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Professor Martin Reuter als Betreuer meiner Doktorarbeit, der mir über die gesamte

Dauer meiner Disseration hinweg beratend und motivierend zur Seite stand, sowie

Nikolai Axmacher und Jürgen Fell, welche mir in ihren Arbeitsgruppen ein harmo-
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1 Introduction

1 Introduction

The ability to remember the past is probably one of the most valuable assets of any

organism. It enables us to benefit from successful experience and prevents us from

repeating the same mistakes over and over again. More philosophically, memory can

be viewed as the glue that keeps our life together, provides a red line which links

disparate events, places and people into unified experiences and ultimately enables

us to form a sense of personhood and identity.

The complexity of memory functions ranges from more basic forms such as mod-

ifying behavior with operant conditioning, to motoric skills and procedural memory

and finally to hallmarks of human experience such as “mental time travel” and

autobiographic memory.

Every day, a person encounters an overwhelming amount of information. Some

of it will be kept in their memory for a long time, while most of it will soon be

forgotten. According to two-step models of memory formation, certain neuronal

processes have to take place in order to transform initially labile memories into

permanent memory traces. This process of strengthening, or stabilization, has been

called consolidation.

The neuronal mechanisms underlying this stabilization remain to be completely

understood. However, there is mounting evidence that sleep is important for success-

ful memory consolidation, maybe even essential. The study of sleep as a potential

memory enhancer merits special attention in a society in which, on the one hand,

sleep disorders are on the rise and which, on the other hand, faces the challenge of

an aging population with the associated increase in mild cognitive impairment and

dementia.

In recent years, it has been suggested that the beneficial effect of sleep on memory

consolidation may be due to specific neuronal processes which happen exclusively

or most efficiently during sleep, a state in which the brain is mostly insulated from

external influences. One of these processes is a reactivation of the same neuronal

activity that was involved in the original learning process: In rodents, it has been

demonstrated that sequences of neuronal activity, which are associated with spe-

cific content during a learning task, are spontaneously “replayed” during sleep after

learning.
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1 Introduction

In this thesis, three studies are presented which used a novel method of analysis

to investigate whether a reactivation of stimulus-specific activity can also be iden-

tified in humans. In these studies, stimulus-specific neuronal activity patterns were

extracted from functional imaging and electrophysiological data that was recorded

during a learning task and the reoccurrence of these patterns was tracked in subse-

quent waking state and sleep.

In the first part of this thesis, the theoretical concepts related to memory con-

solidation, sleep and reactivation are discussed. In addition, important methods

are introduced. In the second part, three empirical studies are presented that in-

vestigated stimulus-specific neuronal replay with different methods and different

paradigms. Lastly, the results of the three studies are compared and discussed.

12



Part I

Theoretical Part

2 Memory systems

Memory is not a unitary concept, but can be divided into several subcomponents.

One of the most widely accepted models of memory proposes two main memory

systems – declarative and non-declarative memory (Squire and Zola, 1996). An

overview of this model is given in Figure 2.1. Declarative memory refers to con-

sciously accessible memory, such as semantic knowledge of facts or the memory

about one’s own past. Non-declarative memory subsumes several functions which

are not consciously accessible, such as procedural memory (knowing how to ride a

bike) or implicit knowledge, such as having learned statistical regularities without

being consciously aware of it (Knowlton et al., 1994).

The main evidence for the proposed distinction between declarative and non-

declarative memory comes from patients with brain damage, in which a dissociation

has been observed: Depending on which regions are affected, patients may be unable

to form declarative memories, but they can still acquire new motor skills (Squire and

Zola, 1996).

Figure 2.1: Different types of memory can be grouped into declarative and non-declarative mem-

ory. Declarative memory includes all forms that are consciously accessible and is divided into

episodic memory (e.g. “memory of the first day of school”) and semantic memory, which is memory

about facts (e.g. “Paris is the capital of France”). Non-declarative memory usually cannot be

verbalized and is often implicit, i.e. a person knows something without having conscious access to

the knowledge. For example, procedural memory includes skills such as riding a bike, which most

of us can do but have difficulty explaining how. Figure adapted from Walker and Stickgold (Walker

and Stickgold, 2004), based on Squire and Zola (Squire and Zola, 1996).

13



2 Memory systems

From the study of neuropsychological patients, it has become apparent that

declarative memory depends on the integrity of the hippocampus (Scoville and Mil-

ner, 1957) and other medial temporal lobe structures, while non-declarative memory

seems to be independent of these brain areas. The role of the hippocampus is dis-

cussed in more detail below.

This thesis focuses on episodic memory, which is a subcomponent of declarative

memory and which refers to the memory for events in a person’s past (Walker and

Stickgold, 2004).

14



3 Memory consolidation

3 Memory consolidation

3.1 Origins and development

What do we really talk about when we talk about memory consolidation? When

the term was first coined by Mueller and Pilzecker (Mueller and Pilzecker, 1900),

they used it to describe resistance against interference: In nonsense-syllable learning

paradigms similar to those employed by Ebbinghaus (Ebbinghaus, 1885), they found

that memory recall for syllable pairs was worse when additional material had to be

learned between encoding and retrieval of the original material, an effect they termed

“retroactive interference”. This effect was less pronounced when the time increased

between encoding of the original material and exposure to the interfering material.

This led them to conclude that soon after encoding of new material, a process takes

place which stabilizes or “consolidates” the memory and renders it more resistant

against interference.

A second, complementary avenue of research began nearly at the same time with

the study of amnesic patients. The loss of memory in global amnesics was often

found to display a prominent temporal gradient that can be summed up as “last

in, first out”: Recent memories are more likely to be lost than remote memories,

an observation that had been described some years earlier by a French psychologist

(Ribot, 1882) and is epitomized today as “Ribot’s law”. What is striking in these

amnesic patients is that the gradient of memory loss can span years – in some cases

all memory is lost except for episodes from early childhood. But equally puzzling

is the fact that memory is not lost completely. Thus, the underlying problem in

these patients is not simply disrupted retrieval – they can still access some of their

memories. Over the course of months and years, the older memories must have

undergone a transition which makes them less vulnerable to forgetting,

Thus, in both of these two approaches, memory becomes more resistant with

longer time periods since encoding. However, the stabilization process which was

observed by Mueller and Pilzecker (Mueller and Pilzecker, 1900) took place within

minutes, not days, weeks or even years as in the neuropsychological patients. Is this

at all the same process then? Today, it is commonly understood that the effects

which can be observed at the scale of seconds and minutes reflect synaptic consoli-

dation, while processes spanning months and years are connected to the somewhat

15



3 Memory consolidation

harder to grasp concept of system consolidation (Dudai, 2004; Frankland and Bon-

tempi, 2005), both of which will be discussed in more detail below. But even if the

underlying neuronal substrate is probably quite different, both phenomena have in

common that the passage of time seems to change something about the memory

traces that leaves them more resistant against disturbance.

3.2 Interference and forgetting

The two approaches have another thing in common: They describe consolidation

in terms of forgetting. This highlights that consolidation is a theoretical construct

that can only be inferred from behavior, either from post-learning improvement

(e.g. in procedural memory, see below in the chapter “Sleep”) or from reduced or

increased forgetting relative to a control condition. As such, much of the genuinely

psychological evidence that consolidation exists and that it constitutes an important

mechanism is intricately linked to research into forgetting.

Thus, when ideas regarding the causes of forgetting changed, the concept of

memory consolidation virtually disappeared from psychological research. In 1957,

an influential article was published, in which retroactive interference was largely

dismissed as a cause of forgetting (Underwood, 1957). The author reviewed studies

in which a word list had to be learned and recall of this list was tested 24 hours

later. The percentage of correctly recalled items varied greatly from one study to

the other. Underwood discovered that almost all of the variance in forgetting could

be explained by the number of word lists that participants in these studies had

learned prior to the learning of the target word list, including preceding practice

runs. For this observation, the term “proactive” interference was coined. This refers

to an interference which acts in a forward manner and describes a disturbance of

subsequently learned material by previously learned material. This new view on

forgetting had a profound impact on consolidation research – or lack thereof: If

memory success was indeed determined already at the time of learning (by what

was learned before), there is no room for a process like consolidation, which takes

place after learning.

Today, this change in doctrine clearly seems like a “wrong turn” (Wixted, 2004,

p. 240) in the study of the causes of forgetting. Proactive interference could not

explain many of the phenomena that had already been observed, for example studies
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3 Memory consolidation

demonstrating that subsequent periods of sleep as compared to wakefulness led to

better memory performance (Jenkins and Dallenbach, 1924; Ekstrand, 1967). It

also fails to explain why recall of a list that is learned first (i.e. for which there is

no preceding list) is worse when a second list is interjected between learning and

recall than when no list intervenes, and why the performance decline is not as strong

when the intervening list is presented later rather than earlier after initial learning

(Mueller and Pilzecker, 1900). For many results, proactive interference theory has

to be bent and twisted in order to fit.

Wixted (Wixted, 2004) offers an excellent account of the history of this avenue

of research and describes fatigue among psychologists following years of debate and

research on the causes of forgetting with ever more complicated theories and ex-

perimental designs without gaining any progress. This fatigue might have been the

reason why psychological research into consolidation lay dormant for most of the

second part of the 20th century.

There might have been another, more fundamental reason for psychologists’ de-

parture from this area of research: Trying to elucidate an abstract concept such

as consolidation solely with behavioral paradigms often poses a classical problem

of reverse inference: A result – such as diminished forgetting relative to a control

condition – is observed, and any number of underlying constellations could be the

cause for this result: retroactive interference, proactive interference, simple decay

or a mixture of all of these processes, not to mention processes related to attention,

encoding and retrieval success, which also affect memory performance.

Biologists and neuroscientists seem to be at an advantage here, because they can

test theories that take into account different sub-components, anatomical regions

and their respective contributions. In animals, they can manipulate brain function

with lesions or by the administration of drugs. They can also invasively measure

activity in brain regions of interest.

Today, consolidation research seems to be firmly in the hands of neuroscience.

While the existence of consolidation is an accepted fact among neuroscientists, it is

barely even discussed by psychologists (Wixted, 2004). In fact, even in a recent psy-

chological textbook on memory (Baddeley et al., 2009), the concept of consolidation

is only mentioned twice in brief paragraphs.

In the next chapter, memory consolidation will be described from a neuroscien-
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tific perspective.
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4 The neural correlates of memory consolidation

4.1 Synaptic consolidation

The neuronal foundations of learning are the forming of new synapses and changes

in synaptic strength at existing synapses. These changes happen as a consequence

of neuronal activity during a learning experience.

According to Hebb’s rule, “cells that fire together, wire together” (Hebb, 1949).

What does this rule express exactly? Consider two neurons that are connected via

a synapse. Neuron A is pre-synaptic and neuron B is post-synaptic. If neuron

B repeatedly fires shortly after neuron A, then processes will take place at their

synapse which make it more likely in the future that an action potential in neuron

A induces an action potential in neuron B. If, however, neuron A repeatedly fires

shortly after neuron B, processes will take place at their synapse which make it less

likely that, in the future, neuron A induces an action potential in neuron B. This

restructuring of synapses is also referred to as spike-timing dependent plasticity

and is achieved by long-term potentiation and long-term depression, respectively.

Long-term potentiation can be observed especially well in the human hippocampus

(Birbaumer and Schmidt, 2010, p. 66), which plays an important role in memory

formation, as will be discussed below.

Strengthening of synapses depends on a cascade of molecular changes, which

may be disrupted by behavioral interference, drugs, seizures or anatomical lesions

(Dudai, 2004). For example, a tonic-clonic seizure often induces an amnesic gap of

several minutes up to a couple of hours. During that amnesic gap, the patient often

appears already fully oriented, reacts appropriately to questions and can keep up a

conversation; however, when asked later, he or she has no memory of these episodes.

One common aspect of interventions that disrupt synaptic consolidation is that

they cause amnesia or memory loss when applied within a certain time window, but

do not impair memory when applied later (Frankland and Bontempi, 2005). The

length of this time window ranges from seconds and minutes to several hours (Dudai,

2004). However, temporal gradients of amnesia in neuropsychological patients imply

that memory stabilization happens over time periods as long as years and decades.

This long-term stabilization is conceptualized by system consolidation.

19



4 The neural correlates of memory consolidation

4.2 System consolidation

Whereas synaptic consolidation happens relatively short-term and at the level of

synapses and neurons, system consolidation refers to long-term changes at the level

of the whole brain.

Knowledge in this field was first gained by systematic research, instead of anec-

dotal reports, about the memory loss in amnesic patients, using standardized ques-

tionnaires (Sanders and Warrington, 1971). In a review of the literature up until

then, Squire and Alvarez (Squire and Alvarez, 1995) concluded that in most cases,

amnesia is temporally graded, confirming earlier studies (Ribot, 1882; Burnham,

1903).

It should be noted that some of the studies with globally amnesic patients have

not found temporally graded amnesia (Sanders and Warrington, 1971), but instead

described extensive memory loss with no apparent discrimination between recent

and remote memories. However, this might be due to differences in patient pop-

ulations: It appears that patients with damage restricted to the medial temporal

lobe (MTL), i.e. the hippocampus and adjacent entorhinal and perirhinal cortices,

display temporally graded amnesia while those patients who have extensive and

“flat” memory loss often have broader lesions beyond the hippocampus, including

neocortical regions in the lateral and anterior temporal lobe (Squire et al., 2001).

This last finding already points to the pivotal role of the hippocampus in long-

term memory consolidation.

4.2.1 Patient H.M.

The starting point for hippocampus research arguably was the unfortunate case of

Henry Molaison (commonly referred to as H.M.), who underwent bilateral resection

of his medial temporal lobes after having suffered from severe, pharmaco-resistant

epilepsy for years (Scoville and Milner, 1957). While the surgery was successful

in reducing the frequency of his epileptic seizures, it also quickly became apparent

that H.M was no longer able to form new declarative long-term memory; he suffered

from a severe case of anterograde amnesia. His memory for events preceding the

surgery was largely unaffected, even though there is evidence for temporally graded

retrograde amnesia spanning a period somewhere between 3 (Scoville and Milner,
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1957) and 11 (Corkin, 2002) years. Curiously, procedural learning (i.e. motor skills)

and formation of implicit memory were still possible. Also, his working memory

remained intact.

This case has been cited and reviewed so often that it could be considered trivial.

Still, some of the conclusions that can be drawn shall be briefly discussed here to the

extent in which they relate directly to the study of consolidation. One of the most

compelling conclusions from the case H.M. certainly is that the neuronal substrate

which stores memory and the substrate which promotes or achieves such storing

have to be different: The patient still possessed remote declarative memories while

the storing of new declarative content had become impossible.

The fact that the patient could hold items in working memory proves that it

was not initial encoding of new material that prevented him from forming new

memories. Likewise, the deficit was not solely in retrieval of items from memory, as

he was still able to retrieve episodes preceding his surgery. What apparently had

become dysfunctional was a process taking place between initial encoding and later

recall – the stabilization, or consolidation, of newly learned material.

The second conclusion is that this deficient process is most likely linked to the

anatomical regions which were removed in the patient. The loss of the hippocampus

was identified to be responsible for H.M.’s memory dysfunction – even though it

should be noted that the resection in H.M. was massive and included the entorhinal

cortices and amygdalae as well as more of the surrounding tissue. However, it has

since been replicated that it is damage to the hippocampus which leads to the type

of amnesia observed in H.M (Penfield and Milner, 1958; Corkin, 2002).

4.2.2 Lesion studies in rodents

Conclusions drawn solely from neurospsychological patients easily inspire doubt in

their validity. For example, H.M. suffered from severe epilepsy prior to his surgery;

his memory might have been affected as a consequence of his illness prior to removal

of the hippocampi without anyone noticing it. Likewise, patients suffering from

damage in the medial temporal lobe due to stroke or cerebral injury very often have

wide-spread lesions far beyond the hippocampus or parahippocampal cortex.

Lesion studies in rodents can complement insights derived from neuropsychologi-

cal patients. Even though it is difficult to compare memory systems between rodents

21



4 The neural correlates of memory consolidation

and humans, there are some approaches that convincingly model human learning.

In one study (Kim and Fanselow, 1992), rats were fear conditioned to either an

environment (context) or to a sound by the application of electrical foot shocks.

Memory of the fear conditioning was later assessed by the degree of freezing that

the rat displayed when confronted again with the context or the sound. At a time-

point that was either 1, 7, 14 or 28 days after fear conditioning, the hippocampus

was selectively lesioned. The rats displayed temporary graded amnesia for the fear

conditioning, that is, they displayed less or no freezing for recently acquired fear

conditioning (indicating lack of memory for the conditioning), but normal freezing

for remote memories. Importantly, this was only true for fear conditioning that

involved a context, but not a sound. As the context-related conditioning is more

similar to episodic memory in humans, and the graded amnesia is specific for this

condition, this provides good support for the role of the hippocampus in consolida-

tion of episodic-like memory.

In another study, social transmission of food preference was investigated (Clark

et al., 2002). In this experimental setup, rats display a preference for food they have

previously smelled on the breath of their peers without actually having tasted the

food. The preference is likely an adaptive behavior, as prior sampling by peers signals

the food is safe to eat. Such acquired food preference lasts up to several months and

thus constitutes a good model for non-spatial memory. Again, electrolytic lesions

of the hippocampus caused anterograde amnesia and temporally graded retrograde

amnesia for socially transmitted food preference.

These are only two examples which were selected from a large body of lesion

studies in animals (reviewed in Frankland and Bontempi, 2005) which support the

idea that lesions to the hippocampus induce temporally graded retrograde amnesia.

4.2.3 Beyond the medial temporal lobe

For a long time, the hippocampus was the sole center of attention in research of

declarative memory consolidation, but other brain areas have increasingly gained

more consideration.

The amygdala is a small almond shaped structure in the immediate vicinity

of the hippocampus. When it is damaged, the processing of emotional material

is adversely affected (Adolphs et al., 1997; Adolphs et al., 1999), especially with
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regard to negative emotions such as fear. On the other hand, it has been shown that

memory for emotionally arousing material in healthy humans is superior to that

of non-arousing material (Hamann, 2001; Kensinger and Corkin, 2003; Kensinger,

2004). It therefore seems plausible to assume that a structure which is associated

with the processing of emotions is also involved in memory consolidation.

There are several studies which confirm the role of the amygdala in memory.

For example, in a PET study, amygdala activation during encoding was associated

with performance at recall across healthy participants (Cahill et al., 1996). In an

fMRI study, event-related amygdala activation during the viewing of emotionally

negative and neutral scenes was predictive of performance in an unexpected memory

test three weeks later – but only for scenes that were rated by the subjects as

the most emotionally intense (Canli et al., 2000). It has been suggested that the

amygdala induces this enhancement of memory performance for emotional content

by modulating hippocampal activity (Cahill and McGaugh, 1998; McGaugh, 2004).

There is good evidence that the effects of emotional arousal on memory are

not only due to enhanced attention or saliency at encoding, but that memories for

emotional content are consolidated differently (Hamann, 2001). In fact, studies have

shown convincingly that emotional memories benefit more from sleep than neutral

memories, especially during REM sleep (Wagner, 2001; Hu et al., 2006; Payne et al.,

2008; Nishida et al., 2009). The role of sleep in memory consolidation will be further

discussed below.

Another important brain area in long-term memory is prefrontal cortex. One

could call it the remote-memory counterpart of the hippocampus. While disruption

of the hippocampus affects recent memories, lesions in prefrontal cortex lead to a

loss of remote memories (Takehara et al., 2003; Beeman et al., 2013).

The exact role of prefrontal cortex in the recall of remote memory is not clear at

the moment. It has been suggested that prefrontal cortex, over time, takes over the

role of the hippocampus in combining different parts of an episode into one memory

trace and that it is necessary for strategic retrieval of memory content (Frankland

and Bontempi, 2005).

In humans, the prefrontal cortex has been found to be involved in memory re-

trieval already in the earliest of imaging studies (Rugg et al., 1996; Henson et al.,

1999), but these studies probed memory for recent memories. One study found that
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activity in prefrontal cortex was modulated by the age of a memory (Maguire et al.,

2001), but BOLD activity actually decreased with increasing age of the memory.

Investigation of remote memories in humans is probably impeded by the method-

ological difficulty of assessing very old memory content, especially with regard to

the accuracy of recall. For example, when probing memory for early childhood

events, researchers usually have to rely on information given by the participants.

But clearly, this area of research merits further attention and the role of prefrontal

cortex in memory consolidation should be considered more carefully.

4.3 The standard model of memory formation

Even though different brain areas should be considered in memory consolidation

research, the hippocampus clearly plays a very important role in declarative mem-

ory. Its exact contribution has been discussed and described in models of two-step

memory formation (Marr, 1970; Marr, 1971) and is an integral part of what is now

considered the standard model of memory formation (Squire and Alvarez, 1995;

McClelland et al., 1995).

This model postulates that new information is initially represented by neuronal

activity in disparate cortical modules, such as visual or somatosensory areas. The

hippocampus binds features from these disparate modules into a coherent memory

trace, or episode, and stores it in a rapid and temporary manner. Here, synaptic

consolidation is assumed to achieve this initial storing.

In a second step, information related to this memory trace is transferred from the

hippocampus to cortical areas in which they are then stored as long-term memory

(Squire and Alvarez, 1995; McClelland et al., 1995; Squire et al., 2004; Hasselmo,

2005). Figure 4.1 provides an overview of the model.

In this model, the hippocampus is often conceptualized as a “fast learner” while

the cortex is deemed a “slow learner” (McClelland et al., 1995; Frankland and Bon-

tempi, 2005). It is not clear why new information is not stored directly within

cortical areas. It has been suggested that only the hippocampus is capable of per-

forming the necessary rapid synaptic changes (Lisman and Morris, 2001; Frankland

and Bontempi, 2005).

The process by which memory traces become independent of the hippocampus

and can be accessed even if the hippocampus is removed, is proposed to be a gradual
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Figure 4.1: The standard model of memory formation as it has been described in the literature

(Squire and Alvarez, 1995; McClelland et al., 1995). While initial encoding of new material relies on

different cortical areas (such as sensory or motor cortices), it is the hippocampus that binds these

representations together into a coherent memory trace in a fast manner. Through repeated reacti-

vation of this hippocampo-cortical network, the intrinsic connections between the cortical modules

become stronger. Finally, the memory trace is fully represented by strong connections within cor-

tical modules and becomes independent of the hippocampus. Figure adapted from Frankland and

Bontempi (Frankland and Bontempi, 2005).

information transfer from hippocampus to the cortex. This transfer is assumed to

happen by a repeated reactivation of the neuronal activity that was associated with

encoding (Marr, 1971; Káli and Dayan, 2004), probably driven by the hippocampus.

This reactivation is assumed to induce a gradual reshaping of cortical connections

so that the new information is, ultimately, represented by cortical modules alone.

4.4 Why do memories have to be consolidated at all?

There are different ideas on why such a two-step process as described above might

have evolved. One aspect could be limits of the neuronal substrate (Dudai, 2004).

Assuming that the human brain can only store a finite number of representations,

simply adding every new episode indiscriminately is not efficient. Integrating new

information into existing networks, building on similarities and altogether getting

rid of information which proves to be unimportant would, in contrast, save capacity.

Another reason might be that immediate integration of new memories into exist-

ing memory networks might lead to catastrophic loss or distortion of older memories

(Frankland and Bontempi, 2005). This in turn is linked to the implicit understand-
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ing that during the integration process, old memories become temporarily vulnerable

again. Studies investigating retrieval induced forgetting indirectly support this no-

tion. They show that simply by retrieving material which is in some way related to

previously studied items (e.g. by sharing the same category), memory for the items

is impaired during later recall (Anderson et al., 1994; Ciranni and Shimamura, 1999).

Thus, one prevalent view is that memory consolidation takes place most effi-

ciently during periods of cortical “silence”. The best known period of cortical silence

is sleep, which will be discussed in the next section. After this, the focus of this

introduction will return to the process of reactivation and how it has been studied

in rodents and humans.
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5 Sleep

5.1 Physiology of sleep

In recent years a major research effort has been devoted to investigate the role

of sleep in system consolidation. Apart from many empirical findings, this is also

based on theoretical considerations: Sleep, in which humans are largely insulated

from stimuli in their environment, might provide an optimal environment for the

reactivation, or replay, of neuronal activity which is necessary for the gradual infor-

mation transfer from hippocampus to neocortex.

Sleep is a physiological state that can be observed in many species, and in vir-

tually all mammals. It is characterized by “a rapidly reversible state of reduced

responsiveness, reduced motor activity and reduced metabolism” (Siegel, 2009, p.

747).

Human sleep has been extensively studied with electroencephalography (EEG).

It has been found that human sleep can be divided into different stages, which

can be visually identified from EEG, using additional data from electromyography

(EMG) and electrooculography (EOG). The most common system of classifying

sleep stages (Rechtschaffen et al., 1968) distinguishes five sleep stages: sleep stages

1-4 with increasing depth of unconsciousness and rapid eye movement (REM) sleep,

the appearance of which in EEG is similar to waking state or the lightest stage

of sleep but in which a distinct flat muscle tone combined with rapid, large eye

movements can be observed.

Healthy sleep is usually organized in cycles: A person progresses from waking

state consecutively through sleep stages 1, 2, 3 and 4. After remaining some time in

slow-wave sleep (SWS), i.e. stages 3 and 4, the person cycles back through stages

2 and 1. Sometimes, the person shortly wakes up after sleep stage 1, which is

usually not remembered. He or she may also have an episode of REM sleep or go

back directly to the deeper stages of sleep for a second cycle. Figure 5.1 shows an

example. As a rule of thumb, the first two or three cycles (the first half of the night)

have extended periods of slow-wave sleep and relatively little REM sleep. In the

second half of the night, REM sleep periods become increasingly longer and often

the person does not reach slow-wave sleep anymore.

It is not clear what happens when humans do not sleep at all. There have been
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Figure 5.1: Examplary hypnogram. The subject cycles from waking state through sleep-stages 1

and 2 (S1 and S2), and reaches slow-wave sleep (S3+S4) for the first time around 0:30. Note that

slow-wave sleep occurs before 4:00, after which the subjects does not go back again into slow-wave

sleep. Rapid eye movement (REM) sleep is plotted between waking state and S1, which is often

done in order to illustrate that REM sleep is neither wake nor deep sleep. In this subject, REM

sleep occurs predominantly after 2:00, i.e. during the second half of the night. The subject also

has short returns to the waking state throughout the night, which is not unusual. Very often, these

short periods of wakefulness are not remembered in the morning.

studies in which rats died subsequent to massive sleep deprivation (Rechtschaffen and

Bergmann, 2002), but it is difficult to assess whether lack of sleep or the associated

severe stress is responsible for this: The “Disc-Over-Water” (DOW) method entails

pushing the animal into water whenever their electrophysiological recording indicates

the first signs of sleep. A study with pigeons did not find lethal effects of sleep

deprivation (Newman et al., 2008). In humans, the longest scientifically documented

case of voluntary sleep deprivation of 11 days did not result in death or even severe

adverse health effects (Ross, 1965). However, systematic research with enforced

total sleep deprivation in humans cannot be done for obvious ethical reasons.

Still, it has become more obvious in recent years that insufficient or disrupted

sleep is associated with a number of detrimental effects. Even though the causal

direction has not been established, abnormal sleep patterns are associated with a

number of psychiatric illnesses (Benca, 1992; Roth et al., 2010; Kyung Lee and

Douglass, 2010). Investigation of the exact role of sleep in humans may one day

provide therapeutic potential for these disorders.
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5.2 Effect of sleep on memory consolidation

5.2.1 Behavioral findings

In recent years, it has been suggested that sleep plays an important role in memory

consolidation (Walker and Stickgold, 2004; Stickgold and Walker, 2005; Ellenbogen

et al., 2006b; Diekelmann and Born, 2010). Empirical evidence that declarative

memory is retained better after a period of sleep than after a period of wakefulness

is quite old (Jenkins and Dallenbach, 1924). However, many issues have to be

considered before a definite statement can be made. For example, in a typical

experimental setup, one group studies a list in the morning, stays awake for 12

hours during the day and performs a memory test in the evening. The sleep group

studies the list in the evening, sleeps and is tested in the morning, again, 12 hours

after studying the list. Obviously, other factors than sleep could explain a memory

benefit for the sleep group – such as time of day effects, which might well be related to

varying hormonal levels that influence memory formation. In another experimental

setup, sleep deprivation is used: both groups study a list in the evening, one group

sleeps and the other is kept awake during the night. Group differences at memory

recall in the morning could then easily explained by mere tiredness of the wake group

or the stress that is associated with being kept awake.

Ellenbogen and colleagues (Ellenbogen et al., 2006b) have grouped the controver-

sial views on sleep and memory consolidation into four main categories of sentiments:

First, sleep has no impact whatsoever on memory formation. This view is mainly

supported by the existence of patients who have virtually no REM sleep, either due

to certain anti-depressant drugs or brain stem damage (Siegel, 2001; Vertes, 2004).

However, systematic research has apparently not been performed in these patients

and even if they were found to be cognitively unimpaired, this would only challenge

the role of REM sleep. This first view is also easily refuted by studies which show

an advantage of a sleep group over a wake group, especially when time of day effects

are excluded, e.g. by experiments that use an afternoon nap with identical timings

for the sleep and wake group (Tucker et al., 2006).

The second view (which is not easily separable from the third view) holds that

the only beneficial influence of sleep consists in reducing interference from normal,

everyday activities that participants might carry out if they were awake. In this view,
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there is no critical time window for consolidation, and memory content thus becomes

equally vulnerable again as soon as participants wake up. This view, along with a

number of other concerns, has been elegantly refuted by a study that experimentally

manipulated the timing of interference as well as the time of learning and testing:

Subjects had to learn an A-B list first, then spent 12 hours either awake or asleep

(during the day and during the night, respectively). Half of the participants of both

groups had to learn an A-C list 12 minutes prior to testing of the original A-B list

(interference groups) while the other half was tested without a preceding interfering

list (no-interference groups). Subjects who had slept performed slightly better than

those who had stayed awake in the no-interference groups. However, participants

who had slept performed considerably and significantly better than those who had

been awake in the interference groups: correct recall of the A-B list was 76% in the

group who had slept and 32% in the group who had stayed awake. Of note is a fifth

group of participants in this study who learned material in the evening and were

tested 24 hours later, also in the evening and also with interference prior to testing.

This group still performed better (correct recall: 71%) than the subjects who had

stayed awake for 12 hours and had been given an interfering list. This fifth group

addresses concerns about time of day effects as they were tested at the same time

of day as the awake group (i.e., in the evening). Also, this group spent the same

amount of time awake as the awake group (12 hours during the day), thus being

exhibited to the same possibly detrimental effects of normal day-time interference.

