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Abstract 

 

Sustainable use of washing machine: modeling the consumer behavior related 

resources consumption in use of washing machines 

 

Two opposing trends are observed in Europe: an increase in the washing machines’ 

rated capacity and a decrease of the household size (hence a decrease of laundry that 

has to be washed). The question poses: what kind of behavior is necessary to use the 

washing machines with a higher rated capacity in a more sustainable manner? To 

answer this question, a model of a washing machine (virtual washing machine) that is 

based on real data of real-life washing machines is constructed. Furthermore, a model 

that reproduces, to some extent, the household’s washing behavior (virtual washing 

household) is developed.  

By conducting parallel simulations of the usage of the virtual washing machine by the 

virtual washing households and by varying device-, household- and behavioral 

parameters, an optimal parameter combination with the lowest environmental impact 

is determined.  

The basis for the virtual washing machine is the data gained by testing nine washing 

machines of different rated capacity (5 kg, 6 kg, 7 kg, 8 kg and 11 kg). All tests are 

conducted in accordance with EN60456:2005, with some modifications regarding the 

washing temperatures, load size and detergent dosage. 

The predicting power of the virtual washing machine can be considered as good, given 

that there are numerous differences in tested washing machines.  

The virtual washing household is designed in such a manner that a washing cycle is 

conducted when the household has enough laundry collected, so that the rated capacity 

of the washing machine can be used. It also offers a possibility to conduct an 

“emergency washing cycle” when the time needed for accumulating enough laundry 

(to use rated capacity of the washing machine)  exceeds the waiting time acceptable by 

the consumer (so-called “maximal laundry waiting time”). This model offers a large 

range of possibilities to simulate some of the consumer’s behavioral patterns.  

 



   

With the moderating variable  “maximal laundry waiting time”, it is possible to add a 

time dimension to the virtual consumer model and thus explore the effects that might 

occur when the consumer is ready to postpone an action (in this case the washing of 

laundry) to a later point of time. The results show that a sustainable use of washing 

machines with a higher rated capacity is possible when consumer behavior changes 

towards waiting until enough laundry is accumulated, so that the rated capacity of the 

washing machine is used. 



   

Zusammenfassung 
 

Nachhaltige Nutzung einer Waschmaschine: Modellieren des 

verhaltensabhängigen Ressourcenverbrauchs bei der Waschmaschinennutzung 

 

Zurzeit sind zwei Trends in Europa zu verzeichnen: einerseits erhöht sich die Anzahl 

der Waschmaschinen mit einer höheren Nennfüllmenge und anderseits verringert sich 

die Größe der Haushalte und somit der Wäscheanfall. Es stellt sich nun die Frage: 

„Wie kann ein Haushalt mit einer kleinen Personenanzahl eine Waschmaschine mit 

einer höheren Nennfüllmenge  dennoch nachhaltig nutzen?“  

Um diese Frage beantworten zu können, wird in dieser Arbeit zunächst, auf Basis von 

Daten handelsüblicher Waschmaschinen, ein mathematisches Modell einer 

Waschmaschine entwickelt (virtuelle Waschmaschine). Des Weiteren wird ein Modell 

eines Haushaltes entwickelt, welches bis zu einem gewissen Grad das Waschverhalten 

des Haushaltes nachahmt (virtueller Waschhaushalt). 

Mittels paralleler Simulationen der Nutzung der virtuellen Waschmaschinen durch den 

virtuellen Waschhaushalt und Veränderung der Geräte-, Haushalts- und 

Verhaltensparameter werden geeignete Parameter-Kombinationen gesucht, bei 

welchen die Auswirkungen auf die Umwelt am niedrigsten sind.  

Die Basis für die virtuelle Waschmaschine bilden Daten aus Waschmaschinentests mit 

9 Waschmaschinen verschiedener Nennfüllmengen (5 kg, 6 kg, 7 kg, 8 kg und 11 kg).  

Alle Tests werden in Anlehnung an die EN60456:2005 durchgeführt, wobei 

Waschtemperatur, Beladungsmenge und Waschmittelmenge modifiziert werden. 

Trotz der Vielfalt der Waschmaschinen und den Unterschieden zwischen diesen, kann 

die Vorhersagekraft der virtuellen Waschmaschine als gut bewertet werden.  

Der virtuelle Waschhaushalt ist so gestaltet, dass ein Waschgang erst dann durchführt 

wird, wenn genug Wäsche vorhanden ist, um die Nennfüllmenge der Waschmaschine 

komplett auszunutzen. Des Weiteren bietet das Modell die Möglichkeit, einen 

sogenannten „Notwaschgang“ durchzuführen. Dieser findet dann statt, wenn die Zeit, 

welche nötig ist um genug Wäsche zu sammeln, die vom Verbraucher akzeptierte 

Wartezeit (sogenannte „Maximale Wäschewartezeit“) überschreitet.  



   

Dieses Modell ermöglicht die Simulation vieler verbrauchertypischer 

Verhaltensmuster.  

Mit der moderierenden Variablen „Maximale Wäschewartezeit“ ist es möglich, die 

zeitliche Komponente in das Verbraucher-Modell einzubeziehen. Dadurch können 

mögliche Effekte aufgezeigt werden, wenn der Verbraucher bereit ist, eine Handlung 

(in diesem Fall Wäschewaschen) auf einen späteren Zeitpunkt zu verschieben. 

Die Ergebnisse zeigen, dass eine nachhaltige Nutzung der Waschmaschine mit einer 

höheren Nennfüllmenge dann möglich ist, wenn der Verbraucher das eigene Verhalten 

dahin gehend verändert, dass er wartet, bis sich genug Wäsche angesammelt hat und 

so die Nennfüllmenge der Waschmaschine ausgenutzt werden kann. 

 



   

Content 

Abstract  

Zusammenfassung 

1 Introduction ........................................................................................................... 1 

1.1 Washing process ................................................................................................ 1 

1.1.1 Mechanics ................................................................................................... 2 

1.1.2 Temperature ................................................................................................ 3 

1.1.3 Washing time .............................................................................................. 3 

1.1.4 Chemistry .................................................................................................... 4 

1.2 Washing machines ............................................................................................ 4 

1.2.1 Horizontal axis washing machine ............................................................... 5 

1.2.2 Vertical axis washing machine ................................................................... 6 

1.2.2.1 Impeller (pulsator) type washing machine .......................................... 6 

1.2.2.2 Agitator type washing machine ........................................................... 6 

1.2.3 Washing machine markets and trends ........................................................ 6 

1.2.4 Resource consumption for washing purposes ............................................ 7 

1.2.4.1 Electricity consumption ....................................................................... 7 

1.2.4.2 Water consumption .............................................................................. 8 

1.2.5 Consumer behavior in use of washing machines ....................................... 9 

1.2.5.1 Washing frequency ............................................................................ 10 

1.2.5.2 Loading of the washing machine ....................................................... 11 

1.2.5.3 Use of washing temperature and program ......................................... 12 

1.3 Sustainability ................................................................................................... 12 

1.4 Demographic trends........................................................................................ 13 

1.5 Modeling approaches ...................................................................................... 14 

2 Objective .............................................................................................................. 17 

3 Material and methods ......................................................................................... 19 

3.1 Material ............................................................................................................ 19 

3.1.1 Tested washing machines ......................................................................... 19 

3.1.2 Washing machine used for standardization and neutralization ................ 19 

3.1.3 Test load ................................................................................................... 20 



   

3.1.4 Detergent .................................................................................................. 20 

3.1.5 Software .................................................................................................... 21 

3.2 Methods ............................................................................................................ 21 

3.2.1 Washing machines tests ............................................................................ 21 

3.2.1.1 Load ................................................................................................... 21 

3.2.1.2 Detergent dosing ................................................................................ 22 

3.2.1.3 Temperature/program ........................................................................ 22 

3.2.1.4 Normalization and conditioning ........................................................ 23 

3.2.1.5 Reproduction tests .............................................................................. 24 

3.2.1.6 Evaluation of the soil strips ............................................................... 24 

3.2.1.7 Calculation the washing performance index ...................................... 24 

3.2.1.8 Testing conditions .............................................................................. 25 

3.2.2 Construction of the model of a virtual washing machine ......................... 25 

3.2.2.1 Calculations of the consumption in CO2 equivalents ........................ 26 

3.2.3 Construction of the model of virtual washing household ......................... 28 

3.2.4 Combination of virtual washing household and virtual washing machine30 

3.2.4.1 Correction of the detergent amount ................................................... 31 

3.2.4.2 Scenario used for simulation ............................................................. 31 

3.2.5 Average values calculations ..................................................................... 32 

4 Results .................................................................................................................. 33 

4.1 Results of the washing machines tests ........................................................... 33 

4.1.1 Water consumption ................................................................................... 33 

4.1.2 Energy consumption ................................................................................. 36 

4.1.3 Washing performance ............................................................................... 37 

4.1.4 Duration of the main wash........................................................................ 39 

4.1.5 Washing temperature: nominal versus actual washing temperature ........ 40 

4.2 Construction of model of virtual washing machine ..................................... 41 

4.2.1 Water consumption equation .................................................................... 41 

4.2.2 Energy consumption equation .................................................................. 43 

4.2.3 Detergent consumption equation .............................................................. 45 

4.3 Results of the virtual washing household modeling approach ................... 47 

4.4 Results of yearly simulations ......................................................................... 50 



   

4.4.1 Washing machine’s rated capacity versus household size ....................... 50 

4.4.2 CO2 equivalent emission of water detergent and energy .......................... 55 

4.4.3 Comparison of the time exposure ............................................................. 56 

4.4.4 Comparison of average washing temperatures ......................................... 57 

5 Discussion ............................................................................................................. 59 

5.1 Virtual washing machine ................................................................................ 59 

5.1.1 Equation for calculation of water consumption........................................ 59 

5.1.2 Total water consumption .......................................................................... 61 

5.1.3 Detergent consumption ............................................................................. 64 

5.2 Virtual washing household ............................................................................. 66 

5.3 Simulations ...................................................................................................... 67 

5.3.1 Washing machine’s rated capacity ........................................................... 68 

5.3.2 Resource consumption .............................................................................. 69 

5.3.3 Washing frequency ................................................................................... 70 

5.3.4 Average washing temperature .................................................................. 71 

5.4 Deficits of the presented research .................................................................. 73 

6 Conclusion ........................................................................................................... 75 

7 Future prospects .................................................................................................. 77 

8 References ............................................................................................................ 79 

9 Abbreviations ...................................................................................................... 85 

10 List of figures ....................................................................................................... 87 

11 List of tables ......................................................................................................... 91 

12 Apendix ................................................................................................................... I 

12.1 Washing machine tests data .............................................................................. I 

12.2 Virtual washing machine MATLAB source code ........................................ XI 

12.3 Virtual washing household MATLAB source code .................................. XIII 

Acknowledgements 

  

 

 

 

 



   

 

 

 

 

 

 



INTRODUCTION  1  

1 Introduction 

Laundry washing, in the sense of cleaning textiles in aqueous liquor, is a complex 

process involving the cooperative interaction of numerous physical and chemical 

influences. In the broadest sense, washing can be defined as both removal by water or 

by an aqueous detergent solution of poorly soluble residues, as well as the dissolution 

of water-soluble impurities. (JAKOBI and LÖHR, 1987, SMULDERS et al., 2007) 

TERPSTRA defines the primary objective of cleaning as “…restoration of the fitness for 

use and the esthetical properties of the textiles, e.g. removal of soil, stains, odors and 

creases and regaining surface smoothness and thermal isolation.”  

(TERPSTRA, 2001, p.4) LEMARE defines other benefits from laundering processes, such 

as the maintenance of the appropriate hygiene (LEMARE, 1987). 

1.1 Washing process 

The washing process is described as a function of different: washing temperatures, 

length of washing cycles, types and amounts of detergent and applied mechanical 

works. It is best described by using a circle, which many researchers today refer to as 

Sinner’s Circle (Figure 1-1). (SINNER, 1960) STAMMINGER adds a further fifth parameter, 

water (inner circle), which represents the combining element of all factors 

(STAMMINGER, 2013).  

Figure 1-1: Sinner’s circle (own representation) 

Temperature 

Chemistry Time 

Water 

Mechanics 
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Each of these four factors can be substituted to a certain degree by the other three 

factors and the resulting washing performance remains the same. For example, a 

decrease of the temperature can be partially compensated by increasing either one or 

more of the other factors, i.e. chemistry, washing time or mechanical agitation. 

(WAGNER, 2011, KUTSCH et al., 1997, SMULDERS, 2007)  

The combination of different factors depends on the washing technique employed. In 

the case of washing laundry by hand, the portion of the mechanics is much higher than 

the portion of the washing time (Figure 1-2). Laundry washing in a washing machine 

at a higher temperature results in a higher contribution of the temperature in the 

washing process (Figure 1-3).  

 

  

 

 

 

 

Figure 1-2: Sinner's circle for washing by 
hand (own representation) 

 

 

 

 

Figure 1-3: Sinner's circle for washing in a 
washing machine at a high temperature (own 

representation) 

1.1.1 Mechanics  

In the washing process, the textiles are mixed with the wash liquor. The total amount 

of wash liquor required in the main wash process is made up of two portions: liquor 

soaked by the laundry (bound wash liquor) and liquor that remains free in the drum 

(free wash liquor). (SMULDERS et al., 2007) In the case of manual laundering, the 

mechanical action is done by rubbing and beating, stretching and squeezing of the 

textiles. Sometimes this is done by using auxiliary devices. (SMULDERS et al., 2007) 

In washing machines, the mechanical work is determined by: diameter of the drum, 

reverse rhythm, water level, number of revolutions of the drum, position and number 
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of the paddles in the drum, the amount of load, and the duration of the wash cycle. 

(HLOCH et al., 1989) 

The extent of the mechanical action imparted to the laundry can be altered by changing 

the ratio of dry laundry weight to the volume of wash liquor (laundry-liquor-ratio). A 

low wash liquor level and relatively rapid reversal causes a large mechanical effect on 

the laundry. In contrast, a high wash liquor and slower reversal provides less 

mechanical action. (SMULDERS et al., 2007) 

1.1.2 Temperature 

With an increase of the temperature, the soil removal normally increases. The elevated 

temperature enhances the chemical reactions, solubilizes greasy soils and weakens the 

binding forces of the soil on the fabric. (SMULDERS et al., 2007) 

The maximal washing temperature is determined by the properties of the wash load. 

With an increase of the temperature, the soil-binding capacity of the wash liquor 

decreases, so that an extensive soil redisposition can be anticipated. Furthermore, with 

an increase of the temperature, the knitting of the synthetic fibers increases as well.  

In order to prevent those opposing trends in the praxis, the laundry washing process is 

divided into different sub-processes. Today, normally the laundry washing is divided 

into prewash and main wash, which is followed by the rinsing cycle. (HLOCH et al., 

1989) 

1.1.3 Washing time 

In order to remove the dirt from the textiles, the washing factors of chemistry and 

mechanics have to interact together with the load at a certain washing temperature for 

a certain period of time (WAGNER, 2011). 

The duration of the washing process determines how long the detergent is allowed to 

act. Longer cleaning times will increase the soil removal and thus improve the 

cleaning performance (VAUGHN et al., 1941). 
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At the beginning of the washing process, it is necessary to heat up the cold inlet water. 

Heat-up time is the time required to achieve the preset temperature. Heat-up time 

depends on the amount of laundry and hence the water quantity, the temperature of the 

inlet water and the heating capacity of the washing machine. This heat-up time is 

followed by the main washing time. (KUTSCH et al., 1997, SMULDERS, 2007, WAGNER, 

2011) 

1.1.4 Chemistry 

The factor chemistry is accompanied with the medium water. A quantifying of this 

factor in the form of a single operand is not possible since the washing chemistry does 

not only depend on the very complex coaction of different detergent components, but 

also depends on other factors, such as temperature or soil composition. (HLOCH et al., 

1989) 

Besides the actual removal of soil, further functions of the chemical substances are: 

water softening, emulation of lipid component, dispersion and stabilization of 

particulate soil, bleaching of stains and dissolving of proteins. (KUTSCH et al., 1997) 

The washing performance normally increases as the detergent concentration increases. 

When the detergent concentration is too high, the washing performance decreases, 

because a high foam production leads to a decrease of the mechanical force. 

(HLOCH et al., 1989) 

1.2 Washing machines 

Washing machines that are presently used globally in domestic laundry care can be 

divided mainly into two categories depending on the orientation of their axis: 

horizontal and vertical axis washing machines. Following are the different types of 

those automatic-washing systems. (KUTSCH et al., 1997)  
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1.2.1 Horizontal axis washing machine 

This type of washing machine consists of a stainless steel, perforated drum into which 

the laundry is loaded, and an outer surrounding tub into which the water is filled. The 

mechanical agitation of the laundry is done by rotating the drum around a horizontal 

axis. Paddles, which are mounted on its inside, lift the laundry to the top and then let it 

tumble down. (WAGNER, 2011; KUTSCH et al., 1997; SMULDERS, 2007) 

Because the wash action does not require the clothing to be fully suspended in water, 

only enough water is needed in order to moisten the fabric and to ensure a sufficient 

transfer of suds between the water-soaked laundry and the free water. An electric 

heater element on the bottom of the drum allows the heat-up of the water in the main 

wash phase to the preset washing temperature, mainly between 30 °C and 60 °C. 

(WAGNER, 2011; KUTSCH et al., 1997; SMULDERS, 2007) 

Today’s state of the art domestic washing machines have many features built in, such 

as a large number of different programs for all kind of textiles, automatic detection of 

amount and type of textile, automatic dosing, steam generator for laundry refreshing 

purposes, etc. (WAGNER, 2011; KUTSCH et al., 1997; SMULDERS, 2007) 

Furthermore, modern washing machines frequently use the so-called fuzzy logic 

control which governs partial processes of the washing program. Such a control is able 

to automatically provide, for example, variable speeds of reversion of the drum 

depending on the amount of foam produced during the wash cycle, or to control the 

quantity of water intake and washing time depending on weight and type of wash load.  

All those features should help the consumer to treat the laundry optimally. 

(SMULDERS et al., 2007) 

The horizontal axis type of washing machine is mainly used in Europe and Near East 

countries. In recent years, this type of machine has also been gaining market shares in 

all other regions as well. (WAGNER, 2011; KUTSCH et al., 1997; SMULDERS, 2007) 
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1.2.2 Vertical axis washing machine 

This type of washing machine uses a vertically mounted perforated drum that is itself 

contained within a watertight tub. The laundry is freely suspended in the water. The 

mechanical work is performed by moving the laundry in the water. Depending on its 

laundry motion configuration, these washing machine can be subcategorized into:  

1.2.2.1 Impeller (pulsator) type washing machine  

In this type of machine, an impeller located on the bottom of the washing machine 

induces a vortex. The vortex causes the laundry to circulate up and down in the water. 

