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Abstract

In the last decade, there has been increasing interest in the fields of ran-
dom matrices, interacting particle systems, stochastic growth models,
and the connections between these areas. For instance, several objects
that appear in the limit of large matrices also arise in the long-time limit
for interacting particles and growth models. Examples of these are the
famous Tracy-Widom distribution function and the Airy, process.

The objectives of this thesis are threefold: First, we discuss known rela-
tions between random matrices and some models in the Kardar-Parisi-
Zhang universality class, namely the polynuclear growth model and the
totally/partially asymmetric simple exclusion processes. For these mod-
els, in the limit of large time ¢, universality of fluctuations has been
previously obtained. We consider the convergence to the limiting distri-
butions and determine the (non-universal) first order corrections, which
turn out to be a non-random shift of order ¢+~/3. Subtracting this de-
terministic correction, the convergence is then of order ¢t=2/3. We also
determine the strength of asymmetry in the exclusion process for which
the shift is zero and discuss to what extend the discreteness of the model
has an effect on the fitting functions.

Second, we focus on the Gaussian Unitary Ensemble and its relation to
the totally asymmetric simple exclusion process and discuss the appear-
ance of the Tracy-Widom distribution in the two models. For this, we
consider extensions of these systems to triangular arrays of interlacing
points, the so-called Gelfand-Tsetlin patterns. We show that the cor-
relation functions for the eigenvalues of the matrix minors for complex
Dyson’s Brownian motion have, when restricted to increasing times and
decreasing matrix dimensions, the same correlation kernel as in the ex-
tended interacting particle system under diffusion scaling limit. We also
analyze the analogous question for a diffusion on complex sample co-
variance matrices.

Finally, we consider the minor process of Hermitian matrix diffusions
with constant diagonal drifts. At any given time, this process is deter-
minantal and we provide an explicit expression for its correlation ker-
nel. This is a measure on Gelfand-Tsetlin patterns that also appears in
a generalization of Warren’s process, in which Brownian motions have
level-dependent drifts. We will also show that this process arises in a
diffusion scaling limit from the interacting particle system on Gelfand-
Tsetlin patterns with level-dependent jump rates.

vii






Contents

2.1.

2.2.

2.3.

3.1.

3.2

3.3.

4.1.

4.2.

Introduction

Tracy-Widom universality

Edge universality of random matrices . . . . .
2.1.1.  One-point distribution . . . . . . . ..
2.1.2. Dyson’s Brownian motion . . . . . ..
Kardar-Parisi-Zhang universality . . . . . . . .
2.2.1. Polynuclear growth . . . . . ... ...
2.2.2. Continuous time TASEP . . . . . . ..
223. KPZequation ... ...........
Limits of universality . . . . . ... ... ...
2.3.1. GOE diffusion and Airy, process . . .
2.3.2. Speed of convergence . .. ... ...

At the interface between GUE and TASEP

Determinantal point processes . . . . . .. ..
3.1.1. Correlation functions and kernels . . .
3.1.2. Hermite kernel . .. ... .......
3.1.3. Airy processes and spatial persistence .
Extended kernels . . . . .. .. ... ... ..
3.2.1. Diffusion on GUE matrices . .. . ..
3.2.2. GUE minor process . . . . . ... ...
3.2.3. Evolution on space-like paths . . . . .
Connecting TASEPand GUE . . . . . . .. ..
3.3.1. Dynamics on interlaced particle systems
3.3.2. Interlacing and drifts . . . . . ... ..

Finite time corrections

Strategy and effects of the discreteness . . . . .
4.1.1. On the fitting functions . . . . . . . ..
4.1.2. Onthemoments ... .........
4.1.3. How to fit the experimental data . . . .
PNGand TASEP . .. ... ... ... ....
42.1. FlatPNG .. ... ... ........
42.2. PNGdroplet . ... ..........
4.2.3. TASEP with alternating initial condition

23
23
23
25
27
29
29
31
33
36
36
39

43
43
43
46
47
48
48
49
51

X



Contents

4.2.4. TASEP with step initial condition . . . . . ... ... ... ... .. 53

43. PASEP . . . . e 56
4.4. Discrete sums versus integrals . . . . . .. ... L oL 62

5. Random matrices and space-like paths 65
5.1. Evolutionof GUEminors . . . . . . . . .. ... ... ... . ........ 65
5.2. Evolution on Wishart minors . . . . . . . . . .. ... ... ......... 69
5.3. Markov property on space-likepaths . . . . . .. .. ... ... 74
5.3.1. Diffusionon GUEminors . . ... ... ... ... ......... 74

5.3.2. Diffusion on Wishart minors . . . . . . . . ... ... ... .. ... 76

6. Perturbed GUE Minor Process and Warren’s Process with Drifts 79
6.1. GUE minor process withdrift. . . . . ... ... ... ... ... ... 79
6.1.1. Modelandmeasure . . . . . . . .. .. ... ... ... 79

6.1.2. Correlation functions . . . . . . . . ... ..o 82

6.1.3. Perturbed GUE matrices . . . . . .. ... ... ... ........ 83

6.2. 2+ 1 dynamics with different jumprates. . . . . . . . ... ... ... ... 86
6.3. Warren’s process withdrifts . . . .. . ... ... .. 0oL 92

A. Appendix 97
A.1. Spatial persistence for the Airy processes . . . . . . . .. .. .. ... ... 97
A.2. Determinantal correlations . . . . . . . ... ... oL 99
A.3. Space-like determinantal correlations . . . . . . . ... ... ... 100
A.4. g-Pochhammer symbols, g-hypergeometric functions . . . . . ... ... .. 103
A.5. Hermite polynomials . . . . . ... .. .. ... ... 104
A.6. Laguerre polynomials . . . . . . . . .. .. . L o 104
A.7. Harish-Chandra/ltzykson-Zuber formulas . . . . . .. .. .. .. ... ... 105



1. Introduction

One of the most famous results in probability theory is the central limit theorem in which one
considers the sum of independent and identically distributed random variables with finite vari-
ances. This theorem tells us that if we center the variables and divide them by the square root
of the sample size, then the sum of these rescaled variables will be approximately normally
distributed. The remarkable feature is that the appearance of the Gaussian distribution does
not depend on the distribution of the random variables that we started with. In this sense,
the normal distribution is universal and this is also the reason why the Gaussian distribution
plays such a prominent role in probability theory, and more generally speaking in applied
mathematics and physics.

Even if a large part of modern stochastics are based on this Gaussian universality, there is
another universality class that has been investigated starting at the end of the 90s. To introduce
this class, we consider the following example. Suppose that we are on an airfield and there are
n passengers boarding an airplane. For simplicity, let us assume that there is only one single
seat in each of the n rows of the airplane and that each passenger needs one minute to stow
his hand baggage and sit down. We are interested in the boarding time %, i.e., the time it
takes until all passengers are seated. If the travelers are queuing in the same order as the order
of their seats, then the boarding time is minimal. However, this is usually not the case and
passengers with rear seats are blocked by travelers with front seats, i. e., they have to wait until
the others have organized their luggage. Supposing that the order of the passengers is random,
we consider the uniform distribution on the symmetric group of n symbols. The boarding
time ¢,, is then a random variable and corresponds to the length of the longest increasing
subsequence of a given permutation. Asymptotically, the expected value of ¢,, behaves like
2y/n for large n. By the law of large numbers, it seems thus reasonable that the fluctuations
around the deterministic mean cancel each other out as n grows. To study these fluctuations
around the expected value, we consider ¢,, — 2,/n and scale this variable not by n='/2 as in
the central limit theorem, but by n~16. In a seminal work published in 1999, Baik, Deift, and
Johansson [7] showed that as n tends to infinity, this rescaled random variable is not Gaussian
as one might expect, but the distribution is different. Actually, the distribution was known
from random matrix theory where Tracy and Widom [99] had identified it in the mid 90s as
describing the fluctuations of the largest eigenvalues of Hermitian Gaussian matrices when the
matrix size becomes large.

Soon after, Johansson [57] related the problem of the longest increasing subsequence of a ran-
dom permutation to the totally asymmetric simple exlusion process (TASEP) in which he also
discovered the Tracy-Widom distribution. This was the starting point for a lot of research ac-
tivities in this field located at the intersection between random matrices and interacting particle



1. Introduction

systems. Indeed, the totally asymmetric simple exclusion process is seen as belonging to the
Kardar-Parisi-Zhang (KPZ) class of stochastic growth models and in the years following Jo-
hansson’s breakthrough, it turned out that the Tracy-Widom distribution describes the limiting
fluctuations in many other models from the KPZ class. The same is true for random matrices
for which it was shown during the last 15 years that this probability law governs the fluctu-
ations of the largest eigenvalues for a large class of random matrices. This means that both
KPZ models and random matrices show the same limit distribution which distinguishes them
from the Gaussian limiting behavior in classical probability theory. Moreover, it seems that
the appearance of the Tracy-Widom distribution is somehow characteristic for a large class of
random matrices and growth models, and for that reason this phenomenon is often referred to
as Tracy-Widom universality.

It is surprising that precisely these two groups, the class of KPZ growth models and the class
of random matrices, are related in the way that they share a common feature that is different
from the rest of the probabilistic world although a direct connection between these classes
is not evident. At least, there is no known one-to-one correspondence that would allow us
to translate results from the world of random matrices to the world of KPZ models or vice
versa. The present thesis provides some partial explanation why the Tracy-Widom distri-
bution shows up in both kinds of models. Throughout this work, we will mainly focus on
continuous time TASEP as a representative of the KPZ class and on the Gaussian Unitary En-
semble (GUE) which is the standard model from random matrix theory. These two specific
models can be extended in such a way that they both live on the same pattern of interlacing
points, the Gelfand-Tsetlin cone. This is a triangular array consisting of a fixed number N
of levels, with n particles at each level 1 < n < N, subject to an interlacing condition. The
Gelfand-Tsetlin cone is a deep and rather hidden structure from which we can recover each
model by an appropriate projection. We will show that on this set, along certain projections,
the generalized random matrix model can be obtained as the diffusion scaling limit of the gen-
eralized interlacing particle system. The method that we use to compute the relevant quantities
is not limited to the Gaussian unitary ensemble, but also applies to another model. Moreover,
this connection can be generalized by adding a deterministic diagonal matrix to our random
matrix model living on the the interlacing structure. As we will show, these drifts are inherited
from the corresponding system of interacting particles where they appear as jump rates on the
different levels of the Gelfand-Tsetlin cone.

The thesis is organized as follows: The first two chapters present a very rough overview of
the state of the art and give the context in which Results 1 to 13 are embedded, while the
remaining chapters provide the proofs of these results. They are based on the research articles
[45—-48] that the author of this thesis published in collaboration with his adviser Prof. Dr. Patrik
L. Ferrari of Bonn University.

In Chapter 2, we introduce the Gaussian Unitary and the Gaussian Orthogonal Ensembles
and explain that the Tracy-Widom distribution appears in the study of the fluctuations of the
largest eigenvalue. In view of universality, we present how this behavior extends to other
matrix ensembles and also to multi-point distributions. Then we turn towards the KPZ models,
and after characterizing this class, we define the polynuclear growth and the continuous time



TASEP as being typical models in the KPZ class and thus being governed by the Tracy-Widom
law. Finally, we explain where this universality ends and state Results 1 to 4 about the speed of
convergence to the Tracy-Widom distribution and give finite time correction for KPZ models.
We will prove these results in Chapter 4.

In Chapter 3 we present the notions of random point processes and determinantal correlation
functions. This gives us the framework we need in order to study the correlations of the GUE
eigenvalues’ point process and to define the Airy processes. A small side note about survival
probabilities of these objects allows us to come to Results 5 and 6 on spatial persistence for
the Airy processes which will be proven in Appendix A.1. Then, we generalize the process
on GUE eigenvalues to processes on the corresponding minors and in time, and discuss how
we can combine these two evolution types to a process on space-like paths. This Markov
process (Result 7) has determinantal correlations (Result 8) and this property along space-like
paths also holds for complex Wishart matrices (Results 9 and 10); we will prove these theo-
rems in Chapter 5. In the last part of Chapter 3, we connect these results with an interacting
particle model model in 2 + 1 dimensions that has been introduced by Borodin and Ferrari
and give some hints why the Tracy-Widom distribution shows up in both GUE and TASEP.
As mentioned before, this link is still there if we generalize our models to perturbed GUE
minors (Result 11) and interacting particles in 2 + 1 dimensions on Gelfand-Tsetlin patterns
with level-dependent jump rates (Result 12). The measure that we study can be observed in a
system of interlacing Brownian motions, Warren’s process with drifts (Result 13). The proofs
for these last results can be found in Chapter 6.

Chapter 4 is based on [47], Chapter 5 on [46], Chapter 6 on [45], and Appendix A.1 is taken
from [48].






2. Tracy-Widom universality

2.1. Edge universality of random matrices

2.1.1. One-point distribution

An N x N Wigner matrix is a complex Hermitian or real symmetric matrix H = [H;j|1<; j<n
where the upper-triangular entries H;;, 1 < 7+ < j < N, are independent and identically
distributed complex or real random variables with mean zero and unit variance, and the di-
agonal entries H;;, 1 < ¢ < N, are independent and identically distributed real variables,
independent of the upper-triangular entries, with bounded mean and variance. Such a Hermi-
tian or symmetric matrix A has NV real eigenvalues which we denote in increasing order by
A1 < Ay -+ < Ay. Consider the empirical spectral distribution j of the eigenvalues,

BN = N Zékk/\/ﬁ
k=1

for large N. Note that the scaling LNH i1s somehow natural since it ensures the variance to
be of order 1. Wigner’s famous semicircle law tells us that 1 converges almost surely to the
semicircle distribution g,

pse(dx) \/ 4 —2?), dx.

We thus expect the largest eigenvalues Ay of H to be around 2v/N for large N. Let us focus
on the fluctuations of Ay around its deterministic limit. For small ¢ > 0, the number of
eigenvalues in the interval [2v/N — ¢, 2v/N] is roughly

3

#{I<E<N:M>2VN-c}m — / Vi —22de ~ — ¥2NVA
2—e/vV/N

Thus, if we want this quantity to be of order 1, we should choose ¢ = O(N —1/ 6), and the
fluctuations around 2v/N are then given by

>\N ~ 2\/N+N71/6C,

where the distribution of the random variable ( has still to be determined.
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Gaussian Unitary Ensemble

The first Wigner matrices for which this distribution has been identified were the Gaussian
Hermitian matrices, the so called Gaussian Unitary Ensemble (GUE). More precisely, the
diagonal entries H;;, 1 < 7,7 < N are independent, centered Gaussian variables with unit
variance, and the upper-triangular entries H;;, 1 < ¢ < j < N, have independent real and
imaginary parts that are centered Gaussian variables with variance % Equivalently, the GUE
can be described as the Hermitian N x /N matrices equipped with the measure

const x exp(—gTr H2> dH, =2, (2.1)

where dH = ]V, dH,; [1i<icj<n dRe Hyj dTIm Hj; is the N?-dimensional Lebesgue mea-
sure and const is the normalization constant. The joint density of the eigenvalues is then

N
const X H |z; — 1:]-|5He_5$?/4, 8 =2, (2.2)
i=1

1<i<j<N

and this explicit formula allows us to calculate the fluctuations of the largest eigenvalue Ay of
a GUE matrix. Tracy and Widom [99] proved that

lim P(Ay < 2VN +sN~Y9) = Fau(s), scER, (2.3)

N—o00

exists and is given by

Faos(s) =exp(— [ ae(e= )P0, 2.4

where ¢ is the unique solution (the so called Hastings-McLeod solution) to the Painléve II
equation
q"(t) = tq(t) +2¢°(t) 2.5)

satisfying the boundary condition ¢(t) ~ Ai(t) as ¢ — oo with Ai the Airy function. For
that reason, we call Foyg nowadays the GUE Tracy-Widom distribution. Soon after, the same
authors discovered in [100] similar distributions for the Gaussian Orthogonal and the Gaussian
Symplectic Ensembles. We restrict ourselves here to the presentation of the orthogonal case.

Gaussian Orthogonal Ensemble

The Gaussian Orthogonal Ensemble (GOE) is the subclass of real Wigner matrices with Gaus-
sian entries and normalization EH% = 2for1 < ¢ < N. As in the unitary case, we can
equivalently consider the measure (2.1) with 8 = 1 and dH = [[, ;. <y dH;;. Then, the
fluctuations of the largest eigenvalue )y are given by

lim P(Ay < 2VN +sN7V9) = Fgor(s), s€R,

N—oo
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Figure 2.1.: Plots of F{,op and F{,yg

where Foog 1s the GOE Tracy-Widom distribution which can also be expressed in terms of
the Hastings-McLeod solution ¢ from (2.5),

Feog(s) = exp <—% /:O dt Q<t)> (Faur(s))'/?. (2.6)

The plots of the probability density functions F(,;i and F{,o are in Figure 2.1.

Wigner matrices

It is conjectured that these results are not only valid for GUE and GOE, but for a much larger
class of random matrices. Since the eigenvalue in question is the largest one and thus located at
the edge of the spectrum, the appearance of the Tracy-Widom distribution is called the Tracy-
Widom edge universality. For Wigner matrices, edge universality was proven by Soshnikov
[92] under the additional assumptions that the distribution of the entries is symmetric (which
implies that all odd moments vanish) with at least Gaussian decay and the same normalization
of the variances as for GOE (for real symmetric Wigner matrices) and GUE (for complex
Hermitian Wigner matrices). We then have for the largest eigenvalue Ay of such a Wigner

matrix that
lim P(A\y < 2VN +sN'%) = F(s), seR,

N—oo
with F' = Fog for real symmetric and F' = Fgyg for complex Hermitian matrices. In the
following years, the symmetry assumption could be weakened [98] and was finally removed
in [41]. Recently, Lee and Yin [66] proved that Tracy-Widom edge universality holds if and
only if s* P(|Hi| > s) — 0 as s — oo.

Invariant ensembles

As we have seen, Wigner matrices are a generalization of the GUE (resp. GOE) in the sense
that distributions other than the Gaussian law are permitted, at the expense of unitary (resp.
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orthogonal) invariance. Another way to generalize GUE and GOE would be to keep this
invariance by replacing the Gaussian measure (2.1) by

const X exp <_§ Tr V(H))dH, (2.7)

where V' is a polynomial of even degree (deg V' # 0) and positive leading coefficient. Under
this measure, // has the same distribution as U HU™ for all unitary (or orthogonal) matrices
U. The joint density of the eigenvalues is then

N
const x H |z; — xjyﬁ H e AV @)/
i=1

1<i<j<N

with 8 = 1 in the real and 5 = 2 in the complex case. Using Riemann-Hilbert theory, Deift
and Gioev [36] could show that edge universality also holds for invariant ensembles, i. €., there
are constants ag and bg (depending on V) such that

lim P(Ay < agV'N + sbyN~Y%) = F(s), seR,

N—oo

again with F' = Fgog for § = 11in (2.7) and F' = Fyg in the 8 = 2 case.

Wishart matrices

Another class of random matrices are Wishart or sample covariance matrices. Let M be
a p x N matrix with independent and identically distributed complex (or real) entries M;;,
1<i<p,1< 7 <N and consider the N x N matrix X = M*M with ordered eigenvalues
A1 < --- < Ay. We also assume that p = py is a function of N such that pyy /N — o for
some ¢ € [0,00] as N — oo. The joint eigenvalue distribution in the real (5 = 1) and the
complex (3 = 2) cases has density

N
—N+1)/2-1 _gg,
const X H ‘xi—ll?j\’@fo(p +1)/ o ’8’”*/2,
1<i<j<N i=1

with respect to the Lebesgue measure on ]Rf . If we consider the empirical distribution jiy for
the eigenvalues,

1
MN:NZ(SAk/N»
k=1

then for ¥ € [1,00), fiy will converge almost surely to the counterpart of the semicircle law
for Wishart matrices, the Marcenko-Pastur distribution [28],

1 Ve -9 —c)
2

T

pvp (dx) = Lie_ c(2) da,
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where ¢, = (1 £ \/5)2 When studying a random growth model, Johansson [57] found, so to
say as a byproduct, the edge fluctuations of complex Wishart matrices,

lim ]P)()\N < Unyp+ SO‘N,p) = FGUE(S), s € R, (2.8)

N—o0

where ¥ € (0, 00) and the constants jty, and oy, are defined by

1/3
iy = (VN + VB, oy = YD

(VN +p)*

The same result holds true for real Wishart matrices, then with F;og instead of Fgug in (2.8),
which was proved by Johnstone [62]. Later, El Karoui [39] extended these results to the cases
where ¥ € {0, +00}.

2.1.2. Dyson’s Brownian motion

In 1962, Dyson [38] introduced the following diffusion on GUE matrices. Let (B(t) : t > 0)
be a Brownian motion on the N x N Hermitian matrices, i.e., (B(t) : t > 0) is a stochastic
process with almost surely continuous paths such that H(0) is the zero matrix, the increments
are independent and for any 0 < s < ¢, we have that H(t) — H(s) is /t — s times a GUE
matrix drawn from (2.1). Then we define the stationary Ornstein-Uhlenbeck process on the
N x N Hermitian matrices by

1
dM(t) = —3 M (t)dt + dB(t).
The stationary distribution is given by

1
const X exp (—5 Tr M2>.

The dynamics of the ordered eigenvalues \;(t) < --- < An(t) of M(t) are described by
Dyson’s Brownian motion, 1. e., the satisfy the stochastic differential equations

1 a 1
dA\(t) = [ —z Nt ————— |dt +db;i(t), 1 <1< N, 29
0=(-3 <>+;Ai<t)_Aj<t)) Fdb(e), 1< 29
J#
where by, . . ., by are independent standard Brownian motions. The rescaled largest eigenvalue

process (AN*°(t) : t > 0) of the stationary solution (Ay () : ¢ > 0) to (2.9),
N (1) = NYS (AN (2N7V3) —2VN), >0,
will then converge to the Airy process [58],

lim A = A, (2.10)

N—o0
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in the sense of finite-dimensional distributions. The Airy process was introduced by Prihofer
and Spohn [81] when studying polynuclear growth models. They showed that this process is
stationary with almost surely continuous sample paths, and the one-point distribution is given
by the GUE Tracy-Widom distribution,

]P)(A2<t) < S) = FGUE(S), s,t € R.

