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Abstract
Threshold pion electroproduction on tri-nucleon systems is investigated in the framework
of baryon ChPT at next-to-leading one-loop order O(q4) in the chiral expansion. To this
order in small momenta, the production operator is a sum of one- and two-nucleon terms.
While the one-nucleon terms resemble the impulse approximation, the two-nucleon contri-
butions represent corrections due to the relevant nuclear interactions, e.g. pion-exchange
interactions, which prove to be dominant, and due to recoil effects of the participating nu-
cleons, which appear to be negligible. We calculate the expectation value of the production
operator using chiral wave functions in a three-dimensional approach without partial wave
expansion. The resulting integrals are evaluated using adaptive Monte Carlo integration,
the VEGAS algorithm of Lepage. We obtain results for the threshold production multi-
poles E0+ and L0+ on 3He and 3H and comment on the sensitivity to the fundamental
neutron amplitude Eπ0n

0+ .
3He appears to be a particularly promising target to extract information about the neutron
amplitude. This idea is usually invoked for spin-dependent quantities since the 3He wave
function is strongly dominated by the principal S-state component which suggests that its
spin is largely driven by the one of the neutron.
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Chapter 1

Introduction

“Dass ich erkenne, was die Welt
Im Innersten zusammenhält”

Speaking with the words of J. W. von Goethe (Faust I, Stuttgart 2000, S.13, V.382f),
fundamental knowledge is only accessible through the innermost properties and principles
of the world.

In the language of physics, these innermost principles and properties are related to funda-
mental interactions. The Standard Model of particle physics describes the electromagnetic,
weak, and strong interactions, which up to now are believed to be the most fundamental
interactions of the world. Usually one is interested in a particular process of a distinct
energy ignoring the less relevant details. However, in some cases the fundamental ingredi-
ents clearly shine through. But sometimes, the underlying mechanism is masked as in the
example of strong isospin breaking.

Isospin violation is dominantly generated by the Coulomb interaction due to the electric
charge difference of up- and down-quark (electromagnetic isospin breaking) and by the mass
difference of up- and down-quark (strong isospin breaking). Reactions involving mesons
and nucleons are candidates to reveal strong isospin violation. In theory, isospin violation
is easily quantifiable by direct comparison of different isospin channels. In practice, exper-
imental isolation of neutron amplitudes is of course a problem of e.g. tracking, trapping
and storing free neutrons.

In the absence of free neutron targets, light nuclei like the deuteron or three-nucleon bound
states like 3H (triton) or 3He (helion) can be used to unravel the properties of neutrons.
For a recent review on extracting the neutron structure from electron or photon scattering
off light nuclei, see Ref. [1]. Of particular interest in this respect is threshold neutral
pion photo- and electroproduction off the nucleon. This is one of the finest reactions
to test the chiral dynamics of quantum chromodynamics (QCD), see Ref. [2] for a recent
review. Arguably most striking is the counterintuitive chiral perturbation theory prediction
(ChPT) that the elementary neutron S-wave multipole Eπ0n

0+ is larger in magnitude than the

corresponding one of the proton, Eπ0p
0+ [3, 4]. This prediction has already been successfully
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2 CHAPTER 1. INTRODUCTION

tested in neutral pion photo- [5, 6] and electroproduction off the deuteron [7]. However,
given the scarcity and precision of the corresponding data, it is mandatory to study also
pion production off tri-nucleon bound states, that can be calculated nowadays to high
precision based on chiral nuclear effective field theory (EFT). This framework extends
ChPT to nuclear physics (for recent reviews, see [8, 9]).
3He appears to be a particularly promising target to extract information about the neutron
amplitude. This idea is usually invoked for spin-dependent quantities since the 3He wave
function is strongly dominated by the principal S-state component which suggests that its
spin is largely driven by the one of the neutron [10].

To realize a treatment suitable for few-nucleon systems of variable size, a three-dimensional
approach together with an adequate numerical integration algorithm, which also works for
higher dimensional integrations, is inevitable. Preparing a generalization to heavier nuclei,
a calculation for electroproduction off the deuteron was carried out in a three-dimensional
approach in [11] yielding results consistent with earlier publications.

In this work, photo- and electroproduction of neutral pions from tri-nucleon systems (3He
and 3H) based on chiral 3N wave functions is considered to fourth order in the chiral expan-
sion, including consistently all next-to-next-to-leading order contributions in the standard
heavy baryon expansion. This amounts to a complete (i.e. subleading) one-loop calcula-
tion in the one-nucleon sector. The undesired and unphysical dependence of observables
on the wave function cutoff serves as an additional measure for the importance of nuclear
corrections, which proves to be small and can be used to estimate errors from higher order
effects. The cutoff stems from the regularization in certain loop integrals and spectral
function representations of the two-pion exchange in the procedure of generating the chiral
tri-nucleon bound state wave functions.

Experimentally, neutral pion photoproduction off light nuclei has so far only been studied
at Saclay [12, 13] and at Saskatoon [14, 15]. Clearly, new measurements using CW (con-
tinuous wave or continuous waveform) beams, modern targets and detectors are urgently
called for. The results presented below show that we are able to calculate neutral pion
photo- and electroproduction off tri-nucleon systems to very good precision and, moreover,
that the S-wave cross section for neutral pion production off 3He is very sensitive to the
elementary Eπ0n

0+ multipole (as already stressed in Refs. [16, 17]).

The manuscript is organized as follows. Chapter 2 contains all the necessary theoretical
prerequisites, chapter 3 the corresponding numerical methods. Chapter 4 explains the
merging of the former two to the formalism we use. Chapter 5 contains our results and
the discussion of these. In particular, we spell out in detail the fourth order two-nucleon
corrections which have been published in Ref. [17] that modify the third order results
published in Ref. [16]. We end with a summary and outlook in chapter 6.



Chapter 2

Theoretical Prerequisites

This work is a generalization from the two-nucleon sector which is worked out in my
diploma thesis [11] to the three-nucleon sector. Therefore, parts of the description in this
thesis follow their corresponding counterparts in the diploma thesis.

2.1 Effective Field Theory

Whenever a fundamental theory is too complex to be applied efficiently or not known
in detail, the need for simplification leads to so-called “effective theories”. That is the
reason, why the expression “effective field theory” (EFT) is used in different contexts. For
instance, the Fermi theory of beta decay and the gravitational field approximation near the
earth leading to the force F = mg can each -though in different tenors- be called EFTs.
The essence is similar: It is not necessary to know about physics at all scales in detail
in order to make a sensible description of physics at a particular scale. In other words:
To build a tower, you do not need to understand nuclear physics. An effective theory
simplifies a general theory by approximation and specialization to a certain regime or
scale, at which the degrees of freedom (DOF) are reduced. Usually one is interested in the
low-energy regime, i.e. substructures and heavy DOFs are unresolved. In general, EFTs are
approximations to more fundamental theories, while even fundamental theories nowadays
are believed to be EFTs themselves (paradigm change). We will use the concept EFT in
the low energy context of Quantum Field Theory (QFT). Weinberg stated in 1979 [18]
the fundamental theorem, that QFT has no content besides unitarity, analyticity, cluster
decomposition and symmetries. To calculate the S-matrix for any theory below some scale,
simply use the most general effective Lagrangian consistent with these principles in terms
of the appropriate asymptotic states. Instead of solving the underlying theory, low-energy
physics is described by a set of parameters, variables and states that is suited for the
particular energy region of interest.
The normal way to construct an QFT includes the following steps:

1. Construct the action S[. . . ] respecting symmetries,

3



4 CHAPTER 2. THEORETICAL PREREQUISITES

2. Retain renormalizable interactions (i.e. of mass dimension D ≤ 4),

3. Quantize. Calculate scattering processes in perturbation theory: tree, loop graphs,

4. Fix parameters from data to gain predictions.

This leads to a difficulty in constructing an EFT: Step 1), 3) and 4) are logically necessary,
but step 2) requires an additional restriction which a priori forbids non-renormalizable in-
teractions. In that special case, effects of the heavy DOFs are suppressed by powers of their
heavy mass or renormalize the coupling constants in the low-energy effective Lagrangian
[19]. The heavy sector decouples from the light sector.
Otherwise, for a general non-renormalizable EFT, we replace step 2) to

2∗. Work at low energies and expand in powers of the energy.

In this approach, scales of high and low energy separate at each order. The concept
of renormalizability is dropped in favor of order-by-oder renormalization. Only a finite
number of operators plays a role to a given order in the energy expansion, determined by
the so-called power counting.

2.1.1 Example: Multipole Expansion

Though it is not a field theory, consider the classical multipole expansion of an electric
potential V (~R) of a charge distribution ρ(~r) with compact support, i.e. ρ(~r) = 0 for r > a,

as depicted in Fig. 2.1. We can expand the potential at ~R = ~d+ ~r, if R > r.

Observer
~d

~R

~r ρ(~r)

a

Figure 2.1: Multipole expansion of a charge distribution.
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V (~R) =

∫
d3r

ρ(~r)

d
=

∫
d3r

ρ(~r)√
R2 − 2Rr cos(θ) + r2

=
1

R

∫
d3r

ρ(~r)√
1− 2 r

R
cos(θ) + r2

R2

=
∞∑

n=0

1

Rn+1

∫
d3rrnPn(cos(θ))ρ(~r) =

q

R
+
~p · ~R
R3

+
QijRiRj

R5
+ . . . , (2.1)

Here, q =
∫
d3rρ(~r) denotes the charge, ~p the dipole moment, defined by

~p · ~R
R

=

∫
d3rr cos(θ)ρ(~r) =

∫
d3r

~r · ~R
R

ρ(~r)

and the expression

QijRiRj

R2
=

∫
d3rr2

1

2
(3 cos2(θ)− 1)ρ(~r) =

∫
d3r

1

2


3

(
~r · ~R
R

)2

− r2
R2

R2


 ρ(~r)

defines the quadrupole tensor Qij which can be verified by comparing the coefficients. The
sum converges rapidly for R ≫ a, which implies, that long-distance (or equivalently low-
energy) physics is only sensitive to bulk properties q, p (and Q). This is an example for a
power counting in the small parameter a/R.

2.1.2 Example: Light-by-light Scattering

Consider the scattering of four photons of energy ω mediated by a loop of fermions ψ, ψ̄
with mass me in Quantum Electrodynamics (QED). In the low-energy regime, ω ≪ me,
the detailed mechanism of this reaction cannot be resolved. To exploit this feature, we
can “integrate out” the fermions as the heavy degrees of freedom. The occurring contact
interaction between four photons parametrizes the ignorance or loss of information for
higher energies, but tailors the problem perfectly to the low-energy regime, we are interested
in. Formally starting at the QED Lagrangian

LQED[ψ, ψ̄, A
µ] = ψ̄ [iγµD

µ −m]ψ − 1

4
FµνF

µν ,

using Dµ := ∂µ+iqAµ and Fµν = ∂µAν−∂νAµ, this process can be written as (cf. Fig. 2.2):

LQED[ψ, ψ̄, A
µ] −→ Leff[A

µ] =
1

2
( ~E2 − ~B2) +

e4

360π2m4
e

(
( ~E2 − ~B2)2 + 7( ~E · ~B)2

)
+ . . .

(2.2)

with the invariants FµνF
µν = −2( ~E2− ~B2) and FµνF̃

µν = 8( ~E · ~B). The form of the effective
Lagrangian was proposed by Euler, Kockel and Heisenberg [20, 21, 22] using ω/me as a
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Figure 2.2: Photons scattering to photons by virtue of an intermediate fermionic state. At
very low energies, this intermediate structure cannot be resolved and is exchanged by a
contact interaction with a low-energy-constant (LEC) parametrizing the loss of informa-
tion.

small expansion parameter and is in fact the most general form consistent with Lorentz and
gauge symmetry. The second term represents an effective four photon contact interaction
whose coefficients parametrize the loss of information. Only the resolvable photon-photon
structure survives and the structure of the intermediate fermionic state is hidden.
In the following, the ingredients for such an EFT named Chiral Perturbation Theory
(ChPT) are explained, a low-energy EFT to Quantum Chromodynamics (QCD).

2.2 Spontaneous Symmetry Breaking

The heart of ChPT is the observation, that the Lagrangian of QCD exhibits an approximate
symmetry, chiral symmetry, which is spontaneously broken. The idea of spontaneously
broken symmetry is simple: If the Lagrangian of a system satisfies a symmetry, the ground
state does not need to do so. The symmetry then cannot be seen in the ground state, but
can be traced by the occurance of a certain number of approximately massless particles,
the so-called Goldstone bosons.

2.2.1 Example: The Linear Sigma Model

To illustrate this, we consider the classical linear sigma model Lagrangian [23] for N scalar
fields φi, i = 1, . . . , N :

L =
1

2
(∂µφ

i)2 +
µ2

2
(φi)2 − λ

4

(
(φi)2

)2
=

1

2
(∂µφ

i)2 − V [φ] (2.3)

with the ’Mexican hat’ potential in N dimensions

V [φ] = −µ
2

2
(φi)2 +

λ

4

(
(φi)2

)2
(2.4)
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which is invariant under the continuous symmetry

φi → Rijφ
j (2.5)

for any orthogonal matrix R. The corresponding group is the rotation group in N dimen-
sions, also called O(N).
The lowest-energy classical configuration is a constant field φi0 which minimizes the poten-
tial V . The condition

(φ0)
2 =

N∑

i=1

(φi0)
2 =

µ2

λ
= v2 (2.6)

determines only the length of the vector φi0, its direction is arbitrary. The vacuum manifold
is a (N − 1)-sphere SN−1 of radius v. We choose the N -th direction,

φi0 = (0, ..., 0, v), (2.7)

and define a set of shifted fields by writing

φi(x) = (π1(x), ..., πN−1(x), v + σ(x)) = (πk(x), v + σ(x)), k = 1, ..., N − 1. (2.8)

Rewriting (2.3) in terms of the shifted fields yields

L =
1

2
(∂µπ

k)2 +
1

2
(∂µσ)

2 − 1

2
(2µ2)(σ)2 −

√
λµ(σ)3 −

√
λµ(πk)2σ

− λ

4
(σ)4 − λ

2
(πk)2(σ)2 − λ

4
[(πk)2]2, (2.9)

i.e. a massive field σ and a set of N−1 massless π fields. The O(N) symmetry is hidden or
broken, leaving only the subgroup O(N − 1), which rotates the π fields among themselves.
The σ field corresponds to oscillations of φi in the radial direction, in which the potential
has a non-vanishing second derivative. The massless π fields describe oscillations in the
tangential direction of the minimum manifold, along the rim of the potential.

2.2.2 Goldstone’s Theorem

We discuss the classical case [23]. The Goldstone theorem states that for every sponta-
neously broken continuous symmetry, the theory must contain a massless particle, called
Goldstone boson. We have just seen that this theorem holds for the linear sigma model
at the classical level: O(N) with N(N − 1)/2 continuous symmetries was broken down to
O(N − 1) with (N − 1)(N − 2)/2 continuous symmetries corresponding to the rotations
of the (N − 1) π-fields (the (N − 1) Goldstone Bosons). The number of broken symmetry
generators is the difference

N(N − 1)/2− (N − 1)(N − 2)/2 = N − 1. (2.10)



8 CHAPTER 2. THEORETICAL PREREQUISITES

For the general theorem, we confine ourselves to the simple case of classical scalar fields.
Consider a theory involving several classical fields φa(x) with the Lagrangian of the form

L = (terms with derivatives)− V (φ). (2.11)

Let φa0 be a vector of constant fields minimizing V , i.e.

(
∂

∂φa
V

)∣∣∣∣
φ=φ0

= 0 ∀a. (2.12)

We expand V about this minimum

V (φ) = V (φ0) +
1

2

∑

a,b

(φ− φ0)
a(φ− φ0)

b

(
∂2

∂φa∂φb
V

)

φ0

+ . . . , (2.13)

identifying the coefficients of the quadratic term

(
∂2

∂φa∂φb
V

)

φ0

= m2
ab (2.14)

with the symmetric matrix m whose eigenvalues are the squares of the masses of the fields.
Since φ0 defines a minimum, these eigenvalues cannot be negative. We want to prove the
correspondence between broken symmetries of the Lagrangian (2.11) and zero-eigenvalues.
The general form of an infinitesimal continuous symmetry transformation with infinitesimal
parameter α is

φa → φa + α∆a(φ), (2.15)

where ∆a is some function of all the φs. In the special case of constant fields all derivative
terms vanish and the potential alone must be invariant under (2.15):

V (φa) = V (φa + α∆a(φ)) or
∑

a

∆a(φ)
∂

∂φa
V (φ) = 0. (2.16)

Differentiation with respect to φb and evaluation at φ = φ0 provides the equation

0 =

(
∂∆a

∂φb

)

φ0

(
∂V

∂φa

)

φ0

+∆a(φ0)

(
∂2

∂φa∂φb
V

)

φ0

. (2.17)

The first term vanishes because φ0 is a minimum of V , so the second term must also
vanish. For a spontaneously broken symmetry, ∆a(φ0) 6= 0 (i.e. the ground state does not
respect the symmetry of L) is the eigenvector resulting in a zero-eigenvalue, whereas for a
conserved symmetry ∆a(φ0) = 0 gives no information about m2

ab.
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2.3 Chiral Symmetry and its Breaking in QCD

We follow [24] and [25]. For a more pedagogical, but less rigorous ansatz, we refer to [26].
Quantum Chromodynamics (QCD) is a non-Abelian SU(3)colour gauge theory with Nf = 6
flavors of quarks, three of them light (u, d, s) and the others heavy (c, b, t). The Lagrangian
of the strong interaction including the light flavors reads

LQCD =

( ∑

f=u,d,s

q̄f iγ
µDµqf −

1

2
TrGµνG

µν

)
−
∑

f

mf q̄fqf = L0
QCD + Lmass

QCD (2.18)

describing the interaction between quarks and gluons where colour indices are not written
explicitly. The fields in the Lagrangian are the fermionic quarks qf and the gluons

Aµ =
8∑

a=1

Aaµ
λa

2
(2.19)

with the Gell-Mann-matrices λa, a = 1, ..., 8. The covariant derivative is given by Dµ =
∂µ− igAµ and the field strength tensor is Gµν = ∂µAν − ∂νAµ− ig[Aµ, Aν ], which both are
matrices in color space. The trace operates in color space. g is the quark-gluon coupling
constant.
The Lagrangian L0

QCD respects a certain symmetry. We see this by separating into right-
and left-handed quarks qR = PRq and qL = PLq via the orthogonal projectors

PR/L =
1

2
(11 ± γ5) (2.20)

with P 2
L/R = PL/R, PL + PR = 11 and PLPR = PRPL = 0. Then we have

L0
QCD =

∑

f=u,d,s

(q̄fLi 6DqfR + q̄fLi 6DqfR)−
1

2
TrGµνG

µν = q̄Li 6DqL + q̄Ri 6DqR − 1

2
TrGµνG

µν

(2.21)
with 6D = γµDµ and where we formed the flavor vector qT (x) = (qu(x), qd(x), qs(x)) =
(u(x), d(x), s(x)).
This Lagrangian of the massless QCD (called chiral limit) is invariant under independent
left- and right handed unitary global transformations, so-called chiral rotations

qL → ULqL, qR → URqR, UL ∈ U(3)L = SU(3)L×U(1)L, UR ∈ U(3)R = SU(3)R×U(1)R,
(2.22)

parametrized by

UI = exp

(
−iθaI

λa

2

)
exp(−iθI), I ∈ {L,R}. (2.23)

The first term L0
QCD of the Lagrangian is symmetric with respect to the so-called chiral

symmetry which is explicitly broken by the mass term Lmass
QCD. Without mass term, this
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classically leads via Noether’s theorem to 32 = 9 conserved left- and 9 conserved right-
handed currents

La,µ = q̄Lγ
µλ

a

2
qL, ∂µL

a,µ = 0, (2.24)

Lµ = q̄Lγ
µqL, ∂µL

µ = 0, (2.25)

Ra,µ = q̄Rγ
µλ

a

2
qR, ∂µR

a,µ = 0, (2.26)

Rµ = q̄Rγ
µqR, ∂µR

µ = 0. (2.27)

The quantized field theory does not have to obey the same symmetries. The corresponding
vector- (V = L+R) and axial vector-currents (A = L−R) read respectively

V a,µ = La,µ +Ra,µ = q̄γµ
λa

2
q, ∂µV

a,µ = 0, (2.28)

V µ = Lµ +Rµ = q̄γµq, ∂µV
µ = 0, (2.29)

Aa,µ = La,µ −Ra,µ = q̄γµγ5
λa

2
q, ∂µA

a,µ = 0, (2.30)

Aµ = Lµ −Rµ = q̄γµγ5q, ∂µA
µ 6= 0. (2.31)

The singlet axial current Aµ is anomalous, i.e. broken by quantization of the theory, and
thus not conserved. The conserved singlet vector current represents conserved baryon
number. The remaining symmetry group of massless QCD SU(3)L×SU(3)R is referred to
as the chiral group, which is spontaneously broken down to its vectorial subgroup,

SU(3)L × SU(3)R → SU(3)V ,

leading by virtue of Goldstone’s theorem to eight pseudo-scalar massless spin-0 excitations
of the vacuum called Goldstone bosons. These bosons, interpreted as the three pions, the
four kaons and the eta, carry masses due to explicit breaking of chiral symmetry by the
small quark masses. Via the ratios of the masses Mη ≈ MK ≫ Mπ and the fact that only
pions do not carry strangeness, it is reasonable that ms ≫ mu,md. Note however, that the
heavy quark masses mc,mb,mt are much larger than the mass of the strange quark.
In the case of two flavors, the vector subgroup corresponds to the well known isospin
symmetry and for three flavors to Gell-Mann’s eightfold way..

