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1 Introduction
In this thesis, we concern ourselves with visibility domains in computational
geometry. A visibility domain can be thought of as the region of his environment
an observer can see. In our model we assume that we are dealing with an
observer that is equipped with all-round vision. Moreover, his sight is potentially
unbounded, i.e. things that are arbitrarily far away can be seen by him, as long
as no object blocks his view.
Now, two observers at two distinct locations will not see the same things: If

they are at completely different places, like on different continents, their visi-
bility domains will typically be disjoint. If the observers, by contrast, are in
the same otherwise empty room, their visibility domains will hardly differ. The
differences between visibility domains and the nature of intersections of visibil-
ity domains are the fundamental themes of this thesis. In this work we will
encounter, in the context of two problems in discrete and computational geom-
etry, questions about the combinatorial complexity of arrangements of visibility
domains and about the hardness of path planning under cost measures defined
by visibility domains.

The first problem is to estimate the VC-dimension of visibility domains and
is addressed in Chapter 3. The VC-dimension is a fundamental parameter of
every range space that is a standard tool in computational learning theory. The
VC-dimension of visibility domains forms a measure for how complicated a set
of visibility domains can intersect.
In computational geometry, it is typically used to derive upper bounds on the

size of hitting sets via the Epsilon-Net Theorem. The VC-dimension contributes
a constant factor to this upper bound, so better bounds on the VC-dimension
directly translate into better bounds on the size of hitting sets. The special case
of the hitting set problem where the ranges are visibility polygons is the famous
art gallery problem that is a central problem in computational geometry since
the very beginnings of the field until today.
Estimating the VC-dimension of other geometric range spaces is often very

easy. The VC-dimension of visibility domains stands in sharp contrast to this.
In the last fifteen years the question attracted many researchers, among them
the most distinguished discrete geometers. Nevertheless, the VC-dimension of
visibility domains could only be determined in some special cases while the
question for the important case of visibility polygons in simple polygons is still
open.
In this thesis we develop new tools to tackle this problem. We will exploit the
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1 Introduction

symmetry of visibility domains and combine encircling arguments with a new
kind of decomposition techniques. The main ingredient of our novel approach
is the idea of relativization. This method makes it possible to replace in the
analysis of intersections the complicated visibility domains by simpler geometric
ranges such as wedges, half planes or intervals. This gives us the possibility to
use upper bounds for the VC-dimensions of the dual range spaces of the simpler
objects for our setting.
In Section 3.5 we will deal with the case of visibility polygons in simple poly-

gons. For this case, the best known lower bound is 6. We derive an upper bound
of 14 that improves significantly upon the previously known best upper bound
of 23 and halves the range of possible values for the VC-dimension.
In [30], King and Kirkpatrick ask for an upper bound for the VC-dimension

of perimeter visibility domains. In Section 3.4 we use the machinery that we
developed to show an upper bound of 7 that leaves only a very small gap to the
best known lower bound of 5.
The second problem is that of the barrier resilience of visibility domains that

Chapter 4 is devoted to. In barrier resilience problems, we are given a set
of barriers and two points s and t in Rd. The task is to find the minimum
number of barriers one has to remove such that there is a way between s and
t that does not cross a barrier. In the field of sensor networks, the barriers are
interpreted as sensor ranges and the barrier resilience of a network is a measure
for its vulnerability. Barrier resilience problems have attracted growing interest
also in the computational geometry community in recent years. The barrier
resilience of arrangements of geometric objects such as circles and line segments
have been considered.
We initiate the investigation of the very natural special case where the barriers

are visibility domains. We will therefore consider the problem of finding a path
connecting points s and t that crosses a minimum number of given visibility
domains, a so-called minimum witness path.
In Section 4.2 we will consider the barrier resilience of arrangements of visibil-

ity domains inside polygons. For visibility domains in simple polygons we will
take advantage of the topological structure of simple polygons that enables us to
find an optimal path very efficiently. In polygons with holes the situation is more
complicated. We will show for this case an approximation hardness result that
is stronger than previous hardness results in geometric settings. In Section 4.4
we will consider two different three-dimensional settings and demonstrate their
relations to the Minimum Neighborhood Path problem and the Minimum
Color Path problem in graphs. We will be able to give a 2-approximation
for one of the three-dimensional problems. For the general problem of finding
minimum witness paths among polyhedral obstacles we will show that it is not
approximable in a strong sense.
All figures in this thesis have been created with the help of the extensible

drawing editor Ipe by Otfried Cheong.
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2 Preliminaries

2.1 Geometric Preliminaries

p

q

pq

p1

p2

p3 p1

p2

p3

p4

Figure 2.1: A line segment, a polygonal chain and a closed polygonal chain.

Let us now discuss some preliminaries that we will make use of in the later
chapters and start with the remark that often in computational geometry, it
is assumed that all finite point sets we encounter are in general position. This
means (usually), that no three points lie on a common line and, in three dimen-
sional settings, no four points lie on a common plane.
For two points p, q ∈ R2, we denote by pq the line segment between p and

q, pq = {λp + (1 − λ)q|λ ∈ [0, 1]}. A polygonal chain is a subset of R2 of the
form B = ⋃n−1

i=1 pipi+1. The points p1, . . . , pn are called the vertices of B, the
segments pipi+1 are called the edges of B. If p1 = pn we call B a closed polygonal
chain, see Figure 2.1. If all vertices p1, . . . , pn−1 are pairwise distinct and if no
two edges of B intersect except at their endpoints, then B divides R2 into two
regions, one unbounded, the other one bounded. Then the topological closure
P of the bounded region is called a simple polygon. Its boundary is exactly B.
Let now P0 be a simple polygon with boundary B0 and P1, P2, . . . , Pk ⊂ P0

be pairwise disjoint simple polygons with respective boundaries B1, B2, . . . , Bk

that are all contained in P0. For every subset X of Rd, we let X◦ denote the
topological interior of X. Then the set P = P0 \

⋃k
i=1 P

◦
i is called a polygon with

holes and its boundary is B = ⋃k
i=0 Bi, see Figure 2.2.

A convex set C ∈ Rd is a set that contains for every two points a, b ∈ C also
the whole line segment ab. The convex hull ch(A) of a set ARd is the intersection
of all convex subsets of Rd that contain A. A star-shaped set S ∈ Rd is a set

11



2 Preliminaries

P

B

P0

P1

P2

P3

Figure 2.2: Left: A simple polygon P with boundary B. Right: A polygon
with holes which is the set difference between P0 and the polygons
P1, P2, P3.

that contains a point s ∈ S such that for all points p ∈ S the whole line segment
sp is contained in S.
In our settings the visibility domains will always be of the following form:

There is a point p in our ground space X = Rd, where typically d = 2 holds.
Moreover, we have a collection of objects {Hi}i∈I that block vision. The visibility
domain of p, vis(p) is defined to be the set of all points q in X, that can be
seen by p because the visibility segment pq does not intersect the interior of an
obstacle. Note that usually it is allowed that part of a visibility segment follows
the boundary of an obstacle, see Figure 2.3.

P

p
q

r

Figure 2.3: The segment pq partly follows the boundary but does not cross it.
Consequently, p sees q. The segment pr, on the other hand, crosses
the boundary and intersects the complement of P . Therefore, p does
not see r.
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2.1 Geometric Preliminaries

In chapter 3 we will have the case where p is a point inside the simple polygon
P ⊂ R2. The (only) obstacle in this case is the complement of P . The visibility
domain of p then is itself a simple polygon and is in this case also called the
visibility polygon of p. By definition, a point p ∈ P does not see any point of
the complement of P .
The vertices of a simple polygon can be divided into convex vertices and reflex

vertices. Convex vertices have an interior angle α with α ≤ π. Reflex vertices
have an interior angle α > π. If all vertices of a simple polygon are convex,
it is itself a convex polygon and every point p ∈ P sees all points of P , i.e.
vis(p) = P . Consequently, in order that a point p ∈ P can not see all points
q ∈ P , there has to be some reflex vertex r on the boundary of P , see Figure 2.4.

p

r

e
P

Figure 2.4: A simple polygon with four convex vertices and a reflex vertex r. In
red, we see a visibility cut. No point of edge e is seen by p. The
visibility polygon of p (gray) has the same number of edges as P .

It is a result of D.T. Lee [35] that the visibility polygon of a point p in a
simple polygon P with n vertices can be computed in time O(n). The edges of
the visibility polygon are edges or parts of edges of the original polygon P or
they are visibility cuts.

pPH

Figure 2.5: The visibility polygon of p (lightgray) has got more edges than the
polygon with hole P .
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2 Preliminaries

p

q

Figure 2.6: A configuration in which the intersection of two visibility polygons
has got high boundary complexity.

What is a visibility cut? Let p be some point inside P and let r be a reflex
vertex that p can see. Now take the ray with origin p and going through r. We
follow this ray from p until we arrive at r. If we go on in the same direction
there are two possibilities: It can be that the ray enters the complement of P
immediately after r. Then no visibility cut is generated. Otherwise, we follow
the ray from r to the last point f of it that still is contained in P , see Figure 2.4.
(There is such a point, as P is a closed and bounded set.) The segment rf is
now called a visibility cut of p as it cuts off the part of P lying behind rf from
the visibility polygon of p.
Let us compare the number of edges of a visibility polygon of p with the

number of edges in the original simple polygon P . Every new edge of vis(p), i.e.
every visibility cut starting at reflex vertex r, cuts off a part of P and with this
it cuts off completely one of the two old edges (edges of P ) that are adjacent
to r. This old edge is therefore not an edge of vis(p). Therefore the visibility
polygon itself has got at most n edges.
The visibility domain of a point in a polygon with holes is also a simple

polygon. Asano [3] showed that one can compute this visibility polygon in time
O(n log h), where h is the number of holes and n is the total number of vertices
of the surrounding polygon and the holes. Figure 2.5 shows an example for the
fact that a visibility polygon in a polygon with holes can have more edges than
the polygon and holes together. However, every vertex of the visibility polygon
is a vertex of P (where we count the vertices of the holes as vertices of P ) or
the endpoint of a visibility cut. There are at most as many visibility cuts as
there are vertices of P . Therefore, the visibility polygon can have at most twice
as many vertices (and edges) as P . In this respect at least, a visibility polygon
by itself is not exceedingly complex.

14



2.2 The Model of Computation

What about the intersection of two visibility polygons? Finke and Hinrichs
showed in [15] that the intersection of two polygons with n edges can be com-
puted in time O(n + k) where k is the number of edge intersections. We know
that the intersection of two arbitrary polygons with a total number of edges n
can have boundary complexity Ω(n2). It is not hard to construct a polygon with
holes P with n vertices and containing two points p, q such that the intersec-
tion vis(p) ∩ vis(q) has Ω(n2) vertices: In Figure 2.6, each of the k holes in the
horizontal row generates two edges of vis(p), each of the k holes in the vertical
column generates two edges of vis(q). The 2k edges belonging to p intersect all
the 2k edges belonging to q, resulting in at least 4k2 vertices on the boundary
of vis(p) ∩ vis(q). The total number of vertices of P in this construction is
8k + 4. The intersection of the visibility polygons of two points in the same
polygon with holes can therefore be computed in time O(n2), and this time can
be necessary, as the object to be computed can have this complexity.
On the other hand, the visibility polygons of two points in a simple polygon P

cannot have that many intersections. Instead, every edge of vis(p) can cross at
most two edges of vis(q) and these crossings can be thought of as entering and
leaving vis(q): The moment an edge e of vis(p) leaves vis(q), it enters the part
P ′ of P that is cut off by the visibility cut of q it just crossed. This part is itself
a simple polygon that is bounded by parts of the boundary of P and exactly
one visibility cut of q. As e cannot cross this visibility cut for a second time,
it will end in P ′ without having entered vis(q) again, see Figure 2.7. Therefore
the total number of edge intersections between the two visibility polygons is
bounded by 2n and so the intersection of two visibility polygons in a simple
polygon can be computed in time O(n).
For a detailed description of many visibility algorithms in the plane see for

example the book by Ghosh [18].

2.2 The Model of Computation
In this thesis we use the Real RAM as our model of computation. The Real
RAM was introduced 1978 by Michael Ian Shamos in his doctoral dissertation
[43] and has shortly afterwards become the standard model of computation in all
of computational geometry. Shamos describes the Real RAM in his dissertation
as follows:

"The model that we will adopt for most purposes is a random-access machine
(RAM) similar to that described in [Aho(74)] but in which each storage location
is capable of holding a single real number. The following operations are available
at unit cost:

1. The arithmetic operations +,−,×, /.

2. Comparisons between two real numbers (<,≤,=, 6=,≥, >).

15



2 Preliminaries

3. Trigonometric functions, EXP, and LOG. (In general, analytic functions.)
While we normally will not employ these functions, they are included in
the model to strengthen our lower bound results.

4. Indirect addressing of memory (integer addresses only).

This model is an amalgam of useful features of the straight-line, computation
tree, and Integer RAM models, and we shall refer to it as a real RAM."
(Shamos, p. 20, [43])
(The citation ’[Aho(74)]’ refers to the book The Design and Analysis of Com-

puter Algorithms by Aho, Hopcroft and Ullman, [1]).
Many quantities that appear naturally in geometric computations are non-

algebraic numbers. The effect of using the Real RAM is that we do not have
to worry about them. Another feature of our model of computation is that the
arithmetic operations have unit cost, no matter how large or small the absolute
value of the numbers involved may be.

16



2.2 The Model of Computation

pq

vis(q)P’

e

Figure 2.7: After having left vis(q) (grey), edge e will stay in P ′ (orange) and
therefore never enter vis(q) again.
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3 VC-Dimension of Visibility
Domains

3.1 Introduction

3.1.1 Definition of the VC-Dimension
We first set up the abstract framework in which we can develop our questions.

Definition 1. A range space is a pair (X,F) where X is a set and F is a subset
of the powerset of X. The set X is called the ground set or, alternatively, the
universe and the elements of F are called the ranges of the range space.

As mentioned, this definition is very general. In geometric settings, X will
often be the Rd or some subset of Rd. The ranges will usually be geometrically
defined subsets of X such as half spaces, balls, boxes, etc. The VC-dimension is
a fundamental parameter of a range space that, intuitively speaking, measures
how differently the ranges intersect with subsets of the ground set. It is named
after Vladimir Vapnik and Alexey Chervonenkis who introduced it in [47]. The
following definition of VC-dimension is adopted from [37].

Definition 2. Let (X,F) be a range space. A subset S ⊆ X is said to be
shattered by F if each of the subsets of S can be obtained as the intersection
of some F ∈ F with S. We define the VC-dimension of F , denoted by dim(F),
as the supremum of the sizes of all finite shattered subsets of X. If arbitrarily
large subsets can be shattered, the VC-dimension is ∞.

For many important geometric range spaces such as rectangles, disks or half
spaces, the VC-dimension is not hard to estimate. Take for example the VC-
dimension of disks in the plane. It is easy to see that there are point sets of size
three that can be shattered by disks, see Figure 3.1.
To see that the VC-dimension of this range space is indeed 3, assume there

were four points a, b, c, d ∈ R2 that were shattered by disks. It is clear that no
three of them can lie on a common line. So the three points a, b, c ∈ R2 are in
general position and determine a unique disk D on whose boundary they lie. If
the fourth point d ∈ R2 lies in D, there is no disk D′ that contains a, b, c but not
d. By repeating this argument for all triples, we get that a, b, c, d are in convex
position, w.l.o.g. in this order on the boundary of their convex hull.
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a
b

c
d

Figure 3.1: Left: An example of three points that are shattered by disks. Right:
The bounding circles of two disks that would contain {a, c} and
{b, d}, respectively, would have to intersect at four points.

Assume there were disks Da,c, Db,d containing exactly a, c and b, d, respec-
tively. Then the bounding circles of these disks would have to intersect at four
points, see Figure 3.1. A contradiction.

3.1.2 VC-Dimension in Computational Learning Theory
VC-dimension is essential in computational learning theory. There, we want to
learn a target function from a set of training examples. In the setting of Probably
Approximately Correct Learning (PAC-learning) we would like to be able to
estimate the expected size of a training set of examples needed to learn our
approximately correct hypothesis. When it comes to sample complexity bounds
in the case of infinite hypothesis spaces, the use of VC-dimensions allows for
deriving upper and lower bounds on the number of training examples necessary.
For an excellent introduction to computational learning theory and the role of
VC-dimensions therein see the classic textbook of Kearns and Vazirani, [28].

3.1.3 VC-Dimension of Visibility Polygons
Besides its importance in machine learning, VC-dimensions became significant
to computational geometry, chiefly through their role in the Epsilon-Net Theo-
rem by Haussler and Welzl [25].
In this chapter we are interested in the VC-dimension of visibility polygons.

Let us be a bit more precise. What we will derive are not bounds on the VC-
dimension of a single range space (X,F) but rather bounds for the supremum
of VC-dimensions over all possible range spaces of the form (P,V) where P
is a polygon (or, in another case, the boundary of a polygon) and V is the
set of visibility domains defined by points of P . One aspect that makes this
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problem challenging is that the elements of V depend heavily on the shape of
P . Let us think of the polygons as ground plans of art galleries. The size of

v2

v1

v3

a0

a1

a2

a3

a4

a5

a6

a7

Figure 3.2: Every piece of art a0, a1, . . . , a7 in the art gallery is seen by a different
subset of the set of contemplators {v1, v2, v3}.

the VC-dimension then intuitively means the following. If the VC-dimension of
Visibility polygons is d or greater, then there is an art gallery with 2d sculptures
in which we can position contemplators at d specific locations such that every
one of the sculptures is seen by a different group of contemplators (see Figure
3.2).

3.1.4 Art Gallery Theory and ε-Nets
The interpretation of a polygon as the ground plan of an art gallery leads to
the name Art Gallery Problem for the task of determining how many star-
shaped regions are needed to cover a given polygon P . Around this fundamental
problem, a rich theory has evolved in the last decades of the 20th century. The
original motivation to consider the VC-dimension of visibility domains came
from this theory of Art Galleries. Formally, Art Gallery Theory is concerned
with the following setting:

Definition 3. Given a polygon P , a point set G ⊂ P is said to guard the
polygon P if P = ⋃

g∈G vis(g) (every point in P is under surveillance by at least
one point of G). The polygon P in this context is called the art gallery and the
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3 VC-Dimension of Visibility Domains

points in G are usually called guards for P . The Art Gallery problem is to
find a guard set G of minimum size.

The Art Gallery problem was posed by Victor Klee. Variants of this prob-
lem restrict the positions of guards to the boundary of P or even to its vertices.
In the 1980s, all three variants have been shown to be NP-hard for polygons
with holes by O’Rourke and Supowit [42] and later for polygons without holes
by Lee and Lin [36]. At the end of the last millennium, Eidenbenz [13, 14]
showed that these problems are even APX-hard and so there is no polynomial
time approximation scheme, unless P = NP .
On the other hand, there are tight upper and lower bounds on the number

of guards needed to guard the polygon P in dependence on the number n of
vertices of P . An early result by [10, 16] is that a simple polygon on n vertices
can be guarded by at most bn3 c guards positioned on vertices of P . Avis and
Toussaint [4] were the first to provide an algorithm with O(n log n) running time
to compute a guard set of this size. There are many classical related problems
and algorithms in this area concerning variants such as orthogonal polygons,
exterior visibility, mobile guards and many more. A wealth of results can be
found, e. g., in O’Rourke [41] and Urrutia [45].

P

Figure 3.3: An art gallery over 3m+ 2 vertices that requires m guards.

The example depicted in Figure 3.3 shows that bn3 c guards may also be neces-
sary. On the other hand, there are many examples of polygons that have many
vertices but can be guarded with very few guards. This holds for example for
convex polygons that may have arbitrarily many vertices but can of course be
guarded by a single guard, see Figure 3.4. It is therefore quite natural to ask for
different parameters that we can relate the number of needed guards to. One
idea inspired by the example of convex polygons could be to ask for the guards
needed depending on the number r of reflex vertices of P . It can be shown
([8, 40]) that if there is a positive number r of reflex vertices of P then r guards
are always sufficient. On the other hand, there are polygons with n − 3 reflex
vertices that still can be guarded by one guard, see Figure 3.5. A different
approach is based on the following observation. The art gallery in Figure 3.3 has
the significant property that it contains many points from which only a small
portion of the total area is visible. Now assume we have a gallery where every
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g

Figure 3.4: Convex polygons are examples of polygons that can have arbitrarily
many vertices and still can be guarded by one guard.

g

Figure 3.5: There are polygons with arbitrarily many reflex vertices that can be
guarded by one guard.

23



3 VC-Dimension of Visibility Domains

point sees at least a fixed fraction 1
r
of the area of P . Can we bound the number

of guards needed by a function of r? This question leads to the area of ε-nets.

