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Kurzfassung 

Bewertung unterschiedlicher Gaszusammensetzungen für die Geflügelfleischindustrie auf 

Grundlage eines Gesamtqualitätsindex 

Das Ziel der vorliegenden Arbeit war die Entwicklung eines Gesamtqualitätsindex (OQI) für 

unter Schutzgas verpacktes (MAP) Geflügelfleisch, um den Einfluss verschiedener 

Umweltfaktoren auf die Haltbarkeit und den Qualitätsverlust standardisiert zu bewerten. 

Zunächst wurde der Einfluss der Temperatur und unterschiedlicher 

Sauerstoffkonzentrationen auf die Entwicklung spezifischer Verderbskeime (Brochothrix 

thermosphacta, Pseudomonas spp., Enterobacteriaceae, Lactobacillus spp.) und sensorische 

Parameter untersucht. Weiterhin wurde die Entwicklung der Qualitätsparameter unter 

Hochsauerstoff und -stickstoff angereicherten Atmosphären verglichen. Insbesondere galt es 

dabei den Einfluss der Gasgemische auf das Wachstum von Listeria monocytogenes zu 

untersuchen. Des Weiteren wurde der Einfluss des Edelgases Argon getestet. Die 

Entwicklung der unterschiedlichen Parameter wurde mit dem modifizierten Gompertz 

Model modelliert. Basierend auf den Ergebnissen wurde ein Gesamtqualitätsindex 

entwickelt, der mikrobiologische und sensorische Parameter miteinander kombiniert. 

Aus den jeweiligen Lagertests ging hervor, dass die Keimflora signifikant von den jeweiligen 

Umweltbedingungen beeinflusst wurde. Somit konnte kein spezifischer Verderbsorganismus 

(SSO) identifiziert werden, der allein einen standardisierten Vergleich der unterschiedlichen 

Einflussfaktoren ermöglichte. Sowohl die Temperatur als auch die Variation der 

Sauerstoffkonzentration zeigte einen starken Einfluss auf die Entwicklung der Verderbsflora 

und der sensorischen Parameter. 55-60% Sauerstoff in Kombination mit niedrigen 

Lagertemperaturen reduzierten die Wachstumsgeschwindigkeit der mikrobiologischen und 

sensorischen Parameter. Der Vergleich zwischen Sauerstoff und Stickstoff zeigte, dass die 

Sauerstoffatmosphäre am effektivsten das Wachstum von L. monocytogenes unterdrückte. 

Argon wies keinen zusätzlichen Effekt auf den Qualitätsverlust auf. Allerdings zeigte das mit 

15% Ar angereichte Gasgemisch bei einigen Proben eine positive Wirkung auf die 

Fleischfarbe.  

Aus dem entwickelte OQI ging hervor, dass niedrige Lagertemperaturen (<4°C) und 

60% O2/25% CO2 mit 15% Ar oder 15% N2 den Qualitätsverlust maßgeblich reduzierten. Der 

QQI kann bei qualitätsrelevanten Entscheidungsprozessen der Industrie ein wichtiges 

Hilfsmittel darstellen, um den Einfluss unterschiedlicher Faktoren auf den Qualitätsverlust 

von Geflügelfilet standardisiert zu vergleichen und zu bewerten. Langfristig können dadurch 

die Qualität und Sicherheit von frischem Geflügelfleisch verbessert und gleichzeitig die 

Menge an Ausschüssen reduziert werden. 
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Abstract 

Assessment of different packaging atmospheres for the poultry meat industry based on an 

overall quality index 

The objective of this thesis was the development of an Overall Quality Index (OQI) for 

modified atmosphere packaged (MAP) poultry fillets to compare and to assess the influence 

of different environmental factors on the quality loss. In particular, the influence of different 

temperature conditions and different oxygen combinations on the composition of the 

specific spoilage flora (Brochothrix thermosphacta, Pseudomonas spp., Enterobacteriaceae, 

Lactobacillus spp.) and sensory parameters was investigated. Furthermore, a comparison 

was made between oxygen enriched and nitrogen enriched atmospheres, which are the 

atmospheres typicially used by the industry for fresh poultry fillet. A special focus was laid 

on the growth of Listeria monocytogenes and the interaction with specific spoilage 

organisms. The influence on quality loss by the noble gas argon as an alternative to nitrogen 

was also tested. The development of the microbiological and sensory parameters was 

modeled by using the Gompertz function. Based on the obtained results, an Overall Quality 

Index (OQI) was developed, allowing a comparison and assessment of the different influence 

factors on the quality loss. 

The storage trials showed that the quality loss is strongly influenced by changing 

environmental conditions, and no specific spoilage organisms (SSO) could be identified to 

compare and assess the effect of different environmental factors. Generally, the results 

showed that the temperature conditions and the oxygen content variation had a strong 

influence on the composition of the microflora and on the quality loss. 55-60% oxygen 

combined with low temperature decreased microbial growth and the sensory quality loss. 

The comparison between the oxygen free and the oxygen enriched atmosphere on the 

growth of L. monocytogenes showed that the oxygen enriched atmosphere was most 

effective at suppressing the growth. Argon, as a novel packaging gas, had no additional 

effect on the growth of typical spoilage microorganisms. However, using 15% Ar seems to 

have a beneficial effect on meat color.  

The developed OQI showed that low storage temperature (<4°C) and 60% O2/25% CO2, with 

15% N2 or 15% Ar, had the main beneficial effect on the quality loss. The developed index 

can be used to support the decision making process of meat companies for a reliable and 

standardized comparison between the influence of different environmental parameters on 

the quality loss of fresh poultry fillet. Thus, the application of the OQI will support the 

process of delivering high quality products and will reduce food waste at the same time. 
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General Introduction 

1. General Introduction 

1.1 Modified atmosphere packaging (MAP) for meat and poultry 

Modified atmosphere packaging is a preservation technique, where the air surrounding the 

product is replaced by a selected mixture of gases (Bilska 2011). This preservation technique 

was introduced to the market in 1979 by Marks and Spencer (Church 1994) and is commonly 

established. Approximately 50% of meat products were purchased by private households in 

self-service (AMI 2013). During the last years, the trend of self-service merchandising of 

fresh meat became more and more important. Furthermore, sensory attributes, especially 

the color of the meat, are of great relevance to the consumer’s choice at the point of sale 

(Bell 2001). Additionally, the retailer and the consumer ask for long shelf life times and high 

product quality as well (Balev et al. 2011). Consequently, gas producers and the meat 

industry have an increasing interest in creating novel gas mixtures to improve the sensory 

attributes of the meat and to achieve longer shelf life times for their products (Day 2007). 

The gases commonly used for fresh meat are oxygen (O2), carbon dioxide (CO2) and nitrogen 

(N2), which were added to the package headspace in different proportions and 

combinations, depending on the product (Phillips 1996; Floros & Matsos 2005). Alternative 

gases like Argon are also permitted in the European Union (EU, 1995, directive 92/02/CE). 

The mentioned gases are classified as additives (E-numbers) on the package. According to 

(EC) No. 1333/2008, the food packaged under modified atmosphere conditions has to be 

marked with “Packaged in a Protective Atmosphere”. The choice of the used gas is 

influenced by the microflora of the product (Church 1994; Day 2007). Each gas has different 

functions and effects on microbiological growth and physical properties: 

Oxygen (O2) 

Oxygen is chemically characterized as a colourless, odourless, tasteless, and highly reactive 

gas (Greenwood & Earnshaw 1998). As a packaging gas, O2 has different effects on meat:  

The concentration of O2 in MAP has a direct influence on the chemical form of the meat 

muscle pigment myoglobin and therefore on the stability of the meat colour (Figure 1.1). 

High levels of oxygen maintain myoglobin in its oxygenated form (oxymyoglobin), which 

results in a bright red fresh meat colour. However low concentrations of O2 leads to the 

formation of the brown oxidized form metmyoglobin and anaerobic conditions favors the 

formation of the reduced purple deoxymyoglobin (Church 1994, Phillips 1996, Martínez et al. 
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2005, Sørheim et al. 2009). To insure a stable and bright red colour, fresh red meat (e.g. 

beef, pork, lamb) is conventionally 

80% O2 and 20% CO2 (Borch et al. 1996).

Figure 1.1 Pigment reactions of fresh meat (modified according to Fox 1966).

Besides the stabilizing effect on the muscle pigment myoglobin, Oxygen also affects the 

growth of specific microorganisms, 

(Church 1994). Generally, oxygen favors the growth of aerobic bacteria and reduces the 

growth of strictly anaerobic species. Therefore, the composition of the microflora changes 

depending on the oxygen concentration inside the package (Phillips 1996). 

Oxygen, depending on concentration and partial pressure

microorganisms. The toxicity is explained by several theories:

1. Enzyme inactivation 

2. Increased formation of 

3. Membrane lipid oxidation

4. Formation of superoxide radicals (Halliwell 1984, Halliwell & Gutteridge 1984).

Because the oxygen resistence of bacterial cells is correlated to the activit

superoxide dismutase, the forma

Fridovic 1973). These are enzymes that catalys

dismutation as follows (Lavelle et al. 1973):

Oxidative stress situations for micr

species in an organism is higher than the scavenging capacity of the cell (Amanatidou 2001). 

Concentrations up to 60% slow down the growth of particular microorganisms and yeasts, 

2005, Sørheim et al. 2009). To insure a stable and bright red colour, fresh red meat (e.g. 

conventionally packaged under a high oxygen atmosphere containing 

(Borch et al. 1996). 

 

Pigment reactions of fresh meat (modified according to Fox 1966).

Besides the stabilizing effect on the muscle pigment myoglobin, Oxygen also affects the 

ecific microorganisms, depending on the oxygen demand of the bacteria 

(Church 1994). Generally, oxygen favors the growth of aerobic bacteria and reduces the 

growth of strictly anaerobic species. Therefore, the composition of the microflora changes 

the oxygen concentration inside the package (Phillips 1996). 

depending on concentration and partial pressure, can also be toxic to 

. The toxicity is explained by several theories: 

Increased formation of intracellular hydrogen peroxide 

Membrane lipid oxidation 

Formation of superoxide radicals (Halliwell 1984, Halliwell & Gutteridge 1984).

ecause the oxygen resistence of bacterial cells is correlated to the activit

the formation of superoxide radicals is of great relevance

Fridovic 1973). These are enzymes that catalyse the destruction of superoxide radicals by 

dismutation as follows (Lavelle et al. 1973): 

222222 OHOOH +→+ −•+
 

Oxidative stress situations for microorganisms take place, when the level of reactive oxygen 

species in an organism is higher than the scavenging capacity of the cell (Amanatidou 2001). 

oncentrations up to 60% slow down the growth of particular microorganisms and yeasts, 

2005, Sørheim et al. 2009). To insure a stable and bright red colour, fresh red meat (e.g. 

a high oxygen atmosphere containing 

Pigment reactions of fresh meat (modified according to Fox 1966). 

Besides the stabilizing effect on the muscle pigment myoglobin, Oxygen also affects the 

on the oxygen demand of the bacteria 

(Church 1994). Generally, oxygen favors the growth of aerobic bacteria and reduces the 

growth of strictly anaerobic species. Therefore, the composition of the microflora changes 

the oxygen concentration inside the package (Phillips 1996).  

, can also be toxic to 

Formation of superoxide radicals (Halliwell 1984, Halliwell & Gutteridge 1984). 

ecause the oxygen resistence of bacterial cells is correlated to the activity of their 

radicals is of great relevance (Gregory & 

the destruction of superoxide radicals by 

oorganisms take place, when the level of reactive oxygen 

species in an organism is higher than the scavenging capacity of the cell (Amanatidou 2001). 

oncentrations up to 60% slow down the growth of particular microorganisms and yeasts, 
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General Introduction 

because of the formation of oxygen radical species, which leads to an inhibition of aerobic 

and anaerobic microbial growth (Amanatidou 2001, Jacxsens et al. 2001). Another effect is 

that high oxygen concentrations enhance the risk of lipid and protein oxidation reactions 

and the formation of cholesterol oxides. These products lead to discolorations, off-flavors 

and the production of potentially toxic compounds (Kim et al. 2010, Zakrys-Waliwander et al. 

2012). 

Carbon Dioxide (CO2) 

Carbon dioxide is the most important part of a gas mixture because of its antimicrobial 

properties against a wide range of microorganisms (Gill & Tan 1980, Faber 1991). Generally, 

CO2 leads to an extension of the lag phase and slows down the exponential growth 

(Stanbridge & Davis 1998), but high concentrations up to 35-40% can cause meat 

discoloration (Phillips 1996, Arvanitoyannis & Statakos 2012) and are not recommended 

because of a potential pack collapse and an increased drip loss (Mullan & McDowell 2003). 

CO2-concentrations above 20% lead especially to an inhibition of molds and gram-negative 

bacteria (e.g. Pseudomonas spp.), whereas yeasts and lactic acid bacteria (Lactobacillus spp.) 

were relatively unaffected by CO2 (Gill & Tan 1980, Fierheller 1991). The mode of action of 

CO2 on the microbiological growth is not yet clear. There are several hypothesis described in 

the scientific literature: 

One is based on the solubility of CO2 in water and fat. CO2 gets partly dissolved in the water 

– and fat phase of the product under formation of carbonic acid with a direct ionization, 

which results in a decrease of the meat surface pH (Devlieghere et al. 1998). The solubility is 

dependent on the temperature, the pH-value, the product gas ratio and the permeability of 

the packaging material (Devlieghere et al. 2000). But the solubility of CO2 is mostly 

influenced by the storage temperature; CO2-solubility decreases with increasing 

temperature (Gill 1988, Walsh & Kerry 2000). However, Phillips (1996) pointed out, that this 

small pH-decrease is not the only reason for the bacteriostatic effect of CO2. Further theories 

are based on the inhibition of microorganisms due to a decrease of intracellular pH, the 

inhibition of enzyme syntheses and/or enzymatically catalyzed reactions, interactions with 

cell membranes and influence of the nutrient uptake (Farber 1991). In conclusion, the effect 

of carbon dioxide is not induced by a single mechanism, but rather a result of a complex 

process between several physiological reactions (Dixon & Kell 1989).  
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Nitrogen (N2) 

Nitrogen (N2) is an inert gas. Because of its inert properties, there is no direct effect on 

microbiological growth reported. It is used as a filling gas in MA-packages to prevent a 

package collapse because of its low solubility in water and fat (Stanbridge & Davis 1998, 

Dangel 2006, Bilska 2011). Especially meat packs with high CO2 concentrations are very 

sensitive to package collapsing because of the solubility of carbon dioxide in the water and 

fat phase of the meat tissue. The flushing of the packs with N2 before introducing the 

protection gas has the effect to remove the remaining oxygen, which results in prevention of 

rancidity and aerobic bacterial growth (Phillips 1996, Arvanitoyannis & Statakos 2012).  

Argon (Ar) 

Argon is also chemically inert like nitrogen and belongs to the group of noble gases. Argon is 

supposed to have an effect on the activity of enzymes, on the growth of microorganism and 

on deteriorative chemical reactions in food. This is possibly based on the similar atomic size 

to oxygen and its higher density and solubility in fat and water than oxygen and nitrogen. 

Therefore, argon is able to displace oxygen more effectively than nitrogen (Spencer 2005, 

Day 2008). The scientific literature reports other potential beneficial effects of argon on the 

shelf life and sensory attributes for a wide range of food and food products. The effects are 

summarized in Table 1.  
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Table 1.1 Reported effects of argon treatments on different food and food products 

Product Effect Reference 

Asparagus spears • inhibition of enzymatic reaction 

• restricted intracellular water activity 

• positive effect on chlorophyll preservation and weight loss 

• longer shelf life 

Zhang et al. (2008) 

Cut apples • improvement in quality after high argon treatment Wu et al. (2012) 

In vitro study • significant reduction of tyrosinase and malic dehydrogenase 

activity (responsible for browning reaction of fresh cut 

fruits/vegetables) 

Zhang et al. (2001) 

Kiwifruit slices • better firmness 

• lower CO2-production 

Rocculi et al. (2005) 

In vitro study • inhibitory effect of low-oxygen atmospheres with argon on apple 

and mushroom-polyphenoloxidase 

O`Beirne et al. (2011) 

Fresh cut 

lettuce/broccoli 

• no effect on phenolics of fresh cut-lettuce  

• no effect on chlorophyll preservation in broccoli 

Jamie & Saltveit (2002) 

Turkey meat • inhibitory effect on total anaerobic counts, total psychotropic 

counts and on Brochothrix thermosphacta 

• no effect on lipid oxidation 

Fraqueza & Barreto 

(2009) 

Pork sausages • no effect on microbial growth and biogenic amines 

• sensory evaluation achieved the most effective scores using argon 

Ruiz-Capillas & Jiménez-

Colmenero (2010) 

In vitro study • inhibition of Carnobacterium divergens  

• favor the growth of agmatine producing Enterobacteriaceae (both 

isolated from pork sausages) 

Curiel et al. (2011) 

Dry-cured Iberian 

ham 

• no significant influence on shelf life  Parra et al. (2010) 

Poultry meat • increase in the microbiological growth 

• unpleasant odor  

Tománková et al. (2012) 

1.2 Recommended gas mixtures for poultry meat 

Poultry meat is relatively sensitive to microbial spoilage and also supports the growth of 

pathogenic bacteria due to its physical and chemical properties (Yavas & Bilgin 2010). 

Guaranteeing the quality as well as the safety aspects of the food by optimizating mixture of 

used gases is challenging for the food industry (Moller et al. 2000). Therefore, the gaseous 

atmosphere is often not adjusted optimally for the composition and the specific microflora 

of each kind of meat. Only general and inconsistent recommendations of gas producers exist 

without adaptation to the specific product. The result is that some poultry producers use 

high oxygen atmospheres, whereas others are using mixtures with less oxygen (Thoden van 

Velzen & Linnemann 2008), as emphasised in Table 1.2. 
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Table 1.2 Recommended gas compositions of different gas producers for fresh MA-packaged 

poultry meat in Germany (packages for self service). 

Gas producer % CO2 % N2 % O2 

Linde AG 50-80 20-50  
Messer Industriegase GmbH 25-100 75-0 0 

Air Products GmbH 30 70  

Air Liquide Deutschland GmbH 30 0 70 

Praxair 30 70  

Westfalen AG
1
 30 

30 

 

30 

70 

40 
*Date: 10.12.13;  

1 = recommended for fresh meat in general 

1.3 Spoilage process of meat and poultry under MAP conditions 

Food spoilage can be defined as a process, which leads to a deteriorative change of the 

product and makes it unacceptable for human consumption (Hayes 1985). The most 

important factor causing spoilage and shelf life reduction is microbiological growth. 

Therefore the control of microbial activity is the prerequisite to preventing food spoilage 

during distribution and storage (Genigeorgis 1985). Responsible for the rate of spoilage are 

several intrinsic (e.g. pH, aw-value), process (e.g. initial bacterial count) and extrinsic factors 

(e.g. temperature, humidity, gas atmosphere) (Mossel 1971). After the processing step, the 

packaging of a product plays an important role in slowing down the spoilage process. 

Generally, the packaging of a food or food product has different functions:  

• protection against the environment,  

• preservation of color,  

• preservation of flavor and odor,  

• protection against nutrient and texture loss,  

• shelf life extension (Dallyn & Shorten 1988, Zhou et al. 2010). 

The effect on the extension of shelf life of packaged fresh meat is also influenced by the 

product itself, the gas atmosphere, the packaging material and headspace, the packaging 

equipment, and the storage temperature during the supply chain (Han 2005, Zhou et al. 

2010). Low temperatures for example combined with MAP-treatment leads to an extended 

shelf life and an improved storage stability of the food product (Leister 1995). Furthermore, 

the packaging has a main influence on the development of the microflora of poultry meat, 

whereby the surface diversity consists of mesophilic and psychrotrophic bacteria as well as 

pathogenic species.  
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Under aerobic conditions, Pseudomonas spp. dominates the spoilage flora of fresh aerobic 

stored chilled meat (Nychas & Drosinos 2000, Kreyenschmidt 2003, Gospavic et al. 2008; 

Bruckner 2010). Because of its psychrotrophic properties, Pseudomonas spp. is responsible 

for spoilage at -1 – 25°C (Hood & Mead 1993). Regarding the oxygen requirements, 

Pseudomonas spp. is an aerobic bacterium, but is also able to grow under reduced oxygen 

concentrations. As stated by Clark & Burki (1972), Pseudomonas spp. shows growth stability 

even under an oxygen content of less than 1%. Additionally, the bacteria show sensitivity to 

CO2 in a gas mixture. 

Under reduced oxygen concentration and because of the improved resistance against CO2, 

Brochothrix thermosphacta is often associated as the main spoilage microorganism in MAP 

meat (Branscheid et al. 2007, Kreyenschmidt & Ibald 2012). As a facultative anaerobic 

microorganism, Brochothrix thermosphacta is able to grow under oxygen atmospheres as 

well as under reduced oxygen concentrations, but they prefer to grow in the presence of 

oxygen (Mullan & McDowell 2003). Also its psychrotrophic character contributes to the 

dominance of B. thermosphacta under MAP conditions on a wide range of meat and meat 

products (Pennacchio et al. 2009). Based on these characteristics, meat is an ecological niche 

for these bacteria, which cause spoilage through the production of spoilage metabolites 

(Labadie 1999, Pin et al. 2002).  

Another facultative anaerobic group of bacteria associated with spoilage under MAP-

conditions are Enterobacteriaceae. This group of bacteria includes mesophilic and 

psychrotrophic species (Weber 2008) and is more prevalent on pork and lamb (Dainty & 

Mackey 1992). The main species associated with meat spoilage are Serratia, Pantoea, 

Klebsiella, Proteus and Hafnia (Borch et al. 1996, Weber 2008). 