Also, the time between learning and testing was much longer in this fifth group

which should have led to worse performance. But instead, this group performed

better than the awake-interference group – apparently a night of sleep after learning

preserves memory even during longer intervals between learning and testing.

The third view identified by Ellenbogen and colleagues (Ellenbogen et al., 2006b)

posits that sleep has a positive influence on memory recall by providing a time win-

dow during which memory consolidation can happen effectively. This view suggests

a passive or permissive influence of sleep. It acknowledges that sleep provides a

good, maybe even unique environment for the stabilization of memories. However,

there is no active mechanism that causes memory consolidation.

This is what the fourth view suggests: That there are specific characteristics and

neuronal processes during sleep that actively promote consolidation.
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It is very difficult if not impossible to assess the claims of either the third or

the fourth view without using neuroscientific methods, and they will be discussed

in more detail below. First, I will consider some of the behavioral evidence for an

active role of sleep.

As outlined earlier in this introduction, there are different types of memory. In-

terestingly, sleep seems to have a differential impact upon them. Tasks involving

procedural memory (such as texture discrimination or motor sequence tasks) typi-

cally not only show less deterioration after sleep as compared to wakefulness, but the

skill is even enhanced by sleep (Fischer et al., 2002; Walker et al., 2003; Stickgold

et al., 2000). This in itself might provide a first tentative argument against a passive

mechanism – obviously, something happens after procedural training that leads to

an even better performance. However, moderate improvement in these tasks can

usually also be observed after a period of waking state (Walker et al., 2003).

In declarative memory, sleep shows the more historically established stabiliza-

tion against forgetting, that is, one can observe less forgetting in participants who

slept compared to those who stayed awake. Some studies have shown that sleep’s

beneficial effect on declarative memory is more pronounced when the learning was

difficult (Drosopoulos et al., 2007). All of this begs the question: If sleep simply

permitted passive consolidation to take place, why would the impact of sleep be

different depending on the task?

Perhaps the most intriguing behavior-based evidence for an active role of sleep

stems from studies that show that sleep not only preserves memory, but also leads

to a restructuring of learned elements, that is, it has not only a quantitative, but

also a qualitative influence on memory.

For example, Ellenbogen and colleagues let subjects study individual relation

pairs such as A > B, B > C, C > D, D > E and E > F (Ellenbogen et al., 2007).

After learning, subjects were tested on these studied pairs but were also asked to give

relational judgements about new pairs (e.g. B?D). Unbeknownst to the subjects,

there was a transitive relation between the items (i.e. A > B > C > D > E > F ).

Immediately after learning, subjects had no insight into this relation as revealed by

testing of the novel pairs. One group of participants was retested after 20 minutes,

and two groups were retested after 12 hours of either sleep or waking state. While

the group with 20 minutes test-retest interval gained no insight into the transitive
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relational structure of the pairs, both 12 hour groups were better at making first-

order transitive inferences (such as B > D). However, the subjects who had slept

had significantly better performance at second-order transitive inference (B > E).

These results can be interpreted in such a way that the mere passage of time leads

to an adaptive reconfiguration of memory content, but that sleep might provide a

better environment for this process to take place or might actively enhance it.

Such qualitative changes in memory, in some cases referred to as “insight”, have

been reported in numerous studies (Wagner et al., 2004; Fischer et al., 2006; Ellen-

bogen et al., 2007) and they can be taken as behavioral evidence that sleep actively

reconfigures memory traces.

5.2.2 Neuroscientific findings

Neuroscience can contribute to the study of sleep’s role in memory consolidation by

identifying neuronal processes or characteristics that are unique to sleep, or to indi-

vidual sleep stages, and then relating the frequency or strength of these character-

istics to memory performance. In addition, the mechanisms may be experimentally

manipulated, with resulting changes providing a strong argument for a causal role

of the mechanisms.

In a first approach, different sleep stages can be considered. Neither memory

nor sleep are simple, unitary concepts and one of the major challenges has been

to disentangle which type of memory benefits from which type of sleep and how.

This is typically investigated by comparing the effect of the first half of a night

(predominantly slow-wave sleep) to the second half of the night (predominantly

REM sleep) on different types of memory tasks.

Early on, it had been suggested that episodic memories benefit especially from

slow-wave sleep (Barrett and Ekstrand, 1972; Plihal and Born, 1997; Plihal and

Born, 1999), while improvements in procedural tasks and memory for emotional

events are more dependent on REM sleep (Plihal and Born, 1997; Plihal and Born,

1999; Wagner, 2001). However, the picture is not quite so clear anymore (Diekel-

mann and Born, 2010), with some studies reporting improved procedural memory

after slow-wave sleep (Gais et al., 2000; Huber et al., 2004; Aeschbach et al., 2008)

and others improved declarative memory after REM sleep (Rauchs et al., 2004; Fogel

et al., 2007). Also, procedural memory often has a declarative component. Sleep has
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even been shown to transform non-declarative memory in a serial reaction time task

into explicit knowledge, i.e. declarative memory (Fischer et al., 2006). Ironically,

sleep-induced gains in motor speed could no longer be observed in participants who

had gained explicit knowledge.

The lack of consistent results with regard to the effect of different sleep stages

on different memory types may be due to differences in paradigms or experimental

setups. Alternatively, it might be indicative of a more complex relationship. It is not

unlikely that the different sleep stages have evolved and take place in their specific,

multi-cycle fashion in order to provide optimal environments for different aspects

of memory consolidation (Ficca and Salzarulo, 2004; Stickgold and Walker, 2005;

Diekelmann and Born, 2010). This has also been called the “sequential hypothesis”

(Giuditta et al., 1995).

In a recent study, Rolls and colleagues used optogenetics in mice to target

hypocretin/orexin neurons which play an important role in arousal (Rolls et al.,

2011). With this method they fragmented sleep into shorter intervals than they

occur in normal sleep, while at the same time avoiding the usually necessary waking

by touch or through aversive events (which might cause stress and in itself impair

memory). In addition, the fragmented sleep had the same total duration and com-

position as undisturbed sleep, unlike in many sleep deprivation studies. The authors

found significant memory impairment if the duration of the sleep segments was re-

duced by more than 62% of normal segment length. This supports the notion that

sleep as a whole, without breaks or distortions, benefits memory best.

Individual sleep characteristics and their relationship to consolidation have also

been investigated. Sleep spindles are transient oscillatory patterns of 10-16 Hertz

which can be observed in EEG during sleep stage 2, of which they are also a defining

characteristic. In a less discrete form, they also appear in sleep stages 3 and 4 (Gen-

naro and Ferrara, 2003). However, spindles are a unique EEG characteristic only

observed during sleep. The amount of sleep spindles was found to be associated

with lexical integration of novel spoken words (Tamminen et al., 2010). Another

study found longer duration sleep stage 2 and increased spindle density following

massed motor learning (Fogel and Smith, 2006). After a face-scene learning task,

category-related neuronal activity was higher during spindle events and was modu-

lated by the amplitude of the spindle events (Bergmann et al., 2012). In addition,
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across subjects spindle-coupled hippocampal activity was stronger when memory

performance in the preceding task had been better.

Neurochemically, slow-wave sleep is characterized by minimal cholinergic activ-

ity. Artificially increasing cholinergic tone during slow-wave sleep by administering

physostigmine blocked declarative memory consolidation (Gais and Born, 2004).

Reducing cholinergic tone during wakefulness lead to improved consolidation of pre-

viously learned material but impaired acquisition of subsequent similar material

(Rasch et al., 2006). It has been suggested that cholinergic tone acts as a “switch”

in brain modes between encoding and consolidation (Hasselmo, 1999; Diekelmann

and Born, 2010). Cortisol is also low during slow-wave sleep. Again, an experimen-

tally induced increase during slow-wave sleep inhibits memory consolidation (Kloet

et al., 1998; Wagner and Born, 2008). Interestingly, cortisol infusion impaired reten-

tion of temporal order information when administered during a nap, but increased

retention when administered during a waking period (Wilhelm et al., 2011). These

results relating to neurotransmitter levels again support the notion that there are

specific mechanisms and characteristics in sleep that promote memory consolidation,

rather than simply permitting it.

In summary, there is currently little doubt that sleep is, if not crucial, then at

least beneficial for memory consolidation. Sleep’s influence on memory can be either

seen in diminished forgetting (stabilization) or even improved performance (enhance-

ment). The exact relationship between sleep stages and different types of memory

is not clear at the moment. Improved consolidation probably relies on the overall

integrity of sleep. Also, there is mounting evidence that sleep not only promotes

memory success because it passively provides protection from interference, but that

in addition to that, unique mechanisms during sleep actively enhance consolidation.

One of them might be replay, which is discussed in the next section.
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6.1 Evidence from rodent studies

In the last 20 years, supporting evidence for both two-step models of memory for-

mation and the notion that sleep promotes memory consolidation has been found in

spatial memory studies in rodents.

In the rodent hippocampus, some cells reliably increase their firing rate whenever

the animal is at a specific location in an environment (O’Keefe and Dostrovsky,

1971). These cells have been called “place cells”. They are especially interesting

because they provide a relatively simple neuronal code for behavior.

If a rat runs along a track or a maze repeatedly, the same sequence of increased

firing rate across the cells will be observed during each run. Interestingly, the same

sequence has been found to spontaneously reoccur more often than would be ex-

pected by chance in task-subsequent sleep (Skaggs and McNaughton, 1996; Louie

and Wilson, 2001; Lee and Wilson, 2002) and also quiet resting state (Foster and

Wilson, 2006; Karlsson and Frank, 2009; Carr et al., 2011; Jadhav et al., 2012). As

a mechanism, this kind of replay would correspond well to the reactivation that has

been proposed to be necessary for consolidation in two-step models. This notion is

supported by the finding that replay of place cells is behaviorally relevant (Dupret

et al., 2010).

6.2 Studies in humans

In humans, a simple neural code such as the firing of place cells is not available.

Still, inspired by the results in rodents, several studies have found evidence that

reactivation can be observed in humans as well. In a series of elegantly designed

experiments, Rasch and colleagues (Rasch et al., 2007) presented their participants

with a declarative object-place association task as well as a procedural motor skill

task. During both tasks, subjects were exposed to either rose odor or to no odor.

Presentation of the rose odor during slow-wave sleep, but not during either waking

state or REM sleep lead to improvement in the declarative memory task, but not

in the procedural task. Also, rose odor presentation did not lead to improvement in

those participants that had not experienced it during learning, precluding a simple

odor-related memory enhancement effect. In fact, some of the participants were
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scanned with fMRI after being exposed to the rose odor during learning and tried to

sleep inside the fMRI scanner. During presentation of the odor cues, hippocampus

activity was greater than during phases without presentation of odor cues, but only

if rose odor was presented during slow-wave sleep and not if it was presented during

waking state. This is a strong indicator that activation of memory related neuronal

structures can be triggered by an associated cue.

A similar design was employed in another study, in which individual object-place

associations that participants had to learn were presented together with an auditory

cue (Rudoy et al., 2009). For half of these object-place associations, the related

auditory cue was subliminally played back to participants during a nap (masked by

white-noise to avoid arousal or detection). The pairs for which the related sound

had been played were remembered better at recall. This neatly shows a specific

benefit for cued items rather than a general improvement.

Some studies in humans also find evidence for reactivation-like neuronal activity

during waking state. In a recent fMRI study (Tambini et al., 2010), increased

hippocampal-neocortical correlation was found in resting state after a memory task

as compared to a resting state prior to the task and the increase in correlation was

associated with better memory performance across participants. Also, persistent

task-specific brain activation was found in resting state after either a declarative or

procedural memory task (Peigneux et al., 2006).

Thus, there is first evidence that the neuronal correlate of reactivation as a

mechanism for memory consolidation can be detected in humans. However, the

question remains as to just how specific the neuronal correlates that have been found

so far really are. In rodents, specific neuronal firing sequences that correspond to

specific experiences have been found to be replayed. In humans, it has only been

shown that learning related brain areas are reactivated.

The goal of this thesis, as outlined below, is to find a way to demonstrate

stimulus-specific replay in humans. For this, one first has to find a way to identify

the neuronal signatures of individual stimuli. One possibility for this is the applica-

tion of multi-variate pattern analysis (MVPA), which will be discussed below. First,

a short description of neuroscientific methods will be given.
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7.1 Functional magnetic resonance imaging

7.1.1 Background

In the last 30 years, magnetic resonance imaging (MRI) has been applied in neuro-

science for visualizing brain structures as well as brain function. The basis of this

signal is briefly recounted here. The description is based on a standard textbook on

functional magnetic resonance imaging (Huettel et al., 2008).

In short, a strong magnetic field in the center of an MRI scanner aligns the

spin axes of hydrogen atomic nuclei in the human body so that a net magnetization

can be measured. In a process called excitation, a radio frequency pulse, which is

adjusted to the resonance frequency (Larmor frequency) of the hydrogen nuclei and

magnetic field strength, is then used to flip the net magnetization 90 (i.e. to the

transverse plane). During relaxation, the spins return back to their previous state

and thereby emit a signal that can be detected with receiver coils.

Using various methods such as application of temporary magnetic gradients and

Fourier analysis, the recorded signal can be decomposed to reflect signal strength

at different locations inside the receiver coil. Typically, MRI images of the brain

are scanned as multiple 2D slices which are reconstructed to form a 3D image of

the brain. A 3D image of the brain, especially in functional imaging (see below), is

referred to as a volume. One unit in such a 3D image is called voxel.

The strength and time-course of the emitted signal depends on the type of tissue.

Thus, bones emit a different signal than blood, spinal fluid or lung tissue and can-

cerous tissue emits a different signal than healthy tissue. Settings in the sequence

of the radio pulses can be used to maximize the difference between tissue types and

this property has long been used for medical purposes, e.g. in detecting cancerous

tissue, subdural hematoma or bone fractures.

7.1.2 The BOLD response

At first, MRI does not seem helpful for neuroscientists who want to image brain ac-

tivation rather than brain structure. Luckily, oxygenated and desoxygenated blood

emit different MR signals. The strength of blood flow and blood oxygenation level,
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in turn, are related to brain activity. When neurons increase their firing rate because

they are part of circuits that are involved in a task, they have an increased need

for glucose. Blood flow into this region is subsequently increased. As oxygen is not

needed at the same rate as glucose, this leads to a temporary relative increase in

oxygenated hemoglobin in the vicinity of active neuron populations. This so-called

hemodynamic response is very slow: The peak is reached 4-6 seconds after the ini-

tial neuronal reaction. This has to be considered both in design of studies and in

analysis of the data.

Fluctuations in the level of desoxygenated blood are called the blood oxygena-

tion level dependent (BOLD) signal, which is measured with functional magnetic

resonance imaging (fMRI). In fMRI, 3D images of the brain are usually scanned

rapidly (e.g. every 3 seconds) for a certain interval of time (e.g. 20 minutes). This

results in a time-series for each voxel (400 datapoints over 20 minutes in the exam-

ple). This time series can then be related to psychological states that were induced

during that time. For example, if the BOLD signal in voxel 1 increases every time

a visual stimulus is presented but does not change when an acoustic stimulus is

presented, it is likely that the voxel is involved in some form of visual processing.

7.1.3 Traditional analysis methods

Traditionally, time-series of individual voxels have been investigated independently

from one another, i.e. one voxel at a time. Usually, a general linear model is

set up that includes the different factors (or conditions) that were present in an

experiment. Then, it is estimated for every factor, how much it contributes to

explaining the signal observed in the single voxel. The degree to which a certain

factor is associated with BOLD changes in a voxel is captured by a beta estimate.

Often, an experimental factor is compared to a control factor by calculating the

difference between the two beta estimates. If the difference between experimental

and control factor is consistent across participants for a given voxel, then the voxel

is considered to be involved in the experimental condition. This is done for every

voxel. Often, clusters of voxels are found which show the same response and regions

in which such a cluster is located are then thought to be involved in the neuronal

processing of the experimental condition.
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This procedure has been called a “mass-univariate approach” (Bonnici et al.,

2012) because it performs uni-variate statistical analyses independently on a large

number of voxels.

7.1.4 Multi-variate approaches

Recently, the pattern of BOLD signal across voxels has been taken into account by

methods such as representational similarity analyses (Kriegeskorte et al., 2008) or

pattern classification (Norman et al., 2006). The idea with these new approaches

is that there might be differences between two conditions even though they are not

apparent (or statistically significant enough) in any one voxel. This idea is further

illustrated in the section about multi-variate pattern analysis, specifically in Figure

8.2.

7.2 Electrophysiological methods

7.2.1 Electroencephalography (EEG)

Electrophysiological methods record changes in electrical potential which are gener-

ated by synchronized activity across populations of thousands of neurons. In contrast

to fMRI, which records a substitute marker for neuronal activity, EEG records the

potentials induced by neuronal activity directly and at a high temporal resolution

(e.g. at 5000 Hertz) with electrodes placed on the scalp.

The most common approach to analysis of EEG signals is to present different

types of trials repeatedly, “cut-out” the time-series signal around the onset of each

trial and then average across trials. Assuming that the underlying neuronal activity

is the same across repeated trials, the random parts of the time-series signal (“noise”)

cancel each other out with increasing number of trials, and the average represents

the “real” part of the signal (Luck et al., 2000).

Using this method, various typical event-related potential (ERP) components

have been identified which can reliably be observed in certain types of tasks. Also,

comparing the average across all trials in Condition1 with the average across all trials

in Condition2 permits conclusions as to whether they are significantly different at

certain time-points. This is another example for a univariate approach: various time-

points are compared separately between Condition1 and Condition2, even though it

is usually desired that contiguous parts of the signal exhibit a significant difference.
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One of the major drawbacks of EEG is that the electrical potential is generated

in the brain and is recorded with electrodes at the scalp. Depending on the distance

between the source of the signal and the recording site, considerable distortions may

occur making it difficult to localize the origin of any signal detected at the scalp.

Elaborate algorithms are employed for source localization, i.e. for determining

where the EEG signal originates from (Pascual-Marqui, 1999; Michel and Murray,

2012). These algorithms work better with increasing number of electrodes (Michel

et al., 2004). Modern high density EEG systems record from up to 256 electrodes

narrowly spread across the head surface. The origin of the electrical potentials can

then be narrowed down to a matter of centimeters (Lantz et al., 2003). However,

the spatial resolution is not as high or as reliable as in fMRI recordings.

7.2.2 Intracranial EEG

In intracranial EEG, electrophysiological activity is recorded either from the cortex

surface with strips and grids or from within the brain using depth electrodes. Po-

sition of the electrodes can be confirmed with MRI recordings and localized with

a precision of millimeters. Thus, intracranial EEG combines excellent temporal

resolution with good spatial resolution and is thus a valuable recording method for

scientists, especially for structures deep within the brain such as the medial temporal

lobe.

However, due to the invasive nature of this method, it is obviously only employed

for medical purposes. Most often, intracranial EEG recordings are performed in

patients with severe pharmaco-resistant epilepsy who might undergo surgical treat-

ment. In these patients, intracranial EEG is used to localize or narrow down the

brain region which causes the epilepsy, the epileptic focus. Surgical removal of the

epileptogenic tissue is a drastic step, but often reduces the frequency of seizures

or leads to complete remission in patients who had not responded to anti-epileptic

medication (Kohrman, 2007).

In some patients, the clinical manifestations of their seizures or structural MRI

scans are sufficient to reliably determine the epileptic focus; these patients may

undergo surgery without prior recording from intracranial electrodes. However, if

the epileptic focus is not entirely clear, the implantation of intracranial electrodes
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is performed as a means to localize the focus and to avoid unnecessary resection of

tissue.

Electrodes are implanted according to the specific diagnostic question for every

patient. Depth electrodes, electrode strips and grids are employed. After surgery,

patients are taken off their usual medication and seizures are recorded until a di-

agnosis can be made. After clinical diagnostics are concluded, patients often stay

at the ward for a couple of days until electrodes are explanted. During this time,

the patients may be asked whether they would be willing to participate in scientific

studies. Obviously, strict ethical guidelines apply.

Of course, there are some theoretical and methodological issues with intracranial

EEG. First, the data is obviously recorded in patients who suffer from a severe form

of epilepsy. This might influence the recorded results in any number of ways. Second,

the patients have per definition a history of severe epilepsy and many have developed

cognitive deficits as a result. Experimental paradigms have to be adjusted so they

are not too difficult or too exhausting. Third, some of the recorded data may contain

epileptic activity. Most of this activity can be avoided if all electrodes are excluded

which are located in or near an epileptic focus. Careful artifact correction in the

remaining data usually leads to good data quality.

7.2.3 Simultaneous EEG and fMRI

From a theoretical point of view, combining EEG recordings with functional MRI

scanning is an excellent idea: EEG has a high temporal resolution and low spatial

resolution while fMRI has a high spatial resolution and a low temporal resolution.

Thus, each method could compensate the deficit of the other.

Naturally, from a practical point of view, combining the two methods is a very

bad idea: EEG recordings rely on metal electrodes, cables for transmission and

amplifiers which contain metal and need electrical power – none of these elements

should normally be introduced into the strong magnetic field of an MR scanner.

In the last two decades, however, EEG systems have become commercially avail-

able which have been specifically designed for use in an MR scanner. Electrodes are

made of material with minimal magnetic properties and the amplifiers are equipped

with batteries and shielded in a way that they are not influenced by the magnetic

field.
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Even with these new systems, the EEG system and electrodes will cause artifacts

in MRI images and MRI scanning will cause massive artifacts on EEG recording

(Ritter and Villringer, 2006). Artifacts in MRI scans caused by the electrodes can

be neglected as the resulting extinction often only affects small areas at the scalp.

Two major types of EEG artifacts are caused by fMRI:

1. Gradient artifacts are caused by the switching of the magnetic gradients which

is necessary for scanning. As this is a technical, highly consistent artifact and

its onset can be reliably recorded by the EEG via triggers, it is easily filtered

out by subtracting a “template” artifact, which is determined by averaging

across all scanner artifacts.

2. Cardio-ballistic artifacts are caused by the heartbeat and are seen strongest

around the R-peak of the electrocardiography (ECG) signal. On a much

smaller scale, this artifact may also be seen in regular scalp EEG, but it rarely

poses a problem. Within the magnetic field of an fMRI scanner, the artifact is

much more pronounced. It is currently not entirely clear whether this is caused

by the rapid flow of blood (which has weak magnetic properties and may thus

induce electrical field changes in nearby conductors) or due to small movements

of the electrodes associated with blood pumping through the vessels. In any

case, it is a biological and thus variable artifact. Therefore, it is much harder

to filter out than the gradient artifact. Usually, a basic electrocardiogram is

recorded together with EEG. The R-peak of the ECG can then be detected

manually or with automated algorithms. Based on these R-peaks, a template

artifact can again be computed and subtracted around each R-peak.

Additional artifacts may be caused by the helium pump which circulates the he-

lium around the scanner’s electromagnetic coil to keep it cool and superconducting.

This artifact is also highly variable and almost impossible to filter out. Often, the

pump is simply switched off during simultaneous EEG/fMRI, which is safe to do for

up to 1.5 hours.

Even with all the sophisticated artifact correction tools that have been made

available by commercial software (e.g. Brain Vision Analyzer 2.0, Brain Products,

Munich, Germany), it should be kept in mind that the EEG signal will never be as

good as if it had been recorded outside of the scanner in a shielded room. Using
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simultaneous EEG/fMRI should thus always be motivated by an important question

that can only be answered by using the two methods together. One such case is

scanning participants when they are sleeping. In this case, EEG is the only way to

determine whether participants are asleep and which sleep-stage they are in.

7.2.4 Time-frequency analysis

As outlined above, the classical approach to EEG analysis has been to average EEG

amplitude across trials and look at the resulting ERP components. However, taking

into account the power of different frequency bands at specific points in time or the

interactions between oscillations may provide a more complete picture of neuronal

activity (Makeig et al., 2004).

A now widely popular method of analyzing electrophysiological signals is to break

down the signal into time and/or frequency bands, using methods such as fast fourier

transform, wavelet decomposition or Hilbert transform (Wacker and Witte, 2013).

It has been shown that increases or decreases in the power of specific frequency

bands are related to cognitive functions (Klimesch, 1999; Doppelmayr et al., 2002;

Jensen et al., 2012). Also, interactions between different frequency bands are in-

creasingly considered (Jensen and Colgin, 2007; Canolty and Knight, 2010). The

pattern of time-frequency components has also been used to decode different brain

states (van Gerven et al., 2013).
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8.1 Development of multi-variate approaches

For a long time, analysis of fMRI data was restricted to a so-called mass-univariate

approach (Bonnici et al., 2012), which looks at activity in individual voxels sep-

arately without considering the pattern of responses across voxels. The same is

true for electrophysiological data, in which in most cases simple differences in event-

related potentials (ERPs) were compared between conditions. With methods like

these, differences between conditions have to be massive in the single units (e.g. vox-

els, time-points) that are looked at to survive correction for multiple comparisons.

Small differences will be discarded, even if, across multiple units, they offer enough

information to distinguish between conditions.

This unsatisfactory use of the rich neuroimaging data changed with the turn

of the century, when the first groups started to look at information content across

voxels rather than at mere voxel-wise differences (Haxby et al., 2001; Cox and Savoy,

2003). It quickly became apparent that patterns of voxel activity contained more

information about mental states than activity differences in single voxels.

Based on these pattern differences, it also became possible to predict which

condition was present during a given fMRI scan, an approach for which the term

“decoding” has been coined. In the last ten years, an astounding variety of subtle

mental states has been decoded with pattern classification approaches, such as the

orientation of subliminally presented lines (Haynes and Rees, 2005a), the alternating

conscious perception in a binocular rivalry task (Haynes and Rees, 2005b), hidden

intentions (Haynes et al., 2007) and which category a participant was thinking of

during memory search (Polyn et al., 2005).

Of course, these approaches are far from perfect or infallible in decoding psy-

chological experience from brain states, but they manage accuracy far above chance

level and, given enough training material, they can be applied to differentiate quite

fine-grained percepts or thoughts. As such, this method is well suited to detect

the neuronal signature of individual items that have to be learned in a declarative

memory task and might thus also be capable of detecting a reoccurrence, or replay,

of these signatures during task-subsequent resting state or sleep.

45



8 Multi-variate pattern analysis

8.2 What is Pattern Classification?

Imagine you have stranded on an unknown island and you encounter an unfamiliar

kind of fruit. Actually, there are two different kinds of fruit, but it is very difficult

to tell them apart. Differentiating between them soon becomes vitally important as

you realize that the fruits are the only means of sustenance on the island and one

kind of them makes you sick. You begin to notice that, on average, the poisonous

kind of fruit is a bit larger, slightly less red, the peel is rougher and the smell is

sweeter. For each of these features, however, the overlap between the two kinds of

fruit is large and judging an exemplar by only one of these properties (univariate

approach) has a high likelihood of false classification. The solution obviously is to

take into account as many predictive features as possible (multivariate approach) to

maximize the probability of correct classification.

Humans implicitly use this method of differentiating every day. We are ourselves

very good pattern classifiers. Based on the information we have in a given situation

and experience gathered throughout our lives, we constantly make classifications: Is

someone trustworthy? Is someone writhing in pain or shaking with laughter? Is this

a male or a female? Of course, humans do not use exact solutions to multivariate

problems, but base their decisions on “intuitive”, or heuristic judgment. However,

human decision making is often flawed by systematic biases and distortions (Tversky

and Kahneman, 1974).

Computers, however, are not subject to such distortions. When all available

information is presented to a computer in an appropriate format, it can take into

account all features simultaneously and return an exact or optimized solution. With

the arrival of powerful computers, solutions to high-dimensional classification prob-

lems have become easily attainable. Applications range from face recognition and

text-to-speech software to weather prediction and autopilots in cars.

In neuroscience, pattern classification approaches have gained influence in the

last decade. They have been employed primarily in functional magnetic resonance

imaging (Norman et al., 2006; Haynes and Rees, 2006), supplementing classical

analysis methods that focus on activity in each individual voxel separately such as

general linear models. In fact, with pattern classification it was possible to identify

different brain states for stimuli so similar that a classical general linear model

(GLM) approach would not have detected the differences (Haynes and Rees, 2005a).
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The parsimonious idea behind the trend towards pattern classification is that if

cognition is supported by patterns of brain activation, analysis methods should also

take patterns into account.

In the following, an introduction into pattern classification is given from the

point of view of a psychologist, focusing on general ideas and practical application.

8.3 Terminology

With a method as complex as pattern classification, it is important to be precise

with the words that are being used, therefore the most important expressions will

be introduced here briefly.

A classifier generally is any algorithm that is employed to differentiate between

two or more distinct classes. The classes are characterized by features. Features are

properties that can be used to describe classes. They can be everyday properties like

“height, weight, color” or more abstract like “activation in voxel 1, voxel 2, voxel 3”.

Features can be thought of as dimensions along which exemplars of different classes

can be qualified or quantified. Refer to Figure 8.1 for illustration.

A classifier has to “learn” before being able to perform classifications. Learning

can be supervised or unsupervised. Unsupervised classifiers are not employed in

this thesis and will thus not be further discussed. Supervised learning is often called

training. During training, the classification algorithm is fed with already classified

(or labeled) data and, based on this training data, it will arrive at a classification

boundary – a set of rules which the classifier will use when differentiating between

the classes.

The training data are made up of samples and labels. Usually, samples are

observations of real instances of the classes. Let us consider our fruit example from

the introduction. Suppose you have had the opportunity to observe the consequences

of eating 20 exemplars of fruit, so you know whether they were fruit A or fruit B.

For each of the exemplars, you have made note of 5 physical properties or features.

The dataset will then consist of 20 samples, and each of the samples will consist

of a vector of length 5 providing information on the five features. During training,

each sample is accompanied by a label which tells the classifier which class the given

sample belongs to.
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Figure 8.1: Classification problem with different numbers of features. Every dot represents

a sample that was observed for one of two classes (orange and blue). The position of the dot

indicates the parameter value with regard to a quantitative feature. A: With only one feature,

the distinction is made by setting a vertical boundary somewhere between the centers of the two

distributions. B: With two features, a linear function can be used to draw a distinction in a

two dimensional space. C: When three features are considered, the different observations can be

visualized in a three-dimensional space and a two-dimensional plane can be used to separate the

classes. Any classification problem with more than three features is difficult to visualize or even

imagine; however, the basic principles are the same.

.
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Figure 8.2: Basic principles of pattern classification in fMRI data. The raw signal for selected

voxels is extracted from the fMRI data as a time-series: The gray values correspond to blood level

oxygenation dependent signal intensity during different trials in which stimuli belonging to either

class 1 or class 2 were presented. Voxels are useful as features when they show consistent difference

in activation between the two classes. For example, Voxel 1 displays on average less activity during

trials of class 1 than class 2. The gray values form selected voxels are used to train the classifier,

which tries to find a good rule for differentiating between the samples of the two classes in a

high-dimensional space.

