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A   Adenine  

Amp   Ampicillin 

Aqua bidest  double distilled water  

bp   base pair 
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et al.   et aliter 

Fig   Figure 

g   gram  
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h   hours 
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HRP   Horderadish peroxidase 

kb   kilo base 

IF   Immunofluorescence 

IgG   Immunoglobulin G  

l   liter 
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µ   micro 
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M   Molarity 

min   minute 

mRNA  messenger RNA 

o/n   over night 

PBS   Phosphate buffered saline 

PCR   Polymerase-chain-reaction 

pH decimal logarithm of the reciprocal of the hydrogen ion 

activity, in a solution 

qRT-PCR  Quantitative real time polymerase-chain-reaction 

RIPA   radio immunoprecipitation assay 

RNA   ribonucleic acid 

rpm   rounds per minute 

RT   room temperature 
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1 Introduction 

 

1.1 The Creld protein-family 

 

Cysteine-Rich with EGF-Like Domains (Creld) genes are evolutionarily 

conserved and encode proteins that are highly similar in their domain 

structure (Fig. 1-1). In mammals, two members of the Creld family were 

identified: Creld1 and Creld2. The genome of Drosophila melanogaster 

encodes only one Creld1-like protein (dCRELD)1. The orthologs of Creld1 

contain an N-terminal signal peptide, a unique WE domain, one or two arrays 

of epidermal growth factor (EGF)-like and Ca2+ binding EGF-like (cbEGF-like) 

domains, and one or two C-terminal type III transmembrane domains. The WE 

domain is rich in tryptophan (W) and glutamic acid (E) residues and contains 

the nonapeptide (GG(N/D)TAWEE(E/K)), which is highly conserved in all 

members of the Creld protein family1. The function of the WE domain has not 

been identified so far, but it has been proposed to play a role in protein 

interaction1. 

Proteins possessing EGF-like domains are functionally diverse and include cell 

adhesion proteins, extracellular matrix components, transmembrane proteins, 

growth factors, and signaling proteins2. The function of these domains can 

vary within one protein family, like in the selectin protein-family3. They contain 

one EGF-like domain facing the extracellular matrix, which is important for cell 

adhesion, ligand recognition4,5, and dendritic cell maturation6. Similarly, 

proteins containing cbEGF-like domains are also functionally diverse. They are 

involved in blood coagulation, the complement system, fibrinolysis, are part of 

the extracellular matrix (e.g. fibrillin), and function as cell surface receptors 

(e.g. Notch receptor and low density lipoprotein receptor). Binding of Ca2+ to 

the cbEGF-like domain stabilizes the protein and induces a conformational 

change needed for protein activity7.   
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Fig. 1-1 Predicted primary protein structure of the murine, human, 

and Drosophila melanogaster (D. mel) Creld proteins. Each protein has a 

signal peptide (SP) at the N terminus (blue), a WE domain (yellow) possessing 

a highly conserved nonapeptide (orange), one or two epidermal growth factor 

(EGF)-like (green), and one or two calcium-binding EGF-like domains (cbEGF 

red). There are two transmembrane domains in mammalian Creld1 proteins, 

and one or two in D. mel, depending on the prediction tool that was used. 

Creld2 proteins do not possess transmembrane domains. Numbers indicate 

identity of each domain; numbers in brackets indicate similarity to the 

domains of murine Creld1. Human CRELD2 was compared to mouse Creld2.  

 

Based on bioinformatic analysis of the protein sequence, it has been suggested 

that Creld1 proteins act as membrane-tethered cell adhesion molecules1. 

Nevertheless, experimental verification of Creld1 being localized at the plasma 

membrane is lacking.  

Creld2, however, does not possess any transmembrane regions, but is 

otherwise very similar to Creld1 in its domain structure (Fig. 1-1). It has been 

shown that Creld2 localizes to the endoplasmic reticulum (ER) and the Golgi 

apparatus8,9 from where it is secreted10. 
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1.2 Creld1 – a risk gene factor for AVSD 

 

First insights into the physiological function of human CRELD1 were revealed 

when CRELD1 was identified as a risk gene factor for atrioventricular septal 

defects (AVSD)11–16. AVSD is a common cardiovascular malformation that 

occurs in 3.5 of 10000 births1. The formation of the atrioventricular septa and 

valves is required for the generation of the four chambers known as atria and 

ventricles. The heart valves are located within the chambers and regulate the 

blood flow through the heart by opening and closing during each contraction. 

 

 

 

 

 

Fig. 1-2 Graphic illustration of a normal heart and a heart with AVSD. 

While septa and valves enable the unidirectional blood flow in a normally 

developed heart, the oxygen rich and oxygen poor blood of an AVSD heart is 

mixed. Pictures are provided by the Centers for Disease Control and 

Prevention, National Center on Birth Defects and Developmental Disabilities. 

 

 

RA: Right Atrium 
RV: Right Ventricle 

LA: Left Atrium 

LV: Left Ventricle

SVC: Superior Vena Cava 
IVC: Inferior Vena Cava 

MPA: Main Pulmonary Artery 

Ao: Aorta 

TV: Tricuspid Valve 

MV: Mitral Valve 

PV: Pulmonary Valve 

AoV: Aortic Valve 

CAV: Common Atrioventricular Valve 
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E8.5 E9.5 E10.5 –E11.0 

 

1.3 Atrioventricular cushion formation  

 

The heart is the first organ to be developed during embryogenesis. A primitive 

heart tube is formed at day 8 of embryonic development (E8.0). The formation 

of the murine heart valves is initiated around E9.0 (Fig. 1-3). From E9.0 to 

E10.5, endocardial cells within the atrioventricular (AV) canal region of the 

developing heart tube respond to signals released from the underlying 

myocardium (Fig. 1-4). These endocardial cells then delaminate into the 

cardiac jelly, an extensive extracellular matrix located between the 

endocardium and the myocardium of the heart tube, where they undergo 

endocardial-mesenchymal transformation (EMT) and proliferation17. The 

cellularized cushions act as precursors of AV and outflow tract (OFT) valves 

and septa, which are required to facilitate unidirectional blood flow in the 

heart18,19. In a subsequent remodeling process, the AV cushions (AVC) 

elongate and mature into a highly organized, trilaminar architecture 

characteristic for mature cardiac valves17,19–25.  

  

 

 

  

Fig. 1-3 Formation of endocardial cushions. At embryonic day (E)8.5 of 

development, the murine heart consists of a looping tube. AV canal 

development, which is initiated around E9.0, creates a boundary between the 

presumptive atrial and ventricular regions of the heart tube. Signaling and 

transformation processes between E9.5 and E10.5 lead to the formation of 

the AV and outflow tract (OFT) cushions - the precursors of the four major 

heart valves. The formation of OFT cushions is initiated between E10.5 and 

E11.0. Figure and figure caption are adapted from High & Epstein107.  
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A key regulatory pathway for the initiation of heart-valve morphogenesis is 

calcineurin/nuclear factor of activated T-cells (NFAT) signaling, which is 

activated by growth factor receptors such as vascular endothelial growth factor 

(VEGF) receptors and ion channels26. Activation of growth factor receptors and 

channels elevates the intracellular Ca2+ concentration and consequently, 

activates calcineurin, a Ca2+/calmodulin-dependent serine/threonine 

phosphatase composed of regulatory (calcineurin B) and catalytic (calcineurin 

A) subunits27. Activated calcineurin dephosphorylates cytoplasmic NFAT 

proteins, whereby nuclear localization signals are exposed and NFAT proteins 

translocate into the nucleus28,29. Once in the nucleus, they cooperate with 

other family members as well as with other unrelated transcription factors to 

bind DNA and regulate target gene expression29,30.  

During heart valve formation, calcineurin/NFAT signaling is required at multiple 

stages (Fig. 1-4). At E9.5, calcineurin/NFATc2/c3/c4 signaling represses VEGF 

transcription in the myocardium that underlies the area of the endocardium 

where the prospective AVC will form31. This repression of VEGF is essential for 

endocardial cells to transform into mesenchymal cells. At E10.5, 

calcineurin/NFATc1 signaling is fundamental for proliferation of endocardial 

cushion cells. After proliferation of endocardial and mesenchymal cells, EMT 

needs to be terminated, which is controlled by an increase of VEGF expression 

in the AVC field32,33. Subsequently, calcineurin/NFATc1 signaling is 

counteracted by regulator of calcineurin 1 (Rcan1) through a negative 

feedback loop17,34,35. Rcan1 inhibits the nuclear translocation of NFATc1 by 

competing for the binding site on calcineurin and inhibiting the phosphatase 

activity36,37. Thereby proliferation of the endocardium is abolished.  

After the formation of the AVC, further remodeling into valvular and septal 

tissues is initiated. However, the signaling events that occur  after EMT in the 

endocardial cushion are ill-defined35. 
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Fig. 1-4 Calcineurin/NFAT signaling in the atrioventricular cushion 

(AVC). Between E9.0 and E10.0, endocardial cells undergo endocardial-

mesenchymal transformation (EMT). In a dose-dependent manner VEGF 

controls EMT in the AVC field: minimal levels at E9.0 are required for EMT, 

while high levels at E10.5 terminate EMT. By preventing VEGF expression from 

reaching excessive levels at E9.0, NFATc2, c3, and c4 in the myocardium allow 

EMT to proceed. VEGF in the adjacent regions outside the AVC field might 

suppress EMT. From E11.0 on, NFATc1 in the endocardium controls valve 

maturation, but the signals remain to be determined. EC: endocardium, My: 

myocardium; MC: mesenchymal cells. Figure and figure caption are adapted 

from Lambrechts & Carmeliet31. 
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1.4 The endoplasmic reticulum stress response 

 

Promoter analyses of the mouse Creld2 gene revealed an ER-stress response 

element (ERSE) that is activated by the activating transcription factor 6 (ATF6). 

Hence, Creld2 expression can be induced by ER stress9,38.  

ER stress is evoked in the ER upon accumulation of misfolded proteins during 

protein synthesis. Newly synthesized proteins enter the ER to be post-

translationally folded and modified. If there is an elevated protein synthesis or 

failure of protein folding, transport or degradation, the cells make use of the 

unfolded-protein response (UPR) to reduce the ER stress39–41.  The mammalian 

UPR consists of three axes, with ATF6, double-stranded RNA-activated protein 

kinase (PKR)–like ER kinase (PERK), and inositol requiring enzyme 1 (IRE1) 

being the proximal sensors of the ER (Fig. 1-5). All three are maintained in an 

inactive state by the ER chaperone glucose-regulated protein 78 (GRP78). 

When ER stress occurs, GRP78 dissociates from ATF6, PERK and IRE1, thereby 

activating an ER stress gene-expression program40,42. The combined action 

restores ER function by blocking further protein entrance, enhancing the 

folding capacity and initiating degradation of protein aggregates43. 

 

1.4.1 The PERK axis 

PERK is a type I transmembrane protein with an ER-luminal domain that binds 

to GRP78 in resting cells44 and a cytoplasmic domain with kinase activity45,46. 

PERK is activated when GRP78 dissociates and subsequently undergoes 

oligomerization and autophosphorylation44. In turn, phosphorylated PERK 

phosphorylates eukaryotic translation initiation factor 2α (eIF2α), causing  

inactivation and an arrest of mRNA translation47. However, some genes, 

including the transcription factor ATF4, are not dependent on eIF2a, thus, are 

more efficiently translated. ATF4 translocates to the nucleus, where it 

activates a set of UPR genes, including growth-arrest DNA damage gene 34 

(GADD34) and C/EBP homologous protein (CHOP). GADD34 negatively 

feedbacks PERK by dephosphorylation of eIF2α. CHOP is a pro-apoptotic factor, 

which is fully activated when ER stress conditions persist48,49.  
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Fig. 1-5 The unfolded protein response. Upon aggregation of unfolded 

proteins, GRP78 dissociates from the three endoplasmic reticulum (ER) stress 

receptors, pancreatic ER kinase (PKR)-like ER kinase (PERK), activating 

transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1), allowing 

their activation. The activation of the receptors occurs sequentially, with PERK 

being the first, rapidly followed by ATF6, and IRE1 being last. Activated PERK 

blocks general protein synthesis by phosphorylating eukaryotic initiation factor 

2α (eIF2α). ATF4 is more efficiently translated due to internal ribosomal entry 

sites, therefore being independent of eIF2α. ATF4 translocates to the nucleus 

and induces the transcription of genes required to restore ER homeostasis. 

ATF6 is activated by limited proteolysis after its translocation from the ER to 

the Golgi apparatus. Active ATF6 regulates the expression of ER chaperones 

and X box-binding protein 1 (XBP1). To be active, XBP1 undergoes mRNA 

splicing, which is carried out by IRE1. Spliced XBP1 protein (sXBP1) 

translocates to the nucleus and controls the transcription of chaperones, the 

PERK-inhibitor P58IPK, as well as genes involved in protein degradation. CHOP: 

C/EBP homologous protein. Figure and figure caption are adapted from 

Szegezdi et al.43. 

 

 

1.4.2  The ATF6 axis 

ATF6 is a type II transmembrane protein with a bZIP motif in the cytosolic 

domain50. The ER-luminal domain contains Golgi-localization sequences that 

are exposed upon GRP78 dissociation. After translocation to the Golgi, ATF6 is 

sequentially cleaved by site-1 protease (S1P) and S2P, thereby releasing the 

cytoplasmic domain51,52. The truncated protein translocates to the nucleus and 
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acts as transcription factor, binds to ER-stress response elements (ERSE)50,53, 

and induces transcription of numerous genes, including GRP78, CHOP, and X-

box binding protein 1 (XBP1)53,54. 

 

1.4.3 The IRE1 axis 

IRE1 is a type I transmembrane protein with an ER-luminal domain that 

resembles that of PERK. The cytoplasmic domain contains a serine/threonine 

kinase and an endoribonuclease domain55,56. When GRP78 is sequestered, 

IRE1 oligomerizes and trans-phosphorylates other IRE1 proteins in the 

complex. Activated IRE1 cleaves the mRNA of XBP1 (sXBP1) by a unique 

splicing mechanism57,58. The sXBP1 protein translocates to the nucleus and 

activates many genes important for protein secretion and degradation, as well 

as the PERK-inhibitor p58IPK 58. 

 

1.5 Aim of the thesis 

The Creld protein family has been described a few years ago. However, the 

function in vivo is ill defined. I investigated the physiological role of Creld1 and 

Creld2 by generating and analyzing knockout mouse models for both genes.  
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2 Material  

 

2.1 General materials 

 

2.1.1  Consumables 

Consumables Company 

1.5 / 2 ml reaction tubes Eppendorf  

Cell strainer BD Falcon 

Cover slips VWR 

Electroporation cuvette 0.4 cm Biorad 

Embedding cassettes Simport 

General laboratory equipment Faust, Schütt 

Glass plates 16 x 18 cm for SE 600 unit Hoefer 

Microscope slides VWR 

Native Gel chamber (standard dual cooled 

vertical unit SE 600) 
Serva electrophoresis 

nitrocellulose membrane  Hybond N+, Amersham 

Novex 4-12 % Bis-Tris Gel Invitrogen 

Paraffin Medim-Plast 

PCR reaction tubes Sarstedt 

Plastic wares Greiner 

Sephadex G50 columns GE Healthcare 

Superfrost Plus adhesive microscope slides Thermo scientific 

Syringe 
Inject disposable 5 ml 

BBraun 

X-ray films 
Fuji MedicalX-Ray Film 

Super RX 

Tissue-Tek Sakura 
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2.1.2  Equipment 

Equipment Company 

Autoclave H+P Varioklav Dampfsterilisator EP-2 

Bacteria incubator  Innova 44 New Brunswick scientific 

Balances Sartorius BL 150 S; Sartorius B211 D 

Binocular Zeiss Stemi 2000 

Blotting equipment Biometra Whatman Fastblot B43 

Centrifuges 

5415R/5424 Eppendorf; 

Avanti J-26 XP Beckman Coulter; 

Biofuge primo R Heraeus; Rotina 420R 

Confocal microscope Zeiss LSM710 

Cryostat Leica 

Dehydration carrousel  Leica TP 1020 

Developer machine  Curix 60 AGFA 

Electro pipette Accu Jet 

Electroporator  Biorad Gene Pulser Xcell 

Flow cytometer  BD Biosciences LSR II 

Fluorescence microscope Zeiss AxioCam MRm; Olympus SZX 12 

Gel documentation  BioRad 

Gradient maker  Hoefer SG15 

Homogenizer  Precellys Peqlab 

Incubators / shaker  

Biostep Dark Hood DH-40/50 (Benda) 

Heiz Thermo Mixer MHR13 HCL 

(Memmert), Innova 44 New Brunswick 

Scientific 

Microtome Leica RM2255 

Microwave Panasonic 

PCR machine C1000 Thermal Cycler BioRad 

Photometer Nano Drop 2000 PeqLab 

Plate reader Fluostar Omega (BMG Labtech) 

RealTime PCR machine iCycler BioRad 

Rotating disc Rotator SB3 Stuart 

Ultrasonic apparatus Bandelin SONOPLUS HD2070 

UV cross linker Stratalinker 2400 Stratagene 

Voltage source Power Pac 3000 BioRad 

Vortexer Vortex Genie2 

Water bath Julabo SW22 
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2.2 Standards und Kits 

 

Name Company 

Nucleic Acid & Protein Purification, NucleoBond, PC 

100 
Macherey & Nagel 

BCA Protein Assay Pierce 

ECL Western Blotting Substrate Pierce 

iQTM SYBR Green Supermix Biorad 

QuantiTect, Reverse Transcription Kit Qiagen 

Ready-to-use System for fast Purification of Nucleic 

Acids, NucleoSpin, Extract II 

Macherey & Nagel 

 

Nucleic Acid & Protein Purification, NucleoSpin, RNAII 
Macherey & Nagel 

 

NucleoSpin RNA/Protein Macherey & Nagel 

Dual-Glo Luciferase Assay System Promega 

PCR Nucleotide Mix Roche 

NucleoSpin RNA XS Macherey & Nagel 

DAPI-Fluoromount G Biozol 

Immunoprecipitation Starter Pack GE Healthcare 

NucleoSpin Plasmid QuickPure Macherey & Nagel 

2-Log DNA ladder, 1 kb DNA ladder NEB 

Native gel protein marker (45 – 545 kDa) Sigma 

Precision Plus Protein All Blue Standards Biorad 

Nova Red  
Vector Laboratories, 

CA 

Flow cytometry ompensation beads  Invitrogen 

Multiprime DNA labeling kit GE Healthcare 
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2.3 Buffers 

 

Unless otherwise noted, all buffers and solutions were made with double 

distilled water (aqua bidest). At solutions that were not kept at room 

temperature a storage temperature indicated. Percent indications correspond 

to mass per volume. At the solutions, which were made as concentrated stock 

solution, the concentration factor is indicated.  