Lactic acid bacteria (LAB) are strictly anaerobic microorganisms which are highly tolerant 

towards CO2-enriched atmospheres. In a vacuum and under modified atmosphere conditions 

with low oxygen concentrations, Lactic acid bacteria are able to achieve high bacteria counts 

on the fresh meat surface (Borch et al. 1996, Shaw & Harding 2008). On refrigerated poultry 

meat, the bacteria play a minor role as part of the spoilage flora (Herbert et al. 2013, 

Rossaint et al. 2014) due to their mesoplilic properties (Huis in`t Veld, 1996; Jay et al., 

2005).Table 1.3 gives an overview about the different tested gas mixtures for poultry meat 

and the main microorganisms occurring on the meat surface. 
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Table 1.3. Microflora on poultry meat under different gas atmospheres.  

Meat type Packaging Temperature Microflora Reference 

Chicken 

breast fillet 

60% CO2/39,6% N2/0.4% 
CO 

(variation of packaging 

material) 

4°C and 8°C Pseudomonas spp., 
Enterobacteriaceae, 

B. thermosphacta, 

LAB 

Pettersen et al. 
2004 

Chicken 

breast fillet 

15% N2/60% O2/25% CO2 

15% Ar/60% O2/25% CO2 

25% N2/ 45% O2 / 30% 

CO2 

25% Ar/ 45% O2 / 30% 

CO2 

82% N2/18% CO2 

82% Ar/18% CO2 

4°C Pseudomonas spp., 

Enterobacteriaceae, 

B. thermosphacta, 

LAB 

Herbert et al. 

2013 

Chicken 

breast fillet 

aerobic 4°C Pseudomonas spp. Rossaint et al. 

2014 

 70% O2/30% CO2 4°C Pseudomonas spp., 

Enterobacteriaceae, 

B. thermosphacta, 

LAB 

 70% N2/30% CO2 4°C Pseudomonas spp., 

Enterobacteriaceae, 
B. thermosphacta, 

LAB 

Chicken 

breast meat 

30% CO2/70% N2 

 

4°C Pseudomonas spp., 

Enterobacteriaceae, 

B. thermosphacta, 

LAB 

Chouliara et al. 

2007 

 30% N2/70% CO2 

 

4°C Pseudomonas spp., 

Enterobacteriaceae, 

B. thermosphacta, 

LAB 

Chicken 

breast with 

skin 

30% CO2/70% N2 

 

4°C Pseudomonas spp., 

Enterobacteriaceae, 

B. thermosphacta, 

LAB 

Jiménez et al. 

1997 

 70% CO2/30% N2 4°C Pseudomonas spp., 

Enterobacteriaceae, 

B. thermosphacta, 

LAB 

Chicken 

breast meat 

30% CO2/70% N2 4°C Pseudomonas spp., 

Enterobacteriaceae, 
B. thermosphacta, 

LAB 

Balamatsia et 

al. 2006 

in bold = dominant species 
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Currently, a wide range of possible gas mixtures for fresh poultry meat exist on the market. 

The combinations of the commonly used packaging gases (O2, CO2, N2) varies according to 

the recommendations given by the gas companies. In the scientific literature, contradictory 

results and recommendations about the optimal gas mixture for fresh poultry fillets are also 

published. The results are frequently not comparable due to different testing conditions and 

parameters. 

Fluctuating temperature conditions, which frequently occur during storage and distribution, 

have an effect on the composition of the spoilage flora especially on MAP poultry meat. As a 

result, a reliable assessment of the quality loss of poultry fillets under modified atmosphere 

conditions by identifying a specific spoilage organism (SSO) is challenging.  

Contradictory results are also published about the effect of different oxygen concentrations 

on the spoilage process of MAP poultry fillets. Detailed information about the behavior of 

typical spoilage microorganisms in combination with sensory deteriorative changes is 

important for the poultry meat industry due to the fact that the application of high oxygen 

atmospheres is still common especially in the German market.  

In this context, safety aspects are also a prerequisite for the assessment of different gas 

mixtures regarding their contribution to producing a safe product which is suitable for 

human consumption. 

Additionally, gas producers are searching for novel gas mixtures which deliver beneficial 

effects regarding the extension of shelf life and/or the preservation of sensory attributes. 

Tests on the effects of alternative gases on the quality and shelf life of poultry fillets are still 

rare.  

But complex changes occurring during spoilage by varying different environmental influence 

factors which are reflected in a single index which combines microbiological and sensory 

changes is not available till now yet. 
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1.4 Research questions and outline of the thesis 

The main objective of this thesis is the assessment and comparison of different 

environmental influence factors on the quality loss of modified atmosphere packaged 

poultry fillets. For this purpose, the following research questions are proposed: 

• How are different temperature conditions and different oxygen combinations 

influencing the composition of the specific spoilage flora, and can a specific spoilage 

organism be identified to determine the quality loss of poultry fillets? 

• How is the growth of specific spoilage bacteria and pathogens influenced by oxygen 

enriched atmospheres in comparison to nitrogen enriched atmospheres? 

• How is the growth of specific spoilage bacteria and the development of sensory 

parameter influenced by using argon as an alternative to nitrogen? 

• Is it possible to develop an overall quality index based on microbiological and sensory 

parameter to assess the influence of different environmental influence factors on the 

quality loss of MAP poultry? 

In the first part of the thesis (chapter 2), the spoilage of fresh skinless poultry breast meat 

(70% O2/30% CO2) under different constant temperature conditions (2, 4, 10, 15°C) is 

characterized and the development and the composition of typical spoilage microorganisms 

and sensory parameter are investigated.  

In chapter 3, several storage trials are conducted under different gas atmospheres to figure 

out the influence of the different oxygen concentrations on the development of the spoilage 

flora and sensory parameters and the overall shelf life of poultry fillets. Especially the 

influence of different oxygen concentrations on the growth rate and lag-phase of the 

spoilage microorganisms were analyzed and compared. 

In chapter 4 of the thesis, the growth of Listeria monocytogenes in presence of the typical 

spoilage microorganisms is investigated. The growth was compared by using two different 

gas combinations commonly used in Germany 70% O2/30% CO2) and the EU (70% O2/30% 

CO2).  

In the next part (chapter 5), the quality loss of poultry fillets under different argon 

concentrations and nitrogen containing atmospheres is analyzed and compared. For this 

purpose, poultry fillet is stored under argon and nitrogen atmospheres and the growth of 

typical spoilage organisms and sensory parameter is compared to gather information about 

similarities and differences. 
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The last chapter (chapter 6), an overall quality index based on the combination of 

microbiological and sensory parameter is developed. The quality index is calculated for all 

storage trials which are described in chapter 2-5. Based on the results the influence of all 

tested environmental parameter is compared to release an assessment about the 

appropriate gas mixtures for MAP poultry fillets. The index can support poultry processing 

companies to assess the effect of different environmental parameter for poultry meat in a 

more standardized way.  
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2. Definition of predictor variables for MAP poultry filets stored under 

different temperature conditions 

2.1 Abstract 

Storage tests under different temperatures (2, 4, 10, 15°C) were conducted to identify the 

best predictor variable, which is most effective to explain the loss of the shelf life and quality 

of MAP poultry and constitutes the basis for the prediction of the remaining shelf life. The 

Samples were packed in 70% O2 and 30% CO2, which is the common used gas atmosphere 

for poultry fillets in Germany. Typical spoilage microorganisms (Pseudomonas spp., 

Brochothrix thermosphacta, Enterobacteriaceae, Lactobacillus spp.) and total viable count 

(TVC) were investigated frequently. Additionally, samples were analyzed to sensory changes, 

pH and gas concentration. The data extraction and selections by stepwise regression and 

principle component analyses was carried out to identify a variable which has the main 

influence on shelf life and freshness loss. The results accentuate that the spoilage is caused 

by a wide range of microorganisms. No specific microorganism could be identified as the 

dominant originator for the deteriorative changes. Solely TVC showed significant 

correlations between the development of the sensory decay and the development of the 

TVC for each single storage temperature. 
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2.2 Introduction 

Raw poultry meat is sensitive for microbial spoilage due to its physical and chemical 

properties. Therefore, packaging under modified atmosphere conditions is widely 

established to improve the quality attributes and shelf life (Rokka et al., 2004). The main 

gases used for packaging are oxygen, carbon dioxide and nitrogen, combined in different 

mixtures (Philips, 1996; Mullan & McDowell, 2003). Changes of the packaging conditions due 

to oxygen requirements of the bacteria have a selective effect on the microbial population 

(Farber, 1991; Labadie, 1999). Next to packaging, temperature is the most important 

influence factor on shelf life and quality of fresh meat and meat products during processing, 

distribution and storage (Cox et al., 1998; McDonald & Sun, 1999; Labadie, 1999; Bruckner et 

al., 2012a, b). Thereby, MAP-treatment combined with the storage at chill temperatures 

leads to an extended shelf life and an improved storage stability of the food product (Leister, 

1995). Thus, increasing temperature conditions results in an increase of microbial growth 

with a decrease in the lag phase and the generation time (Herbert & Sutherland, 2000). For 

example, an increase of the storage temperature from 2°C to 4°C leads to a decrease in shelf 

life of fresh aerobic packed poultry by nearly 22% (Bruckner et al., 2012c). The spoilage of 

poultry under aerobic conditions is mainly caused by different species of psychrotropic 

Pseudomonas spp. (Barnes, 1976; Gill & Newton, 1977; Pooni & Meat, 1984; Gram et al., 

2002; Koutsoumanis et al., 2006; Raab et al., 2008). The detailed knowledge about the 

growth behaviour of these so called specific spoilage organism (SSO) are the basis for the 

development of predictive shelf life models (Gram et al., 2002). Under modified atmosphere 

conditions, B. thermosphacta and Lactobacillus spp. are often described as the main spoilage 

microorganisms on meat stored at cold temperatures (Dainty & Mackey, 1992; Davies, 

1995). Actually, inconsistent information regarding the identification of a main spoilage 

microorganism of MAP poultry is described in the scientific literature. Most studies are only 

focused on CO2-N2 gas mixtures for the packaging of MAP poultry, but the German poultry 

industry packed the meat under high oxygen (50-70% O2) atmospheres (Rossaint et al., 2013, 

unpublished). But the spoilage process is mainly caused by a wide spectrum of 

microorganisms like B. thermosphacta, Pseudomonas spp., Enterobaceriaceae and 

Lactobacillus spp. (Borch et al., 1996; Saucier et al., 2000; Walsh & Kerry, 2000) and the 

growth is mainly influenced by the initial bacterial load, the gas mixture, the product-gas 

ratio and the storage temperature (Sivertsvik et al., 2002). Jiménez et al. (1997) 

demonstrated a good growth of Lactobacillus spp., Enterobacteriaceae and B. 

thermosphacta on fresh chicken breast stored at 4°C in MAP under both used atmospheres 

(30% CO2/70% N2 and 30% N2/70% CO2). A study by Smolander et al. (2004) and Rajamäki et 
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al. (2006) pointed out that varying storage temperatures and under 80% CO2 / 20% N2 

affected most the growth of Enterobacteriaceae on MAP poultry meat. In contrast, 

Balamatsia et al. (2007) identified B. thermosphacta and Lactic acid bacteria as the main 

spoilage microorganisms on aerobic and MAP (30% CO2 / 70% N2) chicken fillets. Therefore, 

the reliable determination of remaining shelf life based on the definition of SSOs under 

changing extrinsic influence factors is challenging for the development of a predictive shelf 

life model. Consequently, the present study analyzed the spoilage process of poultry, packed 

under the in Germany used gas atmosphere with high oxygen at varying temperature 

conditions to identify the best predictor variable, which is most effective in predicting the 

deteriorative changes of MAP poultry during storage. 

2.3 Materials & Methods 

Preparation of meat samples  

Unsexed 42-days-old-broiler chickens (Ross 308/708) were slaughtered and air-chilled in a 

poultry processing plant in Germany. The skinless double-breast chicken fillets were 

transported from the poultry slaughter plant to a wholesaler and forwarded to the 

laboratory under temperature-controlled conditions in isolated boxes with cooling packs. 

The first investigation started within 24 hours after slaughtering. In the laboratory the 

double breast fillets were divided into single fillets using a sterile scalpel.  

Packaging and storage of meat samples 

For modified atmosphere packaging, the poultry breast fillets were placed in polypropylene 

trays (R. Fearch Plast A/S, Holstebro, Denmark). Tray volume was 680 ml and approximately 

230 g meat samples were packaged to achieve a package headspace to meat ratio of nearly 

2:1. The meat samples were packaged under an atmosphere containing 30% CO2/70% O2. 

Thereafter, the trays were heat-sealed with a polypropylene foil (Suedpack Verpackungen 

GmbH & Co. KG, Ochsenhausen, Germany; water vapour permeability < 3.5 g/m2d at 23°C / 

85% RH; oxygen permeability </=1.5 cm2/m2d bar at 23°C / 35% RH) for 3 s/175°C using a 

tray sealer packaging machine (Traysealer T200, Multivac Sepp Haggenmüller GmbH & Co. 

KG, Wolfertschwenden, Germany). Gas mixtures were prepared by a four-component gas 

blender machine (KM 60-4 MEM SO, Witt Gasetechnik, Witten, Germany). The packaged 

meat samples were stored at 2, 4, 10 and 15°C in low-temperature high precision incubators 

(Sanyo model MIR 153, Sanyo Electric Co., Ora-Gun, Gumma, Japan). The storage 
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temperatures were monitored by data logger (ESCORT JUNIOR Internal Temperature Data 

Logger, Escort, Auckland, New Zealand) every 5 minutes. The microbiological, sensory and 

chemical analyses were conducted at appropriate time intervals. Each measurement was 

repeated three times. 

Microbiological analyses 

For microbiological analyses, the meat surfaces were removed aseptically by using a sterile 

scalpel. The product sample had an admeasurement of 4 x 7 x 0.5 cm to achieve a total 

weight of nearly 25 g, which were transferred to a filtered sterile stomacher bag and filled 

up with 225 ml saline peptone diluent (0.85 % NaCl with 0.1% peptone Saline-Tablets, Oxoid 

BR0053G, Cambridge, United Kingdom). Samples were blended with a Stomacher 400 

(Kleinfeld Labortechnik, Gehrden, Germany) for 60 s. Ten-fold dilutions of the sample 

rinsates were prepared in saline peptone diluents. Total Viable Count (TVC), Pseudomonas 

spp., B. thermosphacta, Enterobacteroaceae and Lactobacilli spp. in rinsates were 

enumerated. 

Total Viable Count was determined by pour plate technique on Plate Count Agar (PCA, 

Merck, Darmstadt, Germany) and plates were incubated at 30°C for 72 hours. Pseudomonas 

spp. were detected by spread plate technique on Pseudomonas Agar with Cetrimide-Fucidin-

Cephalosporin selective supplement (CFC, Oxoid, Cambridge, United Kingdom). Plates were 

incubated at 25°C for 48 hours. B. thermosphacta was detected by drop plate technique and 

counted on Streptomycin Inosit Toluylene Red Agar (SIN-Agar) according to Hechelmann 

(1981). Petri dishes were incubated at 25°C for 48 hours. Enterobacteriaceae were identified 

by overlay treatment on Violet Red Bile Dextrose Agar (VRBD, Merck, Darmstadt, Germany) 

by incubation of the agar plates at 30°C for 48 hours. Lactobacilli spp. were detected by pour 

plate technique on de Man, Rogosa, Sharpe Agar (MRS, Oxoid, Cambridge, United Kingdom). 

Plates were incubated aerobically at 37°C for 72 hours. Counts of colony forming units were 

expressed as log10cfu/g for each medium and sample.  

pH-measurement 

The pH of the meat samples was measured over the entire storage period, using a portable 

pH-meter (Escort Junior EJ-2E-D-16L, Escort, Auckland, New Zealand). Three measurements 

were performed for each meat sample, by placing the electrode onto the meat surface and 

an average pH-value was calculated.  
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Gas analysis 

Concentrations of oxygen and carbon dioxide inside the trays were monitored over the 

storage period, using a hand-held gas analyser (Oxybaby V O2/CO2, Witt Gasetechnik, 

Witten, Germany). Before starting the gas measurement inside the trays, the composition of 

air was analysed to control the accuracy of the gas analyser. Headspace in packages was 

sampled, using a syringe needle to withdraw 10 ml of headspace gas through a self-adhesive 

sealing pad in the package. Gas volume was absorbed in 15 seconds and the oxygen 

concentration was detected by an electrochemical sensor; carbon dioxide concentration was 

detected by IR-absorption. Control packages containing no meat samples were stored as 

reference and the gas composition was also monitored over the entire storage period.  

Sensory evaluation 

Sensory analyses were carried out by trained sensory panellists, which were recruited from 

the Institute of Animal Science (University of Bonn) and experienced in poultry evaluation. 

During the trials, each sample was evaluated directly after opening the tray, using a 

developed sensory scheme according to the Quality Index Method (QIM) for fish evaluation 

(Bremner, 1985). A picture of fresh chicken breast fillets was used as reference during the 

sensory evaluations. 

Attributes were defined as general appearance (G), colour (C), odour (O), texture (T) and drip 

loss (D). Changes of the attributes were expressed in a 5-point scoring system. The lower the 

score, the better the quality and freshness of the product. A weighted quality index (QI) was 

calculated by the following equation (Kreyenschmidt, 2003): 

8

21122 ODTCG
QI

++++=   (1.1) 

The end of sensory shelf life was defined as a QI of 2.5. 

Primary Modelling  

The Gompertz equation was used to model the growth of the total viable count, 

Enterobacteriaceae, Pseudomonas spp., Brochothrix thermosphacta and Lactobacillus spp. 

as a function of time (Gibson et al., 1987).  
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with N(t): microbial count [log10cfu/g] at any time, A: lower asymptotic line of the growth curve 

(initial bacterial count), C: difference between upper asymptotic line of the growth curve (Nmax= 

maximum population level) and the lower asymptotic line; B: relative maximum growth rate at time 

M [h-1], M: time at which maximum growth rate is obtained (reversal point), and t is time. 

The microbiological growth data were fitted using the statistical software program Origin 

8.0G (OriginLab Corporation, Northampton, Ma., U.S.A.). 

Statistical analysis 

Man-Whitney-U-test was used to make comparisons between the measured counts of 

colony forming units and pH-values with a level of significance of 0.05. Further on, a 

stepwise regression was carried out of the original data set to reduce the number of data 

and find the best predictor variable for shelf life assessment, which is most effective in 

predicting the dependent variable. Additionally, a Principle Component Analyses (PCA) was 

used to extract the variables (components) with the highest explanatory power for the data 

set. Before performing the PCA, a z-transformation was conducted to standardise data 

measured in different scales. SPSS statistics 20 for Windows was used. 

2.4 Results & Discussion 

Development of spoilage microflora under different temperature conditions on MAP 

poultry fillets 

Figure 2.1 shows the development of TVC under different constant temperature conditions 

(2-15°C) on poultry breast fillets packed under MAP. The graph shows that increasing 

storage temperatures lead to a faster microbiological growth on fresh meat as also 

described by several authors (Baranyi et al. 1995, Kreyenschmidt 2003, Raab et al. 2008, 

Bruckner et al. 2012a). 
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Figure 2.1 Development of TVC on MAP poultry fillets under different temperature 

conditions (n=3). 

The changes in the different microbial groups during MAP storage of poultry fillets under 

different storage temperatures (2-15°C) are illustrated in Figure 2.2. In general, the growth 

curves demonstrate a faster growth for all investigated microorganisms with increasing 

temperatures. The results show that B. thermosphacta dominates the spoilage flora at lower 

temperature conditions (2-4°C), whereas Pseudomonas spp. shows an increased growth 

during storage at higher temperatures (10-15°C).  

B. thermosphacta is often associated with spoilage under MAP conditions based on the 

improved resistance to CO2 (Borch et al. 1996, Branscheid et al. 2007). During storage, B. 

thermosphacta becomes the predominant spoilage microorganism as also emphasized in 

Table 2.1 with the highest growth rates during storage at 2-4°C. The results show, that B. 

thermosphacta is relatively resistant against refrigeration temperatures because of its 

psychotropic properties (McClure et al. 1993). Also the used gas mixture in this study 

showed no effect in delaying the growth of B. thermosphacta, as stated also by Santé et al. 

(1994). Even though the microorganism is a facultative anaerobic competitor, it prefers to 

grow under oxygen atmospheres. Therefore the microorganisms are able to dominate the 

microflora, when oxygen is present (Gribble & Brightwell 2013).  

Pseudomonas spp. are aerobic microorganisms and they grow preferably under oxygen 

conditions (Chouliara et al. 2008, Fraqueza & Barreto 2009, Herbert et al. 2013). Besides the 

fact that Pseudomonas spp. is a psychrotrophic bacteria, which prefers to grow under 

refrigeration temperatures, the results show that the growth of Pseudomonas spp. is 

retarded at low storage temperatures between 2-4°C (Figure 2.2, Table 2.1). This is 
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presumable due to the fact that Pseudomonads are sensitive to the antimicrobial 

component CO2 (Saucier et al. 2000, Fraqueza & Barreto 2009), which leads to an increase in 

the lag phase and the generation time (Kreyenschmidt & Ibald 2012). At higher 

temperatures, Pseudomonas spp. dominates the spoilage flora, accordingly to the lower 

solubility of CO2 in water and fat and the reduced antimicrobial activity.  

Enterobacteriaceae are facultative anaerobic microorganisms, which prefer to grow under 

oxygen conditions. The initial counts of Enterobacteriaceae are approximately 2 log10cfu/g 

under all storage conditions, as also shown by Smolander et al. (2004). During storage, the 

growth of Enterobacteriaceae is slowed down under refrigeration temperatures (2-4°C), 

whereas at higher temperatures (10-15°C), no delay in the growth can be observed (Table 

2.1). This is due to the fact that these microorganisms prefer to grow under mesospheric 

temperatures and their growth is favoured in comparison to the other microorganisms when 

temperature increases.  