A precise definition of the Airy process will be presented in Chapter 3.1.3.

2.2. Kardar-Parisi-Zhang universality

We now present some results about the Kardar-Parisi-Zhang universality class of stochastic
growth models. Let us consider the growth of a surface, like the burning front of a piece of
paper or the propagation of a bacterial colony, and describe this surface by a random function
h:R? x [0,00) — R, the height function, which gives the surface height for a space position
x € R? and a time ¢t > 0. Suppose that there is a local growth, whereas macroscopically,
due to some smoothing effects, the surface growth will be described by a deterministic growth
velocity function v, see also Figure 2.2. This means that v only depends on the slope VA of
the interface, and thus we expect on a macroscopic scale that

Bih = v(Vh).

However, on a mesoscopic scale we should see the randomness. In their seminal paper [64],
Kardar, Parisi and Zhang argued that the smoothing effect should be related to the surface
tension and enters as #Ah, while the local random growth is modeled by a space-time white
noise 7,

Oih = vAh +v(Vh) + 1.

If we expand v around 0, then we have
1
v(u) = v(0) + (Vo(0),u) + §<u, Hess v(0)u) + o(||ul?), (2.11)

where Hess denotes the Hessian matrix. Note that the constant and the linear term in (2.11)
can be removed from the equation by applying a shift and a rotation. Anyway, the second term
should vanish, since v is usually assumed to be symmetric. The first non-trivial contribution is
thus the quadratic term, which should be different from zero, because otherwise we would be
in the so-called Edwards-Wilkinson class and the effects of the non-linearity in the equation
would disappear.

From now on, we only consider the one-dimensional case. Setting A = v”(0) # 0, the Kardar-
Parisi-Zhang equation then finally reads

Oh = v 0*h + %(&ch)z + 1. (2.12)

10
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X

Figure 2.2.: Lateral growth and smoothing mechanism for growth models in the KPZ class

The problem about this reasoning is that |0,.h| is not expected to be small, but very large.
However, this heuristic derivation gives us a rough idea about the equation. To summarize, a
model in the KPZ class should have (a) a deterministic limit shape, (b) local growth dynamics,
(c) satisfy v”(0) # 0.

Let us denote the deterministic limit shape by /..,

na(€) = lim 2E00),

t—00 t

The fluctuations around this limit shape should be of order ¢'/3 and the spatial correlation

length scales as t2/3, i.e., the rescaled height function hI* at time ¢ around a macroscopic

position &,

Ch(&E+ ut?Bt) — thea((EE 4 ut??) /1)
t1/3

B () (2.13)

should converge, as t — oo, to a well-defined, non-trivial stochastic process.

Some solvable models in the KPZ class have been analyzed in great detail. Two of the best
studied models are the polynuclear growth (PNG) model and the (totally/partially) asymmetric
simple exclusion process (TASEP/PASEP).

2.2.1. Polynuclear growth

The polynuclear growth model describes the growth of an interface on a one-dimensional
substrate. The height function & : R x [0, 00) — Z takes values in the integers and, to make it
well-defined, we assume that h is upper semi-continuous, i. e., the set {z € R : h(z,t) > n}
is closed for every n € 7Z. Let x be a discontinuity point of A(-,t). Then we say that there
is an up-step (1) at z if h(x~,t) < h(x™,t), a down-step (L) if h(z~,t) > h(z™,t) and a
nucleation event (L) if there is both an up-step and a down-step. The growth dynamics of this
model have a deterministic and a stochastic part.

11
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Figure 2.3.: Polynuclear growth. The islands spread deterministically with unit speed while
nucleations are created randomly according to a space-time Poisson process

(a) Deterministic part. When time increases, the “islands” spread, i. e., the up-steps move
to the left and the down-steps move to the right, each with unit speed. If an up-step and
a down-step meet, then they merge to a single island.

(b) Stochastic part. The nucleation events are drawn from a Poisson process in space-time,
and once such an up-down-step pair is created, the steps move symmetrically apart from
each other following the deterministic dynamics.

See Figure 2.3 for an illustration.

PNG droplet

For the PNG droplet, we start with the initial condition h(x,0) = 0 for all z € R, and the rate
function ¢ : R x [0, 00) — [0, 00) of the space-time Poisson process is defined as

2, for x| <t,
x,t) = = 2.14
o, ?) {0, for |x| > t. (19

The macroscopic limit shape h,,, in the PNG droplet model is a semi-circle, hence the name

“droplet”,
. h(&t,t
hima(§) = lim (i ) _ 2¢/(1 — €2).

Thus, for ¢ = 0, we expect h(&, 1) to be around 2t for large ¢. The fluctuations live on a ¢'/3
vertical scale and are governed by the GUE Tracy-Widom distribution [80],

lim P(h(0,1) < 2t + tY3s) = Faur(s) (2.15)

with Fgug as defined in (2.4). If we look away from 0 at some £ € (—1, 1), then we simply

replace t by t1/1 — &2 in (2.15).

12



2.2. Kardar-Parisi-Zhang universality

This means that the Tracy-Widom distribution does not only appear in random matrix theory,
but also in the study of interacting particle systems. At this level, this common feature of GUE
and TASEP is rather unexpected, since there is no direct link between these two models. To
understand if this just an incident or if there are structural reasons for this behavior, we study
the multi-point distribution of PNG droplet and apply the scaling from (2.13),

h(ut?3,t) — 2tV/1 — u?t=2/3

BN (u) = 7

Then, Priahofer and Spohn [81] showed that
lim AN = A,

t—o00 ’

in the sense of finite-dimensional distributions, where A, is the Airy process that we already
met in the random matrix context in (2.10). This is a first hint that there should be some
connection between TASEP and GUE.

Flat PNG

Instead of taking nucleations from the cone {(z,t) € R x [0,00) : |z| < t} as in (2.14), we

can also consider translation-invariant nucleations, i.e., we take a Poisson process with rate

o(z,t) = 2 for all (z,t) € R x [0,00) . Choosing again h(-0) = 0 as initial condition, the

resulting deterministic limit profile h,, will be flat, hy,,(§) = 2 for all £ € R. Mapping this

model to a point-to-line last passage directed percolation model, it was known that [9,79, 80]
lim P(h(0,t) < 2t + £(2t)/*) = Fgon(s), s €R,

t—o0
with Fog the GOE Tracy-Widom distribution defined in (2.6), and it was conjectured in [17]
that the rescaled height function
h(u(2t)?3,t) — 2t
(2t)1/3

converges to a process .A; that is also defined in terms of Airy functions. This was finally
proven by Borodin, Ferrari, and Sasamoto [18],

hﬂatPNG(u> _ 271/3h;esc(22/3u> _

t,resc

lim hﬂatPNG — Al

t,resc
t—00 ’

in the sense of finite-dimensional distributions. To distinguish this process from the previous
Airy process, we call from now on A, the Airy, process and A; the Airy; process. Again,
a precise definition for .4; will be given in Chapter 3.1.3. Like the Airy, process, the Airy;
process is stationary and looks locally like a Brownian motion. For its one-point distribution,
we have

P(Al(()) < S) = FGOE<23); s € R.

Hence, the Airy processes can be seen as the multi-point extensions of the GOE/GUE Tracy-
Widom distributions.

13



2. Tracy-Widom universality

(a) Flat PNG (b) PNG droplet

2.2.2. Continuous time TASEP

The totally asymmetric simple exclusion process on Z in continuous time is an interacting
particle system. For all times ¢, at most one particle can occupy a site in Z (“simple”) and
particles try to jump independently to a neighboring site with rate 1, but only to the right one
(“totally asymmetric”). The jumps are made only if the arrival sites are free (“exclusion”),
otherwise the jumps are blocked. Note that these dynamics leave the order of the particles as
it is. We label the particles from right to left so that x(¢) denotes the position of the k-labeled
particle at time ¢ and (t) > x4 (¢) for all k£ and ¢.

Formally, the continuous time TASEP is a Markov process defined on the space Q = {0, 1}Z.
For a configuration () € €2, there is a particle at position j € Z and time ¢t > 0 if ;(¢) = 1,
and the position is empty if 7;(¢) = 0. Let f :  — R be a function depending on a finite
number of 7);. Then, the backward generator L of TASEP is given by

Lf(n) =Y (L= np0) (fFP7F) = f(n)

=/

where 17711 is the configuration 7 with the occupations at sites j and j + 1 interchanged. The
transition probability for TASEP is e, see [67,68] for more details on the construction. There
is a one-to-one correspondence between TASEP configurations and height functions defined
by setting the origin 2 (0, 0) = 0 and the discrete height gradient to be 1 —2n;(¢). Let us denote
by NV, the integrated current of particles through the origin, i.e., the number of particles that
jumped from O to 1 during the time interval [0, ¢]. Then, the height function A is given by

(

2N, + > (1 —2n;(t)),  fora >1,
j=1

h(z,t) = § 2Ny, for x = 0, (2.16)
0
2N, — > (1 —2n;(t)), forxz < —1.
j=z+1

\

see Figure 2.4 for an illustration. In the following we will discuss results for two specific
initial conditions.

14



2.2. Kardar-Parisi-Zhang universality

l

~ "~ Z
Figure 2.4.: Height function (thick line) corresponding to a particle configuration (black dots).
If a particle jumps, a new “corner” will be added to the profile as indicated.

TASEP with step initial condition

Let us choose the initial conditions 7;(0) = 1 for j < 0 and 7;(0) = 0 for j > 0. This is
called step initial condition, see Figure 2.5(a). The macroscopic limit shape h,,, for this initial
condition is a parabola continued by two straight lines,

L1+¢3), forfg <1,
_ 2
() = {If\, for [¢] > 1.

Now we can scale the height function as in (2.13) and add some constants to avoid them in the
limit,

t 2/3 [t 2(t 1/3
hij;fg;’EASEP<u) e _21/3h;esc<21/3u) _ h(2u(2) ’t)<t)$/23+ u (2) )
S \2

Then, for the one-point distribution, Johansson [57] proved that
lim P(hPEASEP(0) < s) = Faur(s), s€R, (2.17)
—00

t,resc

where Fug is again the GUE Tracy-Widom distribution. Instead of using the definition of h
given in (2.16), we can define the (unrescaled) height function A for TASEP in the case of the
step initial condition via

{h(z,t) > 2n+a} ={z,(t) >z}, n>1zxeZ,
with linear interpolation for non-integer values of x. This allows us to translate Johansson’s
result (2.17) into the particle picture,

Tim P (g (t) > —5(t/2)"*) = Faur(s), s€R. (2.18)

The extension of this result to the multi-point case was done in [16, 19, 58]. It turns out that

. stepTASEP __
}i}lf& ht,resc - A2

in the sense of finite dimensional distributions with .45 being the Airy process from (2.10).
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2. Tracy-Widom universality

Z

(a) Step profile (b) Flat profile

Figure 2.5.: TASEP with two different initial conditions

TASEP with flat initial condition

Another type of initial conditions that we present here is the flat (or alternating) initial con-
dition, i.e., n;(0) = 1 for even j and 7;(0) = 0 for odd j, see Figure 2.5(b) for the associ-
ated “flat” height function. In this case, the macroscopic limit shape h,,, is just a constant,
hma(€) = 3 for all £&. The rescaled height functions for the alternating initial condition reads

=3
h(2ut?3 t) — L

RAAtTASEP )y .— _9 prese(2q) = 141/3
T2

t,resc

and as t — oo, its one-point distribution is

tli}fgé ]P)(hﬂatTASEP(O) S S) — FGOE(S)7

t,resc

where Fop 1s the GOE Tracy-Widom distribution defined in (2.6). The limiting multi-point
distribution for A TASEP \ag studied in [17, 85],

t,resc
: flatTASEP __
lim ht,resc - "417
t—o00

where A; is again the Airy, process.

PASEP with step initial conditions

We generalize the TASEP in the sense that we drop the restriction of total asymmetry in the
jump direction and assume that particles can jump independently to the right with rate p and
to the left with rate ¢ = 1 — p. However, we keep the exclusion principle which says that
a particle can only jump if the (left or right) neighboring site is empty and that there is at
most one particle per site. This is called the partially asymmetric simple exclusion process
(PASEP) or sometimes just asymmetric simple exclusion process (ASEP). As before, we label
the particles from right to left and choose step initial conditions, x,(0) = —n forn > 1. We
have to assume that ¢ < p to have a drift to the right which ensures lateral growth. In a series
of papers [102-106], Tracy and Widom were able to show that

tlgglo Pz q(t/(p—q)) > —s(t/2)"?) = Faur(s), s€R. (2.19)

Note that for p = 1 and ¢ = 0, this is same as (2.18).
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2.3. Limits of universality

2.2.3. KPZ equation

Let us consider again the KPZ equation from (2.12), this time we set v = % and A = —1,

Oh = 307h — $(9,h)* + 1. (2.20)

In the 90s, Bertini and Giacomin [11] proposed solving this equation via the stochastic heat
equation

WZ =300Z —nZ, Z(x,0)= Zy(x), (2.21)
where 7 is space-time white noise. The initial condition Z;, can be random and is assumed to
be independent of 7. If Zy(z) > 0 for all z and [ dz Zy(z) > 0, then Z(x,t) will be strictly

positive for all z and ¢ > 0. Thus, we may define
h(z,t) == —log Z(x,1), (2.22)

which is called the Hopf-Cole solution to the KPZ equation (2.20). Moreover, Bertini and Gi-
acomin proposed that this solution can be obtained from PASEP with p — ¢ = 0, which is then
referred to as the weakly asymmetric simple exclusion process (WASEP). Based on explicit
formulas for the PASEP that Tracy and Widom obtained in order to prove the convergence in
(2.19), Amir, Corwin, and Quastel [4] (and, independently, Sasamoto and Spohn [86,87, 89!
were able to make this approach rigorous. Consider PASEP with step initial condition, i.e.,
h(z,0) = |z| for all z € R. Let ¢ := (p — ¢)* and denote by h. = h,,, the corresponding
WASEP height function. Then, as € — 0,

ePh (e, e7%) — L7t — log(Le7?) — h(x,t)

with A given by (2.22) where Z is the solution of the stochastic heat equation (2.21) with
initial data Zy(z) = d¢(x). Moreover, Amir, Corwin, and Quastel showed that

x? t t\1/3
Fi(s) =P _h<x’t)_2_t+ﬂ§<§> s)], seR, t>0,

does not depend on z, and F; converges to the GUE Tracy-Widom distribution,

tlgxolo F,(s) = Fgur(s), se€R.

Thus, the KPZ equation itself is also in the KPZ universality class!

2.3. Limits of universality

2.3.1. GOE diffusion and Airy; process

Let us revisit what we have discussed so far about the correspondence between KPZ models
and random matrices. On the one hand, we have growth models with curved limit shape such

'A replica approach is in [27,37, 82]; see the review [88] for details.
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2. Tracy-Widom universality

as PNG droplet or TASEP with step initial condition, and the fluctuations in these models are
described by the GUE Tracy-Widom distribution. As their counterpart in the random matrix
world, we identified the Hermitian matrices with Gaussian or Wishart distribution and, more
generally, complex Wigner matrices and matrices from the invariant ensemble whose largest
eigenvalue fluctuations are also distributed according to Fgyg. Thus, the conjecture is that
this probability law appears in KPZ models with curved limit shape and in certain classes of
Hermitian random matrices.

On the other hand, we presented models that give rise to the GOE Tracy-Widom distribution.
For the physical models, these are flat PNG and TASEP with alternating initial condition while
for random matrices, we have the symmetric Gaussian and real Wishart matrices as well as real
Wigner matrices and matrices from the invariant ensemble. In this case, the conjecture would
be that this behavior is universal for flat curved models and for symmetric random matrices
with, for example, independent entries.

Let us come to multi-point distributions. For KPZ models with curved limit shapes and Her-
mitian Gaussian matrices, this connection is still there (we mentioned the Airy, process), and
there is reason to believe that this the universal limit object for these models. Now, to make the
picture complete, we should consider the multi-point limiting distribution of the fluctuations
in the flat/symmetric models. For the KPZ models with flat limit shape, we already know that
they are governed by the Airy; process. Let us now look at the symmetric analogue of Dyson’s
Brownian motion. In the Hermitian case, one first calculates the joint distribution of a finite
number of eigenvalues \;(t) < ... < \,(t). For that, one has to solve an integral of the form

/ e~ TAUBUY) (dU), (2.23)
U(n)

where 4 is the Haar measure on the unitary group U (n) and A, B are diagonal matrices, see
also Chapter 3.2.1. An explicit formula for (2.23) was given by Itzykson and Zuber [55] in
1980, see Appendix A.7. Later, one found this formula in a paper by Harish-Chandra [52]
from the 50s. But in the symmetric case, i. e., if we integrate over the orthogonal group O(n)
instead of ¢ (n), such a formula is not available. This is the reason why the multi-point ana-
logue for the GOE distribution in the case of symmetric Dyson’s Brownian motion has not
been identified yet. Unfortunately, as numerical simulations indicate, there is no hope that the
Airy, process will appear here. Indeed, Bornemann, Ferrari, and Prihofer [14] compared the
covariances of the Airy; process and the rescaled largest eigenvalue in the GOE Dyson’s Brow-
nian motion and observed in their simulations that the first one decays super-exponentially fast
in the argument, while the latter one decay only polynomially. They concluded that “the Airy;
process is not the limit of the largest eigenvalue in GOE matrix diffusion”, which means that
the link between random matrices and exclusion processes broken at this level.

2.3.2. Speed of convergence

Another issue concerning the question of universality is the speed of convergence to the Tracy-
Widom distribution and the nature of the first order corrections. Since this question is moti-
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2.3. Limits of universality

vated by recent results by Takeuchi et al. [95,97], let us first look at the appearance of the
Tracy-Widom distribution in the “real world”. The various models from the KPZ class that
we have presented so far aim to describe growth models from physics, so one can ask whether
the typical features of the KPZ class can also be verified by experiments. Until recently, there
were only few experiments giving the fluctuations exponent 1/3, see e. g. [71, 108]. Besides
the difficulties of having good statistics, one of the main issues in the experimental set-up is
to have really a local dynamic, and the centering in (2.13) has to be obtained experimentally
from the measured asymptotic growth velocity. In any case, experimental data were not good
enough to have more detailed information on the scaling exponents, until the recent amazing
experiments carried out by Takeuchi et al. (see [95] and [97]). Using nematic liquid crystals
they were able to get accurate statistics that confirmed not only the fluctuation and correlation
exponents, but also the limiting distribution functions and the covariance of the Airy processes
previously obtained in solvable models.

A further aspect that was observed in these experiments was that the fit between the predicted
density of the Tracy-Widom distributions and the measurements is quite good even for rela-
tively small time ¢, but a finite size correction is still visible. It is therefore interesting to study,
on a theoretical level, the difference between F; := P(h}*°(0) < s) and Fgyg (or Foop) as
t — oo. As noticed in [86], this correction is of order ¢~/3, which means that on the original
scale, the difference between the height function h,(£t) and ¢ hp,,(€) is of order 1. In their ex-
periments, Takeuchi et al. also measured the decay of mean, variance, skewness and kurtosis.
In the scaled variables, the mean has been seen to decay as t~1/3, while other moments decay
as t~2/3. Thus, in the unrescaled variables, the mean has a shift of order 1.

We will now describe some results that have been obtained for the finite size corrections in
some KPZ models. Note that, compared to the liquid crystal experiment, the shift of the mean
in the solution of the KPZ equation has opposite sign, and in the experiments, the same sign
as for TASEP is observed. This means that if we denote by h;%¢ the rescaled PASEP height
function and by ¢ a random variable with GUE Tracy-Widom distribution, then the sign of
a(p) = Jim E[t3(55e(0) - )]

is different for p = 1 (TASEP) and p ~ % (WASEP). Hence, there will be a certain value
p € (3,1) of asymmetry for which the mean has no shift (up to O(t~%/?)). A Monte-Carlo
simulation [86] indicates that this happens for the PASEP height function at the origin for the
critical value p = p. >~ 0.78. We can determine this value analytically.

Result 1. In Corollary 16 we show that the critical value p.. is the solution of

o0

1 —p.)t 1
Ze( 1p) g:§ <— p.=0.7822787862. ..
g:1p0_< _pC)

We first determine an analytic formula for the shift of the distribution of a tagged particle
(see Proposition 14). The shift turns out to be a function of the macroscopic particle number.
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2. Tracy-Widom universality

However, when we switch back to the height function representation, the shift becomes again
independent of the macroscopic position (the £ in (2.13)).

We will also obtain the first order correction to the limiting distribution function and density.

Let us illustrate this result for the PNG droplet. (The other cases are analogue, but instead of

the GUE one has for example the GOE Tracy-Widom distribution. Form (2.15) we know that
h(O, t) —cit g

thngG<O> = W — C ast — oo, (224)

where ¢; = 2, co = 1 and ( is again a GUE Tracy-Widom distributed random variable, i. e.,

Fy(s) :==P(h{2tN9(0) < s) — Fgur(s) ast— oo.

t,resc

Since the unrescaled height function h only takes values in the integers, F; is piecewise con-
stant over intervals of length &; := 1/(cyt'/3). Thus, we expect that

hcurvPNG(o) — C + 77515 + (’)(5?) on It e (Z — Clt)5t7 (225)

t,resc

where 7 is another random variable that is a priori not independent from (. Note that (2.25) is
a shorthand notation of

P(R{ING(0) < s) =P(C+nd + O(7) < s), s€ 1.
What is the nature of this first order coefficient 77?7 The surprising result is that for all the mod-

els we consider, 7 is a deterministic constant and therefore independent of ( (see Chapter 4.2
for PNG and TASEP, Chapter 4.3 for PASEP). This implies the following.

