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Summary

This thesis is on the origin, the evolution and the stellar populations of ultra compact dwarf
galaxies (UCDs) and dwarf elliptical galaxies (dEs), i.e. two kinds of stellar systems in the
same mass range and with similar morphology, but very different extensions.

One of the most intriguing properties of UCDs are the mass-to-light ratios that are implied
by their internal dynamics. These mass-to-light ratios aresignificantly higher than imaginable
for any realistic pure stellar population, if the initial stellar mass function (IMF) is the same in
all star-formation events. Thus, in contrast to the stellarpopulation in the solar neighborhood,
the UCDs furnish evidence for a varying IMF instead of a universal IMF.

Given that the UCDs are old stellar systems, there are two possibilities by which a varying
IMF could lead to an enhanced mass-to-light ratio of present-day stellar populations, if they are
compared to stellar populations that formed with the universal IMF. The first possibility is a
bottom-heavy IMF, i.e. an IMF that is overabundant in faint low-mass stars in comparison to
the universal IMF. The second possibility is a top-heavy IMF, i.e. an IMF that is overabundant
in high-mass stars, which quickly evolve into stellar remnants that contribute mass, but almost
no light to a stellar population.

These two possibilities can be distinguished by attemptingto detect the remnants of mas-
sive stars independent of the effect that they would have on the mass-to-light ratio of a stellar
population. For this reason, the frequency of bright X-ray sources in UCDs was studied, since
a bright X-ray source can be interpreted as a low-mass X-ray binary (LMXB), which is com-
posed of a low-mass star and a stellar remnant. Using archival data, it has been shown in this
thesis that indeed a remarkably high fraction of the UCDs in the Virgo cluster are bright X-ray
sources, which implies that UCDs contained a large population of high-mass stars when they
formed, i.e. that the IMF in the UCDs was top-heavy. Moreover, the top-heavy IMF that was
derived from the fraction of UCDs with a bright LMXB is consistent with the IMF that was
derived from the mass-to-light ratios of the UCDs.

Since UCDs are likely to loose mass by the evolution of massive stars, the shape of the
IMF has implications for their evolution and their initial conditions. Based on the estimates for
the IMF in UCDs, it has been concluded that the UCDs must have been extremely dense when
they formed. These extreme initial conditions may explain that UCDs formed with an IMF that
deviates from the IMF in less extreme environments.

Regarding the origin of the UCDs, it has been argued in the literature that they are created
by the interaction between gas-rich galaxies. However, theformation of dEs may have been
triggered by the same process, since it has been shown in thisthesis that young galaxies that
form through the interaction between gas-rich galaxies, so-called tidal dwarf galaxies (TDGs),
would evolve naturally into dEs as far as their masses and radii are concerned.

Moreover, the rather low rates for the production of long-lived TDGs would already be
sufficient to account for the observed number of dEs. Neitherthe UCDs nor the dEs would
contain non-baryonic cold dark matter if they formed through galaxies encounters. This is
however in contradiction to the currently prevailing cosmological model, which predicts the
existence of primordial stellar systems that formed withinhaloes of non-baryonic dark matter
in the same mass range. The results presented here thus add tothe growing body of evidence
that this cosmological model needs to be revised.



6



7

Preface

This thesis is structured as follows:

• Chapter (1) gives an short introduction and an overview of the topics treated in chap-
ters (2) to (7).

• Chapter (2) is based on Dabringhausen, Hilker & Kroupa,” From star clusters to dwarf
galaxies: The properties of dynamically hot stellar systems” , (2008, MNRAS, 386, 864).
In this chapter, the scaling relations of pressure supported stellar systems are discussed,
with an emphasis on the mass-to-light ratios of ultra-compact dwarf galaxies (UCDs).

• Chapter (3) is based on Dabringhausen, Baumgardt & Kroupa,”A top-heavy stellar initial
mass function in starbursts as an explanation for the high mass-to-light ratios of ultra-
compact dwarf galaxies”, (2009, MNRAS, 394, 1529). In this chapter, it is quantified
how a top-heavy stellar initial mass function (IMF) could explain the mass-to-light ratios
of UCDs.

• Chapter (4) is based on Dabringhausen, Fellhauer & Kroupa,”Mass loss and expansion
of ultra compact dwarf galaxies through gas expulsion and stellar evolution for top-heavy
stellar initial mass functions”, (2010, MNRAS, 403, 1054). In this chapter, it is discussed
how a top-heavy IMF would affect the evolution and the stability of UCDs.

• Chapter (5) is based on Dabringhausen, Kroupa, Pflamm-Altenburg & Mieske,”Low-
mass X-Ray Binaries Indicate a Top-heavy Stellar Initial Mass Function in Ultracompact
Dwarf Galaxies”, (2012, ApJ, 747, 72). In this chapter, the frequency of low-mass X-ray
binaries is used as an additional test for the hypothesis of atop-heavy IMF in UCDs.

• Chapter (6) is based on Dabringhausen & Kroupa,”Dwarf elliptical galaxies as ancient
tidal dwarf galaxies”, (2013, MNRAS, 429, 1858). In this chapter, it is discussed whether
the dwarf elliptical galaxies formed as primordial galaxies or as tidal dwarf galaxies.

• Chapter (7) is based on Section (3) in Kroupa, Famaey, de Boer, Dabringhausen, Pawlowski,
Boily, Jerjen, Forbes, Hensler & Metz,”Local-Group tests of dark-matter concordance
cosmology. Towards a new paradigm for structure formation”, (2010, A&A, 523, 32).
In this chapter, it is discussed whether the masses estimated for the satellite galaxies of
the Milky Way are consistent with them being a population of primordial galaxies that
formed in haloes of cold dark matter.

• Chapter (8) gives an outlook on possible future work.

Thus, chapters (2) to (6) are based on the first-author papersI have published during my
time a PhD-student and chapter (7) is based on my contribution to a paper by Prof. Dr. Kroupa.
These parts of the thesis have been published already in refereed astronomical journals. As
the changes in chapters (2) to (7) with respect to the original publications have been kept to a
minimum, some parts in these chapters may be redundant.

Bonn, June 2013



8



Contents

1 Introduction and Overview 17
1.1 Types of spheroidal stellar systems . . . . . . . . . . . . . . . . .. . . . . . . 19
1.2 The stellar initial mass function . . . . . . . . . . . . . . . . . . .. . . . . . . 21
1.3 Mass-to-light ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 22
1.4 The Dynamical Masses of UCDs . . . . . . . . . . . . . . . . . . . . . . . .. 23
1.5 A top-heavy IMF in UCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Stability of UCDs with a top-heavy IMF . . . . . . . . . . . . . . . .. . . . . 25
1.7 Probing the IMF in UCDs with LMXBs . . . . . . . . . . . . . . . . . . . .. 26
1.8 UCDs and other pressure-supported stellar systems . . . .. . . . . . . . . . . 27

1.8.1 Half-light radii against luminosity . . . . . . . . . . . . . .. . . . . . 27
1.8.2 Dynamical mass-to-light ratios against luminosity .. . . . . . . . . . . 28
1.8.3 Relaxation times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.9 Tidal dwarf galaxies as progenitors of dEs and dSphs . . . .. . . . . . . . . . 29
1.10 CDM in the satellite galaxies of the Milky Way . . . . . . . . .. . . . . . . . 31

2 Dynamically hot stellar systems 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.2 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Massive Compact Objects . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 Globular cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Early-type galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
2.2.4 Different dynamical mass estimators . . . . . . . . . . . . . .. . . . . 40

2.3 Dependencies on dynamical mass . . . . . . . . . . . . . . . . . . . . .. . . 43
2.3.1 Dependency of the effective radius on mass . . . . . . . . . .. . . . . 43
2.3.2 Dependency of the median two-body relaxation time on mass . . . . . 47
2.3.3 Dependency of the central density on mass . . . . . . . . . . .. . . . 47
2.3.4 Dependency of theM/LV ratio on mass . . . . . . . . . . . . . . . . . 48

2.4 The observedM/LV ratios and predictions of SSP models . . . . . . . . . . . 50
2.4.1 The MCOs as SSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.2 The metallicities of the MCOs . . . . . . . . . . . . . . . . . . . . .. 51
2.4.3 Predictions forM/LV ratios from SSP models . . . . . . . . . . . . . 55
2.4.4 The normalisedM/LV ratios of the MCOs and the MWGCs . . . . . . 59
2.4.5 The normalisedM/LV ratios of elliptical galaxies . . . . . . . . . . . 62

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.1 The reliability of SSP models . . . . . . . . . . . . . . . . . . . . .. 65
2.5.2 The reliability of metallicity estimates from colour. . . . . . . . . . . 68
2.5.3 The possible impact of a wrong estimate of metallicity. . . . . . . . . 68

9



10 CONTENTS

2.5.4 Implications of a highM/LV -ratio in the MCOs . . . . . . . . . . . . 70
2.5.5 On the nature of MCOs . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 High M/L-ratio through top-heavy IMF 73
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
3.2 The data sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 A model for the stellar populations of the UCDs . . . . . . . . .. . . . . . . . 78

3.3.1 The model ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Doesα3 depend on mass? . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.2 Constrainingα3 from the whole sample of UCDs . . . . . . . . . . . . 89

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.5.1 Stability of the UCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.5.2 The Star formation rate in UCDs at their formation . . . .. . . . . . . 98

3.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . .. 98

4 Expansion of young UCDs 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
4.2.2 Generating the mass loss Tables . . . . . . . . . . . . . . . . . . .. . 113
4.2.3 Time evolution of the UCDs . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3.1 SFE=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3.2 SFE=0.4 and HE=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.3 SFE=0.4 and HE=0.03 . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3.4 Implications on the initial parameters of UCDs . . . . . .. . . . . . . 130

4.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . .. 133

5 LMXBs in UCDs 139
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
5.2 The initial stellar mass function . . . . . . . . . . . . . . . . . . .. . . . . . . 142
5.3 The LMXB-abundance in GCs and UCDs . . . . . . . . . . . . . . . . . . .. 144

5.3.1 Some properties of GCs and UCDs . . . . . . . . . . . . . . . . . . . 144
5.3.2 Modeling the LMXB-abundance in GCs and UCDs . . . . . . . . .. . 145
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4 The supernova rate in Arp 220 . . . . . . . . . . . . . . . . . . . . . . . .. . 159
5.5 Star formation densities and the IMF . . . . . . . . . . . . . . . . .. . . . . . 161
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 Origin of dE-galaxies 165
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.1 Old stellar systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.2.2 TDGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



CONTENTS 11

6.3.1 Properties of old dynamically hot stellar systems . . .. . . . . . . . . 172
6.3.2 Properties and evolution of TDGs . . . . . . . . . . . . . . . . . .. . 174
6.3.3 The tidal radii of the TDGs . . . . . . . . . . . . . . . . . . . . . . . .177

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.4.1 The relation between dEs and TDGs . . . . . . . . . . . . . . . . . .. 178
6.4.2 The relation between UCDs and TDGs . . . . . . . . . . . . . . . . .181
6.4.3 The GCs of dEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.4.4 Mass-radius relations . . . . . . . . . . . . . . . . . . . . . . . . . .. 183

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5.1 The nature of old pressure-supported stellar systems. . . . . . . . . . 185
6.5.2 Implications for cosmology . . . . . . . . . . . . . . . . . . . . . .. 186

7 Mass function of CDM-haloes 189
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
7.2 NFW-haloes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.3 Probing theΛCDM hypothesis withM0.3kpc . . . . . . . . . . . . . . . . . . . 193
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8 Outlook 197
8.1 Observational tests for a top-heavy-IMF in UCDs . . . . . . .. . . . . . . . . 197

8.1.1 Creation of LMXBs through encounters . . . . . . . . . . . . . .. . . 197
8.1.2 Extending the sample of UCDs with a UCD . . . . . . . . . . . . . .. 198
8.1.3 A bottom-heavy IMF in UCDs? . . . . . . . . . . . . . . . . . . . . . 199
8.1.4 Quantifying the spectra of young UCDs at high redshifts . . . . . . . . 199
8.1.5 Quantifying the SNII frequency in young UCDs . . . . . . . .. . . . 201

A Appendix 203
A.1 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 203

A.1.1 Pearson’s test for the goodness of fit . . . . . . . . . . . . . . .. . . . 203
A.1.2 The sign test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.2 The total mass of the remnants . . . . . . . . . . . . . . . . . . . . . . .. . . 204
A.3 Data on tidal dwarf galaxies . . . . . . . . . . . . . . . . . . . . . . . .. . . 205

A.3.1 Data on observed TDGs . . . . . . . . . . . . . . . . . . . . . . . . . 206
A.3.2 Numerical calculations on TDGs . . . . . . . . . . . . . . . . . . .. . 210



12 CONTENTS



List of Figures

1.1 A comparison of the canonical IMF formulated with two power-law functions
and formulated with a log-normal function and a power-law function . . . . . . 23

1.2 The IMF in UCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Comparison of mass estimates . . . . . . . . . . . . . . . . . . . . . . .. . . 42
2.2 The half-light radii of dynamically hot stellar systemsagainst their mass . . . . 43
2.3 The median relaxation time of GCs and UCDs plotted against their dynamical

mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 The central density of GCs and UCDs against their dynamical mass . . . . . . 46
2.5 The dynamicalM/LV ratio plotted of dynamically hot stellar systems plotted

against their luminosity and dynamical mass, respectively. . . . . . . . . . . . 48
2.6 Comparison between differeent metallicity estimates for the GCs and UCDs in

Centaurus A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.7 The iron abundances of GCs and UCDs against their mass . . .. . . . . . . . 55
2.8 Comparison between the canonical IMF and the Chabrier IMF . . . . . . . . . 56
2.9 The dependency of theM/L-ratio on metallicity . . . . . . . . . . . . . . . . 58
2.10 NormalisedM/L-ratios of GCs and UCDs against their dynamical mass . . . . 60
2.11 The metallicities of early-type galaxies as a functionof their mass . . . . . . . 63
2.12 The normalisedM/L-ratios of dynamically hot stellar systems against their

dynamical mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.13 The relation between colour indices and iron abundanceaccording to SSP models 66
2.14 A comparison between different metallicity estimatesfor GCs and UCDs in

Centaurus A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.15 A comparison between metallicity estimates from(V − I)-colours and metal-

licity estimates from line indices . . . . . . . . . . . . . . . . . . . . .. . . . 69

3.1 normalisedM/L-ratios of UCDs . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 Estimates for the high-mass IMF-slopes in UCDs as functions of the normalised

M/L-ratio of UCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3 NormalisedM/L-ratios of GCs and UCDs . . . . . . . . . . . . . . . . . . . . 91
3.4 Estimates for the high-mass slope of the IMF in UCDs as functions of the dy-

namical mass of UCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5 Estimate for the average high-mass slope of the IMF as a function of the mass

of the UCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 The time-scale on which a star collides with a proto-starin a young UCD, as-
suming a star formation efficiency of 1 . . . . . . . . . . . . . . . . . . .. . . 109

13



14 LIST OF FIGURES

4.2 The time-scale on which a star collides with a proto-starin a young UCD, as-
suming a star formation efficiency of 0.4 . . . . . . . . . . . . . . . . .. . . . 110

4.3 The lifetimes of massive stars . . . . . . . . . . . . . . . . . . . . . .. . . . . 113
4.4 The supernova-rates in UCDs for different IMFs . . . . . . . .. . . . . . . . . 114
4.5 The evolution of the stellar mass of the UCD due to stellarevolution . . . . . . 114
4.6 The change of the total mass of the UCDs due to stellar evolution and gas-

expulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.7 Change of the Lagrangian radii with time for model m8r5 s1 h1 . . . . . . . . 121
4.8 Expansion factors of the models for a star formation efficiency (SFE) of 1 and

a heating efficiency (HE) of 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .122
4.9 Expansion factors of the models with a SFE of 0.4 and a HE of1 . . . . . . . . 125
4.10 Change of the Lagrangian radii with time for model m8r5 s04h1 . . . . . . . 125
4.11 Expansion factors of the models with a SFE of 0.4 and a HE of 0.03 . . . . . . 127
4.12 Change of the Lagrangian radii with time for model m7r3 s04h003 . . . . . . 128
4.13 Change of the Lagrangian radii with time for model m7r3 s04h003 with a

very top-heavy IMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.14 Initial masses and radii of UCDs . . . . . . . . . . . . . . . . . . . .. . . . . 131
4.15 Initial central densities of UCDs . . . . . . . . . . . . . . . . . .. . . . . . . 132
4.16 The final radii against the final radii of the UCD-models .. . . . . . . . . . . 134

5.1 The effective half-light radii of GCs and UCDs . . . . . . . . .. . . . . . . . 145
5.2 TheM/L-ratios of GCs and UCDs . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3 The median two-body relaxation times of GCs and UCDs . . . .. . . . . . . . 147
5.4 The observed LMXB-frequency of GGs and UCDs in comparison to expected

frequencies if the IMF was canonical . . . . . . . . . . . . . . . . . . . .. . . 153
5.5 The IMF in UCDs formtr = 1 M⊙ . . . . . . . . . . . . . . . . . . . . . . . . 156
5.6 The IMF in UCDs formtr = 5 M⊙ . . . . . . . . . . . . . . . . . . . . . . . . 156
5.7 The high-mass IMF slope as a function ofV -band luminosity for different upper

mass limits of the IMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.8 The SN-rate in the center of Arp 220 . . . . . . . . . . . . . . . . . . .. . . . 162

6.1 The half-light radii of old stellar systems against the mass of their stellar popu-
lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2 Estimates for the final radii of TDG-candidates after their gas has been expelled
against estimates of their stellar mass . . . . . . . . . . . . . . . . .. . . . . . 175

7.1 The ’missing luminous satellites problem’ . . . . . . . . . . .. . . . . . . . . 193



List of Tables

2.1 Properties of GCs and UCDs with masses from mass distribution modelling . . 39
2.2 Properties of the GCs and UCDs in Centaurus A . . . . . . . . . . .. . . . . . 41
2.3 The metallicities of GCs and UCDs . . . . . . . . . . . . . . . . . . . .. . . 52
2.4 The colours and metallicities of GCs and UCDs in Centaurus A . . . . . . . . . 53
2.5 Fit parameters for the interpolation formula for the dependency of theM/L-

ratio on metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6 The best-fitting parameters of formula describing the metallicity of early-type

galaxies as a function of their mass . . . . . . . . . . . . . . . . . . . . .. . . 63

3.1 Fit parameters for the interpolation formula for the dependency of theM/L-
ratio of SSPs on metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82

3.2 The high-mass IMF-slopes of UCDs estimated from theirM/L-ratios . . . . . 86
3.3 Estimates for the most likely values of the high-mass IMF-slopes in UCDs . . . 92

4.1 Initial parameters of UCD-models . . . . . . . . . . . . . . . . . . .. . . . . 106
4.2 The IMFs considered in the modelling of the UCDs . . . . . . . .. . . . . . . 113
4.3 The mass-fraction of massive stars in a stellar population for different IMFs . . 119
4.4 Final results of the calculations for a SFE of 1 and a HE of 1. . . . . . . . . . 123
4.5 Final results of the calculations for a SFE of 0.4 and a HE of 1 . . . . . . . . . 126
4.6 Final results of the calculations for a SFE of 0.4 and a HE of 0.03 . . . . . . . 129
4.7 Consistency-check between the models for the remnant populations of UCDs

and the models for the early evolution of UCDs . . . . . . . . . . . . .. . . . 135

5.1 The best fitting parameters for linear fits for the high-mass IMF-slope as a func-
tion of luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.1 Data on observed TDG-candidates . . . . . . . . . . . . . . . . . . . .. . . . 206
A.2 Data on TDGs that were found in numerical calculations ofencounters between

gas-rich galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

15



16 LIST OF TABLES



Chapter 1

Introduction and Overview

17



18 CHAPTER 1. INTRODUCTION AND OVERVIEW



1.1. TYPES OF SPHEROIDAL STELLAR SYSTEMS 19

1.1 Types of spheroidal stellar systems

Many extra-Galactic stellar systems are not disk-shaped orirregular, but spheroidal. Their
common morphology despite very different extensions and masses reflects a common physical
property of these systems, namely that random motions of stars contribute at least as much to
the total internal kinetic energy of the stellar system as ordered motions of stars. In an analogy
to microscopic systems, where heat and pressure are phenomena linked to random motions of
atoms and molecules, these stellar system are referred to dynamically hot or pressure-supported
(as opposed to rotationally supported).

A closer inspection reveals that pressure-supported stellar systems can be distinguished into
several subgroups, even though some of these distinctions may only exist for historical reasons
instead of physical reasons:

• normal elliptical galaxies (nEs). The nEs have stellar populations with total masses
M∗ ? 1010 M⊙ and effective half-light radiire ? 103 pc. In a 3-dimensional parameter
space defined by the effective half-light radius, the effective surface brightness and the
central velocity dispersion, the normal elliptical galaxies are aligned along a plane. This
plane is known as the fundamental plane (Bender et al. 1992 and references therein).

• dwarf elliptical galaxies (dEs). The dEs have stellar populations with total masses
106 M⊙ > M∗ > 1010 M⊙ and effective half-light radii of the order of103 pc. The dEs
do not lie along the fundamental plane defined by the nEs. Thismotivates to consider dEs
a population of their own, even though there is a transition between nEs and dEs at a total
stellar mass ofM∗ ≈ 1010 M⊙, where the objects cannot be classified unambiguously.

• dwarf spheroidal galaxies (dSphs).The dSphs have stellar populations with total masses
103 M⊙ > M > 106 M⊙ and effective half-light radii of the order of102 pc. The mass-
to-light ratios of the dSphs are usually much higher than themass-to-light ratios of dEs,
when the mass of the stellar systems is estimated from their internal dynamics under the
assumptions of virial equilibrium and Newtonian dynamics.Other than this, the dSphs
appear to be the low-mass extension of the population of ’normal’ dEs (see Ferguson &
Binggeli 1994), so that a distinction between dSphs and dEs would only have historical
reasons.

The high mass-to-light ratios derived for dSphs under the assumptions of virial equilib-
rium and Newtonian dynamics have often lead to the conclusion that the dSphs mostly
consist of non-baryonic dark matter (e.g. Mateo 1998 and Wolf et al. 2010) and have
formed as primordial galaxies in the early Universe. There is however also evidence that
the dEs and the dSphs are not primordial galaxies, but galaxies that have been created
by tidal interactions between gas-rich galaxies (Kroupa P.et al. 2010; Kroupa 2012), and
as such they would not contain significant amounts of non-baryonic dark matter (Barnes
& Hernquist 1992b; Bournaud 2010). This matter is discussedin greater detail in Sec-
tion 1.9 and Chapter 6.

• globular clusters (GCs).The GCs have stellar populations with total masses104 M⊙ >

M > 106 M⊙ and effective half-light radii of a few pc. Thus, the GCs are much more
compact than the afore mentioned galaxies and can thereby easily be distinguished from
them (see Gilmore et al. 2007, Section 1.8 and Chapter 6).
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• ultra compact dwarf galaxies (UCDs). The UCDs have stellar populations with total
masses106 M⊙ > M > 108 M⊙ and effective half-light radii 10 pc> re 100 pc. With
these parameters, UCDs are easy to detect in the local Universe, but difficult to observe
in detail. Already at the distance of neighboring galaxy clusters, UCDs are only distin-
guishable from point sources if they are observed with the best available telescopes under
excellent seeing conditions. Obtaining a detailed spectrum of a single UCD at that dis-
tance requires hours of observing time. In this respect, UCDs are similar to GCs, for
which it is known since a long time that they also accompany galaxies beyond the Local
group of galaxies. However, since observers did not expect to find objects with exten-
sions similar to those of GCs but luminosities like the ones of dEs, the UCDs in the local
Universe have been interpreted as faint stars in the Milky Way, or as bright and distant
background galaxies. The true nature of these UCDs has only been discovered quite re-
cently in surveys of the stellar systems in the Fornax galaxycluster by Hilker et al. (1999)
and by Drinkwater et al. (2000). In contrast to earlier studies, these authors did not pre-
select stellar systems as possible members of the Fornax cluster by their brightness and
their structure, but estimated the distance of every objectwithin their field of view from
its red shift. They thereby established that the UCDs in thatfield of view are actually
members of the Fornax cluster and concluded that they must bestellar systems that are
unusually compact for their brightness. Since then, UCDs have also been discovered in
other galaxy clusters.

The origin of UCDs is still a matter of debate. As they are quite similar to GCs in many
respects, they have been suggested to be extremely bright GCs (Mieske et al. 2002, 2012).
This is consistent with the finding that their numbers are fewcompared to typical GCs
with luminositiesL < 106 L⊙, and that most UCDs have been detected near galaxies
with particularly rich GC systems, i.e. the nEs in neighboring galaxy clusters. However,
the UCDs have also been suggested to be stellar systems that evolved from the merger of
several GC-like stellar systems (Fellhauer & Kroupa 2002a). Based on the observation of
systems of groups of young and bright star clusters in the Antennae galaxies, the existence
of objects that would qualify as UCDs was already predicted by (Kroupa 1998). Yet
another model for the formation of UCDs that has been found tobe consistent with the
observational data is that the UCDs are the nuclei of nucleated dwarf galaxies whose
outer parts have been stripped by tidal fields as they moved through the potential of a
major galaxy (Bekki et al. 2003). Finally, the UCDs have beenproposed to be primordial
stellar systems within haloes of non-baryonic dark matter (Drinkwater et al. 2004). On
first sight, this last hypothesis explains why the typical mass-to-light ratios derived from
the internal dynamics of the UCDs are clearly higher than those estimated for typical
GCs with the same method. However, on second sight, a difference between the stellar
populations that formed in UCDs and the stellar populationsthat formed in GCs seems
to the the more promising explanation for the difference between the mass-to-light ratios
estimated from the internal dynamics of these stellar systems, as is discussed in this thesis
(see Section 1.7 and Chapter 5 in particular).

In this thesis, the emphasis lies on how the stellar populations of UCDs would influence
observed properties, and to a lesser extent on the nature andorigin of UCDs as well as dEs.
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1.2 The stellar initial mass function

Besides the age, the star formation history and the metallicity, the properties of a stellar system
are determined by the mass spectrum of its stellar population. This is because the properties of
stars strongly depend on their mass.

The mass spectrum of stars in a stellar system is quantified bythe present-day mass function
(PDMF),

dN = Ξ(m) dm, (1.1)

wheredN is the number of stars in the mass interval[m,m + dm]. However, stars loose mass
during their lifetime and eventually cease to exist. Therefore, the PDMF is different from the
mass spectrum of newly born stars, which is quantified by the stellar initial mass function (IMF),

dN = ξ(m) dm, (1.2)

wheredN is the number of newly born stars in the mass interval[m,m+ dm].
Note that the IMF of a stellar system cannot be observed, but is a theoretical function that

is derived from the observed PDMF (the ’IMF unmeasurabilitytheorem’, Kroupa et al. 2011).
This is because a stellar system is composed of stars with different (even though possibly very
similar) ages. Moreover, the time of birth of a star is a somewhat problematic concept, since a
gas cloud evolves continuously into a main-sequence star. It would however be natural if the
shape of the IMF is influenced by the conditions under which star formation takes place. For
this reason, determining the IMF from the PDMF is worth the effort.

The most direct way to determine the PDMF of a stellar system is to estimate the masses of
the individual stars in the stellar system. This can be done by comparing the observed photo-
metric or spectroscopic properties with stellar models. Ifalso the ages of the stars are estimated,
the stellar models can be used to determine the IMF of the stellar system.

Determining the IMF from star counts is however tedious workand at the present even
impossible for stellar systems beyond the Local group of galaxies, if low-mass stars (i.e. stars
with massesm > 1 M⊙) are to be included. This is because low-mass stars are faintand
therefore difficult to resolve in observations. Stellar systems with old stellar populations only
contain stars with massesm > 1 M⊙. Thus, the PDMFs and thereby the IMFs of old stellar
systems beyond the Local Group can only be estimated by the light that is emitted by its stellar
population as a whole, so that these estimates of the IMF are rather speculative and uncertain.

In practice, the probable shape of the IMF of old and distant stellar systems is often consid-
ered as given, so that other parameters that characterize the stellar population (e.g. its metallic-
ity, its age or its total mass) can be estimated based on the light emitted by the stellar population.
This may seem surprising, since a variation of the IMF with initial conditions is expected in the-
ory (see e.g. Larson 1998 for a variation of the IMF with ambient temperature and Murray &
Lin 1996 for a variation of the IMF with density). The assumption of a universal IMF for all
star-forming systems can however be justified with the resolved stellar populations of the Milky
Way, which are consistent with having formed with an invariant IMF (Kroupa 2001, 2002).

This universal IMF is commonly referred to as the canonical IMF. It can be formulated as

ξ(m) = k kim
−αi , (1.3)

with

α1 = 1.3, 0.07 ≤
m

M⊙

< 0.5,

α2 = 2.3, 0.5 ≤
m

M⊙

< mmax,
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wherem is the initial stellar mass in units ofM⊙, the factorki ensures that the IMF is continuous
where the power changes andk is a normalization constant.ξ(m) equals 0 ifm < 0.07M⊙ or
m > mmax (Kroupa 2001; Kroupa et al. 2011). The upper mass limit of theIMF, mmax, is a
function of the total mass of stars formed in a given star-forming event.

An alternative formulation of the canonical IMF is

ξ(m) = k
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(1.4)

wherem is the initial stellar mass in units ofM⊙, the factorA ensures that the IMF is continuous
andk is a normalization constant. As in equation (1.3),ξ(m) equals 0 ifm < 0.07M⊙ or
m > mmax, andmmax is a function of the total mass of stars formed in a given star-forming
event.

Both formulations of the canonical IMF are shown in Figure 1.1. They are equivalent for
practical purposes, since the uncertainties to the canonical IMF are much larger than the differ-
ence between equations (1.3) and (1.4).

However, while the IMF appears to be universal in resolved stellar systems, observational
evidence for the contrary has emerged from unresolved stellar populations in elliptical galaxies
over the past years (see, e.g. Baugh et al. 2005; Nagashima etal. 2005; van Dokkum 2008;
van Dokkum & Conroy 2010; Cappellari M. et al. 2012). Showingthat the assumption of a
universal IMF is also dubious for UCDs is a central part of this thesis. For a comprehensive
overview on the IMF including its possible variation, see Kroupa et al. (2011).

1.3 The mass-to-light ratios of stellar systems

Mass-to-light ratios are a useful indicator for the composition of stellar systems. In this thesis,
two different methods to estimate the mass-to-light ratiosof UCDs are considered, and the
results are compared to each other.

• The first method to estimate the mass-to-light ratio of a UCD is based on models for
single-age and single-metallicity stellar populations that formed with a given IMF. Sets
of such so-called simple stellar population models (SSP-models) are provided in the liter-
ature (e.g. Bruzual & Charlot 2003; Maraston 2005). The SSP-models appropriate for an
observed UCD can be confined by using photometrical or spectroscopical data on the ob-
served UCD. The estimates of the mass-to-light ratios of a UCD obtained by this method
are calledstellar masses-to-light ratiosin the following.

• The second method to estimate the mass-to-light ratio of a UCD is based on the den-
sity profile of a given UCD and its internal velocity dispersion. This method relies on
the fact that the internal velocity dispersion of a virialised, undisturbed stellar system is
determined by its gravitational potential and thus on its total mass and this mass is dis-
tributed over space according to the given density profile. By dividing such an estimate
for the mass of a UCD by its luminosity, an estimate for its mass-to-light ratio is obtained.
The estimates for the mass-to-light ratio of a UCD obtained with this method are called
dynamical mass-to-light ratiosin the following.
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Figure 1.1: A comparison of the canonical IMF formulated with two power-law functions joined
together atm = 0.5 M⊙ (red solid line, equation 1.3) and formulated with a log-normal function and a
power-law function joined together atm = 1 M⊙ (blue dotted line, equation 1.4). Plotted is the number
of stars per mass interval versus the stellar mass. The IMFs are normalized such that

∫ 150
0.07 mξ(m) dm =

1M⊙, wherem is the mass in solar units. The two IMF forms are practically indistinguishable over
the whole mass interval. Above a mass of 1M⊙ the two IMFs are in fact identical except for a slightly
different normalization factor (see Dabringhausen et al. 2008; Kroupa et al. 2011).

If the assumptions on the stellar population of the UCD are correct and the UCD does not
contain significant amounts of gas or dark matter, the estimate of the stellar mass of the UCD
should be consistent with the estimate of its dynamical mass. The comparison between the
estimates for the mass-to-light ratios is therefore a meansto test the assumption that have been
made in the estimates.

Note that the data needed to estimate dynamical mass of a UCD is difficult to obtain. Ex-
cellent seeing is already required in order to spatially resolve a UCD in a neighboring galaxy
cluster, so that a density profile can be fitted to it. Getting aspectrum that is good enough to
estimate the internal velocity dispersion of a single UCD atthat distance requires hours of ob-
servation time with a large telescope. Thus, there are only about 50 UCDs, for which estimates
of their dynamical mass are available. They are listed in Mieske et al. (2008).

1.4 The Dynamical Masses of UCDs

(→ Chapters 2 and 3)

In this thesis, the dynamical mass-to-light ratios of the UCDs listed in Mieske et al. (2008)
are compared to estimates for their stellar mass-to-light ratios. The SSP-models used for the es-
timates of the stellar mass-to-light ratios of the UCDs werechosen such that they are consistent
with estimates of the metallicity of the UCDs and with the ageof the Universe according to the
prevailing cosmological model. With the additional assumption that the stellar populations of
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the UCDs formed with the canonical IMF, the estimates of the dynamical mass-to-light ratios
are higher than the estimates for the stellar mass-to-lightratios for a majority of the considered
UCDs.

This discrepancy between the estimates of the stellar mass-to-light ratios and the estimates
of the dynamical mass-to-light ratios of the UCDs could either indicate that the UCDs contain
additional non-luminous matter or that their stellar populations did not form with the canonical
IMF. It is unlikely that UCDs contain much gas, since this is also not the case for old stellar
systems like elliptical galaxies or GCs, which are similar to UCDs in many respects. It is also
unlikely that that UCDs contain a significant amount of non-baryonic dark matter, since the
UCDs are very compact, and non-baryonic dark matter is expected to contribute to the total
mass of a stellar system only on much larger scales (Murray 2009). A non-canonical IMF in
UCDs thereby becomes the most promising explanation for their high dynamical mass-to-light
ratios.

1.5 A top-heavy IMF in UCDs

(→ Chapter 3)

For an old stellar population with a given luminosity, a given age and given metallicity,
there are two ways by which a variation of the IMF would make its actual mass-to-light ratio
larger compared to the mass-to-light ratio expected for a stellar population that formed with the
canonical IMF.

• The first way is an IMF that is compared to the canonical IMF overabundant with low-
mass stars. Such an IMF is calledbottom-heavy. The high mass-to-light ratio of a
stellar population with a bottom-heavy IMF is due to the large number of low-mass main-
sequence stars, which have a high mass-to-light ratio. A bottom-heavy IMF in UCDs and
its possible detection through observations is discussed in Mieske & Kroupa (2008).

• The second way is an IMF that is compared to the canonical IMF overabundant with
high-mass stars. Such an IMF is calledtop-heavy. The high mass-to-light ratio of an old
stellar population that formed with a top-heavy IMF is due tothe large number of white
dwarfs, neutron stars and black holes. These objects are theremnants of evolved high-
mass stars and have an extremely high mass-to-light ratio. Atop-heavy IMF in UCDs is
discussed in this thesis.

In order to quantify how top-heavy the IMF has to be in order toexplain their dynamical
mass-to-light ratios, a varying IMF is formulated as

ξ(m) = k kim
−αi , (1.5)

with

α1 = 1.3, 0.1 ≤
m

M⊙

< 0.5,

α2 = 2.3, 0.5 ≤
m

M⊙

< 1.0,

α3 ∈ R, 1.0 ≤
m

M⊙

≤ mmax,
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wherem is the initial stellar mass inM⊙, the factorski ensure that the IMF is continuous where
the power changes andk is a normalization constant andξ(m) equals 0 ifm < 0.1M⊙ or
m > mmax. The number of stars more massive than1 M⊙ depends on the free parameterα3.
Note that forα3 = 2.3, equation (1.5) equals equation (1.3), i.e. the canonical IMF.

Thus, the lower limit for stellar masses in equation 1.5 is chosen to be slightly higher than in
equations (1.3) and (1.4), according to which the lower limit for stellar masses ism = 0.07 M⊙.
The reason for assumingm = 0.1 M⊙ instead ofm = 0.07 M⊙ as a lower limit for the stellar
masses in equation (1.5) is that this lower limit for stellarmasses is consistent with the SSP-
models by Bruzual & Charlot (2003) and Maraston (2005), on which the modeling of the mass-
to-light ratios of the UCDs is based. In stellar systems as large as the UCDs,mmax is set by the
upper mass limit for stars, i.e.mmax ≈ 150 M⊙.

In stellar populations as old as the ones in UCDs, the massivestars have all evolved into
dark stellar remnants. Thus, if the UCDs are assumed to have formed with the variable IMF
that is formulated above,α3 < 2.3 (i.e. a top-heavy IMF) implies that their stellar mass-to-light
ratios are higher than it would be expected for the canonicalIMF.

If the dynamical mass-to-light ratio of a given UCD is above alower limit that corresponds
to α3 = ∞ (which implies that no stars with massesm > 1 M⊙ are born), the stellar mass-to-
light ratio of this UCD equals its dynamical mass-to-light ratio for a certain value forα3. At
this value forα3, the dynamical mass-to-light ratio of the UCD can be fully explained with its
stellar population.

Note that the value forα3 where the stellar mass-to-light ratio equals the dynamicalmass-to-
light ratio of a given UCD is influenced by assumptions that are made on the age of the UCDs
and the fraction of stellar remnants that are not expelled. However, also very conservative
assumptions (i.e. all UCDs are 13 Gyr old and all stellar remnants are retained by them) imply
α3 > 2, i.e. an IMF that is clearly flatter than the canonical IMF (α3 = 2.3). More realistic
assumptions (i.e. some UCDs younger than 13 Gyr old and many stellar remnants are expelled
from them) suggest1 > α3 < 2.

1.6 Stability of UCDs with a top-heavy IMF

(→ Chapter 4)

There are two mechanisms by which a young UCD probably loses mass as it evolves:

1. Short-lived massive stars end their evolution with a supernova explosion, in which most
of the matter previously bound to the star is accelerated to velocities much higher than
the escape velocity from the UCD.

2. Gas that has not been used up in star formation can be drivenout of of the UCDs through
the energy input from the massive stars through radiation and supernova explosions.

If the UCDs formed with IMFs that are as top-heavy as suggested in Section (1.5), they
might thereby loose more than 90 per cent of their initial mass within some108 years. Such a
mass-loss might even destroy a forming UCD, since a stellar system completely dissolves if it
looses most of its initial mass on a short enough time-scale (Boily & Kroupa 2003).

It is therefore investigated in this thesis which initial conditions would lead to objects that
would be identified as UCDs today when the initial mass-loss is taken into account. For this
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reason, the influence of the initial mass-loss on stellar systems with different initial conditions
is calculated numerically with SUPERBOX. The results suggest that UCDs formed with ini-
tial densities up to108 M⊙ pc−3, while stellar systems recently formed in the Milky Way are
characterized by initial densities below106 M⊙ pc−3.

At densities of108 M⊙ pc−3, collisions between protostars become common (Bonnell &
Bate 2002), This process would distinguish star formation in UCDs from star formation in
less massive stellar systems and may alter the shape of the stellar mass function. The notion
of a top-heavy IMF in UCDs and the notion of extremely high initial densities in UCDs are
therefore consistent with each other. The resolved stellarpopulations in the Milky Way from
which Kroupa (2001) argued the universality of the IMF may have formed under conditions that
were not extreme enough to cause a variation of the IMF.

1.7 Probing the IMF in UCDs with LMXBs

(→ Chapter 5)

A massive star ends its evolution by becoming a neutron star (NS) or a black hole (BH).
If such a NS or BH belongs to a tight binary system where the other component is a evolving
star, it can accrete gas from the expanding atmosphere of theevolving star. The NS or the
BH thereby becomes a bright X-ray source, since the gas is heated up as it is accreted. As a
consequence, such binaries can be detected with X-ray telescopes.

In a GC or a UCD, the evolving companion star from which a NS or aBH can accrete
matter must be a low-mass star, since in old stellar systems like GCs and UCDs all other stars
have already completed their evolution. Such X-ray emitting systems consisting of an evolving
low-mass star and the remnant of a massive star are called low-mass X-ray binaries (LMXBs).

The number of LMXBs that are present a any given time depends on their formation rate
and their depletion rate. The lifetime of a LMXB is a few108 years, which corresponds to the
duration of the giant phase of a0.8 M⊙-star. The rate at which binaries that eventually become
LMXBs are formed in a GC or a UCD depends on the encounter rateΓ, which is a function of
the number density of NSs and BHs, the number density of low-mass stars, the radius of the
GC or the UCD and the mass of the GC or the UCD. The average radius of GCs and UCDs
as a function of their mass can be estimated from observed values and the number density of
low-mass stars and the number density of NSs and BHs can be calculated for a given IMF.Γ
can therefore be used to test assumptions on the IMF in UCDs.

If the IMF is assumed to be canonical in all GCs and UCDs and thesame fraction of stellar
remnants is retained by all GCs and UCDs,Γ and thus the fraction of GCs and UCDs that have
a LMXB is expected to increase with mass for GCs and to decrease with mass for UCDs. This
is however in strong contradiction with the observations published by Sivakoff et al. (2007),
according to which the frequency of LMXBs increases with mass not only for GCs, but also
for UCDs. The discrepancy between the observed LMXB-frequency in UCDs and the expected
LMXB-frequency under the assumption of the canonical IMF can be explained with a varying
IMF that becomes increasingly top-heavy with the mass of theUCDs. This varying IMF is
consistent with the varying IMF that was independently derived from the mass-to-light ratios of
the UCDs. This agreement is illustrated in Figure (1.2).
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Figure 1.2: The IMF in UCDs. Plotted is the high-mass IMF index,α3, as a function of the V-band
luminosity of the UCDs,LV , which serves as an indicator for the mass of the UCDs. The solid line
shows the best estimate for the high-mass index of the IMF that is required to increase the dark remnant
content in UCDs such that the observed LMXB-frequency is matched. The grey shaded area quantifies
the likely 3σ uncertainty on this estimate (see Chapter 5). The horizontal long dashed line marks the
canoncial IMF withα3 = 2.3. The dotted line shows the independently calculated high-mass IMF index
obtained from the observed mass-to-light ratios of UCDs (see Chapter 3).

1.8 The relation between UCDs and other pressure-supported
stellar systems

(→ Chapters 2 and 6)

A much debated issue is the origin and nature of UCDs (e.g. Has¸egan et al. 2005). For
insights on this matter, it is useful not only to study the internal properties of UCDs, but also to
look at the similarities and the differences between UCDs and other pressure-supported stellar
systems. The quantities considered for this purpose are theluminosities, the half-light radii and
the dynamical masses of the stellar systems, as well as additional physical quantities that can
be derived from these parameters.

1.8.1 Half-light radii against luminosity

By displaying the half-light radii of old dynamically hot stellar systems against their mass or
luminosity, the following can be seen:

• Nearly all objects belong to one out of two mass-radius sequences. The first sequence
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comprises the nEs, the dEs and the dSphs. The second sequencecomprises the GCs and
the UCDs. Whether a given stellar system is a galaxy or a star cluster can be distinguished
by noting to which one of these sequences it belongs.

• The mass-radius sequence of galaxies is flatter below a massM > 1010 M⊙ than it is
above this mass limit. This marks the transition between dEsand nEs. The changing
slope of the mass-radius sequence suggests that either the dEs are of a different origin
than the nEs, or that the dEs have the same origin as the nEs, but evolved differently. It is
argued in this thesis that the nEs are primordial galaxies while the dEs are created through
the interactions between primordial galaxies, i.e. dEs andnEs have different origins.

• The mass-radius sequence of star clusters is flat below a massM > 106 M⊙, but not
above this mass limit. This marks the transition from GCs to UCDs. The changing slope
suggests that either the GCs are of a different origin than the UCDs, or that the GCs have
the same origin as the UCDs, but evolved differently. Processes that might be relevant
in UCDs but not in GCs are collisions between proto-stars (see Bonnell & Bate 2002)
and the capture of radiation within the gas cloud that was theprogenitor of a UCD (see
Murray 2009). Both processes have been suggested as the cause for a top-heavy IMF,
with which the UCDs may have formed according to this thesis.There would then be no
fundamental difference between GCs and UCDs, except for their different evolution due
to their different masses.

• The UCDs and the nEs lie along a single straight line in mass-radius parameter space.
This may indicate that they are shaped by a common physical process, despite the fact
that UCDs and nEs are separated by a gap in mass comprising twoorders of magnitude.
Murray (2009) suggested that the UCDs formed by the monolithic collapse of a gas cloud.
If this notion is correct, formation by the monolithic collapse of a gas cloud could be the
process that the UCDs and the nEs have in common.

1.8.2 Dynamical mass-to-light ratios against luminosity

By displaying the dynamical mass-to-light ratios of dynamically hot stellar systems against their
luminosity, the following can be seen:

• The central dynamical mass-to-light ratios of nEs are in some cases slightly higher than
what could be explained by a pure stellar population with thecanonical IMF. This is
either interpreted as dark matter in nEs (Tortora et al. 2009) or as a varying IMF in nEs
(Cappellari M. et al. 2012).

• The dynamical mass-to-light ratios of some dSphs are extremely high. This has been
interpreted as dark matter in dSphs (e.g. Strigari et al. 2008), as an indicator for non-
Newtonian dynamics in dSphs (e.g. Gentile et al. 2007; McGaugh & Wolf 2010), or as
an indication for that the dSphs are not in virial equilibrium (e.g. Casas et al. 2012). Note
that the interpretation of the high dynamical mass-to-light ratios of dSphs as a presence of
dark matter is problematical, since there is significant evidence that dSphs are dark-matter
free galaxies that formed through the collision of other galaxies (e.g. Kroupa P. et al.
2010).
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• The dynamical mass-to-light ratios of UCDs are somewhat andsystematically higher
than would be expected if the UCDs were pure stellar populations that formed with the
canonical IMF. It is shown in this thesis that a promising explanation for this finding is
that the IMF in UCDs was top-heavy (see Chapters 3, 4 and 5).

• The dynamical mass-to-light ratios of GCs are much lower than would be expected if the
GCs were pure stellar populations that formed with the canonical IMF and were subject
only to stellar evolution. A possible explanation for this finding is that the GCs formed
mass-segregated and lost many faint low-mass stars at the outskirts of the GCs during gas
expulsion (Marks et al. 2008, 2012).

1.8.3 Relaxation times

The median relaxation time of a stellar system measures the time at which the motions of the
stars in a stellar system have randomized completely due to encounters with other stars in the
stellar system. It is shown to be

trh =
0.234

log(M/M⊙)
×

√

M r3e
G

, (1.6)

whereM is the mass of the stellar system in units ofM⊙, re is its projected half-light radius
in units of pc andG = 0.0045 pc3M−1

⊙ Myr−2 is the gravitational constant. If a stellar system
is much older thantrh, it has evolved dynamically. This means that the stellar system has
completed a significant part of its lifetime until its evolution driven by encounters between its
stars lead to the dissolution of the stellar system.

If the trh UCDs and GCs are compared to the age of the universe, it turns out thattrh > τH
for GCs andtrh ? τH for UCDs. Thus, takingtrh > τH as the criterion that defines a galaxy (cf.
Kroupa 2012), UCDs would be galaxies, while their location in mass-radius parameter space
suggests that they are star-clusters (cf. Section 1.8.1).

1.9 Tidal dwarf galaxies as progenitors of dE and dSph galax-
ies

(→ Chapter 6)

According to the currently prevailing cosmological model,the main contributions to the
total energy content of the Universe are dark energy (Λ) and cold dark matter (CDM). For this
reason this cosmological model is called theΛCDM-model.

A prediction by theΛCDM-model is that two kinds of dwarf galaxies should exist inthe
Universe, namely primordial dwarf galaxies (PDGs) that formed within haloes of cold dark
matter (CDM) and tidal dwarf galaxies (TDGs) that are created by interactions between existing
galaxies (Weilbacher et al. 2000; Bournaud & Duc 2006; Kroupa P. et al. 2010). This finding
has been termed the ’dual dwarf theorem’ by Kroupa (2012).

The PDGs are often identified with the dEs and the dSphs, sincethe masses derived for dEs
and dSphs are in the expected range and the stellar populations of the dEs and the dSphs are
old. Moreover, assuming that dSphs are in virial equilibrium and Newtonian dynamics is valid
in them, the motions of the stars in dSphs can usually only be explained with dark matter in
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dSphs. The TDGs can be identified with young stellar systems that have been observed near
galaxies that show traces of a recent interaction. Thus, observations seem consistent with the
’dual dwarf theorem’ on first sight.

However, between one and two TDGs that survive on a time-scale of 109 years are created
per encounter between gas-rich galaxies according to Bournaud & Duc (2006). This raises the
question what the young TDG-candidates observed near interacting galaxies would look like
after some109 years.

It has been shown in this thesis that the young TDG-candidates would naturally evolve onto
the mass-radius sequence constituted by the dEs. Thus, the TDGs would become indistinguish-
able from dEs as far as their masses and their radii are concerned as soon as the TDGs reach
ages that are typical for dEs. It has moreover been shown by Okazaki & Taniguchi (2000) that
already a rather low production rate of 1-2 long-lived TDGs per galaxy encounter would be
sufficient to account for all dEs in the Universe. Thus, the dEs can be interpreted as old TDGs.
This would also explain the anisotropic distribution that has been found for the dSphs (i.e. low-
mass dEs) that accompany the Milky Way (Metz et al. 2009; Pawlowski et al. 2012b) and the
Andromeda galaxy (Ibata et al. 2013) .

It is however known that TDGs cannot contain significant amounts of dark matter, even if
their progenitor galaxies did (Barnes & Hernquist 1992b; Bournaud 2010). As a consequence,
an additional population of PDGs that formed within CDM-haloes is expected to be located in a
different region in mass-radius parameter space. This is because PDGs and TDGs are expected
to evolve differently, if PDGs contain an additional mattercomponent that would, due to its
different nature, not behave like baryonic matter.

As far as their location in mass-radius parameter space is concerned, the GCs and the UCDs
seem to be good candidates for the PDGs, if the dEs are the TDGs. The slightly elevated
mass-to-light ratios of the UCDs are however probably due toa large population of stellar
remnants, and not an indicator for CDM-halos around UCDs (see Chapters 3, and 5). Moreover,
complexes of star clusters as they are observed in interacting galaxies can evolve into UCDs
(Fellhauer & Kroupa 2002a) and like any stellar system of tidal origin, such UCDs would not
have their own CDM-halos.

It may seem surprising that the formation of stellar systemsthat appear to be as different as
dEs and UCDs could have been triggered by the same process, namely the interaction between
gas-rich galaxies. This notion is however indeed consistent with the numerical calculations by
Bournaud et al. (2008), even though it is not understood whatexactly would lead to the forma-
tion of two distinct kinds of stellar systems from the matterexpelled through the interaction of
galaxies.

However, if both dEs and UCDs are stellar systems that formedthrough tidal interactions,
there are no candidates for PDGs that formed within CDM-halos. This contradicts the ’dual
dwarf theorem’ that follows from theΛCDM-model. Thus, if the above interpretation of the
nature of dEs and UCDs is correct, theΛCDM model needs to be revised significantly, or to be
replaced with a new model.
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1.10 The satellite galaxies of the Milky Way as CDM-domi-
nated objects

(→ Chapter 7)

One of the predictions of theΛCDM-model is the existence of many subhaloes within larger
CDM-haloes. The mass-function of the subhaloes is well constrained within theΛCDM-model,
so that the expected number of subhaloes within the hypothetical CDM-halo of the Milky Way
can be calculated. This number is however much higher than the number of dwarf galaxies
that accompany the Milky Way (Moore et al. 1999; Klypin et al.1999), which implies that
most sub-haloes of the CDM-halo of the Milky cannot contain avisible galaxy if theΛCDM-
model is correct. For this reason, models for the removal of baryons from CDM-haloes have
been developed. Based on such models, a mass function for luminous CDM-subhaloes can be
estimated, which quantifies the mass function of galaxies according to theΛCDM-model.

In this thesis, the mass function for luminous CDM-subhaloes that is expected for a galaxy
like the Milky Way according to Li et al. (2010) is compared tothe mass function of satellite
galaxies of the Milky Way. Note that the masses of the satellite galaxies of the Milky were
computed under the assumptions that the galaxies are in virial equilibrium and that Newtonian
dynamics is valid in them.

However, if the masses estimated for the satellite galaxiesof the Milky Way are correct,
they are not consistent with having been drawn from the mass function of luminous sub-haloes
by Li et al. (2010). Given the evidence for the low-mass satellite galaxies of the Milky Way
being ancient TDGs instead of PDGs, this inconsistency is not unexpected. A complete absence
of PDGs around the Milky Way is however inconsistent with theΛCDM-model, which implies
that this model needs to be revised significantly, or to be replaced with a new model.
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Chapter 2

From star clusters to dwarf galaxies: The
properties of dynamically hot stellar
systems

J. Dabringhausen, M. Hilker, P. Kroupa, 2008,MNRAS, 386, 864

Abstract:

Objects with radii of10 pc to 100 pc and masses in the range from106 M⊙ to 108 M⊙ have been
discovered during the past decade. These so-called ultra compact dwarf galaxies (UCDs) constitute a
transition between classical star clusters and ellipticalgalaxies in terms of radii, relaxation times and
V -band mass-to-light ratios. Using new data, the increase oftypical radii with mass for compact objects
more massive than106 M⊙ can be confirmed. There is a continuous transition to the typical, mass-
independent radii of globular clusters (GCs). It can be concluded from the different relations between
mass and radius of GCs and UCDs that at least their evolution must have proceeded differently, while the
continuous transition could indicate a common formation scenario. The strong increase of the charac-
teristic radii also implies a strong increase of the median two-body relaxation time,trel, which becomes
longer than a Hubble time,τH, in the mass interval between106 M⊙ and107 M⊙. This is also the mass
interval where the highest stellar densities are reached. The mass-to-light ratios of UCDs are clearly
higher than the ones of GCs, and the departure from mass-to-light ratios typical for GCs happens again
at a mass of≈ 106 M⊙. Dwarf spheroidal galaxies turn out to be total outliers compared to all other
dynamically hot stellar systems regarding their dynamicalmass-to-light ratios. Stellar population mod-
els were consulted in order to compare the mass-to-light ratios of the UCDs with theoretical predictions
for dynamically unevolved simple stellar populations (SSPs), which are probably a good approximation
to the actual stellar populations in the UCDs. The SSP modelsalso allow to account for the effects of
metallicity on the mass-to-light ratio. It is found that theUCDs, if taken as a sample, have a tendency
to higher mass-to-light ratios than it would be expected from the SSP models assuming that the initial
stellar mass function in the UCDs is the same as in resolved stellar populations. This can be interpreted
in several ways: As a failure of state-of-the-art stellar evolution and stellar population modelling, as a
presence of dark matter in UCDs or as stellar populations which formed with initial stellar mass func-
tions different to the canonical one for resolved populations. But it is noteworthy that evidence for dark
matter emerges only in systems withtrel ? τH.

33
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2.1 Introduction

Star clusters can be defined as stellar population with a median two-body relaxation time,trel,
shorter than a Hubble time,τH, while galaxies would havetrel > τH (Kroupa 1998). The
dynamical evolution of the former is well described by pure Newtonian dynamics, while for
the successful representation of the latter either a significant amount of dark matter (DM) is
required for Newtonian gravity to remain valid, or modified gravity needs to be invoked. By
moving from two-body relaxation dominated systems to such where two-body relaxation plays
no role, we thus observe the appearance of fundamentally newphysics. A transition class of
objects between classical star clusters and galaxies may shed insights to the possible nature of
the deviant dynamics apparent on galaxy scales.

It has been almost 10 years since Hilker et al. (1999) and Drinkwater et al. (2000) discovered
these transition objects in the Fornax galaxy cluster. WithapparentV -band magnitudes of
> 19.5mag at that distance, they can in principle be detected without difficulty. However, they
cannot be discriminated from point sources with ground-based telescopes, except with the ones
with the highest currently available resolutions. Becauseof this combination of small extension
and high brightness they were usually thought to be foreground stars. Only a radial velocity
survey ofall objects with a certain brightness in an area around the central galaxy of the Fornax
cluster was able to reveal their membership to that galaxy cluster. Phillipps et al. (2001) were
the first ones to call them ultra compact dwarf galaxies (UCDs), a term which is widely in use
for this type of objects at the present. Drinkwater et al. (2003) reported that these objects are
not only distinct from the globular clusters in the Milky Way(MWGCs) by their higherV -
band (LV ) luminosity, but also by their larger radii and higher dynamical V -band mass-to-light
(M/LV ) ratios. At the same time, there is no gap in luminosity between globular clusters (GCs)
and UCDs (Mieske et al. 2002, 2004). Haşegan et al. (2005) discovered in the Virgo cluster
massive compact star clusters with similar properties likethe ones in the Fornax cluster, but
called them dwarf-globular transition objects (DGTOs). Like Drinkwater et al. (2003), they
state that the dynamicalM/LV ratios of some of the objects they discovered are significantly
higher than the ones of the MWGCs. Mieske et al. (2006a) concluded from the Hβ indices of
UCDs in the Fornax cluster that they are most likely of intermediate age, while Evstigneeva
et al. (2007) found the Hβ indices of UCDs in the Virgo cluster most consistent with oldages.
Their stellar population has evolved passively for a long time in any case, which makes UCDs
similar to most GCs and elliptical galaxies in this respect.

Several formation scenarios that account for the physical properties of the UCDs have been
proposed:

1. UCDs are the mergers of many massive young clusters that formed in a star burst triggered
by a galaxy-galaxy encounter (e.g. like in the Antennae). After≃ 10Gyr of dynamical
(and stellar) evolution, such an object would resemble a UCD(Kroupa 1998; Fellhauer
& Kroupa 2002a).

2. UCDs are the most luminous GCs (Mieske et al. 2002).

3. UCDs are the central parts of nucleated galaxies that weredisrupted by tidal forces as
they moved in the gravitational field of a larger galaxy. Onlythe tightly bound cores
survived until the present times (Zinnecker et al. 1988; Bassino et al. 1994; Bekki et al.
2003; Goerdt et al. 2008).
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4. UCDs are the remnants of the fundamental building blocks in galaxy formation (Drinkwa-
ter et al. 2004).

Some bright UCDs in the Fornax cluster and the Virgo cluster have been analysed by Hilker
et al. (2007) and Evstigneeva et al. (2007) very recently. They provide detailed high-quality
data for 11 UCDs with dynamical masses between107 M⊙ and108 M⊙. Similar data have been
obtained by Rejkuba et al. (2007) for compact objects in Centaurus A, but mostly with masses
between106 M⊙ and107 M⊙. They enlarge a sample by Haşegan et al. (2005) in the Virgo
cluster by 20 objects in the same mass range. Taken together,these data allow us to analyse the
change of the internal parameters of massive compact objects with mass or luminosity in more
detail than Drinkwater et al. (2003) or Haşegan et al. (2005). Furthermore, a comparison to
other dynamically hot stellar systems (i.e. stellar systems whose stars are on randomised orbits)
becomes possible, since samples with similar measured quantities are available as well. The
quantities that are considered here include theirM/LV ratio,ΥV , and their projected (effective)
half-light radius,re, in dependency of their dynamical mass.

Especially the dynamicalM/LV ratios of the UCDs has caught the attention of astronomers
lately. Evstigneeva et al. (2007) find the UCDs in their sample to be consistent with predictions
from simple stellar population (SSP) models within the errors. Hilker et al. (2007) note a
tendency of the SSP models to under-predict theM/LV ratios if a stellar population consistent
with observations in the solar neighbourhood is assumed. Haşegan et al. (2005) find that some
of the stellar systems they discuss haveM/LV ratios that imply extreme stellar populations
in these objects. They suggest a presence of DM in these objects, provided that they are in
dynamical equilibrium. This contradicts scenario (1), in which UCDs form DM free. Also if
UCDs are nothing but very luminous GCs (scenario 2), they would be expected to be DM free,
since GCs of usual size are. The simulations by Bekki et al. (2003) on scenario (3) predict DM
free UCDs, since the DM halo of the progenitor galaxy of the UCD is found to be disrupted by
the tidal interactions with the host galaxy of the UCD. This stands in contrast to the results from
similar simulations by Goerdt et al. (2008), who found that aUCD can still be DM dominated
if it is the stripped nucleus of a nucleated galaxy. Scenario(iv) also suggests dark matter in
UCDs. A detailed analysis of theM/LV ratios of the UCDs and their comparison to different
SSP models may therefore give insights on their origin.

