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Abstract

Metamaterials have attracted tremendous attention in the past decade because they allow
researchers to engineer new optical properties by designing a new optical material. In particu-
lar, metamaterials are regarded as the key technology paving the way to an optical revolution,
from medical applications to all-optical networks.

Metamaterials are sub-wavelength metallic nanostructures which owe their optical properties
to the formation of a so-called plasmon, or collective electron oscillation. Each nanostructure
can be regarded as a meta-atom forming an homogeneous optical material whose optical
resonance features depend on three main parameters: The shape of the nanostructure, and
the dielectric functions of both the material used and the surrounding environment.

Even though the nonlinear optical features are bound to play a central role for future applica-
tions, the underlying light conversion process has been unknown up to now. Moreover, hardly
any of the plasmonic features found yet its way to an actual application.

In the present work, one makes use of the symmetry sensitivity and spectral information
carried in the nonlinear process of second harmonic generation (SHG). Two types of investi-
gations are carried out: First, gold nanostructures sharing symmetry feature variations are
investigated to characterize the SHG in metamaterials. Second, simple gold nanowires are
used to pattern the surface of an SHG-active host to investigate their application as an optical
catalyst enhancing the SHG yield of the underlying crystal.

For the first time , broad SHG spectra are recorded from a variety of nanostructures sharing
geometrical features. SHG is measured even from nanostructures described as centrosym-
metric, or from tensor components expected to be symmetry forbidden. This work provides
valuable insights into the potential role played by nanoscopic surface defects and irregularities
resulting from the top-down electron-beam lithography (EBL) fabrication process.

The amplification model developed for the concept of an optical catalyst proves not to be
sophisticated enough to fully explain the recorded SHG results. However, nanostructures
fabricated on the surface of RMnO3 and Cr2O3 crystals display tweaked SHG features with
respect to the known features from these nonlinear model systems. This is a clear indication
of convolutions of the plasmonic process with a sample-specific response. Although the exact
process could not be pinpointed, a certain dependence of the SHG yield on the environment of
the nanowires has been highlighted and requires to take a closer look in future investigations.

xxi





Introduction

Metallic nanoparticles are known to mediate unusual optical properties since the ancient
times of the late Roman Empire at least. This is attested by the Lycurgus Cup whose glass is
made dichroic by tiny amounts of colloidal gold and silver [1]. The process has also been used
e.g. in the colorful windows of medieval churches [2] despite the lack of a deeper physical
understanding at the time. Partial explanation came in the last century only with the pivotal
work of Mie [3] later allowing to interpret the underlying process as a particle plasmon
mechanism: The illumination by light leads to plasmonic oscillations, i.e. coherent collective
oscillations of the free electrons in the conduction band of the metal. Decades later, it
was realized that these plasmonic excitations can be exploited to tailor the macroscopic
optical properties nearly at will by controlling the nanostructures’ design to form so-called
metamaterials.

From initial theoretical investigations [4] to conceptual breakthrough [5] and actual realization
[6] the concept of electromagnetic metamaterials is revolutionizing the field of optics. As for
the examples above, they are composed of metallic building blocks with a size much smaller
than the operating wavelength of the light [7–10]. The subwavelength period distinguishes
metamaterials from photonic crystal structures whose special optical properties arise from
photonic bandgaps. For metamaterials, optical features arise from a subwavelength interaction
with the light spectrum, which mimics atoms or ions. The working range extends from
microwaves and millimeter-sized designs, to the optical range with structures a few hundreds
of nanometers large, typically fabricated in a top-down approach by electron beam lithography
with gold on glass [11]. Tailored electromagnetic functionalities are obtained by controlling
not only the dielectric function of the metal and of the surrounding environment, but also
the size and shape of the nanoscaled building blocks [12, 13]. A variety of shapes has been
employed: From simple spheres and ellipsoids to wires [14, 15], split-ring resonator (SRR)
designs [5, 16], meshes [17, 18], meanders [19, 20], or swiss-rolls [5, 7]. Thus, in addition to
exploiting the broad variety of materials provided by nature, researchers can now engineer
new optical properties by design.

A wealth of features not found in nature has been proposed. For instance, a negative magnetic
permeability µ [5, 14–16, 21] along with a negative electric permittivity ε [22] lead to metama-
terials in which the refractive index can become negative [8, 10]. In terms of application, these
astonishing properties could lead to novel devices such as optical cloaks rendering objects
invisible e.g. to radar systems [23–26] or so-called perfect lenses beating the Abbe diffraction
limit [27–29]. The strong spatial concentration of the electromagnetic radiation in the vicinity
of the nanostructures allows for small volume sensing applications [30, 31] and improved data
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INTRODUCTION

storage [32]. Acting as nanoantennae, metamaterials can couple light to single molecules [33]
or quantum dots [34, 35]. Nanostructures are also used in targeted cancer treatments [36]
and solar catalysis to deliver high-yield photovoltaic panels [37, 38]. Similar to the electronic
revolution of the last decades based on electronic components, metamaterials are promised
a leading role in a broad panel of applications as the future building blocks of an optical
revolution [39, 40]. Yet, despite the numerous applications and the control of the linear macro-
scopic optical properties, many applications will not triumph unless a deeper understanding
of the microscopic effects is reached. In particular, the nonlinear optical responses are hardly
understood so far, yet are essential to e.g. all-optical telecommunication networks [41, 42].

Nonlinear optics, in particular the lowest-order process of second harmonic generation (SHG)
offers a variety of advantages in comparison to its linear counterpart. It constitutes an im-
proved characterization tool [43–47]: Nonlinear optical processes reveal novel information
about materials. Based on the involvement of more than a single light field, additional ex-
perimental degrees of freedom are available. New states become accessible by multiphoton
transitions. Through its higher selectivity (in terms of photon energy, wavevector, and light
polarization) nonlinear optical spectroscopy is a key for identifying the microscopic processes
at play in a material. Also, the high intensity of the light fields involved in nonlinear optical
excitations can lead to a modification of the optical properties of the material and thus result
in new functionalities.

Hence, nonlinear optics is a powerful tool for the characterization as well as for the functional
use of materials. Yet its application to the investigation of metamaterials remained quiescent
for quite some time. No experimental reports or suggestions for a consistent microscopic
theory of the nonlinear optical properties of metamaterials was reported before the work of
Klein et al. [48, 49]. In this pioneering work, the nonlinear response of SRRs was experimentally
investigated and a microscopic description based on a Lorentz force model was proposed.
Since measurements were carried out at a fixed excitation frequency and limited to a single
type of structure, the access to the microscopic mechanisms determining the nonlinear optical
response of metamaterials remained limited. Aside from spectroscopy and shape variation,
the interaction between the individual “meta-atoms” was not considered [50, 51]. Thus, the
debate on the nonlinear optical performance of metamaterials remains a wide open field of
research [52–58]. A variety of sources has been proposed to explain the optical nonlinearities,
e.g. bulk and surface effects in the metal [59, 60] or plasmon-mediated field enhancement
in the vicinity of the metamaterial [61]. As for the linear features, resonance effects and the
nanostructures’ shape are expected to play an essential role [48].

It is the aim of this work to use SHG spectroscopy as a tool to investigate the nonlinear optical
response of metamaterials in two complementary ways. On the one hand, the nonlinear
optical performance is characterized by performing SHG spectroscopy on a variety of meta-
materials differing in size, shape, and symmetry. On the other hand, the nonlinear optical
performance is applied for manipulating the nonlinear optical response of the host system
(substrate) onto which the metamaterials are deposited. Insights into the potential of meta-
materials are gained in both cases, but a clear need to continue the experiments for obtaining
a comprehensive picture of metamaterials as nonlinear medium is also acknowledged and
guidelines are provided for a model system dissipating challenges encountered in this work.
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INTRODUCTION

Chapter 1 provides an introduction to the linear optics of metals at the nanometer scale.
Starting with Maxwell’s equations, it is shown how metamaterials differ from bulk gold and
how a classical harmonic oscillator model suitably explains the main principles. Plasmon
formation and decay are described, together with their relation to absorption and scattering
properties.

Chapter 2 goes beyond the harmonic oscillator model and introduces the principles of SHG.
The usual electric dipole approximation is extended to the first order expansion of the elec-
tromagnetic field, where magnetic dipole and electric quadrupole are present. The signature
features of SHG are introduced, allowing other similar processes such as two photon photolu-
minescence to be differentiated from.

The focus of chapter 3 is to introduce the experimental methods used in this work. Both the
samples and the setup are described. An insight into the electron beam lithography is given
as a sample production method. For the metamaterial characterization, the design of the split
ring resonator variations are justified and an SHG tensor component analysis is carried out
based on their symmetry. For the application of metamaterials, the same is done for nanowires
on a nonlinear crystal. Both host systems, hexagonal RMnO3 (R =Sc, Y, Dy-Lu) and Cr2O3, are
introduced together with their nonlinear features. Given its importance in allowing a proper
characterization, the laser system is detailed, together with the normalization procedure.

Chapter 4 gathers the initial linear characterization and the SHG results. First, the SHG
character of the measured light is verified and compared to that obtained from bulk gold.
Then, the experimental results for the characterization and application of these metamaterials
are discussed in section 4.2.3 and section 4.2.4, respectively.
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Chapter 1

Linear Optics Principles for Metallic
Nanostructures

In this section, the basic equations governing the electromagnetic response are recalled, based
on the macroscopic Maxwell’s equations. This is followed by an elementary description of the
optical properties of metals via their plasmonic properties.

1.1 Maxwell’s Equations in Matter

Maxwell’s equations describe the evolution of electromagnetic fields in space and time in
the presence of currents, charges, and matter. However, these equations are of limited use
by themselves: Relations describing the response of the materials involved are needed. To
do so, it is valuable to distinguish between external fields and fields induced by the material
response when describing the interaction with matter. In the international unit system (SI),
Maxwell’s equations are expressed as follows.

(a) ∇·D = ρext (b) ∇·B = 0

(c) ∇×E =−∂B

∂t
(d) ∇×H = ∂D

∂t
+ J ext

(1.1)

Here, the total electric charge density ρ and current density J are separated into a driving set(
ρext, J ext

)
external to the system being considered, and a responding internal set

(
ρ, J

)
[62].

ρtot = ρ+ρext J tot = J + J ext (1.2)

Then, a constitutive relation relates the electric displacement D with the driving electric field
E and the local electric polarization P . Similarly, the magnetic induction B is related to the
magnetic field H and the local magnetization M .

D = ε0E +P B =µ0 (H +M) (1.3)
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where the constants ε0 = 8.8542×10−12 AsV−1 m−1 and µ0 = 4π×10−7 VsA−1 m−1 are the per-
mittivity and permeability of the vacuum, respectively.

The polarization P describes the electric dipole moment per unit volume inside the material
caused by the alignment of microscopic dipoles with the electric field. P is related to the
internal charge density and current densities via the charge conservation law ∇· J =−∂ρ/∂t .

ρ =−∇·P J = ∂P

∂t
(1.4)

Last constitutive relation, the internal current density is related to the electric field, in a
generalization of Ohm’s law, introducing the conductivity σ.

J =σE (1.5)

With this approach, the macroscopic electric field includes both the external and the induced
field’s polarization effects. This is shown in combining equation (1.1)(a) with the expression
of the electric displacement in equation (1.3) leading to ∇·E = ρtot/ε0.

The material properties are phenomenologically introduced. In linear optics, the electric
polarization is proportional to the electric field, and similarly with the magnetization being
proportional to the magnetic field,

P = ε0χE M =χMH (1.6)

where χ and χM are the linear electric susceptibility tensor and the linear magnetic suscep-
tibility tensor of an instantaneously reacting medium, respectively. Therefore, the electric
displacement and magnetic induction can be rewritten to account for the medium relative
permittivity εr , also known as dielectric constant, and relative permeability µr .

D = ε0εr E B =µ0µr H (1.7)

εr = 1+χ, and µr = 1+χM are generally tensors owing to the symmetry properties of the
medium under consideration: They reduce to a scalar value in an isotropic medium only. Also,
natural media never exhibit magnetic responses at optical frequency and hence present a
unitary relative permeability, µr = 1. For the sake of simplicity, only isotropic media with unit
relative permeability are treated in this section.

Equations (1.5) and (1.7) are only valid for linear media that do not exhibit temporal or spatial
dispersion. One has to account for the non-locality in time and space by generalizing the
linear relationships. In other words, D (t ) at time t depends not only on the electric field E at
that moment, but also on the value of E at all past times and similarly with space [63].

D (r , t ) = ε0

Ï
εr

(
r − r

′
, t − t

′)
E

(
r

′
, t

′)
dr

′
dt

′
(1.8)

J (r , t ) =
Ï

σ
(
r − r

′
, t − t

′)
E

(
r

′
, t

′)
dr

′
dt

′
(1.9)

εr and σ describe the impulse response of the respective linear relationship. All length scales
are assumed much larger than the lattice spacing. This ensures homogeneity, i.e. the impulse
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1.1. MAXWELL’S EQUATIONS IN MATTER

response functions do not depend on the absolute spatial or temporal coordinate, but only on
their differences.

The above equations simplify by taking the Fourier transform with respect to
∫

e i (k ·r−ωt )dt ,
turning convolutions into multiplications. Thus, the fields are decomposed into individual
plane-waves of wave vector k and angular frequency ω. The resulting negative frequency
components carry the same information as the positive ones and are left unaccounted for.
The constitutive relations in the frequency domain follow:

D (k ,ω) = ε0εr (k ,ω)E (k ,ω) J (k ,ω) =σ (k ,ω)E (k ,ω) (1.10)

and one can show that the generally complex functions ε and σ are related by

εr (k ,ω) = 1+ iσ (k ,ω)

ε0ω
= ε1 (ω)+ iε2 (ω) . (1.11)

When considering the interaction of light with metallic nanostructures, the general form of the
dielectric constant is simplified to the limit of a spatially local response, εr (k = 0,ω) = εr (ω).
This simplification is valid with any material as long as the wavelength λ in the material is
significantly longer than any characteristic dimension such as the size of the unit cell or the
mean free path (MFP) of the electrons.

The complex values of εr (ω) describe the amount of polarization and the energy dissipation
of the material, respectively. They are related to the complex refractive index ñ =p

εr = n + iκ.

n = 1p
2

√
ε1 +

√
ε2

1 +ε2
2 κ= ε2

2n
= 1p

2

√
−ε1 +

√
ε2

1 +ε2
2 (1.12)

Although not written explicitly, each term is frequency dependent. κ is the extinction co-
efficient that determines the optical absorption of an electromagnetic wave in a medium.
Therefore it is linked to the absorption coefficient of Beer’s law, α= 2κ/c. Thus, from equa-
tion (1.11), the real (imaginary) part of the dielectric function, ε1 (ε2), is determined by the
imaginary (real) part of the conductivity. ε1 and ε2 are dependent on each other and are
related by the Kramers-Kronig relations, that are essential for the experimental measurement
of the dielectric properties of a material.

Taking the curl of equation (1.1)(c) and making appropriate substitutions, one can derive the
wave equation for linear optics

∇×∇×E −µ0σ
∂

∂t
E − ñ2

c2

∂2

∂t 2
E = 0 . (1.13)

where the speed of light c = c0/n and the complex refractive index ñ =p
εrµr are introduced,

with the constant c0 = 1/
p
ε0µ0 as the vacuum speed of light. A standard textbook derivation

indicates that in a metal, where σ 6= 0, an electromagnetic wave cannot propagate and van-
ishes exponentially [64]. This is of major importance for section 1.3 and the decay will be
characterized in equation (1.22) later in this chapter.

Assuming now a dielectric medium without free charge carrier or current (σ, ρtot, and Jtot all
equal zero), equation (1.13) simplifies to

∇2E − n2

c2

∂2

∂t 2
E = 0. (1.14)
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An elementary solution to equation (1.14) is a plane wave of the form E (r , t ) = E 0e i (k ·r−ω0t ).
While the direction of the electric field amplitude is also named polarization (of the elec-
tromagnetic wave), it should not be confused with the macroscopic polarization P of the
medium. k is the wave vector pointing in the direction of propagation. The wave vector must
satisfy the following relations to form a valid solution for Maxwell’s equations:

k ·E 0 = 0 |k | = ω0n

c
(1.15)

The former expression corresponds to a transversal wave solution, the latter is known as a
dispersion relation. Numerical values in this thesis make use of the photon energy E = ~ω0,
in electronvolt (eV), rather than the light frequency ω0, in terahertz (THz). ~ is the reduced
Planck constant and amounts to ~= 6.58211928×10−16 eVs. Alternatively the wavelength in
vacuum might be used, λ= 2πc0/ω0, in nanometer (nm) or micrometer (µm). The intensity of
the electromagnetic wave is defined as the time average of the Poynting vector S = E ×B . It is
proportional to the square of the electric field amplitude yet independent of its phase:

I = 〈S〉 = 1

2

√
ε0

µ0
nE 2

0 . (1.16)

Alternatively, following the derivation of equation (1.10), one might consider equation (1.14)
in the frequency domain. Applying a Fourier transformation on Maxwell’s equations (equa-
tion (1.1)) simplifies all time derivatives and equation (1.14) becomes

∇×∇×E (k ,ω)−k2εr (k ,ω)E (k ,ω) = 0. (1.17)

Here, the material dielectric function εr is explicitly frequency dependent and accounts for
dispersive media. The following section provides a description for the dispersion in metals.

1.2 Dielectric Properties of Gold

Many properties of real metals, including optical properties, are suitably approximated by the
Drude model [65]. In this model the interaction of metals with electromagnetic radiation is
largely dictated by the free conduction electrons in the metal. One now demonstrates this
with gold, which is the noble metal used for the nanostructures under investigation in this
work.

In the Drude model, a metal is described by a free electron gas moving between heavier,
stationary crystal ions. Essentially, this forms a plasma, i.e. a medium that posses freely
mobile charges. The model neglects interactions between the electrons and the ions and
assumes that the electrons do not electromagnetically interfere with each other. The only
possible interaction is an instantaneous kinetic collision between a free electron and another
electron. This happens at a fixed rate, i.e. probability per unit time, γ, which corresponds to a
phenomenological average relaxation time τ= 2/γ for all the electrons. Each collision leads to
a complete loss of directional information and results in a random orientation of the electron
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1.2. DIELECTRIC PROPERTIES OF GOLD

velocity thereafter. This corresponds to Ohmic damping, and γ can be related to the electron
mean free path (MFP) lMFP: γ= vF/lMFP, where vF is the Fermi velocity (≈ 1.4nmfs−1 in gold
and silver [66]). lMFP is an estimated 42nm in gold.

Between collisions and in the presence of an external field, the free electrons, of mass me and
charge −e, are accelerated. This results in a drift motion described by the equation of motion

ẍ +γẋ = −e

me
E , (1.18)

where x represents the electron displacement. Assuming a harmonic time dependence of the
driving field E (t ) = E0e−iωt , a particular solution of this equation describing the oscillation of
the electron is x (t ) = x0e−iωt . The drift of the charge carrier is described by

x = 1

ω2 + iγω

e

me
E . (1.19)

Electrons with density ne sum up to a macroscopic polarization P = ne p =−ne ex , with p the
dipole moment. Expressing the polarization as P = ε0 (εr −1)E , a relative permittivity can be
defined as

εr (ω) = 1+χ= 1−
ω2

pl

ω2 + iγω
= 1−

ω2
pl

ω2 +γ2︸ ︷︷ ︸
ε1(ω)

+i
ω2

plγ

ω
(
ω2 +γ2

)︸ ︷︷ ︸
ε2(ω)

, (1.20)

where the bulk plasma frequency ωpl =
√(

ne e2
)

/(ε0me ) is the cut-off frequency for transverse
electromagnetic waves. It describes a plasma oscillation in a bulk unstructured metal, i.e. a mo-
tion of the conduction electrons which act as a relaxator system. Here, the plasma frequency
is not determined by the light excitation, which merely initiates the system perturbation.

In fact, two modifications are required to describe real metals. First, only electrons near the
Fermi level contribute indeed, because the Pauli exclusion principle does not allow deeper
lying electrons to change their electronic state. Second, one has to reflect the band-structure
of matter. The first correction leads to the Drude-Sommerfeld model, also known as the free
electron model. It becomes termed as quasi-free electron model after carrying out the second
correction. Practically, this is accounted for by an effective mass of the electron m∗ which
generally differs from the free electron mass. However, the correction in the case of gold is
minimal, m∗/me = 0.99±0.04 [67].

Moreover, the ionic background has to be considered. This can be described away from the
plasmon resonance by ε∞. The dielectric function then reads

εr (ω) = ε∞−
ω2

pl

ω
(
ω+ iγ

) ≈ ε∞−
ω2

pl

ω2
+ i

γω2
pl

ω3
. (1.21)

Figure 1.1 shows the real and imaginary part of the dielectric function of gold. The values
measured on a vacuum-evaporated thin films at room temperature by Johnson and Christy [67]
are fitted by the Drude function after equation (1.21). Fit parameter values are ~ωpl = 8.94eV
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Figure 1.1 – The relative permit-
tivity of gold: Real (top) and
imaginary part (bottom) of the
dielectric function for gold as
a function of the photon en-
ergy. Experimentally measured
values taken from [67] (dots)
with theoretical fits based on
the Drude-Sommerfeld model
(solid line, ~ωpl = 8.94eV, ε∞ =
9.84, ~γ = 70meV). For photon
energy higher than 1.80eV the
interband contribution (dashed
line) is calculated from the dif-
ference of the experimental data
to the quasi-free electron model.

for the plasma frequency, ε∞ = 9.84 for the interband contribution, and ~γ= 70meV for the
relaxation rate. Experiment and theory are in excellent agreement in the near-infrared spectral
range of interest of this work.

In the visible spectral range (E > 1.80eV) large discrepancies occur with respect to the simple
free electron model, in particular within the imaginary part of the dielectric function. The
larger imaginary values, i.e. the higher absorption, are responsible for the characteristic color
of the metal. The reason for this are the excitation of electrons from deeper bands into the
conduction band, the so-called interband transitions, which are a manifestation of the density
of states. This density of states is known from both experimental and theoretical results, e.g.
via photoemission spectroscopy and relativistic band structure computation, respectively [68,
69].

Figure 1.2(a) shows a section of the band structure for gold [70]. The electronic configuration
of the noble metal is such that all d-bands are located below the Fermi energy, EF, and are
fully occupied. Thus, the metallic properties originate from the sp conduction band. This
band eventually crosses the Fermi level for k vectors near the X and L symmetry points of
the face-centered cubic (fcc) Brillouin zone (see figure 1.2(b)). There, interband excitations
can occur in addition to intraband ones. Consequently, the intraband susceptibility described
by equation (1.21) needs be extended by a further interband term, χIB (ω). The absorption of
a photon of sufficiently high energy leads to the creation of an electron-hole pair. Most fre-
quently, the resulting excitation relaxes non-radiatively in the solid and is ultimately converted
into heat, see section 1.3.3. Nevertheless, after a rapid thermalization back to the Fermi energy,
an electron in the sp-band can recombine with a hole in one of the flat d-bands. Figure 1.2(c)
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Figure 1.2 – Low energy range band structure of gold. Energy bands (top left) plotted against the characteristic
points of the first Brillouin zone of a face centered cubic lattice of the reciprocal space (top right). The band
structure computation is based on plane waves [70]. Detailed reproductions (bottom) correspond to the
circled regions near the L and X points where the sp-conduction band crosses the Fermi energy. Interband
and intraband absorption processes are illustrated, which can result in photoluminescence peaked at 1.80eV
and 2.40eV.

illustrates such a cycle. This is called photoluminescence and can also be triggered by multiple
photon absorption. This process will be covered in section 2.2.

1.3 Optics of Metallic Nanostructures

Based on Maxwell’s equations and the dielectric function of the material, one can compute
the optical properties of nanostructures, i.e. absorption and scattering. However, given the
complexity of the problem, an analytical solution is only accessible for a few simple particle
geometries such as sphere and ellipsoids with dimensions of the order of magnitude of the
wavelength of the incoming light. In the following, it is shown how these properties are
correlated with so-called plasmon resonances and their dependence on particle features such
as shape, material, and surrounding environment. Many characteristic properties of these
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Figure 1.3 – Skin depth for gold as a function of the photon energy. The depth at which the electric field decays
to 1/e of its surface value is calculated with equation (1.12) and (1.22) using the experimentally measured
values taken from [67]. The horizontal dashed line provides an indication of the actual gold thickness of the
nanostructures used in this work.

plasmon resonances can be approximated based on the classical harmonic oscillator model,
described in the following section.

1.3.1 Particle Plasmon Classical Model

As an electromagnetic radiation hits a metal surface, its penetration depth in the metal is
inversely proportional to the absorption:

δp = c0

ωκ
, (1.22)

where κ is the imaginary part of the complex refractive index, see section 1.2. The penetration
depth, also known as skin depth, is defined as the depth at which the electric field decays to
1/e of its surface value. Since the power of a wave in a particular medium is proportional to
the square of a field quantity, the skin depth is twice the depth at which the intensity of the
field decays to 1/e of its surface value. The skin depth does not significantly vary over the
photon energy spectrum used in this work and typically amounts to 24nm at a wavelength of
1.2µm, see figure 1.3. This is in the order of the thickness of the structures used in this work,
see section 3.1. Thus, despite the large reflectivity of gold, the electromagnetic field penetrates
to a considerable extent into the structure, and nearly all conduction electrons in the metal
volume experience the electric field of light.

Furthermore, as one considers metallic nanoparticles rather than a plain film (in contrast
to section 1.2), finite volumes and highly curved surfaces have to be accounted for. Thus,
the mechanism described above leads to a polarization of the particles: The electric field of
light shifts the conduction electrons with respect to the ionic background, where the ions
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are considered to be immobile. In turn, the resulting surface charges of opposite sign on the
opposite surface elements of the particle produce a restoring local field within the particle
which rises with increasing shift of the electron gas relative to the ionic background. This
depolarization field drives the electrons into a collective oscillation. The linear restoring force
is a further contribution to equation (1.18) and determines the eigenfrequency of the system.
Indeed, it is possible to describe the system as a harmonic Lorentz oscillator following the
equation of motion:

ẍ +γẋ +ω2
0x = −e

m∗ E , (1.23)

where ω0 is the natural frequency of the oscillator, which is dependent on the structure

being considered. ω0 is used to define the damped eigenfrequency Ωpp =
√
ω2

0 −γ2. Solving
equation (1.23) leads to the expression of the electron displacement oscillation.

x = 1

ω2
0 −ω2 + iγω

e

me
E . (1.24)

Following the same method that led to equation (1.20) in bulk metal, one can now express the
relative permittivity for nanostructured metal.

εr (ω) = 1+χ= 1+
ω2

pl

ω2
0 −ω2 + iγω

= 1+
ω2

pl

(
ω2

0 −ω2
)

(
ω2

0 −ω2
)2 +γ2ω2︸ ︷︷ ︸

ε1(ω)

+i
ω2

plγω(
ω2

0 −ω2
)2 +γ2ω2︸ ︷︷ ︸

ε2(ω)

(1.25)

It is conceptually essential to understand that the modified expression of the oscillation
induces a modification of the relative permittivity. In other words, departing from a bulk
metal configuration, i.e. by nanostructuring a metal, it is possible to obtain tailored material
responses. It is stressed that equation (1.23) deals with free electrons in a nanostructure: It
is formally equivalent to the equation of motion of a bound electron oscillating around its
equilibrium in an atom. Thus, an ensemble of nanostructures which size features are smaller
than the wavelength of the impinging light can be seen as an effective material where each
nanostructure acts as a meta-atom [71]. It is evident that the corresponding fundamental
eigenfrequency of a nanostructure can only by lowered with respect to the free oscillation
frequency set by the material via the plasma frequency, ωpl. This qualitative aspect is treated
later in this section.

Equation (1.25) highlights the fact that the linear susceptibility χ becomes large when εr is
driven at a resonant ω. Indeed, in contrast to the bulk behavior described in section 1.2, the
restoring force formation makes the conduction electrons act like an oscillator system. If the
excitation frequency is resonant to the eigenfrequency of the collective oscillation, even a
small external field amplitude suffices to drive a strong plasmon oscillation. The eigenmodes
of this oscillator correspond to a collective and coherent oscillation of the free electron gas
within the particle. Most commonly, they are called Mie-plasmons, localized surface plasmons
or, least ambiguously, particle plasmons. The term localized surface plasmon stems from
the fact that, although all electrons are oscillating with respect to the ionic background, the
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Time

Electric field

Electron cloud
displacement

Figure 1.4 – Schematic illustration of the localized surface plasmon resonance formation in a spherical
nanosphere; adapted from [72]. Under excitation by an external electromagnetic plane wave, the conduction
electron charge distribution is coherently shifted relative to the positive ionic background. Due to Coulomb
interaction, a restoring force is induced and oscillates in antiphase with the electric field of the incoming
light.

main effect producing the restoring force is the polarization due to electrons confined at the
boundary, see figure 1.4. Particle plasmons differ from propagating (non-localized) surface
plasmons at the interface between a metal and a dielectric, since there is no need for the
excitation photon wave vectors to match: particle plasmons directly couple to the light field.
This work deals exclusively with particle plasmons; section 3.1.4 and results thereof show how
the localized aspect can be exploited.