Result 2. Let us denote by 6, := ¢, t='/3 the discrete lattice width where hgl;ggf NG(0) lives.
There exists a constant 1) such that

Fy(s) = P(hMNG(0) < s) = Four(s —n6:) + O(67) (2.26)

t,resc

forall s € I, = (Z — c1t)6y.

For PNG and TASEP the shift 7 §; does not depend on the chosen macroscopic position, but
this property is not generic and might depend on the chosen observable too, as shown by the
result on PASEP. (This non-universality of 7 is quite intuitive, since 7) is a correction term on
the microscopic scale, thus model-dependent.) Consequently, by shifting the height function
h: by the constant 7 as in (2.26), the convergence of the distribution function to Fgyg is of
order O(t~2/3). If  was not independent from ¢, then one would have a convergence only of
order O(t~1/3) instead.

In the domain of random matrices, similar results have been obtained by Choup [29-31] and
El Karoui [40]. For instance, let A$U" be the largest eigenvalue of an N x N GUE matrix as
in (2.3). Then,

P(\/N)\]G\}[UE — ClN

2
PNV < 5) = Foue(s —nd) + O(0%),
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2.3. Limits of universality

where ¢c; = 2, co = 1 and n = 0. Thus, in this case, we do not need any shift to have
convergence of order O(t2/3).

An important difference between the KPZ models and random matrices is that the largest
eigenvalues are, even for finite matrix size /N, continuous random variables, while in the mod-
els considered above the random variables live on Z and after the rescaling (2.13), they still
are on discrete lattice of width d,. This discreteness is of course irrelevant for the universal
limit statements, but at first order it can not be neglected when looking at the fit with the lim-
iting distribution function and density. Indeed, the shift needed to have a fit with accuracy of
order O(t=2/3) is not the same for the density as for distribution function. In order to see this
feature, consider the slightly modified scaling of the height function

%curvPNG(O) — hcurvPNG(O) _ aét; (227)

t,resc t,resc

where a € R is a given constant. Further, we set

ﬁt — P(%curvPNG(O) S S),

t,resc

and define the discrete probability density function as

_ Fi(s) — Fy(s — ¢
Pu(s) == 1(s) 5t<5 0 (2.28)
t
If the 7 is the shift that yields a convergence of order O(t~%/3) for the cumulative distribution
function, then we have to shift the probability density function not by 7, but by 1 + % to have

the same order of convergence. This states the following result.

Result 3. With the choice a :==n + % we have
Pi(s) = Foun(s) + O(5).
forall s € I, = (Z — c1t — a)dy.
These results are discussed in Chapter 4.1 and used for the fits of the simulations of TASEP in
Chapter 4.2.

Remark 1. Result 3 does not depend on the concrete representation of our distributions, but
is generic in the sense that it is a consequence of the O(4?) error for the centered discrete
derivative (2.28).

Remark 2. With the scaling (2.27), Result 2 writes
Fi(s) = Four(s + 6,) + O(8?), sel,

while the scaling (2.24) yields
E(S) = FGUE(S + %515 — (1515) + (9(5?), S € It, (229)

and B
pi(s) = Fy(s —ady) + O(62), s €I, (2.30)

where py(s) := 7 L(Fy(s) — Fils — 6,)).
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2. Tracy-Widom universality

In view of these results, we carried out a simulation for TASEP with time ¢t = 1000. As
observable we used a tagged particle. The dots in Figure 4.4 represent s — py(s) for s € I,
and a = 1 + %, which is well approximated by the solid line s — F{,yy(s) as predicted by
Result 3. As comparison, the dashed line is the unshifted density s — Flyg(s — ad;) (see
(2.30)), i.e., the fit obtained with a = 0.

The same applies to the distribution function. The dots in Figure 4.3 are the plot of s — ft(s)
fors € [yand a = n + % The dashed line is the predicted limiting distribution function with
scaling (2.24), be s — Fgug(s) = Fgue(s + %(2 — ady) (see (2.29)). The fit suggested by
Result 2 is the solid line, s — Fgyug(s + %c&), which indeed is a better fit.

In the same way we fit Figures 4.2 and 4.1 with the difference that the limiting distribution
function is s — Fgog(2$).

Finally, the shift used in hfg'};ngG (0) is the same needed to have a convergence of the moments,
and consequently of the variance, skewness, kurtosis of order O(t=2/3). The following result

will be discussed in Section 4.1.2.

Result 4. We have
E[(hcurvPNG(O))m} — E[Cm} + O((SE)

t,resc

forallm e N.

Remark that if  was not independent from (, the convergence of the variance, skewness, and
kurtosis would still be of order O(t~1/3).
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3. At the interface between GUE and
TASEP

3.1. Determinantal point processes

3.1.1. Correlation functions and kernels

In this section we will introduce the basic notions that we need to state Results 7 to 13. Since
we do not want to develop the whole theory on point processes, determinantal correlation
functions and Fredholm determinants, our presentation will be rather sketchy. For more infor-
mation on these topics, we refer to [33, 34,90].

The mathematical concept behind both random matrices and growth models are point pro-
cesses, which means that we consider the eigenvalues of a random matrix or the particles in
a jump process as randomly placed points on R or Z. To be more precise, we consider the
one-particle space A which is a complete separable metric space, equipped with some refer-
ence measure \ on the Borel o-algebra B(A) generated by the open sets in A. Typically, A
will be R or Z, but also R x {1,..., N} etc. are possible. A point measure on A is then a
positive measure v on (A, B(A)) such that v is a locally finite sum of Dirac measures, i.e.,
v = Zie 105, with z; € A, I C N, and for any bounded Borel set B € B(A) we have that
x; € B only for a finite number of 7 € .

Denote by M (A) the space of point measures on A and let M(A) be the smallest o-algebra
such that for any Borel set B € B(A), the mapping M (A) — NU {oo}, v +— v(A) is mea-
surable. A point process 1 on A is a random variable with values in M (A), i.e., a measurable
mapping from some probability space (2, F,P) to (M (A), M(A)). The distribution of 7 is
the image of P by 7.

We will only consider simple point processes, i.e., P(n({z}) < 1) = 1forallz € A. Let
us now define the correlation functions of a point process. For bounded and disjoint subsets
Aq, ..., A, of A we define

My(Ay,.. . A = Elﬁ n(Ai)].
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3. At the intertace between GUE and TASEP

Let n be simple point process. If M, is absolutely continuous with respect to y, 1. e., if there
exists a function p" : A™ — [0, c0) such that

M,(Ay, ... A,) = / p(day) - - p(dey,) o™ (21, ..., xy) (3.1)
A1 X--XAp
for all bounded and disjoint Ay, ..., A, C A, then we call o" the n-point correlation function
of . Moreover, we assume that o"(x1,...,z,) = 0if x; = x; for some i # j.
Informally, the n-point correlation o™ (z1, . .., z,) is the probability of finding particles of 7 at
positions x1, . .., Ty,
(o, 1) = lim P(n has a point in B.(x;) for 1 <1i < n)

e—0 ,LL(BE(xl)) s ,U(Bs(xn)) ’

where B.(x) denotes the ball of radius ¢ > 0 around z.

If Aq,..., A, are not all disjoint, say A; = --- = A,, = A, there is another way to express the
correlation functions, which is a consequence of (3.1),

n(A)! ] (3.2)

/nu(dxl)“'ﬂ(dx"> 0" (1, ..., x,) = Elm :

To convince ourselves that this is true, note that the case n = 1 is trivial. For n = 2, we have
2
B4 | (S aeh)) | =E[Suttoh)| + B[S attahucon]. 63
€A €A THy

where we used that 7 is simple, i.e., n({z}) is 0 or 1, and n({z}) = 1 for a finite number of =
only. Now, we have that E[n({z})n({y})] = 02(z,y) for z # y and gs(x, x) = 0. Thus,

E[n(A)?] = Eln(4)] + / u(d2)u(dy) oa(, y),

A2

which implies (3.2) for n = 2.

A point process n on A is called determinantal point process with kernel K if the n-point
correlation functions p" are given by

0" (z1, ..., @n) = det[K (2, 7))]1<ij<n
forany n > 1 and x4,...,x, € A, where K : A x A — C is a measurable function.

To such a kernel we can associate an integral operator K : L?(A) — L?*(A) by setting

(K )(x) = / u(dy) K(2.9)f (), f € L),

Let us assume that K is a locally trace class operator, i.e., K 15 is trace class for any compact
subset B of A. Moreover, let K be Hermitian, i.e., K(z,y) = K(y,z) for any z,y € A. In
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3.1. Determinantal point processes

the 70s, Macchi [69] argued that a sufficient condition on K to define a determinantal point
process is 0 < K < 1. Later, Soshnikov [93] proved that K defines a determinantal point
process if and only if 0 < K < 1,1i.e., both K and 1 — K are non-negative operators.

The determinantal structure of the correlation functions is very useful to calculate gap proba-
bilities. That is the probability that a random configuration (z;); of a point process in not in a
Borel set B of A,

P(no point of (z;); is in B) = E lH(l — ILB(a:i))]

(—n1!>"E[ 3 ﬁnmm]

pairwise distinct

/n M(dxl) e ,u(d:cn) Qn(xl; - wrn)?

3
v
=

where the last equation follows from a calculation similar to (3.3). As the point process is
determinantal with kernel K, we can now replace the correlation functions in the last line by
the determinant over K. The resulting expression is the Fredholm determinant det(1—K) ;2(p)
of the operator K on L*(B),

(=n"

n!

det(]]_ — K)L2(B) = Z

n>0

/ ) () detlK Gz, )hcigen

We can take this series as a definition of det(1 — K')2(5). As soon as the series is absolutely
convergent, everything is well-defined. Another point of view is to think of det(1 — K)2(p)
as the Fredholm determinant of an operator. Since this approach requires some facts from
spectral theory, we refer the reader to [90].

3.1.2. Hermite kernel

Usually, it is not trivial to decide whether a given measure induces a determinantal point
process. However, if it can be written as a product of determinants, there is a good chance that
one can find a correlation kernel. As an example, let us consider the point process of GUE
eigenvalues. As mentioned in (2.2), the joint density of the ordered eigenvalues \; < --- < Ay
of an N x N GUE matrix is given by

N
const x A% () He_(’\’“)Q/Q, (3.4)
k=1

where the repulsion between the eigenvalues is described by

AvN) = ] v=X) =det[ N ickecn

1<k<t<N
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3. At the intertace between GUE and TASEP

which is known as the Vandermonde determinant. Since the determinant is a multilinear map-
ping, we can write

det[/\lg_l]lgkjgjv = const X det[pk_l(Ag)]lgthN (35)

for any polynomials py, ..., py—1 with degp; = j, where const depends on the leading coef-
ficients in the polynomials. In this situation, a more general theorem applies. To employ it,
we define ®;, and W, as

Dp(z) = Up(z) = e */ppy(z), 1<k<N, zeR. (3.6)
Then, denoting by Py the joint density of A\; < --- < Ay from (3.4), we can write

1
Pn(A, .. An) = In det[Pr(Ne)|1<ke<nv det[Wr(Ao)] 1<k <N

1 N
= T det Lz:; qy(%)‘%(&)] , (3.7)

1<k <N

and using the symmetry of Py, we have
NI

0" (A1, Ap) = m

/ Dhs - Av Py Aw).
Ran

For general ®; and Wy, if a probability density Py is given as the product of two determinants
as in (3.7) with Z # 0, then one can show that Py has determinantal correlation functions,

Qn()‘lw"a)‘n) = det[K(AZJ)\J)]lﬁl,anv n > ]-7

with correlation kernel /K. For a proof, see e. g. [60]. A representation for K is then given by

K(z,2') =Y W(@)[M"];®;(2), (3.8)

1,5=1

where the NV x N matrix M is defined by

M, = By 50, :/A,u(d:c) Bi(2) W, (x).

Although (3.8) gives an explicit expression for the kernel, it is often difficult to use this for-
mula for practical issues, because we have to invert the matrix M. However in the special
case of (3.6), by choosing the polynomials py, ..., py_1 to be the Hermite polynomials (see
Appendix A.5 for a definition), the kernel has a simpler representation. Actually, this choice
corresponds to a change of basis in which the Hermite polynomials are orthonormal with re-
spect to the Gaussian weight z — e~**/2_ Thus, M is then the identity matrix which can be
easily inverted. The correlation kernel K“U¥ for the eigenvalues’ point process of an N x N

GUE matrix is then

2_
eW 2xw 1 UJN

2
KGUE N= _—_ f d / d 3.9
=) (271)? |z|=¢/2 : iR+e v e** =2’z qy — z 2N (3.9)

for any given € > (. Since Hermite polynomials play an important role in this representation,
KSYE is also called the Hermite kernel.
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3.1. Determinantal point processes

3.1.3. Airy processes and spatial persistence

Here is a good place to define the Airy processes that we already met in Chapter 2, the defini-
tions are taken from [44]. The Airy; process A is the process with m-point joint distributions
atu; < ug < - -+ < Uy, given by the Fredholm determinant

P(ﬂ{/h(w;) < 5k}> = det(1 — XK 4, Xs) L2 (fur,sum} <R) (3.10)

k=1

where X (ug, ) = Ljp>s,] and the kernel K 4, is given by

1 I 2
KAl (ua xT; ula 1‘/) = _—) exp (_u> l[u<u’]

(v —u 4(u — u)
+ Ai(z + 2’ + (v — u)?) exp((u’ —u)(z+2')+ %(u’ — u)3>

To make this definition more explicit, the Fredholm determinant in (3.10) can be represented
by the following expansion,

det(l - XSKAlxs)LQ({Ul Um}XR)

— Z n' Z / dzy - - / dz,, det [KAI (uik,xk;uiz,xg)hgugn.

n>0 11,..tn=1" "1

The Airy, process As is the process with m-point joint distributions at u; < us < « -+ < Uy,
given by the Fredholm determinant

<m{~42 Uk < Sk}) = det(IL - XSKA2X8>L2({u1 ,,,,, Um }XR)

k=1

where Y is defined as above and the kernel K 4, is given by

/ dX e =N Ai(\ + ) Ai(\ + ), foru >/,
K, (u,z;u',2") = <70 o
— / dX e "IN Ai(N + ) Ai(\ + 2'), foru < u.

—0o0

Let us briefly attack the question of persistence (or survival) probability for the Airy processes.
This is the probability that a process stays positive (resp. negative), or more generally, above
(resp. below) a certain threshold during a time interval [0, L], i. e., for a threshold ¢ € R and a
time interval [0, L] with L > 0, the persistence probabilities are defined by

P_(A,c,L) =P(A(t) < cforallt € [0, L]),
P(A e, L) =P(A(t) > cforall ¢ € [0, L]),

where A € {A;, A;}. Based on two works on the continuum statistics [32, 83], it is possible
to determine analytic formulas for the persistence probability to stay below a threshold ¢, both
for the Airy, and the Airy, processes.
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3. At the intertace between GUE and TASEP

Result S. For the Airy; process we have
P_(Ay,c,L) = det(1 — K1) r2w)
where the kernel K, j, is given by
Ky p(z,2") = Ai(|z] + 2 4 2¢) + Lppeq(K1p(z, 2" + 2¢) — Ky p(—2,2' +2¢))  (3.11)

with

Ky p(x,2") dy e~ (=041 =2L2Be=L"+) Aj(a! 4 y 4 L?).

\/47T Ry

Result 6. For the Airy, process we have
P_(Az,c,L) = det(1 — Ky 1) r2(r)
where the kernel K p, is given by
Ko p(x,2") = Kai(z + ¢, 2" + ¢)
— <o) /R dy /Rdﬂ "2, 1)d(y, ) Kai(y + ¢, 2’ +¢)
with
Kpip(z,2") = Ka,(L,2;0,2") = / dhe ™ Ai(A 4 ) Ai(\ + 2),
Ry

Kai(z,2") := Kajo(z,2') = / dX Ai(A + z) Ai(\ + o)
Ry

and'’
Ai(p) Bi(z + u) - Ai(iv + 1) Bi(p)
= R_ R.

For large L, the persistence probabilities decay exponential in L with persistence coefficients
K+ given by
Pi(A,c,L) ~ Cy(A,c)e"=A9L forlarge L

for A € {.Al, ./42}

In Chapter 2.3.2 we already mentioned that in an amazing experiment with turbulent nematic
liquid crystals, Takeuchi and Sano [95,97] were able to verify experimentally the KPZ pre-
dictions at the level of distribution functions and covariances (and not only at the level of the
scaling exponents). The agreement with the theory is very good. In a more recent paper [96],
the same authors measured, among others, the spatial persistence coefficients with respect to

'Note that Ai?*(z) 4+ Bi*(z) > 0 for all z € R.
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3.2. Extended kernels

a threshold given by the average of the process. In the case of the Airy, process, the persis-
tence coefficients have also been measured in an off-lattice Eden model [94] and verified by a
numerical simulation of GUE Dyson’s Brownian Motion [96].

Using Result 5 and the numerical approach for computing Fredholm determinants developed
by Bornemann in [13], it is possible to determine for Airy; process the associated persistence
coefficient and its dependence on the threshold c. The advantage of looking directly at the
limit process is that we do not have uncontrolled uncertainties coming from the finite size
settings of an experimental setup. The experimental results of [96] fits fairly well with the
exact numerical results that can be found in [48].

3.2. Extended kernels

3.2.1. Diffusion on GUE matrices

As a variant of the classical Dyson’s Brownian motion let us consider the Brownian motion
(H(t) : t > 0) on Hermitian matrices that we defined in Chapter 2.1.2, i.e., let H(¢) be the
N x N Hermitian matrix defined by

forl1 <: <N,
ib;(t)), forl<i<j<N, (3.12)
ib;(t)), forl<j<i<N,

S

> S o

-~

+ =

—
S TN

Hi;(t) =

N = N[
TN N
S

~.

<

—

where b;; and Eij are independent standard Brownian motions. Then the transition probability
from H(s) at time s to H(¢) at time ¢ for 0 < s < ¢ is given by

Tr(H(1) - H(S))z)
2(t — s) ’

const X exp (—

where the normalization constant still depends on ¢ — s. Then we diagonalize the Hermitian
matrices H(t) and H(s) and use the Harish-Chandra/Itzykson-Zuber formula to integrate out
the unitary matrices. The induced transition density where starting from the ordered eigenval-
ues A\ (s) < --- < An(s) of H(s) and going to the eigenvalues A;(t) < --- < An(t) of H(t)
is then given by

Ax(A®) S ECICEENEIA)
An(A(9)) V27 (t — s) 2(t — s) lgi,jgN.

For t > 0, let us define the Markov kernel

det l

Pz, dvy) = An(Y) 4ot l

1
An(z) [ V2nt
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3. At the intertace between GUE and TASEP

Thus, starting with A;(0) = --- = Ax(0) = O attime ¢ = 0, the joint density of the eigenvalues
A(t1), AM(t2), ..., A(ty,) for times 0 < t; <ty < --- < t,, is given by

const x ﬂexp<_M)AN<A<tl>>

2t
oo Y s

n=1

Asin (3.5), we use that Ay (z) = det[2)'];<; j< and write this formula as

m—1

o et @t hsrizy [] AetlTe o, ((t), Aty e

Nm j=1

x det[Ur(Ae(tm))])1<ke<n] (3.14)

with @, and ¥, essentially chosen as in (3.6) and the transition densities 7 ; defined as

Toule,y) = ;) exp(—M).

27(t — s 2(t — )

We now consider the eigenvalues {\,,(¢;) : 1 < j < m,1 <n < N} as a point process on
R x {t1,t2,...,tn}. Eynard and Mehta [42] were the first to prove that a measure of the form
(3.14) has determinantal correlation functions ", 1. e., there is a correlation kernel K such that

Qn((Tb xl)a (7—27 IQ)? ce (TTH In)> = det[K(Tia LisTjs xj)]lﬁi,jﬁn

for all z1,29...,2, € Rand 7, 79,...,7, € {t1,...,t,}. Later, Borodin and Rains [25]
showed the same theorem in the more general setting of L-ensembles. Another proof is due
to Johansson [60]. To write down the correlation kernel /& define

T(ti,tj)(x y) _ (7;‘7752‘+1 *ooen X tj717tj)(x7y)7 fori < j?
’ 0, fori > 7,

and let M be the N x N matrix with
Mij = (I)Z * T(tl’tm) * \IJJ

Then, the correlation kernel K is given by

N
K(r,z;7,2") = =T (z,2') + Z (Tt 5 W) () [M Y5 (P, % TETN (). (3.15)

1,j=1

forall z,2’ € Rand 7,7’ € {t1,ta,...,t;m}-
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3.2. Extended kernels

The representation (3.15) is a general statement which takes a more feasible form in the special
case of evolving GUE matrices. Indeed, by a subtle choice for ®; and ¥y, the matrix M is the
identity matrix, and after some calculations, one finds

. 2 eTw—2aJw
(1,7, 2") = ~5.
U iR+e

KGUE

time

]1[7'<T’]

Topy_ 9l
eT'w 2z'w

2 eTwQ—wa 1 UJN
— d d
+ (271'1)2 £:5/2 Z/iR—l—s w eT’z2—2x’z w— 2z N )
for any given € > 0, see e. g. [59] for a proof. Note that K“UF from (3.9) is the special case

KCVYE(z,2") = K§UE(r,2;7/,2") for 7 = 7/ = 1. This is why KSUE is called the extended
Hermite kernel.

3.2.2. GUE minor process

Let us forget about the time evolution for a moment and focus on the GUE minor process.
As before, let H be an N x N Hermitian matrix and for n = 1,..., /N, denote by H" the
submatrix of H that is obtained by keeping only the first n rows and columns. In particular,
HY is nothing else but H, and H' is the same as the upper-left entry H?). Further, denote by
AT < --- < A7 the ordered eigenvalues of A" and by W,, the closure of the Weyl chamber of
type A,

Wy={zeR": 2 <y <--- <1},

thus A" = (A}, ..., A") € W,,. Theniitis a classical fact of linear algebra (Cauchy’s interlacing
theorem) that the eigenvalues of H™ and H™"! interlace,
APt At DV Vi
7 v L 7

v
AT Ay oA
which we denote by A" < A" and define

wnthn — {(z,y) € R x R" : y < x}
= {(aj,y) ER"™ X R": 2y < yp < pqq forall 1 < k < n}.

