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Summary

Autonomously working sensor platforms deliver an increasing amount of precise data sets, which are often
usable in geodetic applications. Due to the volume and quality, models determined from the data can be
parameterized more complex and in more detail. To derive model parameters from these observations, the
solution of a high dimensional inverse data fitting problem is often required. To solve such high dimensional
adjustment problems, this thesis proposes a systematical, end-to-end use of a massive parallel implementa-
tion of the geodetic data analysis, using standard concepts of massive parallel high performance computing.
It is shown how these concepts can be integrated into a typical geodetic problem, which requires the solution
of a high dimensional adjustment problem. Due to the proposed parallel use of the computing and memory
resources of a compute cluster it is shown, how general Gauss-Markoff models become solvable, which were
only solvable by means of computationally motivated simplifications and approximations before. A basic,
easy-to-use framework is developed, which is able to perform all relevant operations needed to solve a typical
geodetic least squares adjustment problem. It provides the interface to the standard concepts and libraries
used. Examples, including different characteristics of the adjustment problem, show how the framework is
used and can be adapted for specific applications. In a computational sense rigorous solutions become pos-
sible for hundreds of thousands to millions of unknown parameters, which have to be estimated from a huge
number of observations. Three special problems with different characteristics, as they arise in global gravity
field recovery, are chosen and massive parallel implementations of the solution processes are derived. The
first application covers global gravity field determination from real data as collected by the GOCE satellite
mission (comprising 440 million highly correlated observations, 80 000 parameters). Within the second ap-
plication high dimensional global gravity field models are estimated from the combination of complementary
data sets via the assembly and solution of full normal equations (scenarios with 520 000 parameters, 2 TB
normal equations). The third application solves a comparable problem, but uses an iterative least squares
solver, allowing for a parameter space of even higher dimension (now considering scenarios with two million
parameters). This thesis forms the basis for a flexible massive parallel software package, which is extendable
according to further current and future research topics studied in the department. Within this thesis, the
main focus lies on the computational aspects.

Zusammenfassung

Autonom arbeitende Sensorplattformen liefern präzise geodätisch nutzbare Datensätze in größer werdendem
Umfang. Deren Menge und Qualität führt dazu, dass Modelle die aus den Beobachtungen abgeleitet werden,
immer komplexer und detailreicher angesetzt werden können. Zur Bestimmung von Modellparametern aus
den Beobachtungen gilt es oftmals, ein hochdimensionales inverses Problem im Sinne der Ausgleichungsrech-
nung zu lösen. Innerhalb dieser Arbeit soll ein Beitrag dazu geleistet werden, Methoden und Konzepte aus
dem Hochleistungsrechnen in der geodätischen Datenanalyse strukturiert, durchgängig und konsequent zu
verwenden. Diese Arbeit zeigt, wie sich diese nutzen lassen, um geodätische Fragestellungen, die ein hoch-
dimensionales Ausgleichungsproblem beinhalten, zu lösen. Durch die gemeinsame Nutzung der Rechen- und
Speicherressourcen eines massiv parallelen Rechenclusters werden Gauss-Markoff Modelle lösbar, die ohne
den Einsatz solcher Techniken vorher höchstens mit massiven Approximationen und Vereinfachungen lösbar
waren. Ein entwickeltes Grundgerüst stellt die Schnittstelle zu den massiv parallelen Standards dar, die im
Rahmen einer numerischen Lösung von typischen Ausgleichungsaufgaben benötigt werden. Konkrete An-
wendungen mit unterschiedlichen Charakteristiken zeigen das detaillierte Vorgehen um das Grundgerüst zu
verwenden und zu spezifizieren. Rechentechnisch strenge Lösungen sind so für Hunderttausende bis Millio-
nen von unbekannten Parametern möglich, die aus einer Vielzahl von Beobachtungen geschätzt werden. Drei
spezielle Anwendungen aus dem Bereich der globalen Bestimmung des Erdschwerefeldes werden vorgestellt
und die Implementierungen für einen massiv parallelen Hochleistungsrechner abgeleitet. Die erste Anwen-
dung beinhaltet die Bestimmung von Schwerefeldmodellen aus realen Beobachtungen der Satellitenmission
GOCE (welche 440 Millionen korrelierte Beobachtungen umfasst, 80 000 Parameter). In der zweite Anwen-
dung werden globale hochdimensionale Schwerefelder aus komplementären Daten über das Aufstellen und
Lösen von vollen Normalgleichungen geschätzt (basierend auf Szenarien mit 520 000 Parametern, 2 TB Nor-
malgleichungen). Die dritte Anwendung löst dasselbe Problem, jedoch über einen iterativen Löser, wodurch
der Parameterraum noch einmal deutlich höher dimensional sein kann (betrachtet werden nun Szenarien
mit 2 Millionen Parametern). Die Arbeit bildet die Grundlage für ein massiv paralleles Softwarepaket, wel-
ches schrittweise um Spezialisierungen, abhängig von aktuellen Forschungsprojekten in der Arbeitsgruppe,
erweitert werden wird. Innerhalb dieser Arbeit liegt der Fokus rein auf den rechentechnischen Aspekten.
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1. Introduction

Automatically and autonomously working sensors and sensor platforms like satellites deliver a huge
amount of precise geodetic data allowing the observation of a wide range of processes within the
System Earth. These sensors either deliver data with a high frequency or over long time periods like
decades — or even both, leading to a significant increase of the data volume. Due to the design of the
sensors, the observations are often highly correlated and sophisticated stochastic models are required
to describe the correlations and to extract as much information out of the data as possible. Although
such large data sets are difficult to handle, they allow the set up of increasingly complex functional
models to describe for instance processes in the System Earth with enhanced temporal and/or
spatial resolution. From these high quality data sets, model parameters are typically estimated in
an adjustment procedure, as the resulting system of observation equations is highly overdetermined.
Only if a realistic stochastic model of the observations is used, which often requires a huge numerical
effort, a consistent combination of different observation types is possible, and the covariance matrix
of the estimated parameters can be expected to deliver a realistic error estimate. The parameters
together with the covariance matrix can be used in further analysis without loss of information.

Due to the increasing data volume, the three main components of the adjustment problem, i.e.
the observations, the stochastic model of the observations and the functional model, require a
tailored treatment to enable computations in a reasonable amount of time. In many geodetic
applications, where such high dimensional data sets are analyzed, a wide range of simplifications and
approximations (down sampling, model simplifications, interpolation to regular grids, disregarded
correlations, approximate solutions, ...) are introduced on different levels of the data analysis
procedure to reduce the computational requirements of the analysis. These approximations, of
course, have an influence on either the estimation of the unknown parameters or on their accuracy
estimates and thus on the quality of the output of the analysis. As these approximations and
simplifications are very application specific, the effect cannot be generally quantified.

An alternative to the simplified modeling mentioned above is the use of concepts and methods of
scientific and high performance computing (SC and HPC) to derive implementations of the analysis
software which are able to solve the task with less simplifications in a reasonable amount of time.
These methods either imply the use of more efficient algorithms or, as it is the focus of this thesis,
the use of massive parallel implementations on high performance compute clusters. These massive
parallel implementations then make the computationally motivated approximations (of the data or
of the models) often decrepit or at least lead to a significant reduction of them.

This thesis represents a novel approach to comprehensively introduce the concepts of SC and HPC
into geodetic data analysis. In contrast to existing approaches, where only parts of the least squares
adjustment procedure are performed in a parallel way and decoupled software modules are applied
as black box (e.g. for the inversion of matrices), this thesis proposes for the first time a systemat-
ical, end-to-end massive parallel implementation of geodetic data analysis using standard concepts
of HPC. Therefore, a basic, easy-to-use framework is developed, which is able to perform all relevant
operations needed to solve a typical geodetic least squares adjustment problem. Distributed storage
of data and matrices is extensively used to achieve a best possible flexibility with respect to the
dimension of the adjustment problem. The use of this framework is demonstrated for three exam-
ples arising in the field of global gravity field determination, where high dimensional adjustment
problems with varying characteristics have to be solved. These examples show i) the flexibility of
the framework to be specified for different applications, ii) the potential of the HPC approach with
respect to the possible dimension of the adjustment problem and iii) the performance which can be
achieved with such massive parallel implementations.

Within the first part of the thesis, the application unspecific concepts are introduced and the gen-
eral HPC concepts used within an adjustment process are summarized. In Chap. 2 and 3 the basic
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methods are developed to map a general dense adjustment procedure (least squares adjustment)
to massive parallel compute clusters. For that purpose, standard concepts from scientific and high
performance computing are used to implement an interface for the standard operations needed for
linear algebra operations (cf. Chap. 2). As in adjustment theory most operations are performed
using matrices, the concept of block-cyclic distributed matrices is used and consequently applied
in the implemented software package (cf. Chap. 3). A general framework for the handling of huge
dimensional matrices is implemented in this chapter, intensively using the available standard con-
cepts and libraries from HPC. Chap. 4 introduces the generalized form of the adjustment problem,
the solution of which should be determined by the massive parallel implementation. The imple-
mented methodology is summarized and special concepts required for data combination within the
adjustment procedure are introduced.

Within the second part, the basics are applied and refined for solving three special problems with
different characteristics as they arise in global gravity field recovery. Chap. 5 is the bridge from the
general formulation of the concepts to the specific applications. It introduces the specific problem
and summarizes the methods and the physical theory which is common for the three tasks. Some
definitions and analysis concepts are provided to define the figures and quantities shown later in
the application chapters. Besides the development of the basic framework an application specific
massive parallel software package is developed for three applications, which are related to current
research projects of the Theoretical Geodesy Group at the Institute of Geodesy and Geoinformation
(IGG) at the University of Bonn. The applications are representatives for the challenges relevant
for high dimensional adjustment problems: a huge number of highly correlated observations and a
large to huge number of unknown parameters.

The first application (cf. Chap. 6) is the computation of global gravity field models from data
observed by the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite mission.
The main challenge in this context is the processing of a huge number of observations: 440 million
observations were collected during the whole mission period. In addition to the huge data volume,
the observations measured along the satellites orbit are highly correlated in time, thus a complex
decorrelation approach is needed, which is intensive with respect to computing time. Due to the
mission design and the attenuation of the gravity field signal at satellite altitude, the resolution of
gravity field models from those observations is limited such that a relatively moderate amount of
60 000–80 000 unknowns has to be estimated. Nevertheless, the resulting normal equation matrices
have memory requirements of 30 GB–50 GB. As the developed software was used for real-data
GOCE analysis, results from the real-data analysis are shown and discussed as well. The group is
an official processing center within the ESA’s GOCE HPF (High-Level Processing Facility). The
software is used in the context of the production of ESA’s official GOCE models.

As a second example in Chap. 7, a simulation study for high resolution global gravity field determi-
nation from a combination of satellite and terrestrial data is set up to demonstrate a massive parallel
implementation of applications where a moderate number of observations are used to estimate a
large number of unknown parameters, spanning a high dimensional vector space in the range of
10 000 to 600 000 unknowns. An objective of this application is to derive an implementation which
solves the adjustment procedure via the assembly and solution of full normal equations such that
afterwards a full covariance matrix is available, e.g. for a possible assembly of the estimated model
into further process models. The simulation performed within this thesis assembles and solves full
normal equations for 520 000 unknown parameters from about 4 million observations.

For the third application (cf. Chap. 8) the dimensions of the adjustment problem are even further
increased by introducing a huge dimensional parameter space that cannot be estimated by direct
solution of the normal equation system. Therefore, a massive parallel implementation of an iterative
solver is derived enabling the rigorous solution of adjustment problems with hundreds of thousands
to millions of unknown parameters. This way rigorous, non-approximative solutions become possible
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for such large problems, even though a covariance matrix is not directly available. The method is
first demonstrated for the 520 000 unknown parameters and about four million observations used
in the second example, and afterwards the problem is expanded to solve for two million parameters
from about twenty million observations.

Although the basic framework is adapted to specific applications from global gravity field recovery
only, the concepts can easily be transferred to any other adjustment problem typical in geodetic
data analysis (mainly implementing the specific observation equations and the required decorrelation
concept). For the applications and simulations shown, the focus is not on the design of alternative
processing methods or on a perfect physical modeling, but on the massive parallel implementation
of the mostly well known concepts and statistical methods. In this way, this thesis fuses concepts
from informatics, statistics, mathematics and geodesy to derive a massive parallel implementation
which solves an inverse geodetic data fitting problem. It contributes to solve the challenges arising
from the computational point of view on the way towards a more rigorous geodetic data analysis.
The derived software package makes analyses possible, which have – due to computational limits –
not been solvable before. Avoiding the widely used — often historical — approximations in geodetic
data analysis leads to improved geodetic products due to HPC.

Including analysis software components, a software package with more then 35 000 lines of massive
parallel C++ code was developed within this thesis. As only (quasi-) standard concepts and libraries
were used, the software is highly portable and is able to run on every HPC compute cluster and
enables the use of up to tens of thousands of compute cores.

Parts of this thesis have already been published in Brockmann et al. (2014b) and Brockmann et al.
(2014c).
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Part I

Basic Framework for a Massive Parallel
Solution of Adjustment Problems
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2. Standard Concepts of High Performance and
Scientific Computing

The goal of this chapter is to give an introduction into high performance and scientific computing
(HPC and SC) concepts. Whereas SC in general typically covers the numeric solution of scientific
problems, HPC covers the massive parallel implementations of the SC processing concepts and nu-
merical experiments on distributed memory compute clusters. What is called “just” implementation
here, covers the conversion of sequential specialized algorithms for the concept of parallel comput-
ing and their efficient implementation in a HPC environment. Some definitions of terms from the
area of scientific and high performance computing are provided. As this terms are not uniquely
defined across different scientific areas, definitions as used in this thesis are given. Afterwards, basic
concepts of SC, especially matrix related concepts, are introduced. As the rigorous computation
of applications from the field of adjustment theory is the focus of this thesis, the computational
concepts introduced are mainly matrix and matrix-based operations from linear algebra. The con-
cepts mentioned and all associated libraries are (quasi-) standards in scientific and high performance
computing.

Within this thesis, many algorithmic descriptions of the implemented steps are provided. They do
not claim to be complete, but should show the general process of the implemented software and
should be read as a summary. Parts of the algorithms, which are from an implementational point
of view complex and would require many details, are often hidden in a descriptive symbol to avoid
details, which would make the algorithms unreadable. Nevertheless, within the text, the details
are explained. In addition to the algorithms, some header files are provided, which should give an
overview of some basis classes implemented. These header files often only show excerpts from the
actual header file, as they are often to long. Special symbols and the syntax used within this thesis
is not explicitly introduced, but a descriptive list is provided in Appendix A.

2.1 Introduction, Terms and Definitions

A single computer is an autonomous working unit with the (in this context) important components
as depicted in Fig. 2.1(a). This computer, which is often called compute node in context of HPC,
has a certain number of processors (i.e. Central Processing Units, CPUs). Each CPU consists
of a certain number of compute cores. Each of the cores can perform instructions independently
from the other cores. Every compute node has a certain amount of main memory, which can be
addressed by every processor and by every individual core within the node. As the access to the
main memory is slow compared to the floating point operations performed by the CPU, the memory
access is the limiting factor for numerical computations (Von Neumann bottleneck, e.g. Bauke and
Mertens, 2006, p. 7). To circumvent the bottleneck, a smaller but faster memory is integrated
into the processors to cache the effect of the slow main memory. Compared to the main memory,
this so called cache memory is faster but significantly smaller (e.g. cf. Rauber and Rünger, 2013,
Sect. 2.3.3, Sect. 2.7). Even in shared memory multi-processor systems, as the cache memory is
integrated into the processor, the cache memory can only be accessed by its own processor and its
cores. The memory is hierarchical organized as demonstrated in Fig. 2.1(b). Typically two levels
of cache memory are integrated into a processor, i.e. the very fast level 1 cache and the larger but
slower level 2 cache. Especially in shared memory systems a level 3 cache is mounted outside the
processors, between the main memory and the processors. This is mainly used for a fast exchange
of data between multiple processors. More detailed descriptions can be found for instance in Bauke
and Mertens (2006, Chap. 1), Karniadakis and Kirby (2003, Sect. 2.2.6), Rauber and Rünger (2013,
Chap. 2) and Dowd and Severance (1998, Chap. 3).
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Figure 2.1: Important components of a compute node.

The main memory itself can be seen as a one-dimensional linear addressable vector (Karniadakis
and Kirby, 2003, p. 41), a sequence of bits, where 8 bit are grouped as one byte (1 B). Each byte
can be uniquely accessed via an address (typically an hexadecimal number). Using one dimensional
fields (i.e. arrays) in programming languages like C++ guarantees that the array elements are stored
consecutively without gaps in the memory. Consequently, all elements of the array can be accessed
via the address (i.e. a pointer variable which can store addresses in C++) of the field’s first element
in the main memory and the length information of the field (i.e. the number of entries).

Launching a standard compiled program (e.g. implemented in C++), a process of the program is
started and the instructions are executed by a single core of one of the processors. It does not
matter how many cores and processors are available on the compute node. Only when special
multi-threading concepts are used within the implementation of a program, or other special parallel
programming concepts are used (as introduced later), the program runs on more than a single core
and thus uses the computing power of the additional cores and/or processors.

2.2 Matrices, Computers and Main Memory

A matrix is a two-dimensional field whose entries are described by two coordinates, e.g. (r, c).
Within this work, we will use the indexing of the matrix entries starting with zero1. A matrix of
dimension R× C with N = RC elements is written as

A =




a0,0 a0,1 . . . a0,C−1

a1,0 a1,1 . . . a1,C−1
...

...
...

...
aR−1,0 aR−1,1 . . . aR−1,C−1


 =


A(0, 0) A(0, 1) . . . A(0, C − 1)
A(1, 0) A(1, 1) . . . A(1, C − 1)

...
...

...
...

A(R− 1, 0) A(R− 1, 1) . . . A(R− 1, C − 1)

. (2.1)

2.2.1 Linear Mapping of a Matrix to the Main Memory

Performing standard computations involving matrices or performing linear algebra operations on
matrices in a lower-level programming language, the matrix – the two-dimensional field – has to

1It is standard for indices in some programming languages, e.g. in C++ (e.g. Stroustrup, 2000, p. 28), which is
used within this thesis.
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(b) A mapped in RMO to a.
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(c) A mapped in CMO to a.

Figure 2.2: Example Matrix A, and A mapped to a linear vector a using RMO and CMO.

be mapped to the one-dimensional memory of the compute node. This is usually done via the
mapping of a matrix into a one dimensional field, which might be an array or in C++ the advanced
dynamic std::vector<double> class as provided by the Standard Template Library (STL, e.g.
Kuhlins and Schader, 2005). In lower-level programming languages, these one-dimensional fields
have the property, that their entries are stored continuous in the main memory. The matrix is
mapped to a vector (one-dimensional field), which is called a in the following. This vector can then
be linearly mapped to the computers main memory. There are two different concepts for mapping
(general) matrices to the computers memory, i.e. column major order (CMO) or row major order
(RMO) (e.g. Karniadakis and Kirby, 2003, p. 41). All entries of the matrix are accessible, if the
address of the first element in memory and the dimension (R× C) of the matrix is known.

Column Major Order – CMO Within CMO, the matrix is stored column by column in the
vector a of length R ·C = N . The example matrix shown in Fig. 2.2(a) results in the vector shown
in Fig. 2.2(c). To reference a matrix element (r, c) in the vector, two quantities, which are step
sizes in the vector, are introduced. There are always two steps in the vector or in the linear memory,
respectively: Firstly the large step in the vector, the so called leading dimension (ld), which must
be covered going from element i of column c to element i of column c+ 1. In CMO this step equals
exactly the number of rows of the matrix A, i.e. ld = R. The small step in the vector is the step
which is covered going from one row element r of column c to the next element in the same column,
i.e. r + 1, the so called increment (ic) which is equal to ic = 1 in the CMO.
Thus, we can use

i (r, c) = cld + ric = cR+ r. (2.2)

to determine the index i of matrix element A (r, c) in the vector a so that a(i) = A (r, c). This index
describes the position in memory relative to the first element. The address can thus be determined
via

&A (r, c) = &a (0) + i (r, c) , (2.3)
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using the C++ address operator &. Or vice versa, the element at position i corresponds to the
element with the row and column index

r = i%R, c = i÷R, (2.4)

where the symbol % is the modulo operator, which returns the remainder of the integer division
and ÷ is used for the integer division. With (2.2) and (2.4) the mapping between a and A is
uniquely defined. The vector a is directly mapped to the linear memory of the computer, using a
one dimensional field. All elements of the vector can be accessed via the address of the first element,
&a(0), the number of rows and columns of the matrix and the resulting index of an element (r, c)
can be determined using (2.2).

Row Major Order – RMO Instead of grouping the matrix column-wise into a one-dimensional
vector, one can decide to group the matrix row-wise into a vector. This results in RMO. The
example matrix from Fig. 2.2(a) would result in an vector as shown in Fig. 2.2(b). Obviously, the
resulting vector a is of same dimension R ·C × 1 = N × 1 as for the CMO.

However, the access step sizes in memory change. The large step in memory, i.e. the step going
from one row r to the next row r+1 is ld = C, the small step in memory, accessing the next element
of the same row is ic = 1. Thus,

i (r, c) = cic + rld = c+ rC. (2.5)

is used to determine the index i of matrix element A (r, c) in the vector a. The address in memory
of the element follows from

&A (r, c) = &a (0) + i (r, c) . (2.6)

The inverse operations

r = i÷ C, c = i%C. (2.7)

can be used to determine r and c from a given vector index i.

Comparing both Mapping Schemes Both methods of mapping a matrix to the linear computer
vector are equivalent. None of both schemes is generally superior to the other with respect to
performance, if the algorithms are properly adapted. Depending on the algorithm which operates
on a matrix, one of them may be more efficient with respect to performance (for a performance
analysis and a comparison to alternatives see e.g. Thiyagalingam, 2005, Thiyagalingam et al., 2006,
Chap. 5). As none of both schemes is perfect, it is useful to decide for one within a certain project.
Within this work, the column major storage scheme was chosen, and will be used in the following.

2.2.2 File Formats for Matrices

As needed later on as well, a simple but flexible binary file format for matrices is summarized here.
The same format is going to be used for parallel Input/Output (I/O) operations of matrices which
are stored distributed over several compute nodes. As it will be of importance within this work, the
same idea of a one-dimensional view on a matrix as for the mapping into main memory is used to
save the matrix within a binary file. Comparable to the main memory, a binary file can be seen as
a one-dimensional field (of single bytes) as well.

First of all, a binary header of fixed size (in Bytes) is written to the file, containing at least the
metadata of the matrix, i.e. the dimension (R and C, 2 integer numbers, 8 B). Additional metadata
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(special matrix properties like symmetry,...) can be stored as well, as long as the size (i.e. the number
of Bytes) of the header is known. The header is followed by the R ·C matrix entries, stored as R ·C
double numbers in CMO or RMO. Each double number requires 8 B. Thus, the bytes can be
continuously written from memory into a file. Of course the same mapping as for the memory
should be chosen for the file. As sequential binary files allow for high performance I/O operations
(file size as well as reading time), the focus is on binary files only.

2.3 Standard Concepts for Matrix Computations and Linear Alge-
bra

Efficient matrix computations and linear algebra operations are standard operations in SC and
HPC (e.g. Dongarra et al., 1990a, Karniadakis and Kirby, 2003, Chap. 2.2.7). Starting with
early initiatives (esp. by Lawson et al., 1979, Dongarra et al., 1988, 1990a) standard libraries for
basic vector-vector (level 1, L1), matrix-vector (level 2, L2) and matrix-matrix (level 3, L3, highest
optimization potential) operations were established in the fields of SC and HPC. The library denoted
as “Basic Linear Algebra Subprograms” (BLAS, Dongarra et al., 1990a) became a standard library
in SC covering numerical analysis. Tailored implementations of the basic subroutines for matrix
and vector operations, which are organized in three levels, are available as optimized versions for
special processor architectures (i.e. hardware). Due to the standard, programs using the BLAS
routines can be efficiently used on various computers, just linking BLAS routines optimized for that
architecture. The basic optimization concepts refer to block-algorithms for the matrix computations,
which efficiently exploit the hierarchical organized cache memory. Detailed descriptions of the
optimization concepts can be found in several dedicated papers. As a starting point see Lawson
et al. (1979), Dongarra et al. (1988, 1990a). A nice overview of the concepts used is given by
Karniadakis and Kirby (2003, Chap. 2.2.7).
In contrast to hardware optimized BLAS routines, the ATLAS-Project (Automatically Tuned Linear
Algebra Software, Whaley et al., 2000, Whaley and Dongarra, 1997) automatically tunes the
parameters of the BLAS routines with respect to the specific hardware, where the ATLAS library
is compiled. A priori hardware information and empirical runtime measurements are used to derive
the hardware dependent parameters. Close to optimal BLAS routines can be compiled on nearly
every platform, thus, in addition to performance, programs using the BLAS are highly portable
without loss of performance.
As an extension to the vector-vector, matrix-vector and matrix-matrix operations contained in the
BLAS, the Linear Algebra PACKage (LAPACK, Anderson et al., 1999, 1990) provides the most
common linear algebra routines used in SC and HPC. For instance, matrix factorizations, eigen-
value computations, solvers for linear systems and matrix inversions are contained in the LAPACK
library which provides all in all several hundred of routines (Anderson et al., 1990). As the basic
computations within LAPACK again extensively use the BLAS routines, LAPACK can obtain a
great performance on nearly every hardware, again just linking a tailored BLAS library.
Both the BLAS and the LAPACK library use a simple interface to matrices. A matrix is passed
to the routines via a pointer to the first matrix element in memory and the dimension information
of the matrix (number of rows and columns as well as the increment and the leading dimension to
operate on sub-matrices). The routine can either operate on matrices stored in CMO or RMO. This
is the reason why only the standard concepts of CMO or RMO were addressed in Sect. 2.2.1.

2.4 Implementation of a Matrix as a C++ Class

As it is a basis in the main part, i.e. the development of a class for distributed matrices in the
next chapter, some details of an implementation of a class for a matrix in C++ are given. Without
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going into detail, Listing 2.1 shows an excerpt of a possible C++ class implementation in form of
a header file. The basic features and functions are provided in the header, but not all member
functions implemented are mentioned. For all computations possible, BLAS or LAPACK routines
are used inside the member functions to efficiently perform the serial computations. The interface
to the BLAS and LAPACK library is thus hidden in the class implementation. The main features
of the class are:

• The two-dimensional data is mapped to the one-dimensional field (std::vector<double>).
• Data access via several member functions (e.g., double operator()( size_t r, size_t c)
const).
• Data manipulation via member functions (e.g., double & operator()( size_t r, size_t
c)).
• Data manipulation and access via pointers (e.g., double * data()).
• Column-wise access via pointers (e.g., double * data( size_t col )).
• BLAS and LAPACK functionality added in member functions for computing routines (e.g.,
void chol()).
• ASCII and binary based file I/O (read and write).

This basic class for matrices serves as a basis for the parallel computations and the block-cyclic
distributed matrices introduced in the next chapter.
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Listing 2.1: Simple header file defining the main features of the class Matrix.�
1 #ifndef MATRIX_H
2 #define MATRIX_H
3
4 #include <vector >
5 #include <iostream >
6 #include <math.h>
7 #include <algorithm >
8 #include <iterator >
9 #include "blas.h"

10 #include "lapack.h"
11 #include "mpi.h"
12
13 using namespace std;
14 class Matrix
15 {
16 public:
17 // constructors
18 Matrix( );
19 Matrix( size_t r, size_t c );
20 Matrix( const Matrix & A );
21 // destructor
22 ~Matrix( );
23 // access to data and meta data
24 size_t rows( ) const;
25 size_t cols( ) const;
26 size_t ld( ) const;
27 size_t inc( ) const;
28 double operator ()( size_t i, size_t j ) const;
29 const double* data() const;
30 const double* data( size_t col ) const;
31 // manipulate matrix
32 Matrix & operator =( const Matrix & A );
33 void resize( size_t nrows , size_t ncols );
34 double* data();
35 double* data( size_t col );
36 double & operator ()( size_t i, size_t j );
37 // Computing functions interface to BLAS/LAPACK (not listed completely)
38 Matrix operator *( const Matrix & B );
39 Matrix operator +( const Matrix & B );
40 Matrix & operator *=( const Matrix & B );
41 Matrix & operator +=( const Matrix & B );
42 void plusProductOf( const Matrix & A, const Matrix & B, double w, char transA , char transB );
43 void plusATAOf( const Matrix & A, char trans);
44 void chol();
45 void invert ();
46 void eigenvals( Matrix & evals );
47 void eigenvecs( Matrix & evals , Matrix & evecs );
48 ...
49 // Matrix I/O
50 void binarySave( string filename ) const;
51 void binaryRead( string filename );
52 // communicating matrices with MPI
53 void Send( int toRank );
54 void Recv( int fromRank );
55 void Bcast( int fromRank );
56 void Reduce( int onRank , const MPI::Op& operation );
57 void Scatterv( int fromRank ); // distribute rows only
58 void Gatherv( int fromRank ); // collect rows only
59 private:
60 // Dimension of matrix
61 size_t _R, _C;
62 // entries of matrix as vector
63 std::vector <double > _data;
64 };
65 #endif // MATRIX_H
� �
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3. Standard Concepts for Parallel Distributed
High Performance Computing

Handling huge adjustment problems requires on the one hand a lot of computing power for the
computations and on the other hand the treatment of large and in some cases huge matrices.
Especially within the modeling of physical processes within the System Earth, huge data sets are
analyzed and more and more refined models are set up, whose parameters are often estimated
within an adjustment procedure from the data. These adjustment procedures often produce huge
dense systems. Thus, to analyze available data sets and to adjust huge dimensional parameters
of complex models the computational requirements significantly increase with autonomous sensors
like e.g., instruments carried on satellite platforms. The computational requirements can often
not be handled by a single compute node, especially if a rigorous modeling without significant
computational approximations is aimed for.

To handle the computational burden, parallel implementations are used to perform the computations
in a reasonable amount of time and to operate with large models and huge dimensional adjustment
processes. Thus, the joint computing power and the memory of a set of compute nodes can be used
to solve the computational tasks. For tasks requiring linear algebra on huge matrices, a concept
for the distribution of a matrix along the set of compute nodes is required to make use of the joint
memory. These distributed matrices are then used for rigorous computations in the algorithms
avoiding approximations which reduce the computational and memory requirements. Within this
thesis, it is generally assumed, that full systems and thus dense matrices are needed for a rigorous
modeling. If not explicitly stated, the matrices are not sparse and thus the operations are needed
for dense matrices.

The goal of this section is to summarize the standards from parallel distributed HPC which are
used later on to solve the tasks which are summarized in the application Chapters 6–8. The basic
concepts to be used there, are introduced and reviewed in this chapter and the basic implementation,
the specific application implementations are based on, is summarized here.

3.1 Definitions in the Context of Parallel and Distributed HPC

Before going into details of the main topic, i.e. parallel distributed HPC, some important terms need
to be defined. The main goal within this thesis is to derive implementations of algorithms which
are able to operate on many compute nodes and are thus able to make use of the joint resources
of the nodes. This resources are the computing power (of all cores) as well as the distributed main
memory. The idea is to have a set of individual (stand-alone) compute nodes which are connected
via a network switch. This might be a collection of standard PCs or dedicated compute nodes
installed for that purpose only. In spite of dedicated hardware and thus performance of the final
program, there is no difference between network connected standard PCs and connected dedicated
compute servers from a conceptual and implementational point of view. Thus, the general term
compute cluster is used for the network connected ensemble of compute nodes (which might be
standard PCs, workstations or dedicated compute servers). Of course, nowadays, these individual
nodes are multi-processor and multi-core nodes. Fig. 3.1 gives an overview of a compute cluster
sketching the main components.

Although in Fig. 3.1 all nodes are depicted with the same hardware, there is no need for that (e.g.
number of processors or amount of main memory may vary), even the performance characteristics
of the nodes may vary. Each node has a certain number of processors, where again each processor
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Figure 3.1: Components of a compute cluster.

has a certain number of compute cores. Within this general context, the number of cores N of the
cluster is much more important than the number of processors or nodes. Only in special scenarios,
where distributed parallel concepts (as focused on here) are mixed with multi-threading concepts
(not addressed in detail in this thesis), the number of processors/cores per node gets important.
Within this context, it does not matter for the chosen parallelization concepts if a cluster consists
of 25 nodes with two processors each and again with four cores each (all in all 200 cores) or 200
nodes each of them equipped with a single core processor.

Although these details are not important for the conceptual design and the implementation, they
are important for the final performance. Especially the performance of the individual cores involved
in the cluster must be comparable and the network connection between the nodes should be as fast
as possible. In addition the connection to a file-server which should serve as a data server should
be fast. As every core has only a direct access to (parts) of the local nodes main memory, the
network connection between the nodes is used to share (intermediate) results between the processes
of the software running on the individual cores. The first standard concept which is needed for
the development of parallel programs is a concept of sharing data between the compute cores of a
cluster via the network connection.

3.2 A Standard for Distributed Parallel Programming: MPI

Within HPC, a common standard for the development of massive parallel programs exists. This
standard, the Massage Passing Interface (MPI) Standard (MPI-Forum, 2009), is the basis for every
massive parallel software for HPC. Different implementations of this standard; i.e. for instance
OpenMPI (Gabriel et al., 2004), IntelMPI (Intel, 2013) or MPICH (Balaji et al., 2013) provide
basic features for the development of massive parallel programs for the use on compute clusters
making use of one to several thousands cores2.

2Note that an alternative to MPI exits, i.e. the Parallel Virtual Machine (PVM, Sunderam, 1990, Geist et al.,
1996). As it is not used within this thesis, but provides similar features and might be an option for some readers,
the references are provided as a starting point for a comparison. In context of numerics and linear algebra MPI is
(currently) more commonly used.
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As the full name of that standard library indicates, the basic feature provided by MPI is an interface
for the communication of messages (i.e. data) between processes of a parallel program being executed
on different cores and nodes of a compute cluster via the network connection. The basic idea and
some basic features are summarized in the following. There is no syntax provided as it is very well
documented e.g. in Gropp et al. (1999a,b), Karniadakis and Kirby (2003) or Aoyama and Nakano
(1999). Comparable to the BLAS and LAPACK libraries, the interface to the functions is realized
via a data pointer to the data and an integer number referring to the number of elements (to be
communicated).

3.2.1 Basic MPI Idea and Functionality

The MPI implementations provide startup scripts, which allow to start a program serial on N cores
provided as a list of hosts (i.e. a node list and a number of cores per node, nodes are specified via
the IP address or the hostname). N instances of the same program are launched on the N cores
such that N processes of the same program are running on N cores. Without using special MPI
commands in the program, so far only the same serial program is executed N times on different
cores. Every core executes the instructions in the program and thus performs exactly the same
operations. All variables created in the program are local with respect to the process and exist in
in the (local) memory of every core. They have a local content and can only be modified by the
process itself as the memory is only accessible by the core. The programmer is responsible to use
special MPI functions to achieve, that every core works on a partial problem or on partial data set
and consequently, the whole problem is solved in parallel using the resources of the N cores involved.

To achieve that, MPI arranges all processes involved in a so called communicator and assigns a
unique identifier to every process which is called rank in the context of MPI. This rank n is an
integer number n ∈ {0, . . . , N− 1} which can be used by the programmer to assign different tasks
to individual processes or to achieve that every process applies the same instructions but to different
parts (i.e. subsets) of the data.

In addition to the organizational features, MPI provides communications routines which can be
used to communicate data between the processes (send and receive operations and extensions based
on that). In this context, the rank is used as an address for the message passing. These concepts
are addressed in some more detail in the following. A nice introduction to the development of MPI
programs is given in e.g., Karniadakis and Kirby (2003) or Rauber and Rünger (2013, Chap. 5).
Detailed information about all functionalities can be found in the MPI standard (MPI-Forum, 2009)
and in Gropp et al. (1999a,b).

Point-to-Point Communication So called point-to-point communication can be used to share
data between exactly two processes. A process with rank n1 can send data to another process with
rank n2. For that purpose, process n1 has to call a MPI send routine to send the data and in addition
it has to be guaranteed by the programmer that n2 allocates memory for the data to be received and
calls the proper MPI receive function. Different send and receive function exist, mainly differing in
the return behavior (blocking vs. non-blocking, buffered vs. synchronous). These different sends
(and receives) are explained in detail for instance in Gropp et al. (1999a, Chap. 2–4).

Collective Communication Besides point-to-point communication, MPI libraries provide rou-
tines for collective communication, i.e. communication where all processes of the communicator are
involved as senders and/or as receivers. E.g., data contained in the local memory of one process
is send to all other processes of the communicator (broadcast), data stored in the local variables
(memory) of the cores is collected in the memory of a single core and concatenated with an operation
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(reduce), or data which is stored in the local memory of a single process is regularly distributed
over all processes (scatter(v)). The following main collective operations exist (see e.g. for a de-
tailed complete description Gropp et al., 1999a, Aoyama and Nakano, 1999) and for the theoretical
concepts (Rauber and Rünger, 2013, Sect. 3.6.2):

• Bcast: Distribute data available on a single process as a copy to all processes of the commu-
nicator.
• Gather(v): Collect data regularly distributed over all processes consecutively in an array on

a single process (inverse to Scatter(v)).
• Scatter(v): Distribute data stored in an array on a single process regularly over all processes

(inverse to Gather(v)).
• Reduce: Collect the content of variables (of same dimension) from all processes and concate-

nate them with an operation (sum, minimum,...). The result is stored on a single process.
• Advanced combinations of the functionalities mentioned above (e.g. a Reduce operation fol-

lowed by a Bcast).

Advanced Features Some advanced MPI features, which are partially used in the following, are
summarized in more detail. References to the technical details are given, as a technical overview
would extend the scope of the summary of basic concepts:

MPI Topologies and Intra-Communicators (Gropp et al., 1999a, Chap. 4.2, 7.4):
A standard MPI communicator can be visualized as a one-dimensional vector, where all processes
are arranged according to their ranks. For many applications, an alternative virtual arrangement
of the processors is better suited, e.g. when thinking about data distribution. For instance, if
later on a two dimensional matrix is distributed, it is straightforward to distribute it over a two
dimensional processor grid instead of a one dimensional linear one. For such cases MPI provides the
concept of virtual topologies, which allows to set up the communicator in special topologies (with
the corresponding neighboring information). This topologies might be one-dimensional Cartesian
grids (standard), two-dimensional, or more general n-dimensional Cartesian grids but also special
topologies as graphs. For many algorithms a virtual arrangement of the processes as such topologies
might be helpful to produce easier code e.g. for message passing to neighbors. For example using
a two-dimensional Cartesian grid, 2D coordinates can be used to address the processes for message
passing instead of the one dimensional rank, which makes the handling of neighboring processes
easier. In addition to the implementational benefits, the MPI topologies can be linked to the
network topology used for the network connection of the cluster nodes. A technical and theoretical
overview about the design of topologies for network connections is given in (Rauber and Rünger,
2013, Sect. 2.5).

In addition to the arrangement of the processes as topologies, MPI provides the functionality to
define sub-communicators in those topologies (e.g. grouping all processes of a column in a 2D
Cartesian topology into an additional communicator). This enables to call collective communication
for the processes of the sub-communicator only. For many algorithms, that is a useful extension
which helps to organize the data communication.

The concept of Cartesian grids provided directly by MPI is not used here. Instead, an alternative
with an extention to MPI is used, which arranges the processes as a Cartesian two-dimensional grid.
This is a prerequisite for an implementation of the concept of block-cyclic distributed matrices as
introduced later on in this chapter.

Parallel Data In- and Output (Gropp et al., 1999b, Chap. 3):
At some points in HPC, data I/O plays an important role. Analyzing huge data sets and operating
with large matrices (e.g. normal equations or covariance matrices in adjustment theory with several
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GB to TB in size) requires efficient I/O. In addition to communication routines and to the organiza-
tion of communication, MPI provides a concept for parallel I/O from/to binary files. A framework
for parallel file access is provided as well as seeking functions such that all processes can access and
read from the file in parallel at different positions. The performance of the parallel I/O of course
mainly depends on the filesystem (and its network connection) the file is read from. In addition to
normal (partial) reading and seeking, process specific file masks exist which can be used to create
process specific views on files so that each process only “sees” the data which should be read by the
process following a user defined distribution scheme.

Extension of the Matrix Class with MPI Communication Functionality Sequences of
MPI function calls can be easily used to implement communication routines as member function of
classes. Listing 2.1 shows some functions for communicating objects of the matrix class. Most of
them are implemented with a sequence of MPI basic communication routines. For instance sending
a matrix requires three MPI send calls. First of all the two integers are send representing the
dimension of the matrix (e.g. two sends of a single integer). Afterwards, with a third send call, the
data is send as a RC double values. Consequently, the receive function is implemented using 3 basis
MPI receive calls. Two are performed to receive the dimension of the matrix, this information is
used afterwards to adjust the dimension of the receiving this matrix and thus to allocate the data
memory. The third call then receives directly RC double values and writes them into the associated
data vector a. As these implementations are straightforward, they are not discussed in more detail.
These functions are mentioned here as the next sections shows a first simple implementation of a
parallel least squares adjustment as it can be realized with basic MPI usage.

3.2.2 Simple MPI Programs to Solve Adjustment Problems

A very simple MPI based implementation of a least squares adjustment procedure is presented here.
It is used as a motivation for the MPI usage and to illustrate the basic MPI concept. It demonstrates,
and helps to get into, parallel MPI based thinking. This simple program computes least squares
estimates for coefficients of a Fourier series given observations `̀̀ at points t. The observations
are uncorrelated and have equal variances, thus the weight matrix is the identity matrix I. The
observation equations (OEQs) are set up and the system of normal equations (NEQs, N and n) is
assembled. Afterwards, the NEQs are solved to derive the solution and N is inverted to derive the
variance covariance matrix of the parameters. The whole program as a parallel MPI implementation
is listed in Listing 3.1. Most original MPI calls are consciously hidden in the implementation of
member functions of the matrix class. Only the calls to the self implemented member functions are
visible.

Simple Parallelization Concept for Adjustment Problems A very simple parallelization
concept for adjustment procedures can be implemented if the following prerequisites hold:

• The observations are assumed to be uncorrelated (no correlations exist in the covariance
matrix, it is a diagonal matrix).
• The NEQs are limited in their dimension and fit into the main memory of every core involved

(limited parameter space).

Assuming the parameter space to be small, but the number of uncorrelated observations M to be
huge, the assembly of the NEQs can be parallelized very well. For uncorrelated observations the
addition theorem for NEQs holds (e.g. Koch (1999, p. 177), Meissl (1982, Sect. A.10.2)) which
says that the NEQs can be separately computed for portions of the observations independently
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Listing 3.1: Example of a simple parallelization of an adjustment problem with MPI.�
1 using namespace std;
2 int main( int argc , char *argv[] )
3 {
4 // Initialize MPI
5 MPI::Init( );
6 // initialize a timer
7 TicToc timer; timer.tic();
8 // determine how many processes were started
9 int size = MPI:: COMM_WORLD.Get_size ();

10 int rank = MPI:: COMM_WORLD.Get_rank ();
11 // initialize (empty) matrices
12 Matrix l,t,A,N,n;
13 // only the master process (rank == 0) reads all observations
14 if( rank == 0 )
15 {
16 l.binaryRead("../ data/l.gdk");
17 t.binaryRead("../ data/t.gdk");
18 }
19 // regularly distribute observations to all size processes (MPI Scatterv calls)
20 l.scatterv (0); t.scatterv (0);
21 // now , l and t are filled with a part of the observations
22 // obtain the observation equations for the part of observations on every core
23 Fourierseries f(2000, 1.0);
24 f.getDesign(t, A);
25 // compute the NEQs for that part locally on every process
26 N.isATAof(A);
27 n.plusProductOf( A, l, ’t’, ’n’, 1.0 );
28 // and collect them on rank 0 and sum the NEQs up
29 N.reduce( 0, MPI::SUM );
30 n.reduce( 0, MPI::SUM );
31 // only rank 0 solves the NEQs now (serial)
32 if( rank == 0 )
33 {
34 // compute serial solution of NEQs on rank 0 only and save the result
35 n.solveNEQ(N);
36 N.invCholReduced ();
37 n.binarySave("../ data/xs.gdk");
38 cout <<" Assembly and solution took "<<timer.toc()<<" secs using "<<size <<" cores"<<endl;
39 }
40 // end MPI
41 MPI:: Finalize ();
42 }
� �

and that the partial NEQs can by combined by addition to derive the NEQs composed from all
observations. Thus, a simple approach is to distribute the M observations in preferably equal parts
over the N involved cores. Every core can independently assemble the NEQs for approximately
M/N observations. As the computation of N = ATA is an expensive operation, the runtime is
significantly reduced, as it is now performed in parallel. All processes set up the NEQs for the
whole parameter space, but for a portion of the observations only. The final NEQs are the sum of
the local, i.e. portioned NEQs assembled by all processes. Sending all NEQs to a single process
and summing them up yields the finally combined NEQs including all observations. The system
of NEQs can then be serially solved on a single core using e.g., the fast LAPACK solvers. The
most expensive step for a huge number of observations, it is the computations of N = ATA, is now
completely performed in parallel.

Mapping of the Concept to a MPI Program The concept described above is mapped into a
MPI based C++ program in Listing 3.1. To clarify the basics and to emphasize the general MPI
operating mode, the code is commented line by line:

l. 5: The MPI function Init is called. Other MPI function calls are allowed afterwards. In the
background the library is initialized, e.g. the ranks are assigned to the running processes.

l. 9: The integer variable size is created on every process. The value assigned is the same on
every process. It is the number of processes the MPI program was launched with. It is
requested with the MPI function Get_size.

l. 10: The integer variable rank is created on every process. The value assigned differs on every
process. It is the rank of the processes. It is requested with the MPI function Get_rank.

l. 12: Empty Objects of the class Matrix are created on every process/core.
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l. 14–18: If-statement: The instructions are only executed by the process which rank equals 0.
Thus, only one process reads the observations and locations from disk. On rank 0, the
matrices `̀̀ and t are filled with the whole set of observations. On all other processes the
matrices remain empty.

l. 20: The member function Scatterv of the class Matrix is called on every core for the matrices
`̀̀ and t. This is an self implemented member function which hides the original MPI calls.
The function takes the content of the this matrix on rank 0 (argument of the function)
and distributes the elements of the vector (in this case implemented for vectors only) in
equal parts to the size involved processes. Every process gets “number of rows” integer
divided by size elements. The remainder of the integer division is distributed such that
the first elements get one extra element. The distribution itself is then performed with
the MPI Scatterv function. Afterwards, the received portion of the vector is written into
the formally empty matrices. On rank 0 the whole vector is overwritten with the portion
which goes to rank 0. After the function calls, all processes have their observations in
their local vectors `̀̀ and t. `̀̀ and t now differ on every core. A virtual concatenation of
the local matrices would result in the original vectors as read from disk.

l. 23: Every process creates an object of the class Forierseries with parameters of the series
to be estimated (order and basis frequency).

l. 24: The object of the class is used to derive the design matrix A locally on every core for the
positions t of the observations `̀̀. A again differs on every core.

l. 26–27: All processes perform the same operation, i.e. computation of the partial NEQs, but for
different data (observations). Afterwards every core has the NEQs (in N and n) assembled
from its local part of the original observations.

l. 29–30: All processes call the self implemented member function Reduce of the class Matrix. The
function calls send all local matrices N (and the right hand side vector n) to the process
with rank 0 (argument of the function) and combines the matrices there with the sum
operation. After the function calls, on rank 0, the local matrices N and n are overwritten
with the result, i.e. the sum of all local NEQs. On the other ranks, N and n remain
unchanged and still contain the partial NEQs. Internally the collective MPI function
Reduce is called by all processes.

l. 32–39: The process with rank 0 contains now the combined NEQs. Thus, only this process
solves the NEQs serially calling proper LAPACK functions integrated within the member
functions of the class Matrix. The solution and covariance matrix is derived and e.g.
written to a file.

l. 41: Finally all processes call the MPI function Finalize, which ends the MPI library and
destroys the MPI specific objects. Afterwards no more calls to the MPI library are allowed.

3.3 Distributed Matrices

Sect. 3.1 and 3.2 gave a basic introduction to standard concepts for massive parallel program devel-
opment with a special focus on numeric applications. Exemplarily a very simple MPI program was
introduced at the end, to illustrate the basic MPI concept and to clarify the cycle of a MPI based
parallel program. For the simple parallelization concept introduced there, two main limitations
were pointed out. To circumvent this limitations, the flexible concept of distributed matrices is
introduced. Within this concept, a matrix is not stored in the memory of a single core, but stored
distributed over the joint local main memory of all cores of the cluster involved. The benefit is that
matrices can get extremely huge, as the joint memory of all cores is available. The disadvantage is
that computations with these matrices get more and more challenging, as communication between
the cores is required to share the distributed stored matrix elements if required on another core.
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Fortunately, libraries like BLAS and LAPACK exist for distributed matrices as well, which provide
the computational functionalities of those, but for matrices stored distributed.

Although nowadays there are shared memory computers with a large amount of main memory
(e.g. 512 GB) with several compute cores, at some point it becomes unreasonable to perform
computations on such large matrices with only a few cores (typically these nodes have 32–64 cores
only). In addition, many of the widely used BLAS and LAPACK implementations only use 32 bit
integer numbers for the array indexing, such that computations with this libraries are limited to
matrices with less then 231 entries (i.e. e.g. a 46 340× 46 340 matrix, spherical harmonic NEQs of
degree and order 215). For a higher general flexibility, it makes sense to switch to distributed stored
matrices to use the memory of all cores to store the matrices as well as the computing power of all
cores in the cluster to perform operations on/with this matrices. Within this chapter, some terms
of distributed computing are defined and a (quasi) standard concept in scientific computing for the
handling of distributed matrices is introduced. This concept is mapped into an object oriented class
DistributedMatrix with an easy to use flexible interface.

3.3.1 Compute Core Grid for Distributed Matrices

Within Sect. 3.2 the concept of MPI topologies and Cartesian compute grids was introduced. In
parallel HPC an alternative library is used to provide comparable features (required for later used
libraries as well). This library, the Basic Linear Algebra Communication Subprograms (BLACS,
Dongarra and Whaley, 1997) is an extension to MPI (MPI is still required as basis). As a main
feature, the library always organizes the compute cores as a two-dimensional grid of cores (pro-
cesses) and assigns two-dimensional coordinates (in addition to the rank). These coordinates (r, c)
are used to address the processes (similar to the MPI Cartesian topologies) of the compute core
grid (or process grid). As an additional functionality, MPI like functions are provided to directly
communicate two-dimensional fields with point-to-point or collective communication. The collective
communications are designed to communicate along the whole compute core grid or along specific
scopes of that, like columns or rows of that Cartesian grid. As communications can still be or-
ganized with MPI only, the main external feature of the library is the setup of the compute core
grid. However, additional libraries, which are used later on, use the BLACS routines for internal
communication. Using the BLACS library, the program is again started with N processes on N
cores using the standard MPI startup. These N cores of the cluster are organized per default as a
two-dimensional R×C = N compute core grid whose dimension is specified by the user/programmer.
Fig. 3.2 shows the setup of the two-dimensional compute core grid and the symbols as used in this
thesis. The two-dimensional process coordinates can be uniquely converted to a MPI rank. Within
the following it is always assumed that the compute grid is organized as a two-dimensional grid.
Nevertheless note that one-dimensional grids, i.e. grids with R = 1 or C = 1, are possible without
limitations as they are special cases of a two-dimensional grid.

3.3.2 Standard Concept for the Handling of Distributed Matrices in HPC

3.3.2.1 Block-cyclic Distribution of Matrices

The concept for the distribution and the steps involved are summarized in the following, the ex-
planation is supported by the example illustrated in Fig. 3.3. A (quasi-) standard concept for the
distribution of matrices over a Cartesian compute core grid of dimension R × C (cf. Fig. 3.3(a)) is
the so called two-dimensional block-cyclic distribution (Sidani and Harrod 1996, Blackford et al.
1997, Chap. 4 or Rauber and Rünger 2013, Sect. 2.5). Given a general dense matrix A of dimension
R × C (cf. Fig. 3.3(b)), the whole matrix (often called global matrix or global view on the matrix)
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Figure 3.2: Cores of a compute cluster virtually arranged as two-dimensional compute core grid as
done by BLACS.

is in a first step divided into blocks Ai,j of an arbitrary block size br × bc (cf. Fig. 3.3(c)) which is
defined by the programmer (or later on by the user),

A =




A0,0 A0,1 · · · A0,J−1

A1,0 A1,1 · · · A1,J−1
...

... · · · ...
AI−1,0 AI−1,1 · · · AI−1,J−1


 . (3.1)

The number of blocks J along a row and I along a column are

I =

⌈
R

br

⌉
and J =

⌈
C

bc

⌉
. (3.2)

Except the matrix blocks AI−1,∗ and A∗,J−1, all blocks are of dimension br× bc. AI−1,∗ and A∗,J−1

might be of a smaller dimension as they are the rest blocks. Their dimension is related to the
remainder, i.e. R%br and C%bc.

These blocks are now cyclically distributed along the Cartesian compute core grid (cf. Fig. 3.3(d)).
The blocks of the first row (i = 0) are distributed cyclically to the processors of the first row of the
compute core grid (0, c). Block A0,j is stored on processor with coordinates (0, j%C). The second
row of blocks (i = 1) is distributed cyclically along the second row of the compute core grid (r = 1).
The general rule, to compute the process coordinates where a block is stored on, can be written as

Ai,j 7→ (i%R, j%C) . (3.3)

If I > R (it is the typical case), the i-th row (i = R) will be distributed again over the first row of
the processors grid (cyclic). For the special case I = R and J = C a standard block-distribution
without the cyclic repetition is achieved.

All matrix blocks mapped to a core (r, c) are arranged in a serially stored local matrix (cf. Fig. 3.3(e))
on the process via

Al
r,c =




Ai,j Ai,j+C · · ·
Ai+R,j Ai+R,j+C · · ·

...
... · · ·


 . (3.4)

This composed local matrix is stored as a serial matrix in the main memory associated with the
process (r, c). It is called local matrix. The serial local matrix is then again stored in a one-
dimensional field as introduced in Sect. 2.2.1 to map the matrix to the linear memory (cf. Fig. 3.3(f)).
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(a) 2× 3 compute core grid of N cores the matrix should be distributed to.

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8

A =

(b) Example matrix A of dimension
8× 9 to be distributed.

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8

A =

(c) Example matrix partitioned into
blocks of size br × bc = 3× 2.