In essence, the resonance frequency is mainly determined by the strength of the restoring force.
The latter originates from the driving electric field of the light that induces a dipole moment
proportional to the field. The ease with which a nanostructure is polarized is specified by the
polarizability α, introduced via

p = ε0εmαE eff, (1.26)

where εm is the dielectric constant of the environment surrounding the particle. At low particle
density, E eff identifies as the incident light electric field, for the near-field coupling from
neighboring particles is negligible. For higher densities, screening terms must be included to
get the effective local electric field resulting from the external source and from all nanoparticles
within the sample except the one under consideration. In this work, particle spacing larger
than the near field coupling range are considered. An analytical expression for α is available
only for particles with simple geometries, such as a sphere or an ellipsoid, and in the quasi-
static limit with particle much smaller than the wavelength of light in the surrounding medium.
In this case, the phase of the harmonically oscillating electromagnetic field is practically
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constant over the particle volume, so that one can calculate the spatial field distribution by
assuming the simplified problem of a particle in an electrostatic field. The harmonic time
dependence can then be added to the solution once the field distributions are known. Then,
the polarizability is expressed as [73]

αi =V
εr −εm

εr −Li (εm −1)
, (1.27)

where V represents the volume of the structure. For an ellipsoid, i ∈ {
x, y, z

}
corresponds to

the principal axes, and Li is the corresponding polarization factor for which the sum rule∑
i Li = 1 holds. The longer the axis, the smaller the depolarization factor and in the special

case of a sphere L1 = L2 = L3 = 1/3. This approach can be extended to more complex structures
with α as a tensor determining the eigenpolarizations, i.e. modes, of a structure. The form
of the tensor reflects the symmetry of the structure. The lower the symmetry the structure
presents, the more non-degenerate modes it possesses [74]. Thereafter, a general expression
for the eigenfrequency of a particle plasmon is expressed by the relation [75, 76]

Ωpp =
√

Liωpl . (1.28)

Equation (1.27) reveals the major parameters influencing the surface plasmon resonance
position [72]: The particle shape, the dielectric function of the metal, and the dielectric
function of the environment. The shape determines the distribution of the surface charges: A
decreased surface charge density corresponds to a smaller restoring force which decreases the
resonance frequency. The dielectric constant of the metal describes the intrinsic polarizability
of the particle. This is shielded by the dielectric surrounding that partially compensates the
polarization at the surface. In the case of a particle only partly in contact with a substrate,
reasonably good results are obtained by considering this particle as fully embedded within a
material presenting a weighted average of the dielectric function of air and of the substrate
(εm = 1 in air or vacuum) [77].

The polarizability experiences a resonant enhancement under the condition that the denomi-
nator of in equation (1.27) vanishes, i.e.

εr = εm

(
1− 1

Li

)
. (1.29)

This relationship is called the Fröhlich condition and expresses the strong dependence of the
resonance frequency on the dielectric environment. The associated mode (in an oscillating
field) is the dipole particle plasmon of the metal nanostructure. To a good approximation,
the electromagnetic field of the dipolar particle plasmon modes outside the particles can be
analytically described by the electromagnetic field of an oscillating point dipole located in the
center of the particle [63]. This approximation holds for dipolar particle plasmon resonances
on arbitrarily shaped metal nanoparticles if the distance from the particle is much larger than
the particle itself. The dipole approach is extended in section 1.3.2.

The resonance in α implies a resonant enhancement of both the internal and dipolar fields.
If excited resonantly, the amplitude of the induced plasmonic electric field can exceed the
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exciting fields by several orders of magnitude. It is this field-enhancement at the plasmon
resonance on which many applications of metal nanoparticles rely. Using the boundary
conditions at the surface, it is possible to calculate the resulting electric fields E in and E out,
respectively inside and outside of a sphere, due to the driving field E [63, 73].

E in = 3εm

εr +2εm
E = fe E (1.30)

E out = 1

4πε0

{
k2(n ×p)×n

e i kr

r
+ [

3n
(
n ·p

)−p
](

1

r 3
− i k

r 2

)
e i kr

}
, (1.31)

where fe is the enhancement factor with respect to the incoming electric excitation, n is the
unit vector in the direction of the point of interest at a distance r from the dipole center.
It is essential to notice that in equation (1.31) the term varying with the highest power of r
dominates the near-field. Hence, since this work concentrates on the immediate vicinity of
the metallic structure, one approximates E out with its near-field expression that moreover
identifies with the electrostatic expression of an electric dipole:

E out wE out,NF =
3n

(
n ·p

)−p

4πε0

1

r 3
(1.32)

The metallic nanostructure acts as a far-field to near-field converter: It acts as an optical
antenna with the capability of concentrating the light field strength in subwavelength volumes
[78, 79], see section 3.1.4.

The qualitative features described in this section can be transposed to nanostructures of
arbitrary shape, e.g. to the samples described in section 3.1. Thus, metal nanoparticles usually
have more than a single oscillation mode that depends on the particle shape, the environment,
and the metal used. The different modes differ in their charge and field distribution and set
the linear optical properties of the metal nanostructures, presented in the following section.

1.3.2 Optical Manifestations: Scattering and Absorption

The resonantly enhanced polarization α is associated with an enhancement in the efficiency
with which a metal nanostructure scatters and absorbs light. In the simple model of an
ellipsoid in the quasi-static regime, light scattering, absorption, and extinction are described
by the frequency dependent cross-sections Csca, Cabs, and Cext, respectively. Their relation to
the polarizability is given by [80]:

Cabs = |k | Im[α] =V |k | Im
[

εr −εm

εr −Li (εm −1)

]

Csca =
|k |4
6π

|α|2 =V 2 |k |4
6π

∣∣∣∣ εr −εm

εr −Li (εm −1)

∣∣∣∣2

(1.33)

Cext =Cabs +Csca,

where k is the wave vector. A figure of merit is defined as the ratio of scattered light to the
extinction, also known as radiative quantum yield η and the cross-sections are related to their
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corresponding spectrum according to

η= Csca

Cext
, I ext

sca
abs

(ω) = I0 (ω)

A
C ext

sca
abs

(ω) , (1.34)

for a particle illuminated with the light intensity per area I0 (ω)/A. η increases with particle
diameter and varies from one structure design to another [81]. Equation (1.33) shows that
for metal nanoparticles both absorption and scattering (and thus extinction) are resonantly
enhanced at the particle plasmon resonance, i.e. where the Frölich condition is met [73].

The cross-section expressions above are valid for particles small compared to the local varia-
tions of the involved electromagnetic fields [73, 82]. This quasistatic approximation assumes
the exciting field to be homogeneous and not retarded over the particle’s volume: They are
dominated by a dipole contribution. Mie’s work overcomes these limits for spherical sys-
tems with dimensions of the order of magnitude of the wavelength of the incoming light [3].
For such nanoparticles, the extinction cross-sections are dominated by higher-order multi-
pole absorption and scattering. An analytical expression for the extinction and scattering
cross-sections is formulated in which the involved fields are decomposed into partial waves
(spherical multipoles), and the scattered field is expressed as the superposition of these partial
waves [80]:

Cext = 2π

|k |2
∞∑

L=1
(2L+1)Re[aL +bL] (1.35)

Csca = 2π

|k |2
∞∑

L=1
(2L+1)

(|aL|2 +|bL|2
)

, (1.36)

with

aL = mψL (mx)ψ
′
L (x)−ψ′

L (mx)ψL (x)

mψL (mx)ξ
′
L (x)−ψ′

L (mx)ξL (x)
(1.37)

bL = ψL (mx)ψ
′
L (x)−mψ

′
L (mx)ψL (x)

ψL (mx)ξ
′
L (x)−mψ

′
L (mx)ξL (x)

. (1.38)

Here, m = ñ/nm , where ñ denotes the complex refractive index of the particle and nm the
real refractive index of the surrounding medium. x = |k |R = ω

c R is the size parameter with R
the sphere radius. ψL and ξL stand for Riccarti-Bessel functions. One recognizes the three
key parameters determining the plasmon resonance: Structure size, and dielectric functions
of both the structure material and of the surrounding medium. This is consistent with the
model introduced previously, but it is only several decades after the seminal paper that
Mie’s framework was reinterpreted according to the modern concept of particle plasmons of
different multipole order [12, 83].

The summation index L provides the order of the partial wave. L = 1 corresponds to dipole
fields, L = 2 to quadrupole, L = 3 to octupole, etc. The coefficients aL and bL are proportional
to (|k |R)2L+1, so that the importance of higher order terms increases with larger structure
size. The electric multipolar excitations are particle plasmon modes while their magnetic
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counterparts consist of eddy currents. The magnetic multipoles are also due to electronic
excitations and thus also depend on the dielectric function of the metal.

From there, it is possible to compute multipole spectral resonances featuring a Lorentzian
profile with a photon energy at the resonance Eres,L = ~ωL and linewidth, or full with half
maximum (FWHM), Γ= ~∆ω. In the quasi-static limit of Mie theory, the positions of the Mie
multipoles ωL and their resonance width Γ is given by [73, 84]:

ωL =ωpl
1√

1+ L+1
L εm

, Γ= 2ε2√(
dε1
dω

)2 +
(

dε2
dω

)2

(
1+β)

. (1.39)

Thus, the plasmon resonance increases in frequency with higher order, while a higher value

for εm red-shifts it. For gold, β¿ 1 and
(

dε2
dω

)2 ¿
(

dε1
dω

)2
so that Γ becomes a linear func-

tion of ε1 and ε2. Then, it consists of a dispersion and dissipative term. Practically, reso-
nances get smeared out, eventually past recognition, for low dε1

dω and large ε2 values. For
free-electron metals (section 1.2) where γ¿ω, a special case occurs with Γ= γ. However, in
three-dimensionally confined samples additional processes lead to a broadening of Γ. These
processes are discussed in section 1.3.3.

Thus, the framework of the Mie theory allows for the computation of far-field scattering cross-
sections in a relatively straight-forward manner. However, analytical solutions are not readily
available to address the problem for arbitrarily shaped structures. Excellent approximations
exists for ellipsoidal shapes [80] and cylindrical rod [85], but for more complex structures
one has to employ numerical methods. Among them are the finite difference time domain
methods (FDTD) [86], the discrete dipole approximation (DDA) [87], the boundary element
method (BEM) [88], and the scattering-matrix method (S-matrix) [89], to name a few. Nu-
merical simulations, however, are not the topic of this work. Nevertheless, they represent a
powerful guiding tool in the design stage, see section 3.1, and to get insight into the near-field
distribution of the electric field. Specifically here in preliminary fabrication work, the output
field is solved numerically by a S-matrix formalism based on a rigorous Fourier modal method
[90, 91]. This allows to better quantify the parameter dependence introduced previously.

Thus, the qualitative features of the electronic resonances, and their correlated optical prop-
erties, are found again in larger, arbitrarily shaped particles. The appearance of retardation
effects allows for higher order oscillation modes. Numerical simulations show that major
differences appear in the radiative quantum yield of structures with similar resonance fea-
tures, depending on their shape, see section 4.1.1. These differences are to be traced back to
the promotion or weakening of different damping mechanisms, in function of the particle
geometry. A description of these damping mechanisms is given in the following section.

1.3.3 Particle Plasmons Lifetime: Damping Mechanisms

As discussed in the previous sections, important plasmon properties such as the amplitude of
the collective electron oscillation with respect to the driving amplitude and the width of the
particle plasmon resonance Γ depend on the amount of damping. Generally, the application
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Figure 1.5 – Related via the Fourier transformation, a damped oscillation in time (left) corresponds to a Lorentz-
shaped peak in the frequency spectrum (right). Here, an oscillation with frequency ω0 and damping time T
is shown. The full width at half maximum ∆ω of the resonance in frequency space is 2/T .

of particle plasmons benefits from reduced damping. Indeed, a fast decay (large damping) of
the optically-induced polarization limits the time for coherent light-matter interaction.

Given an exponential decay with time constant T , and considering that time and frequency
are related by the Fourier transformation, the spectral broadening of a Lorentz oscillator is
given by Γ= ~∆ω= 2~/T , see figure 1.5. It is related to the figure of merit used to quantify the
resonating feature of an oscillator, i.e. the quality factor,

Q = ω0

∆ω
= Eres

Γ
. (1.40)

The higher the plasmon damping, the larger the spectral broadening of the oscillating nano-
structure and the lower is Q. For weakly damped oscillators, Q equals the local field enhance-
ment factor f introduced in equation (1.30), i.e. the enhancement of the oscillation amplitude
with respect to the driving amplitude.

To understand the underlying mechanism defining the spectral broadening, it is insightful to
decompose a plasmon oscillation into the superposition of individual electrons oscillating
in phase. Seen individually, each electron contributing to the plasmonic oscillation either
releases its energy by inelastic dissipation processes on a Te− time scale, or loses its phase
correlation to the other electrons by elastic dephasing processes on a T ∗

e− time scale [92, 93].
A phenomenological elastic plasmon relaxation time T ∗

e− = 30fs is given in [66]. Both decay
channels add up and lead to the total plasmon decay time in a single structure Thom according
to

1

Thom
= 1

Te−
+ 1

T ∗
e−

. (1.41)

Thom describes the decay of the plasmonic field amplitude down to 1/e of its maximum value.
The oscillator’s energy decays with a rate twice as fast, since it is related to the square of its
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Figure 1.6 – Schematic representation of the decay channels for a particle-plasmon excited by an ultra-short
laser pulse. The contributions to the damping of localized plasmons can be separated into radiative and
non-radiative processes. Inelastic damping, i.e. radiative damping (production of photons) as well as intra-
and interband absorption (creation of electron-hole pairs), leads to the dissipation of energy on the time
scale Te− . Elastic scattering leads to a pure dephasing with time constant T ∗

e− . The resulting energy bath then
thermalizes with the environment.

amplitude. Ultimately, the electron population which non-radiatively stops to contribute
to the coherent collective oscillation, supplies a system which consists of a reservoir of free
kinetic energy modes, gold lattice vibration and phonon excitations. The latter bath then
slowly decays to the ground state, i.e. it undergoes a thermalization back into a uniform
Fermi-Dirac distribution across the nanostructure.

Separating and measuring the different contributions to the plasmon population decay is
the topic of numerous theoretical as well as experimental publications, a selection of which
is found in reference [93]. An intent in summarizing these is represented in a simplified
diagram, see figure 1.6. The homogeneous linewidth Γhom of a plasmonic resonance can be
decomposed into several contributions discussed below:

Γhom

2~
= 1

Thom
=∑

i
τ−1

i = τ−1
r +τ−1

cc +τ−1
surf +τ−1

e-h + . . . .︸ ︷︷ ︸
τ−1

nr

(1.42)

Explicitly, the decay of a plasmon population follows either a radiative or non-radiative chan-
nel [92], corresponding to a relaxation time τr and τnr, respectively. Together with the total
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decay time constant Thom they are related to the cross-sections introduced in section 1.3.2,
and hence to the radiative quantum yield as well:

Thom ↔Cext , τr ↔Csca , τnr ↔Cabs , η= τr

Thom
. (1.43)

The radiative dissipation damps the plasmonic oscillation by emission of a photon at the
resonance frequency. Based on Fermi’s golden rule, it is possible to evaluate the time scale of
radiative damping τr for spherical particles and dipole modes as [94, 95]

τ−1
r = V

2π

ω4

c3
, (1.44)

with V the particle volume. Thus, the radiative relaxation rate τ−1
r is directly proportional

to the volume of the particle, rather than its surface. Although equation (1.44) derives from
simple models for spherical structures and dipolar modes, the qualitative aspects discussed
below are conserved for other geometries [96].

Besides the radiative damping mechanism, several non-radiative processes can occur, cor-
responding to a relaxation time τnr. Non-radiative processes regroup both elastic and in-
elastic electron damping mechanisms. A first damping mechanism consists of the creation
of an electron-hole pair via an intra- or interband excitation. This process correlates to
the frequency-dependent imaginary part of the dielectric function [97]. As such, it depends
strongly on the central energy of the plasmonic excitation. Practically, the corresponding
relaxation rate τ−1

e-h is negligible for gold for resonances below 1.80eV, see section 1.2. Then,
further non-radiative processes correspond to the mechanism described in section 1.2, where
the electron collides with an unspecified collision center (lattice ion, core or conduction
electron, phonon, defect, impurities, etc.). The combined influence of these processes sums
up according to the Matthiessen’s rule [98], at a scattering rate τ−1

cc . Finally, this is comple-
mented by a further electron-surface scattering rate τ−1

surf due to the finite particle volume or
e.g. to grain boundaries. Surface scattering results from additional collisions of the conduction
electrons at the surface and is given empirically by [94, 99]:

τ−1
surf = A

vF

R
, (1.45)

where R is the particle radius that reflects the ratio of the surface (∝ R2) to the number of
electrons (∝ R3). A is an empirical parameter of the order of 1 describing the loss of coherence
by the scattering event [100–102].

Based on equation (1.44) and equation (1.45), the size of a nanostructure determines the lead-
ing damping mechanism, see figure 1.7. Practically, for particles with a radius below 10nm,
radiative scattering corresponds to a relaxation time in the picosecond range. Therefore, this
represents a negligible contribution being too slow with respect to other damping channels.
However, for structures larger than 100nm this corresponds to a relaxation time in the fem-
tosecond range. Therewith, it becomes the dominating process for the plasmon relaxation of
the largest structures. One should mention at that point another damping mechanism which
occurs in large structures, namely retardation effects. During the plasmonic excitation, the
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Figure 1.7 – Qualitative dependence of the position (left) and linewidth (right) of the dipolar particle plasmon
resonance in metallic nanostructures as a function of their size. Adapted from [73].

spatial extension of the particle leads to a phase difference of the electronic excitations across
the particles. This weakens the restoring Coulomb force and therewith the quality factor of
the structure. A further description of this process is given in references [103–106].

Inversely, surface scattering becomes relevant only for the smallest particles, typically for sizes
below 20nm. There, the effective electron mean free path (MFP) is smaller than the bulk
mean free path. This alters the magnitude of the material dielectric functions ε1 (ω) and ε2 (ω),
which become size dependent: ε (ω) = ε (ω,R). Also, as one further reduces a structure, the
impact of the electronic spill-out at the boundary has to be accounted for. For large structures
the electron charge density is assumed to drop sharply on the atomic scale from the value
inside the metal to zero outside. However, owing to the wave nature of the electron, quantum-
mechanical computation has shown that this change can take place over a distance of about
the Fermi wavelength and thus can amount to several tenths of nanometer. Computation as
well as experiments indicate a blue-shift effect on the resonance [107, 108].

The linewidth resulting from the above described processes corresponds to the linewidth of a
single resonator. Therefore, we termed it as the homogeneous linewidth Γhom. However, our
sample consists of an ensemble of hundreds of thousand of such unit blocks. Inevitably, the
fabrication process leads to a non-monodisperse particle size distribution, see section 3.1.
In consequence, the slightly different resonance wavelengths follow a stochastic distribution
around an average value. Following a free-induction decay process, this is the source of an
extra inhomogeneous broadening of the total linewidth of the resonances:

Γ= Γhom +Γinhom ,
1

T
= 1

Thom
+ 1

Tinhom
. (1.46)

The more defects and deviations the particles present from one another, the more significant
the inhomogeneous contribution becomes.

Finally, another effect needs be highlighted for regular, periodic arrangements of nanostru-
ctures. Two types of interaction can take place, namely near-field coupling and far-field
interaction. On the one hand, near-field coupling between structures is relevant for nearly
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touching particles due to the short range of the electromagnetic near fields. This effect is in the
order of some tens of nanometers [109, 110] and thus will be ignored in our samples, owing to
their periodicity length of several hundreds of nanometers, see section 3.1.1. On the other
hand, far-field interaction is mediated by the nanostructures’ scattered light fields. Indeed,
dipolar interactions among particles on a regular array can occur, owing to the grating nature
of the surface. At normal incidence, the diffraction angle is given by θm = arcsin(mλ/d),
where d is the nanostructure array period and m the diffractive order. Prohibited for an array
period smaller than the wavelength, the light fields corresponding to a particular grating
order become radiative at a grazing angle, at a critical nanostructure spacing dc =λ [111, 112].
This is related to the so-called Wood anomaly [113] and leads to sharp dips or peaks in the
extinction or reflection spectra, respectively [114]. For a larger grating constant, the light is
scattered only at defined angles, due to coherent excitation and scattering of the individual
nanoparticles in analogy to light diffraction from a grating. In consequence, the Q factor
decreases due to enhanced radiation damping of the individual particle plasmons caused by
an increase of the power radiated by the array.
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Chapter 2

Perturbative Nonlinear Optics

In the preceding chapter, it was shown that the optical properties of a material, and conse-
quently of nanostructures, result from the polarization of that material by the electric field of
light. However, linear optics properly describe the interaction between an electromagnetic
field and a medium only when the light field does not perturb the optical properties of the
medium. This assumption is no longer valid in presence of high field strength, where the
response of the illuminated medium depends nonlinearly on the applied field strength. In the
following, the linear wave equation is extended to account for the anharmonic contributions
which come into play in the nonlinear regime. The nonlinear effects relevant to the optical
nonlinear spectroscopy method used in this work are presented. A more detailed treatment of
nonlinear optics is found in references [44, 46, 47].

2.1 Second Harmonic Generation

Since the development of the laser [115], very high electric field strengths inaccessible to any
other light source have become available. For pulsed lasers, values as high as E = 1×1020 Vm−1

are possible (interatomic electric fields are of the order of 1×108 Vm−1). At high intensities,
nonlinear terms in the electric polarization and magnetization have to be considered. Thus,
equation (1.6) is generalized by expressing the polarization P as a power series in the electric
field E [45]

Pi = ε0

(
χ(1)

i j E j +χ(2)
i j k E j Ek +χ(3)

i j kl E j Ek El + . . .
)

, (2.1)

where the first term is the linear contribution of equation (1.6), and the n-th order suscepti-
bilities χ(n) are (n +1)-th order tensors. In its general description, the nonlinear terms of the
polarization lead to the excitation of a harmonic wave of frequency ωNL = ∑n

i=1±ωi which
is defined as an arbitrary linear combination of the incident light field frequencies ωi . The
nonlinear processes are classified according to the number of incident fields, hence on the
order n of the corresponding susceptibility. For instance, it is possible to carry out sum or
difference frequency generation (SFG and DFG, respectively) with two photons or more. In
the special case where all incident frequencies are equal, one speaks of second, third or higher
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Ground state
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E (w)k
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Figure 2.1 – Schematic illustration of the SHG process: Energy-level dia-
gram. The system is excited by the simultaneous absorption of two
photons at frequency ω of an intense light field, e.g. an ultra-short
laser pulse. The system relaxes by emission of a photon with fre-
quency 2ω. This nonlinear source term can originate from crystallo-
graphic and/or order-parameter related contributions.

harmonic generation (SHG, THG and HHG, respectively), as well as of optical rectification
when a quasi-DC polarization is generated in the nonlinear medium (case ω−ω = 0) [46].
The lowest order of these processes is the SHG, in which a material excited by a light source
of frequency ω generates a harmonic source oscillating at twice the excitation frequency,
ωSHG = 2ω. This effect was the first nonlinear process to be demonstrated experimentally [43]
and is the workhorse of the present experiments. Here and in the following, the excitation
frequency is termed the fundamental frequency, and its second harmonic the SHG frequency.

Based on equation (1.3) and equation (2.1), it is clear that the dielectric constant of the
medium εr now depends on the electric field strength. In a simplified picture where no
assumption is made regarding the symmetry properties of the material, this corresponds to
complementary terms in the restoring force of equation (1.23),

ẍ +γẋ +ω2
0x +C3x2 +C4x3 + ...︸ ︷︷ ︸

restoring force

= −e

m∗ E , (2.2)

where Ci represents the strength of the i -th power term in the resulting anharmonic potential.
The corresponding second order nonlinear susceptibility is given classically by the product of
the linear susceptibilities [46, 116]:

χ(2) (ω3 =ω1 +ω2,ω1,ω2) = C3m∗

n2
e e3

χ(1) (ω3)χ(1) (ω1)χ(1) (ω2) , (2.3)

with ω1 =ω2 =ω and ω3 = 2ω in the case of SHG. Hence, it is necessary, yet not sufficient, to
have finite values of the linear susceptibilities at both the fundamental and SHG frequencies
for SHG to take place. Consequently, the resonant feature of the linear susceptibility in
nanostructures is expected to play a major role when characterizing the nonlinear response of
nanostructures, see equation (1.3.1) and section 3.1.2.

This is best understood in describing the material system as a quantum mechanical system.
Departing from the classical, wave-like description of light, the corresponding quantum
mechanical picture describes the light-matter interaction in terms of photon absorption and
emission processes. In this frame, linear optics processes involve a single photon of energy
~ω being absorbed from a ground state |g 〉 to an excited state |e〉, and relaxing back to |g 〉
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by emission of a photon of the same energy ~ω = ∆Eeg . In contrast, as mentioned above,
nonlinear optics effects require more than one photon to initiate such transitions. For SHG,
the transition from |g 〉 to |e〉 is carried out by simultaneous absorption of two photons of
energy ~ω via an intermediate state |i 〉. The transition back to the ground state is achieved
instantaneously by emission of a photon with energy ∆Eeg = ~ωSHG = 2~ω, see figure 2.1.

The regime described above belongs to perturbative nonlinear optics: The term amplitudes
of the Taylor expansion in equation (2.1) decline with higher order, and the ground and
excited quantum states of the nonlinear material are unchanged by the interaction with the
optical field. One speaks of a parametric nonlinearity for which energy and momentum
conservation of the optical field is observed. The system returns to the same real ground
state after excitation, whereas both the excited and the intermediate states can be real or
virtual. So-called virtual states really are real states excited highly non-resonantly. Indeed,
the conversion process is characterized as instantaneous: A parametric process population
can be removed from the ground state only for the brief interval of time when it resides in
a virtual level. According to the uncertainty principle, a population can reside in a virtual
level for a time interval of the order of ~/∆E , where ∆E is the energy difference between the
intermediate level energy E|i 〉 and ~ω. As a direct consequence, the probability of absorption
of the two photons is enhanced when the intermediate state (and/or excited) state is real, i.e.
when |i 〉 (and/or |e〉) possesses a finite lifetime. For nanostructures, the intermediate state
corresponds to the plasmonic excitation and the link with equation (2.3) is straightforward:
χ(1)(ω) takes large values only for those values of ω where a plasmon is excited with lifetime
as discussed in section 1.3.3.

The nonlinear terms of equation (2.1) lead to an excitation of frequency 2ω, and equa-
tion (1.14) evolves into the nonlinear optical wave equation [46]:

∇2 E + ε

c2
0

∂2

∂t 2
E = S , (2.4)

where S is a source term driving the nonlinear optical wave. For instance, when light with
frequency ω and electric field E (ω) is incident on a material, harmonic generation can lead to
an electromagnetic polarization at frequency 2ω. This acts as source term S(2ω) for an SHG
light wave [43]. It is possible to express the source term by the multipole expansion [45],

S =µ0
∂2P NL

∂t 2
+µ0

(
∇× ∂M NL

∂t

)
−µ0

(
∇· ∂

2QNL

∂t 2

)
, (2.5)

where P NL, M NL, and QNL are the electric dipole (ED), magnetic dipole (MD), and electric
quadrupole (EQ) moments, respectively. This expansion is valid when volume elements
whose dimensions are small compared to the field wavelength are used in averaging to obtain
such macroscopic quantities. Taking terms of the order 0 and 1 in the expansion of the
electromagnetic field into account, the following contributions, associated with the ED, MD,
and EQ, are obtained [117–119]:

0th order:

P NL
i ∝χeee

i j k : E j E k (2.6)
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1st order:

P NL
i ∝χ

eem,q
i j kl : E j∇k E l (2.7)

M NL
i ∝χmee

i j k : E j E k (2.8)

QNL
i j ∝χ

qee
i j kl : E k E l . (2.9)

The χ tensors above denote nonlinear susceptibilities and describe the response of any system
in the presence of intense light field. The subscripts i , j , k, and l refer to Cartesian coordinates
(i , j ,k, l ∈ {

x, y, z
}
), and summation over repeating indices is implied. The superscripts refer

to electric-dipole (e), magnetic-dipole (m), and electric quadrupole (q) interactions. Thus,
the meaning of the subscripts applies to the electric field or magnetic field accordingly. For
instance, in χeee

i j k the indices j , k express the polarization direction of the incident light fields,
while i determines the direction of the induced electric-dipole oscillation. Equation (2.7)
involves MD and EQ coupling at the fundamental frequency ω while in equation (2.8) and
(2.9) the magnetization and quadrupolarization at 2ω is considered. Each term contributes
linearly to the SHG process.

The tensor components χeee
i j k and χmee

i j k obey intrinsic permutation symmetry on the indices j

and k because the components of the electric field of the fundamental wave are indistinguish-
able. As for the EQ tensors, due to the rotational symmetry and zero-trace property of the
polar quadrupole moment tensor, χqee

i j kl = χ
qee
j i kl = χ

qee
j i l k = χqee

i j lk holds. Additionally, emission

from the quadrupolarization involves a gradient of the source with respect to the direction of
propagation ∇i Q i j .

In crystalline solids, the magnetic dipole and electric quadrupole contributions are smaller
than the electric dipole by a factor λ/a ∼ 103, where λ is the radiation wavelength and a is
the lattice constant of the crystal. Therefore, they can often be neglected which is termed
as electric-dipole approximation. However, nanostructures typically present a much smaller
ratio λ/a ≤ 10, for which the SHG contributions of MD and EQ terms may become relevant.

Neumann’s principle states that “any type of symmetry which is exhibited by the point group
of the crystal is possessed by every physical property of the crystal”. Hence, the magnetic and
crystallographic symmetry operations of a sample uniquely determine the set of nonzero ten-
sor components χi j k ,χi j kl 6= 0, see sections 3.1.3 and 3.1.5. In turn, observation of a vanishing
component allows one to derive information about the structure. Tensors are classified accord-
ing to their transformation behavior under the two fundamental parity operations, i.e. space
inversion and time inversion, both having eigenvalues ±1. For tensors, the corresponding
operators are typically denoted by Î (r →−r ) and T̂ (t →−t ), respectively.

Polar and axial tensors: Polar and axial tensors distinguish themselves with respect to spa-
tial inversion. A tensor Ξ(n) of rank n is classified according to which of the following
equation holds:

polar: ÎΞ(n)(r , t ) = (−1)n Ξ(n)(−r , t ) (2.10)

axial: ÎΞ(n)(r , t ) = (−1)n+1Ξ(n)(−r , t ) (2.11)
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This definition has important general consequences: In a centrosymmetric crystal, all
axial tensors of even rank and all polar tensors of odd rank have to vanish identically.
Moreover, the product of two polar or two axial tensors transforms like a polar tensor,
whereas the product of one polar and one axial tensor behaves like an axial tensor.