 

Buffer composition 

Agarose  1 % agarose in TAE 

Ammonium 

persulfate (APS)  
10 % APS 

Ampicillin (-20 °C) 

(1000x)  
50 mg/ml 

Blocking solution 5 % milk powder (Roth) in TBST (1x) 

EDTA  0.5 M EDTA (pH 8.0) 

EGTA  0.5 M EGTA (pH 8.0) 

Fixation solution 4 % Paraformaldehyde (PFA) in PBS (Histofix, Roth) 

KHM buffer 110 mM KOAc, 2 mM MgCl2, 20 mM Hepes (pH 7.2) 

Laird buffer 
0.1 M Tris (pH 8.0), 0.2 % SDS, 0.2 M NaCl, 5 

mM EDTA 

Loading buffer (10x) 
Lysis buffer  20 mM Tris/HCl (pH 7.5), 200 mM NaCl, 

20 mM EDTA, 2 % SDS  

Lysozyme (-20 °C) 10 mg/ml in TE-buffer 

Native gel running 

buffer (50x) 
250 mM Tris, 1,92 M glycine 

Native gel sample 

buffer (3x) 

30 % Glycerol, 6 % Native running buffer, 

0.1% Bromphenolblue 

Non-denaturating 

lysis buffer     

2 mM EDTA, 10% glycerol, 1 % Nonidet P-40, 137 mM 

NaCl, 20 mM Tris·HCl (pH 8.0) 

PBS (20x) 2.6 M NaCl, 140 mM Na2HPO4, 60 mM NaH2PO4 
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Buffer composition 

(pH 7.0) 

PBT  0.1 % Tween 20 in PBS (1x) 

Proteinase K stock 

solution  

(-20 °C) 

20 mg/ml in DEPC 

Red blood cells lysis 

buffer 
155 mM NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA 

RIPA buffer 

150 mM NaCl, 1 % IPEGAL CA-630, 0.5 % Sodium 

Deoxycholate (DOC), 0.1 % SDS, 50 mM Tris/HCl 

(pH 8.0) 

SDS 10 % SDS 

SDS-PAGE loading 

buffer (5x) 

100 mM Tris, 3% SDS, 10% Glycerol, 

0.1% Bromphenolblue, 2 % β-Mercaptoethanol 

(pH 6.8) 

SDS-PAGE running 

buffer (10x) 
250 mM Tris/HCl, 1.92 M Glycine, 1 % SDS 

Sodium acetate 3 M NaAc, with acetic acid to pH 6.0  

Sodiumactetate 

(10x) 
100 mM C2H3NaO2 

SSC (20x) 3 M NaCl, 0.3 M Na3C6H5O7 (trisodium citrate) 

TAE buffer  40 mM Tris-Acetate (pH 8.0), 1 mM EDTA 

TBST 
0.01 M Tris/HCl (pH 7.5), 0.15 M NaCl, 0.05 % Tween 

20 

TE-buffer 10 mM Tris/HCl (pH 8.0), 1 mM EDTA 

Transferring buffer 

(4 °C) 
25 mM Tris, 150 mM Glycine, 10 % Methanol 

Oil-Red-O stock stain 0.5 % Oil-Red-O in isopropanol 
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2.4 Enzymes  

 

Enzyme Company 

Digitonin (5 %, 4°C) Invitrogen 

Eosin Merck 

GoTaq Polymerase Promega  

Hematoxylin Merck 

Neuraminidase NEB 

O-glycosidase NEB 

Phusion Hot Start Polymerase Thermo scientific 

PNGase F NEB 

Proteinase K Sigma Aldrich 

Restriction endonucleases NEB 

RNase A Sigma Aldrich 

Shrimp Alkaline Phosphatase (SAP) Roche 

T4 DNA Ligase Roche 

Trypsin Sigma 

 

2.5 Solutions and chemicals 

 

Enzyme/chemical Company 

Acetic acid Roth 

Colcemid Sigma 

Complete protease inhibitors  Roche 

Cyclosporin A Sigma 

Digitonin (4 °C) Sigma 

Entallan Merck 

Eosin Merck 

Ethanol Roth 

Giemsa solution Sigma 

Hematoxylin Merck 

Ionomycin Tocris Bioscience 
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Enzyme/chemical Company 

Isopropanol Roth 

Methanol Roth 

Phorbol myristate acetate (PMA) Sigma 

QuickHyb Stratagene 

Thapsigargin Sigma 

Trypsin Invitrogen 

Xylol Roth 

G418 Invitrogen 

             

2.6 Bacterial Strains 

 

Name Genotype Origin 

DH5α 

F- endA1 deoR (φ80lacZΔM15) recA1  gyrA (Nalr) thi-1 

hsdR17 

(rK
-, mK

+) supE44 relA1 Δ(lacZYA-argF)U169 

Stratagene 

 

2.7 Media 

 

2.7.1  Media for bacterial cultures 

The bacteria were cultivated in the following media. All media were autoclaved 

for 20 min at 120 °C. 

Name Composition 

LB-medium 
10 g NaCl, 10 g tryptophan, 5 g yeast extract 

ad 1 l aqua bidest (pH 7.0) 

LB-ampicillin medium LB-medium with 50 μg/ml ampicillin 

LB-kanamycin medium LB-medium with 25 μg/ml kanamycin 

LB-ampicillin agar 
LB-medium with 20 g agar and 50 μg/ml 

ampicillin 

LB-kanamycin agar 
LB-medium with 20 g agar and 25 μg/ml 

kanamycin 
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2.7.2  Media for cell cultures 

 All solutions were purchased from Invitrogen. 

 

Cell line Composition 

NIH3T3, HEK239 10 % FBS, 1 % Penicillin/Streptomycin in DMEM 

Jurkat E6.1 10 % FBS, 1 % Penicillin/Streptomycin in RPMI 

 

Metafectene pro and Opti-MEM are used for transfection. 

 

2.7.3  Media and buffer for ES-cell culture 

If not other noted, all media were purchased from Invitrogen and Sigma. LIF 

was provided by AG Magin. 

 

Medium Composition 

Culture medium 

1 % L-glutamine, 1 % non-essential-

amino-acids, 1 % Sodium-pyruvate, 1 % 

Penicillin/Streptomycin, 10 % ES-FCS, 

0.1 % β-Mercaptoethanol, 0.1 % LIF in 

GMEM (Invitrogen) 

Freezing medium (2x) 
10 % FCS, 20 % DMSO (Merck) in 

culture medium 

β-Mercaptoethanol 
0.1 mM β-Mercaptoethanol in ES-H2O, 

sterile 

Gelatin 
1 % in ES-H2O, autoclaved, mixed, then 

autoclaved again  

Gelatin working solution 0.1 % Gelatin 

ES-trypsin 

10 % Chicken serum, 5 % of 2.5 % 

trypsin, 6.33 mM EDTA in ES-PBS (pH 

8.0, autoclaved), ad ES-PBS 

HBS buffer 
2 % Hepes buffer, 0.1 % Glucose, ad 

ES-PBS 

Lysis buffer (clone PCR) 1x PCR buffer, 0.2 mg/ml Proteinase K 

Lysis buffer (genomic DNA) 
50 mM NaCl, 20 mM TrisHCl (pH 8.0), 

100 mM EDTA, 2 mM CaCl2, 0.5 % SDS 

 



Material

 
 

18 

 

2.8 Primer 

 

2.8.1  qRT-PCR Primer 

Primer name fw primer (5’ – 3’) rev primer (5’ – 3’) 

Acox1 GCC CAA CTG TGA CTT CCA 

TC 

GCC AGG ACT ATC GCA TGA 

TT 

Aldoa 
CAA CGG TCA CAG CAC TTC 

GTC G 

CAG GGC TCG ACC ATA 

GGA GAA AG 

Atf6 GGC GGC TAA GTC CTC TTC 

TC 

TGC CCT GAA AAC ATC TCA 

CC 

C/ebpα TGGACAAGAACAGCAACGAG 
TCA CTG GTC AAC TCC AGC 

AC 

Car9 
CGA TTG AGG CTT CCT TCC 

CTG C 

TAG CTA ACT CTA TCT TTG 

GTC CCA CTT C 

Chop 
TCA CCT CCT GTC TGT CTC 

TCC 
TAC CCT CAG TCC CCT CCT 

C 

Cpt1a GCT GGG CTA CTC AGA GGA 

TG 

CAC TGT AGC CTG GTG 

GGT TT 

Creld1 
AGG AGC TGG TGG AAA ACT 

GG 

TTC AGG GAA TCG GAA 

CAG AG 

Creld2 
GGC TAC ACC AAG GAG AGT 

GG 

GGA CAC ACG CAC ACG 

AAG 

Dgat2 AGG CCC TAT TTG GCT ACG 

TT 

GAT GCC TCC AGA CAT CAG 

GT 

Dscr1(e1)/Rcan1 TGC GAG ATG GAG GAG GTG 
ACT GGA AGG TGG TGT 

CCT TG 

Epo 
GAA AAT GTC ACG ATG GGT 

TGT GCA GA 

GGC CTG TTC TTC CAC CTC 

CAT TCT TT 

EpoR CTC CAC CAC AGA CAA CCA 

TCA CG 

CTC ATT CTG GTC CTC ATC 

TCG CTG 

Errα GCAGGGCAGTGGGAAGCTA 
CCT CTT GAA GAA GGC TTT 

GCA 

Fabp1 CCA TGA CTG GGG AAA AAG 

TC 

GCC TTT GAA AGT TGT CAC 

CAT 

Fasn GCT GCT GTT GGA AGT CAG 

C 

AGT GTT CGT TCC TCG GAG 

TG 

G6pc TCT GTC CCG GAT CTA CCT GAA AGT TTC AGC CAC AGC 
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Primer name fw primer (5’ – 3’) rev primer (5’ – 3’) 

TG AA 

Gadd34 ACGATCGCTTTTGGCAAC GACATGCTGGGGTCTTGG 

Gck GTG AGG TCG GCA TGA TTG 

T 

TCC ACC AGC TCC ACA TTC 

T 

Grp78 CGA CAA GCA ACC AAA GAT 

G 

CCA GGT CAA ACA CAA 

GGA TG 

Hk1 GCC ATT GAA ACG GGA TGG 

GAA CTC 

GTT GGC TGA TCG GAA 

GGA GAC G 

Hprt 
TCC CAG CGT CGT GAT TAG 

CGA TGA 

AAT GTG ATG GCC TCC CAT 

CTC CTT CAT GAC AT 

Ldha 
GCG GTT CCG TTA CCT GAT 

GGG A 

TTG TGA ACC TCC TTC CAC 

TGC TCC 

Lipc ACA AGG CGT GGG AAC AGA 
TGG CTT CTT TAA TGG CTT 

GC 

Ndufs1 CGG CCT TGG GAA ACA AGA 
ATG TTA CTT CCC ACT GCA 

TCC A 

Nfatc1 
CTC TGG AGA GCC CTA GAA 

TTG 

CGC AGA AGT TTC CTT TCC 

TG 

Pck1 GGA GTA CCC ATT GAG GGT 

ATC AT 

GCT GAG GGC TTC ATA GAC 

AAG 

Pcx TCC GTG TCC GAG GTG TAA 

A 

CAG GAA CTG CTG GTT GTT 

GA 

Pparα CAC GCA TGT GAA GGC TGT 

AA 

CAG CTC CGA TCA CAC TTG 

TC 

Ppia GCG TCT CCT TCG AGC TGT T RAA GTC ACC ACC CTG GCA 

Srebp1 GGT TTT GAA CGA CAT CGA 

AGA 

CGG GAA GTC ACT GTC TTG 

GT 

Srebp2 ACC TAG ACC TCG CCA AAG 

GT 

GCA CGG ATA AGC AGG TTT 

GT 

sXbp1 TGC TGA GTC CGC AGC AGG 
GTC CAG AAT GCC CAA 

CAG G 

Vegfa 
CAC AGC AGA TGT GAA TGC 

AG 

TTT ACA CGT CTG CGG ATC 

TT 
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2.8.2  Primer for cloning 

Primer name Sequence 

3‘ UTR-pA fw-eGFP 
5‘-GAG CTG TAC AAG TGA CGG GCA TCC GGA 

TTC 

3‘ UTR-pA rev-int.SpeI 5‘-AGG TAC AAA CTG ACT AGT GGT AAT GCC C 

3’HR fw-int.SpeI 5‘-TTA CCA CTA GTC AGT TTG TAC C 

3’HR rev-NotI  
5‘-ATA GTT TAG CGG CCG CTT TGC CTA CCA 

GAT GAG G 

5‘HR 1b rev-ATG-eGFP 
5‘-GCC CTT GCT CAC CAT GGC GGG AGG GCT 

GC 

5‘HR1b fw-5’HR1a-NdeI 
5‘-GTC CCC ACA ATT CAT ATG AAC TCA AAG 

GCC GTC ACG CG 

5’HR1a fw-SacI 5‘-CGA GCT CTT AAA GGC CTG CGC CAC C 

5’HR1a rev-5’HR1b-NdeI 
5‘-GGC CTT TGA GTT CAT ATG AAT TGT GGG 

GAC ACA GGG AG 

Cre2 5extern fw 5’-TTT CTC CAG GAA GAC TTC AGA GGG 

Cre2 5extern rev 5’-TAC AGC AGG CTG GAT GGA GCA GG 

Cre2_5'extern fw 5‘-AAG ATG GAA GGA CTG GGA GGC CG 

Cre2_5'extern rev 5‘-TAC AGC AGG CTG GAT GGA GCA GG 

eGFP fw-5’HR1b 
5‘-GGC AGC CCT CCC GCC ATG GTG AGC AAG 

GGC 

eGFP rev-STOP-3’UTR 
5‘-TCC GGA TGC CCG TCA CTT GTA CAG CTC 

GTC CAT G 

mCre1-flagCT-HindIII fw 5‘-CCC AAG CTT ATG GCT CCA CTG CCC CC 

mCre1-flagCT-XbaI rev 
5‘-GCT CTA GAT TAC TTA TCG TCG TCA TCC 

TTG TAA TCT CTA CCC TTG ATG AAG CCC TCC 

mCre2-flagNT- HindIII fw 
5‘-CCC AAG CTT ATG GAT TAC AAG GAT GAC 

GAC GAT AAG CAC CTG CTG CTT GCA GCC     

mCre2-flagNT- XbaI rev 
5‘-GCT CTA GAT CAC AAA TCC TCA CGG GAG 

G 

mCreld1- P162A-soe fw 5’-CAG GCC CTC TCT GTG CCC 
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Primer name Sequence 

mCreld1- R107H-soe fw 5‘-GC CAC CAC CTG CTC GAG 

mCreld1_rev_KpnI_pMJGreen 
5’-GGG GTA CCA TTC TAC CCT TGA TGA AGC 

CCT C 

mCreld1delTM-Flag-XbaI rev 
5‘-TCT AGA TTA CTT ATC GTC GTC ATC CTT 

GTA ATC TTC ATC CTC CGT CAT CTC CG 

mCreld1delTM-RFP-KpnI-rev 5‘-GGT ACC ATT TCA TCC TCC GTC ATC TCC G 

mCreld1-E414K-soe fw 5‘-CCG TGT GCT GAA GGG CTT C 

mCreld1-E414K-soe rev 5’-GAA GCC CTT CAG CAC ACG G 

mCreld1-P162A-soe rev 5‘-G GGC ACA GAG AGG GCC TG 

mCreld1-R107H-soe rev 5’-CTC GAG CAG GTG GTG GC 

mCreld1-R329C-soe fw 5‘-GGAG GGA GGC TAC TGC TGT GTC 

mCreld1-R329C-soe rev 5’-GAC ACA GCA GTA GCC TCC CTC C 

mCreld1-T311I-soe fw 5‘-GTG GAT GAG TGT GAG ATT GTG G 

mCreld1-T311I-soe rev 5‘-CCA CAA TCT CAC ACT CAT CCA C 

mCreld1-ΔcbEGF- soe fw 
5‘-CAC CTC AAG TGT GTA AAG GAG CAG GTC 

CCG GAG 

mCreld1-ΔcbEGF- soe rev 
5‘-CGG GAC CTG CTC CTT TAC ACA CTT GAG 

GTG ATG CAG GG 

mCreld1-ΔEGF- soe fw 
5‘-CTG AAG CTC TGC TGC GAC ATC GAT GAG 

TGT GGT ACA GAG C 

mCreld1-ΔEGF- soe rev 
5‘-ACA CTC ATC GAT GTC GCA GCA GAG CTT 

CAG GGA ATC 

mCreld1-ΔTAWEE- soe fw 
5’-CAT CCG GGA CAA CTT CGG GAA GTT GTC 

CAA ATA CAA AGA CAG TGA GAC C 

mCreld1-ΔTAWEE- soe rev 
5‘-GGT CTC ACT GTC TTT GTA TTT GGA CAA 

CTT CCC GAA GTT GTC CCG GAT G 
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2.8.3  Genotyping primer 