Lactobacillus spp. are only dominant at the beginning of storage under refrigeration 

temperatures (2-4°C), as also observed by Santé et al. (1994) and Herbert et al. (2013). But 

their growth becomes not dominant over the entire storage period under all investigated 

temperatures and they play a minor role in the overall spoilage flora. This is based on the 

growth conditions of Lactobacillus spp., which belongs to a slow growing group of 

microorganism with preferred growth under anaerobic conditions. Despite the fact that 

Lactobacillus spp. are showing an enhanced tolerance to CO2, the slow growth at 2-4°C is 

possibly related to cold temperatures, because Lactobacilli spp. are also mesophilic bacteria 

(Huis in`t Veld 1996, Jay et al. 2005). At storage temperatures between 10-15°C, the 

microorganisms growth is favored and possibly caused by the reduced solubility of CO2 at 

higher temperatures (Gill 1988) and the mesophilic properties.  
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Table 2.1 Calculated growth parameters for typical spoilage organisms (Gompertz function), 

stored under different temperature conditions (70% O2 / 30% CO2). 

 Growth Parameters 

 Lag Phase [h] Growth rate [1/h] 

Temperature [°C] 2 4 10 15 2 4 10 15 

TVC 181.25 38.25 9.81 4.56 0.017 0.022 0.040 0.080 

Pseudomonas spp. 274.90 27.17 11.50 19.47 0.009 0.016 0.038 0.096 

B. thermosphacta 236.10 33.92 19.74 23.23 0.018 0.029 0.038 0.012 

Enterobacteriaceae 250.65 47.37 54.79 9.60 0.009 0.021 0.042 0.079 

Lactobacillus spp. 345.76 203.68 94.33 33.95 0.009 0.007 0.056 0.082 

Generally, temperature has the main influence on microbiological growth also under MAP 

conditions. The growth curves indicate some kind of synergistic effect between the 

improved solubility of CO2 and refrigeration temperatures (2-4°C), while higher 

temperatures are reduce the solubility of CO2 and favor the growth of each microorganism. 

These results are also in accordance to Devlieghere and coauthors (1998), which established 

a significant interaction term between temperature and dissolved CO2 on the growth of 

Lactobacilli sake. Regarding the effect of temperature on the development of 

microorganism’s growth curves, the results show that no specific spoilage microorganism 

could be observed as main spoilage originator under MAP conditions. Also Alfaro et al. 

(2013) showed for MAP fish products, that the spoilage microflora is changing by varying the 

storage temperature (0-20°C). Further on Coton and coauthors (2013) stated out that the 

packaging conditions have a further effect on the microbial ecosystem and lead to an 

increase in the bacterial diversity. 



28 

 

 

Figure 2.2 Comparison of spoilage microflora development during storage of MAP poultry 

fillets under various temperature conditions (n=3). 

Development of the gas atmosphere  

Figure 2.3 shows the development of the gas atmosphere (30% CO2 / 70% O2) under 

different constant temperature conditions with product inside the trays and without any 

sample as reference. In the beginning of storage, a small decrease of CO2 could be detected 

in all test packages with product inside. This is due to the high solubility of carbon dioxide in 

the fat tissue and water on the meat surface (Betts, 1995; Gill, 1988). Herbert et al. (2013) 

and Parra et al. (2010) reported similar results for MA packed meat. But the solubility of the 

antimicrobial component CO2 is, besides the muscle tissue pH and the proportion and 

composition of the fat, dependent from the storage temperature. The solubility of CO2 in 

muscle tissue decrease with increasing temperature (Gill 1988), which is reflected in the 

faster increase of CO2 at 10°C and 15°C (Figure 2.3). But the proportion which gets dissolved 

on the meat tissue cannot be quantified due to microbiological growth. During storage, 

microorganisms consume O2 for their metabolism and produce CO2. This effect occurs faster 

with increasing temperature conditions due to the accelerated microbial growth. During the 
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entire storage period, the O2 concentration inside the trays shows a small decrease at lower 

temperature (2-4°C) and a rapid decrease with rising temperature condition (10-15°C). This 

is caused by microbiological consumption of O2, the respiration of meat enzymes and 

gaseous exchanges between the gas composition inside the trays and the environment 

(Mullan & McDowell, 2003). Generally, changes in the gas atmosphere, especially at 10°C 

and 15°C, were initiated when TVC reaches 7 log10cfu/g, which also corresponds with the 

sensory end of shelf life. Temperature has also an effect on the gas and water vapor 

permeability of the packaging material, whereas the gas transmission rate increases with 

increasing temperatures (Kirwan & Stawbridge 2003, Mullan & McDowell, 2003). Comparing 

the development of the gas concentration in reference samples, no significant change could 

be observed. Therefore, the changes in the gas proportions are caused by the increased 

microbial growth due to temperature increase. 

 

Figure 2.3 Development of the gas atmosphere under different temperature conditions 

during storage of MAP poultry fillet (n=3). 
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Development of meat pH 

The initial broiler breast meat pH 24h post mortem varies between 5.7 and 6.2 (data not 

shown), which is in a normal range for poultry meat (ICMSF 1988, Lund and Eklund 2000, 

Herbert et al. 2013). As reported by Devlieghere et al. (1998) CO2 gets partly dissolved in the 

water – and fat phase of the product under formation of carbonic acid with a direct 

ionization, which results in a decrease of the surface meat pH. This effect is mainly 

influenced by the storage temperature: the CO2-solubility decreases with increasing 

temperature (Gill 1988, Walsh & Kerry 2000). In contrast, the results show, that the pH-value 

was not significantly influenced by any storage temperature (p>0.05) over the entire storage 

periods. This is due to the buffer effect of the meat proteins which limits significant 

variations in pH while storing the meat under MAP, as also stated out by Gilka et al. (1980) 

and Dixon & Kell (1989). 

Development of sensory parameter and shelf life determination 

The Quality Index (QI) increases for poultry, with increasing storage time for all 

temperatures. An quality index of 2.5 was taken as the lower limit of acceptability, 

corresponding to initial deteriorative changes regarding colour, odour, texture, general 

appearance and drip loss. So, an increase of the storage temperature from 2°C up to 4°C 

results in a shelf life reduction of approximately 45% (Table 2.2).  

Table 2.2 Bacterial counts at the end of sensory shelf life during storage of poultry fillets 

under different temperature conditions (70% O2 / 30% CO2). 

 TVC Pseudomonas 

spp. 

B. 

thermosphacta 

Enterobacteriaceae Lactobacillus 

spp. 

End of shelf 

life (QI=2.5) 

log10cfu/g 

2°C (423 h) 7.0 4.3 6 3.9 3.2 

4°C (228 h) 7.0 4.4 6.1 5.2 3.2 

10°C (107 h) 7.3 7.0 5.9 4.4 3.7 

15°C (75 h) 7.5 7.6 6.7 6.7 6.0 

Generally, the decay of shelf life follows also an exponential function (Figure 2.4). Table 2 

shows the bacterial counts of the different investigated bacteria at the end of sensory shelf 
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life. The results show that with increasing temperature the variation of the bacteria which 

are influencing the spoilage process is increasing. At 2 and 4°C B. thermosphacta dominates 

the flora at the end of the shelf life and at 10° and 15°C dominates Pseudomans spp., but at 

15°C also the other bacteria have a main part on the microbial flora. Therefore, the 

definition of a specif spoilage organisms and common bacteria acceptance level for all 

temperature is challenging. Only the microbiological count of the TVC indicate, that TVC-

counts are in the same range (7.0-7.5 log10cfu/g) under all investigated temperature 

conditions, which represents the upper microbiological acceptability limit of 7 log10cfu/g, 

which is in to the International Commission on Microbiological Specifications for Foods 

(ICMSF, 1978). Therefore, the microbiological spoilage regarding TVC 7 log10cfu/g is in 

compliance with the end of sensory shelf life defined at QI = 2.5. 

 

Figure 2.4 Development of the Quality Index. 

Definition of predictor variable 

As stated out in Table 2.2, the spoilage of MAP poultry under different temperature 

conditions is caused by a wide range of microorganisms and the bacterial counts at the end 

of sensory shelf life are varying. For the identification of predictor variables for a reliable 

shelf life prediction under MAP conditions, a stepwise regression and a principle component 

analyses were carried out. The results of the stepwise regression analyses shows a significant 

correlation between the sensory shelf life and the time when Pseudomonas spp. and TVC 

pass over into the stationary phase (p<0.05). Additionally, a Principle Component Analyses 

was conducted. Table 2.3 shows the component matrix, where three main components 
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could be identified: (1) the time when Pseudomonas spp. and B. thermosphacta reach the 

stationary phase, (2) the initial bacterial count of B. thermoasphacta and (3) the initial 

bacterial count of Enterobacteriaecae.  

Table 2.3 Factor Loadings (Varimax Normalized). 

 
Component 

 1 2 3 

B. thermosphacta (plateau) -,994   

Pseudomonas spp. (plateau) -,994   

TVC (plateau) -,990   

QI -,986  -,149 

Enterobacteriaceae (plateau) -,975 ,219  

Enterobacteriaceae (k) ,935 ,156 -,319 

Temperature ,892 ,437 -,118 

TVC (k) ,836 ,466 -,289 

TVC (Nmax) ,785 ,280 ,552 

Pseudomonas spp. (k) ,755 ,468 -,460 

Lactobacillus spp. (k) ,739 ,654 ,162 

B. thermosphacta (k) ,727 ,455 -,513 

Enterobacteriaceae (Nmax) ,699 ,176 ,693 

B. thermosphacta (N0) -,190 ,955 ,228 

B. thermosphacta (Nmax) -,130 -,949 ,289 

Lactobacillus spp. (Nmax) ,599 ,797  

Pseudomonas spp. (Nmax) ,512 ,769 ,323 

Lactobacillus spp. (plateau) -,617 -,780 -,103 

Lactobacillus spp. (N0) -,377 ,780 ,500 

Enterobacteriaceae (N0) ,113  ,992 

Pseudomonas spp. (N0) ,166  ,986 

TVC (N0) -,476 ,118 ,872 
Values in bold: Principle Components 
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Figure 2.5 shows the loading plot of the PCA. As well as the stepwise regression analyses, the 

PCA indicates that the time, when Pseudomonas spp. pass over into the stationary phase is 

an important variable on the shelf life. However, the PCA shows also that Brochothrix 

thermoshacta (tplateau) has a main influence on the shelf life, because component one is 

mainly explained by tplateau of Pseudomonas spp. and tplateau of Brochtothrix thermosphacta. 

But also component two is influenced by Brothothrix thermosphacta (No). The results 

emphasize, that no common variable could be identified, which has the highest explanatory 

power for the data set regarding the identification of a specific spoilage microorganism. 

 

Figure 2.5 Loading plot of the PCA (Data z-tansformed). 
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2.5 Conclusion 

Despite the fact that MAP results in a remarkable extension of the shelf life of meat and 

meat products in comparison to aerobic storage, the results emphasise also a strong 

influence of the storage temperature on the packaging under modified atmosphere 

conditions. The shelf life reduction while increasing the temperature from 2°C to 4°C is 

comparatively high (45%) due to storage under aerobic conditions (22%) (Bruckner 2010). No 

significant influence of the storage temperature on the development of the meat pH could 

be observed. The development of gas atmosphere was strongly influenced by the storage 

temperature due to an increase of CO2 and a decrease of O2. From the microbiological point 

of view, B. thermosphacta showed higher growth rates at 2 and 4°C, whereas the microflora 

changed under 10°C and 15°C with the highest growth rates for Pseudomonas spp. In 

contrast to aerobic storage where Pseudomonas spp. is the main spoilage microorganism, 

the spoilage microflora under MAP consists of a wide mixture of species and the 

contribution of each microorganism to the spoilage process strongly depends from the 

temperature. Therefore, the definition of an acceptance level based on SSO is not feasible. 

Also the results of the stepwise regression and PCA reflected that no single predictor 

variable could be identified as main spoilage organism. Therefore, the shelf life under high 

oxygen conditions is caused by several factors. In conclusion, TVC seems to be the best 

predictor variable for the prediction of remaining shelf life for MAP poultry based on the 

significant correlation between the development of the sensory decay and the development 

of the TVC and the number of TVC at the end of sensory shelf life for each single storage 

temperature. But in dependence of the composition and variation of the microflora, the TVC 

is not always meaningful. Therefore, further research is needed to gather a detailed 

knowledge of the growth and the interaction of SSOs under various packaging and 

temperature conditions and the initial composition of the flora. Especially a more detailed 

knowledge about the contribution of the different metabolites of each microorganism to the 

spoilage process as function of temperature conditions is necessary. Furthermore, for the 

development of a general shelf life model for MAP packed poultry the combination of 

different quality parameter in one single model is required. Also the development of shelf 

life models based on rapid technologies like Raman Spectroscopy or Hyperspectral Imaging 

can deliver an important contribution to a more flexible use of such models under practical 

conditions in different enterprises. 
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3. Effect of different oxygen concentrations on shelf life and quality 

parameter of modified atmosphere packaged (MAP) poultry breast filets 

3.1 Abstract 

The objective of the study was to investigate the effect of varying oxygen concentrations on 

the development of the spoilage microbiota and on sensory deteriorations to select the 

most appropriate gas combination for fresh poultry breast fillets stored at 4°C. Gas 

combinations included: (MAP 1): 45% O2 / 25% N2 / 30% CO2; (MAP 2): 60% O2 / 15% N2 / 

25% CO2; (MAP 3): 70% O2 / 30% CO2; (MAP 4): 90% O2 / 10% N2 and aerobic samples. For 

microbiological investigation, Pseudomonas spp., Brochothrix thermosphacta, 

Enterobacteriaceae, Lactobacillus spp. and total viable count (TVC) were determined and 

modelled (Gompertz function). Moreover, sensory changes, pH-values and gas 

concentrations were monitored. Microbiological growth slowed down on poultry breast due 

to the combination of CO2 in the mixture with O2 between 45-70%. Sensory evaluation 

indicated beneficial effects on meat color using 60-90% O2. 45% O2 decreases the color 

stability. Concentrations between 55-60% O2 were selected as the best combinations for 

fresh poultry breast fillets. 
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3.2 Introduction 

Fresh meat and meat products are sensitive to storage and distribution, presenting 

deteriorative changes (Pérez-Alvarez & Fernández-Lopez, 2007). With the increasing trend of 

self-service merchandising of fresh meat, the color of the meat is of great relevance for the 

consumer’s choice at the point of sale (Bell, 2001). Additionally, the retailer and the 

consumer ask for long shelf lives and high quality products as well (Balev et al., 2011). 

Therefore, packaging under modified atmosphere conditions is widely established to 

preserve the quality attributes and to prolong the shelf life of a product, but the 

optimization of the gas atmosphere is still critical (Narasimha & Sachindra, 2002). Fresh red 

meat is usually packed under 70-80% oxygen and 20-30% carbon dioxide. The high oxygen 

content is necessary to preserve the bright red color by keeping the muscle pigment 

myoglobin in its oxygenated form (Church, 1994; Faustman & Cassens, 1990). In contrast, 

poultry breast is a less used muscle with a reduced quantity of myoglobin and is categorized 

to white meat (McKee, 2007). For example, the concentration of myoglobin of 8 weeks old 

poultry is 0.01 mg/g, whereas 12 days old beef contains 0.70 mg/g (Miller, 1994). Because of 

the less myoglobin content, controversial recommendations by gas producers were given for 

the use of oxygen or nitrogen as a packaging gas for poultry breast fillets. Also in the 

scientific literature are contradictory results published. The consequence is that some 

companies use high oxygen atmospheres whereas others are using mixtures with less 

oxygen (Thoden van Velzen & Linnemann, 2008). But regarding the microbial growth and 

shelf life of poultry breast fillets using oxygen or nitrogen, no difference could be observed 

(Rossaint et al., 2014, data unpublished).  

Besides the stabilizing effect on the muscle pigment myoglobin, oxygen also affects the 

growth of specific microorganisms, which depends on the oxygen demand of the bacteria 

(Church, 1994). Generally, oxygen favors the growth of aerobic bacteria and reduces the 

growth of strictly anaerobic species. Therefore, the composition of the microbiota changes 

depending from the headspace gas atmosphere inside the package (Phillips, 1996). However, 

most investigations are focused on the development of sensory attributes and lipid oxidation 

for fresh beef and pork meat. Zakrys et al. (2008) investigated the effect of different oxygen 

concentrations (0, 10, 20, 50 and 80%) on the quality of beef. Regarding quality parameters, 

50% and 80% O2-packed meat showed a reduced tenderness but was more acceptable than 

lower O2-concetrations. Resconi et al. (2012) investigated the effect of different high oxygen 

MAP (50/60/80%) in comparison to vacuum packaging on quality and sensory parameter for 

beef steaks. The authors showed that beef steaks had the lowest color stability under 50% 

O2. Even if high rancidity levels were identified at 50 and 60% O2, sensory characteristics 
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between 60% and 80% did not differ significantly. For pork meat, Zhang & Sundar (2005) 

showed that 45% oxygen with 20% CO2 seems to be the best gas atmosphere regarding lipid 

oxidation, while 55% O2 showed better color results. For modified atmosphere packed 

poultry meat, studies on the effect of varying oxygen concentrations on the development of 

meat spoilage microorganisms are rare, even if the German poultry industry uses high 

oxygen MAP (Rossaint et al., 2014). Most studies are only focused on the use of N2/CO2 

combinations (Jiménez et al., 1997; Patsias et al., 2006; Chouliara et al., 2007). 

Therefore, the aim of the study was to compare the effect of different oxygen 

concentrations in modified atmosphere packaged poultry breast fillets on the behaviour of 

typical spoilage microorganism and sensory attributes to figure out the optimal 

concentration of O2 in a gas mixture. 

3.3 Materials & Methods 

Preparation of meat samples and packaging 

42-days-old-unsexed broiler chickens (Ross 308/708) were slaughtered and air-chilled in a 

poultry processing plant in Germany. The skinless double-breast chicken fillets were 

transported from the poultry slaughter plant to a wholesaler and forwarded to the 

laboratory under temperature-controlled conditions in isolated boxes with cooling packs. 

The first investigation started within 24 hours after slaughtering. In the laboratory, the 

double-breast fillets were divided into single fillets using a sterile scalpel. Samples were 

obtained for each trial from the same batch.  

The chicken breast fillets were placed in polypropylene trays (R. Fearch Plast A/S, Holstebro, 

Denmark). Tray volume was 680 ml and approximately 230 g meat samples were packaged 

to achieve a package headspace to meat ratio of nearly 2:1. The meat samples were 

packaged under aerobic conditions and under four different modified atmospheres: (MAP 

1): 45% O2, 25% N2, 30% CO2; (MAP 2): 60% O2, 15% N2, 25% CO2; (MAP 3): 70% O2, 30% CO2; 

(MAP 4): 90% O2, 10% N2. Thereafter, the trays were heat-sealed with a polypropylene foil 

(Suedpack Verpackungen GmbH & Co. KG, Ochsenhausen, Germany; water vapour 

permeability < 3.5 g/m2d at 23°C / 85% RH; oxygen permeability </=1.5 cm2/m2d bar at 23°C 

/ 35% RH) for 3 s/175°C using a tray sealer packaging machine (Traysealer T200, Multivac 

Sepp Haggenmüller GmbH & Co. KG, Wolfertschwenden, Germany). Gas mixtures were 

prepared by a four-component gas blender machine (KM 60-4 MEM SO, Witt Gasetechnik, 

Witten, Germany). The packaged meat samples were stored at 4°C between 450 and 570 h 

according to the used gas mixture in low-temperature high precision incubators (Sanyo 
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model MIR 153, Sanyo Electric Co., Ora-Gun, Gumma, Japan). Storage temperature was 

monitored by data logger (ESCORT JUNIOR Internal Temperature Data Logger, Escort, New 

Zealand) every 5 minutes. The microbiological, sensory and chemical analyses were 

conducted at appropriate time intervals. Each measurement was repeated three times. 

Table 1 gives an overview about the storage and sampling conditions during the trials.  

Microbiological analyses 

After opening the packages, a representative amount (25g) of meat surface sample in size of 

4 x 7 x 0.5 cm was aseptically taken using a sterile scalpel, which was transferred to a filtered 

sterile stomacher bag and filled with 225 ml saline peptone diluent (0.85 % NaCl with 0.1% 

peptone Saline-Tablets, Oxoid BR0053G, Cambridge, United Kingdom). Samples were 

homogenised with a Stomacher 400 (Kleinfeld Labortechnik, Gehrden, Germany) for 60 s. 

Ten-fold dilutions of the homogenate were prepared in saline peptone diluents. Total Viable 

Count (TVC), Pseudomonas spp., B. thermosphacta, Enterobacteroaceae and Lactic acid 

bacteria in rinsates were enumerated. 

Total Viable Count was determined by pour plate technique on Plate Count Agar (PCA, 

Merck, Darmstadt, Germany) and plates were incubated at 30°C for 72 hours. Pseudomonas 

were counted by spread plate technique on Pseudomonas Agar with Cetrimide-Fucidin-

Cephalosporin selective supplement (CFC, Oxoid, Cambridge, United Kingdom). Plates were 

incubated at 25°C for 48 hours. B. thermosphacta was detected by drop plate technique (10 

drops à 10µl per dilution step) and counted on Streptomycin Inosit Toluylene Red Agar (SIN-

Agar) according to Hechelmann (1981). Petri dishes were incubated at 25°C for 48 hours. 

Enterobacteriaceae were identified by overlay treatment on Violet Red Bile Dextrose Agar 

(VRBD, Merck, Darmstadt, Germany). Therefore, 1.0 ml of the sample was inoculated in 

approximately 10 ml VRBD-Agar. After setting, approximately 10 ml overlay of liquefied 

VRBD-medium were added and plates were incubated at 30°C for 48 hours. Lactic acid 

bacteria were counted by pour plate technique on de Man, Rogosa, Sharpe Agar (MRS, 

Oxoid, Cambridge, United Kingdom). Plates were incubated aerobically at 37°C for 72 hours. 

Counts of colony forming units were expressed as log10cfu/g of sample. Table 3.1 gives an 

overview about the packaging atmospheres, the storage- and sampling conditions during the 

trials. 
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Table 3.1 Packaging and sampling conditions during the trials. 