.

It should be noted that with sufficiently many features the classifier can almost

always find a perfect solution for differentiating the training dataset. What is more

interesting, of course, is whether the classifier generalizes, that is, whether the al-

gorithm can make correct classification on data it has not been trained on. This is

done during cross-validation. The classifier makes predictions on new samples

and these predictions are then compared to the actual label of the sample (target).

Calculating the percentage of matches between predictions and targets yields a mea-

sure of classifier accuracy, or classifier performance, i.e. how well the classifier

recognizes classes in unknown data.

How do these terms relate to the practical application of pattern classification

to neuroimaging data? In the classification of fMRI data, samples usually consist

of 3D brain scans (volumes) that were scanned at a particular point in time, for

example when a specific experimental manipulation took place. Mostly, voxels are

then taken as features. Voxels can be selected from the whole brain, or taken from

regionally restricted areas, depending on the hypothesis. Refer to Figure 8.2 for an

example.
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In electrophysiological data, the samples typically are comprised of time series

data, again during a time window when a given psychological event took place.

Features can be raw amplitude values, power of specific frequency bands, wavelet

coefficients or virtually any other characteristic than can be identified in time series

data.

8.4 Basic steps of pattern classification

The basic steps in pattern classification analyses as they are currently employed in

neuroscientific research are similar across experiments and imaging modalities. The

steps listed below have been adapted from a review on the application of MVPA on

fMRI data (Norman et al., 2006) in a way that they also encompass electrophysio-

logical data.

1. Feature selection: Not every feature that can be or has been measured is

contributing to good classification results. On the contrary, including features

which have no discriminative value for the classification task might even be

detrimental to the classifier performance. This is especially true for datasets

with a very high number of potential features, e.g. fMRI data with 30.000 to

50.000 voxels that can serve as features.

Thus, only features with good discriminability should be selected. There are

numerous methods for determining good features. One of the simplest is to

perform an ANOVA for each feature. In such an ANOVA, the different classes

would be the group factors and the different samples would be observations of

the independent variable. By doing this, features can be identified that display

high variance between and little variance within classes. This is the method

mainly used in this thesis.

If the classifier’s ability to generalize to new data is to be assessed with cross-

validation, the feature selection should be performed only on the respective

training dataset. Performing feature selection on the complete dataset (includ-

ing the later test dataset) leads to artificially high classification performance.

Generally, this is not seen as a correct use of the method.

2. Pattern assembly: Based on the extracted features, a dataset of “brain

patterns” is assembled which relate to specific psychological states during a
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recording session. In fMRI data, activity levels from the selected voxels (fea-

tures) at the timepoints of interest (e.g. whenever a picture has been pre-

sented) are extracted and organized into samples. Every sample is given a

label for its respective class. In EEG data, the same is done with amplitude

levels or frequency power values.

3. Classifier training: Training of the algorithm is, as mentioned above, nec-

essary in supervised learning. The algorithm is confronted with a training

dataset and an accompanying list of labels for each sample. The training or

“learning” process per se is different for each classifier and shall be briefly dis-

cussed below for the two algorithms that are used in this thesis. Importantly,

at the end of classifier training, the algorithm arrives at a set of rules that are

then used to make predictions on unknown data. The quality of these rules

should then be assessed in the next step, cross-validation. In general, classi-

fier training will be more successful with increasing number of samples that

are available for training, because the probability is higher that the classifier

arrives at more generalized classification boundaries.

4. Generalization testing: To assess the classifier’s ability to generalize, some

form of cross-validation is typically done. As mentioned above, classifiers very

often find a perfect solution for separating the training dataset. That does not

necessarily imply that they will perform well on new data that have not been

included in the training process. In certain cases, the rules for separating the

training dataset are too strict, or too specialized – this is called “over-fitting”.

Therefore, the complete datatset is usually split; one part is then used during

training (training dataset), the other part is used as a validation run for the

classifier (test dataset). When the classifier makes more correct predictions

than would be expected by chance on this test dataset, it is an indication that

the classifier is not too specialized and generalizes to new data.

The methods for splitting up the dataset into training and test data are man-

ifold. A popular method is the “odd/even method”, in which odd trials are

taken as training data and even trials as test data (and vice versa). Note that

this reduces the number of training samples by half, which might by itself affect

classifier performance. Another popular method is the “leave-one-out cross-
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validation”, in which the dataset is split into any number of different blocks,

or chunks. All of the chunks except one are then used for training the classifier

and the left-out chunk serves as the test dataset. This is repeated with leaving

every chunk out as test dataset once and thus this method provides a good

estimate of classifier performance on the complete dataset.

8.5 Pattern classification algorithms

8.5.1 Linear Support Vector Machines

The linear support vector machine (SVM) is probably the most widely used algo-

rithm in neuroscience today. The following very basic explanation is based on two

standard textbooks (Duda et al., 2001; Bishop, 2009).

In the SVM framework, n features span up an n-dimensional space. Samples from

two classes can then be represented as points in this space based on the quantity

of their features (as is demonstrated for 3D-space in Figure 8.2). During classifier

training, an n − 1-dimensional hyperplane is drawn in this feature space which

separates the points/samples of the two classes. New samples are then mapped into

this feature space and classified as either of two classes depending which side of the

boundary they are on.

Many different hyperplanes may achieve a separation between the two classes in

a training dataset. However, the linear SVM has the constraint that the hyperplane

must have a wide margin, that is distance, between the nearest points/samples of

the two classes and the decision hyperplane. Effectively, this constraint maximizes

the distance between the hyperplane and those samples from the two classes which

are most difficult to separate (because they are closest to the boundary). These

“difficult” samples are called support vectors. The wide margin between support

vectors and decision hyperplane is enforced based on the assumption that the result-

ing decision boundary will be more general, i.e. that new samples can be classified

more accurately.

Sometimes, the algorithm will even permit misclassification of some samples

during training if the margin to the other support-vectors becomes greater as a

result. The degree to which the classifier accepts misclassifications in favor of a

wider margin can be controlled with parameter C, which can be manipulated in

most available implementations of the algorithm.
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As noted above, the linear SVM is essentially a two-class classifier. It can be

applied to a multi-class scenario by training binary classifiers on each pair of classes

separately. Every binary classifier then makes predictions. The class that “wins”

out most often in these binary predictions is the final label the classifier returns as

prediction. This feature is implemented in the available libraries (such as libSVM)

so seamlessly that the classifier appears to be a multi-class classifier. However, one

should keep in mind the underlying binary nature of the linear SVM.

8.5.2 Sparse multi-nomial logistic regression

This classifier is a true multi-class classifier that has only recently been developed

(Krishnapuram et al., 2005). It performs, as the name implies, a regression between

the features (predictors) and the discrete class-label (target).

The important development with this algorithm is that it automatically finds a

sparse solution, that is, regression weights are either very small or very large, which

is important for large number of features.

The algorithm has been tested on a number of well known, freely available classi-

fication datasets (Krishnapuram et al., 2005) and performs favorably in comparison

with other established algorithms in terms of classification accuracy.
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9 Summary and goal of this thesis

The idea of consolidation, or stabilization over time, is an integral part of many

two-step models of memory formation, which posit that memory traces are initially

stored mainly by the hippocampus (the “fast learner”) in a labile state and that by

repeated coordinated information transfer between hippocampus and neocortex (the

“slow learner”) become represented by increasingly strong neocortical connections

until the hippocampus is no longer necessary for retrieval of these memory traces

(Frankland and Bontempi, 2005).

A vast amount of research has been conducted in the last two decades to show

that sleep enhances memory consolidation, arguably by providing an interference-

free window of time for an active information transfer between hippocampus and

neocortex. The same may be true for quiet resting state.

In rodents, a likely neural correlate of reactivation has been identified both during

sleep and quiet resting state in the form of a coordinated replay of the same place-cell

sequences which had been also observed during prior learning (Louie and Wilson,

2001; Foster and Wilson, 2006). Can a similar correlate of reactivation also be

identified in humans?

Although some studies in humans have found first evidence for reactivation

(Rasch et al., 2007; Rudoy et al., 2009; Tambini et al., 2010), none has done so

with the same specificity as has been demonstrated in the rodent studies.

The goal of this thesis was to investigate stimulus-specific reactivation in humans.

But how can this be done? Place-cell recording as it can be done in rodents is not

possible in humans due to obvious ethical reasons. A more indirect route has to be

taken.

Neuroscientific methods, as introduced above, can be used to record event-related

neuronal activity in humans. Multi-variate pattern analysis can then be applied

to these recordings to reliably decode a “neuronal signature” for individual stimuli

that were encountered by participants during recording. A classifier trained on these

specific stimuli may then be able to track their neuronal signatures during phases

of resting state and sleep.

In this thesis, three empirical studies will be presented that attempted exactly

this approach for detecting replay. Despite focusing on slightly different aspects,
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all three studies have the following in common: First, they presented participants

with a declarative, associative memory task in which individual objects were shown

repeatedly. Second, the neural signatures related to encoding of these individual

object-place pairs were extracted with pattern classification algorithms. And third,

the neural signatures were tracked during resting state or sleep recordings that

followed the learning task.

Each of the three studies investigated a variation of the following assumptions:

1. The neuronal signature of individual items presented during a learning task

can be reliably decoded from the recorded data with multi-variate pattern

analysis.

2. A pattern classifier that has been trained on data from the learning task can

be applied to periods of subsequent resting state and make predictions about

them, thereby tracking possible reoccurrence of the original learning related

activity patterns.

3. Compared to a baseline condition, there is significant reoccurrence of stimulus-

specific neuronal activity.

4. The frequency of this reoccurrence of individual items is associated with sub-

sequent memory performance for these items.

This is, to my knowledge, the first attempt to use multi-variate pattern analysis

to directly detect replay events in resting state and sleep in humans.
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Part II

Empirical Part

Three studies are presented here that investigate different aspects of reactivation

during resting state and sleep. The first study employed simultaneous EEG/fMRI

and tracked reactivation of regular object-place associations during quiet resting

state and sleep. The second study investigated reactivation of emotionally negative

as compared to neutral stimuli during resting state with fMRI. The third study

was recorded using intracranial EEG in patients suffering from pharmaco-resistant

epilepsy and allowed us to take a closer look at the temporal and frequency specific

dynamics of reactivation during sleep.

All three studies presented here use pattern classification as the main method of

analysis and are therefore specifically designed to accommodate the requirements of

the method.

The most important restraint when using a pattern classification approach on

neuroimaging data is that every class/stimulus one wants to decode should be pre-

sented multiple times to guarantee good classifier performance and generalization.

Drawing from previous MVPA studies and our own extensive piloting, it was con-

cluded that every stimulus should be presented between 20 and 30 times.

This precludes the use of simple recognition tasks in which stimuli are presented

and subsequently probed with a forced choice “old/new” task, because either the

task would be too easy or the experiment would last too long. If one presented 20

stimuli 20 times each, this would very likely result in performance at ceiling. As

one of the goals of this thesis was to show that replay has an impact on memory

performance, a memory task with a broader range of performance was desirable.

If, on the other hand, one presented 100 stimuli for 20 times, this would lead to

excessive task length, especially as the optimal trial length was determined to be

two MRI volumes (five seconds).

For these reasons and because the hippocampus was an anatomical region of

interest because of its role in two-step models of memory formation, an associa-

tive, hippocampus-dependent memory task was used, similar to tasks employed in

previous studies (Rasch et al., 2007; Rudoy et al., 2009). In this task, a stimu-
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lus was always paired with a location on the screen. Over repeated presentation

of the object-place pairs, participants were supposed to memorize which stimuli is

associated with which location.

This memory task yields a continuous measure for memory performance: During

testing, the stimulus is shown and participants mark the position they believe the

stimulus was associated with. Memory performance can then be operationalized as

the distance between the correct position and the position given by the participant.

If this distance is small, memory performance for the tested object is high.

In addition, the task is more difficult than a forced-choice “old/new” task. Par-

ticipants not only have to remember which object was presented, but also which

location it was associated with. And even if participants perform very well on this

task in general, looking at the error distance during memory recall allows one to

identify nuanced performance for individual object-place pairs which would be lost

in a task in which an item is either remembered or forgotten.

Thus, this task was well suited for our MVPA approach and, in slightly different

variations, was used in all three studies.
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10 Replay of stimulus-specific neuronal activity during

resting state and sleep

10.1 Introduction

The goal of the first study was to investigate the model developed in the Theoretical

Part of this thesis. In this model, memory consolidation is thought to depend on

reactivation of the same neuronal activity patterns that were present during initial

learning.

In this study, a declarative, associative memory task was performed by partici-

pants in an fMRI scanner while simultaneous EEG was recorded. After completing

the task, participants tried to fall asleep inside the scanner for an afternoon nap.

After this resting period, participants performed the same memory task again, but

with different stimuli.

A pattern classification algorithm was trained on stimuli from the tasks preceding

and following the nap and then made predictions on the resting period (see Figure

10.2). Predictions were expected to be more frequent for stimuli from the first

memory task, for which replay was actually possible. The frequency of predictions

of individual stimuli from the first memory task was further expected to be related to

memory performance in a memory test that was completed after the second memory

task.

The study was designed to be as simple as possible. Stimuli were normal and not

particularly exciting. The task was a straight-forward object-place association task

that has in a similar form been employed in other reactivation studies in humans

(Rasch et al., 2007; Rudoy et al., 2009). In many ways, this first study served as

reference and starting point for the other two studies.

Many months of piloting were invested for this first study and the results of

this pilot phase, though not further described here for reasons of space, had great

impact on the design of the paradigm. The second and third studies have designs

very similar to this first study, precisely because it has been piloted so carefully

and found to be efficient. Several of the design considerations and methodological

details (mostly pertaining to multi-variate pattern analysis) will be provided for this

first study in the methods section that will not be mentioned again in the other two
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Figure 10.1: Overview of the stimuli.

.

studies. However, it should be assumed that these considerations are valid for the

second and third study as well unless stated otherwise.

10.2 Methods

10.2.1 Participants

Seventeen healthy right-handed participants (10 female, age 24.1 ± 2.6 years) with

no history of a neurological or psychiatric disease participated in this study. The

study was approved by the local ethics committee, and all participants provided

written informed consent. Participants were reimbursed for their time.

One participant aborted the experiment due to the need of a restroom break, one

participant had to be excluded because of excessive movement inside the MR scanner

and five participants were not analyzed further because of low general classifier

performance (see below), resulting in a final dataset of 10 participants (6 female,

age 23.7 ± 2.8 years).

10.2.2 Stimuli

Bitmap pictures of 32 real-life objects from the internet that were cut out and

presented on a black background were used in this study. These 32 objects were

grouped into 2 sets for use in the two different tasks. For every object, 6 different
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Figure 10.2: Overview of the paradigm: Subjects learned associations between 32 different stimuli

(e.g., a red frog) and spatial locations that were indicated by a white square. Every object was

presented 30 times followed by the corresponding location. Half of the object-location associations

had to be learned in the first part of the experiment, the other half in the second part. During

the main resting period between the two learning sessions, subjects slept inside an MR scanner

with simultaneous EEG. Both memory tasks were flanked by 5 minutes of resting state scanning

(“task-adjacent resting periods”). In a memory test subsequent to the second learning task, each

of the 32 objects was presented again and subjects had to indicate the position of the associated

white square.

.

exemplars were used, e.g. six different pictures of a red frog, six different pictures

of German chancellor Angela Merkel and so on (an overview of all image categories

is shown in Figure 10.1).

The use of different exemplars was intended to make sure that processing of the

stimuli was not solely based on low-level visual features. Thus, the classifier was

actually trained on a generalized version of each stimulus, which should facilitate

the recognition of slightly altered activity patterns during the resting periods. In

summary, two sets of 16 objects represented by 6 different exemplars each were used,

resulting in 2x16x6 = 192 pictures.

The 16 objects in each set cannot be readily grouped into obvious categories

but were carefully selected to differ on dimensions such as large/small real life size,

rare/common, living/nonliving, natural/man-made. The two sets were balanced

with regard to luminance and spatial extent of the objects.
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10.2.3 Design

In order to increase the likelihood of falling asleep, participants were instructed to

sleep 2 hours less than usual in the night before the experiment and to refrain from

drinking alcohol or going out late. They were also told to refrain from consuming

caffeine, smoking cigarettes and taking any medication on the day of the experiment.

Participants arrived between 12.30pm and 1.30pm, and after familiarizing them

with the surroundings and procedures, giving instructions and applying the EEG

cap, the MRI scanning and actual experiment started between 2pm and 3pm. The

total duration of the experiment was 7 to 8 hours but with several breaks in between.

A general overview of the experiment is given in Figure 10.2. Participants had to

learn 16 object-place associations each during two separate sessions. Between these

sessions, they attempted to take an afternoon nap inside the MR scanner (“main

resting period”). Because of the long duration of the experiment (7 to 8 hours,

including 4̃ hours MRI scanning), subjects were allowed breaks outside the scanner

immediately before and after the main resting period. The second, post-resting

memory task was included because it served as a control condition for reactivation of

Set1 stimuli. Also, it introduced interference with the stimulus-position associations

learned in the first task and consolidation should predominantly stabilize memories

against such interference (Mueller and Pilzecker, 1900; McGaugh, 2000; Ellenbogen

et al., 2006a).

During each of the two associative memory tasks, 16 objects were paired with 16

locations on the screen as marked by a white square. Every object-place association

was presented 30 times. Five minutes of scanning preceding and following each of

the two tasks were included, resulting in four short resting periods (“task-adjacent

resting periods”).

Each trial consisted of presentation of the object for 1000ms, followed by pre-

sentation of the corresponding location for 1000ms and a fixation cross for 3000ms

before the next trial started. The delay between presentation of the item and the

associated spatial position was introduced because the learning paradigm was sup-

posed to be hippocampus-dependent, and previous studies had shown that the hip-

pocampus is particularly relevant for the formation of memory associations across a

temporal distance (Staresina and Davachi, 2009). Each trial lasted exactly as long
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as the acquisition of two fMRI volumes and the next trial would only start with the

beginning of a new volume. This was designed to always capture the same part of

the cognitive task in an MRI volume. Using trial lengths at a constant multiple of

the repetition time is non-optimal for general linear models, but consistent with pre-

vious pattern classification studies which are not based on a GLM (Kay et al., 2008;

Harrison and Tong, 2009; Bode and Haynes, 2009). Each of the two experiments

was divided into 5 blocks, separated by a one minute break. In each block, every

object was presented 6 times by showing each of the 6 different exemplars once.

Within each block, stimuli were presented in randomized order. One stimulus

set (“Set 1”) was presented in the first memory task (before the nap), the other in

the second task (after the nap, “Set 2”). The order of stimulus sets was counter-

balanced across 17 participants, and in the 10 subjects who met the inclusion criteria,

6 participants saw stimulus set 1 first.

Participants were instructed to memorize the location of the white square for

every object, and they were told that after finishing the second memory task, they

would be shown every object again and would be required to indicate the position of

the white square. They were not told that there would also be a free recall (naming

every object they had seen). In addition, they were asked to give a subjective

“like/dont like” evaluation of the object presented in every trial, captured by pressing

a button with the left or right thumb while the image was presented. Out of the 10

participants who met the inclusion criteria, 7 pressed the right thumb to indicate

a “like” decision and the left thumb for a “dislike” decision, in the remaining 3

participants the contingency was opposite. The “like/dont like” evaluation was

asked of the participants to make sure they were attending the task and to induce

a deeper level of processing.

After the first memory task, which lasted about 50 minutes, participants left the

scanner for a 5 minute break period, then returned inside the scanner and attempted

to fall asleep. Participants were told to take their time trying to fall asleep and to

notify experimenters if either they felt they would not manage to fall asleep any-

more, or if they had woken up and felt they would not fall asleep again. If they did

not notify the experimenters, the main resting period ended after 120 minutes. A a

variable duration of the main resting period was permitted, even though it was clear

that time since encoding is a major factor for retrieval success and would influence
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performance in the final memory test. However, such an instruction was supposed

to permit participants to feel more relaxed and in control during this period, making

it easier for them to actually fall asleep. The main objective of this study was not

to determine the general effects of sleep, sleep duration and time since encoding

on memory performance, but to investigate neuronal correlates of spontaneous re-

play during rest and sleep. Whenever replay was related to memory performance,

it was done intra-individually, thus preventing bias resulting from interindividual

differences in sleep length and depth.

Importantly, the time between the first memory task and the main resting period

was matched with the time between the main resting period and the second memory

task, so that the temporal distance between the two tasks and the main resting

period was always symmetrical. This is a necessary prerequisite for several of the

following analyses.

After the main resting period, participants were again allowed to spend some

time outside the scanner and then returned inside the scanner to perform the sec-

ond memory task, which also lasted 50 minutes. After finishing the second task,

participants left the scanner.

Outside the scanner, memory was tested first for stimuli from the first task

and then for stimuli from the second task. Participants were first asked to name

all objects they could remember from either task (free recall), then were shown

one exemplar of each object and were asked to indicate with a mouse cursor the

position of the corresponding white square (cued recall) in a similar way as was

done before (Rudoy et al., 2009). While the free recall task resulted in a binary

remembered/forgotten-measure of memory performance, the cued recall task allowed

us to evaluate memory performance with a continuous metric, i.e. the closer the

indicated position was to the actual position, the better recall was conceptualized

to be.

The entire experimental paradigm was presented using Presentation software

(http://www.neurobs.com). Images were transmitted inside the scanner via MR-

compatible video-goggles (Nordic Neuro Lab, Bergen, Norway) with a resolution of

800x600dpi.
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10.2.4 Functional magnetic resonance imaging

MR scanning was performed with a 3 Tesla scanner (TRIO, Siemens, Erlangen,

Germany) using echoplanar imaging. For each volume, 37 slices covering the whole

brain were measured with a thickness of 2.5mm at 2500ms repetition time and 35ms

echo time, a field of view of 210mm and a distance factor of 25%. In addition, a

high-resolution structural T1-weighted image of the whole brain was collected for

coregistration purposes with 160 slices with a thickness of 1mm at 1570ms repetition

time and 3.42ms echo time, a field of view of 256mm and a distance factor of 50%.

Functional images were transformed from DICOM to NIfTI format using MRI-

cron (http://www.cabiatl.com/mricro/mricron/dcm2nii.html). Preprocessing was

done with FSL (Smith et al., 2004; Woolrich et al., 2009), the steps including mo-

tion correction, 5mm Gaussian spatial smoothing and a linear detrending. Partici-

pants who exceeded a mean relative movement of 0.2mm as estimated by FSL were

excluded from further analysis (one participant out of the original group of 17 par-

ticipants). A z-transformation was then performed in order to have the same mean

activity in each of the three scanning sessions. Images from the two memory task

sessions were then spatially aligned to the images from the sleep session. Note that

both task sessions were thus not in their original space but symmetrically mapped

onto a third space.

10.2.5 Electroencephalographic recording and sleep staging

A 14-channel EEG was simultaneously recorded with fMRI for sleep staging during

the resting period. An Easycap (EASYCAP, Herrsching, Germany) MR-compatible

cap was used with 10 cortical electrodes, two of which also served to record eye

muscle activity, 3 EMG electrodes at the chin and one ECG electrode at the back.

This layout was according to the American Academy of Sleep Medicine (AASM)

guidelines (Iber et al., 2007). All electrodes were sintered AG/AG-Cl electrodes

suitable for use in a 3 Tesla scanner. The BrainProducts MR Plus amplifier (Brain

Products, Munich, Germany) was also suitable for use in a 3 Tesla scanner. Data

were sampled at 5000Hz.

Offline processing of the data included scanner artifact removal, cardio-ballistic

artifact removal, notch filtering at 50Hz and high-pass filtering at 0.01Hz, using
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the available modules from Brain Vision Analyzer 2.0 (Brain Products, Munich,

Germany). Data were then segmented into 20s epochs and scored for sleep stages

according to Rechtschaffen and Kales (Rechtschaffen et al., 1968). Sleepstages 3 and

4 were combined for the rest of the analysis.

10.2.6 Multi-variate pattern classification

All pattern classification analysis of the fMRI data was carried out using the PyMVPA

toolbox (Hanke et al., 2009a; Hanke et al., 2009b) for Python. For all classification

tasks, linear support vector machines with a coefficient of C=0.1 were used (this is

the default value). Classifiers were always trained within participants, never across

participants. The third MRI volume after stimulus onset was used for training in

order to account for the latency in the peak of the hemodynamic response. At a

TR of 2500ms, this volume encompassed the time window of 5000 to 7500ms after

stimulus onset.

Classification was not based on all fMRI voxels but on a subset of voxels (fea-

tures) that were most discriminative: For each of the roughly 50000 voxels, a one-

way ANOVA was conducted prior to classification with the 32 different objects as

independent or group variable and the BOLD signal during the presentations as de-

pendent variable (based on the respective training dataset only to avoid circularity).

1000 voxels with the highest F-values in these ANOVAs were then selected for clas-

sification, a number consistent with previous studies (Johnson et al., 2009; Ethofer

et al., 2009). The F-value in this case represents a measure of general variability of

a given voxel with regard to the 32 different objects. After a voxel was selected as

a feature, the size of the F-value did not matter anymore. All voxels were treated

the same by the classifier.

10.2.7 Classifier accuracy

To assess the classifiers ability to distinguish between the neural representations of

individual objects, a cross-validation procedure was used. A linear support vector

machine was trained on four of the five blocks from the paradigm (training dataset)

and made predictions on the remaining block (testing dataset). This was done five

times, so that every block served as testing dataset once. Comparing the classifiers

output (prediction) for a given trial with the actually presented object (target) across
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all 960 trials in all testing datasets yields an estimate of classifier accuracy. It should

be noted that there was a one-minute break between every block in this paradigm;

the classifier was thus trained on data that was temporally separated from the testing

data. Any confounds artificially increasing accuracy due to hemodynamic similarity

of neighboring trials were thus avoided.

Excellent classifier accuracy was an important prerequisite in this study. There-

fore, participants with insufficient classifier accuracy were excluded. In order to de-

termine a suitable cut-off, a linear support vector machine was trained in the same

way as was done with the real experimental data, except that the data were shuffled

with regard to the contingency between samples and labels. In effect, classifiers

were thus trained on nonsense data. Data were shuffled within the two experimental

blocks only in order to preserve the overall structure of the data. The shuffling was

done 50 times during each of the five cross-validation runs for each participant. The

nonsense-trained classifier was then applied to the respective testing dataset and

accuracy was determined as it was determined in the real data. Thus, 250 surrogate

accuracy values were obtained for each of the 17 participants.

The resulting distribution of accuracy values was used to determine a cut-off

value and all participants were excluded in whom classifier accuracy for either Exper-

iment 1 or Experiment 2 objects was worse than the maximal value of the surrogate

distribution plus three standard deviations.

10.2.8 Evaluating classifier predictions for objects from Set1 and Set2

During the paradigm-free periods of the experiment, there is no direct way to assess

the external validity of the classifier predictions. Classifiers were trained on all data

from the two memory tasks and returned one vote per MRI volume of the resting

state. This vote reflected which stimulus from the training data the given resting

state MRI volume was most similar to and either referred to a stimulus from Set1

(before the main resting period) or from the stimulus Set2, which served as a control.

The ratio of classifier votes for Set1 objects to all classifier votes in a given period will

be termed “Set1 ratio”. If the classifier were not able to detect any valid information

in the main resting period fMRI, then the Set1 ratio should be at 0.5 (the classifier

making random guesses, evenly distributed across all 32 stimuli).
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One major problem for this analysis is that data from the two memory tasks and

the main resting period were recorded in three different sessions. Despite careful

preprocessing and coregistering, subtle differences between sessions are likely to

remain. When training the classifier on the objects of the different sessions, it is

hard to determine whether it is picking up on differences in the data that are merely

session-related. For example, including a voxel that is completely inside the brain in

one session, and only half inside the brain in the other session will allow the classifier

to distinguish Set1 objects from Set2 objects. In addition, slow, long-term changes in

brain activity over the sessions may contribute to a classifier bias. To elucidate these

session-specific and temporal effects, a surrogate approach was used again: Linear

SVMs were trained data in which labels were shuffled trial-wise, but independently

within memory task 1 and memory task 2. The structure of the experiment was thus

conserved and allowed us to determine the potential bias introduced by temporal

and spatial proximity to the resting periods. Data was shuffled 100 times for each

participant, linSVMs were trained on the shuffled data and votes for the different

resting periods were derived analogous to the approach with real data, resulting in

a surrogate distribution of Set1 ratios. The median of this distribution for each

participant was taken as comparison value for pair-wise t-tests.

10.2.9 Relating classifier predictions to memory performance

In addition to analyzing the ratio of votes for Set1 object to all votes in the resting

periods, classification frequency of individual items from Set1 and Set2 was corre-

lated to subsequent memory success in the cued recall task. Spatio-temporal bias

due to different sessions does not play a role here as Set1 objects and Set2 objects

are analyzed separately, and objects from the same set were always presented in

the same encoding session, evenly distributed across the five blocks of the task. To

maximize power, all votes during the four different resting states following the first

memory task (i.e., all phases during which replay is possible) were analyzed.

Classification frequency values were obtained for each of the 16 objects of a

set and for each participant a Spearman correlation was calculated between these

frequencies and the respective memory error values at later recall. Correlation co-

efficients were then tested against zero with a one-sided t-test. As more replay was

expected to be associated with less memory error, correlation coefficients were ex-
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pected to be below zero, resulting in negative T-values. This analysis was further

validated using surrogate statistics. Classification frequency for individual objects

found in the resting periods was randomly shuffled with respect to the item-specific

memory performance within each participant and again calculated a correlation co-

efficient based on these shuffled data. Then, a T-test was calculated against zero

with the resulting Fisher-z-transformed correlation coefficients across participants

in the same way as was done for the real data. 10000 permutations were computed

in this fashion. Then it was tested whether the T-value from the empirical data was

below (more negative than) the 5th percentile of this surrogate distribution.

Replay may not only correlate with the continuous measure of associative re-

trieval during cued recall, but also with memory for the individual items. There-

fore,a logistic regression was also calculated between the number of classifier votes

for individual stimuli from the first memory task (again during the combined resting

periods after presentation of the first memory task) and the remembered/forgotten

dichotomous values from the free recall memory task, during which participants ei-

ther did or did not freely remember each object that had been presented. For every

participant, a logistic regression was calculated with “number of classifier votes” as

predictor and “remembered/not-remembered during free recall” as criterion. The

beta coefficients were again tested against zero with a one-sided t-test.