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8

bc

br

(d) Assignment of the 3 × 2 blocks to
the cores.

a6,0 a6,1

a7,0 a7,1

a0,6 a0,7

a1,6 a1,7

a2,6 a2,7

a6,6 a6,7

a7,6 a7,7

a0,0 a0,1

a1,0 a1,1

a2,0 a2,1

a3,0 a3,1

a4,0 a4,1

a5,0 a5,1

a3,6 a3,7

a4,6 a4,7

a5,6 a5,7

a0,2 a0,3

a1,2 a1,3

a2,2 a2,3

a6,2 a6,3

a7,2 a7,3

a1,8

a2,8

a0,8

a6,8

a7,8

a3,2 a3,3

a4,2 a4,3

a5,2 a5,3

a3,8

a4,8

a5,8

a0,4 a0,5

a1,4 a1,5

a2,4 a2,5

a6,4 a6,5

a7,4 a7,5

a3,4 a3,5

a4,4 a4,5

a5,4 a5,5

Al =

n = 0

(0, 0)

(1, 0)

Al =

n = 3

Al =

n = 1

Al =

n = 4

(1, 1)

Al =

n = 2

(0, 2)(0, 1)

Al =

n = 5

(1, 2)

(e) Local matrices Al
r,c as stored on the individual

cores.

a0,0 a1,0 a2,0 a6,0 a7,0 a0,1 a1,1 a2,1 a3,1 a4,1 a0,6 a1,6 a2,6 a6,6 a7,6 a0,7 a1,7 a2,7 a6,7 a7,7
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Figure 3.3: Block-cyclic distribution of a 8 × 9 matrix on a 2 × 3 compute core grid using the
distribution parameters br × bc = 3× 2.

Now, instead of operating on the global matrix, local operations have to be performed on Al
r,c, con-

taining elements of the global matrix but not necessarily neighboring with respect to the global view
on the matrix. It is important to realize that neighboring elements of A occur only as neighboring
elements in the local matrices Al

r,c within the sub-blocks of size br × bc. Note that via the choice of
the processor grid dimension and the dimension of the sub-blocks br × bc nearly every distribution
of a matrix can be achieved. One-dimensional distributions, one-dimensional cyclic-distributions
or block-distributions (without the cyclic recurrence) are possible as special cases of this general
scheme, see Blackford et al. (1997, Chap. 4.3) or Rauber and Rünger (2013, Sect. 3.5).

Finally, the concept of block-cyclic distribution of matrices is demonstrated by a small example
matrix, distributing a 8× 9 matrix along a R× C = 2× 3 compute core grid using the distribution
specific parameters br × bc = 3 × 2. The example, including the resulting local matrices on the
different cores, is illustrated in Fig. 3.3.
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3.3.2.2 Index and Element Computations for Block-cyclic Distributed Matrices

Given a matrix A of dimension R×C, the distributions parameters br and bc and the dimension of
the compute core grid R×C the block-cyclic distribution is unique. This section is used to introduce
computation formulas which provide the connection of global entries of A and local entries in Al

r,c.

Dimension of the Local Matrices With the known distribution parameters, the dimension
Rlr,c × C lr,c of the local matrices Al

r,c can be directly computed for every core. For the local matrix
on process (r, c) it is

Rlr,c = ((R÷ br)÷ R) br + (r < ((R÷ br) %R)) br + (r == ((R÷ br) %R)) (R%br) , (3.5a)

C lr,c = ((C ÷ bc)÷ C) bc + (c < ((C ÷ bc) %C)) bc + (c == ((C ÷ bc) %C)) (C%bc) , (3.5b)

where the meaning of the involved operands (done for the rows only, analog for columns) is as
follows:

• R÷ br: Is the number of full blocks, the global matrix A is partitioned along a column.
• ((R÷ br)÷ R): Is the number of full blocks each core of the grid’s column gets for sure

(minimum per core).
• ((R÷ br)÷ R) br: Is the number of entries, resulting from the full blocks, each core of the

grid’s column gets for sure (above bullet).
• (R÷ br) %R: Number of remaining full blocks, which have to be additionally distributed over

the first cores of the grid’s column.
• (r < ((R÷ br) %R)): Is 1 if process belongs to the first “remaining full blocks” processes of the

grid’s column and thus gets an additional full block. It is 0 otherwise.
• (r < ((R÷ br) %R)) br: Number of additional entries for the first “remaining full blocks” pro-

cesses of the column of the grid. It is br if process belongs to the first ones and 0 otherwise.
• (R%br): Number of rest entries of the matrix, not distributed as full blocks.
• (r == ((R÷ br) %R)): Is 1 if the processor is the followup process of the processor which got

the last additional full block, 0 (i.e. no additional elements) otherwise.

Global Matrix Indices from Local Indices Given the dimension of the compute core grid,
the dimension of the global matrix A and the distribution parameters, the indices of a local entry
(rlr,c, c

l
r,c) on process (r, c) can be converted to the index of that entry in the global matrix (r, c) ,

i.e. A(r, c) == Al
r,c(r

l
r,c, c

l
r,c). The global indices of the matrix entry are computed from the local

ones via

r =
(
rlr,c ÷ br

)
Rbr + rbr + rlr,c%br, (3.6a)

c =
(
clr,c ÷ bc

)
Cbc + cbc + clr,c%bc, (3.6b)

where the involved operands can be explained as (done for the rows only, analog for columns ) to
clarify the equation:

•
(
rlr,c ÷ br

)
: Number of full blocks each core has at least in its local matrix before the block,

the entry in row rlr,c belongs to.
•
(
rlr,c ÷ br

)
R: Number of full blocks in the global matrix which are at least before the global

block the local entry rlr,c belongs to.
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•
(
rlr,c ÷ br

)
Rbr: Number of global entries, resulting from full blocks in the global matrix which

are at least before the block the local entry rlr,c belongs to.

• rbr: Number of entries resulting from additional full blocks on the processes which are before
r in the grid.

• rlr,c%br: Rest entries, which do not correspond to a full block, before the entry.

Local Indices and Process Coordinates from a Global Index of an Entry Given an entry
(r, c) of the global matrix, the following set of formulas provides the computation of the process
coordinates and the entry in the local matrix the element is stored in. Knowing the distribution
parameters and the compute core grid dimension, the process coordinates can be computed with

r = (r ÷ br) %R, (3.7a)
c = (c÷ bc) %C, (3.7b)

where the involved operands are

• (r ÷ br): Index of full block from the global matrix the entry belongs to.

• (r ÷ br) %R: Process row coordinate that block is stored on.

After the process coordinates are determined, the entries position in that local matrix can be
computed via

rlr,c = ((r ÷ br)÷ R) br + (r < ((r ÷ br) %R)) br + (r == ((r ÷ br) %R)) (r%br) , (3.8a)

clr,c = ((c÷ bc)÷ C) bc + (c < ((c÷ bc) %C)) bc + (c == ((c÷ bc) %C)) (c%bc) . (3.8b)

where the involved operands are

• r ÷ br: Is the number of full blocks, the global matrix A is partitioned into up to entry r
(along a column).

• ((r ÷ br)÷ R): Is the number of full blocks each core of the grid’s column has for sure (mini-
mum per core) before the global entry r can occur.

• ((r ÷ br)÷ R) br: Number of entries, resulting from the full blocks, each core of the grid’s
column has for sure before the global entry r can occur.

• (r ÷ br) %R: Number of additional remaining full blocks in the global matrix before the block
r belongs into.

• (r < ((r ÷ br) %R)): Is 1 if process belongs to the first “additional remaining full blocks”
processes of the grids column and thus the process gets has an additional full block stored. It
is 0 otherwise.

• (r < ((r ÷ br) %R)) br: Number of additional entries for the first “additional remaining full
blocks” processes of the grids column. It is br if process belongs to the first ones and 0
otherwise.

• (r%br): Number of rest entries of the matrix before row r, not distributed as full blocks.

• (r == ((r ÷ br) %R)): Is 1 if the processor is the followup process of the processor who got
the last additional full block, 0 (i.e. no additional elements) otherwise.
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3.3.3 Standard Libraries for Computations with Block-cyclic Distributed Ma-
trices

Standard HPC libraries exist to perform basic matrix computations and standard linear algebra
operations with block-cyclic distributed matrices. Similar to BLAS and LAPACK (cf. Sect. 2.3),
the Parallel Basic Linear Algebra Subprograms (PBLAS, Blackford et al., 1997, Choi et al., 1995b)
containing basic matrix computations for block-cyclic distributed matrices exist. In general the
PBLAS library provides the same functionality as the serial BLAS library, organized in the three
levels as well. To provide the functionality, PBLAS routines extensively use BLACS and thus MPI
based communication to share the data (i.e. matrix entries) between the processes if needed during
the computations. The actual computations are serially performed on the cores extensively using
the serial BLAS library. Linking optimized BLAS routines for the used hardware then provides
optimized PBLAS routines as well. Instead of LAPACK, the SCAlable Linear Algebra Package
(ScaLAPACK, Blackford et al., 1997, Choi et al., 1992, 1995a) provides the LAPACK functionality
operating on block-cyclic distributed matrices. Again, message passing is organized by BLACS,
basis computations are performed with PBLAS and the serial computations are performed with the
serial BLAS and LAPACK functions.

Both libraries are mainly Fortran implementations (with some C extensions) which are available as
open source libraries in NETLIB/SCALAPACK (2012). As used later on for the implementation
of block-cyclic distributed matrices as a class, the description and references to a block-cyclic dis-
tributed matrix as used by the libraries are shortly summarized here. Note that, as mainly Fortran
is used, PBLAS and SCALAPACK use an array in indexing starting with 1, in contrast to 0 as
used as a standard here (C++ like). As the PBLAS and SCALAPACK functions use collective MPI
(BLACS) communication, it has to be taken care of, that all processes of the compute core grid (or
at least the correct subset) call the PBLAS or SCALAPACK function.

The interface to the PBLAS (and or SCALAPACK) routine for a block-cyclic distributed matrix
can be grouped into four parts:

1. Description of the Distribution of a Matrix: The description of the block-cyclic distri-
bution of a matrix is passed to the PBLAS (or SCALAPACK) as an integer field of length nine (cf.
Blackford et al., 1997, Chap. 4.2, 4.3.3). Within the context of distributed HPC and these libraries
this nine element integer field is called array descriptor d. It contains the major description of
the matrix and its block-cyclic distribution. This array descriptor is stored on every process of the
compute core grid the matrix is distributed to. The entries of the descriptor at the positions are for
in-core dense matrices3:

0. An integer characterizing the type of the matrix. Within PBLAS and SCALAPACK the fol-
lowing types of matrices are known: in-core dense matrix (value 1) used here only (narrow
band and tridiagonal matrices (value 501), narrow band and tridiagonal right-hand-side ma-
trices (value 502) and out-of-core dense matrices (value 601)). This entry is constant for all
processes of the compute core grid (equal to 1) in this thesis.

1. Contains the BLACS context the PBLAS and SCALAPACK routines communicate in. A
BLACS context is comparable to a MPI communicator. In BLACS it is an integer num-
ber. This parameter is the same on every process, it is the number returned by the BLACS
initialization function. Typically zero if only one BLACS communicator is used.

3Note that the meaning changes for other matrix types, i.e. narrow band and tridiagonal matrices , narrow band
and tridiagonal right-hand-side matrices and out-of-core dense matrices. As only in-core dense matrices are used
here, the meaning is only explained for that matrix type.
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2. Number of rows of the whole i.e. global matrix, called R within this thesis. The entry is the
same on every process.

3. Number of columns of the whole i.e. global matrix, called C within this thesis. The entry is
the same on every process.

4. Dimension of the sub-blocks in row direction the matrix is partitioned in before distribution,
called br in this thesis. The entry is the same on every process.

5. Dimension of the sub-blocks in column direction the matrix is partitioned in before distribu-
tion, called bc in this thesis. The entry is the same on every process.

6. Row coordinate of the process where the block-cyclic distribution starts. I.e. the row coor-
dinate of the process the first block of the global matrix is distributed to. Here and in the
examples given above it is r = 0. For a better balancing, especially handling many small
matrices, alternatives would be possible. Nevertheless, within this thesis the entry is set to 0
as default. The entry is the same on every process.

7. Column coordinate of the process where the block-cyclic distribution starts. I.e. the column
coordinate of the process the first block of the global matrix is distributed to. Here and in
the examples given above it is r = 0. For a better balancing, especially handling many small
matrices, alternatives would be possible. Nevertheless, within this thesis the entry is set to 0
as default. The entry is the same on every process.

8. Leading dimension of the (serial) local matrix Al
(r,c) on the process with coordinates (r, c).

Using, as in this thesis, column-major order (cf. Sect. 2.2) it is the number of rows of Al
(r,c),

Rl(r,c). This entry in the array descriptor differs for processes of different processor grids rows.

With the array descriptor provided, and knowing the compute core grid dimension (retrievable with
BLACS routines) the matrix distribution is uniquely defined. Within every PBLAS or SCALAPACK
function call a block-cyclic distributed matrix is passed to, a reference to this array descriptor of
the matrix is passed to as well.

2. Accessing the Matrix Data The local data of the matrices are referenced by pointers to the
first element of the local matrices Al

(r,c), in C++ it is &Al
(r,c)(0, 0). As every process of the compute

core grid calls the PBLAS/SCALAPACK function, it is another pointer on every core, pointing to
the local matrix stored on that core.

3. Operating on Sub-Matrices SCALAPACK as well as PBLAS provide the functionality of
performing computations on sub-matrices. For that reason, the global row and column coordinate of
the first entry where the sub-matrix starts can be provided to the functions (typically called i∗ and
j∗ in the function description, +1 as this entries start counting with 1). In addition, the dimension
of the sub-matrix must be provided, if sub-matrices are used. It differs from the dimension contained
in the array descriptor.

4. Operations on Matrices Typically, via character arguments, operations can be performed on
the matrix, before the actual computation is performed by the function. These operations can be for
instance a transpose operation. It tells the routine e.g., if either AB or ATB should be computed.
These parameters are very function specific and are explained in detailed function descriptions
(e.g. in Blackford et al., 1997, Part II). Note that these parameters typically have a consequence
on the other function arguments like the dimension of the (sub-)matrices. See again the function
descriptions for details.

With this basic knowledge, PBLAS and SCALAPACK routines can be used, if the matrices are
available in the introduced block-cyclic distribution.
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3.3.4 Implementation as a C++ Class

The introduced block-cyclic distribution of matrices was implemented as a C++ class which is the
basis for the applications introduced later (cf. Chap. 6–8) and for many other applications and
projects which require massive parallel HPC in the group of Theoretical Geodesy at the IGG Bonn.
All in all, a class DistributedMatrix is implemented consisting of about 5000 lines of C++ code.
The main features of the developed class are

• the management of the block-cyclic distribution,
• an interface to manipulate entries in the block-cyclic distributed matrices,
• the mapping between local and global entries,
• a simplified interface to PBLAS and SCALAPACK computing routines,
• a parallel I/O of matrices from block-cyclic distribution to files or from files directly to block-

cyclic distributed matrices,
• a distribution of a serial stored matrix to a block-cyclic distributed matrix,
• or vice versa the collection of a block-cyclic distributed matrix on a single process into a serial

stored matrix,
• and an implementation of row and or column reordering (i.e. sequences of row and column

interchanges).

An overview about the implemented class DistributedMatrix is given in a simplified excerpt
from the header file which is provided in Listing 3.2. Constructing an object of the class
DistributedMatrix, an object of the class is created within every process of the compute core
grid. The local attributes (mainly the local serial Matrix Al

(r,c) and the array descriptor d) of the
class are created in the main memory of every core. The class provides a function interface to fill
the local matrices with data and to perform computations or operations on the local matrix.

3.3.4.1 Distributed Matrix Reading with MPI

As it is a flexible feature of the class, the concept for parallel distributed I/O operations directly into
block-cyclic distributed matrices (and vice versa from) block-cyclic distributed matrices is introduced
here. Although some technical details are omitted, the MPI basic routines used are given and the
idea behind that concept is introduced. The process is described for file reading. For file writing
the process is comparable, using corresponding MPI write functions instead of the read functions.
The same binary file format as for serial matrices is used for both block-cyclic distributed matrices
and serial matrices (cf. Sect. 2.2.2).

MPI provides I/O routines for opening files for distributed reading and writing (Gropp et al., 1999b,
Sect. 3.2). Each process of the grid opens the MPI file (MPI::File::Open). Every process reads –
starting at the begin of the file – two integer numbers (MPI::File::Read), i.e. the global dimension
(R×C) of the matrix contained in the file (or in an advanced format the complete header of known
size). Afterwards the resize function of the DistributedMatrix class is called, such that the local
memory for the local matrices is allocated and an empty DistributedMatrix of the read dimension
is created. The position in the file is on all processes the start position of the RC double data
representing the matrix entries.

To read the data in parallel directly into the local memory of the distributed matrices, advanced
MPI derived data types for block-cyclic distributed arrays can be used to represent block-cyclic
distributed matrices (MPI::Datatype::Create_darray). The distributed array data type depends
on the compute core grid dimension and the parameters br and bc of the block-cyclic distribution.
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Listing 3.2: Simplified header file defining the main features of the class DistributedMatrix.�
1 #ifndef DistributedMatrix_H
2 #define DistributedMatrix_H
3 class PARALLELDIAGONALMATRIX; class PARALLELBLOCKDIAGONALMATRIX; class PARALLELSPARSEMATRIX;
4 using namespace std;
5
6 class DistributedMatrix
7 {
8 public:
9 enum MATRIX_TYPE { GENERAL , SYMMETRIC_L , SYMMETRIC_U , TRIANGULAR_L , TRIANGULAR_U };

10 // constructors
11 DistributedMatrix ();
12 DistributedMatrix( int blacs_context , int R, int C, int br, int bc, int startRow , int startCol );
13 DistributedMatrix( const DistributedMatrix &M );
14 DistributedMatrix & operator =( const DistributedMatrix & C );
15 // destructor
16 ~DistributedMatrix ();
17 // access distribution and dimension parameters of the matrix
18 size_t Rl() const;
19 size_t Cl() const;
20 size_t R() const;
21 size_t C() const;
22 int br() const;
23 int bc() const;
24 int context () const { return( _arrayDescriptor.at(1) ); };
25 int* d(); // Pointer to array descriptor
26 const int* d() const; // Pointer to array descriptor
27 MATRIX_TYPE type( ) const { return(_type) ;}
28 void setType( MATRIX_TYPE t );
29 // manipulate size/distribution of matrix
30 void setParameters( int blacs_context , int R, int C, int br , int bc , int startRow , int startCol );
31 void resize( int R, int C ); // change dimension of global matrix
32 void expand( size_t R, size_t C ); // add columns to global matrix to dimension R x C
33 void trim( size_t R, size_t C ); // reduce dimension to R x C
34 // data access
35 Matrix & localMat (){ return( _A ); };
36 Matrix localMat () const { return( _A ); };
37 double & operator ()( int r, int c); // access local entries , write
38 double operator ()( int r, int c) const; // access local entries , read
39 // pointer to the first element of local serial stored matrix
40 inline double* feld(){ return( _A.feld() ); };
41 inline double* feld() const { return( _A.feld() ); };
42 inline double* colPtr( size_t c );
43 // index/entry position computations between local and global matrix
44 int colInGlobalMat( int cl ) const;
45 int rowInGlobalMat( int rl ) const;
46 void posInLocalMat( int r, int c, int & rl, int & cl, int & rowProcIdx , int & colProcIdx );
47 // collect a distributed matrix , distribute a serial matrix
48 void isDistributed( Matrix & A, int fromRank=0, int offset = 0 );
49 void collectOnRank( int onRank , Matrix &Ajoint );
50 // computing routines manly referencing SCALAPCK PBLAS functions
51 // different multiplications including special cases like symmetric/triangular matrices
52 void plusAtAof( DistributedMatrix & A, double w = 1.0, char tran = ’t’, int ia=1, int ja=1 );
53 void plusProductOf(DistributedMatrix &A,char tranA ,DistributedMatrix &B,char tranB ,double w,int ic=1,int jc=1);
54 void plusProductOf( DistributedMatrix & A, PARALLELDIAGONALMATRIX & D );
55 void plusProductOf( PARALLELDIAGONALMATRIX & D, DistributedMatrix & A );
56 void isProductofSymUnsym( DistributedMatrix & symmA , DistributedMatrix & B, double w );
57 void plusProductofSymUnsym( DistributedMatrix & symmA , DistributedMatrix & B, double w );
58 ...
59 DistributedMatrix & operator *=( double scal );
60 DistributedMatrix & operator -=( DistributedMatrix & C );
61 DistributedMatrix & operator +=( DistributedMatrix & C );
62 DistributedMatrix & operator +=( PARALLELDIAGONALMATRIX & C );
63 DistributedMatrix operator -( DistributedMatrix & C ) const;
64 DistributedMatrix operator +( DistributedMatrix & C ) const;
65 DistributedMatrix operator +( PARALLELDIAGONALMATRIX & C ) const;
66 ...
67 // solve and inversion
68 void isSolutionOf( DistributedMatrix & N );
69 void isSolutionOfCholReduced( DistributedMatrix & N );
70 void isSolutionOfTriag( const DistributedMatrix & R, char side=’L’, char tranA=’N’, int ib=1, int jb=1 );
71 void isSolutionOfTriag( const PARALLELBLOCKDIAGONALMATRIX & R, char side=’L’, char tranA=’N’ );
72 void chol();
73 void isInvOfCholReduced( );
74 // special computations
75 void eigenvalues( Matrix & ev );
76 void eigenvalues( Matrix & ev , DistributedMatrix & Z);
77 double trace( );
78 // parallel I/O
79 void binarySave( string filename , int mode = 1 );
80 void binaryRead( string filename , int mode = 1 );
81 // reordering with index vector
82 void reorder( vector <size_t > p, bool perm=true ); // this -> this(idx ,idx)
83 void reorderCols( vector <size_t > p, bool perm=true ); // this -> this(:,idx)
84 void reorderRows( vector <size_t > p, bool perm=true ); // this -> this(idx ,:)
85 private:
86 Matrix _Al;
87 MATRIX_TYPE _type;
88 vector <int > _arrayDescriptor;
89 // management routines
90 void _determineLocalMatrixSize( );
91 };
92 #endif // DistributedMatrix_H
� �
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Passing this parameters in a MPI specific form to the function, an internal MPI data type represent-
ing the distribution over the grid is created. This data type defines which parts of the block-cyclic
distributed matrix are visible for which processes of the compute core grid. This virtual data type is
set as a file view on the opened file (MPI::File::Set_view). This file view puts a virtual mask over
the file’s data, that afterwards each process only sees the matrix entries which belong to its local
matrix. The data of the other processes are faded out in the view of an individual process. Thus,
every process has another view on the file. Virtually it is like a file which only contains the processes
local data (following the specified block-cyclic distribution). After the file view is set on every core,
the local data of the processes are read in parallel via a call of the MPI::File::Read_all function
on every core. Via pointers, the data can be directly read into the local memory which is the local
matrix Al

r,c. For the technical details see Gropp et al. (1999b, Chap. 3.3 and 3.4). A comparable
process is implemented for the parallel writing of a matrix from a block-cyclic distributed matrix to
a serial file. Mainly the reading functions are changed to writing functions. Of course, the header
(e.g. matrix dimension) is only written to the file by a single process. Using the same functions
already introduced, even symmetric or triangular matrices stored in a packed format in a binary
file can be read in parallel into a block-cyclic distributed matrix (or written from a block-cyclic
distributed matrix into a file with packed storage).

To get a feeling of the time spent for the parallel matrix I/O, some numbers are given. A systematic
study, is hard to perform as the derived numbers vary a lot. Especially in a HPC environment
the runtime measurements are significantly influenced by other activities on the HPC file system as
well in the (Infiniband) network. Variations around a factor of at least two are often observed. In
addition, they depend on the block-cyclic distribution parameters.

Using a compute cluster of standard nodes via a standard Ethernet (1 Gbit/s) connection and
standard server disks mounted as a network file system (NFS), the runtime for reading and writing
matrices of dimension 17 000× 17 000 (2 GB) to 63 000× 63 000 (30 GB) is in the range of 100 s to
1000 s, strongly depending on the disk performance and the network activities. Anyway, matrices
of dimension 100 000×100 000 (75 GB) can be successfully read into (written from) the block-cyclic
distribution in about 2000 s.

The performance significantly increases when the software component is used in a dedicated HPC
environment (JUROPA at FZ Jülich). Both important components, the network connection and the
file system are faster. Whereas the nodes are connected via Infiniband (40 Gbit/s), the data is read
from a parallel file system designed for parallel HPC (lusture, e.g. Bauke and Mertens, 2006, p. 65).
Matrices up to dimension 100 000× 100 000 (75 GB) are read and written in 20− 100 s, depending
on the compute core grid and the block-cyclic distribution. The basic conclusion is that, e.g., reading
and writing of a 30 GB matrix can be performed in less then 40 s. Independent of the block-cyclic
distribution and the compute core grid, the operation can be performed in 40− 90 s. Even matrices
of dimension 520 000 × 520 000 (2 TB) are read in e.g. 2100 s as a block-cyclic distributed matrix
(64 × 64 compute core grid, br = bc = 64) and written from a block-cyclic distribution to a file in
3500 s. Note again that after the introduced reading/writing operation, the matrices are directly
stored in the specified block-cyclic distribution or written from block-cyclic distribution to a serial
file. Additional distribution/collection of the matrix entries are decrepit.

3.3.4.2 Simple Example of an Adjustment Procedure

Listing 3.3 shows a simple adjustment problem (it solves the same problem as in Sect. 3.2.2) using
block-cyclic distributed matrices and the massive parallel computations as provided by the member
functions of the class (mostly PBLAS and SCALAPACK calls). The simplified interface of block-
cyclic distributed matrix handling as developed within this thesis is used.
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Listing 3.3: Example of a parallelization of an adjustment problem using the implemented interface
to block-cyclic distributed matrices.�

1 using namespace std;
2 int main( int argc , char *argv[] )
3 {
4 int context;
5 // Initialize SCALAPCK and in the background BLACS (and MPI)
6 int rowsInGrid = atoi(argv [1]);
7 int colsInGrid = atoi(argv [2]);
8 scalapack_sl_init( context , rowsInGrid , colsInGrid );
9 // initialize a timer

10 TicToc timer; timer.tic();
11 // specify the distribution parameters
12 int br = 32; int bc = 32;
13 // initialize (empty) block -cyclic distributed matrices
14 DistributedMatrix l( context , 0, 0, br , bc , 0, 0 );
15 DistributedMatrix t( context , 0, 0, br , bc , 0, 0 );
16 DistributedMatrix A( context , 0, 0, br , bc , 0, 0 );
17 DistributedMatrix N( context , 0, 0, br , bc , 0, 0 );
18 DistributedMatrix n( context , 0, 0, br , bc , 0, 0 );
19 // read observations and control points into distributed matrices
20 l.binaryRead("../ data/l.gdk");
21 t.binaryRead("../ data/t.gdk");
22 // object of example class Fourier series which fills the local parts of the design matrices
23 Fourierseries f(50000 , 1.0);
24 f.getDesign(t, A); // i.e. fill the local parts of design matrix on every core
25 // compute the NEQs for that portion locally on every process
26 N.plusATAof(A);
27 n.plusProductOf( A, ’t’, l, ’n’, 1.0 );
28 // solve the system of equations in place
29 n.isSolutionOf(N);
30 // N is overwritten with chol(N), compute inverse from already Cholesky reduced matrix
31 N.isInvOfCholReduced ();
32 // save solution and VCM
33 n.binarySave("../ data/xs.gdk");
34 N.binarySave("../ data/S_xx.gdk");
35 int nprow , npcol , myrow , mycol;
36 blacs_gridinfo( context , nprow , npcol , myrow , mycol );
37 if( (myrow == 0) && (mycol == 0) )
38 {
39 cout <<" Assembly and solution took "<<timer.toc()<<" secs using "<<nprow <<" x " << npcol << " grid"<<endl;
40 }
41 // end MPI
42 blacs_gridexit( context );
43 blacs_exit( 0 );
44 }
� �

The main thing which needs a careful implementation in such an example, using the interface
developed in this thesis within adjustment problems, is the setup of matrices in the block-cyclic
distribution. E.g. in the example, the setup of the design matrix for the observations is hidden in
the class FourierSeries. The correct setting of the entries in the local part of the design matrix
Al

(r,c) has to be carefully implemented (using the index computations between the local and global
view of the matrix cf. Sect. 3.3.2.2). Especially, it has to be guaranteed that the defined parameter
order is kept and that the order in the global matrix view is correct. The member functions of
the class colInGlobalMat, rowInGlobalMat, posInLocalMat help to organize the mapping from
global and local rows/columns of the matrix. If that step is done, the use of the class and the rest
of the program is straightforward and shows the use of the developed interface without going into
the details of the application of block-cyclic distributed matrices and SCALAPACK. Note that the
program in Listing 3.3 can be executed on any arbitrary compute core grid. It does not matter if
it is of dimension 1× 1 or 123× 89. The only restriction is, that the matrices used have to fit into
the joint main memory of all cores of the compute core grid.

3.3.5 Benefit of the Block-cyclic Distribution

Until now, it was not discussed why particularly the concept of block-cyclic distributed matrices
was introduced. Distributing two-dimensional fields over a two-dimensional grid is straightforward
but why introducing the cyclic distribution of the small blocks? Is a simple block distribution of
the matrix (without the small sub-blocks which are cyclically distributed) not sufficient? Before
going to the applications where the concept of the complicated block-cyclic distribution is used for
parallel processing, these questions should be answered.
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The main reason, why the cyclic distribution of the small sub-blocks is introduced, is related to an
optimized load balancing of all cores of the compute grid. Of course it is clear that there does not
exist a distribution which is the most efficient for every numerical algorithm which might be applied
to a matrix. The block-cyclic distribution is derived as the most flexible and efficient distribution
in Blackford et al. (Sect. 4.3.1, 1997) and it has the advantage, that any other distribution (block-
wise, column-wise, row-wise) can be realized as special case, using an appropriate compute core
grid (shape) and distribution parameters br and bc. Thus, implementing the general block-cyclic
distribution, special cases are included. For specific operations (or applications) where e.g. a block
column-wise distribution is well suited for the algorithm applied to the stored matrix, this can be
realized with the general implementation by setting the compute core grid to 1×N and br = R and
bc = C ÷ C.

Empirical Proof of Gain of Block-cyclic Distribution: Fig. 3.4 shows the effect of the block-
cyclic distribution for the case of the Cholesky factorization of a matrix, the solution of the system
of equations (forward and backward substitution) and the computation of the inverse matrix. The
empirical runtime study is limited to quadratic sub-blocks, the special case of a block distribution
(br = bc = 2048) is included. The compute core grid is fixed to a quadratic grid, i.e. 16 × 16. A
small matrix of dimension 32 757 × 32 757 is used (spherical harmonic normal equations to degree
and order 180) to make the serial computations possible as a reference.

Fig. 3.4 also shows the runtime measurements for the three operations choosing the different di-
mensions of the sub-blocks. The general characteristics of the three curves representing the example
operations are the same. The runtime is very high for very small block dimensions (br = bc < 20).
For the serial computations on the cores, BLAS routines are used for the computations within
PBLAS and SCALAPACK. Choosing the dimension of the sub-blocks too small, the BLAS routines
become very inefficient, as they cannot efficiently take advantage of the cache memory. Besides the
BLAS efficiency, the results are poor, if the number of blocks the whole matrix is partitioned into
is very large. Then, the organizational cost for communication and block access becomes larger
within the SCALAPACK and PBLAS routines. The minimal runtime is found between block sizes
of br = bc = 32 and br = bc = 256, it is around the suggested default value of 64 suggested by
Blackford et al. (1997, p. 92). Having block sizes within this range, the load balancing of the cores
is good and the block-size is well suited for the BLAS optimization of the memory access using
the different levels of the cache. Choosing the optimal block-size, there is an additional runtime
reduction of about a factor of 6–8. Using larger blocks, the runtime again increases. At some point,
the matrix is not block-cyclic distributed but only block distributed. The load balancing of the
involved cores is then very bad. It is discussed for the Cholesky factorization in the following.

Illustration of the Gain of the Block-cyclic Distribution: Instead of empirical runtime
measurements, the gain of the block-cyclic distribution can be theoretically shown in an example.
The Cholesky decomposition of a positive definite matrix N = RTR can be written as an algorithm
operating on blocks of the matrix for a block Rij as (e.g. Golub and van Loan 1996, Sect. 4.2, Schuh
2001, Sect. 2.4.1):

Rii = chol


Nii −

(i−1)∑

k=0

RT
kiRki


 , for i = 1..I − 1 (3.9)

Rij = R−Tii


Nij −

(i−1)∑

k=0

RT
kiRkj


 , for i = 1..I − 1, j = i+ 1..J − 1 (3.10)
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operation serial minimum maximum ratios
tr (s) br, bc tr (s) br, bc tr (s) max/min serial/max serial/min

Cholesky 1083.08 100 11.47 1 93.68 8.16 11.56 94.43
Solution 1.15 128 0.04 1 1.05 23.71 1.10 25.92
Inversion 2342.33 64 19.98 2000 137.08 6.86 17.08 117.23
Total 3426.56 64 31.96 1 213.94 6.69 16.02 107.21

(b) Numerical values for extrema.

Figure 3.4: Runtime for the Cholesky decomposition, the solution by forward and backward substi-
tution and the inversion depending on the choice of the sub-block dimension br = bc.

For a partitioning into I × J = 3× 3 blocks and block distribution to 3× 3 compute core grid, for
instance the process 0, 0 gets the matrix block N00 only. The local matrix of process 0, 0 for the
block distribution is

Nl
0,0 =

[
N00

]
. (3.11)

The block Cholesky factorization is computable as follows,

on 0, 0 : N00 = RT
00R00 ⇒ R00 = chol(N00) (3.12a)

on 0, 1 : N01 = RT
00R01 ⇒ R01 = R−T00 N01 (3.12b)

on 0, 2 : N02 = RT
00R02 ⇒ R02 = R−T00 N02 (3.12c)

on 1, 1 : N11 = RT
01R01 + RT

11R11 ⇒ R11 = chol
(
N11 −RT

01R01

)
(3.12d)

on 1, 2 : N12 = RT
01R02 + RT

11R12 ⇒ R12 = R−T11

(
N12 −RT

01R02

)
(3.12e)

on 2, 2 : N22 = RT
02R02 + RT

12R12 + RT
22R22 ⇒ R22 = chol

(
N22 −RT

02R02 −RT
12R12

)
, (3.12f)

assuming that block i, j is stored in the main memory of process i, j. The colors represent the
time step (step 1, step 2, step 3, step 4, step 5, step 6, step 7) in which the partial computation
can be performed by the indicated process. All intermediate results required for the step are
available as already computed (by another process). Within this small example, ten operations
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have to be performed (i.e. three Cholesky factorizations, three triangular solves, and four matrix
multiplications). Within the first step, while the factorization of the first block is performed on
process (0, 0), the other processes cannot do anything, as they require the already Cholesky reduced
parts. Afterwards, (0, 0) provides R00 to the processes of the first compute grids row (communication
operation), the two multiplications in step two can be done in parallel on (0, 1) and (0, 2). The
other processes completed their tasks (0, 0) or have to wait on the results. Within the third step,
three processes perform the computations in parallel, as the needed matrices are already computed.
Within steps four to seven only a single process performs computations and the other ones are
pending (waiting for results needed or are already finished). Using this distribution, only the upper
triangular of the compute core grid is involved as the upper triangular of the symmetric matrix
is stored only in that local memory. Assuming that all operations approximately take the same
time, instead of ten only seven time steps are required (factor 1.4) using 9 cores instead of a single
process. At most three processes perform computations in parallel, the others are pending (waiting
for results needed or are already finished).

Now, instead of a block distribution, assume a simple block-cyclic distribution of the same matrix
to the same compute core grid. The matrix is partitioned into I × J = 6 × 6 = 36 sub-blocks
(cf. (3.1)), compared to nine blocks (3× 3) in the upper example. The block size (br × bc) is chosen
such that every core gets two sub-blocks (in row and column direction), i.e. four sub-blocks in total.
For instance the process 0, 0 gets the matrix blocks N00, N03, N30 and N33. The local matrix of
the block-cyclic distribution would be

Nl
0,0 =

[
N00 N03

N30 N33

]
. (3.13)

As the number of rows and columns of the sub-blocks is halved compared to the upper example:
a single sub-block contains only a fourth of the elements. Note that the total number of matrix
elements on every process remains the same.

The block Cholesky factorization is then (at time step 1, step 2, step 3, step 4, step 5, step 6, step
7, step 8, step 9, step 10, step 11, step 12, step 13, step 14, step 15, step 16) computed distributed
over the processes locally for instance from (without indicating the required communication of the
already factorized matrix blocks)

on 0, 0 : R00 = chol(N00) (3.14a)

on 0, 1 : R01 = R−T00 N01 (3.14b)

on 0, 2 : R02 = R−T00 N02 (3.14c)

on 0, 0 : R03 = R−T00 N03 (3.14d)

on 0, 1 : R04 = R−T00 N04 (3.14e)

on 0, 2 : R05 = R−T00 N05 (3.14f)
on 1, 1 : R11 = chol

(
N11 −RT

01R01

)
(3.14g)

on 1, 2 : R12 = R−T11

(
N12 −RT

01R02

)
(3.14h)

on 1, 0 : R13 = R−T11

(
N13 −RT

01R03

)
(3.14i)

on 1, 1 : R14 = R−T11

(
N14 −RT

01R04

)
(3.14j)

on 1, 2 : R15 = R−T11

(
N15 −RT

01R05

)
(3.14k)

on 2, 2 : R22 = chol
(
N22 −RT

02R02 −RT
12R12

)
(3.14l)

on 2, 0 : R23 = R−T22

(
N23 −RT

02R03 −RT
12R13

)
(3.14m)

on 2, 1 : R24 = R−T22

(
N24 −RT

02R04 −RT
12R14

)
(3.14n)

on 2, 2 : R25 = R−T22

(
N25 −RT

02R05 −RT
12R15

)
(3.14o)
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on 0, 0 : R33 = chol
(
N33 −RT

03R03 −RT
13R13 −RT

23R23

)
(3.14p)

on 0, 1 : R34 = R−T33

(
N34 −RT

03R04 −RT
13R14 −RT

23R24

)
(3.14q)

on 0, 2 : R35 = R−T33

(
N35 −RT

03R04 −RT
13R15 −RT

23R25

)
(3.14r)

on 1, 1 : R44 = chol
(
N44 −RT

04R04 −RT
14R14 −RT

24R24 −RT
34R34

)
(3.14s)

on 1, 2 : R45 = R−T44

(
N45 −RT

04R05 −RT
14R15 −RT

24R25 −RT
34R35

)
(3.14t)

on 2, 2 : R55 = chol
(
N55 −RT

05R05 −RT
15R15 −RT

25R25 −RT
35R35 −RT

45R45

)
. (3.14u)

This simple computation scheme assumes, that the process which stores Nij performs the computa-
tion which is required to determine Rij . Now 16 time steps are needed to perform the computations.
As the blocks on every core are smaller by a factor of four, each step is faster by a factor of four.
Thus, in units of the simple block distribution 16/4 = 4 time units are needed using the block-cyclic
distribution compared to 7 time units using the block distribution only. Now up to 8 processes are
able to perform partial computations in parallel (e.g. in step 3). The lower triangular of the proces-
sor grid gets involved as it stores elements from the upper triangular of the matrices as well. This
simple example shows that using a block-cyclic distribution with small sub-blocks creates a better
load balancing and more processes can perform partial computations in parallel. The example tries
to illustrate the gain of the block-cyclic distribution with a simple setup and a symbolic example of
a computation. Note that some simplifications were introduced (e.g. time for communication was
ignored) but this example might help for illustration. A better distribution of the computations
would be possible (requiring more communication of blocks, using symmetry more efficient). Even
more (smaller) sub-blocks would improve the load balancing as more processes can perform compu-
tations in parallel and the amount of “wait” time gets smaller. The operations (computations) are
faster due to the smaller dimensions of the blocks.
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4. Mathematical and Statistical Description of
the Adjustment Problem

Within the previous chapters the basic concepts for numeric computations and for parallel numeric
implementations were discussed. This chapter introduces the general form of the adjustment prob-
lem which is solved with the concepts and implementations introduced and derived in Chap. 2 and 3.
All methods introduced here are implemented in the HPC environment to solve the general adjust-
ment problem using the framework developed. The general methods introduced here are specialized
for specific applications and solvers later on in Chapters 6, 7 and 8.

4.1 Basic Adjustment Model

The goal of the basic implementation is to find the least squares solution of a linearized Gauss-
Markoff Model of the form (e.g. Koch, 1999, Sect. 3.2)

`̀̀ + v = Ax, and ΣΣΣ`̀̀`̀̀ = σ2Q`̀̀`̀̀. (4.1)

A is the design matrix, `̀̀ the vector of the observations, v the observation residuals, σ2 a variance
factor and Q`̀̀`̀̀ the cofactor matrix which is assumed to be known in this context. The functional
model, described by A a and x can be arbitrary — physically or mathematically motivated. The
least squares solution for the unknown parameters x follows from the solution of the NEQs (cf.
e.g. Koch, 1999, p. 160)

ATΣΣΣ−1
`̀̀`̀̀ Ax = ATΣΣΣ−1

`̀̀`̀̀ `̀̀, (4.2a)
Nx = n. (4.2b)

In general, it is assumed that the observation vector `̀̀ is composed from independent observation
groups. They can be either available as raw observations (observation equations — OEQs) plus an
error description or as preprocessed NEQs already set up for subsets of the target parameter space.

4.1.1 Individual Data Sets

On the one hand there is a set of (linearized) OEQs for different groups o ∈ {0, . . . , O − 1}

`̀̀o + vo = Aox, and ΣΣΣ`̀̀o`̀̀o = σ2
oQ`̀̀o`̀̀o , (4.3)

where Ao are the design matrices, `̀̀o the vectors of observations, σ2
o are unknown variance compo-

nents and Q`̀̀o`̀̀o the cofactor matrices which are assumed to be known in this context (for instance
derived from empirically estimated covariance functions, e.g. Koch et al. 2010, Becker 2012; or
derived by digital decorrelation filters, e.g. Schuh 2002, Siemes 2008, Schuh et al. 2010).

A second set of observation groups n ∈ {0, . . . , N − 1} is a set of observations which were already
preprocessed and are available in form of their least squares NEQs. These data sets are provided as
a solution vector xn and more frequently with an unconstrained, i.e. unregularized, full covariance
matrix ΣΣΣn. They are used to directly recover the NEQs via

Nn = ΣΣΣ−1
n and nn = ΣΣΣ−1

n xn. (4.4)

These NEQs (or covariance matrix plus solution vector) are sufficient statistics (cf. e.g. Kargoll,
2007, Sect. 2.5.2) of the original observations, assuming a realistic functional and stochastic model
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in their assembly. They can thus be used instead of the original observations without loss of
information. These datasets consists of the NEQs

1

σ2
n

Nnx =
1

σ2
n

nn, (4.5a)

⇔ 1

σ2
n

ΣΣΣ−1
n x =

1

σ2
n

ΣΣΣ−1
n xn (4.5b)

Mn in addition required for variance component estimation, (4.5c)

λn := `̀̀TnQ−1
`̀̀n`̀̀n

`̀̀n in addition required for variance component estimation, (4.5d)

where Nn = ΣΣΣ−1
n are the preprocessed normal matrices and nn = ΣΣΣ−1

n xn the preprocessed normal
vectors provided. For the use of variance component estimation (VCE) to determine the unknown
variances σ2

n, the number of observations Mn, used in the assembly of the NEQs, and the product
λn := `̀̀TnQ−1

`̀̀n`̀̀n
`̀̀n have to be additionally known.

4.1.2 Combined Solution

The joint least squares solution x̃, determined from all observation groups, results from the solution
of the combined system of NEQs. Assuming the individual groups to be independent, the (weighted)
sum of the individual groups (addition theorem for NEQs, cf. Koch 1999, p. 177, Meissl 1982,
Sect. A.10.2) yields the combined NEQs, i.e.

ATΣΣΣ−1
`̀̀`̀̀ Ax = ATΣΣΣ−1

`̀̀`̀̀ `̀̀ (4.6a)
(
N−1∑

n=0

1

σ2
n

Nn +

O−1∑

o=0

1

σ2
o

AT
o Q−1

`̀̀o`̀̀o
Ao

)
x =

N−1∑

n=0

1

σ2
n

nn +

O−1∑

o=0

1

σ2
o

AT
o Q−1

`̀̀o`̀̀o
`̀̀o, (4.6b)

Nx = n (4.6c)

and λ =
N−1∑

n=0

1

σ2
n

λn +
O−1∑

o=0

1

σ2
o

`̀̀To Q−1
`̀̀o`̀̀o

`̀̀o (4.6d)

and M =
N−1∑

n=0

Mn +

O−1∑

o=0

Mo. (4.6e)

N and n are the normal matrix and normal vector of the weighted and combined NEQs. The
quantities λ andM (number of observations which entered the combined NEQs) are computed for a
later use of the combined NEQ in VCE. The combined NEQs are solved to determine the unknown
parameters in x from all groups. In addition, the unknown weights wo = 1

σ2
o
and wn = 1

σ2
n
have to

be iteratively estimated from the data.

So far it is assumed, that all OEQs Ao and all NEQs Nn are assembled for all unknown parameters
and are assembled in the same parameter ordering (i.e. a so called numbering scheme). As this
is not the case when combining complementary data, a special handling will be introduced. As
the different applications differ in problem size (i.e. number of observations and/or number of
unknown parameters), special assembly and solutions techniques are implemented for the different
applications in Chap. 6, 7 and 8 to solve for the parameters x.

4.2 Data Weighting

Combining complementary data types to determine the joint least squares solution requires to
address the question of weighting the individual observation groups. Thus, in addition to the
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unknown solution x, an individual weight wi for each group i ∈ {n, o} should be estimated from the
data. A data adaptive concept within satellite geodesy was developed by Koch and Kusche (2002)
who interpreted the weights within a data combination procedure as inverse variance components
(VCs, Förstner, 1979). In addition Koch and Kusche (2002) used variance component estimation
(VCE) to determine a regularization parameter (i.e. the weight of the prior information). Generally,
VCE is used to derive weights for an arbitrary number of complementary observation groups (e.g.
van Loon, 2008). Using VCE, the weights wi = 1/σ2

i can be determined for each group. Following
again Koch and Kusche (2002), Förstner (1979) and Koch (2007, Sect. 5.2.4) they are iteratively
determined via

σ
(η)2
i =

Ω
(η)
i

Mi −Υ
(η)
i

=
Ω

(η)
i

r
(η)
i

, (4.7)

assuming again that the observation groups are independent. Mi represents the number of obser-
vations in group i and Υ

(η)
i the number of parameters determined by group i. Ω

(η)
i is the weighted

squared sum of residuals after iteration η

Ω
(η)
i = v

(η)T
i Q−1

`̀̀i`̀̀i
v

(η)
i =

(
Aix

(η) − `̀̀i
)T

Q−1
`̀̀i`̀̀i

(
Aix

(η) − `̀̀i
)

(4.8a)

= x(η)TNix
(η) − 2x(η)Tni + `̀̀Ti Q−1

`̀̀i`̀̀i
`̀̀i (4.8b)

and r(η)
i the partial redundancy (e.g Koch and Kusche, 2002)

r
(η)
i = Mi −

1

σ
(η)2
i

trace
(
N−1Ni

)
= Mi −

1

σ
(η)2
i

trace
(
N−1AT

i Q−1
`̀̀i`̀̀i

Ai

)
= Mi −Υ

(η)
i . (4.9)

Whereas the variance components can be directly computed, when the inverse N−1 of the full NEQs
is determined using (4.7), (4.8a) and (4.9), it is computational demanding for huge systems and
impossible if iterative solvers are used to compute the solution x. To handle large systems, Koch and
Kusche (2002) proposed to use a Monte Carlo (MC) based stochastic trace estimator to determine
the trace in (4.9). As a preparation for the use in huge systems and for an iterative solver, where
N and thus N−1 are unknown, it is useful to introduce the stochastic estimator as well. According
to Hutchinson (1990), the estimator for the trace

trace (B) = E
{
PTBP

}
, P ∼ U (−1, 1) with discrete uniform distribution, (4.10)

has minimal variance if B is symmetric. Thus (4.9) can be rewritten, to obtain symmetric matrices
in the trace term. Two cases have to be distinguished: the groups available as OEQs and groups
available as NEQs.

4.2.1 Partial Redundancy for Groups of NEQs

Introducing the Cholesky decomposition Nn = RT
nRn, the partial redundancy can be rewritten as

rn = Mn −
1

σ2
n

trace
(
N−1Nn

)
= Mn −

1

σ2
n

trace
(
N−1RT

nRn

)
(4.11a)

= Mn −
1

σ2
n

trace
(
RnN

−1RT
n

)
, (4.11b)

because the trace is invariant under cyclic permutations (e.g. Koch, 1999, p. 40). Now, due to the
quadratic form, RnN

−1RT
n is a symmetric matrix. Inserting the stochastic estimation from (4.10)

the partial redundancy yields

rn = Mn −
1

σ2
n

E
{
PTn RnN

−1RT
nPn

}
,with P̄n := RT

nPn (4.12a)

= Mn −
1

σ2
n

E
{
P̄nTN−1P̄n

}
. (4.12b)
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Inserting K realizations of Pn instead of the expectation value arranged as columns in the matrix
Pn and applying the analogous transformation

P̄n = RT
nPn (4.13)

the estimate for the partial redundancy as mean value from the K samples is

r̃n = Mn − Υ̃n = Mn −
1

σ2
n

1

K
trace

(
P̄T
nN−1P̄n

)
. (4.14)

Note that for readability, the iteration indexes (η) and (η−1) were omitted. For all σn, the values of
the η − 1 iteration are used in the iterative computations.

4.2.2 Partial Redundancy for Groups of OEQs

Introducing the Cholesky decomposition of the weight matrix Q−1
`̀̀o`̀̀o

= GT
o Go, the partial redun-

dancy from (4.9) can be rewritten as

ro = Mo −
1

σ2
o

trace
(
N−1AT

o GT
o GoA

)
= Mo −

1

σ2
o

trace
(
GoAN−1AT

o GT
o

)
, (4.15)

with GoAoN
−1AT

o GT
o being symmetric. Thus again inserting the stochastic trace estimator yields

ro = Mo −
1

σ2
o

E
{
PTo GoAN−1AT

o GT
o Po

}
,with P̄o := AT

o GT
o Po (4.16a)

ro = Mo −
1

σ2
o

E
{
P̄oTN−1P̄o

}
. (4.16b)

Replacing again the expectation value by K realizations arranged in the matrix Po and applying
the same transformation P̄o = AT

o GT
o Po the estimate for the partial redundancy is

r̃o = Mo − Υ̃o = Mo −
1

σ2
o

1

K
trace

(
P̄T
o N−1P̄o

)
, (4.17)

already introducing the mean value of all realizations.

4.2.3 Computations of VCs Using the MC Approach

Whereas Ωi can be directly computed from (4.8a) for i ∈ {n, o}, the computation of the partial
redundancies, especially the trace term P̄T

i N−1P̄i in (4.14) and (4.17), has to be adapted for both
groups n and o. As, depending on the used solver, N−1 is not necessarily computed, an alternative
computation is derived here. Defining

Zi := N−1P̄i, ⇔ NZi = P̄i, (4.18)

Zi can be directly determined via solving the system of NEQs for additional right hand sides P̄i.
Thus, for every group o, K additional right hand sides

P̄o = AT
o GT

o Po, with dimension Mi ×K (4.19)

and for each group n

P̄n = RT
nPn, with dimension Ui ×K, extended to U ×K by 0. (4.20)

are sampled. Instead of (4.6c) the system with NK +OK + 1 right hand sides

N
[
x Z1 · · · ZO Z1 · · · ZN

]
=
[
n P̄1 · · · P̄O P̄1 · · · P̄N

]
(4.21)

has to be solved. The variance components can be then derived without explicit knowledge of N−1

via

σ
(η)2
i =

Ωi

Mi − 1

σ
(η−1)2
i

1
K trace

(
P̄T
i Zi

) . (4.22)
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4.3 Numbering Schemes and Reordering

Eq. (4.6b) assumes that all observation groups n are available in the same parameter space and
the same parameter ordering. In addition it is assumed, that the OEQs are set up for the same
(i.e. entire) parameter space. Within adjustment problems the parameter space corresponds to the
columns of the design matrix and the rows and columns of the NEQ matrix (and the rows of the
right hand side). Thus, a column of the design matrix, a row or column of N is always related to
the specific parameter xi. Within the setup of OEQs, the column i has to be linked to the specific
parameter p, to set up the corresponding base function. Combining different data sets, especially
if they are already available as NEQs, the ordering of the parameters of the different groups has
to be unified. It can not be expected, that the preprocessed NEQs are set up for the entire target
parameter space, as not all observation types are sensitive to all parameters set up in the functional
model (e.g. group specific parameters, biases, instrument specific parameters, etc.). Typically,
within adjustment theory, the order of the parameters in the column of the design matrix or in the
rows of the parameter vector are called numbering scheme of the parameters, this term will be used
here as well.

As there exists no “default” parameter order which groups the parameters of more than two param-
eter subsets in blocks, such that the combination of matrices via block additions without gaps is
possible, so called reordering of the parameters (i.e. interchanges of columns and/or rows of involved
matrices) is mandatory.

4.3.1 Numbering Schemes

To be as flexible as possible and not restricted to a special numbering scheme, symbolic num-
bering schemes are used within this work. These general numbering schemes are sequences (one
dimensional fields) of objects of a class parameter, which mainly includes an unique parameter
identifier (or symbolic name) which makes the parameters comparable. For every NEQ involved, an
associated symbolic numbering scheme is provided, e.g., a file listing the parameter order symboli-
cally (via a identifier or name). These parameters can be mapped to an object and corresponding
parameters can be identified via compare algorithms. The further concepts require, that the param-
eters are comparable. Thus compare operators, like operator==( const parameter & p2 ) and
operator<( const parameter & p2 ), are defined for them.

Arranging a sequence of these parameters in a field, e.g. in a std::vector<Parameter>, defines a
symbolic numbering scheme which can be associated with matrices (their rows and/or columns). The
column and/or row i of a matrix corresponds to the parameter ppp (i) using a class NumberingScheme.
As parameters are comparable, a “search” operation in the vector of symbolic parameters is possible
and as the operator operator<( const parameter & p2 ) is defined, a sorting of the parameters
is possible. Within this work, a numbering scheme related to a matrix is denoted as ppp, whereas
the ith parameter of that numbering scheme is ppp (i). A numbering scheme contains all U unknown
parameters i ∈ {0, ..., U − 1}. An specific parameter and numbering scheme class implementation
is shown for applications related to the gravity field in Sect. 5.3.