Definition 4. Given a range space (X,F) and a measure µ on X such that
µ(X) is finite and every F ∈ F is µ-measurable and given a real number ε with
0 ≤ ε ≤ 1. A (strong) ε-net for (X,F) with respect to µ is a subset N ⊂ X
such that for each range F ∈ F with µ(F ∩X) ≥ εµ(X) the intersection N ∩F
is nonempty.

How does this relate to our question? Let us set ε = 1
r
. By our assumption,

every point in P sees at least ε · Area(P ). Thus, if we set V = {vis(p)|p ∈ P}
and take (P,V) as range space and µ as the two-dimensional Lebesgue-measure
in R2, an ε-net N for (P,V) will intersect all the visibility polygons in V and
therefore every point in P is seen by some point in N . So the points of N guard
P . But how big can an ε-net be?

3.1.5 ε-Nets of Geometric Range Spaces
There are some range spaces where one can derive the existence of small ε-nets
directly. Take as an easy example the closed interval [a, b] ⊂ R and the set S of
closed subintervals S ⊆ I measured by the Lebesgue-measure. It is clear that
the set of points (ai)

b 1
ε
c

i=0 with a0 = a and ai+1 = ai + ε(b − a) for i < 1
ε
will hit

every interval of measure at least ε(b− a).
In most cases, however, it is not easy at all to construct a small ε-net. In this

situation, the VC-dimension of the range space comes into play. In [25] Haussler
and Welzl showed, that every range space with finite VC-dimension d has an
ε-net of size (8d

ε
log 8d

ε
) where d denotes the VC-dimension. In [33], Komlós et

al. improve upon this result:

Theorem 1 (Komlós et al., [33]). Every range space of VC-dimension d < ∞
has got an ε-net of size

C · d · 1
ε

log 1
ε
.

The constant C found by Komlós et al. is very small. It follows that, if one
can prove that the VC-dimension d of visibility polygons in a simple polygon
is finite, then one has shown an upper bound of C · d · r log r for the number
of guards needed to guard any polygonal art gallery where every point sees at
least an r-th part of the polygon.

3.1.6 Previous Work on the VC-Dimension of Visibility
Domains

The VC-dimension of range spaces of visibility regions was first considered by
Kalai and Matoušek [27]. They showed that the VC-dimension of visibility
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3.1 Introduction

regions of a simply connected gallery (i.e. a compact set in the plane) is finite.
In their proof they start with assuming that a large set (of size about 1012) of
points A inside a gallery is shattered by the visibility regions of the points of a
set B. They then derive a configuration as in Figure 3.6. Here, points a and b
should not see each other but the segment ab is encircled by visibility segments,
a contradiction. This kind of encircling argument also plays an important role
in our proof of the new bound in the general case. They also gave an example

a′

a

a′′

b′

b

b′′

Figure 3.6: Segment ab is encircled by visibility segments.

of a gallery with VC-dimension 5. Furthermore, they showed that there is no
constant that bounds the VC-dimension if the gallery has got holes.
For simple polygons, Valtr [46] proved an upper bound of 23. In the same

paper he gave an example of a gallery with VC-dimension 6 and showed an
upper bound for the VC-dimension of a gallery with holes of O(log h) where h is
the number of holes. In this thesis we show that the VC-dimension of Visibility
polygons of a Simple Polygon is at most 14. This result has been published in
[23].
Isler et al. [26] examined the case of exterior visibility. In this setting the

points of S lie on the boundary of a polygon P and the ranges are sets of
the form vis(v) where v is a point outside the convex hull of P . They showed
that the VC-dimension is 5. They also considered a more restricted version of
exterior visibility where the view points v all must lie on a circle around P ,
with VC-dimension 2. For a 3-dimensional version of exterior visibility with
S on the boundary of a polyhedron Q they found that the VC-dimension is
in O(log n) where n is the number of vertices of Q. King [29] examined the
VC-dimension of visibility regions on terrains. For 1.5-dimensional terrains, i.e.
x-monotone polygonal chains, he proved that the VC-dimension equals 4 and
on 2.5-dimensional terrains, i.e. polyhedral surfaces that intersect every vertical
line only once, there is no constant bound.
Kirkpatrick ([31]) showed that it is possible to guard a polygon withO(r log log r)

many perimeter guards (i.e. guards on the boundary of the polygon) if every
point on the boundary sees at least an r-th part of the boundary. In [30]
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3 VC-Dimension of Visibility Domains

King and Kirkpatrick extended this work and obtained an O(log logOPT)-
approximation algorithm for finding the minimum number of guards on the
perimeter that guard the polygon. As an open question they left whether it is
easier to find the VC-dimension in the case of perimeter guards than for general
visibility polygons. They show that the corresponding VC-dimension is at least
5. In this thesis we show that, using the technique from Gilbers and Klein [21],
one can obtain an upper bound of 7 for this VC-dimension.

3.1.7 Guarding a Polygon vs. Guarding its Boundary

w

hp

Figure 3.7: As the ratio w
h
goes to infinity, the fraction of the boundary seen by

p goes to 0. On the other hand, every point in P sees at least half of
the polygon. This latter fraction can even be made to be arbitrarily
close to 1 if we choose a polygon whose boundary follows the shape
of vis(p) more closely instead of a rectangle.

It is a basic fact, that a point p ∈ P sees the whole polygon if and only
if it sees all of its boundary. It is not the case, however, that a set of points
always guard the whole polygon if they guard its boundary. For every r > 1
there are examples of polygons in which every point sees an r-th part of the
polygon but some points see only an arbitrarily small fraction of its boundary
(see Figure 3.7). For r ≥ 3 there are also examples of polygons, where every
point sees at least an r-th part of the boundary but only an arbitrarily small
fraction of the polygon (see Figure 3.8). Therefore, bounds for the number of
guards needed in one setting do not automatically carry over to the other one.
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p1

p2

p3

Figure 3.8: Every point in P sees at least a third of the boundary of P . The
points p1, p2 and p3 see only a tiny fraction of the area of P , each.
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3 VC-Dimension of Visibility Domains

3.2 Properties of the VC-Dimension
As we discussed in the introduction, the VC-dimension is a combinatorial prop-
erty of a range space F on a ground set X (also called a set system) that asks
for the maximum number of points in X such that all subsets of this point set
can be obtained as intersections with sets F ∈ F . In the introduction, we also
gave a formal definition of VC-dimension.
A refinement of the VC-dimension is given by the Shatter Function.

Definition 5. Let for every given finite subset Y ⊆ X of the ground set X
ΠF(Y ) = {Y ∩F |F ∈ F} denote the set of subsets of Y that can be represented
as intersection of Y with a range F ∈ F . The shatter function π(X,F) : N −→ N
of a range space is then defined by

π(X,F)(m) = max
Y⊆X,|Y |=m

|ΠF(Y )|.

If X is clear from context we will also simply write πF instead of π(X,F).

The shatter function measures how many distinct intersections a subset of X
of size m can have with ranges of F . For range spaces of finite VC-dimension
there is a bound on the size of π(X,F) that is fundamental for the theory of
ε-nets, the so-called Shatter Function Lemma.

Lemma 1. Let (X,F) be a range space with finite VC-dimension d. Then for
all m ∈ N we have

π(X,F)(m) ≤
d∑
i=0

(
m

i

)
.

A proof of this lemma can be found for example in [37].
Of course, there can be subsets Y ⊆ X of size m with ΠF(Y )� π(X,F)(m). If

a finite subset Y ⊆ X with |Y | = n is shattered by F , then the set ΠF(Y ) has
2n elements. Otherwise it has got p < 2n elements, leaving a deficit of 2n − p
subsets of Y that are not intersections of Y with ranges of F . Because we will
need this quantity in our proofs, for every finite Y ⊆ X we define the coarseness
of F with respect to Y to be cF(Y ) = 2n − |ΠF(Y )|. Obviously, Y is shattered
by F if and only if cF(Y ) = 0. For a set of ranges that is the union of two
subsets, the following relation holds.

Lemma 2. Let Y be shattered by F and F = F ′∪F ′′. Then |ΠF ′′(Y )| ≥ cF ′(Y ).

Proof. Let Y be shattered by F and F be the union of F ′ and F ′′. If cF ′(Y ) =
k > 0 there are k subsets of Y that are not shattered by F ′. It is clear that for
each of these subsets Z there must be some set F ′′ ∈ F ′′ such that Z = F ′′ ∩Y .
Therefore ΠF ′′(Y ) ≥ k.

To every range space one can assign its dual range space.
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3.2 Properties of the VC-Dimension

Figure 3.9: The dual range space: All subsets of the set of three disks are stabbed
by points.

Definition 6. Let R = (X,F) be a range space. Its dual range space R∗ is
the range space (F , {Fx}x∈X) where {Fx}x∈X = {F ∈ F|x ∈ F}. The original
range space is then called the primal range space. We sometimes call the VC-
dimension of the range space that is dual to (X,F) the dual VC-dimension of
(X,F).

This means that the elements of the ground set of R∗ are the ranges of R.
The ranges of R∗ are subsets of the set of ranges of R: Every range Fx contains
as elements exactly the ranges F ∈ F that contain the element x ∈ X (of course
there can be x 6= y with Fx = Fy). A finite subset F ′ = {F1, F2, . . . , Fm} of the
ground set of R∗ is shattered if and only if for every subset T ⊆ {1, 2, . . . ,m}
there is an element xT of X that is contained in all ranges Fi with i ∈ T but in
no range Fj with j /∈ T . In this case we say that the subsets of F ′ are stabbed
by elements of X.
The range spaces of visibility domains that we are interested in have a re-

markable property. If the range space has got the form (X,VX), where VX =
{vis(x)|x ∈ X}, i.e. if the ranges are exactly the visibility domains of points in
X (as will be the case in the considered range spaces in sections 3.4 and 3.5)
then there is a canonical surjection φ : P −→ V(P ) of the ground set onto the
set of ranges. It is simply given by p 7→ vis(p). From the symmetry of the
visibility relation it follows now that p ∈ φ(q) if and only if q ∈ φ(p).
If we want to know if a finite point set S ⊆ P is shattered by visibility

domains, we normally would have to look for one point vT per subset T of S
such that vis(vT ) ∩ S = T . By the symmetry mentioned above, we can take a
different path. For a given subset T ⊆ S we can simply build the intersection
of all visibility domains of points in T , ⋂t∈T vis(t) and all of the complements of
all points in S \ T , ⋂s∈S\T (vis(s))c. If this intersection is nonempty, then every
element in this intersection is a point vT as needed.
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p

qr

vis(p)

p

qr

vis(q)

vis(r)

Figure 3.10: The symmetry of visibility: q ∈ vis(p) iff p ∈ vis(q). The visibility
polygons vis(q) and vis(r) are disjoint.

Note that, as the intersections of visibility polygons and their complements
can be computed efficiently, the above method yields a way of effectively testing,
wether a given candidate set S is shattered or not.
The second thing that is notable about this symmetry is the following. Sup-

pose you have a set S = {s1, s2, . . . , sm} of m points in P . This set is shat-
tered if and only if the set S ′ = {vis(s1), vis(s2), . . . , vis(sm)} of m visibil-
ity polygons in the dual range space is also shattered. To see this, suppose
that S is shattered. That means that for each of the subsets T ⊂ S there is
a point vT whose visibility polygon contains all points of T but no point of
S \ T . Every subset of S ′ is of the form T ′ = {vis(t)|t ∈ T} for some T ⊆ S.
The set VvT = {vis(p)|p ∈ P and vT ∈ vis(p)} is a range of the dual space.
As {vis(p)|p ∈ P and vT ∈ vis(p)} = {vis(p)|p ∈ P and p ∈ vis(vT )} and
s ∈ vis(T ) if and only if s ∈ T for all s ∈ S it turns out that T ′ = S ′ ∩ VvT .
Let in the other direction S ′ be a set of m distinct visibility domains of the

form {vis(s)|s ∈ S} (for some S ⊆ P ) that is shattered. As before, there is for
every T ′ ⊆ S ′ of the form T ′ = {vis(t)|t ∈ T} (for some T ⊆ S) a point vT ′
that lies exactly in the visibility polygons in T ′ but not in the visibility polygons
in S ′ \ T ′. By symmetry, vis(vT ′) contains exactly the points of T but not the
points of S \ T .
It follows that for these range spaces, every shattered point set in the primal

range space corresponds uniquely to a shattered set of the same size in the dual
range space. In general, if we have a polygon P and two subsets X, Y ⊆ P and a
range space (X,VY ) where the ground set is X and the ranges are the visibility
polygons of points in Y , an analogous proof yields the following lemma.

Lemma 3. Let P be a simple polygon and X, Y ⊆ P subsets of P , let VX
and VY denote the sets of visibility polygons of points in X and of points in Y ,
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respectively. A finite subset S ⊆ X of X is shattered by visibility domains of
points in Y if and only if the set {vis(s)|s ∈ S} of visibility polygons of points
in S is stabbed by points in Y . Therefore the VC-dimension of (X,VY ) equals
the VC-dimension of (Y,VX)∗, where (Y,VX)∗ is the dual of (Y,VX).

For the special case X = Y we get a corollary.

Corollary 1. Let P be a simple polygon and X ⊆ P . Then the VC-dimension
of (X,VX) is the same as the VC-dimension of its dual range space (X,VX)∗.

This Corollary is in sharp contrast to the general case. In general, the VC-
dimension of the range space can be exponentially large in the VC-dimension of
the primal space.
Exploiting the symmetry between primal and dual range spaces of visibility

domains by using Lemma 3 will become one key step in all our proofs. This
is because it turns out that we can bound the VC-dimension of the dual range
space easier than that of the primal space.
Another fundamental step that we will encounter more than once in our proofs

is to find a suitable decomposition of a given range space into subspaces and
deriving bounds for the entire space from bounds for the subspaces. Note, that
Lemma 2 is a first tool that one can use for this task.
We next formulate a property of shattered sets that will be a cornerstone in

our proofs:

Lemma 4. Let Y ′, Y ′′ be disjoint subsets of the finite set Y and F ′ and F ′′
subsets of F whose (not necessarily disjoint) union equals F , i.e. F ′ ∪F ′′ = F .
Then cF(Y ) ≥ cF ′(Y ′) · cF ′′(Y ′′).

Proof. Let Z ′ ⊂ Y ′, Z ′′ ⊂ Y ′′ such that for no F ′ ∈ F ′: Z ′ = Y ′ ∩ F ′ and
for no F ′′ ∈ F ′′: Z ′′ = Y ′′ ∩ F ′′. Then there can be no F ∈ F such that
Z ′ ∪ Z ′′ = Y ∩ F . That means that for every such combination of subsets
of Y ′, Y ′′ there is a distinct subset of Y that does not have a representation
as an intersection of Y with some F ∈ F . There are cF ′(Y ′) · cF ′′(Y ′′) such
combinations. The inequality follows.

As a special case of this, we get that for shattered Y , cF(Y ) = 0. Therefore
in this case cF ′(Y ′) or cF ′′(Y ′′) must equal zero.

Corollary 2. Let Y ′, Y ′′ be disjoint subsets of the finite set Y and F ′∪F ′′ = F .
If F shatters Y then F ′ shatters Y ′, or F ′′ shatters Y ′′.

Another property that we will make use of is the following.

Lemma 5. Let X be a set that is shattered by F , Y ( X and FY = {F ∈
F|Y ⊂ F}. Then X \ Y is shattered by FY .

Proof. Suppose not. Then there is some X ′ ⊂ X \ Y such that F ∩X \ Y = X ′

for no F ∈ FY . But then there can be no F ∈ FY with X ∩ F = X ′ ∪ Y . As
there can also be no such set in F \ FY , X cannot be shattered by F .
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The next conceptual building block of our proofs besides exploiting the sym-
metry and finding a good decomposition is something we shall name relativiza-
tion.

Definition 7. Let (X,F), (X,R) be two range spaces on the same ground set
and let Y ⊆ X and F ∈ F . If there is some R ∈ R such that Y ∩ F = Y ∩ R
then we say that F is R-like relative to Y .

The general method of relativization we will use to show upper bounds on
the VC-dimension of visibility domains can be described as follows.

1. We assume that the VC-dimension of our range space (X,VY ) is some
integer d.

2. We derive the existence of a point set S of size d that is shattered by
visibility domains.

3. We use Lemma 3 to obtain that the visibility domains of points in S are
stabbed.

4. As a consequence of Lemma 5, for each S ′ ( S the visibility domains of
S ′ are stabbed by points in ⋂s∈S\S′ vis(s).

5. We find some subset S ′ ⊆ S such that the visibility domains of points in
S ′ are R-like relative to ⋂s∈S\S′ vis(s), where R is a set of ranges such
that the VC-dimension of (Y,R)∗ is less than d.

6. We conclude, that the visibility domains of points of S ′ cannot be stabbed.
A contradiction.

While this general structure is common to all of our proofs for bounding VC-
dimensions, there is no standard way for finding an appropriate S ′. Especially
in Section 3.5 proving that such a subset always exists is the most challenging
part of the proof.
From the assumption that S is shattered by visibility domains it follows that

for every subset T ⊆ S there is a view point vT that sees all points t ∈ T but no
point of S \ T . We will often choose one such set V of 2|S| view points. Then
for every subset T of S we will denote by VT the subset of V containing exactly
the points that see at least T , VT = {v ∈ V |T ⊂ vis(v)}, see Figure 3.2.
After we have found S ′, we still have to show that the visibility domains of S ′

are R-like. For this, we make use of encircling type arguments. We mentioned
before, that Kalai and Matoušek used an encircling argument in their proof in
[27]. Encircling arguments are used to show that two points p, w see each other.
To show this, we will provide a polygonal chain consisting of visibility segments
(i.e. line segments connecting points that see each other) that encircles the
segment pw. It follows that p and w see each other. Otherwise there had to
be some point x ∈ R2 \ P on the segment. As P is simple, there must be a
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a

b

c

v{a,b} v{a,c}

Figure 3.11: The view point that sees a and b but not c is called v{a,b}. View
points v{a,b} and v{a,c} are both in V{a}.

path from x to some point y outside the convex hull of P that is completely
contained in R2 \ P . But this path must cross at least one of the encircling
visibility segments. A contradiction.
Note, that it does not suffice to have a cyclic polygonal chain starting and

ending in p and going through w, but one has to ensure that the polygonal chain
really encircles the segment. We will show later on how that can be achieved.
The kind of ranges by which we will replace visibility domains most often

is wedges. Therefore, the following Theorem by Isler et al. [26] will become
important. If we let W be the set of closed wedges in R2, it states that the VC-
dimension of the range space (R2,W)∗ (i.e., the range space dual to (R2,W)) is
at most 5.

Theorem 2. (Isler et al.) For any arrangement of six or more wedges, there
is a subset T of wedges for which no cell exists that is contained in exactly the
wedges of T .

For convenience, we include a short proof based on the ideas in [26].

Proof. By Euler’s formula, an arrangement of n wedges has n + k + 1 many
cells, where k denotes the number of half-line intersections. Since two wedges
intersect in at most 4 points – in which case they are said to cross each other
– we have k ≤ 4

(
n
2

)
. Thus, an arrangement of 6 wedges has at most 67 cells.

We are going to provide an accounting argument which shows that for each
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(i) (ii)

W W

Figure 3.12: In (i) and (ii), respectively, the shaded cells are contained in wedge
W only.

wedge one cell is missing from a maximum size arrangement (due to a shortage
of intersections), or one of the existing cells is redundant (because it stabs the
same subset of wedges as some other cell does). This will imply that at most
67− 6 = 61 many of all 26 = 64 different subsets can be stabbed by a cell, thus
proving the theorem.
If at least one of the two half-lines Li, Ri bounding the wedge Wi intersects

all the other half lines Lj, Rj, j 6= i, then the (bounded) cell in Wi incident
to its apex and an infinite cell of Wi are stabbing the same subset of wedges,
namely the singleton set {Wi}. So, if there is at most one cell stabbing {Wi},
then both half-lines Li, Ri do not cross all the half-lines of all other wedges.
Therefore there are at least two crossings missing compared to a maximally
crossing arrangement. Let d denote the number of wedges Wi that contain at
least two cells stabbing {Wi} and let m denote the number of pairs of half-lines
from different wedges that do not cross.
Then m ≥ 6 − d, (6 − d is the number of wedges that do not contain two

singleton-cells. Every of the bounding half-lines of those wedges lacks at least
one crossing and if we sum up the missing crossings of all the half-lines every
crossing is counted at most twice). Plugging this into the formula above, we get
that the arrangement has got n+ k + 1 = 67−m ≤ 61 + d many cells.
As the d additional cells are redundant, we have at most 61 combinatorially

distinct cells.
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3.3 Points on the Boundary
In this section we will start by considering the question how many points on
the boundary of a simple polygon R can be shattered by visibility polygons of
points in the whole ofR. In this context we are able to present the decomposition
technique used in Section 3.4 without having to care about intricate subtleties
of boundaries of ranges and without having to invoke coarseness. On the other
hand, we will see relativization to wedges as in the general case that is described
in Section 3.5, but in a much less complicated setting. We will also explain the
encircling arguments in great detail and try to make very clear how the encircling
arguments enable the relativization to simpler ranges. So this section may be
seen as preparatory for the later sections on VC-dimensions. On the other hand,
the result proven is interesting in its own right and does not follow from the
results in sections 3.4 and 3.5. Most of the material in this section has been
published in [21].
We will prove the following Theorem.