 

Primer Sequence  

neo_fw 5’-GGC TAT GAC TGG GCA CAA CAG 

neo_rev 5’-TTT CTC GGC AGG AGC AAG GTG 

gt_fw 5’-CCA TCC GCC TTT CTC TCG GA 

gt_rev 5’-GAG ATG GGA CCA GGC CCC 

gt_lacZ 5’-GTC TGT CCT AGC TTC CTC ACT G 

gt2_fw 5’-CAT CTA TCT CCC TTT GAG TCC G 

gt2_rev 5’-GTC ACC AGG AAC AGG ACG TG 

neo2_fw 5’-CCC AGG GCT CGC AGC C 

ES_fw 5’-TTC CCC GAA AAG TGC C 

ES_rev 5’-ACA GTG GCC AGC G 

 

2.9 Plasmids 

 

Plasmid Plasmid source 

CFP-CD3δ H. Lorenz, National Institutes of Health, Maryland 

Creld1E414K -RFP E. Mass 

Creld1E414K-Flag E. Mass 

Creld1-GFP E. Mass 

Creld1P162A-Flag E. Mass 

Creld1P162A-RFP E. Mass 

Creld1R107H-Flag E. Mass 

Creld1R107H-RFP E. Mass 

Creld1R329C-Flag E. Mass 

Creld1R329C-RFP E. Mass 

Creld1-RFP E. Mass 
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Plasmid Plasmid source 

Creld1T311I -RFP E. Mass 

Creld1T311I-Flag E. Mass 

Creld1ΔcbEGF-Flag E. Mass 

Creld1ΔcbEGF-RFP E. Mass 

Creld1ΔEGF-Flag E. Mass 

Creld1ΔEGF-RFP E. Mass 

Creld1ΔTM-Flag E. Mass 

Creld1ΔTM-RFP E. Mass 

Creld1ΔWE-Flag E. Mass 

Creld1ΔWE-RFP E. Mass 

Creld2KO targeting 

vector 

E. Mass 

NFATc1-GFP 
E. Olson, University of Texas 

 Southwestern Medical Center, Dallas 

NFATc1-HA D. Wachten, Bonn (Caesar) 

pcDNA3.1(+) AG Hoch (T. Krsmanovic) 

pGL3-NFAT-luc  Addgene (plasmid 17870) 

pMJ-Green AG Willecke, Bonn 

pRFP-N1 AG Lang, Bonn 

psiCHECK-1 Promega 

YFP-PrP H. Lorenz, National Institutes of Health, Maryland 
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2.10 Antibodies 

2.10.1 Primary antibodies 

 

antibody company species Method (conc.) 

actin 
Novus 

Biologicals 
mou WB (1:5000) 

B220 APC-Cy7 Biolegend rat IgG2a, κ FACS (1:100) 

Calcineurin B Sigma mou IF (1:100) 

CD11b BV650 Biolegend rat IgG2b, κ FACS (1:100) 

CD11c PE 
Biolegend armenian 

hamster IgG 

FACS (1:100) 

CD4 BV510 Biolegend rat IgG2a, κ FACS (1:100) 

CD8a Pacific blue Biolegend rat IgG2a, κ FACS (1:100) 

Creld1 Abnova mou 
IHC (1:100), 

WB (1:500) 

Creld2 Santa cruz rab 
IF (1:100), IHC 

(1:100), WB (1:750) 

DSCR1 Sigma rab WB (1:500) 

HA Roche rat 
IF (1:200), WB 

(1:5000) 

hCreld1 #1  

WLSERSDRVLEGFIKGR  
PLS gp IF (1:50 - 1:100) 

KDEL abcam mou IF (1:500) 

MF-20 DSHB mou IF (1:200) 

NFATc1 Santa cruz mou IF (1:200) 

NKp46 PerCP-Cy5.5 Biolegend rat IgG2a, κ FACS (1:100) 

p-Histone3 Santa cruz rab IF (1:400) 

PP2B1/2 (CnB) Santa cruz rab 
IF (1:100), WB 

(1:200) 
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2.10.2  Secondary antibodies 

 

Name Species Source Concentration 

α-guinea pig-HRP donkey Santa Cruz 1:15000 WB 

α-rabbit-HRP donkey Santa Cruz 1:15000 WB 

α-mouse-HRP donkey Santa Cruz 1:15000 WB 

α-rat-HRP donkey Santa Cruz 1:15000 WB 

normal rabbit IgG donkey Santa Cruz Co-IP 

α-mouse-Cy3 donkey Dianova 1:100 IF 

α-guinea pig-Cy3 donkey Dianova 1:100 IF 

α-rabbit-Cy3 donkey Dianova 1:100 IF 

α-guinea pig-Alexa 488 donkey Molecular Probes 1:100 IF 

α-rabbit-Alexa 488 donkey Molecular Probes 1:100 IF 

α-guinea pig-Alexa 633 donkey Molecular Probes 1:100 IF 
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3  Methods 

 

3.1 Isolation and purification of DNA and RNA 

 

3.1.1  Isolation of tail tip DNA 

The tail tips of mice were incubated in 400 µl Laird buffer at 55 °C in a water 

bath o/n. After centrifugation at 13200 rpm the supernatant was transferred 

into a new tube with 500 µl isopropanol. DNA was precipitated by 

centrifugation at 13200 rpm for 10 min. Subsequently, the DNA was washed 

with 500 µl of 70 % ethanol, and the pellet was air dried and resuspended in 

100 µl aqua bidest. 

 

3.1.2  Isolation of plasmid DNA 

For analytical preparation, 2 ml LB medium containing the appropriate 

antibiotic were inoculated with a single colony of transformed bacteria and 

were incubated o/n at 37 °C with vigorous shaking. The culture was 

centrifuged for 3 min at 13200 rpm, resuspended in 400 µl TELT buffer with 

lysozyme (100 µg/ml) and RNase A (10 µg/ml) and boiled for 5 min in a 

thermal cycler. After cooling down on ice genomic DNA and debris were 

pelleted by centrifugation at 13200 rpm for 15 min. The pellet was removed 

with a tip. 400 µl isopropanol was added to the supernatant and the plasmid 

DNA was pelleted by further centrifugation at 13200 rpm for 30 min. The 

pellet was washed once with 1 ml of 70% ethanol, then air dried and 

resuspended in 50 µl aqua bidest. 

For preparation of bigger amounts or highly pure plasmid DNA, 

Macherey & Nagel Nucleospin Plasmid kits (mini, midi or maxi) were used 

according to manufacturers’ specifications. 
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3.1.3  Gel electrophoresis for separation of DNA fragments 

For separation of DNA fragments, 1 % agarose gels were used. The agarose 

was diluted in 1x TAE buffer and boiled until it was completely dissolved. 

Afterwards it was cooled down to 60 °C and Syber-Safe was mixed in a 

dilution of 1:10000 into the fluid agarose. The gel was placed in a chamber 

with 1x TAE. Probes were diluted 1:10 with 10-fold DNA loading buffer and 

loaded into the pockets of the gel.  

 

3.1.4  Cleanup of DNA fragments 

Macherey & Nagel Nucleospin extract II kit was used according to 

manufacturers’ instructions for cleanup of DNA fragments after enzymatic 

reactions or gel electrophoresis. DNA fragments were eluted in an appropriate 

volume of autoclaved aqua bidest and stored at -20 °C. 

 

3.1.5  Photometric determination of DNA and RNA concentration 

The concentration of DNA and RNA was measured with a Nanodrop system 

using 1 µl aqua bidest as blank and 1 µl of the probe for the measurement.  

 

3.1.6  Isolation of RNA  

Isolation of RNA was performed using the Macherey & Nagel Nucleospin RNA II 

kit. For embryonic hearts the NucleoSpin RNA XS was used. In case of the 

simultaneous preparation of proteins, the Nucleospin RNA II Column flow 

through was used for protein precipitation, according to the manufacturer’ 

instructions.   

 

3.1.7  Reverse transcription of RNA into cDNA 

cDNA was reverse transcribed using Qiagen QuantiTect reverse transcription 

kit including rDNaseI treatment following the manufacturers protocol. 500 ng 

of total RNA was used in a 10 µl reaction and filled up to 50 µl with aqua 

bidest after cDNA synthesis.  
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3.2 Cloning of DNA fragments 

 

3.2.1  Enzymatic digestion 

NEB restriction endonucleases and buffers were used for enzymatic digestions 

of DNA. In a total volume of 20 µl 1-2 µg of DNA were digested, including 2 µl 

of the appropriate 10x buffer and 3-5 enzymatic units per µg of DNA. After the 

DNA was incubated for 2-4 h, the fragments were separated by gel 

electrophoresis and finally cleaned up using Macherey & Nagel Nucleospin 

extract II kit. For double digestion with two different enzymes one common 

buffer according to manufacturers’ recommendation was used. 

 

3.2.2  Vector preparation 

Vectors were digested with appropriate endonucleases as described above. To 

avoid re-ligation cut vectors were dephosphorylated by shrimp alkaline 

phosphatase. For the dephosphorylation reaction, 2 µl of 10x Roche 

dephosphorylation buffer and one enzymatic unit of shripms alkaline 

phosphatase was used in a 20 µl reaction. The samples were incubated at 

37 °C for 10 min and phosphatase was inactivated by heating the sample to 

65 °C for 15 min. 

 

3.2.3  Ligation 

For optimal results, the amount of insert DNA should be around three to six 

times higher as compared to the vector DNA. The ligation reaction was done 

o/n at 18 °C in a total volume of 10 µl, including 1 µl 10x ligation buffer and 1 

µl T4 DNA ligase. 

 

 

3.2.4 Sequencing DNA 

Sequencing was performed by SeqLab. The DNA was prepared according to 

the requirements of the company. 
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3.3 Preparation of electrocompetent bacteria and 

recombineering 

 

Bacteria containing a BAC (BMQ 440p13) that contained the wildtype locus of 

Creld2, was made electrocompetent by inoculating one BAC colony in 5 ml 

LBAmp medium o/n at 37°C and 250 rpm. The next day, 1 ml of this preculture 

was inoculated in 100 ml fresh, prewarmed LB selection medium and 

incubated under the same conditions until an OD600nm = 0.6-0.8 is reached. 

From now on, the suspension was always kept on ice. All centrifugation steps 

lasted 10 min and were performed at 4°C. The culture was transferred to two 

50 ml falcon tubes and centrifuged consecutively at 2900 g, 4000 g, 5750 g, 

and 7250 g. The supernatant was discarded after each centrifugation step and 

the pellet resuspended in 40 ml 10% glycerol solution. After the centrifugation 

at 7250 g, the pellets from both 50 ml falcon tubes were combined and 

resuspended in 40 ml 10% glycerol solution. After another centrifugation 

(9000 g), the pellet was resuspended in 150 µl 50% glycerol solution, 

portioned in aliquots. (Adapted from Diploma thesis of A. Aschenbrenner). One 

of the aliquots was used to transform the bacteria with the mini-phage λ in 

order to make the bacteria recombination-competent. The selection of mini-

phage λ positive bacteria was done with kanamycin-containing agar plates.  

These bacteria were subsequently made electrocompetent again like described 

above, with the difference, that the recombination-competent strain was 

maintained at 32 °C. To activate recombination functions, the culture was 

incubated at 42 °C for 15 min, and then cooled in ice water for 20 min before 

proceeding with the first centrifugation steps.  

After the bacteria were electrocompetent, they were transformed with the 

linearized retrieval vector containing sequences of 500 bp on each end that 

encompassed the 5’ homology arm. Selection was done with ampicillin. Clones 

of this last step were screened for the vector that was subsequently used for 

homologous recombination of the Creld2 locus in ES-cells. 
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3.4 PCR techniques  

 

3.4.1  Cloning PCR 

For cloning of DNA fragments the Phusion Hot Start High-Fidelity DNA 

Polymerase was taken to ascertain high specificity and proof reading. PCR 

reactions were set up as proposed by the manufacturers’ manual. The samples 

were mixed in a 0.2 ml PCR-tube: 

 

Component Volume / 20 µl reaction Final concentration 

H2O 13.4 µl  

5x Phusion HF buffer  4 µl 1x 

10 mM dNTPs 0.4 µl 200 µM each 

Forward primer 1 µl 0.5 µM 

Reverse primer 1 µl 0.5 µM 

Template DNA 1 µl 1 pg – 5 ng 

Phusion Hot Start DNA 

Polymerase (2 U/µl) 
0.2 µl 0.02 U/µl 

 

Program:  

 

Cycle step Temperature Time Number of cycles 

Initial denaturation 98 °C 30 s 1 

Denaturation 

Annealing 

Extension 

98 °C 

60-74 °C 

72 °C 

10 s 

30 s 

60 s 

 

25-35 

 

Final extension 
72 °C 

4 °C 
5-10 min  

hold 

1 

 

After the PCR program the DNA fragments were purified by gel electrophoresis, 

cut out of the gel and cleaned up.  
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3.4.2  Genotyping PCR 

For genotyping the GoTaq polymerase was used. Primer concentration was 

100 pmol/µl.   

 

Component 
Volume / 20 µl 

reaction (Creld1KO) 

Volume / 20 µl 

reaction (Creld2KO) 

H2O 13.4 µl 13.5 µl 

5x Green GoTaq 

reaction buffer 
4 µl 4 µl 

10 mM dNTPs 0.2 µl 0.2 µl 

Forward primer 
0.1 µl  

(gt_fw or neo_fw) 

0.1 µl  

(gt2_fw or neo2_fw) 

Reverse primer 

0.1 µl each  

(gt_rev, gt_lacZ or 

neo_rev 

0.1 µl  

(gt2_rev) 

Template DNA 2 µl 2 µl 

GoTaq DNA 

Polymerase (5 U/µl) 
0.1 µl 0.1 µl 

 

Program: 

 

Cycle step Temperature Time Number of cycles 

Initial denaturation 95 °C 30 s 1 

Denaturation 

Annealing 

Extension 

95 °C 

58 °C 

72 °C 

20 s 

20 s 

20 s 

 

35 

 

Final extension 
72 °C 

4 °C 
5 min  

hold 

1 
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3.4.3  qRT-PCR 

Primers for qRT-PCR were designed by using Universal Probe Library - Roche 

Applied Science.  

qRT-PCR primers 

Condition Range Optimum 

Primer length 18-25 bp 20 bp 

Product lenght 75-150 bp 120 bp 

Melting temperature 57-61 °C 59 °C 

% GC (of total) 40-60 50 

 

Primers were synthesized by Invitrogen without 5' and 3' modifications, 

desalted and shipped lyophilized. Before use, primers were resuspended in 

aqua bidest to a final concentration of 20 pmol/µl. 

Primers for qRT-PCR were tested for efficiency before use. Efficiency tests 

include dilution of template cDNA from 1:1 up to 1:125. Primers used for real-

time PCR showed at least 80% efficiency up to a dilution of 1:25. All primers 

were optimized and used at an annealing temperature of 59 °C. The 

appearance of primer dimer was further ruled out by melt curve analysis. 

All qRT-PCR experiments were done with BioRad I-cycler and IQ5 optical 

system using SYBR-Green to detect amplification after each PCR cycle. 

Reactions were performed as duplicates or triplicates in 96-well plates and a 

total volume of 15 µl. Gene expression studies were analyzed with BioRad IQ5 

optical system software. Expression is always shown relative to a control 

condition and relative to an internal expression control, which were PPIA and 

HPRT in all the experiments. For the gene studies of different animals the 

control condition was set to 1.  Data were calculated according to the delta-

delta-CT method. 

Real-time PCR reactions were set up as follows: 

 

Component Volume / 15 µl reaction  

Template cDNA 0.75 µl 

Forward primer 0.375 µl (5 pmol/µl) 

Reverse primer 0.375 µl (5 pmol/µl) 

2x SYBR-Green Supermix 7.5 µl 

Aqua bidest 6 µl 
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Program: 

 

Cycle step Temperature Time 
Number of 

cycles 

Denaturation and 

polymerase initiation 
95 °C 5 min 1 

Denaturation 

Annealing 

Extension 

95 °C 

59 °C 

72 °C 

30 s 

20 s 

20 s 

 

40 

 

Melt curve 
55 °C to 95 °C                

(+0.5 °C increase per cycle) 
30 s 81 

 
 

3.5 Biochemical Methods 

 

3.5.1 Protein extraction  

For total protein extracts, 5×106 cells, one to two embryos (E10.5) or 1-5 mg 

tissue was lysed in 200 - 500 μl of cold RIPA buffer with complete protease 

inhibitors by ultrasonication (3x 30 sec, on ice) or using the Precellys 

homogenizer. The homogenate was centrifuged at 13200 rpm for 15 min at 

4 °C. The supernatant was transferred to a fresh 1.5 ml tube and stored at -

80 °C. 

For performing an SDS-PAGE, gel loading buffer was added to the lysates, 

resulting in 1x concentration, samples were boiled for 5 min and centrifuged 

shortly at room temperature. 

3.5.2 Measurement of protein concentration using BCA-test 

To determine the concentration of protein extracts the BCA Protein Assay kit 

was used. Reactions and standard curves were carried out as described in 

manufacturer’s manual. Blank value determination was done with 950 µl 

working solution with 50 µl aqua bidest. After 30 min incubation at 37 °C, 

protein concentrations were measured at 562 nm. 
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3.5.3 Gel electrophoresis and transfer of proteins 

 

3.5.3.1 SDS-PAGE and native PAGE 

Proteins can be separated using polyacrylamide gels. To efficiently separate 

proteins of different sizes, acrylamide can be used in different concentrations, 

which results in different pore sizes. SDS-PAGE was carried out when 

denaturating conditions were required to separate proteins according to their 

size. Basic native PAGE was used to analyze the composition of oligomeric 

proteins in their native state. In this thesis, concentration of the resolving gels 

varied from 10 % to 15 %. Electrophoresis was carried out at 80 - 120 V.  

