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Abstract

At low energies, nonrelativistic quantum systems are essentially governed by their wave
functions at large distances. For this reason, it is possible to describe a wide range
of phenomena with short- or even finite-range interactions. In this thesis, we discuss
several topics in connection with such an effective description and consider, in particular,
modifications introduced by the presence of additional long-range potentials.

In the first part we derive general results for the mass (binding energy) shift of bound states
with angular momentum ¢ > 1 in a periodic cubic box in two and three spatial dimensions.
Our results have applications to lattice simulations of hadronic molecules, halo nuclei, and
Feshbach molecules. The sign of the mass shift can be related to the symmetry properties
of the state under consideration. We verify our analytical results with explicit numerical
calculations. Moreover, we discuss the case of twisted boundary conditions that arise
when one considers moving bound states in finite boxes. The corresponding finite-volume
shifts in the binding energies play an important role in the study of composite-particle
scattering on the lattice, where they give rise to topological correction factors.

While the above results are derived under the assumption of a pure finite-range inter-
action—and are still true up to exponentially small correction in the short-range case—in
the second part we consider primarily systems of charged particles, where the Coulomb
force determines the long-range part of the potential.

In quantum systems with short-range interactions, causality imposes nontrivial constraints
on low-energy scattering parameters. We investigate these causality constraints for sys-
tems where a long-range Coulomb potential is present in addition to a short-range in-
teraction. The main result is an upper bound for the Coulomb-modified effective range
parameter. We discuss the implications of this bound to the effective field theory (EFT)
for nuclear halo systems. In particular, we consider several examples of proton—nucleus
and nucleus—nucleus scattering. For the bound-state regime, we find relations for the
asymptotic normalization coefficients (ANCs) of nuclear halo states. Moreover, we also
consider the case of other singular inverse-power-law potentials and in particular discuss
the case of an asymptotic van der Waals tail, which plays an important role in atomic
physics.

Finally, we consider the low-energy proton—deuteron system in pionless effective field the-
ory. Amending our previous work, we focus on the doublet-channel spin configuration and
the *He bound state. In particular, we study the situation at next-to-leading order in the
EFT power counting and provide numerical evidence that a charge-dependent counterterm
is necessary for correct renormalization of the theory at this order. We furthermore argue



that the previously employed power counting for the inclusion of Coulomb contributions
should be given up in favor of a scheme that is consistent throughout the bound-state and
the scattering regime. In order to probe the importance of Coulomb effects directly at the
zero-energy threshold, we also present a first calculation of proton—deuteron scattering
lengths in pionless effective field theory.
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Chapter 1

Introduction

A lot of interesting physics can be done with short or even finite-range interactions.
In many situations physicists encounter “universality” in the sense that observables are
independent, or at least approximately so, of the short-range details of a given system. The
simple—yet very powerful—concept behind this observation is that low-energy phenomena
do not probe physics at short distances. This separation of scales is also the foundation
of effective field theory.

However, such universal aspects are usually just the starting point for a deeper under-
standing. In general, universal behavior is not exactly realized in nature and as soon
as one wants to go beyond a certain basic level of precision, it is necessary to take into
account corrections. Ome such correction that plays indeed a very prominent role at
low energies is the Coulomb interaction. It is particularly important in nuclear physics
because most processes in that field involve charged particles.

The above two paragraphs already mention the most important aspects of the topics to
be discussed in this thesis. It summarizes the work done in a little more than three
years of doctoral studies, divided into several projects that will be presented in separate
chapters. Starting with a quick tour through quantum mechanics with short- and finite-
range interactions, we will discuss low-energy universality and its connection to effective
field theory (EFT) in Chapter 2. With a focus on applications in nuclear physics, we will
present there the general concepts that will be important throughout this work, both as
theoretical foundations and to put the results to be derived in a broader context.

In Chapter 3 we consider how calculations in finite volumes with periodic boundary con-
ditions, as they appear frequently in numerical lattice calculations, affect the properties
of nonrelativistic bound states. When the latter arise from a finite-range interaction, it is
possible to derive an analytic formula for their leading-order volume dependence. Gener-
alizing a result for S-waves that has been obtained by Liischer in the 1980s [8], we derive
the finite-volume mass shift for states with arbitrary orbital angular momentum.

For the rest of this work we will then mainly be concerned with systems of charged
particles, where the Coulomb force plays an important role, and particularly so at low
energies. Chapter 4 is dedicated to collecting and reviewing several results concerning
this topic.
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Subsequently, in Chapter 5, we derive a generalization of the so-called Wigner causality
bound to interactions with Coulomb tails. Results of this kind are both interesting theo-
retically and as a guide to improve the convergence of effective-field-theory calculations.
We also consider other long-range forces and in particular the van der Waals interaction,
which plays an important role in low-energy atomic physics.

While in the derivation of the causality bounds the Coulomb force enters mainly as a
theoretical challenge in a configuration-space treatment, we will look at the difficulties
it creates from a more practical point of view in Chapter 6, where we consider the low-
energy proton—deuteron system in pionless effective field theory. Performing calculations
in both the scattering and the bound-state regime, we obtain results for phase shifts,
scattering lengths, and the Helium-3 binding energy. In all cases, Coulomb effects raise
the interesting question of how to treat them consistently in an EFT power counting
scheme. At the same time, they also constitute a challenge for numerical calculations in
momentum space.

Finally, we close with some concluding remarks in Chapter 7.



Chapter 2

General concepts

Overview

In the first part of this chapter, we review several well-known results from nonrelativistic
quantum mechanics. Focussing first on solutions of the radial Schrodinger equation and
the effective range expansion in Section 2.1 , we subsequently give an overview of scattering
theory from a more formal point of view in Section 2.2. Moving on, we then discuss low-
energy universality and its connection to effective field theories Sections 2.3 and 2.4.
Finally, in Section 2.5, we briefly discuss lattice calculations as a prelude to the following
Chapter 3.

2.1 Finite-range interactions

Consider a two-particle system with reduced mass p interacting via a spherically-symmetric
potential V(r), where r = |r; — ry| is the relative distance of the two particles in their
center-of-mass frame. It is a well-known fact in quantum mechanics that a solution (r)
of the time-independent Schrodinger equation!-2

—?—;+V(r)—E P(r) =0, (2.1)
describing a state with energy E and angular momentum quantum numbers (¢,m), can
be separated as

0{E) = vn(r) = Re(r)Y7(0.0) = "V vp0(6, ) (2.2
into a known angular part, given by the spherical harmonics Y;"(6, ¢), and a (reduced)

radial wave function u,(r), which is a solution of

A2 e+

T

+2u[V(r) — E] | w(r) =0. (2.3)

LA, denotes the Laplacian. Throughout this work, we always indicate the coordinate that a differ-
ential operator acts on with an explicit subscript.
2Here and in the following we work in natural units where i = c = 1.

3
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This is known as the radial Schrodinger equation.
In the following, we are primarily interested in interactions with a finite range R. For the
potential V' (r) this means that it fulfills the condition

V(r)=0 for > R. (2.4)

Moreover, throughout this work we employ the following canonical classification scheme
for potentials:

e if for r — oo the potential falls off faster than any power law, e.g., like an exponen-
tial, we call it short-ranged.

e if on the other hand, the potential has a power-law form r~* with o« > 1 at large
r, we call it a long-range potential. A very prominent member of this class is the
Coulomb potential V(1) ~ 1/r, which will be discussed in more detail in Chapter 4.

We do not consider potentials that do not fall off at large distances.

2.1.1 Non-local interactions

The interaction of a quantum system can be described in more general terms by a real
symmetric operator

Vi, ') = (x|V|r'). (2.5)

Assuming, as we will do throughout this work whenever we consider such non-local inter-
actions, that V(r,r’) allows an expansion in Legendre polynomials (partial-wave decom-
position),

oo . 12
Vi(r,r') = 2(25 + 1)Vy(r,r")Py(cosf) , cosf = % : (2.6)
=0

a generalized form of the radial Schrédinger equation (2.3) can be written as

pPug(r) = —d—w(r) + ww(r) + 24 /000 dr’ dmr" Vo(r, ") ue(r') (2.7)

dr2 72

where we have furthermore introduced the momentum scale p> = 2uE. From this one
directly sees that the interaction no longer depends on the wave function at just a single
point but over some extended range and is thus “smeared out” or “non-local” in that
sense. For the special case where

Ve, r)=V(r) x ¥ —-r), (2.8)

we simply get back Eq. (2.3).

Note that the partial-wave decomposition (2.6) is in particular possible for non-local
potentials which are a function of the relative distance only,

Vie,r')=V(r—r|), (2.9)
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which is the straightforward generalization of spherical symmetry to the case of non-local
interactions. This condition, however, is only a sufficient and not a necessary one, and
we do not make such explicit assumptions on the interaction in the following.

Due to the symmetry of V(r,r’), which ensures that the full Hamiltonian is a symmetric
operator, the generalized condition for the interaction to have a finite range now reads

Vie,t')=0 if r=|r| >R or ' =|r'| >R, (2.10)

which implies the same for all partial-wave components V;(r,r’). The integral in Eq. (2.7)
does then not extend all the way to infinity but is cut off at " = R. Since in this work
we are not concerned with the exact form of the interaction, we will from now on absorb
the prefactor 47" in Eq. (2.7) into the potential and also omit the subscript ¢ in writing
down the radial Schrodinger equation.

2.1.2 Solutions of the free equation

In the absence of any interaction (in particular, outside the range of a finite-range poten-
tial), one is left with the free radial Schrodinger equation,

2 e+1)

pPug(r) = {—ﬁ - } u(r), (2.11)

2
the solutions of which are well known. Commonly (see, e.g., Ref. [9]) the Riccati-Bessel
and Riccati-Neumann functions S;(pr) and Cy(pr) are chosen as a base pair of linearly-
independent solutions.® They are defined as

Se(z) = \/?Jngl/Q(Z) : (2.12a)

Co(z) = (—1)4\/§J_g_1/2(2) : (2.12b)

where J,(z) denotes the ordinary Bessel function. Any solution of Eq. (2.11) can be
written as a linear combination of Sy(pr) and Cy(pr). Their asymptotic behavior for large
arguments is determined by

|z]—o0
Y

Se(2) "R sin (2 — 0n/2) | Cu(2) cos (z — ln)2) (2.13)

whereas close to the origin (in the limit 2 — 0) S, and C} scale like z‘*1 and 27¢
respectively. Due to this behavior Sy(pr) and Cy(pr) are also called the regular and
irregular solutions of (2.11). In some situations it is more convenient to work instead
with the Riccati-Hankel functions

HE(2) = Cylz) £iSi(2), (2.14)
which have the asymptotic form e*# as |z| — oo and thus, for z = pr, correspond to
outgoing and incoming waves for z = pr, respectively.

3Ref. [9] actually uses the notation S;(z) = j¢(2) and Cy(z) = fis(z). The convention we employ here
is the same as in Ref. [10] with L = ¢ and d = 3.
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2.1.3 Asymptotic form of the wave function

Going back to Eq. (2.7), we now consider an arbitrary interaction that fulfills the finite-
range condition (2.10), and which we assume to be sufficiently well-behaved at the origin
to allow for a solution that is regular there (i.e., uy(r) — 0 as r — 0 with finite derivative).
We denote such a solution for a given—possibly complex, to also cover the bound-state
regime—momentum parameter p with an explicit superscript “(p).” Outside the range of
the interaction, it can be written in the form

ul) (r) = p’ [cot 8e(p) Se(pr) + Culpr)]  (r > R), (2.15)

where he have adopted the momentum-dependent normalization convention from Ref. [10].
In the following, whenever we write uép ) (r), it is also implied that the wave function is

normalized exactly as in Eq. (2.15).

The scattering phase shift d,(p) can be interpreted as the additional phase (compared to
the regular solution Sy(pr) of the free equation) that the wave function picks up due to
the interaction. It is related to the partial-wave S-matrix s,(p) via

se(p) = W), (2.16)

such that up to an overall change in the normalization, the asymptotic form of ugp )(7’) can
also be written as
ul (r) oc Hy (pr) — se(p)Hf (pr)  (r > R) (2.17)

in terms of Riccati-Hankel functions. Alternatively, by factoring out an overall e%¢(?) / sin §,(p),
one finds that

ulP(r) oc [cot &(p) — i] Hy (pr) — [cot &;(p) +i] H (pr) (r > R). (2.18)

The latter form can also be derived directly by inverting Eq. (2.14) and inserting the
result into Eq. (2.15). For interactions with a short but not strictly finite range, e.g., a
potential with an exponential or Gaussian tail, the relations above do not hold exactly,
but are fulfilled asymptotically as r — oo.

2.1.4 The effective range expansion

For systems with short- or finite-range interactions, the scattering phase shift d,(p) can
be expressed in terms of the well-known effective range expansion
2041 L1,
pT T cotdp(p) = —— + Zrept -, (2.19)
Qy 2

where a; and r, are the scattering and effective range parameters, respectively, and the
ellipses stand for higher-order shape parameters (o< p*,p%, ...) that we have not written
out here. Eq. (2.19) states that the cotangent of the scattering phase shift, multiplied by
appropriate powers of the momentum, is an analytic function of p? and thus of the energy.

Historically, this expansion was first used to describe and interpret nucleon—nucleon scat-
tering at low-energies. This is discussed, for example, in the review by Jackson and
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Blatt [11]. As noted there (and already in an earlier publication by the same authors [12]),
the S-wave (¢ = 0) version of Eq. (2.19) was first derived by Schwinger, but only published
in lecture notes. A derivation based on a direct analysis of the radial wave functions was
later given by Bethe in Ref. [13]. An extension of Bethe’s formalism to also treat higher
partial waves can be found in the textbook of Goldberger and Watson [14]. For a modern
derivation of Eq. (2.19) for arbitrary ¢, based directly on the analytic properties of the
partial-wave S-matrix and scattering amplitude (both of which will be discussed in more
detail in the following sections), see, for example, Ref. [9].

In general, an expansion as in Eq. (2.19), which is essentially a Taylor series of the left-
hand side around p? = 0, only has a finite radius of convergence. For example, if the
interaction is given by a short-range potential of the Yukawa form exp(—ur)/r (as it
arises from the exchange of a particle with mass u), p**!cot d,(p) has a cut starting
at —p?/4 in the complex p? plane (see, for example, Ref. [15]), which naturally limits
the radius of convergence of the expansion. Within its region of analyticity, however,
p?*1 cot §y(p) can also be expanded around points other than p = 0. For example, in the
35, channel of neutron—proton scattering it is customary to work with an effective range
expansion around the deuteron pole [16].

In the presence of long-range potentials p**! cot §,(p) is in general no longer analytic in
p? and the ordinary effective range expansion as given above thus not valid for systems
where the interaction has a power-law tail. It is, however, often possible to modify the
left-hand side of Eq. (2.19) in such a way that analyticity is restored. Essentially, this
means that known non-analytic terms due to the long-range component of the potential
can be taken into account explicitly. Most notably, for the scattering of charged particles
one has the so-called Coulomb-modified effective range expansion that will be discussed
in Chapter 4. Note furthermore that a general modified effective range function for the
case where the interaction can be written as the sum of a short-range and a long-range
potential has been derived by van Haeringen and Kok in Ref. [17].

The methods just mentioned no longer work if the long-range part of the potential has a
power-law form that is more singular than 1/r? at the origin. For such cases, an extension
of a formalism called quantum defect theory [18-20] has been developed by Gao [21]. This
is particularly interesting for applications in atomic physics, where a long-range van der
Waals tail (~ 1/r%) arises due to the mutual polarization of the atoms, a case we will
come back to in Chapter 5.

2.1.5 Bound states and asymptotic normalization constants

Going back to the case of pure finite-range interactions, we now consider bound states.
Their wave functions correspond to solutions of Eq. (5.2) for negative energies,

p?=2uE <0. (2.20)
More precisely, in the complex p-plane, the bound states are located on the positive

imaginary axis, whereas the negative imaginary axis is the location of virtual states [9].
We write p = ik in the bound-state regime and call k > 0 the binding momentum.
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A bound state with angular momentum ¢ corresponds to a (simple) pole in the partial-
wave S-matrix sy(p) at p = ik. From Eq. (2.17) it can be seen that this means that there
is no incoming component because s,(p), the ratio of the outgoing wave compared to the
incoming one, becomes infinite. Alternatively one can choose a normalization with an
overall coefficient s,(p) factored out in Eq. (2.17), leaving s,(p) ! in front of the incoming
component H, (pr) that has to vanish for p = ix. From Eq. (2.18) one furthermore sees
that

cotdg(p =ik) =1 (2.21)

is the bound-state condition for the scattering phase shift. The same result can be found
more directly by writing the S-matrix as

se(p) = 1+ 2ikfe(p) (2.22)

with the partial-wave scattering amplitude

20

_ p
) = o () =1 22

Since the pole in s,(p) has to come from the second term in (2.22) we again obtain the
condition stated in Eq. (2.21).

On the bound-state wave function we impose the usual normalization condition

/ dr ‘Ug(T’)‘Z =1. (2.24)
0
From the above discussion it follows immediately that

W™ (1) o« Hyf (ikr) ~ e (2.25)

as r — oo, which together with our regularity assumption on the interaction ensures that
the wave function is indeed normalizable.

Note, however, that the bound-state normalization condition (2.24) is not directly com-
patible with the asymptotically fixed form as given in Eq. (2.15). In order to discuss the
precise asymptotic form of the bound-state wave functions we closely follow Ref. [9] and
define solutions Xz'fp(r) of (2.7) normalized such that they exactly fulfill the condition

Xip(r) "7 H (pr)- (2.26)

The bound-state solution normalized according to (2.24), which in the following we denote

as uS'}) (r), can then be written as

ugﬁg)(r) = ieA,inm(r) , (2.27)

4, = ( | |xzm<r>|2)_l/2 (2.28)

where
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is the so-called asymptotic normalization constant/coefficient (ANC). The factor i* con-

veniently adjusts the phase of ugm) (r) such that it is a real function. Outside the range
of the interaction one then has the exact identity

ug'})(r) =i‘A H/ (ikr) for r> R. (2.29)
The wave functions uém) (r) with the asymptotic behavior determined by Eq. (5.3), on the
other hand, have the form

W (r) = 'k H (ikr) for r > R. (2.30)

We use the different notations given in Eqs. (2.29) and (2.30) to indicate which convention
is used.

Asymptotic normalization constants are interesting quantities because for shallow bound
states (i.e., states with small binding energy/momentum) they are closely related to
scattering processes. For example, they are directly connected to zero-energy capture
reactions [22], which play an important role in nuclear astrophysics. In Chapter 5 (Sec-
tion 5.7) we will discuss how the ANC can be expressed directly in terms of the parameters
that appear in the effective range expansion (2.19).

2.2 Some formal scattering theory

In the preceding sections, we have established that for finite-range interactions the asymp-
totic radial wave functions of two-particle systems have an explicitly-known analytic form.
Since low-energy physics is governed by large-distance scales, this fact will be very useful in
the following chapters to derive relations based on just the properties of the wave-function
tails.

Since the focus so far was on consequences of the finite-range assumption, we have worked
directly with radial Schrodinger equations and wave functions in configuration space,
and only introduced scattering concepts like the phase shift and the S-matrix as they
appear in that context. In the following, we discuss quantum-mechanical scattering theory
from a more formal point of view, establishing the connection with the relations given
in Section 2.1 along the way and focussing on results that will be relevant later in this
work. Unless otherwise indicated with an explicit citation, what follows is mostly taken
from Sakurai’s textbook [23], but uses slightly different conventions in some places. Until
further notice, we also lift the finite-range assumption on the interaction.

2.2.1 The Lippmann—Schwinger equation

In its abstract operator form, the time-independent Schrodinger equation (2.1) reads

Hy) = E) (2.31)
with the Hamilton operator H=Hy+V given by

(x| El) = —ﬁ—;wr) n / &V (e, () (2.32)
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in configuration space, where we have allowed the interaction to be non-local. What we
have ignored so far is that the Schrodinger equation alone does not specify the boundary
condition for the solutions. In the time-independent scattering formalism we are consid-
ering here, one is primarily interested in solutions that reduce to a plane-wave state |p)
when the interaction is “switched off,” V = 0. This behavior can be enforced by making

the ansatz )
b

2’
where the small imaginary part ic has been introduced to make the otherwise singular
operator £ — H, invertible. More precisely, the zero modes of E — H, are given by the
plane-wave states |p),

WD) = ) + (Ep — Ho +1e) ' VIpMp) | B, = (2.33)

(Ep — Ho)|p) =0 for all |p). (2.34)

Acting on both sides of Eq. (2.33) with E — Hy + ic and sending ¢ — 0 (which in the
following is always implicitly understood to be done at the end of all manipulations) gives
back the Schrédinger equation in the form (3.3).

Equation (2.33) is called the Lippmann-Schwinger equation for the scattering states. It
can be interpreted as an integral formulation of the Schrédinger equation with the bound-
ary conditions determined by the inhomogeneous term |p) and the ie-prescription. We
have chosen a positive sign for the imaginary part and indicated this by writing ]wl(f))
for the scattering state. This gives the physically most relevant solution that corresponds
to an incoming plane wave and an outgoing scattered wave when one goes over to a
time-dependent framework.

By choosing a configuration-space basis {|r) : r € R*} we get the ordinary wave functions
Y§ (x) = (e[glD) (2.35)

and the plane-wave states are just (r|p) = exp(ip-r). In general, the wave function wéﬂ (r)
is not characterized by a single pair of angular-momentum quantum numbers (¢, m) but
rather has an expansion in spherical harmonics or Legendre polynomials [24],

1/2 oo L wug(r
wm=(2) T X e 26)

m
p {=0 m=—/¢

1/2 00
= (2—M> 417r Z(% + 1)i éPg(cos 9) ue(r) , cos@=p-r, (2.37)

P —o r

with the unit vectors p = p/p and r = r/r. The wave functions wu,(r) are then solutions
of the radial Schrodinger equation (5.2), and the normalization in Eq. (2.37) is chosen
such that the latter can be rewritten as an integral equation with the inhomogeneous term
given by the Riccati-Bessel function Sy(pr).

2.2.2 The T-matrix

Defining the Green’s function operator (the free resolvent)

GS(E) = (B — Hy+1ie) ", (2.38)
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we can write the Lippmann-Schwinger equation (2.33) as
[0s7) = Ip) + Gy (Ep) V [uP) (2.39)

For the free Hamiltonian defined implicitly in Eq. (2.32), the Green’s function in config-
uration space is given by the expression
ik|r—r’|

/ A / JUNS
GS(E; ) = (e|GSP(B)|r') =

_ 2.40
27 v — /|’ ( )

where k is a momentum scale defined as k = \/2u(F + ie). It satisfies the equation

1
@(AT + )G (Eyr,x') = 6@ —1). (2.41)
Note that other conventions exist in the literature where the factor 1/(2u) is absorbed

into the definition of G’(()H. Our choice here has the advantage of staying close to the
operator notation, such that from Eq. (2.38) one can directly read off the momentum-
space expression

(27)*6%) (q — )
E—q*/(2u) +ic”

GSP(B;a,d) = (q| G5V (B)|d) = (2.42)

Introducing now the operator T, which in the following we simply refer to as the T-matriz,
via the implicit definition A )
VIpS?) =Tlp), (2.43)

we obtain the formal solution
057) = (1+ G (B) T) Ip) (2.44)

for the scattering state. The original problem of finding the solution for the scattering
wave function is thus modified to the question of determining the T-matrix. In order
to proceed in this direction, one can act with the potential operator V on both sides of
Eq. (2.44) from the left and then use Eq. (2.43) once again to find

~

Tip) = (V+ V G (Bp) T) ). (2.45)

Demanding further that this holds for all states {|p) : p € R3} yields an operator equation
for T. In fact, at this point one can furthermore lift the restriction that the Green’s
function operator is evaluated at the on-shell energy E2 = E, but rather allow this value
to be an arbitrary complex parameter. The resulting equation reads

T(E)=V+VG&(E)T(E) (2.46)

and is called the Lippmann—Schwinger equation for the T-matrix. The momentum-space
representation

T(E;q,p) = (a/T(E)|p) (2.47)
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with no imposed connection between the variables F, p, and q is commonly referred to
as the full off-shell T-matrix, whereas the quantity

T(a.p) = (aT(E = Ep)|p) (2.48)

is called the half off-shell (or simply half-shell) T-matrix. It has the useful property of
being directly related to the scattering wave function in momentum space via

21T (q, p)

S (q) = (avi?) = (27)%P) (q - p) + P2 — ¢ +ie’ (2.49)

according to Eq. (2.44).

The scattering amplitude

From the Green’s function in configuration space, Eq. (2.40), one can deduce that at

asymptotically large distances the scattering wave function zplﬁ,*) (r) can be written as the
sum a plane wave (given by the state |p) and interpreted as the originally incoming particle
flux) and an outgoing spherical wave describing the effect of the scattering process,

ipr

r—oo ipr , ©
vp (r) "R e+ —f(P,p), (2.50)
where p’ = pr and
') = — P ey = — Fn 2.51
f',p) = (P IVIvy") = ——{P'|Tp) (2.51)

is the scattering amplitude. From the definitions above it is clear that f(p’,p) only
depends on the magnitude p of p and the angle 6 between p and r. It thus has an
expansion in partial waves,

F(0'p) =) (20 + 1) fu(p) Pe(cosb) , (2.52)

=0

and it is precisely the partial-wave amplitudes f,(p) appearing in Eq. (2.52) that were
already mentioned in Section 2.1.5. Assuming that the potential can be expanded in
Legendre polynomials (cf. Section 2.1.1), an analogous expansion also exists for the T-

matrix,
[ee]

T(E;q,p) = Y _(20+ 1)Ty(E;q,p)Pi(cosb) , (2.53)
=0
where 6 is now the angle between the momentum vectors q and p. It then follows that
the partial-wave scattering amplitude—and thus also the scattering phase shift d,(p)—is
determined by the partial-wave T-matrix at the on-shell point:

e2i0e(p) _q

fe(p) = ST —%Tz(Ep;pm)- (2.54)
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2.3 Universality

We now turn back our attention to short- and finite-range interactions. As shown in
Section 2.1, the asymptotic form of the radial wave function for a given two-particle
scattering system is known analytically and can be parametrized in terms of the scattering
phase shift d,(p). The relations for the wave functions in Eqs. (2.15) and (2.29) hold
rigorously for pure finite-range potentials and still up to exponentially small (as r — o0)
corrections if the interaction is short-ranged. In the latter situation, the interaction range
is limited by the typical fall-off scale of the potential.

In either case, the effective-range expansion (2.19) furthermore provides a method to
express the phase shifts in terms of just a few low-energy parameters. In many situations,
already the scattering length and effective range parameter a, and r, are sufficient for a
reasonably accurate description of the experimental data. The physics behind all this is
that at sufficiently low energies (and thus small scattering momenta p) the details of the
interaction cannot be resolved because the de Broglie wavelength A\, o< 1/p corresponding
to the incoming particle flux is too large compared to the spatial extent of the scattering
center. More quantitatively, the criterion for not resolving the details of an interaction
with range R is

p<R!' <= pR<1. (2.55)

This simple principle is very powerful because it means that—provided the underlying
interaction has a finite (or short) range—low-energy quantum scattering can be described
in a uniwersal way by the parameters appearing in the effective range expansion.

2.3.1 Hierarchy of partial waves

In the formal discussion so far we have mostly considered some fixed but arbitrary angular
momentum ¢. The really important quantity, however, is the scattering amplitude f(p’, p)
defined in Section 2.2.2 since it is directly related to the differential cross section that is
determined in experiments,

do / 2

— = , . 2.56
1 = [f(®.p)| (2.56)
This means that all physically significant information about the process is contained in
the scattering amplitude.

Combining Egs. (2.52) and (2.54), we can express the scattering amplitude in terms of
the phase shifts d,(p) as

62168 (p) —

F(p,p) = Z(% + 1)TP5(COS 0). (2.57)

If all terms in this sum were equally important, the universal parametrization mentioned
above would not be very useful because describing the physical system would still require
an infinite number of parameters. Fortunately, the phase shifts themselves have the low-
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energy behavior?

8e(p) o< p**, (2.58)

which means that at low energies only a few partial waves are important. Usually, the
dominant term is the S-wave (¢ = 0), but this is not necessarily always the case.” The
physical origin behind the behavior (2.58) is of course the centrifugal barrier ~ ¢(¢+1)/r?
that the scattering particles cannot penetrate appreciably at low energies.

2.3.2 Universality for large scattering length

A particularly interesting situation occurs if the S-wave scattering length of a system is
unnaturally large. By “unnaturally large” we mean in this context that it is much larger
than the range R of the potential, ag > R, because naively one would expect that all
length scales in the system are of the “natural” order of magnitude.

Usually, one does of course not know the exact range R of the underlying interaction, nor
is the notion of a strict finite-range interaction a very realistic picture. In general, if the
interaction is assumed to be mediated by some kind of particle, the corresponding potential
has an exponential (Yukawa) tail, and the inverse mass of the exchange particle provides
a good estimate for the interaction range. In low-energy nuclear physics, for example, the
typical length scale is set by the inverse pion mass, m_! ~ 1.4 fm. Typically, the S-wave
effective range is found to be of the order of magnitude estimated for the underlying
interaction, such that, in the absence of more direct information, ag > ry can be used as
a criterion for asserting that the scattering length is unnaturally large.

Since the total cross section for two-particle scattering at zero energy is given by®
010t(0) = 4mal (2.59)

a large S-wave scattering length means that the particles interact strongly. In fact, one
can say that the low-energy physics of such a system is completely governed by the large
S-wave scattering length. For example, if the interaction supports a two-particle bound
state (simply called a dimer in the following) at p = ix, the combination of Egs. (2.21)
and (2.19) tells us that

1 To . 1
o+ 3 = (1 Olao/m), (2:60)

R~

where the correction is negligible if ry < ag. This means that at leading order the dimer
binding energy is just

Eq (2.61)

© 2uad’

4This can be seen, for example, from the effective range expansion (2.19). Since cot(z) = 1+ O(z),
one has p**1/6,(p) ~ const. as p — 0.

5For example, in the scattering of two identical fermions the Pauli principle only allows odd ¢, such
that the leading low-energy contribution is given by the P-wave (¢ = 1).

6This follows from the discussion in the preceding sections by noting that lim, o fo(p) = —ao.
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Whether or not a bound state actually exists can furthermore be related to the sign of the
scattering length. In the conventions that we are using here, a large positive scattering
length implies the existence of a shallow dimer state.”

The Efimov effect

A very intriguing phenomenon occurs in the three-body sector of a system of particles that
have a large two-body scattering length and in that sense a strong pairwise interaction.
It can be shown that the bound-state spectrum of such a system exhibits a tower of
(approximately) geometrically-spaced three-body “trimer” states, i.e., a series of bound-
state energies fulfilling

EMV  EM &~ const. . (2.62)

trimer trimer

In the limit where the magnitude of ag goes to infinity,® so does the number of trimer states,
and the geometrical spacing becomes exact with a universal scaling factor determined only
by the mass ratio of the particles. This effect was first proposed by (and named after)
V. Efimov [25] and later proven by Amado and Nobel [26, 27]. For a detailed discussion
of quantum systems with a large scattering length and the Efimov effect, we refer here to
the review by Braaten and Hammer [28].

To conclude this subsection, we summarize that we speak of low-energy universality in the
general sense whenever a description with finite-range interaction is a good approximation
to describe the physics of a given (two-particle) system. In a manner of speaking, physics
at low energies is governed by the tails of the (radial) wave functions, which have a
universal analytic form, and the essential features of the system can be well described
by just a few parameters, namely the scattering lengths and effective ranges for a small
number of partial waves. Since the effective range expansion is valid in the complex p-
plane, this includes the description of bound states with small binding energies. Moreover,
if the (S-wave) scattering length is unnaturally large, this parameter governs the whole
system and one finds relations that are “even more universal,” like the binding energies of
shallow dimer states or the Efimov effect in the three-body sector. Finally, it is important
to point out again that the above statements still hold (up to corrections that are often
negligible) in the more realistic setup where the interaction has no strictly finite range
but is short-ranged and falls off rapidly.

2.3.3 The theorist’s point of view

Having read the preceding sections, the caption above this sentence might seem confusing
at first. By no means do we want to say that we now switch gears to look at physics from
the theoretical side, but rather that this is what we have been doing all along so far.

Here, we want to emphasize that finite-range potentials are not an experimental concept
but, since potentials are even not observable quantities, really just a convenient theoretical

"For a derivation of this statement see, for example, Ref. [23].
8More precisely, the relevant limit is |ag/R| — oo, which means that the effect can also be found for
zero-range interactions.
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tool. The same should be said in fact, at least to a good extent, about partial-wave
scattering phase shifts. What is directly accessible in scattering experiments (via count
rates and their angular distribution) are (differential) cross sections and thus, according
to Eq. (2.56), the absolute value squared of the scattering amplitude. Phase shifts are
then only obtained from an inversion of Eq. (2.52), necessarily truncated at some ¢ and
based on data in only a limited energy (and usually angular) regime. This procedure can
be very delicate in practice and that the result, due to the limited amount of data, is not
truly unique.

Potentials are still a very useful tool for the theoretical description of physical processes,
and scattering phase shifts provide a convenient “interface” to compare the results of cal-
culations with experiments, but it is important to keep in mind the limitations described
above.

2.3.4 From potential models to a modern perspective

Although low-energy universality arises naturally in the the theory of finite- or short-
range interactions, it was first found as an experimental phenomenon. It was observed”
that low-energy S-wave scattering phase shifts in the two-nucleon system could be well
described with just two parameters since the data points could be fitted by a straight line
in a suitable representation — the left-hand side of the effective range expansion (2.19)
or its Coulomb-modified analog that will be discussed in Chapter 4. Different forms of
potentials could thus be used equally well to model the system as long as they had two
parameters that could be adjusted to reproduce that line.

At the time, it was concluded that measurements at higher energies were needed to really
determine the shape of the nuclear potentials. This led, subsequently to the construction
of very sophisticated potential models, many of which, like Nijmegen I,IT [29], AV18 [30],
and CD-Bonn [31], are still well known and often used today (a comparison of the different
models and an historical overview of their development can be found, for example, in

Ref. [32]).

All of these potentials describe the nucleon—nucleon phase shifts (and deuteron properties)
very well, but differ quite substantially in their details. Of course, this ambiguity simply
illustrates explicitly the fact that potentials are not observable. This, together with the
difficulty of these approaches to consistently describe and/or implement the physics of
more than two particles (see, for example, Ref. [33]), as well as the essentially unsystem-
atic way they are constructed, has led to the development of a more modern perspective.
Rather than continuing the ultimately futile endeavor of trying to find the nuclear poten-
tial, one simply constructs so-called effective potentials as a systematic expansion, where
new operators are added to describe physics at subsequently higher energy scales (and/or
of an increasing number of nucleons). This approach explicitly incorporates the observed
low-energy universality, or can, in fact, be characterized as being based on it. More gen-
erally, the underlying concept is that of effective field theory (EFT), which we now turn
to discuss in some more detail.

9See, for example the review of proton-—proton scattering by Jackson and Blatt [11] and original
references therein.
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2.4 Effective field theory

The main concepts of effective field theories can be summarized as follows:

e First, choose degrees of freedom that are appropriate for the energy scale under
consideration (nucleons instead of quarks, for example).

e Then, construct a Lagrangian out of fields corresponding to these degrees of free-
dom, including all terms allowed by general principles like unitarity, analyticity and
whatever other symmetries relevant for the system at hand (like isospin, in the
example above).

e Finally, since such a Lagrangian contains in principle infinitely many terms, a further
key ingredient is an ordering scheme (“power counting”) that serves to estimate the
relative importance of the individual terms.

The connection to low-energy universality is that the ordering in the final step is often
(but not necessarily always or exclusively) based on the relative momenta in the system
one wishes to describe. We will illustrate this in the following by looking at a few explicit
examples.

First, it is important to point out that the coefficients of operators in a Lagrangian
constructed in the way laid out above are not normally dictated by general concepts.
Instead, these so-called low-energy constants have to be determined by matching the
results of calculations to known observables.!® The predictive power of the theory then
lies in the fact that usually the same coefficients (or combinations thereof) appear in
different observables. Having measured some of them, it is possible to make predictions
for others.

2.4.1 Historical overview

The approach laid out above was pioneered by Weinberg in Ref. [34], where (in the context
of pion physics) he formulated the idea that a quantum field theory has, ultimately, no
other content than analyticity, unitarity, cluster decomposition, and symmetry. Such
“phenomenological Lagrangians” had been used before, but were usually based on current-
algebra concepts (see, e.g., Ref. [35]). The big step that Weinberg took was to promote
them to the starting point of calculations, thereby abandoning their unsystematic heritage.

A key role in Weinberg’s original application to hadron physics at low energies is played
by the approximate chiral SU(2);, x SU(2)g symmetry of the strong interaction, the
spontaneous breaking of which is responsible for the pion mass being so small.!' This
mass and the momenta of low-energy pions are used as small scales in the power counting.

10 Alternatively, if an underlying more fundamental theory is known, they can sometimes also be
calculated from that.
HTf there was no explicit chiral-symmetry breaking, they would be massless Goldstone bosons.
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Weinberg’s approach, which became famous as chiral perturbation theory, was worked out
further by Gasser and Leutwyler [36, 37] and has a vast number of applications and exten-
sions today. In particular, the formalism has been extended to include also nucleons and
other baryons (see, for example, Refs. [38-40]). This important step made it possible to
construct the effective nuclear potentials mentioned at the end of Section 2.3.4. In an idea
that again goes back to Weinberg [41, 42|, a low-energy expansion of the effective interac-
tion between nucleons is built out of diagrams derived from the chiral Lagrangian. This
means that rather than doing plain perturbation theory by summing Feynman diagrams
up to a given order, the power counting is applied to derive an effective potential, which
can subsequently used in calculations based on Schrodinger (or Lippmann—Schwinger)
equations.

Of course, with the above summary we have only scratched the surface of a very complex
field. Much more detailed discussions of the points mentioned here (and many more) can
be found in the reviews by Epelbaum et al. [43], or Machleidt and Entem [44], which we
just refer to here for simplicity.

Furthermore, it is important to point out that although the origins of effective field theory
lie in hadron and nuclear physics, it is by no means limited to those applications. In fact,
it is used in many areas of modern theoretical physics. Since the key ingredient is merely
a separation of scales and not that the total energy of the system one wishes to describe
is a small scale, there are even applications in high-energy physics, like the soft-collinear
effective theory started in Refs. [45, 46]. We do not make here the futile attempt to give
a comprehensive list of current EFT applications. Rather, we focus on two examples that
will play a role later in this work.

2.4.2 Pionless effective field theory

At very low energies in nuclear physics, even the pions can be “integrated out,” which
then leaves only nucleons as effective degrees of freedom. The interactions between them
are simple contact terms, corresponding to delta-peak potentials and derivatives thereof
in configuration space, and since in the low-energy regime all relative momenta are small,
a nonrelativistic description is appropriate. The latter means that all particles only prop-
agate forward in time and that there is no pair creation. In fact, this kind of EFT can be
thought of as a convenient reformulation of quantum mechanics.

Naturally, this pionless effective field theory is limited to energy (momentum) scales below
the pion mass, but nevertheless it is very interesting and exhibits a rich set of features.
The reason for this is that the S-wave nucleon—nucleon system is an important example for
the case of unnaturally large scattering lengths. Both ag ~ 5.42 fm in the 35 (isospin 0)
and a; &~ —23.71 fm in the 1Sy (isospin 1) channel are significantly larger than the typical
scale of about 1.4 fm set by the inverse pion mass (cf. Section 2.3.2). The corresponding
effective ranges, on the other hand, have the values 1.75 and 2.73 fm, respectively, and
are thus indeed of the expected natural order of magnitude.!?

12The numbers quoted here for the scattering lengths and effective ranges are quoted from Refs. [16]
and [47].
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The deuteron appears in this picture as a nearly universal shallow dimer state correspond-
ing to the large positive scattering length ay. From Eq. (2.61) one obtains E; ~ 1.4 MeV
as leading-order result for its binding energy, which is not far from the experimental value
E7® = 2.225 MeV [48]. The agreement here is rather coarse because the effective range
in this channel is only about a factor of three smaller than the scattering length, which
makes the range corrections to the leading-order expression quite significant. Indeed, if
Eq. (2.60) is used to calculate the binding momentum including the effective-range term,
the result is k =~ 45.6 MeV, corresponding to a binding energy of about 2.21 MeV, much
closer to the experimental value.

The presence of the shallow deuteron state has a significant impact on the construction
of pionless effective field theory. Since perturbation theory cannot produce bound states,
the applicability of the approach would naively be limited to momentum scales () below
the deuteron pole, @ < k4 ~ 1/ay. If one also takes into account the pole corresponding
the virtual bound state in the 1Sy channel, where the scattering length is larger yet, the
range of applicability is even narrowed down to ) < 1/a;. In either case, this is much
smaller than the natural breakdown scale set by the pion mass. The solution, introduced
in Refs. [49-52], is to include certain contributions up to all orders in the perturbative
expansion and thus generate the shallow states corresponding to the large scattering
lengths in a nonperturbative manner. The theory with this scheme applied and its low-
energy constants fixed by matching two-body amplitudes to the effective range expansion
is then valid for low-energy scales of the order () ~ 1/a,4; and with the natural breakdown
scale A ~ m_!, corresponding to an EFT expansion parameter Q/A ~ 1/3.13 In Refs. [53-
55], the formalism has been extended to the three-nucleon sector. The situation there is
particularly interesting because the triton can be interpreted as an approximate Efimov
state.

