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Introduction

Convergence of macroeconomic aggregates and subsequent synchronization
of the cyclical features affecting these aggregates have been at the heart of
economic debate for quite a while. Especially with the recent developments
concerning the creation and crisis of a European common currency area, the
question whether counties are similar enough to be targeted by uniform policy
rules has been a crucial one. In fact, the “convergence criteria” provisions
of Article 140(1) of the Treaty on the Functioning of the European Union1,
outlining desired levels of similarity and rates of adjustment, are among the
most widely known and publicly discussed parts of European Union legislation.
In addition to this prominent example, the policy goal of increased convergence
and synchronization is the focus of various important EU institutions, such as
the Stability and Growth Pact, the European Regional Development Fund, the
European Social Fund, or the Cohesion Fund.

However, the issue is not only limited to a practitioner’s point of view. Among
the key aspects of the neoclassical growth model are the consequences regarding
cross-country convergence. If economies are alike with respect to microeconomic
characteristics, such as preferences and technology, then poor economies tend
to grow faster than rich ones, closing the gap between them. A broad strand of
literature sparked by the theoretical studies of Romer (1986) and Lucas (1988)
considers the long-term behavior in the dynamic equilibrium model.

1Treaty on the Functioning of the European Union (Consolidated Version 2012) as given in
the Official Journal of the Europen Union, CELEX number: 12012E001-12012E358
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Introduction

Beyond this relevance to an economist, the phenomena are also interesting
from an econometric perspective. Convergence requires comovement of economic
time series as the ultimate goal, but – with series displaying unequal initial
levels – its analysis has to be concerned with the path leading there, too. The
former aspect can be captured by well-known and widely-employed techniques
such as cointegration analysis. Yet the latter part requires a more refined
concept of series starting off differently but becoming more alike. In the same
manner, assessing synchronization requires an advanced econometric treatment.
Essentially, two dimensions of the data have to be addressed simultaneously.
While the investigation whether cyclical components of output have the same
length is a question alluding to the frequency domain, the localization in time
is just as important.

This thesis contributes to the understanding of convergence and synchro-
nization in various ways. The first two chapters are devoted to the task of
capturing convergence more adequately than just through cointegration analysis.
In the first chapter, the performance a regression test which allows for transitory
divergence is assessed using artificially generated data. The second chapter
empirically investigates the convergence of long-term interest rates using a
methodology that allows for different initial levels of the time series. Finally,
the last chapter introduces a way of reconciling time and frequency aspects for
the synchronization of output time series using wavelet analysis.

A more detailed description of each of the chapters, which are self-contained,
is provided in the remainder of this introduction.

Chapter 1 evaluates a novel approach to capture economic convergence as a
process of transition. It considers the methodology suggested by Phillips and Sul
(2007), who propose a new panel data model. Their framework explicitly allows
for periods of transitional divergence by separating a common component from
idiosyncratic fluctuations. In particular, they present a regression-based conver-
gence test that relies on the loadings of a time-varying factor model. Unlike
cointegration approaches, this allows for the analysis of long run convergence
while still allowing for temporary heterogeneity.

2



The chapter investigates the performance of Phillips and Sul’s test in a
classical setting of time series convergence, considering both asymptotic results
and Monte Carlo simulation methods. These results are put into perspective by
comparing them to the cointegration-based test of convergence from Nyblom
and Harvey (2000) as a benchmark.

It turns out that in a setting where the time dimension considerably exceeds
the cross-sectional dimension, the performance of the regression test is inferior
to that of the benchmark test, although it does have some ability to discriminate
between convergent and non-convergent data. The advantage of the regression is
its applicability to a wider range of applications, especially when the number of
cross-sectional units goes beyond what the cointegration-based test can handle.

Chapter 2 considers a different way of incorporating transitory periods
into convergence analysis. It argues that convergence is a dynamic process
that can better be captured by considering changes in persistence. Namely, if
two series are convergent, the gap between them should change from I(1) to
I(0). Allowing for a unit root in the initial phase permits heterogeneity in the
series before a long run equilibrium is reached and thus serves as a better model
of the convergence implied by increasing economic integration for previously
unequal economies. A further benefit of the approach is the ability to identify
departures from stability by checking for persistence changes in the opposite
direction. Additionally, while the traditional tests are by construction limited
to pairs or very small sets of countries, the persistence change approach can
easily be extended to larger groups.
Tests for changes in persistence are applied for interest rate differentials on

long-term government bonds for a broad set of countries. The convergence
of interest rates has been considered as a key aspect of economic integration,
especially with regard to the introduction of the Euro. Overwhelming evidence
for convergence in interest rates can be found when considering country pairs
or groups now using the Euro. The change date towards a stable relationship
is located closely before the introduction of the common currency. For many
other pairs and groupings, a similar change in persistence can be dated to the
early 1980s, the time popularly associated with the Great Moderation. To the
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Introduction

contrary, very little evidence can be found for previously stable relationships
beginning to diverge.

Chapter 3 puts the focus on comovement between output series. This is a
key concept in macroeconomic analysis because the extent to which series are
cyclically synchronized is particularly important for evaluating the feasibility of
common policy measures for a group of countries. However, such an analysis is
prone to many pitfalls. There are several concepts of what is actually called the
cyclical component of a series, leading to different possible extraction techniques.
At the same time, it is necessary to reconcile the investigation in the time and
the frequency domains.
The chapter first considers various concepts based in either the time or

the frequency domain to detect and describe such cyclical comovements in
output data for a group of core economies. However, methods from the former
category cannot account for different cycle lengths, while the statistics from
the latter category fail to capture transient relationships. Therefore, the use
of multivariate wavelet analysis and a modification of the cohesion statistic
from Fourier analysis is suggested to simultaneously assess comovement at the
frequency level and over time. The main finding is that synchronization does
indeed vary with cycle length and that it has been affected by events during
the time span of the sample, such as the introduction of the Euro. A further
benefit of the wavelet approach turns out to be that it is hardly sensitive to the
technique employed to extract the cyclical component from the output series.

4



Chapter 1
Analyzing the Performance of
Regression-based Versus
Cointegration-based Convergence Tests

1.1 Introduction

In the past years, many empirical studies have investigated the question
whether poor regions of the world on average grow faster than richer regions,
that is, whether they tend to catch up concerning per capita income or output
levels. Barro and Sala-i-Martin (1991) point out various constellations for which
this question is of particular interest, such as the South of Italy growing faster
to attain the same prosperity as the North, or the East of Germany catching
up to the West after its regime change and reunification. If the poorer part
in these pairs is actually catching up, one should be able to witness this as a
convergence process over time in the variables.
The underlying framework for studies targeted at this question has often

been that developed by Barro and Sala-i-Martin (1991, 1992). These authors
introduce two basic notions of convergence. Beta convergence focuses on the
aspect that in the case of convergence, the initial level of income needs to be
inversely related to its average growth rate and hence the coefficient β in a
regression of one on the other should be negative. Sigma convergence, on the
other hand, is concerned with the evolution of the cross-sectional dispersion
over time, requiring it to become smaller.

5



Chapter 1

Most empirical applications have considered the former definition of (beta)
convergence and proceeded to test for a cointegrating relationship between
the series at hand. For example, Choi (2004) conducts a study with this
methodology for U.S. states, while Bernard and Durlauf (1995) do the same
for OECD countries. Others have shifted the focus from output levels to other
macroeconomic variables, such as the evolution of interest rates or inflation.
Brüggemann and Lütkepohl (2005) test for cointegration between short- and
long-term interest rates for various countries, while Kirchgässner and Wolters
(1990, 1993) look at convergent inflation for major world economies. While
series such as GDP are often hypothesized to involve a deterministic time trend,
this is not necessarily the case for the latter time series. Thus a test striving
to be applicable to a large number of situations should be able to account for
both processes with a drift term and those without.

Another main issue in determining whether a process converges is the possi-
bility of temporary divergence for some or all of the series under investigation.
Essentially, it is possible that short-run dynamics are present which lead into the
opposite direction of the long-run behavior of the series. Phillips and Sul (2007)
suggest an alternative method to account for this aspect. Their regression test
of convergence is based on a panel data model that represents the economies
in transition and allows for both common and idiosyncratic factors for the
individuals. The key issue of their work thus is the advanced treatment of
heterogeneity in the panel data with the intuitive idea behind the test being
that different idiosyncratic factor loadings should converge to a constant.

It seems worthwhile to investigate how well this concept aligns with the
previous approaches based on unit root and cointegration testing and whether
data which is convergent according to the traditional concepts also passes the
convergence test proposed by Phillips and Sul. For that purpose, time series
consisting of both a common and an idiosyncratic component are constructed
and consequently subjected to the regression test. In particular, the effects of
including or omitting a deterministic time trend are investigated asymptotically
and using a Monte Carlo simulation for small sample properties. The results
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1.2 A Regression Test of Convergence

are then compared to those of a cointegration-based test introduced by Nyblom
and Harvey (2000), which features identical null and alternative hypotheses.
The further setup of the chapter is as follows. In the next section, the

regression test of Phillips and Sul (2007) is introduced. Section 1.3 describes
the data generating process for the convergent series. Section 1.4 shows the
asymptotic behavior of the regression test under the different data generating
processes, while section 1.5 introduces the benchmark test of Nyblom and
Harvey (2000). Empirical results based on Monte Carlo simulations for both
tests are presented in section 1.6. Finally, section 1.7 concludes.

1.2 A Regression Test of Convergence

1.2.1 The Framework

Phillips and Sul (2007) propose a regression-based test for the convergence
of time series in a panel of data. Their model is a time-varying factor model
that includes both common and individual-specific components. Thus, idiosyn-
cratic behavior is accounted for while at the same time a common component
is maintained across the panel. To that end, they employ the widely used
decomposition of panel data Xi,t into systematic components gi,t and transitory
components ai,t:

Xi,t = gi,t + ai,t. (1.1)

As this description permits both common and idiosyncratic components to
be either in gi,t, or ai,t, or both, Phillips and Sul employ the transformation

Xi,t =
(
gi,t + ai,t

µt

)
µt = δi,tµt, (1.2)

where δi,t is the individual distance from the common trend µt and hence a clear
distinction between common and idiosyncratic components becomes apparent.
Compared to a standard single factor model with individual-specific factor
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Chapter 1

loading δi, the formulation in (1.2) is an extension including dynamics of factor
loadings over time. Convergence then occurs if δi,t −→ δ ∀i as t→∞.

This approach is claimed to be particularly useful because it requires no
assumptions on the (non-)stationarity of Xi,t or µt. Furthermore, a wide range
of possibilities for the time path of δi,t is available. For the purpose of their test,
Phillips and Sul (2007) model δi,t as

δi,t = δi + σiξi,tL(t)−1t−α. (1.3)

L(t) here represents a slowly varying function that is required to be increasing
and divergent at infinity. Possible choices for L(t) would hence be log(t + 1)
or log(log(t + 1)). The purpose of including this function is to ensure that
δi,t −→ δi also in case α = 0. With this setting, convergence is thus present if
δi = δ and α ≥ 0, while series diverge if δi 6= δ or α < 0.

As a relative measure for the evolution of δi,t Phillips and Sul (2007) further-
more introduce a transition parameter hi,t. This parameter is directly derived
from the data Xi,t and is a functional of δi,t because the µt, being the common
factor in equation (1.2), drops out in both numerator and denominator:

hi,t = Xi,t

1
N

∑N
i=1Xi,t

= δi,t
1
N

∑N
i=1 δi,t

. (1.4)

The difference in using hi,t rather than δi,t is that in equation (1.4) the relative
transition path for economy i is considered by comparing its transition to the
panel average. Alluding to this interpretation of hi,t, it is called the relative
transition parameter by Phillips and Sul (2005). Since the cross-sectional
average of hi,t is unity by construction, under convergence of factor loading
coefficients δi,t to δ, it holds that hi,t −→ 1.

8



1.2 A Regression Test of Convergence

1.2.2 The Testing Procedure

The test Phillips and Sul (2007) propose is a regression test of

H0 : δi = δ and α ≥ 0 (1.5)

as null hypothesis of convergence versus the alternative

H1 : δi 6= δ or α < 0. (1.6)

The testing procedure consists of three steps.

First, the relative transition parameters hi,t defined in (1.4) are used to
construct the ratio

H1

Ht

where Ht = 1
N

N∑
i=1

(hi,t − 1)2.

Using this ratio, secondly, the following regression is run:

log
(
H1

Ht

)
− 2 logL(t) = â+ b̂ log t+ ût. (1.7)

As before, L(t) represents a slowly varying function. In the context of the test,
it is set to L(t) = log(t+ 1) and serves as a penalty that helps to distinguish
the null from the alternative hypothesis and to be consistent even when α = 0.
Furthermore, b̂ = 2α̂, with α̂ being the estimate of α in H0. The first 30% of
observations are discarded. Phillips and Sul claim that this shifts the focus of
the test towards the behavior in large samples and derive the choice of 30%
from their simulations.

In the third and final step, a one sided t-test of b̂ ≥ 0 against b̂ < 0 is performed
using heteroscedasticity and autocorrelation consistent standard errors. With
help of the standard critical values for t-tests one can thus determine whether
or not to reject the null hypothesis of convergence. In particular, using a typical
significance level of 5%, the convergence null has to be rejected for tb̂ < −1.65.

9



Chapter 1

1.3 Data Generation

The regression test proposed by Phillips and Sul (2007) and outlined in the
previous section is applied to regional U.S. data, OECD data, and data from the
Penn World Table in some empirical work by the same authors (Phillips and Sul,
2005). For the U.S. and OECD data sets the null of no convergence is rejected,
while for the Penn World Table data set rejecting the null is not possible.
Phillips and Sul (2005) attribute this to the large cross-sectional dimension for
which the test is claimed to overreject. In order to further investigate the issue,
this section proposes data generating processes (DGPs) to create artificial data
according to a time series based definition of convergence. The data gained
from these DGPs can then be used to assess the test’s performance in settings
involving convergence and non-convergence.
The concept of convergence introduced by Bernard and Durlauf (1995) con-

siders series yi,t and yj,t for regions i and j. Convergence between those two
series occurs if

lim
h→∞

E(yi,t+h − yj,t+h|Ft) = γ. (1.8)

With γ = 0, convergence thus corresponds to the equality of long-term
forecasts of the series for regions i and j. This situation of equation (1.8) with
the restriction to γ = 0 has been termed “strong convergence” by Bernard
and Durlauf (1996), while “weak convergence” would allow γ to be a non-zero
constant as well. A multivariate version of the definition is given by

lim
h→∞

E(y1,t+h − yn,t+h|Ft) = 0 ∀n 6= 1. (1.9)

The requirements for convergence are thus satisfied as soon as y1,t+h−yn,t+h is
a stationary process with mean zero. If the original series are given by unit root
processes, unit root or cointegration tests can be used to test for convergence,
with a cointegration relationship yi,t−yj,t ∼ I(0) and cointegrating vector [1,−1]
required for convergent series in the bivariate case of equation (1.8). This has
been the standard practice of most empirical work on growth convergence. It
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1.3 Data Generation

should be noted that this notion of testing for convergence entirely corresponds
to the beta convergence in the terminology of Barro and Sala-i-Martin (1991)
since it is only concerned with the comovement of the series and not with the
development of their volatility through time.

Phillips and Sul (2007) claim that their test is superior to previous approaches
by explicitly allowing for transitional periods and even temporary divergence
across regions through the formulation of time-varying factor loadings. Thus,
the evaluation of the test’s performance will consider this specific pattern by
considering the following data generating processes for convergent series. Since
both series with and without deterministic time drift can be relevant in practice,
two distinct DGPs are used, accounting for the two options.

Convergent data yndi,t without a drift are generated according to

yndi,t = φrt + ui,t (1.10)

ui,t = ρui,t−1 + εi,t.

In the same manner, convergent data ydi,t with a drift are generated according to

ydi,t = ψt+ φrt + ui,t (1.11)

ui,t = ρui,t−1 + εi,t.

In both settings, rt is a random walk with r0 = c < ∞, and εi,t is a white
noise process with E[εi,t] = 0 and E[εi,t]2 = σ2. All series are thus affected by a
common random walk component, but are allowed to fluctuate around it by
means of the idiosyncratic AR(1) processes for ut. In the case of DGP (1.11),
an additional common component is the time trend ψt.

In a similar way, non-convergent series are generated. The structure of the
DGPs remains the same, but now the random walks are individual-specific

11
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rather than common to all series. That is, the two DGPs for non-convergent
data read

ynd∗i,t = φri,t + ui,t (1.12)

ui,t = ρui,t−1 + εi,t,

yd∗i,t = ψt+ φri,t + ui,t (1.13)

ui,t = ρui,t−1 + εi,t.