The stellar population of the UCDs obviously plays a decisive role for theM/LV ratio that
has to be expected. The stellar population of each stellar system is determined, aside from an
influence by stellar and dynamical evolution, by the stellarinitial mass function (IMF),ξ(m),

dN ∝ ξ(m) dm, (2.1)

wherem is the stellar initial mass anddN the number of stars in the mass interval[m,m+dm].
The IMF has to be distinguished from the present day stellar mass function (PDMF) which
gives the number density of stars in dependency of stellar masses today. The IMF is a very
useful concept, especially for a dynamically unevolved stellar system, because the number of
stars that formed in the mass interval[m,m+ dm] is conserved with time on the whole domain
of the IMF. As a consequence, the PDMF and IMF are very similarfor stars still on the main
sequence at the present time. It turns out in Section 2.3.2 that UCDs can indeed be considered
as dynamically unevolved stellar systems due to their mass and extension and therefore long
relaxation time.

In the past, there have been numerous efforts to infer the shape of the IMF from the PDMF as
observed in resolvable stellar populations. There is common agreement that these observations
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are compatible with the IMF originally proposed by Salpeter(1955) for field stars in the solar
neighbourhood:ξ(m) ∝ m−α with α = 2.35 for 0.4M⊙ > m > 10 M⊙. Later observations
indicated thatα is constant up to the highest observed stellar masses (whichare between120M⊙

and200 M⊙, Weidner & Kroupa 2004; Oey & Clarke 2005; Figer 2005), but gets smaller below
0.5 M⊙ (Kroupa 2001 and references therein). The IMFs we consider for the stellar populations
of the UCDs are guided by these results.

With masses between107 M⊙ and108 M⊙ and half-light radii mostly below 50 pc, UCDs
may have formed containing, within no more than some ten pc, between105 and106 O-stars
or an order of magnitude more if the IMF was top-heavy. This isa scale of star formation
beyond current theoretical reach, and it is therefore interesting to study the stellar content of
these objects to probe the very extreme physics of their formation.

Let us stress the importance ofdynamicalmass estimates for a meaningful discussion of the
M/LV ratios. This puts a hard constraint on the UCDs that can be included in this discussion
since it requires high-resolution spectroscopy of faint objects. However, a dynamical mass esti-
mate is independent from the total luminosity of the stellarsystem. Instead, the mass estimate is
based on the surface brightness profile and the width of the spectral lines as described in detail
in Hilker et al. (2007). Dynamical mass estimates clearly rely on a number of assumptions that
cannot be verified easily, but mass estimates for unresolvedstellar populations based on stellar
population models do so as well. The true advantage of the dynamical mass estimates for this
work is that they allow an independent estimate for theM/LV ratio that can be compared to
theoretical predictions from stellar population models.

This paper is organised as follows. In Section 2.2 a sample ofdifferent dynamically hot
stellar systems, including UCDs, is introduced. Section 2.3 is dedicated to the dependencies
of internal parameters of dynamically hot stellar systems on their mass. TheM/LV ratio of
UCDs, GCs and elliptical galaxies is compared to the predictions from simple stellar population
models in Section 2.4. While doing this, we take the influenceof their metallicity on their
luminosity into account. Section 2.5 contains a discussionof the transition from GCs to UCDs.
Furthermore the reliability of our results concerning theM/LV ratio of UCDs is addressed. We
conclude with Section 2.6.

2.2 The data

One of the tasks performed in this paper is to compare UCDs to other dynamically hot stellar
systems. This requires a set of data which spans over many orders of magnitude in dynamical
mass. A homogeneous data sample is unfortunately not available due to the diversity of the
objects. We therefore collect data from different sources in the literature, where comparable
parameters have been measured or where at least a correlation between the measured data to
the ones that are to be compared is known. In the following, wespecify the sources for our data
and how we derived the quantities we use in this paper from them, if necessary.

2.2.1 Massive Compact Objects

It is convenient in this paper to introduce massive compact objects (MCOs) as a collective
term for all stellar systems in the sample discussed here that should neither be denominated as
MWGCs nor as elliptical galaxies. This definition of MCOs includes a number of objects that
are considered as UCDs in other works. The motivation for theintroduction of this term lies
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in the fact that the sample of objects discussed here also includes a number of objects which
in their entirety seem to mark a transition between GCs and UCDs. This will become apparent
below. A clear distinction between GCs and UCDs is thereby problematic here.

We differentiate the MCOs by the way their dynamical masses were estimated:
For the 19 MCOs listed in Tab. 2.1, the mass estimate includedthe fitting of a density profile

to each one of them individually. These 19 objects are 12 MCOsfrom the Virgo cluster, five
UCDs from the Fornax cluster as well as two objects from the Local Group:ω Cen in the Milky
Way and G1 in Andromeda. We considerω Cen as an MCO instead of an MWGC because of its
spread in [Fe/H], which sets it apart from every other star cluster in the halo of the Galaxy (e.g.
Kayser et al. 2006; Villanova S. et al. 2007) We refer to them as “MCOs with mass distribution
modelling”.

We also include 20 objects in Centaurus A from Rejkuba et al. (2007) for which measure-
ments of the velocity dispersion and at least one colour index are available. Tab. 2.2 lists their
properties. Their mass inM⊙ is calculated by using a virial mass estimator given in Spitzer
(1987):

Mσ ≃ 10G−1reσ
2, (2.2)

wherere is the projected half-light radius1 in pc andσ is the global velocity dispersion in
pcMyr−1. G is the gravitational constant, which is0.0045 pc3M−1

⊙ Myr−2 We refer to them as
“MCOs with global mass estimate”.

1Actually, it is the half-mass radius that enters into eq. (2.2), but we assume that the mass density follows the
luminosity density whenever necessary. This allows us to identify the half-mass radius with the half-light radius.
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Table 2.1:Properties of MCOs with masses from mass distribution modelling. The contents of the columns are the following. Column 1: The name given
to the MCO (the same as in the source papers), Column 2: The projected half-light radius of the MCO, Column 3: The global velocity dispersion of the
MCO, Column 4: The central velocity dispersion of the MCO, Column 5: The absolute magnitude of the MCO in theV -band, Column 6: The dynamical
mass of the MCO, Column 7: TheM/LV ratio of the MCO, Column 8: References to the papers that are the basis for our data: 1: Evstigneeva et al. (2007),
2: Haşegan et al. (2005), 3: Hilker et al. (2007), 4: Baumgardt et al. (2003), 5: van de Ven et al. (2006), 6: Harris (1996).Some errors are marked with an
asterisk; they have not been published so far.

Name re σ σ0 MV M M/LV Ref
[pc] [km s−1] [km s−1] [mag] [106M⊙] [M⊙/L⊙]

VUCD1 11.3 ± 0.7* 32.2± 2.4 39.3± 2.0 −12.26 28.0± 5.0 4.0 ± 0.7 1
VUCD3 18.7 ± 1.8* 35.8± 1.5 52.2± 2.5 −12.58 50.0± 7.0 5.4 ± 0.9 1
VUCD4 22.0 ± 2.7* 21.3± 2.0 26.9± 2.3 −12.30 24.0± 6.0 3.4 ± 0.9 1
VUCD5 17.9 ± 0.8* 26.4± 1.6 32.5± 2.3 −12.32 29.0± 4.0 3.9 ± 0.6 1
VUCD6 14.8 ± 3.1* 22.3± 1.8 29.6± 2.2 −12.10 18.0± 5.0 2.9 ± 0.9 1
VUCD7 96.8 ±20* 27.2± 4.6 45.1± 1.5 −13.44 88.0±21.0 4.3 ± 1.1 1
S417 14.36± 0.36 26.4± 2.7 31.7± 1.4 −11.78± 0.16 27.0± 5.0 6.6 ± 1.5 1,2
UCD1 22.4 ± 1.0 27.1± 1.8 41.3± 1.0 −12.19 32.1± 3.6 4.99± 0.60 3,1
UCD2 23.2 ± 1.0 21.6± 1.8 31.3± 0.6 −12.27 21.8± 3.1 3.15± 0.49 3,1
UCD3 89.9 ± 6.0 25.0± 3.4 29.3± 1.2 −13.57 94.5±22.0 4.13± 0.98 3,1
UCD4 29.6 ± 2.0 22.8± 3.1 37.3± 0.6 −12.45 37.3± 8.6 4.57± 1.11 3,1
UCD5 30.0 ± 2.5 18.7± 3.2 28.7± 0.8 −11.99 18.0± 5.0 3.37± 0.85 3,1
S314 3.23± 0.19 . . . 35.3± 1.4 −10.91± 0.16 5.8± 1.0 2.94± 0.68 2
S490 3.64± 0.36 . . . 42.5± 2.7 −11.00± 0.16 8.7± 2.1 4.06± 1.15 2
S928 23.16± 1.37 . . . 22.4± 1.0 −11.58± 0.16 21.3± 2.9 6.06± 1.23 2
S999 20.13± 0.98 . . . 25.6± 1.4 −11.08± 0.16 21.6± 2.9 9.36± 1.87 2
H8005 28.69± 0.55 . . . 10.8± 2.3 −10.83± 0.16 5.5± 2.3 2.98± 1.35 2
G1 8.21 . . . 25.1± 1.7 −10.94 8.2± 0.85 4.10± 0.42 4
ω Cen 6.70± 0.28 16.0 19.0± 1.5 −10.29 2.5± 0.1 2.5 ± 0.3 5,6
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2.2.2 Globular clusters

We compare the MCOs to the MWGCs for which McLaughlin & van derMarel (2005) calcu-
lated dynamicalM/LV ratios (listed in their table 13). Their value for the effective half-mass
radius and their estimate of the dynamicalM/LV ratio in theV -band for the King model is
used in this work. By using the absolute magnitude in theV -band given in Harris (1996), the
cluster mass can be calculated from itsM/LV ratio.

It can hardly be expected that such a limited sample is representative for GCs in general.
Nevertheless, this seems to be the case to some extent, as surveys of extragalactic GC systems
show (e.g. Larsen et al. 2001; Chandar et al. 2004 and JordánA. et al. 2005 concerning the
radii of GCs, and Richtler 2003 and Jordán A. et al. 2007 concerning the absolute magnitudes
of GCs, which indicate their masses if a constantM/L ratio for them is assumed). It therefore
seems possible to take the distribution of the radii and the masses of the MWGS as a rough
representation of GCs in general. The advantage of the chosen sample is that, as for the MCOs,
mass estimates from velocity dispersions are available forthem.

2.2.3 Early-type galaxies

We also compare the MCOs to more massive dynamically hot stellar systems by making use
of some of the data published by Bender et al. (1992), i.e. their values for the central velocity
dispersion,σ0, the projected half-light radius,re and the absolute magnitude in theB-band of
elliptical galaxies and bulges of early-type spiral galaxies in their sample. Bender et al. (1992)
give a simple formula for estimating the King mass fromre andσ0, which we use as well for
the objects from their paper:

Mσ0 = 5G−1reσ
2
0, (2.3)

with re in pc,σ0 in pcMyr−1 andG = 0.0045 pc3M−1
⊙ Myr−2.

If these objects are to be compared to the MCOs, theirV -band luminosities have to be
estimated from theirB-band luminosities, since for the MCOs luminosities in theV -band are
measured. It is known that there is a correlation between theluminosity and the colour of
elliptical galaxies. However, given the weakness of this dependency, we think that accounting
for it (e.g. with the data on colour of the same galaxies from Bender et al. 1993) would probably
not pay the effort. This becomes evident, if the uncertainties connected to the mass estimates
from eq. (2.3) especially are considered (see Section 2.2.4). Therefore, adopting a uniform
B − V colour index of 0.9 seems a reasonable approximation for thepurpose of this paper.

To enhance the sample, data on nucleated dwarf elliptical galaxies from Geha et al. (2003)
are included.

Data on dwarf spheroidal galaxies (dSphs) are also included. They are taken from Metz &
Kroupa (2007), their table 2, because their data on dSphs aremore up to date than the ones in
Bender et al. (1992). The half-light radii of the dSphs are not listed in that table, but are usually
found in the references given there (with the exception of And II, for which the half-light radius
is taken from the paper by McConnachie & Irwin 2006).

2.2.4 A note on different dynamical mass estimators

The dynamical mass of each of the objects introduced above was estimated in one of three
different ways. While for some objects the mass estimate included the fitting of an individual
density profile to them, for other objects the mass was calculated by using one of two global
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Table 2.2:Properties of the compact objects in Centaurus A. Here the mass was calculated by using
the same mass estimator for all objects, namely eq. (2.2). All data are from Rejkuba et al. (2007). The
meaning of the contents of the columns is the following. Column 1: The identification of the object (like
in Rejkuba et al. (2007)), Column 2: The effective (projected half light) radius of the MCO, Column
3: The global velocity dispersion, Column 4: The estimated (dynamical) mass, Column 5: TheM/LV

ratio.

Name re σ Mσ M/LV

[pc] [km/s] [106M⊙] [M⊙/L⊙]

HGHH92-C7 7.5± 0.1 21.6+1.0
−2.6 7.8+0.7

−1.9 3.3+0.8
−1.1

HGHH92-C11 7.8± 0.1 19.6+0.9
−2.3 6.7+0.6

−1.6 5.7+1.4
−1.9

HHH86-C15 5.3± 0.7 11.1+0.7
−0.7 1.5+0.2

−0.5 2.3+0.6
−0.9

HGHH92-C17 5.7± 0.1 20.9+1.6
−1.6 5.8+0.5

−1.4 3.8+0.9
−1.3

HGHH92-C21 7.0± 0.1 19.3+0.8
−2.3 5.8+0.5

−1.4 4.8+1.1
−1.6

HGHH92-C22 3.8± 0.1 17.9+0.1
−0.1 2.8+0.3

−0.7 3.0+0.7
−1.0

HGHH92-C23 3.3± 0.1 31.3+1.4
−3.9 7.2+0.7

−1.8 1.8+0.5
−0.6

HGHH92-C29 6.9± 0.1 16.1+0.8
−0.8 4.1+0.4

−1.0 4.4+1.0
−1.4

HGHH92-C36 3.6± 0.3 15.7+1.9
−1.9 2.0+0.3

−0.6 2.6+0.6
−0.9

HGHH92-C37 2.9± 0.3 12.6+0.8
−0.8 1.1+0.1

−0.3 1.5+0.4
−0.6

HHH86-C38 2.8± 0.2 14.2+1.1
−1.1 1.3+0.2

−0.4 1.8+0.4
−0.6

HGHH92-C41 4.5± 0.1 11.5+1.3
−1.3 1.4+0.1

−0.3 2.2+0.5
−0.7

HGHH92-C44 5.7± 0.1 13.1+1.0
−1.0 2.3+0.2

−0.6 3.9+0.9
−1.3

HCH99-2 11.4± 1.1 14.1+0.5
−0.5 5.3+0.7

−1.5 4.5+1.2
−1.6

HCH99-15 5.9± 0.2 21.3+1.7
−1.7 6.2+0.6

−1.5 3.4+0.8
−1.1

HCH99-16 12.1± 0.6 9.5+1.4
−1.4 2.5+0.3

−0.6 2.8+0.7
−0.9

HCH99-18 13.7± 0.3 21.2+1.1
−1.1 14.3+1.3

−3.5 4.7+1.2
−1.6

HCH99-21 7.1± 2.7 10.6+2.3
−2.3 1.9+0.7

−1.0 1.7+0.7
−1.0

R223 2.6± 0.3 14.4+1.5
−1.5 1.3+0.2

−0.4 2.3+0.6
−0.9

R261 1.90± 0.4 14.6+0.7
−0.7 1.0+0.2

−0.3 1.1+0.3
−0.4

mass estimators. The choice of the mass estimator depended on whetherσ or σ0 of the a stellar
system was measured. This raises the question whether the mass estimates obtained in these
different ways are indeed comparable. If they are comparable, two requirements should be
fulfilled:

1. There should not be a tendency for one method to over- or underestimate the mass.

2. Applying different mass estimators on the same object should give similar results.

This can be tested on the 19 MCOs in Tab. 2.1 whereσ andσ0 or σ0 only is available beside
the mass estimate using an individual density profile,M , which is probably the most reliable
one and therefore is considered as a standard here. Fig. 2.1 shows the masses as determined by
using the global mass estimators in comparison to the mass from an individual density profile
fit.
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Figure 2.1:Plot of the ratios between global estimates and mass estimates including mass distribution
modelling for the 19 MCOs in Tab. 2.1 against the estimate fortheir mass from an individual fit. Open
squares showMσ/M and circles showMσ0/M .

As a measure for the mean deviation of the mass estimated using eq. (2.2),Mσ, and the
mass estimated using eq. (2.3),Mσ0, from M , we calculate∆Mσ = 1

N1

∑N1

i |Mi − Mσ i|

and∆Mσ0 = 1
N2

∑N2

i |Mi − Mσ0 i|, whereN1 andN2 denote the number of objects that are

included for that summation. This results in∆Mσ = 8.5× 106 M⊙ for the average deviation of
Mσ fromM . This value can be compared to the mean value for the massM of the same MCOs,
with the masses as they are estimated using individual models for the density profile, which is
M = 36.2× 106 M⊙. This means that the average deviation ofMσ from M is about 23%.

Similarly, the average deviation ofMσ0 fromM can be calculated:∆Mσ0 = 12.5×106M⊙.
If this is again compared toM of the according MCOs, it turns out that the average deviation
of Mσ0 from M is about 44%. The larger discrepancies betweenM andMσ0 than betweenM
andMσ is at least partially due to the uncertainties to the inner density profiles of the MCOs,
because the central structure of an MCO strongly influences the value that is determined for its
σ0.

The (relative and absolute) discrepancy betweenM andMσ orMσ0 is the largest for VUCD7.
However, VUCD7 is one of those MCOs that are best fit by a two-component (King+Sersic)
density profile, in contrast to most of the other MCOs. It is therefore not surprising that the mass
estimators eq. (2.2) and eq. (2.3) fail here, since they assume a King profile. This illustrates the
risk connected to assuming a single typical profile for a number of objects. Excluding VUCD7,
the average deviation ofMσ from M can be lowered to about 10%, and the average deviation
of Mσ0 from M can be lowered to about 24%.

In summary, the three ways to estimate the dynamical mass seem to produce comparable
results. Note that also Hilker et al. (2007) and Evstigneevaet al. (2007) usually find that the
internal parameters derived from global King estimators (α = 2) are almost identical to the pa-
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rameters derived using mass distribution modelling. We will therefore not discriminate between
Mσ, Mσ0 andM any further, but denote all dynamical masses asM .

2.3 Dependencies on dynamical mass

In this section, the effective radii, median relaxation times, central densities andM/LV ratios
are compared to each other.

2.3.1 Dependency of the effective radius on mass

Figure 2.2:Plot of the half-light radius,re, against mass,M , for different types of dynamically hot
stellar systems. The symbols that are used have the following meaning: Open circles for MWGCs, open
diamonds for MCOs with global mass estimate (i.e. calculated from eq. 2.2), filled circles for MCOs with
(the probably more reliable) mass estimates from mass distribution modelling (i.e. mass estimates taken
from Haşegan et al. 2005, Hilker et al. 2007 and Evstigneevaet al. 2007 as well as the mass estimates for
ω Cen and G1), open squares for dSphs, triangles for elliptical galaxies and filled diamonds for bulges
of early-type spiral galaxies. Errors are comparable to thesymbol sizes. The lines show fits to the data
for a relation between mass and radius for bright ellipticals, compact ellipticals and bulges (dashed line),
bright ellipticals, compact ellipticals, bulges and MCOs (solid line) and all elliptical galaxies, bulges and
dSphs (dashed-dotted line). Most elliptical galaxies withlow brightness have been excluded from the
first two fits, see text for more details. They are marked with across. Note that the underlying assumption
for the mass estimates is that the stellar systems are essentially undisturbed by tidal fields, which may be
wrong for the dSphs especially (Kroupa 1997).

In Fig. 2.2, the mass dependency ofre of the MCOs and other dynamically hot stellar sys-
tems is plotted. Some well established observations can be identified easily in this plot: The
strong correlation betweenM andre for elliptical galaxies (Bender et al. 1992) in the high mass



44 CHAPTER 2. DYNAMICALLY HOT STELLAR SYSTEMS

Figure 2.3:The median relaxation time,trel, plotted against dynamical mass,M . Contrary to Fig. 2.2,
this figure shows MWGCs and MCOs only. The dashed line marks the current age of the universe. The
symbols are as in Fig. 2.2. One MCO is plotted with typical errors.

range and the absence of a dependency ofre onM for GCs (McLaughlin 2000; Jordán A. et al.
2005) at the lowest masses. Remarkable is the large spread ofradii at intermediate masses
which becomes largest in the mass interval of107 M⊙ > M > 108 M⊙, the mass interval where
the rather compact UCDs as well as the (typically about an order of magnitude) more extended
dSphs lie. The underlying assumption for this statement is that dSphs are objects in (or close
to) virial equilibrium. This has been argued to be the case bye.g. Wu (2007) and Gilmore et al.
(2007) for at least those dSphs that are most distant to the Galactic centre, although this would
imply extremely highM/LV ratios in some cases. Gilmore et al. (2007) state that there is a
bimodality of the characteristic radii of objects in the mass range107 M⊙ > M > 108 M⊙,
i.e. an almost complete absence of objects withre ∼ 100 pc. In Fig. 2.2, they are indeed only
represented by VUCD7 and UCD32 (and M32 at a higher mass). One way to interpret this is
to consider UCDs and the dSphs as two kinds of stellar systemsthat formed under different
conditions, as Gilmore et al. (2007) propose.

However, Metz & Kroupa (2007) argue that the formation of dSphs may have been triggered
by the tidal forces in an encounter between two galaxies, i.e. they propose in principle the
same scenario for the formation of dSphs which Fellhauer & Kroupa (2002a) suggested for the
formation of UCDs. The morphological differences can be understood in terms of the influence
of the surroundings on the star-forming regions: the dSphs can form from star cluster complexes
in a weak tidal field (e.g. the tidal arm of the Tadpole galaxy), while the UCDs form in a strong
tidal field (e.g. the Antennae galaxy). This scenario is supported with the observation that the
orbital angular momenta of the satellite galaxies of the Milky Way are correlated (Metz et al.

2Note that Gilmore et al. (2007) consider a half-light radiusof only 22 pc (from Drinkwater et al. (2003)) for
UCD3 and omit VUCD7 from their discussion.
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2008). It can also offer an explanation for the seemingly high M/LV ratios of some of the
dSphs, if they are largely unbound phase-space structures and therefore cannot be described by
simple application of Jeans’ equations (Kroupa 1997).

It is surprising that the MCOs lie on the same relation between mass and radius as massive
elliptical galaxies with masses? 1011M⊙, while elliptical galaxies with lower masses (i.e.
objects in the intermediate mass range) mostly lie on a different relation, which points towards
the parameter space of dSphs. This could be evidence for the low-mass elliptical galaxies being
mostly of tidal origin, as proposed by Okazaki & Taniguchi (2000) (also see fig. 7 in Monreal-
Ibero et al. 2007), and as discussed by Metz & Kroupa 2007 for dSphs. The fewcompact
low-mass elliptical galaxies can then be interpreted as low-mass counterparts of the elliptical
galaxies more massive than? 1011M⊙.

Following the above interpretation, some objects are thus excluded for quantifying the rela-
tion between mass and radius that MCOs share with massive elliptical galaxies in a least squares
fit. These objects are, besides the MWGCs and the dSphs, the dwarf ellipticals from Geha et al.
(2003) and the galaxies that Bender et al. (1992) define as “bright dwarf ellipticals”3. The ex-
clusion of the latter two groups may seem somewhat arbitrary, but it turns out that they define
the apparent turn-off from the relation for the remaining objects (i.e. bright elliptical galaxies,
galaxy bulges, compact ellipticals and MCOs) at? 1011M⊙ quite well. Assuming a function
of the form

re
pc

= a

(

M

106M⊙

)b

(2.4)

for the relation betweenM andre, which corresponds to a straight line in Fig. 2.2, leads to

a = 2.95+0.24
−0.22,

b = 0.596± 0.007,

for the best-fitting parameters. If the MCOs are not used for the fit,

a = 2.54+0.91
−0.67,

b = 0.608± 0.025,

is obtained, i.e. within the errors the same relation as withthe MCOs. The small impact that
excluding the MCOs has on the fit is demonstrated in Fig. 2.2 byplotting eq. (2.4) with both
sets of values fora andb. This verifies that the MCOs lie along the same relation betweenM
andre as massive elliptical galaxies.

For comparison, an analogous fit toall elliptical galaxies as well as the dSphs (but without
the MCOs) is performed. This corresponds to the hypothesis that these objects are drawn from
a homogeneous population, which obeys a single relation between mass and radius. This leads
to

a = 34.8+8.1
−6.6,

b = 0.399± 0.019,

for the best-fitting parameters. However, the distributionof the massive elliptical galaxies is
clearly asymmetric around this relation, which suggests that the first two relations are a better
fit to them.

3i.e. those galaxies which haveMV > −18.5 and are not classified as “compact dwarf ellipticals”by Bender
et al. (1992)
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We note that the larger sample of elliptical galaxies which is used by Graham et al. (2006)
shows a very similar distribution of characteristic radii against mass, although Graham et al.
(2006) estimated the masses of the galaxies different from the approach chosen here, namely
by assuming a stellar population for them and then calculating their total masses from their
luminosities (cf. their figure 1b).

The radii of MCOs are thus, unlike the ones of GCs, correlatedto their masses. The com-
parison of the massive MCOs with the MWGCs shows that the characteristic radii of GCs
are indeed typically about an order of magnitude smaller than the ones of the massive MCOs.
However, Fig. 2.2 also seems to suggest a rather fluent transition between objects that lie on the
scaling relation for GCs and objects that lie on the scaling relation for elliptical galaxies at a
mass of about106 M⊙. This confirms the conclusions Haşegan et al. (2005) have drawn based
on fewer data.

This change of typical radii cannot be due to an observational bias against small radii for
more massive objects, since MCOs are identified by their brightness, their membership to a
galaxy cluster and theircompactness. The data on rather low-mass MCOs from Haşegan et al.
(2005) and Rejkuba et al. (2007) (both indicated as open diamonds in Fig. 2.2) indeed include
objects with radii on both scales. Consequently, this change of the typicalre must be connected
to a difference in evolution or formation of objects less massive than≈ 106 M⊙ and more
massive than≈ 107 M⊙.

Figure 2.4:The central density of MWGCs and MCOs plotted against dynamical mass. The symbols
are as in Fig. 2.3. The dashed lines indicate constant densities: assuming a mean stellar mass of0.4 M⊙,
the lower dashed line indicates a density where the mean distance between stars is 6000 AU (about 100
times the diameter of the orbit of Neptune), and the upper dashed line indicates where the mean distance
between stars is 3000 AU (about 50 times the diameter of the orbit of Neptune).
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2.3.2 Dependency of the median two-body relaxation time on mass

The median two-body relaxation time is closely connected with mass and characteristic radius
of an object. It is given in Myr in a formula originally found by Spitzer & Hart (1971),

trel =
0.061N

log(0.4N)
×

√

r3h
GM

, (2.5)

whereN is the number stars in the cluster,rh its half-mass radius in pc,M its mass inM⊙ andG
the gravitational constant, which is0.0045 pc3M−1

⊙ Myr−2. trel can be considered as a measure
for the relaxation time at the half mass-radius. However, eq. (2.5) is only an approximation: It is
obtained under the assumption that the stars move in a smoothpotential and are only disturbed
by two-body encounters (i.e. no binaries), beside the supposition that the cluster is in virial
equilibrium.

Eq. (2.5) includes parameters which are not known for most ofthe MCOs, but it can be
transformed into one that only depends onM and the effective half-light radius,re, as free
parameters if some assumptions are made. It can then be applied to the data in this paper.
This is done by assuming that the mass is distributed as the luminosity and by substituting
re = 0.75 rh (Spitzer 1987). We further assume a mean stellar mass of0.4 M⊙ in concordance
with the mean stellar mass in a stellar population with the canonical IMF (see eq. 2.10). This
yields

trel =
0.234

log(M/M⊙)
×

√

Mr3e
G

(2.6)

in the same units as eq. (2.5). An inspection of eq. (2.6) reveals thatre dominates the behaviour
of trel due to its power. Therefore, a plot oftrel againstM looks very similar to a plot ofre
againstM (Fig. 2.2).

In Fig. 2.3,trel is plotted againstM of MWGCs and MCOs only. The stated similarity to Fig.
2.2 in the according mass range is apparent. The new and important piece of information that
can be read off Fig. 2.3 is howtrel of the objects compares to a Hubble time. It is clearly below
a Hubble time for most MWGCs, while it is clearly above a Hubble time for all MCOs more
massive than107 M⊙. This corresponds to the increase of the typical radii in themass interval
from 106 M⊙ to 107 M⊙. As MWGCs and MCOs are considered to be old objects, this implies
that MWGCs can have undergone considerable dynamical evolution since their formation while
massive MCOs have not. Consequently, massive MCOs are much less vulnerable to mass loss
driven by two-body relaxation.

2.3.3 Dependency of the central density on mass

It is worthwhile to consider the impact of the development ofthe typical radii with dynamical
mass on the central density of the MWGCs and MCOs. The centraldensity is here defined as
the mean density within the projected half-light (i.e. half-mass) radius. It is plotted in Fig. 2.4
against mass.

The independence of the MWGC radii on their dynamical mass translates into an increase
of the central density with dynamical mass. The increase of the typical radii above a dynamical
mass of106 M⊙, as visible in Fig. 2.2, is strong enough for a slow decrease of the central
density to occur. It has already been noted by Burstein et al.(1997) that there is a maximum
global luminosity density for early-type galaxies, which is proportional toM−4/3. In this light,
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the decrease of the densities with mass for the MCOs is only a consequence of the common
relation between the MCOs and the massive elliptical galaxies that was found in Section 2.3.1.

2.3.4 Dependency of theM/LV ratio on mass

Figure 2.5:DynamicalM/LV ratio plotted against luminosity in theV -band,LV (upper panel), and
mass,M (lower panel). The symbols are as in Fig. 2.2. The errors to the values of the MCOs are not
much larger than the symbol size.
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Fig. 2.5 shows the dynamicalM/LV ratios of the sample against the luminosity in theV -
band (upper panel) and the dynamical mass (lower panel). It is visible from this figure that the
dSphs with the lowestV -band luminosities also have the highestM/LV ratios, as was already
noted in Mateo (1998). Other than that, the general distribution of the data in both panels is
almost identical, except for a steeper rise of theM/LV ratios from the MWGCs to the MCOs
when they are plotted againstLV .

It might be tempting to identify the gap in the luminosity sequence at≈ 108 L⊙ with the
borderline between a star cluster-like population to the left and a galaxy-like population to
the right. However, thehomogeneoussample of faint early-type galaxies in the Fornax cluster
observed by Hilker et al. (2003) does not show such a gap in luminosity down to the luminosities
of dSphs. The gap visible in Fig. 2.5 is thus most likely an artifact caused by the inhomogeneity
of our data sample.

The spread of theM/LV ratios of the dSphs is very striking in Fig. 2.5. WithM/LV ratios of
several102 M⊙/L⊙, some of them are total outliers compared to all other dynamically hot stellar
systems. It is especially the spread of theirM/LV ratios that supports the notion that dSphs
cannot be treated as objects in dynamical equilibrium. If they were in dynamical equilibrium,
DM haloes with very different properties would have to be assumed for objects that are quite
similar to each other as far as the properties of their baryonic matter are concerned.

It can be seen for the remaining objects that almost every MCOabove a mass of106 M⊙ has
a M/LV ratio which is manifestly higher than the mean value for MWGCs. As for the radii,
the transition from theM/LV ratios of GCs to the ones of MCOs seems fluent. The objects
classified as some kind of elliptical galaxy (including bulges of early-type spiral galaxies) span
the whole range ofM/LV ratios that is occupied by GCsand MCOs, with bulges and large
elliptical galaxies having a larger spread to higherM/LV ratios.

It should be remembered in this context that the masses of theearly-type galaxies that are
used to determine theirM/LV -ratios have been calculated with eq. (2.3), i.e. the mass estimates
are based on the distribution of the visible matter. If thesegalaxies are embedded in DM haloes,
the mass estimates are too low for the total masses of the galaxies, but are still good approx-
imations for the mass of those parts of the galaxies that are dominated by baryonic matter. It
is noteworthy that evidence for DM only emerges in objects with trel > τH (also see Fig. 2.10
and 2.12).

The physical reasons for the distribution ofM/LV ratios are a rather complicated issue.
It mainly depends on two things: A possible non-baryonic DM content in the objects and the
stellar populations of the objects. TheM/LV ratio of a stellar population is influenced by its star
formation history, its IMF, the metallicity of the stars andby how much the stellar population
was altered by dynamical evolution. Unfortunately, most ofthe objects in our sample cannot
be resolved into stars so far, which makes it impossible to determine their stellar populations
directly. Nevertheless, observations of these objects andtheoretical considerations can give
some clues on their stellar populations. Some of these findings are summarised below.

• MWGCs contain old stellar populations (older than≈ 10 Gyr, VandenBerg 2000; Salaris
& Weiss 2002). The MCOs in the Virgo cluster seem to have similar ages (Evstigneeva
et al. 2007), but the MCOs in the Fornax cluster might be a bit younger (Mieske et al.
2006a). The ages of elliptical galaxies are found to range from a few Gyr to? 10Gyr
(Trager et al. 2000; Annibali et al. 2007).

• MWGCs are known to have low metallicities. The metallicities of the MCOs are, if
estimated, consistent with those of metal-rich MWGCs. Elliptical galaxies have about
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solar metallicities in their central parts (Trager et al. 2000; Annibali et al. 2007) and a
decrease of their metallicities towards their outer regions (Tantalo et al. 1998; Baes et al.
2007).

• Dynamical evolution can lower theM/LV ratio of a stellar system noticeably, if the time
scale for its dynamical evolution is shorter than the time scale for the evolution of its stars
(Baumgardt & Makino 2003; Borch et al. 2007).

With this information, the differentM/LV ratios of the objects plotted in Fig. 2.5 become
understandable at least qualitatively. The rather lowM/LV ratio of MWGCs can be understood
as an effect of their low metallicity and the considerable dynamical evolution that was suggested
for them in section 2.3.2. Considering the lifetimes Baumgardt & Makino (2003) expect for a
sample of MWGCs (while accounting for the tidal field of the Galaxy) and their results for
the development of theM/L ratio as a function of the star cluster lifetime, a decrease of the
M/L ratio by about0.3 M⊙ L−1

⊙ to 0.7 M⊙ L−1
⊙ compared to theM/L ratio of a dynamically

unevolved stellar population would seem typical for MWGCs.The massive MCOs and the
elliptical galaxies on the other hand are more metal-rich and due to their size and extension
dynamically almost unevolved. This might be able to explainhigherM/LV ratios compared to
MWGCs even if they do not contain DM. Note however that a DM content in elliptical galaxies
has been discussed: quite recently, Cappellari M. et al. (2006) estimated a median DM content
of ≈ 30% within the half-light radii of a sample of elliptical galaxies, if an IMF as in the Solar
neighbourhood is assumed4. The large spread of theM/LV ratios of ellipticals is not surprising
in the light of their large age spread. Also recall the metallicity gradient in elliptical galaxies,
which is natural if they are more complex than MWGCs and thus more diverse in their internal
properties.

2.4 The observedM/LV ratios and predictions of stellar pop-
ulation models

For the remainder of this paper, we will compare the observedM/LV ratios of the objects
discussed in the previous sections to predictions from stellar population models, with the focus
on theM/LV ratios of the MCOs.

2.4.1 The MCOs as simple stellar populations

In order to find which stellar population models are appropriate for the MCOs, we recall that
most of the objects discussed here are old and note that a super-solar abundance ofα-elements
seems to be typical for the dynamically hot stellar systems discussed here, see e.g Carney (1996)
for MWGCs, Evstigneeva et al. (2007) for MCOs, and Annibali et al. (2007) for elliptical
galaxies. Therefore, self-enrichment through the ejecta of type I supernovae (SNI) apparently
does not play a major role in these systems, as SNI are important contributors of iron to the

4Cappellari M. et al. (2006) do not discuss gas as a possible contributor to the non-luminous matter. However,
considering the results by Combes et al. (2007), the mass of the gas is probably indeed negligible for their sample
of galaxies. Combes et al. (2007) estimate the mass of the molecular gas for the same sample of galaxies and
find masses of the order of some107 M⊙, which is about 3 to 4 orders of magnitudes less than the results in
Cappellari M. et al. (2006) suggest for the total masses of the galaxies.
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interstellar medium (Matteucci & Greggio 1986). This can betaken as an indicator for a stellar
population with a narrow age spread, if the progenitors of SNI are assumed to be white dwarfs
that surpass the Chandrasekhar limit by accretion of additional matter (Whelan & Iben 1973).
Matteucci & Recchi (2001) and Greggio (2005) suggest mediantime scales between some
ten Myr and a few Gyr for the evolution of white dwarfs into SN I, depending on the initial
conditions for the population. Considering stellar systems with ages of≈ 10 Gyr, this can be
taken as a rather short time scale. The assumption of populations of coeval stars within each
stellar system thereby seems a reasonable approximation for at least MWGCs and MCOs.

Besides age and age spread of the stars, a discussion of theM/LV ratios of stellar systems
has to account for the metallicities of their stars, since the metallicity is known to have a influ-
ence on the colour and the luminosity of a star with a given mass. Therefore the metallicities
of the stars have to be known if one intends to construct a model for a stellar population which
accurately describes a real stellar population, includingitsM/LV ratio.

In the following, two assumptions for the metal abundances in the stellar populations of the
MCOs are made. This is not only for the sake of simplicity but also for the lack of more detailed
data in most cases.

Firstly, it is assumed that the metallicity-luminosity dependency of the stellar system can be
characterised by the mean metallicityZ of the stellar system. This would certainly be the case if
Z was equal to the metallicities of the component stars, i.e. if all stars had the same metallicity.
However, this is not necessarily the case for the stars in MCOs, as the examples ofω Cen (e.g.
Kayser et al. 2006; Villanova S. et al. 2007) and G1 (Meylan etal. 2001) show. On the other
hand, imposing a more complicated metallicity distribution on the stars of the unresolved stellar
populations of the other MCOs does not seem reasonable.

Secondly, it is assumed that the mean iron abundance, [Fe/H], allows solid conclusions
on Z. This assumption can be motivated with the finding that[α/Fe] ≃ 0.3 seems not only
to be true for MWGCs (Carney 1996), but also for most of the MCOs that were analysed by
Evstigneeva et al. (2007). This value appears to be very typical for massive, dense star clusters.

The approximations and assumptions that have been made hereand in Section 2.3.4 imply
in their entirety that the stellar populations in MCOs can beconsidered as simple stellar pop-
ulations (SSPs), meaning that all stars and stellar remnants have the same age and the same
chemical composition.

2.4.2 The metallicities of the MCOs

Information on the metallicities of MCOs are published in Haşegan et al. (2005), Mieske et al.
(2006a), and Evstigneeva et al. (2007). Evstigneeva et al. (2007) give for each of the MCOs
they examined an interval in which the actual mean metallicity Z of the MCO lies. We assume
that this true value forZ of the MCO lies in the middle of the interval given. Haşegan et al.
(2005) and Mieske et al. (2006a) do not give estimates forZ of the objects they discuss, but
for [Fe/H]. Based on the observational findings by Carney (1996) and Evstigneeva et al. (2007)
and the assumption that the iron abundance characterises the metallicity of the MCOs, we adopt
[α/Fe] = 0.3 for each one of them and use the relation

[Z/H] = [Fe/H] + 0.94 [α/Fe] (2.7)

found by Thomas et al. (2003) to calculate[Z/H] from [Fe/H]. The values that are adopted for
the element abundances of the MCOs are summarised in Tab. 2.3.
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Table 2.3:MCOs with published metallicity estimates. [Fe/H] in Column 3 is taken as the measure for
Z of the object. Also(V − I) colour indices are given for some objects whose metallicities were derived
from line indices. They provide the opportunity to test the validity of eq. (2.8) on a sample of MCOs
(see section 2.5.2). The columns of the table contain the following information: Column 1: The name
of the object, Column 2: [Z/H] if given in the reference, Column 3: [Fe/H] either from the reference or
calculated using eq. (2.7), Column 4: The(V − I) colour index, Column 5: The reference to the source
paper: 1: Evstigneeva et al. (2007), 2: Mieske et al. (2006a), 3: Haşegan et al. (2005), 4: Meylan et al.
(2001), 5: Harris (1996).

Name [Z/H] [Fe/H] (V − I) Ref.

VUCD1 −1.35 . . . −0.33 −1.12 ± 0.51 0.96 1
VUCD3 0.00 . . . 0.35 −0.107± 0.175 1.27 1
VUCD4 −1.35 . . . 0.33 −1.12 ± 0.51 0.99 1
VUCD5 −0.33 . . . 0.00 −0.447± 0.165 1.11 1
VUCD6 −1.35 . . . −0.33 −1.12 ± 0.51 1.02 1
VUCD7 −1.35 . . . −0.33 −1.12 ± 0.51 1.13 1
S417 −1.35 . . . 0.00 −0.957± 0.65 1
UCD1 −0.38 ± 0.05 1.11 2
UCD2 −0.90 ± 0.33 1.12 2
UCD3 −0.52 ± 0.11 1.18 2
UCD4 −0.85 ± 0.29 1.12 2
UCD5 . . .
S314 −0.50 3
S490 0.18 3
S928 −1.34 3
S999 −1.38 3
H8005 −1.27 3
G1 −0.95 ± 0.09 4
ω Cen −1.62 5

For the objects in Centaurus A no metallicities have been published so far, but(B − V )
and(V − I) colour indices for them are available in Rejkuba et al. (2007). Observations show
that there is a correlation between colour indices and [Fe/H] in GC systems. On this basis, an
estimate of [Fe/H] in the objects in Centaurus A can be made byassuming that they follow a re-
lation between colour and metallicity that has been established on another GC system. Barmby
et al. (2000) give relations between [Fe/H] and(V − I) as well as [Fe/H] and(B − V ) for the
GC system of the Milky Way, using the data from Harris (1996):

[Fe/H](V−I) = (4.22± 0.39)× (V − I)− (5.39± 0.35) (2.8)

and
[Fe/H](B−V ) = (5.50± 0.33)× (B − V )− (5.26± 0.23). (2.9)

The confidence range of these equations is set by the values(V − I) and [Fe/H] can assume for
MWGCs. Their values for [Fe/H] are mostly between−2 and−0.5 dex.

The advantage of the relations from Barmby et al. (2000) is that they have been established
for both colour indices that have been measured for the objects in Centaurus A, i.e. they allow
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Table 2.4:Colours and derived [Fe/H] for the Centaurus A objects. The contents of the columns in the
table are the following: Column 1: Identification of the object like in Rejkuba et al. (2007), Column 2:
The(V − I) colour index, Column 3: The(B − V ) colour index, Column 4: [Fe/H] calculated from the
(V − I) colour index, Column 5: [Fe/H] calculated from the(B−V ) colour index, Column 6: Our final
estimate for [Fe/H] with the adopted errors.

Name (B − V ) (V − I) [Fe/H](B−V ) [Fe/H](V −I) [Fe/H]

HGHH92-C7 0.75 0.91 −1.13 −1.55 −1.34± 0.30
HGHH92-C11 0.94 1.12 −0.09 −0.66 −0.38± 0.39
HHH86-C15 0.89 1.03 −0.36 −1.04 −0.70± 0.42
HGHH92-C17 0.77 0.88 −1.02 −1.68 −1.35± 0.39
HGHH92-C21 0.78 0.93 −0.97 −1.47 −1.22± 0.33
HGHH92-C22 0.79 0.91 −0.91 −1.55 −1.23± 0.39
HGHH92-C23 0.76 0.78 −1.08 −2.10 −1.59± 0.55
HGHH92-C29 0.89 1.08 −0.36 −0.83 −0.60± 0.35
HGHH92-C36 0.73 0.85 −1.24 −1.80 −1.52± 0.35
HGHH92-C37 0.84 0.99 −0.64 −1.21 −0.93± 0.37
HHH86-C38 0.78 0.91 −0.97 −1.55 −1.26± 0.36
HGHH92-C41 0.89 1.09 −0.36 −0.79 −0.58± 0.33
HGHH92-C44 0.69 0.85 −1.47 −1.80 −1.63± 0.26
HCH99-2 0.74 0.84 −1.19 −1.85 −1.52± 0.39
HCH99-15 . . . 1.06 . . . −0.92 −0.62± 0.23
HCH99-16 . . . 0.79 . . . −2.06 −1.76± 0.23
HCH99-18 0.89 0.89 −0.36 −1.63 −1.00± 0.67
HCH99-21 . . . 0.78 . . . −2.10 −1.80± 0.23
R223 0.80 0.95 −0.86 −1.38 −1.12± 0.35
R261 0.83 0.99 −0.70 −1.21 −0.95± 0.35

us to fully benefit from the available data. Their disadvantage is that they do not account for
a slight curvature in the relation between [Fe/H] and the colour indices, which is typical for
this relation according to Yoon et al. (2006). However, given the apparent weakness of this
departure from linearity, it seems justified to neglect it.

We calculate[Fe/H](V−I) and[Fe/H](B−V ) for each cluster in Centaurus A from eq. (2.8)
and (2.9) if both colour indices are available. The results from eq. (2.8) turn out to be systemat-
ically lower by≈ 0.6 dex on average than the results from eq. (2.9), as can be seen in Fig. 2.6.
It is obvious that the different results for the iron abundance calculated from different colour
indices may indicate a serious problem with those estimates. A discussion on how reliable the
results based on these metallicity estimates are will be given Section 2.5. For now, we clearly
distinguish between objects with [Fe/H] estimates from colour indices and objects with [Fe/H]
estimates from line indices.

The relation between [Fe/H] and(V − I) colour found by Kissler-Patig et al. (1998) by
including (beside MWGCs) GCs around NGC 1399 has a slightly flatter slope than eq. (2.8).
It yields however similar results in the colour range interesting for the purpose here (deviations
would be≈ 0.2 dex in the most extreme cases).

As a compromise between the two values that are estimated forthe iron abundances of the
objects in Centaurus A, we adopt the mean of both values as ourfinal value for [Fe/H]. The
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Figure 2.6:Comparison between[Fe/H](V−I) and [Fe/H](B−V ) for the objects in Centaurus A. The
numbers have been calculated with eq. (2.8) and eq. (2.9) respectively. The dashed line indicates equality
of [Fe/H](V−I) and[Fe/H](B−V ). The dotted line, corresponding to[Fe/H](V−I) = [Fe/H](B−V )−0.6,
is a fit by eye to the actual distribution of the data.

error to this value has two components. The first of them is dueto the intrinsic uncertainties to
eqs. (2.8) and (2.9). The second component is the uncertainty due to the systematic difference
between the results from eqs. (2.8) and (2.9). We estimate this error as half the difference
between both estimates for a particular object. For the total error to the estimate of [Fe/H], the
square root of the sum of the squares of both errors is assumed.

For three objects only a(V − I) colour index is given. In these cases we simply set
[Fe/H](V−I) + 0.3 dex = [Fe/H], as0.3 dex is the average value by which the(V − I) colour
indices of the other objects are changed. For estimating an error to these values for [Fe/H],
the scatter of the data for[Fe/H](V−I) and [Fe/H](B−V ) around the relation[Fe/H](V−I) =
[Fe/H](B−V ) − 0.6 is calculated for the objects in Fig 2.6. The scatter,s, is given by the equa-

tion s2 = 1
N−1

∑N
i [[Fe/H](V −I) i−([Fe/H](B−V ) i−0.6 dex)]2, whereN = 17 is the number of

objects in Fig. 6. This results ins = 0.23 dex, which we adopt as the error to the [Fe/H] values
of these three objects.

The numbers for the metallicities of the objects in Centaurus A are listed in Tab. 2.4.
Note that Haşegan et al. (2005) obtain the [Fe/H] estimatesfor their objects also by compar-

ison of the colour indices to the ones of GCs, i.e. in very muchthe same fashion as is done here
for the objects in Centaurus A. The only MCOs with abundance estimates from line indices and
thus estimates directly linked to an actual presence of the according elements in the cluster are
the objects from Evstigneeva et al. (2007), the objects fromHilker et al. (2007),ω Cen and G1.

Since Figs. 2.2, 2.3, 2.4 and 2.5 suggest a rather fluent transition from the properties of
MWGCs to the ones of MCOs, it seems worthwhile to include themin the discussion further
on. A comprehensive compilation of the iron abundances of MWGCs is provided by Harris
(1996). Based on the results of Carney (1996), we assume[α/Fe] = 0.3 in order to calculateZ
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Figure 2.7: The iron abundances adopted for this work plotted against the dynamical mass for the
MWGCs and the MCOs. Open circles represent the MWGCs, filled circles the MCOs with abundance
estimates from line indices, open diamonds the MCOs in Centaurus A (Rejkuba et al. 2007) and filled
diamonds the MCOs in the Virgo cluster from Haşegan et al. (2005). The values for [Fe/H] of the latter
two have been calculated from colour indices.

for them, as we did for the MCOs (eq. 2.7).
Like the ones of MCOs, the stellar populations of MWGCs can beconsidered as old and coeval,
but, in contrast to the ones of MCOs, dynamically evolved (i.e. loss of low-mass stars though
evaporation driven by two-body relaxation).

The [Fe/H] that are adopted for the MWGCs and the MCOs are plotted in Fig. 2.7. A
tendency to higher abundances with higher masses is undeniable. Note however that selection
effects might play a role here. There is a bias against metal-rich objects for MWGCs, because
they are concentrated towards the bulge of the Galaxy and therefore harder to observe than
the metal-poor halo MWGCs (Harris 1976). The GC systems of elliptical galaxies, on the other
hand, have a larger fraction of red (probably metal-rich) GCs, which are also somewhat brighter
than the blue (probably metal-poor) ones (Harris et al. 2006; Wehner & Harris 2007).

2.4.3 Predictions forM/LV ratios from SSP models

If information on the dependency ofM/LV ratio of a SSP onZ is combined with the estimates
on the metallicity of the MCOs, it can be appraised what differences inΥV are not due to
differences inZ. Theoretical estimates ofΥV for differentZ are taken from Maraston (2005)
for SSPs that formed with a canonical IMF or a Salpeter-Massey IMF and from Bruzual &
Charlot (2003) for SSPs that formed with a Chabrier IMF.

The canonical IMF is a continuous multi-power law,

ξK(m) ∝ m−αi , (2.10)
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with α1 = 1.3 for m < 0.5 M⊙ andα2 = 2.3 for m > 0.5M⊙. It has been constrained
after a decade-long study of various biases and found to be consistent with all resolved stellar
populations so far (Kroupa et al. 1993; Kroupa 2001, 2002, 2007). The Chabrier IMF is given
for m < 1M⊙ as

ξC(m) ∝
1

m
exp

[

−
(log(m/M⊙)− log 0.08)2

0.9522

]

(2.11)

and equals the canonical IMF form > 1M⊙ up to a normalisation factor. The transition at1M⊙

is continuous (Chabrier 2001, 2003). This IMF cannot be distinguished from the canonical IMF
within the observational errors (Fig. 2.8). To simplify matters, we will therefore also refer to
the Chabrier IMF as the canonical IMF. The Salpeter-Massey IMF is a single power law with
α = 2.35 (Salpeter 1955; Massey 1998). The SSP models used here have been obtained under
the assumption that the IMFs are defined from0.1M⊙ to 100M⊙.

Figure 2.8:A comparison between the canonical IMF and the Chabrier IMF in the interval from0.1M⊙

to 10M⊙. Both IMFs are normalised such that
∫ 100
0.1 ξ(m)mdm = 1, wherem is the mass in solar units.

The two IMFs are barely distinguishable on the whole mass interval. They actually are identical above a
mass of1M⊙, except for a slightly different normalisation factor.

Note that the upper mass limit of the IMF as suggested by Weidner & Kroupa (2004), Oey
& Clarke (2005) and Figer (2005) is higher than100 M⊙, but this does not have a mentionable
affect on the expectedM/L ratios of the SSPs discussed here due to the scarcity of high-mass
stars in them.

A lower mass limit of0.1M⊙ for the IMF neglects the existence of brown dwarfs. This
is probably unproblematic, if one follows the argumentation by Thies & Kroupa (2007). They
suggest that star-like objects and brown dwarf-like objects are different populations and thus
their frequencies cannot be described by a single, continuous IMF as e.g. in Kroupa (2001).
The combined mass functions for brown dwarfs and stars whichthey find for star clusters in the
Milky Way have many fewer brown dwarfs. Assuming a similar situation in the MCOs, brown
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Table 2.5:Fit parameters for the interpolation formula forΥV to the data from the SSP models. The
SSP models are from: 1: Maraston (2005), 2: Bruzual & Charlot(2003).

Model a b c Ref.

Salpeter IMF, 9 Gyr 3.33 0.82 2.30 1
Salpeter IMF, 13 Gyr 3.37 1.20 2.84 1
canonical IMF, 9 Gyr 3.42 0.42 1.51 1
canonical IMF, 13 Gyr 3.46 0.79 1.88 1
canonical IMF, 9 Gyr 3.70 0.23 1.23 2
canonical IMF, 13 Gyr 3.48 0.55 1.71 2

dwarfs are not expected to contribute more than a few percentto their total mass (opposed to
≈ 10% for a mass function as in Kroupa 2001).

The ages that are considered here for the SSPs are 9 Gyr and 13 Gyr. Note that Maraston
(2005) distinguishes between different horizontal branchmorphologies, but this has a negligible
impact on the dependency ofΥV onZ of an old SSP.

The benefit from using both the SSP models from Bruzual & Charlot (2003) and Maraston
(2005) although they cover the same ages and use (in principle) the same IMF is that different
stellar evolutionary models have been used for constructing them.

In order to make statements on theΥV of objects with anyZ, an interpolation formula
that covers the wholeZ-interval is needed. While it should be fairly simple, it should also
closely fit theM/LV ratios that Bruzual & Charlot (2003) and Maraston (2005) findfor specific
metallicities. A function of the form

Fi([Z/H]) = (a[Z/H]+b + c)
M⊙

L⊙

, (2.12)

where the indexi distinguishes the different SSP models, fullfils these requirements well enough
as Fig. 2.9 visualises. It can therefore safely be assumed that deviant estimates forΥV are
not due to an inadequate interpolation formula, but due to incorrect assumptions on the stellar
population in the MCOs or to a failure of the SSP models. The parametersa, b andc found in
least-squares fits are given in Tab. 2.5. Comparing these parameters for different SSP models
with the canonical IMF reveals that they do not only depend onthe assumed age of the SSP, but
also on whether the SSP models come from Bruzual & Charlot (2003) or Maraston (2005). This
results in noticeably lower expectations for theM/LV ratio from the SSP models from Bruzual
& Charlot (2003), if compared to an in terms of age and IMF identical model from Maraston
(2005). This proves the relevance of different stellar evolutionary models for the predictions
from the SSP models.

It should be mentioned that the value ofΥV for the highest metallicity was left out for the fit
of eq. (2.12) to the data from Maraston (2005), because the omitted value was obtained by using
a different stellar evolution model than for the other data from Maraston (2005). Moreover,
excluding it results into a much closer fit ofFi([Z/H]) to the remaining data, which already
cover the metallicity range of the MCOs and the MWGCs.

Note that stellar evolution only raises theM/LV ratio of a stellar population. TheM/LV

ratio of a13Gyr old SSP therefore provides an upper limit for theM/LV ratio of a stellar
population with a certain metallicity and IMF, since stellar populations cannot be much older
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Figure 2.9: The dependency ofΥV on Z for different SSPs. The origin and the IMF of the SSP
model are detailed in in the upper part of each panel. The squares correspond to the models for 9 Gyr old
populations and circles correspond to the models for 13 Gyr old SSPs. The lines indicate the interpolation
(eq. 2.12) between the data from the SSP models.

according to the current estimates on the age of the universe(13.73+0.16
−0.15Gyr; Spergel D. N. et al.

2007).
If the stellar population of a star cluster with metallicityZ1 is similar to one of the modelled

SSPs, one would expectΥV to be close to the prediction from eq. (2.12) for theM/LV ratio at
Z1:

ΥV |Z1
≈ Fi|Z1

.

If the stellar PDMF and the age of the star cluster is known (orassumed) to be similar to one of
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the SSP models that were introduced above andZ1 has been measured,ΥV of a cluster which
has the metallicityZ2, but is identical to the first one in all other respects can be estimated:

ΥV |Z2
≈

Fi|Z2

Fi|Z1

×ΥV |Z1
. (2.13)

The division byFi|Z1
is imposed by the condition that the estimate forΥV must not be changed

for Z1 = Z2. ΥV |Z1
/Fi|Z1

is the factor by which the theoretical prediction for theM/LV ratio
of a stellar system differs from the value that is observed. The multiplication of these numbers
with Fi|Z2

is not necessary in principle, but it scales them by a constant M/LV ratio such that
the predictedM/LV ratio from an SSP model with metallicityZ2 is expected to coincide with
an observed value, if the model is appropriate.

In order to eliminate the differences inΥV that are caused by differences in metallicity
among the MCOs in the sample, we estimateΥV for them as it would be if they all had the
same metallicity. This can be achieved by settingZ2 identical for all objects while using the
measuredZ for Z1 in eq. (2.13):

ΥV ,n =
Fi|Z⊙

Fi|Z
×ΥV , (2.14)

where our (arbitrary) choice forZ2 is the solar metallicity,Z⊙. We refer to theM/LV ratios
calculated this way as the “normalisedM/LV ratios”,ΥV ,n. Note that a comparison of a whole
sample of values of observedM/LV ratios to a single prediction for theM/LV ratio of a SSP
(as done in Fig. 2.10) becomes possible that way.

The values forΥV ,n turn out to be quite insensitive to the actual choice out of the six sets of
parametersa, b andc that encode different SSP models. This is due to the fact thatthe functions
describing the dependency ofΥV onZ are almost identical up to a scale factor for all the model
populations that are considered here, i.e. the ratioFi|Z2

/Fi|Z1
is almost independent of the SSP

model chosen. This means that theΥV ,n that are calculated here are very likely to be a good
representation of theM/L ratios the MCOs and MWGCs would have if all their stars had solar
composition, even if their PDMFs are different from all massfunctions discussed here.

However, the choice of the SSP model certainlyhasan impact on the prediction for the
M/LV ratio of a population that completely fulfils the assumptions made for the model: For
different models, the predictions on such a population would be different by about a factor of
Fi([Z/H])/Fj([Z/H]).

2.4.4 The normalisedM/LV ratios of the MCOs and the MWGCs

The results forΥV ,n of the MCOs and the MWGCs assuming different SSPs are presented in
Fig. 2.10.

The general distribution of the plotted points in all six panels of Fig. 2.10 still closely re-
sembles the distribution of the points in Fig. 2.5, which represent the same objects but with
their observedM/LV ratios. However, the increase of theM/LV ratios from the MWGCs to
the MCOs is less pronounced once the effect of the metallicity on the luminosity has been ac-
counted for, since the metallicities of the MCOs are usuallysomewhat higher than the ones of
MWGCs (Fig. 2.7).

There is a large spectrum of values for theΥV ,n of the MCOs, ranging from≈ 2 M⊙ L−1
⊙,V

to ≈ 15M⊙ L−1
⊙,V . However, most of them lie between≈ 3M⊙ L−1

⊙,V and≈ 7 M⊙,V L−1
⊙,V .
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Figure 2.10:Normalised mass-to-light ratio,ΥV ,n, against mass for the MWGCs and MCOs based on
the assumption that their stellar population can be described with SSP models. The origin of the SSP
model, the assumed IMF and the assumed age of the SSP are givenin the captions in each panel. The
filled circles representΥV ,n of MCOs with measuredZ, the open diamonds represent objects for which
Z was estimated from colour indices and open circles represent MWGCs. The dashed line indicates
Fi|Z⊙

, i.e. theM/LV ratio that the interpolation formula for the dependency ofΥV onZ predicts for
Z⊙, our reference metallicity. All points below that line havea lowerΥV than the model predicts at their
metallicity, all points above it exceed the model prediction. NaturallyFi|Z⊙

is very similar to theM/LV

ratios atZ⊙ given in the actual models, where such a direct comparison ispossible. (Maraston (2005)
have data onΥV for Z⊙, Bruzual & Charlot (2003) use different grid points).

This still covers a large range of values, but taking into account that theΥV ,n of individiual
MCOs typically also are uncertain within a range of≈ 2 M⊙ L−1

⊙,V to ≈ 4 M⊙ L−1
⊙,V , it is not
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necessary to discuss physical reasons that could provide this scatter. However, two extreme
outliers deserve more attention.

The first one of them is the faint MWGC NGC 6535, which hasΥV ,n ≈ 15 M⊙ L−1
⊙,V with

large errors. As it is not only faint, but also fairly close tothe galactic centre (the position is
l = 27◦ 18′, b = 10◦ 44′ in Galactic coordinates), an accurate determination of itsradius and
velocity dispersion may be difficult due to the contamination with foreground stars. Moreover,
its velocity dispersion has been derived from unpublished measurements. We therefore exclude
it from Fig. 2.10.