4.3.2 Reordering Between Symbolic Numbering Schemes

The goal of this section is to derive an algorithm for the reordering of rows and/or columns of a
matrix given in a source numbering scheme pppf to another target numbering scheme pppt. Only a
single assumption on this numbering scheme is necessary, either pppf ⊆ pppt or pppt ⊆ pppf. The algorithms
provided work in both directions.
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Index Vector for Reordering A first quantity to derive is the so called index vector ipppf 7→pppt
, the

entry at position i contains the index, the coefficient pppt(i) can be found in pppf, and thus pppt(i) =
pppf(ipppf 7→pppt

(i)). Given a matrix A in pppf, its rows are reordered to pppt via

Apppt = Apppf(ipppf 7→pppt
, :), (4.23)

its columns via

Apppt = Apppf(:, ipppf 7→pppt
), (4.24)

and for quadratic matrices rows and columns via

Apppt = Apppf(ipppf 7→pppt
, ipppf 7→pppt

), (4.25)

using the well known MatLab/Octave like notation. The index vector ipppf 7→pppt
can be computed with

the descriptive Alg. 4.1. which works for both cases, i.e. pppf ⊆ pppt or pppt ⊆ pppf.

Note that if pppf ⊆ pppt, the matrix to be reordered will be extended by 0 rows and/or columns to
obtain the correct size of pppt.size(), the index vector for this parameters not originally contained
in pppf are set to values corresponding to these 0 rows and/or columns at the end of the matrices
(variable e in Alg. 4.1).

For the case pppt ⊆ pppf, the index vector is extended to the dimension of pppf. The last entries i.e.
pppf.size() to pppt.size()−1 are set to the indices of the entry itself to guarantee, that the coefficients
not contained in pppt are reordered to the end of the matrix. Applying the reordering to a matrix,
these last rows/columns are deleted after the reordering.

Although Alg. 4.1 can be easily understood, it is not very efficient due to the “find” operation, i.e.
a search operation in a vector which might have millions of entries for huge dimensional parameter
spaces. An alternative, i.e. a more efficient way can be performed via sorting the numbering scheme.
This much faster algorithm is summarized in Alg. 4.2. It reduces the complexity from O(n2/2) to
O(n log(n)). For a test case of two numbering schemes of 520 000 parameters, the runtime is reduced
from 706 s to 0.2 s.

Permutation Vector for Reordering An alternative notation/operation, which is better suited
for the block-cyclic distributed matrices, is a so called permutation or pivoting vector. In contrast
to an index vector, where the column and or row interchanges are assumed to be performed si-
multaneously, a permutation vector (at least as used here) contains a sequence of serial row and
column permutations i.e. a sequential swapping of two rows/columns starting at begin (index 0)
of the vector. In contrast to the index vector, already performed swapping operations are taken
into account in the representation. An entry in the permutation vector at position i means that
the row i is swapped with row ψψψ(i). To be more precise, the current content of row/column i is
swapped with the current content of row/column ψψψ(i). Note that the content might change with
every swapping operation. Now, the old entry of position i is in row ψψψ(i), thus the index vector
needs to be updated. A remaining entry i in the subsequent elements of ipppf 7→pppt

has to be replaced
by the entry ψψψ(i). The procedure to convert an index vector to a permutation vector is summarized
in Alg. 4.3.

A more efficient but less obvious algorithm is shown in Alg. 4.4. The basic idea is to avoid the search
operation via introducing a second vector which stores the position of an entry k in the vector. This
reduces the complexity from O(n2/2) to O(2n). The runtime is reduced from 59 s to 0.01 s, for an
example index vector with 520 000 entries.

To apply a permutation vector to rows/and or columns, the operator ΨΨΨpppf 7→pppt
( · ) is defined. This

operator performs the serial permutations of rows (ΨΨΨr
pppf 7→pppt

) as given by the vector ψψψpppf 7→pppt
, the

operator ΨΨΨc
pppf 7→pppt

performs the column interchanges and ΨΨΨr,c
pppf 7→pppt

performs the interchanges for rows
and columns.
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Algorithm 4.1: Simple version to compute an index vector from two symbolic numbering schemes.

Data:
NumberingSchme pppfrom Symbolic numbering scheme source matrix is ordered in
NumberingSchme pppinto Symbolic numbering scheme matrix should be reordered to

// initialization of index vector1
vector<size_t> ipppfrom 7→pppinto

( pppinto.size(), 0 )2
// start value for fill in indices for parameters in pppinto but not in pppfrom, inserted at the end3

size_t e = pppfrom.size()4
// loop over all parameters in pppinto5
for k = 0 to pppinto.size() do6

// find index of parameter pppinto(i) in pppfrom7

i =find(pppfrom .begin(), pppfrom.end(), pppinto(i) )8
// if parameter found insert index i, otherwise fill in value outside of pppfrom.size()9
if i<pppfrom.size() then10

ipppfrom 7→pppinto
(k) = i11

else12
ipppfrom 7→pppinto

(k) = e13
e+ +14

end15
end16
// special case if pppinto ⊆ pppfrom: extend index vector to size of pppfrom17
if pppinto.size() < pppfrom.size() then18

ipppfrom 7→pppinto
.resize(pppfrom.size())19

// the remaining parameters are sorted to the end as they are not contained in pppinto,20
// applied to a matrix, these last rows/columns will be removed21
for k = pppinto.size() to pppfrom.size() do22

ipppfrom 7→pppinto
(k) = k23

end24
end25
return ipppfrom 7→pppinto

// index vector performing reordering from pppfrom to pppinto26

Example Tab. 4.1 gives a small scale example of reordering and permutation for two symbolic
numbering schemes. Index and permutation vector are provided for both directions. In addition,
the first steps of a sequential permutation are characterized.

4.3.3 Reordering of Block-cyclic Distributed Matrices

If the permutation vector between two numbering schemes is known, these permutations have to be
applied to block-cyclic distributed matrices to reorder the matrices to the target numbering scheme.
The reason why the permutation vector was introduced is, that there exist a SCALAPACK helper
routine, which is internally used for pivoting during the solution of a system of equations. The
routine pdlapiv can be directly used to perform the reordering of a distributed matrix, where the
input is a permutation vector (The usage of pdlaswp is also possible). The routine applies the
permutation as given by ψψψpppf 7→pppt

to either rows or columns. Applying the function twice, first to
permute rows and secondly to permute columns, both are reordered. Beside the standard input
of the block-cyclic distribution of the matrix, the function requires the input of the permutation
vector in a special form. The permutation vector (consisting of integers only) needs to be passed as
a block-cyclic distributed vector of integers, such that the local entry ψψψlpppf 7→pppt

(i) contains the global
row/column, the local row/column i has to be swapped with. The serial integer vector is brought to
a block-cyclic distributed vector as introduced for the block-cyclic distributed matrices in Sect. 3.3.
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Algorithm 4.2: Fast version to compute an index vector from two symbolic numbering schemes.

Data:
NumberingSchme pppfrom Symbolic numbering scheme source matrix is ordered in
NumberingSchme pppinto Symbolic numbering scheme matrix should be reordered to

// initialization of index vector1
vector<size_t> ipppfrom 7→pppinto

( pppinto.size(), 0 )2
// start value for fill in indices for parameters in pppinto but not in pppfrom, inserted at the end3

size_t e = pppfrom.size()4
// store current index of parameter in helping atribut _i of each individual parameter5
pppfrom.setIndex()6
// sort numbering schme with implemented sort function (operator<)7
pppfrom.sort()8
// loop over all parameters in pppinto9
for k = 0 to pppinto.size() do10

// find index of parameter pppinto(i) in pppfrom in sorted numbering scheme11
i =find(pppfrom .begin(), pppfrom.end(), pppinto(i) )12
// if parameter found, insert index i, otherwise fill in value outside of pppfrom.size()13
if i<pppfrom.size() then14

ipppfrom 7→pppinto
(k) = pppfrom.p(i).i()15

else16
ipppfrom 7→pppinto

(k) = e17
e+ +18

end19

end20
// special case if pppinto ⊆ pppfrom: extend index vector to size of pppfrom21
if pppinto.size() < pppfrom.size() then22

ipppfrom 7→pppinto
.resize(pppfrom.size())23

// the reamaining parameters are sorted to the end as they are not contained in pppinto,24
// applied to a matrix, these last rows/columns will be removed25
for k = pppinto.size() to pppfrom.size() do26

ipppfrom 7→pppinto
(k) = k27

end28

end29
return ipppfrom 7→pppinto

// index vector performing reordering from pppfrom to pppinto30

The reordering operations are implemented in the member functions reorder, reorderCols and
reorderRows of the DistributedMatrix class in Listing 3.2.

Fig. 4.1 gives an overview about the required runtime for the reordering of rows and columns of
distributed matrices of different dimension on different quadratic processor grids (for the distribution
parameters default values of br = bc = 64 were used) to get an idea of the order of magnitude. The
index vector was randomly generated (random shuffle of an index vector). The main conclusions are:
i) the reordering of columns is much faster than the reordering of rows (factor of three to ten). This
could be expected as the column access in memory is much faster using the column major order
for matrices (cf. Sect. 2.2.1) for the locally stored matrices. ii) for matrices of dimension lower
than 20 000 × 20 000 the reordering is performed in less than 1 s on all grids. For the reordering
of columns, this even holds for matrices smaller than 80 000 × 80 000. Although there is no real
scaling behavior of the reordering operations with the number of cores (cf. Fig. 4.1(b)), the most
important thing is that the performance increases on larger compute core grids and does not drop
to additional organizational requirements (at least for matrices above dimension 10 000×10 000 the
scaling is above 1.0 for all cases analyzed).
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Algorithm 4.3: Simple version to convert an index vector to a permutation vector.

Data:
NumberingSchme ipppfrom 7→pppinto

index vector to be converted to permutation vector

// initialization of permutation vector1
vector<size_t> ψψψpppfrom 7→pppinto

= ipppfrom 7→pppinto
2
size_t p = 0; // loop over entries of index vector3
for k = 0 to ipppfrom 7→pppinto

.size() do4
// find current index in the subsequent part of index vector5
p =find(pppfrom .begin()+k, pppfrom.end(), k )6
// if index found, replace it by its new position ψψψpppfrom 7→pppinto

(k) (after swapping)7
if found then8

ψψψpppfrom 7→pppinto
(p) = ψψψpppfrom 7→pppinto

(k)9
end10

end11
return ψψψpppfrom 7→pppinto

// sequential permutation vector corresponding to ipppfrom 7→pppinto
12
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Figure 4.1: Runtime analysis of the row (?) and column (◦) reordering operations (index vector
randomly generated). The colors represent different dimensions of the processor grid.
The scaling is normalized to 256 cores and given for every matrix dimension.

4.4 Combined System of NEQs

Assuming the OEQs to be set up for the whole parameter space in the correct numbering scheme,
but combining NEQs set up for a subset of the parameters only, (4.6b) can be rewritten, taken into
account the concepts of reordering and permutation. Assuming that the target numbering scheme
(associated with N) covers the entire parameter space, (4.6b) has to be rewritten as

(
N−1∑

n=0

1

σ2
n

[
Nn 0Un×U−Un

0U−Un×Un 0U−Un×U−Un

]
(ipppn 7→ppp, ipppn 7→ppp) +

O−1∑

o=0

1

σ2
o

AT
o Q−1

`̀̀o`̀̀o
Ao

)
x (4.26)

=
N−1∑

n=0

1

σ2
n

[
nn

0U−Un×1

]
(ipppn 7→ppp) +

O−1∑

o=0

1

σ2
o

AT
o Q−1

`̀̀o`̀̀o
`̀̀o,
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Algorithm 4.4: Efficient version to convert an index vector to a permutation vector avoiding the
find operation.

Data:
NumberingSchme ipppfrom 7→pppinto

index vector to be converted to permutation vector

// initialization of permutation vector1
vector<size_t> ψψψpppfrom 7→pppinto

= ipppfrom 7→pppinto
2
size_t p = 03
// help vector, entry h(k) contains index where value k is stored in ψψψpppfrom 7→pppinto4
vector<size_t> h ( ipppfrom 7→pppinto

.size(), 0 )5
for k = 0 to ipppfrom 7→pppinto

.size() do6
h(ipppfrom 7→pppinto

) = k7
end8
// loop over entries of index vector9
for k = 0 to ipppfrom 7→pppinto

.size() do10
// index of number k follows from h instead of find operation11
p = h(k)12
// check if entry k is in subsequent part of vector13
if p > k then14

ψψψpppfrom 7→pppinto
(p) = ψψψpppfrom 7→pppinto

(k)15
// update the vector h, value ψψψpppfrom 7→pppinto

(k) is no in position p16

h(ψψψpppfrom 7→pppinto
(k)) = p17

end18
end19
return ψψψpppfrom 7→pppinto

// sequential permutation vector corresponding to ipppfrom 7→pppinto
20

Table 4.1: Example for the reordering of two symbolic numbering schemes, given are the index
vectors and permutation vectors in both directions according to Alg. 4.2 and 4.4.

(a) First direction
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0
2
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3
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(b) Second direction
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(c) Application of ψψψpppf 7→pppt (2. direction)
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· · ·
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for the use with an index vector. Using the introduced permutation operator, i.e.
(
N−1∑

n=0

1

σ2
n

ΨΨΨr,c
pppn 7→ppp

([
Nn 0Un×U−Un
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+
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o Q−1
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)
x (4.27)

=
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o Q−1

`̀̀o`̀̀o
`̀̀o,

assuming Nn and nn being the original NEQs as they are available. Their numbering scheme is
denoted as pppn. These NEQs for the subset of the parameters are extended with zeros, if required.
Afterwards the index-vector or the permutation vector is applied to the temporary extended NEQs.
Afterwards, from a mathematical point of view the NEQs can be combined performing a simple
addition as the parameter order and parameter space is adjusted to the defined target numbering
scheme ppp.

4.5 Summary

The developed framework provides the general modules to solve any adjustment problems of the
introduced general form and special cases like for instance O = 0, N = 0 or same parameter spaces
in all groups, etc. Of course, application specific extensions are required, i.e. for instance the defini-
tion of symbolic parameters and numbering schemes, implementation of the observation equations
(design matrices), tailored decorrelation procedures or routines to read the observations and the re-
quired observations meta data. The developed basic framework will now be used in different solvers
and specialized for specific applications from global gravity field determination (spherical harmonic
analysis). Three applications with different problem characteristics are chosen to set up and solve
the adjustment problem for the unknown parameters. Within a detailed description it is shown
how the developed framework can be used for an efficient implementation of a specific problem.
Although this specialization is shown for gravity field applications only, the concepts provided and
the approach towards the solution can be easily transferred to adjustment problems with any other
observation type and other functional models (mathematical base functions). The concepts and the
implementation strategy implemented assume, that the observation equations are dense. For sparse
systems, better suited alternatives exist (e.g. Paige and Saunders, 1982, Dongarra et al., 1994, Saad,
2000).



45

Part II

Specialization and Application to Global
Gravity Field Recovery
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5. Recovery of Global Gravity Field Models

The computational, implementational and statistical basics discussed in the previous chapters will
be specialized to implement a specific adjustment problem based on the developed framework in
a HPC environment. Within this chapter, the basics required for the applications related to the
determination of the global Earth’s gravity field (Chapters 6–8) are summarized and the required
introduction from physical and theoretical geodesy is provided.

Global Earth’s gravity field models are often described as a finite series of spherical harmonic coeffi-
cients (e.g. Heiskanen and Moritz, 1993, p. 59). The potential in a point with spherical coordinates
(λ, θ, r) is

V (r, θ, λ) =
GM

a

lmax∑

l=0

(a
r

)l+1
l∑

m=0

(clm cos (mλ) + slm sin (mλ))Plm (cosθ) , (5.1)

where l and m denote the spherical harmonic degree and order (d/o), clm and slm the coefficients of
the spherical harmonic series, a the equatorial radius of the Earth reference ellipsoid, Plm ( · ) the fully
normalized associated Legendre functions, and GM the gravitational constant of the Earth. lmax is
the degree of expansion which defines the spatial resolution, which is approximately 2πa/ (2lmax).

In general, three types of global gravity field models can be distinguished, mainly grouped by the
observations they are computed from and the resolution of the models (sensitivity of observations
entering the solutions). This chapter is an extension of the introduction and collection of methods
already published in Brockmann et al. (2014c), so some parts of this chapter are close to that paper.

5.1 Types of Global Gravity Field Models and State of the Art

The first type is the class of satellite-only gravity field models, where consistent gravity field models
are derived from the observations from a single dedicated satellite mission like CHAMP (CHAl-
lenging Mini-Satellite Payload, Reigber et al., 2002), GRACE (GRAvity recovery and Climate
Experiment, Tapley et al., 2004) or GOCE (Gravity field and steady-state Ocean Circulation Ex-
plorer, ESA, 1999). Each of the models reflect the particular strengths of the satellites observation
techniques. The observations are analyzed by experts in the missions, who spend a lot of effort in
the functional and the stochastic modeling (e.g. van Loon, 2008, Beutler et al., 2010, Mayer-Gürr
et al., 2010b, Pail et al., 2011a). Meanwhile, in addition to the coefficients, due to a lot of effort
in stochastic modeling, realistic covariance matrices are provided for some of the models (see for
GRACE and GOCE e.g. Mayer-Gürr et al., 2010a,b, Pail et al., 2011a, Schuh et al., 2010). From
a computational point of view, the individual satellites are only sensitive to the long and medium
wavelengths of the gravity field. Therefore, the models are only resolved to a limited spherical har-
monic degree of currently about 250–280 for the GOCE mission (Brockmann et al., 2013, Bruinsma
et al., 2013). For CHAMP, the models are available up to d/o 150, which corresponds to less then
23 000 unknowns. For GRACE, current models are resolved to d/o 180 (less then 33 000 unknowns).

For the processing of the satellite-only models, the computational challenge does not occur from
the number of parameters to be estimated, but from the huge number of observations (e.g. several
hundreds of millions for GRACE or GOCE collected over several years) and the complex stochastic
properties of the data (see e.g. Schuh et al., 2010, Rummel et al., 2011). To reduce computing time,
the following examples of approximations and simplifications were introduced in current models
published. For instance, Bruinsma et al. (2013) perform a down sampling of the 1 Hz GOCE
gradiometer data to 0.25 Hz data to reduce the computing time within the estimation process of
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the spherical harmonic gravity field coefficients. In addition, a simple band-pass filter is used, which
filters out signal outside the gradiometers measurement band. Details on the parallel processing
concepts used are not provided. Migliaccio et al. (2011) process GOCE data in geographical patches
which are assumed to be independent to handle the computational requirements in their collocation
based gravity field determination. Correlations are reduced introducing overlapping borders. Schall
et al. (2014) apply a down sampling filter to reduce the 1 Hz GOCE data to 0.2 Hz. Thus, only
one fifth of the data is used in the NEQ assembly. To handle the stochastic model, the data is
processed in short arcs of 15 min length, for which a full covariance matrix derived from empirically
derived covariance functions can be set up. Correlations between the short arcs are modeled by
an empirical bias parameter per short arc. The same processing strategy was proposed by Mayer-
Gürr et al. (2005), Mayer-Gürr (2006), Mayer-Gürr et al. (2010a) for the analysis of CHAMP and
GRACE observations. Due to the partioning into short arcs, the processing can be parallelized very
well, as the NEQs can be assembled independently for every arc, thus a concept close to Sect. 3.2.2
can be used for parallel processing. Beutler et al. (2010) use an alternative approach with an
simplified stochastic model, where only observation specific weights are used for the observations,
correlations are neglected. The correlations are absorbed by many empirical parameters, which they
call stochastic pulses. The parallel implementation concept is not discussed in detail. In addition,
even for satellite only models with a limited parameter space, iterative solvers are often used to derive
solutions (Baur, 2009, Xie, 2005, Farahani et al., 2013) e.g. for parameter tuning (Brockmann et al.,
2010). The final model is then often set up via the assembly and solution of full NEQs (Pail and
Plank, 2003, Bruinsma et al., 2013), to derive in addition the full error covariance matrix. All of the
above mentioned approaches produce good solutions and the provided solutions affirm the strategies
used. But especially for the approaches which use very simple stochastic models, it was shown that
an external calibration of the formal error estimates is often required, to provided error estimates
in a realistic order of magnitude.

Within this work, satellite only models are derived from the GOCE mission in Chap. 6. The
work contributed to the official ESA models of the so-called time-wise gravity field models
(EGM_TIM_RL01, EGM_TIM_RL02, EGM_TIM_RL03, EGM_TIM_RL04 and currently the
preparation of the final EGM_TIM_RL05, Pail et al., 2010a, Schuh et al., 2010, Pail et al., 2011a,b,
Brockmann et al., 2013). The goal is a flexible implementation, where simplifications to reduce com-
puting time are avoided. Instead, the solution process should be implemented as a straightforward
Gauss-Markoff model where all observations with a tailored observation noise model enter the solu-
tions. A flexible environment is implemented where advanced processing models can be tested and
used, independently of the required computational requirements. Compared to other solutions and
approaches it could be shown, that especially the quality of the covariance matrix improves, such
that the formal error estimates are meaningful. An empirical calibration of the derived covariance
matrix becomes unnecessary.

An exception of satellite-only models with respect to the maximal resolution are the recently derived
Lunar gravity field models. With the data available from the very low orbiting Gravity Recovery And
Interior Laboratory (GRAIL) (Zuber et al., 2013) mission, lunar gravity field models are computed
up to spherical harmonic d/o 660 (Lemoine et al., 2013, Konopliv et al., 2013) using rigorous solution
techniques as well. The resolution is high, but due to the short mission lifetime of about six months
(and a 5 s sampling) the amount of data being processed is small compared to the Earth’s gravity
field missions. Lemoine et al. (2013) as well as Konopliv et al. (2013) use QR factorization based
solvers, without providing details on the parallel implementation concept. A possible out-of-core
implementation of an updated QR decomposition is given in Gunter and Van De Geijn (2005) and
the development of an in-core method in Baboulin et al. (2009).

The second class of models consists of satellite-only gravity field models, which combine models of
the different satellites e.g., on the level of NEQs (Pail et al., 2010b, Bruinsma et al., 2013). As the
resolution of those models is limited again by the resolution of the satellite models, the NEQs are
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quite small and not bigger then 40 GB. Thus, for this models, the computational challenges are
limited (Pail et al., 2010b, Bruinsma et al., 2013) if preprocessed NEQs are used. Farahani et al.
(2013) start on the level of OEQs. They use an iterative solver to process the data from the missions
in a joint inversion. As Bruinsma et al. (2013) and Förste et al. (2011) use approximated stochastic
models, they only combine subsets if the NEQs apply empirical derived weighting factors to obtain
the final solution. Within this thesis, a flexible solver was implemented (cf. Chap. 7), which can
be used to estimate gravity fields of this class. The developed software and methods contribute to
the satellite-only models of the GOCO0xS series (Gravity Observation Combination Consortium,
Pail et al., 2014), where a special case of the direct solution methods (i.e. O = 0) described in
Chap. 7 is used. Until now, three generations of models were computed (GOCO01S, GOCO02S and
GOCO03S Pail et al., 2010b, Goiginger et al., 2011, Mayer-Gürr et al., 2012) combining data from
complementary satellite observations.

The third class is the class of high resolution combined gravity field models, which account in
addition to the satellite observations (in form of their NEQs) also for terrestrial measurements like
gravity anomalies over land and altimetry over the oceans. Using these measurements, which are
sensitive for higher degrees, the resolution of the model can be considerably increased. Current
combined models are available for d/o 360 (GIF48, Ries et al., 2011), 1 949 (EIGEN6C, Förste
et al., 2008, 2012) and 2 190 (EGM2008, Pavlis et al., 2012) which corresponds to the number of
parameters in the range of 130 000 to 4.8 · 106. Using altimetry, which measures the sum of the
geoid and the Ocean’s dynamic topography, a separation of both quantities has to be introduced.

Whereas the GIF48 model was computed via the assembly and solution of full NEQs (Ries et al.,
2011), the higher degree models were computed introducing approximations and simplifications
which reduce the computational requirements. For instance, EIGEN6C was computed via averaging
two solutions, i.e. a full NEQ solution from d/o 2 to 370 and a block diagonal solution for the
gridded high resolution data from 2 to degree 1949 (Förste et al., 2008, 2012). The final solution
was composed from the full NEQ solution for degrees 2 to 260 and for degrees 370 to 1949 from
the block diagonal solution. For degrees 260 to 370 the coefficients of both sets were averaged.
EGM2008 was computed from an entire block diagonal solution. Also the involved satellite NEQs
were approximated as a block diagonal form (Pavlis et al., 2012). Precise details are not provided4.
In addition, parameters describing the mean dynamic ocean topography are estimated in an iterative
procedure instead of in a joint estimation process. The approach requires a global equidistant data
set, where all observations enter the solution with an equal weight. For instance marine data
provided by Andersen and Knudsen (2009) is used in EGM2008. Regular grids which are an output
of a collocation based interpolation of a-long track altimetry is made available for the mean sea
surface and the marine geoid, which is then used in EGM2008 computation. Reguzzoni and Sansò
(2012) suggest to estimate combined models via a combination of a full covariance matrix of the
satellite data and a block diagonal matrix of the high resolution terrestrial data using an iterative
solver. None of the mentioned approaches is able to use original along track sea surface heights
measured by altimetry. They all require the altimetry data to be regularly gridded and to be
reduced by a mean dynamic topography model. In addition, it is assumed that they are transformed
to gravity anomalies. Correlations in the gridded data, resulting from the instruments and from the
gridding process, are neglected.

Nevertheless, there are some studies, which demonstrate from a computational point of view, that
the assembly and solution of full NEQs is possible in reasonable time up to d/o 600–720 (Fecher
et al., 2011, Brockmann et al., 2014b). Within the Chapters 7 and 8 methods and implementations
are derived to obtain rigorous least squares solutions up to degree 720 using the direct solution
method and rigorous iterative least squares solver to derive solutions actually up to d/o 1440. Us-
ing this implementations, rigorous solutions for the scenarios described above become computable.

4Note that there exist many possibilities to approximate and recovery of a set of block diagonal normal equations
from the full spherical harmonic solution vector and its covariance matrix.
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A basic feature of the implementation is, that for instance altimetry observations can be used as
along-track measurements with an along track error model. Compared to other applications (e.g.
finite elements), as long as the data distribution is irregular and/or correlations between the ob-
servations exist, dense systems of equations are produced within global gravity field determination.
The physical requirements (such as consistent data handling, data homogenization, data reduc-
tion, reference systems) and limitations (e.g. commonly used spherical approximation and required
corrections, data availability) are not discussed within this thesis. A summary about introduced
approximations and physical corrections typically required is provided in Gruber (2000, Chap. 1,
Chap. 2)

5.2 Specific Adjustment Models for Gravity Field Recovery

Within global gravity field determination, the unknown parameters x are mainly composed of the
spherical harmonic parameters clm and slm, describing the gravity field. They are estimated, de-
pending on the type of the gravity field, from various (complementary) observation types in a least
squares adjustment. The goal of the applications and solvers implemented in Chapters 6, 7 and 8
is to find the least squares solution for the unknown spherical harmonic parameters arranged in a
vector x. In general, it is assumed that several observation groups should be combined, which might
be available as raw observations (observation equations — OEQs) which are either point-wise grav-
ity measurements or along-track measurements of a satellite platform. In addition, (band-limited)
NEQs already derived in an independent preprocessing step are integrable into the adjustment. A
typical group are the NEQs of a gravity field satellite mission like CHAMP, GRACE or GOCE,
where experts in the individual mission did the assembly of the model and provide the solution.
If the solution vector and an unregularized full covariance matrix is provided, the NEQs can be
reconstructed and used without loss of information in a further combined gravity field adjustment,
adding additional data sources.

All three application specific implementations introduced here are special cases of (4.6b):

• Within Chap. 6 satellite-only models of the GOCE missions are computed. Different observa-
tion types are analyzed and combined to a derive the final solutions. As the satellite-to-satellite
tracking data is separately analyzed by an other group, it enters the solution as a NEQ group.
Two regularization matrices are introduced as NEQs, too, such that within the GOCE ap-
plication holds N = 3. The gradiometer observations enter the solution process as OEQs.
Calibrated gravity gradient measurements are used as input. As the observations of differ-
ent gradient components and different periods of time have different characteristics, they are
processed as several OEQ groups (O � 1, depending on the time period analyzed).

• Within Chap. 7, a general direct solver for (4.6b) is implemented. It is designed to combine
NEQs preprocessed from the data of the individual satellites (SLR, GRACE and GOCE in
the simulations) with high resolution observations. Within the performed simulations, this
are either different groups of ground gravity measurements (gravity anomaly data sets) or
different groups of along-track altimetry observations. These groups contain the higher degree
gravity signal (more sensitive) and are compared to the NEQs groups responsible for the higher
dimensional parameter space (hundreds of thousands of parameters).

• Within Chap. 8, a comparable scenario is analyzed, but with the assumption that the param-
eter space is even larger such that a solution of (4.6b) via the assembly and solution of full
NEQs is unreasonable. As an alternative, to derive a in a computational sense rigorous least
squares solution, an iterative solver is implemented in the HPC environment, which is able to
handle a larger number of unknown parameters (millions of parameters).
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For the three applications, the processing and implementation is described in detail. Some hints on
the implementation of the observations equations are provided in the specific chapter, if required.
Within all applications, the physical models are of minor interest. The focus is on the massive
parallel implementation of the specific tasks in the HPC environment using the derived basic frame-
work. Thus, the simulations in Chap. 7 and 8 are in a physical sense simplified but demonstrate
the possibilities provided by the use of the proposed HPC concepts and the devolved framework.

5.3 Numbering Schemes for Gravity Field Determination

Especially when analyzing gravity data, the NEQs are set up only for the parameters, the original
observations are sensitive for, to derive usable stand-alone satellite-only gravity field models. For
example, combining a GOCE model (sensitive to at least d/o 250, 30 GB NEQ) with Satellite
Laser Ranging (SLR, sensitive to d/o 5, e.g. Maier et al., 2012) the parameter space of both
groups is significantly different. For the combination, it does not make sense to set up SLR NEQs
up to d/o 250, instead, the band-limited NEQs have to be combined. There exists no “default”
parameter order for the spherical harmonic coefficients which groups the parameters of more than
two band-limited subsets in blocks. For such cases, the combination of matrices via block additions
is impossible. Reordering of the satellite NEQs at runtime becomes mandatory. For that reason
the general concept of symbolic numbering schemes and parameters is specialized to parameters
required for spherical harmonic analysis and global gravity field determination (mainly spherical
harmonic parameters).

5.3.1 Special Numbering Schemes

With respect to spherical harmonic gravity field parameters, tailored numbering schemes with dif-
ferent properties exist. Three special cases are named here, as their properties are used in some of
the applications presented later on. An overview of available special numbering schemes and their
properties is discussed in Schuh (1996, Chap. 2).

Order-wise Numbering Parameters are grouped in blocks of parameters of same spherical har-
monic order. Fulfilling some prerequisites (gridded data), the NEQ matrix N would result – due to
orthogonalities of the spherical harmonic base functions – in a block diagonal matrix (e.g. Colombo,
1981, Reguzzoni and Sansò, 2012). These prerequisites would be, that the observations are equidis-
tant along the parallels with a constant accuracy. Although this prerequisites are heavily violated in
the applications analyzed here, it can be expected that resulting NEQs are at least block diagonal
dominant if the order-wise numbering scheme is chosen.

Degree-wise Numbering The spherical harmonic parameters are arranged per degree, i.e. pa-
rameters of the same degree are neighbors within the NEQs. This scheme is very flexible if the
resulting model and its covariance matrix is used in a truncated version, as e.g. the covariance
matrix of the truncated model is just a block sub-matrix of the complete matrix.

Free kite Numbering This is a special numbering scheme which was developed for the combi-
nation of regular and irregular distributed data, i.e. data producing block diagonal NEQs and lower
resolution full NEQs. This numbering scheme is used as preconditioner in GOCE data processing
with the GOCE tailored iterative solver (cf. Boxhammer, 2006, Boxhammer and Schuh, 2006).
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Listing 5.1: Header file defining the main features of the class Parameter.�
1 #ifndef PARAMETER_H
2 #define PARAMETER_H
3
4 using namespace std;
5
6 class Parameter
7 {
8 public:
9 // ======================================================

10 /* types of Parameters ,
11 * SH_C -> spherical harmonic cosine coefficient
12 * SH_S -> spherical harmonic sine coefficient
13 * FE -> coefficient of finite element base functions
14 * HELP -> group specific "help" Parameters like biases
15 * OTHER -> wild card for some additional Parameters
16 * UNDEFINED -> default value , not yet known Parameter type
17 */
18 enum PARAMETER_TYPE { SH_C , SH_S , FE, HELP , OTHER , UNDEFINED };
19 // Constructors
20 Parameter( );
21 Parameter( PARAMETER_TYPE t, size_t l, size_t m = 0 , size_t i = 0);
22 Parameter( const Parameter & p );
23 // ======================================================
24 // Destructor
25 ~Parameter ();
26 // ======================================================
27 // comparison methods and operators
28 bool operator ==( const Parameter & p ) const;
29 bool operator < ( const Parameter & p ) const;
30 ...
31 // ======================================================
32 // get and set attributes
33 PARAMETER_TYPE type() const { return(_type);}
34 ...
35 void set( PARAMETER_TYPE t, size_t l, size_t m = 0 , size_t i = 0);
36 // ======================================================
37 // other functions
38 ...
39 private:
40 // ======================================================
41 // attributes
42 PARAMETER_TYPE _type;
43 /* specific Parameter information
44 * _l -> degree of spherical harmonic coefficient (SH_C , SH_S)
45 * -> node the intermeshing Parameter belongs to (FE)
46 * -> ID of observation group the Parameter belongs to (HELP)
47 * -> not used yet (OTHER)
48 * -> 0 (UNDEFINED)
49 */
50 size_t _l;
51 /* _m -> order of spherical harmonic coefficient (SH_C , SH_S)
52 * -> type of FE parameter (0: constant , 1: trend , 2: annual period) (FE)
53 * -> type of help Parameter , group specific (HELP)
54 * -> not used yet (OTHER)
55 * -> 0 (UNDEFINED)
56 */
57 size_t _m;
58 /* _i -> temporary help variable (All types)
59 */
60 size_t _i;
61 };
62 #endif // PARAMETER_H
� �

5.3.2 Symbolic Numbering Schemes for Gravity Field Recovery

For the gravity data analyzed within this work, these parameters are mainly spherical harmonic
parameters of different d/o, but might also be finite element parameters (not directly addressed) to
estimate additional quantities as e.g., the mean dynamic ocean’s topography (Becker et al., 2012,
Becker, 2012, Becker et al., 2013) or some other parameters like group specific biases. A symbolic
parameter is mapped into a class parameter as shown in Listing 5.1. Each parameter has a defined
type (e.g. spherical harmonic, finite element, ...) and some additional attributes which store the
specific properties (i.e. three unsigned integers) to define e.g. the degree l and order m of a spherical
harmonic parameter. In addition, compare operators, like operator==( const parameter & p2 )
and operator<( const parameter & p2 ), are defined there.

Arranging a sequence of these parameters in a field, e.g. in a std::vector<Parameter>, defines
a symbolic numbering scheme which can be associated with global matrices (their rows and/or
columns). The column and/or row i of a matrix corresponds to the parameter ppp (i) using the
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Listing 5.2: Header file defining the main features of the class NumberingScheme.�
1 #ifndef NUMBERINGSCHEME_H
2 #define NUMBERINGSCHEME_H
3
4 using namespace std;
5
6 class NumberingScheme
7 {
8 public:
9 // Constructors

10 NumberingScheme( );
11 NumberingScheme( string schemeFile );
12 NumberingScheme( const NumberingScheme & orig );
13 NumberingScheme( size_t size );
14 // Destructor
15 ~NumberingScheme ();
16 // Operators
17 NumberingScheme & operator =( const NumberingScheme &orig );
18 bool operator ==( const NumberingScheme &orig );
19 // other methods
20 size_t findIdx( const Parameter & p ) const;
21 size_t size( ) const;
22 vector <size_t > permutationVec( const NumberingScheme &ns2 ) const;
23 void readFromFile( string schemeFile );
24 void extendToMaxDegree( int lmaxi );
25 void trimToMaxDegree( size_t lmax );
26 void extendToMinDegree( int lmini );
27 void fillDegreeWiseAlt( int fromDeg , int toDeg );
28 void fillOrderWiseAlt( int fromDeg , int toDeg );
29 void writeSymbolicScheme( string fn );
30 void sort();
31 // accesses parameters
32 const Parameter & p( size_t i ) const {return(_p.at(i));}
33 Parameter & p( size_t i ){return(_p.at(i));}
34 inline int nrParam () const { return( _p.size() );}
35 private:
36 vector <Parameter > _p;
37 };
38 #endif // NUMBERINGSCHEME_H
� �

specialized class NumberingScheme as shown in Listing 5.2. This special implementation of the class
Parameter and of the class NumberingScheme can be directly used for the presented reordering
procedures in Sect. 4.3.

5.4 Analyzing Gravity Field Models

This section is used to summarize some quantities, which are used to analyze and compare global
gravity field models derived within the application chapters. Typical quantities, which are applied
to visualize the results are introduced. All quantities shown rely on the comparison of different
models available as a series of spherical harmonic coefficients or on the quality of the full covariance
matrix of the estimated model.

5.4.1 Spectral Domain: Degree (Error) Variances

A simple one-dimensional characterization of gravity field models and their quality are the degree
(error) variances. Signal degree variances are the quadratic sum over all orders of that degree (e.g.
Heiskanen and Moritz, 1993, p. 259), i.e.

σ(l)2 =
l∑

m=0

c2
lm + s2

lm (5.2)
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and are a kind of power spectral density. For the case of GOCE, the near zonal coefficients are
badly determined. An attempt to define a measure which is less sensitive to large errors in the polar
regions, the zonals are often neglected in the computation5,

σ̄(l)2 =
l∑

m=0

{
c2
lm + s2

lm if m > θ0l cf. (6.17)
0 otherwise . (5.3)

The same quantities can be derived for the error estimates of the model. Using the formal errors
(i.e. variances) of the coefficients derived from the inverse NEQs, the degree error variances are

σσ(l)2 =
l∑

m=0

(
σ2
clm

+ σ2
slm

)
, (5.4a)

σ̄σ(l)2 =

l∑

m=0

{
σ2
clm

+ σ2
slm

if m > θ0l cf. (6.17)
0 otherwise . (5.4b)

These are estimates for the power of the error at spherical harmonic degree l. The degree error
variances can also be computed empirically, compared to a reference model with coefficients ĉlm and
ŝlm via

σ∆(l)2 =

l∑

m=0

(
(clm − ĉlm)2 + (slm − ŝlm)2

)
(5.5a)

σ̄∆(l)2 =
l∑

m=0

{
(clm − ĉlm)2 + (slm − ŝlm)2 if m > θ0l cf. (6.17)
0 otherwise

. (5.5b)

All degree variances can be computed in terms of geoid heights, multiplying the quantities with the
factor R2, where R is the mean earth radius using the spherical approximation.

5.4.2 Space Domain

Using the spherical harmonic coefficients, functionals of the gravity field can be computed in the
spatial domain. Illustrating and analyzing the differences of the functionals between two models is
an easy but efficient validation tool (having in mind that both models are not error free).

5.4.2.1 Potential, Geoid Heights and Gravity Anomalies

The potential can be computed from the coefficients at a point (λ, ϕ, r) via (5.1). For geoid heights
i.e. approximately using Bruns formula (e.g. Heiskanen and Moritz, 1993, p. 85)

N (r, θ, λ) =
V (r, θ, λ)− U0 (r, θ, λ)

γ
, (5.6)

with the normal gravity γ and the rotation-symmetric normal potential U0 (r, θ, λ) referring to a
reference ellipsoid. For gravity field anomalies i.e. in spherical approximation (e.g. Heiskanen and
Moritz, 1993, p. 89)

∆g (r, θ, λ) =
GM

r2

lmax∑

l=0

(l − 1)
(a
r

)l l∑

m=0

(clm cos (mλ) + slm sin (mλ))Plm (cosθ) . (5.7)

5For details see Sect. 6.2.3.
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5.4.2.2 Error Propagation

With the covariance matrix of the spherical harmonic coefficients ΣΣΣxx available, the error propaga-
tion from the error of the coefficients to the error of a gravity field functional f is straightforward.
Setting up the functional matrix Ff for a point grid (λi, θi, ri) and a functional using the linear
equations in Sect. 5.4.2.1, the error propagation is (e.g. Koch, 1999, p. 99)

ΣΣΣff = FfΣΣΣxxFT
f , (5.8)

applying the standard concept of variance propagation to derive the full covariance matrix of the
gravity field functional of the predefined point grid.

5.4.3 Contribution of Observation Groups to Estimates of Single Coefficients

To measure the contribution of one of the observation groups i to the finally combined solution, the
partial redundancies are (often) used (e.q. Koch, 2007, p. 146). Within this context, the estimated
parameters xi, determined from a single observation group i, can be seen as pseudo observations
with the full covariance matrix ΣΣΣi,xx = (wiNi)

−1.

The contribution is measured via partial redundancies

Wi = ΣΣΣxxwiNi = N−1wiNi, (5.9)

where the j-th element of the diagonal part diag (Wi) describes the contribution of group i to
the final solution. It can be interpreted as the percentage, to which extend the parameter xj
is determined by group i. To determine this contribution, the full NEQs respectively covariance
matrices are used. The sum over all contribution matrices Wi ends up exactly in the identity
matrix, as

I∑

i=1

Wi =
I∑

i=1

ΣΣΣxxwiNi, (5.10a)

=
I∑

i=1

N−1wiNi, (5.10b)

= N−1
I∑

i=1

wiNi, (5.10c)

where
∑I

i=1wiNi is the definition of N. It follows that

I∑

i=1

Wi = N−1
I∑

i=1

wiNi = N−1N = I. (5.11)

It has to be mentioned that, due to correlations in Ni, the results have to be carefully interpreted.
The results of the analysis provide a first idea. In contrast to partial redundancies ri, where it is
guaranteed that 0 ≤ ri ≤ 1.0, the only restriction is that

∑
i Wi(j, j) = 1.0. As the parameters are

coupled due to correlations, individual contributions Wi(j, j) might get negative or a value above
1.0. For such cases, the results are hardly interpretable. Nevertheless, the analysis provide some
hints about the contributions of groups to individual parameters or parameter sub-spaces. Note
that the matrix Wi corresponds to the matrix in the trace operator used in Sect. 4.2 to determine
the total number of parameters Υi determined by group i (e.g. in (4.9)).



55

6. Application: Gravity Field Determination
from Observations of the GOCE Mission

6.1 Introduction to the GOCE Mission

The goal of the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite mission
is the modeling of the time-invariant component of the Earth’s gravity field to the accuracy of at least
1 mGal for gravity anomalies and 1− 2 cm for the geoid at a spatial resolution of at least 100 km (cf.
ESA, 1999, Floberghagen et al., 2011). The model for the global gravity field typically consists of
a finite series of globally defined spherical harmonics (see e.g. Heiskanen and Moritz, 1993, p. 57ff).
From a mathematical point of view, the problem leads to an extremely high dimensional, inverse, and
ill-conditioned data-fitting problem, where 60 000–80 000 unknown coefficients of the basis functions
have to be estimated from hundreds of millions GPS satellite-to-satellite tracking (SST) and satellite
gravity gradiometry (SGG) observations. As the system of equations is overdetermined, the final
set of parameters is determined as the least squares solution resulting from a linear Gauss-Markoff
model. The numerical assembly and solution of the combined normal equations resulting from
this problem is further complicated by the strong data correlations within the gravity gradiometry
observations as well as by the different weighting of the three complementary data types (SST, SGG
and regularizing prior information (REG)).

As mentioned above, two basic observation groups are measured by GOCE and used to derive the
Earth’s gravity field. The first group are code and phase GPS (Global Positioning System) obser-
vations collected by the onboard GPS receiver. Within this context, they are used as preprocessed
kinematic orbit positions of the satellite, as they result from a kinematic orbit determination (cf.
Bock et al., 2011, 2014). As the gravitational attraction affects the satellite, the orbit of the satellite
(its position derived with GPS) can be linked to the gravity field using Newton’s equation of motion
(e.g. Seeber, 2003, p. 66). The second group, which is in the main focus within this thesis, are the
observations of the three-axis gradiometer, which measures the second derivative of the potential
(5.1) in a gradiometer fixed reference frame (GRF, cf. EGG-C, 2010a, Chap. 8.2). Differences of
accelerations are measured along a 0.5 m baseline. In general, all six elements of the symmetric
gravity tensor are measured. Nevertheless, due to design constraints, only four of the the six non
redundant components can be measured with a high precision (see e.g. Rummel et al., 2011, Pail
et al., 2011a, Floberghagen et al., 2011).

GOCE orbited the Earth in the mean altitude of 255 km6 from 2009 to November 2013. The orbit
was chosen sun synchronous, which results in polar gaps with an opening angle of about 6.5◦. The
poles are not crossed by the satellite during the whole mission lifetime (cf. Fig. 6.1). Due to the data
gaps and the fact that the gravity field signal is damped at satellite altitude, determining the gravity
field parameters from the noisy and correlated observations yields an inverse ill-posed problem. As
gravimetric problems generally tend to be ill-posed, (e.g. Schwintzer et al., 1997, van Gelderen and
Koop, 1997, Ilk et al., 2002, Hofmann-Wellenhof and Moritz, 2005), a kind of regularization can be
applied, which can be seen as a priori knowledge in Bayesian sense (e.g. Koch, 2007, p. 151). It is
optionally introduced as a third observation group, to derive smoother and more stable estimates
for spherical harmonic parameters. Especially for GOCE-only models regularization is required, if
the final spherical harmonic model is cut off and not evaluated in the synthesis to the provided
maximal resolution. Nevertheless an unconstrained solution without regularization is computable.

6The satellites altitude was reduced in several steps down to 225 km at the end of the mission to improve the
signal to noise ratio for a measurement period of at least 8 months.
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(a) Coverage after one day. (b) Coverage after one week. (c) Coverage after one month.

Figure 6.1: Coverage of the GOCE satellites ground track on the Earth’s surface after one day, one
week and one month.

The goal of this Chapter is to develop a massive parallel software implementation which is used to
determine the unknown spherical harmonic coefficients from the observations collected by the GOCE
satellite. The two observation groups, high-low satellite-to-satellite tracking (SST) and the gravity
gradient measurements (SGG) are merged and stabilized by a third, i.e. a regularization group. The
unknown parameters are then derived in a joint weighted least squares adjustment. From a compu-
tational point of view, the challenges arise from the huge numbers of highly correlated observations,
which are more than 430 · 106. Compared to the other applications in Chap. 7 and 8, the number of
unknowns is small. Depending on the data volume used, current and expected GOCE based gravity
field models are resolved for spherical harmonics of d/o 250–280, which corresponds to less than
80 000 parameters (Brockmann et al., 2013, Bruinsma et al., 2013). Nevertheless, HPC is needed to
derive a rigorous solution and a full covariance matrix in reasonable time. For the GOCE missions,
this can be done using tailored iterative solvers (as developed by Schuh, 1996, Boxhammer, 2006)
or via the assembly and solution of full NEQs (e.g. Plank, 2004, Pail and Plank, 2002). The compu-
tational demanding tasks are the decorrelation of the observation equations (cf. Sect. 6.2.2.2) and
afterwards the assembly of the SGG normal equations, i.e. the computation of ATA for hundreds of
millions of observations. The goal of this section is to implement a massive parallel flexible software
package to assemble the full normal equations from the GOCE gradiometry observations, combine
them with high-low SST measurements and solve for regularized (i.e. stabilized) spherical harmonic
parameters describing the static part of the Earth’s gravity field. In addition to an already existing
iterative solver, which is mainly used for the purpose of parameter tuning (cf. Brockmann et al.,
2010), a more flexible software package is derived. The additional features of the solver are for
instance:

• The full covariance matrix of the solution can be determined.
• The decorrelation is implemented more general, alternative noise models can be used (e.g.

decorrelation filters changing in time).
• The estimation of weights is independently possible for gradient components and time periods

of the time series.
• The off diagonal components can be used in the analysis.
• An arbitrary matrix can be used as regularization matrix.
• Various components for model analysis are available.
• Outlier flagging is possible individually per gravity gradient component.
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Although, the number of parameters is quite small, the size of the resulting NEQs is 30− 46 GB
and thus too large for single computers.

The implemented software module is based on the developed class of the block-cyclic distributed
matrices introduced in Chap. 3.3. They are used to directly set up the observation equations, apply
the decorrelation, assemble the NEQs and to solve for the parameters and group specific weighting
factors. As the functional and stochastic model of the so called time-wise approach (Sünkel et al.,
1995, Pail and Plank, 2002, Pail et al., 2006, 2011a), which is used within the official ESA release,
is quite well known, the method will only be briefly described. Instead, the focus is put to the
implementation and the computational challenges. Finally, some results are given for the four
official time-wise gravity field models which were computed with a significant contribution by the
developed software. Details are given especially for the most recent model computed, which is the
fourth release, i.e. EGM_TIM_RL04 in Sect. 6.5. An outlook towards the final model which will
be EGM_TIM_RL05 using all mission data is given.

Although the processing strategy is fixed to the time-wise method (constraints within a research
project), alternatives exist and are applied for GOCE data analysis. Rummel et al. (1993) gen-
erally distinguish between two general approaches, processing strategies which follow a time-wise
approach7 and the strategies which follow a space-wise approach.

The space-wise methods transform the observations on regular grids, from which the spherical
harmonic coefficients can be easily recovered (e.g. Sansò and Tscherning, 2003, Migliaccio et al.,
2011). Strategies which follow the time-wise approach interprete the measurements as time series
along the satellites orbit. If for instance the observations are equidistant in time and the orbit is
an exact repeat orbit, semi-analytic time-wise approaches exist which are numerically very efficient
as they are solved using a fast Fourier transform (see e.g. Sneeuw, 2000, Pail and Wermuth, 2003,
Mayrhofer et al., 2010). Other strategies which follow a time-wise approach process the data in-
situ, the observation equations are set up at the exact observation location and orientation of the
satellite (e.g. Bruinsma et al., 2013, Schall et al., 2014, Pail et al., 2011a). Transformations of
the measurements are avoided. Although all mentioned studies follow a time-wise approach, the
strategies slightly differ, mainly in the stochastic model used in the adjustment. As a kind of
compromise of both approaches Ditmar et al. (2003a,b), Farahani et al. (2013) suggest to set up the
observations equations efficiently for a 3D spherical grid and derive them for the exact observation
location via interpolation.

6.2 The Physical, Mathematical and Stochastic Problem

The goal in this chapter is to derive the unknown spherical harmonic gravity field parameters from
the observations of the satellite mission GOCE. For the case of GOCE, the general NEQs (4.6b)
can be rewritten as

(
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∑
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`̀̀g,s, (6.1)

where Nsst and nsst are the preprocessed normal equations of the SST observation group, Nr and
nr different normal equations which contain the regularizing prior information and Ag,s the SGG

7The approach followed here is named time-wise approach, too. This should be seen as an official name of the
strategy and product (within HPF) and should not be mixed with the general concept (cf. Rummel et al., 1993).
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design matrix for tensor component g and data segment s, Q`̀̀g,s`̀̀g,s the cofactor matrix of the gravity
gradient observations and `̀̀g,s the vector of the observations itself. For the SGG observations, the
observation time-series is divided into segments s ∈ {0, . . . , S − 1} without gaps for which individual
NEQs are assembled and individual weights are determined. Different tensor components and
segments are assumed to be uncorrelated. In addition to the division into segments, individual
NEQs are set up for the individual tensor components g ∈ {XX,XY,XZ, Y Y, Y Z,ZZ} for every
segment s. 1/σ2

∗ = w∗ are the unknown weights for the involved groups to be estimated in addition
to the unknown spherical harmonic parameters x.

6.2.1 SST Processing

The processing of the SST observations is not the focal point of this work. Instead, SST observations
are used as preprocessed normal equations. Nevertheless, the SST processing which is performed by
project partners (ITSG, TU Graz) is shortly summarized and required references are provided. As
within this work the results obtained by the short arc integral equation approach as used in Mayer-
Gürr et al. (2005), Mayer-Gürr (2006) and Mayer-Gürr et al. (2010a) for CHAMP and GRACE
are used, only this method is summarized8. Comparisons of alternative methods can be found in
Mayer-Gürr (2006), Reubelt (2009), Löcher (2010), Reubelt et al. (2012) and especially for GOCE
real data analysis in Baur et al. (2014). The original method was proposed by Schneider (1967) for
orbit determination and refined for gravity field determination by Reigber (1969).

The satellites position r (t) in the inertial reference system can be linked to the Earth’s potential
via the Newton Euler equation of motion (e.g. Seeber, 2003, p. 66)

r̈ (t) =
1

m
K (t) =

1

m

∑

i

Ki (t) . (6.2)

r̈ (t) is the satellites acceleration, m its mass and K (t) the sum of all forces acting on the satellite.
One of the forces Ki (t) is the (static) gravitational force which is the gradient of the potential given
in (5.1),

1

m
Kgf = ggf(λ, ϕ, r) = ∇V (λ, ϕ, r) =



∂V/∂x
∂V/∂y
∂V/∂z


 . (6.3)

Thus, integrating (6.2) twice (e.g. following the summary in Mayer-Gürr, 2006, p. 21f) yields an
integral relation of the satellites position r (t) to the spherical harmonic gravity field parameters
and thus the observation equations for high low satellite to satellite tracking

r (t) = rA + ṙA (t− tA) +
1

m

t∫

tA

t′∫

tA

∑

i

Ki

(
t′′
)
dt′′dt′ +

t∫

tA

t′∫

tA

ggf (clm, slm) dt′′dt′. (6.4)

rA and ṙA are the unknown integration constants which are initial position and velocity at time
tA. These values can be co-estimated in the least squares adjustment and are then eliminated from
the system of normal equations. All other forces Ki acting on the satellite have to be reduced by
models, accelerometer measurements or co-estimated. One possible approach is described in Mayer-
Gürr (2006, chapter 3.2). The background standards for GOCE data processing (cf. EGG-C,
2010a) are taken into account.

8Note that in the older releases (01-03) of the time-wise models the energy balance method (e.g. Gerlach et al.,
2003) was used (e.g. Pail et al., 2011a).
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(a) Example SST NEQ (b) SST RHS

�
# parameters used to assemble the NEQ
pathToN = ./ N_tug_0002.gdk
pathTon = ./ n_tug_0002.gdk
lTPl = 2.67835565709962e+11
numObsUsed = 40383471
name = GO_SST_SHORTARC_MOP4
tide_system = tide_free
GM_used = 3.9860044150e+14
a_used = 6378136.3
numberingSchemeNeq = ./ parameter_0002.ns
ltlReducedModel = ~/data/earth/grs80.gfc
� �

(c) NEQ info file

�
maxdeg 130
maxord 130
nrpara 17157
C 2 0
C 2 1
S 2 1
C 2 2
S 2 2
...
C 130 130
S 130 130
� �
(d) Numbering scheme

Figure 6.2: Data belonging to the SST normal equation set.