10.3 Results

10.3.1 Sleepstaging

All 10 participants considered reached at least sleep stage 2. The mean time spent

inside the scanner during the resting period was 88.8 ± 30.2 (mean±std) minutes.

Subjects spent 27.4 ± 25.6 (mean±std) minutes awake, 26.5 ± 23.5 minutes in sleep

stage 1 and 25.8 ± 19.4 in stage 2. Five subjects reached sleep stages 3 and 4 for

13.1 ± 6.1 minutes. Four subjects reached REM sleep for 6.8 ± 5 minutes.

10.3.2 Behavioral results

In the free recall condition, subjects had to name every object which they remem-

bered from the memory tasks. Participants remembered 5.5 ± 2.1 (mean±std.) ob-

jects from the first memory task and 10.5±3.3 objects from the second memory task.
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Figure 10.3: Behavioral results. Memory performance was measured as the distance between the

correct and the indicated spatial position of the square which was associated with an item during

the encoding phase. The box plots showing median and variance of memory performance across all

recall trials and participants demonstrate relatively high intra- and inter-individual variability.

.

This increase in memory performance was highly significant (t9 = −4.4, p = 0.0017)

and is probably due to the relative recency of objects from memory task 2. Results

from cued-recall show the same direction, but the difference is not significant. Mem-

ory performance in the cued-recall task was operationalized as the distance in mm

from the correct position of the white square (“correct position”) to the position

indicated by the participant (“estimated position”) (see Figure 10.3). Thus, larger

values indicate worse memory performance. This distance was 50.6 ± 28.1mm for

objects from the first memory task and 45.1 ± 28.0mm for objects from the second

memory task (t9 = 0.84, p = 0.42; Fig. 10.3).

10.3.3 Pattern classification accuracy

In the 16 participants who completed the study, classification accuracy for the 32

different objects from Set1 and Set2 varied between 12% and 59% (mean±std.:

33% ± 15.3%), which was highly above chance level (100%/32 = 3.125%; t15 =

8.27; p < 0.0001). As excellent classifier performance was a prerequisite for the

identification of possible stimulus-specific reactivation during the resting periods,

participants with insufficient classifier accuracy were excluded (cut-off determined

by a surrogate approach: 15.12%), resulting in a final sample of 10 participants

(Fig. 10.4A). Classification of the experimental stimuli was mainly based on voxels
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Figure 10.4: A: Pattern classification accuracy as assessed by a cross-validation approach. Each

red point indicates results from one participant, the red line indicates chance performance (3.125%).

B: The classifier was trained on the 1000 most discriminative features (i.e. voxels) from each

subject. The figure shows the regional distribution of features that were selected most often across

participants, which were most abundant in the occipital lobe but reached into inferior temporal

cortex.

.

from the visual cortex, which extended into the ventral visual stream and even the

posterior parahippocampal gyrus (Fig. 10.4B).

10.3.4 Pattern classifier predictions for Set1 versus Set2 objects

Figure 10.5 provides an overview of classifier predictions during all resting periods

when trained on empirical data and on trial-shuffled shuffled surrogate data. The

main resting period can be further divided into waking state and the five different

sleep stages. A repeated measures ANOVA revealed significant differences of classi-

fier votes (ratio of Set1 votes to all votes) during the different resting periods (Pre1,

Post1, complete main resting period, wake, S1, S2, Pre2 and Post2; F7,63 = 4.66,

p < 0.001). The ratio of Set1 votes to all votes was significantly above 0.5 in all

periods except Post2 (t9 = 1.477, p = 0.088). This result is in accordance with prior

hypotheses for the main resting period. Surprisingly, however, it was also found that

classifier predictions favor objects from Set1 already during phase Pre1 (t9 = 2.64,

p = 0.013), during which no replay is possible.

To better understand this apparent bias, votes from a surrogate classifier trained

on trial-shuffled data were investigated. Again, an ANOVA revealed significantly
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Figure 10.5: A: Results from the main resting period between the two experiments. The frequency

with which objects from the first memory task were voted for by the classifier compared to the total

amount of votes. Gray bars indicate results derived from a surrogate approach, orange bars refer to

results in the empirical data. Objects from experiment 1 are voted for significantly more often than

would be expected by chance in both empirical and surrogate data, but ratios for experiment 1 votes

to all votes are significantly higher in the empirical than in the surrogate data. B: Frequency of

votes for objects from the first memory task in the task-adjacent resting periods (Pre1, Post1, Pre2,

Post2) and in the different stages of the main resting period in the empirical and surrogate data.

The ratio of votes for objects from the first memory task to all votes was higher in the empirical

vs. the surrogate classifier during the waking period, as well as during Pre2 and Post2.

.

different votes during the different stages (F7,63 = 7.29, p < 0.001). During the

entire experiment (Pre1, Post1, main resting period, Pre2, Post2), the ratio of Set1

votes to all votes decreased monotonically for the surrogate classifier, as indicated

by a significant linear trend (F1,9 = 14.56, p = 0.004).

Next, the results from the empirical and the surrogate classifier were compared

during the different stages. It was found that the empirical classifier generated a

significantly higher ratio of Set1 votes to all votes than the surrogate classifier during

the main resting period (t9 = 3.14, p = 0.006), as well as during Pre2 (t9 = 2.93,

p = 0.008) and Post2 (t9 = 3.48, p = 0.003). In contrast, there was no significant

difference during Pre1 (t9 = 1.64, p = 0.067 [note that this test, as all others, is

one-sided even though there was no one-sided hypothesis for Pre1, making this test

conservative]) or Post1 (t9 = 1.49, p = 0.085). This result strongly suggest that the

apparent bias during the Pre1 period, but not the effect during the main resting

period, is attributable to the temporal proximity of the presentation of Set1 items.

When the different stages of alertness were analyzed, a significantly higher ratio of

Set1 votes to all votes generated by the empirical vs. the surrogate classifier was
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Figure 10.6: Illustrative scatter plot for one participant of the relationship between the number of

classifier votes for a given stimulus and the distance to target during memory recall for the respective

stimulus. Right: Fisher-z-transformed correlation coefficients between stimulus-wise error during

behavioral recall and stimulus-wise number of classifier votes for objects from the first memory task

(orange) and the second memory task (blue).

.

found only during the waking state (t9 = 3.87, p = 0.002). Moreover, the difference

in the ratio of Set1 votes to all votes between empirical data and surrogate data was

significantly greater during waking state than during Pre1 (t9 = 3.07, p = 0.007).

10.3.5 Association of classifier votes with memory performance

Next, it was analyzed whether reactivation of individual Set1 stimuli was related

to subsequent memory of the positions associated with these stimuli (Fig. 10.6).

Importantly, this analysis is independent from the analysis of the ratio of Set1 votes

to all votes reported above. For example, there can be a high correlation with

behavioral accuracy for objects from the first memory task, even when the total

ratio of all votes for objects from the first memory task is low and vice versa.

Memory was tested by presenting each stimulus and asking the participant to

indicate the associated position. Recall error (the distance between the correct

and the indicated position) is then an inverse measure of memory accuracy. For

each participant, a Spearman correlation was calculated between the number of

classifier votes for an individual stimulus (classification frequency) and recall error.
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Figure 10.7: Fisher-z-transformed Spearmans correlation coefficients for Set1 objects (orange) and

Set2 objects (blue) across different phases of the experiment, including waking state, sleep-stage 1

(S1), sleep-stage 2 (S2), slow-wave sleep (S3+4) and REM. Combined resting period (CRP) includes

all resting periods following presentation of the first memory task. Stars indicate phases with

significant consistent negativity (one-sided t-test against zero). There was no consistent negativity

in any phase for correlations involving Set2 objects.

.

For stimuli from the first task, a significant negative correlation between the amount

of replay and recall error during all resting periods after presentation of the first task

was expected. In contrast, there should be no correlation with memory performance

during Pre1. For stimuli from the second task, there should be a significant negative

correlation during the Post2 period, but not during the other resting periods.

It was found that the (Fisher-z-transformed) correlation coefficients across 10

participants were significantly smaller than zero (one-sided t-test: t9 = −2.20; p =

0.027; Fig. 10.6). This replay cannot be solely related to covert rehearsal by subjects,

because the consistently negative correlation is also evident during sleep stage 1

(t9 = −2.81; p = 0.02), and shows a trend during sleep stage 2 (t9 = −1.98;

p = 0.08). Importantly, no such consistently negative correlation was observed in

the resting period preceding the first memory task (“Pre1”; t9 = −1.82; p > 0.1)

and none for Set2 stimuli (highest T-value for any of the different phases including

Post2: t9 = 1.35; p > 0.1). Data from all individual phases of the experiment are

presented in Figure 10.7.

These results were confirmed by a boot-strapping approach (during which the

number of classifier votes was randomly permutated with respect to the item-specific

memory performance): For objects from the first memory task, the T-value for
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correlation coefficients was above the 5th percentile for the resting state before the

first memory task (Pre1, percentile = 11.32), indicating lack of a significant effect,

and below the 5th percentile for the combined resting period after the first task

(all four resting periods after task 1, percentile = 2.83). When surrogate data were

generated in the same fashion for classifier votes for objects from the second memory

task, T-values were never below the 5th percentile for either resting period (smallest

percentile=89.53).

There was no relationship between number of classifier votes and behavioral

performance in the free recall test: For the combined resting period (see above), the

beta-values were not significantly different from zero across participants for stimuli

from the first memory task (t9 = −1.40; p = 0.19) or for stimuli from the second

memory task (t9 = −0.77; p = 0.46).

10.4 Discussion

Taken together, MVPA was used on fMRI data to decode stimulus-specific activity

patterns and to investigate spontaneous replay of these patterns during awake resting

state and sleep. Most importantly, it was shown for the first time that the amount of

replay for a specific stimulus correlates with memory performance for this stimulus.

First, methodological considerations will be discussed and then the present find-

ings will be related to previous work on memory reactivation. MVPA training re-

quired repeated presentations of each stimulus in a sufficiently slow event-related

design, which limits the number of different stimuli that could be presented. The

use of a second, post-resting memory task induced interference to the items learned

before sleep and allowed us to directly explore the effect of reactivation on the

stabilization of associations against interference, the major function of memory con-

solidation (Mueller and Pilzecker, 1900; McGaugh, 2000; Ellenbogen et al., 2006a).

The retrieval task of Rudoy and colleagues (Rudoy et al., 2009) was adopted and

item-specific memory performance was measured by the distance between the actual

and the remembered position of each stimulus. This continuous metric allowed us

to detect differences in memory even at relatively high levels of performance dur-

ing cued recall. The relatively bad memory performance during free recall (mean:

5.5 items) might be explained by the transfer-appropriate processing theory (Morris
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et al., 1977; Stein, 1978), since participants were prepared for cued recall, but not

for free recall.

In order to facilitate subjects falling asleep inside the scanner, participants were

told to sleep two hours less in the night preceding the experiment. In principle,

using even this mild form of sleep deprivation may not only affect attention due

to increased sleepiness, but might also disturb sleep structure in a subsequent nap.

However, such a procedure is difficult to avoid in fMRI sleep studies – we even

used a milder sleep deprivation scheme than in previous studies (Rasch et al., 2007;

Bergmann et al., 2012). Furthermore, sleep structure was found to be relatively

typical for an afternoon nap.

As a result of pattern classification analyses, a vote was obtained for every single

fMRI volume during all phases of the main resting period and the task-adjacent

resting periods. Every vote referred to one of the 32 different objects that were

studied during the two memory tasks and reflected that the fMRI data of the given

volume was most similar to the data of one particular stimulus during the encoding

phase. Surprisingly, more replay of Set1 than Set2 stimuli was found not only during

the main resting period, but even during the task-adjacent resting period Pre1, i.e.

before any stimuli had been presented. This apparent bias may be due to two main

factors.

First, the experiment was split up into three fMRI sessions due to its long du-

ration, and participants left the scanner between the sessions. Even though co-

registering the sessions to one another is capable of aligning the MRI images reason-

ably well, images within one session will be more similar to one another than images

between sessions. However, no such bias would be expected during the main resting

period, which is in a different session between presentation of both Set1 and Set2

stimuli. Second, a bias would be expected due to MRI-related temporal autocorre-

lations, which may arise from slow metabolic processes or even circadian rhythms.

As the main resting period was at an equal temporal distance to both stimulus sets,

this should not affect the voting behavior for the main resting period, but might be

relevant for the short task-adjacent resting periods. These problems were addressed

by using a surrogate approach in which data were shuffled but in which the temporal

structure of the experiment was conserved. Even though classifiers were trained on

nonsense data, classifier output still showed a bias during the task-adjacent resting
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periods. By showing that Set1 ratios in the empirical data are higher than Set1

ratios in the surrogate data in the waking state of the main resting period, reacti-

vation could be demonstrated over and above any bias that may be caused by the

temporal structure of the experiment.

10.4.1 Relationship to previous studies on replay

The novelty in the presented study was the use of a multivariate technique for de-

tecting and tracking neuronal activity related to specific stimuli, an approach which

has also been recently suggested in a review article (Rissman and Wagner, 2012).

While the motivation for this study study was derived from studies in rodents that

show replay of hippocampal place cells after the learning of a spatial task (Skaggs

and McNaughton, 1996; Ji and Wilson, 2007; Foster and Wilson, 2006; Karlsson and

Frank, 2009; Carr et al., 2011; Jadhav et al., 2012), several technical and theoretical

differences between these approaches have to be mentioned. First, electrophysiologi-

cal recordings in rodents allow one to directly measure neuronal activity of individual

cells. Second, the increase of neuronal firing rates on specific spatial locations repre-

sents a simple spatial rate code, which simplifies the subsequent detection of replay.

On the other hand, as the number of recording sites and thus the spatial coverage

is inherently limited in these studies, fMRI recordings allow one to indirectly mea-

sure neuronal activity patterns in the entire brain and to explore their potential

contribution to replay. Of course, the nature of replay activity traceable with fMRI

differs drastically from single-cell recordings. However, several previous studies have

already indicated that content-specific reactivation can be detected in fMRI data as

well. Tambini and colleagues (Tambini et al., 2010) investigated BOLD correlations

between hippocampus and lateral occipital cortex in resting state fMRI preceding

and following a hippocampus-dependent memory task and found a significant in-

crease in correlations which was inter-individually related to memory performance

during recall. In addition, there is evidence that category-specific fMRI activity can

be detected prior to free recall of learned stimuli from that category using multivari-

ate pattern classification (Polyn et al., 2005). Finally, Bergmann et al. (Bergmann

et al., 2012) found a reactivation of BOLD responses in category-specific regions

during sleep which was triggered by spindle events in simultaneously recorded EEG.

Investigating spontaneous replay in the absence of stimulation requires one to
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detect stimulus patterns very reliably (with high classification accuracy). Accuracy

in this experiment was relatively high as compared to previous studies due to the

selection of very diverse items in this study (see Figure 10.1). Indeed, during piloting

with a version of the paradigm using only face stimuli, much lower accuracy values

were obtained (n=8, 16 faces, mean accuracy 13.1%). Additionally, only participants

with high classification accuracy were included in the main analysis (this procedure

is not circular, because classifier cross-validation is done on data during encoding,

while reactivation is tested during resting periods that have not been assessed during

cross-validation at all).

Interestingly, reactivation was most evident during awake resting state. These

results are in apparent discrepancy to a recent study by Diekelmann and colleagues

(Diekelmann et al., 2011) who showed that presentation of an odor cue that was

previously paired with an associative learning paradigm only improved memory sta-

bility if it occurred during slow-wave sleep, but not if it was presented during awake

resting state. Similarly, previous behavioral studies on reconsolidation indicate that

presentation of a learning-related context during subsequent waking state destabi-

lizes memory traces (Hupbach et al., 2007). Several differences between these studies

and the current study might explain the apparent discrepancy to the results in this

study. Most importantly, reactivation was cued in the studies by Hupbach et al.

(Hupbach et al., 2007) and Diekelmann and colleagues (Diekelmann et al., 2011),

whereas it occurred spontaneously in this study. It could be speculated that sensory

stimulation triggers bottom-up information flow into the hippocampus (Hasselmo,

2005; Takeuchi et al., 2011) which might affect reactivation differently than if it

occurs spontaneously. Indeed, several electrophysiological studies in rodents (Foster

and Wilson, 2006; Karlsson and Frank, 2009; Carr et al., 2011; Jadhav et al., 2012)

as well as fMRI (Peigneux et al., 2006; Tambini et al., 2010) and iEEG results from

humans (Axmacher et al., 2008) are consistent with the hypothesis that reactivation

and memory consolidation may occur also during awake resting state. Alternatively,

this discrepancy may be due to the choice of the sleeping phase, namely an after-

noon nap instead of a night sleep period. However, previous studies have provided

evidence that an afternoon nap affects memory consolidation similar to night sleep

(Takashima et al., 2006; Lau et al., 2010), even if it lasts only a few minutes (Lahl

et al., 2008).
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Most importantly, a consistently negative correlation between the amount of re-

activation and later memory error for these stimuli was found. While replay was not

observed during phases of slow-wave sleep, this might well be due to the relatively

small number of subjects who actually reached slow-wave sleep in this study (N=5).

Alternatively, the pattern classification algorithm might have been unable to de-

tect the activity patterns from waking state during slow-wave sleep, which shows

significantly altered BOLD activation (Dang-Vu et al., 2008).

The role of sleep, especially slow-wave sleep, in the reactivation processes re-

ported here might be investigated better by using an electrophysiological method

such as intracranial EEG. Even though the appearance of EEG is also drastically

altered during sleep, as was outlined in the introduction, it might not be affected

as much by metabolic changes. Also, if the signal is decomposed into different fre-

quency bands, replay might be detected by the relative pattern of frequency band

power regardless of the overall makeup of the signal. In the third study of this

thesis, a very similar paradigm to the one that was used in this study was applied

to investigate reactivation in intracranial EEG.

In the future, more insight might also be gained by performing a similar study

with high resolution hippocampal fMRI imaging. Then, hippocampal patterns might

be decoded and they might be detected more reliably in sleeping periods. In addition,

longer periods of slow-wave sleep in a greater sample of participants might help

clarifying the usefulness of the MVPA method for detecting replay during deep

stages of sleep.
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11 Replay of neuronal activity associated with emo-

tional stimuli

11.1 Introduction

In the first study, it was investigated whether any signs for reactivation of stimulus-

specific neuronal activity patterns associated with normal stimuli could be detected.

Evidence was found that multi-voxel pattern classification can identify such reacti-

vation and that the frequency of this reactivation is associated with later memory

strength. The second study investigates the influence of emotional arousal on this

kind of reactivation process.

It would be naive to assume that all memory content is treated equally by the

brain. It is adaptive for an organism to remember especially those events which

will promote survival and reproductive success. Based on introspective experience

alone, it is an intuitive assumption that episodes and facts of special importance or

saliency are remembered better.

Accordingly, it has often been demonstrated that memory for emotionally arous-

ing material is superior to that of non-arousing material (Hamann, 2001; Kensinger

and Corkin, 2003; Kensinger, 2004).

Of special importance in neuronal models of the consolidation of emotional mate-

rial is the amygdala. Patients with damage to the amygdala have been found to lack

enhanced memory for emotional content (Cahill et al., 1995; Adolphs et al., 1997)

and functional imaging studies have confirmed the involvement of the amygdala in

memory formation for emotional content, as has been described above in section

4.2.3. In addition, emotional memory seems to be not only enhanced by increased

attention or saliency at encoding, but the memory might indeed be consolidated

differently (again, see section 4.2.3).

This raises the question investigated in this study: If enhanced memory for

emotionally arousing material is indeed associated with improved consolidation, this

preferential treatment should be reflected in increased neuronal reactivation during

resting state or sleep.

Thus, instead of observing reactivation frequencies and relating them to sub-

sequent memory performance as was done in the first study, here, the differential
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memory effects for emotionally neutral as compared to emotionally negative stimuli

are taken as a starting point and reactivation frequencies are investigated separately

for these two stimulus-classes.

Investigating reactivation of neuronal activity associated with emotional stimuli

as compared to emotionally neutral stimuli is not only an obvious follow-up, but it

also addresses an issue at the heart of any two-step model of memory formation:

The question why there should even be a need for consolidation. Why not “chisle

every memory into stone” the minute it has been encoded? The synaptic processes

necessary for establishing a memory trace happen on a much shorter time-scale than

system consolidation (McGaugh, 2000), so one can conclude that the long time-span

is not immediately due to a biological limitation of the neuronal substrate. So why

take so much time for consolidation?

According to McGaugh (McGaugh, 2000), one reason for ongoing consolidation

and re-consolidation might be to avoid an overload of the memory system and to

allow enough time for the most salient memories to take superiority in strength at

the expense of less important memory traces. An equally important issue could be

to carefully integrate new memories in the appropriate existing networks. In any

case, the study of emotionally charged stimuli is an important step to understanding

real-life memory, which is usually affected by emotional influences.

In this study, better memory performance for emotionally negative as compared

to emotionally neutral items was expected. This, in turn, was hypothesized to

be related to increased reoccurrence of neuronal activity patterns associated with

negative items during a resting state following the learning task.

11.1.1 Changes in experimental design

In principle, the experiment was kept as similar as possible to the first study, both

because the design was found to be effective and in order to be able to compare the

results.

One caveat when designing this study was that the literature is actually not quite

consistent when it comes to better memory performance for emotionally negative

images. It seems that it depends on the exact task and experimental conditions.

It has been argued that good memory for individual items does not necessarily

imply good memory for the association between these items (Mather, 2007). The
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effect of emotion on memory has usually been tested in terms of item memory,

often with recognition tasks such as “Have you seen this picture before?”. However,

there are some studies that suggest that association binding might be impaired

if highly arousing stimuli are involved (Mather et al., 2006; Onoda et al., 2009;

Okada et al., 2011). But improved recall of locations associated with emotional

pictures has also been reported (Mather and Nesmith, 2008). Mather suggests that

if associated details are an intrinsic part of the emotional stimulus (such as the

color of an emotional word), they are remembered better than those associated with

neutral stimuli, but in cases of associations between different items (e.g. emotional

word and neutral face), memory performance might be impaired (Mather, 2007).

Simple recognition tasks could not be used in this study, because pictures had

to be presented multiple times to ensure good classifier performance. On the other

hand, between-item associative memory tasks as used in the first study might have

resulted in worse memory for negative pictures (or, at least, their associated items).

The paradigm was adapted accordingly: In the first study, there were two parts of

each trial: Presentation of the picture followed by the presentation of a white square

that marked the corresponding position. In this study, each trial had only one part:

The stimulus was shown directly at the associated position. This was supposed to

make the position more of an inherent part of the stimulus and was considered a good

compromise to accommodate the necessities of a pattern classification approach on

the one hand and findings related to emotional processing on the other hand.

For this study, emotionally neutral and emotionally negative pictures were taken

from the International Affective Picture System (IAPS). This is a commonly used

database of pictures, which have been rated by a large sample of participants with

regard to their emotional valence as well as their arousal (Lang et al., 1999).

Another change concerned the resting state. As the first study showed that

reactivation was tracked best during waking state, participants were not asked to

nap in this study. Instead, only quiet resting state was recorded. Because of this,

sleep staging was no longer necessary and simultaneous EEG was not conducted.

11.1.2 Investigation of regions of interest

The processing, encoding and retrieving of emotional stimuli is associated with sev-

eral brain regions. Foremost, the amygdala has been implicated in emotional pro-

83



11 Replay of neuronal activity associated with emotional stimuli

cessing (Hamann, 2001; LaBar and Cabeza, 2006). Other important brain regions

are the insula, anterior cingulate and medial prefrontal cortex (Phan et al., 2002;

Phan et al., 2004).

To account for this, regional analyses were also performed in this study. In this

approach, the classifier was only trained on voxels from specific brain regions that

were determined with anatomical atlases. The differential contribution of individual

brain regions to encoding and replaying emotional content was expected to provide

additional insight.

11.2 Methods

11.2.1 Participants

Twenty-one young healthy participants took part in this experiment, 11 of whom

were female. The mean age and standard deviation were 24.2+2.86 years within

a range of 19-30 years. All proceedings were approved by the ethics committee of

the University of Bonn. Participants were recruited via the job exchange at the

University of Bonn. They gave written informed consent and were compensated

for their time. They were informed prior to the experiment that stimulus material

would be presented which might be upsetting or aversive and examples were sent

via email on demand. Some potential participants opted not to take part in the

experiment after viewing example pictures.

Before they were given the written instruction, participants were reminded again

that highly aversive pictures would be presented and they were confronted with

some examples if they had not already seen them. This was done to ensure that

participants knew what to expect and were able to make an informed decision about

participating. However, no participant decided against participation at this point.

None of the example pictures were used in the subsequent study. One participant

had to be excluded due to erroneous settings in the program that ran the experiment.

11.2.2 Paradigm and Stimulus Material

While the memory task itself was similar to the paradigm used in the first study,

the overall structure of this experiment differed. Instead of two memory tasks and

one nap break in between, the experiment now consisted of two periods of resting
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Figure 11.1: Overview of the paradigm: Two resting periods were recorded before and after

a declarative associative memory task. In this task, 12 emotionally negative and 12 emotionally

neutral pictures were presented at specific positions on the screen, 24 times each. Participants

were instructed to learn the position for each of the pictures. One memory test was conducted

immediately after the memory task and a second memory test took place after the second resting

period. A linear SVM was trained on the fMRI data of the learning task to discriminate between the

24 different pictures and then made predictions on fMRI volumes during the resting states. More

evidence for reactivation of negative as compared to neutral stimuli was expected. In addition,

correlation between reactivation frequency for single items and subsequent memory performance

was expected for predictions in the resting state following but not preceding the task.

.
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state and a memory task in between. In addition, the two periods of resting state

were now waking state only. Figure 11.1 provides an overview of the structure of

the experiment.

Two resting periods of 30 minutes each preceded and followed the memory task

(named “Rest 1” and “Rest 2”, respectively). During these periods, participants

were instructed to lie still and relax. To ensure that they stayed awake during

that time, a simple button press task was introduced: Every 40-80s a large red dot

appeared on the screen and participants were instructed to press a button when

this occurred, after which the red dot disappeared. After 5s without button press,

the dot began blinking to encourage reaction. Participants were told that the sole

purpose of this task was to ensure that they stayed awake and that the reaction to

the appearance of the red dot was not at all about speed. This explanation was

meant to reduce stress for participants and to minimize the perceived task character

of this resting period.

The main task, scheduled between the two resting periods, was a declarative,

associative memory task again during which pictures were associated with a specific

position. 24 different stimuli were used: 12 neutral and 12 negative pictures from

the IAPS collection (Lang et al., 1999). The dimensions most interesting to us were

arousal (ranging from 1=“low arousal” to 9=“high arousal”) and valence (ranging

from 1=“low pleasure” to 9=“high pleasure”). The neutral pictures were selected so

that they had low arousal and neutral valence (arousal 2.62±0.23 mean±std, valence

4.96±0.24 mean±std), while the negative pictures were selected to have high arousal

and negative valence (arousal 6.69±0.36 mean±std, valence 2.03±0.38 mean±std).

In each trial, one of the 24 pictures was shown at a specific position on the screen.

The picture size was 150*100 pixels, which was large enough to get the gist of the

scene. The picture was on the screen for 4s, then a fixation cross was presented

until the beginning of the next trial. The inter trial interval was 5s, which again

corresponded to the time needed for collection of two fMRI volumes. In total, each

of the 24 pictures was presented for 24 times. The experiment was divided into

twelve blocks which were separated by 1 minute of resting state. During each block,

every picture was shown twice. The sequence of pictures was randomized within

blocks. In total, the memory task lasted about 55 minutes.

Participants were instructed to judge for each picture in each trial whether they
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thought the scene was outdoors or indoors and indicate their answer via button press.

Note that for some pictures this was an easy judgment while for some pictures it

was completely arbitrary. Participants were instructed that, when in doubt, they

should choose whichever they thought was more likely. Again, this was a task that

was supposed to induce a deeper level of processing and was not analyzed further.

The instruction further stated that participants were supposed to look closely at

the pictures in each trial and to memorize the position of each scene on the screen.

Participants were aware that two memory tests would follow the experiment in which

they would be presented with the scenes and would have to indicate the position

that they were shown at during the learning task.

One test immediately followed the learning task and the second test was admin-

istered after Rest 2. Each memory test consisted of 24 trials. In each trial, one of

the previously presented 24 IAPS pictures was shown in the center of the screen, a

position at which none of the pictures had actually been presented during learning.

Participants then moved the picture with four buttons up, down, left or right until

it was at the position that participants thought it had been at during the learning

task. The duration of trials was self-paced as every trial automatically concluded

eight seconds after the last button press was entered by the participant. Five seconds

after the last button press, a bright red frame appeared around the stimulus picture

to warn participants that the trial would end in three seconds if they did not press

any button. If participants pressed any button when the red frame was present, the

frame disappeared and the time limit of 8s was set to zero again. The order of the

24 stimuli was randomized across each memory test. In addition to distance error,

reaction time was also calculated in these memory tests (an improvement over the

first study, in which this had not been possible). Reaction time was defined as the

time from presentation of the stimulus until the last button press.

The paradigm was presented using the software Presentation (http://www.neurobs.

com) inside the scanner with video goggles (NordicNeuroLab) with a resolution of

800x600dpi.

The memory task combined with the two resting periods and the memory tests

lasted close to two hours in total. Since this is a duration which is too long to be

scanned in one session (at least for most participants), a break was introduced after

half of the memory task, which corresponded roughly to half of the experiment.
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During this break the scanner was stopped and participants were taken out of the

scanner to allow them to drink something, relax their muscles or take a bathroom

break. After five minutes, they were taken inside the scanner again and continued

with the rest of the experiment. This break was meant to prevent high drop-out

due to excessive scanning length.

The break was placed so that a symmetric structure of the paradigm was pre-

served. In the previous experiment it had become apparent that separate scanning

sessions can have considerable impact on classifier output. With the chosen setup,

half of the memory task was in the same scanning session as Rest1 and the other

half of the memory task was in the same scanning session as Rest2.

11.2.3 fMRI scanning and preprocessing

MR scanning was performed with a 3 Tesla scanner (TRIO, Siemens, Erlangen,

Germany) using echoplanar imaging with the same settings as in the first study:

For each volume, 37 slices covering the whole brain were acquired with a thickness

of 2.5mm at 2500ms repetition time and 35ms echo time, a field of view of 210mm

and a distance factor of 25%. Again, a high-resolution structural T1-weighted image

of the whole brain was collected for coregistration purposes with 160 slices with a

thickness of 1mm at 1570ms repetition time and 3.42ms echo time, a field of view

of 256mm and a distance factor of 50%.