 

Composition 

separating layer  

SDS-acrylamide gel        

(5 ml, 12 %) 

Native gel               

(12 ml, 12.5 %) 

H2O 1.9 ml 4 ml 

30 % acrylamide mix 1.7 ml 5 ml 

1 M Tris pH 8.8 1.3 ml 3 ml 

SDS (10 % stock) 50 μl --- 

APS 50 μl 84 µl 

TEMED 3 μl 7 µl 

 

 

Composition 

stacking layer  

SDS-acrylamide gel        

(1 ml, 5 %) 

Native gel                

(7 ml, 4.3 %) 

H2O 0.68 ml 5 ml 

30 % acrylamide mix 0.17 ml 1 ml 

1.5 M Tris pH 6.8 0.13 ml 1 ml 

SDS (10 % stock) 10 μl --- 

APS 10 μl 40 µl 

TEMED 1 μl 8 µl 

 

For the mobility shift assay of Ca2+ binding proteins the final concentration of 

EGTA was 1 mM and of CaCl2 50 µM for all gels and the running buffer. 
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3.5.3.2 Western Blot  

For antibody detection, separated proteins by SDS-PAGE were transferred to a 

PVDF membrane. The membrane was activated with methanol for 1 min and 

equilibrated in transfer buffer. It was placed on the gel and layered in between 

of a stack of whatman paper and two foam pads, which were equilibrated in 

transfer buffer as well. The membrane was oriented to the anode, whereas the 

gel was oriented to the cathode. In addition to the holder, an ice-block was 

placed into the tank blotting apparatus and the tank was filled with transfer 

buffer. Electro blotting was carried out for 1 h at 100 V. The transfer efficiency 

of total protein was checked by Ponceau S staining, which was washed out 

with aqua bidest. 

 

3.5.3.3 Antibody binding and ECL detection 

After the transfer of proteins to the membrane, incubation with 5 % milk 

powder in TBST was carried out for at least 1 h. Primary antibodies in TBST 

with 5 % milk powder were added to the membrane, followed by o/n 

incubation at 4 °C. After that, the membrane was washed 3 times for 5-

10 min in TBST before incubation with the second antibody, which lasted 1h. 

After several washing steps, the chemoluminescence produced by the HRP-

coupled secondary antibody could be detected on an X-Ray film after the ECL 

substrate was poured on the membrane. X-ray films were developed in a 

Curix60 developer. 

 

3.5.4 Co-Immunoprecipitation  

For immunoprecipitation, lysates were prepared in cold non-denaturating lysis. 

Co-immunoprecipitation assays were performed using the immunoprecipitation 

starter pack. Protein A Sepharose 4 Fast Flow beads and Protein G Sepharose 

4 Fast Flow beads were washed three times with an equal volume of lysis 

buffer. The Sepharose beads were pelleted by centrifugation at 12,000 x g for 

30 sec and the supernatant was discarded. Protein lysates were prehybridized 

with 100 µl of Sepharose beads in order to pre-clear the lysate of proteins 

binding unspecifically to the beads. 2-5 μg of the antibody of interest or the 
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same amount of the corresponding IgG normal, respectively, as well as 200-

500 μg of total protein were incubated for 1 h at 4 °C with rotation in a final 

volume of 250-500 µl. The antibody conjugate was immunoprecipitated with 

100 μl of either Protein G or Protein A Sepharose beads for 1-3 h at 4 °C with 

rotation. Unbound proteins were removed by washing four times with 500 μl of 

lysis buffer. Immunoprecipitated proteins bound to the Sepharose beads were 

eluted by adding 30 μl 1x gel loading buffer and boiling for 5 min. The eluate 

was centrifuged at 12,000×g for 30 sec, and the supernatant containing the 

coimmunoprecipitated proteins was used for SDS-PAGE followed by Western-

blot analyses.  

 

3.5.5 Phosphorylation analysis of NFATc1  

Cells were transfected with NFATc1-HA alone or together with Creld1-Flag for 

16-22 hrs. For cyclosporine A experiments, cells were pre-treated for at least 

30 min before transfection. After harvesting the cells, they were lysed by a 

Precellys homogenizer. Protein lysates were loaded on a Novex 4-12% Bis-Tris 

Gel.  

 

3.6 Histochemistry 

 

Embryos or organs were fixed for one to three days, in 4% Paraformaldehyde 

at 4 °C. Dehydration was performed using increasing percentages of ethanol 

(60 %, 70 %, 80 %, 90 %, 96 %, 100 %) and xylol, followed by embedding in 

paraffin.  

For immunohistochemical stainings sections were deparaffinized and 

endogenous peroxidase activity was blocked using 1.2% of H2O2 in methanol. 

Then, sections were cooked three times 5 min in citrate buffer (10 mM, pH 6) 

in a microwave and treated 15 min with trypsin for antigen retrieval. To block 

unspecific binding sites, sections were prehybridized of with 5% BSA and 10 % 

donkey serum in PBS for 1 h followed by incubation with the primary antibody 

(in 5 % BSA in PBS) over night at 4 °C. As secondary antibody, HRP-

conjugated antibody was incubated for 1 h at room temperature (1:100). Nova 

Red was used for color development and hematoxylin solution was used for 
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counter staining of nuclei.  

For immunofluorescence sections were deparaffinized and rehydrated, followed 

by antigen retrieval. For antigen retrieval of Creld2 stained sections, the slides 

were incubated for 45 min at 85 °C instead of cooking them. For 

immunocytoshemisty, cells were fixed with 4 % paraformaldehyde and 

permeabilized with PBT. After prehybridization, sections and cells, respectively, 

were incubated o/n at 4 °C with primary antibodies. Primary antibodies were 

detected with fluorescent-labeled antibodies conjugated with Alexa488, 

Alexa546 or Alexa633. Sections and cells were mounted in DAPI-

Fluoromount G. 

 

3.7 Cell culture  

 

Cells were cultured in DMEM or RPMI containing 10 % Fetal Calf Serum and 1 % 

Penicillin/Streptomycin. Transfection of NIH3T3 and HEK239 cells was 

performed using Metafectene pro and Opti-MEM. Transfection of Jurkat T cells 

was performed by electroporation. 

 

3.7.1 Live cell imaging  

Cells were grown in 8-well chamber slides. NFATc1-GFP and Creld1-RFP 

constructs were transfected with Metafectene pro for 16-22 hrs. Cells were 

treated with 0.1 µM thapsigargin or 1 µM cyclosporine A that were added 

simultaneously with the transfection solution. 

 

3.7.2 Fluorescent protease protection (FPP) assay  

YFP-PrP and CFP-CD3δ vectors were kindly provided by Holger Lorenz. Assay 

was performed as published earlier59. Working solution for trypsin was 4 mM 

and for digitonin was 100 µM. 
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3.7.3 Luciferase assay 

HEK239 cells were transfected with pGL3-NFAT-luc60, the psiCHECK-1 

(Promega) and the FLAG-tagged Creld1 contructs. Concentrations were as 

follows: phorbol myristate acetate (PMA): 20 ng/ml, ionomycin: 1 µM, 

cyclosporine A: 1 µM. HEK293 cells were incubated for 5 h in DMEM + 10 % 

FCS. Assay was performed with the Dual-Glow Luciferase Assay system and 

the luminescence was detected using the Fluostar Omega. For analysis, firefly 

activity (NFAT-luc) was normalized to the renilla activity (psiCHECK1). Data 

sets were normalized to ctrl+DMSO and expressed as relative luciferase 

activity (%). 

 

3.7.4 Flow cytometry 

 

3.7.4.1 Primary cell culture 

Splenic and thymic primary cell cultures were isolated from freshly sacrificed 

mice. Spleen and thymus were dissected and put into 4 ml ice-cold PBS. 

Organs were smashed with the blunt end of a 5 ml syringe plunger and 

strained through a 100 µm strainer to obtain single cells. Splenic cells were 

centrifuged for 5 min at 500 g and then incubated with red blood cell lysis 

buffer for 2 min. Lysis was stopped by addition of PBS. Cells were centrifuged 

again and resuspended in 4 ml PBS. 

 

3.7.4.2 Antibody staining and FACS 

1 ml each of thymic or splenic cell culture was added to two fluorescence 

activated cell sorting (FACS) tubes. One tube of each genotype served as 

unstained control. The staining of the antibodies was done at 4 °C for 30 min 

in a total volume of 100 µl. Staining of compensation beads with single 

antibodies was done simultaneously to the antibody incubation. Compensation 

ensures the integrity of the experimental data. Fluorescence acquisition was 

performed with a flow cytometer.  
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3.7.5 Homologous recombination in ES-cell culture 

 

3.7.5.1 ES-cell culture 

HM-1 embryonic stem (ES)-cells were kindly provided by AG Magin. HM-1 cells 

grew feeder independent on 0.1 % gelatin coated surfaces. Medium was 

changed every 24 hours. To maintain the culture, cells were split 1:4 – 1:6. 

For growing clones, cells were resuspended with a 1 ml pipette from 48-well to 

6-well. Centrifugation steps were done for 5 min at 800 rpm. 

Trypsinization: 

Dish 
0.1% 

gelatin 

Medium/ 

end 

volume 

PBS Trypsin 

Medium for 

stopping 

trypsinization 

48-Well 100 µl 0.5 ml 0.5 ml 100 µl 0.5 ml 

24-Well 250 µl 1.5 ml 1.0 ml 250 µl 1.0 ml 

12-Well 500 µl 2.5 ml 2.0 ml 400 µl 1.0 ml 

6-Well 1 ml 5-7 ml 3.0 ml 1.0 ml 4.0 ml 

T 25 3 ml 7.0 ml 3-5 ml 1.5 ml 5.0 ml 

T 75 6 ml 25-35 ml 7-10 ml 3.0 ml 7.0 ml 

10 cm 6 ml 10 ml    

  

3.7.5.2 ES-cell transfection 

HM-1 cells were grown confluent in a T75-flask, trypsinized and resuspended 

in HBS buffer. Cells were counted and diluted so that the cell number was 30 

Mio. per 0.8 ml. 200-350 µg DNA was mixed with HM-1 cell and transferred 

into a cuvette. Cells were electroporated at 0.8 kV and 3µF. Cells were diluted 

in 20 ml culture medium and split on 10 cm dishes: 

Dish # x ml of cells ~ cell number 

1-4 0.5 750000 

5-16 1.0 1.5 Mio 

17-20 1.5 2.2 Mio 

21 Control 0.1 150000 

22 Control 0.05 75000 
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Selection with G418 containing media was started 24 hours after transfection. 

Medium was changed every 2-3 days. Cells on control dish #21 were kept in 

culture medium without G418. Selection was stopped when clones grew big 

enough to be picked. 

 

3.7.5.3 Picking of ES-cell clones and PCR 

Approximately 2 weeks after electroporation ES-cell clones can be picked. This 

was done mechanically with a 200 µl pipet by scratching the clone off the dish 

with simultaneous sucking of the cells into the tip. Each clone was transferred 

into a 48-well dish. Clones were split every three to five days into a bigger 

dish. During the step from the 48-well to the 24-well dish a part of the cells 

was used for a PCR reaction. Therefor cells were pelleted and resuspended in 

lysis buffer and incubated at 55 °C o/n in a water bath. For the PCR 10 µl of 

lysed cells were added to the reaction tube.  

 

Component Volume / 20 µl reaction 

H2O 5.5 µl 

5x Green GoTaq reaction buffer 4 µl 

10 mM dNTPs 0.2 µl 

Forward primer 0.1 µl  

Reverse primer 0.1 µl 

ES cell DNA 10 µl 

GoTaq DNA 

Polymerase (5 U/µl) 
0.1 µl 

 

Program: 

Cycle step Temperature Time Number of cycles 

Initial denaturation 95 °C 30 s 1 

Denaturation 

Annealing 

Extension 

95 °C 

58 °C 

72 °C 

20 s 

20 s 

2 min 

 

35 

 

Final extension 
72 °C 

4 °C 
5 min  

hold 

1 
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3.7.5.4 Karyotyping 

PCR-positive ES-cells were grown up to a T25 flask. Cells were incubated with 

2 µg/ml colcemid for 1 hour in the incubator. Cells were washed, trypsinized 

and pelleted. The pellet was resuspended in 1 ml 0.56% KCl and incubated for 

10 min. Cells were centrifuged and resuspended twice in ice-cold 

methanol/acetic acid (3 vol + 1 vol). After the third centrifugation step, cells 

were dropped on slides from a height of 10 – 30 cm. Thereby, nuclei burst and 

are visible under the microscope. Slides were air-dried and stained with 

Giemsa. Chromosomes of at least 10 cells per clone were counted. The 

genome of Mus musculus comprises of 40 chromosomes. 

    

3.7.5.5 Isolation of ES-cell DNA 

For Southern blot analyses, big amounts of genomic ES-cell DNA are needed. 

Therefore, cells were grown confluent in T25 flasks, washed twice with PBS 

and lysed in 1.5 ml lysis buffer containing 1 mg/ml Proteinase K and 

200 µg/ml RNase. Cells were kept for 2-3 days in a water bath at 55 °C. DNA 

was precipitated with isopropanol, washed twice with 70 % ethanol, air-dried 

and resuspended in aqua bidest. 

 

3.7.5.6 Southern blot 

DNA of PCR-positive ES cell clones was digested by incubation with restriction 

endonucleases (700 ng DNA per digest). This mixture was separated according 

to length by agarose gel electrophoresis (0.7% agarose, maxi gel, 200V) and 

the resulting band pattern was documented next to a fluorescent ruler. Then, 

the gel was depurinated for 10 min in 0.25 M HCl washed briefly with water, 

and denatured for 30 min in 1.5 M NaCl + 0.5 M NaOH. The DNA was 

subsequently transferred onto a nitrocellulose membrane. After the blotting, 

the membrane was washed briefly in 2x SSC and air-dried. The DNA was 

immobilized on the membrane by UV crosslinking. The probes were labeled 

with 32P using the Multiprime-DNA labeling system according to manufacturers’ 

instructions.  

Probes were purified through Sephadex G50 columns and denatured by boiling 
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for 5 min. The membrane was prehybridized in 10 ml QuickHyb for 1 hour at 

68 °C. Subsequently, the single-stranded probe was added to the QuickHyb 

solution and the membrane was incubated further for 90 min at 68 °C. The 

membrane was washed with SSC containing 0.1% SDS in a 68°C water bath, 

starting with a 2x solution and lowering the concentration to 0.1x. The 

radioactivity of the washing solution and the membrane itself was monitored 

with the Geiger-Müller counter after each washing step until the signal from 

the membrane was reduced to 200 to 300 cpm. 

The membrane was placed in a developing cassette with an intensifying screen 

in-between two x-ray films and incubated o/n at -80°C. Films were developed 

in a Curix60 developer. 

 

3.8 Work with Mus musculus 

 

3.8.1 Animal housing 

Mice were kept under standard SPF housing conditions with a 12 h dark/light 

cycle and with food and water ad libitum. Genotyping was performed using 

isolated DNA obtained from tail tips. Creld1KO mouse line as ordered from 

KOMP (project ID: VG12264). 

Primers for detection of the neomycin cassette of Creld1KOw/neo were neo_fw 

and neo_rev; transgenic band 275 bp. Primers for Creld1KO were gt_fw, 

gt_rev and gt_lacZ; transgenic band 403 bp, wildtype band 484 bp.  

Primers for detection of the neomycin cassette of Creld2KOw/neo were neo2_fw 

and gt2_rev; transgenic band 189 bp. Primers for Creld2KO were gt2_fw and 

gt2_rev; transgenic band 374 bp, wildtype band 253 bp.  

 

3.8.2 Endothelial-to-mesenchymal transformation (EMT) assay  

The EMT was performed as described elsewhere61.Briefly, heart explants of 

E9.5 embryos were placed on collagen, where they were allowed to adhere 

before adding media. Migrating mesenchymal cells were counted after 48 

hours. 
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3.8.3 Stainings 

3.8.3.1 H&E 

Organs were fixed for one to three days, in 4% Paraformaldehyde at 4 °C. 

Dehydration was performed using increasing percentages of ethanol (60 %, 

70 %, 80 %, 90 %, 96 %, 100 %) and xylol, followed by embedding in 

paraffin. Sections were deparaffinized and rehydrated. Staining with eosin was 

performed for 3 min. Sections were washed briefly in VE water and then 

transferred to the hematoxylin solution for 1 min. After a washing step in VE 

water, the samples were washed with running tap water. Slides were 

dehydrated and mounted with Entallan. 

  

3.8.3.2 Oil-Red-O 

Organs were mounted in Tissue-Tek, cut with the cryostat (6-14 µm) and fixed 

in 4 % PFA. After a washing step with running tap water (1 min) the slides 

were rinsed in 60 % isopropanol. The staining was performed with a freshly 

prepared Oil-Red-O working solution (filtered solution of 30 ml of the stock 

stain and 20 ml of aqua bidest) for 15 min. Slides were rinsed with 60 % 

isopropanol and lightly stained with hematoxylin. After a last washing step the 

slides were mounted in Fluoromount.  
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4 Results 

 

4.1 Creld1 

 

4.1.1  Creld1 expression pattern and subcellular localization 

According to its primary structure, Creld1 has been proposed as a cell adhesion 

protein, with its functional domains facing the extracellular space1. The 

subcellular localization of Creld1 was examined by immunoflourescent staining 

using a mouse fibroblast cell-line (NIH3T3). Endogenously expressed Creld1, 

detected with a Creld1-specific antibody, co-localized with a marker for the 

endoplasmic reticulum (ER, Fig. 4-1a). The heterologously expressed protein 

showed a similar localization (Fig. 4-1b).  