Tensors of i- and c-type: The classification as i- or c-tensor reflects either the invariance (i-)
or the change (c-) of the sign of a tensor under time reversal:

i-tensor: T̂Ξ(n)(r , t ) =+Ξ(n)(r ,−t ) (2.12)

c-tensor: T̂Ξ(n)(r , t ) =−Ξ(n)(r ,−t ) (2.13)

A product of two i- or two c- tensors always transforms like an i-tensor (is invariant
under T̂ ), whereas the product of an i- and a c-tensor changes sign under the time-
reversal operation. The concept of i- and c-tensors is important for magnetically ordered
systems, see section 3.1.4. The onset of magnetic ordering generally violates the time-
inversion symmetry of a crystal, allowing for nonzero c-tensors.

According to these definitions, the electric dipole tensor χeee is a third-rank polar tensor.
All indices are associated with a polar vector. The magnetic dipole tensor χmee is an axial
third-rank tensor. The last two indices are associated with a polar vector (electric quantities),
whereas the first index is associated with an axial vector (magnetic quantity). The electric
quadrupole tensors χeem,q and χqee are polar fourth-rank tensors. All indices are associated
with polar vectors. Consequently, any improper transformation (reflection or inversion) leads
to a different sign between the respective components of χeee and the MD and EQ tensors. A
direct conclusion is that the magnetic-dipole and the electric-quadrupole contributions are
allowed when a center of inversion is present. In contrast, electric-dipole contributions to
an SHG signal are only allowed in noncentrosymmetric crystals: An electromagnetic wave
incident on a centrosymmetric structure such as an isotropic continuous metal surface at
normal incidence (or oblique to this surface in s-polarization) cannot create an ED-SHG wave
according to equation (2.6) for it implies χeee

i j k =−χeee
i j k [120, 121]. However, in centrosymmetric

material a break of symmetry occurs at an interface at other incidences and polarization.
Then, symmetry is disrupted in the first few atomic or molecular layers of a system, so
that the properties of the surface SHG signal provides information about the interface only.
Surface SHG is possible even for materials which do not exhibit bulk SHG and is an important
characterization method in surface science.

The sensitivity to structure and symmetry makes SHG a key technique for investigating the
effects of shape, structure, and symmetry. The polarization dependence mentioned above is
the first of three features that are signatures for SHG signals. Second feature, the intensity of
the nonlinear signal is proportional to the square of the nonlinear source term, hence to the
square of the fundamental intensity Iω and to the power four of the incoming light electric
field, see equation (1.16):

I2ω∝|S|2 ∝ I 2
ω∝ E 4

ω . (2.14)

Together with equation (1.30), this relation is key when employing nanostructures as optical
catalyst. The process description is developed in section 3.1.4. The third and last feature has
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CHAPTER 2. PERTURBATIVE NONLINEAR OPTICS

already been mentioned in providing the parametric quantum mechanical picture for SHG
emission: A photon of frequency 2ω is emitted under excitation at ω. In others words, the SHG
emission is spectrally sharp when excited monochromatically. These criteria are unique signa-
tures distinguishing SHG signals from other optical processes such as photoluminescence,
which is treated in the following section.

2.2 Two-Photon Photoluminescence

The nonlinear mechanisms described above are parametric processes which are described by a
real susceptibility. Yet, transition from a ground state energy level to a real excited state can oc-
cur via non-parametric processes of order n. Here, the energy need not be conserved because
energy can be transferred to or from the material medium. These processes of order n are
described by the imaginary part of the susceptibilities χ(n). Multiphoton absorption belongs
to such non-parametric mechanisms: A transition to a higher energy level is obtained by si-
multaneous absorption of n photons via n−1 virtual states. The total absorption cross-section
σ is determined as the sum of all order cross-sections: σabs =

∑
nσ

(n)
absI n−1

ω . In particular, while
the linear cross-section does not depend on the laser intensity Iω, the two-photon absorption
depends linearly on it. Consequently, the transition rate R(2) due to two-photon absorption
scales as the square of the laser intensity:

R(2) = σ(2)
absI 2

ω

~ω
. (2.15)

For high field strength, the multiphoton absorption processes lead to absorption even in
the case where the electric dipole transition is forbidden by the selection rule for the linear
absorption, or if the fundamental frequency is not resonant with the investigated system. The
two-photon absorption process was first described theoretically in 1931 and demonstrated
experimentally shortly after the invention of the laser in 1961 [122, 123].

The process is relevant for this work, for it can lead to luminescence of the gold nanostruc-
tures. One then speaks of two-photon photoluminescence (TPPL, also found as 2PPL in
literature). For gold, it has been experimentally demonstrated that TPPL is the result of two
sequential single-photon absorption steps mediated by a real state [124]. In detail, the first
photon excites an electron via an intraband transition within the sp conduction band, while
the second photon excites an electron from the d band to recombine with an sp hole in the
conduction band. The dynamics of the TPPL signal, caused by the radiative recombination
of d holes, is ruled by the relaxation time of the transient distribution excited in the sp
conduction band after the first absorption event [125, 126]. Thus, the TPPL yield depends on
the laser pulse width δ, hence on the laser-pulse peak power. Indeed, in the δ> 1ps regime,
the TPPL yield decreases as δ is increased. The process saturates for shorter pulse widths
and becomes independent of δ [124]. Because of the increased density of states, interband
radiative recombination in TPPL occurs close to the L and X points in the reciprocal space, see
figure 1.2. This leads to broad emission bands located in the green and red spectral regions,
respectively [126].
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The band structure details in figure 1.2 show that a minimal fundamental photon energy of
0.90eV is necessary to excite charge carriers above the Fermi level via two-photon absorption
near the X point (1.20eV near the L point). This corresponds to the spectral range of interest of
this work, and caution in separating TPPL from SHG signals should be taken. In doing so, the
quadratic dependence on the fundamental beam electric field is shared between the TPPL and
SHG signal, see equation (2.15). Thus it is not an appropriate criterion in differentiating the
two signals. The incoming polarization dependence is not relevant either, for nanostructuring
leads to polarization-dependent inhomogeneous field distributions and therewith anisotropic
TPPL yield. In consequence, only the emission polarization and/or the spectral bandwidth of
the signals differ: isotropic and spectrally broad for TPPL, respectively, but anisotropic and
nearly monochromatic, respectively, for SHG.
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Chapter 3

Experimental Methods

This section introduces the experimental methods used in this work. First, the electron beam
lithography (EBL) sample fabrication process is summarized in section 3.1.1. Two kinds of
samples are produced depending on the investigation: Metamaterial characterization, or
application thereof, for nonlinear amplification. The rationales for the corresponding building
block geometries are presented in section 3.1.2 and 3.1.4, respectively. The resulting tensor
components allowed for SHG investigation are explained and listed in section 3.1.3 and 3.1.5,
respectively. After the fabrication, a preliminary measurement of the linear-optical properties
of the samples is carried out to experimentally verify the plasmonic resonance positions. The
setup for measuring the linear spectra is described in section 3.2. The core work consists of
nonlinear spectroscopy investigations: The tunable high-intensity laser source is presented
in section 3.3. The optical setup for measurement of SHG is explained in section 3.4. The
chapter ends with specific aspects regarding the signal normalization and sample destruction
limit in section 3.6 and 3.7, respectively.

3.1 Samples

3.1.1 Fabrication: Electron Beam Lithography

EBL is a versatile method to define a nanoscale 2D mask pattern [127]. 3D samples can be
obtained by stacking [128], yet this work concentrates on monolayer structured samples. The
method is based on a scanning-electron microscope (SEM) of which the electron beam deflec-
tion unit is controlled by a computer providing the pattern from a CAD software. The beam
is switched on and off while rastering specific locations on the sample substrate: Exposure
dose and dwell time is assigned in the software. The rastering path need not be a regular grid
but is optimized for shortest overall fabrication time and minimization of charge build-up
effects. EBL is applicable to non-conductive substrates with the help of a thin conductive
layer deposition, typically indium tin oxide (ITO, In2O3:SnO2) or, as in this case, chromium
with a nominal thickness of 3nm. The function of such a layer is to drain the electrons of the
writing beam and avoids local charging of the sample.
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Figure 3.1 – Main fabrication steps

of plasmonic nanostructures by
means of electron beam lithog-
raphy. For sake of simplic-
ity, the diagram shows neither
the second PMMA layer nor
the uppermost conductive layer,
but their actual presence is
herewith explicitly mentioned.
The deposition of a thin 3nm
chrome layer, used for the adhe-
sion of gold on glass, is stressed
in (e).

The samples used in this work were produced in the group of Harald Giessen at the University
of Stuttgart. The EBL system (e_Line, Raith GmbH) at the Max-Planck-Institute for Solid
State Research Stuttgart was used. Typical values for SEM operation include an acceleration
voltage of 20kV and an aperture of 20µm resulting in an average beam current of 135pA.
The patterning procedure is summarized in figure 3.1. The substrate in (a) is covered by
a 120nm layer of the standard positive resist poly(methyl-methacrylate) (PMMA). This is
deposited from solution by spin-coating at 3000rpm for 5s followed by a 5min post-bake at
160◦C for polymerization, (b). A second PMMA layer is deposited (not shown): Slightly less
sensitive due to a higher molecular weight, it improves the quality of the end structure’s edges.
Here, spin-coating occurs at 8000rpm for 30s, followed by a 5min post-bake at 160◦C for
polymerization: A 50nm layer results. The above mentioned conductive layer is deposited on
top of the PMMA and is removed during processing (not shown). The organic resist is sensitive
to irradiation with electrons: Upon exposure with high-energy electrons, chemical bonds of
the long polymer chains break up, (c). Subsequently, the resist is removed in all areas where
the local charge dose exceeded the sensitivity threshold of 325µCcm−2: The development
occurs during a 90s bath in a wet solution (mixture of methyl-isobutyl-ketone (MIBK) and
isopropanol in a volume ratio of 1:3). The result is a nanostructured polymer mask with
precisely located holes at the exposed areas, (d).

The resolution is not primarily determined by the beam spot size, but rather limited by
scattered secondary electrons, effectively exposing nearby regions as well (proximity effect).
However, electron-beam lithography yields reproducible and accurate results. Shapes with
feature sizes around 20nm and accuracy of the order of a few nanometers is common now-
adays [129, 130]. The magnification of the SEM determines both the scanning resolution and
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the write-field size, i.e. the area that can be addressed by deflecting the electron beam alone,
without moving the motorized sample stage. A ×1000 magnification results in a scanning
resolution of about 5nm and a write-field size of 100×100µm2. Larger fields are exposed
piece-wise through shifting the substrate on a motorized stage. This is a potential issue for
reproducibility: Perfect focus needs to be maintained. Thus, a basic design, or building block,
is reproduced over a large area: For the present samples, the distribution of the unit blocks
corresponds to a 2D Shah function, i.e. a regular quadratic array with identical periods in both
directions. The major drawback of this method is the sequential processing (one unit block
is exposed after another) leading to lengthy exposure times of several hours for patterning a
large nanostructures field. During this process, absolute mechanical and electrical stability
needs to be assured.

After the mask patterning, a first 3nm layer of chromium is evaporated. Chromium serves
as an adhesion promoter for gold, which sticks poorly to the substrates used. Owing to its
reduced thickness, the chromium layer does not impair the optical properties of the samples.
Sputtering of a gold layer follows with a typical thickness of 30nm, (e). Most of the gold
remains on top of the resist: Only the gold volume deposited through the holes in the resist
contributes to the formation of the gold nanostructures. Then, the resist and the gold on top
of it are removed by a lift-off process in a hot acetone bath at 50◦C for 2min and subsequent
rinsing in acetone, (f). The end result is a sample with several fields consisting each of an
array of identical gold nanoparticles of a specific design on top of a dielectric substrate.

Contaminations or failure of one of the above processes can render a sample useless. Deviation
from a perfect nominal design can occur on different scale levels: In this work, defects are
called macroscopic on the millimeter scale of the substrate, microscopic across the hundred
micrometer span of a field, mesoscopic across the hundred nanometer length of a unit block,
and nanoscopic for the finest features of the nanostructures. After each production batch, the
macroscopic and microscopic homogeneity of the gold particle arrays and the cleanliness
are checked under an optical microscope. Defective samples are discarded. Smaller scale
inspection is verified under a field emission scanning electron microscope (S-4800, Hitachi
Ltd.) to check the actual geometry of the gold structures and their surface and edge quality.
Minimal deviations of a couple of nanometers from the nominal design are observed. The
linear-optical properties are not significantly altered, but the impact is potentially critical
in nonlinear-optical experiments since this reduces the symmetry of the structures. Thus,
mesoscopically, oblique-view SEM pictures reveal that the corners and edges of the fabricated
gold structures are actually not straight, but rounded off. Also, each single structure displays
its own shape variation analogous to bending, twisting, shearing, or asymmetrical scaling. This
is due to surface tension, to the EBL smallest mechanical or electrical instabilities (vibrations,
electron-beam astigmatism), and to the lift-off process. On a nanometer scale, each structure
always displays rough surfaces and edges. Such extra features originate from the lift-off process
and from the polycrystalline nature of the sputtered gold composing the nanostructures. These
3D structures constitute hot spots of extremely high electromagnetic fields (lightning-rod
effect). They can result in systematic errors and misinterpretations.

Gold is the metal of choice since it is a very good conductor up to optical frequencies. It does
not degrade when exposed to air so that optical experiments should be highly reproducible
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Figure 3.2 – Schematic geometry
of the building blocks for the
metamaterials fabricated as two-
dimensional periodic arrays of
gold on glass. The geometries
were selected to investigate the
effects of size, shape, and sym-
metry on the nonlinear optical
performance. The Cartesian co-
ordinate system is oriented ac-
cording to [120]. The L-shaped
structures require a 45° rota-
tion of their coordinate system
along the z-axis to match the
nomenclature and symmetry op-
erations used for the description
of the other structures.

with a given sample over a long period of time of several months. Resistance to oxidation is
the reason why gold is preferred over e.g. aluminum or silver, although they present sharper
and higher energy plasmon resonance for equivalent shape. A trade-off is also made for the
choice of the supporting transparent substrate in the following section. Alternative to glass
are e.g. ITO (no need for an extra conductive layer during patterning) and sapphire (higher
thermal conductivity for energy dissipation) but for both the refractive index is too high and
red-shifts the resonances above the detection spectral range of the setup, see section 3.4. The
choice of a structure geometry is explained in the following section.

3.1.2 Nonlinear Characterization: Nanostructured Gold on Glass

In this section, the substrate consists of an amorphous 10×10mm2 quartz glass substrate
(Suprasil 1, Heraeus GmbH). Being centrosymmetric, it is inactive for SHG, and detection
of SHG signals is traced back to the nanostructures lithographed on its surface by EBL, see
previous section. Here, the goal is to deepen the understanding of the link between the
nanostructures morphology and their nonlinear optical properties. U-shaped sub-wavelength
building-blocks are selected as the reference structure for this investigation since they are
most commonly studied [48, 49]. Furthermore, this shape is easily scalable, and basic design
variations in size, symmetry and shape complexity allow for investigating the effects these
parameters have on the SHG performance. Figure 3.2 depicts the seven design variations that
are measured:

i Reference design: The reference building block consists of a classical U-shaped SRR
of approximately 215nm base length with an arm-to-base length ratio close to one.
Base and arm width amounts to 70nm. For an excitation parallel to the arms, a linear
resonance at 1.25eV with a 0.50eV FWHM is observed.

ii Size effect: The effect of size scaling is investigated with the second and third designs.
The former increases both the base and arm lengths to achieve a linear resonance at
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lower energy (0.90eV with 225nm base length), while the later reduces them to obtain
a linear resonance at higher energy (1.30eV with 200nm base length). Note that the
effects of scaling and spectroscopy are directly compared in the present approach: In
contrast, Klein et al. substituted spectroscopy by geometric scaling in their experiments
(wavelength scaling instead of structural scaling) [48, 49].

iii Shape effect: All further shape variations are adapted to ensure a linear resonance
matched to the first design. Designs number 4 and 5 give insight into the effect of
shape complexity. The basic shape of an SRR is retained, but the number of corners
is reduced in the design. Corners are associated with local field peaks and may favor
higher-order nonlinear contributions, e.g. according to equation (2.5). The elementary
unit in configuration 4 has no base and consequently presents one pair of corners less
in an L-shaped geometry [116, 131–133]. Both arms share the same nominal length and
width, about 295nm and 80nm, respectively. Design 5 avoids corners altogether with its
round C-shaped geometry. Nominal dimensions are a 345nm diameter, 80nm width,
and 45° opening angle. Noticeably, both structures share the same symmetry class and
therewith the allowed SHG contributions as the U-shaped one, see section 3.1.3.

iv Symmetry effect: Centrosymmetric structures are produced in the form of the last
two layouts. For these structures any SHG emission is forbidden in the electric dipole
approximation so that higher-multipole or local contributions according to section 2
become observable. Pattern number 6 differs from the original design only in that
one arm is flipped respectively to the base. Thus, only the symmetry is changed while
retaining the shape complexity. Base and arm length amount to 235nm, with a width of
85nm. The last design, number 7, represents a simple cut-wire geometry, i.e. a U-shaped
structure with unfolded arms. Total length amounts to 385nm with a width of 60nm.
Symmetrical features are clearly visualized later in figure 3.4. Their consequences in
terms of expected allowed tensor components is discussed in the next section.

v Bulk material effect: As a bulk material reference, a sample consisting of a bare gold
film is produced, covering half the area of the substrate (not shown). Its use in the
evaluation for the damage threshold for laser irradiation is discussed in section 3.7. It is
also employed to measure the surface-induced SHG from gold, see section 4.2.2.

Electron micrographs of the fabricated structures are shown in figure 3.3. It shows normal-
incidence images of some of the structures investigated in this work. The structures are
mechanically very stable and withhold aggressive cleaning steps such as pressured air flow
and ultrasound bath of acetone where required. Further SEM acquisitions are shown later in
figure 4.3.

A substrate is patterned with different fields, at least one for each design, each comprising
an array of thousands of building blocks. The lateral size of each array is 250×250µm2 with
equivalent field-to-field distances in the order of 250µm. The period within each field is
550nm so that both the near-field and far-field coupling of the structures is negligible, see
end of section 1.3.3. As mentioned in section 1.3.1, such an ensemble of nanostructures with
size features smaller than the wavelength of the impinging light is considered as an effective
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Figure 3.3 – Normal incidence SEM micrographs of gold structures (light gray) written on a glass substrate (dark
gray). Image (a) demonstrates the uniformity of the structures over a large area. The shadows between the
nanostructures are caused by the screening of secondary electrons by the metal.

material in this work: Each nanostructure acts as a meta-atom, or rather meta-molecule whose
shape defines eigen-polarization axes. As a consequence, the symmetry features impose a
reduction on the number of non-vanishing tensor components, as explained in section 2.1.
The allowed tensor components are determined in the following section.

3.1.3 Gold Nanostructures: SHG Tensor Components

Here and in section 3.1.5, an effective SHG susceptibility is considered, describing the global
symmetry of a periodic arrangement of ideal gold nanostructures. Therewith, the local meso-
scopic and nanoscopic deviations mentioned in section 3.1 are neglected in the individual
structures. It is one purpose of this work to verify the validity of this approach, see sec-
tion 4.2.3. The symmetry features for each design are illustrated in figure 3.4. The designs 1 to
5 in figure 3.2 all share the same symmetry. At normal incidence, the substrate’s role in the
nonlinear response is commonly ignored in SHG studies. Accordingly, only the gold structure
symmetry should be considered. However, the strong gradients in charge distribution in
plasmonic structures hint at a possible effect of the glass substrate. Its presence is a further
reduction in sample symmetry. Therefore, both analyses with or without substrate are carried
out. A distinction in symmetry class appears for the same design: Where the substrate is taken
into consideration, the red symmetry planes in figure 3.4 are irrelevant. For simplicity, designs
6 and 7 may be called centrosymmetric structures even when the substrate is considered.

Table 3.1 regroups all information related to the symmetry class and allowed tensor compo-
nents as related to equation (2.6) to (2.9). Here, following the international notation, the point
group depends on the symmetry operations that leave the structures invariant. Based on
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Figure 3.4 – Symmetry elements of the investigated nanostructures. The represented surfaces are symmetry
planes for the gold nanostructures. The red plane ceases to be a symmetry element when the glass substrate
is considered in addition to the gold volume. The U-, L-, and C-shaped structures are equivalent from a
symmetry point of view.
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Table 3.1 – Symmetry operations, point group, and allowed tensor components for the investigated nanostru-
ctures. The symmetry analysis is carried out up to the first order expansion of the electromagnetic field.
Simplification is available based on the setup configuration and considering a plane-wave excitation and
outgoing emission. All measurements are carried out at normal incidence (k = (0,0,2π/λ)). Non-contributing
components according to this configuration are crossed out.

y

xzzz

without substrate with substrate

Symmetry operations 1,2y ,2̄x , 2̄z 1, 2̄x

Point group m2m m

Tensor components Non-vanishing elements indices (i j kl ≡χi j kl )

χeeeijk xx y = x y x, y xx, y y y , y zz,
z y z = zz y

xx y = x y x, y xx, y y y ,
xxz = xzx, y y z = y z y , y zz,
zxx, z y y , z y z = zz y , zzz

χmee
ijk x y z = xz y , y xz = y zx,

zx y = z y x
xxx, x y y , y x y = y y x,

x y z = xz y , xzz, y xz = y zx,
zx y = z y x, zxz = zzx

χ
qee
ijkl

xxxx, xx y y , xxzz,
x y x y = x y y x = y xx y = y x y x,
xzxz = xzzx = zxxz = zxzx,

y y xx, y y y y , y y zz,
y z y z = y zz y = z y y z = z y z y ,

zzxx, zz y y , zzzz

zxx y = zx y x= xzx y = xz y x,
z y xx=y zxx, z y y y=y z y y ,

xxxx, xx y y , xx y z = xxz y ,
x y x y = x y y x = y xx y = y x y x,
x y xz = x y zx = y xxz = y xzx,
xzxz = xzzx = zxxz = zxzx,
y y xx, y y y y , y y y z = y y z y ,

y y zz, y z y z = y zz y ,
y zzz = z y zz, z y y z = z y z y ,
zzxx, zz y y , zz y z = zzz y ,

zzzz, xxzz

χ
eem,q
ijkl

xxxx, xx y y , xxzz, x y x y ,
x y y x, xzxz, xzzx, y xx y ,
y x y x, y y xx, y y y y , y y zz,
y z y z, y zz y , zxxz, zxzx,
z y y z, z y z y , zzxx, zz y y ,

zzzz

xxz y , x y zx, y xzx, y y z y ,
xxxx, xx y y , xx y z, xxzz,
x y x y , x y y x, x y xz, xzx y ,
xz y x, xzxz, xzzx, y xx y ,
y x y x, y xxz, y y xx, y y y y ,
y y y z, y y zz, y zxx, y z y y ,
y z y z, y zz y , y zzz, zxx y ,
zx y x, zxxz, zxzx, z y xx,
z y y y , z y y z, z y z y , z y zz,
zzxx, zz y y , zz y z, zzz y ,

zzzz
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Table 3.1 – (continued)

y

xzzz

without substrate with substrate

Symmetry operations 1, 1̄, 2z , 2̄z 1, 2z

Point group 2/m 2

Tensor components Non-vanishing elements indices (i j kl ≡χi j kl )

χeeeijk − xxz = xzx, x y z = xz y ,
y xz = y zx, y y z = y z y , zxx,

zx y = z y x, z y y , zzz

χmee
ijk xxz = xzx, x y z = xz y ,

y xz = y zx, y y z = y z y , zxx,
zx y = z y x, z y y , zzz

xxz = xzx, x y z = xz y ,
y xz = y zx, y y z = y z y , zxx,

zx y = z y x, z y y , zzz

χ
qee
ijkl

xxxx, xxx y = xx y x, xx y y ,
xxzz, x y xx = y xxx,

x y x y = x y y x = y xx y = y x y x,
x y y y = y x y y , x y zz, y xzz,

xzxz = xzzx, xz y z = xzz y ,
y y xx, y y x y = y y y x, y y y y ,

y y zz,
y zxz = y zzx = z y xz = z y zx,
y z y z = y zz y = z y y z = z y z y ,
zxxz = zxzx = zx y z = zxz y ,

zzxx, zzx y = zz y x, zz y y ,
zzzz

xxxx, xxx y = xx y x, xx y y ,
xxzz, x y xx = y xxx,

x y x y = x y y x = y xx y = y x y x,
x y y y = y x y y , x y zz, y xzz,

xzxz = xzzx, xz y z = xzz y ,
y y xx, y y x y = y y y x, y y y y ,

y y zz,
y zxz = y zzx = z y xz = z y zx,
y z y z = y zz y = z y y z = z y z y ,
zxxz = zxzx = zx y z = zxz y ,

zzxx, zzx y = zz y x, zz y y ,
zzzz

χ
eem,q
ijkl

xxxx, xxx y , xx y x, xx y y ,
xxzz, x y xx, x y x y , x y y x,
x y y y , x y zz, xzxz, xzzx,
xz y z, xzz y , y xxx, y xx y ,
y x y x, y x y y , y xzz, y y xx,
y y x y , y y y x, y y y y , y y zz,
y zxz, y zzx, y z y z, y zz y ,
zxxz, zxzx, zx y z, zxz y ,
z y xz, z y zx, z y y z, z y z y ,
zzxx, zzx y , zz y x, zz y y ,

zzzz

xxxx, xxx y , xx y x, xx y y ,
xxzz, x y xx, x y x y , x y y x,
x y y y , x y zz, xzxz, xzzx,
xz y z, xzz y , y xxx, y xx y ,
y x y x, y x y y , y xzz, y y xx,
y y x y , y y y x, y y y y , y y zz,
y zxz, y zzx, y z y z, y zz y ,
zxxz, zxzx, zx y z, zxz y ,
z y xz, z y zx, z y y z, z y z y ,
zzxx, zzx y , zz y x, zz y y ,

zzzz
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Table 3.1 – (continued)

y

xzzz

without substrate with substrate

Symmetry operations 1, 1̄, 2x , 2y , 2z , 2̄x , 2̄y , 2̄z 1, 2z , 2̄x , 2̄y

Point group mmm mm2

Tensor components Non-vanishing elements indices (i j kl ≡χi j kl )

χeeeijk − xxz = xzx, y y z = y z y , zxx,
z y y , zzz

χmee
ijk x y z = xz y , y xz = y zx,

zx y = z y x
x y z = xz y , y xz = y zx,

zx y = z y x

χ
qee
ijkl

xxxx, xx y y , xxzz,
x y x y = x y y x = y xx y = y x y x,
xzxz = xzzx = zxxz = zxzx,

y y xx, y y y y , y y zz,
y z y z = y zz y = z y y z = z y z y ,

zzxx, zz y y , zzzz

xxxx, xx y y , xxzz,
x y x y = x y y x = y xx y = y x y x,
xzxz = xzzx = zxxz = zxzx,

y y xx, y y y y , y y zz,
y z y z = y zz y = z y y z = z y z y ,

zzxx, zz y y , zzzz

χ
eem,q
ijkl

xxxx, xx y y , xxzz, x y x y ,
x y y x, xzxz, xzzx, y xx y ,
y x y x, y y xx, y y y y , y y zz,
y z y z, y zz y , zxxz, zxzx,
z y y z, z y z y , zzxx, zz y y ,

zzzz

xxxx, xx y y , xxzz, x y x y ,
x y y x, xzxz, xzzx, y xx y ,
y x y x, y y xx, y y y y , y y zz,
y z y z, y zz y , zxxz, zxzx,
z y y z, z y z y , zzxx, zz y y ,

zzzz

the point group and the SHG channel under consideration, one derives the non vanishing
tensor components [120]. For the centrosymmetric structures (Z- and I-shaped, design 6 and
7), the coordinate system is oriented according to [120], with z representing the axis of highest
symmetry. However, this referential is adapted for non-centrosymmetric geometries (U-, L-,
and C-shaped, design 1 to 5) for homogeneity in the nomenclature.

Not all non-vanishing tensor component can be excited and/or analyzed. This is due to the
experimental configuration imposed by the setup and leads to a drastic simplification of the
list of components potentially contributing to the SHG signal. Non-participating contributions
are crossed out in table 3.1. Their exclusion from contributing to the signal is related to the
normal incidence of the light beam. With a light beam propagating along the z-axis, i.e. k ‖ ẑ ,
all the susceptibilities involving excitations and signals along ẑ are inaccessible. For χeee

i j k ,

any tensor component with one or more indices z is impracticable because of the transverse
nature of light: k ·E = 0 and k ·B = 0, so that Ez and Bz are always zero. The analysis is
similar for χmee

i j k , χqee
i j kl , and χ

eem,q
i j kl , though interacting with the ∇ operator, to contribute to

the nonlinear source via ∇×M NL, ∇k E l , and ∇·Q̂NL, respectively, see equation (2.5) to (2.9).
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Table 3.2 – Polarizing optics configurations for all potentially non-zero SHG tensor components. Polarization
orientations are denoted by h (horizontal polarization, i.e. parallel to the x-axis in the chosen referential), v
(vertical polarization, i.e. parallel to the y-axis in the chosen referential), and d (diagonal at 45° between the
h and v polarizations).

χ
eee
ijk

χ
mee
ijk

χ
qee
ijkl

χ
eem,q
ijkl

Pol Ana Non-vanishing elements indices (i j kl ≡χi j kl )

v v y y y x y y z y y y y y z y

h v y xx xxx z y xx y xzx

d h xx y = x y x y x y = y y x zxx y = zx y x xxz y, x y zx

The ∇ operator identifies with the propagation vector k as one considers the propagation of
plane waves of the form E = E 0 exp[i (k · r −ωt )].

The resulting analyzer-polarizer configurations are summarized in table 3.2 for all accessible
tensor components. h-, v-, and d-polarization are polarizations along x, y , and diagonal
thereof, respectively. The three configurations are later mentioned as v v , hv , and dh, respec-
tively. Similarly, hh, vh, and d v might be used. It is stressed that for diagonal excitation, both
h-only and v-only excited contributions are also analyzed simultaneously.