This type of washing machine is common in Japan, China and South Korea. These 

machines normally do not contain a heating element, but use cold (or otherwise 

preheated) water from the tap. (WAGNER, 2011; KUTSCH et al., 1997; SMULDERS, 2007) 

1.2.2.2 Agitator type washing machine 

In this type of washing machine, the mechanical work is produced by a device 

(agitator) located in the center of the drum, which then rotates around its vertical axis 

to the right and left. These machines normally are connected to an external hot and 

cold water supply and mix these waters accordingly. This type of washing machine is 

common in the USA and Canada. (WAGNER, 2011; KUTSCH et al., 1997; SMULDERS, 

2007) 

1.2.3 Washing machine markets and trends 

The EU-27 washing machine stock in the residential sector was estimated to be around 

172,85 million units (Bertoldi and Atanasiu, 2007). According to data presented in the 

Preparatory Study for Eco-design Requirements of Energy-using Products (EuP) the 

penetration of the washing machines on the European market is high: Germany 

(96 %), Czech Republic (94,9 %), Poland (86 %), 87, France (94,7 %), Hungary 
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(88 %), Spain (98,5 %), UK (94 %) Finland (87 %), Sweden (72 %). 

(PRESUTTO et al, 2007) 

The share of washing machines with a higher rated capacity has grown in the past 

years. On the European market, the average washing machine load capacity has 

increased from 4,8 kg in 1997 up to 5,4 kg in 2005 (CECED, 2005) and is still 

increasing. In 2010, washing machines with a rated capacity between 5,5 kg and 7 kg 

were the most important market segment in 10 EU countries (AT, BE, DE, ES, FR, 

GB, IT, NL, PT, SE) (BERTOLDI et al., 2012). In 2012, the top selling appliances were 

those with a 7 kg rated capacity (Henkel, private communication).    

 

Figure 1-4: Average load capacity trends of household washing machines 

(Data source: GfK cited from BERTOLDI et al., 2012, own representation) 

1.2.4 Resource consumption for washing purposes 

1.2.4.1 Electricity consumption 

The residential sector accounts for 29,71 % of total electricity used, the second largest 

electricity consumption sector. Within the residential sector, 7,2 % of electricity is 

consumed for laundry care. This shows the importance of washing and drying in the 

total electricity consumption. (BERTOLDI et al., 2012) 
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The Eco-design preparatory study estimated the energy consumption of the washing 

machine stock in 2005 to be around 51 TWh / year, with an average yearly 

consumption per appliance of 295 kWh in the EU-27 households. (PRESUTTO et al, 

2007) 

A very comprehensive study regarding the energy consumption for washing purposes 

worldwide is delivered by PAKULA AND STAMMINGER, 2010. With their study, they 

covered roughly 780 million washing machines in about 2.3 billion households, which 

is about one third of the world population. PAKULA AND STAMMINGER note that most 

countries outside of their investigation still do their laundry washing by hand. 

According to their calculated estimation, the global electricity consumption of washing 

machines may be, at maximum, about 100 TWh /year of electricity. (PAKULA and 

STAMMINGER, 2010)  

1.2.4.2 Water consumption 

Total water abstraction in the European Union (EU 27) amounts to about 247  000 

million m³/year. On average, 44 % of total water abstraction in European Union is 

used for energy production, 24 % for agriculture, 17 % for public water supply and 

15 % for industry (DWORAK et al., 2007). 

The Organization for Economic Co-operation and Development estimates that the 

share of the household in the total water consumption amounts to ca. 10 % to 30 % 

(OECD, 2013). Average consumption in OECD countries is about 100 000 l/year and 

person equals 174 liters per person per day. According to the European Environmental 

Agency, the average water consumption in Europe is between 100 liters and 320 liters, 

with an average of 155 liters per person and day (EEA, 2005). 

Pakula and Stamminger estimate that 20 000 000 000 m
3
 water is consumed worldwide 

for laundry washing in a washing machine (PAKULA and STAMMINGER, 2010). 

 

 

 



INTRODUCTION  9  

1.2.5 Consumer behavior in use of washing machines 

When taking into account the cradle-to-grave life cycle of a washing machine, i.e. 

including the production, use and disposal phase, it becomes obvious that the use 

phase is the most resource-consuming and waste-producing (Figure 1-5).  

Figure 1-5: Life cycle analysis of a washing machine (Source: RÜDENAUER et al.)  

Since washing machines are operated on consumer demand, their consumption of 

water, energy and detergents for a washing cycle is determined mainly by 

consumer-driven factors such as the frequency of washing, loading behavior, selection 

of the washing temperature/program and dosing of detergents (STAMMINGER et al., 

2008). 

Much research regarding the behavior of the consumer when washing laundry has 

been conducted in the past years. However, much of this research was conducted by 

producers of the detergent and appliance industry, and hence was partially published 

or not published at all. 

The most relevant studies of the European consumer washing behavior that have been 

published in the past 10 years are listed below.  
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2003 ARILD et al. conducted a survey with 4010 participants from Greece, the 

Netherlands, Norway and Spain with the goal of finding out how the consumers handle 

the washing of laundry (ARILD et al., 2003). 

JÄRVI and PALOVIITA conducted interviews in 2004 and 2005 with 340, in this case 299, 

people in Finland with the goal of finding out how consumers 

read/understand/implement the information and instructions on detergent (JÄRVI AND 

PALOVIITA, 2007). 

In 2007, the University of Bonn conducted an online survey as part of a Preparatory 

Study for Eco-design Requirements of Energy-using Products. A total of 2500 

participants from 10 European countries took part in the survey (PRESUTTO et al, 2007). 

In 2007 BERKHOLZ et al. conducted a non-representative study on behalf of the German 

Federal Ministry of Economics and Technology and studied the washing behavior of 

100 German households over a period of one month. The participants of the study 

were actually measuring the amount of laundry, detergent and electricity consumed for 

washing purposes. (BERKHOLZ et al., 2007) 

STAMMINGER and GOERDELER published results of a survey conducted in 2005 with 

3750 participants from all parts of Germany regarding their behavior in laundry 

washing. (STAMMINGER and GOERDELER, 2007) 

In 2008 and 2011, the international association for soaps, care and cleaning products 

(AISE) conducted a survey with 5060 consumers in 23 European countries with an 

aim to find out laundry washing behavior. (AISE, 2008; AISE, 2011) 

Not all studies have had the same research question; therefore the results of different 

studies cannot always be compared. However, the following data regarding the 

washing frequency, loading behavior and washing temperature selection is available. 

1.2.5.1 Washing frequency 

The number of washing cycles depends on factors such as the washing machine’s rated 

capacity or household size, loading behavior, etc. In the literature, information 
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regarding the consumers’ behavior when using washing machines is sometimes 

contradictory.  

According to RÜDENAUER and GRIEßHAMMER, 164 wash cycles per year for an average 

household is conducted in Germany, Austria, and Switzerland. RÜDENAUER and 

GRIEßHAMMER list that the average number of washing cycles starts with 111 wash 

cycles for a one-person household and increases to 211 wash cycles per year for a 

four-person household (RÜDENAUER and GRIEßHAMMER, 2004) 

STAMMINGER and GOERDELER published 4,5 washes per week (234 per year) as an 

average household number of washing cycles in Germany. Those figures are based on 

online questionnaires of more than 2000 persons. (STAMMINGER and GOERDELER, 2007) 

PRESUTTO et al, state that the average washing frequency is 2,6 times per week for 

single- and 6,2 for four-person households. On average, 4,9 wash cycles per household 

per week, which equals on average 254 per year, are conducted. (PRESUTTO et al, 2007) 

1.2.5.2 Loading of the washing machine 

Many studies show that consumers do not fully use the rated capacity of their washing 

machine. BERKHOLZ et al. measured that, for example in Germany, the average load of 

a washing machine is 3,2 kg per wash cycle (BERKHOLZ et al., 2007).  

According to PRESUTTO et al., most consumers claim to use the full loading capacity of 

their washing machine, but this does not mean that the rated capacity is really used 

(PRESUTTO et al, 2007). 

DE ALMEIDA et al. state that the vast majority of the households always use the washing 

machine at over 75 % of its capacity. (DE ALMEIDA et al., 2006)  

Another measurement study shows that for an average washing machine capacity of 5 

kg, consumers consider an average load of 3,7 kg to be a full load 

(KRUSCHWITZ et al., 2014).  
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1.2.5.3 Use of washing temperature and program 

According to PRESUTTO et al., the average nominal washing temperature in Europe is 

45,8 °C. The most used program is the 40 °C program (37 %), the second most used 

temperature is 60 °C, which is 23 % of all the washes (PRESUTTO et al., 2007). 

AISE publication also states that the 40 °C program is the most used program with 

40 % of all the washes (AISE, 2013). 

According to STAMMINGER and GOERDELER, the average washing temperature in 

Germany is 46,3 °C. The most used washing temperature is 40 °C with 37 % of all 

wash cycles. The second and third most used washing temperatures are 60 °C with 30 

% of all washing cycles resp. 30 °C with 27 % of all washing cycles. (STAMMINGER and 

GOERDELER, 2007) 

1.3 Sustainability 

For weighing the climatic impact of emission of different greenhouse gases, the 

Intergovernmental Panel on Climate Change (IPCC) has, since its first assessment in 

1990, used the Global Warming Potential (GWP). (CHANGE, 1990)  

The GWP has been subjected to much criticism because of its formulation, but 

nevertheless it has retained some favor because of the simplicity of its design and 

application, and also its transparency compared to proposed alternatives. 

(SHINE et al., 2005) 

In December 1997, the Kyoto Protocol was adopted (BREIDENICH et al., 1998). It 

entered into force on 16 February 2005 and for the first time it establishes legally 

binding limits for 37 industrialized countries on emissions of carbon dioxide and other 

greenhouse gases. (KyotoProtocol, 2013) 

Kyoto Protocol set a binding reduction target for EU-15 GHG emissions of 8 % on 

average for the 2008–2012 period, compared with 1990 levels. In February 2011, the 

European Council reconfirmed the EU objective of reducing greenhouse gas (GHG) 

emissions by 80–95 % by 2050, as compared to levels in 1990 (COMMISSION, 2011). 
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Figure 1-6: Contribution of the different sectors to the GHG emission (Source: EEA, 2010) 

The contribution of the household and services to the global GHG emission is 14,5% 

(EEA, 2010). The EU objective of reducing greenhouse gas emissions can only be 

achieved when all the sectors contributing to the GHG emission contribute to that goal. 

By lowering the energy consumption, a total GHG emission can be achieved.  

1.4 Demographic trends 

According to the convergence scenario of EUROPOP2010, the EU-27’s population is 

projected to increase to 525 million by 2035, peaking at 526 million around 2040, and 

thereafter gradually declining to 517 million by 2060 (EUROSTAT, 2013) . 

Not only is an increase of the population expected, but the number of households with 

a fewer number of household members is also increasing.  

According to a study published by OECD by 2025-2030, one-person households will 

make up around 40 % or more of all households in the following European countries: 

Austria, France, Germany, the Netherlands, Norway, Switzerland and England. The 

authors of the study see the reason for this largely as a consequence of an ageing 
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population, increase of the sole-parent household and current fertility rates and 

increases in life expectancy. (OECD, 2011) 

1.5 Modeling approaches 

There are different approaches to model the washing machines and their processes. 

Since the modeling of the washing machine is mainly done in the industry, the 

published research in this field is scarce. However, a selection of different modeling 

approaches is presented.  

Parametrical modeling was used by WARD. In this research, the trajectory of a single 

concentrated mass was parametrically modeled in order to estimate the pressure drops 

that would occur on the mass as it is lifted by the baffles of the rotating washing 

machine drum and then subsequently dropped and impacted upon landing. (WARD, 

2000)  

TERPSTRA conducted research with an aim to evaluate whether the cleaning 

performance of domestic washing machines can be assessed with test soils by using 

the statistical modeling of the real experimentally-generated data. (TERPSTRA, 2001)  

In 2003, PARK and WASSGREN conducted a computational simulation of textile 

dynamics inside a rotating drum. They used a simplified discrete element 

computational model to model the movement of the textiles. The textiles were 

modeled as spherical bundles, and their movement and interactions were modeled on 

the basis of the macroscopic behavior of these spherical textile bundles. (PARK and 

WASSGREN, 2003)  

LAZAREVIĆ and VASIĆ used a mathematical modeling approach to model washing 

machines, where it is seen as a conglomerate of rigid multi-body systems. The basic 

properties of the washing machine are the basis for the construction of the model. 

(LAZAREVIĆ and VASIĆ, 2008) 

RAMASUBRAMANIAN and TIRUTHANI used computational modeling to develop firstly a 

simplified 2D model, and then later a 3D model of a washing machine. The goal of the 

research was, by using the computer model, to develop a better understanding of the 
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dynamics of modern washing machines that use balance rings. (RAMASUBRAMANIAN 

and TIRUTHANI, 2009) 

MAC NAMARA et al. used the Positron Emission Particle Tracking (PEPT) technique, 

where radioactively labeled particles are monitored. In the research, a single tracer 

particle attached to a textile was monitored as it rotated and tumbled amongst other 

textiles in a commercially available domestic washing machine. The aim of the 

research was to understand the mechanisms by which mechanical action is imparted 

onto wet textiles during washing. (MAC NAMARA et al., 2012) 

IN 2005, RÜDENAUER et al. conducted a life cycle assessment for washing machines to 

model the complex interaction between a product and the environment. The model 

includes the life cycle of a product from the production, use and disposal phases. In the 

study, RÜDENAUER et al. compare the acquisition and use of a washing machine with a 

larger rated capacity to the acquisition and use of a washing machine with a rated 

capacity of 5 kg under environmental and economic aspects. (RÜDENAUER et al., 2005) 

The presented modeling approaches focus on a specific aspect of a washing machine 

(e.g. exploring the influence of mechanics in a washing process), but none of the 

models depicts the whole washing process. Furthermore, those models also do not 

include the washing machine’s rated capacity, except that of RÜDENAUER et al. Finally, 

the role of the consumer / household is either only rudimentary or not included in 

those models at all. 
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2 Objective 

On the European market at present, two opposing trends can be observed. On one 

hand, an increase of the average load size of the washing machines that are sold on the 

market is observed. On the other hand, the demographic structure of the European 

households is changing, resulting in a decrease of the average household size and 

hence results in a reduced amount of laundry to be washed. 

In addition to those two opposing trends, it should be kept in mind that consumers at 

present do not fully use the rated capacity of their washing machines, and consider a 

partial load level as a full load. 

Those considerations lead to the question: “What kind of washing behavior is needed, 

so that the usage of washing machines with a higher rated capacity has a low impact 

on the environment?” 

In order to answer that question, the following needs to be done: 

 Firstly, a model of a virtual washing machine that is based on average and 

typical data of washing machines available on the market shall be developed. 

The virtual washing machine should be flexible, so that the input parameters 

selected by the consumer can be varied. 

 Secondly, a virtual washing household that incorporates various washing 

behavioral parameters shall be developed.   

 Thirdly, a simulation of the usage of the virtual washing machine by the virtual 

washing households shall be developed. By conducting parallel simulations and 

by varying device-, household-, and behavioral parameters, optimal parameter 

combinations with low environmental impact shall be determined and hence 

conclusions regarding an optimal consumer behavior are to be drawn. 
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3 Material and methods 

All material and methods used for testing the washing machines are based on the 

experimental setup required in EN60456:2005.  

The framework of EN60456:2005 is broadened and tests with a load of 25 % and 75 % 

as well as tests with detergent under- and overdose are included. Those cases are 

marked accordingly. In some cases, the EN60456:2010 is applied and also those cases 

are marked accordingly.  

3.1 Material 

3.1.1 Tested washing machines 

All tested washing machines are front loading washing machines and are prepared in 

accordance with the manufacturer's specified safety instructions and installed in 

accordance with EN60456:2005.   

Table 3-1: List of tested washing machines 

Manufacturer and washing machine model rated capacity Ident. Nr: 

Miele Novotronic W1514 5 kg WM1 
Indesit IWB 5125 5 kg WM2 

BOSCH Maxx6 Eco Wash WAE2834P 6 kg WM3 

Bauknecht WA UNIQ 714FLD  7 kg WM4 

AEG Öko Lavamat  76850 A 7 kg WM5 

BOSCH Logixx8 Vario Perfekt WAS32792 8 kg WM6 

Haier HW-F1481 8 kg WM7 

Indesit  PWE 8168W 8 kg WM8 

Bauknecht  WAB-1210 11 kg WM9 

3.1.2 Washing machine used for standardization and neutralization 

MIELE W1514 NOVOTRONIC and WASCATOR CLS are used for the normalization process 

of the test load. MIELE NOVOTRONIC W1514 program software is modified so that it 

complies with the standard procedure as described in EN60456:2005.  
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Table 3-2: Equipment used for the normalization process of the load 

Washing machine washing machines tested 

W1514 Novotronic WM1, WM3, WM4, WM5, WM6 
Wascator WM2, WM7, WM8, WM9 

3.1.3 Test load 

The test load consists of the base load and the soil strips as specified. Base load is used 

in accordance with EN60456:2005 and consists of cotton bed sheets, cotton 

pillowcases, and cotton towels. Soiled test trips are in accordance with EN60456:2010 

and were manufactured by “EMPA Testmaterialien”.  

Table 3-3: Soil strips and respective batch number used for the tests 

EMPA Batch number Washing machines tested 

Batch 21 WM1, WM3, WM4, WM6 
Batch 27 WM5 
Batch 35 WM2, WM7, WM8 
Batch 45 WM9 

3.1.4 Detergent 

Reference detergent A* is used in the test as specified by the EN50456:2005. During 

the testing time, all three components are stored separately and used within the expiry 

date as stated in the documentation provided by the manufacturer. 

 

Table 3-4: Detergent  

 
Component batch Nr. 

Washing machines tested base powder 
sodium 

perborate 
tetrahydrate 

bleach 
activator 
(TAED) 

WM1, WM3,  WM5, WM6 167-513 237-394 24704603 

WM2, WM4, WM7, WM8, WM9 237-970 287-984 26746203 
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3.1.5 Software 

Table 3-5 lists all software used.  

 

Table 3-5: Overview of software used 

Software name Used for 

Matlab 2010a Simulation of a washing process 
IBM SPSS Statistics 21 Multivariate statistics i.e. Multiple linear regression 
Colorimeter software Evaluation of the EMPA soil strips 
Alborn Data logger software used to monitor and record the test 

experiment 

3.2 Methods 

3.2.1 Washing machines tests 

The framework of EN60456:2005 is extended so that some test parameters such as 

temperature, detergent dosage and load size are varied.  

In addition, differing from EN60456:2005 in which five repetitions of each parameter 

setting are required, in this case one repetition is conducted for each parameter setting.  