Since the physics it describes are to a significant extent governed by the large S-wave
scattering lengths, pionless effective field theory has a lot in common with a simpler EF'T
that describes identical bosons with a large two-body scattering length. The key features
mentioned above (nonperturbative resummation to reproduce shallow dimer bound states
and the Efimov effect in the three-body sector) can be studied there without complications
due to different spin and isospin channels. A comprehensive review of this EFT and a
broader discussion of universality in systems with large scattering length can be found in
the review by Braaten and Hammer [28]. For applications to cold-atomic systems with
large scattering lengths, see also K. Helfrich’s doctoral thesis [56] and further references
therein. In Chapter 6, we will discuss pionless effective theory in more detail and use it
to analyze the proton-deuteron system.

2.4.3 Effective field theory for nuclear halo states

Almost the same formalism as for the pionless EFT discussed above can also be used to
construct an effective field theory that is useful to calculate properties of nuclear halo
systems. Such states, also called halo nuclei, can be thought of as a tightly bound core

13Note that if the size of corrections is estimated directly in terms of the effective range parameters,
one gets the same result: 1.75/5.42 ~ 0.32.
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nucleus with one or more weakly-bound valence nucleons (for reviews of such states see,
for example, Refs. [57, 58]). The separation of scales, which is the crucial ingredient for
the construction of an EFT, is given for such systems by the small separation energy of
the valence nucleons compared to the binding energy of the core.*

In an effective two-body picture that neglects the internal structure of the core (which
cannot be resolved at low energies), a one-nucleon halo nucleus can be thought of as
a shallow dimer state that occurs due to a large scattering length in the corresponding
nucleon—nucleus scattering system. This is exactly the same situation as with the deuteron
in the few-nucleon sector, and it is thus natural to adopt the concepts of the pionless
effective field theory described in the previous section. The resulting effective Lagrangian
contains, in addition to the nucleon terms, an additional field to describe the core as a
whole, interacting with the nucleons via contact terms and/or derivatives thereof. This
so-called halo EFT was first introduced in Refs. [60, 61] to study neutron—alpha and
has since then been extended to describe a number of other phenomena like alpha—alpha
scattering [62], bound single-neutron halo states such as ''Be [59] and 3Li [63, 64], and
various two-neutron halo systems [65-67]. Recently, is has also been used to calculate
charge form factors of two-neutron halo nuclei [68].

2.5 Lattice calculations

In the preceding sections we have repeatedly touched the subject of nuclear physics, but
almost exclusively discussed it directly from an effective point of view. It is thus due
time to mention quantum chromodynamics (QCD) as the widely accepted underlying!®
theory of the strong interaction which, up to electromagnetic and weak effects, ultimately
governs the properties of nucleons and nuclei.'® Tt is defined by the Lagrangian

T (3 1 a v,a
‘CQCD: E @Df(lDu'YM_mf)wf_ZE :FMVFM7 )
! a

D, = 0, +igA%® | F% = 0,A% — 9,A% +igf™ AL AL,

(2.63)

which is an essential component of the Standard Model of particle physics. In Eq. (2.63),
the sum runs over all quark flavors f represented by the Dirac fermion field 1y and AZ(w)
are the gluon gauge fields. Furthermore, t* and f¢ are the SU(3) group generators and
structure constants, and a,b,c = 1,...,8 are the corresponding color indices.

In the limit of vanishing quark masses, my = 0 for all f, Lqocp exhibits an exact chiral
symmetry, which means that right and left-handed quark fields ¥ r/L = (1 £75)/2¢y
decouple. If one only considers two light quark flavors f = wu, d, which is usually sufficient

14 Alternatively, as it is done for example in Ref. [59], one can compare the large matter radius of the
halo nucleus as a whole to the small radius of the core alone.

15We write “underlying” here to avoid the question of whether QCD can also be regarded as a funda-
mental theory. It is of course possible, if not likely, that QCD and the standard model in general are also
just effective theories of some sort, and the author takes the stance that it is not even logically possible
to assert any given theory as truly “fundamental.”

16Note that in nuclear physics electromagnetic effects are not a small correction, but play an important
role for the description of all nuclei heavier than the deuteron.
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for nuclear-physics applications, this is broken down spontaneously to the approximate
isospin symmetry (exact in the limit m, = my) that is still visible in the hadronic spec-
trum.

We assume all this to be well-known and will not go into further detail here. The only
aspect really important for the present discussion is that the running of the strong coupling
constant o = ¢g?/(47) that makes QCD perturbative at high energy scales and leads to
the famous “asymptotic freedom” at the same time renders the theory strongly-interacting
and thus non-perturbative at low energies. This is directly reflected by the fact that quarks
and gluons are not physically observable degrees of freedom, but only exist confined into
hadrons.

One way to circumvent the breakdown of perturbation theory are the effective field theo-
ries introduced in Section 2.4. Yet, as powerful as they are, it is nevertheless desirable to
also deduce the properties of hadrons, their interactions, and ultimately those of nuclei,
directly from Lqcp. A way to achieve this is to “solve” the theory numerically by putting
it on a discretized space-time lattice.

2.5.1 Lattice QCD

The idea just mentioned was initially conceived by Wilson [69] in 1974 as an attempt
to explain confinement. Although the latter is still an unsolved problem, with the rapid
advance of computer power during the last two decades, the lattice formulation of QCD
has evolved into a very successful tool. In the following few paragraphs, we will briefly
review its main concepts. Much more thorough discussions of the topic can be found in
introductory lattice QCD texts such as Refs. [70, 71].

As Davies puts it in Ref. [70], “Lattice QCD is just QCD, no more and no less.” Although
in practice there are a number of technical issues—in particular with the implementation of
fermions and chiral symmetry—this statement provides a good summary of the approach.
Its starting point is the Feynman path-integral formulation of field theory, which encodes
all physical information in the partition function

Z = / DYDYDA? eiacolb Al (2.64)
Here,
SQCD = /d4$ »CQCD (265)

denotes the QCD action and we have omitted all flavor indices f for simplicity. Phys-
ical observables can be calculated by considering vacuum expectation values of suitable
operators O given by

1 - - : 5 AG
(0) =~ / DYDYDAS Ofih, 1, A% eiacol il (2.66)

Under a Wick rotation that yields a description in Euclidean spacetime, the exponential
term in the above expression becomes

eiSQCD["/)ﬂZvAﬁ] N e—SSCD[’/”’Z’»AZ] , (2.67)
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where the superscript E indicates the Euclidean action. With this, complex phase os-
cillations in Eqgs. (2.64) and (2.66) go over into exponential suppression factors of terms
away from the classical (i.e., minimal) action. The resulting expressions are then nu-
merically well-behaved and one can calculate the functional integrals over the symbolic
measure DtzﬁDAZ by sampling all fields on a discrete space-time mesh, giving an ordi-
nary four-dimensional integral at each point.!” This integral is, of course, a tremendously
high-dimensional one and cannot be performed with straightforward numerical quadra-
ture rules. Instead, one has to resort to Monte Carlo methods to make the calculation
feasible at all. Even with that, the procedure in general still requires supercomputing
power, and in practice one furthermore has to cope with a number of problems related to
the numerical treatment, some of which we will come back to shortly in Section 2.5.3.

Still, over the last few years lattice QCD has been very successful in calculating hadronic
properties “from first principles.” With steady improvements in both algorithms and
computational facilities, hadron spectroscopy, as one of lattice QCD’s prime disciplines,
is moving towards precision calculations [72, 73]. Beyond that, it is also possible to
extract resonance properties [74] and pion scattering parameters [75-77], to name just
a few examples. There are furthermore promising efforts to calculate nuclear physics
processes directly with lattice QCD (see, for example, Ref. [78] and further references
therein).

Despite the successes just mentioned, lattice QCD is still far from replacing effective
field theory in low-energy hadron and nuclear physics. Instead, the two methods are
to a good extent complementary. For example, due to computational limitations lattice
calculations are usually performed at unphysically large quark masses, and results from
chiral perturbation theory are then needed to perform extrapolations of the results back
to the point of physical quark masses. On the other hand, lattice QCD can be used to
calculate low-energy constants of chiral perturbation theory that would otherwise have to
be fixed from experiments [79]. In that sense, it is possible to “close the gap” between
the EFT and the underlying theory.

2.5.2 Nuclear lattice simulations

One can go even further and adopt the lattice approach directly to perform EFT calcula-
tions. This rather new idea opens the door for efficient calculations of few- and many-body
systems, ranging from nuclear physics to condensed matter and atomic physics (overviews
of computational methods and applications can be found in Refs. [80, 81]).

For nuclear physics, the EFT approach is interesting because in lattice QCD it is still
very challenging to extract the properties of systems with more than two nucleons. The
reason for this is that in such calculations most of the computational effort has to be spent
for generating the correct degrees of freedom rather than the interactions between them.
An overview of nuclear lattice simulations based on chiral effective theory and applied to
selected nuclei with mass number up to A = 12 can be found in Refs. [82, 83]. Unlike

"In practice, the integral over the fermion fields is typically performed analytically with the help of
Grassmann variables, yielding a modified action for the gluon fields that involves the determinant of a
large matrix.
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other nuclear many-body approaches like Green’s Function Monte Carlo (GFMC) [84] or
the No-Core Shell Model (NCSM) [85], the nuclear lattice approach is particularly suited
to study nuclei with a pronounced cluster substructure, such as the famous Hoyle state
in carbon-12 [86, 87].

2.5.3 Numerical aspects

All methods mentioned in the preceding sections have in common that by putting the
physical system on a discrete space-time mesh one necessarily introduces numerical ap-
proximations.

Inherent to the approach is that the degrees of freedom no longer reside in a continuous
space and time, but only on fixed sites'® which are separated by a lattice spacing a
(we focus on the spatial separation here and for simplicity ignore that one can choose
a different lattice spacing in the time direction). Most prominently, this quantity enters
in the definition of derivatives as finite differences on the lattice, which only gives the
continuum result up to higher orders in a. In practice, a has thus to be kept small to
avoid large discretization artifacts, and ideally calculations have to be performed at a
number of different lattice spacings in order to extrapolate the results to their continuum
values.

Furthermore, since computing power is a finite resource, so is the space and time that can
be simulated in a lattice calculation. Typically, one chooses a cube of box length L with
periodic boundary conditions for the spatial simulation volume, which is used to sample
the path integral for a number of time steps L;. Naturally, the volume must not be too
small compared to the typical length scale of the system one wants to simulate.

Both, the need to increase the simulation volume and decrease the lattice spacing drive
up the computer time (and memory) required for a given calculation. However, while the
continuum extrapolation is something that simply has to be done, the volume dependence
of physical observables can actually be used as a tool. This idea, pioneered by Liischer in
the 1980s [8, 88], will play an important role in the following chapter.

18Gtrictly speaking, gauge fields like the gluons in lattice QCD are actually defined not on the lattice
sites but on the links between them.
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Chapter 3

Finite-volume calculations

Overview

In this chapter we derive general results for the mass (binding energy) shift of bound
states with angular momentum ¢ > 1 in a periodic finite volume. Most of the following
content is the same as published in Ref. [4], some results of which were first summarized in
a letter [2]. Section 3.7 summarizes results from Ref. [3] after giving a detailed derivation
of the present author’s main contribution to that publication.

3.1 Introduction

As already mentioned at the end of the previous chapter, lattice simulations are used
in many areas of quantum physics, ranging from nuclear and particle physics to atomic
and condensed matter physics [78, 80, 81, 89]. In such calculations, the system is solved
numerically using a discrete space-time lattice over a finite volume. In practice, this finite
volume is usually taken to be a cubic box with periodic boundary conditions. When
simulating composite objects such as bound states, these boundaries of the box modify
quantum wave functions, leading to finite-volume shifts in the binding energies of the
states. A detailed knowledge of such effects is necessary in order to improve high-precision
lattice calculations.

In Ref. [8], Liischer derived a formula for the finite-volume mass shift of S-wave bound
states of two particles with reduced mass p interacting via a potential with finite range
R. When such a state with energy F = —FEjp is put in a periodic cubic box of length L,
its mass (energy) in the rest frame! is shifted by an amount

—kL
Amp = —3|A,*— + O(e V2L (3.1)
uL
where k = /2uFp is the binding momentum and A, is the asymptotic wave function
normalization defined by ¥g(r) = A,e " /(V4nr) for r > R; cf. Section 2.1.5. For

Liischer uses the term “mass shift” because he was more interested in a relativistic setup. We adopt
this convention here, but sometimes also use the term “binding energy shift” synonymously.

25
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potentials with exponential fall-off, V'(r) ~ exp(—r/R) for large r, the formula is modified
by exponentially small corrections provided that the binding momentum & is smaller than
1/R.

The generalization of Liischer’s formula (3.1) for the finite-volume mass shift to bound
states in higher partial waves was briefly discussed in Ref. [2]. In this chapter we present
the full derivation of these results as it appeared in Ref. [4]. We give explicit results for
the mass shift of states with angular momentum up to ¢ = 3 and discuss how, in general,
the mass shift for a given state depends on its transformation properties with respect
to the symmetry group of the cubic box. In addition to reducing finite-volume effects in
precision lattice calculations, our results can also be used as a diagnostic tool to probe the
angular momentum and radial structure of the bound-state wave function. Furthermore,
we discuss how the mass-shift formula can be generalized to two-dimensional systems and
different (“twisted“) boundary conditions (in three dimensions).

The latter result is a key ingredient for studying bound states that are moving in a finite
periodic volume, which have a topological phase correction to the energy [3, 90]. This
factor contains information about the number and mass of the constituents of the bound
states, and it must be included when determining scattering phase shifts for composite
objects in a finite volume. For a discussion of how scattering phase shifts in S- and higher
partial waves can be extracted from finite-volume energy levels, see Refs. [88, 91].

Our results are universal and can be applied to a wide range of systems. In particle physics,
for example, there is some interest in hadronic molecules with angular momentum [92-94].
In the case of S-waves, the deuteron and some exotic weakly-bound states such as the
H-dibaryon were recently studied in lattice QCD [95]. Similar investigations for exotic
bound states with angular momentum appear feasible in the future. In atomic physics,
several experiments have investigated strongly-interacting P-wave Feshbach resonances
in °Li and %K [96-98], which can be tuned to produce bound P-wave dimers. If such
systems are simulated in a finite volume, our results can be used to describe the volume
dependence of the dimer binding energies.

Other systems that are relevant in this context are the halo nuclei introduced in Sec-
tion 2.4.3. Among these weakly-bound nuclei with molecular character there are some
systems with nonzero orbital angular momentum. A well-known example of a P-wave
halo state is the J” = 1/27 excited state in ''Be. The electromagnetic properties of the
low-lying states in this nucleus can be well described in a two-body halo picture of a 1°Be
core and a neutron [59, 99]. In order to study such a system in, for example, a nuclear
lattice simulation as discussed in Section 2.5.2, it is crucial to understand the volume
dependence. A related class of systems is given by nuclei with an a-cluster structure such
as ®Be and excited states of '2C [86, 100, 101].

Finally, we point out that the asymptotic normalization coefficient (ANC) of the bound-
state wave function appears in the mass-shift formula. Our results can hence be used to
extract this quantity from lattice calculations at finite volumes.

The chapter is organized as follows. Based largely on the prerequisites given in Chapter 2,
we start with a general discussion of the finite-volume mass shift in Section 3.2. Liischer’s
result for S-waves is recovered in Section 3.3, while our extension to higher partial waves
is given in Section 3.4. In particular, we discuss the mass shift for the irreducible repre-
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sentations of the cubic group, relate the sign of the shift to the leading parity, and derive
a trace formula for the multiplet-averaged mass shift of states with arbitrary angular mo-
mentum ¢. In Section 3.5, we verify our results numerically for two model systems. The
case of two spatial dimensions is treated in Section 3.6, while in Section 3.7 we discuss the
mass shift for twisted boundary conditions and how it leads to topological phase factors in
the finite-volume calculations of composite-particle scattering. Finally, a brief summary
and outlook is given in Section 3.8.

3.2 Bound states in a finite volume

As a starting point, we first review several results from Ref. [8]. We closely follow Liischer’s
derivation, but consider a more general system with arbitrary angular momentum and
non-local interactions.

3.2.1 Infinite volume

Before we discuss the finite volume, we briefly review the infinite-volume case. Our basic
setup is the one discussed in Section 2.1, i.e., we consider a system of two spinless particles
with reduced mass p and zero total momentum with a rotationally-symmetric finite-
range interaction described by the symmetric operator V(r,r’) in configuration space.
We furthermore assume that the interaction is such that it supports a bound state |1 p)
with energy F = —Ep = —k?/(211) and angular-momentum quantum numbers (¢, m). We
consider the full three-dimensional wave function in this chapter to capture the angular
dependence of the state. Recall that the finite-range assumption on the potential implies
that

V(e,©')=0 if |r| >R or || > R. (3.2)
The Schrodinger equation R
Hyp) = —Ep|Ys), (3.3)
can be written as
1
_ZAT Yp(r) + /d?’r’V(r,r’) Yp(r') = —Epp(r) (3.4)

in configuration space and for a local potential,
V(e,x) =V (r)é®(r—r), (3.5)

it reduces to the familiar form
1
[_EAT + V(I‘):| wB(I') = _EB wB(I') . (36)

According to Egs. (2.2) and (2.29), the asymptotic form of the wave function ig(r) is
determined by the Riccati-Hankel function H,",

Vp(r) =i1"A Y™ (x/r) (T (r > R), (3.7)
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regardless of the locality of the interaction, and where we have written the spherical
harmonics as a function of the unit vector r/r instead of the angles 6 and ¢. For future
reference, we give here the explicit expressions for H, (z) for £ =0,1,2:

Hy (2) = e, (3.8a)
Hf (2) = (1 + ;) el==2) (3.8b)
(

1+ 3 i) =) (3.8¢)

3.2.2 Finite volume

We now consider what happens when the two-body system is put into a periodic cubic box
with edge length L > R. For this problem it is convenient to define a periodic extension
of the potential

Vi(r,r') =) V(r+nL,r +nlL). (3.9)

neZ3

We take [1) to be an exact periodic solution of the finite-volume Schrédinger equation,

) = —Ep(L)]0), (3.10)

with the finite-volume Hamiltonian H L = ﬁo + VL and the volume-dependent binding
energy Ep(L). The periodic boundary conditions that we impose require that

Y(r+nl) =Y(r) (3.11)

for all integer vectors n € Z3. Tt is clear that Ep(L) approaches the infinite-volume
eigenvalue Ep and that |¢) — [¢p) as L — oo.

We now derive a formula for the finite-volume mass (energy) shift,

To proceed, we define a state |¢g) by adding together periodic copies of the infinite-volume
wave function in (3.4),

(rltoo) = tho(r) = > ¥p(r+nlL). (3.13)

This clearly satisfies the periodicity condition (3.11). Acting upon this state with the
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finite-volume Hamiltonian, we get

Hpgho(r) = Hy Y p(r+n'L)+ ) > / &' V(r+nL,x + nL)Yp(r' +n'L)
- Z {HO Yp(r+n'L) + /dgr’ V(c+n'Lx'+0'L)¢g(r'+n'L)

) /d3r/ V(r+nL,r' +nL)yp(r + n,L)}

n#n’
= —FEp(0) Z Yp(r+n'L) + Z Z /d?"r’ V(r+nL,v'+nl)yp(r+n'L).
" o (3.14)
The final result can be written as
Hyltho) = —Ep(00)[vo) + [n) , (3.15)
where we have defined |n) as
n(r) = Z Z /dgr’ V(r+nL,r' +nl)¢Yp(r’'+n'L). (3.16)

n’ n#n’
With the substitution r' — r’ — nL for each term in the sum, this can be rewritten as
n(r) = Z Z /d3r’V(r +nL,r')¢p(r'+ (0 —n)L). (3.17)
n’ n#n’

Due to the finite range of the potential we only get contributions from the domain |r'| < R.
We note that |r' + (n’ —n)L| > R when n # n’ and R < L. Therefore, we can use the
asymptotic form of the wave function and find that |n) = O(e™*"). This means that |¢/)
is an approximate solution of the finite-volume Schrodinger equation (3.10) for large L.
Motivated by this, we write the exact finite- volume solution |¢) explicitly as

[¥) = alyo) + [¢) with [¢) = O(e™™"). (3.18)

We take [¢) to be unit-normalized per volume L3. The same is true of [¢)y) up to correc-
tions of order e **. We will choose a in Eq. (3.18) such that

(toly) = 0. (3.19)

Consider now the matrix element (1| Hp|tho). Acting with Hy on [1), we get

([ Hylwo) = —Ep(00) (W0 + (¢|n) = = Ep(00)(woltho) - a + (tb[n) (3.20)
according to (3.15) and (3.18). On the other hand, acting with H, on (1| yields

(| Hy|vo) = —Ep(L)(¥[tho) = —Ep(L){¥o|t) - a. (3.21)
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Combining these two results we find

Ep(00) — Ep(L) = Amp = —211 (3.22)

a(toltho) |
We first consider the numerator in this expression. Obviously,

(Wln) = aliholn) + (V'|n) = altoln) + O(e™>F) . (3.23)

Note that the factor of o here will cancel the « in the denominator of Eq. (3.22). We can
now simplify further, starting with

(Wolm) =D >3 /d3r / Er' (e +n"L)V(r+nL, v +nL)yp(r +n'L). (3.24)
n” n’ n#n’

For each n we can make the substitutions r = r —nlL and r' — r' — nL. These leave the
integrals invariant, and we get

(Wolm) =D >3 /d%/d%’ i (r+ @ —n)L) V(r,r') ¢p(r'+ (0 —n)L) . (3.25)
n’” n’ n#n’
Setting m = n’ — n and m’ = n” — n yields
(holn) = C - Z Z /d?’r/dgr’ Yt +m'L)V(r,v")¢Yp(r' + mL), (3.26)
m’ m#0

where C' counts the number of repeated periodic copies. The fact that C' diverges simply
reflects the fact that we are working with periodic wave functions with normalization
measured per volume L3, and C' will cancel in the final result. For the integral to be
non-zero, both r and r’ have to be close to 0 due to the finite range of the potential.
From the assumption L > R it then follows that all terms with m’ # 0 are suppressed
by at least a factor of e=?** and we have

(oln)y = C' - Z /d37’/d3r’ V() V(r,r') Yp(r’ + mL) + O(e ). (3.27)

m#0

The possible nonvanishing values of |m| are 1, V2,4/3, ... . We therefore arrive at

(olm)y = C' - Z /dgr/d?’?"’ Py(r) Ve, v')Yp(r' + mL) + O(e’\/ﬁ"L) : (3.28)

|m|=1

For the denominator in (3.22), an analogous procedure yields
alin) =€+ Y [ @rip)vale+ml) = L+ 0] 329)

with the same constant C' as above. Combining (3.28) and (3.29), the constant cancels
and we get

Amg =3 [ @ [ v Vi) sl 01y O, 330

n|=1
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where we have renamed m back to n.

Eq. (3.30) is a general result valid for any angular momentum. The dependence of the
mass shift on quantum numbers (¢, m) will emerge from the wave function ¢ and the

resulting overlap integrals in (3.30). In the following, we explore this dependence in detail

and denote the mass shift as Amg’m).

3.3 S-wave result

For ¢ = 0 the asymptotic wave function (3.7) is simply given as

Yi(r) = ¢5(Jr|) = \/guoy) (3.31a)

uo(r) = A, Hy (ikr) = A, e™™ for r> R. (3.31b)

Due to the finite range R < L of the potential we only have contributions with |r'+nZL| >
R in Eq. (3.30). Hence we can insert the asymptotic form for ¢5(r' + nl) and get

with

e—n|r’+nL|

> /d3 /d3r’¢B ) V(r,r) ——— FE—yy +O(V>) . (3.32)

In|=1

Amg 0)

\/_

We can furthermore use the Schrodinger equation (3.4) to eliminate the potential. Doing
this and then renaming r’ — r, we get

Z/d3 {[ } E(lﬂ)}ﬁ—zzjto(eﬂ%)

In|=1

Z /dgr@bB |r—nL|) [ /-@2]

In|=1

AmB

\/E
(3.33)

—H

+0( \me)

\/_

In the second line we have shifted the integration variable and used partial integration to

let the Laplacian act on exp(—«r)/r. Finally, we use the fact that exp(—rr)/(4nr) is a
Green’s function for the operator A, — k2,

—KRT

e

(A, — K] = —68)(r), (3.34)

47r

cf. Eq.(2.41). This allows us to trivially solve the integral and arrive at

A
Am(é),O) — _ﬁ K Z ¢*3(|HL|) + O(e—\/inL)

U
‘nl:; (3.35)
e K
= —3|A,[? Oe™V2rh).
| Al L +0(e )

In the last step we have inserted the asymptotic form of the wave function for 9} (]nL|) =
(L), and the sum yields a factor of six. This is just Liischer’s result (3.1) as given in
the introduction.
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3.4 Extension to higher partial waves

We now discuss the generalization of the mass-shift formula to arbitrary angular momen-
tum. The general form for the asymptotic wave function is

‘A H/ (ikr)
—

VB m)(r) =Y,"(0,9) (3.36)

Inserting this into Eq. (3.30) and performing steps analogous to those for the S-wave case,
we find

1 . . i‘A. H/ (irr) 3k
Amp = ;1/d37’ {Z[AT — 52]w8(r — nL)} Y, (9,¢)+ + O(e 2 L) '
(3.37)
The crucial ingredient is now the relation
H+ . 1 —RT
v S iy (<L) [0 (3.39)

where RI* are the solid harmonics defined via Ry (z,y,2) = RP*(r) = r*Y;"(0,¢). The
result (3.38) follows from Lemma B.1 in Ref. [102], which proves that

RI(V)F(r) = Ry (x) ( Ld ) 7r) (3.30)

rdr

for any smooth function f(r). From this we obtain Eq. (3.38) by using the relation?,

(ldi) hy(z) = (=)= 1 (2) (3.40)

and noting that e = H{ (ikr) and H/(z) = iz hél)(z), where hél)(z) is a spherical
Hankel function of the first kind.

We can illustrate Eq. (3.38) with an example. For the case { =1 and m = 0 we have

RT r

Hi (inr) ~ (1 v i) °” (3.41)

and Y(0, ¢) o< cos . A straightforward calculation using cosf = z/r shows that indeed

cos 6 (1 + i) ¢ - 19 {e_ 1 . (3.42)

KT r KO0z | r

Rewriting Eq. (3.37) with the help of Eq. (3.38), we get

Amy = ’;—; 3 /d% { (A, — K2 (r — nL)} {R;n (—%VT) [e;] } £ Oy

" (3.43)

2The relation (3.40) is just a special case of Eq. (10.1.24) in [103], which also holds for other spherical
Bessel functions.
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We now integrate by parts and pass the Laplacian through the differential operator
R}(—V,/k). Since the operators both consist of partial derivatives, this is not a problem
when the wave function is smooth. We assume that this is the case, with the possible
exception of a measure-zero region that can be omitted from the integral.

The partial integrations give a factor (—1)*. We can now proceed in exactly the same
way as for S-waves. Performing one more integration by parts so that the Laplacian acts
on exp(—«r)/r yields a delta function times a factor of —4m. The final result is then

2w A, 1
Anfyr) = (et RS R (9, )l m)| O (344

L

‘Il|:1 r=0

For ¢}, (¢,m) We can insert the asymptotic form (3.36) since it is evaluated in the asymptotic
region.

3.4.1 Results

For ¢ =1, we find the same result for all three P-wave states:

—kL
Al = An) — A, P 4 o), (345
i
Compared to the S-wave case, the sign of the P-wave mass shift is reversed while the
magnitude is exactly the same. Qualitatively, this means that S-wave bound states are
more deeply bound when put in a finite volume while P-wave bound states are less bound
(compared to the infinite-volume result). This behavior will be analyzed in more detail
later.

We next discuss the results for ¢ = 2. From Eq. (3.44) we find

wL

AmZO = 15/, G;L RO (L) + OV (3.46)
AmZ*) — 15|42 ij (L) + O(eVE), (3.47)
Amip*? = —15]A,? GMZL (L) +0(evh) (3.48)
where
FY)(z) = % + 3z + 22—7552 + %x?’ + %x‘l : 3.49)
F)(z) = 2z + 927 + 212° + 212* (3.50)
Fi(x) = i + %:c - Zaﬁ - %xB - %x“. (3.51)

We note that here the size and even the sign of the mass shift both depend on the quantum
number m. To understand this effects we need to take into account that our cubic finite
volume breaks the rotational symmetry group down to a cubic subgroup.
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Representations of the cubic group

The cubic symmetry group O is a finite subgroup of SO(3) with 24 elements. There are
five irreducible representations of O, conventionally called Ay, A, E, T1, and T5. Their
dimensionalities are 1, 1, 2, 3, and 3, respectively. Irreducible representations D’ of the
rotation group SO(3) are reducible with respect to O for £ > 1. For further details about
the decomposition see, for example, Ref. [104].

In our discussion we assume that the infinite-volume system has no partial wave mixing,
such that orbital angular momentum ¢ is a good quantum number. We also assume that
there are no accidental degeneracies in the bound state spectrum, so we can use £ as a
label for the family of cubic representations split apart at finite volume. Parity invariance
remains unbroken by the cubic volume, and we have P = (—1)* just as in the infinite-
volume case. For clarity, however, we will indicate parity explicitly with £ superscripts
in the following.

With our assumptions, an S-wave state in infinite volume will map onto an A} state at
finite volume. Also a P-wave triplet will simply map onto the three elements of the T}
representation at finite volume. For ¢ = 2, however, the five D-wave states are split into
a Ty triplet and an ET doublet,

D*=T,®E". (3.52)

In the following we use the notation |I',/;a), o = 1,...,dim(I") for the basis vectors
of the irreducible cubic representations. We can rewrite the finite volume mass shift in
Eq. (3.30) as

Am o = (D, 40|V > T(mL)|l a), (3.53)

n|=1

where T'(x) is the translation operator for displacement by a vector x. We can also
calculate the matrix elements of Amp in the (¢,m) basis. In this case there will be off-
diagonal matrix elements connecting (¢, m) and (¢,m’) when m and m’ are equivalent
modulo 4.

According to Ref. [104], the unitary transformation between the two basis sets for the five
D-wave states is

ITy,2;1) = \/% (12,—-1) +12,1)) , (3.54a)

T 22) = 5 (2.-1) - [2,1)), (3.54b)

T3, 2:3) = =% (12,-2) — [2,2)) (3.540)
and

|E*,2;1) = [2,0), (3.55a)

|ET,2;2) = \/% (12,-2) +2,2)) . (3.55b)

So, for example, we have

+ 5. 1 R
AmgQ B 5 (Amg’ b 2Amg’ '+ Am (2’1’1 )
kL (3.56)
2 € 2 9 21 21 —V2kL
= _15|A“| ,uL ’ (E + K2L2 + K3L3 + I€4L4> + O(e ) ’
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where we have defined

2r A, 1
Am™ ™) = (-1)f - =2 ST Ry (‘W) Ui (0= mL)| O™V

I

\n|:1 r=0

(3.57)
as a straightforward generalization of Eq. (3.44).

As expected from cubic symmetry, the mass shift is the same for all three T, states and
also within the £ doublet. To summarize our results, we write the mass shift for a state
belonging to irreducible representation I' with angular momentum ¢ as

e—nL

AmGT = a (L) AP T O (e V) (3.58)

We list the coefficients «a (i) for £ =0,...,3 in Table 3.1.

14 ‘ r H a(x)

0] Af ~3

1|77 +3

2 T2+ 30z + 13522 4 31523 + 31522

2| BF —1/5(15 + 90z + 40522 + 94527 + 9452%)

3| A 31522 + 283523 + 12285x* + 283502° + 283502°
3Ty —1/2 (1052 + 94522 + 535523 + 195302* + 425252° + 42525:66)
3

7 /2 (14 + 105z + 73522 + 346523 + 113402 + 2362525 + 236252°)

Table 3.1: Coefficient «a(z) in the expression for the finite-volume mass shifts for ¢ =
0,...,3. I' indicates the corresponding representation of the cubic group.

3.4.2 Sign of the mass shift

The sign of the finite-volume mass shift can be understood in terms of the parity of the
wave function. In infinite volume the tail of each bound state wave function must vanish
at infinity. In the finite volume, however, the bound state wave functions with even parity
along a given axis can remain nonzero everywhere. Only the derivative needs to vanish,
and the kinetic energy is lowered by broadening the wave function profile. On the other
hand, a wave function with odd parity along a given axis must change sign across the
boundary. In this case the wave function profile is compressed and the kinetic energy thus
increased. We have illustrated both cases for a one-dimensional square-well potential in
Fig. 3.1.

In three dimensions, the situation is slightly more complicated, which can be seen from
the fact that for £ = 2 the sign of the mass shift depend on the representation of the cubic
group even though the parity is just (—1)? = +1 for all states. In order to understand this
we consider the basis polynomials for the cubic representations. These basis polynomials
are obtained by decomposing the cubic basis vectors in terms of solid harmonics which
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Figure 3.1: Wave functions with even (bottom) and odd parity (top) for a one-
dimensional square well potential in a box with periodic boundary conditions. The dashed
lines give the infinite volume solutions for comparison.

are homogeneous polynomials in x, ¥ and z. For £ = 0,...,4 the basis polynomials are
given explicitly in [102].
For a given polynomial P(z,y, z), we define its leading parity as
Ip P = (—1)%ma (3.59)
where
dnax = max{deg, P,deg, P, deg, P} (3.60)

is the maximum degree of P with respect to any one of the three variables. It is this
leading parity that determines the asymptotic behavior of the mass shift as k. — oo.
More precisely, we have

() ~ (1 () T as ko o0 361

for the o () in Eq. (3.58).

It can easily be checked that this relation holds for all results presented in Table 3.1. For
¢ = 2, for example, we have the basis polynomials

Pyry ~ vy, yz, 2w, (3.62a)
Pypr ~a? =yt yf =22, (3.62b)

and hence dy,., = 1 for the T, representation and dp., = 2 for the E* representation.
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3.4.3 Trace formula

The expressions for the finite-volume mass shift become simpler when we sum over all m
for a given ¢. We can rewrite Eq. (3.44) as

m 271'14,.i m 1 *
Amg? ) — (_1)£+1 —_— Z R@ <_EV7‘> d}B,(f,m)(r)

K n|]=1 r=nL
Inserting the asymptotic form of the wave function,
) m ‘A, Hf (ikr)]"
Shim ), = [0 00T (3.64)
h r=nlL
and using Eq. (3.38) a second time yields
27| A2 1 1 e=hr )
Amlem™ = (). 2L N pe (2w ) R (2w, O(e VL)
mp (=1) i |HZ:1 i - ¢ - . r—nL+ (e )
(3.65)
Now, from the well-known relation
- 20+ 1
> YO.0)Y(0,0) = = (3.66)

m=—~

and RJ*(r) = r*Y;™(0, ¢) we get an analogous expression for the solid harmonics, which
then carries over to

Ze; e <_%VT> & <_%V7‘> fr) = % ' 2{; LA (367)

for any sufficiently smooth function f(r). Finally, we have
(A) = =K (r#£0), (3.68)
r r

which follows from Eq. (3.34). Putting everything together, we arrive at

¢ 2 —KT
(m) 2| Al 2041 1 e 3k
> Ami™ = (-1 e S (A" | = +O(e7V2E)
—kL
= (=) 20+ 1) - BAL = + O(eY),
Ju!
(3.69)

where the sum just yields a factor of six. Dividing by 2/ + 1, we obtain the average mass
shift for states with angular momentum ¢,

wkL

Amll) = (~1) 3|AK|26M—L +O0(e7VE). (3.70)
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Apart from the alternating sign, this average shift is independent of /.

Eq. (3.70) can be verified explicitly for the the results presented in Section 3.4.1 (c¢f. Ta-
ble 3.1). For ¢ = 2, for example, one has to average over the three-dimensional represen-
tation T and the two-dimensional representation E*.3

3.5 Numerical tests

In order to verify our predictions numerically, we put the Schrédinger equation (3.10) on
a discrete spatial lattice such that the Hamiltonian becomes an ordinary matrix. We then
calculate the corresponding energy eigenvalues and eigenvectors.

3.5.1 Lattice discretization

We use a hat symbol to denote dimensionless lattice units. For example, we have
L=L/a and Eg=FEp-a, (3.71)

where a denotes the lattice spacing. The free lattice Hamiltonian is given by

=Y %aT(ﬁ)a(ﬁ) - 21;1 > (@l (Mai+&) +a'(W)a(n — e) (3.72)

where af(f) and a(f) are creation and annihilation operators for a lattice site fi and & is
a unit vector in the [-direction. The corresponding lattice dispersion relation is

B =L@ (3.73)

A

20

with the lattice function

QU@ =2xY (1—cosg)= Y _ q[1+0@))] (3.74)

1=1,2,3 1=1,2,3

and the lattice momenta R
q=2m/L. (3.75)

The binding momentum for a bound state with energy —Ep is determined by
—iEp =1 — cos(—ik) = 1 — cosh(k) . (3.76)
The lattice Green’s function for the Hamiltonian (3.72) is

A - 1 e
G E) =5y ——————.
I3 4 Q&) + 248

—ig-A

(3.77)

3Note that the mapping from the angular momentum eigenstates to the cubic group states is a unitary
transformation.
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We impose periodic boundary conditions by defining the distance 7 to the origin as

P() = | ) min {ﬁ%, (ﬁ—m)2}. (3.78)

3.5.2 Methods

We calculate the mass shift using three different methods:

1. As a direct difference in energies, Eq. (3.12), where we use a very large volume (L)
to approximate the infinite-volume result.

2. From the overlap formula (3.30).
3. Using discretized versions of Egs. (3.35) and (3.45), which we obtain by replacing

exp(—«r)/r with the lattice Green’s function. More precisely, we write the asymp-
totic bound-state wave function (3.7) as

Yp(r) =i‘A, Y (c/r) H (ikr) ™ - 4nG.(r) for r > R (3.79)

and replace the continuum Green’s function

e-f{?"
Gi(r) = 3.80
(1) = (380)
with the lattice version
. . _i2
Gin)=G|n,— ) . 3.81
=6 (07 ) (3.81)
Effectively, this amounts to the replacement
e /L — 4nGL(L,0,0) (3.82)

in the mass-shift formula.

The lattice Green’s function is also used to calculate the asymptotic normalization A,
from the lattice data. This procedure has the advantage of avoiding large discretization
errors.

3.5.3 Results

In the following we report physical quantities in units where the reduced mass p is set to
one.
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Gaussian potential

We first use a Gaussian potential,
Vaauss (1) = —Vo exp (—r2/(2R2)) , (3.83)

with R = 1 and Vj; = 6. This potential does not have a finite range in a strict mathematical
sense, but the range corrections can be entirely neglected in comparison with other errors
in our numerical calculation. The smoothness of the Gaussian potential helps to minimize
lattice discretization artifacts. In Fig. 3.2 we show the S- and P-wave mass shifts obtained
with the three methods described in Section 3.5.2. The results from the three different
methods described above agree well for both S- and P-waves. In order to compare the
dependence on the box size L with the predicted behavior we have plotted log(L - |Amp|)
against L (we use the absolute value of Amp since the S-wave mass shift is negative). For
both S- and P-waves, the expected linear dependence is clearly visible.

1 \ \ \ \ \ .
OFX- ]

L gg@ V= VGauss ]

i @ g P-wave 1

—~ -5r R gl ]
g i R TR ]

I S-wave - TR ]

< -10f =... N :
. i R R .

W i g B
0] _15 B \\\\@ gi
< [ x direct difference ]
i . R ]

20k 00 overlap integral B

““YI O Green’s function @ ]

R ]

| | | | | | | | | | |

34 5 6 7 8 9 10 11 12 13
L
Figure 3.2: S-wave and P-wave mass shifts log(L - |Amp|) as functions of the box size L
(in lattice units) for a Gaussian potential. We show the results obtained from the direct
difference Eq. (3.12) (crosses), evaluation of the overlap integral Eq. (3.30) (squares), and
discretized versions of Eqs. (3.35), (3.45) (circles). The dashed lines show linear fits to
the overlap integral results.

When we perform a linear fit to the overlap integral data (dashed lines in Fig. 3.2) we
obtain k = 2.198 4 0.005, |A.| = 11.5 £ 0.2 for the S-wave results and x = 1.501 % 0.004,
|A;| = 7.0 £ 0.1 for the P-wave results. The values for the asymptotic normalization
constants are in good agreement with the results |A,| ~ 11.5 (S-wave) and |A,| ~ 7.2
(P-wave) that are obtained directly from the L., = 40 data. Inserting the corresponding
energy eigenvalue into the lattice dispersion relation (3.76), we find £ ~ 2.211 (S-wave)
and Kk ~ 1.501 (P-wave), again in very good agreement with the fit results. The re-
maining small discrepancies can be attributed to the mixing with higher partial waves
induced by the lattice discretization and the fact that we have not performed a continuum
extrapolation to vanishing lattice spacing.
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Simple step potential

For a simple step potential,
Vstep(r) = =Vo O(R — 1), (3.84)

which we use with R = 2 and V) = 3, the numerical calculation becomes more difficult
because the discontinuous shape introduces considerable lattice artifacts. Still, we discuss
it here due to its strict finite range and since we find that for a small lattice spacing of
a = 0.2 the results are satisfactory. In Fig. 3.3 we show a plot analogous to the one
presented for the Gaussian potential. Again, the results from the different methods agree
well and the expected linear behavior is clearly visible. Furthermore, the results from the
three methods agree well with each other already for smaller L (compared to the results
for the Gaussian potential), as expected from the fact that the step potential does not
have a tail.