Theorem 3. No set of 14 points on the boundary of of a simple polygon can be
shattered by interior visibility regions.

We first explain the main idea of the proof of Theorem 3. We shall illustrate
how Corollary 2 will be put to work in this proof.
Kalai and Matoušek [27] obtained a finite upper bound on the VC-dimension

of interior visibility domains by proving that, for shattered point sets beyond
a certain size, the impossible configuration depicted in Figure 3.13 (i) would
occur.
We shall use similar configurations, but in a different way. Let us consider

a situation like in Figure 3.13 (ii), where the view points w′, w, w′′ all can see
the points l, r and a radial sweep around any of w′, w, w′′ would hit the points
l, p, r in the same order. If w′ and w′′ can also see point p, then w must be able
to see p, too, as this figure illustrates. Consequently, those view points of V{l,r}
that are able to see p form a contiguous subsequence, in radial order around p.
Our proof of Theorem 3 draws on this property, that will be formally defined
in Definition 9 below. But how can we guarantee this property? To ensure that
segment pw is indeed encircled by visibility segments, as shown in Figure 3.13
(ii), it suffices to show that the following condition is fulfilled. Points l and w′
lie on one side of the line L(p, w) through p and w, and r and w′′ lie on the
other side of this line. Then we obtain polygonal chains p − w′ − l − w and
p−w′′− r−w that consist of visibility segments and that together encircle the
segment pw, therefore guaranteeing that p must see w. If the points l, p, r lie
on the boundary of the polygon, this condition is ensured by providing a line L
that separates {l, p, r} from the view points.
Now we formally define the property.
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p

l r

w

p

w

w′

w′′

(i) (ii)

L

Figure 3.13: In (i), segment pw cannot be accessed by the boundary of R which,
by assumption, encircles these six points. Hence, this configuration
is impossible. For the same reason, the dotted segment in (ii)
connecting p to w must be a solid visibility segment.

Definition 8. A (closed) half plane is a set H ⊂ R2 of the form H = {p ∈
R2|〈p, q〉 ≥ r} for some q ∈ R2 and r ∈ R. A (closed) wedge W ⊂ R2 is a set of
the form H1 ∩H2 for two closed half planes H1, H2.

We will usually define a wedge W rather by its apex and two segments lying
on the rays that bound W or just by two nonparallel segments on its boundary
starting in its apex than by providing two half planes.

Definition 9. Let R′ be a subset of R. We call a subset R′′ of R′ wedge-like
relative to R′, if it is the intersection of R′ with some wedge W ⊂ R2.

Now we will give a showcase example for a situation in which the visibility
polygon of a point is wedge-like relative to some subset of P .

Lemma 6. Let l, p, r, L, and Qp be situated as shown in Figure 3.14 (i) or (ii).
Let V be a finite point set that lies completely in wedge Qp that is defined by
lines through p and l and through p and r, respectively. Then vis(p) is wedge-like
relative to vis(l) ∩ vis(r) ∩ V .

Proof. Let Wp be the smallest subwedge of Qp that contains all points of V ∩
vis(p). Suppose that w′ and w′′ lie on the two rays that bound Wp and that
{w′, w, w′′} ⊆ vis(l)∩ vis(r)∩ V ⊂ Qp appear in counterclockwise order around
p, as shown in Figure 3.15. Then w′, w′′ ∈ vis(p) holds, that is, w′ and w′′ can
see l, p, r. If w ∈ V then segment pw is contained in an interior domain of the
cycle

p− w′ − l − w − r − w′′ − p.
We observe that this fact is independent of the position of w′ with respect to
the line through l, w. Similarly, it does not matter if w′′ lies to the left or to the
right of the line through w and r. Hence, w sees p, that is, w ∈ V ∩vis(p). This
proves that (vis(l) ∩ vis(r) ∩ V ) ∩Wp ⊆ (vis(l) ∩ vis(r) ∩ V ) ∩ vis(p). On the
other hand, there can be no point w ∈ vis(l) ∩ vis(r) ∩ V that is in V ∩ vis(p)
that is not in Wp as by definition of Wp, Wp contains all these points.
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Notice, that for our proof it does not matter, if vis(l) ∩ vis(r) ∩ V is empty.
Notice further, that in Figure 3.14 the points of V are separated from {l, p, r}
by a line L, but that this is not necessary for the proof. It is, however, essential
for our proof that all points of vis(l) ∩ vis(r) ∩ V lie in Qp. Intuitively, this
ensures that all points of vis(l) ∩ vis(r) ∩ V see l, p, r in the same radial order.
Figure 3.16 shows an example where this condition is not met and vis(p) is not
wedge-like relative to vis(l) ∩ vis(r) ∩ V .

p
l r

p
l r

L

(i) (ii)
Qp Qp

Figure 3.14: Two configurations addressed in Lemma 6.

p
l r

p
l r

L

(i) (ii)
w′

w

w′′
w′

w

w′′

Figure 3.15: In either case, segment pw is encircled by visibility edges. Thus, w
sees p.

Now we are ready to give the proof of Theorem 3. We will assume that there
are 14 points on the boundary of a simple polygon that can be shattered by
visibility domains of points in R and derive a contradiction.

Proof. Let R be a simple polygon, let S be a set of 14 points on the boundary
D of R.
We choose two points l, r ∈ S such that the two boundary segments, τ and β,

of R between l and r contain 6 points of S each. Let T := τ ∩S and B := β∩S.
We may assume that the line L through l and r is horizontal; see Figure 3.17
for a sketch.
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p

l

r

R

w′

w

w′′

w′′′

Figure 3.16: Here the view points seeing l, p, r do not appear consecutively
around p.

L
l r

τ

β

T

B

R

p

Figure 3.17: Some notations used.

38



3.3 Points on the Boundary

Now let us assume that S can be shattered by the set V = {vis(w)| w ∈ R}
of visibility regions of points in R. By Lemma 5 this implies the following. The
set T ∪ B is shattered by the ranges of V{l,r}, the set of visibility polygons of
points in R that see l and r. In other words, for each U ⊆ T ∪B there is a view
point wU ∈ R such that vis(wU) ∩ S = {l, r} ∪ U.
Now we define two subsets of V{l,r}, namely P ′ and P ′′, where P ′ = {vis(w)|w

lies below L} and P ′′ = {vis(w)|w lies above L} (both sets including visibility
polygons of points lying on L). By Corollary 2, T is shattered by P ′ or B is
shattered by P ′′. Let us w.l.o.g. assume that T is shattered by P ′. That means
that for each U ′ ⊆ T there exists a view point w ∈ R below line L that sees l
and r such that U ′ = T ∩ vis(w).
Now we fix a set of view points from P ′, i.e. we choose for every U ′ ⊂ T one

point vU ′ ∈ R that

(i) lies below line L

(ii) sees l and r, and

(iii) sees of T exactly the subset U ′.

We then define

V := {vU ′|U ′ ⊆ T} and, for all p ∈ T, Vp := {vU ′ ∈ V |p ∈ U ′}.

Thus, from each view point in Vp at least l, r and p are visible. By Lemma 3
it follows that the set of visibility polygons of points in T can be stabbed by
points in V . Now, our main task is in proving the following fact.
Lemma 7. For each p ∈ T , vis(p) is wedge-like relative to V , i.e. there exists
a wedge Wp (with apex p) such that Vp = Wp ∩ V holds.

Proof. We distinguish two cases.
Case 1: Point p lies above line L. We define the wedge Wp by p and the two
half-lines from p through those view points vl, vr ∈ Vp that maximize ](vl, p, vr).
Clearly, direction “⊆” of our lemma holds by definitions of Wp and Vp.
Since p and vl, vr are separated by line L, both visibility segments pvl and

pvr must cross L. We claim that both crossing points, cl, cr must be situated
on L between l and r. In fact, all other orderings would lead to a contradiction.
Namely, if r was lying in between cl and cr, then r could not be contained in
the boundary of R, which cannot intersect visibility segments. In Figure 3.18
the combinatorially different configurations are depicted. If both cl and cr were
to the right of r, then vl and vr could not be contained in R; see Figure 3.19.
This settles the claim: cl, cr must indeed be between l and r, see Figure 3.20.
We are in the situation depicted in Figure 3.14 (i), and conclude from Lemma 6
that vis(p) is wedge-like relative to V , and the proof of Case 1 is complete.
Case 2: p lies below line L. Let Qp denote the wedge with apex p defined by
the half lines from l and r through p; see Figure 3.21 (i). We claim that Vp ⊂ Qp
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p

l rcl cr

vl vr

vl

vr

cl crl

p

r

p

l rcl cr

vl vr
(i) (ii) (iii)

L

Figure 3.18: If r was between cl and cr it could not be reached by the boundary
of R, which passes through p.

p

l r cl cr

vl vr

R

Figure 3.19: If cl, cr were to the right of r then the boundary of R, which visits
l, r, p in counterclockwise order, could not encircle vl, vr.

p

l rcl cr

vl

vr

Wp Qp

Figure 3.20: View point set V is contained in wedge Wp ⊂ Qp.

p

l r

vl vr
(i) (ii)

(iii)

Qp

p

l r

v′

p

l r

Wp

Figure 3.21: (i) Wedge Qp is defined by p and the half lines from l, r through p.
(ii) As the boundary of R visits l, r, p in counterclockwise order, it
could not encircle v′. (iii) Wedge Wp is defined by the view points
vl, vr of Vp that have a maximum angle at p.
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holds. Indeed, if some point v′ ∈ Vp were situated outside Qp then R could not
contain v′, because the boundary of R visits l, r, p in counterclockwise order; see
Figure 3.21 (ii).
Now let vl, vr be those view points in Vp that maximize ](vl, p, vr). As in

Case 1, let Wp be the wedge with apex p defined by the half lines from p trough
vl, vr, respectively; see Figure 3.21 (iii). We have Wp ⊆ Qp and are in the
situation depicted in Figure 3.14 (ii). As in Case 1, Lemma 6 implies that
vis(p) is wedge-like relative to V . This completes the proof of Lemma 7.

Now let U ′ ⊆ T and p ∈ T . By Lemma 7 we obtain the following equivalence
for the view point vU ′ ∈ V of U ′.

vU ′ ∈ Wp ⇐⇒ vU ′ ∈ Vp ⇐⇒ p ∈ U ′.

That is, for each subset U ′ of T there exists a point (namely, vU ′) that is con-
tained in exactly those wedges Wp where p ∈ U ′. But this is impossible because
of |T | = 6. A contradiction to Theorem 2. This concludes the proof of Theo-
rem 3.

We can interpret this result as a result about the VC-dimension of an ap-
propriately chosen range space. For the boundary D of our polygon R we can
consider the set of ranges VD = {vis(p) ∩D}p∈R and the resulting range space
(D,VD). By Theorem 3 it follows that the VC-dimension of this range space
is at most 13. As mentioned in the Introduction, every result about the VC-
dimension of a range space leads to an upper bound on the size of ε-nets for
this space and this in turn can be converted into a theorem about art gallery
guarding. Let C denote the constant from the Epsilon-Net Theorem.

Theorem 4. If each point in a simple polygon R sees at least an rth part of the
the polygon’s boundary D, then R can be covered by 13 ·C · r log r many guards
on the boundary.

Proof. With the notation from above and Theorem 3 we infer that the VC-
dimension of (D,VD) is at most 13. By the Epsilon-Net Theorem, there exists
an 1/r-net N ⊂ D of size at most 13 ·C · r log r. By assumption, each set in VD
contains a point p of N . That is, the visibility polygon of each w ∈ R contains
some point p ∈ D and therefore each w ∈ R is visible from some point p ∈ N
in the set of guards N .
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3 VC-Dimension of Visibility Domains

3.4 Points and Guards on the Boundary
3.4.1 Perimeter Visibility Domains
Let P be a simple polygon with boundary B. Remember that for a point p ∈ P
its visibility polygon vis(p) is the set of points v such that the whole segment
pv is contained in P . Now we restrict our attention to the portions of visibility
polygons on the boundary, vis(p)∩B. For every p ∈ B we will call this boundary
portion its perimeter visibility domain and denote it by V (p). In this section we
are only concerned with this kind of visibility domains, so we will refer to them
simply as visibility domains, below. We are now interested in the VC-dimension
of the range space (B,V) with V = {V (b)}b∈B.
As in the section before, we will first assume that a point set S of a certain

size can be shattered. Then we will show that the visibility domains of most
of these points look like much simpler ranges if they are relativized to the right
subset of B. This time the simpler ranges are not wedges but certain subsets of
B that we call intervals.

P

I

B
p

vis(p)

I

B2

Figure 3.22: Left: I is an interval in B. Right: B2 is interval-like relative to
vis(p) as it is its intersection with I.

Definition 10. A subset I of B is called an interval in B if there is a continuous
injective function π : [0, 1] −→ B with image I or if I = ∅ .

Definition 11. Let B1 be a subset of B. We call a subset B2 of B interval-like
relative to B1, if its intersection with B1 equals the intersection of B1 with some
interval in B.

The key geometric insight that we will need is formulated in the following
lemma:

Lemma 8. Let a1, a2 ∈ B be two distinct boundary points such that B \{a1, a2}
splits into two connected components C and D. Then for every point c ∈ C,
V (c) is interval-like relative to D ∩ V (a1) ∩ V (a2).

Proof. We have to find an interval I in B such that I∩D∩V (a1)∩V (a2) equals
V (c) ∩D ∩ V (a1) ∩ V (a2).
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a1 a2

c

D

C

a1 a2

c

D

C

f

`

Figure 3.23: Left: The intersection of the visibility domains of a1 and a2 and D.
Right: The parts of V (a1) ∩ V (a2) ∩ D that are also in V (c) (not
dashed) are exactly the ones between the two points f and ` (that
define an interval).

Let to this end π : [0, 1] −→ D ∪ {a1, a2} be a continuous bijective map with
π(0) = a1 and π(1) = a2.
If the intersection D ∩ V (c) of D with the visibility domain of c is empty, we

set I = ∅. Otherwise there are values f = inf{x ∈ (0, 1) : π(x) ∈ V (c)} and
` = sup{x ∈ (0, 1) : π(x) ∈ V (c)}. We set I as the image of [f, `] under π,
I = π[[f, `]]. It remains to show that the two intersections I∩D∩V (a1)∩V (a2)
and V (c) ∩D ∩ V (a1) ∩ V (a2) are indeed equal.
By the definition of I it is clear that V (c) ∩ D ∩ V (a1) ∩ V (a2) ⊂ I ∩ D ∩

V (a1) ∩ V (a2), as V (c) ∩D ⊂ I ∩D.
So let v ∈ I ∩ D ∩ V (a1) ∩ V (a2). Assume to a contradiction that v /∈

V (c) ∩ D ∩ V (a1) ∩ V (a2) (i.e. c does not see v). The two visibility segments
a1v, a2v together with the boundary portion C bound a polygon P ′ that has no
proper intersection with D (see Figure 3.4.1). Now take a look at the shortest
path in P from c to v. By our assumption, the path bends at some point of B,
because otherwise c would see v. As the visibility segments a1v, a2v are straight
line segments with endpoint v, the shortest path from c to v cannot properly
cross one of these segments.
As c lies in P ′ it follows that the whole shortest path from c to v stays inside

P ′. Therefore the path does not bend at a point belonging to D. Consequently,
it bends at some point of C ∪ {a1, a2}.
Let x ∈ C ∪ {a1, a2} be the first such point on the shortest path from c to v.

If we prolong the segment cx until it hits B at point y this prolongation cuts off
a part of P and thereby cuts off a connected interval Bxy of B (the one between
x and y) that contains v. If y ∈ C ∪ {a1, a2} it would follow that D ∩ V (c) was
empty. That is because, by assumption, v is a point in D. If it lies between
x and y, all points of D must lie between x and y as D is a connected part of
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a1 a2

c

D

C

f = y

`

x

v

P ′

Figure 3.24: The segments to v from a1 and a2, respectively, together with the
boundary portion C bound a polygon P ′ that contains the shortest
path from c to v. So the shortest path does not bend at a point of
D.

the boundary. So D would lie completely in Bxy. But that cannot be, because
then V (c) ∩ D would be empty in contradiction to the fact that we are just
considering the case where this intersection is nonempty.
So y ∈ D. As x ∈ C ∪ {a1, a2}, the removal of x and y splits D into two

parts and so one of a1, a2 lies in Bxy. Let w.l.o.g. a2 lie in Bxy. There is some
t ∈ (0, 1) with π(t) = y. The points of π[(t, 1]] all lie in Bxy. It follows that
y = ` and v does not lie in I, a contradiction to our assumption.
This yields V (c) ∩D ∩ V (a1) ∩ V (a2) ⊃ I ∩D ∩ V (a1) ∩ V (a2) and therefore

V (c) ∩D ∩ V (a1) ∩ V (a2) = I ∩D ∩ V (a1) ∩ V (a2).

P
A1

A2B1

B2

C1
C2

Figure 3.25: The Intervals [A1, A2], [B1, B2], [C1, C2] divide the boundary of P
into six cells. This number does not increase if the intervals
intersect.

Together with the following lemma, this will yield our new upper bound.

44



3.4 Points and Guards on the Boundary

Lemma 9. Let V (p1), V (p2), V (p3) for three points p1, p2, p3 ∈ B be interval-like
relative to some subset B′ of B. Let V ′ = {V (b′)|b′ ∈ B′} be the set of visibility
domains of points in B′. Then {p1, p2, p3} is not shattered by V ′. In particular,
we can lower bound the coarseness by cV ′({p1, p2, p3}) ≥ 2.
Proof. Let I1, I2, I3 be intervals such that Ij ∩ B′ = V (pj) ∩ B′ for j = 1, 2, 3.
The arrangement of the three intervals divides B in at most 6 cells. Every two
points of B′ that are in the same cell see the same subsets of {p1, p2, p3}. As
there are 8 subsets of {p1, p2, p3}, at least two sets are missing and so {p1, p2, p3}
is not shattered.

3.4.2 The Upper Bound for the VC-Dimension
Theorem 5. The VC-dimension of visibility domains on the boundary is at
most 7.
Proof. We will show that there can be no set of eight boundary points that is
shattered by sets of V .
Let S = {s1, . . . , s8} ⊂ B (where the points are in counterclockwise order

along the boundary) is a set on the boundary of P . Assume to a contradiction
that S is shattered by the set of visibility domains V of points in B.
Let us define the special points l = s1 and r = s5. Let C the part of the

boundary between l and r traversed in counterclockwise direction, D be the part
of B between r and l in counterclockwise direction. Let C ′ = C ∩ V (l) ∩ V (r)
and D′ = D∩V (l)∩V (r), i.e. the parts of C and D, respectively, that see both
l and r. We split S into the sets SC = {s2, s3, s4}, SD = {s6, s7, s8} and the two
points l, r. We also define VC′ = {V (b)}b∈C′ and VD′ = {V (b)}b∈D′ .
By the assumption that S is shattered by V and Lemma 5 we get that (SC ∪

SD) is shattered by V{l,r} = {V ∈ V|l, r ∈ V }. If l sees r then V{l,r} = VC′ ∪
VD′ ∪{vis(l), vis(r)}. Otherwise V{l,r} = VC′ ∪VD′ . Lemma 10 below shows that
VC′ ∪ VD′ does not shatter (SC ∪ SD), so V{l,r} = VC′ ∪ VD′ ∪ {vis(l), vis(r)}.
By Lemma 2 we get that |Π{vis(l),vis(r)}(SC ∪ SD)| ≥ cVC′∪VD′ (SC ∪ SD). Lemma
10 says that cVC′∪VD′ (SC ∪ SD) ≥ 4 and so |Π{vis(l),vis(r)}(SC ∪ SD)| ≥ 4. But
|Π{vis(l),vis(r)}(SC ∪ SD)| ≤ 2, as there are only two sets in {vis(l), vis(r)}. A
contradiction.
Therefore S is not shattered by visibility domains of points in B.

Only the following lemma remains to be shown.
Lemma 10. cVC′∪VD′ (SC ∪ SD) ≥ 4.
Proof. By Lemma 8, V (c) is interval-like relative to D′ for every c ∈ SC and
V (d) is interval-like relative to C ′ for every d ∈ SD . By Lemma 9, it follows
that cVC′ (SD) ≥ 2 and cVD′ (SC) ≥ 2. By Lemma 4, cVC′∪VD′ (SC ∪ SD) ≥ 4.