Packaging Storage conditions Sampling intervals (h)* Number of packages  

Aerobic 20.9% O2 0, 48, 96, 120, 168, 240 18 

(MAP 1) 45% O2 / 25% N2 / 30% CO2 0, 21, 70, 141, 214, 309, 381, 453 24 

(MAP 2) 60% O2 / 15% N2 / 25% CO2 0, 72, 144, 216, 288, 360, 432, 552, 

576 

24 

(MAP 3) 70% O2 / 30% CO2 0, 73, 144, 214, 288, 363, 483 21 

(MAP 4) 90% O2 / 10% N2 0, 71, 145, 215, 287, 360, 430 21 

*three replicates per sampling point 

 

Sensory evaluation 

Sensory analyses were carried out by trained sensory panelists. All assessors were recruited 

from the Institute of Animal Science (University of Bonn) and experienced in poultry 

evaluation. A picture of fresh chicken breast fillets was used as reference during the sensory 

evaluations.  

During the trials, each sample was evaluated directly after opening the tray, using a 

developed sensory scheme according to the Quality Index Method (QIM) for fish evaluation 

(Bremner, 1985). Attributes were defined as general appearance (G), colour (C), odour (O), 

texture (T) and drip loss (D). Changes of the attributes were expressed in a 5-point scoring 

system. The lower the score, the better the quality and freshness of the product. A weighted 

quality index (QI) was calculated by the following equation (Kreyenschmidt, 2003): 

 

8

21122 ODTCG
QI

++++=   (1.1) 

 

The end of sensory shelf life was defined as a QI of 2.5. 

Gas analysis 

Concentrations of oxygen and carbon dioxide inside the trays were monitored over the 

storage period, using a hand-held gas analyser (Oxybaby V O2/CO2, Witt Gasetechnik, 

Witten, Germany). Before starting the gas measurement inside the trays, the composition of 

air was analysed to control the accuracy of the gas analyser. Headspace in packages was 

sampled, using a syringe needle to withdraw 10 ml of headspace gas through a self-adhesive 

sealing pad in the package. Gas volume was absorbed in 15 seconds and the oxygen 
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concentration was detected by an electrochemical sensor; carbon dioxide concentration was 

detected by IR-absorption. Control packages containing no meat samples were stored as 

reference and the gas composition was also monitored over the entire storage period.  

pH-measurement 

The pH of the meat samples was measured over the entire storage period, using a portable 

pH-meter (Escort Junior EJ-2E-D-16L, Escort, Auckland, New Zealand). Three measurements 

were performed for each meat sample, by placing the electrode onto the meat surface and 

an average pH-value was calculated.  

Primary Modelling  

The Gompertz equation was used to model the growth of the total viable count, 

Enterobacteriaceae, Pseudomonas spp., Brochothrix thermosphacta and Lactobacillus spp. as 

a function of time (Gibson et al., 1987).  

 

)(

)(
MtBeeCAtN

−⋅−−⋅+=     (1.2)    

 

with N(t): microbial count [log10cfu/g] at any time, A: lower asymptotic line of the 

growth curve (initial bacterial count), C: difference between upper asymptotic line of 

the growth curve (Nmax= maximum population level) and the lower asymptotic line; B: 

relative maximum growth rate at time M [h-1], M: time at which maximum growth 

rate is obtained (reversal point), and t is time. 

 

The microbiological growth data were fitted using the statistical software program Origin 

8.0G (OriginLab Corporation, Northampton, Ma., U.S.A.) 

The development of the specific growth rates of the investigated microorganisms as function 

of the used oxygen content during storage of fresh poultry fillets were fitted using a second 

order polynomial function.  

 

Statistical analysis 

Man-Whitney-U-test was used to make comparisons between sensory colour evaluation, pH-

values and the measured counts of colony forming units with a level of significance of 0.05. 

SPSS statistics 20 for Windows was used. 
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3.4 Results & Discussion 

Comparison of the spoilage process under various oxygen concentrations 

Figure 3.1 shows the development of typical spoilage microorganism and total viable count 

on poultry packed under different oxygen enriched atmospheres at a constant temperature 

of 4°C.  

 

Because of the presence of oxygen in all used gas mixtures, the growth of Lactobacillus spp. 

remains relatively constant over the entire storage periods. This is due to the fact that the 

growth is favored under anaerobic conditions and under high CO2 atmospheres. Also the 

cold storage influences the growth because of its mesophilic properties (Jay et al., 2005). The 

findings are also in accordance to Santé et al. (1994). Therefore, the bacteria play a minor 

role in the spoilage process and were not considered in the present study. 

 

Under aerobic conditions (20.9% O2), Pseudomonas spp. is dominating the spoilage flora. 

The microorganism is the main spoilage bacteria under these conditions because of its 

aerobic properties and psychrotropic character, which is also in accordance to several 

authors (Pooni & Meat, 1984; Arnaut-Rollier et al., 1999; Gram et al., 2002; Sivertsvik et al., 

2002; Koutsoumanis et al., 2006; Bruckner et al., 2012). Also the concentration of CO2 in 

ambient air is diminished and leads to an additional selective effect in favor of the growth of 

Pseudomonads because of its high sensitivity to CO2. At the beginning of storage the 

microorganisms show the highest initial counts with 2.6 log10cfu/g in comparison to the 

other investigated bacteria, which reflects a direct correlation between the initial number of 

Pseudomonas spp. and the shelf life at chill temperatures, as stated out by Barnes et al. 

(1979). During storage, Pseudomonas spp. continues to show the best growth which is 

reflected in the highest maximum growth rate with 0.045 1/h (Figure 3.2) and the highest 

maximum microbial counts with 9.6 log10cfu/g (Table 3.2). Moreover, B. thermosphacta and 

Enterobacteriaceae are also present as part of the spoilage flora of poultry under aerobic 

conditions (Corry 2006). During storage, B. thermosphacta could be identified as the second 

main spoilage competitor (Table 3.2), which is also shown by Gallo et al. (1988). 

Enterobacteriaceae are also present on aerobic stored poultry fillets. Because of its 

mesophilic properties, the bacterial flora was presumably suppressed by the psychrotrophic 

groups and plays a minor role in the spoilage process.  

 

The 45% O2 enriched atmosphere leads to a change in the mircroflora in favor of B. 

thermosphacta (Figure 3.1). Storing the samples under 45% O2 enriched atmospheres, the 
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initial bacterial loads of Pseudomonas spp. and Enterobacteriaceae are in the same range 

and dominates the spoilage flora. B. thermosphacta shows the lowest initial concentration 

(Figure 3.1), but becomes dominant after approximately 180h of storage. The microorganism 

shows also a similar duration of the lag-phase compared to Enterobacteriaceae, but a higher 

maximum growth rate and therefore an increase growth during storage (Table 3.2). This is 

due to the fact that B. thermosphacta is a facultative anaerobic microorganism but prefers 

to growth under oxygen containing atmospheres. Therefore the microorganisms are able to 

dominate the microflora, when oxygen occurs (Gribble & Brightwell, 2013). B. 

thermosphacta is also often associated with spoilage under MAP conditions based on the 

improved resistance to CO2 (Borch et al., 1996; Branscheid et al., 2007) and its 

psychrothrophic character (Pennacchio et al., 2009). 

 

With increasing oxygen concentrations to 60% and 70%, the dominance of B. thermosphacta 

shows a distinct behaviour with the highest maximum growth rate (Table 3.2) as illustrated 

in Figure 2. The growth of Pseudomonas spp. and Enterobacteriaceae is slowed down with 

increasing oxygen concentrations (60/70%) compared to the growth of B. thermosphacta. 

This effect could be explained by the growth behaviour of B. thermosphacta in presence of 

other meat spoilage bacteria. As shown in vitro by Russo et al. (2006), the growth of B. 

thermosphacta is strongly influenced by the presence of Lactobacillus spp., Pseudomonas 

spp. and Enterobacteriaceae. The interactions are a possible explanation for the dominance 

of the bacteria. Further on, B. thermosphacta shows the ability to switch between aerobic 

and anaerobic metabolism due to the oxygen and carbon dioxide environment and the meat 

matrix seems to be an ecological niche for B. thermosphacta as stated out by Labadie (1999) 

and Pin et al. (2002). Therefore, the bacterium has a kind of selective advantage, which 

supports the bacteria to be an important spoilage originator as part of the spoilage 

microflora, as shown in this study.  

 

The 90% oxygen atmosphere was most effective in favour the growth of Pseudomonas spp. 

(Table 3.2). Similar results were reported by Viana et al. (2005) for the growth of 

Pseudomonads on refrigerated pork loins during storage under 100% O2. The growth 

behaviour could be explained by the high affinity to oxygen and the absence of CO2 as 

growth limiting factor for Pseudomonads. Also B. thermosphacta shows a good growth 

under 90% oxygen because of its psychrotrophic properties and preferred growth under 

oxygen atmospheres. Merely the growth of the mesophilic Enterobacteriaceae is slightly 

slowed down compared to the remaining bacteria because of the low storage temperature. 

Also Smolander et al. (2004) showed that temperature conditions have an effect on delaying 
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the growth of Enterobacteriaceae, but the microorganisms also show the ability to adapt 

quickly to changing environments. 

 

Further on, all samples stored under 90% oxygen achieve the highest maximum bacterial 

counts next to aerobic packaging for all investigated microorganisms (Table 3.2), what is also 

in accordance to Santé et al. (1994). The affinity of the microorganisms to oxygen and the 

absence of the antimicrobial component CO2 allow the outgrowth of the spoilage flora, as 

also reflected in Table 3.2 and Figure 1. 

 

The development of the specific growth rates of the investigated microorganisms as function 

of the used oxygen content during storage of fresh poultry fillets is illustrated in Figure 3.2. 

For all investigated microorganisms, the growth rates decrease with increasing oxygen 

concentrations. The local minimum of the growth rate development for each microorganism 

in dependence of the used gas mixture is shown in Table 3.3. Therefore, a local minimum of 

the growth rates results in an appropriate oxygen concentration in a range between 55-60%. 

Merely the local minimum (µmax) of B. thermosphacta is located at 46% O2. Generally, the 

results emphasize that the storage of the samples under different gas mixtures causes a 

change of the environmental conditions and induces a selection pressure on specific 

microorganism in dependence from the used O2 concentration (Molin 2000). 
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Figure 3.1 Growth of typical spoilage microorganism on poultry stored under different 

oxygen enriched atmospheres fitted with the Gompertz model, n = 3. 
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Figure 3.2 Development of the maximum growth rate, calculated with the Gompertz model. 

Table 3.2 Development of growth parameter during storage of poultry under different 

oxygen enriched atmospheres calculated with the Gompertz function, n = 3. 

O2 

(%) 

TVC Pseudomonas spp. B. thermosphacta Enterobacteriaceae 

 µmax  

[1/h]  

T lag 

[h]  

Nmax 

log10cfu/g 

µmax  

[1/h]  

T lag 

[h]  

Nmax 

log10cfu/g 

µmax  

[1/h]  

T lag 

[h]  

Nmax 

log10cfu/g 

µmax  

[1/h]  

T lag 

[h]  

Nmax 

log10cfu/g 

20.9 0.035 22 9.6 0.045 22 9.5 0.028 18 6.8 0.021 12 5.9 

45  0.019 78 8.1 0.016 15 7.4 0.028 78 7.6 0.017 77 6.9 

60  0.018 114 8.1 0.013 19 7.2 0.026 101 7.8 0.011 81 6.3 

70  0.021 62 8.4 0.013 86 6.8 0.022 74 8.0 0.014 57 5.6 

90  0.026 52 9.3 0.035 20 9.0 0.050 73 8.3 0.019 23 7.8 
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Table 3.3 Calculated local minima of µmax for the investigated microorganisms and 

cumulated µmax with the derived oxygen concentration.  

 TVC Pseudomonas spp. B. thermosphacta Enterobacteriaceae 

Local minimum of µmax 

[1/h] 

0.018 0.012 0.022 0.014 

Local minimum of O2  

concentration [%] 

61 58 46 59 

 

Sensory analyses and shelf life determination 

Figure 3.3 shows the development of the quality index of poultry breast fillets packed under 

different oxygen concentrations. A QI score of one is related to fresh meat and increases 

linearly when the meat deteriorates during storage. The shelf life time based on sensory 

evaluation increases in order: aerobic < 45% < 70% < 90% < 60% (Table 3.4). The storage 

under 45% O2 shows the lowest sensory shelf life within the different used oxygen 

atmospheres. This is presumably related to the color evaluation, which shows the lowest 

stability compared to higher oxygen concentrations, as also reported for fresh pork meat by 

Zhang & Sundar (2005). The difference in sensory shelf life times of the samples stored 

under 90% oxygen (238h) and samples stored under 60/70% oxygen (247/212h) is mainly 

based on the evaluation of meat color as emphasized in Figure 3.3. The development of 

meat color under 90% O2 is evaluated with a score of 1 constantly and shows a rapid 

increase after 150h of storage. The results are also in compliance with the study of Santé et 

al. (1994), during storage of turkey meat under 100% O2. The atmosphere caused the best 

redness value compared to storage under 100% N2, 100% CO2 or 66% O2 / 9% N2 /25% CO2. 

Also Blacha et al. (2014) showed in their study for turkey meat, that the storage under high 

oxygen (80% O2 / 20% N2) resulted in the highest sensory and redness scores but showed 

also the highest thiobarbituric acid-reactive substance values, associated with an increased 

fat oxidation. Further on, the storage of the samples under 70% oxygen enriched 

atmosphere shows a reduction in shelf life of 35h compared to 60% oxygen. The relatively 

small difference is, next to the differences in the oxygen concentrations, presumably related 

to variations in the initial bacterial load of Pseudomonas spp. and B. thermosphacta due to 

preliminary meat contamination with approximately 0.5 log level difference between the 

samples stored under 60% and 70%. Therefore, the surface contamination of the meat is 

directly related to the determination of shelf life (Borch et al. 1996.) Also interactions 
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between the spoilage bacteria and animal specific factors like age, sex, fat content, meat 

moisture or genetic factors have a further influence on the sensory shelf life development. 

Table 3.4 Sensory shelf life times under different oxygen concentrations during storage at 

4°C. 

 Aerobic  

(20.9% O2) 

45% O2 60% O2 70% O2 90% O2 

End of sensory 

shelf life [h] 

QI = 2.5 

 

100 

 

142 

 

247 

 

212 

 

238 

 

 

Figure 3.3 Development of quality index and poultry meat color under different oxygen 

concentrations, n = 3. 

 

Development of meat pH and gas atmosphere 

The initial poultry breast pH (24h after slaughtering) varies between 5.62 and 6.15 (data not 

shown) and is in a normal range for fresh poultry as also shown in the literature (Herbert et 

al., 2013; Bruckner et al., 2012; Lund & Eklund, 2000). The results show that the pH value is 

not significantly influenced by any used gas mixture (p>0.05). This is due to the buffer effect 

of the meat proteins which limits significant variations in pH while storing the meat under 

MAP, as also stated out by Gilka et al. (1980), Dixon & Kell (1989) and Herbert et al. (2013). 
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For the development of the gas concentration in packages containing CO2/O2 mixtures (MAP 

1-MAP3), a small decrease of CO2 could be detected in the beginning of storage. This is 

caused by the high solubility of carbon dioxide in the fat tissue and water on the meat 

surface (Betts, 1995; Gill, 1988). Parra et al. (2010) and Herbert et al. (2013) reported similar 

results for MA packed meat. For the packaging under 45-90% oxygen, a decrease of the O2 

concentration around 2-3% could be observed at the end of storage. The effect is related to 

the microbial O2 consumption for their metabolism during growth and multiplying and 

accompanied by contemporaneous CO2 production. Also the respiration of meat enzymes 

and gaseous exchanges between the gas composition inside the trays and the environment 

are influence factors for the gas change during storage (Mullan & McDowell, 2003). 

3.5 Conclusion 

In conclusion, the storage of poultry fillets under different oxygen concentration showed 

that oxygen has a stabilising effect on the color and increases the shelf life of poultry fillet 

with increasing O2 concentrations. However, the quality is reduced by using low oxygen 

concentrations (aerobic) and high concentrations (90%). The 45% O2 enriched atmsophere 

results in a reduced sensory shelf life compared to 60/70 and 90% O2, which is mainly caused 

by the reduced color stability. 90% oxygen in the atmosphere leads to an improved color 

stability, but favours the growth of all bacteria. According to several authors, the lipid 

oxidation increases with increasing oxygen concentrations. But poultry meat relates to a 

meat with less fat content in comparison to pork or beef meat and seems to be 

comparatively lower. Therefore, fat oxidation seems to play a minor role in the deteriorative 

changes during storage. But further research is needed to investigate also the oxidation 

potential of poultry meat under varying oxygen concentrations. From the safety aspects, 

most pathogenic bacteria are facultative anaerobic competitors and can grow uncontrolled 

in packages without oxygen. Therefore, spoilage bacteria are no longer indicators for 

environmental changes and allow the outgrowth of pathogenic ones when oxygen is absent. 

Hence, the packaging of poultry under high oxygen atmospheres is a more optimal 

packaging mixture comparing with nitrogen packaging. Regarding the investigated 

atmospheres and the local minima of the different bacteria, 55-60% O2 mixed with CO2 can 

be concluded as the appropriate concentration for fresh poultry breast meat at 4°C.  
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4. Comparison of oxygen and nitrogen enriched atmospheres on the 

growth of Listeria monocytogenes inoculated on poultry breast fillets in 

presence of natural background flora 

4.1 Abstract 

In this study, the growth behaviour of Listeria monocyogenes in presence of typical spoilage 

microorganisms on poultry breast fillets (Pseudomonas spp., Brochothrix thermosphacta, 

Enterobacteriaceae, Lactobacillus spp., Total Viable Count) was investigated. The aim of the 

study was to compare the growth of L. monocytogenes under oxygen and nitrogen enriched 

atmospheres and to figure out possible interactions between L. monocytogenes and typical 

spoilage microorganisms on skinless poultry breast fillets. Therefore, the natural meat 

surface was inoculated with an initial concentration of L. monocytogenes between 180-280 

cfu/g and packed under two different gas atmospheres, which were commonly used by 

poultry processing plants (70% O2 / 30% CO2 and 70% N2 / 30% CO2). Additionally, the gas 

atmosphere was monitored over the entire storage period and typical sensory attributes 

(color, odor, texture, drip loss and general appearance) were evaluated in parallel to each 

microbiological investigation point. Generally, the results show that the storage under 70% 

N2/30% CO2 favored the growth of L. monocytogenes in comparison to the 70% O2/30% CO2 

atmosphere. Under nitrogen, L. monocytogenes reached a maximal bacterial count (Nmax) of 

5.7 (log10cfu/g) after approximately 500h storage, but no specific microorganism could be 

identified responsible for the favoured growth. The growth of L. monocytogenes was 

suppressed in the oxygen enriched atmosphere, whereas Brochothirx thermosphacta 

dominated the spoilage flora. The results indicate, that the combination of high oxygen with 

carbon dioxide and possible interactions with the spoilage background flora cause a delay of 

the L. monocytogenes growth under the 70% O2 / 30% CO2 atmosphere. 
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4.2 Introduction 

Nowadays, food producers are confronted with the challenge to produce high quality food 

with long shelf life times and products which are safe for human consumption as well (Bilska 

2011). Especially fresh meat is susceptible to microbiological growth because of its 

nutritional profile. Thereby, the packaging under modified atmosphere conditions became 

one of the most popular preservation techniques for fresh and processed products. The 

commonly used gases for MAP application are carbon dioxide (CO2), oxygen (O2) and 

nitrogen (N2), which are added in different proportions according to the product properties 

(Phillips 1996, Floros & Matsos 2005). For poultry meat, inconsistent recommendations 

about the optimal gas mixture are given by the gas producers. The consequence is that some 

companies use high oxygen atmospheres whereas others are using mixtures with less 

oxygen (Thoden van Velzen & Linnemann 2008). However, Rossaint et al. (2014) showed 

that there is no difference between the two used gas atmospheres in on the shelf life 

determined by sensory parameter. Besides the effect of MAP gas mixtures on the sensory 

shelf life of poultry, producers also have to guarantee that pathogenic bacteria are not able 

to multiply on the surface. Especially poultry meat shows nearly the highest bacterial growth 

of spoilage and pathogenic bacteria than other foods (Synder 1998). Thereby, Listeria 

monocytogenes is one of the most important food-borne pathogen on fresh meat and the 

growth is of particular concern for the food industry. The reason is that L. monocytogenes is 

able to proliferate at refrigeration temperatures up to -0.4°C (Philips 1996). Especially 

poultry meat supports the growth of Listeria monocytogenes better than other kind of meat 

(Farber & Peterkin 1991).  

The growth of L. monocytogenes is generally influenced by the spoilage background flora, 

whereas inconsistent results are published in the scientific literature. For Pseudomonas spp. 

for example, Marshall & Schmidt (1991) reported an increased growth of L. monocytognes 

by in milk after the inoculation with Pseudomonds. In contrast, nearly no effect in delaying 

the growth of L. monocytogenes by Pseudomonas spp. was found in Tryptose broth by 

Farrag & Marth (1989). Carlin et al. (1996) reported a slightly reduction of L. monocytogenes 

by different strains of fluorescent Pseudomonads in liquid endive leaf medium.  

The contradictory results can be explained by the performance in liquid media, which 

simulates ideal growth conditions and did not take into account the complex food matrix. 

Several studies are published about interactions of the spoilage flora with L. monocytogenes 

in liquid media (Mattila-Sandholm & Skyttä 1991, Bennik et al. 1995, Francis & O`Beirne 

1998, Malakar et al. 1999, Malakar et al. 2003, Mellefont et al. 2008). In contrast, structured 
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food provides the basis for a huge bacterial diversity and the growth of microorganisms is 

mostly slowed down due to additional stress for the bacteria (Van Impe et al. 2010).  

Therefore, the objective of this work is to investigate the growth of Listeria monocytogenes 

inoculated on fresh poultry breast fillets in the presence of the natural background spoilage 

flora and compare the growth behavior using two commonly used gas mixtures for poultry 

breast meat (70% O2 / 30% CO2 vs. 70% N2 / 30% CO2). 