O S _
i ®%‘\\1::\ V= ‘/step ]
g S®. P-wave
ERE B .
g ! -
3 : S-wave @
~  -10 B pzd n
o SN
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_15F O overlap infegral @ ]
- O Green’s function T
I ®. ]
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4 5 6 7 9 10 11 12

|
8
L
Figure 3.3: S-wave and P-wave mass shifts log(L - |Amp|) as functions of the box size
L (in lattice units) for a simple step potential. The symbols are as in Fig. 3.2.

From fitting to the overlap integral data (dashed lines in Fig. 3.3) we obtain x = 2.0636 +
0.0005, |A.| = 29.17 4+ 0.06 for the S-wave results and x = 1.6192 + 0.0009, |A.| =
12.484+0.05 for the P-wave results. From the L., = 40 data we find k ~ 2.0666, |A.| ~ 29.6
(S-wave) and k ~ 1.6242, |A,.| ~ 12.8 (P-wave). Given that we do not have error estimates
for the L., = 40 results, the overall agreement is quite good.

Finally, we also check our result for the D-wave mass splittings, using again the step
potential with a = 0.2. In Fig. 3.4 we show the mass shift for the D-wave states in both the
Ty and the ET representation. Due to the polynomial coefficients « (- )—see Eq. (3.58)
and Table 3.1—one does not expect a linear dependence on L for log(L - |Amp|). Hence,
we simply plot Amp as a function of L directly and do not perform a fit. Nevertheless, we
see that (except for very small L, where obviously the condition L > R is not satisfied) the
agreement between the three methods to calculate Ampg is very good and hence conclude
that our mass-shift formula indeed gives the right result also for ¢ = 2.
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Figure 3.4: D-wave, mass shift Amp for T, rep. (left panel) and ET rep. (right panel)
as a function of the box size L (in lattice units) for a simple step potential. The symbols
are as in Fig. 3.2.

3.6 Two-dimensional systems

In this section we derive a formula for the finite-volume (or rather finite-area) mass shift
of bound states in two-dimensional systems. The results can be used, for example, in
lattice simulations of cold atomic systems, which can be prepared experimentally to be
effectively two-dimensional [105, 106]. We note that the S-wave case in two dimensions
was previously investigated in Ref. [107].

In two dimensions, the Schrodinger equation is
5 AP Vsl + [ V() balr') = ~En vale) (3.85)

with 1o @ 10
A dp(r) = [?5 ot Eae

in polar coordinates. States are described by a single angular momentum quantum number

¥5(r) (3.86)

m =0,£1,42, ..., and for the wave function we have the separation
Yp(r) = Uy (r) Y, (0) (3.87)
with _
elm@
Y (0) = ) (3.88)

V2r

The two linearly independent solutions of the free radial equation

2 1d m*
(@—F;E—F—F]D)Um(r)—oa (3'89)

are just the Bessel and Neumann functions J,,(pr) and N,,(pr). For a bound state, we
have p? = —k? = —2uFp, and the wave function has the asymptotic form

Um(r) = Ap K (k1) for r> R, (3.90)
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where K, is the modified Bessel function of the second kind. It is related to the Hankel
function of the first kind,

HWY(2) = Jp(2) + 1N (2) (3.91)
Vla Kon(z) = gim“H,g})(ix). (3.92)

As in the three-dimensional case, A, is the asymptotic normalization constant. Inserting
Eq. (3.92) into Eq. (3.90) yields a form which is more similar to the three-dimensional
expression. To render the analogy to the calculations in Section 3.4 as explicit as possible,
we will use the Hankel function in the following intermediate steps and only express the
final results in terms of the modified Bessel function.

Nearly all of the three-dimensional calculation carries over if we just replace all exponential
terms with Hankel functions. The overlap integral for the mass shift is now

Am? =" / d?r / A2 4y (1) V (1, 1) g (r + L) + O (iH,Q>(\/§nL)> . (3.93)

In|=1

From the asymptotic form of the Hankel function,

2 : m us
HY(2) ~ [ 2 elE=5375) a5 2] = o0, (3.94)
Tz

it is clear that in principle we still have an exponential behavior. In deriving Eq. (3.93)
we have used this to write

O (B (iwL)*) ~ 0 (HY (2ikL)) < O (B (VL)) . (3.95)

In the following we will simply write the correction terms as O(e_‘/ﬁ"L), as in the three-
dimensional case.

The two-dimensional analog of the relation (3.38) is

Yo (0)HY (ikr) = (—i)" Ry (-%va) H (i) (3.96)
where R, (r,0) = r™Y,,(0). This follows from
Ru(V2)10) = Bole) (25) 10 (3.97)
and
G%) HV(z) = (~1)™ =" HV(2) (3.98)

The derivation of Eq. (3.97) can be carried out in the same manner as the three-dimensional
proof of Lemma B.1 in [102], using the expansion of ¢P* (2D vectors) in terms of Bessel
functions. As the final ingredient we have

(A — 7] iﬁg”(im = 5 (r). (3.99)
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Using all this in steps completely analogous to those in three dimensions, we get

A, 1
Am) = (1. TN R, (—EVED) Y m(r —nlL)

p +O(e V) . (3.100)

[n|=1 r=0
For m = 0 (two-dimensional S-waves), this directly yields
0 _ ol VL
Amp = —2 Ko(kL) + O(e ). (3.101)
W

In fact, Eq. (3.100) can be simplified further. Inserting the asymptotic form for the wave
function for ¢% ,, and using (3.96) a second time gives

A2 1 1
AmY = (—1)m+1 . % S R, (—Esz) R, (—;viD) [i5H" (inr) ‘
In|=1 r=nlL

+O(e V) . (3.102)
From Eq. (3.88) and R,,(r) = r"Y,,(0) it is clear that

Ra0)R,0) = C1 (3.108)

which then yields

L) o (1 _ L1y

for any sufficiently smooth f(r). This is essentially the same relation that we used to
derive the trace formula in the three-dimensional case, only that here we do not have to
sum over different m. Together with the two-dimensional analog of Eq. (3.68),

(AZD)" HSD (ikr) = k2™ HM (ikr) (r #0), (3.105)

we then get

m m AHP 1 m [.T0 .
Am(B ) = (—1)m*t. n Z 5 (AZP) [1§H((]1)(1/17")}

In|=1

2|A,.|?

= (—1)m™+t. Ko(kL) + O (e VL) |

As we shall see in the following, this is the final result for m = 0 and any odd m, whereas
for even m # 0 things become slightly more complicated.

In general, we have to take into account that the finite volume breaks the original planar
rotational symmetry of the system down to the symmetry group of a square. We find
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that states with the same absolute value of m may mix to form good eigenstates in the
finite volume. More precisely, we have the symmetric and antisymmetric combinations

1
V2

for m # 0. When we calculate the mass shift for these states (in the same way as described
in Section 3.4.1), we get mixing terms of the form

Im, £) = —=(|m) £ |-m)) (3.107)

m,mixe m WAK 1 ;
A = (T S R (<9 ) vt

n|=1

Since the condition for the mixing of states is
2m =0 mod 4, (3.109)

they do not play a role for odd m (in fact, they vanish in this case). For even m, however,
we have to take them into account and find

1 i -
Ay = L (Am £ 2Am e 4 Amm) (3.110)

as our final result. As an illustration, we give the explicit results for |m| = 2:

2

Amiy") = _4’A;‘ [(1+ 222) Ko(kL) + (4 + F4s) Ki(kL)] + O(e7V>) , (3.111a)

2
Amgﬁ) _ 16|Al:| [ 3 KO(F&L) + (ﬁ + %) Kl(ﬁLﬂ + O(ef\/i'd‘) ) (3.111b)

Kk2L2

3.7 Twisted boundary conditions

In this section, we go back to the three-dimensional case and discuss a generalization
of the mass-shift formula obtained by changing the boundary condition imposed on the
finite-volume wave function. Instead of the periodicity (3.11) we now require that

Y(r +nL) = (r)e o (3.112)

for all n € Z3, where 0 is an arbitrary vector of phases. It is clear that setting & = 0
in this so-called twisted boundary condition gives back Eq. (3.11). As we will discuss in
more detail shortly in Section 3.7.2, a boundary condition of this form arises when one
considers a system of more than two particles, two of which form the bound state whose
mass shift we are interested in. In such a setup one has to consider the full two-particle
wave function

U(r,ry) = U(R, 1) =P Ry(r), (3.113)

where
r=r; —ry and R = mr| + 119 (3.114)
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are the relative and center-of-mass coordinates, respectively, and 7, » are the mass ratios

m

= — =1-—mn. 3.115
T Ty + T y T2 T ( )

If one demands that W(ry,ry) is periodic in both coordinates, e.g.,
U(r; +nlL,ry) = PRMPRyy(r 4 nl) = U(r,ry), (3.116)
one finds that the behavior of ¢(r + nL) has to cancel the additional phase,
Y(r +nL) = e Py (1) (3.117)

This is just Eq. (3.112) with @ = 1, LP. More generally, one can of course write the
boundary condition in the form

\I/<I'1 + IllL, ry + IIQL)
_ eiP-R eimLPnl ei’l]gLP-ng ’Q/J(I' + (nl _ IIQ)L)
= \II<I'1,I'2) 3 (3118)
but this again gives Eq. (3.117) since

elmLP-memQLP-nz — elmLP'nlel(l—nl)LP'nZ — elmLP'(nl_m) , (3.119)

where the last equality follows by noting that the total momentum for the center-of-mass
movement P is quantized in the finite volume,

2
P:%K L Ke7Z8, (3.120)

Keeping in mind these considerations as a motivation, we now derive the the finite-volume
mass shift for a the two-particle system with twisted boundary conditions—without writ-
ing @ in terms of the momentum P, however, but rather keeping it as an arbitrary pa-
rameter.

3.7.1 Generalized derivation

We carry out the derivation along the lines laid out in Section 3.2 and start by making
an ansatz |¢) for the finite-volume wave function of the form

(rlvg) = o(r) = > ¥p(r+nL)e™. (3.121)

Like the |1)y) defined in Eq. (3.13), this has at least the correct boundary behavior:

tg(r +nl) = Z Yp(r +n'L +nlL) o™

= WY 00 —n) _ iom (3.122)
— Z Yp(r+n’L)e — p(r) e 0T

n’’=n’4+n
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Acting on this state with the finite-volume Hamiltonian, we get

Hio(r) = Hy > tbp(r+n'L) 19“+Z/d3r’v +nL, v +nL)yp(r +n'L) ™

n/

— Z { [Ho Yp(r+n'L) + /d3r’V(r +n'L,x’ +n'L)yp(r + n’L)}ei‘9 n

+Z/d37"’V +nL, v +nl)yp(r' +n'L) 19“}

n#n’
= —Ep(o0 Zz/JB +1n'L) o

+22/d3r’v +nL,r’ +nL)yp(r' +n'L) ™ (3.123)

n’ n#n’

which analogously to Eq. (3.15) we write as

Hy|tb) = —Es(00) ) + no) (3.124)
with
=> > /d%'v +nL, v +nL)p(r' + n'L) o™ (3.125)
n’ n#n’

We see that in the end the phase factor e®™ is simply carried through the whole cal-
culation. Since furthermore it does not depend on the variable r, we can now conclude
that all steps carried out in Section 3.2.2 remain valid in spite of its presence and directly
arrive at the the integral formula for the finite-volume mass shift with twisted boundary
conditions:

Amp(0 Z /d3rw3 (r) ¥p(r + nL) " 4 O (e V2L) (3.126)
n|=1

For S-wave states, the final result then is

e—nL

Amig(0) = —|Auf* =

X Z cos(6 -n) + O(e’ﬁ“L) , (3.127)
n:éz7éy7éz
i.e., the phases from pairs of opposite directions combine to give cosine factors. Again, it is

clear that setting @ = 0 gives back the old result (3.35) for periodic boundary conditions.
For P-wave states, there is now a dependence on the quantum number m:

Amg’o)(e) Rt e L " —(1+4 KL)(cos B, + cosby,) + (2+ xL(2+ kL)) cosb,

L K2L? ’
(3.128a)
—kL
(L1 oy 5 € (14 kL(1+ kL))(cos b, + cosb,) —2(1 + kL) cos b,
Ampy™(0) = | A4l " X Al :

(3.128D)
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However, this goes away as it should if one sends 8 — 0. For m = 0, for example, one
finds that

— (1 4+ kL)(cos b, +cosby,) + (2+ kL(2+4 kL)) cos b,
=21+ kL)2+ (2+ KkL(2+ kL)) = k*L*, (3.129)

cancelling the additional factor in the denominator and thus giving back the old result.

Improved volume dependence

Already in the two-body sector the results given above are actually quite interesting. From
Eq. (3.127), for example, one can see that for a bound state with equal mass constituents
(such that the mass ratios are n; = ny = 1/2), the leading finite-volume mass shift can
be made to vanish if one chooses to perform the calculation in a “boosted” frame with
K = (1,1, 1)/2 rather than in the rest frame of the bound state, which would be the naive
choice.

In Ref. [3] it was argued and demonstrated numerically that this procedure can be gener-
alized to bound states of more than two particles if one assumes that there is no cluster
substructure. Furthermore, in Ref. [90] Davoudi and Savage discuss a general method
for reducing finite-volume corrections in two-body calculations by choosing appropriate
combinations of boosted frames.

3.7.2 Topological volume factors

As mentioned at the outset, the mass shift for twisted boundary conditions is important
for systems of more that two particles in a finite volume, two of which form a dimer bound
state. In the following, we will discuss how these shifts yield correction factors that have
to be taken into account in finite-volume determinations of scattering phase shifts where
one or more of the particles is composite.*

To this end, consider the scattering at low energies of two particle labeled A and B, both
of which can be either elementary (pointlike) or composite bound states. For the sake of
definiteness we take A to be a pointlike “atom” and B to be a dimer bound state.

In order to extract the S-wave scattering phase shift do(p) from finite-volume calculations,
a popular strategy is to apply Liischer’s formula

1 Lp 2
t 0 =—S == 3.130
peotan(s) = 2500 . 1= (52) (3.130)
where p is the center-of-mass momentum of the A-B system and
1
S(n) = Vi - Zoo(1,) = limen Y o (3.131)

nez3

4The relations presented in the following, published in Ref. [3], were derived by D. Lee [108]. The
present author’s main contribution to Ref. [3] was the derivation of the twisted-boundary mass-shift
formula.
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is the Liischer Zeta-function (see, e.g., Ref. [102]).

The crucial point here is that the momentum p is determined from energy levels of the
A—B system in the finite volume which, in turn, are functions of the box size L, i.e.

p=p(Eas(L)). (3.132)

If now at least one of the particles A and B is a composite bound state, there will be a
contribution to the volume dependence of the total energy that is solely due to the mass
shift of the bound state. In order to apply Liischer’s formula (3.130), this contribution
has to be determined and subtracted.

Turning back to our atom—dimer example, we assume that the underlying interactions
between the atoms has a finite range R and impose periodic boundary conditions. We
denote an A-B scattering state with momentum p = |p| in the center-of-mass frame by
V¥, and write it as

r|,) = c- - 3.133
W) e Y (3.133)
in configuration space, with some normalization constant c¢. In writing this expression,
which corresponds to a pure S-wave, we have assumed that contributions from higher
partial waves can be neglected. It is then valid as an approximation for all r outside
shifted copies of the finite-range interaction if we neglect exponentially-suppressed contri-
butions in the effective interaction between composite particles that are introduced by the
bound-state wave functions. As discussed in Ref. [3], this is valid because for the current
derivation we are only interested in the contributions due to the shifts in the binding
energies. According to the formulas derived above, these are also exponentially small, but
their contributions to the scattering are suppressed further by inverse powers of L. Note
that upon discretization the expression in Eq. (3.133) essentially goes over into the lattice
Green’s function defined in Section 3.5.1.

Let H denote the Hamiltonian for the system we are considering. Acting with this on the
state |¥,) then gives

(r|H|V,) =

527k 2nk/L —27k/L
LN O o+ END) + B
( ) 3 2pias (3.134)

2 = k? —n

in configuration space [108], where p 45 is the reduced mass of the A-B system and with n
as defined in Eq. (3.130). In this expression, Efgk/ “(L) are the energy contributions (at
volume L) due to the binding of the states A and B, moving with momentum +27k/L.
By definition, they are zero for point particles. In particular, for our specific example
here we have E%k/ L(L) = 0 for all L, but we keep it in the equations in order to give a
more general result. The total energy of the A—B system is then

+ E27‘rk/L(L) + Eg27rk/L(L)
(k* —n)?

°As discussed in Ref. [102], Zyo(s,n) is initially defined by the sum in Eq. (3.131) for Re(s) > 3/2
and then extended to the whole complex plane by analytic continuation; this is what we express with the
limit in Eq. (3.131).

H v,)
EAB(p, L) — < p‘ ‘ N Z 2HfAB

(3.135)
(0 |Py) keZ?
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with the normalization factor

N=Y (K-n)". (3.136)

k

The volume dependence of E;”k/ L(L) is known from the derivation in Section 3.7.1.
According to Eq. (3.127), it is given as

AEB(k L) E—Qﬂk/L(L) _ E;Qﬂk/[/(oo)

eK,L

= Amy) (6 = —2mpk) = —|A, |2

x Y cos (2mnpks) + O(e™V*E) | (3.137)

,L x?y7

where pp and np are the reduced mass and mass ratio of the constituents comprising
the state B. If the state A is composite as well, one has an analogous expression for the
contribution E%k/ L(L). The total volume dependence of the energy F4p can then be
written as

Ep(p, L) — Eap(p,00) = 74(n) - AE4(0, L) + 15(n) - AE5(0, L) (3.138)

with the topological volume factors

i 123(308 (2mna.Bk:)
Ta,5(N) ) (3.139)
/\/‘Z 77)2

They are obtained by inserting the expressions for AE4 p(k, L) into the sum over all k
in Eq. (3.135) and factoring out the volume dependence of the states A and B at rest.
Eq. (3.138) is the desired contribution to the volume dependence of the energy levels
Ep (determined in numerical calculations) that should be subtracted before applying
Liischer’s formula (3.130) for an extraction of the scattering phase shift.

Figure 3.5 demonstrates the importance of this procedure. For the atom-dimer (more
generally called “fermion—dimer” here) system it shows lattice results for the scattering
length and effective range calculated from S-wave phase shifts that were extracted using
Liischer’s finite-volume formula (3.130). The results shown in the plot were obtained in
a calculation by Bour et al., the full details of which can be found in Ref. [109]. They are
shown here with the kind permission of the authors.

Using dimensionless units obtained by rescaling all quantities with the dimer binding
momentum kp, both the scattering length app and the effective range rgp are plotted
against different values of the lattice spacing aj.; on the x-axis, such that a continuum
extrapolation can be performed. The two data sets shown in the plots were obtained
using two different lattice Hamiltonians that yield the same continuum limit.

One clearly sees that the correct values (indicated by the blue triangles in Fig. 3.5) are
only reached when the topological corrections factors are included in the calculation.
The effect is particularly prominent for the effective range, where otherwise the result is
completely off.

It should be pointed out here that the effect of the topological volume contributions is
so strong in the chosen example because the dimer was tuned to be very shallow and



3.8. SUMMARY AND OUTLOOK 51

the volumes used in the numerical calculation were not very large. Together, these two
factors enhance the relative importance of the binding-energy shifts. In a calculation with
deeper dimers and/or larger volumes, the effect can be much weaker or even negligible.
However, in general it is always there and should be taken into account, especially when
the exact situation is a priori unknown.
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Figure 3.5: Lattice results and continuum extrapolation with error estimates for the
fermion—dimer scattering length (top) and effective range parameter (bottom). For com-
parison we show the continuum results obtained via the Skorniakov—Ter-Martirosian equa-
tion.

3.8 Summary and outlook

In this chapter we have derived explicit formulae for the mass shift of P- and higher-wave
bound states in a finite volume and discussed their decomposition into states transforming
according to the representations of the cubic group. We have compared our numerical
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results for £ < 2 with numerical calculations of the finite-volume dependence for lattice
Gaussian and step potentials and found good agreement with the predictions. For £ > 2,
the mass shift of a given state (¢,m) depends on the angular momentum projection m
due to the breaking of rotational symmetry. Averaged over all m in a multiplet, however,
the absolute value of the mass shift is even independent of /. The mass shift for states in
representations of the cubic group is the same for all states, and its sign can be understood
from the leading parity of the representations. We have furthermore derived corresponding
expressions for the finite-volume mass shift in two-dimensional systems.

With the known volume dependence, lattice calculations provide a method to extract
asymptotic normalization coefficients of bound state wave functions, which are of interest,
for example, in low-energy astrophysical capture reactions. Using a relation that will
be discussed in more detail in Chapter 5, the asymptotic normalization and binding
momentum of a shallow bound state can be used to extract the effective range from a
simulation.

Furthermore, we have shown how twisted boundary conditions arise if one studies dimer
states in moving frames and how the mass shift for this case leads to topological corrections
factors that have to be taken into account in finite-volume calculations of composite-
particle scattering. A precise knowledge of these corrections is particularly important for
processes involving shallow dimer states in volumes that are not very large.

Our work provides a general framework for future lattice studies of molecular states with
angular momentum in systems with short-range interactions. Applications to nuclear
halo systems and molecular states in atomic and hadronic physics appear promising. An
important next step would be to include Coulomb effects into the framework in order to
investigate the volume dependence of bound states of charged particles, which are much
easier to treat experimentally. In particular, this extension of the formalism is important
if one wants to describe proton-halo nuclei. Another interesting direction would be to
analyze the volume dependence of resonances along the lines of Refs. [104, 110].



Chapter 4

The Coulomb force

Overview

The Coulomb potential, although notoriously difficult to handle due to its long-range
nature, is one of the most important and probably most thoroughly investigated inter-
actions in quantum mechanics. We review here results from the vast literature on the
subject with a focus on aspects that will be important for the following two chapters of
this thesis. The first part, where we introduce the Coulomb wave functions and the mod-
ified effective range expansion, is based largely on the introductory section of Ref. [5], but
provides some additional details. In the second part we discuss the full off-shell Coulomb
T-matrix. In particular, we give an approximate expression for this function in the case of
a Yukawa-screened Coulomb potential, originally derived by Gorshkov [111]. This section
contains, at least to the author’s best knowledge, some results that have not previously
been published.

4.1 Coulomb wave functions

For a pure Coulomb interaction the radial Schrodinger equation for two particles carrying
electromagnetic charges Z;e and Zse reads

d? 000+ 1
pPwe(r) = —@wg(r) + ( :2_ )wg(r) + %wg(r) (4.1)
with the Coulomb parameter
v =2uazZs, (4.2)
and the fine-structure constant )
e 1
=~ —. 4.
T T (43)

We use here the letter w to denote the wave functions in order to distinguish them from
the w,(r) describing the asymptotically non-interacting “neutral” system discussed in
Chapter 2.

53
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The solutions of (5.29) are the so-called Coulomb wave functions, and their properties
are well-known. We use here the conventions introduced by Yost, Breit and Wheeler in
Ref. [112] and summarize some important relations in the following. For a more compre-
hensive discussion we refer to the review article by Hull and Breit [113].

Explicitly, we write the wave functions as [114, 115]

1|e2* (L +m—k —it(lym
R0 = 5 [y | M) (4.42)
F l +m - k sl .
i !rgi o 13 o B (2) 4 E ). (4.4b)
2
where v
p=pr ., n=o-, 4.5
% (4.5)
and 1
Z:Zip,k::in,m:€+§. (4.6)

The functions My, and Wy, are Whittaker functions, which can be expressed in terms
of hypergeometric functions as

My (2) = e 22230 By (L pm — b, 1+ 2m; 2) (4.7)
Wim(z) =¢” 2 22+mU( +m—k,1+2m;z) . (4.8)

1Fi(a,b; z) is Kummer’s function of the first kind,

o)

1F1abz:Z e =ala+1)---(a+n—1), (4.9)
n=0
and
Ula,b;2) = %lﬂ(a, b;z) + %zlblﬂ(a —b4+1,2—b;2).  (4.10)
Due to their behavior in the limit p = pr — 0,
FP(r) ~ Co (4.11a)
GV (r) ~ Cn,e(pQ—Z;l)’ (4.11Db)

Fe(p ) and Gép ) are commonly called the regular and irregular Coulomb wave functions,
respectively. The factor C,,, which in the following we refer to as the Gamow factor,! is
given by

2mn

Cry= (4.12)

!Note that there is no general agreement about the name of C,, ; in the literature. It is sometimes also
referred to as the Sommerfeld factor or, perhaps introduced as a sort of compromise, Gamow—Sommerfeld
factor.
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and

2% ¢
Cie = w H<82 + 7]2> . 0270 . (413)

s=1

Sometimes it is convenient to write it in the more general form [103]

2 e~ % (0 + 1+ iDL+ 1 —in)]?

O = (20 4 2)

(4.14)
For asymptotically large p = pr, on the other hand the Coulomb wave functions behave
as

Fg(p) (r) ~sin(p — lw/2 — nlog(2p) + o), (4.15a)
Gé”) (r) ~ cos(p — Ir/2 — nlog(2p) + o) (4.15Db)

with the Coulomb phase shift

op=argl'({+1+1in). (4.16)

From Egs. (4.11) and (4.15) it is clear that Fe(p)(r) and Gﬁp) (r) are the direct analogues of
the Riccati-Bessel functions Sy(pr) and Cy(pr) that solve the free radial Schrédinger equa-
tion. The key differences to point out are the presence of the factors of C; ¢ in (4.11) and of
the additional phases nlog(2pr) o, in (4.15). The latter—in particular the logarithmically-
divergent term—reflect the inherent long-range nature of the Coulomb potential: no
matter how large the separation r of two charged particles becomes, the phase of their
relative-motion wave function (determined solely by the regular function F, g(p (r) for a pure
Coulomb interaction) never goes to a constant, and the particles are thus never free [116]).

4.1.1 The Gamow factor

The factor C;O has a direct physical interpretation. To see this, note first that the full
three-dimensional continuum Coulomb wave function (with outgoing asymptotics for the
spherical wave and normalized such that the incoming plane-wave component ~ exp(ip-r)
has unit amplitude) can be written in terms of a confluent hypergeometric function as [117]

Y§I(r) = e % T(1+in) P Fi(in, Lipr —ip 1) (4.17)

Its partial-wave expansion is given in terms of the regular Coulomb wave functions as (see
Refs. [118, 119] and cf. also Ref. [120])

& F( D)
= (20 + 1)i‘e (r >Pg(cos 0). (4.18)
=0 pr

It is clear that only the S-wave term contributes in the limit » — 0, such that by inserting
the threshold behavior of F) ®)(r) from Eq. (4.11a) we find that

limpy o S0 (r) = €7¢C0 . (4.19)
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Alternatively, one can derive directly from Eq. (4.17) that
457 (0)* = e ™I (1 +in)l(1 —in) = Cy, (4.20)

where the last equality follows from Eq. (4.14). As pointed out in Ref. [117] (for example)
this means that the S-wave Gamow factor (squared) is the probability of two charged
particles to be found at zero separation.?

4.1.2 Analytic wave functions

Of all possible linearly independent pairs of solutions for the Schrédinger equation (5.29),
the Coulomb wave functions Fé(p )(7’) and Ggp )(r) are convenient to use because with
their behavior at the origin and for asymptotically large distances, given in Eqs. (4.11)
and (4.15), respectively, they correspond most directly to the solutions of the free Schrédinger
equation discussed in Chapter 2. In contrast to those functions, however, Fg(p ) (r) and
Gép ) (r) cannot directly be used in order to obtain expressions that are analytic in p?.
Rather, the fact that they are expressed in terms of the variables p = pr and n ~ 1/p
yields series expansions [112, 113] with a complicated “entanglement” of terms in p and
r.

As first done by Lambert in Ref. [121], it is possible to define Coulomb wave functions that
are directly analytic in p?. Lambert’s result was later generalized by Bollé and Gesztesy
in Ref. [122]. Their pair of analytic wave functions, which we denote by £ (p,r) and
Gl (p,r) and discuss in more detail in Appendix A, will be very useful in the following
Chapter 5. Here, we note for completeness that Coulomb wave functions analytic in the
energy are also discussed in a more recent publication by Seaton [123].

4.2 Modified effective range expansion

Analogous to the discussion in Section 2.1.4 we now consider the case where a finite-range
interaction V' (r,r’) is present in addition to the Coulomb potential. We again assume
that the interaction allows for a solution that is regular at the origin, and the finite-range
condition (5.1) implies that V(r,r’) vanishes if = > R or v > R for some fixed but
arbitrary range R. The radial Schrodinger equation now reads

d? ((0+1)

pwy(r) = —@wg(r) + = w(r) + 2u/0 Ar' V(r, 7' ) we(r') + %W(T) . (4.21)

A general solution of Eq. (4.21) for momentum p can be written as a linear combination
of the regular and irregular Coulomb wave functions F, Z(p ) and Ggp ) defined in the previous
section,

wép) (r) o |cot dy(p) Fé(p) (r) + Ggp)(r)] for r> R, (4.22)

2In particular, the wave function at the origin stays finite although the Coulomb potential diverges
for r — 0. The latter is only a mathematical pathology that is always regulated by screening effects in a
real physical system.
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with an arbitrary overall normalization, and where d, is the phase shift of the full solution
wép ) compared to the regular Coulomb function Fg(p ) [13]. Since it can be related to the

partial-wave expansion of a function Tsc defined by [124, 125]
T=Tsc+Tc < Tsc =T —"1¢, (4.23)

where T' is the full T-matrix corresponding to the combined interaction V + Ve and T¢
is the pure Coulomb T-matrix (see Section 4.4), &, is called the “Coulomb-modified” or
“Coulomb-subtracted” scattering phase shift.

Instead of the ordinary effective range expansion (2.19) we now have the more complicated
expression

N 1 1
Crep® ot 8y(p) + v help) = = + 51§ * + -+ (4.24)
¢
where

C?,
he(p) = p* === h(n) (4.25)

On,O
h(n) = Rew(in) —log|nl, (4.26)

and the digamma function ¢¥(z) = I''(z)/T'(z) is the logarithmic derivative of the Gamma
function. It means that in order to get an expression that is analytic in p?, one has to
multiply p2+t? cot é, (p) by the Gamow factor squared and add an additional function that
cancels the remaining non-analytic terms.

Eq. (4.24) is called the Coulomb-modified effective range expansion. For £ = 0, it simplifies
to

~ 1 1
C’fhop cot o(p) + v h(n) = —c + 57"5]92 4o (4.27)
0

A derivation of Eq. (4.27) for the case of proton-proton scattering can be found, for

example, in Ref. [13].3 See also Ref. [11] for a detailed discussion. The analytic properties
of the ¢ = 0 modified effective range function are investigated in Ref. [126].

In Ref. [122], Bollé and Gesztesy derived a very general form of the Coulomb-modified
effective range expansion for an arbitrary number of spatial dimensions. Specializing their
result to the three-dimensional case, a version of Eq. (4.24) can be written as

N . ~ 1 1
C'ag P2ttt (cot de(p) — 1) + v he(p) = = + 57"50 pr4 - (4.28)
¢

with?
~ 20 i 2

3As a remark we note that on first sight the expansion given in Eq. (51) of Bethe’s paper [13] seems
to be different from the one given here in Eq. (4.27), which is the same as given in later publications
referring to Bethe’s result. The 7-dependent function on the left hand side of Bethe’s expansion appears
to differ from our h(n) by two times the Euler-Mascheroni constant «yg. This apparent conflict can be
resolved by noting that the g(n) in Eq. (51) of Ref. [13] is not the function defined in Eq. (47a) of the same
paper, but rather given by lim,), . [g(n) — g(n1)], where in this latter expression the g from Eq. (47a) is
meant. The limiting process then yields exactly the term —2vg.

4This definition essentially comes from combining Eqgs. (4.1) and (4.2) of Ref. [122], with the correction
that the exponent in Eq. (4.2) should be —2 rather than 2.
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The latter function can be rewritten using

92¢ IT(6+1+in)?
2 2
— 4,
e ['(2042)2 |I(1+in)? Coo (4.30)

with C7 as defined in Eq. (4.12). The expressions given here reproduce Eqs. (4.24)
and (4.13) when one explicitly assumes that the momentum p is real. In fact, one has
to rewrite Eq. (4.29) in this manner in order to get an effective range function that is
analytic in p? around threshold.

The form of the Coulomb-modified effective range expansion for general ¢ that we have
given in Eqgs. (4.24) and (4.28) is the same as in Ref. [122]. Note that sometimes another
convention, differing from ours by an overall momentum-independent factor, is used in
the literature. The effective range expansion given in Refs. [124, 127, 128] can be written
as

I'(20+2) ? 2 92041 % . ~ 1 1 o 5
(2[ F(ﬁ n 1)) [Cn,ep (COt 56(]9) - 1> + ’Y]W(p)] = —g + 57‘5 Pl (4.31)

This expression has the advantage of having a more direct connection to the ordinary
effective range expansion without Coulomb effects. For ¢ = 0, both our choice and the
form in Eq. (4.31) give the same expression. In this work we will, because of its simpler
form, primarily use the convention of Eqs. (4.24) and (4.28).

4.3 Bound-state regime

In order to discuss the bound-state regime for systems of charged particles we need to
know the solutions of Eq. (5.29) with the appropriate (exponentially decaying) behavior.
In other words, we need the Coulomb analogs of the Hankel functions H, lft

4.3.1 Asymptotic wave function

Essentially, this role is played by the Whittaker functions W, , 11 From the defini-

tions (4.4) one directly sees that

us

G (r) —iFP(r) = e el 3 MWL (2ipr) (4.32)
where the prefactor is found by noting that with m and & as in Eq. (4.6) we have

L(3+m—k)

— iarg'(4+1—in) — aloy
|F(%+m—k)| e e (4.33)

due to the property I'(z) = I'(Z) of the Gamma function. Using this, one can also write
the Coulomb phase shift in the form

o (T+1+in))?
¢ _<P(£+1—m)> ! (4.34)
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which is useful for showing that furthermore

Ggp) (r) + iFe(p) (r) = el7te 12 (t+in) Wfim@r%(—ﬁpr) ) (4.35)
More precisely, this follows from the definitions (4.4) after a short calculation involving
the relation [114]

o T(2m+1)
My, N e St VA v v m(—2) —

. 1 F(Zm —+ 1)
=g th) 2 L W (2 4.36

T +m+k) © (), (4:36)
the second term of which cancels the W ,,,(2) from Gép ) (r) after simplifying the prefactors
with the help of (4.34). These and further relations for Coulomb wave functions with
complex arguments and /or parameters can also be found in the articles by Humblet [129]
and Dzieciol et al. [130].

According to Hull and Breit [113], the asymptotic behavior of the Whittaker functions
for large |z| is

Wim(2) ~ e 228 W_m(=2) ~ e/ (=2)7F, (4.37)
such that the normalizable bound-state solution is given by

. e
%% in,H%(—ler) o T as |z| = o0 (4.38)

for bound-state momenta p = ik, k > 0.

4.3.2 Bound-state condition and ANC

We now go back to the case where a finite-range interaction is present in addition to the
Coulomb tail and consider solutions wép )(7“) of Eq. (4.21) with the asymptotic from as
given in Eq. (4.22). Inverting Eqs. (4.32) and (4.35) in order to express Wip sy in terms

of F” and G and inserting the result into Eq. (4.22) gives

wép) (r) o [cot Sg(p) — i]Wn,H%@ipr) — [cot Sg(p) + i} 2ot g=int W_in7£+%(—21pr) (4.39)

1

for r > R, in direct analogy to Eq. (2.18) that describes the case without Coulomb inter-
action (see Section 2.1.3). Repeating the argument that for a bound state the component
representing the incoming wave—given by the Wi, s, 1/2—has to vanish, one finds that the
condition for the existence of a bound state with binding momentum & is

cot dp(p = ik) =1. (4.40)

In other words, one simply has to replace the scattering phase shift d,(p) in Eq. (2.21)
with its Coulomb-modified analog d,(p). Furthermore, we define a bound-state solution

wg? (r) that behaves exactly like the Whittaker function,

A - W_WH%(Z/{T) for r> R, (4.41)

wl (r)

where A, denotes the asymptotic normalization constant (ANC) for a bound state of
charged particles.
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4.4 The Coulomb T-matrix

For the pure Coulomb interaction it is possible to write down a closed expression for
the full off-shell T-matrix (see Section 2.2.2). If we write the Coulomb interaction as an
operator Vg with

(|Velr') = 6@ (r — ¥)Ve(r) with Ve(r) = Ve(r) = ﬁ (4.42)
(p|Vela) = ?ﬁ = Ve(p.a), (4.43)

the Lippmann-Schwinger equation (2.46) for the Coulomb T-matrix T reads
To(E) = Vo + Ve @é+)(E) To(E), (4.44)
where the energy F is a free (complex) parameter.

Slightly altering our notation for the rest of this chapter, we introduce the center-of-mass
momentum scale k (instead of denoting it by p as done so far) and write

K g

E=" g=.
on T 2k

(4.45)

With this, a solution of Eq. (4.44) in momentum space can be written in the Hostler
form® [131-133]

Tc(k;p,a) = Ve(p.q) {1 —2177/100 CJ:D_M ds } , (4.46)

s2—1—¢€

where

(PP =R - R
i (4.47)

Alternatively, it can be recast in terms of hypergeometric functions as

) O A-1
Te(k;p,q) = Ve(p, Q){l — A [2F1 (171777 L +1in; A—Jrl)

. . A+
_2F1 (1,177,1 +17’],E) :| }, (448)

with the new variable A defined via
A*=1+e. (4.49)

For future reference we note that this can be shown by using the integral representa-
tion [103]
()

o Fi(a,b;c;2) = m

/1 7 — ) (1 — tz) T dt (4.50)

SUp to a prefactor (€™ —1)~! in front of the integral, this is the form given in Eq. (90) of Ref. [131].
Note, however, that the additional factor should actually not be there, which can be seen by starting
from Eq. (86) in the same reference.
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for the hypergeometric function to obtain first

_ A1 D(14in) [* ttdt . [~ t7ndt
o1 (1,177§1+177; ) = . / T = 177/ — T (4.51)
A+1 INC ) 1—t§—+i 1 —ﬁ—ﬁ

and subsequently, using the transformation

1 2d
t:s+ 5 dt:__s (452)

to arrive at

: A1 : . A+
zﬂ(Lmﬂ+wnK:T)—2E<Lmﬂ+ﬂﬁzjj)

© /s + 1\ " 2Ads
=1 . (4.
177/1 (s — 1) 52 — A? (4.53)

This gives back the integral form (4.46) of T¢(k; p,q) when inserted into Eq. (4.48).

4.4.1 Yukawa screening

In many situations, most notably in numerical calculations, it is necessary to suppress the
long range of the Coulomb potential by screening it a large distances. A popular choice
to implement this is to replace the plain Coulomb interaction with a Yukawa potential,

r

-
e
Ve(r) — Veu(r) = % -

) (4.54)
where the screening parameter A can be interpreted as a photon mass. In momentum
space, the Yukawa potential is given by

21y 1
po(p—a)?+A2

Vea(p,a) = (4.55)
In fact, the Coulomb potential in momentum space is usually defined by taking the limit
A — 0 in this expression because the Fourier transform of 1/r is not immediately well-
defined. From the above expression it is clear that the photon mass regulates the singu-
larity that otherwise occurs in forward direction (q = p, i.e., for vanishing momentum
transfer).

Ref. [131] gives an expression for what we in the following call the “partially screened”
Coulomb T-matrix T¢,y, originally derived by Gorshkov [111]. It is defined by the relation

Tep = Vo + Ve é(()+) Tc, (4.56)
where we have not written out the energy dependence of the functions for notational
convenience.

Note that this is not a Lippmann—Schwinger equation because the operator that appears
on the right-hand side is the unscreened Coulomb T-matrix 7. Still, T ) is an interesting
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object to study because it can be written down as a closed expression that converges to
the unscreened Coulomb T-matrix T in the limit A — 0. Due to this property it is useful
in numerical calculations where the the Coulomb interaction—with its pole at vanishing
momentum transfer that would otherwise create problems—has to be regulated. Ideally,
one would of course like to use an expression for the exact Yukawa T-matrix in such an
approach, but no closed solution for that quantity is known so far. We thus propose here
to use TC, A as a pragmatic alternative and will discuss its application to the low-energy
proton—deuteron system in Chapter 6. Since it has the right behavior in the limit A — 0,
we expect it to adequately describe most of the nonperturbative Coulomb effects.

Unfortunately, the expression given for T¢ 5 (k; p, q) in Egs. (246) and (247) of Ref. [131]
is no fully correct.® Since in the original paper by Gorshkov [111] the limit A — 0 is taken
without first giving the explicit form of the partially screened T-matrix, we will derive it
here in the following.

To this end we start from Eq. (244) of Ref. [131], which in our notation reads

Tea(k;p,q)

Ve(ra) —in [ -2, (2D, q) x e { i /l do } (4.57)
= ,q) — i —— Ve kAo (@) (TP, xp § —i — 0, (4
cal\p,q n ; Ao(x) C A—ikAo(z)\ TP, 4 p n i 961/\0(961)
where Ag(x) is defined as the positive root of

A3(a) = [1— (p/k)a] (1 - ), (4.58)

and Vi a—ikao(x) 1S just the Yukawa potential (4.55) with the substitution A — A—ikA(z).
We now consider the integral in Eq. (4.57). With the substitution [111]
o1 de 2s(1- (p/kP)

R Tt R Y

one finds that

Ao(z) =s(1 —z), (4.60)
and since furthermore - /k)2
— P
1— g = 4.61
S A (kR 460)

the integral in the exponent is just

! d[El oo 2d81 s+1
AN - =1 . 4.62
/x x1Ao(21) /5 s?2—1 0g<s—1> (4.62)

For the potential term under the integral we find

21y
Ve—ikho(@) (2P, q) = o

(s* — (p/k)?)