As was done in the first study, functional images were transformed from DICOM

to NIfTI format using MRIcron (http://www.cabiatl.com/mricro/mricron/dcm2nii.

html). Preprocessing was done with FSL (Smith et al., 2004; Woolrich et al., 2009)

in the same way as in the first study, the steps including motion correction, 5mm

Gaussian spatial smoothing and a linear detrending. No participant had to be

excluded to due excessive movement (same cut-off as in the first study: mean relative

movement 0.2mm). There were four scanning sessions that were used for the pattern

classification analysis: the two resting states (“Rest1” and “Rest2”) and the two

parts of the memory task, as participants were taken out of the scanner in the

middle of the task (see above). All of these functional recordings were coregistered

to “Rest1”. A z-transformation was again performed in order to have the same mean

activity in each of the four scanning sessions.
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11.2.4 Pattern classification

Pattern classification analyses were again performed with a linear support vector

machine (linSVM) using the PyMVPA toolbox available for Python (Hanke et al.,

2009a; Hanke et al., 2009b). To account for the sluggish hemodynamic response

which peaks at roughly 5 seconds after stimulus onset, again only the second MR

volume after an event of interest was included in the dataset. This corresponded

to the time window of 5000-7500ms after stimulus presentation. The classifier was

trained two distinguish every individual stimulus from the memory task (24 different

classes).

Feature selection: The classifier was trained on the z-scored raw BOLD signal

of 1000 voxels across the trials of the encoding task. Voxels were selected as fea-

tures based on the F-values that were derived from one-way ANOVAs which were

performed on each voxel separately. In every ANOVA, the groups were the differ-

ent classes that the classifier was trained on (the 24 individual stimuli in the first

approach, negative and neutral in the second approach) and the dependent variable

was the z-scored raw value of the given voxel in the second volume after stimulus

presentation.

Cross-validation: In a first step, classifier accuracy was assessed with a cross-

validation approach that tested classifier performance on the fMRI data of the mem-

ory task. The memory task was divided into 12 blocks which in turn were divided

into two sessions (see above). The cross-validation was done sixfold: The classifier

was trained on 10 of the 12 blocks (training dataset), which included 5 blocks from

the first half of the memory task and five blocks from the second half, and made

predictions on the remaining two blocks (test dataset). This was done six times so

that every block in each part of the memory task was left out once. The classi-

fier predictions on the samples of the test dataset were compared with the actual

labels for these samples. The number of accurate predictions divided by all predic-

tions yielded a percentage of correct predictions which served as an assessment of

classifier accuracy.

11.2.5 Classifier predictions on resting state

After the classifier was trained on all samples from the memory task, it was set up

to make predictions on each volume of the two resting states.
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Predictions could be evaluated by counting the prediction frequencies of individ-

ual stimuli or of the overarching categories, negative and neutral. If the classifier

was making random guesses on the resting state, no clear majority of either negative

or neutral items should be evident: the ratio of predictions for negative items to all

predictions should be 0.5. If, however, the classifier detected more reoccurrence of

negative items, the ratio should be significantly larger than 0.5. During Rest1, when

no stimulus has yet been presented, classifier predictions should not reflect increased

neuronal activity related to negative item and the ratio should not be different from

0.5. In Rest2, during which negative items are supposedly consolidated preferen-

tially, classifier predictions should be in favor of negative items. Thus, the ratio of

predictions for negative items to all predictions in Rest2 should be both higher than

0.5 and higher than the ratio during Rest1.

11.2.6 Relationship between classifier predictions and memory perfor-

mance

Again, prediction frequencies for individual items were related to later memory

performance. In this study, free recall was not tested (due to practical reasons

and because this measure of memory had not yielded any interesting result in the

first study). Memory in this study was tested twice: immediately after the learning

task (Test1) and half an hour later, after Rest2 (Rest2).

When relating classifier predictions to memory, there are multiple possible com-

binations: There are prediction frequencies from Rest1 and Rest2 that can be related

to memory performance in Test1 and Test2. The correlation can be done across all

24 items or separately for the 12 negative and the 12 neutral items. In addition,

prediction frequencies could be related to memory performance as defined by the

distance error, or it could be related to reaction time.

The main assumption in these analyses was that prediction frequencies during

Rest1 should not be correlated to memory performance at either Test1 or Test2,

because no consolidation is possible during that time. Prediction frequencies during

Rest2 were assumed to correlate stronger with memory performance during Test2 (as

this test was performed after consolidation had a chance to take place) than during

Test1. Also, if negative items are remembered better, it is a reasonable assumption
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that correlation between Rest2 prediction frequencies and memory performance at

Test2 should be stronger for negative items.

As was done in the first study, Spearman’s correlation coefficient was calculated

between item-wise classifier prediction frequencies and item-wise memory perfor-

mance for every participant. Then, correlation coefficients were fisher-z-transformed

and tested against zero across participants to determine consistent negativity with

a one-sample one-sided t-test against zero.

The vast possibilities for comparison combinations mentioned above raise the

question of how one should correct for multiple comparisons. The strictest way

would be to correct for all 24 tests (2 performance measures x 2 resting states x 2

memory tests x 3 valence categories [negative, neutral, both]). However, it seems

more sensible to consider the 2 performance measures and the 3 valence categories

separately. Then, there would be 4 comparisons to correct for (2 resting states x 2

memory tests). As it may be difficult to find an optimal solution here, uncorrected

p-values will be given and marked as such; it will be noted if they survive Bonferroni

correction for 4 comparisons.

11.2.7 Regional analysis

The paradigm used stimuli that were either negative or neutral. As mentioned in

the introduction, there are several regions of interest that have been identified as

relevant for the processing of emotional stimuli (Phan et al., 2002; Phan et al., 2004).

Based on these meta-analyses, the following regions were investigated: amygdala,

insula, anterior cingulate and medial prefrontal cortex. In all four cases, regions from

both hemispheres were collapsed. To consider wide-spread activity in an emotional

memory network, the four regions were combined to form a fifth mask, in which

voxels of all the four regions were included. An overview of the regions of interest

is given in Figure 11.2.

For the regional analysis, four anatomical masks with the bilateral regions of

interest were extracted based on the Automated Anatomical Labeling (AAL) atlas

(Tzourio-Mazoyer et al., 2002). They were mapped to the functional image space

of every participant with FSL (Smith et al., 2004; Woolrich et al., 2009) and sub-

sequently served as a means of feature selection: If a voxel was included in a given

anatomical mask, it was also selected for classifier training, which was then done
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Figure 11.2: Regions of interest for the regional analysis. AMY=amygdala, INS=insula,

ACC=anterior cingulate cortex, MPFC=medial prefrontal cortex.

.

based solely on the values from these voxels. No additional feature selection was

performed. Classifier training was performed separately with voxels from each of

the four anatomical mask, and then with a combination of all four masks, which

resulted in five different classifiers for every participant.

Since the anatomical masks only influenced which voxels were included in the

classifier training while the rest stayed the same, cross-validation and predictions on

the two resting states were performed in the same way as was done with the regular

classifier. In order not to multiply the results section five-fold, only selected aspects

were investigated with the regional approach.

11.3 Results

11.3.1 Behavioral results

Two memory tests were performed by the participants (in the following referred to

as “Test1” and “Test2”), one immediately after the end of the encoding task and

the second after 30 minutes of resting state.

For each memory test, the mean error (distance between the actual position of

the picture during the experiment and the position indicated by the participants) was

92



11 Replay of neuronal activity associated with emotional stimuli

Figure 11.3: Behavioral results. A: Distance error between the actual location during encoding

and location given by participants for negative and neutral items during Test1 and Test2. B: Time

between presentation of picture and the last button press which was used to adjust position of the

picture. C: Composite measure of reaction time and distance error.

.

calculated for negative and neutral pictures. In the first memory test, the mean error

distance for negative items was 25.00mm± 11.45mm (mean±std), for neutral items

it was 25.60mm ± 10.88mm. In the second memory test, mean error for negative

items was 27.25mm ± 11.50mm and for neutral it was 25.93mm ± 10.53mm. The

results are shown in Figure 11.3A. A two-factor repeated-measures ANOVA with

“Test 1 vs. Test 2” as first factor and “Neutral vs. Negative” as second factor and

distance error as dependent variable revealed neither significant main effects nor

an interaction (factor 1: F1,19 = 4.184, p = 0.55; factor 2: F1,19 = 0.58, p = 0.813;

interaction: F1,19 = 3.729, p = 0.069). Looking at post-hoc contrasts with dependent

t-tests, only the deterioration of memory recall for negative items between Test 1

and Test 2 was significant (t19 = 2.432, puncorr = 0.025), but this obviously does not

survive Bonferroni correction for multiple comparisons.

Another measure of memory performance is reaction time. Even though partic-

ipants were not specifically instructed to give their response as fast as possible, a

speedy and correct reaction is probably an indicator of good and readily available

memory. The reaction time considered here was not the time from stimulus onset

until the first button press but the time until the last button press, because moving

of the stimulus picture was concluded only then. Such defined mean reaction times

during the first memory test were 15.93s ± 4.69s (mean±std) for negative pictures

and 14.68s±3.33s for neutral pictures. In the second memory task, the mean reaction
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time for negative pictures was 13.80s±3.11s and for neutral pictures 12.90s±2.56s.

A repeated-measures two-way ANOVA with “Test 1 vs. Test 2” as one factor and

“Neutral vs. Negative” as second factor and reaction time as dependent variable re-

vealed significant main effects but no interaction (factor 1: F1,19 = 9.238, p = 0.007;

factor 2: F1,19 = 8.88, p = 0.008; interaction: F1,19 = 0.419, p = 0.525). Looking

at the data in Figure 11.3, this indicates that reactions times are slower at the first

memory test and they are slower for negative items.

It should be noted that correct responses for pictures which were presented in

the periphery of the screen during encoding necessarily take slightly longer because

the starting point during recall is always in the center of the screen. Thus, moving

the stimulus to the outer parts of the screen requires more time. However, as the

position of each stimulus during encoding was randomly assigned, there should be

no systematic difference in “distance from center” between negative and neutral

pictures. This was confirmed when a t-test did not reveal any significant differences

between mean distance from center for negative and neutral items across participants

(t19 = 1.382, p = 0.182).

Of course, sheer reaction time might not be the best indicator for good memory.

It is very likely that in case a participant does not remember a stimulus, he or

she will simply not move the picture at all from its starting position. This would

also lead to fast reaction time. Therefore, precise distance recall combined with

fast reaction time is what would reflect a good memory performance best. In an

approximation, z-transformed reaction times were multiplied with z-transformed

distance errors for each trial, resulting in a composite measure of reaction time and

distance error (RT ∗error). A two-way repeated measures ANOVA with “Test 1 vs.

Test 2” as one factor and “Neutral vs. Negative” as second factor and reaction time

as dependent variable revealed no significant differences (factor 1: F1,19 = 1.061,

p = 0.316; factor 2: F1,19 = 0.008, p = 0.93; interaction: F1,19 = 0.218, p = 0.646).

Taken together, the behavioral results provide no evidence at all that emotion-

ally negative items are remembered better than emotionally neutral items. On the

contrary, reaction times were even slower for negative items than for neutral items.

Reasons for this unexpected result will be discussed below.
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Figure 11.4: Classifier properties. A: Classifier performance in 20 subjects (mean and standard

error of the mean). Red line indicates chance level. B: Features selected during classifier training.

The color indicates in how many participants a given voxel was selected. Voxels selected most

consistently across subject were again located in the occipital lobe.

.

11.3.2 Classifier accuracy

The ability of the pattern classification algorithm to reliably distinguish between

the different stimuli presented during the memory task was assessed with a cross-

validation approach as described in the methods section. Overall classifier accuracy

was very good with 72.95% ± 9.77% (mean±std) in a range of 44.62-85.42. This

was significantly better than the chance level of 4.17 (t19 = 30.696, p < 0.0001). No

participant had to be excluded due to low classifier performance. The results are

shown in Figure 11.4A.

Voxels selected for the classification of the 24 stimuli are shown in Figure 11.4B.

11.3.3 Ratio of negative items during the resting state

After establishing that classification accuracy was very good, predictions of the

classifier on the two resting states were investigated. The ratio of predictions for

negative items to all predictions was 0.46 ± 0.06 (mean±std) during Rest1 and

0.45 ± 0.05 (mean±std) during Rest2. The ratios were transformed with Daniel’s

arcsin transform and tested against 0.5 with a two-sided one-sample t-test (Rest 1:

t19 = 3.08, puncorr = 0.006; Rest 2: t19 = 4.33, puncorr = 0.0004). Thus, in both

95



11 Replay of neuronal activity associated with emotional stimuli

Figure 11.5: Association between classifier prediction frequencies during the two resting periods

and memory performance (distance error) during Test1 and Test2 for negative, neutral or both items.

For every participant, a correlation coefficient was calculated between item-wise classifier prediction

frequency and item-wise memory performance. Mean correlation coefficients are shown for the

different conditions. Error bars indicate standard error of the mean (sem). Across participants,

Fisher-z-transformed correlation coefficients were tested against zero with a one-sided t-test. Stars

mark consistently negative correlation coefficients (puncorr < 0.05).

.

resting states, the ratios were significantly smaller than 0.5. However, the ratio was

not higher in Rest2 as compared to Rest1 (one-sided paired t-test: t19 = 1.327, p =

0.100). As with the behavioral results, this result is in contrast to prior expectations.

11.3.4 Relationship between classification frequency and memory per-

formance

Next, the relationship between the frequency of classifier predictions during the two

resting states and memory performance at Test1 and Test2 were investigated. For

every participant, a correlation coefficient was calculated between item-wise classifier

prediction frequency during the resting states and item-wise memory performance,

then the fisher-z-transformed coefficients across participants were tested against zero

with one-sided, one-sample t-test. Results are shown in Figure 11.5. Negative

correlation coefficients indicate increased replay for items that were subsequently

remembered better (more replay, less distance error). In a first step, negative and

neutral items were considered separately.

For negative items, correlation coefficients were consistently negative when clas-
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Figure 11.6: Association between classifier prediction frequencies during the two resting periods

and reaction time during Test1 and Test2 for negative, neutral or both items. For every participant,

a correlation coefficient was calculated between item-wise classifier prediction frequency and item-

wise reaction time. Mean correlation coefficients are shown for the different conditions. Error bars

indicate standard error of the mean (SEM). Across participants, Fisher-z-transformed correlation

coefficients were tested against zero with a one-sided, one-sample t-test. Stars mark consistently

negative correlation coefficients (puncorr < 0.05).

.

sifier predictions frequencies during Rest2 were correlated with memory performance

during Test2 (t19 = −2.126, puncorr = 0.023). This is consistent with what was ob-

served in the first study: reoccurrence during task-subsequent rest is associated with

memory performance in a later test. No such association was observed for memory

performance in Test1 (t19 = −0.535, puncorr = 0.299). There was also no associ-

ation between classifier predictions during Rest1 and memory performance (Test1:

t19 = −0.178, puncorr = 0.430; Test2: t19 = −1.600, puncorr = 0.063).

For neutral items, correlation coefficients were also consistently negative when

classifier prediction frequencies during Rest2 were correlated with memory perfor-

mance during Test2 (t19 = −1.785, puncorr = 0.045). Again, there was no associa-

tion for memory performance in Test1 (t19 = −1.501, puncorr = 0.075). However,

for neutral items there was an association between memory performance at Test2

and classifier predictions during Rest1, in which no replay is possible (t19 = −2.109,

puncorr = 0.024). This is a puzzling finding that cannot be readily explained. There

was no association between classifier prediction frequencies in Rest1 and memory

performance at Test1 (t19 = −1.258, puncorr = 0.112).
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When negative and neutral items were collapsed, a similar picture emerged:

There was a consistently negative association between classifier prediction frequen-

cies during Rest2 and memory performance at Test2 (t19 = −2.627, puncorr = 0.008;

this survives Bonferroni correction for 4 comparisons) but not Test1 (t19 = −1.187,

puncorr = 0.125). However, there was again a consistently negative association be-

tween classifier prediction frequencies during for Rest1 and memory performance at

Test2 (t19 = −2.368, puncorr = 0.014), even though this does not survive the Bon-

ferroni correction for 4 comparisons. There was no association between classifier

prediction frequencies in Rest1 and memory performance at Test1 (t19 = −0.578,

puncorr = 0.285).

When relating classifier predictions frequencies to reaction times, there was no

significant association for either negative or neutral items (see Figure 11.6). Only

when negative an neutral items were collapsed, there was a consistently negative

association between classifier prediction frequencies during Rest2 and reaction time

at Test2 (t19 = −1.984, puncorr = 0.031), as well as with reaction times at Test1

(t19 = −1.861, puncorr = 0.039). Surprisingly, there was also a consistently negative

association between classifier prediction frequencies during Rest1 and reaction times

at Test1 (t19 = −1.810, puncorr = 0.043), but not Test2 (t19 = −1.077, puncorr =

0.147).

11.3.5 Regional analyses

For the regional analysis, voxels from five different anatomical masks (amygdala,

insula, anterior cingulate, medial prefrontal cortex and a combination of the four)

were used for classifier training, cross-validation and prediction on the resting state.

Classifier accuracy: As can be seen in Figure 11.7A, classifier accuracy generally

was quite low for all anatomical regions. However, across participants, accuracy was

significantly greater than the chance level of 100/24 = 4.17 in all regions except for

bilateral amygdalae in a two-sided one-sample t-test (insula: t19 = 6.252, puncorr <

0.0001; anterior cingulate: t19 = 4.083, puncorr = 0.0006; medial prefrontal cortex:

t19 = 5.649, puncorr < 0.0001; combined regions: t19 = 5.911, puncorr < 0.0001).

Ratio of negative items: Figure 11.7B shows the percentage of classifier predic-

tions for emotionally negative items of all classifier predictions in the two resting

states, Rest1 and Rest2. The percentage was never significantly larger than 50%,
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Figure 11.7: A: Classifier accuracy when classifiers were trained on voxels from five differ-

ent anatomical masks. Stars mark accuracy levels which are better than chance across subjects

(puncorr < 0.05). B: Percentage of classifier predictions for negative items across regions of in-

terest. The percentage is never larger than what would be expected if the classifier made pre-

dictions randomly. Abbreviations: AMY=amygdala, INS=insula, ACC=anterior cingulate cortex,

MPFC=medial prefrontal cortex.

.
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Figure 11.8: A: Mean correlation coefficients and SEM for the association between classifier

prediction frequencies during Rest2 and memory performance (distance error) at Test2 for negative

items, neutral items and both types combined when classifiers were trained on voxels from selected

ROIs. Correlation coefficients were not consistently negative in any condition. Abbreviations:

AMY=amygdala, INS=insula, ACC=anterior cingulate cortex, MPFC=medial prefrontal cortex.

.

which would be expected under random classifier predictions (tested with one-sided,

one-sample t-tests). Also, the percentage never differed significantly between Rest1

and Rest2.

Relationship with memory performance: The association between classifier pre-

diction frequencies in Rest2 and memory performance (distance error) at Test2 is

depicted in Figure 11.8. This particular combination (Rest2, Test2) was selected be-

cause it is the condition with the strongest prior hypothesis and because it was the

most consistently significant association in the regular classifier approach. Again,

a correlation coefficient was calculated between item-wise classifier prediction fre-

quency and item-wise memory performance. Negative correlation coefficients would

indicate increased replay for items that were subsequently remembered better. Thus,

correlation coefficients were tested against zero across participants in one-sided one-

sample t-tests. This was done for negative items, neutral items and both item types
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combined as well as for the five different anatomical masks. None of these statistical

tests yielded significant results, not even uncorrected.

11.3.6 Cross-participant analyses

One possible explanation for the mixed results so far – especially with regard to

the lack of behavioral findings and missing evidence for increased reactivation of

emotionally negative stimuli – would be that any effects might have been masked

by inter-individual differences. For example, only some of the participants might

have had better memory for negative items, while the others showed an effect in

the opposite direction. In this case, even if there was more reactivation for the

stimulus-class which was remembered better, the effect would not be detected with

the analyses performed so far.

Therefore, an exploratory cross-participants analysis was carried out. A Spear-

man correlation was calculated across participants between the average memory per-

formance for negative items and the ratio of classifier predictions for negative items

to all predictions. Again, four combinations are possible between the two memory

tests, Test1 and Test2, and the two resting states, Rest1 and Rest2. However, none

of the four correlations across participants proved to be significantly different from

zero (puncorr < 0.05). The same was done for the average memory of neutral items.

Again, this analysis did not yield significant results.

11.4 Discussion

In this study, the reactivation of neuronal patterns for emotionally neutral versus

emotionally negative stimuli during two resting states (before and after a memory

task) was investigated and related to memory performance at two different time

points, one immediately after encoding, the other after 30 minutes of resting state.

The analysis was guided by the following three questions, which were also inves-

tigated in the first study presented in this thesis: First, can a pattern classification

algorithm reliably distinguish between different stimuli? Second, during a resting

state after encoding, does the trained algorithm detect more of some neuronal pat-

terns than of others? Third, is the item-wise frequency of classifier predictions during

a resting state associated with memory performance at a subsequent memory test?
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11.4.1 Classifier performance

The first question can be answered affirmatively: Classification accuracy was very

high – even higher than in the first study – and was sufficient for use of the classifier

in the resting state in all participants that were scanned.

11.4.2 Ratio of predictions for negative items

The other two questions are more difficult to answer. One of the main problems

in this study was that the behavioral effects were in contrast to what was expected

based on the literature. There is no evidence that negative and neutral items are

remembered more or less accurately than the other. There is a slight effect in reaction

times, but even this is in the opposite direction (negative items being responded to

more slowly). Reasons for this discrepancy will be discussed below.

The initial idea in this study was that a difference in memory performance for two

sets of stimuli (i.e. negative and neutral stimuli) should be reflected in a differential

reactivation of associated patterns during a resting state after learning, but not prior

to learning. As there was no reliable difference in memory performance between the

two stimulus sets, the hypotheses for classifier predictions during the resting states

became inappropriate.

The ratio of predictions for negative items to all items was significantly below 0.5

in both resting states, so there were more predictions for neutral items. Given that

behavioral data show a trend for neutral items to be retrieved faster, this might be

consistent with the idea that the set with superior memory will have more classifier

predictions. However, this bias for neutral items is already there in the resting state

before the encoding and it does not increase from Rest1 to Rest2. Taken together,

the ratio of predictions for negative items to all predictions is inconclusive and flawed

by the lack of a clear behavioral effect.

11.4.3 Relationship between classifier predictions and behavior

Independent of memory performance for a set of negative versus a set of neutral

stimuli, memory performance for individual items can still be related to classifier

prediction frequencies during the two resting states. Again, an association during

Rest1 was not expected, because stimuli had not been encoded in that phase, and
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neither was an association with memory performance in the first test, at which time

items had not been consolidated.

This pattern was found for negative items only, for which correlation coefficients

were consistently negative only for the combination of Test2 and Rest2 (even though

this does not survive correction for multiple comparisons). For neutral items, there

was also an association between memory performance at Test2 and classifier predic-

tion frequencies during Rest2, but the same was true for Rest1, which is a puzzling

result and will be discussed below. When both negative and neutral items were

collapsed, there was again a significant association between memory performance

at Test2 and classifier prediction frequencies at Rest2 (the only significant result

which survives correction for four comparisons). Here, too, there was an association

between Rest1 frequencies and Test2 performance.

In part, these results replicate findings from the first study in the sense that

“replay frequency” is associated with later memory performance. However, the fact

that this pattern or a trend towards it can also be observed in resting states during

which replay per definition is not possible begs the question whether this finding

can solely be attributed to replay.

11.4.4 Regional analyses

There is a rich body of research concerned with the brain areas that are involved in

the processing and retention of emotional stimuli. Here, four of the most prominent

were looked at by using anatomical maps: amygdala, insula, anterior cingulate and

medial prefrontal cortex, as well as a combination of the four. For each map, a

different classifier was trained only on voxels included in the map. Even though this

approach was more exploratory than the others, one idea was that the processing

and replay of emotionally negative stimuli might be more pronounced in these areas.

Notably, classifiers performed better than chance for all anatomical maps except

bilateral amygdalae during cross-validation. Even though classifier accuracy was

much lower than what was achieved with the conventional approach, this finding is

still interesting. With the conventional approach, which selects those voxels with

good discriminability between classes, it is for the major part voxels from the occip-

ital lobe which are almost exclusively used for classifier training. With the regional
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approach it could be shown that regions outside of visual areas contain informa-

tion about the stimuli used. The amygdala was the only region in which classifier

accuracy was not better than chance level. This might be due to the low number

of voxels that were selected from each participant for this classification analysis:

40.15 ± 4.82 mean±std voxels were selected for this anatomical mask, which com-

pares to 703.3 ± 51.9 mean±std voxels for the medial prefrontal cortex, the largest

region.

However, classifier results with regard to reactivation proved to be inconclusive

for the regional approach. Neither a preference for negative items during Rest2

nor a consistently negative association between item-wise memory performance and

replay frequency during Rest2 was observed in any of the regions.

One obvious explanation for this lack of findings is that classifier accuracy simply

was not sufficient to detect anything during the resting state with any degree of

certainty. In fact, with classifier accuracies this low, participants would have been

excluded in the regular approach. Another explanation might be that even if the

regions are involved in the encoding and retrieval of emotional memory traces, they

might simply not be involved in the consolidation of these traces.

The hippocampus was not investigated during this regional analysis on purpose,

even though it is a region clearly implicated in consolidation of memories (McGaugh,

2000). Besides not being mentioned in the literature as one of the main regions of

interest (Phan et al., 2002; Phan et al., 2004), the hippocampus is not specifi-

cally involved in consolidation of emotional memories. It has been suggested that

emotion-related hippocampal activity is modulated by the amygdala (McGaugh,

2004). This would have made any effects detected with a hippocampal mask very

hard to interpret.

11.4.5 Lack of behavioral effects

One of the most unexpected results in this study was that there was no memory

advantage for negative stimuli. If there was an effect, it was in the opposite direction:

there was a trend for increased forgetting of negative item position and response time

was slower for negative items, even though these effects were weak.

There may be several reasons for this result. First, as mentioned in the intro-

duction, good memory for individual items does not necessarily imply good memory
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for the association between these items (Mather, 2007). Even though efforts were

made to include the associated position of the picture into the stimulus by showing

the picture at the position, this experimental manipulation might not have been

enough.

Another reason might be found in the short time between learning and testing.

Some studies have found that memory for arousing stimuli is low in immediate recall

and improved in later recall across days and weeks (Kleinsmith and Kaplan, 1963;

Sharot and Phelps, 2004). A retention interval of half an hour might not have been

enough for the memory benefit for emotionally negative items to develop.

Lastly, the actual effect of images on participants was not assessed. While it is

reasonable to assume that pictures of mutilated bodies are experienced as aversive

by almost everyone, different pictures might cause different degrees of negative af-

fect across participants. Assessing individually experienced emotional arousal, for

example with skin conductance recording or via self-report in a subsequent ques-

tionnaire, and including this metric in statistical analyses as a covariate could help

to understand behavioral effects better in future studies.

11.4.6 Reasons for apparent preplay

Another finding that is difficult to interpret is that there was not only an association

between memory performance and replay frequency of individual items in a resting

state after the memory task, but that such an association, albeit not as strong, could

also be observed in the resting state prior to the memory task.

A similar phenomenon has also been described as “preplay” in rodents (Diba and

Buzsáki, 2007; Dragoi and Tonegawa, 2010). Sometimes, a place-cell sequence spon-

taneously occurs in resting state prior to the task in which this sequence happens.

While it should be considered that the animals in these studies are highly trained to

perform the kind of maze task which is required and have potentially been exposed

to similar tasks before, it might also hint at a different mechanism. Resting state

might not only consolidate previous experience but it might also “set the stage” for

future experience. Maybe better memory results are not only a sign of enhanced con-

solidation, but also reflect how well a given stimulus fits into pre-configured neuronal

layouts.
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Another explanation might be connected to the kind of activity which is usually

recorded during resting state. An intriguing suggestion has been that resting state

activity (“default mode network (DMN)” activity) displays regional activity overlaps

with and is closely related to self-referential processes and that a sense of self results

from rest-stimulus interactions (Northoff, 2011; Qin and Northoff, 2011). It seems

quite plausible that participants, during the 30 minutes resting state, were involved

in thoughts about themselves, e.g. things that happened prior to their arrival at

the scanning facility or plans for the evening or next day – in essence, that they

had self-related thoughts. It is also plausible to assume that some of the stimuli

that participants saw between the two resting states had more relevance to their self

than others. These might very well have been the stimuli that were subsequently

remembered best. Stimuli with more relevance to participants’ selves would also

recruit more of the self-referential processing related brain activity that might have

been present during the resting states. Pattern classification algorithms could have

picked up on that connection during the first resting state. Also, such connections

to self-related processing might be particularly relevant for emotional stimuli.

Even if a connection between resting-state activity and self-referential processing

cannot be substantiated or discarded with the present dataset, one should consider

that brain activity during resting state is not random and that stimuli that are

presented to participants are not presented to “blank slates”. Participants perceive

everything as the person they are, which is the same person that is scanned during

a resting state. For future studies, especially if they employ emotional stimuli, it

would be interesting to use questionnaires to assess the degree of self-relatedness for

individual stimuli and to determine whether such a self-relatedness might even have

been actively constructed in order to memorize a stimulus better.

11.4.7 Outlook

Several points have already been mentioned which likely have contributed to the

mixed results in this study. The overarching mistake might have been the strict

adherence to the design of the first study. While, as explained above, this design is

the result of extensive piloting and works very well for pattern classification issues,

the design might have been less than adequate for investigating emotional memory.

If one has to adhere to repeated stimulus presentation in an emotional memory
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paradigm (in order to get enough training data for the pattern classifier), it might

be a good idea to make the emotional stimuli as complex as possible. Short video

clips with emotionally neutral as compared to emotionally negative story lines or

key elements might be an exciting alternative to mere picture stimuli. Depending

on the context, the same video might even be considered neutral or negative. Also,

clips could be filmed and cut in a way that certain scenes are present both in an

emotionally negative and an emotionally neutral clip (e.g., the same start, different

ending). Even across repeated presentation, the clips might remain engaging. Var-

ious elements of the environment, storyline and sequence of events could be tested

afterwards, so that a “memory quotient” for each clip could be assessed.

Regardless of the stimuli that might be used in a follow-up study, skin conduc-

tance recording would be useful to assess arousal during encoding. Memory testing

should definitely take place not only on the day of learning, but several days after

to more fully assess memory consolidation for emotionally negative stimuli
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12 Replay of stimulus-specific activity in intracranial

EEG

12.1 Introduction

The last of the three studies in this thesis again uses a very similar paradigm to the

first two studies. In fact, it is nearly identical to the first study, and the general

theoretical motivations are the same. Therefore, the reader kindly refer to section 9

and 10.1 for more information on the goals of this study.