3.1.4 Nonlinear Optical Catalyst: Gold Nanowires on SHG Active Crystals

Here, the substrate consists of a non-centrosymmetric crystal, hence SHG active. In contrast to
section 3.1.2, it is now the nanostructures patterned at its surface which are centrosymmetric
and expected not to deliver an SHG signal of their own: Detection of SHG signals is traced
back to the underlying crystal.

The gold nanostructures consist of simple nanowires spanning the whole length of a nanos-
tructured field. As described in section 1.3.1, the electric field of a light wave polarized
perpendicular to the wires drives a collective electron oscillation leading to a strong electric
field enhancement localized at the edge of the wires. Thus, the wires can act as an optical field
enhancement device. The quadratic dependence expressed by equation (2.14) then leads to a
several orders of magnitude increase of the SHG efficiency. The SHG yield of the crystals is
enhanced by tailoring the electromagnetic light field within the sample. However, it is stressed
that the amplification can only take place in the volume of the crystal immediately below the
surfaces, for the amplified field penetrates the crystal only a few tenths of nanometers. Fur-
thermore, while measuring in reflection, any SHG produced below the gold structure cannot
be extracted, for it is absorbed in the gold volume, see figure 1.3. Thus, one can measure
an amplified signal only in the case where the enhanced SHG produced at the edge of the
nanostructure overcompensates the loss of SHG signal due to the surface of the crystal being
partially covered with gold. Figure 3.5 summarizes these features, the model used is presented
in section 4.2.4, the corresponding Mathematica code is reported in code B.2. It is stressed
that the amplified response should then depend on the wire orientation with respect to the
crystal axes, see section 3.1.5.
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Figure 3.5 – Illustration of the electric field amplification mediated by a plasmonic gold nanowire: Predominance
of the nanostructures’ boundary in the SHG signal strength. SHG without and with wire mediation is
illustrated in the left and right column, respectively. The system excitation consists of a plane wave at normal
incidence from above with amplitude E0 (not depicted). For each case, a cross section of the system is shown
(top). The spatial distribution of the transversal electric field strength Ex is shown starting at the crystal
surface (middle). Further curves show the evolution in 10nm depth steps within the crystal, as indicated by
the dotted red arrow. The resulting SHG strength distribution is shown with an indication about the phase
(⊕ or ª) of the generated signal (bottom). For the illustration, the amplification factor is arbitrarily set to
a conservative value of 6. Figures of merit are provided, taking into consideration that measurements are
carried out in reflection.

The described method is general enough to be applied to any kind of material. However, a
model compound is required to study both the mechanism and the functionality of the SHG
enhancement. For this, crystals from the hexagonal rare-earth manganites and chromium(III)
oxide families were selected as model systems. Both crystals type are described below; corre-
sponding reference spectra are provided in annex A.

RMnO3: c-cut hexagonal crystals from the multiferroic RMnO3 family are considered, grown
either by the flux [134] or the floating-zone technique, also known as melting-zone
process [135]. The corresponding crystals are labeled FG and FZ, respectively. The
floating-zone melting process melts RMnO3 pressed pellets into large single-crystal rods
of up to 3cm in length and 0.5cm diameter [136]. The flux method delivers much smaller
platelets with a thickness of typically about hundred micrometers and a diameter of a
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few millimeters [137]. Furthermore, this method may come to the formation of surface
layers with a high proportion of bismuth in the thickness range of several micrometers.
In particular, this may lead to a change in the ferroelectric properties of the crystals
[138].

The isomorphous hexagonal RMnO3 crystals (R=Sc, Y, Dy-Lu) belong to the family of
multiferroics, i.e. compounds displaying simultaneous long-range electric and magnetic
order [139]. SHG is particularly suited for the simultaneous investigation of the two
forms of ordering and thus their interaction [139]. The SHG spectral, polarization, spatial,
and temperature dependencies are very well known for both the ferroelectric (FEL) and
the antiferromagnetic (AFM) order of the hexagonal RMnO3 system [140, 141]. RMnO3

crystals possess a hexagonal unit cell and a fivefold coordination of the central Mn3+ ion
[140]. Above the Curie temperature TC =570K to 995K, the compound is paraelectric and
paramagnetic, possessing the space symmetry P63/mmc (point group 6/mmm)[120].
At TC , a FEL distortion leads to a spontaneous polarization P along the hexagonal axis.
P is the ferroelectric order parameter which transforms like a time-invariant (i -type)
scalar [120, 142]. The ferroelectric ordering breaks the inversion symmetry and reduces
the symmetry to P63cm (point group 6mm). At the Néel temperature TN =75K to
130K, AFM ordering of the Mn3+ spins occurs in the basal plane perpendicular to the
sixfold z-axis and breaks the time-reversal symmetry of the crystal [143]. The AFM order
parameter of the triangular spin lattice is l , that transforms like the component of a
third-rank axial time-noninvariant (c-type) tensor [120, 142]. It reduces the symmetry
of the simultaneously FEL and AFM lattice to P63/cm or P63/cm (point group 6mm or
6mm) depending on the orientation of the spins along the x- or y-axis, respectively. This
corresponds to the αx and αy models in reference [143], where an extensive investigation
of these substances by SHG is to be found.

In the present work, FG HoMnO3 (TC = 875K, TN = 76K) and FZ YbMnO3 (TC = 995K,
TN = 87K) crystals are used. YbMnO3 follows the αy model for all temperatures below
TN . For HoMnO3 however, a collective 90° rotation of the Mn3+ spins from y- to x-
axis changes the magnetic symmetry from αy configuration below TN to αx below a
phase transition occurring around 40K. Both the FEL and the AFM contribution to the
SHG signal are employed. Under ambient conditions, the broad spectral range of FEL
SHG allows for investigation of the basic mechanism of the SHG enhancement. The
functionality of the SHG enhancement is investigated by monitoring the response of
the AFM domains to the metamaterial on the RMnO3 samples. AFM experiments are
carried out at cryogenic conditions below the Néel temperature TN . An SHG signal of
FEL origin is observable in the broad 1.20eV to 3.00eV range, see figure A.12. The usable
range for AFM SHG contributions across the RMnO3 family is restricted to the much
narrower 2.30eV to 2.80eV range. Note that the maximum yield of the AFM SHG signal
is obtained at 2.40eV, see figure A.13.

Cr2O3: c-cut trigonal crystals of Cr2O3 are used, all cut from the same boule grown by the
Verneuil method [144]. Above the Néel temperature TN = 307.6K, paramagnetic Cr2O3

crystallizes in the centrosymmetric point group 3̄m [120, 145, 146]: Nonlinear electric-
dipole effects due to χ

eee
i j k (polar i tensor of third rank) are forbidden, but MD effects

45



CHAPTER 3. EXPERIMENTAL METHODS

due to χmee (axial i tensor of third rank) and EQ contributions χqee (polar i tensor of
fourth rank) are allowed in this point group [120, 147]. Without nanostructuring of the
crystal surface, quadrupole contributions to the SHG signal due to χqee (i ) are neglected
since they have not been observed in Cr2O3. Thus, SHG is measured from a magnetic
dipole contribution due to χmee

i j k (i ) above TN .

Below TN , four spins in the unit cell order along the optical axis in a non-centrosymmetric
antiferromagnetic structure [145, 146, 148]. The arising antiferromagnetic vector l is
also oriented along the optical axis. The positive or negative orientation of the magnetic
moments in the unit cell defines the two types of magnetic domains, so-called 180° do-
mains. Both space- and time-reversal symmetry operations are simultaneously broken,
but the combined space-time-reversal operation 1 remains a symmetry element. The
resulting magnetic point group of Cr2O3 is 3m. In this point group new phenomena de-
scribed by polar c tensors of odd rank (ED) and axial c tensors of even rank are allowed.
Thus, in addition to the crystallographic SHG due to χmee

i j k (axial i tensor) electric dipole

effects due to χeee
i j k (polar c tensor of third rank) are allowed below TN [120, 147]. Besides,

the existence of an axial c tensor of second rank leads to the static magnetoelectric
effect in Cr2O3 [146, 149].

The magnetoelectric effect can be exploited to reorient antiferromagnetic domains in a
controlled fashion [149, 150]. For this purpose, the sample is cooled from the param-
agnetic to the antiferromagnetic phase in presence of both an electric and a magnetic
field applied along the crystallographic c-axis [151]. As the crystal crosses the Néel
temperature, the electric field induces a magnetic moment aligned with the magnetic
field, via the magnetoelectric effect. Varying the strength of both fields allows for varying
the ratio of both domains thus altering the position of domain boundaries across a
sample. The domain topography is accessible in spatially resolved SHG experiments,
see section 4.2.4. The domain orientation results in either constructive or destructive
interference between the reciprocal and non-reciprocal SHG contributions [152]. Thus,
a contrast is observed between two 180° domains, that transform into each other by
the time reversal operation, i.e. employing right or left circularly polarized light. The
domains are often pinned by intrinsic defects and typically span across several square
millimeters.

SHG contributions from Cr2O3, be it of crystallographic or magnetic origin, extend in the
1.80eV to 3.00eV range. Maximum yield of the SHG signal is obtained around 2.10eV,
see annex A.3. An extensive description of the substance and its investigation by SHG is
found in reference [151].

The sample preparation steps are identical for both material families. First, Laue diffraction
allows for precise orientation (≤ 2°) of the crystal axes. Then the crystal is mechanically
ground and lapped in the plane normal to the c-axis. 3µm abrasive Al2O3 and SiC particles
are used for RMnO3 and Cr2O3, respectively. The wedge allowing, this step is potentially
bypassed for FG RMnO3 samples, many of them offering an excellent planar surface to start
with. Then, optical polishing is chemo-mechanically achieved. Silica slurry and diamond
suspension solutions are used for RMnO3 and Cr2O3, respectively, with a 1:5 volume addition
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of hydrogen peroxide (H2O2). In the silica slurry, silica particles (SiO2) form a colloid with
sodium hydroxide (NaOH) with a pH-value of 10. Particle sizes amount to 100Å and 1µm for
SiO2 and diamond, respectively. SiC and diamond are required when handling Cr2O3, for it
features a very high Mohs hardness value of 9.5 (9.8 for SiC, 10 for diamond). Best results are
achieved in balancing the rates of chemical and mechanical polishing, the former controlled
by the rate of fluid flow and the latter by the polishing plate rotation speed [153]. In reflection
measurements, the back face is left rough to prevent interference via back reflections and
Fabry-Perot effects. The back surface is polished only for the domain topography experiment
described in section 4.2.4, carried out in transmission. Then, the back surface polishing plane
is arbitrarily chosen at a slight angle with respect to the front face, again to prevent Fabry
Perot effects. Depending on the crystal used, the thickness varies from 100µm to 1500µm. For
such large values, the absolute crystal thickness is of no relevance for this work other than
mechanical stability during EBL processing.

Thereafter, a set of wire field pairs are fabricated. Each pair corresponds to a wire design, i.e.
the linear resonance energy is shared between the two fields within the reproducibility limit of
the fabrication process. The two fields present a relative orthogonal wire orientation, namely
parallel and perpendicular to the crystallographic a-axis. The wires form gratings with an
extension of 200×200µm2 to 500×500µm2, depending on the available area on the sample.
The wire width varies between 100nm and 300nm, with a typical periodicity of 450nm. For
RMnO3, the linear resonance of the wires is tuned in the range from 0.80eV up to 1.45eV.
Similarly for Cr2O3, the linear resonance of the wires is tuned in the range from 0.87eV up to
1.33eV. In both cases the tunability is obtained in varying the width only, not their height, so
that the penetration of the electromagnetic field of light is the same for all samples.

3.1.5 RMnO3 and Cr2O3: SHG Tensor Components

The space symmetry of the crystals used in this work are described in a Cartesian coordinate
system which is related to the hexagonal unit-cell axes by z = c and x = a. With respect to this
referential, the wires are designated as x- or y-wires, depending on the orientation of their
long axis along x or y , respectively. In the following, (i ) and (c) refer to the reciprocal and not
reciprocal behavior of the χ-tensor under time inversion.

For hexagonal RMnO3, all SHG contributions allowed by symmetry analysis are listed in
table 3.3. However, not all allowed tensor components actually contribute to a measured
signal and the analysis is substantially simplified based on an appropriate setup configuration.
On the one hand, leading order AFM contributions to SHG involve x-polarized and y-polarized
light only. On the other hand, all FEL contributions involve the participation of z-polarized
fundamental or SHG light. Hence, the AFM order is best observed with light incident along
the z-axis where purely ferroelectric SHG contributions cannot be excited for the projection
of the light field is zero along ẑ . In turn, an investigation of the FEL order is only possible
with light not incident along the z-axis. Given that only crystals cut normal to the z-axis
were available for this work, a 45° incidence configuration is employed to project the exciting
field along ẑ . This also provides access to the SHG contributions along the z-axis. Mixing
with AFM contributions to SHG is avoided by performing the experiment at T > TN where
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Table 3.3 – Symmetry operations, point group, and allowed tensor components in RMnO3 crystals. Below the
Néel temperature, tensor components are given only for crystals obeying the αy spin order. The symmetry
analysis is carried out up to the first order expansion of the electromagnetic field. Simplification is available
based on the setup configuration and considering a plane-wave excitation and outgoing emission. Measure-
ments are carried out at 45° incidence for the FEL signal (k = 1/

p
2(1,0,1)) and normal incidence for the AFM

one (k = (0,0,1)). Non-contributing components according to these configurations are crossed out.

RMnO3 T < TC T < TN

Symmetry operations 1, 2z , 6(2⊥), ±3z , ±6z

1, 2z , 6(2⊥), ±3z , ±6z

1, 3(2̄⊥), ±3z , 2z , 3(2̄⊥), ±6z

Point group 6mm 6mm

Tensor components Non-vanishing elements indices (i j kl ≡χi j kl )
(i)-type (c)-type

χeeeijk xxz = xzx = y y z = y z y ,
zxx = z y y , zzz

xxx =−x y y =−y x y =−y y x

χmee
ijk x y z = xz y =−y xz =−y zx y y y =−y xx =−xx y =−x y x

χ
qee
ijkl

xxxx = y y xx +x y y x + y x y x
= y y y y , xx y y = y y xx,

xxzz = y y zz,
x y x y = x y y x = y x y x = y xx y ,
xzxz = xzzx = y z y z = y zz y ,
zxxz = zxzx = z y y z = z y z y ,

zzxx = zz y y , zzzz

zxxx =−zx y y =−z y x y =−z y y x
xxxz = xxzx =−x y y z =−x y z y =
−y x y z =−y xz y =−y y xz =−y y zx,
xzxx =−xz y y =−y zx y =−y z y x,

χ
eem,q
ijkl

xxxx = y y xx +x y y x + y x y x
= y y y y , xx y y = y y xx,

xxzz = y y zz, x y x y = y x y x,
x y y x = y xx y , xzxz = y z y z,
xzzx = y zz y , zxxz = z y y z,
zxzx = z y z y , zzxx = zz y y ,

zzzz

xxzx =−x y z y =−y xz y =−y y zx,
xxxz =−x y y z =−y x y z =−y y xz,
xzxx =−xz y y =−y z y x =−y zx y ,
zxxx =−z y y x =−z y x y =−zx y y

the AFM SHG contribution is inexistent. Thus, many allowed terms do not contribute when
the measurements are performed according to the above observations, assuming a plane
wave excitation. These terms are crossed out in table 3.3. Although the expressions for the
FEL quadrupole excitations remain intricate under 45° incidence, their effect is negligible
with respect to leading order contributions. A detailed discussion of SHG spectroscopy on
the RMnO3 system is found in references [139, 140]. In the absence of nanostructure and
with plane waves for the incoming laser fields, one derives the time-invariant and time-
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Table 3.4 – Symmetry operations, point group, and allowed tensor components in Cr2O3 crystals. The symmetry
analysis is carried out up to the first order expansion of the electromagnetic field. Simplification is available
based on the setup configuration and considering a plane-wave excitation and outgoing emission. All
measurements are carried out at normal incidence (k = (0,0,1)). Non-contributing components according to
this configuration are crossed out.

Cr2O3 T < TC T < TN

Symmetry operations 1, 1̄ , 3(2⊥), 3(2̄⊥) , ±3z , ±3̄z 1, 1̄, 3(2⊥), 3(2̄⊥), ±3z , ±3̄z

Point group 3m 3m

Tensor components Non-vanishing elements indices (i j kl ≡χi j kl )

χeeeijk (c) − y y y =−xx y =−x y x =−y xx,
x y z = xz y =−y xz =−y zx

χmee
ijk (i) y y y =−xx y =−x y x =−y xx, x y z = xz y =−y xz =−y zx

χ
qee
ijkl

(i) xzxx =−xz y y =−y z y x =−y zx y
= zxxx =−z y y x =−z y x y =−zx y y ,
xxxx = y y xx +x y y x + y x y x = y y y y ,

xxxz =−y y xz =−y x y z =−x y y z
= xxzx =−y xz y =−x y z y =−y y zx, xx y y = y y xx,

xxzz = y y zz, x y x y = y x y x = x y y x = y xx y ,
xzxz = y z y z = xzzx = y zz y = zxxz = z y y z = zxzx = z y z y ,

zzxx = zz y y , zzzz

χ
eem,q
ijkl

(i) xxzx =−y xz y =−x y z y =−y y zx,
xxxx = y y xx +x y y x + y x y x = y y y y ,

xxxz =−y y xz =−y x y z =−x y y z, xx y y = y y xx, xxzz = y y zz,
x y x y = y x y x, x y y x = y xx y , xzxx =−xz y y =−y z y x =−y zx y ,
xzxz = y z y z, xzzx = y zz y , zxxx =−z y y x =−z y x y =−zx y y ,

zxxz = z y y z, zxzx = z y z y , zzxx = zz y y , zzzz

noninvariant contributions of the leading order ED contributions:

P NL(i ) = ε0

 2χ(i )
xxzExEz

2χ(i )
xxzEy Ez

χ(i )
zxx

(
E 2

x +E 2
y

)
+χ(i )

zzzE 2
z

 P NL(c) = ε0

χ
(c)
xxx

(
E 2

x −E 2
y

)
−2χ(c)

xxxExEy

0

 , (3.1)

where Ex , Ey , and Ez are the electric field components along the x-, y-, and z-axis, respectively.

For Cr2O3, all SHG contributions allowed by symmetry analysis are listed in table 3.4. The
analysis is restricted to light propagating along the optical z-axis, for which both the crys-
tallographic and magnetic SHG processes can be excited and analyzed. Above TN and in
the absence of gold nanostructures, only one independent component χm(i ) ≡ χ

mee
y y y (i ) =

−χmee
y xx (i ) =−χmee

x y x (i ) =−χmee
xx y (i ) of the nonlinear susceptibility contributes to the nonlinear

magnetization [120]. In fact, this tensor combines time invariant contributions, both of mag-
netic and quadrupole origin, yet whereas electric quadrupole contributions are allowed, they
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are mix inseparably with the MD contributions. In the wave equation, the magnetic-dipole
contribution leads to a source term µ0∇×∂M NL(i )/∂t for SHG [117, 147], see equation (2.8).
This source term is allowed above and below TN and does not induce any anomalous change
of the SHG when going from the paramagnetic to the antiferromagnetic state. Below TN ,
an additional source term occurs which is due to the breaking of space-inversion symme-
try. Since this breaking is due to magnetic ordering, the relevant tensor χeee

i j k (c) is of c type

[120] and depends linearly on the order parameter. This leads to a nonlinear polarization
P NL(c). For light propagating along the z axis, P NL(c) is given by one independent component
χe (c) ≡χeee

y y y (c) =−χeee
y xx(c) =−χeee

x y x(c) =−χeee
xx y (c) of the nonlinear susceptibility [120]. In the

wave equation, the electric-dipole contribution leads to the source term µ0(∂2P NL(c)/∂t 2)
for SHG, see equation (2.6). With plane waves for the incoming laser fields and neglecting
contributions like χeem,q , one derives the total source term:

S =µ0

(
∇× ∂M NL(i )

∂t
+ ∂2P NL(c)

∂t 2

)
(3.2)

Sx

Sy

Sz

= 4
ω2

c2


χm(i )

(
E 2

x −E 2
y

)
+2χe (c)ExEy

−2χm(i )ExEy +χe (c)
(
E 2

x −E 2
y

)
0

 , (3.3)

where Ex and Ey are the electric field components along the x- and y-axis, respectively. Given
there is no projection of the light field along the z ||k axis, z-polarized light cannot be analyzed.

It is also convenient to define a circular basis for right- and left-handed circular polarized
light, indicated by a + or − index, respectively. The unit vectors are then ê+ =−(êx + i ê y )/

p
2

and ê− = (êx − i ê y )/
p

2, with êz being left unchanged. Then, the source term becomes

S =
S+

S−
Sz

= 4
p

2
ω2

c2


(−χm(i )+ iχe (c)

)
E 2−(+χm(i )+ iχe (c)

)
E 2+

0

 . (3.4)

Considering complex susceptibilities at the resonance, χ=χ′ + iχ
′′
, and circularly polarized

light of intensity I0, one constructs the abbreviations C and ∆ to express the resulting SHG
intensity I as a function of the orientation of the order parameter l =±1 and of the circular
polarization σ=±1:

C = ∣∣χm(i )
∣∣2 + ∣∣χe (c)

∣∣2

∆= 2l
(
χ

′
m(i )χ

′′
e (c)−χ′′

m(i )χ
′
e (c)

)
I

I 2
0

(l ,σ) =C − sgn(l )sgn(σ) ·∆ . (3.5)

Experimentally, space-inversion corresponds to changing the circular polarization of the
incident light, while time-reversal equals a change in the domain orientation where the SHG
signal is generated. After equation (3.5), both actions lead to a relative change in the SHG
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intensity by a value 2∆ and thereby allow the optical identification of AFM domains. This
feature is exploited in section 4.2.4 to demonstrate that the nanopatterning of the crystal
surface with gold does not alter the crystal features. Further theoretical and experimental
details are provided in reference [151].

3.2 Linear Characterization

The linear spectra are experimentally determined using a Fourier transform infrared spectrom-
eter (Bruker Vertex 80, Bruker Optik GmbH) with an attached microscope (Bruker Hyperion,
Bruker Optik GmbH). The system provides transmission and reflection capabilities at normal
incidence. It operates for shorter wavelengths (0.4µm to 1.2µm) with a quartz beam splitter
and a silicon detector, and for longer wavelengths (0.9µm to 2.5µm) with a calcium-fluoride
beam splitter and a mercury-cadmium-telluride (MCT) detector cooled by liquid nitrogen.
Small sample areas ranging from 8µm to 100µm in diameter can be investigated. A polarizer
allows to excite the nanostructures with light of a defined linear polarization. Importantly,
with respect to the FWHM, the light is focused and collected with Cassegrain lenses (15x
reflective microscope objectives) with a numerical aperture of 0.4, or more precisely, the
sample is illuminated and light is collected from all directions between 25° off the substrate
normal.

Alternatively, a conventional infrared spectrometer with an attached microscope (MSV-370,
Jasco Ltd.) is used with similar capabilities in the 0.2µm to 2.5µm range. Operating principle
aside, differences include a lead-sulfide (PbS) detector for longer wavelength (0.8µm to 2.5µm),
and square sample areas ranging from 30µm to 500µm in side length. Here too, the light is
focused and collected with Cassegrain lenses (10x reflective microscope objectives) with a
numerical aperture of 0.5, or more precisely, the sample is illuminated from all directions
between 30° off the substrate normal.

Since the resonant phenomena investigated in this thesis are angle-sensitive, the use of Casse-
grain lenses results in transmittance spectra with broadened and less pronounced peaks and
dips [154]. Nevertheless, although an exact determination of the spectral width of a nanostru-
cture resonance cannot be achieved, the spectral peak positions remain accurate. These linear
characterization systems are used equivalently for the linear-optical measurements presented
in section 4.1.

3.3 Laser System

The optical setup used in this work is sourced with intense femtosecond laser pulses. To
generate such high intensity pulses, one employs the state-of-the-art technique of chirped
pulse amplification (CPA, [155]) in a regenerative amplifier to avoid damage in the optics
and nonlinear distortion of the spatial and temporal profile of the laser beam. The process is
reviewed in reference [156] and is summarized below. The effective ultrashort pulse length is
determined by means of an autocorrelator, and the central wavelength is tuned using optical
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Figure 3.6 – Optical layout and evolution of the temporal pulse shape in a chirped-pulse amplifier. The main
steps of the process consist successively of stretching, amplification, and recompression of the light pulse.
Stretcher and compressor are similar in their operating principle: Both rely on an optical path difference for
different wavelength. An inset provides details for the latter. The amplification takes place in the Ti:Sa crystal
placed at the center of the optical cavity and is controlled by a photodiode (PD). Incoupling and outcoupling
within the cavity is ensured by polarization optics: Two Pockel cells (PC), a quarter wave plate (QWP) and a
thin film plate (TFP).

parametric amplification (OPA) to allow for spectroscopy. The different parts are introduced
in the following.

3.3.1 Regenerative Amplifier (RGA)

To generate femtosecond pulses, a turn-key mode-locked Ti:Sa oscillator (Vitesse, Coherent) is
used, combined with an integrated diode-pumped solid-state laser (Verdi, Coherent, ≈ 1.5W
CW power). The lowest noise commercially available (< 0.02% rms) of the Verdi, provides
the oscillator with optimal peak-to-peak as well as long term stability laser output. This seed
laser delivers 290mW of 100fs pulses linearly polarized with a central wavelength of 800nm
at 80MHz repetition rate. This represents 3.625nJ per pulse.

For the RGA pump source, an intra cavity doubled, Q-switched neodymium-doped yttrium
lithium fluoride laser (Nd:YLF, Evolution, Coherent) is used, providing 20W of about 150ns
pulses centered at 527nm, with a 1kHz repetition rate.

In the RGA (Legend Elite, Coherent), see figure 3.6, the seed pulse coming from the laser
oscillator is first stretched out temporally and spectrally prior to amplification. To do so, a quad
pass grating scheme (not shown) is used to stretch the pulse in time by three to four orders
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of magnitude. The pulse is then injected into a 1.5m long optical cavity (10ns round-trip
time). This is done by controlling the polarization using an electro-optical modulator (Pockels
cell PC1), switched at proper timing, together with a quarter wave-plate (QWP). Closed with
concave confocal end mirrors, the optical resonator is built in a z-fold scheme to account for
astigmatic compensation. The light pulse is amplified in a 1/4"×1" Ti:Sa rod gain medium
during approximately 10 round trips (30m total propagation length) leading to a maximal
gain to loss ratio. The amplification build-up is monitored using leakage power detection
by a photodiode (PD) placed behind an end mirror. Ti:Sa crystals are ideally suited for high-
power ultra short pulse amplification since they provide a broad gain bandwidth peaked at
800nm and high thermal conductivity. During operation, the crystal is thermo-electrically
(TE) stabilized at 0◦C, and its environment is kept dry to prevent ice and condensation build-
up susceptible to lead to crystal damage or higher loss. After amplification, the pulse is then
coupled out of the cavity using another Pockels cell (PC2) in combination with a reflective
plate at Brewster angle, or thin film polarizer (TFP).

Finally, the pulses are recompressed in a similar grating arrangement as for the stretcher
resulting in 2.5W of 120fs pulses linearly polarized with a central wavelength of 800nm at
1kHz repetition rate. Thus, with 2.5mJ per pulse, this represents an overall amplification of
6.9×105. To reach the highest possible amplification, it is important to keep the energy of any
satellite pulses very low, i.e. to achieve a high pulse contrast. Such satellite pulses can occur
in various ways, e.g. via imperfect switching of the Pockels cell or parasitic reflections in the
amplifier. Also, the duration of the amplified pulse is slightly increased with respect to the
pulse delivered by the seed laser. This is due to the limited gain bandwidth of the amplifier
medium which reduces the pulse bandwidth, together with limited clipping on mirrors and
gratings in the stretcher and compressor regions. The very long propagation length mentioned
above renders the device sensitive to the slightest local parameter variation within the cavity,
most notably temperature fluctuations, air turbulences or dust. When properly operated, the
beam profile is close to a pure Gaussian TEM00 mode (beam quality factor M 2 < 1.5).

Alternatively, a laser system presenting upgraded specifications was available (Legend Elite
Duo, Coherent). Virtually identical in its operating principles, it presents a higher power
RGA pump source (35W) and an additional single-pass power amplifier (SPA) before the
compressor. While the first RGA Ti:Sa crystal also gets pumped harder, most of the added
power is used in the SPA. Similar to the gain medium mentioned above, this additional
amplifier stage consists of a TE-cooled, environment-controlled Ti:Sa crystal. The main
difference resides in that the amplification takes place in a single pass, hence the name.
During this single pass, the light pulse’s power is roughly doubled up to 8W. Here, the overall
amplification is about 2.2×106 with 8mJ per pulse.

3.3.2 Auto-Correlation Measurement

The generation, control, and use of ultra short laser pulses requires a precise characterization.
For a measurement of the time-dependent envelope of an ultrashort laser pulse, dedicated
methods are required. Direct electronic techniques for temporal pulse-width measurements,
consisting of fast photodiodes and high-bandwidth oscilloscopes, are limited to the several
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Figure 3.7 – Optical layout for the
autocorrelator. A light beam is
split in two by a beam splitter
(BS). After propagating through
two optical arms whose re-
spective length is set by retro-
reflectors (RR), both beams are
separated by a delay td . They
are then focused by a lens
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tal. The resulting SHG signal
is transmitted through spatial
and spectral filters (SF) and
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(PD) as a function of td . The
FWHM of the resulting signal
∆tIAC is correlated to the light
pulse’s temporal width.

picosecond regime. The only detector that reaches time resolution below 1ps is the so-called
streak camera, quoted with temporal resolution < 200fs[157, 158], and recently used to image
the propagation of repeated femtosecond light pulses [159]. Electronic methods are therefore
not suited to record the temporal profile of an ultrashort laser pulse. Such a characterization
requires optical correlation techniques.