3.2.1.1 Load 

The load is varied so that tests with 25 %, 50 %, 75 % and 100 % of the rated washing 

machine load capacity were conducted. Furthermore, tests with no load were 

performed in order to simulate a very small load. Table 3-6 shows the loading 

scenarios for different washing machines.  

Table 3-6: Loading scenarios for different washing machines’ rated capacities 

WM rated 
capacity 

Load size 
25 % in kg 

Load size 
50 % in kg 

Load size 
75 % in kg 

Load size 
100 % in kg 

5 kg 1,25 2,5 3,75 5 
6 kg 1,5 3 4,5 6 
7 kg 1,75 3,5 5,25 7 
8 kg 2 4 6 8 
11 kg 2,75 5,5 8,25 11 
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3.2.1.2 Detergent dosing 

In order to reflect a more consumer-relevant behavior in the testing procedure, the 

amount of the nominal dose of detergent was calculated as specified in 

EN60456:2010.  

Nominal dosing:   

To simulate the over- and under-dosing, the following dosages are included.  

Overdosing:    

Under dosing:   

Prior to the dosing the detergent, the detergent dispenser is cleaned and dried. 

3.2.1.3 Temperature/program 

The washing temperature is varied so that the washing program at 30 °C, 40 °C, and 

60 °C are conducted. Combining all varied parameters results in a total of 39 tests 

conducted for one single washing machine. Washing program is “cotton” and the spin 

speed is 1400 rpm. During the washing cycle the water temperature in the sump is 

monitored by a sensor placed in the space between the inner and outer drum at the 

bottom of the washing machine’s drum.  

Table 3-7: Test design and variation of the parameters 

Load 
size 

Temperature Number of  

30 °C 40 °C 60 °C tests 

0 % No detergent No detergent No detergent 3 

25 % 
Over dose 

Nominal dose 
Under dose 

Over dose 
Nominal dose  
Under dose 

Over dose 
Nominal dose 
Under dose 

9 

50 % 
Over dose 

Nominal dose 
Under dose 

Over dose 
Nominal dose 
 Under dose 

Over dose 
Nominal dose 
Under dose 

9 

75 % 
Over dose 

Nominal dose 
Under-dose 

Over dose 
Nominal dose  
Under dose 

Over dose 
Nominal dose 
Under dose 

9 

100 % 
Over dose 

Nominal dose 
Under dose 

Over dose 
Nominal dose  
Under dose 

Over dose 
Nominal dose 
Under dose 

9 
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The experimental setup is based on the following recurring test scheme based on 

EN60456:2005 (Figure 3-1). 

Figure 3-1: Example of a testing procedure on an example of a 25 % load 

3.2.1.4 Normalization and conditioning 

In accordance with the EN60456:2005, the normalization process is conducted in 

batches of 3,75 kg. If the quantity exceeded the quantity of 3,75 kg, the laundry 

amount is divided into smaller load sizes.  

Conditioning is conducted as described in EN60456:2005. The individual items of 

laundry are left for 24 hours on a rack. All items are separately hung on, so that a 

circulation of the air is ensured. 

 

 

Normalizing and conditioning 

Detergent dosage 50 % 

Cotton 30 °C Cotton 40 °C Cotton 60 °C 

Detergent dosage 100 % 

Cotton 30 °C Cotton 40 °C Cotton 60 °C 

Detergent dosage 150 % 

Cotton 30 °C Cotton 40 °C Cotton 60 °C 

Normalizing  

Normalizing  
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3.2.1.5 Reproduction tests 

Every constellation of the parameters is tested once.  In order to test the reproducibility 

of the results, every washing machine is tested in so-called reproduction tests. For this 

reason, three tests in accordance with EN60456:2005 with a full load, using the 

washing program "cotton 60 °C", and with a detergent dosage of 100 % are conducted.  

3.2.1.6 Evaluation of the soil strips 

Upon completion of a test, the test load is removed no later than ten minutes after the 

completion of the washing process. The attached soil strips are separated. Test loads 

without the soil strips is then weighted and dried. The separated soil strips are air-

dried, ironed, and evaluated by measuring the tristimulus Y reflectance in accordance 

with EN60456:2005. 

3.2.1.7 Calculation the washing performance index 

According to the standard EN60456:2005, the CIE Y values calculated for every 

washing machines test is set in proportion to those of a reference washing machine.  

In EN60456:2005, the reference washing machines tests are conducted by washing 

5 kg of laundry in a reference washing machine and using 180 g of the reference 

detergent.  

In EN60456:2010, the reference washing machine tests are conducted the same as in 

EN60456:2005, except that the detergent dosage is 110 g.  

In this research, the reference washing machine tests are not conducted. Instead, the 

documentation provided by the soil strip producer “Empa Testmaterialien” is used.  

The values in the documentation are provided only in accordance with EN60456:2005 

for 180 g and 135 g. Based on those values, the CIE Y values for 110 g are 

extrapolated. 
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Table 3-8: CIE Y values of different batches and extrapolated values for 110g of detergent 

Batch 
Number 

CIE Y values for 
180 g 

CIE Y values 
for 135 g 

Extrapolated Y CIE 
values for 110g 

21 355,1 345,7 340,5 
27 353,6 342,9 337,0 
35 353,5 340,7 333,6 
45 348,7 336,1 329,1 

3.2.1.8 Testing conditions 

All testing conditions are maintained as defined in EN60456:2005  

Table 3-9: Testing conditions in accordance with EN60456:2005 

Parameter Interval 

Ambient temperature 23 ± 2 °C 
Water temperature 15 ± 2 °C 
Water pressure 2,4 ± 0,5 bar 
Water hardness 2,5 ± 0,2 mmol / L 
Power supply voltage 230 V ± 1 % 
Power supply frequency 50 Hz ± 1 % 

3.2.2 Construction of the model of a virtual washing machine 

During the washing machine tests, input parameters (independent variables) are: 

washing temperature, load size, washing machine’s rated capacity, duration of the 

main wash and amount of detergent. The output parameters (dependent variables) are: 

Energy consumption, water consumption, washing performance and washing time. 

By using this data, a model of a virtual washing machine is constructed. This model 

consists of a set of multiple linear regression equations that puts into relation the input 

and output parameters, and hence can be used to predict the amount of resources 

consumed during a single washing cycle (detergent, water and energy). 
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The basis for the construction of the virtual washing machine model is a general 

equation for multiple linear regressions. 

𝑌          𝑋     𝑋                  (3-1) 

Where is: 

𝑌  𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑋   𝑋   𝑋  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

                𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

Based on the eq. (3-1) and the input parameters, three different multiple regression 

equations are developed. Each of the equations is used to predict one of the consumed 

resources (i.e. amount of the detergent, water and energy consumed for a single 

washing cycle).  

3.2.2.1 Calculations of the consumption in CO2 equivalents 

In order to be able to compare different resources (water, detergent and energy), its 

respective amounts are converted into the CO2 equivalents by using the conversion 

values as presented in Table 3-10. 

Table 3-10: Overview of CO2 conversion factors 

Factor Gram CO
2
 per unit Unit 

CO
2
WATER1 6,16 liter 

CO
2
ENERGY2 601 kWh 

CO
2
DETERGENT3 1,7 gram 

 

 

For the calculation of CO2 equivalents for detergent consumed during a single washing 

cycle ( ), the following equation is used: 

                                              
1
 Source: Jungbluth, N., des Gas, S. V. & Wasserfaches, S. (2006) Vergleich der Umweltbelastungen von 

2
 Source: Icha, P. (2013) Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in 

den Jahren 1990 bis 2012. Climate Change, Umweltbundesamt, 07/2013. 

3
 Source: Henkel, private communication 
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𝐶𝑂𝐸                      CO DETERGENT       (3-2) 

 

Where is: 

           𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑔𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑤𝑎𝑠𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒  

 

For the calculation of CO2 equivalents for water consumed during a single washing 

cycle ( ), the following equation is used: 

𝐶𝑂𝐸               CO WATER     (3-3) 

 

Where is: 

𝑋      𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑔𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑤𝑎𝑠𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒 

 

For the calculation of CO2 equivalents for energy consumed during a single washing 

cycle ( ), the following equation is used: 

𝐶𝑂𝐸                 CO ENERGY               (3-4) 

 

Where is: 

                                                                   

 

For the calculation of total CO2 equivalents consumed during a single washing cycle 

( ), the following equation is used: 

𝐶𝑂𝐸      𝐶𝑂𝐸          𝐶𝑂𝐸      𝐶𝑂𝐸          (3-5) 

 

 

 

 

 

The following figure shows a schematic of the model construction 



MATERIAL AND METHODS  28  

Detergent
Water 

consumption

Energy 

consumption

Input and output parameter

CO2 conversion

CO2 usage for one washing cycle

CO2 

conversion

CO2 

conversion

 

Figure 3-2: Schematic of the mathematical model construction of a washing machine (own 
representation) 

3.2.3 Construction of the model of virtual washing household 

In order to simulate the usage of the virtual washing machine, the following concept of 

virtual washing household is presented.  

It is assumed that the usage of the washing machine is defined by: 

1. Washing machine related factors (washing machine’s rated capacity and 

duration of the washing programs) 

2. Household related factors, such as the household size, amount and type of 

laundry that has to be washed per person and week.  

3. Washing behavior related factors (e.g. washing temperature, loading behavior 

and dosing behavior ) 

Simulation of a routine structure as an example for a washing of laundry that has to be 

washed in a 30 °C program is presented in Figure 3-3. Analogously, the simulation 

structure can be applied to a 40 °C and 60 °C washing program.  
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SET LA30 
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laundry per person in kg

Load factor 30 (LF30)= 

WMLS*LB30

 

Figure 3-3: Example of a schematic of the simulation 

 

Simplified, the simulation can be described by the following five steps: 

1) Parameter induction 

a. Setting of the washing machine’s rated capacity 

b. Setting of the number of persons in household 

c. Setting the amount of laundry that has to be washed per person and per 

week. 

d. Setting of the maximal laundry waiting time (MLWT) 

e. Set the week counter to zero 

2) Calculation prior to wash 

a. Determine the amount of rest load from previous week. In the first week 

this value is zero. 

b. Calculation of the washing cycle load amount by multiplying the 

washing machine’s rated capacity with the loading factor. 

c. Calculation of the available amount of laundry that has to be washed 

3) Washing process simulation 
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a. If the available amount of laundry that has to be washed is lower than 

washing cycle load amount, continue to (4). 

b. If the available amount of laundry that has to be washed is equal to or 

higher than washing cycle load amount, conduct the washing simulation. 

Repeat this step until the available amount of laundry is lower than the 

washing cycle load amount. The remaining amount of laundry is added 

to the next week’s amount of laundry.  

4) Add one week to the week counter.  

5) Check whether the duration of the simulation has been reached – if not, restart 

from Step (2). 

6) If yes , end of the simulation. 

With every week, the new amount of laundry per person is introduced into the 

simulation.  

3.2.4 Combination of virtual washing household and virtual washing machine 

Simulation of long-term usage is conducted by combining the model of the virtual 

washing household and the model of the virtual washing machine. 

By using Matlab software, a program that combines those two segments is 

programmed so that the following input parameters can be varied: 

- Washing machine’s rated capacity 

- Number of persons in household 

- Amount of laundry per person  

- Type of laundry per person 

- Maximal laundry waiting time 

- Loading behavior for certain types of laundry 

- Duration of the simulation  
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3.2.4.1 Correction of the detergent amount 

It is to be expected that in some cases, when a small load is washed in a washing 

machine with a high rated capacity, the calculated amount of detergent is very low. 

However, consumers always dose a certain amount of detergent. In order to include 

this consumer behavior in the model, the following convention is implemented in the 

yearly simulation:  

When the amount of calculated detergent for a single wash is lower than 40 g 

(EN60456:2010 base amount of detergent), the calculated amount of detergent is 

automatically corrected to 40 g. 

3.2.4.2 Scenario used for simulation 

The simulations are conducted by using the following general simulations parameters:  

Duration of the simulation = 52 weeks 

Weekly additional laundry = 4 kg per person  

The average composition of the load (KRUSCHWITZ et al., 2014) 

Washing load at 30 °C = 23 % of total load  

Washing load at 40 °C = 46 % of total load  

Washing load at 60 °C = 31 % of total load  

The maximal loading factor for: 

 30 °C washing cycle = 50 % of the rated capacity 

40 °C washing cycle = 70 % of the rated capacity 

60 °C washing cycle = 90 % of the rated capacity 
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3.2.5 Average values calculations 

For the calculation of the average values, the following formula was used: 

 

(3-6) 

Where is: 

�̅�       𝑎𝑟𝑖𝑡𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛  
𝑥  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 
𝑛  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 
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4 Results 

In this chapter, all data received by the experiments, mathematical modeling, and 

simulations are worked out and presented.  

4.1 Results of the washing machines tests 

An overview of the data of the washing machines tests is presented.  

4.1.1 Water consumption 

 

Figure 4-1: Water consumption versus load of nine washing machines - washing temperature 
is 60 °C 

 

Water consumption increases with an increase of the load size for all washing 

machines tested (Figure 4-1). Comparison of slopes indicates that washing machines 

differ in their ability to adapt its water consumption to the amount of load. The slope 

of the WM3 shows that the load size has the lowest influence on water consumption. 

Other washing machines have quantity controls that are more sensitive to a variation 

of the load.  
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Figure 4-2: Comparison between the specific water consumption and the load size 

 

With an increase of the load, specific water consumption decreases. Variations in 

specific water consumption are lowest when the washing machine is fully loaded, and 

highest when the washing machine is loaded with 25 % of the rated capacity. When 

washing machines are underloaded, the differences in specific water consumption for 

washing nearly same amount of load vary to up to twice (Figure 4-2). 

 

 

Figure 4-3: Water consumption versus load amount - washing temperature is 60 °C 
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Setting the water consumption of a fully-loaded washing machine as 100 % reveals 

that water reduction is not proportional to the load reduction (Figure 4 3). 

A load decrease of 50 % leads, in the best case, to a water consumption decrease of 

less than 40 % (in the worst case, the decrease is less than 5 %). 

Table 4-1: Ratio between the main wash water consumption and the total water consumption 
(mean values), in dependence of the detergent dosage 

 
Detergent dose in percent of a nominal dose 

 

 
50 % 100 % 150 % Mean 

WM1 1:3,4 1:3,4 1:3,3 1:3,4 
WM2 1:3,3 1:3,3 1:3,3 1:3,3 
WM3 1:4,0 1:3,9 1:3,7 1:3,9 
WM4 1:4,0 1:4,0 1:4,0 1:4,0 
WM5 1:3,5 1:3,5 1:3,6 1:3,5 
WM6 1:4,1 1:4,1 1:4,1 1:4,1 
WM7 1:3,4 1:3,3 1:3,3 1:3,3 
WM8 1:3,2 1:3,1 1:3,2 1:3,2 
WM9 1:3,3 1:3,3 1:3,3 1:3,3 

Mean 
   

1:3,5 

 

Table 4-2: Ratio between the main wash water consumption and the total water consumption 
(mean values), in dependence of the load size 

 
Washing machine load in percent of rated capacity 

 

 
25 % 50 % 75 % 100 % Mean 

WM1 1:3,0 1:3,4 1:3,5 1:3,6 1:3,4 
WM2 1:3,8 1:3,4 1:3,1 1:2,9 1:3,3 
WM3 1:4,8 1:4,0 1:3,4 1:3,3 1:3,9 
WM4 1:3,8 1:3,8 1:3,8 1:4,5 1:4,0 
WM5 1:3,5 1:3,9 1:3,4 1:3,3 1:3,5 
WM6 1:4,3 1:4,2 1:3,9 1:3,9 1:4,1 
WM7 1:3,6 1:3,5 1:3,2 1:3,0 1:3,3 
WM8 1:3,5 1:3,3 1:3,0 1:2,9 1:3,2 
WM9 1:3,4 1:3,3 1:3,2 1:3,2 1:3,3 

Mean 
    

1:3,5 

 

The ratio values, in dependence of the load size, show the lowest mean values in the 

case of the washing machine WM8 (1:3,2) and the highest values in the case of the 

WM6. The mean ratio is 1:3,5.  
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4.1.2 Energy consumption 

 

Figure 4-4: Energy consumption in kWh versus load size. Washing temperature 60 °C 

 

Similar to the water consumption, the energy consumption increases with an increase 

of the load size. WM4 is an exception and consumes at the load level of 25 % more 

than when it is fully loaded (Figure 4-4). 

 

Figure 4-5: Energy consumption versus load amount - washing temperature is 60 °C 
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Setting the energy consumption of a fully loaded washing machine as 100 % reveals 

that energy reduction is not proportional to the load reduction. A decrease of the load 

by 50 % results in a decrease of energy consumption of maximally 20 %.  

Furthermore, WM6 and WM9 consume 20 % more energy when underloaded (75 % or 

the rated capacity) than when fully loaded. WM4 consumes 10 % more energy when 

underloaded (25 % of the rated capacity) than when fully loaded.  

4.1.3 Washing performance 

 

 

Figure 4-6: Index of washing performance versus load for cotton 60 °C 

With an increase of the load size, the washing performance decreases. WM3 shows the 

lowest washing performance index values for all loading sizes (Figure 4-6). 
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Figure 4-7: Index of washing performance vs. energy consumption. From left to right the 
energy values indicate the machines' energy use for 30 °C, 40 °C and 60 °C washing 

programs  

With an increase of the washing temperature, the energy consumption and the washing 

performance increases. In the case of WM1, an increase of the washing temperature 

from 30 °C to 40 °C results in an increase of the energy consumption of 0.13 kWh and 

the washing performance increases 0,003 index points.  

In the case of the WM8, an increase of the washing temperature from 30 °C to 40 °C 

results in an increase of the energy consumption of 0,63 kWh and a washing 

performance increase of 0,207 index points. An increase of the washing temperature 

from 40 °C to 60 °C results in an increase of the energy consumption of 0,24 kWh and 

an increase of the washing performance of  0,018 washing performance index points. 

(Figure 4-7).  
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Figure 4-8: Index of washing performance vs. detergent dosage 

 

Washing performance varies between different washing machines. An adjustment of 

the washing performance can also be done by varying the amount of the detergent. 

Comparison of the slopes shows a slightly higher loss in performance when the dosage 

is reduced from 100 % to 50 % than from 150 % to 100 % (Figure 4-8).  