The major difference to the first study is of a methodological nature, as this last

study was not performed with fMRI in healthy participants but with intracranial

EEG in epilepsy patients at the Clinic for Epileptology in Bonn, who received presur-

gical implantation of intracranial electrodes for the diagnostic purpose of clarifying

their epileptic foci.

This third study complements the previous two studies because the data allow

analysis of processes that happen at timescales much faster than those that can

be investigated with fMRI. This permits the investigation of the role of different

frequencies in memory consolidation, which might have a differential contribution

to encoding. Changes in alpha and theta frequency power have been found to be

related to memory performance (Klimesch, 1999). In a different study, theta and

gamma increases (Osipova et al., 2006) were associated with memory performance.

Power in these frequency bands might be a valuable feature for accurate classifier

predictions and might provide more information than mere amplitude. Therefore,

classifiers were not only trained on raw amplitude values, but also on time-frequency-

decomposed values.

12.2 Material and Methods

12.2.1 Participants

12 patients were included in this study (4 female, age 34.5 ± 10.6 mean±std years,

range 20-57 years). All patients suffered from pharmaco-resistant focal epilepsy

and were considered for surgical treatment. Presurgical intracranial recording was

medically indicated and recording sites were selected by the attending epileptologist.
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Figure 12.1: Overview of the study. Intracranial EEG was recorded during two complete nights of

sleep, one preceding and one following the memory task. The memory task again was a declarative

assocative memory task in which 16 object-place associations had to be learned in the course of

repeated presentation of the pairs (30 times). The memory task was performed in the evening

before the second night. On the morning after, memory for all 16 object-place pairs was tested.

Thus, the position were not chosen according to hypotheses, and electrode positions

were different in all patients.

When patients were asked if they wanted to take part in a scientific study, they

were given information of the structure of the experiment and the task that they

would be performing. It was made clear to them that participation was voluntary

and that there was no medical gain for them if they participated. Also, they were

informed that they could decline or abort participation without any disadvantage

to them and that their stay at the ward would in no case be prolonged by their

participation. Also, they were made aware that the data recorded in the studies

would be kept and that demographic information from their patient files such as

age and gender as well as location of their electrodes would be used in a pseudon-

omized fashion. Written informed consent was obtained from all of the patients in

accordance with guidelines of the local ethics committee.

Patients were recruited from 2010 until 2013. This long time window of data

collection is due to the circumstance that the opportunity to record in these patients

is quite rare.

12.2.2 Paradigm and Stimuli

An overview of the paradigm is given in Figure 12.1. Participants underwent a

control night, during which brain activity was recorded for the entire night. This
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served as a baseline condition for later classification results. Then, the patient

performed the experimental paradigm in the evening of the following day (except

for one patient who, due to medical complications, performed the experiment one

week after the control night). The experimental paradigm was performed between

8pm and 9.30pm depending on availability of the patient. After the experiment,

another complete night of sleep was recorded in the patient. A memory test was

performed on the morning after this second night.

As in the previous studies, the paradigm was an object-place association memory

task. Sixteen different objects were presented, which were identical to the 16 objects

from Set1 of the first study. Every object was associated with a specific location

on the screen that was marked by a white square. Every trial consisted of the

presentation of the object for 1s, then presentation of the white square for 1s, then

a fixation cross for 3s until the next trials started. Patients were asked to indicate

via button-press whether they liked or did not like the presented object. Again, this

was done only to encourage deeper level of processing and was not analysed further.

Each of the 16 object-place pairings was presented 30 times, resulting in 480

trials that were evenly distributed across five blocks. After each block, there was

a countdown of 60s, after which the patient could press a button to proceed with

the experiment whenever he or she felt ready. The experiment lasted approximately

50 minutes. During the memory test that was conducted on the morning after

the learning task, each of the 16 different objects was presented and patients had

to indicate the location of the white square that was associated with the stimulus

during learning.

In the first 7 of the 12 patients, a slightly different version of the experiment

was performed. The 16 stimuli belonged to four categories: There were 4 houses, 4

faces, 4 landscapes and 4 tools. In addition, the position of the white square was

discrete instead of continuous: The center of the screen was divided into a 4x4 grid

that was visible for the patient. The white square was in the center of one of the 16

tiles of this grid. Accordingly, the grid was shown during recall and only one of the

16 discrete grid-tiles could be selected as belonging to a stimulus.

This earlier version of the paradigm corresponded to a version of the paradigm

that was used during piloting for the first study described in this thesis. When

it became apparent during this fMRI piloting that the use of different stimuli and
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continuous positions was superior to the previous version, this improved version was

adapted for the intracranial EEG study as well. As noted above, the possibility to

record in epileptic patients is rare and it takes long periods of time to collect the

data. Thus, the existing recordings were deemed too valuable to discard altogether.

Also, the changes in the paradigm are relatively minor. The earlier version of the

paradigm will be referred to as the “category” version, while the later version will

be called the “individual” version because the two versions are mostly different with

regard to the type of their stimuli.

The paradigm was presented to patients using the software Presentation (http:

//www.neurobs.com) on a notebook computer with 15.4 inches diagonal screen size

and a resolution of 800x600dpi. Responses were logged with the mousepad of the

notebook computer.

12.2.3 Recording and initial filtering of intracranial EEG data

Intracranial EEG recordings were referenced to linked mastoids, recorded at a sam-

pling rate of 1000 Hz, and band-pass filtered (0.5305164 Hz [12 dB/octave] to 125

Hz [12 dB/octave], including a notch filter at 50Hz). In addition to the intracra-

nial electrodes, which were implanted according to medical necessity, regular EEG

was recorded from the following electrode positions: T5, T6, C3, C4, Cz and Oz –

according to the International 10-20 system. In addition, two ECG, two EOG and

two two EMG electrodes were recorded from. Apart from sleep-staging, data from

these external electrodes were not used in the analyses.

12.2.4 Automated artifact correction

One of the most prominent concerns with intracranial EEG data recorded from

epileptic patients is that the data could contain epileptic activity. Obviously, testing

would have been aborted if patients had had a seizure during the experiment, which

did, however, not happen in any of the patients reported here. But even between

seizures (inter-ictal), the EEG of epileptic patients may contain epileptic forms and

other abnormal EEG characteristics.

Usually, visual inspection is employed to find artifacts in the episodes of interest.

However, doing manual artifact rejection sometimes was not a viable option in this
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study due to the long duration of recording (i.e., during the two nights). Thus, a

computer algorithm was employed to automatically find episodes with artifacts.

The algorithm was developed by Thorsten Kranz and is available online as part

of a Python package for analyzing EEG data (https://github.com/thorstenkranz/

eegpy). In short, the algorithm is set up to detect parts of the signal in which either

the amplitude was too high or the gradient too steep as compared to “normal”

parts of the data. Thus, the standard deviation of amplitude across all episodes of

interest is calculated as well as the standard deviation of the first derivative of the

signal. The first derivative reflects steepness of the slope of a tangent at each point

of the signal. In this context, it is simply calculated as the difference between one

time-point and the preceding time-point.

To account for the fact that EEG differs between persons, the two standard

deviation values are calculated for each participant individually. They are also

calculated separately for each electrode, or channel. This is sensible because some

channels are more noisy than others and calculating the standard deviation across

all, possibly very dissimilar channels, would increase false detection of artifacts in the

most noisy channels. Based on the standard deviation, a cut-off is then determined

for each participant and each channel: It is derived by multiplying the standard

deviation of amplitude and first derivative each with a certain factor. For example,

if the standard deviation for EEG amplitude in channel TL09 in participant A

was found to be 15µV , the cut-off for this channel could be set to three times the

standard deviation (45µV ) or six times the standard deviation (90µV ), depending

on how strict or liberal the cut-off is meant to be.

If the signal in any channel at any given point in the epoch of interest exceeds

this individualized cut-off, the episode is rejected for containing an artifact. Note

that this is quite a conservative approach – if there is an artifact in only one of the

channels, the complete epoch will still be rejected. Figure 12.2 shows the idea of the

artifact correction in more detail.

In summary, epochs were rejected if either amplitude or slope exceeded a cut-

off value based on what was found in “normal data” (which was reflected by the

standard deviation of both amplitude and slope) and a mulitplication factor that

could be freely chosen.

After systematically varying the factor with which the standard deviation was
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Figure 12.2: Overview of the automated artifact rejection procedure. On the left side, five epochs

are presented which correspond to EEG recordings of individual trials in one electrode. The blue

line is the raw signal. The red dashed lines mark different cut-off values corresponding to multiples

of the amplitude standard deviation (std), which was calculated in the same channel across all

trials. It provides an indication which amplitude values can normally be expected in this particular

electrode. The first epoch does not exceed any of these standard deviation based thresholds. The

second epoch would be rejected if three times the standard deviation was the criterion. The third

epoch exceeds even a threshold based on 7 times the standard deviation. On the right side of the

figure, the first derivative of every left-side epoch is shown as blue line, indicating the steepness

of the slope in the raw signal. The dashed green line marks the standard deviation of the first

derivative that was computed for each channel across all trials. While the fourth epoch would have

passed a liberal amplitude criterion, its first derivative exceeds five times the standard deviation of

the slope and would have been rejected.

.
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Figure 12.3: Overview of all electrodes which were used for further analyses. Every color denotes

a different patient. Electrodes were excluded if they contained an epileptic focus, appeared noisy

in visual inspection or if more than 25% of epochs contained artifacts.

.

multiplied, it was determined that a factor of 8 for amplitude and 8.5 for the first

derivative was best suited for the data recorded in this study. This is, of course,

a somewhat arbitrary decision. In the current dataset, an average of 86.86% ±

8.27% mean±std of all trials during the memory task were retained with this cut-

off criterion. As such, it satisfied both the need for good data quality and the

necessity of retaining enough trials. The automated artifact rejection algorithm was

performed with custom code for Python which is implemented in the eegpy-package

by Thorsten Kranz (https://github.com/thorstenkranz/eegpy).

12.2.5 Selection of electrodes

In principle, all intracranial electrodes were eligible for use in the classification ap-

proach. However, electrodes were excluded in the following three steps to guarantee

good data quality:

1. Electrodes were excluded if the patients’ medical report stated that they were

located in an epileptic focus or were involved early in seizure onset. This med-

ical report is written by the Clinic for Epileptology’s medical doctors as a final

report on the diagnostic results of the intracranial recording. It informs any

surgical tissue removal that might take place subsequent to the implantation of

the intracranial electrodes and can therefore be considered a very trustworthy

source of information.

2. Electrodes were excluded when visual inspection of their activity during the
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Band no. frequency range referred to as...

Band 1 4-8 Hertz theta

Band 2 8-12 Hertz alpha

Band 3 12-20 Hertz low beta

Band 4 20-30 Hertz high beta

Band 5 30-60 Hertz low gamma

Band 6 60-90 Hertz gamma

Band 7 90-125 Hertz high gamma

Table 1: Overview of different frequency bands

paradigm revealed abnormalities such as excessive spiking, high amplitudes,

flat signal or noise.

3. Electrodes were rejected if an automated artifact detection algorithm (see

above) found artifacts in a significant number of trials (> 25% of all trials)

during the paradigm.

In the remaining channels (see Figure 12.3), a second artifact detection run was

performed and all trials with artifacts were not included in further analyses.

12.2.6 Frequency band decomposition

In the first approach of this study, the feature selection and classifier training was

done on raw EEG amplitude values in the time window 0 − 1000ms after stimulus

onset (i.e., a 480x1000x10 dataset resulted in a patient with 10 electrodes, 480 being

the number of trials). This is an intuitive approach as it involves little change to

the data and will be termed “unfiltered” from now on, even though it should be

noted that preprocessing included band-pass filtering for very low and very high

frequencies and a notch filter at 50 Hertz. “Unfiltered” is supposed to highlight the

contrast to the other approach that was taken in this study.

As stated in the introduction, one of the most exciting possibilities in an elec-

trophysiological dataset is to look at the contributions of different frequency bands.

Therefore, in the second approach, the feature selection and classifier training was

performed on data that had been broken down into different frequency bands.
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Figure 12.4: Example for frequency decomposition method. Top left shows the original epoch

(inside the two vertical lines) that has been buffered on both sides with the 1000ms preceding and

following the epoch. On the left below is the same epoch after it has been filtered into specific

frequency bands. On the right side, for each frequency band, the power values from the hilbert

transform are plotted. Note that the transform was performed on the extended 3000ms epoch, then

the inner 1000ms are cut out to avoid edge artifacts.

.

For this, every epoch was first band-pass filtered into seven different frequency

bands with a butterworth filter. See Table 1 for detailed information on the bands.

This step led to a dataset with shape 480x1000x10x7 for a patient with 10 electrodes.

Then, a Hilbert transformation was applied to each epoch in each filtered band

and electrode, and the absolute of the resulting complex number was taken. This

corresponds to the power that a specific frequency band has at a specific point in

time. After this step, the dataset again had the shape 480x1000x10x7.

Edge artifacts are to be expected in this filtering regime. The hilbert transform

returns bad results for both ends of a time series. Therefore, a buffering approach was

used: for each 1000ms epoch, an additional 1000ms was included before and after

the epoch (i.e. from −1000ms until 2000ms with regard to stimulus onset, see Figure
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12.4). The filtering was then performed on the extended 3000ms epoch. After the

filtering was completed, the additional 1000ms on both sides were excluded again,

removing any edge artifacts from the inner 1000ms epoch. Figure 12.4 shows an

example of this frequency decomposition. The filtering and frequency decomposition

was again performed using Thorsten Kranz’s eegpy-package (https://github.com/

thorstenkranz/eegpy).

12.2.7 Feature selection

In the first two studies, pattern classifiers were trained on fMRI data. Feature

selection for these datasets was relatively easy. Voxels served as features and they

were selected based on voxel-wise ANOVAs.

With electrophysiological data, the feature selection process is more complex.

The following problems have to be considered.

1. The number of possible features is higher: There are different electrodes, dif-

ferent time-points during the course of a trial and – in the second approach –

different frequency bands. With 1000 timepoints, 7 frequency bands and 10

electrodes, this already leads to 70000 features, and many patients have a lot

more than 10 electrodes.

2. Neighboring time points are not independent of one another: If one time-point

got selected based on any criterion, the neighboring time-point would likely

get selected as well (to a lesser degree, this is also true of fMRI voxels). This

leads to cluster-like feature selection.

3. Even after artifact rejection, there will still be some peculiarities in the signal

that might lead to artificially high F-values in an ANOVA-based approach.

4. Some electrodes might systematically contain more time points with high F-

values due to differences in signal quality even though they do not differentiate

well between the classes. If a uniform cut-off criterion is taken for all electrodes,

there might be a disproportional amount of selected features from a few “bad”

electrodes.

Taken together, there is a high probability that clusters of features might be se-

lected which contain little valuable information for a pattern classification algorithm

with regard to the different classes.
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Which parts of the signal should then be selected? How can one reliably distin-

guish between “real” clusters of features and those that are caused solely by signal

disturbances? One approach in dealing with time-frequency data has been described

by Maris and Oostenveldt (Maris and Oostenveld, 2007). The basic idea is to find

clusters of significant signal differences and compare the cluster size in the real data

to cluster sizes found in shuffled data. Only those clusters that exceed cluster sizes

found in shuffled data are then retained.

Accordingly, in every electrode and every frequency band, an one-way ANOVA

was performed on every time-point with the 16 different classes as group variable.

For every electrode and frequency band, this resulted in 1000 F-values (one for each

time-point). Clusters were then defined starting from the first F-value that exceeded

1.67 and ending with the last F-value that was still above this threshold.

The F-value was taken as cut-off instead of the p-value because in different

patients, different numbers of trials were analyzed, for example 160 trials in patient

A, 320 trials in patient B – depending on how many epochs with artifacts were

removed. As a result, the F-value would have to be much higher in patient A than

in patient B for the same p-value. F-values can be better compared across subjects

with varying numbers of trials. As this F-value cut-off is only the first step in

selecting clusters, a liberal F-value threshold of 1.67 can be well justified.

Cluster size for each cluster was determined as the sum of all F-values of the

timepoints that were included in the cluster. The data on which the original cluster

search was performed was shuffled with regard to the labels and ANOVAs were again

performed, this time on nonsense classes. This was done 20 times for each channel

and each frequency band. While sufficient for determining a cut-off (see below), this

is a relatively low number of surrogates. However, increasing this number would

have resulted in excessive length of computation (analyses during cross-validation

lasted more than a week for one regular patient even with 20 surrogates). Only

the maximum of all cluster sizes for each of these surrogate runs was included in a

distribution of surrogate cluster sizes, further making the comparison conservative.

In each channel and each frequency band, clusters found in the real data were only

retained if they exceeded the 95th percentile of the surrogate cluster size distribution

(with 20 repetitions, this amounted to exceeding the highest surrogate cluster size).

During initial analysis of the data with MVPA (carried out by Thorsten Kranz),
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it was found that the pattern classification algorithm could not reliably distinguish

between classes when clusters were not restricted with this conservative surrogate-

cluster approach. Thus, throwing out clusters that do not exceed cluster-size in

shuffled data is a necessary step in selecting valuable features.

In summary, the following should be pointed out:

1. The cluster approach attenuates the effects of disturbances and noise in the

real data: The original data are shuffled with regard to their label only while

retaining the temporal structure of individual epochs. Thus, single-trial oddi-

ties in the real data are preserved in the surrogate data. Because the real data

has to measure up to and exceed the surrogate data with regard to cluster

size, this leads to selection of more reliably relevant clusters.

2. The surrogate cluster approach is performed separately on each electrode.

Comparing the real clusters in every electrode to surrogate clusters in the

same electrode prevents selection of overly many clusters in an electrode if

they are caused solely by electrode-specific quirks.

3. In the second venue of analysis, the surrogate cluster approach is applied

separately to every frequency band. Especially in the lower frequency bands,

large clusters are easily found because the power values follow a slower drift

(see Figure 12.4). This could lead to a dominance of low-frequency clusters in

the dataset. With the surrogate cluster approach, the large clusters in the low

frequency bands are compared to large clusters found in shuffled data in the

low frequency bands and, if they do not exceed the surrogate clusters, are not

included.

4. During cross-validation, the feature selection and the surrogate cluster ap-

proach were performed on the training data only (to ensure independence of

the test data). That means that for every fold of the cross-validation, new

features were selected with the surrogate cluster approach.

The data-points in the clusters that were identified in this surrogate approach

were then used for classifier training. To keep the number of features small, the

clusters were down-sampled by a factor 10, i.e. 10 subsequent data-points were

averaged, starting from the first data-point in a cluster and including the mean of
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the remainder of the division by ten (e.g. in a cluster of 35 data-points, the mean

of the last five constituted the fourth data-point after down-sampling).

12.2.8 Classifier training

A sparse multi-nomial logistic regression (Krishnapuram et al., 2005) implemented

in the PyMVPA package (Hanke et al., 2009a; Hanke et al., 2009b) was used in

this study. It was trained on all features from the surrogate cluster approach. The

punishment term lambda was 0.1 (the default in PyMVPA). The choice of this

classifier is explained in the discussion.

12.2.9 Cross-validation

For the cross-validation, the dataset was split into five parts and then balanced so

that the same number of labels for every class was present in the training dataset

and in the test dataset. Feature selection was performed on the training dataset.

Features were selected according to the surviving clusters. For example, if electrode

2 in frequency band 3 had a surviving cluster from 202 − 355ms, these datapoints

were collected in every trial from electrode 2 in frequency band 3, amounting to 153

datapoints. Datapoints were then averaged in blocks of 10ms to avoid too many

features, leaving the example cluster with 16 features. The same was done with the

test dataset. The classifier was trained on the training dataset and made predictions

on the test dataset, analogous to what was done in the previous two studies. By

comparing the classifier prediction on samples of the test dataset with the actual

target labels of these samples, one can calculate a measure of classifier accuracy.

12.2.10 Classifier predictions on the nights

After ascertaining classifier performance with the cross-validation approach, a clas-

sifier was trained on selected features of data from all five blocks of the memory task

and made predictions on the iEEG recording during the two nights.

For this, a sliding window approach was used: A 1000ms window was cut-out

every 100ms throughout the two nights. In the second (“filtered”) approach, every

epoch was split up into the seven frequency bands with the buffering approach de-

scribed above. The same features that were used for classifier training were extracted

from the the epochs of the two nights.
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Obviously, the sliding window approach led to a massive amount of data that the

classifier made predictions on. On average, 461, 796 ± 75, 978 (mean±std) epochs

were extracted from Night1 and 392, 369 ± 27, 387 (mean±std) from Night2. It is

fair to assume that very little of this data actually contains traces of neuronal replay.

Careful consideration of classifier output is necessary to sort real replay from mere

noise. In a first step, the automated artifact rejection described above was applied

to the epochs of the two nights to exclude bad signal.

Then, the classifier made predictions on every artifact-free epoch of the two

nights. The label of the prediction was obtained as well as the probability level that

was associated with the prediction.

The probability level served as the main distinguishing factor between the two

nights. The classifier returns a prediction on every epoch it is presented with. Thus,

for both nights, a label will be returned for every epoch that was presented to the

classifier. How could an increase in replay then be determined? The solution is to use

the probability level of every prediction. Real replay of neuronal activity should be

associated with a higher classifier confidence for the prediction. If neuronal patterns

reoccur more often during the experimental than during the control night, more

predictions with high confidence should be observed.

Thus, classifier probability was used as a cut-off: only predictions whose proba-

bility value exceeded a given level were retained. For systematically increasing con-

fidence levels, the ratio of remaining predictions to all predictions becomes smaller.

The drop in this ratio should be more pronounced for predictions in Night1 (dur-

ing which no replay is possible) as compared to Night2 (in which some epochs are

expected to contain replay). The main variable of interest is the difference in the

ratios of “surviving” predictions to all predictions in Night2 as compared to Night1:

Rationight2 − Rationight1, which will be called probability difference. If this differ-

ence is positive, it means that more high confidence votes are present in Night2 as

compared to Night1.

12.2.11 Surrogate classifiers

Influences from many different factors other than real replay might influence classifier

confidence (e.g. the memory task is closer in time to Night2 than to Night1). This,

combined with the huge amount of data, poses a statistical challenge. Even if more
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high confidence votes can be detected in Night2 as compared to Night1, how can

one be sure that this is not due to oddities or drifts in the data?

To lend the results more credibility, another surrogate approach was chosen.

Again, 20 surrogate classifiers were trained on data that was shuffled with regard to

the labels, i.e. on nonsense data. The surrogate classifiers also returned predictions

and probability values for every epoch of the two nights. Predictions were also

thresholded based on the probability level and the ratio of surviving predictions

to all predictions in Night2 was compared to that of Night1. If the probability

difference found in the real data exceeds the largest probability difference found in

the 20 surrogate runs, this is a strong indication that the detected replay is not

merely due to distortions in the signal as these would also be picked up upon by the

surrogate classifiers.

12.2.12 Sleep staging

Sleep-staging was performed for both nights according to the guidelines by Rechtschaf-

fen and Kales (Rechtschaffen et al., 1968) by an experienced member of the Cortical

Oscillations lab. Classifier predictions were then considered separately for every

sleep stage.

12.2.13 Relationship with behavior

Similar to the proceedings of the first two studies, it was attempted to relate classifier

predictions for the two nights with memory performance. For this, the probability

difference was calculated for each of the 16 different stimuli shown. Then, the prob-

ability difference for later remembered stimuli was compared to the probability to

later forgotten stimuli. In the five patients who performed the second (“individ-

ual”) version of the memory test (using a continuous instead of a discrete memory

measure), the memory results were dichotomized. If the distance error (the distance

between the actual associated position of an item and the location given by the par-

ticipant) exceeded 19mm (50 pixels), the stimulus was counted as forgotten. This

limit corresponds to the size of the fields of the grid in the first version (one field

in the grid was 100x100 pixels, thus a maximum of 50 in each direction from the

center of the field).
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As the probability difference in this study is considered to operationalize the

amount of replay, it was expected to be higher for subsequently remembered items

than for subsequently forgotten items.

12.3 Results

12.3.1 Behavioral results

Behavioral performance could be assessed in 10 patients only. In one patient, data

from the memory test were lost, and in the other, the memory test could not be

performed because the patient did not feel up to it.

For the patients who performed the first (“category”) version of the paradigm,

a binary remembered/forgotten result was obtained for every object-place associ-

ation. In six patients, 38.5 ± 33.3 mean±std percent of items were remembered

(range from 6.25 to 93.7), the variance being quite large. In the patients who per-

formed the second (“individual”) version of the paradigm, in which an error distance

like in the other two studies was obtained, the error distance in four patients was

36.34mm ± 18.58mm mean±std (range 8.9mm to 54.4mm). When memory per-

formance was binarized (counting error distances exceeding 19mm as forgotten),

46.9 ± 31.1 mean±std percent of items were remembered (range 18.8 to 93.7).

12.3.2 Sleepstaging

Figure 12.5 provides an overview of the time spent in different sleep-stages in the

two nights. All patients reached all sleep stages in both nights. As can be seen in

Figure 12.5, the total duration of sleep recording was significantly longer in Night1

than in Night2 as confirmed by a two-sided paired t-test (t11 = 3.019, p = 0.011).

Looking at the individual sleep-phases, a two-way repeated-measures ANOVA

with “Night1 vs. Night2” as first factor and “sleep-stage” as second factor revealed

significant main effects for both factors but no interaction (factor 1: F1,11 = 9.420,

p = 0.011; factor 2: F4,44 = 36.119, p < 0.001; interaction: F4,44 = 1.137, p = 0.351).

This confirms that the duration of sleep-stages was longer in Night1 than in Night2

and that sleep-phase duration was generally different between stages. Post-hoc two-

sided paired t-tests between Night1 and Night2 sleep-stage duration for individual

sleep-stages revealed that only sleep-stage 1 was significantly longer in Night1 than
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Figure 12.5: Time spent in the different sleep-stages in minutes for Night1 and Night2. All

patients reached all sleep-stages in both nights. Stars denote significant differences in a two-sided

paired t-test between Night1 and Night2 across patients (p < 0.05, uncorrected).

.

in Night2, but this does not survive Bonferroni-correction for multiple comparisons

(t11 = 3.105, puncorr = 0.010).

The difference in duration between the two nights is likely due to the experimen-

tal proceedings. In the first night, no paradigm was performed and sleep recording

started early in the evening, before the core staff left for the day (often 6pm). In the

second night, the learning task was started between 8pm and 9.30pm. Only after the

end of the task did recording for the rest of the night start. Also, the memory test

was performed early in the morning of the next day, which might have cut recording

short further.

Different length of night recordings should not be a problem for the presented

analyses, because the analyses were based on ratios (e.g. “In how many of all REM

sleep epochs was a high confidence prediction present?”, see below). Therefore, no

further steps were taken to assimilate night recording lengths.

12.3.3 Classifier accuracy

Classifier accuracy was low compared to the first two studies in this thesis, especially

if the data was filtered into seven different frequency bands (see Figure 12.6). Across
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Figure 12.6: Classifier accuracy. Left: For all participants, for classifiers trained on unfiltered

(dark gray) or on filtered (light gray) data. Right: Classifier performance, separately for participants

who performed the first (“category”) or the second (“individual”) version of the paradigm, again

on unfiltered and filtered data.

.

Figure 12.7: Confusion matrices for the crossvalidation runs. Plots the target (correct label)

against the prediction. The diagonal thus contains correct predictions. The matrices also inform

which stimuli are confused with one another. For participants who performed the “category” version,

one can clearly see the category structure. Thus, objects from one category are more likely to be

confused with each other.

.
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Figure 12.8: Features that were selected during the cross-validation of the unfiltered data ap-

proach. For every time point during the 1000ms epoch after stimulus onset it was determined how

often the time point was selected as a feature. This amount was divided by the total number of

features for each participant and multiplied by 100, yielding a percentage. Thin colored lines repre-

sent individual participants. Thick black line is the mean across participants. Note that percentage

values are quite small because of the fine bins (1ms bins).

twelve participants, classifier accuracy was 26.9%±10.2% mean±std in the unfiltered

data and 9.7%±3.6% (mean±std) in the filtered data, which is significantly different

in a two-sided paired t-test (t11 = 5.180, p = 0.0003). Still, classifier performance in

both approaches was significantly better than the chance level of 100/16 = 6.25%

as ascertained with a two-sided one-sample t-test (unfiltered: t11 = 6.715, puncorr <

0.0001; filtered: t11 =, puncorr = 0.0003).

When only those patients were considered who performed the “category” version

of the paradigm, classifier accuracy was 24.5% ± 5.1% mean±std in the unfiltered

data and 11.0% ± 4.1% mean±std in the filtered data. When only those patients

who performed the “individual” version were considered, the classifier accuracy was

30.1% ± 14.0% mean±std in the unfiltered data and 7.9% ± 1.1% mean±std in the

filtered data.

Features that were selected during cross-validation are presented in Figure 12.8

for the unfiltered approach. Here, it is evident that the time-points around 400ms

are most often selected as features across participants. Features most often selected

in the filtered data approach are presented in Figure 12.9. Here, it becomes evident

that in different frequency bands, different phases post stimulus presentation serve

as features: Earlier time-points are selected in a low frequency band, while later

127



12 Replay of stimulus-specific activity in intracranial EEG

Figure 12.9: Features that were selected during the cross-validation of the filtered data approach.

For every time point during the 1000ms epoch after stimulus onset and for each of the seven

frequency bands, it was determined how often the data point was selected as a feature. This

amount was divided by the total number of features for each participant and multiplied by 100,

yielding a percentage. The figure shows the mean across twelve participants. In the lowest frequency

band (4 − 8 Hertz), time-points early in processing served as features, while in a higher frequency

band (12 − 10 Hertz), later time-points were selected most often.

.

time-points are selected more often in a higher frequency band.

12.3.4 Probability difference

The probability difference between Night2 and Night1 (see Methods section “Clas-

sifier predictions on the nights”) was taken in this study as a marker for neuronal

replay. If this value is positive, it means that more high confidence classifier pre-

dictions were made during Night2 than during Night1. Figure 12.10 shows how this

metric presented itself over varying probability thresholds between 0.1 and 0.99. As

can be seen, the metric is slightly negative for the unfiltered data and is only slightly

positive for the filtered data.

More importantly, compared to the maximum probability difference found in

the predictions of surrogate classifiers, which were trained on nonsense data, the

probability difference in the real data is smaller at all thresholds, which indicates

that the difference is due to noise rather than a real effect.