2.4 Chiral Perturbation Theory (ChPT)

2.4.1 ChPT for Mesons

In the following we will restrict ourselves to Nf = 2. We construct an effective field theory
(EFT) following the work of Gasser and Leutwyler [27]. For the Nf = 3, we refer to [24].
The EFT will enable us to introduce a power counting in q/Λ where q represents a small
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momentum or the pion mass being much smaller than Λ = 1 GeV.
Introducing the external sources vµ (vector), aµ (axial-vector), s (scalar) and p (pseudo-
scalar) as 2 × 2 matrices in flavor space, the vacuum to vacuum transition amplitude in
presence of external fields reads

〈0 in | 0 out〉 = exp (iZ[v, a, s, p]) (2.32)

with the generating functional Z and QCD Lagrangian

L = L0
QCD + Lext = L0

QCD + q̄ (γµvµ(x) + γ5γ
µaµ(x)) q − q̄ (s(x)− iγ5p(x)) q. (2.33)

The mass term is included in the interaction term with external scalar fields. The Green’s
functions of massless QCD can be obtained by expanding the generating functional around
vµ = aµ = s = p = 0, whereas for the real world one needs vµ = aµ = p = 0 and s(x) = M
with M = diag(mu,md) denoting the quark mass matrix in flavor space. The Lagrangian
L is invariant even under local SU(2)×SU(2) chiral transformations if quark- and external
fields simultaneously transform as follows:

q′R = Rq, q′L = Lq (2.34)

v′µ + a′µ = R(vµ + aµ)R
† + iR∂µR

† (2.35)

v′µ − a′µ = L(vµ − aµ)L
† + iL∂µL

† (2.36)

s+ ip = R(s+ ip)L† (2.37)

with L ∈ SU(2)L, R ∈ SU(2)R. In the path integral representation

exp (iZ[v, a, s, p]) =

∫
[DGµ][Dq][Dq̄] exp

(
i

∫
d4xL[q, q̄, Gµ; v, a, s, p]

)
(2.38)

it is possible to make contact with the effective theory for mesonic degrees of freedom by
integrating out all gluonic and quark degrees of freedom in order to get

exp (iZ[v, a, s, p]) =

∫
[DU ] exp

(
i

∫
d4xLeff[U ; v, a, s, p]

)
(2.39)

where U is a SU(2) matrix in flavor space and collects the three pseudo-scalar Goldstone
fields known as the pions. This procedure of “integrating out” has been up to now not car-
ried out explicitly. The effective Lagrangian is constructed taking into account all possible
terms obeying the relevant symmetries of QCD (e.g. Lorentz-invariance, spontaneously
broken chiral symmetry, C,P,T and G invariance). U can be parametrized for instance by

U = exp

(
i
~π · ~τ
F

)
(2.40)

with τi being the Pauli matrices and F a constant with dimension mass. The physical
meaning of F will be discussed later. It is introduced here to make the exponent dimen-
sionless. The covariant derivative

∇µU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ), (2.41)
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the external field χ containing scalar (s) and pseudo-scalar (p) sources and a constant B

χ = 2B(s+ ip), (2.42)

and the field strength tensors FL
µν and FR

µν

FL
µν = ∂µF

L
ν − ∂νF

L
µ − i[FL

µ , F
L
ν ] (2.43)

FR
µν = ∂µF

R
ν − ∂νF

R
µ − i[FR

µ , F
R
ν ] (2.44)

FL
µ = vµ − aµ (2.45)

FR
µ = vµ + aµ (2.46)

(2.47)

are defined in such a way that they transform covariantly, i.e.:

U → RUL†, FL
µν → LFL

µνL
†, (2.48)

∇µU → R∇µUL
†, FR

µν → RFR
µνR

†, (2.49)

χ→ RχL†. (2.50)

There is an infinite number of terms contained in Leff. To allow for implications, we need
an idea how to sort the terms and to distinguish more and less important contributions,
such that terms of the same “power” can be identified and calculated excluding terms of
higher importance. It is convenient to expand the effective Lagrangian according to

Leff = L(2)
ππ + L(4)

ππ + ..., (2.51)

where the index (2,4,...) denotes the number of derivatives and/or meson mass insertions
and is called low energy dimension. In second order we have

L(2)
ππ =

1

4
F 2 Tr[∇µU

†∇µU + χ†U + χU †]. (2.52)

The constant F is related to the axial vector currents Aaµ = −F∂µπa + ... and can be
identified with the pion decay constant in the chiral limit, F = Fπ(1+O(M)) [26]. To get
an idea of the constant B consider the explicit chiral symmetry breaking (SB) part of the
Lagrangian (i.e. the quark mass term contained in χ) and expand U in powers of the pion
fields (with p = 0, s = M so that χ = 2BM):

L(2)SB
ππ =

1

2
F 2B Tr[M(U + U †)] = (mu +md)B[F 2 − π2

2
+O(π4)], (2.53)

where the first addend on the right hand side is related to the vacuum expectation values
of the scalar quark densities, the second to the pion mass and the third to interactions.
Since ∂LQCD/∂mq = −q̄q, we can directly conclude from the first term in (2.53):

〈0 | ūu | 0〉 =
〈
0
∣∣ d̄d

∣∣ 0
〉
= −F 2B(1 +O(M)). (2.54)
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The pion mass is extracted from the second term in (2.53) expected in the form −M2
π

2
π2

and reads
M2

π = (mu +md)B(1 +O(M)). (2.55)

Eliminating B from (2.54) and (2.55) we get the famous Gell-Mann-Oakes-Renner relation:

M2
π = −mu +md

F 2
π

〈0 | ūu | 0〉+O(M2). (2.56)

Using the QCD sum rule value of 〈0 | ūu | 0〉 = (−225MeV)3 [25] leads to Fπ ≈ 93 MeV,
B ≈ 1300 MeV and a large ratio B/Fπ ≈ 14.
For higher orders in q, we need to specify the low-energy dimension of all fields. In order
to make the expression in Eq. (2.52) of order 2, we assign the following powers:

O(q) = ∂µU(x), vµ(x), aµ(x) (2.57)

O(q2) = s(x), p(x), FL
µν(x), F

R
µν(x). (2.58)

We then get to the fourth-order Lagrangian:

L(4)
ππ = l1

(
Tr[∇µU

†∇µU ]
)2

+ l2 Tr[∇µU
†∇νU ] Tr[∇µU †∇νU ] + ... (2.59)

with the ten low-energy constants (LECs) li = li(µ)
reg + li(µ)

inf, i = 1, ..., 7 parametrizing
the loss of high energy information and depending on the renormalization scale µ. The
infinite parts li(µ)

inf cancel the infinities arising in pion loops. The finite parts li(µ)
reg have

to be fixed by experiment or model. Not all LECs have an infinite part.
For a systematic handling of contributions in terms of the small momentum q we need a
power counting to decide which processes contribute to which order. The power counting
was developed by Weinberg in [18].
Consider the scattering matrix T for a reaction involving Ne external pions,

T = δ(p1 + p2 + ...+ pNe
)M (2.60)

with M being the transition amplitude depending on the momentum flowing through the
amplitude, the coupling constant g and the renormalization scale µ:

M =M(q, g, µ) = qDf(
q

µ
, g). (2.61)

The amplitude’s scaling dimension D can be calculated by counting the dimensions of q in
a process with I internal pion lines, L loops, Vi numbers of vertices of type i involving di
derivatives or pion masses:

M ∝
∫
(d4q)L

1

(q2)I

∏

i

(qdi)Vi ∝ qD ⇒ D = 4L− 2I +
∑

i

Vidi. (2.62)

Using the topologic identity

L = I −
∑

i

Vi + 1 (2.63)
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we arrive at the master formula for interactions involving mesons only

D =
∑

i

Vi(di − 2) + 2L+ 2. (2.64)

The dominant graphs at low energy carry the smallest value of D. The particular form
of equation (2.64) is useful because chiral invariance rules out any terms with di − 2 < 0.
For any given number of external meson lines the leading graphs are constructed from tree
graphs (L = 0) containing solely vertices with dimension di = 2. Lowest order contributions
scale with q2 which means D = 2. Corrections come from loop graphs or graphs with higher
order vertices.

2.4.2 ChPT including Nucleons

The theory has to be generalized in order to include baryons in effective field theory fol-
lowing Gasser et al. [28] and Bernard et al. [25]. In case of not purely mesonic interactions
an additional mass scale, the nucleon mass enters. This scale does not vanish in the chiral
limit.
We consider the general structure of the effective pion-nucleon Lagrangian Leff

πN . It contains
the pion matrix U(x) from the previous paragraph and the nucleon spin-1/2 fields. We
combine the proton (p) and the neutron (n) fields in an isospinor

Ψ =

(
p
n

)
(2.65)

and describe the transformation properties under chiral SU(2)L × SU(2)R in the most
convenient way discussed by Georgi in [29]:

Ψ → Ψ′ = K(L,R, U)Ψ (2.66)

where we introduced a matrix-valued unitary function K(L,R, U) depending implicitly on
space time x via U(x) where L,R ∈ SU(2)L,R. K is defined via

Ru = u′K (2.67)

with u2(x) = U(x) and U ′(x) = RU(x)L† = u′2(x). So K is a nonlinear function of U(x).
The covariant derivative of the nucleon field is given by

DµΨ = ∂µΨ+ ΓµΨ, (2.68)

with Γµ =
1

2
[u†, ∂µu]−

i

2
u†(vµ + aµ)u−

i

2
u(vµ − aµ)u

†. (2.69)

One can show that Dµ transforms homogeneously under chiral rotations, i.e. according to
D′
µ = KDµK

†. The chiral connection Γµ contains one derivative and acts as a gauge field
for local transformations

Γ′
µ = KΓµK

† +K∂µK
†. (2.70)
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An axial-vector type object with one derivative transforming homogeneously can be defined
as

uµ = i(u†∇µu− u∇µu
†) = i{u†,∇µu} = iu†∇µUu

†. (2.71)

The covariant derivative Dµ and the axial vector uµ are the basic ingredients for the lowest
order Lagrangian LπN containing one derivative:

L(1)
πN = Ψ̄

(
iγµDµ − m̊N +

g̊A
2
γµγ5uµ

)
Ψ (2.72)

where m̊N denotes the nucleon mass and g̊A the axial vector coupling in the chiral limit.Their
physical values aremN = 939 MeV and gA ≈ 1.26. To understand the low energy dimension
of L(1)

πN , we have to extend the chiral power counting to baryon fields [25]:

m̊N , Ψ, Ψ̄, DµΨ, Ψ̄Ψ, Ψ̄γµΨ, Ψ̄γµγ5Ψ, Ψ̄σ
µνΨ, Ψ̄σµνγ5Ψ = O(1), (2.73)

(i 6D − m̊N)Ψ, Ψ̄γ5Ψ = O(p). (2.74)

Here p denotes a nucleonic three-momentum which is small in the chiral sense. The four-
momentum is of order m̊N = O(1) and can never be small on the typical chiral scale. The

index of L(1)
πN displays the number of nucleonic three-momentum insertions p, the number

of small momentum insertions q or pion masses Mπ.
The effective Lagrangian contains the purely mesonic part Lππ and the one nucleon part
LπN :

Leff = Lππ + LπN (2.75)

Lππ = L(2)
ππ + L(4)

ππ + ... (2.76)

LπN = L(1)
πN + L(2)

πN + ... (2.77)

In the meson-baryon system the exact one-to-one correspondence between the loop ex-
pansion and the small momentum expansion as seen in (2.64) is not valid in a relativistic
treatment. A new large scale, the nucleon mass mN , enters via the nucleon propagator or
the time derivative ∂0Ψ ∝ mNΨ and destroys the manifest power counting. This can be
handled via a non-relativistic expansion, as presented by Jenkins et Manohar in [30], and
Bernard et al. in [31], in which the nucleon mass does not appear at leading order.

2.4.3 Heavy Baryon Formalism

If we consider the baryons as extremely heavy, only the baryon momenta relative to the
rest mass will be of interest and these can be small. The picture of a heavy static source
surrounded by light, almost massless, particles emerges.
We start with the Dirac Lagrangian for a field with mass m:

L = Ψ̄(i 6∂ −m)Ψ. (2.78)
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For a very heavy particle the four-momentum can be written as

pµ = mvµ + lµ (2.79)

with vµ the four-velocity satisfying v2 = 1 and lµ a small off-shell momentum, i.e. vµl
µ ≪

m. It is possible to construct eigenstates Hv and hv to the velocity projection operators

P±v =
11 ± 6v
2

, (P±v)
2 = P±v, Pv + P−v = 11, PvP−v = P−vPv = 0 (2.80)

via Hv = eimv
µxµPvΨ and hv = eimv

µxµP−vΨ

Ψ = e−imvµx
µ

(Hv + hv), 6vHv = Hv, 6vhv = −hv. (2.81)

In the nucleon rest frame with vµ = (1, 0, 0, 0) , the so-called static limit, this leads to
the standard non-relativistic limit of the Dirac spinor into upper and lower components.
Omitting the index v the Dirac Lagrangian becomes

L = H̄(ivµ∂µ)H − h̄(ivµ∂µ + 2m)h+ H̄(i 6∂⊥)h+ h̄(i 6∂⊥)H (2.82)

with 6∂⊥ = 6∂ − 6v(vµ∂µ) the transverse part of the Dirac operator. Using the equation of
motion for the small component h, it follows for the large component:

vµ∂µH = 0 (2.83)

modulo corrections that are suppressed by powers of 1/m. The corresponding propagator
of H reads

S(k) =
i

kµvµ + iǫ
, ǫ > 0. (2.84)

This leads to the coordinate-space representation

S(t, ~x) = Θ(t)δ(3)(~x) (2.85)

which illustrates that H corresponds to a static infinitely-heavy source. For details the
reader is referred to [31], [32]. From (2.84) we see that the propagator now is counted as
chiral power -1, i.e. as q−1.
All Dirac bilinears can be expressed in terms of vµ and the spin operator Sµv = (i/2)γ5σ

µνvν ,
for instance

H̄vγ
µHv = vµH̄vHv (2.86)

or

H̄vγ
µγ5Hv = 2H̄vS

µ
vHv. (2.87)

More details can be found in Ref. [25].



2.4. CHIRAL PERTURBATION THEORY (CHPT) 17

2.4.4 Power Counting

For a Feynman diagram with L (pion) loops, Iπ (IN) inner meson (nucleon) lines, Vi vertices
of type i with dimension di from the meson, meson-baryon Lagrangian and C connected
pieces, we have the amplitude

M ∝
∫
(d4q)L

1

(q2)Iπ
1

qIN

∏

i

(qdi)Vi
C−1∏

l=1

δ(4)(fl(q)) ∝ qD (2.88)

and the chiral dimension

D = 4L− 2Iπ − IN +
∑

i

diVi + 4− 4C. (2.89)

The delta functions guarantee the momentum conservation in all connected pieces. We use
the topological identities

L = Iπ + IN −
∑

i

Vi + C (2.90)

and
2IN + EN =

∑

i

ViNi (2.91)

with EN external nucleon lines and Ni nucleon lines attaching a vertex type i. The result
is

D = 4− EN
2

− 2C + 2L+
∑

i

Vi∆i (2.92)

with

∆i = di +
Ni

2
− 2. (2.93)

As expected, equation (2.92) reduces to (2.64) for connected (C = 1) Feynman diagrams
without nucleons (EN = 0, Ni = 0 ∀i).

2.4.5 ChPT with more than one nucleon

Two or more nucleons can be dealt with in ChPT and the above power counting provided
the processes do not involve purely nucleonic intermediate states as shown in the following.
Via the pure nucleonic intermediate states the third scale q2/2mN enters:

mN ≫ q ≫ q2

2mN

. (2.94)

The appearance of the third scale q2/2mN can be seen in the box-diagram on the left hand
side of figure 2.3 [33]. Calculating the contribution of the diagram with the propagator
(2.84) in the static limit, i.e. vµ = (1, 0, 0, 0),

M ∝
∫
d4q

1

q0 + iǫ

1

q0 − iǫ

P (q)

(q2 −M2
π)

2
∝
∫
dq0

1

q0 + iǫ

1

q0 − iǫ
=:M ′ (2.95)
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+ + + + +=

Figure 2.3: Box-diagram with intermediate purely nucleonic state leading to an infrared
divergence. At the right hand side of the equation the same diagram is expanded in time-
ordered perturbation theory. The first two diagrams are irreducible diagrams, whereas the
remaining four are reducible which means that these have to be excluded.

with a polynomial P (q) in the pion four-momentum q, non-vanishing for q0 → 0, a problem
occurs. The integral over q0 contains an infrared divergence, which cannot be avoided,
because the contour is pinched between the two poles at q0 = ±iǫ. But it is an artefact of
the static approximation and we can avoid it by including the nucleon kinetic energy term

Lkin = Ψ̄
∇2

2mN

Ψ. (2.96)

Then the poles are shifted to q0 = ±(~q2/2mN − iǫ) giving the finite contribution of

M ′ ∝ 2πi
mN

~q2
(2.97)

via Cauchy’s theorem. Using the naive power counting in small momenta this integral
M ′ would be expected to count as q−1. (2.96) implies an enhancement by a (large) factor
mN/q.
The naive power counting works for diagrams containing at least one pion in each inter-
mediate state as the first two graphs on the right hand side of the equation in figure 2.3.
By excluding the remaining diagrams with purely nucleonic intermediate states (called
reducible diagrams), the enhancement can be avoided. An effective potential for the T -
matrix can be defined as the sum of old-fashioned time-ordered perturbation theory graphs
which do not contain any purely nucleonic intermediate states. These graphs are called irre-
ducible. The full S-matrix is obtained by solving the Lippmann-Schwinger or Schrödinger
equation with the effective potential, which is energy-dependent. There are different ways
to define an energy-independent potential which includes only contributions respecting the
power counting, for instance the method of unitary transformations [34, 35, 36].
In old-fashioned time-ordered perturbation theory, integrals are performed over three-
momenta. Derivatives are counted as order q, pion fields as q−1/2 (using the conventional
normalization ∝ 1/

√
2ω for pion fields with energy ω), intermediate nucleons as q−1 and

loop integrals as
∫
d3q ∝ q3. The chiral dimension of a graph with EN external nucleon

lines, R intermediate states with at least one pion, L loops, C connected pieces and Vi ver-
tices of type i with di derivatives or pion masses and Ni (pi) nucleon (pion) fields follows
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to be

D = 3L−R +
∑

i

Vi(di −
pi
2
)− 4(C − 1). (2.98)

With I denoting the total number of inner lines, we use the topological identities

R =
∑

i

Vi − C, (2.99)

L = I −
∑

i

Vi + C, (2.100)

2I + EN =
∑

i

Vi(pi +Ni) (2.101)

to write down the resulting chiral dimension

D = 4− EN
2

− 2C + 2L+
∑

i

Vi∆i (2.102)

with ∆i = di +
Ni

2
− 2. The power counting (2.92) is therefore not modified, but only

generalized.
The particular form of equation (2.102) is useful because chiral symmetry guarantees
∆i ≥ 0. Lowest order contributions come from tree-graphs with ∆i = 0.
In case of external sources, such as electromagnetic fields, one derivative is replaced by the
external current via minimal coupling. We then have exactly one vertex with ∆i ≥ −1. In
this case, the photon coupling e replaces exactly one chiral derivative or mass insertion q,
such that qD is replaced by eqD−1.

2.4.6 Hierarchy of the Nuclear Forces

The power counting of Eq. (2.102) reveals a hierarchy of nuclear forces. Embedding a
diagram in a diagram with one additional spectator nucleon (EN → EN + 2, C → C + 1)
means to decrease D, more specifically, −EN

2
− 2C by three. This means e.g., that a

two nucleon contribution with order D has order D − 3 in a three nucleon context and is
therefore more important than a three nucleon contribution with order D. The origin of
this seeming discrepancy is due to the different normalization of the 2N and 3N states:

〈~p1, ~p2|~p ′
1, ~p

′
2〉 = δ(~p1 − ~p ′

1)δ(~p2 − ~p ′
2),

〈~p1, ~p2, ~p3|~p ′
1, ~p

′
2, ~p

′
3〉 = δ(~p1 − ~p ′

1)δ(~p2 − ~p ′
2)δ(~p3 − ~p ′

3). (2.103)

It can be circumvented by assigning a chiral dimension to the transition operator rather
than to its matrix elements in the N -nucleon space. To account for that, we take a counting
comparing to the two nucleon sector by adding three powers of q for each additional nucleon
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or equivalently 3N − 6 to the counting in Eq. (2.102), where we introduced the number of
nucleons N = EN

2
:

D = −2 + 2N − 2C + 2L+
∑

i

Vi∆i. (2.104)

In this power counting for transition operators, the increase of 2N by 2 for each additional
spectator nucleon is compensated by a −2 stemming from the term −2C. For details, we
refer to [37].

2N LO

N LO3

NLO

LO

3N force 4N force2N force

Figure 2.4: Hierarchy of the nuclear forces derivated from ChPT. The figure is taken from
Epelbaum [38], [39].

• For example, the lowest order for two-nucleon (EN = 4) forces isD = 4−2−2+0+0 =
0, where only vertices with ∆i = 0 are included. This order is called leading order
(LO).

• At the next order D = 1 exactly one vertex of the two-nucleon interaction with
∆i = 0 is replaced by one with ∆i = 1. Due to parity conservation, (N̄N)(N̄N)
vertices with one spatial derivative and πNN vertices with two derivatives (i.e. in
both cases ∆i = 1) are forbidden, i.e. this order does not contribute.

• At the next order D = 2, which is called next-to-leading order (NLO) exactly one
LO vertex is replaced by a vertex with ∆i = 2. Also one-loop diagrams are allowed
constructed from lowest-order vertices. Formally, three nucleon forces enter the game
at this order: One purely irreducible diagram with a Weinberg-Tomozawa vertex
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and two diagrams consisting of the lowest two nucleon contributions and a one-pion-
exchange interaction. It was shown that the former contribution is suppressed by
a factor of 1/m by the appearance of a time derivative at the leading order ππN̄N
vertex. The latter was shown to cancel exactly with two nucleon recoil in an energy-
dependent formalism based on time-ordered perturbation theory in [40], [33] and to
be suppressed by a factor of 1/m in an energy-independent approach using unitary
transformations in [41].

• At next-to-next-to-leading order (NNLO) D = 3, the one-loop two-nucleon graphs
can incorporate a vertex with ∆i = 1. Only the triangle pion exchange diagram has a
non-vanishing, even unnaturally strong, contribution which is related to ∆ excitations
[42]. The first three-nucleon contributions arise from tree diagrams with one insertion
with ∆i = 2 and the three-nucleon contact interaction. The corresponding low energy
constants (LECs) usually called D and E are fitted to the 3He binding energy and
additional properties of light nuclei [43], [44] and [45].

For a detailed description of nuclear forces, see e.g. [8].
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Chapter 3

Numerical Methods

3.1 Crude Monte Carlo Integration

We follow the description of [46]. For details we refer to [47]. Consider a function f : V → R

where V ⊂ Rn. Pick N random points x1, ..., xN , uniformly distributed in V . Then the
integral of f over the volume V can be estimated via the fundamental theorem of Monte
Carlo (MC) Integration

∫
fdV =

∫

V

f dNx ≈ |V | 〈f〉 ± |V |

√
〈f 2〉 − 〈f〉2

N
(3.1)

where the arithmetic mean over the N points was used,

〈f〉 = 1

N

N∑

i=1

f(xi)
〈
f 2
〉
=

1

N

N∑

i=1

f 2(xi). (3.2)

The error term is the standard deviation error estimate for the integral, but there is no
guarantee that the error is distributed as a Gaussian. So it should be taken as a rough
indication of the probable error.
A very important aspect of Monte Carlo integration is the behaviour of the error in higher
dimensions. It is always proportional to N−1/2, independent of the dimensionality of the
domain of integration. In traditional numerical integrations the error bound is expected
to be proportional to h2 = N−2/d in d dimensions, because the sampling point spacing
h increases with dimension. Comparing the errors, it can be advantageous to use Monte
Carlo in more than four dimensions.
If the shape of the integration volume V is too complicated to be parametrized, then V
can be embedded into a simple volume W ⊃ V and the function f can be continued to
a function g with g|V = f and g|W\V = 0, i.e. g coincides with f in V and is zero at
points outside of V carrying no information content. This procedure increases the error
estimate by increasing the volume and reducing the number N of points in V , which carry
information allowing to estimate the integral. So W should enclose V as tight as possible.
There are some special limiting cases which might be interesting:

23
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1. For a constant function only one single point and the volume are needed to achieve
an exact result. Therefore the error is correctly estimated to exactly vanish.

2. A strongly peaked function is almost zero everywhere in the integration volume except
for a very small region giving a huge contribution, which probably will be missed by
almost all Monte Carlo points. The error will be severely underestimated.

These two limiting cases show that numerical quadrature routines should adapt to the
shape of the function when using Monte Carlo integration.

3.2 Adaptive Monte Carlo Integration

3.2.1 Importance Sampling

Following ref. [46], we write the integrand f as a product of a function h = f/p that is
almost constant times a positive function p:

∫
fdV =

∫
(f/p)pdV =

∫
hpdV ≈

(∫
pdV

)
〈h〉 ±

(∫
pdV

)√〈h2〉 − 〈h〉2
N

. (3.3)

Choosing p such that ∫
pdV = 1 (3.4)

we get a generalized theorem for MC integration of h = (f/p) distributed with pdV instead
of MC integration of f uniformly distributed with dV :

∫
fdV =

∫
f

p
pdV ≈

〈
f

p

〉
±

√
〈(f/p)2〉 − 〈(f/p)〉2

N
. (3.5)

Setting p = 1/V recovers (3.1).
The numerator in the square root of (3.5) contains Monte Carlo estimators for integrals
according to

S =

〈
f 2

p2

〉
−
〈
f

p

〉2

≈
∫
f 2

p2
pdV −

(∫
f

p
pdV

)2

=

∫
f 2

p
dV −

(∫
fdV

)2

. (3.6)

Via functional variation of p and with a Lagrange multiplier λ to fix the value of
∫
pdV = 1

we minimize S + λ(
∫
pdV − 1)

0 =
δ

δp

(
λ

(∫
pdV − 1

)
+

∫
f 2

p
dV −

(∫
fdV

)2
)

=

∫
dV

δ

δp

(
λp+

f 2

p

)
(3.7)
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and get 0 = −f 2/p2+λ, which is indeed a minimum for positive p. The optimal choice for
p then is

p =
|f |√
λ
=

|f |∫
|f |dV (3.8)

which is intuitively clear: regions where f contributes strongly are more important than
zero contributing regions. That is the reason for calling this method for reducing the
variance “importance sampling”. The variance per sampling point then is

Soptimal =

(∫
|f |dV

)2

−
(∫

fdV

)2

. (3.9)

At first view it seems very curious that we can reduce the variance to zero, e.g. by
choosing an offset to make f a positive function. The resolution of this seeming paradox
is simple: Zero variance is equivalent to knowing in advance the result of the integration∫
fdV =

∫
|f |dV , because the result is necessary to calculate the best p in (3.8) to achieve

zero variance. The challenge of this adaptive strategy is to approximate p with appropriate
computational effort.

