , xn)‖

L
n−1
n−2 (Rn−1)

dxn .

∫ 2i+1

2i
x σn ‖∇′ψ(· , xn)‖L1(Rn−1) dxn

.

∫ 2i+2

2i
x σn ‖∇′ϕ(· , xn)‖L1(Rn−1) dxn

by the triangle inequality and a substitution in the term ψ(· , xn) = ϕ(· , 2xn) − ϕ(· , xn). For the second

term we proceed as follows:

sup
2i<xn<2i+1

x σn ‖ψ(· , xn)‖L1(Rn−1) ≤ sup
2i<xn<2i+1

x σn

∫ 2xn

xn

‖∂zϕ(· , z)‖L1(Rn−1) dz

≤ 4|σ|
∫ 2i+2

2i
zσ ‖∂zϕ(· , z)‖L1(Rn−1) dz .

(Similarly, if n = 1 we get ‖xσ ψ‖L∞(Ai) ≤ c(σ)‖xσ ϕ′‖L1(Bi)
and hence the desired estimate). Altogether,

this gives

‖x σn ψ‖
n

n−1

L
n

n−1 (Ai)
. ‖x σn ∇′ϕ‖L1(Bi)

‖x σn ∂xnϕ‖
1

n−1

L1(Bi)
≤ n− 1

n
‖x σn ∇′ϕ‖

n
n−1

L1(Bi)
+

1

n
‖x σn ∂xnϕ‖

n
n−1

L1(Bi)

because n−1
n

+ 1
n
= 1 (Young exponents). Finally, we realize that any two norms in finite dimensions are
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equivalent so that

‖x σn ∇′ϕ‖
n

n−1

L1(Bi)
+ ‖x σn ∂xnϕ‖

n
n−1

L1(Bi)
≤ cn ‖x σn

(
|∇′ϕ|+ |∂xnϕ|

)
‖

n
n−1

L1(Bi)
≤ 2 cn ‖x σn ∇ϕ‖

n
n−1

L1(Bi)
.

This proves the full statement. �

Corollary 2.7.5 Let k ∈ N and θ ∈ [0, 1]. If 1 ≤ q ≤ p <∞ are any numbers satisfying 1
p
= 1

q
− k(1−θ)

n
,

σ > −1 as well as σ ≥ −kθp, and σk ≥ · · · ≥ σ0 > −1 such that σj+1 − σj ≤ q and σk =
(
σ
p
+ k θ

)
q hold.

Then we have

‖u‖Lp(H,µσ) ≤ c(n, σ, p, q) ‖Dk
x u‖Lq(H,µσk

) (2.7.1)

for all u ∈ W k,q(H,µσ0 , . . . , µσk).

Proof: Suppose ϕ ∈ C∞
c (H). Taking proposition 2.7.4 as a starting point for an iteration on the

derivatives we attain

‖ϕ‖Lp(µσ) . ‖Dk
x ϕ‖Lq(µσk

) , (∗)

where p, q, σ, σk are as in the current corollary.

The assumptions on σ0, . . . , σk imply the assumptions of theorem 2.5.5 or rather remark 2.6.3. This means

the closure of C∞
c (H) in the norm ‖ · ‖W1,q(H,µσ0 ,...,µσk

) is the space W 1,q(H,µσ0 , . . . , µσk) and we can

find a sequence {ϕi}i∈N in C∞
c (H) that converges to u ∈W 1,q(H,µσ0 , . . . , µσk ). By (∗) we get

‖u‖Lp(µσ) . ‖u− ϕi‖Lp(µσ) + ‖Dk
x ϕi‖Lq(µσk

) . (∗∗)

We apply the iterated Hardy-Sobolev inequality (∗) yet another time which leads us to the estimate

‖ϕi1 − ϕi2‖Lp(µσ) . ‖Dk
x (ϕi1 − ϕi2)‖Lq(µσk

) .

Since {Dk
x ϕi}i∈N is a Cauchy sequence in Lq(µσk ), this shows that {ϕi}i∈N is a Cauchy sequence in Lp(µσ).

It follows that ϕi → u in Lp(µσ). To see this, note that Lp(µσ) is a Banach space, and hence the Cauchy

sequence {ϕi}i∈N is convergent to some function v in that space. But we also have ϕi → u in Lq(µσ0), and

since any distributional limit is unique, we have v = u. We finish the proof by sending i→ ∞ in (∗∗). �

Remark 2.7.6 The previous estimate not only combines the Hardy inequality and the classical Sobolev

inequality into one, but also generalizes them to weighted Sobolev spaces. Take for example θ = 0, then

p = q∗ = nq
n−kq with kq < n and and we obtain an iterated version of lemma 2.7.1 in the weighted Sobolev

classes. On the other hand, for the second endpoint θ = 1, we get q = p and σk = σ+ kp, such that (2.7.1)

becomes the Hardy inequality (cf. lemma 2.6.1).

2.8 Interpolation Inequalities

Suppose we have q ≤ r ≤ p and ϕ ∈ Lq ∩ Lp. Then it is 1
p
≤ 1

r
≤ 1

q
and there exists a θ ∈ [0, 1] such that

1

r
=

1− θ

q
+
θ

p
. (2.8.1)

Therefore, q
(1−θ)r and p

θr
are conjugate exponents, and |ϕ|(1−θ)r ∈ L

q
(1−θ)r and |ϕ|θr ∈ L

p
θr . Hence, we

can apply Hölder’s inequality from which follows that ϕ is also in Lr. To be more precise, we have

‖ϕ‖Lr ≤ ‖ϕ‖1−θLq ‖ϕ‖θLp .
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Such an inequality is called interpolation inequality as it interpolates between the Lq-norm and the Lp-

norm of ϕ. Now we are interested in a generalization of this simple result in as much as we would like

to additionally involve an interpolation between certain derivatives of ϕ. The unweighted interpolation is

usually known as Gagliardo-Nirenberg interpolation - the proof is largely taken from [33]. In a second step,

we formulate this result for weighted Sobolev spaces.

Lemma 2.8.1 (Gagliardo-Nirenberg interpolation) Let j, k ∈ N be such that 0 ≤ θ := j
k
< 1, and

1 ≤ r, p, q ≤ ∞ satisfying (2.8.1). Then there exists a positive constant c that depends only on n and r

such that

‖Dj
xϕ‖Lr(Ha) ≤ c ‖ϕ‖1−θLq(Ha)

‖Dk
x ϕ‖θLp(Ha)

for all ϕ ∈ Ckc (Ha), where Ha = (a,∞)× Rn−1 is the upper half space beginning at a ∈ R.

Proof: Suppose first that j + 1 = 2 = k, p > 1, q < ∞ and n = 1. The statement then follows from the

inequality

∫

I

∣∣ϕ′(x)
∣∣r dx ≤ c(r) |I |1−r

(
1+ 1

q

) (∫

I

∣∣ϕ(x)
∣∣q dx

) r
q
+ c(r) |I |1+r

(
1− 1

p

) (∫

I

∣∣ϕ′′(x)
∣∣p dx

) r
p
, (∗)

where 2
r
= 1

q
+ 1

p
and I = (a, b) is any bounded interval in R.

Take any integer N ∈ N and define Ĩ1 := (a, a+ |I|
N
). If the second summand in (∗) is larger than the first

one, we set I1 = Ĩ1 =: (a1, b1). This implies

∫

I1

∣∣ϕ′(x)
∣∣r dx ≤ 2 c(r)

( |I |
N

)1+r
(
1− 1

p

) (∫

I

∣∣ϕ′′(x)
∣∣p dx

) r
p
.

If the first term is larger, we take I1 = (a1, b1) where a1 = a and b1 > a + |I|
N

such that both terms on

the right hand side of (∗) are equal. Such an interval exists since, by assumption, we have ϕ ∈ C2
c (Ha):

ϕ′′ ≡ 0 implies that ϕ is linear and hence constant to 0. Additionally, we have that the factor

|I1|1−r
(
1+ 1

q

)

is monotonically decreasing for q <∞, while the other prefactor increases as |I1| gets larger. Consequently,
we can find such an interval for which

∫

I1

∣∣ϕ′(x)
∣∣r dx ≤ 2 c(r) |I1|1−

r
2

(
1
q
+ 1

p

) (∫

I1

∣∣ϕ(x)
∣∣q dx

) r
2q
(∫

I1

∣∣ϕ′′(x)
∣∣p dx

) r
2p
.

Here we also used the simple equality a+ b = 2(ab)
1
2 provided we have a = b. Therefore with 2

r
= 1

q
+ 1

p
,

we arrive at

∫

I1

∣∣ϕ′(x)
∣∣r dx .

( |I |
N

)1+r
(
1− 1

p

) (∫

I

∣∣ϕ′′(x)
∣∣p dx

) r
p

+
(∫

I1

∣∣ϕ(x)
∣∣q dx

) r
2q
(∫

I1

∣∣ϕ′′(x)
∣∣p dx

) r
2p
.

Repeating the procedure N0 times until bN0−1 < b ≤ bN0 , this process must eventually stop since a+N |I|
N

=

b, i.e. N0 ≤ N . Summing over the disjoint intervals Il (1 ≤ l ≤ N0) and using Hölder’s inequality then

yields

∫

I

∣∣ϕ′(x)
∣∣r dx ≤

∫ bN0

a

∣∣ϕ′(x)
∣∣r dx =

N0∑

l=1

∫

Il

∣∣ϕ′(x)
∣∣r dx

. |I |
( |I |
N

)r
(
1− 1

p

) (∫

I

∣∣ϕ′′(x)
∣∣p dx

) r
p

+
(∫ ∞

a

∣∣ϕ(x)
∣∣q dx

) r
2q
(∫ ∞

a

∣∣ϕ′′(x)
∣∣p dx

) r
2p
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Since we assume that p > 1, the first term tends to zero as N → ∞ and the desired inequality follows for

n = 1, j = 1 and k = 2, q < ∞ and p > 1. The cases q = ∞ and p = 1 are attained by sending q → ∞
and p→ 1 in the above inequalities.

For n ≥ 2 consider ϕ as a function of xi0 treating all the other variables as parameters. Integrating

with respect to the other variables xi with i 6= i0 and using Hölder’s inequality allows us to prove the

n-dimensional case.

Finally, if we assume the assertion holds for j = 1 and k = 2, we can perform an induction on k to show

that the general statement is true for any 0 ≤ j < k ∈ N.

Proof of inequality (∗): Suppose I = (a, b) is an interval in R with |I | <∞ and ϕ ∈ C2(I). Moreover,

let x1, x2 ∈ I be such that

a < x1 < a+
|I |
4

< a+
3 |I |
4

= b− |I |
4

< x2 < b .

Then by the intermediate value theorem, there exists a ξ ∈ (x1, x2) such that

ϕ′(ξ) =
ϕ(x2)− ϕ(x1)

x2 − x1
.

By the fundamental theorem of calculus, we thus have

∣∣ϕ′(x)
∣∣ =

∣∣∣ϕ′(ξ) +

∫ x

ξ

ϕ′′(y) dy
∣∣∣ ≤ 2

∣∣ϕ(x1)
∣∣+
∣∣ϕ(x2)

∣∣
|I | +

∫ b

0

∣∣ϕ′′(y)
∣∣ dy

for all x ∈ I . We then integrate with respect to x1, x2 in their respective intervals to get

|I |2
16

∣∣ϕ′(x)
∣∣ ≤ 1

2

∫ a+
|I|
4

a

∣∣ϕ(x1)
∣∣ dx1 +

1

2

∫ b

b− |I|
4

∣∣ϕ(x2)
∣∣ dx2 +

|I |2
16

∫

I

∣∣ϕ′′(y)
∣∣ dy

≤ 1

2

∫

I

∣∣ϕ(y)
∣∣dy +

|I |2
16

∫

I

∣∣ϕ′′(y)
∣∣ dy .

Taking the r-th power and applying Hölder’s inequality to both summands on the right hand side yields

∣∣ϕ′(x)
∣∣p ≤ c

(
|I |−r− r

q

(∫

I

∣∣ϕ(y)
∣∣q dy

) r
q
+ |I |r− r

p

(∫

I

∣∣ϕ(y)
∣∣p dy

) r
p

)
.

Now integration of x over I proves (∗) for any bounded interval I ⊂ R, ϕ ∈ C2(I) and for all 1 ≤ r, q, p ≤ ∞.

Also note that the constant c is independent of I , q and p, and so we have c = c(r) as required. �

As a sample application of lemma 2.8.1, let us present a weighted version of this inequality. For special

- albeit similar to ours - power weights such as |x|σ the corresponding embedding is treated in [60]. A

generalization to weighted Sobolev spaces may be found in [67], where the authors prove a Gagliardo-

Nirenberg interpolation for a broader class of weights.

Proposition 2.8.2 Let j, k be any integers satisfying 0 ≤ θ := j
k
< 1, and r, p, q, σ be any positive

numbers with σ > 0 and 1 ≤ r, q, p ≤ ∞, respectively. If u is a function in Lq(H,µσ) ∩W k,p(H,µσ), then

we have

‖Dj
xu‖Lr(H,µσ) ≤ c ‖u‖1−θLq(H,µσ) ‖Dk

x u‖θLp(H,µσ) ,

where
1

r
=

1− θ

q
+
θ

p

and c is the constant from lemma 2.8.1.
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Proof: Applying the Gagliardo-Nirenberg inequality 2.8.1 to ϕ ∈ C∞
c (H) we find

∫

H

∣∣Dj
xϕ(x)

∣∣r x σn dx = σ

∫ ∞

0

(∫

Rn−1

∣∣Dj
xϕ(x)

∣∣r dx′
)(∫ xn

0

yσ−1 dy
)
dxn

= σ

∫ ∞

0

(∫ ∞

y

∫

Rn−1

∣∣Dj
xϕ(x)

∣∣r dx′ dxn
)
yσ−1 dy

. σ

∫ ∞

0

(∫ ∞

y

∫

Rn−1

∣∣ϕ(x)
∣∣q dx

) (1−θ)r
q
(∫ ∞

y

∫

Rn−1

∣∣Dk
x ϕ(x)

∣∣p dx
) θr

p
yσ−1 dy ,

where 1
r
= 1−θ

q
+ θ

p
with θ = j

k
. In the second line we used Fubini’s theorem. For

(
q

(1−θ)r ,
p
θr

)
is a Hölder

pair, we get

∫

H

∣∣Dj
xϕ(x)

∣∣r x σn dx . σ

∫ ∞

0

(∫

Hy

∣∣ϕ(x)
∣∣q dx yσ−1

) (1−θ)r
q
(∫

Hy

∣∣Dk
x ϕ(x)

∣∣p dx yσ−1
) θr

p
dy ,

with Hy := (y,∞)×Rn−1 for y ∈ (0,∞). Hölder’s inequality and a further application of Fubini’s theorem

then give the upper bound

σ
(∫

H

∣∣ϕ(x)
∣∣q
∫ xn

0

yσ−1 dy dx
) (1−θ)r

q
(∫

H

∣∣Dk
x ϕ(x)

∣∣p
∫ xn

0

yσ−1 dy dx
) θr

p

=
(∫

H

∣∣ϕ(x)
∣∣q x σn dx

) (1−θ)r
q
(∫

H

∣∣Dk
x ϕ(x)

∣∣p x σn dx
) θr

p

with 1
r
= 1−θ

q
+ θ
p
and 1 ≤ r, q, p ≤ ∞. Since all the estimates but the Gagliardo-Nirenberg interpolation are

sharp we have that the constant appearing on the right hand side of the inequality is the the same one as in

lemma 2.8.1. This implies the proposition for smooth functions. Since these are dense in Lq(µσ)∩W k,p(µσ)

for nonnegative σ, one can find a sequence {ϕi}i∈N ⊂ C∞
c (H) that converges to u in Lq(µσ) ∩W k,p(µσ).

As before, we conclude that also Dj
xϕi → Dj

xu in Lr(µσ) such that

‖Dj
xu‖Lr(µσ) . ‖Dj

xu−Dj
xϕi‖Lr(µσ) + ‖ϕi‖1−θLq(µσ) ‖Dk

x ϕi‖θLp(µσ) → ‖u‖1−θLq(µσ) ‖Dk
x u‖θLp(µσ)

as i approaches infinity. This finishes the proof. �

Next we propose a lemma that also interpolates between the power weights on the right hand side. Fortu-

nately, a proof only requires a slight modification in the previous proof.

Lemma 2.8.3 Let p ≥ 2 and σ > 0. Then for any ε > 0 there exists a constant c that depends on n, σ, p

such that

‖∇u‖Lp(H,µσ+1) ≤ c ε−1 ‖u‖Lp(H,µσ) + ε ‖D2
x u‖Lp(H,µσ+2)

for all u ∈W 2,p(H,µσ, µσ1 , µσ+2) with σ1 ∈ [σ, σ + 2].

Proof: Putting j = 1, k = 2 as well as r = q = p, we obtain

‖∇ϕ‖pLp(µσ+1)
.

∫ ∞

0

(∫ ∞

y

∫

Rn−1

∣∣ϕ(x)
∣∣p dx

) 1
2
(∫ ∞

y

∫

Rn−1

∣∣D2
xϕ(x)

∣∣p dx
) 1

2
yσ dy ,

just as above. Using

σ =
σ − 1

2
+
σ + 1

2
,

this amounts to

‖∇ϕ‖pLp(µσ+1)
.
(∫

H

∣∣ϕ(x)
∣∣p
∫ xn

0

yσ−1 dy dx
) 1

2
(∫

H

∣∣D2
xϕ(x)

∣∣p
∫ xn

0

yσ+1 dy dx
) 1

2

. ‖ϕ‖
p
2
Lp(µσ) ‖D

2
xϕ‖

p
2
Lp(µσ+2)

.
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The prerequisite σ > 0 ensures boundedness of the factors σ−1 and (σ+1)−1 that come up by integrating the

inner y-integrals. The assertion for ϕ ∈ C2
c (H) now follows from Young’s inequality or rather

√
ab ≤ a

4ε
+εb.

By density, the same inequality also holds for all u that satisfy the assumptions of the present lemma. �



Chapter 3

Linearization of the Thin-Film

Equation

Consider the equation

∂sh + ∇y ·
(
hm∇y∆y h

)
= 0 . (TFE)

Interchanging the roles of the independent variable yn and the dependent variable h, a technique known

as von Mises transformation, transforms our equation (TFE) near the free boundary into a nonlinear

degenerate problem with fixed domain. In the next step, we linearize the transformed equation around

some specific solution. The equation thus obtained serves as a basis for implementing a comprehensive

linear theory, one of the main issues addressed in this thesis.

3.1 Transformation

Let h(s, y) be a solution to (TFE) and assume that near (s0, y0) it is a C
1-function with h(s0, y0) = 0 and

∇yh(s0, y0) = ε0 > 0. Then there exists a small number 0 < ε < ε0 for which ∇yh(s, y) ≥ ε for all

(s, y) ∈ Uε(s0, y0) =
{
(s, y)

∣∣ Ps(h) ∩Beuε (y0) , s ∈ (s0 − ε, s0]
}
,

where by Ps(h) we denote the set Ps(h) = {y ∈ Rn | h(s, y) > 0}. In Uε(s0, y0) we can apply the implicit

function theorem to solve the equation z = h(s, y) with respect to yn giving rise to a function

yn = v(s, y′, z) .

Written in local coordinates, the graph has the form

Γ =
{
(s, y, z) | z = h(s, y)

}
=
{
(s, y′, yn, z) | yn = v(s, y′, z)

}
.

This suggests to introduce the new variables

t = s , x′ = y′ , xn = z and yn = v(t, x) ,

and the graph reads Γ =
{
(t, x′, yn, xn) | F (t, x′, yn, xn) = 0

}
with F (t, x′, yn, xn) = v(t, x)− yn.

Remark: As we suppose that h is positive in its support the transformation ensures that the original

problem becomes one on a fixed domain, namely the upper half plane H := {xn > 0}.

35
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a) before

yn

h

b) after

xn

v

Figure 3.1: Changing independent and dependent variables.

In order to express derivatives of h in terms of v we apply the implicit function theorem to F (t, x′, yn, xn)

with xn = h(t, x′, yn) to obtain

∂(s, y) h = ∂(t, x′, yn) xn = − ∂(t, x′, yn)F

∂xnF
,

that is ∂sh = −
(
∂tv
∂xnv

)
, ∂yih = −

( ∂xi
v

∂xnv

)
, i 6= n, and ∂ynh = 1

∂xnv
. Hence, the entries in the follwing

matrix

∂(t, x)

∂(s, y)
=




1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

− ∂tv
∂xnv

− ∂x1v

∂xnv
− ∂x2v

∂xnv
. . . 1

∂xnv




(3.1.1)

are the partial derivatives of the coordinate change (s, y) 7→ (t, x). Using the chain rule we calculate

∆yh =

n∑

i=1

∂yiyih
(3.1.1)
= −

n−1∑

i=1

∂yi

( ∂xiv
∂xnv

)
+ ∂yn

(
∂xnv

)−1

= −
n−1∑

i=1

n∑

k=1

(
∂yixk

)
∂xk

( ∂xiv
∂xnv

)
+

n∑

k=1

(
∂ynxk

)
∂xk
(
∂xnv

)−1

(3.1.1)
= −

(
∂xnv

)−1

[
n−1∑

i=1

(
∂xnv

)
∂xi

( ∂xiv
∂xnv

)
−

n−1∑

i=1

(
∂xiv

)
∂xn

( ∂xiv
∂xnv

)
− ∂xn

(
∂xnv

)−1

]

= −
(
∂xnv

)−1
[
∆xv − ∂xn

(1 + |∇xv|2
∂xnv

)]
.

Similarly, we find

∇y =

(
∇′
x − (∂xnv)

−1 ∇′
xv ∂xn

(∂xnv)
−1 ∂xn

)

such that

∇y ·
(
hm ∇y

)
= x mn ∆′

x − x mn ∇′
x ·
( ∇′

xv

∂xnv
∂xn

)
+
(
∂xnv

)−1
∂xn

( x mn
∂xnv

∂xn

)
−

−
n−1∑

i=1

[
∂xiv

∂xnv
∂xn
(
x mn ∂xi

)
− ∂xiv

∂xnv
∂xn

(
x mn

∂xiv

∂xnv
∂xn

)]
.
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Combining these results we get

0 = ∂tv +

(
(
∂xnv

)
∇′ ·
[
x mn

(
∇′ − ∇′v

∂xnv
∂xn

)]
−
(
∇′v

)
· ∂xn

[
x mn

(
∇′ − ∇′v

∂xnv
∂xn

)]
+

+ ∂xn

[
x mn
∂xnv

∂xn

]) (
(
∂xnv

)−1
[
∆v − ∂xn

(1 + |∇v|2
∂xnv

)])
.

(3.1.2)

Note that by ∇′ = ∇x′ we mean the gradient of dimension n− 1 leaving aside the xn-direction.

A corresponding notation applies to ∆′.

3.2 Perturbation of Stationary Solutions

From other equations it is known that solutions close to a special solution can give both insight and detailed

information about general solutions and their qualitative behavior. Therefore, we assume that any initial

datum h0 is a small perturbation of the stationary solution

hst(y) = y an χ{yn>0}(y) .

h0

hst

yn

h

Figure 3.2: Initial datum h0 as a small perturbation of the stationary solution hst(y) = (yn)
2
+

Our particular interest will be the case of quadratic growth a = 2. For this purpose we set h̃ =
√
h, where

we consider h as a solution of (TFE). Using this as an ansatz we rewrite the problem in the form

∂sh̃
2 +∇·

(
h̃2m ∇∆h̃2) = 0 ,

or equivalently

0 = ∂sh̃ + ∇·
(
h̃2m∇∆h̃

)
+ 4 h̃2m−1∇h̃ ·∇∆h̃ + h̃2m−1(∆h̃)2 + 2 h̃2m−1|D2

y h̃|2 +

+ 2mh̃2m−2|∇h̃|2∆h̃ + 4mh̃2m−2
n∑

i,j=1

(∂yi h̃)(∂yj h̃) ∂yiyj h̃ .
(3.2.1)

Since hst is a solution to (TFE), h̃st(y) =
(
yn
)
+
is a solution to (3.2.1). Now, similar as above we transform

the equation term by term followed by a linearization around vst(x) = xn for x ∈ H . To put it plainly, we

set v(t, x) = vst(x) + u(t, x), where u can be regarded as a small perturbation of the steady state. Then v

solves the transformed equation if and only if u satisfies the linear equation

f [u] = ∂tu + ∇·
(
x 2m
n ∇∆u

)
+ 4x 2m−1

n ∂xn∆u + 2mx 2m−2
n

(
∆u + 2 ∂2

xnu
)

for a nonlinearity f [u] whose precise form will be discussed in lemma 3.3.1. For simplicity we only consider

the case m = 1. The equation now reads

f [u] = ∂tu + ∇·
(
x 2
n ∇∆u

)
+ 4xn ∂xn∆u + 2∆u + 4 ∂2

xnu =: ∂tu + L0u .
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Remark: In one space dimension the linear spatial part L0 becomes the (formally) self-adjoint operator

L0u =
1

x
∂2
x

(
x3 ∂2

xu
)

on the Hilbert space L2(R+, x), that is, L0 is associated with the quadratic form

〈u, v〉L2(R+,x)
=

∫

R+

∂2
xu(x) ∂

2
xv(x)x

3 dx .

In [36, 37, 35] Giacomelli et al. investigated this equation in one space dimension and perceived that such

a symmetric structure is really needed to carry out the analysis presented in these papers.

3.3 The Nonlinearity

In order to give f [u] a more suitable form we first introduce some notations to be used in the following. We

employ the ⋆ notation to mean an arbitrary linear combination of products of indices for derivatives of u.

For example, ∇u ⋆ D2
x u denotes ∂xnu∆u and ∇′u·∇′∂xnu, as well as their sum. Moreover, we abbreviate

the iterated application of ⋆ to derivatives of k-th order, with k ∈ N0, by

Pj(D
k
x u) := Dk

x u ⋆ . . . ⋆ D
k
x u︸ ︷︷ ︸

j−times

, j ∈ N0 .

Utilizing these schematic notations enables us to rewrite f [u] in a more convenient form.

Lemma 3.3.1 The thin-film equation (TFE) can be transformed into

∂tu + L0u = f0[u] + xn f1[u] + x 2
n f2[u] on I ×H ,

with

f0[u] = f1
0 (∇u) ⋆ ∇u ⋆ D2

x u ,

f1[u] = f1
1 (∇u) ⋆ ∇u ⋆ D3

x u + f2
1 (∇u) ⋆ P2(D

2
xu) and

f2[u] = f1
2 (∇u) ⋆ ∇u ⋆ D4

x u + f2
2 (∇u) ⋆ D2

x u ⋆ D
3
x u + f3

2 (∇u) ⋆ P3(D
2
x u) ,

and L0u = ∇·
(
x 2
n ∇∆u

)
+ 4xn∂xn∆u+ 2∆u+ 4 ∂2

xnu.

Proof: Considering equation (3.2.1) we first transform each summand separately and then linearize the

transformed terms around the steady state vst(x) = xn.

For the temporal part we get ∂sh̃ = − ∂tu
vn

, where vn := ∂xnv = 1 + ∂xnu. For simplicity, from now on we

multiply the equation by −vn in all of the transformations. Next, by formula (3.1.2) we discover

− vn∇·
(
h̃2 ∇∆h̃

)
= ∇·

(
x 2
n ∇∆u

)
− R1(u) .
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With vn as above and q[u] := ∂xn

(
1+|∇v|2
vn

)
= ∂xn

(
|∇u|2
vn

)
, we calculate term by term which gives

R1(u) = 2x 2
n

(
∂xn∇′ ·

(∇′u

vn

(
∆u− q[u]

))
+ ∂xn

(
∇′u · ∇

′∂xnu

v 2
n

(
∆u− q[u]

)))
−

−x 2
n

(
∂xn

((∆′u

vn
+

|∇′u|2
v 3
n

∂2
xnu

)(
∆u− q[u]

))
+ ∂2

xn

( |∇′u|2
v 2
n

(
∆u− q[u]

)))
+

+2 xn

(
∇′ ·
(∇′u

vn

(
∆u− q[u]

))
− ∂xn

( |∇′u|2
v 2
n

(
∆u− q[u]

)))
+

+2 xn

((
2∇′u · ∇

′∂xnu

v 2
n

− ∆′u

vn
− |∇′u|2

v 3
n

∂2
xnu

)(
∆u− q[u]

))
−

−x 2
n ∂xn

((
v−2
n − 1

)
∂xn∆u

)
+ x 2

n ∆′q[u] − 2 xn
(
v−2
n − 1

)
∂xn∆u+

+ ∂xn

(
x 2
n

v 2
n

(
∂xnq[u] +

∂2
xnu

vn

(
∆u− q[u]

)))
= xn f1[u] + x 2

n f2[u] .

Since v−2
n − 1 = −v−2

n (2 + ∂xnu)∂xnu we have fi[u] = f1
i [∇u] ⋆∇u ⋆ Di+2

x u+ . . . for i = 1, 2.

In a similar fashion, we treat the other expressions in equation (3.2.1). For instance, we get

− 4 vn h̃∇h̃ ·∇∆h̃ = 4xn ∂xn∆u − R2(u) ,

where the remainder is given by

R2(u) = 4xn

(
∇′u ·∇′

(
v−1
n

(
∆u− q[u]

))
− |∇′u|2

vn
∂xn

(
v−1
n

(
∆u− q[u]

))
−

−
(
v−2
n − 1

)
∂xn∆u +

∂2
xnu

v 3
n

(
∆u− q[u]

)
+ v−2

n ∂xnq[u]

)

= xn f1[u] .

Again, only expressions of the form v−kn ⋆ Pj(∇u) ⋆ P2(D
2
x u) and v

−k
n ⋆ Pj(∇u) ⋆ D3

x u appear. Moreover,

− 2 vn |∇h̃|2 ∆h̃ = 2∆u + 2
( |∇u|2

v 2
n

− 2
∂xnu

vn

)
∆u − 2

1 + |∇′u|2
v 2
n

q[u]

= 2∆u − f0[u] .

Also note that

q[u] = D2
x u ⋆

2∑

k=1

v−kn Pk(∇u) .

The last term of identity (3.2.1) transforms to

− 4 vn

n∑

i,j=1

(∂yi h̃)(∂yj h̃) ∂yiyj h̃ = 4 ∂2
xnu + 4

(
v−4
n

(
|∇′u|4 + 2 |∇′u|2

)
+
(
v−4
n − 1

))
∂2
xnu−

− 8 v−3
n

(
|∇′u|2 ∇′u · ∇′∂xnu + ∇′u ·∇′∂xnu

)
+ 4 v−2

n

n−1∑

i,j=1

(∂xiu)(∂xju) ∂xixju ,

which is equal to 4 ∂2
xnu − f0[u]. It remains to check the quadratic expressions in (3.2.1). These terms,

however, do not contain any linear parts such that both are completely absorbed by the inhomogeneity.

Indeed, one can prove that

− vn
(
h̃ (∆h̃)2 + 2 h̃ |D2

y h̃|2
)

= − xn f1[u]

in the same manner as above. Altogether this finishes the proof of the lemma. �
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3.4 Distributional Solution

As a starting point we consider the linearized thin-film equation

∂tu + L0u = f on I ×H

for some open interval I ⊆ R and H being the upper half plane. In this, the spatial part is given by

L0u = x 2
n ∆2u + 6xn∆∂xnu + 2∆u + 4 ∂2

xnu .

In the context of distributions D′(I × Ω), for some open Ω ⊆ H , there are equivalent expressions for L0u,

namely

L0u = LLu = x−1
n ∆

(
x 3
n ∆u

)
− 4∆′u , (3.4.1)

where L is the second-order differential operator Lu = −x−1
n ∇·(x 2

n ∇u).

Note that we have xn ∈ C∞(I × Ω), and therefore u ∈ D′(I × Ω) satisfies the equation ∂tu + L0u = f if

and only if it also satisfies xn∂tu + xnL0u = xnf . A distributional solution is then characterized by the

equation

− u
(
xn ∂tϕ

)
+ ∆u

(
x 3
n ∆ϕ

)
+ 4∇′u

(
xn∇′ϕ

)
= f

(
xn ϕ

)
∀ ϕ ∈ C∞

c (I × Ω) .

Here we have used the second identity in (3.4.1) and that x 3
n is also a smooth weight over I × Ω. If now

u,∇′u,∆u, f ∈ L1
loc(I × Ω), then this characterization translates into

−
∫

I×Ω

xn u ∂tϕdxdt +

∫

I×Ω

x 3
n ∆u∆ϕdxdt + 4

∫

I×Ω

xn∇′u · ∇′ϕdxdt =

∫

I×Ω

xn f ϕ dxdt (3.4.2)

for all ϕ ∈ C∞
c (I ×Ω). As in that way solutions need not to be necessarily four times differentiable (at the

boundary) we can relax the requirements on the differentiability of solutions. However, this definition has

two weak points: For one thing, it is restricted to H and its open subsets and, for another thing, the weak

assumptions on the solution and the inhomogeneity do not allow for energy techniques. Thus, we shall

need both an adjustment of the test function space and stronger assumptions concerning the regularity of

u and f .

3.4.1 Basic Properties of the Linear Operator

From the distributional point of view it is obvious that both temporal and tangential derivatives commute

with the operator ∂t + L0 , i.e.

∂t
(
∂lt∂

α′
x u
)
+ L0

(
∂lt∂

α′
x u
)
= ∂lt∂

α′
x f (3.4.3)

for all multi-indices α′ =
(
αi
)
1≤i≤n−1

and l ∈ N0. For simplicity, we write ∂α
′

x instead of ∂α
′

x′ . Vertical

derivatives (derivatives in xn-direction), however, can not be treated as straightforward. For this let

u(k) := ∂kxnu with k ∈ N0 and u be as above. It satisfies the more general linear equation

∂tu
(k) + Lku

(k) := ∂tu
(k) + x−k−1

n ∆
(
x k+3
n ∆u(k)

)
− 4∆′u(k) = f̃k

in the sense of definition (3.4.2) with xn and x 3
n replaced by x k+1

n and x k+3
n , respectively. The inhomo-

geneity f̃k can be derived iteratively provided equality holds for k = 0.

Lemma 3.4.1 Let u ∈ L1
loc(I × Ω) satisfy (3.4.2) and f ∈ C∞(I × Ω). Then for all k ∈ N0 we have

f̃k = ∂kxnf − 2k xn∆
′∆u(k−1) − k(k − 1)∆′∆u(k−2) . (3.4.4)
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Proof: Identity (3.4.4) follows by induction over k. The induction basis is already given by the prerequisite

that u is a solution and the fact that f̃0 = f . Hence, it remains to verify the formula for k + 1 under the

hypothesis that (3.4.4) is valid for k ∈ N0. At first we observe that

∂tu
(k+1) + Lk+1u

(k+1) =: ∂tu
(k+1) + Ak+1

[
u(k+1)] − 4∆′u(k+1)

= ∂xn

(
∂tu

(k) − 4∆′u(k)
)

+ Ak+1[u
(k+1)] ,

where we always write u instead of u(ϕ) for ϕ ∈ C∞
c (I×Ω). By simple computations, we obtain successively

Ak+1[u
(k+1)] = Ak[u

(k+1)] + 2 xn∆u
(k+2) + 2(k + 3)∆u(k+1)

= ∂xnAk[u
(k)] + (k + 1) x−k−2

n ∆
(
x k+3
n ∆u(k)) − (k + 3) x−k−1

n ∆
(
x k+2
n ∆u(k)) +

+ 2xn∆u
(k+2) + 2(k + 3)∆u(k+1)

= ∂xnAk[u
(k)] − 2xn∆

′∆u(k) .

Using this and the induction hypothesis yields

∂tu
(k+1) + Lk+1u

(k+1) = ∂xn
(
∂tu

(k) + Lku
(k)) − 2xn∆

′∆u(k)

= ∂xn
(
∂kxnf − 2k xn∆

′∆u(k−1) − k(k − 1)∆′∆u(k−2)) − 2xn∆
′∆u(k)

= ∂k+1
xn f − 2 (k + 1) xn ∆′∆u(k) − (k + 1)k∆′∆u(k−1) ,

as required. �

Remark: Rewriting the terms on the right-hand side as

2k x−k−1
n ∆′(x k+2

n ∆u(k−1)) and k(k − 1) x−k−1
n ∆′(x k+1

n ∆u(k−2))

points out that these terms also have a structure similar to the one of the leading term of Lk, but with

lower vertical derivatives of u. This enables us to iterate certain estimates on vertical derivatives as well.

Translation invariance: The linear equation ∂tu + L0u = f is invariant under translation in any

direction except the xn-direction. The corresponding translation operators are defined by

T0 : (t, x) 7→ (t0 + t, x) and Tj : (t, x) 7→ (t, x+ κ ej) 1 ≤ j ≤ n− 1 , (3.4.5)

where ej denotes the j-th unit vector, t0 ∈ I and κ ∈ R. Then the translation invariance means that

(
∂t + L0

)
(u ◦ Tj) = f ◦ Tj on T−1

j (I × Ω) for j = 0, . . . , n− 1 ,

whenever u is a solution in the sense of integral identity (3.4.2).

Scaling invariance: The equation ∂tu+ L0u = f is invariant under the sacling

Tλ : (t, x) 7→ (λ2t, λx) =: (t̂, x̂) (λ > 0) . (3.4.6)

In order to see this let u be a solution to ∂tu + L0u = f . Then uλ,2(t, x) := λ−2 u(t̂, x̂) is a solution on

T−1
λ (I × Ω),

∂tuλ,2(t, x) + L0uλ,2(t, x) = ∂t̂u(t̂, x̂) + L̂0 u(t̂, x̂) = f(t̂, x̂) .
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Here L̂0 denotes the spatial linear operator with respect to x̂. From this calculation one can also read off

that uλ,γ(t, x) := λ−γ (u ◦ Tλ)(t, x) solves the homogeneous problem for any γ ∈ R.