4.3 Materials & Methods 

Preparation of meat samples  

As test samples, unsexed 42-days-old-broiler chickens (Ross 308/708) were slaughtered and 

air-chilled in a poultry processing plant in Germany. The skinless double-breast chicken fillets 

were transported from the poultry slaughter plant to a wholesaler and forwarded to the 

laboratory under temperature-controlled conditions in isolated boxes with cooling packs. 

The first investigation started within 24 hours after slaughtering.  

Preparation of inocula and inoculation 

For inoculation Listeria monocytogenes (ATCC 19111) was used. The strain was deep-freeze 

in cryogen pellets for preservation and purchased from the German Resource Centre for 

Biological Material (DSMZ). Before cultivation of the strain, the nutrient broth (Carl Roth, 

Karlsruhe, Germany) was pre-tempered for 24 hours at the optimal growth temperature 

according to the instructions of DSMZ for each microorganism. Afterwards, Listeria 

monocytogenes was grown separately in 10ml nutrient broth and sub-cultured after 24 

hours and 48 hours. Afterwards the dilution of the broth to a concentration of 104 cfu/ml 

was conducted.  

For inoculation of the samples, the double breast fillets were divided into single fillets using 

a sterile scalpel. Afterwards, a defined area of the meat surface (28cm2) was marked using a 

rectangular metallic frame (4 x 7cm). The defined meat surface was inoculated with 0.1ml of 

the bacteria dilution to achieve an initial concentration between 180-280cfu/g. The 

inoculum was dispersed on the meat surface using a sterile drigalski applicator. 

 

 



62 

 

Packaging and storage of meat samples 

For modified atmosphere packaging, the inoculated poultry breast fillets were placed in 

polypropylene trays (R. Fearch Plast A/S, Holstebro, Denmark). Tray volume was 680 ml and 

approximately 230 g meat samples were packaged to achieve a package headspace to meat 

ratio of nearly 2:1. The inoculated meat samples were packaged under an atmosphere 

containing 70% O2/30% CO2 and 70% N2/30% CO2. The trays were heat-sealed with a 

polypropylene foil (Suedpack Verpackungen GmbH & Co. KG, Ochsenhausen, Germany; 

water vapour permeability < 3.5g/m2d at 23°C / 85% RH; oxygen permeability </=1.5 

cm2/m2d bar at 23°C / 35% RH) for 3s/175°C using a tray sealer packaging machine 

(Traysealer T200, Multivac Sepp Haggenmüller GmbH & Co. KG, Wolfertschwenden, 

Germany). Gas mixtures were prepared by a four-component gas blender machine (KM 60-4 

MEM SO, Witt Gasetechnik, Witten, Germany). The packaged meat samples were stored at 

4°C in low-temperature high precision incubators (Sanyo model MIR 153, Sanyo Electric Co., 

Ora-Gun, Gumma, Japan). The storage temperatures were monitored by data logger 

(ESCORT JUNIOR Internal Temperature Data Logger, Escort, Auckland, New Zealand) every 5 

minutes. The microbiological, sensory and chemical analyses were conducted at appropriate 

time intervals. Each measurement was repeated three times. 

Microbiological analyses 

For microbiological analyses, the inoculated meat surfaces were removed aseptically by 

using a sterile scalpel. The product sample had an admeasurement of 4 x 7 x 0.5cm to 

achieve a total weight of nearly 25g. Samples were transferred to a filtered sterile stomacher 

bag and filled up with 225ml saline peptone diluent (0.85 % NaCl with 0.1% peptone Saline-

Tablets, Oxoid BR0053G, Cambridge, United Kingdom). Sample homogenization was 

conducted with a Stomacher 400 (Kleinfeld Labortechnik, Gehrden, Germany) for 60s. A 10-

fold dilution series were made of the homogenate using saline peptone diluent and 

investigated for total viable count (TVC), Pseudomonas ssp., Brochothrix thermosphacta, 

Enterobacteroaceae, Lactobacillus ssp. and Listeria monocytogenes. Total viable count was 

determined by pour plate technique on Plate Count Agar (PCA, Merck, Darmstadt, Germany) 

and plates were incubated at 30°C for 72 hours. Pseudomonas sp. was detected by spread 

plate technique on Pseudomonas Agar with Cetrimide-Fucidin-Cephaloridine selective 

supplement (CFC, Oxoid, Cambridge, United Kingdom). Plates were incubated at 25°C for 48 

hours. Brochothrix thermosphacta was detected by Drop-Plate technique and counted on 

Streptomycin Inosit Toluylene Red Agar (SIN-Agar) according to Hechelmann (1981). Petri 
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dishes were incubated at 25°C for 48 hours. Enterobacteriaceae were identified by overlay-

treatment on Violet Red Bile Dextrose Agar (VRBD, Merck, Darmstadt, Germany) by 

incubating the agar plates at 30°C for 48 hours and Lactobacillus sp. was determined by pour 

plate technique on de Man, Rogosa, Sharpe Agar (MRS, Oxoid, Cambridge, United Kingdom). 

Plates were incubated aerobically at 37°C for 72 hours. The determination of Listeria 

monocytogenes was performed on Agar Listeria according to Ottaviani and Agosti (ALOA, Bio 

Mérieux, Paris, France). Plates were incubated at 37°C for 24hours. During storage, the 

presence of L. monocytogenes was tested on samples without inoculation treatment. In all 

samples, L. monocytogenes was not detected. Counts of colony forming units were 

expressed as log10 cfu/g for each medium and sample.  

Gas analysis 

Concentrations of oxygen and carbon dioxide inside the trays were monitored over the 

storage period, using a hand-held gas analyser (Oxybaby V O2/CO2, Witt Gasetechnik, 

Witten, Germany). Before starting the gas measurement inside the trays, the composition of 

air was analysed to control the accuracy of the gas analyser. Headspace in packages was 

sampled, using a syringe needle to withdraw 10ml of headspace gas through a self-adhesive 

sealing pad in the package. Gas volume was absorbed in 15 seconds and the oxygen 

concentration was detected by an electrochemical sensor; carbon dioxide concentration was 

detected by IR-absorption. Control packages containing no meat samples were stored as 

reference and the gas composition was also monitored over the entire storage period.  

Sensory evaluation 

Sensory analyses were carried out by trained sensory panellists, recruited from the Institute 

of Animal Science (University of Bonn) and all were experienced in poultry sensory 

evaluation. During the trials, each sample was evaluated directly after opening the tray, 

using a developed sensory scheme according to the Quality Index Method (QIM) for fish 

evaluation (Bremner, 1985). A picture of fresh chicken breast fillets was used as reference 

during the sensory evaluations. 

Attributes were defined as general appearance (G), colour (C), odour (O), texture (T) and drip 

loss (D). Changes of the attributes were expressed in a 5-point scoring system. The lower the 

score, the better the quality and freshness of the product. A weighted quality index (QI) was 

calculated by the following equation (Kreyenschmidt 2003): 
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The end of sensory shelf life was defined as a QI of 2.5. 

Primary Modelling  

The Gompertz equation was used to model the growth of the total viable count, 

Enterobacteriaceae, Pseudomonas spp., B. thermosphacta, Lactobacillus spp. and L. 

monocytogenes as a function of time (Gibson et al. 1987).  

 

)(

)(
MtBeeCAtN

−⋅−−⋅+=   (1.2)    

 

with N(t): microbial count [log10cfu/g] at any time, A: lower asymptotic line of the 

growth curve (initial bacterial count), C: difference between upper asymptotic line of 

the growth curve (Nmax= maximum population level) and the lower asymptotic line; B: 

relative maximum growth rate at time M [h-1], M: time [h] at which maximum growth 

rate is obtained (reversal point), and t is time. 

The time [h], when the bacterial count achieves the plateau (tplateau) is calculated according 

to the following equation: 

B
Mt plateau

1+=     (1.3) 

With M: time [h] at which maximum growth rate is obtained (reversal point); and B: relative 

maximum growth rate at time M [h-1]. 

 

The microbiological growth data were fitted using the statistical software program Origin 

8.0G (OriginLab Corporation, Northampton, Ma., U.S.A.). 
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4.4 Results & Discussion 

Influence of the gas atmospheres on the growth of Listeria monocytogenes 

Figure 4.1 compares the growth of Listeria monocytogenes during storage, inoculated on 

natural skinless chicken breast fillets under nitrogen and oxygen enriched atmospheres at 

4°C. During the trials, L. monocytogenes shows a growth potential up to a maximal bacterial 

count (Nmax) of 5.7 (log10cfu/g) under the nitrogen containing atmosphere. Also Farber & 

Daley (1994) showed that L. monocytogenes is able to grow under 70% N2 / 30% CO2 on 

turkey roll slices. Jydegaard-Axelson et al. (2004) showed that the metabolite production and 

the growth of L. monocytogenes are more increased in N2 then in CO2 atmospheres. Several 

studies also emphasise that L. monocytogenes shows the ability to grow under reduced O2-

tensions and chilled temperatures on several foods and nutrient media (Brackett 1988, 

Doyle 1988, Wimpfheimer et al. 1990).  

During storage under high oxygen atmosphere, the growth of L. monocytogenes remains 

relatively constant during the entire storage period. This agrees with the results of Nissin et 

al. (2000), who found no growth of L. monocytogenes in inoculated ground beef during 

storage at 4°C in 70% O2 / 30% CO2 mixture. High oxygen concentrations lead to the 

formation of oxygen radical species and causes cell damages and cell death. But according to 

Fisher et al. (2000), L. monocytogenes is able to produce the enzyme superoxide dismutase 

during exposure to high oxygen concentrations. These are enzymes that catalysis the 

destruction of superoxide radicals by dismutation (Lavelle et al. 1973). As stated out by 

Amanatidou et al. (1999), the growth of L. monocytogenes is strongly retarded by 90% O2 

mixed with 10% CO2, whereas the use of 90% O2 alone did not inhibit the growth. Therefore, 

only the combination between oxygen and carbon dioxide indicates an inhibitory effect on L. 

monocytogenes, as also shown in this study. Krämer & Baumgart (1992) showed that the 

microorganism is merely inhibited up to 50% CO2 during storage of sausages boiled in broth. 

But the authors also mentioned that high CO2 concentrations lead to unacceptable souring 

of the product. In contrast, Wimpfheimer at al. (1990) showed that L. monocytogenes is able 

to grow under reduced oxygen concentrations and is relatively unaffected by high CO2-

concentrations. In the study, the microorganism, inoculated on raw chicken stored at 4°C 

under 72.5% CO2 / 22.5% N2 / 5% O2, reached bacterial counts of 108 cfu/g after 20 days. In 

contrast, the absence of oxygen resulted in growth stagnation. 
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Figure 4.1 Development of Listeria monocytogenes on poultry fillets stored under two 

different gas atmospheres. 

 

Influence of the natural spoilage background flora on the growth of Listeria 

monocytogenes  

Figure 4.2 shows the development of the spoilage microflora in presence of inoculated 

Listeria monocytogenes during storage under nitrogen or oxygen enriched gas mixtures. The 

development of TVC is nearly the same for both investigated gas mixtures (Table 4.1). 

Regarding the development of the spoilage bacteria, the results show that the development 

of the flora is strongly influenced by the used gas atmosphere. 

L. monocytogenes and Pseudomonas spp. 

Comparing the growth of Pseudomonas spp., the microorganisms show a comparable 

growth under both atmospheres with the same duration of the lag phases (83h) and 

comparable maximum bacterial counts at the end of storage (N2:7.8 log10cfu/g and O2: 7.4 

log10cfu/g). Even though the bacterium is an aerobic competitor, Pseudomonas spp. is able 

to grow up to oxygen concentrations of 1% O2 (Clark & Burki 1972). During storage of the 

samples, a residual oxygen concentration of approximately 1% was detected. Similar results 

were reported by Fraqueza & Barreto (2009) during storage of turkey meat (100% N2 and 

50% Ar / 50% N2) and Herbert et al. (2013) during storage of skinless poultry breast fillets 

(82% N2 / 18% CO2 and 82% Ar / 18% CO2). Also Chouliara et al. (2008) showed a good 
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growth of Pseudomonas spp. under 70% N2 / 30% CO2. Even through Pseudomonas spp. 

shows an analogous growth under both atmosphere, the growth is slightly reduced under 

70% O2 compared to the 70% N2 containing atmosphere, which is reflected in the calculated 

growth rate (N2: 0.024h-1 and O2: 0.016h-1) This is presumably related to the formation of 

oxygen radical species which leads to an inhibition of growth. Also the results of Jacxsens et 

al. (2001) underline the results of the present study. The authors showed an increased 

sensitivity towards oxygen concentrations between 70-95% for Pseudomonas fluorescens, 

whereas the growth was favoured under 5% O2. Also Amanatidou et al. (1999) reported a 

reduced growth of Pseudomonas fluorescens in vitro at high oxygen atmospheres.  

Marshall et al. (1992) published that Pseudomonas spp. seems to support the growth of L. 

monocytogenes. For milk, it has been shown that the growth of L. monocytogenes is 

favoured in the presence of Pseudomonads (Marshall et al. 1988). Marshall & Schmidt 

(1991) concluded, that the hydrolyses of proteins due to Pseudomonads and the formation 

of free amino acids stimulates the proliferation of L. monocytogenes. Also Mattila-Sandholm 

& Skyttä (1991) reported an inhibitory effect of Pseudomonads on the growth of L. 

monocytogenes in a medium prepared from minced beef meat. Carlin et al. (1996) showed 

in a liquid endive leafs media that high numbers of Pseudomonas spp. reduced the growth of 

L. monocytogenes. But the authors also accentuated that the effect of a single isolates varied 

between the experiments. In contrast, Farrag & Marth (1989) found nearly no effect in 

delaying the growth of L. monocytogenes by Pseudomonas spp. in Tryptose broth.  

The results of the present study lead to the conclusion, that Pseudomonas spp. seems to 

have nearly no influence in delaying or supporting the growth of Listeria on natural meat 

because of the slightly difference in growth during storage under both atmospheres. It has 

to be taken into account also, that the reported interactions between Pseudomonas spp. 

and Listeria observed in the studies carried out with isolated species of Pseudomonads. Such 

data are often not comparable to meat.  

L. monocytogenes and Brochothrix thermosphacta 

The growth of B. thermosphacta is slowed down under 70% N2 / 30% CO2 compared with the 

oxygen enriched atmosphere, achieving a maximum microbial count of 6.6 log10cfu/g in 

comparison to 8.5 log 10cfu/g (Table 4.1). The microorganism is a psychrotrophic, facultative 

anaerobic competitor and prefers to grow under oxygen containing atmospheres (Gribble & 

Brightwell 2013). Therefore B. thermosphacta dominates the spoilage flora under the oxygen 

enriched atmosphere. The microorganism is often associated with spoilage of meat under 

MAP conditions (Labadie 1999, Kreyenschmidt & Ibald 2012, Gribble & Brightwell 2013). 

Further on, the microorganism is relatively unaffected by CO2 (Branscheid et al. 2007), which 
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explains the favored growth during the trials. Regarding the growth of L. monocytogenes in 

presence of B. thermosphacta under O2 enriched atmospheres, the growth of L. 

monocytogenes seems to be suppressed when B. thermosphacta dominates the flora. These 

results are also in accordance to Tsigarida et al. (2000). The authors demonstrated a growth 

inhibition of L. monocytogenes by B. thermosphacta either on naturally contaminated and 

sterile beef surface under MAP and vacuum conditions. Greer & Dilts (2006) reported for 

Brochothrix campestris to inhibit L. monocytogenes in All Purpose Tween broth or on discs of 

pork adipose tissue at 4°C by producing a bacteriocin. However, a bactericin production was 

not tested in the present study. Ludwig et al. (1984) demonstrated a strong relationship 

between L. monocytogenes and B. thermosphacta by 16S rRNA analyses. This close 

relationship is presumably a reason for the reduced growth of L. monocytogenes in the 

presence of B. thermosphacta during the storage tests. Due to the fact that meat is an 

ecological nice especially for B. thermosphacta (Labadie 1999), the microorganism is optimal 

adapted to the meat matrix and seems to have a selective advantage due to nutrient 

competition in comparison to L. monocytogenes.  

L. monocytogenes and Enterobacteriaceae 

Enterobacteriaceae play a subordinated role under both gas atmospheres. The 

microorganisms are mesophilic and their growth is reduced due to the refrigerated 

temperature of 4°C during storage (Smolander et al. 2004). Considering the growth 

characteristics under MAP conditions, the nitrogen containing atmosphere seems to retard 

the growth of Enterobacteriaceae at the beginning of storage, which is reflected in the 

prolongation of the lag phase compared to the O2-CO2 mixture (N2: 134h / O2: 35h). This is 

presumably related to the facultative anaerobic properties of the bacterium, which prefers 

oxygen to multiply. During storage, Enterobacteriaceae show a similar growth under both 

gas atmospheres (Figure 4.2), reflected in a similar maximal microbial count under both gas 

atmospheres (N2: 6.7 log10cfu/g and O2: 7.2 log10cfu/g). After 250h the bacterial counts of 

Enterobacteriaceae under both atmospheres achieve 5 log10cfu/g, where the shelf life under 

these conditions has been exceeded already (Rossaint et al. 2014). Therefore it can be 

concluded that the growth of Enterobacteriaceae has presumably no effect on the growth 

development of L. monocytogenes. Also Tsigarida et al. (2000) stated out, that 

Enterobacteriaceae played a minor role on vacuum and MAP packed beef meat fillets and 

were not considered as competitors for Listeria. In contrast, Francis & O`Beirne (2002) 

reported a significant reduction in Listeria inoccua (in lieu of L. monocytogenes) in liquid 

lettuce medium by Enterobacter cloacae, whereas Enterobacter sakazakii caused a slightly 
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growth reduction. Therefore, an inhibitory effect by Enterobacteriaceae on the growth of L. 

monocytogenes seems to be related to the composition of the species present on poultry.  

L. monocytogenes and Lactobacillus spp.  

Lactobacillus spp. shows a slightly favoured growth under the nitrogen enriched 

atmosphere, reflected in the growth rate (N2: 0.027h-1 and O2: 0.012h-1) and the population 

density at the end of storage (N2: 5.8 log10cfu/g and O2: 4.9 log10cfu/g). But their growth 

becomes not dominant over the entire storage period in both atmospheres and the bacteria 

plays a minor role for the spoilage process of MAP poultry. Similar results were reported by 

Herbert et al. (2013) und Rossaint et al. (2014). Generally, Lactobacillus spp. belong to a slow 

growing group of microorganisms and they preferably to grow under anaerobic conditions 

and are highly tolerant towards high levels of CO2 (>50%) (Huis in`t Veld 1996, Jay et al. 

2005). In the present study, relatively low CO2 (30%) concentrations occur and resulting 

additionally in a reduced growth of Lactobacillus spp. Regarding the effect of Lactobacillus 

spp. on the growth of L. monocytogenes, it is reported that the microorganisms are able to 

inhibit the growth of L. monocytogenes in various food products due to bacteriocin 

production, when Lactic acid bacteria reach high counts (Hugas 1998). Bredholt et al. (2001) 

showed that Lactobacillus sakei inhibited the Listeria growth in cooked, sliced vacuum 

packed meat. Nilsson et al. (1999) reported an inhibition of L. monocytogenes by 

Lactobacillus spp. in cold-smoked salmon. In the present study, Lactobacillus spp. seems to 

have no effect on the growth of L. monocytogenes due to the minor quantities of the 

bacteria under both atmospheres. Also Malakar et al. (2003) stated out that interactions 

between Lactobacillus spp. and L. monocytogenes only occur at very high of population 

densities of LAB (107cfu/ml). These results are also in accordance to Barakat & Harris (1999), 

who showed that the growth of L. monocytogenes was not inhibited in the presence of 

various naturally Lactobacillus species on cooked modified atmosphere packed poultry 

under 44% CO2 / 56% N2. Therefore, the inhibition of Listeria due to LAB seems to be 

strongly dependent from the prevailing Lactobacillus species, able to produce antilisterial 

compounds, as also stated out by Hwang & Sheen (2011).  
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Figure 4.2 Development of natural spoilage flora and L. monocytogenes on poultry breast 

fillets stored under tow different atmospheres.  
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Table 4.1 Calculated growth parameters of the investigated microorganisms (Gompertz 

function). 

Atmosphere 70% N2/30% CO2 70% O2/30% CO2 

Growth parameter tlag 

[h] 

growth 

rate [1/h] 

Nmax 

[log10cfu/g] 

tplateau tlag 

[h] 

growth 

rate [1/h] 

Nmax 

[log10cfu/g] 

tplateau 

TVC 58 0.029 8.4 188 54 0.022 8.8 235 

Pseudomonas spp. 83 0.024 7.8 235 83 0.016 7.4 297 

B. thermosphacta 48 0.022 6.6 207 43 0.023 8.5 223 

Enterobacteriaceae 134 0.023 6.7 282 35 0.014 7.2 361 

Lactic acid bacteria 124 0.027 5.8 209 169 0.012 4.9 294 

Listeria 

monocytogenes 

70 0.012 5.7 306 - - 2.5 - 

 

Development of the Quality Index 

The Quality Index (QI) increases for poultry, with increasing storage time for both used gas 

atmospheres. A quality index of 2.5 was taken as the lower limit of acceptability, 

corresponding to initial deteriorative changes regarding colour, odour, texture, general 

appearance and drip loss (Figure 4.3). According to Rossaint et al. (2014), no significant 

difference in the development of sensory shelf life using oxygen or nitrogen enriched 

atmospheres could be conducted. In the present study, shelf life of poultry meat was 

prolonged by approximately 40h during storage under the O2-CO2 mixture compared to the 

N2-CO2 mixture. This was mainly related to slightly differences in color ond odor. Animal 

specific factors like age, sex, moisture content or processing can have an influence on meat 

color development (Totosaus et al., 2007).The changes in odor are presumably related to the 

differences in the bacterial diversity due to individual oxygen requirements. The bacterial 

load of L. monocytogenes at the end of shelf life under the N2-CO2 mixture reached a level of 

3.1 log10cfu/g. According to the EU (No) 2073/2005 the concentration of L. monocytogenes 

should be lower than 100 cfu/g food at the time of consumption. The growth development 

of L. monocytogenes under the nitrogen atmosphere can be critical for human consumption. 