1 .
(87 = 1)(q = p)* + 15 | \(K?s? — p?) — 20Aks(k? — p?) — (K* — ¢*)(k* — p?)
6This can be seen by a straightforward dimensional analysis of Eq. (247) in Ref. [131]. Furthermore,
the prefactor in Eq. (246) is written in terms of the unscreened Coulomb potential, which is clearly not
correct.

X

(4.63)
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after a lengthy but straightforward calculation. Adding
0=A%(s* —1) — A% + \? (4.64)
in the denominator, we can rewrite this as

27y
Ver—ikao(@) (TP, Q) = L

(s* — (p/k)?)

X )
1 1 .
(2 = D[(a =)+ ¥] = 5| (2 = @)k = )| + 5| (2 = )32 = 2iAks)|
(4.65)
Finally, noting that the term in the numerator cancels against the same factor in
d 2d
A ° (4.66)

Ao(z) 8% = (p/k)*"

and factoring out the Yukawa potential, we arrive at

) © /s 1\ 7 ds
Tea(k;p,a) = Vea(p. ) {1 — 2177/ (8 1> } (4.67)
; _

s2—1—e€\+ ()

with
(B =) (K = ¢)
€\ — k2 [(q — p)2 i )\2] (468)

and
(k2 — p*) (A% — 2i\ks)

S RS Y
This expression is very similar to the integral form of the unscreened Coulomb T-matrix.
The only differences are given by the new term (,(s) in the denominator and the fact that
all singularities, both in the overall prefactor and under the integral, are now regulated
by adding A\?. In fact, one directly sees that in the limit A\ — 0, Eq. (4.67) converges to
the unscreened expression given in Eq. (4.46).

(4.69)

4.4.2 Expression in terms of hypergeometric functions

Something that is not noted in Refs. [131] and [111] is that—just like the unscreened
Coulomb T-matrix—7T¢ \(k; p, q) can also be expressed in terms of hypergeometric func-
tions. To obtain this expression we first note that the denominator in Eq. (4.67) can be
written as

s —1—ex+G(s)=s"—(1+dy-D* — (dy- D*)s (4.70)

with
di =k — ¢ =\, dy=2i\k (4.71)

and
Pl (4.72)

k2[(q—p)2+ A%
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After making the transformation

t+1 o0 o0 dt
- ds =2 4.
s R /1 s /1 (e (4.73)

we get

Tea(k;p,a) = Vea(p,q)
t=indt
X {1 — 4in

/1 —D2(dy + do) 2+ (4+ 2D2 - dy) t — D2(d; — d») } - (474)

To proceed further, we use the indefinite integral”

tv dt 127V
= — Fl—v. - 1= XT(#) - XT(+)v
/x2t2+x1t+xo X v {2 H(—v L= X5 (1) - X5 (1)

— B (—v, -1 —v; X5 (1)) -Xg(t)_”} , (4.75)

FX 129
X, = /22 — 4 XE(H) = — 2 XE(t) = (476
! 1 Tot2 2 ( ) T +2tl‘2 :FXI ’ 3 ( ) T + 2t£(]2 :FXl ( )

Evaluating this at t = 1 is straightforward, but considering ¢t — oo requires a little
more care. From Eq. (4.76) one sees that Xj(t) goes to zero like 1/t as t — oo, such
that the hypergeometric functions simply yield one in this limit. Since the potentially
problematic (because v = —in) prefactor t” is cancelled by the numerator of X3 (t)™"
with the remainder then going to zero as t — oo, we can conclude that there is actually
no contribution to the integral from the upper boundary in Eq. (4.74) and that its value
is hence given by the right-hand side of Eq. (4.82) with ¢ = 1.

Before inserting this into Eq. (4.74), we subsequently apply the identities [103]
2Fi(abie;z) = (1—2) 7y Fi(c—a,c— b;c; 2) (4.77)
and

o Fi(a,byc;2) = (1 —2)" %o F) <a, c—b;c Ll) (4.78)
S

to rewrite

oFi(—v,—v;1—vy2) = (1—2)""oFi(1L, 11 —v;2)

=(1—2)"2F (1, vl —v; : 1) . (4.79)

This is useful because from Eq (4.76) one finds that for z = X (t),

(1—2)"=2"XF)", (4.80)

"This result has been obtained with the help of computer algebra software (Wolfram Mathematica).
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canceling the inverse factors of this in Eq. (4.82). Moreover, the arguments simplify to

2 __1X%0 _ mFX (4.81)
z—1 2 X5 (t) 2wy '

With this, we then have

e tv dt 1 I +X1
= 2F1 1,—1/;1—V;—
1 .Tgtz +fl?1t + Zo VXl 2132

e
LR (1, vl - —“21:2 1) } L (4.82)

Finally, applying the above result to Eq. (4.74), we can write the partially-screened
Coulomb T-matrix as

Toa(k;p,q)
—Ve(p,a){1 = A LR (Lin, 1+ in: X3) =i (Lim, 1+ X7) |, (4.83)

with
s B=p)F = =N) N =)
Al=1+"0 CESESY l(q_p) + AP (4.84)
and
XE = 2k* [(a—p)* + N (1 £ Ay) + (K2 = p*)(F —¢* = N*) (4.85)

(K = p?) [(k +10)? — ¢?]
As it should, this reduces to the hypergeometric expression (4.48) for the unscreened
Coulomb T-matrix in the limit A — 0. It is directly clear from Eqs. (4.84) and (4.49) that

limy o A = A%, (4.86)

and a straightforward calculation then furthermore shows that

. A+1
limy 0 Xi = ATl (4.87)
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Chapter 5

Causality bounds for charged
particles

Overview

In this chapter, we derive a generalization of the so-called Wigner causality bound for
a system of charged particles, where the Coulomb force determines the long-range in-
teractions. The majority of the material presented in the following sections has been
published in Ref. [5]. The review of Coulomb wave functions and the modified effective
range expansion from that reference have already been given in the preceding chapter; the
remaining parts are included here in a slightly re-arranged and amended form. A part of
Section 5.7 is based on results from Ref. [4] that have been omitted in Chapter 3 to put
them in a more suitable context here. Finally, the discussion of causality bounds for van
der Waals tails in Section 5.8 is summarized from Ref. [7], which was mainly worked out
by S. Elhatisari.

5.1 Introduction

The constraints of causality for two-body scattering with finite-range interactions were
first derived by Wigner [134]. The causality bound can be understood as a lower bound
on the time delay At between the incoming and outgoing wave packets. When At is
negative, the outgoing wave packet departs earlier than for the non-interacting system.
However, the incoming wave must first reach the interaction region before the outgoing
wave can leave. In low-energy scattering this manifests itself as an upper bound on
the effective range parameter. In Ref. [135], Phillips and Cohen derived this bound for
S-wave scattering with finite-range interactions. Some constraints on nucleon—nucleon
scattering and the chiral two-pion exchange potential were considered in Ref. [136], and
relations between the scattering length and effective range have been explored for one-
boson exchange potentials [137] and van der Waals potentials [138]. In Refs. [10, 139] the
causality bounds for finite-range interactions were extended to an arbitrary number of
space-time dimensions and arbitrary angular momentum. The extension to systems with

67
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partial-wave mixing was first studied in Ref. [140].

Here, we consider the causality constraints for the scattering of two charged particles with
an arbitrary finite-range interaction. This analysis, published in Ref. [4], is the first study
of causality bounds that takes into account the long-range Coulomb force. The results
presented here are relevant to studies of low-energy scattering of nuclei and nucleons using
effective field theory (EFT), in particular for the application of effective field theory to
the nuclear halo systems discussed in Section 2.4.3.

There is an important connection between causality bounds and the convergence of
effective-field-theory calculations with increasing order [140]. For local contact inter-
actions, the range of the effective interaction is controlled by the momentum cutoff
scale of the effective theory. In effective theories with non-perturbative renormalization,
which typically occur in nuclear physics, exact cutoff-independence can generally not be
achieved. There is a “natural” value of the cutoff at which all higher-order corrections
scale as expected from dimensional analysis. If the cutoff is taken larger, “new physics”
intervenes, the corrections scale unnaturally, and unitarity violations may occur. This is
different from what one encounters in high-energy particle physics where the renormal-
ization is typically perturbative and cutoff momenta can be chosen arbitrarily large. For
calculations using dimensional regularization, the renormalization scale plays a similar
role in regulating ultraviolet physics.

The term “new physics,” in the above context, refers to details left out (integrated out)
in the effective theory. In the case of halo EFT, these details are the finite size of the core
nucleus and its internal excitations as well as the exponential tail of the pion-exchange
interaction. Problems with convergence of the effective theory can occur if the cutoff scale
is set higher than the scale of the new physics. It is desirable to have a more quantitative
measure of when problems may appear, and this is where the causality bound provides
a useful diagnostic tool. For each scattering channel we use the physical scattering pa-
rameters to compute a quantity called the causal range, R.. It is the minimum range for
finite-range interactions consistent with the requirements of causality and unitarity. For
any fixed cutoff scale, the causality bound marks a branch cut of the effective theory when
viewed as a function of physical scattering parameters [140]. The coupling constants of
the effective theory become complex when scattering parameters violating the causality
bound are enforced. These branch cuts do not appear in perturbation theory; however, a
nearby branch point can spoil the absolute convergence of the perturbative expansion.

Our results can be viewed as a guide for improving the convergence of halo-EFT calcu-
lations. In particular, if the cutoff momentum used in a calculation is too high, then
problems with convergence may appear in some observables. Consequently, the causal
range can be used to estimate the “natural” ultraviolet cutoff A of the effective theory as
R-!'. The natural cutoff is optimal in the sense that no known infrared physics is left out
of the theory and that all corrections involving the ultraviolet cutoff scale naturally [141,
142]. Increasing the cutoff beyond the natural value will not improve the accuracy of the
calculation.

The causality bounds also have an impact in the regime of bound states. For two-body
halo states—or more generally whenever there is a shallow two-body bound state close
to threshold—the same integral identity that yields the causality bound for the effective
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range can be used to derive a relation between the asymptotic normalization constant
(ANC) of the bound-state wave function, the binding momentum, and the effective range
for the scattering of the two halo constituents. This relation can be shown to be equivalent
to a result previously derived by Sparenberg et al. [143]. Its significance lies in the fact that
the ANC is an important input parameter for the calculation of near-threshold radiative
capture and photodissociation reactions. The causality bounds also constrain the range
of model potentials that are fitted to scattering data in order to extract ANCs.

The organization of this chapter is as follows. After briefly reviewing in Section 5.2 the
theoretical setup for two charged particles with additional short-range interactions (dis-
cussed in detail in Chapter 4), we derive the charged-particle causality bounds for arbitrary
values of the orbital angular momentum in Section 5.3. This analysis includes both at-
tractive and repulsive Coulomb forces. In Section 5.4 we define the causal range and then
extract and discuss this quantity in Section 5.5 for several nuclear scattering processes
including proton-proton, proton-deuteron, proton—3He, proton-alpha, and alpha-alpha
scattering. Some numerical calculations are given in Section 5.6. In Section 5.7, we eluci-
date the relation for asymptotic normalization constants mentioned above and extract, as
an application, the ANCs of the excited 2+ and 1~ states in 10 from a—!2C scattering
data. Before briefly touching the subject of causality bounds for other long-range forces
(in particular, for a van der Waals potential) in Section 5.8, we then conclude with a
summary of the main results and provide an outlook.

5.2 Setup and preliminaries

We consider a two-particle system with reduced mass p interacting via a finite-range
potential with range R. As already done in the previous chapters, we write the interaction
as a real symmetric operator with kernel V' (r, ') satisfying the finite-range condition,

V(ir,/y=0 if r>R or > R. (5.1)

In particular, we assume that the interaction is energy-independent. After giving a de-
tailed formal derivation of the causality bounds in the following sections, we will come
back to the question what the above assumptions mean for the application to (halo) EFT
calculations in Section 5.5.

In the absence of Coulomb interactions the system with (fixed but arbitrary) angular
momentum /¢ is described by the radial Schrodinger equation,

d? 0041 R
p2ugp)(r) = —ﬁuép)(r) + %uép) (r) + QM/O dr' V(r,r") ugp)(r’) ) (5.2)

As done in Chapter 2, we adopt the conventions of Ref. [10] and choose the normalization
of uép ) that for 7 > R we have

ul) (r) = p’ [cot 8e(p) Selpr) + Colpr)] (5.3)

where S, and Cy are the Riccati-Bessel functions and d,(p) is the scattering phase shift.
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If the particles carry electromagnetic charges Z;e and Zse, respectively, there is a Coulomb
potential in addition to the finite-range interaction. As done in Chapter 4, we write this

as 7.7
- _aazz (5.4)
2ur r

Ve(r)
such that in the radial Schrodinger equation we simply get a term ~ ~/r because the

factor of 2 in the denominator cancels out. From Section 4.2 we quote it in the form

dr? r2

where again we use the superscript “(p)” to denote the solution for a given center-of-mass

2 1 R
PP (r) = —d—w§p>(r)+ww§p>(r) +2u / ' V(r, r'>w,§p>(r')+%w§p>(7~), (5.5)
0

momentum p. We choose the normalization of wép ) such that for r > R we have!
wép) (r) = pZC’n,g [cot gg(p) Fg(p)(r) + Gép)(r)] , (5.6)

with the Coulomb-subtracted phase shift §, and the regular and irregular Coulomb wave
functions Ff(p ) and Gép ) as defined in Chapter 4. The inclusion of the Gamow factor in the
normalization C,, , will be convenient later, when we rewrite Eq. (5.6) in terms of a different
pair of functions and relate it to the Coulomb-modified effective range expansion (4.24),
rearranged in the form

- 11
™™ cotdy(p) = —vhe(p) — =z + 5rf P+, (5.7)
¢

with hy(p) as defined in Chapter 4.

5.3 Derivation of the causality bound

With the Coulomb wave functions and Coulomb-modified effective range expansion at
our hands, we can now closely follow the derivation presented in Ref. [10] for scattering
in the absence of Coulomb interactions.

5.3.1 Wronskian identities

We consider solutions of the radial Schrodinger equation (4.21) for two different momenta
pa and pg. Introducing the short-hand notation

wap(r) = wépA‘B)(r) , (5.8)
i.e., suppressing the angular-momentum subscript ¢ for convenience, we get

T

€

(sz _pi)/ dT/wA(T’I)wB(T/) = (wa;‘ — wAw;B)

— 24 /r dr’/o dr [we(r)V (r,mwa(r') — wa(r)V (r,rYwgp(r)] (5.9)

!Note that for £ = 0 our normalization is the same as chosen in Ref. [13], i.e., for r > R our solution
wép ) coincides with the function ¢ defined in Eq. (42) of that paper.
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by subtracting w,4 times the equation for wg from that for wg multiplied by w4, as it is
done in Ref. [10], and integrating from some small radius € to 7.

We assume that our interaction V(r,7’) is such that it alone (without the additional
Coulomb potential) permits a solution that is sufficiently regular at the origin, i.e., u,(0) =
0 and O,uy stays finite as  — 0, where uy is a solution of Eq. (5.2). As boundary condition
for the solutions w4 p of the full radial Schrodinger equation we can then demand as well
that they vanish with finite derivative at the origin. If we only had the Coulomb potential
and no additional interaction, this is fulfilled by the regular Coulomb function F, Z(p ) (r),
cf. Eq. (4.11a). We can thus take the limit € — 0 in Eq. (5.9) and get the relation

Whos,wal(r) = (5 ~ ) | dr'wa()walr). (5.10)
0
where the Wronskian W{wp, w4 is defined as

Wlwg, wal(r) = wa(r)wy(r) — wa(r)wy(r). (5.11)

5.3.2 Rewriting the wave functions

Following further the derivation presented in Ref. [10], we re-express the solutions wgp ) (r)
in terms of functions f(p,r) and g(p,r) such that

wi? (r) = p*1C2 ot by(p) f(p,7) + g(p,7) (5.12)
for r > R, with f(p,r) analytic in p?
fp, ) = for) + fa(r) p* + O(p"), (5.13)
and
g(p,r) =g(p,7) + é(p) - f(p,7). (5.14a)

The g(p,r) contains a term which is non-analytic in p? and is proportional to f(p,7). The
remainder §(p,r), however, is analytic in p?

g(p.r) = g0(r) + g2(r) p* + O(p"). (5.14D)
Combining Egs. (5.6) and (5.12), we find
1

_ (p)
f(pa T) - pg+10n7£Fép (T) (5153)
and
g(p, 1) = p'Cre G (r) . (5.15b)

These functions are directly related to the analytic Coulomb wave functions of Bollé
and Gesztesy [122] mentioned in Section 4.1.2 and discussed further in Appendix A. In

fact, one simply has that f(p,r) is exactly the il (p,r) defined in Eq. (A.3a), whereas
comparison of Egs. (5.15b) and (A.3b) shows that

9(p. 1) = GO(p,1) + (vhelp) — i 'C2, ) - B0 (p, ) (5.16)
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with G (p,r) as defined in Eq. (A.4). This implies that

g(p,r) =GV (p,7) (5.17)
and .
o(p) =7 he(p) — P> Cy =7 hu(p) (5.18)

where the last step follows from the combination of Eqs. (4.29) and (A.4) after a short
calculation.

When we insert now the modified effective range expansion (4.24) into the asymptotic
Coulomb wave function (5.12), the non-analytic term involving h,(p) conveniently drops
out and we are left with
1 1 .
w(r) = (—a—c + 510t ) fp.r) +3p.r) for r=R. (5.19)
¢
Thus, it is possible to choose a normalization such that wép ) (r) is analytic in p®. Combining
this with the expansions (5.13) and (5.14), we arrive at

W) =~ )+ ) + 5 | €)= ) + )|+ OGY. 620

5.3.3 The causality-bound function

From here we can proceed exactly as in Ref. [10]. For the Wronskian of two solutions w4
and wg for r > R we find

Wiws, wal(r) = (% —pi>{1rfvv[fo,go]<r> n (%) Wifan fol()

2
- % WSz, 90](r) — Wlga, fo](r)] + W[gz,go](r)} +O(php)- (5.21)

Note that in the O(pij) we have also included terms of the form p%p%. We set py = 0
in Eq. (5.10) and furthermore take the limit pg — 0. Using the expansion (5.21), we get

—rCWfo, gol(r) = b(r) — 2 /0 " )] i (5.22)

for r > R, with wg)) (r) = lim,_o wy’) (r) and the causality-bound function
2

(af)*

bg () = 2W gz, gol(r) — % {W1f2, 9ol (r) + Wlga, fol(r) } + Wif2, fol(r). (5.23)

Written as a function of p = p - r, the Wronskian of the Coulomb wave functions is?

WIEP, GP(p) = WGP, EP)(p) = 1. (5.24)

2See, for example, Eq. (14.2.4) in Ref. [103].
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Since d/dr = p-d/dp and W|f, f] = 0, we also have

WIf.gl(r) = WI[f,gl(r) = —1. (5.25)

Plugging in the expansions (5.13) and (5.14), we see that W{fy, go](r) = —1 for the
leading-order functions, and W{fz, go](r) = Wlga, fo](r) for the terms at O(p?). Inserting
these relations into Eq. (5.22), we get

r 2
ﬁzwmwquw%ﬂ, (5.26)
where b¢ (1) has been simplified to

by (1) = 2W(ga, go|(r) — %W[fmgo](?") + (a0

Since the integral in Eq. (5.26) is positive definite, the resulting causality bound is
rf <bi(r),Vr>R. (5.28)

W fa, fol(r). (5.27)

5.3.4 Calculating the Wronskians

We now derive the explicit form of the function b (r). To do this, we need expressions for
the Wronskians that appear in Eq. (5.27). We can obtain them by first noting that f(p,r)
and g(p,r), being linear combinations of Coulomb wave functions (with p-dependent co-
efficients), are solutions of the Coulomb Schrédinger equation,

a2 e+ oy,
BT + 2 + - —p° | z(p,7) =0, (5.29)

which, of course, corresponds to setting V(r,7’) = 0 in Eq. (4.21). Here and in the
following, x stands for either f or g. Inserting the expansion

2(p,r) = xo(r) +p* xa(r) + O(p*) (5.30)
into Eq. (5.29) and comparing orders in p?, we find that

{_;_; . M; D %] 2o(r) = 0, (5.31)

i.€., T is a solution of the zero-energy Coulomb Schrodinger equation, and

[CP+W+U+ﬂ@m:%m. (5.32)

dr? 72

From this we readily obtain the differential equations

d

Ew[fm fol(r) = lfo(r)]” (5.33a)
d
- Wlg290)(r) = oo ()" , (5.33b)
d
dr

Wf2, 9l(r) = fo(r)go(r) (5.33¢)
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for the desired Wronskians. Put together, this yields a simple first-order differential
equation for b5 (r),

d 1 ?
F0) =2 (mlr) = S hl) (5.31)
From Egs. (A.7) and (A.8) in Ref. [122] we have the explicit expressions
l
fo(r) = (?/,;LTR VT I (2y/77) (5.35a)
/21
go(r) = 2V V' Kop1(24/77) (5.35b)

(21+ 1!

for v > 0, where I, and K, are modified Bessel functions, and

fo(r) = <?l —;)23+1 VT Jaei1(24/=r) (5.36a)
go(r) = _W<2”l n 1)%1 VT Nogi1(2y/=7r) (5.36b)

for v < 0, where J, and Y, are the ordinary Bessel functions.*
Using these expressions for fy and gy and Eq. (5.34) we can determine b (r) up to an
integration constant. In order to fix this constant, we must work directly with the Wron-
skians in Eq. (5.23). Before we do that, however, we first discuss the general form of
b%(r). We break apart the function as a sum of two functions, X,(r) and Y(r), and a
constant term Z,,

b5 (r) = Xo(r) + Ye(r) + Z,. (5.37)

We take X;(r) to be a function consisting entirely of a sum of terms that have a pole at
r = 0, ranging from order 1 to ¢,

¢
r)=3 Xpmr ™. (5.38)
m=1

By furthermore requiring the function Y,(r) to vanish at » = 0, the decomposition in
Eq. (5.37) is unique.

Where exactly the contributions to the three terms in the decomposition originate from
can be inferred from the behavior of f(p,r) and g(p,r) at the origin. From Eq. (4.11a)
combined with Eq. (5.15) we find that

flp,r) ~r"™ as r—0. (5.39)

3From Eq. (9.1.50) and the remark above Eq. (9.6.41) in Ref. [103] it is clear that these fo and g are
indeed solutions of Eq. (5.31).
4Bollé and Gesztesy actually give an expression for go in the attractive case (y < 0) that involves

the Hankel function H(g?) times i instead of the Neumann function N,, (also called Bessel function of the
second kind and denoted then by Y,). With that, however, go would not be real, which it should be.
Our go as in Eq. (5.36b) is taken from the results of Lambert [121].
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This implies that every term in the expansion of f(p,r) is O(r*!). Therefore,

limr_m W[fg, f()] (7”) =0 (540)
for all ¢, which means that this Wronskian only yields contributions to the Yy(r).

Furthermore, from Eq. (17) in Ref. [112] we know that the irregular Coulomb wave func-
tion has the asymptotic behavior

GV ~Dyypt as p—0, (5.41)
with D, , fulfilling C, (D, , = 2¢ + 1. Using Eq. (5.15b) then yields
—t
2041

We note that go(r) has exactly the same behavior near » = 0 and can thus show that
g2(r) is subleading as r — 0, go(r) ~ r=¢¢ for ¢ > 0. From this we infer that

lim,_,o W{fo, go](r) =0 (5.43)

for all £, so also from this Wronskian we only get contributions to Y;(r). Both the singular
Xy(r) and the constant Z,, therefore, only come from the Wronskian W|ga, go](r).

g(p,r) as r — 0. (5.42)

For ¢ = 0 the situation is still simple because the above analysis also tells us that
lim, 0 W{g2, go](r) =0 for £=0, (5.44)

i.e., b§ (1) is given entirely by Yy(r). With the knowledge that it vanishes at the origin, it is

actually straightforward to give an explicit expression for b5 (r) in terms of antiderivatives

of the right hand side of Eq. (5.34), where one has to insert the fy(r) and go(r) from
Egs. (5.35) and (5.36). The result, obtained by integrating from 0 to r, is

3 2

g (r) = 2% (a§) " 1P (2;2,4;477’) - % (a§) " G (477”

1,

—-1,0,1,-2

+ 4+/Tyr? Gg:}i (477“

N =
N———

for the repulsive case, and

273 _ 3 B
b (r) = 5 (a§) " 1 Fo (5;2,4;4w) +4y/mr? (aS) T G2 (_W

2.3 3 2 2
+ 272 [737“ 1Fy <§, 2,4; 477") — % Ggé (—477“

1 1
PR L )
07 ]-7 _27 )

14
_17 07 17 _27 _%
(5.46)

for an attractive Coulomb interaction. In the above equations, ,F; and G}%" denote the
(generalized) hypergeometric and Meijer G-functions, respectively.

For general ¢ > 1, W/gs, go](r) is singular at » = 0 and the analysis becomes more
complicated. For practical purposes one can simply use power-series expansions for the
Bessel functions that appear in the expressions for the zero-energy functions and integrate
these term by term until a desired precision is reached. The only additional ingredients
needed are the values for the constant terms Z, because these are obviously not generated
by the integration.
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5.3.5 Constant terms in the causality-bound function

Obtaining these constants turns out to be the central difficulty in the derivation of the
causality bound for the charged-particle system, which so far—apart from having to cope
with more complicated expressions—very closely followed the path laid out for the neutral
system in Ref. [10].

In order to determine the Z, we consider the explicit form of g(p,r). From the results of
Bollé and Gesztesy [122], we have®

g(p,r) = Ne(p) - vlog (|v|r) - f(p,7)
+7Re {Ne(p) e TN " aga(p) + bon(p)] 7’”}

- ¢ 20
- Re{% e > den(p) r"} . (5.47)
where
2 ¢
Nitp) = gt L6+, (5.49
arn(p) = T ;Sf(fff?) ) (2ip)" E(S +0—in)- [Y(n+1)+P(n+20+2)], (5.49)
n n+t
bealp) = w7t 1;)(?( ;r f)% oy 20" S]]l:(S +0—1n)- ; ; E - (5.49D)
and

den(p) = F( 2ip)" [ [ <S ;f;;__lm) . (5.50)

s=1

With this result and the appropriate expression for go(r) from Eq. (5.35) or (5.36) one
can use the following procedure to calculate the Z,, i.e., the terms of order r° in the
Wronskian W gs, go](7).

1. Note that
W13, gol(r) = p* Wlga, o] (r) + O(p") (5.51)

and calculate this Wronskian using a truncated version of §(p, r) as given in Eq. (5.47).
Including terms up to the order 2/ 4 1 in r is sufficient.

2. From the result, extract the terms that are of the order 7°.

3. From that expression then extract the terms that are of the order p?. They consti-
tute the O(r%) contributions in a series expansion of W/ga, go](r) which cannot be
obtained from a term-by-term integration of go(r)?.

®One gets this form from Eq. (A.5) in Appendix A by inserting n = 2+ 3, n = v/(2p) and assuming
that the momentum p is real and positive.
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With the help of computer algebra software, this prescription is straightforward to imple-
ment. The results for £ = 0,...,2 are shown in Table 5.1.

¢ ] o | 1 \ 2

0 L 2w\ | (DO e
"\6~ 9 ) |7 \21600 360
Table 5.1: Constant term Z; in Eq. (5.37) for £ = 0,1,2. g = 0.577216... is the

Euler-Mascheroni constant. The values are the same for repulsive (v > 0) and attractive
(7 < 0) Coulomb potentials.

At this point we remark that, in principle, it is also possible to use the wave functions
defined by Seaton [123] to get explicit expressions for fo(r) and ¢o(r) (in addition to
the already known zero-energy functions), and then simply calculate all the Wronskians
directly. However, the analytic irregular Coulomb function defined by Seaton is slightly
different from our g(p, ). More importantly, not all coefficients needed for the expansions
are given explicitly. Finally, writing everything in terms of the wave functions of Bollé and
Gesztesy paves the way for a generalization of the results presented here to an arbitrary
number of spatial dimensions.

Knowing now what the constant terms 7, it is possible to write down explicit expressions
for the causality-bound functions 0¥ (r) also for £ > 0. To do that we use that the
antiderivative of the right-hand side of Eq. (5.34) can be expressed in terms of (generalized)
hypergeometric functions ,F,; and Meijer G-functions G}%". The only additional point to
be taken into account is that the antiderivative of go(r)? in general includes a constant
term that is different from the desired Z,. Hence, one has to determine this term and add
another constant such that their sum is exactly equal to the Z, given in Table 5.1.

We have carried out this procedure explicitly for £ = 1 and ¢ = 2. Since the results are
rather lengthy, we give the complete expressions for b{(r) and b$'(r) in Appendix B.

5.4 The causal range

The causality-bound equation (5.28) can be rewritten as
b (r) —rS >0Vr>R. (5.52)

In cases where the details of the interaction (in particular its range, assuming that a
description with finite-range potentials is applicable) is not known, one can use Eq. (5.52)
to define the causal range R, of a scattering system as that value of r for which the bound
is just satisfied, i.e.,

bY(R) — 1S =0. (5.53)

We note from Eq. (5.34) that the derivative of b7 (r) is non-negative,

160) =2 (lr) - o)) 20, (5.54)

{4
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Hence, b¢ is an increasing function of r and the causal range is defined uniquely. For the
case that Eq. (5.53) does not have a solution (i.e., if Y (r) is positive already for r = 0)
we define the causal range to be zero. Note that the causal range is a function only of the
scattering length and the effective range. It can thus be calculated from observables in a
well-defined way.

The importance of the causal range is given by the fact that it can be interpreted as
the minimum range a potential is allowed to have to be consistent with causality. If, for
a given system, the values in individual partial waves differ significantly, the maximum
value should be taken as the causal range of the underlying potential. Alternatively, one
can model the interaction with an ¢-dependent potential. For effective field theories with
short-range interactions such as halo EFT, the causal range constrains the allowed values
of the momentum-space cutoff or the lattice spacing used in numerical calculations.

5.4.1 Practical considerations

At this point we recall that our derivation of the causality bounds was based on the
assumption that the concrete system under consideration is described by a finite-range
(though possibly non-local) two-body interaction which is energy-independent. In EFT
calculations one frequently obtains effective interactions that explicitly depend on the
energy. We note that this energy dependence can be traded for momentum dependence
at any given order in the power counting (EFT expansion) by using the equations of mo-
tion obtained from the effective Lagrangian. However, the energy dependence introduces
another length scale into the system, and so the conversion to momentum-dependent in-
teractions could produce an interaction range so large that the causality bounds may not
be useful in practice.

There are also other theoretical frameworks, e.g., Feshbach reaction theory, that explicitly
use energy-dependent interactions. Here again the energy dependence introduces a length
scale which acts as an interaction range. This can be seen from the time delay of the
scattered wavepacket, which is proportional to the derivative of the phase shift with
respect to energy. By setting up a very strong energy dependence for the interactions it
is possible to produce a time delay which is arbitrarily large and negative. This has the
same effect as interactions at arbitrarily large separations.

Furthermore, the assumption of a strict finite range certainly is an idealization that is only
applicable to a varying degree of validity to concrete physical systems. For example, there
can be exchange forces arising from the Pauli principle. Consider, for example, nuclear
halo systems with a tightly bound core and a halo nucleon which is only weakly bound to
the core. The exchange of a nucleon from the core and the halo nucleon that is necessary to
anti-symmetrize the system can only give a sizable contribution if there is spatial overlap
between the wave function of the core and the wave function of the halo nucleon. This
yields a short-range exponential tail that, within the domain of validity of the effective
theory, can be subsumed in the effective range parameters of the halo—core interaction.
The same analysis would apply to low-energy nucleon—nucleus scattering upon the core
nucleus. Another more prominent effect is given by exponential tails generated by simple
pion-exchange contributions; c¢f. Ref. [140] and the discussion in the following section.
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5.5 Examples and results

We now calculate explicit values for causal ranges in few-nucleon systems. In Fig. 5.1
we plot the left-hand side of Eq. (5.52) as a function of r for the case of proton—proton
S-wave scattering. The causal range can then be read off as the point where the function
becomes zero. Fig. 5.2 shows analogous plots for a—a S- and D-wave scattering. In this
system, there are visible error bands due to the larger uncertainties in the effective range
parameters.

b (r) —r¢ (fm)

- Il Il ‘ Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il Il
3O 0.5 1 1.5 2 2.5 3

r (fm)

Figure 5.1: Causal range plot for S-wave proton—proton scattering.

In Table 5.2 we give a summary of the causal ranges that one finds for various two-body
systems of light nuclei where low-energy scattering parameters and/or phase shifts are
available from experiments. The results are briefly discussed in the following subsections.

5.5.1 Proton—proton scattering

For p—p S-wave scattering one finds a causal range of about 1.38 fm. This value is very
close to the range estimate obtained by assuming that the typical length scale of the N-N
interaction is set by the inverse pion mass, ic/M, =~ 1.4 fm. The value one finds in the
3Py channel is somewhat larger (R, & 2.3 fm), whereas the 3P, effective range parameters
impose almost no constraint on the range of the nuclear potential in this channel. As we
will discuss in more detail below, this suggests some significant differences in the radial
dependence of the interactions for the *P; channel.

For effective-field-theory calculations with purely local interactions (e.g., pionless effective
field theory), our results suggest to keep the cutoff momentum smaller than M, for the
1Sy and 3P, channel. However, there is more freedom to take a higher cutoff for the 3P,
channel.

In Ref. [140], causality bounds were investigated for neutron—proton scattering. The
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Figure 5.2: Causal range plot for S-wave a—« scattering.
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1.5 2 2.5
r (fm)

3 3.5

System ‘ Reference ‘ Channel ‘ a€ / fn20+1 ‘ e, / f—26+1 ‘ R. / fm
pp [144] 'S —7.828 £ 0.008 2.80 + 0.02 1.38 +0.01
pp [145] Py ~3.03£0.11 4.2240.11 2.33 £ 0.05
pp [145] 5Py 2.013 £ 0.053 —7.9240.17 ~ 0.03
p-d [146] 2812 2.73+0.10 2.27 +0.12 3.90+0.15
p-d [147] 28172 4 28 0
pd [146] 55/ 11.88 + 0.40 2.63 £ 0.02 2.2010.07
pd [147] 1S5/ 11.11 2.64 9.29

p*He | [148] 'So 111404 1.58 £ 0.12 1.32+021

p°He |  [148] 351 9.04 +0.14 1.50 £ 0.06 1.27+0:19
p-a [149] S1/2 4.97 +0.12 1.295 + 0.082 1.32+039
pro [149] Py /o —19.36 £ 0.50 0.349 + 0.021 2.65 + 0.07
pa [149] P39 —44.83 +0.51 —0.365 +0.113 0.497017
a-o [62] S (—1.65 +0.17) - 103 1.084 £ 0.011 2.587014
aa [150] D (=7.234+0.61) - 10° | (—1.314+0.22) - 1072 | 2.0370:07

Table 5.2: Summary of causal-range results obtained from experimental input for various

few-nucleon systems.
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results (R, = 1.27 fm for 'Sy, R. = 3.07 fm for *Py, and R. = 0.23 fm for 3P,) are
qualitatively very similar to what we find for the p—p system. This would indicate only a
moderate amount of isospin breaking.

In the same publication [140], the influence of the shape of the potential upon the neutron—
proton causal range was also studied numerically. When the potential is repulsive at
shorter distances (less than ~ 1 fm) and attractive at larger distances (greater than
~ 1 fm), the causal range comes out on the larger side, about 2 fm or more. When the
potential is attractive at intermediate distances and repulsive at larger distances, then
the causal range is smaller, about 1 fm or less. The pion tail determines the sign of the
potential at larger distances. For both the n—p and the p—p interaction, the one-pion
exchange tail is repulsive in the 2 P;-channel while it is attractive in the 3 Py-channel.

Note that causality bounds in the presence of pion-exchange contributions were also dis-
cussed by Phillips and Cohen in Ref. [135]. Ideally, one would account for the one-pion-
exchange tail explicitly in the calculation of the causal range, as it was done in this
work for the long-range Coulomb potential. Without knowing analytical solutions of the
Schrodinger equation involving a Yukawa-like potential (plus a Coulomb part, in the p—p
case), however, such a procedure can at best be implemented numerically. For an example,
see Ref. [151].

5.5.2 Proton—deuteron scattering

There are several experimental determinations of p—d effective range parameters. In Ta-
ble 5.2 we have included results from Arvieux [146] and Huttel et al. [147]. While for the
quartet-channel there is a good agreement between the scattering lengths and effective
ranges (and, of course, of the resulting causal ranges, which come out as 2.2-2.3 fm),
there is a large discrepancy for the doublet-channel results.

The difficulty of determining the proton—deuteron doublet-channel scattering length has
previously been discussed by Orlov and Orevkov [152]. Comparing different models,
the authors conclude that 0.024 fm is currently the best theoretical estimate for the
doublet-channel p—d scattering length. From Table 3 in Ref. [152] one reads off that the
corresponding value for the Coulomb-modified effective range is as huge as 8.23 - 10° fm.
Inserting these numbers into the causal-range calculation one gets a very large value of
R. ~ 8.15 fm. As a consequence, no definite conclusion can be reached with the currently
available data.

Note that three-body forces have been found to be very important for theoretical calcula-
tions of the p—d (and n—d) threshold scattering parameters. Our analysis here, however,
is independent of the microscopic origin of the effective interaction between proton and
deuteron. In a detailed picture, the force might arise from two-nucleon forces or three-
nucleon forces, but the result is always some effective two-body interaction between the
proton and the deuteron. The causal range we calculate is the minimum range that
this effective interaction has to have in order to be able to reproduce the experimentally
determined scattering parameters.
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5.5.3 Proton—helion scattering

For the scattering of protons off a helium nucleus we were able to find data for both p—2He
and p—« scattering. In the first case, there was only enough data available to calculate
the causal range for the S-wave channels. Since both the scattering lengths and effective
ranges are very similar for the singlet and the triplet channel, so are the resulting causal
ranges, which come out as approximately 1.3 fm.

Incidentally, one finds almost the same value for the S-wave in p—« scattering. For this sys-
tem, it is interesting to compare to the neutron—alpha system, where there is no Coulomb
repulsion in the scattering process. Results for the n—a causal ranges can be read off
from Fig. 5 in Ref. [10] (obtained using effective range parameters from Ref. [149]). Even
though from the plot one only gets quite rough estimates, one clearly sees that the results
for the Si/» and P,/ channels agree very well between p-o and n-a scattering, which
as in the nucleon—nucleon case discussed above could be interpreted as only a moderate
amount of isospin breaking. However, the causal ranges for the P/, channels are very dif-
ferent (~ 0.5 fm for p—«, ~ 2 fm for n—«). It is an interesting question if this discrepancy
hints at an error in the extraction of the effective range parameters (either for one of the
systems or possibly both), or if there actually is a physical reason behind the difference
in the causal ranges.

5.5.4 Alpha—alpha scattering

For a—a S-wave scattering we use the values given by Higa et al. (see Ref. [62] and
experimental references therein), a§ = (—1.654+0.17)-10% fm and r§ = (—1.08440.011) fm
to find a causal range of about 2.58 fm.

For the ¢ = 2 channel, no effective range parameters could be found in the literature. We
have thus used the phase-shift data collected in the review article by Afzal et al. [150]
to perform the fit to the effective range expansion (Eq. (4.24) with ¢ = 2) ourselves. By
including the phase-shift data up to Eip, ~ 6.5 MeV we find a§ = (—7.2340.61) - 10° fm®
and 7§ = (—1.3140.22) - 1073 fm~®. However, the fit is strongly dominated by the O(p*)
shape parameter, so the actual uncertainties of a$ and ¢ should probably be somewhat
larger. For the causal range in this channel we find a value of about 2 fm, which is just
slightly smaller than the S-wave result.

5.6 Numerical calculations

In order to check our relations and to get a better understanding of the values for the
causal range, we now present some explicit numerical calculations.

By cutting off the singular parts of the potential (i.e., the Coulomb potential and the
angular momentum term for ¢ > 0) at very small distances, it is a simple task to numeri-
cally solve the radial Schrédinger equation (4.21) in configuration space. From the radial
wave functions one can extract the Coulomb-modified phase shifts by looking for a zero
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at some large (i.e., much larger than the range R of the short-range potential) distance,

w(ro) =0 , 10> R, (5.55)
and then calculating
S Go(p)(ro)
t 0. =— :
Co e(p> Ff(p) (TO) (5 56)

For the simplest case of a local step potential,
V(r,r') = Vaep(r) - 0(r — ") = VoO(R—r) - 6(r —1'), (5.57)

one can of course also obtain the phase shift directly by matching the wave functions at
r = R. The effective range parameters are then obtained by repeating the calculation for
several (small) momenta and fitting Eq. (4.24) to the results.

In order to test Eq. (5.26) directly one needs the wave function to calculate the integral

/0 " |wf” (r’)}2 = lim, g /O dr [wép)(r')r . (5.58)

Even if we do not actually take the limit p — 0 but rather just insert some small pg = 0.1
(in units of an arbitrary inverse length scale), we find that the relation

R 2
r¢ ~ 0¥ (R) — 2/0 dr’ [wépo)(r')] (5.59)

is typically fulfilled to better than one-percent accuracy for the simple step potential
defined above.