 

Table 4-3: Overview of average washing performance achieved at different washing 
temperatures 

Washing 
temperature 

Average washing performance at 
specific temperature 

Washing performance 
setting in the simulation 

30 °C 0,9288 
 

0,93 
40 °C 0,9984 

 
1,00 

60 °C 1,0449 
 

1,04 

4.1.4 Duration of the main wash 

Comparison of average main washing duration data shows a large variety among 

different washing machines types and nominal washing temperatures. With an increase 

of the washing temperature, the duration of the main wash increases as well in most 

cases. The lowest values are reached by the washing machine WM3 at 30 °C (18 

minutes) and the highest values are reached by WM9 at 60 °C (173 minutes). 
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Table 4-4: Overview of different average durations of the main wash at the following washing 
temperatures 

  
Duration of the main wash cycle in minutes at the 

following temperatures (average values) 

  30 °C 40 °C 60 °C 

WM1 56 56 55 
WM2 39 82 82 
WM3 18 25 37 
WM4 65 72 83 
WM5 65 66 81 
WM6 74 86 94 
WM7 61 61 72 
WM8 31 160 156 
WM9 156 158 173 

4.1.5 Washing temperature: nominal versus actual washing temperature 

The washing temperature set on the washing machine (nominal washing temperature) 

and the washing temperature measured by the washing machines sensor (actual 

washing temperature) do not always match. In the case of the nominal temperature of 

30 °C, the average actual temperature values range between 26 °C and 35 °C. In the 

case of a nominal temperature of 40 °C, the average actual temperature values range 

between 39 °C and 48 °C, and in the case of nominal temperature of 60 °C, the 

average actual temperatures range between 49 °C and 63 °C (Table 4-5). 

Table 4-5: Overview of average actual washing temperatures that were achieved instead of 
the respective nominal temperature 

Average actual washing temperatures in °C 

  30 °C 40 °C 60 °C 

WM1 29 38 56 
WM2 35 48 59 
WM3 33 44 63 
WM4 29 40 56 
WM5 30 39 55 
WM6 26 41 56 
WM7 27 37 57 
WM8 29 43 51 
WM9 32 39 49 
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4.2 Construction of model of virtual washing machine 

The virtual washing machine model consists of a set of equations, each used to 

calculate one of the resources consumed during a washing cycle (water, energy and 

detergent). Figure 4-9 shows a schematic (based on Figure 3-3) on how the virtual 

washing machine is constructed.  

Water 

consumption

Energy 

consumption

CO2 usage for one washing cycle

 Load, 

washing 

machine’s 

rated capacity

Temperature,

main wash 

duration

CO2 

conversion

CO2 

conversion

Detergent

Washing performance, 

temperature, load, main 

wash duration

CO2 conversion

 

Figure 4-9: Schematic of a construction of a virtual washing machine based on the data 
received during the washing machine tests 

4.2.1 Water consumption equation  

Multiple linear regression analysis (Table 4-6) was used to develop a model for 

predicting water consumption from load size and rated capacity. The two-predictor 

model is able to account for 88 % of the variance in water consumption.  
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Table 4-6: Summary statistics, correlations, and results from the regression analysis (water 
consumption)  

        multiple regression weights 

Variable mean std 
correlation with 

WC 
b β 

Water consumption (WC) 14,772 5,1606 
   

Load size (LS) 4,2 2,571 0,929*** 1,725*** 0,860 

WM Rated capacity (WMRC) 7,2 1,77 0,527***  0,476*** 0,162 

Constant  4,116 
    

R = 0,940 
     

R2 = 0,884 
     

R2
Adjusted = 0,883 

     
F = 1359,228***      

* p < 0,05 ** p < 0,01 ***p<0,001 

Tests to see if the data met the assumption of collinearity indicated that 

multicollinearity is not a concern: Load size (Tolerance = 0,820, VIF = 1,220), rated 

capacity (Tolerance = 0,820, VIF = 1,220). 

The histogram of standardized residuals indicated that the data contained 

approximately normally distributed errors, as did the normal P-P plot of standardized 

residuals, which showed points that were not completely on the line, but close. The 

scatterplot of standardized residuals showed that the data met the assumptions of 

homogeneity of variance and linearity. 

The general regression equation (3-1), in combination with the variables selected by 

the multiple regression analysis, is used to construct a model. The final equation for 

predicting the water consumption during the main wash is:   

𝑪𝑾   𝟒 𝟏𝟏𝟔  𝟏 𝟕𝟐𝟓  𝐋𝐎𝐀𝐃 𝟎 𝟒𝟕𝟔  𝑾𝑴𝑽     (4-1) 

 

Where is: 

LOAD  𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑙𝑎𝑢𝑛𝑑𝑟𝑦 𝑖𝑛 𝑘𝑔 

𝑊𝑀𝑉  𝑟𝑎𝑡𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑘𝑔 
𝐶𝑊𝑚𝑤  𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑒 𝑚𝑎𝑖𝑛 𝑤𝑎𝑠 
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The ratio between the water consumed during the main wash to total water 

consumption is 1:3,5 (Table 4-1 and Table 4-2), so that the equation for calculation of 

the total amount of water consumed for a single washing cycle ( ) is the 

following:    

𝑪𝑾      𝑪𝑾   𝟑 𝟓        (4-2) 

 

Combining the eq. (4-1) and the eq. (4-2) equation (4-3) results: 

 

𝑪𝑾      𝟑 𝟓  (𝟒 𝟏𝟏𝟔  𝟏 𝟕𝟐𝟓  𝐋𝐎𝐀𝐃  𝟎 𝟒𝟕𝟔  𝑾𝑴𝑽)   (4-3) 

4.2.2 Energy consumption equation 

Analogous to the construction of the equation for calculating the water consumption, 

the equation for calculating energy consumption is constructed. Multiple linear 

regression analysis is used (Table 4-7) to develop a model for predicting energy 

consumption based on water consumption, washing temperature and the duration of 

the main wash.  The three-predictor model is able to account for 92 % of the variance 

in energy consumption, F (3, 351) = 1323,465; p < 0,001. 

 

Table 4-7: Summary statistics, correlations and results from the regression analysis (energy 
consumtion) 

        multiple regression weights 

Variable mean std 
correlation 
with WC 

b β 

Energy consumption (EC) 0,525 0,3157 
   

Water consumption (WC) 14,74 5,021 0,470*** 0,02246*** 0,357 
Washing temperature (WT) 41,90 11,115 0,743*** 0,02040*** 0,720 

Duration of main wash (DMW) 78,95 42,994 0,642***  0,00247*** 0,337 

Constant -0,836 
    

R 0,959 
    

R2 0,919 
    

R2
Adjusted 0,918 

    
* p < 0,05 ** p < 0,01 ***p<0,001  
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Table 4-8: Correlations between predictor variables 

  EC WC WT DMW 

Energy consumption (EC)         
Water consumption (WC) 0,470*** 

   
Washing temperature (WT) 0,743*** -0,09* 

  
Duration of main wash (DMW) 0,642*** 0,527*** 0,162***   

* p < 0,05 ** p < 0,01 ***p<0,001 

Tests to see if the data met the assumption of collinearity indicated that 

multicollinearity is not a concern: Water consumption in the main wash (Tolerance = 

0,690, VIF = 1,449), washing temperature (Tolerance = 0,931, VIF = 1,074) duration 

of the main wash (Tolerance = 0,678, VIF = 1,476). 

The histogram of standardized residuals indicated that the data contained 

approximately normally distributed errors, as did the normal P-P plot of standardized 

residuals, which showed points that were not completely on the line, but close. The 

scatterplot of standardized residuals showed that the data met the assumptions of 

homogeneity of variance and linearity. 

 

Based on the results of the multiple regression analysis, the final equation to predict 

the energy consumption is constructed.  The general regression equation (3-1), in 

combination with the variables selected by the multiple regression analysis, is used to 

construct a model. The final equation for predicting the energy consumption during the 

main wash is: 

 

𝑪     𝟎 𝟖𝟓𝟔  𝟎 𝟎𝟐    𝑴     𝟎 𝟎𝟐𝟒  𝑪𝑾   𝟎 𝟎𝟎𝟐𝟓  𝑴𝑾   (4-4) 

 

Where is: 

 

𝐶𝐸   𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑒 𝑚𝑎𝑖𝑛 𝑤𝑎𝑠 𝑖𝑛 𝑘𝑊 
𝑇𝐸𝑀𝑃    𝑎𝑐𝑡𝑢𝑎𝑙 𝑤𝑎𝑠𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 
𝐶𝑊   𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑦 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞 10 
𝑀𝑊𝐷  𝑚𝑎𝑖𝑛 𝑤𝑎𝑠 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 
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The energy consumed during the spin phase, as well the energy consumed in 

standby / left on/off mode, is not included in the total energy consumption.   

4.2.3 Detergent consumption equation 

Analogous to the water and energy consumption prediction equation, the multiple 

linear regression analysis is used to develop a model for predicting the washing 

performance index from independent variables: load size, detergent, actual washing 

temperature and the duration of the main wash. 

 

Basic descriptive statistics and regression coefficients are shown in Table 4-9.  The 

four-predictor model is able to account for 82 % of the variance in the washing 

performance index.  

 

Table 4-9: Summary statistics, correlations and results from the regression analysis 
(detergent consumption) 

        multiple regression weights 

Variable mean std 
correlation with 

WP 
b β 

Washing performance (WP) 0,992 0,095 
   

Load size 4,5 2,39 -0,255*** -0,034584*** -0,868 
Detergent 93,9 48,96 0,270*** 0,001194*** 0,618 
Actual washing temperature 42 11,16 0,467*** 0,002691*** 0,311 
Duration of main wash 81 43,71 0,452*** 0,001365*** 0,652 
Constant = 0,812372 

     
R = 0,907 

     
R2 = 0,823 

     
R2

Adjusted = 0,821 
F= 302,661***      
* p < 0,05 ** p < 0,01 ***p<0,001 

Table 4-10: Collinearity statistics 

Constant   Tolerance VIF 

Load size 
 

0,552 1,811 
Detergent 

 
0,662 1,512 

Actual washing temperature 0,942 1,062 
Duration of the main wash 0,752 1,330 
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Tests to see if the data met the assumption of collinearity indicated that 

multicollinearity is not a concern. 

The histogram of standardized residuals indicated that the data contained 

approximately normally distributed errors, as did the normal P-P plot of standardized 

residuals, which showed points that were not completely on the line, but close.  

The scatterplot of standardized residuals showed that the data met the assumptions of 

homogeneity of variance and linearity. Based on the results of the multiple regression 

analysis, the final equation to predict the amount of detergent is constructed.   

The general regression equation (3-1), together with the variables selected by the 

multiple linear regression analysis, is used to construct a model. The result is equation 

(4-5). 

𝑾  𝟎 𝟖𝟏𝟐𝟒  𝟎 𝟎𝟎𝟐𝟔          𝟎 𝟎𝟑𝟒𝟔  𝐋𝐎𝐀𝐃  𝟎 𝟎𝟎𝟏𝟐  𝐃   𝟎 𝟎𝟎𝟏𝟒    𝐃      

(4-5) 

 

As the equation is intended to be used to calculate the amount of detergent consumed 

during a washing cycle, it is solved for detergent. The result is equation (4-6). 

 

    
𝑾  𝟎 𝟖𝟏𝟐𝟒 𝟎 𝟎𝟎𝟐𝟔   𝑴     𝟎 𝟎𝟑𝟒𝟔 𝐋𝐎𝐀𝐃 𝟎 𝟎𝟎𝟏𝟒   𝐃

𝟎 𝟎𝟎𝟏𝟐
   (4-6) 

 

Where is: 

 

WP          p               x 
TEMP                      p           °C 
LOAD                                 k  
DET                    
MWD                                   
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4.3 Results of the virtual washing household modeling approach 

The results of programming of the virtual washing household are presented by 

showing the course of the laundry stock. All examples feature the laundry stock of 15 

weeks. In all figures the lines are for visualization purposes only. For the ease of 

understanding the following examples, the scenario as defined in 3.2.4.2 does not 

apply and following simplified scenario is assumed.  

Each week:   1 kg of 30 °C laundry is added to the stock 

2 kg of 40 °C laundry is added to the stock 

3 kg of 60 °C laundry is added to the stock 

 

Loading factor: 30 °C washing cycle = 50 % of the rated capacity 

40 °C washing cycle = 100 % of the rated capacity 

60 °C washing cycle = 100 % of the rated capacity 

Figure 4-10: Example of 30 °C laundry stock course in a 5 kg rated capacity machine when 
1 kg of laundry is added to the stock every week 

 

The results of dynamic simulation of a virtual washing household show the course of 

the laundry stock of a household that uses a washing machine with the rated capacity 

of 5 kg. Every week 1 kg of laundry is added to the stock. The washing cycle is 

conducted when the laundry stock is 5 kg (Figure 4-10).  
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Figure 4-11: Laundry stock course with three different washing programs/temperatures in a 
5 kg rated capacity washing machine when every week 1 kg, 2 kg and 3 kg of laundry are 

added to the 30 °C, 40 °C and 60 °C laundry stock  

 

In addition to the course of 30 °C laundry stock, the courses of 40 °C and 60 °C 

laundry stock are presented. In the case of the 40 °C laundry stock course, every week 

2 kg of laundry is added, and in the case of the 60 °C laundry stock course 3 kg of 

laundry is added to the stock (Figure 4-11).  

 

Figure 4-12: Impact of the loading factor (implemented in the case of 30 °C load) on the 
laundry stock course of three different washing programs/temperatures in a 5 kg rated 

capacity washing machine when every week 1 kg, 2 kg and 3 kg of laundry are added to the 
30 °C, 40 °C and 60 °C laundry stock. 
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In the case of 30 °C, the load factor of 0.5 is implemented, so that the washing 

machine conducts a washing cycle when the laundry stock reaches at least 50 % of the 

washing machine’s rated capacity. In the third week, the 30 °C laundry stock reaches 3 

kg of which 2,5 kg are washed so that 0,5 kg were left. In fourth week, 1 kg of laundry 

is added so that the total amount of laundry is 1,5 kg (Figure 4-12). 

 

 

 

Figure 4-13: Impact of the maximal laundry waiting time (implemented in all three 
programs/temperatures) on the laundry stock course of three different washing 

programs/temperatures in a 5 kg rated capacity washing machine when every week 1 kg, 2 
kg and 3 kg of laundry are added to the 30 °C, 40 °C and 30 °C laundry stock.The impact is 

visible in the reduction of the laundry stock in the third week. 

 

Implementation of the maximal laundry waiting time in the simulation routine is 

visible in the course of all three washing temperatures. The maximal laundry time is 

set to “up-to-2-weeks”. In the second week, all three laundry stocks are reduced 

(Figure 4-13). 

0 5 10 15
0

2

4

6

8

10

Week

A
m

o
u

n
t 
o
f 

la
u
n
d
ry

 i
n
 k

g

 

 

Washing cycles at 30°C

Washing cycles at 40°C

Washing cycles at 60°C



RESULTS  50  

4.4 Results of yearly simulations 

4.4.1 Washing machine’s rated capacity versus household size 

The results of the simulation of a yearly usage of the virtual washing machines with 

the washing machine’s rated capacity (WMRC) of 5 kg, 8 kg, and 11 kg by the virtual 

washing household are presented. Each data point in the chart shows how much CO2 

equivalent is emitted when the washing machine is used by a household (of different 

sizes) for one year. The lines are for visualization purposes only.  

 

 

The following maximal laundry waiting time (MLWT) abbreviations are applied:  

MLWT = 0  maximal laundry waiting time is “up to 1 week”  

MLWT = 1  maximal laundry waiting time is “up to 2 weeks” 

MLWT = 2  maximal laundry waiting time is “up to 3 weeks” 

MLWT = 3  maximal laundry waiting time is “up to 4 weeks” 

 

 

 

 

Figure 4-14: Comparison of emission of CO2 equivalents when MLWT = 0 
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When the maximal laundry waiting time is “up to 1 week”, the lowest CO2 equivalents 

emission values are in the case of 1-person household: 

Washing machine with 5 kg WMRC emits 51,4 kg of CO2 equivalents  

Washing machine with 8 kg WMRC emits 62,3 kg of CO2 equivalents  

Washing machine with 11 kg WMRC emits 82,5 kg of CO2  

The highest values are in the case of 7-person household: 

Washing machine with 5 kg WMRC emits 187,7 kg of CO2 equivalents  

Washing machine with 8 kg WMRC emits 165,1 kg of CO2 equivalents  

Washing machine with 11 kg WMRC emits 153,5 kg of CO2 equivalents  

Slopes of washing machines with 8 kg and 11 kg rated capacity interchange in the case 

of a 4-person household. The slopes of washing machines with 5 kg and 8 kg rated 

capacity interchange between the household sizes of 2- and 3-persons. 

 

Figure 4-15: Comparison of emission of CO2 equivalents when MLWT =1 

 

When the maximal laundry waiting time is “up to 2 weeks”, the lowest values are in 

the case of 1-person household: 

Washing machine with 5 kg WMRC emits 51,4 kg of CO2 equivalents  

Washing machine with 8 kg WMRC emits 62,3 kg of CO2 equivalents  
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Washing machine with 11 kg WMRC emits 82,5 kg of CO2 equivalents 

The highest values are in the case of 7-person household  

Washing machine with 5 kg WMRC emits 187,7 kg of CO2 equivalents  

Washing machine with 8 kg WMRC emits 165,1 kg of CO2 equivalents 

Washing machine with 11 kg WMRC emits 153,5 kg of CO2 equivalents  

Slopes interchange at 2-person household tick mark.  

 

Figure 4-16: Comparison of emission of CO2 equivalents when MLWT =2 

 

When the maximal laundry waiting time is “up to 3 weeks”, the slope of the washing 

machine with a rated capacity of 8 kg and 5 kg have the lowest CO2 equivalents 

emission values for a 1-person household with 27 kg (WMRC = 8 kg) and 27,6 kg 

(WMRC = 5 kg). The highest CO2 equivalents emission is in the case of the washing 

machine with a 5 kg rated capacity (189,7 kg). The interchange of the slope course is 

at the 1-person household tick mark. 
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Figure 4-17: Comparison of emission of CO2 equivalents when MLWT = 3 

When the maximal laundry waiting time is “up to 4 weeks”, the lowest values of CO2 

emission are in the case of the washing machine with a rated capacity of 8 kg and a 

1-person household with 24,8 kg of CO2 equivalents emitted. The highest values of 

CO2 equivalents emission are in the case of the washing machine with a rated load 

capacity of 5 kg with 189,7 kg in the case of a 7-person household.    
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Figure 4-18: Overview of washing machine’s rated capacity vs. MLWT 

 

An overview of all washing machines in dependence of the maximal laundry waiting 

time show a strong gap between the slopes of the curves as the loading capacity of the 

washing machine increases.  
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4.4.2 CO2 equivalent emission of water detergent and energy 

 

 

Figure 4-19: CO2 equivalents emission split by individual resource consumption share  

where MLWT = 0 (4-19a) and MLWT = 3 (4-19b). Each of the seven columns within each 
rating capacity class represents household ranging from 1-person households (First column) 

to 7-person households (Seventh column). 

 

 

CO2 equivalents emission is split by the individual share of the resources consumed.  