The stochastic modeling of the (pseudo) observation errors, which are the errors of the satellites
positions in this case, is essential for the combination with complementary data in (6.1). For the
short arc integral equation approach, Mayer-Gürr (2006) and Mayer-Gürr et al. (2010a) developed
a method which accounts for an approximative (i.e. banded) covariance matrix of the position
resulting from the orbit determination geometry as well as for correlations in time via empirically
estimated covariance functions. To handle the estimated covariance matrices, the 1 Hz observations
are divided into short orbit arcs of 600 s length, such that the full covariance matrix for every arc can
be set up locally as a full matrix. Lower frequency errors are absorbed by empirical bias parameters
per arc.

The result of this analysis are normal equations, which are set up for the spherical harmonic coeffi-
cients from degree 2 up to a maximal degree lmax. As the resolution of high-low SST is limited to
at most d/o 150, the matrices are quite small and – from a computational point of view – relatively
easy to handle. In addition to the normal equations, i.e. the normal matrix Nsst and the right
hand side nsst (RHS), additional information is needed for the combination according to (6.1). A
summary of an exemplary data set is given in Fig. 6.2. The additional information is the number of
observationsMsst used in the assembly of the NEQs and the result of the product λsst := `̀̀TsstPsst`̀̀sst
which are required for the estimation of variance components. Furthermore, physical constants like
GM , a and the tide system used in the processing have to be known to guarantee consistency. Last
but not least, the parameter order in the system of NEQs has to be provided with already assembled
normal equations. This is done via an associated symbolic numbering scheme cf. Sect. 4.3, which in
addition provides the maximal resolution. The information summarized in Fig. 6.2 is produced by
project partners and is handled as sufficient statistics of the original observations within this work.

6.2.2 SGG Processing

This section summarizes the SGG processing of the so called time-wise approach (Sünkel et al., 1995,
Pail and Plank, 2002, Pail et al., 2006, 2011a). As the observation equations and the processing
details are straightforward and well documented, the details can be found in the given references.
As this work focuses on the implementation of a direct solution method in a HPC environment
and the application to real data analysis, this paragraph is only a short summary of the general
processing ideas.

6.2.2.1 Functional and Physical Model

The GOCE 3-axis gradiometer measures acceleration differences along a very short baseline (0.5 m
Floberghagen et al., 2011). The differences in the accelerations correspond to the derivative of
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the gravitational force and thus to the second derivative of the potential in the gradiometer refer-
ence frame (GRF), defined by the three ideal orthogonal gradiometer arms (cf. EGG-C, 2010a,
Chap. 8.2),

T
(
rGRF(t)

)
= ∇∇V = ∇g =



VXGRFXGRF VXGRFYGRF VXGRFZGRF

VYGRFYGRF VYGRFZGRF

sym. VZGRFZGRF


 (6.5a)

=



VXX VY Y VXZ

VY Y VY Z
sym. VZZ


 . (6.5b)

This measurements have to be calibrated and reduced by the centrifugal term, which is assumed to be
already done for the data used within this work. For the calibration and the Level 1B preprocessing
of the gradiometer measurements see e.g. Cesare and Catastini (2008), Stummer et al. (2011, 2012),
Frommknecht et al. (2011) and Stummer (2013). It is avoided to transform the gravity gradients
into the earth fixed reference frame (EFRF), e.g. the International Terrestrial Reference Frame
(ITRF, cf. EGG-C, 2010a, Chap. 4), where (5.1) is valid, as it would yield a mixture of the accurate
and inaccurate gradients (e.g. Fuchs and Bouman, 2011). Due to the technical design, the diagonal
of (6.5a) and VXGRFZGRF can be measured with high precision within the measurement band width
(MBW) of 5 · 10−3 Hz to 0.1 Hz (10− 20 mE/

√
Hz, Rummel et al., 2011). VXGRFYGRF and VZGRFZGRF

are about a factor of 30 to 70 times less accurate (Rummel et al., 2011). To avoid the transformation
of the observed quantities, the observation equations can be transformed instead. They can be set
up in the GRF, the SGG observations are measured in. Thus, the second derivative of (5.1), which
is valid in the EFRF, has to be transformed, i.e. rotated, to the GRF to set up the observation
equations there. As described in Hausleitner (1995, Sect. 4) this can be done in a stepwise approach
for every observation i measured at time t:

1. The observation equations of the second derivative of the potential can be directly written as a
linear combination of the second derivatives of (5.1) (Hausleitner, 1995, Chap. 4.1), according
to λ and ϕ in a local north oriented Cartesian frame, (LNOF, cf. EGG-C, 2010b, p. 23) which
is located in the satellites center of mass: ⇒ ALNOF

t .
2. Rotate the design matrix ALNOF

t from the LNOF to the inertial frame (IRF, cf. EGG-C,
2010b, p. 23) accounting for the Earth’s rotation allying R(t)LNOF2IRF: ⇒ AIRF

t .
3. Rotate the design matrix AIRF

t from the inertial frame to the gradiometer reference frame
(cf. EGG-C, 2010a, p. 22). The rotation matrix RIRF2GRF is determined by star sensor
observations, i.e. the satellites orientation in space. It is available as the GOCE EGG_IAQ
product (cf. EGG-C, 2009, Sect. 6.1.8): ⇒ AGRF

t .

The basic idea of the time-wise method is to handle the gradiometer observations along the satellites
orbit as an equidistant time series for each individual tensor component g. For that reason, the
entire observation time series is grouped into the gapless segments s and arranged in observation
vectors `̀̀g,s for each tensor component g. All observations in a single vector are equidistant in time
(1 s for the real data) and sorted chronological.

Whereas there are high correlations within the observation time series of a single component Vg
arranged in the observation vector `̀̀g,s, it is assumed and empirically verified (Krasbutter and
Schuh, 2010) that there are no significant correlations in the noise of the observation time-series of
two different tensor components g1 and g2,

ΣΣΣ`̀̀g1,s ,̀`̀g2,s = 0, for g1 6= g2 and g1, g2 ∈ G = {XX, XY, XZ, Y Y, Y Z, ZZ} (6.6)
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and that there are no correlations between observations before and after a data gap, i.e.

ΣΣΣ`̀̀g,s1 ,̀`̀g,s2 = 0, for s1 6= s2 and s1, s2 ∈ S = {0, . . . , S − 1} . (6.7)

Thus, the combined normal equation can be written as in (6.1). The partial NEQs for an individual
tensor component g and a gapless segment s
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1

σ2
g,s

AT
g,sQ

−1
`̀̀g,s`̀̀g,s

Ag,s, ng,s =
1

σ2
g,s

AT
g,sQ

−1
`̀̀g,s`̀̀g,s

`̀̀g,s (6.8)

can be separately assembled. The essential part of the time-wise method is the modeling of the
observation error and the correlations within the observations `̀̀g,s as a data-adaptive estimation/ap-
proximation model of Q`̀̀g,s`̀̀g,s is derived. As this is an essential part, yielding additional computa-
tional challenges for the implementation, the details of the stochastic modeling of `̀̀g,s are given in
the next section.

6.2.2.2 Stochastic Model

The observation vector of a single segment s can consist of millions of observations, it is impossible
to model the error characteristics of the observations with a full covariance (or cofactor) matrix. The
memory requirements would result in hundreds to thousands TB. Instead, an alternative strategy
to model the observation cofactor matrix was developed by Schuh (1996) and extended by Schuh
(2002, 2003), Schuh et al. (2006) and Siemes (2008). Instead of setting up a covariance (or cofactor)
matrix, digital cascaded Auto-Regressive Moving Average (ARMA) filters were used as decorrelation
or whitening filters. The original problem (for a single tensor component g and a single data segment
s) in terms of the observation equations

`̀̀g,s + vg,s = Ag,sx ΣΣΣ`̀̀g,s`̀̀g,s = σ2
g,sQ`̀̀g,s`̀̀g,s (6.9)

is transformed to a simpler problem applying a linear (cascaded) digital filter FFF to the observation
equations

FFF `̀̀g,s +FFFvg,s = FFFAg,sx (6.10a)

⇔ ¯̀̀̀
g,s + v̄g,s = Āg,sx ΣΣΣ¯̀̀̀

g,s
¯̀̀̀
g,s

= σ2
g,sFFFQ`̀̀g,s`̀̀g,sFFFT = σ2

g,sI. (6.10b)

The filter is estimated from the data itself as an approximation of the covariance matrix in terms
of a complete decorrelation (e.g. Koch, 1999, p. 154), such that σ2

g,sFFFQ`̀̀g,s`̀̀g,sFFFT = σ2
g,sI holds as

good as possible.

Filter Concept The basic idea is to represent the observation noise time series as a cascaded
ARMA process. A cascaded process is a consecutive sequence of ARMA processes. Each individual
process k ∈ {0 . . .K − 1} is called cascade. The process is adjusted to the gradiometer noise and
then inverted to obtain the corresponding decorrelation filter (e.g. , Chap. 5). This filter is composed
of individual filter cascades k ∈ {0 . . .K − 1}. Each of the individual filter cascades k is described
by two sets of coefficients i.e. αkq for the recursive and βkp for the non-recursive part of the filter.
Their applicability for the modeling of the gradiometer noise was studied in Schuh (2002, 2003),
Schuh et al. (2006), Siemes (2008) and the use for the real data was demonstrated in Schuh et al.
(2010), Krasbutter et al. (2011b,a) and Krasbutter et al. (2014). As a general form, a single cascade
ARMA filter can be applied to a correlated observation vector `̀̀ as filter input via

¯̀
i =

Pk∑

p=0

βkp `t−p +

Qk∑

q=1

αkq
¯̀
t−q, (6.11)
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resulting in the filter output, i.e. the decorrelated observation vector ¯̀̀̀. P k and Qk denote the filter
order of the non-recursive and of the recursive parts. For cascaded filters, (6.11) is consecutively
applied for every cascade k (see Alg. 6.1 and Sect. 6.3.3 for details) with ¯̀̀̀ as new input `̀̀. (6.11) can
be rewritten as matrix-vector operations (or matrix-matrix operations if the columns of the design
matrix are to be filtered), rewriting (6.11) as

0 =

Pk∑

p=0

βkp `t−p +

Qk∑

q=1

αkq
¯̀
t−q − ¯̀

i, αk0 := −1 (6.12a)

0 =
Pk∑

p=0

βkp `t−p +

Qk∑

q=0

αkq
¯̀
t−q (6.12b)

0 = Fβk `̀̀ − Fαk
¯̀̀̀ (6.12c)

Fαk
¯̀̀̀ = Fβk `̀̀ (6.12d)
¯̀̀̀ = F−1

αk
Fβk `̀̀,

¯̀̀̀ = forwardSubstitution
(
Fαk ,Fβk `̀̀

)
, (6.12e)

and defining the matrices

Fαk :=
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(6.13)

and

Fβk :=
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. . . . . . . . . . . . . . . . . . . . . 0

βk
Pk

. . . . . . . . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . . . . 0 0

...
. . . βk

Pk
. . . . . . . . . . . . βk0 0

0 0 0 βkP βk
Pk−1

· · · βkp · · · βk0




. (6.14)

Note that the solution of (6.12e) always exists (as there are no zero entries in the diagonal) and
can be efficiently determined via forward substitution (e.g. Golub and van Loan, 1996, p. 88). As
the filter used within the SGG decorrelation comprises several cascades, the individual filters k are
consecutively applied to the observations (and the design matrix). Applying (6.12e) K times results
in Alg. 6.1.
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Algorithm 6.1: Application of a cascaded filter with K cascades to a matrix.

Data:
Fαk filter matrix of recursive part kth cascade, k ∈ {0, . . . ,K − 1}
Fβk filter matrix of non-recursive kth cascade, k ∈ {0, . . . ,K − 1}

L matrix (or vector) to be filtered

// initialization1

L̄(0) = L2
// loop over all cascades k3
for k = 0 to K − 1 do4

// apply non-recursive part of cascade k5

L̂(k) = Fβk L̄
(k−1)6

// apply recursive part of cascade k7

L̄(k) = forwardSubstiution
(
Fαk , L̂(k)

)
// numerical stable solution8

end9

L̄ = L̄(K−1)10
return L̄// matrix filtered with all cascades11

Filter Design The coefficients of the filter cascades are estimated data-adaptive from the ob-
servations. A cascaded ARMA process is adjusted to the estimated gradiometer noise (i.e. the
residuals of the observations after a gravity field adjustment, Schuh, 2002, 2003, Siemes, 2008).
As the filters are iteratively refined, the adjustment is repeated with different filters to estimate an
update of the residuals. The iteration is started either with a known gravity field model or with
a known filter model. From real data analysis it is known that the filter estimation convergence is
fast. Normally, convergence can be seen after two to four iterations (Schuh et al., 2010, Krasbutter
et al., 2011a, Brockmann et al., 2013), depending on the quality of the initial filter or gravity field
model. For iterating the filter design, instead of using the solver developed in this work, the fast
conjugate gradient based solver is used, as the NEQs are not needed (Schuh, 1996, Boxhammer,
2006, Siemes, 2008, Brockmann et al., 2010). Some details on the filter estimates covering the real
data analysis are shown in Sect. 6.5.3.1.

6.2.3 Constraints

As global gravity field determination from satellite data represents an ill-posed problem, a kind of
regularization or smoothness conditions have to be applied, if a gravity field solution just based on
GOCE observations should be estimated. In the special case of GOCE observations, two different
effects occur. The polar gap as a consequence of the sun synchronous orbit mainly yields unstable
estimates of the near zonal coefficients (van Gelderen and Koop, 1997). In addition, the signal
is damped in the satellites altitude. This yields a poor signal to noise ratio and causes a high
amplitude of the error in the higher spherical harmonic degrees. Adding some smoothness conditions
for the higher frequencies, the entry of high frequency noise into the solution can be reduced.
Nevertheless, some signal might be damped as well. The regularization has to be applied, if the
model is evaluated for a subset of the parameters only, which is the case in many applications. The
coefficients constrained by the regularization are summarized in Fig. 6.3.

Regularization for the Polar Gap Different strategies exist to stabilize the solution despite
the polar gap. One strategy is to introduce observations in the polar areas, for instance real mea-
surements e.g., from the Arctic Gravity Project (ArcGP, Forsberg and Kenyon, 2000) and from
the Antarctic Geoid Project (AntGP, Scheinert, 2005, Scheinert et al., 2008). Instead of real mea-
surements, synthesized observations from global models can be used, e.g. gravity anomalies on a
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Figure 6.3: Coefficients zones constrained by the regularization. The unconstrained coefficients
are shown in grey, the coefficients mostly affected by the polar gap in green and the
regularized high degree coefficients in red.

grid (see e.g. Yi, 2012). A tailored concept for the GOCE mission was developed by Metzler
and Pail (2005) and Metzler (2007) who implemented a spatially restricted regularization method.
Within this work, a simple but very efficient type of regularization is used. The prior information
that the spherical harmonic coefficients are zero – with a certain variance – is used. As form of
a Thikonov regularization, a diagonal regularization matrix is constructed, using Kaula’s rule of
thumb (cf. Kaula, 1966, p. 98) for degree variances, which approximates empirically the signal loss
of the higher degrees of the Earth’s gravity field. Pseudo observations for individual coefficients

E(xi) = 0, σxixi =
10−5

l2
(6.15)

are introduced for the near zonal coefficients xi. The diagonal elements of the regularization matrix
are then

Nzonals(i, i) = 1010l4, nzonals(i) = 0 (6.16)

if the parameter in row/column i corresponds to a degree above a certain start degree (lstart_zonals)
and if the order m is influenced by the polar gap. This is determined via (van Gelderen and Koop,
1997)

m < mmax = θ0l. (6.17)

θ0 is the opening angle of the gap in radians, which is approximately 6.5◦ for GOCE. The affected
coefficient zone is shown in green in Fig. 6.3. Alg. 6.2 summarizes the setup of the diagonal matrix.

Regularization of the Higher Degrees A second regularization group is used to constrain
the coefficients of the higher degrees. The signal to noise ratio should be improved. A Kaula
regularization according to (6.15) is applied to all coefficients above a certain start degree. Koch
et al. (2012) study Monte Carlo based approaches to determine an optimal start degree for the
regularization. The near zonal coefficients already constrained are excluded. The affected coefficient
zone is shown in red in Fig. 6.3. The design of the regularization matrix is summarized in Alg. 6.3.

Two matrices are used to obtain individual weights for the zonal and the high degree regularization
(cf. Fig. 6.3).
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Algorithm 6.2: Setup of the regularaization matrix for the polar gap.

Data:
θ0 opening angle of polar gap in radians
ppp symbolic numbering scheme for the result matrix

lstart_zonals start degree of the regularization

// Loop over all parameters1
for i = 0 to ppp.size() do2

Nzonals(i, i) = 03
nzonals(i) = 04
// if coefficient i is a spherical harmonic coefficient (sine or cosine)5
if (ppp(i).type() == SH_C) || (ppp(i).type() == SH_S) then6

l = ppp(i).l()7
m = ppp(i).m()8
// if the degree is above the start degree and the order is affected by the gap9
if (l >= lstart_zonals) && (m < θ0l) then10

Nzonals(i, i) = 1010l411
end12

end13

end14

L̄ = L̄(K)15
return Nzonals, nzonals// Regularisation matrix and zero RHS16

6.2.4 Data Combination and Joint Solution

As the combination of the observation groups and the computation of the joint solution is a simple –
because smaller – problem of the high degree application as described in Chap. 7, all computational
and implementational details are given there. The next Sect. 6.3 will focus on the assembly of the
gradiometry NEQs. Assume the NEQs are already assembled, the following steps are performed to
derive the joint solution (implementational details and computational challenges are given in Chap.
7):

1. Recall all NEQs from disk and perform the weighted update of N and n according to (6.1).
Account for different parameter numbering schemes and different maximal spherical harmonic
resolutions.

2. Add diagonal regularization matrices to the distributed NEQs.
3. Compute the Cholesky decomposition of N.
4. Determine the solution x via for- and backward substitution.
5. If needed, compute the covariance matrix of the parameters ΣΣΣxx = N−1 inverting the already

Cholesky reduced matrix N.
6. Derive estimates for the weights using (4.7), (4.8a) and (4.9).
7. Iterate until weights converge to derive final weighted solution for the unknowns x and their

covariance matrix ΣΣΣxx = N−1.

6.3 Gradiometry NEQ Assembly in a HPC Environment

For the application of GOCE data processing the computational challenge is a fast and efficient setup
of the normal equations for the gradiometry observations. Four basic steps have to be performed to
derive the NEQs as a block-cyclic distributed matrix. (i) The observations have to be distributed
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Algorithm 6.3: Setup of the regularization matrix for the higher degree coefficients.

Data:
θ0 opening angle of polar gap in radians
ppp symbolic numbering scheme for the result matrix

lstart_highdegree start degree of the regularization

// Loop over all parameters1
for i = 0 to ppp.size() do2

Nhighdeg(i, i) = 03
nhighdeg(i) = 04
// if coefficient i is a spherical harmonic coefficient (sine or cosine)5
if (ppp(i).type() == SH_C) || (ppp(i).type() == SH_S) then6

l = ppp(i).l()7
m = ppp(i).m()8
// if the degree is above the start degree and the order is not affected by the gap9
if (l >= lstart_highdegree) && (m >= θ0l) then10

Nhighdeg(i, i) = 1010l411
end12

end13

end14

L̄ = L̄(K)15
return Nhighdeg, nhighdeg// Regularization matrix and zero RHS16

along the compute core grid, (ii) the design matrix for the second derivative of the potential in
the GRF has to be set up as a block-cyclic distributed matrix, (iii) the design matrix and the
observation vector have to be filtered, i.e. decorrelated and (iv) finally the update of the NEQs i.e.
the computation of ĀT

g,sĀg,s has to be performed.

For simplicity, only the implementation for a single segment s and a single tensor component g is
described. However, the procedure is the same for every segment s and every tensor component g.
Thus, within this chapter, the subscripts s and g are neglected in the equations. The objective of
this section is to describe the massive parallel implementation of the computation of Ng,s including
the four steps mentioned above. As every segment can consist of millions of observations, denoted
as Ms, the segments are subdivided into blocks b (b ∈ {0, 1, . . . , Ms/bobs}) of an arbitrary block
size bobs and are processed in a block-wise approach. Within every step, Ng,s is updated for bobs
observations.

6.3.1 Distribution of the Observations Along the Compute Core Grid

Within a loop, the design matrix for bobs observations is set up for all U parameters. Thus, an empty
distributed matrix A of dimension bobs × U is set up in a first step. After that, depending on the
dimension of the compute core grid and the parameters of the block-cyclic distribution, on each core
the local matrix Al

r,c of dimension Rlr,c×C lr,c exists. Its dimension, depending on the coordinates of
the processor, can be obtained via (3.5). Whereas the parameters are distributed over the columns
of the compute core grid, the observations are distributed over the rows of the compute core grid.
Hence, all local matrices Al

r,∗ of a certain row r of the compute core grid contain entries for the same
observations, but for different subspaces of the parameters. All local matrices Al

∗,c along a column
c of the compute core grid contain as columns the same subspace of parameters, but for a different
subset of the observations. Thus, the observations i.e. the gravity gradients of component g plus
the rotation matrix and the satellites position are distributed over the rows of the compute core
grid. Every row of the compute core grid processes the same observations but only for a subspace
of the parameters. For the chosen decorrelation concept, i.e. the decorrelation by digital filters, it is
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important to guarantee a chronological ordering of the observations. As the sparse filtering matrices
(cf. Sect. 6.2.2.2) contradict the concept of the block-cyclic distribution, an alternative filtering is
implemented (cf. Sect. 6.3.3). This local filtering which requires the local part of the observation
vector `̀̀lr,c (and the rows of the local part of the design matrices Al

r,c) to be sorted chronological
and containing equidistant consecutive observations. As the order of the rows of the global matrix
A does not matter for the final computation of ATA, an ordering of the observations in the global
matrix views of A and `̀̀ tailored for the filtering is chosen. The observations are distributed such
that not the global view on the matrix A produces chronological ordered equidistant observations
but the virtually composed matrices

Â =




Al
0,0 Al

0,1 Al
0,2 · · · Al

0,C−1
Al

1,0 Al
1,1 Al

1,2 · · · Al
1,C−1

Al
2,0 Al

2,1 Al
2,2 · · · Al

2,C−1
...

...
...

...
...

Al
R−1,0 Al

R−1,1 Al
R−1,2 · · · Al

R−1,C−1




and ˆ̀̀̀ =




`̀̀l0,0
`̀̀l1,0
`̀̀l2,0
...

`̀̀lR−1,0



. (6.18)

Thus, the filter operations can be performed row by row of the compute core grid sequentially, but
with limited communication, as a) the observations in each individual local matrix are equidistant
and sorted chronological and b) all local matrices are chronological ordered along of a column of the
compute core grid and are equidistant. To achieve this distribution for the observation vector and
the meta information (satellite position and orientation in space), bobs observations are distributed
along a column of the compute core grid. Assuming the number of rows of the local matrix to be
Rlr,c (computed with (3.5)), the first Rl0,∗ of the bobs are send by the master process to the processors
of the first processor grid’s row, the next Rl1,∗ observations are send to the processes of the second
processor grid’s row and so on. The last processor row gets the last RlR−1,∗ observations of the total
bobs observations. The data are distributed via a sequence of MPI send operations. Afterwards,
each process has the observations to be processed and the local observations on each processes are
sorted chronological and are equidistant in time. Fig. 6.4 illustrates the distribution with as simple
example. A chronological sorted vector t of dimension 9×1 is distributed over a 3×1 compute core
grid with br = 2. The chosen distribution is compared to the standard distribution, i.e. distributing
the chronological sorted OEQs following the block-cyclic distribution.

6.3.2 Assembly of the Design Matrices

Within the next step, the design matrix has to be set up in the GRF according to the procedure
summarized in Sect. 6.2.2.1. The resulting matrix should be directly the distributed matrix A,
each processor has to fill its local part Al

r,c for its part of the observations and its sub-space of
the parameters. The following steps are performed sequentially for every observation the process is
responsible for. All processes of the compute core grid perform the setup in parallel. Processes of the
same column of the compute core grid perform the steps for different observations (in a global view,
local rows of A, i.e. rows of Al

r,c) but for the same parameter subset. The processes of a same row of
the compute core grid perform the steps for different subset of the overall parameters (in the global
view, local columns of A, i.e. column of Al

r,c) but for the same observations. The only computations
which might be redundant on some cores is the recursive computation of Legendre functions which
are computed recursive for every spherical harmonic order. The amount of redundant computations
depends on the target numbering scheme of A.

Within the first step, a serial 6 × C lr,c matrix is set up containing the design matrix of the gravity
gradient for all six tensor components in the LNOF for the C lr,c local parameters, i.e. the parameters
corresponding to the locally stored columns of the local part of the design matrix Al

r,c. This local
matrix is then rotated into the GRF applying tensor rotations (cf. Sect. 6.2.2.1). The rows of this
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Figure 6.4: Distribution of the GOCE SGG observation equations as a chronological sorted block-
cyclic distributed matrix and the tailored distribution for the filtering.

6× C lr,c matrix correspond to the tensor components g ∈ G. The row associated with the gradient
component A should be computed for, is copied to the ith row of Al

r,c, such that the distributed
matrix is filled observation per observation. In addition, the processes of the first compute core grids
column c = 0 copy the observations to their local matrix of the observation vector `̀̀lr,c. Al

r,c and `̀̀lr,c
are now available in a distributed form, having a row-wise ordering which is suited for the next step
which is the filtering. It is important to realize that the observations are not sorted chronological
in the view on the global matrix A.

6.3.3 Applying the Decorrelation by Recursive and Non-Recursive Digital Fil-
ters

The implementation of the decorrelation is the most technical step within the procedure. From the
implementational point of view a compromise between a general and flexible implementation and
an efficient approach has to be found. The challenges are the correlations between all observations
of a segment s and the recursive part of the used decorrelation filter model. The used sequence
of non-recursive and recursive filters is able to model correlations along thousands to hundreds of
thousand of observations. As, due to memory limitations, As,g can never be set up at once, even
distributed over the compute core grid, only parts of the OEQs with a size bobs can be set up at
the same time. Thus, the filtering needs to be implemented as a block-wise filtering, accounting for
correlations in the past from previous blocks. In addition, the rows of the design matrix with only
bobs rows are already distributed in blocks over the compute core grids rows (and columns), as for the
OEQs the concept of block-cyclic distributed matrices is used. Thus, an additional block filtering
is required. In summary, there is a twice nested block filtering. This is furthermore complicated by
the fact that recursive filters are used. As an input, they require the already filtered foregoing parts
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of the time series. Last but not least, the filters used are cascaded filters, and thus this steps have
to be repeated K times for every cascade k of the filter.

6.3.3.1 Implementation of the Non-Recursive Filter

As the filtering of different columns of a matrix can be independently performed, the given procedure
is the same for all columns of the compute core grid. The filtering is performed totally in parallel
by different columns of the compute core grid. Hence the focus is only on a single column of the
compute core grid, e.g. for the column c = 0. First of all, it is assumed that the filter only consists
of a single cascade. For the descriptive development of the algorithm a compute core grid with only
R = 3 rows is assumed. The first step of the filtering is the application of the non-recursive part,
i.e. mathematically written for the chosen distribution of the OEQs cf. (6.12c) the computations of




Āl
0,0

Āl
1,0

Āl
2,0


 = Fβk




Al
0,0

Al
1,0

Al
2,0


 =




Fβk0,0 0 0

Fβk1,0 Fβk1,1 0

0 Fβk2,1 Fβk2,2






Al
0,0
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1,0
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2,0


 (6.19a)

=




Fβk0,0A
l
0,0

Fβk1,0A
l
0,0 + Fβk1,1A

l
1,0

Fβk2,1A
l
1,0 + Fβk2,2A

l
2,0


 , (6.19b)

illustrating the band-matrix Fβk as block diagonal matrix plus an additional second diagonal block.
Note that the matrices Fβkr,c are no local matrices in terms of the block-cyclic distributed matrices,
but a serially stored matrix with subscripts just identifying the block in the overall matrix Fβk .
If the serial filter matrices Fβkr,c are locally stored on the cores as full general matrices, time-
invariant filter matrices with a Toeplitz structure as well as time-variant more general filters can be
handled. The filtering can then be performed via matrix-matrix operations (e.g. BLAS Level 3). In
the following, the implementation is discussed for time-invariant filters with constant coefficients,
cf. (6.14). This representation is possible, as due to the used filter order (typically 50 to 300, 5000
for special cases), it can be always achieved that Rlr,c > P k, e.g. via the choice of bobs.
More general, each process (r, c) can locally compute the filtered part of its local design matrix (part
of the observation vector) via

Āl
r,c = Fβkr,r−1A

l
r−1,c + Fβkr,rA

l
r,c (6.20)

if it shares the data Al
r−1,c or Fβkr,r−1A

l
r−1,c with the process (r − 1, c) (row above in compute core

grid). The filter matrices are set up serially for each process. For the special case r = 0 and for the
first block b = 0 of dimension bobs of a segment there is no data Al

r−1,c, i.e. data from the past.
For this case Al

r−1,c = 0 has to be assumed. For the case r = 0 and b > 0, Al
R−1,c from the last

block b− 1 is used as data from the past. This matrix has to be kept in memory. This operations,
i.e. two matrix-matrix multiplications can be performed with fast BLAS-L3 routines serially. But,
Fβkr,r and Fβkr,r−1 are high dimensional ( Rlr,c × Rlr,c and Rlr,c × Rlr−1,c, respectively) and thus the
serial computation is time-consuming. Using standard filters both matrices are sparse, as they are
banded matrices as P k < Rlr,c (for time-variant and time-invariant filters). Eq. (6.19a) is illustrated
by Fig. 6.5 to show the properties of the computations. The first obvious idea is to represent the
involved matrices as triangular matrices, thus instead of the BLAS-L3 matrix-matrix multiplication
(dgemm) the triangular matrix-matrix multiplication can be used (dtrmm). The second diagonal
matrices Fβkr,r−1 are even sparser, as only the upper triangular of dimension P k − 1 × P k − 1 is
non-zero. Thus process (r, c) does only need the last P k − 1 rows of Al

r−1,c or of Fβkr,r−1A
l
r−1,c.

(6.20) is rewritten as

Āl
r,c =

[
F	
βk

Al	
r−1,c

0

]
+ Fβkr,rA

l
r,c (6.21)
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Figure 6.5: Graphical depiction of the non-recursive filtering of the block-cyclic distributed matri-
ces. The shape of involved matrices is shown. A time-invariant filter with constant
coefficients is assumed (Toeplitz band matrix).

defining the sub-matrices as

Al	
r−1,c := Al	

r−1,c(end− P k + 1 : end, :) (6.22a)

F	
βk

:= Fβkr,r−1(0 : P k − 1, end− P k + 1 : end). (6.22b)

Each process sets up its local matrices Al
r,c, sends its sub-matrix Al	

r,c to process (r + 1, c), performs
the filtering Fβkr,rA

l
r,c and receives his Al	

r−1,c to update the filtered vector by the remaining part
F	
βk

Al	
r−1,c. The last client of the compute core grids column, i.e. (R− 1, c) sends his matrix Al	

r,c

again to the client (0, c) as it is needed for the next block loop b+1, where the next bobs observations
of the same segment are processed.

This first, not very efficient but quite simple and massive parallel implementation of the non-
recursive filtering of distributed design matrices is summarized in Alg. 6.4. The implementation has
the advantages, that it is very flexible and can for example handle time-variant filters where the
coefficients may vary in time.

The local computation of the product Fβkr,rA
l
r,c on each process can be accelerated using the special

properties of the time-invariant filter matrix. For the case of real data, the number of local rows
Rlr,c on every process is in the order of several thousand observations. Thus, compared to the order
P k of used filters (which is typically 2 to 500 for real data processing, depending on the cascade
k) the number of rows is large. The larger the imbalance between P k and Rlr,c, the sparser the
filter matrix. Fβkr,r contains many zeros on each core. The product, to be compute serially on each
process is visualized in Fig. 6.6. The filter matrix Fβkr,r can be partioned into P × P triangular
matrices, Fo

β the light grey ones and Fu
β dark grey ones. Also composing the matrix to be filtered

into blocks of P rows, e.g. Al,j
r,c cf. Fig. 6.6, the product of that matrices can be rewritten as

Āl,j
r,c = Al,j

r,cF
u
β + Al,j−1

r,c Fo
β. (6.23)

Two main advantages are: i) Now small “full” triangular matrices are involved in the computations
and ii) the filter matrices to be stored are only triangular of dimension P × P (storable in a single
P × P matrix) and are now constant for the whole loop over all blocks b. This alternative filtering
can be efficiently implemented in place via again using the BLAS-L3 routine for triangular matrix-
matrix products (dtrmm) which is capable to operate on sub-matrices as well. This is important
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Algorithm 6.4: Application of the non-recursive filter to a distributed matrix.

Data:
vector<double> βββ vector of P filter coefficients
DistributedMatrix A distributed matrix to be filtered
int b number of block of size bobs to be processed

// determine my process coordinates and compute core grid dimension1
size_t r, c, R, C2
blacs_gridinfo( A.context(), r, c, R, C )3
// determine size of my local part of A4

size_t Rl = A.Rl()5

size_t Cl = A.Cl()6

// send last P − 1 rows of Al to next processor row7
Matrix A	 = A.localMat(end− P + 1 : end, :)8
A	.Send((r + 1)%R, c)9
if r == 0 then10

// Initialize A	 with zeros if member of the first processor grids row, and b == 011
if b == 0 then12

A	 = 013
else14

// If b > 0, take memory from last round b− 1, i.e. A		15
A	 = A		16

end17
// Save the very last P − 1 rows for possible next block bobs observations b+ 118
Matrix A		.Recv(R− 1, c)19

else20
A	.Recv(r − 1, c)21

end22

// set up serial filter matrix of size Rl ×Rl according to (6.14)23
Matrix Fβ =setUpFilterMatrix(βββ)24
// apply filter in place using BLAS-L3 dtrmm25
A.localMat() = FβA.localMat()26
// update first P − 1 rows of with missing part from the past27
// set up filter matrix of size P − 1× P − 1 according to (6.22b)28

Matrix F	β =setUpFilterMatrix(βββ)29

A.localMat()(1 : P − 1, :)+ = F	β A	30

return A// as in place filtered matrix31

for the last block j, as there might be sub-matrices of Fo
β and Fu

β involved and for accessing the
sub-matrices Al,j . The implementation can only be performed in place, if the loop starts at the
bottom of the vector. The unfiltered values from the past are needed, which are then stored in
the beginning of the vector and are not overwritten with the filtered values. The extended, more
efficient but technical implementation of the filtering is summarized in Alg. 6.5.

6.3.3.2 Implementation of the Recursive Part of the Filter

Having applied the non-recursive part of the filter of cascade k, the recursive part of the cascade k
has to be applied. A recursion generally contradicts a massive parallel implementation – if the time
series is distributed and not locally stored in the memory of a single core. Within the recursion,
the filtering step needs the already filtered observations from the past (cf. (6.11)). Instead of a
real massive parallel implementation, a simple but flexible parallelization was chosen. As for the
non-recursive part, the recursive filtering is written as a simple example (R = 3 and shown only
for one column of the compute core grid). As for the non-recursive filtering, the recursive filtering
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Algorithm 6.5: Application of the non-recursive filter to a distributed matrix in extended form.

Data:
vector<double> βββ vector of P filter coefficients
DistributedMatrix A distributed matrix to be filtered
int b number of block of size bobs to be processed

// determine my process coordinates and compute core grid dimension1
size_t r, c, R, C2
blacs_gridinfo( A.context(), r, c, R, C )3
// determine size of my local part of A4

size_t Rl = A.Rl()5

size_t Cl = A.Cl()6

// send last P − 1 rows of Al to next processor row7
Matrix A	 = A.localMat(end− P + 1 : end, :)8
A	.Send((r + 1)%R, c)9
if r == 0 then10

// Initialize A	 with zeros if member of the first processor grids row, and b == 011
if b == 0 then12

A	 = 013
else14

// If b > 0, take memory from last round b− 1, i.e. A		15
A	 = A		16

end17
// Save the very last P − 1 rows for possible next block bobs observations b+ 118
Matrix A		 .Recv(R− 1, c)19

else20
A	.Recv(r − 1, c)21

end22
// set up triangular filter matrices of size P × P according to Fig. 6.623
Matrix Fuβ ,F

o
β =setUpFilterMatrix(βββ)24

// apply filter in place, starting from the back, triangular matrix matrix product (dtrmm)25
// rest block smaller then P26

int k = Rl%P27
A.localMat(end− k : end, :) = Fuβ(0 : k − 1, 1 : k − 1)A.localMat(end− k : end, :)28

A.localMat(end− k : end, :)+ = Foβ(0 : k − 1, :)A.localMat(end− k − P : end− P, :)29

// Loop over the full blocks exept the first P30

for b = rl − k − 1− P to P − 1 do31
A.localMat(b : b+ P − 1, :) = FuβA.localMat(b : b+ P − 1, :)32

A.localMat(b : b+ P − 1 : end, :)+ = Foβ(0 : k − 1, :)A.localMat(b− P − 1 : b, :)33
end34
// Processing of the first block (only Fuβ needed)35

A.localMat(0 : P − 1, :) = FuβA.localMat(0 : P − 1, :)36

// update first P − 1 rows with missing part from the past37
// set up filter matrix of size P − 1× P − 1 according to (6.22b)38

Matrix F	β =setUpFilterMatrix(βββ)39

A.localMat(1 : P − 1, :)+ = F	β A	40

return A// as in place filtered matrix41
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Figure 6.6: Graphical depiction of the serial part of non-recursive filtering on a single process. Spe-
cial focus is on the shape and the partioning of the involved matrices. Shown is the case
of a non-recursive time-invariant filter.

of different columns of the compute core grid remains independent. Thus, different columns of the
compute core grid perform the filtering in parallel. For the first block b = 0 with bobs observations
the filtering is done via the solution of the system of equations (cf. (6.12d)), again representing the
banded matrix Fαk as a blockdiagonal matrix including a second diagonal




Al
0,0

Al
1,0

Al
2,0


 = Fαk




Āl
0,0

Āl
1,0

Āl
2,0


 =




Fαk0,0 0 0

Fαk1,0 Fαk1,1 0

0 Fαk2,1 Fαk0,0






Āl
0,0

Āl
1,0

Āl
2,0


 (6.24a)

=




Fαk0,0Ā
l
0,0

Fαk1,0Ā
l
0,0 + Fαk1,1Ā

l
1,0

Fαk2,1Ā
l
1,0 + Fαk1,1Ā

l
2,0


 . (6.24b)

Al
r,c are the local matrices to be filtered and are Āl

r,c the filtered output matrices.

More general, on a single core, the operations

Al
r,c = Fαkr,c−1Ā

l
r−1,c + Fαkr,rĀ

l
r,c (6.25a)

Al
r,c − Fαkr,c−1Ā

l
r−1,c = Fαkr,rĀ

l
r,c (6.25b)

Āl
r,c =solve

(
Fαkr,r,A

l
r,c − Fαkr,c−1Ā

l
r−1,c

)
(6.25c)

Āl
r,c =F−1

αkr,r

(
Al

r,c − Fαkr,c−1Ā
l
r−1,c

)
(6.25d)

have to be performed. As visible in (6.25c), process (r, c) needs the already filtered output of
process (r − 1, c) to solve the local filtering. The filtering is implemented only partially in parallel,
to obtain a flexible implementation. Only the processes of different columns c of the compute core
grid perform the filtering in parallel.

After the local filter operation, the filtered results are send to the next row r + 1 of the compute core
grid, which themselves had to wait until (r− 1, c) finished the filtering. The matrix to be filtered is
reduced by the product Fαkr,c−1Ā

l
r−1,c and the system of equations has to be solved. The product

can be rewritten, as compared to the non-recursive part of the filter as again Fαkr,c−1 is sparse.
Only the upper triangle is filled with Q − 1 diagonals (comparable to Fig. 6.5, demonstrated in
Fig. 6.7).
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Figure 6.7: Graphical depiction of the serial part of recursive filtering on a single process and the
partioning of the involved matrices.

Instead of defining Fαkr,c−1, we can define the (on all processes) constant triangular matrix (for the
case of time-invariant filters)

F	α :=




αQ αQ−1 · · · α1

0 αQ · · · α2
... 0 αQ

...
0 0 0 αQ


 (6.26)

of dimension Q×Q. Thus, only the first Q rows of Al
r,c have to be reduced by

∆Āl
r−1,c : = F	α Āl

r−1,c(end−Q : end, :), (6.27a)

= F	αA	, (6.27b)

using the defined sub-matrix (already filtered values from the past)

A	 := Āl
r−1,c(end−Q : end, :). (6.28)

After the reduction, the system of equations is solved (cf. Fig. 6.7). This can be performed via the
solution of a triangular system (forward substitution, LAPACK routine dtrsvm) or via the solution
of a banded system which also exists in the LAPACK library for serial matrices (dgbsv). Alg. 6.6
summarizes the (partially) parallel distributed filtering for the recursive part of the filter. Again,
the implementation is flexible, and can be extended to filter coefficients changing in time very easily.

6.3.3.3 Application of Cascaded Filters

For general filters, consisting of multiple cascades, the non-recursive and recursive parts are applied
consecutive for every cascade. For all cascades k ∈ {0, . . . ,K − 1} first the non-recursive part, and
afterwards the recursive part is applied to the matrices to be filtered. The procedure is shortly
summarized in Alg. 6.7 and more precise later on in Alg. 6.8, summarizing the whole procedure of
GOCE gradiometry NEQ assembly.

Two final things on the filtering have to be mentioned. As can been seen from the algorithms above,
the filtering of the very first observations of every segment can only be performed approximative,
as there are no observations from the past. Instead, zeros are assumed for the matrices Al

r−1,c im
(6.20) and A	 (cf. (6.28)). As this results in unreasonable filtered values, the first observations of a
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Algorithm 6.6: Application of the recursive filter to a distributed matrix.

Data:
vector<double> ααα vector of Q filter coefficients
DistributedMatrix A distributed matrix to be filtered
int b number of block of size bobs to be processed

// determine my process coordinates and compute core grid dimension1
size_t r, c, R, C2
blacs_gridinfo( A.context(), r, c, R, C )3
// determine size of my local part of A4

size_t Rl = A.Rl()5

size_t Cl = A.Cl()6
if r == 0 then7

// Initialize A	 with zeros if member of the first processor grids row, and b == 08
if b == 0 then9

A	 = 010
else11

// If b > 0, take memory from last round b− 1, i.e. A		12
A	 = A		13

end14
// Save the very last Q− 1 rows for possible next block bobs observations b+ 115
Matrix A		.Recv(R− 1, c)16

else17
// Blocking Receive, wait until matrix completely received18
A	.Recv(r − 1, c)19

end20
// set up filter matrix of size Q×Q according to (6.26)21
F	α =setUpFilterMatrix(ααα)22
// reduce first Q− 1 rows with preceding filtered rows23
A.localMat(end−Q : end, :)− = F	αA	24

// set up filter matrix of size Rl ×Rl according to (6.13)25
Fα =setUpFilterMatrix(ααα)26
// solve system of equations in place, either as band-system or as triangular system (dtrsvm,dgbsv)27

Al =solve(Fα,A
l)28

// send last Q− 1 rows of Al to next processor row29
B = A.localMat(end−Q+ 1 : end, :)30
B.Send(r + 1%R, c)31
return A// as in place filtered matrix32

segment cannot be used within the adjustment. The number of observations which are not properly
decorrelated depends on the properties of the filter. This is called warmup phase (e.g. Schuh, 2003)
of the filter, the length of the warmup phase and thus the amount of observations affected, can be
numerically determined (e.g. Siemes, 2008, p. 74). These observations are removed always at the
start of a new segment after the filtering and not assembled into the final NEQs.

Processing a long time-series in blocks b of size bobs requires the so called filter memory, especially
when using cascaded filters. After each run b, where all cascades are applied to the observations of
that block, the unfiltered very last P − 1 observations for the non-recursive filter and the filtered
Q−1 already filtered observations have to be memorized. They serve within the next loop iteration
where the next bobs observations are processed as information from the past. Within Alg. 6.5 and
6.6, this is nothing else than the matrices A	 of the last compute core grids row, i.e. the processes
(R− 1, c). They are send again to the processors (0, c), to use them as A	 within the next loop pass
b+1. These matrices have to be stored for every cascade individually, to have the correct information
of the past observations at the correct filtering status of the observations before. Within Alg. 6.5
and 6.6 these matrices are stored as A		 on the processors (0, c).
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Algorithm 6.7: Application of an ARMA filter to a distributed matrix.

Data:
DistributedMatrix αααk vector of Qk filter coefficients for cascade k
vector<double> βββk vector of Pk filter coefficients for cascade k
vector<double> A distributed matrix to be filtered

// loop over all filter cascades k1
for k = 0 to K − 1 do2

// apply non-recursive part of cascade k according to Alg. 6.53

A = applyNonRecursivePart(A,βββk)4
// apply recursive part of cascade k according to Alg. 6.65

A = applyRecursivePart(A,αααk)6

end7
return A// as in place filtered matrix8

6.3.4 Computation and Update of the NEQs

The finial step in the loop is the update of the normal equations, i.e. the computation of

N = N + ATA, n = n + AT `̀̀ and λ = λ+ lT l (6.29)

for the observation block b of bobs observations. As A and `̀̀ are already decorrelated and in the
block-cyclic distributed matrix storage scheme, the computations are directly performed calling
PBLAS-L3 routines. Whereas N = N + ATA and λ = λ + lT l can be directly computed using
the symmetric rank update (pdsyrk), n = n + AT `̀̀ is computed with the general matrix-matrix
product (pdgemm). All computations can be performed in place. Having the matrices in the right
storage scheme, this step is trivial as directly routines from the library are called.

6.3.5 Composition of the Overall Assembly Algorithm

The implemented parts described above are connected and the whole algorithm is summarized in
Alg. 6.8. It is extended with an outlier flagging. Existing flags are used to set entries corresponding to
an outlier to zero. The outlier information is either provided as individual flags for every component
g or as a single flag, which flags all components, if an outlier is observed in one of the used gradient
components. The operation is performed after the decorrelation to keep the time series gapless for
the filter process.

6.4 Runtime Analysis and Performance Analysis

Within this section the implemented parts (cf. Sect. 6.3) are analyzed with respect to their scaling
behavior in a HPC environment. The test computations were performed on the JUROPA super-
computer at Forschungszentrum Jülich (Jülich, 2013). Thus, the timings and main conclusion are
related to this machine and the hard– and software (libraries optimized for that machine) used
there. The details on the used data set (real data) are summarized in Tab. 6.1. Only a small
scenario was chosen, i.e. just the processing of a single component g and a single segment s as
the implementation of the NEQ assembly is linear as well in the components as in the observations
(assuming comparable filter orders for all segments and components which is the case for the real
data). All runtime results shown were obtained via an empirical measurement of the wall clock
time.



6.4. Runtime Analysis and Performance Analysis 77

Algorithm 6.8: Algorithm of GOCE NEQ assembly.

Data:

vector<double> αααk vector of Qk filter coefficients for cascade k
vector<double> βββk vector of Pk filter coefficients for cascade k
vector<bool> f outlier flags
NumberingScheme ppp target numbering scheme

// determine my process coordinates and compute core grid dimension1
size_t r, c, R, C2
blacs_gridinfo( A.context(), r, c, R, C )3
size_t U = ppp.size()4
// Initialize distributed matrices for NEQs5
DistributedMatrix N (U,U) ; DistributedMatrix n (U, 1) ; DistributedMatrix λ (1, 1)6
// Initialize distributed matrices for OEQs7
DistributedMatrix A (bobs, U) ; DistributedMatrix l (bobs, 1)8
// Master reads all observations9
if (r == 0) && (c == 0) then10

Matrix L =readObservationsFromFile()11
end12
// loop over all observations in blocks of bobs13
for b = 0, b < M, b+ = bobs do14

// distribute observations b to b+ bobs (cf. Sect. 6.3.1)15
if (r == 0) && (c == 0) then16

L(b : b+ bobs − 1).distributeAlongGrid()17
else18

l.localMat().Recv(0, 0)19
end20
// fill local part of design matrix in GRF (cf. Sect. 6.3.2)21
A.localMat() =fillDesignMatrix(ppp)22
// Apply decorrelation (cf. Sect. 6.3.3, Alg. 6.7)23
// Loop over all cascades k24
for k = 0 to K − 1 do25

// apply non recursive part of cascade k accord. to Alg. 6.526

A.localMat() = applyNonRecursivePart(A.localMat() ,βββk)27

l.localMat() = applyNonRecursivePart(l.localMat() ,βββk)28
// apply recursive part of cascade k accord. to Alg. 6.629

A.localMat() = applyRecursivePart(A.localMat() ,αααk)30

l.localMat() = applyRecursivePart(l.localMat() ,αααk)31
end32
// Set rows corresponding to flagged outliers to 033
setZeros(A.localMat() , f)34
setZeros(l.localMat() , f)35
// Weighted update of NEQs (cf. Sect. 6.3.4)36

N = N + wc,tA
TA; n = n + wc,tA

T l; λ = λ+ wc,tl
T l37

end38
// Save NEQs on disk (cf. Sect. 3.3.4.1)39
saveOnDisk(N, n, λ)40
// optional: solve for paramters (cf. Sect. 6.2.4)41
x = solve(N,n)42
ΣΣΣxx = N−143
return44
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Table 6.1: Used SGG data set for performance analysis of the implementation. S is the number of
segments processed, K the number of cascades the filter consists of. P k and Qk are the
orders of the recursive and non-recursive part of the filter cascade.

SGG observations filters Parameters

# Vgg real data S K P 0 Q0 P 1 Q1 d/o #
6 132 019 XX-only 11/2009-01/2010 1(s = 0) 2 1 1 50 50 2− 250 62 997

6.4.1 Analysis of Scaling Behavior (Fixed Distribution Parameters)

Within this section, the scaling behavior of the individual steps is analyzed in detail. The distribu-
tion parameters of the block-cyclic matrix distribution were fixed (bs = br = 80), only the number
of cores used was varied. As it is known that the PBLAS and SCALAPACK routines work best for
(close to) square matrices and (close to) quadratic compute core grids (see in addition Sect. 6.4.2,
Blackford et al., 1997, p. 92), for this runtime analysis bobs was fixed to 63 000 (nearly square ma-
trix A) and the compute core grid was always chosen quadratic. As on JUROPA only multiples of
eight cores can be requested, the total numbers of cores N used are some non-obvious numbers as
e.g. N = 1 936 (44 × 44 compute core grid, 242 nodes each 8 cores). The given absolute runtime
measurements are the mean values for the processing of a single block of bobs = 63 000 observations.
Average values for the runtime were computed from the processing of 6 132 019/63 000 ≈ 97 blocks.
The implementation has a linear behavior with respect to the number of blocks processed, as exactly
the same steps are repeated in a loop over the blocks b.

Fig. 6.8 shows the results of the runtime analysis. Whereas Fig. 6.8(a) shows the mean absolute
runtime measurement for the processing of a single block of 63 000 observations depending on the
number of used cores (8× 8 = 64, . . . , 52× 52 = 2 704), Fig. 6.8(b) shows the relative contribution
of the three most intensive operations to the total runtime. This three operations are i) the setup of
the OEQs (cf. Sect. 6.3.2), ii) the decorrelation (filtering) of the OEQs (cf. Sect. 6.3.3) and iii) the
update of the NEQs, i.e. mainly the computation of ATA (cf. Sect. 6.3.4). Two obvious conclusions
can be drawn, the least intensive step is the setup of the observation equations, depending on the
compute core grid, 1.5 % to 2.5 % of the total runtime are needed. The most intensive operation is
the update of the normal equations, mainly the computation of ATA. Depending on the compute
core grid size 80 % to 90 % of the total runtime are needed. As this operation is (and should be)
directly performed with the existing SCALAPACK routine pdsyrk, an additional optimization of
this step is impossible. The step where optimization is possible is the application of the decorrelation
filters, especially the recursive part of the filters. Nevertheless, only 5 % to 15 % of the runtime are
spend there, and thus the gain of an optimization is limited. These optimization of course would
be an additional specialization to the filter currently used and a tailored optimization would cause
a loss of flexibility in trying alternative filters and decorrelation strategies.

Working with parallel implementations, the scaling behavior of the implementation is of major
interest. Within the context of HPC, scaling (or speedup) is the factor s the runtime decreases
increasing the number of cores by another factor a (e.g. Rauber and Rünger, 2013, Sect. 4.2).
Ideally, ignoring additional costs of the parallelization, this behavior is linear, doubling the number
of cores should halve the runtime. Due to additional costs as e.g. the required communication of
the cores, this ideal scaling could never be reached (e.g. Karniadakis and Kirby, 2003, p. 70f, Bauke
and Mertens, 2006, p. 10f). The scaling s1(N) as a function of totally used cores N can be computed
via

s1(N) =
t1
tN

(6.30)
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where t1 is the runtime the algorithm takes using a single core, whereas tN is the measured runtime
using N cores. In case an application cannot be executed on a single core (e.g. due to memory
limitations), a reference runtime is defined, e.g. the runtime on the minimal number of cores N1

required. The scaling is then normalized to that runtime such that

sN1(N) =
tN1

tN
. (6.31)

This scaling behavior for the GOCE NEQ assembly as well as for the individual tasks is shown in
Fig. 6.8(c). The scaling is normalized to the minimal number of cores needed, i.e. N = 64 for the
used data on which the NEQs could be assembled in reasonable time. A nearly linear behavior can
be observed going from N = 64 to N = 1 296 cores. Taking 20.25 times more cores yields a 18.5 times
faster runtime. The scaling behavior differs for the three most intensive partial operations. Whereas
it is still close to linear for 1 600 cores for the NEQ update (i.e. the N+ = ATA computation),
it starts to get non linear for the OEQ assembly using 784 cores. Due to the implementation of
the recursive filtering, the scaling of the filtering is not at all linear in the number of cores, as a
real parallel processing is done only for the columns of the compute core grid. Hence, the scaling
is better than

√
N = C (grey dashed line in Fig. 6.8(c) and 6.8(d)). Nevertheless, for the overall

operation, there is the possibility to use up to 1 600 cores with a benefit for the overall runtime.
Using even more cores, e.g. 2 704 there is a negative effect, the overall runtime slightly increases.
The additional effort to operate on 2 704 cores is larger than the gain of the computing power of the
additional cores. Whereas the runtime for the OEQ assembly and the filtering decreases, it slightly
increases of the NEQ update. Thus, the increase of the total runtime is related to the PBLAS
pdsyrk routine and the required communication therein. Another reason might be the performance
of the used BLAS-L3 routines, which perform the local serial computations. It is possible that the
locally stored sub-matrices become to small (≈ 1 200× 1 200) to make an efficient use of the serial
BLAS-L3 routines. These statements and the drawn conclusions result from an empirical test and
are only valid for this exact configuration. E.g. increasing the spherical harmonic resolution and
thus the number of unknowns is expected to result in a better scaling behavior for even higher
number of cores than tested here.