This completes the proof. We have shown that the VC-dimension of perimeter
visibility domains is at most 7. With the best known lower bound it follows that
this VC-dimension is between 5 and 7.
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3.5 The General Case
Most of the material in this section has been published in [23]. An extended
abstract appeared in [22].
In this section we return to the original problem considered by Kalai and

Matoušek. It is the most challenging case, as the points of the set that we want
to shatter as well as the view points can lie anywhere in the simple polygon P .
In particular, there is no obvious way to guarantee that view points are seen in
the same cyclic order by all points of S.
In the former sections we chose a subset S ′ = {l, r} of S and relativized the

visibility domains of the other points to subsets of vis(l) ∩ vis(r). It was not
hard to find the points l, r, as every pair of points of S that splits S into two
equally large subsets would do. In contrast, in this section there is no canonical
way anymore to find such a subset of S. We will show, that one can nevertheless
find such a set and use our relativization technique to prove an upper bound
that improves considerably on the best upper bound known before.
We first state the theorem. In this section, we are considering range spaces

(P,V) where our ground set is a simple polygon P and the set of ranges is
V = {vis(p)|p ∈ P} the set of all visibility polygons of points in P . The
VC-dimension of visibility polygons in simple polygons d is the supremum of the
VC-dimensions of all range spaces (P,V) taken over all possible simple polygons
P .

Theorem 6. For the VC-dimension d of visibility polygons in simple polygons,
d ≤ 14 holds.

3.5.1 Proof Technique
Theorem 6 will be proven by contradiction. Throughout Sections 3.5.1 and 3.5.2,
we shall assume that there exists a simple polygon P containing a set S of
15 points that is shattered by visibility polygons. That is, for each T ⊆ S there
is a view point vT in P such that

T = vis(vT ) ∩ S (3.1)

holds, where, as usual, vis(v) = {x ∈ P ; xv ⊂ P} denotes the visibility domain
of a point v in the (closed) set P .
We may assume that the points in S and the view points vT are in general

position, by the following argument. If p /∈ T , then segment vTp is properly
crossed by the boundary of P , that is, the segment and the complement of P
have an interior point in common. On the other hand, a visibility segment vUq,
where q ∈ U , can be touched by the boundary of P , because this does not
block visibility. By finitely many, arbitrarily small local enlargements of P we
can remove these touching boundary parts from the visibility segments without
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losing any proper crossing of a non-visibility segment. Afterwards, all points
and view points can be perturbed in small disks.
By the symmetry of visibility, property 3.1 can be rewritten as

T = {p ∈ S| vT ∈ vis(p)} (3.2)

This means, if we form the arrangement Z of all visibility regions vis(p), where
p ∈ S, then for each T ⊆ S there is a cell (containing the view point vT ) which
is contained in exactly the visibility regions of the points in T . To obtain a
contradiction, one would like to argue that the number of cells in arrangement
Z is smaller than 215, the number of subsets of S. But as we do not have an
upper bound on the number of vertices of P , the complexity of Z cannot be
bounded from above.
For this reason we shall again replace visibility domains with wedges; for we

can use the upper bound of 5 for the dual VC-dimension of the range space of
wedges, see Theorem 2. To illustrate the technique that we will be using this
time, let S be a shattered set containing at least 15 points and let a be a point
of S. We assume that there are

1. points b1, b2 of S,

2. a view point v that sees b1 and b2, but not a, such that

3. a is contained in the triangle defined by {v, b1, b2};

see Figure 3.26 (i). We denote by U the wedge containing v formed by the lines
through a and b1 and b2, respectively. Any view point w that sees b1 and b2
must be contained in wedge U . Otherwise, the chain of visibility segments v −
b1−w−b2−v would encircle the line segment va connecting v and a, preventing
the boundary of P from blocking the view from v to a; see Figure 3.26 (ii).
Let w1, w2 denote the outermost view points in U that see a, b1, b2 and in-

clude a maximum angle (by assumption, such view points exist; by the previous
reasoning, they lie in U). Then w1, w2 define a sub-wedge W of U , as shown in
Figure 3.26 (iii). We claim that in this situation

V{b1,b2} ∩ vis(a) = V{b1,b2} ∩W (3.3)

holds, where V{b1,b2} denotes the set of all view points that see at least b1 and
b2. Indeed, each view point that sees b1, b2 lies in U . If it sees a, too, it
must lie in W , by definition of W . Conversely, let v′ be a view point in W
that sees b1, b2. Then line segment v′a is encircled by the visibility segments
v′− b1−w1−a−w2− b2− v′, as depicted in Figure 3.26 (iv). Thus, v′ ∈ vis(a).
Fact 3.3 says that vis(a) is wedge-like relative to V{b1,b2}. So if we were able to

find two points like b1 and b2, and restrict ourselves to studying only those 213

view points V{b1,b2} that see both b1, b2, as a benefit, the visibility region vis(a)
behaves like a wedge and we can apply Theorem 2.
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v
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(i)

a
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b2

v

U

(ii)
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U
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w
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w2
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a

b1
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U

(iv)

W
w2

w1

v′

Figure 3.26: Solid lines connect points that are mutually visible; such “visibility
segments” are contained in polygon P . Dashed style indicates that
the line of vision is blocked; these segments are crossed by the
boundary of P .
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Arguments as above will be applied as follows. In Section 3.5.2 we prove, as
a direct consequence, that at most 5 points can be situated in the interior of
the convex hull of S. Then, in Section 3.5.3, we show that at most 9 points can
be located on the boundary of the convex hull. Together, these claims imply
Theorem 6.

3.5.2 Interior Points
The goal of this section is in proving the following fact.

Lemma 11. At most five points of S can lie inside the convex hull of a shattered
set S.

Proof. Suppose there are at least six interior points ai, 1 ≤ i ≤ 6, in the convex
hull. Each of the remaining points of S is a vertex of the convex hull of S. Let
b0, . . . bm−1 be an enumeration of these points in cyclic order.
As S is shattered, for every subset T ⊆ S there is a view point that sees

exactly this subset. We fix a set V that contains for each subset of S one such
view point.
Let vB (where B = {b0, . . . , bm−1}) be the view point that sees only these

vertices but no interior point; see Figure 3.27. Each interior point ai is contained

vB

bj

bj+1

ai

Figure 3.27: Each interior point ai is contained in some triangle defined by
{vB, bj, bj+1}.

in a triangle defined by {vB, bj, bj+1}, for some j (where the indices are taken
modulo m). Since properties 1.–3. mentioned in Section 3.5.1 are fulfilled,
Fact 3.3 implies that there exists a wedge Wi such that V{bj ,bj+1} ∩ vis(ai) =
V{bj ,bj+1} ∩Wi holds. If VB denotes the set of view points that see at least the
points of B, we obtain

VB ∩ vis(ai) = VB ∩Wi for i = 1, . . . , 6,

which implies the following. For each subset T of A = {a1, . . . , a6} the view
point vT∪B lies in exactly those wedges Wi where ai ∈ T . So every subset of
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this set of six wedges is stabbed by a point in P . This is a contradiction to the
fact that the dual VC-dimension of wedges is not larger than 5, see Theorem 2.
Thus, the convex hull of S cannot contain six interior points.

Therefore, at least 10 points of S must be vertices of the convex hull of S.

50



3.5 The General Case

3.5.3 Points on the Boundary of the Convex Hull
Ignoring interior points, we prove, in this section, the following fact.

Lemma 12. Let S be a set of 10 points in convex position inside a simple
polygon, P . Then S is not shattered by visibility polygons inside P .

Proof. Again, the proof is by contradiction. So let S be a set of 10 points in
convex position inside a simple polygon P . Assume that S is shattered. Let
V be a fixed set of view points that contains for every subset T of S one point
that sees exactly T .
First, we enumerate the points around the convex hull. (Notice, that the

edges of the convex hull of S may intersect the boundary of P .) Let E denote
the set of even indexed points. Let vE be the view point that sees exactly the
even indexed points. If vE lies outside the convex hull, ch(S), of S, we draw
the two tangents from vE at ch(S). The points between the two tangent points
facing vE are called front points, all other points are named back points of S; see
Figure 3.28. In other words, the back points are exactly the points of S that lie
on the boundary of the convex hull of S ∪ {vE}. If vE ∈ ch(S) then all points
of S are called back points.

vE

S

eR

fR

fL

eL 2

3

4

5

6 7

8

9

10
1

Figure 3.28: Front points appear in white, back points in black. View point vE
sees exactly the points of even index.

We are going to discuss the case depicted in Figure 3.28 first, namely:
Case 1: There exists an odd-indexed front point.
It follows from the definition of front points that in this case vE lies outside

the convex hull of S. Let fL and fR be the outermost left and right front points
with odd index, from the position of vE; and let eL and eR denote their outer
neighbors, as shown in Figure 3.28. While fL = fR is possible, we always have
eL 6= eR. Observe that eL and eR may be front or back points; this will require
some case analysis later on.
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3 VC-Dimension of Visibility Domains

Notation. For two points a, b, let H+(a, b) denote the open half-plane to the
left of the ray L(a, b) from a through b, and H−(a, b) the open half-plane to its
right.

vE

S

eR

fR

fL

eL

H−(eL, fL)

v

d
vL

vR

S

eR

fR

fL

eL

vL

vR

L

R

(i) (ii)

Figure 3.29: (i) As segment vEfL must be intersected by the boundary of P , it
cannot be encircled by visibility segments. (ii) Defining subsets L
and R of S.

Claim 1. Each view point v that sees eL and eR lies in H−(eL, fL)∩H−(fR, eR).

Proof. If v were contained in H+(eL, fL) then the chain of visibility segments
eL−v−eR−vE−eL would encircle the segment vEfL—a contradiction, because
vE does not see the odd indexed point fL; see Figure 3.29 (i). So v ∈ H−(eL, fL).
A similar argument implies v ∈ H−(fR, eR).

We now define two subsets L and R of S that will be crucial in our proof.

Definition 12. (i) Let vL := vS\{fL} and vR := vS\{fR} denote the view points
that see all of S except fL or fR, respectively.
(ii) Let L := S ∩H+(vL, fL) and R := S ∩H−(vR, fR).

By Claim 1, the points of S contained in the triangle (eR, eL, vE) are front
points with respect to vR, vL, too; see Figure 3.29.

Claim 2. None of the sets L,R, S \ (L ∪ R) are empty. The sets L and R are
disjoint.

Proof. By construction, we have eL ∈ L, eR ∈ R, and fL, fR 6∈ L∪R. If vL = vR
(because fL could be fR) then L∩R = ∅, obviously. Otherwise, there is at least
one even indexed point, e, between fL and fR on ch(S). Assume that there
exists a point q of S in the intersection of L and R. Then segment vRfR would
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3.5 The General Case

be encircled by the visibility chain q − vR − e − vL − q, contradicting the fact
that vR sees every point but fR; see Figure 3.30.

S

eR

fR

fL

eL
vL

vR

e q

Figure 3.30: L and R are disjoint.

The purpose of the sets L and R will now become clear: They contain points
like b1, b2 in Section 3.5.1, that help us reduce visibility regions to wedges. The
precise property will be stated for R in Lemma 13 below; a symmetric property
holds for L. The proof of Lemma 13 will be postponed. First, we shall derive
a conclusion in Lemma 15, and use it in completing the proof of Lemma 12 in
Case 1.
In the next lemmas, Dc denotes the complement of a set D.

Lemma 13. There exist points r1, r2 in R such that the following holds either
for Q = vis(r1) ∩ vis(r2) or for Q = vis(r1)c ∩ vis(r2). For each p ∈ S different
from r1, r2, each view point that (i) sees p, (ii) lies in Q, and (iii) sees at least
one point of L, is contained in the half-plane H−(p, r2).

And analogously:

Lemma 14. There exist points l1, l2 in L such that the following holds either
for Q′ = vis(l1) ∩ vis(l2) or for Q′ = vis(l1)c ∩ vis(l2). For each p ∈ S different
from l1, l2, each view point that (i) sees p, (ii) lies in Q, and (iii) sees at least
one point of R, is contained in the half-plane H−(l2, p).

From Lemma 13 and Lemma 14 we obtain the following conclusion.

Lemma 15. Let p ∈ S \{l1, l2, r1, r2}. Then each view point in Q∩Q′ that sees
p lies in the wedge Up = H−(p, r2) ∩H−(l2, p).

Now we can proceed as in Section 3.5.1; see Figure 3.26 (iii) and (iv). Within
wedge Up we find a sub-wedge Wp satisfying

Q ∩Q′ ∩ vis(p) = Q ∩Q′ ∩Wp, (3.4)
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with the same arguments that led to Fact 3.3, replacing (a, b1, b2) with (p, r2, l2).
Since membership in Q,Q′ only prescribes the visibility of {l1, l2, r1, r2}, Fact 3.4
implies the following. For each subset T ⊆ S \{l1, l2, r1, r2} there exists a cell in
the arrangement of the remaining six wedges Wp, where p ∈ S \ {l1, l2, r1, r2},
that is contained in precisely the wedges related to T . As in Section 3.5.2, this
contradicts Theorem 2 and proves Lemma 12 in Case 1.

It remains to show how to find r1, r2 and Q in Lemma 13.

Proof. (of Lemma 13) Before starting a case analysis depending on properties
of R and eR we list some helpful facts.

Claim 3. If a view point v sees a point r ∈ R and a point s /∈ R ∪ {fR} then
v ∈ H−(s, r). A symmetric claim holds for L.

Proof. Otherwise, vRfR would be encircled by r − v − s− vR − r, since fR lies
in the triangle defined by (vR, r, s); see Figure 3.31 (i).

S

fR

fL

vL

vR

L

R

r

s

v

H+(s, r)
(i)

S

fRvR

L

R

r

(ii)

l

H+(fR, r)

v2
vL

Figure 3.31: Illustration to Claims 3 and 4.

The next fact narrows the locus from which two points, one from L and R
each, are visible.

Claim 4. If a view point v sees points r ∈ R and l ∈ L then v lies in the wedge
H−(fR, r) ∩H−(l, fL), and on the same side of L(r, l) as vR and vL do.

Proof. If v ∈ H+(fR, r), or if v were situated on the opposite side of L(r, l),
then vRfR would be encircled by r− v− l− vR− r; see points v = v1 and v = v2
in Figure 3.31 (ii).
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Now we start on the case analysis. In each case, we need to define r1, r2 ∈ R
and a set Q = vis(r1) ∩ vis(r2) or Q = vis(r1)c ∩ vis(r2). Then we must prove
that the following assertion of Lemma 13 holds.
Assertion

If p ∈ S is different from r1, r2, and if v ∈ Q is a view point that sees p and
some point l ∈ L, then v ∈ H−(p, r2).
Case 1a: Point set R contains at most two points.

We define {r1, r2} := R and let Q := vis(r1) ∩ vis(r2).
Let p and v be as in the Assertion. If p 6= fR then Claim 3 implies v ∈ H−(p, r2).
If p = fR we obtain v ∈ H−(p, r2) by the first statement in Claim 4.

vE

eR

fR

fL

eL
vR

vL

bR e
p

l

v(i)

vE

eR

fR

fL

eL
vR vL

bR e
p

l

v(ii)

vE

eR

fR

fL

eL

vR

vL

bR e
p

l

v(iii)

c

s s

s

Figure 3.32: Illustrations of Case 1b.

Case 1b: Point set R contains more than two points, and eR is tangent point
of ch(S) as seen from vE; compare Figure 3.28.
We set r1 := eR and let r2 be the odd indexed back point bR counterclockwise
next to eR. Moreover, Q := vis(r1) ∩ vis(r2).
For each p /∈ R the proof of Case 1a applies. Let p ∈ R be different from r1, r2.
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Assume, by way of contradiction, that v ∈ H+(p, r2) holds. Since the second
statement of Claim 4 implies v ∈ H−(l, eR) ∩ H−(l, p) ⊂ H−(l, bR), we obtain
v ∈ H−(l, bR)∩H+(p, bR); see Figure 3.32. Now we discuss the location of view
point vR. If it lies in the wedge H+(eR, vE)∩H+(vE, p) then segment s := vEbR
is encircled by eR − vR − p − v − eR; see Figure 3.32 (i). If vR does not lie in
this wedge, let e be the counterclockwise neighbor of bR in R. If vR lies on the
same side of L(e, vE) as p, then eR − vE − e− vR − p− v− eR protects segment
s; see (ii). If it lies on the opposite side, then vEe intersects vRp at some point
c, and eR− vE − c− p− v− eR encircles segment s; see (iii). In either situation,
we obtain a contradiction.
Before continuing the case analysis we prove a simple fact.

Lemma 16. Let a, b, c denote the vertices of a triangle, in counterclockwise
order. Suppose there exists a view point w in H+(b, a) ∩ H−(c, b) that sees a
and c. Then, each view point v ∈ H+(b, a) that sees a and c but not b lies in
H−(c, b).

Proof. Otherwise, segment vb would be encircled by c − v − a − w − c; see
Figure 3.33.

a b

c

w v

Figure 3.33: Proof of Lemma 16

Case 1c: Point set R contains more than two points, and the counterclock-
wise neighbor, bR, of eR, is tangent point as seen from vE. Let e denote the
counterclockwise neighbor of bR, and let wR := vS\{eR} denote the view point
that sees all of S except eR. We consider three subcases, depending on the
location of wR.
(1ci) If wR ∈ H−(bR, eR), we set

(r1, r2, Q) := (eR, bR, vis(eR)c ∩ vis(bR)).

To prove the Assertion, let p 6= eR, bR, and let v be a view point that sees p, bR, l
but not eR, for some l ∈ L.
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3.5 The General Case

As both wR and v see l ∈ L and bR ∈ R, Claim 4 implies wR, v ∈ H−(fR, bR)∩
H−(l, fL) ⊂ H+(eR, l). The latter inclusion allows us to apply Lemma 16 to
(a, b, c, w) = (l, eR, bR, wR), which yields v ∈ H−(bR, eR). Now v ∈ H−(p, bR)
follows; see Figure 3.34 (i).

eR

fR

bR

e(ii)

p

wR

v

eR

fR

bR

e(i)

p

wR

fL

l

eR

fR

bR e(iii)

p

wR

l

w fL

eL

Figure 3.34: Illustrations of Case 1c.

(1cii) If wR ∈ H+(bR, eR), and if bR and e are situated on opposite sides of
L(wR, eR), we set (r1, r2, Q) := (eR, bR, vis(eR) ∩ vis(bR)).
All points of S ′ := S \ {eR, bR} lie on the same side of L(wR, eR) as e. A view
point v that sees some point p ∈ S ′ and bR must be in H−(p, bR). Otherwise,
wReR would be encircled by bR − wR − p− v − bR; see Figure 3.34 (ii).
(1ciii) If wR ∈ H+(bR, eR), and if bR and e are situated on the same side of

L(wR, eR), we set (r1, r2, Q) := (bR, e, vis(bR)c ∩ vis(e)).
Clearly, wR ∈ H+(e, eR). Each view point w that sees e and some l ∈ L —in
particular point v of the Assertion— must lie in H−(eR, e), or wReR would be
enclosed by wR − l − w − e− wR; see Figure 3.34 (iii) (observe that w must be
contained in H−(fR, e) ∩ H−(l, fL) ⊂ H+(e, l), by Claim 4, as depicted in the
figure).
Let x denote the view point that sees exactly eR, e, eL, l. By Claim 4, x ∈

H+(eR, eL) ∩ H+(e, eL) ⊂ H+(bR, eL). We file for later use that x ∈ H+(bR, l)
holds, for the same reason. Since bR is tangent point from vE, we have vE ∈
H−(e, bR). Thus, we can apply Lemma 16 to (a, b, c, w) = (eL, bR, e, vE) and
obtain x ∈ H−(e, bR).
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We have just shown that x ∈ H+(bR, l)∩H−(e, bR) holds. Moreover, Claim 4
implies v ∈ H−(fR, e) ∩ H−(l, fL) ⊂ H+(bR, l) since v sees l and e. Since
v does not see bR we can apply Lemma 16 to (a, b, c, w) = (l, bR, e, x) and
obtain v ∈ H−(e, bR). Together with the first finding in (1ciii), this implies
v ∈ H−(eR, e) ∩H−(e, bR) ⊂ H−(p, e) for all p 6= bR, e.
This completes the proof of Lemma 12 in Case 1.

Now we discuss the second case of Lemma 12, thereby completing its proof.
This also completes the proof of our main result, Theorem 6.