3.2.2 Stratified Sampling

A different ansatz is called “stratified sampling” [46],[47]. We denote the true average of
a function over the volume V by 〈〈f〉〉 and the uniformly distributed simple Monte Carlo
estimator by 〈f〉 where

〈〈f〉〉 = 1

V

∫
fdV, 〈f〉 = 1

N

∑

i

f(xi). (3.10)

The variance of the estimator Var(〈f〉) is asymptotically related to the variance of the
function f , Var(f) = σ2 = 〈〈f 2〉〉 − 〈〈f〉〉2, via

Var(〈f〉) = Var(f)

N
(3.11)

as seen in (3.1).
The idea of stratified sampling is to divide the volume V in sub-volumes and sample
separately in each sub-volume. Let us divide the volume V in two equal, disjoint sub-
volumes denoted by Va and Vb and sample N/2 points in each sub-volume. Then a different
estimator for 〈〈f〉〉 is given by the mean of the MC estimators of the two half regions,

〈f〉′ = 1

2
(〈f〉a + 〈f〉b) . (3.12)
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The variance of the estimator (3.12) is

Var(〈f〉′) = 1

4
[Var(〈f〉a) + Var(〈f〉b)]

=
1

4

[
Vara(f)

N/2
+

Varb(f)

N/2

]

=
1

2N
[Vara(f) + Varb(f)] (3.13)

in terms of the sub-volume variances of the functions Vara(f) = σ2
a = 〈〈f 2〉〉a− 〈〈f〉〉2a and

correspondingly Varb(f).
The variance of f can be expressed in terms of Vara(f) and Varb(f):

Var(f) =
〈〈
f 2
〉〉

− 〈〈f〉〉2 = 1

2

(〈〈
f 2
〉〉

a
+
〈〈
f 2
〉〉

b

)
−
[
1

2
(〈〈f〉〉a + 〈〈f〉〉b)

]2
(3.14)

=
1

2
[Vara(f) + Varb(f)] +

1

4
[〈〈f〉〉a − 〈〈f〉〉b]

2 . (3.15)

Comparing (3.11), (3.12) and (3.13), the advantage of stratified sampling in case of two
sub-volumes can be recognized:

Var(〈f〉) = Var(〈f〉′) + 1

4N
[〈〈f〉〉a − 〈〈f〉〉b]

2 . (3.16)

In words: The stratified variance Var(〈f〉′) is never larger than the simple MC variance
Var(〈f〉) and will be smaller, if the sub-volume mean values 〈〈f〉〉a and 〈〈f〉〉b are different.
This is a special case for stratified sampling with the same number of sampling points in
each sub-volume.
Let us consider the case with Na points distributed in Va and correspondingly Nb = N−Na

in Vb. We have to generalize (3.13) to

Var(〈f〉′) = 1

4

[
Vara(f)

Na

+
Varb(f)

N −Na

]
(3.17)

which takes the smallest value for

Na

N
=

σa
σa + σb

. (3.18)

So the total variance is minimal if the number of sampled points in each sub-volume is
proportional to the variance of f in that sub-volume. With (3.18) the variance (3.17) is
reduced to

Var(〈f〉′) = (σa + σb)
2

4N
=

(√
Vara(f) +

√
Varb(f)

)2

4N
(3.19)

which reproduces (3.11), if Var(f) = Vara(f) = Varb(f). In that case, stratification does
not help to improve the result compared to crude MC integration.
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In general V is divided into K segments along each axis providing Kd sub-volumes for d
dimensions. In each sub-volume Vj, the optimal number of points has to be proportional
to σj, cf. (3.18). In practice this is not very useful for high dimensionality. The main
problem of this method is the numeric expenditure: The time to estimate all errors σj for
j = 1, ..., Kd grows exponentially with d.

3.2.3 The VEGAS Algorithm

The VEGAS algorithm, invented by Lepage and presented in his publications [48] and
[49], is a mixed strategy algorithm using primarily importance and in some cases stratified
sampling, the latter if the dimension d is small enough to avoid the Kd-explosion in the
following sense: (K/2)d < N/2 with N the number of sample points. But the K subdivi-
sions are also used for importance sampling to define a sampling grid.
For importance sampling, VEGAS constructs adaptively and iteratively a separable weight
function p ∝ p(x, y, z, ...) = px(x)py(y)pz(z) · · · , which reduces the problem to d one-
dimensional samplings and therefore also avoids the exponential growth with dimension d.
The optimal separable weight function as a generalization of (3.8) is given by

px(x) =

[∫
d̂xdydz... f2(x,y,z,...)

p̂x(x)py(y)pz(z)...

]1/2

∫
dx
[∫

d̂xdydz... f2(x,y,z,...)

p̂x(x)py(y)pz(z)...

]1/2 (3.20)

and correspondingly for the other dimensions where the hat of ô denotes the omission of o.
Because there are standard techniques for generating evenly distributed random numbers
and it is more difficult to generate numbers from an arbitrary distribution with density
p(x), the algorithm constructs a “grid” with constant density between neighbouring grid
points. Starting with p = 1/V , VEGAS constructs p as a step-function with K steps
in each direction. Then p can be easily stored as Kd tabulated values. On each step
the random numbers are then evenly distributed. We consider only the x direction for
simplicity. The probability of a random number being chosen from any step is defined to
be 1/K for all steps (x0 < ... < xK , which define the “sampling grid”):

px(x) =
1

K∆xi
for x ∈ ∆xi, i = 1, ..., K (3.21)

To achieve p = 1/V in the beginning, the step-sizes ∆xi = xi−xi−1 are chosen to be V/K.
The strategy of VEGAS is to refine iteratively the step-size where the right-hand-side of
(3.20) from the last iteration is large. To keep the number K of steps constant, the step
size must be enlarged where (3.20) is small. Corresponding to (3.21) the weight function
becomes large with fine step-size. The improved weight function p then is used in the
next iteration. This implies the need to accumulate not only the overall estimator for the
integral, but also the Kd estimators for the right hand side of (3.20) from the previous
iteration.
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The adaption of the step sizes is achieved by subdividing each of the K steps into a number
of si + 1 sub-steps with

∑
i si = S typically fixed at S = 1000 and afterwards joining each

S/K neighbouring sub-steps to restore the initial number K of steps. The number of
sub-divisions si is chosen to be

si = SIi, (3.22)

with Ii estimating the x-integral over step i of the right hand side of (3.20).
The separability of the weight function is the Achilles’ heel of the algorithm. The integrand
must be concentrated in a few regions in the d-dimensional space for VEGAS to give a
better result and performance than simple MC. Such an integrand gives large contributions
on bounded coordinate intervals, i.e. the projection of the regions onto the coordinate axes.
Then the grid can be optimized in each direction separately.
If the integrand is not concentrated in a separable region, but on a non-separable geometry,
e.g. the coordinate diagonal from (0,0,...) to (1,1,...), the algorithm will not provide any
advantage. In general, VEGAS may not perform well if the integrand is concentrated on
some trajectory or hyper-surface.
The final result of VEGAS with N function calls per iteration i (with estimate Ii, standard
deviation σi) and m iterations is

Ibest = σ2
best

m∑

i=1

Ii
σ2
i

, σbest =

(
m∑

i=1

1

σ2
i

)−1/2

, (3.23)

which is the error-weighted mean of all iterations and the related error. For peaked inte-
grand the integral and error may be badly underestimated in the first iterations (before
the algorithm has adapted). The quantity

χ2/m =
1

m− 1

m∑

i=1

(Ii − Ibest)
2

σ2
i

(3.24)

allows for a consistency check. If it is significantly larger than 1, the iterations are statis-
tically inconsistent and the results are suspect.

3.2.4 Portable Random Number Generator

Since Monte Carlo techniques are based on random numbers, a word should be said about
the paradox to produce “random numbers” with a computer, the most precise and deter-
ministic machine conceived by human mind. From this it is clear that random number gen-
erators are simple deterministic programs producing a periodic sequence of numbers that
should look “apparently random”. Therefore they deserve the characterization “pseudo-
random number generators” rather than “random number generators”. We will not make
such fine distinctions. Widely spread standard random number generators are the multi-
plicative linear congruential generators (MLCGs), for instance generating numbers between
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0 and 1, which are reviewed by Park and Miller in [50]. They pointed out that many gener-
ators not even sample “apparently random” numbers: For instance one finds for the ANSI
C library routine: When interpreting every k consecutive numbers as a k-vector, the vec-
tors with coordinates between 0 and 1 will not fill bit by bit the k-dimensional space [0, 1]k,
but will lie on (k − 1)-dimensional planes (with no k-volume in k-space!). The number of
planes can be calculated from the parameters of the generator. Instead they suggested a
minimal MLCG with good behaviour which has a period of 231 − 2 ≈ 2.1× 109, too short
for our purpose. We therefore use a combined generator suggested by L’Ecuyer in [51]
which has twice the execution time of the minimal generator. By combining two MLCGs
with an additional shuffle we get a “perfect” random number generator in the sense that
the new generator does not fail any tried statistical test according to Numerical Recipes
[46], otherwise the authors of [46] promise to pay $1000. The period of the generator is
≈ 2.3 × 1018 and therefore large enough to avoid statistically dependent estimates even
when using a large number of sampling points.

3.2.5 Adaptive MC in Nuclear Physics

In a theory describing nuclear interactions in terms of certain degrees of freedom (e.g.
nucleons and pions in the low energy regime), which themselves can form composite objects
(e.g. 3He or 3H), a systematical concept is needed to calculate expectation values of these
composite objects. To that end, scattering processes involving bound states are described
by free scattering processes convolved with the corresponding bound state wave-functions
projecting onto the relevant degrees of freedom and quantum numbers.
The following scheme arises (Fig. 3.1): For a given process

1. add up all possible diagrams to the so-called integral kernel,

2. convolute the integral kernel with the initial and final nuclear wave-function with
respect to the relative nucleon-momenta.

· · ·

· · ·

Figure 3.1: Electro- and photo-
production off the deuteron or a nu-
cleus with more nucleons. In a first
step the integral kernel, denoted by
the grey bubble, is calculated re-
garding the nucleons as free parti-
cles and in a second step the ker-
nel is convoluted with one nuclear
wave-function for the final and one
for the initial state, denoted by the
pitch circles.



30 CHAPTER 3. NUMERICAL METHODS

This procedure leads to high-dimensional integrals. For N ≤ A, consider a N -nucleon
contribution to the full A-nucleon bound state scattering amplitude, represented by a N -
body integral kernel, and evaluated in center of mass frame:

MNA ∝
∑

polarizations

〈
ΨA

∣∣∣∣∣∣
ON ⊗ 11A−N︸ ︷︷ ︸

OA

∣∣∣∣∣∣
ΨA

〉

=
∑

polarizations

∫ A−1∏

i=1

d3pi

A−1∏

j=1

d3p′i

×Ψ∗
A(~p

′
1, ..., ~p

′
A−1)ON(~p

′
1, ..., ~p

′
N−1, ~p1, ..., ~pN−1)

A−1∏

k=N

δ(3)(~p ′
k − ~pk)

︸ ︷︷ ︸
OA(~p ′

1 ,...,~p
′
A−1,~p1,...,~pA−1)

ΨA(~p1, ..., ~pA−1)

=
∑

polarizations

∫ A−1∏

i=1

d3pi

N−1∏

j=1

d3p′i

×Ψ∗
A(~p

′
1, ..., ~p

′
N−1, ~pN , ..., ~pA−1)ON(~p

′
1, ..., ~p

′
N−1, ~p1, ..., ~pN−1)ΨA(~p1, ..., ~pA−1). (3.25)

This process involves d = 3[(A−1)+(N−1)] integrations. For processes without spectators
(A = N), the dimension increases by 6 per additional nucleon as d = 6(A− 1). For a fixed
number N of involved nucleons, the dimension of integration increases by 3. For each
additional nucleon one has to perform between three and six integrations. E.g. for the tri-
nucleon (A = 3) the so-called “two-nucleon contributions” (N = 2) require 9 integrations.
The dimension of integration reaches very fast the limit of classical numerical quadrature
techniques. MC integration methods are therefore unavoidable for such calculations to
open the systematics towards heavier nuclei.
The VEGAS algorithm seems, at first sight, to fail in this case: The integral kernel is
peaked on an inseparable hyper-surface, a manifold of lower dimension. For example,
the two-nucleon a-contribution in Fig. 5.2 is peaked on the neighbourhood of a three-
dimensional sub-manifold. The manifold is a singular region, where the denominator of
the corresponding contribution in Eq. (5.47) is zero. This would, in fact, diminish the
advantages of the MC Vegas algorithm. Fortunately the nuclear wave functions prove to
be helpful as they vanish for high relative momenta acting as a smooth cutoff. So, the
manifold can be projected onto a bounded interval on each axis. This generally holds for
nuclear matrix calculations of this kind and is a motivation for developing and improving
MC techniques specialized to this problem.
In this work, we follow a consistent chiral ansatz to calculate interactions involving nuclei:

• Calculate the integral kernel for all possible elementary diagrams for a given process
to a given order in chiral perturbation theory containing only irreducible contribu-
tions and

• sandwich it with chiral nuclear wave function in initial and final asymptotic state,
e.g. the tri-nucleon wave function for the triton or helion from [52].
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A consistent chiral ansatz is even more suitable for MC techniques than Weinberg’s hybrid
ansatz [53], because chiral nuclear wave functions even have a nicer large-momentum be-
haviour than the phenomenological wave functions: They vanish exponentially with high
relative momentum. In this work, we demonstrate the power of MC VEGAS in this context
and provide first results ever for chiral 3N calculations on photo- and electroproduction of
neutral pions.
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Chapter 4

Generalities: Neutral-Pion
Electroproduction off the (Tri-)Nucleon

In this chapter, we present and explain the methods we used to calculate nuclear matrix
elements: from diagrams to observables. The cross section and kinematics can be found in
the appendix chapter A.

4.1 Operator Structure of the Amplitude

The scattering amplitude of a given process has a certain form, which is enforced by
symmetries of the corresponding fundamental interactions. We construct it here for neutral
pion production off the (tri-)nucleon near threshold. We restrict ourselves to S- and P-
waves in the multipole decomposition of the final pion/(tri-)nucleon system. For a complete
multipole expansion of the photo-production amplitude of meson from spin-1/2 particles,
we refer to [54], [55] and [56].

4.1.1 At Threshold, S-wave

Corresponding to CGLN [57], the threshold scattering amplitude defined in (A.43) for
pseudo-scalar electroproduction (of the pion) from a spin-1

2
particle ψ (neutron, proton,

3H or 3He) with respect to non-relativistic spin-1
2

spinors χ(1
2
) = (1, 0) and χ(−1

2
) = (0, 1)

and spin operator ~S in the center-of-mass frame can be expressed by two non-relativistic
operators, the only operators at threshold, namely one transversal operator

−
[
k̂ × [k̂ × ~S ]

]
= ~S − k̂(k̂ · ~S ). (4.1)

and one longitudinal operator
k̂(k̂ · ~S ), (4.2)

where k̂ = ~k/|~k|. We classify a vector ~v by its direction with respect to the photon

momentum ~k: Every vector ~v can be orthogonally and uniquely split up into a longitudinal

33
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part ~vL = (~v · k̂)k̂ and the transversal part ~vT = ~v − (~v · k̂)k̂ = −
[
k̂ × [k̂ × ~v ]

]
such that

~v = ~vL + ~vT and ~vL · ~vT = 0. For any given vectors ~v and ~w, the scalar product separates
according to ~v · ~w = ~vL · ~wL + ~vT · ~wT .

We define the amplitudes Eπ0ψ
0+ ) and Lπ

0ψ
0+ ) as the coefficients accompanying the operator

(4.1) and (4.2), respectively, via

Mλ =:2iEπ0ψ
0+ (~ǫλ · ~S ) + 2i(Lπ

0ψ
0+ − Eπ0ψ

0+ )(~ǫλ · k̂)(k̂ · ~S )

=2iEπ0ψ
0+ (~ǫλT · ~S ) + 2iLπ

0ψ
0+ (~ǫλL · ~S ), (4.3)

where we used ~ǫλT = ~ǫλ−(~ǫλ · k̂)k̂ and ~ǫλL = (~ǫλ · k̂)k̂. This is a commonly used [58] definition
for the electric and longitudinal S-wave amplitude. For higher multipole contributions, we
refer to the next sections and [59].
As a short explanation for the occurring structures in (4.3):

We want to describe the interplay between a vector and an axial-vector current, i.e. we
have to construct a pseudo-scalar Mλ (linear in ~ǫλ) using the following three ingredients:

• the polarization vector ~ǫλ (vector),

• the nuclear spin vector ~S (pseudo vector),

• the photon momentum vector ~k (vector).

The time component of the polarization vector (A.34) is eliminated in favor of the longitudi-
nal component using the Ward identity ǫλµk

µ = 0. For a real photon, time and longitudinal
components of the polarization vector exactly cancel, for a virtual photon with kµk

µ 6= 0,
the longitudinal component survives according to Eq. (A.39). We therefore only need three
component vectors to describe the amplitude.

If we separate off the polarization vector according to Mλ = ~ǫλ · ~j, the task is equivalent
to finding a pseudo-vector ~j constructed from

• the nuclear spin vector ~S (pseudo-vector),

• the photon momentum vector ~k (vector),

using vector multiplications, namely the scalar product and the vector product.

The natural choice for ~j is a multiple of ~S, which can be divided into ~SL and ~ST .

Every pseudo-vector involving more than one ~S can be reduced by virtue of the angular
momentum algebra to a term of the form ~a + b~S with ~a a pseudo vector and b a scalar.
While the second term b~S is of the above form, we cannot form a pseudo vector ~a using ~k
only, i.e. ~a = 0.

This leaves only ~SL and ~ST as expected.
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4.1.2 Near Threshold, P-wave

Above threshold there is an additional vector ~qπ, the pion three-momentum, that can be
used in different combinations to construct a pseudo vector. We then have

• the nuclear spin vector ~S (pseudo-vector),

• the photon momentum vector ~k (vector),

• the pion momentum vector ~qπ (vector).

Additionally to the given s-wave structures, at first order in ~qπ we can form three new
pseudo vectors [~qπ × ~k], ~qπ(k̂ · ~S ), k̂(~qπ · ~S ) and a new scalar (~qπ · ~k) to multiply the given
structures. We then have the following additional terms linear in ~qπ:

Mλ =2i(~ǫλ · ~S )(q̂π · k̂)Pψ
1 + 2i(~ǫλ · q̂π)(k̂ · ~S )Pψ

2 + (~ǫλ · [q̂π × k̂])Pψ
3

+2i(~ǫλ · k̂)(k̂ · ~S )(q̂π · k̂)(Pψ
4 − Pψ

5 − Pψ
1 − Pψ

2 ) + 2i(~ǫλ · k̂)(q̂π · ~S )Pψ
5 .

=:2i(~ǫλT · ~S )(q̂π · k̂)Pψ
1 + 2i(~ǫλT · q̂π)(k̂ · ~S )Pψ

2 + (~ǫλT · [q̂π × k̂])Pψ
3

+2i(~ǫλL · ~S )(q̂π · k̂)Pψ
4 + 2i(~ǫλL · k̂)(q̂πT · ~S )Pψ

5 .

Here, we choose the following combinations of the more commonly used P-wave multipoles
E1+ (electric quadrupole), M1± (magnetic dipole) and L1± (longitudinal quadrupole) (cf.
4.8),

Pψ
1 = 3E1+ +M1+ −M1−, Pψ

2 = 3E1+ −M1+ +M1−, Pψ
3 = 2M1+ +M1−,

Pψ
4 = 4L1+ + L1−, Pψ

5 = −2L1+ + L1−. (4.4)

4.1.3 General Structure of the Amplitude

In the center-of-mass system with energy W , the hadronic current operator of neutral
pion production off a spin-1/2 nucleus ψ is given in terms of the CGLN [57] amplitudes
Fi, i = 1, . . . , 6, as

~J =
4πW

mψ

(
2i~STF1 + 4[~S × k̂](~S · q̂π)F2 + 2iq̂π,L(~S · k̂)F3

+ 2iq̂π,L(~S · q̂π)F4 + 2ik̂(~S · k̂)F5 + 2ik̂(~S · q̂π)F6

)
, (4.5)

ρ =
4πW

mψ

(
2i(~S · q̂π)F7 + 2i(~S · k̂)F8

)
=
~k · ~J
k0

. (4.6)

F1, . . . , F4 describe the transverse current, while the longitudinal component is given by F5

and F6. F7 and F8 are not independent of the others. In the initial state the photon carries
spin 1 with helicity λ which couples with its orbital momentum relative to the nucleon
target to the photon multi-polarity L. The transverse polarization λ = ±1 = ± mediates
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electric and magnetic transitions and the longitudinal polarization λ = 0 the Coulomb
transitions. The final state is described by an orbital momentum l of the pion relative to
the recoiling spin-1/2 nucleus ψ with parity (−1)l+1 due to the intrinsic parity of the pion.
The total spin of the final state is given by J ′ = |l± 1/2| =: l± and has to be equal to the
initial spin J = |L± 1/2|. Using parity arguments, we find for

λ = ±1 : (−1)L = (−1)l+1 → |L− l| = 1,

λ = 0 : (−1)L+1 = (−1)l+1 → L = l. (4.7)

The structure functions can be decomposed into multipole series [55] in terms of derivatives
of the Legendre polynomials Pl,

F1 =
∑

l≥0

{
(lMl+ + El+)P

′
l+1 + [(l + 1)Ml− + El−]P

′
l−1

}
,

F2 =
∑

l≥1

{(l + 1)Ml+ + lMl−}P ′
l ,

F3 =
∑

l≥1

{
(El+ −Ml+)P

′′
l+1 + [El− +Ml−]P

′′
l−1

}
,

F4 =
∑

l≥2

{Ml+ − El+ +−Ml− − El−}P ′′
l ,

F5 =
∑

l≥0

{
(l + 1)Ll+P

′
l+1 − lLl−P

′
l−1

}
,

F6 =
∑

l≥1

{lLl− − (l + 1)Ll+}P ′
l . (4.8)

In the limit ~qπ → 0, i.e. near threshold, only multipoles with low l contribute. In the limit
~kγ → 0, the transverse and longitudinal components are related by gauge invariance,

El± → ±1

2
(2J + 1)Ll±. (4.9)

4.2 Triton Wave Functions

4.2.1 Quantum Numbers of the Tri-Nucleon Systems

The 3N bound state has total nuclear angular momentum J = 1
2

with magnetic quantum
numbers MJ = ±1

2
for the initial and MJ ′ = ±1

2
for the final nucleus state. J can be

decomposed in total spin S = 1
2
, 3
2

and total orbital angular momentum L = 0, 1, 2. The
total isospin is a mixture of two components, T = 1

2
, 3
2
, where the former contribution is

large and isospin conserving and the latter represents a small isospin breaking. The isospin
magnetic quantum numbers are MT = MT ′ = 1

2
for 3He and MT = MT ′ = −1

2
for 3H. On

the atomic level J is interpreted as an internal degree of freedom, namely the nuclear spin
of the composite 3N-particle.
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4.2.2 Jacobi Coordinates

In terms of the individual nucleon momenta ~k1, ~k2 and ~k3, the Jacobi momenta are defined
by

~p12 =
1

2

(
~k1 − ~k2

)
,

~p3 =
1

3

(
2~k3 − ~k2 − ~k1

)
, (4.10)

~P = ~k1 + ~k2 + ~k3.

The inverse relation reads

~k1 =
1

3
~P + ~p12 −

1

2
~p3, (4.11)

~k2 =
1

3
~P − ~p12 −

1

2
~p3, (4.12)

~k3 =
1

3
~P + ~p3. (4.13)

The Jacobian determinant of this transformation is constantly -1, i.e. the transformation
from individual coordinates to Jacobi coordinates and vice versa does not change the
volume in the tangent space.

4.2.3 Representation of the Tri-Nucleon Wave Function

The wave function ψMJ
α (~p12, ~p3) is given in terms of the 3N-Jacobi-momenta and spin/isospin

quantum numbers of the individual nucleons, i.e.

|α〉 = |αS〉 |αT 〉 = |ms1〉 |ms2〉 |ms3〉 |mt1〉 |mt2〉 |mt3〉 . (4.14)

Summing over α means summing over all combinations of msi and mti which have the right
overall quantum numbers MS = ms1 +ms2 +ms3 and MT = mt1 +mt2 +mt3 . In such a
sum, the nucleon-lines may be interchanged without changing the result.
Here, we use chiral 3N wave functions obtained from the N2LO interaction in the Weinberg
power counting [60, 61].1 In order to estimate the error from higher order corrections, we
use wave functions for five different combinations of the cutoff Λ̃ in the spectral function
representation of the two-pion exchange and the cutoff Λ used to regularize the Lipp-
mann-Schwinger equation for the two-body T-matrix. The wave functions are taken from
Ref. [62, 52] and the corresponding cutoff combinations in units of MeV are (Λ̃,Λ) =
(450,500), (600,500), (550,600), (450,700), (600,700). All five sets describe the binding
energies of the 3He and 3H nuclei equally well (after inclusion of the corresponding three-
nucleon force).