The second outlier is the MCO S999 in the Virgo cluster (Haşegan et al. 2005), which is
the object with the largestΥV ,n in all panels of Fig. 2.10. If this rather high value is not due
to a flawed measurement, a scenario proposed by Fellhauer & Kroupa (2006) might offer an
explanation. They proposed an enhancement of theM/LV ratio of MCOs by tidal interaction
with the host galaxy. If this is indeed the case for S999, a faint envelope of stars may be
detectable around it. It is noteworthy that this model can only provide an explanation for the
ΥV ,n for a few MCOs out of a larger sample, as it requires quite specific orbital parameters.

A comparison of the predictions of the SSP models with solar metallicity with the values
for calculatedΥV ,n shows that the bulk of MWGCs and MCOs with masses> 2 × 106M⊙ has
lowerΥV ,n than it would be expected based on the assumed SSP models. Fig. 2.3 immediately
reveals that these star clusters have relaxation times wellbelow a Hubble time, which means
that they are dynamically evolved due to their age. This result is therefore in (at least qualitative)
agreement with the prediction by Baumgardt & Makino (2003) and Borch et al. (2007), who
expect, based on their numerical simulations, theM/LV ratio of a star cluster in a tidal field to
be lowered by dynamical evolution for most of its lifetime.

The MCOs however have a strong tendency tohigherM/LV ratios compared to the theo-
retical prediction for a SSP with the canonical IMF, even fora 13 Gyr old population. There
is only one SSP model, where in most of the cases the model expectation forΥV ,n is higher
than the actualΥV ,n of the massive MCOs. This is the model with a 13 Gyr old stellarpop-
ulation which formed with a Salpeter-Massey IMF. For a 9 Gyr old population which formed
with a Salpeter-Massey IMF, there seems to be agreement between the model prediction forΥV

and the actualΥV . However, assuming that the IMF is truly universal and recalling that the
stellar PDMFs of MCOs should still reflect their stellar IMFsas their dynamical evolution is
slow, it can be concluded that the stellar population of the MCOs should be well described by
a SSP formed with the canonical IMF. The Salpeter-Massey IMFdeviates in the low-mass part
strongly from the canonical IMF and can thus be ruled out if the above assumptions hold.

It should be noted that the finding of observedM/LV ratios being higher than the theoretical
prediction from a SSP model does not mean that the mass function of the chosen SSP model is
inappropriate. Likewise, an agreement between the observed M/LV ratios and the prediction
from the SSP model does not mean that the assumed IMF is correct. Consider for instance the
presence of non-stellar black holes or non-baryonic DM in the MCOs, that lead to a rise of the
M/LV ratio unaccounted for by any SSP model. However, in case the SSP model systemati-
cally overestimates theM/LV ratios of a sample of clusters, the model is certainly not a good
description for the stellar population of the clusters.

Even if it is assumed that the MCOs only contain stars and stellar remnants, the significance
of the tendency for higherΥV ,n of the MCOs compared to SSPs whose IMFs agree with the
canonical IMF should still be discussed. The case of a 13 Gyr old SSP with the canonical
IMF from Maraston (2005) is of special interest and will therefore be treated in detail, because
this is the model where the deviation of theΥV ,n calculated for the MCOs from the theoretical
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expectation is the least pronounced. The values forΥV ,n agree in fact with the prediction from
the appropriate SSP model within the error for a large fraction of the MCOs, as can be seen in
the middle right panel of Fig. 2.10. On the other hand, if taken as a sample, the MCOs which are
more massive than2 × 106M⊙ still have a clear tendency for higher normalisedM/LV ratios
than one would expect from the SSP model.

A possibility to test whether a tendency is a significant deviation from an expectation is
Pearson’s test for the goodness of fit, as it is found in Bhattacharyya & Johnson (1977) (see
Appendix A.1.1). We apply this test on the MCOs more massive than2 × 106M⊙ under the
assumption that their values forΥV ,n would scatter just as much to higher values as to lower
values compared to the prediction forΥV ,n from an appropriate model.

The result of the test is then that the probability for the found (or an even more one-sided)
distribution of the values forΥV ,n of the MCOs more massive than2 × 106 M⊙ around the
expected value for a 13 Gyr old SSP with a canonical IMF from Maraston (2005) is≪ 0.005.
The hypothesis that this SSP model can fully describe the properties of the MCOs can therefore
be excluded according to this test.

The reliability of this result can be doubted, because it is not entirely clear whether the
sample of the 31 objects, for whichM ≥ 2 × 106 M⊙ is fulfilled, is large enough to apply
Pearson’s test for the goodness of fit. Moreover, the objectswith the more uncertain metallicity
estimates from colour indices are included in this sample.

We therefore also apply the sign test, as described in Bhattacharyya & Johnson (1977) (see
Appendix A.1.2), on the 13 MCOs with metallicity estimates from line indices. The hypothesis
to be tested is that there is no significant difference between their values forΥV ,n and the
theoretical expectation assuming a 13 Gyr old SSP with a canonical IMF from Maraston (2005).
The probability that theΥV ,n are larger than the theoretical expectation in 12 or more cases is
0.002 according to this test, i.e. it is highly improbable that the hypothesis is correct.

Both statistical tests thus suggest that stellar population models cannot explain theM/LV

ratios as long as a canonical IMF is assumed, even for the maximum age the stellar population
could have in order to be consistent with the age of the universe according to cosmological
models. Note that Mieske et al. (2006a) suggest intermediate ages for the MCOs in the Fornax
cluster. The actual discrepancy between the true values forM/LV ratios and the SSP models
with the canonical IMF would then be larger than in the case discussed above.This means
that as long as the SSP models do not fail to describe real stellar populations, the MCOs either
contain additional non-luminous matter, or their PDMFs must be different from what one would
expect for a stellar system formed with the canonical IMF.

2.4.5 The normalisedM/LV ratios of elliptical galaxies

We now compare theM/LV ratio of elliptical galaxies and galactic bulges with the prediction
for theM/LV ratio of a 13 Gyr old SSP with the canonical IMF according to the models from
Maraston (2005).

The metallicity estimate that enters the calculation of thenormalisedM/LV ratio of the
elliptical galaxies and galactic bulges is based on resultson the metallicities of galaxies from
the Sloan Digital Sky Survey obtained by Gallazzi et al. (2005). It is apparent from their data
that the metallicities of galaxies in a given total-stellar-mass bin are distributed over a range of
possible values (their figure 8 and table 2). In the present paper, the median of this distribution
is taken as a representative value for the metallicities of the galaxies in that mass bin. The
metallicities of the elliptical galaxies and galactic bulges in our sample as a function of their



2.4. THE OBSERVEDM/LV RATIOS AND PREDICTIONS OF SSP MODELS 63

Figure 2.11:The 16th percentiles (lower open circles), the median values (filled circles) and the 84th
percentiles (upper open circles) of the distributions of the metallicities of galaxies in different total-
stellar-mass bins (Gallazzi et al. 2005). The lower dotted line, the solid line and the upper dotted line are
our fits of eq. (2.15) to the 16th percentiles, the median values and the 84th percentiles, respectively.

Table 2.6:Best-fitting parameters of eq. (2.15) if fitted to the medians(50th percentiles) of the distribu-
tions of the metallicities of galaxies in different mass bins, as well as to the 16th and 84th percentiles of
these distributions. The required data on the metallicity distributions is taken from Gallazzi et al. (2005),
their table 2.

Percentile a b c d

Median (P50) 0.29 3.06 −4.09 −0.267
P16 0.41 2.72 −4.37 −0.555
P84 0.13 1.78 −4.07 0.118

mass are calculated using the function

[Z/H](M) = a arctan

(

b

[

log

(

M

106M⊙

)

+ c

])

+ d (2.15)

with parametersa, b, c andd found in a least-squares fit to the median metallicities of galaxies
in total-stellar-mass bins between≈ 109M⊙ and≈ 1012M⊙, as given by Gallazzi et al. (2005).
The data from Gallazzi et al. (2005) as well as the fit to them isshown in Fig. 2.11. The
best-fitting parametersa, b, c andd are noted in Tab. 2.6.

For the abundances of dSphs, it is assumed that their values for [Fe/H] can be identified
with their values for [Z/H]. Iron abundances for most dSphs discussed here are givenin Mateo
(1998), except for And II (McConnachie et al. 2005), And XI (McConnachie et al. 2005) and
UMa I (Simon & Geha 2007).
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Figure 2.12:The normalisedM/LV ratios of all objects plotted in Fig. 2.5. The symbols are as in
Fig. 2. The stellar population model assumed for calculating the normalisedM/LV ratios is the one
from Maraston (2005) for a 13 Gyr old SSP (i.e. the same SSP model as for the middle right panel of
Fig. 2.10). Black bars indicate for five of the elliptical galaxies the range of normalisedM/LV ratios
they would assume if their metallicity would vary between the adopted values for the 16th percentile
and the 84th percentile of the distribution of the metallicities of galaxies with that mass. The dashed line
corresponds to the normalisedM/LV ratio expected according to the SSP model assumed for the objects
in this figure.

The normalisedM/L ratios which are implied by the adopted metallicities for the elliptical
galaxies, the galactic bulges and dSphs introduced in Section 2.2 are plotted together with the
normalisedM/LV ratios of MCOs and MWGCs in Fig. 2.12.

Gallazzi et al. (2005) find especially for low-mass galaxiesa large spread for the distribu-
tion of their metallicities. To quantify the uncertaintiesthat arise for the adopted normalised
M/LV ratios from the range of likely actual metallicities of galaxies, eq. (2.15) is also fitted to
the values from Gallazzi et al. (2005) for the 16th and 84th percentiles of the distributions of
metallicities of galaxies in different mass bins. The best fitting parametersa, b, c andd can be
found in Tab. 2.6. Using these parameters, likely values fora high and a low metallicity in a
given galaxy can be estimated depending on its mass and the according normalisedM/LV ratio
can then be calculated. In Fig. 2.12, the possible range of normalisedM/LV ratios suggested
by the lower and the upper estimate of its metallicity is indicated for five sample objects with
black bars.

It thereby becomes apparent in Fig. 2.12 that the spread of the normalisedM/LV ratios
of elliptical galaxies and galactic bulges cannot be explained by different metallicities alone,
but that at least one more parameter (e.g. the mean age of their stellar populations) must vary
among them as well.

Consider the elliptical galaxies and galactic bulges with the highest normalisedM/LV ra-
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tios. Given the adopted range for their likely metallicities, the range ofM/LV ratios possible
for them is inconsistent with the prediction for their normalisedM/LV ratio from a model for a
13 Gyr old SSP from Maraston (2005); especially for the objects with high dynamical masses.
This suggests, as for the MCOs, an IMF different from the canonical IMF for their stellar pop-
ulations or the presence of additional (gaseous or non-baryonic) matter in them.

2.5 Discussion

2.5.1 How reliable are the SSP models?

The results that have been obtained in Section 2.4.1 are strongly based on the reliability of SSP
models which are in turn based on the reliability of evolutionary stellar models. However, the
reliability of these models cannot be taken for granted, as the differences between the models
from Bruzual & Charlot (2003) and Maraston (2005) already indicate.

Another issue that may hint at difficulties with the SSP models is the relation between the
iron abundance and the colour indices they suggest. This becomes apparent when using them
to predict [Fe/H] of the MCOs in Centaurus A from their colours. This can be done by setting
up alternative equations to eqs. (2.8) and (2.9) by fitting interpolation functions to the(V − I)-
[Fe/H] value pairs and the(B − V )-[Fe/H] value pairs given by the SSP models (i.e. as in
Section 2.4.3 for a relation between the metallicity and theM/LV ratio). Fig. 2.13 shows that a
good fit between the data and the interpolation can be achieved with functions of the form

[Fe/H](V −I),SSP = a (V − I) + b(V − I)0.5 + c (2.16)

for the(V − I) colour index and analogous for the(B− V ) colour index. The subscribt SSP in
eq. (2.16) is supposed to indicate that these estimates for [Fe/H] from colour indices are based
on SSP models, in contrast to the estimates for [Fe/H] from eqs. (2.8) and (2.9), which are based
on observations of the MWGCs.

In Fig. 2.14,[Fe/H](V −I),SSP is plotted against[Fe/H](B−V ),SSP for the objects in Centau-
rus A. Each panel represents a choice of the SSP model which isassumed to represent the stellar
population of the objects in Centaurus A best. There are two features of the distribution of the
data, which are remarkably little affected by that choice. The first one is the undeniable ten-
dency for[Fe/H](V−I),SSP < [Fe/H](B−V ),SSP. The second one is that the spread of the values
for [Fe/H](V−I),SSP is larger than the spread of the values for[Fe/H](B−V ),SSP. However, if one
of the SSP models is an adequate description for the actual SSPs in Centaurus A, no systematic
difference between the two estimates for [Fe/H] from this SSP model would be expected.

One could therefore come to the conclusion that none of the SSP models considered in this
paper reflects the actual stellar populations of the objectsin Centaurus A. Note however that
neither assuming an age of5Gyr nor considering a different horizontal branch morphology for
the models from Maraston (2005) can enhance the concordancebetween[Fe/H](B−V ),SSP and
[Fe/H](V−I),SSP for the objects in Centaurus A. This could be evidence of the standard SSP
models failing to give a detailed and accurate description of real stellar populations in principle.
Xin et al. (2007) claim that this might indeed be the case as long as SSP models are only based
on the evolution of single stars but neglect the existence ofblue stragglers, which are thought to
be products of stellar interactions. Given the complex abundance patterns in resolved massive
star clusters, it also seems well possible that the observed(integrated)(B − V ) and(V − I)
color indices of the objects in Centaurus A can only be reproduced by stellar population models
which account for an age and metallicity spread of the stars.
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Figure 2.13:The relation between colour indices and [Fe/H] according toSSP models. The right panels
show [Fe/H] against the(V − I) colour index while the left panels show [Fe/H] against the(B − V )
colour index. Squares show the data for 9 Gyr old populations. The dashed line is the fit to them. Circles
show the data for 13 Gyr old populations. The dotted line is the fit to them. The thin solid lines represent
the relations that have been established for MWGCs by Barmbyet al. (2000). Out of the SSP models by
Maraston (2005), the case of a red horizontal branch is shownin this figure. This morphology is said to
reflect the horizontal branches in most of the metal-rich GCsand therefore seems to be an appropriate
choice for the MCOs, which show similar metallicities if measured.

An alternative explanation for the inconsistency between[Fe/H](B−V ),SSP and[Fe/H](V−I),SSP

could be a so far unidentified observational bias in the colour observations of the objects in
Centaurus A. This notion is made attractive by the finding that applying the observed relations
eqs. (2.8) and (2.9) for the estimation of [Fe/H] leads to[Fe/H](V −I),SSP < [Fe/H](B−V ),SSP for
the MCOs in Centaurus A as well (Fig. 2.6). If the difference between the metallicity estimates
from eqs. (2.8) and (2.9) was, for instance, caused by a systematic error to the(B − V ) colour
indices, their offset from the true(B − V ) colour indices would be≈ 0.1 dex.

Considering both the inconsistency of the iron abundances derived from the different colour
indices by using the SSP models and the noticeably differentpredictions of different SSP models
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Figure 2.14:A comparison between[Fe/H](B−V ),SSP and[Fe/H](V −I),SSP for the objects in Centau-
rus A (Tab. 2.2 and Tab. 2.4). The values are estimated by using the fits to the data from the SSP models
plotted in Fig. 2.13. The dashed line indicates equality of both estimates for the iron abundances. If there
was no systematic difference between them when applied to the objects in Centaurus A, the distribution
of the data would follow these lines. Errors to the plotted points are not shown. They are probably gov-
erned by the errors to the colour measurements (which are unknown to us) and by a mismatch between
the SSP models and the real stellar populations of MCOs (which is to be shown by this figure), but not
by the errors to the interpolations plotted in Fig. 2.13. Forthe SSP models from Maraston (2005), a red
horizontal branch is assumed. However, this does not have a strong impact on the distribution of the data
in the according panels of this figure.

on theM/LV ratio of the same population, it still seems possible that the enhancement of the
M/L ratios of the MCOs compared to the theoretical predictions for SSPs with the canonical
IMF is due to a failure of the SSP models.
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2.5.2 How reliable is an estimate of [Fe/H] from colour basedon observa-
tions?

The alternative to estimating [Fe/H] from colour indices based on a SSP model is the approach
chosen for this paper, namely using a relation between [Fe/H] and colour indices that has been
established on a sample of observed star clusters, such as eqs. (2.8) and (2.9). But just like
the estimate of [Fe/H] by using SSP models, this approach is not unproblematic, as will be
discussed here.

It is helpful to define two terms for the further discussion: We call the sample of objects for
which the relation between [Fe/H] and colour was established the “calibration sample”. The
sample for which only colour indices are measured and where the relation between [Fe/H] and
colour is used for a metallicity estimate is called the “target sample”. In our specific case, the
MCOs in Centaurus A are the target sample and applying eqs. (2.8) and (2.9) on them makes
the MWGCs the calibration sample.

There are two problems, that are generally attached to an estimate of the iron abundances
from the colours of objects in a target sample based on observations of an calibration sample.
Firstly, it has to be assumed that the objects in both sampleshave at least typically the same
PDMFs for shining stars and the same ages. If this is not the case, this method is likely to fail
because colours depend on these parameters as well as on metallicity.

Secondly, relations such as eqs. (2.8) and (2.9) are onlyfitting formulaeto a data sample
with scatter. However, if these relations are applied to theobjects in the calibration sample, the
resulting estimates for [Fe/H] lie in the same parameter space as the values for [Fe/H] from line
indices. The same is true if the calibration sample and the target sample are indeed comparable.

As a test whether the MWGCs are a good choice for the calibration sample for the MCOs
in Centaurus A, the values for[Fe/H](V−I) from eq. (2.8) are compared to the values for the
estimates of the iron abundances from line indices (and thusdirectly linked to a observed iron
content in the star clusters),[Fe/H]obs. The published data (see Tab. 2.3) allow such a compari-
son for the ten objects plotted in Fig. 2.15.

There is no significant trend for[Fe/H](V−I) to be larger or smaller than[Fe/H]obs, as the
application of the sign test (Bhattacharyya & Johnson 1977,Appendix A.1.2) shows. Under
the hypothesis that there is no significant difference between the two values, the probability for
having only four or less out of ten with[Fe/H]obs > [Fe/H](V −I) is 0.377. A result as the one
plotted in Fig. 2.15 is therefore quite probable. From this point of view it seems justifiable to
apply eq. (2.8) on the MCOs, although it was originally fittedto the MWGCs.

Recall however that[Fe/H](B−V ) is systematically higher than[Fe/H](V−I) for the objects
in Centaurus A (Fig. 2.6). Since we adopt the mean of[Fe/H](V−I) and[Fe/H](B−V ), [Fe/H] of
the clusters in Centaurus A will be overestimated if[Fe/H](V−I) reflects their true abundances
well. This is a conservative choice in our case, because a higher estimate for [Fe/H] leads
to a lower estimate forΥV ,n. We arrived at the result that a SSP model with the canonical
IMF underpredicts theM/LV ratios of the MCOs nevertheless, this therefore being a robust
conclusion.

2.5.3 The impact of a wrong estimate of [Fe/H] on the comparison of the
dynamicalM/LV ratios with the SSP models

As the metallicities of the MCOs may be subject to systematicerrors, it makes sense to discuss
the impact of a wrong metallicity estimate on our claim that theM/LV ratios of the MCOs are
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Figure 2.15:[Fe/H](V−I) calculated from eq. 2.8 plotted against the iron abundance estimate from line
indices,[Fe/H]obs, for the objects whose(V −I) colours are given in Tab. 2.3. The dashed line indicates
equality between observed and calculated values. Apparently there is no clear tendency for the points
to be located only on one side of the line. This indicates thatthere is no systematic difference between
[Fe/H](V −I) and[Fe/H]obs.

inconsistent with the predictions from SSP models with the canonical IMF. We discuss one case
in detail in order to give an impression how this affects our results.

Suppose the objects in the calibration sample are well described by a SSP with the same
mass function, but that the target sample is younger than thecalibration sample. The colour of
the objects in the target sample is then bluer than it would beif they were of the same age as the
objects in the calibration sample.

When relations like eqs. (2.8) and (2.9) are applied in orderto estimate the iron abundance, it
is implicitly assumed that the stellar populations of the objects in the target sample are the same
as the ones in the calibration sample. The estimates for the iron abundances are therefore too
low if the target sample is younger than the calibration sample, because of the age-metallicity
degeneracy (Worthey 1994). As a consequence, theΥV ,n calculated from eq. (2.14) is too high,
since the denominator on the right side of eq. (2.14) only decreases with decreasingZ due to
the exponential nature of eq. (2.12).

However, the prediction forΥV ,n made by a SSP model increases with the assumed age of
the SSP. The expectation for theΥV ,n of the objects in the target sample is therefore also too
high, if they are compared to an SSP model which is, concerning the assumed age of the objects,
more appropriate for the objects in the calibration sample.Thus, the error that is made in the
estimation of the values for [Z/H] of the objects in the target sample by assuming a common
age for all objects tends to balance the error that is made when all objects are compared to the
same SSP model.

An analogous argument can be found if the objects in the target sample are depleted in
low-mass stars compared to the objects in the calibration sample. In this case, it is the scarcity
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of low-mass stars that makes the objects in the target samplebluer and thereby leads to a too
low metallicity estimate for them. The resulting too high estimate forΥV ,n for these objects
is compensated if they are compared to a SSP model with a full population of low-mass stars
(which are faint and therefore enhance theM/LV ratio of the stellar population).

The reverse argumentation can be applied to objects with a higher age or more low-mass
stars than the objects in the calibration sample.

It thereby seems that, also for objects with metallicity estimates from colour indices, find-
ing the values forΥV ,n above the expectation from the SSP model really is an indicator for
additional non-luminous matter in the object.

2.5.4 Implications of a highM/LV -ratio in the MCOs

Two explanations for the systematic enhancement of theM/LV ratios of the MCOs more mas-
sive than2× 106M⊙ compared to the predictions from SSP models with the canonical IMF are
possible.

The first possibility is that the massive MCOs are embedded inDM haloes, as proposed by
Haşegan et al. (2005). However, for MCOs with small effective radii and highM/LV ratios,
the mean density of the DM within five half-light radii would have to be between1M⊙ pc−3

and10M⊙ pc−3 in order to have the observed impact on their dynamics. Adopting the universal
DM density profiles as they are predicted by standardΛCDM cosmology (Navarro et al. 1997),
only DM haloes with masses of1012M⊙ or more could accumulate enough DM in their central
parts.

The alternative to suggesting non-baryonic DM in the MCOs isto give up the notion of a
universal IMF for all stellar populations. Such an alternative IMF would either be over-abundant
in low-mass stars with highM/LV ratios (bottom-heavy IMF), see Mieske et al. (2007), or over-
abundant in massive stars (top-heavy IMF). The latter possibility would imply a high number of
dark stellar remnants in an old stellar population. Especially a top-heavy IMF seems attractive,
since it is also suggested by models for galaxy evolution (e.g. Baugh et al. 2005; Nagashima
et al. 2005; van Dokkum 2008) or GC evolution (e.g. D’Antona &Caloi 2004; Prantzos &
Charbonnel 2006). These issues will be examined in more detail in a forthcoming paper (see
Chapter 3).

2.5.5 On the nature of MCOs

Apart from the finding that the MCOs more massive than2 × 106 M⊙ are in disagreement
with the expectations for theirM/LV ratios according to SSP models with the canonical IMF,
the increase of typical radii at about the same mass is probably the most intriguing observation.
This raises the question whether the massive MCOs (mostly classified as UCDs in the literature)
constitute a population different to other populations of stellar systems as far as their origin is
concerned. This question is of special interest for the relation between massive MCOs and
GCs, since the seeminglycontinuousrise of the mean radius above106 M⊙ makes the notion of
a single population of objects attractive (single population in the sense of a common scenario
that leads to their formation). In this case, the evolution of such an object must be different at
very high masses in order to account for the increase of radius with mass. A possible reason
for this could be a dependency of star formation on gas density (which increases with mass for
objects with the same extension, consider e.g. the MWGCs in Fig. 2.4). If this dependency
would lead to a greater mass loss during the lifetime of the cluster, it could explain the greater
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extensions because mass loss enlarges a star cluster. A possible example would be a top-heavy
IMF in very dense star forming regions, which would cause a stronger mass loss by type II
supernovae.

On the other hand, there have been efforts to design models that can specifically reproduce
the parameters of UCDs. One of these models is the scenario byFellhauer & Kroupa (2002a)
that UCDs are the merger of massive cluster complexes as are seen to be forming in massively
interacting galaxies. Another one is the scenario by Bekki et al. (2003) and Goerdt et al. (2008)
that UCDs are the cores of nucleated galaxies5. Under the condition that GCs form in the
collapse of a single molecular cloud, objects that were formed in one of the above scenarios
would indeed be of a different origin. This would offer natural explanations for the masses and
the radii of those objects to be larger than for typical GCs. In this case, UCDs and GCs are two
different populations that mix in the mass interval from106 M⊙ to 107 M⊙ because both kinds
of objects formed in intense starbursts that converted a similar amount of gas into stars.

A question connected to the issues discussed here is whetherit is expedient to discriminate
the MCOs into UCDs and GCs. We think that this distinction canbe justified. It clearly makes
sense if UCDs really formed in a different way than GCs. But italso makes sense in the case
that GCs and UCDs were initially formed in the same way, thus are in principle to be considered
as the same class of objects as far as their origin is concerned. In this case, “UCD”would be a
useful term to emphasise the peculiarities, for example thehigher relaxation times, which very
massive clusters usually show in comparison with their low-mass counterparts. Thus, UCDs
could bedefinedas those compact stellar systems, which have relaxation times longer than a
Hubble time and thereby are (almost) collisionless systemson this time scale. This definition
is the same as the one proposed by Kroupa (1998) for a distinction between star clusters and
galaxies, i.e. UCDs are galaxies in that sense.

Also G1 andω Cen are classified as MCOs instead of GCs in this paper, because of the
spread that their stars show in [Fe/H] (ω Cen certainly and G1 presumably). Peculiarities in
element abundances can in principle be another way to discriminate UCDs from GCs by obser-
vational parameters. However, the MCOs in other galaxy clusters cannot be resolved into stars
with the current instrumentation. A similar pattern of the chemical composition of their stars as
in the MCOs in the Local Group can for this reason only be presumed so far, but not be proven
in the near future.

2.6 Conclusions

In this paper, a sample of compact stellar systems covering the transition from globular clusters
(GCs) to ultra compact dwarf galaxies (UCDs) and referred toas massive compact objects
(MCOs) in this work, is compared to other dynamically hot stellar systems. Moreover, the
M/LV ratios of the MCOs and the Milky Way GCs are compared to predictions from models
for stellar populations. Our main conclusions are as follows.

Departing from radii typical for GCs, which are constant with mass, greater extensions are
correlated with higher masses for dense stellar systems more massive than106M⊙. A strong
increase of the median two-body relaxation time with mass isthe natural consequence. We also
find that stellar densities peak at a mass near106 M⊙.

5Note that the scenario Bekki et al. (2003) proposes is inconsistent withΛCDM-theory, because it has to assume
that the DM haloes of the progenitors of the UCDs are cored instead of cusped.
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Dwarf spheroidal galaxies (dSphs) take on a special position among dynamically hot stellar
systems. This is especially apparent from their dynamicalM/LV ratios, which are in some
cases higher by one to two orders of magnitude than for any other dynamically hot stellar
system. Also note the large spread of theM/LV ratios of the dSphs, which would imply very
different DM densities in the visible parts of different dSphs, if the dSphs were in dynamical
equilibrium. It therefore seems improbable that the massesof dSphs can be determined by
simple application of Jeans’ equations.

The fact that compact stellar systems withtrel < τH mostly have a much lowerM/L ratio
than systems withtrel > τH appears to be qualitatively consistent with Baumgardt & Makino
(2003) and Borch et al. (2007). They state that dynamical evolution lowers theM/L ratio of star
clusters in tidal fields compared to dynamically unevolved clusters for most of their lifetime.
Dynamical evolution is slow for UCDs, as their high relaxation times indicate, and consequently
the decrease of theM/LV ratio by this process is slow as well. Moreover, the slow dynamical
evolution leads to the stellar present-day mass function being almost identical with the stellar
initial mass function for main sequence stars. We also foundthat the assumption of a population
of old coeval stars in each massive MCO probably constitutesa good approximation to their real
stellar populations.

Taken together, the lack of dynamical evolution and the narrow age spread of the stellar pop-
ulations make a comparison between the MCOs and theoreticalpredictions from SSP models
with widely used IMFs reasonable. The SSP models also allow to account for the differences
due to the different metallicities of the MCOs. The limitingfactor here is, if the reliability of the
SSP models is taken for granted, the only rough knowledge of the element abundances in the
MCOs. It turns out that the dynamicalM/LV ratios of the MCOs more massive than2×106M⊙

have a significant tendency to be even higher than the predictions of models for very old stellar
populations, provided the IMF is chosen in agreement to the observations of stellar populations,
where at present times low-mass main-sequence stars can be resolved (i.e. populations in the
Milky Way and in objects in its immediate surroundings, suchas the Magellanic Clouds).

It was shown however, that the SSP models that were used for the estimate of the expected
M/LV ratio of the MCOs cannot produce consistent [Fe/H] estimates for the objects in Centau-
rus A from the different colour indices measured for them. This poses the question whether the
SSP models in their current state (e.g. without binary evolution) are truly reliable. On the other
hand, if the predictions for theM/LV ratios from the SSP models are correct, the discrepancy
between them and the dynamicalM/LV ratios observed in the MCOs suggests that the more
massive MCOs contain DM or that the stellar IMF in some stellar systems is different to the
ones of resolved stellar populations. Both possibilities will be studied in follow-up papers.

Summarising,≈ 106M⊙ is a critical mass-scale at which the system length-scale begins
to increase, the highest stellar density is reached, the relaxation time becomes comparable to a
Hubble time and evidence for dark matter appears.
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Chapter 3

A top-heavy stellar initial mass function in
starbursts as an explanation for the high
mass-to-light ratios of ultra compact dwarf
galaxies

J. Dabringhausen, P. Kroupa, H. Baumgardt, 2009,MNRAS, 394, 1529

Abstract:

It has been shown recently that the dynamicalV -band mass-to-light ratios of compact stellar systems
with masses from106 M⊙ to 108 M⊙ are not consistent with the predictions from simple stellarpop-
ulation (SSP) models. Top-heavy stellar initial mass functions (IMFs) in these so-called ultra compact
dwarf galaxies (UCDs) offer an attractive explanation for this finding, the stellar remnants and retained
stellar envelopes providing the unseen mass. We therefore construct a model which quantifies by how
much the IMFs of UCDs would have to deviate in the intermediate-mass and high-mass range from the
canonical IMF in order to account for the enhancedM/LV ratio of the UCDs. The deduced high-mass
IMF in the UCDs depends on the age of the UCDs and the number of faint products of stellar evolution
retained by them. Assuming that the IMF in the UCDs is a three-part power-law equal to the canonical
IMF in the low-mass range and taking 20 per cent as a plausiblechoice for the fraction of the remnants
of high-mass stars retained by UCDs, the model suggests the exponent of the high-mass IMF to be≈ 1.6

if the UCDs are 13 Gyr old (i.e. almost as old as the Universe) or ≈ 1.0 if the UCDs are 7 Gyr old, in
contrast to 2.3 for the Salpeter-Massey IMF. If the IMF was astop-heavy as suggested here, the stability
of the UCDs might have been threatened by heavy mass loss induced by the radiation and evolution of
massive stars. The central densities of UCDs must have been in the range106-107 M⊙ pc−3 when they
formed with star formation rates of 10-100 M⊙ yr−1.
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3.1 Introduction

Ultra compact dwarf galaxies (UCDs) are stellar systems in which 106 M⊙ to 108 M⊙ of gas
were converted into stars within a volume of some ten pc in diameter (Hilker et al. 1999;
Drinkwater et al. 2000, 2003; Phillipps et al. 2001; Haşegan et al. 2005). If UCDs are es-
sentially the massive end of the globular cluster sequence (Mieske et al. 2002, 2004; Forbes
et al. 2008), then this must have happened within a few Myr, sothat the star formation rate
would have been 10-100M⊙ yr−1. Indeed, the enhancement inα-elements, that Evstigneeva
et al. (2007) found in most of the UCDs they examined, suggests a short time scale for the
formation of their stellar populations. Taken together, these properties indicate that UCDs once
were among the most extreme star-forming regions in the universe.

A fundamental function underlying star formation is the stellar initial mass function (IMF),
ξ(m),

dN ∝ ξ(m) dm, (3.1)

wheredN is the number of stars with initial masses betweenm andm + dm. The IMF is the
parent distribution for the mass functions of stars in star clusters (Kroupa & Weidner 2003).
These mass functions are subject to statistical scatter (Elmegreen 1997; Kroupa 2001) and have
an upper mass limit determined by the mass of the gas cloud outof which the star cluster formed
(Weidner & Kroupa 2006).

One of the most debated questions concerning the IMF is whether it is universal, i.e. inde-
pendent on the conditions under which star formation takes place. This is not expected from a
theoretical point of view. Adams & Fatuzzo (1996) and Larson(1998) suggest an increase of
the characteristic masses of pre-stellar cloud cores with increasing ambient temperature. Mur-
ray & Lin (1996) discuss interactions of pre-stellar clumpsleading to mergers as a process in
star formation. Their model predicts an increase of the meanstellar mass with the density of the
star-forming region. At the transition from massive globular clusters (GCs) to UCDs (i.e. in the
mass range between106 and107 M⊙), encounters between pre-stellar clumps must have been
particularly important. Only about 100 times the diameter of the orbit of Neptune is available
for the mean distance between stars in the central parts of some of these high-mass GCs or low-
mass UCDs (see fig. 4 in Dabringhausen et al. 2008). If expansion due to mass-loss through
gas expulsion and stellar evolution played a role during their youth, then the densities of UCDs
would have been even higher at their birth.

On the other hand, all observedresolvedstellar populations are consistent with having
formed with the same IMF. ThiscanonicalIMF can be formulated as a two-part power law,

ξc(m) = kim
−αi , (3.2)

with

α1 = 1.3, 0.1 >
m

M⊙

< 0.5,

α2 = 2.3, 0.5 ≤
m

M⊙

≤ mmax,

wheremmax is a function of the natal stellar mass of an embedded star cluster at the time when
star formation is over andξc = 0 for m > mmax (Kroupa 2001, 2008). The factorski ensure
that the IMF is continuous where the power changes.

During the past years suggestions for the IMF not being universal, but over-abundant in
high-mass stars (top-heavy) under extreme conditions, have accumulated for different types of
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stellar systems. These include galaxies (e.g. Baugh et al. 2005, Nagashima et al. 2005 and van
Dokkum 2008), the Galactic bulge and centre (e.g. Ballero etal. 2007 and et al. 2007) and
Galactic globular clusters (e.g. D’Antona & Caloi 2004 and Prantzos & Charbonnel 2006).

Especially Milky Way globular clusters (MWGCs) have been examined closely. Their stel-
lar mass functions might have been altered strongly by earlyresidual gas expulsion (Marks et al.
2008) and stellar and dynamical evolution Baumgardt & Makino 2003; Borch et al. 2007; Krui-
jssen 2008; Kruijssen & Lamers 2008), but the observation ofindividual stars in the MWGCs
can still give clues on their IMFs; namely by interpreting the complex patterns of the element
abundances in MWGC stars (e.g. the Na-O anti-correlation, see Gratton et al. 2004 for a review
on the composition of MWGC stars). These peculiarities are usually taken as evidence for self-
enrichment, meaning that the last stars that formed in a particular MWGC contain material that
has been processed by stars that formed earlier in the same cluster.

Different theories on how exactly the process of self-enrichment took place have been
brought forward: the metal-enrichment in subsequent stellar generations could be caused by
the ejecta of massive asymptotic-giant-branch stars, as suggested e.g. by D’Antona & Caloi
(2004) and D’Antona et al. (2007), or by the winds from very massive stars, as suggested e.g.
by Prantzos & Charbonnel (2006) and Decressin et al. (2007).Yet both approaches require a
top-heavy IMF, although residual gas expulsion from mass-segregated clusters alleviates this
need (Decressin et al. 2008).

It was shown e.g. in Dabringhausen et al. (2008) and Forbes etal. (2008) that GCs and
UCDs do not constitute two clearly distinguishable populations, if a sample that covers the
whole mass interval from GCs to massive UCDs is considered. This suggests a close relation
between GCs and UCDs. It therefore seems well possible that the peculiarities in the element
abundances that are found for stars in massive MWGCs could aswell be present in the even
more massive UCDs. But the only nearby objects that may be considered as UCDs and can
(like the MWGCs) be resolved into individual stars areω Cen and (at least to some extent) G1
in M31. Such observations indeed show the stellar content ofthese most massive star clusters
(or low-mass UCDs) to have a spread of metallicities and ages(e.g. Meylan et al. 2001, Kayser
et al. 2006 and Villanova S. et al. 2007).

However, there is an alternative way to set constrains on theIMFs of the UCDs, namely by
the comparison with simple stellar population (SSP) models. Various authors thereby found that
the UCDs tend to have higher dynamicalV -band mass-to-light (M/LV ) ratios than expected
for any possible stellar population that formed with the canonical IMF (Haşegan et al. 2005;
Hilker et al. 2007; Rejkuba et al. 2007; Dabringhausen et al.2008; Mieske et al. 2008)).

This result could indicate the presence of non-baryonic dark matter (Haşegan et al. 2005;
Baumgardt & Mieske 2008). However, Murray (2009) argues that both numerical simulations
and observations of dwarf spheroidal galaxies hint to dark matter densities that are far too low
to influence the dynamics of UCDs. This strengthens the notion that the highM/LV ratios of
the UCDs are the consequence of an IMF different from the canonical one. Mieske & Kroupa
(2008) discuss an over-abundance of low-mass stars (i.e. stars with highM/LV ratios) as a
possible cause for the highM/LV ratios of the UCDs. They make testable predictions based on
the CO-index (Kroupa & Gilmore 1994). Complementary to their approach, this contribution
is dedicated to top-heavy IMFs as an explanation for the highM/LV ratio of the UCDs, which
is in this scenario the consequence of a large number of remnants from burnt-out stars in them.
The possible need for a top-heavy IMF also in the context of the element anti-correlations in
massive GCs, as outlined above, makes this approach particularly attractive.

This paper is organised as follows. In Section 3.2, the data sample used in this work is intro-
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duced. Section 3.3 describes the model that is constructed for the stellar populations in UCDs.
The results suggested by this model for the IMF of intermediate-mass and high-mass stars are
presented in Section 3.4. Some implications of these results are discussed in Section 3.5. We
summarise and conclude in Section 3.6.

3.2 The data sample

The present paper is based on the data of GCs and UCDs compiledin Mieske et al. (2008), their
table 5, because the chosen sample fulfils two requirements necessary for what is done in the
present paper:

1. Estimates for thedynamical masshave to be available for the objects.

2. Estimates of the global metallicity of the objects have tobe possible.

This sample is currently the largest and most updated sampleof its kind. We note however
that the results in Dabringhausen et al. (2008) are qualitatively unchanged, although the present
sample has been revised and enhanced compared to the sample they use.

The term ’dynamical mass’ refers to a mass estimate that is based on the velocity dispersion
of the stars in the stellar system (derived from spectral line widths) and the spatial structure
of the stellar system (see Hilker et al. 2007 for details). The mass estimates are therefore
independent from the observed total luminosities of the stellar systems.

The metallicities of the stellar systems are of importance for the present paper because of
their influence on the luminosity of stellar populations. Knowing them is therefore essential
for creating models of stellar populations with a certainM/LV ratio, which is the focus of the
present paper.

Besides newly estimated quantities, table 5 in Mieske et al.(2008) also comprises numbers
that are taken from the previous literature, as documented in their paper for the masses but not
for the metallicities. Details on the origin of the metallicity estimates for objects with masses
≥ 2 × 106 M⊙ are given in Tab. 3.2 of our paper. When Mieske et al. (2008) make their own
metallicity estimate from the(V − I) colours of the stellar systems they use the relation

[Fe/H] = 3.27(V − I)− 4.50 (3.3)

(eq. 4 in Kissler-Patig et al. 1998). This has been done for all objects in their sample with
masses< 2 × 106 M⊙, unless the stellar systems are MWGCs for which the metallicities are
taken from Harris (1996) (private communication with S. Mieske).

Following Mieske et al. (2008), we take an estimated mass of≥ 2 × 106 M⊙ as an easy-
to-handle criterion to categorise a compact stellar systemas a UCD instead of a GC. This mass
marks quite well the transition from objects with GC-like properties to objects with UCD-like
properties (Maraston 2005; Mieske et al. 2008; Dabringhausen et al. 2008), including the on
average distinctively higherM/LV ratios of the more massive objects. Note that the two-body
relaxation time exceeds a Hubble time for systems larger than 2× 106 M⊙ (Mieske et al. 2008),
which has been proposed as the defining property to distinguish galaxies from star clusters
(Kroupa 1998; Dabringhausen et al. 2008).
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3.3 A model for the stellar populations of the UCDs

We now construct a model for the stellar populations of the UCDs under the assumption that the
deviations of theirM/LV ratios from the theoretical expectation for theM/LV ratio of a stellar
population with the canonical IMF are caused by an IMF that varies for intermediate-mass and
high-mass stars. The actual shape of the IMF in the UCDs cannot be specified from resolved
stellar populations so far. The purpose of the following cantherefore only be to give an idea by
how much the IMF must deviate from the canonical IMF in order to account for the mismatch
between observations and theoretical expectations for theM/LV ratio of the UCDs.

3.3.1 The model ingredients

The problem of modelling a stellar population with aM/LV ratio equal to an observed value
can be formulated as

Mm

Lm
−ΥV = 0, (3.4)

whereMm is the total mass of the model population,Lm is its luminosity in theV -band and
ΥV is the observedM/LV ratio of a stellar system.Mm andLm depend on various parameters,
such as the assumed age of the population, the shape of its IMFand the chosen model for stellar
and cluster evolution.Lm additionally depends on the metallicity. These dependencies will be
formulated below, along with the assumptions that are made for the model presented here.

The IMF

The IMFs of the UCDs are connected to their present-day mass functions in the simplest way
possible, because of their median two-body relaxation times, trh, which are of the order of a
Hubble time or larger (Dabringhausen et al. 2008; Mieske et al. 2008). The timescale on which
a stellar system dissolves depends on the tidal field strength, but can be expected to be many
trh, so that the stellar populations of UCDs are practically unaltered by dynamical evolution.
This stands in contrast to GCs, whosetrh are much shorter and therefore can have experienced
significant dynamical evolution since their formation (also see Section 3.4.2).

We introduce a family of IMFs for the model stellar populations of the UCDs:

ξpl(m) = kim
−αi , (3.5)

with

α1 = 1.3, 0.1 ≤
m

M⊙

< 0.5,

α2 = 2.3, 0.5 ≤
m

M⊙

< 1,

α3 ∈ R, 1 ≤
m

M⊙

≤ mmax,

wheremmax is the upper mass limit for stars. These IMFs will be referredto as the ’three-part
power-law IMFs’. They are equal to the canonical IMF except for their slope above1 M⊙. We
assume that the UCDs have formed with a three-part power-lawIMF.

Upper mass limits of100 M⊙ and150 M⊙ are considered. The upper mass limit of100 M⊙

equals the upper mass limit assumed in the simple stellar population (SSP) models which are
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used in this paper (see Section 3.3.1). These are the same stellar population models Dabring-
hausen et al. (2008) took as a reference when they found that theM/LV ratios of a significant
majority of the UCDs tends to be higher than model predictions for the canonical IMF. This
mass limit is however not in agreement with the upper mass limit for stars in very massive star
clusters given by Weidner & Kroupa (2004), Oey & Clarke (2005) and Figer (2005), which is
close to150 M⊙. Therefore this more realistic upper mass limit is considered as well. It turns
out that the results are affected surprisingly little by theupper mass limit of the IMF (Figs. 3.2
and 3.4 below).

Note that the lower mass limit of the IMF neglects the existence of brown dwarfs. This is
probably unproblematic, since Thies & Kroupa (2007) showedthat a combined mass function
of brown dwarfs and stars shows a discontinuity. In the case that the low-mass IMFs of the
UCDs are comparable to the ones in Galactic open star clusters (as assumed to be the case
here), their results suggest that brown dwarfs contribute only a few percent to the total mass of
the UCDs.

The formulation of the IMF in UCDs given in eq. 3.5 attributesa possibly enhancedM/LV

ratio of a UCD solely to a top-heavy IMF, i.e. to a large population of stellar remnants that
would have to be expected in such a case. Note however that theassumption of a bottom-
heavy, Salpeter-Massey-like IMF in UCDs is currently an equally valid approach to explain their
M/LV ratios (cf. figure 10 in Dabringhausen et al. 2008). Observations to test the hypothesis
of a bottom-heavy IMF in UCDs using a method proposed in Mieske & Kroupa (2008) are
underway.

Simple stellar population models

A simple stellar population (SSP) is defined as a population of stars of the same age and metal-
licity. Various authors have set up grids of models of such populations, e.g. Bruzual & Charlot
(2003) and Maraston (2005). The alteration of the stellar mass function due to dynamical evo-
lution is not considered in these grids; only stellar evolution changes the mass spectrum of the
stars in the model populations.

The most closely examined object in the sample of UCDs used here, ω Cen, is known to
have several stellar sub-populations of different ages andmetallicities, i.e.ω Cen is not a SSP
(e.g. Hilker & Richtler 2000; Hilker et al. 2004; Villanova S. et al. 2007). Still, the sub-
populations inω Cen can all be characterised as old and metal-poor. Takingω Cen in this
sense as representative for the UCDs, we assume that their stellar populations are composed of
different sub-populations, but that these sub-populations aresimilar enough to describe each
UCD as a single SSP for the purpose of this paper. Also note that stellar-encounter-driven
dynamical evolution is negligible in the UCDs (Dabringhausen et al. 2008). A disagreement
between the SSP models and the observations can in this lightbe interpreted as being caused by
assuming the wrong IMF.

The SSP models of Bruzual & Charlot (2003) and Maraston (2005) differ by the stellar
evolutionary models used to calculate the luminosity of themodelled population as well as the
total mass assumed for this population. Bruzual & Charlot (2003) assume a somewhat higher
mass-loss rate for the stellar populations (Maraston 2005,in particular her figure 22), while the
luminosities they get from the stellar models they use are lower. In effect, the estimates for
theM/L ratios by Bruzual & Charlot (2003) are similar to the ones by Maraston (2005, her
figure 24). However, considering the predictions for theM/LV ratios of old populations, the
estimates by Bruzual & Charlot (2003) are about 20 per cent lower than the ones by Maraston



80 CHAPTER 3. HIGH M/L-RATIO THROUGH TOP-HEAVY IMF

(2005). Note that this cannot be accounted for by the different formulations for the canonical
IMF these authors use since they turn out to be nearly identical (figure 8 in Dabringhausen et al.
2008). In fact, Bruzual & Charlot (2003) find that the stellarmass of a 10 Gyr old population
is 52 per cent of the initial stellar mass for the canonical IMF they use, while it would have
been 54 per cent if they had used the same formulation of the IMF as Maraston (2005) does.
The reminder of the difference in theM/LV ratio of an old stellar population must thus be
the consequence of the different stellar evolutionary models used and different assumptions
regarding the remnant masses (also see Dabringhausen et al.2008 and Mieske et al. 2008).
As a compromise between the two sets of SSP models, we follow the approach by Mieske
et al. (2008) and take the mean of the predictions from Bruzual & Charlot (2003) and Maraston
(2005) as the reference for a comparison to the observationsin UCDs.

We consider ages of 7 Gyr and 13 Gyr for the UCDs, since these values are at the limits
of the ages expected for them. An age of 7 Gyr would be consistent with the intermediate age
for the Fornax UCDs suggested in Mieske et al. (2006a) and Mieske et al. (2008). Note that
assuming even younger ages would increase the discrepancy between the observedM/LV ratio
and the model predictions. Ages higher than 13 Gyr are excluded by the estimates for the age
of the universe (13.73+0.16

−0.15 Gyr; Spergel D. N. et al. 2007).
The turn-off mass from the main sequence for a population of coeval stars,mto, marks

quite well the stellar mass above which stars of that population have already evolved into stellar
remnants. It is≈ 1M⊙ for a ≈ 10 Gyr stellar population. Since stellar evolution is slow for
old stars,mto = 1 M⊙ is a reasonably good approximation for a 7 Gyr old SSP as well as for a
13 Gyr old SSP.

The contribution of the stellar remnants to theV -band luminosity of the UCDs is small and
therefore neglected in this paper. The luminosity,Lm, of a modelled stellar population is thus
insensitive to the degree of top-heaviness of the IMF, sincethe IMF is only allowed to vary in a
mass range where the stars have evolved after≈ 10 Gyr. The masses of the stars that have not
evolved yet are assumed to be distributed in concordance with the canonical IMF. Thus,Lm can
be determined using the SSP models from Bruzual & Charlot (2003) and Maraston (2005) with
the canonical IMF.

We note that by this approach the influence of binary systems on stellar evolution is ne-
glected.

The initial-to-final-mass relation for stars

In order to find an explicit formulation ofMm in eq. (3.4), a formulation of the masses of
evolved stars as a function of their initial masses is needed. This function, called the initial-to-
final-mass relation,mrem(m), allows to calculate the total mass of an evolved SSP from itsIMF
for a given age. Using the three-part power-law IMFs from Section 3.3.1, the integral that has
to be solved in this calculation reads

Mm =

∫ mmax

0.1

mrem(m)ξpl(m) dm, (3.6)

wherem is the stellar initial mass inM⊙. The limits of the integration are set by the lower and
the upper initial mass limit for stars.

The initial-to-final-mass relation used in this paper is specified in the following.
For stars with initial massesm < mto, mrem = m is assumed, i.e. the mass loss of main-

sequence stars is neglected.
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Stars with initial masses ofmto < m < 8M⊙ are assumed to have evolved into white
dwarfs (WDs), in concordance with the mass limit given by Koester & Reimers (1996). Kalirai
et al. (2008) find, performing a weighted least-squares fit ofa linear function to data based on
observations of WDs in star clusters,

mrem = (0.109± 0.007)
m

M⊙

+ (0.394± 0.025), (3.7)

for a relation between the mass of WDs and the initial mass of their progenitors, wherem is the
stellar initial mass inM⊙. This relation is adopted in this paper.

Stars initially more massive than8 M⊙ but less massive than≈ 25 M⊙ are predicted to
evolve into neutron stars (NSs) with a remarkably narrow mass spread (cf. figures 12 and 16 in
Woosley et al. 2002). This is observationally supported by Thorsett & Chakrabarty (1999), who
find the mass-distribution of pulsars (i.e. observable NSs)in their data sample to be consistent
with a Gaussian distribution with a mean of1.35 M⊙ and a width of0.04 M⊙. Thus, in this
paper1.35M⊙ is adopted for the masses of all stellar remnants with initial masses between8M⊙

and25 M⊙.
Stars with initial masses above25 M⊙ are generally thought to be the progenitors of stellar-

mass black holes (BHs). However, the theoretical predictions for the masses of their remnants
are not only strongly dependent on metallicity, but also on the assumptions on how the evolu-
tion of such stars proceeds (see figures 12 and 16 in Woosley etal. 2002). Figure 12 in Woosley
et al. (2002) might suggest that the case of the higher remnant masses is the more appropriate
choice for low-metallicity environments such as GCs and UCDs. However, the masses of ob-
servationally confirmed BHs lie all in a range that is coveredby assuming that the remnants
of very high-mass stars only have 10 per cent of the initial mass of their progenitors (Casares
2007). In our paper, we thus assume that stars withm > 25 M⊙ evolve into BHs that have
either 10 per cent or 50 per cent of the mass of their progenitor stars, but the emphasis is on the
case with the less massive BHs because of the observational support for their existence.

Note that BHs formed through single-star evolution differ from NSs in mass, but not in the
processes that precede their creation. NSs and BHs are both compact remnants that emerge
from the core collapse and SN explosion of a massive star.

To summarise, the complete initial-to-final-mass function, mrem used here is

mrem =























m
M⊙

, m
M⊙

< mto

M⊙
,

0.109 m
M⊙

+ 0.394, mto

M⊙
≤ m

M⊙
< 8,

1.35, 8 ≤ m
M⊙

< 25,

0.1 m
M⊙

or 0.5 m
M⊙

, 25 ≤ m
M⊙

≤ mmax,

(3.8)

wheremto denotes the turn-off mass andmmax the upper initial mass limit for stars (eqs. 3.2
and 3.5). Inserting eq. (3.8) into eq. (3.6) and carrying outthe integration on the right hand
side of eq. (3.6) yields the mass of all stars and stellar remnants as a function of only the high-
mass IMF-slope,α3, if mto (i.e. age) andmmax are specified. The terms resulting from this
integration for initial stellar masses abovemto are written down explicitly in Appendix A.2.

Normalised mass-to-light ratios

The metallicities estimated for the UCDs usually do not coincide with the grid points of the
SSP models by Bruzual & Charlot (2003) and Maraston (2005). It is therefore necessary to
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Table 3.1:Fit parameters for the metallicity-dependent interpolation formula forΥV to the data from
SSP models with the canonical IMF. BC indicates SSP models from Bruzual & Charlot (2003) and M
SSP models from Maraston (2005).

Model a b c

BC, 7 Gyr 3.29 0.12 1.05
M, 7 Gyr 3.26 0.22 1.24
BC, 13 Gyr 3.48 0.55 1.71
M, 13 Gyr 3.46 0.79 1.88

find interpolation formulae that describe the metallicity dependency of theM/LV ratio in the
models (which actually is a dependency of the luminosity on metallicity). This can be done by
fitting exponential functions of the form

F |Z = F ([Z/H]) =
(

a[Z/H]+b + c
) M⊙

L⊙

, (3.9)

to the data from Bruzual & Charlot (2003) and Maraston (2005), where[Z/H] is the metallicity.
The best-fitting parametersa, b and c found in a least-squares fit to the models used in this
paper are listed in Table 3.1. The excellent agreement of this type of function to the models
from Bruzual & Charlot (2003) and Maraston (2005) is demonstrated in fig. 9 in Dabringhausen
et al. (2008).

The reference relation that is taken to describe the metallicity dependency of theM/LV

ratio for a SSP with a certain age and with the canonical IMF isthe mean of the corresponding
relations derived from the SSP models from Bruzual & Charlot(2003) and Maraston (2005) (cf.
Mieske et al. 2008). The ratio between the observedM/LV ratio for a UCD and the result from
the reference relation at the appropriate metallicity is a measure for the discrepancy between the
observed value and the theoretical prediction. It is convenient for the purpose here to multiply
these values by the prediction of the reference relation fortheM/LV ratio at Solar metallicity.
These quantities will be referred to as normalisedM/LV ratios,ΥV ,n,

ΥV ,n =
ΥV

FBC |Z + FM |Z
× (FBC |Z⊙

+ FM |Z⊙
), (3.10)

where a subscript BC indicates that the parametersa, b andc correspond to a SSP model from
Bruzual & Charlot (2003) and the subscript M indicates that the parametersa, b andc corre-
spond to a SSP model from Maraston (2005) (for the same age).

Using these values forΥV ,n, eq. (3.4) can be rewritten as

Mm

Lm|Z⊙

−ΥV ,n = 0. (3.11)

Lm|Z⊙
is thereby no longer a metallicity-dependent variable, butis fixed to the value the ref-

erence relation predicts for Solar metallicity and therebyonly depends on the age assumed in
the model and the amplitude of the factorski in the IMF. The metallicity dependency is shifted
into the transformation from the observedM/LV ratio of the UCD toΥV ,n. TheΥV ,n values
are noted in Tab. 3.2 and shown in Fig. 3.1. Their uncertainties have been propagated from the
errors of the observed dynamicalM/LV ratios and the errors of the metallicity estimates.
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The numerical value ofLm is calculated from the secondary condition that the prediction
for ΥV ,n from the SSP models should correspond to a stellar population with the canonical IMF
with mmax = 100 M⊙ and a full population of remnants (i.e. a stellar populationas in the
SSP models). For this,mrem as given in eq. (3.8) is used, adopting the case that the blackhole
masses,mBH, are 10 per cent the stellar initial masses (mBH = 0.1m).

There is evidence that GCs usually haveα-enrichments,[α/Fe], of 0.3 dex (Carney 1996).
Evstigneeva et al. (2007) find that the same[α/Fe] is also typical for the UCDs in the Virgo
cluster they examine. On the other hand, Mieske et al. (2007)find that a number of UCD
candidates is consistent with having Solar[α/Fe], which is why Mieske et al. (2008) adopt
Solar [α/Fe] for all stellar systems in their study. However, assuming a super Solar[α/Fe] is
the more careful choice in the context of the present paper, since it attributes more of a possibly
enhancedM/LV ratio in UCDs to metallicity effects. As in Dabringhausen etal. (2008), we
therefore adopt[α/Fe] = 0.3 dex for all GCs and UCDs and estimate their metallicities,[Z/H],
from their iron abundances, [Fe/H]. This is done using the relation

[Z/H] = [Fe/H] + 0.94 [α/Fe] (3.12)

taken from Thomas et al. (2003). Consequently, the[Z/H] used for calculating theΥV ,n are
0.28 dex higher than the [Fe/H] and theΥV ,n in this paper are thereby slightly lower than the
ones in Mieske et al. (2008).

The assumed age turns out to be almost irrelevant for theΥV ,n calculated for the individual
stellar systems. However, the assumed age does have a strongimpact on theΥV ,n predicted by
the SSP-models (see also Dabringhausen2008).

The fate of the processed material and the stellar remnants in the UCDs

In order to have an influence on the dynamics of a stellar system, the stellar remnants that form
in it have to remain bound to it. This can be assumed to be the case for the WDs in the UCDs,
since WDs inherit the peculiar velocities of their progenitor stars and two-body encounter driven
mass loss is negligible for the UCDs (see Section 3.3.1).

Unlike the case with WDs, stellar evolution has a direct impact on the velocity distribution
of NSs. It is well established that many pulsars move with high peculiar velocities, which
they must have obtained somehow in their formation out of their progenitor stars (Woosley
1987; Lyne & Lorimer 1994). Lyne & Lorimer (1994) give the mean pulsar birth velocity as
450 ± 90 km s−1. Since the processes that lead to the formation of BHs through single-star
evolution are the same as the ones that precede the formationof NSs, the BHs should also
receive kicks.

The UCDs have velocity dispersions of> 50km s−1, which suggests escape velocities of
the order of> 100km s−1. Thus, the peculiar velocities of most NSs and BHs should be high
enough to leave the UCDs. On the other hand, NSs are known to populate GCs, which suggests
that also the UCDs are able to retain some fraction of these objects.

Most of the matter processed in intermediate-mass and high-mass stars is reinserted as gas
and dust into the interstellar medium during stellar evolution. Its fate is therefore crucial for the
developement and consequently theM/LV ratio of a stellar system.

There are in general three possibilities for what can happento this material. If it remains
inside the cluster, it can (at least in principle) simply accumulate (and thereby emit almost no
radiation in theV -band) or it can be used up in the formation of subsequent stellar populations.



84 CHAPTER 3. HIGH M/L-RATIO THROUGH TOP-HEAVY IMF

 0

 5

 10

 15

 20

 10  100

no
rm

al
is

ed
 m

as
s-

to
-li

gh
t r

at
io

dynamical mass   [ 106 solar units ]

Fornax
Virgo
Centaurus A
Local Group

13 Gyr

 10  100

7 Gyr

Figure 3.1:NormalisedM/LV ratios,ΥV ,n, of the stellar systems collected in table 5 in Mieske et al.
(2008), provided their dynamical mass is estimated to be2 × 106 M⊙ or more. Thus, the figure only
shows objects that are UCDs according to the definition used in this paper. The ages assumed for them
are either 13 Gyr (left panel) or 7 Gyr (right panel). The dashed horizontal lines indicateΥV ,n for a
SSP that formed with the canonical IMF and is of the age that isassumed for the UCDs in the according
panels. The dotted horizontal lines correspond to the mean of theΥV ,n of all UCDs in the sample and
the shaded areas indicate the uncertainty given to this value. These numbers are used to estimate the high
mass-slope of the UCDs (see Section 3.4.2).

Alternatively, the gas can be driven out of the UCDs, e.g. by type I SNe or by the ram pressure
caused by the movement of the UCD through the intergalactic medium.