A widely used technique to estimate the pulse duration is used here, the so-called intensity
autocorrelation (IAC) [160]), described by the following equation:

I SHG
IAC (td ) =

+∞∫
−∞

|E (t )E (t − td )|2 d t =
+∞∫

−∞
I (t ) I (t − td ) d t . (3.6)

This is the time integral of one pulse intensity multiplied by the intensity of a time-shifted
replica of the same pulse as a function of time shift, td . The IAC has its maximum at td = 0
and is always symmetrical [161].

The required experimental setup for its measurement is shown in figure 3.7. In our setup, it
consists of a compact commercially available autocorrelator device (Pulse check & Mini, APE
GmbH). In this fundamental configuration, one pulse serves as a gate to scan the other. It can
be realized with any interferometer that splits the pulse into two pulses and recombines them
with an adjustable time delay between them. For example, a 100fs pulse duration corresponds
to a spatial extend of 30µm, a dimension readily measurable with standard translation stages.
Measuring the spatial overlap of the two pulses requires a nonlinear process to generate
a detection signal proportional to the intensity product of the two pulses. Here, second-
harmonic generation is used in a thin beta-barium borate (BBO, BaB2O4) crystal. A thin
crystal has to be used to ensure that the ratio of the crystal phase-matching bandwidth to
the pulse spectral bandwidth is large. For 100fs pulses at 800nm the BBO crystal thickness
should be no thicker than about 100µm.
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The intensity autocorrelation is obtained directly when the two time-delayed laser pulses
are recombined non-collinearly into the thin nonlinear crystal. This leads to the so-called
background free intensity autocorrelation. In the collinear case a constant background appears
with a signal to background ratio of 3:1.

The IAC provides only limited information on the pulse shape because there are an infinite
number of symmetric (and asymmetric) pulse shapes that lead to the same autocorrelation
trace. The procedure to estimate the pulse duration from the IAC is to assume a pulse shape
and then to calculate the FWHM pulse duration ∆t from a tabulated ratio with respect to the
measured IAC FWHM, ∆tIAC: For a Gaussian pulse ∆tIAC/∆t = 1.414 [162].

It is important to notice that using IAC, the exact field amplitude and phase information is
lost: One only gets insight into the envelope function of the pulse. Applications that require
complete characterization of arbitrarily-shaped ultrashort laser pulses with respect to their
temporal amplitude and phase function (or their frequency-domain counterparts) make use
of methods operating in the joint time-frequency domain. The most common method is the
so-called frequency-resolved optical gating (FROG), described in great detail in references [163,
164] and references therein. The basic optical layout is the same as for IAC, the detector being
replaced by a spectrometer and camera to spectrally resolve the gated pulse.

Since an extensive FROG measurement was not available in the time frame of this work,
the IAC measured pulses were considered to be transform-limited Gaussian pulses. Thus,
for monitoring purposes, approximately 0.4% of the RGA output is split and sent into the
autocorrelator. A value of ∆t = 120fs (FWHM, data not shown) is determined for both systems.
These pulses are then used to seed an optical parametric amplifier (OPA) to allow for spectral
tunability.

3.3.3 Optical Parametric Amplifier (OPA)

For spectroscopy, it is required to extend the tuning capability of the RGA, fixed at 800nm,
into a broad range of wavelength. This operation is carried out by means of a fully integrated,
computer-controlled femtosecond OPA (TOPAS-C, Light Conversion Ltd, downstream the
Legend Elite system; OPerA Solo, Coherent, downstream the Legend Elite) [165, 166]. Both
OPA systems are virtually identical except for their pump power and polarization orientation
in the SH signal range, see table 3.5.

The operating principle of the OPA is shown in figure 3.8. Its input is split into three parts:
About 4% is used for the generation of a white light continuum (WLC) in a sapphire plate (SP),
and 17% (83%) of the remainder yield the first (second) pass amplification light. The white
light continuum is stretched spatially in a highly dispersive element (DE) to allow for spatial
selection of the seed wavelength. Then, it propagates through a first BBO crystal (type II, BBO
1), which selects the seed wavelength to be amplified into the second BBO crystal (type II,
BBO 2). The selection and amplification of this wavelength employs an optical parametric
generation (OPG) process. In such a process, signal photons are generated by temporal and
spatial overlap (retroreflectors RR 1 and RR 2) with a proper phase matching angle within
the crystals placed on rotating stages. It should be noted that the idler photons are a free
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Figure 3.8 – Optical layout for the optical parametric amplifier. The operating principle relies on several nonlinear
stages following the generation of a white light continuum (WLC) in a sapphire plate (SP) followed by a
dispersive element (DE). Wavelength selection and light amplification is ensured by setting proper phase
matching conditions. This is obtained by rotating the BBO crystal used in each nonlinear and ensuring
temporal overlap via motorized retro-reflectors (RR). (BD = Beam dump)

by-product of this operation. They allow to further extend the tunable range according to:

ωp =ωs +ωi , (3.7)

where ωp , ωs and ωi are the input pump, the signal and idler frequency, respectively (the wave
with higher frequency is called signal, for historic reasons). In total, an amplification factor
of about 1×106 is achieved. Thus, the wavelength tuning of the OPA is done by selecting
the phase matching angle of the BBO crystals, thereby ensuring that the wavevectors follow
kPump = kSig +kIdl together with a proper time delay of the retroreflectors. In addition, it is
possible to extend the accessible wavelength range by placing an additional mixer stage at the
OPA output port. The mixer stage consists of a second harmonic generator setup based on an
additional BBO crystal (BBO3). Again, phase matching is used to produce either the second
harmonic signal (SHsig) or second harmonic idler (SHidl), depending on the orientation,
vertical or horizontal, of the BBO rotation axis. Signal and idler waves as well as SHsig and
SHidl ones are cross-polarized one to the other, respectively. This allows for simple separation
using polarization optics (Glan-Taylor or Glan-laser prisma). The SHidl or SHsig beams share
the same light polarization as the signal and idler beams, respectively. For that reason, it is
simplest to place a polarization optics upstream from the mixer stage to remove the beam
like-polarized with the beam of interest.

For sake of completeness, if, as in the OPerA units, the output beam power is high enough,
a further crystal can be added to reach even higher photon energy via the fourth harmonic
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Figure 3.9 – Energy spectrum of the optical parametric amplifier (TOPAS-C unit; OPerA Solo units about three
times as high). The spectrum is split into four ranges depending on the process used to obtain the corre-
sponding photon energy: The idler (0.47eV to 0.78eV) is represented by a continuous red line, the signal
(0.76eV to 1.11eV) is represented by a continuous blue line, the SH-idler (1.06eV to 1.55eV) is represented by
a dotted red line, the SH-signal (1.51eV to 2.21eV) is represented by a dotted blue line.

Table 3.5 – Spectral output ranges and polarizations of the OPAs and corresponding filters. H and V stands for
horizontal and vertical, respectively. For the end-user, the two OPAs used in this work differ only in their
output power and SH signal polarization. Filters F1 and F2 are placed immediately upstream and downstream
from the sample, respectively. Filter values are given only for the measurements carried out in this work:
They are not suitable at the very edges of the spectrum covered by the idler and SH signal ranges. Note that
F2 is complemented by the monochromator before SHG light reaches the detector.

Idler Signal SH idler SH signal

Range (nm) 1600-2340 1120-1400 1400-1630 800-1170 560-820

Range (eV) 0.53-0.78 0.76-0.89 0.89-1.11 1.06-1.55 1.51-2.21

TOPAS-C H V V V H

OPerA Solo H V V V V

Filter F1 Silicon Silicon Silicon RG850/3 RG695/3

Filter F2 RG9/9 Water KG5/3 BG39/3 BG39/3

generation (FHG: FHsig and FHidl). Similarly, using another OPG process, namely difference
frequency generation (DFG), it is possible to extend the tunable range into the infrared (IR)
range up to 16µm. However, neither the FHG nor the IR ranges have been used in this work,
which concentrates on the signal and SHidl ranges. This represents near-IR fundamental
frequencies, delivering a signal in the optical range. Figure 3.9 shows the typical spectra form
of both OPA units (with OPerA Solo units having about three times as high an output energy
as the TOPAS-C units). Their tuning range is detailed in table 3.5. Depending on the photon
energy and the laser system used, the laser pulses emitted by the OPA have a fluence of 30
to 300mJcm−2. This corresponds to the 1100nm SHsig configuration with the Legend Elite
and 1300nm signal configuration with the Legend Elite Duo. However, the fluence is reduced
to 2.3mJcm−2 across the whole spectral range to protect the samples from destruction, see
section 3.7. Hence, light pulses of 0.7µJ with a photon energy of 0.76eV to 1.57eV are focused
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on a spot with a diameter of about 200µm.

The Heisenberg uncertainty principle ∆E∆t ≥ ~/2 provides a theoretically highest achievable
spectral resolution limit of 3meV when applied to 120fs pulses. In fact, the experimental
verification delivers a value of 25meV [167], therewith limiting the smallest spectral step width
in the spectroscopy measurements. A finer spectral resolution would be obtained e.g. with a
neodymium-doped yttrium aluminum garnet laser (Nd:YAG short for Nd:Y3Al5O12) emitting
nanosecond laser pulses. However, no detectable SHG is obtained with such a laser system
due to much lower peak intensities and shorter coherent interaction time with the ultrafast
plasmonic process, see section 1.3.3. On the other end in terms of pulse width, much faster
systems delivering pulses of only a few femtoseconds are spectrally too wide to carry out
proper SHG spectroscopy. For instance, it is no longer possible to distinguish between SFG
and its special case SHG.

Also, the spectral tunability offered by an OPA is achieved only with the high intensities offered
by a regenerative amplifier laser system. One has to deplore that such systems are currently
limited to the few-kilohertz range for the repetition rate. Increasing the repetition rate towards
the 100kHz regime or above would improve the signal acquisition in terms of signal-to-noise
ratio and/or acquisition time due to a higher photon flux. While non-amplified laser system
designs exist that reach the megahertz regime, they lack the required peak intensities to
allow for subsequent spectral tunability as well as reasonably long exposure time. Thus, one
has to stick to amplified systems: All requirements considered, an amplified system with
picojoule to microjoule pulses with a repetition rate in the 100kHz range is the best suitable
for investigating plasmonic nanostructures with currently commercially available products.

3.4 Optical Setup for SHG Spectroscopy

The experimental setup is shown in figure 3.10. Since the OPA delivers two linearly crossed-
polarized light beams (signal & idler or signal & SHidl), a calcite Glan-polarizing prism is used
to select the beam of interest and ensure a linear polarization at the entrance of the setup
(1 : 106 contrast, 4° field of view, PGH-10, Bernhard Halle GmbH). Then, a computer-controlled
rotating half-wave plate (quartz/MgF2, RAC 6.2.10, Bernhard Halle GmbH) adjusts the po-
larization of the light pulses without changing the following beam path. For measurements
involving circularly polarized light, the half-wave plate is replaced by a quarter-wave plate
(quartz/MgF2, RSU 1.4.10, Bernhard Halle GmbH). The light transmitted through the wave
plate then passes an oblique glass plate (not shown). The reflection of the incident light is
focused onto a pyroelectric detector (flat spectral response J3-05, Molectron Inc.) to measure
the linear intensity for reference. At low incidence angles, the reflection from the glass plate is
essentially independent of the laser polarization. Two further optics are on the optical path
before the pulse train impinges on the sample. First, a borosilicate lens (BK7, f = 300mm)
is used to focus onto the sample. Using a long focal length lens allows for neglecting the
coupling of the incident light to the normal component of the sample. The sensitivity to
chromatic aberration of the peak intensity is also reduced due to the long Rayleigh length.
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Second, a long-pass glass filter is used to block SHG spectral contributions from elements
preceding the sample.

Before the light beam impinges on the sample, it propagates through less than 30mm of
optical components with group delay dispersion (GDD) lower than 60fs2 mm−1 [162, 168].
Hence, a conservative higher limit in the effective pulse length impinging on the sample is
about 130fs, i.e. a < 10% increase from the pulse length delivered after the OPA. This validates
the choice of common transmission optics over GDD-free but alienating reflective ones such
as parabolic mirrors for focusing.

The typical beam waist is 150µm, the Rayleigh length is of the order of 25mm [169], and the
numerical aperture is 0.004, as measured with a knife-edge technique [170, 171]. For 1mW
excitation power, the pulse peak intensity and electric field strength on the sample are an
estimated 8.2×1010 Wcm−2 and 4.0×108 Vm−1, respectively.

The sample position is adjusted by a 3D micrometer translation stage. This allows to target a
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Figure 3.10 – Optical layout for nonlinear spectroscopy. The operating principle remains the same whether
the measurement is carried out in transmission (top, α= 0°) or in reflection (bottom left, α= 45°, and right,
α≤ 2°). Where required, the sample is cooled using a cryostat or cold nitrogen vapors (not shown). The beam
intensity is set by a variable neutral density filter (VNDF). Selected tensor components are determined by
polarization optics, i.e. a polarizer (λ/2- or λ/4-wave-plate) and an analyzer (Glan-Taylor prism). Light is
focused and collected by lenses (L) and spectrally filtered before and after the sample by colored glass filters
(F). The signal is ultimately collected and integrated by a charge coupled detector camera (CCD).
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specific field on a given sample by centering the focus beam waist on a nanostructure field.
The nanostructure fields have areas ranging from 100×100µm2 to 500×500µm2 depending
of the sample batch, see section 3.1. For the smaller fields, the beam diameter is reduced to
be fully encompassed by the nanostructured field, and the peak pulse intensity is matched.
For all samples, the beam covers about one fourth of the total field surface even under 45°
incidence angle.

The angle of incidence varies depending on the sample used and on the origin of the signal
under investigation. For gold structures on glass, the incidence is normal and the transparency
of the sample allows for transmission measurements. With the opaque RMnO3 and Cr2O3

samples, measurements need be carried out in reflection. Such a configuration also makes
sure that SHG occurs only near the surface where the plasmonic structure are expected to
interact. For RMnO3, the SHG signals of FEL origin are obtained with light incident at 45° to
the sample surface to access the z component, which is present in all the tensor components
contributing to FEL SHG, see section 3.1.5. The SHG signals of AFM origin are measured
at near-normal incidence (≤ 2°) to suppress any FEL SHG. Because of their cryogenic Néel
temperature, the RMnO3 samples are mounted in an optical cryostat operated with liquid
helium (ST-500-UC, Janis Research Company LLC). For Cr2O3 samples, the incidence is also
near-normal (≤ 2°) and the sample temperature control is eased by a much higher Néel
temperature: Controlled blazing of cold vapors from liquid nitrogen is sufficient to gain access
to the AFM signal [172].

In the sample, the incident pulse train generates optical second harmonic and/or third har-
monic. Depending on the sample being transparent or opaque, either the SHG light radiated
into the forward direction or the reflected SHG beam is collected. A spectral selection is made
right after the sample by means of optical glass filters to block the fundamental beam and
prevent SHG light to be generated in the following optics. Only harmonics of the fundamental
light are transmitted by this short-pass filter. The SHG light represents the signal of interest,
not to be confused with the fundamental signal beam. Then, the transmitted light reaches
a small aperture iris: Omni-directional signals resulting from incoherent processes such as
photoluminescence are excluded by spatial filtering, see section 2.2. Thus, only the SHG
signal is transmitted to a second Glan-polarizing prism together with no detectable traces
of luminescence. This takes the role of a computer-controlled rotating analyzer and selects
the output polarization of the SHG signal being transmitted to the detector. A single achro-
matic lens ( f = 200mm) with antireflection coating is used to project the SHG light onto the
entrance port of an imaging spectrograph (Triax 190, Horiba Jobin Yvon). The exit port bears
a liquid-nitrogen-cooled digital camera (×1.75 effective magnification). Using a single coated
lens rather than e.g. an aberration corrected camera lens allows for reduction of reflective
losses (4% at each air-glass interface) while providing a satisfying light collection. The grating
monochromator ensures that higher harmonics than SHG are blocked and allows for spectral
analysis. Also, it allows for the reduction of background environmental light not related to
the signal of interest. Where the spectral analysis is not required, the monochromator can
be replaced by an additional THG filter. All optical filters are reported in table 3.5. The SHG
photons reaching the charge-coupled device (CCD) chip are integrated in spectroscopic ex-
periments or spatially resolved for a precise alignment of the laser beam with respect to the
metamaterial array. Considering the low excitation density, the low conversion efficiency of
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the nonlinear optical process and the monolayer thickness of the material contributing to
SHG, the very low dark current of the camera (four electrons per pixel and hour) and its high
average quantum efficiency (∼ 50%) are a key for obtaining a detectable SHG signal.

3.5 Optical Setup for AFM Domain Topography

The back-illuminated deep-depletion LN2-cooled CCD camera offers a 1024×256px2 reso-
lution, each pixel 26×26µm2 in size. This enables the acquisition of spatially resolved SHG:
Getting access to the topography of the 180° domains in Cr2O3, see section 3.1.4, allows one
to evaluate whether the surface nano-patterned crystals are perturbed by nanostructures lying
on their surface. For this measurement only, the laser system is replaced by a nanosecond
Nd:YAG laser system (Powerlite Precision II 8000, Continuum Ltd). In this system, an optical
medium pumped by flash lamps at 10Hz delivers 6ns light pulses. The 1064nm output is fre-
quency tripled down to 355nm using a type II followed by a type I BBO doubler. The resulting
beam is used to pump an optical parametric oscillator (OPO, VersaScan, GWU-Lasertechnik)
to tune the central wavelength to the desired photon energy. A detailed description is available
in reference [173]. The setup layout is identical in its principles to the transmission setup
shown in figure 3.10. The polarizer consists of a quarter wave plate used to produce circular-
polarized light. The analyzer is removed altogether, for circularly polarized light is produced.
A single fundamental photon energy of 1.05eV is used where the SHG signal is maximum, see
annex A.3. For this reason and provided vertical and horizontal spatial resolution is required,
the monochromator is replaced by a THG filter. The domain contrast inversion with left- or
right-circularly polarized light is employed to establish the magnetic origin of the signal, see
section 3.1.4.

It is stressed that in such a measurement the domain topography under physical perturba-
tion is being investigated, not the amplification of their signal via the nanowires. Indeed
with nanosecond pulses, the coherent interaction with particle plasmons is negligible, see
section 1.3.3. The reason in using this nanosecond laser system is two-fold. First, the large flat-
top beam profile presents a constant homogeneous intensity across the whole beam diameter,
focused to 1cm diameter on the sample. Therewith, the excitation is homogeneous across
the entire sample area and the SHG intensity of any point within the beam can be directly
compared to any other point. Second, the peak intensity is much lower than in the femtosec-
ond laser system and ensures the structures are not getting damaged as one investigates their
effects on the crystal. Nevertheless, it is clear that observing the actual amplification of SHG
on different domains via nanopatterning of the crystal surface needs be carried out with a
femtosecond system and in a reflection configuration.

3.6 Signal Normalization

Nonlinear spectroscopy with femtosecond laser pulses depends critically on the normalization
procedure applied to the data. There are two ways to perform intensity normalization. The
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two methods described below are virtually identical when the beam profile is constant and
unchanged across the spectrum.

Most commonly, the spectral response function f (ω) including the transmission of the op-
tical filters and of the monochromator grating and the quantum efficiency of the camera is
calculated by referring to the respective lookup tables. When measuring the pulse energy of
the fundamental light with a flat-response Joulemeter one can normalize the SHG data to the
intensity of the incident light according to:

I norm.
2ω = I meas.

2ω

f (ω) · I 2
ω

, (3.8)

with I norm.
2ω the normalized SHG intensity, I meas.

2ω the measured SHG intensity, and Iω the
intensity of the fundamental wave. However, this approach does not account for the spectral
or temporal variations of the pulse length or the beam profile.

Therefore, in a refined normalization procedure, the sample is replaced by a reference SHG
source with spectrally flat SHG response such as the surface of a silver or aluminum mirror in
our case. This leads to a normalized SHG intensity according to

I norm.
2ω = I meas.

2ω

I ref.
2ω

, (3.9)

with I ref.
2ω the reference SHG intensity. Note that with this approach the spectral response

function of the setup f (ω) is automatically included in the normalization. Since the setup
responds differently to s- and p-polarized light due to the monochromator grating, both refer-
ence configurations have to be measured. Thus, any measurement is normalized depending
on the polarizer orientation: The normalization function is a linear combination of the latter
two orthogonal measurements. A precise positioning of the reference metal surface in the
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spectral transmission of the op-
tical setup and the intensity of
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. The com-

parison reveals discrepancies
due mainly to the beam profile
quality so that the normaliza-
tion procedure to a sample ref-
erence should be preferred.
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exact same focus plane as for the metamaterial sample is required. Figure 3.11 clearly demon-
strates that application of the refined procedure is indispensable for proper normalization as
it reveals a pronounced discrepancy between the results of the two normalizing procedures.
This difference originates from an evolution of the beam profile across the spectrum via e.g.
depletion of the pump within the OPA. These variations evolve in time or as the light path
changes (different sample position, focusing, etc.) so that reference acquisitions should be
carried out regularly based on the laser system evolution under external perturbation, e.g.
temperature variations. Using equation (3.8) is sufficient when the beam profile diameter
and quality is constant across the whole spectrum. Ideally, a reference should be measured
parallel to every measurement [58], equipment and fundamental beam intensity allowing.
The evolution and quality of the beam profile also plays a major role for the peak intensity
and therefore for the sample damage threshold evaluated in the following section.

3.7 Sample Damage

Illumination of the samples with intense femtosecond laser radiation can lead to alterations
or, in the worst case, to the complete destruction of the metamaterials. Therefore, a procedure
is needed for maximizing the SHG signal without destroying the samples, and it is essential to
estimate the damage threshold of the samples. For this purpose, the reference sample with the
half-coated continuous gold film is used. The metamaterial arrays do not consist of a closed
layer of gold, but of nanostructures with numerous gold-substrate transitions. Therefore,
the reference sample is positioned such that the focused beam hits the edge of the coated
area. This is based on the assumption that the threshold for damage at the edges is lower
than in the center of a continuous layer. Damage mechanisms are a complex issue and have
been discussed in reference [174]. Among other aspects, the confinement of the area covered
with the gold results in a reduced heat dissipation from the illuminated region. This effect
is worsened by the low thermal conductivity of the glass substrate. The test pulse energy is
increased gradually as long as an exposure time of 15min leaves the sample edges unharmed.
The maximum intensity applied to the metamaterial fields is then arbitrarily fixed at one-
eighth of the damage threshold. This corresponds to a value of 2.3mJcm−2. This is a trade-off
meant to preserve the sample while allowing proper signal-to-noise ratio. On the one hand,
further reducing the fundamental intensity is unpractical since the CCD camera detector
does not accommodate extended acquisition times due to its sensitivity to cosmic ray and
stray light. On the other hand, having the fundamental intensity just below the destruction
threshold means being critically sensitive on laser beam profile variations over the spectrum
and/or time. In practice, the output spectrum of the OPA was controlled regularly to audit
both spectral gradients and the peak intensity photon energy. Pronounced spectral gradients
of the OPA, particularly around the 1.10eV range, required splitting SHG spectra acquisition in
sub-ranges for which the beam intensity was set at the maximum value at the peak intensity
photon energy. When the peak intensity photon energy matched a nanostructure’s plasmonic
resonance, an extra safety measure was taken and the maximum intensity applied to the
metamaterial was about halved down to 1mJcm−2.

At fixed focus size, the above-mentioned intensity represents only a few percent of the capa-
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bility of the laser system across the whole spectrum. Still, the high pulse intensities obtained
at a repetition rate of 1kHz deposit a considerable amount of energy into the sample with the
potential to cause damage. However, a better suited laser system with a higher repetition rate,
as discussed in section 3.3.3, was not available in the time-frame of this work. Only repetition
rate improvements of amplified laser systems could trade high peak intensities for higher
photon flux to avoid excessively long exposure time.
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Chapter 4

Results and Discussion

This section provides an initial linear characterization of the metamaterials used in this work.
This is done to verify the hypothesis proposed in section 2.1 that any plasmonic effects at ω
are reflected in SHG processes at 2ω. Then, one first focuses on the nonlinear characterization
by investigating size, shape, and symmetry effects. Following this initial characterization,
metamaterials are employed as a potential optical catalyst in an attempt to improve SHG of
nonlinear crystals.

4.1 Linear Characterization

The linear extinction spectra of the gold structures on glass described in section 3.1.2 are
presented in section 4.1.1. Those of gold wires on a nonlinear crystal, described in section 3.1.4,
follow in section 4.1.2. Spectra acquisition is carried out at normal incidence after verification
that the investigated fields are free of macroscopic and microscopic damages and preceding
any femtosecond laser pulse illumination.

4.1.1 Nanostructures on Glass

The linear spectra shown in figure 4.1 reveal several resonances related to different plasmonic
oscillation modes, see section 1.3.2. The resonances depend on the incoming light polar-
ization: Each sample field is strongly dichroic with the orientation of the eigenpolarizations
depending on the nanostructure geometry [175]. This is demonstrated when continuously
varying the incident polarization angle, see annex A.1. The eigenpolarizations correspond to
the x- and y- symmetry axes of the structures, see figure 3.4. The dichroic structures possess
a fundamental linear resonance near 0.70eV and a cross-polarized higher energy resonance
at about 1.15eV.

This agrees well with numerical simulations carried out specifically for our structures by
Richard Taubert in Stuttgart (collaboration group of Prof. Giessen for structure production and
linear simulations). The software used is CST Studio Suite developed by Computer Simulation
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Figure 4.1 – Linear plasmonic resonances for gold nanostructures on glass. All samples present a fundamental
linear resonance with a width of 0.20eV to 0.35eV, centered around 0.70eV, as well as a higher resonance at
about 1.15eV. The polarization of the incident light is indicated by the arrows. The output polarization is not
analyzed. The linewidth is indicative only, due to the large aperture angle of the linear spectrometer.

Technology (CST AG). Carried out at the corresponding resonance frequency, these simulations
stress the predominance of the structures corners and, to a lesser extent, the edges of the
nanostructures for the electric field strength distribution, see figure 4.2. In this figure, the
normal component of the electric field is chosen as it reveals most clearly the number of
nodes, i.e. the order of the plasmonic resonance. Modes with an odd number of nodes are
excited if the incident field is polarized parallel to the gap of a split ring resonator, whereas
modes with an even number of nodes are excited for polarization perpendicular to the gap.

In contrast to the numerical model, real nanostructures present rounded edges and corners,
a challenging configuration for simulations. Hence, although the qualitative behavior, i.e.
the peak wavelength and linewidth, is properly described by the model, one should be very
cautious in drawing quantitative conclusions from computational models. The actual shape
of the structures is shown in the oblique SEM acquisitions of figure 4.3. The pictures further
demonstrate the good uniformity of the EBL-written structures as seen in figure 3.3. The nearly
inexistent deviation from a single building block to the others hints at the negligible character
of inhomogeneous broadening. The total linewidth of the resonances for an ensemble of
nanostructures of the same shape is then essentially that of a single of these nanostructures.

Thus, in accordance with section 1.3, the linear optical behavior is traced back to the sym-
metrical distribution of the electric charges and hence of the near-field electric field, i.e. the
field within and in the immediate vicinity of the structure under optical excitation. This
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Lower energy excitation

Higher energy excitation

Figure 4.2 – Normalized simulated electric field distribution within and around the nanostructures: Normal
component of the electric field for the first three plasmon modes. The orientation of the fundamental
electric field is indicated by an arrow and the resonance energy increases with each row. The first order
horizontal polarization resonance is shown only for the U-shaped structure since no other design presents
it in the spectral range studied in this work. The predominance of the structures’ corners and edges for
processes driven by the electric field is demonstrated. Computation performed using the commercial tool
CST Microwave Studio (Computer Simulation Technology GmbH).

Figure 4.3 – Oblique incidence SEM micrographs of the gold structures used in this work (light gray) written on
a glass substrate (dark gray). All images confirm the homogeneity of the structures and reveal smooth edges
and corners regardless of the symmetry design.
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supports a potential role of the structures’ mesoscopic symmetry in symmetry-sensitive SHG
measurements, rather than a determination of the nonlinear optical properties by the bulk
gold material properties.

A plasmonic effect at the excitation frequency ω should be noticeable at 2ω via SHG processes,
see section 2.1. Thus, in the following SHG spectra, the peak resonance frequency is indicated
by vertical dashed lines centered at ω and 2ω. This allows for checking correlations between
the linear properties of the nanostructures and their SHG spectra.

4.1.2 Nanowires on Nonlinear Crystals and Glass

The qualitative observations made above for the metamaterial building blocks on glass hold for
the gold wires at the surface of a nonlinear crystal. This is sensible since the processes at play
are identical: Changing the gold volume geometry and the nature of the underlying material
only tunes the resonance energy and linewidth, see section 1.3. A computer simulation is
shown in figure 4.4 that again demonstrates the preponderance of the edges in the electric
field amplification process. Here too, oblique SEM perspectives in figure 4.5 display the
smooth character of the edges. This results from the fabrication process and contrasts with
the model used in the computer simulation without affecting the qualitative observations
made on the charge distribution. As shown in figure 4.6, the linear resonances can be tuned
across the 0.50eV to 1.50eV range, with a typical 0.45eV FWMH linewidth. Following the
same convention as for the nanostructures on glass, the linear resonance is later indicated by
vertical dashed lines at ω and 2ω in the following SHG graphs.

Figure 4.7 displays the linear resonance features of metamaterial fields written on Cr2O3 in
a single batch. These are discussed in section 4.2.4. Figure 4.8 displays the same features
for similar nanostructures on glass. Being amorphous, the glass substrate does not offer any
preferred direction with respect to its electromagnetic features. Neither does fused silica
have remarkable optical features in the resonance range covered by the nanowires. As a
consequence, all plasmonic features vary roughly linearly as the nanowires’ width shrinks
with increasing field number. In particular the quality factor Q increases with field number.
The comparison with the former graph with structures on a nonlinear crystal is essential
to understand the subtleties of metamaterials. The Cr2O3 sample features a peak in the
quality factor for metamaterial fields with a plasmonic resonance around 1.05eV, a region
of high optical density for Cr2O3. In other words, it is experimentally verified that the linear
spectra are related to their environment, as described in section 1.3. The point is cardinal: A
given batch of nanowire geometries on glass can hardly be compared to the same nanowire
geometries on a crystal. Not only is the central resonance peak shifted, but also the quality
factor is altered. Any comparison is to be carried out with great caution. Nanowires on glass
are discussed later in section 4.2.4.
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Figure 4.4 – Normalized simulated electric field distribution within and
around a gold nanowire: Normal component of the electric field for
the first plasmon mode. The incident field is polarized perpendicu-
lar to the wire axis, as indicated by the arrow. The gold section in
the middle is delimited by dashed lines. The predominance of the
structures corners and edges for processes driven by the electric
field is verified. Computation performed using the commercial tool
CST Microwave Studio (Computer Simulation Technology GmbH).