In view of the explicit representation of f [u], given in lemma 3.3.1, we observe that the nonlinear equation

has the solution uλ,1 provided u is also a solution. Indeed, we have

(∂t + L0)uλ,1 = λ (∂t̂ + L̂0)u = λ f [u] = f [uλ,1] ,

where the last equality can be verified by means of the identity ∂αx uλ,1 = λ|α|−1 ∂αx̂ u.

3.5 Geometry

In this section we generate a distance on the upper half plane that arises intrinsically from the geometry

of the differential operator L0. The structure of subsections 3.5.1 and 3.5.2 is essentially based on works

by Koch [51], and Daskalopoulos and Hamilton [17].

In the last portion, subsection 3.5.3, we make a brief digression into the history of the calculus of variations.

A more detailed overview of this area can be found in [31, 70], to name but two examples.

3.5.1 The Carnot-Caratheodory Metric

The spatial part of the linear operator gives rise to the Riemannian metric

gx(v, w) = x−1
n v · w

on the tangent space TxH ∼= Rn that is attached to x ∈ H = {xn > 0}, where by v · w we denote the

standard scalar product on Rn. Its scaling behavior is given by gλx(λv, λw) = λgx(v, w). The Riemannian

structure allows us to measure the length of parametrized curves γ : R ⊃ [a, b] → H by

ℓg(γ) =

∫ b

a

|γ′(s)|g ds :=

∫ b

a

√
gγ(s)

(
γ′(s), γ′(s)

)
ds ,

and hence induces an intrinsic metric called the metric of Carnot–Caratheodory.

Definition 3.5.1 Let x, y ∈ H. The Carnot-Caratheodory metric or intrinsic distance between x and y

is given by

d(x, y) := inf
{
ℓg(γ)

∣∣ γ : [a, b] → H is piecewise smooth, γ(a) = x and γ(b) = y
}
.

The shortest curve in H joining x and y, i.e. the curve that realizes the distance, is termed geodesic.

It is easy to check that d indeed fulfills the defining conditions of a metric.

Remark 3.5.2 A curve γ of finite length is said to be of unit speed or parametrized by arc length if for

any s1 < s2 ∈ [a, b], we have ℓg(γ|[s1,s2]) = s2 − s1. In particular, if γ is continuously differentiable and

non-zero everywhere, then this definition is equivalent to asking for
∣∣γ′(s)

∣∣
g
= 1 for all s ∈ [a, b]. This

means that the velocity of the corresponding motion of a point is constant by 1 at all times.

In order to find the shortest connection between two given points one traditionally uses techniques of the

calculus of variations. Typically, one considers the energy functional of γ,

Eg(γ) :=
1

2

∫ b

a

∣∣γ′(s)
∣∣ 2
g
ds =

1

2

∫ b

a

γn(s)
−1
∣∣γ′(s)

∣∣2 ds ,
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on an arbitrary but fixed interval (a, b), and minimizes this quantity over all piecewise smooth curves

joining x and y. As opposed to length, energy is dependent on the parametrization of γ. However, owing

to the Cauchy-Schwarz inequality, we always have

ℓg(γ)
2 ≤ 2 (b− a)Eg(γ) ,

and equality holds if and only if γ is parametrized by a multiple of the arc length, i.e. |γ|g is constant. So

we search not only for the energy minimizing curve between x and y but also for a curve of unit speed.

From calculus of variations we know that Eg has an extremum only if the Euler-Lagrange equations are

satisfied, that is

0 =
(
γ−1
n γ′

i

)′
+

1

2
γ−2
n

∣∣γ′∣∣2 δin =
(
γ−1
n γ′

i

)′
+

1

2
γ−1
n δin

for 1 ≤ i ≤ n. First we observe that γ−1
n γ′

i ≡ const. for i = 1, . . . , n − 1 which is equivalent to: There

exists an ~η = (ηi) ∈ Rn−1 such that for γn 6= 0,

γ′
i = ηi γn . (3.5.1)

Now we define η := |~η| =
( ∑
i<n

ηi
2
) 1

2
. Then, assuming that |γ′| 2g = 1, we obtain

1 = γ−1
n

[(
γ′
n

)2
+

n−1∑

i=1

(
γ′
i

)2]
= γ−1

n

[(
γ′
n

)2
+

n−1∑

i=1

(
ηiγn

)2]
= γ−1

n

[(
γ′
n

)2
+ η2γn

2
]
,

and hence (γ′
n)

2 = γn − η2γ 2
n . The general solution to this ordinary differential equation is

γn(s) =
1

2η2

(
1 − cos

(
η (s− k)

))
(3.5.2)

for a k ∈ R. If we substitute this into (3.5.1) and then integrate in time we get

γi(s) = γi(a) + ηi

∫ s

a

γn(t) dt

= γi(a) +
ηi
2η2

(
s − a +

1

η

(
sin
(
η (a− k)

)
− sin

(
η (s− k)

))) (3.5.3)

for all s ∈ [a, b] and i = 1, . . . , n− 1. All such curves are the critical points for our minimization problem,

and thus only satisfy a necessary condition for minimality. Using the second variation one checks that these

curves in fact realize the minimal energy Eg among all curves from x to y on the at first fixed interval (a, b).

The intrinsic distance d(x, y) is then defined as the minimal value of b− a. In addition, these calculations

show that ℓg(γ|[s1,s2]) = s2 − s1 for any a ≤ s1 < s2 ≤ b, and hence γ is a geodesic of unit velocity.

If k = a, we have xn = γn(a) = 0, that is, x is on the boundary. On the other hand, we can always choose

ηi and k in such a way that yn = γn(b) = 0. In any of these cases there exists a geodesic of the above kind

that joins x to y and has finite length in the intrinsic metric. As before the distance is then given by the

smallest b− a. With these considerations at hand, it makes sense to extend the metric space (H,d) to all

of H .

In what follows, we approach a better understanding of the Carnot-Caratheodory metric. We begin by

discussing some special cases: If x and y are vertically aligned, that is x− y ∈ R en, we can give an explicit

formula to calculate their distance. On the opposite end, we examine the case that x and y have identical

n-th coordinates.

Lemma 3.5.3 Suppose a geodesic γ : [a, b] → H with γ(a) = x and γ(b) = y is given.

i) Let y = (x′, yn). Then we have

d(x, y) = 2
∣∣√xn − √

yn
∣∣ .
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ii) For xn = yn = 0, it holds

d(x, y) = 2
√
π |x− y| .

iii) If xn = yn, then

d(x, y) ≤ x
− 1

2
n |x− y| .

Proof:

(i) First suppose that xi = yi for i < n, i.e. for x = (x′, xn) ∈ H we have y = (x′, yn). Then by (3.5.3)

it follows

xi = yi = γi(b) = γi(a) + ηi

∫ b

a

γn(t) dt = xi + ηi

∫ b

a

γn(t) dt .

Since γn > 0, this yields ηi = 0 for any 1 ≤ i ≤ n − 1 such that γi(s) ≡ xi for all s ∈ [a, b]. Furthermore

the differential equation for γn simplifies to γ′
n = ±√

γn, which has the solution

γn(s) =
1

4

(
s− k

)2

for k ∈ R such that (a− k)2 = 4xn and (b− k)2 = 4 yn. Combining these identities we get

0 ≤ d(x, y) = b− a = k ± 2
√
yn −

(
k ± 2

√
xn
)

= ± 2
(√
yn − √

xn
)
,

which is equivalent to 3.5.3 (i).

(ii) Now we assume that γn(a) = γn(b) = 0, that is, x and y are both on the the boundary. By formula

(3.5.2) we get

cos
(
η(b− k)

)
= 1 = cos

(
η(a− k)

)
,

and hence η(b−k) = η(a−k)+2π. Rearranging the terms gives b = a+ 2π
η
. Then, an evaluation of (3.5.3)

shows that

γi(b) = γi(a) +
ηi
2η2

(
2π

η
+

1

η

(
sin
(
η (a− k)

)
− sin

(
η (a− k) + 2π

)))
= γi(a) +

π

η3
ηi .

This implies ∣∣x − y
∣∣ =

∣∣γ(a) − γ(b)
∣∣ =

π

η2
,

and thus the intrinsic distance is

d(x, y) = b− a =
2π

η
= 2

√
π |x− y|

as claimed.

(iii) Suppose γ : [a, b] → H is the linear path from x to y and that xn = yn. Then we obviously have

γn(s) ≡ xn for all s ∈ [a, b], and thus

d(x, y) ≤ ℓg(γ) = x
− 1

2
n

∫ b

a

∣∣γ ′
(t)
∣∣ dt = x

− 1
2

n |x− y| ,

since
∫
|γ ′ | dt is the Euclidean length of γ. �

In the subsequent section we will make use of these (exact) formulas in order to deduce convenient estimates

for the distance d(x, y) between two arbitrary points.
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3.5.2 Properties of the Intrinsic Geometry

Lemma 3.5.4 For any two points x, y ∈ H, let γ : [a, b] → H be the geodesic curve such that γ(a) = x

and γ(b) = y. We set z+ := max{xn, yn}, z− := min{xn, yn} and z := max
s
γn(s).

i) Then we have the following estimate from above,

d(x, y) ≤ min

{
2
√
xn + 2

√
yn + 2

√
π|x′ − y′| , 2

∣∣√xn −√
yn
∣∣ + |x′ − y′|√

z+

}
.

ii) The distance can be estimated from below as

d(x, y) ≥ max
{ |x− y|√

z
, 2
(√
z −√

z−
)}

.

Proof:

(i) By virtue of the triangle inequality we find

d(x, y) ≤ d
(
x, (x′, 0)

)
+ d

(
(x′, 0)(y′, 0),

)
+ d

(
(y′, 0), y

)
= 2

√
xn + 2

√
π|x′ − y′|+ 2

√
yn ,

where we have used lemma 3.5.3 (i) in the first and third summand and (ii) in the second one. For the

second estimate we use the triangle inequality once more to see

d(x, y) ≤ d
(
x, (x′, yn)

)
+ d

(
y, (x′, yn)

)
and d(x, y) ≤ d

(
x, (y′, xn)

)
+ d

(
y, (y′, xn)

)
.

The estimate now follows from an application of lemma 3.5.3 (i) and (iii) to the corresponding terms.

(ii) Obviously, γ
− 1

2
n |γ′(s)| ≥ |γ′(s)|

sup
s

(
γn(s)

1
2

) , and thus

d(x, y) = ℓg(γ) =

∫ b

a

∣∣γ′(s)
∣∣ γn(s)−

1
2 ds ≥ z−

1
2

∫ b

a

∣∣γ′(s)
∣∣ ds

︸ ︷︷ ︸
Euclidean length of γ

≥ |x− y|√
z

.

Now let γz the part of γ that joins x to the point that realizes the maximal γn-value z. Since the respective

linear paths from x and y to (x′, z) and (y′, z) describe geodesic curves it follows directly that

d(x, y) = ℓg(γ) ≥ ℓg(γz) ≥ max
{
d
(
x, (x′, z)

)
, d
(
y, (y′, z)

)}

= 2 max
{√

z −√
xn,

√
z −√

yn
}
= 2

(√
z −√

z−
)
,

where the second line is a consequence of lemma 3.5.3 (i). �

Using the second estimate from below we can show that the intrinsic distance from some given point x ∈ H

to the level set {z ∈ H | zn = c} is realized by the vertically projected point (x′, c).

Corollary 3.5.5 Let x be an arbitrary point in H and Γc := {z ∈ H | zn = c} for some constant c ≥ 0.

Then we have

inf
y∈Γc

d(x, y) = 2
∣∣√xn −

√
c
∣∣ ,

and the infimum is attained at y∗ = (x′, c) ∈ Γc.



46 CHAPTER 3. LINEARIZATION OF THE THIN-FILM EQUATION

Proof: For a fixed point x ∈ H we set y∗ = (x′, c). It suffices to consider the case xn 6= c, as otherwise

there is nothing to prove. Clearly, y∗ ∈ Γc and we have

d(x,Γc) ≤ d(x, y∗) = 2
∣∣√xn −√

c
∣∣ (∗)

by lemma 3.5.3 (i).

For the other direction, let z(x, y) = z, z− and z+ as in proposition 3.5.4. From part (ii) we know that

d(x, y) ≥ 2
(√

z(x, y)−√
z−
)

holds for all y ∈ H. Now we claim that z+ = z(x, ỹ), where ỹ is a point on the level set Γc that realizes

the distance to x. As a direct consequence we get that d(x, ỹ) ≥ 2
(√
z+ −√

z−
)
which implies

d(x,Γc) = d(x, ỹ) ≥ 2
∣∣√xn −

√
c
∣∣ .

This, combined with (∗), yields the desired identity and, as d(x, y∗) = 2
∣∣√xn−

√
c
∣∣, the infimum is in fact

attained at y∗.

In order to prove the claim, we employ inequality (∗) to see that z(x, ỹ) ≤ z+, for if not this would mean

d(x, ỹ) > d(x, y∗). However, this contradicts the assumption that ỹ minimizes the distance to x. On the

other hand, z(x, ỹ) ≥ z+ because the geodesic joins x to ỹ. This gives the claim and the corollary follows.

�

We now obtain an equivalent function that combines all the estimates from lemma 3.5.4 into a single

expression. We set

ρ(x, y) :=
|x− y|

xn
1
2 + yn

1
2 + |x− y| 12

for all x, y ∈ H, and by convention ρ(x, y) = 0 if x = y ∈ ∂H . Obviously, ρ is positive definite and

symmetric. Also take note of the fact that the boundary ∂H is nothing but the level set Γ0.

Proposition 3.5.6 There exists a constant cd > 1 such that

c−1
d d(x, y) ≤ ρ(x, y) ≤ d(x, y)

for all x, y ∈ H. We say ρ and d are equivalent and write ρ ∼ d.

Remarks 3.5.7

1) Proposition 3.5.6 implies that ρ(x, z) ≤ cd
(
ρ(x, y) + ρ(y, z)

)
, and hence ρ satisfies a “cd-relaxed

triangle inequality”. Such functions are referred to as quasimetrics.

2) An immediate consequence of the above proposition is that the two expressions d and ρ induce the

same topology on H. This implies, in particular, that for every point x ∈ H each intrinsic ball

Br1(x;d) contains a ball Br2(x;ρ) for some r2 > 0 and vice versa. To see this, we define r2 := c−1
d r1

and then apply proposition 3.5.6 to discover that for y ∈ Br2(x; ρ) we have

d(x, y) ≤ cd ρ(x, y) < cd r2 = r1 .

This implies Br1(x;d) ⊃ Br2(x;ρ). Conversely, set r1 := r2 to find Br2(x; ρ) ⊃ Br1(x;d).

3) The expression

ρ̃(x, y) :=
|x− y|

(
x 2
n + y 2

n + |x− y|2
) 1

4

∀ x, y ∈ H
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defines another equivalent quasimetric. More precisely, we can show that

ρ(x, y) ≤ ρ̃(x, y) ≤ 3 ρ(x, y) for all x, y ∈ H ,

and, by transitivity, we also have ρ̃ ∼ d.

Proof (of proposition 3.5.6): Let
√
z ≥ √

xn +
√
yn +

√
|x− y|. Then it follows

ρ(x, y) ≤
√

|x− y| ≤ √
z − √

xn − √
yn ≤ 2

(√
z −√

z−
) 3.5.4 (ii)

≤ d(x, y) .

Otherwise we may estimate

ρ(x, y) <
|x− y|√

z

3.5.4 (ii)

≤ d(x, y) ,

which proves the right hand side inequality.

Now suppose
√
xn +

√
yn ≥

√
|x− y|. By lemma 3.5.4 (i), we then get

d(x, y) ≤ |x′ − y′|√
z+

+ 2
∣∣√xn − √

yn
∣∣ ≤ |x′ − y′|

1
2
(
√
xn +

√
yn)

+ 2
∣∣√xn − √

yn
∣∣

= 4
|x′ − y′| + |xn − yn|

2 (
√
xn +

√
yn)

≤ 6 ρ(x, y) .

In case of
√
xn +

√
yn <

√
|x− y| we obtain

d(x, y)
3.5.4 (i)

≤ 2
(√

xn +
√
yn +

√
π|x− y|

)
< 6

√
|x− y| = 6

|x− y|√
|x− y|

≤ 12 ρ(x, y) ,

which proves the first inequality with cd = 12 and therefore completes the proof. �

Lemma 3.5.8 If a continuous function Ψ : H → R is in C1(H), then Ψ is Lipschitz continuous on H

if and only if there exists a positive constant cL such that xn
∣∣∇Ψ(x)

∣∣2 ≤ cL
2 for all x ∈ H.

Proof: Suppose the indicated condition x
1
2
n

∣∣∇Ψ(x)
∣∣ ≤ c̄L holds for any x ∈ H and some c̄L > 0. Further

let γ : [a, b] → H be the geodesic between the two points x and y which is parameterized by arc length,

i.e. we may assume that b = a+ d(x, y) and γ−1
n |γ′|2 ≡ 1 (see remark 3.5.2). By the fundamental theorem

of calculus we then get

∣∣Ψ(x)−Ψ(y)
∣∣ =

∣∣Ψ
(
γ(a)

)
−Ψ

(
γ(b)

)∣∣ =
∣∣
∫ b

a

∇Ψ
(
γ(s)

)
· γ′(s) ds

∣∣

≤
(
sup γ

1
2
n

∣∣∇Ψ(γ)
∣∣
) (

sup γ
− 1

2
n |γ′|

)
(b− a)

≤ c̄L d(x, y) .

This means that Ψ is c̄L-Lipschitz on H , and since both the metric d(·, y) and Ψ are continuous on H, it

is possible to extend Ψ to a function that satisfies the Lipschitz property on all of H .

Conversely, let Ψ be Lipschitz continuous on H . Then there exists a constant c̃L > 0 such that

∣∣Ψ(x)−Ψ(y)
∣∣ ≤ c̃L d(x, y) ≤ c̃L cd

√
nx

− 1
2

n |x− y| ∀ x, y ∈ H ,

where the second inequality follows from proposition 3.5.6. Now we use the prerequisite that Ψ is differ-



48 CHAPTER 3. LINEARIZATION OF THE THIN-FILM EQUATION

entiable on its domain H , and therefore we have

√
xn
∣∣∇Ψ(x)

∣∣ ≤ c̃L cd
√
n for a.e. x ∈ H ,

and hence the claim follows with cL = max{c̄L, c̃L cd
√
n }. �

In the following example we construct a Lipschitz function that has bounded second derivatives.

Example 3.5.9 Let y ∈ H be some fixed point and c > 0 a constant. Then we define

Ψ̃(z) := f
(
ρ̃(z, y)

)
:=

ρ̃(z, y)2

(
c2 + ρ̃(z, y)2

) 1
2

with ρ̃ as in remark 3.5.7 (3). Note that f ∈ C∞(R) is Lipschitz continuous. A calculation then gives that

zn
∣∣∇z Ψ̃(z)

∣∣2 = f ′(ρ̃(z, y)
)2
zn
∣∣∇z ρ̃(z, y)

∣∣2 . zn
∣∣∇z ρ̃(z, y)

∣∣2

. zn


 1
(
z 2
n + y 2

n + |z − y|2
) 1

2

+
|z − y|2

(
|z − y|+ zn

)2
(
z 2
n + y 2

n + |z − y|2
) 5

2




. 1 +
zn |z − y|4 + z 3

n |z − y|2(
zn + |z − y|

)5 . 1 ,

such that, with Ψ(z) := cL ε Ψ̃(z) for some positive constant cL and ε > 0 sufficiently small,

zn
∣∣∇z Ψ(z)

∣∣2 ≤ cL
2 .

Since Ψ is obviously continuously differentiable, we thus get from lemma 3.5.8 that Ψ is Lipschitz

continuous on H with Lipschitz constant cL.

The Laplacian is given by ∆zΨ̃(z) = f ′′(ρ̃(z, y)
) ∣∣∇z ρ̃(z, y)

∣∣2 + f ′(ρ̃(z, y)
)
∆z ρ̃(z, y). Similarly as for the

gradient, we compute

∣∣∣f ′′(ρ̃(z, y)
)∣∣∣ .

(
c + ρ̃(z, y)

)−1
and zn

∣∣∆z ρ̃(z, y)
∣∣ . ρ̃(z, y)−1 .

Furthermore, we observe

0 ≤ 2 ρ̃(z, y)
(
c2 + ρ̃(z, y)

) 1
2

(
1 −

( ρ̃(z, y)

c+ ρ̃(z, y)

)2)
≤ f ′(ρ̃(z, y)

)
≤ 2

√
2 ρ̃(z, y)

c+ ρ̃(z, y)
.

Collecting all these results we obtain zn
∣∣∆zΨ(z)

∣∣ = cL ε zn
∣∣∆zΨ̃(z)

∣∣ ≤ cL c
(
c+ Ψ̃(z)

)−1 ≤ cL.

Now if we set c := ρ̃(x, y) > 0 for some x 6= y ∈ H we notice that
√
2 Ψ̃(x) = ρ̃(x, y) which is by remark

3.5.7 (3) equivalent to d(x, y). Using an approximation argument we can also achieve that Ψ is bounded

on H.

In later considerations, the following class of functions will play a role, and specifically that it contains a

nontrivial function Ψ will be of importance.

Definition 3.5.10 We say Ψ : (H,d) → R is in the class of two times differentiable Lipschitz functions

Lip2(H) if it is bounded and satisfies the conditions

√
xn
∣∣∇Ψ(x)

∣∣ ≤ cL and xn
∣∣∆Ψ(x)

∣∣ ≤ cL

for all x ∈ H and some constant cL > 0.
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Through lemma 3.5.8 we know that the first condition ensures that Ψ is cL-Lipschitz continuous.

Let us recall the definitions of the intrinsic ball of radius R > 0 centered at x ∈ H ,

BR(x) = BR(x; d) =
{
y ∈ H | d(x, y) < R

}
.

By BeuR (x) we denote the Euclidean ball (intersected with H), i.e. BeuR (x) =
{
y ∈ H

∣∣ |x− y| < R
}
.

Some useful properties of such balls are expressed in the next lemma.

Lemma 3.5.11 Let R > 0. Then the following inclusions hold for all x ∈ H:

Beu
c−2
d

R
(
R+

√
xn

)(x) ⊂ BR(x) ⊂ Beu
2R
(
R+2

√
xn

)(x)

As a consequence we obtain ∣∣BR(x)
∣∣
σ

∼ Rn
(
R +

√
xn
)n+2σ

. (3.5.4)

Proof: We need to prove two parts, the inclusions and (3.5.4).

Part 1: Let y ∈ BR(x). If yn ≥ xn we have

R > d(y, x) ≥ d
(
(x′, yn), x

) 3.5.3 (i)
= 2

(√
yn −√

xn
)
,

which is equivalent to
√
yn <

√
xn + R

2
. For 0 ≤ yn < xn this estimate is quite obvious. Using this and

the standard inequality 2ab ≤ a2 + b2 yields

|y − x| ≤ d(y, x)
(√

yn +
√
xn +

√
|y − x|

)
< R

(R
2

+ 2
√
xn
)

+
1

2

(
R2 +

∣∣y − x
∣∣
)
,

from which follows the assertion, namely |y − x| < 2R
(
R+ 2

√
xn
)
.

For the first inclusion let |y − x| < c−2
d R

(
R +

√
xn
)
. Since ρ is monotone in |x− y| we get

d(y, x) ≤ cd ρ(y, x) ≤ c−1
d

R
(
R +

√
xn
)

√
xn + c−1

d

√
R
(
R +

√
xn
) <

R
(
R+

√
xn
)

√
xn +

√
R2

= R .

This concludes the first part of the proof.

Part 2: First we consider the case that the radius R is small compared to xn. To be more precise, we

assume that 6R <
√
xn such that BR(x) ⊂ Beu3

4
xn

(x) by virtue of part 1. But this in turn implies that

yn ∼ xn whenever y ∈ BR(x). Moreover, again by the inclusions taken from the first part of the lemma,

we know that
∣∣BR(x)

∣∣ ∼ Rn
(
R +

√
xn
)n

. Hence

∣∣BR(x)
∣∣
σ

=

∫

BR(x)

yn
σ dy ∼ x σn

∣∣BR(x)
∣∣ ∼ Rn

(
R +

√
xn
)n+2σ

,

since also
√
xn ∼ R +

√
xn.

If Cr(x) ⊂ H denotes the cube of side length 2r > 0 centered at x ∈ H , then the µσ-volume is given by

∣∣Cr(x)
∣∣
σ

= (2r)n−1

∫ xn+r

0

y σn dyn =
(2r)n−1

σ + 1

(
xn + r

)σ+1
(∗)
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if xn ≤ r, and otherwise by

∣∣Cr(x)
∣∣
σ

= (2r)n−1

∫ xn+r

xn−r
y σn dyn =

(2r)n−1

σ + 1

((
xn + r

)σ+1 −
(
xn − r

)σ+1
)
. (∗′)

Now suppose
√
xn ≤ 6R. Then BR(x) ⊂ C36R2(x) and we can apply (∗) with r = (6R)2 ≥ xn ,

∣∣BR(x)
∣∣
σ
<
∣∣C36R2 (x)

∣∣
σ

. R2n−2
(
R +

√
xn
)2σ+2

. Rn
(
R +

√
xn
)n+2σ

.

The last estimate follows from R ∼ R +
√
xn.

The other direction can be derived in a similar manner. Here we distinguish between the situation
√
xn ≪

R, say
√
xn ≤ εR where ε := ( 4

√
n cd)

−1, and εR <
√
xn ≤ 6R. In the first case we apply formula (∗) once

more, this time with r := ε2R2 ≥ xn, to get

∣∣BR(x)
∣∣
σ
>
∣∣Cε2R2(x)

∣∣
σ

& R2n−2 (R +
√
xn
)2σ+2

& Rn
(
R +

√
xn
)n+2σ

.

It remains to study the case in which 0 < εR <
√
xn ≤ 6R. If we set r := ε2

√
xnR, then 0 < ε2

6
xn ≤ r < xn

and BR(x) contains Cr(x). All this combined with R ∼ √
xn ∼ R +

√
xn, allows us to infer that

∣∣BR(x)
∣∣
σ

(∗′)
>

(2ε2)n−1

σ + 1

(√
xnR

)n−1
(
(xn + r)σ+1 − (xn − r)σ+1

)

≥ (2ε2)n−1

σ + 1

(√
xnR

)n−1
((

1 +
ε2

6

)σ+1

−
(
1− ε2

6

)σ+1
)
x σ+1
n

≥ c(n, σ)−1Rn
√
xn

n+2σ ∼ Rn
(
R+

√
xn
)n+2σ

.

Altogether, this proves (3.5.4) and hence the lemma. �

For BR(x) given, let

∂BR(x) =
{
y ∈ H

∣∣ d(x, y) = R
}

denote the corresponding sphere. If the intrinsic ball intersects with the boundary of H , then BR(x)∩ ∂H
consists only of the two points on ∂H that have the largest distance between them. This is important to

note because otherwise dist
(
∂BλR(x), ∂BR(x)

)
= 0 as long as 2

√
xn ≤ λR. However, we want this distance

to be positive for any scaling factor λ 6= 1.

Corollary 3.5.12 The measure µσ is doubling with respect to the intrinsic metric d if and only if σ > −1.

In particular, for any scaling factor λ > 0 and for every point x ∈ H there exists a constant cn,σ > 0 such

that

∣∣BλR(x)
∣∣
σ

≤ cn,σ




λn

∣∣BR(x)
∣∣
σ

if λ ∈ (0, 1)

λ 2(n+σ)
∣∣BR(x)

∣∣
σ

if λ ≥ 1

provided we have σ ≥ − n
2
.

Proof: Using (3.5.4), with σ ≥ − n
2
and λ ≥ 1, yields

∣∣BλR(x)
∣∣
σ

. λ2n+2σ Rn
(
R +

√
xn
)n+2σ

. λ2n+2σ
∣∣BR(x)

∣∣
σ
,

which corresponds to the doubling condition. The estimate for λ ∈ (0, 1) is similar.

In case of σ ≤ −1 the volume of a ball containing 0 is infinite from which the necessity of σ > −1 becomes

clear. �

Remark that the case −1 < σ < − n
2
only occurs if n = 1 and −σ ∈ ( 1

2
, 1). Then, in case of λ ≥ 1, an

upper bound is given by cσ λ
∣∣BR(x)

∣∣
σ
. Otherwise we have

∣∣BλR(x)
∣∣
σ
≤ cσ λ

2(σ+1)
∣∣BR(x)

∣∣
σ
. The only
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relevant case, however, is when σ ≥ − n
2
.

We combine the previous two results into another handy estimate.

Lemma 3.5.13 Let σ > −1, R > 0 and x, y ∈ H. If σ ≥ − n
2
, then

∣∣BR(x)
∣∣
σ∣∣BR(y)
∣∣
σ

≤ c(n, σ)
(
1 +

d(x, y)

R

)2n+2σ

.

Consequently, we get
R +

√
xn

R +
√
yn

≤ c(n)
(
1 +

d(x, y)

R

)2
.

Proof: Using the triangle inequality shows that BR(x) ⊂ BR+d(x,y)(y), and consequently we have

∣∣BR(x)
∣∣
σ

≤
∣∣BR+d(x,y)(y)

∣∣
σ

.
(
1 +

d(x, y)

R

)2n+2σ ∣∣BR(y)
∣∣
σ

by corollary 3.5.12. For the second inequality we choose σ = 0 and apply the first one to get

R +
√
xn ∼ R−1

∣∣BR(x)
∣∣ 1n .

(
1 +

d(x, y)

R

)2
R−1

∣∣BR(y)
∣∣ 1n ∼

(
1 +

d(x, y)

R

)2 (
R+

√
yn
)
,

where we also make use of formula (3.5.4). �

Up to this point we only deal with the geometry of the elliptic problem leaving aside the time component.

In order to incorporate the time we observe that the principal symbol for the parabolic equation is

p(t, x, τ, ξ) = i τ + x 2
n |ξ|4 .

Following [30] we extend d to a metric on R ×H . The newly obtained metric is canonically attached to

the differential operator ∂t + L0.

Definition 3.5.14 Let (t, x), (s, y) ∈ R×H and A be a set in R×H. Then the intrinsic distance between

(t, x) and (s, y) is given by

d(t)
(
(t, x), (s, y)

)
:= 4

√
|t− s|+ d(x, y)4 .

We denote by |A|σ the measure of A with respect to the measure L × µσ, i.e. |A|σ =
∫
A
x σn dxdt.

Lemma 3.5.15 Let QR(t, x) := IR(t)×BR(x), where we use the notation IR(t) = (t−R4, t]. Then we

have ∣∣QR(t, x)
∣∣
σ

∼ Rn+4
(
R+

√
xn
)n+2σ

.

Proof: This follows immediately from lemma 3.5.11. �

Remark 3.5.16 Accordingly, the metric measure spaces (H, d, µσ) and
(
R×H, d(t) ,L×µσ

)
are spaces

of homogeneous type if and only if σ > −1. If it is clear from the context, we will drop the L in the notation

of the “time-space measure” and simply write µσ.

In this general setting, one may ask which weight functions are in the Muckenhoupt class Ap(µσ), see

definition A.11.
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Lemma 3.5.17 Let 1 < p < ∞ and σ > −1. Then x s−σn ∈ Ap(µσ) if and only if s ∈ R satisfies

−1 < s < p(σ + 1)− 1.

Proof:

“⇒” If x s−σn ∈ Ap(µσ), then x
− s−σ

p−1
n ∈ A p

p−1
(µσ) by lemma A.14. But then lemma A.13 implies that

x s−σn dµσ = x sn dLn as well as x
− s−σ

p−1
n dµσ = x

σ− s−σ
p−1

n dLn

satisfy the doubling condition which is by corollary 3.5.12 equivalent to −1 < s < p(σ + 1) − 1.

“⇐” Conversely, let −1 < s < p(σ + 1)− 1. Then µs and µ
σ− s−σ

p−1
are doubling and

−
∫

B

x s−σn dµσ
[
−
∫

B

x
− s−σ

p−1
n dµσ

]p−1

=
|B|s
|B|σ

[ |B|
σ− s−σ

p−1

|B|σ
]p−1

≤ c(n, s) c
(
n, σ − s− σ

p− 1

)p−1

c(n, σ)p

for all d-balls B by (3.5.4). We set [ω]Ap = c(n, s) c
(
n, σ − s−σ

p−1

)p−1
c(n, σ)p <∞ and the claim follows.

�

3.5.3 The Brachistochrone Problem

The brachistochrone problem may be considered as the starting point of the theory of the calculus of

variations. In June 1696 Johann Bernoulli (1667-1748) addressed an open challenge to “the most brilliant

mathematicians in the world” in Acta Eruditorum with the following problem:

Given two points A and B situated at different distances from the horizontal and not in the

same vertical line, determine the curved path of most rapid descent of a particle sliding from

A to B exclusively under the influence of gravity.

This problem in fact traces back to a similar problem formulated by Galileo Galilei (1564-1642) in 1638,

even though he did not solve it explicitly.

As seemingly no one was able to solve the problem within the period agreed, it was Gottfried Wilhelm

Leibniz (1646-1716) who persuaded Johann Bernoulli to allow more time for solutions to be handed in than

the originally intended six months. Leibniz also suggested to call the problem tachistoptotam, derived from

the Greek words tachistos (swiftest) and piptein (to fall). Bernoulli, however, decided to name it brachis-

tochrone which originates from brachistos (the shortest) and chronos (time). After the expiration of the

second deadline, five mathematicians were able to produce a solution to the problem, Newton (1642-1727),

Leibniz, de l’Hôspital (1661-1704) and Jacob Bernoulli (1654-1705), and Johann Bernoulli. According to

legend, Newton solved the problem within one evening: On 29 January 1697 he came home from work at

4pm and found a letter containing the problem that Bernoulli had sent to him directly. At 4am, only twelve

hours later, he communicated his solution anonymously to the Royal Society. But as Bernoulli examined

the work he could easily spot its author and coined the phrase “ex ungue leonem”, to recognize “the lion

by his claw”.

By this time the personal relations between the great mathematical minds of these days were often damaged

by publicly fought disputes, mainly about priority in the discovery of scientific results. Particularly fierce

was the rivalry in the Bernoulli family; their controversy over the brachistochrone was just another episode

in what has been later called a “bitter feud”. Reportedly, one of Johann Bernoulli’s main motivations to

pose the problem was to prove his superiority over elder brother Jacob.
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Eventually, four solutions (all but de l’Hôspital’s) were published in the May 1697 edition of Acta Erudi-

torum, but Johann could not refrain from highlighting his version when summarizing the results:

“I have with one blow solved two fundamental problems, one optical and the other mechanical

and have accomplished more than I have asked of others [...]”

This refers to the fact that Fermat’s least time principle and the brachistochrone problem basically describe

the same phenomena. It should not go unmentioned that all solutions reached the same result: There is just

one upside down cycloid that passes through A and B and does not have maximum points. In parametric

form, this is written

x(s) = x0 + c (s− sin s) and y(s) = c (cos s− 1)

for some constant c. These equations of a cycloid are generated by a fixed point on the circle line which

rolls on the underside of the x-axis. There is only one inverted cycloid through the points A and B deter-

mined by a suitable choice of x0 and c. All the proofs, however, were based on geometrical arguments. It

was not until a couple of years later when Leonhard Euler (1707-1783), supported by the ideas of Joseph

Louis Lagrange (1736-1813), developed a very strong instrument to solve a rather general class of problems

including a variety of geodesic issues. In his opus he introduced the famous Euler-Lagrange differential

equation. This marks the real birth of the calculus of variations as we know it today.

Indeed, such a brachistochrone curve (inverted cycloid) is closely related to the geometry that we have

introduced in the preceding pages. Daskalopoulos and Hamilton [17] studied the degenerate parabolic

equation

∂tu − y (∂2
xu+ ∂2

yu) + (σ + 1) ∂yu = f

with σ > −1 on the half space H ⊂ R2. Given a point A = (x, y) ∈ H, diffusion is governed by the

Riemannian metric

gA(v, w) =
1

2y
v · w

for v, w ∈ TAH . As above, this leads to an ODE which can be solved explicitly for the geodesics.

Proposition 3.5.18 (Daskalopoulos and Hamilton, ’98)

The cycloid curve (
x(s)

y(s)

)
=

(
s− sin s

1− cos s

)

describes a geodesic that is parametrized by arc length s for the metric g. All the other geodesic curves are

obtained by translation x 7→ x0 + x and dilation x 7→ cx, y 7→ cy, or are vertical line segments.

3.5.4 Notes

Distance functions that are derived from a partial differential operator’s coefficients turned out to be a

powerful tool for proving local results for solutions of the corresponding equation. Given an operator of

order m, say

L =
∑

|α|≤m
aα(x) ∂

α
x ,

we replace ∂xi by ξi (formally this is done by a Fourier transform) to convert the PDE into a polynomial

of the same degree, with the top degree being a homogeneous polynomial that is most significant for its

classification. More precisely, we obtain a m-homogeneous map

T ∗M ∋ (x, ξ) 7→ p(x, ξ) :=
∑

|α|=m
aα(x) ξ

α ∈ R ,
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where we interpret (x, ξ) as variables in the cotangent bundle, i.e. x ∈ M is any local coordinate chart,

then ξ is the linear coordinate in each tangent space TxM , and the principal symbol is an invariantly

defined function on T ∗M . If we further impose the usual ellipticity condition on the coefficients aα(x),

that is p(x, ξ) 6= 0 for all ξ ∈ Rn \ {0}, then the principle symbol is invertible which in turn gives rise to a

positive definite bilinear form on the tangent space. Once this is given, one can develop an entire intrinsic

geometry, as implemented in subsection 3.5.1, that is attached to the differential operator L in a natural

way.

This illustration shows that metric structures and elliptic equations are intimately related to one another.