At some points in Fig. 6.8(c), the empirically derived scaling is better than the ideal scaling which
is theoretical impossible. This might have several reasons, e.g. the runtime measurement is never
error free. A general hardware dependence is possible. Within each setup, different nodes were
involved in the compute core grid (assigned by the cluster management software). The results
are normalized to the runtime required on 64 cores, inaccuracies in that runtime measurement are
propagated to the scaling. Last but not least, due to the matrix distribution, the size of the local
matrices is varies for each compute core grid setup. There are some cases where the local size of
the matrices is by chance tailored to the cache memory of the local cores. It is possible that the
gain due to a more efficient cache-use (especially by the BLAS-L3 routines) is seen in the scaling
curve. Nevertheless, the main conclusion that up to 1 600 cores can be used for this scenario is quite
obvious. Finally, Fig. 6.8(d) demonstrates that the poor scaling of the filtering totally depends on
the implementation of the recursive filter, which takes most of the runtime of filtering.

Solution of the NEQs The topic of solving and inverting the NEQs will be addressed for larger
systems in Chap. 7. For the sake of completeness and to proof that the solution and inversion of the
NEQs is not a problem within GOCE data processing (with respect to runtime) some measurements
of the runtime are provided. Nevertheless, the special HPC libraries have to be used to make
the system solvable at all. As all matrices are block-cyclic distributed, SCALAPACK functions
are directly usable for the solution and inversion. The solution of the NEQs (via Cholesky and
forward/backward substitution) is separated from the inversion of the normal equation matrix. The
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Figure 6.8: Graphical depiction of the measured performance of the implemented algorithm. Results
are shown for all operations (green) and the three most intensive operations: setup of
OEQs (orange), filtering of the OEQs (blue) and the update of the NEQs (red).

inverse (the covariance matrix of the parameters) is computed from the already Cholesky reduced
matrix. The time needed to solve the system of equations is just 290 s on 64 cores and 16 s on
1 600 cores. The inverse is computed in 560 s on 64 cores and 45 s on 1 600 cores. This should just
demonstrate, that within this context, deriving the solution and the covariance matrix is less of a
challenge (compared to the time for the assembly of the NEQs). Additional details are given in
Chap. 7, where larger NEQs are handled and solved.

6.4.2 Analysis of Compute Core Grid (Fixed Distribution Parameters and
Fixed Number of Cores)

This section is used to empirically demonstrate, that a quadratic arrangement of the compute core
grid is a proper choice for this application and a good compromise for the three major operations.
For that reason, the setup is fixed as in Sect. 6.4.1 (br = bc = 80, bobs = 63 000). The number of
cores N was fixed to N = 1024, the shape of the compute core grid was varied as shown in Fig. 6.9
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Figure 6.9: Graphical depiction of the measured performance of the implemented algorithm varying
the shape of the grid for the constant number of N = 1024 cores. Results are shown for
all operations (green) and the three most intensive operations (set up of OEQs (orange),
filtering of the OEQs (blue) and the update of the NEQs (red)).

from R× C ∈ {2× 512, 4× 128, . . . , 512× 2}. Fig. 6.9 shows the total runtime and the measured
runtime for the three main operations. The total minimum of the runtime can be observed for the
(near) quadratic grids (16×64, 32×32, 64×16. This corresponds to the minimum runtime which is
needed for the intensive update of the NEQs (SCALAPACK routine pdsyrk). The characteristics of
the implementation of the filtering can be seen for the “extrema”, i.e. grids close to one dimensional.
Whereas the filtering is extremely fast on a 2×512 grid, where only two processor rows are involved
(512 columns of the compute core grid filter massive parallel), it is extremely slow on a 512 × 2
grid, where 512 rows in the grid are involved (which have to wait for each other during the recursive
filtering). This behavior is expected, as only columns of the compute core grid perform the recursive
filtering in parallel and filtering along the rows is performed sequential. Minimizing the rows of the
compute core grid is very well suited for the current implementation of the filtering, but it contradicts
the performance of pdsyrk and the setup of the OEQs. The latter has the inverse behavior. It is
slow for the 2 × 512 compute core grid, whereas it is fast for the 512 × 2 compute core grid. This
behavior is again plausible, as for the 2 × 512 compute core grid a lot of redundant computations
have to be performed within the recursion formulas for the Legendre functions or a single observation
(distribution of columns of A). A large number of columns of the compute core grid C means that
the parameters (of a single observation) are extremely distributed, and thus on every core of the
grid’s row the Legendre functions (for the same point) have to be computed. For the best case, i.e.
the 512× 2 grid, the Legendre functions for a single point (observation) have to be computed only
on two cores, which minimizes redundant computations within the recursion formulas. In summary,
Fig. 6.9 shows that a (nearly) quadratic compute core grid is a reasonable general choice, minimizing
the total runtime and is thus a compromise for all three major operations involved.

6.4.3 Analysis of Distribution Parameters (fixed Compute Core Grid)

Parameters, which effect the performance of the SCALAPACK computing routines are the block-size
of the block-cyclic distribution br and bc (cf. Sect. 3.3). Their choice heavily depends on the used
hardware (e.g. processor cache sizes, network connection, ...) and on the SCALAPACK/PBLAS
routines used. The optimal choice for a specific application on a specific platform can only be found
empirically. Fig. 6.10 shows the runtime analysis fixing all other parameters instead of br and bc.
br and bc which are varied, but always choosing quadratic blocks br = bc. The number of compute
cores is fixed to N = 1024 using a 32× 32 compute core grid.
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Figure 6.10: Graphical depiction of the measured runtime using different block-sizes br = bc for the
block-cyclic matrix distribution. The number of cores is constant N = 1024. Results
are shown for all operations (green) and the three most intensive operations (set up of
OEQs (orange), filtering of the OEQs (blue) and the update of the NEQs (red)).

Fig. 6.10 shows the measured runtime for all three major tasks, depending on the block size br = bc.
The runtime is again dominated for the runtime of the NEQ update. Thus, the minimal total
runtime corresponds to the minimum runtime of the NEQ update. That is observed for block sizes
br = bc = 20 and br = bc = 32. Except for very large block-sizes the other operations (OEQ setup
and filtering) are more or less independent of the block size. For large values of br = bc the load
balancing suffers, such that individual cores have local matrices up to br additional rows (and bc
more columns) and thus, more observations (and columns) have to be processed locally. The bad
load balance can also be seen for the NEQ update for block-sizes larger than 100. All in all, the
choice of the block-size between 20 and 100 seems to be a reasonable choice, although the minimum
is obtained for 20-32. The range corresponds to the default value of 64 suggested by (Blackford
et al., 1997, p. 92). Thus, the chosen value of 80 in Sect. 6.4.1 and 6.4.2 was not ideal choice.

6.5 Results of GOCE Real Data Analysis

As one part of the thesis, the software developed was used to determine GOCE gravity field mod-
els from real data. Within the projects GOCE-HPF (ESA) and REAL-GOCE (Geotechnologien-
/BMBF) the developed software was used within the determination of the official ESA time-wise
gravity field models (EGM_TIM). This section is used to present some of the models, this work
significantly contributed to. This section abandons a little from the computational point of view
and turns to the results obtained with the presented implementation.

Meanwhile four releases of the time-wise models were officially published, differing in the used
data volume, but also some methodical aspects. About 63 000 parameters were estimated from
278 768 016 highly correlated observations for the most recent model, i.e. the EGM_TIM_RL04.
Within this context, details are only given for this most recent model. The intermediate results and
details always refer to that. The older releases are shown mainly to demonstrate the progress made
along the GOCE mission. A final release, covering the data from the complete mission is in the
meantime finalized (which is called EGM_TIM_RL05, contains more than 440 000 000 observations
and is resolved to d/o 280, 78 957 parameters, see Brockmann et al. (2014a) for details). Some
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Table 6.2: Used official GOCE products for gravity field recovery from real data.

product

SST SST_PKI SST_PCV
precise kinematic orbits covariance of positions (band)
observetd position stochastic model

SGG SST_PSO EGG_NOM_2 EGG_IAQ
precise science orbits calibrated gravity grdients star camera observations
georeference raw observations orientation of gradiometer

results towards that release are shown here in addition. The very preliminary model is named
EGM_TIM_RL05p0, and in some figures the close to final model EGM_TIM_RL05p4 is shown.

As the GOCE time-wise gravity field models purely depend on GOCE data and a lot of effort is
invested into the modeling of the stochastic behavior of the observations, the models

• are a good demonstrator for the progress along the mission and a demonstrator of the added
value of GOCE compared to other gravity field information available,
• are self-consistent,
• come along with a high quality and meaningful full covariance matrix.

6.5.1 Used Data for the Real Data Analysis

For the real data analysis official ESA GOCE Level 1B data was used. Tab. 6.2 summarizes the used
products. The data used in the different releases is shown in Fig. 6.11 as a time-line representing the
available and used data. The colors represent the coherent gapless segments s the SGG data was
divided to and for which individual decorrelation filters were estimated. For each of the segments s,
as well as for every used tensor component g ∈ G, individual normal equations Ns,g and ns,g were
assembled.

6.5.2 SST Data and Solutions

As mentioned in Sect. 6.2.1, the SST part enters the solution in terms of already preprocessed
NEQs. In Tab. 6.3 some facts about the SST solutions used in the final combined official releases
are displayed. In addition, Fig. 6.12 shows degree (error) variances cf. (5.4b) and (5.5b) with respect
to the more accurate ITG-Grace2010s model which is used as reference. The progress in the solutions
is visible, especially from the first to the fourth release. The progress from release 02 to release 03 is
only minor. A huge progress can be observed with the switch of the processing method from release
03 to 04 (cf. Sect. 6.2.1). There are huge improvements over the whole spectral range. In addition,
the stochastic model significantly improved when using the alternative short arc integral equation
method. Whereas the releases 01 to 03 had to be scaled with a weight of 0.20/0.16/0.11 (already
applied in Fig. 6.12), an inverse variance component close to 1.0 was estimated for the release
04 SST NEQs (cf. Sect.6.5.4). Note that using the fourth release SST NEQs, there are still large
differences between the empirical and formal degree error variances for the lower degrees (2 − 40).
This is expected to result from systematic errors in the kinematic orbits, which do not average out
when integrating over a large time span. This systematic errors cannot be modeled stochastically
and thus enter the solution. Current investigations of the experts in the generation of the kinematic
satellite orbits seem to identify errors which are related to the ionosphere. They enter the kinematic
orbits and thus the gravity field (SST) solution (Bock et al., 2014).
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EGM TIM RL2
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Figure 6.11: Data segments used in the official GOCE releases and in addition the data used in the
current preliminary version EGM_TIM_RL05p0 and the overall mission data which
will be included in release 5. The colors represent coherent gapless segments. Note
that some segments are so short that they are not visible in the figure.

Table 6.3: Some details on the SST solutions used within the real data processing. The NEQs were
provided by project parteners from ITSG, TU Graz.

release method timespan d/o Un

EGM_TIM_RL01 energy balance 11/2009–01/2010 2–100 10 097
EGM_TIM_RL02 energy balance 11/2009–07/2010 2–100 10 097
EGM_TIM_RL03 energy balance 11/2009–04/2011 2–100 10 097
EGM_TIM_RL04 short arc integral equation 11/2009–06/2012 2–130 17 157
EGM_TIM_RL05p0 short arc integral equation " " "
EGM_TIM_RL05 short arc integral equation 11/2009–10/2013 2–150 22 797

The full normal equations which are solved individually here, are used in Sect. 6.5.4 within a
combination with the SGG NEQs assembled within this work. Fig. 6.12 gives a first idea about
the accuracy of the SST solutions, which are at the 1− 2 mm level only for the spherical harmonic
degrees 2 − 20/30/50 (depending on the release). The contributions of the SST part to the final
solutions is studied in detail in Sect. 6.5.4.

6.5.3 SGG Observations and Solutions

This sections shows the results from the processing of the SGG observations, derived within this
work. The available gradiometer data with a sampling rate of 1 Hz was partioned into continuous,
gapless data segments which are assumed to be independent (cf. Fig. 6.11 and Tab. 6.4). This
assumption holds, as there will be a new filter warmup at the beginning of each new segment,
such that correlations are removed. The observations used for filter warmup (typically 1 000 to
5 000 at the beginning of a segment, depending on the adjusted filters) cannot be used within the
adjustment. New segments are artificially introduced if a significant change in the gradiometer
noise characteristics can be observed, or if there are artifacts like jumps in the observation/residual
time series. For the most recent model, the data segments used within the processing are shown in
Fig. 6.11. The nomenclature of the official ESA releases is used, as the results derived within this
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Figure 6.12: Degree (error) variances of the four used SST solutions with respect to the superior
ITG-Grace2010s model. Degree error variances estimated from coefficient differences
are shown in solid lines whereas the error variances computed from formal errors are
shown in dashed lines.

Table 6.4: Some details of the SGG observations used within the real data processing. M is the
number of observations.

release components G timespan d/o U S M

EGM_TIM_RL01 XX, Y Y, ZZ 11/2009–01/2010 2–224 50 172 1 3 · 6 161 834
EGM_TIM_RL02 XX, Y Y, ZZ 11/2009–07/2010 2–250 62 997 9 3 · 19 477 946
EGM_TIM_RL03 XX, XZ, Y Y, ZZ 11/2009–04/2011 2–250 62 997 16 4 · 31 289 605
EGM_TIM_RL04 XX, XZ, Y Y, ZZ 11/2009–06/2012 2–250 62 997 41 4 · 69 692 004
EGM_TIM_RL05p0 XX, XZ, Y Y, ZZ 11/2009–05/2013 2–250 62 997 51 4 · 86 336 504
EGM_TIM_RL05∗ XX, XZ, Y Y, ZZ 11/2009–10/2013 2–280 78 957 87 4 · 109 799 264
∗The numbers provided for release 5 are preliminary, as the processing is ongoing during the preparation of this thesis.

work directly entered the official solutions. In addition, the data segments as derived for the older
models are shown. The gaps visible are outages from the satellite or indicate missing data due to
satellite problems or maneuvers. All in all, the data was divided into 41 segments of different length
as summarized in Tab. 6.4.

6.5.3.1 Estimating Decorrelation Filters and Outliers for the SGG Observations

The results given within this Section are only related to the fourth release. Nevertheless the proce-
dure is the same for the older releases and the final release 5. As mentioned in Sect. 6.1 the SGG
data are highly correlated. The first step for the data-adaptive estimation of decorrelation filters
is to derive an estimate for the gradiometer noise, individually for each data segment s and each
tensor component g. This is done within an iterative full gravity field adjustment:

1. Estimate an initial gravity field from the SGG observations, using either (i) a-priori decorre-
lation filters (e.g. from pre-mission simulations, estimated for an older release) or (ii) decor-
relation filters estimated from residuals with respect to an existing gravity field model (e.g.
from GRACE or older GOCE models)
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2. Compute SGG residuals vg,s = Ag,sx̃− `̀̀g,s as realization of the gradiometer noise and adjust
ARMA filters for every segment and component (c.f. Schuh et al., 2006, Krasbutter et al.,
2011a, Siemes, 2008, Chap. 5).

3. Introduce new segments s if a change in the noise characteristics or huge jumps in the data
can be observed. The segment concerned is split into two, and thus an additional segment is
inserted.

4. Use the filtered residuals to identify large outliers (account for filtering effects like e.g. smear-
ing).

5. Repeat the full scale gravity recovery starting at 1). If the filters and the outlier detection
converge, stop the iterative procedure.

The result of this so called tuning steps are estimates for the decorrelation filter models and flag
information on outliers found in the data. As, depending on the data quality and the initial filter
estimates, the procedure has to be repeated up to thirty times (including iterative outlier identifica-
tion in decorrelated residuals), this iterative procedure is performed with the existing fast iterative
conjugate gradient based PCGMA solver (Preconditioned Conjugate Gradient Multiple Adjustment,
tailored for the GOCE case, cf. Schuh, 1996, Boxhammer, 2006, Brockmann et al., 2010). PCGMA
is only used for the so called tuning-process (e.g. Brockmann et al., 2010) to derive outliers and
decorrelation filters and afterwards the newly developed massive-parallel solver is used to assemble
the full NEQs, estimate the weights and solve for the spherical harmonic coefficients.

To get an idea of the gradiometer noise characteristics, Fig. 6.13(a) illustrates a short part of
the time-series including the expected VZZ signal computed from a model (blue line), the VZZ
measurements itself and a first guess for the noise, i.e. the difference measured minus computed
VZZ gravity gradients. The measurements, as well as the synthesized gravity gradients are reduced
by the normal potential from the GRS80, all quantities – the noise estimate as well – are in addition
reduced by a mean value. The basic conclusions of the figures are: i) the signal and the noise are
in the same order of magnitude, but ii) the noise has a very long-wavelength characteristic whereas
the signal to be recovered is of high frequency. This is in addition demonstrated by Fig. 6.13(b),
where the noise estimates are plotted for ascending orbits exemplarily for the VZZ component in
the spatial domain.

Another possibility to show the gradiometer noise characteristics is the illustration in the spectral
domain. The square root of the power spectral density (PSD) can be compared to the PSD of the
inverse filter, which makes both comparable. Fig. 6.14 shows two examples of the PSD of a filter
(exemplarily for the VZZ component for segment s = 0), approximating the gradiometer noise in
two different ways. The first filter is quite simple, it approximates the main characteristics, the flat
behavior within the MBW and the increasing power for the long-wavelengths. The second filter is
more complex with additional numerical requirements, which in addition approximates the peaks
of the noise occurring at multiples of the orbital frequencies. Although the second filter is a better
approximation, these filters are not used in the processing, as there are numerical instabilities and
a large data loss due to the large warmup of the involved Notch filters, which model the peaks (e.g.
Schuh et al., 2010).

Fig. 6.15 summarizes all finally estimated filters for the 41 segments the available SGG data of the
04th release were divided into. Shown are the converged filters which were used in this work for
the final NEQ assembly. The colors represent the different segments. For XX (cf. Fig 6.15(a)
and 6.15(b)) and XZ (cf. Fig 6.15(c) and 6.15(d)) the gradiometer noise seems to be very stable
over the whole time-span used. All estimated filters are similar. Nevertheless, there are some
variations outside the MBW, in the low frequency part of the spectrum. Nearly the same holds
true for the ZZ component with two exceptions (cf. Fig 6.15(g) and 6.15(h)), one is the very first
segment (s = 0) which has a worse performance. This segment contains the very first data before
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Figure 6.13: Illustration of the gradiometer noise estimates, in the time domain as well as in the
spatial domain.
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Figure 6.14: PSD of estimated gradiometer noise for segment s = 0 and tensor component c = ZZ.
In addition, decorrelation filters are shown in terms of their inverse PSD. A simple
filter used in the standard processing approximating the major characteristics in the
spectrum (no. 9024) and a more complex one, approximating the characteristic peaks
at the multiples of the once per revolution frequency (no. 9025).

an anomaly of the satellite. After the anomaly, the performance of the gradiometer, especially
the performance of the ZZ component improved. The anomaly required a switch from the main
on-board computer to the redundant part, but it is not understood if that was the reason for the
performance improvement. The second segment for which the filter significantly differs, is a segment
close to the end of the time-series. It is a short segment where the estimation of the decorrelation
filter is not very stable. In addition, with the end of the used time series, the noise became more
and more non-stationary (stationarity is indirectly assumed using this kind of decorrelation filters)
due to increased solar activity and thus a rougher environment around the satellite. That is the
reason why the performance of the Y Y component seemingly worsens over time (cf. Fig 6.15(e) and
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6.15(f)). Analyzing the data in detail, it is again a geographically correlated increase of the noise
around the magnetic poles which leaks into the MBW when computing the spectrum. Outside this
geographical regions, the noise characteristics of the gradiometer is quite stable (e.g. Siemes et al.,
2013). This is confirmed by Fig. 6.16 which shows (some) of the identified outliers (from the filtered
residuals) which obviously correlate with the magnetic poles.

6.5.3.2 Component- and Segment-wise Solutions

In the software developed, the decorrelation filters estimated (cf. Sect. 6.5.3.1) and the outliers
identified were used to assemble the SGG normal equations for all S = 41 segments for all four
accurately measured tensor components XX, XZ, Y Y and ZZ. Thus, 4 · 41 NEQs were assembled
for spherical harmonic d/o 2 to d/o 250. That results in 164 NEQs, each of them requiring about
30GB disk space. Before they are combined, the individual NEQs were solved (if possible, i.e. if
positive definite, i.e. if the data segment is long enough) to derive sub-solutions which can be used
to demonstrate the consistency of the solution. Fig. 6.17 shows the segment wise and component
wise solutions for all 4 · 21 NEQs individually solvable in terms of degree error variances with respect
to the finally combined and thus superior EGM_TIM_RL04 solution and the corresponding degree
error estimates from the formal error estimates. For most of the solvable segments, a nice agreement
between the degree error variances and the empirical degree error variances can be observed.

To demonstrate the consistency in more detail, Fig. 6.18 focuses on two segments, which show
the individual solutions in terms of degree error variances with respect to the finally combined
EGM_TIM_RL04 model, which should be superior due to a much larger amount of input data.
The empirically estimated degree error variances and the degree variances computed from formal
errors again agree very well, which shows that the error information is meaningful and reflects the
error of the derived model. Whereas a sub-solution from a long segment is chosen in Fig. 6.18(a),
a solution from a short segment (approximately 14 days) is shown in Fig. 6.18(b). Of course the
second solution is of poor quality, but this is correctly reflected by the formal error estimates. Thus,
within the final combination, the NEQs of the segments enter the combination with a proper weight
matrix and produce a correctly weighted combined solution.

6.5.4 Combined Solutions

The normal equations of the individual segments and tensor components have to be combined to
derive an optimal solution from all observations collected. A joint weighted system of NEQs is
computed cf. (6.1) adding the SST NEQ matrix and the diagonal Kaula regularization matrices.
Variance component estimation cf. Sect. 4.2 is used to iteratively estimate weights for the individual
NEQs of the segments and of the tensor components. Tab. 6.5 shows the estimated weights for all
involved 164 SGG NEQs, the two regularization matrices and the SST NEQ. As the estimated
filters account for a variance of unit weight, most of the estimated weights are close to 1.0. That
means, the filter estimates are reasonable and the observations of the segments and components
are consistent among each other. Some exceptions can be observed. For some segments and some
components the weight is estimated close to 0.0, these values are highlighted in red. These segments
are all very short, e.g. some hours only, with a lot of identified outliers, which correspond to satellite
maneuvers. These segments contain outliers and the observations are not supported by the other
segments. They are identified via the VCE as unusable and the weight obtained is close to zero,
corresponding to a huge variance. There are some remaining segments/components, with estimated
weights significantly different from 0.0 and from 1.0. They are highlighted in green in Tab. 6.5. Most
of these segments are again very short. Mostly they are too short to derive a stable estimate for an
individual decorrelation filter. For those segments, a standard filter is used, which is not perfectly
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(a) Used filters for the XX component (logarithmic
scale).
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(b) Used filters for the XX component, linear plot with
focus on the MBW.
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(c) Used filters for the XZ component (logarithmic
scale).
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(d) Used filters for the XZ component, linear plot with
focus on the MBW.
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(e) Used filters for the Y Y component (logarithmic
scale).
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(f) Used filters for the Y Y component, linear plot with
focus on the MBW.
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(g) Used filters for the ZZ component (logarithmic
scale).
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(h) Used filters for the ZZ component, linear plot with
focus on the MBW.

Figure 6.15: Illustration of the used filters in the spectral domain.
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(a) Ascending tracks. (b) Descending tracks.

Figure 6.16: Some identified outliers in the data, Many of them show an obvious correlation to the
magnetic poles.

suited for the real observations in the segment. The estimated weights adjust this standard filters
to a better fit. Within the spectrum, the weighting is nothing else than a shift of the filter. The
spectral shape cannot be changed by VCE. Some differences from 1.0 result from the fact that a
decorrelation filter is always adjusted only to parts of the data from the segment, e.g., if the segments
contain outliers, if there is a slightly other behavior of the noise as in the rest of the segments, VCE
derives a weight to adjust these differences.

Starting with the weight 1.0 for all involved NEQs, three iterations of VCE are performed to derive
weights converging on the third digit (cf. 6.5). For that procedure, a combined NEQ is set up using
the weights from the former iteration and solve for the parameters and an new estimate of weights
cf. (4.7), (4.8a) and (4.9).

The weights after the third iteration shown in Tab. 6.5 are used to combine a single gradiometer
NEQ, and to finally combine the SGG NEQs with the SST and regularization matrices (using the
weights estimated) to derive the final solution. This NEQs are recalled from disk, combined in a
weighted addition and solved for the unknown coefficients. For details on the implementation see
Chap. 7, where the same procedure is used but for higher resolution models (e.g. how the matrices
in different parameter ordering and differing resolution can be combined). Fig. 6.19 shows the SST,
the SGG as well as the combined solution in terms of degree variances compared to the (in the shown
lower degrees) superior ITG-Grace2010s model. It gives a first idea how and where the different
observation groups contribute to the final solution. The main contribution of the SST part is from
degree 2 to degree 10 and the main contribution of the SGG part is from degree 40 to degree 220.
The high degree regularization significantly starts to act at degree 220.

This contribution of the individual normal equations can be shown in an approximation via partial
redundancies. They can be computed for an observation group i via (5.9). Plotting this contributions
in a coefficient triangle clearly shows, where the different observation groups have their strengths
and weaknesses. This can be seen for the observation groups used within EGM_TIM_RL04 in
Fig. 6.20. The use of HPC makes such analyses and computations very simple. The sensitivities of
the different observation groups on the level of spherical harmonics is clearly visible. In addition,
the minor contribution of VXZ is shown, a component, which observes the lowest signal. Compared
to the analysis in terms of degree variances, a more detailed picture of the contributions is visible.
E.g., it can be shown, that the SST observations contribute up to degree 100 for specific sectorial
coefficients. In addition, the coefficients which are mainly determined by the regularization can be
easily identified in Fig. 6.20(e) and 6.20(f).
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(a) Degree error variances from coefficient differences for
the XX-component solutions of solvable segments.
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(b) Degree error variances from formal errors for the XX-
component solutions of solvable segments.
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(c) Degree error variances from coefficient differences for
the XZ-component solutions of solvable segments.

10−3

10−2

10−1

100

101

102

103

0 50 100 150 200 250sq
ua

re
ro

ot
of

de
gr

ee
(e

rr
or

)
va

ri
an

ce
σ
l
(m

)

spherical harmonic degree l

0

5

10

15

20

25

30

35

40

(d) Degree error variances from formal errors for the XZ-
component solutions of solvable segments.
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(e) Degree error variances from coefficient differences for
the YY-component solutions of solvable segments.
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(f) Degree error variances from formal errors for the YY-
component solutions of solvable segments.
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(g) Degree error variances from coefficient differences for
the ZZ-component solutions of solvable segments.
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(h) Degree error variances from formal errors for the ZZ-
component solutions of solvable segments.

Figure 6.17: Segment-wise and component-wise SGG-only solutions with respect to
EGM_TIM_RL04 in terms of degree variances.
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Table 6.5: Estimated weights for the EGM_TIM_RL04 NEQs after 3 VCE iterations.

(a) Weights for VXX NEQs.

s w(0) w(1) w(2) w(3)

0 1.000 0.980 0.973 0.973
1 1.000 1.041 1.024 1.024
2 1.000 0.912 0.905 0.905
3 1.000 1.018 0.992 0.992
4 1.000 0.946 0.937 0.937
5 1.000 0.980 0.965 0.965
6 1.000 0.000 0.000 0.000
7 1.000 0.000 0.000 0.000
8 1.000 0.000 0.000 0.000
9 1.000 0.000 0.000 0.000

10 1.000 0.000 0.000 0.000
11 1.000 0.000 0.000 0.000
12 1.000 0.000 0.000 0.000
13 1.000 0.580 0.577 0.577
14 1.000 1.003 0.986 0.986
15 1.000 1.026 1.018 1.018
16 1.000 1.019 1.014 1.014
17 1.000 0.853 0.848 0.848
18 1.000 1.018 1.004 1.004
19 1.000 1.015 1.004 1.004
20 1.000 0.446 0.445 0.445
21 1.000 0.449 0.448 0.448
22 1.000 0.427 0.426 0.426
23 1.000 1.000 0.996 0.996
24 1.000 1.104 1.098 1.098
25 1.000 1.001 0.996 0.996
26 1.000 0.984 0.979 0.979
27 1.000 1.008 1.002 1.002
28 1.000 1.001 0.991 0.991
29 1.000 0.616 0.613 0.613
30 1.000 1.002 0.999 0.999
31 1.000 1.020 1.016 1.016
32 1.000 1.023 1.016 1.016
33 1.000 1.088 1.084 1.084
34 1.000 1.119 1.110 1.110
35 1.000 1.000 0.998 0.998
36 1.000 1.070 1.067 1.067
37 1.000 1.022 1.018 1.018
38 1.000 1.050 1.045 1.045
39 1.000 0.014 0.014 0.014
40 1.000 1.109 1.100 1.100

(b) Weights for VY Y NEQs.

s w(0) w(1) w(2) w(3)

0 1.000 1.000 0.998 0.998
1 1.000 1.020 1.013 1.013
2 1.000 1.060 1.058 1.058
3 1.000 1.004 1.001 1.001
4 1.000 0.975 0.974 0.974
5 1.000 1.009 1.008 1.008
6 1.000 0.001 0.001 0.001
7 1.000 0.001 0.001 0.001
8 1.000 0.001 0.001 0.001
9 1.000 0.001 0.001 0.001

10 1.000 0.003 0.003 0.003
11 1.000 0.001 0.001 0.001
12 1.000 0.001 0.001 0.001
13 1.000 0.558 0.557 0.557
14 1.000 1.001 0.991 0.991
15 1.000 1.022 1.017 1.017
16 1.000 0.977 0.976 0.976
17 1.000 0.862 0.860 0.860
18 1.000 0.929 0.928 0.928
19 1.000 1.004 0.998 0.998
20 1.000 0.221 0.221 0.221
21 1.000 0.145 0.145 0.145
22 1.000 0.273 0.273 0.273
23 1.000 0.949 0.947 0.947
24 1.000 1.018 1.017 1.017
25 1.000 1.006 1.005 1.005
26 1.000 0.992 0.990 0.990
27 1.000 1.015 1.014 1.014
28 1.000 1.073 1.071 1.071
29 1.000 0.371 0.370 0.370
30 1.000 1.045 1.042 1.042
31 1.000 1.103 1.100 1.100
32 1.000 0.997 0.996 0.996
33 1.000 1.049 1.044 1.044
34 1.000 1.002 1.000 1.000
35 1.000 0.878 0.877 0.877
36 1.000 1.002 1.001 1.001
37 1.000 0.985 0.984 0.984
38 1.000 0.971 0.968 0.968
39 1.000 0.216 0.216 0.216
40 1.000 0.964 0.962 0.962

(c) Weights for VZZ NEQs.

s w(0) w(1) w(2) w(3)

0 1.000 0.967 0.958 0.958
1 1.000 1.048 1.030 1.030
2 1.000 1.128 1.116 1.116
3 1.000 1.046 1.034 1.034
4 1.000 1.044 1.035 1.035
5 1.000 1.040 1.032 1.032
6 1.000 0.000 0.000 0.000
7 1.000 0.000 0.000 0.000
8 1.000 0.000 0.000 0.000
9 1.000 0.000 0.000 0.000

10 1.000 0.000 0.000 0.000
11 1.000 0.000 0.000 0.000
12 1.000 0.000 0.000 0.000
13 1.000 0.880 0.872 0.872
14 1.000 1.033 1.024 1.024
15 1.000 1.047 1.039 1.039
16 1.000 1.031 1.024 1.024
17 1.000 1.129 1.117 1.117
18 1.000 1.057 1.039 1.039
19 1.000 1.013 1.001 1.001
20 1.000 0.713 0.708 0.708
21 1.000 0.917 0.915 0.915
22 1.000 0.731 0.725 0.725
23 1.000 1.081 1.074 1.074
24 1.000 1.041 1.037 1.037
25 1.000 1.001 0.997 0.997
26 1.000 1.053 1.044 1.044
27 1.000 1.080 1.072 1.072
28 1.000 1.033 1.025 1.025
29 1.000 0.737 0.731 0.731
30 1.000 1.060 1.053 1.053
31 1.000 1.061 1.055 1.055
32 1.000 1.046 1.037 1.037
33 1.000 1.090 1.081 1.081
34 1.000 1.120 1.109 1.109
35 1.000 1.030 1.026 1.026
36 1.000 1.049 1.045 1.045
37 1.000 1.060 1.055 1.055
38 1.000 1.056 1.046 1.046
39 1.000 1.227 1.213 1.213
40 1.000 1.197 1.184 1.184

(d) Weights for VXZ NEQs.

s w(0) w(1) w(2) w(3)

0 1.000 0.997 0.994 0.994
1 1.000 1.054 1.044 1.044
2 1.000 0.895 0.892 0.892
3 1.000 1.016 1.002 1.001
4 1.000 1.024 1.016 1.016
5 1.000 1.031 1.026 1.026
6 1.000 0.003 0.003 0.003
7 1.000 0.003 0.003 0.003
8 1.000 0.002 0.002 0.002
9 1.000 0.002 0.002 0.002

10 1.000 0.004 0.004 0.004
11 1.000 0.000 0.000 0.000
12 1.000 0.003 0.003 0.003
13 1.000 1.396 1.390 1.390
14 1.000 0.948 0.940 0.940
15 1.000 0.974 0.968 0.968
16 1.000 0.998 0.994 0.994
17 1.000 0.847 0.844 0.844
18 1.000 1.102 1.093 1.093
19 1.000 1.021 1.002 1.002
20 1.000 1.647 1.638 1.638
21 1.000 1.829 1.817 1.818
22 1.000 1.871 1.859 1.859
23 1.000 1.027 1.020 1.020
24 1.000 1.099 1.096 1.096
25 1.000 1.012 1.007 1.007
26 1.000 0.932 0.923 0.923
27 1.000 0.992 0.987 0.987
28 1.000 1.036 1.030 1.030
29 1.000 1.793 1.782 1.782
30 1.000 0.891 0.880 0.880
31 1.000 1.064 1.054 1.054
32 1.000 1.111 1.103 1.103
33 1.000 1.175 1.156 1.156
34 1.000 1.067 1.063 1.063
35 1.000 0.961 0.956 0.956
36 1.000 1.097 1.092 1.092
37 1.000 1.052 1.049 1.049
38 1.000 0.995 0.990 0.990
39 1.000 0.275 0.275 0.275
40 1.000 1.281 1.275 1.275

(e) Weights for SST/REG NEQs.

s w(0) w(1) w(2) w(3)

SST 1.000 0.923 0.997 0.997
REG_1 1.000 0.680 0.691 0.693
REG_2 1.000 0.716 0.716 0.716
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(a) Degree error variances for segment s = 0 (long).
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(b) Degree error variances for segment s = 32 (short).

Figure 6.18: Illustration of degree variances of two selected segments with respect to
EGM_TIM_RL04. The agreement of empirical and formal error estimates should
be shown.
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(a) Solution with respect to ITG-Grace2010s.

10−4

10−3

10−2

10−1

10+0

10+1

0 50 100 150 200 250sq
ua

re
ro

ot
of

de
gr

ee
(e

rr
or

)
va

ri
an

ce
σ
l
(m

)

spherical harmonic degree l

EGM2008
EGM_TIM_RL04_SST
EGM_TIM_RL04_SGG

EGM_TIM_RL04

(b) Solution with respect to EGM2008.

Figure 6.19: Degree error variances of the SST, SGG and combined GOCE EGM_TIM_RL04 solu-
tion for the lower degrees with respect to the ITG-Grace2010s model, which is assumed
to be superior up to degree 70 and with respect to the combined model EGM2008 which
is assumed to be superior in the higher degrees above d/o 210. Between degree 70 and
210 GOCE models are the most accurate global gravity field models and can thus not
be validated with simple model comparison techniques.

6.5.5 Model Comparison and Validation

The method and implementation summarized in this chapter was used to estimate the GOCE-only
models of the so called time-wise approach. As stated earlier, four official models were computed and
released. In addition, a fifth (EGM_TIM_RL05p0) and a sixth model (and EGM_TIM_RL05p4)
was computed within the preparation of the fifth release, including NEQs of three nearly completed
cycles of a lower mean satellite orbit and the additional data towards mission end. The observations
of these cycles have a better signal to noise ratio for the higher frequencies and thus improve the
estimated models mainly in the higher spherical harmonic degrees. All six time-wise solutions
computed so far are shown in terms of degree variances in Fig. 6.21 with respect to the ITG-
Grace2010s and the EGM2008 model. In spectral regions, where these models are assumed to be
superior, the improvements along the releases are clearly visible (degree 2–60 for ITG-Grace2010s,
degree 2–40 and 220–250 for EGM2008) in the empirical degree error variances (solid lines). For
all other spectral ranges the improvements are visible in the degree variances computed from the
formal errors (dashed lines).

In addition to the spectral domain, the models can be compared to existing models in the spatial
domain. Gravity field functionals, e.g., geoid heights (cf. (5.6)) or gravity anomalies (cf. (5.7)) can
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(a) Contribution of the VXX NEQs.

200 100 0 100 200
sin ⇐ spherical harmonic order m ⇒ cos

250

200

150

100

50

0

sp
he

ri
ca

lh
ar

m
on

ic
de

gr
ee

l

0 0.2 0.4 0.6 0.8 1

(b) Contribution of the VXZ NEQs.
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(c) Contribution of the VY Y NEQs.
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(d) Contribution of the VZZ NEQs.
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(e) Contribution of the high degree regularization.
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(f) Contribution of regularization of near zonal coeffi-
cients.
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(g) Contribution of the SST NEQ.

Figure 6.20: Contributions of the individual groups within the EGM_TIM_RL04 release computed
via (5.9).
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(b) Solutions with respect to EGM2008.

Figure 6.21: Degree (error) variances of the six computed time-wise solutions for the lower degrees
with respect to the ITG-Grace2010s model, which is assumed to be superior up to
degree 60 and with respect to the combined model EGM2008 which is assumed to
be superior in the higher degrees above d/o 220. Between degree 70 and 210 GOCE
models are the most accurate gravity field information and can thus not be validated.

be computed from the GOCE models and from e.g. the EGM2008 model and the differences at
a specific truncation degree can be analyzed. The Figs. 6.22(a)–6.22(e) show geoid heights with
respect to the EGM2008 model truncated at degree 200 for all releases computed. This figure can
be used to demonstrate the progress along the mission. Whereas for release 01 only large differences
over the continents (resulting from no or erroneous terrestrial data in EGM2008) are clearly visible,
the marine geoid is dominated by the error of the GOCE model (noise). EGM2008 is superior
there. Going on to release 02, the significant errors over land remain, but the noise over the ocean
significantly reduces. This characteristics remain the same up to release 04 and 05p4. But, for the
newer releases, significant differences occur over the ocean also, which is assumed to be additional
signal of the marine geoid which was observed by GOCE for the first time and is not included in
EGM2008 (cf. Figs. 6.22(g)–6.22(k)). This is especially true for i) coastal areas, where altimetry
contained in EGM2008 is known to be inaccurate, ii) high latitudes, where the available altimetry
data is limited and iii) in rough areas, e.g. the circumpolar current. This additional signal is
highlighted in local zooms in a coastal area in Figs. 6.22(g)–6.22(k), which clearly show an example
for new marine geoid signal observed by GOCE.

Finally, Tab. 6.6 gives an overview of the mean global accuracies reached with the five GOCE
models at different truncation degrees of the spherical harmonic expansion and thus at different
spatial resolutions. The given numbers s(lmax,x1,x2) result from root mean square error (RMS) of
the functional F (x) (geoid height and gravity anomalies) with respect to EGM2008 over an area
with N points pn (functional evaluated on a 0.25◦×0.25◦ grid) truncated at different degrees lmax.
The empirical RMS provided is in dependence of the area, the test model and the truncation degree

slmax = s(lmax,x1,x2) =

√√√√ 1

N

N∑

i

(F (x1, pi)− F (x2, pi))
2 (6.32)

=

√√√√ 1

N

N∑

i

(
F (xEGM2008, pi)− F (xEGM_TIM_RL*, pi)

)2
. (6.33)

The accuracy denoted as σ is the mean error derived from a variance propagation of the full covari-
ance matrix of the spherical harmonic coefficients (from the GOCE solution only) to the gravity field
functional over the region. The EGM2008 model error is neglected, as no precise error information
is available. The value provided is the mean value over the evaluated grid. The numbers are given
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Table 6.6: Error estimates from the GOCE time-wise models for the different releases. s is the
RMS with respect to EGM2008 and σ the mean value derived from variance propagation
(GOCE error only). The south pacific area is a smooth area over the open ocean, where
EGM2008 is assumed to be of high quality.

(a) Geoid heights

geoid heights (cm) to spherical harmonic d/o
area release 180 200 220 240 250 280

s σ s σ s σ s σ s σ s σ

south EGM_TIM_RL01 8.9 8.4 14.2 14.0 18.2 21.3
pacific EGM_TIM_RL02 5.6 4.7 9.5 8.3 13.8 14.2 17.5 21.1 18.4 24.3

EGM_TIM_RL03 4.4 3.6 6.8 6.5 10.7 11.4 15.0 18.0 16.2 21.2
EGM_TIM_RL04 3.2 2.2 4.8 4.1 7.6 7.7 11.9 13.4 13.5 16.7
EGM_TIM_RL05p0 3.0 1.9 4.2 3.5 6.6 6.5 10.2 11.4 11.7 14.4
EGM_TIM_RL05p4 2.9 1.5 3.7 2.8 5.4 5.0 8.2 8.9 9.7 11.4 13.5 19.7

±80◦ EGM_TIM_RL01 14.0 7.2 18.5 11.9 23.6 18.6
EGM_TIM_RL02 12.5 4.1 15.6 7.0 19.3 12.0 23.6 18.4 25.6 21.7
EGM_TIM_RL03 12.2 3.2 14.8 5.5 17.9 9.6 21.6 15.4 23.5 18.6
EGM_TIM_RL04 12.0 2.0 14.3 3.6 16.4 6.5 19.3 11.2 21.0 14.2
EGM_TIM_RL05p0 11.9 1.8 14.2 3.0 16.1 5.3 18.4 9.4 19.9 12.0
EGM_TIM_RL05p4 12.0 1.4 14.1 2.4 15.8 4.2 17.5 7.3 18.7 9.4 22.9 17.2

(b) Anomalies

anomalies (mGal) to spherical harmonic d/o
area release 180 200 220 240 250 280

s σ s σ s σ s σ s σ s σ

south EGM_TIM_RL01 2.18 2.05 3.91 3.89 5.39 6.50
pacific EGM_TIM_RL02 1.35 1.16 2.64 2.33 4.19 4.39 5.63 7.07 6.06 8.38

EGM_TIM_RL03 1.04 0.89 1.86 1.81 3.28 3.55 4.95 6.07 5.48 7.40
EGM_TIM_RL04 0.74 0.56 1.30 1.18 2.31 2.43 3.99 4.59 4.67 5.91
EGM_TIM_RL05p0 0.68 0.48 1.11 0.98 2.00 2.02 3.41 3.90 4.04 5.12
EGM_TIM_RL05p4 0.66 0.39 0.97 0.78 1.61 1.58 2.73 3.05 3.37 4.08 5.07 7.71

±80◦ EGM_TIM_RL01 3.18 1.76 4.76 3.32 6.72 5.69
EGM_TIM_RL02 2.79 1.02 3.90 1.97 5.37 3.73 7.23 6.21 8.10 7.55
EGM_TIM_RL03 2.70 0.79 3.66 1.54 4.88 2.98 6.53 5.24 7.39 6.54
EGM_TIM_RL04 2.66 0.52 3.51 1.01 4.36 2.03 5.65 3.86 6.44 5.05
EGM_TIM_RL05p0 2.64 0.46 3.47 0.85 4.24 1.68 5.31 3.22 6.03 4.28
EGM_TIM_RL05p4 2.68 0.36 3.44 0.69 4.12 1.31 4.94 2.50 5.52 3.37 7.70 6.79

for two areas, i.e. global area excluding the polar gap and a small area in the open south pacific,
where the geoid as well as the dynamic topography is smooth such that EGM2008 should be of high
quality there. The global RMS values are large and always dominated by the large errors over land.
To give a statement on the mean global accuracy of the most recent GOCE model one has to rely on
the propagated accuracy which is 3.6 cm and 1.0 mGal at degree and order 200 (i.e. 100 km resolu-
tion) for the EGM_TIM_RL04 and 2.4 cm and 0.7 mGal for the preliminary EGM_TIM_RL05p4.
The propagated accuracies are approved by the local comparison in the south pacific. For degrees
220–250 where EGM2008 is assumed to be dominant, s ≤ σ, which approves that the propagated
numbers are realistic.

More sophisticated and advanced validation procedures for GOCE models are developed and per-
formed in for instance Gruber et al. (2011), Hirt et al. (2011), Rexer et al. (2014), Becker et al.
(2014b) and Voigt and Denker (2014).
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Figure 6.22: Differences of the time-wise releases to EGM2008 in terms of Geoid heights (m) with
a global and a local (i.e. costal) focus truncated at d/o 200 (100 km).
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7. Application: High Degree Gravity Field
Determination Using a Direct Solver

The concepts of high performance and scientific computing introduced in Chap. 2 and 3 are used
to implement a high degree gravity field solver based on the assembly and solution of full normal
equations. Approximations and simplifications as summarized in Sect. 5.1 should be avoided to
derive a consistent estimate of the model and a realistic full covariance matrix which could be
assembled into further process models. With the full NEQ available, the covariance matrix of the
estimated parameters can be directly accessed.

A motivation for the implementation of the direct solver in the HPC environment are – amongst
others – the studies performed by Becker et al. (2012), Becker (2012) and Becker et al. (2013). A
concept of a joint rigorous estimation of the ocean’s mean dynamic topography (MDT) and the
marine gravity field was developed from the combination of along-track altimetry observations and
gravity field NEQs. In contrast to other studies, along-track altimetry was used to estimate the
MDT together with an update for the gravity field in a rigorous one-step approach, propagating
the errors of the observations throughout the whole processing. Within the studies performed so
far, the joint estimation was limited to a local area over the oceans (although the gravity field
was parameterized as spherical harmonics). Due to computational limits, the focus for the MDT
was local and the resolution of the gravity field was limited to d/o 300, although the altimetry
contains higher resolution gravity field signal. As in these studies, only the MDT and its full
covariance matrix was of interest for the assembly into ocean models, the mentioned constraints
were acceptable. Anyway, in contrast to other studies, which typically subtract a gravity field
model from an independently processed and gridded mean sea surface without error information
and apply some (Gaussian) filtering (e.g. Knudsen et al., 2011, Bingham et al., 2011), a rigorous
approach was developed which provides the covariance matrix of the MDT in addition. This requires
to start at the level of along-track altimetry observations, to perform the rigorous error propagation.

Extending the method developed in Becker (2012) to a global scope and defining the gravity field
as a target quantity, too, the computational challenges further increase. Thus, in a first step, a
HPC solver is required, which can assemble NEQs from altimetry OEQs for the high degree signal
contained in the observations. As a second step (not in the focus of this thesis) the OEQs have
to be extended for the additional parameters describing the MDT (e.g. finite elements). This
application, amongst others, leads to the motivation to implement a rigorous solver for global
gravity field determination in a HPC environment with a flexible design, which has the possibility
to set up the full covariance matrix for a large amount of parameters (hundreds of thousands).
The implementation developed in this thesis serves as the basis for a further extension for special
applications, as e.g. the application outlined above. The physically simplified simulation scenario is
used as a demonstrator, characterizing the solvable dimensions of the adjustment problem and the
performance in the HPC environment. It provides a general starting point into the mapping of this
kind of applications to HPC environments. It is shown that the approximations and simplifications,
like e.g. the gridding of altimetry observations, can be avoided to finally derive higher quality models
and covariance matrices in a reasonable time.

Within this chapter, the implementation of the solver in a HPC environment is presented. In
contrast to the GOCE application in Chap. 6 the computational challenge is not the number of
highly correlated observations but the huge dimensional parameter space (number of unknown
parameters). The concept of block-cyclic distributed matrices is used for the assembly of NEQs
and their solution. The implemented solver has the following key features (mostly defined before as
target properties for possible further applications of the developed basis implementation):
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• It obtains the least squares solution based on full normal equations.
• It is tailored for huge dimensional parameter spaces (up to at least half a million of unknown

parameters, corresponding to spherical harmonic d/o 720).
• It has the capability to process a large number of observations (i.e. several millions).
• The processing of an arbitrary number of observation groups is foreseen.
• Variance component estimation is implemented for relative weighting of all observation groups.
• The combination of preprocessed normal equations as sufficient statistics of original observa-

tions and original (e.g. point wise) observations and their variance/covariance information
can be used as observation groups.
• The implementation is flexible (e.g. include group specific parameters, extension of new ob-

servation equations, ...).
• A general concept which can be easily adapted for adjustment applications not related to

gravity field determination is used.
• The developed software is executable in environments with only a few cores and in HPC

environments with tens of thousands of compute cores.

This chapter is an extension of the study already published in Brockmann et al. (2014b), so some
general parts of the chapter are taken from that study. Although the MDT is not covered at this
stage, the implementation is in progress and the task should be solved in further research projects
within the department.

7.1 Problem Description

The basic mathematical/statistical problem of the combination of independent observation groups
with the addition theorem of NEQs is already described in (4.6b) or more precisely in (4.27).
The combined normal equation should be assembled from band-limited normal equations n ∈
{0, . . . , N − 1} (differing in resolution, size and in the parameter order) and from observation
groups o ∈ {0, . . . , O − 1}, which are assumed to contain the (very) high resolution gravity field
signal and thus produce the high dimensional parameter space.

Whereas the NEQs n have only to be recalled from disk, reordered and properly added to a sub-
space of N, the challenge for the processing of the OEQs o is an efficient and fast computation
of the partial normal equations No = AT

o Q−1
oo Ao for the whole parameter space as defined by the

symbolic target numbering scheme ppp. This parameter space can either include spherical harmonic
coefficients of a certain resolution or, although not presented in detail here, non spherical harmonic
parameters observed for instance by a subset of observation groups only. For example, the developed
software package is used to estimate the ocean’s dynamic topography from altimetry observations
and the marine gravity field in an one step approach (Becker et al., 2013, 2014b). As a challenging
part, hundreds of thousands of parameters are forseen, e.g. for the rigorous estimation of gravity
field models up to d/o 720 (dimension of N is 519 837 × 519 837, its size is approximately 2 TB).
The implemented concept is not limited to that resolution, but at some point with more and more
unknown parameters, the setup of the full normal equations become unreasonable (computational
and storage requirements). For even higher dimensional parameter spaces, alternative solution
concepts are better suited (see Chap. 8).

7.2 Assembly and Solution of the Combined NEQs

The groups provided as NEQs and the groups available as observations are treated differently.
Consequently, this chapter divides the processing of this groups into two parts. For the whole
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Table 7.1: Information provided together with the NEQs.

# parameters used to assemble the NEQ
# NEQ itself
name = GOCE_MOP4_ZZ_VCE0004 # name of the observation group
pathTon = GOCE_MOP4_ZZ_VCE0004_n.gdk # path to RHS n (binary format)
pathToN = GOCE_MOP4_ZZ_VCE0004_N.gdk # path to NEQ matrix N (binary format)
lTPl = 3.721873844140784454e+10 # product lambda = l’Pl
numObsUsed = 68075886 # # observations NEQs were computed from
numberingSchemeNeq = GOCE_MOP4_ZZ_VCE0004.ns # symbolic numbering scheme associated with N,n
# gephysical constants used
tide_system = tide_free # tide system used during assembly
GM_used = 3.986004415000000000e+14 # GM used during assembly
a_used = 6.378136459999999963e+06 # a (mean Earth radius) used during assembly

section, it is assumed that a target symbolic numbering scheme ppp is defined, which contains all
parameters to be estimated. It is the numbering scheme associated with the finally combined NEQs
N and n and defines the parameter order in the final output matrices (NEQs and/or covariance
matrix).

7.2.1 Update of the Combined NEQ with Groups Provided as NEQs

The combination of normal equations seems to be a quite simple task, as just the (weighted) sum
of the NEQs has to be computed. Nevertheless, from the implementational point of view, this step
is not as simple as it seems, because (i) the NEQs n differ in size, as they are only assembled for
a subset of the parameters N should be assembled for, and (ii) the parameter order is different
and generally not compatible with the target numbering scheme ppp defined for N. For that reason,
the concepts of reordering and symbolic numbering schemes were introduced in Sect. 4.3 and 5.3.
Using the concepts introduced in Chap. 3, 4 and 5 and the implementations derived there, the task
becomes simpler.

For every NEQ group, the details given in Tab. 7.1 are provided. In addition to this information, a
weight w(0)

n is defined to be used in the combination. It is iteratively updated using VCE. A group
available as NEQs is handled as an object of the class NeqGroup as described by Listing 7.1.

Alg. 7.1 gives an overview of the processing steps of the individual NEQs. With the preparations
performed in Chap. 3, 4 and 5 most of the steps are straightforward. The only step which has
to be discussed in detail is the setup of the additional right hand sides for VCE (cf. Sect. 4.2.1).
Nevertheless, the following paragraphs shortly provide an overview how the steps for every NEQ
can be implemented in a HPC environment. The following steps are sequentially repeated for every
NEQ n ∈ {0, . . . , N − 1} (n-loop in Alg. 7.1).

Original NEQs from Disk (l. 6–11, Alg. 7.1) The first step is to recall the original NEQs
from disk and map them as distributed matrices to the memory of the involved cores. This can be
directly performed using the parallel I/O from the MPI standard as implemented in Sect. 3.3.4.1
for the DistributedMatrix class. After the parallel reading operation the NEQs are available as
distributed matrices. The only constraint on the dimension of the NEQ groups is, that the NEQ fits
into the joint memory of all cores involved in the compute core grid. In addition, every core involved
reads the symbolic numbering scheme the NEQs are stored in. Again, the numbering scheme for
the input matrices is arbitrary. The weights used in current iteration are directly applied scaling
Nn and nn (cf. l. 11).
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Algorithm 7.1: Update of N and n by groups n provided as band-limited NEQs.