Statistical testing seems rather pointless in the face of such visually obvious

mismatch of data and hypotheses. Still, two probability thresholds were selected
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Figure 12.10: Probability difference for unfiltered data (top) and filtered data (bottom). For

varying probability cut-offs between 0.1 and 0.99, the difference is shown between the ratio of

survivors to all predictions in Night2 and Night1. Bold lines depict means across 12 patients,

the shaded areas indicate the standard-deviation at each probability cutoff. Positive values would

indicate increased replay in Night2. However, the probability difference in classifier predictions that

was based on real data is below that of surrogate classifiers which were trained on shuffled data. In

the unfiltered approach, the difference is even numerically negative for high probability cut-offs.

.
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Figure 12.11: Probability difference for filtered and unfiltered data at two representative proba-

bility cut-offs. It is obvious that the differences found in the real data do not exceed the maximal

differences found in the shuffled data across patients.

.

as representatives, a low threshold of 0.2 and a higher threshold of 0.8. Results for

these thresholds are shown in Figure 12.11.

Neither at 0.2 nor at 0.8, neither for the unfiltered data nor for the filtered

data were probability differences across 12 patients significantly larger than zero

or significantly exceeded the maximal probability difference found in the surrogate

classifier predictions of 12 patients (assessed with one-sided t-tests).

The results reported so far were based on classifier predictions on all epochs of

Night1 and Night2, irrespective of whether patients were awake or sleeping. Next,

the probability difference was investigated in different sleep-stages. The procedure

is analogous to the one used above, but for each sleep-stage, only those epochs are

included that have been classified as belonging to the sleep-stage.

Figures 12.12 and 12.13 provide an overview of the results for individual sleep-

stages. As can be easily seen, the probability difference in real data again did not

exceed the probability difference in surrogate classifiers – in any of the sleep-stages,

neither for unfiltered nor for filtered data.

Figure 12.14 shows the results of the probability difference at two exemplary

thresholds of 0.2 and 0.8 across sleep-stages for the unfiltered data. T-tests again

confirmed that in no case did the probability difference found in the real data exceed

the difference found in shuffled data.
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Figure 12.12: Probability difference in the individual sleep-stages for unfiltered data. Bold lines

depict means across 12 patients, the shaded areas indicate the standard-deviation at each probability

cutoff. Again, differences found in the real data do not exceed the maximal difference found in the

shuffled data. Abbreviations: w=wake, S1=sleep-stage 1, S2=sleep-stage 2, S3+4=sleep-stages 3

and 4 (slow-wave sleep), REM=rapid eye movement sleep.

.

Figure 12.13: Probability difference in the individual sleep-stages for filtered data. Bold lines

depict means across 12 patients, the shaded areas indicate the standard-deviation at each probability

cutoff. Again, differences found in the real data do not exceed the maximal difference found in the

shuffled data. Abbreviations: w=wake, S1=sleep-stage 1, S2=sleep-stage 2, S3+4=sleep-stages 3

and 4 (slow-wave sleep), REM=rapid eye movement sleep.

.
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Figure 12.14: Probability difference at two exemplary probability thresholds in individual sleep-

stages. Again, differences found in the real data do not exceed the maximal difference found in the

shuffled data. Abbreviations: w=wake, S1=sleep-stage 1, S2=sleep-stage 2, S3+4=sleep-stages 3

and 4 (slow-wave sleep), REM=rapid eye movement sleep.

.
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Figure 12.15: Probability difference between Night2 and Night1 plotted separately for those

items that were subsequently remembered (“correct”) and those that were subsequently forgotten

(“incorrect”) for the unfiltered and the filtered approach. Bold lines depict means across 10 patients,

the shaded areas around the lines indicate the standard-deviation at each probability cutoff. Correct

items did not have a higher probability difference at probability thresholds 0.2 and 0.8 for unfiltered

or filtered data.

.

Taken together, there is no evidence for more high confidence classifier predic-

tions in Night2 as compared to Night1.

12.3.5 Relationship with behavior

As was done in the previous studies, classifier predictions were investigated with

regard to later memory performance. Figure 12.15 shows probability differences

that were calculated separately for items that were correctly remembered versus

those that were incorrectly remembered at the memory test that took place in the

morning after Night2. For this analysis, again only 10 patients were considered

because the results of the memory test were missing for 2 patients (see above).

In the unfiltered approach, the probability difference is not higher for remem-

bered (“correct”) than for forgotten (“incorrect”) items. In the filtered approach,

the difference is numerically higher in the remembered than in the forgotten items;
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Figure 12.16: Probability difference between Night2 and Night1 for the unfiltered approach, plot-

ted separately for those items that were subsequently remembered (“correct”) and those that were

subsequently forgotten (“incorrect”) across individual sleep-stages. Bold lines depict means across

10 patients, the shaded areas enveloping the lines indicate the standard-deviation at each proba-

bility cutoff. Though numerically higher in some parts, correct items did not have a significantly

higher probability difference than incorrect items at exemplary probability thresholds 0.2 and 0.8

in any of the sleep-stages.

.

however, the standard deviation clearly overlaps. At a probability level of 0.8, a one-

sided paired t-test across 10 patients revealed no significant difference (t9 = 1.149,

puncorr = 0.140). Also, t-tests at 0.2 and for the unfiltered approach did not reveal

any significant difference.

It is possible that memory-relevant replay happens only in specific sleep-stages.

Therefore, the probability difference between Night2 and Night1 for correct and in-

correct items was investigated separately for individual sleep-stages. Results are

depicted in Figure 12.16 for the unfiltered approach and in Figure 12.17 for the fil-

tered approach. In some sections of the data, the probability difference is numerically

larger for correct items, but it is obvious that the standard deviations between the

two conditions still overlap. When tested at the two exemplary probability cut-offs

of 0.2 and 0.8, the difference was never significant in one-sided paired t-tests.

12.4 Discussion

This study builds upon the previous two studies theoretically and extends them

methodologically. While using a near-identical paradigm to that of the first study,
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Figure 12.17: Probability difference between Night2 and Night1 for the filtered approach, again

plotted separately for items that were subsequently remembered (“correct”) or subsequently for-

gotten (“incorrect”) across individual sleep-stages. Bold lines depict means across 10 patients,

the shaded areas enveloping the lines indicate the standard-deviation at each probability cutoff.

Though numerically higher in some parts, correct items did not have a significantly higher proba-

bility difference than incorrect items at exemplary probability thresholds 0.2 and 0.8 in any of the

sleep-stages.

.

brain activity was recorded with intracranial EEG instead of fMRI. The use of an

electrophysiological method with high temporal resolution puts this study closer in

context to place-cell studies in rodents (Skaggs and McNaughton, 1996; Louie and

Wilson, 2001; Lee and Wilson, 2002; Foster and Wilson, 2006; Karlsson and Frank,

2009; Carr et al., 2011; Jadhav et al., 2012), which have provided the idea for the

project presented in this thesis.

The ability to extract fast-changing stimulus-specific patterns of brain activity

and search for them in subsequent sleep adds another dimension to analysis: While

the fMRI analysis only took into account the pattern of neuronal activity at one point

in time (one fMRI volume), in this study, subsequent points in time could also be

used to extract stimulus-specific patterns. In addition, replay could be investigated

with higher sampling rate during resting state and sleep: a sliding window approach

was used, extracting epochs every 100ms. In fMRI, only one volume every 2500ms

could be used. This could pose a problem, e.g. if a replay event starts between two

fMRI volumes, it should be harder to detect for a classifier.

In the following, findings from the third and last study of this thesis will be
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discussed and compared to previous results. In a last section, shortcomings of this

study, possible explanations for the lack of findings as well as suggestions for im-

provements will be presented.

12.4.1 Choice of classification algorithm

In this study, instead of a linear support vector machine, a Sparse Multinomial

Logistic Regression (SMLR) classifier was used, which has been described in the

Theoretical Part of this thesis. The choice of this particular classifier was mainly

made to ensure a seamless transition from prior analysis of this dataset which was

started by Thorsten Kranz and in which SMLR was employed. Due to the sheer

amount of EEG data (up to 50 gigabyte per patient) and the complex data processing

(filtering, frequency decomposition, cluster-based feature selection, cross-validation,

prediction on the nights), classification analysis took up to three weeks per par-

ticipant. Thus, it was important to decide on many parameters, such as choice

of classifier, early on, because trying too many different settings would have taken

a long time. Comparing different classifiers and settings would certainly be very

interesting, but the extent of such analyses was beyond the scope of this thesis.

12.4.2 Feature selection and classifier accuracy

Feature selection was more difficult, or complex, in this study than in the previous

two studies, in which either voxels with the largest discriminability were chosen, or

voxels within selected regions of interest. A simple, timepoint-by-timepoint F-value-

based selection did not yield good cross-validation results for the intracranial EEG.

The surrogate cluster approach described above selected only those contiguous parts

of the data that were, as a cluster, more significant than clusters found in shuffled

data. This approach is resistant to a variety of distortions in the data that could lead

to the selection of time-points with high F-values that actually contribute nothing

to discriminating between the classes in the test data.

With the surrogate cluster approach, classifier accuracy values were achieved

which, compared to the fMRI results, were quite low, but still significantly better

than chance across patients.

Three things became evident during feature selection and cross-validation. First,

classification accuracy was much better when data were not decomposed into dif-
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ferent frequency bands. Second, when the data was decomposed into different fre-

quency bands, features were selected in different frequency bands at different times

after stimulus onset – even though, apparently, they did not generalize well to the

test dataset. And third, classifier accuracy varied vastly across patients. In some,

it was very good, in some it was barely better than chance. It is currently not clear

why there are such dramatic differences between patients. It might be related to

general cognitive ability level, signal quality or electrode placement. This remains

to be further investigated.

One interesting result was that features in the theta-frequency range were se-

lected relatively often across patients. Even though it is not possible, with the

current classifier settings, to assess how important features from the theta band are

for accurate predictions, the fact that many clusters were selected in these bands

warrants the conclusion that information with regard to stimulus identity is present

in this band.

This is in accordance with the literature, which proposes an important role for

theta oscillations in memory formation (Klimesch, 1999; Osipova et al., 2006). Fu-

ture analysis of the data could investigate predictions made by classifiers that were

trained on features from specific frequency bands only, e.g. theta. If different fre-

quency bands have different, maybe even opposing roles in memory consolidation,

including features from all frequency bands (as was done in this study) might oblit-

erate frequency specific effects.

12.4.3 Probability difference

In order to investigate replay of stimulus specific-activity pattern, a sparse multino-

mial logistic regression was trained on the data from the memory task and made pre-

dictions on epochs during a night preceding (Night1) and a night following (Night2)

the learning task. The hypothesis was that there would be more evidence for re-

play during Night2 than during Night1. As the classifier returns one prediction for

every sample no matter whether any matching pattern is actually detected, the con-

fidence with which the classifier made the predictions was investigated. For varying

probability cut-offs between 0.1 and 0.99, the ratio of “surviving” predictions to all

predictions was calculated for Night1 and Night2.
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If the difference for these ratios (Night2-Night1) was positive, it was taken as a

sign for more confident classifier predictions during Night2, and hence as stronger

evidence for replay. Because many factors unrelated to replay could possibly in-

fluence this probability difference, surrogate classifiers were trained on shuffled, i.e.

randomized, data and also made predictions on epochs during the two nights.

Contrary to the hypothesis, probability differences in the real data were often

not even numerically larger than zero, and never in a statistically significant way.

Across patients, they were also never significantly larger than the maximum prob-

ability difference found in the surrogate data, neither for the unfiltered nor for the

filtered approach. This did not change when individual sleep-stages were analysed

separately.

The lack of significant findings might be due to several reasons. First, classifier

accuracy might have been insufficient to reliably detect reoccurrence of patterns.

Even though classifier accuracy was better than chance across patients, in many

patients it was not higher than chance level in a relevant way, especially in the

filtered approach. Refined filtering, feature selection or better algorithms might

help to increase classifier performance.

Second, signal-to-noise ratio might have been too low. Two complete nights of

sleep were recorded, and epochs were extracted every 100ms seconds, leading to

an average of 427,082 epochs per night. Theoretically, one would expect replay to

happen relatively rarely. Thus, searching for rare replay events with an algorithm

that is far from perfect, the effect might be missed. Apart from improving classifi-

cation accuracy, identifying time windows in which replay happens more often could

increase signal-to-noise ratio. Such “replay windows” could be connected to sleep

spindles (Diekelmann and Born, 2010; Bergmann et al., 2012). An algorithm that

detects sleep spindles would be very helpful in this regard. Another option for fu-

ture experiments would be to experimentally induce replay events, e.g. by exposing

patients to odor or subliminal sound cues that have been associated with stimuli

during the learning task as it has been done in other studies (Rasch et al., 2007;

Rudoy et al., 2009; Diekelmann et al., 2011).

A third explanation for the lack of results might be that replay during sleep

happens in a condensed fashion (Skaggs and McNaughton, 1996; Nádasdy et al.,

1999) or even in a reversed sequence (Foster and Wilson, 2006; Diba and Buzsáki,
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2007), as it has been observed in rats. This problem might be more relevant for elec-

trophysiological data than for fMRI data because of the higher temporal resolution.

In fMRI data, the BOLD pattern 5000ms after stimulus onset probably looks not

much different for a hypothetical neuronal firing sequence “A, B, C” than for “C,

B, A” (at least if the sequence happens fast), because the hemodynamic reponse is

sluggish and is in any case merely a substitute marker for neuronal activity. In elec-

trophysiological data, the sequence of neuronal activity might play a bigger role –

this was one of the reasons for performing the experiment with this different method

in the first place.

As has been shown in Figures 12.8 and 12.9, features from different time-points

after stimulus onset are part of the pattern; in this sense, neuronal sequences are

implicitly used for decoding. If a certain process is identified by a sequence of

neuronal events “A, B, C”, which happen 100ms apart, a reversed or condensed

replay of sequences will not be detected by the algorithm. It will be very exciting

to investigate the possibility of replay of such altered or reversed sequences, even

though pattern classification is probably not the right method of analysis for this

issue.

Lastly, the probability difference found in classifier predictions based on real

data was compared to the maximum probability difference found in a set of surro-

gate classifier predictions, that were based on shuffled data. Taking the maximum

probability difference instead of, e.g., the mean probability difference might be an

overly conservative test. However, the probability difference in the real data was also

not significantly larger than zero, which would be the most basic requirement for

supporting the hypothesis that replay activity is more pronounced in Night2 than

in Night1.

12.4.4 Relationship with sleep stages

Surprisingly, the probability difference – apart from not displaying the expected

effect of being significantly positive – also did not exhibit much variation across

different sleep stages or compared to waking state. Different sleep stages have been

hypothesized to be differentially involved in replay (Diekelmann and Born, 2010).

It might be futile to speculate on reasons for this negative finding, especially since
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the classification approach might in general not be well suited for detecting replay

in this study.

Still, there are many characteristics of sleep which could be investigated for a

special relationship with replay: sleep spindles, ripples and slow waves are prominent

motifs in sleep. In future analysis of the data of this study, it could be investigated

whether replay events occur more frequently in the vicinity of these motifs.

12.4.5 Relationship with behavior

One of the main tenets of two-step models of memory formation is that reactivation

improves consolidation which in turn improves memory. Thus, any effect that can

be taken as evidence for reactivation should also exhibit a relationship to behavior.

Therefore, the probability difference between Night2 and Night1 were analyzed

separately for items that were remembered in a memory test after Night2 and items

that were forgotten. There was no significant difference for these two categories,

neither over the complete night nor in specific sleep stages.

One factor that might have contributed to this null finding is the great variance

in memory performance in this patient sample. In some patients, nearly none of the

objects were correctly assigned to their associated location while in others, almost

all objects were correctly assigned. Thus, for some patients the task apparently was

too easy, for others too difficult. This might be also be influenced by the location of

the epileptic focus, the age of patients, severity and duration of epilepsy and general

cognitive abilities.

Using a continuous metric of memory performance in form of the error distance

as used in the previous two studies might improve this situation. Even in high-

performing patients, graded memory for individual items could still be detected.

This was done with the second version of the paradigm. As there were only four

patients who performed the second version and underwent the memory test, separate

statistical analysis did not appear sensible. Accordingly, their memory results were

also binarized. As the testing of patients is still being continued at the Clinic for

Epileptology, the addition of a few more patients with the continuous memory metric

might yield better results.
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12.4.6 Critical review of the study and outlook

With the approach used in this study, no evidence for replay of stimulus-specific

activity could be detected. Given that a similar mechanism as it was found in

rodent studies is also present in humans, an assumption which is supported by the

literature and results from the first two studies, the lack of significant findings is

probably not due to false hypotheses, but to insufficient methods for investigating

the hypotheses.

One of the most important problems is the sheer amount of data which results

from recording two complete nights of sleep. This might lead to a low signal-to-noise

ratio, especially in combination with relatively low classifier accuracy. One of the

first steps in future analyses should be to improve classifier performance by finding

different algorithms or data preprocessing.

Another important step would be to identify time-windows of interest in which

replay events are thought to occur more frequently. Comparing the time-windows

of interest to the epochs outside these windows would also constitute a different,

perhaps more sensible statistical test than comparing probability differences between

Night2 and Night1.

Also, a change in the experimental setup could help in the future: In the first

study of this thesis, two stimulus sets were used. The two sets could also be presented

to the patients: one prior to Night1 and the second prior to Night2. Increased replay

of Set1 in Night1 and Set2 in Night2 could be taken as a sign for stimulus-specific

replay. However, there would be issues regarding temporal asymmetry: Set1 stimuli

would be inherently more similar to electrophysiological recordings that happen close

in time, and the same is true for Set2 stimuli.

A similar approach as was taken in the first fMRI study would be most con-

vincing: Presenting Set1 stimuli on the evening of a night and Set2 stimuli on the

morning after. A memory test could then happen immediately after the second

memory task, or in the afternoon/evening of the same day. Finding more classifier

predictions for Set1 as compared to Set2 stimuli in the night between the two tasks

would then be excellent evidence for replay. This design, however, could be hard to

implement in the every-day routine of the ward and task difficulty would have to be

adapted to the cognitive abilities of the patients.
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Taken together, the complex data presented in this study has so far not provided

any evidence for stimulus-specific reactivation of neuronal acitivty, but merits further

analysis. In the future, an adapted version of the paradigm in additional patient

recordings could also provide more insight into the mechanisms underlying memory

consolidation in humans.
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13 General discussion

This thesis investigated replay of stimulus-specific memory reactivation during rest-

ing state and sleep using a variety of imaging and electrophysiological methods. The

main idea was to identify neuronal signatures of specific stimuli during a learning task

with multi-variate pattern analysis and track spontaneously reoccuring instances of

these neuronal signatures in resting state or sleep after the learning task. The hy-

potheses in all three studies were that, first, occurrence of learning-related neuronal

signatures should increase in frequency after the learning task and, second, that the

frequency of replay should be associated with subsequent performance in a memory

task. The frequency or confidence level of the detected re-occurrence was always

compared to a control condition.

The specific results of the three studies, as well as their benefits and shortcom-

ings, have been discussed at length above. In this general discussion, the studies will

be compared to one another with regards to methods and results. Finally, the gen-

eral merits or disadvantages of applying pattern classification approaches to resting

state in order to detect replay events shall be briefly discussed.

13.1 Comparison of the three empirical studies

13.1.1 Classifier accuracy

In the first two studies, fMRI data was recorded and used for pattern classification.

In both studies, classifier accuracy was excellent and well above chance level. In the

third study, pattern classification analyses were based on electrophysiological data

and classifier accuracy was worse than in the other studies, especially if the signal

was decomposed into different frequency bands.

There are various explanations for this. First, electrophysiological signals might

in general have worse signal-to-noise ratio than fMRI data and pattern classification

might simply not work as well on this kind of data.

Second, the lack of good classifier accuracy might be based on subject population.

It is possible that decoding data which was recorded from epilepsy patients, even

though it has been done before (van Gerven et al., 2013), does not yield classifier

accuracies which are as high as those found in healthy participants. This could be

related to problems in attention during the experiment or to altered brain function.
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Lastly, the optimal approach for this kind of data might not have been found

in the current analysis. Possibly, better classification results can be achieved if the

data are preprocessed or transformed in a different manner, i.e. working with the

first derivative or including phase information as features. This might be explored

in future analyses of the data.

13.1.2 Association with behavior

In the first two studies, an association of replay frequency with behavioral memory

performance was found. In the third study, no association with behavior was found.

This could be due to either the relatively low classifier accuracy or to different

participant populations (i.e. patients versus healthy volunteers). For the latter it

should be noted that epilepsy patients often have memory impairments and thus,

for some, the task might have been too difficult. An indication for this is the high

variability in the number of remembered object-place associations across patients.

If memory performance is very low, item-wise association between replay frequency

and memory performance might not be as meaningful as it is for performance in the

medium range.

Another factor for the lack of an association might be that only in the third

study, an entire night of sleep was recorded after the memory task. During such

long recordings, effects might be too diluted to become significant, especially if they

only occur in some parts of the data.

13.1.3 Comparison to control condition

In the first study, a set of stimuli that had been presented prior to the resting period

was detected more often by the classifier than a second stimulus set which had been

presented after. Such a set-wise reactivation is a good proof of concept and indicates

that stimulus-related, not only task-related activity is reactivated: The task was the

same for both stimulus sets. Thus, if only task-related activity had been reactivated,

there should have been no advantage for Set1 stimuli.

In the second study, such a set-wise difference was not found for emotionally

negative as compared to emotionally neutral stimuli. This, however, was also ac-

companied by a lack of behavioral difference for these two sets, which had been the
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hypothetical reason for assuming a differential effects for these two sets. If nega-

tive items are not remembered better, there really is no reason to expect that they

should be detected by the classifier more often in a resting period in which reacti-

vation might occur. Thus, the lack of a set-wise effect in the second study is likely

due to a deficit in setup of the paradigm.

In the third study, there were no two stimulus-sets that could be compared

against one another. Instead, two nights were compared against each other with

regard to classifier confidence and no effect was found. In addition to the various

problems with the third study that were already mentioned (classifier accuracy,

data size, patient population), the lack of a second, control dataset further limits

conclusions that can be drawn from the data.

13.1.4 The role of sleep

In the first and third study, periods of sleep were recorded in addition to periods

of wakefulness. Sleep should be the primary window of opportunity for replay to

happen because the brain is insulated during sleep and consolidation will not be

disturbed (Diekelmann and Born, 2010). However, in the first study the strongest

evidence for replay was found during periods of quiet waking state. In the third

study, apart from general lack of significant results, looking at sleep-stages separately

also did not yield any findings.

From this, one can either draw the conclusion that the current pattern classifi-

cation approach does not detect replay in periods of sleep or that a different exper-

imental setup is needed to investigate sleep. In the first study, sleep was recorded

during an afternoon nap. Deep stages of sleep were only recorded in half of the

participants and even then the duration of slow-wave sleep was short. It is quite

possible that recording longer periods of night sleep allows more reliable investiga-

tion of replay associated with deeper stages of sleep. Methodological improvements

of the pattern classification approach might also help in detecting replay events.

13.2 Discussion of the MVPA approach

Using pattern classification to track neuronal activity in paradigm-free periods is, to

my best knowledge, a novel approach. One study tracked neuronal activity during
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free recall (Polyn et al., 2005) and was able to decode the category of the stimulus

that was covertly being retrieved by participants. Another study decoded the hid-

den intention of whether participants were going to add or subtract two numbers

(Haynes et al., 2007) in the following trial. Both of these studies decoded brain

activity that was, in a way, internally generated. It is encouraging to know that

pattern classification can decode activity that is not induced by an external stimu-

lus. However, the two studies above still involved a paradigm in which the episodes

of internally generated activity were embedded.

Some theoretical assumptions are made in the approach used in this thesis which

need to be treated with caution. For one, the pattern of neuronal activation as a

whole is hypothesized to be similar during initial learning and subsequent reactiva-

tion across the brain. In rodent studies, there is support for this assumption because

the same sequence of place cell firing spontaneously reoccurs during sleep. However,

this does not say much about what happens in the rest of the rodent brain at the

same time. Possibly, activity in certain brain areas that were not recorded from in

these studies could be up- or down-regulated during replay events as compared to

initial learning.

A second assumption is that if classifiers can reliably decode stimulus-specific

activity during a learning task, they can also reliably detect stimulus-specific reacti-

vation during sleep. Cross-validation was used in all three studies to assess classifier

performance. However, the accuracy with which a trained classifier can detect re-

play events in the paradigm free periods cannot be assessed in our studies because

there is no information when such a replay event might occur in truth.

Both of the issues are, in part, addressed by the design of the first study with

one stimulus set preceding and one following the task. If the classifier was unable to

detect any “familiar” activity, classifier votes during the main resting period, which

was recorded at a symmetrical temporal and spatial distance to the two memory

task recordings, should be random, i.e. distributed equally across the two stimulus

sets. This, however was not the case. In addition, the fact that classifier prediction

frequencies during the resting periods after the task were associated with memory

performance for the individual stimuli further supports the idea that the classifier

is able to detect some reoccuring neuronal activity that is related to the initial

encoding of the individual stimuli.
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The degree to which a classifier detects real replay events in terms of sensitivity

and specificity can, as stated above, not be answered based on the three studies

of this thesis because we have no information on what happens during the resting

period. However, it seems plausible that good classifier accuracy in the memory task

dataset is a necessary prerequisite for good detection of replay events. In the first

study, we excluded participants in which classifier performance was not excellent

and this decision is supported by the third study, in which classifier accuracy was

not very good and there was no evidence for replay in this dataset. Thus, good

classifier accuracy is important in this new approach and it is reasonable to assume

that in taking measure to increase classifier accuracy, replay detection will also be

improved.

13.3 Future directions

Future studies should try to address the problem that the actual occurrence of

replay events is unknown in resting periods. One approach would be to identify

time windows during which replay events are more likely to occur, for example

during spindle or ripple events or in epochs of high hippocampal activity. Another

way would be to introduce an experimental manipulation which triggers reactivation

as it has been done in previous studies with odor or sound cues (Rasch et al., 2007;

Rudoy et al., 2009). If the classifier detected more replay events during these time

windows of interest than during others, it would lend strong support for classifier

based tracking of memory reactivation.

Lastly, one important aspect has not been addressed at all by the studies in this

thesis which should definitely be investigated in the future. In the rodent studies

reporting evidence for replay (Skaggs and McNaughton, 1996; Louie and Wilson,

2001; Lee and Wilson, 2002; Foster and Wilson, 2006; Karlsson and Frank, 2009;

Carr et al., 2011; Jadhav et al., 2012), sequences of neuronal firings were usually

investigated. These sequences corresponded to real episodic sequences (i.e. running

along one location after the other). This temporal aspect has not been addressed

at all in this thesis, but it could be a key aspect in further elucidating reactivation

in humans and in establishing the validity of the current methods. For example,

some well-classifiable stimuli could be presented in a specific order during a learning

task preceding a resting state and in a different order in a learning task following
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the resting period. If classifier predictions displayed the pre-rest order more than

the post-rest order, this would also be strong evidence that the classifier detects

reactivation events. In addition, sequences of events are what, in everyday life,

usually comprise an episode instead of single events. Thus, investigating sequences

of events would have more validity.

From a more general point of view, any study of memory or, by extension,

memory consolidation, should strive to achieve high ecological validity, at least in the

long run. On the one hand, psychologists try to design well controlled experiments

which can be easily replicated. On the other hand, learning object-place associations

might not be the most salient or life-like form of memory. By including more complex

stimuli such as videos or 3D environments, one might capture more relevant aspects

of every-day memory while still retaining experimental control. More salient learning

content would probably lead to better memory consolidation, which might increase

reactivation frequencies and, in turn, make it easier for the classifier to detect the

events due to better signal to noise ratio.

13.4 Summary

In this thesis, three studies were presented that used a novel method for tracking

memory reactivation in paradigm-free resting periods and sleep. Results from two

of the three studies support the notion that the method is able to detect stimulus-

specific replay, even though the reliability of the detection can not be assessed with

the current experimental design.

It was found that the frequency of replay events was associated with later

stimulus-wise memory performance in two of the three studies. This supports hy-

potheses derived from two-step models of memory formation which propose that

after initial encoding, memory traces become stable by a reactivation of the associ-

ated neuronal activity.
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Memory consolidation is a theoretical process by which initially labile memory

traces become more stable. The neuronal mechanism supporting this stabilization is

thought to include a spontaneous reactivation of the same neuronal activity that was

present during learning in task-subsequent periods of resting state and sleep. This

reactivation is hypothesized to support information transfer from the hippocampus,

which is conceptualized as a “fast learner” and temporary memory storage, to the

neocortex, in which slow reconfiguration of neuronal connections leads to an integra-

tion of new memories into an existing network of life-time experience and knowledge.

In rodents, evidence for reactivation has been found in the form of the coordinated

replay of experience-related place-cell firing sequences during sleep and quiet rest-

ing state. In humans, increased activation of memory related brain structures has

been observed after exposing participants to odor cues which were associated with

the task. Subliminal sound cues during sleep have been shown to selectively en-

hance memory for those stimuli they were associated with during a learning task. In

this thesis, a new method of identifying stimulus-specific neuronal activity patterns,

multi-variate pattern analysis (MVPA), is employed to search for these neuronal

patterns in resting state and sleep after a memory task. Three studies are presented

which use functional magnetic resonance imaging (fMRI), alone or combined with

simultaneous electroencephalography (EEG), and intracranial EEG recordings in

epileptic patients. The impact of reactivation-related neuronal activity on memory

performance for normal and emotionally negative stimuli is investigated. In two of

the three studies, a relationship between the frequency of stimulus-specific reacti-

vation and later memory performance were found, even though adequate control

conditions have to be discussed. The conclusions of this thesis are that MVPA is

well suited to decode the neuronal signatures of individual stimuli and can be useful

for tracking these neuronal signatures across periods of resting state and sleep.

149



14 Abstract

150



15 German Summary (Deutsche Zusammenfassung)

15 German Summary (Deutsche Zusammenfassung)

Deutscher Titel: Neuronale Korrelate von Gedächtniskonsolidierung während des

Wachzustandes und Schlafes

15.1 Einleitung

Gedächtniskonsolidierung ist ein theoretischer Prozess, bei dem zunächst instabile

Gedächtnisspuren in einen stabileren Zustand überführt werden. Schon zu Beginn

des vorigen Jahrhunderts wurde beobachtet, dass eine zuvor gelernte Liste weniger

anfällig für Störung durch eine zweite Liste war, wenn seit dem Lernen der ersten

Liste etwas Zeit vergangen war (Müller und Pilzecker, 1900). Auch bei neuropsycho-

logischen Patienten konnte beobachtet werden, dass jüngere Erinnerungen anfälliger

für einen Gedächtnisverlust infolge einer Gehirnschädigung waren als ältere Erinne-

rungen (Ribot, 1882).