The share of the energy and detergent in the total CO2 equivalent emission are the 

highest. The share of the CO2 emission for water is minimal.  
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4.4.3 Comparison of the time exposure
4
  

 

 

 

 

 

Figure 4-20: Time exposure in dependence of the rated capacity, household size and MLWT 
(Starting with maximal laundry waiting time of “up to 1 week” (Chart a) to maximal laundry 

waiting time of “up to 4 weeks” (Chart d)). 

 

Time exposure depends on the maximal laundry waiting time, washing machine’s 

rated capacity and the number of persons in the household. Figures a-d show the time 

exposure in dependence of the maximal laundry waiting time. The time exposure is the 

highest when the maximal laundry waiting time is the lowest. With an increase of the 

                                              
4
 Time consumed for washing (expressed in number of washing cycles).  It is composed of the regular washing 

cycles (cycles where the rated capacity of the washing machine is used) and emergency washing cycles (cycles 

where the washing machine’s rated capacity is not used due to reaching the maximal laundry waiting time). 
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maximal laundry waiting time, the total time exposure as well as the share of the 

emergency washing cycles decreases.  

4.4.4 Comparison of average washing temperatures
5
 

 

 

Figure 4-21: Comparison of average washing temperatures in dependence of the household 
size: 1-person household (4-21a) – 4-person household (4-21d) 
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With an increase of the maximal laundry waiting time, the average washing 

temperature decreases. The values are the lowest when the maximal laundry waiting 

time is “up to 4 weeks” (40 °C e.g. 2-person household). The highest values are in the 

case when the maximal laundry waiting time is “up to 1 week” (43 °C in e.g. 1-person 

household). 
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5 Discussion 

5.1 Virtual washing machine 

The first goal of this study was to develop a model of a virtual washing machine that is 

based on the data of washing machines available on the market. Although three 

equations are necessary to describe the washing process, it can be concluded that the 

goal of a construction of a virtual washing machine is reached.  

The fact that three equations are necessary to describe the washing machine process is 

due to its complexity. On one hand, there are numerous variables that impact the 

process, and on the other hand there are three dependent variables where each has to 

be calculated by using a separate predicting model. In the following, the individual 

equations are discussed.  

5.1.1 Equation for calculation of water consumption 

The function of water in the washing process is manifold. It is not only the medium 

that transports the detergent and heat to the fabric surface and facilitates the removal of 

the soil, but it is also the medium where the soil is stabilized so that a redeposition is 

prevented. (JAKOBI and LÖHR, 1987) 

Since 1970, numerous inventions have led to a decrease of the water consumption. 

Average water consumption of 200 liters in 1970 (STAMMINGER et al., 2005) decreased 

to today’s consumption of 42,6 liters (VHK, 2013).  

The data of the washing machine’s tests (Figure 4-1 and Figure 4-2) and the resulting 

equation show that load size and rated capacity are the two most influential factors on 

the water consumption of a washing machine.  

However, data also reveals that there are many variations among washing machines in 

their ability to adapt the water consumption to the load, especially when they are not 

fully loaded. In some cases, the specific water consumption for washing nearly same 
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amount of load can vary up to double the amount when the washing machine is 

underloaded (Figure 4-2). 

As the washing machines test data shows, the differences among washing machines’ 

abilities to adapt the water consumption to the load is lowest when the washing 

machine is fully loaded. This is confirmed also by (RÜDENAUER et al., 2004), who also 

found out that with a decrease of the load size, the specific consumption of the water 

and energy increases.  

 

The consumers, however, do not fully load their washing machine. They consider, for 

example, a load of 3,7 kg to be a full load in a washing machine which has a rated 

capacity of 5 kg (KRUSCHWITZ et al., 2014). In order to lower the resource 

consumption, most of today’s washing machines are equipped with sensors that 

control the washing machine and automatically adapt the resource consumption to the 

load. With a decrease of the load size, the water consumption decreases. 

(WAGNER, 2011)  

As data shows, this is not always the case. 

The fact that fully loaded washing machines show the lowest variance in the water 

consumption might be viewed as a direct consequence of the energy label standard 

EN60456:2005, which was in force when the tested washing machines were produced. 

The standard stipulated that washing machines are to be tested with a full load when 

tested according to the energy label. There was no incentive for the manufacturers of 

white goods to optimize the washing machines to anything other than full-load size.  

The reason for variations in the water consumption when the washing machine is not 

fully loaded, however, might be because of the accuracy of the sensor and fuzzy logic 

implemented. It is possible that the sensors do not react precisely, and therefore 

influence the fuzzy inference so that variations in water consumption occur.  

The data shows that the washing machine’s rated capacity influences the water 

consumption as well. Washing machines with a higher rated capacity have higher 

absolute water consumption; however, with an increase of the load size, the specific 
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water consumption decreases. A possible reason for this is that washing machines let 

in some amount of water, whether it is loaded or not. This minimal amount of water is 

needed for the protection of the washing machine namely some of its components, 

such as the heater, which might suffer damage when preheating and running without 

water that would absorb the heat. In washing machines with a higher rated capacity, 

this minimal amount has a lower impact on the specific water consumption than in the 

case of washing machines with a lower rated capacity. 

5.1.2 Total water consumption 

Total water consumption depends mainly on the number of rinsing cycles (WAGNER, 

2011). The number of the rinsing cycles again depends on what the manufacturer 

wants to offer to its consumers as a standard program.  

In some cases, the consumers are offered a washing program with a lower number of 

rinsing cycles as a standard, and the consumers have to use additional options such as 

“water plus” or “extra rinsing”  in order to receive a higher rinsing performance. 

Alternatively, some manufacturers offer the consumers a washing program with a 

higher water consumption, i.e. with more rinsing cycles as a standard washing 

program and it is up to the consumers to include the water-saving options, such as  

“economy wash” or “half load” in order to save water.  

In some cases, even the sensors that monitor the washing process can influence the 

water consumption. For example, the number of rinsing cycles can vary depending on 

the quality of the foam detection sensors. 

A look into the comparison of the average values of total water consumption to main 

wash water consumption reveals that this ratio is 1:3,5 no matter whether the detergent 

dosage is nominal, under- or overdosed. Assumption that the fuzzy logic would adapt 

to the water consumption if the amount of detergent is overdosed is not met.  

A possible explanation for this might be because of the detergent used for washing 

tests. In this case, the EN60456:2005 standard detergent A* is used, where the amount 
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of foam inhibitor is very high. For this reason it is possible that the foaming detection 

sensors recognize that no further rinsing cycles are induced.  

Another reason for this might be because of the washing program design of the tested 

washing machines. It might be possible that the number of the rinsing cycles is not 

sensor/fuzzy logic controlled and a standard number of rinsing cycles is included in 

the washing process.  

 

Energy consumption 

In a washing machine, energy is consumed for heating the water, running the main 

motor and the drain pump, as well as for running the sensors, control processor and 

other electronic signaling units of the washing machine. During the washing machine’s 

test, the energy consumption of the processor and signaling unit were not measured. 

About 91,9 % in the variation in energy consumption can be explained by independent 

variables: actual washing temperature, water consumption, and the duration of the 

main wash. This coefficient of determination value can be considered to be good when 

the afore-mentioned variances among different washing machines are taken into 

account.  

The most energy, however, is consumed for electrically heating up the water, 

especially when the inlet water is not preheated (KUTSCH et al., 1997;  SMULDERS, 

2007;  WAGNER, 2011). This is also confirmed by the data received in the washing 

machine’s test. With an increase of the temperature, the energy consumption increases. 

The higher the washing temperature, the more energy is needed to heat up the water, 

hence more energy is consumed. (SMULDERS et al., 2007) 

The data, however, shows differences in energy consumption among different washing 

machines and different load sizes. Since the water consumption strongly depends on  

load size, the energy consumption indirectly also depends on the load size, so that the 

dependencies discussed in 5.1.1 also apply here.  
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Furthermore, the data shows that some washing machines do not always heat up the 

water to the preset temperature (Table 4-5). For example, WM9 reaches, in a nominal 

60 °C program, a maximal actual washing temperature of 47 °C. 

The reason for this might be in the specification given in the Eco-design regulation. 

According to it, the washing machines have to reach a certain washing performance 

index. In a reference 60 °C program, a washing index of 1,03 is required. In practice 

this means that the manufacturers have to provide one program for each washing 

machine that fulfills those conditions, and this program is to be used when the washing 

machine is tested. It is up to the manufacturer to find a perfect combination of the 

washing factors so that the required washing performance can be achieved. In order to 

save energy, some washing machine producers lower the actual washing temperature 

and increase the main washing time. VAN HOLSTEIJN EN KEMNA, 2013 also observed this 

trend of prolonging the washing cycle in washing machines, which “opens the 

possibility to wash with lower temperatures with the same washing result and can 

therefore increase the energy efficiency.” (VHK, 2013, p.41) They see a risk in those 

longer cycle times, in such that “people might not use the energy efficient program but 

will use the normal cotton program instead. They might simply not have the time to 

wait for 5 hours before they can start the next load.” (VHK, 2013, p.41) 

Due to this discrepancy between the nominal washing temperature and the actual 

washing temperature, in the energy equations the maximally reached actual washing 

temperature is included. With beta values of 0,72 (Table 3-1), the washing 

temperature’s contribution to the explanation of the variance is the highest. The 

contribution of the duration of the main wash is roughly as high as the contribution of 

the water consumption to the explanation of the variance.  

Analogous to the water consumption, the real energy consumption also depends on 

what the manufacturer wants to offer to the consumer as a standard washing program. 

In some cases, the manufacturer offers a shorter program as standard and the consumer 

has to use the “intense” or “stains” option to extend the program. Other manufacturers 
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offer a longer washing program as a standard program, and the consumer has to 

choose the “express” or “short” option in order to shorten the washing program.  

However, under certain circumstances, even the duration of the main wash has more 

influence on the energy consumption than the chosen temperature.  In those cases 

when a low washing temperature and long duration of the main wash is selected 

(which are, for example, the case in an eco-program), the share of the energy 

consumed for heating up the water is lower than the share of energy consumed by the 

engine.  

In the equation eq. (4-4), the constant (y-intercept) is -0,836 kWh. Assuming that all 

the explanatory variables are set to 0, the value of the response variable would be 

negative. However, as seen in the equation for the calculation of water consumption, 

4,01 L of water is always consumed, and its temperature is higher than 0 °C in order to 

be even in fluid state and hence added to the washing machine. For this reason the 

validity of the equation is limited.  

5.1.3 Detergent consumption 

The equation for calculating the detergent consumption is based on a multiple 

regression that sets the washing performance in relation with the load size, duration of 

the main wash, actual washing temperature and amount of detergent. The final 

equation is then developed by solving the equation for detergent.   

Consumer behavior influences the outcome of a washing cycle. In a washing cycle, the 

consumer has to decide (1) how much of laundry to load, (2) what washing program 

(temperature, duration, spinning speed, rinsing characteristics) to choose, and (3) what 

kind of detergent to use and how much to dose. In the equation, some of those 

consumer patterns are included, and each can be adjusted separately.  

The washing machine test data shows that the load size has a strong impact on the 

washing performance (Figure 4-6). The beta values of the multiple regression analysis  

(Table 4-9) show that the load size actually has the highest impact on the washing 
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performance index of all variables. A negative B value of the load (-0,034584) 

indicates that every ceteris paribus increase of the load size results in a decrease of the 

washing performance index. 

In accordance with SINNER 1961, with a lower load size the free space in the drum 

increases and hence the laundry has more space to tumble down, increasing the 

mechanical force. When all other factors are kept constant, an increase of the washing 

performance index occurs.  

The virtual washing machine offers a set of input parameters (e.g. load amount, 

washing temperature, etc.), in which each can be individually varied. Only those 

variables that can actually be chosen by the consumer are included in the model. A 

washing program can be simulated by combining/varying those parameters.  

- Temperature: Washing temperatures between 30 °C and 60 °C can be preset in 

the equation. As previously discussed in chapter 5.1.2, there is a discrepancy 

between the nominal and actual washing temperature. 

 

- Duration of the main wash: In real-life washing machines, there is not a 

possibility to preset the duration of the main wash in the same manner as is 

possible with the washing temperature or the spin. However, with time 

consumers learn which washing programs are short and which are long, and 

choose the respective program when needed. By doing so, consumers are able 

to influence the duration of the washing program. Another possibility to 

influence the duration of the main wash is by choosing other options, such as 

the “short” or “intense” option.  

There are also some limitations of this “virtual program” in comparison to the real-life 

washing programs. For example, some washing programs interrupt the main wash 

program with spinning cycles in order to facilitate the wetting process. However, in 

this virtual washing machine those specific program designs are not implemented.  

The data shows that with a decrease of the average washing temperature, the washing 

performance index decreases. This fact also shows that there is a potential for tradeoff 



DISCUSSION  66 

between the washing temperature and the washing performance. Furthermore, there is 

also interdependency between the washing performance and the amount of detergent 

(Figure 4-8). This bears a potential for a tradeoff for consumers who have to wash 

textiles for which a lower washing performance is acceptable (e.g. slightly soiled 

textiles). In those cases, where there is no need to have a high washing performance, 

consumers can lower the washing temperature and thus save energy. Alternatively for 

the consumer, there is a possibility to lower the amount of detergent.  

5.2 Virtual washing household 

The second goal of the present work is to develop a model of a household washing 

behavior that incorporates the household- and behavioral parameters. 

The mathematical model presented in 3.2.3 differs from models presented by other 

research because it does not calculate with a fixed load size, but rather varies during 

the simulation in accordance with model settings. Furthermore, it allows a variation of 

certain parameters such as: number of persons in household, amount of load per 

person, and shares of different program/temperature batches of the total amount of 

load. 

An important variable in the model of the virtual washing household is the loading 

factor (Figure 4-12). 

Most of the mathematical models presented by other researchers are very simple, and 

in most cases the calculations are done by assuming the consumer uses a full load (or 

possibly a half load). A loading factor, which depends on the type of laundry, is not 

included in such calculations. 

The consumers, however, do not use the full capacity of the washing machine. 

According to STAMMINGER, 2011, 10 % of consumers in Europe load the washing 

machine in dependence of the type of laundry, and 63 % load the washing machine 

without overloading it.  Consumer associations also promote fully loading the washing 

machine, except when washing delicates, in which case a half load is recommended 

(ForumWaschen, 2013). By using the virtual washing household model, it is possible 
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to include all different loading factors that differ in dependence of the type of laundry 

that has to be washed.  

The key moderating parameter in this simulation design is the maximal laundry 

waiting time parameter (Figure 4-13). 

With this variable, it is possible to add a time dimension to the virtual washing 

household model and so explore the effects that might occur when the consumer is 

ready to postpone an action (in this case the washing of laundry) to a later point of 

time. For example, “being in hurry” can be simulated by shortening the MLWT and 

“environmentally conscious” behavior can be simulated by extending the maximal 

laundry waiting time.   

In this work, it is possible to simulate the usage of a washing machine, in a parallel 

manner, by households of different sizes. Comparison of the usage of the same 

washing machine by households (of up to seven persons) helps to reveal how the 

household size influences the consumption.  

5.3 Simulations 

The third goal of the present work is to develop and conduct simulation of the usage of 

the virtual washing machine by the virtual washing households. By conducting parallel 

simulations and by varying device-, household- and behavioral parameters, a 

parameter combination with the lowest environmental impact can be determined, and 

hence conclusions regarding an optimal consumer behavior can be drawn. In order to 

answer this question, the following aspects are examined: 

- Washing machine’s rated capacity 

- Resource consumption 

- Washing frequency 

- Average washing temperature 
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5.3.1 Washing machine’s rated capacity 

Environmental impact of automatic washing depends not only on the household size 

and the washing behavior (i.e. maximal laundry waiting time), but also the washing 

machine’s rated capacity.  

Comparison of the slopes in Figure 4-14 shows that when the maximal laundry waiting 

time is very low, households with a lower number of persons would have the lowest 

impact on the environment when using a washing machine with a lower rated capacity. 

A washing machine of 8 kg or even 11 kg would be less adequate in such a case. 

With an increase of the number of persons in the household, a washing machine with a 

higher rated capacity becomes more adequate. With an increase of the maximal 

laundry waiting time, the amount of laundry that accumulates in a household increases 

further. In such a case, a washing machine with a higher rated capacity becomes more 

adequate due to use of the economies of scale potential of such washing machines 

(Figure 4-15 - Figure 4-17). 

A usage of washing machines with a higher rated capacity by smaller households (for 

example 1-3 person households) demands change of the behavioral patterns. One 

possibility is that the household increases the maximal laundry waiting time and waits 

until enough laundry is accumulated so that the rated capacity of the washing machine 

can be used. However, it is questionable whether the consumers are willing to wait for 

three or more weeks until enough laundry is accumulated.  

Another possibility for more sustainable usage might be in combining the different 

washing loads. For example, by combining a 30 °C and 40 °C washing load, and by 

choosing the washing temperature in accordance with the recommendation of the most 

sensitive laundry piece, and in combination with prolonging the washing cycle, the 

same washing performance at a lower resource consumption may be achieved.  

(JUNGBLUTH et al., 2006)  as well as (JANCZAK et al., 2010) have already shown that 

lowering the temperature to the next possible level and prolonging the washing time 

leads to a decrease in the energy consumption while the washing performance remains 

the same.  
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It should also be kept in mind that a continuous usage of lower temperatures may 

generate some other issues, such as problems with hygiene. In such cases, the usage of 

appropriate washing detergent, such as a bleach-containing detergent, could help to 

resolve those issues. Furthermore, in this respect, the consumer should consider 

following the suggestions of the consumer association to cyclically wash at higher 

temperatures, and to leave the door and the detergent container open after a washing 

cycle. 

5.3.2 Resource consumption 

The resource consumption comparison shows that energy and detergent have the 

highest share in CO2 emission. The share of the water is not very high. The reason for 

this is that the water consumption has been optimized in the past decades. According 

to the EuP preparatory study, water consumption has reduced from 1997 to 2005, with 

an annual improvement of 0,28 l / kg (PRESUTTO et al., 2007). 

The contribution of the energy to the total CO2 emission is highest when a smaller 

household uses a washing machine with a higher rated capacity and the maximal 

laundry waiting time is very short. In such a case, the household never uses the rated 

capacity of the washing machine as shown in the model. With a lower amount of load, 

the mechanical work is increased (SINNER, 1961) and therefore a lower detergent 

dosage is needed to reach the preset washing performance. In such cases, the energy 

related CO2 equivalent emission is more than three times higher than the CO2 

equivalent emission of detergent (Figure 4-19). 

 

For the calculations of the energy consumption, it was assumed that an energy mix is 

used, where a certain portion is produced using nuclear-, coal- and renewable energy 

sources. In this case, the CO2 equivalent conversion factor for energy is 600 g / kWh. 