1The consistency of the Weinberg counting for short-range operators and the non-perturbative renormal-
ization of chiral EFT are currently under discussion, see the review [8] for more details. A real alternative
to the Weinberg approach for practical calculations, however, is not available.
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4.2.4 Faddeev Equations with Three-Nucleon Force

The tri-nucleon bound state is calculated in a quantum mechanical framework using chiral
potentials up to N2LO including the three-nucleon force corresponding to fixing the binding
energy to its physical value. The trinucleus wave functions are the solutions of the Faddeev
equations, which will be derived in the following. In the three-particle sector, they replace
the Lippmann-Schwinger equation, which is standard for the two-particle sector, concerning
numerical efficiency and conceptual problems: Due to the hierarchy of chiral nuclear forces,
the dominant two-nucleon potential would lead to a delta-distribution for the spectator
nucleon, which cannot be implemented efficiently. Also, the integral equation has a non-
uniqueness problem [63, 64, 65] and, as a consequence, the integral kernel is non-compact.
Therefore we use the Faddeev approach [66, 67]:
We start at a Hamiltonian of the form

H = H0 +
3∑

i=1

(Vi +Wi), (4.15)

where for (ijk) a cyclic permutation of (123) labeling the nucleons, Vi is the two nucleon
potential of the interaction between nucleon j and k and Wi denotes the part of the three-
nucleon potential W =

∑3
i=1Wi, where nucleon i interacts simultaneously with nucleon

j and k. In Eq. (4.15), H0 is the kinetic energy operator of the three particles. The
Schrödinger equation

H|Ψ〉 = E|Ψ〉 (4.16)

can be rewritten in the case of bound-state problems as

|Ψ〉 = G0(E)
3∑

i=1

(Vi +Wi)|Ψ〉, (4.17)

where G0(E) = (E−H0)
−1 is the free three-body Green’s function depending on the total

energy E of the bound three-body system.
The following decomposition of the wave function |Ψ〉 into Faddeev amplitudes |ψi〉 is
introduced by

|Ψ〉 =
3∑

i=1

|ψi〉, (4.18)

|ψi〉 = G0(E)(Vi +Wi)|Ψ〉. (4.19)

Since all particles are identical, operators, states and variables that carry different particle
indices, can be related to each other simply by means of permutations, e.g.

V2 = P123V1P
−1
123, (4.20)

V3 = P132V1P
−1
132, (4.21)
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where P123 = P12P23 and P132 = P13P23 are cyclic and anti-cyclic permutations of three
particles defined in terms of two particle transpositions Pij.
The wave function of three identical particles is invariant under cyclic permutations, which
means that Eq. (4.20) implies that the Faddeev amplitudes transform like

|ψ2〉 = P123|ψ1〉, (4.22)

|ψ3〉 = P132|ψ1〉 (4.23)

into each other. Thus, the full wave function |Ψ〉 takes the form

|Ψ〉 = (1 + P )|ψi〉, (4.24)

independent of the index i, with P = P123 + P132. The integral equation

|ψi〉 = G0(E)(Vi +Wi)(1 + P )|ψi〉 (4.25)

can be obtained by inserting Eq. (4.24) into Eq. (4.17). Shifting G0(E)Vi|ψi〉 to the left-
hand-side and multiplying the resulting equation by (1−G0(E)Vi)

−1 from the left yields

|ψi〉 = (1−G0(E)Vi)
−1G0(E)(ViP +Wi(1 + P ))|ψi〉 (4.26)

=(G0(E)
−1 − Vi)

−1(ViP +Wi(1 + P ))|ψi〉 = Gi(E)(ViP +Wi(1 + P ))|ψi〉 (4.27)

with Gi(E) = (E − H0 − Vi) the Green’s function of channel i, which incorporates the
two-nucleon potential, but not the three-nucleon potential, and can also be represented as

Gi(E) = G0(E) +G0(E)Ti(E)G0(E). (4.28)

Ti(E) is the two-body transition matrix embedded into the three-particle space and given
by the Lippmann-Schwinger equation

Ti(E) = Vi + ViG0(E)Ti(E). (4.29)

Applying the well-known relation

Gi(E)Vi = G0(E)Ti(E), (4.30)

the two body potential Vi can be eliminated completely from Eq. (4.26) in favor of Ti(E)
with the final result

|ψi〉 = G0(E){Ti(E)P + [1 + Ti(E)G0(E)]Wi(1 + P )}|ψi〉. (4.31)

Eq. (4.31) is a set of three equations for the Faddeev amplitudes |ψi〉 that transform into
each other under cyclic permutations. Hence, the solution of only one of them is required
to gain the full solution by means of Eq. (4.24).
The Coulomb potential was taken into account and, although not relevant for bound states,
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regularized to finite range by a cutoff R in position space, see e.g. [68]. With the fine-
structure constant α = e2/4π, it takes the form in momentum space

VCoulomb(|~q ′ − ~q|) =
∫ R

0

d3rei(~q
′−~q)·~rα

r
=

4πα

|~q ′ − ~q|2 (1− cos(|~q ′ − ~q|R)). (4.32)

R is to be chosen in the appropriate range, i.e. around 10 fm, because it should be in the
asymptotic range of the strong potential, but small enough to suppress strong oscillations
of the cosine in eq. (4.32). The finite range allows to use Bessel and Neumann functions as
asymptotic states in the Lippmann-Schwinger equation which are matched to the Coulomb
solutions at r = R.

4.3 Calculation of the Amplitudes

For a transition operator Ô we compute the nuclear matrix element by sandwiching with
the nuclear wave functions:

〈
MJ ′

∣∣∣ Ô
∣∣∣MJ

〉
ψ
:=
〈
ψMJ ′ ~P ′

3N~qπ

∣∣∣ Ô
∣∣∣ψMJ

~P3N
~kγ

〉

=
∑

α′

∫
d3p′12 d

3p′3 d
3P ′
∑

α

∫
d3p12 d

3p3 d
3P

×
〈
ψMJ ′ ~P ′

3N

∣∣∣ ~p ′
12~p

′
3
~P ′α′

〉

︸ ︷︷ ︸
ψ
M

J′ ∗

α′ (~p ′
12,~p

′
3) δ

(3)(~P ′−~P ′
3N )

〈
~p ′
12~p

′
3
~P ′α′~qπ

∣∣∣ Ô
∣∣∣ ~p12~p3 ~Pα~kγ

〉〈
~p12~p3 ~Pα

∣∣∣ψMJ
~P3N

〉

︸ ︷︷ ︸
ψ
MJ
α (~p12,~p3) δ(3)(~P−~P3N )

=
∑

α′

∫
d3p′12 d

3p′3
∑

α

∫
d3p12 d

3p3

× ψ
MJ′∗
α′ (~p ′

12, ~p
′
3)

〈
~p ′
12~p

′
3
~P ′
3Nα

′~qπ

∣∣∣ Ô
∣∣∣ ~p12~p3 ~P3Nα~kγ

〉

︸ ︷︷ ︸
Oα′α(~p ′

12,~p
′
3,~qπ ,~p12,~p3,

~kγ) δ(3)(~P3N+~kγ−~P ′
3N−~qπ)

ψMJ
α (~p12, ~p3)

=δ(3)
(
~P3N + ~kγ − ~P ′

3N − ~qπ

)∑

α′

∑

α

∫
d3p′12 d

3p′3

∫
d3p12 d

3p3

× ψ
MJ′∗
α′ (~p ′

12, ~p
′
3)Oα′α

(
~p ′
12, ~p

′
3, ~qπ, ~p12, ~p3,

~kγ

)
ψMJ
α (~p12, ~p3) (4.33)

where ~kγ , ~qπ, ~P3N , ~P
′
3N are the momentum of the exchanged (virtual) photon, of the pro-

duced pion, the initial and final momentum of the 3N nucleus, respectively, and ~p12, ~p3, ~P
and ~p ′

12, ~p
′
3, ~P

′ denote the Jacobi momenta (4.10) of the initial and final 3N-system and the
wave function ψMJ

α (~p12, ~p3) is defined in section 4.2.2. In (4.33), all relative momenta and
internal quantum numbers are integrated out or summed out.

The transition operator
〈
~p ′
12~p

′
3
~P ′
3Nα

′~qπ

∣∣∣ Ô
∣∣∣ ~p12~p3 ~P3Nα~kγ

〉
in spin-isospin and momentum

space can be generated order by order using Heavy Baryon Chiral Perturbation Theory
(HBChPT).
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4.4 Numerical Quadrature

The Vegas algorithm needs numerical input for all variables, particularly for ~k and ~qπ. We
use the 3N wave function from A. Nogga [52]. Because the algorithm is implemented for
real integrands only, we divide integrands f containing also complex spherical harmonics
and complex spin matrices into their real and imaginary part according to

f(~p ′
12, ~p

′
3, ~p12, ~p3) = Re(f(~p ′

12, ~p
′
3, ~p12, ~p3)) + i Im(f(~p ′

12, ~p
′
3, ~p12, ~p3)) (4.34)

and use the linearity of the integration
∫
d3p ′

12d
3p ′

3

∫
d3p12d

3p3f =

∫
d3p ′

12d
3p ′

3

∫
d3p12d

3p3 (Re(f) + i Im(f))

=

∫
d3p ′

12d
3p ′

3

∫
d3p12d

3p3 Re(f) + i

∫
d3p ′

12d
3p ′

3

∫
d3p12d

3p3 Im(f)

=I[Re(f)]± σ[Re(f)] + iI[Im(f)]± iσ[Im(f)]

=I[Re(f) + i Im(f)]± σ[Re(f) + i Im(f)]

=I[f ]± σ[f ], (4.35)

where I, σ denote the estimator and its standard deviation.
The integrand f is in our case a function of the form

fα′α(~p
′
12, ~p

′
3, ~p12, ~p3) = ψ

MJ′∗
α′ (~p ′

12, ~p
′
3)Oα′α

(
~p ′
12, ~p

′
3, ~qπ, ~p12, ~p3,

~kγ

)
ψMJ
α (~p12, ~p3) . (4.36)

The symbols occurring in (4.36) are explained in section 4.2.2.
The standard deviation can be taken into account by error propagation for the real and
imaginary parts separately:

∆
〈
MJ ′

∣∣∣ Ô
∣∣∣MJ

〉
ψ

(4.37)

= δ(3)
(
~P3N + ~kγ − ~P ′

3N − ~qπ

)


√∑

α′

∑

α

{σ[Re(f)]}2 + i

√∑

α′

∑

α

{σ[Im(f)]}2

 .

4.5 Counting of Wave-Functions and Integrations

In appendix A the cross section is calculated and the kinematics is explained. We follow
the hybrid ansatz of Weinberg and identify the matrix elements for the interaction of
individual nucleons with photons and pions. In a second step we convolute these operators
using nuclear wave functions. To that end it is important to notice that nuclear wave
functions for nuclei with A nucleons have a momentum-dimension DA defined by their
normalization:

∫ A−1∏

i=1

d3piΨ
†
A(~p1, ..., ~pA−1)ΨA(~p1, ..., ~pA−1) = 1 ⇒ 3(A− 1) +DA +DA = 0 (4.38)
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and it follows that the dimension of the wave function is DA = −3(A − 1)/2. The 3N
bound state has chiral dimension DA = −3.
The chiral dimension of the amplitude involving a nucleus with A nucleons and an N -
nucleon kernel ON of chiral dimension DN

Kernel then is (c.f. (3.25))

D = 3(A− 1) + 3(N − 1) +DA +DN
Kernel +DA = DN

Kernel + 3(N − 1), (4.39)

independent of the number of nuclei A in the nucleus. This is clear following Weinberg’s
power counting: Nucleon lines passing through diagrams without interaction are counted
with q−3 for the corresponding δ-distribution, which cancel the integrations.
We do not strictly distinguish between chiral power counting and electromagnetic power
counting in α = e2/4π here, because we restrict ourselves to a certain electromagnetic
order: In the one-photon-exchange approximation, the amplitude is of first order in the
electric charge e, which we take into account with e = O(q). We then have

D = DN
Kernel + 3(N − 1) + 1. (4.40)

Example: In case of any nuclear bound state to order D = 3, we must take into account
all graphs up to dimension DN=3

Kernel = −4.

4.6 Power-Counting: The Chiral Dimension

We have to find the tree diagrams with lowest DKernel explained in (2.102) to be

DKernel = 4− EN
2

− 2C + 2L+
∑

i

Vi∆i, ∆i = di +
Ni

2
− 2 (4.41)

with the vertices Vi taken from appendix A of ref. [25]. For graphs involving three nucleon
lines, EN = 6 and C = 1, C = 2 or C = 3.

The lowest order contribution has no loop (L = 0), the maximum number three of discon-
nected pieces (C = 3), one vertex with ∆i = −1 and any number of vertices with ∆i = 0.
Therefore the dimension is

DKernel = 4− EN
2

− 2C + 2L+
∑

i

Vi∆i = 4− 6

2
− 2 · 3 + 2 · 0 + 1 · (−1) = −6. (4.42)

The next order contains additionally one vertex with ∆i = 1. Then we have

DKernel = 4− EN
2

− 2C + 2L+
∑

i

Vi∆i = 4− 6

2
− 2 · 3 + 2 · 0 + 0 = −5. (4.43)

At order DKernel = −4 also two-nucleon contributions start to appear:

• C = 3: This is a one-nucleon contribution.
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– L = 0: all vertices with ∆i = 2, 1, 0,−1 can contribute with
∑

i Vi∆i = 1 and

– L = 1: one vertex with ∆i = −1 and any number of vertices with ∆i = 0 is
allowed.

• C = 2: The following two-nucleon contributions appear: Diagrams containing one
vertex with ∆i = −1 and any number of vertices with ∆i = 0.

At order DKernel = −3, one vertex of order DKernel = −4 is replaced by a one order higher
vertex:

• C = 3, L = 0: all vertices with ∆i = 3, 2, 1, 0,−1 can contribute with
∑

i Vi∆i = 2,

• C = 3, L = 1: one vertex with ∆i = −1, one with ∆i = 1 and any number of vertices
with ∆i = 0 is allowed.

• C = 2: one vertex with ∆i = −1, one with ∆i = 1 and any number of vertices with
∆i = 0.

Three-nucleon contributions start at order DKernel = −2, which is beyond the scope of this
work.

The one-nucleon contribution was calculated in [69], see [70] [59] for more details, two-
nucleon contributions stem from [7].
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Chapter 5

Calculation and Numerical Results

Parts of this work have been published in [16] and [17]. We calculate neutral pion electro-
and photoproduction off the tri-nucleon to order q4 in a consistent chiral three-dimensional
approach. The nucleons in initial and final state are merged to bound states by convoluting
the chiral integral kernels with chiral wave functions using the Monte Carlo VEGAS algo-
rithm. In general, pion electro- and photoproduction off the tri-nucleon is given in terms
of three different topologies of Feynman diagrams, see Fig. 5.1. While the single-nucleon
contribution (a) corresponding to the standard impulse approximation features the ele-
mentary neutron and proton production amplitudes, the nuclear corrections are given by
two-body (b) and three-body (c) terms.

Figure 5.1: Different topologies contributing to pion production off the three-nucleon bound
state (triangle). (a), (b) and (c) represent the single-, two- and three-nucleon contributions,
respectively. Solid, dashed and wiggly lines denote nucleons, pions and photons, in order.
Topology (c) does not contribute to the order considered here (NNLO).

Based on the power counting developed in [5], at next-to-next-to-leading order (NNLO),

45
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the integral kernel consists of single nucleon (1N) and two nucleon (2N) contributions, as
explained above. Topology (c) starts to contribute at fourth order to P-wave multipoles and
is thus not of relevance for our considerations. Here, we will specifically consider threshold
photo- and electroproduction parameterized in terms of the electric E0+ and longitudinal
L0+ S-wave multipoles, defined in Eq. (4.3). In particular, we study the sensitivity of the
3H/3He S-wave multipoles to the elementary Eπ0n

0+ multipole, as the production amplitude
off the proton is well understood experimentally and theoretically.

Using the 3N wave functions from chiral nuclear EFT at the appropriate order, the perti-
nent matrix elements of Eq. (4.33) can be evaluated. Here, we use chiral 3N wave functions
obtained from the N2LO interaction in the Weinberg power counting [60, 61]. In order to
estimate the error from higher order corrections, we use wave functions for five different
combinations of the cutoff Λ̃ in the spectral function representation of the two-pion exchan-
ge and the cutoff Λ used to regularize the Lippmann-Schwinger equation for the two-body
T-matrix.

The wave functions are taken from Ref. [62, 52] and the corresponding cutoff combinations
in units of MeV are (Λ̃,Λ) = (450,500), (600,500), (550,600), (450,700), (600,700). All five
sets describe the binding energies of the 3He and 3H nuclei equally well (after inclusion
of the corresponding three-nucleon force). For further details on the wave functions, see
sec. 4.2.2.

We evaluate all pertinent matrix elements in Eq. (4.33) numerically with Monte Carlo
integration using the VEGAS algorithm [49]. The corresponding results are given in tables
throughout this section. The first error represents the theoretical uncertainty estimated
from the cutoff variation in the wave functions. We take the central value defined by the
five different cutoff sets as our prediction and estimate the theory error from higher-order
corrections from the spread of the calculated values. Strictly speaking, this procedure gives
a lower bound on the error, but in practice it generates a reasonable estimate. The second
error is the statistical error from the Monte Carlo evaluation of the integrals. It is typically
much smaller than the estimated theory error and can be neglected.

We stress that we follow the nuclear EFT formulation of Lepage, in which the whole
effective potential is iterated to all orders when solving the Schrödinger equation for the
nuclear states. As discussed in Ref. [71], the cutoff should be kept of the order of the
breakdown scale or below in order to avoid unnatural scaling of the coefficients of higher
order terms. Indeed, using larger cutoffs can lead to a violation of certain low-energy
theorems as demonstrated in Ref. [72] for an exactly solvable model.

5.1 Digression: The Magnetic Moment

Before we turn to the main topic, we test the capability of our ansatz in the easier, but
similar context of magnetic moments and explain the general procedure by this example.
In principle, diagrams contributing to the magnetic moment can be acquired from pion
production diagrams dropping the final state pion line or equivalently by replacing the
vertex with the external pion by a vertex without external pion. As in the case of pion
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production, the 1N contribution corresponds to the impulse approximation, i.e. we adopt
the single nucleon amplitudes omitting nuclear interaction and recoil effects in the integral
kernel, while the 2N contribution in the following chapter involves chiral integral kernels.

In the following, ~σi (~τi) denote the spin (isospin) Pauli matrices and ~si (~li) the spin (angular
momentum) operators corresponding to the nucleon i. Furthermore, z refers to the isospin

quantization axis, and ~SM ′
JMJ

are the corresponding spin transitions matrix elements of
the composite tri-nucleon.

5.1.1 Electromagnetic Formfactors in the Breit-Frame

The hadronic current for spin-1/2 particles at momentum transfer Q2 = −k2 = −(p− p′)2

has the form

Jµ = eū(p′)

[
γµF1(Q

2) +
iσµν

2m
(p− p′)νF2(Q

2)

]
u(p). (5.1)

In the limit ~k → 0, this expression vanishes. Using the Gordon identity

ū(p′)γµu(p) = ū(p′)

[
(p+ p′)µ

2m
+
iσµν

2m
(p− p′)ν

]
u(p), (5.2)

we separate the terms of interest in the hadronic current:

Jµ = eū(p′)

[
(p+ p′)µ

2m
F1(Q

2) +
iσµν

2m
kν
{
F1(Q

2) + F2(Q
2)
}]

u(p). (5.3)

We use Coulomb gauge and want to keep terms exactly linear in ~k and insert the non-
relativistic expansion of the spinors u(p) = e−ipµx

µ

(χ, 0)T with the two component spinor
χ, i.e. we only need to consider the upper component. The hadronic current reduces to

~J = eeip
′
µx

µ

(χ†, 0)

[
(~p+ ~p ′)

2m
F1(Q

2) +
iσiν

2m
kν
{
F1(Q

2) + F2(Q
2)
}]

e−ipµx
µ

(
χ
0

)
. (5.4)

Using k0 = 0 in the Breit frame and eip
′
µx

µ

e−ipµx
µ

= e−ikµx
µ

= 1 and ~p + ~p ′ = 2~p in the
considered limit and

σij = −1

2

(
[σi, σj] 0

0 [σi, σj ]

)
= −

(
iǫijkσ

k 0
0 iǫijkσ

k

)
= −iǫijkσk

(
1 0
0 1

)
, (5.5)

the hadronic current takes the form

~J = eχ†

[
2~p

2m
F1(Q

2) +
i[~σ × ~k]

2m

{
F1(Q

2) + F2(Q
2)
}
]
χ. (5.6)
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5.1.2 One-Nucleon Contributions to the Magnetic Moment

The part of the hadronic current contributing to the magnetic moment for |~k| → 0 can be
written as

~J =
3∑

i=1

µN i[2~si × ~k] {µS + τ zi µV } (5.7)

with µN = e/2mN the nuclear magnetic moment. Since the structure is almost the same
for the nucleon and the trinucleus, we don’t have to consider the full form, but only the
differing parts, i.e. the single-spin vs. the composite-spin structure. The single nucleon
contribution (also called impulse approximation) to the magnetic moment of the tri-nucleon
in spin and isospin space has the generic form

~̂µ1N = ~̂µ1 + ~̂µ2 + ~̂µ3

~̂µi = 2~si

{
1 + τ zi

2
µp +

1− τ zi
2

µn

}
+~li

1 + τ zi
2

= ~σi {µS + τ zi µV }+~li
1 + τ zi

2
(5.8)

where we used the magnetic moments µp = 2.79, µn = −1.91 of the proton and the neutron,
which can be expressed in terms of isoscalar and isovector magnetic moment projections of
the nucleon, µS = (µp + µn)/2 = 0.44 and µV = (µp − µn)/2 = 2.35 respectively. The last

term proportional to the angular momentum operators ~li incorporates the magnetic field
generated by the rotating proton charges. Since the induced contribution of the angular
momentum operators ~li is expected to be small, we will ignore it in the following.
The expectation value can be calculated analogously to Eq. (4.33) using ~kγ = 0 = ~qπ:

〈MJ ′ |~̂µ1N |MJ〉ψ
=
∑

α′

∑

α

∫
d3p′12 d

3p′3

∫
d3p12 d

3p3 ψ
MJ′∗
α′ (~p ′

12, ~p
′
3) ~µ

1N
α′α (~p

′
12, ~p

′
3, ~p12, ~p3)ψ

MJ
α (~p12, ~p3)

=
∑

α′

∑

α

∫
d3p12 d

3p3 ψ
MJ′∗
α′ (~p12, ~p3) ~̂µ

1N
α′αψ

MJ
α (~p12, ~p3) . (5.9)

The integral kernel ~µ1N
α′α (~p

′
12, ~p

′
3, ~p12, ~p3) = ~̂µ1N

α′αδ
3(~p ′

12−~p12)δ3(~p ′
3−~p3) is momentum indepen-

dent and ~̂µ1N
α′α = 〈α′|~̂µ1N |α〉 is the projection of the operator ~̂µ1N to a specific spin/isospin

channel.

Due to symmetrization, we only need to consider nucleon 1:

〈MJ ′ |~̂µ1N |MJ〉ψ = 〈MJ ′ |~̂µ1 + ~̂µ2 + ~̂µ3|MJ〉ψ = 〈MJ ′ |3~̂µ1|MJ〉ψ. (5.10)

With the form factors

~SM ′
J
MJ
F S±V =

〈
MJ ′

∣∣∣∣
3

2
~σ1 {1± τ z1 }

∣∣∣∣MJ

〉

ψ

, (5.11)
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which parametrize the response of the composite system to the excitation by photons in
spin-isospin space, we find the 1N contribution to the tri-nucleonic magnetic moment µ1N :

〈
MJ ′

∣∣∣~̂µ1N
∣∣∣MJ

〉
ψ
= 2~SM ′

JMJ

{
F S+V

2
µp +

F S−V

2
µn

}
=: 2~SM ′

JMJ
µ1N . (5.12)

To construct the operator structure of the right-hand-side, we used the only remaining
vector after integration of all internal degrees of freedom, the nuclear spin operator in
the chosen channel ~SM ′

JMJ
= 〈M ′

J |~S|MJ〉. In fact, the tri-nucleon itself is again a spin-1
2

particle and therefore one expects the same operator structure as for the nucleon, cf. (5.8).
The result compares well with a deviation of less than 4% to a calculation by Harper et

nucleus ψ 3He 3H

F S+V −0.065(14)(2) +1.805(28)(2)

F S−V +1.801(30)(2) −0.067(16)(2)

µ1N −1.810(34)(3) +2.582(42)(3)

µ1N [73] −1.744 +2.560

µ1N [74] −1.757 +2.571

Table 5.1: Numerical results for the form factors F S±V and the one-nucleon contribution
µ1N to the magnetic moment. The first error is our estimation of the theoretical uncertainty
resulting from the truncation of the chiral expansion while the second one is the statistical
error from the Monte Carlo integration.

al. [73] with wave functions derived from an exact solution of the Faddeev equations for
a nucleon-nucleon interaction given by the Reid soft-core potential and to calculations of
Marcucci et al. [74] based on phenomenological wave functions.
The single nucleon results in Table 5.1 are consistent with isospin symmetry within the
numerical accuracy. This feature was not explicitly enforced and provides a check on our
calculation. Note that the spin of 3He (3H) is dominated by the unpaired neutron (proton)
spin, because the two protons (neutrons) are dominantly paired in a relative S-wave. Due
to this fact and to deal with the inexistence of free neutron targets, 3He is used as a
neutron-like target. 3H could be used as a proton-like target to perform consistency checks
to proton observables, but is indeed too dangerous for regular experiments.