Now, ri,t are i different random walks, each with ri,0 = c <∞. The conditions
for εi,t remain the same. Thus, the data generated according to DGP (1.12) do
not contain any common component, while those following DGP (1.13) have
the same time trend, but are otherwise unrelated. To reduce dependence on the
starting value of the random walk, the first 30% of the generated series under
all four DGPs are considered as a burn-in phase and cut off.

1.4 Asymptotic Properties

Phillips and Sul’s (2007) test requires that the ratio log
(
H1
Ht

)
in (1.7) diverges

to infinity under the null. This occurs either as 2 logL(t) → ∞ when α = 0,
albeit very slowly, or as 2α log t→∞ when α > 0 in the regression equation.
In contrast, under the alternative hypothesis of no convergence, this ratio is
shown to converge to a positive constant as t → ∞ (Phillips and Sul, 2007,
Appendix B). This section investigates whether these properties actually hold
for the DGPs at hand.
Recall that the relative transition parameter hi,t is given by

hi,t = δi,t
1
N

∑N
i=1 δi,t

= Xi,t

1
N

∑N
i=1Xi,t

.

In the case of DGP (1.10), i.e. convergent data without drift, Xi,t = φrt + ui,t

is the numerator, while in the denominator, φrt (which does not vary over
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1.4 Asymptotic Properties

cross-sections) can be taken out of the sum: 1
N

∑N
i=1Xi,t = φrt + 1

N

∑N
i=1 ui,t. In

combination, this amounts to

hi,t = φrt + ui,t

φrt + 1
N

∑N
i=1 ui,t

= φrt + ui,t
φrt + ūt

,

where a bar above variables denotes the cross-sectional average. Consequently,
the cross-sectional variance term Ht reads

Ht = 1
N

N∑
i=1

(
φrt + ui,t
φrt + ūt

− 1
)2

= 1
N

N∑
i=1

(ui,t − ūt)2

(φrt + ūt)2

= σ2
ut

(φrt + ūt)2 ,

Concerning the ratio log
(
H1
Ht

)
used in the test regression and considering that

the variance of ut is constant over time because the autoregressive error process
is stationary, this implies

log
(
H1

Ht

)
= log

 σ2
u

(φr1+ū1)2

σ2
u

(φrt+ūt)2

 = log (φrt + ūt)2

(φr1 + ū1)2 (1.14)

In equation (1.14), the denominator just consists of the random walk and the
average error term in period t = 1, hence that part does not vary with t. In
the numerator, however, the dominating part is rt, which grows at rate

√
t as

t→∞. The entire ratio then is of order Op(log T ) in the notation of Mann and
Wald (1943), satisfying the requirement that it has to diverge under the null.

13
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The same calculation with DGP (1.11) and hence a drift term included in
Xi,t yields

hi,t = ψt+ φrt + ui,t
ψt+ φrt + ūt

,

Ht = σ2
ut

(ψt+ φrt + ūt)2 , and

log
(
H1

Ht

)
= log (ψt+ φrt + ūt)2

(ψ + φr1 + ū1)2 (1.15)

Here, the dominating term in the numerator is the time trend, which grows
at rate t rather than

√
t in the situation without drift. Combined with the

denominator, which is the realization at t = 1 again, the entire ratio is of
order Op(log T 2). Since log T 2 = 2 log T , however, this differs from log T only
by a constant factor, which is disregarded for the limiting behavior. Hence,
divergence occurs in the same manner and at the same speed as for the case in
equation (1.14). The inclusion of a drift in the DGP should thus not affect the
test’s performance under the null.

In the same manner, the properties of the ratio log
(
H1
Ht

)
can be analyzed

when non-convergent data without a drift, that is, data generated according to
DGP (1.12) are used. The relative transition parameter then reads

hi,t = φri,t + ui,t
1
N

∑N
i=1(φri,t + ui,t)

= φri,t + ui,t
φr̄t + ūt

since both ri,t and ui,t in the denominator can be averaged over the cross-section.
Consequently,

Ht = 1
N

N∑
i=1

(φri,t + ui,t − φr̄t − ūt)2

(φr̄t + ūt)2

= φ2σ2
rt

+ 2σrtut + σ2
ut

(φr̄t + ūt)2 .

14



1.5 Benchmark Tests

Unlike for the stationary ut process, the variance of the random walk does
increase over time, so while σ2

u1 = σ2
ut

= σ2
u, the same does not hold for σ2

rt
. For

the ratio used in the test regression, this implies

log
(
H1

Ht

)
= log

φ2σ2
r1 + 2σr1u + σ2

u

(φr̄1 + ū1)2 − log φ
2σ2

rt
+ 2σrtu + σ2

u

(φr̄t + ūt)2 . (1.16)

The expression representing H1 in equation (1.16) still tends to a constant as
t→∞. Yet now also the part constituting Ht does, since both σ2

rt
and r̄2

t grow
at rate t. Thus, in total, log

(
H1
Ht

)
→ c <∞ as t→∞ as required by Phillips

and Sul under the alternative.
For the final case, non-convergent data with a drift following DGP (1.13), the

quantities relevant to Phillips and Sul’s test are

hi,t = ψt+ φri,t + ui,t
ψt+ φr̄t + ūt

,

Ht = φ2σ2
r + 2σru + σ2

u

(ψt+ φr̄t + ūt)2 , and

log
(
H1

Ht

)
= log

φ2σ2
r1 + 2σr1u + σ2

u

(ψ + φr̄1 + ū1)2 − log φ
2σ2

rt
+ 2σrtu + σ2

u

(ψt+ φr̄t + ūt)2 . (1.17)

The inclusion of a drift changes the convergence properties of the denominator
of Ht which is now Op(T 2), while the numerator of Ht remains Op(T ) as in
equation (1.16). When applying the logarithm, however, the discrepancy again
reduces to a constant factor, so both numerator and denominator grow at the
same rate and thus also in the case with a drift log

(
H1
Ht

)
→ c <∞ as t→∞

holds.

1.5 Benchmark Tests

To put the performance of the test by Phillips and Sul into perspective,
this section considers a benchmark test that both the convergent and the
non-convergent data will be subjected to in order to compare size and power
properties. Various variants of unit root and cointegration tests are available for
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this purpose. The standard cointegration rank test of Johansen (1991), which
is widely used, does not consider the null of a specific cointegrating rank but
rather tests the null of up to a specified number of cointegrating relationships
against the alternative that all series converge. Hence, it is not well-suited to the
question at hand. The concept of testing a null hypothesis of nonstationarity
against the alternative of stationarity has to be turned around in order to achieve
comparability to Phillips and Sul’s test. In the context of unit root testing,
this is achieved by Kwiatkowski et al.’s (1992) test of stationarity. Examples of
such tests with a reverse set of hypotheses in a cointegration setting are the
tests of Nyblom and Harvey (2000) and Breitung and Trenkler (2002). Because
they consider convergence of all series as null hypothesis versus the alternative
of at least one non-convergent series, they have the same null and alternative
hypothesis as the regression test.
Both Nyblom and Harvey’s and Breitung and Trenkler’s test are based on

eigenvalue problems and follow the rationale that if the actual rank is higher
than the hypothesized one, large eigenvalues will enter the statistic and lead to
rejection of the null. It should be noted that these tests are more specialized for
a time series setting than the regression test, since they require to T to be much
larger than N and can only deal with small cross-sectional dimensions of N
altogether. With regard to possible applications, they are thus less versatile than
the test of Phillips and Sul (2007), which puts little restrictions on the choice of
T and N . However, they still provide a valuable comparison for settings where
both can be used. Because Breitung and Trenkler (2002) suggest that Nyblom
and Harvey’s test may have the most favorable size and power properties, the
latter is used as a benchmark. It will be outlined in the remainder of this
section.

1.5.1 Nyblom and Harvey

Nyblom and Harvey (2000) suggest a test for common stochastic trends
that checks the validity of a specific rank k for the covariance matrix of the
disturbances in a multivariate random walk or, equivalently, tests the validity
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1.5 Benchmark Tests

of the hypothesis that there are k common trends in the series, against the
alternative that there are more. This is the same as testing the hypothesis
of N − k cointegrating vectors against the alternative of a cointegrating rank
smaller than N−k. Hence, setting k = 1, the benchmark test should not be able
to reject the null for the convergent data, while it should for the non-convergent
data.

The test statistic for this test is constructed from the ordered eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λN arising from the eigenvalue problem

|C − λjS(m)| j = 1, . . . , N, (1.18)

where

C = T−2
T∑
i=1

[
i∑
t=1

(yt − ȳ)
] [

i∑
t=1

(yt − ȳ)
]′

(1.19)

and S(m) is an estimate of the long-run covariance matrix obtained as

S(m) =
m∑

τ=−m
wτmΓ̂(τ) with Γ̂(τ) = T−1

T∑
τ+1

(yt − ȳ)(yt − ȳ)′. (1.20)

wτm is weighting function based on a lag window m satisfying m → ∞ as
T → ∞ and m = O(T δ) for 0 < δ < 0.5. Here, the Bartlett kernel with
wτm = 1− τ

m+1 will be used. The exact choice of m is somewhat difficult, as
automatic bandwidth estimation is only useful for stationary variables. Breitung
and Trenkler (2002) note that the test is rather sensitive regarding the choice of
m, making it difficult to balance size and power properties. For the simulation
part in this chapter, a value of m = 2 will be used.

The test of the hypothesis that there are k common trends is then based on
the N − k smallest eigenvalues, resulting in the test statistic

ζk,N = λk+1 + λk+2 + . . .+ λN k = 1, . . . , N − 1. (1.21)
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If a linear time trend is included in the data, the test statistic in (1.21) is
computed using ordinary least squares residuals from regressing the original
series on a constant and a time trend. Nyblom and Harvey (2000) provide
critical values for this statistic, which depend on both the hypothesized number
of common trends k and the number of series N .

1.6 Monte Carlo Results

φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.233 0.367 .1 0.237 0.374 .1 0.247 0.376

.2 0.223 0.368 .2 0.242 0.378 .2 0.238 0.383

.3 0.224 0.370 .3 0.233 0.379 .3 0.240 0.374

.4 0.229 0.364 .4 0.233 0.383 .4 0.242 0.383

.5 0.226 0.362 .5 0.226 0.380 .5 0.234 0.386

.6 0.215 0.364 .6 0.232 0.373 .6 0.232 0.379

.7 0.219 0.355 .7 0.225 0.375 .7 0.227 0.373

.8 0.219 0.359 .8 0.224 0.382 .8 0.227 0.385

.9 0.236 0.363 .9 0.237 0.376 .9 0.243 0.381

.95 0.268 0.373 .95 0.261 0.374 .95 0.260 0.381

.99 0.345 0.372 .99 0.341 0.378 .99 0.343 0.374

Table 1.1: Size and power of the regression test for a panel with dimensions
T = 50 and N = 4 using the DGP without drift term

This section presents findings on the small sample properties of the regression
and benchmark tests based on Monte Carlo simulations. They are based on
the four DGPs with T = 50 and N = 4 as well as T = 100 and N = 4. The
choice of N is determined by the maximum cross-sectional dimension which
the benchmark test can handle. Additionally, various combinations of the
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1.6 Monte Carlo Results

φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.008 0.480 .1 0.011 0.780 .1 0.012 0.842

.2 0.012 0.483 .2 0.013 0.774 .2 0.015 0.842

.3 0.019 0.475 .3 0.023 0.777 .3 0.025 0.826

.4 0.036 0.476 .4 0.039 0.784 .4 0.045 0.838

.5 0.067 0.479 .5 0.070 0.773 .5 0.077 0.842

.6 0.131 0.473 .6 0.151 0.773 .6 0.156 0.845

.7 0.274 0.478 .7 0.285 0.777 .7 0.289 0.840

.8 0.506 0.483 .8 0.521 0.770 .8 0.532 0.842

.9 0.756 0.468 .9 0.763 0.777 .9 0.773 0.841

.95 0.845 0.484 .95 0.846 0.777 .95 0.846 0.843

.99 0.888 0.478 .99 0.889 0.782 .99 0.889 0.837

Table 1.2: Size and power of Nyblom and Harvey’s test for a panel with dimen-
sions T = 50 and N = 4 using the DGP without drift term

parameters φ and ρ are considered. The magnitude by which the common
random walk in case of convergent data or the individual random walk in case
of non-convergent data enter the series is adjusted by choosing φ ∈ {0.5, 1, 1.5}.
For each of these choices, the autoregressive parameter in the error term is
considered from ρ = 0.1 to ρ = 0.9 in increments of 0.1. Furthermore, the near
unit root cases of ρ = 0.95 and ρ = 0.99 are investigated. For each setting,
10, 000 replications are conducted.

In the following tables, the proportion of false rejections of the null hypothesis
of convergence is reported under the “size” heading, while the other column
reports the power of the test, that is, the proportion of rightful rejections when
the DGP is of the type in (1.12) or (1.13). The slowly varying function L(t) has
been set to log(t+ 1) for the results presented below; yet findings are robust to
the exact choice of L(t), since changing it to log(log(t)) or other alternatives
suggested by Phillips and Sul leads to no notable differences.
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φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.118 0.248 .1 0.111 0.268 .1 0.117 0.277

.2 0.116 0.242 .2 0.115 0.266 .2 0.116 0.281

.3 0.113 0.246 .3 0.117 0.266 .3 0.114 0.289

.4 0.110 0.243 .4 0.108 0.274 .4 0.117 0.278

.5 0.108 0.241 .5 0.107 0.277 .5 0.114 0.283

.6 0.108 0.253 .6 0.108 0.278 .6 0.107 0.274

.7 0.116 0.251 .7 0.111 0.282 .7 0.115 0.273

.8 0.121 0.246 .8 0.115 0.272 .8 0.124 0.274

.9 0.153 0.244 .9 0.150 0.272 .9 0.144 0.275

.95 0.176 0.251 .95 0.183 0.279 .95 0.168 0.276

.99 0.286 0.252 .99 0.260 0.280 .99 0.265 0.269

Table 1.3: Size and power of the regression test for a panel with dimensions
T = 50 and N = 4 using the DGP including a drift term

Table 1.1 presents these results for a panel with dimensions T = 50 and
N = 4. Clearly, the size of the test is nowhere near the nominal size of 5%
for any of the combinations. The highest size values are observed for values
of ρ that are close to unity, namely ρ = 0.95 and ρ = 0.99. This comes as no
surprise since in the case of an idiosyncratic component that is stationary but
comes close to having a unit root, the danger of false positives is intuitively
considerably larger than for individual-specific components that are clearly I(0).
Surprisingly, the lowest size values are not found for the smallest instances of
the autoregressive parameter, but rather for ρ ∈ [.6, .8]. Still, all size values
for ρ ≤ 0.9 range between 21% and 25%, far above the nominal level as well.
The choice of φ appears to have little influence on the size of the test. Likewise,
the power of the test is hardly affected by either φ or ρ; it always lies between
0.35 and 0.39, which is quite far from adequate levels. Nevertheless, the test
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1.6 Monte Carlo Results

φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.019 0.504 .1 0.024 0.827 .1 0.026 0.895

.2 0.040 0.497 .2 0.045 0.831 .2 0.048 0.893

.3 0.066 0.498 .3 0.085 0.832 .3 0.088 0.894

.4 0.133 0.497 .4 0.149 0.833 .4 0.143 0.902

.5 0.228 0.492 .5 0.261 0.830 .5 0.265 0.895

.6 0.390 0.499 .6 0.409 0.832 .6 0.418 0.901

.7 0.574 0.487 .7 0.608 0.827 .7 0.622 0.896

.8 0.779 0.499 .8 0.787 0.827 .8 0.798 0.900

.9 0.905 0.496 .9 0.908 0.828 .9 0.908 0.900

.95 0.934 0.494 .95 0.938 0.829 .95 0.938 0.898

.99 0.946 0.502 .99 0.948 0.825 .99 0.942 0.891

Table 1.4: Size and power of Nyblom and Harvey’s test for a panel with dimen-
sions T = 50 and N = 4 using the DGP including a drift term

– though not explicitly designed for this situation – does have some ability to
distinguish between convergent and non-convergent data.
Table 1.2 reports the results of the benchmark test in the same setting for

comparison. There are several striking differences. The size depends much more
on the autoregressive parameter ρ. It attains values that are better than for
the regression test as long as ρ ≤ 0.6, while for larger values of ρ it deteriorates
fast. Being taken from a time-series setting, the benchmark test is thus much
more susceptible to near unit root processes for the error term. The choice of φ,
to the contrary, does not appear to have much impact on the size, while the
power improves with higher φ and is generally substantially higher than for the
regression test.