Case 2: There is no odd front point.
In this situation, view point vE either lies inside ch(S), so that no front point

exists, or vE lies outside ch(S), and at most one front point is visible from vE
between the two tangent points on ch(S); if so, its index is even.
Independently of the position of vE, we introduce some notation. Let vS

denote the point that sees all points in S. The line G through vE and vS divides
S into two subsets, L and R (not to be confused with L and R in case 1), one of
which may possibly be empty. We cut G at vE, and rotate the half-line passing
through vS over L; see Figure 3.35. The first and the last odd indexed points
of L encountered during this rotational sweep are named l1 and l2, respectively.
Similarly, r1 and r2 are defined in R.
We observe that, e. g., l1 and l2 need not exist, or that l1 = l2 may hold;

these cases will be taken care of in the subsequent analysis. Also, the half-line
rotating about vE may cut through S in its start position, depending on the
position of vS. This is of no concern for our proof, which is literally the same
for either situation.

Lemma 17. If there are odd-indexed points in both L and R, then exactly one
point lies between l1 and r1 on the boundary of the convex hull of S. This point
has even index and will be called e1. Similarly, there is exactly one even-indexed
point between l2 and r2, called e2.

Proof. Since l1, r1 are both odd indexed points, there is at least one point be-
tween them on ∂ch(S). If there was more than one point on ∂ch(S) between l1
and r1, one of them would have an odd index. Let w.l.o.g o lie on the same side
of L(vE, vS) as l1. Being odd, l1 and o must be back points, since no odd front
points exist in Case 2. As the order in which back points of L are encountered
by the rotating rays coincides with their order on the boundary of the convex
hull, o would have to be hit by the rotating ray before l1, contradicting the
definition of l1. The same argument applies to l2 and r2.

We will deal with a somewhat special subcase first.

Case 2A: Both of the following properties hold.
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Figure 3.35: The half-line is rotated about vE over L. The first odd point en-
countered is named l1, the last one l2.
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Figure 3.36: The proof of Case 2A.
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1. One of L, R contains exactly one point of S; its index is odd.
2. Point e1 is a front point with respect to vE.
In this case, vE must lie outside ch(S), and e1 is the only front point with

respect to vE, so that l1 and r1 are tangent points, as seen from vE. Moreover,
vE lies in the triangle given by l1, r1 and vS because otherwise e1 would be a
back point.
W.l.o.g., let r1 be the only point in R, and let L be situated to the right of

the directed line from vS through vE; see Figure 3.36. Then every view point v
that sees r1 and some point s of L lies on the same side of L(r1, vE) as vS does,
or r1vE would be encircled by r1 − v − s− vS − r1. For the same reason every
view point v that sees r1 and some point s of L lies on the same side of L(s, r1)
as vS does, see Figure 3.36 (i).
Also, r1 does not see any point s ∈ S, apart from itself, otherwise r1vE would

be encircled by r1 − s− vS − r1.
Now let eB be the even-indexed neighbor of l1 that is a back point, and let

us set Q = vis(eB) ∩ vis(e1) ∩ vis(r1) ∩ vis(l1)c.
Next, we want to show that every view point v ∈ Q lies in H−(eB, l1); see Fig-

ure 3.36 (ii). If this were wrong, v ∈ H−(r1, eB)∩H−(r1, e1) ⊂ H−(r1, l1) would
imply v ∈ H+(l1, e1). Since vE obviously lies in H+(l1, e1)∩H−(eB, l1), we could
apply Lemma 16 to (a, b, c, w) = (e1, l1, eB, vE), and obtain v ∈ H−(eB, l1)—a
contradiction.
Now let us assume that, in addition to being in Q, view point v sees a point

s ∈ S \ {l1, r1, e1, eB}. As v lies in H−(r1, eB), it follows that v ∈ H−(s, eB) ⊃
H−(r1, eB) ∩H−(eB, l1), see (iii).
On the other hand, v also lies in H−(r1, s) as already shown.
Summarizing, we have obtained a result analogous to Lemma 15.

Lemma 18. Let s ∈ S \ {l1, r1, e1, eB}. Then each view point in Q that sees s
lies in the wedge Us = H−(s, eB) ∩H−(r1, s).

Now the proof of Case 2A is completed by exactly the same arguments used
subsequently to Lemma 15 in Section 3.5.3.

If one of the properties of Case 2A is violated, we obtain the following, by
logical negation.

Case 2B: At least one of the following properties holds.
1. None of L, R is a singleton set containing an odd indexed point.
2. Point e1 is a back point, as seen from vE.
Other than in the previous cases, we will now reduce visibility regions to

half-planes, rather than to wedges. We will show the existence of three points,
p1, p2, p3 in S, and of a half plane Hi for each, such that the following holds.
Let Q denote the set of view points that see at least S \ {p1, p2, p3}. Then,

for each v ∈ Q : for each i = 1, 2, 3 : v sees pi ⇐⇒ v ∈ Hi. (3.5)
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Property 3.5 leads to a contradiction, due to the following analogon of Theo-
rem 2.

Lemma 19. For any arrangement of three (or more) half-planes, there is a
subset T of half-planes for which no cell is contained in exactly the half-planes
of T .

Proof. With three half-planes, we have eight subsets, but at most seven cells.

While this fact is easier to prove, and somewhat more efficient, as we need
only three points to derive a contradiction, it is harder to find points fulfilling
Property 3.5. This will be our next task. Again, we consider points in L and
points in R separately. Let us discuss the situation for L.
We start by defining two points, l′1 and e′. Suppose there is a point with odd

index in R. We set l′1 = l1. As we are in Case 2B, point e1—situated between
l1 and r1—is a back point, or there is some point e with even index in R. In
the first case we set e′ := e1, in the latter case we set e′ := e; see Figure 3.37 (i)
and (ii).
If there is no point with odd index in R then there are five points with odd

index in L. We then set l′1 to be the second point with odd index that was
hit during the rotation of the half-line from vE through vS. Then l1 and l′1
are distinct back points with respect to vE (since there is no odd front point).
Between l1 and l′1 on the boundary of the convex hull there lies exactly one point
e that has even index. We set e′ = e. In this case, there are three points with
even index on the convex hull between l′1 and l2. Notice that e′ is a back point
with respect to vE; see Figure 3.37 (iii).
In either case the points l′1 and l2 have odd indices, and the point e′ has even

index and is either a back point with respect to vE, or it lies in R.
We will now prove the following.

Lemma 20. For all back points p with even index that lie in the wedge given
by the rays from vE through l′1 and l2 the following holds. There is a half-plane
Hp such that every view point v that sees l′1 and l2 sees p if and only if v ∈ Hp.
The analogue holds if we replace l′1 and l2 by r′1 and r2.

Before we prove Lemma 20, we first use it to derive the following consequence.
As explained before, it provides us with a contradiction, thus proving Case 2B
of Lemma 12 and completing all proofs.

Lemma 21. There are three points p1, p2, p3 ∈ S and half-planes H1, H2, H3
that satisfy Property 3.5.

Proof. If there are odd points in both L and R, then there is exactly one even
point between l′1 and r′1 and one even point between l2 and r2 and all other
even points lie between the rays from vE through l′1 and l2 and through r′1 and
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r1 = r2

e1 = e′

l1

l2

vE

vS

e2

L R

(i)

vS

vE

e1

r1

r2
l2

e2

e′l1 = l′1

L R

(ii)

vE

vS

L

p7 = l1

p9 = l′1

p10

p1

p2
p3 p4

p8 = e′

p6

p5 = l2

(iii)

Figure 3.37: (i) If e1 is a back point with respect to vE we set e′ = e1. (ii)
Otherwise there is an even indexed point in R we will call e′. (iii)
If there is no (odd) point in R then l′1 is the second odd indexed
point and e′ is the (back) point between l1 and l2.

r2, respectively. By Lemma 20, we get that the remaining three even-indexed
points have the desired property.
If there is no odd point in R or in L, then there are four even-indexed points

between l1 and l2 or between r1 and r2 and therefore there are three points with
the desired property between l′1 and l2 or between r′1 and r2.

Proof. To prove Lemma 20 let e ∈ S be a point with even index that lies between
l′1 and l2. Points e and vS lie on opposite sides of L(l′1, vE), by the definition of
l′1.

l′1

vS

vE

e

l2

e′

(i)

l′1

vS

vE

e

l2

(ii)

vS

vE

e

l2

e′

c

l′1

(iii)

Figure 3.38: (i) l′1 cannot lie between the rays L(e, vS) and L(e, vE). (ii) l′1 and
l2 can not lie on the same side of L(e, vS). (iii) So there must be
an intersection between evE and l2vS.
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Claim 5. In this situation the segments evE and l2vS intersect in a point c.

Proof. The segment l2vS intersects the line L(e, vE) by definition of l2. It re-
mains to show that l2 does neither lie on the side of L(vS, vE) opposite to e
nor on the side of L(vS, e) opposite to vE. As l2 and e both belong to L, the
first assertion follows. For the second one, notice that l′1 cannot lie on the
same side of L(e, vS) as vE does because otherwise l′1vE would be encircled by
e−vE− e′−vS− e, see Figure 3.38 (i). But l′1 and l2 cannot both lie on the side
of L(e, vS) opposite to vE: Because l′1, l2, e are backpoints, vE, l′1, e and l2 are
the corners of a convex quadrilateral. If l′1 and l2 lie on the same side of a line
through e, this line must be a tangent to this quadrilateral and therefore l′1, l2
and vE would have to lie on the same side of this line, see (ii). So the segment
evE crosses l2vS in a point c.

vS

vE

l2

c

e′

l′1

e

v

(i)

vS

vE

l2

e′

l′1

e
v

(ii)

vS

vE

l2

e′

l′1

e

v

(iii)

Figure 3.39: (i) v and vS must lie on the same side of L(l′1, vE). (ii) v and vS
must lie on the same side of L(e, l′1). (iii) v and vS must lie on the
same side of L(e, vE).

Now it follows that every view point v that sees l′1 and l2 lies on the same side
of L(l′1, vE) as vS does, because otherwise the segment l′1vE would be encircled
by vE − c− l2 − v − l′1 − vS − e′ − vE, see Figure 3.39 (i).
It also follows that every view point that sees l′1, l2 and e has to lie on the

same side of L(e, l′1) as vS does, because otherwise l′1vE would be encircled by
vE − e′ − vS − l′1 − v − e− vE, see Figure 3.39 (ii).

Claim 6. Every view point v that sees l′1 and l2 lies on the same side of L(e, vE)
as vS does.

Proof. Assume v and vS lay on opposite sides of L(e, vE). We already showed
that v must lie on the same side of L(l′1, vE) as vS does. So l2vE would be
encircled by l2 − v − l′1 − vS − l2, see Figure 3.39 (iii).
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Lemma 22. All view points v that see {l′1, l2, e} lie in the wedge W given by
the two rays originating in e and going through l′1 and l2, respectively

Proof. We just showed that all such view points v lie in the wedge We given by
the two rays originating in e and going through vE and l′1, respectively. As We

is a subset of W , the lemma follows.

e

l2
l′1

vEvSv1

v2

(i)

e

l2
l′1

vEvSv1

v2

(ii)
e

l2
l′1

vEvSv1

v2

c

v′

(iii)

Figure 3.40: (i) We rotate the rays through l′1 and l2 until they encounter v1 and
v2. (ii) The area between L(e, vE) and L(e, v2). (iii) No point v′
that lies in this area sees l′1 and l2 but not e.

Let us now rotate the ray with origin e through l2 over the wedge W , to-
wards l′1. (Notice that, by Claim 5, the rotating ray passes over vE before it
reaches vS.) Let us denote the first view point we encounter that sees l′1, l2 and
e by v2. Let us then rotate the ray with origin e through l′1 over the wedge W ,
towards l2. Let us denote the first view point we encounter this time that sees
l′1, l2 and e by v1, see Figure 3.40 (i).
We now obtain the two following facts.

Claim 7. All view points that see l′1, l2 and e lie in the wedge originating in e
and going through v1 and v2.

Proof. By Lemma 22 we know that all such points lie between l′1 and l2. By
construction of v1 and v2 there is no such point between l1 and v1 or between l2
and v2.

Lemma 23. There is no view point on the side of L(e, v2) opposite to vS that
sees l′1 and l2 but not e.

Proof. By Claim 6, all view points that see l′1 and l2 lie on the same side of
L(e, vE) as vS does. As v2 also lies on this side of the line and moreover inside
the wedge between the rays from e through vE and vS, respectively, it follows,
that a point that sees l′1 and l2 and that lies on the side of L(e, v2) opposite to
vS must lie in the wedge given by the rays from e through vE and v2, which in
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turn is contained in the wedge between the rays from e through vE and vS, see
Figure 3.40 (ii).
Now assume there was a view point v′ in this wedge, that saw l′1 and l2 but

not e. If we take c to be the intersection of evE and l2vS, then the segment ev′
would be encircled by e− c− l2 − v′ − l′1 − vS − e, see Figure 3.40 (iii).

Now we are able to complete the proof of Lemma 20.
We define He to be the closed half plane to the side of the line through e and

v1 in which v2 lies. By Claim 7 all view points that see l′1, l2 and e lie in He.
Assume now there was a view point v in He that sees l′1 and l2 but not e. By
Lemma 23 and the assumption that v lies in He, it follows that then v must lie
in the wedge with origin e and rays through v1 and v2.
This again leads to a contradiction because the segment ev then would be

encircled by e− v1 − l′1 − v − l2 − v2 − e. So a view point v that sees l′1 and l2
sees e if and only if v ∈ He.

Now all proofs are complete.
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4 Barrier Resilience of Visibility
Domains

4.1 Introduction

4.1.1 Motivation
Put yourself in a smuggler’s shoes. You want to deliver some goods to a fixed
destination but you do not want to be seen by many witnesses. Unfortunately,
there is no way to your destination that is completely unobserved, nor can you
conceal your goods. Perhaps you just want to minimize the number of witnesses
or perhaps there is some number k of witnesses that still is acceptable.
It is not important to you, how often or how long the witnesses see you on

your way. You only care for their number.
You are given a map of your city, in which your starting and your target point

are marked as well as the position of all the law-abiding people, see Figure 4.1.
Can you compute the path that is seen by the minimum number of witnesses?
This turns out to be a special case of the Barrier Resilience problem.

Given a start point s and a target point t as well as the positions and ranges
of n sensors that are designed to detect intruders, we want to find a path from
s to t that minimizes the number of its witnesses (i.e. the sensors that detect
the agent traveling on this path, see Figure 4.3 for an instance of the Barrier
Resilience problem for disk sensors). We call an optimal path in this respect
a minimum witness path.
This problem can be seen from two sides: On the one hand, it is a path

planning problem. On the other hand, the minimum possible number of sensors
that detect a path of the agent is an important parameter of the sensor network.
It is called the barrier resilience of the network. sensor networks with a low
barrier resilience are more error-prone than those with high barrier resilience.
In the analysis of a sensor network that is designed to detect an intruder, the
minimum witness path points to the network’s weak spot. Therefore, to optimize
sensor networks it would be very helpful to have an efficient method at hand
to compute the barrier resilience of the network or, even better, a minimum
witness path.
There are many different types of sensor networks conceivable. We here re-

strict our attention to the very natural case where the sensor regions are visibility
domains.
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s

t

π

Figure 4.1: Path π from s to t is seen by two witnesses (black points).

The connection to the guarding problems mentioned earlier is evident. But
while the guards in the art gallery problems had to guard every spot of the
polygon, here it suffices that the witnesses observe some subset of the polygon
that separates the points s and t. Also, in art gallery theory we try to position a
minimum number of guards that can accomplish the task while here we are given
a fixed guard set (or sensor network) and try to find its weak spot. Notice, that
it would not be an interesting problem to find the minimum number of witnesses
that can be placed somewhere in the polygon such that every path from s to
t would be seen by at least k witnesses: Placing k witnesses at s (or at points
that see s) would do and would obviously be optimal. On the other hand, if
the visibility domains of a given set of guards in a simple art gallery P really
cover P is not hard to compute either. Even if we do not make use of the
special structure of the visibility polygons but simply compute their union as a
union of simple polygons and then compare it with P , this can easily be done
in polynomial time.
We can also view the Barrier Resilience problem in a different way: Let us

interpret our witnesses as light bulbs that initially are turned on. The question
now is, how many lights do we have to switch off, such that there is a path from
s to t that lies in complete darkness. Notice, that the question again would be
very easy, if the path π from s to t was prescribed. We would have to switch
off exactly the lights whose visibility polygons are crossed by π.
Consider now the corresponding illumination problem. Again our witnesses

are light sources, but this time, the lights are initially all turned off. Can we
compute the minimum number of lights that have to be switched on such that
there is a path from s to t that is completely lit-up? This question can be solved
very easily. We formulate the result as a lemma. Notice, that the result is not
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s

t

Figure 4.2: An illumination problem: How many lights (circles) do we have to
turn on to illuminate a path from s to t?

restricted to simple polygons. The only properties of visibility polygons that
the proof uses are that they are path connected, that in polynomial time we
can compute visibility polygons, test whether a point (s or t) lies in a visibility
polygon and test if two visibility polygons intersect.

Lemma 24. Given a polygon P and the locations of a set of light sources L
as well as a start point and a target point, a subset of L of minimum size that
illuminates a path from s to t can be found in time polynomial in |P | and |L|.

The proof is simple. It seems, however, that this problem has not been
considered before.

Proof. We can, after computing the visibility polygons of all lights, test every
pair of them for intersection. We then build the graph with vertex set the set
of lights L and an edge between l1 and l2 if and only if vis(l1) and vis(l2) have
nonempty intersection. We then add one vertex for s and connect it to all
vertices of witnesses that can see s and we add one vertex for t and connect it
to the vertices of witnesses that can see t. Now we compute via breadth first
search an edge minimal path from the vertex of s to the vertex of t. The light
sources corresponding to the vertices on this path are a minimum solution for
the problem of illuminating a path between s and t.
To see this, first observe that the vertices of our edge minimal path in the

graph G indeed correspond to a set of light sources illuminating a path between
s and t. Let to this end v1, v2, . . . , vk be the vertices between s and t on our
edge minimal path in this order and let l1, l2, . . . , lk be the corresponding light
sources. First, visibility polygons are path connected. Therefore, if a light is
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turned on, an agent can travel from any point of the visibility polygon of a light
source to any other point on a completely lit-up subpath. Second, every two
consecutive vertices vi, vi+1 on our edge minimal path correspond to light sources
whose visibility polygons intersect in an intersection point ci. By construction,
our agent can travel from s to the light source l1 on a path completely lit-up by
l1. By our first observation, for every i our agent can travel from li to li+1 via
ci on a path lit-up jointly by li and li+1. It follows by induction that the lights
l1, . . . , lk illuminate the path from s to t.
To see that our solution indeed is optimal, consider a smaller set of light

sources LOPT = l′1, l
′
2, . . . , l

′
m with corresponding vertices v′1, v′2, . . . , v′m that also

illuminates a path πOPT from s to t and that has optimum size. We can assume
that for every l ∈ LOPT there is some point p ∈ πOPT such that p lies in the
visibility polygon of l but in the visibility polygon of no other light source of
LOPT (as otherwise we could eliminate such an l, obtaining an even smaller
illuminating set). The set of corresponding vertices in our graph is connected
(and connects s to t). It therefore contains a path in the graph from s to t that
contains every of the vertices v′1, v′2, . . . , v′m at most once and is therefore shorter
than our solution, contradicting the fact that our solution is edge minimal.

In the following sections, we will show that we can find minimum witness
paths in polynomial time in simple polygons and in polygons with one hole. On
the other hand we prove that the Barrier Resilience problem for visibility
polygons in polygons with holes is APX-hard. In particular, we get a stronger
inapproximability factor than the hardness results known for line segments.