Gas and dust originating from intermediate-mass stars has agood chance to stay inside the
UCDs, since these stars form in their final stage planetary nebulae that expand with moderate
velocities (≈ 20 km s−1; see e.g. Gesicki et al. 2003). These velocities are too low for the matter
to leave a star cluster with a deep potential well immediately. This makes massive AGB stars
attractive progenitors for a second generation of stars, asproposed in D’Antona & Caloi (2004)
and D’Antona et al. (2007).

However, massive stars evolve into SN and thereby release≈ 1050 erg per Solar unit of
initial mass of the progenitor star (cf. fig. 1 in Nomoto et al.2006). This clearly exceeds the
binding energy of a star to a UCD. Material originating from these stars will therefore easily
escape from the stellar system, unless the kinetic energy ofthe gas from the SN explosion
is dissipated (e.g. by the interaction with primordial gas or the collision of expanding gas
envelopes from different SNe with one another). The gas density and the holding time inside the
UCDs might become long enough for the gas to cool and to collapse, as discussed in Tenorio-
Tagle et al. (2007).
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Note however that neither self-enrichment by massive AGB stars nor self-enrichment with
SN ejecta can explain the multiple stellar populations inω Cen, since both scenarios act on a
time scale of> 200 Myr, whereas the age difference between the different stellar populations
in ω Cen is a few Gyr (Hilker & Richtler 2000; Hilker et al. 2004; Villanova S. et al. 2007).

The essence of this is that the current knowledge on the evolution of the UCDs does not
allow solid conclusions on the composition of the UCDs. We therefore consider six different
compositions of the UCDs for which we estimate the high-massIMF-slope:

1. Out of all material from burnt out stars, only WDs are retained by the UCDs. This can
be taken as the lower limit for the amount of matter that staysinside the UCDs since the
UCDs are nearly unaffected by dynamical evolution (cf. Section 3.3.1).

2. 20 per cent of the compact remnants from stars initially more massive than8 M⊙ are
retained by the UCDs. The remnant masses of stars withm > 25 M⊙, mBH, are assumed
to be 10 per cent of the initial mass of their progenitors,mBH = 0.1m. The NS and
BH retention rate of 20 per cent is an arbitrarily chosen value, but this scenario might
still be close to a realistic one. On the one hand it allows forsome NSs in the UCDs
as observed for GCs, but on the other hand it also takes into account that the observed
velocity dispersion of pulsars is high by estimating the fraction of retained NSs to be low.

3. As scenario (ii), but withmBH = 0.5m.

4. All stellar remnants are retained by the UCDs andmBH = 0.1m. Such a population,
where all stars and stellar remnants, but not the ejecta fromstars are considered, is as-
sumed in the SSP models.

5. As scenario (iv), but withmBH = 0.5m.

6. The UCDs were gas-free after star-formation ceased in them, but all material that was
processed in burnt-out stars is retained by the UCDs and starformation with the gaseous
component of this matter is somehow inhibited. Of all the models considered here, this
is the one where stars contribute the least to the total mass of the UCD (consisting of
stars, remnants and possibly gas). Note however that the hydrodynamic calculations by
Tenorio-Tagle et al. (2007) suggest that such a scenario is unlikely because the gas accu-
mulating in the UCDs due to stellar evolution will more likely either leave the UCDs or
collapse into new stars.

Interstellar gas and all remnants in the UCDs are considerednot to contribute to the light of
the UCDs. In other words, the very highM/LV ratios of these components of the UCDs are
taken to be infinity.

3.4 Results

The value for the high-mass IMF slope,α3, implied by a given normalisedM/LV ratio,ΥV ,n,
for the assumptions on the stellar populations in the UCDs specified in Section 3.3 can be
calculated from eq. (3.11) using the Newton-Raphson root-finding method.

There is a lower limit for theΥV ,n that leads to a solution for eq. (3.11), because the lowest
ΥV ,n that can be realised within the model is the one for a stellar population whose IMF is cut
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off at 1 M⊙ (i.e. α3 = ∞). If the age of the UCDs is assumed to be 13 Gyr, the individualΥV ,n

of a number of UCDs is actually below that limit.
Close to that lower limit,α3 increases rapidly with decreasingΥV ,n, implying a steep high-

mass IMF (Fig. 3.2). In this range, the solutions to eq. (3.11) become degenerate for the different
assumptions on how much mass is retained by the UCDs. That is because a steep high-mass
IMF means few high-mass stars and it is therefore not decisive for theΥV ,n of an old stellar
system how much matter from those stars is retained.

Theα3 of the canonical IMF is in the regime where the relation betweenΥV ,n andα3 is
already close to being degenerate for different assumptions on the NS and BH retention rate.
Only assuming all matter processed in burnt-out stars remains inside the UCDs without forming
new stars would lead to a distinctively higherΥV ,n for α3 = 2.3. In other words, the predictions
of the models from Bruzual & Charlot (2003) and Maraston (2005) for theΥV ,n for a SSP with
the canonical IMF (shown as the horizontal dashed line in Fig. 3.1 and as the vertical dashed
line in Fig. 3.2) depend, except for extreme cases, only weakly on the fate assumed for the
material processed in massive stars.

Table 3.2:NormalisedM/LV ratios,ΥV ,n, of the UCDs for assumed ages of 7 Gyr and 13 Gyr, and
the high-mass slopes,α3, theseΥV ,n suggest if 20 per cent of the remnants of massive stars are retained
by the UCDs, BHs have 10 per cent of the initial mass of their progenitor stars and the upper mass limit
of the IMF ismmax = 100 M⊙. The contents of the columns are the following: Column 1: Theobject
identification (as in Mieske et al. 2008, table 5), Column 2: The projected half-light radius of the UCD,
Column 3: The estimate for the iron-abundance, Column 4: Themass of the UCD, Column 5: ItsΥV ,n

based on the models by Bruzual & Charlot (2003) and Maraston (2005) for a 7 Gyr old SSP with the
canonical IMF, Column 6: The estimate forα3 based on the value forΥV ,n in Column 5, Columns 7
and 8: As Columns 5 and 6 respectively, but for an assumed age of the UCD of 13 Gyr. The superscript
numbers in Column 3 indicate the origin of the [Fe/H] estimate: 1: Mieske et al. (2008), 2: Haşegan
et al. (2005), 3: Meylan et al. (2001), 4: Harris (1996). A superscript * indicates that [Fe/H] was not
obtained from colour indices, but from line indices or the properties of the resolved stellar population
of the stellar object (private communication with S. Mieske). ΥV ,n is estimated using[Z/H], which
is ≈ 0.3 dex higher than the corresponding [Fe/H] due to the assumedα-enhancement of the stellar
systems (see Section 3.3.1). Dots in Columns 5 and 8 indicatewhere no solution for eq. (3.11) is found
under the given assumptions. The canonical IMF would haveα2 = α3 = 2.3 (Salpeter-Massey index,
eq. 3.2).

Name M re [Fe/H] ΥV ,n α3 ΥV ,n α3

(7 Gyr) (7 Gyr) (13 Gyr) (13 Gyr)
[106M⊙] [pc] [M⊙ L−1

⊙,V ] [M⊙ L−1
⊙,V ]

F-7 10.5 14.9 −1.31 6.61± 0.97 0.86+0.08
−0.06 7.07± 1.06 1.15+0.15

−0.10

UCD1 32.1 22.4 −0.71 6.26± 0.95 0.88+0.09
−0.07 6.48± 1.04 1.23+0.20

−0.12

F-9 14.1 9.1 −0.81 6.19± 1.66 0.89+0.18
−0.11 6.45± 1.76 1.23+0.46

−0.19

UCD5 18.0 31.2 −1.21 5.13± 1.33 0.99+0.22
−0.12 5.47± 1.43 1.42+0.82

−0.25

F-19 93.6 89.7 −0.41∗ 5.03± 0.95 1.00+0.15
−0.10 5.09± 1.01 1.53+0.65

−0.24

F-34 5.5 4.9 −0.91 4.34± 1.07 1.10+0.27
−0.14 4.55± 1.14 1.77+...

−0.40

UCD2 21.8 32.1 −0.91∗ 4.31± 0.76 1.11+0.17
−0.11 4.52± 0.82 1.79+1.22

−0.34

F-6 12.5 7.3 0.21∗ 3.81± 0.93 1.21+0.35
−0.17 3.82± 1.05 2.65+...

−1.03

F-24 24.5 29.5 −0.41∗ 3.69± 1.25 1.24+0.76
−0.22 3.73± 1.29 2.91+...

−1.35

F-53 3.9 4.4 −0.91 3.64± 0.99 1.25+0.49
−0.19 3.65± 0.94 3.22+...

−1.47

F-5 13.7 5.0 −0.31 3.20± 0.68 1.39+0.49
−0.20 3.25± 0.91 . . .
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F-51 3.5 4.2 −0.81 3.12± 0.86 1.43+0.98
−0.26 3.21± 0.71 . . .

F-17 6.3 3.3 −0.81 2.91± 0.76 1.54+1.33
−0.30 3.03± 0.81 . . .

F-12 8.3 10.3 −0.41∗ 2.53± 0.94 1.87+...
−0.57 2.56± 0.96 . . .

F-22 5.3 10.0 −0.41∗ 2.29± 0.49 2.32+...
−0.69 2.35± 1.59 . . .

F-11 5.7 3.6 −0.91 2.24± 1.52 2.47+...
−1.25 2.31± 0.52 . . .

F-1 16.2 23.1 0.01∗ 2.03± 0.56 3.95+...
−2.15 1.99± 0.57 . . .

S999 23.4 19.1 −1.42 16.46± 3.18 0.51+0.07
−0.06 17.68± 3.46 0.67+0.09

−0.07

S417 29.5 14.4 −0.72 8.38± 1.92 0.75+0.12
−0.08 8.93± 2.10 0.99+0.19

−0.11

S928 19.3 21.8 −1.32 8.35± 1.94 0.75+0.12
−0.08 8.67± 2.04 1.01+0.20

−0.12

VUCD7 88.3 96.8 −0.71∗ 5.51± 1.47 0.95+0.21
−0.12 5.70± 1.55 1.37+0.73

−0.23

VUCD1 28.2 11.3 −0.81∗ 5.39± 1.02 0.96+0.13
−0.09 5.62± 1.10 1.38+0.41

−0.19

S314 9.1 3.2 −0.52 5.25± 0.96 0.98+0.13
−0.09 5.36± 1.03 1.45+0.48

−0.21

VUCD4 24.3 22.0 −1.01∗ 4.91± 1.32 1.02+0.24
−0.13 5.17± 1.41 1.50+1.31

−0.29

S490 14.5 3.6 0.22 4.42± 0.70 1.09+0.14
−0.10 4.53± 1.46 1.78+...

−0.48

VUCD5 29.1 17.9 −0.41∗ 4.32± 0.81 1.10+0.18
−0.11 4.36± 0.87 1.90+...

−0.42

VUCD6 17.7 14.8 −1.01∗ 4.30± 1.37 1.11+0.42
−0.17 4.24± 0.75 2.01+...

−0.44

H8005 4.8 28.1 −1.32 4.10± 2.21 1.14+...
−0.27 4.38± 2.37 1.89+...

−0.70

VUCD3 40.0 18.7 0.02 3.61± 0.74 1.26+0.31
−0.16 3.53± 0.77 3.98+...

−2.02

HCH99-2 4.2 11.4 −1.51 5.99± 2.33 0.91+0.34
−0.15 6.46± 2.52 1.23+1.16

−0.24

HGHH92-C21 4.8 7.0 −1.21 5.90± 2.16 0.91+0.31
−0.15 6.28± 2.32 1.26+1.10

−0.24

VHH81-C5 5.0 10.0 −1.61 5.74± 1.38 0.93+0.17
−0.11 6.21± 1.50 1.27+0.42

−0.18

HGHH92-C1 6.8 24.0 −1.21 5.59± 1.42 0.94+0.19
−0.11 5.95± 1.52 1.31+0.54

−0.21

HGHH92-C17 5.1 5.7 −1.31 5.32± 1.75 0.97+0.30
−0.15 5.69± 1.89 1.37+1.33

−0.27

HCH99-18 11.2 13.7 −1.01 5.23± 2.03 0.98+0.41
−0.17 5.52± 2.15 1.41+...

−0.32

HGHH92-C11 5.3 7.8 −0.51 5.05± 1.89 1.00+0.41
−0.17 5.15± 1.96 1.51+...

−0.36

HCH99-15 5.6 5.9 −1.01 4.42± 1.39 1.09+0.38
−0.17 4.66± 1.48 1.71+...

−0.43

HGHH92-C29 3.3 6.9 −0.71 4.40± 1.56 1.09+0.49
−0.18 4.56± 1.63 1.77+...

−0.49

HGHH92-C7 6.3 7.5 −1.31 4.21± 1.51 1.12+0.57
−0.19 4.50± 1.62 1.80+...

−0.52

HGHH92-C22 2.6 3.8 −1.21 4.20± 1.32 1.13+0.43
−0.18 4.48± 1.42 1.82+...

−0.49

HCH99-16 2.0 12.1 −1.91 3.87± 1.44 1.19+0.82
−0.22 4.21± 1.57 2.04+...

−0.69

HGHH92-C23 6.6 3.3 −1.51 2.78± 0.92 1.63+...
−0.39 3.00± 0.99 . . .

HGHH92-C6 3.6 4.4 −0.91 2.19± 0.58 2.67+...
−1.03 2.29± 0.61 . . .

VHH81-C3 2.4 4.4 −0.61 2.01± 0.63 4.28+...
−2.53 2.06± 0.66 . . .

G1 7.2 3.0 −1.03 5.12± 0.93 0.99+0.14
−0.09 5.40± 1.01 1.44+0.44

−0.20

ω Cen 3.0 8.0 −1.64 4.06± 0.70 1.15+0.18
−0.11 4.39± 0.76 1.88+1.44

−0.37

Comparing solutions of eq. (3.11) for the sameΥV ,n and remnant retention rate, but for
upper mass limits of100 M⊙ and150 M⊙, reveals that the remnants of very massive stars do
not play a decisive role for theα3 that are obtained, as illustrated in Figs. 3.2 and 3.4. This
finding may be surprising, since the total mass of the remnants of high-mass stars is a function
of the exponentα3 (see Appendix A.2). This mass must therefore increase dramatically with
increasingα3 above some critical value forα3.

The results of solving eq. (3.11) if a remnant retention rateof 20 per cent andmBH = 0.1m
is assumed are noted in Table 3.2. However, for many individual UCDs solutions do not exist
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if a high age is assumed for them (i.e. theirΥV ,n is clearly below the prediction from the SSP
models for a canonical IMF), and the uncertainties are largein any case. On the other hand,
application of the Pearson test for the goodness of fit (cf. Bhattacharyya & Johnson 1977 and
Dabringhausen et al. 2008) on the 46 UCDs from Mieske et al. (2008) shows that the actual
distribution of theΥV ,n of the UCDs in the sample is highly unlikely if their individual ΥV ,n

scatters equally to both sides of the prediction for theΥV ,n of a SSP with the canonical IMF
(less than 1 per cent if the age of the UCDs is assumed to be at its maximum, 13 Gyr, and much
less than 0.5 per cent if the age of the UCDs is assumed to be 7 Gyr). The properties of the
sec342of UCDs therefore imply an IMF that deviates from the canonical IMF (provided that
they do not contain non-baryonic DM), such as a three-part power-law IMF withα3 < 2.3.

The emphasis in this paper is therefore on constraining likely values for the high-mass IMF
slopes of the UCDs from the properties of the whole sample of UCDs and different subsamples
thereof. It is decisive for this to know whether theΥV ,n of the UCDs are correlated with their
mass,M , and to quantify this correlation if there is one (Section 3.4.1). If such a dependency
is found, the dependency ofα3 onΥV ,n can be translated into a dependency ofα3 onM .

3.4.1 Doesα3 depend on mass?

At present, it is unclear whether UCDs are the most massive GCs (e.g. Mieske et al. 2002,
2004; Forbes et al. 2008) or whether UCDs and GCs are different populations (e.g. Drinkwater
et al. 2004; Goerdt et al. 2008). However, the answer to this question has implications on how a
dependency ofΥV ,n onM , ΥV ,n(M), has to be formulated for GCs and UCDs. An appropriate
formulation ofΥV ,n(M) as a representation for the typicalΥV ,n of objects with a given mass
would be a single, continuous function in the first case, but different functions for GCs and
UCDs in the second case.

The MWGCs, which make up most of the GCs in the sample used here(tab. 5 in Mieske
et al. 2008), show no evidence for a bulk-dependency ofΥV withM (McLaughlin 2000). There-
fore, the meanΥV ,n of the GCs in the data sample,ΥGC, is adopted forΥV ,n(M) in this mass
range. Thus, forM < 2 × 106 M⊙, ΥV ,n(M) = 2.43 ± 0.16 M⊙ L−1

⊙,V if the assumed age is
7 Gyr andΥV ,n(M) = 2.61 ± 0.18 M⊙ L−1

⊙,V if the assumed age is 13 Gyr (uncertainties are
one-sigma values).

The uncertainties of the data for the UCDs leaves many options for an appropriate formula-
tion ofΥV ,n(M) for them. We choose

ΥV ,n(M) =

(

A

[

log10

(

M

M⊙

)

− log10(2× 106)

]

+B

)

M⊙

L⊙

(3.13)

for M > 2 × 106 M⊙, whereM is in Solar units andA andB are parameters which are either
fixed by a secondary condition or determined by a least-squares fit. Note that weighting the
uncertainties when fitting is not advisable in this case, as it would cause an unwanted bias. This
becomes evident by considering two stellar systems with thesame mass and uncertainty of the
mass, but different luminosities. The uncertainty of a luminosity measurement is negligible
compared to the uncertainty of a mass estimate. The uncertainty of theM/L ratio is thus
higher for the stellar system with the higherM/L ratio, even if the parameter that induces this
uncertainty is the same for both systems. The parametersA andB are therefore determined
with equal weight to every measurement and the uncertainties ofA andB are estimated only
from the scatter of the data.
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In order to constrainΥV n(M) for the UCDs in the case that UCDs and GCs are two dis-
tinct populations,A andB in eq. (3.13) are left as free parameters for the fit. The best-fitting
parameters areA = 1.84± 0.89 andB = 3.71± 0.70 if the UCDs are assumed to be 7 Gyr old
andA = 1.87 ± 0.81 andB = 3.47 ± 0.64 if the UCDs are assumed to be 13 Gyr old. This
may hint at a systematic increase of theΥV ,n of the UCDs withM , but the significance of this
result (≈ 2σ) is not high enough to allow definite conclusions1. This finding is consistent with
Mieske et al. (2008), who performed a similar test but only for the UCDs in Fornax.

If UCDs are the most massive GCs,ΥV ,n(M) is expected to be continuous atM = 2 ×
106M⊙, which in this paper is taken to be the mass that separates GCsand UCDs (see Section
3.2). For this case,ΥV ,n(M) of the UCDs is therefore estimated by settingB in eq. (3.13)
to the numerical value ofΥGC in Solar units and leaving onlyA as a free parameter to be
determined in the fit. The result isA = 3.00 ± 0.42 if the UCDs are assumed to be 7 Gyr old
andA = 3.04± 0.46 if the UCDs are assumed to be 13 Gyr old. In this case, the increase of the
ΥV ,n of the UCDs with their mass is highly significant.

ΥV ,n(M) is plotted in Fig. 3.3 together with the data for the GCs and the UCDs.

3.4.2 Constrainingα3 from the whole sample of UCDs

UCDs and GCs as independent populations

1We mention that weighting the UCDs by the uncertainties leads qualitatively to the same results, although the
best-fitting values forA andB and their uncertainties are slightly lower.
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Figure 3.2:The high-mass slope,α3, against the normalised mass-to-light ratio,ΥV,n, as implied by
solving eq. (3.11) for a three-part power-law IMF (see eq. 3.5 and the equations in the appendix). The
curves are for a 13 Gyr old SSP (upper panel) and for a 7 Gyr old SSP (lower panel). The different styles
of the curves correspond to different assumptions on how much processed matter (with extremely high
M/LV ratio) besides WDs is retained by the UCDs (from the bottom tothe top curves in each panel):
no remnants of massive stars; 20 per cent of the remnants of massive stars; all remnants of massive stars;
all material processed by burnt-out stars. Two curves of thesame style indicate different assumptions for
the upper mass limit of the IMF for the same assumption on the matter retained in the UCDs:100 M⊙

(lower curve) and150 M⊙ (upper curve). The dashed horizontal lines indicate in eachpanel the canonical
high-mass IMF index,α3 = 2.3. Its intersections with the curves show theΥV ,n which the canonical
IMF would imply for a particular remnant population. TheΥV ,n of the individual UCDs are shown as
crosses at the bottom of each panel. The dashed vertical lines indicateΥV ,n for a SSP that formed with
the canonical IMF and is of the age that is assumed for the UCDsin the according panels. The dotted
vertical lines correspond to the mean of theΥV ,n of all UCDs in the sample and the shaded areas indicate
the uncertainty given to this value (see Section 3.4.2). Theintersections of a vertical line with the curves
show thatα3 corresponding to a particularΥV ,n for the different assumptions on the retained remnant
population. In this Figure, the remnants of stars withm > 25 M⊙ are assumed to have masses of 10 per
cent of the initial mass of their progenitors whereever thisis relevant.
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Figure 3.3:NormalisedM/LV ratios,ΥV ,n, of all objects listed in table 5 in Mieske et al. (2008). The
assumed ages for them are either 13 Gyr (left panel) or 7 Gyr (right panel). Contrary to Fig. 3.1, this
figure also shows stellar systems with dynamical masses lessthan2 × 106 M⊙, i.e. stellar systems that
are not UCDs but GCs according to the definition used in this paper. Objects considered as GCs are
seperated from objects considered as UCDs by the thin, dashed vertical line in each panel. The solid
line indicatesΥV ,n(M), a function that describes the systematic increase of the averageΥV ,n with mass
for the case that GCs and UCDs are a single population. If GCs and UCDs are separate populations,
ΥV ,n(M) of the UCDs is represented by the dotted line that starts at2 × 106 M⊙. Note that in this
case the uncertainty to the slope is very high and is therefore not significant. The dashed horizontal line
indicates the prediction forΥV ,n of an SSP with the canonical IMF.
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Table 3.3: Estimates for the most likely values ofα3 for different assumptions concerning age and remnant population of the UCDs, as detailed in
Section 3.4.2. The first column specifies the supposed remnant population of the UCDs (mmax = 100 M⊙). For the stars more massive than25M⊙, the
cases of them forming BHs with 10 per cent their initial mass,mBH = 0.1m, or 50 per cent their initial mass,mBH = 0.5m, are considered whereever this
makes a difference. The second column displays theα3 corresponding to the mean of theΥV ,n of the UCDs and the uncertainties toα3 calculated from
the uncertainties to the meanΥV ,n. This can be taken as a convenient number to quantify the high-mass IMF slope of the UCDs as a class of objects. The
numbers in Columns 3 to 5 have the same meaning as the numbers in Column 2, but for different subsamples of UCDs. The subsamples are chosen by the
larger structures the UCDs are bound to, namely the Fornax Cluster (Column 3), the Virgo Cluster with S999 (Column 4) and without S999 (Column 5) and
Centaurus A (Column 6).

All Fornax Virgo Virgo Centaurus A
(with S999) (without S999)

Model α3 α3 α3 α3 α3

assumed age of 13 Gyr

no SN remnants 1.35+0.23
−0.17 2.10+0.90

−0.42 0.81+0.37
−0.23 1.11+0.25

−0.18 1.49+0.29
−0.21

20 per cent of the SN remnants,mBH = 0.1m 1.57+0.17
−0.12 2.17+0.84

−0.35 1.22+0.23
−0.13 1.41+0.17

−0.12 1.68+0.23
−0.15

20 per cent of the SN remnants,mBH = 0.5m 1.78+0.13
−0.09 2.26+0.76

−0.29 1.50+0.19
−0.11 1.65+0.14

−0.09 1.86+0.18
−0.12

all SN remnants,mBH = 0.1m 1.85+0.14
−0.10 2.33+0.73

−0.29 1.56+0.20
−0.12 1.72+0.14

−0.10 1.94+0.18
−0.12

all SN remnants,mBH = 0.5m 2.11+0.11
−0.08 2.50+0.61

−0.23 1.86+0.18
−0.10 2.00+0.12

−0.08 2.18+0.15
−0.10

all processed material 2.93+0.26
−0.18 3.90+1.55

−0.59 2.43+0.32
−0.18 2.69+0.25

−0.16 3.08+0.36
−0.22

assumed age of 7 Gyr

no SN remnants 0.49+0.09
−0.08 0.73+0.15

−0.12 0.19+0.20
−0.15 0.36+0.11

−0.10 0.56+0.11
−0.09

20 per cent of the SN remnants,mBH = 0.1m 1.04+0.05
−0.04 1.17+0.09

−0.07 0.88+0.10
−0.08 0.97+0.07

−0.05 1.09+0.06
−0.05

20 per cent of the SN remnants,mBH = 0.5m 1.34+0.04
−0.04 1.46+0.07

−0.06 1.21+0.09
−0.07 1.28+0.05

−0.04 1.38+0.04
−0.04

all SN remnants,mBH = 0.1m 1.40+0.05
−0.04 1.52+0.08

−0.06 1.25+0.10
−0.07 1.33+0.06

−0.05 1.43+0.05
−0.05

all SN remnants,mBH = 0.5m 1.72+0.04
−0.04 1.82+0.07

−0.05 1.59+0.09
−0.06 1.66+0.05

−0.04 1.75+0.05
−0.04

all processed material 2.19+0.07
−0.05 2.36+0.12

−0.09 2.00+0.13
−0.09 2.10+0.08

−0.06 2.25+0.08
−0.07
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Figure 3.4:The high-mass slope,α3, in dependency of massM , as implied by solving eq. (3.11) for the
values ofΥV ,n(M) at the accordingM and for a three-part power-law IMF (see eq. 3.5 and the equations
in the Appendix). The curves are for a 13 Gyr old SSP (upper panel) and for a 7 Gyr old SSP (lower
panel). The different styles of the curves correspond to different assumptions on how much processed
matter (with very highM/LV ratio) besides WDs is retained by the UCDs (from the bottom tothe top
curves in each panel): no remnants of massive stars; 20 per cent of the remnants of massive stars; all
remnants of massive stars; all material processed by burnt-out stars. Two lines of the same style indicate
different assumptions for the upper mass limit of the IMF forthe same assumption on the matter retained
in the UCDs:100 M⊙ (lower line) and150 M⊙ (upper line). The dashed horizontal lines indicate in
each panel the canonical high-mass IMF index,α3 = 2.3. In this Figure, the remnants of stars with
m > 25M⊙ are assumed to have masses of 10 per cent of the initial mass oftheir progenitors whereever
this is relevant.

It was shown in Section 3.4.1 that there is no hard evidence for a correlation of theΥV ,n

of the UCDs with their mass if UCDs and GCs are separate populations. For this case, it is
therefore a useful and good assumption that all UCDs have thesameΥV ,n and that deviations
from it are due to statistical scatter. Thus, we estimate theΥV ,n of the UCDs and the uncertainty
of this value by performing a least-squares fit of eq. (3.13) with A = 0 to theΥV ,n of the UCDs.
The best-fitting parameterB then equals to the numerical value of the mean of theΥV ,n of the
individual UCDs,ΥUCD, and is(4.75 ± 0.34) M⊙ L−1

⊙,V if the age of the UCDs is assumed to
be 7 Gyr and(4.97 ± 0.37) M⊙ L−1

⊙,V if the age of the UCDs is assumed to be 13 Gyr.ΥUCD

is shown as the horizontal dotted line in Fig. 3.1 and as the vertical dotted line in Fig. 3.2. The
uncertainties ofΥUCD are indicated as shaded areas in these figures.

A given value forΥUCD is taken to depend only onα3. This implies that all UCDs have
formed with the same (top-heavy) IMF, which can be considered as characteristic for very
dense star-forming regions. Note however that even if this assumption is consistent with the
available data, it is a simplification because theΥV ,n of the UCDs areexpectedto scatter due to
age differences. Furthermore, the suggestion that the IMF is top-heavy in UCDs in comparison
to less massive stellar systems is based on the notion that the process of star formation (and thus
the IMF) depends on the physical conditions under which it takes place. This implies that there
can be as many IMFs as physical conditions under which star formation takes place.

ΥUCD can be translated into different expected values forα3, depending on the assumed
remnant population in the UCDs. The upper limit to the expectedα3 can be obtained from the
lower bound of the uncertainty ofΥUCD, and the lower limit to the expectedα3 can be obtained
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from the upper bound of the uncertainty ofΥUCD. The values forα3 are listed in Tab. 3.3.
Mieske et al. (2006a) found that the UCDs in Fornax and the ones in Virgo are (despite their

similarity) distinct in their properties, which could indicate a different origin or age for the two
groups. Among these distinctive properties is the averageΥV ,n of the UCDs, which is clearly
higher for the ones in the Virgo Cluster. It is therefore worthwhile to relax the assumption of a
commonΥV ,n for all UCDs and assume a commonΥV ,n only for the UCDs that are bound to
the same larger structure (i.e. the Fornax Cluster, the Virgo Cluster or Centaurus A), although
the smaller size of the subsamples decreases their statistical significance. Estimates forα3 for
the UCDs in the different subsamples can then be obtained in the same way as for the whole
sample. The results are given in Tab. 3.3.

Note that the values obtained forα3 for the UCDs in Fornax have large uncertainties if they
are assumed to be 13 Gyr old. This is because in that caseΥUCD for them is quite close to the
ΥV ,n whereα3 asympotically approaches infinity. Consequentlyα3 is obtained from an interval
in ΥV ,n where small variations ofΥV ,n imply large changes inα3. This applies in particular to
the upper limit toα3. Thus, the numbers in question are only of use for giving lower bounds for
the high-mass IMF slope, which are obtained at aΥV ,n where the dependency ofα3 onΥV ,n is
more moderate.

Also note the strong impact of S999 with its extremeΥV ,n (upper-most data-point in Figs. 3.1
and 3.3)on theα3 derived for the UCDs in the Virgo Cluster. The relevance of this particular
cluster is evidently much smaller if the whole sample of UCDsis considered. The main results
presented in this paper are therefore either not or only mildly affected by this stellar system. In
particular, S999 plays no role for deciding whether there isa significant correlation between the
ΥV ,n of the UCDs and their mass. Such an outlier may be due to recently induced tidal effects
(Fellhauer & Kroupa 2006).

GCs and UCDs as a single population

Contrary to the case that UCDs and GCs constitute different populations, the slopeA is highly
significant if UCDs and GCs are a single population. A relation betweenα3 and mass,α3(M),
can be established by solving eq. (3.11) for the differentΥV ,n(M) corresponding to different
masses. The results for this are plotted in Fig. 3.4. The factthat in the mass range of GCs,
ΥV ,n(M) almost coincides with the model predictions for a SSP with the canonical IMF for an
assumed age of 7 Gyr is purely coincidental. Independent estimates on the ages of MWGCs
(which are the bulk of the GCs in the sample used here) are closer to 13 Gyr than to 7 Gyr
for most of them (VandenBerg 2000; Salaris & Weiss 2002). However, if an age of 13 Gyr is
assumed for the GCs and UCDs,α3(M) is not defined forM > 3 × 106 M⊙ because in this
mass rangeΥV ,n(M) is below the minimum value for which eq. (3.11) is solvable.

This finding implies that the present-day stellar mass function of the corresponding stellar
systems has to be poorer in very low-mass stars than the canonical IMF, since theirΥV ,n cannot
be realised in any case if the mass function of their main sequence stars equals the canonical
IMF. There are different processes which tend to drive very low-mass stars out of a star-cluster.
One of them is dynamical evolution (cf. Kruijssen 2008 and Kruijssen & Lamers 2008). It
acts faster the less massive a star cluster is. However, the expected effect on theM/LV ratio is
only small according to Baumgardt & Makino (2003), their figure 14 and Borch et al. (2007).
More relevant would be gas expulsion if the GCs were initially mass-segregated (Marks et al.
2008). In other words, if GCs have formed with the canonical IMF, their stellar mass functions
must have changed with time (see also Dabringhausen et al. 2008 and Mieske et al. 2008). The
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dependency of the stellar mass function on the cluster concentration (De Marchi et al. 2007)
indeed suggests this to be the case. Consequently, the assumption of a stellar population only
altered by stellar evolution would only be valid for stellarsystems withM ? 3× 106 M⊙.

For a parametrisation ofα3 as a function of the mass of a stellar system we suggest

α3(M) =

[

log10

(

0.85(10−6M/M⊙)
2

(10−6M/M⊙)− 1

)]−1

+ 0.42, (3.14)

for M ≥ 2 × 106M⊙, andα3(M) = 2.3 for M < 2 × 106M⊙, whereM is measured inM⊙.
α3(M) thus returns the canonical IMF for GCs, which is motivated with the invariance of the
IMF in resolved stellar populations (Kroupa 2001, 2008; Marks et al. 2008). In the range of
massive UCDs, which are the least vulnerable to dynamical evolution,α3(M) is chosen to be
roughly the mean ofα3(M) for assumed ages of 7 Gyr and 13 Gyr at a NS and BH retention rate
of 20 per cent. Note that the change ofα3(M) in this mass range is only moderate for the two
extreme assumptions on the age of the UCDs. In the intermediate mass range from2× 106 M⊙

to ≈ 107 M⊙, α3(M) is an (in principle arbitrary) interpolation from the low-mass regime to
the very high-mass regime.α3(M) is plotted in Fig. 3.5.

3.5 Discussion

3.5.1 Stability of the UCDs

Baumgardt et al. (2008) show that for a star cluster with the canonical IMF the combined energy
input from all SNe exceeds the binding energy of star clusters with initial masses up to≈
107 M⊙ (cf. their fig. 3)2. This implies that star clusters loose not only most of the matter bound
in massive stars, but also their primordial gas in less than40 Myr (≈ 40 Myr is the time it takes
until all massive stars in a SSP have evolved, cf. the grids bySchaller et al. 1992). Although
many UCDs certainly had initial masses higher than107 M⊙, they also had many more massive
stars that evolved into SNe if they formed with IMFs as top-heavy as suggested in this paper.
In this case, they would loose an even larger fraction of their initial mass during their early
evolution than less massive stellar systems, because of thelarge mass-faction bound in massive
stars. For instance, 23.0 per cent of the total initial stellar mass of a star cluster is in stars more
massive than8 M⊙ if α3 = 2.3. This value rises to 73.0 per cent forα3 = 1.57 (which is the
high-mass IMF slope suggested in Tab. 3.3 for 13 Gyr old UCDs that retain 20 per cent of their
NSs and BHs withmBH = 0.1m) and to 93.3 per cent forα3 = 1.04 (which is the corresponding
value for 7 Gyr old UCDs).

Observations of star-forming regions in the Milky Way show that only a fraction of available
gas is actually converted into stars (e.g. Lada & Lada 2003).Assuming that this left-over gas
is swept out of young star clusters by the radiation and evolution of massive stars, the total
mass-loss of the stellar system until the end of massive-star evolution can be written as

Minit −Mfinal = Minit[1− SFE(1− x)], (3.15)

whereMinit andMfinal are the initial mass of the stellar system and the final mass ofthe stellar
system respectively (stars and gas), SFE is star formation efficiency of the stellar system andx

2Star clusters less massive than107 M⊙ can survive this energy input because the energy from the SNeis not
distributed uniformly on all matter in the cluster.
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Figure 3.5:The parametrisation of the high mass IMF slope,α3, as a function of the mass of a stellar
system,M , as given by eq. (3.14). It is indicated by the solid line. Also shown areα3(M) as found from
eq. (3.11) using eq. (3.13) assuming a NS and BH retention rate of 20 per cent and BHs having 10 per
cent of the initial mass of their progenitor stars. The upperdashed line corresponds to an estimated age
of 13 Gyr and the lower dashed line to an estimated age of 7 Gyr for the UCDs.

the mass-fraction of stars withm > 8 M⊙. It is thereby assumed in eq. (3.15) that the total mass
of the remnants remaining in the stellar system is negligible compared to the total initial mass
of all stars withm > 8M⊙. This approximation is well fulfilled for all cases where themass
of the remnants of massive stars is rather small or only a few of them remain inside the stellar
system. (These cases correspond to our models 1, 2, 3 and 4 forthe composition of the UCDs;
see Section 3.3.1. That is why the IMFs estimated for the UCDsturn out to be so flat if one
of these models is assumed for their composition, even if thedifference between the predicted
M/L ratio and the observedM/L ratio is not very large.) Assuming that the star formation
efficiency in a UCD is 0.4, the mass-loss within the first40 Myr is, according to eq. 3.15, 69.2
per cent of the total initial mass (stellar and gas) if the high-mass IMF slope of the UCD was
α3 = 2.3 (canonical IMF), but 89.2 per cent forα3 = 1.57 and 97.3 per cent forα3 = 1.04.
(Note that a SFE of 0.4 would be a high value for an open cluster, but not necessarily for a
UCD, cf. Murray 2009. Note also that we ignore the probably significant loss of stars from the
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UCD due to the unbinding effect from gas expulsion. We returnto this in a follow-up paper.)
The behaviour of a stellar system that loses a large fractionof its initial mass very much

depends on the rate of the mass-loss. This behaviour can be characterised by two limiting
cases:

• Rapid mass-loss (i.e. the mass-loss takes place on a timescale shorter or comparable
to the crossing time): Arguing with the virial theorem, Hills (1980) finds from analytic
estimates that a star cluster dissolves if it loses more than50 per cent of its initial mass
instantaneously. UsingN-body integrations, Boily & Kroupa (2003) and Fellhauer &
Kroupa (2005b) show that the survival of a star cluster is also dependent on the density
profile of the star cluster and the velocity distribution of its stars, but a sudden loss of
more than 67 per cent of its initial mass is critical in any case.

• Adiabatic mass-loss (i.e. the mass-loss is slow enough for the stellar system to stay near
virial equilibrium at all times): Adiabatic mass-loss doesnot unbind the remainder of the
star cluster, but inflates it. The change in radius is

rfinal
rinit

=
Minit

Mfinal
, (3.16)

whererinit andMinit are the radius and mass, respectively, of the stellar systemat the
beginning of mass-loss andrfinal andMfinal the according parameters at the end of mass-
loss (Kroupa 2008).

Important numbers for deciding whether the mass-loss from UCDs is rapid or adiabatic are
their crossing times,tcr, which is defined astcr = 2rh/σ, with rh being the 3D half-mass radius
andσ being the 3D velocity dispersion of the stellar system (Kroupa 2008). Furthermore the
ratios between half-mass radius and tidal radius,rh/rt, decide upon survival of the stellar sys-
tem. The data published in Evstigneeva et al. (2007) and Hilker et al. (2007) for the properties
of UCDs as they are observed today implyrh/rt well below 0.1 for most of them (sometimes
as low as 0.01) andtcr of the order of 1 Myr. This suggests a timespan of the order of40 tcr for
the timescale for SN-driven mass-loss.

In the grid ofN-body simulations performed by Baumgardt & Kroupa (2007), star-clusters
are predicted to dissolve if they loose 95 per cent of their initial mass, even for the most mod-
erate tidal fields (rh/rt = 0.01) and longest duration for mass-loss (10tcr) they consider. How-
ever, if the stellar system looses only 90 per cent of its initial mass on that timescale, the stellar
system may not completely dissolve as long as the tidal field is weak. The mass fraction of
the remnant of the star cluster that continues to be gravitationally bound after it has returned to
virial equilibrium is then 0.65 forrh/rt = 0.01 and 0.35 forrh/rt = 0.033, while the half-mass
radius increases to approximately ten times its initial value in both cases. This implies that the
stellar density in those systems decreases to less than10−3 times its initial value. If also the
gas leaving intermediate mass stars as they evolve into WDs is driven out of the UCDs (e.g.
through type I SNe), the mass of the UCDs is decreased furtherto 0.57 of its original value
for α3 = 1.57 and to 0.40 of its original value forα3 = 1.04. Since this mass-loss would be
adiabatic, the according change in radius can be calculatedusing eq. (3.16) and is a factor of
1.75 forα3 = 1.57 and a factor of 2.48 forα3 = 1.04. The density would thus be further
decreased by a factor> 10. At present, the UCDs typically have mean central densitiesfrom
102 to 103M⊙ pc−3 (fig. 4 in Dabringhausen2008). A mass-loss of 90 per cent of the initial
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mass (stellar and gas) over the first≈ 40 tcr and subsequent adiabatic mass-loss through the
evolution of intermediate-mass stars would therefore suggest initial central densities of at least
106 to 107 M⊙ pc−3. This corresponds to3.9 × 105 to 3.9 × 106 stars perpc3 for α3 = 1.57
and8.4 × 104 to 8.4 × 105 stars perpc3 for α3 = 1.04, the fraction of stars more massive than
8 M⊙ among them being 5.5 per cent forα3 = 1.57 and 23.7 per cent forα3 = 1.04. Such
systems would thus have had extensions similar to GCs (i.e.rh of a few pc). Typical total initial
stellar masses would be some107 M⊙, implying a population of≈ 106 stars withm ≥ 8 M⊙

for α3 = 1.57 as well as forα3 = 1.04.
These numbers underline the extreme nature of UCDs. Their stability seems questionable

if they would have formed with a top-heavy IMF and their contemporary structural parameters.
However, the smaller extensions and higher masses the UCDs must have had before evolution-
ary processes set in imply that the conditions for adiabaticmass-loss were fulfilled much better
at that time. However, also if mass-loss from a UCD with a top-heavy IMF was adiabatic at all
times, and its stability was therefore not threatened, eq. 3.15 still implies an enormous inflation
and decrease of density for it.

The observation of UCDs today therefore does not contradicta formation scenario with a
very top-heavy IMF for them. A more detailed, numerical study of this issue will be provided
in a follow-up paper.

3.5.2 The Star formation rate in UCDs at their formation

The notion that UCDs might be the most massive star clusters implies that they formed from
a collapsing molecular cloud. Star formation within the cloud is thought to set in as soon as a
certain density is reached, which is according to Kawamura et al. (1998) at a column density in
excess of1.6 × 1021N(H2) cm

−2. Defining the size,R, of a cloud as(S/π)0.5 whereS is the
total cloud surface area, gives typical sizes of3 pc for the clouds in the sample of Kawamura
et al. (1998). This corresponds to a mean density,ρ, of ≈ 4M⊙ pc−3 as the criterion for the
onset of star formation. It then proceeds rapidly and is completed within a timescale of the order
of a free fall time (Elmegreen 2000; Hartmann et al. 2001). For spherically symmetric matter
distributions, the free fall time,tff , is given astff = (3π/32Gρ)0.5, whereG is the gravitational
constant. Note the independence oftff on the total mass. The assumption of spherical symmetry
for star-forming gas clouds thus leads to a time scale of 4 Myron which star formation takes
place, whereby the bulk of the stars may form on an even shorter time scale (for instance, 80
per cent within 1 Myr in the Orion Nebula Cluster, Prosser et al. 1994). If applied to the UCDs,
this suggests that their stellar populations formed with star formation rates of≈ 10 M⊙ yr−1 to
≈ 100 M⊙ yr−1, depending on the mass of the UCD. Given that most if not all stars are formed
in star clusters (Lada & Lada 2003) and that the time scale forstar cluster formation appears to
be independent of the mass of the cluster, these star formation rates would be the highest ever
to be found in a single star formation event.

3.6 Summary and Conclusions

It was shown in previous papers that the dynamicalM/LV ratios,ΥV , of compact stellar sys-
tems more massive than2× 106 M⊙ are not consistent with the predictions from simple stellar
population models, if the canonical IMF is assumed for star formation in them. Out of the
possible explanations for this result (top-heavy IMF, bottom-heavy IMF, dark matter, inaccu-
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racy of the SSP models), the notion of a top-heavy initial stellar mass function (IMF) in dense
star-forming regions seems especially attractive.

With this motivation, we quantify by how much the IMF in a sample of massive compact
stellar systems (referred to as UCDs) has to deviate from thecanonical IMF in the intermediate
and high mass part for the modelledΥV to agree with the observed ones. The model constructed
for this accounts for the different metallicities of the UCDs. Several combinations of assump-
tions concerning age (7 Gyr or 13 Gyr) and the amount of processed material with very high
ΥV retained by the UCDs besides white dwarfs (no remnants of massive stars; 20 per cent of
the remnants of massive stars; all remnants of massive stars; all material processed by burnt-out
stars) are considered. The IMF of the UCDs is taken to be a three-part power-law that equals
the canonical IMF below an initial stellar mass of1 M⊙. The exact upper mass limit of the IMF
(mmax = 100 M⊙ ormmax = 150 M⊙) turns out to have a negligible impact on the results.

Assuming that all UCDs have the same normalisedM/L ratio (which is justifiable consid-
ering the uncertainties of theirΥV ) and that the processed material retained by the UCDs are all
white dwarfs and 20 per cent of the remnants of massive stars,our model suggests a high-mass
IMF slope,α3, of≈ 1.6 if the UCDs are 13 Gyr old (i.e. almost as old as the Universe) or ≈ 1.0
if the UCDs are 7 Gyr old. If the UCDs were assumed to have formed with the canonical IMF,
their ΥV would only be explainable if they contain significant amounts of non-baryonic dark
matter or dense interstellar gas. Note that there would needto be some mechanism that inhibits
on-going star formation in this case.

TheΥV of the UCDs in the Fornax cluster tend to be lower than the onesof the other UCDs.
If the Fornax UCDs are assumed to be 13 Gyr old they have a normal ΥV and consequently not
at a top-heavy IMF. Assuming that the discrepancy between the prediction of SSP models with
the canonical IMF and the observedM/LV ratios of the Fornax UCDs as high as for the Virgo
UCDs suggests an ages around 7 Gyr for the Fornax UCDs if the Virgo UCDs are taken to be
13 Gyr old (Mieske et al. 2008).

The dependency ofα3 on the normalisedM/LV ratio,ΥV ,n, established in eq. (3.11), can
be translated into a dependency ofα3 on the mass of the stellar system,M . This is done
using the increase ofΥV ,n with M formulated in eq. 3.13 and shown in Fig. 3.3. A possible
parametrisation of this dependency is given in eq. (3.14) and plotted in Fig. 3.5.

The mass-loss due to the evolution of massive stars may reach90 per cent of the initial
stellar mass of a star cluster for very top-heavy IMFs, even if primordial gas expulsion is not
considered. The survival of the UCDs seems not to be threatened by the mass loss implied by
the evolution of the stars alone, as this mass loss would be adiabatic. However, the radiation
and evolution of massive stars also drives the expulsion of the primordial gas. The timescale on
which this process takes place is critical for the survival of the UCD. This is an issue deserving
further study. In any case, the results in Sections 3.5.1 and3.5.2 suggest that UCDs formed
with likely central stellar densities of106 to 107 M⊙ pc−3 and possible star formation rates of
≈ 10 M⊙ yr−1 to ≈ 100 M⊙ yr−1. These are among the most extreme sites of star formation.
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Chapter 4

Mass loss and expansion of ultra compact
dwarf galaxies through gas expulsion and
stellar evolution for top-heavy stellar
initial mass functions

J. Dabringhausen, M. Fellhauer, P. Kroupa, 2010,MNRAS, 403, 1054

Abstract:

The dynamicalV -band mass-to-light ratios of ultra compact dwarf galaxies(UCDs) are higher than
predicted by simple stellar population models with the canonical stellar initial mass function (IMF). One
way to explain this finding is a top-heavy IMF, so that the unseen mass is provided by additional remnants
of high-mass stars. A possible explanation for why the IMF inUCDs could be top-heavy while this is not
the case in less massive stellar systems is that encounters between proto-stars and stars become probable
in forming massive systems. However, the required number ofadditional stellar remnants proves to be
rather high, which raises the question of how their progenitors would affect the early evolution of a UCD.
We have therefore calculated the first 200 Myr of the evolution of the UCDs, using the particle-mesh code
Superbox. It is assumed that the stellar populations of UCDswere created in an initial starburst, which
implies heavy mass loss during the following≈ 40 Myr due to primordial gas expulsion and supernova
explosions. This mass loss is modelled by reducing the mass of the particles according to tabulated mass
loss histories which account for different IMFs, star formation efficiencies (SFEs), heating efficiencies
(HEs), initial masses and initial extensions of the computed UCDs. For each combination of SFE and
HE we find objects that roughly resemble UCDs at the end of the simulation. For low SFEs, the IMF
would have to be steeper than in the case of very high SFEs for the models not to expand too much.
However, the main conclusion is that the existence of UCDs does not contradict the notion that their
stellar populations formed rapidly and with a top-heavy IMF. We find tentative evidence that the UCDs
may have had densities as high as108M⊙ pc−3 at birth. This will have to be confirmed by follow-up
modelling.
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4.1 Introduction

Ultra compact dwarf galaxies (UCDs) are stellar systems with total stellar masses between106

and108M⊙ and projected half-light radii of> 50 pc (Hilker et al. 1999; Drinkwater et al. 2000,
2003; Phillipps et al. 2001; Haşegan et al. 2005). They can be considered to be galaxies because
of their high median two-body relaxation times,trh, which are at least of the order of a Hubble
time, τH, while star clusters, including globular clusters (GCs), havetrh < τH (Kroupa 1998;
Dabringhausen et al. 2008).

One of the most intriguing properties of UCDs are their generally high dynamicalM/LV

ratios (Dabringhausen et al. 2008; Mieske et al. 2008). Different explanations have been sug-
gested for this finding, such as the presence of non-baryoniccold dark matter (CDM) in them
(e.g. Haşegan et al. 2005 and Goerdt et al. 2008) or the disturbance of UCDs by the tidal field
of a massive galaxy (Fellhauer & Kroupa 2006). However, if dwarf spheroidal galaxies (dSphs)
are indeed DM dominated1 and if UCDs are located at the centre of the same type of haloes
as dSphs, the DM-density in UCDs would be two orders of magnitude too low to explain their
elevatedM/LV ratios, although adiabatic contraction (Blumenthal et al.1986) may alleviate
this problem (Murray 2009). Tidal distortion can explain the highM/LV ratios of only a few
UCDs out of a larger sample, as it requires quite specific orbital parameters in order to have an
observable effect. On the other hand, the massive star cluster W3 in the merger remnant galaxy
NGC 7252 has a mass and a projected half-light radius typicalfor a UCD, while its age sug-
gests that it formed during the merger of the progenitors of NGC 7252 (Maraston et al. 2004).
Fellhauer & Kroupa (2005a) have shown that star cluster complexes as observed in interact-
ing systems like the Antennae (NGC 4038 and NGC 4039) are likely to evolve into an object
similar to W3 on the required time-scale, but stellar systems originating from tidal interactions
would essentially be CDM-free (Barnes & Hernquist 1992b). In summary, an unusual stellar
initial mass function (IMF) appears to be an attractive and physically plausible alternative for
explaining theM/L ratios of UCDs.

The IMF is a function defining the mass spectrum of stars born in a single star-formation
event. If age, metallicity and IMF of a stellar population are known, itsM/LV ratio can be
calculated. For a given metallicity and a high enough age, a high M/LV ratio of a stellar
population would either indicate an IMF with very many low-mass stars (bottom-heavy IMF)
or an IMF with very many high-mass stars (top-heavy IMF). In the case of a top-heavy IMF, the
highM/LV of the stellar population is the consequence of a high numberof stellar remnants,
which contribute mass, but almost noV -band luminosity. As an explanation for theM/LV

ratios in UCDs, a bottom-heavy IMF has been discussed in Mieske & Kroupa (2008), while a
top-heavy IMF has been discussed in Murray (2009) and Dabringhausen et al. (2009).

Proposing a variability of the IMF might seem daring at first sight, because so far surveys
of stars have failed in providing supportive evidence for this notion (Kroupa 2001, 2002; Ku-
mar et al. 2008). This finding implies an invariant, universal IMF, which is referred to as the

1There is an ongoing debate on the origin of the dSphs around the Milky Way. Their disk-like distribution has
a natural explanation if the dSphs are ancient tidal dwarf galaxies instead of DM-dominated primordial galaxies
(Metz et al. 2009 and references therein). The highM/L ratios derived for them would in this scenario either be
the consequence of the assumption of virial equilibrium notholding for them (Kroupa 1997) or would imply that
Newtonian gravity cannot be applied in the limit of very weakfields. A tidal origin of dSphs may suggest the same
for dwarf elliptical galaxies, since Kormendy (1985) argues that these two populations may actually be the same
type of galaxies.
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canonical IMF. It can be written as

ξc(m∗) = kkim
−αi

∗
, (4.1)

with

α1 = 1.3, k1 = 1, 0.1 ≤ m∗

M⊙
< 0.5,

α2 = 2.3, k2 = k1 0.5
α2−α1 = 0.5, 0.5 ≤ m∗

M⊙
≤ mmax,

wherem∗ is the initial stellar mass,

mmax is the upper mass limit of the IMF, the factorski ensure that the IMF is continuous where
the power changes andk is a normalisation constant (Kroupa 2008). The subscript c identifies
the canonical IMF.ξc(m∗) equals 0 ifm∗ < 0.1M⊙ or m∗ > mmax. For stellar systems as
massive as the UCDs,mmax is equal to the maximum mass for stars, which is close to150M⊙

(Weidner & Kroupa 2004; Oey & Clarke 2005; Figer 2005). For any IMF, dN = ξ(m∗)dm∗ is
the number of born stars in the mass interval[m∗, m∗+ dm∗]. In the present paper, the constant
k is chosen such that

∫ mmax

0.1

ξ(m∗)m∗ dm∗ = 1M⊙. (4.2)

Using this normalisation,

N =

∫ mmax

0.1

ξ(m∗) dm∗ (4.3)

is formally the number of stars whose total mass is1M⊙. Multiplying equation 4.3 by the factor
M∗,0/M⊙ therefore equals the initial number of stars in a star cluster with an initial stellar mass
of M∗,0 and the mean stellar mass,m, equals equation (4.2) divided by equation (4.3).

Note that there are limitations to the determination of the IMF from star counts. For instance,
massive stars are short-lived, which is why this approach can only give the high-mass IMF for
recent star formation events. Low-mass stars on the other hand can be almost as old as the
Universe, but they can only be detected very locally.

The existence of a universal law for the stellar mass spectrum would indeed be surprising
from a theoretical point of view, since models for star-formation predict that the stellar mass
spectrum depends on the conditions under which star formation takes place (e.g. Adams &
Fatuzzo 1996, Murray & Lin 1996, Larson 1998 and Clark et al. 2007). Moreover, a top-
heavy IMF is in fact required in a number of astrophysical models. This includes, besides the
model proposed in Dabringhausen et al. (2009) for the UCDs, also models for globular clusters
(GCs) (D’Antona & Caloi 2004; Prantzos & Charbonnel 2006; Decressin et al. 2007)2, distant
galaxies (Baugh et al. 2005; Nagashima et al. 2005; van Dokkum 2008; Chary 2008) and the
Galactic centre (et al. 2007). The motivations for the top-heaviness of the IMF in these models
include a higher ambient temperature at the time when the observed population formed and
violent star formation in particularly dense gas. These conditions were likely to be given in the
young UCDs, since the universe was much younger when they formed (i.e. the temperature
of the cosmic microwave background was higher). Furthermore, theα-enrichment found by
Evstigneeva et al. (2007) in most of the Virgo-UCDs suggestsrapid star-formation.

However, if stellar remnants are to account for the unseen mass in the UCDs, the top-
heaviness of the IMF would have to be very pronounced. Introducing an IMF that equals the

2If UCDs are indeed the most massive GCs, as proposed for instance in Mieske et al. (2002), Mieske et al.
(2004) and Forbes et al. (2008), it is evident that a top-heavy IMF in GCs suggests the same for UCDs. Note
however that residual gas expulsion from mass-segregated clusters alleviates the need of a top-heavy IMF in GCs
(Decressin et al. 2008).
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canonical IMF below1M⊙ but has a different slope,α, for m > 1M⊙, Dabringhausen et al.
(2009) suggest1.0 < α < 1.6, depending on the age of the UCDs. These high-mass IMF
slopes imply that the clear majority of the total initial stellar mass was locked up in stars more
massive than8M⊙, in contrast to the case with the canonical IMF. These stars have a very high
luminosity and evolve rapidly, which makes their abundancea key issue for the evolution of a
stellar system.
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Table 4.1:The initial parameters and some derived quantities for the UCD-models. The last two lines show the models for newly formed ONC-type star
clusters from Kroupa et al. (2001) for comparison. The columns denote the identification number of the model, the initialPlummer-radiusRpl,0, its total
initial massMpl,0, its stellar initial massM∗,0, the star formation efficiency (SFE= M0,∗/Mpl,0), the heating efficiency, the initial characteristic crossing-
timeTcr, the initial characteristic three-dimensional velocity dispersionσ3D,0, the initial central mass density and an estimate for the time-scale on which a
given proto-star encounters a star during the formation of the UCD (see Section 4.2.1).

model Rpl,0 Mpl,0 M∗,0 SFE HE Tcr σ3D,0 ρpl,0,c tenc
[pc] [M⊙] [M ⊙] [Myr] [km s−1] [106M⊙ pc−3] Myr

m7 r3 s1 h1 3.0 1.0× 107 1.0× 107 1.0 1.0 0.153 65.0 0.088 0.23
m7 r5 s1 h1 5.0 1.0× 107 1.0× 107 1.0 1.0 0.330 50.3 0.019 1.4
m8 r5 s1 h1 5.0 1.0× 108 1.0× 108 1.0 1.0 0.104 159.0 0.191 0.043
m7 r3 s04 h1 3.0 2.5× 107 1.0× 107 0.4 1.0 0.097 102.8 0.221 0.15
m7 r5 s04 h1 5.0 2.5× 107 1.0× 107 0.4 1.0 0.209 79.6 0.048 0.87
m8 r5 s04 h1 5.0 2.5× 108 1.0× 108 0.4 1.0 0.066 251.6 0.477 0.027
m7 r3 s04 h003 3.0 2.5× 107 1.0× 107 0.4 0.03 0.097 102.8 0.221 0.15
m7 r5 s04 h003 5.0 2.5× 107 1.0× 107 0.4 0.03 0.209 79.6 0.048 0.87
m8 r5 s04 h003 5.0 2.5× 108 1.0× 108 0.4 0.03 0.066 251.6 0.477 0.027
ONC A 0.345 1.12× 104 3.75× 103 0.33 − 0.23 6.8 0.065 9.4
ONC B 0.158 1.25× 104 4.17× 103 0.33 − 0.066 10.8 0.759 0.52



4.2. SETUP 107

If UCDs indeed are the most massive star clusters, their stellar populations would essentially
have formed in a single burst over a time-span of≈ 1Myr (cf. Elmegreen 2000; Hartmann et al.
2001), meaning that their stars evolve almost simultaneously. Considering the high energies
involved in massive star evolution, this implies that UCDs with very top-heavy IMFs (with
high-mass IMF-slopes1.0 < α < 1.6, see Dabringhausen et al. (2009)) could have lost 90 per
cent of their initial stellar mass over a time span of≈ 40 Myr (which is the lifetime of the least
massive stars that evolve into SNe, cf. the stellar evolutionary grid by Schaller et al. 1992).
If there was residual gas (i.e. gas that was not used up in starformation) in them, which was
swept out during this phase of violent star cluster evolution, the mass loss would have been even
more pronounced. Such an extensive mass loss shapes the later appearance of a stellar system
and may even be critical for its survival, if it happens on a short enough time scale (Boily &
Kroupa 2003; Fellhauer & Kroupa 2005a). However, Dabringhausen et al. (2009) argued from
structural parameters that mass loss on a time scale of 40 Myrfor UCDs is probably in the
adiabatic regime and therefore inflates them, but does not threaten to dissolve them. It is clear
that a numerical study of this issue, including a more detailed treatment of mass loss through
stellar evolution and residual gas expulsion, is necessaryto confirm these arguments. It is
provided in this paper.

4.2 Setup

4.2.1 Initial conditions

In the present paper, UCDs are assumed to have formed in the monolithic collapse of a frag-
menting gas cloud, and thus in contrast to the model for UCD-formation proposed in Fellhauer
& Kroupa (2002a) and Fellhauer & Kroupa (2005b), i.e. the merger of a star cluster complex
into a single object (see also Kroupa 1998). This is not to saythat the merging of star clusters
is completely irrelevant for UCD formation. For instance, the densest part at the centre a proto-
UCD could undergo monolithic collapse, while in the outskirts of the proto-UCD a multitude of
star clusters is formed, which eventually merge. However, the apparent universality of the IMF
in star clusters below the mass-scale of a UCD suggests that aUCD could not have a different
IMF, if it is exclusively build up from such systems.