The effects obtained from including a drift term, and thus using DGP (1.11)
rather than (1.10), on the regression test are displayed in Table 1.3. The general
pattern, with size being higher for values of ρ that come close to a unit root,
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φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.254 0.399 .1 0.261 0.381 .1 0.248 0.367

.2 0.249 0.390 .2 0.250 0.370 .2 0.261 0.368

.3 0.247 0.390 .3 0.250 0.379 .3 0.248 0.367

.4 0.253 0.394 .4 0.245 0.378 .4 0.255 0.366

.5 0.239 0.391 .5 0.246 0.379 .5 0.243 0.366

.6 0.236 0.390 .6 0.235 0.388 .6 0.239 0.363

.7 0.228 0.399 .7 0.230 0.387 .7 0.229 0.363

.8 0.220 0.398 .8 0.215 0.387 .8 0.230 0.372

.9 0.212 0.397 .9 0.213 0.372 .9 0.217 0.369

.95 0.230 0.392 .95 0.228 0.373 .95 0.225 0.358

.99 0.291 0.393 .99 0.298 0.380 .99 0.289 0.361

Table 1.5: Size and power of the regression test for a panel with dimensions
T = 100 and N = 4 using the DGP without drift term

remains the same as in the case without drift, as does the finding that the
value of φ has little effect on size and power. However, across all constellations,
size and power are substantially smaller than in Table 1.1. Thus, with a trend
included, the regression test is more successful in detecting convergent data,
but at the cost of classifying more non-convergent data as convergent, too.

For the benchmark test, including a drift term also changes results as can
be seen in Table 1.4. Interestingly, the effect is rather contrary to that of the
regression test. For Nyblom and Harvey’s test, both size and power are generally
higher than in the case without drift. The test thus fails to detect convergence
more often but the fraction of false negatives becomes smaller. Additionally,
the influence of ρ on the size is even more pronounced than in the case without
drift. Values of ρ exceeding 0.4 lead to values which are no longer adequate and
even approach unity as the error term comes closer to being a unit root process.
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φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.029 0.972 .1 0.048 0.993 .1 0.038 0.997

.2 0.050 0.981 .2 0.053 0.995 .2 0.051 0.997

.3 0.076 0.974 .3 0.075 0.992 .3 0.068 0.999

.4 0.115 0.983 .4 0.127 0.998 .4 0.137 0.993

.5 0.193 0.971 .5 0.194 0.995 .5 0.206 0.999

.6 0.328 0.975 .6 0.323 0.996 .6 0.331 0.999

.7 0.531 0.975 .7 0.568 0.992 .7 0.570 0.998

.8 0.803 0.973 .8 0.826 0.997 .8 0.823 0.997

.9 0.972 0.973 .9 0.982 0.998 .9 0.968 0.999

.95 0.994 0.978 .95 0.997 0.996 .95 0.995 0.996

.99 0.998 0.983 .99 0.998 0.997 .99 0.999 0.997

Table 1.6: Size and power of Nyblom and Harvey’s test for a panel with dimen-
sions T = 100 and N = 4 using the DGP without drift term

A further relevant question is how strongly the length of the time dimension
affects the performance of the tests. The results of the simulations with T = 100
are presented in Tables 1.5 and 1.7 for the regression test without and with
drift as well as Tables 1.6 and 1.8 for the corresponding benchmark tests. As
Table 1.5 indicates, there is little effect on the results of the regression test for
data without a drift. Size and power are very similar for T = 50 and T = 100;
also the finding that size is not best for very small or very large values of
ρ, but rather for intermediate values around 0.8 is obtained again. However,
the benchmark test – which is time series based – shows notably improved
power, which still increases with φ and attains values close to unity when T is
larger, while the size only increases to a lesser degree. For small values of the
autoregressive parameter, the size is close to its nominal level. This test thus
clearly benefits from the extended time span.
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φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.063 0.260 .1 0.061 0.265 .1 0.063 0.257

.2 0.060 0.254 .2 0.058 0.253 .2 0.058 0.255

.3 0.065 0.259 .3 0.059 0.246 .3 0.063 0.253

.4 0.056 0.260 .4 0.065 0.256 .4 0.059 0.257

.5 0.065 0.258 .5 0.061 0.252 .5 0.059 0.251

.6 0.061 0.256 .6 0.059 0.246 .6 0.055 0.242

.7 0.056 0.255 .7 0.055 0.248 .7 0.058 0.248

.8 0.060 0.261 .8 0.059 0.252 .8 0.060 0.254

.9 0.075 0.260 .9 0.074 0.255 .9 0.068 0.251

.95 0.099 0.254 .95 0.104 0.247 .95 0.102 0.261

.99 0.199 0.253 .99 0.185 0.255 .99 0.180 0.252

Table 1.7: Size and power of the regression test for a panel with dimensions
T = 100 and N = 4 using the DGP including a drift term

When a drift is included, the regression test once again features both a lower
size and power. However, with the increased T , the size of the test is better
than for T = 50, while the power is about the same. For the benchmark test,
the inclusion of a drift term means that the power is very close to unity for
any parameter constellation. The size is worse than for the case without drift
and rather similar to that of the situation with T = 50 and a drift term in
the data. Overall, for small choices of ρ, the benchmark test delivers very
convincing results as the time dimension increases, while the regression test
performs considerably more poorly.
While for small cross-section dimensions as considered so far, the regression

test for convergence faces competition from the time series based alternatives,
as pointed out before, the latter cannot handle settings where N exceeds four.
In the following, the performance of Phillips and Sul’s test will be investigated
for larger N and for settings where the time and cross-section dimensions are
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φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.055 0.982 .1 0.048 0.099 .1 0.059 1.000

.2 0.083 0.982 .2 0.096 0.999 .2 0.107 0.998

.3 0.166 0.979 .3 0.162 0.999 .3 0.182 0.999

.4 0.275 0.986 .4 0.278 0.998 .4 0.281 1.000

.5 0.453 0.992 .5 0.421 0.998 .5 0.431 1.000

.6 0.658 0.983 .6 0.649 0.999 .6 0.667 1.000

.7 0.863 0.982 .7 0.859 0.998 .7 0.845 1.000

.8 0.962 0.990 .8 0.974 0.997 .8 0.981 1.000

.9 0.998 0.979 .9 0.999 0.997 .9 0.997 1.000

.95 1.000 0.982 .95 0.999 0.998 .95 1.000 1.000

.99 1.000 0.983 .99 1.000 0.999 .99 0.999 1.000

Table 1.8: Size and power of Nyblom and Harvey’s test for a panel with di-
mensions T = 100 and N = 4 using the DGP including a drift
term

of comparable range, even though these results cannot be confronted with
corresponding benchmark tests.

Tables with simulated size and power for these constellations can be found in
the appendix. Tables 1.9 and 1.10 summarize results for a panel with T = 50
and N = 25, that is, a time dimension as in the original setting, but with a
much bigger cross section. Compared to the situation with N = 4, both size
and power increase only very slightly for the DGP without a drift term. For
the DGP with a drift term, the difference is more noticeable. While the size
increases a bit compared to the result using a cross-sectional dimension of four,
the power is considerably lower and barely exceeds the size in most instances.
Notably, unlike for the previous settings, the power also appears to depend on
the choice of φ. In any case, both size and power are considerably lower than for
the DGP without drift as was the case with smaller cross-sectional dimensions.
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For a panel with T = N = 25, results are shown in Tables 1.11 and 1.12.
Compared to the situation with T = 50, the size is slightly higher for the DGP
without drift and more notably so for the DGP including one. The power in
the situation without a drift remains roughly the same for T = 50 and T = 25,
though the dependence of φ is greater for the shorter time period. In the case
including a drift, the power is higher for T = 25 than for T = 50, yet it still
depends on the choice of φ and is clearly below satisfactory levels.

In summary, the results indicate that the regression test introduced by Phillips
and Sul (2007) is very robust to changes in T and especially in N . For analyzing
convergence in settings with many countries and short time spans, it could thus
potentially serve as an alternative to time series based tests such as Nyblom
and Harvey (2000) or Breitung and Trenkler (2002). Furthermore, the results
indicate that Phillips and Sul’s test may have some advantage if there is a
strong autoregressive component in the error term. With respect to power,
the performance of the regression test is poor in most cases and for a limited
cross-section dimension over a reasonably long time span it is clearly inferior to
the alternative test specialized in this situation.

1.7 Conclusion

This chapter has investigated the performance of the regression test for
convergence suggested by Phillips and Sul (2007) in a setting of artificially
created convergent series consisting of a common trend and an idiosyncratic
component. While the asymptotic properties of Phillips and Sul’s statistics
under these conditions are as required by the authors for the test to function, it
turns out that the test does not perform convincingly in a small sample study
with the time dimension considerably larger than the cross-section dimension.

Furthermore, the Monte Carlo simulations reveal that the test has severe size
distortions when applied to data generated from a DGP without drift term while
the size properties are somewhat better if a drift term is included. Although
still not too convincing, the power in the setting without a time trend is higher
than in the situation including one.
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1.7 Conclusion

A comparison to the cointegration-based test of Nyblom and Harvey (2000)
indicates that the latter performs best for many settings. Especially when
the autoregressive order of the error term is small and as the time dimension
increases, it seriously outperforms the regression test. Bearing in mind the
deficiencies when a time trend is present, Phillips and Sul’s test however does
have some merit when cointegration tests cannot be applied. That is, it can
provide some guidance concerning convergence of series in a panel of similar
time and cross-section dimensions.
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Appendix to Chapter 1

φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.269 0.385 .1 0.265 0.409 .1 0.273 0.400

.2 0.267 0.377 .2 0.274 0.404 .2 0.272 0.406

.3 0.264 0.382 .3 0.272 0.396 .3 0.267 0.406

.4 0.272 0.385 .4 0.263 0.393 .4 0.269 0.403

.5 0.257 0.372 .5 0.258 0.391 .5 0.266 0.403

.6 0.262 0.383 .6 0.259 0.409 .6 0.265 0.396

.7 0.259 0.375 .7 0.278 0.403 .7 0.264 0.394

.8 0.265 0.373 .8 0.259 0.401 .8 0.271 0.396

.9 0.276 0.374 .9 0.272 0.403 .9 0.266 0.406

.95 0.280 0.381 .95 0.277 0.401 .95 0.295 0.410

.99 0.345 0.385 .99 0.359 0.407 .99 0.357 0.400

Table 1.9: Size and power of the regression test for a panel with dimensions
T = 50 and N = 25 using the DGP without drift term
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φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.141 0.158 .1 0.146 0.213 .1 0.149 0.225

.2 0.145 0.165 .2 0.141 0.216 .2 0.147 0.229

.3 0.150 0.155 .3 0.153 0.224 .3 0.147 0.231

.4 0.149 0.166 .4 0.144 0.217 .4 0.143 0.217

.5 0.137 0.158 .5 0.131 0.220 .5 0.145 0.217

.6 0.142 0.155 .6 0.142 0.215 .6 0.149 0.229

.7 0.136 0.160 .7 0.148 0.212 .7 0.143 0.219

.8 0.139 0.158 .8 0.141 0.202 .8 0.152 0.227

.9 0.142 0.156 .9 0.157 0.216 .9 0.157 0.223

.95 0.155 0.166 .95 0.161 0.209 .95 0.167 0.219

.99 0.266 0.160 .99 0.259 0.210 .99 0.264 0.215

Table 1.10: Size and power of the regression test for a panel with dimensions
T = 50 and N = 25 using the DGP including a drift term
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φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.278 0.351 .1 0.273 0.401 .1 0.290 0.431

.2 0.276 0.351 .2 0.294 0.407 .2 0.283 0.417

.3 0.268 0.337 .3 0.278 0.402 .3 0.289 0.407

.4 0.270 0.341 .4 0.271 0.405 .4 0.279 0.422

.5 0.261 0.347 .5 0.274 0.400 .5 0.272 0.417

.6 0.272 0.330 .6 0.280 0.406 .6 0.281 0.423

.7 0.275 0.341 .7 0.269 0.399 .7 0.278 0.397

.8 0.281 0.355 .8 0.279 0.406 .8 0.278 0.419

.9 0.281 0.344 .9 0.299 0.402 .9 0.293 0.412

.95 0.324 0.332 .95 0.343 0.404 .95 0.328 0.417

.99 0.401 0.346 .99 0.404 0.407 .99 0.395 0.419

Table 1.11: Size and power of the regression test for a panel with dimensions
T = 25 and N = 25 using the DGP without drift term
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φ = 0.5 φ = 1.0 φ = 1.5

ρ size power ρ size power ρ size power

.1 0.210 0.230 .1 0.206 0.333 .1 0.212 0.355

.2 0.201 0.220 .2 0.217 0.334 .2 0.209 0.368

.3 0.208 0.219 .3 0.201 0.321 .3 0.211 0.354

.4 0.209 0.227 .4 0.213 0.335 .4 0.204 0.355

.5 0.201 0.224 .5 0.210 0.347 .5 0.211 0.350

.6 0.203 0.239 .6 0.218 0.338 .6 0.216 0.358

.7 0.208 0.227 .7 0.210 0.334 .7 0.212 0.363

.8 0.222 0.234 .8 0.218 0.335 .8 0.214 0.358

.9 0.238 0.231 .9 0.226 0.329 .9 0.236 0.358

.95 0.271 0.223 .95 0.269 0.327 .95 0.260 0.353

.99 0.357 0.230 .99 0.360 0.328 .99 0.372 0.359

Table 1.12: Size and power of the regression test for a panel with dimensions
T = 25 and N = 25 using the DGP including a drift term
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Chapter 2
Convergence and Orders of Integration
for Interest Rates

2.1 Introduction

The relation between interest rates of different countries is a key element
of many international economic models. Ties between interest rates are an
indicator of monetary integration and as institutions around the world have
implemented measures to stabilize monetary policy, the question arises whether
there is a tendency towards some global level of the long-term interest rate.
The idea of a “world interest rate” has repeatedly caught the attention of
researchers and has been discussed extensively (e.g. Blanchard et al., 1984;
Mishkin, 1984; Barro and Sala-i-Martin, 1990). The main finding has been an
increasing dominance of global factors for the determination of interest rates.
The theory behind this effect is that increasing deregulation has led to higher
international capital mobility with respect to both the speed and volume of
movements.
In a flexible exchange rate setting under the assumption of perfect substi-

tutability of bonds independent of the currency they are denominated in, the
no-arbitrage condition in international financial markets implies that interest
rate differentials between domestic and foreign assets with the same character-
istics and maturity m (years) must be reflected in corresponding differences
between spot and forward foreign exchange rates. Assuming risk-averse behavior
in the foreign exchange market implies that the forward rate is the expected
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future spot rate Et[st+m] plus a country-specific and time-varying risk premium
ρt. Furthermore, the expected spot rate differs from the actual rate by a forecast
error εt. This can be summarized as the uncovered interest rate parity (UIP)
relationship

rt − r∗t = 1
m

(st+m − st − εt+m + ρt). (2.1)

where rt denotes the domestic and r∗t the foreign interest rate.

Since the order of integration of the interest rate differential rt − r∗t has to
be the same as that for the right-hand side of equation (2.1), the stochastic
properties of the following three components are relevant: the change in the
exchange rate, the rational expectations error εt+m, and the risk premium ρt.
Various empirical studies find the exchange rate to be a random walk (Meese and
Singleton, 1983; Meese and Rogoff, 1983), which implies stationarity of its change.
The rational expectations error is by definition stationary and independent
of information available at time t; in fact, assuming that expectations are on
average correct and hence εt+m = 0 is not very restrictive. Finally, the risk
premium remains the only part whose properties cannot be anticipated. It might
hence either be stationary, which is the standard assumption in most models of
UIP; however, it could also be integrated of order one. The latter is argued by
Evans and Lewis (1994), who argue that nonstationary risk premia are required
to explain excess bond returns and Crowder (1994), who also demonstrates
possible non-stationarity of the forward risk premium.

Caporale et al. (1996) and Harvey and Carvalho (2002) have pointed out
that convergence toward a stable interest rate differential requires a transition
phase, during which time series approach each other, and a stability phase,
representing a situation in which convergence has been achieved. However, most
tests currently used for interest rate convergence are based on a cointegrating
relationship between interest rates and hence only focus on the latter phase. In
the context of the UIP framework, this would require a risk premium that is
stationary throughout the sample. However, the formation of a “world interest
rate” at some point during the sample for countries previously in the process of
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transition or, at least, a tendency towards a common movement of interest rates
within the European Monetary Union (EMU) would be reflected in a change of
the order of integration of the forward risk premium and hence the interest rate
differential from I(1) to I(0).

The contribution of this chapter to the existing literature is threefold. First,
it allows for the joint treatment of the transition and the stability phase of
convergence using a test for a change in persistence recently proposed and
shown to outperform other tests (Harvey et al., 2006). Second, it remedies
the problem of exogenously specifying a starting date for convergence, since
the breakpoints can be endogenously determined with appropriate estimators.
Third, it uses data over a larger set of countries and a sufficiently long time
span to investigate patterns both within and outside the EMU on a pair-wise
basis as well as for entire groups of countries seen as one entity.