The counts of L. monocytogenes under the oxygen containing atmosphere stayed relatively 

constant (approximately 2.3 log10cfu/g) throughout the entire storage period. Therefore, the 

use of the high oxygen atmosphere can be recommended in comparison to the oxygen free 
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atmosphere. Due to prolongation of shelf life using MAP treatment by delaying the growth 

of spoilage bacteria, it is possible that pathogenic bacteria achieve high levels and produce 

toxins before the spoilage of the food occurs, as proposed by Farber et al. (2003). Also Bohm 

(2006) stated out that most pathogenic bacteria are facultative anaerobic bacteria and the 

absence of oxygen in the atmosphere enables an unheeded outgrows.  

 

Figure 4.3 Development of the Quality Index. 

 

Development of the gas atmosphere 

Within the first 24 hours of storage, the CO2 concentration shows a small decrease 

(approximately 2%) in all packages (data not shown). This is related to the high solubility of 

carbon dioxide in the fat tissue and water on the meat surface (Gill 1988, Betts 1995). Similar 

results for MA packed meat were reported by Parra et al. (2010) and Herbert et al. (2013). 

During storage, CO2 concentrations increased slowly due to metabolic CO2 production of 

bacteria and meat enzymes (Abdullah et al. 1994). For the packaging under 70% O2 / 30% 

CO2, an O2 depletion is shown. The oxygen levels inside the trays show a continuous 

decrease during storage to a final concentration of to approximately 65% at the end of 

storage, which is caused by microbiological consumption of O2, the respiration of meat 

enzymes and gas exchanges between the gas composition inside the trays and the 

environment (Mullan & McDowell 2003, Esmer et al. 2011). 
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4.5 Conclusion 

Regarding the used gas mixture, it can be summarized that the use of high oxygen in 

combination with 30% CO2 is effective in suppressing the growth of L. monocytogenes. Also 

the sensory evaluation resulted in a longer shelf life compared to the N2-CO2 mixture. The 

contribution of each microorganism to the spoilage process was affected by the MAP 

conditions. Under high oxygen atmosphere, the growth of L. monocytogenes was delayed 

during the entire storage period, which is presumably related to the dominance of 

Brochothrix thermosphacta and the mixture of O2 with CO2. Under high nitrogen atmosphere 

no specific microorganism could be identified responsible for the favoured growth of 

Listeria. Due to the fact that 70% O2/30% CO2 as well as 70% O2/30% CO2 gas mixtures were 

commonly used in Europe for the packaging of poultry meat, the results of the present study 

indicate that the use of high O2 atmospheres enriched with CO2 are safer then the nitrogen 

enriched atmospheres for the packaging of poultry fillets. But also pathogenic bacteria like 

Staphylococcus aureus and Camphylobacter spp. are important microorganisms occurring on 

poultry meat. Therefore, further research is needed consider also possible effects of the 

investigated gas atmospheres on the growth of other pathogenic bacteria. To gather precise 

information about interactions of pathogens with spoilage microorganisms, further 

investigations have to be performed on naturally meat surface to consider also the influence 

of different subspecies and their by-products on the growth behaviour of pathogenic 

microorganisms. 
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food safety and shelf life. oral Presentation, 3rd Food Spot Workshop, 20th May, Gent, BE. 

Wimpfheimer, L., N. S. Altman, J. H. Hotchkiss (1990). Grwoth of Listeria monocytogenes 

Scott A, serotype 4 and competitive spoilage organisms in raw chicken packaged under 

modified atmospheres and in air. International Journal of Food Microbiology, 11:205-214. 
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5. Comparison of argon-based and nitrogen-based modified atmosphere 

packaging (MAP) on bacterial growth and product quality of chicken 

breast fillets
 

5.1 Abstract 

Poultry fillets were packaged under 6 different gas atmospheres (A: 15% Ar, 60% O2, 25% 

CO2; B: 15% N2, 60% O2, 25% CO2; C: 25% Ar, 45% O2, 30% CO2; D: 25% N2, 45% O2, 30% CO2; 

E: 82% Ar; 18% CO2; F: 82% N2, 18% CO2) and stored at 4°C. During storage the growth of 

typical spoilage organisms (Brochothrix thermosphacta, Pseudomonas spp., 

Enterobacteriaceae and Lactobacilli spp.) and Total Viable Count were analysed and 

modelled by using the Gompertz function. Sensory analyses of the poultry samples were 

carried out by trained sensory panellists for colour, odour, texture, drip loss and general 

appearance. No significant difference in microbiological growth parameters was observed 

for fresh poultry stored under an argon-enriched atmosphere in comparison to nitrogen, 

except the B. thermosphacta stored under 82% argon. The sensory evaluation showed a 

significant effect of an argon-enriched atmosphere, particularly on colour of meat stored 

under 15% argon (p < 0.05). In contrast, 25% and 82% argon concentrations in place of 

nitrogen showed no beneficial effect on sensory parameters. 

 

 

 

 

 

 

 

 

Article has been published in Poultry Science, see list of publications (Herbert et al. 2013). 
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5.2 Introduction 

Recently, there is an increasing interest by the food industry and gas producer for effective 

gas mixtures to further extend the shelf life of fresh and/or processed food products (Day, 

1995; 2007). The three traditional gases for modified atmosphere packaging are oxygen, 

carbon dioxide and nitrogen (Farber, 1991; Rao & Sachindra, 2002; Floros & Matsos, 2005). 

Argon, as an alternative to nitrogen (Day, 2007), has recently been allowed to be used for 

MAP in the European Union (EU 1995, Directive 92/02/CE) with the properties of being inert, 

odourless and tasteless (Greenwood & Earnshaw, 1998). Although inert, argon is suggested 

to have biochemical activities such as interference with oxygen receptor sites of enzymes 

and protein conformation change. Furthermore, argon displaces oxygen more effectively 

than nitrogen. This is possibly based on its similar atomic size to molecular oxygen and its 

improved water solubility (0.034 vs 0.016 gL-1) and higher density (1.650 vs 1.153 kg/m3) 

compared to nitrogen (Spencer, 1995; 2005). Regarding the inhibitory activity against 

bacterial growth, argon was suggested to have a better solubility in fat, resulting improved 

membrane permeability of CO2, salts, acids to bacterial cells (Betts, 1995). Several studies 

were conducted to investigate the effect of argon on enzyme activities and sensory 

characteristics in the field of fruits and vegetables (Zhang et al. 2008, Wu et al. 2012, Zhang 

et al. 2001, Rocculi et al. 2005, O`Beirne et al. 2011, Jamie & Saltveit 2002). Also, 

controversial results were reported for meat and meat products. A study of packed turkey 

meat in an argon-CO2-mixture reports an inhibitory effect on total anaerobic counts, total 

psychotropic counts and B. thermosphacta with 1 log difference after the 25 days of storage, 

in comparison to nitrogen, but no effect on lipid oxidation (Fraqueza & Barreto, 2009). 

Tománková et al. (2012) compared the effect of 70% O2/30% CO2 and 70% Ar/30% CO2 for 

the packaging of poultry meat. The authors showed that argon leads to an increase in the 

microbiological growth and an unpleasant odour compared to the oxygen containing 

atmosphere.  The storage of pork sausages under an argon-enriched atmosphere also shows 

no effect on microbiological growth and biogenic amines, whereas sensory evaluation 

achieved the most effective scores using an argon atmosphere, in contrast to nitrogen or 

vacuum packaging (Ruiz-Capillas & Jiménez-Colmenero, 2010). Curiel et al. (2011) 

investigated in vitro the biogenic amine production of lactic acid bacteria and 

Enterobacteriaceae isolated from pork sausages packed in different atmospheres. The 

authors found an inhibition of Carnobacterium divergens under an argon atmosphere after 

28 day storage, but the argon atmosphere also seemed to favour the growth of agmatine-

producing Enterobacteriaceae in comparison to nitrogen. Parra et al. (2010) reported no 
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significant differences in dry-cured Iberian ham quality while storing the samples under 

argon or nitrogen atmospheres.  

Recently, there has been a lack of information about the effect of argon in MAP application 

on the quality and shelf-life of fresh meat. Therefore, the aim of the study was to investigate 

and compare the development of typical spoilage microorganisms, sensory parameters, gas 

composition and pH during storage of fresh poultry fillets under different argon- and 

nitrogen-containing atmospheres.  

5.3 Materials & Methods 

Preparation of meat samples and packaging 

Unsexed 42-days-old-broiler chickens (Ross 308/708) were slaughtered and air-chilled in a 

poultry processing plant in Germany. The skinless double-breast chicken fillets were 

transported from the poultry slaughter plant to a wholesaler and forwarded to the 

laboratory under temperature-controlled conditions in isolated boxes with cooling packs. 

The first investigation started within 24 hours after slaughtering. In the laboratory, the 

double-breast fillets were divided into single fillets using a sterile scalpel. Half of each 

double-breast fillet was packaged in an atmosphere containing argon; the other half was 

packed with an equivalent nitrogen concentration.  

The chicken breast fillets were placed in polypropylene trays (R. Fearch Plast A/S, Holstebro, 

Denmark). Tray volume was 680 ml and approximately 230 g meat samples were packaged 

to achieve a package headspace to meat ratio of nearly 3:1. The meat samples were 

packaged under six different modified atmospheres (A: 15% Ar, 60% O2, 25% CO2; B: 15% N2, 

60% O2, 25% CO2; C: 25% Ar, 45% O2, 30% CO2; D: 25% N2, 45% O2, 30% CO2; E: 82% Ar; 18% 

CO2; F: 82% N2, 18% CO2). Thereafter, the trays were heat-sealed with a polypropylene foil 

(Suedpack Verpackungen GmbH & Co. KG, Ochsenhausen, Germany; water vapour 

permeability < 3.5 g/m2d at 23°C / 85% RH; oxygen permeability </=1.5 cm2/m2d bar at 23°C 

/ 35% RH) for 3 s/175°C using a tray sealer packaging machine (Traysealer T200, Multivac 

Sepp Haggenmüller GmbH & Co. KG, Wolfertschwenden, Germany). Gas mixtures were 

prepared by a four-component gas blender machine (KM 60-4 MEM SO, Witt Gasetechnik, 

Witten, Germany). The packaged meat samples were stored at 4°C between 450 and 570 h 

according to the used gas mixture in low-temperature high precision incubators (Sanyo 

model MIR 153, Sanyo Electric Co., Ora-Gun, Gumma, Japan). Storage temperature was 

monitored by data logger (ESCORT JUNIOR Internal Temperature Data Logger, Escort, New 
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Zealand) every 5 minutes. The microbiological, sensory and chemical analyses were 

conducted at appropriate time intervals. Each measurement was repeated three times. 

Microbiological analyses 

Immediately after opening the packages, the amount (25g) of meat surface sample in size of 

4 x 7 x 0.5 cm was aseptically taken using a sterile scalpel, which was transferred to a filtered 

sterile stomacher bag and filled with 225 ml saline peptone diluent (0.85 % NaCl with 0.1% 

peptone Saline-Tablets, Oxoid BR0053G, Cambridge, United Kingdom). Samples were 

blended with a Stomacher 400 (Kleinfeld Labortechnik, Gehrden, Germany) for 60 s. Ten-fold 

dilutions of the sample rinsates were prepared in saline peptone diluents. Total Viable Count 

(TVC), Pseudomonas spp., B. thermosphacta, Enterobacteroaceae and Lactobacilli spp. in 

rinsates were enumerated. 

Total Viable Count was determined by pour plate technique on Plate Count Agar (PCA, 

Merck, Darmstadt, Germany) and plates were incubated at 30°C for 72 hours.  

Presumptive Pseudomonas spp. were detected by spread plate technique on Pseudomonas 

Agar with Cetrimide-Fucidin-Cephalosporin selective supplement (CFC, Oxoid, Cambridge, 

United Kingdom). Plates were incubated at 25°C for 48 hours.  

Presumptive B. thermosphacta was detected by drop plate technique and counted on 

Streptomycin Inosit Toluylene Red Agar (SIN-Agar) according to Hechelmann (1981). Petri 

dishes were incubated at 25°C for 48 hours.  

Presumptive Enterobacteriaceae were identified by overlay treatment on Violet Red Bile 

Dextrose Agar (VRBD, Merck, Darmstadt, Germany) by incubation of the agar plates at 30°C 

for 48 hours.  

Presumptive Lactobacilli spp. were detected by pour plate technique on de Man, Rogosa, 

Sharpe Agar (MRS, Oxoid, Cambridge, United Kingdom). Plates were incubated aerobically at 

37°C for 72 hours.  

Counts of colony forming units were expressed as log10cfu/g for each medium and sample.  

Sensory evaluation 

Sensory analyses were carried out by 6 trained sensory panelists. All assessors were 

recruited from the Institute of Animal Science (University of Bonn) and experienced in 

poultry evaluation. For the trials, panelists were intensively trained one time for round about 

1 hour before the investigation started. For the training, all participants had to describe and 

define typical sensory attributes (colour, odour, texture, drip loss) at different stages of 
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spoilage during storage of poultry fillets. A picture of fresh chicken breast fillets was used as 

reference.  

During the trials with different argon or nitrogen mixtures inside the package, each sample 

was evaluated directly after opening the tray, using a developed sensory scheme according 

to the Quality Index Method (QIM) for fish evaluation (Bremner, 1985).  

Attributes were defined as general appearance (G), colour (C), odour (O), texture (T) and drip 

loss (D). Changes of the attributes were expressed in a 5-point scoring system. The lower the 

score, the better the quality and freshness of the product. A weighted quality index (QI) was 

calculated by the following equation (Kreyenschmidt, 2003): 

 

8

21122 ODTCG
QI

++++=   (1.1) 

 

The end of sensory shelf life was defined as a QI of 2.5. 

Gas analysis 

Concentrations of oxygen and carbon dioxide inside the trays were monitored over the 

storage period, using a hand-held gas analyser (Oxybaby V O2/CO2, Witt Gasetechnik, 

Witten, Germany). Before starting the gas measurement inside the trays, the composition of 

air was analysed to control the accuracy of the gas analyser. Headspace in packages was 

sampled, using a syringe needle to withdraw 10 ml of headspace gas through a self-adhesive 

sealing pad in the package. Gas volume was absorbed in 15 seconds and the oxygen 

concentration was detected by an electrochemical sensor; carbon dioxide concentration was 

detected by IR-absorption. Control packages containing no meat samples were stored as 

reference and the gas composition was also monitored over the entire storage period.  

pH-measurement 

The pH of the meat samples was measured over the entire storage period, using a portable 

pH-meter (Escort Junior EJ-2E-D-16L, Escort, Auckland, New Zealand). Three measurements 

were performed for each meat sample, by placing the electrode onto the meat surface and 

an average pH-value was calculated.  
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Primary Modelling  

The Gompertz equation was used to model the growth of the total viable count, 

Enterobacteriaceae, Pseudomonas spp., Brochothrix thermosphacta and Lactobacillus spp. as 

a function of time (Gibson et al., 1987).  

 

)(

)(
MtBeeCAtN

−⋅−−⋅+=     (1.2)    

 

with N(t): microbial count [log10cfu/g] at any time, A: lower asymptotic line of the 

growth curve (initial bacterial count), C: difference between upper asymptotic line of 

the growth curve (Nmax= maximum population level) and the lower asymptotic line; B: 

relative maximum growth rate at time M [h-1], M: time at which maximum growth 

rate is obtained (reversal point), and t is time. 

 

The microbiological growth data were fitted using the statistical software program Origin 

8.0G (OriginLab Corporation, Northampton, Ma., U.S.A.). 

Statistical analysis 

Man-Whitney-U-test was used to make comparisons between sensory colour evaluation, pH-

values and the measured counts of colony forming units with a level of significance of 0.05. 

SPSS statistics 20 for Windows was used. 

5.4 Results & Discussion 

Comparison of the spoilage process under various gas concentrations 

Figure 5.1 shows the development of Total Viable Count and specific spoilage 

microorganisms on chicken breast fillets, packaged under different argon- and nitrogen-

containing atmospheres at a constant temperature of 4°C.  
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Figure 5.1 Growth of the spoilage microflora under different argon (left) and nitrogen (right) 

concentrations fitted with the Gompertz model, n=3. 

 

Argon or nitrogen treatments of 15% show no significant effect on the growth of typical 

spoilage organisms (Table 5.2). The development of bacterial growth curves and the 

calculated growth rates (Table 5.1) are almost the same for both atmospheres.  
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Table 5.1 Development of growth parameter during storage of poultry under different 

atmospheres calculated with the Gompertz function. 

 

Gas concentration 

15% 

Ar/60% 

O2/30% 

CO2 

15% 

N2/60% 

O2/30% 

CO2 

15% Ar/60 % 

O2/30% CO2 

15% N2/60% 

O2/30% CO2 

 µmax [h
-1

] Duration of lag-phase [h] 

TVC 0.018 0.017 82.38 84.37 

Brochothrix 0.031 0.026 78.04 100.89 

Pseudomonas spp. 0.014 0.013 18.73 34.37 

Enterobacteriaceae 0.014 0.011 130.51 83.51 

Lactobacillus spp. 0.007 0.005 233.57 232.52 

Gas concentration 

 

25%Ar/45% 

O2/30% 

CO2 

25% 

N2/45% 

O2/30% 

CO2 

25% Ar/45% 

O2/30% CO2 

25% N2/45% 

O2/30% CO2 

 µmax [h
-1

] Duration of lag-phase [h] 

TVC 0.021 0.019 76.30 77.70 

Brochothrix 0.034 0.028 72.70 78.14 

Pseudomonas spp. 0.018 0.016 29.67 15.04 

Enterobacteriaceae 0.016 0.017 40.87 77.54 

Lactobacillus spp. 0.012  309.70  

Gas concentration 

82% 

Ar/18% 

CO2 

82% 

N2/18% 

CO2 

82% Ar/18% 

CO2 

82% N2/18% 

CO2 

 µmax [h
-1

] Duration of lag-phase [h] 

TVC 0.024 0.035 98.09 89.41 

Brochothrix 0.060 0.090 94.22 86.13 

Pseudomonas spp. 0.021 0.020 13.90 17.37 

Enterobacteriaceae 0.019 0.018 28.58 27.67 

Lactobacillus spp. 0.012 0.012 84.25 102.99 
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Table 5.2 Comparison of argon and nitrogen atmospheres on the growth of spoilage bacteria 

(level of significance p < 0.05). 

Ar / N2 concentration 15% Ar/15% N2 25% Ar/25% N2 82% Ar/82% N2 

Microorganism Significance 

TVC 0.10 0.60 0.98 

Brochothrix 

thermosphacta 

0.45 0.54 0.28 

Pseudomonas spp. 0.46 0.93 0.57 

Enterobacteriaceae 0.46 0.48 0.96 

Lactobacillus spp. 0.13 0.30 0.93 

 

Storing the samples under low argon or nitrogen atmospheres (15%), the microbiological 

spoilage flora is dominated by Lactobacilli spp. at the beginning of storage. During storage, 

counts of Pseudomonas spp., Enterobacteriaecea and B. thermosphacta become dominant 

with B. thermosphacta being the predominant microorganism after approx. 210h (Figure 

5.1). These results agree with other studies, where B. thermosphacta is also associated with 

spoilage under MAP-conditions (Nychas & Drosinos, 2000; Borch et al., 1996; Pin et al., 

2002). The number of Lactobacilli spp. remains relatively constant throughout the entire 

storage period (Table 5.1) and plays a minor role in the spoilage flora. This is due to the fact 

that Lactobacilli spp. belong to a slow-growing group of bacteria and their growth is 

favoured by anaerobic conditions or/and high amounts of CO2 in a gas mixture. Lactobacilli 

spp. are also mesophilic bacteria and their slow growth is probably related to the cold 

storage temperature (Jay et al., 2005).  

The storage under 25% argon- or nitrogen-enriched atmosphere also shows no significant 

differences in microbiological growth between both gas mixtures (Table 5.2). The 

comparison of growth revealed that growth of Lactobacilli spp. was constant during storage, 

while B. thermosphacta becomes dominant in both gas mixtures used. The growth of 

Enterobacteriaceae and Pseudomonas spp. also shows the same trend comparing argon- and 

nitrogen-containing atmospheres (Table 5.1). However, the maximum number of 

Enterobacteriaceae at the end of storage (25% Ar/N2) is approximately 1 log level higher in 

comparison to the 15% Ar/N2-atmosphere. This is presumably due to the fact that 

Enterobacteriaceae are facultative anaerobic bacteria, which grow preferably under oxygen 

conditions. However, concentrations up to 60%, as used in the first trials, slow down the 

growth of microorganisms and yeasts, because of the formation of oxygen radical species, 
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which leads to an inhibition of aerobic and anaerobic microbial growth (Amanatidou, 2001; 

Jacxsens et al., 2001).  

The storage of the poultry samples under 82% argon- or 82% nitrogen-enriched atmospheres 

shows different effects on the spoilage of particular microflora. A high concentration of 

argon or nitrogen (82%) and the absence of oxygen lead to an increase of the growth of 

Lactobacilli spp. Pseudomonas spp. also shows a stable growth, even though these 

microorganisms are aerobic. Clark & Burki (1972) also showed the growth stability of 

Pseudomonas spp. at oxygen concentrations of less than 1%. In these trials, a residual 

oxygen concentration of approximately 2% was monitored inside the trays. Similar results 

were shown by Fraqueza & Barreto (2009). The storage of turkey meat under 100% N2 and 

50% Ar / 50% N2 also resulted in good growth of Pseudomonas spp. of up to 7 log10cfu/g 

after 15 days of storage.  