The adopted formation scenario for UCDs thus suggests that they are the most massive star
clusters, which implies that their stellar population formed rapidly in≈ 1 Myr (cf. Elmegreen
2000; Hartmann et al. 2001). Theα-enrichment of the UCDs in Virgo reported by Evstigneeva
et al. (2007) indeed suggests a short time scale for star formation, although for UCDs in other
environments, thisα-enrichment is less pronounced or even absent (cf. fig. 8 in Mieske et al.
2007). For simplicity, we assume that the stellar populations of UCDs have formed instanta-
neously instead of over a very short time-span. This is a conservative assumption for the present
study, since it focusses on the stability of UCDs. A stellar population that is built up over an
extended time-span also releases the total energy it produces (through stellar processes) over a
longer time-span. In consequence, the mass loss from UCDs, which is powered by the energy
produced by the stellar population, will be slower and therefore less threatening for the stability
of the UCD.
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Structural parameters

The UCD-models are set up with their mass distributed according to the Plummer-model (Plum-
mer 1911). The Plummer-model is the simplest plausible and self-consistent model for a star
cluster (Binney & Tremaine 1987; Heggie & Hut 2003). The advantage of using Plummer-
models is that all major quantities are analytically accessible.

We choose nine different combinations of initial stellar mass,M∗,0, initial Plummer-radius,
Rpl,0, star formations efficiencies (SFEs) and heating efficiencies (HEs) for the UCD-models.
The choices of the mentioned parameters are detailed below and the considered combinations
of them are listed in Table 4.1, together with some major quantities derived from them.

M∗,0 is chosen such in the models that a stellar mass of the order of106 to 107M⊙ remains
after the evolution of the massive stars has come to an end. This is the range in which the stellar
masses of the observed UCDs lie. The chosen values forRpl,0 are either 3 pc or 5 pc and thus
similar to the observed radii of GCs (eg. McLaughlin 2000 or Jordán A. et al. 2005). This
leads to initial central densities,ρpl,0,c, ranging from1.9 × 104M⊙ pc−3 to 4.8 × 105M⊙ pc−3

(Table 4.1). These values forρpl,0,c are similar to the ones that have been calculated for Galactic
open clusters, such as the Orion Nebula Cluster (ONC), whoseinitial parameters are discussed
in Kroupa et al. (2001). They consider models withρpl,0,c = 6.5 × 104M⊙ pc−3 or ρpl,0,c =
7.6 × 105M⊙ pc−3 for that star cluster, as can be calculated from the initial masses and half-
light radii given in their table 1. The models discussed hereare thus not extreme because of the
densities in their central regions, but because of the extension of this central region. This may
account for the proposed top-heaviness of the IMF in UCDs, see Section 4.2.1.

Embedded star clusters in the Milky way are thus less extended than the models discussed
in this paper (also see Lada & Lada 2003, their table 1). Note that also GCs were initially less
extended than the UCD-models discussed in this paper, unless they lost very little mass since
their formation. The reason why smallerRpl,i are not considered here are the extreme initial
central densities they would imply for the objects (for instance of the order of107 M⊙ pc−3 for
Rpl,0 = 1 pc; also see Fig. 4.14). Besides, the very small crossing timesof such objects would
make computations of the evolution very time-consuming while mass loss from them would
approach the adiabatic regime, where the behaviour of the cluster can be calculated analytically
with equation (4.17) below.

The actual values of the SFE and the HE are hard to quantify. Inorder to get an idea of how
these parameters would influence the early evolution of a UCD, vastly different and in some
cases extreme values for them are considered in this paper.

The SFE is defined as the fraction of the primordial gas that isconverted into stars during a
star-forming event within the cluster- or UCD-forming cloud core region. In the UCD-models, it
is taken to be 1 or 0.4, the latter value being approximately the upper limit of the SFEs reported
for open star clusters (Lada & Lada 2003). These high choicesfor the SFEs in UCDs are
motivated by the fact that it would be more difficult to expel the primordial gas from UCDs than
from open clusters because of the deep potential wells of UCDs (see also Elmegreen & Efremov
1997). It has even been suggested (e.g. in Elmegreen 1999 or Murray 2009) that all available
gas is turned into stars, if the forming stellar system is dense and massive enough. If indeed all
star clusters and UCDs form on the same time scale, the star formation rate must be higher in
UCDs than in any of the less massive stellar systems. Taking 1Myr as the characteristic time
scale for star formation in these systems, the average star formation rate in UCDs would be
10-100M⊙ yr−1 (Dabringhausen et al. 2009). Assuming UCDs are essentiallystar clusters and
that star formation is the more rapid the denser the primordial gas is, this could be understood
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Figure 4.1:The expected time until a proto-star collides with a star,tenc, in a forming UCD, assuming
that half of its total stellar population has already been formed (see Section 4.2.1 for details). The
estimatedtenc for the UCD-models, in which all gas is eventually convertedinto stars, are indicated
by the three (blue) points. The grey shaded area is wheretenc is below the approximate life-time of a
proto-star, which is assumed to be105 years. The solid lines show thetenc as a function ofρpl,0,c for
different constantMpl,0, starting from103 M⊙ and increasing by a factor of 10 downwards. The dotted
lines show thetenc as a function ofρpl,0,c for different constantRpl,0, with Rpl,0 being 0.1, 0.3, 0.5, 1, 3
and 5 pc from top to bottom.

if the primordial gas cloud forming a UCD is, compared to openstar clusters, compressed to a
higher density during its collapse.

The HE is defined as the fraction of the energy released by stellar processes that actually
drives gas out of a star-forming region instead of being radiated away. That is, the HE is the ratio
between the kinetic energy of the interstellar medium (ISM)expelled from the stellar system to
the total energy inserted into its ISM. The HEs in starburstshave been argued to be near 1 in
some studies (e.g. Chevalier & Clegg 1985), while others suggest that only a few percent of the
energy inserted into the ISM is turned in kinetic energy of gas leaving the stellar system (e.g.
Recchi et al. 2001; also see Melioli & de Gouveia Dal Pino 2004). For the present paper, HEs
of 1 and 0.03 are considered.

A major improvement compared to the rather arbitrary choiceof SFEs and HEs made here
would clearly be to estimate these parameters in self-consistent modelling of a collapsing gas
cloud large enough to form a UCD. This would also clarify how long it would actually take the
stellar population to form in such a system, but is currentlynot a computable option.

A possible influence of encounters on the IMF

If UCDs indeed formed with the initial conditions proposed here, the likeliness for close en-
counters between members of their emerging stellar populations (stars and proto-stars) would
be what sets them apart from ONC-like star clusters. This motivates why the IMF in UCDs
might be top-heavy, while this is not observed in star clusters like the ONC.

The case of a proto-star encountering a star is of particularinterest. A proto-star exists
over a time of≈ 105 yr until most of its mass has accreted onto the central core (Wuchterl
& Tscharnuter 2003) and is thus short-lived, compared to thecharacterisic time-scale for star-
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Figure 4.2:As Fig. (4.1), but for the UCD-models, where a star formationefficiency of 0.4 instead of
1 is assumed. While UCD-models shown here are assumed to havethe samestellar masses as the ones
shown in Fig. (4.1) theirtotal masses are higher, leading to higher velocity dispersions and thus shorter
tenc at the same stellar density. The meaning of the solid and the dotted lines is the same as in Fig. (4.1),
but the lowest constant value forMpl,0 chosen here is2.5 × 103 M⊙ and increasing by a factor of 10
downwards with every solid line. The open squares show models A and B for the initial states of ONC-
type star clusters from Kroupa et al. (2001), which have, compared to the UCD-models in this figure, a
slightly lower SFE of 0.33.

formation in a star cluster (≈ 1 Myr). It has however a radius,rproto, of the order of 100 AU for
essentially all stellar masses, since the dependency ofrproto on the mass of the proto-star is only
weak (cf. equation 4 in Goodwin et al. 2007). This makes an encounter of a proto-star with a
star quite likely, as soon as a considerable stellar population is already present.

To estimate a characteristic time-scale for such an encounter for the UCD-models listed in
Table 4.1, consider Plummer-spheres with the initial parameters from that table. Their density-
profiles are given as

ρ(R) =
3Mpl,0

4πR3
pl,0

[

1 +

(

R

Rpl,0

)2
]−

5

2

(4.4)

(equation 8.51 in Kroupa 2008), and thus their centralstellar densities at the time when half of
their stellar populations have formed can be estimated as

ρpl,∗,c =
3M∗,0

8πR3
pl,0

. (4.5)

This density implies a volume that contains one star on average,V∗. It can be written as

V∗ =
m

ρpl,∗,c
, (4.6)

wherem is the average stellar mass. The time-dependent volume through which a proto-star in
the central region has travelled due to its motion can be written as

V (t) = πr2proto σ3D,0,c t, (4.7)
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whereσ3D,0,c is thecentral3D velocity dispersion, which is

σ3D,0,c =

√

GMpl,0

2Rpl,0
, (4.8)

whereG is the gravitational constant (cf. equation 8.59 in Kroupa 2008). The values calculated
from equation (4.8) for the UCD-models in this paper are an order of magnitude higher than
in the models for the initial states of ONC-type star clusters from Kroupa et al. (2001), while
their central densities are essentially the same (see Table4.1). The timet = tenc by which a
proto-star is to be expected to have encountered a star can becalculated be settingV (t) = V∗

and solving fort. Thus,

tenc =
m

πr2proto ρpl,∗,c σ3D,0,c

. (4.9)

Assuming that a top-heavy IMF results from an canonical IMF by the collisions of proto-stars
with stars,m = 0.65 M⊙ (which is the average stellar mass for a canonical IMF, see Table 4.2),
andrproto = 100 AU = 4.85 × 10−4 pc are reasonable choices for emerging open star clusters
and emerging UCDs alike. This implies that the IMF would be canonical until it is altered under
the influence of encounters between the members of an emerging stellar population and would
stay canonical in stellar systems where such encounters arerare at all times.

Note that the derivation of equation (4.9) implicitly assumes that the cross section for an
encounter of a proto-star with a star is the geometrical cross section,Ageo = πr2proto, whereas
the actual cross section for such an encounter is higher due to the influence of gravity. If both
the proto-star and the star have the same mass,m, this actual cross section is given as

A = πr2proto(1 + Θ) (4.10)

at the centre of the emerging UCD, whereΘ is the Safronov number,

Θ =
2Gm

σ2
3D,0,c rproto

(4.11)

(Murray & Lin 1996). However, assumingrproto = 100AU andm = 0.65M⊙ leads toΘ = 0.26
in the less compact model for the initial states of ONC-type star clusters (ONC A in Table 4.1).
Using the same assumptions,Θ is lower for all other models in Table 4.1 due to their higher
velocity dispersions. In the case of the UCD-models from this paper, the difference between the
actual cross section and the geometric cross section is lessthan 1 per cent. Thus, gravitational
focussing of stars onto the proto-star plays a minor role forthe models in Table 4.1, which
justifies the approximation.

The values fortenc resulting from equation (4.9) are noted in Table 4.1 and plotted in
Figs. 4.1 and 4.2. Comparing these values with the characteristic life-time of a proto-star,
tproto ≈ 105 years, it can be seen thattenc < tproto for the UCD-models withM∗,0 = 108 M⊙.
For the UCD-models withM∗,0 = 107 M⊙ andRpl,0 = 3 pc, tenc is only slightly larger than
tproto. However, for the UCD-models withM∗,0 = 107 M⊙ andRpl,0 = 5 pc, tenc exceeds
tproto by about an order of magnitude. This suggests that the encounters between proto-stars
and stars would influence star-formation in the models withM∗,0 = 108 M⊙ and also, to a much
lesser extent, in the more compact UCD-models withM∗,0 = 107 M⊙, but not in the UCD-
models withM∗,0 = 107 M⊙ andRpl,0 = 5 pc. The UCD-models withM∗,0 = 107 M⊙ and
Rpl,0 = 5 pc are in this respect similar to models A and B for the initial states of ONC-type
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star clusters from Kroupa et al. (2001) (see Fig. 4.2). This implies, invoking the universality of
the IMF in open star clusters, that the IMF in those UCD-models should also be given by equa-
tion (4.1), if deviations from the canonical IMF are caused by encounters between proto-stars
and stars. According to the calculations in this paper, the UCD-models withM∗,0 = 107 M⊙

andRpl,0 = 5 pc would indeed only evolve into objects similar to an observedUCD if their
mass loss is as implied by the canonical IMF. The IMF in the other UCD-models would how-
ever have to be top-heavy to some extent for this (see Section4.3). The UCD-models in this
paper are thus self-consistent in that sense.

We note that equation (4.9) reveals the particular importance of encounters between proto-
stars and stars. For a collision between two stars,rproto has to be substituted by a value≪ 1 AU,
which leads totenc ≫ 105 years. Thus, collisions between stars only as a mechanism that
changes the shape of the IMF (Bonnell et al. 1998; Bonnell & Bate 2002) requires even higher
densities. For the encounter between two proto-stars, the density of stars at a given time has
to be substituted by the density of proto-stars at that time.Taking 1 Myr as the characteristic
time-scale on which star-formation takes place and105 years as the life-time of a proto-star
suggests that the density of proto-stars is≈ 0.1ρpl,∗,c, which is five times less than the density
of stars at the time when half of the total stellar populationof the UCD has formed.

A caveat to the above discussion is that it is not specified what the consequence of a collision
between a proto-star and a star is. This is a merger if the encounter is slow enough. If the
encounter is fast enough for the star to only pass through theproto-star, the star transfers some
of its kinetic energy on the proto-star and thereby disperses some of the matter that would
otherwise accrete on the proto-star. For deciding which of these processes would dominate for
a given velocity dispersion, as well as for answering the question of how and to what extent
they would alter the IMF, detailed modelling of the collisions would be required. However, the
discussion here implies that any process resulting from an encounter between stars and proto-
stars should only be relevant for the denser UCD-models in Tab. 4.1, in contrast to the models
for ONC-type star clusters, where most proto-stars should be unaffected by encounters.

We revisit the matter of a possible influence of encounters onthe IMF in UCDs in Sec-
tion 4.3.4.

The IMF of the UCD-models

For each of the nine sets of models listed in Table 4.1, six IMFs are considered. They are either
canonical or top-heavy to a different degree and have upper mass limits,mmax, of either100M⊙

or 150 M⊙. However, all of them agree with the canonical IMF (equation4.1) form < 1 M⊙.
Studies onmmax suggest thatmmax = 150 M⊙ is more realistic thanmmax = 100 M⊙ for very
massive star clusters and therefore also for UCDs (e.g. Massey & Hunter 1998, Figer et al. 1998,
Figer 2004). However, the treatment of stellar evolution and its effect on the mass loss from
UCDs in this paper (see Section 4.2.2) is based on stellar models that only range up to a120M⊙

star. Assumingmmax = 150M⊙ for our models therefore requires extrapolating from the given
data, which may be problematic due to the strong dependencies of stellar properties on stellar
mass. The emphasis in this paper is therefore on IMFs withmmax = 100M⊙ (which is also a
common choice in simple stellar population models). The impact of the highermmax = 150M⊙

is only tested for the canonical IMF and the most top-heavy IMF.
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Table 4.2:The IMFs considered for UCDs. The content of columns is the following: Column 1: the
identification number of the IMF, Column 2: the slope of the high-mass end of the IMF,α (where 2.3 is
the Salpeter slope), Column 3: the upper stellar mass limit,mmax, Column 4: the ratio between the total
inital mass of stars more massive than8 M⊙ and the total initial mass of all stars, Column 5: the ratio
between the inital number of stars more massive than8 M⊙ and the initial number of all stars, Column
6: the initial mean mass of stars.

IMF α mmax Mhms,0/M∗,0 Nhms,0/N∗,0 m
[M⊙] [M⊙]

1 1.1 150 0.921 0.2031 10.02
2 1.1 100 0.886 0.1830 7.16
3 1.5 100 0.719 0.0632 2.49
4 1.9 100 0.453 0.0210 1.07
5 2.3 150 0.230 0.0072 0.65
6 2.3 100 0.213 0.0071 0.64
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Figure 4.3:The data from Schaller et al. (1992) on the lifetimes of starswith different initial masses
from 7 to 120M⊙ (open circles) and an interpolation function to them (solidline), which is given by
equation (4.12). It is apparent that the stars with the highest masses evolve over an extremely short time
span. This increases the significance of the upper mass limitof the IMF for the dynamical evolution of a
star cluster or UCD.

4.2.2 Generating the mass loss Tables

The interstellar medium (ISM) of a new-born star cluster or UCD is massively heated by the
radiation from massive stars, which leads to a mass loss fromit until the ISM is depleted. The
eventual evolution of the massive stars into supernovae (SNe) heats the ISM as well, but also
replenishes the ISM. The rate at which mass is lost from the star cluster or UCD due to this
interaction between the massive stars and the ISM is the driving force for its early evolution.
This is why the mass loss rate has to be quantified for our models. It is recorded in look-up
tables, listing how much the mass of the UCD-models has to be reduced for each time-step in
the calculation.

Evidently, knowing the lifetimes of massive stars is essential for generating the mass loss
tables. A very good proxy for the time at which the life of the star ends is the time at which
carbon burning has finished. The time that has elapsed until this evolutionary stage is reached is
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Figure 4.4:The SN rates with time for the modelled UCDs with initial total stellar massM∗,0 = 107M⊙.
The different curves are for the different IMFs listed in Tab. 4.2. The numbers refer to the labels given
to the IMFs in Tab. 4.2. Note that the choice of the upper mass limit of the IMF determines the time
when the first SN explodes, but turns out to be almost irrelevant for the SN rates. For the models with
M∗,0 = 108 M⊙, the SN rates are higher by a factor of 10. The SN rates are propotional to the energy
input by the SN, because all SN are assumed to release the sameamount of energy (1051erg).
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Figure 4.5:The evolution of the stellar mass of the UCD,M∗, with time due to stellar evolution.M∗

is plotted in units of the initial stellar mass of the UCD,M∗,0. The different lines in this figure represent
M∗ for the different IMFs listed in Table 4.2. The high-mass slope of the IMF is noted above the curves.
Solid (red) lines are for IMFs with an upper mass limit of100 M⊙ and dashed (blue) lines are for an upper
mass limit of150 M⊙. The choice of the upper mass limit has only a minor impact forthe canonical
IMF (α = 2.3), but is more significant for the most top-heavy IMF we consider (α = 1.1). For models
with SFE=1 and HE=1 these curves show the total mass loss as well.

taken from the stellar evolutionary grid by Schaller et al. (1992) for massive stars with various
initial masses. This time-span is identified with the lifetime of a star in this paper. A good
fit to the lifetimes of stars with high mass (m∗ ≥ 7 M⊙) and low metallicity (Z = 0.001 and



4.2. SETUP 115

[Z/H] = −1.3 respectively) is the function

m∗ = a(t∗ − b)c, (4.12)

with

a = 74.6, b = 2.59, c = −0.63.

where the initial mass of the star,m∗, is measured inM⊙ and the lifetime of the star,t∗, is
measured in Myr (Fig. 4.3). It thus covers the whole range of stellar initial masses of stars
that undergo SN explosions at the end of their evolution, which ism∗ ? 8 M⊙ (Koester &
Reimers 1996). The parametersa, b andc have been found by a least-squares fit. The models
for low-metallicity stars were preferred over models for stars with Solar metallicity because of
the mostly sub-solar metallicities of the UCDs (Mieske et al. 2006a; Evstigneeva et al. 2007).
This choice has however only a minor impact on the best-fitting parametersa, b andc. Note
that since all stars in the UCD-models are assumed to have formed at once in this paper, it is
possible to substitute the stellar lifetime,t∗, in equation (4.12) with the age of the UCD-model,
t, in order to find the initial mass of the stars that undergo SNeat that time.

Now consider the increase of the age of the UCD-model by the time stepti → ti+1. During
this time,∆N∗ stars with a total mass∆M∗ will complete their evolution. These quantities can
be written as

∆N∗,i =
M∗,0

M⊙

∫ m∗,i

m∗,i+1

ξ(m∗) dm∗, (4.13)

and

∆M∗,i =
M∗,0

M⊙

∫ m∗,i

m∗,i+1

ξ(m∗)m∗ dm∗, (4.14)

whereξ(m∗) is the IMF,m∗,i is the initial mass of stars that evolve att = ti andm∗,i+1 is the
initial mass of stars that evolve att = ti+1. M∗,0 is the total initial stellar mass of the UCD-
model. Given the normalisation chosen for the IMF (see equations 4.1 and 4.2), the purpose of
the factorsM∗,0/M⊙ is to scale equations 4.13, 4.14 and 4.15 to a UCD-model with the initial
mass ofM∗,0. ∆N∗ is equivalent to the number of SNe during the time stepti → ti+1; i.e. the
SN-rate in the limit ofti+1 − ti → 0. At the time when the most massive stars evolve, this
SN-rate is, for instance,≈ 1 SN per 10 years for the UCD-models withM∗,0 = 107 M⊙ and
a high-mass IMF slope ofα = 1.1, while it is a few SN per103 years for the UCD-models
with M∗,0 = 107 M⊙ andα = 2.3. The influence of the top-heaviness of the IMF on the
SN-rates decreases as time proceeds. The SN-rates for the UCD-models withM∗,0 = 107 M⊙

and the IMFs from Table 4.2 are shown in Fig. 4.4. The SN-ratesfor the UCD-models with
M∗,0 = 108 M⊙ are higher by a factor of 10 compared to the ones shown in this figure, but the
same otherwise.

Fig. 4.5 depicts the change of the stellar mass of the UCD-model with time, i.e.M∗,i = M∗,0

for ti ≤ tSN andM∗,i = M∗,0 −
∑i

n=1∆M∗,n for ti > tSN, whereM∗,0 is the total initial stellar
mass andtSN is the time when the first stars become SNe.

The total energy deposited by stars into their surroundingsby radiation and stellar winds at
the timet = ti, L∗,i, is given as

L∗,i =
M∗,0

M⊙

∫ mmax,i

0.1

ξ(m∗)l(m∗) dm∗, (4.15)
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with mmax,i being the mass of the most massive star that has not evolved into a SN at that time.
l(m∗) is the energy deposition rate of stars into the ISM through radiation and stellar winds as
a function of their initial mass. It is estimated as

l(m∗) = 2.16× 1047
(

m∗

M⊙

)1.72
erg

Myr
, (4.16)

which is identical to equation (12) in Baumgardt et al. (2008). As in Baumgardt et al. (2008),
equation (4.16) is applied to stars of all masses, even though it was obtained in a fit to high-
mass stars. Note that the positive exponent in equation (4.16) and the negative exponent in the
IMF cancel out more or less in equation (4.15). The contribution of low- and intermediate-mass
stars to the total energy deposition into the ISM is therefore small at first, because the masses
of high-mass stars are distributed over a much wider range.

The algorithm

The integrations in equations (4.13) to (4.15) are done numerically for the IMFs listed in Ta-
ble (4.2). The used program is structured as outlined below.

Start att = 0 with a set of initial parameters taken from Table 4.1 and an IMF taken from
Table 4.2. Let∆t be the time step fromti to ti+1 andtSN the time when the first stars become
SNe.

1. If ti > tSN, calculate which stars evolve fromt = ti to t = ti +∆t using equation (4.12)
and then which total mass these stars have,∆M∗,i (equation 4.14). This mass is added
to the total mass of the interstellar medium,MISM,i. This includes the possibility that the
UCD-model had no ISM left at the end of the previous time step.In this case,MISM,i =
∆M∗,i.

2. The rate at which the stars and the SNe deposit energy into the ISM during the time
step is calculated,Li. Li is approximated byLi = L∗,i+1 + LSN,i, whereL∗,i+1 is the
rate at which the stars deposit energy into the ISM att = ti+1 (equation 4.15) andLSN,i

is the energy that the SNe deposit into the ISM fromt = ti to t = ti + ∆t (which
is in the limit of ∆t → 0 an energy depositionrate as well). Using the number of
stars that evolve during the time step∆N∗,i, (equation 4.13),LSN,i can be estimated by
assuming that each SN releases a characteristic amount of kinetic and electromagnetic
energy, which are the forms of energy that are relevant for driving matter out of the UCD-
model. Estimating this quantity as1051 erg per SN (e.g. Carroll & Ostlie 1996) leads
to LSN,i = 1051∆N∗,i ergMyr−1. The total luminosity is multiplied by the HE to obtain
Lkin,i, which is the luminosity that is not radiated away through thermal emission of the
ISM, but is converted into kinetic energy of the gas leaving the UCD.

3. The timeτi it would take until all gas is expelled from the UCD-model is estimated,
assuming thatLkin,i does not change during that time. This is done using the equation
τiLkin,i = |Epot,i − Epot∗,i|, whereEpot,i is the total binding energy of the UCD-model at
t = ti andEpot∗,i is the binding energy the UCD would have if it would lose all gas at
that time. Note that the UCD-model inflates as it loses mass and Epot∗,i should therefore
be calculated using the Plummer-radius the UCD-model has after all gas is expelled. We
estimate it using the relation between initial radius and final radius of a stellar system
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Figure 4.6:The change of the total mass of the UCD-model,Mpl, with time due to stellar radiation and
evolution for our models withSFE = 0.4 andHE = 1.0 orHE = 0.03 relative to the total initial mass of
the UCD-model,Mpl,0. The assumptions regarding SFE, HE, initial mass of the UCD-model and inital
Plummer-radius of the UCD-model for the mass loss historiesshown are indicated in the corresponding
panel. The different lines in this figure representMpl for the different IMFs listed in Table 4.2. The
mass loss increases with the top-heaviness of the assumed IMF: for the topmost curvesα = 2.3 and for
the lowermost curvesα = 1.1. Solid (red) lines are for IMFs with an upper mass limit of100M⊙ and
dashed (blue) lines are for an upper mass limit of150M⊙. The choice of the upper mass limit has only
a minor impact for the canonical IMF (α = 2.3), but is much more significant for the most top-heavy
IMF that are considered (α = 1.1). Note that fort ? 3 Myr the mass loss histories shown in this figure
are equal to the change in stellar mass shown in Fig. 4.5 if theprimordial gas is expelled before the first
star has evolved completely. However, contrary to Fig. 4.5 the time-axis is scaled logarithmically here,
in order to show the sometimes very rapid expulsion of the primordial gas.

for adiabatic mass loss, even though the mass loss is in our case sometimes clearly not
adiabatic. This relation is given by

rfinal
rinit

=
Minit

Mfinal

, (4.17)
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whererinit andMinit are radius and mass of the stellar system at the beginning of mass
loss, respectively, andrfinal andMfinal the are radius and mass of the stellar system at
the end of mass loss, respectively (Kroupa 2008 and references therein). Equation (4.17)
underestimates the expansion of the UCD-models at times of non-adiabatic mass loss
(cf. equation 8.20 in Kroupa 2008). Therefore, if the UCDs have experienced extended
non-adiabatic mass loss, the mass loss rates calculated here are too low, because a more
pronounced expansion implies that the potential well becomes shallower and the remain-
ing gas requires less energy to escape from it. This is even more important for a more
top-heavy IMF.

4. If τi < ∆t, setτi = ∆t. The mass loss of the UCD-model during the time step is assumed
to be

δM = MISM,i
∆t

τi
. (4.18)

5. Calculate the new parameters of the UCD-model after it haslost the massδM : The new
total stellar mass is decreased by∆M∗i and the new Plummer-radius is estimated using
equation (4.17).

6. If ti+1 = ti+∆t is less than it takes a star withm∗ = 8 M⊙ to evolve into a SN according
to equation (4.12), repeat steps (i) through (vi), but forti+1 instead ofti.

The underlying assumption in the chosen approach is that thematerial expelled from a SN
does notimmediatelyescape the UCD, but that its kinetic energy is thermalised, as it is assumed
for massive star clusters in, e.g., Tenorio-Tagle et al. (2007). This can happen either through
interaction with the surrounding ISM or through the collision of the expanding envelopes of
different SNe. The latter becomes more relevant with increasing top-heaviness of the IMF. The
notion of the thermalisation of the SN ejecta is flawed if there is no ISM left and if the SNe are
too few for their envelopes to interact with one another. However, in this case also very low
HEs are sufficient to keep the UCD-models gas-free.

The mass loss histories calculated by using the above routine are shown in Fig. (4.6) for the
models with SFE=0.4 and HE=1 or HE=0.03. For the the models with SFE=1 and HE=1, the
evolution of the stellar mass of the UCD-models shown in Fig.4.5 also illustrates their mass
loss history, since the UCD-models are gas-free at all timesin this case.

The role of compact stellar remnants

A simplification that is made in the creation of the mass loss histories is that the whole mass
of the evolved stars is added to the ISM, including the mass oftheir compact remnants. For
testing under which conditions this approximation is reasonable, the total mass of all compact
remnants of stars with initial massesm∗ > 8 M⊙, Mrem, needs to be compared to the total mass
of their progenitors,Mhms,0. If an IMF is given, calculatingMrem requires a relation between
the initial masses of stars and the masses of their compact remnants. Such an initial-to-final
mass relation is, e.g., formulated in equation (8) of Dabringhausen et al. (2009). Their equation
is also used here. Thus, stars with initial masses of8 M⊙ ≤ m∗ < 25 M⊙ are thought to evolve
into neutron stars (NSs) with a mass of1.35 M⊙, which is the mass Thorsett & Chakrabarty
(1999) have found for pulsars, i.e. a sample of neutron starsthat can easily be detected. Stars
with even higher initial masses are believed to evolve into black holes, but the actual masses
of these black holes (BHs) are poorly constrained (cf. figs. 12 and 16 in Woosley et al. 2002).
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Table 4.3: The total masses of all stars more massive than8 M⊙ (Mhms,0, Column 2) and the total
masses of their compact remnants (Mrem, Columns 3 and 4) for the IMFs in Table 4.2. The masses are
in units of the total mass of all stars that were formed initially, M∗,0. The two different values forMrem

for a given IMF reflect that the mass of the remnants of very massive stars is poorly known. While the
mass of the compact remnants of stars with initial masses of8 M⊙ ≤ m∗ < 25 M⊙ is 1.35 M⊙ in both
estimates, the mass of the compact remnants of stars withm∗ > 25 M⊙ is assumed to be either0.1m∗

(Column 3) or0.5m∗ (Column 4).

IMF Mhms,0/M∗,0 Mrem/M∗,0 Mrem/M∗,0

mBH = 0.1m∗ mBH = 0.5m∗

1 0.921 0.0910 0.409
2 0.886 0.0871 0.369
3 0.719 0.0709 0.271
4 0.453 0.0452 0.150
5 0.230 0.0234 0.0698
6 0.213 0.0218 0.0605

Therefore, two cases are considered for the masses of BHs, namely the case that they all have
10 per cent of the initial mass of their progenitors (mBH = 0.1m∗) and the case that they have
50 per cent of the initial mass of their progenitors (mBH = 0.5m∗) are considered. The resulting
values are noted in Table 4.3.

It is apparent from these numbers that formBH = 0.1m∗ the mass locked up in compact
remnants is indeed negligible, while this is not the case formBH = 0.5m∗. However, the
masses of observationally confirmed stellar-mass BHs (see Casares 2007) seem to favour the
case ofmBH = 0.1m∗, leading to BH masses> 10 M⊙. Apart from that, Lyne & Lorimer
(1994) report a mean birth velocity of450 ± 90 km s−1 for pulsars (i.e. neutron stars) and the
processes that precede the birth of a stellar mass BH are essentially the same as the ones that
precede the birth of a neutron star (Woosley et al. 2002). This suggests that a large fraction of the
compact remnants (BHs as well as neutron stars) are born withvelocities well above the escape
velocity of the UCD-models in Tab. 1, which for a Plummer sphere is about twice the velocity
dispersion (compare equations 8.59 and 8.61 in Kroupa 2008). Thus, in a realistic scenario,
the total mass of the compact remnantsremainingin the UCD is likely to be small compared
to the total mass of the progenitors ofall compact remnants. Moreover, the mass-loss histories
created by the algorithm described in Section 4.2.2 suggestthat the UCDs are gas-free at the
end of the evolution of massive stars, with the exception of the models with high initial mass
and low heating efficiency. The latter models suggest however that the UCDs consist mainly of
gas at that time, which seems unlikely (see Section 4.3.3). As a conclusion, UCDs are likely to
have lost most of the mass that was locked in massive stars at the time when massive stars have
evolved, if they formed as is assumed here (i.e. as very massive star clusters). This mass loss
proceeds however not only by the escape of the gaseous components of the SN-remnants from
the UCD (i.e. a process modelled by the algorithm in Section 4.2.2), but also by the ejection of
the compact remnants. This latter process would play a substantial role for the total mass loss
of the UCD ifmBH = 0.5m∗, but not ifmBH = 0.1m∗.

Note that the expectation of a large difference between the total mass of the compact rem-
nants left in UCDs and the total mass of their progenitors is also the reason why the IMFs of
the UCDs have to be so extremely top-heavy, if the enhancedM/LV ratios of the UCDs are to
be explained by an over-abundance of stellar remnants. Thisis what motivated the sometimes
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extreme choices for the IMF in the UCD-models in the first place.

In essence, neglecting the remnant masses seems justifiablein the context of the present
study, as it also helps to avoid a number of very speculative assumptions. This includes the
precise mass of the remnants, which fraction of them remainsin the UCDs and how much of the
kinetic energy available from the SNe is transferred to them. As a result, the mass loss is over-
estimated in the UCD-models, but probably not by much more than 10 per cent. Consequently,
their expansion is over-estimated as well by about the same amount, if the heating is sufficient
to expel all gas from them. This bias is thus opposed to the bias induced by the assumption of
adiabatic mass loss at all times in the calculation of the mass loss histories.

We note that also the treatment of the energy input from SNe (each of them contributes
1051 erg) and the energy input from stars (equation 4.15 using equation 4.16) is only approxi-
mate, but can hardly be done with greater precision with current knowledge.

4.2.3 Time evolution of the UCDs

The UCD-models are set up to be in virial equilibrium before the onset of mass loss. This is
motivated by the fact that star-formation in a star cluster takes place on a time-scale of≈ 1
Myr, while the crossing times in the UCD-models are about an order of magnitude lower (see
Table 4.1) and the time-scale for violent relaxation is a fewcrossing times (Binney & Tremaine
1987). Thus, the time-scale for the UCD-model to settle intoa state near virial equilibrium is
shorter than the time-scale for the formation of its stellarpopulation. Note that the assumption
of virial equilibrium is crucial for the validity of the results in this paper, since UCDs would
evolve completely different if they were not in virial equilibrium at the onset of gas expulsion,
see Goodwin (2009). But it is also argued there that very massive star clusters are much more
likely to be in virial equilibrium at that time.

To calculate the evolution of the UCDs in the first few Myr the particle-mesh code Superbox
(Fellhauer et al. 2000) is used. Each UCD is represented by 1 million particles and is integrated
forward in time until200 Myr using a small time-step of0.01 Myr for the models with HE=1
and SFE=1 and a time-step of0.005 Myr for all models with SFE=0.4. The smaller time-step
for the models with SFE=0.4 is necessary because of their shorter crossing times due to their
higher initial masses for our assumed stellar masses, see Table 4.1. The code is altered to allow
for the mass loss due to gas expulsion and rapid stellar evolution in the first tens of Myr. To
mimick this mass loss we implemented the look-up tables whose generation is described in
Section 4.2.2. They give the total mass of the UCD at each time-step. The mass of each particle
and henceforth the total mass of the modelled UCD is reduced accordingly.

The UCDs are modelled in isolation, i.e. in the absence of a tidal field, even though UCDs
are found in the vicinity of massive elliptical galaxies. But regarding the short time span of our
computations of 200 Myr (compared to their orbital times of aGyr or longer) and the fact that
e.g. at a distance of80 kpc and adopting the potential of M 82 the tidal radii would be600 pc
for the models withMpl,0 = 107M⊙ and1400 pc for the models withMpl,0 = 108M⊙, the
effect of the tidal fields can be neglected. (See also table 6 in Hilker et al. 2007 and table 8 in
Evstigneeva et al. 2007 for a comparison between half-lightradii and tidal radii of UCDs.)
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Figure 4.7: Change of the Lagrangian radii (10, 20, ... 90 per cent mass) with time for model
m8 r5 s1 h1 with IMF 1 (mmax = 150 M⊙, α = 1.1).

4.3 Results

We calculated a suite of 56 models, combining each of the setsof UCD parameters given in
Table 4.1 with each IMF given in Table 4.2. The results are discussed separately for the different
assumptions regarding the SFE and the HE in the following, see also Tables 4.4, 4.5 and 4.6.

4.3.1 SFE=1
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Figure 4.8: Expansion factorsfe of our models for a star formation efficiency of 1 and a heating
efficiency of 1 plotted against the number given to the assumed IMF (as in Table 4.2). The symbols show
the different initial structural parameters of the UCD-models: (red) crosses forRpl,0 = 3pc andMpl,0 =
107 M⊙, (green) squares forRpl,0 = 5 pc andMpl,0 = 107 M⊙ and (blue) circles forRpl,0 = 5 pc and
Mpl,0 = 107 M⊙.
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Table 4.4:Final results of the calculations for a SFE of 1 and a HE of 1. The models whose final parameters match the observed parameters of UCDs
best are marked with a (+) before the first column. The information given in the columns is the following: Column 1: the nameof the model as given in
Table 4.1, Column 2: the IMF as given in Table 4.2, Column 3: the total mass of stars that have not evolved at the end of massive-star evolution (i.e. stars
with m < 8 M⊙) in units of the initial total mass of all stars, Column 4: thetotal mass of stars that remain bound to the cluster in units of the total mass of all
stars less massive than8 M⊙ (i.e. no stars become unbound if the entry in this column is 1), Column 5: the mass of the cluster at the end of the calculation,
Column 6: the final half-mass radius, Columns 7 and 8: the finalPlummer-radiusRpl,f and its1-σ error, Column 9: the expansion factorfe, Columns 10
and 11: the central surface densityΣ0,f with its error, Columns 12 and 13: and the central line-of-sight velocity dispersionσ0,f with its error.Σ0,f andσ0,f
are derived by fitting Plummer-profiles to the data att = 200 Myr, using a non-linear least-squares Marquardt-Levenberg algorithm. Both the fits toΣ0,f and
to σ0,f also deliver estimates forRpl,f . The quoted value forRpl,f is the one obtained from the fit toΣ0,f , but the one obtained from the fit toσ0,f is not much
different.

model IMF M∗,f/M∗,0 M∗b,f/M∗,f Mf R50,f Rpl,f error fe Σ0,f error σ0,f error
[106M⊙] [pc] [pc] [M ⊙ pc−2] [km s−1]

m7 r3 s1 h1 1 0.079 0.952 0.75 30.6 34.1 0.2 11.4 241 1 4.19 0.02
m7 r5 s1 h1 1 0.079 0.850 0.67 52.2 53.9 0.9 10.8 17 0 3.02 0.02
m8 r5 s1 h1 1 0.079 0.998 7.8 26.2 27.1 0.1 5.4 3869 2 21.65 0.07
m7 r3 s1 h1 2 0.114 0.973 1.11 22.3 23.7 0.1 7.9 736 2 6.09 0.02
m7 r5 s1 h1 2 0.114 0.953 1.09 37.4 38.0 0.2 7.6 280 1 4.77 0.02

(+) m8 r5 s1 h1 2 0.114 1.000 11.4 18.4 18.6 0.1 3.7 12069 22 31.36 0.07
m7 r3 s1 h1 3 0.281 0.999 2.81 9.6 10.0 0.0 3.3 10324 11 14.52 0.06
m7 r5 s1 h1 3 0.281 0.998 2.80 16.1 16.0 0.1 3.2 4131 8 11.60 0.04

(+) m8 r5 s1 h1 3 0.281 1.000 28.1 10.8 10.7 0.0 2.1 90300 120 55.20 0.30
(+) m7 r3 s1 h1 4 0.547 1.000 5.47 5.1 5.3 0.0 1.8 70370 170 27.50 0.02
(+) m7 r5 s1 h1 4 0.547 1.000 5.47 8.6 8.5 0.0 1.7 28286 27 21.90 0.30

m8 r5 s1 h1 4 0.547 1.000 54.7 7.4 7.4 0.0 1.5 363990 310 82.50 0.80
m7 r3 s1 h1 5 0.770 1.000 7.70 3.8 3.9 0.0 1.3 181300 800 37.60 0.50

(+) m7 r5 s1 h1 5 0.770 1.000 7.70 6.3 6.2 0.0 1.2 73630 140 30.20 0.30
m8 r5 s1 h1 5 0.770 1.000 77.0 6.3 6.4 0.0 1.3 678800 1400 98.30 1.10
m7 r3 s1 h1 6 0.787 1.000 7.87 3.7 3.8 0.0 1.3 191560 960 38.40 0.20

(+) m7 r5 s1 h1 6 0.787 1.000 7.87 6.2 6.1 0.0 1.2 78050 440 30.70 0.30
m8 r5 s1 h1 6 0.787 1.000 78.7 6.3 6.3 0.0 1.3 713800 1100 100.30 1.20
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The assumptions SFE=1 and HE=1 stand for the case of highly efficient star-formation
and heating. There is no expulsion of primordial gas in this case, but the mass loss through
the evolution of massive stars can still be quite severe (as the UCD is cleared easily from the
products of stellar evolution with such a high HE). It amounts to up to about90 per cent of
the initial mass for the UCDs with the most top-heavy IMFs. However, this mass loss is slow
compared to the short crossing-times of the initially very massive and compact models. This
makes sure that the calculated UCDs always survive this period of mass loss. In Fig. 4.7, the
time evolution of the Lagrangian radii of one of the models isshown. It can be seen clearly that
after an interval of rapid expansion due to the mass loss the UCD-model finally settles back into
a new equilibrium. The expansion factorfe of the models is measured by comparing the final
(Rpl,f) with the initial (Rpl,0) Plummer-radius,

fe =
Rpl,f

Rpl,0
. (4.19)

The Plummer-radii are found by fitting Plummer-models to thesurface density profiles of the
UCDs, using a non-linear least-squares Marquardt-Levenberg algorithm. The Plummer-radius
is also identical to the projected half-light radius for themodels (see equation 8.57 in Kroupa
2008). Fig. 4.8 shows the expansion factors for all UCD-models with SFE=1 and HE=1. It is
visible that among the clusters with top-heavy IMFs (IMFs 1 to 4) the UCD-models with the
highest mass expand the least. This is because the more massive UCD-models have shorter
crossing times and are therefore closer to the regime of adiabatic mass loss.

Table 4.4 shows the final quantities for the models with SFE=1and HE=1. The models
that are the best representations of present-day UCDs at theend of the calculation are marked
with a ’(+)’ in front of the first column. Note that some, but not all of these have the canonical
high-mass IMF slope.

We note that assuming HE=1 is not decisive for most of the UCD-models with SFE=1.
For instance, if HE=0.03 is assumed for the UCD-models with an initial stellar mass,M∗,0,
of 107 M⊙ and SFE=1, the mass-loss histories of such models are the same as in the case of
HE=1. The same is true for UCD-models with108 M⊙ SFE=1 and HE=0.03 if their IMF is
the canonical one. On the other hand, for the two most top-heavy IMFs in Tab. 4.2 (IMFs 1
and 2,α = 1.1), the UCD-models with108 M⊙ and SFE=1 retain most of the gas released
by the evolution of massive if HE=0.03, while they are gas-free at all times if HE=1. In the
case of H=0.03, these models are very similar to the UCD-models with 108 M⊙, SFE=0.4 and
HE=0.03, which are discussed in Section 4.3.3.

Thus, it is UCD-models with the most top-heavy IMFs that retain gas the easiest. This is
because by assuming that the amount of energy released by a SNdoes not depend on the mass
of the progenitor star (as done in this paper), the total massset free by the SNe increases more
quickly than the total energy provided by the SNe. Also, the luminosity of the stellar population
of the UCD, which is the other energy source that powers its mass loss, decreases more rapidly
with time for more top-heavy IMFs.

4.3.2 SFE=0.4 and HE=1
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Figure 4.9:Expansion factorsfe of the models with a star formation efficiency of 0.4 and a heating
efficiency of 1 plotted against the number assigned to the assumed IMF (as in Table 4.2). The symbols
show the different inital structural parameters of the UCD-models: (red) crosses forRpl,0 = 3 pc and
Mpl,0 = 2.5×107 M⊙, (green) squares forRpl,0 = 5 pc andMpl,0 = 2.5×107 M⊙ and (blue) circles for
Rpl,0 = 5 pc andMpl,0 = 2.5 × 107 M⊙. The modelled UCDs with IMFs 1 and 2 dissolve completely
due to their heavy mass loss.

Figure 4.10:As Fig. 4.7, but for model m8r5 s04 h1 with IMF 4 (mmax = 100 M⊙, α = 1.9).
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Table 4.5:As Table 4.4, but for a SFE of 0.4 and a HE of 1. These models predict the complete dissolution of the UCD if IMF 1 or IMF 2 are assumed (the
ones with high-mass slopeα = 1.1).

model IMF M∗,f/M∗,0 M∗b,f/M∗,f Mf R50,f Rpl,f error fe Σ0,f error σ0,f error
[106M⊙] [pc] [pc] [M ⊙ pc−2] [km s−1]

m7 r3 s04h1 1 0.079 UCD dissolves completely
m7 r5 s04h1 1 0.079 UCD dissolves completely
m8 r5 s04h1 1 0.079 UCD dissolves completely
m7 r3 s04h1 2 0.114 UCD dissolves completely
m7 r5 s04h1 2 0.114 UCD dissolves completely
m8 r5 s04h1 2 0.114 UCD dissolves completely
m7 r3 s04h1 3 0.281 0.236 0.66 30.3 33.4 0.5 10.4 298 2 8.27 0.16
m7 r5 s04h1 3 0.281 0.125 0.35 51.3 60.8 1.9 11.9 53 1 4.49 0.06
m8 r5 s04h1 3 0.281 0.482 13.5 42.9 46.7 0.6 8.8 3115 16 30.95 0.30
m7 r3 s04h1 4 0.547 0.460 2.52 19.0 16.0 0.1 5.0 3615 11 19.89 0.47
m7 r5 s04h1 4 0.547 0.234 1.28 28.8 28.6 0.4 5.6 672 4 11.41 0.22

(+) m8 r5 s04h1 4 0.547 0.784 26.4 25.6 23.3 0.1 4.4 32182 33 70.43 0.88
m7 r3 s04h1 5 0.770 0.626 4.82 13.6 10.9 0.1 3.4 14495 35 33.46 0.50

(+) m7 r5 s04h1 5 0.770 0.300 2.31 21.4 19.2 0.1 3.8 2429 8 18.22 0.51
m8 r5 s04h1 5 0.770 0.896 69.0 19.2 16.7 0.0 3.2 96070 120 102.64 1.87
m7 r3 s04h1 6 0.787 0.671 5.28 13.2 10.5 0.0 3.3 16898 32 35.52 1.44

(+) m7 r5 s04h1 6 0.787 0.322 2.53 21.3 19.0 0.2 3.7 2723 11 18.97 0.54
m8 r5 s04h1 6 0.787 0.911 71.7 18.9 16.4 0.0 3.1 103396 80 105.38 1.94
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Figure 4.11:As Fig. 4.9, but for a heating efficiency of 0.03 instead of 1. The modelled UCDs with
M∗,0 = 107 M⊙ and IMFs 1 or 2 dissolve completely due to their heavy mass loss and are therefore not
shown here.

The assumptions SFE=0.4 and HE=1 imply an even more dramaticmass loss than the case
of SFE=1 and HE=1 (Section 4.3.1). The energy input of massive stars is high enough to clear
the UCD-models of the primordial gas either well before or atthe time the first stars end their
evolution on the main-sequence. The mass loss is in fact so rapid that a significant fraction of
the stars of the UCD-models become unbound, even if an IMF with the canonical high-mass
slope (α = 2.3, IMFs 5 and 6) is assumed. The calculated UCD-models dissolve completely if
the IMFs with the flattest high-mass IMF-slopes (α = 1.1, IMFs 1 and 2) are assumed. Note
that they are dissolved by thecombinationof the very rapid expulsion of the primordial gas and
the more gentle mass loss though stellar evolution, since aninstantaneous loss of 60 per cent of
the initial mass would still leave a bound remnant (Boily & Kroupa 2003), as would the mass
loss through stellar evolution alone (cf. Section 4.3.1).

Analogous to Section 4.3.1, the expansion of the UCD-modelsis measured by the ratio
between their final Plummer-radii and their initial Plummer-radii and the results are plotted in
Fig. 4.9. It turns out that in this set of models, the UCDs thatexpand the most are always the
ones with the longest crossing times while the UCDs that expand the least are always the ones
with the highest initial mass.

Table 4.5 shows the final quantities for the models with SFE=0.4 and HE=1. Model m8r5 s04h1
with IMF 4 (α = 1.9) is the only one of them with a top-heavy IMF and with a good agree-
ment between its final parameters and the parameters observed in UCDs. The evolution of its
Lagrange-radii is shown in Fig. 4.10.

4.3.3 SFE=0.4 and HE=0.03
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Figure 4.12:As Fig. 4.7, but for model m7r3 s04 h003 with IMF 4 (mmax = 100M⊙, α = 1.9).

Figure 4.13: Change of the Lagrangian radii (10, 20, ... 90 per cent mass) with time for model
m7 r3 s04 h003 with IMF 1 (mmax = 150M⊙, α = 1.1). Here the UCD is disrupted by its mass
loss, unlike the models shown in Figures. 4.7, 4.10 and 4.12.
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Table 4.6:As table 4.4, but for a SFE of 0.4 and a HE of 0.03. These models predict the complete dissolution of the UCD if IMF 1 or IMF 2 andan initial
total mass of2.5 × 107 M⊙ are assumed. The models with an initial total mass of2.5 × 108 M⊙ on the other hand keep most of their primordial gas and
therefore their evolution is completely different.

model IMF M∗,f/M∗,0 M∗b,f/M∗,f Mf R50,f Rpl,f error fe Σ0,f error σ0,f error
[106M⊙] [pc] [pc] [M ⊙ pc−2] [km s−1]

m7 r3 s04h003 1 0.079 UCD dissolves completely
m7 r5 s04h003 1 0.079 UCD dissolves completely
m8 r5 s04h003 1 0.079 0.997 188.8 8.8 7.2 0.0 1.4 55622 65 271.1 20.9
m7 r3 s04h003 2 0.114 UCD dissolves completely
m7 r5 s04h003 2 0.114 UCD dissolves completely
m8 r5 s04h003 2 0.114 0.997 196.5 8.5 7.0 0.0 1.3 86030 150 282.80 23.80
m7 r3 s04h003 3 0.281 0.742 2.09 29.0 28.1 0.2 10.4 1164 3 14.64 0.17
m7 r5 s04h003 3 0.281 0.469 1.32 42.5 46.8 0.6 9.2 308 1 9.69 0.11
m8 r5 s04h003 3 0.281 0.997 200.0 8.4 6.9 0.0 1.3 215810 340 287.40 24.70

(+) m7 r3 s04h003 4 0.547 0.944 5.16 17.2 14.5 0.0 4.5 9278 9 29.66 0.43
m7 r5 s04h003 4 0.547 0.835 4.57 25.9 23.3 0.0 4.6 3376 6 22.73 0.30
m8 r5 s04h003 4 0.547 0.996 202.4 8.4 6.8 0.0 1.3 424440 500 290.70 25.60

(+) m7 r3 s04h003 5 0.770 0.978 7.53 12.4 10.3 0.0 3.2 26578 18 42.36 0.79
(+) m7 r5 s04h003 5 0.770 0.906 6.98 18.9 16.6 0.0 3.3 9973 140 33.06 0.58

m8 r5 s04h003 5 0.770 0.996 208.4 8.2 6.7 0.0 1.3 623290 640 299.50 27.70
(+) m7 r3 s04h003 6 0.787 0.980 7.71 12.2 10.1 0.0 3.2 28116 25 43.33 0.82
(+) m7 r5 s04h003 6 0.787 0.919 7.23 18.7 16.2 0.0 3.2 10697 17 33.76 0.58

m8 r5 s04h003 6 0.787 0.996 208.4 8.2 6.7 0.0 1.3 633900 16 298.90 27.00
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In the case of a moderately high star formation efficiency (SFE=0.4) and and low heating
efficiency (HE=0.03), the UCD-models withMpl,0 = 2.5 × 107 M⊙ are gas-free at the end of
the computation (as are all models with HE=1). In contrast tothat, the models withMpl,0 =
2.5 × 108 M⊙ keep most of the gas at such a low HE, so that these UCD-models are predicted
to expand barely and to consist mainly of gas at the end of the integration, implying very high
M/LV ratios. (In the two most extreme cases, where the high-mass IMF slope isα = 1.1,
approximately 5 per cent of the total mass of the UCD-model isstars at that time, while the rest
is gas.) This is a very implausible situation. It is more likely that if the heating efficiency is
too low to drive the gas out of the cluster, the star formationefficiency would become higher
through new star formation episodes, until eventually all matter is locked up in low-mass stars
and thereby a SFE of 1 is approached.

However, the half-mass radius of a UCD would hardly change with time in this case, since
it keeps most of its initial mass (cf. equation 4.17), while the initial half-mass radii of UCDs
suggested in this paper are clearly smaller than the half-mass radii of observed present-day
UCDs (cf. table 5 in Mieske et al. 2008). This means that, if a UCD indeed retains most
of its mass, it must be born with an initial half-mass radius close to the observed values. By
calculating mass-loss histories of UCD-models withMpl,0 = 2.5 × 108 M⊙, SFE=0.4 and
HE=0.03 for different initial Plummer radii (by the method described in Section 4.2.2), it turns
out that the energy input from massive stars is sufficient to remove all gas from these UCD-
models at an initial projected half-mass radius (i.e. Plummer radius) of 12 pc instead of 5 pc,
even if the UCD-models have the canonical IMF. In contrast tothat, the most massive observed
UCDs, with masses of≈ 108 M⊙, are reported to have half-mass radii of≈ 100 pc. Thus,
adopting a major star burst as the scenario for the birth of a UCD (as done in this paper), an
object that is able to keep gas after the star burst would be too compact to evolve into an UCD.
On the other hand, if the object has an initial half-mass radius that allows it to evolve into a
UCD, it would loose its gas on a time scale of a few Myr. This excludes the above scenario
where a UCD forms a substantial part of its stellar population over a longer period of time after
the initial star burst.

Fig. 4.11 depicts the expansion rates of the UCDs with SFE=0.4 and HE=0.03 and shows a
strong difference between the modelled UCDs withMpl,0 = 2.5 × 108 M⊙ and the ones with
Mpl,0 = 2.5 × 107 M⊙. While the less massive UCD-models expand almost as much as in the
case of HE=1 (see Sections 4.3.1 and 4.3.2), the extension ofthe more massive UCD-models
hardly changes.

The final quantities found for the models with SFE=0.4 and HE=0.03 are shown in Ta-
ble 4.6. Except for models with IMFs that have the canonical high-mass slope, only model
m7 r3 s04h003 with IMF 4 (α = 1.9) is a good representation of a UCD. The time-evolution
of its Lagrange-radii is shown in Fig. 4.12. Fig. 4.13 on the other hand illustrates the evolution
of a UCD that dissolves completely because of extreme mass loss due to its very top-heavy IMF.
The only difference to the model shown in Fig. 4.12 is that IMF1(α = 1.1) instead of IMF 4
was assumed.

4.3.4 Implications on the initial parameters of UCDs

Based on the fraction of the mass that is lost from the modeledstellar systems and the factors by
which they expand due to mass loss, initial conditions that would lead to UCD-like objects can
be estimated. The results of such estimates are shown in Fig.4.14. Thus, UCDs may have been
born from extremely compact configurations with densities ranging up to108M⊙ pc−3. These
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Figure 4.14:Estimated initial masses and Plummer-radii that would leadto representative, UCD-type
objects. The black square to the left represents in each panel an observed typical small UCD with a
mass of5 × 106 M⊙ and a Plummer radius of 10 pc, whereas the black square to the right represents
an observed typical large UCD with a mass of40 × 106 M⊙ and a Plummer radius of 20 pc. The
remaining symbols show estimated initial masses and Plummer-radii, that would lead to one of these two
representative UCDs with the IMFs from Table 4.2, identifiedhere by the number assigned to them in
that table. The assumed star formation efficiency and heating efficiency are indicated at the top of each
panel. For the more massive UCD-like object, the estimated initial parameters are based on the total mass
loss (through stellar and dynamical evolution) and expansion factors of the models starting with a total
stellar initial massM∗,0 = 108 M⊙ (Table 4.1), while the estimates for the less massive UCD-like object
are based on the models withM∗,0 = 107 M⊙ (Table 4.1). The dashed lines in each panel show constant
central densities, starting from103 M⊙ pc−3 and increasing by a factor of ten downward with each line.
Note that the initial conditions resulting in the more massive representative UCD in the lowermost panel
(SFE=0.4 and HE=0.03) are based on models where hardly any gas is lost from the UCD-model while
no more stars are formed from this material, which is a unrealistic scenario (see Section 4.3.3).

numbers have admittedly to be taken with caution, since the expansion factors and the total
mass loss of the objects have been derived for stellar systems with different initial parameters,
using mass loss histories through stellar processes that were specifically created for them. Note
however the similarity between the expansion factors of models with the same initial mass and
IMF, but different initial radii (Figs. 4.8, 4.9 and 4.11). Analogous calculations to the ones
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Figure 4.15:The initial central densities that would lead to the representative UCD-type objects shown
as black squares in Fig. 4.14, given the mass losses and expansion factors of the UCD-models calculated
in this paper for the IMFs listed in Table 4.2. It is assumed (as in Fig. 4.14) that the mass loss and the
expansion experienced by an object that evolves into the more massive representative UCD (with a mass
of 40 × 106 M⊙ and a Plummer radius of 20 pc) is given by the mass losses and expansions calculated
for the UCD-models that start with an initial total stellar mass of108 M⊙ (Table 4.1). The evolution
of the less massive representative UCD (with a mass of5 × 106 M⊙ and a Plummer radius of 10 pc)
from its initial state is thought to be consistent with the mass losses and expansion factors found for the
UCD-models starting with an initial total stellar mass of107 M⊙ (Table 4.1). The central densities of
the initial states of UCDs in this figure are thus given by the initial masses and Plummer radii assigned
to them in Fig. (4.14), using equation (4.4) withR = 0.

performed here, but with the initial parameters plotted in Fig. 4.14 are therefore likely to lead to
final parameters that represent the actual parameters of UCDs better, but this needs to be studied
in follow-up work.

The initial central densities following from the pairs of initial masses and initial Plummer-
radii plotted in Fig. 4.14 are shown in Fig. 4.15. The initialparameters that would lead to
UCD-type objects according to Figs. 4.14 and 4.15 can be compared to the initial parameters of
the UCD-models listed in Tab 4.1, whose early evolution was calculated in this paper. It thereby
becomes apparent that the initial conditions resulting in UCDs may be even more extreme than
the ones that are specified in Table 4.1. Thus, encounters of proto-stars with stars, as discussed
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in Section 4.2.1, may be even more relevant for the star formation in actual UCDs than for
the UCD-models calculated in this paper. The UCDs may even have been dense enough for
frequent collisions between stars, so that this process could also have shaped their IMF (cf.
Bonnell et al. 1998).

Note the similarity of Figs. (4.8) (4.9) and (4.11) with the corresponding panels of Fig. (4.15),
except for the different scaling. This is because the expansion factor enters with the third power
into the calculation of the initial density for a given final mass and final Plummer-radius accord-
ing to equation (4.4), while the dependency on the lost mass is only linear.

Also note that the negligence of compact remnants induces a bias on the estimated initial
parameters: Remnants kept by the UCD-model diminish the mass that leaves the UCD-model
and thereby also reduce its expansion. For arriving at the mass and the Plummer radius of the
representative UCD-type objects plotted in Fig. 4.14, a UCD-model that keeps some of the mass
of the massive stars in the form of remnants would thus need a larger initial radius and a smaller
initial mass than a UCD-model that looses all remnants from massive stars. Consequently, the
initial density of the UCD-model that keeps some remnants would also be smaller. The total
mass of the remnants remaining in the UCDs has however been argued unlikely to be much
larger than 10 per cent of the total mass of their progenitor stars (Section 4.2.2) and the bias on
the initial parameters shown in Fig. 4.14 would be of the sameorder. The large implied mass-
loss through the evolution of massive stars does not contradict the highM/LV ratios of UCDs,
if the number of massive stars was sufficient in them, i.e. their IMF was top-heavy enough (cf.
Dabringhausen et al. 2009).

The bias caused by the the negligence of compact remnants mayhowever be alleviated by
an opposed bias. This opposed bias comes from the fact that non-adiabatic behaviour of the
UCD-models was taken into account in the actual calculationof their dynamical behaviour,
but not in the modelling of the mass loss driving the early evolution of the UCD-models (see
Section 4.2.2).