The chapter proceeds as follows. The next section discusses policy measures
targeted at higher monetary integration and reviews previous attempts to model
interest rate convergence. Section 2.3 provides a definition of convergence as
a change in persistence, while section 2.4 describes the methodology used to
detect such changes. Section 2.5 presents and discusses the results. Finally,
section 2.6 concludes.

2.2 Indicators of Convergence

2.2.1 Policy Measures and Monetary Integration

Investigating the pattern of interest rates evolving over time has been of
particular interest for countries within the European Union and under the
impact of its coordinated monetary policy. A number of politically motivated
steps toward economic convergence have been taken since the collapse of the
Bretton Woods agreement in 1973 and the ensuing possibility for exchange rates
to fluctuate freely. Right from the start, a number of central banks in Europe
adopted a “snake in the tunnel” approach, limiting exchange rate fluctuations to
a small band, although initially these bands underwent frequent readjustments.
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The process was formalized in 1979 through the formation of the European
Monetary System (EMS) by Belgium, Denmark, France, Germany, Ireland,
Italy, Luxemburg, and the Netherlands with an Exchange Rate Mechanism
(ERM) that prescribed currency bands as a key element. The system was later
joined by Spain and Great Britain and remained in place until 1999, with a
notable interruption in 1992, when Great Britain and Italy were forced to leave
the ERM temporarily because their central banks were unable to maintain the
fixed band.

In 1999, the European Monetary Union (EMU) replaced the previous system
and fixed exchange rates invariably for those countries adopting the euro as a
common currency. Among the four criteria required for joining this group, one
explicitly targeted interest rate convergence, mandating that the interest rate
on long-term government bonds be at most two percentage points above the
average of the three countries with the highest price stability. Other criteria
focused on price stability, the amount and growth of public debt, and a two-year
participation in ERM II, which was introduced as a successor to the original
ERM for those countries not yet matching all criteria for the euro.

However, evidence of convergence in interest rates goes beyond the European
Union. Since the first half of the 1980s, economists have noted a marked decline
in the volatility of aggregate economic activity for most industrialized countries.
Due to its comprehensiveness and impact, Stock and Watson (2003) coined
the term “Great Moderation”, by which this phenomenon has since become
known. Research on this development has stressed its international dimension
(Blanchard and Simon, 2001) and has also sought for possible explanations.
Clarida et al. (2000) find evidence of a significant change in U.S. monetary
policy, namely that it began to respond to deviations from desired GDP and
inflation growth more pronouncedly after 1979. They argue that this shift,
initiated by the installation of Paul Volcker as chairman of the Federal Reserve,
has had a stabilizing impact. This is supported by Fase and Vlaar (1998) who
note driving forces toward higher integration such as the gradual abolishment of
capital controls and the ensuing higher international diversification of portfolios.
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Regarding interest rates, this should imply convergence since inflation became
more predictable and country-specific risk became less relevant.

From an economic perspective, there is thus reason to expect convergence in
interest rates both within EMU and worldwide. A common feature of both is
the gradual movement toward the current situation. While there are certain
key dates associated with the development, convergence does not appear all of
a sudden but rather constitutes a sustained process toward the goal of higher
financial integration.

2.2.2 Previous Approaches to Assess Convergence

Due to the topic’s relevance, in particular with the advancement of a monetary
union in Europe, the degree of financial integration and the movement of interest
rates toward a common level have been the focal point of many previous studies
which strive to provide a framework to assess convergence.

The vast majority of the literature on financial integration considers the
comovement of interest rates as an indicator of convergence. This is usually
done by means of cointegration tests for interest rate series or, equivalently,
stationarity tests on their spreads. As some of the first authors to make use of
this approach, Katsimbris and Miller (1993) find little evidence of convergence
between German interest rates and those of other EMS countries. Likewise,
Throop (1994) finds no cointegration between government bond yields for the
United States, Canada, Germany, Japan, and the United Kingdom. Similar
investigations with variations in frequency of the data, the selection of countries,
or the time period considered (e.g. Poghosyan, 2009, who also provides an
overview of the literature using this method) generally come to the same
conclusion.

Several papers extend this framework by not only considering the relationship
between long-term interest rates of two countries but also the connection between
long- and short-term rates within each country. The theoretical foundation for
the comovement of the latter is provided by the expectations hypothesis of the
term structure and cointegration tests are then carried out in a four-dimensional
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system including both long- and short-term rates for each country. Consequently,
one should expect to find three linearly independent cointegration relationships.
With this setting, however, Kremer (1999) finds no evidence for cointegration
between interest rates for Germany and the United States. Brüggemann and
Lütkepohl (2005) compare the United States and EMU, using an artificially
constructed rate consisting of the German rate prior to 1999 and a weighted
average of the EMU rates afterwards for the latter. Confining themselves to a
particular sample period starting in the middle of the 1980s, they indeed find
the three theoretically expected relationships; yet, for different choices of the
starting point, their results cannot be confirmed.
Other authors have noted that the development of financial and economic

cooperation has caused shifts which imply structural breaks in the cointegration
relationship. Zhou (2003) exogenously establishes three sub-periods of his
entire sample from 1979–1998 and finds evidence for convergence of interest
rates of countries within the European Monetary System. Arghyrou et al.
(2009) endogenously determine two breaks and test for stationarity of interest
rate differentials against the EMU average but find only limited evidence for
convergence of European countries’ interest rates. The reason could be that
endogenous break tests as well as the test for cointegration breakdown introduced
by Andrews and Kim (2006) may fail to detect breaks appropriately due to the
gradual nature of the adjustment (Brada et al., 2005).
Because of this deficiency, a rolling cointegration approach has been used

to capture the development. Poghoysan and de Haan (2007) perform rolling
threshold cointegration analysis for interest rates from various financial market
segments in European countries. Besides deposits, loans, and mortgages, they
also investigate ten-year government bonds. Despite the dynamic nature of
their test, they only find evidence for financial integration in a few instances;
none of them involving the latter segment. A common problem of all these
cointegration-based tests is that their results strongly hinge on the starting
point of the sample.
A new approach is considered by Frömmel and Kruse (2009), who use a

persistence change test to assess convergence. Restricting themselves to the
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short-term interest rate differentials of four key EMU economies versus Germany
and a 1983–2007 sample, they find evidence of convergence for three of them
using a test proposed by Leybourne et al. (2007). The convergence dates vary for
the different countries, but generally fall into the years before the introduction
of the Euro.

2.3 Convergence in Interest Rates

2.3.1 Definition of Convergence

As seen in the previous section, most studies consider convergence to be
present if a cointegrating relationship exists between the two interest rates,
which obviously implies a stationary risk premium in the UIP relationship from
equation (2.1). The motivation for this definition of convergence is often linked
to the work of Bernard and Durlauf (1995, 1996), who provide two definitions
of convergence.
When adapted to the situation here, the first one views convergence as

catching up: the rates rt and r∗t of two countries with rt1 > r∗t1 converge between
dates t1 and t2 > t1 if

E(rt2 − r∗t2|Ft1) < rt1 − r∗t1 , (2.2)

where Et[.] is the mathematical expectations operator and Ft1 denotes all
information available up to time t1. The second definition refers to convergence
as the equality of long-term forecasts for the interest rates at a fixed time:

lim
k→∞

E(rt+k − r∗t+k|Ft) = γ. (2.3)

A further distinction is made between strong convergence, which requires long-
term forecasts of the series to be identical, so that γ = 0 in equation (2.3), and
weak convergence, allowing for a non-zero but constant γ.

Present studies thus focus on the second definition, presented in equation (2.3).
As Bernard and Durlauf (1996) note in their Proposition 5, this definition is

39



Chapter 2

violated if the difference of the series under consideration contains a unit root.
They hence conclude that “time series tests may have poor power properties
when applied to data from economies in transitions” (Bernard and Durlauf,
1996, p. 171); a view that is shared by Caporale et al. (1996), who take issue
with the fact that such tests only address convergence as a state but do not
consider the process leading there.

To illustrate this point, consider a simple example with I(1) variables xt and
yt. If their difference xt − yt is I(1) as well, which has been taken as rejection
of the convergence hypothesis by cointegration-based tests, there are actually
two possible explanations. Either the variables are indeed completely unrelated
or they are gradually moving toward one another, implying a monotonically
decreasing difference series. This latter case, however, corresponds to Bernard
and Durlauf’s first definition of convergence from equation (2.2).
In the same way, an I(0) difference xt − yt need not imply convergence. If

the starting values of the two series are far apart, a stationary difference merely
means that the variables persist at these unequal levels. Harvey and Carvalho
(2002) thus propose to call the tests based on cointegration stability tests rather
than convergence tests. While they may be a powerful tool once transition
toward a common level has been achieved, they fail to capture the preceding
phase during which transition is actually taking place.

2.3.2 A Persistence Change Test for Convergence

An actual test of convergence should thus allow for both a transition and a
stability phase. The concept of series first approaching and later on comoving
can be represented as the switch from an I(1) to an I(0) process in the gap
between them. Requiring a stationary gap for converged series picks up the
notion of the cointegration-based tests for the stability phase.
For the case of interest rates, a test of changes in persistence, i.e. changes

in the order of integration, applied to the interest rate differentials can thus
serve as a test of convergence. Under the alternative, series change from a
transition phase characterized by a unit root in the risk premium – and hence
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the differential – to a stability phase characterized by stationarity. The null,
on the other hand comprises two distinct cases of non-convergence. Either the
differential has a unit root throughout, implying that a process of transition is
still ongoing or there is no relation at all; or the differential is stationary during
the entire sample, which means there is no room for a transition period and
series remain as far apart as they have been initially.

Hence, a test proposed by Harvey et al. (2006) is applied to check for changes
in persistence. While various tests of changing persistence have been proposed
in the literature, e.g. by Kim (2000) or Busetti and Taylor (2004), the test by
Harvey et al. performs superiorly. It allows for a null of constant integration of
unspecified degree, while the other tests require a specific null of constant I(0)
processes and may spuriously overreject if the series is actually a constant I(1)
process. The exact implementation is outlined in the following section.

2.4 Detecting Persistence Changes

2.4.1 Methodology

To assess changes in persistence, an autoregressive integrated moving average
(ARIMA) process given by

α(L)∆dxt = µ+ θ(L)εt (2.4)

is considered, where L is the lag and ∆ ≡ 1− L the difference operator. εt is
assumed to be white noise, while α(L) and θ(L) are the p-th order autoregressive
and q-th order moving-average polynomials, respectively, with the stability
condition that all roots lie outside the unit circle. The value of d represents
the number of times that the process in equation (2.4) must be differenced to
obtain a stationary, invertible ARMA(p, q) process. For the interest rate series
at hand, the only economically justifiable values for d are zero and one, so the
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investigation is restricted to these two possibilities.2 A change in persistence
hence means a change in the value of d at some point of the sample.
Similar to Harvey et al. (2006), the following hypotheses will be considered

to test for such change in persistence. The first constitutes the null hypothesis
of no change, that is, a degree of integration that remains unity throughout the
sample.

H0a : d = 1 for t = 1, . . . , T.

On the other hand, the alternative hypothesis of a change in persistence
implying convergence of interest rates is given by

H10 : d =

1 for t = 1, . . . , bτT c

0 for t = bτT c+ 1, . . . , T,

where τ ∈ (0, 1) and bxc denotes the largest integer not greater than x.
Independently of each other, Kim (2000) and Busetti and Taylor (2004)

develop various statistics for testing H0a against the alternative that the process
changes from I(1) to I(0) at some unknown breakpoint in the sample. All of
them are based on the ratio statistic

KbτT c =
(bτT c)−2∑bτT c

t=1

(∑t
s=1 ε̂0,s

)2

(T − bτT c)−2∑T
t=bτT c+1

(∑t
s=bτT c+1 ε̂1,s

)2 , (2.5)

where ε̂0,t are the residuals from an OLS regression of yt on a constant over
t = 1, . . . , bτT c and, similarly, ε̂1,t are the residuals from this regression over
t = bτT c+ 1, . . . , T . Since the point τ ∗ at which a persistence change occurs is
a priori unknown, the entire sequence of statistics {KbτT c, τ ∈ Λ} is examined.
Following Harvey et al. (2006), tests are conducted over the central 60% of
the sample, so Λ = [τl, τu] = [0.2, 0.8]. The three statistics proposed by Kim

2When assuming integer orders of integration, I(2) and higher are not considered plausible
in empirical analyses. Further options for the value of d would arise when considering
fractional integration, which is investigated by Frömmel and Kruse (2009).
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(2000) and Busetti and Taylor (2004) are based on the mean score statistic from
Hansen (1991), the mean-exponential statistic from Andrews and Ploberger
(1994), and the maximum over the sequence of statistics from Andrews (1993),
respectively. They are

MS = (1 + bτuT c − bτlT c)−1
bτuT c∑
t=bτlT c

Kt,

ME = ln

(1 + bτuT c − bτlT c)−1
bτuT c∑
t=bτlT c

exp
(1

2Kt

) ,
MX = max

t∈{bτlT c,...,bτuT c}
Kt.

Harvey et al. (2006) perform Monte Carlo simulations to show that the
aforementioned statistics cannot be used to distinguish between a change in
persistence and a constant I(0) process as opposed to the constant I(1) process
assumed under H0a. They propose various modifications based on the approach
of Vogelsang (1998) that, for some given significance level, yield statistics with
the same critical value as for the unmodified test under H0a, but where this
critical value is also appropriate under stationarity throughout the sample,
denoted by H0b. The modified statistic that performs best as a replacement for
MS follows as

MSm = exp(−bJmin)MS, (2.6)

where b is a finite constant chosen such that the critical values of the statistic
under H0a and H0b coincide and Jmin = minτ∈Λ JbτT c+1,T . JbτT c+1,T represents
T−1 times the Wald statistic for testing the hypothesis γ1 = . . . = γ9 = 0 in the
regression yt = β+∑9

i=1 γit
i+ut, t = bτT c+1, . . . , T . The modified statistics

forME andMX follow from entirely similar steps and are subsequently denoted
asMEm andMXm. Relevant values of b for each of these statistics are tabulated
in Harvey et al. (2006).
For those countries outside the European Monetary Union and thus not

immediately affected by political measures to foster convergence, an opposite
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development to that described before is also possible, that is, series starting to
diverge at some point again. This change from I(0) to I(1) can be captured by
the reverse of hypothesis H10:

H01 : d =

0 for t = 1, . . . , bτT c

1 for t = bτT c+ 1, . . . , T,

with the corresponding null hypothesis

H0b : d = 0 for t = 1, . . . , T.

This set of hypotheses can essentially be tested using the same framework
as above. However, as Busetti and Taylor (2004) demonstrate, the statistics
MS, MX, and ME are inconsistent for testing whether a change of persistence
in the opposite direction occurs. They introduce statistics MSR, MXR, and
MER which differ from the previous ones only in that the nominator and the
denominator of KbτT c in equation (2.5) are switched. Busetti and Taylor show
these reverse statistics to be consistent against a change from I(1) to I(0), but
not against one in the opposite direction. The corresponding modified reverse
statistic for MS is obtained as MSRm = exp(−bJRmin)MSR where b is chosen in
the same way as before and JRmin = minτ∈Λ J1,bτT c. Again, the modified versions
MER

m and MXR
m are constructed in the same way.

An advantage of the persistence change approach over other approaches is
that the break date does not have to be provided exogenously but can instead
be inferred from a statistic. For a change from I(1) to I(0), both Kim (2000)
and Busetti and Taylor (2004) propose

τ̂ ∗ = arg min
τ∈[τl,τu]

(bτT c)2∑T
t=bτT c+1 ε̂

2
1,s

(T − bτT c)2∑bτT c
t=1 ε̂2

0,s
, (2.7)

with ε̂0,t and ε̂1,t defined as before. As with the K statistic from equation (2.5), a
change from I(0) to I(1) can be dated by switching nominator and denominator.
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Following an argument by Halunga et al. (2009), breaks in persistence are only
considered when they occur strictly inside the search interval Λ.