Figure 4.5 – Oblique incidence SEM micrographs of gold structures (light gray) written on a Cr2O3 crystal (dark
gray). The images show the smallest (left) and largest (right) gold widths and reveal the smooth edges of the
wires.
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Figure 4.6 – Typical linear plasmonic resonances for gold nanowires on a nonlinear crystal. All samples present a
fundamental linear resonance with a linewidth of about 0.45eV for a polarization of the incident light normal
to the wire orientation. No resonance is present for an incident light polarization along the wires. The output
polarization is not analyzed. The linewidth is indicative only, due to the large aperture angle of the linear
spectrometer.
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Figure 4.7 – Resonance features of nanowire field pairs on Cr2O3 (sample DMF18). The resonance peak energy ω0,
the linewidth ∆ω, and the quality factor Q =ω0/∆ω are reported. For each y-wire field design Fi corresponds
a x-wire field Fi+1 with similar resonance features. Globally, x-wires present a broader linewidth (up by
maximum of 0.20eV), reflected in a lower quality factor. y-wires’ features display a continuous trend, as
targeted during production. On the contrary, x-wires appear much noisier in their resonance features, despite
sharing the same fabrication process. Lines are drawn to guide the eye.
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Figure 4.8 – Resonance features of nanowire fields on glass. The resonance peak energy ω0, the linewidth ∆ω,
and the quality factor Q =ω0/∆ω are reported. All nanowire fields are oriented in the same way since the
substrate is isotropic. Lines are drawn to guide the eye.

4.2 Nonlinear Measurements

Nonlinear SHG measurements are described and discussed in this section. The SHG character
of the emitted light is first verified. Then, the SHG spectrum from bulk gold is investigated for
reference with respect to nanostructured gold samples. Two sections follow: First SHG from
different metamaterial designs are discussed. The aim is to characterize the SHG generation
process in metamaterials. Second, the local field enhancement feature of metamaterials is
investigated to validate nanowires as optical catalysts for SHG generation.

4.2.1 SHG Character of the Emitted Light

As highlighted in section 2.2, caution in separating TPPL from SHG signals should be taken.
This is carried out based on the signature features of SHG signals as detailed at the end of
section 2.1: Quadratic electric field dependence, narrow spectral width, and polarization
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Figure 4.9 – Typical signal intensity versus fundamental intensity for the nanostructures on glass (left), and
for the nanowires on a nonlinear crystal (right). The signals exhibits the SHG characteristic square power
dependence on incident power, indicated by a continuous line. At lower intensity, a deviation is observed
due to noise contributions.
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Figure 4.11 – Typical emission

polarization anisotropy of the
measured signals for nanostru-
ctures on glass (U-shaped, left)
and for the nanowires on non-
linear crystal (right) excited in
their lowest order resonance.
For each structure, the excita-
tion polarization is indicated by
an arrow. The anisotropic form
of the signals excludes a TPPL
process as the signal source.

anisotropy of the SHG signal. Although all three features must be present to ascertain the
presence of SHG, only the last two are decisive in separating SHG from TPPL. In particular,
the output polarization anisotropy is key, since a broad SHG spectrum could be related to
spectrally broad plasmonic resonances, see section 1.3.3. For the same reason, one would
prefer a system providing rather long, i.e. spectrally narrow, 100fs light pulses rather than
ultrashort, but spectrally wide, 8fs pulses.

One verifies with figure 4.9 that the measured signals are quadratically dependent on the
fundamental electric field. This is verified for all types of nanostructures investigated in this
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work, independently of the design (U-, L-, C-, Z-, I-, or wire-shaped) or the substrate used
(glass or nonlinear crystal). A low-intensity deviation is observed that cannot be related e.g.
to TPPL since TPPL is also quadratically dependent on the electric field, see equation (2.15).
Rather, this is attributed to background and read-out noise at the level of the CCD camera.
Indeed, subtracting a constant level, as measured with the laser beam blocked, leads back to
a near perfect square power dependence.

Figure 4.10 displays the narrow 0.07eV linewidth of the measured signals. Therewith, the
possibility of being in presence of TPPL is already discarded, since it is known to present
broader luminescence lines on gold [125]. This is confirmed with figure 4.11 where a clear
anisotropy in the output polarization is visible. The anisotropic form of the signals excludes a
TPPL process as the signal source. Hence, one concludes that the measured signals discussed
in the following sections result from an SHG process. It is stressed for the following discussion
that analyzer measurements carried out on horizontal nanowires deliver a cos2θ signal form
(sin2θ for vertical nanowires).

4.2.2 Bulk Material Nonlinear Spectroscopy
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Figure 4.12 – Normalized SHG
spectrum of a plain gold film il-
luminated by p-polarized light
at an angle of incidence of 45°.
The spectrum lacks spectral fea-
tures that could explain the
nanostructures’ nonlinear spec-
tra.

The previous section established the measured signals result from an SHG process. However,
no insight was provided into its mechanism. The non-predominance of the bulk material
in the linear optical features of the nanostructures does not indubitably rule out the role of
gold in nonlinear measurements. Though the amorphous gold used in the nanostructures is
centrosymmetric, surface SHG is always possible and has been readily reported for metallic
surfaces and gold in particular [176, 177]. Since the nanostructures present a finite volume
and are imperfectly flat, as shown in the SEM acquisitions above, surface SHG is likely to
occur even at normal incidence. Thus, the strength of the surface-induced SHG material
response in SHG measurements constitutes a first reference measurement. The gold film
mentioned in section 3.1.2 is measured at 45° incidence in p-polarized incoming and outgoing
polarizations. Indeed, surface SHG cannot take place and no SHG is recorded on a gold film
at normal incidence. The resulting spectrum is shown in figure 4.12. Neither does it display
clear spectral features, nor does the comparison of this measurement with all following SHG
spectral acquisitions from nanostructures show direct correlations. One concludes that the

72



4.2. NONLINEAR MEASUREMENTS

measured SHG spectrum for any given meta-atom geometry truly reflects the nonlinear optical
properties of the metamaterial: In other words, the building-block geometrical features seem
to predominate over the material.

4.2.3 SHG Characterization

It has been verified in the previous sections that the measured SHG signals cannot be ex-
plained as a mere material, i.e. gold, feature. Thus, they must be determined by the design
features of the metallic nanostructures. In this section, one now concentrates on the effect of
size, shape, and symmetry. To do so, the process of SHG on metamaterials is characterized
by polarization-dependent SHG spectroscopy measurements on the SRR structures shown in
figure 3.2.

As detailed in section 3.1.2, different nanostructures can share a given symmetry and/or
particular features such as the number of corners. Remarkably, sharing a symmetry does not
necessarily involve exhibiting the same features and vice-versa. For instance, U- and Z-shaped
metamaterials possess the same number of arm-to-base corners, yet fundamentally differ in
their symmetry group. On the contrary, C-shaped structures lack corners completely (even
the arm ends are rounded), yet follow exactly the U-shaped structures with respect to the
transformations leaving the structures invariant. On the one hand, any correlation between
different geometry patterns provides information about the mechanism at play for SHG in
metamaterials. On the other hand, employing the exact same structure up- or downscaled to
red- or blue-shift the linear resonance, respectively, provides information about the spectral
dependence of the mechanism. In other words, one investigates to which extent the spectral
dependence of the SHG signal is related to the nonlinear susceptibility χ(2) and to which
extent it is due to linear modifications of the incident light at ω and the emitted light at 2ω.

It is stressed that reproducibility issues recurrently occurred with all measurements related to
nanostructures on glass. This is discussed at the end of this section.

Size Effects: Spectral Dependence

The spectral dependence is considered first. Figure 4.13 compares the SHG signal strength
of three similar U-shaped nanostructures differing only in the position and strength of their
respective linear resonance, i.e. the arm and base lengths. The hv configuration is investigated,
see table 3.2. In the ED approximation, this corresponds to the χeee

y xx tensor component. Under
x-polarized excitation, the lowest-energy linear resonance corresponds to the fundamental
plasmon mode.

For each structure size, the spectral dependence of this tensor component is put in perspective
to the linear extinction spectrum. The scale of the linear spectra is chosen such that any
correlation to the SHG signal may be seen more easily at the fundamental frequency ω. No
interesting linear spectral features are present at the harmonic frequency (not shown, for sake
of clarity). All three samples lack a correlation of their nonlinear signal strength with the linear
resonance. This behavior is observed in all other samples, too.
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Figure 4.13 – Spectral comparison of normalized SHG signals for three similar U-shaped metamaterials. The
nanostructures differ only in their arm and base lengths, i.e. the position and strength of their respective
linear resonance. The fundamental beam is polarized horizontally along the base or x-axis, SHG is analyzed
vertically along the arms or y-axis. The corresponding linear resonances are displayed below each graph. The
last column sample field is more recent than the first two samples: It features a higher resolution geometry
and consequently displays sharper resonance features. The excitation polarization is indicated in inset beside
a not-to-scale indication of the relative size of the unit-block geometries.

Also, the spectra and their relative amplitudes are strongly altered. Although the modification
of the base design is minimal and maintains the overall geometry, there is no obvious trend in
the evolution of the SHG spectra with respect to their linear counterparts. It follows that the
spectral dependence of SHG in metamaterials does not match a straightforward projection of
their linear response. A more complex process must be at play than the correlation initially
suggested in reference [58], in which the spectral range being considered is much narrower.

Shape Effects: Geometrical Feature Dependence

Further insight into the complex mechanism is researched by investigating different sample
shapes. Figure 4.14 offers a structured overview of the relative SHG intensity gained from the
variety of designs in figure 3.2. The corresponding linear resonances’ maxima and FWHM
are represented by a vertical dashed line and a grey area on each spectrum, respectively. The
complete linear spectra are displayed in annex A.1.

Many striking features are observed in the SHG spectra. In some cases, like for the χy xx com-
ponents of the non-centrosymmetric structures, the SHG spectra appear not to be correlated
to the corresponding horizontally polarized linear spectra. In other cases, such as the χy y y

components with the vertically polarized linear spectra, such a correlation seems present,
at least for the U- and L-shaped structures, less so for the C-shaped one. Here too, it is not
possible to confirm a systematic correlation between the spectra at ω and 2ω. In addition,
the nonlinear spectra do not display a narrowing of their FWHM with respect to that of the
linear spectra as one would expect through the SHG process. This confirms that a more subtle
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Figure 4.14 – SHG spectra for metamaterials featuring a variety of designs. Diagrams with a green or red
background are allowed or forbidden by symmetry analysis, respectively. The inset values represent the
peak value of each spectrum on a common arbitrary scale. The spectra in the center column represent a
convolution of contributions from three independent SHG tensor components. The second harmonic of the
nanostructures’s excited linear resonance is indicated by a vertical dotted line.

process is responsible for the spectral dependence of the SHG signal than the linear plasmonic
resonances alone, as shown above through size effects.

Interestingly, one observes that both x- and y-polarized excitations can lead to SHG signals of
equal order of amplitude. On the one hand, the magnetic metamaterial aspect in reference [48]
may not be a suitable interpretation, as the same authors later suggested in reference [55]. On
the other hand, this is consistent with the plasmonic excitation description in reference [178],
which is used in this work. Thus, it is sufficient to define optical metamaterials according to
a metal nanostructure nomenclature, i.e. using a plasmon picture. Therewith, one departs
from the historical LC-model used for larger metamaterial structures with resonances in the
infrared [179, 180].

One now compares the SHG spectra of the top three SRR structures in figure 4.14. They differ
from one another in their structural complexity, see section 3.1.2iii. Although they share the
same mm2 geometry, the spectra of corresponding SHG susceptibilities exhibit pronounced
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differences. However, understanding the underlying processes is not trivial. The approach in
this work is to investigate the role of surface curvature and find possible evidence for local
field enhancement at corners, see section 3.1.2. Indeed, the peak signal between the U-, L-,
and C-shaped structures varies, but a systematic relation to the number of corners in the
SRR design is not obvious. In several of the spectra (χy y y , χxxx , χx y y ) one observes double
peaks whose relative amplitude varies with the design. In addition, the change of design is
accompanied by red shifts (χy xx , χxxx) and blue shifts (χy y y ) of the spectra. The reasons for
all these features are not yet understood.

Noticeably, the strongest signal is measured for the round SRRs in the χy z y configuration.
With a peak value of 500, it is more than twice as large as any other signal. For the C-shaped
SRR, the energy difference between the two resonances at 0.90eV and 1.15eV is the smallest
of the SRRs shown here. Therefore, the high SHG intensity may be the result of a constructive
interference of the SHG contributions from the two resonances. Indeed, these two resonances
are simultaneously present under d-excitation and correspond to a vertical and horizontal
excitation, respectively.

Symmetry Effects: Interferences Dependence

This part focuses on the two centrosymmetric structures shown at the bottom of figure 4.14 to
verify the presence of any SHG contributions that are not due to the leading-order ED type, see
section 3.1.2iv. The SHG signal observed on the cut-wire structures is approximately zero. For
this structure, the point symmetry analysis and the ED approach are therefore the appropriate
way to describe the structure. However, the centrosymmetric Z-shaped nanostructures exhibit
a SHG signal with an intensity comparable to that measured on the non-centrosymmetric
structures. This is corroborated by the observations of other SHG contributions expected to
be forbidden by the symmetry (i.e. χy y y , χy zz) even on the non-centrosymmetric designs.

These striking observations show that the description of the metamaterials by an effective SHG
susceptibility describing only the global symmetry of the periodic arrangement of nanoscopic
building blocks is insufficient. Then, the local structure of the building blocks on the nanoscale
may lead to contributions to the SHG yield that go beyond those allowed by the macroscopic
symmetry. This is similar to the case of incommensurate structures where long-wavelength
spin structures were recently found to lead to SHG contributions that are forbidden by the
point symmetry [181].

As for the origin of the local SHG contributions, one notes that whereas the metamaterials
present an excellent homogeneity at the scale of hundreds of nanometers, this is no longer
true on the order of the size of the building blocks. A multitude of surface defects with small
radius of curvature are present [59, 60]. In spite of their random distribution they can interfere
with the SHG process so that new SHG signals emerge that are normally canceled out due to
destructive interference [182]. Also, “hot spots” with high charge density are associated with
regions with small radius of curvature. By Gauss’s law, the electric field intensity is locally
increased and multipoles of even higher order can be promoted.

A qualitative and quantitative evaluation of this interpretation is presently under development.
An elaborate approach is found in the recent work of Kauranen et al. [183–185]. Their work
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Figure 4.15 – SHG acquisition reproducibility on a U-shaped metamaterial field. Three acquisitions of the χy y y

spectrum of the reference U-shape design. All three curves are obtained using the very same sample. The
second spectrum was obtained immediately after completion of the first acquisition, on a single setup. Only
the optical alignment of the field with respect to to the laser was readjusted (field taken out and back in the
beam). The third curve was obtained after the setup was rebuilt using another similar laser source. The lack
of reproducibility is observed constantly also for other designs. The acquisition mismatch, even when leaving
the setup untouched, can only be explained by an alteration of the sample itself.

makes use of an effective medium multipolar tensor analysis to demonstrate the presence of
higher order contributions to the SHG signal due to local effects. The resulting inhomogeneity
of the electric field may also lead to SHG contributions from the substrate [183, 186–188].
The relevance of local inhomogeneities for the SHG process is supported by linear extinction
spectra and SEM measurements on the metamaterials subsequent to the SHG experiments.
We observe that laser-induced modifications increasing the disorder of the building blocks
do always occur up to partial detachment and relocation on the substrate as shown later in
figure 4.17.

Reproducibility Issues

As it has been mentioned at the beginning of this section, reproducibility is a major issue with
the results presented above.

Figure 4.15 shows three acquisitions of the χy y y spectrum of the reference U-shape design.
All three curves are obtained using the very same sample. The second spectrum is obtained
immediately after completion of the first acquisition, so that both use the same laser source
(Legend Elite, TOPAS-C) and setup. Another laser source (Legend Elite Duo, OPerA Solo) is
used to obtain the third curve, and the setup was rebuilt, although its operating principle is
maintained. The lack of reproducibility is observed constantly also for other designs. The
acquisition mismatch, even when leaving the setup untouched, can be explained either by
minute changes in the beam position or by an alteration of the sample itself. The former can
have a nonlinearly large effect as in sub-resolution SHG imaging. As for the latter and assum-
ing a Gaussian beam an intensity of 2.3mJcm−2 is considered to be safe for a gold sample,
see section 3.7. From there, the damage threshold is overcome if the beam characteristics are
modified (inhomogeneities, smaller beam diameter). Nanostructuring the gold sample might
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Figure 4.16 – Optical microscope inspection of a dam-
aged field of gold metamaterial structures. The
image reveals inhomogeneity of the field as well as
clusters of gold particles around the it at positions
left clear from any lithographic process. One no-
tices the longest exposure area in the center (about
200µm beam diameter). However, the rest of the
field is damaged as a consequence of further dam-
age threshold tests.

also promote damage processes not predominant in the bulk test sample and for which the
extra margin below the damage threshold is not sufficient to prevent alteration of the sample.

Effects due to beam profile variations are minimized by monitoring and optimizing the
condition of the laser system (optical alignment, temperature stability, optics cleanliness) and
e.g. via the normalization procedure detailed in section 3.6. However, one notices the narrow
measurement window defined while evaluating the destruction threshold: A lower or higher
fundamental intensity and the generated signals are too low to be measured or the sample is
destroyed, respectively. Thus, even a moderate inhomogeneity of the beam profile potentially
overcomes the destruction limit. Such a problem does not occur in natural crystal samples
since they withstand much higher intensities of the fundamental.

As mentioned in section 3.7, sample damage can also occur due to the ultrafast processes
induced by the 100fs light pulses. The high pulse intensities obtained at a repetition rate of
1 kHz deposit a considerable amount of energy into the sample with the potential to cause
damage. The plasmonic process drives the displacement of electrons within the metallic
nanostructures. Although gold is the third best electrical conductor after silver and copper
(at room temperature, 4.5×107 Sm−1 vs. 6.2×107 Sm−1 and 5.9×107 Sm−1, respectively), it
retains a finite resistivity and is hence subject to the Joule effect. Thus, the ultrafast light pulses
trigger a nearly instantaneous heating of the gold volume and therewith thermal expansion.
Different expansion coefficients for gold and glass hint at a possible mismatch at the gold-glass
surface contact and with it at an alteration of the sample.

Naked-eye visual inspection proves inconclusive in detecting sample destruction: The gold
layer is not vaporized as for damages of a plain gold film, and a nanostructure covered field
remains observable. However, sample damage can be verified using a variety of methods. Cor-
responding illustrations are found in figure 4.16-4.18. By growing order of testing complexity,
a first visual inspection under optical microscope shows inhomogeneities in the metamaterial
fields, as well as presence of gold beyond the field boundaries. Second, the metamaterials lose
their linear spectral features as soon as their meta-atoms are altered. For instance, after illu-
mination of the sample, the extinction resonance obtained under y-polarized light excitation
drops from 76% to 20%, as seen in figure 4.18. This reduction is accompanied by a moderate
0.08eV blue-shift of the linear resonance, which hints at an alteration of the base unit. Third,
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Figure 4.17 – Normal incidence SEM micrographs of damaged gold structures (light gray) written on a glass
substrate (dark gray). All images reveal distortions and randomizing of the nanostructures regardless of the
symmetry design. Hardly any melting of the gold volumes is observed. Most structures are dislocated from
their original position and are scattered around. Once displaced, they potentially remain in contact with a
neighboring unit.
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Figure 4.18 – Linear spectra before
(top) and after (bottom) illu-
mination by femtosecond laser
light pulses. The polarization
of the excitation is along the x-
(black) or y-axis (red). Most lin-
ear extinction resonances are
virtually suppressed after expo-
sure, while the remaining fea-
tures are blue-shifted. The
change is consistent with an
alteration of the metamaterial
building blocks’ geometry and
relative orientation.

direct SEM observation provides an actual view of the sample condition with meta-atoms
either destroyed (e.g. partial or complete melting of the gold) or with their relative orientation
randomized. The corresponding figure supports the hypothesis of a destruction induced by
thermal expansion, see figure 4.17. Such a process leaves each meta-atom minimally altered
in design, though not in their relative positioning. A few structures appear to hold in place:
These explain the remaining linear spectral features seen in figure 4.18.

Thus, attempts were made at minimizing its effect. First, the Joule effect was decreased by
reducing the temperature of the sample to 10K using vapor from liquid helium in a cryostat. A
first cooling cycle without laser exposure together with a before/after comparison of the linear
spectra allowed to verify that samples withstand progressive cooling. Heading to cryogenic
temperatures dramatically lowers the resistivity of metals and cuts down the ohmic heating
rate, see figure 4.19. It is stressed that linear spectral acquisitions were carried out at room
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Figure 4.19 – Resistivity of usual plasmonic metals versus temperature. While e.g. silver is less prone to resistive
losses than gold, both at room and cryogenic temperatures, gold is usually preferred since it is not subject to
oxidation. Data points computed on Wolfram Alpha (www.wolframalpha.com), see sources therein.

Figure 4.20 – SEM acquisition of
optically induced damage ob-
served on a PMMA impreg-
nated sample. A periodically
arranged test sample made of
simple gold dots was used to
evaluate the stabilizing feature
of an extra transparent PMMA
layer deposited on top. After il-
lumination under femtosecond
light pulses, the PMMA layer
is burnt and cracked. The un-
derlaying gold structures are de-
formed and disordered, there-
with discarding the PMMA as
a viable solution to sample de-
struction.

temperature, and that any shift of the plasmonic resonance due e.g. to thermal shrinkage is
left unaccounted for. In any case, nonlinear measurements at low temperature showed no
improvement in reproducibility, with SEM acquisitions demonstrating identical damages (not
shown). The ultrafast process at play and the reduced gold volume that does not allow for
thermal dissipation are conceivable explanations. Consequently, the further consideration
to replace the glass substrate by sapphire, an excellent thermal conductor, was not intended.
Also, doing so would have induced retuning the nanostructures’ sizes due to the change in
their environment’s permittivity. At the time when this was considered, the target sizes would
have been too small to be produced accurately, and the inhomogeneous broadening of the
total linewidth might have become significant.
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In another approach, an extra layer of PMMA (transparent plastic, n = 1.49) was deposited
on top of the metamaterials to try and hold the nanostructures in place. In doing so, the
nanostructure design has to be adapted ("downsized" in an overly simplified picture) to
accommodate for the higher permittivity of PMMA with respect to air, see section 1.3.1.
Technical limitations prevented using a more stable sputtered silica glass at the time the
measurements were carried out. Indeed, such an adaptation could not be achieved to keep the
plasmonic resonance within the measurable spectrum allowed by the setup. Here, damages
were observed on the PMMA protective layer, see figure 4.20. Again this was correlated with an
alteration of the corresponding spectra, linear as well as nonlinear. However, it is mentioned
that a 20nm thick protective layer of silica has since proved a suitable technique in at least
one other group [185].

Another proposed alternative is to make use of Babinet’s principle, i.e. working with comple-
mentary nanostructures, see §11.3 in reference [189], as well as [190, 191]. According to this
principle, complementary structures exhibit both a complementary spectral response and
field distribution of the respective eigenmodes. In this case, one would modify the manufac-
turing process to obtain nanostructures "carved out" of a gold film. An equivalence in the
electromagnetic analysis is then obtained essentially by interchanging the E and B fields. The
interested reader will find a more detailed procedure in the references mentioned above. In
this way, one achieves very stable nanostructures, with a high damage threshold equivalent to
that of a plain gold film. In principle, such a design also paves the way to the production of
nanostructured free-standing films. Therewith, one suppresses complications due to the glass
substrate. Among them one counts structural mismatch, back-reflections, plasmonic tuning
related to the glass permittivity, and surface SHG at the gold/glass interface. Nevertheless, the
decision was taken not to carry out this experiment and stick to more established split-ring
resonator designs for easier comparison to other results delivered by the scientific community.

Based on the SEM acquisitions of the actual samples, one notices that a small proportion
of the meta-atoms holds in place. It is tempting to believe that the measured SHG signals
might come from these unaffected parts of the sample. However, this cannot be the case for
at least two reasons: First, later recorded SHG are similar in intensity to the initial acquisition,
although in all probability the amount of intact structures degrades with laser exposure time.
Second, there is hardly any meta-atom in place that is not partly covered by one or more
"randomized" nanostructures. This is a major issue since physical contact of the metallic
volumes means electrical contact and therewith perturbation of the plasmonic process.

The damaged topography is consistent with the fact that one no longer observes linear optical
resonances: The system displays very large inhomogeneous broadening of the total linewidth
of the resonances, see section 1.3.3, rather than a summation of all linear resonances as
projected onto the eigenpolarization axes, see section 4.1.1. In other words, although the
meta-atoms roughly conserve their form, they do lose the plasmonic properties targeted
through their design. For the same reason, the system cannot be seen as a "powder" of meta-
atoms investigated by SHG. Moreover, such a behavior would have been inconsistent with
the measured anisotropies, given that traditional crystal powder samples act as an isotropic
source of second harmonic radiation [192]. The SHG generating system approximates a 2D
gold film presenting randomly distributed facets and openings. This is a complex system,
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a b c

Figure 4.21 – CCD acquisition of an antiferromagnetic domain topography of a nanostructure patterned Cr2O3

surface (sample DMF18). Exposure time amounts to 60min: Cosmic rays were removed using an image
editing software. The measurements are performed below the Néel temperature, T < TN , using a circularly
polarized fundamental wave at 1.05eV. Figures (a) and (b) show the topography of the SHG signal using
σ− and σ+-polarized light, respectively. By superposing both previous images, figure (c) demonstrates the
complementarity of the domains. The metamaterial fields are recognizable through the shadow they cast by
partly attenuating the generated SHG. The domain boundary runs unperturbed through metamaterial fields:
The nanostructures do not alter the host system.

very different from the initial motivation for this work. It requires a fundamentally different
approach, in particular in characterizing the actual features of the gold distribution and the
electric currents streaming therein.

4.2.4 SHG Amplification

In this section, the application potential of metamaterials for enhanced nonlinear optical
performance is considered. In a first approach, metamaterials in the form of wires are written
on Cr2O3 and multiferroic RMnO3 single crystals. The nanostructures are considered as
an optical catalyst for enhancing the SHG conversion efficiencies of the nonlinear crystals,
as explained in section 3.1.4. The feasibility of this approach is investigated in two steps:
The functionality of the metamaterial is checked in the next section, followed by a spectral
characterization of the mechanism of the signal remodeling induced by the metamaterial.
These initial results lead to the investigation in a third section of SHG signals delivered by
nanowires on top of amorphous glass, a nonlinear inactive host system.

Functionality: AFM Measurements

To start with, it is important to show that aside from potential field enhancement, the meta-
materials do not affect the basic properties of the host material. This is best verified by con-
centrating investigations on the AFM domain structures. AFM domains, whether in RMnO3 or
Cr2O3, are easily disturbed so that any perturbation by the gold wires applied on the sample
are expected to influence or pin the position of AFM domain walls. AFM experiments have to
be carried out below the Néel temperature, see section 3.1.4, and in the narrow spectral range
in which an AFM SHG signal is present (2.30eV to 2.80eV and 1.80eV to 3.00eV for RMnO3

and Cr2O3, respectively). As mentioned in section 3.1.5, for these measurements the laser
light is incident perpendicular to the surface of the sample.
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Figure 4.21 shows the antiferromagnetic domain topography in Cr2O3 after it has been poled
using the magnetoelectric effect (sample DMF18, cosmic rays were removed for clarity). For
this experiment, a nanosecond laser system was employed and tuned to deliver an SHG signal
at 2.10eV photon energy where the SHG yield is high and the contrast between AFM domains
maximized, see section 3.5. Experimental details as well as the original acquisitions can
be found in reference [172]. Figure 4.21c demonstrates the perfect complementarity of the
domains and therewith their magnetic origin. It also illustrates the good homogeneity of the
circular flat-top beam profile.

Most importantly, the CCD acquisition clearly shows that a domain boundary runs unper-
turbed through several metamaterial fields. This demonstrates that the presence of the metallic
nanostructures does not alter the mechanisms at play in the host system. This is an essential
prerequisite to use metamaterials as optical catalysts, boosting the SHG yield, without altering
the underlying process studied.

One further notes that there is no increase but rather a decrease of the SHG where the crystal
is nanopatterned. This is consistent with the use of nanosecond pulses for which the coherent
interaction with particle plasmons is negligible, see section 1.3.3. All following measurements
are carried out with the femtosecond laser system described in section 3.3.

Leaving the host system unperturbed is a necessary yet not sufficient condition to validate
metamaterials as optical catalysts. One still has to link enhanced SHG signals with the original
SHG processes from the host system. For that, one now concentrates on the AFM signal
delivered by the bare host system. Indeed, AFM SHG features of the model systems, such as
temperature dependence and six-fold anisotropy, are excellent candidates to provide potential
evidences of the metamaterial functionality. Reference spectra are provided in figure A.13
and figure A.14 with a maximum SHG yield obtained near 2.44eV and 2.20eV for RMnO3 and
Cr2O3, respectively.