5.1.3 Two-Nucleon Contributions to the Magnetic Moment

The leading two nucleon ChPT diagrams to the electromagnetic current can be generated
from the photo production diagrams by dropping the external pion line or equivalently by
replacing the nucleon-pion-photon vertex by a nucleon-photon one. Their contribution is
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given in terms of the exchanged pion momenta

~q1/2 = ~p ′
1/2 − ~p1/2 = ∓ (~p12 − ~p ′

12) +
~k

2
= ∓

(
~p12 − ~p ′

12 ∓
~k

2

)
,

~J1π = ~Ja1π +
~J b
1π = e

g2A i

4F 2
π

[~τ1 × ~τ2]
3 ~q1 · ~σ1
~q21 +M2

π

[
~σ2 + ~q1

~q2 · ~σ2
~q22 +M2

π

]
+ (1 ↔ 2)

= e
g2A i

4F 2
π

[~τ1 × ~τ2]
3

−
(
~p12 − ~p ′

12 −
~k
2

)
· ~σ1

(
~p12 − ~p ′

12 −
~k
2

)2
+M2

π


~σ2 + (~p ′

12 − ~p12)

(
~p12 − ~p ′

12 +
~k
2

)
· ~σ2

(
~p12 − ~p ′

12 +
~k
2

)2
+M2

π




+ (1 ↔ 2) = e
g2A
4F 2

π

~̃J1π.

We expect contributions analogously to Eq. (5.7):
〈
M ′

J

∣∣∣ ~J1π
∣∣∣MJ

〉
ψ
= iµN

[
2~SM ′

JMJ
× ~k
]
µ2N . (5.13)

To calculate these contributions to the magnetic moment of the tri-nucleon, we need to
evaluate the expectation value of the current according to

i
(
~ǫλ ·

[
2~SM ′

JMJ
× k̂
])
µ2N = lim

|~k|→0

2mN

|~k|e

〈
M ′

J

∣∣∣~ǫλ · ~J1π
∣∣∣MJ

〉
ψ
. (5.14)

On the right-hand-side, the expression is a multidimensional integral of the form
〈
MJ ′

∣∣∣~ǫλ · ~J1π
∣∣∣MJ

〉
ψ
=
∑

α′

∑

α

∫
d3p′12 d

3p′3

∫
d3p12 d

3p3

ψ
MJ′∗
α′ (~p ′

12, ~p
′
3)~ǫ

λ · ~J1π α′α

(
~k, ~p ′

12, ~p
′
3, ~p12, ~p3

)
ψMJ
α (~p12, ~p3) . (5.15)

For example, the transition from MJ = −1/2 to M ′
J = +1/2 induced by a photon of

helicity λ = +1 reads

2i
(
~ǫ +1 ·

[
~SM ′

JMJ
× k̂
])
µ2N = lim

|~k|→0

2mN

|~k|e

〈
M ′

J = +
1

2

∣∣∣~ǫ +1 · ~J1π
∣∣∣MJ = −1

2

〉

ψ

, (5.16)

or using J+
1π = Jx1π+iJ

y
1π =

√
2~ǫ +1 · ~J1π and i

[
~SM ′

J
MJ

× k̂
]±

= ∓δ± 1
2
,M ′

J
δ∓ 1

2
,MJ

equivalently

µ2N = −1

2
lim
|~k|→0

2mN

|~k|e

〈
+
1

2

∣∣J+
1π

∣∣− 1

2

〉

ψ

. (5.17)

Consequently, the transition from MJ = 1/2 to M ′
J = −1/2 is induced by a photon of

helicity λ = −1 and reads

µ2N = +
1

2
lim
|~k|→0

2mN

|~k|e

〈
−1

2

∣∣J−
1π

∣∣+ 1

2

〉

ψ

, (5.18)
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which can be averaged to improve statistics to

µ2N =
1

4
lim
|~k|→0

2mN

|~k|e

(
−
〈
+
1

2

∣∣J+
1π

∣∣− 1

2

〉

ψ

+

〈
−1

2

∣∣J−
1π

∣∣+ 1

2

〉

ψ

)
=: KF. (5.19)

We separate the calculation into prefactor K and form factor F , which is the expectation
value of the pure transition operator, according to

K =
2mN

e

eg2A
4F 2

π

=
mNg

2
A

2F 2
π

≈ 0.0861 MeV−1 (5.20)

F =
1

4
lim
|~k|→0

1

|~k|

(
−
〈
+
1

2

∣∣∣J̃+
1π

∣∣∣− 1

2

〉

ψ

+

〈
−1

2

∣∣∣J̃−
1π

∣∣∣+ 1

2

〉

ψ

)
. (5.21)

The numerical value forK was obtained using gA = 1.26 for the axial coupling constant and
Fπ = 93 MeV for the pion decay constant. The leading 2N-contributions to the magnetic
moment are collected in table 5.2.

nucleus ψ 3He 3H

F [MeV] −3.036(216)(184) +3.020(236)(186)

µ2N −0.261(19)(16) +0.260(20)(16)

µ2N [73] −0.241 +0.241

µ2N [74] −0.269 +0.274

Table 5.2: Numerical results for the form factor F and the two-nucleon contribution µ2N

to the magnetic moment. The first error is our estimation of the theoretical uncertainty
resulting from the truncation of the chiral expansion while the second one is the statistical
error from the Monte Carlo integration.

The digression ends here and we turn back to the process of neutral pion production, whose
slightly more general structure is similarly given by spin-dependent operators.

5.2 One-Nucleon Contributions

Analogously to the magnetic moment calculations, we consider at first one-nucleon con-
tributions to the pion production amplitude which were calculated for the proton and the
neutron in [3, 4, 75] and only need to be represented in spin and isospin space. To that
end as in the case of the magnetic moment, we combine any calculated proton (neutron)
expectation values ap (an) to an operator Â = ap(1 + τ z)/2 + an(1 − τ z)/2 and evaluate
its expectation value for the trinucleus. To gain additional insights, it is convenient to
consider isoscalar and isovector form factors of the corresponding calculations, i.e. expec-
tation values of the operators (1 ± τ z)/2 with the considered spin structure. These form
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factors represent neutron and proton properties inside the trinucleus. The nucleons are
considered to be independently coupling to the electro-magnetic current, which is conven-
tionally called impulse approximation. Corrections to the impulse approximation due to
relative motion of the nucleons, nuclear interactions and recoil effects are considered in the
following sections. Cross section and conventions can be found in appendix A and B, in
order.

5.2.1 Impulse Approximation to Order q4

The single nucleon contribution to threshold neutral pion photo- and electroproduction off
the tri-nucleon takes the generic form (Eq. (4.3))

Mλ
1N =

3∑

i=1

Mλ
i = ~ǫλ ·

(
~J1 + ~J2 + ~J3

)

Mλ
i =

1 + τ zi
2

2i
{
Eπ0p

0+

(
~ǫλT · ~si

)
+ Lπ

0p
0+

(
~ǫλL · ~si

)}
+

1− τ zi
2

2i
{
Eπ0n

0+

(
~ǫλT · ~si

)
+ Lπ

0n
0+

(
~ǫλL · ~si

)}

=2i

{
1 + τ zi

2
Eπ0p

0+ +
1− τ zi

2
Eπ0n

0+

}(
~ǫλT · ~si

)
+ 2i

{
1 + τ zi

2
Lπ

0p
0+ +

1− τ zi
2

Lπ
0n

0+

}(
~ǫλL · ~si

)

=2i
{
Eπ0S

0+ + τ zi E
π0V
0+

}(
~ǫλT · ~si

)
+ 2i

{
Lπ

0S
0+ + τ zi L

π0V
0+

}(
~ǫλL · ~si

)
(5.22)

where

Eπ0p
0+ = −1.16× 10−3/Mπ+ , Eπ0n

0+ = +2.13× 10−3/Mπ+ (5.23)

are the electric pion-production amplitudes off proton and neutron calculated in [3, 4, 75]
and given in the usual units or equivalently

Eπ0S
0+ =

Eπ0p
0+ + Eπ0n

0+

2
= +0.49× 10−3/Mπ+ (5.24)

Eπ0V
0+ =

Eπ0p
0+ − Eπ0n

0+

2
= −1.65× 10−3/Mπ+ (5.25)

the isoscalar and isovector nucleonic electric pion-production amplitudes and

Lπ
0p

0+ = −1.35× 10−3/Mπ+ , Lπ
0n

0+ = −2.41× 10−3/Mπ+ (5.26)

Lπ
0S

0+ = −1.88× 10−3/Mπ+ , Lπ
0V

0+ = +0.53× 10−3/Mπ+ (5.27)

their longitudinal equivalents at threshold to order q4 [3, 4, 75]. Due to symmetry proper-
ties,

〈MJ ′ |Mλ
1N |MJ〉ψ = 〈MJ ′ |Mλ

1 +Mλ
2 +Mλ

3 |MJ〉ψ = 〈MJ ′ |3Mλ
1 |MJ〉ψ. (5.28)
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With the transversal and the longitudinal form factors

(
~ǫλ,T · ~SM ′

JMJ

)
F S±V
T = 〈MJ ′ | 3~ǫλ,T · ~s1(1± τ z1 ) |MJ〉ψ , (5.29)

(
~ǫλ,L · ~SM ′

J
MJ

)
F S±V
L = 〈MJ ′ | 3~ǫλ,L · ~s1(1± τ z1 ) |MJ〉ψ , (5.30)

(5.31)

we can write down the general result

〈
MJ ′

∣∣Mλ
1N

∣∣MJ

〉
ψ
=2i

{
F S+V
T

2
Eπ0p

0+ +
F S−V
T

2
Eπ0n

0+

}(
~ǫλ,T · ~SM ′

JMJ

)

+2i

{
F S+V
L

2
Lπ

0p
0+ +

F S−V
L

2
Lπ

0n
0+

}(
~ǫλ,L · ~SM ′

JMJ

)

=2iẼ1N
0+

(
~ǫλ,T · ~SM ′

JMJ

)
+ 2iL̃1N

0+

(
~ǫλ,L · ~SM ′

JMJ

)
. (5.32)

To account for the change in phase space, we have to multiply the amplitudes with the
phase factor from Eq. (B.21),

K1N =
mN +Mπ

m3N +Mπ

m3N

mN

≈ 1.092 : (5.33)

E1N
0+ = K1N Ẽ

1N
0+ =

K1N

2

(
F S+V
T Eπ0p

0+ + F S−V
T Eπ0n

0+

)
(5.34)

L1N
0+ = K1N L̃

1N
0+ =

K1N

2

(
F S+V
L Lπ

0p
0+ + F S−V

L Lπ
0n

0+

)
. (5.35)

The results for photo-production off 3He and 3H are collected in table 5.3 and for electro-
production with kµk

µ = −0.1 GeV2 in table 5.4.

The error related to the expansion of the production operator is difficult to estimate given
that the convergence in the expansion for the single nucleon S-wave multipoles is known to
be slow, see Ref. [3] for an extended discussion. We therefore give only a rough estimate of
this uncertainty. The extractions of the proton S-wave photoproduction amplitude based

on CHPT using various approximations [76] lead to an uncertainty ∆Eπ0p
0+ ≈ ±0.05 ×

10−3/Mπ+ , which is about 5%. The uncertainty of the neutron S-wave threshold amplitude
is estimated to be the same. Consequently, our estimate of the error on the single nucleon
amplitude is 5%.

5.2.2 Boost Corrections to q3-Contributions (at q4)

Boost corrections arise in reactions involving composite nuclei and emerge from the relative
motion of the nucleons to the center of mass of the nucleus. Due to the relative motion of
the nucleons the reaction threshold is lowered with respect to the threshold of a reaction
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nucleus ψ 3He 3H

F S+V
T 0.017(13)(3) 1.493(25)(3)

F S−V
T 1.480(26)(3) 0.012(13)(3)

F S+V
L −0.079(14)(8) 1.487(27)(8)

F S−V
L 1.479(26)(8) −0.083(14)(8)

Table 5.3: Numerical results for the form factors F S±V
T/L . The first error is our estimation

of the theoretical uncertainty resulting from the truncation of the chiral expansion while
the second one is the statistical error from the Monte Carlo integration.

nucleus ψ 3He 3H

F S+V
T 0.119(6)(1) 0.602(14)(1)

F S−V
T 0.588(13)(1) 0.118(6)(1)

F S+V
L −0.131(14)(2) 0.589(17)(1)

F S−V
L 0.577(15)(2) −0.136(14)(1)

Table 5.4: Numerical results for the form factors F S±V
T/L for kµk

µ = −0.1 GeV2. The
first error is our estimation of the theoretical uncertainty resulting from the truncation
of the chiral expansion while the second one is the statistical error from the Monte Carlo
integration.

involving a single nucleon. In other words, threshold pion production off a composite
nucleus entails production off single nucleons above threshold. The part of the phase
space parametrizing the relative momentum of the nucleons is integrated out to merge
the nucleons to the chosen asymptotic states, e.g. the tri-nucleon, masking the origin of
the correction and leaving an effective remnant contribution, which is of the form of a
correction to the impulse approximation. In this sense boost corrections are multi-nucleon
effects, but corrections to the one-nucleon sector. We decide to associate this effect to the
1N sector. The boost corrections start to contribute at order q4.
The proton and neutron production amplitudes are calculated in (N, γ)-cms. The boost
of a (3N, γ)-cms 4-vector p to (N, γ)-cms 4-vector p∗ has the general form

(
p0∗

~p ∗

)
=

(
γ −γ~β

−γ~β (113 − P~β) + γP~β

)(
p0

~p

)
=

(
γ(p0 − ~β · ~p)

−γ~βp0 + ~p⊥ + γ~p‖

)
, (5.36)

where P~β is the projection operator onto the ~β-direction, i.e. P~β ~x = (β̂ ·~x)β̂, and ~p‖ = P~β ~p
is the parallel part and ~p⊥ = (1− P~β)~p the perpendicular part of ~p = ~p‖ + ~p⊥ with respect

to ~β. To determine ~β, consider ~k1 + ~kγ. In the (N, γ)-cms this combination has to vanish,
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i.e. ~k ∗
1 + ~k ∗

γ = ~0. We have

~k ∗
1 + ~k ∗

γ = γ
(
−~β(k01 + k0γ) + P~β(

~k1 + ~kγ)
)
+ (1− P~β)(

~k1 + ~kγ)
!
= ~0. (5.37)

Because linear independent (even orthogonal) vectors have to vanish separately, i.e.

(1− P~β)(
~k1 + ~kγ) = ~0

−~β(k01 + k0γ) + P~β(
~k1 + ~kγ) = ~0,

we conclude

~β =
~k1 + ~kγ
k01 + k0γ

=
~k ′
1 + ~q

k′01 + q0
=

~p ′
12 − ~p ′

3

2
+ 2~q

3√
(~p ′

12 − ~p ′
3

2
+ 2~q

3
)2 +m2

N + q0
. (5.38)

Near the static limit we have

~β =
~p ′
12 − ~p ′

3

2
+ 2~q

3

mN



√

(~p ′
12 − ~p ′

3

2
− ~q

3
)2

m2
N

+ 1 +

√
~q2 +M2

π0

mN




−1

=
~p ′
12 − ~p ′

3

2
+ 2~q

3

mN

{
1−

√
~q2 +M2

π0

mN

+O
((

1

mN

)2
)}

=
~p ′
12 − ~p ′

3

2
+ 2~q

3

mN

+O
((

1

mN

)2
)

threshold−−−−−→ ~p ′
12 − ~p ′

3

2

mN

+O
((

1

mN

)2
)
, (5.39)

γ =
(
1− β2

)−1/2
= 1 +

1

2
β2 +O(β4) = 1 +O

((
1

mN

)2
)
. (5.40)

Correspondingly, a general (3N, γ)-cms 4-vector pµ transforms to the (N, γ)-cms as

p0∗ = γ(p0 − ~β · ~p) = p0 − ~p ′
12 − ~p ′

3

2
+ 2~q

3

mN

· ~p threshold−−−−−→ p0 − ~p ′
12 − ~p ′

3

2

mN

· ~p, (5.41)

~p ∗ = −γ~βp0 + ~p⊥ + γ~p‖ = ~p− ~p ′
12 − ~p ′

3

2
+ 2~q

3

mN

p0
threshold−−−−−→ ~p− ~p ′

12 − ~p ′
3

2

mN

p0, (5.42)

given up to first order in one over the nucleon mass. At threshold point we find:

k0∗ = k0 −

(
~p ′
12 − ~p ′

3

2

)
· ~k

mN

, ~k∗ = ~k − k0

mN

(
~p ′
12 −

~p ′
3

2

)
,

q0∗ = q0 −

(
~p ′
12 − ~p ′

3

2

)
· ~q

mN

=Mπ, ~q ∗ = ~q − q0

mN

(
~p ′
12 −

~p ′
3

2

)
= −Mπ

mN

(
~p ′
12 −

~p ′
3

2

)
,

ǫ0∗λ = ǫ0λ −

(
~p ′
12 − ~p ′

3

2

)
· ~ǫλ

mN

, ~ǫ ∗
λ = ~ǫλ −

ǫ0

mN

(
~p ′
12 −

~p ′
3

2

)
= ~ǫλ. (5.43)
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The polarization vector does not change except for the time component. To adopt the
results for pion production off single nucleons in the (N, γ)-cms to the tri-nucleon case,
the pion momentum in the (3N, γ)-cms at threshold, ~q = ~0, is boosted to the (N, γ)-cms

value ~q ∗ = −Mπ

mN

(
~p ′
12 − ~p ′

3

2

)
=: −µ

(
~p ′
12 − ~p ′

3

2

)
above threshold. The corresponding P-wave

contribution off the nucleon with spin ~s reads (using the notation from Ref. [69])

Mλ =2i(~ǫλ · ~s )(q̂∗ · k̂)P1 + 2i(~ǫλ · q̂∗)(k̂ · ~s )P2 + (~ǫλ · [q̂∗ × k̂])P3

+2i(~ǫλ · k̂)(k̂ · ~s )(q̂∗ · k̂)(P4 − P5 − P1 − P2) + 2i(~ǫλ · k̂)(q̂∗ · ~s )P5.

=:2i(~ǫλT · ~s )(q̂∗ · k̂)P1 + 2i(~ǫλT · q̂∗)(k̂ · ~s )P2) + (~ǫλT · [q̂∗ × k̂])P3

+2i(~ǫλL · ~s )(q̂∗ · k̂)P4 + 2i(~ǫλL · k̂)(q̂∗T · ~s )P5.

Close to threshold, the P-wave multipoles Pi behave as Pi ≈ P̄i|~q ∗| = µP̄i|~p ′
12 − ~p ′

3

2
| with

P̄ p
1 = +0.01872fm2, P̄ p

3 = +0.02395fm2, P̄ p
4 = +0.00129fm2,

P̄ n
1 = +0.01342fm2, P̄ n

3 = +0.02336fm2, P̄ n
4 = +0.00027fm2,

where the numerical values refer to the P-wave low-energy theorems for pion photo- [3]
and electroproduction [77]. Corrections to these theorems are beyond the accuracy of our
calculation.

In analogy to the S-wave case discussed above, we define the P-wave form factors

(
~ǫλ,T · ~SM ′

JMJ

)
F S±V
1 =

〈
MJ ′

∣∣∣ 3(~ǫλ,T · ~s1)
(
(~p ′

12 − ~p ′
3/2) · k̂

)
{1± τ z1 }

∣∣∣MJ

〉
ψ
,

(
~ǫλ,T · ~SM ′

J
MJ

)
F S±V
2 =

〈
MJ ′

∣∣∣ 3
(
~ǫλ,T · (~p ′

12 − ~p ′
3/2)

)
(k̂ · ~s1) {1± τ z1 }

∣∣∣MJ

〉
ψ
,

(
~ǫλ,T · ~SM ′

JMJ

)
F S±V
3 =

〈
MJ ′

∣∣∣−3i(~ǫλ,T ·
[
(~p ′

12 − ~p ′
3/2)× k̂

]
) {1± τ z1 }

∣∣∣MJ

〉
ψ
,

(
~ǫλ,L · ~SM ′

JMJ

)
F S±V
4 =

〈
MJ ′

∣∣∣ 3(~ǫλ,L · ~s1)
(
(~p ′

12 − ~p ′
3/2) · k̂

)
{1± τ z1 }

∣∣∣MJ

〉
ψ
,

(
~ǫλ,L · ~SM ′

JMJ

)
F S±V
5 =

〈
MJ ′

∣∣∣ 3(~ǫλ,L · k̂)
(
(~p ′

12 − ~p ′
3/2)T · ~s1

)
{1± τ z1 }

∣∣∣MJ

〉
ψ
,

where the spin and isospin operators refer to nucleon 1. The contributions from the other
nucleons are accounted for by the overall factor of three as before.

In terms of these form factors, the P-wave contribution to the 3N-production amplitude
takes the form:

E1N
0+ = K1N Ẽ

1N
0+ = −K1N

2
µ

3∑

i=1

(
F S+V
i P̄ p

i + F S−V
i P̄ n

i

)
, (5.44)

L1N
0+ = K1N L̃

1N
0+ = −K1N

2
µ

5∑

i=4

(
F S+V
i P̄ p

i + F S−V
i P̄ n

i

)
. (5.45)
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These form factors are evaluated using the same Monte Carlo method as employed for the
S-waves. The numerical values are collected in Tab. 5.5. Note that F2 and F5 come out
to be consistent with zero and are therefore not listed in the table. As before, the proton
contribution is dominant in 3H, whereas the neutron one features prominently in 3He.

nucleus ψ 3He 3H

F S+V
1 +0.004(3)(1) +0.339(6)(1)

F S−V
1 +0.338(5)(1) +0.002(3)(1)

F S+V
3 −0.015(2)(0) −0.011(2)(0)

F S−V
3 −0.011(2)(0) −0.015(2)(0)

F S+V
4 −0.019(5)(4) +0.339(6)(4)

F S−V
4 +0.337(6)(4) −0.021(3)(4)

Table 5.5: Numerical results for the boost correction form factors F S±V
i in units of [fm−1].

The first error is our estimation of the theoretical uncertainty resulting from the truncation
of the chiral expansion while the second one is the statistical error from the Monte Carlo
integration. F S±V

2 and F S±V
5 are not shown here, because they are consistent with zero.

Notice that in contrast to the single-nucleon corrections, we do not need to employ a special
treatment for boost corrections to the leading two-nucleon contributions at the order we are
working. All 1/mN -corrections to the leading three-body contributions to the production
operator needed in the calculations are treated on the same footing as described in section
5.3.2.

5.3 Two-Nucleon Contributions

Two-nucleon contributions of an excitation process parametrize the leading nuclear correc-
tions to the integral kernel, which in ChPT are mediated by one-pion-exchange and nucleon
contact interactions. In neutral pion production processes, two-nucleon terms are known
to be dominant with respect to one-nucleon effects in case of the deuteron [6]. We expect
this behaviour also for the trinucleus. The lowest order only consists of one-pion-exchange
diagrams, because all possible contact terms vanish in Coulomb gauge at LO (q3) and at
threshold even at NLO (q4).

5.3.1 Leading Contributions (q3)

In Coulomb gauge, only the two Feynman diagrams shown in Fig. 5.2 contribute at thresh-
old to third order [6], labeled by (a) and (b). Their contribution exclusively consists of
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Figure 5.2: Leading two-nucleon contributions to the nuclear pion production matrix ele-
ment at threshold. Solid, dashed and wiggly lines denote nucleons, pions and photons, in
order.

operators ∼ gA and has therefore no free parameters.

iTNN,a12 + iTNN,a21 = −(2m2
N)
MπegA
F 3
π

~aλ · (~s1 + ~s2)(
~p12 − ~p ′

12 +
~k/2
)2 (~τ1 · ~τ2 − τ z1 τ

z
2 ). (5.46)

This leads to a contribution

M2N
λ,a = 2i

MπegAm3N

16π(m3N +Mπ)(2π)3F 3
π〈

3
~aλ · (~s1 + ~s2)

(~p12 − ~p ′
12 +

~k/2)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )δ

(3)
((
~p3 − ~kγ/3

)
− ~p ′

3

)〉

ψ

:= 2iK
(3)
2N

〈
MJ ′

∣∣∣Ôa

∣∣∣MJ

〉
ψ
, (5.47)

with the prefactor

K
(3)
2N =

MπegAm3N

16π(m3N +Mπ)(2π)3F 3
π

≈ 0.135 fm × 10−3/Mπ+ . (5.48)

The numerical value for K
(3)
2N was obtained using gA = 1.26 for the axial coupling constant,

Fπ = 93 MeV for the pion decay constant, and the neutral pion mass Mπ = 135 MeV.

iTNN,b12 + iTNN,b21 (5.49)

=(2m2
N)
MπegA
F 3
π

(
(~p12 − ~p ′

12 − ~k/2) · (~s1 + ~s2)
)(

~aλ · (2~p12 − 2~p ′
12)
)

[
(~p12 − ~p ′

12 − ~k/2)2 +M2
π

] (
~p12 − ~p ′

12 +
~k/2
)2 (~τ1 · ~τ2 − τ z1 τ

z
2 ).
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nucleus ψ 3He 3H

F
(a)
T − F

(b)
T [fm−1] −29.3(2)(1) −29.7(2)(1)

F
(a)
L − F

(b)
L [fm−1] −22.9(2)(1) −23.2(1)(1)

Table 5.6: Numerical results for the form factors F
(a)
T/L − F

(b)
T/L parametrizing two-body

contributions in units of fm−1 for photoproduction. The first error is our estimation of
the theoretical uncertainty resulting from the truncation of the chiral expansion while the
second one is the statistical error from the Monte Carlo integration.