Data:
vector<NeqGroup> g information on NEQs for the groups n ∈ {0, . . . , N − 1}
NumberingScheme ppp symbolic target numbering scheme covering the parameters

double GM , a, tide system constants to be used in target NEQ
size_t K number of MC samples for additional RHS

// initialization of combined NEQs, account for MC RHS1
DistributedMatrix N(U,U), n(U, 1 + (N +O)K)2
size_t M = 0, double λ = 03
// Loop over all groups provided as NEQs4
for n = 0 to N − 1 do5

// Temporal matrices for NEQs from file6
DistributedMatrix Nn, nn7
// Read NEQs and meta data8
Nn.binaryRead( g.at(n).pathToN() ), nn.binaryRead( g.at(n).pathTon() )9
NumberingScheme pppn(g.at(n).numberingSchemeNeq() )10
Nn∗ = g.at(n).w(), nn∗ = g.at(n).w()11
// If needed convert geophysical parameters (tide system, GM , a)12
_convertNeqs(Nn, nn)13
// Extend NEQs to dimension of N14
Nn.extendWithZeros(N.R(),N.C()), nn.extendWithZeros(N.R())15
// Reordering operation cf. Sect. 4.316
vector<size_t> ψψψpppn 7→ppp = ppp.permutationVec(pppn)17
Nn.reorder(ψψψpppn 7→ppp), nn.reorderRows(ψψψpppn 7→ppp)18
// Update combined NEQs with current group19
N+ = Nn, n(:, 0)+ = nn20
if (r == c == 0) then21

M+ = g.at(n).anzObs(), λ+ = g.at(n).w() ·g.at(n).ltl()22
end23
// Generate and transform RHS for MC trace estimation24
DistributedMatrix Pn(Nn.R(),K)25

Rl, Cl = Pn.localMat().size()26
// Fill local parts of matrix with random number ±127

for c = 0 to Cl − 1 do28
for r = 0 to Rl − 1 do29

Pn.localMat(r, c) = ±130
end31

end32
// Recover original NEQ (e.g. from disk)33
Nn.binaryRead( g.at(n).pathToN() ), Nn∗ = g.at(n).w()34
_convertNeqs(Nn, nn)35
Nn.chol()36
// transform samples cf. (4.13)37

Pn = NT
nPn38

Pn.extendWithZeros(N.R(),K)39
Pn.reorderRows(ψψψpppn 7→ppp)40
// update columns of RHS belonging to MC samples of current group41
n(:, (n− 1)K + 1 : nK)+ = Pn42

end43
return N,n, λ,M// combined NEQs44
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Listing 7.1: Header file defining the main features of the class NeqGroup.�
1 class NeqGroup
2 {
3 public:
4 // ======================================================
5 // Constructors Destructors
6 NeqGroup ();
7 ...
8 ~NeqGroup ();
9 // ======================================================

10 // methods
11 // get attributes
12 // NEQ information
13 string pathToN () const;
14 string pathTon () const;
15 double ltl( ) const;
16 double numObsUsed( ) const;
17 NumberingScheme & ns() {return _ns ;};
18 // constants and reference systems
19 earthTideSystems :: TIDE_SYSTEM tide_system( ) const;
20 double GM() const;
21 double a() const;
22 double w( ) const;
23 // set parameters and other functions
24 ...
25 private:
26 string name;
27 string pathTon;
28 string pathToN;
29 double ltl;
30 size_t numObsUsed;
31 NumberingScheme _ns;
32 // constants and reference systems
33 earthTideSystems :: TIDE_SYSTEM tide_system;
34 double _GM;
35 double _a;
36 };
� �

Conversion of Physical Constants/Reference Systems (l. 13, Alg. 7.1) For a consistent
combination, physical constants (GM , a) have to be unified, if alternative values were used in the
original assembly of Nn and nn. The transformations are not given in detail here, as they are
provided in many text books and standard documents (see e.g. EGG-C, 2010a) and the physical
consistence is not in the scope of this study. The same holds for references as for instance the
permanent tide system of the spherical harmonic coefficients. In addition, the RHS might be
transformed, if for instance a reference gravity field model (approximated values in linearization)
was reduced from the raw observations in the original NEQ assembly.

Update of Normals (l. 14–23, Alg. 7.1) The NEQs Nn and nn are extended with zeros to
adjust the dimension to the dimension of N and n. The extended matrix is brought to the numbering
of N and n applying the reordering as discussed in detail in Sect. 4.3. After the determination of
the permutation vector ψψψpppn 7→ppp (cf. Alg. 4.2 and 4.4), rows and columns of Nn and rows of nn are
reordered according to Sect. 4.3.3. The update of N and n is then a simple addition. The number
of observations M (cf. (4.6e)) and λ (cf. (4.6d)) of the combined NEQs are updated accordingly
(cf. l. 21–23). For this (and some of the later steps, e.g. for the observation equations), it is required
that the main memory of all cores is sufficient to store the whole NEQ matrix twice in memory.9

Additional Right Hand Sides for VCE (l. 27–42, Alg. 7.1) As the NEQs for the individual
groups (especially for the OEQ groups cf. Sect. 7.2.2) are not stored separately by default, the Monte
Carlo based trace estimator introduced is used to estimate the partial redundancy (cf. Sect. 4.2.1)
within the direct solver. For that reason, additional sample based right hand sides have to be
introduced. As the quality of the sample based MC trace estimation depends on the number of

9The alternative, reordering the first Un rows and columns of N to pppn is not discussed in detail here. With the
provided concept it is easily possible. This alternative strategy is more efficient with respect to main memory but
has the disadvantage that two reordering steps are required (1. reorder the first Un rows and columns of N to pppn, 2.
update, 3. reorder back to original numbering scheme).
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generated samples, it is assumed that for every involved group n or o, K samples are generated to
derive a mean estimate. Thus, (N +O)K additional right hand sides are generated. Assuming the
first column of n to be associated with the observations itself, the next NK are associated with the
MC samples of the NEQ groups and later on the next OK to the OEQ groups. For a single group
n, the columns cb = (n− 1)K + 1 to ce = nK are the columns related to the MC based samples for
trace estimation. Only this columns are updated via the transformed samples according to (4.13).

First of all, a distributed matrix of dimension Un×K is generated and filled with random numbers
following the uniform distribution with values +1 and −1. Random numbers are drawn in parallel
but serially on every core, and the local matrices Pl

r,c are filled on every core. Using parallel
programs and random number generators needs a carful check if these generators are suited for
parallel implementations to derive independent samples on the local cores (e.g. Katzgraber, 2010,
Mertens, 2009). Within this study, a BOOST (Boost, 2013a) random number generator is used
(Chap. 24 Boost, 2013b). The seed of the generator was composed by the local CPU time of the
individual cores and the MPI rank of the calling process. Numerical tests have shown that the
random numbers generated on different cores are independent.

The drawn samples are transformed according to (4.13). Similar to the processing of the original
right hand side nn, the final step is to adjust the size and the parameter order of the transformed
samples (cf. l. 39–40, Alg. 7.1). Finally, the additional right hand sides are copied to the corre-
sponding columns of n, i.e. (n− 1)K + 1 to nK.

7.2.2 Update of the Combined NEQ with Groups Provided as OEQs

This section covers the update of the combined normal equations N with the groups provided as
original observations (OEQs). At this stage it is assumed, that the observations are uncorrelated, but
have an individual observation accuracy. Consequently, (4.6b) is computationally simplified, as Q`̀̀o`̀̀o

are diagonal matrices only. Nevertheless, the use of full covariance/cofactor matrices e.g. via using
empirical estimated covariance functions or – like in the GOCE application – digital decorrelation
filters, is forseen in the implementation. For this general case, i.e. foreseeing correlated observations,
block-cyclic distributed matrices are used for the observation equations, i.e. for the design matrices
Ao, the cofactor matrix Q`̀̀o`̀̀o and the observation vector `̀̀. For the case of uncorrelated observations,
the setup of the OEQ, especially the design matrix is a task of low complexity (still depending on the
functional model) and thus fast compared to the update of the NEQs with N+ = woA

T
o Q−1

`̀̀o`̀̀o
Ao.

Thus, in addition an alternative concept is implemented, computing local parts of the NEQ avoiding
communication and using serial BLAS routines for the computations. The consequences are that
the computations are faster, as no communication during the computations are needed but the
drawback is that the OEQ are set up locally more then once and redundant on different processes.

For both concepts implemented, the observations and the meta data are stored in objects of the
class OeqGroup as summarized in Listing 7.2. The class provides the member functions to set up
the entries of the design matrix as well as the storage of the data. The details on the setup of the
observation equations are not given here, as it is a well known and documented step (as e.g., the
recursive computation of Legendre functions) and depends a lot on the observation type. Although
all applications are related to global gravity field determination, the developed concept as well as
the implemented software package can be readily used for the processing of other geodetic data sets.

7.2.2.1 Distributed Computation of NEQs using Block-cyclic Distributed Matrices

The easiest way to compute the update of the combined NEQs is to set up the observation equations
as block-cyclic distributed matrices. It is the most flexible way with respect to the number of
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Listing 7.2: Header file defining the main features of the class OeqGroup.�
1 class OeqGroup
2 {
3 public:
4 // ======================================================
5 // Constructors/Destructors
6 OeqGroup ();
7 ...
8 ~OeqGroup ();
9 // ======================================================

10 // methods
11 // get attributes
12 // OEQ information
13 double weight( );
14 string file( );
15 size_t size( );
16 // load observations and meta data from disk
17 void loadObservations( );
18 // design matrix for single observation i
19 void buildDesign( double * Aptr , int offset , int cols , NumberingScheme & ns );
20 string name();
21 ...
22 private:
23 string _filename;
24 double _weight;
25 georeferencedObservations _pointObs;
26 earthmodelFunctionals :: FUNCTIONAL_TYPE _funcToCompute;
27
28 };
� �

parameters and observations. Especially if a complex decorrelation step is required, the use of block-
cyclic distributed matrices for the OEQs provides the most flexible options. Alg. 7.2 summarizes
the update step. The details are discussed in the following. As, comparably to the data of the
GOCE mission (cf. Sect. 6.3), it can not be expected that the OEQs for a single group o can be
set up at once, instead due to the possible huge number of observations, the observations are again
processed sequentially in blocks of size bobs. Thus, the block-cyclic distributed design matrix is set
up only for bobs observations at once (b-loop in Alg. 7.2).

The local matrices Al
r,c of the block-cyclic distributed design matrices are filled for the local ob-

servations and for the local parameter subset locally on the compute cores. All entries are locally
computed, although redundant computations during the recursive computation of Legendre polyno-
mials might occur. Afterwards, N, n and λ are directly updated using SCALAPACK and PBLAS
routines (mainly pdgemm and pdsyrk) which are used in member functions of the DistributedMatrix
class. As CMO is used to store all (local) matrices, instead of Ao, AT

o is assembled, therefore entries
for a single observation can be directly written in coherent parts of the memory (column-wise).

Processing of Groups o As described in Alg. 7.2, the O groups are processed independently
in a sequential loop. There is no parallel processing of different groups o. For that reason, details
on the implementation are only given for a single group o. Note that in the presented form of
the implementation it is assumed, that all processes involved read all observations from disk and
have all observations available in the main memory. The alternative, that a single process reads all
observations and distributes them is not considered here.

Setup of Design Matrices, (cf. Alg. 7.2, l. 20–26) The basic idea is to setup the design matrix
as a block-cyclic distributed matrix as introduced in Chap. 3. As the number of observations in a
group o is not limited, it is assumed that the observations are processed in blocks of size bobs. The
blocks of size bobs are processed sequential (b-loop in Alg. 7.2). Only the observations within a single
block are processed in parallel. Note that the final step is missing in Alg. 7.2, all shown steps have
to be repeated for the smaller rest block of size Mo%bobs. A block-cyclic distributed design matrix
is set up at once for bobs observations and for all parameters U . To store entries corresponding to a
single observations in continuous parts of the local memory, instead of Ao, AT

o of dimension U×bobs
is set up in the implementation which uses CMO (cf. Sect. 2.2.1).
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Algorithm 7.2: Update of N and n by groups o provided as OEQs. The updates of N and n are
computed from block-cyclic distributed observation equations.

Data:
vector<OeqGroup> g information on observations for the groups o ∈ {0, . . . , O − 1}
NumberingScheme ppp symbolic target numbering scheme covering the parameters

double GM , a, tide_system constants to be used in target NEQ
size_t K number of MC samples for additional RHS

size_t bobs number of observations to be processed at once
// determine my process coordinates and compute core grid dimension1
size_t r, c, R, C2
blacs_gridinfo( A.context(), r, c, R, C )3
// initialization of combined NEQs, account for MC RHS4
size_t U = ppp.size() size_t M = 0 double λ = 05
DistributedMatrix N(U,U), n(U, 1 + (N +O)K)6

DistributedMatrix AT (U, bobs), l(bobs, 1 + (N +O)K)7
// Determine dimension of local matrices8

size_t RlAT = AT .Rl(), size_t ClAT = AT .Cl(), size_t Rll = l.Rl(), size_t Cll = l.Cl()9

// parameters associated with local rows (pppr) of AT10

NumberingSchme pppr(R
l
AT )11

for r = 0, r < rlAT , r + + do12
pppr(r) = ppp(AT .rowInGlobalMat(r) )13

end14
// Loop over all groups provided as OEQs15
for o = 0, o < O, o+ + do16

g.at(o).loadObservations() // Load all observations (and meta data) of group o from file17
// Loop over all observations of group o in blocks of bobs18
for b = 0, b <g.at(o).size(), b+ = bobs do19

// setup AT for local observations and local parameters20

for c = 0, c < ClAT , c+ + do21
// overall index of observation of group o corresponding to column c22

size_t i = b+ AT .colInGlobalMat(c)23
// fill columns with design entries for observation i and local parameters in pppr24
fillDesign(A.localMat().colPtr(c), g.at(o).obs(i), pppr )25

end26
// fill local part of distributed l (observations c = 0, MC samples (VCE))27

for c = 0, c < Cll , c+ + do28
for r = 0, r < Rll, r + + do29

if l.colInGlobalMat(c)== 0 then30
size_t i = b+ l.rowInGlobalMat(r)31
l.localMat()(r, c) = g.at(o).l(i)32

else33
if l.colInGlobalMat(c)∈ {1 +NK + oK, . . . , 1 +NK + (o+ 1)K − 1} then34

l.localMat()(r, c) = ±135
end36

end37
end38

end39
// update combined NEQs with observations b to b+ bobs − 140

N+ = g.at(o).w() ATA, n+ = g.at(o).w() AT l // Update N (pdsyrk), n (pdgemm)41

λ+ = g.at(o).w() lT l(0, 0), M+ = bobs // Update λ (pdsyrk), number of used observations42

end43
// Same operations for the rest block (Mo%bobs). . .44

end45
return N,n, λ,M// combined NEQs46
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After the initialization of the block-cyclic distributed matrix (cf. 7.2, l. 7), the dimensions of the local
matrices are known (cf. (3.5)) on every core. Using (3.6), the local column index can be associated
with the global index of the observation in the array of the overall observations. The column is
filled with the design matrix for that observation and for the parameters associated with the local
rows of AT

o (local numbering scheme pppr). Within the implementation, the parameters are locally
extracted from the global numbering scheme (cf. Alg. 7.2, l. 10–14). Afterwards, the setup of AT

o is
performed on all cores at the same time and thus in parallel. Entries for the local observations and
the local parameters are computed locally without communication. Depending on the functional
of the gravity field the observation equations for the spherical harmonic coefficients are computed
according to the formulas given in Sect. 5.4.2.1. During the assembly AT

o , redundant computations
on different processes occur within the recursive computations of the Legendre polynomials (hidden
in the symbol fillDesign). An easy to use strategy to minimize the redundant computations via
the choice of a distribution dependent numbering scheme is discussed in Sect. 8.3.3.2, where the
fast assembly of the distributed design matrix is more important. The strategy introduced there
can be easily applied here, as only the target numbering scheme ppp is changed. But note that within
this implementation, the setup of AT

o is of minor importance with respect to the total runtime
(cf. Sect. 7.4).

RHS for VCE, (cf. Alg. 7.2, l. 27–39) The setup of additional right hand sides for VCE is
straightforward. According to (4.19), the random samples are transformed to additional RHS the
same way as the original observations are. Thus, the vector of observations is extended by additional
columns (i.e. (N + O)K). The K columns corresponding to group o are filled with the random
samples following the uniform distribution (+1 or −1 with probability 0.5).

Update of NEQs, (cf. Alg. 7.2, l. 40–42) As all involved matrices are set up as block-cyclic
distributed matrices, the computations of the update of the combined system of NEQs is per-
formed directly with PBLAS (SCALAPACK) routines included in the member functions of the
DistributedMatrix class. Mainly this are pdsyrk for N and λ, and pdgemm for the computation
of the update of the RHS n. Note that the computation of λ is only of importance for the original
observations, i.e. column c = 0 of the matrix `̀̀.

7.2.2.2 Local Computation of NEQs using Serial Design Matrices

For the case that the computation of Ao is simple, especially if there are no correlations between the
observations and thus Q`̀̀o`̀̀o is only diagonal, the NEQs can be updated locally without communica-
tion between the processes. Instead of communication between processes during the computation of
AT
o Ao, parts of Ao are set up more than once locally and redundant on different processes as serial

matrices. The local parts of N, i.e. Nl
r,c, are then computed without communication between the

processes using serial BLAS routines (dsyrk and dgemm). For the efficient implementation shown in
Alg. 7.3, it is assumed that i) the compute core grid is quadratic, i.e. R = C and ii) that the block-
cyclic distribution block-size is quadratic, i.e. br = bc. The details are discussed in the following
paragraphs. The performance compared to the update with Ao as a block-cyclic distributed matrix
is assessed in Sect. 7.4.1.

Local Parameters on Process (r, c) (cf. Alg. 7.3, l. 7–13) The combined NEQs are initialized
as a block-cyclic distributed matrix. Afterwards, due to the fixed distribution parameters, the
dimension of the local matrices Nl

r,c is fixed and known. Using the member functions of the block-
cyclic distributed matrix which uses (3.6), the parameters corresponding to the local rows (pppr) and
the local columns (pppc) of Nl

r,c can be easily extracted from the global numbering scheme ppp of N.
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Algorithm 7.3: Updates of N and n by groups o provided as OEQs. The update of N and n are
computed locally without data communication.
Data:

vector<OeqGroup> g information on observations for the groups o ∈ {0, . . . , O − 1}
NumberingScheme ppp symbolic target numbering scheme covering the parameters

double GM , a, tide_system constants to be used in target NEQ
size_t K number of MC samples for additional RHS

size_t bobs number of observations to be processed at once
size_t r, c, R, C, blacs_gridinfo( A.context(), r, c, R, C ) // determine process coordinates & compute core grid dim.1
// initialization of combined NEQs, account for MC RHS2
size_t U = ppp.size(), size_t M = 0 double λ = 03
DistributedMatrix N(U,U), n(U, 1 + (N +O)K), Matrix Ar,Ac, `̀̀4
// Determine dimension of local matrices5
size_t RlN = N.Rl(), size_t ClN = N.Cl(), size_t Rln = n.Rl(), size_t Cln = n.Cl()6
NumberingSchme pppr(RlN), pppc(ClN)// local numbering schemes, parameters associated with local rows (pppr) & columns (pppc) of N7
for r = 0, r < RlN, r + + do8

pppr(r) = ppp(N.rowInGlobalMat(r) )9
end10
for c = 0, c < ClN, c+ + do11

pppc(c) = ppp(N.colInGlobalMat(c) )12
end13
// Loop over all groups of provided as OEQs14
for o = 0 to O − 1 do15

g.at(o).loadObservations() // Load all observations (and meta data) of group o from file16
// Loop over all observations of group o in blocks of bobs17
for b = 0, b <g.at(o).size(), b+ = bobs do18

if r == c then19
Ar.resize(bobs,rlN) // Process all bobs observations20
fillDesign(Ar, g.at(o).obs(b : b+ bobs), pppr ) // Fill design matrices with observations21
N.localMat()+ = 0.5g.at(o).w() AT

r Ar // Update local matrices of N (dsyrk)22
else23

// Process half of observations, (shared between (r, c) and (c, r))24
if r > c then25

int bl = bobs ÷ 2; int bs = b26
else27

int bl = bobs ÷ 2 + bobs%2; int bs = b+ bobs ÷ 228
end29
Ar.resize(bl,rlN); Ac.resize(bl,clN) // Fill design matrices with observations30
fillDesign(Ar, g.at(o).obs(bs : bs + bl), pppr ), fillDesign(Ac, g.at(o).obs(bs : bs + bl), pppc )31
N.localMat()+ = g.at(o).w() AT

r Ac // Update local matrices of N (dgemm)32
end33
// Computation of RHS (including MC trace RHS)34
if Cln > 0 then35

Ar.resize(bobs,rlN) `̀̀.resize(bobs,cln) // Process for all bobs observations36
fillDesign(Ar, g.at(o).obs(b : b+ bobs), pppr ) // Fill design matrices with observations37
if r == 0 then38

for c = 0, c < `̀̀.C(), c+ + do39
for r = 0, r < `̀̀.R(), r + + do40

if n.colInGlobalMat(c)== 0 then41
`̀̀.localMat()(r, c) = g.at(o).l(b+ r)42
λ+ = g.at(o).w() `̀̀T `̀̀(0, 0), M+ = bobs // Update λ (dsyrk) and M43

else44
if n.colInGlobalMat(c)∈ {1 +NK + oK, .., 1 +NK + (o+ 1)K − 1} then45

`̀̀(r, c) = ±146
end47

end48
end49

end50
end51
`̀̀.Bcast(0, c, “colum”) // broadcast `̀̀ to processes of same column52
n.localMat()+ = g.at(o).w() AT

r `̀̀ // Update RHS (dgemm)53
end54

end55
// Same operations for the rest block (Mo%bobs). . .56

end57
// Final synchronization between (r, c) and (c, r)58
N = N + NT59
return N,n, λ,M// combined NEQs60
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Within the algorithm, they are stored as local symbolic numbering schemes on every process r, c,
containing the sub-space of the parameters associated either with the rows (pppr) or with the columns
(pppc) of the local matrix Nl

r,c.

Processing of Groups o (cf. Alg. 7.3, l. 14) As described in Alg. 7.3, the O groups are
processed independently in a sequential loop (o-loop). There is no parallel processing of different
groups o. For that reason, details on the implementation are only given for a single group o. Note
that in the presented form of the implementation all processes involved read all observations from
disk and have all observations available in the main memory. This is necessary as for this assembly
of N, all observations are required on all processes.

Setup of Local Serial Design Matrices (cf. Alg. 7.3, l. 19–32) The basic idea is to set up
two design matrices locally, corresponding to the parameters of the locally stored NEQs Nl

r,c, i.e. pppr
and pppc. Setting up the serial locally stored matrices Ar for all bobs observations and the parameters
contained in pppr and Ac for all bobs observations and the parameters contained in pppc, the local update
of Nl

r,c is

Nl
r,c+ = woA

T
r Ac. (7.1)

This can be efficiently locally computed without communication using the BLAS-L3 routine dgemm.
The processing of the blocks of size bobs is serial (b-loop). Only the observations within a single
block are processed in parallel (cf. Alg. 7.3, l. 18). Until now, the symmetry of N is not accounted
for and the processes (r, c) and (c, r) perform the same operations as Nl

r,c = NlT
c,r (Ar = Ac and

Ac = Ar). To account for the symmetry, instead of setting up Ar and Ac for all bobs observations,
process (r, c) can set up the design matrices Ar and Ac for the first bobs÷ 2 observations and (c, r)
for the second half of the observations (bobs ÷ 2 + bobs%2).

Local Computation of Nl
r,c for r = c (cf. Alg. 7.3, l. 20–22) The computation for the

processes with r = c can be handled specially. With the prerequisites mentioned above (i.e. a
quadratic compute core grid and quadratic sub-blocks), for the diagonal processes with r = c it is
the special case that pppr = pppc. The local part of the NEQs can be updated with a local computation
via

Nl
i,i+ = 0.5woA

T
i Ai, (7.2)

where Ai is a serial locally stored design matrix of dimension bobs × C lN assembled for all bobs
observations but only for the subspace pppr = pppc of the parameters. The update can be locally
computed with the BLAS-L3 dsyrk function. As dysrk is approximately two times faster than
dgemm, the computation time of the diagonal cores is approximately the same as for the non-diagonal
cores of the compute core grid, although approximately two times more observations are processed.
The additional factor of 0.5 is required for the final synchronization step (cf. paragraph below and
Alg. 7.3, l. 59).

Local Computation of Nl
r,c for r 6= c (cf. Alg. 7.3, l. 24–32) As described above, the

observations for processes (r, c) and (c, r) are divided into two parts, each process has to process
only half of them. As pppr 6= pppc, the matrices Ar and Ac differ on the cores. Both processes assemble
Nl

r,c respectively Nl
c,r but only for approximately bobs ÷ 2 observations. The local update of the

local part of N is then again performed with a serial BLAS-L3 routine, i.e. dgemm to compute

Nl
r,c+ = woA

T
r Ac. (7.3)
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As only half of the observations are processed on the non-diagonal cores, the dgemm call takes
approximately the same time as the dysrk call on the diagonal processes10. Later on, the local
matrix data between processes (r, c) and (c, r) has to be synchronized via communication. But this
is done with a single synchronization after the processing of all O groups. It is the final step in
Alg. 7.3, l. 59 and not repeated within the o-loop.

Computation of the RHS (cf. Alg. 7.3, l. 34–53) Using the serial NEQ computation the
computation, of the RHS needs to be adapted, too. In contrast to the computation of N, some
communication is required here. The generated random numbers for the additional MC RHS are
required on every process of the same compute core grid’s column, which stores local sub-matrices
of n. For simplicity, the first row of the compute core grid (r = 0, ∗) sets up l as a serial matrix,
fills it with the observations and draws the random samples (cf. Alg. 7.3, l. 36–37). Afterwards it is
broadcasted to all processes of the column (cf. Alg. 7.3, l. 52). Thus, it is guaranteed that within
the computation of

nlr,c+ = woA
T
r l (7.4)

the same random samples are used within a column of the compute core grid. The update is
performed again with a local computation using the BLAS-L3 dgemm function. As a collective MPI
Bcast operation is used, the computation is synchronized, and the processors not involved in the
computation of the RHS are idle.

The implementation given in Alg. 7.3 is not the most efficient but the simplest one. After the
update of Nl

r,c, all processes on which local matrices nlr,c of n exist (i.e. C ln > 0), completely set
up Ar for all bobs observations (it is redundant, as parts were already computed for the update of
Nl

r,c). Afterwards the computations are straightforward (cf. Alg. 7.3, l. 53). Tailored but complex
optimizations, which require a lot of communication, are conceivable, but not integrated in the
current implementation.

Final synchronization of N, (cf. Alg. 7.3, l. 59) The implemented method which accounts
for the symmetry sets up Nl

r,c and Nl
c,r for half of the observations each. Thus, the joint matrix is

N = NT + N, (7.5)

which can be computed with PBLAS routines. The factor 0.5 in (7.2) ensures that the “diagonal”
blocks Nl

i,i do not enter the N twice.

7.2.3 Solution of Combined NEQs and VCE

After the assembly of the NEQs for the NEQ and OEQ groups, the solution for the unknown
parameters and the inversion of the NEQs is straightforward, as the system of NEQs is directly
available as a block-cyclic distributed matrix. SCALAPACK routines for the Cholesky reduction of
N (pdpotrf in the member function chol) are used to factorize N. The unknown parameters are
then determined via forward and backward substitution (calling pdpotrs in the member function
isSolutionOfCholReduce). The first column in the solution vector x(:, 0) are the unknown spherical
harmonic coefficients, and the columns Z = x(:, 1 : C − 1) the additional parameters required for
VCE. With the former right hand sides, the vector P̄ = n(:, 1 : C − 1) in (4.22), the trace term
and thus the partial redundancy in (4.22) can be directly computed with PBLAS calls, as Z and P̄

10dysrk accounts for the symmetry of the result matrix and is thus approximately two times faster than dgemm of
same matrix dimensions.
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are block-cyclic distributed matrices. The only challenge is to operate on the proper sub-matrices
to use the correct columns corresponding to the samples for group i. As a final step the sum of
squared residuals Ωn is computed for every NEQ group according to (4.8b), recalling the original
NEQs from disk. Note that the correct parameter subset of x(:, 0) is extracted and afterwards
reordered to the numbering scheme associated with the original NEQs Nn and nn using the already
introduced reordering concepts (cf. Sect. 4.3.2 and 4.3.3). For the OEQs, the design matrices are set
up as block-cyclic distributed matrices and vo = Aox(:, 0) − `̀̀o is computed such that Ωo directly
is computed with (4.8a) again using computations for the block-cyclic distributed matrix vo. The
final VCs directly follow from (4.22). They are stored in additions to the NEQs and the solution
on disk.

7.3 A Closed-Loop Simulation Scenario

Within this section, a test scenario is described. A closed loop simulation is used to analyze and
verify the implementation. It should be demonstrated, what scenarios can be analyzed with the
derived implementation (mainly parameter space and amount of observations). At some points, the
scenario is physically unrealistic (simplified physical functional and stochastic models), but this has
no consequences on the feasibility study.

7.3.1 Simulation of Test Data Sets

The EGM2008 (Pavlis et al., 2012) model is used to generate N+O = 21 synthetic data sets. N = 4
data sets are created as NEQs. For this purpose, real satellite NEQs from GRACE, GOCE (SST
and SGG) and SLR satellites are used to generate synthetic normal vectors based on EGM2008
and a noise vector is added. O = 17 groups are created as simulated observations of different
gravity field functionals. The simulated NEQ and OEQ observation groups were analyzed using the
implementation described above and a combined gravity field model was estimated from the data.
In addition, unknown weights as inverse VCs are estimated.

7.3.1.1 Data Sets based on NEQs

Real satellite NEQs from SLR, GRACE and GOCE are used to generate synthetic normal vectors
based on EGM2008. A noise generated from the real covariance matrix is added. Thus, the simulated
normal equations are generated from

Nn = ΣΣΣ−1
n (7.6)

nn = ΣΣΣ−1
n (xEGM2008 + en) , with en as a special realization of EEEn ∼ N

(
0, σ2

nΣΣΣn

)
. (7.7)

en is a generated realization of the normal distributed noise vector EEEn with mean value 0 and
variance σ2

nΣΣΣn. For ΣΣΣn, a real data covariance matrix of the mission (or observation technique) is
used to have realistic characteristics of the model (noise characteristics and band-limited resolution).
The number of observations Mn was taken from the real data models, too. Finally, for the later use
of VCE λn = `̀̀TnQ−1

`̀̀n`̀̀n
`̀̀n is computed for the simulated NEQs using (4.8a) via

σ2
n =

(xEGM2008 + en)T Nn (xEGM2008 + en)− 2 (xEGM2008 + en)T nn + λn
Mn − Un

(7.8)

and fixing σ2
n to a defined value, λn is then

λn = σ2
n (Mn − Un)− (xEGM2008 + en)T Nn (xEGM2008 + en) + 2 (xEGM2008 + en)T nn (7.9)

Un is the number of parameters the NEQ is set up for. All information provided for a simulated
NEQ group s summarized in Tab. 7.1 and is available for the simulated data sets. The individual
data sets generated and their characteristics are summarized in Tab. 7.2.
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Table 7.2: Data sets based on NEQs used in the closed-loop simulation scenario.

n name NEQ/ΣΣΣn reference nn d/o σn

0 SLR IWF-SLR Maier et al. (2012) EGM2008+ N
(
0, σ2

nN
−1
n

)
2–5 0.0606

1 GRACE ITG-Grace2010s Mayer-Gürr et al. (2010b) EGM2008+ N
(
0, σ2

nN
−1
n

)
2–180 1.2910

2 GOCE_SST EGM_TIM_RL04 Brockmann et al. (2013) EGM2008+ N
(
0, σ2

nN
−1
n

)
2–130 0.7454

3 GOCE_SGG EGM_TIM_RL04 Brockmann et al. (2013) EGM2008+ N
(
0, σ2

nN
−1
n

)
2–250 0.8165

7.3.1.2 Data sets based on OEQs

The simulation of observations is straightforward. To simulate different data sets, a global grid,
covering the whole Earth is partioned into different groups. Each observation group stands for a data
set from a specific geographical region. Over land, gravity anomalies (in spherical approximation)
are simulated from EGM2008 for spherical harmonic degrees 2–720 as point-wise measurements.
As observation error, uncorrelated noise from a diagonal covariance matrix ΣΣΣ`̀̀o`̀̀o = σ2

oQQQ`̀̀o`̀̀o was
added. The diagonal entries

√
QQQ`̀̀o`̀̀o(i, i) of the cofactor matrix are randomly generated for every

data point following an uniform distribution between 0.9 and 1.1. This corresponds to a variation
of the standard deviation within a single group of ±10 %. This diagonal cofactor matrix is assumed
to be known in the algorithm, whereas the value of σo used in generation of the noise is estimated
from the data. A regular 0.2◦×0.2◦ grid was used over the land areas and afterwards partioned to
the geographical zones.

Over the oceans, altimetry observations along a virtual CryoSat-2 orbit (reference orbit provided
by ESA) are simulated from EGM2008. As a simplification for this study, the dynamic ocean
topography was neglected, thus it is assumed altimetry directly observes the static geoid11. Six
30-day sub-cycles (sc1–sc6) of different accuracies are introduced as individual observation groups
for which a weight is estimated. The along-track observations were sampled with 1/3 Hz (for the
simulations). The noise is generated in the same way as for the data sets over land. The typical
along track error characteristic of altimetric measurements was neglected in the simulation, instead
a white noise was added. For that reason, the standard deviation of a single observations was chosen
higher than expected for real data with an a-long track error characteristic.

All necessary information on all O = 17 data sets is listed in Tab. 7.3. The data sets (the pointwise
standard deviations of the observations) are in addition shown in Fig. 7.1 (accuracy levels in terms
of standard deviations of the involved data sets).

7.3.2 Results of the Closed Loop Simulation

The developed software is used to derive the spherical harmonic coefficients for d/o 2–720 (519 837
parameters, 2 TB NEQ matrix) and the estimates for the unknown weights from the simulated
data introduced above (> 4 · 106 observations plus 4 NEQ groups). This section only demonstrates
the estimates for the parameters and the covariance and does not cover the runtime analysis of
implementation which is covered in Sect. 7.4.

The simulated data sets are combined to compute a least squares solution together with the weights.
The in a computational sense rigorous solution is computed as a demonstrator for an application
of the implementation to real data. Starting the iteration process with σo = σn = 1.0 for the
VC and thus wi = 1, ηmax = 4 VCE iterations are performed. K = 5 additional RHS for the
Monte Carlo based trace estimation were used within VCE. All in all the system was set up and

11For studies, where parts of the derived implementation were used to co-estimate the MDT, see Becker et al.
(2014a, 2013, 2014b).
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Table 7.3: Data sets o introduced to the algorithm on the level of observations and used in the
simulation. The observations were generated from EGM2008 for d/o 2–720.

o name functional no σo
√
QQQlolo (i, i)

0 CryoSat-2 sc1 geoid height 577 272 12.0 cm ∼ U (0.9, 1.1)
1 CryoSat-2 sc2 geoid height 577 293 13.0 cm ∼ U (0.9, 1.1)
2 CryoSat-2 sc3 geoid height 577 479 14.0 cm ∼ U (0.9, 1.1)
3 CryoSat-2 sc4 geoid height 577 211 15.0 cm ∼ U (0.9, 1.1)
4 CryoSat-2 sc5 geoid height 577 479 12.1 cm ∼ U (0.9, 1.1)
5 CryoSat-2 sc6 geoid height 577 211 13.1 cm ∼ U (0.9, 1.1)
6 Africa anomalies 63 750 21.0 mGal ∼ U (0.9, 1.1)
7 Antarctica anomalies 155 576 22.0 mGal ∼ U (0.9, 1.1)
8 Australia anomalies 17 276 14.0 mGal ∼ U (0.9, 1.1)
9 Eurasia anomalies 163 691 13.0 mGal ∼ U (0.9, 1.1)

10 Greenland anomalies 17 061 24.0 mGal ∼ U (0.9, 1.1)
11 Indonesia anomalies 5 095 17.0 mGal ∼ U (0.9, 1.1)
12 Island anomalies 497 12.0 mGal ∼ U (0.9, 1.1)
13 New Zealand anomalies 724 11.0 mGal ∼ U (0.9, 1.1)
14 North America anomalies 75 048 10.0 mGal ∼ U (0.9, 1.1)
15 South America anomalies 38 504 25.0 mGal ∼ U (0.9, 1.1)
16 North Pole Cap anomalies 23 400 23.0 mGal ∼ U (0.9, 1.1)

solved for 106 RHS (K(O + N) + 1). All steps introduced in Sect. 7.2 (NEQ assembly, solution
and VCE) are repeated four times with updated weights. Fig. 7.2 shows the four derived solutions
(named FULL_00–FULL_03) as solid lines in terms of degree variances with respect to the “true”
EGM2008 model (black solid line). In addition, the estimated formal errors are shown as dashed
lines. The sub-plot which covers the whole spectrum (degrees 2–720) shows only a different behavior
of the solution FULL_00 and the other solutions. A difference between FULL_01, FULL_02 and
FULL_03 in the coefficient differences and in the formal errors is not visible. As the standard
deviations are all assumed to be 1.0 in FULL_00, i) the error estimates are much to optimistic and
ii) the combination of the different data sets does not work properly. As the surface data enters
the solution with higher weight, it dominates the solution, also in the overlapping areas with the
satellite data (available as NEQs in the degree range 2–250). After the first VCE iteration, the
estimated standard deviations are in the correct order of magnitude. The solution, as well as the
error estimates significantly improve (green, blue and orange line). As the formal error estimates
and the differences agree well, not all lines are visible in the plot.

Three additional zooms are shown in Fig. 7.2, zooming into the low, medium and high degree range.
The zoom plots show some additional differences between the FULL_01 and FULL_03 solution.
Larger differences occur in the error estimates. Using degree variances only, differences between
the FULL_02 and FULL_03 solutions are not visible. As it is a simulation only, used for a proof
of concept, no other comparisons are done for the different solutions. To demonstrate that the
developed software can handle the presented simulation scenario, the degree variance comparison is
sufficient. Demonstrating additional differences between the solutions has no added value.

To verify the estimated variance components used for relative weighting, Tab. 7.4 shows the initial,
the estimated as well as the true standard deviations (σn,o =

√
1/wn,o) for all groups n and o used

in the simulation. The estimates of all four iterations are provided. The relative error with respect
to the true value

δ(ν)
n,o :=

|σ(ν)
n,o − σtruen,o |
σtruen,o

(7.10)

is provided for the first and the final estimate.

After four iterations, all standard deviations, except for four groups, are recovered with an error
smaller or equal to 0.5 %. Of course, the larger the group, the better the estimate for the variance
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(a) Standard deviations of generated observation of the
surface data (in mGal).

(b) Standard deviations of generated observation over the
ocean areas (in cm, subset only).

(c) Local zoom into the standard deviations of
generated observation over the ocean areas (in
cm over the ocean, mGal in land areas).

(d) Local zoom into the standard deviations of
generated observation over the ocean areas (in
cm over the ocean, mGal in land areas).

Figure 7.1: Accuracies of the simulated observation data sets. It should be noted that different
scales and units are used.

component, as the number of samples the VC is estimated from is higher. For the NEQ groups,
larger refers to the number of parameters, whereas for the OEQ groups it refers to the number of
observations (dimension of the generated samples). The four groups, where the error remains above
0.5 % are the four smallest groups. On the one hand, i.e. group n = 0 (SLR NEQs), in which the
sample used to generate the synthetic RHS has only 32 entries. A small sample of 32 values was
used to generate the stochastic RHS, which is used to estimate the VC later on. Nevertheless, the
error of that group is 0.9 % only. The same holds for the remaining larger errors in the OEQ groups
11, 12 and 13. The errors there are 1.7 %, 6.3 % and 3.8 %. But again the number of observations
is small in the groups (5095, 497 and 724 respectively). These groups are much smaller compared
to the other groups (4 to 1000 times, cf. Tab. 7.3).

Another source of errors in the estimates of the variance components is the stochastic part within
the used Monte Carlo based estimator. This part covers only the partial redundancy rn,o (cf. (4.14)
and (4.17)). Effects of an error in the estimates of the partial redundancy, or more precisely in
Υn,o are studied in Brockmann and Schuh (2010). The analysis is not performed here, as the error
strongly depends on the configuration of the data sets. Because the estimates were derived as the
mean value from K = 5 samples per group, the error from the stochastic trace estimation is assumed
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(c) Zoom to medium degrees.
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(d) Zoom to high degrees (linear!).

Figure 7.2: Degree (error) variances of the four VCE solutions with respect to the true EGM2008
model. Degree error variances estimated from coefficient differences are shown as solid
lines, whereas the error variances computed from formal errors are shown as dashed
lines. Note that the formal error estimates are hard to see for iterations 1–3, as they
agree with the solid lines.

to be small. Some details are studied in Sect. 8.4.1, where the same scenario is analyzed with the
iterative solver.

7.3.3 Application of the Full Covariance Matrix as Demonstrator

The assembled combined NEQ — or its inverse as the full covariance matrix — can be easily used
in a further analysis or in applications requiring the full NEQ or covariance matrix within the
developed framework. To demonstrate that for instance the tool for variance propagation can be
easily used with the high resolution NEQ, Fig. 7.3(a) shows the propagation of the full covariance
matrix to geoid height errors for the full spectrum (degree 2 to 720) to points on a regular 0.2◦×0.2◦

grid. The runtime was less than 3.5 h on a 64× 64 compute core grid.
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Table 7.4: Standard devitions σn,o = 1/
√
wn,o as derived by VCE for OEQ and NEQ groups. The

values are provided for all iterations performed. The last two columns provide the relative
error w.r.t. the true value which was used in data generation.

group n/o σ
(0)
n,o σ

(1)
n,o σ

(2)
n,o σ

(3)
n,o σ

(4)
n,o σtrue

n,o

|σ(1)
n,o−σtrue

n,o |
σtrue
n,o

|σ(4)
n,o−σtrue

n,o |
σtrue
n,o

n 0 1.0000 0.0642 0.0612 0.0612 0.0612 0.0606 6.0 % 0.9 %
1 1.0000 1.3187 1.2900 1.2900 1.2900 1.2910 2.1 % 0.1 %
2 1.0000 0.7460 0.7453 0.7453 0.7453 0.7454 0.1 % 0.0 %
3 1.0000 0.8347 0.8165 0.8165 0.8165 0.8165 2.2 % 0.0 %

o 0 1.0000 12.1605 12.0208 12.0063 12.0045 12.0000 1.3 % 0.0 %
1 1.0000 13.0110 12.9915 12.9922 12.9932 13.0000 0.1 % 0.1 %
2 1.0000 13.9302 13.9988 14.0084 14.0084 14.0000 0.5 % 0.1 %
3 1.0000 14.8300 14.9925 15.0086 15.0099 15.0000 1.1 % 0.1 %
4 1.0000 12.2302 12.1252 12.1139 12.1136 12.1000 1.1 % 0.1 %
5 1.0000 13.1059 13.0771 13.0756 13.0757 13.1000 0.0 % 0.2 %
6 1.0000 20.9709 21.0673 21.0717 21.0985 21.0000 0.1 % 0.5 %
7 1.0000 21.9317 21.9460 21.9471 21.9421 22.0000 0.3 % 0.3 %
8 1.0000 13.9250 13.9456 13.9732 13.9924 14.0000 0.5 % 0.1 %
9 1.0000 13.0154 13.0258 13.0406 13.0337 13.0000 0.1 % 0.3 %

10 1.0000 24.0069 24.0118 24.0505 24.0857 24.0000 0.0 % 0.4 %
11 1.0000 16.4228 16.5811 16.7056 16.7105 17.0000 3.4 % 1.7 %
12 1.0000 12.6329 12.6125 12.5659 12.7543 12.0000 5.3 % 6.3 %
13 1.0000 10.6277 10.6284 10.5441 10.5860 11.0000 3.4 % 3.8 %
14 1.0000 10.0205 9.9896 9.9912 9.9864 10.0000 0.2 % 0.1 %
15 1.0000 24.7752 24.9982 24.9744 25.0293 25.0000 0.9 % 0.1 %
16 1.0000 22.9758 22.9806 22.9874 22.9867 23.0000 0.1 % 0.1 %

In addition, Fig. 7.3(b) shows the eigenvalues λ of the full NEQ matrix, computed with the SCALA-
PACK pdsyev function. The condition κ of the NEQ is

κ :=
λmax

λmin
= 1.97 · 108. (7.11)

The runtime was 13.5 h on a 64× 64 compute core grid.

The results should not be analyzed further, but are used to show that the computations can be
easily done using the developed framework. The results will be used in the future to evaluate the
quality of the preconditioners within iterative solvers (e.g. for the preconditioner models discussed in
Sect. 8.3.1.1). The huge NEQ can be easily handled and operated on using the developed framework.
Further analysis, like computations of eigenvectors, or contribution analysis can be performed the
same way as done for the GOCE application (cf. Sect. 6.5.4) for the high resolution NEQs.

7.4 Runtime Analysis of Assembly and Solution

This section shows the runtime characteristics of the implemented solver. The overall characteristics
as well as the characteristics of the individual steps are assessed. The focus is put to the scaling
behavior of the individual steps. As the most demanding step is the update of the NEQs with
the high resolution groups provided as OEQs, this step is analyzed in more detail. The simulation
scenario mentioned above was used for the performance analysis. To save computing time, only
partial data sets were analyzed in the different setups modifying the compute core grid and/or
the block-cyclic distribution. To get an idea, the runtime of a single VCE iteration for the whole
simulation mentioned above was 10.5 h using a 64× 64 (N = 4096 cores) compute core grid. Thus,
the assembly and solution of NEQ with 520 000 parameters from 4 million observations is possible
in 10.5 hours (including VCE). The runtime was 12 h, including the storage of the 2 TB NEQs on
disk. All (performance) simulations were performed on JUROPA at FZ Jülich (Jülich, 2013).
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(a) Full covariance matrix propagated to geoid height errors
(m).
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(b) Spectrum of eigenvalues of the full NEQ matrix.

Figure 7.3: Application and further analysis of the high resolution full covariance matrix (or NEQ)
to demonstrate that a further use of the huge covariance matrix/NEQ matrix is easily
possible within the derived framework.

7.4.1 Assembly of NEQs

7.4.1.1 Update with NEQ Groups

As long as the combined NEQ N should be composed from high resolution OEQ and band-limited
NEQ groups, the update of the N with the groups n provided as NEQs is a less challenging step with
respect to runtime. Provided that the full NEQs (as in the test scenario, which is close to a probably
real-data scenario) only cover a small subset of the parameter space and their number N is small,
the processing time of the groups n remain insignificant. E.g., N is updated with the tiny SLR
NEQs in about 10 s (using a compute core grid of 64× 64, including all necessary steps introduced
in Sect. 7.2.1). For this tiny NEQs, it does not make sense to study the compute core grid dimension
and the performance using other parameters, as the compute core grid is totally over-dimensioned
for that system of NEQs. For the largest NEQs used here, the 30 GB GOCE SGG NEQs, the
whole update step takes less then 500 s (already including the computation of wn), varying with the
compute core grid. Compared to the runtime of the processing of the OEQ groups it is the same as
needed for the processing of 75 000 observations and thus about 1.5 % of the total runtime. It does
not make sense to optimize the block-cyclic distribution or compute core grid with respect to the
NEQ groups. Of course, in other scenarios, e.g. only combining preprocessed (higher-dimensional)
NEQs, an analysis makes sense. Anyway, the percentages from the individual steps involved in
NEQ processing are given in Tab. 7.5 to provide information where potential optimizations could
be useful and the computing time is spend.

The runtime needed is dominated (32 %) by the reordering step (cf. Alg. 7.1, l. 14–18). The
runtime of the step is significantly influenced by the numbering schemes. Depending on ppp and
pppn, the number of required row and column interchanges significantly vary. In the worst case,
Un row and column interchanges have to be performed. In the best case, i.e. ppp = pppn(1 : Un),
no row and column interchanges are needed at all. The second most expensive steps are the I/O
operations (26 %), reading the original NEQs from disk twice (for the update of N and the sample
transformation + VCE). If the conversions of the NEQs (physical constants and reduction of the
RHS) are included, these steps require (37 %) of the total runtime. The remaining time is mainly
spend for the RHS generation (25 %), covering the individual steps of the Cholesky factorization of
Nn, the transformation of samples and reordering of RHS for the update of the combined RHS. Note
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that the runtime for all steps significantly depends on the parameter space and thus the dimension
of Nn.

7.4.1.2 Update with OEQ Groups

Only the processing of the group o = 0 is used for the runtime analysis of the update of N with
the groups provided as OEQs as the runtime is linear in the number of the observations (sequential
loop over observations in blocks of bobs).

Local Computation of NEQs Using Serial Design Matrices Fig. 7.4 shows the runtime
analysis and the scaling behavior of the method as introduced in Sect. 7.2.2.2 (especially Alg. 7.3).
The block size bobs is automatically determined at runtime, such that (if adequate memory is
available) the resulting local serial design matrices are approximately square (bobs = 2 (U ÷ R))
matrices. The block-cyclic distribution parameters where fixed to br = bc = 64 and a quadratic
compute core grid was varied from 40× 40 (i.e. N = 1600) to 88× 88 (i.e. N = 7744).

The green curves show the runtime and the scaling results for the whole processing step, i.e. the
update of N with the observations of OEQ group o = 0 (l. 16–57 in Alg. 7.3). For all compute core
grids analyzed the runtime is significantly decreasing if the number of cores in the compute core
grid increases. The scaling shows a close to linear behavior for all grids. For the extrema analyzed,
i.e. using 4.84 times more cores (7744 instead of 1600), the runtime is 4.1 times faster. For this very
high number of cores, this scaling behavior is still very good. The curve is not smooth (e.g. peak
for the 72× 72 grid), as the measurement of the wall clock time result from a single run only. The
higher runtime might be a random result, related to the hardware as the involved nodes differ using
different compute core grids or to a general higher activity in the HPC environment. Alternatively,
it might be related to an inappropriate combination of the block-cyclic distribution, compute core
grid and the number of observations and parameters analyzed for that setup. A final explanation
could not be identified.

The brown and the orange curves show the runtime behavior for the update of N with the obser-
vations of group o, i.e. the computation of Nl

r,c+ = AT
r Ac (cf. l. 22 respectively 32 in Alg. 7.3).

The runtime for the local computation of Nl
r,c is measured in every pass of the b-loop where bobs

observations are processed at once. The runtime is measured individually on every core. After that
computation and before the update of the RHS, a synchronization step is required (as global MPI

Table 7.5: Runtime needed for the steps of the update of N with the GOCE SGG NEQs using a
64× 64 compute core grid (br = bc = 64). In addition the percentage of the steps at the
total runtime is provided.

operation time (s) %

cf. Alg. 7.1, l. 10 read NEQs 51.1 13.6
cf. Alg. 7.1, l. 13 conversions (inc. RHS reduction) 20.0 5.3
cf. Alg. 7.1, l. 14–18 extend and reorder 118.7 31.6
cf. Alg. 7.1, l. 19 update N, n 0.4 0.1
cf. Alg. 7.1, l. 34 read NEQs 49.8 13.2
cf. Alg. 7.1, l. 35 conversions (inc. RHS reduction) 20.3 5.4
for (4.8b) reorder and trim x 6.4 1.7
for (4.8b) compute Ωn 22.3 5.9
cf. Alg. 7.1, l. 36 Cholesky of Nn 31.1 8.3
cf. Alg. 7.1, l. 27–42 generate and transform MC RHS 28.5 7.6
cf. Alg. 7.1, l. 39f. extend and reorder MC RHS 27.4 7.3
cf. Alg. 7.1 total 376.0 100.0



118 7. Application: High Degree Gravity Field Determination Using a Direct Solver

40× 40
= 1600

48× 48
= 2304

56× 56
= 3136

64× 64
= 4096

72× 72
= 5184

80× 80
= 6400

88× 88
= 7744

1 000

5 000

10 000

200

500

compute core grid

m
ea
su
re
d
ru
nt
im

e
[s
]

total (synchronized)
ATA (mean of cores)
ATA (synchronized)
AT `̀̀ (synchronized)

build A, `̀̀ (synchronized)

(a) Absolute runtime measured for the operations for the assembly of
the NEQs for group o = 0 on different compute core grids.

1
= 1600
(40× 40)

1.44 1.96
= 3136
(56× 56)

2.56 3.24
= 5184
(72× 72)

4 4.84
= 7744
(88× 88)

1

2

3

4

5

# cores and compute core grid

sc
al
in
g
b
eh
av
io
r
n
or
m
al
iz
ed

to
16
00

co
re
s
[
] total (synchronized)

ATA (mean of cores)
ATA (synchronized)
AT `̀̀ (synchronized)
build A (synchronized)
ideal

(b) Scaling behavior of the operations
normalized to the runtime using the
40× 40 = 1600 compute core grid.

Figure 7.4: Measured performance of the implemented algorithm for the computation of NEQs
from the OEQ groups using serial design matrices. Results are shown for all operations
involved (green) and the three most intensive operations (computation of AT

o Ao (orange,
brown), computation of the RHS (blue) and the (repeated) setups of Ao (red)). The
difference between the three most intensive steps shown and the total runtime is not
shown here. It is in the order of less then 10 s.

communication is performed to share the random MC samples) in the implementation. Two varia-
tions of runtime measurements are shown. For every core, the sum of all b-loop passes is computed
and the average of the runtime from all cores is shown as the orange line. This runtime measurement
is a kind of unsynchronized measurement, as the synchronization time is neglected and the timer
starts when the computation starts and stops directly when the local computation finishes. Some
cores are idle and have to wait until all other cores performed the computation. Thus the pure
runtime of the computation as well as the scaling are very smooth and the scaling is good, linear
and nearly ideal. The mean runtime measurement covers only the serial computation time (cf. l. 22
respectively 32 in Alg. 7.3).

In contrast to that, the brown line shows the runtime for the Nl
r,c computations, including the

synchronization time. Instead of an average value, the runtime of the slowest core is summed
up in every pass of the b-loop. Thus the total runtime gets slower as it is driven by the slowest
computation in every loop pass, and consequently the scaling slightly degrades. Nevertheless the
performance measurement is better suited for a fair computation of the scaling behavior. Although
the scaling is not ideal, the behavior is still good (4.4 instead of the perfect 4.84) and remains
linear. As the total runtime is dominated by this computation step (approximately 81 %–89 %),
the brown curve behaves as the green curve, showing the total runtime. Due to several reasons, the
individual computing time on the individual cores differs in the range of −1 %–13 % compared to
the average computing time. Whereas the effect of load balancing, i.e. differences in the size of the
local matrices Nl

r,c on different cores can be quantified with +1 %–1 %, the major systematic effect
of different computing time is that the computation on the diagonal cores (cf. l. 22 in Alg. 7.3) is
slightly slower (dsyrk instead of dgemm but for twice the number of observations). This effect can
be quantified with 3.5 %–7 %. For the maximal value seen in the study, i.e. a 13 % slower runtime,
the reason could not be identified. It was measured on a core in the middle of the compute core grid,
without special properties with respect to the data distribution or communication requirements. It
might be a random effect or related to system or hardware events.