In an energy mix with a lower CO2 equivalent emission (which might come in the 

future), the detergent consumption might have a higher influence on the CO2 emission 

than the energy consumption.  
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On the other hand, it is also possible that more advanced technology in detergent 

production might occur, which then could lead towards a lower impact of the detergent 

on the CO2 equivalent emission.  

In both cases, there is a potential for tradeoff between the energy and the detergent that 

could be used in order to have an even more sustainable behavior.  

5.3.3 Washing frequency 

The time consumed for washing purposes is also an important factor when evaluating 

the different washing behavior patterns. Although the time consumed for washing 

purposes includes the washing machine loading/unloading time as well as the washing 

time, in this research the washing frequency solely represents time consumption.  

One of the arguments for selling washing machines with a large load capacity is that it 

is time saving, since more loads can be washed at the same time, hence the consumers 

are able to reduce the number of washing cycles when using those washing machines. 

However, this depends on the household size and the washing machine’s rated 

capacity, as well as on the consumer behavior when using the washing machine.  

 

As presented in the data (Figure 4-20), two different washing cycles are to be 

distinguished. The first one is a “normal washing cycle”, in which the washing 

machine’s rated capacity (adjusted for the load factor) is fully utilized. The second one 

is an “emergency washing cycle”, in which the washing cycle is conducted no matter 

how much laundry is loaded.  

 

The behavioral factor that influences the frequency of emergency washing cycles is the 

maximal laundry waiting time. For example, when the maximal laundry waiting time 

is “up to 7 days” there is almost no difference if consumers use 5 kg, 8 kg or even 

11 kg washing machine in cases of one-person and two-person households. In all those 

cases, the washing machine’s rated capacity is not fully used, which means that most 

of the washing cycles are “emergency washing cycles” and hence no time is saved.  
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With an increase of the household size, the number of emergency washing cycles 

decreases, and the differences among washing machines regarding the washing 

frequency becomes more visible.  

An exception is the 11 kg washing machine, in which the emergency washing cycles 

also occur in the case of a 7-person household, when the maximal laundry waiting 

time is low. The reason for this is that even a 7-person household does not have 

enough 60 °C laundry which can be collected in such a short time in order to use the 

rated capacity of the washing machine. However, with an increase of the maximal 

laundry waiting time, the number of emergency washing cycles decreases here as well. 

The consequences of the washing frequency are manifold:  

- Firstly, high usage frequency might be stressful for the consumer. For example, 

those consumers whose work life allows washing only on weekends, or 

consumers who use a community washing machine, might experience the high 

washing frequency as very tedious. It is possible that in such cases those 

consumers, in order to be able to wash more washing cycles in a shorter period 

of time, chose to use a shorter washing program that might be inadequate from 

the resource consumption, hygienic or/and general cleanliness perspective. 

-  Secondly, with an increased frequency, a fatigue of material in the washing 

machine, such as the drum casing bumpers, could undergo damage, as well as a 

lower life expectancy of the washing machine. ÖKO-INSTITUT calculates that a 

washing machine can be used for 1840 washing cycles (RÜDENAUER et al., 2004).  

A non-optimal usage might shorten the life expectancy of a washing machine. 

5.3.4 Average washing temperature 

Data received from the washing machine test and the eq. (4 4) show that the energy is 

directly correlated with the chosen washing temperature. In order to lower energy 

consumption, washing at lower temperatures is promoted. Since the early 1970s, the 
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average washing temperatures have declined. This is a good indicator for the 

promotion of a more environmentally friendly behavior (AISE, 2013). 

As the data shows (Figure 4-21), the influence of the maximal laundry waiting time on 

the average washing temperature is also highly important. With an increase of the 

laundry waiting time, the rated capacity of the washing machine is used more often 

(which is especially the case of the 60 °C washing cycles, in which the loading factor 

is highest), and hence the average washing temperature decreases. This finding is of 

high importance for two reasons: 

Firstly, consumer associations’ promotion of lower temperatures has often encountered 

a resistance among consumers, due to probable perceived washing performance 

inefficiency. A possible solution to this problem might be in promoting the extension 

of the maximal laundry waiting time, which then would induce the use of the washing 

machine’s rated capacity, and therefore might lead to a decrease of the average 

washing temperature. 

Secondly, those consumers who do not wish to decrease the washing temperature due 

to fear of hygiene-related issues can, at least to some extent, contribute to  

environmental protection by increasing the maximal laundry waiting time and so lower 

the household average washing temperature. 

Furthermore, the data shows that the effects of decreasing the average washing 

temperature while increasing the maximal laundry waiting time occur in dependence 

of the washing machine size and the household size.  

For example, a washing machine with a 5 kg rated capacity used by a 1-person 

household has a potential to lower the average washing temperature when increasing 

the maximal laundry waiting time. However, usage of an 11 kg washing machine by a 

1-person household does not bear such a potential.  

It can be concluded that there is an optimal washing machine’s rated capacity for each 

household size. 
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5.4 Deficits of the presented research  

Although the virtual washing machine and the virtual washing household display a 

robust predicting power, there are still some aspects which should be critically 

observed.  

In the present work, the hygiene and the soil re-deposition were not a subject of 

research. However, those aspects should also be considered, because the hygiene 

aspect in laundry washing, as well as the soil re-deposition, is increasing, which is 

something the consumers are able to evaluate at the end of a washing cycle. This could 

induce a behavioral change towards rewashing the laundry, or usage of less resource-

saving programs, such as intense or water plus programs. 

The duration of the main wash in the virtual washing machine model is automatically 

selected in dependence of the washing machines’ rated capacity. The values used are 

average values of the individual washing machines groups. Such an approach is 

certainly valid in order to predict the resource consumption of tested washing 

machines. However, generalizing all washing machines should be used with caution.  

In the virtual washing machine, the rinsing cycles are not part of the model and a 

constant factor is included instead. Such a simplified approach allows for an 

estimation of the resource consumption, but the model does not allow the inclusion of 

consumer behavior in usage of rinsing options (water plus option or sensitive option). 

An inclusion of the rinsing cycles in the model would enhance the model and make it 

more precise in predicting the water consumption.  

The virtual washing machine model allows for the prediction of energy consumed 

during the main wash. However, although the share of energy consumed during the 

rinsing phase and spinning phase, as well as in the standby mode, is not as high as the 

energy consumed during the main wash, its inclusion in the virtual washing machine 

model would allow a more precise prediction of the resource consumption.  

Detergent used for the washing machine test is A* detergent as specified by 

EN60456:2005. Usage of A* detergent helps to compare the washing machines. 

Commercially available detergents used by consumers, however, differ significantly. 
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Commercial detergents contain advanced components (e.g. enzymes) that allow lower 

dose amounts without lowering the washing performance. Inclusion of the commercial 

detergent in the model would provide an even more precise picture of the influence of 

washing on the environment.  

In the case of the virtual washing household, it was assumed that the household 

displays an ideal behavior when washing laundry. However, this is not the case in real 

life. Such an approach only helps to illustrate the real-life behavior to some extent. 

There are many parameters that influence the consumer behavior such as the gender 

age of the participants or even seasonal aspects which are not included in this research. 

An inclusion of those aspects would help to explore the consumer behavior more 

thoroughly.  
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6 Conclusion  

Based on the data of different washing machines, a model of a virtual washing 

machine was developed and, despite the large differences among the tested washing 

machines, it shows a robust predicting power.  

The developed virtual washing household model offers a high range of possibility to 

simulate some of the consumers’ behavioral patterns. Its dynamic development of the 

laundry stock course and possibility to vary household and washing machine 

parameters makes this model more advanced in comparison to the modeling solutions 

described in the literature.  

The virtual washing household model, used in this work, could also be used to 

simulate usage of other household appliances. For example, the virtual washing 

household model could also be used to simulate the usage of automatic dishwashers or 

tumble dryers. By extending the model to more household appliances, a more precise 

resource consumption-predicting model could be established and used to predict the 

daily energy consumption and possible peak demands. Furthermore, it would enable a 

simulation of more precise trend developments so the policy making decision could be 

supported.  

In connection with this, the variable maximal laundry waiting time has proven to be of 

great help in adding a “sustainability component” to the consumer model. At present, 

no research has evidenced the usage of such a moderating factor that has been 

presented in the literature. The maximal laundry waiting time parameter is of great 

value due to its ease of use and its ability to support the increasing value of 

information that must retrieved in behavior-related simulations. Furthermore, it 

reflects real-life behavior very well, in cases where consumers do not wash the same 

amount of laundry every week, but instead only wash when there is enough laundry or 

when certain loads have to be washed, regardless of whether the rated capacity is fully 

used or not (emergency washing cycle). For this reason, it should be included as an 
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eventual standard variable in future models where the sustainability-related consumer 

behavior is being explored. 
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7 Future prospects 

In the present study, the amount of laundry added to the washing machine, as well as 

the rated capacity of the washing machine are each expressed in kilograms. However, 

in some cases the declared increase of the washing machine’s rating capacity is not 

followed by a volume increase of the washing machine’s drum. In such cases, the 

resulting overload of the drum and consequent decrease of mechanical work (Sinner, 

1960) is substituted by an increase of the other washing factors, such as the washing 

time.  

For this reason, in a follow-up model of the virtual washing machine, it would be 

important to include the washing machines’ drum volume instead of the rated capacity 

expressed in kilograms.  

Furthermore, in the following study the actual washing temperature is measured in the 

sump (that is, in the space in-between the inner and outer drum at the bottom of the 

washing machine’s drum). This temperature is not necessarily the same as the 

temperature in the load (especially at the spot where textile, soil and wash liquor 

meet). However, the temperature at this spot is actually influencing the washing 

performance. An inclusion of this parameter in a future follow-up virtual washing 

machine model should be considered so that it might lead to a more accurate model. 

In addition, for the washing machines’ tests, cotton was used as a test load. In an 

eventual follow-up model, other fabrics such as synthetics should also be included as 

test loads. This would allow for a more realistic, real-life relevant model. Additionally, 

in the follow-up model other detergents (liquor detergent, commercial detergent, etc.) 

and new washing machines models (e.g. models that use heat-pump and/or automatic 

dosing) should be included.  

The virtual washing household model also bears potential for improvement. In the 

presented study it was assumed that the consumer washes every temperature-specific 

load separately. In real life, however, this is not the case and the consumers often 

combine two (temperature/program) batches of laundry together. A possible 
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optimization of the model should also include such behavioral patterns in the 

simulation.  

Furthermore, additional research is necessary to identify the driving forces of non-

optimal consumer behavior (e.g. lack of time, habit to wash every week, convenience 

of always having clean laundry or to wash on specific weekdays). The findings of such 

research could, together with findings of this study, be used to develop practicable 

tools that stimulate more sustainable behavior. Such tools could be used to promote the 

increase of the maximal laundry waiting time. For example:  

 Consumer associations could develop an info brochure informing 

consumers to separate the laundry not only by the color/soil level or type 

of textile, but to also include a “washing priority” category. 

 Consumer associations could develop advising tools (e.g. checklist) 

which could be used as guidance when buying a new washing machine.  

 Industries could develop information systems on the washing machine 

that promotes the extension of the maximal laundry waiting time (e.g. 

washing frequency tracker, sticker/dosing ball that changes color when 

used too frequently.  

 Detergent manufacturers could develop products that encourage a longer 

usage of textiles.  
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9 Abbreviations 

°C    Degree celsius 

ca.    circa 

e.g.     exempli gratia 

et al.    et alteri 

g    Gramm 

h    Hour 

Hz    Hertz 

i.e.    Id est 

kg    Kilogram 

kWh    Kilowatt-hour 

L    Liter 

mg    Milligramm 

min    Minute 

MLWT   Maximal laundry waiting time 

mmol / L   Millimol per liter 

p.    Page 

resp.    Respectively 

s    Second 

V    Volt 

W    Watt 

WM     Washing machine 

WMRC   Washing machine rated capacity 

                          Arithmetic mean 
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12 Appendix 

12.1 Washing machine tests data 

Table 11-1: Indesit IWB 5125) 5 kg rated capacity 
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5,00 50 0,42 0,31 63,7 15,5 48,2 29 41 30 0,81 

5,00 50 0,82 0,73 40,8 16,6 24,3 39 84 40 0,91 

5,00 50 0,94 0,85 39,5 16,5 23,0 21 84 60 0,94 

5,00 100 0,43 0,34 64,0 16,5 47,5 18 41 30 0,87 

5,00 100 0,80 0,71 40,5 16,8 23,7 16 84 40 0,98 

5,00 100 0,95 0,86 40,8 17,1 23,8 16 83 60 1,00 

5,00 150 0,45 0,34 64,4 16,1 48,4 17 41 30 0,90 

5,00 150 0,79 0,70 40,4 16,7 23,8 16 83 40 1,02 

5,00 150 0,92 0,84 38,6 17,0 21,6 16 83 60 1,04 

3,75 42,5 0,40 0,30 58,7 13,6 45,1 17 40 30 0,82 

3,75 42,5 0,74 0,65 36,3 14,5 21,8 16 83 40 0,93 

3,75 42,5 0,94 0,85 36,9 13,8 23,1 16 82 60 0,97 

3,75 85 0,39 0,30 58,2 13,5 44,7 16 40 30 0,90 

3,75 85 0,73 0,64 35,8 14,3 21,5 16 82 40 1,01 

3,75 85 0,91 0,83 35,7 14,0 21,6 16 82 60 1,04 

3,75 127,5 0,41 0,31 58,6 13,7 44,9 16 39 30 0,94 

3,75 127,5 0,68 0,60 34,9 14,1 20,9 16 82 40 1,04 

3,75 127,5 0,90 0,82 33,3 14,4 18,9 19 83 60 1,08 

2,50 35 0,36 0,28 54,0 11,3 42,6 17 38 30 0,85 

2,50 35 0,67 0,59 30,8 12,1 18,8 16 81 40 0,96 

2,50 35 0,88 0,80 30,6 11,4 19,2 16 81 60 0,98 

2,50 70 0,35 0,26 53,9 11,2 42,7 16 38 30 0,92 

2,50 70 0,62 0,55 29,7 11,2 18,5 16 81 40 1,02 

2,50 70 0,92 0,84 30,2 11,5 18,6 15 81 60 1,07 

2,50 105 0,34 0,25 52,9 10,9 42,1 16 38 30 0,96 

2,50 105 0,65 0,57 30,5 11,5 18,9 16 81 40 1,07 

2,50 105 0,91 0,83 30,2 11,5 18,7 15 81 60 1,13 

1,25 27,5 0,30 0,21 46,3 7,7 38,6 17 37 30 0,91 

1,25 27,5 0,54 0,46 23,0 8,7 14,4 15 80 40 1,01 

1,25 27,5 0,79 0,72 23,3 8,3 15,0 15 81 60 1,05 



APPENDIX  II  

1,25 55 0,31 0,22 47,3 7,7 39,7 16 37 30 0,98 

1,25 55 0,56 0,48 22,8 8,1 14,7 15 81 40 1,08 

1,25 55 0,76 0,68 22,3 8,4 13,9 16 81 60 1,13 

1,25 82,5 0,30 0,22 45,0 7,5 37,5 16 36 30 0,92 

1,25 82,5 0,53 0,46 23,9 8,8 15,1 21 81 40 1,12 

1,25 82,5 0,75 0,68 21,6 8,0 13,6 19 81 60 1,17 

0,00 0 0,23 0,16 38,6 5,3 33,4 16 35 30   

0,00 0 0,38 0,32 16,7 5,7 11,0 25 80 40   

0,00 0 0,54 0,48 16,3 5,8 10,4 15 81 60   

 

 

Table 11-2: Miele W1514WPS, 5 kg rated capacity 
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5,00 50 0,29 0,20 42,8 13,1 29,7 8 52 30 0,93 

5,00 50 0,31 0,21 53,0 13,1 39,9 10 71 30 0,88 

5,00 50 0,46 0,36 51,9 12,7 39,2 9 71 40 0,95 

5,00 50 0,79 0,69 40,8 12,3 28,5 9 63 60 0,98 

5,00 100 0,36 0,25 47,8 13,1 34,7 9 71 30 0,99 

5,00 100 0,32 0,22 54,6 14,4 40,2 9 71 30 1,00 

5,00 100 0,44 0,36 44,2 13,4 30,8 8 52 40 1,02 

5,00 100 0,45 0,35 53,0 13,3 39,7 9 71 40 1,00 

5,00 100 0,79 0,70 40,8 12,8 28,0 9 63 60 1,06 

5,00 150 0,27 0,19 39,8 13,2 26,6 8 52 30 1,01 

5,00 150 0,31 0,21 54,3 14,2 40,1 10 71 30 0,97 

5,00 150 0,50 0,39 49,8 12,9 36,9 9 71 40 1,06 

5,00 150 0,79 0,71 40,5 13,0 27,5 9 63 60 1,13 

3,75 42,5 0,22 0,14 32,5 9,7 22,8 8 52 30 0,89 

3,75 42,5 0,34 0,27 35,1 11,0 24,1 8 52 40 0,93 

3,75 42,5 0,65 0,57 39,6 10,8 28,8 8 52 60 0,97 

3,75 85 0,21 0,13 39,5 11,0 28,5 8 52 30 0,95 

3,75 85 0,37 0,27 39,6 10,7 28,9 8 52 40 1,00 

3,75 85 0,66 0,59 40,4 11,0 29,4 8 52 60 1,05 

3,75 127,5 0,23 0,15 39,8 11,5 28,3 8 52 30 1,00 

3,75 127,5 0,35 0,27 39,9 11,0 28,9 8 52 40 1,02 

3,75 127,5 0,67 0,60 39,4 10,9 28,5 8 52 60 1,12 

2,50 35 0,21 0,14 31,7 9,3 22,4 8 52 30 0,94 

2,50 35 0,38 0,30 34,4 10,6 23,8 8 52 40 0,98 

2,50 35 0,70 0,62 36,7 10,3 26,4 8 52 60 1,03 
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2,50 70 0,24 0,16 34,1 10,6 23,5 8 52 30 1,00 