For illustration, in the following we choose units where the radial distance is measured in
fm. The potential range is set to 1 fm and its strength is measured in MeV.% Furthermore,
the reduced mass and Coulomb parameter are set to the values for the proton—proton
system, t.e., 2u = my ~ 940 MeV and v = v, ~ 0.035 fm~".

In Figs. 5.3 and 5.4 we show the results (for £ = 0, 1,2) for both repulsive and attractive
step potentials. Quite interestingly, the ¢ = 0 causal range for the repulsive potential
stays at zero (meaning that one could reproduce the same values of the scattering length
and the effective range also with a contact interaction) until a potential strength of about
100 MeV. For higher partial waves the causal range takes a nonzero value for much weaker
potentials, but the rise is less steep. In general, it is remarkable that the causal range is
typically considerably smaller than the actual potential range (R = 1 fm).

For attractive potentials the causal range grows much faster as the potential strength
(now negative) increases. In contrast to what one might expect, no special features are
seen in the causal ranges as the potential becomes strong enough to support a new bound
state close to threshold, i.e., when there is a pole in the scattering length parameter.

To conclude this section, we show the general dependence of the causal range on both the
scattering length and the effective range, which has the advantage of not depending on a

6Note that with these conventions, the quantity that is used in the numerical calculation is vy =
21Vy/(he)?, where he ~ 197.33 MeV - fm is used for the unit conversion.
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Figure 5.3: Causal range for a repulsive step potential and v = 7, .
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Figure 5.4: Causal range (thick lines) for an attractive step potential and v = 7,,. The
thin lines show the corresponding scattering lengths.
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certain model potential. For illustration, we again measure distances in fm and set the
Coulomb parameter to the value of the proton—proton system. In Figs. 5.5 and 5.6 we
show the results for ¢ = 0 and ¢ = 1. For negative r“, the causal range stays essentially
zero. For positive effective ranges, it increases as the absolute value of a® becomes larger.
If one gradually turns off the Coulomb interaction by letting v — 0, the ¢ = 1 plot stays
almost unchanged, whereas the ¢ = 0 result remains qualitatively the same, but with a
much steeper rise in the quadrant where a© > 0 and r¢ > 0.
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Figure 5.5: Causal range for v = 7, , and £ = 0 in dependence of a$ and r§, both
measured in fm.

5.7 Relation for asymptotic normalization constants

The formalism that has been used so far in this chapter in order to derive the causality
bound for the effective range can be extended to the bound-state regime to derive a
relation between the asymptotic normalization of the bound state wave function and the
effective range of the corresponding two-particle scattering process.

It is well-known [9] and was, as noted already in Chapter 3, also pointed out by Liischer [§]
that the asymptotic normalization constant (ANC) of the bound-state wave function is
related to scattering parameters. More precisely, the residue of the bound-state pole in
the analytically-continued elastic scattering amplitude (the fy(p) defined in Eqgs. (2.22)
and (2.23) in Chapter 2) is proportional to |A.|>. In the limit of shallow bound states,
k — 0, it is possible to make a more direct connection to the effective range in the corre-
sponding scattering channel. Ultimately, however, it can be viewed again as a manifesta-
tion of the analyticity of the scattering amplitude as a function defined on the complex
energy plane.

Before we discuss the relation for our system of charged particles, we first present its
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Figure 5.6: Causal range for 7 = 7, , and ¢ = 1 in dependence of af and r{, measured
in fm® and fm™', respectively.

derivation for the simpler case without Coulomb interaction.

5.7.1 Derivation for the neutral system

As a starting point we quote the neutral version of our “master equation” (5.26) from
Ref. [10],

re =by(R) — /OR dr [ugo)(r)r : (5.60)

where 7, is the effective range as defined by Eq. (2.19) and
uy” (r) = limy, o u (r) (5.61)

is the zero-energy limit of the scattering wave function for the uncharged system, normal-
ized as in Eq. (5.3). The neutral version of the causality-bound function, by(R), can be
given in closed form for arbitrary angular momentum. Specializing the general formula
given in Ref. [10] to the three-dimensional case one finds

oM (0 —HT(e+1) (R
T 2
4 1 (R\? o 1 [R\*
Tirta\2) TTEET 1) a2 \2
2N ((— )T (¢+3) (R

= — 27_(_ 5 —1—(9(% 1).

be(R) = —

For ¢ = 0, this simply gives
bo = 2R+ O(a, ). (5.63)
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Note that a[l — 0 as k — 0, and since we only consider finite-range potentials, we can
in fact write O(a; ') = O(k).

Recall now that following the conventions of Section 2.1.3 we use the explicitly momentum-
dependent normalization condition (5.3) for the scattering wave functions ugp '(r). Upon
going to the bound-state pole,

p—ik , cotd(p —ik) =1, (5.64)
we get the wave function ug”) (r) with the asymptotic form as given in Eq. (2.30). By

comparison with Eq. (2.29) one directly finds that its relation to the unit-normalized
ug'}) (r) is simply
¢
ik K ik
uf™(r) = (), (5.65)

where A, is the ANC. Writing the normalization condition for ug? (r) in the form

1= (/ d7~+/ dr) 'y (r))? (5.66)

and using the relation (5.65), we can rewrite Eq. (5.60) as

re = by(R) — 2Timy o {Z—Zj _ / T [ ()] 2} | (5.67)

R

According to Eq. (2.30), the remaining integral is

/ dr [u ") ( = Ii%/dr [i"H/ (ikr) ]2 : (5.68)
R

R

For ¢ =0, we get

/oodr [u(i”)(r)]Q—e%R —L—R—i-(’)( ) as k—0 (5.69)
B ¢ 26 2% ' '
Together with Eq. (5.63) this yields
2 1
To =+ ﬁ — E = O(/{,>’ (570)

which is, up to the given order, equivalent to the relation

2K
A% = 5.71
s p— (5.71)

from Ref. [14]. For £ > 1, the integral is [153]

/00 dr [uém) (r)]2 = L) (C+s) <E>_2£+1 +O(k) as Kk —0. (5.72)

R m 2
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We see that the leading term exactly cancels the one in Eq. (5.62) and thus arrive at

212

There are two things to point out about the cancellation of terms encountered above.
Firstly, it is clear that Eq. (5.67) can be rigorously valid only for zero-energy bound states,
i.e., if one strictly considers the limit x — 0. Since the left-hand side is a constant, the
R-dependence of by(R) has to cancel that of the integral. In the scattering regime this is
ensured by taking the zero-energy limit, 7.e., considering scattering directly at threshold.
In the bound-state regime, on the other hand, one is of course interested in finding a
relation for the case of a bound state close to threshold, where « is small but finite. It is
obvious that in principle this poses a problem because the by(R) in Eq. (5.67) is a strictly
increasing function of R, whereas the integral is always bounded and in fact becomes
smaller with increasing R. The key observation is that for finite binding momenta, the
cancellation of the R-dependence is valid only up to higher orders in . In other words,
the terms subsumed as O(k) in Egs. (5.70) and (5.73) are still functions of R.

Secondly, however, the cancellation of the leading R-dependent terms is by no means a
coincidence, but can—as we shall do in the next section when we derive the relation for
a system of charged particles—be proven on more general grounds. Upon doing that one
finds that Eq. (5.73) is in fact true in a stronger form with only terms of the order x? on
the right-hand side.

5.7.2 Derivation for charged particles

We now derive the analogous relation for a system of charged particles. The appropriate
starting point is Eq. (5.26) derived in Section 5.3, from which we already obtained the
causality bounds for the effective range parameter. For bound-state momenta, we write
it as ., )
rC = B0 (r) — 2lim, o / dr’ [wg@ (r')] for all 7> R, (5.74)
0

with b¢ (r) now as defined in Eq. (5.27). In order to proceed we need again the precise

connection between the radial wave functions wéi'{) appearing in Eq. (5.74) and the unit-

normalized proper bound-state wave functions wgf) (r) defined in Eq. (4.41). Formally,
we can write

W (r) = (i0) Cyy [eot buin) FE () + GV ()] for 7> R, (575)

but we need to be careful with the way the analytic continuation to the bound-state
regime is done. In Section 4.3 we showed that in complete analogy to the neutral case,
cot 0(ix) = i for a bound state and that the resulting linear combination Gép )(r)+iF, K(p '(r)
of Coulomb wave functions is proportional to the Whittaker function W_,, , +%(—2ip7’).

More precisely, from Eq. (4.35) we have that

Coe |GP (1) +1FD ()] = Cppe e BEM W) (~2ipr). (5.76)
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The combination of prefactors in this turns out to be crucial to get a well-behaved ex-
pression in the limit p — ix. Combining Eqs. (4.14) and (4.34), we have

C’n7£ ela’z —

2o~ F [D(L+1+inT(L+1—in)2 (W +1+4 i”))é (5.77)

T(20 +2) T(0+1—in)

Note that in will be real for bound-state momenta, and in the following, where we only
consider the case of a repulsive Coulomb potential” (i.e., v > 0), it is in fact a positive
number. Conveniently, the term I'(¢ + 1 — in), which might hit a pole in the Gamma
function, cancels in Eq. (5.77). Noting that also the phase exp(7n/2) drops out, we can
finally write .

wélﬁ)(r) = K'Cpy W_ip o1 (26r) for r> R, (5.78)

where we have defined
~ 20T(0+ 1+ in)

C , = 5.79
e (20 +2) (5.79)
Comparing this with Eq. (4.41) we readily infer that
¢
ik K™ = ik
w () = < Coe - wi (1) (5.80)

K

with the asymptotic normalization constant A,. Following now the same steps as in
Section 5.7.1, we can rewrite Eq. (5.74) as

/'i% _ o) ) 2
re = b (r) — 21lim,_y0 {—Cg,z - / dr’ [wém) (T/)} } for r>R. (5.81)

A2
K

Canceling the r-dependence

We now show that the r-dependence in Eq. (5.81) drops out up to corrections of higher
order in k. When we derived the relation for the neutral case we established the cancel-
lation of the leading term by analytically carrying out the integral over the asymptotic
wave function (which was just a simple Riccati-Hankel function in that case) and then
expanding the result in powers of . Since the asymptotic wave function is now given
by a Whittaker function, the situation for the charged case is much more complicated.
However, as already mentioned at the end of Section 5.7.1, the cancellation can in fact be
established in a more general way.

To this end we recall from Eq. (5.20) that
1
w(r) = ==z folr) + 9o(r) + O7). (5.82)
‘

It is straightforward to assume that this is valid also in the bound-state regime since we
are working with a wave function explicitly analytic in p?. Hence,
2 1d

[wém)(r)r - (—% Jo(r) + go(r)) +O(r) = 5 b (1) + O, (5.83)

"Considering attractive Coulomb potentials does not make much sense in the present context because
it would create an infinite tower of bound states arbitrarily close to threshold.
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where in the last step we have inserted Eq. (5.34). This directly tells us that b5 (r) in
Eq. (5.81) cancels with the integral up to higher-order terms in x (which are still functions
of r) and, possibly, an integration constant. This situation is already familiar from the
calculation of the Wronskian Wgs, go](r). Again the constant term can only come from
the integral over go(r)%. To determine it, we note that

/ dr' [go(r"))° < 00 if r >0, (5.84)
i.e., the integral is actually convergent and gives a Meijer G-function, as already encoun-

tered in Section 5.3.4. The constant term coming from this function has to be combined
with the already known Z, in b¢(r). We define

AZi=Wigsanlr)+ [ ar' (o)) (5.85)
which is explicitly r-independent, to finally arrive at
C 2’%% ~2 2
Ty + ?07776 —+ QAZg = O(/ﬂ} ) (586)
or, equivalently,®
- . rC ~1/2
| Al = RZCM (—% —AZ, + O(K2)> ; (5.87)

both valid in the limit where x — 0.

In Table 5.3 we give the resulting values for the AZ, for £ = 0,1,2. Note that up to a
minus sign, these are exactly the correction terms mentioned at the end of Section 5.3.5.
This means that the antiderivative used to obtain the explicit expressions for the £ = 1
and ¢ = 2 causality-bound functions given in Appendix B corresponds essentially to the
definite integral in Eq. (5.84), at least for the case of a repulsive Coulomb interaction,
where this is convergent.

e ] o |t | 2
AZy, | =1/(37) | —7/108 | —1793/10800

Table 5.3: Integration constant AZ, in Eqs. (5.86) and (5.87)) for £ =0,1,2.

Finally, we note that Sparenberg et al. [143] have previously derived an ANC relation
equivalent to ours, but written in terms of the scattering length instead of the effective
range parameter. The equivalence of the two relations up to the contributions of higher-
order shape parameters is shown in Appendix C.

5.7.3 Application to the oxygen-16 system

The 'O nucleus has two excited states lying just below the o!2C threshold, a 2* at
about —245 keV and an even more shallow 17 at only —45 keV. The properties of these

8Note that in Ref. [5] there was a typo that accidentally put the C’n’g in Eq. (5.87) in the denominator.
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states play an important role in astrophysical helium burning processes [154-156]. In
the following, we calculate asymptotic normalization constants for both states under the
assumption that they can be described in a o + *2C halo picture.

We use the recent data obtained by Tischhauser et al. [157] (for the actual phase shifts see
their Ref. [32]) in order to extract the Coulomb-modified effective range for the a—*?C P-
and D-wave channels. Focussing first on the D-wave, we note that the combination of the
strong Coulomb repulsion and the ¢ = 2 centrifugal barrier makes the low-energy phase
shifts very small over a wide energy range. Moreover, there is a narrow resonance at a
center-of-mass energy of about 2.7 MeV, which strongly constrains the energy region for
a straightforward fit to the effective range function. From a simple fit to the data up to
the narrow resonance one only obtains an effective range parameter with an uncertainty
too large (50%) to allow an extraction of the ANC because the latter depends on r¢ very

sensitively.

To mitigate this problem, we use the position of the 2% oxygen state as an additional
input parameter for a self-consistent extraction of the effective range. In the following,
we describe this procedure in more detail.

At the position of the bound state, where cot ;(ix) = i, the Coulomb-modified effective
range expansion (4.28) reduces to

g 1 1 C

Yhe(ik) = —— — =rS K2+ -+ (5.88)
af 2'°
where now
: ¢
7o (2ir)* 2, 2 : 1 : v
h = —— — —1 = —. .89
f(i) = By 31:[1(8 ) (i) + g —login) ) s m= g (5.89)
A straightforward calculation shows that for the prefactor we have
91120 20
(2ir) [1(% + 7% = s + O(s). (5.90)

20+ 1)1 20+ 1)

s=1
Furthermore, for the digamma function we have the asymptotic expansion (Eq. (6.3.18)
in Ref. [103])

oo

1 B2n
=1 - — = 2.91
o) =gz =g > 5:91)
for |z| — oo, where the By, are the Bernoulli numbers,
Bo=1, By— —~ By— . (5.92)
0 — 9 1 — 27 2 — 67 P . .

Noting that the sum in Eq. (5.91) only starts at n = 1, we find that  hy(ix) only starts
at order k%, and inserting the precise relation into Eq. (5.88), we arrive at

20—1

g (_lwc i m) K+ O(x"). (5.93)
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Neglecting the effective-range contribution at leading order, we insert the binding momen-
tum k ~ 0.187 fm ™! of the 27 state to get a first approximation for the scattering length
parameter. This is then used to constrain a subsequent fit to the phase-shift data up to
about 2.6 MeV, i.e., just below the narrow resonance. We include a single O(p?) shape
parameter in the fit since some curvature is clearly necessary. The r$ obtained from this
is then used in Eq. (5.93) to get a better result for 1/a$, which, in turn, is fed back into
the fit. Iterating this procedure a couple of times yields a well-converged self-consistent
result for r§. After eight iterations, we find

r$ = (5.9440.35) - 10~ fm~* (5.94)

for the a'2C D-wave. Including a second shape parameter in the fitting procedure only
changes this result within the given uncertainty, so we conclude that for the energy range
we have been fitting, a single shape parameter really is sufficient to account for the
curvature. Inserting the fit result into Eq. (5.87) yields

|A(27)| = (2.41 +0.38) - 10* fm /2 (5.95)

for the 2% state in °0. Here and in the following, we simply write A instead of A, to
keep the notation simple. Including in Eq. (5.86) an O(x?) term of the order of the shape
parameter gives a consistent result for |A(27)| within the error given above.

When we apply the same same procedure to the 1~ state just 45 keV below the a—12C
threshold, we also see a nice convergence and obtain the results

r¢ = (4.546 +0.002) - 1072 fm " (5.96)

and
|A(17)] = (1.188 £ 0.024) - 10 fm~'/%, (5.97)

The overall picture for the 1~ state is somewhat more complicated, however. On the one
hand, the extraction of the effective range parameters is easier in this case because there is
no narrow resonance limiting the fit range (we have used the data up to E., = 3.75 MeV).
By doing a simple fit without the self-consistent iteration we get values for the effective
range and the ANC that are slightly smaller but overlap with the results given above
when the respective uncertainties are taken into account. On the other hand, allowing
for a second shape parameter changes the value of the effective range quite dramatically
to 0.046 fm™', which leads to an imaginary ANC. This could indicate that the effective
range parameters from the simple fit violate the causality bound. The fact that r¢ has
to be such that Eq. (5.86) yields a real value for the ANC can be interpreted as a weaker
remnant of the original causality-bound relation. Alternatively, the cluster picture might
not be applicable for the shallow 1~ state in '¢0O.

Our result for the ANC of the 2% state is about a factor five smaller than the value
|A(27)] = (1.11 £ 0.11) - 10° fm~/2 obtained by Brune et al. [154], while the value for
|A(17)] is about a factor two smaller. Other, more recent determinations [158, 159]
have found even larger values. For the interpretation of this discrepancy, note that our
calculations are predictions of the ANCs based only on alpha—carbon elastic scattering
data and the assumption that the system can be approximately described in an effective
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two-body picture with a finite-range interaction. In the references mentioned above, the
ANCs are extracted from alpha—carbon transfer measurements. Note furthermore that a
comparison of the experimental extractions in Ref. [158] exhibits quite some discrepancy
(factors of two up to roughly an order of magnitude) also between the cited individual
experimental determinations of the ANCs.

Sparenberg et al. [160] have carried out a similar analysis for the 2% state based on their
ANC relation (cf. Ref. [143]). They subtracted the narrow resonance from the a—'2C
D-wave phase shift data in order to extract a set of higher-order shape parameters and
concluded that present-day data are not sufficient to constrain the ANC strongly. As
discussed above, our approach of performing a self-consistent fit to the data below the
resonance constrained by the separation energy and using the effective range instead of
the scattering length as input in the ANC relation improves the stability of the extraction.
However, compared to other determinations our ANC values are generally smaller by a
factor two to five. We thus conclude that this issue requires further study.

5.8 Other long-range forces

The causality bounds derived above for the system with Coulomb interactions are, despite
being quite involved due to the complicated nature of the Coulomb wave functions, not
fundamentally different from the result that one obtains in the purely finite-range case.
In Section 5.7.1 we have already quoted the causality-bound function for this case from
Ref. [10]. According to Eq. (5.62), its behavior is

b(r) = 2= %BT L(¢+3) @-%H +O0?). (5.98)

From the explicit results for the Coulomb causality-bound functions, given in Eqgs. (5.45)
and (5.46) for ¢ = 0, and in Appendix B for £ = 1,2, one finds that

20T (0 + 1) > or (=T (04 35) r\-2+
bC — 2 2 <_> O —20+2 ] 5.99
0 =-(Tarag) * ) O rop. )
Up to an additional prefactor and the subleading pole terms (if £ > 2) in Eq. (5.99), the
leading behavior is exactly the same as for pure finite-range interactions.” The overall
prefactor goes away if one uses the conventions of Eq. (4.31) for the Coulomb-modified
effective range expansion.

In both cases, the S-wave causality-bound function vanishes at the origin, whereas for all
¢ > 1 it has a pole. It is this pole that requires the effective range parameter to tend
towards negative infinity in the limit where the range of the potential goes to zero and
therefore prevents one from tuning the effective range parameter for P- and higher partial
wave to zero in a calculations with exact zero-range interactions [10, 139].

9Strictly, we have explicitly derived this only for £ = 0, 1,2. We assume here, however, that Eq. (5.99)
is true in general.
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5.8.1 Singular potentials

The above comparison has been given in Ref. [7], where we have just corrected a mi-
nor typo'® here. As furthermore discussed there, the situation changes significantly for
interactions with long-range tails of the form

Va(r) = £ with a > 2, (5.100)

r

where g denotes the coupling strength.

The properties of such so-called singular potentials have been reviewed in detail by
Frank et al. in Ref. [161]. They are particularly peculiar if they are attractive (g < 0)
because in that case there always exists an infinite spectrum of bound states that is not
bounded from below. Obviously, this situation is unphysical.

Still, it is interesting to study such singular potentials if one assumes that they only
determine the long-range tail of a given interaction and are, by some mechanism, cut off
at small distances. For an analysis of systems with this kind of behavior, it is important
to study solutions of the Schrodinger equation with pure inverse-power-law interactions.
For the 1/r* potential, for example, such solutions have been known for a long time and
can be written in terms of Mathieu functions [162]. At zero energy, it is possible to
write down the general solution of the radial Schrodinger equation with a potential of the
form (5.100). From Ref. [161] we quote the result that the physical solution (vanishing at
the origin) is given by

2041
U o(r) o< V2K, (Br7) with n = +2 : (5.101)
a j—
where K, (z) is a modified Bessel function, and
291/2 a
= —1-. 102
p=—"5,0 5 (5.102)

A second linearly-independent solution is given by inserting the modified Bessel function
I,(z) in Eq. (5.101). From this one already sees that the highly singular nature of the
potential leads to a peculiar behavior of the wave function. For an attractive potential
(9 < 0), Eq. (5.102) implies that the parameter 8 becomes purely imaginary. Although
in that case the amplitude of u, ¢(r) still goes to zero in the limit » — 0, at the same time
it oscillates more and more rapidly and in fact has an essential singularity at the origin.
We will come back to this point and discuss its implication for the causality bound in the
next section.

Of particular physical importance is the attractive van der Waals potential,

‘/de(’f’) = —% , CG >0, (5103)

6
because it describes the long-range interaction of neutral atoms (or molecules) due to
their mutual polarization [28]. For example, it determines the attractive part of the
phenomenological Lennard—Jones potential [161].

19The subleading pole terms were given in Ref. [7] as O(r~2) instead of O(r~2¢*+2), which obviously
made them not subleading but rather more singular than the first term.
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Based on explicit solutions derived by Gao [163], causality bounds for this kind of potential
have been studied in Ref. [7]. In the following we summarize the central results of that
publication.

5.8.2 Causality bounds for van der Waals interactions

Introducing the van der Waals length scale
B = (2uCs) /%, (5.104)

the Schrédinger equation for a two-particle system with a (non-local) finite-range inter-
action V(r,r") and an additional van der Waals tail of the form (5.103) can be written
as

5(13 + 1) (p)

d2
ol (1) = ———v P (r) + o (r)

r2

R 64
-+ 2/L/ dr’' V(r,r") vép)(r') +0(r — R)=2 (p)
0

6 Ut (r). (5.105)

We use the letter v here to denote the radial wave functions in order to distinguish them
from those for the asymptotically non-interacting (u) and the Coulomb (w) case. As usual,
we denote a solution for momentum p with a corresponding superscript. Due to its highly
singular behavior, the van der Waals potential has to be cut off at small distances. In
Eq. (5.105) we have conveniently done this with the step function #(r — R). In principle,
other methods (and cut-off radii) can be used, but it is always possible to absorb the
difference into V' (r,r’), which we have not specified explicitly. The only important point
here is that for » > R the interaction is given exactly and explicitly by the van der Waals
tail because that is the setup we are interested in.

Asymptotic wave functions

It is convenient to introduce the rescaled variables

rs =1/Bs and ps, = pP . (5.106)
In the outer region (r > R), the Schrodinger equation (5.105) then reduces to

a2 +1) 1
5t P2l o) =0. (5.107)

s

2 2
dr? 72

The exact solutions of this equation (valid for all r; > 0) have been derived by Gao in
Ref. [163] and are given in terms of infinite sums of Bessel functions. Up to a minor



96 CHAPTER 5. CAUSALITY BOUNDS FOR CHARGED PARTICLES

1

change in notation, we quote them here in the form used in Ref. [7],

7’;/2 00
FKVd (pa T’) = Xg(ps) + Y?(ps) [XZ(ps) mz_:oo bm(ps) JV+m (ps)

- YZ(]?s) Z bm<ps) Nogm (ﬂs)] ) (5'1083)

m=—00

7,;/2 00
GZdW(pv T) = XgQ(ps) T Yf(ks) [X£<ps) mz_oo bm(ps) Nu-i—m (Ps)

m=—0Q

+ Ye(ps) Z bin(ps) Jvsm (:08>]7 (5.108b)

with the radial variable )

2r2’

S

Ps = (5.109)
and with the momentum-dependent coefficients X, (p;), Yz(ps)—mot to be confused with
the functions introduced in Section 5.3.4—and b,,(p;) as defined in the appendix of Ref. [7].
The variable v that appears in the indices of the Bessel functions is determined as the root
of a (transcendental) equation that again involves the momentum p,. As such, it is also

a momentum-dependent function, but for simplicity we have not indicated this explicitly
in Egs. (5.108).

Both van der Waals wave functions defined above have an essential singularity at the origin
which lets their amplitude vanish in the limit » — 0 with infinitely-rapid oscillations. This
is the same behavior that was mentioned above for the general zero-energy solutions of
attractive singular power-law potentials. An important consequence is that there is no
singled-out regular solution defined by its vanishing at the origin and thus no obvious
choice for the definition of a scattering phase shift. Rather, one has an infinite number
of linearly-independent pairs of solutions that can, in principle, all be used to express the
asymptotic wave function of the system.

As already mentioned in Section 2.1.4 in Chapter 2, Gao has extended the formal-
ism of quantum defect theory to describe systems with tails of the singular power-law
type (5.100) in Ref. [21]. The application to the special case of a van der Waals potential
is discussed in Ref. [164]. By writing the general solution of Eq. (5.105) for r > R as

o (r) = F™(p,r) = tan 67 (0) GY™ (p.) (5.110)
we define the short-range K-matriz'?

tan 57" (p) = Ko(p) . (5.111)

UIn Ref. [7], these solutions are called Fy, and G, where L denotes the angular momentum. They
are related to the functions f° and gf* defined in Ref. [21] by the normalization factors F}’ aw — e/ V2
and GYW = —gf0/\/2, with [ = £.

2Note that our K, is called K? in Refs. [163, 165] and corresponds to —Kf° of Refs. [21, 164].
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Other choices for the basis pair of van der Waals wave functions correspond to different
K-matrices. The K;(p) defined above in terms of FyW(p,r) and GJ*W(p,r) is the most
convenient choice to describe the system near the zero-energy threshold [21]. In particular,
it is an analytic function of p? [165],

Ki(p) =Y Koo ™. (5.112)
n=0

The parameters appearing in this expansion characterize the low-energy physics of the
system, which means that Eq. (5.112) can be seen as analog of the ordinary effective
range expansion. Ky, is, essentially, an inverse scattering length parameter, and K
plays the role of the effective range. Note, however, that this is just an approximate cor-
respondence, which can already be seen from looking at the dimensions of these quantities
(Ko is dimensionless whereas Ky has the dimension of an inverse momentum squared,
corresponding to an area). The short-range K-matrix K, has been used by Gao to define
so-called generalized scattering lengths and effective ranges [164]. An important quantity
that enters in these relations is the van der Waals length scale G5 defined in Eq. (5.104).
In fact, as discussed in Ref. [7], for almost all scattering systems of alkali atoms that have
been studied experimentally so far one finds that 32 dominates the generalized effective
range compared to the parameter Ky s.

Despite their complicated nature, the van der Waals wave functions are analytic functions
of p? [163] and thus possess expansions

FyW(p,r) = 0V () + 3% (r) p* + O(p"), (5.113a)
GV (p,r) = gl (r) + g1V (r) p* + O () . (5.113b)
With
vo = (20 +1)/4, (5.114)
the leading-order functions are simply
2o (r) = 1 (ps) (5.115a)
g5 (r) = r* Ny (ps) (5.115b)

where J,,(z) and N, (z) are Bessel functions of the first and second kind, respectively. Of
course, these are just linear combinations of the general zero-energy solutions mentioned
in Section 5.8.1. The quadratic terms in Egs. (5.113) are somewhat more involved, but
can also be written down explicitly [7].

The van der Waals causality bound

With the ingredients given in the previous section one has everything at hand to derive the
van der Waals causality bound exactly as in Ref. [10] and done for the Coulomb potential
in this chapter. In fact, the derivation here is almost as simple as in the purely finite-
range case because the quadratic radial functions f,» and g,o—and thus the Wronskians
appearing in the causality-bound function—are known explicitly. The result is

2

Kop = b () - /0 ar [o00)]” (5.116)
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V 7'(— Y Vi Vi Vi
B () = T WIS REVI0) + KB a0
— Koo (Wlgis™, fia™1() + WY, g™ (T))} - (5.117)

In the well-known fashion, the positive-definiteness of the integral term in Eq. (5.116)
yields a causality bound of the form

Koo <by™(r) forall r> R, (5.118)
and the van der Waals causal range RY4W is defined by

Ky = by™W(RYMWY) . (5.119)

The Wronskians in Eq. (5.117) are given explicitly in Ref. [7]. They have the important
property that for all angular momenta ¢ they vanish in the limit » — 0, which implies the
same for the van der Waals causality-bound function by4W(r). This stands in clear contrast
to the behavior found for the asymptotically non-interacting system and for interactions
with Coulomb tails. As summarized in Egs. (5.98) and (5.99), in both these cases the
causality-bound function for ¢ > 1 diverges at the origin.

This important difference can be traced back to the behavior of the wave functions. Since
both van der Waals wave functions vanish as » — 0 (faster than a power law), the same
is true for the coefficient functions in Eqs. (5.113) and, in turn, for the Wronskians. At
the same time this means that the latter can be calculated as straightforward integrals
from 0 to r over products of the zero-energy solutions (5.115), ¢f. Section 5.3.4. Since
all functions vanish in the limit » — 0, there are no peculiar integration constants as
encountered for Coulomb tails. In Ref. [7] it is argued further that this should also be
true for other singular-potential tails that lead to the same behavior of the wave functions.

The fact that the van der Waals causality-bound function by4W(r) does not diverge at

r = 0 is quite significant. It means that as long as the short-range K-matrix parameter
K5 is less than or equal to zero, there is no real constraint on the interaction range from
the causality-bound relation (5.118). As a consequence, in an effective field with contact
interactions that incorporates a van der Waals tail of the interaction, the causality bound
does not induce convergence problems when the cutoff is taken to infinity, provided that
K2 <0 holds for the angular-momentum channel one is interested in.

However, the van der Waals length scale apparently plays quite an important role. As
already pointed out, it is found to be the dominant scale when K, is expressed in terms
of Gao’s generalized effective range parameters [7, 164]. Furthermore, causal ranges that
were calculated in Ref. [7] for systems of alkali atoms where scattering parameters could
be found in the literature'® all came out significantly smaller than Ss.

13Unfortunately, only S-wave parameters could be found. It would be very interesting to see if the
reported result persists for higher partial waves.
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Causal range near an S-wave magnetic Feshbach resonance

Since their first experimental observation in 1998 [166], Feshbach resonances have become
a popular tool to tune the interactions in cold atomic systems by varying an externally
applied magnetic field [167] (see also K. Helfrich’s doctoral thesis [56] and references
therein). It is thus interesting to study the impact of the van der Waals causality bound
in this context.

In Ref. [168] the multi-channel problem of scattering around a magnetic Feshbach reso-
nance is reduced to a description by an effective single-channel K-matrix that depends on
the applied magnetic field B. The behavior around the resonance is described by several
parameters. By, is the position of the Feshbach resonance, while g, parametrizes its
width. K;g is a background value for the K-matrix, and a scale dp is introduced in order
to define a dimensionless magnetic field. With these parameters, we write the effective
single-channel K-matrix as

KeT(p, B) = —K"® |1+ Jres , 5.120
l ( ) / p26(2;_gres<Bs+1) ( )

with BB
B, = (B=Bos) (5.121)

dpye

The parametrization given above corresponds to Eq. (18) in Ref. [168]. Note that we have
slightly changed the notation and are using a different sign convention for the K-matrix.

By expanding the right-hand side of Eq. (5.120) in p? it is straightforward to determine
the K-matrix expansion parameters Ky and K;5. A short calculation yields that

K= —K)® (1 + (5.122)

5r1)

and
BEK}®
gres(Bs + 1)2 ‘

As noted in Ref. [168], the parameters K;Dg and g,es are constrained by the condition

K = (5.123)

K Gres < 0. (5.124)

This implies that K gg as given by Eq. (5.123) is always negative. From the causality
bound in Eq. (5.118) it then follows that wherever the effective single-channel description
considered here is applicable and correctly captures the entire energy-dependence of the
short-range K-matrix, the causal range will be zero when the interaction is tuned close to
a Feshbach resonance.

5.9 Summary and outlook

In this chapter, we have investigated the constraints imposed by causality on the low-
energy scattering parameters of charged particles interacting via a short-range interaction
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and a long-range Coulomb potential. Similar to the case of neutral particles without
Coulomb interaction [10, 135-140], our considerations yield a constraint on the maximum
value of the Coulomb-modified effective range.

While conceptually straightforward, the calculation of the Wronskians required for the
derivation of the bound function is intricate. We have calculated them through term-
by-term integration of the power-series expansion of the zero-energy wave functions and
additionally determining the integration constants that are not generated by this process.

We define the causal range as the minimum value of the interaction range consistent with
the causality bound. In effective field theories with contact interactions such as halo EFT,
the natural momentum cutoff is of the order of the inverse of the causal range. If the
natural cutoff is not known from other considerations, its size can be estimated from the
causal range. If the momentum cutoff used in a calculation is too high, then problems with
convergence of higher order corrections can appear. For example, the convergence pattern
might be such that an improvement in higher orders of the EFT can only be sustained
through large cancellations between individual terms. Such an unnatural pattern would
be especially undesirable for the stability of numerical (lattice) calculations. Our results
can thus be viewed as a guide for improving the convergence pattern of EFT calculations
with contact interactions. In lattice simulations of halo EFT, the lattice spacing should
not be taken smaller than the causal range.

We have analyzed the causal ranges for a variety of systems ranging from proton-—proton
scattering to alpha-alpha scattering. Our results for causal ranges in different partial
waves in these systems typically vary by factors of 2-3. The precise values are quite
sensitive to small uncertainties in the effective range parameters. In channels with a large
negative effective range the causal range is very close to zero, which implies that causality
provides almost no constraints on the range of the interaction in this case. Thus, the causal
range provides a good order-of-magnitude estimate of the range of interaction, but drawing
more quantitative conclusions about the structure of the underlying potentials is difficult.
In order to illustrate the dependence of the causal range on scattering parameters, we have
performed explicit numerical calculations for a simple step potential with a Coulomb tail.

After an analytic continuation to the bound state regime, the integral relations for the
causality bound can also be used to derive a model-independent expression for the ANC
of shallow bound states. If the state is a two-body halo state, the relation can be used
to extract the ANC from low-energy scattering parameters. Up to higher-order shape
parameters, our relation is equivalent to the one previously derived by Sparenberg et
al. in Ref. [143] (see Appendix C for details). One difference is that we express the
ANC in terms of the binding momentum and the effective range rather than the binding
momentum and the scattering length. We find this form more suitable for the extraction of
ANCs from scattering data since the effective range is typically more precisely determined
than the scattering length for shallow states. Moreover, extracting the effective range in a
self-consistent fit from the scattering data that reproduces the correct separation energy
improves the stability of the extraction.

We have illustrated our relation by extracting the ANCs of the excited 2+ and 1~ states
in %0 from a—'2C scattering data. Compared to previous extractions [154, 158, 159],
our values are generally smaller. Whether this difference is physically significant requires
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further study. The application of our relation to other shallow cluster states and a bench-
mark against model calculations would also be very interesting.

Finally, we have discussed causality bounds for systems where the long-range interaction
is given by a singular potential. In particular, we have reviewed the case of an attractive
van der Waals tail as it appears in the scattering of neutral atoms. In this case, the
situation is fundamentally different from the systems of charged or asymptotically non-
interacting particles. Due to the behavior of the singular-potential wave functions, the
causality-bound function never has a pole at the origin, which implies that there is no
constraint on the interaction range as long as the short-range parameter K- is negative
or zero. We have shown that this is always the case for scattering around a magnetic
Feshbach resonance provided that the effective single-channel description of Ref. [164]
is applicable. These results can be useful in developing an EFT for systems zero-range
interactions and an attractive van der Waals tail.
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Chapter 6

The proton—deuteron system
revisited

Overview

In this chapter we consider the S-wave proton—deuteron system in pionless effective field
theory, a project already started in the present author’s diploma thesis [169]. The first
part of what follows is largely based on a subsequent publication [1] (a summary of which
appeared in the APFB2011 conference proceedings [6]), with a few details changed, added,
and corrected. The material presented in the second part (Section 6.5.2 and beyond),
however, is new and has not previously been published.

6.1 Introduction

In Section 2.4 we introduced effective field theories as a powerful tool that can be used to
carry out calculations in a formalism involving directly the “correct” degrees of freedom
for the physical system under consideration. In particular, in nuclear systems at very
low energies and momenta, pion-exchange effects cannot be resolved and one can hence
use the pionless effective field theory introduced in Section 2.4.2. This approach only
includes short-range contact interactions between nucleons [49, 52] and is constructed
to reproduce the effective range expansion [13] in the two-body system. It furthermore
recovers Efimov’s universal approach to the three-nucleon problem [170, 171].

The extension of pionless EFT to include the long-range Coulomb interaction was first
discussed by Kong and Ravndal for the proton—proton channel [117, 172]. In Ref. [173],
this analysis was extended to next-to-next-to-leading order. A renormalization-group
analysis of proton—proton scattering in a distorted wave basis was carried out in Refs. [174,
175]. Moreover, the theory was applied to proton—proton fusion in Refs. [176, 177].

Here, we are interested in the nuclear three-body system with two charged particles, .e.,
protons. Although the Coulomb interaction can be treated as a perturbative correction
for intermediate and higher energies, it becomes strong close to threshold and has to
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be treated nonperturbatively there. In Ref. [178], Rupak and Kong have formulated a
power counting that takes into account such strong Coulomb contributions in the quartet
channel of proton—deuteron (p—d) scattering. They calculated the phase shifts to next-to-
next-to-leading order (N?LO) in the pionless EFT and included Coulomb effects to next-
to-leading order (NLO) [178]. However, they were not able to extend their calculation to
the threshold region below center-of-mass momenta of 20 MeV. Furthermore, they did
not consider the doublet channel and the *He bound state.

A leading order calculation of the *He nucleus including nonperturbative Coulomb inter-
actions has been carried out by Ando and Birse [179]. Including isospin breaking effects in
the nucleon—nucleon scattering lengths, they obtained a good description of the 3He—3H
binding energy difference, but they did not consider scattering observables. A similar
study at next-to-leading order in the pionless EFT was carried out using the resonating
group method [180]. Those results do not include isospin breaking and are consistent with
other determinations of the 3He*H binding energy difference.

In this chapter, we apply the power counting of Rupak and Kong to study the S-wave
p—d system in both the quartet and the doublet channel. Focussing first on results al-
ready published in Ref. [1], we show how by using a special integration mesh we are
able to calculate scattering phase shifts in both channels down to very small momenta
of the order 3 MeV. After reviewing the formalism of pionless EFT in Section 6.2, we
discuss these results in Section 6.3. Amending then our previous work, we consider in
Sections. 6.4 and 6.5 both a perturbative evaluation of the Coulomb contribution to the
3He-3H binding-energy difference as well as a nonperturbative calculation of the *He bind-
ing energy and wave function. Although our calculation only includes Coulomb photons,
it gives almost the same result as found by Ando and Birse [179].

From the nonperturbative bound-state calculation we find that the doublet-channel sys-
tem beyond leading order does not seem to be renormalized correctly when Coulomb
contributions are taken into account. We discuss this in some detail in Section 6.6 and
also critically review the situation in the scattering regime. As a further new result we
present in Section 6.7 a first preliminary calculation of proton—deuteron scattering lengths
in pionless EFT. We then conclude with a brief summary and an outlook.

6.2 Formalism and building blocks

We write the effective Lagrangian in the form
D? . D? A D?
L=NT'(iD N —d' iD dt— AT iD t4
(l O+2MN) {U‘”(l 0+4MN)] 7Pt Ty

+ya [T (NTPIN) + hee] +y [t (NTPAN) + hec.] + Lonoton + L3, (6.1)

with the nucleon field N and two dibaryon fields d’ (with spin 1 and isospin 0) and t*
(with spin 0 and isospin 1), corresponding to the deuteron and the spin-singlet isospin-
triplet virtual bound state in S-wave nucleon—nucleon scattering. Both dibaryon fields
are formally ghosts since their kinetic terms have a negative sign. This is required to
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reproduce the positive values of the effective ranges with short-range interactions [135].
Despite these “wrong” signs, the Lagrangian (6.1) can be shown to be equivalent to the
most general version including only nucleon fields (see, for example, Ref. [181]). One can
interpret the choice of signs in Eq. (6.1) as “avoiding” the Wigner bound (¢f. Chapter 5),
but since the effective N—N interactions (obtained by eliminating the dibaryon fields
with the kinetic energy terms included) become energy-dependent, this is not a rigorous
statement.