 

 

Fig. 4-1 Creld1 is localized at the ER. (a) Endogenous expression of Creld1 

in NIH3T3 cells detected with an Creld1-specific antibody (red). Overlapping 

signals (yellow) with the ER marker KDEL (green) indicate localization at the 

ER. Scale bar indicates 20 µm. (b) Creld1 tagged with green fluorescent protein 

(GFP, green) also co-localizes with the ER marker KDEL (red) in NIH3T3 cells. 

Scale bar indicates 20 µm. 
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To further elucidate the cellular localization of Creld1, a fluorescence protease 

protection (FPP) assay was performed (Fig. 4-2). This assay was designed to 

determine the topology and localization of transmembrane proteins by using 

the restricted proteolytic digestibility of GFP-tagged proteins62. First, it was 

tested whether Creld1 indeed is a membrane protein at the ER. Therefore, the 

ER resident CD3δ protein tagged with a cyan fluorescent protein (CFP) with the 

fluorophore facing the cytosolic side of the ER was used as a control. Images 

were taken before and after permeabilization of the plasma membrane with 

digitonin and treatment with trypsin. The fluorescence of CD3δ-CFP was readily 

diminished after incubation with digitonin and trypsin (Fig. 4-2a). Similarly, the 

fluorescence of RFP fused to the C terminus of Creld1 decreased after 

treatment with digitonin and trypsin, indicating that the C terminus of Creld1 

faces the cytosolic site (Fig. 4-2a). Next, it was tested whether the C terminus 

of Creld1 is facing the extracellular space (Fig. 4-2b), as has been proposed by 

Rupp et al.1. As a control, cells were transfected with YFP-PrP, a fusion between 

the GPI-anchored prion protein (PrP) and the yellow fluorescent protein (YFP)62.  

Here, the YFP is facing the extracellular space. After treatment with trypsin, the 

distinctive fluorescence at the cell surface disappeared (Fig. 4-2b). In contrast, 

cells expressing Creld1 with a green fluorescent protein (GFP) attached to its C 

terminus showed no change in fluorescence after trypsin treatment (Fig. 4-2b), 

indicating that the C terminus is not accessible from the extracellular side.  
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Fig. 4-2 Fluorescence protease protection assay. (a) NIH3T3 cells 

expressing Creld1-RFP or CD3δ-cyan fluorescent protein (CFP), an ER 

transmembrane protein with CFP located at the cytosolic site, were treated first 

with 100 µM digitonin and subsequently with 4 mM trypsin. The fluorescence 

was diminished for both constructs, indicating that the C terminus of Creld1 is 

facing the cytosol. Pictures were taken 1 min after treatment with digitonin and 

trypsin, respectively. (b) NIH3T3 cells expressing Creld1-GFP or yellow 

fluorescent protein (YFP)-PrP, a plasma membrane protein with an extracellular 

YFP-tag, were treated with trypsin for 1 min. Only the YFP-signal is lost, 

indicating that the C terminus of Creld1 is not located outside the cell. Scale 

bars indicate 10 µm. 
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Taken together, these data support the view that Creld1 is localized at the ER, 

with the C and N terminus facing the cytoplasm (Fig. 4-3).  

 

 

4.1.2  Non-conditional Creld1KO mouse 

The non-conditional Creld1 knock-out mouse (Creld1KO) was obtained from the 

Knock-Out Mouse Project (KOMP) Repository. The Creld1 locus consists of ten 

exons. All exons were replaced with a lacZ and a floxed neomycin resistance-

cassette (neoR) by homologous recombination using a BAC-based targeting 

vector (Fig. 4-4a). Integration of the vector and deletion of the neomycin 

cassette was confirmed by PCR (Fig. 4-4b). Absence of the Creld1 protein in 

homozygous Creld1KO embryos was confirmed by Western blot using a Creld1 

specific antibody (Fig. 4-4c). 

 

Fig. 4-3 Assumed membrane topology of Creld1. Its N and C termini are 

facing the cytoplasm. Domains are indicated as in Fig. 1-1a. 
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Fig. 4-4 Non-conditional Creld1KO. (a) Murine genomic Creld1 locus was 

replaced with a lacZ cassette and a floxed neoR by homologous recombination 

using a BAC targeting vector. Primers used for genotyping PCR are indicated (b) 

PCR analysis of wildtype (+/+), heterozygous (+/Creld1KO), and homozygous 

knockout (Creld1KO) animals. Mice with neoR in the Creld1 locus are referred 

to as w/neo. (c) Western-blot analysis of +/+, +/Creld1KO, and Creld1KO total 

lysates from E10.5 embryos using an anti-Creld1 specific antibody. (d) Animals 

born from heterozygous matings. No Creld1KO mice were observed indicating 

embryonic lethality. UTR: untranslated region.  
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4.1.3  Phenotype analysis of Creld1KO mouse 

Matings of heterozygous Creld1KO mice resulted only in wildtype and 

heterozygous pups (Fig. 4-4d). Isolation of embryos at different developmental 

stages revealed that Creld1KO mice die between E11.0 and E11.5 (Fig. 4-5a, b). 

Creld1KO and wildtype embryos develop similarly until E10.5. However, 

Creld1KO have a strong developmental delay at E11.0 (Fig. 4-7b, c) and at 

E11.5 they are already dead and start to be degraded (Fig. 4-5a).  

Fig. 4-5 Development of wildtype (+/+) and Creld1KO embryos 

between E9.5 and E11.5. (a) Development of Creld1KO embryos is 

delayed. At E11.5, they are already dead and start to be degraded. Scale bar 

indicates 1 mm. (b) Survival rates of wildtype, heterozygous, and 

homozygous embryonic mice at different stages of development. Lethality 

occurs between E11.0 and E11.5. 
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hCRELD1 has been described to be a risk factor for AVSD patients11,12. Creld1 is 

highly expressed in the embryonic heart. At E9.5, Creld1 is expressed in the 

myocardium (Fig. 4-6). At E10.5 and E11.5, expression is also detected also in 

the endocardium (Fig. 4-6b, c).  
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Fig. 4-6 Creld1 protein expression in the embryonic heart at E9.5 (a) 

E10.5 (b), and E11.5 (c). (a-c) Stained regions are depicted in red in the 

diagrams under the respective picture. At E9.5, Creld1 is exclusively expressed 

in cardiomyocytes. At E10.5 and E11.5, Creld1 is also observed in the 

atrioventricular and outflow tract cushions as well as in the endocardium. (d) 

Creld1 staining of a Creld1KO heart at E10.5. Scale bars indicate 200 μm. 

A: atrium, IAVC: inferior atrioventricular cushion, OFT: outflow tract, SAVC: 

superior atrioventricular cushion, V: ventricle. 

 

Thus, Creld1KO embryos were analyzed for a defect in heart development. First, 

the heart beat frequency was examined. At E10.5, Creld1KO hearts beat 

significantly slower than wildtype hearts (Fig. 4-7a). As a consequence at E11.0, 

blood flow in the amnion sac was absent and blood clots in the head and tail 

region were observed (Fig. 4-7b). Furthermore, blood cells accumulated around 

the heart and the pericardial sac was immensely dilated (Fig. 4-7b). 

Moreover, the development of Creld1KO hearts arrested at E11.0: whereas 

wildtype hearts already showed the typical four-chambered heart with two atria 

and two ventricles, Creld1KO hearts still displayed the shape of a tube with one 

common atrium and the immature left and right ventricle (Fig. 4-7c).  
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Fig. 4-7 Heart-development defects in Creld1KO embryos. (a) Heartbeat 

frequency of wildtype (+/+), heterozygous (+/Creld1KO), and homozygous 

(Creld1KO) hearts. Hearts from Creld1KO embryos isolated at E10.5 and E11.0 

beat significantly slower than +/+ or +/Creld1KO hearts. (b) Defects in 

Creld1KO embryos at E11.0. Creld1KO embryos are smaller, the amniotic sac is 

not supplied with blood, and the embryos develop blood clots, as seen in the 

head region, and sometimes in the tail region (asterisks). A detailed view of the 

heart region (indicated as a white box) shows a dilation of the pericardial sac 

(arrows) as well as blood cells that are located in the lumen between the sac 

and the heart. (c) Creld1KO hearts show an arrest in development at E10.5. 

Whereas hearts of wildtype embryos form two atria and two ventricles, 

Creld1KO hearts remain in a tubular form with only one atrium and the 

immature ventricle.  

 

To further investigate the defect in cardiac development, E10.5 Creld1KO 

embryos were analyzed for hypoxia due to the decreased heart rate. Indeed, 

the expression of several marker genes for hypoxia63 was upregulated 

(Tab.  4-1).  

Tab. 4-1 Expression level of hypoxia marker genes in E10.5 Creld1KO 

embryos. Gene expression-levels in whole embryos were analyzed by qRT-PCR. 

Expression in wildtype embryos is set to 1 and expression levels in Creld1KO 

embryos are presented as fold change compared to the wildtype. Data are 

presented as mean ± SEM; n = 3. Aldoa: aldolase A, Car9: carbonic 

anhydrase 9, Epo: erythropoietin, EpoR erythropoietin receptor, Glut-1: glucose 

transporter-1, Hk1: hexokinase 1, Hmbs: hydroxymethylbilane synthase, Ldha: 

lactate dehydrogenase A, Vegfa: vascular endothelial growth factor A.  

 

 

 

 

 

 

 

  

Gene Fold expression Creld1KO 

Aldoa 4.3 ± 1.8 

Car9 17.2 ± 4.1 

Epo 2.2 ± 0.7 

EpoR 3.1 ± 0.6 

Glut-1 6.8 ± 2.0 

Hk1 2.1 ± 0.4 

Hmbs 1.5 ± 0.3 

Ldha 2.8 ± 0.6 

Vegfa 14.0 ± 3.1 
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Endocardial cushions are the precursors of the mature heart valves. To 

investigate whether the lack of Creld1 affects heart-valve development, cushion 

formation was examined (Fig. 4-8). To minimize the possibility of the defects in 

cushion formation being secondary to the growth retardation observed at E11.0, 

wildtype and Creld1KO hearts were compared at E10.5. Hearts of wildtype and 

Creld1KO embryos were stained with hematoxylin/eosin and analyzed for 

cushion formation. 

Creld1KO embryos displayed severe hypocellular AVCs (Fig. 4-8b). Quantitative 

analysis of mesenchymal cell number revealed that Creld1KO embryos had 

significantly fewer cells in the AVC compared to wildtype controls (Fig. 4-8c). 

To investigate whether the low cell number was due to a defect in EMT, an EMT 

assay was performed (Fig. 4-8d)61. No significant difference could be observed 

in the number of migrating mesenchymal cells between wildtype and Creld1KO 

AVC explants (Fig. 4-8e). Thus, a defect in EMT does not seem to be 

responsible for the hypocellular AVCs. Another explanation for the reduced 

mesenchymal cell number could be a defect in cell proliferation. Proliferation is 

crucial during a growth period between E10.5 and E13.5 in mesenchymal and 

endothelial cells64–66. To visualize proliferating cells, tissue sections from 

embryonic hearts at E10.5 were stained with an antibody against p-Histone H3. 

In the AVCs of wildtype embryos, the endocardial and mesenchymal cells 

positive for the proliferation marker p-Histone H3 could be detected, whereas in 

sections from Creld1KO embryos, p-Histone H3-positive cells were lacking 

(Fig. 4-8f). These results demonstrate that at E10.5 the proliferation in the AVC 

of Creld1KO embryos is absent. 
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Fig. 4-8 Creld1KO embryos display hypocellular AVCs. (a, b) 

Representative sections of wildtype (+/+) (a) and Creld1KO (b) hearts at E10.5 

stained with hematoxylin/eosin. Dotted orange lines indicate the area of the 

AVC. Grey boxes in the diagram indicate area magnified in the staining. (c) 

Quantitative analysis of mesenchymal cell number in the AVC at E10.5. 

Sections presented in (a) and (b) were used for the analysis. Cell numbers 

were significantly reduced in Creld1KO embryos (p = 0.001). Data are 

presented as mean ± SEM; n = 3. (d) EMT assay, showing AVC heart explants 

of +/+ and Creld1KO embryos. Arrowheads indicate migrating mesenchymal 

cells. (e) Percentage of migrating mesenchymal cells observed after EMT assay. 

No significant difference could be detected between +/+ and Creld1KO. Data 

are presented as mean ± SEM; n = 3. (f) Expression of the proliferation 

marker p-Histone H3 in the AVC of E10.5 wildtype (top) and Creld1KO (bottom) 

embryos. Myocardium is stained with an antibody against MF-20. Nuclei are 

stained with DAPI. Magnification of AVC is indicated as a white box. In wildtype 

cells (+/+), p-Histone H3 (green) is visible in endocardial (arrowhead) and 

mesenchymal cells (arrows). In Creld1KO hearts, a staining is absent. A 

minimum of n = 3 has been analyzed for each genotype.  A: atrium, BC: blood 

cells, AVC: atrioventricular cushion, V: ventricle. 

 

4.1.4 The role of Creld1 in calcineurin/NFATc1 signaling   

during heart-valve formation 

It has been shown that calcineurin/NFAT signaling is crucial for cardiac cushion 

formation and, thereby, for proper septation of the heart67,68. VEGFA-dependent 

activation of NFATc1 in endocardial cells at E10.5 initiates proliferation of 

endocardial and mesenchymal cells in the AVC66. Creld1KO embryos fail to 

proliferate at E10.5 and septation of the heart is lacking. Therefore, the 

interaction of Creld1 with the calcineurin/NFATc1 signaling pathway was 

analyzed in vivo and in vitro.  

To induce expression of its downstream targets, NFATc1 needs to be 

dephosphorylated by calcineurin and consequently translocate to the 

nucleus28,29,60. Thus, the expression pattern of NFATc1 in the AVC of wildtype 

and Creld1KO embryos was examined. At E10.5, NFATc1 is solely expressed in 

endocardial cushion cells (ECC) of the AVC. In wildtype embryos, NFATc1 was 

mainly localized in the nucleus (Fig. 4-9a). In contrast, in Creld1KO embryos, 

NFATc1 was exclusively localized in the cytoplasm (Fig. 4-9a). Thus, lack of 

Creld1 abolishes nuclear translocation of NFATc1 in the ECCs of the AVC at 
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E10.5 

To investigate whether the lack of NFATc1 nuclear translocation affects 

downstream signaling, the expression levels of NFATc1 downstream targets 

were analyzed by qRT-PCR and Western blot in isolated hearts of E10.5 

embryos. The main NFATc1 target genes, namely NFATc1 and Regulator of 

calcineurin 1 (Rcan1)69,70 were significantly downregulated in Creld1KO hearts 

(Fig. 4-9b). In line with this finding, Rcan1 protein-levels were diminished in 

Creld1KO hearts at E10.5 (Fig. 4-9c).  
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Fig. 4-9 NFATc1 activity is decreased in Creld1KO hearts. (a) NFATc1 

expression in the endocardium of the AVC of E10.5 wildtype (+/+, top) and 

Creld1KO (bottom) embryos. In wildtype cells, NFATc1 (magenta) is mainly 

localized in the nucleus (stained with DAPI, cyan), whereas in Creld1KO, 

NFATc1 is predominantly found in the cytoplasm. Scale bar indicates 20 µm. 

(b) Gene expression in Creld1KO hearts at E10.5. Expression levels of wildtype 

hearts were set to 1. Two target genes of NFATc1, namely NFATc1 itself and 

Rcan1 were significantly downregulated. Data are presented as mean ± SEM; 

n = 6 for Rcan1 and n = 8 for NFATc1. (c) Representative Western blot of wild-

type (+/+) and Creld1KO isolated hearts at E10.5. Protein expression levels 

were quantified by setting expression of +/+ hearts to 1. Data are presented as 

mean ± SEM; n = 6. 

 

 

4.1.5  Creld1 function in calcineurin/NFATc1 signaling in vitro 

To investigate the effect of Creld1 on calcineurin/NFATc1 signaling in more 

detail in vitro, a fluorescently tagged NFATc1 (NFATc1-GFP) was used to study 

its localization in NIH3T3 cells by live-cell imaging. Without any stimuli, NFATc1 

remained in the cytoplasm. When cells were treated with thapsigargin (Tg) to 

stimulate Ca2+ release from intracellular stores, thereby activating calcineurin, 

NFATc1 translocated to the nucleus (Fig. 4-10a, c). In the presence of 

heterologously expressed Creld1, NFATc1 translocated to the nucleus even in 

the absence of Ca2+ release from intracellular stores (Fig. 4-10b, c). The effect 

was diminished using the calcineurin inhibitor cyclosporine A (CsA) 

(Fig. 4-10b, c), demonstrating that Creld1 affects NFATc1 translocation through 

calcineurin.  

Translocation of NFATc1 into the nucleus is dependent on its dephosphorylation 

by calcineurin. Thus, the phosphorylation state of NFATc1 was analyzed by 

Western blot. Phosphorylated NFATc1 was visualized as a slower migrating band 

and, thereby, with an apparent higher molecular weight compared to the faster 

migrating, dephosphorylated protein with a lower molecular weight (Fig. 4-10d). 

In control cells, NFATc1 was mainly phosphorylated (Fig. 4-10d). However, co-

expression of Creld1 augmented the dephosphorylation of NFATc1, whereas 

addition of CsA reversed the effect, resulting in NFATc1 being mainly 

phosphorylated (Fig. 4-10d).  

In the nucleus, NFATc1 acts as transcription factor by binding to the NFAT 

consensus-sequence 5’-GGAAA-3’ 71,72. To investigate whether Creld1 controls 
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NFATc1-dependent transcription, NFATc1 luciferase assays were performed with 

the luciferase gene being under the control of an NFAT-specific promoter 

(Fig. 4-10e, assays were performed by Dagmar Wachten). Creld1 

overexpression increased the luciferase activity to 290 % (Fig. 4-10e). 