4.4 Summary and conclusions
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Figure 4.16:The final Plummer-radii against their final masses of all models that have not dissolved at
the end of the integration. Different symbols encode different IMFs, identified by the numbers assigned
to them in Tab 4.2. The assumed star formation efficiency and heating efficiency is given at the top of
each panel. The shaded regions indicate the parameter spaceoccupied by real UCDs.
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Table 4.7: Consistency-check between the models for the remnant populations of the UCDs discussed in Dabringhausen et al. (2009) based on their
dynamicalM/LV ratios with the models discussed here for their early dynamical evolution, assuming SFE=1 and HE=1 (for other SFEs and HEs see
Section 4.4). Dabringhausen et al. (2009) consider two different ages for the UCDs. The first column specifies various remnant populations of the UCDs, as
found in Dabringhausen et al. (2009). They differ by the massof the SN remnants and which fraction of them remains bound toits host UCD. Concerning the
kind of compact remnant a SN leaves, it is assumed that stars with initial masses between8 M⊙ and25 M⊙ become neutron stars with a mass of1.35 M⊙.
Stars with initial masses above25 M⊙ become black holes with either 10 or 50 per cent of the initialmass of their progenitors (mBH = 0.1or 0.5m∗).
The upper mass limit of the IMF is100 M⊙ in all models. The second column displays the high-mass IMF slopes,α, which correspond to these remnant
populations, given the mean dynamicalM/LV ratio of the UCDs (see Dabringhausen et al. (2009) for details). The uncertainties onα are calculated from
the uncertainties on the meanM/LV ratios. Columns 3 to 5 indicate how consistent the models discussed in Dabringhausen et al. (2009) are with the ones
discussed here. In this context, a ’+’ means thatα± 0.1 agrees with the high-mass IMF slope in one of the UCD-models marked with a ’(+)’ in Table 4.4,
i.e. |α − α| < 0.1, whereα is the high-mass slope of the IMF whose number according to Table 4.2 is given in brackets. A ’#’ has an analogous meaning,
but it is only required that|α − α| < 0.2. A ’−’ indicates that a model with these initial condidtions can only reproduce final parameters as observed in
UCDs with an IMF with|α− α| > 0.2.

remnant population α m7 r3 h1 s1 m7r5 h1 s1 m8r5 h1 s1

assumed age of 13 Gyr

no SN remnants retained 1.35+0.23
−0.17 − − # (3)

20 per cent of the SN remnants retained,mBH = 0.1m∗ 1.57+0.17
−0.12 − − + (3)

20 per cent of the SN remnants retained,mBH = 0.5m∗ 1.78+0.13
−0.09 # (4) # (4) −

all SN remnants retained,mBH = 0.1m∗ 1.85+0.14
−0.10 + (4) + (4) −

assumed age of 7 Gyr

no SN remnants retained 0.49+0.09
−0.08 − − −

20 per cent of the SN remnants retained,mBH = 0.1m∗ 1.04+0.05
−0.04 − − + (2)

20 per cent of the SN remnants retained,mBH = 0.5m∗ 1.34+0.04
−0.04 − − # (3)

all SN remnants retained,mBH = 0.1m∗ 1.40+0.05
−0.04 − − # (3)



136 CHAPTER 4. EXPANSION OF YOUNG UCDS

We calculate the early evolution of extremely massive star clusters, using the particle-mesh
code Superbox. Their initial radii are chosen in concordance with typical values for globular
clusters (GCs), while their initial masses reflect the masses of ultra compact dwarf galaxies
(UCDs). The early evolution of a star cluster is driven by mass loss through gas expulsion and
stellar evolution. This mass loss is treated by reducing themass of each particle in accordance
with previously tabulated mass loss histories, so that the total mass of all particles agrees with
the total mass of the UCDs as given in those tables. The rate and the magnitude of the mass
loss depends in particular on the stellar initial mass function (IMF). Since it was suggested that
UCDs may have formed with a top-heavy IMF (Dabringhausen et al. 2009), the integrations
use mass loss tables not only for the canonical IMF but also with different top-heavy IMFs. A
possible explanation for why the IMF in UCDs could be top-heavy is encounters between proto-
stars and stars. If UCDs indeed formed as the most massive star clusters, as suggested in this
paper, such encounters would be quite likely in emerging UCDs. In contrast, such encounters
are not very probable in stellar systems that evolve into star clusters like the Orion nebula
cluster. This implies that star formation in UCDs may be influenced by processes that do not
play a significant role in less massive stellar systems. The final masses and Plummer-radii
resulting from the calculations in this paper are shown in Fig. 4.16.

The possible initial conditions we uncover here (Figs. 4.14and 4.15) include densities as
high as108 M⊙ pc−3 for the forming UCDs with top-heavy IMFs (α ≤ 1.9). The supernova
rates are at times as high as one per year in the UCD-models with with an initial stellar mass of
107 M⊙ and the most top-heavy IMFs (Fig. 4.4) and higher by a factor of 10 in the UCD-models
with an initial stellar mass of108 M⊙.

Starting from our initial conditions (Table 4.1), we seek those final models that represent
UCDs in terms of their radii, masses andM/LV -ratios in the following.

• If the UCDs form as star clusters with a high star-formation efficiency and a high heating
efficiency (as discussed with the case SFE=1 and HE=1; see Section 4.3.1), the properties
of present-day UCDs are reproduced from models with all IMFsin Table 4.2 except
IMF 1, i.e. with stellar populations with high-mass IMFs in the whole range fromα = 2.3
(canonical IMF) toα = 1.1 (see Table 4.4 and Fig. 4.16). The different models imply
however different ages and different stellar remnant populations for the UCDs, because
they are constrained by the averageM/LV ratio that is observed for UCDs (cf. table 3 in
Dabringhausen et al. 2009). A consistency check between themodels in this paper and
the models in Dabringhausen et al. (2009) is provided in Table 4.7.Note that the model
from Dabringhausen et al. (2009) where stars with an initialmass larger than25M⊙ are
assumed to evolve into black holes that have 50 per cent of themass of their progenitors
and all compact remnants are thought to be retained by the UCDis not listed in Table 4.7.
This is because it is not consistent with the assumption thatUCDs loose most of the
mass that was initially locked up in their massive stars. However, it seems likely that
UCDs loose indeed most of this mass (see Section 4.2.2. The model from Dabringhausen
et al. (2009) where all matter is kept within the UCDs is also omitted from Table 4.7, even
though it would seem consistent with the UCD-models with initial stellar mass of108 M⊙,
a SFE of 0.4 and a HE of 0.03. These initial parameters lead however to a unrealistic
situation at the end of the calculation, because the UCD-models that can evolve this way
stay too compact for being consistent with real UCDs (see Section 4.3.3).

As a result of the comparison shown in Table 4.7, the models with IMFs 5 and 6 (canonical
high-mass IMF slope) can be excluded as formation scenariosfor the UCDs as a class of
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objects. This is because these models suggest that theM/LV ratio is consistent with
the ones predicted by simple stellar population models, which is not the case for UCDs
(Dabringhausen et al. 2008; Mieske et al. 2008). The models with IMFs 5 and 6 would
however be consistent with the UCDs in the Fornax Cluster if they are very old, because
their averageM/LV ratio is somewhat lower than the ones of UCDs in general (Mieske
et al. 2008).

• If the UCDs form as star clusters with a moderate star-formation efficiency and high
heating efficiency (as discussed with the case SFE=0.4 and HE=1; see Section 4.3.2),
extremely top-heavy IMFs (α = 1.1) can be excluded because they would lead to the
complete dissolution of the cluster. Model m8r5 h1 s04 with IMF 4 (α = 1.9) resembles
a massive present-day UCD at the end of the integration. A comparison with table 3 in
Dabringhausen et al. (2009) shows that this model is consistent with two cases listed
there. The first of them is the case of the UCDs being 13 Gyr old,keeping 20 per cent of
the SN remnants and black holes, which retain 50 per cent of the mass of their progenitor
stars. The second is the case of the UCDs being 13 Gyr old, keeping all SN remnants
and black holes having 10 per cent of the mass of their progenitor stars. These would be
the only cases where a table analogous to Table 4.7 would indicate consistency between
the UCD-models here and the ones in Dabringhausen et al. (2009). As in the case of
SFE=1 and HE=1, the models with IMFs 5 and 6 (canonical high-mass IMF slope) can
be excluded as formation scenarios for the UCDs as a class of objects, because of their
too-lowM/LV ratio (Dabringhausen et al. 2008; Mieske et al. 2008).

• If the UCDs form as star clusters with a moderate star-formation efficiency and low heat-
ing efficiency (as discussed with the case SFE=0.4 and HE=0.03; see Section 4.3.3), the
models with an initial mass of2.5 × 108 M⊙ lead to the unrealistic case that gas of the
order of108 M⊙ is confined on a very small volume at the end of our calculations. Models
starting with an initial mass of2.5× 107 M⊙ on the other hand dissolve for the two most
top-heavy IMFs, like in the case of SFE=0.4 and HE=1. Model m7r3 s04 h003 with
IMF 4 (α = 1.9) is similar to a small present-day UCD at the end of the calculation. A
comparison with table 3 in Dabringhausen et al. (2009) showsthat this model is consis-
tent with two cases listed there. The first of them is the case of the UCDs being 13 Gyr
old, keeping 20 per cent of the SN remnants and black holes, which retain 50 per cent
of the mass of their progenitor stars. The second is the case of the UCDs being 13 Gyr
old, keeping all SN remnants and black holes having 10 per cent of the mass of their pro-
genitor stars. These would be the only cases where a table analogous to Table 4.7 would
indicate consistency between the UCD-models here and the ones in Dabringhausen et al.
(2009).

Note the difference to the UCD-models with moderate SFE and high HE. In the case of
a moderate SFE and high HE, consistency between the UCD-models from this paper and
the models for the remnant populations of UCDs from Dabringhausen et al. (2009) is
reached for a UCD-model starting with an initial stellar mass of 108 M⊙, whereas in the
case of a moderate SFE and a low HE consistency is reached for aUCD-model starting
with an initial stellar mass of107 M⊙. The UCD-models from this paper are however
in both cases consistent with the same models for the remnantpopulations of UCDs in
Dabringhausen et al. (2009). As in the case SFE=1 and HE=1, the models with IMFs 5
and 6 (canonical high-mass IMF slope) can be excluded as formation scenarios for the
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UCDs as a class of objects, because of their too-lowM/LV ratio (Dabringhausen et al.
2008; Mieske et al. 2008).

Thus, in summary, the preferred solution of the initial conditions problem for a SFE of 0.4
are a proto-UCD with a stellar initial mass of108 M⊙ and a projected half-mass radius of 5 pc
(HE=1) or a proto-UCD with a stellar initial mass of107 M⊙ and a projected half-mass radius
of 3 pc (HE=0.03). UCD-models with SFE=1 are discussed in Section 4.3.1 and for SFE=1 and
HE=1, the preferred solutions are presented in Table 4.7.

The comparison between the final parameters of our models andobserved parameters of
present-day UCDs contain some uncertainties for initial parameters that lead to the formation
of UCDs because of a number of approximations and simplifying assumptions (also see Sec-
tion 4.2 for this matter). For instance, the density profilesof UCDs are usually better fitted by
a King profile (King 1966) than by a Plummer profile. Also, the calculations performed here
stop at 250 Myr, whereas UCDs are≈ 10 Gyr old. Thus UCDs will have suffered from adi-
abatic mass loss through the evolution of intermediate-mass stars, if the material expelled by
them is not used up in the formation of subsequent stellar populations. Finally, the tidal field
of the host galaxy of the UCD may play a role for its evolution on a Gyr time-scale. The per-
formed comparison demonstrates however that also the more rapid early mass loss triggered by
an over-abundance of massive stars does not necessarily lead to complete dissolution of mas-
sive, dense stellar systems, but can result in objects similar to a UCD. The existence of UCDs is
therefore not in contradiction with their formation with a top-heavy IMF. In a number of cases,
a top-heavy IMF leads to a strong inflation of the modelled UCDs, but does not completely
disintegrate them.
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Chapter 5

Low-mass X-ray binaries indicate a
top-heavy stellar initial mass function in
ultra compact dwarf galaxies

J. Dabringhausen, P. Kroupa, J. Pflamm-Altenburg, S. Mieske, 2012,ApJ, 747, 72

Abstract:

It has been shown before that the high mass-to-light ratios of ultra compact dwarf galaxies (UCDs)
can be explained if their stellar initial mass function (IMF) was top-heavy, i.e. that the IMF was skewed
towards high mass stars. In this case, neutron stars and black holes would provide unseen mass in the
UCDs. In order to test this scenario with an independent method, we use data on which fraction of UCDs
has a bright X-ray source. These X-ray sources are interpreted as low-mass X-ray binaries (LMXBs),
i.e. binaries where a neutron star accretes matter from an evolving low-mass star. We find that LMXBs
are indeed up to 10 times more frequent in UCDs than expected if the IMF was invariant. The top-heavy
IMF required to account for this overabundance is the same asneeded to explain the unusually high
mass-to-light ratios of UCDs and a top-heavy IMF appears to be the only simultaneous explanation for
both findings. Furthermore, we show that the high rate of typeII supernovae (SNII) in the star-burst
galaxy Arp 220 suggests a top-heavy IMF in that system. This finding is consistent with the notion that
star-burst galaxies are sites where UCDs are likely to be formed and that the IMF of UCDs is top-heavy.
It is estimated that the IMF becomes top-heavy whenever the star formation rate per volume surpasses
0.1 M⊙ yr−1 pc−3 in pc-scale regions.
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5.1 Introduction

The stellar initial mass function (IMF) quantifies the distribution of stellar masses in a newly
born stellar population. Together with the dependency of stellar evolution on stellar mass and
metallicity, as well as the rate at which stars are formed in the Universe, the shape of the IMF
determines the chemical evolution of the Universe and how its stellar content changes with time.
The shape of the IMF also has important implications for the evolution of star clusters. Thus,
knowing the shape of the IMF is crucial for a broad variety of astrophysical problems.

Resolved stellar populations in the Milky Way and its satellites support the notion that the
IMF does not depend on the conditions under which star formation takes place, but that the
stellar masses are distributed according to a single IMF known as thecanonicalIMF (Kroupa
2001, 2002; Kumar et al. 2008; Bastian et al. 2010). Ultra compact dwarf galaxies (UCDs)
on the other hand provide evidence for the opposite notion, namely that the IMF varies and is
top-heavy.

These UCDs are stellar systems that have first been discovered in the Fornax galaxy clus-
ter (Hilker et al. 1999). They haveV -band luminosities between106 and some107 L⊙, but
half-light radii of only about 50 pc or less (Drinkwater et al. 2003; Mieske et al. 2008). The
confirmed UCDs are at distances where they cannot be resolvedinto stars with current tele-
scopes, but constrains on their stellar populations can be set by quantities derived from their
integrated spectra. One such quantity are the dynamical mass-to-light (M/L) ratios of UCDs,
i.e mass estimates based on the density profile and the internal velocity dispersion of the UCDs
(Haşegan et al. 2005; Hilker et al. 2007; Evstigneeva et al.2007; Mieske et al. 2008). For a clear
majority of the UCDs, theM/L ratios derived from their dynamics are higher than it would be
expected if they were pure stellar populations that formed with the canonical IMF (Haşegan
et al. 2005; Dabringhausen et al. 2008; Mieske et al. 2008). This has been taken as evidence for
an IMF skewed towards high-mass stars (Dabringhausen et al.2009), i.e. a top-heavy IMF. The
elevatedM/L ratios of UCDs would then be explained by a large population of neutron stars
and black holes (hereafter called dark remnants), because the age of the UCDs (Evstigneeva
et al. 2007; Chilingarian et al. 2008) implies that all massive stars in them have completed their
evolution.

It is plausible that the IMF in UCDs is skewed towards high-mass stars. Molecular clouds
massive enough to be the progenitors of UCDs become impenetrable for far-infrared radiation
while they collapse and become a UCD-type star-cluster. Internal heating of the molecular
cloud leads to a higher Jeans-mass in them preferring the formation of high-mass stars (Murray
2009). A molecular cloud can also be heated by an external fluxof highly energetic cosmic rays
originating from a local overabundance of type II supernovae increasing the local Jeans-mass
(Papadopoulos 2010). With the young UCDs being very compact, also crowding of proto-stellar
cores and their subsequent merging in young UCDs may lead to an overabundance of high-mass
stars in them (Dabringhausen et al. 2010; Weidner et al. 2011).

However, the highM/L ratios of UCDs could in principle also be due to non-baryonicdark
matter (DM), as was suggested by Goerdt et al. (2008) and Baumgardt & Mieske (2008). This
is because dark remnants and non-baryonic DM would have the same effect on theM/L ra-
tios of the UCDs, provided that a large enough amount of non-baryonic DM can gather within
the UCDs. Note that that non-baryonic DM is an unlikely causefor the highM/L ratios of
UCDs, since non-baryonic DM is predicted to gather on ratherlarge scales while UCDs are
very compact (Gilmore et al. 2007; Murray 2009). However, inorder to exclude this possibility
completely, the presence of a sufficient number of dark remnants has to be confirmed indepen-
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dently by a method that does not rely on the fact that dark remnants are non-luminous matter
like non-baryonic DM.

Such a method is searching for low-mass X-ray binaries (LMXBs) in UCDs. In these bi-
nary systems, a dark remnant and an evolving low-mass star are orbiting around each other.
The expanding outer atmosphere of the low-mass companion isaccreted by the dark remnant.
This matter produces a characteristic X-ray signature. Thenumber of LMXBs depends on the
number of NSs and stellar-mass black holes (BHs) and thus on the IMF (Verbunt & Hut 1987;
Verbunt 2003). This implies that stellar systems with a top-heavy IMF can be distinguished
from stellar systems with the canonical IMF by an excess of LMXBs.

The formulation of the IMF that is used throughout this paperis introduced in Sec. (5.2).
In Sec. (5.3), the LMXB-abundance in globular clusters (GCs) and UCDs in dependency of the
IMF and this model is compared to observations. The type-II supernova rate in star-bursting
galaxies in dependency of the top-heaviness of the IMF is discussed in Sec. (5.4). It is found
in Sec. (5.3) and Sec. (5.4), respectively, that the UCDs andthe star-bursting galaxy Arp 220
show indications for a top-heavy IMF. This suggests that thestar formation rate per volume is
perhaps the parameter that determines whether the IMF in that volume becomes top-heavy, as
is argued in Sec. (5.5). Conclusions are given in Sec. (5.6).

5.2 The initial stellar mass function

A varying IMF can be formulated as

ξ(m) = k kim
−αi , (5.1)

with

α1 = 1.3, 0.1 ≤
m

M⊙

< 0.5,

α2 = 2.3, 0.5 ≤
m

M⊙

< mtr,

α3 ∈ R, mtr ≤
m

M⊙

≤ mmax,

wherem is the initial stellar mass, the factorski ensure that the IMF is continuous where the
power changes andk is a normalization constant.ξ(m) equals 0 ifm < 0.1M⊙ or m >
mmax, wheremmax is a function of the star-cluster mass (Weidner & Kroupa 2006; Weidner
et al. 2010) andmtr is the stellar mass at which the IMF begins to deviate from thecanonical
IMF. For mtr = 1M⊙, the formulation of the IMF used here is identical with the one used in
Dabringhausen et al. (2009), so that results found here for this choice ofmtr can be compared to
results in Dabringhausen et al. (2009). Forα3 = α2 = 2.3, Equation (5.1) is the canonical IMF
(Kroupa 2001, 2002). Forα3 < 2.3, the IMF is top-heavy, implying more intermediate-mass
stars and in particular more high-mass stars.

In the mass range of UCDs,mmax is not set by the mass of the stellar system, but by the
observed mass limit for stars,mmax∗. Thus,mmax = mmax∗ for all UCDs. The actual value of
mmax∗ is, however, rather uncertain: Estimates range from the canonical valuemmax∗ ≈ 150M⊙

(Weidner & Kroupa 2004; Oey & Clarke 2005) tommax∗ ≈ 300 M⊙ (Crowther et al. 2010, but
see Banerjee et al. 2012). In this paper,mmax∗ = 150 M⊙ is assumed, but note that assuming
mmax∗ = 300 M⊙ instead would have little effect on the results reported here (see Section 5.3.3
and Figure 5.7).
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In the case of GCs and UCDs with LMXBs (see Section 5.3), the observed luminosity,
L, is known to originate from stars with massesm . 1 M⊙. This is because their stellar
populations are old (Evstigneeva et al. 2007; Chilingarianet al. 2008) and the more massive
stars have already completed their evolution. Being fixed byobservations,L should however
not be changed when the IMF is varied. For the IMF given by Equation (5.1), this can be
achieved by findingk from the condition

∫ mmax∗

0.1 M⊙

ξcan(m)mdm = 1M⊙, (5.2)

whereξcan is the canonical IMF, i.e.α3 = 2.3. With this normalization, the number density
of stars withm < 1 M⊙ is the same for all values ofα3, since the normalization is set by the
canonical IMF and is therefore not affected by variations ofα3.

In the case of the SN-rate of Arp 220 (see Section 5.4), the light used to estimate the star
formation rate (SFR), i.e. the mass of the material converted into stars per time-unit, originates
from stars over the whole range of stellar masses. With the SFR thereby given, we then normal-
ize the IMF such that the SFR remains constant when the IMF is varied. For the IMF given by
Equation (5.1), this can be achieved by findingk from the condition

∫ mmax∗

0.1 M⊙

ξ(m)mdm = 1M⊙. (5.3)

With this normalization, the number density of stars withm < 1 M⊙ decreases with decreasing
values ofα3, i.e. with increasing top-heaviness of the IMF.

Stellar evolution and dynamical evolution turn the IMF of a star cluster into a (time-dependent)
mass function of stars and stellar remnants; the star and stellar remnant mass function, SRMF.
For a single-age stellar population, the connection between the IMF and the SRMF can be
quantified by an initial-to-final mass relation for stars,mrem, which can be written as

mrem =
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(5.4)

wheremto is the mass at which stars evolve away from the main sequence at a given age
(Dabringhausen et al. 2009). UCDs typically have ages of≈ 10 Gyr (Evstigneeva et al. 2007;
Chilingarian et al. 2008), which impliesmto ≈ 1 M⊙ for them. In the present paper, Equa-
tion (5.4) is used to calculate how the mass of a modeled UCD depends on the variation of its
IMF (see Section 5.3.2).

Note that Equation (5.4) reflects the evolution of single stars. In a binary system, the initial
mass of a star that evolves into a black hole is expected to be higher, so that stars with masses
up to 40M⊙ may become NSs instead of BHs (cf. Brown et al. 2001). It is however of minor
importance in this paper whether a massive remnant is a NS or aBH. Both kinds of objects can
become bright X-ray sources by accreting matter from a companion star and BHs in such binary



144 CHAPTER 5. LMXBS IN UCDS

systems are actually detected by excluding that they are NSsdue to their mass (Casares 2007).
Also the total mass of a GC or UCD is not strongly affected by the mass-limit between NSs and
BHs. Using Equation (refeq54) withmtr = 1 M⊙ and Equation (5.4) withmto = 1 M⊙, the
total mass of NSs and BHs is 4.2 per cent of the total mass of thestellar system forα3 = 2.3
(canonical IMF) and 79.9 per cent forα3 = 1. These numbers are altered to 3.8 per cent of the
total mass of the stellar system forα3 = 2.3 and 75.0 per cent forα3 = 1 if the transition from
NSs to BHs is shifted from25 M⊙ to 40 M⊙.

5.3 The LMXB-abundance in GCs and UCDs

5.3.1 Some properties of GCs and UCDs

For a number of GCs and UCDs, data (Mieske et al. 2008) onV -band luminosity (LV ), dynami-
cal mass (Mdyn) and effective half-light radius (rh) are available. These data suggest a transition
atLV ≈ 106 L⊙, since therh and dynamicalM/L ratios of objects withLV < 106 L⊙ appear
to be independent ofLV , in contrast to objects withLV > 106 L⊙ (see Figures 5.1 and 5.2).
This motivates to consider the objects withLV < 106 L⊙ as GCs and those withLV ≥ 106 L⊙

as UCDs, even though stellar systems close to this transition could be assigned to either one of
these classes (Mieske et al. 2008).

Knowingrh andMdyn of a stellar system allows to estimate its median two-body relaxation
time (Spitzer 1987), using

trh =
0.234

log10(Mdyn/M⊙)
×

√

Mdyn r3h
G

, (5.5)

whereG is the gravitational constant (Dabringhausen et al. 2008).The significance oftrh lies
in the fact that it sets the time-scale on which the structureof a self-bound stellar system is
changed by the process of energy equipartition. Ifτ & trh holds for a stellar system withτ
being its age, it can be considered nearly unaffected by dynamical evolution and is thus only
subject to stellar evolution. This is the case for UCDs, astrh & τH is valid for them, whereτH
is the age of the Universe suggested by theΛCDM-model (see Figure 5.3). Thus, the properties
of UCDs can be calculated from their IMF while considering the effects of stellar evolution,
but without accounting for the effects of dynamical evolution. This means in particular that the
SRMF of UCDs can be calculated from their IMF and Equation (5.4). Note that GCs, on the
other hand,are subject to dynamical evolution, since their ages,τGC are also similar toτH and
thusτGC > trh.

The data (Mieske et al. 2008) onLV andrh of individual GCs in the MW and in Centaurus
A and UCDs in the Virgo-cluster are also useful for estimating an averagerh, rh, as a function
of LV . GCs over the luminosity range from104 L⊙ to 106 L⊙ do not show a luminosity-radius
trend (McLaughlin 2000; Jordán A. et al. 2005). The logarithmic averagerh of GC is

log10

(

rh
pc

)

= 0.4314 (5.6)

(Jordán A. et al. 2005). Performing a linear least-squaresfit to data in Mieske et al. (2008) on
UCDs in the Virgo cluster leads to

log10

(

rh
pc

)

= 1.076 log10

(

LV

106LV,⊙

)

+ 0.4314. (5.7)
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Figure 5.1: The effective half-light radii,rh, of GCs and UCDs. The circles show the sample of
individual GCs and UCDs from the compilation of Mieske et al.(2008). The dashed line is an estimate
of the averagerh of GCs and UCDs (cf. Equations 5.6 and 5.7). The vertical dotted line sets the limit
between objects that are considered as GCs and objects that are considered as UCDs. Note that the
averagerh indicated for GCs by the dashed line is lower than the averagerh of the GCs shown in this
figure. This is because the GCs shown here are mostly GCs of theMilky Way while the dashed line
corresponds to the averagerh of GCs in the Virgo-cluster. The GCs in the Virgo cluster tendto be more
compact than those around the Milky Way.

Note that equality between Equations (5.6) and (5.7) atLV = 106 L⊙ was imposed as a sec-
ondary condition on the fit of Equation (5.7) to the data. Thissecondary condition reflects the
fact that therh of GCs are indistinguishable from those of UCDs atL ≈ 106 L⊙ (see Figures 5.1
and 5.2).

5.3.2 Modeling the LMXB-abundance in GCs and UCDs

The origin of LMXBs in GCs and UCDs

Tight binaries consisting of a dark remnant and a low-mass companion can have in principle
two different origins:

1. They can be primordial. In this case a tight binary of a high-mass star and a low-mass star
have formed already in the star forming event. The high-massstar explodes in a supernova
after a few million years leaving behind a dark remnant whichcan remain bound to its
low-mass companion.
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Figure 5.2: The mass-to-light ratios (M/L-ratios) of GCs and UCDs. The circles show the sample of
individual GCs and UCDs from the compilation of Mieske et al.(2008). The vertical dotted line sets the
limit between objects that are considered as GCs and objectsthat are considered as UCDs.

2. They have formed through encounters. GCs and UCDs are regions of enormously high
stellar density ranging from10 M⊙ pc−3 to 104 M⊙ pc−3 (Dabringhausen et al. 2008).
Encounters between dark remnants and low-mass stars are therefore frequent and can lead
to the formation of LMXBs due to tidal capture (Verbunt & Hut 1987; Verbunt 2003).

As these formation mechanisms are quite different it is expected that both processes would
contribute differently to the LMXB content in GCs and UCDs.

There are however strong arguments against a significant contribution from primordial bi-
naries to the LMXB content of GCs and UCDs:

1. The number of LMXBs in GCs is strongly correlated with the encounter rate and thus
clearly linked to it (Jordán A. et al. 2005; Sivakoff et al. 2007).

2. There are several hundred times more LMXBs per unit mass inGCs than in the Galactic
field (Verbunt & Hut 1987). The LMXBs in the Galactic field are LMXBs that probably
evolved from primordial binaries, since they are in a low-density environment where
encounters play no role and most probably formed in star clusters from which they were
subsequently ejected. The strong excess of LMXBs in GCs therefore suggests that most
LMXBs in GCs form through encounters (Verbunt & Hut 1987).
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Figure 5.3:The median two-body relaxation times,trh, of GCs and UCDs. The circles show the sample
of individual GCs and UCDs from the compilation of Mieske et al. (2008). The dashed horizontal line
indicates the age of the Universe,τH, according to theΛCDM-model. The vertical dotted line sets the
limit between objects that are considered as GCs and objectsthat are considered as UCDs. Note that
trh & τH for UCDs. Thus, UCDs can be considered dynamically unevolved (Dabringhausen et al. 2008)
and they may therefore be considered as galaxies from a stellar dynamical point of view (Forbes &
Kroupa 2011).

The number of encounters relevant for the creation of LMXBs,i.e. encounters where a NS
can capture a low-mass star (Verbunt & Hut 1987), can be written as

Γ ∝
nns ns r

3
c

σ
, (5.8)

wherenns is the number density of NSs,ns is the number density of potential low-mass com-
panion stars,rc is the core radius of the stellar system andσ is the velocity dispersion (Verbunt
2003). The potential companions to a NS in a bright LMXB are stars that come from a rather
narrow mass range where stars of a given age leave the main-sequence. At this stage of their
evolution, the stars expand rapidly, which makes a high accretion rate on the NS possible, which
in turn leads to a high X-ray luminosity.

A more recent study by Ivanova et al. (2008) revealed that tidal capture is not the only
dynamical process relevant for the formation of LMXBs. Other dynamical processes like direct
collisions between NSs and red giant stars or interactions between stars and existing binaries
also play a role and can actually be even more important than tidal captures. However, this
does not change the observational finding that the number of LMXBs in GCs scales withΓ (e.g.
Jordán A. et al. 2005). Therefore,Γ seems to be an adequate measure for the stellar dynamical
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processes that produce LMXBs in general. It is moreover argued in Ivanova et al. (2008) that
primordial binaries only make a small contribution to the total population of LMXBs in old
GCs.

There are thus strong observational and theoretical motivations for the usage ofΓ as a mea-
sure for how many LMXBs are expected in GCs and UCDs.

The encounter rate in GCs and UCDs for an invariant SRMF

If only a single, invariant mass function for stars and stellar remnants (SRMF) is considered for
all stellar systems, then

nns ∝ ns ∝ ρ0 (5.9)

holds, whereρ0 is the central mass density. Equation (5.8) can then be rewritten as

Γ ∝
ρ20 r

3
c

σ
(5.10)

by using Equation (5.9).
In order to link the theory on LMXB-formation to the optical properties of observed stellar

systems, it is in the following assumed that the mass densityof a stellar system follows its
luminosity density. The structural parameters derived from the distribution of the light in the
stellar system can then be translated directly into statements on the distribution of its mass, i.e.
quantities that determine the dynamics of the stellar system.

However,rc is difficult to measure for GCs and UCDs at the distance of the Virgo cluster,
as these stellar systems are barely resolved with current instruments. The projected half-light
radiusrh (and thus the half-mass radius under the assumption that mass follows light) is larger
and therefore less difficult to retrieve from the data. For practical purposes, it is therefore useful
to assume

rc ∝ rh (5.11)

and

ρ0 ∝
M

r3h
, (5.12)

whereM is the mass of the stellar system. The King profile (King 1962)with its three indepen-
dent parameters (core radius, tidal radius and central density), is thereby simplified to a density
profile with only two independent parameters (half-mass radius and mass). The underlying as-
sumptions are not necessarily true, and indeed, not fulfilled for GCs in the Milky Way since
McLaughlin (2000) finds that more luminous GCs tend to be moreconcentrated. However,
regarding the conclusions on how the presence of bright LMXBs is connected to the optical
properties of GCs in the Virgo cluster, these assumptions are unproblematic. Using the same
concentration for all GCs in their sample Sivakoff et al. (2007) find that they essentially come
to the same results as Jordán et al. (2004), who use an individual estimate for the concentration
of each GC in their sample.

When dealing with UCDs, replacingrc with rh is even advantageous. The time-scale on
which the NSs gather at the centre of the UCD is given as

tseg =
m

mns
tcc, (5.13)

wherem ≈ 0.5 M⊙ is the mean mass of stars,mns ≈ 1.35 M⊙ is the mass of neutron stars
and tcc is the core-collapse time of the UCD without the NSs (Spitzer1987; Banerjee et al.
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2010). If a Plummer sphere (Plummer 1911) is used as an approximation for the density profile
of a stellar system,tcc ≈ 15 trh holds (Baumgardt et al. 2002). Withtrh being of the order
of a Hubble time for UCDs, Equation (5.13) implies that the distribution of NSs in UCDs still
follows the initial distribution of their progenitors. Thevolume relevant for the formation of
LMXBs in a UCD is therefore better measured byrh than byrc, provided its stellar population
did notformmass-segregated. This is becauserh represents the size of the whole UCD, whereas
rc represents the size of its centre.

Thus, using Equations (5.11) and (5.12), Equation (5.10) can be transformed into

Γh ∝
M2

r3h σ
. (5.14)

If the stellar system is also in virial equilibrium,

σ ∝ ρ0.50 rh ∝
M0.5

r0.5h

(5.15)

holds. In this case,

Γh ∝
M1.5

r2.5h

(5.16)

follows from Equations (5.14) and (5.15). In contrast to Equation (5.8), Equation (5.16) has
only two variables (M, rh) instead of four (ns, nns,M, rc).

A further variable can be eliminated by replacing individual values forrh by luminosity-
dependent estimates forrh, such as Equations (5.6) and (5.7), and noting that the same SRMF
for all stellar systems in question impliesM ∝ LV for them. This leads to

Γh ∝
L1.5
V

r2.5h

, (5.17)

or, more explicitly by using Equations (5.6), and (5.7), respectively,

log10(Γh) = 1.5 log10

(

LV

106 L⊙

)

+ A (5.18)

for GCs (i.e.LV < 106 L⊙), and

log10(Γh) = −1.190 log10

(

LV

106 L⊙

)

+ A (5.19)

for UCDs (i.e.LV ≥ 106 L⊙). The constantA is the same in Equations (5.18) and (5.19). Note
that the transition between Equations (5.18) and (5.19) is continuous due to the continuity ofrh
atLV = 106 L⊙.

Detecting a variable SRMF with LMXBs

For investigating howΓh depends on the IMF, it is useful to consider the ratio betweenΓh as a
function ofα3 and theΓh implied by some reference IMF. This has the advantage that factors,
which do not depend on the IMF, cancel. The reference IMF is the canonical IMF in this paper;
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a choice that is motivated with the lack of dynamical evolution in UCDs (cf. Section 5.3.1).
Using Equation (5.12) thus leads to

Γh(α3)

Γh(α3 = 2.3)
=

nns(α3)

nns(α3 = 2.3)

√

M(α3 = 2.3)

M(α3)
, (5.20)

if it also assumed that the IMF varies only for stars withm > mto, so that alsons is constant. By
this last assumption, the luminosity of the UCDs, which is given by observations, stays constant
when the IMF of the UCDs is varied. The right side of Equation (5.20) can be calculated if the
IMF is specified. In particular,

nns(α3)

nns(α3 = 2.3)
=

∫ mmax∗

8 M⊙
ξ(m) dm

∫ mmax∗

8 M⊙
ξcan(m) dm

, (5.21)

and
M(α3 = 2.3)

M(α3)
=

∫ mmax∗

0.1 M⊙
mrem(m)ξcan(m) dm

∫ mmax∗

0.1 M⊙
mrem(m)ξ(m) dm

, (5.22)

where the IMF is normalised using Equation (5.2),ξcan is the canonical IMF andmrem(m) is
given by Equation (5.4). Thus, Equation (5.20) quantifies how Γh changes in a stellar system
(normalized withΓh for the canonical IMF) if the number of dark remnants and therefore the
mass of the stellar system are changed, while its characteristic radius and the number of stars
are kept constant.

A difficulty is thatΓh of a stellar system cannot be measured directly. However, the actual
Γh of a GC or a UCD scales with the rate at which LMXBs are created (see Sec. 5.3.2), which is
proportional to the probabilityP to form an LMXB above a certain brightness limit in a given
time. If a sample of GCs or UCDs in a certain luminosity interval is given, a useful estimator
for the averageP of these GCs or UCDs is the fractionfLMXB of them that have an LMXB
above the brightness limit defined by the sensitivity of a given set of observations. Thus,

fLMXB ∝ P ∝ Γγ
h, (5.23)

where the exponentγ accounts for the claims that the LMXB-frequency in GCs and UCDs may
not be directly proportional toΓ or Γh, but to some power ofΓ or Γh (cf. Jordán et al. 2004;
Sivakoff et al. 2007).

If the SRMF of UCDs is indeed independent of luminosity, thefLMXB of UCDs in different
LV intervals should all roughly coincide with the prediction from Equation (5.19) for an appro-
priate choice of the constantA. If however thefLMXB of at least oneLV interval is inconsistent
with Equation (5.19) for any choice ofA, then this would be evidence for the SRMF changing
with the luminosity of the UCDs. This would imply that the IMFof the UCDs changes with
luminosity, since the SRMF of UCDs is solely determined by stellar evolution, i.e. a process
that does not depend on the size of the system (see Section 5.3.1). Note that the actual value of
A in Equations (5.18) and (5.19) has no implications for the physical properties of the observed
stellar systems: For a given sample of GCs and UCDs,A depends on the detection limit for an
X-ray source or an arbitrarily chosen brightness limit above the detection limit.

Data on the LMXB-frequency in GCs and UCDs

In order to search for a dependency of the IMF in UCDs on their luminosity, we use data
published in the upper left panel of figure (6) in Sivakoff et al. (2007). These data provide
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the fraction of globular clusters and UCDs,fLMXB, hosting an LMXB in a given totalz-band
magnitude interval.

The results of Sivakoff et al. (2007) were obtained by combining two sets of data.
First, HST images of 11 elliptical galaxies in the Virgo Cluster were used, see Table 1 in

Sivakoff et al. (2007). Ten of them are the brightest galaxies observed in the course of the ACS
Virgo Cluster Survey (Côté et al. 2004). The eleventh one (NGC 4697) is a similarly bright
galaxy that was observed by Sivakoff et al. (2007) with nearly the same observational setup as
in the ACS VIrgo Cluster Survey. Using the obtained images, alarge number of accompanying
GCs and UCDs was identified around each of these galaxies.

Second, Sivakoff et al. (2007) used archival Chandra Observatory X-ray observations of the
same galaxies. The setup for the X-ray observations varied widely from galaxy to galaxy, see
Table 2 in Sivakoff et al. (2007), which could in principle beproblematic.

Sivakoff et al. (2007) find however that the global properties of GCs and UCDs which
contain a LMXB are largely unaffected by the varying detection limits for X-ray sources. Also
note that the LMXB-frequencies in GCs are well explained by the encounter rates in them (see
Section 5.3.3), despite the different detection limits forX-ray sources. This suggests that the
encounter rate is indeed a good measure for the rate at which LMXBs of any X-ray luminosity
are created. We therefore assume that a large number of GCs and UCDs with an X-ray source
is indeed an indicator for a large number of dark remnants in them.

The size of thez-band magnitude intervals in Sivakoff et al. (2007) is chosen such that each
of them contains 27 GCs or UCDs with a detected LMXB. This corresponds to a total of at least
100 GCs or UCDs in each of these intervals, sincefLMXB . 0.2 in all of them. Thus,fLMXB

can be taken as a reliable estimator for the averageP to form an LMXB in a GC or a UCD in a
givenz-band magnitude interval.

For comparing the data on the LMXBs in GCs and UCDs from Sivakoff et al. (2007) to
the prediction for the LMXB-frequency in GCs and UCDs formulated in Equations (5.18)
and (5.19),z-band magnitudes have to be converted intoLV . For this purpose,z-band lu-
minosities are calculated fromz-band magnitudes with

Lz = 10−0.4(Mz−4.51)L⊙,z, (5.24)

whereMz is the absolutez-band magnitude andLz is z-band luminosity in Solar units (cf.
Equation 1 in Sivakoff et al. 2007). Now note that thez-bandM/L ratio of GCs in the Virgo-
cluster are all close to≈ 1.5M⊙/L⊙,z (Sivakoff et al. 2007), which is essentially identical to
the averageV -bandM/L ratio of the GCs in the Milky Way in Solar units (McLaughlin 2000).
This implies thatz-band andV -band luminosities of GCs are approximately identical in Solar
units. We therefore assumeLV /L⊙,V = Lz/L⊙,z in this paper.

The data from figure (6) in Sivakoff et al. (2007) is shown in Figure 5.4 with thez-band mag-
nitude intervals from Sivakoff et al. (2007) converted intoLV intervals. Three of these intervals
are at luminositiesLV > 106 L⊙, so that the objects in them are UCDs (cf. Section 5.3.1). As
the size of the intervals is chosen such that each of them contains 27 objects with an LMXB,
81 UCDs with an LMXB are considered here. The total number of UCDs in the sample from
Sivakoff et al. (2007) is about 400, as can be calculated fromfLMXB in the according intervals.

For practical purposes, it is useful not to discuss individual values for thefLMXB of UCDs,
but to replace them by a continuous functionP (LV ). This function is obtained by performing a
least-squares fit of a linear function to the values forfLMXB in theLV intervals with the UCDs,
leading to

log10(P ) = a log10(LV ) + b, (5.25)
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where the best fitting parametersa andb are given in Tab. (5.1).P can be interpreted as an
estimate for the average probability for UCDs with a givenLV to host a LMXB brighter than
the detection limit. For a meaningful comparison betweenP andΓh at different values forLV ,
A needs to be gauged. This is done by imposing thatP (LV ) = Γh(LV ) for LV = 106 L⊙,V .
The motivation for choosing this condition to fixA is that the stellar populations of systems
with this luminosity should be nearly unaffected by dynamical evolution (cf. Section 5.3.1),
while theirM/L-ratios suggest that their IMF is canonical, in contrast to even more luminous
stellar systems (cf. Dabringhausen et al. 2009).

If the rate at which LMXBs are produced in GCs and UCDs is proportional to some power
γ of the encounter rate in them, leading toP (LV ) ∝ Γ

γ

h (cf. Equations 5.23 and 5.25), Equa-
tion (5.20) can be transformed into

P (LV )
1

γ

Γh(LV )
=

nns(α3)

nns(α3 = 2.3)

√

M(α3 = 2.3)

M(α3)
. (5.26)

The left side of Equation (5.26) is then expressed in terms ofobservable properties of UCDs
and the right side only depends onα3 as a free parameter oncemtr is given. Equation (5.26)
can therefore be used to estimate the dependency of the IMF ofthe UCDs as a function of
their observedLV . SinceA is chosen such thatP (LV )/Γ(LV ) = 1 for stellar systems that are
assumed to have formed with the canonical IMF,P (LV )/Γ(LV ) > 1 implies a top-heavy IMF
andP (LV )/Γ(LV ) < 1 implies a bottom-heavy IMF.

5.3.3 Results

In order to test for an LMXB-excess and thus a top-heavy IMF inUCDs from the observa-
tional data from Sivakoff et al. (2007) we now compare with theoretically expected LMXB-
frequencies.

The dynamical formation of LMXBs depends on the density of both dark remnants and
low-mass stars (Equation 5.8). In denser star clusters, close encounters are more frequent and
the formation of an LMXB is more likely. GCs have a common half-mass radius of a few
parsec independent of their luminosity and their stellar mass is on average proportional to their
luminosity (McLaughlin 2000). It therefore follows from Equation (5.18) that LMXBs should
be hosted predominantly in high-mass GCs if their SRMF does not depend on their stellar
mass. The dashed line in Figure 5.4 shows the theoretically expected LMXB frequency for
a constant IMF calculated with Equations (5.18) and (5.19) with A chosen such that these
equations reproduce the observed LMXB frequency atLV = 106 L⊙. The theoretical prediction
then matches the observations in the GC regime (i.e.LV < 106 L⊙), in agreement with earlier
studies on LMXBs in GCs (Jordán A. et al. 2005; Peacock et al.2010).

At LV ≈ 106 L⊙, the transition luminosity from GCs to UCDs, both kinds of stellar sys-
tems have the same half-mass radius (see Section 5.3.1). However, unlike GCs, UCDs show a
luminosity-radius relation such that they become less dense with increasing luminosity (cf. fig-
ure 4 in Dabringhausen et al. 2008). Consequently, Equation(5.19) predicts that the capture rate
of late-type stars by dark remnants and thus the expected LMXB frequency decreases rapidly
with increasingLV -band luminosity if the SRMF is constant. Note that a constant SRMF in
UCDs implies a constant IMF in them due to the lack of dynamical evolution in UCDs (see
Section 5.3.1).

In Figure 5.4, the prediction from Equation (5.19) for the LMXB frequency in UCDs with
a constant SRMF is shown by the dashed line in the according luminosity range, whereA is
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Figure 5.4: The observed LMXB-frequency of GGs and UCDs in comparison toexpected frequencies
if the IMF was canonical. Plotted are the observed frequencies (squares) of GCs (LV < 106 L⊙,V ) and
UCDs (LV ≥ 106 L⊙,V ) with LMXBs, fLMXB, in the Virgo galaxy cluster as a function of the V-band
luminosity, LV . Each data point contains 27 objects showing the LMXB signal. The data points are
identical with the data points in the upper left panel of figure (6) in Sivakoff et al. (2007), except for
a rescaling ofz-band magnitudes toV -band luminosities. The three brightest data are based on≈400
UCDs, i.e≈135 UCDs per bin. The dashed line shows the theoretically expected LMXB-frequency for
an invariant canonical IMF with indexα3 = 2.3 assumingfLMXB ∝ Γh (left panel) andfLMXB ∝

Γ
0.8
h (right panel). In either case, the theoretically expected LMXB-frequency is significantly too low

for UCDs, while for GCs the theoretically expected LMXB-frequency matches the observed LMXB-
frequency. The solid line is a fit through the UCD-regime (above 106 L⊙,V ). From it is derived the
variation with luminosity of the IMF indexα3 such that this new model, based on a variable IMF,
accounts for the observedfLMXB for LV > 106 L⊙,V .

chosen such that Equation (5.19) reproduces the observed LMXB frequency atLV = 106 L⊙.
Two cases are considered, namelyfLMXB ∝ Γh andfLMXB ∝ Γ0.8

h . The second case is closer
to the dependency betweenfLMXB andΓh reported by Sivakoff et al. (2007). The agreement
between the theoretical prediction and and the observed frequency of LMXBs is in either case
good for GCs. However,fLMXB ∝ Γ0.8

h seems indeed a better fit to the data thanfLMXB ∝ Γh.
Note that Maccarone & Peacock (2011) findΓ ∝ Γ0.8

h on average for GCs in the Milky Way,
which essentially means that the typical ratio betweenΓ andΓh depends for these GCs on
their mass. This is probably a consequence of the more massive GCs in the MW being more
concentrated than the less massive ones (McLaughlin 2000; cf Section 5.3.2), and likely to be
the case for the GCs in the Virgo cluster as well.

For UCDs however, the observed LMXB-frequency strongly deviates from the theoretical
prediction for a constant SRMF. It is observed that25 ± 5 per cent of the UCDs withLV ≈
5×106 L⊙,V have a bright LMXB, while Equation (5.19) suggests a LMXB frequency of about
2 per cent at this luminosity forfLMXB ∝ Γh and a LMXB frequency of about 3 per cent for
fLMXB ∝ Γ0.8

h . Thus, the expected fraction of LMXBs hosting UCDs is up to≈ 10 times
smaller than observed if all UCDs had the same IMF.

This discrepancy between the data and the model with an invariant (canonical) IMF and the
data is highly significant. This cannot be explained with more dark remnants remaining bound
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to UCDs due to higher escape velocities. This is because the escape velocity from massive GCs
is much higher than the escape velocity from light GCs, sincethe characteristic radii of GCs
do no change with mass, but the encounter rate is nevertheless sufficient for quantifying which
fraction of them has a bright LMXB.

The situation is more complicated with the finding that redder GCs and UCDs have more
LMXBs than the blue ones, while brighter objects (i.e. the UCDs in particular) tend to be redder
than the less luminous ones (Mieske et al. 2006b). Taking color as an indicator for metallicity
leads to the interpretation that the LMXB-frequency in GCs and UCDs does not only depend on
Γ orΓh but also on metallicity (Jordán et al. 2004; Sivakoff et al.2007). Note that an increase of
metallicity with luminosity and therefore mass of GCs is consistent with theoretical modeling,
according to which more massive star clusters retain more processed (i.e. metal-enriched) gas
which is turned into subsequent stellar populations (Tenorio-Tagle et al. 2003).

Using metallicity (i.e. color) as a second parameter besidesΓh indeed allows a more precise
modeling of the probability to find a LMXB in a given GC or UCD than whenΓh is assumed to
be the sole parameter determining the probability to find a LMXB in that GC or UCD (Sivakoff
et al. 2007). The dependency of that probability is however nevertheless almost linear to the
encounter rate, while the dependency on the metallicity is much weaker (Jordán et al. 2004;
Sivakoff et al. 2007). This may explain why the fraction of GCs with a LMXB is apparently al-
ready well explained if only the encounter rate in the GCs is considered (see Figure 5.4) despite
the color-luminosity relation for GCs in the Virgo cluster (cf. Mieske et al. 2006b). It is thereby
unlikely that the drastic discrepancy between the observedLMXB-frequency in UCDs and the
theoretical prediction based on the encounter rate can be explained by an unaccounted metal-
licity effect, even though the color-luminosity dependency may be somewhat more pronounced
for UCDs than for GCs (Mieske et al. 2010).

The conclusion is that the large number of LMXBs in UCDs is best explained by a large
number dark remnants as a consequence of a top-heavy IMF in UCDs (and not as a consequence
of different escape velocities or metallicities).

For an invariant IMF the theoretical LMXB frequency is highest at a luminosity ofLV ≈
106 L⊙,V , because in these systems the present-day stellar density has a maximum and close
encounters are most frequent (Figure 4 in Dabringhausen et al. 2008). If the very dense star
formation conditions are responsible for a top-heavy IMF then, on first sight, the smallest IMF
indexα3 is expected in systems withLV ≈ 106 L⊙,V and not in the most luminous UCDs.
However, in systems with a top-heavy IMF stellar feedback isstrongly enhanced and rapid
gas expulsion leads to an expansion of the UCDs (Dabringhausen et al. 2010). The UCDs
revirialise after a few dynamical time scales (.100 Myr) and undergo no further size evolution.
Thus, their present day stellar density is the dynamically relevant quantity for producing the
LMXB population.

We now determine by what amount the dark remnant content in UCDs has to be increased to
get the theoretical LMXB-frequency into agreement with theobserved values. For this, Equa-
tion (5.26) withγ = 1 andγ = 0.8 is used. This equation hasα3 andmtr as parameters (Equa-
tion 5.1). In this paper,mtr = 1 M⊙ andmtr = 5 M⊙, so that the influence of the in principle
quite arbitrary choice ofmtr is tested. Note that withmtr = 1 M⊙, Equation (5.1) describes
the family of IMFs that were considered in Dabringhausen et al. (2009). For either choice of
mtr, the canonical IMF (Kroupa 2001, 2002) corresponds toα3 = 2.3 and a smaller value ofα3

increases the fraction of high-mass stars and subsequent dark remnants. Theα3 that can explain
the discrepancy betweenP (LV ) (i.e. the function describing the observed LMXB frequency in
UCDs) andΓh(LV ) (i.e. the theoretical expectation for the LMXB frequency inUCDs if their
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IMF was canonical) at a givenLV can be found by numerically solving Equation (5.26) forα3

with a given value formtr.
TheLV dependence ofα3 required to bring the model into agreement with the UCD data

is plotted as the solid line in Figure 5.5 formtr = 1 M⊙ and in Fig (5.6) formtr = 5 M⊙. In
either case, the most massive UCDs must have an extremely top-heavy IMF in order to explain
their LMXB-excess. The highermtr is, the more exotic the IMF of UCDs must be in order to
explain the number of LMXBs in them. For a given value formtr, it is on the other hand only
of minor importance whetherP (LV ) is proprotional toΓh or proportional toΓ

0.8

h .
Formtr = 1 M⊙, the independent analysis in this paper leads the same top-heavy IMF as

derived from the UCD mass-to-light ratios (Dabringhausen et al. 2009), shown as the dotted line
in Figure 5.5. Such a comparison is not meaningful formtr = 5 M⊙, since the shape thereby
assumed for the IMF is different from the IMF considered in Dabringhausen et al. (2009).

The most likely relations betweenα3 and log10(LV ) shown in Figures 5.5 and 5.6 are re-
markably close to a linear function,

α3 = c log10(LV ) + d. (5.27)

The best fitting parametersc andd have been determined from a least-squares fit to 48 sample
values calculated from Equation (5.26). These are shown Table 5.1. Probably the best model
for the IMF in UCDs is calculated whenfLMXB ∝ Γ0.8

h andmtr = 1 M⊙ are assumed. This
is because observations suggest a less-than-linear dependency offLMXB on the encounter rate
(Jordán et al. 2004; Sivakoff et al. 2007) and assumingmtr > 1 M⊙ implies even more extreme
deviations from the canonical IMF in high-mass UCDs while the IMF is remarkably invariant
in open star clusters (Kroupa 2001).

Figure 5.4 suggests that the value offLMXB for the most luminous UCDs is of central im-
portance for estimating the slope ofP (LV ) (Equation 5.25) and thus for theα3 calculated from
Equation (5.26). This is because of the distance of these data points to the other data points,
which is due to the fact that the correspondingLV interval is large. In order to estimate an un-
certainty to the dependency ofα3 onLV , we changed the value offLMXB for the most luminous
UCDs (LV & 2 × 106 L⊙) by 3 times its uncertainty.P (LV ) was then recalculated with this
new value and used in Equation (5.26). The resulting limits on the dependency ofα3 onLV are
indicated by the limits to the gray area in Figures 5.5 and 5.6. Also the limits of the gray areas
are parametrized with linear functions, which are listed inTable 5.1.

The uncertainty of the upper mass limit for stars,mmax∗, has little effect on the results
summarized in Table 5.1. This is illustrated with Figure 5.7, where the dependency between
LV andα3 calculated from Equation (5.26) is shown formmax∗ = 150 M⊙ (Weidner & Kroupa
2004; Oey & Clarke 2005) and formmax∗ = 300 M⊙ (Crowther et al. 2010). The two functions
are almost identical.
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Figure 5.5: The IMF in UCDs formtr = 1 M⊙. Plotted is the high-mass IMF index,α3, as a function
of the V-band luminosity of the UCDs,LV for fLMXB ∝ Γh leading toP (LV ) ∝ Γh (left panel) and for
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h leading toP (LV ) ∝ Γ

0.8
h (right panel). The solid line shows the most likely high-mass

index required to increase the dark remnant content in UCDs in order to match to observed LMXB-
frequency (derived from the solid line in Figure 5.4). The grey shaded area marks an estimate for the 3σ
region. The horizontal long dashed line marks the canonicalIMF with α3 = 2.3. The dotted line shows
the independently calculated high-mass IMF index obtainedfrom the observed mass-to-light ratios of
UCDs (Dabringhausen et al. 2009). Simple-to-use fitting relations for the variation ofα3 with LV can
be found in Tab. (5.1).
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Table 5.1: The best fitting parameters for linear fits toP andα3 for different models. The different cases (most likely case, upper limit,
lower limit) listed here for every model correspond to different values ofP for the UCDs with the highest masses (cf. Sec 5.3.3). Probably
the best model for the IMF in UCDs is calculated whenfLMXB ∝ Γ0.8

h andmtr = 1 M⊙ are assumed. This is because observations suggest
a less-than-linear dependency offLMXB on the encounter rate (Jordán et al. 2004; Sivakoff et al. 2007) and assumingmtr > 1 M⊙ implies
even more extreme deviations from the canonical IMF in high-mass UCDs while the IMF is remarkably invariant in open star clusters (Kroupa
2001). The parameters describing the IMF according to this model are shown in bold face in this table.

log10(P ) = a log10(LV ) + b α3 = c log10(LV ) + d
model a b c d
fLMXB ∝ Γh, mtr = 1 M⊙, most likely case 0.207 1.249 −1.337 2.332
fLMXB ∝ Γh, mtr = 1 M⊙, upper limit 0.615 1.201 −1.878 2.375
fLMXB ∝ Γh, mtr = 1 M⊙, lower limit −0.202 1.298 −0.884 2.396
fLMXB ∝ Γ0.8

h , mtr = 1 M⊙, most likely case 0.207 1.249 − 1.402 2.337
fLMXB ∝ Γ0.8

h , mtr = 1 M⊙, upper limit 0.615 1.201 −2.089 2.391
fLMXB ∝ Γ0.8

h , mtr = 1 M⊙, lower limit −0.202 1.298 −0.861 2.304
fLMXB ∝ Γh, mtr = 5 M⊙, most likely case 0.207 1.249 −2.415 2.275
fLMXB ∝ Γh, mtr = 5 M⊙, upper limit 0.615 1.201 −3.169 2.289
fLMXB ∝ Γh, mtr = 5 M⊙, lower limit −0.202 1.298 −1.679 2.263
fLMXB ∝ Γ0.8

h , mtr = 5 M⊙, most likely case 0.207 1.249 −2.512 2.277
fLMXB ∝ Γ0.8

h , mtr = 5 M⊙, upper limit 0.615 1.201 −3.442 2.290
fLMXB ∝ Γ0.8

h , mtr = 5 M⊙, lower limit −0.202 1.298 −1.594 2.263
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5.4 The supernova rate in Arp 220

A top-heavy IMF in UCDs can theoretically be understood if UCDs formed as very massive star
clusters that were internally heated by infra-red radiation that was trapped inside a molecular
cloud massive enough to form a UCD-type star cluster (Murray2009), or if UCDs formed from
molecular clouds that were heated by highly energetic cosmic rays originating from numerous
type-II supernovae surrounding those molecular clouds (Papadopoulos 2010; cf. Section 5.1).
Both scenarios imply that UCDs are formed during star-bursts, either because of the link be-
tween the formation of the most massive star-clusters and high star formation rates (Weidner
et al. 2004), or because the cosmic-ray field would only then be intense enough for effective
heating of the molecular clouds. Note that likely progenitors of UCDs have actually been ob-
served in star-bursts (Fellhauer & Kroupa 2002a).

Ultra-luminous infra-red galaxies (ULIRGs) are believed to be galaxies with star-bursting
regions (Condon et al. 1991). They are thus systems where UCDs are probably forming. If
this notion is correct and the IMF in UCDs is top-heavy, the ULIRGs as a whole should have
more massive stars than expected for an invariant, canonical IMF. As a consequence, the rate of
type II supernovae is expected to be higher.

In the following, we test the hypothesis of a top-heavy IMF inULIRGs. For this reason, we
quantify how the type-II supernova rate (SNR) in a star burstis connected to the star formation
in it. Based on this, theoretical predictions for the SNR of Arp 220, which is one of the closest
ULIRGs (Lonsdale et al. 2006), are calculated and compared to observations of this stellar
system.

The type-II supernova rate (SNR) observed in a stellar system depends on its IMF as well
as on its star formation history (SFH), i.e. how the star formation rate in the stellar system has
changed with time, because these quantities determine the numbers and ages of stars in given
mass intervals. If star formation begins at a timet0, only stars above a time-dependent mass-
limit mlow can have completed their evolution at a timet > t0. For stars evolving into SNe, this
mass can be approximated (Dabringhausen et al. 2010) by

mlow

M⊙

= 74.6

(

t− t0
Myr

− 2.59

)−0.63

. (5.28)

Note that no stars evolve to type-II supernovae (SNe), ift− t0 ≤ 2.59 Myr.
Now consider a time interval[t, t + ∆t] and stars in a mass interval[m,m + ∆m], where

m ≥ mlow. If the SFR was constant for allt ≥ t0, the number of stars evolving into SNe in the
given mass interval during the time∆t is equal to the number of new stars that are formed in
the same mass interval. Thus,

∆SNR

yr−1
=

SFR

M⊙ yr−1

∫ m+∆m

m

ξ(m) dm (5.29)

in this case, whereξ(m) is assumed to be given by Equation (5.1) with the normalization defined
by Equation (5.3). This normalization keeps the total mass of the stars which are formed per
unit time constant.

If ∆t is small compared to the time scale on whichmlow changes, the number of all stars
that evolve during∆t can be approximated as

SNR

yr−1
≈

SFR

M⊙ yr−1

∫ mmax∗

mlow

ξ(m) dm. (5.30)
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Note that the SFR in Equations (5.29) and (5.30) should be considered an average value over a
time-scalet− t0. Variations of the SFR on much shorter time-scales are of no importance here.