2.4.2 Pairwise and Average Measures

In their seminal work on convergence, Bernard and Durlauf (1995) suggest two
primary approaches that can be used to investigate convergence across groups of
N countries. The first one is to compute results for the N − 1 gaps with respect
to a benchmark country and thus immediately arises as an extension of the
pairwise tests. One issue with this approach is its dependence on a benchmark
that is selected arbitrarily. Thus with, say, the United States as a benchmark, it
may fail to capture convergence between Germany and France, because only the
relationship of each country towards the benchmark is considered. A meaningful
analysis would thus extend Bernard and Durlauf’s suggestion to all possible
combinations of countries.
Let 1(·) denote the indicator function and consider Zij = 1(MSij > λMS,α)

where MSij is the test in equation (2.6) conducted for yt = yit − yjt and
λMS,α is the critical value corresponding to this test, that is, lim

T→∞
Pr(MSm >

λMS,α|H0) = α. Throughout, the relevant critical value is set to α = 5%. Then
the number of pairs out of a set of N countries for which the null of constant
integration is rejected and thus convergence takes place is given by

ZMS =
N−1∑
i=1

N∑
j=i+1

Zij, (2.8)

or, equivalently, the fraction of rejections by 2
N(N−1)ZMS. In the same way, the

number of rejections obtained using MEm or MXm can be summarized as ZME

and ZMX .
While this approach is simple to implement, it should be noted that it can

only be used to test whether any convergence has taken place during the period
under consideration. For different pairs, the actual change from I(1) to I(0)
may have occurred at very different points in time. With this method, it is thus
impossible to pinpoint a date at which the system of countries has converged.
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Since the latter is a major limitation to pairwise approach, a second suggestion
made in Bernard and Durlauf (1995) seems more appealing. It directly uses
the entire system of N time series and performs a test with the null hypothesis
of up to N − 1 cointegrating vectors between them. Two drawbacks of this
approach are the limitation to relatively few countries and that it cannot easily
be adapted to the persistence test methodology used in this chapter.

To nevertheless be able to address a more comprehensive set of countries,
Pesaran (2007) suggests a multivariate approach that concentrates the data
from various time series into an average and then tests for convergence in this
combined series. Two measures are introduced for this purpose; one comparing
each series against the overall average and one consisting of the average of the
absolute gaps. The former, D2

t , is constructed as

D2
t = 1

N(N − 1)

N∑
i+1

N∑
j+1

[yit − yjt]2

= 1
N(N − 1)

N∑
i+1

N∑
j+1

[(yit − ȳt)− (yjt − ȳt)]2

= 2
(∑N

i+1(yit − ȳt)2

N − 1

)
= 2s2

t , (2.9)

with ȳt denoting the cross-section average of all series under consideration. That
is, D2

t represents twice the square of the cross-sectional standard deviation of
yit, st. This measure is exactly what Barro and Sala-i-Martin (1992) introduce
as σ-convergence in their seminal analysis of output series.

The second measure used by Pesaran (2007) also roots in the literature on
output dispersion and is known as the absolute mean difference coefficient

∆t = 1
N(N − 1)

N∑
i+1

N∑
j+1
|yit − yjt|. (2.10)

The appeal of this statistic is that it directly relates to the gaps between
the individual series as in the pairwise analysis. It is also related to the Gini
coefficient as a well-known measure of statistical dispersion given by Gt = ∆T/ȳt.
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However, for the purpose of assessing convergence, the scaling by ȳt yields no
advantage (Pesaran, 2007), so ∆t is used.

2.4.3 Data
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Figure 2.1: Long-term interest rates for EMU countries 1973–2010

The empirical investigation considers nominal interest rates on long-term
government bonds for the period from July 1973 to June 2010. All data
were retrieved form the International Monetary Fund’s International Financial
Statistics (IFS) database and are at a monthly frequency. Thus, each interest
rate series has T = 444 observations, which corresponds to 37 years. The choice
of start date follows from the collapse of the Bretton-Woods system of fixed
exchange rates in the first half of 1973 and the ensuing possibility for exchange
rates to fluctuate freely. In choosing nominal interest rates, this chapter follows
previous literature (e.g. Fase and Vlaar, 1998; Brüggemann and Lütkepohl,
2005; Poghoysan and de Haan, 2007).
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Figure 2.2: Long-term interest rates for non-EMU countries 1973–2010

The above tests are carried out for all possible bivariate pairings of Germany,
France, Italy, Belgium, and the Netherlands to assess convergence of interest
rates within the European Monetary System. All of them are major economic
powers of the Euro area while Belgium is also host to the union’s key political
institutions. The development of interest rates for this group is depicted in
Figure 2.1. The same analysis can be performed for the U.S., the U.K., Canada,
Australia, and Japan, whose interest rates over time can be seen in Figure 2.2.
This yields another ten bivariate combinations, that, together with the 25 pairs
consisting of one EMU and one non-EMU member each, shed light on the
issue whether convergence has also occurred for long-term interest rates of key
economies worldwide.

Beyond the pairwise tests, to investigate whether there has been an effect of
the Maastricht convergence criteria, or the actual adoption of the Euro, three
different sets of countries will be considered for possible group convergence. Set
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all denotes the aggregate of all countries and can hence be used to check for
overall convergence. Splitting this group into sets EMU and non-EMU allows to
check for different patterns between members and non-members of the currency
union.

2.5 Results

2.5.1 Preliminary Analysis

Visual inspection of the interest rate graphs in Figures 2.1 and 2.2 already
provides some hints regarding convergence. In the EMU, rates were generally
very high during the early 1980s with no clear pattern of comovement. Rates
were slightly lower in the late 1980s and early 1990s, but still ranged from
around 6% to almost 15%. On the contrary, they have been virtually identical
and at a much lower level since the late 1990s.
For the set of non-EMU countries in Figure 2.1, Japan has always had the

lowest interest rates except for the very first years of the sample. Generally,
there is also a movement toward lower rates during the 1990s, however, series
appear to comove already well before the end of that decade, especially those
for Canada, the U.K., and the U.S.

2.5.2 Persistence Test Results

Table 2.1 shows the results for theMSm,MEm, andMXm tests in the sample
of EMU countries. Using the asymptotic critical values of Harvey et al. (2006),
the null of a constant order of integration can be rejected in favor of a change
from I(1) to I(0) for all of the bivariate combinations at a significance level
of 5%, regardless of the choice of statistic. The startlingly high values of the
statistics for the pair France–Netherlands result from the fact that their rates
are virtually identical during the stability phase, and hence the differential is
very close to zero. The break dates estimated for the changes in persistence
fall into a narrow range of years immediately preceding the introduction of

49



Chapter 2

the euro. They range from mid-1995 for Germany and Belgium to early 1998
for Italy versus Belgium, the Netherlands, and France, respectively. The only
exception is the pair Germany–Netherlands, for which the persistence change
occurs in October 1983 already. From this time on, the close comovement of the
interest rates asserted by the I(0) differential can also be evidenced by looking
at the dotted and the gray line in Figure 2.1 that almost coincide. Another
observation concerning the timing of the persistence change is that for pairs
involving Italy, it is generally slightly later than for the others.

country pair MSm MEm MXm date

BE–FR 245.31 389.02 791.07 February 1996

BE–DE 54.39 75.40 161.68 July 1995

BE–IT 33.28 166.44 344.71 January 1998

BE–NL 186.10 401.10 814.66 November 1996

DE–FR 219.44 300.56 615.30 April 1996

DE–IT 29.48 59.20 129.63 October 1997

DE–NL 40.09 37.58 82.44 October 1983

FR–IT 13.14 42.59 96.39 January 1998

FR–NL 7046.73 6553.50 6993.11 January 1997

IT–NL 44.94 117.63 249.38 January 1998

5% crit. val. 4.60 5.11 17.85

Table 2.1: Convergence test results for EMU country pairs

These results correspond very well to those of Frömmel and Kruse (2009),
who only investigate pairs involving Germany using different variations of the
methodology in Leybourne et al. (2007) and a 3-month interest rate. They
find the Belgium–Germany pair to achieve stability in May 1995, just two
months earlier than the date estimated here; and also support the finding that
the persistence change occurs later when Italy is involved. Only for the pair
Germany–Netherlands, they find a constant I(0) process rather than evidence
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for a change in persistence. However, this is perfectly in line with my results,
since the breakpoint found lies before the start of their sample in 1987.
Economic reasoning strongly supports the findings in Table 2.1. All EMS

countries underwent considerable effort to meet the convergence criteria set forth
in the Maastricht treaty. Yet von Hagen et al. (2001) note that, of the countries
examined here, Italy struggled most and was only able to meet the criteria
through measures such as an explicit “Euro tax”. Until shortly before the actual
introduction of the common currency, it was debated whether Italy would be
able to join. This is reflected by the comparatively late convergence date found
in the statistical analysis. Belgium, France, and Germany did not face similar
problems to the same extent, so stability was achieved up to 2.5 years earlier in
bivariate combinations of those three countries. Finally, the early breakpoint
for the Germany–Netherlands pair can also be related to economic history, since
in 1983 the last realignment of the Dutch guilder against the German mark
occurred. From that point on, a close peg was maintained by the Dutch central
bank, even throughout the 1992 EMS crisis. In a sense, a situation coming close
to a monetary union had already be achieved by unilaterally mimicking key
monetary policy decisions made by the German central bank.

Convergence results for the second group of countries – major economies not
member of EMU – are provided in Table 2.2. Those countries did not see co-
ordinated activity toward convergence; hence both convergence and divergence
may occur.3 Results of the latter are reported in Table 2.3. For a majority
of pairs, a persistence change from I(1) to I(0) cannot be rejected at the 5%
level. Exceptions are the pairs Australia–Canada, Canada–United States, and
Japan–United States. On the other hand, the opposite change from I(0) to I(1)
is rejected for all pairs besides Australia–United States, Canada–United States,
and Japan–United Kingdom.

Turning first to the break dates of those cases where exactly one persistence
change is found in either direction, it should be noted that the dates for
convergence are spread over a greater time span than those for the EMU

3For completeness, the test for a change from I(0) to I(1) has also been applied to the EMU
pairs; since no such change was found, results remain unreported here.
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country pair MSm MEm MXm date

AUS– CAN 2.83 2.76 10.87 —

AUS– JAP 98.96 411.35 834.39 August 1997

AUS– UK 77.92 107.30 224.73 April 1990

AUS– US 6.13 7.20 19.84 May 1991

CAN– JAP 5.49 4.32 17.53 September 1982

CAN– UK 102.88 103.60 217.61 November 1984

CAN– US 0.98 1.12 6.15 —

JAP– UK 0.81 1.21 8.21 —

JAP– US 16.00 19.79 47.37 September 1982

UK – US 82.92 269.24 553.52 January 1985

5% crit. val. 4.60 5.11 17.85

Table 2.2: Convergence test results for non-EMU country pairs

countries. Except for the pairs including Australia, they fall into the first
half of the 1980s. This is exactly the time pinpointed to be the start of the
“Great Moderation” by Stock and Watson (2003). The case of Australia may be
different for two reasons. Firstly, as its economy is very dependent on highly
volatile exports of natural resources, the country may be facing a different
business cycle. Secondly, the Reserve Bank of Australia has been found to
implement measures toward greater transparency later than other major central
banks (Eijffinger and Geraats, 2006), which may have had detrimental effects
on interest rate convergence (Eijffinger et al., 2006).
Two pairs only exhibit a change from stationarity to a unit root process,

that is, they departed from the state of having a stable relationship at some
point. For the pair Canada–United States the I(0) phase up to October 2002
may be a reflection of long-lasting economic ties between the two countries.
Furthermore, as Ceglowski (1998) notes, each is the largest trading partner of
the other with restrictions and barriers on free economic interaction lifted well
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country pair MSR
m MER

m MXR
m date

AUS– CAN 1.79 2.50 10.28 —

AUS– JAP 0.43 0.77 4.88 —

AUS– UK 0.13 0.51 1.55 —

AUS– US 4.10 10.39 27.84 November 1983

CAN– JAP 0.23 0.54 1.34 —

CAN– UK 0.01 0.43 0.09 —

CAN– US 19.42 42.09 94.16 October 2002

JAP– UK 6.19 9.30 24.90 April 1995

JAP– US 0.10 0.51 0.42 —

UK – US 0.06 0.40 0.27 —

5% crit. val. 4.60 5.12 17.80

Table 2.3: Divergence test results for non-EMU country pairs

before the CUSFTA and NAFTA free trade agreements. Nevertheless, 2002 is
pinpointed by various studies (Mair, 2005; Beine et al., 2012) to be the start
of a strong appreciation of the Canadian dollar against its U.S. counterpart,
reflected here in the departure from a stable interest rate relationship in this
year. For the Japan–United Kingdom pair, which changed from I(0) to I(1) in
April 1995, there appears no such compelling reason.

country pair lags DF -GLS 5% c.v. conclusion

AUS– CAN 1 -1.60 -1.94 I(1)

Table 2.4: Order of integration for the country pair without persistence change
during the sample

Two cases require special attention. The Australia–Canada pair was found to
have no change in persistence at all. Because the null hypothesis just implies a
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constant degree of integration, it may either still be in the transition phase or
those countries had achieved stability at the beginning of the sample already.
In the latter case, the gap should be I(0) throughout, while the former case
implies a unit root. This can be investigated through a standard unit root test.
Table 2.4 reports the outcomes of GLS-detrended augmented Dickey-Fuller unit
root tests (Elliott et al., 1996) for this interest rate differential.4 A constant is
included and the optimal lag length is determined by the Schwarz info criterion.
Since the null of a unit root cannot be rejected over the entire sample, this
leads to the conclusion that either no convergence is prevalent or the countries
are still in the transition phase.

country pair MSR
m MER

m MXR
m date

AUS– US 8.55 14.94 37.45 July 1978

5% crit. val. 4.58 5.06 17.18

country pair MSm MEm MXm date

AUS– US 14.46 23.04 53.35 April 1991

5% crit. val. 4.63 5.17 17.73

Table 2.5: Persistence test results after resampling

According to two of the three test statistics, the Australia–United States pair
has a change in persistence in both directions; indicating divergence in 1983
followed by convergence in 1991. A potential problem with this result is that
the sample used in testing for an I(0) to I(1) change also contains the I(1) to
I(0) changes and vice versa. A possible remedy is the sample repartitioning
procedure suggested by Bai (1997) to estimate multiple structural breaks. The
idea underlying the procedure is to conduct the tests on the entire sample as
done in Tables 2.2 and 2.3 and then split the sample at each of the estimated

4Using a standard Dickey-Fuller test instead of the GLS-detrended version qualitatively
yields the same result.
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dates of the persistence change. That is, MSR, MER and MXR tests for
divergence are conducted on a subsample ranging from the beginning until
May 1991, while MS, ME and MX tests for convergence use data from the
November 1983 to the end of the whole sample. Table 2.5 reports test results
using this sample repartitioning technique. Note that due to the shortened
sample, critical values change slightly.

country group MS ME MX date

all D2
t 12.82 225.45 462.09 March 2003†

∆t 43.24 449.11 910.23 March 2003†

Euro D2
t 1009.76 12719.24 3884.56 August 1997

∆t 35.53 58.10 124.84 November 1997

non-Euro D2
t 2.22 26.55 64.27 March 2003†

∆t 9.70 16.48 40.74 March 2003†

5% crit. val. 4.60 5.11 17.85

† denotes an estimated break date at the upper extreme of the trimmed sample

Table 2.6: Group convergence test results

The results for the individual pairs of countries are supported by those for
the country groups. When aggregating the pairwise results in the form of
the Z statistic, all out of the ten EMU pairs appear convergent, regardless
whether the MSm, MEm or MXm tests are used. Out of the ten non-EMU
pairs, the values are ZMS = 7, ZMS = 6, and ZMS = 6, respectively. The group
persistence change statistics based on averaging are presented in Table 2.6. It
shows results of tests for interest rates using both the D2

t and the ∆t methods of
averaging and the standard trimming value of τ = .2. While the test statistics
are significant at the 5% level for all instances except theMS for the D2

t average
of the non-Euro group, the break is found to be at the upper border of the
search interval – that is, at point bτuT c – for this group as well as that consisting
of all countries. Since this means very different implied samples before and
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country pair MSm MEm MXm date

BE – AUS 14.67 31.62 74.07 December 1990

BE – CAN 0.94 0.90 3.56 —

BE – JAP 13.27 79.43 170.05 July 1985

BE – UK 72.10 95.87 201.36 February 1985

BE – US 1.02 0.92 2.84 —

DE – AUS 32.47 70.44 150.43 May 1991

DE – CAN 13.40 12.45 30.31 December 1990

DE – JAP 9.58 65.13 141.48 May 1982

DE – UK — — — March 2003†

DE – US 39.94 45.16 98.20 July 1989

FR – AUS 35.41 102.47 216.59 December 1990

FR – CAN 7.05 5.76 15.85 April 1984

FR – JAP 6.55 20.79 52.71 September 1984

FR – UK 52.81 65.65 140.85 November 1984

FR – US 10.20 20.16 47.32 November 1984

IT – AUS 16.32 68.54 145.94 January 1998

IT – CAN 2.31 3.60 14.20 August 1997

IT – JAP — — — March 2003†

IT – UK 46.97 144.80 300.29 November 1996

IT – US 5.35 13.55 32.61 July 2000

NL – AUS 49.22 138.39 289.04 February 1991

NL – CAN 7.36 5.27 14.28 November 1989

NL – JAP 8.20 82.94 177.12 May 1982

NL – UK 53.68 146.96 303.88 October 1998

NL – US 23.54 32.33 73.59 June 1989

5% crit. val. 4.60 5.11 17.85

† denotes an estimated break date at the upper extreme of the trimmed sample

Table 2.7: Convergence test results for mixed country pairs
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after the break, following Harvey et al. (2006) and Halunga et al. (2009), they
cannot actually be considered as changes in persistence. Hence, when looking
at groups of countries, convergence can be confirmed in the second half of 1997
for the European Monetary Union, but not elsewhere. The test has also been
performed to check for a change in the opposite direction but found no evidence
of divergence for any of the groups.

country pair lags DF -GLS 5% c.v. conclusion

BE– CAN 0 -5.56 -1.94 I(0)

BE– US 2 -3.71 -1.94 I(0)

DE– UK 3 -1.51 -1.94 I(1)

JAP– US 1 -2.79 -1.94 I(0)

Table 2.8: Order of integration for mixed country pairs without persistence
change during the sample

Finally, combining the data for EMU and non-EMU economies, pairs with
one member each from the former and the latter group are considered to shed
light on the issue of convergence across the borders of the single-currency
area. Overall, the results presented in Table 2.7 are similar to those for the
purely non-EMU pairs. In two cases, the statistics cannot reject the null of a
changing degree of integration, while in two further cases a break is found at the
upper extreme of the search interval and are hence disregarded. For those four
pairs without a persistence change strictly inside the search interval, Table 2.8
provides Dickey-Fuller5 tests results to differentiate between the purely I(1) and
purely I(0) cases. Except for the differential between the United Kingdom and
Germany, which contains a unit root, all pairs are found to be stationary.