Treatment with phorbol myristate acetate (PMA) and ionomycin was used as a 

positive control to increase the intracellular Ca2+ concentration60. This 

treatment increased the luciferase activity to 343 % (Fig. 4-10e). In the 

presence of Creld1, the effect of PMA and ionomycin was even further enhanced 

(945 %, Fig. 4-10e). Presence of CsA reduced the action of Creld1 on luciferase 

activity (218 %, Fig. 4-10e).  
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Fig. 4-10 Creld1 activates calcineurin/NFATc1 signaling. (a) Live-cell 

imaging of NIH3T3 cells overexpressing NFATc1-GFP. Upon addition of 1 µM 

thapsigargin (Tg), NFATc1 (green) translocates to the nucleus. (b) Live-cell 

imaging of NIH3T3 cells overexpressing NFATc1-GFP and Creld1-RFP. The 

presence of Creld1 (red) is sufficient to drive NFATc1 into the nucleus. Addition 

of the calcineurin inhibitor cyclosporine A (CsA, 1 µM) inhibits the effect of 

Creld1 on NFATc1 translocation. Scale bar: 10 µm. (c) Quantification of NFATc1 

localization in NIH3T3 cells. NFATc1 is predominantly localized in the cytoplasm. 

Stimulation with Tg (1 µM) or overexpression of Creld1 drives NFATc1 into the 

nucleus. The presence of CsA reverses the effect and NFATc1 stays in the 

cytoplasm. Chi square test for nuclear localization for NFATc1 vs. 

NFATc1+Creld1 is p = 5.7354E-14. The relative distribution was determined 

according to the absolute cell number per condition. At least n = 198 cells were 

counted for each condition. (d) Phosphorylation state of NFATc1. In NIH3T3 

cells, overexpressed NFATc1 is mainly phosphorylated. Addition of 1 µM CsA 

further enhances this effect. In the presence of Creld1, NFATc1 is mainly 

dephosphorylated. The effect can be blocked by addition of 1 µM CsA. (e) 

Luciferase assay. HEK239 cells were transfected with a NFAT-luciferase plasmid 

possessing NFAT binding-sites upstream of a luciferase gene. As a control, cells 

were transfected with an empty pcDNA3.1 vector and treated with 0.3 % DMSO 

(ctrl); the resulting luciferase activity was set to 100%. Activation of NFAT was 

induced by treatment with 20 ng/ml PMA and 1 µM ionomycin (iono) and 

blocked by the addition of 1 µM CsA. To study the function of Creld1, Creld1-

RFP was co-expressed with the luciferase plasmid and the luciferase activity 

was measured. Data are presented as mean ± SEM; n numbers are indicated.   

 

To reveal whether Creld1 controls calcineurin activation and NFATc1 localization 

across species and different tissues, NFATc1 localization and its phosphorylation 

state were also analyzed in human HEK293 (performed by Dagmar Wachten, 

not shown) and Jurkat T cells (Fig. 4-11). The results were similar as observed 

in murine cells: 1) Creld1 promotes the translocation of NFATc1 to the nucleus 

in a calcineurin-dependent manner, as shown by treatment with CsA 

(Fig. 4-10a). 2) Presence of Creld1 mainly caused dephosphorylation of NFATc1, 

indicating that Creld1 controls the phosphatase activity of calcineurin 

(Fig. 4-10b). These data strongly imply that Creld1 is directly involved in the 

translocation of NFATc1 into the nucleus by controlling the function of 

calcineurin. In addition, Creld1 function seems to be conserved across species, 

representing a unified mechanism to control calcineurin/NFATc1 signaling.  
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Fig. 4-11 NFATc1 activation in Jurkat E6.1 T cells. (a) Immunofluorescent 

analyses of Jurkat E6.1 T cells transfected with NFATc1-GFP alone or 

additionally with Creld1-RFP. Overexpression of Creld1 drives NFATc1-GFP 

(green) to the nucleus. Addition of 1 µM CsA inhibits the effect of Creld1 on 

NFATc1 translocation. Scale bars: 5 µm. (b) Phosphorylation state of NFATc1. In 

Jurkat E6.1 T cells, overexpressed NFATc1 is mainly phosphorylated. Treatment 

with 1 µM Tg causes dephosphorylation of NFATc1, which is blocked by addition 

of 1 µM CsA. In the presence of Creld1, NFATc1 dephosphorylation is more 

pronounced than in the untreated cells. The effect can be blocked by addition of 

1 µM CsA. 

 

Data from a Yeast-2-Hybrid screening in D. melanogaster indicated that the fly 

orthologs of Creld1 and the regulatory calcineurin subunit, CnB, directly interact 

with each other73. Therefore, interaction between the murine proteins was 

studied by co-localization and co-immunoprecipitation (Fig. 4-12). CnB from 

NIH3T3 protein lysates was used as bait by binding the protein to sepharose 
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beads with a CnB specific antibody. The control was performed only with the 

corresponding immunoglobulin G (IgG). Indeed, Creld1 and CnB co-

immunoprecipitate, suggesting that they are contained within a joint protein 

complex (Fig. 4-12b). Further indication to support the interaction between 

these two proteins comes from partial co-localization of endogenously 

expressed Creld1 and CnB in NIH3T3 cells (Fig. 4-12a).  

 

 

 

 

Fig. 4-12 Creld1 and calcineurin B interaction. (a) Immunofluorescent 

analysis of endogenously expressed Creld1 and calcineurin B (CnB) in NIH3T3 

cells. Cells were labeled with a Creld1-specific antibody (red) and a CnB-specific 

antibody (green). Scale bars indicate 10 µm. (b) Co-immunoprecipitation of 

CnB and Creld1. NIH3T3 total lysates were incubated with a CnB-specific 

antibody, proteins in the Western blot were labeled with a Creld1-specific 

antibody. IgG was used as control.  
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4.1.6 Functional analysis of Creld1 domains  

Creld1 contains three distinct protein domains: the WE domain, the EGF-like 

domains, and the cbEGF-like domains. However, their functional role is 

unknown. Therefore, I different deletion mutants and Creld1 variants with point 

mutations corresponding to the mutations found in AVSD patients were 

generated (Fig. 4-13)11,12,74,75. 

 

 

Fig. 4-13 Primary protein structure of Creld1 mutants. Either the EGF-like 

(Creld1ΔEGF), the cbEGF-like (Creld1ΔcbEGF), the nonapeptide GGNTAWEEE in 

the WE domain (Creld1ΔWE), or the transmembrane domains (Creld1ΔTM) 

were deleted. CRELD1 mutations found in human patients with AVSD that were 

introduced into Creld1 are indicated. 

 

All Creld1 mutants were analyzed in the NFATc1-GFP translocation and the 

luciferase assay. Deletion of either the EGF-like (Creld1ΔEGF) or the cbEGF-like 

(Creld1ΔcbEGF) domains did not affect the translocation of NFATc1 into the 
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nucleus. The subcellular distribution was similar to the full length Creld1 protein 

(Fig. 4-14a). In contrast, deletion of the highly conserved nonapeptide 

(GG(N/D)TAWEE(E/K), Creld1ΔWE)1 within the WE domain reduced NFATc1 

translocation to the nucleus to 19 % (43 % with full length Creld1). Thus, the 

WE domain seems to be important for regulation calcineurin function and 

thereby, also for translocation of NFATc1 to the nucleus. For the luciferase 

assay, the relative NFAT-luciferase activity of the deletion mutants was 

normalized to the activity in the presence of Creld1. Here, all three deletion 

mutants (Creld1ΔEGF, Creld1ΔcbEGF, and Creld1ΔWE) showed a decrease of 

luciferase activity down to 64 %, 74 %, and 52 %, respectively (Fig. 4-14b, 

luciferase assays were performed by Dagmar Wachten). Taken together, these 

results indicate that the WE domain is important for nuclear translocation of 

NFATc1, whereas the EGF-like and cbEGF-like domains seem to play a role in 

the subsequent activation of NFATc1 in the nucleus. 

To examine whether the localization of Creld1 at the ER is important for 

calcineurin/NFATc1 signaling, a Creld1 deletion-mutant was generated that 

lacked the two transmembrane domains (Creld1ΔTM). The localization of 

Creld1ΔTM was different to the wildtype protein (Fig. 4-14c): ER localization 

was lost and Creld1ΔTM was rather distributed throughout the whole cell, 

including the nucleus. Accordingly, NFATc1 translocation to the nucleus was 

reduced to 26 % and NFAT-luciferase activity was decreased to 52 % 

(Fig. 4-14a, b). 

 

 

 

 

 



Results

 
 

66 
 

 

 

Fig. 4-14 Impact of Creld1 deletion-mutants on NFATc1 activation. (a) 

Quantification of NFATc1 localization in NIH3T3 cells expressing Creld1 mutants. 

Deleting the EGF-like (Creld1ΔEGF) or cbEGF-like (Creld1ΔcbEGF) domain had 

no effect on NFATc1 translocation to the nucleus. Deletion of the highly 

conserved nonapeptide in the WE domain (Creld1ΔWE) or the transmembrane 

domains (Creld1ΔTM) severely reduced NFATc1 translocation. The relative 

distribution was determined according to the absolute cell number per condition. 

Nuclear translocation of NFATc1 co-expressed with either of the deletion 
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mutants could be abolished by addition of 1 µM CsA. At least n = 329 cells were 

counted for each condition. (b) Luciferase assay. HEK239 cells were transfected 

with a NFAT-luciferase plasmid possessing NFAT binding-sites upstream of a 

luciferase gene. The relative luciferase activity of cells transfected with the full 

length Creld1 protein was set to 1. To study the function of the Creld1 domains, 

Creld1-RFP, Creld1ΔEGF, Creld1ΔcbEGF, Creld1ΔWE and Creld1ΔTM were co-

expressed with the luciferase plasmid and the luciferase activity was measured. 

Data are presented as mean ± SD; n numbers are indicated. (c) Subcellular 

distribution of the Creld1ΔTM mutant. Scale bar indicates 10 µm. 

 

 

To further investigate the function of the Creld1 domains, various point 

mutations were introduced: Creld1R107H, Creld1P162A, Creld1T311I, 

Creld1R329C, and Creld1E414K (Fig. 4-13). These mutations were chosen, 

because they were found in AVSD patients11,12,74,75. Creld1R107H is located in 

the WE domain and changes the positively charged amino acid arginine (R) to 

the neutral histidine (H). The R107H mutation significantly reduced the 

translocation of NFATc1 to the nucleus (12 %, Fig. 4-15a). Subsequently, NFAT-

luciferase activity also dropped to 64 % (Fig. 4-15b). The Creld1P162A 

mutation is located in the first EGF-like domain. Here, the non-polar and 

neutral proline (P) was changed to a neutral alanine (A). In turn, this mutation 

neither affected the translocation of NFATc1 to the nucleus (42 %), nor the 

NFAT-luciferase activity (110 %, Fig. 4-15a, b). Two different amino acids in the 

cbEGF-like domains were mutated (Fig. 4-15c). The point mutation in the first 

cbEGF-like domain changed the polar amino acid threonine (T) to the non-polar 

isoleucine (I) (Creld1T311I). However, NFATc1 translocation (45 %) and NFAT-

luciferase activity (99 %) remained unaltered (Fig. 4-15a, b). The missense 

mutation Creld1R329C in the second cbEGF-like domain affects one of the six 

cysteines that form three disulfide bonds and thereby, account for the typical 

secondary structure of cbEGF-like domains (Fig. 4-15c). The R329C mutation 

diminished both, the NFAT translocation (15 %) and the luciferase activity 

(57 %, Fig. 4-15a, b). This indicates that disruption of disulfide-bond formation 

impairs Creld1 function, probably by causing misfolding of the protein. The 

mutation Creld1E414K is located at the C terminus of the protein downstream 

of the transmembrane domains. The change of the negatively charged side 

chain of glutamic acid (E) to the positively charged lysine (K) slightly affected 

the translocation of NFATc1 to the nucleus (30 %), but did not significantly 
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change the NFAT-luciferase activity (95 %, Fig. 4-15a, b).  

Taken together, these results demonstrate that 1) the WE domain is important 

for the action of Creld1 on calcineurin phosphatase activity and 2) the 

structural integrity of the cbEGF-like domain is crucial for Creld1 function.  
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Fig. 4-15 Point mutations in Creld1 affect NFATc1 activation. (a) 

Quantification of NFATc1 localization in NIH3T3 cells expressing Creld1 mutants. 

The mutations P162A (EGF-like domain), T311I (cbEGF-like domain), and 

E414K (C terminus) had no effect on NFATc1 translocation to the nucleus. The 

change of arginine to cysteine (R329C) in the cbEGF-like domain and a point 

mutation in the WE domain (R107H) diminished NFATc1 translocation. The 

relative distribution was determined according to the absolute cell number per 

condition. At least n = 249 cells were counted for each condition. (b) Luciferase 

assay. For experimental details see Fig. 4-14c. Point mutations that diminished 

NFATc1 translocation (R107H and R329C) also decreased luciferase activity. 

Data are presented as mean ± SD; n numbers are indicated. (c) Schematic 

representation of the second cbEGF-like domain of Creld1. Amino acids that 

have been shown to be important for Ca2+-binding in other cbEGF-like domains 

are highlighted in red. Cysteines and the corresponding disulfide bonds are 

labeled in yellow. The point mutations T311I and R329C are indicated. 
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4.2 Creld2 

 

4.2.1 Non-conditional Creld2KO mouse 

To analyze the physiological function of Creld2, a conventional Creld2KO mouse 

was generated by homologous recombination. The open reading frame (ORF) of 

Creld2 was replaced by an enhanced GFP (eGFP) and a neomycin resistance-

cassette (neoR) flanked by two FRT sites. The neoR cassette was used to 

screen for homologous recombination in ES cells. The endogenous 5’ and 3’ 

untranslated regions (UTR) of Creld2 were fused to the eGFP ORF. Furthermore, 

a diphtheria toxin A (DTA) cassette was introduced after the 3’ homologous 

region to exclude false positive ES-cell clones (Fig. 4-16a). ES-cell clones were 

first screened by PCR (Fig. 4-16b, primer indicated in Fig. 4-16a). 45 positive 

clones were identified. Out of these, 18 clones were tested by Southern blot 

(Fig. 4-16c). Clones positive for the internal and the 5’ external probe were 

tested by karyotyping and all showed a normal number of 40 chromosomes. 

ES-cell clone number 9 was used for blastocyst injection. 

Heterozygous Creld2KOw/neo mice were crossed with mice that ubiquitously 

express the FLP recombinase to excise the neoR cassette (Fig. 4-16a). The 

deletion was confirmed by PCR (Fig. 4-16d). Absence of Creld2 protein was 

analyzed by Western blot (Fig. 4-16e). Creld2KO heterozygous matings resulted 

in birth of wildtype, heterozygous, and knockout pups in a ratio according to 

Mendel (Fig. 4-16f). Creld2KO animals were viable and fertile and therefore 

indistinguishable from wildtype animals. 



Results

 
 

71 
 

 

a 

Asel 

18.4 kb 253 bp 
Q12_fw ~ gt2_rv 

Asel Asel 
-L==~------~ .... -t-+---1I--+-+-++--'------1n----~-_...L- genomie Creld2 

5' probe 

10 kb FRT 

1 kb 

(\I)d-~oau 

FRT 

ES+_fw .. 1.8 kb =-----'="'-~ .. ES+ _rev 

loeus 

targeting­
vector 

Seal inte~Obe 189 bp Sea l 
Asel 

I 
Asel 

I 

10 kb 

neoR neomycin resistance cassette 

b 

c 

d 

bp ,M_ --.,..,-,,-,. 

6000 
3000 

500 

clone # wt 

kb 4 9 15 19 41 46 

bp M 
500 ...... ....,...-- ---, 
400 
300 

[ 
neo2_fw=-;: gt2_rv 

~ Md-~oau 14 
FRT FRT 

7.3 kb 

27.4 kb 
374 bp 

gt2_fw:--:-gt2_rv 

B:H 

. w/neo 
transgenie Creld2 

loeus 

transgenie Creld2 
loeus 

lOkb FRT 

eGFP enhanced green fluorescent protein • 5' UTR I exon 

~ polyadenylation signal 

internal 
probe 

e 

f 
70 

!! 60 .. 
E 
'c 50 .. 
E 40 
o 
.c 
'ö 30 

~ 20 .c 
E 
~ 10 

o 

3' UTR 

LN spleen 

o ,,0 
Ö"'~ Ö ... '" 

kDa xIx (,It{) xl" (l'~ 

37 ~ I Creld2 

_ male 



Results

 
 

72 
 

Fig. 4-16 Non-conditional Creld2KO. (a) Murine genomic Creld2 locus was 

replaced by homologous recombination with eGFP and a neoR cassette flanked 

with FRT sites. Primers used for screening of the ES cells and for genotyping 

PCR are indicated. Genomic DNA of PCR-positive ES cells was cut with AseI for 

detection with the 5’ probe. For the internal probe, the DNA was cut with ScaI. 

Lengths of the resulting bands in the Southern blot are indicated. (b) 

Representative PCR analysis of ES cells screened after homologous 

recombination. The red box shows the band that occurs after successful 

homologous recombination. (c) Southern blot analysis of ES cells that were 

positive in the PCR. For screening, the 5’ and internal probe were used. (d) 

PCR analysis of wildtype (+/+), heterozygous with (+/Creld2KOw/neo), and 

heterozygous animals without neoR (Creld2KO). (e) Western-blot analysis of 

+/+ and Creld2KO total lysates from the lymph node (LN) and spleen using a 

Creld2-specific antibody. (f) Animals born from heterozygous matings. UTR: 

untranslated region.  