Ar/CO2-mixture was the most effective in delaying the growth of B. thermosphacta (Table 

5.1: Ar: 0.060 h-1 / N2: 0.090 h-1), but not significant (Table 5.2). Similar results were reported 

in a study by Fraquezza & Barreto (2009) for the growth of B. thermosphacta during the 

storage of turkey meat under a 50% Ar – 50% CO2 atmosphere. This effect was explained by 

the biological activity of argon (Betts, 1995). It seems that argon works synergistically and 

supports the penetration of CO2 into some microorganism species, while becoming dissolved 

into the lipid membrane, leading to a delay of microbial growth. But no effect on the residual 

spoilage flora was observed using argon or nitrogen. 

Comparison of sensory evaluation under various argon and nitrogen concentrations 

The development of the Quality Index (QI) and meat colour during storage under different 

argon and nitrogen treatments is illustrated in Figure 5.2. The Quality Index (QI) increases 

linearly for poultry, with increasing storage time for all gas mixtures used. Storage of chicken 

breast fillets under 25% or 82% Ar/N2-enrichment has no beneficial effect on the Quality 

Index or on surface meat colour. Comparing the Quality Index under 15% argon with 15% 

nitrogen concentrations in the mixture, samples stored under nitrogen atmosphere achieve 

the Quality Index (QI = 2.5) approximately 100 hours earlier than samples stored under 

argon atmosphere. The differences in Quality Index development between 15% Ar/N2-

atmospheres were mainly based on the evaluation of meat colour. The results of the sensory 

colour evaluation showed a significant difference (p < 0.05) throughout the storage period 

after packaging under a 15% argon-containing atmosphere in comparison to the nitrogen 

packages. However, the effect differed between samples. Spencer (1995, 2002) reported 

that argon is supposed to show a biological activity due to its physical and chemical 

properties. However, Prangé et al. (1998) demonstrated that noble gases may interact with 
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proteins as a result of non-covalent van der Waals forces and build up a complex with 

myoglobin. This effect could be an explanation for the beneficial colour evaluation of 

samples stored under 15% argon. Parra et al. (2010) also found a positive effect on colour 

development of Iberian ham. Samples packed under 70% Ar/30% CO2 showed higher a-

values after 60 days than samples packed in nitrogen-containing atmospheres or under 

vacuum. Ruiz-Capillas and Jiménez-Colmenero (2010) also reported that argon in a gas 

mixture leads to a positive effect on the sensory evaluation of pork sausages. However, this 

took into account that, besides packaging conditions, the surface meat colour of poultry is 

additionally influenced by several factors such as age, sex, meat moisture content, pre-

slaughter conditions and processing variables (Faustmann, 1990; Totosaus et al., 2007). 

Therefore, process- and animal-specific factors seem to have an additional effect on color 

development, because the meat colour stability could only be observed for parts of the 

samples. O`Beirne et al. (2011) pointed out that potential benefits of argon-containing 

atmospheres seem to be relatively small and need critical enzyme, substrate, and gas levels 

to be successful. 
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Figure 5.2 Development of quality index and poultry meat color under different argon and 

nitrogen concentrations, n=3. 
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Development of gas composition 

During the first 24 hours after MAP, CO2 concentration shows a small decline in all packages 

(data not shown). This is due to the high solubility of CO2 to lipid and water on meat surface 

(Betts, 1995; Parra et al., 2010). The maximum CO2-decline (5%) was in 82% argon-

containing packages while the minimum decline (2%) was seen in nitrogen-containing 

packages. The results indicate that the decline is possibly caused by the higher solubility of 

argon and therefore the synergistic effect with other gases like CO2, as proposed by Betts 

(1995). Furthermore, relative changes in the gaseous atmosphere were small and showed 

the most changes within packs containing low oxygen levels.  

These findings are in accordance with O`Grady et al. (2000). The oxygen levels inside the 

trays were very small but decreased continuous during storage, potentially due to 

microbiological consumption, meat enzyme respiration, and gaseous exchanges between the 

trays and the environment (Mullan & McDowell, 2003; Yam et al., 2005; Esmer et al., 2011). 

Development of pH value  

Broiler breast pH at 24h post mortem varied between 5.7 and 6.2 (data not shown), which is 

also described by Lund & Eklund (2000). During storage, the pH value was not significantly 

influenced by any gas mixture used (p > 0.05). No differences could be observed using argon 

or an equivalent amount of nitrogen in the atmosphere. In contrast, several authors 

reported a decline of meat pH under CO2-containing atmospheres (Giménez et al., 2002; 

Martinez et al., 2005; Rotabakk et al., 2006). This effect is explained by its high solubility in 

muscle and fat, which leads to the formation of carbonic acid (Daniels et al., 1985). However, 

Jakobsen & Bertelsen (2005) pointed out that CO2, in case of 98%, becomes dissolved in 

water as carbonic acid and only a small amount dissociates into bicarbonate and hydrogen 

ions. Additionally, Devlieghere et al. (1998) reported that the initial pH of a product has a 

strong effect on the CO2 solubility. The buffering effect of meat proteins also contribute to 

no significant variations in pH while storing the meat under MAP conditions. 

5.5 Conclusion 

The comparison between nitrogen and argon in a gas mixture showed no significant 

differences in the development of typical spoilage microorganisms using atmospheres A-D 

(15% Ar or N2 / 25% Ar or N2). The gas mixture containing 82% Ar / 18% N2 was the most 
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effective in delaying the growth of B. thermosphacta, in comparison to the nitrogen 

atmosphere. Storing the samples under a 15% argon-enriched atmosphere stabilized the 

light pink colour of parts of the poultry fillets samples. In this context, it has to be considered 

that the colour of a product is the first visual impression that mainly influences the 

consumer choice at the point of sale, with meat being discounted in price or wasted due to 

surface discolouration, which leads to huge economic loss. However, it has to be taken into 

account that animal specific factors, which are not yet known, have an additional influence 

on colour particularly after slaughtering and might reduce the beneficial effect of argon. 

Therefore, further research is still needed to clarify the influence of the process- and species-

specific factors influencing on colour, particularly after argon-based MAP. In conclusion, the 

results indicate that the creation of novel argon-containing gas mixtures is a very sensitive 

process. The potential benefits are probably marginal to compensate for the increasing 

argon-cost as a noble gas and line adjustment for the argon-pack implementation. 
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6. Development of an overall quality index for modified atmosphere 

packaged (MAP) poultry fillets based on sensory and microbiological 

parameter  

6.1 Abstract 

The objective of the present study was to determine and to compare the freshness loss of 

poultry fillets stored under different conditions to develop an Overall Quality Index (OQI) for 

MAP poultry. The different storage conditions are described in detail in the previous 

chapters: (A) Different storage temperatures (chapter 2), (B) Different oxygen 

concentrations (chapter 3), (C) High oxygen and oxygen free atmospheres inoculated with 

Listeria monocytogenes (chapter 4), (D): Different argon concentrations (chapter 5). Quality 

changes of fresh poultry fillets were monitored by microbiological and sensory evaluation. 

For the microbiological evaluation, typical spoilage microorganisms (Pseudomonas spp., 

Brochrothrix thermosphacta, Enterobacteriaceae, Lactic acid bacteria) and Total viable count 

were investigated. The sensory evaluation was performed according to deteriorative 

changes of the attributes color, odor, texture, drip loss and general appearance. Afterwards, 

the microbiological and sensory data were fitted by using the Gompertz function. Based on 

selected fit parameter an Overall Quality Index was developed. The results of the study 

highlighted that the developed Overall Quality Index can be used to assess and compare the 

influence of different parameters on the spoilage rate of poultry. This allows a more 

standardized comparison of the effect of different environmental parameter on the 

freshness loss. Low storage temperature (<4°C) and the gas atmospheres containing 60% 

O2/25% CO2/15% Ar or 15% N2 showed the highest retardation of the quality loss compared 

to the commonly used gas mixture for fresh poultry fillets in Germany (70% O2/30% CO2 at 

4°C). 
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6.2 Introduction 

Nowadays, the consumer preference in meat consumption changed regarding the increased 

consumption of white meat like chicken and turkey due to the healthy nutritional profile, 

which resulted in a significantly increase of the poultry meat production during the last 

decades (Balamatsia et al. 2006). At the same time, the trend of self-service merchandising 

of fresh meat became important to cover the increased demand for fresh poultry meat and 

to ensure a good quality and a prolonged shelf life simultaneously. Therefore, the packaging 

of fresh poultry meat under modified atmospheres is steadily increasing as a preservation 

technique for the poultry meat industry.  

In food supply chains, the quality and shelf life of food products can vary due to the 

exposure to dynamic influence factors, leading to unexpected microbiological growth and 

deteriorative sensory changes. The main extrinsic influence factors to extend the shelf life 

and to maintain the quality status of fresh meat is the variation of the packaging atmosphere 

and the continuous storage under chilled temperatures (Church & Parsons 1995). The 

commonly used packaging gases are CO2, O2, and N2, which have different influences on the 

quality loss and shelf life. The main effect of CO2 is the growth inhibition of microorganisms. 

The optimal concentration of CO2 is in the range of 20-30% (Stiles 1991, Sivertsvik et al. 

2002). According to Jakobsen & Bertelsen (2002), atmospheres with higher CO2 

concentrations can act as pro-oxidant and can lead to an unpleasant color and odor of the 

meat. Therefore, changes in the color are not only related to spoiled meat (USDA 2011). O2 

is responsible to maintain the red color of the meat (Farber 1991, Phillips 1996) and to 

inhibit particular microorganisms due to their oxygen requirements (absence of oxygen) or 

oxygen radical formation, when high concentrations (>60%) occur (Amanatidou et al. 1999, 

Imlay 2003). Consequently, both gases have an effect on the microbial growth as well as on 

sensory changes. The effect is dependent on the gas mixture and the meat product itself, as 

shown in Chapter 3 and 4. Besides the two mentioned gases, also the inert gas nitrogen is 

used in gas packs. Because of the inert character, nitrogen has no direct effect on the meat 

quality or spoilage process, but it is necessary to avoid a pseudo-vacuum (Floros & Matsos, 

2005). In this context, also the application of argon as an alternative to nitrogen is discussed 

because of several potential beneficial effects (Spencer 2005). Therefore, also alternative 

gases can have an effect on the shelf life and sensory attributes, where the focus was drawn 

in Chapter 5. But also variations of the storage temperature occur in real meat supply chains 

(Raab et al. 2008). In MAP systems, temperature interruptions may cause a decrease of the 

gas functions and result in an increased growth of the typical spoilage microflora and on the 
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sensory appearance, as shown in Chapter 2. The effect of CO2 for example is reduced, when 

high temperatures occur due to the decreased solubility (Gill 1988). 

Consequently, it is evident that the extrinsic influence factors gas atmosphere and 

temperature are strongly influencing each other. This means, several studies are available 

focusing on one influence factor like temperature or the variation of the gas atmosphere. 

However, studies combining different environmental influence factors on product shelf life 

and quality loss are still missing. This makes a reliable and precise assessment and 

comparison between different gas mixtures for poultry exceptionally challenging. Therefore, 

the objective of the present study is to evaluate different gas mixtures and the influence of 

the storage temperature on MAP poultry meat on the basis of the results obtained in 

Chapter 2-5, to develop an Overall Quality Index by combining both, microbiological and 

sensory parameter. An Overall Quality Index built up the basis for a reliable assessment of 

different gas mixtures for the poultry meat industry.  

6.3 Materials & Methods 

Preparation of meat samples and packaging conditions 

42-days-old-unsexed broiler chickens (Ross 308/708) were used as test samples. The 

chickens were slaughtered and air-chilled in a poultry processing plant in Germany. 

Afterwards, the skinless double-breast chicken fillets were transported from the poultry 

slaughter plant to a wholesaler and forwarded to the laboratory under temperature-

controlled conditions in isolated boxes with cooling packs. The first investigation started 

within 24 hours after slaughtering. In the laboratory, the double-breast fillets were divided 

into single fillets using a sterile scalpel. 

The chicken breast fillets were placed in polypropylene trays (R. Fearch Plast A/S, Holstebro, 

Denmark). Tray volume was 680 ml and approximately 230 g meat samples were packaged 

to achieve a package headspace to meat ratio of nearly 2:1. The different packaging 

scenarios are shown in Table 6.1. Thereafter, the trays were heat-sealed with a 

polypropylene foil (Suedpack Verpackungen GmbH & Co. KG, Ochsenhausen, Germany; 

water vapour permeability < 3.5 g/m2d at 23°C / 85% RH; oxygen permeability </=1.5 

cm2/m2d bar at 23°C / 35% RH) for 3 s/175°C using a tray sealer packaging machine 

(Traysealer T200, Multivac Sepp Haggenmüller GmbH & Co. KG, Wolfertschwenden, 

Germany). Gas mixtures were prepared by a four-component gas blender machine (KM 60-4 

MEM SO, Witt Gasetechnik, Witten, Germany). The packaged meat samples were stored at 

4°C in low-temperature high precision incubators (Sanyo model MIR 153, Sanyo Electric Co., 
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Ora-Gun, Gumma, Japan). Storage temperature was monitored by data logger (ESCORT 

JUNIOR Internal Temperature Data Logger, Escort, New Zealand) every 5 minutes. The 

microbiological, sensory and chemical analyses were conducted at appropriate time 

intervals. Each measurement was repeated three times. 

 

Table 6.1 Overview about the tested extrinsic influence factors on MAP poultry. 

Scenarios Research  

trials 

Gas concentrations Storage 

temperatures O2 CO2 N2 Ar 

A 

Influence of 

storage 

temperature 

70% 30%   2, 4, 10, 15°C 

B 

Influence of 

oxygen 

concentration 

45% 30% 25%  

4°C 
60% 25% 15%  

70% 30%   

90%  10%  

C 

High oxygen and 

oxygen free 

atmospheres 

inoculated with 

Listeria 

monocytogenes 

70% 30%   

4°C 

 30% 70%  

D 

Different argon 

concentrations 

60% 25% 15%  

4°C 

60% 25%  15% 

45% 30% 25%  

45% 30%  25% 

 18% 82%  

 18%  82% 

 

Microbiological analyses 

After opening the packages, a representative amount (25g) of meat surface sample in the 

size of 4 x 7 x 0.5cm was aseptically taken using a sterile scalpel. The sample was transferred 

to a filtered sterile stomacher bag and filled with 225ml saline peptone diluent (0.85% NaCl 

with 0.1% peptone Saline-Tablets, Oxoid BR0053G, Cambridge, United Kingdom). Test pieces 

were homogenised with a Stomacher 400 (Kleinfeld Labortechnik, Gehrden, Germany) for 

60s. Ten-fold dilutions of the homogenate were prepared in saline peptone diluents and 
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Total Viable Count (TVC), Pseudomonas spp., Brochothrix thermosphacta, 

Enterobacteroaceae and Lactobacillus spp. were enumerated. 

Total Viable Count was determined by pour plate technique on Plate Count Agar (PCA, 

Merck, Darmstadt, Germany) and plates were incubated at 30°C for 72 hours. Pseudomonas 

spp. were detected by spread plate technique on Pseudomonas Agar with Cetrimide-Fucidin-

Cephalosporin selective supplement (CFC, Oxoid, Cambridge, United Kingdom). Plates were 

incubated at 25°C for 48 hours. B. thermosphacta was detected by drop plate technique and 

counted on Streptomycin Inosit Toluylene Red Agar (SIN-Agar) according to Hechelmann 

(1981). Petri dishes were incubated at 25°C for 48 hours. Enterobacteriaceae were identified 

by overlay treatment on Violet Red Bile Dextrose Agar (VRBD, Merck, Darmstadt, Germany) 

by incubation of the agar plates at 30°C for 48 hours. Lactobacillus spp. were detected by 

pour plate technique on de Man, Rogosa, Sharpe Agar (MRS, Oxoid, Cambridge, United 

Kingdom). Plates were incubated aerobically at 37°C for 72 hours. The determination of 

Listeria monocytogenes (ATCC 19111) was performed on Listeria Agar (ALOA, Bio Mérieux, 

Paris, France). Plates were incubated at 37°C for 24h. During storage, the presence of L. 

monocytogenes was tested on samples without inoculation treatment. The pathogenic 

bacterium was not detected. Counts of colony forming units were expressed as log10cfu/g for 

each medium and sample.   

Sensory evaluation 

Sensory analyses were carried out by trained sensory panellists. All assessors were recruited 

from the Institute of Animal Science (University of Bonn) and experienced in poultry 

evaluation. A picture of fresh chicken breast fillets was used as reference during the sensory 

evaluations.  

During the trials, each sample was evaluated directly after opening the tray, using a 

developed sensory scheme according to the Quality Index Method (QIM) for fish evaluation 

(Bremner, 1985). Attributes were defined as general appearance (G), colour (C), odour (O), 

texture (T) and drip loss (D). Changes of the attributes were expressed in a 5-point scoring 

system. The lower the score, the better the quality and freshness of the product. A weighted 

quality index (QI) was calculated by the following equation (Kreyenschmidt, 2003): 

 

8

21122 ODTCG
QI

++++=   (1.1) 

 

The end of sensory shelf life was defined as a QI of 2.5. 

 



 

 

Development of an overall quality index for modified atmosphere packaged (MAP) poultry fillets based 

Selection of relevant parameter for the

 

Quality has an objective and a subjective dimension (Grunert 2005). For the development of 

an Overall Quality Index, sensory attributes (subjective) and microbiological as well as safety 

attributes (objective) were selected, as listed in 

attributes is based on the sensory parameter

various gas mixtures.  

 

Figure 6.1 Selection of relevant parameter

 

As relevant microorganisms for the calculation of an 

spp., B. thermosphacta and Enterobacteriaceae were chosen according to the results of 

Chapter 2-4. Lactic acid bacteria played a minor role during spoilage and were not

account. L. monocytogenes was chosen exemplarily as pathogenic bacteria to simulate the 

decision when microbiological hazards occur. 

The Gompertz equation was used to model the development of the 

and the growth of the Enterobacteriaceae

function of time (Gibson et al.
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growth curve (initial bacterial 

the growth curve (Nmax

relative maximum growth rate at time M [h

rate is obtained (reversal point), and 

 

The growth data were fitted using the statistical software program Origin 8.0G (OriginLab 

Corporation, Northampton, Ma., U.S.A.).

Sensory factors

•weighted Quality Index composed of:

•color

•odor

•texture

•drip loss

•general appearance
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Selection of relevant parameter for the development of the Overall Quality Index 

uality has an objective and a subjective dimension (Grunert 2005). For the development of 

ndex, sensory attributes (subjective) and microbiological as well as safety 

attributes (objective) were selected, as listed in Figure 6.1. The selection of the sensory 

attributes is based on the sensory parameters, evaluated during the storage trials under 

Selection of relevant parameters for the development of an Overall Quality Index.

As relevant microorganisms for the calculation of an Overall Quality Index, 

and Enterobacteriaceae were chosen according to the results of 

4. Lactic acid bacteria played a minor role during spoilage and were not

was chosen exemplarily as pathogenic bacteria to simulate the 

decision when microbiological hazards occur.  

The Gompertz equation was used to model the development of the sensory 

erobacteriaceae, Pseudomonas spp., B. thermosphacta

et al., 1987).  

)(

)(
MtBeeCAtN

−⋅−−⋅+=     (1.2)  

  

with N(t): microbial count [log10cfu/g] at any time, A: lower asymptotic line of the 

growth curve (initial bacterial count), C: difference between upper asymptotic line of 

max= maximum population level) and the lower asymptotic line; B: 

relative maximum growth rate at time M [h-1], M: time at which maximum growth 

rate is obtained (reversal point), and t is time. 

The growth data were fitted using the statistical software program Origin 8.0G (OriginLab 

Corporation, Northampton, Ma., U.S.A.). 

weighted Quality Index composed of:

Spoilage factors

•Pseudomonas spp.

•Brochothrix thermosphacta

•Enterobacteriaceae
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Quality Index  

uality has an objective and a subjective dimension (Grunert 2005). For the development of 

ndex, sensory attributes (subjective) and microbiological as well as safety 

ection of the sensory 

, evaluated during the storage trials under 

 

verall Quality Index. 

verall Quality Index, Pseudomonas 

and Enterobacteriaceae were chosen according to the results of 

4. Lactic acid bacteria played a minor role during spoilage and were not taken into 

was chosen exemplarily as pathogenic bacteria to simulate the 

sensory Quality Index 

thermosphacta and as a 

  

cfu/g] at any time, A: lower asymptotic line of the 

count), C: difference between upper asymptotic line of 

= maximum population level) and the lower asymptotic line; B: 

], M: time at which maximum growth 

 

The growth data were fitted using the statistical software program Origin 8.0G (OriginLab 

Spoilage factors
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The development of an Overall Quality Index is based on the parameter M, obtained from 

the Gompertz equation. The parameter M is the time point, at which the maximum growth 

rate is obtained (reversal point). According to the calculated time, the parameter allows a 

standardized comparison of the growth rate of each microorganism and the sensory decay 

and therefore a comparison between the influence of different environmental influence 

factors like temperature and gas mixtures. 

The obtained parameter M (reversal point) of the relevant microorganisms responsible for 

the spoilage process was averaged (M (Microflora)) according to the following equation: 

 

3

)()()(
)(

EMBMPM
M Microflora

++=     (1.3) 

 

With: M (P) = time at which the maximum growth rate is obtained for Pseudomonas spp. [h], 

M (B): time at which the maximum growth rate is obtained for B. thermosphacta, M (E): time 

at which the maximum growth rate is obtained for Enterobacteriaceae. 

 

A mean value was calculated of M(Microflora) and M(Sensory) and resulted in a combined Overall 

Quality Index (M) to compare the gas mixtures in each scenario with each other.  

 

2
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)()( sensoryMicroflora MM
MOQI
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=                         (1.4) 

 

The Overall Quality Index (M) was determined for each trial and compared to gather 

information about the rate of the quality loss under different atmospheres and 

temperatures. The commonly used gas mixture used by the German poultry industry with 

30% CO2/70% O2 was defined as the reference gas mixture with a calculated Overall Quality 

Index (M) of 222h. The assessment of the tested gas mixture and storage conditions was 

made according to the following assessment scheme: 

 

Table 6.2 Assessment scheme for the freshness loss of MAP poultry fillets based on the 

Overall Quality Index (M). 