A mutual relation between intrinsic distances and differential operators has been also found in the class of

subelliptic equations (for a definition see Hörmander [43] or Egorov [26]): Any collection of vector fields

induces a linear partial differential operator and vice versa. Now think of X1(x), . . . , Xm(x) as the vector

fields at x ∈ M that are in some sense associated with a differential operator. They are said to satisfy

Hörmander’s condition if the vector fields, along with all their commutators (called distribution), span

TxM for every x ∈ M . This means that the corresponding PDE is subelliptic. If the vector fields satisfy

Hörmander’s condition for every x in the manifold M on which the operator is initially defined, then any

two points can be joined by a curve γ for which

γ′(t) ∈ span
{
X1

(
γ(t)

)
, . . . , Xm

(
γ(t)

)}

for any t. Such a curve on M is called admissible or horizontal. This generates a natural intrinsic metric,

termed Carnot–Carathéodory metric, given by d(x, y) = inf ℓ(γ), where the infimum extends over all hor-

izontal curves γ connecting x ∈ M with y ∈ M . There is a sequence of papers by different combinations

of the authors Fefferman, Phong and Sanchez-Cálle [29, 71, 30] who obtained pointwise estimates for the

Green function in terms of the intrinsic geometry that arises from its associated differential operator. Let

us also mention the work by Nagel, Stein and Wainger [66] for further results in that direction.

Rather than merely from a differential equations point of view, we find strong connections to the much more

general framework of sub-Riemannian manifolds: By a sub-Riemannian manifold we mean a Riemannian

manifold together with a constraint that governs the admissible directions of movement, expressed by the

vector fields Xi : M → TM (i = 1, . . . ,m), such that the image of x, denoted by Xi(x), lies in TxM .

Hörmander’s condition then implies that the distance that is generated by these vector fields is finite. For

an introduction to sub-Riemannian geometry see [58].



Chapter 4

The Linear Equation

Considering the equation ∂tu+ L0u = f one can in general not expect to have classical solutions. Indeed,

not even the solution concept of a distributional or weak solution that we have introduced in section 3.4

satisfies our requirements. However, we take the integral representation (3.4.2) as a starting point (or

motivation) and search for admissible extensions to relatively open subsets of H. We will call a solution

to be legitimate if it retains a certain behavior towards the boundary in the sense that it admits values

at {xn = 0}. For this it is important to choose the test function space properly. More precisely, a test

function is sometimes supposed to cut off at initial time depending on whether we consider the initial value

problem or not.

Before giving the definition of an energy solution it has to be said that, under the assumption in place

u ∈ L1
loc(I ×H), one can not get the subsequent methods and techniques to work. Indeed, the following

solution concept asks for minimum requirements which are needed to set up a rigorous and complete energy

theory.

Definition 4.0.1 (energy solution) Let I = (t1, t2) ⊆ R be open, Ω ⊆ H relatively open and k ∈ N0.

i) Suppose f ∈ L1
loc

(
I ;L2(Ω, µ1)

)
. We call u an energy solution to ∂tu + Lku = f on I × Ω, or

a Lk-solution to f on I × Ω, if and only if u ∈ L2
loc

(
I ;L2(Ω, µk+1)

)
, ∇u ∈ L2

(
I ;L2(Ω, µk+1)

)
,

D2
x u ∈ L2

(
I ;L2(Ω, µk+3)

)
and

−
∫

I×Ω

u ∂tϕdµk+1 +

∫

I×Ω

∆u∆ϕdµk+3 + 4

∫

I×Ω

∇′u · ∇′ϕdµk+1 =

∫

I×Ω

f ϕ dµk+1

for all ϕ ∈ C∞
c (I × Ω).

ii) Let t1 > −∞, f ∈ L1
loc

(
[t1, t2);L

2(Ω, µ1)
)
and g ∈ L2(Ω, µk+1). We call u an energy solution to

∂tu+ Lku = f on [t1, t2)× Ω with initial value u(t1) = g, if u ∈ L2
loc

(
[t1, t2);L

2(Ω, µk+1)
)
, ∇u and

D2
x u satisfy the assumptions of (i), and the identity

−
∫

I×Ω

u ∂tϕdµk+1 +

∫

I×Ω

∆u∆ϕdµk+3 + 4

∫

I×Ω

∇′u · ∇′ϕdµk+1 =

∫

I×Ω

f ϕ dµk+1 +

∫

Ω

g ϕ(t1) dµk+1

holds for all ϕ ∈ C∞
c

(
[t1, t2)× Ω

)
.

If u is a L0-solution to f = 0 on I × Ω, then for any t̃1 ∈ I , u can be regarded as initial value solution on

[t̃1, t2) × Ω subject to the initial condition u(t̃1) = g. Conversely, any solution in the sense of definition

4.0.1 (ii) gives rise to a solution in the sense of definition 4.0.1 (i) on (t̃1, t2) × Ω for any t1 ≤ t̃1 < t2.

This implies that any statement obtained for a solution of either the initial value problem or the general

55
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problem can thus be applied to a solution on [t̃1, t2)×Ω.

It is clear from the definition of C∞
c (see section 2.2) that in (i) the test functions in question vanish towards

the endpoints of I , while in (ii) they allow values at initial time t1. On the other hand, the test functions

vanish towards the boundary of Ω unless it coincides with ∂H . For now, however, we only consider the

case Ω = H.

As a first observation, we state the following result.

Lemma 4.0.2 If u is an energy solution to ∂tu + Lku = f on I × H, then ∇u(t) ∈ L2(H,µk+2) for

almost every t ∈ I.

Proof: The regularity gain is a simple consequence of the weighted interpolation inequality 2.8.3. It

implies

‖∇u‖L2(µk+2)
. ‖u‖L2(µk+1)

+ ‖D2
x u‖L2(µk+3)

,

and the assertion follows. �

4.1 Existence and Uniqueness of Energy Solutions

We start our analysis by considering the case k = 0 only, but we remark that all the arguments can be

applied to the general operator Lk, k ≥ 1.

Proposition 4.1.1 (existence) Let I and f be as in definition 4.0.1. Then for any time t̃1 ∈ I and

g ∈ L2(H,µ1) there exists an energy solution to ∂tu+L0u = f on [t̃1 , t2)×H with initial value u(t̃1) = g.

Proof: We prove existence of an energy solution by a method called Galerkin approximation. For this

we propose to construct solutions of certain projections of the original problem onto problems in finite

dimensional spaces which approximate the initial value problems. Then we pass to the limit and show that

this limit is a solution to the original problem.

Step 1: Let
{
vi
}
i∈N

be a Schauder basis of the Hilbert space X :=W 2,2(µ1, µ1, µ3) ⊂ L2(µ1). Here we

can choose the basis in such a way that it is orthonormal in L2(µ1). We set

Am :=
((
vi | vj

)
L2(µ1)

)m
i,j=1

=: (ai,j)mi,j=1 ,

Bm :=
((

∇′vi |∇′vj
)
L2(µ1)

)m
i,j=1

=: (bi,j)mi,j=1 ,

Cm :=
((

∆vi |∆vj
)
L2(µ3)

)m
i,j=1

=: (ci,j)mi,j=1

and ~fm(t) :=
((
f(t) | vi

)
L2(µ1)

)m
i=1

for any m ∈ N.

By lemma 2.4.2 we know that the matrix Am is invertible. Consequently, A−1
m Bm, A

−1
m Cm and A−1

m
~fm(t)

exist and all entries are in L1
loc(I). According to standard existence theory for ordinary differen-

tial equations, then for any t̃1 ∈ Ī and ~gm = (g1m, . . . , g
m
m) ∈ Rm there exists a unique solution

~dm = (d1m, . . . , d
m
m) ∈W 1,1

loc (Ī) = ACloc(Ī) such that

∂t~dm(t) + A−1
m Cm ~dm(t) + 4A−1

m Bm ~dm(t) = A−1
m
~fm(t) a.e. in I

subject to ~dm(t̃1) = ~gm. But this is equivalent to saying that dim(t) satisfies the equation

m∑

j=1

(
ai,j ∂td

j
m(t) + ci,j djm(t) + 4 bi,j djm(t)

)
=
(
f(t) | vi

)
L2(µ1)

(i = 1, . . . ,m)
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for almost every t ∈ I with dim(t̃1) = gim. We thus have proved that for each integer m = 1, 2, . . . there

exists a unique function um ∈ W 1,1
loc (I ;X) of the form

um(t) :=
m∑

i=1

dim(t) vi such that lim
t→t̃1

um(t) =: um(t̃1) =
m∑

i=1

gim vi . (4.1.1)

Moreover, for i = 1, . . . ,m we find

(
∂tum(t)

∣∣vi
)
L2(µ1)

+
(
∆um(t)

∣∣∆vi
)
L2(µ3)

+ 4
(
∇′um(t)

∣∣∇′vi
)
L2(µ1)

=
(
f(t)

∣∣vi
)
L2(µ1)

(∗)

holds for almost every t ∈ I . This means um(t) satisfies the projection of the initial value problem onto

the finite dimensional subspace spanned by {vi}mi=1.

Step 2: We intend to send m to infinity and to prove that a subsequence of our solution um of the

approximate equation converges to an energy solution. But first we shall need some preliminary estimates.

We multiply equation (∗) by dim(t) and then sum over i to get

1

2
∂t

∫

H

um(t)2 dµ1 +

∫

H

(
∆um(t)

)2
dµ3 + 4

∫

H

∣∣∇′um(t)
∣∣2 dµ1 =

∫

H

f(t)um(t) dµ1

for almost every t ∈ I . Integrating this equality over (t̃1, t̃2) ⊂ Ī and using the fundamental theorem of

calculus gives

1

2
‖um(t̃2)‖2L2(µ1)

+

∫ t̃2

t̃1

‖∆um(t)‖2L2(µ3)
dt + 4

∫ t̃2

t̃1

‖∇′um(t)‖2L2(µ1)
dt

=

∫ t̃2

t̃1

(
f(t) | um(t)

)
L2(µ1)

dt +
1

2
‖um(t̃1)‖2L2(µ1)

,

By Hölder’s inequality we readily check

∫ t̃2

t̃1

(
f(t) | um(t)

)
L2(µ1)

dt ≤
∫ t̃2

t̃1

‖f(t)‖L2(µ1)
‖um(t)‖L2(µ1)

dt

≤ ‖f‖2L1(I;L2(µ1))
+

1

4
sup

t∈[t̃1,t2)

‖um(t)‖2L2(µ1)

Taking the supremum over t̃2 ∈ J with J := (t̃1, t2) yields

sup
t∈J

‖um(t)‖2L2(µ1)
+

∫

J

‖∇′um(t)‖2L2(µ1)
dt +

∫

J

‖∆um(t)‖2L2(µ3)
dt

. ‖f‖2L1(I;L2(µ1))
+ ‖um(t̃1)‖2L2(µ1)

≤ ‖f‖2L1(I;L2(µ1))
+ ‖g‖2L2(µ1)

.

(4.1.2)

For the last inequality we set gim := (g | vi)L2(µ1)
such that

‖um(t̃1)‖L2(µ1)

(4.1.1)
= ‖

m∑

i=1

(
g | vi

)
L2(µ1)

vi‖L2(µ1)
≤ ‖g‖L2(µ1)

.

This estimate gives a uniform upper bound independent of m.

Step 3: Now we are ready to pass to the limit. According to the estimate (4.1.2), we see that the sequence

{um}m∈N is bounded in L∞(J ;L2(µ1)
)
, {∇′um}m∈N is bounded in L2

(
J ;L2(H,µ1)

)
, and {∆um}m∈N is

bounded in L2
(
J ;L2(H,µ3)

)
. Consequently, we can find a subsequence {uml}l∈N of {um}m∈N, such that
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for l → ∞ we have
uml ⇀

∗u ∈ L∞(J ;L2(µ1)
)
,

∇′uml ⇀ ~w ∈ L2(J ;L2(H,µ1)
)
,

∆uml ⇀ w ∈ L2(J ;L2(H,µ3)
)
.





(4.1.3)

This means

∫

J

(
uml (t) | ζ(t)

)
L2(µ1)

dt →
∫

J

(
u(t) | ζ(t)

)
L2(µ1)

dt ∀ ζ ∈ L1
(
J ;L2(µ1)

)
,

∫

J

(
∇′uml (t) | ~ζ(t)

)
L2(µ1)

dt →
∫

J

(
~w(t) | ~ζ(t)

)
L2(µ1)

dt ∀ ~ζ ∈ L2(J ;L2(H,µ1)
)

and ∫

J

(
∆uml (t) | ζ(t)

)
L2(µ3)

dt →
∫

J

(
w(t) | ζ(t)

)
L2(µ3)

dt ∀ ζ ∈ L2
(
J ;L2(H,µ3)

)

as l → ∞. From this follows in fact that ~w = ∇′u and w = ∆u. Now for some fixed N ∈ N, we define

v(t) :=
N∑

i=1

di(t) vi , (4.1.4)

where di ∈ C∞
c

(
[t̃1, t2)

)
for i = 1, . . . , N . Let ml > N . We multiply equation (∗) by di(t), sum up over

i = 1, . . . , N and integrate with respect to time t ∈ J to obtain

∫

J

(
∂tuml (t) | v(t)

)
L2(µ1)

dt +

∫

J

(
∆uml (t) | ∆v(t)

)
L2(µ3)

dt + 4

∫

J

(
∇′uml (t) | ∇′v(t)

)
L2(µ1)

dt

=

∫

J

(
f(t) | v(t)

)
L2(µ1)

dt .

Thanks to the Sobolev embedding 2.5.5 we know that C∞
c

(
[t̃1, t2) ×H

)
is dense in the space spanned by

functions of the form (4.1.4), and hence the equality holds in particular for all such test functions ϕ.

Next we apply an integration by parts to the first term to get

−
∫

J

(
uml(t) | ∂tϕ(t)

)
L2(µ1)

dt +

∫

J

(
∆uml (t) | ∆ϕ(t)

)
L2(µ3)

dt + 4

∫

J

(
∇′uml (t) | ∇′ϕ(t)

)
L2(µ1)

dt

=

∫

J

(
f(t) | ϕ(t)

)
L2(µ1)

dt +
(
uml (t̃1) | ϕ(t̃1)

)
L2(µ1)

.

We recall (4.1.1) and the fact that
{
vi
}
i∈N

is an orthonormal basis in L2(µ1) to deduce that

( ml∑

i=1

(
g | vi

)
L2(µ1)

vi

∣∣∣ϕ(t̃1)
)
L2(µ1)

−→
(
g | ϕ(t̃1)

)
L2(µ1)

(for l → ∞) .

Now we employ the weak convergence (4.1.3), with test functions ∂tϕ,∇′ϕ and ∆ϕ, to discover that

−
∫

J

(
u(t) | ∂tϕ(t)

)
L2(µ1)

dt +

∫

J

(
∆u(t) | ∆ϕ(t)

)
L2(µ3)

dt + 4

∫

J

(
∇′u(t) | ∇′ϕ(t)

)
L2(µ1)

dt

=

∫

J

(
f(t) | ϕ(t)

)
L2(µ1)

dt +
(
g | ϕ(t̃1)

)
L2(µ1)

as l → ∞. Altogether, given t̃1 ∈ Ī and g ∈ L2(µ1), this construction gives us an energy solution

u ∈ L∞(J ;L2(µ1)
)
⊂ L2

(
J ;L2(µ1)

)
to ∂tu+ L0u = f on J ×H subject to u(t̃1) = g. �

Remark 4.1.2 In view of (4.1.1), we find that the spatial part of the approximate solution is in the Hilbert

space W 2,2(µ1, µ1, µ3), and so the same is true for the solution obtained by the Galerkin approximation.

This shows that a Galerkin solution is also an energy solution, but with the additional feature that u ∈
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L∞L2(µ1). Now one may ask the question whether the assumptions on u in definition 4.0.1 are the weakest

possible. The answer is yes and no at the same time. On the one hand, demanding that ∇′u ∈ L2(µ1)

and ∆u ∈ L2(µ3) is enough to make sense of the expressions contained in the definition of an energy

solution, and a Galerkin solution would still be an energy solution in the sense of the definition. On the

other hand, all the following statements would be of no significance for energy solutions, but rather for

Galerkin solutions exclusively. Indeed, this is why we need to place additional conditions upon u in our

present definition of solution. Later we will see that under these regularity assumptions the solution turns

out to be even more regular.

Before we move on to the next results, we need to make some preparations. Let I = (t1, t2) ⊆ R be any

interval. For ε > 0 small enough, we consider the intervals

Iε := (t1 , t2 − ε) and I−ε := (t1 + ε , t2)

with the usual conventions if t1 = −∞ or t2 = ∞. Moreover, for u ∈ L1
loc(I) we refer to

uε(t) :=




ε−1

∫ t+ε
t

u(τ ) dτ if t ∈ Iε

0 if t ∈ I\Iε .

as the regularization of u in time, since uε is differentiable on Iε and uε ∈ L1
loc(I). Consequently, uε(t) →

u(t) as ε→ 0 pointwise in Iε. Appealing to Fubini’s theorem we get

∫

I

uε(t)ϕ(t) dt = ε−1

∫

Iε∩I−ε

∫ t+ε

t

u(τ ) dτ ϕ(t) dt = ε−1

∫

I−ε

u(τ )

∫ τ

τ−ε
ϕ(t) dt dτ

=:

∫

I

u(τ )ϕ−ε(τ ) dτ

for all ϕ ∈ C∞
c (I) with sptϕ ⊂ Īε ∩ Ī−ε. Imposing the requirement that ∂tu ∈ L1

loc(I) we define the

temporal difference quotient by Dεu := (∂tu)ε = ∂t(uε) ∈ L1
loc(I) and, likewise, D−ε u := ∂t(u−ε). For

this an integration by parts is available, given by

∫

I

Dεu(t)ϕ(t) dt = −
∫

I

u(t) D−ε ϕ(t) dt

for all ϕ ∈ C∞
c (I) with sptϕ ⊂ Īε ∩ Ī−ε.

Note also that if u is as in definition 4.0.1, then we have uε ∈ C
(
Iε ;L

2(µ1)
)
, ∇′uε ∈ C

(
Iε ;L

2(µ1)
)
and

∆uε ∈ C
(
Iε ;L

2(µ3)
)
, as well as ∂tuε ∈ L2

loc

(
Iε ;L

2(µ1)
)
.

Remark 4.1.3 Since C∞
c (H) is densely contained in W 2,2(H,µ1, µ1, µ3) it suffices to consider test

functions ϕ ∈ L2
(
I ;L2(H,µ1)

)
that have a compact time support in I and [t1, t2), respectively, with ad-

ditionally ∂tϕ ∈ L2
(
I ;L2(µ1)

)
, ∇ϕ ∈ L2

(
I ;L2(H,µ1)

)
and D2

xϕ ∈ L2
(
I ;L2(H,µ3)

)
. Then the space of

test functions is a dense subspace of such a class of functions. Alongside this, we see that a solution itself

almost qualifies as a test function.

Proposition 4.1.4 Suppose t1 is finite, I = (t1, t2) ⊂ R is some open interval and f ∈ L1
(
I ;L2(H,µ1)

)
.

i) If u is a L0-solution on I ×H to f , then u ∈ C
(
[t̃1, t2];L

2(H,µ1)
)
for all t̃1 ∈ I.

ii) If u is an energy solution on [t1, t2) × H to f with initial value g ∈ L2(H,µ1), then we have u ∈
C
(
Ī;L2(H,µ1)

)
with u(t1) = g.

Proof: Formally, we use ϕ = χIu as a test function. To make this rigorous, we replace u by uε in both

the equation and the test function, and approximate χI by an appropriate cut-off function, and let then

ε→ 0.
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(i) We define the approximate characteristic function for t1 < t̃1 < t̃1 + δ0 < t̃2 < t̃2 + δ1 < t2 by

χδ(t) := χt̃1,t̃2δ0,δ1
(t) :=





0 if t1 < t ≤ t̃1

t−t̃1
δ0

if t̃1 < t ≤ t̃1 + δ0

1 if t̃1 + δ0 < t ≤ t̃2

t̃2−t
δ1

+ 1 if t̃2 < t ≤ t̃2 + δ1

0 if t̃2 + δ1 < t < t2 .

Now for sufficiently small ε > 0 we have spt χδ ⊆ [t̃1, t̃2 + δ1] ⊂ Iε ∩ I−ε and thus ϕ := (χδ uε)−ε is an

admissible test function (see remark 4.1.3). In particular, ∂tuε = Dεu ∈ L2
loc

(
I ;L2(µ1)

)
.

Plugging the test function into the equation yields

∫

I

(
f(t) | ϕ(t)

)
L2(µ1)

dt −
∫

I

∫

H

∆u(t)∆ϕ(t) dµ3 dt − 4

∫

I

∫

H

∇′u(t) · ∇′ϕ(t) dµ1 dt

=

∫

I

χδ(t)
((
fε(t) | uε(t)

)
L2(µ1)

− ‖∆uε(t)‖2L2(µ3)
− 4 ‖∇′uε(t)‖2L2(µ1)

)
dt

(ε→0)−→
∫

I

χδ(t)
((
f(t) | u(t)

)
L2(µ1)

− ‖∆u(t)‖2L2(µ3)
− 4‖∇′u(t)‖2L2(µ1)

)
dt =:

∫

I

χδ(t) η(t) dt ,

and the limit ε→ 0 poses no difficulty. Moreover, we readily compute

−
∫

I

∫

H

u(t) ∂tϕ(t) dµ1 dt = − 1

2

∫

I

∫

H

χδ(t) ∂t
(
uε

2(t)
)
dµ1 dt −

∫

I

∫

H

∂tχδ(t)uε
2(t) dµ1 dt

= − 1

2

∫

I

∂tχδ(t) ‖uε(t)‖2L2(µ1)
dt

=
1

2

(
‖uε(t̃2)‖2L2(µ1)

)
δ1

− 1

2

(
‖uε(t̃1)‖2L2(µ1)

)
δ0
.

Now we replace t̃2 ∈ J := (t̃1, t2) by t, send then ε→ 0 and rearrange the terms to get

(
‖u(t)‖2L2(µ1)

)
δ1

= 2

∫ t+δ1

t1

χδ(τ ) η(τ ) dτ +
(
‖u(t̃1)‖2L2(µ1)

)
δ0

.

with χδ = χt̃1,tδ0,δ1
. An identity of this kind is called regularized energy equation. From this we get directly

that t 7→
(
‖u(t)‖2L2(µ1)

)
δ1

is a sequence in C(J). Furthermore, for any δ1, δ
′
1 > 0 we find

sup
t∈J

∣∣∣∣
(
‖u(t)‖2L2(µ1)

)
δ1

−
(
‖u(t)‖2L2(µ1)

)
δ′1

∣∣∣∣ = 2 sup
t∈J

∣∣∣∣
∫

I

(
χt̃1,tδ0,δ1

(τ )− χt̃1,t
δ0,δ

′
1
(τ )
)
η(τ ) dτ

∣∣∣∣

≤ 2 sup
t∈J

∫ t+max{δ1,δ′1}

t

∣∣η(τ )
∣∣ dτ → 0 ,

as max{δ1, δ′1} → 0. We also used that η ∈ L1(I) and χδ is bounded from above by 1. But this implies

that
(
‖u(t)‖2L2(µ1)

)
δ1

is in fact a Cauchy sequence in C(J) and thus converges uniformly to a continuous

limit.

From the fact that in every Lebesgue point we have
(
‖u(t)‖2L2(µ1)

)
δ1

→ ‖u(t)‖2L2(µ1)
as δ1 → 0 since

t 7→
∫
H
u(t, ·)2 dµ1 ∈ L2(I), follows t 7→ ‖u(t)‖L2(µ1)

∈ C(I). At this point we turn back to the regularized

energy equation and take the supremum over all t ∈ J to discover that t 7→ ‖u(t)‖L2(µ1)
is bounded and

therefore in Cb(J).

Now for ϕ̆ ∈ C∞
c (H) we use ϕ(t, x) := χδ(t)ϕ̆(x) as test function to discover in a similar manner as above

that t 7→
(
u(t) | ϕ̆

)
L2(µ1)

∈ Cb(J). By density we thus get that t 7→ u(t) ∈ L2(µ1) is weakly continuous.

But weak continuity and norm continuity in L2(µ1) imply continuity on J for any t̃1 ∈ I , and hence in
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particular on Ī\{t1} as stated.

(ii) Regarding definition 4.0.1 (ii) we need to adjust the test function in such a way as to enable it to

take a value at initial time t1. To this end we fix t̄ ∈ I and define

χt̄,δ(t) :=





1 if t1 ≤ t < t̄ ,

t̄−t
δ

+ 1 if t̄ ≤ t < t̄+ δ ,

0 if t̄+ δ ≤ t < t2 .

for sufficiently small δ > 0. Then ϕ = χt̄,δ ϕ̆ with ϕ̆ ∈ C∞
c (H) is an legitimate test function and we proceed

as above to get

(
uδ(t̄) | ϕ̆

)
L2(µ1)

= −
∫

I

χt̄,δ(t)
((

∆u(t) | ∆ϕ̆
)
L2(µ3)

+ 4
(
∇′u(t) | ∇′ϕ̆

)
L2(µ1)

)
dt+

+

∫

I

χt̄,δ(t)
(
f(t) | ϕ̆

)
L2(µ1)

dt +
(
g | ϕ̆

)
L2(µ1)

.

In view of part (i) we now let δ → 0 to see that t̄ 7→
∫
I

(
u(t̄) | ϕ̆

)
L2(µ1)

∈ C(I) for all ϕ̆ ∈ C∞
c (H). Indeed,

passing to the limit t̄→ t1 gives

lim
t̄→t1

(
u(t̄) | ϕ̆

)
L2(µ1)

=
(
g | ϕ̆

)
L2(µ1)

∀ ϕ̆ ∈ C∞
c (H) .

This shows that, in contrast to part (i), weak continuity can be extended down to t1. Using once more the

uniformly boundedness of ‖u(t)‖L2(µ1)
on I yields strong continuity on all of Ī with u(t1) = g. �

A consequence of the continuity is that any solution u, regardless if an initial value is given or not, can be

evaluated at any time t ∈ I .

Remark 4.1.5 (energy identity) The proof of proposition 4.1.4 (i) also reveals that the energy identity

1

2
‖u(t)‖2L2(µ1)

+

∫ t

t̃1

‖∆u‖2L2(µ3)
+ 4 ‖∇′u‖2L2(µ1)

dL =

∫ t

t̃1

(
f | u

)
L2(µ1)

dL+
1

2
‖u(t̃1)‖2L2(µ1)

holds for any t ≥ t̃1 ∈ Ī\{t1}. If u solves the initial value problem we even obtain

1

2
‖u(t)‖2L2(µ1)

+

∫ t

t1

‖∆u‖2L2(µ3)
+ 4 ‖∇′u‖2L2(µ1)

dL =

∫ t

t1

(
f | u

)
L2(µ1)

dL+
1

2
‖g‖2L2(µ1)

for any t ≥ t1. In case of f = 0 these equalities have a simple implication: Then t 7→ ‖u(t)‖L2(µ1)
is

monotonically decreasing.

Uniqueness is now an immediate consequence.

Corollary 4.1.6 (uniqueness) An energy solution of the initial value problem is unique.

Proof: Let u1 and u2 be two energy solutions with u1(t1) = u2(t1) = g. Setting u := u1 − u2 we find

that ∂tu + L0u = 0 on [t1, t2) × H in the energy sense with u(t1) = 0. But then by the previous remark

4.1.5 it follows that ‖u(t)‖L2(µ1)
≤ 0, and hence we have u ≡ 0. �

Corollary 4.1.7 Let I = (−∞, t2) and f be as in definition 4.0.1. Then there exists a uniquely

determined energy solution u with lim
t→−∞

‖u(t)‖L2(H,µ1)
= 0. Moreover, the energy identity holds for any

t ≥ t̃1 ∈ Ī.
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Proof: Let (ti)i∈N ⊂ I be a monotonously decreasing sequence with lim
i→−∞

ti = −∞. Then, according

to proposition 4.1.1 and 4.1.4 (ii), there exist time-continuous energy solutions ui on [ti, t2) × H with

ui(t
i) = 0. These can be continuously extended by 0 such that in fact ui ∈ Cb

(
Ī;L2(µ1)

)
. Now we observe

that for j > i the function wi,j := uj − ui satisfies ∂twi,j + L0wi,j = χ(tj ,ti) f on I and we know that

wi,j(t) = 0 for t ≤ tj . In this situation we can apply the energy identity to discover

sup
t∈I

‖wi,j(t)‖L2(µ1)
≤ 2

∫ ti

tj
‖f(t)‖L2(µ1)

dt .

Now since f ∈ L1
(
I ;L2(µ1)

)
there exists for any ε > 0 an integer N = N(ε, f) ∈ N0 such that

∫ ti
tj

‖f(t)‖L2(µ1)
dt < ε for all j > i ≥ N . Consequently, ui is a Cauchy sequence in I and hence the

limit lim
i→∞

ui = u exists. Moreover, u ∈ Cb
(
I ;L2(µ1)

)
satisfies ∂tu+ L0u = f on I ×H and

lim
i→∞

‖u(ti)‖L2(µ1)
= lim

i→∞
‖u(ti)− ui(t

i)‖L2(µ1)
≤ lim

i→∞
sup
t∈I

‖u(t)− ui(t)‖L2(µ1)
= 0 ,

as required. Uniqueness can then be derived as in corollary 4.1.6. �

Remark 4.1.8 We have seen that in case t1 > −∞ the energy solution is uniquely determined by f and

g. Moreover, if t1 = −∞ there is exactly one function u which satisfies ∂tu+L0u = f in the energy sense

and which tends to zero in L2(µ1) as t → −∞. Henceforward, we will always mean this special solution

when we talk about an energy solution of the initial value problem on (−∞, t2)×H. To put it another way,

given an initial datum g there exists exactly one energy solution with u(t1) = g and, if t1 = −∞, we only

consider the case g = 0.

4.2 Energy Estimates

In this section we shall use similar regularization techniques as above to derive L2- estimates for derivatives

of an energy solution. Here it is often crucial to choose the right test function and, eventually, this also

justifies the minimal choice of requirements we have made in definition 4.0.1.

Proposition 4.2.1 (temporal energy estimates) Let I = (t1, t2) ⊆ R and f ∈ L2
(
I ;L2(H,µ1)

)
.

If u satisfies the equation ∂t + L0u = f on I × H in the energy sense, then for any t̃1 ∈ I we have

t 7→ ‖∆u(t)‖L2(H,µ3)
+ ‖∇′u(t)‖L2(H,µ1)

∈ Cb
(
J
)
with J := (t̃1, t2) and

∫

J

‖∂tu(t)‖2L2(H,µ1)
dt ≤

∫

J

‖f(t)‖2L2(H,µ1)
dt + ‖∆u(t̃1)‖2L2(H,µ3)

+ 4 ‖∇′u(t̃1)‖2L2(H,µ1)
.

Proof: We would like to use ϕ = χI ∂tu as a test function. But this ϕ does not exhibit the required

regularity of a test function, and therefore we approximate the temporal derivative by finite differences

Dεu or, equivalently, ∂tuε. Indeed, we have seen that ∂tuε = Dεu.

Let u be an energy solution, then uε satisfies the equality

−
∫

I

(
uε | ∂tϕ

)
L2(µ1)

dL +

∫

I

(
∆uε | ∆ϕ

)
L2(µ3)

dL + 4

∫

I

(
∇′uε | ∇′ϕ

)
L2(µ1)

dL =

∫

I

(
fε | ϕ

)
L2(µ1)

dL,

for all test functions defined as in definition 4.0.1 (i). An integration by parts applied to the first term

yields

−
∫

I

(
uε(t) | ∂tϕ(t)

)
L2(µ1)

dt =

∫

I

(
Dεu(t) | ϕ(t)

)
L2(µ1)

dt .
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Here ϕ = χδD
εu, with χδ defined as above, is an admissible test function. Similar calculations as in the

proof of proposition 4.1.4 (i) then lead to

∫

I

(
Dεu(t) | ϕ(t)

)
L2(µ1)

dt =

∫

I

χδ(t) ‖Dεu(t)‖2L2(µ1)
dt

and, by Hölder’s inequality,

∫

I

(
fε(t) | ϕ(t)

)
L2(µ1)

dt =

∫

I

χδ(t)
(
fε(t) | Dεu(t)

)
L2(µ1)

dt

≤ 1

2

∫

I

χδ(t) ‖f(t)‖2L2(µ1)
dt +

1

2

∫

I

χδ(t) ‖∂tu(t)‖2L2(µ1)
dt .

Moreover, for t1 < t̃1 < t̃1 + δ0 < t̃2 < t̃2 + δ1 < t2 with δ0, δ1 > 0 sufficiently small, we get

∫

I

(
∆uε(t) | ∆ϕ(t)

)
L2(µ3)

dt =
1

2

(
‖∆uε(t̃2)‖2L2(µ3)

)
δ1

− 1

2

(
‖∆uε(t̃1)‖2L2(µ3)

)
δ0

and

4

∫

I

(
∇′uε(t) | ∇′ϕ(t)

)
L2(µ1)

dt = 2
(
‖∇′uε(t̃2)‖2L2(µ1)

)
δ1

− 2
(
‖∇′uε(t̃1)‖2L2(µ1)

)
δ0

.

In these equalities we pass to the limit ε→ 0 to find

(
‖∆u(t̃2)‖2L2(µ3)

)
δ1

+ 4
(
‖∇′u(t̃2)‖2L2(µ1)

)
δ1

= 2

∫

I

χδ(t) η(t) dt +
(
‖∆u(t̃1)‖2L2(µ3)

)
δ0

+ 4
(
‖∇′u(t̃1)‖2L2(µ1)

)
δ0

for all t̃2 > t̃1 ∈ I , where η := (f | ∂tu)L2(µ1)
− ‖∂tu‖2L2(µ1)

. Moreover,

∫

I

χδ(t) ‖∂tu(t)‖2L2(µ1)
dt ≤

∫

J

‖f(t)‖2L2(µ1)
dt +

(
‖∆u(t̃1)‖2L2(µ3)

)
δ0

+ 4
(
‖∇′u(t̃1)‖2L2(µ1)

)
δ0

.

Now for δ0, δ1 → 0, we use the same arguments as in the proof of proposition 4.1.4 (i) to verify continuity

and boundedness of t 7→ ‖∆u(t)‖L2(µ3)
+ ‖∇′u(t)‖L2(µ1)

on (t̃1, t2), and hence the energy estimate of the

present proposition. �

Remark 4.2.2 If u is an energy solution of the parabolic problem, then proposition 4.2.1 enables us

to control one temporal derivative. Treating t as a parameter, it therefore suffices to consider the elliptic

equation L0u = f on H. We say u ∈ W 2,2(H,µ1, µ1, µ3) is a solution if it satisfies the identity

∫

H

∆u∆ϕ̆ dµ3 + 4

∫

H

∇′u · ∇′ϕ̆ dµ1 =

∫

H

f ϕ̆ dµ1

for all ϕ̆ ∈W 2,2(H,µ1, µ1, µ3).

Lemma 4.2.3 Suppose I = (t1, t2) ⊆ R and f ∈ L1
(
I ;L2(H,µ1)

)
. Let u satisfy ∂tu+L0u = f on I×H

in the energy sense. For t̃1 ∈ I we define J := (t̃1, t2). Then

∫

J

‖∇u(t)‖2L2(H,µ1)
dt +

∫

J

‖D2
x u(t)‖2L2(H,µ3)

dt .
(∫

J

‖f(t)‖L2(H,µ1)
dt
)2

+ ‖u(t̃1)‖2L2(H,µ1)
.
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Proof: From the energy identity (see remark 4.1.5) it follows

1

2
sup
t∈J

‖u(t)‖2L2(µ1)
+

∫

J

‖∇′u(t)‖2L2(µ1)
dt +

∫

J

‖∆u(t)‖2L2(µ3)
dt

≤ 2

∫

J

(
f(t) | u(t)

)
L2(µ1)

dt + ‖u(t̃1)‖2L2(µ1)
.

Using Hölder’s inequality as well as ab ≤ 2a2 + b2

8
we get

2

∫

J

(
f(t) | u(t)

)
L2(µ1)

dt ≤ 4 ‖f‖2L1(J;L2(µ1))
+

1

4
sup
t∈J

‖u(t)‖2L2(µ1)

such that

sup
t∈J

‖u(t)‖2L2(µ1)
+

∫

J

‖∇′u(t)‖2L2(µ1)
dt +

∫

J

‖∆u(t)‖2L2(µ3)
dt . ‖f‖2L1(J;L2(µ1))

+ ‖u(t̃1)‖2L2(µ1)
.5

Let us apply integration by parts repeatedly, now to calculate

‖∆ϕ‖2L2(µ3)
=

n∑

i,j=1

∫

H

(
∂2
xiϕ
) (
∂2
xjϕ
)
dµ3

= −
n∑

i,j=1

∫

H

(
∂xixixjϕ

) (
∂xjϕ

)
dµ3 + 3

(
∂2
xiϕ
) (
∂xnϕ

)
dµ2

=

∫

H

∣∣D2
xϕ
∣∣2 dµ3 + 3

n∑

i=1

∫

H

(
∂xnxiϕ

) (
∂xiϕ

)
−
(
∂xixiϕ

) (
∂xnϕ

)
dµ2

= ‖D2
xϕ‖2L2(µ3)

− 6 ‖∇′ϕ‖2L2(µ1)
.

Note that due to the weight the possibly existing contributions of u at {xn = 0} vanish such that these

computations hold for all ϕ ∈ C∞
c (H) and hence, by density, as well for u ∈ W 2,2(µ1, µ1, µ3). Furthermore,

‖∂xnu‖2L2(µ1)
. ‖D2

x u‖2L2(µ3)
= ‖∆u‖2L2(µ3)

+ 6 ‖∇′u‖2L2(µ1)
(4.2.1)

which follows from the Hardy-Sobolev inequality 2.7.5. But now we have finally reached that

∫

J

‖∇u(t)‖2L2(µ1)
dt +

∫

J

‖D2
x u(t)‖2L2(µ3)

dt . ‖f‖2L1(J;L2(µ1))
+ ‖u(t̃1)‖2L2(µ1)

as required. �

Proposition 4.2.4 (spatial energy estimates) Suppose f ∈ L2(H,µ1) and u satisfies the equation

L0u = f on H in the sense of remark 4.2.2. Then there exists a positive constant c = c(n) such that

‖D2
x u‖W2,2(H,µ1,µ3,µ5)

≤ c ‖f‖L2(H,µ1)
.