 

 

4.2.2  Creld2 expression pattern 

Creld2 is rather ubiquitously expressed (Fig. 4-17a). Organs with high 

expression levels are secretory and digestive organs such as pancreas, stomach, 

foregut, and salivary gland. Moreover, white adipose tissue (WAT) and testis 

express high amounts of Creld2. In the pancreas, Creld2 is not expressed in the 

insulin secreting beta-cells, but rather in the ER of acinar cells, which are the 

functional units of the exocrine pancreas (Fig. 4-17b). In the salivary gland, 

Creld2 seems to be expressed in the excretory duct (Fig. 4-17). It is 

noteworthy that organs important for the immune system, namely thymus and 

spleen, also express Creld2 (Fig. 4-18a). To investigate whether Creld2 plays a 

role in immune cells, FACS analysis was performed with cells from spleen and 

thymus (Fig. 4-18b, c). As a marker for Creld2 expression, GFP that is replacing 

the ORF of Creld2 was used. Wildtype cells were used as negative control, 

because they lack GFP expression. In heterozygous and homozygous knockout 

animals, GFP was detected in all cell types that were analyzed: B-cells, T-cells, 

dendritic cells, natural killer cells (Fig. 4-18b, c), macrophages, and 

granulocytes (not shown). There is one population of double-negative T cells in 

the thymus that does not express GFP (Fig. 4-18b). Some cells within the 

populations of double-positive T cells in the thymus and B cells in the spleen 

seem to express more GFP than others (Fig. 4-18d).  



Results

 
 

73 
 

 

Fig. 4-17 Creld2 expression pattern. (a) Comparison of Creld2 expression 

in different tissues by Western blot using a Creld2-specific antibody. Organs 

with the highest expression levels are the foregut, the pancreas, white adipose 

tissue (WAT), salivary gland (SG), and testis. (b) Immunofluorescent analyses 

of the pancreas (A, B) and salivary gland (C, D). In the pancreas, Creld2 is 

detected in every acinar cell (A), but not in the beta cells that are stained with 

an anti-insulin (Ins) antibody (A’). B-B’’ represent the control staining of a 

Creld2KO pancreas. In the salivary gland, Creld2 seems to be expressed in the 

excretory ducts (C, C’). D represents the control staining of a Creld2KO salivary 

gland. Scale bars indicate 100 µm. 



Results

 
 

74 
 

 

Fig. 4-18 Creld2 expression in immune cells. (a) Immunofluorescent 

analyses of thymus (A, B) and spleen (C, D). B and D represent the control 
staining of the corresponding Creld2KO organs. (b) Histograms of the FACS 

analysis of B (B220) and T (CD4 CD8) cells in the thymus of wildtype (+/+), 
heterozygous (+/Creld2KO), and homozygous (Creld2KO) animals. Almost all 

cells of +/Creld2KO and Creld2KO animals are GFP positive, indicating a broad 
Creld2 expression pattern. (c) Histograms of FACS analysis from B (B220), 
natural killer (NK1.1), dendritic (CD11b CD11c) and T (CD4 CD8) cells in the 

spleen. All cells of +/Creld2KO and Creld2KO animals express GFP. (d) FACS 
analysis of thymic double-positive T cells and splenic B cells. Within the GFP-

positive populations of +/Creld2KO and Creld2KO animals are cells that display 
a more intensive expression of GFP. Scale bars indicate 200 µm. 

  

 

4.2.3  Phenotype analysis of Creld2KO mice 

Young Creld2KO mice show no apparent phenotype under normal growth 

conditions. Therefore, Creld2KO mice were aged and histologically analyzed 

when they were one year old. All knockout animals showed signs of liver 

steatosis (also known as “fatty liver”). They displayed impaired tissue integrity 

due to microvesicular steatosis (Fig. 4-19). To visualize lipid accumulation in 

the liver, an Oil-red-O staining was performed, which stains neutral 
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triacylglycerol (TAG) and lipids. Creld2KO showed accumulations of bigger lipid 

droplets in the area of damaged tissue (Fig. 4-19). 

 

 

Fig. 4-19 Histological analysis of Creld2KO liver sections. One year old 

Creld2KO animals suffer from liver steatosis, which is visualized by a 

hematoxylin/eosin (HE) staining. Cells in the area around the vessel harbor 

vesicles that were identified as lipid droplets using an Oil-red-O staining.  

 

In the liver, TAGs are synthesized from acylation of glycerol-3-phosphate using 

acyl-CoA. Acyl-CoA is formed when coenzyme A (CoA) is attached to the end of 

a long-chain fatty acid. Fatty acid levels are tightly regulated by four different 

mechanisms: uptake, export, synthesis, and catabolism (β-oxidation)76–78. To 

determine which of these processes was affected in the liver of Creld2KO mice, 

gene expression patterns in one year old wildtype and Creld2KO females were 

analyzed (Fig. 4-20). First, different transcriptional regulators that are involved 

in lipid metabolism were examined (Fig. 4-20a). Peroxisome proliferator-

activated receptor alpha (Pparα), which regulates lipid metabolism and 

gluconeogenesis, was significantly downregulated. In contrast, the expression 

levels of other transcription factors like Pparγ (controls fatty-acid storage and 

synthesis), CCAAT/enhancer binding protein alpha (C/ebpα, controls 

gluconeogenesis and lipogenesis), estrogen-related receptor alpha (Errα, 

controls fatty-acid oxidation and glucose metabolism79), sterol regulatory 

element-binding protein 1 (Srebp1) and Srebp2 (both regulators of lipogenesis) 
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did not display significant differences in expression level between wildtype and 

Creld2KO animals. Consistent with these results, the expression of Pparα 

targets, acyl-CoA oxidase 1 (Acox1), carnitine palmitoyltransferase 1a (Cpt1a), 

and hepatic lipase (Lipc)80 were downregulated (Fig. 4-20b). Acox1 and Cpt1a 

proteins are involved in fatty acid β-oxidation. Lipc is considered to be a lipase 

of the vascular compartment, where it hydrolyzes both TAGs and phospholipids 

in the very low density lipoproteins78. The expression levels of two known 

Ppparα targets remained unchanged in Creld2KO: fatty acid binding protein 1 

(Fabp1) and fatty acid synthase (Fasn). Fabp1 has been shown to be important 

for fatty-acid activation, whereas, Fasn controls lipid synthesis. However, both 

genes are regulated by various other transcription factors like Hnf4α and 

Srebp181,82, so that diminished Ppparα function could be compensated.  

Furthermore, two other proteins involved in lipid metabolism were significantly 

downregulated in Creld2KO mice: diacylglycerol acyltransferase 2 (Dgat2) and 

NADH-ubiquinone oxidoreductase (Ndufs1) (Fig. 4-20d). Dgat2 is an enzyme 

that catalyzes the de novo synthesis of TAGs. Ndufs1 is part of the respiratory 

chain in mitochondria and important for oxidative phosphorylation.  

Pparα has been shown to regulate hepatic glycogen metabolism. Hence, the 

expression levels of proteins involved in gluconeogenesis and glycolysis were 

examined (Fig. 4-20c): phosphoenolpyruvate carboxykinase 1 (Pck1), pyruvate 

carboxylase (Pcx), and glucose-6-phosphatase (G6pc). G6pc hydrolyses D-

glucose 6-phosphate to D-glucose and orthophosphate. Its expression was 

significantly downregulated in Creld2KO animals (Fig. 4-20c). Glycokinase (Gck) 

catalyzes the reverse reaction, namely phosphorylation of glucose to glucose-6-

phosphate. Its expression in Creld2KO remained unchanged. Pck1 and Pcx have 

been shown to be suppressed in Pparα knockout animals83, but in Creld2KO 

there was no change in the expression of both the genes.  
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Fig. 4-20 Expression analysis of metabolic genes in Creld2KO livers. (a) 

Expression of transcriptional regulators. (b) Expression of Pparα gene targets. 

(c) Expression of genes involved in gluconeogenesis and glycolysis. (d) 

Expression of genes important for de novo synthesis of TAGs and oxidative 

phosphorylation. One year old litter mates were analyzed. The gene expression 

of wildtype animals was set to one. Data are presented as mean ± SEM; n = 4. 

  

Taken together, analysis of Creld2KO animals indicates that 1) fatty acid 

oxidation is diminished due to decreased Pparα expression77 and 2) that D-

glucose 6-phosphate is accumulated and can subsequently be metabolized to 

Acetyl-CoA83, which in turn can be utilized for lipogenesis. Both mechanisms 

provide an explanation for the liver steatosis observed in Creld2KO animals. 

 

4.2.4  Functional analysis of Creld2 protein  

Creld2 is localized in the ER and subsequently undergoes secretion to the 

extracellular matrix9. In the ER lumen and outside the cell, Ca2+ concentrations 

are higher than in the cytosol. Thereby, the two cbEGF-like domains of Creld2 

constantly face high Ca2+ concentration. To analyze whether the cbEGF-like 

domains bind Ca2+ ions, a native gel-shift assay was performed. Protein lysates 

were incubated with 10 mM CaCl2
 or 10 mM EGTA before running them on 

native gels containing either 50 µM CaCl2 or 1 mM EGTA, respectively. Indeed, 

in the presence of Ca2+, Creld2 migrated more slowly in the gel compared to the 

Ca2+-free condition due to Ca2+ bound to Creld2 (Fig. 4-21a). 

In protein lysates of the spleen, an additional Creld2 band of >545 kDa was 

detected (Fig. 4-21a). Similarly, in other organs like the stomach (not shown) 

and the pancreas, a band of about 300 kDa appeared in the presence of Ca2+ 

(Fig. 4-21a). This implies that Creld2 is part of multi-protein complexes. To 

investigate this further, 2D-PAGE was used. In the first dimension, the protein 

lysate was run in a native gradient gel to separate proteins and protein 

complexes according to their size in a native state. The second dimension is a 

SDS-PAGE in a 90 degrees angle from the first dimension. Using stomach 

protein lysates of a wildtype animal, Creld2 was detected as several dots in the 

second dimension (Fig. 4-21b), representing different protein complexes that 
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contained Creld2 in the native state.  

In some tissues like the lymph node and spleen, two distinct bands for Creld2 

appear (Fig. 4-16e). This could be due to splice variants or post-translational 

modifications. To examine possible modifications, NIH3T3 protein lysates were 

treated with a phosphatase and different glycosidases. In the untreated sample, 

only one band was detected at around 42 kDa, corresponding to the upper 

band seen before (Fig. 4-21c). After treatment with peptide-N-glycosidase F 

(PNGase F), this band shifted down to about 40 kDa (Fig. 4-21c). PNGase F 

cleaves the link between asparagine and N-acetylglucosamines, thereby 

releasing N-linked oligosaccharides. When protein lysates were treated with O-

glycosidase or calf intestinal alkaline phosphatase (CIP), no change was 

observed in the band pattern for Creld2 (Fig. 4-21c). Therefore, I conclude that 

Creld2 is an N-glycosylated protein.  

 

 

Fig. 4-21 Characteristics of Creld2 protein. (a) Creld2 binds to Ca2+ as 

visualized by a native gel shift assay. (b) 2D-PAGE of a stomach protein lysate. 

The presence of native Creld2 in protein complexes before the second 

dimension is indicated by red boxes. (c) Analysis of post-translational 

modifications of Creld2. P+O: combined treatment of PNGase F and O-

glycosidase. CIP: calf intestinal alkaline phosphatase.    

 

 

Creld2 expression has been described to be induced by ER stress9,38. In murine 

Neuro2a cells, addition of thapsigargin (Tg) increased Creld2 expression 3- to 

4-fold after 4 or 8 hours, respectively9,38. Moreover, overexpression of ATF6, 

which represents one of the three axes of the UPR, induced Creld2 expression9. 
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To verify these results and analyze Creld2 function, ER stress was induced with 

Tg in NIH3T3 cells and Creld2 mRNA expression was quantified (Fig. 4-22a). 

Upregulation of Chop and Grp78 served as a positive control for ER stress84, 

Creld1 was used as a negative control (Fig. 4-22a). Creld2 mRNA expression in 

NIH3T3 cells increased 20-fold after 4 hours and over 30-fold after 8 and 24 

hours treatment with Tg (Fig. 4-22a). Consequently, Creld2 protein levels also 

increased upon Tg treatment (Fig. 4-22b). 

 

 

Fig. 4-22 Creld2 is upregulated upon ER stress. (a) qRT-PCR analysis of 

NIH3T3 cells treated with 1 µM Tg for different time periods to induce ER stress. 

Creld2 induction occurs already after 2 hours and increases with time. Data are 

presented as mean ± SD; n = 3. (b) Protein lysates of cells used in (a) were 

analyzed by Western blotting using a Creld2-specific antibody. In line with the 

increase in mRNA expression, also Creld2 protein levels increased over time.  
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To examine, whether increased Creld2 expression affects the UPR, Creld2 was 

overexpressed in NIH3T3 cells. 24 hours after transfection, an increase in 

Creld2 protein expression could be detected (Fig. 4-23b). However, markers for 

UPR were not upregulated (Fig. 4-23a). Only after 48 hours, when Creld2 

expression was still high, splicing of Xbp1 (sXbp1) was augmented and 

expression of Chop and Gadd34 were increased (Fig. 4-23a). Atf6 expression 

was unchanged. Grp78 was slightly downregulated on the transcriptional level, 

but protein levels remained similar compared to untransfected cells (Fig. 4-23b). 

 

 

Fig. 4-23 Creld2 overexpression in NIH3T3 cells. (a) qRT-PCR analysis of 

NIH3T3 cells transfected with Creld2 for different time periods. After 48 hours, 

expression of Chop and Gadd34 is increased and splicing of Xbp1 (sXbp1) is 

augmented. Data are presented as mean ± SD; n = 2. (b) Protein lysates of 

cells used in (a) were analyzed by Western blotting using antibodies against 

Creld2 and Grp78. 
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5 Discussion 

 

In my PhD thesis, I investigated the physiological function of the two members 

that belong to the murine Creld protein-family: Creld1 and Creld2. Using 

knockout mice for both genes, I investigated their function in murine 

development. Interestingly, even though Creld1 and Creld2 proteins share 

many of their domain structures, they fulfill different physiological functions in 

vivo. 

 

5.1 Creld1 

 

5.1.1 Creld1 regulates heart valve development 

My data revealed that Creld1 plays an important role during embryonic 

development. Creld1KO embryos die at embryonic day E11.5, because they fail 

to undergo normal cardiac development. At E11.0, the wildtype embryos 

already show a four-chambered heart, whereas, the mutants display only one 

common atrium. This arrest in heart developmental is mainly due to the lack of 

endocardial cushion formation and remodeling.  

Endocardial cushions are the precursors of the heart valves, which are critical 

for heart septation, and thereby for the formation of the four-chambered heart. 

This mechanism is tightly regulated by several pathways, epigenetic regulators, 

and cell adhesion/migration molecules that are sequentially activated17,35. 

Formation of the heart valves is initiated by the delamination of endocardial 

cells within the endocardial cushion. This process, termed EMT, is triggered by 

the first wave of calcineurin/NFAT signaling: myocardial NFATc2/3/4 repress the 

EMT inhibitor VEGF. After the EMT, the second wave of calcineurin/NFAT 

signaling occurs: NFATc1 is activated in the endocardium and promotes 

proliferation to support endocardial growth needed for cushion elongation and 

remodeling17,35.  

EMT in Creld1KO hearts is normal, indicating that lack of Creld1 does not affect 

calcineurin/NFATc2/3/4 signaling. However, hearts from Creld1KO embryos 
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display a diminished number of mesenchymal cells in the cardiac jelly of the 

AVC due to lack of proliferation. There are different factors known that are 

important for endocardial and mesenchymal proliferation during heart valve 

formation, like Gata485, Smad486, and Wnt287. Loss of these factors is not only 

associated with diminished proliferation, but additionally with a defect in EMT85–

87. However, loss of NFATc1 leads to decreased proliferation, but EMT is normal88, 

resembling the Creld1KO phenotype. At E10.5, when NFATc1 is normally 

recruited to the nucleus31, endocardial and mesenchymal cells in Creld1KO 

hearts showed a lack of proliferation. NFATc1 failed to translocate to the nucleus 

in the absence of Creld1. This resulted in the reduced transcriptional activity of 

NFATc1 in the heart of Creld1KO embryos. Thus, my data suggest that Creld1 is 

an upstream regulator of NFATc1 in the endocardium and that it controls 

proliferation in the cells of the AVC. In the absence of Creld1, NFATc1 signaling 

fails, preventing normal heart development in Creld1KO embryos. This results 

in a decrease of cardiac output as seen in the reduction of heart-beat frequency. 

Therefore, the heart is not able to maintain the blood circulation, leading to 

hypoxia. Consequently, not only the heart but also the whole Creld1KO embryo 

arrested in development. Eventually, Creld1KO embryos died at E11.5 due to 

heart failure. 

                       

5.1.2  Creld1 regulates NFATc1 activation via calcineurin 

With respect to Creld1 function, the main question is how Creld1 controls the 

activation of NFATc1. NFATc1 is expressed in the endocardium of the AVC at 

E10.5, where it is activated through dephosphorylation by calcineurin32,67,68,89. 

Therefore, we hypothesized that Creld1 activates NFATc1 through controlling 

the function of calcineurin. This hypothesis was underlined by a yeast-2-hybrid 

screen in D. melanogaster, where dCRELD was found to be a potential 

interaction partner of the calcineurin regulatory subunit CnB73. Indeed, I could 

show that murine Creld1 interacts with CnB. Through this interaction, it 

regulates calcineurin function and promotes translocation of NFATc1 into the 

nucleus.  
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In future studies it would be of interest to investigate if CnA is needed for the 

interaction between CnB and Creld1 or if it is even the primary binding site for 

Creld1. So far, there are two CnA docking sites described for calcineurin 

interactors and substrates: PxIxIT and LxVP90. Creld1 does not possess either 

of these consensus sequences. However, there are calcineurin interactors such 

as RCANs that show substitutions for three residues of the PxIxIT motif 

(PSVVVH) and still display a strong binding to calcineurin37,91,92. Thus, the 

mapping of binding sites for calcineurin, especially in the WE domain of Creld1 

should be performed in the future (see 4.2.1).   