Now we endow the space of Hermitian matrices with the measure (2.1), i.e., H is a GUE
matrix. Given \**!, what is the distribution of A"? In the GUE case, the answer is simple, see
e.g. [10,35,49]. Its probability density is given by

An(A")

N AT = ) S
POV [N =l L

ﬂWn+1,n ()\n> .
Note that we have the following recursion formula,

Api1 (A"
AN A, (W) = BninNT) (3.16)
Wn+1,n TL'

31



3. At the intertace between GUE and TASEP

For later use, we can thus define the Markov kernel

A ") =l P Lo () 4 6.17)

and combining all this, the probability density of ', ..., AV~1 given AV is

N—-1
1 j—
Avom L) = 11 55— te (3.18)

j z
where G is the Gelfand-Tsetlin cone of depth N,
GN:{(xl,xz,...,xN) ER'XR?x - xRV izt <22 <., ij}. (3.19)

An element x € G is called a Gelfand-Tsetlin pattern. Here is a graphical representation of
x € (G4, which illustrates the interlacing condition on =,

Measures on Gelfand-Tsetlin patterns naturally appear in several fields of mathematics like
(a) random matrix theory [10,50,61,77] where the question of universality was recently ap-
proached in [72], (b) random tiling problems [21,75,77], (c) representation theory [22,23],
and (d) interacting particle systems [15, 74, 75] and diffusions [109, 110]. Probably the most
famous example which belongs to more than one of these classes is the Aztec diamond.

Let us come back to our problem. Using (3.16), we obtain that

AN AN
/ dAVTava = T ——
GN 1<icj<n T

and hence, the probability (3.18) is nothing else but the uniform distribution on G .

To determine the correlation functions of the point process on the GUE minors, a first step
would be to write the measure as a product of determinants. Since the distribution of AV
is basically A% (AY), we only have to consider 1g, from (3.18). Using Sasamoto’s trick
originally employed for TASEP [85], one can replace the interlacing condition by a product
of determinants,

= H det [¢n( Z? )‘Z—H)} 1<k <n+1’
n=1
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3.2. Extended kernels

where ¢, (z,y) = Lj<, and A"! should be read as +oco. Formally, we take A" = virt

as virtual variables such that ¢,,(virt,y) = 1. Then, the joint distribution of A}, A2 ... AV
becomes
s,
n yn+1 N
7 (H det [, (A, AP, <k7£<n+1> det [T (A)] | p ey AN (3.20)
n=1

where dA = [[,.,,,«y d\} and Zy is the normalization constant. Borodin, Ferrari, Prihofer,
and Sasamoto [17] showed that the correlation functions are determinantal if Zy # 0. To
write down the correlation kernel &, define

0, forn > n/,

¢(n,n’)(x’x/> _ {(¢n koeoee ok (bn/_l)(a:,x'), forn < ?’L/,

where (f * g)(z,2") = [ dy f(x,y)g(y, 2’). Further, let M be the N x N matrix defined by
My = (¢_1 % BN % WX ) (2F~1). Then,

! N

K (n, 230, 2') = = (') + 30 W () SO (05 640 (27 ).

k=1 =1
Using biorthogonal ensembles, it is possible to do change of basis such that M is the identity

matrix. For the GUE minors, we then find

2 e—21:w w™
(n,x;n',2') = —— dw ——— — Ljpew
: “2x'w on! <]
271 Jire e w

2 w2 —2zw 1 n
—+ —2f dZ/ dw © 2 9, w—,
(271)% Jy21=c )2 iRope ¥ T2z gy — 7 27

KGUE

minors

for any given € > 0.

3.2.3. Evolution on space-like paths
Evolution of GUE minors

In Section 3.2.1 we considered the dynamics of GUE matrices in time, and in Section 3.2.2 we
studied their evolution on principal submatrices. We combine these two ways of letting evolve
a GUE matrix and define for an N x N GUE matrix H (¢) from (3.12) the principal submatrices
H(t), H*(t), ..., HV(t) as in the previous section. We denote again by A7 () < --- < \™(¢)
the ordered eigenvalues of H"(¢) at time ¢. Then for any time ¢, the collection of all minors
(AL(t),..., AN (#)) is in the Gelfand-Tsetlin cone Gy of depth N that we defined in (3.19).

As we have seen before, for fixed ¢, the evolution on minors n — A"(t) is Markovian with
kernel A”*! from (3.17), and also for a submatrix of fixed size n, the diffusion ¢ — \"(¢) is
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Ny =MNo T .0.0—>.Q¢.O
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Figure 3.1.: Illustration of a space-like path on diffusive GUE minors

Markovian with kernel P from (3.13). We aim to combine these two ways of letting evolve
a GUE matrix and ask whether an evolution like

P A, P2y Ay - At Bl (3.21)

tm—tm—1

with ny,...,n, € Nand ty,...,t, € [0,00) is Markovian. If the set {ny,...,n,,} is of the
form {n,n + 1} for some n € N, i.e., if we restrict the evolution to two consecutive minors,
then the answer is affirmative. Adler, Nordenstam and van Moerbeke [2] showed that in this
case we have a Markov process, and they also provided an SDE for this diffusion. However,
the restriction to three consecutive minors \"*(t) =< A""1(t) < A\"*2(¢) is not Markovian,
which has also been proven in [2].

Having this last result in mind, it seems hopeless to consider transitions both in time and on
minors. Surprisingly, if we restrict ourselves to so-called space-like paths, then we have a
Markov process. Introduce the notation

(n,t) < (n',t) <= n<n and ¢t>t and (n,t)# (n',t).

We say that (n,t) and (n, ') are space-like if either (n,t) < (n/,t') or (n,t') < (n,t). Then,
a space is called space-like if any two points on it are space-like, see also Figure 3.1 for an
illustration. The two extreme cases of space-like paths are (a) fixed level n and increasing
time ¢ and (b) fixed time ¢ and decreasing level n. In Chapter 5.3.1 we will show the following
result.

Result 7. Along space-like paths, the eigenvalues’ process is Markovian.
We are also able to calculate the correlation functions for this point process. For this, we note
that P* and A™*! satisfy an intertwining property,
+1 pn _ pntl pAntl
AZFUP = PP AL
This allows us to write (3.21) as
(B Pty o P, (A ARS - - AR,

and since both P}* P', --- P, and A}l A2 --- Ajm=1 have determinantal correlation,
it possible to show (see Chapter 5.1) that (3.21) has determinantal correlations.
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Ptn+1
Wn+1 Wn+1
ARF O AT
W, — W,
t

Figure 3.2.: Intertwining property for A”*! and P/

Result 8. For any m > 1 pick m (distinct) triples
;= (.Q?j,ﬂj,fj) € Rx N x [0,00)

such that
b1 Sty <o <ty Ny 2nNg 2+ 2 Ny

Then, the m-point correlation function of the eigenvalues’ point process is given by

m G
p( )(%17 A %m) = det [Kspgge—like(%ﬁ %j)]lgi,jgm’
where
2 e(tl—tg)w2—2(m1—m2)w
G
Kspgclz-like(%l; %2) = T ori - dw wn2—m ]l[(nl,t1)<(n2,t2)}
iR+4-e
2 ew2t1—2x1w 1 wnl
+ —2% dZ/ dw 20, _9 (322)
(27i) |2|=e/2 Rpe e¥ t2—2m2z gy — 5 M2
with € > 0.

Evolution of Wishart minors

To obtain Result 8, we used only a few properties that are specific to GUE matrices. Thus,
it seems reasonable that there are other random matrix ensembles with determinantal correla-
tions on space-like paths. For instance, let us take complex Wishart matrices that we already
met in Chapter 2.1.1.

Let By, B>, ..., By be independent p-dimensional complex standard Brownian motions, i. €.,
the real and imaginary parts of B,,, 1 < n < N, are independent real Brownian motions with
mean 0 and variance t/2. We think of By, ..., B, as column vectors and use them to define a
p x n complex valued matrix A",

A"(t) = (By(£), Ba(t), ..., Ba(t)), 1<n<N, t>0.
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3. At the intertace between GUE and TASEP

Then, we set
H"(t) = A"(t)" A"(t), 1<n<N, t>0,

to be the (complex) n x n Wishart (or sample covariance) matrix. Moreover, we denote by
0 < A(t) < --- < AI(t) the ordered eigenvalues of H"(¢). As in the GUE case, orthogonal
polynomials show up when analyzing the measure on these eigenvalues, but this time we have
to deal with Laguerre instead of Hermite polynomials. That is why for fixed n, the process
t — H"(t) is often called the Laguerre process.

Both the evolution in ¢ and the evolution in n are Markov processes, but also the evolution on
space-like paths is Markovian, as we will show in Chapter 5.3.2.

Result 9. Along space-like paths, the evolution of Wishart minors is a Markov process.
This process is a determinantal point process and the correlation kernel is given in the follow-
ing result, see Chapter 5.2 for the proof.
Result 10. For any m > 1, pick m (distinct) triples
;= (zj,n5,t;) e Rx {1,...,p} x [0,00)

such that
t1§t2§---§tm, nlzngz---an.

Then, the m-point correlation function of the eigenvalues’ point process is given by

p(m)(%h ) %m> = det [K;)Iif)e hke<%i; %j>]1§i7j§m’
where
1 exl/(z—tl) (Z —t )p—l—nl
LUE . — !
Kspace hke(%lv %2) - _? fi_‘ 4 or2/(z—t2) (Z . t2)p+1_n2 1[(”17151)'4(”27152)}

1‘2/(,27151) (Z o t1>p717n1 wP 1
j{ dz j{ — .
2771 To r. . e$2/(w_t2) (w — tQ)p-l-l—nz P w — z
For a set 5, the notation ;- fr dw f(w) means that the integral is taken over any positively
oriented simple contour that encloses only the poles of f belonging to S.

3.3. Connecting TASEP and GUE

3.3.1. Dynamics on interlaced particle systems

Result 8 has an interesting relation to interacting particle systems. To explain this connection,
we extend TASEP with step initial condition to a process on the discrete Gelfand-Tsetlin cone
Gy of depth IV,

Gy ={(z"2? .., aM) € Z' x Z2 x -+ x ZN : 2Pl < 2P < a1 1<k <n < N}
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3.3. Connecting TASEP and GUE

® i D
VA I S .
'Y &
. Py
® 4 v
(a) Initial particle configuration (b) Possible configuration after some time

Figure 3.3.: The 2 + 1 dynamics for the interlacing particle system. In (b), if particle (1, 3)
tries to jump, the move will be blocked by particle (1, 2) while if particle (2,2) jumps, then
also particles (3, 3) and (4, 4) will move by one unit to the right.

Borodin and Ferrari [16] (see also [85]) introduced the following particle system on ([N}N.
Denote by x}(t) the position at time ¢ of the kth leftmost particle at level n in Gy for all
1 <k <n < N. As initial condition we choose z}(0) = k —n — 1, see Figure 3.3(a). The
dynamics is as follows: Each particle }; has an independent exponential clock of rate one, and
when the z7-clock rings, the particle attempts to jump to the right by one. If at that moment
Ty = xz_l — 1, then the jump is blocked (see Figure 3.3(b)). If that is not the case, we take
the largest £ > 1 such that x}} = a:Zi% = :c’,jif %, and all ¢ particles in this string jump to
the right by one. This pushing of partlcles on higher levels ensures that the interlacing relation
between the particles is kept for all times t.

Both the evolution on G and its projection onto {2z} : 1 < n < N} are Markov processes,
and the second is nothing else but TASEP with step initial conditions described above. The
whole space-time correlations for this model are not yet completely known, but if we restrict
ourselves to space-like paths, the correlations are available, see [15]: For any m > 1 pick
m (distinct) triples s¢; = (z;,n;,t;) € Z x N x [0,00) such that t; < ¢, < --- < ¢t,, and
ny > ng > --- > n,,. Then, the m-point correlation function of the point process for the
Borodin-Ferrari model is given by

m _ BF
0 <%17 SRR %m> - det[Kspace hke("iﬁ "ij)]lﬁi,jﬁﬂw
where
1 (w _ 1)n1—nge(t1—t2)w
KSpace hke(%b %2) N _27Ti T dw Tt —z2—na+1 l[(nl’t1)<(”27t2)}
0,1

t1w w)nl ng—l—nz 1
dz dw = .
27T1 T, To.. w$1+”1+ e?2?(1 — 2)" w — 2z

Now comes the interesting part. Under the diffusion scaling limit

A7) i lim SEETH) Z 37
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3. At the intertace between GUE and TASEP
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Figure 3.4.: Connection between TASEP and GUE on Gelfand-Tsetlin pattern

one readily obtains that the correlation functions for A\, 1 < k < n < N, are still determi-
nantal along space-like paths with correlation kernel

P 2 p(T—mw?=2(¢-€)w
K(x: n,T,r,n,T ) = —5_ dw ]l[(nﬂ.)<(n/’7./)}

_
271 Jir - wnv "
2 erT—Q:Ew 1 w"
+ 1\ 2 dz dw 227! —2x' 2 n’
(27i) I2|=e /2 Rte e w—2zz

for any given ¢ > 0. But this is exactly the kernel that we obtained for the diffusion on
GUE minors on space-like paths in (3.22)! Thus, along space-like paths, we may identify
the particles z} in the Borodin-Ferrari model and the eigenvalues A} in the GUE diffusion on
minors because the latter arise from the first by taking a diffusion scaling limit. Moreover, as
we mentioned before, the projection on {27 : 1 < n < N} is the continuous time TASEP
with step initial conditions and the projection on {\Y : 1 < k < N} are the eigenvalues of an
N x N GUE matrix. Both projections share one common point, namely the particle/eigenvalue
with label (1, N), see Figure 3.4. In the N — oo limit, the fluctuations of this common point
are described by the same limiting object, the GUE Tracy-Widom distribution,

N
, 2N (4N) B
J%PG (2N)1/3 > 5| = Faue(s), s€ER,

and

lim P(-Nl/ﬁ(xlv(o) +2VN) < s) = Fgue(s), s€R.

N—o0

Thus, this picture explains why Fug shows up in both interacting particle systems and ran-
dom matrices.

38



3.3. Connecting TASEP and GUE

3.3.2. Interlacing and drifts

The picture given in the previous section can be generalized to processes on Gelfand-Tsetlin
pattern where we add a kind of deterministic drift.

Matrix diffusions

The first model we study on G is a variant of the GUE minor process which has been intro-

duced in [61]. Consider an N x N Hermitian matrix /1 with eigenvalues )\{V < ... < )\%.
Denote by H" the submatrix obtained by keeping the first n rows and columns of H, and its
ordered eigenvalues by A7 < --- < A", The collection of all these eigenvalues (A}, ..., \Y)

then forms a Gelfand-Tsetlin pattern, with A\ = (A},..., A?). In this paper we take H () to
be a GUE matrix diffusion perturbed by a deterministic drift matrix M = diag(u1, ..., un),
i.e., we consider G(t) = H(t) + tM with H evolving as standard GUE Dyson’s Brownian

Motion starting from 0. The eigenvalues’ point process £ has support on R x {1,..., N},
&(dz,m) Z On.m0 )\n (dx)
1<k<n<N

and its correlation function is given as follows, see Chapter 6.1 for the proof.

Result 11. For a fixed timet > 0 consider the eigenvalues’ point process on the N submatrices
of H(t). Then, its m-point correlation function o} is given by

o (z1,m1)s ooy (Tmy ) = det[Iy (4, 1), (ﬂfj, nj))]lgi,jgma (3.23)
with (z;,n;) € R x {1,..., N} and correlation kernel
Ei((z,n), (@', n) = =) (z,2)) + 0t (2)d" (7)), (3.24)
k=1
where
, (_1)n —-n z(z'—x)
N (g, 2] = ~——— dz Linen, (3.25)
( ) 2mi Rpp. (2~ fint1) - (2 = o) ]
-1 n—k _ e — Uy,
\I]Zik(x) — ( ) / dZ etZQ/Q—xZ (Z /’Ll) (Z 2 )7 (326)
2mi Rt (2 =) (2 — )
—1)n* — v (w —
(DZfE(:U) — ( ) f dw e—tw2/2+a:w (w /’Ll) (w e 1) (327)
2mi Jr (W= 1) - (w— )

with p— < min{pq, ..., un}-

Remark 3. The integral for ™™ in (3.25) is only well-defined for n' —n > 1. Forn' —n =1
we set 9"V (1, 2') == ¢ (z,2) = e’“‘"(m/_m)ll[xﬂ/] instead.

In an independent work [3] on minors of random matrices by Adler, van Moerbeke, and Wang
appeared on the arXiv after this work, the same kernel is computed and a double integral
expression is also provided.
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3. At the intertace between GUE and TASEP

Interacting particle system

Our second model is a generalization of TASEP with particle-dependent jump rates [16] to
the 2 + 1 dimensional particle system with Markov dynamics introduced in [15]. We denote
by 2} € Z the position of a particle labeled by (k,n), with 1 < k& < n < N, and call n the
“level” of the particle. Particle (k, n) performs a continuous time random walk with one-sided
jumps (to the right) and with rate v,,. Particles with smaller level evolve independently from
the ones with higher level. More precisely, the interaction between levels is the following: (a)
if particle (k,n) tries to jump to = and x’kfj = x, then the jump is suppressed, and (b) when
particle (k,n) jumps from x — 1 to z, then all particles labeled by (k + ¢,n + ¢) (for some
¢ > 1) which were at z — 1 are forced to jump to x, too. This is a particle system with state

space in a discrete Gelfand-Tsetlin pattern.

Consider the diffusion scaling with appropriate scaled jump rates

t=1T, ol =77 VTN, v, =1- 12 (3.28)

VT

Then, in the 7" — oo limit, the particle process {z}(¢)} converges to the GUE minor process
with drift {\}(7)}.

More precisely, let us denote by P the probability measure on these particles with jump rates
v = (vy,...,vn) givenin (3.28). We fix 7 > 0 and set

VT

where A} C R are Borel sets, A = [], .,y A% Moreover, we define

—( ap(rT) — 1T
I/T(A):]P’<—M€A2f0ralllgk§n§]\f)

v(A) =P'(\}(r) € Af forall1 <k <n < N)

where P* is the GUE minor measure with drift diag(u, . . ., ). In Chapter 6.2 we show the
following result.

Result 12. As T' — oo, vy converges to v in total variation, i.e.,

lim sup  |vr(A) —v(A)| =0. (3.29)
T—o0 ACRN(N+1)/2,
A Borel

In particular, v — v weakly.

Warren’s process with drifts

Under a diffusion scaling limit, the discrete model described above gives rise to our third
model which is Warren’s process with drifts. It describes the dynamics of a system of Brow-
nian motions {B},1 < k < n < N} on Gy, where B% is a standard Brownian motion with
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3.3. Connecting TASEP and GUE

drift j; starting from the origin. The Brownian motions B} and B3 are Brownian motions
with drifts 115 conditioned to start at the origin and, whenever they touch B, they are reflected
off Bi. Similarly for n > 2, B} is a Brownian motion with drift y,, conditioned to start at the
origin and being reflected off B}Z*l (for k <n—1)and BZ:ll (for k£ > 2). The process with
1 = -+ = uy = 0 was introduced and studied by Warren in [109].

The correlation functions of this process at a fixed time agree with those of the perturbed GUE
minor process. The proof is in Chapter 6.3.

Result 13. For fixed t > 0, the m-point correlation function o}* of the point process of the
positions of the Brownian motions { B}}(t) : 1 < k <n < N} is also given by (3.23).
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4. Finite time corrections

This chapter provides the proofs of results 1 to 4 presented in Chapter 2.3.2. Itis based on [47].

4.1. Strategy and effects of the discreteness

In this section we present the strategy used to get the results. We will discuss the effects of
the intrinsic discreteness of the models on the fitting functions and on the moments, since it
is relevant at first order. Finally, we explain how to fit data coming from the experiment by
Takeuchi et al.

4.1.1. On the fitting functions

Let us consider Results 2 and 3. For the PNG model and the TASEP, the strategy of getting
(4.5) is the following'. In these cases, the distribution function of h; can be expressed as a
(discrete) Fredholm determinant with kernel K,

P(ht S .flf) = det(]l — Kt)ﬂz({x+l,x+2,...})7 T € 7.

For some constant a € R, the rescaled random variable?
ht,resc = (ht —cit — a)CSt with (515 = C;lt_l/g (41)

lives on I; := (Z — c1t — a)d;. According to the scaling in (4.1), we define the rescaled kernel
Kt,resc as
Kirese(81,82) 7= 0, 'Ky (c1t + a + 816, ext + a + s20;1) 4.2)

so that the distribution function F; defined by

Fi(s) :=P(hy < cit + 50, +a), scER,

'"Mathematically, we get a weaker result, but to illustrate what really happens let us assume that one has (4.5).
What is missing are explicit bounds on the decay of the kernels, which can be obtained by standard asymptotic
analysis; the ingredients like the steep descent paths are all already contained in previous papers. For TASEP
we illustrate the results with a simulation for time ¢ = 1000.

ZNote that we change the notation for the shifted variables. In (2.27) we denoted it by a tilde which we will
drop from now on.
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4. Finite time corrections

can be written as a Fredholm determinant on ¢%([s + d;, 00) N I, §;/) with v the point measure
on [,

(1" 43
- Z ( ) Z of det(Kt,resc(ﬁUi, $j>)1§¢7j§n. (4.3)

Note that F; and the Fredholm determinant in (4.3) are piecewise constant functions, with
jumps for values of s in the lattice I;. The next step is to show that for s;,s, € [; and a
well-chosen a € R,

Kt,resc<317 SQ) - K<817 32) + (5tKasym<317 SQ) + O<5t2) (44)
where K is a symmetric and K sy, an antisymmetric kernel. Then, it follows that?