The fact that both the combinations of Belgium with the U.S. and Belgium
with Canada are stationary again stresses the long-lasting close relationship
between the two North American countries mentioned earlier, yet there is no

5Again, the reported values are results of the GLS-detrended version of the augmented
Dickey-Fuller test, while the standard test yields qualitatively similar results.
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apparent economic interpretation for the inclusion of Belgium in this group.
The close U.S.–Canada ties are also witnessed through break dates not far
apart for the combination of any country with the United States, and the same
country with Canada. The remaining pairs support the notion of the “Great
Moderation”, with many of the break dates falling into the first half of the
1980s. Again, the combinations involving Australia constitute an exception, as
none of those persistence changes occur before 1990. Another group for which
the transition phase was still ongoing in the early 1990s consists of Italy, the
Netherlands, and Germany, each paired with the United Kingdom. For those
combinations, the persistence change from I(1) to I(0) occurred in 1996, 1998,
and not at all within the sample, respectively. This may be a consequence of
the EMS crisis in 1993 and the ensuing struggle that caused British interest
rates to leave the desired range.

Tests for possible divergence have also been carried out for the mixed country
pairs. The only combinations for which the null of a constant order of integration
is rejected in favor of a switch from I(0) to I(1) are Australia–Belgium with
a change date in May 1985 and Australia–Netherlands with a change date in
December 1981. However, when the sample repartitioning technique of Bai
(1997) is applied as described before, both of these findings cannot be upheld.
Hence, there is no evidence of departure from convergence here.

2.5.3 Robustness

Aside from disregarding the transition phase, a common drawback of cointe-
gration-based convergence tests has been the high sensitivity against the exact
beginning of the sample period. To check whether this also applies for the
persistence test, the analysis has also been performed for samples starting in
January 1968, the earliest point from which on data is available for all countries
considered, as well as January 1980, because the Great Moderation has widely
been reported as taking its beginnings in the early 1980s. The results for these
exercises are available upon request. Overall, they turn out very similar to those
for the sample starting at the collapse of Bretton-Woods.
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The same holds for the exact choice of countries. For the sake of clarity, the
presentation has focused on just ten countries, namely the most relevant ones
in terms of the size of their economy. However, the results are qualitatively the
same when different countries are included in the EMU and non-EMU groups.
For most bivariate pairs, a persistence change takes place; for pairs of EMU
members, the breakpoint date is typically shortly before the introduction of the
common currency, while for many of the remaining pairs, the date falls into the
period of the Great Moderation.

2.6 Conclusion

This chapter presented persistence change tests for convergence of long-term
interest rates understood as a transition toward a common level with an ensuing
stability phase. Both for countries that participate in EMU and for other
major economies, there is ample evidence of an interest rate differential that is
integrated of order one initially and changes to stationarity during the sample.

For country pairs within EMU, this change can be dated to years immediately
preceding the introduction of the Euro. It hence confirms compliance with
the criteria of the Maastricht Treaty which explicitly include interest rate
convergence. For country pairs involving non-EMU countries, there is also
clear indication for changes in persistence, yet it is not as profound as for the
EMU country pairs. When changes in persistence take place, they occur earlier,
providing support for the notion of a “Great Moderation” since the early 1980s.
Furthermore, the breakpoints for the converging non-EMU pairs are spread
over a longer period and not clustered around a single date. For this reason,
convergence cannot be confirmed if all countries are considered as a whole; while
for average measures combining just EMU countries, a switch from transition
to stability takes place in late 1997.
On the other hand, in neither set there is any indication that interest rates

may begin to diverge again after having reached a stable relationship. This
result is merely found for a single one of the non-EMU pairs.
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Exceptions to these general results can be linked to specific economic cir-
cumstances for the respective country pairs. Overall, the persistence change
tests for convergence, unlike earlier cointegration-based tests, are thus able to
adequately capture the behavior of interest rates over the last decades.
A possible extension to the present work is the inclusion of countries that

adopted the Euro later than 1999 or that are currently considered as candidates.
Using the same methodology, insights could be gained whether their interest
rates have sufficiently converged toward those of current EMU countries and
whether the break date coincides with the introduction of the common currency.

Furthermore, allowing for near-integration besides purely I(0) and I(1) pro-
cesses might clarify whether a “Great Moderation” effect in the early 1980s has
also been present for EMU countries and is only hidden by the much stronger
effect stemming from the introduction of the Euro.
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Chapter 3
Synchronization of Output Cycles

3.1 Introduction

With the creation and ongoing extension of the European Monetary Union, a
lot of research has focused on the long-run convergence of member countries
to common levels for important macroeconomic aggregates. The Maastricht
convergence criteria as a prerequisite for admission to the group of countries
using the Euro reflect several of these aspects, such as price stability, similar
long-term interest rates, and exchange rates limited to a narrow band. These
criteria have – among others – also been put forward as requirements for an
optimum currency area (OCA) by Mundell (1961).
However, suitability for a monetary union does not only require long-term

convergence between countries but also common characteristics in the cyclical
components of their economies. That is, a sufficient degree of business cycle
comovement is required to conduct a common monetary policy effectively. If
asymmetric shocks were affecting member countries of a currency union and as
a consequence business cycles were not synchronized, a common policy measure
could not yield favorable outcomes in all member countries; with those adversely
affected being bereaved of their own tools to achieve stability for their particular
situation. To evaluate whether the benefits of a monetary union – namely lower
transaction costs and possibly more transparent pricing – outweigh these costs
of giving up the option of individual policy intervention, the linkage of business
cycles thus turns out to be an important issue in addition to looking at the
long-term convergence goals.
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The definition of a business cycle dates back to Burns and Mitchell (1946),
who describe a cycle as a recurrent sequence of expansions and contractions
in aggregate economic activities which is not periodic like a seasonal pattern
and which cannot be divided into shorter cycles with similar amplitude and
characteristics. When using Gross Domestic Product data as a proxy for
economic activity, the business cycle thus captures those components of output
with higher frequencies than long-term growth components, but lower ones than
short-term noise. It is generally agreed that business cycles typically range in
length from approximately two to eight years.

Various methods have been introduced to measure business cycles. Approaches
in the literature involve categorizing output series into periods of sustained
growth and decline as advocated by Bry and Boschan (1971) or Harding and
Pagan (2006), considering growth rates over a specific interval, or applying
various filtering techniques that are able to extract cycles of a specified length.
Among these, the Hodrick-Prescott filter (Hodrick and Prescott, 1997) is most
widely known and used in economic applications, yet other methods are able to
cut off frequencies corresponding to business cycles more precisely, such as the
bandpass filter due to Christiano and Fitzgerald (2003). Results from different
synchronization statistics will be compared to assess in which cases the selection
of filtering procedure is crucial to the findings.

The chapter will provide an overview of methods to determine business cycle
synchronization based in the time domain as well as in the frequency domain.
They have been traditionally used for this purpose, yet with rather vague results,
making it worthwhile to consider alternative approaches to evaluate comovement.
The first alternative has been suggested by Stoffer et al. (1993) outside of an
economic context. It is also based in the frequency domain and investigates
cyclical components of categorical time series by computing the so-called spectral
envelope. The concept is extended to real-valued time series by McDougall
et al. (1997). This approach may prove useful for the analysis of output cycles,
because it provides a means to analyze whether combinations of series with close
economic ties have higher spectral power at business cycle frequencies. Second,
another concept widely used in a broad variety of scientific applications, but
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not very often in economics, wavelet analysis, and in particular the continuous
wavelet transform, is introduced because it allows to consider both aspects
pertaining to the time domain and to the frequency domain simultaneously.
As an addition to the existing literature, a new measure for synchronization
of groups of countries which is localized in both time and scale is presented.
The different measures for synchronization of output data are applied to output
series from various countries representing members of the European common
currency zone as well as major economies from outside that group.

The further setup is as follows. The next section provides a brief overview of
previous literature on business cycle synchronization. Afterwards, the character-
istics of the output data used for the empirical investigation are presented and
the filtering methods to extract the cycle are discussed. Section 3.4 introduces
and applies several methods to capture synchronization in the time domain,
while section 3.5 does the same for approaches in the frequency domain. Sec-
tion 3.6 presents the concept of the spectral envelope as a novel way of looking
at comovement of economic time series. Synchronization across the time and the
frequency domain using wavelet analysis is investigated in section 3.7. Finally,
section 3.8 concludes.

3.2 Literature Review

Many previous studies have suggested a variety of different measures to
capture business cycle synchronization for pairs or groups of countries. Just
using regular contemporaneous correlation coefficients between growth cycles
of EU-12 members, Fatas (1997) finds higher values in the sub-sample after
the creation of the European Monetary System (EMS) than in the pre-EMS
period. Döpke (1998) also considers contemporaneous correlation for the cyclical
component obtained from applying the Hodrick-Prescott filter to output data
of five core Euro countries using a rolling window approach. He observes
increases in correlation for most countries, yet with several exceptions pointing
in the other direction. Looking at pairwise correlations and the band-pass filter
introduced by Baxter and King (1999), Wynne and Koo (2000) find that there
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is some synchronization between founding members of the European Union,
while evidence is weaker for newer member states.

Instead of using output data, which is typically only available at a quarterly
frequency, several authors also resort to using industrial production data, which
is provided as a monthly series. Among these, Artis and Zhang (1997, 1999) find
that synchronization has increased for country pairs within the EMS, while it
has diverged for others. Their finding, however, cannot be replicated by Inklaar
and de Haan (2001) with the same data but a slightly longer sample. Massmann
and Mitchell (2004), using rolling windows rather than just a pre-EMS and a
post-EMS subsample on the same data, finally conclude that the Euro area has
switched between periods of close comovement and divergence throughout the
sample. For recent years, they record evidence of increasing synchronization.
Harding and Pagan (2002, 2006) propose a way of modelling the synchro-

nization of cycles that is quite different from the correlation measure used in
previous studies. They suggest analyzing a constructed binary variable, which
is set equal to unity in case of an upward movement in a series and to zero
when the direction is downward. This allows them to capture expansions and
contractions with much more emphasis on the turning points of the series and
hence the classical view of the business cycle by Burns and Mitchell (1946).
Correlations are then computed between these binary series, leading to only low
values for individual Euro member countries against the group average.

Another main branch of the literature is based on frequency domain analysis.
Several studies have adopted this tool to study relationships at the frequency
level (e.g. A’Hearn and Woitek, 2001; Breitung and Candelon, 2006). Measures
to quantify a comovement relationship between variables at the frequency
level have been suggested by Croux et al. (2001) who introduce the dynamic
correlation coefficient and a multidimensional counterpart termed cohesion.
Using these statistics, Croux et al. find that cycles of U.S. states are more
similar than those of European countries, while Valle e Azevedo (2002) also
finds high dynamic correlations between European countries and the Eurozone
average. Allowing for time-varying coherence, Hughes Hallett and Richter
(2006), however, conclude that the coherence between the United Kingdom and
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the Eurozone is unstable at best, while it is even decreasing for Germany and
the Eurozone.

In recent years, some studies have appreciated the advantages wavelet analysis
offers for the study of business cycles. Among these, Jagrič and Ovin (2004)
compare different wavelet types to measure synchronization of industrial produc-
tion for Slovenia and Germany and find evidence of increasing synchronization
over time. On the other hand, Crowley and Mayes (2008) use wavelet analysis
for quarter-on-quarter growth rates of France, Germany, and Italy with the
result that cycles continue to differ for each of the pairs. Rua (2010) introduces a
refined version of the cross-wavelet spectrum to find that the amount of comove-
ment depends on the frequency and changes over time. Finally, Aguiar-Conraria
and Soares (2011) compare industrial production data for each EU-15 country
against the weighted EU average and find the highest degree of synchronization
for France and Germany, with more peripheral countries being more detached.
All wavelet approaches present in the literature so far only allow to check pairs
of series for comovement, not larger groups.

3.3 Data and Cycle Extraction

The data set used in this chapter comprises output data for a number of key
European economies, namely France, Germany, Italy, the Netherlands, Spain,
Switzerland, and the United Kingdom. For the following analyses, besides this
group of countries, two further groups are considered for comparison purposes.
One leaves out the latter two countries of the above list, hence focusing only
on countries which share the Euro as a common currency, while the other one
adds Japan and the United States representing important economies outside
Europe. In summary, the country groups thus are

• Euro: FR, DE, IT, NL, ES;

• European: FR, DE, IT, NL, ES, CH, UK;

• all: FR, DE, IT, NL, ES, CH, UK, US, JPN.
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All data are obtained from the OECD and represent annual levels of seasonally
adjusted output data measured at current prices. Data is available for each
quarter from the beginning of 1961 to the end of 2010, covering a total of 50
years.

To investigate the cyclical properties of the data, a variety of measures are
computed. These include growth rates as well as the cyclical components
obtained from different filtering techniques. A problem of using growth rates
is that they severely amplify high-frequency components and consequently
attenuate lower frequencies (Baxter and King, 1999). This increases the noise in
the extracted cycle and thus limits the usefulness of the approach. Nevertheless,
they are widely used as a proxy for business cycles, so that both quarter-on-
quarter and year-on-year growth rates will be considered.

In addition to them, two further cycle extraction methods will be used. The
Hodrick-Prescott filter (Hodrick and Prescott, 1997) which separates a series
into a cyclical and a trend component and allows different degrees of smoothing
by adjusting a penalty parameter for deviations from the trend. Here, this
parameter will be set to 1600, the standard for quarterly data in the literature.
This filter is probably the most widely used in economics, yet King and Rebelo
(1993) stress that it may seriously alter measures of persistence, variability, and
comovement.
Lastly, Christiano and Fitzgerald (2003) propose a band-pass filter using

an asymmetric weighting scheme that avoids having to cut off values at the
beginning and end of the sample, which would otherwise be the case for a
symmetric version. It is devised as a combination of a low-pass and a high-pass
filter and designed to pass through cycles with a length between 8 and 32
quarters without modification, but eliminate movements that have a different
frequency.
It is clear that the choice of cycle extraction technique affects any result on

cycle synchronization, because the approaches are dissimilar in nature. Yet
as pointed out in section 3.2, they are often used interchangeably with the
same purpose in mind. Also, there is disagreement on how strongly the choice
actually influences results. Canova (1998) points out that alternative filters
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extract different types of information from the original series and asserts that
the idea of having just one method corresponding to the exact definition of a
business cycle is misleading. As a consequence, he explicitly suggest to subject
data to various filtering methods. Burnside (1998) does not consider this to
be a problem, yet acknowledges that different filtering techniques may provide
different insights concerning the cycle. Massmann and Mitchell (2004) raise the
point that the choice of filtering technique can affect the exact shape of what is
then termed the “cyclical component”, but may at the same time have no impact
regarding convergence or synchronization. To account for these observations,
it is worthwhile to compare the different filtering methods when checking for
possible synchronization.