4.1.2 Related Work
Finding minimum witness paths is related to several other tasks. Algorithms
that are concerned with the search for shortest paths in polygons (see for ex-
ample [24]) or minimum cost paths in graphs, where weights are assigned to
the edges of the graph [12] are among the best-researched topics in the field of
algorithms.
While this section is about getting somewhere without being seen by too

many people, there are many works concerning itself with deploying guards or
cameras so that everything of interest is seen at least once or at least a certain
number of times. In this category fall the many variations of the art gallery
problem, see for example [41].
Also problems that combine path planning questions with guarding problems

have been examined. In the Watchman Route problem, introduced by Chin
and Ntafos [9] the task is to find a shortest closed path π from a given starting
point through a polygon P such that every point of P can be seen from some
point of π (or equivalently, such that every point in P sees the path π). Chin
and Ntafos prove that the problem is NP − hard for polygons with holes and
there is an O(n log log n) time algorithm for simple rectilinear polygons. Since
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s

t

Figure 4.3: An instance of the Barrier Resilience problem for disks

then, various versions of the Watchman Route problem have been defined.
The one most strongly related to our problem is the Robber problem that was
defined by Ntafos in 1990 [39]. Given a set of edges S and a set of threats T
a robber in a simple polygon P wants to find a shortest cycle from which he
can see all of S, while not being seen by any of the threats. In this setting, the
problem has got a solution only if there exists such a path outside the visibility
polygons of the threats. Ntafos gives an algorithm that solves the problem in
time O(n4 log log n).
In [17] Gewali et al. define a special case of the Weighted Regions problem

[38] and apply it to the following problem. Given a polygon with holes, a starting
point s, a target point t and a set of k threats. Find the least risk path from
s to t. The authors give an algorithm that computes a least risk path in time
O(k4n4). The risk is measured by the total length of the subpaths that are
inside the visibility polygon of some threat. Here lies the main difference to our
model in which the cost of using a witnesses visibility region is fixed, no matter
how often or how long the path traverses this region.
For a different kind of related problems, notice that we do not require the

witnesses to see the whole path. That the witnesses need only to see a single
point of the path, establishes a connection to Hitting Set problems. Our question
could also be formulated as follows: We are implicitly given a space containing
a lot (magnitudes more than one could check one-by-one) of (geometric) objects
and a collection of subsets (visibility regions of witnesses) of the ground set.
Find the object that is hit by the fewest subsets.
In 2005, in the environment of sensor networks Kumar et al. [34] introduce

the notion of a k-barrier coverage. In their setting, somebody wants to cross a
belt region over which a sensor network is deployed. The belt region is called
k-barrier covered if every path that crosses the belt is detected by at least k
sensors.
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Bereg and Kirkpatrick [5] introduce the notion of barrier resilience: Given a
collection of geometric objects that model the ranges of sensors and two points
s, t in the plane, find the minimum number of objects one has to remove such
that s and t are in the same component of the complement of the remaining
objects. I.e. the barrier resilience is the maximum k such that the region is
k-covered. They give an approximation algorithm for this problem when the
sensor ranges are unit disks. Until today it is unknown if this original problem
is NP -hard. In [2] Alt et al. show that the Barrier Resilience problem
for line segments is APX-hard and they also define related problems. In [44]
Tseng and Kirkpatrick strengthen the result to unit line segments. Gibson et
al. [19] give an approximation algorithm for a path that visits multiple points
and tries to avoid as many unit disks as possible. Chan and Kirkpatrick [7] give
a 2-approximation algorithm for the case of Non-identical Disk Sensors.
One can also view the barrier resilience problem in a very abstract graph-

theoretic setting where an agent wants to travel from some start vertex of a
graph G to some target vertex. In this setting the barriers are arbitrary subsets
of the edge set of G. The barriers can also be interpreted as colors that are
assigned to the edges. This problem is then called the Minimum Color Path
problem. Carr et al. [6] show that unless P = NP, the optimal solution cannot
be approximated to within a factor O(2log1−δ(|C|) |C|), where |C| is the number of
colors and δ(|C|) = 1

log loga |C| , for any constant a < 1/2. In [48], Yuan et al. use
the Minimum Color Path model to analyze reliability in mesh networks.
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v

w

π

Figure 4.4: Path π is seen by witness v but not by witness w.

4.2 Minimum Witness Paths in Polygons
Most of the results in the next two sections will appear in the extended abstract
[20].

4.2.1 Simple Polygons
In our first setting the starting point s and the target point t lie inside a simple
polygon P , and we are given a finite set of witness points W ⊂ P . We want
to find a path from s to t that is seen by as few as possible witnesses. Let us
restate this formally.

Definition 13. Let a polygon P , two points s, t ∈ P and a set of so-called
witness points W = {w1, . . . , wn} ⊂ P be given. The barrier resilience of W is
the minimum cardinality of a subset V of W such that there is an s− t-path in
P that does not touch any visibility polygon of a point in W \ V . A path that
attains this minimum is called a minimum witness path.

We use the usual notion of visibility inside simple polygons that is also illus-
trated in Figure 4.4.

Definition 14. Let P be a simple polygon. We say that p1 ∈ P sees p2 ∈ P iff
the line segment p1p2 is a subset of P . We say that a witness point w ∈ P sees
the path π iff there is a point p on π that is seen by w.

It turns out that in this setting one can find an optimal path very efficiently.
The key insight is the following structural lemma.

Lemma 25. Let P a simple polygon, points s, t ∈ P and a witness point w ∈ P .
If there is a path π in P from s to t that is not seen by w, then the shortest path
from s to t in P is not seen by w.

Before we prove the lemma, we draw the following conclusions that settle the
problem for simple polygons.
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Theorem 7. Given a simple polygon P with n edges, two points s, t ∈ P and
a set of witness points W ⊂ P , the shortest path between s and t is an optimal
solution to the minimum witness path problem.

Proof. Let π′ denote the shortest path from s to t. By Lemma 25, for every
path π between s and t the set W ′ = {w ∈ W | w sees π′} is a subset of
W (π) = {w ∈ W | w sees π} and consequently |W ′| ≤ |W (π)|.

Corollary 3. Given a simple polygon P with n edges, two points s, t ∈ P and
a set of witness points W ⊂ P , we can determine a minimum-witness path in
time O(n).

t

s

w

p

C

L(w, p)

Figure 4.5: The connected component C of L(w, p) ∩ P that contains w and p
splits P into two connected components, one containing s, the other
containing t.

Proof. The shortest path between two points inside a simple polygon with n
edges can be computed in time O(n) [24].

The proof of the lemma uses the simple topological structure of the polygon.

Proof of Lemma 25. Let π′ be the shortest path between s and t and w ∈ P a
point that sees the point p on π′. If w sees s or t it obviously sees every path
from s to t. Otherwise consider the line L(w, p) through w and p.
The points w and p lie in the same connected component C of L(w, p) ∩ P .

Now P \C splits into at least two connected components. As π′ is the shortest
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path, s and t lie in different components (otherwise π′ could be shortened to a
path that is completely contained in the common component of s and t).
It follows that every path from s to t must pass C and is therefore seen

by w.

4.2.2 Polygons with Holes
The next step is looking at polygons with holes. So now we have a simple
polygon P ′ and a collection of simple polygons H1, . . . , Hm, called the holes,
where every hole lies in the interior of P ′ andHi∩Hj = ∅ for all 1 ≤ i < j ≤ m.
The polygon with holes P then is defined to be P = P ′ \ ⋃mi=1 H̊i, where H̊i

denotes the topological interior of Hi. Let |P | denote the total number of edges
of P . Two points p1, p2 ∈ P see each other if and only if the line segment p1p2
is completely contained in P .
Again we are given two points s, t ∈ P and witnesses

w1, . . . , wn ∈ P in general position, and we want to find a path π inside P from
s to t minimizing the number of witnesses who can see π.
First we show that the problem is APX-hard by a reduction from Vertex

Cover that provides a stronger factor than other hardness proofs in the context
of barrier resilience.

Theorem 8. Estimating the barrier resilience of a set of visibility polygons
inside polygons with holes is APX-hard. In particular, unless P = NP , the
barrier resilience of visibility polygons with holes cannot be approximated within
a factor of 1.3606. If the Unique Games Conjecture is true, then the barrier
resilience cannot be approximated within any constant factor better than 2.

Proof. We show this by an approximation factor preserving reduction from Min-
imum Vertex Cover.
Let G = (V,E) be an instance of vertex cover. Let e1, e2, . . . , em an enumer-

ation of the edges, v1, v2, . . . vn an enumeration of the vertices.
We now construct a polygon with holes P in the plane that contains a start

point s, a target point t and n witness points w1, . . . wn such that every path
from s to t in P corresponds to a vertex cover of G.
To this end we build a big surrounding rectangle P ′ = [−2(m + n + 1),m +

2]× [−m− n− 1,m+ n+ 1]. We place the start point at the origin, s = (0, 0)
and the target point at t = (m+ 1, 0).
For every edge ej in E, we add a thin rectangular hole Rj = [j, j+ 0.5]× [−j, j].
Then we place the witness points at wi = (−2(m + n), i − dn2 e). If vk and vl
(with k ≤ l) are the vertices incident to edge ej we define L(j) = wk, H(j) = wl
to be the witnesses corresponding to the vertices with lower and with higher
index, respectively. We also define f : {w1, . . . , wn} −→ {v1, . . . , vn} to be the
bijection that maps every wi to vi.
To construct the holes that model the vertex-edge incidences we proceed as

follows:
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w1

w2

w3 s t

Figure 4.6: On the left side of the polygon there are only narrow slits between the
holes through which the witnesses (which correspond to the vertices)
can peek. Far away on the right side portions of visibility regions
hit the rectangles corresponding to edges.

We start with one rectangle
Z = [−2(m+n) + 0.5,−2(m+n) + 1]× [−m−n,m+n] and split it into 2m+ 1
pieces.
For every edge ej we define the two triangles

THj = ∆(H(j), (j, j − 0.25), (j, j − 0.5))

and
TLj = ∆(L(j), (j, 0.25− j), (j, 0.5− j)).

Now we construct the 2m + 1 holes by simultaneously cutting the interiors of
all these triangles out of Z. We set

Z ′ = Z \
m⋃
j=1

( ˚THj ∪ L̊Hj)

We add the connected components of Z ′ as holes to our scene.
By this construction every witness wi sees a rectangle Rj iff the vertex vi is
incident to ej.
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We first notice that this reduction is clearly polynomial-time. The total num-
ber of edges of P is 12m+8 and the number of points (witnesses and start/target)
is n+2, each of which can easily be computed in polynomial time.
To see that every path from s to t that is seen by k witnesses corresponds to

a vertex cover of G, observe the following: For every edge ej the quadrilateral
with corners (j, 0.5− j), (j, j − 0.5), H(j), L(j) contains s and does not contain
t. Thus every path from s to t must cross one of its four sides. One of the sides
is the edge of a hole that cannot be crossed. The other three sides are visibility
segments of L(j) and H(j), respectively, and thus crossing them means to be
seen by L(j) or H(j). Therefore, if π is a path from s to t that is seen by the
set of witnesses W (π) then the image of W (π) under f is a vertex cover of G.
As f is a bijection, the set of witnesses has the same cardinality as the resulting
vertex cover.
On the other hand, if C ⊂ V is a vertex cover of G we can construct a path

from s to t with at most the same number of witnesses. From s we first go to
the point (1, 0). Now we are on the boundary of R1 that corresponds to edge
e1. By definition, f(H(1)) or f(L(1)) are in C. If f(H(1)) is in C, our path
proceeds to (1, 1), crossing the visibility region of H(1) (but no other visibility
region), and then to (1.5, 1). Otherwise, the path proceeds to (1,−1) (crossing
the visibility region of L(1)) and then to (1.5,−1). In both cases, the next way
point is (2, 0).
We continue in this manner, getting, for every j, from (j, 0) to (j + 1, 0) by
crossing the visibility region of H(j) if f(H(j)) ∈ C and crossing the visibility
region of L(j) otherwise, until we reach t. The resulting set W (π) of witnesses
has at most as many elements as C.
It follows that an α-approximation for the Barrier Resilience problem yields
an α-approximation for Minimum Vertex Cover.

Next we show that in the case of one convex hole either one can ignore the
hole (Lemma 26) or one can compute two paths, one of which is a minimum
witness path (Theorem 9).

Lemma 26. Let P be a polygon with one convex hole H, (i.e. P = P ′ \ H̊ for
some simple polygon P ′ and a convex polygon H ⊂ P ). Assume that for every
point h ∈ H and for every two line segments S1, S2 ⊂ P ∪H that both have as
one endpoint h and the other endpoint on ∂(P ∪ H), s and t lie in the same
connected component of (P ∪ H) \ (S1 ∪ S2). Then there is a unique shortest
path from s to t in P and it is a minimum witness path.

Proof. Take the shortest path π between s and t in P ′ = P ∪ H. As this is a
simple polygon, π is unique. By assumption, there is no point h ∈ H and line
segments S1, S2 ⊂ P ′ that connect h to the boundary of P ′ such that s, t lie in
different components of P ′ \ (S1∪S2), see Figure 4.7. Then π does not intersect
H.
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h

s

t

S1

S2

Figure 4.7: The removal of the segments S1 and S2 splits P into two connected
components. s and t lie in the same connected component.

Otherwise we could take a point h ∈ π ∩H and draw a line segment S ⊂ P ′

that crosses π in h and ends in the two points b1, b2 on the boundary of P ′.
Then setting S1 = b1h and S2 = b2h yields a contradiction to the assumption
as s and t lie in different connected components of P ′ \ (S1 ∪ S2) (because the
shortest path crosses the segment S exactly once).
Therefore, π is completely contained in P and is the unique shortest path

between s and t. Now suppose, there was a path that was seen by less witnesses
π′. Then there was in particular one witness w that sees π but not π′. Let p
be a point on the path π that is seen by w. Let further S be the connected
component of the intersection L(w, p) ∩ P ′ of the line through w and p with P ′
that contains p and S1 be the connected component of L(w, p)∩P that contains
p. If both endpoints of S1 lay on the boundary of P ′ then s and t were in distinct
components of P \ S1. Then every path from s to t would have to cross S1 and
therefore be seen by w, a contradiction.
Thus, one of the endpoints must lie on the boundary of H, let us call this

endpoint h. If we now set S2 to be the topological closure of S\S1, then h, S1, S2
are as above and s, t are in different connected components of P ′ \ (S1 ∪ S2), a
contradiction.
It follows, that there can be no path π from s to t and witness w such that w

sees π but not π′. Thus the shortest path π is optimal.

Theorem 9. Let P = P ′ \ H̊ a polygon with one convex hole, s, t be start
and target point, respectively. Let there be line segments S1, S2, each of them
connecting a point on an edge (not a vertex) of H to a point on an edge (not
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s

t

S1

S2

π1 π2
H

Figure 4.8: The removal of either S1 or S2 leaves polygons with unique shortest
paths π1, π2 one of which is a minimum witness path

a vertex) of the boundary of P ∪ H, so that s and t lie in different connected
components of P \ (S1 ∪ S2). Either the shortest path π1 from s to t in P \ S1
or the shortest path π2 from s to t in P \ S2 is a minimum witness path in P .

Proof. Suppose none of them were optimal. Then there exist witnesses w1, w2
(possibly w1 = w2) and a path π′, such that w1, w2 do not see π′, but w1 sees
point p1 on π1 and w2 sees p2 on π2. Let T1 and T2 denote the line segments
from boundary to boundary of P ∪H through w1 and p1 and through w2 and
p2, respectively. The segments S1 and T1 together with H as well as S2, T2, H
separate the points s and t. By the existence of π′, T1, T2 and H together do
not separate s and t. The connected component of s in P \ (T1 ∪ T2) is simply
connected and contains t. As π′ does not cross T1, T2 it crosses both S1 and
S2. s and t lie in different components of P \ (S1 ∪ S2), so (S1 ∪ S2) is crossed
an odd number of times. Now we can repeatedly replace subpaths between two
crossings of the same segment Si by the direct paths along the segment (this
does not add witnesses) until only one crossing is left, contradicting the fact,
that π′ crosses S1 and S2.

It follows that in this case the barrier resilience can be computed in polynomial
time by computing S1 and S2 and then the respective shortest paths.
One can show that this also holds if P contains many convex holes that are
strictly separated in a sense made precise below.

Theorem 10. Let P = P ′ \ ⋃mi=1 H̊i a polygon with convex holes, s, t ∈ P ,
W = {w1, . . . , wn} ⊂ P a set of witness points. Let for every i 6= j there be
a line segment Sij ⊂ P s.t. Hi and Hj lie in distinct connected components
of P ′ \ Sij and Sij is not seen by any witness w ∈ W . Then one can find a
minimum witness path from s to t in polynomial time.
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Proof. Let Cij denote the connected component of P ′ \ Sij that contains Hi.
Then for every 1 ≤ i ≤ m, Ci = ⋂

j 6=iCij is a simple polygon, that contains
Hi but no Hj for any other index j 6= i. For j 6= i Ci ∩ Cj = ∅. We now
compute in O(|P ′|) time the shortest path π′ from s to t in P ′. The parts of π′
outside ⋃mi=1 Ci are already optimal by Theorem 9. To get the witness-minimal
path π through P , we replace the parts of π′ inside the Ci by witness-optimal
paths, according to Lemma 26 or Theorem 9. The different parts do not affect
each other. To this end let us call the point where π′ enters Ci si and the
point where it leaves Ci ti. We then draw a segment B1 from an arbitrary
point on the boundary of Hi to the boundary of Ci. Then we compute in time
O(|P ′|+m) = O(|P |) the shortest path π1

i from si to ti in Ci\(H̊i∪B1). We then
choose a second segment B2 from Hi to the boundary of Ci, that intersects π1

i (if
such a segment exists; otherwise π1

i is optimal in Ci by Lemma 26) and compute
in time O(|P ′|+m) = O(|P |) the shortest path π2

i from si to ti in Ci \ (H̊i∪B2).
We choose the path less seen by witnesses in P to replace the part of π′ inside
Ci. (Testing all possible path π1

i or π2
i with all possible witnesses can be done in

total time O(n|P |2) after the construction of the witnesses’ visibility polygons.)
By sewing together the thus computed parts we get a witness-minimal path

π from s to t in P . The running time is dominated by the visibility tests that
can be carried out in O(n|P |2) The computation of the polygons Ci can be
computed in time O(m2|P ′|). (Shoot a ray from Hi to find the boundary of
Ci in O(|P ′| + m). Then follow the boundary, turning at every intersection.
Testing for the intersections of the m many Sij is in total time O(m2), following
the boundary of |P ′| and testing if it meets a segment is in O(m|P ′|).)

We note that as usual for fixed k the question if the barrier resilience is at
most k is polynomially solvable by checking all k-element subsets of the set of
visibility polygons of witnesses.
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4.3 Minimum Neighborhood Paths in Graphs

4.3 Minimum Neighborhood Paths in Graphs
Let us introduce a graph-theoretic version of the problem: Let G = (V,E) a
simple connected graph. For every vertex v ∈ V we say that v sees w ∈ V iff
{v, w} ∈ E or v = w. In other words, the set of vertices that are seen by v is
exactly its closed neighborhood N(v).
Now let there be two fixed vertices s, t ∈ V where s denotes the start and t

denotes the target. The task now is to find the path π from s to t that is seen
by the least number of vertices.
For every path π in G we define the Neighborhood of π to be

W (π) = {v ∈ V | There is a vertex p on π such that v lies in N(p)}

and we will call the number of neighbors in W (π) by w(π).
Note that for every path π from s to t all vertices of π and especially s and t

always lie in W (π).
In this notation, the Minimum Neighborhood Path problem gets the fol-

lowing formulation:

Definition 15. Given an undirected, simple, connected graph G = (V,E) and
two vertices s, t ∈ V , the problem Minimum Neighborhood Path is to find
a path π from s to t in G that minimizes w(π).

As the order in which the vertices are traversed on the path does not matter
for the number of neighbors, we identify the path π with its set of vertices and
call this set π, too.

4.3.1 Examples
In this section we will have a look at some simple examples and settings in
which the problem is easily solved and will on the other hand try to develop an
intuition for why the problem may be hard in general. In the following section
we will show that in the case of planar graphs there is a simple 3-approximation
algorithm. In a later section we will have a look at the complexity of the general
problem.
For some particularly simple graphs the problem is solved soon: For π1 ⊂ π2

always holds w(π1) ≤ w(π2). It follows that one optimal path between s and t
is the shortest path, if G is itself a path or if G is a tree.
Also, if G is a cycle, the shorter one of the two inclusion-minimal paths is the

better.
Until now it seems as if the problem could in general be solved using one

of the well-known algorithms for shortest paths in graphs. But there are very
simple examples in which a shortest path is not the right solution. Consider
Figure 4.11.
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4 Barrier Resilience of Visibility Domains

s t

Figure 4.9: Every path from s to t must contain the red edges and will therefore
result in at least the same number of neighbors.

s

t

Figure 4.10: The red path has got 6 neighbors, the path on the other side 8
neighbors.

But also in this case the path that is least seen is easily discovered: The vertex
on the red path is particularly public, so to speak. Perhaps it is a marketplace.
If we assigned every vertex as a weight the number of its neighbors then, in this
example, the vertex on the red path would be very expensive so we would never
have set foot on it.
Is this the simple answer that addresses the general problem? Assign to each

vertex its degree as a weight and find a minimum cost path in the new model?
What has the path thus found to do with an optimal path in the original model?
Figure 4.12 shows that this approach does not work. It does not even give us a
good approximation: Let us adjust the example in Figure 4.12 such that the red
path consists of n vertices and the green path and the row above the green path
consist of d

√
2n + 1e vertices each. Then in the modified model the red path

has cost 2n + 4 and the green path has cost at least (
√

2n + 1)2 + 4 > 2n + 4.
So the algorithm would choose the red path. But in the original model the red
path has cost n + 4 while the green path has cost ≤ 2

√
2n + 6. The result is

that for this scheme of examples we get a factor of > n+4
3
√
n+6 >

1
6
√
n. Note that

in the construction of the examples the number of all vertices is linear in n.
The crucial point that separates our model from others and that prevents
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Figure 4.11: While the red path is shorter than the green one, it has got 11
neighbors. The longer green path has got only 7 neighbors.

shortest or minimum cost path algorithms from succeeding is that every neighbor
is only counted once.
However, there is another class of graphs containing a start vertex s and a

target vertex t, that admit an efficient solution.