Ft(S) = det(ﬂ - Kt,resc)62([5+5t,oo)ﬂlt,5tl’)
= det(ﬂ - K)@([s—i—&,oo)ﬂh,&u)
X (1 + (St TI‘((IL — XSKXS)_l)XsKasmeS) + (9(5152)>

where Yy is the projection onto [s + d;, 00) N I;. The operator under the trace is antisymmetric,
therefore its trace is zero and

Ft<8) = det(]l — K)ﬁ([s—i—&,oo)ﬂh,&w) (1 + O((S?)) , s € R. (45)

If we denote by
F(S) = det(Il — K)LQ((s,oo))

the limiting distribution of F}(s) taken as a Fredholm on L?((s, o0)), then by Lemma 4 below,
we get
Fi(s) = F(s + 36:) + O(57),

for s € I;, and by the argument below (that gives Result 3), one finally obtains
pi(s) = F'(s) + O(6).
In Section 4.2 we derive (4.4) for the PNG model and the TASEP.

Let us explain how to get Result 3 without the need of Fredholm determinant representations.
Assume that there exists a constant v such that

Fi(s) = F(s+70,) + 6;Q(s) + O(8;), s €I,

with ' € C? and Q € C'. Then using Taylor expansion we readily obtain

pls) = F(s) + 9207 = (1= ) F"(5) + O@), s €1,

30n a rigorous level, one needs to verify that (a) the O(3?) in (4.4) is an operator with 1-norm of order O(57)
and (b) (1 — xsKxs) ' xs KasymXs 18 trace-class.
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4.1. Strategy and effects of the discreteness

Therefore, if v = 1/2, then p;(s) — F'(s) = O(6?) for s € I;, while the approximation would
be only of order ¢, if v # 1/2.

In our case, see Corollary 5, we have v = 1/2 which is a consequence of the following lemma.
Lemma 4. Assume that the kernel K satisfies*
max{|K (1, z2)], |0;K (21, 22)], |0;0; K (1, 25)|} < Ce~c@rte2) (4.6)

for some constants C,c > 0, for all x1,x5 € (s,00) and i,j € {1,2}. Let &; be as above the
lattice width. Then’

‘det(]l — K)LQ((8+5t/2,oo)) — det(]l — K)gQ([S+5t7oo)m[t75ty)} = 0(57526_0‘8). (47)

Proof. Letusset J; := I; N [s + d0;,00). Then, we have

oo _1 n
det(L = K)e(am = ) ( n,> > opdet(K (i, 7)) 1<ij<n
n=0 ' T1yeeny TnE€Jt

and

n!

) _1)»
det(1 — K)p2((ss8,/2.00) = D 1) / d"z det(K (zi, 7;))1<ij<n-

n=0

(s+6¢/2,00)"
Equation (4.7) then follows from Lemma 18 with
f(xl, ey xn) = det(K(s + 515 -+ T, S + 6t + xj))lgi,jgn

together with Lemma 19. O

A straightforward corollary is the following.

Corollary 5. Assume (4.5) and (4.6) to hold. Then, for large t, we have (remember that
5t = C;lt_l/?))
Ey(s) = F(s+16,) + O(&}) (4.8)

fors e 1.

“With 9; we mean the derivative with respect to the ith entry of the function. The assumption (4.6) holds for
the Airy kernels, see Lemma 20.

SFor the Airy kernels it is easy to improve O(t~2/3e¢~%) to O(t~2/3e~ max{s,0})  However, getting a rigorous
good bound for the error as s — —oo is a much more difficult task (this would be needed for a rigorous proof
of the convergence of the moments).
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4. Finite time corrections

Remark 6. An equivalent way would be to consider the scaling (4.2) without the shift by a,
1.e.,

[?t,resc(sla 82) = 515_1Kt(clt + 51515_17 Clt + 32515_1) - Kt,resc(sl - CL(St, S92 — a(st)

Then, instead of (4.4) we would have obtained
K resc(s1, 82) =K (51, 82) — adp(D1 K (51, 59) + 0K (51, 52))
+ 01 Kpsym (51, 52) + O(67).
In the specific case of the Airy kernels K 4,(x,y) := fR+ dX\ Ai(x + N) Ai(y + \) and
Ka, (2,y) = Ai(z +y),
1K a; (51, 52) + 02K u, (51, 52) = — Ai(s1) Ai(s2),

and
alKAl (81, 82) —+ 82KA1 (Sl, 82) = 2Ai/(81 -+ SQ).

4.1.2. On the moments

Let us now turn to the proof of Result 4. Another consequence of the constant shift by a is that
all finite moments of F, converge as fast as t~2/3. Without the shift, the first moment would
converge only as fast as t~1/3_ while the variance, skewness, kurtosis would of course not be
affected by the shift.

Lemma 7. Assume that® F,(s) = F(s + %)+ O(62)G,(s) for s € I, such that F has finite
mth moment (with F" € L' N C°) and G, satisfying [, ds|s|"|Gy(s)| < oo uniformly in t.
Then,

/sm dFi(s) = / s™dF(s) + O(87)
R R
forallm € N.

Proof. Let us set I, = I,” U I; where I;” = I, "Ry, w = supl; + & = infI;", and
IF =TI+ d¢/2. Then, for any m > 1,

/Rsm dFy(s) = 6 Zsmpt(S) = Z s"(Fy(s) — Fi(s — &r))

sel sel

=D S(E(s) — 1) = Y (s +0)(Fuls) 1)+ Y s"Ey(s)

sel,t selt s€l,
— ) (54 8)"Fy(s) + w"Fy(w — &) — w™(Fy(w — &) — 1)

sel,”

=w" Y ("= (s 6)")(E(s) = 1)+ (8™ (s 4 0)")Fu(s):

4.9)

®Note that this condition is stronger than (4.8) and in general not so easy to obtain rigorously.
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4.1. Strategy and effects of the discreteness

Now we set s = s + 5—5 so that
("= (s+6)™") =(5—-2)" = (5+L)" =-mb 5"+ O(S).
Then using F3(5 — %) = F(3) + O(67)G¢(5) we obtain

4.9) =w™ —md, Y §"NF(3) — 1) —md, »_ "' F(3) + O(67)

self sel;
=uw" — mét/ dss™ 1 (F(s) — 1) — m(St/ ds s F(s) + O(62)
= / s™dF(s) + O(62).
R
where we used Lemma 18 to approximate the sums by the integrals. [

4.1.3. How to fit the experimental data

For completeness, we explain shortly how to fit the experimental data. We partially follow the
description of the Supplementary Notes of [97] and use their notations. Let us assume that we
observed a growth process which is thought to belong to the KPZ class. Let S = ¢7Z, ¢ > 0,
be a discrete subset of R, where the values of the height function at time ¢, denoted by h;,
lives. Let N > 1 the number of experimental measurements and denote by ( - ) the empirical
average over the NV experiments. Having (2.25) in mind, we expect to have

he ™~ Voot + (Ft)1/3C +a

where ( is a GUE (resp. GOE) Tracy-Widom distributed random variable for curved (resp.
flat) limit shape, v, the asymptotic growth velocity and a a constant.

(1) Determine the asymptotic growth velocity v.,. Using

)

S et bt=¥3, b=TY2RE(()/3.

-2/3 M).

one obtains v, from the plot (™7, =

(2) Verify the fluctuation scaling exponent and the fluctuation amplitude 1. With a log-log
plot we can verify if the power 2/3 in

((he = (he))?) = (T)*° Var(¢)
holds and at the same time measure the constant I # 0.

(3) Determine the shift parameter a. Consider Et,resc = (hy — v t)/(I't)'/3, the standard
KPZ scaling. Then, a is measured according to the relation

<%t,resc> - E(C) ~a (Ft>_1/3.
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4. Finite time corrections

Now that wellave determined v, [' and a, we fit the data vs. the theoretical predictions. We
set ht,resc = htJ‘eSC —a (Ft)_l/g.

(4.1) Density: We do a plot of the frequencies of h; yesc With the set (S — voot —a)/ (I't)'/3
in the abscissa axis. Then we compare this with the graph of the Tracy-Widom densites
s+ F'(s).

(4.2) Distribution function: We do a plot of the cumulated frequencies of h; esc With the set
(S — vt — a)/(T't)'/3 in the abscissa axis. Then we compare this with the graph of the
(shifted) Tracy-Widom distribution function s — F(s + 1¢/(I't)/%)).

4.2. PNG and TASEP

In this section we determine the value of the order 1 shifts for the PNG and TASEP models,
both with flat and curved geometry.

4.2.1. Flat PNG

In [18] the formula for the height function h; at time ¢ for the flat PNG was obtained’. It is
shown that
P(hy(0) < H) = det(1 — K™ ) (g1 m2,.)

with o 5
1 t(z—z~
KNG (1 9) =y (4) = 5 f Az
I

Tl Zx1+5172+1 ’

where J, is the standard Bessel function (we use the conventions of [1])%. As t — oo, we
consider the scaling

H(s)=2t+s(20)Y3eN = sel, = (N-2t)2t) '3
Under this scaling it is known that [18]

Kl O (s, 80) i= (20) 2RO (H (s1), H(s2)) = Ai(s1 + 52) = Ko, (51, 52)
as t — oo and uniformly for s, so in bounded sets. Moreover, there are exponential bounds
for the decay of K’ gﬁéiNG (see, e.g., Appendix A.2 of [43]) which ensures that we can take the

limit ¢ — oo inside the Fredholm determinant, leading to’

lim P(he(0) < 2t + s(26)3) = det(1 — K, )12((s.00)) = Faon(2s),
—00

"For the one-point distribution there exists also a formulation in terms of Fredholm Pfaffian.

8With the notation I'g, with S a set, we mean any simple counterclockwise oriented path encircling the set S.

%In [18] the result is for joint distributions of the height function at different positions. The one-point distribution
was also obtained through its relation with symmetrized permutations [8].
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4.2. PNG and TASEP

where Fog 1s the GOE Tracy-Widom distribution function [100].

Here we focus on the first order correction of KE?;;ZNG with respect to K 4, and show that it

is zero. Since the asymptotic analysis is quite standard (see e.g. Lemma 6.1 of [15] for the
explanation of general strategy), here and in the next sections we indicate only the important
steps.

Proposition 8. Uniformly for si, sy in a bounded subset of 1,

KﬂatPNG<31a 82) - KAl (315 82) + O(t72/3>‘

t,resc

Proof. We have

-1
fAatPNG - (2t)"/3 e2z==")
Kt’resc (s1,52) = 2 Jr dz SAt+(s1+s2)(20)1/ 3417 (4.10)

The function z + z — 2z~ — 21n 2 has a double critical point at z, = 1. The steepest descent
path can be taken to be coming into z. with an angle e~™/3, leaving with an angle ¢™/3, and
completed by a piece of a circle around zero with a radius strictly larger than 1. Then, the
leading term in the asymptotic of K[2:"NG comes from a ¢~/3-neighborhood of z.. Setting

z =1+ Z(2t)~/? and doing the large ¢ expansion of the integrand in (4.10), one obtains

flatPNG 1 e’ 73
Kt,?gsc (31752) = %/ e dZ exp (? — CZ)
Z cz? 74
— /3 _ —2/3
X <]_ t <21/3 24/3 + 24/3) +O<t )) s

where we have set for simplicity ¢ := s; + so. Using the contour integral representation of the
Airy function (4.22) we have

AI(Q) | CAT(Q)  AIY(Q)
21/3 24/3 24/3

t,resc

KﬁatPNG<81’ 52) _ Ai(() + t—1/3l ] + O(t_2/3),

Finally, using the identity Ai”({) = ( Ai({) of the Airy function one readily gets that the
square bracket is equal to zero. [

4.2.2. PNG droplet

The formula for the height function h; at time ¢ for the PNG droplet was determined in [81].
Letus fix ¢ € (—1,1). Then,

P(hi(ct) < H) = det(1 — K" e((mri1, 40,3
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4. Finite time corrections

with
KNG (0, ) ZJmM 20V 1 — ) Jap 1 0(20V1 = 2).

>0

We consider the case ¢ = 0 (and drop the index c) since the general case is simply obtained
by replacing t by tv/1 — ¢2. An integral representation of the kernel is given by

2t(zfz*1) zo—1

w 1
KNG () m9) = dw dz — — .
(2mi)? Ty T €T pm oz

As t — 0o, we consider the scaling

H(s)=2t+st'?+aeN = secl,=(N-2t—a)t '/

for a t-independent constant a to be specified later. In [81] it is proven that the rescaled kernel
converges to the Airy kernel, namely

KNG (s, 85) 1=t KNG (H (s1), H (s2))

— dA Ai(Sl + )\) Ai(52 + )\) = KAQ(Sl, 82),

Ry

as t — oo and uniformly for s, s in bounded sets. Moreover, exponential bounds for the
decay of KWYPNG engure that!®

t,resc

hm P(ht(()) S 2t + St1/3 + CL) == det(]L — KAQ)L2((S,OO)) = FGUE<S)>

t—o00

where Foyug is the GUE Tracy-Widom distribution function [99].

The first order correction of K’ gl;g;f NG with respect to K 4, is the following.

Proposition 9. Uniformly for s, ss in a bounded subset of I,, with the choice a = 1/2,

KcuWPNG(Sl, 82) = KA2 (81, 82) + O(tiz/?)).

t,resc

Proof. The rescaled kernel is

PNG t1/3 t(z 27 ) 2t4sott/34a—1 1
curv
Kt,resc (517 82 27_” ﬁ dwﬁ dz etlw—w=1)  24s1t/34a 5 g4’
0 0,w
Here, we have to integrate over two contours, the one in the z-variable enclosing the contour
in the w-variable. The steepest descent path for z can be taken as in the flat case, the one for

w leaves the critical points with an angle e>™/3 and then is completed by a piece of a circle of
radius strictly smaller than 1. Doing the change of variables

2=14t132Z w=1+t"3W,

19The extension to joint distributions was obtained in [81], while the one-point result is reported in [80] using a
mapping to the Poissonized longest increasing subsequence problem, which was already solved in [7].
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4.2. PNG and TASEP

we eventually get

1 ocoe2™i/3 ooe™/3 eZ3/3—le 1
KcurvPNG S1,89) = . dw dz
tyresc ( 7 ) (27T1)2 oe—2mi/3 ooe—Ti/3 eW?/3=2W 7 _ W/

2 2 4 174
x <1+t—1/3[512 sWo 2 - W —aZ—i—(a—l)W] +O(t‘2/3)),

2 4

where the integration paths do not intersect. At this point we see that setting a = 1/2 the first
order term is antisymmetric. In particular we can choose the paths to satisfy Re Z > Re W

and use 1 = [ dAe ) 0 get

KcurvPNG(Sl’ 82) = KAQ(Sl, 82) + t_1/3 (P(Sl, 52) - P(SQ, 81)) + O(t_2/3)

t,resc
with P given by

d? d?
ds?  ds?

1 [ d
P(Sl, 82) = —/ dA Ai(SQ + )\) lds + 51
0 1

Using Ai”(x) = z Ai(z) and integration by parts one then shows P(sy, so) = P(sy,51). [

Without the shift by a in the scaling, the result would have been

KCUWPNG(SI, 82) _ K.A2 (81, 82) . %t—l/?)(_ Ai(31> Ai(SQ))) + O(t—2/3>

t,resc
from which we can read off the shift a = 1/2, compare with Remark 6.

Remark 10. The shift by a = 1/2 is actually independent of ¢ € (—1, 1), which is due to the
fact that it is built up during the first stages of the growth process and for large ¢ it converges
to 1/2. Therefore for large ¢, the shift at time ¢1/1 — ¢? is the same as for the model at time .

4.2.3. TASEP with alternating initial condition

Now consider TASEP with alternating initial condition, z(t = 0) = —2k, k € Z. The joint
distribution of particle positions for this initial condition has been determined in [17]. For one
particle (here —x,,(t) plays the role of h;), we have

P(z,(t) > X) = det(1 — K25 i v o x1y

with
22n+x2

—1
KEthASEP(xlsz) _ zé dz et(1—2z)(
1

1 — Z)2n+:c1+1 '

As t — 0o, we consider the scaling

X(s)=-2n+it—stP—aecZ, ths sel=(Z—t/2+a)t/? (4.11)
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4. Finite time corrections

1.0

0.8

0.6

0.4

0.2

0.0

-2 —1.5 -1 —0.5 0 0.5 1

Figure 4.1.: Distribution function of x,_ 4 (t) for TASEP with alternating initial conditions
and t = 1000. The number of runs is 10°. The dots are the plot of (s € I, P(x 4 (t) > X(s)))
with §; = ¢7/3 and a = 1/2. The solid line is (s, Faor(2s + 18;)) while the dashed line is
(s, Faor(2s + 30, — ady))), where the shift by ad; for dashed line follows from the definition
I;, see (4.11).

for a t-independent constant a to be specified later. It is known!! that [17]

KﬂatTASEP(Sl, 82) = 2X(32)7X(sl)tl/?)K?atTASEP(X(81>’X(82>> N KA1 (81, 82)

t,resc

as t — oo and uniformly for s1, s in bounded sets. Moreover, exponential bounds for the

decay of KIWTASER enqure that

lim P(l‘g(t) > t/2 — Stl/g — CL) = det(]l — KAl)LQ((S,oo)) = FGOE(QS)-

t—o00

flatTASEP
K t,resc

The first order correction of with respect to K 4, is given as follows.

Proposition 11. Uniformly for sy, s in a bounded subset of I;, with the choice a = 1/2, it
holds
KﬁatTASEP('Sl? SQ) - KAl (817 82) + t_1/3KaSym<Sl7 32) + O(t_2/3)7

t,resc

where Kasym (51, 52) = (53 — 1) Ai(s1 + s2).

Proof. The rescaled kernel reads

1/3 os1¢1/3 t/2—sot1/3—q
KﬂatTASEP(Sl 53) = _t /320 7{ dz et(1-22) 2
t,resc ) - i 1/3 2_g1tl/3_q+1
21 282t ) (1 _ z)t/ s1t a+

""The prefactor 2X(52)=X(51) is just a conjugation, which does not change the underlying determinantal point
process, but it is needed to have a well-defined limit.
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4.2. PNG and TASEP

Figure 4.2.: Probabilities for x,,—j; /4 () for TASEP with alternating initial conditions and time
¢ = 1000. The number of runs is 10°. The dots are the plot of (s € I, P(xy4(t) = X (s))5; 1)
with 6, = t7'/3 and @ = 1/2. The solid line is (s,2F|(2s)) while the dashed line is
(s,2F](2s — ady)).

The function z — 1 —22z+ % In % has a double critical point at z. = 1/2. We choose as steep

descent path the one coming into 2, with angle €"/3, leaving with angle e~*/3, and continued

by a piece of a circle around 1 with radius 1/2. Setting Z = t'/3(2z — 1), we get

coel™/3
KﬂatTASEP<81’ 82) . i/ 4z eZ3/3—(81+82)Z

t,resc N 2mi soe—iT/3
X (1 + 3 ((1 —2a)7Z + 522;8122) + O(t2/3)> .
Thus we see that in order to make the first order correction antisymmetric we need to choose
a = 1/2. With this choice,
KE?giASEP(Sl, 52) = Ai(Sl + 52) + %(82 — 81) Ai”(Sl -+ Sg)t_1/3 —+ O(t_2/3>

and the statement follows using Ai”(s; + s2) = (s1 + s2) Ai(s1 + $2). O

4.2.4. TASEP with step initial condition

Now consider TASEP with step initial condition, z;(0) = —k, k = 1,2, ... The joint distribu-
tion of particle positions for this initial condition can be found for example (as special case)
in [16]. For one particle, we have!?

P(x,(t) > X) = det(1 — K™ ) e v o x 1y

12The formula for the one-point distribution can be also given by a last passage percolation model, which can
be analyzed by determinantal line ensembles leading to the Laguerre kernel [57]. Joint distributions for the
related last passage model can be determined via Schur process [57,58,76].
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4. Finite time corrections

with

1 e [(1—2\" w2 1
KstepTASEP _ % d % d
tn ($17$2) (27Ti)2 - z - w etw \ 1 — sntzitl 5 gy
Now consider a particle that at time ¢ is in the “rarefaction fan”, i.e., it is in the region with
decreasing density strictly between 0 and 1. Such particles have a particle number n = ot for
some o € (0, 1). Thus, we define for a couple (n, t) the value of ¢ := n/t and we assume that
this value for large n and ¢ is clearly away both from 0 and 1. Then, the scaling for ¢ — oo is
given by
n=oteN, X(s)=-n+(1—-+0)t—sct'®—acl,
so that
L=(Z—-(1—o)t+a)t™/?

with ¢, = 07/%(1 — \/5)?/3, and for a t-independent constant a to be specified later. It is also
known that [16]

KStepTASEP(Sl,SQ) — 02—1t1/3(1 . \/E)X(sl)—X(SQ)Kit;fTASEP(X(Sl),X(82)> N KA2(81,82)

t,o,resc

as t — oo and uniformly for s1, s in bounded sets. Moreover, exponential bounds for the

tepTASEP
decay of K %, ensure that

lim P(z,(t) > X(s)) = det(1 — Ku,)r2((s,00)) = Faur(s).

t—o00

Now let us focus on the first order correction.

Proposition 12. Uniformly for sy, ss in a bounded set, with the choice a = 1/2, it holds

KstepTASEP(Sl’ 82) _ KA2(817 52) + cQ—lt—l/?)KaSym(Sl’ Sg) + O(t_2/3>, (412)

t,o,resc

where Kosym (1, S2) = P(s1, 52) — P(s2, 51), with

1
P(Sl, 82) = 5/ dA Ai(Sl + )\)
Ry

1-2
X <Ai/(82 + )\) + S9 Ai”<82 + )\) — ﬁ/g Ai(4)<82 + )\)) .