Proof: Formally, one can prove the energy estimate by testing the elliptic equation with the function

L0u. A rigorous justification of this result requires a precise treatment of certain commutators.

We take a different approach, exploiting the fact that the fourth-order operator L0 can be factorized as

L0 = LL, where

Lu = − x−1
n ∇·

(
x 2
n ∇u

)
,

5Boundedness of the first term on the left hand side and proposition 4.1.4 imply that u ∈ Cb in its corresponding
time interval.
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see (3.4.1). We begin with the analysis of L and consider a weak form of the second order elliptic equation

Lu = − xn∆u − 2 ∂xnu = w

on H and perform a Fourier transformation in the tangential directions x1, . . . , xn−1 to get the equation

xn ∂
2
xn û + 2 ∂xn û − xn |ξ|2 û = − ŵ .

Taking the Fourier variable ξ ∈ Rn−1 as a parameter and putting z = |ξ|xn, this becomes an ODE of the

form

L̂û = z ∂2
z û + 2 ∂zû − z û = − |ξ|−1 ŵ ,

with û = û(ξ, z) and ŵ = ŵ(ξ, z). Renaming L̂ = L, û = u and −|ξ|−1ŵ = w, we obtain

Lu = z ∂2
zu + 2 ∂zu − z u = w , (∗)

an equation of one independent variable z ∈ R+. Now if we substitute u = z−
1
2 v into (∗), we recover

the modified Bessel differential equation (B.1) of order ν = 1
2
for which Iν and Kν are a fundamental

system (see appendix B), and hence a fundamental system for (∗) is given by ϕ(z) = z−
1
2 I 1

2
(z) and

ψ(z) = z−
1
2 K 1

2
(z). The Wronskian is W

(
ϕ(z), ψ(z)

)
= z−2 and the operator T : w 7→ zj u has the kernel

k(z, y) =




− y ϕ(z)ψ(y) if z < y

y ϕ(y)ψ(z) if z > y .

Note that the first order derivative has a jump discontinuity of height y−1 at z = y. From standard ODE

theory we know that any solution of (∗) can be written

zj u(z) =

∫ ∞

0

zj k(z, y)w(y) dy

for almost every z ∈ R+. Now we would like to find conditions on j which ensure that

i) sup
z∈R+

∫ ∞

0

zj
∣∣k(z, y)

∣∣ dy < ∞ and ii) sup
y∈R+

∫ ∞

0

zj
∣∣k(z, y)

∣∣ z
y
dz < ∞ .

Then, (i) implies that T : L∞(R+

)
→ L∞(R+

)
, and by (ii) it follows that T maps L1

(
R+, µ1

)
into itself.

Using the Marcinkiewicz interpolation theorem applied to the operator xn T x
−1
n , we thus have

‖u‖L2(R+,µ2j+1)
≤ c ‖w‖L2(R+,µ1)

.

We fix 0 < r ≪ 1 ≪ R < ∞. In the range of (0, r) we know that ϕ(z) ∼ 1 and ψ(z) ∼ z−1, while for

large z we have ϕ(z) ∼ z−1 ez and ψ(z) ∼ z−1 e−z. This follows from the corresponding asymptotics of

the modified Bessel functions I 1
2
(z) and K 1

2
(z) which are discussed in appendix B. In order to check the

validity of conditions (i) and (ii), we first observe that

sup
R+

∫ ∞

0

. . . ≤ sup
(0,r)

∫ ∞

0

. . . + sup
(r,R)

∫ ∞

0

. . . + sup
(R,∞)

∫ ∞

0

. . . ,

and hence it suffices to show that each of the suprema on the right hand side is finite. We estimate term

by term starting with
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sup
z∈(0,r)

∫ ∞

0

zj
∣∣k(z, y)

∣∣ dy = sup
z∈(0,r)

zj
(∣∣ψ(z)

∣∣
∫ z

0

y
∣∣ϕ(y)

∣∣ dy +
∣∣ϕ(z)

∣∣
∫ r

z

y
∣∣ψ(y)

∣∣ dy+

+
∣∣ϕ(z)

∣∣
∫ R

r

y
∣∣ψ(y)

∣∣dy +
∣∣ϕ(z)

∣∣
∫ ∞

R

y
∣∣ψ(y)

∣∣ dy
)

. sup
z∈(0,r)

zj
(
z + (r − z) +

∫ R

r

y
∣∣ψ(y)

∣∣ dy + e−R
)
.

Since [r,R] ⊂ R+ is a compact set, the remaining integral is bounded by a constant depending on r and

R. Thus

sup
z∈(0,r)

∫ ∞

0

zj
∣∣k(z, y)

∣∣ dy . sup
z∈(0,r)

(
zj+1 + zj

)

which is bounded for all j ≥ 0. The supremum over z ∈ (r,R) poses no difficulties. Here we find

sup
z∈(r,R)

∫ ∞

0

zj
∣∣k(z, y)

∣∣ dy = sup
z∈(r,R)

zj
(∣∣ψ(z)

∣∣
∫ r

0

y
∣∣ϕ(y)

∣∣ dy +
∣∣ψ(z)

∣∣
∫ z

r

y
∣∣ϕ(y)

∣∣ dy+

+
∣∣ϕ(z)

∣∣
∫ R

z

y
∣∣ψ(y)

∣∣dy +
∣∣ϕ(z)

∣∣
∫ ∞

R

y
∣∣ψ(y)

∣∣ dy
)
,

and since both ϕ and ψ are bounded on (r,R), the supremum is obviously finite for all such z. On the

unbounded interval (R,∞) we have

sup
z∈(R,∞)

∫ ∞

0

zj
∣∣k(z, y)

∣∣dy = sup
z∈(R,∞)

zj
(∣∣ψ(z)

∣∣
∫ r

0

y
∣∣ϕ(y)

∣∣ dy +
∣∣ψ(z)

∣∣
∫ R

r

y
∣∣ϕ(y)

∣∣ dy+

+
∣∣ψ(z)

∣∣
∫ z

R

y
∣∣ϕ(y)

∣∣dy +
∣∣ϕ(z)

∣∣
∫ ∞

z

y
∣∣ψ(y)

∣∣ dy
)

. sup
z∈(R,∞)

(
zj−1 e−z r2 + zj−1 e−z

∫ R

r

y
∣∣ϕ(y)

∣∣dy + zj−1 e−z
∫ z

R

e y dy + zj−1 e z
∫ ∞

z

e−y dy
)
.

The first two terms do not cause any problems. The remaining two are bounded for all z ∈ (R,∞) if

j ≤ 1. This means condition (i) is satisfied whenever j ∈ [0, 1] which includes as limiting cases both j = 0

and j = 1.

We proceed similarly for the second kernel condition. Here we have

sup
y∈(0,r)

∫ ∞

0

zj
∣∣k(z, y)

∣∣ z
y
dz = sup

y∈(0,r)

(∣∣ψ(y)
∣∣
∫ y

0

zj+1
∣∣ϕ(z)

∣∣ dz +
∣∣ϕ(y)

∣∣
∫ ∞

y

zj+1
∣∣ψ(z)

∣∣ dz
)

. sup
y∈(0,r)

(
yj+1 +

(
rj+1 − yj+1

)
+

∫ R

r

zj+1
∣∣ψ(z)

∣∣ dz +

∫ ∞

R

zj e−z dz
)
.

Now suppose j+1 ≥ 0, then this is bounded by a constant depending only on r and R. The interval (r,R)

is straightforward. Finally, we compute

sup
y∈(R,∞)

∫ ∞

0

zj
∣∣k(z, y)

∣∣ z
y
dz = sup

y∈(R,∞)

(∣∣ψ(y)
∣∣
∫ y

0

zj+1
∣∣ϕ(z)

∣∣ dz +
∣∣ϕ(y)

∣∣
∫ ∞

y

zj+1
∣∣ψ(z)

∣∣ dz
)

. sup
y∈(R,∞)

y−1 e−y
(∫ r

0

zj+1 dz +

∫ R

r

zj+1
∣∣ϕ(z)

∣∣ dz +

∫ y

R

zj e z dz + e 2y

∫ ∞

y

zj e−z dz
)
.

The first two integrals can be treated as above. For the third and fourth term, we write

y−1 e−y
∫ y

R

zj e z dz + y−1 e y
∫ ∞

y

zj e−z dz = yj−1
(
y−j e−y

∫ y

R

zj e z dz + y−j e y
∫ ∞

y

zj e−z dz
)

which is bounded on (R,∞) if and only if j ≤ 1. To summarize, the kernel conditions (i) and (ii) hold



4.2. ENERGY ESTIMATES 67

provided that j ∈ [0, 1]. In particular, j = 0 and j = 1 are admissible and we have

‖u‖L2(R+,µ1)
+ ‖u‖L2(R+,µ3)

. ‖w‖L2(R+,µ1)
.

Once this has been established we can put z u onto the right hand side of the equation (∗). With v = ∂zu,

we obtain

z ∂zv + 2 v = f + z u =: w̃ .

A solution of the homogeneous equation is given by z−2 such that

k̃(z, y) = y




z−2 if z > y

0 otherwise

defines the corresponding integral kernel. Now consider the operator zδ w̃ 7→ zδ v for some δ > 0. Since

sup
z∈R+

∫ ∞

0

( z
y

)δ ∣∣k̃(z, y)
∣∣ dy = sup

z∈R+

zδ−2

∫ z

0

y1−δ dy =
1

2− δ
,

it follows

‖zδ v‖L∞(R+) . ‖zδ w̃‖L∞(R+)

for δ < 2. On the L1-side of the estimate we obtain

sup
y∈R+

∫ ∞

0

( z
y

)δ ∣∣k̃(z, y)
∣∣ dz = sup

y∈R+

y1−δ
∫ ∞

y

zδ−2 dz = − 1

δ − 1
.

If δ < 1, then

‖zδ v‖L1(R+) . ‖zδ w̃‖L1(R+) .

Choosing δ = 1
2
, we get

‖∂zu‖L2(R+,µ1)
= ‖v‖L2(R+,µ1)

. ‖w̃‖L2(R+,µ1)
= ‖w + z u‖L2(R+,µ1)

. ‖w‖L2(R+,µ1)

by interpolation. Using (∗), it follows immediately that

‖∂2
zu‖L2(R+,µ3)

= ‖w − 2∂zu+ z u‖L2(R+,µ1)
. ‖w‖L2(R+,µ1)

.

Now recall the notation u = û and |ξ|w = −ŵ, where ·̂ denotes the Fourier-transformation in ξ. A

retransformation from z to xn and an integration in ξ ∈ Rn−1 yield

‖|ξ| û‖L2(H,µ1)
+ ‖|ξ|2 û‖L2(H,µ3)

+ ‖∂xn û‖L2(H,µ1)
+ ‖∂2

xn û‖L2(H,µ3)
. ‖ŵ‖L2(H,µ1)

.

By another application of the estimate, we get

‖ŵ‖L2(H,µ1)
. ‖|ξ|−1 f̂‖L2(H,µ1)

which is possible since L̂ŵ = |ξ|−1 f̂ . Next, we carry out an inverse Fourier transformation to convert the

inequality into

‖∇′∇′u‖L2(H,µ1)
+ ‖∇′∆′u‖L2(H,µ3)

+ ‖∇′∂xnu‖L2(H,µ1)
+ ‖∇′∂2

xnu‖L2(H,µ3)
. ‖f‖L2(H,µ1)

.

Note that Plancherel’s theorem ensures that the Fourier transform preserves the L2-norm. Eventually, we

use the auxiliary identity (4.2.1) to control not only the Laplacian but all second derivatives of u reaching

‖∇′∇u‖L2(H,µ1)
+ ‖∇′D2

x u‖L2(H,µ3)
≤ c ‖f‖L2(H,µ1)

.
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Before we proceed to estimate higher derivatives let us make some further preparations. Following the

same line of argument, we conclude that

i′) sup
z∈R+

∫ ∞

0

zj
∣∣∂zk(z, y)

∣∣ dy < ∞ and ii′) sup
y∈R+

∫ ∞

0

zj
∣∣∂zk(z, y)

∣∣ z
y
dz < ∞ ,

if j ∈ (0, 1]. Then

‖∂zu‖L2(R+,µ2j+1)
. ‖w‖L2(R+,µ1)

for all j ∈ [0, 1] whenever Lu = w. Now differentiating (∗) gives the equation

z ∂2
z (∂zu) + 3 ∂z(∂zu) − z ∂zu = ∂zw + u .

This can be transformed into the modified Bessel equation of order ν = σ
2
= 1. Repeating this procedure

we get

z ∂2
z (∂

2
zu) + 4 ∂z(∂

2
zu) − z ∂2

zu = ∂2
zw + 2 ∂zu ,

and hence

‖∂2
zu‖L2(R+,µ3)

+ ‖∂2
zu‖L2(R+,µ5)

+ ‖∂3
zu‖L2(R+,µ3)

+ ‖∂4
zu‖L2(R+,µ5)

. ‖∂2
zw‖L2(R+,µ3)

+ ‖∂zu‖L2(R+,µ3)
. ‖f‖L2(R+,µ1)

,

provided we have LLu = Lw = f with f = |ξ|−2f̂ . Finally, a retransformation from z to xn, an integration

with respect to the variable ξ ∈ Rn−1, an inverse Fourier transformation and formula (4.2.1) give

‖∇∂2
xnu‖L2(H,µ3)

+ ‖D2
x ∂

2
xnu‖L2(H,µ5)

. ‖f‖L2(H,µ1)
.

The missing third derivative follows from

‖∂zu‖L2(R+,µ3)
. ‖w‖L2(R+,µ1)

. ‖f‖L2(R+,µ1)
,

because then

‖∂xn∆′u‖L2(H,µ3)
. ‖f‖L2(H,µ1)

after a retransformation. In order to estimate the tangential derivatives of order four we need to show that

‖u‖L2(R+,µ5)
. ‖f‖L2(R+,µ1)

. (∗∗)

Then

‖D4
x′u‖L2(H,µ5)

. ‖f‖L2(H,µ1)

as required. To check the validity of (∗∗), consider the equation z ∂2
zu+4 ∂zu−z u = w+2 ∂zu which follows

directly from (∗) by adding 2 ∂zu to both sides of the equation. The left hand side can be transformed

into a Bessel equation of order ν = 3
2
by plugging u = z−

3
2 v into the equation. However, this allows us to

perform the same calculations as for (∗), only with σ = 3 instead of σ = 1, to get

‖u‖L2(R+,µ2j+3)
. ‖w‖L2(R+,µ3)

+ ‖∂zu‖L2(R+,µ3)

for all j ∈ [0, 1]. To prove this, one has to verify that conditions (i) and (ii) hold, where k(z, y) is the kernel

associated to the operator T : w 7→ zju. Using Lu = w and Lw = f generates

‖w‖L2(R+,µ3)
+ ‖∂zu‖L2(R+,µ3)

. ‖f‖L2(R+,µ1)

as desired. This concludes the proof of (∗∗) and hence the proof of proposition 4.2.4. �
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Remark 4.2.5 Suppose t1 is finite and u is an energy solution to the initial value problem on [t1, t2)×H
with u(t1) = 0. Then by proposition 4.1.4 (ii), we can extend this solution continuously to J = (t̃1, t2),

for some t̃1 < t1, by zero. Applying the propositions 4.2.1, 4.2.3 and 4.2.4, with the roles of I and J

interchanged, delivers the corresponding energy estimates for this u. Since g = 0, the initial value terms

disappear from the estimates.

In case t1 = −∞ we repeat the proof of corollary 4.1.7 to conclude, together with the results for t1 > −∞,

that the inequalities also hold for the unique solution which vanishes as t→ −∞.

Corollary 4.2.6 Suppose I = (t1, t2) ⊆ R is an open interval, l ∈ N0, α ∈ N0
n and j ∈ N0 is some

non-negative integer which satisfies j = 2l + |α| − 2 and 2j ≤ |α|. Then the operator

L2
(
I ;L2(H,µ1)

)
∋ f 7→ x jn ∂

l
t ∂

α
x u ∈ L2

(
I ;L2(H,µ1)

)

is bounded, where u is is the unique energy solution on I ×H to f with u(t1) = 0.

The corollary specifically applies to I = R.

Proof: The indicated conditions we put on j, l and α imply j ≤ 2, l ≤ 1 and |α| ∈ {0, 2, 3, 4}. The

statement for all admissible combinations of such parameters is then an immediate consequence of the

propositions 4.2.4 and 4.2.1. �

We conclude this section with a duality result, which we formulate for later use. More precisely, the

following lemma can be used to extend L2- L∞- estimates to L1- L∞- estimates.

Lemma 4.2.7 (duality) Suppose I = (t1, t2) ⊂ R is an open interval and g1, g2 ∈ L2(H,µ1). Further

let u1 and u2 be L0-solutions to f = 0 on [t1, t2) ×H with initial value g1 and g2, respectively. Then the

duality identity
(
u1(t̃1) | u2(t̃2)

)
L2(H,µ1)

=
(
u1(t̃2) | u2(t̃1)

)
L2(H,µ1)

holds for all t̃2 ≥ t̃1 ∈ Ī, that is, the

solution operator that assigns an initial datum to its corresponding solution is self-adjoint

Proof: Let t̃2 ≥ t̃1 ∈ Ī be fixed and J := (t̃1, t̃2). Then the time-inverting operator

T : I ∋ t 7→ t̃1 + t̃2 − t =: τ ∈ R

is bijective on J . Note that we only give a formal proof here. However, an approach to a rigorous

justification of the statement follows the same line of argument as the proof of proposition 4.1.4, where we

have seen that an energy solution is continuous in time.

We consider the equation for u2, where χJ(u1 ◦ T ) plays the role of the test function. This gives

∫

I

(
u2

∣∣∣ ∂t
(
χJ (u1 ◦ T )

))
L2(µ1)

dL =

∫

I

∂t χJ
(
u2 | u1 ◦ T

)
L2(µ1)

+ χJ
(
u2 | ∂t(u1 ◦ T )

)
L2(µ1)

dL

=

∫

I

χJ
((
∆u2

∣∣∆(u1 ◦ T )
)
L2(µ3)

+ 4
(
∇′u2

∣∣∇′(u1 ◦ T )
)
L2(µ1)

)
dL.

Now, according to the definition of the operator T , we substitute t = T−1(τ ) to calculate

∫

I

χJ (t)
(
u2(t)

∣∣∣ ∂t
(
u1 ◦ T

)
(t)
)
L2(µ1)

dt = −
∫

I

(
∂t
(
χJ(t)u2(t)

) ∣∣∣
(
u1 ◦ T

)
(t)
)
L2(µ1)

dt

= −
∫

T (I)

(
∂τ
[(
χJ u2

)
◦ T−1(τ )

] ∣∣∣u1(τ )
)
L2(µ1)

dτ ,

where the first equality is a consequence of an integration by parts in time. We notice that T (J) = J and

that the integrals above vanish outside of J . Consequently, we can replace T (I) by I again. But then the
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last term can be understood as the result of taking (χJ u2) ◦ T−1 as test function in the equation for u1.

There we have

−
∫

I

(
u1(τ )

∣∣∣ ∂τ
[
(χJ u2) ◦ T−1(τ )

])
L2(µ1)

dτ

= −
∫

I

(
∆u1(τ )

∣∣∣∆
[
(χJ u2) ◦ T−1(τ )

])
L2(µ3)

+ 4
(
∇′u1(τ )

∣∣∣∇′[(χJ u2) ◦ T−1(τ )
])
L2(µ1)

dτ

=

∫

T−1(I)

χJ(t)
((

∆
[
u1 ◦ T (t)

] ∣∣∆u2(t)
)
L2(µ3)

+ 4
(
∇′[u1 ◦ T (t)

] ∣∣∇′u2(t)
)
L2(µ1)

)
dt

=

∫

I

χJ
((

∆(u1 ◦ T ) | ∆u2

)
L2(µ3)

+ 4
(
∇′(u1 ◦ T ) | ∇′u2

)
L2(µ1)

)
dL .

In the second equality we substituted back for τ = T (t). Altogether, we subsume all the achieved results

to gain

(
u2(t̃2)

∣∣∣
(
u1 ◦ T

)
(t̃2)

)
L2(µ1)

−
(
u2(t̃1)

∣∣∣
(
u1 ◦ T

)
(t̃1)

)
L2(µ1)

=

∫

I

∂t χJ
(
u2 | u1 ◦ T

)
L2(µ1)

dL = 0 .

But since (u1 ◦ T )(t̃2) = u1(t̃1) and (u1 ◦ T )(t̃1) = u1(t̃2), this identity takes the desired form. �

4.3 Local Estimates

In this chapter we show how to obtain local estimates for solutions of the linear initial value problem.

Here, we use the same arguments as before with u multiplied by an appropriate cut-off function, where u

solves the equation ∂tu+L0u = f on some relatively open subset of R×H in the sense of definition 4.0.1.

A temporal cut-off ensures that the temporal initial terms disappear from the inequalities. The spatial

cut-off, on the other hand, helps to avoid boundary values. It is implemented in terms of the intrinsic

geometry on the closed upper half space which has been discussed in detail in section 3.5.

4.3.1 Local Energy Estimates

In this section we set out for localized versions of the energy estimates that we have collected in paragraph

4.2. With the preparations made in section 3.5, we are in a position to construct the cut-off functions that

are necessary to “localize” our solutions to parabolic cylinders. One of the main insights that emerges

from the geometry section is the following: If an intrinsic ball is located “near” the boundary, then we

have BR(x) ∼ BeuR2(x),
6 while “far away” from there a ball behaves more like BeuR√

xn
(x) (cf. lemma 3.5.11).

This particular behavior suggests to consider different treatments depending on the ball’s position relative

to ∂H . Indeed, scaling reduces the energy estimates to Q1(0, 0) or Qr
(
0, (0, . . . , 0, 1)

)
with r ≪ 1. We

start with the derivation of such an estimate in the latter case.

Lemma 4.3.1 Let l be any nonnegative integer and α any multi-index. If u is a an energy solution of

∂tu + L0u = 0 on Qr(0, en), with r ≪ 1 and en = (0, . . . , 0, 1) ∈ H, then there exists a small δ > 0 such

that

‖∂lt∂αx u‖L2(Qδr(0, en)) ≤ c r−4l−|α| ‖u‖L2(Qr(0, en))

for some positive constant c = c(n, l, α).

Proof: Throughout this proof, think of Qρ = Iρ×Bρ as the parabolic cylinder of radius ρ > 0 and center

at (0, en), that is, Iρ = Iρ(0) and Bρ = Bρ(en).

6This relation is to be understood as follows: There exists a c ≥ 1 such that Beu
c−1R2 (x) ⊂ BR(x) ⊂ Beu

cR2(x).
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i) First we choose a suitable “bump function” η ∈ C∞
c (R × H) such that η ≡ 1 on Qδ̃r, for some

δ̃ ∈ (0, 1), and spt η ⊂ Ĩ ×Br with Ĩ ⊃ Ir. By taking a product ansatz, we can additionally achieve

that ∣∣∂lt∂αx η(t, x)
∣∣ . r−4l−|α| . (∗)

Then for δ̃ = 1
12cd

2 , we infer that |∂lt∂αx η| ≤ dist(Iδ̃r , ∂Ĩ )
−l dist(Bδ̃r , ∂Br)

−|α|. Now using the

inclusions

Iδ̃r ⊂ (− r4, r4) =: Ĩ and Bδ̃r ⊂ Beu6δ̃r ⊂ Beu12δ̃r ⊂ Br

(cf. lemma 3.5.11) implies (∗).
ii) The next step is to find an equation which is solved by ηu(k) = η ∂kxnu. Using integration by parts,

we recover the identity

(
∂t + Lk

)
(ηu(k)) = η f̃k +

(
∂tη + Lkη

)
u(k) − 8∇′η · ∇′u(k) + 2x 2

n ∆η∆u(k) +

+ 2x−k−1
n

(
∇(x k+3

n ∆η) · ∇u(k) +∇η · ∇(x k+3
n ∆u(k)) + ∆(x k+3

n ∇η · ∇u(k))
)

=:η f̃k + ωk , with k ∈ {0, . . . , αn} , on R×H

in the sense of distributions, where f̃k = ∂kxnf − 2k xn∆∆′u(k−1) − k(k − 1)∆∆′u(k−2). Note also

that f̃0 = f .

iii) Finally, we observe that 1
4
< xn <

7
4
for all x ∈ Br, if r ≤ 1

6
is sufficiently small, i.e. xn ∼ 1.

Step 1: For the moment let f ∈ L2
(
Ir;L

2(Br, µ1)
)
. By (iii) this is equivalent to saying that f ∈ L2(Qr).

Now by construction, the evaluation η(t̃1) and all its derivatives vanish for t̃1 = − r4. By the energy identity

4.1.5 together with (4.2.1) and η replaced by η2, we therefore have

‖∇(η2u(k))‖2L2(Qr)
+ ‖D2

x (η
2u(k))‖2L2(Qr)

. ‖η2f̃k‖L2(Qr) ‖η
2u(k)‖L2(Qr) +

(
ω0 | η2u(k)

)
L2(Qr)

,

where we also applied the Cauchy-Schwarz inequality to the term (η2f̃k | η2u(k))L2(Qr). Now we claim

that (
ωk | η2u(k))

L2(Qr)
≤ c r−4 ‖u(k)‖2L2(Qr)

+
1

2
‖D2

x (η
2u(k))‖2L2(Qr)

.

Indeed, repeated application of spatial integration by parts leads to the upper bound

∫

Qr

(
∂t(η

2) + 16 |∇′η|2
)
(ηu(k))2 dLn+1 −

∫

Qr

∇
(
x 3
n ∆(η2)

)
· ∇(η2) (u(k))2dLn+1 +

+ 2

∫

Qr

∇(η2) · ∇u(k) ∆(η2)u(k) −
∣∣∇(η2)

∣∣2 ∆u(k) u(k) + 2
∣∣∇(η2)

∣∣2 |∇u(k)|2 dLn+1 ,

where the boundary terms vanish since spt η(t, ·) ⊂ Br for all t ∈ Ir. The first line already has the right

form, whereas the second line requires another series of integration by parts to bring the integrals into

a suitable form. Now we add property (∗) from (i) into the estimate and the desired claim follows. We

subtract 1
2
‖D2

x (η
2u(k))‖2L2(Qr)

from both sides and then multiply by 2 to get

‖∇(η2u(k))‖2L2(Qr)
+ ‖D2

x (η
2u(k))‖2L2(Qr)

. r−4 ‖u(k)‖2L2(Qr)
+ r4 ‖f̃k‖2L2(Qr)

.

Eventually, we would like to optimize the estimate with respect to the first summand on the left hand side.

To this end, we apply the Poincaré inequality to the function ∇(η2u(k)) ∈W 1,2(Br) to find

‖∇(η2u(k))‖2L2(Br)
≤ c(n) r2 ‖D2

x (η
2u(k))‖2L2(Br)

,

since also Br ∼ Beur . This is possible because η(t) = 0 on ∂Br for all t ∈ Ir. Altogether this amounts to

r2 ‖∇u(k)‖2L2(Q
δ̃r

) + r4 ‖D2
x u

(k)‖2L2(Q
δ̃r

) . ‖u(k)‖2L2(Qr)
+ r8 ‖f̃k‖2L2(Qr)

.
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The left hand side of the inequality is a consequence of the fact that on the smaller set Qδ̃r the cut-off

function is constant to 1.

Taking k = 0 and testing the equation for ηu with ∂t(ηu) give rise to boundedness of one temporal

derivative:

‖∂tu‖L2(Qδr)
. r−4 ‖u‖L2(Qr) + r−1 ‖D3

x u‖L2(Q
δ̃r

) + ‖f‖L2(Qr) .

For this we choose η so that spt η ⊂
(
−(δ̃r)4, (δ̃r)4

)
× Bδ̃r and η ≡ 1 on Qδr for some δ < δ̃ < 1. In the

next step we derive a bound on the second norm on the right hand side.

Step 2: Now formally taking χ(t̃1,t2)

(
x−1
n ∆(x 3

n ∆u(k))−∆′u(k)
)
as test function, for t̃1 ∈ Ir, leads to

∫

(t̃1,t2)

‖∆′u(k)‖2L2(µ1)
+ ‖∇′∆u(k)‖2L2(µ3)

+ ‖x−1
n ∆(x 3

n ∆u(k))‖2L2(µ1)
dL

.

∫

(t̃1,t2)

(
f̃k | x−1

n ∆(x 3
n ∆u(k))−∆′u(k)

)
L2(µ1)

dL + ‖∇′u(k)(t̃1)‖2L2(µ1)
+ ‖∆u(k)(t̃1)‖2L2(µ3)

.

For a rigorous justification of this result we refer to the proof of proposition 4.2.4. We apply this inequality

to η4u(k) so that, similar to the proof of the global result, we get

‖∆′(η4u(k))‖2L2(Qr)
+ ‖∇′∆(η4u(k))‖2L2(Qr)

+ ‖x−1
n ∆

(
x 3
n ∆(η4u(k))

)
‖2L2(Qr)

. r−8 ‖u(k)‖2L2(Qr)
+ r−6 ‖∇u(k)‖2L2(Q

δ̃r
) + r−4 ‖D2

x u
(k)‖2L2(Q

δ̃r
) + ‖f̃k‖2L2(Qr)

.

Recall that the localized solution is a Lk-solution to the inhomogeneity given by (ii). Then again, as in

step 1, we discover that the left hand side is bounded below by the expression ‖D2
x u

(k)‖2W2,2(Qδr)
for some

0 < δ < δ̃ < 1. Now, employing the local energy inequality from step 1 to the second and third term on

the right side of the inequality we also get rid of these terms. Eventually, we apply the same argument as

used in step 1 to find

r3 ‖D3
x u

(k)‖L2(Qδr)
. r4 ‖D4

x u
(k)‖L2(Qδr)

. ‖u(k)‖L2(Q
δ̃r

) + r4 ‖f̃k‖L2(Qr) .

Note as well that one can use this estimate with k = 0 to optimize the local estimate on ∂tu from step 1 to

r4 ‖∂tu‖L2(Qδr)
. ‖u‖L2(Qr) + r4 ‖f‖L2(Qr)

as desired.

Step 3: Let 1 ≤ i ≤ n − 1. As in the assumptions of our lemma, we now assume that f = 0 and we

immediately get

‖∂xiu‖L2(Qδ1r)
. r−1 ‖u‖L2(Qr)

by virtue of step 1. Since tangential derivatives commute with the operator ∂t+L0, we need to check that

∂xiu has the required regularity to be a local solution in the sense of definition 4.0.1. This, however, is

already derived in steps 1 and 2 with k = 0. An iteration of these arguments then leads to

‖∂α′
x u‖L2(Qδ|α′|r

) . r−|α′| ‖u‖L2(Qr)

for some δ′ < · · · < δ1 < 1. Note that a simultaneous iteration of the energy estimates ensures the

regularity needed to perform the subsequent step. Next, we investigate the vertical direction. We show

that

r ‖∇u(k)‖L2(Qδk+1r)
+ r4 ‖D2

x u
(k)‖W1,2(Qδk+1r)

. r−k ‖u‖L2(Qr)



4.3. LOCAL ESTIMATES 73

by induction over k ∈ {0, . . . , αn}. The induction basis, i.e. the estimate for k = 0, follows from steps 1

and 2 with δ1 = δ̃. Hence we need to verify the statement for k + 1 provided it holds true for 0, . . . , k.

Once more we use steps 1 and 2, now to establish

r ‖∇u(k+1)‖L2(Qδk+2r)
+ r4 ‖D2

x u
(k+1)‖W1,2(Qδk+2r)

. ‖u(k+1)‖L2(Qδk+1r)
+ r4 ‖f̃k+1‖L2(Qδk+1r)

for some suitable scaling factors δk+2 < δk+1. We apply the induction hypothesis to the first term to find

this bounded by

‖∇u(k)‖L2(Qδk+1r)
. r−(k+1) ‖u‖L2(Qr) .

To bound the norm containing f̃k+1, we estimate as follows:

‖f̃k+1‖L2(Qδk+1r)

(ii)

. ‖D2
x (∆

′u)(k−1)‖W1,2(Qδk+1r)
.

Now by the first part of step 3, we recall that ∆′u is a local energy solution to f = 0, and hence the same

local estimates (steps 1 and 2) also hold for (∆′u)(k−1), possibly with a smaller scaling factor δ. This

brings us in a position where we can apply the induction hypothesis and so we eventually reach

r4 ‖f̃k+1‖L2(Qδk+1r)
. r−(k−1) ‖∆′u‖L2(Q

δ̃r
) . r−(k+1) ‖u‖L2(Qr)

for some suitably chosen 0 < δk+1 < δ̃ < 1. This completes the induction step.

Finally, solving inductively ∂jt (∂tu + L0u) = 0 for ∂j+1
t u and using the bounds for spatial derivatives we

get

‖∂ltu‖L2(Qδlr
) . . . . . r−4l ‖u‖L2(Qδlr

)

for some δl < · · · < δ1 < 1. Once again, the needed regularity gain is obtained by a simultaneous induction

of the estimates derived in steps 1 and 2.

Conclusion: We combine the results from step 3 into a consistent form. To this end, we first apply the

estimate in xn-direction to (∂lt∂
α′
x u)

(αn), followed by the first part of step 3 applied to ∂lt∂
α′
x u. This yields

‖∇(∂lt∂
α
x u)‖L2(Qδr)

. r−4l−|α|−1‖u‖L2(Qr)

for a sufficiently small δ > 0. The lemma follows immediately. �

Remark 4.3.2 The property xn ∼ 1 in Br(en) allows us to replace any weighted measure by the Lebesgue

measure and vice versa. In such balls, ∂tu+ L0u = f is a (locally) uniformly parabolic equation of fourth

order, a fact that is also reflected in the coefficient appearing on the right hand side of the energy estimate.

The situation at the boundary is covered by the following lemma.

Lemma 4.3.3 Let l ∈ N0 and α ∈ N n
0 . If u is a L0-solution on Q1(0, 0) to f = 0, then there exists a

δ > 0 such that

‖∂lt∂αx u‖L2(Qδ(0,0), µ1)
≤ c ‖u‖L2(Q1(0,0), µ1)

for a positive constant c depending on n, l and α.

Proof: As before we keep the right endpoint of the time interval and the center of the ball stationary, and

we merely write Qρ to mean Qρ(0, 0). Both the proof of lemma 4.3.1 and the present one show basically

the same pattern, therefore we only highlight the differences between them. The major change concerns
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the cut-off function, that is property (i). Via a product ansatz and the inclusions

I 1
2cd

⊂ (−1, 1) and B 1
2cd

⊂ Beu1
2cd

2
⊂ Beu

c−2
d

⊂ B1

we obtain ∣∣∂lt∂αx η(t, x)
∣∣ . 1

for any l ∈ N0 and any multi-index α, as well as η ≡ 1 on Q 1
2cd

while spt η ⊂ (−1, 1) × B1. Another

difference is the behavior of the measure. Near the boundary we have no control of the weight from below,

but still from above. More precisely, we know that xn < 2 for x ∈ B1.

By means of these preliminary considerations, we proceed the same way as in steps 1–3 of the previous

proof to find

‖∇u(k)‖L2(Q 1
2cd

, µk+1)
+ ‖D2

x u
(k)‖L2(Q 1

2cd

, µk+3)
. ‖u(k)‖L2(Q1,µk+1)

+ ‖f̃k‖L2(Q1,µk+1)
,

followed by (∫

Iδ1

‖D2
x u(t)‖2W2,2(Qδ1

,µ1,µ3,µ5)
dt
) 1

2
. ‖u‖L2(Q1,µ1)

+ ‖f‖L2(Q1,µ1)

for some scaling factors 0 < δ1 <
1

2cd
< 1. Now let f = 0, then there exist 0 < δ′, δk+1 < 1 such that

‖∂lt∂α
′

x u‖L2(Qδ′ ,µ1)
. ‖u‖L2(Q1,µ1)

(∗)

and

‖∇u(k)‖L2(Qδk+1
, µk+1)

. ‖u‖L2(Q1,µ1)
(k ∈ N0) . (∗∗)

If αn = 0, the statement already follows from (∗) with δ = δ′. Suppose now αn ≥ 1. With the Hardy

inequality applied αn times to ∂αn
xn (ψu), where ψ is a spatial cut-off function obeying the above estimate,

we obtain

‖∂αn
xn u‖L2(Bδn , µ1)

≤ ‖∂αn
xn (ψu)‖L2(H,µ1)

. ‖∂2αn
xn (ψu)‖L2(H,µ2αn+1)

. ‖u‖L2(Q1,µ1)
+

∑

1≤βn≤2αn

‖(∂2αn−βn
xn ψ︸ ︷︷ ︸

|·|. 1

) (∇∂βn−1
xn u)‖L2(H,µβn ) . ‖u‖L2(Q1,µ1)

for a small δn < δ2αn+1 < 1. The last estimate follows from (∗∗) with k = βn − 1 ∈ N0. We integrate in

time over the interval I1 to get the iterated local energy estimate in the vertical direction. We combine

this estimate with (∗) and thus finish the proof of the lemma. �

A rescaled version of the preceding two lemmas is given in the next proposition.

Proposition 4.3.4 (local energy estimate) Let t0 ∈ R, x0 ∈ H, l ∈ N0 and α be a multi-index. If u

is a L0-solution on QR(t0, x0) for R > 0 to f = 0, then there exist an ε < 1 and a constant c = c(n, l, α)

such that

‖∂lt∂αx u‖L2(QεR(t0,x0),µ1)
≤ cR−4l−|α| (R +

√
x0,n

)−|α| ‖u‖L2(QR(t0,x0),µ1)
.