Definition 16. Let G = (V,E) simple connected graph and s, t ∈ V . A vertex
v ∈ V is called essential for (G, s, t) iff there is no path in G \ {v} from s to t.
We let Ess(G, s, t) denote the set of vertices that are essential for (G, s, t).

Remark 1. Obviously, s and t are essential.

With the help of this definition we can define a class of graphs applied to
which the procedure from above yields the desired result. As all solvable classes
mentioned so far are special cases of this class, the following theorem summarizes
the results of this section:

Theorem 11. Let G = (V,E) be a simple connected graph and s, t ∈ V the
start and target vertex, respectively. If G\Ess(G, s, t) is a forest, then there is a
polynomial-time algorithm that computes a path π from s to t with a minimum
number of neighbors w(π).

Proof. First, we notice that one can easily test in polynomial time, if a vertex
is essential: Just remove the vertex and check if s and t are still in the same
connected component. Also searching for a cycle in G\Ess(G, s, t) is polynomial.
We now mention some facts that our algorithm will rely on. Every path from

s to t must use all vertices from Ess(G, s, t) by definition. The next thing to
notice is that all simple paths from s to t visit all vertices of Ess(G, s, t) in the
same order. (Otherwise there would be a pair of vertices a, b ∈ Ess(G, s, t) such
that a precedes b in one path but b precedes a in another path. Then there is
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4 Barrier Resilience of Visibility Domains

Figure 4.12: The algorithm that finds a minimum-cost path in the weighted
graph prefers the red path. Here, every vertex has weight 2, sum-
ming up to a total cost of 38. On the green path every vertex
except s and t has weight 7, so the green path has total weight 39.
In our original model the red path has cost 21 and the green path
has cost 14.

s
t

s
t

Figure 4.13: Left: The green vertices are essential. Right: Here, removing the
essential vertices yields a forest.

a path from s to a that does not use b in the first path and a path from a to t
that does not use b in the second one. Joining the two partial paths at a gives
a path from s to t that does not use b. A contradiction to the fact that b is
essential.)
Now consider the connected components of G \ Ess(G, s, t). Each connected

component is adjacent to at most two essential vertices. If there were three
essential vertices a, b, c (in their order on every simple path from s to t) adjacent
to one connected component C, then we could shortcut every path from s to t
through C to obtain a path from s to t not using b, a contradiction because b is
essential.
By assumption, all connected components of G\Ess(G, s, t) are trees. By the

facts we just showed, any vertex of a connected component C of G \Ess(G, s, t)
can be adjacent to at most two vertices (that are essential). If there are less than
two essential vertices adjacent to C then the component is useless for building a
path from s to t. Otherwise let v1, v2 denote the two essential vertices adjacent to
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v1

v2

v1

v2

Figure 4.14: Left: Trees between two essential vertices. Right: The essential
vertices’ neighborhood are neighbors for every path from s to t.

C. We assign to the connected component the number of neighbors in G, w(C),
of the path πC(v1, v2) from v1 to v2 through C that is least observed by vertices
not in N(v1)∪N(v2) (which see every path from v1 to v2 anyway). To this end
we simply compute the shortest path in C between every x ∈ N(v1) ∩ C and
every y ∈ N(v2)∩C. By counting for every such path the number of neighbors
that are not in N(v1) ∪ N(v2) we find a best path from v1 to v2 through C.
Notice, that the number w(C) can be 0.
Now we build a new graph G′ = (V ′, E ′) (that contains multiple edges). The

set of vertices contains exactly the essential vertices of G. First, for every two
vertices v, w ∈ V ′ we add an edge evw if there is an edge between v and w in G.
We assign the weight 0 to evw. Then we add an edge eC between v1, v2 ∈ V ′ for
every connected component of G \ Ess(G, s, t) to which v1 and v2 are adjacent.
We assign the weight w(C) to the edge eC .
We now search for the optimal path π′ from s to t in this new graph G′. This

search boils down to choosing one lightest edge between each pair of consecutive
essential vertices. To obtain the corresponding path π in G we just replace each
edge of the form eC by the path πC(v1, v2) from above. If the set of essential
vertices is given by {x1, x2, . . . , xn} in their order on every path from s to t and
ei is the edge between xi and xi+1 chosen by our algorithm, then the number of
neighbors of π is given by #(⋃ni=1 N(xi)) +∑n−1

j=1 w(ej).
To see that our algorithm really finds a minimum-neighborhood path, observe

the following facts.
Every path from s to t visits all x ∈ Ess(G, s, t) in a fixed order x1, x2, . . . , xn.

A minimum-neighborhood path is given by the concatenation of paths from xi
to xi+1.
Every inclusion-minimal path from xi to xi+1 visits only xi and xi+1 and

vertices of at most one connected component of G \ Ess(G, s, t).
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3
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Figure 4.15: Left: The chosen paths inside the components and their neighbors.
Right: In G′ each component of G \ Ess(G, s, t) is replaced by an
edge that is weighted with the number of neighbors it adds.

Every inclusion-minimal path between xi and xi+1 inside a connected compo-
nent C of G \ Ess(G, s, t) is seen only by vertices in C or in N(xi) or N(xi+1).
Therefore each subpath from xi to xi+1 has no effect on the other parts of the
path. Therefore, a concatenation of optimal subpaths πi from xi to xi+1 for each
1 ≤ i ≤ n− 1 yields an optimal path from s to t.
For every 1 ≤ i ≤ n− 1 our algorithm finds the path πi from xi to xi+1 that

minimizes the number of vertices in W (πi) \
⋃
x∈EssN(x). In total we get that

our algorithm computes the minimum-neighborhood path from s to t.

Remark 2. The running time of the algorithm above could easily be improved
by traversing the trees in a more clever way. We wanted to give a simple proof
of the main point, i.e. that this special case is polynomially solvable.

4.3.2 Planar Graphs
We now turn to the class of planar graphs. Consider again the following idea
for an approximation algorithm. Assign to every vertex v in the graph the
cost c(v) = deg(v) − 1, where deg(v) denotes the degree of v in G. Then find
a path π = p1, p2, p3, . . . , pl from s to t in G that minimizes the cost of π,
c(π) = ∑l

i=1 c(pi), see Figure 4.16.
Computing c(v) for all vertices of G can be done in time O(|V |+|E|). We then

build a directed graph G′ = (V,E ′) by replacing every undirected edge {v, w}
of E by the two directed edges (v, w) and (w, v). All those new directed edges
together form the edge set E ′ of G′. We now assign to every edge (v, w) ∈ E ′ the
weight c(w). These steps can be done in time O(|E|). We compute a minimum
weight path from s to t in G′ by using Dijkstra’s algorithm [12]. This algorithm
computes a path π from s to t that minimizes ∑v∈π c(v) as the only vertex
whose weights were not counted is the start vertex that is common to all paths
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Figure 4.16: Vertices are labeled with c(v). Our approximation algorithm finds
the green path that minimizes the number of adjacent edges. The
orange path is optimal.

from s to t. As is well-known, this algorithm can be implemented to run in time
O(|V | log |V |+ |E|), see for example the book of Cormen et al. [11]. As we are
dealing with simple planar graphs, we have |E| ≤ 3|V | − 6 (see e.g. [32]) and so
the overall running time sums up to O(|V | log |V |).
For simple planar graphs this simple algorithm yields a factor-3-approximation

of the minimum neighborhood path.
To see this, observe the following facts. Let π be a path from s to t, Gπ =
(Vπ, Eπ) be the subgraph of G that is induced by Vπ = N(π), w(π) the number
of neighbors of π.

1. w(π)− 2 ≤ c(π).

2. c(π) ≤ |Eπ|.

3. |Eπ| ≤ 3|Vπ| − 6 because Gπ is simple and planar (assuming |V | ≥ 3).

4. |Vπ| = w(π).
That means that for a path π that minimizes c and any other path π′ the
following holds.

w(π) ≤ c(π) + 2 ≤ c(π′) + 2 ≤ 3w(π′)− 6 + 2 ≤ 3w(π′)
Therefore the path found has got at most 3 times as many neighbors as the
optimal path.
We summarize:

Theorem 12. Given a simple planar graph G on n vertices one can find a
factor-3-approximate solution to the minimum neighborhood path problem in
time O(n log n).
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Figure 4.17: The holes of the polygon are transformed into cylindrical parts of
the polyhedron.

4.4 Barrier Resilience of Visibility Domains in 3D
4.4.1 Visibility Domains of Polyhedra
In the two-dimensional case we saw that it was easy to find minimum witness
paths in simple polygons. What would be the natural analogon for a simple
polygon in three dimensions? It seems that a path between two points inside
a polyhedron would correspond to our two-dimensional problem in a polygon
most appropriately.

Definition 17. A general polyhedron is a three-dimensional solid that is bounded
by a finite number of flat polygonal faces.

It is, however, not hard to transfer the hardness result from the last section to
polyhedra and to show that finding a minimum witness path inside a nonconvex
polyhedron is at least as hard as finding a minimum witness path in a polygon
with holes.

Lemma 27. Estimating the barrier resilience of a set of visibility domains inside
nonconvex polyhedra is APX-hard.

Proof. We transform a given polygon with holes P into a polyhedron R without
holes. Let P = Q\⋃ki=1 H

◦
i be the polygons with holes, where Q and H1, . . . , Hk

are simple polygons and the Hi, i = 1, . . . , k, are pairwise disjoint subsets of Q.
Let (xs, ys) is the start point, (xt, yt) the target point and for every witness w in
the set W of witnesses, (xw, yw) be the location of w of our problem instance of
the Barrier Resilience problem in the original polygon with hole. We will
construct the boundary of R and thereby define the polyhedron and then place
start point, target point and witnesses inside this polyhedron.
First P is embedded canonically into the xy-plane in R3: We define the set

B = {(x, y, 0) ∈ R3|(x, y) ∈ P} to be the base of R. The set B forms a part of
the boundary of R. As P as every polygon has a triangulation, we can also see
B as a union of triangles.
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We continue our construction of the boundary of R by replacing every hole
of P by a generalized cylinder. To this end, for every hole Hi of P let H ′i =
{(x, y, 1)|(x, y) ∈ Hi}. Denote by Vi the union of the segments {d+ (0, 0, λ)|λ ∈
[0, 1]} for d ∈ ∂Hi (so Vi = {d+ (0, 0, λ)|λ ∈ [0, 1], d ∈ ∂Hi}), see Figure 4.17.
We add the sets H ′i and Vi to the boundary of R. Notice, that for every edge

e of Hi the set {d+ (0, 0, λ)|λ ∈ [0, 1], d ∈ e} is a rectangle.
We form the outer cylinder of Q as the union of Q′ = {(x, y, 2)|(x, y) ∈ Q}

and VQ = {d+ (0, 0, λ)|λ ∈ [0, 2], d ∈ ∂Q}. Again, for every edge e of Q the set
{d+ (0, 0, λ)|λ ∈ [0, 2], d ∈ e} is a rectangle.
We define B∪Q′∪VQ∪

⋃
1≤i≤k(H ′i∪Vi) to be the boundary of our polyhedron.

To complete the instance of our three-dimensional Barrier Resilience
problem, set start and target point at (xs, ys, 0) and (xt, yt, 0), respectively, and
put for every witness w at position (xw, yw) in the original instance a witness at
(xw, yw, 0). Additionally, if there is at least one hole H1, we choose a point h =
(xh, yh) ∈ H◦1 in the interior of H1 and place 2|W | witnesses at h′ = (xh, yh, 1).
The whole reduction is polynomial. It is not hard to see, that for every path

π in R one can always compute efficiently a path from s to t that is contained
completely in the xy-plane and that is at least as good as π: If a path in R
avoids points that lie above holes then it is seen by all witnesses that see its
projection to the xy-plane. Every other path is seen by the 2|W | witnesses
at h′ and every path in the xy-plane is better than π. Every polynomial-time
algorithm that computes a path in R that is seen by C witnesses can therefore
be transformed into an algorithm that computes a path in P that is seen by at
most C witnesses. Moreover, an optimal path in R that is contained in the xy-
plane canonically corresponds to an optimal path for the corresponding problem
in the polygon with holes. Therefore, the hardness result carries over to general
polyhedra.

Let us now have a look at paths on the surface of a convex polyhedron P
instead, where the witnesses are placed on the surface of P and visibility now
is exterior visibility, i.e. the polyhedron itself is breaking the visibility.

Definition 18. A convex polyhedron is a bounded subset of R3 that is the
intersection of finitely many closed half spaces H1, . . . , Hk.

Definition 19. A proper face of a convex polyhedron P is every nonempty
intersection of P with a plane E such that P is fully contained in one of the
closed half spaces determined by E. The 2-dimensional faces are called the
facets, the 1-dimensional faces are called the edges and the 0-dimensional faces
are called the vertices of P .

We call two facets adjacent, if their respective boundaries share a common
edge.
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Figure 4.18: A path on a convex polyhedron P (dashed). Facets are grey, edges
are black vertices are red.

Definition 20. The exterior visibility domain, evis(p), of a point p on the
boundary of a convex polyhedron is the set of points v in R3 such that the
segment between p and v does not intersect the interior of P ,

evis(p) = {v ∈ R3|pv ∩ P ◦ = ∅}.

The exterior visibility domain generally is the union of half spaces. If p is
a point in the inner of a facet F , it is the closed half space whose boundary
contains F and whose interior does not intersect P . We will call this half space
the outer half space of F . If it lies on the interior of an edge that bounds the
facets F and G, evis(p) is the union of the two outer half spaces defined by F
and G. And if p lies on a vertex that is on the boundary of facets F1, . . . , Fk, it
is the union of the outer half spaces defined by those facets. As the vertices can
overlook all these facets, it would be very reasonable to place witnesses there.
In two dimensions, the analogon to the problem that we will now consider

would be a convex polygon P and two designated points s, t on its boundary to-
gether with witnesses on the boundary. The task would be to find the minimum
witness path from s to t on the boundary. In two dimensions there are only two
candidates for the minimum witness path. As ∂P \ {s, t}, the boundary of P
without start and end point splits into two connected components C1, C2, one of
these components is the optimal path, as every path from s to t contains a sub-
set of C1 or a subset of C2. The witnesses that see Ci are exactly the witnesses
on the edges that contain s and t plus the witnesses that lie on the parts of Ci
without these edges. Notice the similarity to the Minimum Neighborhood
Path problem on cycles. In this case, the barrier resilience can therefore be
computed in linear time.
In three dimensions, however, there are many different paths from s to t, so
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the problem is more challenging. We will restrict our attention to the case in
which there is a witness at every vertex of the polyhedron.
Our problem setting this time formally is as follows:
Let P be a convex polyhedron with boundary B and two distinguished points

s, t ∈ B. Let V be the set of vertices of P and let W be a set of witness
locations with V ⊆ W . For every path π on B, the cost c(π) of π is the number
of witnesses that see π,

c(π) = |{w ∈ W |∃p ∈ π : p ∈ evis(w)}|.

We want to find a path on B from s to t that minimizes c.
While a shortest path between s and t might visit some vertices of P , in our

case the intruder will typically want to avoid vertices, as at a vertex v he is visible
to all vertices of all facets adjacent to v. On the other hand, at every point of the
same facet, he is exposed to the views of the same set of witnesses. It is therefore
reasonable to model the problem by defining a (planar) multigraph G = (N,E),
where to every facet we assign a node of N and for every two adjacent facets,
we add an edge between their corresponding nodes. We can then label every
node with the set of witnesses overseeing the corresponding facet. The edges
do not need to be labeled additionally, because their corresponding edges are
watched exactly by the union of the sets of witnesses of the two common facets
it bounds.
We will assume that no two facets lie in a common plane and that the bound-

aries of every two adjacent facets have exactly one edge in common (it follows
that they have at least two witnesses in common). We observe the following
facts.

Lemma 28. There is always a path π from s to t that minimizes c and that has
the following properties:

1. The path π does not cross or touch itself.

2. If at some point in time π passes from facet F1 to facet F2 it will, after
leaving F2 never enter a facet adjacent to F1.

Proof. The first property follows from the fact, that we can delete from π the
loop between the first and second visit of the crossing point and get a path from
s to t that is seen by at most as many witnesses as π. The second property holds
because if π enters such a facet F3 at some point after leaving F2, it could have
entered it right after visiting F1 while being seen by at most as many witnesses.
We can therefore modify the path π by replacing the subpath between some
point p1 in F1 and some point p3 in F3 by a path that goes from p1 to p3
without visiting any facet in addition to F1 and F3 and obtain a path π′ with
c(π′) ≤ c(π).
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From now on, we will assume that our path π has these two properties.
If we think of the path π as the sequence of facets he visits (what perfectly

grasps the combinatorial core of the problem), we can describe it by that se-
quence (T1, T2, . . . , Tk) where T1 contains the point s and Tk contains t. We will
call this sequence the facet sequence of π and will in slight abuse of notation
call this sequence also π and for every facet Ti of the facet sequence, we will say
Ti ∈ π. Lemma 28 above then means that the only way in which an intruder
who follows such an optimum path can be seen by the same witness in two
non-consecutive steps is that there are two facets Ti and Tj with j ≥ i+ 2 such
that Ti and Tj have exactly one vertex in common (they belong to the set of
facets incident to this vertex but do not share a common edge).
Let us call this contact at exactly one vertex between Ti and Tj a nudge and

define for all indices 1 ≤ i < j ≤ k of the k-step path π

N(i, j) =

1 if there is a nudge between Ti and Tj
0 otherwise

(4.1)

By definition, N(i, i + 1) = 0. By our assumptions, consecutive facets on the
path have at least two vertices in common. Non-consecutive facets Ti, Tj have
exactly N(i, j) vertices in common. It is of course possible that for one facet
Tj there are several preceding facets Ti such that for all of them N(i, j) = 1.
For two adjacent facets Ti, Ti+1 of the path, we define Ei to be the number of
witnesses on the interior of the edge common to Ti and Ti+1 (i.e. we do not
count the two witnesses that always lie on the end points of this edge),

Ei = |{w ∈ W |w ∈ Ti ∩ Ti+1}| − 2. (4.2)

Let us now try to design an approximation algorithm similar to the one for
the Minimum Neigborhood Path Problem in planar graphs in Section 4.3.2.
To this end, assign to every facet T of P as weight wT the number of vertices
on its boundary minus two. For facets Ti in the facet sequence of a path π =
(T1, T2, . . . , Tk) we will write wi instead of wTi .
Let π = (T1, T2, . . . , Tk) be a path from s to t on P that adheres the rule to

not visit two facets adjacent to T after having visited T . It is seen by all the
vertices on the boundaries of the Ti. We define the weight of π to be

w(π) = 2 +
k∑
i=1

wi. (4.3)

While we sum up the weights of these facets, we of course count some vertices
twice. More precisely, for every pair of consecutive facets Ti, Ti+1, we counted
exactly the witnesses on their common edge twice. Additionally, for all nudges
caused by the same vertex in one step, we added one. For the true cost c(π) of
our path we have

w(π) ≥ c(π) ≥ w(π)−
∑

1≤m≤k−1
Em −

∑
1≤i<j≤k

N(i, j). (4.4)
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w

π

s
t

Figure 4.19: Path π that visits many facets incident with witness w. Every pair
of non-adjacent facets that π visits creates a nudge.

But this estimate is too weak: Every vertex on an edge between two adjacent
facets is counted at most twice by w, thus ∑k−1

i=1 Ei < c(π). But how large can∑
1≤i<j≤kN(i, j) be? Obviously, there is an upper bound of

(
k
2

)
. But it can

indeed be as large as Ω(k2) as a simple example shows, see Figure 4.19. That
can of course be much larger than the optimal value of c.
We make use of an accounting argument to bound the excess in our cost

measure. Let us count for every witness w the number of its appearances along
our path π:

A(w) = |{Ti ∈ π|w ∈ Ti}| (4.5)

Now we will try to split the appearances of w into groups that we can find
upper bounds for. For every witness w that sees π, there is a first appearance
of w along the path π. We count the number of times a witness sees π for the
first time by F (w). Obviously,

F (w) =

1 if w sees π
0 otherwise

(4.6)

It follows that c(π) = ∑
w∈W F (w).

The other appearances are repeated appearances. To be able to give a good
upper bound on the number of repeated appearances, we will split it into two
parts.