Spin and isospin degrees of freedom are included by treating the field N as a doublet
in both spaces, but for notational convenience we usually suppress the spin and isospin
indices of N. The operators

Pi= —o%'r* | P} = —o°rir4, (6.2)

with the Pauli matrices ¢ and 7 operating in spin and isospin space, respectively, project
out the 35 and 1Sy nucleon-nucleon partial waves.

The covariant derivative
D, =0, +ieA,Q, (6.3)

where Q is the charge operator, includes the coupling to the electromagnetic field. Fur-
thermore, we have the kinetic and gauge fixing terms for the photons,

1 1
['photon = _ZFMVFHV - 2_5 (auAu - WunuaVAu)Q ) (64)

of which we only keep contributions from Coulomb photons. These correspond to a static
Coulomb potential between charged particles, but for convenience we introduce Feynman
rules for a Coulomb-photon propagator,

i

ACoulomb(k;) = mu (65)

which we draw as a wavy line, and factors (fie Q) for the vertices.! Following Ref. [178)],
we have regulated the singularity of the Coulomb-photon propagator at zero momentum
transfer by introducing a photon mass A in Eq. (6.5). This corresponds to a screening
of the Coulomb interaction in configuration space by writing it as a Yukawa potential
~ e~ /r. In the numerical calculations that will be discussed later on, X is always taken
to be small (typically well below 1 MeV). In fact, by choosing a mesh-point distribution
dense around the Coulomb peak it is possible to numerically take the zero-screening limit
A — 0 [169].

S-wave nucleon-deuteron scattering can take place in either a spin-3/2 (quartet channel)
or spin-1/2 (doublet channel) configuration. In the doublet channel, a three-body contact
interaction is required for renormalization already at leading order in the EFT [54]. We

'Due to the sign convention chosen in the Lagrangian (6.1), dibaryon—photon vertices get an additional
minus sign.
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write it here in the form given by Ando and Birse [179],

_ MyH(A)

Ls 3A2

<y§NT(cZ- (- AN + 2N E- )N

where A is a momentum cutoff applied in the three-body equations discussed below and
H(A) a known log-periodic function of the cutoff that depends on a three-body parameter
A.. The Lagrangian in Eq. (6.6) differs slightly from the one quoted in Refs. [1, 169],
which was taken over from Ref. [55]. The version given above corrects a mistake in the
old expression and has also been used in Ref. [182]. Fortunately, the results in the older
publications were not actually affected by this problem (see Section 6.2.4 for details).

6.2.1 Full dibaryon propagators

In the strong sector, we adopt the standard power counting for large S-wave scattering
length [49, 52]. A nucleon bubble together with a bare dibaryon propagator scales as O(1).
The bare dibaryon propagators therefore are dressed by nucleon bubbles to all orders,
giving the geometric series for the full propagators that are shown diagrammatically in
Fig. 6.1.

(a) = — ==z=z:z=z=:= 4 -:O::: + :::Q:Q:: + ..
(b) H— o o

Figure 6.1: Full dibaryon propagators in (a) the 3S; state (i.e. the deuteron) and (b)
the 1.9, state.

For convenience, we also resum the effective range corrections that arise when the dibaryons
in the theory are promoted to dynamical fields by including their kinetic terms. We do
not go into the details of the calculations here and simply quote the results for the renor-
malized propagators. They are obtained by demanding that the (S-wave) effective range
expansions

kcotdg = —kq + %(kQ + K3+ (6.7)

around the deuteron pole? at k = iky = iv/MyE,, and

1
kcotét:—a—+%k:2+ (6.8)
t

2The notation py is used in the quadratic term of Eq. (6.7) because the expansion is not around zero
momentum. The difference of p; to the effective range in a standard expansion around zero momentum
is smaller than 1% [16]. Note furthermore that in Ref. [1] we used the more common (at least in the
context of pionless EFT) notation -y, for the deuteron binding momentum. We changed it here to instead
of kg in order to be consistent with the conventions used throughout the present work.
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for the singlet channel are reproduced. The expansion for the singlet channel is around
zero momentum; alternatively one could also expand here around the position of the
virtual bound state. In writing Eq. (6.8), however, we have used that p, = r¢; to the
order we are working at and will in the following also identify x, = 1/a; to make the
notation more symmetric. After renormalization (using the PDS scheme [50]), the fully
resummed propagators are

Ad(p) =6"8alp) = —77—5 - - - (6.9)
NYa —Hd—i-\/%—MNPO—E—%d(pz—MNPO—F&Z)
and
4 648
AAB(p) = §ABA - _ . 1
77 (p) = 07" Adlp) Vni? , (6.10)

2 . 2
—fit—i-\/pz—MNpo—lc‘?—%(pT—MNpo)

which means that we have fixed the parameters appearing in the effective Lagrangian
according to®
2 = Kay 9 8m 1

il Y L 6.11
My pay Yar M3, pay (6.11)

Odt =
These expressions are valid up to N2LO since the resummation of the effective-range
contributions only includes a subset of higher-order (N®*LO etc.) terms. At leading or-
der, range corrections are not included and the dibaryon kinetic terms do not contribute.
The corresponding propagators are obtained by setting p, = 0 and pg = 0 in Eqgs. (6.9)
and (6.10), while perturbative expressions for the NLO and N2LO propagators can be
obtained by expanding the equations up to linear and quadratic order in py and p;, re-
spectively. For each expression, the corresponding deuteron wave function renormalization
constant is given by the residue at the bound state pole:

0 1
Zyt =i— , : (6.12)
apo Ad(p) pO:—A’;i‘JiV,p:O
At leading order, one simply has
Zy° = Kapa, (6.13)
whereas the result from the fully resummed expression (6.9) is
ZN°ro o _fdPd (6.14)

1 — Kapa

The expressions for the perturbatively expanded propagators can then simply be read off
from the geometric series
1

— =1 24 6.15
1~ rupa + Kapa + (Kapa)” + (6.15)

3Choosing the normal positive signs for the dibaryon kinetic energy terms in the Lagrangian (6.1)
would have given a minus sign in the expression for yit and thus made the coupling constants purely
imaginary. This situation is avoided with the choice of the negative signs.
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Note that since kgpq ~ 0.4, the above series converges only rather slowly. This fact
can be taken into account by choosing an alternative renormalization scheme, called Z-
parametrization [183], that is constructed in such a way that it produces the fully re-
summed Zj as given in Eq. (6.14) already at NLO. In Ref. [184] the approach has been
applied to the three-nucleon system in pionless EFT and shown to improve the overall
convergence of the theory. In the present work, however, where we are primarily inter-
ested in the inclusion of Coulomb effects, we use the simpler scheme with the propagators
as given in Eqgs. (6.9) and (6.10).

6.2.2 Coulomb contributions in the proton—proton system

The Coulomb interaction breaks the isospin symmetry that is implicit in the dibaryon
propagators considered so far. For the p—p part of the singlet dibaryon we can also have
Coulomb-photon exchanges inside the nucleon bubble. These can be resummed to all
orders, yielding a dressed nucleon bubble [117, 172] that is subsequently used to calculate
the full singlet-dibaryon propagator in the p—p channel. This is shown in Fig. 6.2. The
result for the leading order propagator is [179]

AL () = 648 B plp) = o O (6.16)
t,pp PP MNZJ? —1/a0 — ho(p’)
with
e 1 P -
Y ="Ypp =My azﬂzﬁ , P =1i\/p?/4 — Mypy — ic, (6.17)
and function h(p) as defined in Eq. (4.29), giving
~ ) 1 . Y
ho(p') = — —1 =n(p)=—. 1

This means, of course, that the Coulomb-modified effective range expansion (4.28) dis-
cussed in Chapter 4 has been used for renormalization. We denote here the p—p S-wave
scattering length simply as a¢. Corrections due to the corresponding Coulomb-modified
effective range r¢ can be included in the same way as described in the preceding section by
first resumming insertions of the kinetic energy operators to all orders and then matching
the result to reproduce the modified effective range expansion up to quadratic order.

ORSRORN
N O R (O O

Figure 6.2: Dressed nucleon bubble and full singlet dibaryon propagator in the p-p
channel.

To simplify the equations that we give later on, we introduce here the propagator functions

2

Dd,t(E; q) = (_i) “Agy (E - qu, Q> (6-19)
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and
2

DP(E:q) = (—i) - Ay (E - QQTN q) . (6.20)

6.2.3 Power counting

The power counting of pionless effective field theory has been extensively discussed in the
literature (see the reviews [43, 47, 185] and references therein), such that we can be rather
brief on this subject here. We will, however, elaborate a bit on the power counting for
the Coulomb sector of the theory as it was introduced by Rupak and Kong in Ref. [178].

Strong sector

Without electromagnetic effects, the most relevant low-energy scale @) of the theory is set
by the deuteron binding momentum k4 ~ 45 MeV. We can formally count the external
momenta k,p to be of the same order. Since we are working in a setup without explicit
pions, the natural ultraviolet cutoff of our theory is of the order of the pion mass, A ~ M.
Which cutoff is best to use in practice depends on whether one discusses the quartet-
channel or the doublet-channel system. In the first case short-range effects are suppressed
by the Pauli principle and one finds that already A = M, ~ 140 MeV is sufficient for an
accurate description. In the doublet channel, on the other hand, the cutoff must be set
to a few hundred MeV to get converged results. In either case, the combination of the
two scales yields the expansion parameter O(Q/A) ~ 1/3 of pionless EFT.

A further relevant scale in our system is the nucleon mass My. It appears explicitly in
kinetic energies, which scale as O(Q?/My). As a consequence, the nucleon propagator
scales as O(My/Q?) and the loop integration measure d*q = d3q dgq scales as O(Q°/My).
Note, however, that in each loop the dgg-integration can be carried out by picking up the
residue from one nucleon propagator, so loops with one of the involved nucleon propagators
canceled simply scale as O(Q?).

We assume y2 ~ y? ~ A/M3 for the nucleon—dibaryon coupling constants and o4 ~ o; ~
QA/Mpy for the bare dibaryon-propagator terms. Together with the scaling of loops as
discussed in the previous paragraph it then follows that in order to get the strong (n—
d) scattering amplitude, one has to iterate the leading one-nucleon exchange diagram to
all orders. The result can be written as an integral equation and will be discussed in
Section 6.2.4.

Including Coulomb photons

The power counting has to be adapted when Coulomb effects are included. From the form
of the (Yukawa-screened) Coulomb potential in momentum space,
o)
Vealq) ~ PR TR
it is clear that Coulomb contributions dominate for small momentum transfers. As noted
in Ref. [178], they enter ~ oMy /q, i.e., proportional to the Coulomb parameter 7 intro-

(6.21)
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duced in Chapter 4. This behavior is not captured by the power counting for the strong
sector, which consequently has to be modified in order to perform calculations including
Coulomb effects for small external momenta.

Most importantly, one can no longer simply assume that the scale of all momenta is set
by the deuteron binding momentum, ) ~ k4. Instead, one has to keep track of the new
scale introduced by the external momenta separately. We generically denote this scale by
p and assume p < @ for the power counting. This means that we make a simultaneous
expansion in two small parameters Q/A and p/(aMy) [178].4 For p = @, the Coulomb
contributions are small and the results in both schemes agree.

With this modified counting, it is not straightforward to deduce the scaling of loops
anymore. Kinetic energies always scale like ), so the scaling of dgy and the nucleon
propagator is not modified in the presence of Coulomb effects. However, where before we
could simply assume that all loop momenta are dominated by the scale () ~ k4, we now
have to check first which contribution is picked up (or rather enhanced) after carrying
out the dgp-integral. In the following we illustrate this by deducing the scaling of a few
selected diagrams.

Selected diagrams

In Fig. 6.3 we show all diagrams contributing to p-d scattering that involve a single
Coulomb-photon exchange and are thus of the order . The last one, diagram (d) has the
most straightforward behavior since it simply scales as a/p?. Diagram (a) has the same
factor because also here the Coulomb-photon propagator involves the external momentum
scale p, but it is further enhanced a factor A/@Q from the nucleon bubble, which is easy
to count as there are no Coulomb-photon exchanges inside the bubble. This is of course
in perfect agreement with the fact that the direct coupling of the photon to the dibary-
on—generated by gauging the dibaryon kinetic energy operators—only enters at NLO in
the EFT counting. This makes diagram (d) both O(«) and an effective-range correction

~ Pdt-
() (b) () (d)

Figure 6.3: Leading O(«) diagrams involving Coulomb photons.

Since diagram (b) is more complicated to count, we first consider diagram (c), where
clearly the loop does not involve the external momentum p but is rather dominated
by the deuteron binding momentum flowing into the triangle loop. This yields then that
compared to the simple one-nucleon exchange diagram (without a photon) it is suppressed
by a factor aMy/@Q. Consistent with this one finds by a direct numerical evaluation that
at threshold (vanishing p—d center-of-mass momentum) it is a 15% effect.

4For a related approach in the pionful theory, see also Ref. [186].
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Finally, although it is not straightforward to see due to the non-planar topology of dia-
gram (b), one can argue also here that the deuteron binding momentum flowing into the
loop sets the scale there and thus take all momenta to scale like (). Following Rupak and
Kong [178] in doing this, we get the same oMy /@) suppression factor as for diagram (c).
A direct numerical calculation shows that it is a 7% effect at threshold.

We can summarize the findings so far by saying that unless a diagram directly exhibits
the (regulated) Coulomb pole, it is not enhanced and thus a small electromagnetic cor-
rection to the same diagram topology without Coulomb-photon exchange. The enhanced
Coulomb contributions are particularly large in the threshold region (where p is very
small) and should thus be iterated to all orders. In our calculation of scattering phase
shifts we neglect both diagrams (b) and (c). Their relative size at threshold mentioned
above gives an a priori uncertainty of 7-15 percent, from which we conclude that Coulomb
effects are included in the calculation at an accuracy corresponding to the typical NLO
uncertainty from the EFT expansion.

What we have stepped over so far are diagrams like Fig. 6.3a with more than one Coulomb
photon attached to the nucleon bubble. For the diagram with two photons (and thus two
loops that share a nucleon propagator) one finds a total scaling ~ o> MyA/(Q3p) which
means that compared to diagram (b) it is suppressed by a factor a Myp/Q?. In Ref. [178] it
is argued that the diagram with three photons could contribute with a factor ~ log(p/Q),
which is already small for p > 1 MeV, and that the diagrams with n > 3 photons attached
to the bubble are even infrared finite and suppressed by factors of a”. Neglecting all these
contributions is thus consistent with not including diagrams (b) and (c).

To conclude this section we point out again that the power counting established here
is specifically designed to account for Coulomb contributions that become strong in the
scattering at low momenta. At larger momenta, where the Coulomb parameter oMy /p
becomes small, it would suffice to not iterate any Coulomb diagrams but rather include
them strictly perturbatively. However, exactly because they become small we assume that
it also does not spoil the calculation to iterate them everywhere.

The above discussion clearly shows that the counting scheme employed here is rather com-
plicated and, except for the simplest diagrams, certainly not unambiguous. As we will
discuss in Section 6.5.2, for calculations in the bound-state regime the counting definitely
has to be modified because there all loop-momentum scales are set by the binding momen-
tum of the bound state. Based on the findings there, we will then argue in Section 6.6.5
that the same counting, which is actually simpler, should also be used in the scattering
regime. For the moment, however, we proceed as in Ref. [1] and apply the counting as
described above.

6.2.4 Integral equations

From the preceding section it follows that certain diagrams have to be resummed to all
orders in order to calculate N-d scattering amplitudes in pionless EFT. We now discuss
how this is done by constructing and solving integral equations for the corresponding half
off-shell T-matrices in momentum space. We start again by first discussing the strong sec-
tor (neutron-deuteron scattering) and then subsequently include Coulomb contributions
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to get the desired proton—deuteron equations.

The integral equations are essentially Lippmann—Schwinger equations written out in mo-
mentum space. In the following, we generically use the calligraphic letter 7 to denote
their solutions and use appropriate subscripts to indicate which system we are referring
to. This choice of notation indicates that we adopt the standard convention in the field,
where the T-matrix differs from the one defined in Chapter 2 by an overall minus sign,
and that in order to obtain the physical T-matrix one also has to include the deuteron
wave function renormalization factor. The exact relation is

T(E;k,p) = —ZyT(E,k,p). (6.22)

Throughout the text, we write “7-matrix” (or simply “amplitude”) to indicate this dis-
tinction.

Strong sector

(- \ DO

Figure 6.4: Integral equation for the strong scattering amplitude 7 in the quartet
channel.

Figure 6.4 shows a diagrammatic representation of the quartet-channel n—d amplitude,
which is the simplest case one can have. The only interaction occurring here is the one-
nucleon exchange diagram with deuteron legs on both sides. Including all spin-, isospin-
and symmetry factors, it is given by

= - g 5 2
; 2 (070" )ada k?+k-p+p?— MyE — (6:23)

Since the spins of all three nucleons taking part in the reaction have to be aligned to
produce a total spin-3/2 state, the Pauli principle prohibits here a three-nucleon contact
interaction for which the particles have to occupy the same point in space. Furthermore,
only the dibaryon field representing the deuteron can appear in the intermediate state.

Generically, we define the S-wave projected amplitude as
1 1
T(E;k,p) = 5/ decosO T(E;k,p) , 0 =0kp. (6.24)
-1

Applying this to the one-nucleon exchange shown in Eq. (6.23) yields the projected inter-
action kernel

K(E;k,p) = kip Qo ( (6.25)

with the Legendre function of the second kind

Qo(a):%/l de zélog <“+1). (6.26)

1rx+a a—1

k‘2+p2—MNE—i5
kp
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The unprojected T-matrix has the same spin-isospin indices as the kernel function shown
in Eq. (6.23), 7 = (T%)%. The n-d quartet channel is chosen by inserting i = (1—i2)/v/2
and j = (1 +1i2)/v/2 for the deuteron spin-1 indices, a = 3 = 1 for the nucleon spins,
and a = b = 2 to select the neutron in isospin space. As done in Refs. [55, 181], we have
used here a short-hand notation for the spin-1 indices ¢ and j that includes prefactors
to be used in a linear combination. Written out explicitly, the strong quartet-channel
amplitude is accordingly given by

1 12
T =5 (T (T =T + T2) (6:27)
12
and fulfills the integral equation

TS = —Myy; Ko+ T2 @ [Myys DaKy) (6.28)

As in Ref. [1] we have introduced here the short-hand notation

1 /A
A®BE—2/ dgq® A(...,q9)B(q,...) (6.29)
27 Jo

and used the propagator function D, as defined in Eq. (6.19). As indicated in Eq. (6.29),
we regulate all loop integrations with an explicit momentum cutoff A.

Figure 6.5: Coupled-channel integral equation for the strong scattering amplitude 75 in
the doublet channel. The diagrams involving the three-body force have been omitted.

The equation for the doublet-channel amplitude is shown in Fig. 6.5. Since the spin-singlet
dibaryon is now allowed to appear in the intermediate state, we have a coupled-channel
system of two amplitudes that we call 7.9* and 74P. Of these, the “upper part” T2
corresponds directly to the n—d scattering process we are interested in, whereas 7.4 only
enters as an off-shell quantity because the spin-singlet dibaryon, being only a virtual
bound state, cannot appear as a true asymptotic state.

Furthermore, with the spins coupled to a total spin 1/2, the Pauli principle no longer
prohibits a three-nucleon interaction, and indeed such a term is needed already at leading
order to renormalize the system [54]. The corresponding diagrams have, however, been
omitted Fig. 6.5 for simplicity. They can be reinstated by supplementing every one-
nucleon exchange with a matching N-d contact interaction from Eq. (6.6). With the n—d
doublet-channel projection,

a 1 ia! (ayig\p ]
T = 2 (0 (TN | (6.302)
a=p=1
1 .y . /
T = 5(0’1)3 (Kb’ZBﬁ?a(TB)g’ a=b=2 ’ (6.30b)
a=p=1
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and introducing furthermore the abbreviations

M3 M Myy?
gyd y Gatr = Ndeyt y G = gyt, (6.31)

Gdd =
the result can be written as
T2 9dd (Ks + 21;1\(21\))
(ﬁd’b> B — Gt <3Ks + 2}1(2[\))
—YaaDa <Ks + 27\(2/\)) gar Dy <3Ks + 25[\(21\)) T2
( > (6.32)

w56+ 255) - (i, 2 ) © L7

S

+

For a more detailed derivation of the equations above we refer to Refs. [1, 169].> Although,
as pointed out in Section 6.2, a different three-nucleon Lagrangian has been quoted in
those works, the doublet-channel equation found there is the same as in Eq. (6.32) due
an incorrect derivation of the corresponding Feynman rules that compensated the prob-
lem. Presumably, the same was done by the authors of Ref. [55], which the results were
compared to.

Including Coulomb effects

As discussed in Section 6.2.3, the dominant Coulomb contribution is the bubble diagram
shown Fig. 6.3a. Its energy and momentum dependence is given by

Ibubble(E; k, p)
(k=pP 2

Koubble (B3 k, p) = (6.33)

where

2_ 1.2 1. 2_p2_ k.
arctan Zp k" —kp + arctan 2k*—p"—kp
\/3k2—4My E—ieq/(k—p)? \/3p2—4My E—ie/(k—p)?

Thubbie (B Kk, p) = TEE

(6.34)
is the expression for the bubble loop integral. It can be simplified by noting that due to
the denominator in Eq. (6.33) the whole expression is dominated by terms with p? ~ k.
When the expression appears under the dq integral, we analogously get p? ~ k? and can
furthermore assume that q? ~ k2 because of the pole at this position in the deuteron
propagator. Inserting then the total center-of-mass energy,

3k? K2
E=E(k)= -—4 | k=]k .
)= i k=l (6.35)
we get
Toutie(E; K, P) 1 1

~ 6.36
(k—pP X~ Zng (k=) 4 2 (6.362)

5In particular, a comprehensive discussion of the spin-isospin projections can be found in Appendix
B of Ref. [169).
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and

2 2
q Touvble(E; d, P) ( q ) 1 1
Ay E - q)- ~N(E——2—q]- . (6.36b

d( 2My q) (a—p)2+ A ! 2My" 1) 20kd] (@ — p)? + N2 ( )

by using the expansion arctan(z) = z + O(x?) in Eq. (6.34). The same simplifications,
which effectively amount to keeping only loop contributions with ¢ ~ p, have also been
used in Ref. [178]. Note that they explicitly rely on the energy being given by Eq. (6.35)
and are thus not valid in the bound-state regime, where E < —E,; = —k3/My.

For diagrams with the spin-singlet dibaryon in the intermediate state, as they appear in
the doublet-channel calculation, the argument based on the deuteron pole is actually not
true. However, for energies in the scattering regime, Eq. (6.36) is still a good approxi-
mation (numerically, a 15% effect at threshold and thus compatible with neglecting the
diagram shown in Fig. 6.3c).

A more subtle point is that the above approximation also changes the ultraviolet scaling of
the diagram, an effect for which it is difficult to judge a priori how important it is. Since
the only true advantage of the approximation is that it (quite significantly) simplifies the
calculation, but certainly does not improve it in any physical sense, it is probably best
to not use it if possible. After first giving the results obtained with the approximation
in Section 6.3 (as reported in Ref. [1]), we will come back to discussing its impact in
Section 6.6.5.

Three-channel formalism

W T (D T
O\ >\
M- T >CL (T8
>\
M- T O >
Figure 6.6: Coupled-channel integral equation for the full (i.e. strong + Coulomb)

scattering amplitude Tg in the doublet channel. The diagrams representing the three-
nucleon force have been omitted.

Due to the fact that the electromagnetic interaction does not couple to isospin eigenstates
we now need two different projections for the amplitude 7 with the outgoing spin-singlet
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dibaryon:

L ol pb,iByBY

airt = 5008 (T (16" |, (6.37a)

a=p=1
1, . B BY
,b i\« b,iB\ Bb .
full t= g(a Ja (Thil )fm(l 6P i1 - 72)y a=1,b=2" (6.37b)
a=p=1

The latter corresponds to the amplitude with the outgoing spin-singlet dibaryon in a pure
p—p state. For the diagrams where this this component appears in the intermediate state
we have to insert the p—p propagator (6.16).

Diagrammatically, the resulting three-channel integral equation is shown in Fig. 6.6. It is
given by

e[ e (B ) g
w | = —ga <K + 3152)> + 0
il —Jat <2K + 3152)) 0
+ | 9atDa (Ks + ZHT(Q» guDy (Ks — 2?,\9)) fu]’}ﬂ
garDa (2K + 3/\(2)) —guDy <2Ks + 3152)) 0 il
—gaaDa K 0 gar DY” (3K + Zﬁ( )> 7;1111
+ 0 —guDiK" gDl (Ko + 2R | @ | T | (6:38)
0 0 g DY x ) A
with the Coulomb kernel functions
L Toubie(E: K, k* + p* + \?
KBk, p) = —aMy x lf_ldCOSQ (1%1;)2 n ;) ;Z; Q <_—2Z;€p )
LO NLO
aMy k% + p? 4+ \? 1
~ o Q <— 2% ) (]ﬁ;d| —pdﬂf) . (6.39)

In writing Eq. (6.38) we have separated the terms in such a way that the Coulomb
contributions can be easily identified.

Note that the terms involving H(A) in Eq. (6.38) differ slightly from the version given in
Refs. [1, 169] due to the incorrect Feynman rules used in those works. Still, this turns
out not to be a serious problem because both the old expressions and Eq. (6.38) are such
that they reduce to the two-channel n—d equation (6.32) when all Coulomb effects are
switched off and one considers the sum 74P = TdbL 4 Tdb2  Ag a consequence, one finds
the same H(A) in a numerical fit to the triton binding energy as with the old expression,
and all observables are unaffected.
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In order to calculate Coulomb-subtracted phase shifts, we also need the amplitude for
pure Coulomb scattering. Since the electromagnetic interaction in our approximation
does not couple the different channels, for both quartet-channel and doublet-channel p—d
scattering is given by the simple equation

Te = 9aa K = Te @ [gaa DaK "] . (6.40)

Higher-order corrections

From Eq. (6.39) one directly sees that the diagram with the photon coupled directly to
a dibaryon (Fig. 6.3d and its analog with a spin-singlet dibaryon) is proportional to the
effective range (pg or p;) and thus a correction that enters at next-to-leading order in
the EFT power counting. This has already been mentioned in Section 6.2.3. Apart from
that, the order of our calculation is determined by the expressions used for the dibaryon
propagators.

The fully resummed propagators given in Eqs. (6.9) and (6.10) have spurious deep poles
that do not correspond to actual physical bound states. In the quartet channel, the cutoff
can be chosen low enough to avoid that pole. Due to the larger cutoff needed in the
doublet channel, however, we cannot use the resummed propagators here. Instead, we
follow the approach of Ref. [187] and use the perturbative expansions (more appropriately
called “partially resummed propagators”) mentioned in Section 6.2.1. This still resums
some higher-order effective-range contributions, but removes the unphysical pole.%

More precisely, at next-to-leading order we always use propagators DdNﬂfLO that include a
single insertion of the dibaryon kinetic energy operator and are thus linear in the effective
range. At next-to-next-to leading order (N*LO) the propagators DdN;LO for the doublet-
channel calculation include corrections quadratic in the effective ranges, whereas in the
quartet-channel we use the fully-resummed expression given by Eq. (6.9) together with a
cutoff low enough to avoid the unphysical pole.

Since the publication of Ref. [1] an agreement has been reached in the literature [187—
189] that in the doublet channel, a second (energy-dependent) three-nucleon interaction
is needed at N?LO for consistent renormalization. As in Ref. [1], we do not include
such a term here for simplicity and thus obtain only a partial N?LO result. In fact, as
we will discuss in Section 6.6.5, with Coulomb effects included, the question of correct
renormalization in the double channel might have to be reconsidered already at next-to-
leading order.

6.2.5 Numerical implementation

The integral equations presented in the previous sections have to be solved numerically.
We do so by discretizing the integrals, using Gaussian quadrature, principal value inte-

6Note that the resummation procedure also affects the ultraviolet behavior of the propagators. The
fully resummed expressions fall off faster than the leading-order propagators, whereas the perturbative
expansions do not go to zero anymore for large p. This point will become important in Section 6.6.
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gration to deal with the singularity of the deuteron propagator, and appropriate trans-
formations of the integration domain.

The latter are especially important to deal with the numerical difficulties caused by the
Coulomb-photon propagators. Even though we have regulated the singularity with an
artificial photon mass A, the latter has to be kept small in order to not modify the
theory too much. This then yields strongly peaked functions. As shown in Ref. [169], the
Coulomb peaks in the inhomogeneous parts the integral equations are the major numerical
difficulty. It can be overcome by concentrating the quadrature points around the peak and
always putting half of the quadrature points into the low-momentum region. With this
procedure is is then possible to (linearly) extrapolate the results back to the physical case
A = 0. The error introduced by this extrapolation can in general be neglected compared
to the theoretical uncertainty from the EFT expansion discussed below.

We use the experimental input parameters shown in Table 6.1 for the numerical calcula-
tion.

Parameter Value Ref. H Parameter Value Ref.
Kd 45.701 MeV  [48] Pd 1.765 fm  [16]
a —23.714 fm  [47] Pt 2.73 fm  [47]
ac —7.8063 fm  [145] ro 2.794 fm  [145]

Table 6.1: Parameters used for the numerical calculation.

6.3 Scattering phase shifts

From the solutions of the integral equations we can obtain the S-wave scattering phase

shifts as
21k M

™

1
5(k) = - log (1 +

In order to account for the deuteron as a composite asymptotic state, the T-matrix is
multiplied by the wave function renormalization Z; defined in Eq. (6.12). This procedure
also removes the dependence of the amplitude on the coupling constant y,, which so far
we have have kept in all equations. We call ZyT (Ex; k, k) the renormalized amplitude.

ZoT (Epi k, k)) . (6.41)

For the p—d system, what we compare to experimental data are the Coulomb-subtracted
phase shifts already introduced in Chapter 4. We calculate them here as

(5(1{3) ~ 6diﬁ(k) = 5fu11(/{3> — (SC(]{Z) s (642)

where (k) is obtained from the full integral equation including both Coulomb and
strong interactions and d.(k) is obtained from Eq. (6.40) which only includes the Coulomb
interaction. This procedure (as opposed to calculating the pure Coulomb phase shift
analytically) has the advantage of properly taking into account of the finite cutoff, the
EFT expansion, and the regulating photon mass .

In the following, we report the results as given in Ref. [1].
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6.3.1 Quartet channel

In Fig. 6.7 we show the phase shift results for both neutron—deuteron and proton—deuteron
scattering as functions of the center-of-mass momentum k. The error bands are generated
by varying the cutoff within a range of 120 to 160 MeV. Since the cutoff variation is
small, we conclude that the calculation is well converged at these cutoffs. This finding
is important because it allows us to use the fully resummed deuteron propagator (6.9)
at N2LO, which would be problematic numerically for cutoffs A > 200 MeV due to the
unphysical second pole introduced by the resummation. For the n—d curve in Fig. 6.7
we have used a single cutoff A = 140 MeV since we only include this result here for
comparison and because its band produced by the cutoff variation would be as narrow as
that of the p—d result at N2LO.

The fact that the error bands do not overlap is no point of concern since they only give
a lower bound on the uncertainty of the calculation. From the expansion parameter
Q/A ~ Kqpg ~ 1/3 of the EFT, the error can be estimated as 30%, 10%, and 3% at LO,
NLO, and N2LO, respectively. Thus, at LO, the 30% uncertainty from the expansion
parameter clearly dominates. At NLO and N2LO, however, the band from the cutoff
variation gives a reasonable estimate of the total error in the calculation.

Our N2LO band agrees very well with the results of Rupak and Kong [178] and also with
the experimental data included in the plot. Due to our improved numerical procedure
we were able to extend the calculation of Ref. [178] into the threshold region below
k = 20 MeV (indicated by the dotted line in Fig. 6.7), where Rupak and Kong could
not obtain convergent results for small photon masses.

6.3.2 Doublet channel

The doublet-channel results for the p—d scattering phase shifts as functions of the center-
of-mass momentum k are shown in Fig. 6.8. As in the quartet channel, the p—d curve
lies above the n—d curve and at least at N°LO it agrees quite well with the experimental
data. A more quantitative comparison is, unfortunately, not possible since there are no
errors given for the data points. The error bands were generated here by varying the
cutoff within a natural range of 200 to 600 MeV (i.e., a few times the pion mass).

Note that according to the power counting of Ref. [187] our N?LO calculation is incom-
plete since we did not include a subleading three-body force at this order. Figure 6.8
nevertheless shows how the results improve from order to order. Despite the fact that
we omitted the subleading three-body force, our partial N2LO result is stable to within
about ten percent under the cutoff variation, which is consistent with the 7-15% error es-
timate based on the neglected Coulomb diagrams (see Section 6.2.3 and Ref. [178]). This
stability suggests that the scattering is relatively insensitive to the subleading three-body
interaction. At higher energies, however, there is some room for such a contribution as
our partial result consistently lies two to four degrees above the experimental data.

We observe that the shift from LO to NLO is of the same order of magnitude as the
shift from NLO to N2LO, a behavior that is typical for effective-range corrections in
the doublet channel [191]. The smallness of the NLO corrections can be understood as a
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Figure 6.7: N-d quartet-channel S-wave scattering phase shifts as functions of the
center-of-mass momentum k. FError bands generated by cutoff variation from 120 to
160 MeV. Experimental p—d phase shift data taken from Refs. [146] (diamonds) and [190]
(circles).

cancellation between two different contributions to this correction, proportional to kp; and
Kapd, respectively, where k is the typical momentum scale of the process. Furthermore, it
is known that at LLO observables are often described better than expected from the power
counting once the exact pole position of the two-body propagator is reproduced [28]. As
a consequence, the shifts in observables from LO to NLO can be small and of a size
comparable to the corresponding shifts from NLO to N2LO, which more directly reflect
the uncertainty due to the EFT expansion.

Upon closer examination it turns out that the above results should actually be taken with
a grain of salt. This has already been hinted at when we discussed the power counting in
Section 6.2.3 and the approximation made in Eq. (6.36). Indeed, a more careful analysis
of the bound-state regime that has been carried out since the publication of Ref. [1] also
sheds some new light on the scattering calculation. After first giving a detailed discussion
of the new bound-state results in the following sections, we will thus revisit this issue in
Section 6.6.5.

6.4 Trinucleon wave functions

In order to calculate the *H-3He binding-energy shift in perturbation theory we need the
wave functions that describe the trinucleon (triton) bound state. As illustrated diagram-
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Figure 6.8: N-d doublet channel S-wave scattering phase shifts as functions of the

center-of-mass momentum k. Error bands generated by cutoff variation from 200 to
600 MeV. Experimental p—d phase shift data taken from Ref. [146].

)

matically in Fig. 6.9, at the bound-state pole the T-matrix factorizes as

_ BI(k)B(p)

T(E;k,p) = B B,

+ terms regular at £ = —Ep, (6.43)

where the B(p) are what we call amputated wave functions or vertex factors. For a
derivation of this relation, including the sign, see Section D.4.3 in Appendix D.

% ~ y% + regular terms
E+ Ep

Figure 6.9: Diagrammatic representation of the factorization of 7-matrix at the bound-
state pole.

6.4.1 Homogeneous equation

For our coupled-channel problem, 7 (E;k,p) is a matrix in channel-space, and the wave
functions will thus be vectors. Since the Coulomb repulsion does not act in the channel
where the spin-singlet dibaryon is in a pure p-p or n-n state, we use here the three-channel
equation structure introduced for the p—d scattering equations, but with all Coulomb
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contributions switched off. Our interaction kernel is then given by

—Ydd (K + ZH(A)) Gat <3Ks + —27\(2/\)> (BK + 2L A)>
K=\ ga (Ks + QQIA(QA)) Gt (Ks - QfA(QA)) T (K + 3A‘2)) . (6.44)
9dt <2Ks + 4?/\(9)> — Gt <2Ks + 4;{9)) —Gir X %(9)

which is found from Eq. (6.38) by factoring out all propagators and omitting the Kéd’t) en

tries. Inserting the factorization at the pole (6.43) into the Lippmann-Schwinger equation
and taking the limit £ — —FEp gives a homogeneous equation of the form

B, = (KD)® B, (6.45)
with B ., )
B, = (B, B BS™?)" | D = diag(Dy, Dy, Dy) ., (6.46)

The inhomogeneous interaction terms have dropped out here since they are regular as
E = —FEjp, and we have canceled the overall B' terms from the factorization.

6.4.2 Normalization condition

In order to calculate quantities based on the wave functions By it is important to normalize
them correctly. To this end one has to take into account that the “potential” derived from
the EFT we are using here, i.e., the one-nucleon exchange kernel as given in Egs. (6.23)
and (6.25), is effectively energy-dependent. The normalization condition is

A~ d A A N
DB, ) (1= £)| (DB) =1, 6.47
( © dE E=—EjH @ (6.47)
where we have defined the matrix of inverse propagators I= diag(l4, Iy, I;) with

2

2T
Ii4(E.q,q") = 75@ —¢)Day(E;q)7". (6.48)

A detailed derivation of this can be found in Appendix D, in particular in Section D.4.
Note, however, that the insight that energy-dependent interactions imply a nontrivial
normalization condition for bound-state wave functions is not new at all but has been
known for a long time (see, for example, the overview by Agrawala et al. [192] and
references therein).

Numerical verification

The normalization condition derived above can be checked by considering the residue of
the T-matrix at the bound-state pole. Following Hagen et al. [68] we define

A dqq I /2
Z =limg_p,(E + Ep) / / 27T2 E,q)T(E:q,q)D(E,q) (6.49)
0

272
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and call this quantity the Z-factor of the trinucleon state, or simply trimer Z-factor. As we
will discuss shortly, for our coupled-channel system we need to sum over all components
of the T-matrix. In Eq. (6.49) we have written D(FE,q) to denote a generic dibaryon
propagator.

Inserting the factorization of the T-matrix at the pole as given in Eq. (6.43), we find that

A /
7z = / dg ¢’ / T By B (@)B(()D(~Es.q)

272 27T2

2

A 2
/0 YT (B q)Bg)| . (6.50)

272

where the last equality follows by noting that the propagators are real in the bound-
state regime. Of course, it is crucial here that the wave functions B(g) are normalized
correctly, so numerically calculating Z from both Egs. (6.49) and (6.50) and showing that
the results agree provides the means to verify our normalization condition (6.47) with an
explicit calculation.

We now carry out this procedure for the triton wave functions in the two-channel for-
malism. In order to implement Eq. (6.49) we also need the part of the amplitude that
describes the (unphysical) scattering of a spin-singlet dibaryon and a nucleon. The com-
plete T-matrix for the system is then given by

- 7;d,a 7;d,c
T = 7;d,b 7;d,d ’ (6.51)

where the first column is determined by Eq. (6.32) and the second column is a solution
of the analogous equation

(- (35, + 2)
7;d’d Gt (Ks + A(2 )>

() wn ()
gaDa (3K, + 2580 —guDi (K. + A& )

+

The expression for the trimer Z-factor in terms of the 7-matrix is then

2

Zr =limppy(E+ Ep) Y [bii % (T4). @ f)jj] , (6.53)

ij=1

where we have switched back to the short-hand notation of Section 6.2.4 (with the mod-
ification that D = diag(Dy, D;) is only a 2x2 matrix here) and inserted a subscript 7 in
order to distinguish it from the expression in terms of the wave functions, which we write

as
2

~

2
ZB=Z D

=1

® (B.),

(6.54)
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Numerically calculating Z5 is straightforward since it is just a simple integral over the
normalized wave functions. Implementing the procedure to calculate Z7, on the other
hand, is more delicate since in order to numerically obtain the residue one has to rely
on cancellations between large numbers. If, however, we approach the bound-state pole
exponentially, 7.e., set

E(r) = —Ep + (Ep — Ey) - exp(—2), (6.55)

where FEj is some energy between the deuteron binding energy F; and Eg, we find that
indeed Z7 converges to Zz as a function of the parameter .”

We show this in Figs. 6.10 and 6.11 for two different cutoffs A = 1000 MeV and A =
377.69 MeV, where the latter value is approximately the first zero of the three-nucleon
force H(A).® In both calculations we have used Ey = 1.1 x Ey, which means that at z = 20
the distance to the pole (which is always fixed to be exactly at Ep = 8.4818 MeV) is only
about 107® MeV. Only if one goes even closer to the pole (z > 25), numerical difficulties
become significant and Z7 starts to visibly deviate from Zz. At x = 20, Z7 still agrees
with Zg to within about 1.5% for A = 1000 MeV and with better than 0.05% accuracy for
A = 377.69 MeV.? Altogether, we take the above findings as a clear numerical verification
underlining the correctness of our normalization condition (6.47).

Note that the value of the Z-factor varies significantly for different cutoffs. This can be
understood by noting that the way we have defined it in Eqgs. (6.49) and (6.50), Z is
an unrenormalized quantity. For the current discussion where we are only interested in
establishing the agreement of Z7 and Zgz, however, this is of no importance.

6.5 Helium-3 properties

We are now finally in a position to discuss the Helium-3 system. In the first part of this
section we will describe how to obtain the *H-*He binding energy shift in a perturbative
approach based the normalized trinucleon wave functions Bs. The results presented here
correct and thus supersede those given in Ref. [1]. We will additionally describe how to
obtain the *He binding energy nonperturbatively by locating the pole in the full 7-matrix.
The results of both calculations will be shown and discussed in Subsec. 6.5.3.

"The author would like to thank P. Hagen for suggesting this approach.

8This selection of cutoffs is mostly arbitrary. The reason for choosing the latter cutoff was to inves-
tigate if the three-nucleon force has any significant influence on the numerical convergence. Comparison
with Fig. 6.10 shows that this does not seem to be the case. We have checked that also at other cutoffs
the overall behavior is the same.