Proof: By the translation invariance it suffices to consider t0 = 0 and x0 = (0, . . . , 0, x0,n) ∈ H. Now

remember that solutions are invariant under the scaling Tλ : (t, x) 7→ (λ2t, λx) =: (t̂, x̂) (cf. section 3.4.1),

that is, u ◦ Tλ is a L0-solution on T−1
λ

(
QR(0, x0)

)
= 1

λ2 IR(0) × 1
λ
BR(x0) whenever u is a solution on

QR(0, x0). Note also that derivatives transform as

∂lt̂∂
α
x̂ u(t̂, x̂) = λ−2l−|α| ∂lt∂

α
x

(
u ◦ Tλ

)
(t, x) .
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By the transformation formula we have

‖∂lt̂∂αx̂ u‖L2(Qρ(0,x0), µ1)
= λ−2l−|α|

(∫

1
λ2 Iρ(0)

‖∂lt∂αx (u ◦ Tλ)‖2L2( 1
λ
Bρ(x0), µ1)

λn+3 dL
) 1

2
.

We would like to set ρ = εR with ε > 0 so small that the left hand side can be bounded above by u in

the weighted L2-norm over QR(0, x0). To this end, we define ε̃ = δ1
16cd

4 and Cδ = 4cd
2

δ0
+ 1 ≫ 1, where

by δ1 we denote the δ from lemma 4.3.1 and by δ0 the one from lemma 4.3.3. Then, the desired estimate

follows with ε = C−1
δ ε̃. Let us prove this by cases on the relation between x0,n and R, or more precisely,

we consider the case 2Cδ
√
x0,n < R as well as 0 < R ≤ 2Cδ

√
x0,n.

i) If the latter is true, we choose λ = x0,n as scaling factor. Using the inclusion

T−1
λ

(
Qρ(0, x0)

)
⊂ Qδ1r(0, en)

with r = R
4cd

2Cδ
√
x0,n

≪ 1, we apply lemma 4.3.1 to ∂lt∂
α
x (u ◦ Tλ). After a retransformation, this

yields

‖∂lt̂∂αx̂ u‖L2(QεR(0,x0), µ1)
. R−4l−|α|√x0,n

−|α| ‖u‖L2(QR(0,x0), µ1)
,

since also

Tx0,n
(
Qr(0, en)

)
⊂ Q R

Cδ

(0, x0) ⊂ QR(0, x0) .

The stated estimate is now a direct consequence of
√
x0,n ≥ 1

2Cδ+1

(
R +

√
x0,n

)
.

ii) Now suppose 2Cδ
√
x0,n < R. First we observe that εR < R

Cδ
=: ρ such that 2

√
x0,n < ρ. By the

triangle inequality and corollary 3.5.5 we then find Bρ(x0) ⊂ B2ρ(0). With λ =
(
2
√

2 cd
δ0

ρ
)2
, this

implies that

T−1
λ

(
Qρ(0, x0)

)
⊂ Qδ0(0, 0) .

Thus, we can apply lemma 4.3.3 to get

‖∂lt̂∂αx̂ u‖L2(Qρ(0,x0), µ1)
. ρ−4l−2|α| ‖u‖L2(QCδ ρ(0,x0), µ1)

.

Here we also used that

Tλ
(
Q1(0, 0)

)
⊂ QCδ ρ(0, x0) .

The statement follows with ρ > εR, Cδ ρ = R and ρ > 2
2Cδ+1

(
R +

√
x0,n

)
. �

For a simpler presentation we write

δl,α(R,x) := R−4l−|α| (R +
√
xn
)−|α|

. (4.3.1)

4.3.2 Pointwise Estimates

Our goal here is to prove a pointwise estimate for solutions of the linear equation ∂tu + L0u = 0 on the

cylinder QR(t0, x0) that serves as a starting point for further investigation. On the other hand, it captures

the fact that any local solution is indeed smooth, at least on a smaller cylinder.

Proposition 4.3.5 Suppose u satisfies the equation ∂tu + L0u = 0 on QR(t0, x0) in the energy sense

for some (t0, x0) ∈ R×H. Then for any l ∈ N0 and α ∈ N0
n there exist ε > 0 and a constant c = c(n, l, α)

such that ∣∣∂lt∂αx u(t, x)
∣∣ ≤ c

δl,α(R, x0)

R2
∣∣BR(x0)

∣∣ 1
2

1

‖u‖L2(QR(t0,x0), µ1)

for almost all (t, x) ∈ QεR(t0, x0).
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This statement will be a consequence of the two results stated in lemma 4.3.1 and lemma 4.3.3. For

the situation away from the boundary we shall also need the Morrey-type inequality 2.7.3 localized to

Br
(
(0, . . . , 0, 1)

)
with r ≤ 1 so chosen that the ball does not touch ∂H .

Lemma 4.3.6 Let k be a positive integer satisfying the condition 2k > n+1. If u belongs to the Sobolev

space W k,2
(
Qr(0, en)

)
, with r ≪ 1 and en = (0, . . . , 0, 1) ∈ H, then there exists δ > 0 such that

∣∣u(t, x)
∣∣ ≤ c(n)

∑

j+|β|≤k
r4j+|β|−n+4

2 ‖∂jt ∂βxu‖L2(Qr(0,en))

for almost every (t, x) ∈ Qδr(0, en).

Proof: We set ur(t, x) =
(
u ◦ T

)
(t, x) with T : (t, x) 7→ (r4t, rx) =: (t̂, x̂). Moreover, with δ = 1

6cd
2 , let

Q̃ be the Euclidean cylinder defined by Q̃ = Iδ(0)×Beu6δ
(
en
r

)
. Then the following inclusions hold:

T−1(Qδr(0, en)
)

⊂ Q̃ and T (Q̃) ⊂ Qr(0, en) . (∗)

In particular, ur ∈ W k,2(Q̃). Therefore we can apply corollary 2.7.3 with Ω = Q̃ to the function ur to

conclude ∣∣u(t̂, x̂)
∣∣ =

∣∣ur(t, x)
∣∣ ≤ c(n, k, δ) ‖ur‖Wk,2(Q̃)

for almost all (t, x) ∈ Q̃, and hence in particular for almost all (t̂, x̂) ∈ Qδr(0, en), if 2k > n+ 1. Choosing

k =
1

2





n+ 3 if n is odd

n+ 2 if n is even

and noting that δ is an independent constant, then leads to

∣∣u(t̂, x̂)
∣∣ ≤ c(n)

∑

j+|β|≤k
‖∂jt ∂βx ur‖L2(Q̃) = c(n)

∑

j+|β|≤k
r4j+|β|−n+4

2 ‖∂j
t̂
∂βx̂ u‖L2(T (Q̃))

for almost all (t̂, x̂) ∈ Qδr(0, en). In the equality we have used a change of coordinates together with the

identity

∂jt ∂
β
x ur(t, x) = r4j+|β| ∂j

t̂
∂βx̂ u(t̂, x̂) .

The second inclusion in (∗) then completes the proof of the lemma. �

Proof (of proposition 4.3.5): As before, it suffices to consider the case (t0, x0) =
(
0, (0, . . . , x0,n)

)
for

some x0,n ≥ 0. Moreover, we recall the scaling invariance of solutions under the mapping Tλ : (t, x) 7→
(λ2t, λx) = (t̂, x̂) and that derivatives transform as

∣∣∂lt̂ ∂αx̂ u(t̂, x̂)
∣∣ = λ−2l−|α| ∣∣∂lt∂αx

(
u ◦ Tλ

)
(t, x)

∣∣ .

As in the proof of proposition 4.3.4, by δ0 and δ1 we denote the δ from lemma 4.3.3 and lemma 4.3.1,

respectively. Moreover, let δ̃1 be the δ in lemma 4.3.6 and define ε = C−1
δ ε̃, where Cδ =

8c 3
d
δ0

+ 1 ≫ 1 and

ε̃ = δ̃1 δ1
(2cd)

4 ≪ 1.

i) First we consider the case R ≤ 2Cδ
√
x0,n and take λ = x0,n. In this case r = R

4cd
2Cδ

√
x0,n

is a

legitimate radius in lemma 4.3.1, and so we get for almost every (t̂, x̂) ∈ QεR(0, x0) that

∣∣∂lt̂ ∂αx̂ u(t̂, x̂)
∣∣ . x

−2l−|α|
0,n

∑

j+|β|≤k
r4j+|β|−n+4

2 ‖∂l+jt ∂α+βx

(
u ◦ Tx0,n

)
‖L2(Qδ1r(0,en))

. x
−2l−|α|
0,n r−4l−|α|−n+4

2 ‖u ◦ Tx0,n‖L2(Qr(0,en),µ1)

≤ x
−2l−|α|−n+3

2
0,n r−4l−|α|−n+4

2 ‖u‖L2(QR(0,x0),µ1)
.
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In the first estimate we applied lemma 4.3.6 to ∂lt∂
α
x

(
u ◦ Tx0,n

)
with r replaced by δ1r, and in the

second one we used lemma 4.3.1 applied to ∂l+jt ∂α+βx

(
u ◦ Tx0,n

)
and the fact that xn ∼ 1 in Br(en).

The last line follows from | det∇t,xTx0,n |−1 dµ1(x) = x−n−3
0,n dµ1(x̂) and the cylinder enclosures

Tx0,n
(
Qr(0, en)

)
⊂ Q R

Cδ

(0, x0) ⊂ QR(0, x0) .

Finally, the assumption R ≤ 2Cδ
√
x0,n ensures that the present coefficient can be estimated as

λ−2l−|α|− n+3
2 r−4l−|α|−n+4

2 . R−4l−|α|√x0,n
−|α| (Rn+4√x0,n

n+2
)− 1

2 ,

which is bounded above (up to some constant) by δl,α(R, x0)R
−2
∣∣BR(x0)

∣∣− 1
2

1
as stated.

ii) In order to prepare the situation at ∂H , we shall need an analogue of lemma 4.3.6. We claim that

∣∣u(t, x)
∣∣ ≤ c(n)

∑

j+|β|≤k
‖∂jt ∂βx u‖L2(Qδ0

(0,0),µ1)
+ ‖∇x∂jt ∂βx u‖L2(Qδ0

(0,0),µ1)
(∗)

for almost all (t, x) ∈ Qδ0/2cd(0, 0). Now let 0 ≤ 2Cδ
√
x0,n < R. As in the proof of proposition

4.3.4, we put ρ = R
Cδ

; then this relation reads as 0 ≤ 2
√
x0,n < ρ. Taking λ = 2

( 4c 2
d
δ0

ρ
)2

we achieve

T−1
λ

(
Qρ(0, x0)

)
⊂ Q δ0

2cd

(0, 0) .

We apply (∗) to ∂lt∂αx
(
u ◦ Tλ

)
, followed by lemma 4.3.3, to get for almost all (t̂, x̂) ∈ Qρ(0, x0) that

∣∣∂lt̂ ∂αx̂ u(t̂, x̂)
∣∣ . ρ−4l−2|α|−n−3 ‖u‖L2(Tλ(Q1(0,0)),µ1)

,

where the factor ρ−n−3 appears due to the reverse transformation of u ◦ Tλ. Finally, we use that

Tλ
(
Q1(0, 0)

)
⊂ QCδρ(0, x0) = QR(0, x0)

and follow the line of argument in paragraph (ii) of the proof of proposition 4.3.4, combined with

ρ−n−3
.
(
Rn+4

(
R +

√
x0,n

)n+2
)− 1

2 ∼
∣∣QR(0, x0)

∣∣− 1
2

1
,

to give the local estimate the desired form.

It remains to check that (∗) holds. To this end, let δ̃0 = δ0
2cd

. Similar to the proof of lemma 4.3.6, with

r = δ0 ≪ 1, we see that ∣∣u(t, x)
∣∣ .

∑

j+|β|≤k
‖∂jt ∂βx u‖L2(Q̃)

for a.e. (t, x) ∈ Q̃ = Iδ0(0) × Beu
2δ̃ 2

0
(0) ⊃ Qδ̃0(0, 0). By choosing a cut-off function ψ ∈ C∞

c (H), for which

we have ψ ≡ 1 on Beu
2δ̃ 2

0
(0) and sptψ ⊂ Beu

4δ̃ 2
0
(0) ⊂ Bδ0(0), we can adjust the weight in as much as

∣∣u(t, x)
∣∣ .

∑

j+|β|≤k
‖∇x

(
ψ ∂jt ∂

β
x u
)
‖L2(Qδ0

(0,0),µ2)
,

where we also used the Hardy-Sobolev inequality 2.7.5 with p = q = 2, k = θ = 1 and σ = 0. The claim

follows since derivatives of ψ are bounded above by some independent constant and xn . 1 in Bδ0(0). �

Corollary 4.3.7 Since ‖u‖L2(QR,µ1)
≤ |QR|

1
2

1 ‖u‖L∞(QR), the pointwise estimate from proposition 4.3.5

reduces to ∣∣∂lt∂αx u(t0, x0)
∣∣ . δl,α(R, x0) ‖u‖L∞(QR(t0,x0))

for all l ∈ N0, all multi-indices α and any solution of the homogeneous equation in QR(t0, x0).
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Remark 4.3.8 Suppose u is a L0-solution on (t1, t2) ×H. If t1 ≤ s < t ≤ t2, we set R = 4
√
t− s > 0.

Then for any x ∈ H, u is also a solution on QR(t, x) and we can use proposition 4.3.5 to obtain the

pointwise estimate
∣∣∂lt∂αx u(t, x)

∣∣ . δl,α
(
R,x)

(
−
∫

QR(t,x)

u2 dµ1

) 1
2
.

4.3.3 Pointwise Estimates by Initial Values

From now on we return to global solutions, that is, we consider energy solutions on I×H again. Proposition

4.3.5 in conjunction with the property that the L2(H,µ1)-norm of solutions decreases in time (compare

with the energy identity 4.1.5) provides the following proposition.

Proposition 4.3.9 Let I = (t1, t2) ⊆ R be an open interval, l ∈ N0 and α ∈ N0
n. If g ∈ L2(H,µ1) and

u is a L0-solution on [t1, t2) ×H to f = 0 with u(t1) = g, then there exists a constant c = c(n, l, α) such

that ∣∣∂lt∂αx u(t, x)
∣∣ ≤ c δl,α

(
4
√
t− t1, x

) ∣∣B4√t−t1 (x)
∣∣− 1

2

1
‖g‖L2(H,µ1)

for all (t, x) ∈ Ī \ {t1} ×H.

Proof: We fix t > t1 and x ∈ H. Since u is an initial value solution on [t1, t2) ×H, it is also one on the

smaller set [t1, t)×H. By proposition 4.3.5, or rather remark 4.3.8, we obtain

∣∣∂lt∂αx u(t, x)
∣∣ . δl,α

(
4
√
t− t1 , x

) ∣∣Q4√t−t1 (x)
∣∣− 1

2

1
(t− t1)

1
2 sup
τ∈(t1,t)

‖u(τ )‖L2(H,µ1)
.

The estimate now follows from remark 4.1.5. �

Our main focus is to derive an exponential decay. A refinement of the argument above allows us to

include an exponential function in our estimate. At this point we can not use the property anymore that

‖u(t)‖L2(µ1)
decreases in t. This, however, has been the crucial ingredient in the proof of proposition 4.3.9,

and hence we require some sort of compensation for that loss.

Lemma 4.3.10 Suppose g ∈ L2(H,µ1) and I = (t1, t2) ⊆ R is open. Further let Ψ : (H,d) → R be in

the Lip2-class with Lipschitz constant cL ≥ 1, i.e.
√
xn
∣∣∇Ψ(x)

∣∣ ≤ cL and xn
∣∣∆Ψ(x)

∣∣ ≤ cL for all x ∈ H.

If u is a L0-solution to f = 0 on [t1, t2)×H with u(t1) = g, then there exist constants c, cn > 0 such that

‖eΨu(t)‖L2(H,µ1)
≤ c e cncL

4(t−t1) ‖eΨg‖L2(H,µ1)

for all t ∈ Ī.

Proof: Existence of a function Ψ with the required properties has been proven in example 3.5.9. Now

suppose Ψ ∈ Lip2(H). We set v := eΨu and perform some elementary calculations to discover

• ∆(eΨv) = eΨ
(
∆v + |∇Ψ|2 v + 2∇Ψ · ∇v + (∆Ψ)v

)
,

• eΨ∆u = ∆v + |∇Ψ|2 v − 2∇Ψ · ∇v − (∆Ψ)v ,

• ∇′(eΨv) = eΨ
(
∇′v + (∇′Ψ)v

)
and

• eΨ∇′u = ∇′v − (∇′Ψ)v.
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With this we compute

∂t ‖v‖2L2(µ1)
= 2

∫

H

eΨv ∂tu dµ1 = − 2

∫

H

∆(eΨv)∆u dµ3 − 8

∫

H

∇′(eΨv) · ∇′u dµ1

= − 2

∫

H

(
(∆v)2 + 2 |∇Ψ|2 v∆v + |∇Ψ|4 v2 − 4 |∇Ψ|2 |∇v|2 − (∆Ψ)2 v2 −

− 2∇Ψ · ∇v(∆Ψ)v
)
dµ3 − 8

∫

H

(
|∇′v|2 − |∇′Ψ|2 v2

)
dµ1 .

Then, using the Cauchy-Schwarz inequality, we deduce

∂t ‖v‖2L2(µ1)
. − ‖∆v‖2L2(µ3)

− ‖∇′v‖2L2(µ1)
+ ‖(xn|Ψ|2) v‖2L2(µ1)

+ ‖(xn∆Ψ) v‖2L2(µ1)
+

+ ‖(√xn Ψ)∇v‖2L2(µ2)
+ ‖(√xn Ψ) v‖2L2

. − ‖D2v‖2L2(µ3)
+ (cL

2 + cL
4) ‖v‖2L2(µ1)

+ cL
2 ‖∇v‖2L2(µ2)

+ cL
2 ‖v‖2L2

. − ‖D2v‖2L2(µ3)
+ cL

4 ‖v‖2L2(µ1)
+ cL

2 ‖∇v‖2L2(µ2)
.

The second inequality follows from the auxiliary equation (4.2.1) and the properties of Ψ. In the last line

we simply applied the Hardy-Sobolev inequality (stated in corollary 2.7.5) to the fourth summand of the

previous line and that cL ≥ 1. By the weighted interpolation lemma 2.8.3, we thus have

∂t ‖v‖2L2(µ1)
. −

(
1− cL

2 ε
)
‖D2v‖2L2(µ3)

+ cn
(
cL

4 +
cL

2

ε

)
‖v‖2L2(µ1)

.

We choose ε ∼ c−2
L sufficiently small to get

∂t ‖v(t)‖2L2(µ1)
. −‖D2v(t)‖2L2(µ3)

+ cn cL
4 ‖v(t)‖2L2(µ1)

.

Now let t ∈ I and define

F (t) := e−cn cL
4 (t−t1) ‖v(t)‖2L2(µ1)

+

∫ t

t1

e−cn cL
4 (τ−t1) ‖D2v(τ )‖2L2(µ3)

dτ .

Then the above calculations imply that

∂t F (t) = e−cn cL
4 (t−t1)

(
∂t ‖v(t)‖2L2(µ1)

− cn cL
4 ‖v(t)‖2L2(µ1)

+ ‖D2v(t)‖2L2(µ3)

)
≤ 0 .

Hence we have F (t) ≤ F (t1) = ‖eΨg‖2L2(µ1)
for any t1 ≤ t ≤ t2 and the claim follows. �

Now we are in a position to prove the following result.

Proposition 4.3.11 Let I = (t1, t2) ⊆ R, l ∈ N0, α ∈ N0
n, Ψ ∈ Lip2(H) with Lipschitz constant cL ≥ 1

and u be a L0-solution to f = 0 on [t1, t2)×H with u(t1) = g ∈ L2(H,µ1). Then there exist c, cn > 0 such

that
∣∣∂lt∂αx u(t, x)

∣∣ ≤ c
δl,α
(

4
√
t− t1, x

)
∣∣B4√t−t1 (x)

∣∣
1

1
2

e cncL
4(t−t1)−Ψ(x) ‖eΨ g‖L2(H,µ1)

for any (t, x) ∈ Ī \ {t1} ×H.

Proof: We argue as in the proof of proposition 4.3.9 to get

∣∣∂lt∂αx u(t, x)
∣∣ . δl,α(

4
√
t− t1 , x)

∣∣Q4√t−t1 (t, x)
∣∣− 1

2

1

(∫

(t1,t)

‖eΨ−Ψ u(τ )‖2L2(B4√t−t1
(x), µ1)

dτ
) 1

2

≤ δl,α(
4
√
t− t1 , x)

∣∣B4√t−t1 (x)
∣∣− 1

2

1
sup

z∈B4√t−t1
(x)

e−Ψ(z) sup
τ∈(t1,t)

‖eΨ u(τ )‖L2(H,µ1)
,
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since
∣∣Q4√t−t1 (t, x)

∣∣− 1
2

1

√
t− t1 =

∣∣B4√t−t1 (x)
∣∣− 1

2
1

. We arrive at

∣∣∂lt∂αx u(t, x)
∣∣ .

δl,α(
4
√
t− t1 , x)

∣∣B4√t−t1 (x)
∣∣
1

1
2

(
e cncL

4(t−t1)−Ψ(x) sup
z∈B4√t−t1

(x)

eΨ(x)−Ψ(z)
)
‖eΨ g‖L2(µ1)

by virtue of lemma 4.3.10. Now since Ψ is Lipschitz continuous on H and therefore in particu-

lar on B4√t−t1 (x), we have Ψ(x) − Ψ(z) ≤ cL 4
√
t− t1 for all z ∈ BR(x). Moreover, we have that

e cL
4√t−t1+cn cL4(t−t1) . e cncL

4(t−t1) and the estimate appears as stated in the proposition. �

Remark 4.3.12 In case of cL ∈ [0, 1) lemma 4.3.10 has to be modified to

‖eΨu(t)‖L2(H,µ1)
. e cncL

2(t−t1) ‖eΨg‖L2(H,µ1)
∀ t ∈ Ī .

But then we can repeat the proof of proposition 4.3.11 with cL
4 replaced by cL

2. This has the following

implication: Proposition 4.3.9 follows from proposition 4.3.11 with Ψ = cL = 0.

As an important consequence of the pointwise estimate 4.3.11, we derive the following result for solutions

of the homogeneous initial value problem with initial datum g ∈ Ċ 0,1(H), that is, we assume

‖g‖Ċ 0,1(H) = ‖∇g‖L∞(H) = sup
x 6=y∈H

∣∣g(x)− g(y)
∣∣

|x− y| < ∞ .

Proposition 4.3.13 Let I = (t1, t2) ⊆ R, j ≥ 0, l ∈ N0 and α ∈ N0
n with either l 6= 0 or α 6= 0. Further

suppose that u is an energy solution to ∂tu + L0u = 0 on [t1, t2) × H with u(t1) = g ∈ Ċ 0,1(H). Then

there exists a constant c = c(n, j, l, α) > 0 such that

x jn
∣∣∂lt∂αx u(t , x)

∣∣ ≤ c 4
√
t− t1

1−4l−|α| ( 4
√
t− t1 +

√
xn
)2j+1−|α| ‖g‖Ċ 0,1(H)

for all (t, x) ∈ Ī \ {t1} ×H.

Proof: Let x ∈ H and t ∈ I , with t − t1 ≤ 1, be fixed and C be some constant. Since either l or α is

nonzero, we conclude

∂lt∂
α
x

(
u(t, x)− C

)
= ∂lt∂

α
x u(t, x) .

Proposition 4.3.11 together with the fact that u− C is a L0-solution to 0 with (u− C)(t1) = g − C then

implies
∣∣∂lt∂αx u(t, x)

∣∣ .
δl,α
(

4
√
t− t1, x

)
∣∣B4√t−t1 (x)

∣∣
1

1
2

e cn cL
4(t−t1)−Ψ(x) ‖eΨ(g − C)‖L2(µ1)

.

For C = g(x), we have
∣∣g(y) − C

∣∣ ≤ |x − y| ‖∇g‖L∞(H) = |x − y| ‖g‖Ċ 0,1(H). Now for a fixed radius

R ∈ (0, 1], we decompose H into the annuli Ai(x) = BiR(x) \ B(i−1)R(x) with i ∈ N. This gives the

estimate

‖eΨ(g − C)‖L2(µ1)
≤
( ∑

i∈N

∫

Ai(x)

e 2Ψ(y) |x− y|2 dµ1(y)
) 1

2 ‖g‖Ċ 0,1(H) .

Example 3.5.9 allows us to choose Ψ so that Ψ ∼ − 1
R
d(x, ·). Consequently, Ψ(x) = 0 and the Lipschitz

constant cL = 1
R

≥ 1. Then we refer to the properties of the intrinsic metric (see lemma 3.5.11) and the

doubling condition (see corollary 3.5.12) to find

( ∑

i∈N

∫

Ai(x)

e 2Ψ(y) |x− y|2 dµ1(y)
) 1

2
. R

(
R +

√
xn
) ∑

i∈N

e−i+1 i 2
∣∣BiR(x)

∣∣
1

1
2

. R
(
R +

√
xn
) ∣∣BR(x)

∣∣
1

1
2
∑

i∈N

e−i in+3 .
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Since e−i goes to zero as i → ∞ faster than any polynomial, the sum is bounded above. Now, as usual,

we set R = 4
√
t− t1 such that e cn cL

4(t−t1)−Ψ(x) = e cn is constant. Altogether, we obtain

∣∣∂lt∂αx u(t, x)
∣∣ . 4

√
t− t1

1−4l−|α| ( 4
√
t− t1 +

√
xn
)1−|α| ‖g‖Ċ 0,1(H) (∗)

for all (t, x) ∈
(
t1 ,min{t1+1, t2}

]
×H. The fact that x jn ≤

(
4
√
t− t1 +

√
xn
)2j

proves the estimate for all

such times t and all x ∈ H.

In order to prove the general case, i.e. also for t > t1+1, we implement the same strategy used in the

proof of proposition 4.3.5. To this end, we remember the scaling Tλ : (t, x) → (λ2t, λx) and the time shift

T0 : (t, x) 7→ (t1 + t, x), see section 3.4.1, under which solutions are invariant and define

T := T0 ◦ Tλ : (t, x)
Tλ7→ (λ2t, λx)

T07→ (t1 + λ2t, λx) =: (t̂, x̂) .

We wish to apply (∗) to u ◦ T which is a L0-solution on [0, 1) ×H with initial value
(
u ◦ T

)
(0) = g. This

is possible if we choose λ > 0 sufficiently small. But then we get

x̂ j
n

∣∣∂lt̂ ∂
α
x̂ u(t1+λ

2, x̂)
∣∣ = λ−2l−|α| x̂ j

n

∣∣∂lt ∂αx
(
u ◦ T

)
(1, x)

∣∣

. λ−2l−|α| x̂ j
n

(
1 +

√
x̂n
λ

)1−|α|
‖∇x

(
u ◦ T

)
(0)‖L∞(H)

<
√
λ

−1−4l−|α| (√
λ +

√
x̂n
)2j+1−|α| ‖∇x g(λ ·)‖L∞(H)

=
√
λ

1−4l−|α| (√
λ +

√
x̂n
)2j+1−|α| ‖∇x̂ g‖L∞(H)

with 0 < λ ≤ √
t2 − t1 . Now for arbitrary but fixed (t̂, x̂) ∈ (t1, t2] × H, we set λ =

√
t̂− t1 and the

estimate takes the form stated in the proposition. �

Using this we are able to control the Lp-norm on the cylinder bounded away from initial time t1. We define

QR(x) :=
(
t1 +

R4

2
, t1 +R4

]
×BR(x) for R > 0 and x ∈ H .

Corollary 4.3.14 Suppose I, j, l and α as well as g and u are as in proposition 4.3.13.

i) Then we have

∣∣QR(x)
∣∣− 1

p R 4l+|α|−1
(
R +

√
xn
)|α|−2j−1 ‖∂lt∂αx u‖Lp(QR(x), µjp) ≤ c ‖g‖Ċ 0,1(H)

for all p ∈ [1,∞), R > 0 and x ∈ H.

ii) The estimate ‖∇u(t)‖L∞(H) ≤ c ‖g‖Ċ 0,1(H) holds for all t ∈ I.

Proof: Using proposition 4.3.13 we obtain

‖∂lt∂αx u‖Lp(QR(x), µjp) . sup
(t, y)∈QR(x)

(
4
√
t− t1

1−4l−|α| ( 4
√
t− t1 +

√
yn
)2j+1−|α|

)
‖g‖Ċ 0,1(H)

∣∣QR(x)
∣∣ 1p .

Now since
√
yn . R +

√
xn as well as

√
xn . R +

√
yn if y ∈ BR(x), we have

sup
(t, y)∈QR(x)

4
√
t− t1

1−4l−|α| ( 4
√
t− t1 +

√
yn
)2j+1−|α|

. R1−4l−|α| (R +
√
xn
)2j+1−|α|

.

At this point it is also crucial that the supremum is taken over all t ∈
(
t1 +

R4

2
, t1 +R4

]
which guarantees

that 4
√
t− t1 ∼ R, and part (i) of the corollary follows. For the estimate in (ii) we simply apply proposition

4.3.13 with j = l = 0 and |α| = 1. �
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Notes

A guideline for the weak type of solution that we consider in definition 4.0.1, i.e. we do not assume any (even

weak) differentiability in time, has been pointed out in [51], chapter 4. For the Galerkin approximation

in subsection 4.1 we adhere to strict standard techniques, such as can be found in many text books on

linear partial differential equations (e.g. [27]). The regularization uε that we use is sometimes referred to

as “Steklov averaging”, compare §4 of chapter II in [57]. Here, the energy estimates are derived in [57],

chapter III, §2, and regularity in time is proven in §4. Also, see the regularization methods, such as the

definitions of the different test functions, in [50]. For the local results we follow standard cut-off arguments

such as those used in [51, 36, 47, 35].



Chapter 5

Gaussian Estimates and

Consequences

Solutions of parabolic equations are often given by their corresponding kernels which in turn can be

estimated by Gaussian functions. For example, Koch and Lamm [54] show that the biharmonic heat kernel

G(t, x, y) that is associated to the equation ∂tu+∆2u = 0 has a pointwise control of the type

∣∣G(t, x, y)
∣∣ ≤ c t−

n
4 e−ε

(
|x−y|4

t

) 1
3

. (5.0.1)

The power of t in front of the Gaussian factor appears in situations in which the volume of a ball is

comparable to its radius - here a Euclidean setting is considered with
∣∣Beu4√t(x)

∣∣ ∼ t
n
4 for every x ∈ Rn. In

non-Euclidean situations, on the other hand, one has to replace this factor by an expression of the form

µ
(
B4√t(x)

)− 1
2 µ
(
B4√t(y)

)− 1
2 ,

where µ denotes the underlying measure and B4√t(·) denotes the ball of radius 4
√
t with respect to the

intrinsic metric. This illustrates that both analytic and geometric properties are combined by the kernel

G.

As a consequence of such an estimate, one obtains that the semigroup generated by the parabolic equation

satisfies certain Lp-estimates such as those presented in the previous section 4.3.3 containing the Gaussian

factor eΨ. The objective here is to derive a Gaussian estimate in terms of the intrinsic metric d and the

measure µ1.

5.1 The Green Function

Now we turn to the crucial Gaussian estimate for the Green function. Our notion of such a type of

function is that it can be employed to fashion a solution to the homogeneous Cauchy problem. In the

modern study of linear partial differential equations, a Green function is therefore often referred to as

general or representative solution. The Green function G is defined as the integral kernel such that

u(t, x) =

∫

H

G(t, x, t1, y) g(y)dy (5.1.1)

satisfies the equation ∂tu + L0u = 0 on I ×H subject to the initial condition u(t1) = g. Remark that in

general we may not assume that such a kernel exists. However, in our situation we can apply the Riesz

representation theorem to ensure its existence in L2(µ1). This occupies the first part of our key theorem

83
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5.1.1. In addition, we show that G is in fact essentially bounded and satisfies an estimate of the form

(5.0.1).

Theorem 5.1.1 (Gaussian estimate) Let I = (t1, t2) ⊆ R be open, l any nonnegative integer and

α any multi-index. Then there exists a Green function G : I × H × I ×H → R with G(t, x, s, y) = 0 for

t < s ∈ [t1, t2), and

∂lt∂
α
x u(t, x) =

∫

H

∂lt∂
α
x G(t, x, s, y)u(s, y) dy

for all t > s ∈ Ī, x ∈ H and any L0-solution u on [t1, t2)×H to f = 0 with u(t1) = g ∈ L2(H,µ1).

In particular, there exist positive constants c = c(n, l, α) and cn = c(n) such that

∣∣∂lt∂αx G(t, x, s, y)
∣∣ ≤ c δl,α

(
4
√
t− s, x

) ∣∣B4√t−s (x)
∣∣− 1

2

1

∣∣B4√t−s (y)
∣∣− 1

2

1
yn e

−c−1
n

(
d(x,y)4

t−s

) 1
3

(ge)

for almost every x 6= y.

Proof: Suppose u is an energy solution on [t1, t2) ×H to f = 0 with u(t1) = g. Then proposition 4.3.9

ensures that the linear functional that assigns u(s, ·) to the evaluation ∂lt∂
α
x u(t, x) is continuous. Thus we

can apply the Riesz representation theorem to find a kernel kl,α(t, x, s; ·) ∈ L2(µ1) such that

∂lt∂
α
x u(t, x) =

∫

H

kl,α(t, x, s; y)u(s, y) dµ1(y) .

Putting Gl,α(t, x, s, y) := yn kl,α(t, x, s; y), this reads

∂lt∂
α
x u(t, x) =

∫

H

Gl,α(t, x, s, y)u(s, y) dy

which already proves the existence of G = G0,0. The desired identity for derivatives follows from Lebesgue’s

dominated convergence theorem. Indeed, we have

∂lt∂
α
x u(t, x) = ∂lt∂

α
x

∫

H

G(t, x, s, y)u(s, y) dy =

∫

H

∂lt∂
α
x G(t, x, s, y)u(s, y) dy

which means Gl,α = ∂lt∂
α
x G.

Now fix t > s ∈ [t1, t2) and x ∈ H . Moreover, let Ψ ∈ Lip2(H) (see definition 3.5.10). By duality we get

‖e−Ψ
∣∣B4√t−s (·)

∣∣
1

1
2 kl,α‖L∞(H) = sup

‖g‖
L1(µ1)

≤1

∣∣∣
∫

H

kl,α e
−Ψ
∣∣B4√t−s (·)

∣∣
1

1
2 g dµ1

∣∣∣ . (∗)

Using the notation kl,α(y) = y−1
n ∂lt∂

α
x G(t, x, s, y), this reads

sup
‖g‖

L1(µ1)
≤1

{∣∣∂lt∂αx v(t, x)
∣∣
∣∣∣ v is L0-solution with v(s) = e−Ψ

∣∣B4√t−s (·)
∣∣
1

1
2 g
}
.

Next we appeal to proposition 4.3.11 applied to v in the points s+t
2
< t to get

eΨ(x)
∣∣B4√t−s (x)

∣∣ 1
2

1

∣∣∂lt∂αx v(t, x)
∣∣ . δl,α

(
4
√
t− s, x

)
e cn c

4
L

t−s
2 ‖eΨ v

(s+ t

2

)
‖L2(µ1)

.

For simplicity we introduce the following operators: By M we denote the multiplication operator that

assigns to a function in L2(µ1) its multiplication by
∣∣B4√t−s (·)

∣∣ 1
2

1
. The modified solution operator is

denoted by S̃s̃(t̃) : L
2(µ1) ∋ e−Ψv(s̃) 7→ e−Ψv(t̃) ∈ L2(µ1), where v is any energy solution to ∂tv+L0v = 0

on I ×H. In these notations, we apply proposition 4.3.11 once more, but now in the points s < s+t
2

, for
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l = α = 0 and with Ψ replaced by −Ψ to find

‖M S̃s
(s+ t

2

)
eΨ v(s)‖L∞(H) . e cn c

4
L

t−s
2 ‖e−Ψ v(s)‖L2(µ1)

,

and consequently M S̃s is also an operator from L2(µ1) to L∞(H) with operator norm bounded by

c(n) e cn c
4
L

t−s
2 .

Now let u1 and u2 be as in lemma 4.2.7. Then obviously the identity

(
eΨu1(s̃) | e−Ψ u2(t̃)

)
L2(H,µ1)

=
(
eΨu1(t̃) | e−Ψ u2(s̃)

)
L2(H,µ1)

holds for all t̃ > s̃ ∈ Ī . Adopting the terminology of the modified solution operator we interpret this as

follows:

S̃s̃(t̃)
∗ : L2(µ1) ∋ eΨv(s̃) 7→ eΨv(t̃) ∈ L2(µ1)

is the dual operator to S̃s̃(t̃) : e−Ψv(s̃) 7→ e−Ψv(t̃). The multiplication operator, on the other hand, is

self-adjoint. But this implies that

(M S̃s)
∗ : (L∞)′ ⊃ L1(µ1) ∋ g̃ 7→ S̃ ∗

s M g̃ ∈ L2(µ1)

and the operator norms coincide. Now choosing g̃ = eΨ
∣∣B4√t−s (·)

∣∣− 1
2

1
v(s) ∈ L1(µ1) this amounts to

‖eΨ v
(s+ t

2

)
‖L2(µ1)

= ‖S̃ ∗
s

(s+ t

2

)
M g̃‖L2(µ1)

. e cn c
4
L

t−s
2 ‖g̃‖L1(µ1)

.

The two estimates combined give

∣∣B4√t−s (x)
∣∣ 1

2

1
eΨ(x)

∣∣∂lt∂αx v(t, x)
∣∣ . δl,α

(
4
√
t− s, x

)
e cn c

4
L (t−s) ‖eΨ

∣∣B4√t−s (·)
∣∣− 1

2

1
v(s)‖L1(µ1)

.

Plugging this inequality into (∗) now yields

‖e−Ψ
∣∣B4√t−s (·)

∣∣
1

1
2 kl,α‖L∞(H) .