The blue curve covers the runtime of the RHS computation, including the generation of the Monte
Carlo samples (l. 34–53 in Alg. 7.3). The runtime for this step is decreasing with an increasing
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number of cores. But the scaling is far away from linear. This is to be expected, because only
the cores storing local matrices of the RHS vector perform computations. For the setup analyzed,
i.e., 106 RHS and br = 64, only two columns of the compute core grid are involved in the RHS
computations. Thus the scaling is not linear but related to the square root of

√
N (or more precisely√

N/N1). For the extrema analyzed, i.e. using 4.84 times more cores (7744 instead of 1600), the
runtime is 2.1 times faster (

√
4.84 = 2.2). Note that this computations are synchronized. Collective

communication along a column of the compute core grid is used to share the generated random
samples.

The last runtime measurement shown is the one for the repeated setup of A (Ar and Ac in l. 34–53
in Alg. 7.3). Although the scaling is not linear, the runtime increases with the number of addi-
tional cores in the compute core grid. Only 5 %–8 % of the runtime are spend for the setup of A
(cf. l. 20–21 or l. 30–31). The scaling of this step is closely related to the numbering scheme, which
can be optimized to reduce redundant recursive computations during Legendre function computa-
tion (cf. Sect. 8.3.3.2). The optimized numbering scheme introduced there was not included in this
computation. The runtime and the scaling behavior of this step depends on the block-cyclic distri-
bution parameters, the compute core grid and significantly the chosen predefined target numbering
scheme.

All other steps of Alg. 7.3 like data I/O and further initializations are not shown in detail. These
operations are very fast and are in the order of less than 10 s for all compute core grids (Difference
of total runtime and the runtime required for the three steps mentioned).

Distributed Computation of NEQs using Block-cyclic Distributed Matrices For appli-
cations of the implemented software where correlated observations are analyzed, the method which
sets up the design matrix as a block-cyclic distributed matrix (cf. Sect. 7.2.2.1) has to be used. The
performance is not studied in much detail, as it is dominated by the pdsyrk performance and thus
depends only on the SCALAPACK/PBLAS performance. Nevertheless, some general studies on the
performance are provided, as this studies for such high dimensional matrices are rare in literature.
Again, only the observations of group o = 0 were analyzed.

Comparison to the “serial” Implementation and Compute Core Grid Dependence
Within a first study, the runtime is compared to the tailored method studied above. The simulation
was performed on the 40 × 40, 64 × 64 and 88 × 88 compute core grid. br = bc = 64 was chosen
and bobs = 250 000 (for 40× 40 compute core grid, memory limitation) and bobs = 520 000 (for both
other grids, approximately square design matrix) were processed in a single pass of the b-loop.

Tab. 7.6 shows the wall clock time for the computation of N for the first group o = 0. The main
conclusion is, that the self implemented version for uncorrelated observation is always faster, from
2.2 to 1.3 times, than the standard implementation using the block-cyclic distributed matrices for
the observation equations. The performance of the block-cyclic method for the 40×40 compute core
grid is poor. This is related to the PBLAS performance of pdsyrk, as due to memory limitation, the
block-cyclic distributed design matrix is not quadratic, but of dimension 250 000 × 519 837 within
the b loop. In the “serial” method, parts of Ao are set up more then once. It is obvious, that the
runtime for the setup of Ao is much higher. The same holds for the computation of the RHS, where
in the serial method, parts of Ao are newly set up. In the block-cyclic method Ao is only computed
once. In addition, within the block-cyclic methods, all cores are involved in the RHS computation,
as every core stores parts of Ao.

Due to the limited number of compute core grids studied, the scaling of the block-cyclic method
is not presented in detail. As in addition the performance of the smallest compute core grid is
poor (see above), the numbers of the scaling are not meaningful. The scaling for the block-cyclic
method from the 64 × 64 to 88 × 88 compute core grid (1.9 times more cores) can be realistically
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Table 7.6: Runtime measurements comparing the two implementations for the computations of
NEQs from OEQs (serial cf. Alg. 7.2, Sect. 7.2.2.1, block-cyclic cf. Alg. 7.3, Sect. 7.2.2.2).
Whereas the compute core grid is varied, the block-cyclic distribution is fixed for both
methods to br = bc = 64.

grid implementation runtime ATA AT `̀̀ build A other
s s s s s

40× 40 serial 10 237 9 098 536 508 95
block-cyclic 22 951 not separately measured

64× 64 serial 4 228 3 591 346 278 13
block-cyclic 6 010 6 001 4 5 0

88× 88 serial 2 517 2 050 260 202 5
block-cyclic 3 360 3 351 6 2 1

determined. The runtime for all operations is 1.8 times faster, which is slightly better than for the
serial implementation, where the scaling is 1.7.
Block-cyclic Distribution
The compute core grid was fixed to 64 × 64 and the parameters of the block-cyclic distribution
br and bc ware varied. Fig. 7.5(a) shows the runtime for different cases with br = bc. Only the
characteristics of the total runtime is shown, as it is dominated by the runtime for the computation
of N+ = AT

o Ao. For all cases analyzed, the runtime for the setup of AT
o as well as the computation

of n+ = AT
o `̀̀o is insignificant and varies between 3 s and 7 s. Three simple conclusions follow:

• The minimum is found for br = bc = 60. The suggested default value performs slightly worse
(5 % additional runtime).
• Small block-sizes perform worst, about 20 % additional runtime is needed.
• The largest block-sizes tested, br = bc > 120 again have close to minimal runtime character-

istics.

Choosing the default value br = bc = 64 again serves a good runtime (for pdsyrk, as dominant).
Shape of the Compute Core Grid
The shape of the compute core grid was studied for a compute core grid with N = 4096 compute
cores. The update of N with group o = 0 was repeated varying the shape of the compute core grid.
The block-cyclic distribution parameters were fixed to br = bc = 64. Fig. 7.5 shows the runtime
changes normalized to the value compute core grid for which the runtime was minimal (128× 32).
As again the runtime is dominated by the computation of N+ = AT

o Ao and thus pdsyrk, the
following conclusions mainly hold for the SCLAPACK function:

• The quadratic compute core grid is the second best, nevertheless, 11 % additional runtime is
required.
• The close to quadratic grid, with more rows than columns (128×32) has the best performance

characteristics.
• The other compute core grids tested perform worse, with 15 % to 25 % additional runtime

required.

As for both, the block-cyclic distribution parameters and the shape of the compute core grid im-
provements of 5 % to 10 % are observable, it is useful to perform some tests on a subset of the
observations on the used hardware. The runtime reduction for a full-scale analysis of a huge data
volume can be significant. The quadratic compute core grid and the suggested default values for
br = bc = 64 seem to be good stating values, but additional performance gain in the range of 10 %
to 15 % remains possible.
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(b) Runtime change for different shapes of the compute
core grid. Shown is the additional runtime, normalized to
the minimal runtime obtained for the 128 × 32 compute
core grid.

Figure 7.5: Dependence of the runtime for NEQ assembly of the compute core grid and the block-
cyclic distribution.

7.4.2 Solving and Inverting the NEQs

Deriving the solution of the NEQs via forward and backward substitution is an easy task working
with block-cyclic distributed matrices and SCALAPACK, as this tasks can directly be solved with
existing SCALAPACK functions (i.e. pdpotrf for the Cholesky decomposition, pdpotrs for the
forward and backward substitution and pdpotri for the computation of the inverse from the already
factorized matrix). Within the runtime analysis shown, the NEQ from the simulation scenario was
used (519 837× 519 837) with a RHS of dimension (519 837× 200).

7.4.2.1 Choice of the Block-cyclic Distribution Parameters

Within the runtime test, the compute core grid is fixed to 64× 64 and the parameters of the block-
cyclic distribution br and bc are varied. Using the different block-sizes, the runtime for the Cholesky
decomposition, forward and backward substitution and the inversion of the already Cholesky reduced
matrix are measured. The measured wall clock time for the whole operation and the three partial
steps are shown in Fig. 7.6.

The main conclusion is that using SCALAPACK and the implemented interface, it is possible to
derive the solution in less than one hour and the inverse in less than two hours, having in mind the
dense large system with 519 837 unknowns. Thus, in less than three hours the whole task is solvable
without computationally motivated approximations.

Whereas the relative runtime of the partial steps behaves as expected (1/3 Cholesky, 2/3 inversion
and solution insignificant), the inversion and the Cholesky reduction show different behaviors when
varying br and bc. The runtime for the Cholesky decomposition slightly decreases with increasing
br = bc. Additional runtime of 47 % to 16 % is needed for (br = bc) < 75. Above 75, the variations
are in the range of 1− 7 %, which might not be significant, as the numbers are derived from a single
experiment only.

In contrast to the Cholesky decomposition the runtime for the inversion does not provide obvious
systematic characteristics. Instead some minima can be seen, for which the runtime is very similar
(using br = bc = 60, 64, 96 and 128). It looks like a more or less constant but noisy behavior.
With the runtime measurements performed (the numbers were derived from a single run), clear
conclusions can not be drawn. The suggested default value of 64 is only 2.5 % slower than the
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Figure 7.6: Results for the wall-clock measurements of the solution and inversion of the NEQs
(519 837×519 837 with a RHS of dimension 519 837×200). Analyzed are the parameters
of the block-cyclic distribution, using a fixed 64 × 64 compute core grid. The runtime
for the total operation as well as for the partial operations (Cholesky decomposition,
solution via forward- and backward-substitution as well as the computation of the inverse
from the already Cholesky reduced NEQs) are shown.

minimal value observed. As the total runtime is dominated by the inversion, the general conclusions
for the optimal block-size for all operations are the same. As the dimension of the local matrices
is above 8000× 8000, the number of full sub-blocks of dimension br × bc is still large for all values
studied for br and bc. It varies from 200 (for br = bc = 40) to 60 (for br = bc = 140). As the
load leveling does not significantly change, the performance is similar for all studies block-sizes. An
exception is the smallest block-size which seems to be too small for an efficient cache-use and thus
the used BLAS-L3 routines within the SCALAPACK implementation of pdpotrf and pdpotri.

Due to the small number of columns of the RHS (200 only) and the general small runtime (1 min to
3 min) the solution step is very sensitive for the dimension of the sub-blocks. For the larger block
sizes the performance becomes poor, as only two columns of the compute core grid store the RHS.
As the runtime is insignificant compared to the other operations, it does not make sense to optimize
with respect to its behavior and thus it is not discussed.

The minimal runtime of 160 min is found for br = bc = 96 and br = bc = 128. It only differs in a
few seconds.

7.4.2.2 Choice of the Compute Core Grid

Due to computation time limits, the number of cores and the scaling is not studied as the steps
involved in the final solver are performed purely completely SCALAPACK routines. In different
setups is was found that the performance with N = 4096 is best. Instead a small test computation
is performed to demonstrate the dependence of the runtime from the used grid dimension. For that
purpose the Cholesky decomposition, the solution and the inversion are repeated, using N = 4096
cores and the distribution parameters br = bc = 96 (cf. Sect. 7.4.2.1). The shape of the grid was
varied from 16× 256 to 128× 32. The measured runtime and the percentage of the individual steps
at the total runtime are shown in Fig. 7.7.

The SCALAPACK implementation of the inversion and the Cholesky factorization show an inverse
behavior. Whereas the runtime needed for the inversion is decreasing, using more rows (R) in the
compute core grid, the runtime of the Cholesky factorization increases. The consequence is, that
the best performance for the whole solution step is found for the used quadratic compute core
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Figure 7.7: Measured performance of the solver with different shapes of the compute core grid.
Results are shown for all operations involved (red) and the three individual operations
(Cholesky decomposition in green, solution via forward- and backward-substitution in
orange and the computation of the inverse from the already Cholesky reduced NEQs in
blue).

grid (64 × 64). For the Cholesky decomposition many operations can be performed on a (block-)
row of the matrix in parallel (cf. (3.9)). During the computation of the inverse, operations can be
performed in parallel along a (block-) column of the already factorized matrix. For the grid with
R > C, the inversion is faster than the Cholesky factorization.

7.5 Application to Real Data

Only parts of the software were used to analyze real data yet. The software was used for the
combination of real data already preprocessed as NEQs only and thus O = 0. For instance it was
used in the preparation of the satellite-only models of the GOCO (Gravity Observation Combination
Consortium, Pail et al., 2014) series (GOCO01S, GOCO02S and GOCO03S Pail et al., 2010b,
Goiginger et al., 2011, Mayer-Gürr et al., 2012). In addition it was used for the VCE within the
estimation local MDT models combining gravity field NEQs with NEQs derived from altimetry
including a MDT representation as finite elements (for details see Becker et al., 2014a, 2013,
2014b). A further development for a joint global estimation of the gravity field and the MDT is
planed, extending the method developed in Becker (2012) to the global scope.

It is impossible to quantify the gain of the proposed rigorous solution compared to the currently
used alternatives. But for instance with the currently used approaches, it will never be possible
to introduce altimetric measurements in their original form — as along track sea surface height
measurements. They can only be analyzed as a gridded product. For such gridded products neither
error descriptions nor correlations exist. Thus, starting from the original observations will always
produce better solutions. The study and solution concept presented in this chapter should contribute
(to the computational aspects) on the way towards, for example, an analysis of physically motivated
observation equations for altimetry, which allows to jointly derive estimates for the gravity field,
the dynamic ocean topography and why not e.g. additionally a deterministic model for the ocean
tides.
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8. Application: Ultra High Degree Gravity Field
Determination Using an Iterative Solver

The motivation for the iterative solver presented in this chapter remains the same as for the direct
solver from Chap. 7. The advantage of the iterative solver is that, either the parameter space can
be increased or the solution for the same scenario is found but with reduced runtime (or on smaller
compute core grids available). As the covariance matrix of the parameters is not available using
the iterative solver, both solvers can be used in conjunction. For instance, as less computational
resources are required, the iterative solver can be used for parameter tuning (iterative data adaptive
estimation of VCs or refinement of the stochastic model) and the direct solver (cf. Chap. 7) for the
final solution, with the covariance matrix as an additional result.

This chapter is an extension of the study already published in Brockmann et al. (2014c), so some
parts of the chapter are taken from that study.

8.1 Problem Description

With an increasing number of unknowns, the estimation of the parameters via the assembly and
solution of the combined normal equations becomes unreasonable. On the one hand the computing
time increases and on the other hand the resulting NEQs or covariance matrices of several TB in size
are not easy to handle and get hardly usable in further applications. Nevertheless it makes sense to
implement a rigorous least squares solver to avoid computationally motivated approximations and
simplifications as done so far within combined global gravity field determination (Förste et al., 2012,
Pavlis et al., 2012, Reguzzoni and Sansò, 2012) for models with a very high resolution resolved to
very high spherical harmonic degrees (cf. Sect. 5.1).

Instead of the direct solution via the assembly of full NEQs, iterative solvers can be used to determine
(after convergence) a rigorous least squares solution or to determine tuning parameters for the direct
solver. As a wide range of iterative solvers exists, only the references to the overview chapters in
Golub and van Loan (1996, Chap. 10), Dongarra et al. (1990b, Chap. 7) and Schuh (1996, Chap. 8)
are provided. Eijkhout (1998) provides an overview of freely available serial and parallel libraries.
These solvers are often used, even if the parameter space is not huge, to derive a fast solution (in
the context of gravity field determination see e.g. Ditmar et al., 2003a, Klees et al., 2003, Pail
and Plank, 2003, Xie, 2005, Baur et al., 2008, Baur, 2009, Brockmann et al., 2010, Guangbin et al.,
2012, Farahani et al., 2013). As the mentioned studies use the iterative solver for satellite only
models (CHAMP, GRACE or GOCE), the number of parameters is limited (15 000-90 000). They
are often applied as serial implementations to solve the systems of equations with little computing
resources, e.g. on standard PCs or, as their parallel implementation on shared memory computers is
simple and straightforward, parallelized for shared memory systems. In contrast to the application
in global gravity field determination, iterative solvers are often used for large but sparse systems of
equations, e.g. solving discrete differential equations with a finite element approximation (see e.g.
Löf, 2004). This chapter presents an implementation of a massive parallel iterative least squares
solver, which is capable to compute the rigorous solution for gravity field models with hundreds
of thousands to millions of unknown parameters. The basic computational advantage compared
to the direct solution in Chap. 7 is that the time consuming computation of the product AT

i PiAi

is substituted by two iteratively repeated matrix-vector like products involving the design matrix
(matrix-matrix products when VCE is involved). Setting up a high quality preconditioner N⊕ —
i.e. a sparse approximation of N — the number of required iterations is small.
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The goal of this chapter is not to provide an alternative solution technique, but to present details
implementing a more or less well known iterative solver for dense systems in a massive parallel
HPC environment using the derived basic framework. A massive parallel implementation in a
HPC environment of the iterative preconditioned conjugate gradient (PCG) solver following the
(predefined) fundamentals is derived:

• The implementation should allow to determine the combined solution of an arbitrary number
of preprocessed normal equations.
• The implementation should be able to use an arbitrary number of observation groups of dif-

ferent observations types. Inclusion of covariance information in terms of covariance functions
should be possible.
• For every observation group involved (NEQ and OEQ) a weight in terms of inverse VCs should

be estimable.
• Group specific parameters should be possible.
• Different preconditioner types should be possible.
• The solver should be capable to operate on an arbitrary number of cores from ten to tens of

thousands.

In contrast to the GOCE application in Chap. 6 the computational challenge is not the number
of highly correlated observations. Whereas the direct solver in Chap. 7 was implemented to set
up the full NEQs for a high dimensional parameter space and thus to derive the full covariance
matrix, the challenge here is to derive a non-approximative least squares solution for even higher
dimensional parameter spaces. For the combination of NEQs and OEQs the Preconditioned Con-
jugate Gradient Multiple Adjustment (PCGMA) algorithm was proposed by Schuh (1995, 1996) as
a connection of the conjugate gradient algorithm proposed by Hestenes and Stiefel (1952) and the
extension for adjustment problems by Schwarz (1970). It is extended by VCE following the line of
thought of Kusche (2003) and Alkhatib (2007), i.e. the application and integration of the MC based
trace estimation into the iterative solver. In this chapter the basic (serial) PCGMA algorithm is
introduced, a massive parallel implementation in a HPC environment is developed and a simulation
scenario is used to demonstrate the possibilities and performance of the solver. The performance
analysis of a first full scale closed loop simulation is used to identify weaknesses of this first version
of the implementation. Several setups of the block-cyclic distribution and the compute core grid are
tested to identify usable setups for the iterative solver and to identify parts in the implementation
where potential for optimization remains. Due to the positive experiences with PCGMA for GOCE
data processing and existing studies (e.g. Schuh, 1996, Baur et al., 2008), the decision is fixed to
PCGMA and alternative iterative solvers are not discussed here.

8.2 Basic Algorithm Description of PCGMA including VCE

8.2.1 Basic PCGMA Algorithm

The basic PCGMA algorithm is summarized in Alg. 8.1, as proposed by Schuh (1996) for the data
combination problem cf. (4.6b) and extended by Boxhammer (2006). The expensive computations
for the assembly of N, especially No = AT

o Q−1
`̀̀o`̀̀o

Ao, are avoided. Instead only a few matrix-vector
multiplications have to be performed in each iteration (especially for the computation of h(ν), cf. l. 11
in Alg. 8.1). The result of the algorithm is a least squares estimate of the unknown parameters x̃
after ν iterations. In contrast to direct solution method (cf. Chap. 7), a covariance matrix of the
parameters cannot be determined in a direct efficient way. Monte-Carlo Simulations might be used
to obtain approximations for the covariance matrix (e.g. Gundlich et al., 2003, Alkhatib and Schuh,
2007, Alkhatib, 2007, Migliaccio et al., 2008).
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Because the individual steps of the algorithms are well known and are documented in many textbooks
and articles (e.g. Golub and van Loan, 1996, Shewchuk, 1994, Björck, 1998, Schuh, 1996, Press et al.,
2007, Chap. 3) the algorithm and the individual steps are not reviewed. Instead they are collected
in an algorithmic form in Alg. 8.1.

Algorithm 8.1: PCGMA algorithm following Schuh (1996).

Data:
N⊕ sparse preconditioning matrix νmax maximal number of PCGMA iterations
Ao design matrix of group o ∈ {0...O − 1} `̀̀o vector of observations o ∈ {0...O − 1}

Q`̀̀o`̀̀o cofactor matrix of group o ∈ {0...O − 1} wo weight for OEQ group o ∈ {0...O − 1}
Nn normal matrix for group n ∈ {0...N − 1} nn right hand side of NEQ for n ∈ {0...N − 1}
wn weight for NEQ group n ∈ {0...N − 1} x(0) initial values for parameters

r(0) =
∑N−1
n wn

(
Nnx(0) − nn

)
+
∑O−1
o woA

T
o Q−1lolo

(
Aox

(0) − `̀̀o
)

// compute initial joint residuals1

ρρρ(0) = solve
(
N⊕, r(0)

)
// apply preconditioner to residuals2

πππ(0) = −ρρρ(0) // initial search direction3
// PCGMA - iterations4
for ν = 0 to νmax − 1 do5

if ν > 0 then6
// update step for search direction7

eν = r(ν)Tρρρ(ν)

r(ν−1)Tρρρ(ν−1)8

πππ(ν) = −ρρρ(ν) + eνπππ
(ν−1)9

end10

h(ν) =
∑N−1
n wnNnπππ

(ν) +
∑O−1
o woA

T
o Q−1lolo

Aoπππ
(ν)11

// update step for parameters12

q(ν) = r(ν)Tρρρ(ν)

πππ(ν)Th(ν)13

x(ν+1) = x(ν) + q(ν)πππ(ν)14
// update step for residuals15

r(ν+1) = r(ν) + q(ν)h(ν)16
// apply preconditioner to residuals17

ρρρ(ν+1) = solve
(
N⊕, r(ν+1)

)
18

end19

return x(νmax)20

8.2.2 PCGMA Algorithm including VCE

The basic PCGMA algorithm in Alg. 8.1 is extended by VCE for an arbitrary number of variance
components. Because N is not computed within iterative solvers, but needed in standard VCE
cf. (4.9), the Monte Carlo based method is used as introduced in (4.14) and (4.17) (cf. Koch and
Kusche, 2002, Alkhatib, 2007, Brockmann and Schuh, 2010).

Whereas Ωi can be directly computed as for the direct solver, the computation of the partial
redundancies, especially the trace term in (4.14) and (4.17), has to be adapted as introduced in
Sect. 4.2.3. Including these steps, i.e. setting up the additional RHS and solving for the additional
parameters, into Alg. 8.1 yields the PCGMA algorithm with VCE as shown in Alg. 8.2.

The intention of Alg. 8.2 is to give a quite simple overview about the implemented algorithm. The
mathematical steps are not discussed in detail. Thus so far a major point is not addressed and not
taken into account in the algorithm. Not all NEQs are assembled for the same set of parameters.
Instead individual NEQs may just be assembled for a (small) subset of the parameters to be es-
timated. The NEQs differ in their dimension and consequently in their parameter ordering. This
point is addressed in the following section, in which the implementation in the HPC environment
is discussed and a concept for a massive parallel implementation is proposed.
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Algorithm 8.2: PCGMA algorithm extended for VCE.
Data:

N⊕ sparse preconditioning matrix νmax maximal number of PCGMA iterations
Ao design matrix of group o ∈ {0...O − 1} `̀̀o vector of observations o ∈ {0...O − 1}

Q`̀̀o`̀̀o cofactor matrix of group o ∈ {0...O − 1} wo weight for OEQ group o ∈ {0...O − 1}
Nn normal matrix for group n ∈ {0...N − 1} nn right hand side of NEQ for n ∈ {0...N − 1}
wn weight for NEQ group n ∈ {0...N − 1} x(0,0) initial values for parameters

ηmax maximal number of VCE iterations k number of Monte Carlo samples
for η = 0 < ηmax do1

X(η,0) =
[
X(η−1,0) 0 · · · 0

]
// compose start solution, 0 for the k*(N+O) MC parameters2

R(0) = 0 // initialize combined residuals with 0, dimension: # parameter ×(N +O)k + 13
// add contribution by NEQ group n4
for n = 0 < N do5

// Generate Monte Carlo Samples for all groups n, dimension: #parameter × k6
Pn = ±1 ∼ U (−1, 1)7
// sample transformation8
Rn = chol (Nn) // operation chol applies Cholesky factorization9
P̄n = RT

nPn10
// right hand sides for group n, first column to insert P̄n: 1 + (n− 1)k11
Bn =

[
nn 0 · · · 0 P̄n 0 · · · 0

]
12

R(0)+ = w
(η−1)
n

(
NnX

(η,0) −Bn

)
13

end14
// add contribution by OEQ group o15
for o = 0 < O do16

// Generate Monte Carlo Samples for all groups o, dimension: #observations × k17
Po = ±1 ∼ U (−1, 1)18

Go = chol
(
Q−1
`̀̀o`̀̀o

)
19

// right hand sides for group o, first column to insert Po: 1 +Nk + (o− 1)k20
Lo =

[
Go`̀̀o 0 · · · 0 Po 0 · · · 0

]
21

R(0)+ = w
(η−1)
o AT

oGo
T
(
GoAoX

(η,0) − Lo
)

22
P̄o = −R(0)(1 +Nk + (o− 1)k : 1 +Nk + (o− 1)k +K, :)23

end24

ΓΓΓ(0) = solve
(
N⊕,R

(0)
)

// apply preconditioner to residuals25
ΠΠΠ(0) = −ΓΓΓ(0) // initial search direction26
// PCGMA - iterations27
for ν = 0 to νmax − 1 do28

if ν > 0 then29
// update step for search direction30

Eν = R(ν)TΓΓΓ(ν)

R(ν−1)TΓΓΓ(ν−1) element-wise division!31
ΠΠΠ(ν) = −ΓΓΓ(ν) + Eν ◦ΠΠΠ(ν−1) ◦ := scaling of column k with Eν(k, k)!32

end33
H(ν) =

∑N−1
n wnNnΠΠΠ(ν) +

∑O−1
o woA

T
oGo

TGoAoΠΠΠ
(ν)34

// update step for parameters35

Q(ν) = R(ν)TΓΓΓ(ν)

ΠΠΠ(ν)TH(ν) element-wise division!36
X(η,ν+1) = X(η,ν) + Q(ν) ◦ΠΠΠ(ν) ◦ := scaling of column k with Qν(k, k)!37
// update step for residuals38
R(ν+1) = R(ν) + Q(ν) ◦H(ν) ◦ := scaling of column k with Qν(k, k)!39
// apply preconditioner to residuals40

ΓΓΓ(ν+1) = solve
(
N⊕,R

(ν+1)
)

41
end42
// update weights of OEQ groups i (o and n) using eq. (4.7) and (4.8a), (4.22)43

w
(η+1)
i = computeVCE(X(η,νmax), P̄i)44

η = η + 145
end46

return X(ηmax,νmax), w
(ηmax)
o , w

(ηmax)
n47
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8.3 Computational Aspects and Parallel Implementation

The basic algorithm and a simple form of its parallel implementation is well known. Within this
section, the massive parallel implementation of the PCGMA algorithm tailored for the combination
of complementary data on a HPC cluster is summarized. Standard concepts of scientific HPC as
introduced in Sect. 2 and 3 are used to implement the solver presented in Alg. 8.2. Using the
standard concepts, a portable implementation, which is able to run on nearly every HPC cluster is
developed. In addition the design is (nearly) independent of the number of cores. It is capable to
operate on only a few to tens of thousands of computing cores. The goal is a flexible implementation
of the algorithm, allowing for an easy extension of the algorithm e.g. for new observation types or
additional parameters to be estimated. The whole Alg. 8.2 is implemented based on the concept of
block-cyclic distributed matrices (cf. Chap. 3), such that huge matrices can be used and all steps of
the solver are operated in parallel.

The computational most demanding steps in Algorithm 8.2 are (i) the design of the preconditioner,
(ii) the preconditioning step and (iii) the computation of the update vectors H(ν) (as well as the
initial residuals R(0)). This steps will be discussed in detail in the following.

8.3.1 Setup of a Preconditioning Matrix

As the expected convergence rate strongly depends on the condition of N (e.g. Golub and van
Loan, 1996, p. 521) and gravimetric problems tend to be ill-conditioned (distribution of the data, for
satellite data see e.g. Schwintzer et al., 1997, Ilk et al., 2002), one essential step for the convergence
of the PCGMA algorithm is the design of a preconditioner N⊕. This preconditioner should have
the following properties: i) it reflects the main characteristics of N, ii) it is sparse and easily
computable and iii) a factorization (e.g. Cholesky factorization) is sparse as well. Whereas very
special preconditioners might be designed for very individual problems and setups (e.g. Boxhammer
and Schuh, 2006), also very simple designs are able to considerably improve the convergence rate.
As shown by Boxhammer (2006, p. 68), a simple block diagonal preconditioner can be a very
efficient approximation and significantly accelerates the PCGMA convergence for spherical harmonic
analysis.

8.3.1.1 Shape of the Preconditioning Matrix

Finding and implementing an efficient preconditioner for the aspired huge dimensions is not a
simple task. Within global gravity field determination the first choice is always a block diagonal
preconditioner. Although the prerequisites for a block diagonal normal equation matrix N (e.g.
Colombo, 1981, Reguzzoni and Sansò, 2012) are not fulfilled, it can be expected, that N is at
least block diagonal dominant, if the spherical harmonic coefficients are arranged by orders. Thus,
the easiest way is to implement a block diagonal preconditioner, where only correlations within
coefficients of the same order m are modeled. The following block diagonal preconditioners were
implemented within this study as a first choice of easy to use preconditioners:

A: four blocks per order: Correlations are assumed to occur only between coefficients of the same
order, of the same type and of the same parity of the degree (i.e. only between sine coefficients
of odd degree, only between sine coefficients of even degree, only between cosine coefficients
of odd degree, only between cosine coefficients of even degree). These matrix would result
due to orthogonalities of the spherical harmonics if the data points were equidistant along the
parallels with constant accuracy per parallel. In addition equatorial symmetry is expected
(for the data accuracy and distribution).
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Table 8.1: Memory requirements of block diagonal preconditioners for the three block diagonal
approximations A, B and C. The size is provided in GB for different maximal spherical
harmonic resolutions lmax. It is always assumed that a block is stored as a full matrix.

lmax 200 360 500 720 1000 1500 2000

setup A 0.02 0.12 0.31 0.93 2.49 8.39 19.88
setup B 0.04 0.23 0.62 1.86 4.97 16.78 39.77
setup C 0.08 0.47 1.25 3.72 9.95 33.56 79.53

B: two blocks per order: Correlations are assumed to occur between coefficients of the same order
and of the same type (i.e. only between sine coefficients, only between cosine coefficients).
These matrix would result due to orthogonalities of the spherical harmonics if the data points
were equidistant along the parallels with constant accuracy.

C: one block per order: Correlations are assumed to occur between all coefficients of the same
order.

For the high degrees which should be processed with the solver, even the block diagonal precondi-
tioner requires a significant amount of memory. To get a feeling for the required memory, Tab. 8.1
summarizes some numbers for memory requirements of several preconditioners of different resolution
for the block diagonal models A, B and C (note that a full storage of the symmetric matrix blocks
is assumed).

As these memory requirements are several Gigabytes (GB), the preconditioners, especially for the
high degree setups, can not be stored serial in the memory of a single compute core. Instead,
the preconditioner has to be stored distributed as well. Storing the preconditioner as an array of
block-cyclic distributed matrices facilitates its application to block-cyclic distributed matrices (and
vectors). Thus, each entry b of the array corresponds to the block b ∈ {0 . . . B − 1} of the block
diagonal preconditioning matrix

N⊕ =




N0
⊕ 0 · · · 0

0 N1
⊕ 0 0

... 0
. . . 0

0 0 · · · NB−1
⊕


 =

O−1∑

o=0

woN⊕,o +

N−1∑

n=0

wnN⊕,n. (8.1)

The preconditioner models A, B and C can be mapped to this storage scheme. The number of blocks
B and the dimension of the blocks N0

⊕ differ for the three models. As for the combined NEQs in
Chap. 7, the preconditioner for the joint solution is a weighted combination of the observation
groups provided as OEQs and those provided as NEQs.

8.3.1.2 Parallel Computation of the Preconditioner

Preconditioner for OEQ Groups The computation of the preconditioning matrix can be par-
allelized very well, as the blocks N⊕,b can be independently computed on different compute cores.
For instance one process can be used as a master process which is responsible for distributing the
work to the other compute cores, i.e. the block b which should be processed by that core. The client
can compute the block b for a dataset o serial via

Nb
⊕,o = AbT

o Q−1
`̀̀o`̀̀o

Ab
o (8.2)
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where Ab
o is the serial design matrix, containing only the columns which corresponds to the param-

eters included in the symmetric matrix N⊕,b. The computation is performed for all observations
of the group on a single core (in portions of size bobs if necessary) using BLAS-L3 dysrk. The
parallelization is achieved via a distribution of the blocks. As the parameters within Nb

⊕ are al-
ways of the same order m, the recursion formulas for the Legendre functions can be evaluated with
only a few redundant computations on the different processes. As the preconditioner is needed in
different VCE iterations, the preconditioner is assumed to be stored on disk individually for every
observation group o. It is setup in the order-wise numbering scheme ppp⊕. Within each order m,
the cosine coefficients of even degree, the cosine coefficients of odd degree, the sine coefficients of
even degree and the sine coefficients of odd degree are arranged as neighboring blocks, such that all
preconditioner models (cf. Sect. 8.3.1.1) are covered by the same numbering scheme ppp⊕ (cf. Schuh,
1996, Sect. 2.2.2). The blocks (depending on the the model cf. Sect. 8.3.1.1) are stored as separate
full matrices. The combined preconditioner (8.1) is used with different weights of the individual
groups within the VCE loop (weights of iteration η − 1).

Preconditioner for NEQ Groups The preconditioner part for the groups of NEQs Nb
⊕,n is

created from a subset of the provided normal equations matrices

Nb
⊕,n = select (Nn) (8.3)

which are available in an arbitrary numbering scheme pppn. The “select” operator should symbolize
the steps:

• Create a numbering scheme which follows the parameter order as defined by the order-wise
numbering scheme of the combined preconditioner (ppp⊕), but without the high degree coeffi-
cients, which are not part of the parameter space of Nn (:= ppp⊕,n).
• Reorder the matrix Nn to the numbering scheme ppp⊕,n.
• Go through all blocks b, initialize i = 0:

– Create a numbering scheme for block b, containing all parameters of that block i.e. pppb⊕.
– Create the numbering scheme pppb⊕,n containing only coefficients of block b which are con-

tained in Nn.
– Extract the sub-matrix Nb

⊕,n := Nn(i : i + pppb⊕,n.size(), i : i + pppb⊕,n.size()) from Nn,
which then follows the numbering scheme in pppb⊕,n.

– Extend Nb
⊕,n with zeros to arrive in the dimension of Nb

⊕.
– Reorder the Nb

⊕,n from pppb⊕,n to pppb⊕.
– Perform the update Nb

⊕+ = wnN
b
⊕,n.

– Update i+ = pppb⊕,n.size().

The basic challenge is the implementation of the reordering algorithm (cf. Sect. 4.3), to perform row
and column interchanges (reordering of Nn) on the large distributed matrix Nn to bring arbitrary
numbering schemes to an order-wise numbering. With the reordering algorithms implemented, the
update of the preconditioner with the NEQ groups is straightforward and is limited to some index
and sub-matrix computations.

Combination of the Preconditioner Within each VCE iteration η in Alg. 8.2, the precondi-
tioner is combined as a weighted sum according to (8.1). For the observation groups o the precondi-
tioners N⊕,o are recalled directly from disk into an array of block-cyclic distributed matrices within
a parallel file reading operation. The matrices Nb

⊕,n are not stored additionally, instead the “select”
operation is directly implemented within the step of weighted addition.
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Algorithm 8.3: Application of a block-diagonal block-cyclic distributed preconditioner to a block-
cyclic distributed matrix (in place).

Data:
DistributedMatrix R Matrix to be preconditioned

DistributedBlockdiagonalMatrix N⊕ blockdiagonal preconditioner to be applied

// Loop over all blocks b of the preconditioner1
for b = 0; b < N⊕.blocks(); b+ + do2

// Perform Cholesky factorization of block b3
N⊕(b).chol()4
int rs = N⊕(b).firstRow()5
int re = N⊕(b).lastRow()6
// compute forward and backward substitution, block b7
R.isSolutionOfTriag(N⊕(b), ’L’, ’T’, rs, re, 0, R.globalRows())8
R.isSolutionOfTriag(N⊕(b), ’L’, ’N’, rs, re, 0, R.globalRows())9

end10
return R// preconditioned matrix11

8.3.1.3 Application of the Preconditioner to a block-cyclic distributed Matrix

A preconditioner of the form described above, can be easily applied to a matrix (or vector) which
is stored as a block-cyclic distributed matrix. The symbolic preconditioning operation as used in
Alg. 8.1 (l. 2 and 17) and Alg. 8.2 (l. 25 and 41) for the residual matrix R

ΓΓΓ = N−1
⊕ R = solve (N⊕, R) (8.4)

is numerically solved via a Cholesky factorization and followed by forward and backward substitution
(cf. Schuh, 1996, Sect. 8.3). The result is the preconditioned residual matrix ΓΓΓ. The symbolic
operation solve comprises the following numerical steps which are performed for every block b.
The factorization

Nb
⊕ = GbT

⊕ Gb
⊕, Gb

⊕ = chol
(
Nb
⊕

)
. (8.5)

and the solution of the system via forward and backward substitution

Nb
⊕ΓΓΓb = Rb (8.6a)

GbT
⊕ Gb

⊕ΓΓΓb = R, Bb := Gb
⊕ΓΓΓb (8.6b)

Bb = triangularSolve
(
GbT
⊕ , Rb

)
(8.6c)

ΓΓΓb = triangularSolve
(
Gb
⊕Bb

)
(8.6d)

can both be performed independently for every block b. The matrices Rb and ΓΓΓb are sub-matrices
of R and ΓΓΓ containing all columns, but only those rows the block b refers to in the matrix N⊕.
As the involved matrix Gb

⊕ is a triangular (block-cyclic distributed) matrix, the solve operations
are computed using the SCALAPACK routine pdtrsvm twice. The sub-matrices Rb and Bb can be
directly passed to the SCALAPACK routine using the row indices in the SCALAPACK function
interface. The same is done for the “result“ matrix ΓΓΓ. The whole preconditioning step as an in place
operation is summarized in Alg. 8.3.

8.3.2 Additional Right Hand Sides for VCE

For the integration of VCE additional RHS sides are introduced according to Sect. 4.2.3 and Alg. 8.2
(l. 6–12 for NEQs and l. 18–21 for OEQs). The distributed vector of observations `̀̀ is extended for
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every group o with K additional columns, including the raw drawn samples (cf. (4.10)). The trans-
formation of the samples is explicitly done in the computations of the initial residuals (cf. Alg. 8.2,
l. 13), as the initial MC parameters are set to zero. The transformed samples, which are needed
later for VC computation in (4.22), can then be extracted from the corresponding residual columns
(cf. Alg. 8.2, l. 23).

The extension of the RHS for the NEQ groups is straightforward, as the transformed samples are
directly the additional RHS to be solved for. The vector of RHS is just extended by the transformed
samples (cf. Alg. 8.2 l. 6–12).

8.3.3 Computation of the Residuals R(0) and of the Update Vector H(ν)

From a computational point of view, the computation of the update vector H(ν) (cf. Alg. 8.2, l. 34)
is similar to the computation of the initial residuals R(0) (cf. Alg. 8.2, l. 13 and 22). Thus, unless
stated otherwise, all concepts introduced here are applied in the computation of the initial residuals
as well as for the update vector H(ν). As the computational requirements differ for OEQs and
NEQs, a distinction is introduced in the following.

8.3.3.1 Computation for the NEQ Groups

Method I (memory saving, computationally more expensive): The normal matrices Nn

are available in specific parameter ordering and possibly only for a (small) subset of the target pa-
rameters. Within this context, the number of parameters in Nn is denoted as Un. The contribution
wnNnΠΠΠ

(ν) to H(ν) (or wnNnxxx
(0) − nn to R(0)) of a single group n (summarized in l. 34, Alg. 8.2)

to the update vector is handled within each PCGMA iteration as follows:

1. Perform a sequence of row interchanges of ΠΠΠ(ν) so that the parameter order of the first Un
rows corresponds to the parameter order and parameter space of Nn, ⇒ Π̃ΠΠ

(ν)
.

2. Recall the original NEQ matrix Nn from disk

3. Perform the multiplication H̃
(ν)
n := wnNnΠ̃ΠΠ

(ν)
(1 : Un, :), where Π̃ΠΠ

(ν)
(1 : Un, :) is the subset of

the first Un rows and all columns.
4. Extend H̃

(ν)
n with zeros for all parameters not contained in the parameter space of group n.

Reorder the rows of the matrix
[
H̃

(ν)
n 0

]T
into the numbering scheme of original ΠΠΠ(ν) to

obtain H
(ν)
n .

5. Perform the update as the addition H(ν)+ = H
(ν)
n .

Method II (memory consuming, computationally less expensive, I/O reduced): It is
simple and straightforward to minimize the I/O operation of reading all N NEQs from disk in
every PCGMA iteration. Once in the beginning, the NEQs are combined (using e.g. the algorithm
implemented for the direct solution method as introduced in Sect. 7.2.1). The dimension of the
new NEQs are determined by the group n with the largest parameter space. Note that this does
not effect the estimation of weights for the individual groups. This combined NEQs are held in
memory during the whole PCGMA algorithm. The I/O steps for all N groups are avoided within
each iteration. In addition, the update step of H(ν) has to be computed only once. For large N ,
the computation time is significantly reduced. The gain cannot be exactly quantified as it depends
on N , the hardware (i.e. the I/O performance) and the parameter space of all NEQ groups n.
The update step takes the time as needed for the largest NEQs (Steps. 1,3–5 of method I) minus
the I/O time (as NEQs are in core). As long as there is no memory shortage, method II has no
disadvantages compared to method I.
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8.3.3.2 Update for the OEQ Groups

As it is assumed that for the groups introduced as OEQ the OEQs have to be set up for the whole
parameter space (with the exception of possible group specific parameters), the processing of the
OEQ groups is the main contributer to the total computing time as the high resolution signal is
contained there. The computation of the contribution of a group o to the update vector H(ν), i.e.
woA

T
o Go

TGoAoΠΠΠ
(ν) is the dominant step with respect to computing time within each iteration.

This step mainly consists of five parts,

1. the assembly of the design matrices Ao,
2. the decorrelation GoAo,
3. the computation of the matrix-matrix product T := AoΠΠΠ

(ν),
4. the computation of the matrix-matrix product H

(ν)
o = AT

o T, and

5. the final update H(ν)+ = H
(ν)
o .

The two matrix-matrix products are performed with PBLAS, the decorrelation is performed with a
diagonal matrix only (within this study), and the final update step is a simple addition. The only
step the computation can be significantly accelerated is the setup of the OEQs (i.e. Ao) itself. As
the OEQs have to be set up in each PCGMA iteration ν, the fast setup of the distributed design
matrix Ao is essential within the implementation of the iterative solver. All necessary steps for the
update of H(ν) by the groups o are summarized in Alg. 8.4.

Numbering Scheme for the PCGMA Algorithm For a fast setup of the design matrices,
using block-cyclic distributed matrices, it would be best, if the local matrices Al

o would be locally
computable without communication with other processes. In addition, redundant computations of
several cores should be avoided or at least minimized. Redundant computations might occur during
the expensive recursive computations of the Legendre functions, which are performed by orders (e.g.
Holmes and Featherstone, 2002). Thus, it is important that all columns of Ao, corresponding to
gravity field coefficients of the same order, are within a single local matrix Al

o, or at least spread
over as few local matrices as possible.

Choosing a standard order-wise numbering scheme for the global vector of unknowns x̃ and thus for
the columns of Ao, would result in parameters of many different orders in the columns of the local
matrices Al

r,c, due to the block-cyclic distribution. Instead of an order-wise numbering scheme for
Ao, an ordering of the parameters, depending on the parameters of the block-cyclic distribution (br
and bc) and the size of the compute core grid (R and C), is determined at runtime. The numbering
scheme of the global matrix Ao is driven by the fact, that the virtual matrix composed by the
local matrices along a row of the compute core grid Âo =

[
Al

r,0 Al
r,1 Al

r,0 · · · Al
r,C−1

]
follows a

standard order-wise numbering scheme. Thus, the global numbering scheme might look arbitrary
at first view, but results from the fact, that parameters of the same order are collected as good
as possible in the same local matrices. This minimizes redundant computations in the recursive
computations of Legendre functions.

After br, bc and the dimension of the compute core grid are defined, an optimized numbering scheme,
covering the whole parameter space is constructed at runtime. Starting point is a symbolic num-
bering scheme which follows a standard order-wise numbering pppm (see e.g. Schuh, 1996, Sect. 2.2).
Using (3.5), the dimension of the local matrices can be computed. Especially the number of columns
C lr,c of the design matrix Ao is of interest for a single row of the compute core grid. It determines
the number of parameters a column of the compute core grid is responsible for. Starting in the
column c = 0, the first C lr,0 parameters of pppm are associated with the local matrix Al

r,0, the next
C lr,1 parameters of pppm are associated with the local matrix Al

r,1 and so on. The local matrices Al
r,c
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Algorithm 8.4: Computation of the update vector H(ν) by groups o provided as OEQs using
block-cyclic distributed observation equations.

Data:
vector<OeqGroup> g information on observations for the groups o ∈ {0, . . . , O − 1}

NumberingScheme pppbcd symbolic numbering scheme covering the parameters
double GM , a, tide_system constants to be used in target model

size_t K number of MC samples for additional RHS
size_t bobs number of observations to be processed at once

ΠΠΠ(ν) current search direction
// determine my process coordinates and compute core grid dimension1
size_t r, c, R, C2
blacs_gridinfo( 0, r, c, R, C )3
// initialization of block-cyclic distributed matrices, account for MC RHS4
size_t U = ppp.size()5

DistributedMatrix H(ν)(U, 1 + (N +O)K)6
DistributedMatrix T(bobs, 1 + (N +O)K)7

DistributedMatrix AT (U, bobs)8
// Determine dimension of local matrices9

size_t RlAT = AT .Rl() size_t ClAT = AT .Cl() // parameters associated with local rows (pppr) of AT10

NumberingSchme pppr(R
l
AT )11

for r = 0, r < RlAT , r + + do12
pppr(r) = pppbcd(AT .rowInGlobalMat(r) )13

end14
// Loop over all groups provided as OEQs15
for o = 0, o < O, o+ + do16

g.at(o).loadObservations() // Load all observations (and meta data) of group o from file17
// Loop over all observations of group o in blocks of bobs18
for b = 0, b <g.at(o).size(), b+ = bobs do19

// set up AT for local observations and local parameters20

for c = 0, c < ClAT , c+ + do21
// overall index of observation of group o corresponding to column c22

size_t i = b+ AT .colInGlobalMat(c)23
// fill columns with design entries for observation i and local parameters in pppr24
fillDesign(A.localMat().colPtr(c), g.at(o).obs(i), pppr )25

end26

// update H(ν) with observations b to b+ bobs − 127

T := AΠΠΠ(ν)28

H(ν)+ = woA
TT29

end30
// Same operations for the rest block (Mo%bobs). . .31

AT resize(U,Mo%bobs)32
// Determine dimension of local matrices33

RlAT = AT .Rl() size_t ClAT = AT .Cl()34

// set up AT for local observations and local parameters35

for c = 0, c < ClAT , c+ + do36
// overall index of observation of group o corresponding to column c37

size_t i = Mo ÷ bobs + AT .colInGlobalMat(c)38
// fill columns with design entries for observation i and local parameters in pppr39
fillDesign(A.localMat().colPtr(c), g.at(o).obs(i), pppr )40

end41
...42

end43

return H(ν)// Update vector for PCGMA44



8.3. Computational Aspects and Parallel Implementation 135

Algorithm 8.5: Creation of a tailored symbolic numbering scheme at runtime keeping parameters
of the same order coherent in the local matrices of a block-cyclic distributed design matrix for the
use within PCGMA.
Data:
NumberingScheme pppm Symbolic numbering scheme following a standard order-wise numbering

size_t br, bc Parameters of the block-cyclic distribution
size_t R, C Dimension of the compute core grid

// initialization1
size_t i = 02
// Initialize an empty numbering scheme of correct size3
NumberingScheme pppbcd (pppm.size())4
// Loop over all columns of the compute core grid5
for c = 0; c < C; c + + do6

// Determine number of columns of local matrices of compute core grids column c (cf. (3.5))7

Cl∗,c = colsInLocalMat(bc, C, pppm.size())8

for cl = 0; cl < Cl∗,c; c
l + + do9

// Determine global column c local column cl of grid column c corresponds to (cf. (3.6))10

size_t c = colInGlobalMat(cl, bc, c
l, C)11

pppbcd.p(c) = pppm.p(i)12
// update counter13
i++14

end15
end16
return pppbcd// symbolic numbering scheme17

are set up for that parameters, which now cover only a few orders and contain mainly coefficients
of the same order.

This concept results in Alg. 8.5, which creates the symbolic numbering scheme covering all param-
eters and follows the ideas mentioned above. The columns of global matrix Al

o follows the new
numbering scheme pppbcd, which results in coefficients grouped by their order m in the local matrices
Al

r,c, which minimizes redundant recursions during the evaluation of the Legendre polynomials on
different processes.

Setup of the Design Matrix For the observation-wise computation of the design matrix Ao

and using CMO in the local matrix, a setup of AT
o is more efficient than a setup of Ao. Setting up

AT
o instead of Ao yields to adjacent entries in the compute core’s main memory which to the same

observation (which are computed in a recursion). They can be accessed more efficiently during
the setup. As a matrix-matrix product12 using AT

o and a matrix-matrix product using Ao has
to be computed in the algorithm, there is no consequence for the runtime of the computations of
both matrix-matrix products. Thus, the design matrix is setup as AT

o . Note that setting up AT
o

changes the setup and argumentation of the numbering scheme creation, as now the parameters are
associated with the rows of AT

o .

Because the number of observations in a single group can be huge, as for the other applications in
Chap. 6 and 7, the observations of a single group are processed in blocks of bobs observations. Since
in contrast to the GOCE data analysis in Chap. 6, there are no correlations in the observations
assumed in this study, the processing of the bobs observations is independent from the other sub-
blocks of the same group. The update of H(ν) from a single block of these bobs is sequentially
computed in a loop over all sub-blocks b (cf. Alg. 8.4, l.28–29).

12In fact it is a matrix-vector like product, as the number of columns of the second matrix is much smaller than
the number of rows.
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8.3.3.3 Reordering and Preconditioning

As described above, only block diagonal preconditioners are used within the PCGMA implementa-
tion derived so far. Within gravity field recovery, the NEQs are usually block diagonal dominant,
if an order-wise numbering scheme is chosen. As the tailored numbering scheme for the setup of
the design matrices pppbcd was introduced, all matrices, which are related to the parameters in the
implementation, follow the numbering scheme as described by pppbcd. This of course comprises the
residuals R(ν), which must be transformed by the preconditioner matrix. Before the preconditioner
can be applied, R(ν) has to be reordered from pppbcd to ppp⊕. Afterwards, the preconditioning can be
performed as described in Sect. 8.3.1.3. After the preconditioning, the preconditioned residuals are
reordered from ppp⊕ to pppbcd again, to be consistent to the design matrices and other matrices used
within the next PCGMA iteration.

8.4 Closed-Loop Simulation

8.4.1 Proof of Concept

To have a direct reference solution for the spherical harmonic coefficients as well as for the VCs,
the same simulation scenario as in Sect. 7.3 was used. The PCGMA implementation was used
in ηmax = 4 VCE iterations to recover the coefficients and to derive the estimation of VCs. To
guarantee convergence, νmax = 100 PCGMA iterations are performed per VCE iteration. As a start
solution, the independent d/o 360 EGM96 model was chosen (Lemoine et al., 1996), the coefficients
above degree 360 were initialized with zeros.

Fig. 8.1 shows the results in terms of degree variances. Differences to the reference solution, i.e. the
corresponding direct solution as derived in Sect. 7.3.2 (FULL_00–FULL_03), are plotted for each
of the 100 iterations performed as solid lines. The solutions after the last, i.e. the 100th iteration
are named ITER_00–ITER_03. Of course, as the same synthetic data is used in the simulations,
the reference solution and the PCGMA solution should be theoretically the same after PCGMA
convergence, as both are the least squares estimates from the same data set. But in the direct
and in the iterative solution, the VCs where independently computed, using the stochastic trace
estimator, such that the estimated weights can not be numerically the same. The generated samples
differ and the iterative solver has different numerical properties. In addition to the differences, the
black dashed lines shows the quality of the reference solution and thus of the solution itself, to
demonstrate the accuracy level of the solution. Within the iteration η = 0, after about 60 iterations,
the iterative solutions is within the quality level of the reference solution and thus within the level
of the achievable accuracy. As within the iteration η = 1 the start solution improved (ITER_00),
the quality level of the reference solution is reached after about 10 iterations. Afterwards up to
iteration 50–60, the iterative solution gets closer to the reference solution. After that an additional
improvement is not visible anymore. This is related to slightly differing weights estimated in both
solvers, so that the solutions can not be the same within machine precision. For the iteration η = 2,
the start solution is already significantly better than the reference solution’s external accuracy.
After again 50–60 iterations, the difference with respect to the reference solution is two to four
orders of magnitude below the accuracy of the reference solution. Thus, it is safely concluded that
the solutions are identical within their error bars. In the final iteration η = 3, an improvement
towards the reference solution is visible only for some degrees and only for the first 10–20 iterations.
After that the solutions does not iterate towards the reference solution. This is again due to the
weights, which slightly differ, as they are estimated with both solvers using the stochastic estimator.
The conclusion is confirmed by the fact, that the largest differences to the reference solution occur
within the overlapping area of the satellite and the terrestrial data. Within that spectral range, all
observation groups contribute.
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1(a) VCE iteration η = 0, reference is FULL_00.
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1(b) VCE iteration η = 1, reference is FULL_01.
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1(c) VCE iteration η = 2, reference is FULL_02.

0 200 400 60010−10

10−8

10−6

10−4

10−2

10+0

spherical harmonic degree l

sq
u
ar
e
ro
ot

of
d
eg
re
e
(e
rr
or
)
va
ri
an
ce
σ
l
(m

)

0

20

40

60

80

100

1(d) VCE iteration η = 3, reference is FULL_03.
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Figure 8.1: Convergence behavior of PCGMA algorithm within the four VCE iterations in terms
of degree variances. PCGMA iterations are shown as colored lines. The reference
solutions are the solutions obtained via assembly and solution of full NEQs of the same
VCE iteration (FULL_0η). The solid black lines are the signal of the reference solution,
whereas the dashed black lines show the quality (formal errors) of the reference solution.