9The better agreement for A = 377.69 MeV is most probably due to the absolute value of the Z-
factor being much smaller there than at A = 1000 MeV, which makes it easier to accurately determine a
numerical result originating from the cancellation between large numbers.
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trimer Z-factor

Figure 6.10:

Eq. (6.55).

trimer Z-factor

Figure 6.11:
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6.5.1 Energy shift in perturbation theory

In Ref. [1] the *H-*He binding-energy difference was calculated using
~ >\T n
AEM = <DBS>  diag(Ve, Ve, 0) @ (DBS> (6.56)

with the S-wave projected Coulomb potential

Ao ¢+ %+ N
VA(E: N — _ - 6.57
in momentum space. The prediction for the He binding energy is then given by
— Byt = —FEg" 4 AE2. (6.58)

However, the naive approach in Eq. (6.56) is actually not correct. By taking the simple
matrix elements of the Coulomb potential between the wave functions [;’; in the nucleon—
dibaryon formalism, one effectively couples the photon directly to the dibaryon. However,
as discussed in Section 6.2.3, this coupling only enters at next-to-leading order in the EF'T
power counting.

More subtle, but no less important, is to realize that the expression in Eq. (6.56) is
not renormalized correctly. By considering the terms that enter in the normalization
condition (6.47) we find that formally the wave functions B, are proportional to the EFT
coupling constants y; and ;. In the results for physical quantities this dependence has to
drop out, just as it does in the scattering calculation where the deuteron wave function
renormalization constant cancels the y;-dependence of the T-matrix.

In fact, Eq. (6.56) neglects the three-body nature of the problem. To correct this, what
should be done is to calculate the diagram shown in Fig. 6.12a at leading order and only
add the contribution shown Fig. 6.12b as an NLO-correction. Effectively, this amounts
to calculating

. N\T . .
AER — (DBS> ® Ko ® <DBS> (6.59)

with the matrix R
Ko = diag(—gaaK' Y, —g K, 0) . (6.60)
The kernel functions K, here are the same that appear in the integral equation for the full
scattering amplitude, with the leading-order contribution given by the bubble diagram,
Fig. 6.3a, and the direct coupling to the dibaryon only entering at next-to-leading order.
As we will discuss in more detail in the next section, it is important here to not use the

approximation (6.36) for the bubble diagram but rather include the full expression given
in the first line of Eq. (6.39).

The new procedure takes into account the EFT expansion and, since K¢ is proportional
to y7,, AEZY is also renormalized correctly. However, the picture is still not complete.
As shown in Fig. 6.13, there are also contributions to the energy shift that arise from
Coulomb-photon diagrams not taken into account so far. For the scattering calculation
we argued that they can be neglected, but we already mentioned at the end of Section 6.2.3
that the power counting has to be modified in the bound-state regime. As we will discuss
shortly, these additional diagrams actually are important and should be taken into account
in the energy-shift calculation. The complete K¢ then becomes a non-diagonal matrix.
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e

(a)

Figure 6.12: Diagrams contributing to the 3H-*He binding energy difference in pertur-
bation theory. (a) Leading-order diagram. (b) NLO-correction.

(a)

Figure 6.13: Additional diagrams contributing to the *H-3He binding energy difference
in perturbation theory. (a) Box diagram. (b) Triangle diagram.

6.5.2 Nonperturbative calculation

In Ref. [179], Ando and Birse calculate the *He binding energy in pionless EFT by using a
nonperturbative framework that involves the full off-shell Coulomb T-matrix. As already
discussed by Kok et al. in Refs. [193, 194, the latter complication is not actually necessary
in the bound-state regime. In this section we carry out a calculation analogous to that of
Ando and Birse, but only involving Coulomb photons. The resulting equation structure
is still quite complex, but much simpler and in particular easier to handle numerically

than that of Ref. [179].

Diagram scaling in the bound-state regime

At this point it is important to recall from Section 6.2.3 that the Coulomb diagrams
in Figs. 6.3b and 6.3c, which in the following we simply refer to as the box and triangle
diagrams, respectively, are not small per se, but rather that the bubble diagram, Fig. 6.3a,
is enhanced in the low-energy scattering regime due to the Coulomb singularity at zero
momentum transfer. That effect is particularly prominent in the inhomogeneous part of
the integral equation, where in the on-shell limit one directly hits the Coulomb pole and
the expression is only rendered finite by the regulating photon mass .

In the bound-state regime this is no longer the case. There are no inhomogeneous terms
that could exhibit a Coulomb peak, and since all loops are dominated by the binding
momentum of the bound-state under consideration, the dibaryon propagators do not
further enhance integration domains of small momentum transfer.

The consequence of all this is that in a nonperturbative calculation of the Helium-3 binding
energy all O(a) Coulomb diagrams should be treated on an equal footing and included
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in the calculation. Furthermore, for the integral in the bubble diagram we have to use
the full expression as given by Eq. (6.34) since the argument allowing the approximation
given in Eq. (6.36) is not valid in the bound-state regime.

Full equation structure

The resulting full equation structure is shown diagrammatically in Fig. 6.14 and given by
the expression

. 2H(A)
fu{l’ 9dd (K + > 9dd <Kc(d) + Kbox)
ful,l]?1 - ~YJar ( 3A2 ) _gdthox
,b in
full’2 —Yat <2Ks + 4?]&9 —29a t(rl)
—guaDa (I + 2)  guDi (3K, + ) 0 <
+ | gaDa (Ks + 2?/@)) gDy <Ks - 2;,{/\9)) fuﬁél
b2
9atrDa (2K + 3,\(2)) — gDy (2K + 3152)) 0 full/
~gaaDa (K + Ko ) 3gaDiBooe  gaDPP (3K, + 3K + 250
+ g Do —guDy (K = Kiox)  —guDP? (Ko + K3 + 2462)
29atDg t(;?) _2gdtDth(r1) —guDi? X 451159)
ful,la}
o 7| e
b2

full’

which, albeit quite complex, is a direct extension of Eq. (6.38). We use a prime in the
subscript to indicate the inclusion of the additional Coulomb contributions. The first of

these, Koy, is initially given by a rather complicated expression but can be simplified
o [195]

Kvox(Es k,p) = —aMy

2 1.2 1. 2_p2_k.
1 {arctan( 2p Kk _kp > —|—arctan< 2k —p-kp )

X3 / dcos 0 Ve My E—icy/(p)? /302Ny Bic\/(kp)?

A
— 6.62
(k2+p2+k-p—MNE—ig)2}’ (6.62)

which is valid up to (negligible) corrections of order A\?. For the triangle-diagram contri-
butions one furthermore finds

Itri (E7 k7 p)
K+p2+k-p— MyE —

1
KS"(E:k,p) = —aMy x 5/ dcos 6
-1

tri

(6.63a)
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K& (B k,p) = KS™(B; k,p), (6.63b)

tri tri

where the superscripts indicate whether the Coulomb-photon exchange is on the incoming
(left) or outgoing (right) side of the diagram. The loop function appearing in Eq. (6.63a)
is given by

i
2y/k?/4+k-p+ p?

i(K2/2 —k-p—p®— N — MyE — i
% 4 log [ 10/ P_p N - MyEE) ) ek i = MyE —ic

log i(k2—|—p2—l—k-p—)\2—MNE—ig)+2>\ (6.64)
VKk2/4+k p+p? S

Itri(E; k7 p) =

The spin and isospin projections for both diagrams are completely analogous to those for
the simple one-nucleon exchange diagram, with additional projection operators from the
photon vertices ensuring that contributions forbidden by charge conservation vanish as

T (T )
x<1+i>+><x<i_ X))
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Figure 6.14: Coupled-channel integral equation for the full scattering amplitude Tg,y
used for the nonperturbative *He calculation. The diagrams representing the three-
nucleon force have been omitted.

X
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6.5.3 Leading-order results

The leading-order results for the *He binding energy are summarized in Fig. 6.15. The
lower dashed curve shows the result of the naive calculation reported in Ref. [1]. The upper
dashed curve is the corrected result according to Eq. (6.59), where only the bubble diagram
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is taken into account at leading order. The effect of including all O(a)) Coulomb diagrams
(that are leading order in the EFT counting) is shown by the lower solid curve, whereas
the upper solid curve shows the result obtained from the nonperturbative calculation
described in Section 6.5.2. For comparison, the experimental *He and *H binding energies
are indicated as dotted lines and the cutoff dependence of the three-nucleon force H(A)
is shown as a thin dashed curve.

i exp. Ep(®H)
841
—~ 8 :\\ ___________________________
> N exp. Ep(®He)
O Los PP A
= 76 S
~— i So
N 45 =~
N
m 72 - ——- from WF (old) RN ~o
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| —— mnonpert. calc.
- A Ando + Birse
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Figure 6.15: Leading-order predictions for the He binding energy as a function of the
cutoff. Lower dashed curve: result from the naive calculation reported in Ref. [1]. Up-
per dashed curve: corrected result according to Eq. (6.59). Lower solid curve: corrected
result including all O(«) Coulomb diagrams. Upper solid curve: nonperturbative result
according to Section 6.5.2. Red triangle: result from Ref. [179]. Dotted lines: experimen-
tal values for the 3H and *He binding energies. Thin dashed curve: cutoff-dependence of
three-nucleon force.

The most striking feature is that the new results, both from the perturbative and the
nonperturbative calculation, do not show the fall-off at large cutoffs that was reported in
Ref. [1] and is shown here by the lower dashed curve. An explanation for why this effect
occurs in the naive calculation will be given below in Section 6.6.

In fact, the new results are both essentially stable beyond cutoffs of about 500 MeV. From
Fig. 6.15 we furthermore see clearly that it is important to take into account all O(a)
Coulomb diagrams in the perturbative calculation. Comparing it with the result from
the bubble diagram alone shows that the box and triangle diagrams together give more
than half of the total energy shift (with the larger part coming from the triangle contri-
butions). The nonperturbative result comes out closer to the experimental value than the
perturbative one, as should be expected from that more complete calculation. Within
the typical 30% uncertainty of a leading-order calculation in pionless EFT, however, they
agree both with one another and with the experimental Helium-3 binding energy of about
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7.72 MeV.10

Finally, the result obtained by Ando and Birse in Ref. [179] by using the full off-shell
Coulomb T-matrix lies almost directly on our curve. The small energy difference of about
0.004 MeV that we obtain at their cutoff A = 380.689 MeV is well below the accuracy of
the calculation and cannot be resolved in the plot.!* This is in perfect agreement with
the conclusion of Kok et al. [193, 194] that a Coulomb-photon approximation should be
well justified in the bound-state regime.

Wave functions

From the new equation structure (6.61) we can also obtain Helium-3 wave functions. In
Fig. 6.16 we show a representative plot, calculated at a cutoff A = 400 MeV. The solid
curves indicate the result obtained from the full equation including all leading Coulomb
diagrams, whereas the dashed curves are obtained by calculating simple trinucleon wave
functions (without Coulomb effects) for a system with the three-nucleon force was fixed
to reproduce the experimental *He binding energy. Both are normalized according to the
condition (6.47) with the interaction K set to the appropriate form.

Comparing the two results one finds that low-momentum modes are suppressed in the
wave functions from the full calculation compared to the simple trinucleon result. This is
in good agreement with what one naively expects from the repulsive Coulomb force: it is
particularly strong for small relative momenta of the charged subsystems, thus lowering
the probability of the system to be in such a state. For the wave function component
where the dibaryon is in a pure p—p state, this does not apply because in that case there is
no Coulomb repulsion between the dibaryon and the third nucleon. Indeed, exactly this
can also be seen in Fig. 6.16.

The wave functions obtained in this manner can be used as nonperturbative input quan-
tities for other calculations, e.g., a consistent determination of the Helium-3 photodisin-
tegration in pionless EFT, which is currently work in progress.

6.6 The Coulomb problem at next-to-leading order

From the promising results at leading order one might to expect that going to next-
to-leading order gives both more precision and better agreement with the experimental
Helium-3 energy. However, as shown in Fig. 6.17, exactly the opposite is the case. The
results from both the perturbative and the nonperturbative calculation are now closer
to—or even above—the triton binding energy, which certainly does not make sense phys-
ically. Moreover, the results are strongly cutoff-dependent again and rise to even larger

0For the perturbative calculation this statement of course refers to the result where all O(«a) diagrams
are included. The error estimate should in this case be taken as 30% of the energy shift (since that is
what is calculated), which then gives a marginal agreement with the experimental value.

1 Ando and Birse use the single cutoff A = 380.689 MeV for their calculation because they find that
the three-nucleon vanishes there. We find this zero of H(A) at A ~ 377.69 MeV instead. This small
discrepancy is most likely due to differences in the numerical implementation and negligible here.
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Figure 6.16: Three-component Helium-3 wave functions calculated for a cutoff A =
400 MeV. Solid curves: result from full calculation involving all leading Coulomb dia-
grams. Dashed curves: result from simple trinucleon calculation with the three-nucleon
force fixed to give the experimental Helium-3 binding energy.

binding energies as the cutoff is increased. From these findings we suspect that our next-
to-leading order calculation is not renormalized properly and that a new counterterm
might be needed to renormalize the system at this order when Coulomb effects are in-
cluded. In the following we investigate the situation in more detail by analyzing the large-
momentum (ultraviolet) behavior of the components that enter in the expression (6.59)
for the perturbative energy shift.

6.6.1 Scaling of the dibaryon propagators

The ultraviolet scaling of the dibaryon propagators can be directly inferred from looking
at their expressions. We consider here the deuteron propagator Dy as a representative
example. At leading order, its scaling is
LO 1 1
D;¥(E;q) «x ~— as ¢ — 00. (6.65)
—/fd—l—\/%qZ—MNE—ie q

Upon going to next-to-leading order, this is multiplied by a factor proportional to the
effective range,

3¢%/4 — My E — K2
DYIO(E5q) = D°(Esg) (14 LA ZINEZIL | (g0

—Ifd—i—\/%qQ—MNE—iﬁ
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Figure 6.17: NLO results for the 3He binding energy as a function of the cutoff. The
curves are as in Fig. 6.15

such that the asymptotic behavior is changed to
DY'O(E;q) ~ const. as ¢ — co. (6.67)

Repeating this procedure in order to get the N?LO and higher-order propagators one even
gets functions that are divergent (~ ¢, ~ ¢*, etc.) in the ultraviolet.

6.6.2 Ultraviolet behavior of the amplitude

In order to find the behavior of the wave functions B(p) introduced in Section 6.4, we
first go back to the corresponding 7-matrix. As discussed, for example, in Ref. [187], for
fixed £ and k the n—d doublet channel amplitude 7(E; k, p) has an asymptotic behavior
determined by linear combinations of p™*~! in the limit p — oo. It is the imaginary
parts with sp &= 1.0064 that give rise to the log-periodic behavior of the three-nucleon
force H(A) necessary to renormalize the system. What is important for the discussion
here is the modulus of the scaling:

1
1T (E; k,p)| ~ 5 8 P oo, (6.68)

Since the derivation of this is independent of the energy E, the same scaling also applies
in the bound-state regime. In particular, it is inherited by the wave functions, such that
also

IB.(p)| ~ ]19 as p— 00. (6.69)
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Figure 6.18: Rescaled leading order trinucleon wave function p-B;(p) (in arbitrary units)
as a function of the momentum p.

Indeed, as shown in Fig. 6.18, one also finds numerically that a plot of p - Bs(p) against p
shows a log-periodic behavior for large p with constant amplitude.

The analysis above is true at leading order. Numerically, we find the approximate scaling

1Bs(p)| ~ |TA(E; K, p)| ~ as p— oo (NLO) (6.70)

e

for the wave functions (and the corresponding 7-matrix) at next-to-leading order. This
behavior is illustrated in Fig. 6.19, where we show the NLO wave functions up to large p,
rescaled with a factor p*/2. As in the leading-order case, this gives an oscillating function
with approximately constant amplitude. Note that the oscillations are more rapid than at
leading order and that the exact log-periodicity is broken at NLO. This is consistent with
the behavior of the three-nucleon force H(A) at next-to-leading order (cf. Fig. 6.17). The
p~3/? fall-off can be seen more clearly in the inlay shown in Fig. 6.19, where the deuteron-
leg component of the wave function (without rescaling) is plotted in a double-logarithmic
scale. The same scaling behavior as reported here was found —and explained based on
analytical considerations—for the scattering amplitude in Ref. [196].

To some extent this faster fall-off at next-to-leading order compensates the scaling of the
dibaryon propagators, but, as we shall discuss below, not by enough to render the result
convergent.
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Figure 6.19: Rescaled NLO trinucleon wave function p*? - By(p) (in arbitrary units) as
a function of the momentum p. The inlay shows the deuteron-leg component (without
rescaling) in a double-logarithmic plot; the dashed line included there has a slope of
exactly —3/2. For the other two components not included in the double-logarithmic plot,
one finds exactly the same behavior.
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6.6.3 Consequences

We first consider the situation in the leading-order case. The scaling of the Coulomb
kernel in Eq. (6.59) is determined there by the large-momentum behavior of the bubble
diagram without the approximation (6.36). From Egs. (6.39) and (6.34) we then have

1
KBk, q) ~ — as ¢ — 0. (6.71)
q

Denoting in the following all loop momenta generically by ¢, we find

2 2 2
~ (1> X <q3> x (1) x (13) ~ 1 w0y 6
q B loops q D q kernel q

for the total scaling of the matrix element. Since this is the only contribution at leading
order, the result for the energy shift converges as the cutoff is increased. From the same
kind of analysis we can understand what led to the cutoff dependence in the result of
Ref. [1]: the kernel V¢ as defined in Eq. (6.57) only falls off like 1/¢* asymptotically such
that the corresponding matrix element is logarithmically divergent.!?

Considering finally the situation at next-to-leading order, we find that we can no longer
avoid a divergent result. For the contribution of the bubble diagram we now obtain

1 2 3 2 0)2 < 1 ) 0
~ (=) x(q X\ )p X | — ~ ¢ (NLO), (673
< q3/2 >B ( >100ps ( )D q3 kernel ( ) ( )

which gives a logarithmic divergence. Even more problematic is the additional contri-
bution entering at this order. For the kernel with the photon coupled directly to the
dibaryon we have the scaling

Y 3\ 0\2 1
- (W)B X (q >loops x (q )D X (?)k | ~ (g, (674)

and thus a linear divergence. This again also applies to the old calculation involving Vi,
which has the same scaling and thus diverges linearly as well. Indeed, by comparing the
dashed curves in Figs. 6.15 and 6.17 we see that the NLO result has a much stronger
cutoff dependence than at leading order, and can understand this now from the analysis
carried out above.

Furthermore, we can explain as well why the new perturbative result at NLO looks almost
like a mirror image of the old one. If we rewrite V¢ in Eq. (6.57) by factoring out a yg’t, the

result is just the next-to-leading order contribution to Kc(d’t), but with the sign reversed.
Due to the faster divergence of this term we barely see the effect of the “leading” bubble
diagram at all.

12The same kind of divergence occurs if the bubble diagram is approximated as in Eq. (6.36). However,
as already mentioned repeatedly, the approximation is not valid in the bound-state regime, and the
divergence that would appear if we were to use it there is just another manifestation of this fact.
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6.6.4 Nonperturbative calculation

Also the result found from the nonperturbative calculation exhibits a strong cutoff de-
pendence at next-to-leading order, with the corresponding curve in Fig. 6.17 even rising
somewhat faster than the perturbative result. From the analysis above one is led to sus-
pect that again the scaling of the involved diagrams is the origin of this effect. In order to
show this, we look at what kind of diagrams are generated when the bound-state integral

equation is iterated.

(a) (b)

Figure 6.20: Two diagrams generated by iterating the bound-state integral equation.

Figure 6.20a shows a two-loop diagram with a Coulomb-photon exchange that is generated
by iterating the equation once. Since the one-nucleon exchange also scales like 1/¢2, we
find a total scaling ~ ¢/? for the diagram by applying the same kind of analysis as in the
sections above. This indeed indicates a divergence.

However, the answer cannot be quite so simple in this case because one directly sees
that the diagram with two subsequent nucleon exchanges actually has the same kind of
behavior. The important point here is that exactly the same situation also occurs in the
system without Coulomb effects, but that every nucleon-exchange is always accompanied
by a vertex from the three-nucleon force. Since according to the renormalization prescrip-
tion this three-nucleon force is adjusted at each cutoff in order reproduce a three-body
experimental input (the triton binding energy, in our case) one effectively also absorbs
the divergence into H(A). By adding then afterwards the Coulomb contributions into the
equation, the problem is reintroduced.

At leading order, the situation is different because there the 1/¢-scaling of the dibaryon
propagators ensures that additional loops generated by iterating the integral equation do
not create divergences, neither due to Coulomb photons nor due to the nucleon-exchange
interaction. The three-nucleon force is needed in this case only to fix the oscillating
behavior of the scattering amplitude [54].

6.6.5 Back to the scattering regime

The above findings also raise some questions concerning the NLO scattering calculation
in the doublet channel. If the assertion that the system is not renormalized correctly is
true, the effect should also show up in the cutoff-variation of the scattering phase shifts.
Indeed, this is what we find. If we perform the phase-shift calculation with cutoffs of the
same size as in Fig. 6.17 (up to A &~ 10000 MeV), the result does not seem to converge.
Instead, the curves shown for four different cutoffs in the upper panel of Fig. 6.21 move
upwards with increasing A.
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One can of course take the stance, as we have done in Section 6.3 by varying the cutoff
only between 200 and 600 MeV, that the cutoff in an EFT calculation should be taken of
a natural order of magnitude (defined by the scale of physics left out from the theory).
According to Fig. 6.15, the leading-order Helium-3 results are indeed converged at these
cutoffs. At next-to-leading order, however, the results are problematic already in that
regime. With this in mind, considering cutoffs far beyond the natural size here and in the
preceding sections is primarily a tool to expose and analyze this behavior more clearly.

Using the full equation structure (6.61) to fit the three-nucleon force such that it repro-
duces the experimental 3He energy turns out to remove the strong cutoff dependence of
the p—d results (without affecting the results for lower cutoffs very much), just as it does
in the n—d system when H(A) is fixed to reproduce the triton binding energy. This is
shown in the lower panel of Fig. 6.21, where we plot the curves analogous to those in the
upper panel obtained by re-fitting the three-nucleon force. For consistency we have used
the same equation structure as in the bound-state regime—including the box and triangle
diagrams and without the approximation of the bubble diagram—in the calculations of
all phase-shift results shown in Fig. 6.21.

We interpret these findings as a further indication that in the p-d system there is a new
three-body counterterm, which at least numerically can be absorbed by refitting H(A).
Such a situation could be accounted for by adding to the three-body Lagrangian (6.6) a
piece proportional to the charge operator (making it vanish in the triton system). Since
it is not forbidden by symmetry, such a term should be there, and the only question is
at which order in the EFT counting it enters. Our results strongly suggest that it is
necessary for correct renormalization at NLO.

This conclusion, however, comes with a caveat. We cannot rule out here that the whole
problem might be due to using the partially resummed propagators in the integral equa-
tions. If there truly is a new counterterm at NLO in the system with Coulomb effects,
it should also show up in a fully perturbative calculation that only includes range cor-
rections up to a fixed order instead of resumming a subset of higher-order contributions.
For the related system of three uncharged bosons this procedure has been implemented
in Ref. [188]. In the charged system, the situation becomes more involved because the
photon coupling directly to the dibaryon introduces a new type of range correction that
has to be treated on an equal footing with kinetic-energy insertions in the propagators.
The new efficient implementation of perturbative range corrections recently presented in
Ref. [197] might be a useful tool to do this.

One contribution entering in such a calculation at next-to-leading order would be the
diagram shown on the left-hand side of Eq. (6.74), but with all propagators and amplitudes
given by their leading-order versions. Counting powers of loop momenta indicates a
logarithmic divergence for this. However, since in principle there could be cancellations
of divergences between different contributions, one cannot draw definite conclusions here
without carrying out the calculation. It will certainly be interesting to investigate this
issue further.
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Figure 6.21: NLO p-d scattering phase shifts for large cutoffs obtained using Eq. (6.61).
Upper panel: H(A) fit to reproduce triton binding energy in the n—d system. Lower panel:
H(A) fit to reproduce 3He binding energy in the p—d system.
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Neglected diagrams and the bubble approximation

Although the main motivation for deriving the full equation structure (6.61) with the
box and triangle diagrams included was the nonperturbative Helium-3 calculation, with
the complete expression at hand we are now also in a position to directly check the
approximations made in the scattering regime. Based on the power counting described in
Section 6.2.3, we neglected there the contributions from the box and triangle diagrams,
and furthermore used the approximation given in Eq. (6.36) for the bubble diagram.

To avoid interference with the problematic situation at NLO discussed in the previous
section, we go back to the leading-order calculation and show in Fig. 6.22 the old band
(as given in Fig. 6.8) together with the result obtained without approximating the bubble
diagram (dashed curve) and furthermore what we get from the full equation with also
the box and triangle contributions included (solid curve). As before, all error bands were
generated by varying the cutoff between 200 and 600 MeV, which is certainly sufficient
at leading order.

The band from the full calculation overlaps well with the old result. In fact, if one takes
the real uncertainty to be the typical 30% of a leading-order pionless EFT calculation, the
two bands are almost indistinguishable. It would be tempting to interpreted this as an
a posteriori confirmation of both the Coulomb power counting for the scattering regime
and the approximation used for the bubble diagram.for if it were not for the result with
only the bubble approximation turned off. Since the corresponding band in Fig. 6.22
is broader and consistently shifted upwards (for momenta k£ below about 70 MeV), it
turns out that really the combination of both things—approximating the bubble diagram
and neglecting the additional contributions—is important to get the same result as from
the full calculation. This indicates that in the latter case there are some substantial
cancellations between the effects of the individual Coulomb diagrams.

A similar effect occurs in the quartet channel. In this case we have additionally calculated
the result with the bubble diagram still approximated, but the box diagram!® already
included. Overall, the results from the individual calculations shown in Fig. 6.7 differ now
not so much at low center-of-mass momenta, but quite substantially above the deuteron
break-up threshold (k 2 52 MeV). Since the error bands would be as narrow as in
Fig. 6.7 and are not essential for what we want to show here, we have used a single cutoff
A = 140 MeV to generate the curves.

The cancellation between the two effects is particularly striking here: the result obtained
with both the bubble-diagram approximation turned off and the box diagram included at
the same time (solid curve) is almost identical to the old result (dotted curve). The same
pattern is found also in the higher-order calculations.

Altogether, these findings cast some doubt on the Coulomb power counting as discussed
in Section 6.2.3. In particular, the good agreement of the N2LO quartet-channel phase
shifts with experimental data that was found based on this counting scheme already in
Ref. [178] appears now to be somewhat accidental, at least at higher energies. Based on
the findings obtained here we propose that instead of using the old counting one should—

I3Note that the triangle diagram does not appear in the quartet channel since there are never two
protons in the intermediate dibaryon.
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Figure 6.22: Leading order p-d doublet channel S-wave scattering phase shifts as func-
tions of the center-of-mass momentum k. Dotted curve: old result as shown in Fig. 6.8.
Dashed curve: result without approximating the bubble diagram. Solid curve: same as
dashed curve with additional Coulomb diagrams (box and triangle) included. Error bands
generated by cutoff variation within 200-600 MeV.
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also in the scattering regime—simply include all O(a) Coulomb diagrams. At the same
time, as already alluded to below Eq. (6.36), one should not use the approximation for
the bubble diagram because it has no physical justification and turns out to have a more
significant impact on the result than naively expected.

This new scheme'* has the advantage of being much more straightforward and at the same
time completely consistent throughout both the scattering and the bound-state regime.
The price to be paid for this is that the calculations to be carried out are quite a bit more
involved. With suitable adaptive integration routines to carry out the S-wave projections
of the Coulomb diagrams numerically, however, the integral equations can still be solved
on ordinary desktop computers.

Having concluded that the original Coulomb counting scheme should be modified raises
the question how important higher-order contributions (in «) really are. Very close to
the zero-momentum threshold they could in principle be quite important. As a first step
to tackle this problem, we will in the next section discuss the calculation of (Coulomb-
modified) proton—deuteron scattering lengths within the current framework.

14We would like to emphasize here that the new scheme does not imply to do strict perturbation
theory in a. The included Coulomb diagrams are still iterated nonperturbatively to all orders, which
means that the perturbation expansion up to O(«) is applied to the kernels used in the Lippmann—
Schwinger equations.
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Figure 6.23: Leading order p-d quartet channel S-wave scattering phase shifts as func-
tions of the center-of-mass momentum k. Dotted curve: old result as shown in Fig. 6.7.
Dashed curve: result without approximating the bubble diagram. Dash-dotted curve:
result with the additional Coulomb box diagram box included (but the bubble diagram
still approximated). Solid curve: same as dash-dotted curve, but without approximating
the bubble diagram. All curves were calculated at a cutoff A = 140 MeV.
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6.7 Proton—deuteron scattering lengths

The optimized numerical procedure outlined in Section 6.2.5 allows us to calculate the
p—d scattering phase shifts down to very low center-of-mass momenta k& and at the same
time effectively remove the regulating photon mass A\ from the calculation. Yet, due to
the absence of experimental phase shift data below k& < 20 MeV there is no real test for
the phase-shift calculation in that regime.

It it thus interesting to extend the calculation to the direct extraction of threshold param-
eters, i.e., proton—deuteron scattering (S-wave) scattering lengths. They are defined by
the Coulomb-modified effective range expansion (4.24), which we write here in the form

1
C2 ok - cot baige (k) + v h(n) = g + O(k?) (6.75)
with
Y =Ypa=4aMy/3 and n= %. (6.76)

In the following, since we are only considering S-waves, we will omit all £ = 0 indices. For
clarity, we furthermore denote the scattering length as a, 4 and use superscripts “4” and
“2” to indicate the quartet- and doublet channel results, respectively.

The first approach that comes to mind for applying Eq. (6.75) is to simply insert Coulomb-
subtracted phase shifts dgqir(k) in with the photon mass already extrapolated to zero.
However, this is not a very good idea. To see this note that the use of the regulating
photon mass is not the only approximation in the calculation. There is also the finite
cutoff and, more importantly, the fact that following the EFT power counting we only
include a certain set of Coulomb contributions in the calculation. Effectively this means
that our calculation does not directly correspond to using the Coulomb potential «/r in
configuration space. To solve this problem we propose that it is better to first calculate
scattering lengths from Eq. (6.75) for several finite photon masses and then use those
results to extrapolate a, 4 to A — 0.

6.7.1 Numerical calculation of the Gamow factor

The Gamow factor ), entering in Eq. (6.75) is quite strongly affected by the photon-
mass screening. Using the analytic formula for the unscreened Coulomb potential given
in Eq. (4.12) would result in a values that are far too small. Therefore, in order to carry
out the procedure just described we need to extract the correct approximation for the
Gamow factor from the numerical calculation in a consistent way. To this end it is useful
to recall from Chapter 4 that, if wl(j)(r) denotes the exact three-dimensional scattering
wave function for the pure Coulomb potential, then

02 = C2o(k) = [ui (r = 0)]%. (6.77)

This means that it should be possible to calculate the appropriate expression for the
Gamow directly from the scattering wave function (for a given center-of-mass momentum
k) corresponding to our approximate Coulomb potential.
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In fact, this is exactly what one should do. In Ref. [17], van Haeringen and Kok give a
general version of the modified effective range expansion for systems where the interaction
is given by the sum of a long-range potential V;, and a short-range interaction Vs. It can
be written in the form

| Fo(k)|2K* 1 (cot 6,7 (k) — 1) + Mo(k), (6.78)
where 027 (k) is the subtracted phase shift
6 =67 — oF . (6.79)

This is just what we obtain from the numerical calculation, where Vj, is given by the
approximate Coulomb potential and Vg is the short-range EFT interaction.

Furthermore, F;(k) in Eq. (6.78) is the Jost function associated with Vi, whereas M;(k)
is a rather complicated expression that involves derivatives of the corresponding Jost
solution.!® The important point is now that for £ = 0 we simply have [24]

[Fo(k)[72 = lim, 0 [ ()2, (6.80)

where w&)(r) is the S-wave component of the scattering wave function, c¢f. Eq. (2.37).

From Chapter 2, Eq. (2.49), we recall that the momentum-space scattering wave function
can be expressed in terms of the T-matrix. In our present conventions (see the remark at
the beginning of Section 6.2.4), we have

2
() 2m o o 2uZyT (Ep k)
k,0 (p) - k2 5(k p) /432 . p2 + 18

where T (E;p, k) is the S-wave projected T-matrix. Fortunately, this is exactly what we
already calculated in order to obtain the Coulomb-subtracted phase shifts. From the
expansion of the plane wave e!*” in terms of Legendre polynomials,

, BE=E(k), (6.81)

oo

eik~r _ eikrcos@ _ 2(26 + 1) izjg(k”l")Pz(COS 0) , (682)
=0

where j,(z) is the spherical Bessel function of order ¢, one finds that the partial-wave
projected wave function in configuration space can be obtained from the momentum-
space version as'®

I "y
1({,?(7“)2272 /O dpp* i jo(pr)y) (p) (6.83)

We only need this here for ¢ = 0, of course. Using lim,_, jo(pr) = 1 and cutting off the
momentum-space integral at p = A (since we only know the T-matrix up to that value),
we arrive at

po [t dpp?

Folk) T =) (r=0)= 1+ 5

71'2 ; p —k’Q ZOT<Eap7k>7 (684)

15The Jost solution f(k,r) is a solution of the radial Schrédinger equation involving V7, that fulfills the
boundary condition lim, ., €*" f(k,r) = 1. The Jost function F,(k) is then defined as the Wronskian
W(f, ), where ¢ is a solution determined by ©(0) = 0 and ¢’(0) = 1. For details see, for example,
Ref. [24].

6The inverse transformation is 1/}(+)( =4r fooo drr2(—i)%je(pr) (Jr)(r).
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which is straightforward to evaluate by numerical principal-value integration. Inserting
for T the result of the calculation involving only the pure Coulomb diagrams and squaring
the right-hand side of Eq. (6.84) gives the desired Gamow factor consistently extracted
from the numerical EFT calculation. Summarizing the above results, we write it as

2

ZoTe(E;p k)| (6.85)

2My [t dpp?
Ci/\ - ’1 + /O

32 p? — k% —ie

where we have added the additional subscript “A” to distinguish it from the expression
for the unscreened Coulomb potential. In writing Eq. (6.85) we have inserted the reduced
mass u = 2My/3 for the p—d system and set T = 7., where the latter is defined by
Eq. (6.40). With this, the final form of the Coulomb-modified effective-range expansion
that we use for the numerical calculation reads

1
C2 \ k- cot bai (k) + v h(n) = ——— + O(k?). (6.86)

ap-d

Note that in principle also the term involving i () should be modified due to the screening.
Unfortunately, this quantity cannot be extracted from the numerical calculation in the
same simple way as the Gamow factor. Lacking a better expression, we will thus use h(n)
as defined in Eq. (4.26). Since it vanishes at k = 0, this is not a problem for the extraction
of the scattering length, but it means that we cannot consistently extract effective ranges
at the same time.

6.7.2 Bubble diagram with full off-shell Coulomb T-matrix

Since the Coulomb interaction is strongest directly at threshold, the scattering-length
calculation should be a good testing ground for checking the influence of higher-order
Coulomb diagrams that we have not taken into account so far. Rather than simply
including O(a?) diagrams (with two Coulomb-photon exchanges) to estimate the effect of
higher-order terms, we adopt the approach of Ando and Birse [179] and directly include
the full off-shell Coulomb T-matrix in the diagrams. Effectively, this resums all subsequent
Coulomb-photon exchanges for a given topology. The resulting diagrams are shown in

[] ) N

(a) (b) (c)

Figure 6.24: Diagrams involving the full off-shell Coulomb T-matrix (indicated by the
blob).

In Ref. [179], Ando and Birse only consider the bound-state regime. Without going into
further details, they argue that the finite extent of the wave functions helps to regularize
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the Coulomb singularity and thus use an unscreened interaction. Since we cannot ap-
ply this approach in the scattering regime, we use here the partially screened Coulomb
T-matrix T, introduced in Section 4.4.1. We assume that this gives an appropriate
description for small photon masses A because in the limit A — 0, T~y converges to the
exact (unscreened) Coulomb T-matrix T¢.

The most important contribution is again given by the “full bubble diagram” shown in
Fig. 6.24a. Its spin- and isospin structure is exactly the same as for the leading expression
with just a single Coulomb-photon exchange. Only the loop integral, which before could
be evaluated analytically, now has the more complicated form

e (B Kk, p) = / dg¢® Tex (i\/ 3¢%/4 — MyE; Kk, P)

0
1 . 2 d¢/
X/_ldcosﬂ/o abTc cond) (6.87)

with
a=k +kgcost +¢* — MnyE, (6.88a)
b=p*+pgcosfcost +¢* — MyE, (6.88b)
¢ = pgsinfsinf . (6.88c¢)

Here, as in Egs. (6.62) and (6.63a), € is the angle between the vectors k and p, whereas
0" denotes the angle between k and the loop momentum q, and the azimuthal angle ¢’
enters through rewriting the angle between p and q. It can be integrated over analytically

with the result )
T d¢/ 2
/ ¢ __ (6.89)
o b4c-cosg b2 — 2

for b > ¢, which, according to Egs. (6.88) is certainly fulfilled for the scattering-length cal-
culation we are interested in. Only for calculations above the deuteron breakup threshold,
where the energy E is positive, one would have to be more careful here.

Setting
cost =x = sinf =1 — 22, (6.90)

the remaining angular integral has the form

! dx
/ (6.91)
1 (A+B-2)VC+D -2+ E-a?
with
A=k +¢ - MyE, (6.92a)
B = kq, (6.92b)
C = (" +¢" — MyE)* — p*¢*(1 — cos® 0) (6.92¢)
D = (p* +¢* — MyFE) x 2pqcosf (6.92d)
E=p'q. (6.92¢)
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Using integration by parts, this can be done analytically. The final result for the full-
bubble kernel function is then!'”

u 1t
Ko (Bik,p) = ——— x = / deos 0 T, . (E; Kk, p) (6.93)
-1
with

e (3 k. p) =/ dg* Tex (i\/3q2/4— MyE;k, p)
0

Ll log(A + B) - 10g<B(20 + D) — A(D +2E) + zﬁm) |
VF A-B B(2C — D) — A(D —2E)+2VF\C+E — D
(6.94)
where in addition to Eqs. (6.92) we have defined
F = B*C + A’E — ABD. (6.95)

The remaining momentum integral and the S-wave projection in Eq. (6.93) have to be
carried out numerically. To evaluate the Coulomb T-matrix we use the expression in
terms of hypergeometric functions derived in Section 4.4.2, which can be implemented
efficiently with the fast routines for o F} from Ref. [198].

Unfortunately, the above integrals cannot be used to simplify also the expression for the
full box and triangle diagrams shown in Figs. 6.24b and c. In those cases, the Coulomb
T-matrix also depends on the loop momentum, which means that the angular integrations
can no longer be carried out analytically.

Finally, as shown in Fig. 6.25, the full Coulomb T-matrix directly between the dibaryons
and the proton corresponds to an infinite series of subsequent Coulomb-photon exchanges.
By including (at NLO and higher orders) the tree-level diagram in our integration kernel
we already generate this term automatically. It is thus important not to include the
diagram on the left-hand side in Fig. 6.25 explicitly, as otherwise we would be double-
counting some contributions.

IS I

Figure 6.25: Full Coulomb T-matrix between deuteron and proton generated by subse-
quent Coulomb-photon exchanges.

6.7.3 Results

In the following, we give results for proton—deuteron scattering-lengths and study their
dependence on the different variants in which the calculation can be carried out (expression
for the bubble diagram and inclusion of other contributions).

1"Note that the expression in Eq. (6.94) does not directly reduce to Zyupple as defined in Eq. (6.34)

when the Coulomb T-matrix is replaced with a single photon exchange. Rather, in that limit, the kernel

function Kéfﬁil)(E; k,p) goes over into the LO-part of Eq. (6.39), including the overall prefactor —aMy.
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With the expression for the full bubble diagram discussed in the previous section, the
calculation already takes almost a day per data point,'® which is just about feasible when
run in parallel on a couple of machines. If we also wanted to include the diagrams shown
in Figs. 6.24b and c, which require at least one more numerical integration, the current
approach would very inefficient. We will thus only include their one-photon exchange
equivalents as shown Fig. 6.3 along with the full bubble diagram. Albeit somewhat
inconsistent, this should still be a good approximation, the impact of which we will
discuss further after showing the results. Due to the problematic situation with the
doublet-channel calculation beyond leading order (see Section 6.6.5), we focus here on the
quartet channel.

Quartet channel

We perform the numerical calculations for three different cutoffs A = 120, 140, 160 MeV
and for photon masses A between 0.2 MeV and 1.2 MeV. For each extraction of the scat-
tering length we calculate the left-hand side of Eq. (6.86) for a center-of-mass momentum
range k € [2,4] MeV. Fig. 6.26 shows a representative plot. To the data points we fit a
polynomial of the form

f(k’) =29+ $1l€2 + $2k4 (696)

in order to extract the scattering length as a, 4 = —1/x¢. As noted in Section 6.7.1, we
cannot also extract the effective range from x; because the modification of h(n) due to
the finite photons mass is not taken into account in our calculation. The k* term has
been included to allow for some curvature.

In Fig. 6.27, we show the the photon-mass and cutoff dependence of the results at N2LO
(using, as in the phase-shift calculation presented in Section 6.3.1, the fully resummed
deuteron propagator since we keep the cutoff below its unphysical second pole). Since
the A-dependence is clearly linear, it is no problem to extrapolate the scattering lengths
to the zero-screening limit (A — 0). The results, also for the LO- and NLO-calculations,
are shown in Table 6.2.