Figure 4.22 shows isotropy measurements carried out on a RMnO3 system, in this case FG
HoMnO3 (sample DMF13). Measurements were carried out in a row on the same setup and in
the same environment (normal incidence, T = 50K < TN , at 2.44eV (a) and 2.07eV (e,f) SHG
photon energy). The crystal substrate is moved on micrometer translation stages to target
different areas of the surface. Figure 4.22a displays the well-known six-fold AFM anisotropy
from an unstructured RMnO3 crystal. The maximum intensity is used to normalize all curves
presented in this graph. Maximum intensities are given in the top right inset of each graph.
Both the form and intensity of the first graph serve as references to analyze figures 4.22(e)-
(f), obtained from areas patterned with horizontal and vertical wires, respectively. Also for
reference, figures 4.22(b)-(c) illustrate the results of a straightforward amplification of the
incident electric field in the direction normal to the nanowires. The model used to compute
the latter two figures is given in annex B.1. Here, the amplification value is arbitrary set
at 50% to display all the anisotropy feature of the model. In other words, given an incident
fundamental beam with electric field strength E0, the crystal is excited by the amplified electric
field Ea mediated by the nanostructures: Ea = 1.5E0 when impinging on the crystal with a
polarization normal to the nanowires, Ea = E0 for a polarization along the nanowires long
axis and neglecting absorption by them. Although the code used was developed to model
SHG in Cr2O3, it remains suitable for this simulation: Given k ∝ êz , there is a mathematical
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Figure 4.22 – AFM SHG anisotropies in unstructured and nanowire-patterned RMnO3. Measurements carried
out at 40K, 2.44eV , and normal incidence. The measurement (red line) from the bare crystal (a) is a perfect
match to the model used (dashed black line). Simulations based on a straight forward field amplification
are provided in (b) and (c) for wires along the x- and y-axis, respectively. The maximum value and wire
orientation are indicated in the top and bottom right inset, respectively. Numerical values are normalized to
that obtained from the unstructured crystal. The actual measurements shown in (e) and (f) are carried out on
the fields F2 and F3, respectively, with a linear resonance near the 1.03eV target, where the crystal SHG yield
is minute. For both orientations, a simple two-fold anisotropy is observed so that e.g. comparing (b) to (e)
proves the simple amplification model wrong. The maxima are oriented normal to the wires’ long axis, and
the anisotropy function is properly fitted by a cos6θ or sin6θ function, depending on the wires’ orientation.
The HoMnO3 crystal topography is shown in (d).

form equivalence of the SHG sources between Cr2O3 above its Néel temperature and RMnO3

compounds following the αy spin order below their Néel temperature. Only the strength of
the tensor component at play changes, which is of no significance here.

The discrepancy between the amplification model and real-world measurements is two-fold.
First, the form of the metamaterial-mediated anisotropies does not follow the amplification
model. In fact, as for figure 4.22e, the anisotropy no longer exhibits the six lobes reflecting
the Mn3+ spins’ ordering. Second, the AFM origin of the SHG signals measured on patterned
fields is further discarded by investigating the temperature dependence, see figure 4.23. While
an unstructured field sees its signal vanish at the Néel temperature TN = 76K there is no
temperature dependence on patterned fields. The relative attenuation in the 32K to 45K range
is an artifact related to the laser stability, not to a phase transition within the HoMnO3 crystal.
Therewith, the affiliation of the modified SHG signals to the original SHG processes in the
host system seems lost.

This initial result represents a setback with respect to the functionality of metamaterials
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Figure 4.23 – Temperature de-

pendence of SHG signals ob-
tained at 2.44eV SHG from
(un)structured HoMnO3 at nor-
mal incidence (sample DMF13
FG). At the unstructured loca-
tion F0, the SHG yield displays
a phase transition at 40K and
vanishes at the Néel tempera-
ture TN = 76K. The AFM origin
of the signal is therewith con-
firmed. On the contrary, sig-
nals from structured areas such
as F2 display no temperature
dependence and cannot be of
AFM origin. Incoming and ana-
lyzed polarizations are set par-
allel to the arrow.

as an optical catalyst, at least in the approach guiding the current work. The application
of nanowires to strengthen the SHG yield in an unsophisticated manner loses consistency,
and a more challenging process may explain the measurements. Further insights into the
mechanism of this process are gathered in the next section that concentrates on FEL SHG.

Mechanism: FEL Measurements in RMnO3

In this section, one further characterizes the spectral dependence of the amplification. For
this purpose the FEL SHG signal in RMnO3 is employed. Spectrally broader than the AFM
spectrum, it is generated in the entire spectral range accessible with our laser system. FEL
signals are therefore better suited for studying the spectral aspects of nanostructure-mediated
electric field amplification. Also, measurements are carried out under ambient conditions.
Reference spectra are provided in figure A.12. In particular, the effect of tuning the linear
resonance of the wires is investigated. As mentioned in section 3.1.5, the laser light is incident
at 45◦ to the surface of the sample.

In such a configuration, it is stressed that the nanowires act as a grating at the wavelength
range of the emitted light. However, the typical period dp = 450nm between two nanowires
does not prove to be an efficient grating configuration for the wavelength range of the funda-
mental, given that λfund > dp. Nevertheless the tilted incidence of the light onto the sample
is a source of complexity. In fact, horizontal wires tilted in the horizontal plane at 45° are
analogous to a plain gold surface. Only the cover ratio is affected: Being unity for a gold film,
it reaches a factor dw/dp for the field of wires, where dw is the wires’ width. In practice dw/dp

varies from 0.25 to 0.70 depending on the nanowires’ width i.e. linear resonance. In this way,
any signal generated from tilted horizontal wires and under horizontally polarized light excita-
tion is mixed with surface SHG from gold, as investigated in section 4.2.2. This consideration
could be easily dismissed by employing crystals cut normal to the y-axis to investigate the FEL
signals, as in reference [143]. Unfortunately, such crystals were not available during this work.
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Figure 4.24 – Normalized FEL SHG anisotropies in unstructured (a) and nanowire-patterned RMnO3 (b-i). All
measurements are carried out at room temperature and 45° incidence. Polarizer and analyzer are rotated in
parallel with 0° relative angle. Crystal topographies are shown in (d,g). SHG photon energy is 2.70eV (a-c),
2.10eV (e-f), and 2.60eV (h-i). Measurements (a-f) are carried out on sample DMF13 (FG HoMnO3), on field
F0 (a), F2 (b,e), and F3 (c,f). Measurements (g-i) are carried out on sample DMF15 (FG YbMnO3), on field F6
(h) and F5 (i). For both wire orientations, a signal is observed in the direction normal to the nanowire so that
e.g. comparing (a) to (b,e, or h) proves the simple amplification model wrong. Maximum values are indicated
as inset and are normalized to the maximum value measured from the bare crystal at 2.70eV.

For z-cut crystals, care must be taken to compare SHG from metamaterial fields with x- or
y-wires. In that respect, one notices in table 3.3 that the x- and y-axis are equivalent as far as
(i )-type contributions are concerned. It follows that one can directly compare the signals from
x-wires with y-wires provided the crystal is rotated by 90° around its z-axis from one case to
the other. It was verified that the SHG signals from wires with orthogonal relative orientation
and illuminated at 45° incidence are interchangeable when the crystal is rotated accordingly.

Typical anisotropy measurements are displayed in figure 4.24. Three different cases are
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considered, using two different samples whose topography is shown on the second and third
graphic rows. First, the top line shows acquisitions carried out at the maximum FEL SHG yield,
i.e. 2.70eV, away from the nanostructures’ linear resonance. The anisotropy measurement
obtained from an unstructured region on a FG HoMnO3 sample (DMF13) is compared to
the measurements from the nanostructured fields F2 and F3 that differ in the orientation of
their wires with respect to the crystal axes. In the second case, measurements are carried
out on the same sample, but with a fundamental tuned to match the linear resonance of the
nanowires, i.e. at 2.10eV SHG, but not that of the crystal. Both field orientations are compared
and shown on the second line. In the third and last case, new nanowires were produced on
another sample (FG YbMnO3 DMF15) to obtain a metamaterial resonance matching that of
the host crystal at 2.60eV. Again, anisotropy measurements for both field orientations are
compared and shown on the third line.

A noticeable difference is observed depending on the wires orientation. Where the anisotropy
shape is two-fold with horizontal lobes for vertical wires, it becomes four-fold for horizontal
wires with an added pair of vertical lobes of a different amplitude. Both lobe sets follow a
cos6θ or sin6θ function, similar to the lobes’ shape matching the SHG signal discussed in the
previous section. The latter vertical lobes are unexpected given that a vertical excitation cannot
lead to a likewise vertical emission based on the symmetry analysis carried out in table 3.3. As
such, one cannot relate this vertical signal to the host RMnO3 system alone, as considered
under a plane wave excitation. However, the vertical signal is obtained for a vertically-polarized
excitation on horizontal nanowires. That is the required configuration to excite the plasmonic
resonance, and potentially relates the signal directly to the nanostructures. Considering
horizontal lobes, one has to distinguish the case of vertical and horizontal nanowires. For
the former, the behavior is consistent with an amplification of the host system’s signal. Yet
the signal generation could follow the same undetermined process as for the vertical lobes
discussed above. For the latter, the lobes cannot be linked to a plasmonic process given
that no resonance occurs in horizontally oriented nanowires under horizontally polarized
light. However, the SHG signal can be related either to the nanowires’ material as surface
SHG from tilted gold, or to the host crystal considering the less-than-unity cover factor of
the nanowires. The last row of results is puzzling because one would expect the maximum
recorded signal where the plasmonic resonance matches that of the host system. Instead
the SHG strength is attenuated with respect to that on the bare crystal. Nevertheless, it is
evident that something takes place under mediation of the nanostructures as shown by the
modification of the anisotropies’ shape and/or strength. The following spectral analysis is
valuable to try and identify the proper mechanism.

Figure 4.25 displays the enhancement factor of the SHG obtained from nanostructured fields
with respect to SHG from the unstructured RMnO3 crystal. The maximum value of the hori-
zontal lobes are being compared, i.e. both polarizer and analyzer are rotated horizontally. The
amplification spectra show a pronounced difference depending on the nanowires’ orientation.
For sample DMF13 (bottom graph), a clear correlation to the linear resonance is noticeable for
vertical wires. Not so for the amplification recorded on horizontal wires, which could match
the surface SHG spectrum of gold, see figure 4.12. Sample DMF12 (top graph) delivers an
ambiguous result given that the plasmonic linear resonance offers strong correlation with the
latter. Furthermore, one lacks points in the 1.75eV to 2.25eV range to determine whether the
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Figure 4.25 – Amplification spectra of FEL SHG. SHG strength from metamaterial fields Fi as compared to SHG
measured on an unstructured area F0 of the host crystal. The top graph is obtained from sample DMF12
(FZ YbMnO3). The bottom graph is obtained from sample DMF13 (FG HoMnO3); the plasmonic resonance
peak and FWHM are indicated by a dashed line and gray area, respectively. The incoming and analyzed
polarizations are indicated by an arrow beside the sample plans.

point of maximum amplification is indeed at 1.65eV or if the amplification curve matches that
of field F3 on sample DMF13. In any case, the similarity of the lobe shapes makes it difficult
to identify the origin of the process at play and differentiate it with e.g. surface SHG. Cr2O3 is
a viable alternative host system since it features a distinctive six-fold anisotropy, yet remains
an extensively investigated system. The investigation of a possible SHG signal amplification in
such a system is the topic of the next section.

Mechanism: MD Contribution in Cr2O3

Cr2O3 crystals present the advantage of displaying a distinctive six-fold anisotropy shape.
In addition, the high Néel temperature makes it convenient to investigate both (i )- and (c)-
type signals. Both signal types are measurable under normal incidence, which allows to
discriminate against surface effects. Also, the temperature dependence of the signal strength
is well documented for bare crystals. Below the Néel temperature, (c)-type ED effects take
place which results in a rotation of the anisotropy signal along the z-axis [151].

In contrast to the above mentioned features, measurements carried out on nanopatterned
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Figure 4.27 – Correlation of SHG signal obtained from different nanostructured fields on Cr2O3 (sample DMF18)
with their linear resonance. A clear trend is noticeable displaying a direct projection of the plasmonic
resonance features into the SHG spectral features. For each graph, the field number is indicated at the top
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areas show a very different behavior. Nevertheless, they display reproducible results with
predictable features. First, anisotropy measurements are always two-fold with a maximum
obtained normal to the wires’ long axis, see figure 4.26. Fitting curves follow a sin6θ function
for y-wires (cos6θ for x-wires, respectively). This supports the hypothesis that the horizon-
tal lobes recorded in the "FEL" anisotropies on horizontal nanowires on RMnO3under 45°
incidence is actually surface SHG from gold. Second, different metamaterial fields produce dif-
ferent SHG spectra in strong correlation with the linear plasmonic resonance of the nanowires.
This correlation is reported in figure 4.27.

Neither varying the fundamental photon energy, nor varying the temperature 20K below
or above the Néel temperature alters the anisotropy signal form or orientation (not shown,
the interested reader will find further graphs in reference [172]). Although a continuous
temperature dependence measurement down to cryogenic values was not carried out, it is not
expected to present another trend given that no changes are known to occur in the system
apart from a reduction of the Ohmic losses. In the following, all measurements are carried out
just above the Néel temperature, i.e. concentrating on the MD contributions to SHG in Cr2O3.

One notes that y-wires fields present a considerably lower SHG yield with respect to the
x-wires fields. It is reminded that the metamaterial fields are expected to vary only in their
nanowires’ orientation width, i.e. in their linear plasmonic resonance. However, the SHG yield
variation for the two orientations might be explained by a difference in the quality factor of
the structures, which is reported in figure 4.7, see also equation (1.40). There is a priori no
fabrication process difference between the two wires orientation, written in the same batch.
However, x-wires consistently present a lower resonant quality factor yet with a higher SHG
yield. An explanation might be found during the lift-off process following the EBL and gold
sputtering fabrication steps. During lift-off, the mask is mechanically removed by pulling it up
from a side of the sample. This represents an anisotropic step in the fabrication process with
a lift-off direction most often roughly parallel either to the x- or y-axis. It is hence conceivable
that small defects might be preferably generated in a given set of wires. An alteration of the
wires by increasing nanoscale defects would reduce the quality factor, yet has the potential to
increase the SHG yield through hot spots. It would be interesting to vary the mask-stripping
direction and verify whether the quality factor is indeed affected. Without direct access to a
production facility, this could not be carried out in the time-frame of this work.

One then recalls that the SHG anisotropy measurement from the bare crystal delivers a
maximum signal for a polarization along x and no signal along y above the Néel temperature
and for a 0° polarizer-analyzer relative angle. One can think of two explanations for the
discrepancy to figure 4.26: First, the nanowires could alter the incoming polarization in the
near-field, consequently projecting or amplifying the fundamental light along directions other
than that normal to the wires. In particular, a projection of the incoming light field along z
would allow tensor components normally discarded by the setup configuration under far-field-
only considerations. This is investigated in detail later on in section 4.2.4. Second, SHG could
be generated from the nanostructures themselves. In this hypothesis, SHG recorded from
x-wires (i.e. recorded signal and expected amplification are along the y-axis) originates from
the nanostructures only since the host crystal alone does not produce SHG in that direction.
In contrast, SHG from y-wires could interfere with nonlinear signals delivered by the bare
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crystal. The absence of side-lobes along all x-axes of the crystal discards this hypothesis.
Indeed, one should record SHG amplitudes from the bare crystal comparable to that from the
nanostructures to explain the measured amplitudes (partial or total destructive interferences).

Another attempt was made to try and reveal a connection between the metamaterial-mediated
SHG signal and the underlying nonlinear crystal. To do so, the linear polarized light out of the
OPA was converted into right- or left-circular polarized light (later referred to as σ+ and σ−
polarizations) using a quarter-wave plate placed before the Cr2O3 sample. The crystal was then
cooled down into its AFM phase using a controlled flow of cold vapor from a liquid nitrogen
dewar, see reference [172]. In this phase, Cr2O3 presents a characteristic contrast between the
two polarizations, see figure A.14. This contrast was already employed in figure 4.21 and is a
distinct feature of the host crystal only. Indeed, the projection of both circular polarizations
along the eigenpolarization axes of the nanowires is identical: No difference in the plasmonic
conversion process of the electric field from far-field to near-field is expected. The crystal
was verified to form a single AFM domain by rastering the unpatterned surface around and
in-between the metamaterial fields and recording SHG strength for both circular polarizations:
At 2.10eV SHG, a constant contrast of about 5:1 was recorded across the whole unstructured
sample, which demonstrates that the sample is in a magnetic single domain state.

Figure 4.28 shows the SHG amplitudes recorded at 2.10eV on several metamaterial fields
sorted according to their nanowires’ orientation. First, the highest SHG yields are recorded
on metamaterial fields with linear resonances in the 1.00eV to 1.10eV range for which the
SHG yield of the host crystal is highest. A signal enhancement is recorded for these fields only.
Second, there is indeed a contrast between signals obtained from two circular polarization
excitation on metamaterial fields. These two first points support the hypothesis of an existing
link between the SHG signals measured on nanostructured fields and the underlying crystal.
However, while the SHG under σ+ excitation is larger than under σ− for both the bare crystal
and x-wires, the opposite is true for y-wires. Moreover, for both nanowire types the recorded
contrast values are two orders of magnitude smaller than on the bare crystal. Also, the contrast
trend with respect to the plasmonic resonance is roughly linear and does not present any
maximum around 2.10eV SHG. Finally, one notices the cos2θ or sin2θ emission polarization
distribution, i.e. the anisotropic character of the emitted light. This differs from the purely
isotropic character of SHG emitted by the bare crystal under circular polarization excitation.
Since it seems quite clear that the circular polarization becomes scrambled as the light passes
through the nanostructures, these last observations might not exclude a systematic enhance-
ment with the plasmonic and the host resonance. Rather, the convolution of the observed
features hints at an interaction between the crystal and the metamaterial systems according
to a process that remains undetermined. To relate indubitably the recorded SHG with the host
system, i.e. to verify that the crystal indeed plays a role in the SHG generation process, the
experiment is carried out again in the next section where the host crystal is replaced by an
amorphous fused silica substrate.
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Figure 4.28 – SHG strength and contrast under circular polarization and 2.10eV SHG photon energy as a function
of the plasmonic resonance energy for even and odd field number (bottom). Reference SHG spectra and
σ+/σ− contrast values for Cr2O3 at 10K are also reported from [151] (top). SHG strengths are normalized
with respect to the maximum SHG measured on the bare crystal at 2.10eV. For nanostructures fields, the
data points are obtained for a photon energy of the fundamental beam at the plasmonic resonance by adding
orthogonal SHG signals polarized along the x- and y-axis, which is equivalent to removing the analyzer. A
typical analyzer measurement is shown in inset. The cos2θ or sin2θ distribution demonstrates the anisotropic
character of the emitted light.

Mechanism: Nanowires On Amorphous Glass

Here, nanowires are written on glass to investigate their behavior on an SHG-inactive substrate.
Their linear resonance features were shown in figure 4.8 and proved to evolve linearly with
increasing field number as the nanowire’s width is tuned. Likewise, the linear spectra reported
in figure A.11 show a regular trend in the extinction, apart for the fields whose peak resonance
is about 1.30eV where the extinction is about 10% higher than the observed trend. The reason
for this is unknown. It cannot a priori be related to the glass substrate which displays constant
optical features in this range according to the manufacturer’s datasheet [193]. Neither does
gold present any features in this range, see figure 1.1. Nevertheless, this observation seems to
play a major role, as discussed below.

All 0° relative anisotropies present a cos6θ shape similar to the measurements recorded
on Cr2O3 (not shown). However, the spectral features contrast with the case on Cr2O3 for
which a correlation to the linear resonance is observed. Here, all SHG spectra recorded from
nanostructures on the glass substrate show a peak at a fundamental photon energy around
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the 1.30eV range mentioned above. Although the linear resonances extend from 1.10eV to
2.10eV, see figure A.11, only a minimal shift of the SHG spectral peak is recorded from 2.40eV
to 2.60eV with increasing field number, i.e. increasing linear resonance energy, see figure 4.29.
It is not clear which process could explain the 0.20eV spectral shift.

Figure 4.30 shows the SHG strength as a function of the linear plasmonic resonance. A general
trend is noticeable with respect to the linear resonance: The higher the field number, the
higher the SHG signal. This can be explained by a higher quality factor, see figure 4.8. An
abrupt shift in the overall SHG strength is noticeable for field F14 and higher. This could
not be explained by visual inspection for field damages, but could be related to nanoscopic
defects induced in the lift-off process. One notices there is no direct correlation between the
SHG yield peak at 2.60eV and the plasmonic resonance, e.g. F13 delivers the strongest signal
yet bares a plasmonic resonance at an unexpected 1.45eV rather than 1.30eV. This latter
plasmonic resonance nearly matches the photoluminescence peak of gold at 2.40eV. However,
photoluminescence is again discarded by a rather sharp 0.06eV SHG monochromaticity and a
cos2θ analyzer measurement (not shown).

It is important to highlight two points: First, SHG is indeed recorded from nanostructures
expected to be centrosymmetric and on an SHG inactive substrate. This occurs for an optical
polarization allowing the plasmon excitation. This means that the symmetry analysis under
plane-wave excitation fails to properly describes what actually occurs at the level of the
nanostructures. Second, determining which feature(s) and according to which process the
plasmonic nanostructures interact with the underlying substrate remain a challenge. As it
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was shown in the previous section with a Cr2O3 host, it is conceivable that the recorded SHG
signals result from an overlap between the plasmonic resonance of the nanostructures and
a sample-specific response determined by the underlying host substrate. However, as it is
shown here with a glass substrate, this does not encompass the full picture and as closer
look into more refined models is necessary. In the following section, one leaves the plane-
wave amplification approach that guided the analysis, and tries to get an insight into what is
happening on the near-field based on a nanoscale model.

Near-Field Model Nanowire Model

The previous sections demonstrated the inability of a straightforward model to relate the
measurements with the simple electric field amplification of the incoming light wave. In this
section, an attempt is made to push the paradigm further and actually look at what happens
at the nanoscale. It is stressed that this section is a proposition for a model that needs be
further verified in the future: The definitiveness and correctness of the proposed tables and
description are not yet given. In particular, the repercussion of the distance across the wire on
phase-related effects as well as the ω−2ω coupling are subject to discussion. In the following,
one concentrates on the case of nanowires on a nonlinear crystal with normal incidence
excitation. The extension to other incidence angles is straightforward and does not require a
specific refinement of this approach.

As one excites the system with plane waves, a plasmon is generated with optical and electro-
magnetic features that partially depend on the nanostructures’ environment, e.g. through the
damping due to the polarization of the crystal, see section 1.3. Here, the key consideration is
to recognize that the wire nanostructures not only potentially enhance the absolute electric
field strength, as in the assumption motivating this work; they also convert the far-field plane
wave into a near-field electric field distribution that looks nothing like a plane wave. Most
notably, an electric field component normal to the surface is present in the near-field.

Moreover, the simple geometry of the wires results in the simple dipole-like field distribution
of the system, which is electrodynamic and hence radiating. However, as discussed above one
is interested in the near-field behavior of such an electrodynamic system, should it be used
as an optical catalyst. Remarkably, the expression of a radiating electric dipole simplifies in
the near-field to its electrostatic expression, as described in equation (1.32) [64, 189]. Such
a problem is easy to simulate on a desktop PC, without expensive dedicated software: An
unsophisticated model is proposed in the form of a Mathematica notebook, see code B.2. This
model was used to compute the diagram shown in figure 3.5, in which one first demonstrates
the few 10nm depth range where the nanostructures affect the crystal system. The volume
of the host system being covered extends beyond that of any "monolayer" surface effect, but
much less than the depth analyzed in a reflection experiment (about 100nm). This scale
difference could be of major significance to explain the results and is discussed later in this
section.

Based on this model, one gets qualitative access to the distribution and phase of the electric
field and of its spatial derivative (for the EQ tensor components), see figure 4.31. In the
reflection measurements carried out on the crystals, SHG produced below the wires is screened
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Figure 4.31 – Overview and referential for a single nanowire (top). A green cross section is indicated for which
the spatial distribution of the plasmonic electric field strength and its first partial spatial derivatives are
given (bottom). The actual field lines are superimposed on each graph for reference. The model is based
on the near-field only, which is equivalent to studying an electrostatic charge distribution. Here, the charge
distribution consists of ten infinite wires normal to the illustrated cross-section and oppositely charged on
opposite nanostructure edges. The effect of substrate polarization is unaccounted for without qualitative
consequences. The phase and field strength are color coded: Positive in red, negative in blue, and saturation
increasing with strength. Comparing sites A and B, the E⊥, ∇⊥Ez , and ∇z E⊥ field distributions are in phase,
while the Ez , ∇⊥E⊥, and ∇z Ez field distributions are in antiphase. The z-axis is vertical in the plane of the
page. ⊥ takes the value x or y depending on the orientation of the nanostructures’s long axis out of the page
along the y- or x-axis, respectively.
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Table 4.1 – Plasmonic wire amplification truth table. The subscript ⊥ indicates the direction normal to the
nanowires’ long axis being considered, i.e. ⊥= x for y-wires and ⊥= y for x-wires. Since no plasmonic
excitation is excited with a fundamental light polarized parallel to the nanowires’ long axis, the corresponding
cases are not treated in this table. An analysis of the phase of the excitations allows for determining whether
signals produced at sites A and B contribute to the measured SHG signal. Excitations in phase at both sites are
highlighted in yellow. All other excitations are in antiphase at both sites. Where both fundamental excitations
are in phase at sites A and B, constructive interference occurs in the far field and the signal can be detected.
On the contrary, excitations in antiphase see their resulting SHG contribution cancel out: The corresponding
tensor component does not contribute to plasmon-mediated SHG.
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by the gold and contributes only marginally to the measured SHG signal. Thus, one has to
consider not one system but the two sub-systems made by each wire edge, called site A and
site B. SHG can only be detected when SHG produced in site A and site B are in phase, i.e.
interfere constructively. Checking the phase of the electric field based on the electrostatic
model, one can derive a "truth table" describing which tensor component delivers SHG in
(anti)phase at both sites, see table 4.1. One notices the list of tensor components producing
measurable enhanced SHG differs from that obtained by studying the system under the
assumption of a plane wave incident along the z-axis, as in section 3.1. Based on this new list,
one obtains a list of tensor components susceptible to be catalyzed by the plasmonic process.
These are all tensor components whose indices follow the patterns χeee

j⊥⊥, χmee
j⊥⊥, χqee

i j⊥⊥, χeem,q
i⊥⊥z ,

and χ
eem,q
i⊥z⊥ , where the ⊥ indices can take either the value x or y depending on the nanowires’
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orientation. For a given tensor component, all ⊥ indices must then take the same value. From
this list, one derives the source terms of plasmonic origin for x- and y-wires and for each host
material and setup configuration, see equations 4.1-(4.4).

SHG measurements always demonstrated the presence of an SHG signal varying with the
nanowires’ orientation, e.g. the anisotropies always show lobes normal to the nanowires. It
is then remarkable that for each case, x- or y-wires, the source terms are identical in their
mathematical form. In other words, the 0° relative anisotropy for y-wires should correspond
to the 90° relative anisotropy for x-wires. The shape and orientation of these anisotropy mea-
surements, if not the amplitude, should be identical. For instance, according to Equation (4.1)
these should be two-fold anisotropies oriented along the x-axis. No signal is expected along y .
Since this does not match the experimental results, either the catalyzing process is not the
source of the SHG signal, or the model employed is wrong and a complete different story is
taking place in the near-field.

It is important to consider also the depth reach of the plasmonic effects as it was mentioned
above. It turns out that the plasmon-affected volume remains within the region altered during
the polishing process. Indeed, it is typically considered that such processes induce crystal-
lographic defects within a depth of about three times the grain size, i.e. about 3µm in our
case. The presence of such defects is illustrated in figure 4.32. Their magnitude and number
decrease with the depth. Thus, the question arises whether the crystal volume susceptible to
deliver an enhanced signal is still to be considered as a proper homogeneous crystallographic
entity on which the selection rules apply, or if it should rather be assimilated to a polycrys-
talline volume. The effect of such a damaged layer is mostly irrelevant for measurements
carried out without nanostructures because the actual volume being polled is larger as men-
tioned above. This was verified in many experiments within the research group. Nevertheless,
this near-surface region becomes preponderant under the nanostructures’ mediation if local
field enhancement effectively takes place. The region most strongly catalyzed is also the most
smeared out in its crystallographic structure.

Assimilating this region to a polycrystalline volume, SHG should be generated isotropically,
before eventually canceling out in far field, but the optical catalyst feature is not isotropic:
If at all, amplification takes place only for the projection of the incident electric field in the
direction normal to the nanowire’s long axis. In other words, the amplified SHG anisotropy of a
polycrystalline volume would appear to be two-fold. In this hypothesis, a linear amplification
model with respect to the fundamental electric field strength would feature both a cos2θ or
sin2θ incident and emission anisotropies, depending on the nanowires’ orientation. This is
consistent with a cos6θ or sin6θ measurement for 0° relative anisotropies. This does match
the shape of the registered lobes. This polycrystalline SHG hypothesis can be verified using
samples that are not lapped or polished, but cleaved to offer a virgin surface on which to
produce metamaterials.