Proof. With ¢; = 1 — 2,/0 we can write X (s) = c;t — cy5t'/3 — a. The rescaled kernel then
reads

cot!/3(1 — \/5)02(81—82)t1/3
(27i)?

etz 1— 2 ot w(a+cl)t—0252tl/3—a 1
X dz dw — 7 )
Ty T, etw 1 —w Z(U+C1)t*0251t —a+1 2 — W

stepTASEP _
Kt,o,resc (517 52) —
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4.2. PNG and TASEP

1.0

0.8

0.6

0.4

0.2

0.0

—4 -3 —2 —1 0 1 5
Figure 4.3.: Distribution function of z,_ /4](15) for TASEP with step initial conditions and
t = 1000. The number of runs is 10°. The dots are the plot of (s € I;, P(x/4(t) > X (s)))
with §; = (¢/2)7'/3 and a = 1/2. The solid line is (s, Four(s + 36;)) while the dashed line
is (s, Four(s + %(& — ady))).
0.4
0.3

0.2

0.1

0.0

Figure 4.4.: Probabilities for x4 (t) for TASEP with step initial conditions and ¢ = 1000. The
number of runs is 10%. The dots are the plot of (s € I;, P(zy4(t) = X (s))d; ") witha = 1/2
and &, = (t/2)~1/3. The solid line is (s, F}5(s)) while the dashed line is (s, F}(s — ad,)).
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4. Finite time corrections

TASEP, ¢t = 1000 Mean Variance Skewness | Kurtosis
Alternating IC —0.60495 0.4027 0.282 0.143
s — Feogr(2s) —0.60327 0.4019(5) 0.293 0.165
Relative error 0.28 % 0.18 % —3.6 % —13 %
Step IC —1.7949(7) 0.842(2) 0.19(0) 0.06(7)
s — Fgug(s) —1.77109 0.8132 0.224 0.094
Relative error 1.3 % 3.6 % —15% —29 %

Table 4.1.: Comparison between alternating and step initial conditions. The data comes from
the simulation used for the previous figures.

The function z — z+0 In(1—2) — (0 +¢1) In 2 has a double critical point at § = 1 — /0. The
steepest descent path for z can be taken such that it comes into & with an angle e~27/3, Jeaves
with an angle e>™/3, and is completed by a piece of a circle around zero of radius strictly larger
than ¢. The steepest descent path for w comes into £ with an angle €™/3, leaves it with an angle
e~™/3 and is completed by a piece of a circle around zero of radius strictly larger than 1. By
the change of variables

=64 tTV3Z w=E+gtVAW

with c¢3 = 07 /%(1 — /o)~'/3 and a large ¢ expansion of the integrand, we have

KStEpTASEP ]- OOGQ‘M/B dZ ooeﬂ-i/B dW eW3/3—S2W 1
t,o,resc (51732) - (271'1)2 /ooe%i/3 /ooe“i/3 eZ3/3—81Z W — 7
W2 — 5,22
X (1 + c;lt—l/s ((a —1)Z —aW + % + C4(Z4 _ W4)> X O(t_g/?)))7

with ¢y, = (1 — 24/0)/(44/0). The choice a = 1/2 makes the first order correction of the
kernel antisymmetric. Finally, we can choose the paths satisfying Re Z < Re W and use
i = Jo dAe 274 10 obtain (4.12). O

Remark 13. Looking at Figures 4.1-4.4 one has the impression that TASEP with alternating
initial conditions is already “closer” than with step initial conditions to its asymptotics at
time ¢ = 1000, which is confirmed by the data in Table 4.1. This is to remind the reader
that although in both cases the error is (’)(t‘z/ 3), depending on the prefactor one still might
see some differences of the accuracy for not too large times ¢. The slower convergence for
curved vs. flat geometry holds also for the PNG model as verified numerically by Richter in
his diploma thesis [84] adapting the numerical approach of Borneman [13].

4.3. PASEP

Consider the partially asymmetric simple exclusion process on Z in continuous time with step
initial condition. A formula for the one-point distribution of the nth particle from the right
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4.3. PASEP

has been derived in [102, 103]. The expression is this time not just a Fredholm determinant,
but an integral in the complex plane of a Fredholm determinant. A rigorous large time asymp-
totic analysis is in [104], in which it is shown that particles in the rarefaction fan fluctuate
asymptotically according to the GUE Tracy-Widom distribution F;yg. The scaling limit to be
considered is!?

n=ote€Z, X(s)=c(o)t—sc(o)t'®—acZ

where
c(0) =1-=2v0, cy(o) =0 Y5(1 = o)?3.

The t-independent constant a will be specified later. Then in [104] it is proven that
Jim P(x,(t/v) =2 X(s)) = Four(s) with y=p—q>0.
—00

Our result on the first order correction is the following.

Proposition 14. Letp € (3,1], ¢ = 1 — p, and set

p,q = ¢ @na a=g5— —=dpg.
—p'—q 2 o

Then for large time t it holds
P (z,(t/7) > X(s)) = Faur(s + 36,) (1 + O(t™/%)), (4.13)
for s in a bounded subset of I, = (7 — c, (o)t + a)d; with &, = c(o) " 1t71/5,

Remark 15. Note that the previously discussed TASEP with step initial conditions is a special
case of this result, withp =1 — ¢ =1, since a1 o = 0

From this result one can easily get the corresponding result for the height function. Let 7, (t)
be 1 if there is a particle at site x at time ¢, and zero otherwise. Then the height function is
defined by

(07t> Z ( 277y(t))7 forx > 1,
h(z,t) =< 2J(0,1), for z = 0,
0,t

2J(0,1) = 32, 1,(1 = 2, (1)), fora < —1,

where J(0,¢) = >_ -, ny(t). To get the result for the i from Proposition 14 one simply uses
the identity

P(z;(t) > z) = P(h(x,t) > 2j + x) (4.14)

with the following result.

3There is a minor difference with respect to the papers of Tracy and Widom. To get their framework we need
to apply the transformation r — —zx.
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4. Finite time corrections

Corollary 16. Let x = £t € Z and set

(1- §2>2/3t1/3

H(s)= g (1+8)— s L

+a, a=2ap,— 1.

Then, for large t it holds

P(h(z,t/v) > H(s)) = Foun(s + 30;) (1 + O(t*/?)),
for s € II', where I!" is defined by the requirement H(s) € 27 if x is even and H(s) € 27 + 1
if 7 is odd. Since the lattice width of h is 2, we have 6" = 24/3(1 — ¢2)=2/3¢=1/3,

From this result it follows that the critical value p. of the asymmetry in PASEP such that the
density (and the moments) of the rescaled integrated current are correct up to order O(t=2/3)
is the solution of

1
Gpeaope =5 > pe=0.T822787862...

In Figure 4.5 we plot the function 2a,;_, — 1.

Proof of Corollary 16. Let us define a linearization of the distribution functions by

{P(xn(t/fy) > cr(0)t — sea(0)t? — L+ Joay,), ifs €,

Fi(s) :=
(5) linear interpolation, otherwise,

and similarly

Fi(s) =  PELE/Y) 2 H(s), ifs € Il
linear interpolation, otherwise.

Then, Proposition 14 tell us that
Fi(s — 10) = Four(s)(1 + O(t7%?)), seR, (4.15)
and we want to show that
Fl(s — 160 = Faun(s)(1 + O@™?)), s eIl + 150
For s € I}' + 167", using (4.14) we have

El(s — L1 = P(h(et, t/v) > H(s — 151))

2 (4.16)
= P(h(&t t/v) = H(s) + 1) = P(zo(t/7) = &)
with o = (H(s) + 1 — &t)/(2t). With this value of o, an algebraic computation gives
€t = ¢y (o)t — seay(0)tY3 — (a — 1/2) + O(t71/3).
Since scy(0)tY? + (a — 1/2) = (s — 16;)ca(0)t/? + a we get that
Fl(s — 16)) = (4.16) = Fy(s — 16, + O(t™/%)) = Faug(s)(1 + O(t™%/?))
where in the last step we used (4.15) coming from Proposition 14. []
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4.3. PASEP

1.5

05

0.5 0.6 0.7 0.8 0.9 1

Figure 4.5.: The function p — a,;_, for p € (1/2,1]. It attains the value 0.5 at the point
p = p. = 0.7822787862. ..

Remark 17. As p — 1/2 the model becomes close to the WASEP studied in [4, 86, 87, 89].
In particular, our result matches the limit behavior of [86]. Indeed, when the asymmetry
B = 2p — 1 — 0, the shift for the fitting of the density behaves as

_e-ng) 1

Ap,1—p = 23 1 + O(B),

with g = —0, In(['(z)) |96:1 = —0.57721 56649 . .. the Euler constant, so that for the height
function the shift is then @ = 8~ (In(23) — vg) — 5 + O(B).

Proof of Proposition 14. As for PNG and TASEP, we indicate the main steps of the asymptotic
analysis to get (4.13) for s in a bounded set, but we will derive bounds for |s| — oo needed
to determine moment convergence. Set u = c;t — cyst'/? —aand 7 = ¢/p < 1. As shown
in [106],

P(z,(t/7) > u) = L%d—u (145 T)oo det (1 + pJ,,)

n = 271 [ y I Joo ws

where (11; ) is the g-Pochhammer symbol (see Appendix A.4 for identities) and the integral
is taken over a circle around the origin with radius in the interval (0, 7). The operator .J,, has
kernel

Ty — L f{d exp(76) (1= Q"¢ flus )

pw\l 2mi eXp(ﬁ;')(l — )u(n )+t C—n '
where 7, 7 are on a circle around 0 with radius » € (7, 1) and ¢ runs on a circle around 0 with
radius in (1,7/7). For 1 < |z| < 771, the function f is given by

0 k

flpz) =Y — 2~

1—7kpu

k=—o00
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4. Finite time corrections

which extends analytically to C* \ {7* : k € Z}.

The function ¢ — >z +oln¢+ ¢ In(1 — ¢) has a double critical point at { = — 1‘9, and
the steepest descent path can be taken such that the n-contour for J, is a pair of rays from ¢
in the directions +7/3 completed by a circle around zero of radius strictly smaller than 1, and
the ¢-contour is a pair of rays from ¢ — ¢~'/3 in the directions 427 /3 completed by a circle

around zero of radius strictly larger than 1. We then do the transformations

(=&t 32, n=¢+etPw, 1 =€+t P,

with c¢3 = 0~1/6(1 — /7)*/3. Expanding f around z = 1 yields

wf(p,z) = %Z +9(u) +O(l2 = 1),

1
where
k oo k
B s T
o 1_M7.k+z7-k_u'
= k=1
This expansion is obtained by dividing the series into {0, 1,...} and {..., —2, —1}, using
k
1

1—rhp 11— 7k

and then change the variable £ — —k in one of the sum. After a large ¢ expansion, the kernel
p.J,, can be written as

1 627”/3ood ew3/37u~)(5+5t/2) e(®—2)8t/2
27Ti e_Qﬂ'i/Boo : GZ3/37Z(S+51:/2) ( w)(w - Z)

exp((c4w4 — %st — ( 9

L2 + O
4 1..2 \(f ) ) —14-1/3 ( 9 )) (4-17)
exp((cazt — 3522 — (2 +a)2)cy 't71/3 + O(t72/%))

\_/

with ¢y = IZ?F Since Re(z — w) < 0, we have
(z—w)(s+6¢/2) o0 N
S / dz el D) (4.18)
w—=z S+6t/2

and plugging (4.18) into (4.17) gives

d e?™/300 3/3 wx 1

2_7“ s461/2 x/e 27i/300 623/3*” z—w
exp((caw* — $sw* — (L\/’? — L)) e B 4 o))
eXp<(C4Z4_ %sz2 _ (L\/%) _ % + ) ) —1y 3 4 Ot 2/3))
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4.3. PASEP

The operator J, is the product C; C5 Cs, where the factors have kernels

1 e #/3
C -
tlw2) = o8 T
Cz(Z, ,’L‘) — 2L eCUZ e—cglt—1/3 [6424_sz2/2—2’(9(.“)/\/5—1/2+a):| +O(t—2/3),
Tl

iy, 1) = /3w o3 071/ [exdt s 20 (g() V-1 /24) |+ 02/

The operator C3 C; Cy, which has the same Fredholm determinant, acts on L*(s + &;/2, c0)
and has kernel with (z, y) entry given by

2mi/3 7i/3 3
1 QW /3—wz 1 -
@ [ s o 0y 2 (100

+ ((ca(w® = 2*) — 2s(w? — 2%) — (g(“) —1+a)(w— z))cglt_1/3>. (4.19)

N[ —

Using again that Re(z — w) < 0, we can write —— = [ dXe™*(*"2). Thus, (4.19) equals

_KAz (.’17, y) + 02_11/L_1/3 (Kasym(x, y) + Ksym( )) + O( _2/3)
where Kygym(z,y) = P(z,y) — P(y, ) with

o) 4 2
P(z,y) = / dAAi(z + N) lc4d— _sd
0

a7 57 2]A1(y+)\)

l—~
—

g(p

+ a) Ai(z) Ai(y) is symmetric. Hence, we have

is asymmetric, and Kym(z,y) = —( .

S

P(2u(t/7) 2 u) = Fou(s + 6:/2)
(1 — (% =5 +a) Tr((1 = XK, xs) " xs (Al @ Al)x, )71 + O(t—2/3)). (4.20)

with x the projection onto (s + d;/2, c0) and

1 dp
Py — (1) (1 7)o
2m Jrcui<1

G:

We will show that G = a,, ; so that by choosing a = 3 — \/%;am the prefactor of the first order
correction vanishes. First note that
1 du utk
o — (170 ) - =0,
Tl Jr<iul<1 M k=0 I H

as the integrand has no poles inside the unit circle. So, we have

1 [e.e]
G:% kz

T<|p|<1 ,U,
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4. Finite time corrections

We use
1 7k 1 1
prk—p g T
the fact that (u; 7)o is analytic inside the integration domain, so that the sum of the contribu-
tions of the simple poles gives

G=3 (-

k=1
There is a simpler expression for GG. Using the identity (A.9) we get
(—1)trie-D/2 1)frte-n/z gt

G=-—

Z Z (T;7)e ; (T57)e 7t —1
Then we use (A.10) and (a; 7)/(aT;7), = (o — 1) /(a7® — 1) to get
L& () ),
asla—14= (7:7)aT;7)e !

:g—{nlail (1%(57' 7’;7‘) — 1)
2l-5)-)

where we used (A.11) in the last equality. Finally, the ¢-Gauss identity (A.12) leads to

((m/ﬁ;r>oo<m>oo B 1) _ Ou(amin)e

a—>104—16—>oo(

G = lim

lim

a=1 @ — 1 =00 \ (T T)oo(T/ 55 T) oo (T5T)oo |yt
00 ¢
= —0u In[(a7; 7)) —0, Zln 7 = Z ! T ;-
a=1 5 T

Replacing 7 = ¢/p leads to G = a,, 4. This and (4.20) shows that

P(an(t/7) > u) = Foun(s)(1 + O(t>/?)).

4.4. Discrete sums versus integrals

Lemma 18. Let f : R" — R be a smooth function such that 9;0f € L*(R™) for any
J,k=1,...,n. Then, for o > 0 (small)

oy f(xé)—/(é A"z f(x

0(8?) Z/ &z 0,0, (2).

7,k=1
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4.4. Discrete sums versus integrals

Proof. We first rewrite
/ . At f(e) = > /“ d"y f(z6 +y)

and use Taylor development

f(@d+y) = fzd) + ; 0; f(xd)y; + % > yuRik(5,y),

k=1
with
|Rjx(6,y)] < max, 00 f(x6 +u)|, for ye€[-3,

NS>

g

‘/ d"z f(x Z 5”f(x5)‘§f—2 Z(S" max |8(9kf(x5—|—u)|

( Oo)n xE(Zj_)" xE(Zj_)" j,k=1 UE[_Q»

The statement then follows because the sum over x converges, as 6 — 0, to

Z/ 4"z 10,0, (2),

7,k=1
which finishes the proof. [
Lemma 19. Let f(xy, ..., x,) = det(K (z;, 2;))1<i j<n with the kernel K satisfying
max{|K(x1, Ig)l, |81K(I'1, 1‘2)|, |8i8jK(:c1, I2)|} S Ce—c(zl+x2) (421)

forall z1,x5 € (s,00), 1,5 € {1,2} and some positive constants c, C. Then,

|8i8jf(x1, Ce ,fl?n)| S 4 C’”n"/2 H e_zm’“

k=1
foralll <i,5 <n.

Proof. Let K; (resp. K ;) be the matrix (K (x;,%;))1<ij<n With the ith row (resp. the jth
column) replaced by its derivative w.r.t. the first (resp. the second) variable. Then,
Oif(z1,...,x,) = det K; +det K;
and from this
0;0;f(z1,...,x,) = det K;;, + det K; ; + det K;; + det K j;

with K;; = (K, );. By Hadamard’s bound, the absolute value of an n x n determinant with
entries in the closed unit disk is bounded by n™/2. It then follows

10;0; f(z1,...,2,)] < 4 Crpn? H e 20Tk

k=1
forany 1 <1,7 < n. []
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4. Finite time corrections

Lemma 20. For the the Airy, kernel, K 4,(x,y) = fR+ dX\ Ai(x + \) Ai(y + N), and the Airy,;
kernel, K 4, (z,y) = Ai(x + y), assumption (4.21) of Lemma 19 is satisfied.

Proof. 1t is easy to see from the integral representation
1 Ooewi/S 1
Ai(z) = —/ dze?’ /327 = —/ dze?’ P27 e >0, (4.22)
27Tl coe—Ti/3 27Tl iR+6
that for any ¢ > 0, there exists a constant Cs € (0, c0) so that
max{|Ai(z)|, |Al'(z)], |Ai" ()|} < Cse™®" (4.23)

uniformly in x € R.

In the case K (x1,22) = fR+ dX Ai(zy + A\) Ai(xze + A) we get from the bounds (4.23) with
€ = %, after integration with respect to A, that

max{|K (21, z2)|, |0;K (21, 22)], |0;0; K (1, 25) |} < Ce™(@r+e2)/2 (4.24)
for some constant C' > 0 and all ¢, j € {1, 2}.

The case K (r1,x2) = Ai(x; + x5) is even easier, since the bound (4.24) comes directly from
(4.23). []
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5. Random matrices and space-like paths

In this chapter we will prove Results 7 to 10 of Chapter 3.2.3. The presentation is taken
from [46].

5.1. Evolution of GUE minors

First, we will prove the theorem that we referred to as Result 8. The issue of the Markov
property is discussed in Section 5.3 below and therefore we assume it to hold in this section.
For 0 < t; < to, the joint distribution of H; = H(n,t;) and Hy = H(n,t,) is given by

Tr(H? Tr((Hy — Hy)?
o (B g (B
1 2 U

The measure on eigenvalues is obtained using Eynard-Mehta formula [42] for coupled random
matrices, which on its turn is based on the Harish-Chandra/Itzykson-Zuber formula [52, 55]
(see Appendix A.7). It results in the following formula.

Lemma 21. Let n be fixed. Denote by \(t), 1 < k < n, the eigenvalues of H(n,t). Their
joint distribution at 0 < t; < ty is given by

const X A(N"(t1)) det (e*o‘?(tl)”\?(tQ))Q/(tT“)) A(N"(t2))

1<i,j<n

N
x [T e X @™ m axe () Az (t),

=1

with A the Vandermonde determinant and \"(t) = (\7(t),..., A\'(1)).

The second formula concerns the joint distribution of the eigenvalues at two different levels.
This result is a special case of the formula (3.20) discussed above. (It is enough to reintegrate
out the lower levels, which gives a Vandermonde determinant).

Lemma 22. Let t be fixed. Denote by \;(t), 1 < k < n, the eigenvalues of H(n,t). Their
joint distribution at levels n and n + 1 is given by

const x A(N"(t)) det[p(A] (), )\?H(t))]lgi,jénHA()\nH(t))
n+1
x T e O/ () a1 (o),

=1
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5. Random matrices and space-like paths

where A, = virt are virtual variables, ¢(x,y) = L,<,, ¢(virt,y) = 1 (and A the Vander-
monde determinant).

The eigenvalues’ process is a Markov process (see Section 5.3 for details) for both fixed matrix
dimension n and increasing time ¢, as well as for fixed time ¢ and decreasing matrix dimension
n. The combination of the formulas in Lemma 21 and Lemma 22 leads to Proposition 23:

Proposition 23. Let Ny > --- > N,, = 1 be integers and 0 < t; < --- < t,,, be reals. We

denote by N\ (t) < --- < \'(t) the eigenvalues of H(n,t) and set Ny = Ny, N;,11 = 0. Then
the joint density of

{Aet;):1<j<m,N; <n<N; 1,1<k<n}
is given by

Nu,
const x det [\IJNifE()\ivl (t1>)}1<k LN,

;_n

m—

N~ N,
X |fi€t tit1,t; k ! (tj-i-l)v >‘£ ’ (tj))} 1<k <N;
7=1

X H det [¢(AZ_1(tj+l)7 AZL(tJ-i-l))} 1§k,€§n] ) (52)

n:Nj+1+1
where .
gb(SL’, y) - ]l[argy]v 925(1?2 7y) =1,
1 (x —y)?
Tis(x,y) = ———mx — ) 1y,
15 (T, Y) W(t_s>exp< — [t>s]

1 T 1 z?
() i ow ()
k () t]f/Q k \/t_l 7Tt1 tl

for k = 0,..., Ny — 1. Here py, is the standard Hermite polynomial of degree k (see Ap-
pendix A.5 for details).

We could have chosen any polynomials of degree £ multiplied by the Gaussian weight without
changing the probability measure (5.2) since the modifications would just affect the normaliza-
tion constant. However, this choice allows a huge simplification of the computations, because
of the properties of Lemma 24 below.

To determine the kernel, we first slightly rewrite (5.2). Let ¢(n) = #{i : N; = n} for

1 <n < N;, and we denote the consecutive times for such a level by ¢} < < t?(n)' Then,
the measure (5.2) can be rewritten as
N
const x | [ (det[ CHEI(Ha D VICHS)] .
n=2
c(n) Ny
< T det [Toye (2L, A?(t:_m}lgk,@) det[ N O ()] -
a=2

66



5.1. Evolution of GUE minors

It is known that a measure of this form has determinantal correlations and the correlation
kernel is computed by means of Theorem 4.2 of [16], which we report in Appendix A.3 for
the reader.