OQIM (h) Description 

222 Reference gas mixture 

< 222  Accelerated growth  

> 222 Retarded growth 
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6.4 Results 

Figure 6.2 shows the development of M(Microflora), the development of M(sensory) and the 

development of the calculated OQI(M) as a function of the storage temperature. The time at 

which the maximum growth rate is obtained (M, reversal point) increases with increasing 

temperatures. The comparison of the fits shows a good exponential description of the 

temperature dependency, which enables the parameter M as an indicator variable for the 

development of an Overall Quality Index (M).  
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Figure 6.2 Development of M(Microflora), M(Sensory) and the calculated OQI (M) as a function of 

the used storage temperature. 

 

Figure 6.3 shows the development of M(Microflora), the development of M(sensory) and the 

development of the calculated OQI (M)  as a function of the oxygen concentration inside the 

package. The comparison of the fits shows a good polynomial description of the data as a 

function of the oxygen concentration. The correspondent fits also enable the parameter M 

as an indicator variable for the development of the Overall Quality Index (M) as a function of 

the used gas O2/CO2 mixture.  
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Figure 6.3 Development of M(Microflora), M(Sensory) and the calculated OQI (M) as a function of 

the used oxygen concentration. 

 

Assessment of different gas mixtures and storage conditions based on OQI (M) 

 

Table 6.3 gives an overview about the calculated Overall Quality Index (M) for each trial. The 

commonly used gas mixture for poultry (30% CO2/70% O2 at 4°C) is taken as reference.  

Within scenario A, the Overall Quality Index (M) enables the standardized comparison of the 

growth acceleration as a function of temperature during storage of MAP poultry (70% 

O2/30% CO2). The storage of the samples at 2°C leads to a decrease of the bacterial growth 

and the time, where the microbial and sensory reversal point is reached at approximately 

250h. With increasing temperatures, also the OQI (M) increases and therefore the spoilage 

process is accelerated.  

Further on, the Overall Quality Index (M) allows also the standardized comparison of the 

growth acceleration as a function of changing oxygen concentrations. Comparing the 

different oxygen concentrations with each other, aerobic packaging and the use of 45% O2 or 

90% O2 leads to an increase in microbial growth compared to the reference gas mixture, 

which is reflected in a lower OQI(M). The effect on the quality loss under 45% (OQI(M) = 

192h) and 90% (OQI(M) = 222h) oxygen is comparable. Therefore, the Overall Quality Index 

(M) considers also over- and underestimations of the quality loss by combining 

microbiological changes and sensory deteriorations. As shown in Chapter 3, the oxygen 

concentration has a strong influence on the sensory evaluation. For example, 90% O2 

resulted in a prolonged sensory shelf life, whereas the microbiological spoilage process was 
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comparable to aerobic storage. These findings emphasise, that the color of the meat can 

lead to an overestimation of the real shelf life of the product. In contrast, 45% O2 resulted in 

the lowest sensory shelf life, whereas the microbiological growth was more delayed 

compared to 90% O2, which resulted in an underestimated of the real shelf life. Comparing 

the OQI(M) of the used atmospheres with the reference mixture, merely the 

implementation of 60% O2 in a gas mixture leads to a retarded quality loss. The calculated 

OQI(M) is retarded by approximately 31h.  

Comparing the calculated OQI(M) of the used high oxygen and oxygen free atmospheres 

with each other, the calculated OQI(M) is in a similar range with 18h difference between 

both gas mixtures (N2: 204h and O2: 222h). Therefore, nitrogen or oxygen has the same 

effect on the development of microbiological and sensory parameters. But it has to be taken 

into account that the oxygen free atmosphere favoured the growth of Listeria 

monocytogenes, as shown in Chapter 4.  

The comparison between argon and nitrogen in a gas mixture was tested in scenario D. The 

calculated Overall Quality Index (M) reflects nearly no differences between the used gas 

mixtures. Therefore, the results emphasise that argon has no additional beneficial effect in 

comparison to nitrogen as also shown in chapter 5 (Table 6.3). The beneficial effect on meat 

colour in parts of the samples by using 15% Ar is realtivized by the OQI(M) and allows an 

objective comparison of the used mixtures. The comparison of the used atmospheres with 

the reference mixture by using the OQI(M) shows, that 15% Ar or 15% N2 as well as 82% Ar 

or 82% N2 in a gas mixture lead to a decrease of the quality loss. The use of 15% Ar/15%N2 

results in a prolongation of 31h; the OQI(M) of 82% Ar or 82% N2 in a mixture retards the 

quality loss of 10h and 21h, respectively. In contrast, 25% Ar or 25% N2 in a gas mixture lead 

to an accelerated quality loss between 11h and 22h, respectively (Table 6.3).  
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Table 6.3 Calculated Overall Quality Indices (M) of microbiological and sensory evaluation of 

MAP poultry fillets (Gompertz function). 

Scenario Temp. 

(°C) 

Gas atmosphere Sensory 

evaluationM (h) 

Microbiological 

evaluationM (h) 

Overall 

Quality 

IndexM (h) 

A 

2 

70% O2 / 30% CO2 

445 498 472 

4 216 227 222 

10 121 127 124 

15 77 53 65 

B 

4 aerob 100 110 105 

4 45% O2/25% 

N2/30% CO2 

173 211 192 

4 60% O2/15% 

N2/25% CO2 

250 256 253 

4 70% O2/30% CO2 216 227 222 

4 90% O2/10% N2  245 160 203 

C 

4 70% N2/30% 

CO2* 

186 221 204 

4 70% O2/30% CO2 216 227 222 

D 

4 15% Ar/60% 

O2/25% CO2 

277 229 253 

4 15% N2/ 60% 

O2/25% CO2 

250 256 253 

4 25% Ar/45% 

O2/30% CO2 

167 200 184 

4 25% N2/45% 

O2/30% CO2 

173 211 192 

4 82% Ar/18% CO2 229 234 232 

4 82% N2/18% CO2 242 243 243 

*the gas mixture supports the growth of Listeria monocytogenes 

 

Figure 6.4 gives an overview about the calculated OQIM[h] for each tested scenario. For the 

assessment of the different used gas mixtures, the commonly used gas atmosphere for 

poultry fillet was used as a reference mixture (30% CO2/ 70% O2) during storage at 4°C. The 

grey line represents the OQI(M) of the reference gas mixture (222h). Thereafter, the OQI(M) 

above the line can be assessed as appropriate mixtures compared to the reference. 
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on sensory and microbiological parameter 

Scenarios with an OQI(M) lower then 222h can be assessed as mixtures causing an 

acceleration of the quality loss and can be rejected compared to the reference mixture. 

Figure 6.4 points out that decreasing storage temperatures have the main effect in delaying 

the quality loss of poultry meat, compared to the variation of the gas mixture. Regarding the 

different gas mixtures, the use of low oxygen concentrations (21% O2, aerobic storage) has a 

similar effect on the quality loss then increasing the storage temperature. The OQI(M) for 

aerobic storage (105h) is in the range between 10°C (123h) and 15°C (65h). 

The variation of the gas mixture 60% O2 with 25% CO2 and 15% N2 shows the best effect on 

the decrease of the quality loss compared to the reference mixture. This mixture is also 

comparable to the 15% Ar containing atmosphere and can be assessed as equal. Also the use 

of 82% Ar or 82% N2 resulted in a enhanced OQI(M) compared to the reference. Merely the 

use of 45% O2 in a mixture with 30% CO2 and 25% N2 or 15% Ar and the use of 90% O2/10% 

N2 show a lower OQI(M) compared with the reference mixture and can be rejected as an 

appropriate mixture for MAP poultry fillets. 
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Figure 6.4 Illustration of the calculated OQI(M) of the tested gas mixtures and storage 

temperatures for MAP poultry meat. 
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6.5 Conclusion 

In this study a new Overall Quality Index was developed for MAP poultry fillets, which 

combines microbial and sensory parameters with each other. Based on the results of chapter 

2-4, the influence of all tested environmental parameters was compared and the index 

allows a reliable assessment of the tested scenarios in comparison to the commonly used 

mixture for poultry fillets in Germany (30% CO2/70% O2 at 4°C). For the development of an 

Overall Quality Index, the parameter M (time, at which the maximum growth rate is 

obtained) of the Gompertz function (sensory and microbial curves) was chosen as a suitable 

parameters to compare the influence of the tested environmental influence factors with 

each other.  

It became evident that the increase of temperature and the decrease of oxygen under 55% 

has the main effect on the quality preservation whereas 60% O2/25% CO2/15% Ar or 15% N2 

showed the highest retardation of the quality loss. Therefore, the use of the mentioned gas 

mixtures can be assessed as the appropriate gas mixture for MAP poultry fillets within all 

tested scenarios. A combination of the mixture with low storage temperatures <4°C may 

lead to an additional beneficial effect on the quality loss of MAP poultry.  

In conclusion, the Overall Quality Index can support the decision making process of 

companies about the implementation of gas mixtures. Further on, the Index can be 

applicable for a reliable and objective assessment of the influence of different 

environmental influence factors like temperature and gas atmospheres also for other kind of 

perishable products, e.g. pork, beef and fish.  
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General conclusion 

7. General conclusion 

Raw poultry meat is susceptible to microbial spoilage due to its nutritional, physical and 

chemical properties. Therefore, packaging under modified atmosphere conditions is widely 

established in order to preserve the quality status and to prolong the shelf life of fresh 

poultry. Additionally, discussion about reducing the amount of food waste along the meat 

supply chain creates additional pressure on the meat companies. In this context, the meat 

industry, in cooperation with gas producers is searching for new gas mixtures to achieve 

additional beneficial effects on the quality loss of the product. Therefore, the application of 

alternative gases like argon or xenon, or the variation of the gas atmosphere is discussed 

more and more. Besides packaging, the temperature conditions in the chains are the most 

important extrinsic influence factor. Until now, the real influence of different environmental 

factors on the quality loss of fresh poultry is intensively discussed.  

Therefore, the main objective of this thesis was the comparison and assessment of different 

environmental influence factors on the shelf life and quality loss of modified atmosphere 

packaged poultry fillets. For this purpose, the following research questions were proposed: 

• How are different temperature conditions and different oxygen combinations 

influencing the composition of the specific spoilage flora, and can a specific spoilage 

organism be identified to determine the quality loss of poultry fillets? 

• How is the growth of specific spoilage bacteria and pathogens influenced by oxygen 

enriched atmospheres in comparison to nitrogen enriched atmospheres? 

• How is the growth of specific spoilage bacteria and the development of sensory 

parameters influenced by using argon as an alternative to nitrogen? 

• Is it possible to develop an overall quality index based on microbiological and sensory 

parameters to assess the influence of different environmental influence factors on 

the quality loss of MAP poultry? 

The first research question was focused on determining the influence of different 

temperature conditions on the composition of the spoilage flora and the quality loss of MAP 

poultry. Samples were packed under the commonly used gas atmosphere for fresh poultry 

fillets in Germany (70% O2 and 30% CO2) and stored under four constant temperature 

conditions (2, 4, 10, 15°C). Typical spoilage microorganisms were investigated (Pseudomonas 

spp., Brochothirx thermosphacta, Enterobacteriaceae, Lactobacillus spp.) and the growth 

was modeled using the Gompertz function. Parallel to the microbiological investigations, 

each sample was investigated for sensory deteriorative changes, concentration of the 
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headspace gas atmosphere and the development of the pH-value. On the basis of the 

microbiological and sensory data, a stepwise regression and a principle component analyses 

(PCA) were carried out to identify the variables with the highest explanatory power for the 

data set.  

The results showed that the storage temperature has a significant influence on the 

composition of the spoilage flora and on the length of sensory shelf life under MAP 

conditions. The storage of poultry meat under low temperature conditions (2°C and 4°C) 

favored the growth of Brochothrix thermosphacta, whereas higher temperatures (10°C and 

15°C) supported the growth of Pseudomonas spp. Enterobacteriaceae also comprised a 

substantial part of the spoilage flora and contributed to the loss of quality and shelf life. 

Lactobacillus spp. played merely a minor role in the spoilage process. The results of the 

stepwise regression and PCA also supported that no single predictor variable could be 

identified as the main spoilage originator and that the spoilage was induced by the mix of 

the different spoilage microorganisms.  

The identification of one single specific spoilage organism (SSP) for the definition of a 

common acceptance level for MAP poultry stored under different temperature conditions 

was not feasible. Significant correlations between TVC and the development of the sensory 

decay and the number of TVC at the end of sensory shelf life for each single storage 

temperature were observed. But it has to be taken into account that Pseudomonas spp. and 

Brochothrix thermosphacta also play an important part of the spoilage process, which has 

been shown by the principle component analyses.  

In addition to temperature, also changes in the gas atmosphere, which also have a 

significant influence on the composition of the microflora and the length of shelf life, were 

also analysed in this thesis. Therefore, the effect of varying oxygen concentrations on the 

development of microbiological and sensory parameters during storage was investigated for 

the most appropriate oxygen concentration for MAP poultry fillets. Storage tests were 

conducted by changing the oxygen concentrations to (MAP 1): 45% O2 / 25% N2 / 30% CO2; 

(MAP 2): 60% O2 / 10% N2 / 20% CO2; (MAP 3): 70% O2 / 30% CO2; (MAP 4): 90% O2 / 10% N2 

and aerobic storage. Samples were stored at a constant temperature of 4°C and were 

investigated for the typical spoilage microorganisms for MAP poultry, which were identified 

in the first study. The effect on sensory parameters was investigated also. Microbiological 

and sensory data were fitted with the Gompertz function. 

The oxygen concentration had a strong influence on the development of typical sensory 

parameters of the poultry fillets during storage. The results revealed that increasing oxygen 
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concentrations had a stabilizing effect on the surface meat color and thus an effect on the 

sensory shelf life. The 45% O2 atmosphere resulted in reduced color stability in comparison 

to the higher O2 concentrations, whereas 90% oxygen stabilized the color but favored the 

growth of all investigated microorganisms.  

The results of the microbiological investigations revealed that the microbiological growth 

was also strongly influenced by the different oxygen concentrations. For example, under 

aerobic (21% O2) conditions, Pseudomonas spp. was the dominant species, whereas with 

increasing (45-70%) oxygen inside the packaging atmosphere, B. thermosphacta became the 

predominant bacteria. It can generally be concluded that aerobic storage and the storage 

under 90% oxygen favored the growth of all bacteria, which was emphasized by the 

calculated maximum growth rates of the bacteria using the Gompertz function. Comparing 

the calculated local minima of the growth curves of different bacteria with each other, 55-

60% oxygen in a gas mixture can be assumed to be the optimal concentration to prolong the 

shelf life and delay the freshness loss. 

Regarding the increased risk of lipid oxidation due to the recommended oxygen 

concentration (55-60%) of this study, poultry fillets are presumably not susceptible to 

deteriorative sensory changes because poultry refers to white meat with a low fat content. 

However, the investigation and the comparison of different oxygen atmospheres on the 

proportion of the lipid oxidation should be continued in further studies.  

The stabilizing effect of oxygen on the oxymyoglobin formation of the meat further 

emphacized the applicability of high oxygen atmospheres in the range of 55-60% for poultry 

as an alternative to oxygen free atmospheres, even through the myoglobin content of 

poultry breast fillet is much less compared to beef or pork. In this context, it has to be taken 

into account that different animal breeds can have an influence on the initial color 

development and therefore the results should be evaluated in further studies considering 

different animal specific factors.  

The third research question was focused on the comparison between oxygen and nitrogen 

enriched atmospheres to investigate the influence on the growth of specific spoilage 

bacteria, pathogens and sensory parameters. Therefore, the focus was laid on the 

development of the pathogenic bacteria Listeria monocytogenes in the presence of typical 

spoilage microorganisms, whereby possible interactions with the natural spoilage bacteria 

were also considered. For that purpose, the poultry meat surface was artificially 

contaminated with Listeria monocytogenes and stored under 70% O2 / 30% CO2 and 70% N2 

/ 30% CO2 at 4°C.  
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Regarding the comparison between oxygen and nitrogen in the packaging atmosphere for 

poultry, the oxygen enriched mixture in combination with CO2 suppressed the proliferation 

of Listeria monocytogenes. In contrast, the nitrogen enriched atmosphere in combination 

with CO2 favored the pathogenic growth. Presumably, the suppression was not solely related 

to the gas mixture, because L. monocytogenes is relatively unaffected by O2 and has the 

enzyme superoxide dismutase to protect themselves at high oxygen concentrations. The 

predominance of B. thermosphacta under the high oxygen atmosphere seems to have an 

effect on the growth inhibition of the pathogenic bacteria.  

These results lead to the conclusion that interactions between different microorganisms 

with pathogenic bacteria on natural products, have to be taken into account as an important 

influence factor on the shelf life and quality deteriorations of the meat. Most of the 

analytical studies were carried out in liquid laboratory media and do not consider the 

influence of the food structure, which can lead to fail safe interpretations of the results. Also 

further research is needed to obtain growth data under oxygen and nitrogen atmospheres 

for other pathogenic bacteria like Staphylococcus aureus and Camphylobacter spp.  

Besides different oxygen mixtures, the application of alternative gases is also in discussion to 

influence the growth of the spoilage flora, which leads to the fourth research question. 

Besides the commonly used packaging gases (O2, CO2, N2), argon is also permitted in the EU 

as an alternative to nitrogen for food packaging. In this context, the study was focused on 

testing different argon enriched atmospheres in comparison to nitrogen enrichments in the 

equivalent amount. Six different atmospheres were used: (MAP 1) 15% Ar, 60% O2, 30% CO2; 

(MAP 2) 15% N2, 60% O2, 30% CO2; (MAP 3) 25% Ar, 45% O2, 30% CO2; (MAP 4) 25% N2, 45% 

O2, 30% CO2; (MAP 5) 82% Ar; 18% CO2; (MAP 6) 82% N2, 18% CO2) and stored at 4°C. The 

samples were investigated for the typical spoilage microorganisms and for sensory changes.  

The comparison between argon and nitrogen showed that argon had no beneficial effect on 

the growth of the typical spoilage microorganisms compared to the use of nitrogen. Merely 

the growth B. thermosphacta was reduced by approximately 1-log level at the end of storage 

using 82% argon and could be neglected. The results indicate that the application of the 

novel gas argon had no beneficial effect on the quality loss of poultry fillets. Merely the meat 

color was positively influenced using 15% argon, but the effect was shown only in some of 

the samples. Animal specific factors can also lead to the stabilising effect, which has to be 

clarified in further studies. 

The final research question aimed at the development of an Overall Quality Index (OQI) for 

modified atmosphere packaged poultry. Generally, the results obtained in Chapter 2-5 
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showed, that changing temperature conditions as well as variations of the gas atmosphere 

have a strong influence on the microbial growth, on the composition of the spoilage flora, 

and on the sensory decay during storage. The results of the thesis show, that no single 

parameter could be identified to compare the influence of different environmental influence 

factors on MAP poultry with each other. No specific spoilage organism for MAP poultry could 

be identified when environmental influence factors were variable. Hence, a single index 

which combines microbiological and sensory changes on the basis of complex changes 

occurring during spoilage has not been available till now. For the development of an Overall 

Quality Index, the growth of typical spoilage microorganisms (B. thermosphacta, 

Pseudomonas spp., Enterobacteriaceae) and sensory parameters was taken into account. 

The integration of the typical spoilage microorganisms into an index is considered more 

reliable than using the total viable count to determine the spoilage process and quality loss 

of MAP poultry fillets. The OQI was developed by using the parameter M of the Gompertz 

function, which represents the time at which the maximum growth rate is obtained (reversal 

point). For a reliable and standardized comparison of the scenarios, the commonly used gas 

mixture for poultry fillets (30% CO2/70% O2 at 4°C) was used as reference. Based on this 

parameter, it was possible to develop a single index which combines microbiological and 

sensory parameters with each other. As a result, the OQI enables a standardized comparison 

and assessment of different environmental influence factors on the shelf life and quality loss 

of modified atmosphere packaged poultry fillets. 

The lowest OQI(M) was calculated for the storage of MAP poultry (70% O2/30% CO2) at 2°C, 

which underlines the importance of a stable cold chain in meat supply chains for modified 

atmosphere packaged poultry also. Comparing the different gas mixtures at a storage 

temperature of 4°C with each other, the results of the OQI(M) showed that the storage 

under 60% O2/25%CO2/15%N2 as well as under 60% O2/25% CO2/15% Ar showed the highest 

retardation of the quality loss with an OQI(M) of 253h compared to OQI(M) of 222h of the 

reference mixture. In conclusion, the use of the mentioned gas mixtures can be assessed as 

the appropriate gas mixture for MAP poultry fillets within all tested scenarios. Combining the 

mixtures with reduced storage temperatures <4°C may lead to an additional beneficial effect 

on the quality loss of MAP poultry.  

The overall result of the thesis was the development of a single index, which allows a 

standardized comparison of the influence of different environmental factors on the quality 

loss of MAP poultry based on sensory and microbiological parameters. In future, the 

application of new sensor technologies like Raman Spectroskopie or Hyperspectral Imaging 

is a promising approach. These sensor technologies will presumably replace the traditional 
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microbiology within the next decades and will deliver additional information about the 

quality loss and shelf life of meat dependent on different environmental factors. The data of 

the present thesis can be used as reference data, which may form the basis for the 

development of an Overall Quality Index based on real time measurements by new sensor 

technologies. Furthermore, the integration of the developed assessment scheme in user-

friendly software is conceivable, which also allows an improvement of the quality 

management system in poultry supply chains.  

 

Generally, the developed Index can be used to support the decision making process of meat 

companies for a reliable and objective comparison between the influence of different 

environmental parameters on the spoilage process of fresh poultry and thus on the quality 

loss. The procedure of the development of an Overall Quality Index (M) can also be adapted 

to different kind of products like pork, beef and fish. Therefore, it is first important to define 

the relevant microorganisms responsible for the spoilage process and second to define 

characteristic sensory attributes during storage. The application of the OQI will support the 

delivering process of high quality products and at the same time the amount of food waste 

will be reduce. 
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