Should this prove not to be the right explanation, one has to depart from an electric field
amplification model and consider SHG generation directly within the gold structures as men-
tioned previously. Such a model would provide a meaningful explanation to the observation
of similar signals on nonlinear crystal and glass host substrate, but also the lack of a temper-
ature dependence on "AFM" signals. In that respect, the Maxwell-Vlasov theory [194, 195]
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RMnO3 (c)-type plasmonic SHG (αy phase), normal incidence
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RMnO3 (i )-type plasmonic SHG, 45° incidence
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Cr2O3 (i )- and (c)-type plasmonic SHG signals, normal incidence
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Nanowires on glass only, normal incidence
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Figure 4.32 – Dark field acquisition carried out on a
nanostructured field on Cr2O3. Only the scattered
light is collected, therewith revealing defects in the
crystal. Their green tint is characteristic of Cr2O3.
This demonstrates that scattering occurs within
the crystal and is not due to surface contamina-
tion by e.g. dust. Much more numerous and finer
cracks may be present but not detected in this way.
Formation of such cracks occurs during the lap-
ping and polishing phases with slurry solutions
containing grains of 3µm diameter. The affected
crystal depth is typically considered to be a factor
3 larger than the grain size.

appears as an insightful and relevant approach to model the optical nonlinearity in metal
nanostructures. In this framework, SHG occurs directly from the metal, and current den-
sities plays a critical role. To properly investigate their effect, one would require a proper
simulation software, whose scope is far beyond the simple mathematica model proposed in
this work. One notices that the Maxwell-Vlasov theory seems also coherent with the above
observations. In particular, the largest currents are present at the peak resonance and there
is reminiscence of the underlying crystal due to its dielectric constant, i.e. damping of the
plasmon via polarization of the crystal.
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Beyond their linear features for which a proper model is at hand, metamaterials feature
nonlinear properties with a challenging model description. In this work, one makes use of
the symmetry sensitivity and spectral information carried in the nonlinear process of second
harmonic generation (SHG). The approach in this work consists of carrying out a classical
analysis of the tensor components at play based on a far-field excitation, i.e. using plane waves
electromagnetic fields and a symmetry analysis of the material under investigation. To do so,
the nanostructures are considered as perfect nanostructures identical from one building block
to the other. Two types of investigations are carried out: First, gold nanostructures sharing
symmetry feature variations are investigated to characterize the SHG in metamaterials. Second,
simple gold nanowires are used to pattern the surface of an SHG-active host to investigate
their application as an optical catalyst. The classical approach does not fully encompass
the processes at play, yet SHG is recorded from a variety of nanostructures and valuable
information is gained from the results.

The first part of this work is dedicated to SHG characterization of metamaterials. Here and
for the first time, broad SHG spectra are recorded for a variety of nanostructures sharing
geometrical features. SHG is measured even from structures described as centrosymmetric, or
from tensor components expected to be symmetry forbidden. This unexpected observation
has been reported by several groups [48, 54, 132, 196, 197]. The challenge lies in providing a
proper model to these measurements. Together with the extreme variability of the SHG signal
delivered by nanostructures, they hint at the potential role played by nanoscopic surface
defects and irregularities resulting from the top-down EBL fabrication process. The fact that
SHG signal is still recorded despite the meta-atoms being dislocated further supports this
hypothesis, and dedicated experiments back this interpretation [198, 199]. The dislocation
and orientation randomizing of the nanostructures under illumination might also explain the
lack of correlation between the plasmonic linear resonance and the recorded SHG spectra.
Improving the metamaterial volume and contour down to the atomic scale is an obvious
step to further investigate the interesting nonlinear features of metamaterials [200, 201].
Suggestions regarding the nanostructures’ mechanical stability are also proposed in this work.

The second part is dedicated to SHG amplification by metamaterials. Here, one investigates
the use of metamaterials as optical catalysts based on the local field enhancement in their
immediate vicinity. Here too, broad SHG spectra are reported for the first time for such an
application of metamaterials. The concept of a simple and straightforward patterning of a
nonlinear crystal for nonlinear optical catalysis is undermined by the absence of features such
as temperature dependence on expected AFM signals. Moreover, here too, SHG is measured
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from nanowires expected to be centrosymmetric on an SHG inactive glass host. Nevertheless,
similar nanostructures fabricated on the surface of RMnO3 and Cr2O3 crystals display tweaked
SHG features with respect to the known features from these nonlinear model systems. This is
a clear indication of convolutions of the plasmonic process with a sample-specific response.
Although the exact process could not be pinpointed, a certain dependence of the SHG yield
on the environment of the nanowires has been highlighted and requires to take a closer look
in future investigations.

First steps in that direction were made by proposing an evolution of the far-field plane-wave
approach to include near-field effects. In this model, it was proposed that the recorded SHG
intensities might be explained by constructive plasmonic interferences instead of macroscopic
SHG selection rules. Based on perfect nanostructures and a defect-free crystal host, the
near-field model cannot fully explain the recorded SHG signals. Again, this is consistent
with SHG being potentially generated by random defects or hot spots. However, not only
the nanowires might bear defects, but also the host substrate after it underwent the lapping
and polishing preparation steps. While this effect is irrelevant for measurements carried out
on bare crystals, it might not be so for their surface patterned with nanostructure due to
the expected enhancement of the electric field in their few-nanometer vicinity. Indeed, it
was shown that the anisotropy measurements recorded from nanostructure fields are also
consistent with an anisotropic amplification of an isotropic polycrystalline volume. Working
in the future with cleaved samples rather than polished ones would allow to clarify this
hypothesis. Finally, addressing the question where the light conversion takes place, whether
within the crystal or within the nanostructures is key. In the latter case, a future analysis of the
internal currents based e.g. on the Maxwell-Vlasov theory might explain the process of SHG in
nearly centrosymmetric nanostructures. It would also help to understand the spectral SHG
modulation by the crystal/environment, and therewith corroborate whether one observes a
metamaterial-mediated amplification of SHG from the host substrate or a host-mediated SHG
from plasmon-driven nanostructures.
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Spectra

A.1 Linear Spectra
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Figure A.1 – U-shaped metamaterial linear spectra versus driving light polarization. The incident light polariza-
tion angle is displayed as inset. The evolution of the spectra demonstrates the presence of eigenpolarizations
at 0° and 90°.
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Figure A.2 – L-shaped metamaterial linear spectra versus driving light polarization. The incident light polariza-
tion angle is displayed as inset. The evolution of the spectra demonstrates the presence of eigenpolarizations
at 0° and 90°.
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Figure A.3 – C-shaped metamaterial linear spectra versus driving light polarization. The incident light polariza-
tion angle is displayed as inset. The evolution of the spectra demonstrates the presence of eigenpolarizations
at 0° and 90°.
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Figure A.4 – I-shaped metamaterial linear spectra versus driving light polarization. The incident light polarization
angle is displayed as inset. The evolution of the spectra demonstrates the presence of eigenpolarizations at 0°
and 90°.
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Figure A.5 – Z-shaped metamaterial linear spectra versus driving light polarization. The incident light polariza-
tion angle is displayed as inset. The evolution of the spectra demonstrates the presence of eigenpolarizations
at 45° and 135°.
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Figure A.6 – Linear spectra of sample DMF12 FZ YbMnO3. Reflectance spectra are shown for both excitation
polarizations on both field orientations. Each field is rastered and a square of 100×100µm2 only is measured
(one curve per measurement), therewith demonstrating the good overall homogeneity of each field.
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Figure A.7 – Linear spectra of sample DMF13 FG HoMnO3. Excitation polarization normal to the nanowires.
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Figure A.8 – Linear spectra of sample DMF15 FG YbMnO3. Excitation polarization normal to the nanowires.
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Figure A.9 – Linear spectra of sample DMF16 FZ YbMnO3. Excitation polarization normal to the nanowires. A
dotted line is traced to guide the eye and demonstrate the linear variation of the plasmonic resonance with
the field number, i.e. the nanowires’ width.
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Figure A.10 – Linear spectra of sample DMF18 Cr2O3. Excitation polarization normal to the nanowires. A dotted
line is traced to guide the eye and demonstrate the linear variation of the plasmonic resonance with the field
number, i.e. the nanowires’ width.
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Figure A.11 – Linear spectra of sample WoG (wires on glass). Excitation polarization normal to the nanowires.
The extinction is superposed for all fields in the top graph together with a dashed line showing the trend of
the maximum extinction. This dashed line is not straight as a result of both the quality factor and the cover
ratio varying with field number. A selection of every third field is displayed in the bottom part together with a
dotted line traced to guide the eye and demonstrate the linear variation of the plasmonic resonance with the
field number, i.e. the nanowires’ width.
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A.2 RMnO3 Reference SHG Spectra
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Figure A.12 – i -tensor SHG contributions in YMnO3.
The diagrams show the spectral dependence of the
χxxz , χzzz , and χzxx components of the χED(i ) ten-
sor at T = 6K. The spectra were measured on a sam-
ple surface normal to the y-axis. The dominant con-
tribution is the χzxx component in the 2.70eV range.
The inset anisotropy measured at ESH = 2.65eV re-
flects the two-fold polarization dependence of the
χzxx component. Graphic taken from [143].
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A.3 Cr2O3 Reference SHG Spectra
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Figure A.14 – c- (ED) and i -type (MD/EQ) SHG contributions in Cr2O3. The diagrams show the breakdown of

the spectra obtained with circular-polarized light (a, c) into the c-type (∝ ∣∣χe (c)
∣∣2) and i -type ∝ ∣∣χm,q (i )

∣∣2)
contributions (b, d). The measurements were performed at T = 10K (a, b), and T = 325K (c, d). Closed and
open squares correspond to right- and left-circular polarized light, closed and open circles correspond to the
MD/EQ- and the ED-contribution of the signal. Graphic taken from [151].
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Appendix B

Mathematica 8 Notebooks

B.1 Cr2O3 SHG Model

This model allows for computing the SHG polarization measurements as a function of temper-
ature on a Cr2O3 crystal whose surface is cut and illuminated along its c-axis. Above the Néel
temperature, the source terms being mathematically equivalent, the model can also be used
to simulate the shape (but not the temperature dependence) of polarization measurements
for FEL SHG signals on RMnO3. Functions prefixed with an "A" refer to a straightfoward
amplification process in the direction normal to the nanowires long axis .

Light electric field 

EE pol_ : Sin pol , Cos pol , 0 ;

Ex pol_ : EE pol 1 ;

Ey pol_ : EE pol 2 ;

Ez pol_ : EE pol 3 ;

Amplified electric field Incoming lightAbsorbed lightPlasmonic amplification 

AEE pol_, wire_, Amp_, Absorption_ : 1  Absorption  EE pol

 Amp Sin wire  pol Cos wire , Amp Sin wire  pol Sin wire , Abs Amp Sin wire  pol ;

AEx pol_, wire_, Amp_, Absorption_ : AEE pol, wire, Amp, Absorption 1 ;

AEy pol_, wire_, Amp_, Absorption_ : AEE pol, wire, Amp, Absorption 2 ;

AEzpol_, wire_, Amp_, Absorption_ : AEEpol, wire, Amp, Absorption3;

Temperature dependency of tensor components

MQTemp_ : Piecewise.71  Temp 800, Temp  800, 0;

EDTemp_ : Piecewise308  Temp^.5308^.5, Temp  308, 0;

Source term

Spol_, Temp_ : MQTemp Expol^2  Eypol^2  2 EDTemp Expol Eypol,

2 MQTemp Expol Eypol  EDTemp Expol^2  Eypol^2,

0;

Sxpol_, Temp_ : Spol, Temp1;

Sypol_, Temp_ : Spol, Temp2;

Szpol_, Temp_ : Spol, Temp3;

(*code continues on next page*)
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Amplified source term

ASpol_, wire_, Amp_, Absorption_, Temp_ : 

MQTemp  EDpTemp AExpol, wire, Amp, Absorption^2  AEypol, wire, Amp, Absorption^2

 2 EDTemp AExpol, wire, Amp, Absorption AEypol, wire, Amp, Absorption

, 2 MQTemp  EDpTemp AExpol, wire, Amp, Absorption AEypol, wire, Amp, Absorption

 EDTemp AExpol, wire, Amp, Absorption^2  AEypol, wire, Amp, Absorption^2

, 0

;

ASxpol_, wire_, Amp_, Absorption_, Temp_ : ASpol, wire, Amp, Absorption, Temp1;

ASypol_, wire_, Amp_, Absorption_, Temp_ : ASpol, wire, Amp, Absorption, Temp2;

ASzpol_, wire_, Amp_, Absorption_, Temp_ : ASpol, wire, Amp, Absorption, Temp3;

SHG expressions

SHGSignalana_, pol_, Temp_ : Sinana Sxpol, Temp  Cosana Sypol, Temp^2;

AnisoRelativeAngle_, ana_, Temp_ : SHGSignalana, ana  RelativeAngleDegree, Temp;

Amplified SHG expressions

ASHGSignalana_, pol_, wire_, Amp_, Absorption_, Temp_ : Sinana ASxpol, wire, Amp, Absorption, Temp

 Cosana ASypol, wire, Amp, Absorption, Temp ^2;

AAniso RelativeAngle_, ana_, wire_, Amp_, Absorption_, Temp_ :

ASHGSignal ana, ana  RelativeAngleDegree, wire, Amp, Absorption, Temp ;

Plot SHG intensity

Manipulate

ParametricPlot

Tooltip Sin  , Cos  Aniso RelativeAngle, , Temp , "AnisoRelAng"

, Tooltip Sin  , Cos  AAniso RelativeAngle, , wire, Amp, Absorption, Temp , "AAnisoRelAng"

, , 0, 2  , PlotRange  All

, wire, 0, 30  180, 45  180, 60  180, 90  180

, Amp, 1 , 0, 10 , Absorption, .5 , 0, 1

, CurrentAngle, 2  , 0, 2 

, pol, 0, 45  180, 90  180, 135  180, 180  180

, ana, 0, 45  180, 90  180, 135  180, 180  180

, RelativeAngle, 0, 90

, Temp, 400 , 0, 1000

Code B.1 – SHG model in Cr2O3

B.2 Nanowire-Mediated SHG Amplification Model

This model provides access to the electric field strength and its spatial derivatives within and
around a nanowire as a function of the amplification of the driving electric field. Dielectric
polarization compensation is not taken into account for sake of simplicity since it does not
alter the qualitative investigation. The model charge distribution is discretized into a discrete
number of infinite charged wires at both ends of the gold nanostructure. The theorem of
superposition is then employed to compute the global field distribution. The structure is
represented geometrically as having perfect sharp edges yet only the charge separation is
taken into consideration, not the presence of hot-spots or sharp edges. Figures 3.5 and 4.31
were produced based on this model.
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Clear "Global ̀" ; GoldThickness 30; OutputSize 525; OutputRatio 2;

Component of the electric field due to a given charge; x, y are the "test charge" space coordinate; xq, yq are the charge coordinate and qn, its value

Ex x_, y_, xq_, yq_, qn_ : x  xq qn x  xq
2
 y  yq

2
; Ey x_, y_, xq_, yq_, qn_ : y  yq qn x  xq

2
 y  yq

2
; Line charge

 Rough approximation to have an electric field value of Amplification ExcitationField in the center of the nanostructure 

DiscreteCharge ChargeSeparation_, Amplification_ , NbCharges_:11 : Amplification ChargeSeparation 4NbCharges Line charge

Theorem of superposition

ExTotal x_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_ :

Sum Ex x , y, ChargeSeparation 2, iGoldThickness NbCharges 1 , DiscreteCharge ChargeSeparation, Amplification , NbCharges , i, 1, NbCharges 

SumExx , y, ChargeSeparation2, iGoldThicknessNbCharges 1, DiscreteChargeChargeSeparation, Amplification , NbCharges, i, 1, NbCharges  ExcitationField;

EyTotalx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_ :

SumEyx , y, ChargeSeparation2, iGoldThicknessNbCharges 1, DiscreteChargeChargeSeparation, Amplification , NbCharges, i, 1, NbCharges 

SumEyx , y, ChargeSeparation2, iGoldThicknessNbCharges 1, DiscreteChargeChargeSeparation, Amplification , NbCharges, i, 1, NbCharges;

Partial electric field derivatives

dExdxx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x;

dExdyx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, y;

dEydxx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x;

dEydyx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, y;

 Graphic representation of the system 

SystemGraphicsChargeSeparation_, FOV_, NbCharges_  Hold

Graphics

RGBColor1, 0.84, 0, RectangleChargeSeparation2, 0, ChargeSeparation2, GoldThickness

, RGBColor0, 0, 0, LineChargeSeparation2, 0, ChargeSeparation2, GoldThickness, ChargeSeparation2, GoldThickness, ChargeSeparation2, 0, ChargeSeparation2, 0

, RGBColor.5, .5, .5, Opacity.2, RectangleFOV, 0, FOV, FOV OutputRatio, Opacity1, LineFOV, 0, FOV, 0

, RGBColor0, 0, 1, PointSize.01, TablePointChargeSeparation2, iGoldThicknessNbCharges 1, i, 1, NbCharges

, RGBColor1, 0, 0, PointSize.01, TablePointChargeSeparation2, iGoldThicknessNbCharges 1, i, 1, NbCharges

, RGBColor0, 0, 1, TextStyle"", 20, Bold, ChargeSeparation2  10, GoldThickness2

, RGBColor1, 0, 0, TextStyle"", 20, Bold, ChargeSeparation2  10, GoldThickness2



;

 Field components and resulting SHG amplitude at the crystal surface 

Manipulate

Grid



PlotExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio

, PlotEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio

, 

PlotExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges^4, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio

, PlotEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges^4, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio





, y, 0, "y", FOV, FOV, 5, Appearance "Labeled"

, FOV, 200, "FOV", 2000, 50, Appearance "Labeled"

, ExcitationField, 1, "ExcitationField", 0, 1, 1, Appearance "Labeled"

, NbCharges, 3, "NbCharges", 0, 100, 1, Appearance "Labeled"

, ChargeSeparation, 150, "ChargeSeparation", 0, 1000, 10, Appearance "Labeled"

, Amplification , 4, "Amplification ", 0, 100, .1, Appearance "Labeled"

, ContinuousAction False, TrackedSymbols True

 Field components and derivatives around the crystal surface 

Manipulate

Grid



Show

QuietDensityPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSize2, FrameTicksStyle DirectiveBold, 14

, Show

QuietDensityPlot

EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSizeOutputRatio, FrameTicksStyle DirectiveBold, 14



, 

Show

QuietDensityPlot

dExdxx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSize2, FrameTicksStyle DirectiveBold, 14

, Show

QuietDensityPlot

dEydxx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSizeOutputRatio, FrameTicksStyle DirectiveBold, 14



, 

Show

QuietDensityPlot

dExdyx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSize2, FrameTicksStyle DirectiveBold, 14

, Show

QuietDensityPlot

dEydyx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotal x, y, ChargeSeparation, Amplification , ExcitationField, NbCharges , EyTotal x, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV , y, FOV OutputRatio, FOV OutputRatio , AspectRatio 1 OutputRatio, StreamPoints Medium

, ReleaseHold SystemGraphics ChargeSeparation, FOV, NbCharges , ImageSize OutputSize, OutputSize OutputRatio , FrameTicksStyle Directive Bold, 14

, FOV, 200, "FOV" , 2000, 50, Appearance "Labeled"

, ExcitationField, 0, "ExcitationField" , 0, 1, 1, Appearance "Labeled"

, NbCharges, 10, "NbCharges" , 0, 100, 1, Appearance "Labeled"

, Discretization, 75, "Discretization" , 0, 50, 5, Appearance "Labeled"

, ChargeSeparation, 150, "ChargeSeparation" , 0, 1000, 10, Appearance "Labeled"

, Amplification , 5, "Amplification " , 0, 100, .1, Appearance "Labeled"

, ContinuousAction False, TrackedSymbols True

Export "WireField.jpg", , ImageResolution 300, "CompressionLevel"  0 ;
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Clear "Global ̀" ; GoldThickness 30; OutputSize 525; OutputRatio 2;

Component of the electric field due to a given charge; x, y are the "test charge" space coordinate; xq, yq are the charge coordinate and qn, its value

Ex x_, y_, xq_, yq_, qn_ : x  xq qn x  xq
2
 y  yq

2
; Ey x_, y_, xq_, yq_, qn_ : y  yq qn x  xq

2
 y  yq

2
; Line charge

 Rough approximation to have an electric field value of Amplification ExcitationField in the center of the nanostructure 

DiscreteCharge ChargeSeparation_, Amplification_ , NbCharges_:11 : Amplification ChargeSeparation 4NbCharges Line charge

Theorem of superposition

ExTotal x_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_ :

Sum Ex x , y, ChargeSeparation 2, iGoldThickness NbCharges 1 , DiscreteCharge ChargeSeparation, Amplification , NbCharges , i, 1, NbCharges 

SumExx , y, ChargeSeparation2, iGoldThicknessNbCharges 1, DiscreteChargeChargeSeparation, Amplification , NbCharges, i, 1, NbCharges  ExcitationField;

EyTotalx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_ :

SumEyx , y, ChargeSeparation2, iGoldThicknessNbCharges 1, DiscreteChargeChargeSeparation, Amplification , NbCharges, i, 1, NbCharges 

SumEyx , y, ChargeSeparation2, iGoldThicknessNbCharges 1, DiscreteChargeChargeSeparation, Amplification , NbCharges, i, 1, NbCharges;

Partial electric field derivatives

dExdxx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x;

dExdyx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, y;

dEydxx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x;

dEydyx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, y;

 Graphic representation of the system 

SystemGraphicsChargeSeparation_, FOV_, NbCharges_  Hold

Graphics

RGBColor1, 0.84, 0, RectangleChargeSeparation2, 0, ChargeSeparation2, GoldThickness

, RGBColor0, 0, 0, LineChargeSeparation2, 0, ChargeSeparation2, GoldThickness, ChargeSeparation2, GoldThickness, ChargeSeparation2, 0, ChargeSeparation2, 0

, RGBColor.5, .5, .5, Opacity.2, RectangleFOV, 0, FOV, FOV OutputRatio, Opacity1, LineFOV, 0, FOV, 0

, RGBColor0, 0, 1, PointSize.01, TablePointChargeSeparation2, iGoldThicknessNbCharges 1, i, 1, NbCharges

, RGBColor1, 0, 0, PointSize.01, TablePointChargeSeparation2, iGoldThicknessNbCharges 1, i, 1, NbCharges

, RGBColor0, 0, 1, TextStyle"", 20, Bold, ChargeSeparation2  10, GoldThickness2

, RGBColor1, 0, 0, TextStyle"", 20, Bold, ChargeSeparation2  10, GoldThickness2



;

 Field components and resulting SHG amplitude at the crystal surface 

Manipulate

Grid



PlotExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio

, PlotEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio

, 

PlotExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges^4, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio

, PlotEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges^4, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio





, y, 0, "y", FOV, FOV, 5, Appearance "Labeled"

, FOV, 200, "FOV", 2000, 50, Appearance "Labeled"

, ExcitationField, 1, "ExcitationField", 0, 1, 1, Appearance "Labeled"

, NbCharges, 3, "NbCharges", 0, 100, 1, Appearance "Labeled"

, ChargeSeparation, 150, "ChargeSeparation", 0, 1000, 10, Appearance "Labeled"

, Amplification , 4, "Amplification ", 0, 100, .1, Appearance "Labeled"

, ContinuousAction False, TrackedSymbols True

 Field components and derivatives around the crystal surface 

Manipulate

Grid



Show

QuietDensityPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSize2, FrameTicksStyle DirectiveBold, 14

, Show

QuietDensityPlot

EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSizeOutputRatio, FrameTicksStyle DirectiveBold, 14



, 

Show

QuietDensityPlot

dExdxx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSize2, FrameTicksStyle DirectiveBold, 14

, Show

QuietDensityPlot

dEydxx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSizeOutputRatio, FrameTicksStyle DirectiveBold, 14



, 

Show

QuietDensityPlot

dExdyx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSize2, FrameTicksStyle DirectiveBold, 14

, Show

QuietDensityPlot

dEydyx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotal x, y, ChargeSeparation, Amplification , ExcitationField, NbCharges , EyTotal x, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV , y, FOV OutputRatio, FOV OutputRatio , AspectRatio 1 OutputRatio, StreamPoints Medium

, ReleaseHold SystemGraphics ChargeSeparation, FOV, NbCharges , ImageSize OutputSize, OutputSize OutputRatio , FrameTicksStyle Directive Bold, 14

, FOV, 200, "FOV" , 2000, 50, Appearance "Labeled"

, ExcitationField, 0, "ExcitationField" , 0, 1, 1, Appearance "Labeled"

, NbCharges, 10, "NbCharges" , 0, 100, 1, Appearance "Labeled"

, Discretization, 75, "Discretization" , 0, 50, 5, Appearance "Labeled"

, ChargeSeparation, 150, "ChargeSeparation" , 0, 1000, 10, Appearance "Labeled"

, Amplification , 5, "Amplification " , 0, 100, .1, Appearance "Labeled"

, ContinuousAction False, TrackedSymbols True

Export "WireField.jpg", , ImageResolution 300, "CompressionLevel"  0 ;
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Clear "Global ̀" ; GoldThickness 30; OutputSize 525; OutputRatio 2;

Component of the electric field due to a given charge; x, y are the "test charge" space coordinate; xq, yq are the charge coordinate and qn, its value

Ex x_, y_, xq_, yq_, qn_ : x  xq qn x  xq
2
 y  yq

2
; Ey x_, y_, xq_, yq_, qn_ : y  yq qn x  xq

2
 y  yq

2
; Line charge

 Rough approximation to have an electric field value of Amplification ExcitationField in the center of the nanostructure 

DiscreteCharge ChargeSeparation_, Amplification_ , NbCharges_:11 : Amplification ChargeSeparation 4NbCharges Line charge

Theorem of superposition

ExTotal x_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_ :

Sum Ex x , y, ChargeSeparation 2, iGoldThickness NbCharges 1 , DiscreteCharge ChargeSeparation, Amplification , NbCharges , i, 1, NbCharges 

SumExx , y, ChargeSeparation2, iGoldThicknessNbCharges 1, DiscreteChargeChargeSeparation, Amplification , NbCharges, i, 1, NbCharges  ExcitationField;

EyTotalx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_ :

SumEyx , y, ChargeSeparation2, iGoldThicknessNbCharges 1, DiscreteChargeChargeSeparation, Amplification , NbCharges, i, 1, NbCharges 

SumEyx , y, ChargeSeparation2, iGoldThicknessNbCharges 1, DiscreteChargeChargeSeparation, Amplification , NbCharges, i, 1, NbCharges;

Partial electric field derivatives

dExdxx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x;

dExdyx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, y;

dEydxx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x;

dEydyx_, y_, ChargeSeparation_, Amplification_ , ExcitationField_, NbCharges_  DEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, y;

 Graphic representation of the system 

SystemGraphicsChargeSeparation_, FOV_, NbCharges_  Hold

Graphics

RGBColor1, 0.84, 0, RectangleChargeSeparation2, 0, ChargeSeparation2, GoldThickness

, RGBColor0, 0, 0, LineChargeSeparation2, 0, ChargeSeparation2, GoldThickness, ChargeSeparation2, GoldThickness, ChargeSeparation2, 0, ChargeSeparation2, 0

, RGBColor.5, .5, .5, Opacity.2, RectangleFOV, 0, FOV, FOV OutputRatio, Opacity1, LineFOV, 0, FOV, 0

, RGBColor0, 0, 1, PointSize.01, TablePointChargeSeparation2, iGoldThicknessNbCharges 1, i, 1, NbCharges

, RGBColor1, 0, 0, PointSize.01, TablePointChargeSeparation2, iGoldThicknessNbCharges 1, i, 1, NbCharges

, RGBColor0, 0, 1, TextStyle"", 20, Bold, ChargeSeparation2  10, GoldThickness2

, RGBColor1, 0, 0, TextStyle"", 20, Bold, ChargeSeparation2  10, GoldThickness2



;

 Field components and resulting SHG amplitude at the crystal surface 

Manipulate

Grid



PlotExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio

, PlotEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio

, 

PlotExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges^4, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio

, PlotEyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges^4, x, FOV, FOV, PlotRange All, ImageSize OutputSize, OutputSizeOutputRatio





, y, 0, "y", FOV, FOV, 5, Appearance "Labeled"

, FOV, 200, "FOV", 2000, 50, Appearance "Labeled"

, ExcitationField, 1, "ExcitationField", 0, 1, 1, Appearance "Labeled"

, NbCharges, 3, "NbCharges", 0, 100, 1, Appearance "Labeled"

, ChargeSeparation, 150, "ChargeSeparation", 0, 1000, 10, Appearance "Labeled"

, Amplification , 4, "Amplification ", 0, 100, .1, Appearance "Labeled"

, ContinuousAction False, TrackedSymbols True

 Field components and derivatives around the crystal surface 

Manipulate

Grid



Show

QuietDensityPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSize2, FrameTicksStyle DirectiveBold, 14

, Show

QuietDensityPlot

EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSizeOutputRatio, FrameTicksStyle DirectiveBold, 14



, 

Show

QuietDensityPlot

dExdxx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSize2, FrameTicksStyle DirectiveBold, 14

, Show

QuietDensityPlot

dEydxx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSizeOutputRatio, FrameTicksStyle DirectiveBold, 14



, 

Show

QuietDensityPlot

dExdyx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges, EyTotalx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, StreamPoints Medium

, ReleaseHoldSystemGraphicsChargeSeparation, FOV, NbCharges, ImageSize OutputSize, OutputSize2, FrameTicksStyle DirectiveBold, 14

, Show

QuietDensityPlot

dEydyx, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV, y, FOV OutputRatio, FOV OutputRatio, AspectRatio 1OutputRatio, ColorFunction "TemperatureMap", ClippingStyle Automatic, PlotPoints Discretization

, QuietStreamPlot

ExTotal x, y, ChargeSeparation, Amplification , ExcitationField, NbCharges , EyTotal x, y, ChargeSeparation, Amplification , ExcitationField, NbCharges

, x, FOV, FOV , y, FOV OutputRatio, FOV OutputRatio , AspectRatio 1 OutputRatio, StreamPoints Medium

, ReleaseHold SystemGraphics ChargeSeparation, FOV, NbCharges , ImageSize OutputSize, OutputSize OutputRatio , FrameTicksStyle Directive Bold, 14

, FOV, 200, "FOV" , 2000, 50, Appearance "Labeled"

, ExcitationField, 0, "ExcitationField" , 0, 1, 1, Appearance "Labeled"

, NbCharges, 10, "NbCharges" , 0, 100, 1, Appearance "Labeled"

, Discretization, 75, "Discretization" , 0, 50, 5, Appearance "Labeled"

, ChargeSeparation, 150, "ChargeSeparation" , 0, 1000, 10, Appearance "Labeled"

, Amplification , 5, "Amplification " , 0, 100, .1, Appearance "Labeled"

, ContinuousAction False, TrackedSymbols True

Export "WireField.jpg", , ImageResolution 300, "CompressionLevel"  0 ;
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