3.4 Synchronization Measures in the Time
Domain

Most early studies on cyclical comovement have considered the standard
contemporaneous correlation coefficient as a measure of alignment. That is,

ρxy = σxy
σxσy

(3.1)

has been computed for two series xt and yt, with σxy denoting the covariance
between x and y. Exemplarily, this exercise is considered for the cyclical
component of the HP filter here. Table 3.1 reports the resulting correlations for
each combination of countries.
It is apparent that the correlation is stronger between countries of the Eu-

rozone, as shown in the upper left corner of Table 3.1 up to the dashed lines.
For that group, the average correlation is 0.624, with some subgroups such as
France–Italy–Spain showing even higher figures. While across the European
country group, delimited by the next set of dashed lines, the average drops to
0.562, this stems notably from the poor alignment of the United Kingdom’s cycle
with that of the Euro countries, while Switzerland – being entirely surrounded
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FR DE IT NL ES CH UK US JPN

FR 1.000 0.549 0.710 0.699 0.705 0.641 0.472 0.328 0.410

DE 1.000 0.468 0.654 0.523 0.643 0.385 0.393 0.629

IT 1.000 0.619 0.706 0.627 0.362 0.342 0.438

NL 1.000 0.610 0.641 0.439 0.392 0.437

ES 1.000 0.641 0.412 0.299 0.439

CH 1.000 0.295 0.290 0.497

UK 1.000 0.546 0.443

US 1.000 0.352

JPN 1.000

Table 3.1: Static correlations for the cyclical component of the HP filter at
business cycle frequencies

by Euro members – has much higher correlations with each of them. Finally,
looking at the whole set of countries, the data indicate that the United States’
cycle is only correlated weakly with those of all other countries except the U.K.
For the combinations involving Japan, correlations are also below 0.5 with the
notable exception of the Japan–Germany pair with ρ = 0.629. The average of
correlations for the entire set of countries amounts to 0.501 and is thus lower
than for both of the smaller groups.

A rolling window approach can be used to investigate changes that have
occurred in this quantity. Instead of considering the entire time series, the
correlation coefficient is computed for ten-year windows moving across the entire
sample from 1960 to 2010. Figure 3.1 illustrates this development over time for
the example of the correlation between the German and the French cycle and
compares results for the different methods of cycle extraction. The upper left
panel is based on the quarter-on-quarter growth rates and the upper right panel
considers the yearly growth data. In the lower half of the figure, the left panel
shows the results using the cyclical component of the HP filter, the right panel
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those based on the CF filter. The years on the x-axis denote the centers of the
respective ten-year intervals for which the correlation measure is computed.

quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 3.1: Development of the correlation between the cyclical components of
output for France and Germany over time. The years on the x-axis
of each panel denote the centers of rolling ten-year intervals.

An immediate observation from Figure 3.1 is that the results depend strongly
on the method that is used to extract the cycle, which is an immediate conse-
quence of the extraction methods being conceptually different. Furthermore,
the correlation substantially varies over time, following no apparent pattern
except for some increase towards the very end of the sample in all four cases. In
any case, from these statistics no inference can be drawn concerning the length
of common cycles leading to correlation, so the following section will venture
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into the frequency domain in order to better capture periodicities of a particular
frequency.

3.5 Synchronization Measures in the
Frequency Domain

In order to obtain appropriate comovement indices or measures for common
cyclical features, this sections shifts the focus to frequency-domain approaches.
The goal is to extract short-run and long-run properties of the relationship
between series by considering cyclical components of a particular frequency.

Let the spectral density functions of two time series x and y be given by
Sx(ω) and Sy(ω), respectively, while the cross spectrum for the two is denoted
by Sxy(ω). As a widely-used concept in the literature, coherency between x and
y is defined as

hxy(ω) = Sxy(ω)√
Sx(ω)Sy(ω)

. (3.2)

Croux et al. (2001) argue that a slightly different quantity is a better choice
for the analysis of comovements. They consider just the real part of coherency,
which they name the dynamic correlation between x and y at frequency ω.
Dynamic correlation can also be specified as

ρxy(ω) = Cxy(ω)√
Sx(ω)Sy(ω)

, (3.3)

where Cxy(ω) denotes the cospectrum. A useful feature of dynamic correlation
is that it can not only be computed for a specific choice of frequency ω, but also
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be defined for an entire frequency band Λ = [ω1, ω2] by integrating the spectra
over the individual frequencies; that is,

ρxy(Λ) =
∫

Λ ρxy(ω)
√
Sx(ω)Sy(ω)dω√∫

Λ Sx(ω)dω
∫

Λ Sy(ω)dω
. (3.4)

If the entire range of frequencies is covered, the dynamic correlation coefficient
is the same as the static correlation coefficient from the previous section. By
choosing Λ to represent only a sub-interval of the entire range of frequencies,
however, a special focus can be put on correlations pertaining to cycles of a
particular length. Because interest predominantly lies in the synchronization of
series at business cycle frequencies, the frequency band to be considered is chosen
to represent cycles with a period between 2 and 8 years. This approximately
means Λbc = [.20, .79]. Results for this choice of Λ using the cyclical component
of the HP filter as data input are summarized in Table 3.2.

FR DE IT NL ES CH UK US JPN

FR 1.000 0.561 0.749 0.762 0.799 0.663 0.518 0.364 0.402

DE 1.000 0.497 0.695 0.586 0.660 0.440 0.462 0.667

IT 1.000 0.704 0.735 0.666 0.398 0.365 0.389

NL 1.000 0.699 0.729 0.462 0.398 0.482

ES 1.000 0.681 0.430 0.316 0.430

CH 1.000 0.328 0.332 0.467

UK 1.000 0.571 0.534

US 1.000 0.431

JPN 1.000

Table 3.2: Dynamic correlations for the cyclical component of the HP filter at
business cycle frequencies.

The results resemble those of the contemporaneous correlation coefficients
from the previous section. Those connections between countries that appeared
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especially weak or strong in Table 3.1 also do in Table 3.2. On average, the
dynamic correlations at business cycle frequencies are slightly higher than the
correlations considering all frequencies. The averages for ρ(Λ) are 0.679 for
the Euro group, 0.608 for the European group, and 0.538 when looking at all
combinations of the nine countries. This gives some indication that cyclical
comovement may be higher at business cycle frequencies than elsewhere.

While dynamic correlation can only capture a cyclical relationship between two
variables, it is possible to construct weighted averages of dynamic correlations
for all possible combinations of two countries from a larger set yt = (y1t . . . ynt)′.
The corresponding quantity introduced by Croux et al. is termed cohesion and
computed as

cohy(ω) =
∑
i 6=j wiwjρyiyj

(ω)∑
i 6=j wiwj

, (3.5)

where wi and wj are the weights assigned to variables yi and yj, respectively.
While choosing wi = 1 for all i is possible, the countries within the dataset
are very dissimilar in terms of inhabitants and economic power, so weighting
by population or GDP may be more appropriate. For the empirical results in
this section, the wi represent the population in millions of the countries under
consideration.

Again, it is possible to construct the cohesion measure for a frequency band
Λ, yielding

cohy(Λ) =
∑
i 6=j wiwjρyiyj

(Λ)∑
i 6=j wiwj

, (3.6)

Table 3.3 reports cohesion at business cycle frequencies for the three subgroups
and all types of cycle extraction methods.

The column corresponding to the cyclical component of the HP filter confirms
the result from the pairwise analysis using dynamic correlations. The general
pattern, namely cohesion being highest for the Euro countries, followed by
the European group and lastly the whole set of countries, remains the same
regardless of the filtering technique considered. However, the actual values for
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subgroup qtr. growth yr. growth HP filter CF filter

all .516 .555 .467 .484

European .552 .607 .574 .592

Euro .602 .664 .646 .648

Table 3.3: Cohesion at business cycle frequencies.

cohesion are somewhat different depending on the detrending method. For the
HP and CF filters, they are spread across a bigger interval, with the value for
the full group being smaller than those obtained using growth rates, but vice
versa for the Euro group.

While the cohesion measure allows to look at the frequencies of interest
more closely, it does not provide information concerning the development of
comovement patterns over time. To this end, a rolling window approach is
used again. The cohesion measure from equation (3.6) is computed for ten-year
windows moving across the entire sample from 1960 to 2010. Figure 3.2 shows
the development of the measure over time. The four filtering techniques are
arranged in the same way as before. In each panel, the solid line corresponds to
the Euro group, the dotted one represents the European group, and the dashed
one shows results for all countries considered together.

According to all filtering methods, there is little evidence of increasing business
cycle cohesion for the entire group of countries. Only for the HP-filtered data,
a small rise over the years is observable; for the growth rate data, cohesion
even falls considerably below its value during the initial window (1965–1975)
for some time. For the other two groups, and particularly for the adopters of
the Euro, cohesion increases towards the end of the sample. Except for the very
early part of the quarterly growth series, cohesion for the Euro countries always
exceeds that of the European group, which is in line with the results for the full
sample. However, the patterns produced by the different filtering techniques
are rather distinct. When looking at either of the growth rate panels, cohesion
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 3.2: Development of cohesion at business cycle frequencies over time. The
solid lines represent data from the Euro countries, the dotted lines
correspond to the European group of countries, while the dashed
line is based on data for all countries. The years on the x-axis of
each panel denote the centers of rolling ten-year intervals.

only rises during the first half of the sample and remains at about the same
level afterwards. Using the cyclical component of the HP filter to the contrary
yields cohesion values that increase throughout the sample. The result using
the CF filter is especially surprising as it indicates a steep rise in cohesion for
the first 15 years, followed by a decline during a period of approximately equal
length and finally increasing values for the last 20 years again.
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 3.3: Comparison of cohesion results for the European country group.
Cohesion is shown for all possible time-frequency combinations, with
the frequencies on the x-axis and the years denoting the centers of
rolling ten-year intervals on the y-axis.

To consider the question whether cohesion is the same for cycles of different
length, the previous summary statistic is disentangled. Rather than considering
the range of business cycle frequencies as a whole, Figure 3.3 displays the
pattern of cohesion across both time and frequencies in a three-dimensional
plot. Again, ten-year rolling windows are used. For the sake of clarity, only the
European country group is considered in this figure, however, the respective
graphs for the whole set of countries and for the Euro group are similar. In the
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three-dimensional plot of Figure 3.3, the x-axis denotes the frequencies, while
the y-axis depicts the years representing the centers of the ten-year intervals.

When looking at the changes over time, it is notable that the measure increases
during the first 20 years of the sample for most frequencies, but then levels
off. It can be noted that cohesion is generally highest for the low frequencies,
representing long-term growth effects. Also within the range of business cycle
frequencies, that is for ω approximately between 0.20 and 0.79, the longer cycles
display higher cohesion than the shorter ones. The decline in cohesion during
the 1980s when looking at the CF-filtered data is present at all frequencies.
As a whole, the results presented in this section give some indication that

comovement between output cycles for key Euro countries is more pronounced
compared to other major economies. Furthermore, especially for the Euro
countries a tendency towards increasingly strong common cycles is apparent
over time.

3.6 The Spectral Envelope

Another method for evaluating common movements that is based in the
frequency domain has been suggested by Stoffer et al. (1993) and McDougall
et al. (1997). The original approach tackles a problem from molecular biology –
namely periodicities in DNA sequences – and outlines a way to conduct harmonic
analysis for these data. Since the DNA sequence data is a categorical time
series, this requires assigning numerical values to each of the categories present,
yielding a time series which can then be investigated using spectral analysis.
Stoffer et al.’s proposal for choosing the numerical values associated with the
categories is to select numbers such that any periodic elements possibly present
in the categorical process are highlighted. For a variety of such scalings, the
spectral density can be considered, with the so-called spectral envelope being the
maximum standardized spectral density attainable across all possible scalings.
It thus provides a way to identify scalings that emphasize relevant periodic
features.
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While the approach for categorical data is suitable to explain the concept
behind the spectral envelope, the GDP data used here is real-valued. An exten-
sion of the methodology to such time series is introduced by McDougall et al.
(1997). Instead of just looking at the original time series, it is also possible to
consider transformations thereof, the spectra of which will vary according to the
particular transformation. Similar to the situation for categorical data, the spec-
tral envelope encompasses the spectral densities for all possible transformations,
with the most relevant periodic feature revealed through the transformation
which yields the highest standardized spectral density. In case of a multivariate
time series, a natural choice for the class of transformations to consider are the
linear combinations of the elements.
Formally, the spectral envelope is obtained as follows: Let yt = (y1t . . . ynt)′

be a vector of n time series with spectral densities fy(ω). This process can be
scaled by any n × 1 vector of real or complex constants to yield xt,β = β∗yt,
where ∗ denotes the transpose and conjugate. For each of these scaled processes,
the standardized spectral density is given by fx(ω,β)/σ2

β, where σ2
β = var[xt,β].

The optimal scaling at frequency ω is then obtained as

λ(ω) = sup
β 6=0

{
fx(ω,β)
σ2

β

}
. (3.7)

λ(ω) is thus the largest proportion of the spectral power that can be obtained
at frequency ω for any scaling of the time series in yt. It is called the spectral
envelope because it provides an upper bound for all standardized spectra at
frequency ω, with the spectral density equaling λ(ω) only if β is proportional
to the optimal scaling.

With respect to the original, unscaled time series yt, the spectral envelope is
given by

λ(ω) = sup
β 6=0

{
β∗fy(ω)β
β∗Vyβ

}
. (3.8)

across the entire range of frequencies −π < ω ≤ π. In this expression, Vy =
var(yt), i.e. the variance-covariance matrix of yt, for which positive definiteness
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is assumed. By considering only real-valued scalings and denoting the real part
of fy(ω) by f re

y (ω), it can be noted that β∗fy(ω)β = β∗f re
y (ω)β for all β ∈ Rn

and hence f re
y (ω) may replace fy(ω) in equation (3.8). Furthermore, symmetry

of λ(ω) is asserted from f re
y (ω) = f re

y (−ω), so it is sufficient to consider the
spectral envelope just for 0 < ω ≤ π. The λ(ω) that maximizes the problem in
equation (3.8) can then be obtained by solving

f re
y (ω)β(ω) = λ(ω)Vyβ(ω) (3.9)

for β 6= 0. Because Vy has full rank, this means λ(ω) is the largest eigenvalue
of

∣∣∣f re
y (ω)− λVy

∣∣∣ = 0. (3.10)

For the analysis of output cycles, the spectral envelope may prove a useful tool
because of its ability to highlight common cyclical components at a particular
frequency. If there are frequencies for which a certain linear combination of
GDP cycles stand out, the spectral envelope at these frequencies should be
higher than elsewhere. By considering the specific linear combination that led
to the spectral envelope, inference can be drawn concerning the contribution
of the individual countries’ cycles to a common one. To quantify the notion
of standing out from the surroundings, Stoffer (1999) presents a significance
threshold level which the spectral envelope should exceed to be meaningful.

The graph in Figure 3.4 depicts the spectral envelopes for the cyclical compo-
nent of output according to the four filtering techniques. Interestingly, there is
no indication of any significant maxima for the spectral envelope when consider-
ing quarterly growth rates as shown in the upper left panel. No combination of
cycles from different countries thus exhibits particular spectral power, neither
at business cycle frequencies nor anywhere else. If yearly growth rates are used
instead, as shown in the upper right panel there is clear indication of some sort
of long-range dependence as the spectral envelope attains very high values for
the low frequencies corresponding to cycles with length well above one decade.
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 3.4: Results for the spectral envelope at different frequencies (denoted on
the x-axis). The solid lines represent data from the Euro countries,
the dotted lines correspond to the European group of countries, while
the dashed line is based on data for all countries. The horizontal
line represents the significance threshold.
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Evidence of such behavior even in detrended economic time series has been
mentioned by several studies before, such as Ding et al. (1993). At the same
time, there is some very limited indication of spectral power around frequency
0.6, that is, for cycles with length 10 quarters. However, the peak in the spectral
envelope is barely significant and tiny compared to the values at the lowest
frequencies.

The situation is entirely different for the series subjected to a filtering proce-
dure. Results are shown in the bottom two panels, with the HP filtered data on
the left and the CF filtered data on the right. Rather obviously, there is little to
no evidence of spectral power outside the passband of the filter, because these
areas are cut off as far as possible. However, the comparison of the spectral
envelope for frequencies above or below those corresponding to business cycles
gives a nice illustration of the superior performance of the CF filter in removing
these components. While the spectral envelope is far from significant, but nev-
ertheless noticeable for the HP-filtered data, it is completely non-existent when
the CF filter is used. Yet the main result for both cases is the strong indication
of common spectral power at business cycle frequencies, with the maximum
value of the spectral envelope corresponding to cycles of length approximately 7
years. The finding furthermore supports the notion that the Euro countries are
the main driver behind this common periodicity, because the spectral envelope
increases only slightly when the two further European countries are added, and
the additional gain is close to zero for the two non-European ones.