Es wird angenommen, dass einer der zugrunde liegenden neuronalen Mecha-

nismen für diese Stabilisierung eine spontane Reaktivierung derjenigen neuronalen

Aktivität ist, die während des Lernens auftrat (Frankland und Bontempi, 2005).

Diese Reaktivierung tritt, so die Theorie, in Ruhephasen und Schlaf nach einem

Lernprozess auf und dient einem Informationstransfer zwischen Hippocampus und

Neokortex. Der Hippocampus, der oft als ein “schneller Lerner” konzeptualisiert

wird, dient in diesen Modellen als ein vorrübergehender Speicher, in dem neuronale

Aktivität aus verschiedenen kortikalen Modulen zu einer Episode gebunden wird.

Studien an Patienten bestätigen, dass eine Schädigung oder Resektion des Hip-

pocampus zu einer anterograden Amnesie führt, also zu einer Unfähigkeit, neue

Gedächtnisinhalte zu bilden (Corkin, 2002). Gleichzeitig kommt es oft zu einem

Gedächtnisverlust, der einen zeitlichen Gradienten aufweist, so dass ältere Erinne-

rungen bestehen bleiben, während jüngere Erinnerungen verloren gehen (Squire et

al., 2001). Diese Befunde sprechen dafür, dass einerseits der Hippocampus eine zen-

trale Rolle dabei spielt, neue Gedächtnisinhalte zu bilden, und dass andererseits

Gedächtnisinhalte irgendwann unabhängig werden vom Hippocampus und nach ei-

ner Schädigung entsprechend erhalten bleiben.

Der Theorie sognannter Zwei-Stufen-Modellen nach können die anfänglich im

Hippocampus gespeicherten Gedächtnisspuren erst durch wiederholte Reaktivierung
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in den langsamer lernenden Neokortex übertragen werden (Marr, 1970; Frankland

und Bontempi, 2005), wo die Reaktivierung nach und nach zu einer langsamen Re-

konfiguration neuronaler Gewichte und Verbindungen führt und wo neue Gedächtnis-

inhalte in ein bestehendes Netzwerk lebenslanger Erfahrungen und Wissen integriert

werden (Squire und Alvarez, 1995; McClelland et al., 1995; Squire et al., 2004, Hassel-

mo, 2005). Dieser Integrationsprozess erstreckt sich vermutlich über einen Zeitraum

von Monaten und Jahren, wenn man den zeitlichen Gradienten bei Patienten mit

Hippocampus-Schädigung betrachtet.

Eine implizite Annahme des Reaktivierungsmodells ist, dass Gedächtnisspuren

beim Reaktivieren vorrübergehend wieder instabil werden und der Prozess somit

zu Zeiten stattfinden muss, in denen keine Störung durch von außen einströmende

Information besteht. Ein wichtiges Zeitfenster für diesen Prozess könnte Schlaf sein,

bei dem das Gehirn weitestgehend isoliert ist von äußeren Einflüssen. Obwohl Be-

funde, dass Schlaf zu einer Verbesserung von Gedächtnis führt, schon lange bestehen

(Jenkins und Dallenbach, 1924), hat sich erst in den letzten Jahren die Erkenntnis

durchgesetzt, dass Schlaf auf nahezu alle Gedächtnisformen einen positiven Einfluss

hat (siehe Review von Diekelmann und Born, 2010) und dass dies damit zusam-

menhängen könnte, dass Schlaf eine optimale Umgebung für Reaktivierung und so-

mit Konsoliderung bietet.

In Studien an Nagetieren konnten in den letzten zwei Jahrzehnten experimentel-

le Belege gesammelt werden, die sowohl Zwei-Stufen-Modelle der Gedächtnisbildung

stützen als auch die Rolle von Schlaf bei der Gedächtniskonsolidierung: Im Hip-

pocampus von Nagetieren finden sich sogenannte “Ortszellen”, die ihre Feuerrate

zuverlässig dann erhöhen, wenn sich das Tier an einem bestimmten Ort in einer

Umgebung aufhält (OKeefe und Dostrovsky, 1971). Lernt das Tier eine räumliche

Aufgabe, etwa das Navigieren durch ein Labyrinth, so lässt sich in verschiedenen

Durchgängen immer wieder die gleiche Sequenz an feuernden Ortszellen beobachten.

Im Ruhezustand und Schlaf nach einer solchen Lernaufgabe wurde dann beobachtet,

dass es zu einem spontanen Wiederauftreten eben dieser Sequenz in den Ortszellen

kam – mehr als man unter Annahme zufälliger Sequenzen erwarten würde. Dies ist

mittlerweile sowohl im Schlaf (Louie und Wilson, 2001; Lee und Wilson, 2002) als

auch im ruhigen Wachzustand dokumentiert (Foster und Wilson, 2006; Carr et al.,

2011; Jadhav et al., 2012).
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Bei Menschen kann ein derart eindeutiger neuronaler Kode für Verhalten leider

bislang nicht gemessen werden. Jedoch wurden auch hier Belege für die Theorie

der Reaktivierung gefunden: In einer Studie wurde ein Rosenduft während einer

Lernaufgabe präsentiert (Rasch et al., 2007). Anschließend sollten die Probanden

im MRT-Scanner schlafen. Eine erneute Präsentation des Rosenduftes während der

Tiefschlafphase führte zu einer Aktivierung des Hippocampus. In einer anderen Stu-

die lernten die Probanden Assoziationen zwischen Objekten und Orten auf einem

Schachbrett. Jedes Objekt-Ort-Paar war während des Lernens zusätzlich mit einem

semantisch passenden Geräusch assoziiert. In einer anschließenden Schlafphase wur-

den den Probanden für die Hälfte der gelernten Paare die assoziierten Geräusche

subliminal präsentiert. Für diese im Schlaf “getriggerten” Assoziationen zeigte sich

in einem anschließenden Gedächtnistest eine bessere Gedächtnisleistung im Vergleich

zu den nicht getriggerten Assoziationen. Diese beiden Studien geben Hinweise dar-

auf, dass der Mechanismus der Reaktivierung sehr wahrscheinlich auch beim Men-

schen eine wichtige Rolle bei der Gedächtniskonsolidierung spielt. Jedoch wurde

Reaktivierung in diesen Studien extern induziert (durch Gerüche oder Geräusche)

und die dadurch hervor gerufenen Aktivität des Hippocampus war nicht spezifisch

für einen bestimmten Lerninhalt, wie es etwa eine Sequenz von Ortszellen ist.

Kann man auch beim Menschen spontan auftretende stimulus-spezifische Re-

aktivierung beobachten? Zunächst muss man dazu stimulus-spezifische neuronale

Aktivität identifizieren. Dies ist in den letzten Jahren zunehmend möglich geworden

durch den Einsatz von multi-variaten Mustererkennungsalgorithmen in bildgebenden

und elektrophysiologischen Verfahren. Bei diesem auch als “Mindreading” bekannt

gewordenen Ansatz werden komplexe Muster neuronaler Aktivität von einem com-

putergestützten Algorithmus einer von mehreren Klassen zugeordnet. Wenn nun ein

solcher Algorithmus stimulus-spezifische Muster unterscheiden kann, so kann man

mithilfe dessen möglicherweise auch ein Wiederauftreten dieses Musters im Ruhezu-

stand oder Schlaf entdecken.

In der vorliegenden Dissertation wurde genau dies versucht: In drei Studien wur-

den Probanden mit einer assoziativen Gedächtnisaufgabe konfrontiert. Die neuronale

Aktivität für einzelne Stimuli aus dieser Lernaufgabe wurde mit Musterklassifika-

tionsverfahren extrahiert und ein mögliches Wiederauftreten dieser “neuronalen Si-

gnatur” wurde in sich an die Lernaufgabe anschließenden Ruhe- und Schlafphasen
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untersucht. Für eine erfolgreiche Durchführung dieses Vorhabens sind zwei Voraus-

setzungen von besonderer Bedeutung: Der Musterklassifikationsalgorithmus muss

die einzelnen Stimuli mit einer hohen Genauigkeit voneinander trennen können, um

überhaupt eine Chance zu haben, ihr Wiederauftreten in einer Ruhe- oder Schlafpha-

se entdecken zu können. Außerdem ist davon auszugehen, dass eine Reaktivierung

nicht die ganze Zeit, sondern eher sporadisch während einer Ruhe- oder Schlafphase

auftritt. Da der Zeitpunkt eines tatsächlichen Wiederauftretens stimulus-spezifischer

Aktivität nicht bekannt ist, sollte ein Mustererkennungsalgorithmus kontinuierlich

Vorhersagen treffen, um die tatsächlichen Wiederauftretensereignisse nicht zu ver-

passen. Dies führt natürlich dazu, dass sehr wahrscheinlich über eine Menge Zeit-

punkte Vorhersagen getroffen werden, in denen keine Reaktivierung stattfindet. Dies

führt zu einem niedrigen Signal-zu-Rauschen Verhältnis. Es ist daher unbedingt sinn-

voll, die Vorhersagen eines solchen Algorithmus nicht bloß als solche zu betrachten,

sondern sie mit passenden Kontroll-Bedingungen zu vergleichen.

Die drei in dieser Dissertation vorgestellten Studien verwendeten ähnliche Para-

digmen, wurden jedoch mit unterschiedlichen Methoden und mit einem Augenmerk

auf unterschiedliche Aspekte durchgeführt. Im Folgenden werden sie kurz dargestellt.

15.2 Zusammenfassung von Studie 1

15.2.1 Hintergrund

In dieser ersten Teilstudie sollte die generelle Machbarkeit des oben skizzierten An-

satzes überprüft werden, also mit einem Musterklassifikationsalgorithmus das Wie-

derauftreten von stimulus-spezifischer neuronaler Aktivität zu entdecken.

15.2.2 Methoden

17 gesunde Probanden wurden gleichzeitig mit funktioneller Magnetresonanztomo-

graphie (fMRT) und Elektroenzephalographie (EEG) untersucht. Sie absolvierten

zweimal eine identische Lernaufgabe, die sich nur in den zu lernenden Stimuli un-

terschied. Hierbei wurden je 16 Objekt-Ort-Assoziationen 30 mal präsentiert und

die Probanden sollten sich merken, welches Objekt mit welchem Ort assoziiert war.

Eine Lernaufgabe mit 16 Stimuli wurde vor einer Nickerchen-Phase durchgeführt,

während der die Probanden versuchen sollten im MRT-Scanner einzuschlafen. Die
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andere Lernaufgabe mit 16 neuen Stimuli wurde nach der Nickerchen-Phase durch-

geführt. Im Anschluss an die zweite Lernaufgabe gab es einen Gedächtnistest, bei

dem die 32 Objekte aus den beiden Lernaufgaben präsentiert wurden und die Pro-

banden jeweils angeben mussten, an welcher Position das Objekt zuvor gezeigt wor-

den war. Anhand der fMRT-Daten der beiden Lernaufgaben wurde ein Musterklassi-

fikationsalgorithmus so trainiert, dass er die 32 verschiedenen Stimuli unterscheiden

konnte. Die EEG-Daten wurden lediglich dazu verwendet, festzustellen ob die Pro-

banden wach waren oder schliefen. Der Musterklassifikationsalgorithmus gab dann

Vorhersagen auf die fMRT Messung während der Nickerchen-Phase ab. Es wurde

erwartet, dass der Musterklassifikationsalgorithmus während der Nickerchen-Phase

häufiger Objekte aus der ersten Lernaufgabe detektieren würde (da eine Reakti-

vierung der Objekte aus der nachfolgend absolvierten zweiten Lernaufgabe in dieser

Phase nicht möglich war). Zudem erwarteten wir, dass die Häufigkeit, mit der einzel-

ne Stimuli in der Nickerchen-Phase durch den Musterklassifikationsalgorithmus de-

tektiert wurden, mit der Gedächtnisleistung in einem abschließenden Gedächtnistest

zusammen hängen würden.

15.2.3 Ergebnisse

Der Musterklassifikationsalgorithmus konnte die 32 verschiedenen Stimuli mit einer

Genauigkeit trennen, die deutlich über dem Zufallsniveau lag (p < 0.0001). Dennoch

wurden 6 Probanden ausgeschlossen, bei denen der Musterklassifikationsalgorithmus

nicht mit einer sehr hohen Genauigkeit die Stimuli trennen konnte. Ein weiterer Pro-

band wurde ausgeschlossen, weil er das Experiment wegen einer Toilettenpause un-

terbrochen hatte. Somit konnten 10 Probanden für die weitere Analyse betrachtet

werden. In Übereinstimmung mit den Vorhersagen zeigte sich in der Nickerchen-

Phase, dass die Vorhersagen des Musterklassifikationsalgorithmus deutlich häufiger

Objekte aus der ersten Lernaufgabe nannten als dies der Fall war, wenn Surrogat-

Musterklassifikationsalgorithmen, die auf durcheinander gewürfelten Daten trainiert

waren, Vorhersagen abgaben (p = 0.006). Dies kann als erster Beleg gewertet werden,

dass der Musterklassifikationsalgorithmus nicht nur zufällige Vorhersagen macht,

sondern einen Trend in der neuronalen Aktivität während der Nickerchen-Phase

entdeckt, der für eine Reaktivierung spricht. Zudem wurde für Objekte aus der ers-

ten Lernaufgabe die jeweilige Häufigkeit ermittelt, mit der sie vom Musterklassifi-
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kationsalgorithmus während der Nickerchen-Phase klassifiziert worden waren. Diese

Häufigkeit wurde mit der Genauigkeit in Verbindung gesetzt, mit der ein Proband

das Objekt seinem assoziierten Ort zuweisen konnte. Es zeigte sich, dass über die

Probanden hinweg höhere Klassifikationshäufigkeit während der Nickerchen-Phase

assoziiert war mit genauerem Gedächtnisabruf für die einzelnen Objekte (p = 0.027).

Dies ist ein weiterer Beleg dafür, dass der Musterklassifikationsalgorithmus Reak-

tivierung entdeckt und dass die Häufigkeit dieser Reaktivierung Relevanz für die

Gedächtnisleistung besitzt. Interessanterweise wurden die beiden hier beschriebenen

Effekte hauptsächlich in denjenigen Abschnitten der Nickerchen-Phase gefunden, in

denen die Probanden laut Schlafphasen-Einteilung wach waren.

15.2.4 Fazit

Diese erste Teilstudie liefert gute Belege für eine generelle Verwendbarkeit von Mus-

terklassifikationsalgorithmen zur Detektion von stimulus-spezifischer Reaktivierung.

15.3 Zusammenfassung von Studie 2

15.3.1 Hintergrund

Nachdem in der ersten Teilstudie gezeigt werden konnte, dass Musterklassifikations-

algorithmen Reaktivierung in Ruhephasen entdecken können, wurde ein ähnliches

Paradigma verwendet, um eine möglicherweise verstärkte Reaktivierung von emotio-

nal negativen Bildern zu untersuchen. Die Gedächtnisleistung für emotional negative

Bilder ist in der Regel besser als die für emotional neutrale Bilder (Hamann, 2001;

Kensinger und Corkin, 2003; Kensinger, 2004). Dies legt nahe, dass sie auch bes-

ser konsolidiert werden. Somit sollten sie auch häufiger reaktiviert werden. Daher

wurde in dieser Studie erwartet, dass ein Musterklassifikationsalgorithmus, der emo-

tional negative und emotional neutrale Bilder zu unterscheiden gelernt hatte, in

einer Ruhephase nach der Lernaufgabe häufiger Vorhersagen für emotional negative

Stimuli machen würde und dass die individuelle Häufigkeit der Vorhersagen erneut

mit Gedächtnisleistung assoziiert sein würden. Da in der Vorgängerstudie die Effek-

te hauptsächlich im ruhigen Wachzustand gefunden worden waren, wurde für diese

Studie nur eine Wachphase gemessen und folglich konnte auf ein simultan erhobenes

EEG verzichtet werden.
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15.3.2 Methoden

21 gesunde Probanden wurden mit fMRT gemessen, während sie eine Lernaufgabe

durchliefen, die beinahe identisch zu der Lernaufgabe in der ersten Studie war. 12

emotional negative und 12 emotional neutrale Bilder wurden 24 Mal an einer be-

stimmten Position auf dem Bildschirm gezeigt und die Probanden sollten sich für

jedes Bild die entsprechende Position einprägen. Vor der Lernaufgabe und danach

wurden jeweils 30 Minuten Ruhemessung durchgeführt. Direkt nach der Lernauf-

gabe und dann erneut nach der zweiten Ruhemessung wurde ein Gedächtnistest

durchgeführt, bei dem jedes Bild in der Mitte des Bildschirmes gezeigt wurde und

bei dem die Probanden die Position angeben mussten, an der das Bild während der

Lernaufgabe gezeigt worden war. Es wurde erwartet, dass der Musterklassifikations-

algorithmus in der zweiten Ruhephase (nach dem Lernen) aber nicht in der ersten

Ruhephase (vor dem Lernen) häufiger Vorhersagen für negative Bilder treffen würde.

Zudem wurde erwartet, dass die Vorhersagehäufigkeit für einzelne Bilder während

der zweiten Ruhephase zusammenhängen würde mit der Gedächtnisleistung für diese

Bilder während des zweiten Gedächtnistests.

15.3.3 Ergebnisse

Der Musterklassifikationsalgorithmus konnte die 24 verschiedenen Bilder mit einer

Genauigkeit voneinander trennen, die deutlich über dem Zufallsniveau lag (p <

0.0001). Kein Proband musste aufgrund schlechter Musterklassifikationsgenauigkeit

ausgeschlossen werden. Ein Proband musste wegen fehlerhafter Darbietung des Ex-

perimentes ausgeschlossen werden, so dass 20 Probanden für die Analyse übrig blie-

ben. Überraschend war der fehlende Verhaltenseffekt: Die Position von emotional

negativen Bilder wurden nicht besser im Gedächtnis behalten als die von emotio-

nal neutralen Bildern. Dies stellte die Erwartung in Frage, dass emotional negative

Bilder auch häufiger reaktiviert werden sollten als emotional neutrale Bilder, da die-

se Annahme sich auf die erwartete bessere Gedächtnisleistung stützte. In der Tat

gab es keinen Anhalt dafür, dass emotional negative Bilder vom Musterklassifikati-

onsalgorithmus in der ersten oder der zweiten Ruhephase häufiger erkannt wurden

als emotional neutrale Bilder. Das Gegenteil war der Fall: Emotional negative Bil-

der wurden sowohl in der ersten als auch in der zweiten Ruhephase seltener als in

50% der Fälle vom Musterklassifikationsalgorithmus vorhergesagt (p = 0.0006 und
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p = 0.0004). Es gab auch keinen signifikanten Anstieg der Vorhersagehäufigkeit für

emotional negative Bilder von der ersten in die zweite Ruhephase (p = 0.1). Es

wurde jedoch ein Zusammenhang gefunden zwischen der Häufigkeit, mit der ein-

zelne der gelernten Bilder vom Musterklassifikationsalgorithmus in der Ruhephase

nach der Lernaufgabe detektiert wurden und der Gedächtnisleistung im zweiten

Gedächtnistest (p = 0.008). Allerdings zeigte sich dieser Zusammenhang auch für

die Häufigkeit der Vorhersagen in der ersten Ruhephase, in der noch keine Bilder

gelernt worden waren (p = 0.014). Dies lässt sich nicht unmittelbar erklären.

15.3.4 Fazit

In dieser Studie wurde gezeigt, dass ein Musterklassifikationsalgorithmus 24 unter-

schiedliche Bilder mit hoher Genauigkeit voneinander trennen kann. Es zeigte sich

keine höhere Häufigkeit der Vorhersage für emotional negative Bilder. Allerdings

wurde auch kein Gedächtnisvorteil für emotional negative Bilder gefunden. Erneut

zeigte sich ein Zusammenhang zwischen der Häufigkeit der Vorhersagen des Muster-

klassifikationsalgorithmus für einzelne Stimuli in einer Ruhephase nach der Lernauf-

gabe und der Gedächtnisleistung in einem anschließenden Gedächtnistest. Allerdings

konnte ein solcher Zusammenhang auch für die Häufigkeit der Vorhersagen in einer

Ruhephase vor der Lernaufgabe beobachtet werden, was die Ergebnisse relativiert.

15.4 Zusammenfassung von Studie 3

15.4.1 Hintergrund

Diese dritte Studie benutzte ein nahezu identisches Paradigma wie die erste Studie,

verwendete jedoch statt fMRT als Messmethode intrakranielles EEG (iEEG) in Pa-

tienten der Klinik für Epileptologie in Bonn, die zur Abklärung eines chirurgischen

Eingriffes die intrakranielle Elektroden implantiert bekommen hatten. Die gleiche

Studie mit intrakraniellem EEG durchzuführen war deswegen von hohem Interesse,

weil diese Messmethode über eine deutlich bessere zeitliche Auflösung verfügt und

somit auch Muster entdeckt werden können, die sich schnell verändern. Zudem kann

durch eine Zerlegung des iEEG Signals in verschiedene Frequenzbänder der Einfluss

dieser Frequenzbänder auf die Dekodierung und Reaktivierung untersucht werden.
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15.4.2 Methoden

12 Patienten mit medikamentös nicht behandelbarer Epilepsie nahmen während ih-

res Aufenthaltes auf der Station an dieser Studie teil. In einer Lernaufgabe sollten sie

16 Objekt-Ort-Assoziationen lernen. Jedes Paar wurde 30 Mal präsentiert. Vor der

Lernaufgabe wurde eine komplette Nacht als Kontrollnacht gemessen. Am Abend

darauf erfolgte die Lernaufgabe. Danach wurde eine zweite Nacht gemessen. Am

Morgen nach dieser zweiten Nacht erfolgte ein Gedächtnistest, bei dem die Patien-

ten für jedes der 16 Objekte den zugehörigen Ort angeben sollten. Erneut wurde ein

Musterklassifikationsalgorithmus auf den Daten der Lernaufgabe so trainiert, dass

er die einzelnen Objekte voneinander unterscheiden konnte. Dann machte er Vorher-

sagen auf die iEEG Daten der beiden Nächte. Es wurde erwartet, dass es zu einem

Anstieg von Vorhersagen mit einer besonders hohen Konfidenz des Algorithmus von

der ersten auf die zweite Nacht kommen würde. Außerdem wurde erwartet, dass die

Vorhersagehäufigkeit für einzelne Objekte während der zweiten, aber nicht während

der ersten Nacht, mit der Gedächtnisleistung beim Gedächtnistest assoziiert sein

würde.

15.4.3 Ergebnisse

Die Klassifikationsgenauigkeit in dieser Studie war im Vergleich zu der Genauigkeit

in den beiden fMRT-Studien eher gering, jedoch trotzdem besser als Zufallsniveau

(p < 0.0001). Entgegen der Erwartungen fand sich kein Anstieg an Vorhersagen mit

besonders hoher Konfidenz von der ersten auf die zweite Nacht. Dies änderte sich

auch nicht, wenn einzelne Schlafphasen getrennt betrachtet wurden. Zudem wurden

korrekt erinnerte Objekte auch nicht häufiger vom Musterklassifikationsalgorithmus

detektiert als nicht korrekt erinnerte Objekte.

15.4.4 Fazit

In dieser Studie war die Genauigkeit des Musterklassifikationsalgorithmus sehr ge-

ring, was möglicherweise einen entscheidenden Grund darstellt für den Mangel an

Evidenz zugunsten einer Reaktivierung von neuronaler Aktivität, die mit spezifi-

schen Stimuli während einer Lernaufgabe assoziiert war.
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15.5 Abschließende Zusammenfassung

Drei Studien wurden in dieser Dissertation durchgeführt, die ein Wiederauftreten

von stimulus-spezifischer Aktivität während Schlaf- und Ruhephasen nach einer

Lernaufgabe mithilfe von Musterklassifikationsalgorithmen untersuchten. In zwei

von drei Studien wurde gefunden, dass ein Musterklassifikationsalgorithmus ver-

schiedene Stimuli, die während einer Lernaufgabe präsentiert wurden, mit sehr gu-

ter Genauigkeit voneinander trennen kann. In der ersten Studie gibt es gute Belege

dafür, dass Stimuli aus einem zuvor gelernten Set in einer anschließenden Ruhephase

häufiger vom Musterklassifikationsalgorithmus detektiert werden als Stimuli aus ei-

nem Set, das erst nach der Ruhephase gelernt wurde. Dies ist ein erster Beleg dafür,

dass sich die Methode grundsätzlich dazu eignet, Reaktivierung zu entdecken. In

zwei von drei Studien konnte außerdem ein Zusammenhang gezeigt werden zwischen

der Häufigkeit des vom Musterklassifikationsalgorithmus detektierten Wiederauftre-

tens für einzelne Stimuli und der Gedächtnisleistung für diese Stimuli während eines

Gedächtnistests. In der zweiten Studie muss dieser Befund jedoch mit Vorsicht in-

terpretiert werden: Er zeigt sich sowohl für eine Ruhephase nach der Lernaufgabe,

als auch für eine Ruhephase vor der Lernaufgabe, in der per Definition kein Wieder-

auftreten stattfinden kann. Die Ergebnisse der letzten Studie, die als einzige Studie

intrakranielles EEG statt fMRT als Messmethode benutzte, weichen stark von den

Ergebnissen der ersten beiden Studien ab. Die Genauigkeit des Musterklassifika-

tionsalgorithmus beim Trennen der einzelnen Objekte war nicht zufriedenstellend

und es wurde kein Hinweis auf vermehrtes Wiederauftreten gefunden. Dies mag an

der anderen Messmethode, der schlechteren Genauigkeit oder eines nicht optimal

konstruierten experimentellen Ablaufes liegen.

Zusammenfassend lässt sich jedoch sagen, dass zumindest für fMRT Daten die

Untersuchung von stimulus-spezifischer Reaktivierung mittels Musterklassifikations-

algorithmen in Schlaf- und Ruhephasen möglich ist und ein spannendes neues In-

strument darstellen könnte, um Konsolidierungsprozesse beim Menschen besser zu

verstehen. Die Methode sollte in weiteren Studien genauer validiert und auf ihre

Möglichkeiten und Grenzen hin untersucht werden.
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Glossary

blood oxygenation level dependent signal

blood with different degrees of oxygenation emits different fMRI signals; changes

in the oxygenation of blood are associated with local changes in neuronal ac-

tivity; the fluctuation of oxygenation over time can be measured with fMRI

and related to psychological states.

classifier

any algorithm that is employed to differentiate between two or more distinct

classes.

classifier accuracy

a measure of how well a classifier can distinguish classes in a dataset; is yielded

by comparing classifier predictions to the actual labels of samples; usually,

classifier accuracy is assessed with data that were not included in the training

of the classifier.

cross-validation

in MVPA: a method to assess how well a classifier generalizes to new data;

usually, a dataset is split into training data and validation data; the classifier is

trained on the training data only and makes predictions on the validation data;

the degree of overlap between classifier predictions on the validation data and

the actual correct labels of the validation data yields a measure of classifier

accuracy.

electrocardiography

non-invasive measurement of the electrical activity of the heart.

electroencephalography

scalp measurement of electric potentials which are generated by hundreds of

thousands of neurons.

electromyography

non-invasive measurement of muscle activity; in sleep-staging, EMG recording

of chin muscle tone can provide information about rapid eye movement sleep.
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electrooculography

non-invasive measurement of activity of eye-muscles; can be used to detect eye

movements.

event-related potential

method of analysis that is often used for electrophysiological data in which a

time series is segmented into epochs that are cut out around specific events of

an experiment; all epochs from the same condition are then averaged together,

which is thought to eliminate noise and accentuate the real part of the data;

ERPs often contain typical components (e.g. peaks and troughs at specific

times after stimulus-onset); the averages of different conditions may also be

compared to one another.

feature selection

in MVPA: the process by which only those features of a dataset are selected

that are thought to be useful for distinguishing the classes; is especially im-

portant in datasets with a high number of potential features in comparison to

a low number of training samples in order to avoid overfitting; during cross-

validation, it should be done on the training dataset only.

features

in MVPA: properties which qualify or quantify aspects of the classes in a

classification problem.

functional magnetic resonance imaging

imaging method which uses differences in blood oxygenation as a marker of

neuronal activation.

general linear model

statistical analysis which is often used for fMRI data; determines the influence

of different factors (regressors) on the activity in a single voxel.

medial temporal lobe

part of the brain which includes several subregions such as the hippocampus,

amygdala, parahippocampal cortex, entorhinal cortex and perirhinal cortex;
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is acknowledged to play an important part in memory formation, especially

episodic memory.

memory consolidation

the progressive postacquisition stabilization of long-term memory (Dudai, 2004).

multi-variate pattern analysis

umbrella term for a number of analysis methods which take into account many

properties of a dataset simultaneously; is often used to highlight the difference

to a univariate approach; popular methods include pattern classification algo-

rithms (such as linear SVMs) or representational similarity analysis.

rapid eye movement sleep

sleep stage that is characterized by rapid eye movements, flat muscle tone and

high-frequency, low-amplitude EEG; occurs more often during the second half

of a night.

slow-wave sleep

part of normal sleep, refers to sleep stages 3 and 4 (Rechtschaffen et al., 1968),

often called “deep” sleep; is characterized by low-frequency, high-amplitude

delta wave-forms; occurs predominantly in the first half of the night.

synaptic consolidation

memory stabilization that happens at a synaptic level; it “is complete within

hours after learning, and involves the stabilization of changes in synaptic con-

nectivity in localized circuits” (Frankland and Bontempi, 2005, p. 119).

system consolidation

memory stabilization that happens at a time-scale of weeks and years and

“involves gradual reorganization of the brain regions that support memory”,

which “may involve a time-dependent shift in the circuits that support memory

recall (Frankland and Bontempi, 2005, p. 119).

training

in MVPA: the process in which a classification algorithm is confronted with

data that consists of already labeled samples; based on this training data, the
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classifier finds a decision rule for classifying the different classes.

volume

in MRI, refers to a 3D image; in fMRI, one volume is typically recorded every

1-3 seconds.

voxel

in MRI, refers to a unit in a 3D image of the brain – equivalent to a pixel in

2D images.

164



Acronyms

Acronyms

BOLD blood oxygenation level dependent.

ECG electrocardiography.

EEG electroencephalography.

EMG electromyography.

EOG electrooculography.

ERP event-related potential.

fMRI functional magnetic resonance imaging.

GLM general linear model.

MRI magnetic resonance imaging.

MTL medial temporal lobe.

MVPA multi-variate pattern analysis.

REM rapid eye movement.

SVM support vector machine.

SWS slow-wave sleep.
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