2,50 70 0,38 0,31 33,9 10,6 23,3 8 52 40 1,05 

2,50 70 0,72 0,64 37,5 11,0 26,5 8 52 60 1,12 

2,50 105 0,23 0,15 32,5 9,7 22,8 8 52 30 1,04 

2,50 105 0,35 0,27 32,9 10,2 22,7 8 52 40 1,08 

2,50 105 0,69 0,62 35,8 10,1 25,7 8 52 60 1,17 

1,25 27,5 0,17 0,11 20,2 6,7 13,5 5 52 30 0,98 

1,25 27,5 0,25 0,19 19,8 6,5 13,3 5 52 40 1,02 

1,25 27,5 0,49 0,43 20,2 6,4 13,8 5 52 60 1,06 

1,25 55 0,17 0,10 20,0 6,8 13,2 6 52 30 1,05 

1,25 55 0,26 0,20 19,7 6,5 13,2 5 52 40 1,01 

1,25 55 0,49 0,43 19,7 6,5 13,2 5 52 60 1,14 

1,25 82,5 0,17 0,10 25,2 6,4 18,8 6 52 30 1,08 

1,25 82,5 0,14 0,12 22,2 7,6 14,6 6 52 30 1,08 

1,25 82,5 0,26 0,20 19,4 8,4 11,0 6 52 40 1,13 

1,25 82,5 0,47 0,41 18,6 6,2 12,4 6 52 60 1,19 

0,00 0 0,16 0,11 21,4 7,3 14,1 6 52 30   

0,00 0 0,25 0,20 21,2 7,3 13,9 6 52 40   

0,00 0 0,46 0,42 21,4 7,5 13,9 6 52 60   

 

 

Table 11-3: BOSCH maxx 6 Eco Wash, 6 kg rated capacity 
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6,00 56 0,26 0,16 53,1 16,4 36,7 15 19 30 0,71 

6,00 56 0,39 0,29 56,4 15,8 40,6 13 23 40 0,74 

6,00 56 0,91 0,82 52,1 15,6 36,5 13 41 60 0,82 

6,00 112 0,23 0,14 52,5 16,8 35,7 13 18 30 0,76 

6,00 112 0,42 0,32 55,2 15,9 39,3 13 24 40 0,81 

6,00 112 0,90 0,81 51,6 15,3 36,3 15 41 60 0,90 

6,00 168 0,21 0,12 50,9 14,9 36,0 13 18 30 0,75 

6,00 168 0,41 0,32 50,7 16,1 34,6 13 24 40 0,83 

6,00 168 0,88 0,79 54,1 15,7 38,4 13 41 60 0,96 

4,50 47 0,27 0,18 49,3 14,7 34,6 15 19 30 0,79 

4,50 47 0,53 0,44 50,6 14,9 35,7 13 28 40 0,84 

4,50 47 0,92 0,83 48,2 13,6 34,6 13 42 60 0,90 

4,50 94 0,24 0,15 49,5 15,1 34,4 12 17 30 0,83 

4,50 94 0,53 0,44 51,7 15,2 36,5 13 28 40 0,92 
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4,50 94 0,90 0,82 47,8 13,5 34,3 13 42 60 0,98 

4,50 141 0,24 0,15 49,2 14,9 34,3 13 19 30 0,87 

4,50 141 0,51 0,42 49,5 15,2 34,3 13 28 40 0,94 

4,50 141 0,94 0,85 49,0 14,0 35,0 13 43 60 1,04 

3,00 38 0,27 0,18 45,8 11,7 34,1 13 19 30 0,79 

3,00 38 0,46 0,37 46,6 12,2 34,4 12 26 40 0,86 

3,00 38 0,78 0,69 45,4 10,8 34,6 13 37 60 0,93 

3,00 76 0,29 0,19 45,9 11,9 34,0 16 20 30 0,87 

3,00 76 0,44 0,35 46,3 11,8 34,5 13 25 40 0,92 

3,00 76 0,81 0,73 45,8 11,2 34,6 13 37 60 1,01 

3,00 114 0,24 0,15 46,4 12,2 34,2 13 18 30 0,91 

3,00 114 0,47 0,39 46,4 12,0 34,4 13 27 40 0,96 

3,00 114 0,75 0,67 45,4 10,7 34,7 12 36 60 1,07 

1,50 29 0,24 0,14 43,0 8,6 34,4 14 18 30 0,82 

1,50 29 0,40 0,30 43,0 8,7 34,3 12 24 40 0,93 

1,50 29 0,66 0,57 42,7 8,3 34,4 14 33 60 0,97 

1,50 58 0,24 0,14 43,5 9,1 34,4 16 18 30 0,91 

1,50 58 0,39 0,30 43,6 9,0 34,6 14 24 40 0,97 

1,50 58 0,64 0,55 42,7 8,2 34,5 12 33 60 1,04 

1,50 87 0,24 0,14 43,4 8,9 34,5 16 17 30 0,93 

1,50 87 0,38 0,30 30,0 9,1 20,9 15 24 40 0,99 

1,50 87 0,42 0,32 42,4 8,9 33,5 14 24 40 1,09 

1,50 87 0,63 0,54 42,6 8,1 34,5 13 32 60 1,00 

0,00 0 0,18 0,11 22,9 5,6 17,3 12 17 30   

0,00 0 0,27 0,20 22,8 5,5 17,3 12 21 40   

0,00 0 0,43 0,36 22,0 4,7 17,3 12 27 60   

 

 

 

Table 11-4: AEG Öko Lavamat 76850, 7 kg rated capacity 

L
o

a
d

 s
iz

e 
in

 k
g
 

D
et

er
g
en

t 

d
o

sa
g

e 
in

 g
 

E
n

er
g

y
 

co
n

su
m

p
ti

o
n

 i
n

 

k
W

h
 

E
n

er
g

y
 

co
n

su
m

p
ti

o
n

 i
n

 

m
a

in
 w

a
sh

 i
n

 

k
W

h
 

W
a

te
r 

co
n

su
m

p
ti

o
n

  
  

  
  

in
 L

 

W
a

te
r 

co
n

su
m

p
ti

o
n

 

m
a

in
 w

a
sh

 i
n

 L
 

W
a

te
r 

co
n

su
m

p
ti

o
n

 

ri
n

se
 c

y
cl

e 
 i

n
 L

 

D
u

ra
ti

o
n

 

sp
in

n
in

g
 p

h
a

se
 

in
 m

in
 

D
u

ra
ti

o
n

 m
a
in

 

w
a

sh
  
in

 m
in

 

W
a

sh
in

g
 

te
m

p
er

a
tu

re
 i

n
 

°C
 

W
a

sh
in

g
 

P
er

fo
rm

a
n

ce
 

In
d

ex
 

7,00 62 0,42 0,28 59,8 18,2 41,6 17 63 30 0,82 

7,00 62 0,63 0,50 62,1 19,4 42,7 14 67 40 0,88 

7,00 62 1,26 1,12 62,9 19,6 43,3 14 89 60 0,90 

7,00 124 0,42 0,26 59,2 18,0 41,2 23 62 30 0,86 

7,00 124 0,73 0,61 61,1 19,4 41,7 17 73 40 0,96 

7,00 124 1,16 1,03 61,7 18,2 43,5 19 87 60 1,03 
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7,00 186 0,44 0,31 60,0 18,2 41,8 13 65 30 0,92 

7,00 186 0,66 0,53 60,7 18,1 42,6 17 70 40 1,00 

7,00 186 1,20 1,07 61,2 18,1 43,1 14 88 60 1,06 

5,25 51,5 0,44 0,32 60,4 18,1 42,3 14 66 30 0,89 

5,25 51,5 0,80 0,66 60,7 18,2 42,5 16 75 40 0,93 

5,25 51,5 1,24 1,12 62,1 18,1 44,0 15 90 60 0,96 

5,25 103 0,50 0,36 62,6 18,7 43,9 17 67 30 0,96 

5,25 103 0,73 0,58 61,7 17,9 43,8 16 74 40 1,01 

5,25 103 1,23 1,11 62,1 18,2 43,9 18 91 60 1,06 

5,25 154,5 0,46 0,33 61,5 18,0 43,5 14 65 30 1,01 

5,25 154,5 0,74 0,62 61,9 18,0 43,9 18 75 40 1,04 

5,25 154,5 1,22 1,09 62,0 18,1 43,9 14 89 60 1,11 

3,50 41 0,42 0,29 55,2 14,5 40,7 18 67 30 0,91 

3,50 41 0,60 0,47 46,5 11,7 34,8 15 68 40 0,95 

3,50 41 0,69 0,57 55,8 14,5 41,3 14 75 40 0,97 

3,50 41 0,86 0,74 44,3 11,5 32,8 14 75 60 0,97 

3,50 41 1,04 0,91 53,0 13,6 39,4 17 81 60 1,02 

3,50 82 0,42 0,29 56,7 14,6 42,1 17 64 30 0,97 

3,50 82 0,70 0,57 54,9 14,7 40,2 16 76 40 1,03 

3,50 82 0,92 0,79 47,0 11,6 35,4 21 77 60 1,00 

3,50 82 1,13 1,00 54,4 14,6 39,8 17 87 60 1,01 

3,50 123 0,48 0,31 56,4 14,5 41,9 30 66 30 1,02 

3,50 123 0,72 0,60 56,3 14,6 41,7 14 76 40 1,07 

3,50 123 0,91 0,79 46,2 11,8 34,4 14 75 60 1,11 

3,50 123 1,07 0,93 53,8 13,9 39,9 16 82 60 1,14 

1,75 30,5 0,41 0,29 40,6 11,7 28,9 17 64 30 0,95 

1,75 30,5 0,62 0,50 41,4 11,9 29,5 15 71 40 0,98 

1,75 30,5 0,98 0,86 41,4 12,0 29,4 15 79 60 1,01 

1,75 61 0,37 0,24 40,7 11,8 28,9 15 62 30 1,01 

1,75 61 0,61 0,48 41,3 11,8 29,5 16 70 40 1,05 

1,75 61 0,97 0,85 41,9 12,0 29,9 14 78 60 1,11 

1,75 91,5 0,38 0,26 40,1 11,7 28,4 14 63 30 1,05 

1,75 91,5 0,60 0,48 41,2 11,7 29,5 14 70 40 1,10 

1,75 91,5 0,99 0,87 41,8 12,0 29,8 14 79 60 1,16 

0,00 0 0,38 0,27 33,5 12,2 21,3 14 65 30   

0,00 0 0,58 0,48 32,8 12,1 20,7 14 71 40   

0,00 0 0,95 0,85 32,6 12,2 20,4 14 79 60   

 

 

 

 

 

 



APPENDIX  VI  

 

Table 11-5: Bauknecht WA UNIQ 714FLD, 7kg rated capacity 
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7,00 62 0,44 0,28 101,1 19,3 81,8 21 45 30 0,84 

7,00 62 0,63 0,46 105,2 20,1 85,0 20 44 40 0,84 

7,00 62 0,98 0,87 53,3 17,5 35,8 22 87 60 0,99 

7,00 124 0,41 0,25 99,5 19,1 80,4 23 45 30 0,85 

7,00 124 0,53 0,36 96,9 18,8 78,1 18 45 40 0,90 

7,00 124 0,97 0,86 56,6 17,8 38,8 19 87 60 1,04 

7,00 186 0,45 0,28 104,0 19,9 84,1 23 45 30 0,89 

7,00 186 0,59 0,42 104,1 19,9 84,2 19 44 40 0,92 

7,00 186 1,01 0,90 54,5 17,6 36,9 17 88 60 1,12 

5,25 51,5 0,39 0,26 68,4 17,3 51,2 19 76 30 0,84 

5,25 51,5 0,62 0,49 67,4 16,2 51,2 24 77 40 0,91 

5,25 51,5 1,04 0,93 53,0 16,2 36,8 17 87 60 0,96 

5,25 103 0,37 0,24 65,4 16,5 49,0 24 75 30 0,92 

5,25 103 0,61 0,49 65,9 15,8 50,1 26 77 40 0,98 

5,25 103 1,04 0,93 54,4 16,2 38,2 16 87 60 1,04 

5,25 154,5 0,41 0,28 66,8 16,6 50,2 21 76 30 0,98 

5,25 154,5 0,65 0,52 66,8 16,5 50,3 32 78 40 1,04 

5,25 154,5 1,04 0,93 52,9 15,2 37,7 26 86 60 1,11 

3,50 41 0,47 0,34 57,9 13,8 44,1 20 75 30 0,91 

3,50 41 0,64 0,52 57,7 14,0 43,6 18 77 40 0,96 

3,50 41 1,02 0,90 43,1 13,7 29,3 18 85 60 0,99 

3,50 82 0,46 0,34 57,9 13,8 44,1 22 76 30 0,99 

3,50 82 0,65 0,53 56,9 13,7 43,2 19 77 40 1,01 

3,50 82 1,04 0,91 42,9 13,7 29,3 23 84 60 1,08 

3,50 123 0,45 0,32 57,1 13,8 43,3 18 75 30 1,02 

3,50 123 0,65 0,52 56,4 13,7 42,7 20 77 40 1,06 

3,50 123 1,05 0,94 45,4 13,8 31,6 24 84 60 1,14 

1,75 30,5 0,51 0,40 56,2 13,6 42,6 26 75 30 0,97 

1,75 30,5 0,71 0,59 56,3 13,4 42,9 26 76 40 1,02 

1,75 30,5 1,07 0,97 43,0 13,7 29,4 18 83 60 1,01 

1,75 61 0,50 0,39 56,6 13,6 43,0 18 74 30 1,05 

1,75 61 0,72 0,60 57,1 13,7 43,4 21 76 40 1,06 

1,75 61 1,08 0,97 42,5 13,8 28,7 19 83 60 1,12 

1,75 91,5 0,50 0,38 56,5 13,7 42,8 24 75 30 1,08 
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1,75 91,5 0,72 0,60 56,7 13,5 43,2 19 76 40 1,12 

1,75 91,5 1,06 0,96 42,4 13,5 28,9 16 83 60 1,17 

0,00 0 0,20 0,14 23,2 6,6 16,6 9 28 30   

0,00 0 0,29 0,24 22,9 6,6 16,3 9 28 40   

0,00 0 0,47 0,42 23,0 6,6 16,4 9 28 60   

 

Table 11-6: BoschLogix8, 8kg rated capacity 
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8,00 68 0,26 0,13 78,5 19,8 58,7 11 87 30 0,79 

8,00 68 0,76 0,66 79,4 20,8 58,6 11 100 40 0,87 

8,00 68 1,00 0,89 78,4 19,8 58,6 12 107 60 0,88 

8,00 136 0,30 0,20 78,4 19,8 58,6 12 87 30 0,86 

8,00 136 0,78 0,68 79,6 20,9 58,7 12 100 40 0,96 

8,00 136 0,99 0,89 78,4 19,8 58,6 12 107 60 0,99 

8,00 204 0,29 0,18 78,6 19,8 58,8 11 87 30 0,90 

8,00 204 0,77 0,67 79,6 20,9 58,7 11 100 40 0,97 

8,00 204 1,15 1,06 78,6 19,9 58,7 12 107 60 1,06 

6,00 56 0,35 0,25 78,5 19,9 58,6 12 86 30 0,89 

6,00 56 0,82 0,72 79,4 20,9 58,5 11 100 40 0,95 

6,00 56 1,24 1,12 78,4 19,8 58,6 11 107 60 0,97 

6,00 112 0,32 0,22 78,4 19,8 58,6 11 87 30 0,95 

6,00 112 0,81 0,71 79,5 20,9 58,6 12 100 40 1,01 

6,00 112 1,22 1,10 78,4 19,8 58,6 16 107 60 1,06 

6,00 168 0,32 0,21 78,4 19,8 58,6 12 87 30 0,98 

6,00 168 0,81 0,71 79,4 20,9 58,5 12 100 40 1,06 

6,00 168 1,23 1,13 78,4 19,8 58,6 11 107 60 1,11 

4,00 44 0,26 0,15 58,6 14,1 44,5 12 71 30 0,89 

4,00 44 0,62 0,53 58,6 14,1 44,5 11 83 40 0,96 

4,00 44 0,89 0,80 58,6 14,1 44,5 12 92 60 1,00 

4,00 88 0,22 0,13 58,6 14,1 44,5 11 72 30 0,97 

4,00 88 0,63 0,54 58,6 14,1 44,5 11 83 40 1,03 

4,00 88 0,92 0,82 58,6 14,1 44,5 13 92 60 1,07 

4,00 132 0,24 0,14 58,6 14,1 44,5 12 72 30 0,99 

4,00 132 0,60 0,50 58,6 14,1 44,5 13 83 40 1,07 

4,00 132 0,92 0,83 58,6 14,1 44,5 14 92 60 1,14 

2,00 32 0,29 0,20 49,2 11,5 37,7 12 62 30 0,95 
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2,00 32 0,51 0,42 49,2 11,5 37,7 11 73 40 1,00 

2,00 32 0,81 0,72 49,2 11,5 37,7 12 82 60 1,04 

2,00 64 0,27 0,17 49,1 11,5 37,6 13 62 30 1,00 

2,00 64 0,51 0,42 49,2 11,5 37,7 12 72 40 1,06 

2,00 64 0,84 0,74 49,2 11,5 37,7 12 82 60 1,11 

2,00 96 0,27 0,18 49,2 11,5 37,7 11 62 30 1,03 

2,00 96 0,58 0,48 49,2 11,5 37,7 15 72 40 1,10 

2,00 96 0,83 0,73 49,2 11,5 37,7 13 82 60 1,15 

0,00 0 0,17 0,11 22,9 6,3 16,6 11 42 30   

0,00 0 0,34 0,28 22,9 6,4 16,5 11 53 40   

0,00 0 0,47 0,41 22,9 6,3 16,6 11 62 60   

 

Table 11-7: Haier HWF1481, 8 kg rated capacity 
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8,00 68 0,26 0,16 63,2 21,1 42,1 15 61 30 0,77 

8,00 68 0,41 0,33 65,5 22,0 43,5 21 61 40 0,82 

8,00 68 1,25 1,16 64,2 20,8 43,4 25 73 60 0,90 

8,00 136 0,22 0,16 63,5 21,1 42,4 16 61 30 0,88 

8,00 136 0,44 0,36 63,0 21,2 41,8 23 61 40 0,91 

8,00 136 1,26 1,20 59,9 20,5       60 1,00 

8,00 136 1,32 1,25 64,1 21,4       60 1,03 

8,00 136 1,26 1,15 59,9 21,0       60 1,00 

8,00 204 0,21 0,14 65,4 22,4 43,1 17 61 30 0,89 

8,00 204 0,48 0,40 61,2 20,9 40,3 16 61 40 0,96 

8,00 204 1,18 1,10 64,3 21,5 42,8 18 72 60 1,04 

6,00 56 0,26 0,18 59,1 18,6 40,4 15 61 30 0,83 

6,00 56 0,56 0,49 60,1 18,9 41,2 14 61 40 0,88 

6,00 56 1,15 1,08 57,3 17,5 39,8 15 72 60 0,94 

6,00 112 0,28 0,19 60,3 18,9 41,4 18 61 30 0,91 

6,00 112 0,60 0,52 58,7 19,2 39,5 15 61 40 0,95 

6,00 112 1,15 1,07 61,2 17,5 43,7 21 72 60 1,01 

6,00 168 0,29 0,21 59,3 19,6 39,7 16 61 30 0,94 

6,00 168 0,62 0,55 61,4 19,8 41,5 15 61 40 1,00 

6,00 168 1,15 1,08 59,1 18,0 41,1 24 72 60 1,09 

4,00 44 0,27 0,19 51,9 14,1 37,8 16 61 30 0,87 

4,00 44 0,45 0,38 52,0 14,1 37,9 14 61 40 0,91 
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4,00 44 1,08 1,00 53,2 15,1 38,1 17 72 60 0,98 