Calculation | aj ; /fm (LO) | aj ;, /fm (NLO) | a} , /fm (N*LO)

-
bubble approx. 9.31-9.48 10.51-10.67 12.39-12.58
no bubble approx. 8.93-9.01 9.82-9.85 11.52-11.56
bubble + box 8.40-8.48 9.29-9.31 10.89-10.92
full bubble + box 8.32-8.39 9.16-9.17 10.69-10.72

Table 6.2: Quartet-channel results for the p—d scattering length.

One can see that the bubble-diagram approximation has quite an impact on the result.
Without the approximation, the scattering length is significantly shifted down towards
smaller values and that its cutoff dependence becomes much weaker. Unlike the situation
encountered for the scattering phase shifts above the deuteron breakup (see Section 6.6.5),

18This statement refers to performing the calculation for a given cutoff and photon mass on a reason-
ably modern (as of the writing of this thesis) desktop computer.
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Figure 6.26: Coulomb-modified effective range plot for quartet-channel p-d scattering.
The y-axis shows the left-hand side of Eq. (6.86); the line is the result of a fit to the
formula given in Eq. (6.96).
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Figure 6.27: Photon-mass dependence of the quartet-channel p—d scattering length at
N2LO. The bands were generated by varying the cutoff between 120 and 160 MeV. Dotted
curve: result with the bubble diagram approximated. Dashed curve: result without
approximating the bubble diagram. Solid curve: result with the additional Coulomb box
diagram box included (and without approximating the bubble diagram). Long-dashed
curve: same as solid curve, but using the full bubble diagram involving the off-shell
Coulomb T-matrix.
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the additional inclusion of the box diagram here does not compensate the unapproximated
bubble diagram to give back the old result. Rather, it moves the scattering length further
towards smaller values. Finally, the effect of using the full off-shell Coulomb T-matrix in
the bubble diagram is surprisingly small and gives only a 2% change (at N?LO) in the
result.

The reason for the latter observation might be that for consistency the full bubble diagram
is also included in the pure Coulomb equation used to calculate the Coulomb-subtracted
phase shifts and the Gamow factor. Since in principle this might give some cancellations,
we cannot unambiguously conclude that using the full off-shell Coulomb T-matrix only
has a small effect on the scattering length. To investigate this issue further, it might be
interesting to also use the full T-matrix in box diagram. Although from the fact that
this diagram is not enhanced by the Coulomb pole one should expect it to be only a
small correction, it might still be interesting to include it because it only enters in the full
(strong 4+ Coulomb) calculation and not in the pure Coulomb equation. To proceed in
this direction however, requires more sophisticated numerical methods to deal with the
multi-dimensional integrals. Monte Carlo methods might be a useful tool to deal with the
problem.

Another issue that has to be pointed out is that the changes from NLO to N?LO in Ta-
ble 6.2 are somewhat larger than those from LO to NLO. This is not what one would
expect from the EFT expansion parameter ~ 0.3 and certainly has to be investigated fur-
ther. With that and the above discussion in mind, the results for the scattering lengths
here should clearly be regarded as preliminary. For this reason, we have given the un-
certainties only as far as they are created by the cutoff variation and not attempted to
also propagate the errors from the fits used in the extraction. At least for a precision
calculation at N?LO, where from the EFT expansion we would expect an accuracy of
about 3%, a more sophisticated procedure might be advisable. Until the role of the full
Coulomb T-matrix in the box diagram is settled, however, we make a conservative error
estimate here and use the combination of the two dashed bands in Fig. 6.27 (extrapolated
to A = 0) to summarize our quartet-channel result as

ay 4 =11.1+0.4 fm. (6.97)

Incidentally, this is nicely compatible with the experimental determinations quoted in
Table 5.2 in Chapter 5 that give a;‘;d between 11 and 12 fm. A more recent analysis and
other theoretical calculations based on realistic nuclear potential models, however, have
found somewhat larger values around 14 fm [199]. Furthermore, Fig. 6.27 suggests that
with the inclusion of the box diagram, our results come out on the smaller side of the
range given in Eq. (6.97). It will certainly be interesting to study this issue further.

Doublet channel

With the currently unclear situation in the doublet channel according to Sections 6.6
and 6.6.5, we only briefly discuss the extraction of scattering lengths for that case here.
Since based on the phase-shift calculations we expect a rather strong cutoff dependence
in this channel, and because to be consistent we can at best go up to NLO (due to second
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Figure 6.28: Photon-mass dependence of doublet-channel p—d scattering length at NLO.

three-nucleon force at N2LO that is not included in our calculation ), it does not make
sense at present to investigate here the effect of the full Coulomb T-matrix.

Instead, in order to perform a calculation that is at least internally consistent, we follow
the approach that gave the lower panel of Fig. 6.21, i.e., we use the same equation
structure as for the bound-state calculation and fit the three-nucleon force to reproduce
the experimental He-3 binding energy (instead of fitting the equation without Coulomb
contributions to the triton system).

The NLO-result is shown in Fig. 6.28 for cutoffs between 200 and 600 MeV. Compared to
the quartet-channel case, there is now some non-linearity in the photon-mass dependence,
but still the curves are essentially flat. At the same time, the cutoff dependence is much
stronger, but beyond 300 MeV the result is quite stable around ale ~ 0.3 fm. At leading
order, the situation is almost the same, but the cutoff dependence is somewhat larger (as
expected from the EFT expansion). In that case, for larger cutoffs we find a scattering
length that is approximately zero or slightly negative, but since the fit formula as in
Eq. (6.96) becomes unstable in that regime, it is difficult to make a more quantitative
statement here.

What we report here, of course, reflects the difficulty in determining the p—d doublet
channel scattering lengths that we already mentioned in Section 5.5.2. Our results are
at least qualitatively compatible with other determinations in finding mostly very small
values for a;d. Improving upon this would first require solving the question of range
corrections and correct renormalization beyond leading order in pionless EFT calculations
with Coulomb effects included.
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6.8 Summary and outlook

In this chapter, we have studied several aspects of the proton—deuteron system in pion-
less effective field theory. Using an optimized integration mesh we are able to calculate
Coulomb-subtracted scattering phase shifts even at very low center-of-mass momenta,
were the Coulomb interaction becomes highly non-perturbative.

In the bound-state regime, we have corrected our perturbative calculation of the 3He—
3H binding energy difference from Ref. [1] and additionally performed a nonperturbative
calculation of the 3He binding energy that agrees very well with the result with the
result obtained by Ando and Birse [179] although we have only used Coulomb photons to
include electromagnetic effects. Furthermore, at leading order both the perturbative and
the nonperturbative calculation give results that are, within their respective uncertainties,
in good agreement with the experimental value for the *He binding energy.

At next-to-leading order, the results of both calculations exhibit a strong cutoff depen-
dence, indicating that the calculation is not renormalized properly. We have analyzed this
situation by studying the ultraviolet behavior of the diagrams entering in the calculation
and argued that a new three-body counterterm might be necessary to renormalize the
charged doublet-channel system at NLO. To come to a more definite conclusion about
this, one should carry out a fully perturbative calculation that does not resum any range
corrections.

Our findings are supported by a closer examination of the doublet-channel scattering
phase shifts, which also turn out not to converge when the cutoff in the calculation is
chosen very large. This cutoff dependence however goes away when the three-nucleon
force is fitted to reproduce the experimental *He binding energy, which we interpret as
further evidence for a new charge-dependent counterterm. Since the modified fitting of
the three-nucleon force requires using the same equation structure in the bound-state
and scattering regime, we have critically reviewed the Coulomb power counting of Rupak
and Kong [178] and come to the conclusion that it might be better to simply include all
Coulomb diagrams of a given order in . This approach is simpler and more consistent
because it treats the scattering and the bound-state regime on an equal footing.

First results for proton—deuteron scattering lengths—obtained using a procedure that
applies the new counting scheme and consistently extracts the Gamow factor for the
Yukawa-screened Coulomb potential from the same calculation that gives the Coulomb-
subtracted scattering phase shifts—look quite promising. It will certainly be interesting
to follow this approach further and more closely investigate the role of nonperturbative
Coulomb effects. To include the full off-shell Coulomb T-matrix in all relevant diagrams,
however, requires more sophisticated numerical methods to deal with multi-dimensional
integrals.



Chapter 7

Concluding remarks

In this thesis, we have covered a number of different topics, ranging from the study of
finite-volume effects on bound states with angular momentum to formal investigations
of causality and unitarity constraints on quantum systems with finite-range interactions
and additional long-range tails, and finally to practical calculations of proton—deuteron
scattering. All these loosely-connected things are tied together by the concepts of low-
energy universality, effective field theory, and/or modifications thereof due to long-range
forces.

In many parts of this work, the radial Schrodinger equation plays a prominent and essential
role. Since physical processes at low energies do not probe the short-distance physics of
the underlying interaction, it is often possible to reduce their theoretical description to an
effective picture with finite-range interactions. This makes it possible to draw conclusions
based only on the analytically-known tails of the wave functions and to encode the short-
range details in a limited set of parameters given, for example, by the effective range
expansion.

In Chapter 3 we have shown how this approach directly leads to a universal relation for
the volume dependence of two-body binding energies. In this case, the details of the
underlying short-range interaction only enter via the physical bound-state properties (the
binding energy and the asymptotic normalization constant), allowing their extraction from
numerical calculations in periodic boxes of different sizes. We have generalized this result
to states with arbitrary orbital angular momentum, to two-dimensional systems, and also
to the case of twisted boundary conditions that appear when one considers the scattering
of composite particles in finite periodic boxes and then lead to correction factors that
have to be taken into account in such calculations.

For the remaining part of this thesis the focus has been on systems of charged particles,
where the Coulomb force plays a very important role at low energies. A vast number
of analytic results have been obtained over the last century, a selection of which we
have reviewed in Chapter 4. Despite this broad understanding, the Coulomb potential is
notoriously difficult to handle due to its long-range nature.

It would certainly be interesting—in particular for applications in nuclear physics—to
extend the finite-volume study of Chapter 3 to bound states of charged particles. Having
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read Chapter 4 of this thesis one might think that this is just a matter of expressing the
asymptotic wave functions in terms of appropriate Whittaker functions. Unfortunately,
one runs into problems at a much earlier point of derivation because the very slow large-
distance fall-off of the Coulomb potential forbids a straightforward implementation of
periodic boundary conditions. To deal with this problem it might be interesting in the
future to either adopt techniques from solid-state physics (e.g., Ewald summation or a
similar approach) or alternatively try to study screened Coulomb interactions in periodic
boxes.

The derivation of causality bounds for charged particles given in Chapter 5 is conceptually
straightforward and not fundamentally different from the pure finite-range case, but turns
out to be quite involved when going into detail due to the complex analytic structure of
the Coulomb wave functions with their “entanglement” of radial position and momentum
variables. The final result for the case with Coulomb tails is ultimately very similar to
what one finds for pure finite-range interactions. Interestingly, the situation is different
for systems with van der Waals tails. Although these are still long-ranged, they fall off
very fast and should thus be expected to give a result even closer to that for the system
without long-range interactions. Yet, the result in this case is fundamentally different,
an effect that can be traced back to the highly singular behavior of the van der Waals
potential at short distances. It will certainly be interesting to study this behavior further
also for other singular power-law potentials or perhaps directly from a more general point
of view.

While causality bounds—with or without long-range forces—are primarily interesting
from a formal point of view, they may also serve as a guide to improve the convergence of
calculations in halo effective field theory or similar approaches. It has to be stressed here
again, however, that the derivation of the causality bound is based on the assumption
of an effective two-body system with energy-independent potentials. As such, its direct
applicability is somewhat limited.

In Chapter 6 we have critically revised and extended earlier calculations of proton—
deuteron and 3He observables in pionless effective field theory and found that the question
of how to include the effects of the Coulomb interaction does not seem to be as settled
as previously believed. With our numerical methods we are able to study both p-d scat-
tering at very low energies as well as the bound-state regime. In the latter case we find
good agreement of our leading-order result for the *He binding energy from both per-
turbative and nonperturbative calculations, but encounter problems in calculations at
next-to-leading order in the EFT power counting. Upon closer inspection the problem
also shows up in the scattering regime and can be avoided by fitting the existing three-
nucleon force to the 3He system. We interpret these findings as evidence for a missing
charge-dependent counterterm that is needed to correctly renormalize the p—d doublet-
channel system at NLO. To come to a definite conclusion about this, however, it will
be necessary to carry out a calculation that incorporates range corrections in a strictly
perturbative manner.

Independent of that question we propose based on the new results that previously applied
Coulomb power counting in pionless EFT should be given up in favor of a simpler scheme
that includes all Coulomb contributions up to a given order at the same time and thus
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treats the scattering and bound-state regimes on an equal footing.

Finally, we present a calculation of proton—deuteron scattering lengths in pionless EFT.
These observables are interesting because the Coulomb interaction is particularly strong
directly at the zero-momentum threshold. As a first step to study this, we have per-
formed a calculation that involves—at least in the supposedly most important Coulomb
diagram—a “partially screened” expression for the full off-shell T-matrix that we dis-
cussed previously in Chapter 4. While the results obtained so far look quite promising
when compared with older experimental determinations of the scattering lengths, a more
recent analysis and other theoretical calculations have found somewhat larger values. It
will certainly be interesting to pursue this issue further.
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Appendix A

The Coulomb wave functions of
Bollé and (Gesztesy

Generalizing results first obtained by Lambert [121], Bollé and Gesztesy [122] define the
Coulomb wave functions

FO(p,r) = 7’%+me_im1F1(% +m—k,1+2m;z) (A.1a)
and
L(3+m—k T
GV (p,r) = %(zmﬁ 3 ) (2ip)2m ra e U (L 4o — k14 2m;z) . (A.lb)

where, in our case, n = 2¢ + 3 and m, k, z are as defined in Eqgs. (4.5) and (4.6). Using
Eq. (4.14) in the form®

2l ™2T(0+ 1+ in)

Cne = 20+ 1) ! (A-2)
one finds that
1
FO(p,r) = FY A3
n <p7 7“) p”lCn,g L (T) ( a)
and
GO (p,r) = p'Cys |G (1) =1 (r)] (A.3b)

It is shown in Ref. [122] that Y (p,r) is analytic in p?. Furthermore, from Egs. (3.16),
(3.17) and (4.1) in that paper it follows that

GO (p,r) = CO(p.7) + (vhelp) = 2911 C2,) - FO(p, 1), (A.4)

where hy(p) is the function defined in Eq. (4.29), and where Gl (p,r) is analytic in p?.

!This is Eq. (5.1) in Ref. [115]. From Eq. (3.1) in the same reference one directly sees that this is
consistent with Eq. (4.30) in Section 4.2.
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In Eq. (4.3) of Ref. [122], Bollé and Gesztesy give an explicit expression for G\ (p, 7).
Since there are two typos in their original equation,? we quote the whole expression for
completeness. Slightly altering the notation to match our conventions, we have
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n=3 "
+ Re{ (n— 2)’1(2119)”’27”(”’1)/2 e ipr Z
q=0

valid for any odd n > 3 and where the sum over s in the fourth line is defined to give zero
forn =3 and k£ = 0.

2The iy/k in the first line should be iy/(2k) and the (¢ + 1) in the last line should be I'(q + 1).



Appendix B

Explicit expressions for the causality
bound function

In this appendix, we give explicit expressions for the Coulomb causality bound functions
b¥ (r) and bS (r). They were derived with the procedure outlined in Sections 5.3.4 and 5.3.5.

B.1 Repulsive case, v > 0

The ¢ = 0 result for a repulsive Coulomb potential is given by Eq. (5.45). For £ =1, we
get

r ) 5) 3
vC(r) = 55 (af) [37%2 \Fy (5;3, 6;477") — 20y 1 F (5; 2,5;477“)
1
+120,F (—
2
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and for ¢ = 2 the result is
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B.2 Attractive case, v <0

For an attractive Coulomb potential, the ¢ = 0 result is given by Eq. (5.46). The ¢ =1
result reads

6r? 5 3
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and for ¢ = 2 one finds
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Appendix C

Equivalence of ANC relations

In this appendix, we demonstrate the equivalence of our ANC relation derived in Chapter 5
to the one reported by Sparenberg et al. in Ref. [143].

Their ANC relation, translated to our notational convention, reads

- JORAS By Pe
‘A’F(€+1+ﬁ) R K ag . (C.1)

The tilde on the a$ is there to indicate that Sparenberg et al. use the convention for
the Coulomb-modified effective range expansion of Refs. [124, 127, 128], which, as noted
at the end of Section 4.2, differs from the one used in this work by an overall factor
[2¢01/(2¢ + 1)!]?. Combining equations in Ref. [143] and again matching to our notation,
one finds that

l

1 2 2 2 20+1 N 20 _ 1 1~C 2
WH(S +17) [Cn,op cot d¢(p) +7p h(ﬁ)} e torir e (C.2)

s=1

Note that this is just Eq. (4.31) with the prefactors combined and the imaginary parts
canceled. More explicitly, we have

n2t \? 20+ 1)
~C— _ C ~C: B S — ¢
a; = ((2€+1)!) a; , Ty ( T3t ) ry o, etc. . (C.3)

At the end of their derivation, Sparenberg et al. eliminate the effective range in favor of
the scattering length. Without invoking this final step their relation reads

w204+ 1)) (& At T
Al (e 0T C.4
Arerirn = U2 P spere ’ (C-4)

where we are now using our convention for the effective range expansion. With the
definition of CN’M from Eq. (5.79) and the values for AZ, from Table 5.3 one sees that at
least for £ = 0, 1,2 this is exactly equivalent to our Eq. (5.87) with the O(x?) set to zero.
In order to prove the equivalence for arbitrary ¢ one would need a general expression for
AZ,. This, in turn, requires knowledge of the constant terms in W|gs, go](r) for arbitrary
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¢. It would thus probably be more interesting to turn the argument around, ¢.e., take
the equivalence of the relations for granted and derive from it a general expression for
the constant terms in the Wronskians. The only additional ingredient one would need for
this procedure is a general series expansion for the Meijer G-functions that arise from the
integral of go(r)2.



Appendix D

Bound states in nonrelativistic
effective field theory

In this appendix appendix we discuss the trinucleon wave functions used in Chapter 6
from a very general point of view on bound states in nonrelativistic field theory. In
particular, we give a detailed derivation of the correct normalization condition for the
effectively energy-dependent one-nucleon-exchange interaction.

The material presented here extends and—in some places—corrects that given in an
analogous appendix in the author’s diploma thesis [169]. A considerable overlap with the
previous work is accepted in order to make the discussion here self-contained.

D.1 Simplified nucleon—deuteron system

Although the results presented in the following are of a general nature and can easily also
be applied to other nonrelativistic field theories (e.g., the EFT for cold atomic systems
with large scattering length [28]), we work here, for the sake of an explicit illustration,
with a model set up to resemble the doublet-channel nucleon—deuteron system in pionless

EFT.

Neglecting the isospin degree of freedom and thus also the virtual spin-singlet state, we
write down a model Lagrangian of the form

2

v
— N (i
L N (180+2MN

) N — o4 d'd +ya [@" (NTPIN) + ] (d.1)

with ,

P = 7 090y . (D.2)
The notation here is the same as in Chapter 6. From there we also quote the projection
onto the doublet channel. If (OY), is a generic object with spin-1 index i and spin-1/2

index «, then

(0Ya = (0")2 (O (D.3)
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gives the projection onto the spin-doublet channel. The (renormalized) nucleon and
deuteron propagators are given by

5o
A= F = (D4)
Po — ghr i€
and
Nip) = = - . )

_ 5
Myya —Ka + \/%2 — Mypo — ie
and the only interaction is given by the doublet-projected one-nucleon-exchange diagram
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0, X, Po, P; = = .
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because for simplicity we also neglect the tree-nucleon force. Note that the expression
above corresponds to kinematics where the center of mass of the two particles is at rest.
In the following discussion we will work in a general frame, where K = K(k, p; P) with
k = (ko,k), p = (po,p), and P = (Fy,P) = (E,P), but whenever we refer to the explicit
form of the interaction we only need the kinematics as in Eq. (D.6).

D.2 Bethe—Salpeter equation

To start the discussion, we derive the Bethe-Salpeter equation for our model nucleon—
deuteron system, being a little more careful than in [169] and, as already there, closely
following the derivation in Lurie’s textbook [200]. The central object of interest is the full
two-body nucleon—deuteron propagator (Green’s function)

(V)3 1,203 w3 m0) = {QIT (@ (@) N (@) (z)Ni()) 1), (DT)

where |Q2) and T'(- - - ) denote the interacting vacuum of our effective field theory and the
time-ordering operator, respectively. Diagrammatically, we have

X3 T
(Gij)g(arl, To; T3, Tq) = ) (D.8)

Xy T2

We furthermore define the Bethe-Salpeter wave functions

(Vpe)” (21, 22) = (QIT (& (1) N (2)) | E, P 1) (D.9a)
(Vpo)alrs, za) = (B, P, a|T (d"(x1) Ni(22)) [2) (D.9b)

where |E, P, a) denotes a two-particle eigenstate with energy £ and momentum P of the
Hamiltonian corresponding to our model Lagrangian. The index a collectively denotes
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the eigenvalues of any other operators (possibly) needed in order to form a complete set
of states.

For notational, we always work with the doublet-projected quantities like

G(71, 29573, 74) = (Ui)gl(Gij>§:($17$2;$3,$4)(Uj)g/ _g=1 (D.10)

in the following, i.e., all equations are to be understood with the doublet projection
already applied. By using Wick’s theorem and the general perturbation expansion we
find the (inhomogeneous) Bethe-Salpeter equation

G(Jil,ﬂh; T3, 5174) = Go(ﬂﬁl,ﬂfz; T3, 5174) + /d421 d422 d423 d4Z4 Go(l’h T2; 21, 2'2)
X K (z1, 225 23, 24) G(23, 245 3, 24), (D.11)

with
Go(w1, 1233, 14) = Dg(w1, 03) AN (22, 74) - (D.12)
Diagrammatically, Eq. (D.11) can be represented as

T3 X T3 z3 z2 T

XT3 T
= + . (D.13)

T4 To Ty X2

D.2.1 Momentum space
By translation invariance, both G(x1, z9; 3, x4) and K (x1,9; x3, x4) can only depend on
the differences of coordinates, and the same of course holds for the propagators. We

introduce center-of-mass and relative coordinates as

T=T1—To , X =140 +nNT0 ; ¥ =x3—14 , X =193+ nNT4 (D.14a)

and
X'=X-X', (D.14b)
where M I
d N .
e = .e. =1. D.14
Ll vy vl el vy vl T (D.14c)
Considering now
d4 d4/ o o
sz = [(655 [ riom) S Adsat) - (D1)

and making the change of variables

g=nmP+p , ¢ =nvP—p, (D.16)
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we get

atp [ d PXT /
Gotor oz = (@) / i@ e alnaP 4 p) Ax(ax P = p) . (D7)

Inserting an identity operator expressed in momentum space, we arrive at

d4P d4p d4k3 —iP-X" —ipx 1k -z’ 4)
Go(1, xe; 23, 14) = /(2ﬂ)4 /(2%)4 /(27T)4e e (27)*6W (k — p)
X Ag(naP +p) An(nyP —p) . (D.18)

Moreover, we have

d4P d4p d4k LiP-X" _ipex ik’
G(21, 22323, 74) = G(X", 2,27) = /(27?)4 /(2ﬁ)4 /(2ﬂ)4 e e el G(k,p; P),
(D.19)

and an analogous expression for K (x1, zo; x3, 4). Putting everything into Eq. (D.11) and
making suitable changes of variables for the d%z; integrals yields the (inhomogeneous)
Bethe—Salpeter equation in momentum space:

Gk piP) = Galk i P) + [ (273 / (OQ‘T) Glk.q: P) K (0.5 P) Goldpi ) (D20)

with
Go(k,p; P) = (27)*0W (k — p) - Aa(naP + p) An(nnP —p) (D.21)

Diagrammatically, it can be written as

WO -

One of the integrals in Eq. (D.20) can be cancelled with the delta function in Gy, yielding

G(k,p; P) = Ay(naP + p) An(nn P — p)
4

(27T)45(4)(/f—p)+/d—clélG(k,q;P)-K(q,p;P) , (D.23)

(2m)
and finally
ok (65 P) ~ Kla. P GlhoasP) = (29 =) (D28
with
Gy (k,p; P) = (2m)*6W (k — p) - [Aa(naP +p)] " [An(nv P = p)] (D.25)

as an alternative formulation of Eq. (D.20).
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D.2.2 Bound state contribution

Going back to configuration space for the moment, we now assume the existence of a
stable trinucleon bound state (which can be thought of as an unphysical triton if one
identifies the uncharged single nucleon state in our model system with the neutron) with
energy F = —FEp < 0. For simplicity, we also assume that it is non-degenerate, i.e., that
it is characterized by a unique set of quantum numbers ay, which we omit in the following.
Selecting the time-ordering 1, ¢ > 3,14 and inserting a complete set of states, we get

d3

G(x1, 223 13, 04) = Z / Yupa(21,72) Vhpo (13, 24) , (f1,t2 > t3,ts) (D.26)

with dE = dF,. The bound-state contribution to this expression is
3P
(2m)3

where we have introduced the short-hand notation ¥pp = ¥_g,pq, for the bound-state
wave function. By translation invariance, we can write

Gp(z1,T2; T3, 74) :/ ¢BP( 1,$2)¢Ep($3,$4) , (t1,ta > ts,tg), (D.27)

¢BP(5L‘17 [Eg) = <Q|T(d($1 + CL)N(JZQ + CL)) |—EB, ].)7 Cl0> . eiP'“ (D28)

with Py = E = —EB for any four-vector a. We use this with a = —X and an analogous
expression for 1y (23, 24) to write

VP (01, 22)Vhp (73, 74) = Ypp(2)ihhp(af) - e (D.29)

implicitly defining the Bethe-Salpeter wave functions ¢gp(z) and zﬂBP («') for the relative
motion. Using this, the bound-state contribution is

d*P
(27)?

where we have inserted the theta function in order to impose the time-ordering tq,ts >
t3,t4. Using the formula

Gulor,s o) = [0 e X G (e)upla) (X"——|xo|——|xo|) (D.30)

dpo 1

“irovo (¢ — 0 implied D.31
o P e (e implied) ( )

0(yo) =

we get

d*p  [dE iP-X" | EXY o3 (B+EB)[eol oo (1)e3 (B+EB)Ihl T (57

Gp(r1, w9503, 14) = i/

@2n)3 | 2n ¢ E+ Ep+ie ’

(D.32)

where we have changed the integration variable py — E+ Eg. Defining new wave functions
Ppp () = 2P0l gpp(z) | P (af) = esTHERI gl (2) (D.33)

and their Fourier transforms

Doele) = [ e don o)+ hel) = [t ). (D30)
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we finally arrive at

d4P d4p d4k iP-X" —ip-x ik-a' TZJBP(]?) ’&TBP([{:)
] _ —iP- —ip-x ik-x D
Gp(x1, x93, 14) 1/(%)4 /(2ﬂ)4 /(271-)4 € ¢ © E+ Eg +ic (D-35)

with Py = E. Note that pr — Ygp for E — —Fpg, so we have

¢BP( ) Yhp (k)

P
Gk p; P) = E+ Ep +ie

+ terms regular at £ = —Fp (D.36)

in momentum space.

D.2.3 Homogeneous equation

Inserting the factorization (D.36) into Eq. (D.24) and multiplying by (E + Ep) we find
the homogeneous Bethe—Salpeter equation

/ SO 161 4ups P) = K(q,p: P) dm(a) = (D.37)

after taking the limit £ — —Fp and cancelling non-zero factors. Equivalently, we can
also obtain this in the form

4

Yep(p) = Aa(naP +p) An(nyP —p) - /ﬂ

i K@, P) Um0 (D33)

from Eq. (D.20).

D.2.4 Three-dimensional reduction

We now consider a bound state at rest, P = (—FEp,0), and define the amputated wave
function

B(po, P) = Y50 (po, P)  [Aa(—naFp + po,P)] " - [An(—nnEp —po,p)] ', (D.39)
which fulfills the equation
dq
B(po,p) = (2m)t K(q,p; —EB) Aa(—naEB + q0,9) An(—1nEB — q0,q) B(q,q) -
(D.40)

Carrying out the dgq integration picks up the residue from the nucleon propagator pole
at g0 = —nyEp — q*/(2My) + ie. From the resulting right-hand side of Eq. (D.40) we
then find that the function

B(p) = B(—nNEB - QJI\);N : p) (D.41)
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fulfills the equation

B()_/d3q}( E_q_Qk E_p_2 EVA —E T B(q)
pP)= (27'(')3 Uy 2MN7 » IN 2MN7pa d B 2MN7q q).

(D.42)
For future reference we also define the wave function
dp
o0) = [ T2 vlonp). (.43
T
for which from Eq. (D.39) one immediately finds that
p?
=Ay4| —Ep — : D.44
o) = D ~En— 2p) B (D.41)

D.3 Operator formalism

In order to focus on the essential, we now reformulate the results derived above in an
abstract operator notation. The Bethe—Salpeter equation (D.20) can be written as

G=Gy+GKGy=Gy+ GyKG, (D.45)
where the middle and the right-hand side are equivalent.! Assuming the existence of a
bound state with energy £ = —FEpg, we have the factorization

G ~ 1‘E|w¢_'>_—<‘7§|3 for E — _EB; (D46)

as given explicitly in Eq. (D.36). Inserting this into Eq. (D.45), multiplying by (E + Ep),
and acting on [1), we obtain the homogeneous equation

¥) = GoK|) (D.47)

after taking the limit £ — —FEp and using that Gy is regular for £ — —FEp. This is, of
course, just Eq. (D.38). Note that all the operators here are in general functions of the
total energy, G = G(E), K = K(E), etc., but that for the sake of notational simplicity
we have not written out this dependence explicitly.

D.3.1 Lippmann—Schwinger equation
Defining the T-matrix operator T via the relation
KG=TG,, (D.48)

we can rewrite Eq. (D.45) in the form

G = Go+ GoTG. (D.49)

IThis can be seen, for example, by iterating both versions and noting that the results are the same.
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Inserting this into both sides of the original Eq. (D.45), we get
GO -+ GOTGO = Go + G()KG[) -+ GoKGoTGQ . (D50)

After cancelling the common term G and multiplying through by G;* on both sides, we
arrive at the familiar Lippmann—Schwinger equation

T =K+ KGoT. (D.51)

The precise relation between this operator and the 7-matrix elements used in Chapter 6
will be discussed in Section D.4.3 below. As a remark we add here that G, with all
momenta put on-shell and the propagator term Gy removed (“amputated”), is just an
S-matrix element. Going from Eq. (D.50) to (D.51) is essentially equivalent to using
“S=141T7

D.4 Normalization condition

We are now finally equipped to derive the normalization for the Bethe-Salpeter wave
functions and, subsequently, for the trinucleon wave functions used in Chapter 6. For
the general derivation we stay in the abstract operator notation and only go back to
the momentum-space formulation when we discuss the explicit form for our N—d model
system in Section D.4.2 below.

D.4.1 General derivation
Multiplying Eq. (D.45) by G~! from the right and by G;* from the left, we get
Gy'=G '+ K, (D.52)
and hence
G(Gy' - K)G =G (D.53)

from the trivial identity GG™'G = G. Inserting furthermore the factorization (D.46) at
the bound-state pole, we find

-1
" rw><w\( %! Egzrww\ e

) (¥
Ry (D.54)

Multiplying this by (E + Ep) and furthermore with |¢) from both sides, we find

_ (V|G - K
limg,_ g, 1<¢| Lg—i— o ) =1 (D.55)

after cancelling the common factor (1[)%. Using now 1’'Hopital’s rule to evaluate the
limit, we finally arrive at

d

Wl (G = K| =1, (D.56)

E=—FEp
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Note that for the standard case, where Gy o (E — Hy)™' with the free Hamiltonian
Hy, and where the kernel (potential) does not depend on the energy, Eq. (D.56) reduces
to the familiar condition (¢|¢)) = 1. As already remarked in Chapter 6, this kind of
normalization condition for energy-dependent interactions is not at all a new result but
has been known for a long time [192].

D.4.2 Explicit form in three dimensions
We now go back to the momentum-space basis and consider a bound state at rest, setting

P = (—FEp,0). We define a reduced two-body propagator G that only depends on the
relative three-momenta k and p by integration over the energies:

Gk, p;— /dko /dpo . (D.57)

By the definition (D.43), this implies

~ |9l
G 1E+EB for £ — —FEp. (D.58)
From Eq. (D.45) we get
G =Go+ GokG = Gy (1+égl GT,F(G) (D.59)
and hence .
Gl = (1 Wers GOKG) Gl (D.60)
We now define B B B
G'-Gl=-V (D.61)
and find L .
G=C (Ggl - v) G. (D.62)

Repeating the procedure described in Section D.4.1 above then yields the normalization
condition

ol (G - V)il =1, (D.63)

So far it seems that we have hardly done anything but complicate the notation, but the
advantage will become apparent soon. For the first term in Eq. (D.63), we find

dky [d
kp, / 0/ po (k —p) - Ag(naE + po, p) An(nnE — po, —p)
d 1

= (21)*0® (k — p) - % Ag (naE + po,p) - 2, -

INE —po — gy ti€
2
— (27383 (k —p) - A E_p_
( 7T) ( p) d QMN’p )

(D.64)
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and thus
Gk, p; B) = (27)%6 (k — p) - [Ad (E . p)} | (D.63)
2My
Now we consider V. From Egs. (D.60) and (D.61) we get
~ ~ ~ —~—\ 1 ~ ~ > ~ —~——\N| ~
V=Gl (1 Wers GOKG> Gl =Gyt - |} (—Go—l GOKG> Gol. (D.66)
n=0

Furthermore, iterated application of the Bethe-Salpeter equation (D.45) yields
GoKG = GoKGo + GoKGoKGo + -+ - , (D.67)

such that we have a double expansion in Eq. (D.66). We write

V=) V,=Gy' -Gy + Gy ' GoKGoGy' + -+, (D.68)
n=0 Y N
Vo=0 1%

where the index indicates the number of insertions of K. In the following calculations we
will frequently omit the arguments (k, p; ) on the left-hand side of equations. It will,
however, always be clear what they should be from the corresponding right-hand sides.
With

s dky [d
GokGo = [ 52 [ [Muloal + k10 AwE b —K) - K o Ko, 3 )

x Ag(nak + po, p) AN(UNE—pm—P)}
k2 kQ p2 p2
=Nyl & ——— k|- K F—-——k E———p:E) - Ng| E— ——
d< 2MN7 ) (77]\7 ZMN’ » IN 2MN7p7 ) d< 2MN’p)
(D.69)

and the éa ! from Eq. (D.65) amputating the deuteron propagators, we find that

k2 p2
Vilkk,p; F) =K F—— knE———p F|. D.70
1( )y P ) (77]\7 2MN, » TIN 2MN7p7 ) ( )

The important point is now that all higher contributions vanish. To see this, we first look
at
‘7'2 - éal [GomGo - G/O_[?éoéalG/o_[?éo] éal (D?l)

and use the following

Lemma. It holds that

P —_—

GG Gy = Gy (D.72)
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Proof. We start by calculating the right hand side:
——— d4q1 d4q2
e G = 104D (g —
0 /(271_)4 /(27_‘_)4 [ ]( 7T) ((h (12)

x Ag(naE + qf, an) - — -]
nvE —qj —

The left hand side is

L GoGy'Go- - = d4p1 / dg? /d?’ql /d3q2 /qu /d4p2

X (277)45 (p1 — @) - Da (mE + 1) -

nvE —qf — 2MN

x (2m)*0% (a1 — qo) - [Ad <E @ ,ql>] B

2Mpy
1
X (27r)4(5(4)(q2 —Da) - Ad(ﬁdE + qg, Q2) : 0 " . [+ ]
TINE_(]Z_QM2 + 1€
g qai 5
— A E = o l=- Go---. (D74
/(271)3[ ] d< 2MN7P)[ ] Go ( 7)

The crucial point is that the residues of the nucleon propagators are always picked up
in such a way that one deuteron propagator is cancelled by its inverse from the Gj',

cf. Eq. (D.65). O

This immediately shows that Vs vanishes, and for the higher terms it is just a matter of
checking the relative signs that they also do. For example, we have

Vs = G |GoK GoK GoK Gy — GoK GoGy ' Go K GoK Gy
— GoKGoK GG GoK Gy + fo?@oéglc:ff\(éoéglaff?éo] Gs'=0. (D.75)

Altogether, we have found that

. k2 p2
Vi, p: E) = K (gvE — —— k,qnE — 2 p E
( » P; ) (nN 2MN’ y NIN 2MNap7 )

2 k2+k-p+p?— MyE —

(D.76)

D.4.3 Factorization of the T-matrix

What remains is to establish the connection between the quantities defined here and
the T-matrix elements and wave functions used in Chapter 6. Comparing Eqs. (D.42)
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and (D.76) with the interaction as given in Section 6.2.4 already suggests that there is a
direct correspondence between the states B(p) introduced here and the trinucleon wave
functions of Chapter 6.

For the T operator introduced in Eq. (D.48) we find from Eq. (D.50) that
GoTGo = GoKGo + GoKGoT Gy . (D.77)
Applying the Lemma (D.72) to the second term on the right-hand side gives
Gof?(?o/TGo = Gjﬁoéalﬁo : (D.78)
Inserting into this the identity in the form
1=G,G;! (D.79)
and multiplying Eq. (D.77) with G5 from both sides we find that
551@60651 = éalG/o?(Eoéal} Go [651@60@51 ; (D.80)

where from the discussion in Section D.4.2 we see that the interaction is the same as in
the normalization condition:

GlGoK GGl = V. (D.81)

Comparing this now with the integral equations in Chapter 6, we can conclude that the
T-matrix there is

iT(E:k,p) = (k|Gy 'GaT GGy [p) (D.82)
where all operators are of course functions of the energy F.

As E — —FEp we now have, using Eq. (D.49) and noting that the bound state cannot be
in GGy since it has to arise from the interaction,

éalﬁoéal = CN?glCNJCN;gl + regular terms

é—l é—l
= i% + regular terms, (D.83)
where the second identity follows from Eq. (D.58). Now, according to Egs. (D.44)
and (D.64) we have

|6) = Go|B) <= |B) =Gy|9), (D.84)

which implies

(B = (g (G (D.85)

But, up to a delta function, ég !is just the deuteron propagator A, which, from Eq. (D.5)
we find to be a purely imaginary quantity.? Hence,

(éal)T — —G,', for E<0 (D.86)

ZNote the overall i in the prefactor in Eq. (D.5) and that the rest is real for pg < 0 and & — 0.
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and

e m~—— BY(B

Gy 'GoT GGyt = —i 1) (B + regular terms as E — —Fp. (D.87)

E+ Ep
For the T-matrix of Chapter 6 we then find from Eq. (D.82) that
Bi(k)B
T(E;k,p) = _B9Blp) + regular terms as F — —Ep. (D.88)
E+ Ep

Finally, for the normalization condition (D.63) written in terms of the |B) we analogously

find

~i(B|Go {diE (éo—l - f/)] 60|B>)E:_EB ~1. (D.89)

D.5 Some remarks

In order to fully establish the connection of the results derived here with the formalism
of Chapter 6, a few remarks are in order.

Starting from a formulation in terms of four-dimensional energy-momentum vectors we
have, in the preceding sections, obtained functions that only depend on three-momenta by
explicitly integrating over the zero components. Essentially, this corresponds to imposing
an equal-time condition on the Bethe-Salpeter amplitudes in order to get back ordinary
Schrodinger wave functions (c¢f. Section 9.1 in Ref. [200]). To see this, consider an arbitrary
amplitude Y gp(x) = Ygp (o, x) defined analogously to what was done for the bound-state
contribution in Egs. (D.28) and (D.29). Since its Fourier transform is

Yee(q) = Yep(q,q) = /dxo €' e 719X 4y pp (20, X) (D.90)

integrating over gy gives a delta function 6(z¢) = 0(t1 — t2). As used in Sections D.2.4
and D.4.2, in loops the integration over the zero components of the four-momenta always
picks up the on-shell pole of a nucleon propagator.

In the equations reduced in this manner we have kept the full dependence on the three-
momenta, whereas in Chapter 6 we work with S-wave projected quantities that only
depend on the moduli of the momenta. There is, however, a simple and direct corre-
spondence. Since the interaction K (and thus also the T-matrix) only depends on one
angle, and the propagators in GGy, on the other hand, have no angular dependence, the
projection can be (almost) trivially applied to all equations by replacing functions with
their S-wave projected analogs and changing, at the same time, the operator products in
the momentum-space representation according to

AB= /(;1753 Al a)Bla ) = 2_71T2 /qufA(- 5 9)B(g, .. ), (D.91)

cf. Eq. (6.29).

Finally, due to the isospin symmetry that was neglected here for simplicity, in the real N—d
spin-doublet system of Chapter 6 one has a coupled-channel problem. The results derived
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here can be directly generalized to an arbitrary number of channels n by promoting all
operators to be n X n-matrices in channel space. In Chapter 6, the channels are determined
by the combination of in- and outgoing dibaryon legs (giving n = 2 or n = 3), and Go
is just a diagonal matrix containing the individual dibaryon propagators. Due to the
coupling, the bound-state pole appears simultaneously in all components of the 7-matrix
and the corresponding wave functions are vectors with n components. This is exactly the
scenario discussed in Sections 6.4.1 and 6.4.2.
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