For any given k € Z we set
okt

n,t . w272wx/\/175 k
\Ifk (ZE) = WQ_ﬁ/iR+E dwe w, e > 0. (53)

Forn = Ny, t =t;and k = 0,..., Ny — 1, this function is the one in the measure (5.2), which
is obtained from the first representation of Hermite polynomials in (A.14).
Lemma 24. It holds, for0 <r < s <tandk > 1,
(i) o+ 0t =Wt
(ii) Too % W0 = UL,
(iii) ¢ Tps = Tis * &,
(V) Tes* Tsu = Tr

Proof. For the first relation, we use Re(w) = € > 0 so that we can exchange the two integrals,

(¢p* U (z) = /00 d 21 / duw W —2wu/t% b
g N T yt(k+l)/2 2mi iR+e

2k+1 ]_ 2 k e 2 1
o w —2wy/t /2
T kD2 9044 /-R+ dwetw / dye ™

2271 Jim. . k-1 (T):

For the second identity, we first do the change of variable w = z(s/t)'/? in the integral
representation (5.3) of U}* and then perform a Gaussian integration:

(z—y)> &)

ok+l 2 exp (_ s~ Vi
Tisx U (x :——,/ dze? S/tzk/dy
(Tt, v ) (@) t*D2 271 Jip . R m(t —s)

Z2 —4Xz n,
/ dze?’e 202/ Vizk = T ().
iR+e

2k:+1 1
+(+1)/2 94

The third relation is also easy to verify. Indeed,

(6% Tia)(2.2) = / Ay é(z, y)Tr oy, 2) = / Ay Traly + 2, 2)

- / dy Toole, 2 — 9)bz — 9,2) = / Ay Toa(, 9)6(y, ) = (Tow * 6)(x 2).

The last relation is the standard heat kernel semigroup identity. []
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5. Random matrices and space-like paths

By Theorem 44 and Remark 45, there is a simple way of getting the kernel if the matrix M
with
Mip= (6% T s g TV o 0N ) (h ),

is upper triangular, where 7" := ’7}1( A7 The identities in Lemma 24 give, for k > /,

k =0, forl<k
M — \Ij c(k) k—1 :/d \]:j "e(k) 9 )
ke = (¢ @) Rl" o (T) £0, forl =k,

because the last expression is (after a rescaling in x) proportional to the orthogonal relation
(A.13)forn =0and m =k — /.

Next we need to determine the polynomials ®)*(x), ¢ = 0,...,n — 1, which are biorthogonal
to the functions \IIZ’t(x), k=0,...,n—1,ie., polynomials satisfying
/daz VPN (@)@ (2) = Oy, 1<k 0<n—1. (5.4)
R

Lemma 25. The functions

1 t€/2

o) (z) = (f”) Al B Ui
: R S W N S S U
¢ a2 P\ 2¢ 2mi Jp, 2t

(5.5)

satisfy the relation (5.4).
Proof. Do the change of variable = — 21/t and then use the orthogonal relation (A.13). [

Let us compute the last term in (A.8). To simplify the notations, we set ¢, = t;! and to = ;2.
First, we do the changes of variables w = /t;w and z = /t5Z in (5.3) and (5.5). We obtain

w 24 —2wx, ,anl—k

2n1

t n t

g preh (x 212 (g dw dz

ny— k nz—k( ) 2n2 27“ Ree Ty e? 2t9—23x9 sna+l-k

Now, we take the integral over Z to satisfy |Z| < |w|, say |Z| = ¢/2. This allows us to take the
sum inside and extend it to +o0o (because for k£ > ns the pole at zero for Z vanishes). The sum

over k gives
Zk-1 1

Zwk w—z

E>1

so that we obtain

ng

2n1 2 e¥ t1—2wx1 ™ 1
Pt () prete S da }'{ dz ——— . (5.6
k:z—; 1) P (22) 22 (2mi)? /1R+e ’ |2|=¢/2 P2 Fna g — 7 (5.6
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5.2. Evolution on Wishart minors

The last term we have to compute is ¢(e1:t3). We set ¢pliat te3) (z, ) = @m0 (g 4)) to
simplify the notations. We have

¢(n17t1;n2,t2) — d)*(”Q—nl) * 7;2,7517 if (n17 tl) = (n27 t2)7
0, otherwise.
It is easy to verify that ¢(z, y) has the integral representation

2 q e2w(y—z) 0
= — > 0.

and similarly,

2 4 e2w(y—=)
*n S S )
Then, for (ny,t1) < (ng, t2), a Gaussian integration gives us

onm 9 ewz(tl—tz)—Qw(ml—xg)

(n1,t1;n2,t2) - - = d ) 5.7
¢ (x17x2) 212 271 Jip. . w wn2—m (5.7)

Equations (5.6) and (5.7) yield a kernel which is, up to the conjugation factor' 2"1="2, the
same as (3.22). Thus the proof of Result 8 is completed.

5.2. Evolution on Wishart minors

In this section we prove Result 10 on Wishart matrices. As for the GUE case, the issue of the
Markov property is discussed in Section 5.3 below. For 0 < t; < t5, the joint distribution of
Ay = A(n,t1) and Ay = A(n,ts) is given by

Tr(ATA) Tr((A; — A7) (A2 — Ay))
51 ) P (_ to — 1

const X exp (— > dA; dA,. (5.8)

The measure on eigenvalues is obtained (as in the Ornstein-Uhlenbeck case studied in [101])
by the Harish-Chandra/ltzykson-Zuber formula for rectangular matrices [56, 111] (see Ap-
pendix A.7). It results in the following formula.

Lemma 26. Let n be fixed. Denote by N} (t), 1 < k < n < p, the eigenvalues of the matrix
H(n,t) = A(n,t)*A(n,t). Their joint distribution at 0 < t, < t is given by

(%/A?(tm?(@) (3e) P2 ()4 02)) /(12 10)

p—n

const x det l] —m N7 (1)

1<i,j<n
n

X A" () AN (t2)) [Ty "e X any (1) AN (t),

i=1

where I, is the modified Bessel function of order m, see (A.18).

'A determinantal point process is defined by its correlation kernel, which is defined up to conjugations.
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5. Random matrices and space-like paths

The second formula concerns the joint distributions of the eigenvalues at two different levels.
This is studied in [49] with the following result.

Lemma 27. Let t be fixed. Denote by \i(t), 1 < k < n < p, the eigenvalues of H(n,t). Their
joint distribution at levels n and n + 1 is given by

const x A(N"(£)) det [(A?(£), A+ (1))] 1gi,jgn+1A<A"+1<t))

> H )\n—l—l n+1)e_)\n+1 )/t d)\n( )d)\;n—ﬁ—l(t)’
where N | = virt are virtual variables, ¢(x,y) = Liz>y and ¢(virt,y) = 1.

Putting together the formulas in lemmata 26 and 27 leads to the next proposition.

Proposition 28. Letp > N, > --- > N,, = 1 be integers and 0 < t; < --- < t,, be real
numbers. We denote by \}(t) < --- < A!(t) the eigenvalues of H(n,t) and set Ny = Ny,
Npv1 = 0. Then the joint density of

{N(t):1<j<m,N; <n<N;_1,1<k<n}

is given by
m—1
const x det [\Ifi’v_l]jé’tl (Agl (tl))}Kk <Ny H ldet Lot ()\ivj (tjr1), /\é\[j (tj))hgk,ggnj
7j=1
X H det[@ (A" (t41), N () 1 cppen]s 59
£=N;1+1
where

¢(I,y) = :”-[JJZy} and ¢( n+17 ) = 1;
n/2
n A 2\/ry 1 x+y
ﬁ,s(xay) - (5) In (t-S) t—Sexp (_t—8> Il[x,y>0]1[s§t]7 (510)

0o () o 22
xTr) = — exX —_— — o s
k (p o Nl + k>|t]f+l tl p tl k tl [ >0}

for k = 0,...,N; — 1. Here L} are the generalized Laguerre polynomials of order n and
degree k, see Appendix A.6.

Comparing the mathematical structure of (5.2) and (5.9), we see that the only difference is
that the transition kernel for time depends also on the level. However, this does not pose any
problem, see Remark 46.
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5.2. Evolution on Wishart minors

For k € Z and x € R we set

$—(k+1)

n,t (Z B 1)k z(z—1)/t
\Ilk (I’) = o éo dz We . (511)

Forn =p— Ny,t =ty and k = 0,..., N; — 1 the above defined function coincides with
(5.10). Moreover, the prefactors are chosen such that the following nice recursion relations
hold.

Lemma 29. It holds, fort > s>r >0, n<p,andk > 1
(i) ¢ W5 = v O
(i) T W = W
(iii) ¢+ TZ " = T " w g,
(iv) T % T2om = To

To prove this lemma, we first obtain a different integral representation for (5.11). Namely,
after the change of variable z = Z/(Z — t) we get

_1 _ (2 o t)n—l o
n,t _ z/(Z—t)
Ut (x) = o %ro dz “nrh© . (5.12)

Proof of Lemma 29. Using the representation (5.12), we have

N (z—t)" ' [* /(z—1)
((b*\ljk )(.’IJ) = 2— FOdZW . dyey

st
-1 (z=0)" o/ 1t
= 5 £, 42 e (70 2 1) =W @)
because for £ > 0 the term independent of = has residue equal to zero.

Using the integral representation (A.18) of the modified Bessel function 7,, in (5.9), we get
(forx,y > 0,t > s >0)

. B 1 dz r(l—2)+y(l—271
eal®y) = 2mi(t — s) j{o o1 P <_ t—s ) ’ (>.13)

and the change of variable z = (w — s)/(w — t) leads to

-1 (w — )"~
n Tt qu WY w/w—t)—y/(w=s)
t,s(x7 y) i fi_‘ w (w . S)n—l—le
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5. Random matrices and space-like paths

We choose the integration path for w large and z small such that Re(1/(z—s)—1/(w—t)) <0
(in particular, z is contained in I', so that we write it explicitly as I'; ). Then, we can exchange
the integral over y with the integral over z and w,

(T W) ()

1 (z —s)" ! (w—t)"! _ )y (w—
_ d PO ol Ay v / duy ¥/ =)=/ (w=5)
(27Ti)2 ﬁo < Zn-l—k:—i—l és,z w(w _ S)n-l—le R, ye

n n—1
1 j{ L E=s)" j{ I el Sy P N
(2mi)? Jp, 2R (w — s)" zZ—w

Now we enlarge the path of z so that encloses the path of w. This can be made at the expense
of the residue at z = w. Thus we get

1 l (w—t)"1 N (z—s)" 1
n \Iln,s _ d z/(w—t) % d
( ts ¥ Y )(z) (27i)? Jr, w (w—s)" € T < otk 5 _

1 (w=0"" nit
o S = ),

because the first term is zero, since the residue of z at infinity is zero (k > 0).

For the third identity, we use the representation (5.13) in which we take the path I'y for w to
satisfy |w| > 1. Then,

1 d B T i
O T o) = g et [Cpetw
0

2ri(t — s) Jp, w"

_ L% _dw g (e—tfs(l—w) _ 1) '
27 Jp, (w — 1w

The last term (the integrand independent of x) is zero, because the integrand has residue zero
at infinity, whenever n — 1 > 0. Thus,

1 d o _
To

2mi — 1)wn
1 d 2 > . -
2mi(t — s) Jp, w y
= (T 9)(2,y),

The final identity is true because 7" it is the transition density of a 2n + 1 dimensional Bessel
process. [

We proceed as in the proof of Theorem 8 to show that the matrix M is upper triangular. Indeed,
with 7" := 72", and Lemma 29 we find

c(n)’1

— B —k,tk 0, ifl <k,
Mo = (0 U )k = [ @ =
R4 s if ¢ = k,

because of the orthogonality between \IJZ’t, k > 1, and the constant function.
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5.2. Evolution on Wishart minors

Lemma 30. Define, for { = 0,...,n — 1, the polynomial @?’t of degree ( by

B () = j{ duw " it (5.14)
’ = — — € . .
T N (PR e
These polynomials satisfy the orthogonal relation
/ da U (2) V) () = Ok (5.15)
Ry

fork 0 =0,...,n—1.
Proof. By the integral representation in Appendix A.6 for Laguerre polynomials, we have
t@ wn-l-f
tﬁLn ¢ d —z(w—1)/t
(z/t) = i fgl w (w— 1)6+1 €

and, after change of variable w = w/(w — t), we get t'L}(z/t) = ®}"(r) as defined in
(5.14). The orthogonality relation (5.15) holds because after the change of variable + — xt,
the left-hand side becomes

t/}R da U (wt) @) (xt) = 'tk/ dra"e "Ly (x) Ly (z) = Ok,
+ +

(n+ k)It* g

which is the orthogonal relation (A.15) for Laguerre polynomials. []

We now compute the kernel and start with the sum in (A.8). Let us use the notations t; = t;},
to = t,2. Then we get

n2

D W () D22 ()
h=1
R GRS Y AL
Qm ]io dz ygm dw ev2/(w=t2) (qy — to)p—n2tl Zptl ; (E) ’

We choose I'y and 'y 4, such that they do not intersect, i.e., |z| < |w]|. For k > ny the pole at
w = oo vanishes and we can thus extend the summation over k to oo with the result

_1 oo /Gt) (5 g prmel g

dz —
exz/ w—t2) ( — tz)p—n2+1 P W — Z’

FO r. ,to

which is the second term in the kernel in Result 10. It remains to compute qb(tgll ta3), To
simplify the notations, we set ¢(ta1fa2) (. y) = p(mf1:m2:42) (3 4/). By Lemma 29 we have

¢(n1,t1;n2,t2) — 752;1n1 * ¢*(n2—n1)7 if (n17 tl) = (n27 t2)7
0, otherwise.
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5. Random matrices and space-like paths

The integral representation (5.13) for 7 and ¢*"(z,y) = %gﬁ(m, y) lead to

¢(n1,t1;n2,t2) (ZB, y)

_ (t; — o)1 j{ duw e~ (I—w)z/(t1—t2) /00 Lot t) (z — y)r2—m-1
2mi To wptl—n1 y (n2 oy — 1>'

(t) —t2)n2_n1_17{ d e—r(1—w)/(ti—t2)—y(1—w™1)/(t1—t2)
w
1)

27i wpPtl=n2( — 1)m2—m

Finally, the change of variable w = (z — t3)/(z — t;) gives the first term in Result 10.

5.3. Markov property on space-like paths

What remains to prove is the Markov property on space-like paths that we claimed in Results
7 and 9. The process on matrices is clearly a Markov process along space-like paths. What
we have to see is that the Markov property still holds for the eigenvalues. The key ingredients
are that the measure on matrices is invariant under choice of basis, and that the choice of basis
at an observation point (n,?) depends neither on the eigenvalues at that the previous point
((n+1,t) or (n,t') with ¢’ < ) nor on the eigenvalues at (n, t).

5.3.1. Diffusion on GUE minors

Let us start with the proof of Result 7. We first consider Dyson’s diffusion. Here we denote
by H(n,t) the n x n minor at time ¢ and by A(n, t) the diagonalized matrix of H (n,t) which
is obtained from conjugation by the unitary matrix U (n, t),

H(n,t) =U(n,t)A(n,t)U"(n,t).
The Jacobian of the transformation H (n,t) — (A(n,t),U(n,t)) gives
dH (n,t) = A(A(n,t))*dA(n,t) du,(U(n,t)) (5.16)
where dyi,, denotes the Haar measure on the unitary group U(n).

Consider a measure at (n, t) which is invariant under unitary transformations, i.e. with respect
to the group U/ (n). It has the form

fi(A(n,t)) dA(n,t) du,(U(n,t)) (5.17)

for some explicit function f; (e.g. f1(H) = exp(— Tr(H?)/t)).
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5.3. Markov property on space-like paths

Next fix n and consider times ¢’ > t. Then, the probability measure on the matrices has the
form (see (5.1))

Fr(A(n, £))e d THOO=H@ON® G\ (n, £) dpr,y (U (m, 1)) AH (n, ')
— fi(A(n, t))e P TAOO=-TOOAEOTON N (5, £) dpr,y (U (n, £)) dH (n, t')

because of the unitary invariance of the Haar measure. (Note that here we have set U (n, t) =
U(n,t')*U(n,t)). The integration with respect to dy,(U(n,t)) is made by the well-known
Harish-Chandra/ltzykson-Zuber (A.16) and the result is as in Lemma 21. We are left with a
probability density that depends only on the eigenvalues times d H (n, t'), that is, the projection
onto eigenvalues at time t did not restrict the complete freedom of choice of basis at (n,t').
Otherwise stated, by the decomposition (5.16), after integration over dy,, (U(n,t)) we have a
measure on eigenvalues times dy,,(U(n,t")) of the form (for some explicit f», which can be

easily computed)

fa(A(n,t), A(n,t")) dA(n,t) dA(n, t") dp, (U(n,t")). (5.18)

The other choice is to consider ¢ fixed and look at the measure at (n,t) and (n — 1,¢). The
result explained in Proposition 4.2 of [10] is actually a conditional measure on eigenvalues
given the eigenvalues of the minor of size n, thus it is not restricted to GUE, but it holds for
any measure which is invariant under U(n), see Theorem 3.4 of [35]. The projection on the
eigenvalues at (n,t) and (n — 1,t) leads to Lemma 22. We can also decide to project on the
eigenvalues at (n, t) and (n— 1, ¢) and the eigenvectors at (n— 1, ¢). This means that we do not
integrate out the variables corresponding to the unitary transformations of the (n—1) x (n—1)
minor given by

( U(n a 1,t) (1) ) ,  with U(n — 1,t) distributed as d,, 1,

which form a subgroup of U(n). The eigenvalues A(n — 1,¢) are independent of the eigen-
vectors (thus of the choice of basis U(n — 1,¢)) and the measure on U(n — 1,t) is then
dptn—1(U(n — 1,t)) (see e.g. Corollary 2.5.4 in [5]). The measure on H(n,t) is invariant
under U(n), so are the eigenvalues A(n,t) independent of the choice of U(n — 1,t) (this
last property follows also from the direct computation in Section 3.1 of [49]; Section 3.2 for
Wishart matrices). Thus, the projection on the eigenvalues at (n,t) and (n — 1,¢) and the
eigenvectors at (n — 1, t) leads to a measure of the form

f3(A(n,t), A(n — 1,t)) dA(n,t) dA(n — 1,¢) dpn—1 (U (n — 1,1)). (5.19)
for some explicit function f3 (compare with Lemma 22).

To resume, (5.18) and (5.19) tell us that starting from a measure of the form (5.17), in which
the choice of basis is completely free, the projection onto the eigenvalues obtained by inte-
gration over the angular variables does not fix the basis at the next step in the basic steps of
space-like paths. This implies that the eigenvalues’ process along space-like paths is a Markov
process.
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5. Random matrices and space-like paths
5.3.2. Diffusion on Wishart minors

We now show Result 9 and consider diffusion on Wishart matrices. As before, we define
H(n,t) = A*(n,t)A(n,t) to be the n X n minor at time ¢, where A(n,t) is the p x n matrix
with singular value decomposition A(n,t) = U(p,t)X(n,t)V*(n,t), where U(p,t)isap X p
Haar-distributed on U(p), V' (n,t) is a n x n Haar-distributed on U(n), and 3(n,t) isap X n
matrix with entries zeros except on the diagonal, where we find the singular values of A(n,t).
Also, let A(n,t) = ¥*(n, t)%(n, t) the matrix of the eigenvalues of H (n,t). Thus we have

H(n,t) = A*(n,t)A(n,t) = V(n,t)A(n,t)V*(n,t).
The Jacobian of the transformation A(n,t) — (X(n,t),U(n,t),U(p,t)) gives (see e.g. [73])
dA(n,t) = const x (det(X*(n, t)%(n, )P " H2A2(S* (n, 1) X (n, t))
x dX(n,t) du,(V(n,t)) dp,(U(p,t)),
or, using that A(n,t) = X*(n, t)X(n, t),
dA(n,t) = const x (det(A(n,t)))P""A?*(A(n,t))
x dA(n,t) dp,(V(n,t)) du,(U(p, t)). (5.20)
Therefore, the starting measure at (n, t) has the form

for some explicit function g .

Next consider fixed n and time ¢ > ¢. Then, the probability measure on the matrices has the
form (see (5.8))

(A, £)) e b T ()= A" ) (A) A1)
x dA(n,t) du,(V(n,t)) du,(U(p, t)) dA(n, t')

= g1(A(n, 1)) eber([Z*(n,t’)ff/*(n,t)E*(n,t)f](pJ)] [E(nt) =T (pt)S(n,t)V* (1))

x dA(n, 1) dpn(V(n,1)) dps (U (p, 1)) dA(n, 1)

because of unitary invariance of the Haar measure (we set V(n,t) = V(n,t')*V(n,t) and
U(p,t) = U(p,t')*U(p,t)). An integration with respect to d,,(V (n,t)) du,(U(p,t)) accord-
ing to (A.17) results in the formula of Lemma 26. We are left with a probability density that
depends only on the eigenvalues times dA(n,t’), that is, the projection onto eigenvalues at
time ¢ did not restrict the complete freedom of choice of basis at (n,t’). Otherwise stated, by
(5.20) we have a measure on eigenvalues times dy, (V' (n,t')) du,(U(p,t’)) of the form (for

some explicit g,, which can be easily computed)

ga(A(n, 1), A(n.#')) dA(n, £) dA(n, #) dpsa(V (n, ) diy(U(p, ). (5.22)
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5.3. Markov property on space-like paths

The other choice is to consider ¢ fixed and look at the measure at (n,¢) and (n — 1,¢). This
works as for the Hermitian case and we get a measure of the form

g3(A(n,t),A(n — 1,t)) dA(n,t) dA(n — 1,t) dpp—1(V(n — 1,¢)) dp,(U(p, t)).  (5.23)
for some explicit function g3 (compare with Lemma 27).

Therefore (5.22) and (5.23) tell us that starting from a measure of the form (5.21), in which
the choice of basis (in which the matrix A is represented) is completely free, the projection
onto the eigenvalues obtained by integration over the angular variables does not fix the basis at
the next step in the basic steps of space-like paths. This implies that the eigenvalues’ process
along space-like paths is a Markov process.
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6. Perturbed GUE Minor Process and
Warren’s Process with Drifts

6.1. GUE minor process with drift

This last chapter provides the proofs of Results 11 to 13 from Section 3.3.2 and is based
on [45].