4,00 88 0,29 0,20 54,1 15,9 38,2 14 61 30 0,95 

4,00 88 0,50 0,42 53,4 15,4 38,0 15 61 40 0,99 

4,00 88 1,06 0,98 54,1 15,0 39,1 15 72 60 1,06 

4,00 132 0,24 0,17 51,9 15,1 36,9 14 61 30 0,99 

4,00 132 0,44 0,37 52,2 15,5 36,8 15 61 40 1,01 

4,00 132 0,98 0,91 54,7 16,0 38,6 17 72 60 1,11 

2,00 32 0,25 0,17 38,4 10,5 27,9 26 61 30 0,92 

2,00 32 0,41 0,34 38,4 10,6 27,8 19 61 40 0,96 

2,00 32 0,84 0,77 38,2 10,8 27,4 14 73 60 1,02 

2,00 64 0,24 0,16 37,7 10,1 27,6 24 61 30 0,98 

2,00 64 0,41 0,33 38,2 10,3 27,9 14 61 40 1,01 

2,00 64 0,80 0,72 38,1 10,4 27,8 14 72 60 1,09 

2,00 96 0,25 0,17 38,0 10,6 27,4 20 62 30 1,06 

2,00 96 0,39 0,32 37,1 10,2 27,0 13 61 40 1,12 

2,00 96 0,82 0,75 38,2 10,6 27,6 14 72 60 1,18 

0,00 0 0,20 0,14 38,6 7,5 31,1 26 61 30   

0,00 0 0,32 0,26 38,3 7,5 30,9 16 61 40   

0,00 0 0,60 0,54 38,6 7,6 31,0 21 72 60   

 

Table 11-8: INDESIT PWE 8168W, 8kg rated capacity 
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8,00 68 0,47 0,35 70,6 23,7 46,9 20 34 30 0,75 

8,00 68 1,15 1,03 73,5 25,9 47,6 19 161 40 0,93 

8,00 68 1,33 1,21 72,1 25,3 46,8 22 161 60 0,96 

8,00 136 0,47 0,34 73,2 24,2 49,0 22 42 30 0,82 

8,00 136 1,10 0,98 74,2 25,5 48,7 19 161 40 1,02 

8,00 136 1,34 1,23 74,2 27,4 46,8 19 161 60 1,04 

8,00 204 0,43 0,32 70,7 24,1 46,6 18 41 30 0,87 

8,00 204 1,10 1,00 72,5 26,0 46,5 21 161 40 1,08 

8,00 204 1,33 1,21 71,1 24,8 46,3 33 161 60 1,09 

6,00 56 0,38 0,29 63,4 20,2 43,2 19 31 30 0,76 

6,00 56 1,10 0,97 67,3 23,0 44,3 20 162 40 0,97 

6,00 56 1,33 1,23 64,4 21,4 43,0 20 161 60 0,99 

6,00 112 0,43 0,32 63,1 21,0 42,1 19 41 30 0,87 

6,00 112 1,03 0,93 65,9 22,3 43,5 22 161 40 1,06 

6,00 112 1,34 1,24 66,4 22,2 44,3 19 161 60 1,09 
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6,00 168 0,42 0,31 63,6 20,9 42,6 21 41 30 0,91 

6,00 168 1,04 0,93 65,6 22,2 43,4 19 161 40 1,10 

6,00 168 1,34 1,24 66,6 22,5 44,1 19 161 60 1,14 

4,00 44 0,36 0,25 54,2 15,4 38,8 19 26 30 0,79 

4,00 44 0,88 0,78 56,6 17,3 39,3 21 160 40 0,97 

4,00 44 1,22 1,11 57,6 17,9 39,7 19 155 60 1,01 

4,00 88 0,33 0,23 53,9 15,6 38,3 19 26 30 0,85 

4,00 88 0,96 0,85 56,5 18,0 38,6 19 160 40 1,05 

4,00 88 1,22 1,12 57,0 17,9 39,1 19 156 60 1,10 

4,00 132 0,38 0,26 54,8 16,3 38,5 22 26 30 1,09 

4,00 132 0,95 0,86 58,2 18,1 40,1 18 161 40 1,14 

4,00 132 1,20 1,11 56,6 17,8 38,8 19 156 60 0,88 

2,00 32 0,29 0,20 42,2 11,2 31,0 20 22 30 0,81 

2,00 32 0,74 0,64 43,1 12,1 31,0 25 159 40 1,04 

2,00 32 0,93 0,84 42,8 12,8 30,1 32 152 60 1,07 

2,00 64 0,28 0,19 41,2 11,5 29,7 19 23 30 0,90 

2,00 64 0,76 0,67 41,8 12,4 29,4 19 159 40 1,10 

2,00 64 0,94 0,84 41,2 12,2 29,0 27 153 60 1,15 

2,00 96 0,30 0,21 41,3 11,2 30,1 19 23 30 0,95 

2,00 96 0,70 0,60 41,4 11,7 29,8 19 159 40 1,15 

2,00 96 0,93 0,84 42,9 12,4 30,4 20 147 60 1,19 

0,00 0 0,19 0,11 30,9 6,2 24,7 22 21 30   

0,00 0 0,45 0,38 32,1 7,0 25,1 18 158 40   

0,00 0 0,57 0,49 31,6 6,8 24,8 18 147 60   

 

 

Table 11-9: Bauknecht  WAB-1210, 11kg rated capacity 
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11,00 86 0,74 0,59 82,8 25,5 56,7 9 169 30 0,90 

11,00 172 0,77 0,56 82,4 25,5 56,3 9 169 30 1,02 

11,00 258 0,71 0,56 82,7 25,5 56,3 9 169 30 1,04 

8,25 69,5 1,00 0,78 84,0 26,5 57,3 9 167 30 0,97 

8,25 139 0,97 0,78 83,2 25,6 54,8 8 167 30 1,04 

8,25 208,5 0,94 0,78 83,2 25,5 56,8 8 167 30 1,07 

5,50 53 0,67 0,55 55,0 16,8 37,4 8 173 30 0,97 

5,50 106 0,63 0,50 55,0 17,0 37,5 8 173 30 1,04 
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5,50 159 0,68 0,54 55,0 16,4 36,9 8 173 30 1,08 

2,75 36,5 0,50 0,40 42,1 12,3 28,3 8 124 30 0,96 

2,75 73 0,56 0,46 45,8 13,6 30,9 8 124 30 1,07 

2,75 109,5 0,51 0,41 42,7 12,7 28,8 8 124 30 1,13 

11,00 86 0,99 0,84 82,9 25,5 56,2 9 173 40 0,96 

11,00 172 1,04 0,85 82,4 25,5 56,3 9 173 40 1,03 

11,00 258 1,04 0,85 83,3 26,0 56,9 9 173 40 1,08 

8,25 69,5 1,35 1,16 83,4 26,1 57,3 8 175 40 0,99 

8,25 139 1,31 1,15 82,7 25,7 57,0 8 174 40 1,09 

8,25 208,5 1,32 1,16 82,7 25,5 57,2 8 174 40 1,11 

5,50 53 0,81 0,68 53,8 16,2 36,4 8 173 40 0,99 

5,50 106 0,82 0,69 55,0 16,4 37,0 8 173 40 1,08 

5,50 159 0,81 0,69 54,7 16,4 37,2 8 173 40 1,11 

2,75 36,5 0,66 0,56 44,6 13,1 44,6 8 124 40 0,97 

2,75 73 0,68 0,58 45,4 13,5 30,6 8 124 40 1,08 

2,75 109,5 0,66 0,55 44,5 13,0 29,8 8 124 40 1,14 

11,00 86 1,44 1,25 82,8 25,5 57,3 8 186 60 0,95 

11,00 172 1,33 1,17 82,9 25,5 57,1 9 187 60 1,05 

11,00 172 1,38 1,20 82,7 25,5 57,1 9 188 60 1,05 

11,00 172 1,38 1,21 82,6 25,5 57,1 9 188 60 1,03 

11,00 258 1,35 1,19 82,7 25,4 57,2 9 186 60 1,09 

8,25 69,5 1,78 1,53 84,0 26,8 57,9 9 190 60 1,00 

8,25 139 1,66 1,50 83,6 26,1 57,5 8 189 60 1,07 

8,25 208,5 1,68 1,50 83,3 25,5 57,9 8 189 60 1,14 

5,50 86 1,15 1,01 55,7 17,4 38,0     60 0,99 

5,50 106 1,12 0,97 54,7 16,4 37,0 8 181 60 1,07 

5,50 159 1,04 0,91 53,5 15,3 35,6 8 181 60 1,14 

2,75 36,5 1,02 0,91 45,2 13,3 30,6 8 125 60 1,01 

2,75 73 1,01 0,92 45,8 13,6 30,9 8 125 60 1,12 

2,75 109,5 1,03 0,92 47,4 13,9 31,4 8 125 60 1,18 

0,00   1,12 0,97 54,0 15,4 36,4 8 181 60 0,00 

 

12.2 Virtual washing machine MATLAB source code  

function [ DET, CWmw, CEmw, vektorWASCHKORB] = 

Waschmaschine(BETA, WP, TEMP, WMV, MWD, WASCHKORB, m, 

WochenCounterGENERAL, RESTLOAD, REG1ODERNOT2, PERSON, 

LOADamoountTOTAL,WOCHENLA, n, SZX) 

    if TEMP ==30; 

WP = .93;  

    end 

    if TEMP ==40; 
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WP = 1;  

    end 

    if TEMP ==60; 

WP = 1.04;  

    end 

if  WMV ==5;  

    if TEMP ==30; 

MWD = 48;  

    end 

    if TEMP ==40; 

MWD = 69;  

    end 

    if TEMP ==60; 

MWD = 68;  

    end 

end  

if  WMV ==6;   

    if TEMP ==30; 

MWD = 50;  

    end 

    if TEMP ==40; 

MWD = 69;  

    end 

    if TEMP ==60; 

MWD = 68;  

    end 

end 

if  WMV ==7;   

    if TEMP ==30; 

MWD = 65;  

    end 

    if TEMP ==40; 

MWD = 69;  

    end 

    if TEMP ==60; 

MWD = 82;  

    end 

end 

if  WMV ==8;   

    if TEMP ==30; 

MWD = 68;  

    end 

    if TEMP ==40; 

MWD = 102; % Dauer des hauptwaschganges 

    end 

    if TEMP ==60; 

MWD = 108; % Dauer des hauptwaschganges in minuten in einer     

kg waschmaschine 
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    end 

end 

if  WMV ==9;   

    if TEMP ==30; 

MWD = 120;  

    end 

    if TEMP ==40; 

MWD = 130;  

    end 

    if TEMP ==60; 

MWD = 140;  

    end 

end 

if  WMV ==10;   

    if TEMP ==30; 

MWD = 140;  

    end 

    if TEMP ==40; 

MWD = 158;  

    end 

    if TEMP ==60; 

MWD = 173;  

    end 

end 

if  WMV ==11; 

    if TEMP ==30; 

MWD = 156;  

    end 

    if TEMP ==40; 

MWD = 158;  

    end 

    if TEMP ==60; 

MWD = 173;  

    end 

end 

DET=0; 

CWmw =0; 

CEmw =0;  

DET = ((WP - BETA.const.DET)/BETA.det.DET) - 

((BETA.temp.DET*TEMP)/BETA.det.DET) -

((BETA.load.DET*WASCHKORB)/BETA.det.DET)  - 

((BETA.mwd.DET*MWD)/BETA.det.DET);  

if DET<40 

    DET = 40; 

end 

CWmw = BETA.const.WATER + (BETA.load.WATER *WASCHKORB)+ 

(BETA.wmv.WATER *WMV);   
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CEmw = BETA.const.ENERGY + (BETA.temp.ENERGY * TEMP) + 

(BETA.water.ENERGY * CWmw) + (BETA.mwd.ENERGY * MWD);  

if REG1ODERNOT2 == 2; 

RESTLOAD =0;    

end 

vektorWASCHKORB (1,:) = [n,m, 

WochenCounterGENERAL,PERSON,LOADamoountTOTAL,WOCHENLA, 

WASCHKORB, TEMP,WMV,MWD, RESTLOAD,WP, DET, CWmw,CEmw, 

REG1ODERNOT2, SZX]; 

end 

12.3 Virtual washing household MATLAB source code  

CO2TOTAL=0; 

PERSON =0; 

myArray = zeros(7,12);  

WMV=5; 

MAXIMALEWARTEZEITWASCHEN = 0;  

SZX=0; 

for WMV=5:11; 

for PERSON = 1:7; 

WochenLA = 4;  

Amountof30 = .23;  

Amountof40 = .46;  

Amountof60 = .31;  

LB30 = .5;  

LB40 = .7;  

LB60 = .9;  

MWD30 = 52;  

MWD40 = 77;  

MWD60 = 84;  

BETA.const.DET = 0.8204235;  

BETA.temp.DET = 0.002605017;  

BETA.load.DET =-0.034011332;  

BETA.wmv.DET =-0.000505483;  

BETA.mwd.DET =0.001346586;  

BETA.det.DET=0.001163081;  

BETA.const.WATER =3.949488643;  

BETA.load.WATER =1.703739258;  

BETA.wmv.WATER =.513236840;  

BETA.const.ENERGY =-.85617463;  

BETA.temp.ENERGY =.02019412;  

BETA.water.ENERGY =.02422291;  

BETA.mwd.ENERGY =.00250646;  

WP = 1.03;  

Weekcounter = 0;  

DOS = 52;  
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co2water = 0.59;  

co2energy = 600;  

co2detergent = 2;  

LOADamoountTOTAL = PERSON * WochenLA;  

WMRECOMENDEDload30 = WMV*LB30;  

WMRECOMENDEDload40 = WMV*LB40;  

WMRECOMENDEDload60 = WMV*LB60;  

WOCHENLA30 = round(LOADamoountTOTAL * Amountof30);  

WOCHENLA40 = round(LOADamoountTOTAL * Amountof40);  

WOCHENLA60 = round(LOADamoountTOTAL * Amountof60);  

WochenCounterGENERAL = 0  

m=0; 

WASCHKORB= 0; 

WASCHKORB30 = 0;  

RESTLOAD =0;   

TEMP=30;  

MWD = MWD30;  

WochenCounterREG30 = 0; 

WochenCounterNOT30 = 0; 

WieoftgewaschenREG30 = 0;  

WieoftgewaschenNOT30 = 0; 

NOTWASCHGANG = 0; 

REG1ODERNOT2 = 0; 

DETwaschwoche =0; 

CWmwwaschwoche =0; 

CEmwwaschwoche =0; 

CO2DETwaschwoche = 0;  

CO2CWmwwaschwoche =0; 

CO2CEmwwaschwoche =0;     

CEmwwaschwocheSCHLEIFE=0;   

DETwaschwocheSCHLEIFE =0; 

CWmwwaschwocheSCHLEIFE = 0;  

vektorWASCHKORB1 = zeros (1,17);   

for n=1:(DOS);    

  REG1ODERNOT2 = 3;    

  WochenCounterGENERAL = WochenCounterGENERAL+1;  

  Waschkorb30 = WOCHENLA30 + RESTLOAD; 

  if Waschkorb30 < WMRECOMENDEDload30 && WochenCounterNOT30 < 

MAXIMALEWARTEZEITWASCHEN  

  RESTLOAD = Waschkorb30; 

  WochenCounterNOT30 = WochenCounterNOT30 +1; 

  elseif Waschkorb30 < WMRECOMENDEDload30 && 

WochenCounterNOT30 == MAXIMALEWARTEZEITWASCHEN  

      m=m+1; 

      WASCHKORB = Waschkorb30;    

      REG1ODERNOT2 = 2;   

      WOCHENLA = WOCHENLA30; 
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      [DET, CWmw, CEmw, vektorWASCHKORB] = Waschmaschine(BETA, 

WP, TEMP, WMV, MWD, WASCHKORB, m, WochenCounterGENERAL, 

RESTLOAD, REG1ODERNOT2, PERSON, LOADamoountTOTAL, 

WOCHENLA,n,SZX); 

      vektorWASCHKORB = vertcat(vektorWASCHKORB1, 

vektorWASCHKORB); 

     vektorWASCHKORB1=vektorWASCHKORB;  

      WochenCounterNOT30 = 0;    

      NOTWASCHGANG = NOTWASCHGANG+1; % Anzahl der 

NOTWaschgägnge 

      RESTLOAD =0;  

      REG1ODERNOT2 = 0; 

  end 

  while Waschkorb30 >= WMRECOMENDEDload30  %Reguläres Waschen 

     m=m+1; 

     RESTLOAD = Waschkorb30 - WMRECOMENDEDload30; 

     WASCHKORB = WMRECOMENDEDload30; 

     REG1ODERNOT2 = 1; 

     WOCHENLA = WOCHENLA30; 

     [DET,CWmw,CEmw, vektorWASCHKORB] = Waschmaschine(BETA, 

WP, TEMP, WMV, MWD, WASCHKORB, m, WochenCounterGENERAL, 

RESTLOAD,  REG1ODERNOT2, PERSON, LOADamoountTOTAL, WOCHENLA,n, 

SZX); 

     vektorWASCHKORB = vertcat(vektorWASCHKORB1, 

vektorWASCHKORB); % 

     vektorWASCHKORB1=vektorWASCHKORB;  

     WochenCounterREG30 = WochenCounterREG30 +1; 

     Waschkorb30=RESTLOAD;   

     WochenCounterNOT30 =0;  

     REG1ODERNOT2 = 0;  

  end 

  vNOTWASCHGANG(n+1,1) =NOTWASCHGANG;   

  vWochenCounterGENERAL (n+1,1) = WochenCounterGENERAL; 

  if REG1ODERNOT2 == 3;  

    DET = 0; 

    CWmw =0; 

    CEmw =0;  

    REG1ODERNOT2=3; 

    WASCHKORB=0; 

    WOCHENLA =0; 

    vektorWASCHKORB=zeros(1,17); % 

    vektorWASCHKORB (1,:) = [n, m, WochenCounterGENERAL, 

PERSON, LOADamoountTOTAL, WOCHENLA, WASCHKORB, TEMP,WMV,MWD, 

RESTLOAD, WP, DET, CWmw, CEmw, REG1ODERNOT2, SZX]; 

    vektorWASCHKORB2 = vertcat(vektorWASCHKORB1, 

vektorWASCHKORB); 

    vektorWASCHKORB1=vektorWASCHKORB2;  

  end 
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end 

TEST30 = vektorWASCHKORB1;  

vektorWASCHKORB1=zeros(1,17);
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