δl,α(
4
√
t− s, x)

∣∣B4√t−s (x)
∣∣
1

1
2

e−Ψ(x)+cn c
4
L (t−s) sup

‖g‖
L1(µ1)

≤1

‖g‖L1(µ1)
,

where we also used that v(s) = e−Ψ
∣∣B4√t−s (·)

∣∣
1

1
2 g. But this implies that for almost every y ∈ H

∣∣∂lt∂αx G(t, x, s, y)
∣∣ . δl,α

(
4
√
t− s, x

)
yn

∣∣B4√t−s (x)
∣∣
1

1
2
∣∣B4√t−s (y)

∣∣
1

1
2

e−
(
Ψ(x)−Ψ(y)−cn cL4(t−s)

)
.

This is where we specify the choice of the Lipschitz function and define Ψ(x) = cLd(x, y) (see example

3.5.9). Now we optimize the estimate with respect to Ψ or rather cL. Fixing all the other variables the

Gaussian function attains its minimum if cL =
(

d(x,y)
4 cn(t−s)

) 1
3 . Indeed,

−
(
cL d(x, y)− cn cL

4(t− s)
)
≥ − d(x, y)

4
3

(
cn(t− s)

) 1
3

(
4−

1
3 − 4−

4
3
)

︸ ︷︷ ︸
>0

= − c−1
n

( d(x, y)
4
√
t− s

) 4
3
,

and the pointwise estimate as stated in the theorem follows. This completes the proof. �

Corollary 5.1.2 The Gaussian estimate allows us to solve the initial value problem also for other data

than those in L2(H,µ1).

Sketch of proof: Given an initial datum g in either L1(H,µ1) or Ċ 0,1(H), one can truncate g to

become a function in L2(H,µ1). A solution is then obtained by the representation formula (5.1.1) and the

exponential decay ensures convergence of the truncated solution. �
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Remarks 5.1.3

1) For the proof of the Gaussian estimate we require that cL ≥ 1. In the opposite case cL < 1, we use

the inequality
∣∣B4√t−s (y)

∣∣
1

1
2
∣∣Gl,α(t, x, s, y)

∣∣ .
δl,α(

4
√
t− s, x) yn

∣∣B4√t−s (x)
∣∣
1

1
2

instead. Now if cL =
(
d(x,y)
cn(t−s)

) 1
3
< 1 with 4

√
t− s ≤ 1, we conclude that d(x,y)

4√t−s ≤ d(x,y)
t−s implying

that

1 ≤ e1−ε
(

d(x,y)4

t−s

) 1
3

.

This shows that (ge) remains valid if d(x, y) < cn(t− s) ≤ cn.

On the other hand, if cL < 1 and 4
√
t− s > 1, we repeat the proof of the Gaussian estimate, but this

time for u ◦ T instead of u. The operator T is defined as in the proof of proposition 4.3.13, that is,

T is a bijection of [0, 1] × H onto [s, t] × H, with [s, t] ⊂ I, and u ◦ T is again a L0-solution with(
u ◦ T

)
(0) = u(s). Note also that G ◦ T 2 is the corresponding Green function on (0, 1)×H. Hence,

it suffices to consider the case s = 0 and t = 1 such that the condition 4
√
t− s ≤ 1 is always fulfilled.

This proves, regardless of the relation between d(x, y) and 4
√
t− s, that the assumption cL ≥ 1 is not

a limiting condition.

2) Note that
∣∣∂lt∂αx G(t, x, s, y)

∣∣ .
δl,α
(

4
√
t− s, x

)
∣∣B4√t−s (x)

∣∣
1

yn e
−c−1

n

(
d(x,y)4

t−s

) 1
3

and (ge) are comparable up to changing the constants c, cn > 0. To see this, note that

∣∣B4√t−s (y)
∣∣− 1

2

1
.

(
1 +

d(x, y)
4
√
t− s

)n+1 ∣∣B4√t−s (x)
∣∣− 1

2

1

by lemma 3.5.13. However, due to the exponential decay the emerging expression
(
1+ d(x,y)

R

)n+1
can

be controlled by the Gaussian function: For any number m ≥ 0 there exists a positive constant c(m)

such that e− z ≤ c(m)
(
1 + z

)−m
holds for all z ≥ 0. Thus, with m = n+ 1, we find

(
1 +

d(x, y)
4
√
t− s

)n+1

e− c−1
n

(
d(x,y)4

t−s

) 1
3

≤ c(n+ 1) e 1− (2 cn)−1
(

d(x,y)4

t−s

) 1
3

.

In the same manner, we can replace δl,α
(

4
√
t− s, x

)
by δl,α

(
4
√
t− s, y

)
. Indeed,

δl,α
(
R,x

)
= R−4l−|α| (R +

√
xn
)−|α|

.
(
1 +

d(x, y)

R

)2|α|
δl,α
(
R, y

)
,

again by lemma 3.5.13. Throughout the rest of this work we choose the combination of x and y in

the factor δl,α
(

4
√
t− s, ·

) ∣∣B4√t−s (·)
∣∣−1

1
that turns out to be suitable and refer to an estimate of the

form of (ge) always as “Gaussian estimate”.

In the next lemma we also allow for s- and y-derivatives to enter into the Gaussian estimate.

Lemma 5.1.4 Let I = (t1, t2) be an open interval, l, m ∈ N0 and α, β ∈ N0
n. If G is the Green function

associated to the homogeneous initial value problem, then there exist ε and a constant c = c(n, l,m, α, β)

such that
∣∣∂ms ∂βy

(
y−1
n ∂lt∂

α
x G(t, x, s, y)

)∣∣ ≤ c
δl+m,α+β

(
4
√
t− s, x

)
∣∣B4√t−s (x)

∣∣
1

e−ε
(

d(x,y)4

t−s

) 1
3

for any t > s ∈ I and x, y ∈ H.
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Proof: First, one may check that y−1
n G(t, x, s, y) is a solution with respect to (s, y) on I × H in the

sense of definition 4.0.1, and hence the same holds true for y−1
n ∂lt∂

α
x G(t, x, s, y). To see this, first note

that x−1
n G(s, y, t, x) is an energy solution with respect to (s, y) and then use that G satisfies the symmetry

property

G(t, x, s, y) =
yn
xn

G(s, y, t, x)

for almost every x, y ∈ H . Now for s < t ∈ I , there always exists a positive constant c such that

IR(s) = (s−R4, s] is contained in I , where the radius is defined as R = c 4
√
t− s. Moreover, we have

IR(s) =
{
τ
∣∣ t− s ≤ t− τ < (c4 + 1)(t− s)

}
, (∗)

i.e. 4
√
t− τ ∼ R for all τ ∈ IR(s). We now apply corollary 4.3.7 to ξ−1

n ∂lt∂
α
x G(t, x, τ, ξ) in QR(s, y) to find

∣∣∂ms ∂βy
(
y−1
n ∂lt∂

α
x G(t, x, s, y)

)∣∣ . δm,β(R, y) ‖ξ−1
n ∂lt∂

α
x G(t, x, ·, ·)‖L∞(QR(s,y))

. δm,β(R, y) δl,α(R,x)
∣∣BR(x)

∣∣−1

1
‖e−ε

(
d(x , ·)

R

) 4
3 ‖L∞(QR(s,y))

by virtue of (ge) and (∗). Finally, we use the triangle inequality and Young’s inequality to show that

d(x, ξ)
4
3 ≥ 1

2
d(x, y)

4
3 − d(ξ, y)

4
3 and hence

e−ε
(

d(x,ξ)
R

) 4
3 ≤ e−

ε
2

(
d(x,y)

R

) 4
3

e ε
(

d(ξ,y)
R

) 4
3

.

The lemma follows with d(ξ, y) < R for ξ ∈ BR(y). �

In the next lemma we rephrase the Gaussian estimate (ge) on the Green function and its derivatives in a

more convenient form, but at the cost of a reduction of its application range. Indeed, as we will presently

see, the following estimate is limited to (s, y) outside of a certain cylinder Q.

Lemma 5.1.5 Suppose δ ∈ [0, 1
2
] and ρ ≥ 1 are fixed parameters. Let G be the Green function to

∂tu + L0u = 0 on (0, 1) × H and (t, x) ∈ (2δ, 1] × H. Then, for every j ≥ 0, l ∈ N0 and α ∈ N0
n with

|α| ≥ 2j, we have

x jn
∣∣∂lt∂αx G(t, x, s, y)

∣∣ ≤ c
(
1 +

√
yn
)2j−|α| ∣∣B1(y)

∣∣−1
e
−d(x,y)

4 cn

for almost all (s, y) ∈
(
(0, t]×H

)
\
(
(δ, t]× Bρ(x)

)
. Here, cn is the constant from the Gaussian estimate

(ge) and c depends on n, j, l, α and the choices of δ and ρ.

Proof: Let 0 ≤ δ ≤ 1
2
and ρ ≥ 1 be arbitrary, but fixed. With Q := (δ, t] × Bρ(x) for t ∈ [2δ, 1], we

decompose

(
(0, t]×H

)
\Q = (0, δ]×Bρ(x) ·∪ (0, δ]×Bρ(x)

c ·∪ (δ, t]×Bρ(x)
c =:

3⋃

i=1

Mi .

We observe that yn
∣∣B4√t−s (y)

∣∣−1

1
.
∣∣B4√t−s (y)

∣∣−1
such that

x jn
∣∣∂lt∂αx G(t, x, s, y)

∣∣ . 4
√
t− s

−4l−|α| ( 4
√
t− s+

√
yn
)2j−|α| ∣∣B4√t−s (y)

∣∣−1
e− (2cn)−1

(
d(x,y)4

t−s

) 1
3

.

Here we have used the condition 2j − |α| ≤ 0. For the next step we require that the time interval, and

consequently also the time difference t− s, is bounded. This and the doubling property imply

(
1 +

√
yn
)|α|−2j ∣∣B1(y)

∣∣ ≤ 4
√
t− s

2j−|α| ( 4
√
t− s+

√
yn
)|α|−2j ∣∣B1(y)

∣∣

. 4
√
t− s

−2n−|α|+2j ( 4
√
t− s+

√
yn
)|α|−2j ∣∣B4√t−s (y)

∣∣ .
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Thus it is sufficient to show that

4
√
t− s

−2n−4l−2|α|+2j
e− (2cn)−1

(
d(x,y)4

t−s

) 1
3

≤ c e
− d(x,y)

4 cn ∀ (s, y) ∈M1 ·∪M2 ·∪M3 .

Note also that γ := 2
(
n+2l+ |α| − j

)
is strictly positive which is due to the assumption that |α| − 2j ≥ 0.

First we consider (s, y) ∈M1. Then

4
√
t− s

−γ
e− (2cn)−1

(
d(x,y)4

t−s

) 1
3

≤ δ−γ
4 < δ− γ

4 e ρ−d(x,y) ,

since t− s ≥ 2δ − δ and d(x, y) < ρ.

Now let (s, y) be in M2. Then
(
d(x,y)
t−s

) 1
3
> 1 such that

4
√
t− s

−γ
e− (2cn)−1

(
d(x,y)4

t−s

) 1
3

< δ− γ
4 e

− d(x,y)
2 cn .

Eventually, if (s, y) ∈M3 we use the exponential decay which makes the increase in the prefactor control-

lable: e−(4cnR)−1 ≤ c(m)Rm for any m ≥ 0. Choosing R = 4
√
t− s and m = γ gives

4
√
t− s

−γ
e− (2cn)−1

(
d(x,y)4

t−s

) 1
3

= R−m e−
(

d(x,y)4

R

) 1
3 (4cnR)−1

e
−
(

d(x,y)

R4

) 1
3 d(x,y)

4 cn . e
−d(x,y)

4 cn .

Here we also use that d(x,y)4

R
> 1 and d(x,y)

R4 > 1 since t − s < 1 − δ and d(x, y) ≥ ρ for (s, y) ∈ M3 and

t ≤ 1. The claimed estimate then follows with c = max
{
δ−γ

4 e ρ, c(γ)
}
. �

We conclude this section with another immediate consequence of the Gaussian estimate, namely that, for

a certain range of q ≥ 1, the Green function and its weighted derivatives (leaving temporal derivatives

aside) are in the space Lq , where the integral is taken with respect to Ln+1.

Lemma 5.1.6 Let G be the Green function on (0, 1)×H, j ≥ 0 and α ∈ N0
n with 2j ≤ |α| < j+2, then

‖x jn ∂αx G(t, x, ·, ·)‖Lq((0,t)×H) ≤ c(n, j, α, q)
(
1 +

√
xn
)2j−|α| ∣∣B1(x)

∣∣ 1q −1

for all t ∈ (0, 1] and almost all x ∈ H, and for any 1 ≤ q < n+2
n−j+|α| .

Proof: Applying the Gaussian estimate (ge) we find that

∫

H

x jqn
∣∣∂αx G(t, x, s, y)

∣∣q dy . x jqn δ0,α
(

4
√
t− s, x

)q ∣∣B4√t−s (x)
∣∣−q
1

∫

H

e−qc
−1
n

(
d(x,y)4

1−s

) 1
3

dµq(y)

for t > s. Next, with Ai(x) := Bi 4√t−s (x) \B(i−1) 4√t−s (x), we decompose the half plane into the annuli,

H =
⋃

i∈N

Ai(x) .

This yields

∫

H

x jqn
∣∣∂αx G(t, x, s, y)

∣∣q dy . x jqn δ0,α
(

4
√
t− s, x

)q ∣∣B4√t−s (x)
∣∣−q
1

∑

i∈N

∫

Ai(x)

e−qc
−1
n

(
d(x,y)4

t−s

) 1
3

dµq(y)

≤ x jqn δ0,α
(

4
√
t− s, x

)q ∣∣B4√t−s (x)
∣∣−q
1

∑

i∈N

e−qc
−1
n (i−1)

4
3
∣∣Bi 4√t−s (x)

∣∣
q
.

In view of the doubling condition (see corollary 3.5.12) we get
∣∣Bi 4√t−s (x)

∣∣
q
. i 2n+2q

∣∣B4√t−s (x)
∣∣
q
and

hence ∣∣B4√t−s (x)
∣∣−q
1

∣∣B4√t−s (x)
∣∣
q

∼
∣∣B4√t−s (x)

∣∣1−q . 4
√
t− s

2n(1−q) ∣∣B1(x)
∣∣1−q .
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Moreover,

x jn δ0,α
(

4
√
t− s, x

)
≤ 4

√
t− s

2j−2|α| (
1 +

√
xn
)2j−|α|

if |α| ≥ 2j. We subsume the convergent series
∑
i∈N

i 2(n+q) e−qc
−1
n (i−1)

4
3 into the constant and then integrate

the estimate in s ∈ (0, t) to realize,

∫ t

0

‖x jn ∂αx G(t, x, s, ·)‖qLq(H) ds .
(
1 +

√
xn
)(2j−|α|)q ∣∣B1(x)

∣∣1−q
∫ t

0

τ
n
2
− q

2
(n−j+|α|) dτ

= 2
(
1 +

√
xn
)(2j−|α|)q ∣∣B1(x)

∣∣1−q τ
n+2
2

− q
2
(n−j+|α|)

n+ 2− q
(
n− j + |α|

)
∣∣∣∣
τ=t

τ=0

.

If both the denominator and the exponent are strictly positive, that is for q < n+2
n−j+|α| , this last expression

is bounded above by a constant depending on n, j, α and q. But since also q ≥ 1, this condition is satisfied

as long as −j + |α| < 2. �

Remark 5.1.7 Using similar arguments we can also show that, for any 2j ≤ |α| < j + 2, we have

(∫ 1

s

‖∂αx G(t, ·, s, y)‖qLq(H,µjq)
dt
) 1

q ≤ c(n, j, α, q)
(
1 +

√
yn
)2j−|α| ∣∣B1(y)

∣∣ 1q −1

for all s ∈ (0, 1], almost all y ∈ H and for any 1 ≤ q < n+2
n−j+|α| .

5.2 The Inhomogeneous Problem

In this section we present the main results of this work. We would like to apply a fixed point argument in

certain function spaces to obtain well-posedness for the nonlinear initial value problem

∂tu + L0u = f0[u] + xn f1[u] + x 2
n f2[u] = f [u] , u(t1) = g , (5.2.1)

where f0[u], f1[u] and f2[u] are as in lemma 3.3.1. In the previous chapter we have already seen that there

exists a unique solution u of the homogeneous linear initial value problem, that is, u satisfies the equation

∂tu + L0u = 0 , u(t1) = g . (5.2.2)

Let St1(t) denote the solution operator such that St1(t)g(x) = u(t, x) for t ∈ Ī = [t1, t2] ⊂ R. Hence

St1(t1)g = g as the initial condition holds and (∂t + L0)St1(t)g = 0. Now we apply Duhamel’s principle

which states that one can start with such a solution to build a solution to the inhomogeneous problem by

thinking of it as a set of initial value problems each beginning anew at the starting time f(s, ·) instead of

g. Integrating trough time then gives the desired solution. This means that Duhamel’s formula,

u(t, x) = St1(t)g(x) +

∫ t

t1

Ss(t)f(s, x) ds for (t, x) ∈ I ×H ,

is the unique solution of (5.2.1). To confirm this, first realize that the initial condition is certainly satisfied

because the integral vanishes at time t = t1. Next, applying ∂t + L0 to Duhamel’s formula yields

(
∂t + L0

)
u(t, x) = St(t)f(t, x) +

∫ t

t1

(
∂t + L0

)
Ss(t)f(s, x) ds = f(t, x) ,

where the first summand comes up by differentiating the upper limit of the integral. We also used that

St(t)f(t) = f(t) and (∂t +L0)Ss(t)f(s) = 0. In the following proposition we combine these considerations

with the fact that the solution operator can be expressed in terms of the Green function.
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Proposition 5.2.1 (Duhamel’s principle) Suppose I = (t1, t2) ⊂ R is an open interval, g ∈ L2(H,µ1)

and f ∈ L2
(
I ;L2(H,µ1)

)
. Further let G denote the Green function on I×H associated with (5.2.2). Then,

u(t, x) =

∫

H

G(t, x, t1, y) g(y)dy +

∫ t

t1

∫

H

G(t, x, s, y) f(s, y) dy ds

satisfies the equation ∂tu+ L0u = f on Ī ×H with initial condition u(t1) = g.

The fact that we can write the solution of the inhomogeneous problem with zero initial value as integral

operator allows us to treat f 7→ x jn ∂
l
t∂
α
x u as a kernel operator. In particular, we will see that

y−1
n ∂tG , y−1

n D2
xG , y−1

n xnD
3
xG and y−1

n x 2
n D

4
xG

define integral kernels which satisfy certain cancellation properties. From the Calderón-Zygmund theory

in spaces of homogeneous type we have learned that this implies that the corresponding operators are

bounded on Lp
(
I ;Lp(H,µ1)

)
for any p ∈ (1,∞).

When it comes to integral kernel operators Schur’s lemma is surely one of the most basic facts. It states

that

f 7→
∫

Y

K(x, y) f(y) dν(y)

is a bounded operator from Lp(Y, ν) to Lp(X,µ), 1 ≤ p ≤ ∞, if for almost every x ∈ X,

∫

Y

∣∣K(x, y)
∣∣ dν(y) ≤ C

and, for almost every y ∈ Y , ∫

X

∣∣K(x, y)
∣∣ dµ(x) ≤ C .

A proof of this standard result may be found in [32]. Utilizing Schur’s lemma we can establish Lp-

boundedness for additional integral operators without using Calderón-Zygmund theory.

Lemma 5.2.2 Let u be the L0-solution to f ∈ L2
(
(0, 1);L2(H,µ1)

)
on [0, 1) ×H with u(0) = 0. Then

we have

‖x jn ∂αx u‖Lp((0,1)×H) ≤ c ‖f‖Lp((0,1)×H)

for any j ≥ 0 and any multi-index α with 2j ≤ |α| < j + 2, and especially for j = |α|
2

if |α| < 4.

5.2.1 Kernel Estimates

Let V (t, x, s, y) be the volume of the “smallest” ball centered at (t, x) that contains (s, y). As the volume

function V is essentially symmetric, i.e. we have V (t, x, s, y) ∼ V (s, y, t, x), it is equivalent to say V is given

by

V (t, x, s, y) :=
∣∣Bd0(t, x)

∣∣
1
+
∣∣Bd0(s, y)

∣∣
1
,

where d0 := d(t)
(
(t, x), (s, y)

)
= 4
√

|t − s|+ d(x, y)4 .

Proposition 5.2.3 Suppose G is the Green function and the kernel K(t, x, s, y) is given by any of the

following expressions:

y−1
n ∂tG(t, x, s, y), y−1

n D2
xG(t, x, s, y), y−1

n xnD
3
xG(t, x, s, y), or y−1

n x 2
n D

4
xG(t, x, s, y) .

Then there exists a positive constant C = C(n) such that
∣∣K(t, x, s, y)

∣∣ ≤ C V (t, x, s, y)−1.
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For the stronger kernel estimate we set

D :=
d(t)
(
(t, x), (t̄, x̄)

)
+ d(t)

(
(s, y), (s̄, ȳ)

)

d(t)
(
(t, x), (s, y)

)
+ d(t)

(
(t̄, x̄), (s̄, ȳ)

) .

Proposition 5.2.4 Under the assumptions of proposition 5.2.3 we have

∣∣K(t, x, s, y)−K(t̄, x̄, s̄, ȳ)
∣∣ ≤ C(n)

D

V (t, x, s, y)

if D ≤ 1
10

.

5.2.2 Weighted Lp-Estimates

The kernel estimates and corollary 4.2.6 provide all that is needed to apply the theory of singular integral

operators. We obtain that, for j, l and α admissible, the operator that maps the inhomogeneity f to

x jn ∂
l
t∂
α
x u is a Calderón-Zygmund operator on a homogeneous-type metric space.

Definition 5.2.5 We say the triple (j, l, α) is of Calderón-Zygmund type if it belongs to the set

CZ :=
{
(j, l, α) ∈ [0,∞)× N0 × N

n
0 | j = 2l + |α| − 2 and 2j ≤ |α|

}
,

and observe that (j, l, α) ∈ CZ if and only if
(
j, l, |α|

)
∈
{
(0, 1, 0), (0, 0, 2), (1, 0, 3), (2, 0, 4)

}
.

Corollary 5.2.6 Suppose I = (t1, t2) ⊂ R is an open interval and u a L0-solution on [t1, t2) × H to

f ∈ L2
(
I ;L2(H,µ1)

)
with g = 0. Further let

T : L2(I ;L2(H,µ1)
)
∋ f 7→ x jn ∂

l
t∂
α
x u ∈ L2(I ;L2(H,µ1)

)
.

Then T is a Calderón-Zygmund operator on
(
I × H, d0 ,L × µ1

)
if and only if (j, l, α) ∈ CZ, i.e. if T

assigns f to either

∂tu , D2
x u , xnD

3
x u or x 2

n D
4
x u .

Hence we can apply the theory of Muckenhoupt weights to formulate the following result.

Proposition 5.2.7 (weighted Lp-estimate) Let I = (t1, t2) ⊂ R be open, f ∈ L2
(
I ;L2(H,µ1)

)
and

p ∈ (1,∞). If u is a L0-solution on [t1, t2)×H to f with g = 0, then

∫

I

‖x σn ∂t u‖pLp(H)+ ‖x σn D2
x u‖pLp(H)+ ‖x σ+1

n D3
x u‖pLp(H)+ ‖x σ+2

n D4
x u‖pLp(H) dL .

∫

I

‖x σn f‖pLp(H) dL

for all − 1
p
< σ < 2− 1

p
. In particular, this holds true for σ ∈ [0, 1].

Proof: According to lemma 3.5.17, it is x σp−1
n ∈ Ap(µ1) if and only if −1 < σp < 2p− 1. But then the

statement follows from corollary 5.2.6 in conjunction with theorem A.15. �
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5.2.3 Setting and Main Results

The first step consists in defining appropriate function spaces. Throughout this section we assume that the

initial value g is contained in the homogeneous Lipschitz space Ċ 0,1(H), that is ‖g‖Ċ 0,1(H) = ‖∇g‖L∞(H) <

∞. By proposition 4.3.13 this is a natural bound on the solution of the homogeneous initial value problem

and hence motivates the following definition.

Definition 5.2.8 (function spaces) Let I = (t1, t2) for some t1 < t2 ≤ ∞ be an open interval in R,

QR(x) :=
(
t1 +

R4

2
, t1 + R4

]
× BR(x) and p ∈ [1,∞). Let Xp denote the space of all functions with finite

norm

‖u‖Xp := ‖∇u‖L∞(I×H) + ‖u‖X1
p
,

where

‖u‖X1
p

:= sup
R4∈(0,t2−t1)

x∈H

∣∣QR(x)
∣∣− 1

p
∑

(j,l,α)∈CZ
R 4l+|α|−1 (R +

√
xn
)|α|−2j−1 ‖∂lt∂αx u‖Lp(QR(x),µjp) .

By BXε := {u ∈ Xp | ‖u‖Xp ≤ ε} we denote an ε-ball in Xp. The function space Yp is defined by

Yp :=
{
f
∣∣∣ ‖f‖Yp := sup

R4∈(0,t2−t1)
x∈H

∣∣QR(x)
∣∣− 1

p R3 (R +
√
xn
)−1 ‖f‖Lp(QR(x)) < ∞

}
.

Note that Xp and Yp are Banach spaces because they are constructed as the intersection of complete func-

tion spaces.

We see at once that the Xp-norm is bounded by the homogeneous Lipschitz-norm of the initial datum.

This observation follows directly from corollary 4.3.14.

Lemma 5.2.9 Given an initial datum g ∈ Ċ 0,1(H), let u be the solution of (5.2.2) on [t1, t2)×H. Then

we have

‖u‖Xp ≤ c(n, p) ‖g‖Ċ 0,1(H)

for any p ∈ [1,∞).

It turns out that the scaling behavior of a solution has a significant impact on the upcoming analysis. If u

is a L0-solution to f with initial condition u(t1) = g, then the rescaled function u ◦ Tλ is one to λ2(f ◦Tλ),
where by Tλ we denote the coordinate transformation from (3.4.6) under which solutions are invariant.

Moreover, both the solution itself as well as the initial datum exhibit the same scaling behavior in their

respective norms, i.e.

λ ‖u‖Xp ∼ ‖u ◦ Tλ‖Xp and λ ‖∇x̂ g‖L∞(H) = ‖∇x g(λ ·)‖L∞(H) .

As opposed to this, the scaling of the Yp-norm is characterized by the estimate

‖f ◦ Tλ‖Yp . λ−1 ‖f‖Yp . (5.2.3)

(A proof is provided in lemma 5.2.18 in the proof section 5.2.5 hereafter). Our goal now is to show that

‖u ◦ Tλ‖Xp . λ2 ‖f ◦ Tλ‖Yp ,

which in return allows us to conclude the following crucial result.
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Proposition 5.2.10 Suppose I = (t1, t2) ⊂ R for some t1 < t2 ≤ ∞ and f ∈ L2
(
I ;L2(H,µ1)

)
. Further

let u be a L0-solution on [t1, t2)×H to f with u(t1) = 0. Then there exists a positive constant c = c(n, p)

such that

‖u‖Xp ≤ c ‖f‖Yp
for any p > n+ 2.

From the definition of the function spaces Xp and Yp, and the special structure of f [u] we get the next

lemma.

Lemma 5.2.11 Let 1 ≤ p < ∞, I = (t1, t2) ⊂ R be an open interval with t1 > −∞, ε < 1
2

and

f : Xp → Yp be defined as in lemma 3.3.1. Then the operator f : BXε → Yp is analytic and we have the

estimates

‖f [u]‖Yp ≤ c
(
‖u‖2Xp

+ ‖u‖3Xp

)

for all u ∈ BXε and

‖f [u1]− f [u2]‖Yp ≤ c
(
‖u1‖Xp + ‖u2‖Xp

)
‖u1 − u2‖Xp

for all u1, u2 ∈ BXε , where the constant c depends only on n and p.

Now we combine the results from lemma 5.2.9, proposition 5.2.10 and lemma 5.2.11 to prove the main

theorem of this thesis.

Theorem 5.2.12 Let t1 > −∞, I = (t1, t2) and p > n + 2. Then there exist ε1, ε2 > 0 such that for

every g ∈ Ċ 0,1(H) satisfying ‖g‖Ċ 0,1(H) < ε1 there exists a unique solution u∗ ∈ BXε2 of (5.2.1) for which

‖u∗‖Xp ≤ c(n, p) ‖g‖Ċ 0,1(H)

holds.

Proof: Let S : g 7→ u denote the solution operator for (5.2.2) and Ψ : f 7→ u the parametrix for the

inhomogeneous equation with zero Cauchy data. Furthermore, for every g ∈ Ċ 0,1(H) define the operator

Fg : Xp → Xp by

Fg(u) := F (g, u) := Sg + Ψf [u] ,

where f [u] is given by lemma 3.3.1. With ũ := Fg(u), we then have

∂tũ + L0ũ = f [u] , ũ(t1) = g . (∗)

Via the results 5.2.9 – 5.2.11 we achieve

‖Fg(u)‖Xp . ‖g‖Ċ 0,1(H) + ‖u‖2Xp
+ ‖u‖3Xp

∀ u ∈ Xp ,

that is, Fg is bounded in BXε for any ε ∈ (0, 1
2
). Using the second inequality in lemma 5.2.11 we see that

Fg is a contraction map within BXε2 provided ‖g‖Ċ 0,1(H) and ε2 are chosen sufficiently small. Indeed,

‖Fg(u1)− Fg(u2)‖Xp ≤ cL ‖u1 − u2‖Xp

for all u1, u2 ∈ BXε2 and some cL ∈ (0, 1). Then by the Banach fixed point theorem, Fg has a unique fixed

point u∗ ∈ BXε2 that depends Lipschitz continuously on the initial condition. In view of (∗), this turns out
to be the unique global solution of (5.2.1) we were looking for. �

We call the unique solution u∗, obtained in theorem 5.2.12 by variation of constants, a mild solution.
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Using an argument introduced by Angenent [2], and later improved by Koch and Lamm [54], we show next

that the unique solution u∗ obtained in theorem 5.2.12 is analytic in temporal and all tangential directions.

Proposition 5.2.13 Let u∗ be the unique solution of (5.2.1) in BXε2 . This solution depends analytically

on the initial data g ∈ Ċ 0,1(H). Moreover, u∗ is analytic in temporal and all tangential directions, and

there exists a number R > 0 such that for any l ∈ N0 and for any α′ ∈ N n−1
0 the estimate

sup
t∈I

sup
x∈H

∣∣(t− t1)
l+ 1

2
|α′| ∂lt∂

α′
x ∇xu∗(t, x)

∣∣ ≤ cR−l−|α′| l!α′! ‖g‖Ċ 0,1(H) (5.2.4)

holds with a constant c > 0 depending only on n and R.

In order to obtain analyticity in the xn-direction, a different approach is needed. For the related equation

∂tu + Lu = ∂tu − x−σ
n ∇·

(
x σ+1
n ∇u

)
= f [u] on [t1, t2)×H

with u(t1) = g and

f [u] = −x−σ
n ∂xn

(
x σ+1
n

|∇u|2
1 + ∂xnu

)
,

this was proven by Koch [51]. Since L0 = LL, cf. (3.4.1), there is good reason to believe that solutions

of (5.2.1) are still analytic in space up to the boundary of its support. This is stated in the following

conjecture.

Conjecture 5.2.14 If u∗ is an energy solution of (5.2.1), then this solution is analytic in time and

space for all t ∈ I and x ∈ H. Moreover, estimate (5.2.4) remains valid for every l ∈ N0 and for every

multi-index α ∈ N n
0 .

5.2.4 Conclusion

In order to conclude this work, we reformulate the above results for the thin-film equation (TFE) on I×Rn.

We will show that given any initial datum near the stationary solution (yn)
2
+, there exists a unique weak

solution h satisfying the equation ∂sh+∇y ·(h∇y∆yh) = 0 in the following sense:

∫

I

∫

Rn

h ∂sϕ + h∇∆h ·∇ϕdyds = 0 (5.2.5)

for every ϕ ∈ C∞
c (I × Rn).

Next we introduce a new expression which corresponds to the X1
p -norm (see definition 5.2.8) under the

transformation (t, x) 7→ (s, y). Let φ(X1
p) denote the set of all functions h : I × Rn → R for which

[h]X1
p

:= sup
R4∈(0,t2−t1)

y∈Ps(h)

∣∣QR(y)
∣∣− 1

p
∑

(j,l,α)∈CZ
R 4l+|α|−1 (R +

√
h(0, y)

)|α|−2j−1 ‖hj ∂ls∂αy h‖Lp(QR(y))

is finite. Here

Ps(h) = Pt1+R4(h) =
{
y ∈ R

n
∣∣ h(s, y) > 0

}
,

and φ : x 7→
(
x′, v(x)

)
:= y is the inverted transformation that has been applied in section 3.1 to motivate

the consideration of the transformed equation on I ×H . We will see below (lemma 5.2.19) that φ defines

a bijection, or rather a quasi-isometry, through (t,H) 7→ spt h(t).
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Theorem 5.2.15 Let I = (t1, t2) ⊂ R be an open interval and ε > 0 small. Given a nonnegative initial

datum h(t1) = h0 with ∣∣∇y
√
h0(y)− en

∣∣ < ε ,

there exist a constant c > 0 and a unique weak solution h∗ ∈ C(I × Rn) of ∂sh+∇y · (h∇y∆yh) = 0 with

initial value h0,

‖∇y
√
h∗ − en‖L∞(P (h)) +

[√
h∗
]
X1

p
≤ c ε ,

and h∗ satisfies the equation in the sense of identity (5.2.5).

Moreover, the level sets at a fixed level λ are analytic. To see this, we fix xn = λ ≥ 0 and note that

graph
(
λ+ u∗(t, x′, λ)

)
=
{
(s, y) | h∗(s, y) = λ2

}
.

Now the analyticity of u∗ (see proposition 5.2.13) immediately implies the following result.

Corollary 5.2.16 The level sets of h∗ are analytic.

5.2.5 The Proofs

Proof (of lemma 5.2.2): From Duhamel’s principle we infer that for all (t, x) ∈ (0, 1]×H ,

x jn ∂
α
x u(t, x) =

∫ t

0

∫

H

x jn ∂
α
x G(t, x, s, y) f(s, y) dy ds ,

where G is the Green function on (0, 1)×H. Since 2j ≤ |α| < j + 2, we can apply lemma 5.1.6 to find

‖x jn ∂αx G(t, x, ·, ·)‖L1((0,t)×H) .
(
1 +

√
xn
)2j−|α| ≤ 1

for all t ∈ (0, 1] and almost all x ∈ H , and by remark 5.1.7,

∫ 1

s

‖∂αx G(t, ·, s, y)‖L1(H,µj)
dt .

(
1 +

√
yn
)2j−|α| ≤ 1

for all s ∈ [0, 1) and almost all y ∈ H. This, however, verifies the assumptions of Schur’s lemma (see

section 5.2) for K(t, x, s, y) = x jn ∂
α
x G(t, x, s, y), and hence the assertion. �

Let us now prove the two kernel estimates.

Proof (of proposition 5.2.3): First we fix some t > s ∈ Ī . Further let j ≥ 0, l ∈ N0 and α be a

multi-index. The Gaussian estimate (ge) then gives

y−1
n x jn

∣∣∂lt∂αx G(t, x, s, y)
∣∣ . 4

√
t− s

−4l−|α| (4
√
t− s+

√
xn
)2j−|α| ∣∣B4√t−s (x)

∣∣−1

1
e−c

−1
n

(
d(x,y)4

t−s

) 1
3

. 4
√
t− s

2j−4l−2|α| ∣∣B4√t−s (x)
∣∣−1

1
e−c

−1
n

(
d(x,y)4

t−s

) 1
3

,

where the second line only holds if |α| ≥ 2j. In order to exchange the ball center x by y we now apply

lemma 3.5.13, that is, we get

∣∣B4√t−s (x)
∣∣−1

1
.
(∣∣B4√t−s (x)

∣∣
1
+
∣∣B4√t−s (y)

∣∣
1

)−1 (
1 +

d(x, y)
4
√
t− s

)2n+2

.

The doubling property in corollary 3.5.12 then allows us to replace the ball radius by d0 = λ 4
√
t− s , with

1 ≤ λ = 4

√
1 + d(x,y)4

t−s ≤ 1+ d(x,y)
4√t−s , such that

∣∣Bd0(·)
∣∣
1
. λ2n+2

∣∣B4√t−s (·)
∣∣
1
. Thus, due to the exponential



96 CHAPTER 5. GAUSSIAN ESTIMATES AND CONSEQUENCES

decay of the Gaussian function, we discover that

∣∣B4√t−s (x)
∣∣−1

1
e−c

−1
n

(
d(x,y)4

t−s

) 1
3

.
(∣∣Bd0(x)

∣∣
1
+
∣∣Bd0(y)

∣∣
1

)−1

e−(2cn)−1
(

d(x,y)4

t−s

) 1
3

.

Moreover, since R−m(R + d(x, y)
)m
e−ε
(

d(x,y)
R

) 4
3 ≤ c(m) for all m ≥ 0 and all ε > 0, we have

4
√
t− s

2j−4l−2|α|
e−(2cn)−1

(
d(x,y)4

t−s

) 1
3

.
(

4
√
t− s+ d(x, y)

)2j−4l−2|α| ≤ d
2j−4l−2|α|
0 = d−4

0

if m
2
:= 2l + |α| − j = 2. Combining all these estimates leads to

∣∣K(t, x, s, y)
∣∣ . d−4

0

(∣∣Bd0(x)
∣∣
1
+
∣∣Bd0(y)

∣∣
1

)−1

=
(∣∣Qd0(t, x)

∣∣
1
+
∣∣Qd0(s, y)

∣∣
1

)−1

. V (t, x, s, y)−1 .