The SFR of a ultra-luminous infra-red galaxy (ULIRG) can be estimated as

SFR

M⊙ yr−1
=

LFIR

5.8× 109 L⊙

, (5.31)

whereLFIR is the far infra-red (FIR) luminosity of the ULIRG (Kennicutt 1998).
One of the nearest ULIRGs is Arp 220. UsingLFIR = 1.41× 1012 L⊙ for Arp 220 (Sanders

et al. 2003), Equation (5.31) implies a SFR of≈ 240 M⊙ yr−1 for that galaxy. The SNe in
Arp 220 have been observed in a central region with a diameterof ≈ 1 kpc, from where about 40
per cent of its FIR luminosity originates (Soifer et al. 1999). Equation (5.31) thus implies a SFR
of ≈ 100 M⊙ yr−1 if only this part of Arp 220 is considered. Note that this SFR is consistent
with the SFR that has been suggested for a forming UCD if UCDs form on a timescale of
approximately 1 Myr (Dabringhausen et al. 2009). Also note that the observed SN in Arp 220
do not seem to distributed evenly over the central part of Arp220, but to be concentrated in
two knots which have a radius≈ 50 pc each (Lonsdale et al. 2006) (i.e. the size of a UCD).
This implies that indeed a major part of the star formation inthe central part of Arp 220 takes
place within these two knots. This would imply projected star formation densities of a few
10−3 M⊙ yr−1 pc−2 in the knots.

SNRs calculated from Equation (5.30) for a constant SFR of100 M⊙ yr−1 are shown as
functions of the high-mass slope of the IMF in Figure 5.8. Thetwo curves correspond to
different times at which the star burst was initialized, butthe expected number of SN per year
(i.e. the SNR) is low in any case. The number of SN thatactuallyoccur within one year can
therefore differ substantially from the calculated SNR, asthe frequency of SN over such a time
span obeys low-number statistics. Thus, the probability for a certain number of SN to happen
within one year is quantified by the Poisson distribution function.

Now consider the case that the star-burst in Arp 220 already lasts for more than 40 Myr. This
impliesmlow = 8 M⊙, so that the number of SNII per year is maximized for the givenSFR.
The expectation value for the SNII-rate is then about one peryear if the IMF was canonical (i.e.
α3 = 2.3), but about two per year for a top-heavy IMF with1 . α3 . 2, where the SN-rate is
only a weak function ofα3 (cf. Figure 5.8). Thus, the probability to actually observefour new
SNII in a given year (Lonsdale et al. 2006) is then about two per cent if the IMF is canonical,
but about 12 per cent for1 . α3 . 2.

A more elaborate discussion of the SNII rate in Arp 220 is obtained by taking into account
that stars in a galaxy form in star-clusters of different masses, sincemmax of the IMF depends on
the mass of the star-cluster for low-mass star-clusters. This implies that the integrated galactic
IMF (IGIMF) of all star-clusters in Arp 220 combined is not equal to the IMF in its star-clusters.

This IGIMF is given by

ξIGIMF(m) =

∫ Mecl,max(SFR)

Mecl,min

ξ(m ≤ mmax(Mecl))

× ξecl(Mecl) dMecl, (5.32)

wherem is the initial stellar mass,Mecl is the initial stellar mass of a star cluster,Mecl,min is the
minimum mass of newly formed star-clusters,Mecl,max(SFR) is the SFR-dependent maximum
mass of newly formed star-clusters,ξ(m) is the IMF andξecl(Mecl) is the star-cluster mass
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function (Weidner & Kroupa 2005; Weidner et al. 2011). The IGIMF can be parametrized by a
multi-power law,

ξIGIMF(m) = kkim
−αi , (5.33)

with

α1 = 1.3, 0.1 ≤
m

M⊙

< 0.5,

α2 = 2.3, 0.5 ≤
m

M⊙

< 1,

αIGIMF ∈ R, 1 ≤
m

M⊙

≤ mmax∗,

where the factorski ensure that the IGIMF is continuous where the power changes and k is
a normalization constant.ξIGIMF(m) equals 0 ifm < 0.1M⊙ or m > mmax∗, wheremmax∗

is the maximum stellar mass. Thus, the IGIMF defined here is equal to the IMF defined by
Equation (5.1), except for the high-mass slope and the uppermass limit.

The case of a canonical IMF in all star-clusters, i.e.α3 = 2.3, implies (Weidner & Kroupa
2005)αIGIMF & 3. The expectation value for the number of SNII per year would then be. 0.2
per year. On the other hand,αIGIMF . 2 is possible, if a varying IMF that becomes more
top-heavy with star-cluster mass is considered (Weidner etal. 2011; Kroupa et al. 2011). This
implies that the probability to actually observe four new SNII in a given year (Lonsdale et al.
2006) is essentially zero if the IMF is canonical in all star-clusters, but it can still be about 10
per cent if the IMF becomes top-heavy in massive UCD-type star-clusters.

The remnants produced by SNII are neutron stars and black holes. The SNII-rates thereby
are an indicator for how many mergers of such remnants can be detected by searching for
gravitational waves. Comparing the SN-rate forαIGIMF = 3 to the SN-rate forαIGIMF = 2
thus suggests that about an order of magnitude more of such events may be expected if the IMF
in massive star-clusters is not canonical, but top-heavy. Thus, the hitherto predicted detection
rate of about 30 mergers of dark remnants per year (Banerjee et al. 2010) for the upcoming
adLIGO-experiment could be too low by an order of magnitude,as an invariant IMF has been
used for this estimate.

Further evidence for a top-heavy IMF in star-bursting galaxies is found by Anderson et al.
(2011) in Arp 299. They study numbers of different types of supernovae in Arp 299 and con-
clude from the mass of the appropriate progenitor stars thatthe IMF is probably top-heavy in
that system. Thus, Anderson et al. (2011) qualitatively come to the same conclusion for Arp 299
as we did for Arp 220, while their method is different.

5.5 Star formation densities and the IMF

A top-heavy IMF in UCDs is in-line with different studies concluding a top-heavy IMF in
high-redshift star forming galaxies (van Dokkum 2008; Loewenstein 2006). Contrary to this,
a recent spectroscopic study of two low-redshift very massive elliptical galaxies suggests a
hitherto unseen large population of low-mass stars (van Dokkum & Conroy 2010), which has
been predicted as a possible consequence of cooling flows on massive ellipticals (Kroupa &
Gilmore 1994). It is on the other hand unlikely that the majority of the UCDs formed in potential
wells deeps enough to cause cooling flows.

Also note that the current stellar densities suggest that the star-formation densities (SFDs),
i.e. the SFR per volume, of UCDs were very different from the SFDs of elliptical galaxies.
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the corresponding curve). They do not exceed≈ 1 SN yr−1 for the canonical IMF (whose high-mass
slope is marked by the dotted vertical line), or≈ 2 SN yr−1 for a top-heavy IMF.

Consider for instance an exemplar present-day UCD withM = 107M⊙ andrh = 10 pc and
an exemplar present-day elliptical galaxy withM = 1012 M⊙ andrh = 104 pc. These values
can be considered representative for typical UCDs and massive elliptical galaxies, respectively
(cf. figure 4 in Misgeld & Hilker 2011). Star formation is thought to have proceeded quickly
in UCDs and massive elliptical galaxies, so that the stellarpopulation of the exemplar UCD
may have formed within107 yr (Dabringhausen et al. 2009) and the stellar population ofthe
exemplar elliptical galaxy may have formed within109 yr (Thomas et al. 2005). This leads
to a SFR of1 M⊙ yr−1 for the exemplar UCD and to a SFR of103 M⊙ yr−1 for the exemplar
elliptical galaxy. The SFD can be estimated by dividing the SFR by r3h, leading to a SFD of
10−3 M⊙ yr−1 pc−3 for the exemplar UCD and a SFD of10−9 M⊙ yr−1 pc−3 for the exemplar
elliptical galaxy. However, according to Dabringhausen etal. (2010) UCDs must have been
even more compact when they formed (rh ≈ 1 pc), since the mass loss following star for-
mation with a top-heavy IMF must have expanded them to their present-day radii. With the
masses of UCDs being106 M⊙ . M . 108 M⊙, their SFRs ranged from0.1 M⊙ yr−1 to
10 M⊙ yr−1 if they formed within 10 Myr. An initialrh of 1 pc thereby implies SFDs ranging
from 0.1 M⊙ yr−1 pc−3 to 10 M⊙ yr−1 pc−3. Thus, the SFDs of UCDs can easily be higher by
six to ten orders of magnitude than the SFDs of massive elliptical galaxies. Massive ellipticals
can therefore not serve as a proxy for the stellar populationin UCDs.

It is therefore perhaps the SFD that determines whether the IMF in some region of space be-
comes top-heavy, and not the overall SFR in a forming stellarsystem. This is actually consistent
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with models why the IMF may become top-heavy: Dabringhausenet al. (2010) argue that the
central densities in forming UCDs were so high (ρ > 105 M⊙ pc−3) that collisions and perhaps
mergers between pre-stellar cores were important in them, in contrast to less massive stellar
systems. Likewise, if the heating of molecular clouds by cosmic rays is the process by which
the IMF becomes top-heavy (Papadopoulos 2010), it is again not the number, but the number
densityof the surrounding massive stars that makes heating of the molecular cloud effective.

5.6 Conclusion

The dynamical mass-to-light ratios of ultra compact dwarf galaxies (UCDs) are surprisingly
high (Haşegan et al. 2005; Dabringhausen et al. 2008; Mieske et al. 2008). This finding was
explained by Dabringhausen et al. (2009) with an IMF that hasmore massive stars than the
canonical IMF deduced by Kroupa (2001) from resolved stellar populations in the Milky Way.
The high mass-to-light ratio of UCDs is then a consequence ofa large population of dark rem-
nants (i.e. neutron stars and black holes) in them.

These dark remnants become visible as X-ray sources if they accrete matter from a low-mass
companion star. The rate at which low-mass X-ray binaries (LMXBs) are formed in globular
clusters and UCDs scales with the number density of dark remnants (see Section 5.3.2). Data
on the fraction of UCDs that harbour a bright X-ray source (Sivakoff et al. 2007) can therefore
be used to confirm the presence of a large population of dark remnants in UCDs by a method
that does not rely on the fact that dark remnants only increase the mass of a UCD, but not its
luminosity. It is shown in this paper that LMXBs in UCDs are indeed up to 10 times more
frequent than expected for an invariant, canonical IMF. Theoverabundance of LMXBs is used
to quantify the dependence of the high-mass IMF-slope,α3, on the luminosity of UCDs. This
function is essentially equal to the dependence between theluminosity of the UCDs and their
α3 suggested in Dabringhausen et al. (2009) based on the mass-to-light ratios of UCDs (see
Section 5.3.3). Note that theLV of present-day GCs and UCDs is just one of many properties
of such systems. Dependencies ofα3 on their initial mass, initial density and their metallitcity
are therefore discussed in Marks et al. (2012).

UCDs can be understood as the most massive star-clusters which only form at extremely
high galaxy-wide star formation rates (SFRs) (Weidner & Kroupa 2004). Alternatively, UCDs
could form by the merger of gravitationally bound systems ofstar clusters as they are observed
in interacting galaxies (Fellhauer & Kroupa 2002a). In either case, the formation of UCDs
would be connected to star-bursts. Given that ultra-luminous infra-red galaxies (ULIRGs) are
interpreted as galaxies with star-bursting regions (Condon et al. 1991), they should show indi-
cations of a top-heavy IMF as a consequence. The nearest ULIRG is Arp 220. We show that
the observed rate of type II supernovae in this ULIRG is indeed highly improbable if the IMF
is invariant, but not if the IMF is top-heavy (see Section 5.4).

There are thus three mutually consistent arguments for a top-heavy IMF in UCDs or more
generally star-bursting systems. Together with the evidence for the formation of UCDs being
connected to star bursts, these arguments imply that the IMFbecomes top-heavy in star-bursts
(cf. Weidner et al. 2011). This finding stands in contrast to the prevalent notion that the IMF is
invariant (Kroupa 2001, 2002; Bastian et al. 2010; Kroupa etal. 2011) and thereby has impor-
tant implications. For instance, estimates of the SFR of a galaxy based on observations that are
sensitive only to high-mass stars and the assumption of an invariant IMF (like Equation 5.31) are
too high if the IMF actually is top-heavy. Consequently, estimates for the time scale on which
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the population of low-mass star in that galaxy is built up until the gas of the galaxy is depleted
become too short. Also the chemical evolution of galaxies isdifferent if the IMF in them can
become top-heavy, since the nuclear reactions that occur ina star mainly depend on its mass.
This has implications on their content of metals and planetary systems (Ghezzi et al. 2010).
Furthermore, as more dark remnants are formed if the IMF is top-heavy, more dark-remnant
mergers and thus gravitational-wave emitters should be detected in this case. Finally, the dy-
namical evolution of star clusters critically depends on the shape of the IMF (Dabringhausen
et al. 2010).
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Chapter 6

Dwarf elliptical galaxies as ancient tidal
dwarf galaxies

J. Dabringhausen, P. Kroupa, 2013,MNRAS, 429, 1858

Abstract:

The formation of tidal dwarf galaxies (TDGs) is triggered bythe encounters of already existing
galaxies. Their existence is predicted from numerical calculations of encountering galaxies and is also
well documented with observations. The numerical calculations on the formation of TDGs furthermore
predict that TDGs cannot contain significant amounts of non-baryonic dark matter. In this paper, the first
exhaustive sample of TDG-candidates from observations andnumerical calculations is gathered from
the literature. These stellar systems are gas-rich at the present, but they will probably evolve into gas-
poor objects that are indistinguishable from old dwarf elliptical galaxies (dEs) based on their masses
and radii. Indeed, known gas-poor TDGs appear as normal dEs.According to the currently prevailing
cosmological paradigm, there should also be a population ofprimordial galaxies that formed within
haloes of dark matter in the same mass range. Due to their different composition and origin, it would be
expected that objects belonging to that population would have a different structure than TDGs and would
thus be distinguishable from them, but such a population cannot be identified from their masses and radii.
Moreover, long-lived TDGs could indeed be numerous enough to account for all dEs in the Universe.
Downsizing, i.e. that less massive galaxies tend to be younger, would then be a natural consequence of
the nature of the dEs. If these claims can be kept up in the light of future observations, the presently
prevailing understanding of galaxy formation would need tobe revised.
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6.1 Introduction

Observations show that encountering galaxies often have bridges of matter connecting them
or elongated arcs of matter extending from them (Zwicky 1956). Well known examples are
the Antennae Galaxies (NGC 4038 and NGC 4039) and the Mice Galaxies (NGC 4676A and
NGC 4676B). Theoretically, the formation of these filamentary structures can be understood by
gravitational forces that the encountering galaxies exerton each other (Toomre & Toomre 1972).
These gravitational forces lead to a distortion of the galaxies, because strength and direction of
an external gravitational force depends on the location within a galaxy. The position-dependent
changes of the external force within the galaxy are known as tidal forces, and hence the arcs of
matter created by them are called tidal tails.

The disks of spiral galaxies are, due to their extension, particularly sensitive to tidal forces.
The tidal tails thereby formed mostly consist of matter coming from the disks of the galaxies,
i.e. stars and a considerable amount of gas.

Numerical calculations show that some of the gas in the tidaltails collapses into structures
that are bound by their own gravity (Barnes & Hernquist 1992b; Elmegreen et al. 1993; Bour-
naud 2010). These structures have masses of up to109 M⊙ (Elmegreen et al. 1993; Bournaud &
Duc 2006) and have radii of the order of 1 kpc (Wetzstein et al.2007; Bournaud et al. 2008). It
has also been shown that these objects can survive on a time-scale of109 years and can be sites
of long-lasting star formation (Bournaud & Duc 2006; Recchiet al. 2007). With these proper-
ties, the structures emerging in the tidal tails can be considered galaxies (cf. Bournaud et al.
2007; Forbes & Kroupa 2011). Due to their size and their origin, such galaxies been named
tidal dwarf galaxies (TDGs), and a number of structures thatare TDG-candidates have been
observed (Mirabel et al. 1992; Monreal-Ibero et al. 2007; Yoshida et al. 2008; Duc P. A. et al.
2011).

However, the formation of the first galaxies in the Universe is driven by non-baryonic cold
dark matter (CDM) according to theΛCDM-model, which is the currently prevailing cosmolog-
ical model. The CDM is thought to collapse into haloes and thereby to create the gravitational
potentials that bind the baryons of the forming galaxies. Inorder to distinguish them from
TDGs, these galaxies are called primordial galaxies.

In contrast to the primordial galaxies, the TDGs are predicted to consist only of baryonic
matter, even if the progenitors of the TDGs contained a substantial amount of CDM (Barnes
& Hernquist 1992b; Duc et al. 2004; Bournaud & Duc 2006; see also Bournaud 2010 for a
theoretical discussion of this finding).

Since only the baryonic matter interacts electromagnetically, CDM and baryonic matter
must behave differently. Due to the different composition of the TDGs and the primordial
galaxies, it would be natural if these two types of galaxies would constitute populations that are
distinguishable by their properties. Thus, observations and theoretical calculations support the
notion that there are two types of galaxies, namely primordial galaxies and TDGs. This finding
has been termed the ’Dual Dwarf Galaxy Theorem’ by Kroupa (2012).

A substantial fraction of the galaxies of the Universe are dwarf elliptical galaxies (dEs).
These dEs are of particular interest, because the masses of their stellar populations and their
radii would fit to TDGs, but they are usually considered to be the kind of galaxies that forms
within CDM-haloes of rather low masses (see, e.g., Li et al. 2010; Guo et al. 2011). Reviews
on dEs and how they may have formed are given by Ferguson & Binggeli (1994) and Lisker
(2009).

Using a compilation of data on old, dynamically hot stellar systems by Misgeld & Hilker
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(2011) on the one hand and a first-time compilation of data from various authors on masses and
radii of observed TDG-candidates (observed or from numerical calculations) on the other hand,
it is discussed in this paper whether primordial galaxies and TDGs are indeed distinguishable
populations, as would be expected. The data used for this comparison is described in Sec-
tion (6.2). The results are presented and discussed in Sections (6.3) and (6.4). Our conclusions
are given in Section (6.5).

6.2 Data

6.2.1 Old stellar systems

Galaxies

Data on the masses and the radii of old elliptical galaxies are taken from Bender et al. (1992)
and Bender et al. (1993), Ferrarese et al. (2006), Misgeld etal. (2008) and Misgeld et al. (2009).
The data on the dwarf spheroidal galaxies (dSphs) are taken from Table (1) in Misgeld & Hilker
(2011), provided an estimate of the mass of their stellar populations,M∗, is available there. This
table also lists some compact elliptical galaxies, which are included in the present compilation
as well. The catalogues of galaxies in the Hydra I cluster (Misgeld et al. 2008) and galaxies in
the Centaurus cluster (Misgeld et al. 2009) comprise a largenumber of dwarf elliptical galaxies
(dEs) and are of particular interest for filling a gap in luminosity between the data from Bender
et al. (1992, 1993) and the dSphs from Table (1) in Misgeld & Hilker (2011). TheM∗ of
all mentioned galaxies are calculated from their publishedluminosities and colours, using the
estimates for their stellar mass-to-light ratios published in Misgeld & Hilker (2011). Note
that the baryonic masses,M , of these objects are essentially equal toM∗ since these kinds of
galaxies contain almost no gas or dust (Wiklind et al. 1995; Young L. M. et al. 2011).

GCs and UCDs

Masses and effective radii of globular clusters (GCs) and ultra compact dwarf galaxies (UCDs)
are taken from Table (5) in Mieske et al. (2008). Note that themasses listed in that table are
mass estimates based on the internal dynamics of the GCs and UCDs (i.e. dynamical masses,
Mdyn) instead of masses estimated from the light and colour of thestellar populations (i.e.M∗).
The internal dynamics of GCs and UCDs is however probably notinfluenced by a hypothetical
presence of DM in them, since DM would usually be distributedover larger scales. (Murray
2009; Willman & Strader 2012). A non-Newtonian law of gravity in the limit of weak fields
(i.e. the alternative to the dark matter hypothesis) would also leave the dynamics of GCs and
UCDs unaffected in most cases (see figure 7 in Kroupa P. et al. 2010). Finally, GCs are free of
gas and dust (van Loon et al. 2006), and given the similarities of UCDs to GCs, it is reasonable
to assume the same for UCDs. These reasons imply thatMdyn = M∗ for GCs and UCDs1.

1Note that some authors discuss the elevatedM/LV ratios of UCDs (see, e.g., Haşegan et al. 2005; Dabring-
hausen et al. 2008; Mieske et al. 2008), which suggest the opposite to be true. The detected difference between
theMdyn and theM∗ of UCDs is however rather small, even though this deviation probably carries important
information on star formation in UCDs (see Dabringhausen etal. 2009, 2012; Marks et al. 2012 and the review by
Kroupa et al. 2011).
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6.2.2 TDGs

Observed TDG-candidates

Data on the masses and the effective radii of observed TDG-candidates are difficult to obtain
and collected from various sources in the literature:

• Miralles-Caballero et al. (2012). The sample from Miralles-Caballero et al. (2012) is an
extension of the sample from Monreal-Ibero et al. (2007). The TDG-candidates taken
from Miralles-Caballero et al. (2012) are, among all TDG-candidates considered in the
present paper, the ones for which the most complete information on masses and radii is
available. The data given on the TDG-candidates comprise their equivalent total radii
(r), their effective radii (re), their mass estimated from theirI-band luminosity using the
ages estimated under the assumption of a single star burst (MI), their mass estimated
from their Hα-emission lines (MHα), their mass estimated from theirI-band luminosity
under the assumption that most stars in the TDG-candidates are old (Mold) and their mass
estimated from the internal dynamics of the TDG-candidates(Mdyn). MI , MHα andMold

are all estimates forM∗, the mass of the stellar population of the TDG-candidate. In
oder to have a concrete value forM∗, M∗ = MI is assumed, since estimates forM∗

based on optical luminosities are available also for all other TDG-candidates, in contrast
to estimates based on Hα-emission. SettingM∗ = MI therefore adds to the homogeneity
of the sample of TDG-candidates. The adopted single-burst age is the average of the age
estimate derived from photometric data and the age estimatederived from the equivalent
width of the Hα-emission. The values are of the order of106 years. Miralles-Caballero
et al. (2012) estimater by adding up the areas of all Hα-emitting regions within a TDG-
candidate, leading to a total areaAT, from whichr is calculated from

r =

√

AT

π
. (6.1)

The average ratio betweenr andre of the TDG-candidates in Miralles-Caballero et al.
(2012) is 3.5. The standard deviation about this value is 1.1. Simple estimates ofre from
r can thereby be calculated from

r = (3.5± 1.1)× re (6.2)

for other galaxies. Note, however, that Miralles-Caballero et al. (2012) only estimate
the effective radius of the dominating knot if a TDG-candidate has more than one star-
forming knot. Thus,re is underestimated for these TDG-candidates.

• Galianni et al. (2010). The TDG-candidates discussed by them haveV -band luminosities
of 1.6×106 L⊙ and2.6×106 L⊙, respectively. By giving estimates for the stellar masses
of these TDG-candidates, Galianni et al. (2010) implicitlystate that theV -band mass-
to-light ratio of the TDG-candidates is2.5 M⊙/L⊙, and2.3 M⊙/L⊙, respectively. A
comparison with single-burst stellar population models (e.g. Maraston 2005) suggests
that these assumptions on theM/LV -ratios of the TDG-candidates discussed in Galianni
et al. (2010) are reasonable, since Galianni et al. (2010) conclude from a spectroscopical
analysis that the stellar populations of their TDG-candidates are old and have metallicities
[Fe/H]> −1, like the ones of old GCs and dSphs. Values forre have been found by fitting
Sérsic-profiles (Sérsic 1963) to the TDG-candidates.
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• Yoshida et al. (2008). Photometric data suggests an age of the order of108 years for
the star-forming knots they observed (termed ’fireballs’ bythem). This motivates their
assumption ofM∗/LR = 1M⊙/L⊙ for the objects when they calculate the stellar masses
of the objects from theirR-band luminosities. Values forre have been estimated by fitting
Gaussian profiles to their luminosity profiles. They are onlygiven collectively as ranging
between 200 pc and 300 pc for all observed objects. In order tohave a concrete value for
the radii, they are set to 250 pc for all fireballs in the present paper.

• Duc et al. (2007). The TDG-candidate identified by them has a stellar population with
a mass betweenM∗ = 3 × 107 M⊙ andM∗ = 7 × 107 M⊙, as they find from fitting
a modeled stellar population to the spectral energy distribution of the TDG-candidate.
In order to have a definite value,M∗ = 5 × 107M⊙ is assumed in the present paper.
Photometric data suggests that most stars in this TDG-candidate formed3 × 108 years
ago and the diameter of the TDG-candidate is given as 4200 pc.

• Bournaud et al. (2007). The stellar masses of the three TDGs discussed in that paper have
been estimated from their optical luminosities and models of young stellar populations,
since Boquien et al. (2007) estimate ages of less than5× 106 years for the stellar popula-
tions of these galaxies. The radii given in Bournaud et al. (2007) are the radii up to which
rotation curves have been measured. For an estimate ofre from these radii, equation (6.2)
is used in the present paper.

• Tran H. D. et al. (2003). Photometric data suggest an age of4 − 5 × 106 for the TDG-
candidate discussed in that paper. ItsV -band luminosity (corrected for emission lines)
then impliesM∗ = 6.6× 105 M⊙. re was estimated by fitting a King model (King 1962)
to the surface-brightness profile of the object.

• Hunsberger et al. (1996). The masses of the TDG-candidates listed in that paper are
estimated from theirR-band luminosities under the assumption that theM∗/LR ratios
of the TDG-candidates is 1M⊙/L⊙. ThisM∗/LR ratio implies an age of the order of
108 years for the TDG-candidates. This choice for the age is motivated with Hunsberger
et al. (1996) searching for TDG-candidates in Hickson compact groups (Hickson 1982),
i.e. in very compact groups of galaxies. Such groups have lifetimes of the order of
108 years, within which the formation of TDGs is triggered by theinteraction between
primordial galaxies belonging to the group. The extension of the TDG-candidates is
quantified in Hunsberger et al. (1996) by estimates of their diameters from their projected
areas. Estimates of there of the TDG-candidates are calculated in the present paper with
equation eq. (6.2).

The adopted properties of the observed TDG-candidates are summarized in Table (A.1) in
Appendix (A.3.1).

Note that not all objects in Table (A.1) are confirmed TDGs. The reasons are the following:

• For some young objects, it is doubtful whether they will be stable (cf. Monreal-Ibero et al.
2007; Miralles-Caballero et al. 2012), even though their origin from tidal interactions
between primordial galaxies is not disputed.

• Tran H. D. et al. (2003) argue that the TDG-candidate they observed possibly was a
stellar supercluster (SSC), i.e. a gravitationally bound complex of star clusters, which
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can evolve into a galaxy if a galaxy is defined as a stellar system with a relaxation time
larger than a Hubble time (Kroupa 1998; Forbes & Kroupa 2011). In this sense, SSCs can
be understood as precursors of TDGs. SSCs are however also seen as likely progenitors
of extended star-clusters and UCDs (Fellhauer & Kroupa 2002a,b; Brüns et al. 2011),
i.e. objects that are much more compact than the TDG-candidates in Table (A.1) are,
including the TDG-candidate discussed by Tran H. D. et al. (2003).

• Yoshida et al. (2008) consider it more likely that the objects they observed formed from
gas that was stripped from the probable merger remnant RB 199due to its motion through
the intergalactic medium, rather than from matter ejected by the tidal forces acting be-
tween the progenitors of RB 199 during the merger. In order todistinguish the objects
they observed from actual TDGs, they termed them ’fireballs’. On the other hand, the fire-
balls are gas-rich and star-forming, like the TDG-candidates observed by Monreal-Ibero
et al. (2007) and Miralles-Caballero et al. (2012). The fireballs are also indistinguishable
from the TDG-candidates based on their masses and radii, andboth kinds of objects have
formed from matter that was previously bound to other galaxies, in contrast to primordial
galaxies. Moreover, the arguments by Bournaud (2010) for why TDGs do not contain
DM would also hold for galaxies that form from stripped gas. The fireballs are therefore
in the following also considered as TDGs, even if the fireballs are not actual TDGs.

In the present paper, we will concentrate on the question howthe TDG-candidates will
evolve if they are indeed long-lived, self-gravitating structures, as at least some (if not all)
of them are. For simplicity, all objects in Table (A.1) will thus be treated like actual, long-
lived TDGs in the following. This can be motivated by the finding that they indeed make the
impression of a homogeneous sample in Fig. (6.2).

Numerical calculations of TDGs

As a complement to the observed TDG-candidates, numerically calculated TDG-candidates are
considered as well. The formation of TDGs during the Newtonian interaction between gas-
rich galaxies has been studied with numerical calculationsby many authors (e.g. Barnes &
Hernquist 1992b; Elmegreen et al. 1993; Barnes & Hernquist 1996; Bournaud & Duc 2006;
Wetzstein et al. 2007; Bournaud et al. 2008). Detailed parameters of the resulting objects are
however only available for a few exemplary objects, which come from the following sources:

• Bournaud et al. (2008), who show in their figure (5) five TDG-candidates as they appear
at the end of their numerical calculation. Values forM∗ are given in that figure. In
order to calculate estimates for there of these objects, the absolute maximal extension of
these objects and the maximal extension along the orthogonal axis were read off from this
figure. These values were multiplied in order to obtain an estimateAT, which was used
to calculate an equivalent radius from equation (6.1). These equivalent radii were used to
calculatere from equation (6.2).

• Wetzstein et al. (2007), who describe the most massive TDG-candidate that formed in
their numerical calculation in detail. If the progenitor galaxy of the TDG-candidate is
scaled to the Milky Way, the total mass of the TDG-candidate is M ≈ 3.5 × 108 M⊙.
About 70 per cent of this mass is gas. Since there is no DM within the TDG-candidate
(even though the progenitor galaxy was assumed to reside within a DM-halo), the mass
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of the stellar population of the TDG is 30 per cent of its totalmass. Fitting Sérsic-profiles
(Sérsic 1963) to the calculated TDG-candidate, Wetzsteinet al. (2007) estimated that the
re of the stellar population is 700 pc for the adopted scaling. The same procedure holds
re = 1400 pc of the gaseous component of the TDG-candidate.

• Barnes & Hernquist (1992b), who describe the most massive TDG that formed in their
numerical calculation in detail. If the two progenitor galaxies in the numerical calculation
are scaled to the Milky Way, the total mass of the TDG isM ≈ 4 × 108 M⊙. Barnes &
Hernquist (1992b) note that there is no DM within the TDG, butthey do not distinguish
stars and gas in their numerical calculation. It is therefore assumed here that the ratio
between gas and stars is the same as in the TDG calculated by Wetzstein et al. (2007). An
estimate forre of this TDG was calculated from the left panel of figure (1) in Barnes &
Hernquist (1992b). The TDG shown there has a diameter of≈ 6.15× 10−2 length units,
corresponding to≈ 2500 pc if the progenitor galaxies are scaled to the Milky Way. Using
equation (6.2), this impliesre ≈ 350 pc.

The adopted properties of the observed TDG-candidates are summarized in Table (A.2).

6.3 Results

6.3.1 Properties of old dynamically hot stellar systems

It is well known that old, dynamically hot (or pressure-supported) stellar systems can be divided
into two categories: A star-cluster-like population consisting of GCs and UCDs and a galaxy-
like population consisting of normal elliptical galaxies (nEs), dwarf elliptical galaxies (dEs) and
dwarf spheroidal galaxies (dSphs) (Gilmore et al. 2007; Forbes et al. 2008; Misgeld & Hilker
2011). Almost every object shown can indeed easily be assigned to one these two populations
by its position in Figure (6.1). Exceptions like UCD 3 or M32 are extremely rare (see also
Section 6.4.2).

Within these two populations of stellar systems, subpopulations can be identified by changes
of the mass-radius relations that characterize these subpopulations. This leads to a distinction
between dSphs, dEs and nEs within the galaxy-like population and a distinction between GCs
and UCDs within the star-cluster-like population (e.g. Misgeld & Hilker 2011).

The exact locations of the transition from one subpopulation to another is a matter of defi-
nition. In the present paper, members of the galaxy-like population are considered dEs if they
have a stellar massM∗ ≤ 3 × 109 M⊙ and nEs otherwise. It is impossible to make a similar
distinction between dEs and dSphs (cf. Ferguson & Binggeli 1994). Thus dEs and dSphs will
all be referred to as dEs in the following. Taking theirM∗ to be equal to their total mass (cf.
Section 6.2.1), members of the star-cluster-like population are considered GCs if they have a
stellar massM∗ ≤ 2× 106 M⊙ and UCDs otherwise.

Performing a least-squares fit to dEs with massesM∗ > 104 M⊙, a mass-radius relation for
them is quantified as

log10

(

rh
pc

)

= (0.122± 0.013) log10

(

M∗

M⊙

)

+ (1.87± 0.10). (6.3)

Performing the same kind of fit to dEs with massesM∗ < 106 M⊙ leads to

log10

(

rh
pc

)

= (0.42± 0.08) log10

(

M∗

M⊙

)

+ (0.3± 0.3). (6.4)
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Figure 6.1:The half-light radii of old stellar systems against the massof their stellar populations,M∗

(cf. Section 6.2.1). Provided that the mass of dust, gas and non-baryonic matter is negligible in these
systems, the estimates for the mass of their stellar populations are in fact estimates of their total masses.
The distinction between GCs and UCDs and elliptical galaxies is as in the literature from which the
data is taken. The dashed line is a mass-radius relation obtained through a least-squares fit to (normal)
elliptical galaxies with massesM∗ > 3 × 109 M⊙ (cf. equation 6.6), which incidentally also fits well
to the UCDs. The dotted lines are mass-radius relations obtained through least-squares fits to (dwarf)
elliptical galaxies with masses104 M⊙ ≤ M∗ ≤ 3 × 109 M⊙ (cf. equation 6.3), and (dwarf) elliptical
galaxies with massesM∗ < 106 M⊙ (cf. equation 6.4), respectively. The thin solid lines indicate
constant densities ofρ = 10−3 M⊙ pc−3, ρ = 10−2 M⊙ pc−3, ρ = 0.1 M⊙ pc−3 andρ = 1 M⊙ pc−3

from top to bottom.

A constant mean density for galaxies implies

log10

(

rh
pc

)

=
1

3
log10

(

M∗

M⊙

)

+ c, (6.5)

wherec is a constant. Equation (6.5) is consistent with equation (6.4), so that dEs with very low
masses may indeed be characterized by a typical average density. This is however not the case
for the more massive dEs. Their typical densities increase with their mass, as is apparent from
equation (6.3).

There are however several potential problems with the data on dEs with massesM∗ <
106 M⊙:

1. The data is very sparse in that mass range. The mass-radiusrelation given by equa-
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tion (6.4) is derived from only nine dEs, of which the five mostmassive ones are also
well consistent with mass-radius relation given by equation (6.3).

2. The objects in this mass-range have very low surface brightnesses, so that theirre are
difficult to measure.

3. If these objects are pure stellar populations (for instance because they formed as tidal
dwarfs and thus contain no DM), they are the most vulnerable to tidal fields that may
alter their structure (Kroupa 1997; Metz & Kroupa 2007; Casas et al. 2012, see also
Section 6.3.3)

Thus, the apparent steepening of the mass-radius relation for dEs towards lower masses has
to be taken with caution.

A least-squares fit to nEs yields

log10

(

rh
pc

)

= (0.593± 0.027) log10

(

M∗

M⊙

)

− (2.99± 0.30). (6.6)

This mass-radius relation for nEs is consistent with the result in Dabringhausen et al. (2008),
even though Dabringhausen et al. (2008) estimated the masses of the nEs from theirrh and their
velocity dispersions, whereas in this paper their luminosities and colours were used.

UCDs lie along the same mass-radius relation as nEs, even though UCDs belong to the star-
cluster-like population while nEs belong to the galaxy-like population (Dabringhausen et al.
2008). Note that UCDs were not included in the fit of equation (6.6) to the data. The mass-
radius relation of GCs, in contrast, is essentially flat.

Possible reasons for the transition from dEs to nEs are discussed in Section (6.4.4) and
possible reasons for the transition from GCs to UCDs are discussed in Section (6.4.4).

6.3.2 Properties and evolution of TDGs

A comparison of the numerically calculated TDG-candidateswith the observed TDG-candidates
shows that the estimates ofM∗ andre of the calculated TDG-candidates are consistent with the
observed ones. If these parameters are however compared to the according present-day pa-
rameters of the GCs, UCDs, dEs and nEs (i.e. the stellar systems introduced in Section 6.2.1
and shown in Figure 6.1), the (young) TDG-candidates are on amass-radius relation below
the mass-radius relation for (old) dEs. The old TDGs by Galianni et al. (2010) are however
consistent with being typical dEs.

In order to find the actual interrelations between the TDG-candidates and the other stellar
systems, it is necessary to estimate what they would look like if they all had the same age.
This requires to account for the future evolution of the TDG-candidates listed in Tables (A.1)
and (A.2) in the Appendix, since almost all of them have ages of the order of108 years or less,
while the objects shown in Figure (6.1) are at least a few109 years old (see Misgeld & Hilker
2011). The age difference between these systems is consistent with the finding that many TDG-
candidates show evidence for ongoing star formation, as theHα-emission from these systems
indicates.

The amount of gas is actually very substantial in the three TDG-candidates observed by
Bournaud et al. (2007). They estimate the mass of the stars inthese TDG-candidates by their
luminosity and the amount of gas in them by the strength of their emission lines. They thereby
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Figure 6.2:Estimates for the final radii of TDG-candidates after their gas has been expelled against
estimates of their stellar mass,M∗. The estimates are based on the data on present-day parameters of
TDG-candidates (cf. Section 6.2.2 and Table A.1) and on dataon TDGs taken from numerical cal-
culations on the formation of TDGs during the encounter of gas-rich galaxies (cf. Section 6.2.2 and
Table A.2). Probably the largest uncertainty to the data on the TDG-candidates shown here comes from
the poor knowledge on how star-formation and mass-loss willinfluence the future evolution of the gas-
rich present-day TDG-candidates until they possibly resemble old, gas-poor dEs (cf. Section 6.3.2). In
order to quantify this uncertainty on the data for the TDG-candidates, the lower limit for future radius
of each TDG-candidate is taken to be its present-day radius,which corresponds to no future mass-loss
according to equation (6.8). The symbol representing the TDG-candidate is placed at a radius twice its
present-day radius, which corresponds to a future mass-loss of half of its present-day mass according to
equation (6.8). The upper limit for the radius of each TDG candidate is taken to be four times its present-
day radius, which corresponds to a loss of 75 per cent of its present-day mass according to equation (6.8).
Thus, the errorbars to the data on the TDG-candidates shown here were not formally calculated from the
uncertainties to the observational data, but represent different assumptions on the future evolution of the
TDG-candidates. These assumptions are admittedly quite arbitrary, but as they are not very restrictive
concerning the future mass-loss (and thus the future evolution) of the TDG-candidates, they are also
conservative. The data on old stellar systems presented in Fig. (6.1) are also shown here for comparison.
The thin solid lines indicate the tidal radii for stellar systems in the vicinity of a major galaxy105 pc
away. The mass of the major galaxy isM = 1010 M⊙, M = 1011 M⊙ andM = 1012 M⊙, from top to
bottom.

find that stars make up only about ten per cent of the baryonic mass in each of the TDG-
candidates they studied. Such a detailed analysis of their composition has not been made for the
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other TDG-candidates discussed in the present paper. It is however likely that the composition
of other very young TDG-candidates from Miralles-Caballero et al. (2012) with ages of the
order of106 years is similar, especially since the masses derived from their internal dynamics
are much higher than the masses derived from the luminosity of their stellar populations. The
TDG-candidates discussed by Yoshida et al. (2008) and Duc P.A. et al. (2011) suggest that
also TDG-candidates with ages of at least108 years can still contain enough gas to be sites of
very recent star-formation. Thus, gas is the principal masscomponent in many of the TDG-
candidates, since they do not contain DM (Barnes & Hernquist1992b; Bournaud 2010; Kroupa
2012). The fate of the gas in the TDG-candidates is thereforedecisive for their future evolution.

The two TDG-candidates studied by Galianni et al. (2010) arethe only ones in Table (A.1)
that have ages similar to those of the old stellar systems introduced in Section (6.2.1). Like
the other old stellar systems, the TDG-candidates show no traces of ongoing star-formation,
which suggests that there is no gas left in them. This motivates the assumption that the other
TDG-candidates will also have lost their gas once they have reached that age.

There are several processes by which the gas can disappear from the young TDG-candidates
on a time-scale of the order of109 years:

1. The conversion of gas into stars.

2. The removal of the gas through heating by massive stars that form in the TDG-candidates.

3. The removal of the gas through ram-pressure stripping when the TDG-candidates move
through the intergalactic medium.

More than one of these processes may contribute to the removal of the gas. The first two
processes are even intimately linked to each other, since the presence of massive stars implies
recent star formation, while the removal of gas through the heating of these massive stars influ-
ences further star formation. This interrelation is known as feedback. The second and the third
process are similar regarding their effect on the further evolution of the stellar system. Both
imply that the TDG-candidate looses mass and in consequenceexpands (see Kroupa 2008 for
a detailed discussion on the effect of mass-loss on stellar systems). However, the actual contri-
bution of each of these processes to the disappearance of thegas in the TDGs is unknown. It
is likely to be different for each individual TDG, but according to the models by Recchi et al.
(2007), an isolated TDG self-regulates its star-formationsuch that it is relatively stable against
feedback and major blow-outs do not arise.

Let us assume for now that the second and the third process arethe most relevant ones for
the future evolution of an existing young TDG-candidate, i.e. that it looses much of its mass
through the removal of gas, while only little of the gas is converted into stars that add to the
existing stellar population of the TDG-candidate. This assumption is motivated by the finding
that the gravitational potentials of the TDG-candidates are rather shallow (Bournaud 2010), so
that matter can quite easily be removed from them.

If the evolution of a stellar system is primarily driven by mass-loss, it is decisive whether
the mass-loss is fast or slow compared to the crossing time ofthe stellar system. This crossing
time can be defined as

tcr =
2re
σ

, (6.7)

wherere is the effective radius of the stellar system andσ is its internal velocity dispersion
(Kroupa 2008). For the TDG-candidates, typical values forσ are of the order of 10 km/s (see
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table 2 in Miralles-Caballero et al. 2012) and typical values for re the order of 100 pc (see
TableA.1). Noting that 1 km/s is essentially equal to 1 pc/106years, the typical crossing times
of TDG-candidates are of the order of107 years. The TDG-candidates observed by Yoshida
et al. (2008) are of the order of108 years old, but still contain enough gas for star formation.
Taking this as evidence that the time scale on which the gas islost from the TDG-candidates is
not less then108 years, the mass-loss would be slow compared to the typical crossing times of
the TDG-candidates. In the case of slow (adiabatic) mass loss, the expansion of a stellar system
is given by

Mf

Mi
=

ri
rf
, (6.8)

whereMf is the final mass of the stellar system,Mi is the initial mass of the stellar system,rf
is the final radius of the stellar system andri is the initial radius of the stellar system (Kroupa
2008).

In order to calculate the future expansion of the young TDG-candidates with equation (6.8),
Mf = M∗ andri = re is assumed. Two cases are considered here forMi, namelyMi = 2Mf

andMi = 4Mf . Thus, the TDG-candidates are assumed to loose 50 per cent and 75 per cent
of their mass through the removal of their gas. That is somewhat less than the amount of gas
traced by Bournaud et al. (2007) in TDG-candidates, which reflects the expectation that some
of the gas available at the present will not be expelled, but will be converted into stars. The
resulting final parameters of the TDGs are shown in Fig. 6.2.

Given the assumptions that were used to calculate them, these estimates for the final values
for M∗ andre of the young TDG-candidates can only be approximations. Their overall consis-
tency with the according parameters for the old TDGs discussed by Galianni et al. (2010) and
the (old) dEs is however remarkable.

Despite the fact that young TDGs probably mostly consist of gas, it is by no means clear
that gas-expulsion is indeed as important as assumed for theestimation of their final parameters
as shown in Figure (6.2). Gas expulsion is however not the only process by which the extension
of the stellar component of a TDG can grow. According to numerical calculations performed
by Recchi et al. (2007), star formation in a TDGs starts at thecentre and spreads from there
with time.

Whether this buildup of the stellar population of the TDG from the inside to the outside
or mass loss is more important for the evolution of its size isunclear at the present. It would
however be natural that growth from the inside to the outsideis most relevant for the TDGs with
the deepest potentials (i.e. the most massive ones), as theyare the least vulnerable to mass loss.
Thus, young TDGs lie on a mass-radius sequence below the one of old dEs, but the parameters
of the TDG-candidates would evolve naturally towards the parameters of dEs as they reach a
comparable age.

6.3.3 The tidal radii of the TDGs

A TDG expelled from the interacting or merging progenitor galaxies (cf. Elmegreen et al. 1993)
will evolve self-regulated (Recchi et al. 2007) and may become a dwarf irregular galaxy (Hunter
et al. 2000). However, if a TDG is bound to a host (either a larger galaxy or a galaxy cluster), its
size is limited by its tidal radius. This tidal radius,rtid, depends on the mass of the TDG,Mgal,
the mass of the host,Mhost, and the distance between the TDG and its host. For systems that
effectively are point masses and obeyMhost ? 10 Mgal, a good approximation tortid is given



178 CHAPTER 6. ORIGIN OF DE-GALAXIES

by (Binney & Tremaine 1987)

rtid =

(

Mgal

3Mhost

)
1

3

R. (6.9)

For given values forR andMhost, equation (6.9) gives the minimum average density a TDG
needs to have in order to be an object kept together by its own gravity. At radii r > rtid, matter
cannot be bound exclusively to the TDG, but only to the commongravitational potential of the
TDG and its host.

Since TDGs form from tidal arms, it is indeed likely that a TDGis bound to a larger struc-
ture. This larger structure can be its progenitors or a galaxy cluster in which the TDG formed.
The notion of many TDGs remaining bound to their progenitor is supported by the dwarf galax-
ies bound to the Milky Way, whose disk-like distribution andaligned angular momenta can, as
it seems, only be understood if they are ancient TDGs (Kroupaet al. 2005; Metz et al. 2008;
Kroupa P. et al. 2010; Pawlowski et al. 2012b,a; Kroupa 2012). For TDGs that remain bound
to their progenitor galaxies total masses1010 M⊙ > Mhost > 1012 M⊙ (i.e. the mass of a major
galaxy) and distancesR ≈ 105 pc would be typical. The tidal radii implied by these parameters
are plotted in Fig. 6.2.

If the TDG-candidates introduced in Section (6.2.2) adiabatically loose 75 per cent of their
mass (i.e.Mi = 4Mf in equation 6.8), their radii become similar to the tidal radii shown in
Figure (6.2). Thus, the TDG-candidates cannot expand any further if they loose even more mass,
provided that the choices ofMhost andR are appropriate. Note however that a adiabatically
expanding TDG would not dissolve completely if its outskirts expand beyond its tidal radius.

Interestingly, the tidal radii shown in figure (6.2) also coincide well with the maximumre
observed for dEs with stellar massesM∗ > 107M⊙. This is evidence that tidal fields are indeed
relevant for the structure of low-mass galaxies for which dark matter haloes do not play a role,
as is very likely to be the case for such galaxies (see Kroupa 2012 and Sections 6.4.1 and 6.4.4).
At higher masses, the mass-radius relation for dEs is significantly flatter than a relation implying
a constant average density in dEs. Thus, the density of the more massive dEs tends to increase
with their mass, so that they are less effected by tidal fields. The reason might be that the
galaxies with the lowest masses have the weakest gravitational potentials and therefore are the
most vulnerable to mass-loss and subsequent expansion. More massive galaxies might keep
more of their initial gas and use it up in star formation, so that they expand less.

Thus, the young TDG-candidates are likely to expand (see Section 6.3.2), but tidal fields are
likely to limit this expansion. The young TDG-candidates discussed in this paper would thereby
naturally evolve onto the mass-radius relation of dEs and become indistinguishable from them
in this respect.

6.4 Discussion

6.4.1 The relation between dEs and TDGs

According to theΛCDM-model, there are two kinds of galaxies with masses106 M⊙ > M >

1010 M⊙. The first kind are primordial dwarf galaxies that form within DM-haloes of rather
low masses (Li et al. 2010; Guo et al. 2011), as they are predicted in numerical calculations of
structure formation in the Universe. The second kind are TDGs, whose formation is predicted in
numerical calculations of encountering galaxies that are set up in concordance with theΛCDM-
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model (Barnes & Hernquist 1992b; Bournaud & Duc 2006). This prediction by theΛCDM-
model has been termed the ’Dual Dwarf Galaxy Theorem’ by Kroupa (2012).

The ’Dual Dwarf Galaxy Theorem’ poses a problem for theΛCDM-model for several rea-
sons:

1. It would be natural that primordial galaxies containing asubstantial amount of CDM
have a different structure than old TDGs, which do not contain DM and are of a dif-
ferent origin. Thus, old TDGs and primordial galaxies wouldbe expected to form two
distinct populations. Following this argument, the data inFig. (6.2) suggests that the
dEs are old TDGs. The dynamicalM/L-ratios in the central parts of dEs with masses
108 M⊙ > M∗ > 109M⊙ imply that there is little CDM at best in these regions of the dEs
(Wolf et al. 2010; Toloba et al. 2011; Forbes et al. 2011). Admittedly, about a (hypothet-
ical) presence of CDM in the outskirts of these galaxies, nothing is known so far from
observations. Less massive dEs tend to have seemingly higher M/L-ratios, but this may
be due to the disturbance from a tidal field of a neighbouring major galaxy (Kroupa 1997;
Casas et al. 2012), or due to Newtonian gravity not being valid in the limit of very weak
gravitational fields (see figure 8 in Kroupa P. et al. 2010). UCDs are galaxies accord-
ing to some definitions of a galaxy (see Forbes & Kroupa 2011 and Section 6.4.2) and
have elevated mass-to-light ratios, but a significant amount of CDM in them is very un-
likely nevertheless (Murray 2009; Willman & Strader 2012; see also Dabringhausen et al.
2012). Thus, a population of dwarf galaxies that definitively formed within DM-haloes
cannot be identified in Fig 6.2.

2. Even if all dEs were galaxies that formed within low-mass CDM-haloes, their number
would still be low compared to the predicted number of CDM-haloes in the appropriate
mass-range (Moore et al. 1999; Klypin et al. 1999); a finding that has been termed the
’missing satellite problem’. In consequence, mechanisms that would supress the forma-
tion of galaxies within most low-mass CDM-haloes were discussed (e.g. Benson et al.
2002; Li et al. 2010). The number of dwarf galaxies that form nevertheless according to
such models is however only consistent with the number of observed dwarf galaxies if the
existence of TDGs is neglected (Kroupa P. et al. 2010; Kroupa2012). There is however
strong observational evidence for formation of TDGs in encounters between galaxies (e.g
Mirabel et al. 1992) and that the TDGs thereby created are numerous (e.g. Hunsberger
et al. 1996). Thus, the ’Missing Satellite Problem’ persists.

3. The satellite galaxies of the Milky Way form a rotationally (or angular-momentum) sup-
ported disk (Kroupa et al. 2005; Metz et al. 2008; Pawlowski et al. 2012b), which would
be logical if these galaxies are TDGs, but incomprehensibleif they formed as primordial
structures in agreement with theΛCDM-model (Pawlowski et al. 2012a). This implies
that all dEs around the Milky Way are in fact ancient TDGs. This finding strengthens
the previous two points, namely that firstly all dEs are more likely old TDGs rather than
primordial galaxies and that secondly the ’Missing Satellites Problem’ thereby is far from
being solved within the standard cosmological model.

The notion that all dEs are old TDGs raises the question whether a sufficiently high number
could have been produced over the age of the Universe. Concerning this matter, Bournaud &
Duc (2006) show in numerical calculations that about 25 per cent of the TDGs initially created
in an encounter would survive for more than2 × 109 years, which corresponds to an average
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between 1 and 2 long-lived TDGs per calculated interaction.Okazaki & Taniguchi (2000) argue
that a TDG-production at this rate would already be sufficient to account for all dwarf galaxies
in the nearby Universe (also see Kroupa P. et al. 2010).

An implication of all dEs being ancient TDGs is that the dynamicalM/L-ratios of dEs with
massesM∗ ? 108 M⊙ must be consistent with theM/L-ratios of pure stellar populations. This
can be seen in figure 7 in Misgeld & Hilker (2011), which shows that the internal gravitational
acceleration in these dEs is at or above the limit for Milgromian dynamics (Milgrom 1983, see
Famaey & McGaugh 2012 for a rewiev), while TDGs do not containdark matter even if their
progenitors did (Barnes & Hernquist 1992b; Bournaud 2010).

Observations of dEs with dynamical massesMdyn ? 108 M⊙ reveal that most of them
have dynamicalI-bandM/L-ratios of2 > Mdyn/LI > 4 within their effective radii (Wolf
et al. 2010). SuchMdyn/LI-ratios correspond, for instance, to theM∗/LI ratios of single-burst
stellar populations with a metallicity of [Z/H]= −0.33 and ages5× 109 yr < t < 13 × 109 yr
(Maraston 2005). This does not exclude that the actual stellar populations of the dEs shown in
Wolf et al. (2010) are more luminous, so that an additional matter component would be needed
in order to explain the observedMdyn/LI ratios. The centralMdyn/LI-ratios of the 21 dEs
listed in table 7 in Toloba et al. (2011) are however indeed ofthe same order of magnitude
as their central stellarM∗/LI-ratios. Given that the centralM∗/LI-ratios of these dEs are
quite uncertain and in 7 cases higher than the accordingMdyn/LI-ratios, there is moreover no
compelling evidence thatMdyn > M∗ holds for them. Thus, observations do indeed support the
notion that the dynamics of the central region of dEs is consistent with Newtonian dynamics,
even if little or no dark matter is present there.

The typicalMdyn/L-ratios of dEs with massesM∗ > 108 (often referred to as dSphs in the
literature, but see Ferguson & Binggeli 1994 and Section 6.3.1) strongly increase with decreas-
ing mass (cf. figure 4 in Wolf et al. 2010). This makes them inconsistent with the assumption
that dEs with massesM∗ > 108 are pure stellar populations that are in virial equilibriumand
obey to Newtonian dynamics. However, being less tightly bound than the more massive dEs
(cf. figure 7 in Misgeld & Hilker 2011), these dEs are more likely to be disturbed by tidal
fields, which would lead to seemingly highMdyn/L-ratios if the dEs are assumed to be in virial
equilibrium (Kroupa 1997; McGaugh & Wolf 2010; Casas et al. 2012). Moreover, the internal
accelerations in low-mass dEs are in the regime where Milgromian dynamics (Milgrom 1983)
would be relevant (cf. figure 7 in Misgeld & Hilker 2011). Notethat Milgromian dynamics
would also explain the remarkably high dynamical masses of the TDG-candidates discussed
by Bournaud et al. (2007), which cannot be explained with thebaryonic matter found in these
galaxies, even though numerical experiments strongly predict the absence of DM in TDGs (e.g.
Barnes & Hernquist 1992b; Gentile et al. 2007; Bournaud 2010). Thus, also low-mass dEs can
be understood as dark-matter free TDGs, if they are not in virial equilibrium or if their internal
dynamics is non-Newtonian.

It has also been established from observations that less luminous elliptical galaxies (i.e.
dEs) tend to be bluer than more luminous elliptical galaxies(i.e. nEs). This colour-magnitude
relation exists, because less luminous elliptical galaxies tend to be younger and less metal-rich
than more massive elliptical galaxies (Gallazzi et al. 2006).

If the notion of all dEs being old TDGs is correct, and nEs are primordial galaxies, the dEs
would tend to be younger than the nEs because the dEs could as amatter of principle only
form after the formation of the first primordial galaxies. Thus, this scenario would naturally
explain ’downsizing’, i.e. that the least massive galaxiestend to have the youngest stellar pop-
ulations, although they should be the oldest galaxies according to theΛCDM model (see, e.g.,
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Cimatti A. et al. 2004).
Understanding why the dEs tend to be less metal-rich than nEsis less intuitive under the

premise that dEs are old TDGs. This is because the dEs would have formed from pre-enriched
material if they are not primordial objects. However, the old TDGs have formed at a time
when the primordial galaxies were less self-enriched than they are today. Old low-mass and
metal-poor dEs can therefore be understood as TDGs that formed from matter that was scarcely
pre-enriched and in which self-enrichment was not very effective. The low-mass dEs are indeed
less tightly bound than the more massive dEs and nEs, as figure7 in Misgeld & Hilker (2011)
indicates. Thus, the low-mass dEs are may have been more likely to loose the gas expelled by
evolving stars, while high-mass dEs and nEs may have been more likely to reprocess it. This
would explain why the typical metallicity of dEs increases with their mass, no matter whether
they are ancient TDGs or not.

Thus, so far the properties of the dEs seem to be consistent with them being old TDGs. This
would, however, imply that there are no primordial galaxieswith stellar massesM∗ > 1010 M⊙,
which would be inconsistent with theΛCDM-model (Kroupa P. et al. 2010; Kroupa 2012). This
may be evidence for theΛCDM-model needing to be replaced with a cosmological model where
the apparent need for DM as an explanation for the internal dynamics of galaxies is replaced
with a non-Newtonian law of gravity in the ultra-weak field limit. An excellent example of such
a law of gravity is provided by Milgromian dynamics (Milgrom1983).

6.4.2 The relation between UCDs and TDGs

The highly resolved numerical calculation of the merger of two galaxies performed by Bournaud
et al. (2008) implies that two types of stellar systems are created during the merger:

1. pressure-supported stellar systems with masses105 M⊙ < M∗ < 107 M⊙ and diameters
between 10 and 100 pc. Bournaud et al. (2008) identifies this type of stellar system with
the super star clusters (SSCs) discussed by Kroupa (1998), i.e. complexes of star clusters
that are kept together by mutual gravitational forces. Possible SSCs have been observed
by Whitmore & Schweizer (1995) and they will evolve into objects that observers would
classify as UCDs (Kroupa 1998; Fellhauer & Kroupa 2002a) or extended star-clusters
(Fellhauer & Kroupa 2002b; Brüns et al. 2011).

2. rotating stellar systems with masses108 M⊙ < M∗ < 109 M⊙ and diameters of a few103

pc. This type of stellar system has been identified with ’classical’ TDGs by Bournaud
et al. (2008). Candidates for observed TDGs are listed in Table (A.1), and may evolve
into dEs (see Sections 6.3.2 and 6.3.3).

The properties of the stellar systems that form during a merger of galaxies according to the
numerical calculations by Bournaud et al. (2008) are therefore consistent with observations,
as is also illustrated in Figure (6.2). This consistency with the observations includes the lack
of objects intermediate to SSCs and ’classical’ TDGs. Giventhe probable future evolution of
these objects, their absence translates into the absence ofobjects intermediate to UCDs and dEs,
which is illustrated with Figure (6.1).

Thus, the numerical calculation by Bournaud et al. (2008) correctly reproduces the mass
spectrum and the sizes of objects forming during a galaxy merger. This is strong evidence for the
physical processes included in the model (gas dynamics, stellar dynamics, star formation law)
being sufficient and their implementation in the numerical code being adequate for the overall
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description of a galaxy merger. A detailed understanding ofwhy two distinct types of objects
are formed during the merger (namely SSCs and TDGs) is however still missing. Given the
apparent link to physical processes, it nevertheless stands to reason to distinguish galaxies from
star-clusters by their different structure, i.e. by the gapbetween a star-cluster-like population
(to which the UCDs belong) and a galaxy-like population (to which the TDGs belong). This is
essentially equivalent to the distinction between star-clusters and galaxies proposed by Gilmore
et al. (2007).

Note however that there are also other ways to define a galaxy (see Forbes & Kroupa 2011).
The choice of the definition is decisive for the classification of UCDs and their progenitors.

If a galaxy is defined as a stellar system whose dynamics cannot be explained with its
baryons obeying Newton’s laws of gravity (Willman & Strader2012), UCDs2 and SSCs are
star-clusters. The internal properties of even one of the most massive UCDs have indeed been
argued to be consistent with it being an extremely massive star cluster (Frank et al. 2011).

If a galaxy is defined as a stellar system whose relaxation time at its half-mass radius,t,
is longer than the age of the universe,τH, (Kroupa 1998, 2012), most UCDs and SSCs are
galaxies. Thus, the numerical calculations performed by Bournaud et al. (2008) would predict
the formation of two different kinds of tidal galaxies according to this definition of a galaxy.
Note however that this definition implies that any stellar system will become a star-cluster at
some point of time by the aging of the universe.

In essence, each of the proposed definitions is based on a property that is typical for a galaxy.
By choosing a certain definition, the importance of the according property is emphasized. Defin-
ing a galaxy as a stellar system withtrh > τH emphasizes the fact that such systems cannot have
evolved dynamically through two-body encounters at the present, which has important impli-
cations for how to model the dynamical evolution of such systems effectively (Kroupa 2012).
Defining a galaxy by its extension, or by the impossibility toexplain its dynamics with its bary-
onic matter and the Newtonian laws of gravity, emphasizes a fundamental physical difference
of these systems.