This leads to a contribution

M2N
λ,b = −2i

MπegAm3N

16π(m3N +Mπ)(2π)3F 3
π

〈
6

(
(~p12 − ~p ′

12 − ~k/2) · (~s1 + ~s2)
)(

~aλ · (~p12 − ~p ′
12)
)

[(~p12 − ~p ′
12 − ~k/2)2 +M2

π ](~p12 − ~p ′
12 +

~k/2)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )δ

(3)
((
~p3 − ~kγ/3

)
− ~p ′

3

)〉

ψ

:= −2iK
(3)
2N

〈
MJ ′

∣∣∣Ôb

∣∣∣MJ

〉
ψ
. (5.50)

According to Eq. (4.3) we can write the amplitude as

M2N
λ,a +M2N

λ,b = 2i
{
(E2N

0+,a + E2N
0+,b)~ǫ

λ
T · ~SM ′

JMJ
+ (L2N

0+,a + L2N
0+,b)~ǫ

λ
L · ~SM ′

JMJ

}

=2iK
(3)
2N

(〈
MJ ′

∣∣∣ Ôa

∣∣∣MJ

〉
ψ
−
〈
MJ ′

∣∣∣ Ôb

∣∣∣MJ

〉
ψ

)

=2i
{
K

(3)
2N(F

(a)
T − F

(b)
T )~ǫλT · ~SM ′

JMJ
+K

(3)
2N(F

(a)
L − F

(b)
L )~ǫλL · ~SM ′

JMJ

}

=:2i
{
E2N

0+~ǫ
λ
T · ~SM ′

JMJ
+ L2N

0+~ǫ
λ
L · ~SM ′

JMJ

}
. (5.51)

The results for photo-production off 3He and 3H are collected in table 5.6 and for electro-
production in table 5.7.

5.3.2 Subleading Contributions (q4)

The subleading 2N contributions in fig. 5.3 are corrections to the two-nucleon production
operator. These can be grouped in two categories, namely the so-called static and the so-
called recoil corrections. The static corrections are shown in Fig. 5.3. They involve - as the
leading 2N corrections do - static propagators but one insertion from the dimension two
chiral effective pion-nucleon Lagrangian L(2)

πN . The recoil corrections feature corrections
to the static propagators with only insertions from the leading order (dimension one)
chiral Lagrangian. These corrections are most conveniently derived in a time-ordered
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nucleus ψ 3He 3H

F
(a)
T − F

(b)
T [fm−1] −16.06(21)(3) −16.44(20)(2)

F
(a)
L − F

(b)
L [fm−1] −9.61(15)(3) −9.78(12)(3)

Table 5.7: Numerical results for the form factors F
(a)
T/L − F

(b)
T/L parametrizing two-body

contributions in units of fm−1 for electroproduction with kµk
µ = −0.1 GeV2. The first error

is our estimation of the theoretical uncertainty resulting from the truncation of the chiral
expansion while the second one is the statistical error from the Monte Carlo integration.

diagrammatic approach using the Q-box expansion. The corresponding diagrams are shown
in Fig. 5.4. The boxes indicate the regions where the two energy denominators whose
1/mN -expansion generates these corrections can appear (see Ref. [78] for more details).
These two types of corrections will be discussed in Sec. 5.3.2 and Sec. 5.3.2, in order. Note,
that three-nucleon effects do not contribute to the given order.
All diagrams of Fig. 5.3 and Fig. 5.4 give corrections of the form iT

(i)
12 = NÔ(i)

12 and involve
multiples of the generic prefactor N := egAmN

2F 3
π

which lead to contributions of the form

M(i) = 2iK
(4)
2N

〈
Ô(i)

12 + Ô(i)
21

〉
ψ
, (5.52)

to account for the phase space and normalization, cf. Eq. (B.27). The prefactor

K
(4)
2N = −1

2

m3N

mN

1

8π(m3N +Mπ)

N
(2π)32mN

= − 3egA
256π4F 3

π (m3N +Mπ)
= −K(3)

2N

1

4mNMπ

= −0.135 fm
10−3

Mπ+

× 0.077 fm2 ≈ −0.0104 fm310
−5

Mπ+

(5.53)

of the 2N contributions to order q4 is suppressed considerably compared to the prefactor
K

(3)
2N of 2N contributions to order q3.

For the sake of presentability, we rewrite the total next-to-leading-order contribution to
the form

M =2iK
(3)
2N

〈∑

i

Ô(i)
12 + Ô(i)

21

−4mNMπ

〉

ψ

=2iK
(3)
2N

{
(F static

T + F recoil
T )~ǫλT · ~SM ′

JMJ
+ (F static

L + F recoil
L )~ǫλL · ~SM ′

JMJ

}
, (5.54)

analogous to the leading-order two-nucleon results, where the form factor F static
T/L (F recoil

T/L )

corresponds to the sum of all static (recoil) diagrams.

Static contributions

The so-called static corrections to the leading two-nucleon diagrams (a) and (b) are depicted
in Fig. 5.3 and labelled by (ai) and (bi), respectively. All energy propagators are evaluated
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(a1)

(a2)

(a3)

(a4)

(b1)

+ +

+

+ +

+

+ +

Figure 5.3: Subleading static two-nucleon contributions to the nuclear pion production
matrix element at threshold. The filled circle denotes an insertion from the dimension two
effective Lagrangian. For further notations, see Fig. 5.2.

in the static limit. One vertex of the corresponding leading order diagram is replaced by
a one order higher vertex.
Higher order vertices in general are not as restricted by the threshold and the Coulomb
gauge condition as the leading order vertex and can therefore be inserted at different places
as can be seen comparing Fig. 5.2 and Fig. 5.3. As a consequence and in contrast to the
leading order, the longitudinal correction is larger by a factor of three than the transversal
one, which reflects this additional freedom. The subleading static contributions are listed
in momentum space in section B.4.1. As the form factors in Tab. 5.8 are much smaller than
the leading counterparts (Tab. 5.6) in the two-nucleon sector, the power counting seems to
separate terms of different importance well. The low-energy expansion converges fast for
static two-nucleon operators, which in the one-nucleon sector is not true [79]. Independent
of the order of magnitude, the subleading static one-pion-exchange result varies very mildly
with the wave-function cutoff, which is consistent with the leading order results.
Up to this point, we have taken into account higher order corrections to the vertices only.
To complete the calculation for order q4, we also have to consider corrections to propagators
parametrizing nuclear recoil effects in the following.
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Recoil corrections

(b′
1
) (b′

2
) (b′

3
)

(b′4) (b′5) (b′6)

(a′
1
)

Figure 5.4: Subleading recoil two-nucleon contributions to the nuclear pion production
matrix element at threshold in time-ordered perturbation theory. The boxes indicate the
regions where the two energy denominators to be expanded can appear (further notation
as in Fig. 5.2).

The so-called recoil corrections are depicted in the diagrams shown in Fig. 5.4 and are
labelled corresponding to their parent diagrams by (a′i) and (b′i). In this type of contribution
the full energy denominator is expanded in a time-ordered formalism using so-called Q-
boxes. Reducible parts and intermediate NNπ-states of diagrams are taken in the static
limit to suppress possible break-up effects. The remaining energy denominators are Taylor
expanded in 1/mN about 1/mN = 0. The term linear in 1/mN is the one of significance
here. All vertices remain unchanged. The boxes indicate the regions where the two energy
denominators to be expanded can appear. For details, see Ref. [78]. The momentum space
representation of the contributions can be found in section B.4.2.
It is known from the two-nucleon case, explicitly calculated in a simplified model for pion
scattering off the deuteron in [80], that there are strong cancellations of recoil effects
between one-nucleon and two-nucleon rescattering diagrams with Pauli-forbidden NNπ
intermediate states, i.e. the static approximation proves to be a good approximation here.
Similarly, in case of the trinucleus, the principal S-wave dominantly Pauli-forbids these
intermediate NNπ-states. Therefore one expects a suppression of recoil corrections.
The result of the subleading two-body contributions convoluted with the tri-nucleon wave
functions is collected in Tab. 5.8. Within the large uncertainties, the recoil contribution
is compatible with zero. The strong wave function cutoff dependence of the recoil form
factors F recoil

T and F recoil
L indicates a mixing of different orders or incompleteness of the

set of considered terms and may confront us with the problematic power counting used
here, in which Mπ/mN corrections stemming from the expansion of the corresponding
energy denominators are treated as O(q/Λ). A consistent treatment of the new scale
χ =

√
MπmN ≃ 340 MeV appearing in calculations which take into account nucleon

recoil effects using an adapted powercounting scheme has not been performed in the pion
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production context. However, we note that this issue needs to be investigated in more
detail in view of the findings of Refs. [81, 80].
A way to check the calculations would be to take the full energy denominator for the
leading two-nucleon contributions, which is in principle possible in the Monte Carlo in-
tegration formalism. The recoil contribution is nevertheless smaller than the LO static
contribution. This behaviour is consistent with the expectations expressed in [80], given
that the intermediate NNπ-states are Pauli forbidden.

nucleus ψ 3He 3H

F static
T [fm−1] −0.134(6)(72) −0.150(50)(84)

F recoil
T [fm−1] +0.078(174)(2) +0.078(180)(4)

F total
T [fm−1] −0.056(180)(72) −0.072(144)(84)

F static
L [fm−1] −0.542(56)(110) −0.490(38)(99)

F recoil
L [fm−1] +0.538(482)(10) +0.542(532)(10)

F total
L [fm−1] −0.004(492)(110) +0.052(564)(100)

Table 5.8: Numerical results for the form factors F static and F recoil. The first error is an
estimate of the theory error from higher orders in chiral EFT while the second error is the
statistical error from the Monte Carlo integration.

5.4 Parameters, Runtime, Convergence

The VEGAS algorithm provides a two step iteration procedure. In the first step, the result
and error of each iteration are used to refine the sampling point grid without accumulation
of results and errors. In the second step, the results and errors are collected to a weighted
average with standard deviation. Usually the first step is operated with much (one order of
magnitude) less sampling points to optimize the run time, but with much (e.g. one order
of magnitude) more iterations than the second. In this manner, the first step iterations are
speeded up and their results are excluded. The following values of the runtime parameters
ncallX (number of sampling points in step X) and itX (number of iterations in step X)
proved to be accurate for the calculations, rt denotes the run time on a single core:
1N contributions: ncall1 = 104, it1 = 10, ncall2 = 105, it2 = 3 and rt≈ 2h.
2N contributions: ncall1 = 105, it1 = 10, ncall2 = 106, it2 = 3 and rt≈ 20h.
We optimized these parameters in the first deuteron and tri-nucleon calculations and fixed
them to the above values to gain reproducible results. Only for some contributions in the
2N q4 sector the error had to be reduced by using a larger ncall2 = 107.
In the following, we demonstrate the dependence on the cutoff and the second step param-
eters it2 and ncall2 by the example of the leading order two nucleon contributions shown
in Fig. 5.2.



64 CHAPTER 5. CALCULATION AND NUMERICAL RESULTS

5.4.1 Cutoff Dependence

The five cutoff combinations (Λ̃,Λ) used to generate the tri-nucleon wave functions ψ(Λ̃,Λ)
give a handle to estimate the influence of higher order effects. For a chosen contribution Ô
we calculate five tri-nucleon expectation values, one for each of the five cutoff combinations.

〈
Ô
〉
ψ
(Λ̃,Λ) :=

〈
ψ(Λ̃,Λ)

∣∣∣Ô
∣∣∣ψ(Λ̃,Λ)

〉
. (5.55)

The mean value is a reasonable expectation value (in which higher order effects stemming
from the wave function generation are averaged),

〈
Ô
〉
ψ
:=

1

2

(
max
(Λ̃,Λ)

{〈
Ô
〉
ψ
(Λ̃,Λ)

}
+ min

(Λ̃,Λ)

{〈
Ô
〉
ψ
(Λ̃,Λ)

})
≈ 1

5

∑

(Λ̃,Λ)

〈
Ô
〉
ψ
(Λ̃,Λ). (5.56)

The spread from the mean value is a lower bound for the error induced by higher order
effects,

∆
〈
Ô
〉
ψ
:=

1

2

(
max
(Λ̃,Λ)

{〈
Ô
〉
ψ
(Λ̃,Λ)

}
− min

(Λ̃,Λ)

{〈
Ô
〉
ψ
(Λ̃,Λ)

})
(5.57)

≈ max
(Λ̃,Λ)

{〈
Ô
〉
ψ
(Λ̃,Λ)

}
− 1

5

∑

(Λ̃,Λ)

〈
Ô
〉
ψ
(Λ̃,Λ) ≈ 1

5

∑

(Λ̃,Λ)

〈
Ô
〉
ψ
(Λ̃,Λ)− min

(Λ̃,Λ)

{〈
Ô
〉
ψ
(Λ̃,Λ)

}
.

In practice, the spread produces an error of reasonable size. The first form of eq. (5.56)
guarantees a symmetrical cutoff spread error, but the second form is preferable for statis-
tical error propagation.
In Fig. 5.5 the cutoff dependence of the leading two nucleon contributions a) and b) is

shown in terms of the 3H form factors F
(a)
T and F

(b)
T . The contributions a) and b) sep-

arately depend strongly on the cutoff combination. As expected the cutoff dependence
reduces drastically for the full leading order contribution, F

(a)
T − F

(b)
T .

The plot illustrates the idea for estimations of higher order effects: We vary the wave
function cutoff combinations and take the central value and the spread as the expectation
value and the corresponding error, whereas the statistical error simply is propagated and
given as an additional error band.
The central value and statistical error of the VEGAS integration show a distinct pattern:
Cutoff combination 1 and 4 seem to contribute with a nearly identical value and less MC
variance. On the other hand combinations 2 and 5 have nearly the same value with the
largest MC variance, i.e. the result seems to be nearly independent of the Lippmann-
Schwinger cutoff Λ and seems to vary (mildly) with the spectral function cutoff Λ̃. We
observed this pattern for all considered integral kernels.

5.4.2 Dependence on ncall2 and it2

The dependence on the second step VEGAS parameters is essential for convergence. Op-
timization for ncall2 and it2 is not simple since we have to find an optimum in a 2-dim.
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Figure 5.5: Cutoff dependence of the leading two-nucleon contributions F
(a)
T and F

(b)
T for

3H. The cutoff is given in terms of five different combinations as explained in the text. The
full leading order two nucleon contribution F

(a)
T − F

(b)
T varies very mildly with the cutoff.

The central value is given as the dashed line, the cutoff spread as the inner band and the
outer band represents the statistical error. The data of the contributions from diagram a)
and b) are plotted with an appropriate offset.

plane. Since the computing power is limited, we concentrate on each parameter separately
and compare the results of both approaches as a consistency check. Here, we consider the
cutoff mean value explained above of the leading two nucleon contribution F

(a)
T and the

statistical error only. The cutoff error is not analyzed here because it is nearly constant.
The computational complexity grows almost linear with the parameters it2 and ncall2. For
a well chosen and fixed it2 (ncall2) and variation of ncall2 (it2) one expects a monotone
or alternating saturation behavior for the expectation value and a corresponding variance
below the crude MC variance of Eq. (3.1), ∝ 1/

√
ncall2 · it2, indicating reasonable conver-

gence. The dependence on it2 is shown in Fig. 5.6 for fixed ncall2 = 106. Mean value and
error behave as expected. Note that the plotted entity F

(a)
T is not an oberservable.

The dependence of the form factor F
(a)
T on ncall2 is shown in Fig. 5.7 for fixed it2 = 3.

Note the different scales in comparison to Fig. 5.6. The mean value quickly converges
arriving at a plateau for ncall2 ∈ [105, 107] and the variance reduces more rapidly than
∝ 1/

√
ncall2 as statistically expected. Based on the above analysis and the compromise

between computational complexity and numerical accuracy we chose it2 = 3 and ncall2 =
106. Only for some worse conditioned integration kernels stemming from higher two-
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Figure 5.6: Dependence of the leading two nucleon contribution F
(a)
T for 3H on the iterations

it2 in the second VEGAS integration step.

nucleon contributions, we increased ncall2 to 107.

5.5 Results

We are now in a position to evaluate the nuclear S-wave multipoles. They are given as the
sum of the one- and two-nucleon contributions given in the previous section,

Eπ0ψ
0+ = E1N

0+ + E2N
0+ , Lπ

0ψ
0+ = L1N

0+ + L2N
0+ . (5.58)

Combining the leading and subleading corrections to the two-nucleon production operators
discussed above with the subleading chiral perturbation theory results for the single-nucleon
multipoles at O(p4) [3, 4, 75]

Eπ0p
0+ =− 1.16× 10−3/Mπ+ , Eπ0n

0+ = +2.13× 10−3/Mπ+ ,

Lπ
0p

0+ =− 1.35× 10−3/Mπ+ , Lπ
0n

0+ = −2.41× 10−3/Mπ+ , (5.59)

we obtain for the threshold multipoles on 3He and on 3H the values listed in Table 5.9.

For Eπ0p
0+ we took an average of Refs. [4, 75]. The neutron amplitude uses the updated

LECs from [4] based on the formalism from [4] but is not explicitly given in that paper.
Note that the values for the single nucleon multipoles in Eq. (5.59) are consistent with
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Figure 5.7: Dependence of the leading two nucleon contribution F
(a)
T for 3H on the number

of function calls ncall2 in the second VEGAS integration step.

the unpolarized data of [82] and a recent calculation in the chiral unitary approach [83].
The extractions of the proton S-wave photoproduction multipoles based on ChPT using
various approximations show a 5% uncertainty [76]. Consequently, we assign a 5% error
to the single-nucleon multipoles.1

We remark that in the heavy baryon calculations of Refs. [3, 4], the physical pion masses
have been used in the kinematics. Moreover, the physical pion masses were used in evaluat-
ing the corresponding loop diagrams. Thus the production as well as the second threshold
due to the π+n intermediate state are correctly accounted for. The same approach is used
here. Therefore, the multipole values in Eq. (5.59) can indeed be tested in pion production
off the tri-nucleon.

In Table 5.9, adding the first two columns gives the leading one-loop result from Ref. [16].
The fourth order corrections are given separately for the boost of the single nucleon terms
(third column) as well as the contributions described in section 5.3.2 and referred to as
static and recoil, respectively. The complete one-loop result can be found in the sixth
column. The first error given is an estimate of the theory error from higher orders in
chiral EFT, the second error is the statistical error from the Monte Carlo integration.

1We note that it is misleading to estimate the theory uncertainty from comparing third and fourth order
results due to the abnormally large contribution of the triangle diagram [79]. The theory uncertainty has
therefore been estimated from a comparison of fitting various data sets available and using variations of
the ChPT amplitude that account for unitarity exactly.
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3He 1N (q4) 2N (q3) 1N-boost 2N-static (q4) 2N-recoil (q4) total

Eπ0ψ
0+ +1.71(4)(9) −3.95(3) −0.23(1) −0.02(0)(1) +0.01(2)(1) −2.48(11)

Lπ
0ψ

0+ −1.89(4)(9) −3.09(2) −0.00(0) −0.07(1)(1) +0.07(7)(0) −4.98(12)
3H 1N (q4) 2N (q3) 1N-boost 2N-static (q4) 2N-recoil (q4) total

Eπ0ψ
0+ −0.93(3)(5) −4.01(3) −0.35(1) −0.02(1)(1) +0.01(2)(0) −5.28(7)

Lπ
0ψ

0+ −0.99(4)(5) −3.13(1) −0.02(0) −0.07(0)(1) +0.07(7)(0) −4.14(10)

Table 5.9: Numerical results for the 3N multipoles in [10−3/Mπ+ ]. The first error is our es-
timation of the theoretical uncertainty resulting from the truncation of the chiral expansion
while the second one is the statistical error from the Monte Carlo integration.

Notice that the statistical error is negligible compared to theory error. The 5% error
from the single-nucleon amplitudes discussed above is not included in the numbers for
the theory error, but appears as the second error of the single nucleon contribution in
the table. For the total result only the combined error is given. Overall, we find that

these fourth order corrections for the electric dipole amplitude Eπ0ψ
0+ for both tri-nuclear

systems come out to be very small, much smaller than in case of the deuteron. This
can be, in part, traced back to the smaller values of the various form factors (for the
boost corrections) and also to the small prefactor Kq4

2N , cf. Eq. (5.53), for the two-nucleon

contributions. For the longitudinal amplitude Lπ
0ψ

0+ , the sum of the fourth order corrections
is consistent with zero within the uncertainties. This can be understood as follows: First,
the boost corrections are proportional to the P-wave multipole P4, which is much smaller
than the corresponding multipoles P1, P3 that appear in the electric dipole amplitude, cf.
Eq. (5.44). Second, there are almost perfect cancellations between the static and the recoil
contributions for both tri-nucleon systems. These cancellations are accidental in the sense
that they cannot be traced back to any symmetry or small prefactor. The process seems to
ignore longitudinal degrees of freedom inside the trinucleus represented by boost, static and
recoil corrections. In summary, we find that the chiral expansion for the S-wave multipoles
at threshold converges fast and that the largest uncertainty remains in the single nucleon
production amplitudes. We also remark that the fourth order corrections to the electric
dipole amplitudes of the tri-nucleon systems are sizably smaller than for the deuteron.
Now, let us concentrate on photoproduction. The threshold S-wave cross section for pion
photoproduction a0 is given in terms of the photon momentum ~k and the pion momentum
~q by

a0 =
|~k |
|~q |

dσ

dΩ

∣∣∣∣∣
~q=0

=
∣∣∣Eπ0ψ

0+

∣∣∣
2

. (5.60)

In Fig. 5.8, we illustrate the sensitivity of a0 to the single-neutron multipole Eπ0n
0+ .

The shaded band indicates the theory error estimated from the cutoff variation as described

above and a 5% error in Eπ0p
0+ . As shown above, the uncertainties related to the nuclear
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Figure 5.8: Sensitivity of a0 for 3He in units of 10−6/M2
π+ to the single-neutron multipole
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0+

and the vertical dotted lines indicate the 5% error in the prediction. The shaded band

indicates the theory error estimated from the cutoff variation and a 5% error in Eπ0p
0+ as

described in the text.

effects are of the order of one percent, i.e. completely negligible. So our estimate of a
10% uncertainty of the 2N contributions in Ref. [16] driven by the analogy to the deuteron
case [6] turns out to be much too conservative. The vertical dashed line indicates the
ChPT prediction Eπ0n

0+ = 2.13×10−3/Mπ+ . Changing this value by ±20% leads to changes
in a0 of about ±30%. Thus, the 3He nucleus is a very promising target to test the ChPT
prediction for Eπ0n

0+ . On the contrary, neutral pion production on 3H is rather insensitive

to Eπ0n
0+ : a variation of Eπ0n

0+ in the range 0 . . . 3 (in units of 10−3/Mπ+) changes a0 only by
1%.
Next we compare our predictions with the available data. The consistency of the ChPT
prediction for the single-neutron multipole with the measured S-wave threshold amplitude
on the deuteron from Saclay and Saskatoon is well established, see Refs. [6, 2]. The
reanalyzed measurement of the S-wave amplitude for 3He at Saclay gives E3 = (−3.5 ±
0.3)× 10−3/Mπ+ [12, 13], which is related to a0 according to

∣∣∣Eπ0ψ
0+

∣∣∣
2

= |E3|2
∣∣∣∣
F S−V
T

2

∣∣∣∣
2(

1 +Mπ/mN

1 +Mπ/3mN

)2

. (5.61)

Here, we have approximated the A = 3 body form factor FA of Argan et al. [13] by the
numerically dominant form factor F S−V

T for 3He, cf. Tab. 5.3. This results in

Eπ0ψ
0+ = (−2.8± 0.2)× 10−3/Mπ+ , (5.62)



70 CHAPTER 5. CALCULATION AND NUMERICAL RESULTS

assuming the same sign as for our 3He prediction in Table 5.9. In magnitude, the extracted

value is about 25% above the leading one-loop prediction Eπ0ψ
0+ = −2.24(11)× 10−3/Mπ+ .