For the spherical harmonic coefficients only, an estimate for the required iterations is for η = 0
50–60, η = 1 50–60, η = 2 40–50 and η = 3 20–30. All in all, about 150 iterations should be
sufficient for the approximately 520 000 spherical harmonic coefficients. After that, the difference
of both least squares solutions is two orders of magnitudes below the solution’s (external) accuracy.
Of course, the numbers provided significantly depend on the quality of the start solution.

The number of required iterations for VCE might differ, as the initial values of the additional
parameters required for MC trace estimation are always initialized with zeros13. Whereas it can be
assumed that Ωi converges within an iteration η if the spherical harmonic coefficients converged,
one has to look into the estimates of the partial redundancy or more precisely into Υ̃i. For testing
purposes this was computed within each of the 100 iterations. Fig. 8.2 shows the estimated value
for Υ̃i for every group in every CG iteration ν. The plots are shown for iterations η = 0 and η = 1.
The plots for η = 2 and η = 3 look the same as for η = 1, as the weights change only slightly and
the convergence is comparable within iteration η = 1, η = 2 and η = 3.

The convergence behavior changes with the weights. As it depends strongly on the configuration
of the group (e.g. number of observations in that group, data sampling, etc), it should not be

13In the current implementation, the additional MC random samples for VCE are always newly generated in a new
VCE iteration. Thus, no a-priori information about the additional MC parameters is available from a former VCE
iteration.



138 8. Application: Ultra High Degree Gravity Field Determination Using an Iterative Solver

0 20 40 60 80 10010−3

10−2

10−1

10+0

10+1

10+2

CG iteration ν

δ i
=

∣ ∣ ∣ ∣ ∣ ∣Υ
(ν

)
i

−
Υ

(9
9)

i

∣ ∣ ∣ ∣ ∣ ∣/
Υ

(9
9)

i

o = 0
o = 1
o = 2
o = 3
o = 4
o = 5
o = 6
o = 7
o = 8
o = 9
o = 10
o = 11
o = 12
o = 13
o = 14
o = 15
o = 16
n = 0
n = 1
n = 2
n = 3

(a) For VCE iteration η = 0.

0 20 40 60 80 10010−3

10−2

10−1

10+0

10+1

10+2

CG iteration ν
δ i

=
∣ ∣ ∣ ∣ ∣ ∣Υ

(ν
)

i
−

Υ
(9

9)
i

∣ ∣ ∣ ∣ ∣ ∣/
Υ

(9
9)

i

o = 0
o = 1
o = 2
o = 3
o = 4
o = 5
o = 6
o = 7
o = 8
o = 9
o = 10
o = 11
o = 12
o = 13
o = 14
o = 15
o = 16
n = 0
n = 1
n = 2
n = 3
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Figure 8.2: Convergence of the number of parameters Υ̃i determined by group i within the PCGMA
algorithm. Shown is the relative error with respect to the estimated result of the last,
i.e. the 100th iteration. The black solid line marks an empirical derived simple error
level of 0.03 %, which results from a simple error estimate of the MC trace estimator
i.e. (U −∑i Υ̃i)/U .

discussed in detail. However, it should be emphasized that always initial values of zero are used.
The convergence behavior is the same in every VCE iteration, if the weights do not significantly
change. To obtain an error of less than 0.1 % for every group, about 35–40 iterations are needed in
every VCE Iteration. These are slightly more iterations than for the spherical harmonic coefficients
in the iterations η = 2 and η = 3. Nevertheless, depending on the application and the configurations
of the group, higher errors in the trace estimation are acceptable. The higher the of number of
observations in the group, the smaller is the effect on the error for the VCs. It depends on the ratio
Mi/Υi (cf. Brockmann and Schuh, 2010).

Finally, Tab. 8.2 shows the estimates of the VCs derived with the iterative solver compared to the
true values. The same conclusions as for the direct solver (cf. Sect. 7.3.2) hold, especially comparing
Tab. 8.2 and 7.4. The error of the derived weights only differs around 0.1 % compared to the errors
for the direct solver. Except for the tiny group o = 12, the error of the variance component is 0.9 %
larger compared to the error obtained with the direct solver. The simulation demonstrates that the
integration of VCE in the iterative solver works and the right weights are derived within a number
of iterations which is comparable to the iterations required for parameter convergence.

8.4.2 Preconditioners and Convergence

The convergence characteristics totally depend on the analyzed scenario. It is influenced by the
interaction of the spherical harmonic resolution (parameter space), the spatial distribution of the
observations (on the sphere) and the observation’s noise. These characteristics significantly influence
the condition of N and thus the convergence of the iterative solver (e.g. Golub and van Loan, 1996,
Sect. 10.2.7). Applying a block diagonal preconditioner as introduced in Sect. 8.3.1.1 modifies the
condition of the transformed system. To demonstrate the dependence, consider the usage in the
following extreme example. The introduced preconditioner models are applied in a scenario with
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Table 8.2: Standard deviations σn,o = 1/
√
wn,o as derived by VCE for OEQ and NEQ groups. The

values are provided for all iterations performed. The last two columns provide the relative
error w.r.t. the true value which was used in data generation for iteration η = 1 and
η = 4 respectively.

group n/o σ
(0)
n,o σ

(1)
n,o σ

(2)
n,o σ

(3)
n,o σ

(4)
n,o σtrue

n,o

|σ(1)
n,o−σtrue

n,o |
σtrue
n,o

|σ(4)
n,o−σtrue

n,o |
σtrue
n,o

n 0 1.0000 0.0642 0.0612 0.0612 0.0612 0.0606 6.0 % 0.9 %
1 1.0000 1.3168 1.2900 1.2900 1.2900 1.2910 2.0 % 0.1 %
2 1.0000 0.7460 0.7453 0.7453 0.7453 0.7454 0.1 % 0.0 %
3 1.0000 0.8347 0.8165 0.8165 0.8165 0.8165 2.2 % 0.0 %

o 0 1.0000 12.1588 12.0203 12.0069 12.0047 12.0000 1.3 % 0.0 %
1 1.0000 13.0111 12.9925 12.9928 12.9932 13.0000 0.1 % 0.1 %
2 1.0000 13.9303 14.0007 14.0073 14.0085 14.0000 0.5 % 0.1 %
3 1.0000 14.8289 14.9924 15.0089 15.0101 15.0000 1.1 % 0.1 %
4 1.0000 12.2302 12.1256 12.1153 12.1133 12.1000 1.1 % 0.1 %
5 1.0000 13.1070 13.0788 13.0768 13.0761 13.1000 0.1 % 0.2 %
6 1.0000 20.9596 21.1191 21.1023 21.1156 21.0000 0.2 % 0.6 %
7 1.0000 21.9253 21.9440 21.9435 21.9424 22.0000 0.3 % 0.3 %
8 1.0000 13.8841 13.9451 13.9883 13.9038 14.0000 0.8 % 0.7 %
9 1.0000 13.0290 13.0198 13.0368 13.0350 13.0000 0.2 % 0.3 %

10 1.0000 23.9928 24.0620 24.0487 24.0531 24.0000 0.0 % 0.2 %
11 1.0000 16.4410 16.6844 16.6437 16.6698 17.0000 3.3 % 1.9 %
12 1.0000 12.7355 12.6965 12.7356 12.8659 12.0000 6.1 % 7.2 %
13 1.0000 10.6570 10.5835 10.4967 10.6022 11.0000 3.1 % 3.6 %
14 1.0000 10.0176 9.9834 9.9780 9.9806 10.0000 0.2 % 0.2 %
15 1.0000 24.8471 25.0009 24.9835 25.0392 25.0000 0.6 % 0.2 %
16 1.0000 22.9761 22.9839 22.9804 22.9809 23.0000 0.1 % 0.1 %

an equidistant data distribution of the observations, in addition, the observations have a constant
accuracy (per latitude). The condition of the transformed system is 1.0, as N = N⊕. The solver
converges, independent of the dimension of the parameter space, after a single iteration. Leaving the
ideal data distribution, e.g. by adding/deleting a single observation, will change the situation, as
N results in a dense matrix. Convergence is expected to get worse, the more the idealized scenario
(assumed for preconditioner setup) is left.

For this purpose, general comments and conclusions for the convergence characteristics are not
possible. But it has to be emphasized that:

• The block diagonal preconditioners are always positive definite, and the solution in the pre-
conditioning step is always computed rigorously. The preconditioning is independent of the
compute core grid setup and the parallel implementation.
• The preconditioner is chosen motivated by the properties of the spherical harmonic base

functions. For the implemented models it is expected that the more uniform the observations
are distributed and the more homogenous (per latitude) the observation accuracies, the better
the convergence, using this kinds of preconditioners.

Although for the analyzed scenario, the data distribution is chosen (on purpose) irregular, e.g. along
the satellites ground track, and the noise characteristics are by far not only latitude dependent
(cf. Fig. 7.1), it should be shown that these simple preconditioners improve convergence.

8.4.2.1 Preconditioner models A, B and C

The three preconditioner models A, B and C as described in Sect. 8.3.1.1 were used for the scenario
mentioned above. Using the three preconditioners, 10 PCGMA iterations are performed with fixed
weights. As the performance of the preconditioners may depend on the weights, two simulations
are performed. The first was performed using the weights w(0)

i = 1.0 which are inconsistent to the
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Figure 8.3: Convergence of PCGMA using the preconditioner models A, B and C. Shown are the
results after νmax = 10 PCGMA iterations in terms of degree variances. The reference
solutions are the solutions obtained via assembly and solution of full NEQs of the same
VCE iteration (FULL_0η). The solid black lines are describe the signal of the reference
solution and the solid colored lines the difference to the reference solution. The red lines
indicate the quality of the start solution EGM96 compared to the reference solution and
the dashed black lines the formal errors of the reference solution.

observations and the second for weights consistent to the observations i.e. using the weights as
estimated with VCE (w(3)

i ). For both scenarios, the start solution was fixed to the EGM96 model,
which can be characterized as independent of the generated observations and is of low quality
compared to EGM2008, which was used as the true model.

Starting with equal weights w(0)
i = 1.0, Fig. 8.3(a) shows the results compared to the FULL_00

solution after ten iterations for all three preconditioner models (A, B and C). The first conclusion is,
that the solutions of the preconditioner models B and C are of the same quality. The difference is only
small and hardly visible in the plot. After ten iterations, the solution obtained with preconditioner
A is much closer to the optimal solution. Thus the convergence with preconditioner model A is much
better. The additional (incomplete) correlations in models B and C might be meaningless without
the neglected correlations outside the block diagonal structure. The result was not expected, as the
shape of preconditioner model A assumes equatorial symmetry for the data distribution and data
accuracies (which is for sure not the case for the simulation scenario, cf. Fig. 7.1).

The conclusions are the same for the second run, which started with close to optimal weights w(3)
i ,

Fig. 8.3(b) shows the results compared to the FULL_03 solution after ten iterations for all three
preconditioner models. Again, after 10 iterations, the solution computed with preconditioner A is
closer to the optimal solution. In addition, for iteration η = 3, the purple line shows a solution
without using a preconditioner. It is demonstrated that all preconditioner models have a positive
effect for convergence. The solutions, which use one of the preconditioners, are one to two orders of
magnitude better after the ten iterations performed.

8.4.2.2 Solutions from Preconditioner only

As shown e.g. by Reguzzoni and Sansò (2012), just deriving a block diagonal solution, which ac-
counts for individual observations weights and violates the equidistant sampling of the observations
does not provide reasonable solutions for the gravity field parameters. Just ignoring the correla-
tions outside the blocks of the same order, destroys the whole system of NEQs. Fig. 8.4 shows
the solution which is the result of the preconditioner solution, solving the preconditioner for the
right hand sides n (which both include the individual weights per observation, in addition the data



8.4. Closed-Loop Simulation 141

0 200 400 60010−6

10−4

10−2

10+0

10+2

10+4

spherical harmonic degree l

sq
u
ar
e
ro
ot

of
d
eg
re
e
va
ri
an
ce
σ
l
(m

)

FULL 03
A
B
C

(a) For all groups o and n.

0 200 400 60010−6

10−4

10−2

10+0

10+2

10+4

spherical harmonic degree l

sq
u
ar
e
ro
ot

of
d
eg
re
e
va
ri
an
ce
σ
l
(m

)

FULL 03
A
B
C

(b) For OEQ groups o only.

Figure 8.4: Signal degree variances for the solutions derived from the block diagonal preconditioners
only. The left plot shows the solution from all groups (NEQ and OEQ), whereas the
right plot shows the solution from OEQ groups only. For both cases, the resulting
coefficients are unusable. Note that the green and the blue lines (model B and C) are
nearly identical and the differences are not visible.

distribution is irregular, cf. Sect. 7.3). The solution was computed for all groups n and o and for the
combined OEQ groups o only and for all three preconditioner models implemented. The weights
w

(3)
i were used in the combination. The derived three solutions are compared to the reference so-

lution FULL_03. Only the signal degree variances are shown. As they are significantly above the
signal of the reference solution, the differences are not shown.

Obviously, the solutions are not usable as a gravity field. But as shown in the previous section, all
preconditioners accelerate the convergence of PCGMA and can be used as a preconditioner. Thus,
the block diagonal preconditioners remain a simple and useful choice. General convergence prop-
erties can not be concluded from the simulations already performed, they can only be numerically
identified for a fixed scenario. A systematic numerical study, as performed in Brockmann and Schuh
(2011), is more useful with a simulation scenario even closer to a real data scenario (e.g. including
typical correlations between observations), as for this high dimensional parameter space the compu-
tational requirements are huge. But it is for sure a field for further studies. In combination with the
direct solver from Chap. 7, an explicit computation of the preconditioned, i.e. transformed, system
of equations is possible, whose spectral properties can be studied. The results from such a study
can be used in addition to design alternative preconditioners.

8.4.3 High Degree Closed-Loop Simulation

As a proof, that the solver is able to process higher dimensional problems with millions of unknown
parameters, a scenario comparable to the scenario introduced in Sect. 7.3 was processed. Without
going into many details, the scenario is characterized. Compared to the scenario mentioned above,
the resolution of the spherical harmonic series was duplicated. Thus, the parameter space increased
by a factor of four. U = 2 076 477 unknown parameters were estimated in the simulation.

Whereas the NEQ groups are exactly the same as in Sect. 7.3.1.1 (and Tab. 7.2), the OEQ groups
had to be adjusted. A higher spatial resolution is required for the increased parameter space. A
full CryoSat-2 cycle (partioned into sub-cycles) with 0.5 Hz sampling (10 · 106 observations) was
introduced as 13 groups based on OEQs. Whereas the terrestrial areas are the same as in Tab. 7.3,
the observations were generated with a higher spatial resolution on a 0.05◦×0.05◦ grid. This 11
groups together consist of 8.5 · 106 observations. A white noise, higher than in Sect. 7.3.1.2, was
added to all observations, following the same strategy, but with an increased σo.
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(b) VCE iteration η = 1, reference is EGM2008.

Figure 8.5: Convergence behavior of PCGMA algorithm within the the first two VCE iterations in
terms of degree variances. PCGMA iterations are shown as colored lines. The model
used to generate the input data is used as reference solution. The solid black lines are
the signal of the reference solution.

Thus, within the simulation 2 · 106 unknowns are estimated from N = 4 NEQ groups and O = 24
OEQ groups containing 18.5 · 106 noisy observations. In addition, for all groups introduced, N+O =
28 VCs were estimated. To save computing resources, ηmax = 3 VCE iterations are performed with
νmax = 35 PCGMA iterations for η = 0 and η = 1 and νmax = 10 for η = 2. As a start solution,
a solution derived from the four NEQ groups only was chosen (derived with the direct solver cf.
Chap. 7 for N = 4 and O = 0, including VCE). Whereas the weights for groups o were initialized
with 1.0, the initial weights for groups n were chosen as derived for the NEQ-only solution.

Fig. 8.5 characterizes the solutions. As for this high resolution scenario now direct solution is
available, it is compared to the EGM2008 model used for the generation of the observations (and
normal equations). Degree variances with respect to the input model EGM2008 are shown for the
first two VCE iterations. It shows, that the solution converges along the PCGMA iterations.

Note, due to the simplified white noise assumption, an unrealistically high white noise was added
(20− 30 mGal and 22− 29 cm respectively). This results in a model with signal to noise ration
equal to one already at degree 900 (cf. Fig. 8.5). Nevertheless, this does not affect the proof, that
the solver is usable for such a high degree spherical harmonic analysis. The square root of the
variance components converged, after two iterations up to the second digit (except for the smaller
groups, they converged worse, but are in the correct order of magnitude). A single PCGMA iteration
took less than half an hour on JUROPA using a 64× 64 compute core grid.

8.5 Runtime analysis of the PCGMA Implementation

The d/o 720 simulation scenario (cf. Sect. 7.3) was used to study the implementation with respect to
its performance. For the systematic performance assessment, all N = 4 NEQ groups were used and
for the OEQ only group o = 0 (cf. Tab. 7.3) was used in the PCGMA iterations (sequential processing
of OEQ groups). The computing time for the performance analysis was significantly reduced. To
keep the relation (close to the simulation scenario described above) between the processing of the
NEQ groups and the OEQ groups, the runtime measured for the processing of the single OEQ group
was scaled with the factor of 7.0 to approximately scale it up to the processing of 4 · 106 observations.
As the runtime is (nearly) linear in the number of observations and the number of additional RHS
was accounted for, the provided runtime corresponds to the processing of 4 million observations as
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used in the complete simulation scenario. The up-scaling is slightly idealized, as I/O and PBLAS
performance drops for very small groups. This additional runtime is neglected (small number of
observations in the design matrix for e.g. groups with Mo < bobs). But otherwise, the runtime
would be dominated by the NEQ group processing, which would not be the case for scenarios the
solver was implemented for (dominant high resolution OEQs). νmax = 5 iterations were performed.
The runtime provided always refers to a single PCGMA iteration, which is computed as the mean
value from the 5 iterations performed. Within the runtime simulations, the preconditioner model
C was used. The computations were again performed on JUROPA at FZ Jülich.

8.5.1 Runtime and Scaling Behavior

Different quadratic compute core grids were used, starting from 8× 8 to 56× 56 and the mean wall
clock time for a single PCGMA iteration was measured. The block-cyclic distribution parameters
were fixed to the suggested default value of br = bc = 64. The simulation should demonstrate both,
the scaling properties and the flexible use of the implementation on different compute core grids
(and thus compute cluster systems of different dimension).

8.5.1.1 Initialization Step and Preconditioner Setup

Within a full scale simulation as discussed in Sect. 8.4.1, the processing time is driven by the
PCGMA iterations (as they are repeated often). The first steps of PCGMA are separately discussed
and shortly summarized. Basically these steps are:

• Reading the preconditioner from disk, combination of the preconditioner for all groups N and
O and the Cholesky factorization of the preconditioner
• Generation of additional MC RHS and computation of the initial residuals of the OEQ groups
• Generation of additional MC RHS and computation of the initial residuals of the NEQ groups
• Finally the combination of allN NEQ groups to a single NEQ group for the PCGMA iterations

(cf. second paragraph in Sect. 8.3.3.1)

To get an idea of the runtime required for this steps, some numbers are provided for the extrema of
the compute core grids analyzed. A systematic performance study for this steps is not performed.

Reading, Combining and Factorizing of the Preconditioner The reading, combining and
factorizing of the preconditioner for the described simulation scenario with O = 17 and N = 4
groups takes 600 s–900 s on the different compute core grids analyzed (quadratic, from 8 × 8 to
56 × 56). Within the block diagonal preconditioner, many small to tiny matrices are involved in
the blocks. Within this simulation the blocks of the block diagonal preconditioner are composed by
O · 720 matrices of dimensions 2× 2 to 1440× 1440 for the OEQ groups. The reading, distribution
and combination is not very effective on compute core grids using hundreds to thousands of compute
cores. The same holds for the extraction of the blocks from the NEQs for the processing of the NEQ
groups. As described by Sect. 8.3.1.2, a sequence of operations has to be performed on the NEQs
to extract the tiny sub-blocks, which enter the preconditioner. Depending on the dimension of the
original NEQ matrix Nn, a larger number of cores does not provide gain with respect to performance.
The effect on performance is rather contrary. As the small blocks of the NEQs are distributed on
much more cores, the extraction of the required blocks and the required reordering is more complex
and more communication is required over a larger number of involved compute cores. The final step
with respect to the preconditioner is quiet fast: the Cholesky factorization of the combined matrix
is computed in 3 s–6 s, nearly independent of the compute core grid (as only the small sub-blocks
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are factorized). Nevertheless, the whole step is solved in 600 s–900 s, which corresponds to the
time needed for 1–2 iteration steps (as shown below). These steps of preconditioner handling were
not yet optimized to be as flexible as possible and to have the opportunity to study alternative
preconditioner types in the future.

Initialization of OEQ Groups The initialization step for the OEQ groups is composed of the
computation of the initial residuals and the generation of the MC RHS (cf. Alg. 8.2, l. 17–23). On
all compute core grids analyzed, the performance is the same as for the computation of the update
vector H in the PCGMA iterations (analyzed in Sect. 8.5.1.2). The numerical complexity of the
computations is the same and the additional generation of MC RHS is insignificant.

Initialization and Combination of NEQ Groups The initialization step for the NEQ groups
is composed, as for the OEQ groups, of the generation of MC RHS and of the computation of
the initial residuals. The computation of the initial residuals behaves as the computation of the
update vector H (see Sect. 8.5.1.2). It is faster for the lower dimensional NEQ groups n. Within
the computation of the update vector H, only a single, i.e. combined, NEQ matrix is used instead
of the individual NEQs of groups n ∈ N . Four additional steps are required here (cf. Sect. 8.3.3.1),
i.e. the reading of the original NEQ from disk (in the computation of H the combined NEQ is kept
in core), a possible transformation of the RHS and the Cholesky factorization for transformation
of the MC samples. Of course the sample transformation itself needs to be computed, too. As this
step is performed for each NEQ group, the performance significantly depends on the size of the
original NEQs. For the small SLR NEQs the step is performed in 1 s on the 8 × 8 compute core
grid and in 5 s on the 56× 56. For the largest NEQs (GOCE SGG) the initial steps takes 324 s on
the 8 × 8 compute core grid and in 56 s on the 56 × 56 compute core grid. This step shows, that
the used largest compute core grids are over dimensioned for the NEQs used within the simulation.
But, as shown later on, the computational demanding task is the processing of OEQ groups, where
these higher dimension compute core grids are appropriate.

8.5.1.2 Runtime and Scaling of the PCGMA Iteration Steps

Fig. 8.6 shows the derived performance for the different setups of the compute core grid analyzed.
In addition to the runtime (cf. Fig. 8.6(a)), the scaling normalized to the smallest compute core
grid, i.e. the 8 × 8 compute core grid is shown in Fig. 8.6(b). Within this first step, the PCGMA
iteration is split into update of H(ν) for the NEQ groups (cf. Sect. 8.3.3.1), for the OEQ groups
(cf. Sect. 8.3.3.2) and the most intensive non-group specific computation, i.e. the preconditioning.
All other non-group specific computations (cf. Alg. 8.2) are not significant and have a joint runtime
in the order of 1 s–3 s (one percent level of total runtime).

Total, OEQ group Processing, NEQ group Processing and Preconditioning Although
the total runtime (green lines) decreases with a higher number of cores in the compute core grid,
the scaling behavior is far away from the ideal curve (black). Using more than 576 compute cores,
e.g. 1024, the scaling is 10.8 instead of the ideal value 16. For the largest grid, i.e. using 3136 cores,
a scaling of 15.8 is observed, which is poor compared to the ideal value of 49. The steps, responsible
for the inappropriate scaling behavior can be identified, differentiating the total runtime into the
three most intensive parts of the PCGMA algorithm, i.e. i) the processing of NEQ groups, ii) the
processing of OEQ groups and iii) the preconditioning step.

The processing of the NEQ groups (involving the steps presented in Sect. 8.3.3.1) is the fastest step,
7 s–28 s are needed for the scenario analyzed. But, it can be observed that the runtime for the NEQ
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(a) Absolute runtime measured for the operations of a single PCGMA
iteration on different compute core grids.
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(b) Scaling behavior of the operations
normalized to the 8× 8 = 64 grid.

Figure 8.6: Measured performance of the implemented steps of a single PCGMA iteration. Results
are shown for all operations involved (green) and the three most intensive operations,
i.e. the processing of OEQ groups (orange), the processing of NEQ groups (blue) and
the steps required for the preconditioning.

processing increases using more cores in the grid (orange lines). Consequently, the scaling is below
1.0. Later on, this step is split up to identify the critical steps in the algorithm.

In contrast to that, the processing of the OEQ groups (brown lines) significantly decreases using
more cores in the grid. Up to the largest compute core grid, it is the step of the algorithm which
dominates the runtime. The scaling is close to linear, but not ideal. Nevertheless, for the largest
compute core grid compared to the smallest compute core grid, a scaling of 35.5 compared to the
ideal 49 is observed. The value for the compute core grid using 1600 cores (20.3) is not far from the
ideal value (25). For the OEQ groups, the partial steps are individually studied later, too.

The step which destroys the performance and scaling with respect to the total runtime is the
preconditioning step. The larger the grid, the higher the runtime for the preconditioning step. The
runtime increases from 12 s (for the smallest compute core grid) to 92 s on the highest dimensional
compute core grid used. It is composed by the reordering before the preconditioning, the application
of the preconditioner, and the reordering after the preconditioning (cf. Sect. 8.3.3.3). The three
partial steps are analyzed separately later, to identify where the performance is lost.

Runtime and Scaling for OEQ Group Processing The processing of the OEQ groups per
iteration is divided into the following partial steps (cf. Alg. 8.4):

• Assembly of the design matrix AT
o (U × bobs)

• Computation of T := AoΠΠΠ

• Update of H+ = AT
o T

The measured runtime and the scaling for these steps, compared to the total runtime for OEQ
group processing, are shown in Fig. 8.7(a) and 8.7(b). The computation of the entries of the design
matrix is performed locally on the compute cores, thus no communication is required. The scaling
is nearly ideal, as for larger grids, less elements have to be computed per core. It is the fastest of all
three steps and requires 16 % to 23 % of the total runtime, slightly varying for the different grids.
The computation of T and the update of H show comparable characteristics. As AT

o is set up,
the computation of H is more efficient than the computation of T, where the transposition of AT

o
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is required in the computation. As both of the computations dominate the runtime for the OEQ
group processing and they have the same runtime and scaling characteristics, these steps behave as
the total runtime of the OEQ group processing with the properties as discussed above.

Runtime and Scaling for NEQ Group Processing The processing of the NEQ groups per
iteration is divided into the following partial steps (cf. Sect. 8.3.3.1, second paragraph, steps 1 and
3–5 of method I):

• Reorder and adjust ΠΠΠ

• Compute HN = NNΠΠΠ

• Reorder HN and update H+ = HN

The results of the analysis are shown in Fig. 8.7(c) and Fig. 8.7(d). The computation of HN = NNΠΠΠ
performs as expected. The runtime decreases with an increased compute core grid and becomes
insignificant (below 1 s) for compute core grids with more than 256 cores (brown line). Although the
scaling is not linear, the runtime remains insignificant, and the scaling is increasing. For the largest
compute core grid, the computation is performed in less than 0.5 s. The operations problematic
with respect to runtime and scaling are the reordering operations, which do not scale and show
an increasing runtime with an increasing compute core grid. Whereas within the reordering and
adjustment of ΠΠΠ a UN ×NK +OK + 1 vector is reordered, in the reordering of HN the dimension
increases to U × NK + OK + 1. As with an increasing dimension of the compute core grid the
entries of the matrices are spread over more processes, the reordering requires more communication
as it is more likely that rows stored in different local matrices have to be swapped. Except for the
smallest compute core grid, the reordering operations are the dominating steps (86 % to 99 %). The
performance characteristics observed within this study contradicts the results shown in Sect. 4.3.3.
In contrast to the reordering performed there, where the index vector was randomly shuffled, the
index vector here has a systematic structure which seems to be bad for the performance14. As
shown later, the runtime for the reordering significantly depends on the block-cyclic distribution
parameters. Another reason, why the performance is poor, is that rows in a matrix which is stored
in CMO (in the local matrices) are reordered. For the reordering itself, operating on ΠΠΠT and HT

in the algorithm would be more efficient. Of course that will change the characteristics of the
algorithm. The systematic analysis studied in this chapter identified the performance bottleneck.
Especially with the results shown in Sect. 4.3.3, this characteristics were not expected. Potential
for optimization remains, although an adjustment of br and bc easily reduces the runtime required
for reordering (for details see Sect. 8.5.2).

Runtime and Scaling for Preconditioning Step The preconditioning step consists of the
following operations (cf. Sect. 8.3.3.3):

• Reorder R(ν) from pppbcd to ppp⊕

• Apply preconditioner to R(ν) (cf. Sect. 8.3.1.3)
• Reorder ΓΓΓ(ν) from ppp⊕ to pppbcd

As two reordering steps are involved in the preconditioning step, consequently the performance is
bad as well (cf. Fig. 8.7(e) and 8.7(f)). Two of the three steps are reordering steps (reorder before

14It still has to be verified, but if the systematic reordering between the (in the simulation used) order-wise
numbering pppn associated with the combined NEQs and pppbcd is a bad case for the reordering, it is easily possible to
reorder the combined NEQs once in the beginning to a better suited numbering scheme, which can be faster reordered
within the PCGMA iterations. In the current implementation, the (arbitrary) numbering scheme of the largest NEQ
group is used for the combined NEQs.
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the preconditioning, reordering after preconditioning), the same conclusions as for the NEQ group
update step holds. The preconditioning step itself shows a poor performance on higher grids, too. As
within the preconditioning step the blocks are sequentially solved, only small matrices are involved
which are stored on only a few cores. Whereas the matrix R, the preconditioner is applied to, is
spread over many cores (completely block-cyclic distributed, U rows), the small to tiny diagonal
blocks of the block diagonal preconditioner are only distributed over a few cores. Within the test
scenario (maximal dimension 1440× 1440 of a block and br = bc = 64) the matrices are distributed
maximally over the first 22× 22 sub-compute core grid. Except for the smallest compute core grid,
each core stores maximally a single block of dimension br × bc of every block of the block diagonal
preconditioner. For the PBLAS/SCALAPACK performance this is very inefficient. As currently
only the simplest form of preconditioning is implemented, a huge optimization potential remains. As
in the future alternative preconditioners will be studied, the preconditioning step was kept flexible.
The performance decrease was not known and not expected before and was identified within this
systematic study.

Conclusions for the Performance Analysis Whereas the performance of the iterative solver
and scaling is good for the processing of the OEQ groups, negative effects for the processing of
the NEQ groups and the preconditioning step are observed when increasing the compute core grid.
Nevertheless, three facts have to be kept in mind:

I) The processing of the OEQ groups is from a computational point of view the most intensive
step. Especially when increasing the resolution, the number of parameters as well as the re-
quired observations increase. The runtime of the OEQ group processing increases significantly.

II) In contrast to that, the runtime of the NEQs will not significantly change. Only the reorder-
ing gets more complex, as the parameter space increases. The consequences are empirically
accessed (see Sect. 8.4.3).

III) The preconditioning step was not optimized.

So far the easiest and most flexible implementation was chosen. In further studies the precondition-
ing step will be studied in more detail (not only with respect to performance but also with respect
to alternative preconditioners). The systematic study introduced here identified the steps, where
performance problems arose in the current implementation.

8.5.2 Dependence of the Performance on the Block-Size

The dependence of the performance of the algorithm from the chosen block-size br × bc is studied
within this section. The compute core grid is fixed to 40 × 40 and the same scenario as described
above is analyzed. The block-size is varied and the performance of the individual steps is assessed.
Fig. 8.8(a) shows the measured runtime for the total runtime of a single PCGMA iteration and
for the individual steps (NEQ group processing, OEQ group processing and preconditioning) in
dependence of the chosen block-size for br = bc.

For block-sizes br = bc < 120 the runtime is the slowest for all three partial operations and thus for
the total runtime. A minimum for the total runtime is observed for br = bc = 250. All partial steps
show a small runtime for this block-size. For larger block-size, the runtime slightly increases but the
variations are small. For br = bc = 250, an iteration took 196 s compared to the case br = bc = 64
used above in the performance study which took 282 s. The choice of br = bc = 250 leads to an
improvement by a factor of 1.4. Thus, the scaling compared to 64 cores also improves by a factor
of 1.4 (assuming that there is no positive effect of the larger block-size on the smaller compute
core grid) and thus gets closer to the ideal scaling. For the 40 × 40 compute core grid analyzed,
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(a) Absolute runtime measured for OEQ group processing.
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(b) Scaling behavior for OEQ group
processing.
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(c) Absolute runtime measured for NEQ group processing.
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(d) Scaling behavior for NEQ group
processing.
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(e) Absolute runtime measured for the preconditioning step.
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(f) Scaling behavior for the precondi-
tioning step.

Figure 8.7: Performance and scaling of specific operations per PCGMA iteration. They are indi-
vidually shown for the OEQ group processing, the NEQ group processing as well as for
the preconditioning.
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(a) Runtime measured for a single PCGMA iteration.
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(b) Runtime measured for OEQ group processing.
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(c) Runtime measured for NEQ group processing.
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(d) Runtime measured for the preconditioning step.

Figure 8.8: Measured performance of the implemented steps of a single PCGMA iteration depending
on the block-size. Results are shown for all operations involved (green) and the most
intensive operations, i.e. the processing of OEQ groups (brown), the processing of NEQ
groups (orange) and the preconditioning (blue). In addition, these steps are split into
the operations involved in the processing.

an improvement is visible for all three individual steps. For the total iteration, the improvement
is 1.4, for the NEQ groups 2.4, for the OEQ group processing 1.2 and for the preconditioning 2.1.
Especially the steps which had a poor performance on the larger grids improve. It might be useful
to repeat the performance analysis performed in Sect. 8.5.1.2 with tailored values for br = bc, tuned
for the different grids. As this analysis needs a lot computing time, at this stage the analysis is not
performed.

Conclusions for the Performance Analysis As in Sect. 8.5.1.2, Fig. 8.8(b) to 8.8(d) breaks
the three major tasks down to the individual operations and computations involved. The main
conclusions are that i) the total runtime can be significantly decreased adjusting br and bc, ii)
the computations performed with SCALAPACK are, except for some extrema (very large or small
values for br and bc), not very sensitive to br and bc iii) the reordering improves using larger br
and bc, iv) the preconditioning is faster and v) the performance for compute core grids up to 1024–
1600 is acceptable for the scenario analyzed. Of course the larger br and bc, the more memory is
required on the first compute cores of the compute core grid. The block-cyclic distribution leads
to an unbalanced distribution, as there are many small matrix blocks Nb

⊕, which are block-cyclic
distributed over a few cores only. Indeed, for the larger compute core grids and large values for
br and bc, at least a block distribution results for most preconditioner blocks Nb

⊕. For the largest
values br = bc > 1440 the whole preconditioner is stored on the single compute core 0, 0.
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Figure 8.9: Measured performance of the implemented steps of a single PCGMA iteration depending
on the shape of the compute core grid. Results are shown for all operations involved
(green) and the most intensive operations, i.e. the processing of OEQ groups (brown),
the processing of NEQ groups (orange) and the preconditioning (blue).

8.5.3 Shape of the Compute Core Grid

As many of the computations and operations involved operate on vector like matrices, i.e. matrices
with many rows (U) but only a few right hand sides (NK +OK + 1), non quadratic compute core
grids might yield better performance. Fig. 8.9 shows a simple experiment, fixing N = 1600 but
varying the shape of the compute core grid over rectangular grids, i.e. 5× 320, 10× 160, ..., 40× 40
upto 320 × 5. The result is only shown for the overall runtime of a single PCGMA and the three
partial steps as discussed above. As the shown runtime curves are representative for the partial
steps, the partial steps are not shown. Except for the peak, which occurs at the quadratic grid
40 × 40, the runtime behaves as expected. For all three steps, the runtime significantly increases
towards the extrema, i.e. 5× 320 and the 320× 5. It is minimal (for all three steps) at the 20× 80.
For the quadratic compute core grid (40 × 40), the runtime suddenly increases. This results from
an increased runtime in the NEQ group processing and the preconditioning step. It could not be
identified, if the higher runtime is significant or a random result related to the hardware or general
activity in the HPC environment. To proof, that with respect to performance the close to quadratic
compute core grids are better suited than the quadratic compute core grid, the simulations have
to be repeated with slightly changing scenarios. This result shows that there is no hint to leave
the choice of quadratic compute core grids. But, the 20 × 80 seems to provide a slightly better
performance compared to all other grids.

8.6 Application to Real Data

The software prototype developed here was not yet applied in a real data analysis. Nevertheless,
it is planned to extend this basis software for the use with real data for the joint estimation of
very high degree gravity field models and the ocean’s dynamic topography. Studies on the method
were performed in Becker et al. (2014a, 2013) and Becker et al. (2014b). Although main parts were
already implemented within this developed software package, they are not discussed within this
thesis, as this thesis focuses on the development of the basic concepts and studies the potential of
this kind of massive parallel implementation of the solver. Thus, real data specific problems and
details are faded out.
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9. Summary, Conclusions and Outlook

9.1 Summary and Conclusions

Due to the use of autonomous sensors to collect geodetic data sets, the data sets to be analyzed get
more and more complex and the computational requirements to derive an in a computational sense
rigorous solution, significantly increase. Especially sensors observing the global System Earth —
e.g. carried on satellite platforms — deliver huge data sets, as they either have a high measurement
frequency, deliver observation time series over decades or even both. Thus refined higher resolution
models, either in space and/or in time, can be adjusted to the measurements resulting in a higher
dimensional parameter space of the models. This often results in an inverse model and an overde-
termined system of equations has to be solved with respect to the unknown model parameters. In
addition to the increasing number of observations (within this thesis: hundreds of thousands to
hundreds of millions) and the increasing number of unknown model parameters (within this thesis:
tens of thousands to millions) the observations are often highly correlated and require a complex
stochastic model for a proper use within a least squares adjustment with complementary observation
types.

Within this thesis, concepts, methods and standards from high performance computing were used
to develop and implement, in a numerical sense, rigorous solvers for high and huge dimensional
least squares adjustment problems. Three representative problems from global gravity field deter-
mination (spherical harmonic analysis) were chosen to demonstrate the use of this high performance
computing concepts for the analysis of geodetic data sets. Although some physical approximations
were included in the simulation scenarios shown, the potential and possibilities resulting from the
use of HPC concepts could be demonstrated. After a review of the existing standards and concepts,
a special flexible framework for the high dimensional matrix computations was developed as a C++
class. An easy to use interface was developed to handle and manage block-cyclic distributed matri-
ces, i.e. matrices which are stored in the distributed memory of the nodes of a compute cluster. An
interface to the standard high performance computing linear algebra libraries (PBLAS and SCALA-
PACK) is provided to perform standard computations. The routines required for computations were
extended with special features required within the solution of least squares adjustment problems.
For instance, reordering of matrix rows and/or columns to account for different numbering schemes
and/or parameter spaces, treatment of huge dense covariance matrices and variance component
estimation was integrated.

The concepts and the basic framework developed was used in three applications from theoretical and
physical geodesy, i.e., determination of the global Earth’s gravity field parameterized as a spherical
harmonic series. Besides a general summary of the mathematical, statistical and physical concepts
required, the implementations derived for the three applications, were introduced, discussed and
assessed in detail (e.g. with respect to performance).

The first of those applications was the determination of the Earth’s global gravity field from the
observations of the GOCE mission. The computational challenge here was the huge number of
observations (4.4 · 108), which are in addition highly correlated. The number of unknown parameters
was moderate (60 000-80 000). The assembly of full normal equations from SGG observations was
discussed, including the setup of the observation equations as block-cyclic distributed matrices,
decorrelation of the observation equations by digital decorrelation filters (cascaded autoregressive
moving average filters) and the computation of the normal equations (product ATA). The massive
parallel implementation for the application was developed step by step. It was shown how the basic
framework can be used and tailored to a specific problem. The developed software package was used
for real data analysis as a part of the official ESA data analysis group (HPF). The models and the
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progress along the different releases were discussed. Finally, the performance of the software on a
high performance computing compute cluster was analyzed in detail. It was successfully used with
64 to 1600 compute cores with a linear and close to ideal scaling behavior.

The second application covered the high degree estimation of combined global gravity field mod-
els from complementary data sets. This data sets can be either available as band-limited normal
equations or as high resolution raw observations for which the normal equations have to be com-
puted from the observation equations. Within this thesis, the high resolution assembly of normal
equations from normal and observation equation groups was implemented in a massive parallel high
performance computing environment. It was extended with variance component estimation to es-
timate relative weights from the data. It was successfully used to set up 2 TB normal equations
(520 000 unknowns) from 4 · 106 arbitrary distributed inhomogeneous observations and additional
normal equation groups. The assembly and solution was studied with respect to performance. For
the derived implementation, a close to optimal linear scaling could be observed for compute core
grids using 1600 to 7744 compute cores. A further use of the derived full normal equations was
demonstrated.

As a final application, even higher resolution models were made rigorously computable, i.e. without
computationally motivated approximations. A prototype of a massive parallel iterative conjugate
gradient based solver was implemented using the standard concepts and basic framework introduced.
Applying the iterative solver, it was demonstrated, that even least squares solutions for 2 · 106 un-
known parameters from 20 · 106 observations and some preprocessed normal equation groups become
rigorously computable. A preconditioning and variance component estimation was included in the
iterative solver as well. The performance of the prototype of the iterative solver is systematically
analyzed and some steps, which show the potential for optimization, were identified. The solver was
successfully used with 64 to 4096 compute cores. The parts for the processing of the high resolu-
tion observation equations show a linear adequate scaling. Some unexpected performance problems
on larger compute core grids remain (related to reordering and reconditioning). Nevertheless, the
studied demonstrated the flexibility of the framework and of the solver. Least squares problems
compromising 520 000 unknown parameters were solvable in a reasonable time with compute clus-
ters with only 64 compute cores. Even on such small compute clusters, a single PCGMA iteration
for the analyzed scenario took less than one hour. Using the solver on compute core grids with 25
times more compute cores (N = 1 600), reduces the runtime by a factor of 20.

Within this thesis a massive parallel software package for high dimensional adjustment problems
(with special focus on spherical harmonic analysis) was developed to make problems solvable, which
were not rigorously computable before. Besides the general framework and the basic functionality for
adjustment procedures, specific and optimized modules were developed for applications from gravity
field determination. It was shown in detail, how this special extension can be implemented using
the developed basic framework. The design was kept flexible to easily introduce/adapt alternative
observation types or adjustment procedures. The main parts of the solver can be used on only a
small compute core grid (e.g. with 16 cores) or on huge compute core grids which make use of
ten thousands of compute cores. In addition, a specific adaption to any other geodetic application,
which requires the solution of high dimensional adjustment problem is possible and the software
was prepared for that.

This thesis demonstrates the value of high performance computing concepts for geodetic appli-
cations. Historical established approximations and simplifications, which are still widely used in
many studies, often become decrepit, using the concepts of high performance computing. Avoiding
approximations and simplifications has a positive effect for the solution itself as well as the cor-
responding error estimate in form of the covariance matrix, although the positive effect can not
be quantified. The basics towards an extension of the observation equations was made (increased
parameter space), such that many tasks can be solved in a joint adjustment. Thus multi step ap-
proaches can be replaced by a joint inversion. Although a lot of effort has to be spent on the fusion
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of high performance computing concepts with established algorithms and the knowledge of the data
handling, this thesis demonstrates that, if the basics are implemented and understood, their use is
straightforward.

9.2 Outlook

This thesis started to systematically map high to huge dimensional adjustment problems to massive
parallel high performance compute clusters with a flexible design. The derived and implemented
basics open a wide range of potential further studies (numerical as well as methodical) and a huge
range of further possible application scenarios (not only related to gravity field determination).
So far — as shown by the three applications — the developed concepts and the basic framework
was only used within applications related to global gravity field determination. Nevertheless, the
chosen design supports to extend the range of applications to all tasks where linear algebra and
operations from adjustment theory are involved. Depending on research themes and cooperations
of the Theoretical Geodesy group at Institute of Geodesy and Geoinformation at the University of
Bonn, the software package will include alternative applications. For instance, for current activities
within INSAR (Interferometric Synthetic Aperture Radar) data analysis, operations are performed
on a huge data volume, i.e. stacks of INSAR scenes over decades, where the use of high performance
computing might be required if the final models are developed.

Furthermore, the solvers can be easily extended to alternative adjustment procedures and estimators,
like robust estimators. As they are typically solved iteratively, they require a lot computational
resources. The integration of robust estimators into the massive parallel environment is the next
logical step.

Of course, the presented applications will be further studied and extended, too. For instance, with
release 5 of the GOCE real data models, the official processing of GOCE gravity field models is
finalized. Nevertheless, it will make sense to reprocess the whole time series to analyze all parts
of the processing chain. It is very likely that, revising the whole data set again, more information
and signal can be extracted out of the data. This might for instance be a robust estimation of the
decorrelation filters, a more consistent way of identifying outliers (probably coupled with the robust
filter estimation), a parameterization of changing filters in time or a possible reprocessing of the level-
1B input data. For that purpose the developed software as presented here, will be used for a further
reprocessing of the whole data set collected during the GOCE mission. Of course, the software
will be extended and/or adapted if, for instance, the filter models and their design will change. In
addition, different further studies on the numerical behavior will be performed (condition and data
distribution, performance of preconditioners within GOCE data analysis, alternative regularization
matrices, etc.).

The direct solver presented is currently extended to handle alternative observation equations and
other parameter types. From along track altimetry observations (real data), the geoid and the
ocean’s dynamic topography can be estimated in a joint least squares adjustment. For that reason,
the parameter space and the observation equations are extended with coefficients which can param-
eterize the ocean’s dynamic topography (finite elements). Within this context and for alternative
observation equations, the inclusion of correlations in the observations will be necessary (as e.g. for
GOCE observations). For the altimetry observations, existing correlations along the tracks are mod-
eled via empirically estimated covariance functions. A decorrelation of the observation equations,
based on the covariance functions, has to be implemented (instead of a diagonal matrix as used so
far) and efficiently integrated into the solver. Additional components of the solver will be required,
e.g. for parameter elimination of group specific parameters or to derive the covariance matrix of
the finite element parameters only. Again, the solver itself can be — if required – extended and
adapted to any other adjustment problem or analysis of geodetic data sets.
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The same extensions as for the direct solver are possible and planed for the iterative solver. However,
as demonstrated in this thesis, some open issues remain for the gravity field related application.
The performance on higher compute core grids is still improvable, especially for the processing of
normal equation groups and for the preconditioning step. Whereas the method for preconditioning
currently implemented is most simple and thus flexible, faster implementations with a better load
balancing have to be studied for the same preconditioner models. Furthermore, the preconditioner
models themselves have to be further explored for the estimation of spherical harmonic parameters
as well as for an estimation scenario which includes additional or completely different types of pa-
rameters. The block diagonal preconditioners implemented so far can only be used for spherical
harmonic coefficients, as their properties were used in the preconditioner design. The software de-
veloped in this thesis provides the basis to generally study properties like convergence of alternative
preconditioners in the solver as well as the condition of the system of equations. The current study
and implementation should be seen as a starting point for a wide range of methodical studies and
applications. For all applications shown, of course, if global high resolution real data sets will be-
come available, the software is prepared for an analysis of these data sets. At least over the ocean,
these data sets are available as along-track altimetry observations.
It is expected that in all research areas the requirement of high performance computing will signifi-
cantly increase over the next years and massive parallel implementations and software package will
be requested for the analysis of data sets of very different kinds. With the basics performed, the
background to solve typical numerical tasks from theoretical geodesy (Monte Carlo simulations, en-
semble generation, collocation, adjustment problems of different kind, decorrelation), which require
a lot of computing power in the HPC environment, is created.

Acknowledgements
Parts of the study and the publication were founded within the DFG project G/O2000+ (SCHU2305/3-
1). This work was financially supported by ESA GOCE HPF (main contract No. 18308/04/NL/MM) and
by the BMBF Geotechnologien program REAL-GOCE. Most of the computations were performed on the
JUROPA supercomputer at FZ Jülich. The computing time was granted by the John von Neumann Institute
for Computing (project HBN15). Some computations were performed on the HPC compute clusters at the
IT center of the RWTH Aachen. Access was granted via the Ressourcenverbund NRW. Some computations
were performed on the new cluster at the University of Bonn financed via a DFG Forschungsgroßgeräteantrag
(INST 217/747-1 FUGG).
The Open Source HPC computing libraries ATLAS, BLAS, LAPACK, OpenMPI, BLACS, PBLAS and
ScaLAPACK are gratefully acknowledged. Similarly, the Open Source software packages GMT (Generic
Mapping Tools, Wessel and Smith, 1998, 2004) and OCTAVE (Eaton et al., 2009, Octave community, 2014)
are gratefully acknowledged.
The joint work within the GOCO consortium (http://www.goco.eu) is gratefully acknowledged.
The ITG-Grace2010s NEQs are provided online (http://www.igg.uni-bonn.de/apmg/index.php?id=
itg-grace2010). Special thanks go to the colleagues from TU Graz (Norbert Zehentner, Eduard Höck,
Reinhard Mayerhofer, Helmut Goiginger and Torsten Mayer-Gürr) and from TU München (Roland Pail) for
the joint work on the GOCE time-wise models within the HPF (WP6000). In addition to the same colleagues
from TU GRAZ for the provision of GOCE SST and CHAMP NEQs and to colleagues from the IWF Graz
(A. Maier and O. Baur) for the provision of the SLR NEQs. Contributions (data preparation, distribution
and preprocessing) by all members of the GOCE HPF are gratefully acknowledged.
The thesis is the result of my studies within the Department of Theoretical Geodesy within the Institute of
Geodesy and Geoinformation at the University of Bonn. I would like to acknowledge the support by and the
discussions with my supervisor, Prof. Dr.-techn. Wolf Dieter Schuh. In addition I would like to thank the
second and third referee, Prof. Dr.Ing. Jürgen Kusche and Prof. Dr. Carsten Burstedde for their discussions,
comments and effort reviewing the thesis. The comments and discussions with Prof. Dr.-Ing. Karl-Rudolf
Koch helped to improve the thesis. The discussions (not always related to science) with all members and
former members of the Theoretical Geodesy group as well as the Astronomical, Physical and Mathematical
Geodesy group helped a lot during the preparation of the thesis and in the time at the university and created
a nice working environment.

http://www.goco.eu
http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010
http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010


i

A. Symbols

General
x̃ estimates for the parameters x

(ν) iteration index for iteration ν
ppp vector containing a symbolic numbering scheme

Random values
AAA vector of random variables

E{A}, expectation of a random vector
Σ{A} = ΣAA covariance matrix of a random vector

Mathematical and Algebraic operations
trace(A) trace of the matrix A
chol(N) Cholesky decomposition of the positive definite matrix N = RTR

select(A) sparse matrix which contains selected entries from A (zero otherwise).
x = solve(N,n) efficient solution of the system of equations Nx = n with a proper

algorithm (depending on properties of N).
÷ integer division
% modulo operation

ΨΨΨr,c
pppf 7→pppt

( · ) permutation operator permuting rows (r) and/or columns (c)
d · e round towards plus infinity

Informatics and HPC related symbols
&a address operator, determines the address of the variable a in the computers

memory
N number of MPI processes used
n MPI rank of a process

(R× C) dimension of a compute core grid
(r, c) process coordinates in a two-dimensional compute core grid

Matrix, vector and block-cyclic distributed matrix related notation
a, α,A scalar values,

a vector / one-dimensional field/array
A general matrix / two-dimensional field

A(r1 : r2, c1 : c2) sub-matrix of matrix A
Al

r,c locale part of block-cyclic distributed matrix A stored on process (r, c)
a(i) = ai vector/field entry at position i

A(r, c), Ar,c, ar,c matrix entry at position (r, c)
br × bc dimension of the sub-blocks for block-cyclic distribution
i(r, c) index of the matrix entry (r, c) in the one-dimensional field the matrix is

stored in
ld leading dimension of the matrix storage scheme (RMO or CMO)
ic increment of the matrix storage scheme (RMO or CMO)

(r, c) coordinates of a matrix entry
R× C dimension of a matrix

(rlr,c, c
l
r,c) coordinates of a matrix entry referring to the local matrix on process (r, c)

(Rlr,c × C lr,c) dimension of the local matrix of a block-cyclic distributed matrix referring
to process (r, c)
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B. Abbreviations

AntGP Antarctic Geoid Project
ArcGP Arctic Gravity Project
ARMA Auto Regressive Moving Average filter
ATLAS Automatically Tuned Linear Algebra Software
B Byte
BLACS Basic Linear Algebra Communication Subprograms
BLAS Basic Linear Algebra Subprograms
BMBF Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
CHAMP CHAllenging Mini-satellite Payload
CMO Column Major Order
CPU Central Processing Unit
d/o spherical harmonic Degree and Order
EFRF Earth Fixed Reference Frame
EGM96 Earth Geopotential Model 1996
EGM2008 Earth Geopotential Model 2008
EGM_TIM Earth Gravitational Model from GOCE using the TIMe-wise method
EIGEN European Improved Gravity model of the Earth by New techniques
ESA European Space Agency
GRACE Gravity Recovery And Climate Experiment
GRAIL Gravity Recovery And Interior Laboratory
GRF Gradiometer fixed Reference Frame
GRS80 Geodetic Reference System 1980
GOCE Gravity field and steady-state Ocean Circulation Explorer
GOCE-HPF GOCE High-level Processing Facility
GOCO Gravity Observation Combination Consortium
GPS Global Positioning System
HPC High-Performance Computing
HPF (GOCE) High-Level Processing Facility
I/O Input and Output (file reading and writing)
IGG Institute of Geodesy and Geoinformation
IRF Inertial Reference Frame
ITRF International Terrestrial Reference Frame
JUROPA Jülich Research On Petaflop Architectures
LAPACK Linear Algebra PACKage
LNOF Local North Oriented Cartesian Frame
MBW Measurement Band Width
MC Monte Carlo
MDT Mean Dynamic Topography
MPI Message Passing Interface
NEQ Normal EQuation
NFS Network File System
OEQ Observation EQuation
PBLAS Parallel Basic Linear Algebra Subprograms
PCG Preconditioned Conjugate Gradient
PCGMA Preconditioned Conjugate Gradient Multiple Adjustment
PSD Power Spectral Density
PVM Parallel Virtual Machine
REAL-GOCE REAL data analysis GOCE
REG REGularaization group
RHS Right Hand Side
RMO Row Major Order
RMS Root Mean Square error
SC Scientific Computing
SCALAPACK SCAlable Linear Algebra PACKage
SGG Satellite Gravity Gradiometry
SLR Satellite Laser Ranging
SST high-low Satellite-to-Satellite Tracking
STL Standard Template Library
VC Variance Component
VCE Variance Component Estimation
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