6.4.3 The GCs of dEs

It is known that dEs usually are surrounded by GC systems. Typical sizes of these GC systems
range from a few GCs to about 100 GCs. Not considering the total number of GCs in these
systems, but the number of GCs per unit luminosity of their host galaxy, the GC systems of
some low-luminosity dEs are actually large in comparison toother galaxies (Peng E. et al.
2008).

If dEs are ancient TDGs, their GCs can have formed in different ways:

1. The numerical calculation by Bournaud et al. (2008) suggests that during a galaxy merger
GCs and TDGs are created at the same time. If they are formed within the same phases-
pace volume, a forming TDG might capture forming GCs within its gravitational field.

2. SSCs, which are possible progenitors of TDGs, are highly substructured. While most of
the subsystems quickly merge into an object that would be identified as a UCD or a TDG

2The elevatedM/LV ratios of UCDs (Haşegan et al. 2005; Dabringhausen et al. 2008; Mieske et al. 2008) are
probably not due to CDM or non-Newtonian gravity (see Section 6.2.1), but to the presence of a large population
of neutron stars and stellar-mass black holes in UCDs, whichis the consequence of a top-heavy stellar initial mass
function in UCDs which formed as a major star-burst (Dabringhausen et al. 2009, 2012; Marks et al. 2012).
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by observers, some subsystems may survive on a timescale of109 years (see figure 11 in
Fellhauer et al. 2002) and might qualify as GCs.

3. According to Weidner et al. (2004), the mass of the most massive star-clusters that can
form within a stellar system depends on the star formation rate of that stellar system.
If the initial star formation rate in the TDGs was high enough, GCs may have formed
during the evolution of the TDG as its most massive star-clusters. In contrast to the first
two scenarios, this scenario implies that the GCs are younger than its host.

In any case, GC-candidates should be very common around TDG-candidates of any age, if
the dEs are old TDGs and if their GC-systems form early duringtheir evolution. As these GCs
would have formed from pre-processed matter, they would tend to be more metal-rich than GCs
that formed with the formation of a primordial galaxy. This stands in contrast with the finding
that dEs tend to have a higher fraction of blue GCs than nEs, which could be interpreted as the
GCs of dEs tending to be less metal-rich than the GCs of nEs (cf. figure 8 in Peng E. et al. 2008).
Note however that the bluer colour of the GCs belonging to dEscould also indicate a lower age.
This would be natural if the nEs are primordial galaxies while the dEs are old TDGs (and thus
younger than nEs) and if the GCs formed together with their host galaxies. Moreover, metal-
enrichment might not have proceeded very far in the progenitor galaxies when the progenitors
of present-day dEs possibly have formed as TDGs (cf. Section6.4.1). Thus, finding GC-
candidates in a systematic search around TDG-candidates would be supportive evidence for the
dEs being old TDGs.

If no GC-candidates are found around young TDG-candidates,this could be explained in
different ways:

1. Only the dEs with very few or no GCs are ancient TDGs.

2. GCs form rather late during the evolution of a young TDG into a dE.

3. Marks & Kroupa (2010) note that metal-rich GCs form with larger radii. These GCs are
thus more susceptible to destruction than the GCs that formed at the age of ancient TDG-
formation, which arguably formed from matter that was barely pre-enriched. Presently
forming TDGs may thus have a small specific frequency of GCs.

Note however that the case of finding no GC-candidates aroundTDG-candidates does not
seem very likely, considering the substructure found in SSCs and the TDG-candidates discussed
in Miralles-Caballero et al. (2012) and the possibility that some of these substructures may
survive for a long time according to Fellhauer et al. (2002).

6.4.4 Mass-radius relations

In the following, possible reasons for the mass-radius relations described in Section (6.3.1) are
discussed.

The mass-radius relation of nEs and UCDs

The mass-radius relation for UCDs and nEs is very remarkablebecause it bridges the gap be-
tween the galaxy-like population and the star-cluster-like population (cf. Section 6.4.2). The
common mass-radius relation suggests that the overall structure of UCDs and nEs was shaped
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by a process that is relevant for both types of stellar systems, even though the formation of
objects intermediate to UCDs and nEs is inhibited. As spheroidal systems with little or no sub-
structure and primarily old stellar populations, UCDs and nEs share indeed many similarities,
despite being separated by the size gap noted by Gilmore et al. (2007). Since there is most
probably no CDM in UCDs (cf. Section 6.4.2), considering UCDs and nEs as similar objects
at different masses argues against the presence of DM in nEs.In fact, strong evidence for the
absence of CDM in galaxies has already been found by Disney etal. (2008).

The process that shaped UCDs and nEs could be monolithic collapse, i.e. that the stellar
systems form rapidly by the collapse of a single gas cloud. Ifthe mass of a cloud is sufficient for
the formation of a UCD, it becomes optically thick for infrared radiation during the collapse,
which leads to internal heating. This internal heating halts the collapse and Murray (2009)
finds that the radius at which the collapse is halted depends on the mass of the cloud. This
dependency is quantified as

log(rh) ∝ 0.6 log(M∗), (6.10)

i.e. up to a constant by the same mass-radius dependency thatwas found for nEs and UCDs
from their observed parameters (cf. Dabringhausen et al. 2008; Misgeld & Hilker 2011 and
equation 6.6). Note that Murray (2009) only discusses the difference between GCs and UCDs.
However, if monolithic collapse is the reason for the mass-radius relation of UCDs, the fact that
nEs and bulges3 lie on the same mass-radius relation suggests that they alsoformed through
monolithic collapse. Monolithic collapse has indeed already been considered for the formation
of nEs and bulges (e.g. Elmegreen 1999; Sanders 2008).

As an extension to the model of pure monolithic collapse, it can be assumed that the gas
clouds formed substructures while they collapsed. The present-day UCDs and nEs would then
have formed by the merging of these substructures, as discussed in the literature for UCDs (e.g.
Kroupa 1998; Fellhauer & Kroupa 2002a; Brüns et al. 2011).

The mass-radius relation of GCs

The members of the star-cluster-like population lie an a mass-radius relation that changes its
slope at a massM∗ ≈ 2 × 106 M⊙. This change of the slope marks the transition from GCs to
UCDs. (Haşegan et al. 2005; Mieske et al. 2008).

The progenitors of UCDs were gas clouds above a certain mass threshold, at which gas
clouds become optically thick for infrared radiation when they collapse and form stellar sys-
tems. They follow equation (6.10). The progenitors of GCs and open star clusters like the
Plejades or the Orion Nebula Cluster would be gas clouds thatremained transparent for infrared
radiation because their masses were below the threshold (Murray 2009; see also Section 6.4.4).
Such clouds collapse to sizes of 0.1 pc (Marks & Kroupa 2012),which is the observed size of
dense cloud cores that are thought to be the progenitors of low-mass star clusters (Bergin &
Tafalla 2007). The 0.1 pc scale may be set by the width of filaments within molecular clouds.
Star formation is observed in the filaments if the mass per unit length exceeds a critical value
(André Ph. et al. 2010).

Thus, there is no fundamental difference between the progenitors of present-day GCs and
the progenitors of present-day UCDs, except for their mass,which has implications for their
evolution. A common origin of both types of stellar systems is indeed implied by the continuous

3Note that the location of bulges within the fundamental plane suggests that they are essentially identical to
nEs (e.g. Bender et al. 1992).
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transition between GCs and UCDs. This common origin may be that they have formed during
the interaction between galaxies, which is not only a likelytrigger for the formation of UCDs
(Fellhauer & Kroupa 2002a), but also for the formation of ’classical’ GCs (Zepf & Whitmore
1993). Thus, UCDs can be understood as the most massive GCs (Mieske et al. 2012).

Such an origin would make UCDs and GCs similar to TDGs. This makes it even harder to
understand why the radii of TDGs are about an order of magnitude larger than the radii of GCs
and UCDs of comparable mass (see Fig 6.2), so that GCs and UCDson the one hand and TDGs
on the other hand are distinct populations of stellar systems (cf. Section 6.4.2).

The mass-radius relation of dEs

At a stellar massM∗ ≈ 1010 M⊙, the mass-radius relation for dEs branches of from the mass-
radius relation defined by nEs and UCDs. In the context of theΛCDM-model, this can heuris-
tically, but not quantitatively be understood if the dEs areprimordial galaxies, of which some
formed the nEs by hierarchical merging (cf. White & Rees 1978; Aarseth & Fall 1980; Kauff-
mann et al. 1993; Springel et al. 2005).

However, in the light of the arguments given in Sections (6.4.1) and (6.4.4), it seems to be
more likely that the nEs are primordial objects that formed through the monolithic collapse of
gas clouds (see Section 6.4.4), while the dEs are secondary objects that formed as TDGs (see
Section 6.4.1). The difference between the mass-radius relation for dEs and the mass-radius
relation for nEs would then nevertheless indicate the transition between a primordial and a
secondary population of galaxies.

6.5 Conclusion

6.5.1 The nature of old pressure-supported stellar systems

In this paper, the largest existing catalogue of young TDG-candidates is collated and their re-
lation to old pressure-supported stellar systems is discussed. The old stellar systems can be
categorized into three groups:

• dEs, which follow a mass-radius relation quantified by equation (6.3) for104 M⊙ < M∗ <
3 × 109 M⊙, with a steepening for very low-mass dEs. The properties of these galaxies
are best explained with them being ancient TDGs. The reason is that there is plenty
of evidence for the existence of young TDGs, both observational (e.g. Zwicky 1956;
Mirabel et al. 1992; Duc P. A. et al. 2011; Miralles-Caballero et al. 2012) and theoretical
(e.g. Barnes & Hernquist 1992b; Bournaud & Duc 2006). These systems would naturally
evolve onto the mass-radius sequence defined by the dEs if they survive for a long enough
time (see Sections 6.3.2 and 6.3.3) and Okazaki & Taniguchi (2000) have shown that
already a rather low production rate of TDGs per galaxy encounter would be sufficient
to account for all observed dEs (see Section 6.4.1). Note that TDGs cannot contain a
significant amount of CDM (Barnes & Hernquist 1992a; Bournaud 2010; Kroupa 2012).
Consequently, this would also be true for the dEs if they are TDGs. DynamicalM/L-
ratios derived from spectroscopic measurements indeed suggest that there is little or no
CDM in the central parts of dEs with stellar massesM∗ ? 108 M⊙ (Forbes et al. 2011;
Toloba et al. 2011). At the present, no similar claim can be made for the outskirts of
dEs due to the lack of suitable data. TheM/L-ratios of dEs with lower masses are
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much higher in many cases, but this does not necessarily indicate that these galaxies are
dominated by CDM. The extremeM/L-ratios of these galaxies may also indicate that the
assumption of virial equilibrium is not valid for them (Kroupa 1997; McGaugh & Wolf
2010; Casas et al. 2012) or that the laws of gravity have to be modified in the limit of
weak gravitational fields (Hernandez et al. 2010; McGaugh & Wolf 2010; Kroupa P. et al.
2010; Famaey & McGaugh 2012; Kroupa 2012).

• nEs, which follow a mass-radius relation quantified by equation (6.6) forM∗ > 3 ×
109 M⊙. Surprisingly, the UCDs lie along the same mass-radius relation (see Section 6.3.1),
which suggests that the structure of nEs and UCDs was shaped by the same process. This
process may be the formation of stellar systems by monolithic collapse of gas clouds (see
Section 6.4.4), since this process can explain the mass-radius relation for UCDs (Murray
2009). This would make nEs primordial galaxies. The rapid formation that monolithic
collapse implies for the nEs is consistent with the chemicalproperties of the nEs, namely
their large alpha-element enrichment (Thomas et al. 2005; Recchi et al. 2009). Also the
trend of the nEs being older than the dEs (Cowie et al. 1996; Gavazzi et al. 2002; Thomas
et al. 2005; Recchi et al. 2009) can easily be explained if nEsare indeed primordial ob-
jects and dEs are old TDGs, which can only form after a population of primordial galaxies
has formed already. This finding is much more difficult to understand if nEs are built up
from dEs via hierarchical merging.

• GCs and UCDs, which lie along a continuous mass-radius sequence that changes its slope
at a massM∗ ≈ 2×106 M⊙ (see, e.g., Mieske et al. 2008). GCs and UCDs might well be
the same kind of object (e.g. Mieske et al. 2012), which wouldalso explain why the for-
mation of GCs and UCDs alike seems to be connected to the interaction between gas-rich
galaxies (see Zepf & Whitmore 1993 for GCs and, e.g., Fellhauer & Kroupa 2002a for
UCDs). This would make GCs and UCDs similar to the TDG-candidates in Tables (A.1)
and (A.2) as well, and thus to probable progenitors of dEs (see Figure 6.2). GCs and
UCDs are however much more compact than dEs (see Figure 6.1) and their probable
progenitors listed in Tables (A.1) and (A.2). This indicates a fundamental difference be-
tween GCs and UCDs on the one hand and dEs on the other hand (cf.Gilmore et al.
2007; Misgeld & Hilker 2011), even if all of them owe their existence to the interactions
between galaxies. Interestingly, a difference between likely progenitors of GCs and ex-
tended TDGs has apparently been reproduced by Bournaud et al. (2008) in a numerical
calculation of the interaction between gas-rich galaxies.It is however still not understood
how the different physical processes implemented in the calculation by Bournaud et al.
(2008) actually lead to the formation of two distinct types of objects from the matter in
tidal tails.

In effect, the observational evidence suggests that all kinds of old pressure-supported stellar
systems do not contain CDM.

6.5.2 Implications for cosmology

Currently, there are two competing schools of thought in cosmology, i.e. the attempt to describe
the Universe and its evolution as a whole. These schools of thought are best distinguished by
the conclusions they draw from the fact that general relativity (GR) cannot explain the dynamics
of galaxies, if only their visible, baryonic matter is takeninto account.
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• According to the first (and at the present dominant) school ofthought, GR is an exact
formulation of the laws of gravity on all size scales and massscales. The fact that the
dynamics of most galaxies cannot be explained with GR from their baryonic matter would
then indicate the presence of unseen, non-baryonic matter in these galaxies. Extensions
of the standard model of particle physics predict particlesthat would be candidates for
this kind of dark matter, but experiments with the aim to detect such particles have not
been successful so far. TheΛCDM-model is nevertheless widely accepted, because GR
has passed many experimental tests, and because theΛCDM-model is a good description
of the Universe on large scales (but see Kroupa 2012).

• According to the second school of thought, the dynamics of galaxies is not evidence for
the presence of DM in them, but indicates that GR has to be modified in the limit of
very weak space-time curvature. This approach has indeed been extremely successful in
describing the properties of galaxies (see Famaey & McGaugh2012 for a rewiev).

A prediction from theΛCDM-model is the ’Dual Dwarf Galaxy Theorem’, which states the
coexistence of primordial dwarf galaxies and TDGs at massesM∗ > 1010 M⊙ (Kroupa P. et al.
2010; Kroupa 2012). The primordial dwarf galaxies would have formed within CDM-haloes,
while the TDGs cannot contain CDM. Thus, the primordial dwarf galaxies and the TDGs would
have very different matter compositions, which strongly suggests that they should fall into two
easily distinguishable groups. Two groups of objects in theappropriate mass-range can in-
deed be identified in Figure (6.1), namely the UCDs and the dEs. However, according to the
conclusions presented in Section (6.5.1), neither the dEs nor the UCDs seem to be popula-
tions of primordial dwarf galaxies within CDM-haloes, but rather populations of objects whose
formation was triggered by the tidal interaction between gas-rich galaxies. Thus, the conclu-
sions presented in Section (6.5.1) support the second school of thought, according to which the
ΛCDM-model needs to be replaced by a cosmological model that is based on a new theory of
gravity.

Note however that the data on TDG-candidates used here (see Tables A.1 and A.2) is gath-
ered from different previous publications and is thus basedon observations with different in-
struments, and different numerical calculations, respectively. Moreover, the methods by which
the listed parameters have been estimated are in some cases rather crude (cf. Sections 6.2.2
and 6.2.2). In order to put our conclusions on a stronger footing, it would be advisable to re-
evaluate the existent raw data on TDG-candidates in an effort to make the data as comparable
as possible, or even to make a new observational survey of theTDG-candidates.
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Chapter 7

The mass function of CDM-halo masses

Section 3 in P. Kroupa et al., 2010,A&A , 523, 23

Abstract:

According to the currently prevailing cosmological model,the concordance cosmological model
(CCM), most of the matter in the Universe is non-baryonic olddark matter (CDM). Numerical simula-
tions based on the CCM predict that the CDM would collapse into CDM-haloes of various masses as
the Universe evolves into its current state. These CDM-haloes are the sites where the first galaxies form
according to the CCM. However, if every CDM-halo contained agalaxy, the Milky Way would have
many more satellite galaxies. This finding has been termed the ’missing satellite problem’ by theorists.
In order to solve the ’missing satellites problem’, models that explain why most low-mass CDM-haloes
would contain no baryons and thus no galaxy have been developed. These models lead to a mass-function
of luminous CDM-haloes (i.e. CDM-haloes that contain a galaxy). Using Monte-Carlo modelling, it is
tested here whether the mass function of luminous CDM-haloes that was derived by Li et al. (2010) is
not only qualitatively, but also quantitatively consistent with the mass function of the satellite galaxies
of the Milky Way. The hypothesis that the satellite galaxiesof the Milky Way have been drawn from
the mass function derived by Li et al. (2010) is thereby rejected with more than 95 per cent confidence.
Thus, the ’missing satellites problem’ persists also with state-of-the-art modelling.
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7.1 Introduction

One of the predictions of theΛCDM hypothesis is the self-similarity of DM-halos down to (at
least) the mass range of dwarf galaxies, i.e. that massive halos contain sub-halos of lesser mass,
but with the same structure in a statistical sense (Moore et al. 1999; for a major review see Del
Popolo & Yesilyurt 2007). The mass function of these sub-halos is, up to a critical massMcrit,
very well approximated by

ξsub(Mvir) =
dN

dMvir
∝ M−1.9

vir , (7.1)

wheredN is the number of sub-halos in the mass intervalMvir,Mvir + dMvir (Gao et al. 2004).
Mcrit is given byMvir ≈ 0.01Mh whereMh is the virial mass of the hosting CDM-halo. The
virial mass,Mvir, is defined by

Mvir =
4π

3
∆virρ0r

3
vir, (7.2)

whereρ0 is the critical density of the universe and∆vir is a factor such that∆virρ0 is the critical
density at which matter collapses into a virialised halo, despite the overall expansion of the
universe. The virial radiusrvir is thereby determined by the density profile of the collapsed
CDM-halo. ForMvir > 0.01Mh, the mass function steepens (Gao et al. 2004), so that it
is effectively cut off at a massMmax (see Eq. 7.3 below). It is reasonable to identifyMmax

with the mass of the most massive sub-halo, which must be larger thanMcrit, where the mass
function begins to deviate from Eq. 7.1 and smaller thanMh, the mass of the host-halo. Thus,
Mcrit < Mmax < Mh.

Thus, a halo withMvir ≈ 1012M⊙, like the one that is thought to be the host of the MW,
should have a population of sub-halos spanning several orders of magnitude in mass. It is well
known that, in consequence, a steep sub-halo mass function like Eq. 7.1 predicts many more
low-mass sub-halos than the number of observed faint MW satellites (Moore et al. 1999; Klypin
et al. 1999), a finding commonly referred to as the “missing satellites problem”. Efforts to solve
this problem rely on physical processes that could either clear CDM-halos of all baryons or
inhibit their gathering in them in the first place, and that would affect low-mass halos pref-
erentially (e.g. Moore et al. 2006; Li et al. 2010; Section 2 in Kroupa P. et al. 2010). More
specifically, Li et al. (2010) find that the mass function of luminous halos,ξlum(Mvir), would
essentially be flat for107M⊙ ≤ Mvir < 109M⊙. All sub-halos withMvir ≥ 109M⊙ would keep
baryons and thereforeξlum(Mvir) = ξsub(Mvir) in this mass range. Thus, the mass function of
luminous sub-haloscan be written as

ξlum(Mvir) = kkiM
−αi

vir , (7.3)

with

α1 = 0, k1 = 1, 107 ≤ Mvir

M⊙
< 109,

α2 = 1.9, k2 = k1 (10
9)α2−α1 , 109 ≤ Mvir

M⊙
≤ Mmax,

where the factorski ensure thatξvir(Mvir) is continuous where the power changes andk is a
normalisation constant chosen such that

∫ Mmax

107
ξvir(Mvir) dMvir = 1. (7.4)

From a mathematical point of view, Eq. 7.3 is the probabilitydistribution of luminous sub-
halos. Note that the luminous sub-halo mass function proposed in Moore et al. (2006) is very
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similar to the one in Li et al. (2010). In the high-mass part, it has the same slope as the mass
function for all sub-halos and flattens in the low-mass part (cf. fig. 3 in Moore et al. 2006). The
lower mass limit for luminous halos is however suggested to beMvir ≈ 108M⊙ in Moore et al.
(2006). Note also that the mass function ofall sub-haloshasα1 ≈ α2 ≈ 1.9 (Gao et al. 2004).

7.2 NFW-halos

It is well established by now that the density profiles of galaxy-sized CDM-halos are similar to
a universal law proposed by Navarro et al. (1997). It is givenas

ρNFW(r) =
δcρ0

r/rs (1 + r/rs)
2 , (7.5)

wherer is the distance from the centre of the halo andρ0 is the critical density of the universe,
while the characteristic radiusrs andδc are mass-dependent parameters.

By integratingρNFW(r) over a volume, the total mass of CDM within this volume is ob-
tained. Thus,

M(r) =

∫ r

0

ρ(r′)4πr′2 dr′ (7.6)

is the mass of CDM contained within a sphere with radiusr around the centre of the CDM-halo,
andM(r) = Mvir for r = rvir. Performing the integration on the right-hand side of Eq. 7.6 and
introducing the concentration parameterc = rvir/rs leads to

M(r) =
4πρ0δcr

3
vir

c3

[

rvir
rvir + c r

+ ln

(

1 +
c r

rvir

)

− 1

]

. (7.7)

Note thatδc can be expressed in terms ofc,

δc =
∆vir

3

c3

ln (1 + c)− c/(1 + c)
, (7.8)

as can be verified by settingr = rvir in Eq. 7.7 and substitutingM(rvir) = Mvir by Eq. 7.2.
If the halo is luminous, it is evident thatM(r) is smaller than thetotal mass included within

r,Mr. However, assuming that the MW satellites are in virial equilibrium and that their dynam-
ics is Newtonian, the mass-to-light ratios calculated for them are generally high and imply that
they are DM-dominated and thus,M(r) = Mr would be a good approximation. This relation is
therefore adopted for the present discussion. Note in particular thatM(r = 0.3kpc) = M0.3kpc

in this approximation.
In principle, the parametersρ0 (Navarro et al. 1997),c (Bullock et al. 2001) and∆vir (Main-

ini et al. 2003) depend on the redshiftz but for the purpose of the present paper onlyz = 0
needs to be considered, as this is valid for the local universe. Thus,

ρ0 =
3H2

0

8πG
, (7.9)

with the Hubble constantH0 = 71 kms−1 Mpc−1 (Spergel D. N. et al. 2007),∆vir ≃ 98 for
ΛCDM-cosmology (Mainini et al. 2003), and

log10(c) = 2.31− 0.109 log10

(

Mvir

M⊙

)

, (7.10)
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Figure 7.1:The ’overpredicting luminous satellite problem’. The cumulative distribution function for
the mass within the central 300 pc,M0.3kpc, of the MW satellites (solid line) and the cumulative distribu-
tion function forM0.3kpc of a sample of106 CDM-halos picked from the parent distribution of luminous
sub-halos (Eq. 7.3, dashed line). The null hypothesis is that the MW satelliteM0.3kpc masses are drawn
from this parent distribution. The maximum distance between the two curves is 0.333 so that the null
hypothesis can be discarded with 99.1 per cent confidence.

wherec is the expectation value ofc as a function ofMvir. Thus,c decreases slowly withMvir,
while the scatter of the actualc is rather large, being

σlog10 c = 0.174 (7.11)

(Macciò et al. 2007). Note that the only caveat here is that the NFW profile is used to in-
tegrate the mass, while the now-preferred Einasto profile (Navarro et al. 2010, Section 1 in
Kroupa P. et al. 2010) makes only a small difference in the central parts.

7.3 Probing theΛCDM hypothesis withM0.3kpc

Strigari et al. (2008) use stellar motions in 18 MW satellites for calculating their mass within the
central 300 pc,M0.3kpc. They assume the satellites to be in virial equilibrium and that Newtonian
dynamics can be applied to them. The sample from Strigari et al. (2008) can be enlarged
to 20 satellites by including the Large Magellanic Cloud (LMC) and the Small Magellanic
Cloud (SMC), since van der Marel et al. (2002) estimated the mass of the LMC within the
innermost 8.9 kpc,MLMC, using the same assumptions as Strigari et al. (2008). This implies
MLMC = (8.7±4.3)×109M⊙, of which the major part would have to be DM. Eqs. 7.2, 7.7, 7.8
and 7.10 have been used to create tabulated expectation values ofM(r) for NFW-halos with
differentMvir and it can thereby be seen that for a typical NFW-halo withM(r = 8.9 kpc) =
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8.7×109M⊙,M(r = 0.3 kpc) = 2.13×107M⊙ = M0.3kpc andMvir = 1.2×1011M⊙. Noting
that the SMC has about 1/10 of the mass of the LMC (Kallivayalil et al. 2006), the virial mass of
its halo can be estimated asMvir = 1.2× 1010M⊙, corresponding toM0.3kpc = 1.51× 107M⊙.

In order to test the shape of the MW satellite distribution function against the shape of the
distribution of theM0.3kpc values of the MW-satellites, artificial samples of106 M0.3kpc masses
are generated in concordance with theΛCDM hypothesis, using Monte-Carlo simulations. As
noted in Sect. 7.2,M0.3kpc is well approximated byM(r = 0.3kpc) in a CDM-dominated
galaxy,M(r = 0.3kpc) can be calculated ifMvir andc are given, and the expectation value
for c is a function ofMvir. The first step is therefore to choose a value forMvir using uniform
random deviates and the probability distribution of luminous halos given in Eq. 7.3 (see e.g.
chapter 7.2 in Press et al. 1992 for details). The next step isto attribute a value forlog10(c)
to the chosenMvir. This is done by multiplying Eq. 7.11 with a Gaussian random deviate and
adding the result to the value forlog10(c), which is calculated from Eq. 7.10. After transforming
log10(c) to c, M0.3kpc = M(r = 0.3kpc) of the given halo can be calculated from Eq. 7.7, using
Eq. 7.2 and Eq. 7.8. These steps are repeated, until a sample of 106 M0.3kpc values is generated.

If two samples are given, the maximum distance between theircumulative distribution func-
tions,D, can be calculated. Performing the KS-test, this quantity allows to estimate how likely
it is that they are drawn from the same distribution function. The null hypothesis is that the
observed satellite galaxies are drawn from the theoretically calculated mass function of lu-
minous halos; the parent distribution is thus assumed to be the mass function ofM(0.3kpc)
values of luminous sub-halos according to theΛCDM hypothesis. SettingMmax in Eq. 7.3 to
1011M⊙, which is approximately the mass estimated for the CDM-haloof the LMC, and taking
Mmin = 107M⊙, leads toD = 0.333. According to the KS-test, given the parent distribution
the probability for an even larger distance is 0.011. This means that the null hypothesis can be
excluded with 98.9 per cent confidence. Both cumulative distributions are shown in Fig. 7.11.

Omitting the LMC and SMC from the observational sample but keepingMmin = 107M⊙

andMmax = 1011M⊙ in the theoretical sample yieldsD = 0.294 leading to exclusion of the
null hypothesis with a confidence of 95.5 per cent. Additionally settingMmax = 4 × 1010M⊙,
yieldsD = 0.301, leading to exclusion of the null hypothesis with a confidence of 96.3 per
cent. A mass of4 × 1010 M⊙ equals theMvir that corresponds to the most massiveM0.3kpc

in the sample by Strigari et al. (2008), i.e. the most massivesub-halo except the haloes of the
Magellanic Clouds. The latter two tests thus comprise a homogeneous mass-sample of observed
satellites as compiled by Strigari et al. (2008).

The fact that the mass function is expected to steepen atMcrit = 0.01Mh even increases
the discrepancy between theΛCDM hypothesis and the observations. Returning the LMC and
SMC back into the observational sample and cutting offξsub(Mvir) atMmax = 1010M⊙ (with
Mmin = 107M⊙), which would be close toMcrit for the CDM-halo of the MW (see Sect. 7.1),
and one order of magnitude below the estimated mass of the CDM-halo of the LMC, implies
D = 0.359 and an exclusion with 99.5 per cent confidence.

On the other hand, settingMmax = 1012M⊙ (with Mmin = 107M⊙) leads toD = 0.329
and an exclusion with 98.8 per cent confidence. Any reasonable uncertainty to the actual value
of Mmax can therefore be excluded as an explanation for the discrepancy between the observed

1Monte Carlo experiments are used to quantify the confidence values for the KS-tests: Drawing the correspond-
ing number of sub-halo masses (e.g. 20 as in this case) from Eq. 7.3,D′ is calculated. This is repeated105 times.
Counting ofD′ values gives the fraction of cases whenD′ > D, whereD is the actually obtainedD′ value from
the data (e.g.D = 0.333 in this case). These fractions are reported here as likelihood values, and are about half as
large as the probability values obtained using approximatemethods, as e.g. in Press et al. (1992).
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sample ofM0.3 kpc and a sample generated based on theΛCDM hypothesis. As a consequence,
the same is true for the uncertainty to the actual mass of the halo of the MW,Mh, sinceMmax

is linked toMh (see Sect. 7.1).
ThusMmax is kept at1011M⊙ in the following. Setting the lower limit ofξlum(Mvir) from

107M⊙ to 108M⊙ then leads toD = 0.319 and an exclusion of the null-hypothesis with a
confidence of 98.4 per cent confidence.108M⊙ is theMvir suggested by the lowestM0.3kpc in
the sample from Strigari et al. (2008). Note that the likelihood decreases with decreasingMmax.
This is due to the overabundance ofM0.3 kpc ≈ 107M⊙ halos becoming more prominent in the
observational sample.

Strigari et al. (2008) suggest thatξlum(Mvir) might even be cut off below a mass of≈
109M⊙, either because halos below that mass do not contain baryonsor do not form at all.
Indeed, modifyingξlum(Mvir) given by Eq. 7.3 accordingly, results in an agreement between
the theoretical distribution and the data (D = 0.188 with exclusion confidence of only 70 per
cent). A ξlum(Mvir) with a lower mass limit of109M⊙ is however in disagreement with the
ΛCDM hypothesis, since the limiting mass below which all CDM-halos are dark ought to be
two orders of magnitude lower according to Li et al. (2010).

Note, that the recently newly derived reduced mass of Hercules (Adén et al. 2009) does not
affect the calculated likelihoods nor the conclusions reached here.

7.4 Conclusion

In summary, the mass distribution of the putative DM halos of observed satellites can be un-
derstood in terms of theΛCDM hypothesis with at most 4.5 per cent likelihood. Assuming
the dSph satellites are in virial equilibrium and Newtoniandynamics to be valid, the observa-
tionally deduced DM halo masses of the MW satellites show a significant overabundance of
M0.3kpc ≈ 107M⊙ halos and a lack of less-massive values compared to the theoretically cal-
culated distribution for luminous sub-halos, despite mucheffort to solve the “common-mass-
scale” problem (Sect. 2 in Kroupa P. et al. 2010).
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Chapter 8

Outlook

8.1 Further observational tests for the hypothesis of a top-
heavy IMF in UCDs

It was suggested in Chapters 3, 4 and 5 that UCDs form with a top-heavy IMF due to the
conditions under which star formation takes place in UCDs. Given the fundamental importance
of the IMF in astrophysics, further tests of this scenario seem advisable. Methods by which this
can be done are given below.

8.1.1 Testing the hypothesis that LMXBs in GCs and UCDs are formed
through close dynamical encounters.

Based on the hypothesis that essentially all LMXBs in GCs andUCDs are formed through
encounters between star and stellar remnants, Dabringhausen et al. (2012) found that the IMF
in UCDs varies with their mass. This underlying hypothesis could be tested with the GCs in
the Milky Way, since it has already been noted by Katz (1975) that the GCs in the Milky Way
harbor numerous X-ray sources and further studies have revealed more probable LMXBs. A
census of these can therefore be taken from the existing literature. Also age estimates have been
published for a number of the GCs in the Milky Way (Salaris & Weiss 2002). Using these age
estimates for the GCs, their massesM and their half-mass radiirh, the number of crossing times
that have passed can be calculated. The number of crossing times is a measure for the frequency
of stellar encounters. Thus, there should be a correlation between the number of LMXB in a GC
and the number of its crossing times. Moreover, this correlation should be such that it would be
consistent with the GCs having no LMXBs at zero crossing times, if their population of LMXBs
indeed originates from close encounters between low-mass stars and neutron stars.

Such a study on the dependency between the LMXB-frequency inGCs and the age of the
host-GCs would be complementary to a recent study by Zhang etal. (2012) on the dependency
of the LMXB-frequency in galaxies and the age of the host-galaxies. Zhang et al. (2012) remove
the LMXBs in GCs from their sample, in order to obtain a sampleof LMXBs that was not
formed dynamically through interactions between stars. They therefore investigate to what
extent the LMXB-frequency depends on the aging of stars in a binary population that is not
changed through encounters. The study proposed here, in contrast, will rely on GCs as systems
where dynamical interactions between stars are relevant, in order to confirm that the number of
LMXBs in GCs indeed primarily depends on the dynamical evolution they have experienced.

197



198 CHAPTER 8. OUTLOOK

The number of GCs, for which both an age estimate and deep X-ray observations exists,
is unlikely to be large. The statistical analysis of the LMXB-distribution in GCs with their
age will therefore be made using the percentile-percentileplots described by Maschberger &
Kroupa (2009). If this statistical tool is used, no information on the GC-age distribution is lost,
in contrast to methods that include binning of the data. The methods introduced by Maschberger
& Kroupa (2009) therefore allow sound conclusions also fromrather small samples.

An increase of the LMXB-frequency in GCs with the age of the GCs would also open
a new perspective on the well known dependency between the color of extra-Galactic GCs
and the probability to find a bright LMXB in them. This probability is the larger the redder
these GCs are (Jordán et al. 2004; Sivakoff et al. 2007). Theprevailing interpretation is that
the color of these GCs reflects their metallicity, so that more metal rich (i.e. redder) GCs
have more LMXBs (e.g. Jordán et al. 2004). There is however adegeneracy between the
integrated color of a stellar population and its age or metallicity. Equal-age stellar populations
are redder if they are more metal-rich, and stellar populations with the same metallicity are
redder if they are older (Worthey 1994). This degeneracy hasnot been considered so far in the
context of the dependency between the frequency of bright LMXBs in GCs and their color. A
dependency between age and LMXB-frequency is however very natural if LMXBs in GCs are
mainly created by close encounters between stars and dark remnants. Using stellar population
models, we therefore intend to quantify how the LMXB-frequency in GCs depends on their age,
if their color is taken as a tracer of their age.

8.1.2 Testing the hypothesis of a top-heavy IMF with an extended study
on LMXBs in UCDs.

Dabringhausen et al. (2012) have argued from the fraction ofUCDs with a bright X-ray source
(interpreted as a LMXB) that the IMF in UCDs is top-heavy. While the data they use is based on
a rather large sample of UCDs (≈ 400), a weak point in their analysis is that the data is grouped
in only three luminosity bins. Information on the luminosities of the individual UCDs is thereby
lost, which otherwise could have been used with more powerful statistical techniques.

It is therefore worthwhile to further test the results usingother, more detailed data. This data
can be searched for in the wealth of literature on the connection between LMXBs and globular
clusters (e.g. Blanton et al. 2001; Maccarone et al. 2003; Sarazin et al. 2003; Woodley et al.
2008; Fabbiano et al. 2010; Paolillo et al. 2011). The reasonwhy these studies are useful for
studies for my work is that they usually include UCDs, even though they are not distinguished
from GCs. It has indeed been argued that before that UCDs might be the most massive GCs
(Mieske et al. 2008, 2012).

The statistical methods described in Maschberger & Kroupa (2009) can be applied on the
sample of GCs and UCDs with a LMXB collected from the literature. The results reported in
Dabringhausen et al. (2012) should thereby be confirmed, if the IMF is indeed top-heavy in
UCDs. The general idea is to model the luminosity distribution of GCs and UCDs using typical
observed parameters of GCs and UCDs and different assumptions on how the IMF of UCDs
depends on their luminosity. This leads to different hypotheses on the luminosity distributions
of GCs and UCDs with a bright X-ray source that indicates a LMXB. Whether these hypotheses
are consistent with the observed luminosity distribution of GCs and UCDs can be tested with
the percentile-percentile plots introduced by Maschberger & Kroupa (2009).

Given that with the methods described in Maschberger & Kroupa (2009) no information
on the luminosity distribution of the considered objects islost (in contrast to methods where
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the objects are gathered in luminosity bins), they allow sound conclusions also from rather
small samples. Therefore also a dependency of the LMXB-frequency and thus the IMF on
the environment could be tested for with the methods from Maschberger & Kroupa (2009):
Does the IMF in UCDs depend on wether they are associated witha galaxy cluster or a field
galaxy? Does the luminosity and the type of the host galaxy ofUCDs play a role for their IMF?
Answering such questions could give further insights on theconditions under which the IMF
becomes top-heavy (if at all).

The case of the Fornax Galaxy Cluster is of particular interest. UCDs in the Fornax Galaxy
Cluster have lowerM/L ratios than UCDs in the Virgo Galaxy Cluster (Mieske et al. 2008) and
are consistent with having a canonical IMF (Chilingarian etal. 2008). It is therefore expected
that they also have a lower incidence of LMXBs than the UCDs inthe Virgo Galaxy Cluster.
This can be tested with the data on the Fornax Galaxy Cluster from Paolillo et al. (2011).

8.1.3 Testing the hypothesis of a bottom-heavy IMF in UCDs.

Provided that LMXBs in UCDs are formed through close dynamical encounters between dark
remnants and low-mass stars, an overabundance of LMXBs can either be due to an overabun-
dance of dark remnants (i.e. a top-heavy IMF, see Dabringhausen et al. 2009; Murray 2009) or
to an overabundance of low-mass stars (i.e. a bottom-heavy IMF, see Mieske & Kroupa 2008).

The low-mass stars that could be part of a bright LMXB in a UCD are the most massive
stars (near1 M⊙) that have not yet completed their evolution. They are therefore the bright-
est stars in a UCD also at optical wavelengths. The observed typical M/LV -ratios of UCDs
thereby set strong constrains on the size of such a population and on the possible shape of a
bottom-heavy IMF. It is likely that a bottom-heavy IMF can only fulfill the constraints set by
the overabundance of LMXBs in UCDs and theM/LV -ratios of UCDs at the same time if
the luminosity of a great number of possible low-mass companions in LMXBs is balanced by
population of faint stars which would have to be introduced as an additional parameter to the
model. This kind of fine-tuning would make a bottom-heavy IMFan improbable explanation
for the observed properties of UCDs. However, for a more conclusive statement, it has to be
quantified how a bottom-heavy IMF could explain simultaneously the elevatedM/LV -ratios
and the LMXB-excess of UCDs.

8.1.4 Quantifying the spectra of young UCDs at high redshifts.

Given that UCDs probably were very compact when they formed and that their stellar popula-
tion formed quickly, they must have been extremely bright when they were young. This is due
to a large population of massive stars that had not yet evolved shortly after the formation of the
UCD.

Consider, for instance, a UCD with an initial mass of108 M⊙ and an elliptical galaxy with
a mass of1012 M⊙. Given the short lifetime of the most massive stars, the starformation rate
(SFR) is decisive for how many of them populate a stellar system at a given time. Thus, the
luminosity of a young, star-forming stellar system is largely determined by the SFR, since the
most massive stars are also the most luminous ones. If the star formation took106 years in
the UCD (cf. Dabringhausen et al. 2009) and109 years in the elliptical galaxy (cf. Thomas
et al. 2005), the SFR was100 M⊙ yr−1 for the UCD and103 M⊙ yr−1 for the elliptical galaxy.
The young elliptical galaxy would thus be about ten times brighter than the young UCD if they
both had the same IMF. However, stars with masses& 15 M⊙ are about a hundred times more
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numerous for a top-heavy IMF withα3 ≈ 1 than for a canonical IMF (α3 = α2 = 2.3; see
Fig. 1.1 for a definition ofα3). While massive UCDs may indeed have top-heavy IMFs, the
IMF of elliptical galaxies was even suggested to be bottom-heavy by van Dokkum & Conroy
(2010). A young UCDs with a mass ofM = 108 M⊙ may therefore be as luminous as a young
major elliptical galaxy withM = 1012 M⊙.

Now consider the radii of elliptical galaxies and UCDs. An elliptical galaxy withM =
1012 M⊙ typically has a half-light radius of≈ 5× 103 pc (cf. Dabringhausen et al. 2008), while
a UCD with an initial mass ofM = 108 M⊙ may have evolved from an object with an initial
radius of 5 pc if the probable mass loss of the UCD is taken intoaccount (cf. Dabringhausen
et al. 2010).This leads to a central star formation surface density ofΣSFR ≈ 2 M⊙ pc−2 yr−1 for
the young UCD and a central star formation surface density ofΣSFR ≈ 2×10−5 M⊙ pc−2 yr−1

for the young elliptical galaxy.

Thus, a young UCD with a luminosity similar to that of a young massive elliptical galaxy
would have had a surface brightness105 times higher than that of a young elliptical galaxy.
With a given telescope, a young massive UCD would therefore be much easier to detect than
a young major elliptical galaxy of equal luminosity. Consequently, young UCDs should be
observable as bright point sources up to the same distances at which bright galaxies can be
observed (i.e. at redshiftsz . 10), provided they formed as early as galaxies. If UCDs form
through the interaction of galaxies (Fellhauer & Kroupa 2002a), they would also form at rather
low redshifts, which would make their detection easier. With the current knowledge on UCDs,
a complete failure in finding young UCDs at any redshift wouldbe an unexpected, but therefore
even more intriguing result. Such a result would exclude theformation of UCDs in starbursts,
despite the evidence forα-enrichment in UCDs (Evstigneeva et al. 2007) and the evidence for
top-heavy IMFs in UCDs (Dabringhausen et al. 2009, 2012), which are understandable as a
consequence of extremely high densities in the young UCDs (Kroupa et al. 2011).

However, in order to distinguish the young UCDs from other point sources, their spectral
properties have to be known. These properties depend on the star formation history (SFH) of
the UCD, the age of its stellar population, its metallicity and the redshift. Finally, the spectral
properties of a UCD also depend on its IMF.

The strategy for predicting what a distant UCD would look like to an observer is a follows.
First, the time-evolution of the spectrum of the UCDs in their rest-frame needs to be calculated
for a grid of probable SFHs, metallicities and IMFs. This task can be performed with the
publicly available stellar evolution codes PEGASEand STARBURST99. Assuming an expansion
history of the Universe (for instance, the expansion history predicted by theΛCDM model)
and an age for the UCD, the effect of redshift on these spectracan be calculated. The result
would be a grid of UCD spectra whose parameters are the SFH, age, metallicity, and IMF of
the UCDs. Note that also integrated colors in different passbands can be calculated from these
spectra. While they do not contain as much information as a full spectrum, the advantage of
such integrated colors is that they are simpler to observe. Observed spectra of point sources can
then be compared to this grid which would allow conclusions on the properties of UCDs.

Alternatively, such a grid of UCD spectra can also be used to test cosmological models.
If a sample of distant UCDs is observed, the properties of their stellar populations (SFH, age,
metallicity, IMF) can be chosen such that they agree with parameters typical for UCDs in the
Local Universe. Their spectra can then be compared with modeled spectra for different choices
of the matter densityΩM and the vacuum densityΩΛ in the Universe, which imply different
expansion histories of the Universe.
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8.1.5 Quantifying the SNII frequency in young UCDs.

Dabringhausen et al. (2009) suggested that a massive UCD forms stars with a total mass of
108 M⊙ within 10 Myr and therefore has an average SFR of100 M⊙ yr−1. With these param-
eters, up to one type II supernova (SNII) per year would be expected in such a stellar system
in the inertial frame of the UCD (cf. Fig. 8 in Dabringhausen et al. 2012). The brightest SNII
have aB-band peak luminosityLpeak > 5 × 109 L⊙. Thus, SNII can become brighter than
a small spiral galaxy like M 33 (LB ≈ 5 × 109 L⊙, cf. Karachentsev et al. 2004), but remain
dimmer than a large spiral galaxy like M 31 (LB ≈ 6.7×1010 L⊙, cf. Karachentsev et al. 2004).
With such luminosities, SNII will be observable to redshiftsz . 8 with the upcoming European
Extremely Large Telescope (E-ELT), while currently only SNII with z . 1 are observed (Hook,
I. M. 2005). Thus, SNII in high-redshift UCDs can be observedin a couple of years. A given
SNII cannot be detected for very long, as the timespan in which it exceeds 10 per cent of its
peak luminosity is only about 100 days in their inertial frame (Doggett & Branch 1985).

Thus, SNII are bright enough to be detected to very large distances in the near future, and in
a given UCD they are rare enough to produce clear variations of their luminosity (which would
not be the case, if the typical time between two SNII is shorter than the characteristic timescale
on which the luminosity of a SNII changes).

The probability to find a SNII near the maximum of its brightness in a UCD can be estimated
for a given mass, IMF and age of the UCD. This is because the mass and the IMF determines
the number of massive stars that formed in that UCD and the agedetermines the number of stars
that are about to complete their evolution. The most massiveUCDs should be bright enough
to narrow down their ages, luminosities and IMFs by using themodeled spectra created earlier.
Based on the best-fitting models, the total number of UCDs with a SNII near the maximum of its
brightness can be estimated. This number can be checked by observing a sample of candidates
for bright and young UCDs and observing the same sample again(at least) one year later. After
one year, enough time should have passed also in the inertialframe of the UCDs for a significant
change of the luminosity of a SNII. The luminosity variations of the candidate UCDs between
the first and the second observation would therefore allow toestimate the number of SNII that
have faded and the number of new SNII since the first observation.
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Appendix A

Appendix

A.1 Statistical tests

A.1.1 Pearson’s test for the goodness of fit

Pearson’s test for the goodness of fit (Bhattacharyya & Johnson 1977) can be used for deciding
whether the frequency of a certain result for a measurement that has been performed onn objects
deviates significantly from an expected frequency. For the special case that only two results A
and B can be the outcome of each measurement (A could be for example a result higher than a
theoretical expectation and B the opposite case), result A will have occurredj times and result
B n− j times. The probability of this outcome can now be calculatedif a certain probabilityp
for the case A as the result of a measurement is assumed. A useful measure for this is given by
the equation

χ2 =
(j − pn)2

pn
+

((n− j)− (1− p)n)2

(1− p)n
. (A.1)

There are tabulated values forχ2 (e.g. table 6 in the appendix of Bhattacharyya & Johnson
1977) which make it possible to read off the probability forχ2 being higher than some value
for a series of measurements, if the hypothesis for the probability p is correct. (The degree of
freedom is one in this case.)

A.1.2 The sign test

The sign test (Bhattacharyya & Johnson 1977) is specificallydesigned for a small number of
pairs of values,(X1, X2), and is supposed to detect whether there is a significant trend for X2

being larger or smaller thanX1 or not.X1 andX2 could be two measurements under different
conditions (e.g. other instruments), orX1 could be a value inferred from an observation, while
X2 is the theoretical prediction for this value. If the conditions under whichX1 andX2 were
obtained do not result into systematically larger or smaller values forX2 compared toX1, the
probability forX1 being larger thanX2 is 0.5. The probability thatX2 > X1 for j out ofn pairs
of values is then given by the binomial distribution.
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A.2 The total mass of the remnants

We explicitly note the terms withm > mto that arise from the integration of the right hand side
of eq. (3.6), if eq. (3.8) is inserted formrem(m).

The contribution of the white dwarfs toMm, Mm,WD, can be written as

Mm,WD,v

M⊙

=
0.109 k3
2− α3

× (82−α3 −m2−α3

to )

+
0.394 k3
1− α3

× (81−α3 −m1−α3

to ),

(A.2)

with the masses of the stars in Solar units.mto was argued to be≈ 1M⊙ in Section 3.3.1.
The contribution of neutron stars toMm, Mm,NS, can be written as

Mm,NS

M⊙

=
1.35 k3
1− α3

× (251−α3 − 81−α3). (A.3)

The contribution of the remnants of stars with initial masses higher than25M⊙ to Mm,
Mm,BH, can be written as

Mm,WD,v

M⊙

=
0.1 k3
2− α3

× (m2−α3

max − 252−α3). (A.4)
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A.3 Data on tidal dwarf galaxies
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A.3.1 Data on observed tidal dwarf galaxies

Table A.1:Data on observed TDG-candidates, as described in Section (6.2.2). Listed are the identification of the object as in the source paper, its half-light
radius (re), its equivalent radius (r; cf. equation 6.1), the mass of its stellar population estimated from its optical luminosity (M∗), the mass of its stellar
population estimated from its Hα-emission lines (Mα), the mass of its stellar population under the assumption that the stellar population is a mix of old and
young stars (Mold), the mass of the object estimated from its internal dynamics (Mdyn), the age of its stellar population assuming a single star burst and
finally the reference to the source of the data (1: Hunsbergeret al. 1996; 2: Tran H. D. et al. 2003; 3: Bournaud et al. 2007; 4: Duc et al. 2007; 5: Yoshida
et al. 2008; 6: Galianni et al. 2010; 7: Miralles-Caballero et al. 2012). If the value forre is given in brackets, it has not been given in the literature,but was
calculated here using equations (6.1) and (6.2).

identification re r M∗ MHα Mold Mdyn t source
[pc] [pc] [M⊙] [M⊙] [M⊙] [M⊙] years

HCG 01b 1 (1283) 4490 1.6× 108 − − − some108 1
HCG 01b 2 (563) 1970 2.5× 107 − − − some108 1
HCG 01b 3 (1180) 4130 6.3× 108 − − − some108 1
HCG 16a 1 (271) 950 7.9× 106 − − − some108 1
HCG 16a 2 (286) 1000 3.2× 106 − − − some108 1
HCG 16a 3 (163) 570 2.0× 106 − − − some108 1
HCG 26b 1 (962) 3370 1.6× 108 − − − some108 1
HCG 26b 2 (797) 2790 6.3× 107 − − − some108 1
HCG 26b 3 (823) 2880 3.2× 107 − − − some108 1
HCG 31a N 1 (389) 1360 5.0× 107 − − − some108 1
HCG 31a N 2 (351) 1230 5.0× 107 − − − some108 1
HCG 31a N 3 (189) 660 1.3× 107 − − − some108 1
HCG 31c N (180) 630 4.0× 107 − − − some108 1
HCG 31a S 1 (169) 590 7.9× 106 − − − some108 1
HCG 31a S 2 (371) 13001.3× 108 − − − some108 1
HCG 38b N (591) 2070 4.0× 107 − − − some108 1
HCG 38b S (429) 1500 7.9× 107 − − − some108 1
HCG 92c 1 (474) 1660 6.3× 106 − − − some108 1
HCG 92c 2 (429) 1500 7.9× 106 − − − some108 1
HCG 92c 3 (289) 1010 5.0× 106 − − − some108 1
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HCG 92c 4 (557) 1950 1.3× 107 − − − some108 1
HCG 92c 5 (409) 1430 1.6× 107 − − − some108 1
HCG 92c 6 (263) 920 6.3× 106 − − − some108 1
HCG 92c 7 (466) 1630 1.0× 107 − − − some108 1
HCG 92c 8 (451) 1580 2.0× 107 − − − some108 1
HCG 92c 9 (517) 1810 1.3× 107 − − − some108 1
HCG 92c 10 (429) 1500 2.0× 107 − − − some108 1
HCG 92c 11 (451) 1580 7.9× 106 − − − some108 1
HCG 92c 12 (591) 2070 2.5× 107 − − − some108 1
HCG 92c 13 (603) 2110 5.0× 107 − − − some108 1
HCG 92b S 1 (403) 14104.0× 107 − − − some108 1
HCG 92b S 2 (280) 980 2.0× 107 − − − some108 1
HCG 92b S 3 (434) 15206.3× 107 − − − some108 1
HCG 92b S 4 (569) 19901.3× 108 − − − some108 1
HCG 92b S 5 (377) 13202.0× 107 − − − some108 1
HCG 92b N 1 (497) 1740 2.0× 107 − − − some108 1
HCG 92b N 2 (534) 1870 1.6× 108 − − − some108 1
HCG 92b N 3 (406) 1420 2.5× 107 − − − some108 1
HCG 92d S 1 (417) 14605.0× 107 − − − some108 1
HCG 92d S 2 (274) 960 2.5× 107 − − − some108 1
HCG 92d N 1 (429) 1500 2.5× 107 − − − some108 1
HCG 92d N 2 (249) 870 1.0× 107 − − − some108 1
HCG 92d N 3 (300) 1050 4.0× 107 − − − some108 1
HCG 92d N 4 (440) 1540 2.5× 107 − − − some108 1
HCG 96c E (674) 2360 5.0× 107 − − − some108 1
HCG 96a W 1 (729) 2550 3.2× 107 − − − some108 1
HCG 96a W 2 (631) 2210 6.3× 107 − − − some108 1
UGC 10214 SSC 161 − 6.6× 105 − − − 4− 5× 106 2
NGC5291N (1057) 3700 1.1× 108 − − 3.0× 109 < 5× 106 3
NGC5291S (1429) 50007.5× 107 − − 2.7× 109 < 5× 106 3
NGC5291SW (571) 20003.0× 107 − − 1.2× 109 < 5× 106 3



2
0

8
A

P
P

E
N

D
IX

A
.

A
P

P
E

N
D

IX

VCC 2062 (600) 2100 5.0× 107 − − 3.5× 108 3× 108 4
RB 199 Knot 1 250 − 8.8× 107 − − − some108 5
RB 199 Knot 2 250 − 1.4× 108 − − − some108 5
RB 199 Knot 3 250 − 4.8× 107 − − − some108 5
RB 199 Knot 4 250 − 7.6× 106 − − − some108 5
RB 199 Knot 5 250 − 2.3× 107 − − − some108 5
RB 199 Knot 6 250 − 2.0× 107 − − − some108 5
NGC 1097 Knot A 336 − 6.0× 106 − − − some109 6
NGC 1097 Knot B 482 − 4.0× 106 − − − some109 6
IRAS 04315−0840 1 38 166 7.9× 104 2.5× 105 6.3× 105 3.2× 107 4.6× 106 7
IRAS 04315−0840 2 21 93 1.6× 104 6.3× 105 3.2× 105 6.3× 107 7.0× 106 7
IRAS 06076−2139 1 77 306 2.5× 105 7.9× 105 − 1.0× 108 4.2× 106 7
IRAS 06076−2139 2 59 283 7.9× 104 2.5× 105 − 1.0× 108 4.5× 106 7
IRAS 06076−2139 3 53 121 4.0× 104 1.3× 105 4.0× 105 7.9× 107 5.4× 106 7
IRAS 06076−2139 4 51 116 3.2× 104 1.0× 105 − 1.0× 108 4.8× 106 7
IRAS 06076−2139 5 41 89 2.5× 104 1.3× 105 − 4.0× 107 4.9× 106 7
IRAS 06076−2139 6 66 137 1.6× 105 7.9× 105 − − 4.9× 106 7
IRAS 07027−6011 S 1 31 127 7.9× 104 4.0× 105 − 7.9× 107 3.6× 106 7
IRAS 07027−6011 S 2 61 186 3.2× 104 4.0× 104 − − 3.2× 106 7
IRAS 08572+3915 N 105 405 2.5× 105 7.9× 105 − 5.0× 108 4.0× 106 7
IRAS 08572+3915 SE 3 76 322 1.3× 105 1.3× 105 1.3× 106 − 4.9× 106 7
IRAS 08572+3915 SE 4 191 312 3.2× 105 1.3× 106 3.2× 106 − 5.9× 106 7
IRAS F10038−3338 3 43 269 2.5× 104 3.2× 104 5.0× 105 4.0× 107 3.6× 106 7
IRAS F10038−3338 4 88 252 1.0× 105 1.6× 105 1.0× 106 1.6× 108 4.9× 106 7
IRAS 12112+0305 1 200 887 1.3× 107 2.0× 107 1.0× 108 2.5× 109 4.3× 106 7
IRAS 12112+0305 4 82 288 2.5× 105 1.3× 106 − − 4.2× 106 7
IRAS 14348−1447 1 280 909 5.0× 107 1.3× 108 3.2× 108 2.0× 109 4.4× 106 7
IRAS 15250+3609 1 165 627 4.0× 106 5.0× 106 3.2× 107 2.0× 109 5.3× 106 7
IRAS F18093−5744 N 20 74 1.0× 105 6.3× 105 − 7.9× 107 5.1× 106 7
IRAS F18093−5744 C 37 78 6.3× 104 1.6× 105 5.0× 105 4.0× 107 4.9× 106 7
IRAS 23128−5919 83 376 5.0× 105 1.3× 106 3.2× 106 1.0× 109 4.8× 106 7
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IRAS 16007+3743 R1 828 − 6.3× 108 − − 6.3× 109 7.1× 106 7
IRAS 16007+3743 R2 884 − 6.3× 108 − − 1.0× 1010 5.4× 106 7
IRAS 16007+3743 R3 851 − 6.3× 107 − − 1.3× 1010 6.4× 106 7
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A.3.2 Results from numerical calculations on the formationof tidal dwarf
galaxies

Table A.2: Data on TDGs that were found in numerical calculations of encounters between gas-rich
galaxies as described in Section (6.2.2). Listed are the effective radius of each TDG (re), and if available
its size (given through diameters along two orthogonal axes), the mass of its stellar population (M∗), its
total mass (M ), the time at the end of the calculation (t) and finally the reference to the source of the
data (1: Bournaud et al. 2008; 2: Wetzstein et al. 2007; 3: Barnes & Hernquist 1992b). The value ofM∗

for the TDG from Barnes & Hernquist (1992b) is an estimate based onM .

re size M∗ M t source
[pc] [pc] × [pc] [M⊙] [M⊙] years
8.5 61× 46 6.8× 106 − 9.5× 108 1
7.6 63× 35 8.7× 106 − 9.5× 108 1
9.7 46× 78 1.9× 107 − 9.5× 108 1
460 3700× 2200 2.7× 108 − 9.5× 108 1
420 4500× 1500 5.2× 108 − 9.5× 108 1
700 − 1.0× 108 3.5× 108 1.2× 108 2
229 − (1.3× 108) 4.0× 108 7.5× 108 3
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Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385

Greggio, L. 2005, A&A, 441, 1055

Guo, Q., White, S., Boylan-Kolchin, M., et al. 2011, MNRAS, 413, 101

Haşegan, M., Jordán, A., Côté, P., et al. 2005, ApJ, 627,203

Harris, W. E. 1976, AJ, 81, 1095

Harris, W. E. 1996, AJ, 112, 1487

Harris, W. E., Whitmore, B. C., Karakla, D., et al. 2006, ApJ,636, 90



218 BIBLIOGRAPHY

Hartmann, L., Ballesteros-Paredes, J., & Bergin, E. A. 2001, ApJ, 562, 852

Heggie, D. & Hut, P. 2003, The Gravitational Million-Body Problem: A Multidisciplinary
Approach to Star Cluster Dynamics (Cambridge University Press, Cambrigde)

Hernandez, X., Mendoza, S., Suarez, T., & Bernal, T. 2010, A&A, 514, A101

Hickson, P. 1982, ApJ, 255, 382

Hilker, M., Baumgardt, H., Infante, L., et al. 2007, A&A, 463, 119

Hilker, M., Infante, L., Vieira, G., Kissler-Patig, M., & Richtler, T. 1999, A&AS, 134, 75

Hilker, M., Kayser, A., Richtler, T., & Willemsen, P. 2004, A&A, 422, L9

Hilker, M., Mieske, S., & Infante, L. 2003, A&A, 397, L9

Hilker, M. & Richtler, T. 2000, A&A, 362, 895

Hills, J. G. 1980, ApJ, 235, 986

Hook, I. M., ed. 2005, The Science Case for the European Extremely Large Telescope: The
next step in mankind’s quest for the Universe

Hunsberger, S. D., Charlton, J. C., & Zaritsky, D. 1996, ApJ,462, 50

Hunter, D. A., Hunsberger, S. D., & Roye, E. W. 2000, ApJ, 542,137

Ibata, R. A., Lewis, G. F., Conn, A. R., et al. 2013, Nature, 493, 62

Ivanova, N., Heinke, C. O., Rasio, F. A., Belczynski, K., & Fregeau, J. M. 2008, MNRAS, 386,
553
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