Definition 21. Let π = (T1, T2, . . . , Tk). For every 1 < i ≤ k we define Ri to
be the set of witnesses on Ti that lie also on some facet Tj of π for j < i. For
every 2 ≤ i < k, our path π leaves Ti via some point p on the boundary of Ti.
Let ra, rb be the two witnesses in Ri that one encounters first when following
the boundary of Ti starting from p in the two possible directions. Let us call
these two vertices the repeated extreme witnesses of Ti.
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Notice, that there are always two such witnesses, as the endpoints of the edge
between Ti−1 and Ti are in Ri. Notice further, that ra and rb are always vertices
of P .
Let us now define for every witness w ∈ W

RE(w) = |{i ∈ {1, . . . , k}|w is repeated extreme witness of Ti}| (4.7)

and
R(w) = |{i ∈ {1, . . . , k}|w ∈ Ri}| −RE(w) (4.8)

So R(w) is the number of times that w appears as a repeated witness that is
not repeated extreme.
Now we can count the appearances of the witnesses: For every witness wf

that lies in the interior of a facet, we have:

A(wf ) = F (wf )

For witnesses we that lie in the inner part of an edge, we get:

A(we) ≤ 2F (we)

To bound the number of appearances of witnesses at vertices, we need the
following lemma:

Lemma 29. Let w ∈ Ri be a repeated witness of Ti that is not a repeated extreme
witness of Ti. Then for all i < j ≤ k, w /∈ Tj. It follows that R(w′) ≤ 1 for all
w′ ∈ W .

Proof. Let Ta, Tb be the last facets from which π has seen the repeated extreme
witnesses of Ti, ra and rb, respectively. (W.l.o.g., π visited Ta, Tb in this order.)
The witnesses ra, rb lie on vertices of P . The facets that π visited, starting with
Ta until Tb together with the boundary of Ti cut off the access to all faces that
have any point of Ri \ {ra, rb} on their boundaries, see Figure 4.20. As π does
not have any self-crossings and will never return to Ti, no vertex of Ri \ {ra, rb}
will ever be seen by π again.

Let us now count the number of times the vertex witnesses are seen by π. As
always, we have A(v) = F (v) + R(v) + RE(v) for every witness v ∈ W . As for
every witness, v is seen at most once for the first time. It is also seen at most
once as a non-extreme repeated witness, by Lemma 29. It may be seen many
times as extreme repeated witness.
But in every step Ti for i ≥ 2, only two vertices can be repeated extreme

witnesses, by definition. Furthermore, we know that in every step Ti, i ≥ 2 there
are at least two repeated vertices, so ∑w∈W RE(w) = 2(k − 1). We therefore

94



4.4 Barrier Resilience of Visibility Domains in 3D

Ti
π

ra

rb

p

Figure 4.20: The repeated extreme witnesses ra and rb are closest to p along the
boundary of Ti. Facet Ti together with the facets that π visited
before encircle all other repeated vertices (blue).
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see that for the computed costs of a path c(π) the following inequalities hold.

w(π) = 2 +
∑

1≤i≤k
wi

=
∑
w∈W

A(w)− 2(k − 1)

=
∑
w∈W

(F (w) +R(w)) +
∑
w∈W

RE(w)− 2(k − 1)

≤ 2
∑
w∈W

F (w) + 0

= 2c(π)

On the other hand, w(π) ≥ c(π). Especially for the path that minimizes w,
πwOPT and the optimal path with respect to the real cost function c, πOPT , the
following inequality holds:

c(πwOPT ) ≤ w(πwOPT ) ≤ w(πOPT ) ≤ 2c(πOPT )

Given the polyhedron and the witness locations, computing the weights can
easily be done in polynomial time. The optimization itself can again be done
using Dijkstra’s algorithm as in Section 4.3.2. We have therefore proven:

Theorem 13. One can compute a 2-approximate solution to the Barrier Re-
silience problem on a convex polyhedron in polynomial time if on every vertex
there is exactly one witness.

4.4.2 Visibility Domains between 3-dimensional Obstacles
We now turn our attention to minimum witness paths in three dimensional
space with polyhedral obstacles. We will see that this problem is at least as
hard to approximate as the Minimum Color Path problem. This problem
is inapproximable in a strong sense as shown by Carr et al. [6]. We will also
give a reduction from the Minimum Color Path problem to a variant of the
Minimum Neighborhood Path problem that serves as a prototype for our
reduction to the Barrier Resilience problem for visibility domains in three
dimensions among polyhedral obstacles.

Definition 22. In the Minimum Color Path problem we are given a graph
G = (V,E), a start node s ∈ V , a target node t ∈ V , a finite set C of "colors"
and a function c : E −→ C assigning a color to each edge. The task is to find
a path π from s to t in G that minimizes the number of colors assigned to the
edges traversed by π.

Carr et al. ([6]) showed that unless P = NP, Minimum Color Path cannot
be approximated to within a factor O(2log1−δ(|C|) |C|), where |C| is the number of
colors and δ(|C|) = 1

log loga |C| , for any constant a < 1/2. It is easy to see, that
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Figure 4.21: Left: An instance of Minimum Color Path where every edge has
got a color and a path with the least number of colors is sought.
Right: The corresponding instance of 0-1-Weighted Minimum
Neighborhood Path. The color vertices have weight 1, all other
vertices have weight 0. The color vertices are connected to vertices
in G′ that correspond to edges in G.

the factor of approximation carries over to a weighted variant of the Minimum
Neighborhood Problem by a straightforward reduction:
The 0-1-Weighted Minimum Neighborhood Path problem is a variant

of the Minimum Neighborhood Path problem, where all vertices of the graph
G = (V,E) are divided into two classes A and Z (A∪̇Z = V ). We no longer
want to minimize the size of the neighborhood of a path π from s to t. Instead
we assign every vertex z ∈ Z the weight w(z) = 0 and every vertex a ∈ A the
weight w(a) = 1 and then want to find a path π of minimum weight. In other
words, we want to minimize the number of vertices in the intersectionW (π)∩A,
where W (π) denotes the neighborhood of the path π and we do not care about
how many elements of Z are in the neighborhood of π.
We can reduce Minimum Color Path to 0-1-Weighted Minimum Neigh-

borhood Path by building for an instance graph G = (V,E) with color func-
tion c : E −→ C the graph G′ = (V ′, E ′) with weight function w : V −→ {0, 1}.
We first describe how the vertex set V ′ of G′ is built. All vertices of V are

also vertices of V ′. For every e ∈ E there is a new vertex ve ∈ V ′, we define
VE = {ve ∈ V ′|e ∈ E} to be the set of all the vertices added for an edge in the
original graph. Also for every color k ∈ C, one vertex vk is added to V ′, and we
define VC = {vk ∈ V ′|k ∈ C} to be the set of vertices corresponding to colors in
the original setting.
The weight function assigns positive weights only to the vertices corresponding
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to the colors in the original setting.

w(v) =

0 if v ∈ V ∪ VE
1 if v ∈ VC

(4.9)

The set E ′ of edges of G′ does not contain any of the edges of E. Instead, for
every e ∈ E that connects vertices v, w ∈ V and is assigned the color c(e), the
three edges {v, ve}), {w, ve} and {ve, vc(e)} are added. Additionally, for every
pair of colors a, b ∈ C we put the edge {va, vb} into E ′, see Figure 4.21.
Now every path from s to t in G with cost r corresponds uniquely to a path

in G′ that does not visit any vertices of VC and has total weight r. (Every path
in G′ that does visit a vertex of VC automatically has total weight |C| = |VC |.)
Therefore the approximation hardness factor for Minimum Color Path carries
over to to 0-1-Weighted Minimum Neighborhood Path. The reduction
is clearly polynomial-time.
It is easy to see that we could also use this reduction to show approximation

hardness for the original Minimum Neighborhood Path problem. To this
end we could carry out the construction just described but assigning to every
vertex the weight 1, obtaining a graph G as above. Then, by replacing every
vertex v of VC and its incident edges by multiple copies of it we get a graph
that is equivalent to a weighted version of G in which the weights of all vertices
in VC are amplified while the weights of all other vertices are kept at one. For
a large enough amplification factor, the weights of the color vertices dominate
the weights of the vertices of V and VE.
Now we show that the approximation hardness also carries over to the barrier

resilience of visibility domains in 3D with polyhedral obstacles. To this end
we are going to design for every instance of the Minimum Color Path prob-
lem a so-called parcours, i.e. a collection of disjoint polyhedra in R3 together
with a set of locations of witnesses in R3 and a start position and target po-
sition. The reduction will mimic the reduction to 0-1-Weighted Minimum
Neighborhood Path. We obtain the theorem:

Theorem 14. Unless P = NP, the Barrier Resilience problem for three di-
mensional visibility domains among polyhedral obstacles cannot be approximated
to within a factor O(2log1−δ(|W |) |W |), where |W | is the number of witnesses and
δ(|W |) = 1

log loga |W | , for any constant a < 1/2.

Proof. Let G = (V,E) be the graph, C = {c1, c2, . . . , ck} the set of colors,
c : E −→ C the color function of our Minimum Color Path instance. As
there are at most

(
n
2

)
many edges that we can colors assign to, we may assume

that |C| ≤
(
n
2

)
. Let {v1, v2, . . . , vn} be an enumeration of the vertices of V such

that v1 = s and vn = t.
We will now specify locations in space where we put witnesses corresponding

to the colors of our Minimum Color Path instance. We will also specify
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pv

e1

e2

e3

Figure 4.22: A sphere of radius 1 around pv and entrance points of the edges
e1, e2, e3 at the intersections of their corresponding line segments
with the sphere.

locations that we will associate with the vertices and edges of our graph G. We
will make sure that the location associated with an edge e will be seen by the
witness associated with the color of e, c(e), and only by this witness. We will
finally ensure, that every path that does not stick to the regions associated with
vertices and edges of G will be seen by a huge amount of (additional) witnesses,
thereby enforcing that all paths from s to t that may count as candidates for
being optimal have to follow the routes prescribed by our construction.
We start by finding is to find for every vertex v ∈ V a location pv in R3

such that no three of these locations are on a common line. We will sometimes
say pi instead of pvi . We make sure, that no two line segments between these
locations intersect, except at their endpoints. Also, we prevent the slopes of the
line segments between the points pi to become to high. For concreteness, we
create a graph zone that is the box [−n, n] × [−n, n] × [0, 1] that will contain
all locations corresponding to vertices and edges of G. The vertex locations
are now chosen such that their projections to the xy-plane are equally spaced
points on the circle with radius n around the origin. So, the location for vertex
vi is placed at point pi = (n · cos(i2π

n
), n · sin(i2π

n
), hi) where the hi ∈ [0, 1] are

chosen such that no two line segments pipj, pkpl for pairwise distinct locations
pi, pj, pk, pl intersect. Notice, that for n ≥ 6 the distance between two vertex
locations is at least 6 so the steepness of every edge is at most 1

6 . We call the
set of all these positions PV = {pv ∈ R3|v ∈ V }. The locations of the start
vertex s and the target vertex t for the Minimum Color Path problem mark
the starting and target points ps, pt for our Barrier Resilience problem for
visibility domains among three dimensional obstacles.
In our reduction to 0-1-Weighted Minimum Neighborhood Path we
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built for every edge eij = {vi, vj} in E a vertex veij . In this reduction here,
the location that corresponds to veij is the midpoint of the line segment pipj,
1
2(pi + pj). For every edge e ∈ E we will call this midpoint of the corresponding
line segment me.
We now generate for every color c of our Minimum Color Path instance

one witness wc. We position wc in the witness zone that is the set [−n, n] ×
[− 1

n2 ,
1
n2 ]× {2n+ 1}.

We will now go into the details of the placement of witnesses and polyhedral
obstacles. Around every vertex location pv we will build an umbrella polyhedron
that shields pv and the region around it from the views of all witness points.
Around every line segment corresponding to edge e ∈ E, we will build a tunnel
pair that shields the line segment from all witnesses but the one corresponding
to color c(e). The following specifications of our parcours are a bit technical,
but they make sure, that no two obstacles intersect and that every line segment
corresponding to an edge e is seen by exactly the witness corresponding to color
c(e). The value ρ that we are going to define will serve as the diameter of the
circumcircles of the tunnel pairs. The value ε will serve as the width of the gaps
between the two tunnel polyhedra of a tunnel pair.
The witnesses are placed in the witness zone in a way such that

1. for every two different colors a, b ∈ C the witnesses wa, wb have distance
at least 1/n to each other.

2. for every edge e ∈ E with c(e) = a the line segement wame does not
intersect any other line segment pipj between points of PV .

The first property can easily be achieved as there are at most
(
n
2

)
colors.

The second property can also easily be achieved as for every midpoint me the
projection of the set ⋃p,q∈PV pq from me onto the plane {z = 2n + 1} is an
arrangement of line segments. It follows that arbitrarily close to every point
in the witness zone, there is a point in the witness zone that fulfills the second
property.
As the line segments are closed sets and as such have open complements, we

can now choose a ρ1 > 0 that is so small that for every color a and every edge
e with c(e) = a the set Bρ1(wame) does not intersect Bρ1(pipj) for any pair of
points pi, pj ∈ PV , where for a set X ⊂ R3 the set Bρ1(X) = {y ∈ R3|∃x ∈
X : ‖x − y‖ ≤ ρ1} is the set of points within distance ρ1 to X. Choosing the
diameter of the tunnels smaller than ρ1 makes sure that the vision of no witness
onto one of its edges is blocked by a tunnel around some other edge.
Let ρ2 = min{dist(pipj, pkpl)|pi, pj, pk, pl pairwise distinct elements of PV } be

the smallest distance between line segments that do not have a common end
point (where the distance between two nonempty sets A,B is defined to be
dist(A,B) = infa∈A,b∈B ‖a− b‖2). Choosing the diameter of tunnel pairs smaller
than ρ2 will guarantee that no two tunnels that have no endpoint in common
intersect. Let ρ3 = sin( π

n2 ). We set ρ := min{ρ1, ρ2, ρ3}. Choosing the diameter
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smaller than ρ will guarantee that no two tunnels that have one endpoint in
common intersect. It also rules out the possibility that an umbrella polyhedron
and a tunnel intersect. We also set ε := ρ/2n3. This will make sure, that only
the right witness can see through the gap of width ε between the tunnels.
Now that we fixed these values, we can specify the locations of the umbrella

and tunnel polyhedra. The umbrella polyhedron of pi shields it from all wit-
nesses of W . The only apertures in the umbrella polyhedron of pi will be in
the direction of the vertex locations corresponding to vertices v′ that are adja-
cent to vi in G. To find the location and shape of these apertures, we do the
following:
We draw spheres C1

i of radius 1 around every pi. The intersection of this
sphere with the segment Se corresponding to an edge e incident to pi is called
an entrance point of this edge, see Figure 4.22. Let me be the midpoint of this
segment. For every edge eij = {vi, vj} we now build small equilateral triangles
∆1
ij, ∆1

ji, that are translates of each other and that are normal to Seij , such that
the diameter of their circumcircles is ρ and the centers of their circumcircles
are the entrance points of Se on C1

i and C1
j , respectively. We additionally build

small triangles δ1
ij, and δ1

ji that are shrinked versions of ∆1
ij and ∆1

ji whose
diameter is only ρ/n but that have the same center and lie in the same plane
as their big counterparts . We also define for every 0 < r < 1 the triangles
∆r
ij = {d ∈ R3|∃d1 ∈ ∆1

ij : d = rd1 + (1− r)pi} and
∆r
ji = {d ∈ R3|∃d1 ∈ ∆1

ji : d = rd1 + (1− r)pj}.
Now we define the umbrella polyhedron Ui of pi. To ensure that pi lies in-

side Ui, we first take a set A ⊂ R3 of four points with distance ρ from pi such
that pi lies in the interior of ch(A). Define for every 1 ≤ i ≤ n the set

Ei :=
{
j ∈ {1, . . . , n}|{vi, vj} ∈ E

}
.

We define
Zij := ch(∆1

ij ∪∆ρ
ij),

Tij := ch({pi} ∪ δ1
ij)

and

Ui :=
( ⋃
j∈Ei

Zij ∪ ch(A ∪
⋃
j∈Ei

∆ρ
ij)
)
\
(
ch({pi} ∪

⋃
j∈Ei

∆
ρ
2
ij) ∪

⋃
j∈Ei

Tij
)

Then, we add for every pair of vertices vi, vj ∈ V that is connected by edge
e = {vi, vj} in E a pair of tunnels, see Figure 4.23. Between these two tunnels,
there is only a small slit and the ratios between the thickness of the tunnel walls
on the one hand and the diameter of the tunnel tubes and the width of the slit
on the other hand prevents every path that uses these tunnels from being seen
by any witness except wc(e) that lies in a plane going right through this slit.
The tunnel pair is given as a set(

ch(∆1
ij ∪∆1

ji) \ ch(δ1
ij ∪ δ1

ji)
)
\ {q ∈ R3|∃p ∈ Pec : ‖q − p‖ < ε}
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Figure 4.23: A tunnel pair consists of two tunnels but can also be seen as one
tunnel that is trenched by a small slit. In general, the slit is not
parallel to the entrance triangles.

where Pec is the plane through wc(e), me and wc(e) + a, where a is the vector
of (1, 1, 0) and (1,−1, 0) that maximizes the smaller angle to the projection of
(pj − pi) onto the xy-plane.
Finally, we add at every outside face of every tunnel pair k additional witnesses

that are positioned so that they can not see into the interior tubes of any tunnel.
Following from all these constructions a path starting in ps and proceeding

through the tunnel pairs along the locations ps = pvσ(1) , pvσ(2) . . . , pvσ(m) = pt is
seen at most by the witnesses corresponding to the colors of {vσ(i), vσ(i+1)} for
i = 1, . . .m − 1. It is also clear that every path from s to t that leaves the
shelter of the umbrellas and tunnel pairs is immediately seen by 2k witnesses.
The reduction is polynomial. Therefore the factor of approximation carries
over from Minimum Color Path to the Barrier Resilience problem for
visibility domains with polyhedral obstacles.

In particular, for the general Barrier Resilience problem of visibility do-
mains in three dimensions there can be no constant factor approximation unless
P = NP.
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5 Conclusion
In this thesis we considered visibility domains and problems related to their
complexity.
In the field of VC-dimensions, we set about finding new lower bounds for

the VC-dimensions of visibility domains. To this end, we developed a novel
approach that combines encircling arguments with decomposition techniques
and as a main ingredient the new idea of relativization. Relativization makes
it possible to replace visibility domains in the analysis of intersections by less
complex geometric ranges such as wedges, half planes or intervals.
In the case of visibility polygons, a sophisticated analysis together with a

custom-made decomposition enabled the application of relativization. This re-
sulted in Theorem 6 which establishes an upper bound of 14 that significantly
improves upon the previously known best upper bound of 23. In the case of
perimeter visibility domains, we were able to exploit the simpler structure of
these visibility domains to establish an even better upper bound of 7 that is
already very close to the lower bound of 5. While the decomposition in this case
was less hard to find, to obtain the mentioned result we had to examine the
parts closer. In particular, we looked at the coarseness of subsets of the set of
visibility domains, that measures how far away a set system is from shattering
a point set.
In this thesis we considerably narrowed the gap between lower and upper

bounds for the VC-dimensions of visibility domains, but the question arises
naturally how much further the methods presented in chapter 3 can carry us in
this direction.
In the case of visibility polygons, the first step of our proof was the decom-

position of the point set into points in the interior of the convex hull and points
on its boundary. To apply our techniques to the whole set rather than to the
two subsets seems to be a promising approach for strengthening our result. To
treat all points at once, would make extensive case distinctions necessary. On
the other hand, it is very well conceivable that this effort would be rewarded
with an upper bound that is close to 9, the upper bound we obtained for the
number of shattered points on the boundary of the convex hull.
In the case of perimeter visibility domains it is much harder to imagine how

further progress could be reached with the methods we employed: Our rela-
tivization to intervals is already very strong, and we also decomposed the point
set in very small sets.
In Chapter 4 we initiated the research on a very natural special case of the

Barrier Resilience problem. In the case of simple polygons we could show
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5 Conclusion

that the shortest path is always seen by a minimum number of witnesses. The
reason for this lies in the topological structure of simple polygons. We showed
that in the case of polygons with one convex hole we can also easily compute an
optimal path. In the other direction we showed that the Barrier Resilience
problem for visibility polygons in polygons with holes is APX-hard. The ap-
proximation factor we were able to show is greater than factors shown in the
research on barrier resilience of other geometric objects such as line segments.
We also considered three dimensional settings for the barrier resilience of visi-
bility domains and showed their connections to the Minimum Neighborhood
Path problem and the Minimum Color Path problem. In particular, we gave
simple approximation algorithms for finding minimum neighborhood paths in
planar graphs and minimum witness paths in a setting on a convex polyhedron
and we could show that finding a minimum witness path in three dimensions
with polygonal obstacles is hard to approximate in a strong sense.
The study of barrier resilience problems is a very interesting emerging field in

which very few tight results have been shown so far. It would be a challenging
task to design approximation algorithms for the barrier resilience of classes of
visibility domains as well as for classes of other geometric objects.
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