For the data in the lower two panels that exhibit a clear peak for the spectral
envelope at a frequency around 0.22, the corresponding scaling at that frequency
for the Euro country group is β(ω) = (0.68,−0.87, 1.00, 0.22, 0.23)′ in case of
the cyclical component from the HP filter and β(ω) = (0.98,−0.97, 1.00,−0.08,
−0.03)′ when using the CF filter. For the latter one, this can be approximated as
β(ω) = (1,−1, 1, 0, 0)′, indicating that the last two countries (the Netherlands
and Spain) contribute little to the common periodicity, while it is mainly driven
by the cycles of France, Germany, and Italy. The results obtained with the HP
filter are not as clear-cut, but point into the same direction.
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HP filter CF filter

Figure 3.5: Common cycle obtained from the linear combination corresponding
to the spectral envelope.

It appears counterintuitive that the elements of the β vectors do not all have
the same sign. However, as Figure 3.5 shows, the common cycle that follows
from multiplying the scaling vectors with the corresponding filtered series leads
to a rather reasonable representation.

Interestingly, the results relating to the spectral envelope do not change much
when only a sub-sample of the data is considered. A rolling window approach
similar to that in Section 3.5 indicates little development over time.

3.7 Wavelets

A common feature of all approaches discussed so far is their exclusive focus on
either the time or the frequency domain. While regular correlation coefficients
can capture relationships over time, no indication regarding the length of cycles
is given. Similarly, considering dynamic correlation, cohesion, or the spectral
envelope, the time information included in the series is lost. Rolling window
approaches as presented in the previous sections do provide some insights as
to the development of these measures over time, yet it is desirable to have a
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combined measure involving both the time and the frequency domain. One way
to reconcile these two is by the use of wavelet analysis.

3.7.1 The Wavelet Transform

The basic notion of a wavelet transform, as outlined by Daubechies (1988,
2006), is to consider a mapping from a given time series into a function of time
and frequency. Two main types of wavelet transforms can be distinguished. The
Discrete Wavelet Transform (DWT) limits itself to select discrete parameter
values to consider along the time and frequency dimensions. Because the result
of the transformation from one to two dimensions is extremely redundant, this
still allows to recover the original series from the DWT. The characteristic
of just looking at specific values makes the DWT widely used in applications
such as image processing, where compression of data is an essential objective.
DWTs have also been considered in economics, e.g. by Ramsey and Lampart
(1998) to investigate relationships between money supply and nominal income,
or Shik Lee (2004) to analyze price and volatility spillovers in stock markets.

However, for the task of detecting business cycle synchronization, the second
type of wavelet transforms – the Continuous Wavelet Transform (CWT) – is
more appropriate. It is computationally more demanding, but provides the full
redundant outcome of the transformation from a single time series into a set
of time and frequency values. Therefore, the interpretation of results is made
much easier.
Wavelet analysis addresses the issue that in Fourier analysis the time infor-

mation included in a series is no longer available after transformation. It is not
possible to pinpoint when an event took place or whether any of the cyclical
components changed over time. While this is not much of a problem if series
exhibit similar properties throughout the sample, analysis becomes problematic
as soon as different regimes and events begin and end within the time span
under investigation. For the question at hand, the creation and enhancement
of EMU ties constitute numerous such changes during the sample. All these
transient dynamics are lost when relying on pure frequency analysis.
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The key idea behind using wavelets thus is to look at the spectrum as a
function of time and hence capture temporary developments as well. This is
achieved by not considering waves of infinite duration, such as the sine or cosine
in Fourier analysis, but rather “little waves” (or “ondelettes” in the original
French literature). They consist of just a brief oscillation whose amplitude goes
towards zero very fast as the function approaches ±∞. Intuitively, a wavelet
can be compared to the recording of an earthquake by a seismograph.

To cover the entire real line despite the decay property required for wavelet
functions, sets or families of wavelets are considered. They are derived from a
mother wavelet ψ by scaling and shifting. A family ψτ,s of daughter wavelets
would then read

ψτ,s(t) = 1√
s
ψ
(
t− τ
s

)
. (3.11)

The scaling parameter s influences the width of the wavelet through stretching
(s > 1) or compressing (s < 1) and the translation parameter τ controls the
location of the wavelet by shifting its position in time. A wavelet created with
a specific frequency and duration will then resonate if the signal embedded in
the data contains components of this particular frequency.

The mother wavelet has to fulfill several technical conditions as pointed out
by Daubechies et al. (1992). Its mean,

∫∞
−∞ ψ(t)dt, must equal zero, while the

integral of its square,
∫∞
−∞(ψ(t))2dt, has to be one. The latter requirement yields

the limitation of the wavelet to a certain time interval. Additionally, the admis-
sibility condition 0 < Cψ =

∫∞
0
|ψ̂(ω)|
ω

dω < ∞, where ψ̂(ω) =
∫∞
−∞ ψ(t)e−iωτdt

denotes the Fourier transform of ψ, has to be met. The simplest choice of
wavelet is the Haar wavelet (Haar, 1910) defined by

ψH(t) =


1 for 0 ≤ t < 0.5,

−1 for 0.5 ≤ t < 1,

0 otherwise.

(3.12)
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which can be obtained by combining two rectangular functions. Its disadvantage
is the obvious non-continuity of the function.

The vast majority of recent studies using CWTs instead focus on one group
of continuous mother wavelets known as Morlet wavelets (Goupillaud et al.,
1984) and given by

ψω0(t) = π−1/4eiω0te−t
2/2. (3.13)

The Morlet wavelet depends on one parameter, ω0. It is usually chosen to be
ω0 = 6, which is also the value that will be used throughout the analysis here.

The popularity of the Morlet wavelets arises from a number of favorable
properties. When considering the desired localization in both time and frequency,
the Heisenberg uncertainty principle asserting that both cannot be determined
to arbitrary precision simultaneously has to be considered. The Morlet wavelet
minimizes the size of this Heisenberg window of uncertainty around a point,
thereby reaching the lower bound for the inevitable uncertainty. Furthermore,
the concentration of ψ in time is the same as in frequency, providing the best
balance with respect to the two dimensions. Finally, as Lilly and Olhede (2009)
outline, there are several ways to relate the scale parameter s, responsible for
stretching the wavelet and thus corresponding to the space between oscillations,
to Fourier wavelengths. For the Morlet wavelet with ω0 = 6, all these associated
frequencies coincide, so the scale parameter can be treated like the frequency in
Fourier analysis.

Thus focusing on this particular choice of wavelet, the CWT for some time
series x(t) with respect to the wavelet ψ is given by

Wψ,x(τ, s) =
∫ ∞
−∞

x(t) 1√
s
ψ∗
(
t− τ
s

)
dt, (3.14)

where the asterisk denotes complex conjugation. The CWT maps the original
one-variable function into a function of both τ and s, making it possible
to conduct inference on both time and frequency simultaneously. The main
difference of the CWT compared to a Fourier transform is the use of the wavelet
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instead of sine and cosine functions and the appearance of τ as a localization
parameter in the time domain. The wavelet power spectrum corresponding to
the CWT is denoted as

WPSψ,x(τ, s) = |Wψ,x(τ, s)|2 . (3.15)

3.7.2 Cross-Wavelet Analysis

While the measures described so far aim at detecting time-frequency patterns
in a single time series, the question of whether business cycles are aligned
requires checking for common patterns in both. Measures for this purpose can
be derived from their counterparts in pure frequency analysis.
For two time series x and y, the cross-wavelet transform (XWT) has been

introduced by Hudgins et al. (1993) as

Wxy(τ, s) = Wx(τ, s)Wy(τ, s)∗, (3.16)

suppressing the ψ in the index from now on, since the investigation is only
concerned with the Morlet wavelet. It represents the covariance between two
series at each possible combination of time and frequency and can hence serve
as an indication of how similarities are distributed in this space.
This is visualized in Figure 3.6 for the pairs that can be constructed from

the HP-filtered cyclical components of the members in the Euro country group.
Dark areas depict time-frequency combinations spotting a high cross wavelet
transform, while lower values are presented in lighter shades.
For convenience, the y-axis denotes the length of the cycles in years. While

the results differ for the individual pairs, there is a general tendency that higher
cross-wavelet transforms can be observed for cycles with a period of at least
four years. Concerning the development over time, cross-wavelet transforms are
generally lower in the middle of the sample than in the initial or final years.
The highest values can be observed for the last decade, after the introduction
of the Euro. Only for a few country pairs, such as Germany–Italy or Germany–
Netherlands, the indication of comovement for cycle lengths around five years
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FR–DE FR–IT FR–NL FR–ES

DE–IT DE–NL DE–ES

IT–NL IT–ES

NL–ES

Figure 3.6: Cross Wavelet Transforms (XWT) at business cycle lengths for pairs
of Euro countries. For each panel, the y-axis shows the length of
the cycle in years and the x-axis shows the localization in time.
Time-scale combinations with a higher XWT are shaded darker.

is uninterrupted throughout the sample. Furthermore, there is some evidence
of synchronization at higher frequencies, that is, for shorter cycles, during the
1970s and towards the end of the sample for most country pairs.

A serious drawback of the cross-wavelet transform as introduced in equa-
tion (3.16) is the lack of normalization. The wavelet coherency measure, due
to Torrence and Webster (1999), addresses this concern through normalizing
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Wxy(τ, s) by the spectrum of each series. The resulting statistic is very similar
to the concept of coherency in pure frequency analysis and is defined as

Rxy(τ, s) = |S(Wxy(τ, s))|√
S(|Wx(τ, s)|2)S(|Wy(τ, s)|2)

, (3.17)

where S(·) denotes a smoothing operator. The smoothing operator is applied
with regard to both frequencies and time. Suitable choices for the operator are
discussed in Torrence and Webster (1999) and Torrence and Compo (1998).
Basically, smoothing can be obtained by a convolution with a window function
along both the time and scale dimensions:

S(W (τ, s)) =
∫ τ+∆1/2

τ−∆1/2

∫ s+∆2/2

s−∆2/2
W (t, ς)f∆1,∆2(t, ς)dtdς,

where f∆1,∆2 satisfies
∫ ∫

f∆1,∆2(t, ς)dtdς = 1. Wavelet coherency thus is unity
if at a particular time and scale, a perfect linear relation exists between the two
time series; while at the other extreme, it is zero if the series are independent.
Although the exact choice of the smoothing function f is somewhat arbitrary,
this is not different to the situation in Fourier analysis, where coherency is
based on the smoothed periodogram.6

Just as for the coherency measure in pure frequency analysis, the appeal of
the statistic in (3.17) is its similarity to the standard correlation coefficient, so
that it can be considered as a correlation coefficient localized in time-frequency
space (Grinsted et al., 2004).

Because of the similarity to its Fourier counterpart, the approach can easily be
extended to provide insight for entire groups of countries, allowing to compare
the group of Euro countries with broader sets. Consider a vector yt = (y1t . . . ynt)′

with n ≥ 2 and positive weights w = (w1 . . . wn)′ attached to each element of
yt. The proposed measure is motivated in the same manner as Croux et al.’s

6Both in the Fourier and in the wavelet case, the coherency measure would be unity
everywhere without smoothing.
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(2001) measure of cohesion in the frequency domain and will hence be referred
to as wavelet cohesion. It equals

wavecohy(τ, s) =
∑
i 6=j wiwjRyiyj

(τ, s)∑
i 6=j wiwj

. (3.18)

To simplify the measure, weights can be chosen as wi = 1 for all i. While this
may be appropriate if each element in yt were of the same importance, with
countries in the dataset greatly varying in size, it is more reasonable to take
account of this fact by a suitable weighting scheme. Hence, like previously for
the cohesion measure in pure frequency analysis, the wi are chosen to be the
population of the countries in 2010, i.e. at the end of the sample.

With this new wavelet cohesion measure, it is possible to capture synchro-
nization of business cycles for groups of countries. Figures 3.7 to 3.9 show
graphical representations of the wavecohy(τ, s) statistic using the county groups
consisting of all, the European, and the Euro member states, respectively. The
contour plots indicate wavelet cohesion for the entire time span of the sample
and for cycle lengths between two and eight years. Areas colored in the darkest
shade of gray indicate a cohesion statistic between 0.8 and 1.0 and thus the
highest possible degree of synchronization. Each contour line and switch to a
lighter shade then represents a decrease in cohesion by a 0.2 increment, leaving
areas with little cohesion – wavecohy(τ, s) between 0 and 0.2 – entirely white.

Figure 3.7 shows cohesion for all countries together. It indicates that except
for the very beginning of the sample, synchronization is present for cycles with a
length of approximately five years, as cohesion at this scale exceeds surrounding
higher and lower frequencies. During the late 1980s and early 1990s, the link
is least substantial. Also within that time span, cohesion is particularly low
for shorter cycles between two and four years. More generally, cohesion is low
for cycles shorter than four years everywhere except at the very end of the
sample, where all frequencies show a clear increase in cohesion. Another notable
aspect is that, unlike for the purely time- and frequency-based measures of the
previous sections, there is only very little discrepancy between the results for
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 3.7: Wavelet cohesion for country group all at business cycle lengths.
The y-axis shows the length of the cycle in years and the x-axis
shows the localization in time. Time-scale combinations with higher
wavelet cohesion are shaded darker.
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 3.8: Wavelet cohesion for country group Europe at business cycle lengths.
The y-axis shows the length of the cycle in years and the x-axis
shows the localization in time. Time-scale combinations with higher
wavelet cohesion are shaded darker.
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 3.9: Wavelet cohesion for country group Euro at business cycle lengths.
The y-axis shows the length of the cycle in years and the x-axis
shows the localization in time. Time-scale combinations with higher
wavelet cohesion are shaded darker.
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the different cycle extraction methods and the conclusions concerning cyclical
comovement behavior hold regardless of the filtering method.

For the European country group, whose wavelet cohesion results are depicted
in Figure 3.8, the overall picture is rather similar to that for the complete set
of countries. Evidence of cohesion is a bit stronger than before and again it
is most pronounced for cycles of around five years length. Since around 2000,
those five-year cycles have very high cohesion values of above 0.8. Interestingly,
the time-scale combination of two- to three-year cycles around 1990, which
spotted the smallest cohesion in Figure 3.7 now exhibits a somewhat stronger
synchronization link than its surroundings.

Finally, Figure 3.9, considering only the Euro member countries, confirms the
presence of synchronization for five-year cycles throughout the sample. Unlike
for the other groups, however, there is considerable cohesion already during the
early years. As in the previous groups, cohesion is generally somewhat lower
in the 1980s than before and after. The “island” of high cohesion for shorter
cycles around 1990 is again present and more substantial than for the European
group. For the years subsequent to the introduction of the Euro in 1999 and for
cycles longer than five years, there is very extensive cohesion throughout. The
results of the different filtering approaches are not as similar as for the group
consisting of all countries, yet unlike for the purely time- or frequency-based
approaches, all important features are qualitatively the same across methods.

The use of wavelets thus does not only introduce the advantage of combining
the analysis of time and frequency dimensions, but it also turns out that the
statistics are much more robust to the choice of filtering technique. While both
the contemporaneous correlation coefficients and the different approaches in the
frequency domain yield results that vary depending on which measure is used
to extract the cycle, this is not the case for wavelet analysis.

3.8 Conclusion

This chapter has compared a variety of methods targeted at measuring
business cycle synchronization. It has shown that it is insufficient to consider
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the time domain and the frequency domain separately and established the
sensitivity of statistics to the choice of cycle extraction technique. This holds
in particular for the spectral envelope. As a more refined approach, the chapter
has pointed out that wavelets are a valuable tool for the analysis of business
cycles, because they allow to consider a localization of common periodicities in
scale and time. In particular, a new measure of comovement between several –
rather than just a pair of – series has been introduced for a wavelet setting.
The wavelet cohesion statistic asserts that cyclical components in output

with a length of approximately five years are synchronized to a certain degree
for various sets of countries. This lies well within the range typically considered
as business cycles and corresponds exactly to the finding of Artis et al. (1997)
who pinpoint the typical business cycle length to be between five and six years.
Cohesion is stronger for countries sharing the Euro, in particular since the actual
introduction of the currency, but also in earlier years already. These findings
align with those of previous studies such as Rua (2010), who considers fewer
countries and just bivariate relationships over a shorter sample. Furthermore,
using the wavelet approach, Canova’s (1998) criticism of arbitrariness in the
choice of cycle extraction technique is remedied, because the deliberate choice
of filter does not affect the result eventually obtained for synchronization.

The wavelet-based measures turn out to be very useful because results show
comovements both hinge on the frequency of cycles and develop over time.
These two dimensions are easily incorporated in the wavelet cohesion statistic,
while other approaches have to resort to auxiliary tools to provide insight beyond
a single one of the dimensions.
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