When Creld1 was described for the first time, it was reported to be a plasma-

membrane protein with its functional domains facing the extracellular space1. 

This prediction was made according to other transmembrane proteins with EGF-

like and cbEGF-like domains, such as selectins and fibrillins2,7. However, no 

experimental data was reported to support this conclusion.  

My data suggest that Creld1 is rather localized at the ER and not at the plasma 

membrane. A fluorescence protease protection (FPP) assay underlined the 

localization at the ER and demonstrated that both the N and C terminus of 

Creld1 are facing the cytoplasm. This topology and localization provides the 

basis for the interaction with CnB through at least one of the cytoplasmic 

domains. The requirement of Creld1 localization at the ER membrane is further 

underlined by results from the Creld1ΔTM mutant: deletion of the 

transmembrane domains leads to a broad distribution of Creld1 throughout the 

cell, which is accompanied by a decreased NFATc1 activation. Therefore, ER-

resident Creld1 is important for calcineurin activity. The function of the 

regulatory CnB subunit is directly controlled by Ca2+ binding93. Calcineurin has 

been found to localize in ER-microdomains, where proteins are exposed to high 

Ca2+ concentrations94. My in vitro results hint to a model, in which Creld1 

serves as an anchor for localizing calcineurin to the ER, where it experiences 

high local Ca2+ concentrations and becomes activated (Fig. 5-1). Creld1 could 

serve as a Ca2+ sensor, which measures Ca2+ release from the ER. This could 

trigger the recruitment of calcineurin to locally high Ca2+ concentrations at the 

ER membrane. A similar mechanism has been shown for calcineurin in skeletal 

muscle. Here, FKBP12 interacts via FK506 indirectly with calcineurin in a Ca2+-
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dependent manner. FKBP12 is an accessory subunit of a Ca2+-release channel, 

the ryanodine receptor (RyR). Thus, interaction with FKBP12 brings calcineurin 

close to the Ca2+-release site95. However, the interaction between Creld1 and 

calcineurin could also be independent of Ca2+ release from the ER. Creld1 could 

serve as a stabilizing and activating component of the calcineurin complex by 

tethering the proteins to the ER membrane. 

 

 

Fig. 5-1 Creld1 function in the calcineurin/NFATc1 signaling pathway. 

After delamination into the cardiac jelly, endocardial cells of the AVC mature 

into mesenchymal cells. During this process endocardial cells undergo 

calcineurin/NFATc1 dependent proliferation. In detail, Creld1 is located at the 

ER membrane, where it interacts with the regulatory subunit of calcineurin 

(CnB), thereby, promoting dephosphorylation of NFATc1 by the catalytic subunit 

of calcineurin (CnA). Translocation of dephosphorylated NFATc1 to the nucleus 

leads to the transcription of NFATc1 target genes, and thus, to proliferation in 

the AVC. AVC: atrioventricular cushion, ER: endoplasmic reticulum, ERM: 

endoplasmic reticulum membrane, NM: nuclear membrane, PM: plasma 

membrane. 
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5.1.3  The WE domain is important for regulation of calcineurin 

Instead of serving solely as an anchor for calcineurin at the ER and facilitating 

its activation by Ca2+, Creld1 might as well have a functional domain for the 

positive regulation of calcineurin/NFAT signaling. So far, only the RCAN family 

has been described to positively, but also negatively regulate calcineurin96–98. 

Whether RCANs exert their regulative activity by inhibiting or facilitating 

calcineurin function is dependent on their phosphorylation status90,99. The 

inhibitory action of unphosphorylated RCAN on calcineurin/NFAT signaling is not 

only due to the phosphatase activity inhibition, but also due to the competition 

between NFAT and RCAN for binding to the same residues on calcineurin36,37. 

However, the molecular mechanism by which calcineurin/NFAT signaling is 

facilitated after phosphorylation of RCAN remains unclear99.  

In order to analyze, which Creld1 domain is important for the regulation of 

calcineurin/NFATc1 signaling, various deletions and point mutations were 

introduced into the protein. These mutants were analyzed in the NFATc1 

translocation and the luciferase activity assay. This approach enabled the 

analysis of both, the calcineurin phosphatase and NFATc1 activity, respectively.  

Deletion of the highly conserved nonapeptide (Creld1ΔWE) and the point 

mutation in the WE domain (R107H) diminished NFATc1 translocation and 

activation. This indicates that this unique domain, which is only found in 

members of the Creld protein-family is important for calcineurin regulation. To 

investigate whether the WE domain directly interacts with calcineurin it would 

be necessary to examine if the Creld1ΔWE or Creld1R107H still co-

immunoprecipitate with CnB. However, also the EGF-like and cbEGF-like 

domains might be involved in calcineurin regulation (see 4.3). As mentioned 

above, a detailed mapping of the calcineurin binding-site in the Creld1 protein 

sequence is required. To analyze whether calcineurin phosphatase activity is 

directly dependent on Creld1, a calcineurin activity assay could be performed. 

This could be either done with protein lysates of whole Creld1KO embryos, 

provided the fact that Creld1 is not only regulating calcineurin in the 

endocardium, or with protein lysates from cells overexpressing the full length 

protein of Creld1. The latter should lead to an increased activity as suggested 

by the augmented NFATc1 translocation.   
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5.1.4  Creld1 in the nucleus 

Interestingly, deleting either the EGF-like or the cbEGF-like domains did not 

affect the translocation of NFATc1 to the nucleus. This indicates that both 

domains are not crucial for Creld1 to control calcineurin activity. However, both 

deletion mutations decreased NFAT-dependent luciferase activity, demonstrating 

that NFATc1 activation was diminished. These data support the idea of Creld1 

not only controlling calcineurin function in the cytosol, but also fulfilling a role in 

the nucleus by directly regulating the activity of NFATc1 as a transcription factor. 

But being a transmembrane protein at the ER, how can Creld1 exhibit a role in 

the nucleus? One possibility would be that a part of the protein, containing the 

EGF-like and cbEGF-like domains, is cleaved off and enters the nucleus through 

an import mechanism. Evidence for Creld1 being truncated was revealed by 

Western-blot analyses of protein lysates from adult tissues. Here, the Creld1-

specific antibody recognized smaller proteins between 25 and 37 kDa in size. 

Whether these are indeed truncated variants of Creld1 protein has yet to be 

analyzed in the conditional Creld1KO, when embryonic lethality is circumvented 

by a tissue specific knockout. An additional way to determine the identity of 

these bands is by mass spectrometry.  

Creld1 could also regulate NFATc1 activity in the nucleus, when it is localized in 

the nucleoplasmic reticulum (NR, Fig. 5-2). The NR is formed by a complex 

network of nuclear invaginations of the ER100. Here, Creld1 as an ER 

transmembrane protein could enter the nucleus through the nuclear pore, 

thereby promoting NFATc1 activity in the nucleus.  

 

Fig. 5-2 Creld1 expression in the nucleoplasmic reticulum. Heterologous 

expression of Creld1-GFP in NIH3T3 cells (A) stained with a Creld1-specific 

antibody (B). Arrows indicate nuclear invaginations of the ER. Scale bar 

represents 10 µm. 
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5.1.5  The role of human CRELD1 in AVSD 

The human CRELD1 has been identified as a risk gene factor for atrioventricular 

septal defects (AVSD)11,12, a prevalent heart disease, occurring in about 5 % of 

all recognized congenital heart diseases.  

It has been proposed that CRELD1 mutations predispose the human Down 

syndrome (DS) patients to AVSD12,101,102. Another gene that has been 

associated with AVSD in DS patients is the RCAN1 gene, which is encoded on 

the human chromosome 21. During cardiac development, Rcan1 is also 

expressed in the endocardium of the developing heart valves and its expression 

is dependent on NFATc1 function69. The DS patients contain three copies of 

chromosome 21, which increases the levels of RCAN1 up to 1.5-fold. In line 

with this finding, in a murine DS model, augmented Rcan1 expression reduces 

calcineurin activity, and thereby impairs activation of NFATc1103.  

The phenotype observed in our Creld1KO mouse model supports the idea of 

CRELD1 contributing to the dysfunction of NFATc1 in DS patients, who are more 

susceptible to AVSD if the CRELD1 function is impaired.  

Indeed, mutations that have been identified in the human CRELD1 locus 

diminish the action of Creld1 on calcineurin/NFATc1 signaling. Beside the 

mutation in the WE domain (R107H), one other mutation in the cbEGF-like 

domain (R329C) caused a decrease of NFATc1 translocation and activity. This 

mutation probably results in a misfolded protein, because it affects the 

formation of the characteristic disulfide bonds of the cbEGF-like domain11. 

Although a major impact of the other mutations on calcineurin/NFATc1 signaling 

in vitro could not be observed, it cannot be excluded that they affect NFATc1 

activity in vivo. Creld1 undergoes posttranslational modifications, such as 

phosphorylation, and N- and O-glycosylation (not shown). Moreover, cbEGF-like 

domains contain amino acids that need to be β-hydroxylated and fucosylated 

for proper Ca2+ binding104. However, none of the mutated amino acids is 

predicted to be modified in the Creld1 protein. It is most likely that the 

mutations lead to an allosteric change of the Creld1 protein structure, which 

hinders activation by an upstream stimulus. In case of the calcineurin/NFATc1 

signaling pathway, this stimulus could be VEGF66. VEGF binding could e.g. 

promote phosphorylation of Creld1 and only then Creld1 would be activated. In 



Discussion

 
 

89 
 

vivo, NFATc1 activation would be affected by a lack of Creld1 activation. In cell 

culture, however, this effect is probably overcome by an excess of Creld1 

protein when heterologously expressed.  

In order to analyze the effects of Creld1 mutations on heart development in 

more detail in vivo, knock-in mouse models could be generated, containing 

individual mutations that are found in AVSD patients. This will allow elucidating, 

why mutations in CRELD1 increase the risk of developing heart defects. 

 

5.1.6  Creld1 – part of other signaling pathways? 

Creld1KO mice die at E11.5, two to three days earlier than mice with 

endocardial-specific deletion of calcineurin32 or NFATc188, which die between 

E13.5-14.5. As Creld1 is also expressed in the myocardium, it might have 

additional functions, which could explain the earlier lethality. From E9.0 on, the 

formation of the AVC is initialized by NFATc2/3/4 in the myocardium, where 

they are activated by calcineurin17. Thus, Creld1 could also regulate calcineurin 

function in the myocardium, thereby controlling activity of NFATc2/3/4. However, 

preliminary data suggest that Creld1 predominantly controls the function of 

NFATc1 and to a barely low extent the function of NFATc2 (personal 

communication with D. Wachten). Moreover, EMT and the migration of 

mesenchymal cells requried to form the AVC is unaffected in Creld1KO embryos, 

indicating that calcineurin/NFATc2/3/4 signaling is not controlled by Creld1. 

Thus, it would be of great interest to analyze a myocardium-specific conditional 

knockout of Creld1 to investigate its function in this tissue. 

 

Taken together, this study identifies Creld1 as a new regulator of 

calcineurin/NFATc1 signaling using in vivo and in vitro analyses, providing a 

new key player in heart-valve formation. 

  



Discussion

 
 

90 
 

5.2 Creld2 is a new key player of the UPR 

 

Analysis of Creld2KO mice suggests that Creld2 expression is not only induced 

upon ER stress, but that it belongs to one of the three axes of the UPR. Its 

molecular function is probably important to maintain or restore healthy cell 

homeostasis under or after stress conditions. This idea is supported by my 

results, showing that only the aging as an additive effect on the mutant 

background led to liver steatosis in Creld2KO animals.  

This resembles the phenotype of Atf6α knockout mutants. They show no 

phenotype under unchallenged conditions. But when they are injected with the 

ER-stress inducing agent tunicamycin (Tm), the animals display persistent ER 

stress in liver and kidneys105. To support this hypothesis, young Creld2KO could 

be stimulated with Tm in order to induce ER stress. If the resulting phenotype 

would be similar to Atf6α-null mice, it would support the idea of Creld2 playing 

are role during UPR.  

This model is further supported by the fact that Creld2 overexpression is 

sufficient to induce the transcription of Gadd34 and Chop. These are genes 

known to be induced during UPR by Perk activation40, suggesting an activation 

of Perk through Creld2. The augmented splicing of Xbp1 upon increased Creld2 

protein-levels indicates that Ire1 is also activated by Creld2.  

Upon enhanced Creld2 protein levels, there is no increase of Grp78 expression, 

which is the marker for broad ER stress. Therefore, the effects on Gadd34 and 

Chop expression are not due to a Creld2-protein overload of the ER, but they 

are Creld2 dependent. Moreover, Atf6α expression remains unaffected upon 

high Creld2 levels, underlining a selective regulation of a subset of UPR gene 

expression by Creld2. 

It is noteworthy that Creld2 has been shown to possess an ER-stress response 

element (ERSE) in its promoter, which is the recognition sequence for Atf6α9. 

This in vitro study supports the idea of Creld2 being a downstream target of 

Atf6α, which then induces the activity of both the Perk and Ire1 pathways. 

Creld2 could be a ‘cross-link’ between the three axes of the UPR, enabling the 

additive activation of Perk and Ire1 in an Atf6α-dependent manner. The 
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following data support this model: after injection of Tm, the Perk-dependent 

phosphorylation of eIF2α remains as under unstressed conditions in Atf6α-null 

animals105. Therefore, there should be signaling events in the Atf6α axis that 

promote activation of Perk. Creld2 could be one of these signaling proteins. To 

strengthen this hypothesis, it would be necessary to perform stress-inducing 

experiments with Creld2KO animals and analyze the phosphorylation status of 

eIF2α and splicing of Xbp1 in the liver.  

Taking the expression data into account, Creld2 is most likely expressed in all 

cells, at least at a very low level. Only during an UPR, cells might increase 

Creld2 expression via Atf6α. Highly secretory cells of organs such as the 

pancreas and salivary gland are known to undergo permanent ER stress106. The 

ER protein load is quite high in these cells during secretion, which is why they 

depend on UPR. Other cells that undergo large fluctuations in ER protein load 

are cells of the immune system39. Here, Creld2 is also highly expressed, hinting 

to a rather universal function during UPR. Hence, Creld2 could maintain chronic 

ER stress in cells that need a high ER capacity, without resulting in a 

maladaptive response and apoptosis43. In line with this hypothesis, only 

prolonged heterologous expression of Creld2 over more than 24 hours induced 

the expression of Chop, Gadd34, and sXbp1. 

Interestingly, all analyzed Creld2KO cells of the spleen and thymus had the 

same or even lower intensity of the GFP signal as the heterozygous animals. 

These results hint towards a tissue-specific enhancer within the ORF of Creld2. 

Possibly, regulating elements such as non-coding RNA (ncRNA) are located in 

the introns, which, however are replaced by GFP in the knockout mouse. Thus, 

analysis of the enhancer elements located not only in the promoter region, but 

also in the ORF should be taken into account when planning the generation of a 

conditional Creld2KO mouse line.  

Certainly, further analyses are needed to investigate Creld2 function during ER 

stress. A good model for that would be the induction of ER stress in Creld2KO 

animals and also usage of Creld2KO mouse embryonic fibroblasts (MEFs) as a 

model system. Moreover, with this in vitro tool at hand, the impact of Creld2 

secretion10 could be analyzed. It would be important to know under what 

conditions cells would take up Creld2, which can be easily analyzed with 
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Creld2KO MEFs.  

Taken together, Creld2 is a promising candidate for playing a key role in the 

UPR.  
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6 Summary 

In my thesis, I investigated the physiological function of the two members that 

belong to the murine Cysteine-rich with EGF-like domain (Creld) family: Creld1 

and Creld2.  

 

Using Creld1 knockout-mice (Creld1KO), Creld1 was identified as an important 

regulator of the calcineurin/nuclear factor of activated T-cells c1 (NFATc1) 

signaling pathway during heart valve formation. Creld1KO embryos die at 

embryonic day E11.5 due to cardiac dysfunction. At E10.5, Creld1KO embryos 

display defects in the formation of the atrioventricular cushion, the precursor of 

the heart valve. Heart-valve formation crucially relies on the 

calcineurin/NFATc1 signaling cascade. My results showed that in the Creld1KO 

endocardium, from where the heart valves originate, nuclear translocation of 

NFATc1 is impaired. This results in a decrease of NFATc1 target-gene 

expression thereby, proliferation within the atrioventricular cushions is 

impaired. I could demonstrate that Creld1 directly interacts with calcineurin B, 

the regulatory subunit of calcineurin, thus controlling NFATc1 translocation to 

the nucleus. In a heterologous system, expression of Creld1 is sufficient to 

endorse NFATc1 translocation to the nucleus. Sequential deletion of the 

different functional domains or the introduction of various point mutations 

indicate that the conserved WE domain of Creld1 is important for regulating the 

calcineurin phosphatase activity.  

 

To analyze the physiological function of Creld2, Creld2 knockout-mice 

(Creld2KO) were generated. Young Creld2KO mice do not show any gross 

phenotype. However, one year old animals show indications of liver steatosis. A 

gene-expression study of liver tissue indicates that regulators of the lipid 

metabolism, especially the β-oxidation, are downregulated in Creld2KO mice. 

This resembles the phenotype shown by activating transcription factor 6 (Atf6) 

knockout mice, which have been exposed to chronic ER stress. Creld2 

expression is upregulated upon ER stress, which is known to be possible via 

Atf6. My results indicate that Creld2 plays an essential role during ER-stress 

conditions. Thereby, Creld2KO liver cells cannot cope with the given ER stress 

over time, resulting in liver steatosis. 
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