This corresponds to the desired estimate since both conditions, |α| ≥ 2j and 2l + |α| − j = 2, are satisfied

if and only if (j, l, α) ∈ CZ (see definition 5.2.5). �

Proof (of proposition 5.2.4): Let d0 = 4
√

|t− s|+ d(x, y)4 and d̄0 = 4
√

|t̄− s̄|+ d(x̄, ȳ)4 . With

K(t, x, s, y) as in proposition 5.2.3, we have

∣∣K(t, x, s, y)−K(t̄, x̄, s̄, ȳ)
∣∣ ≤

∣∣K(t, x, s, y)−K(t̄, x, s, y)
∣∣ +

∣∣K(t̄, x, s, y)−K(t̄, x̄, s, y)
∣∣+

+
∣∣K(t̄, x̄, s, y)−K(t̄, x̄, s̄, y)

∣∣ +
∣∣K(t̄, x̄, s̄, y)−K(t̄, x̄, s̄, ȳ)

∣∣ =: (I) + (II) + (III) + (IV ) .

If t ≤ t̄, then

(I) =
∣∣
∫ t̄

t

∂τK(τ ) dτ
∣∣ ≤ |t− t̄| sup

τ∈(t,t̄)

∣∣∂τK(τ )
∣∣ .

Applying the Gaussian estimate (ge) to ∂τK(τ ) = yn x
j
n ∂

l+1
τ ∂αx G(τ, x, s, y) yields the pointwise estimate

∣∣∂τK(τ )
∣∣ .

(
|τ − s|+ d(x, y)4

)−1
V (τ, x, s, y)−1 ,

if (j, l, α) ∈ CZ. The calculation here is essentially the same as in the preceding proof. All this amounts to

(I) .
4
√

|t− t̄|
d0

V (t, x, s, y)−1 ≤ D

V (t, x, s, y)
,

since also d0 ∼ d̄0 and |t − t̄| . d 4
0 , which both follows from the assumption that D is small. If t > t̄, we

additionally require that d0 . 4
√

|t̄− s|+ d(x, y)4 .

Now suppose γ : [a, b] → H is the geodesic between x and x̄, i.e. γ(a) = x, γ(b) = x̄ and the length of γ is

d(x, x̄). Then by the fundamental theorem of calculus, followed by definition 3.5.1, (II) equals

∣∣∣
∫ b

a

∇γ(τ)K
(
γ(τ )

)
γ′(τ ) dτ

∣∣∣ ≤ d(x, x̄) sup
z∈(γ)

√
zn
∣∣∇zK(z)

∣∣ .

As above, we get
√
zn
∣∣∇zK(z)

∣∣ . |t̄− s|− 5
4
∣∣B√

t̄−s (y)
∣∣−1

1
e
−ε
(

d(z,y)4

t̄−s

) 1
3

.

If z ∈ Bd(x,x̄)(x), then

d(x, y) . 4
√

|t̄ − s|+ d(z, y)4 .

Now note that γ ⊂ Bd(x,x̄)(x), and consequently it appears that

∣∣K(x)−K(x̄)
∣∣ =

∣∣K(t̄, x, s, y)−K(t̄, x̄, s, y)
∣∣ .

d(x, x̄)
4
√

|t̄− s|+ d(x, y)4
V (t̄, x, s, y)−1 .
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Eventually, the assumption on D implies that d0 . 4
√

|t̄− s|+ d(x, y)4, and hence we arrive at the estimate

(II) .
d(x, x̄)

d0 + d̄0
V (t, x, s, y)−1 .

Similarly,

(III) . |s− s̄| sup
τ∈(s,s̄)

(
|t̄− τ |+ d(x, y)4

)−1
V (t̄, x, τ, y)−1

which follows from the Gaussian estimate 5.1.4 and d(x, y) . 4
√

|t̄− τ |+ d(x̄, y)4 for D ≤ 1
10

and τ ∈ [s, s̄].

Employing the condition on D once more, we also find d0 . 4
√
t̄−min{s, s̄}+ d(x, y)4 which gives the

estimate the required form.

Only an estimate for (IV ) is left for which we choose a length-minimizing curve γ from y to ȳ such that

(IV ) . d(y, ȳ) sup
z∈(γ)

√
zn
∣∣∇zK(z)

∣∣ .

We know that γ is contained in the set Bd(y,ȳ)(y) ∩Bd(y,ȳ)(ȳ) and in particular, if z ∈ (γ), we have that

d(x, z) . 4
√
t̄− s̄+ d(x̄, z)4 and d(x, y) . 4

√
t̄− s̄+ d(x, z)4 ,

each of which involves a series of calculations using D ≤ 1
10

. By lemma 5.1.4 applied to K(z), we therefore

get

(IV ) .
d(y, ȳ)

4
√
t̄− s̄+ d(x, y)4

V (t̄, x, s̄, y)−1 ,

and the statement follows with d0 . 4
√
t̄− s̄+ d(x, y)4 . �

For the proof of proposition 5.2.10 we distinguish between the situation on and off the diagonal. The

following lemma deals with the off-diagonal part.

Lemma 5.2.17 Let x0 ∈ H, δ ∈ [0, 1
2
] and ρ ≥ 1 be fixed, and f ∈ L2

(
(0, 1);L2(H,µ1)

)
with spt f ⊆(

[0, 1] ×H
)
\
(
(δ, 1] × B2ρ(x0)

)
. Suppose further that j ≥ 0, l ∈ N0, α ∈ N0

n and u is a L0-solution to f

on [0, 1) ×H with initial condition u(0) = 0. Then, if |α| ≥ 2j, we have

x jn
∣∣∂lt∂αx u(t, x)

∣∣ ≤ c(n, j, l, α, δ, ρ)
(
1 +

√
x0,n

)2j+1−|α| ‖f‖Yp

for all (t, x) ∈ (2δ, 1]×Bρ(x0) ⊆ (0, 1]×H and all p ≥ 1.

Proof: Suppressing the parameters δ and ρ, we let Q(x0) := (δ, t] × B2ρ(x0) be the cylinder for which

Q(x0) ∩ spt f = ∅. Using Duhamel’s formula (proposition 5.2.1) we get

x jn
∣∣∂lt∂αx u(t, x)

∣∣ ≤
∫

(
(0,t)×H

)
\Q(x0)

x jn
∣∣∂lt∂αx G(t, x, s, y)

∣∣ ∣∣f(s, y)
∣∣ dyds .

Now, since x ∈ Bρ(x0) implies Bρ(x) ⊂ B2ρ(x0) we find

(
(0, t]×H

)
\Q(x0) ⊂

(
(0, t]×H

)
\
(
(δ, t]×Bρ(x)

)
,

and an application of lemma 5.1.5 under the integral is possible. This yields

x jn
∣∣∂lt∂αx u(t, x)

∣∣ .

∫

(0,1)×H

(
1 +

√
yn
)2j+1−|α| (

1 +
√
yn
)−1 ∣∣B1(y)

∣∣−1
e
− d(x,y)

4 cn

∣∣f(s, y)
∣∣dyds

for all (t, x) ∈ (2δ, 1]×Bρ(x0). Thanks to the exponential decay in d(x, y) we may replace yn by xn in the
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first factor, regardless of the sign of 2j + 1− |α|. Hence we obtain the upper bound

(
1 +

√
xn
)2j+1−|α|

∫

(0,1)×H

(
1 +

√
yn
)−1 ∣∣B1(y)

∣∣−1
e
−d(x,y)

8 cn

∣∣f(s, y)
∣∣ dyds .

From lemma 3.5.13 it follows that

(
1 +

√
xn
)γ

.
(
1 + d(x, x0)

)2|γ| (
1 +

√
x0,n

)γ
<
(
1 + ρ

)2|γ| (
1 +

√
x0,n

)γ

for all x ∈ Bρ(x0), and hence it remains to estimate the integral. For this we first cover H by countably

many balls B1(y0). By the triangle inequality d(x, y) > d(x, y0) − 1 for all y ∈ B1(y0). Then the above

integral is (up to a constant) bounded by

∑

y0

e−
d(x,y0)

8 cn

∫ 1

0

∫

B1(y0)

(
1 +

√
yn
)−1 ∣∣B1(y)

∣∣−1 ∣∣f(s, y)
∣∣ dyds

≤
(
sup
y0

∫ 1

0

∫

B1(y0)

(
1 +

√
yn
)−1 ∣∣B1(y)

∣∣−1 ∣∣f(s, y)
∣∣ dyds

)∑

y0

e
− d(x,y0)

8 cn ,

where the series is uniformly convergent in x since

∑

y0

e
−d(x,y0)

8 cn ≤
∑

k∈N

∑

y0∈Bk(x)

e
− k−1

8 cn = e
1

8 cn

∑

k∈N

e
− k

8 cn #
{
y0 | y0 ∈ Bk(x)

}
7 ,

and the number of lattice points in a ball grows at most polynomially in k. As for the time interval (0, 1], we

choose the cover ( 1
2
R 4
m , R

4
m], m ∈ N0, where Rm := 2−

m
4 . In the next step we want to use Vitali’s covering

lemma (see lemma A.1), which tells us that, for every m ∈ N0, there exists a number N = N(m) ∈ N such

that {B1
3
Rm

(zi)}Ni=1 is a disjoint collection of balls in B1(y0) and we have

N⋃

i=1

BRm (zi) ⊃ B1(y0) .

Using the fact that µ0 = Ln satisfies the doubling condition with respect to the intrinsic balls we also get

N∑

i=1

∣∣BRm (zi)
∣∣ ≤ c

N∑

i=1

∣∣B1
3
Rm

(zi)
∣∣ = c

∣∣
N⋃

i=1

B1
3
Rm

(zi)
∣∣ ≤ c

∣∣B1(y0)
∣∣ , (∗)

and the constant c is independent of m. The preceding integral then reads as

sup
y0

∑

m∈N0

N∑

i=1

∫

QRm (zi)

(
1 +

√
yn
)−1 ∣∣B1(y)

∣∣−1 ∣∣f(s, y)
∣∣dyds .

The idea now is to consider the boundary-case and the situation away from the boundary separately. To

this end we write

{y0} =
{√
y0,n ≪ 1

}
∪
{
1 ≪√

y0,n
}

=: A ∪ A′ .

Clearly, we have

sup
y0

≤ sup
A

+ sup
A′

.

We start by discussing the latter case, that is y0 ∈ A′. If y0,n is sufficiently large in comparison with 1, we

7This is related to the Gauss circle problem that asks how many lattice points are inside a given ball of radius
k. In the 2-dimensional Euclidean setting there are about N(k) = πk2 +O(k0.5+ε), with 0 < ε ≤ 0.1298 . . . , integer
lattice points in Bk(0). The lower limit 0 was obtained independently by Hardy and Landau in 1915, and the upper
bound by Huxley [45].
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already know that y0,n ∼ yn for all y ∈ B1(y0) and hence, in particular, for y = zi. Thus by transitivity,

∑

m∈N0

N∑

i=1

∣∣B1(y0)
∣∣−1 (

Rm +
√
zi,n

)−1
∫

QRm (zi)

∣∣f(s, y)
∣∣ dyds (∗∗)

serves as upper bound for the off-boundary part. Furthermore, by Hölder’s inequality and (∗), we conclude

(∗∗) ≤
∣∣B1(y0)

∣∣−1
∑

m∈N0

N∑

i=1

(
Rm +

√
zi,n

)−1 ∣∣QRm(zi)
∣∣ p−1

p ‖f‖Lp(QRm (zi))

≤
∣∣B1(y0)

∣∣−1
∑

m∈N0

Rm

N∑

i=1

∣∣BRm(zi)
∣∣ ‖f‖Yp .

∑

m∈N0

Rm ‖f‖Yp

for all p ≥ 1.

Turning to the case y0 ∈ A, we first apply the rather rough estimate
(
1 +

√
yn
)−1 ∣∣B1(y)

∣∣−1
. 1 to find

the boundary part to be less than

∑

m∈N0

N∑

i=1

∫

QRm (zi)

∣∣f(s, y)
∣∣ dyds ≤

∑

m∈N0

N∑

i=1

Rm
(
Rm +

√
zi,n

) ∣∣BRm(zi)
∣∣ ‖f‖Yp

(∗)
.
∣∣B1(y0)

∣∣ ∑

m∈N0

Rm ‖f‖Yp .

In the last line we also used the estimate

Rm +
√
zi,n ≤ 1 +

√
zi,n

(lemma 3.5.13)
.

(
1 + d(zi, y0)

)2 (
1 +

√
y0,n

)
. 1

for any zi ∈ B1(y0) and y0,n . 1. Now, near the boundary we can always embed B1(y0) into a ball

centered on the boundary such that
∣∣B1(y0)

∣∣ is bounded by some finite number which does not depend on

the location of y0. Summation over m ∈ N0 is possible in any of the cases and so we have

x jn
∣∣∂lt∂αx u(t, x)

∣∣ .
(
1 +

√
x0,n

)2j+1−|α| ‖f‖Yp
∑

m∈N0

Rm

for any (t, x) ∈ (2δ, 1]×Bρ(x0). This amounts to the assertion of the lemma. �

In order to allow the inhomogeneity to have a larger (or possibly smaller) time-support it requires a

rescaling argument of the form (5.2.3). In the next step we formulate this scaling behavior (supplemented

by a time shift) in an independent lemma.

Lemma 5.2.18 (scaling of the Yp-norm) Let I = (t1, t2) be an open interval, spt f ⊆ [t1, t2]×H and

T : [0, 1]×H ∋ (t, x) 7→ (t1 + λ2t, λx) =: (t̂, x̂) ∈ Ī ×H

for 0 < λ ≤√
t2 − t1 . Then

λ ‖f ◦ T‖Yp ≤ cn,p ‖f‖Yp
for all 1 ≤ p ≤ ∞.

Proof: We fix a radius 0 < R ≤ 1 and a point x ∈ H. Applying the transformation formula, we find

‖f ◦ T‖
Lp((R4

2
,R4]×BR(x))

= λ−n+2
p ‖f‖

Lp(T (
(

R4

2
,R4
]
×BR(x)))

.

(Note: T = T0 ◦Tλ with T0 and Tλ as in (3.4.5)–(3.4.6), and the Jacobian determinant satisfies JT = JTλ ).
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In view of lemma 3.5.11, we obtain

T
((R4

2
, R4

]
×BR(x)

)
⊂
(
t1 +

(
√
λR)4

2
, t1 + (

√
λR)4

]
×B4 c 2

d

√
λR(λx) .

Now we cover B4 c 2
d

√
λR(λx) by N(n) ∈ N balls of radius

√
λR centered at λzi ∈ B4 c 2

d

√
λR(λx), and thus

have

T
((R4

2
, R4

]
×BR(x)

)
⊂

N(n)⋃

i=1

Q√
λR(λzi) .

This implies

‖f ◦ T‖
Lp((R4

2
,R4]×BR(x))

. λ−n+2
p

N(n)∑

i=1

‖f‖Lp(Q√
λR

(λzi)) .

Moreover,
∣∣
(R4

2
, R4

]
×BR(x)

∣∣− 1
p ∼ λ

n+2
p
∣∣Q√

λR(λx)
∣∣− 1

p . λ
n+2
p
∣∣Q√

λR(λzi)
∣∣− 1

p ,

where the first estimate follows from lemma 3.5.15 while the second one is a consequence of the following:

By the triangle inequality we get B√λR(λzi) ⊂ B(1+ 4 c 2
d
)
√
λR(λx) and hence, by the doubling property,

∣∣B√λR(λx)
∣∣− 1

p . (1 + 4 c 2
d )

2n
p
∣∣B√λR(λzi)

∣∣− 1
p .

Finally,

R3
(
R+

√
xn
)−1

. λ−1
(√
λR
)3
(
1 +

d(λx, λzi)√
λR

)2 (√
λR+

√
λ zi,n

)−1

by virtue of lemma 3.5.13. But regarding in which ball the λzi lie gives d(λx, λzi) < 4 c 2
d

√
λR.

We arrive at

λ
∣∣QR(x)

∣∣− 1
p R3

(
R+

√
xn
)−1 ‖f ◦ T‖

Lp((R4

2
,R4]×BR(x))

.

N(n)∑

i=1

∣∣Q√
λR(λzi)

∣∣− 1
p
(√
λR
)3 (√

λR +
√
λ zi,n

)−1

‖f‖Lp(Q√
λR

(λzi))

for all p ≥ 1. Taking the supremum over R ∈ (0, 1] and x ∈ H then leads to

λ ‖f ◦ T‖Yp . N(n) sup
0<R4<λ2

sup
zi∈H

∣∣QR(zi)
∣∣− 1

p R3 (R +
√
zi,n

)−1 ‖f‖Lp(QR(zi)) ,

from which the right scaling follows since λ ≤√
t2 − t1 . �

Proposition 5.2.7, and the lemmas 5.2.17 and 5.2.18 are the key components for the next proof.

Proof (of proposition 5.2.10): We first consider the case that spt f ⊆ [0, 1]×H and write

f = χQ(x0) f +
(
1− χQ(x0)

)
f =: f1 + f2 , where Q(x0) := (

1

4
, 1]×B2(x0)

for any fixed x0 ∈ H. This decomposition in turn splits u into a sum of u1 and u2 with u1 being a solution

to f1 while u2 is one to inhomogeneity f2. Moreover, we have

‖∂lt∂αx u‖Lp(Q1(x0), µjp) ≤ ‖∂lt∂αx u1‖Lp(Q1(x0), µjp) + ‖∂lt∂αx u2‖Lp(Q1(x0), µjp) =: (I) + (II) .

Now we estimate each term separately and start with (I). From the global Lp-estimates, proposition 5.2.7

with σ = 0, it follows immediately that

‖∂lt∂αx u1‖Lp(Q1(x0), µjp) . ‖f1‖Lp((0,1)×H) = ‖f‖Lp(Q(x0)) .
(
1 +

√
x0,n

) ∣∣Q1(x0)
∣∣ 1p ‖f‖Yp
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for all p ∈ (1,∞). For the first estimate we require j, l and α to be admissible, that is such that (j, l, α) ∈ CZ.

In these cases f1 7→ x jn ∂
l
t∂
α
x u1 is a Calderón-Zygmund operator and proposition 5.2.7 can be applied. In

the second estimate we cover Q(x0) by Qrk(xi), with rk ∈ {2− 1
4 , 1} and xi ∈ B2(x0) for 1 ≤ i ≤ c(n), and

appeal to lemma 3.5.13 leading directly to

‖f‖Lp(Q(x0)) ≤
c(n)∑

i=1

2∑

k=1

r−3
k

(
rk +

√
xi,n

) ∣∣Qrk(xi)
∣∣ 1p ‖f‖Yp .

(
1 +

√
x0,n

) ∣∣Q1(x0)
∣∣ 1p ‖f‖Yp .

Now suppose
√
x0,n . 1 and (j, l, α) ∈ CZ such that |α| − 2j ≥ 0. Then, through the obvious inequality

1 +
√
x0,n . 2|α|−2j

(
1 +

√
x0,n

)2j+1−|α|
,

the above estimate takes on the form

‖∂lt∂αx u1‖Lp(Q1(x0), µjp) .
(
1 +

√
x0,n

)2j+1−|α| ∣∣Q1(x0)
∣∣ 1p ‖f‖Yp .

For 1 .
√
x0,n , it requires a different ansatz to close the gap between the factor at hand, 1 +

√
x0,n , and

the one to the power 2j + 1− |α|. As mentioned previously, xn ∼ x0,n for all x ∈ B2(x0), and thus

(
1 +

√
x0,n

)|α|−2j ‖∂αx u1‖Lp(Q1(x0), µjp) . ‖x
|α|
2

n ∂αx u1‖Lp((0,1)×H) . ‖f‖Lp(Q(x0))

by virtue of lemma 5.2.2.

To bound (II) we apply lemma 5.2.17 with δ = 1
4
and ρ = 1 to obtain that

‖∂lt∂αx u2‖Lq(Q1(x0), µjq) .
(
1 +

√
x0,n

)2j+1−|α| ∣∣Q1(x0)
∣∣ 1q ‖f‖Yp (p, q ≥ 1) ,

if |α| ≥ 2j. This last condition is, in particular, satisfied if (j, l, α) is of Calderón-Zygmund type. Also

observe that it is sufficient to only consider the case q = p. As we will see later on, this allows us to merge

the estimates for (I) and (II) into a single one.

In addition, with |α| = 1 and j = l = 0, lemma 5.2.17 yields

∣∣∇u2(t, x)
∣∣ . ‖f‖Yp

for all (t, x) ∈ Q1(x0) = ( 1
2
, 1] × B1(x0) and hence, in particular, for (t, x) = (1, x0). It remains to show

that the same pointwise bound holds for ∇u1. By proposition 5.2.1 and Hölder’s inequality we get

∣∣∇u1(1, x0)
∣∣ ≤

∫

Q(x0)

∣∣∇xG(1, x0, s, y) f(s, y)
∣∣ dyds ≤ ‖∇xG(1, x0, ·, ·)‖

L
p

p−1 ((0,1)×H)
‖f‖Lp(Q(x0)).

Then applying lemma 5.1.6 to the first norm, the one that contains the Green function, gives

‖∇xG(1, x0, ·, ·)‖
L

p
p−1 ((0,1)×H)

.
(
1 +

√
x0,n

)−1 ∣∣B1(x0)
∣∣− 1

p = 2−
1
p
(
1 +

√
x0,n

)−1 ∣∣Q1(x0)
∣∣− 1

p .

This is possible if p
p−1

< n+2
n+1

, that is for p > n+ 2, and the desired bound follows.

Altogether we have seen that for all p > n+ 2 and (j, l, α) ∈ CZ we have

‖∂lt∂αx u‖Lp(Q1(x0), µjp) .
(
1 +

√
x0,n

)2j+1−|α| ∣∣Q1(x0)
∣∣ 1p ‖f‖Yp , (∗)

as well as ∣∣∇u(1, x0)
∣∣ . ‖f‖Yp , (∗∗)
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whenever f is supported in [0, 1]×H. Now let f be as in the assumptions of the proposition. Then u is a

L0-solution on [t1, t1 + λ2)×H , for any 0 < λ ≤√
t2 − t1 , to f with u(t1) = 0. If we define

T : (t, x) 7→ (t1 + λ2t, λx) =: (t̂, x̂) ,

we know that u ◦ T is again a solution on [0, 1)×H to λ2(f ◦ T ) with (u ◦ T )(0) = u(t1) = 0 and we have

‖∂lt̂∂αx̂ u‖Lp(Q√
λ
(x̂0), µjp) . λ

n+2
p

+j−2l−|α| ‖∂lt∂αx (u ◦ T )‖Lp(Q1(x0), µjp) .

(Proceed as in the proof of lemma 5.2.18).

Applying (∗), the right hand side can be bounded by

λ−2l− |α|
2

− 1
2
(√
λ +

√
x̂0,n

)2j+1−|α| ∣∣Q√
λ (x̂0)

∣∣ 1p ‖λ2(f ◦ T )‖Yp

since also ∣∣Q1(x0)
∣∣ 1p =

∣∣Q1

( x̂0

λ

)∣∣ 1p ∼ λ−n+2
p
∣∣Q√

λ (x̂0)
∣∣ 1p .

Then, due to lemma 5.2.18, we see that

λ2l+
|α|
2

− 1
2
(√
λ +

√
x̂0,n

)|α|−2j−1 ∣∣Q√
λ (x̂0)

∣∣− 1
p ‖∂lt̂∂αx̂ u‖Lp(Q√

λ
(x̂0), µjp) . ‖f‖Yp .

Now choosing λ = r2 and taking the supremum over r and x̂0 gives us ‖u‖X1
p
. ‖f‖Yp .

Likewise,
∣∣∇x̂ u(t1 + λ2, λx0)

∣∣ = λ−1
∣∣∇x
(
u ◦ T

)
(1, x0)

∣∣ . λ ‖f ◦ T‖Yp
(5.2.3)
. ‖f‖Yp

for any 0 < λ ≤√
t2 − t1 and for almost every x0 ∈ H. This yields the complete statement. �

We finally turn to the nonlinear problem and search for an estimate for f [u] by the solution of the linear

equation. This closes the circle and allows for the fixed point argument as used in the proof of the main

theorem 5.2.12.

Proof (of lemma 5.2.11): The proof requires a careful examination of the inhomogeneity coupled with

the definition of the considered function spaces Yp and Xp.

Part 1: We first notice that

R3
(
R +

√
xn
)−1 ≤ R 4l+|α|−1

(
R +

√
xn
)|α|−2j−1

(∗)

for any (j, l, α) ∈ CZ such that the factor in the Yp-norm can be bounded by each of the factors appearing

in the X1
p -norm (cf. definition 5.2.8). Now from lemma 3.3.1 we know that the inhomogeneity can be

written as

f [u] = f0[u] + xn f1[u] + x 2
n f2[u]

with

f0[u] = f1
0 (∇u) ⋆ ∇u ⋆ D2

x u ,

f1[u] = f1
1 (∇u) ⋆ ∇u ⋆ D3

x u + f2
1 (∇u) ⋆ P2(D

2
xu) and

f2[u] = f1
2 (∇u) ⋆ ∇u ⋆ D4

x u + f2
2 (∇u) ⋆ D2

x u ⋆ D
3
x u + f3

2 (∇u) ⋆ P3(D
2
x u) .

The functions fki (∇u) always contain factors of the form (1 + ∂xnu)
−m for some integer 1 ≤ m ≤ 6.

By assumption we have u ∈ BXε with 0 < ε < 1
2

and hence, in particular, ‖∇u‖L∞ ≤ ε such that
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|1 + ∂xnu|−m ≤ (1− ε)−m < 2m. The remaining parts of fki (∇u) are “⋆ -polynomials” of ∇u from which

follows

‖fki (∇u)‖L∞(I×H) < c(ε) (∗∗)

for every i = 0, 1, 2 and 1 ≤ k ≤ i+ 1. It is important to know that this constant can be chosen indepen-

dently of ε if ε is bounded above by some number smaller than 1.

Moreover, this allows us to expand each of the fki (∇u) into a power series. Since also any polynomial is

an analytic function, we can write f [u] as a convergent power series which is convergent for every u ∈ BXε .

We now consider each of the summands in the expression of f [u] separately. For the f1
i we observe that

‖f1
i (∇u)∇uD|α|

x u‖Lp(QR(x),µjp) ≤ ‖fki (∇u)‖L∞(I×H) ‖∇u‖L∞(I×H) ‖D|α|
x u‖Lp(QR(x), µjp) ,

where j = 0, 1, 2 and |α| = j + 2. Using (∗) and (∗∗) we arrive at the estimate

∣∣QR(x)
∣∣− 1

p R3 (R +
√
xn
)−1 ‖x jn f1

i (∇u)∇uD|α|
x u‖Lp(QR(x)) . ‖u‖2Xp

.

In order to bound the other parts of f [u], we appeal to the weighted Gagliardo-Nirenberg interpolation in

its local version8 to get

‖|D2
x u|2‖Lp(QR(x), µp) = ‖D2

x u‖2L2p(QR(x), µp)
. ‖∇u‖L∞(I×H) ‖D3

x u‖Lp(QR(x), µp)

and

‖|D2
x u|3‖Lp(QR(x), µ2p) = ‖D2

x u‖3L3p(QR(x), µ2p)
. ‖∇u‖2L∞(I×H) ‖D4

x u‖Lp(QR(x), µ2p) .

Moreover,

‖D2
x uD

3
x u‖Lp(QR(x), µ2p) ≤‖D2

x u‖L3p(QR(x), µ2p)
‖D3

x u‖
L

3
2
p
(QR(x), µ2p)

. ‖∇u‖
2
3
L∞(I×H) ‖D

4
x u‖

1
3
Lp(QR(x), µ2p)

‖∇u‖
1
3
L∞(I×H) ‖D

4
x u‖

2
3
Lp(QR(x), µ2p)

,

where in the first line we have used Hölder’s inequality. Then, again by (∗) and (∗∗), we obtain

∣∣QR(x)
∣∣− 1

p R3 (R +
√
xn
)−1

(
‖f1[u]‖Lp(QR(x), µp) + ‖f2[u]‖Lp(QR(x), µ2p)

)
. ‖u‖2Xp

+ ‖u‖3Xp
.

Part 2: Next we address the second part of the lemma, namely the one that includes the estimate for

f [u1]− f [u2] =
(
f0[u1]− f0[u2]

)
+ xn

(
f1[u1]− f1[u2]

)
+ x 2

n

(
f2[u1]− f2[u2]

)

for u1, u2 ∈ BXε with 0 < ε < 1
2
. This difference expressed as a telescoping sum reads

f0[u1]− f0[u2] =
(
f1
0 (∇u1)− f1

0 (∇u2)
)
⋆ ∇u1 ⋆ D

2
x u1 + f1

0 (∇u2) ⋆ ∇(u1 − u2) ⋆ D
2
x u1 +

+ f1
0 (∇u2) ⋆ ∇u2 ⋆ D

2
x (u1 − u2) ,

and similarly we rewrite all the other terms except the last one. Here we have

f3
2 (∇u1) ⋆ P3(D

2
x u1) − f3

2 (∇u2) ⋆ P3(D
2
x u2)

=
(
f3
2 (∇u1)− f3

2 (∇u2)
)
⋆ P3(D

2
x u1) + f3

2 (∇u2) ⋆
2∑

i=0

P2−i(D
2
x u1) ⋆D

2
x (u1 − u2) ⋆ Pi(D

2
x u2) .

8Apply proposition 2.8.2 to D2
x u multiplied by a suitable cut-off function η which localizes the inequality to a

time-space cylinder.
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By means of the estimates from the first part of the proof applied to each of these summands we obtain

‖f [u1]− f [u2]‖Yp .
(
‖u1‖Xp + ‖u2‖Xp

)
‖u1 − u2‖Xp + ‖u1‖2Xp

2∑

i=0

‖f1
i (∇u1)− f1

i (∇u2)‖L∞(I×H)

for every u1, u2 ∈ BXε with 0 < ε < 1
2
. Finally, in order to estimate the sum, we obtain through the

identity

(1 + ∂xnu1)
−m − (1 + ∂xnu2)

−m

=
(∂xnu2 − ∂xnu1)

(1 + ∂xnu1)m (1 + ∂xnu2)m

m∑

i=1

i−1∑

k=0

(
m

i

)
(∂xnu1)

i−1−k (∂xnu2)
k

that

‖f1
i (∇u1)− f1

i (∇u2)‖L∞(I×H) . ‖u1 − u2‖Xp

for all u1, u2 ∈ BXε . The complete statement follows with ‖u1‖2Xp
≤ ‖u1‖Xp

(
‖u1‖Xp + ‖u2‖Xp

)
. �

In the proof of the analyticity result 5.2.13 we follow the same arguments as used in [54, Thm. 3.1] to

obtain analyticity for solutions of the non-degenerate analogue of the equation (TFE).

Proof (of proposition 5.2.13): First we note that

F (g, u) = Sg + Ψf [u] ,

and hence G(g, u) = u − F (g, u), is analytic on Ċ 0,1(H) × BXε for ε < 1
2
. This, combined with the fact

that G(0, 0) = 0 and DuG(0, 0) = id, allows us to apply the analytic implicit function theorem (see e.g.

[22]): There exist positive numbers δ0, ε0 and a unique analytic mapping A : BLipδ0
→ BXε0 , with

BLipδ0
=
{
g ∈ Ċ 0,1(H) | ‖g‖Ċ 0,1(H) < δ0

}

and BXε0 ⊂ BXε , such that A(0) = 0 and G(g, u) = 0 for every g ∈ BLipδ0
and u ∈ BXε0 if and only if

u = A(g). However, since by theorem 5.2.12, there exists exactly one solution u∗ ∈ BXγ of (5.2.1), where

γ = min{ε2, ε0}, we thus have that u∗ depends analytically on g.

In the next part we prove that u∗ is an analytical function in t ∈ I and x′. To this end, let t2 <∞, τ ∈ R

and ξ ∈ Rn−1 be parameters satisfying (τ, ξ) ∈ (1− ρ̄, 1 + ρ̄)× B̃eur̄ (0), for ρ̄, r̄ > 0 small, and define

f̃τ,ξ[u] := τ f [u] + (1− τ )L0u − ξ · ∇′
xu .

Clearly, f̃1,0[u] = f [u]. Moreover, we define F̃ , G̃ : (1− ρ̄, 1 + ρ̄)× B̃eur̄ (0)× Ċ 0,1(H)×BXε → Xp by

F̃ (τ, ξ, g, u) := Sg + Ψf̃τ,ξ[u]

and G̃(τ, ξ, g, u) := u − F̃ (τ, ξ, g, u), just as above. Now we use lemma 5.2.9 and proposition 5.2.10 to

conclude that

‖G̃(τ, ξ, g, u)‖Xp . ‖u‖Xp + ‖g‖Ċ 0,1(H) + ‖f̃τ,ξ [u]‖Yp
provided p > n+ 2. With the help of lemma 5.2.11 and definition 5.2.8, we estimate the last norm to get

‖f̃τ,ξ[u]‖Yp .
(
τ ‖u‖Xp + τ ‖u‖2Xp

+ |1− τ | + |ξ|
√
t2 − t1

)
‖u‖Xp ,

since also

‖∇′
xu‖Yp ≤ ‖∇xu‖L∞(I×H) sup

t∈I

√
t− t1 .

Since G̃(1, 0, 0, 0) = 0 and DuG̃(1, 0, 0, 0) = id, there exist positive numbers ρ < ρ̄, r < r̄, ε3 < ε, δ1 and a
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uniquely determined analytic mapping Ã : (1− ρ, 1 + ρ)× B̃eur (0) ×BLipδ1
×BXε3 → Xp that satisfies

G̃
(
τ, ξ, g, Ã(τ, ξ, g)

)
= 0

by yet another application of the analytic implicit function theorem, and therefore we have the identity

Ã(τ, ξ, g) = Sg + Ψf̃τ,ξ
[
Ã(τ, ξ, g)

]
.

Now let g ∈ BLipδ , where δ = min{δ0, δ1}. Then we observe that A(g)(t1, ·) = g = Ã(τ, ξ, g)(t1, ·) and

G̃
(
τ, ξ, g,A(g)

(
τ (t− t1), x

′ − (t− t1) ξ, xn
))

= 0 .

Thus, by the above uniqueness results, we obtain A(g)
(
τ (t − t1), x

′ − (t − t1) ξ, xn
)
= Ã(τ, ξ, g), and in

particular u∗(τ (t − t1), x
′ − (t − t1) ξ, xn

)
is analytic in τ ∈ (1 − ρ, 1 + ρ) and ξ ∈ B̃eur (0) ⊂ Rn−1. For

t ≤ t2 <∞, we moreover get

∂τu
∗(τ (t− t1), x

′ − (t− t1) ξ, xn
)∣∣∣

(τ,ξ)=(1,0)
= (t− t1) ∂tu

∗(t, x) ,

∇′
ξu

∗(τ (t− t1), x
′ − (t− t1) ξ, xn

)∣∣∣
(τ,ξ)=(1,0)

= (t1 − t)∇′
xu

∗(t, x)

and similar formulas for (mixed) derivatives of higher order. This proves the analyticity of u∗ in (t, x′) ∈
I × Rn−1. The estimate (5.2.4) now follows from these formulas coupled with a scaling argument: Let

T : (t, x) 7→ (t1 + λ2t, λx) =: (t̂, x̂) with 0 < λ <
√
t2 − t1 . Applying the analyticity estimate

∣∣∂lt∂α
′

x′ u
∗(1, x)

∣∣ . R−l−|α′| l!α′! ‖g‖Ċ 0,1(H)

yields ∣∣∂lt̂∂α
′

x̂′ u
∗(t1 + λ2, x̂)

∣∣ . λ1−2l−|α′|R−l−|α′| l!α′! ‖g‖Ċ 0,1(H) ,

since also ‖∇x g(λ ·)‖L∞(H) = λ ‖∇x̂ g‖L∞(H). Now for (t̂, x̂) ∈ (t1, t2) × H, we set λ =
√
t̂− t1 and the

estimate takes the desired form. �

Before we can prove the uniqueness result for the original problem, we shall need the fact that the change

of coordinates (t, x) 7→ (s, y) is a quasi-isometry. This is formalized in the following auxiliary lemma.

Lemma 5.2.19 Let φ : x 7→
(
x′, v(x)

)
with v : Rn → R satisfying |∇xv− en| < ε for an ε < 1. Then we

have

(1− ε) |x− x̄| <
∣∣φ(x)− φ(x̄)

∣∣ < (1− ε)−1 |x− x̄|

for all x, x̄ ∈ Rn.

Proof: We may assume that xn > x̄n without loss of generality. By the mean value theorem, only applied

in vertical direction, there exists a number x̄n < z < xn such that

∣∣φ(x)− φ(x̄)− (x− x̄)
∣∣ =

∣∣v(x)− v(x̄)− (xn − x̄n)
∣∣ =

∣∣∂xnv(z)(xn − x̄n)− (xn − x̄n)
∣∣

≤
∣∣∇xv(z)− en

∣∣ (xn − x̄n) < ε (xn − x̄n)

≤ ε
(∣∣φ(x)− φ(x̄)

∣∣ +
∣∣φ(x)− φ(x̄)− (x− x̄)

∣∣
)
.

We subtract ε times the left hand side from both sides of the inequality, divide by (1− ε) and arrive at

∣∣φ(x)− φ(x̄)− (x− x̄)
∣∣ < ε

1− ε
min

{∣∣φ(x)− φ(x̄)
∣∣ , |x− x̄|

}
.

The assertion follows by the triangle inequality. �



106 CHAPTER 5. GAUSSIAN ESTIMATES AND CONSEQUENCES

Corollary 5.2.20 For y ∈ Rn, let BiR(y) := φ
(
BR(x)

)
with x = φ−1(y), where φ−1 : y 7→

(
y′, h̃(y)

)
.

Then we have

BiR(y) ∼ Beu
R
(
R+

√
h̃
)(y) ∩ spt h̃

This relation reads as follows: There exists c = c(ε) > 1 such that c−1 Beur (y) ⊂ BiR(y) ⊂ cBeur (y), where

cBeur (x) denotes the Euclidean ball with the same center and radius dilated by the factor c, i.e. Beucr (x)

with r = R
(
R +

√
h̃
)
.