The discrepancy is reduced for the fourth order result Eπ0ψ
0+ = −2.48(11) × 10−3/Mπ+ ,

which is about 12% below the experimental value in Eq. (5.62). Taking into account the
errors, our fourth order result is consistent with the experiment of Argan et al. [13]. Given
the model-dependence that is inherent to the analysis of Ref. [13], it is obvious that a more
precise measurement using CW beams and modern detectors is very much called for. Our
calculation establishes a model independent connection between the tri-nucleon multipole
measured in such an experiment and the single neutron multipole to be extracted.



Chapter 6

Summary and Outlook

In this work, we have presented a calculation of the leading and subleading two-nucleon
operators for threshold neutral pion photo- and electroproduction off the tri-nucleon sys-
tems 3H and 3He. This includes the leading two-nucleon order O(q3) and completes the
one-loop calculation at order O(q4) in the standard heavy baryon counting. The produc-
tion operator was evaluated in the framework of chiral nuclear effective field theory, in line
with the earlier calculations for neutral pion production off the deuteron [5, 6, 7]. To this
order, it gets both one- and two-body contributions. Here, we have given explicit expres-
sions for the fourth order two-nucleon contributions stemming from boost corrections for
pion production off a single nucleon (such contributions only arise from the fact that in
a nucleus the threshold for pion production is lowered as compared to the nucleon case),
from static 2N contributions with one insertion from the dimension two chiral pion-nucleon
Lagrangian and from recoil corrections to the pion- and nucleon propagators. We have used
the chiral wave functions of Refs. [60, 61] to calculate the S-wave 3N multipoles E0+ and
L0+. These wave functions are consistent with the pion production operator.

We have shown that all corrections at fourth order in the standard heavy baryon counting
are very small, a few percent for the tri-nucleon electric dipole amplitudes and essentially
vanishing for the corresponding longitudinal amplitudes. This suppression can be explained
by very small boost correction and an accidental cancellation between the static and the
recoil contributions. We remark that these corrections are sizably smaller than in the
deuteron case [6]. A consistent treatment of the new scale χ =

√
MπmN ≃ 340 MeV

appearing in calculations which take into account nucleon recoil effects using an adapted
powercounting scheme has not been performed in the pion production context. In our
calculations, the strong cutoff-dependence of the recoil corrections is an indication for
mixing up different orders. However, we note that this issue needs to be investigated in
more detail in view of the findings of Refs. [81, 80].

The theoretical uncertainty associated with the cutoff variation in the employed wave
functions appears to be small (of the order of 3%). The dominant theoretical error at
this order stems from the threshold pion production amplitude off the proton and the
neutron, which is estimated to be about 5%. Consequently, we have explored the possibility
to extract the elementary neutron multipole Eπ0n

0+ from a neutral pion photoproduction
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measurement off 3He. We found indeed a large sensitivity of the E0+ amplitude to Eπ0n
0+ .

Given the very small uncertainty of the nuclear corrections as shown here, 3He appears to
be a promising target to test the counterintuitive ChPT prediction for Eπ0n

0+ [3, 4].

We have also shown that our prediction for the 3He S-wave multipole E0+ is roughly
consistent with the value deduced from the old Saclay measurement of the threshold cross
section [13]. A new measurement using modern technology and better methods to deal
with few-body dynamics is urgently called for. The rapid energy dependence of Eπ0n

0+ due
to the close by charged pion production threshold presents a challenge for its experimental
extraction. A calculation of pion production above threshold would be valuable in this
context.

There are many other natural extensions of this work. They include investigating higher
orders, the role of the nucleon recoil, the extension to virtual photons and pion electropro-
duction, production of charged pions, and considering heavier nuclear targets such as 4He.

The next level of understanding should be archieved by higher order calculations to investi-
gate the slow converging single-nucleon amplitudes and the dominance of the two-nucleon
sector in the context of light nuclei. Of special importance is also the three-nucleon force
that starts to contribute to the integral kernel at the next order q5.
4He is particularly interesting for investigations above threshold in this context because it
does not carry nuclear spin. As a consequence, the amplitude for neutral pion production
off a spin-0 nucleus ψ vanishes at threshold and takes near threshold the simple form
[84, 15]

Mλ =(~ǫλT · [q̂π × k̂])Pψ
3 .

Since, for the unpolarizable 4He, the magnetic quantum numbers MJ = 0 = M ′
J do not

change, Pψ
3 is the only P-wave amplitude that survives, corresponding to the part of the

CGLN-amplitude F2 with l = 1 in Eq. 4.8 in the one-nucleon case, i.e. P3 = 2M1+ +M1−.
Consequently, only the spin-independent part of the one-nucleon production operator,

Mλ
1N =(~ǫλ∗T · [q̂∗π × k̂∗])P ∗

3 ,

contributes for each nucleon at order q3, which has to be boosted from the (N, γ)-cms to

the (4He, γ)-cms and multiplied by the phase-space factor K4N
1N = 1+Mπ/mN

1+Mπ/m4N
≈ 1.104. At

order q4, spin-independent two-nucleon production operators start to contribute, which are
proportional to (1 + kv)(~ǫ

λ
T · [q̂π × k̂]). In these two-nucleon diagrams, the photon couples

to a nucleon line in a subleading photon-nucleon vertex and transfers the momentum to
the nucleon only. The two nucleons interact via leading contact-interaction or one-pion-
exchange and at a leading pion-nucleon vertex, the pion is emitted.
Nevertheless, calculations involving 4He wave functions are numerically much more expen-
sive than calculations using the corresponding trinucleus wave functions.

Further work in these directions is in progress.



Appendix A

Cross Section

A.1 General Form

In this appendix we calculate the cross section for neutral pion photo- and electroproduction
off spin-1/2 states ψ and explain their conceptual overlaps. Electroproduction in the one-
photon-exchange approximation can be separated into two subprocesses. In the first step,
an electron scatters under emission of a virtual photon and in the second the virtual
photon, which can have transversal and longitudinal polarisation, produces a neutral pion
off a nucleus. The first interaction is described by quantum-electro-dynamics (QED) and
the second by quantum-chromo-dynamics (QCD), which we replace by chiral perturbation
theory (ChPT) in the non-perturbative low-energy region.
We follow the description of Amaldi et al. [55], Nozawa et al.[85], Drechsel et al. [56] and
Berends et al. [86] and extend the formalism to the pion electroproduction off tri-nucleon
states with nuclear spin J = 1

2
.

In one-photon-exchange approximation, the total cross section for electroproduction of
neutral pions off the trinucleus is

dσel =
1

FeV

1

2E3N

1

2Ee

d3q

2E ′
π(2π)

3

d3p′3N
2E ′

3N(2π)
3

d3p′e
2E ′

e(2π)
3
(2π)4δ(4)(pe − p′e︸ ︷︷ ︸

k

+p3N − p′3N − q)

· 4πα

(−kµkµ)2
1

2

1

2

∑

spins

|〈p′e | lµ | pe〉 〈p′3Nq | Jµ3N | p3Nk〉|2

︸ ︷︷ ︸
|Mel|2

, (A.1)

where
α = e2/4π is the fine structure constant,
Fe is the incident electron flux,
V is the reaction volume,
pe (p′e) is the initial (final) electron four-momentum,
k = pe − p′e is the four-momentum of the virtual photon with k2µ = kµk

µ < 0,
p3N (p′3N) is the initial (final) 3N nucleus four-momentum,
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q is the pion four-momentum,
and Ee, . . . are the corresponding energies.
The squared amplitude for the cross section is summed and averaged over the initial and
final spin states respectively, two for the electron (spin 1/2) and two for the 3N nucleus
(spin 1/2).
The dynamics is contained in the leptonic current matrix elements

lµ(p
′
e, pe) = 〈p′e | lµ | pe〉 = ū(p′e)γµu(pe) (A.2)

and the hadron current matrix elements

Jµ3N(p
′
3N , q; p3N , k) = 〈p′3Nq | Jµ3N | p3Nk〉 . (A.3)

We adopt the covariant normalization 〈p1 | p2〉 = 2E(2π)3δ(3)(~p1−~p2) which e.g. means for
the electron spinors ūu = 2me and u†u = 2Ee. Introducing Mandelstam variables, defined
as

s = (kµ + pµ3N)
2, t = (kµ − qµ)2, u = (kµ − p′µ3N)

2, (A.4)

we get by direct calculation

s+ t+ u = 2m2
3N + k2µ +M2

π . (A.5)

Therefore, only two of these variables are independent. Because of 4-momentum conserva-
tion

kµ + pµ3N = p′µ3N + qµ, (A.6)

only three of the particle momenta can be considered as independent. We can choose
k, p3N and q. In the center-of-mass frame (cms) the number of 3-vectors is reduced further,

because ~k + ~p3N = ~p ′
3N + ~q = 0.

Note that one factor of 4πα is dropped here as compared to Amaldi et al. [55] because
the second photon vertex is included in the hadron current element. For the sake of
simplification, we follow the common practice to evaluate the electron kinematics in the
laboratory frame, but express the cross section in the cms of the final state variables. The
incident flux Fe is then given as

FeV =
|~pe|
Ee

≈ 1. (A.7)

We define the leptonic and the hadronic tensor respectively by writing

Lµν =
1

2

∑

spins

〈
pe
∣∣ l†µ
∣∣ p′e
〉
〈p′e | lν | pe〉 = 2(p′eµpeν + peµp

′
eν) + gµνk

2
µ, (A.8)
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W µν =
m3N

4πW

1

4πE3N

∫
1

q

d3q

2Eπ(2π)3
d3p′3N

2E ′
3N(2π)

3
(2π)4δ(4)(k + p3N − p′3N − q)

· 1
2

∑

spins

〈p3Nk|Jµ3N †|p′3Nq〉 〈p′3Nq|Jν3N |p3Nk〉

=

∫
d3p′3N

∫
qdqdΩπ

m3N

4πW

1

8(2π)3EπE3NE ′
3N

δ(1)(k0 + E3N − E ′
3N − Eπ)

· δ(3)(~k + ~p3N − ~p ′
3N − ~q)

1

2

∑

spins

〈p3Nk|Jµ3N †|p′3Nq〉 〈p′3Nq|Jν3N |p3Nk〉

=

∫
d3p′3N

∫
dΩπ

m3N

4πW

1

8(2π)3E3N(E ′
3N + Eπ)

· δ(3)(~k + ~p3N − ~p ′
3N − ~q)

1

2

∑

spins

〈~p3N~k|Jµ3N †|~p ′
3N~q〉 〈~p ′

3N~q|Jν3N |~p3N~k〉

=

∫
dΩπ

m3N

4πW

1

8(2π)3E3N(E ′
3N + Eπ)

× 1

2

∑

spins

(
〈~p3N~k|Jµ3N †|~p ′

3N~q〉 〈~p ′
3N~q|Jν3N |~p3N~k〉

)∣∣∣
~k+~p3N−~p ′

3N−~q=0
. (A.9)

For the transformation we used a well-known delta distribution formula (with qi = |~qi| the
roots of function f(|~q|))

δ(1)(f(q)) =
∑

i

δ(1)(q − qi)

∣∣∣∣∣

(
df

dq

)

q=qi

∣∣∣∣∣

−1

(A.10)

in order to evaluate in the hadronic tensor the term of the form∫ ∞

0

dqg(q)δ(1)(k0 + E3N − E ′
3N − Eπ︸ ︷︷ ︸

f(q)

)

=

∫ ∞

0

dqg(q)δ(1)(q − qr)

∣∣∣∣
d

dq

(
k0 + E3N −

√
q2 +m2

3N −
√
q2 +m2

3N

)∣∣∣∣
−1

q=qr

=

∫ ∞

0

dqg(q)δ(1)(q − qr)

∣∣∣∣−
q

E ′
3N

− q

Eπ

∣∣∣∣
−1

q=qr

=

∫ ∞

0

dqg(q)δ(1)(q − qr)

[
E ′

3NEπ
qr(E ′

3N + Eπ)

]
= g(qr)

[
E ′

3NEπ
qr(E ′

3N + Eπ)

]
. (A.11)

The twice-differential cross section then reads

d2σel

dE ′
edΩ

′
e

=
α

(−kµkµ)2
E ′
e

Ee

W

m3N

qLµνW
µν , (A.12)

where we used
d3p′e
E ′
e

= |~p ′
e |dE ′

edΩ
′
e ≈ E ′

edE
′
edΩ

′
e. (A.13)
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A.2 Coordinate System

To choose the Cartesian coordinate system, we put the virtual photon four-momentum to
be

kµ = (k0, 0, 0, k = kz = |~k|), (A.14)

i.e. the three-vector points in z-direction. The x-axis (y-axis) is parallel (perpendicular)
to the (e,e′) scattering plane spanned by ~pe, ~p

′
e . This uniquely defines the three axes.

A.3 Ward Identities

Gauge invariance

kµJ
µ
3N = 0 ⇒ J0

3N = ~k · ~J3N/k0 = J3Nzk/k0,

kµl
µ = 0 ⇒ l0 = ~k ·~l/k0 = lzk/k0. (A.15)

implies the identities:

L00 = (k/k0)
2Lzz, L0i = (k/k0)L

zi, (A.16)

W 00 = (k/k0)
2W zz, W 0i = (k/k0)W

zi. (A.17)

A.4 Implications for the Leptonic Tensor

We then obtain

LµνW
µν = LxxW xx + LyyW yy − −kµkµ

k20
(LzxW zx + LxzW xz) +

(−kµkµ)2
k40

LzzW zz

+ LxyW xy + LyxW
yx − −kµkµ

k20
(LyzW yz + LzyW

zy). (A.18)

According to kinematics, we can express the electron momenta by the electron scattering
angle (cos θe = p̂ ′

e · p̂e) and their absolute values:

pxe = p′
x
e =

|~p ′
e ||~pe|
|~k|

sin θe, pye = p′
y
e = 0, (A.19)

pze =
|~pe|
|~k|

(|~pe| − |~p ′
e | cos θe), p′

z
e =

|~p ′
e |

|~k|
(|~pe| cos θe − |~p ′

e |). (A.20)

We introduce the photon polarization ǫ ∈ [0, 1], a measure of the transversal linear polar-
ization, which does not change under boosts parallel to the z-axis via

ǫ =

[
1 +

2|~k|2
−kµkµ

tan2 θe
2

]−1

, (A.21)
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The leptonic tensor then reads

Lxx = −kµkµ
1 + ǫ

1− ǫ
, Lyy = −kµkµ,

(−kµkµ)2
k40

Lzz = −kµkµ
−kµkµ
k20

2ǫ

1− ǫ
, (A.22)

Lxy = Lyx = 0, Lyz = Lzy = 0,
−kµkµ
k20

Lzx = −kµkµ
√

−kµkµ
k20

√
2ǫ(1 + ǫ)

1− ǫ
.

(A.23)

We combine equations (A.22), (A.23) and (A.12) to

d2σel

dE ′
edΩ

′
e

=
2α

−kµkµ
E ′
e

Ee

W

m3N

q
1

1− ǫ
(A.24)

·
{
W xx +W yy

2
+ ǫ

W xx −W yy

2
+ ǫ

−kµkµ
k20

W zz −
√

2ǫ(1 + ǫ)

√
−kµkµ
k20

W zx +W xz

2

}
.

A.5 Implications for the Hadronic Tensor

We can simplify the cross section by introducing the most general form of the hadronic
tensor for threshold production. It has to:

• be covariant and symmetric,

• be independent of q (at threshold),

• depend on p3N and k only,

• be gauge invariant (i.e. kµW
µν = 0, W µνkν = 0),

• respect parity (this excludes ǫαβγδ) and

• be a scalar in spinor space (the spins are already summed). This excludes γµ.

The hadronic tensor is by these requirements forced to the form

W µν = W1

(
−gµν +

kµkν
kµkµ

)
+W2

1

m2
3N

(
pµ3N − p3Nµk

µ

kµkµ
kµ
)(

pν3N − p3Nµk
µ

kµkµ
kν
)
, (A.25)

with the structure functions W1 and W2 depending on Lorentz-scalars only. In (A.24), we
encounter

W xx +W yy

2
= W1, (A.26)

W xx −W yy

2
= 0, (A.27)
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W zz = W1

(
1 +

|~k|2
kµkµ

)

︸ ︷︷ ︸
k20

kµkµ

+W2
1

m2
3N

(
|~p3N | −

p3Nµk
µ

kµkµ
|~k|
)(

|~p3N | −
p3Nµk

µ

kµkµ
|~k|
)
, (A.28)

W zx +W xz

2
= 0, (A.29)

where ~p3N = (0, 0, |~p3N |) in the cms which gives the simpler form for the cross section

d2σel

dE ′
edΩ

′
e

=
2α

−kµkµ
E ′
e

Ee

W

m3N

q
1

1− ǫ

{
W xx +W yy

2
+ ǫ

−kµkµ
k20

W zz

}
. (A.30)

A.6 Connection between Electro and Photo Production

This form is particularly useful, because it can be compared to the cross section of pho-
toproduction as following. The total cross section for photoproduction of pions on the 3N
nucleus in the above context with the same invariant mass W 2 = (p3N,µ + kµ)

2 reads

σtot
ph =

1

2Eγ

1

2E3N

∫
d3q

2Eπ(2π)3
d3p′3N

2E ′
3N(2π)

3
(2π)4δ(4)(k + p3N − p′3N − q)

×1

2

∑

λ=±1

ǫ∗λµǫλν ·
1

2

∑

spins

〈p3Nk|Jµ3N †|p′3Nq〉 〈p′3Nq|Jν3N |p3Nk〉
︸ ︷︷ ︸

|Mph|2

=
1

2Eγ
2πq

4πW

m3N

1

2

∑

λ=±1

ǫ∗λµǫλνW
µν =

4π2q

Ecm
γ

1

2

∑

λ=±1

ǫ∗λµǫλνW
µν (A.31)

where we used definition (A.9) for the hadronic tensor W µν and the photon equivalent
energy Eγ (Ecm

γ ) in laboratory frame (center of mass frame) which can be calculated from

W 2 = (p3N,µ + kµ)
2 = p23N,µ︸ ︷︷ ︸

=m2
3N

+2p3N,µk
µ + k2µ︸︷︷︸

=0

= m2
3N + 2p03Nk0 − 2~p3N · ~k, (A.32)

using the definition for laboratory frame ~p3N = 0 or center-of-mass frame ~p3N + ~k = 0 to
achieve

klf
0 = Eγ =

W 2 −m2
3N

2m3N

, resp. kcm
0 = Ecm

γ =
W 2 −m2

3N

2W
⇒ W

m3N

=
Eγ
Ecm
γ

(A.33)

The photon polarization vector ǫµλ for helicity λ = +,−, 0 defined as

ǫµ± = (0,∓ 1√
2
{êx ± iêy}), ǫµ0 = (

|~k|√
−kµkµ

,
k0√
−kµkµ

êz) (A.34)
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~pe

~k~pe
′

Figure A.1: Electroproduction can
be decomposed into scattering of an
electron with initial momentum ~pe
and final momentum ~p ′

e under emis-
sion of a virtual photon (to the left)
and photo-production by a virtual
photon with momentum ~k = ~pe− ~p ′

e

(to the right). The leptonic vertex is
described by QED and the nuclear
vertex by ChPT.

· · ·

· · ·

with the properties
kµǫ

µ
λ = 0, ǫλ,µǫ

µ
λ′ = δλ,λ′ (A.35)

can be contracted with the hadronic tensor to give contributions as in (A.30):

1

2

∑

λ=±1

ǫ∗λµǫλνW
µν =

W xx +W yy

2
(A.36)

ǫ∗0µǫ0νW
µν =

−kµkµ
k20

W zz. (A.37)

We then can rewrite (A.30) as

d2σel

dE ′
edΩ

′
e

=
αEγ

−kµkµ2π2

E ′
e

Ee

1

1− ǫ︸ ︷︷ ︸
=:Γ virtual photon flux




4π2q

Ecm
γ

1

2

∑

λ=±1

ǫ∗λµǫλνW
µν

︸ ︷︷ ︸
=:σT

ph
transversal part

+ǫ
4π2q

Ecm
γ

ǫ∗0µǫ0νW
µν

︸ ︷︷ ︸
=:σL

ph
longitudinal part



. (A.38)

In this way, electroproduction can be described as photo-production mediated by a virtual
photon (which has an additional longitudinal degree of freedom). The cross section can be
written as the sum of transversal and longitudinal part times the virtual photon flux Γ.

A.7 Coulomb Gauge

It makes sense to switch to Coulomb gauge, i.e. ǫµλ → aµλ with a0λ = 0 by the transformation

aµλ := ǫµλ −
ǫ0λ
k0
kµ ⇒ aµ± = ǫµ± = (0,∓ 1√

2
{êx ± êy}), aµ0 = (0, 0, 0,−

√
−kµkµ
k0

). (A.39)

The cross section does not change by the transformation due to gauge invariance kµW
µν =

0 = W µνkν :

a∗λµaλνW
µν = (ǫ∗λµ −

ǫ∗0λ
k0
kµ)(ǫλν −

ǫ0λ
k0
kν)W

µν = ǫ∗λµǫλνW
µν . (A.40)



80 APPENDIX A. CROSS SECTION

A.8 Implications for the Threshold Amplitude

If the invariant amplitude does not depend on ~q (e.g. at threshold) and on ~p ′
3N (as in

the static heavy baryon limit with vµ = (1, 0, 0, 0)) we can perform the integration for the
transversal part according to

σT
ph =

1

2Eγ

1

2E3N

∫
d3q

2Eπ(2π)3
d3p′3N

2E ′
3N(2π)

3
(2π)4δ(4)(k + p3N − p′3N − q) · |Mph|2

=
q

Ecm
γ

m3N

(8π)2E3N(E ′
3N + Eπ)W

∫
dΩπ|Mph|2

=
q

Ecm
γ

m3N

(8π)2E3N(E ′
3N + Eπ)W

×
∫
dΩπ ·

1

2

∑

λ=±1

·1
2

∑

spins

(
〈~p3N~k|ǫ∗λµJµ3N †|~p ′

3N~q〉 〈~p ′
3N~q|ǫλνJν3N |~p3N~k〉

)∣∣∣
~k+~p3N−~p ′

3N−~q=0

=
q

Ecm
γ

1

2

∑

λ=±1

1

2

∑

spins

∫
dΩπM†

λMλ (A.41)

and analogously for the longitudinal part

σL
ph =

q

Ecm
γ

1

2

∑

spins

∫
dΩπM†

0M0, (A.42)

where we define the amplitude

Mλ :=

√
m3N

(8π)2E3N(E ′
3N + Eπ)W

〈~p ′
3N~q|ǫλµJµ3N |~p3N~k〉

∣∣∣
~k+~p3N−~p ′

3N−~q=0
. (A.43)

Expressions (A.41), (A.42) and (A.43) reduce at threshold, i.e.

W = m3N +Mπ, E3N = E ′
3N ≈ m3N ,

∫
dΩπ = 4π, (A.44)

to the simple expressions

σT
ph =

4πq

Ecm
γ

1

2

∑

λ=±1

1

2

∑

spins

M†
λMλ, (A.45)

σL
ph =

4πq

Ecm
γ

1

2

∑

spins

M†
0M0, (A.46)

Mthreshold
λ =

1

8π(m3N +Mπ)
〈~p ′

3N~q|ǫλµJµ3N |~p3N~k〉
∣∣∣
~k+~p3N−~p ′

3N−~q=0
. (A.47)

Comparing (A.31) and (A.45), (A.46) one finds

πǫ∗λµǫλνW
µν =

1

2

∑

spins

M†
λMλ (A.48)
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for λ = ±1 resp. λ = 0.
Along this section the trinucleus’ (J = 1/2) magnetic spin quantum numbers in initial
(MJ) and final state (M ′

J) were suppressed. The meaning of the spin sum is

1

2

∑

spins

M†
λ · Mλ =

1

2

∑

MJ ,M
′
J

〈M ′
J |Mλ|MJ〉† 〈M ′

J |Mλ|MJ〉

=
1

2

∑

MJ ,M
′
J

〈MJ |M†
λ|M ′

J〉 〈M ′
J |Mλ|MJ〉

=
1

2

∑

MJ

〈MJ |M†
λMλ|MJ〉 =

1

2
TrM†

λMλ. (A.49)

The final result for neutral pion electroproduction off a spin-1/2 nucleus ψ at threshold
with amplitude (4.3) reads

d2σel

dE ′
edΩ

′
e

= Γ

[
4πq

Ecm
γ

(
|Eπ0ψ

0+ |2
)
+ ǫ

4πq

Ecm
γ

(
|Lπ0ψ

0+ |2
) −kµkµ

k20

]

=
4πq

Ecm
γ

Γ
[(

|Eπ0ψ
0+ |2 + ǫL|Lπ

0ψ
0+ |2

)]
. (A.50)

with the longitudinal polarization parameter

ǫL =
−kµkµ
k20

ǫ. (A.51)
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Appendix B

Conventions and useful Formulae

B.1 Conventions

• The Pauli matrices are given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (B.1)

They obey the equation σiσj = δij11+ iǫijkσk and their quantization axis is chosen to
be in z-direction.