Proof: First suppose that R2 ≪ xn, i.e. R
2 ≪ h̃ after changing variables. In this situation we have

BR(x) ∼ BeuR√
xn(x)

by virtue of lemma 3.5.11, whilst for R2 & xn, this relation becomes BR(x) ∼ BeuR2(x) ∩H. However, this

implies

Beu(1−ε)R√
xn

(
φ(x)

)
⊂ φ

(
BeuR√

xn(x)
)

⊂ BeuR
1−ε

√
xn

(
φ(x)

)
,

where we used lemma 5.2.19, and the assertion follows with y = φ(x) and φ(H) = spt h̃. �

Proof (of theorem 5.2.15): Assume that there exist numbers δ ∈ (0, 1) and C > 1 such that v : I×H →
R satisfies

δ ≤
∣∣∇xv(t, x)

∣∣ ≤ C . (∗)

Then by lemma 5.2.19, we can make the change of variables (t, x) 7→ (s, y) to globally transform the

equation ∂tv + L0v = f [v], with v = xn + u. Now using h̃ = xn as the new dependent variable, we obtain

∇yh̃ = − v−1
n

(
∇′
xv

−1

)

and thus

0 <
δ + 1

2C
≤
∣∣∇yh̃

∣∣ ≤ C + 1

δ
< ∞ .

If additionally |∂tv| <∞, then

|∂sh̃| =

∣∣∣∣
∂tv

vn

∣∣∣∣ < ∞ ,

and the function h̃ is Lipschitz in s and y up to the boundary of its support and has bounded first

derivatives. Now let v = xn+u∗, where u∗ is the unique solution of (5.2.1) given by theorem 5.2.12. Then

we have ∣∣∇t,xu∗(t, x)
∣∣ . ‖g‖Ċ 0,1(H)

by means of (5.2.4), and the required bounds follow for sufficiently small ‖g‖Ċ 0,1(H).

It remains to prove two parts. First, we show that a mild solution of (5.2.1) yields a weak solution of the

thin-film equation in the sense of definition (5.2.5). In a second step, we prove uniqueness of this solution

by imposing additional conditions on h, or rather h̃, in terms of the transformed intrinsic cylinders QR(x).

Existence: Putting h̃ =
√
h, we observe that

∫

I

∫

Rn

h̃2 ∂sϕdyds = −
∫

I

∫

Rn

∂sh̃
2 ϕdyds

for all test functions ϕ ∈ C∞
c (I × Rn) by integration by parts. It therefore suffices to show that for all

s ∈ I , ∫

Rn

∂sh̃
2 ϕdy =

∫

Rn

h̃2 ∇y∆yh̃
2 ·∇yϕdy .
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Under a change of coordinates (s, y) 7→ (t, x) (cf. section 3.1), the left hand side integral transforms to

−2

∫

H

xn
∂tu

vn
ϕ
∂yn
∂xn

dx = −2

∫

H

∂tuϕdµ1 ,

where vn = ∂xnv = 1 + ∂xnu. For the second integral, we proceed as in the proof lemma 3.3.1 to get

2

∫

H

[
(
v−1
n ∇′

x

∂xn

)
(x 3
n ∆xu) + 2x 2

n

(
v−1
n ∇′

x

∂xn

)
∂xnu − 2 x 2

n en∆xu + R(u)
]
∇yϕvn dx .

Next we employ the ⋆-notation, as introduced in section 3.3, to rewrite the remainder as follows:

R(u) = x 2
n f̃2(∇xu) ⋆∇xu ⋆ D2

x u + x 3
n

(
f̃1
3 (∇xu) ⋆∇xu ⋆ D3

x u+ f̃2
3 (∇xu) ⋆ P2(D

2
x u)

)

Again, the functions f̃2 and f̃k3 contain factors of the form v−mn for some 2 ≤ m ≤ 5. Now recall that

∇y =

(
∇′
x − v−1

n ∇′
xv ∂xn

v−1
n ∂xn

)
.

An integration by parts is possible giving us the identity

2

∫

H

xn
(
∂tu + L0u − f [u]

)
ϕdx = 0 ,

and 2xnϕ is an admissible test function. To see this, we calculate that

∇y
[
(

∇′
x

vn ∂xn

)
(x 3
n ∆xu)+2x 2

n

(
∇′
x

vn ∂xn

)
∂xnu − 2x 2

n vn en∆xu + vnR(u)
]

= ∆x

(
x 3
n ∆xu

)
− 4xn∆

′
xu − f [u] .

Now if u∗ is the unique solution of (5.2.1) given by theorem 5.2.12, then each of the single terms ∂tu
∗,

D2
x u

∗, xnD
3
x u

∗, x 2
nD

4
x u

∗ and f [u∗] is bounded above by c ε1 > 0. Reversing the transformation from above

yields the existence of a solution h of ∂sh+∇y·(h∇y∆yh) = 0 on its positivity set P (h). Finally, extending

h by 0 outside of spt h we conclude that h is a weak solution in the sense of (5.2.5). To see this, we calculate

that ∫

I

∫

Rn

h ∂sϕ + h∇∆h ·∇ϕdyds = −
∫

I

∫

Rn

(
∂sh + ∇·(h∇∆h)

)
ϕdyds = 0

using integration by parts. Note that the boundary terms vanish since h vanishes on ∂P (h).

Uniqueness: Given gv satisfying |∇xgv− en| < ε, then by theorem 5.2.12 there exists a unique solution

v∗ of the transformed thin-film equation and we have v∗(t1) = gv. Moreover, we know that

‖v∗ − xn‖Xp . ε .

This implies |∇xv∗ − en| . ε, cf. (∗), and |∇yh̃ − en| . ε after the transformation (t, x) 7→ (s, y). Under

this transformation applied to cylinders of the form QR(x) =
(
t1 +

R4

2
, t1 +R4

]
×BR(x) we get

QR(x) ∼
(
t1 +

R4

2
, t1 +R4

]
×BR(y) = QR(y)

where we have used corollary 5.2.20. Now let (j, l, α) ∈ CZ, for example take (j, l, |α|) = (0, 0, 2). Then

∣∣QR(x)
∣∣− 1

p R
(
R+

√
xn
)
‖D2

x v‖Lp(QR(x)) ∼
∣∣QR(y)

∣∣− 1
p R

(
R+

√
h̃
)
‖D2

y h̃‖Lp(QR(y)) ,

with similar transforms for the other combinations of j, l and |α|. The supremum is now taken over all
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R4 ∈ (0, t2 − t1) and all y ∈ Ps(h̃) = {y ∈ Rn | h̃(s, y) > 0}, s ∈ I . Also note that h̃ is controlled by

(1− ε̃) h̃(s, y) < dist
(
y,Rn \ spt h̃(s)

)
< (1− ε̃)−1 h̃(s, y)

which follows from a transformation of the statement in lemma 5.2.19. Using |∂sh̃| . ε, this amounts to

R +

√
h̃(s, y) ∼ R +

√
h̃0(y)

in QR(y). All these calculations show that v∗ generates a solution h̃1 via (t, x) 7→ (s, y) which satisfies

sup
P (h̃)

∣∣∇yh̃1 − en
∣∣ +

[
h̃1

]
X1

p
. ε .

Let h̃2 be another weak solution. Then, inverting the transformation, we obtain a second mild solution,

say v∗∗, of the transformed problem. Thus, by uniqueness of such a solution, h̃1 = h̃2 is a unique solution

of

∂sh̃
2 +∇y ·

(
h̃2 ∇y∆yh̃

2) = 0 .

Finally, we substitute back for h̃ =
√
h to see that the initial value problem for the equation (TFE) has a

unique weak solution, denoted by h∗. �



Chapter 6

Appendix

A Singular Integrals

To study partial differential equations is often intimately connected with the study of singular integrals.

A singular integral is defined as an operator T : Lp0(X,µ) → Lp0(X,µ), for p0 > 1, that is expressible in

the form

Tf(x) =

∫

X

K(x, y)f(y) dµ(y) .

The corresponding kernel K : X ×X → R is singular along the diagonal {(x, x) | x ∈ X}, smooth off the

diagonal and approximately translation invariant. The theory of singular integrals provides some useful

tools for estimating these operators.

This theory has developed into various directions, as for example the theory of weights. To be more precise,

we will study the class of positive functions ω, called weights, for which we can estimate as follows:

∫

X

|Tf |p ω dµ ≤ c

∫

X

|f |p ω dµ . (A.1)

One has to characterize the class of functions ω in such a way that this estimate holds true. A necessary

and sufficient condition is that ω belongs to a class of weights called the Muckenhoupt class which is de-

noted by Ap.

This appendix is organized as follows. The harmonic analysis only requires little structure on the under-

lying space. Hardy-Littlewood maximal functions and functions of bounded mean oscillation still make

sense on spaces of homogeneous type, a setting in which a Calderón-Zygmund theory can be established.

Following the standard outline, we rediscover all the relevant Lp-estimates on maximal functions and the

sharp function, and then prove the Calderón-Zygmund inequality which is an unweighted version of (A.1).

Surprisingly, all these estimates are closely related. A detailed exposition of the material presented in this

section as well as the missing proofs in subsections A.1 and A.1 may be found in [73, 74, 52, 53]. Eventually,

we survey the theory of Muckenhoupt weights leading to a proof of the weighted estimate above.

A.1 Harmonic Analysis in Spaces of Homogeneous Type

We consider a metric space (X, d) with metric d, and equip it with a Borel regular measure µ on X.

This means that d(. , x) is measurable and for every open set M ⊆ X we have µ(M) = supµ(K), where

K ⊂ M is compact. In addition, we assume that µ and d are compatible in the following sense: There

109
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exist constants c, b ≥ 1 such that

0 < µ
(
Bcr(x)

)
≤ b µ

(
Br(x)

)
< ∞ . (A.2)

Such a measure is called “doubling” with doubling constant b. This terminology originates from the fact

that it is equivalent to formulate inequality (A.2) with c = 2. The triple (X, d, µ) is termed space of

homogeneous type. These spaces are locally compact and separable. The measure µ is a Radon measure

and X is σ-finite.

Examples for such metric measure spaces include the following:

1. X = Rn, d is the Euclidean distance and µ = Ln is the Lebesgue measure.

2. X ⊂ Rn is a bounded domain and d, µ are as above.

3. X = Zn, d is the Euclidean distance together with the counting measure.

The first example is the standard setting for the theory of singular integrals while the second one is related

to elliptic boundary value problems. The last example, on the other hand, exposes a discrete setting. One

should also take note of the fact that Coifman and Weiss generalized the definition of spaces of homogeneous

type by replacing the metric d by a quasi-metric ρ. In this context a quasi-metric is to be understood

as a mapping ρ : X ×X → [0,∞) which is positive definite and symmetric, but may violate the triangle

inequality. Instead it is assumed that the weaker form,

ρ(x, z) ≤ c
(
ρ(x, y) + ρ(y, z)

)
,

holds for all x, y, z ∈ X and a constant c ≥ 1. In this more general framework the proofs are slightly more

complicated. It was shown in [69] that for a given quasi-metric ρ there is a related metric, and then one

may use this metric in place of ρ. For our purposes, however, it is entirely sufficient to work in a metric

space of homogeneous type.

The Spaces H1 and BMO

First let us introduce the Banach space H1 as a subspace of L1(µ). Suppose f ∈ L1
loc(µ). The maximal

function of Hardy and Littlewood is then defined by

Mf(x) := sup
B∋x

µ(B)−1

∫

B

|f | dµ , (A.3)

where the supremum is taken over all balls B = Br(y) that contain x. To prepare another definition we

fix a ball B = Br(x0) and set

L
(
B
)

:=

{
φ ∈ C(X)

∣∣∣
∣∣φ(x)

∣∣ ≤ max
{
r − d(x, x0), 0

}

r µ(B)
,
∣∣φ(x)− φ(y)

∣∣ ≤ d(x, y)

r µ(B)

}
.

If φ ∈ L(B), then −φ ∈ L(B), ‖φ‖sup ≤ µ(B)−1 and spt φ ⊂ B. In addition to (A.3), we define the second

Hardy-Littlewood maximal function by

M̃f(x) := sup
B∋x, φ∈L(B)

∫

B

f φ dµ (A.4)

and observe that M̃f(x) ≤ Mf(x). Hence
{
x ∈ X | M̃f(x) > λ

}
⊇
{
x ∈ X | Mf(x) > λ

}
and both sets

are open. Consequently, Mf and M̃f are µ-measurable. A basic estimate for maximal functions is

‖Mf‖Lp(µ) ≤ 2
( bp

p− 1

) 1
p ‖f‖Lp(µ) . (A.5)
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To prove (A.5) one relies on the weak type (1, 1) estimate

µ
(
{x ∈ X |M(f) > λ}

)
≤ b

λ

∫

X

|f | dµ

that holds for any λ > 0. Behind this is the fundamental covering lemma of Vitali valid in homogeneous-

type metric spaces.

Lemma A.1 (Vitali) Let (X, d, µ) be a metric space of homogeneous type and K ⊂ X a compact set.

If {Bri}i∈I , labeled by means of an index set I = {1, . . . , N} for some 1 ≤ N ≤ ∞, is a collection of balls

that covers K, then there is a finite subset J of I such that {Brj}j∈J is pairwise disjoint and {B3 rj}j∈J
still covers K.

The proof is as follows: Since K is compact, we may suppose that N < ∞. Moreover, let {Bri}i∈I be

ordered by the size of their radii, i.e r1 ≥ r2 ≥ · · · ≥ rN . Then Br1 is a ball of greatest radius. Among the

other balls we pick the ball that has the greatest possible radius rk for which Br1 ∩Brk is empty. We repeat

this process until there are no more balls to choose. Since I is a finite index set, this procedure eventually

stops after M ≤ N steps. We claim that the so obtained sub-collection satisfies the requirements of Vitali’s

lemma. By construction, all the balls are pairwise disjoint. Now let x ∈ K. Then x is contained in a ball

Bri . This ball is either in the sub-collection, or there is a ball Brj with rj ≥ ri for which Bri ∩ Brj is

nonempty. By the triangle inequality Bri ⊂ B3 rj which shows that

K ⊂
⋃

i

Bri ⊂
⋃

j

B3 rj .

A standard consequence of the estimates for the maximal functions is the following one. If f ∈ L1
loc(µ),

then

f(x) = lim
r→0

inf
Br(y)∋x

µ
(
Br(y)

)−1
∫

Br(y)

f dµ = lim
r→0

sup
Br(y)∋x

µ
(
Br(y)

)−1
∫

Br(y)

f dµ

for µ-almost every x. Therefore we can pick a canonical representative in each equivalence class for which

both limits exist and which vanishes otherwise.

Definition A.2 (Hardy space) A function f ∈ L1
loc(µ) belongs to H1(µ), called Hardy space, if

Mf ∈ L1(µ). If µ(X) = 0 we require in addition that
∫
f dµ = 0. We define the Hardy-norm of f by

‖f‖H1(µ) := ‖M̃f‖L1(µ) .

One particular class of functions in H1(µ) is the class of atoms.

Definition A.3 (atom) An atom is a function a for which there exists a ball B such that

i) spt a ⊆ B, ii) |a| ≤ µ(B)−1 a.e. and iii)

∫
a dµ = 0 .

These functions, in turn, characterize any Hardy function.

Theorem A.4 (atomic decomposition) Every f ∈ H1(µ) can be written as a sum, f =
∑
λkak, with

{ak} being a collection of H1(µ)-atoms and {λk} an absolutely summable sequence in R with

∑

k∈N

|λk| ≤ c ‖f‖H1(µ) for some constant c = c(b) > 0 .
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Definition A.5 (BMO) We say a locally integrable function f is of bounded mean oscillation if, for

any ball B, we have

µ(B)−1

∫

B

∣∣f(x)− fB
∣∣ dµ(x) ≤ C .

Here

fM = µ(M)−1

∫

M

f dµ

is the average of f over the measurable set M with 0 < µ(M) <∞.

This means that any function in BMO has its average oscillation bounded. The smallest upper bound C is

denoted by ‖f‖BMO . Notably, the use of the mean value fB in definition A.5 is not mandatory. Instead, it

can be replaced by arbitrary constants cB and a perfectly equivalent definition arises. Then the inequality

|cB − fB | ≤ C holds and, indeed, ‖f‖BMO ≤ 2C.

It is obvious that any bounded function is of bounded mean oscillation, while the converse is false. For

this, f(x) = log d(x, x0) sometimes serves as a prime example for an unbounded function in BMO.

The sharp function defines a dual object to the Hardy-Littlewood maximal functions.

Definition A.6 (sharp maximal function) Let f ∈ L1
loc(µ). The sharp maximal function f# is given

by

f#(x) := sup
B∋x

µ(B)−1

∫

B

∣∣f − fB
∣∣ dµ .

Clearly, f# is also µ-measurable. Furthermore, we notice that a function f is in BMO if and only if the

sharp function f# is bounded. Indeed, we have

‖f‖BMO = ‖f#‖L∞(µ) .

This expression becomes a norm on the BMO functions after quotienting out by the constant functions

for which ‖ · ‖BMO is equal to 0. With this convention BMO is a Banach space.

Now there is a series of inequalities that sets f , f#, Mf and M̃f into relation to each other. We begin

with a result that is attributed to Fefferman.

Theorem A.7 Let 1 < p, p′ < ∞ with 1
p
+ 1

p′ = 1, f ∈ Lp(µ) and g ∈ Lp
′
(µ). Then there exists a

constant c = c(b), see inequality (A.2), such that

∫

X

f g dµ ≤ c

∫

X

f# M̃g dµ .

The same inequality holds for f ∈ BMO and g ∈ H1(µ).

Since the sharp function is pointwise dominated by the larger maximal function Mf , or more specifically

f#(x) ≤ 2Mf(x), we have

‖f#‖Lp(µ) ≤ 4
( bp

p− 1

) 1
p ‖f‖Lp(µ) ∀ p ∈ (1,∞) .



A. SINGULAR INTEGRALS 113

The converse is also true: Indeed, theorem A.7 and estimate (A.5) imply

‖f‖Lp(µ) = sup
‖g‖

Lp′ (µ)
≤1

∫

X

f g dµ ≤ c(b) sup
‖g‖

Lp′ (µ)
≤1

∫

X

f#Mg dµ

≤ c(b) ‖f#‖Lp(µ) sup
‖g‖

Lp′ (µ)
≤1

‖Mg‖Lp′ (µ)

≤ 2 c(b)bp ‖f#‖Lp(µ) .

Estimates for Singular Integral Operators

After having collected some basic estimates for maximal functions and the sharp maximal function we

turn our attention to singular integral operators and verify under weak assumptions on the kernel that the

associated linear operator T : Lp0(µ) → Lp0(µ) is, in fact, continuous on Lp(µ) for all 1 < p <∞.

Definition A.8 A continuous function K : (X × X) \ {(x, x) | x ∈ X} → R is said to be a Calderón-

Zygmund singular integral kernel if there exist 0 < γ ≤ 1 and C <∞ such that

∣∣K(x, y)
∣∣ ≤ C

(
µ
(
Bd(x,y)(x)

)
+ µ

(
Bd(x,y)(y)

))−1

=: C V (x, y)−1

for µ-almost every x 6= y ∈ X, and

∣∣K(x, y)−K(x̄, ȳ)
∣∣ ≤ C V (x, y)−1

(
d(x, x̄) + d(y, ȳ)

d(x, y) + d(x̄, ȳ)

)γ

for µ-almost every x 6= y, x̄ 6= ȳ ∈ X with d(x,x̄)+d(y,ȳ)
d(x,y)+d(x̄,ȳ)

≤ δ for some δ ∈ (0, 1).

We are now ready to give the definition of a Calderón-Zygmund operator.

Definition A.9 (Calderón-Zygmund operator) Let 1 < p0 <∞. A continuous and linear operator

T : Lp0(µ) → Lp0(µ) is said to be a Calderón-Zygmund singular integral operator if associated to T there

is a Calderón-Zygmund integral kernel K (in the sense of definition A.8) such that

Tf(x) =

∫

X

K(x, y) f(y) dµ(y)

for all f ∈ Lp0(µ) with compact support and x /∈ spt f .

The first non-trivial result for such an integral operator is this pointwise estimate.

Lemma A.10 Suppose 1 < p0 < ∞ and T : Lp0(µ) → Lp0(µ) is a Calderón-Zygmund operator. Then

we have (
Tf
)#

(x) ≤ c(b, p0, T )
(
M
(
|f |p0

)
(x)
) 1

p0

for all f ∈ Lp0(µ) and all x ∈ X.

Armed with these estimates we can now approach the crucial Calderón-Zygmund estimate. It is proven in

two steps. First let p > p0. Then,

‖Tf‖Lp(µ) ≤ c ‖(Tf)#‖Lp(µ) ≤ c ‖
(
M
(
|f |p0

)) 1
p0 ‖Lp(µ) = c ‖M

(
|f |p0

)
‖

1
p0

Lp/p0 (µ)

≤ c ‖fp0‖
1
p0

Lp/p0 (µ)
= c ‖f‖Lp(µ)

(A.6)

for all f ∈ Lp(µ). It is easy to check that the assumptions on T for p0 imply the assumptions on T ∗ for the

conjugate Hölder exponent p′0 = p0
p0−1

. In case of p < p0 we have p′ > p′0, and hence we are in a situation



114 CHAPTER 6. APPENDIX

where we can apply estimate (A.6) to T ∗ : Lp
′
0(µ) → Lp

′
0(µ). This results in

‖Tf‖Lp(µ) = sup
‖g‖

Lp′ (µ)
≤1

∫

X

(Tf) g dµ = sup
‖g‖

Lp′ (µ)
≤1

∫

X

f (T ∗g) dµ

≤ sup
‖g‖

Lp′ (µ)
≤1

‖f‖Lp(µ) ‖T ∗g‖Lp′ (µ) ≤ c ‖f‖Lp(µ) ,

and therefore shows that the Calderón-Zygmund estimate (A.6) is valid for all p ∈ (1,∞).

A.2 Weighted Norm Estimates for Singular Integral Operators

In this section we introduce the class of Muckenhoupt weights Ap. Moreover, given a µ-measurable set

M ⊂ X, let

ω(M) =

∫

M

ω dµ . (A.7)

Then, Muckenhoupt’s class Ap consists of those weights ω for which the Hardy–Littlewood maximal oper-

ator is bounded on Lp(ω). More precisely, we wish to characterize ω in such a way that

‖M̃f‖Lp(ω) ≤ c ‖f‖Lp(ω) (A.8)

for all f ∈ Lp(µ). As an immediate consequence we get that any Calderón-Zygmund singular integral

operator is also bounded on these weighted Lp-spaces.

Definition A.11 (Muckenhoupt weight) Let p ∈ (1,∞). We say ω is a weight in Muckenhoupt’s

Ap(µ)-class, or an Ap(µ)-weight, if ω ≥ 0 is a locally µ-integrable function in X such that

sup
B

µ(B)−1

∫

B

ω dµ
[
µ(B)−1

∫

B

ω− 1
p−1 dµ

]p−1

≤ c(p, ω) < ∞ , (A.9)

where the supremum is taken with respect to all d-balls B. The best Ap constant of ω is denoted by [ω]Ap .

Remark A.12 In the sequel we sometimes identify ω with the measure ω dµ in the sense of (A.7).

First we annotate that there is another related inequality:

fB ≤
(
[ω]Ap

ω(B)

∫

B

|f |p dω
) 1

p

(A.10)

for all balls B and any locally µ-integrable function f . In fact, inequality (A.10) is equivalent to the

Muckenhoupt condition (A.9). In order to see this we first suppose that (A.9) holds true. But then

µ(B)−p
(∫

B

ω
− 1

p−1 dµ
)p−1

≤ [ω]Ap

ω(B)
,

and consequently we have

(
fB
)p

= µ(B)−p
(∫

B

f ω
1
pω− 1

p dµ
)p

≤ µ(B)−p
(∫

B

|f |p ω dµ
)(∫

B

ω− 1
p−1 dµ

)p−1

≤ [ω]Ap

ω(B)

∫

B

|f |p dω

by Hölder’s inequality. Conversely, we set fε := (ω + ε)−
1

p−1 and let ε→ 0. An immediate but important

consequence of characterization (A.10) is this result.

Lemma A.13 Let ω ∈ Ap(µ) for some fixed 1 < p < ∞. Then ω satisfies the doubling condition.

Moreover, if µ = Ln, then ω and the Lebesgue measure are mutually absolutely continous.
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Proof: Choosing f = χBR we obtain by (A.10) that

(
fB2R

)p ≤ [ω]Ap

ω(B2R)

∫

B2R

|f |p dω = [ω]Ap

ω(BR)

ω(B2R)
.

Moreover, we have

b−1 ≤ µ
(
BR
)

µ(B2R)
= fB2R .

by virtue of (A.2). But this implies ω(B2R) ≤ bp[ω]Apω(BR) and hence the claim. �

Definition A.11 also reveals the following simple property of the class Ap.

Lemma A.14 Let p, p′ ∈ (1,∞) with 1
p
+ 1

p′ = 1. Then ω ∈ Ap(µ) if and only if ω
−p′

p ∈ Ap′(µ).

Proof: Let ω be as in definition A.11. Then

µ(B)−1

∫

B

ω
− p′

p dµ
[
µ(B)−1

∫

B

(
ω

−p′
p

)− 1
p′−1

dµ
]p′−1

=

([
µ(B)−1

∫

B

ω
− 1

p−1 dµ
]p−1

µ(B)−1

∫

B

ω dµ

) 1
p−1

≤ [ω]
1

p−1

Ap
< ∞ .

Conversely, given ω
− p′

p ∈ Ap′(µ), we see that (A.9) is satisfied with c(p, ω) = [ω
− p′

p ] p−1
Ap′

. �

The next step is to derive a reverse Hölder inequality from which follows that ω ∈ Ap−ε(µ) for some ε > 0

if ω ∈ Ap(µ). This in turn implies that the Muckenhoupt condition (A.9) is equivalent to inequality (A.8).

For the details of these results see e.g. [52, 53, 59]. We should also note that we still have

‖f‖Lp(ω) ≤ c(b, p) ‖f#‖Lp(ω) .

The proof is exactly the same as in the unweighted case.

With all these weighted Lp-estimates we can finally state the main result of this section.

Theorem A.15 Let 1 < p < ∞, ω ∈ Ap(µ) and T : Lp0(µ) → Lp0(µ), for some p0 > 1, be a

Calderón-Zygmund operator. Then there exists a positive constant c = c(b, p0, p, ω) such that

‖Tf‖Lp(ω) ≤ c ‖f‖Lp(ω)

for all f ∈ Lp(ω).

In order to check the validity of theorem A.15 we simply follow the same line of argument as in the

unweighted case (see subsection A.1).

A.3 Historical Background

In the 1950s, Zygmund and his doctoral student Calderón came up with an entirely new strategy for proving

Lp-estimates, [13]. They found out that, for every f ∈ L1(Rn), Tf belongs to weak-L1 if the operator T

is bounded on L2(Rn) and if its distributional kernel satisfies some weak assumptions. The crucial step in

deriving this result is the Calderón-Zygmund decomposition. It states that an arbitrary integrable function

f can be split into the sum u+ v of a “small” and a “large” function where |u| is pointwise bounded by a

given threshold λ and belongs to L2(Rn), while v is oscillating and supported in a set of small measure.

The Marcinkiewicz interpolation theorem then implies the desired Lp-estimate for 1 < p ≤ 2. Applying

the same arguments to T ∗ instead yields the same bound for 2 ≤ p <∞.
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Then by the 1970s, Coifman and Weiss [15] discovered that the theory of singular integral operators does

not depend on the Euclidean structure and, therefore, they introduced spaces of homogeneous type. These

are spaces to which the Calderón-Zygmund theory extends in a natural way. Indeed, a doubling property of

the measure and the covering results of Vitali and Whitney are the essential ingredients which are needed

to get all the mechanisms to work.

The Hardy space H1 and the space BMO are borderline cases of this theory and closely connected to the

theory of integral operators, [14]. As an example we would like to mention the celebrated T (1) theorem

which gives a criterion for L2-continuity, and hence Lp-boundedness, of certain singular integral operators.

It was first proven on Rn by David and Journé [19], and later generalized to homogeneous-type spaces

by these authors and Semmes [20]. It is also remarkable that the theory of the Muckenhoupt class Ap,

which was introduced by Muckenhoupt [64], carries over almost word for word to this general geometric

framework. This issue has been addressed by a variety of authors, as for example by Coifman and Fefferman

[14], Muckenhoupt [65] and Stein [74]. An extensive treatment of the Muckenhoupt class from a different

point of view may be found in [41, 46].

B Bessel Functions

The Bessel functions of first kind are defined as the complex functions represented by the power series

Jν(z) =
∞∑

j=0

(−1)j

j! Γ(j + ν + 1)

(1
2
z
)2j+ν

.

Here ν is an arbitrary real or complex number called the order of the Bessel function; the most common

cases are Bessel functions in the form of integer or half-integer order. The notation Γ denotes the gamma

function defined by

Γ(z) =

∫ ∞

0

tz−1 e−t dt .

Jν is convergent everywhere in the complex plane C. The Bessel function of second kind Yν , called Weber

function, is generated by a special linear combination of Jν : For noninteger order ν, Yν is related to Jν by

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

When ν ∈ Z,

Yν(z) = lim
µ→ν

Yµ(z) .

It can be shown that Jν and Yν form a fundamental system of solutions for the Bessel differential equation

z2 ∂2
zv + z ∂zv + (z2 + ν2) v = 0 .

In a similar way, A. B. Basset (1888) and H. M. MacDonald (1899) introduced the modified Bessel functions

Iν(z) =

∞∑

j=0

1

j! Γ(j + ν + 1)

(1
2
z
)2j+ν

and

Kν(z) =
1

2
π
I−ν(z)− Iν(z)

sin(νπ)
, ν /∈ Z ,

(or as the limit Kν(z) = lim
µ→ν

Kµ(z) if ν is an integer) which satisfy the modified Bessel differential equation

z2 ∂2
zv + z ∂zv − (z2 + ν2) v = 0 . (B.1)

The Wronskian of Iν and Kν is W
(
Iν(z),Kν(z)

)
= 1

z
, and hence Iν and Kν are linearly independent
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Figure B.1: Modified Bessel functions

solutions of (B.1). Their asymptotic behavior is described by the following formulas: For 0 < |z| ≪
√
ν + 1,

we have

Iν(z) ≈ 1

Γ(ν + 1)

(1
2
z
)ν
, ν /∈ −N ,

and

Kν(z) ≈





1
2
Γ(ν)

(
1
2
z
)−ν

if Re(ν) > 0

− ln
(
z
2

)
− 0.5772... if ν = 0 ,

while for large arguments z ≫ |ν2 − 1
4
|, the modified Bessel functions behave like

Iν(z) ≈ ez√
2πz

(
1 − 4ν2 − 12

1(8z)

(
1 − 4ν2 − 32

2(8z)

(
1 − 4ν2 − 52

3(8z)
(1 − . . . )

)))

and

Kν(z) ≈
√

π

2z
e−z

(
1 − 4ν2 − 12

1(8z)

(
1 − 4ν2 − 32

2(8z)

(
1 − 4ν2 − 52

3(8z)
(1 − . . . )

)))
.

Note that all the terms except the first drop out when ν = 1
2
. In fact, these approximations then become

I 1
2
(z) =

√
2

πz
sinh(z) and K 1

2
(z) =

√
π

2z
e−z .

The functions Iν and Kν satisfy the recurrence relations

Zν−1(z) − Zν+1(z) =
2ν

z
Zν(z)

and

Zν−1(z) − Zν+1(z) = 2
d

dx
Zν(z) ,

where Zν denotes either Iν or eνπiKν . That way, one can derive Bessel functions of higher orders (or

higher derivatives) from Bessel functions of lower orders for all real values of ν. In particular, it follows

(1
z

d

dz

)k (
zν Zν(z)

)
= zν−k Zν−k(z) ,

and (1
z

d

dz

)k (
z−ν Zν(z)

)
= z−ν−k Zν+k(z) .
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For more details on (modified) Bessel functions and their properties we refer the reader to [12] and the

references therein.

C Notation

A the closure of the set A

Å the interior of the set A

A∁ the complement of the set A

∂A the boundary of A

N the set of all natural numbers {1, 2, . . . }
N0 N ∪ {0}
Z the set of integers {. . . ,−2,−1, 0, 1, 2, . . . }
Rn n-dimensional real Euclidean space, R1 = R

R+ the set of positive real numbers (0,∞)

H the upper half space {x ∈ Rn | xn > 0}
Ω usually used to denote an open subset in Rn

BR(x) the open ball around x with radius R > 0, often with respect to a metric d

QR(t, x) the parabolic cylinder (t−R4, t]×BR(x)

dist(A,B) the infimum of the distances between any two of their respective points, dist(x,A) =

inf
{
d(x, y) | y ∈ A

}

ei the standard unit vector (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with only the i-th entry holding a

value of 1

|v| the Euclidean norm of v = (v1, . . . , vn) ∈ Rn, i.e.
√
v 2
1 + · · ·+ v 2

n

v · w the standard inner product on Rn, i.e. v · w = v1w1 + · · ·+ vnwn

Ln the n-dimensional Lebesgue measure, |A| =
∫
A
dLn =

∫
A
dx

µσ the measure x σn dx for some σ > −1, |A|σ =
∫
A
dµσ

c, C (generic) constants which may vary from line to line

f . g f ≤ c g for some constant c

f & g g ≤ c f form some constant c

f ∼ g f . g . f

f ≪ g f ≤ C g for a given constant C much larger than 1

f ≫ g g ≪ f

χA the indicator function of the set A

spt f the support of the function f , that is the closure of the set of points where the function

is not zero-valued

P (f) the positivity set of the function f : R× Rn → R, Pt(f) = P (f) at time t ∈ R
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et interpolation, Revista Matemática Iberoamericana, 1(4): pp. 1–56, 1985.

[21] P. G. De Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and wetting phenomena: drops,
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Zusammenfassung der Arbeit

Betrachtet man im freien Randwertproblem für den Stokes-Fluss mit Oberflächenspannung den Grenzüber-

gang für dünne Schichten, so ergibt sich formal aus den Navier-Stokes-Gleichungen für inkompressible

Flüssigkeiten die Dünne-Film-Gleichung. Diese ist eine partielle Differentialgleichung vierter Ordnung mit

degenerierter Parabolizität. Sie hat die Form

∂sh + ∇y ·(hm∇y∆yh) = 0 .

In der vorliegenden Arbeit beschäftigen wir uns mit der Frage, ob schwache Lösungen des dazugehörigen

Anfangswertproblems (mit linearer Mobilität m = 1) existieren, unter welchen Bedingungen an die An-

fangswerte diese eindeutig sind und wie regulär sie sind.

Im ersten Schritt fixieren wir den freien Rand, indem wir auf der Positivitätsmenge die unabhängige

Koordinate yn mit der abhängigen h = h(s, y) vertauschen (von Mises-Transformation), und anschließend

die resultierende Gleichung um die stationäre Lösung y 2
n linearisieren. Somit gelangen wir zu der Gleichung

∂tu + x−1
n ∆(x 3

n ∆u) − 4∆Rn−1u = f [u]

für die Störung der (transformierten) stationären Lösung. Sämtliche nichtlinearen Ausdrücke sammeln

wir auf der rechten Seite. Wir ignorieren für den Moment die Abhängigkeit von f [u] von u und arbeiten

eine umfassende Energietheorie für schwache Lösungen der linearen Gleichung aus. Die erzielten Resultate

basieren maßgeblich auf gleichmäßigen (Energie-)Abschätzungen in gewichteten Normen. Eine wichtige

Rolle spielt hierbei auch die intrinsische Geometrie, die sich auf natürliche Weise aus dem linearen Operator

ergibt. Das spiegelt sich unter anderem in der Tatsache wider, dass die Green’sche Funktion mit all ihren

Ableitungen einer für unsere weitere Analyse entscheidenden Gauß’schen Abschätzung genügt. Eine solche

Abschätzung besagt, dass der Green’sche Kern exponentiell abfallende Ausläufer hat, was uns nun den

Weg bereitet, unter Zuhilfenahme der Calderón-Zygmund-Theorie für singuläre Integrale lineare Normab-

schätzungen von u gegen die Inhomogenität in geeigneten Normen zu generieren. Eine Abschätzung der

Nichtlinearität gegen u ist ebenfalls möglich und wir können damit ein Fixpunkt-Argument durchführen.

Entscheidend bei diesen Abschätzungen ist die Konstruktion von skalierungsinvarianten Normen basierend

auf parabolischen Zeit-Raum-Zylindern. Wir erhalten dann eine eindeutige Lösung der Störungsgleichung,

und somit der transformierten Gleichung, ein möglicherweise optimales Resultat hinsichtlich der Regu-

larität (Lipschitz) der Anfangswerte. Letztendlich gelingt es uns diese Ergebnisse auf das Ursprungspro-

blem zurückzuspielen und somit die Existenz einer eindeutigen (schwachen) Lösung nachzuweisen, sofern

der Anfangswert h0 nah genug an der stationären Lösung lag. Als Nebenprodukt dieser Schritte zeigen

wir auch noch, dass die der eindeutigen Lösung zugeordneten Niveaulinien analytisch sind. Insbesondere

bedeutet dies, dass die bewegte Kontaktlinie (Niveaulinie zur Höhe 0) maximale Regularität aufweist.

Die Arbeit gliedert sich nun wie folgt: Nach einigen einleitenden Worten in Kapitel 1 schaffen wir im Fol-

gekapitel das für unsere weitere Analyse notwendige Rüstzeug und untersuchen gewichtete Sobolevräume.

Kapitel 3 motiviert die im weiteren angestellten Betrachtungen der transformierten Gleichung und widmet

sich der intrinsische Geometrie. In Kapitel 4 befassen wir uns mit der linearen Gleichung. Im letzten Kapi-

tel beweisen wir die Gauß’sche Abschätzung mit all ihren Konsequenzen, betrachten die Nichtlinearität

und diskutieren, was das erzielte Eindeutigkeitsresultat für unser Ursprungsproblem bedeutet.
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