• The spin angular momentum operators are given by ~s = ~σ/2. They form an angular
momentum algebra

[si, sj] = iǫijksk. (B.2)

B.2 Phase-Space Factors

The S-matrix is defined in terms of the invariant matrix element M as

Sfi = −i(2π)4δ(4)(pi − pf )

(
n∏

j=1

1√
(2π)32Ej

)
M (B.3)

with n the number of external particles. For the process e(pe)N(p1)N(p2) → e(p′e)N(p′1)N(p′2)π(q)
the S-matrix then reads

Sfi = −i(2π)4δ(4)(pi − pf )

(
MNN√

(2π)212Ee2E12E22E ′
e2E

′
12E

′
22Eπ

)
(B.4)

83
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whereas for e(pe)d(pd) → e(p′e)d(p
′
d)π(q) it takes the form

Sfi = −i(2π)4δ(4)(pi − pf )

(
Md√

(2π)152Ee2Ed2E ′
e2E

′
d2Eπ

)
. (B.5)

Therefore, via comparison,

Md =
1

(2π)3

√
EdE ′

d

4E1E2E ′
1E

′
2

MNN , (B.6)

which reduces near threshold

Ed = E ′
d ≈ md, E1 = E2 = E ′

1 = E ′
2 ≈ mN (B.7)

to

Md =
1

(2π)3
md

2(mN)2
MNN =

1

2mN(2π)3
2md

2mN

MNN . (B.8)

For heavier nuclei with A nucleons, the phase space converges in analogy to (B.6) according
to

MA =
1

(2(2π)3)(A−1)

√
EAE ′

A∏A
j=1(EjE

′
j)
MN . . . N︸ ︷︷ ︸

A times

(B.9)

and at threshold

MA =
1

(2mN(2π)3)
(A−1)

2mA

2mN

MN . . . N︸ ︷︷ ︸
A times

. (B.10)

In the 3N -case, i.e. A = 3, we have

M3N =
1

4(2π)6
m3N

(mN)3
MNNN =

1

(2mN(2π)3)2
2m3N

2mN

MNNN . (B.11)

B.3 From HBChPT to the CGLN-amplitudes

To meet the conventions in the literature, we need to choose a certain normalization. The
pion production transition operator for a 3N-process is gained from HBChPT:

iTNNN =
〈
~p ′
12~p

′
3
~P ′
3Nα

′~qπ

∣∣∣ ÔNNN

∣∣∣ ~p12~p3 ~P3Nα~kγ

〉
. (B.12)

The phase space has to be corrected according to equation B.11. To account for the bound
3N-nucleus in initial and final state the relative Jacobi momenta are integrated out using
nuclear wave functions according to

iT3N =
1

(2mN(2π)3)2
2m3N

2mN

〈iTNNN〉ψ . (B.13)
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This transition operator has to be multiplied by a factor

1

8π(m3N +Mπ)
(B.14)

evolving from the final state integration (inclusive process). The amplitude then is defined
by

M3N
λ :=

1

8π(m3N +Mπ)
T3N =

m3N

4π(m3N +Mπ)

〈TNNN〉ψ
(2mN(2π)3)22mN

. (B.15)

B.3.1 Normalization of 1N Contributions

1N contributions to a process arise from interactions involving only one nucleon. The
interacting nucleon can either be nucleon 1, 2 or 3. Consequently, we have

TNNN1N = TNNN1 + TNNN2 + TNNN3 (B.16)

with

TNNNi = TNi

3∏

j=1
j 6=i

2mj(2π)
3
11τj11σjδ

(3)(~kj − ~k ′
j ) = (2mN(2π)

3)2TNi

3∏

j=1
j 6=i

11τj11σjδ
(3)(~kj − ~k ′

j ).

(B.17)
The additional factor accounts for the covariant normalization. In the integral, the nucleon
lines may be interchanged. We choose nucleon 1 to be involved in the process

〈
TNNN1N

〉
ψ
=
〈
TNNN1 + TNNN2 + TNNN3

〉
ψ
= 3︸︷︷︸

(31)

〈
TNNN1

〉
ψ
. (B.18)

Expressing equation B.13

iT3N =
1

(2mN(2π)3)2
2m3N

2mN

〈iTNNN〉ψ (B.19)

via the amplitudes defined in equation B.15, we have

8π(m3N +Mπ)M3N
λ = T3N =

1

(2mN(2π)3)2
2m3N

2mN

〈TNNN〉ψ

=
1

(2mN(2π)3)2
2m3N

2mN

(2mN(2π)
3)2

〈
3TN1

3∏

j=2

11τj11σjδ
(3)(~kj − ~k ′

j )

〉

ψ

=
m3N

mN

〈
8π(mN +Mπ)3M1

3∏

j=2

11τj11σjδ
(3)(~kj − ~k ′

j )

〉

ψ

. (B.20)
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Therefore, the 1N contribution is

M3N
λ =

mN +Mπ

m3N +Mπ

m3N

mN〈
3M111τ211σ2δ

(3)

(
~p ′
12 −

(
~p12 +

~kγ
2

))
11τ311σ3δ

(3)

((
~p3 −

~kγ
3

)
− ~p ′

3

)〉

ψ

, (B.21)

where ~k2 −~k ′
2 = ~p ′

12 −
(
~p12 +

~kγ
2

)
and ~k3 −~k ′

3 =
(
~p3 −

~kγ
3

)
− ~p ′

3 were expressed by Jacobi-

coordinates.

B.3.2 Normalization of 2N Contributions

2N contributions to a process arise from interactions involving two nucleons. The inter-
acting nucleons can either be nucleons (12), (23) or (13). We can name the contributions
after the missing nucleon, i.e. we write 3̂ for contributions involving (12). Consequently,
we have

TNNN2N = TNNN12 + TNNN23 + TNNN13 = TNNN
3̂

+ TNNN
1̂

+ TNNN
2̂

(B.22)

with

TNNN
î

= TNN
î

2mi(2π)
3
11τi11σiδ

(3)(~ki − ~k ′
i ) = 2mN(2π)

3TNN
î

11τi11σiδ
(3)(~ki − ~k ′

i ). (B.23)

The additional factor accounts for the covariant normalization. In the integral, the nucleon
lines may be interchanged. We choose nucleons (12) to be involved in the process

〈
TNNN2N

〉
ψ
=
〈
TNNN
3̂

+ TNNN
1̂

+ TNNN
2̂

〉
ψ
= 3︸︷︷︸

(31)

〈
TNNN
3̂

〉
ψ
. (B.24)

Expressing equation B.13

iT3N =
1

(2mN(2π)3)2
2m3N

2mN

〈iTNNN〉ψ (B.25)

via the amplitudes defined in equation B.15, we have

8π(m3N +Mπ)M3N
λ = T3N =

1

(2mN(2π)3)2
2m3N

2mN

〈TNNN〉ψ

=
1

(2mN(2π)3)2
2m3N

2mN

2mN(2π)
3
〈
3TNN

3̂
11τ311σ3δ

(3)(~k3 − ~k ′
3)
〉
ψ

=
1

2mN(2π)3
2m3N

2mN

〈
3TNN12 11τ311σ3δ

(3)(~k3 − ~k ′
3)
〉
ψ
. (B.26)

Therefore, the 2N contribution is

M3N
λ =

1

8π(m3N +Mπ)

m3N

mN

1

2mN(2π)3

〈
3TNN12 11τ311σ3δ

(3)

((
~p3 −

~kγ
3

)
− ~p ′

3

)〉

ψ

,

(B.27)

where ~k3 − ~k ′
3 =

(
~p3 −

~kγ
3

)
− ~p ′

3 was expressed by Jacobi-coordinates.
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B.4 Subleading Two-body Diagrams

B.4.1 Static Contributions

The static corrections to diagram a) shown in Fig. 5.2 are depicted in Fig. 5.3 and read

iTNN,a112 = (1− 2g2A)
emNgA
2F 3

π

~aλ · ~σ1
~q ′2

(~τ1 · ~τ2 − τ z1 τ
z
2 )

× (~q ′ · ~q ′ + 2~q ′ · ~p ′
12) . (B.28)

iTNN,a212 =
emNgA
F 3
π

~aλ ·
(
(~q ′ + 2~p ′

12 − ~k)~σ1 · ~q ′ + i[~q ′ × ~k](1 + κV )
)

~q ′2
(~τ1 · ~τ2 − τ z1 τ

z
2 ). (B.29)

iTNN,a312 =
emNgA
F 3
π

~aλ ·
(
~q ′ + 2~p ′

12 − ~k + i[~σ1 × ~k](1 + κV )
)
~σ2 · ~q ′

~q ′2 +M2
π+

(~τ1 · ~τ2 − τ z1 τ
z
2 ). (B.30)

iTNN,a412 = g2A
emNgA
F 3
π

~aλ ·
(
−(~q ′ + 2~p ′

12 − ~k) + i[~σ1 × (~q ′ − ~k)]
)
~σ2 · ~q ′

~q ′2 +M2
π+

(~τ1 · ~τ2 − τ z1 τ
z
2 ).

(B.31)

The static corrections to diagram b) shown in Fig. 5.2 are depicted in Fig. 5.3 and read

iTNN,b112 = −
(
1− 2g2A

) emNgA
2F 3

π

~σ1 · ~q ′′~aλ · (~q ′′ + ~q ′)(
~q ′′ · ~q ′′ +M2

π+

)
(~q ′ · ~q ′)

(~τ1 · ~τ2 − τ z1 τ
z
2 )

× (~q ′ · ~q ′ + 2~q ′ · ~p ′
12) . (B.32)

B.4.2 Recoil Corrections

We use the following abbreviation: ω′ =
√
~q ′2 +M2

π+ and ω′′ =
√
~q ′′2 +M2

π+ .
The correction to diagram a) is depicted in Fig. 5.4 and reads

iTNN,a1
′

12 =
emNgA
8F 3

π

~aλ · ~σ1(ω′ −Mπ0)

ω′(ω′ +Mπ0)2
~k · (−2~q ′ − 2~p ′

12 +
~k)(~τ1 · ~τ2 − τ z1 τ

z
2 ). (B.33)

The corrections to diagram b) are depicted in Fig. 5.4 and read

iTNN,b1
′

12 =
emNgA
16F 3

π

~σ1 · ~q ′′~aλ · (~q ′′ + ~q ′)(ω′ +Mπ0)

ω′ω′′3
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(
−~q ′ · ~q ′ − ~q ′ · ~p′12 + 2(~q ′ + ~p′12) · ~k − ~k2

ω′ −Mπ0

+
~q ′ · ~q ′ + ~q ′ · ~p′12
ω′ − ω′′ −Mπ0

)
. (B.34)
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iTNN,b2
′

12 =
emNgA
16F 3

π

~σ1 · ~q ′′~aλ · (~q ′′ + ~q ′)(ω′ −Mπ0)

ω′ω′′3(ω′ + ω′′ +Mπ0)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(
2ω′′

{
~q ′ · ~q ′ + ~q ′ · ~p′12 − 2(~q ′ + ~p′12) · ~k + ~k2

}
+ (ω′ +Mπ0)

{
−2(~q ′ + ~p′12) · ~k + ~k2

})
.

(B.35)

iTNN,b3
′

12 =
emNgA
16F 3

π

~σ1 · ~q ′′~aλ · (~q ′′ + ~q ′)(ω′ −Mπ0)

ω′ω′′3(ω′ + ω′′ +Mπ0)2(ω′ + ω′′)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(
ω′′
{
2(~q ′ + ~p′12) · ~k − ~k2

}
+ 2(ω′ +Mπ0) {~q ′ · ~q ′ + ~q ′ · ~p′12}

)
. (B.36)

iTNN,b4
′

12 =
emNgA
16F 3

π

~σ1 · ~q ′′~aλ · (~q ′′ + ~q ′)(ω′ −Mπ0)

ω′ω′′3(ω′ + ω′′ +Mπ0)2(ω′ + ω′′)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(
ω′′
{
~q ′ · ~q ′ + ~q ′ · ~p′12 − 2(~q ′ + ~p′12) · ~k + ~k2

}
− (ω′ +Mπ0) {~q ′ · ~q ′ + ~q ′ · ~p′12}

)
.

(B.37)

iTNN,b5
′

12 =
emNgA
16F 3

π

~σ1 · ~q ′′~aλ · (~q ′′ + ~q ′)(ω′ +Mπ0)

ω′ω′′3(ω′ + ω′′ −Mπ0)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(
2ω′′

{
~q ′ · ~q ′ + ~q ′ · ~p′12 − 2(~q ′ + ~p′12) · ~k + ~k2

}
+ (ω′ −Mπ0)

{
−2(~q ′ + ~p′12) · ~k + ~k2

})
.

(B.38)

iTNN,b6
′

12 =
emNgA
16F 3

π

~σ1 · ~q ′′~aλ · (~q ′′ + ~q ′)(ω′ −Mπ0)

ω′ω′′3(ω′ +Mπ0)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(
(ω′ + ω′′ +Mπ0)

{
2(~q ′ + ~p′12) · ~k − ~k2

})
. (B.39)



Acknowledgements

My academical development would not have been possible without the help of people, I
would like to thank here, who supported me on my way to this thesis.

First, I would like to express deep gratitude to my advisor Prof. Dr. H.-W. Hammer for
giving me the opportunity to work on this interesting matter and for the constant and
encouraging supervision and the never ending patience in aswering questions.

Cordial thank is also addressed to my advisor Prof. Dr. Evgeny Epelbaum, who always
had a sympathetic ear to answer arising questions and to find the appropriate words, when
I was confused.

My special gratitude is assigned to Prof. Dr. Ulf-G. Meißner for sharing his analytic insight
into and foundational experience with the subject of this thesis.

I would like to thank Dr. Hermann Krebs for discussions and comments.

Thank is due to my office colleagues for the nice and stimulating atmosphere at work, but
also in non-academic circumstances. Especially I would like to thank Matthias Frink for
always helping when it was needed.

I thank Andreas Nogga for providing us with the chiral 3N wave functions.

Financial support by the Deutsche Forschungsgemeinschaft (SFB/TR 16, “Subnuclear
Structure of Matter”), by the European Community Research Infrastructure Integrating
Activity “Study of Strongly Interacting Matter” (acronym HadronPhysics3, Grant Agree-
ment n. 283286) under the 7th Framework Programme of the EU and by the European
Research Council (acronym NuclearEFT, ERC-2010-StG 259218) is gratefully acknowled-
ged.

Thanks for the great time go to all members of the theory group of the “Helmholtz-Institut
für Strahlen- und Kernphysik”.

Last but not least, I would like to turn towards my roots, namely my parents Klaus and
Susanne, and my sister Marei, without whose constant support, encouragement and love
the thesis would not have materialized.

I would like to thank everybody involved in my qualification who I unintentionally forgot.

89



90



Bibliography

[1] D. R. Phillips, J. Phys. G36, 104004 (2009), 0903.4439.

[2] V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008), 0706.0312.

[3] V. Bernard, N. Kaiser, and U.-G. Meißner, Z. Phys. C70, 483 (1996), hep-ph/9411287.

[4] V. Bernard, N. Kaiser, and U.-G. Meißner, Eur. Phys. J. A11, 209 (2001), hep-
ph/0102066.

[5] S. Beane, C. Lee, and U. van Kolck, Phys. Rev. C52, 2914 (1995), nucl-th/9506017.

[6] S. Beane, V. Bernard, T. Lee, U.-G. Meißner, and U. van Kolck, Nucl. Phys. A618,
381 (1997), hep-ph/9702226.

[7] H. Krebs, V. Bernard, and U.-G. Meißner, Eur. Phys. J. A22, 503 (2004), nucl-
th/0405006.

[8] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009),
0811.1338.

[9] R. Machleidt and D. Entem, Phys. Rept. 503, 1 (2011), 1105.2919.

[10] B. Blankleider and R. Woloshyn, Phys. Rev. C29, 538 (1984).

[11] M. Lenkewitz, Neutral Pion-Electro-Production off Light Nuclei in Heavy Baryon
Chiral Perturbation Theory, Master’s thesis, Universität Bonn, 2009.

[12] P. Argan et al., Phys. Rev. C21, 1416 (1980).

[13] P. Argan et al., Phys. Lett. B206, 4 (1988).

[14] J. Bergstrom et al., Phys. Rev. C57, 3203 (1998).

[15] M. Barnett, R. Igarashi, R. Pywell, and J. Bergstrom, Phys. Rev. C77, 064601 (2008).

[16] M. Lenkewitz, E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Phys. Lett. B700,
365 (2011), 1103.3400.

91



92 BIBLIOGRAPHY

[17] M. Lenkewitz, E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Eur. Phys. J. A49,
20 (2013), 1209.2661.

[18] S. Weinberg, Physica A96, 327 (1979).

[19] T. Appelquist and J. Carazzone, Phys. Rev. D11, 2856 (1975).

[20] H. Euler and B. Kockel, Naturwiss. 23, 246 (1935).

[21] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936), physics/0605038.

[22] J. S. Schwinger, Phys. Rev. 82, 664 (1951).

[23] M. E. Peskin and D. V. Schroeder, Reading, USA: Addison-Wesley (1995) 842 p.

[24] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).

[25] V. Bernard, N. Kaiser, and U.-G. Meißner, Int. J. Mod. Phys. E4, 193 (1995), hep-
ph/9501384.

[26] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003), hep-ph/0210398.

[27] J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984).

[28] J. Gasser, M. E. Sainio, and A. Svarc, Nucl. Phys. B307, 779 (1988).

[29] H. Georgi, Weak interactions and Modern Particle Physics (Addison-Wesley, 1984).

[30] E. E. Jenkins and A. V. Manohar, Phys. Lett. B255, 558 (1991).

[31] V. Bernard, N. Kaiser, J. Kambor, and U.-G. Meißner, Nucl. Phys. B388, 315 (1992).

[32] T. Mannel, W. Roberts, and Z. Ryzak, Nucl. Phys. B368, 204 (1992).

[33] S. Weinberg, Nucl. Phys. B363, 3 (1991).

[34] M. Taketani, S. Machida, and S. O-numa, Progress of Theoretical Physics 7, 45
(1952).

[35] S. Okubo, Progress of Theoretical Physics 12, 603 (1954).

[36] E. Epelbaum, W. Gloeckle, and U.-G. Meißner, Nucl. Phys. A637, 107 (1998), nucl-
th/9801064.

[37] E. Epelbaum, (2010), 1001.3229.

[38] E. Epelbaum, private comm.

[39] E. Epelbaum et al., AIP Conf. Proc. 603, 17 (2001), nucl-th/0109065.



BIBLIOGRAPHY 93

[40] S. Weinberg, Phys. Lett. B251, 288 (1990).

[41] E. Epelbaum, The nucleon nucleon interaction in a chiral effective field theory, PhD
thesis, Forschungszentrum Jülich, 2000.

[42] V. Bernard, N. Kaiser, and U.-G. Meißner, Nucl. Phys. A615, 483 (1997), hep-
ph/9611253.

[43] E. Epelbaum et al., Phys. Rev. C66, 064001 (2002), nucl-th/0208023.

[44] A. Nogga, P. Navratil, B. Barrett, and J. Vary, Phys. Rev. C73, 064002 (2006),
nucl-th/0511082.

[45] P. Navratil, V. Gueorguiev, J. Vary, W. Ormand, and A. Nogga, Phys. Rev. Lett. 99,
042501 (2007), nucl-th/0701038.

[46] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes
in FORTRAN (2nd ed.): the art of scientific computing (Cambridge University Press,
New York, NY, USA, 1992).

[47] M. H. Kalos and P. A. Whitlock, Monte Carlo methods. Vol. 1: basics (Wiley-
Interscience, New York, NY, USA, 1986).

[48] G. P. Lepage, J. Comput. Phys. 27, 192 (1978).

[49] G. P. Lepage, (1980), VEGAS: An adaptive multidimensional Integration Program.

[50] S. K. Park and K. W. Miller, Communications of the ACM 31, 1192 (1988).

[51] P. L’Ecuyer, Communications of the ACM 31, 742 (1988), See also the correspondence
in the same journal, 32, 8 (1989) 1019–1024.

[52] A. Nogga, private comm. (2009).

[53] S. Weinberg, Phys. Lett. B295, 114 (1992), hep-ph/9209257.

[54] L. D. Pearlstein and A. Klein, Phys. Rev. 107, 836 (1957).

[55] E. Amaldi, S. Fubini, and G. Furlan, Springer Tracts Mod. Phys. 83, 1 (1979).

[56] D. Drechsel and L. Tiator, J. Phys. G18, 449 (1992).

[57] G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106, 1345
(1957).

[58] H. Arenhövel, Few Body Syst. 27, 141 (1999), nucl-th/9907005.

[59] H. Krebs, V. Bernard, and U.-G. Meißner, Nucl. Phys. A713, 405 (2003), nucl-
th/0207072.



94 BIBLIOGRAPHY

[60] E. Epelbaum, W. Gloeckle, and U.-G. Meißner, Eur. Phys. J. A19, 125 (2004), nucl-
th/0304037.

[61] E. Epelbaum, W. Gloeckle, and U.-G. Meißner, Eur. Phys. J. A19, 401 (2004), nucl-
th/0308010.

[62] S. Liebig, V. Baru, F. Ballout, C. Hanhart, and A. Nogga, Eur. Phys. J. A47, 69
(2011), 1003.3826.

[63] B. Lippmann, Phys. Rev. 102, 264 (1956).

[64] S. T. Epstein, Phys. Rev. 106, 598 (1957).

[65] L. Foldy and W. Tobocman, Phys. Rev. 105, 1099 (1957).

[66] L. Faddeev, Sov. Phys. JETP 12, 1014 (1961).

[67] A. Stadler, W. Glockle, and P. Sauer, Phys. Rev. C44, 2319 (1991).

[68] M. Walzl, U.-G. Meißner, and E. Epelbaum, Nucl. Phys. A693, 663 (2001), nucl-
th/0010019.

[69] V. Bernard, N. Kaiser, and U.-G. Meißner, Nucl. Phys. A607, 379 (1996), hep-
ph/9601267.

[70] V. Bernard, H. Krebs, and U.-G. Meißner, Phys. Rev. C61, 058201 (2000), nucl-
th/9912033.

[71] G. Lepage, p. 135 (1997), nucl-th/9706029.

[72] E. Epelbaum and J. Gegelia, Eur. Phys. J. A41, 341 (2009), 0906.3822.

[73] E. Harper, Y. Kim, A. Tubis, and M. Rho, Physics Letters B 40, 533 (1972).

[74] L. Marcucci, D. Riska, and R. Schiavilla, Phys. Rev. C58, 3069 (1998), nucl-
th/9805048.

[75] V. Bernard, B. Kubis, and U.-G. Meißner, Eur. Phys. J. A25, 419 (2005), nucl-
th/0506023.

[76] C. Fernandez-Ramirez, A. Bernstein, and T. Donnelly, Phys. Rev. C80, 065201 (2009),
0907.3463.

[77] V. Bernard, N. Kaiser, and U.-G. Meißner, Phys. Rev. Lett. 74, 3752 (1995), hep-
ph/9412282.

[78] H. Krebs, Neutral pion electroproduction off the deuteron, PhD thesis, Universität
Bonn, 2003.



BIBLIOGRAPHY 95

[79] V. Bernard, N. Kaiser, J. Gasser, and U. G. Meissner, Phys. Lett. B268, 291 (1991).

[80] V. Baru, C. Hanhart, A. E. Kudryavtsev, and U. Meißner, Phys. Lett. B589, 118
(2004), nucl-th/0402027.

[81] M. P. Rekalo and E. Tomasi-Gustafsson, Phys. Rev. C66, 015203 (2002), nucl-
th/0112063.

[82] A. Schmidt et al., Phys. Rev. Lett. 87, 232501 (2001), nucl-ex/0105010.

[83] A. Gasparyan and M. Lutz, Nucl. Phys. A848, 126 (2010), 1003.3426.

[84] D. Drechsel, L. Tiator, S. Kamalov, and S. N. Yang, Nucl.Phys. A660, 423 (1999),
nucl-th/9906019.

[85] S. Nozawa and T. S. H. Lee, Nucl. Phys. A513, 511 (1990).

[86] F. A. Berends, A. Donnachie, and D. L. Weaver, Nucl. Phys. B4, 1 (1967).