6.1.1. Model and measure

Let (H(t) : t > 0) be a process on the N x N Hermitian matrices defined by

bkk<t)+ﬂkt, if 1 < k§ N,
Hig(t) = { S5 (bie(t) +ibge()), if 1<k <L <N,
5 (be(t) — ibe(t)), if1 <L <k <N,
where {byy, bre, l;kg} are independent one-dimensional standard Brownian motions'. Denote

by M = diag(p, ..., 1) the diagonal drift matrix added to the matrix H. Then, the proba-
bility measure on these matrices at time ¢ is given by

6.1

Tr(H — tM)?
P(H € dH) = const X exp (— x ! )>dH

2t

where dH = [, dHj; [1.<jcr<n dRe(H;x)d Im(H} ) and const is the normalization con-
stant.

Since we are interested in the statistics of the eigenvalues’ minors at time ¢, we first determine
the measure on the eigenvalues of the N x N matrix.

Lemma 31. Assume that jiq, ..., uy are all distinct. Then under (6.1), the joint probability
measure of the eigenvalues \q, ..., Ay of H is given by

PO\ € dA,. .. Ay € dAy)
A(/\h"'?)\N)
<N A, i)

'Here, standard Brownian motions start from 0 and are normalized to have variance t at time ¢.

= const x det [e_()‘i_t“j)Q/(zt)} dA---dA\y (6.2)
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6. Perturbed GUE Minor Process and Warren’s Process with Drifts

with const a normalization constant and A(xy, ..., Ty) = [[1<icjcm(¥j — i) the Vander-
monde determinant.

Remark 32. If 4, ..., uy are not all distinct, we have to take limits in (6.2). For instance, if

/«LIZ"':,UNE,Uathen

N
P(A1 € dAy, ... Ay € dAy) = const x (He—w—tmz/(%))N(Al, o An) Ay
k=1

Proof of Lemma 31. We diagonalize H = UAU* with a unitary matrix U and the diagonal
matrix A = diag(\y, ..., Ay). Then,

o~ THH-MZY/ O — const x e~ THUAUTIMP/ O A2(\) qU d, (6.3)
where dU is the Haar measure on the unitary group /. Moreover, since
Tr(UAU* — tM)* = Tr A* +t* Tr M? — 2t Te(UAU*M)

by integrating over U/ in (6.3) and using the Harish-Chandra-Itzykson-Zuber formula, we ob-
tain the desired expression. []

Now we focus on the minor process. For 1 < n < N let us denote by H"(¢) the n x n principal
submatrix of H (¢) which is obtained from H (¢) by keeping only the n first rows and columns.
In particular, H'(t) = H,,(t) and HY(t) = H(t). We denote by A\?(t) < --- < \"(t) the
ordered eigenvalues of H™(t). It is then a classical fact of linear algebra that at any time ¢, the
process (AL, ... AN)(¢) lies in the Gelfand-Tsetlin cone of order N,

Gy={(z,..., 2N eR x--- xRV : 2" <z" forall I <k <N —1
)
where 2" < 2" means that 2" and z"*! interlace, i.e.,

ot <af < xZLl foralll < k < n.

The induced measure on {\} : 1 < k < n < N} is the following.

Proposition 33. Fixt > 0. Then, under the measure (6.1), the joint density of the eigenvalues
of {H" : 1 <n < N} on Gy is given by

N N
const X l_Ie_“‘%/2 He_(’\kN)2/(2t)A()\N) H etk H omHn N (6.4)
k=1 k=1

1<n<N 2<n<N
1<k<n 1<k<n—1
where the normalization constant does not depend on i1, . . ., [iN.
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6.1. GUE minor process with drift

Proof. We first derive (6.4) under the assumption that the x4, . . ., uy are all distinct; the case
where some of the p; are equal is then recovered by taking the limit. We prove the statement
inductively and follow the presentation in [49]. For N = 1, the density is clearly proportial to
exp(— (Al — u1t)?/(2t)). For N > 2, we consider an N x N matrix H” distributed according
to (6.1) which we write as

N-1 N-1
HN—tM:(H* w)_t(]\/[ O),
w x 0 N

where MY ~! denotes the (N —1) x (N —1) principal submatrix of M, w € CN~!is a Gaussian
vector and = € R is a Gaussian variable. Then we diagonalize H" !, i.e., we choose a unitary
matrix U such that H¥N=! = UAU* with A = diag(A\Y™*,..., \J_]) the diagonal matrix for
the eigenvalues. Since the Gaussian distribution is invariant under unitary rotations and w is
independent of HV~!, we have

U 0\, .~ U 0\da (A w U*MN-U 0
(o D) =nn(o )= (2= (" " )

where < denotes equality in distribution. Applying the map H¥ =1 — (A, U), we get that
measure (6.1) on H¥ is proportional to

* N—-1 2
o ([( ) ) s
N

x dU dw dz d\VL, (6.5)

where dU is the Haar measure on the unitary group U(N — 1). We consider only the part
of (6.5) that depends on U and integrate over /(N — 1), using the Harish-Chandra-Itzykson-
Zuber formula,

det[eAszl“j] >
/ AU AU M) gongt x ol 1SijSN-1
UN—1 A(A a )A(Mlv'-wﬂl\’—l)

After this integration the measure (6.5) reads

N-1
const x P(AN" € dAN 1) emw =i/ TT e s/t du, (6.6)

k=1

We focus on the measure on wj, and represent the variables in polar coordinates, wy, = re'¥*
with 7, € R, and ¢ € [0,27). Since the Jacobian of this transformation is given by
ri--"rny-1, W€ get

N-1 N-1

— 2 2
H e 1okl tdopy, = H rre " dry dipy,
k=1 k=1
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6. Perturbed GUE Minor Process and Warren’s Process with Drifts

where dry, and dyy, are Lebesgue measures on R, and [0, 27). Then we can express 7, and x
in terms of the eigenvalues of H"~! and H", see e.g. [49] for details,

H;V:1()‘£’_1 a )‘év)
Lo = A7

J=1,j#k

N N-1
w=Te(HY —HY) =Y A => A
=1 k=1

2=

]]_[)\N—leN],

The Jacobian of the transformation 7" : (ry,...,ry_1,2) — A" is then given by

AN

T "I“N_1|det T/| = m ]]-[AN—leN]v

and hence, given AV "1, we have

N-1
QTIN H o 1wkt d oy dw — He A2/ @0O)+un Ay H R T2/ @) —pn AT
k=1 k=1 k=1

AN
X ﬁ H[AN—lj)\N} d)\N ng (67)

Here we used that 2(r? + - - - +7r%,_,) = Tr(HY)? — Tr(H"~1)2. Moreover, by the induction
assumption for N — 1 we have

N-1 N-1

POAY" € dAV 1) = const x H e i/ H e*(’\kN_l)Q/(Qt)A()\N*I)
k=1 k=1
< [ e [] e H d\". (6.8)
1<n<N-1 2<n<N-1 n=1
1<k<n 1<k<n

Finally, inserting (6.7) and (6.8) into (6.6) and integrating out ¢ (which multiplies the measure
by a finite constant) results in the claimed formula (6.4). []

6.1.2. Correlation functions

Now we determine the correlation functions of the point process on the eigenvalues {\} :
1 < k < n < N}, and for that purpose, we rewrite the density in (6.4) as a product of
determinants. We set ¢, (z,y) = e“"(y*w)]l{wy} and introduce “virtual” variables \"~! = virt
with the property that ¢, (virt, y) = e#~¥. Then in (6.4) we have, up to a set of measure zero,

n—1
e HnA; ]1[»15/\”“],

det[d, (AP, X ]1<ijn = H

||:j|
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6.1. GUE minor process with drift

Moreover, for k = 1,..., N we set
W (@) — o—2/(20) T (,ukﬂt —x Nt — a:>
N—k \/ﬁ \/% ) ) \/¥ )

where p,, are symmetric polynomials of degree n in n variables defined by py = 1 and

(_1)n/ 2/2
(X1, ..., T,) = ——= dwe " (w—2x1) -+ (w—x, forn > 1.
p(l ) o - ( 1) ( )

Hence we have that

1<k (<N’

N
H e~ MY/COA(AY) = const x det [\Ilevik()\éV)}
k=1

which means that we can rewrite (6.4) as

N N
const x [ [ det[¢n (N )], o [T e det [URT O] pene (69)
n=1 k=1

Note that by a change of variable w = (tz — x)/+/t we have

—1)N-k 2
ot o) = fR dz 2% (2 — ) -+ (2 — ). (6.10)

2mi
A measure of the form (6.9) has determinantal correlation functions and the kernel can be
computed with Lemma 3.4 of [17], see Appendix A.2.

6.1.3. Perturbed GUE matrices

In this section we give a proof of Result 11. We show it first for y11 < - -+ < uy and then use
analytic continuation. Note that for n = N, the function ¥’ in (3.26) is the same as \Il%f &
in (6.10).

Lemma 34. The following identities hold.
(i) Foralln e {1,..., N}, k € Zandt > 0, we have ¢,, * \I/ka = \IJZ:}fk

(ii) Forn <n', we have ¢p i1 % - - - % ¢ = ™) with (™) given in (3.25).

Proof. Because of Re z < u,, we can exchange the two integrals,

(¢n * U325 ()
— /x dy eun(y—x) (_1>TL*1€ / dz etz2/2—yz (Z - lu’1> cet (Z B /’Ln)
oo 2mi Jiggp (z—p1) ... (2 — )
LU g ) ) [ g gt
211 Jimep- (z—=p1) (2 =) J oo

_ (_1)n.—1—k / dz etz2/2—mz (’Z — Ml) e (Z — Iun—l)
21 Jimap (z— ). (2 — )
=0 (o).
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6. Perturbed GUE Minor Process and Warren’s Process with Drifts

This proves the first statement. To show (ii), we first consider the case n’ — n = 2. A simple
calculation gives

¢(n72,n)<x,x/) — <¢n_1 % ¢n)(:13,l’/) _ ( e”n(mlfm) L e“nl(x/$)> ]1[1:>.7;/],
Mn - /-'Lnfl ,Unfl - /’Ln

which has the following contour integral representation,

1 ez(z’—:c)
p 2 (1, 7)) = —/ dz :
21 S (2= pn-1) (2 = pin)

For n’ — n > 2, we get inductively that

(¢ * 0" ")) (2, 2)

_ (—1)”. -n /:z: ay eun(yl‘)/ ds o2 (@' ~y)
2mi —00 iR+p_ (2 = pny1) -+ (2 — fiwr)

-1 n'—n 20 —pnx T
= (Gl . / dz ¢ / dy e¥n=2)
2mi iR+p— (2 = tns1) - (2 = ) oo

—1 n'—n+1 2(z'—z)
= L/ dz ©
21 iR+p— (Z—/,Ln)<2—un+1)...(2_lu/n,)
=", 20),

where, as before, we could exchange the integrals because of Re 2z < p4,,. [

Next we consider the n-dimensional space V,, spanned by the set of functions

{¢1 * ¢(17n) (x(lJJ ')7 S ¢n—1 * ¢(n_17n) (Izii ')7 an(xz_l? )}

According to Lemma 3.4 of [17] we need to find a basis {@ka : 1 <k <n}ofV,thatis
biorthogonal to the set {\IIka 1 <k<n}ie.,

/dx Ut ()™ (x) = O, 1 <kl <.
R

The form of the biorthogonal functions can be guessed, with some experience, from the form
of the kernel [24].

Lemma 35. We have:
(i) V,, is spanned by {x — e"* : 1 < k < n}.

(ii) The functions {@Zik : 1 < k < n} are given by (3.27).
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6.1. GUE minor process with drift

Proof. For any € > 0 we have

(¢ * ¢ (2f 1, 2)

n—k z(x—
= / dy e“ky—(_1>_ / dz ey .
R 2mi iR+ 41— (2 = pgs1) -+ (2 = pn)

We split the y-integral into one over R, and one over R_. Then we can exchange the integrals

over R_ and the imaginary axis provided that Re z < p; and use fR, dy evie—2) = quk.
In the same way we integrate over R, taking z such that pu;, < Rez < pgyi. This gives

fR+ dy ev(m—2) = —ﬁ. Putting these two integrals together we get
B <_1>n—k et?
(o % oMY (ay ) = - — @ dz :
g 2mi Jr, (=) (2 = pera) o (2 — )

which is a constant multiple of e#**. This proves (i). For (ii) we proceed similarly. Using that
1 < k,¢ <n we have

/Rdqusz(l’)q)ﬁe(x)
-1 k+4 tz2—zz o — Uy,
_ )‘2 /dx/ dz]{ dw —, (Z =) - (2= ) oy
@mi)? Je  Jw  Jn, et I (w — pg) - (W — pap)

When integrating  over R_, we take the z-integral such that Re 2z < Rew, and when we
integrate x over R, we choose Re z > Re w. Thus, (6.11) reduces to

(1) o W Per) (0 — i)
2ri J{ B ey oy e R

Hgse-es n

Finally, note that

", (7) = Z bet®  with b; = H :
— g M T My
1= 1=
J#i
which shows that the set {@ka :1 <k <n} spans V,. O

Next we verify Assumption (A) from Lemma 3.4 in [17]. Indeed,

. 1 eftw2/2+:£w .
g = d = Cn®n ni;
P = e A = e

with ¢, = e ™#n/2 £ 0 forn=1,...,N.

Finally, we can also determine the value of the normalization constant in (6.9), since it is given
by 1/ det[MkZ]lgk,égN with

Mg = (g % -+ % % W ) (F1).
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6. Perturbed GUE Minor Process and Warren’s Process with Drifts
Lemma 36. We have det M = Hf:[:l etn/2, in particular det M > 0.

Proof. By Lemma 34 (i) we may write My, = (¢ * \I!Zfz)(xﬁ_l) Thus, for k > ¢,

1

(_1)k—£ )
ngz/dyeﬂky—./ dz el /272 (Z—M£+1)"'(Z_Mk)-
R 2 iR

Once again, we let run the y-integral over R_ and R, separately. In the first case we take the
z-integral such that Re 2 < py, in the second case such that Re z > py. This allows us to
exchange the integrals, which gives

Moy — (=) j{ dz e#2/2 (2 — psr) - (2 — )
H 2mi Jr, 2 — g '

Since the integrand has no poles for £ > ¢, we have M, = 0 in this case, while for k£ = ¢ we
get My, = e /2, Thus, M is upper triangular and the claim follows. [

With the results of Lemma 34 and Lemma 35, Theorem 11 follows directly from Lemma 3.4
of [17].

We have shown that Theorem 11 holds when we impose p1; < --- < py. In particular, the joint
density (6.4) is given by an (N (N + 1)/2)-point correlation function: With m = N(N +1)/2
we have

6.4) = m! p™{ (A2, n),1 <k <n<NY). (6.12)

Let M > 0 be any fixed real number. The density (6.4) is analytic in each of the p; in
[—M,M],j=1,..., N. The same holds for the correlation kernel (take e.g., u— = —M —1).
From this it follows that also the r.h.s. of (6.12) is analytic in each of the variables 1, ..., uy.
Since this holds for any M, by analytic continuation it follows that Theorem 11 holds for any
given drift vector (jy, ..., py) € RY,

6.2. 2 + 1 dynamics with different jump rates

In this section we show that the correlation functions (3.23) that we obtained for the GUE
matrix diffusion with drifts can be obtained as a limit from an G -extension of TASEP with
particle-dependent jump rates. This latter process was introduced in [15]. Before we come to
the convergence result, let us describe the model.

At a fixed time ¢, let us denote by z(t) = (z}(¢t) : 1 < k < n < N) € Gy the positions
of the N(N + 1)/2 particles at time ¢t. We choose initial conditions x}'(0) = £k —n — 1 and
let the particles evolve as follows: Each particle 2} has an independent exponential clock of
rate v, > 0, 1.e., particles on the same level have the same jump rates. When the z}-clock
rings, the particle jumps to the right by one, provided that 2} < xz_l — 1, otherwise we say
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6.2. 2+ 1 dynamics with different jump rates

that z}} 1s blocked by x’,;‘_l. If the z}-particle can jump, we take the largest ¢ > 1 such that
xy = x’gﬂ = ... = xZigj, and all ¢ particles in this string jump to the right by one, see
Figure 3.3 for an example). This ensures that at any time ¢, all the particles are in G. More

precisely, these dynamics imply that the particles stay in a discrete version of G, namely

1 2 N 1 2 N 1 L
GN:{(x7x7-.~7x )GZ XTEX oo X :xz-i- <$ZSZC’Z_—:__1}

The joint distribution of the particles has been calculated in Theorem 4.1 of [16], and the result
is

N
const X det [\P%fk(xév)} L <k AN H det [¢, (z7 ", 27)] 1<i.i<n? (6.13)
n=1

where

~ 1
TN (2) = %yg dz e/ 22N 11 —yppq2) - (1 — oy z),
0

On(T,y) = (Un)y_x]l[yzx] and ¢n($2_17y) = (vn)”.

Actually, Theorem 4.1 of [16] is a statement about the marginal of a (possibly signed) measure.
However, this model is the continuous time limit of a generic Markov chain introduced in
Section 2 of [15], from which it follows that the measure with fully packed initial conditions
yn = 27(0) = —n for 1 < n < N is actually a probability distribution. The formulation of
(6.13) follows then from the theorem by taking a(¢) = ¢ and b(¢) = 0 for all ¢ > 0. Also note
that we put the transition from time ¢ = 0 to time ¢ (which is encoded by 7; in the theorem)
into WX _,. As shown in [16], the correlation functions of this point process are determinantal,
so what remains to do is the biorthogonalization for the generic jump rates.

Proposition 37. Consider a system of particles on G N with fully packed initial conditions and
dynamics described above. Then, at fixed time t, the corresponding point process has m-point
correlation function 0}" given by

o' ((x1,m1), - oy (T, i) = det[KY (i, 1), (27, 15)) 1< j<m

with (z;,n;) € R x {1,..., N} and correlation kernel

Ky ((z,n), (&) = =™ (@, 2') + Y U0t ()@ (2)),

k=1
where
~ 1 1 2V
(n,n') N — d 1 / 6.14
o (,2') = o~ quow 2 T o) (f —wg) T (6.14)
1 e (z—w) (2 —vy)
\I]nvt — d n 6.15
n—k(x) 2 fi—‘O,v < srtn+l (Z _ Ul) . (Z . Uk) ’ ( )
1 +n _ .. — U,
@%@:ffww o) v —ve)
" 27 Jp, e (w—wv)-(w—uy)
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6. Perturbed GUE Minor Process and Warren’s Process with Drifts

Proof. By Proposition 3.1 of [16], we have

~ 1 1— o (1—u,
vt (x) = 2—% duw w1t L= t1w) - (L= vnw)
i Jr, (1 —vw)- - (1 —vw)

for £ > 1. A change of variable z = 1/w then yields (6.15). Next we need to verify that
{U™' 1 <k < n}is biorthogonal to {®"', : 1 < ¢ < n} (see Eq. (3.5) of [16]). We split
the sum over Z into two parts, one over x > 0 and one over x < 0. Then,

>0

1 tz z+n _ Ce — vy,
=3 G b O G e e
= (2mi)? Jp, r, ez (w—wvp) -+ (w—vy)

We choose 'y and I',, such that |w| < |z| which allows us to put the sum inside the integrals.
This gives

x>0

%dw]{ o w" (z—vgg1) - (z—wv,) 1 .
(2mi)? o €™ 2 (W =) (w—vg) z—w

For x < 0 we choose 'y and I',, such that they satisfy |w| > |z| which gives

z<0

_ 1 %dz% dwetz w' (2= vpp1) (2 —v) 1
FO v,z

(27i)2 etv zn (w—wvg)- - (w—1vy) z—w

Thus,

~ ~ 1 _ oo (w — vy,
S B (@) (@) = o 74 o W=V (@ v o
2mi T,

TEL (w_Uf)”'<w_vn)

Finally, we show that {<5Zf£ : 1 < ¢ < n} spans the space of functions V,,. Let us denote by

up < --- < u, the different values of vy, ..., v, and oy the multiplicity of uy, i.e., we have
ai + - -+ 4+ a, = n. Then, we may write
~ 1 wrtn 1
O (x) = 7{ dw —
2mri r, et (w —up)or - (W — uy,)

1 dei—t
o Z —1)! dwei—?

=S Y
i=1 j=1

wrtn 1 )
:ui( etw g (w —uj)
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6.2. 2+ 1 dynamics with different jump rates

For ¢ = 2,...,n, we can represent EISZL in the same way, but with exponents ay; < «,
1 <i<w.Since (g 1,-..,0y) # (1, .. ,0p,) for k # £, this shows that
span{@ﬁfz :1<0<n}=span{z — (v;)"27 1< u<r,1<j<aq},

which is V,. []

We continue by establishing the convergence result under the scaling (3.28). Correspondingly,
we rescale (and conjugate) the kernel K and define the rescaled kernel as

Tn’/2

Ko resc((€), (€,7)) = VT K (7T = &VT),n), (T = €V, n'))

where [ -] denotes the integer part, and the drift v is now pr = 1 — p/v/T. Of course, T is
assumed to be so large that pp > 0 is satisfied.

Proposition 38. For any fixed L > 0, the rescaled kernel K"

7,T,resc CONVEIEES, Mniformly for
£,¢ e[-L, L) as

lim K77 ((§5n), (€, 0")) = KE((€n), (&', n))

T—o0

with Kt = K, given in (3.24).

Proof. Let us define the rescaled functions

Ta(6,€)) = T2 G (1T 4 e T 7T + VT,

T ,resc

g (5) _ T(n—k—i—l)/Qe—TT @Zf?(TT + 5\/?)7

n—k, T resc

T (gl) _ T—(n—k)/QeTT E)Zfz:(TT + flﬁ),

n—k,T resc

where we also rescale the jump rates as in (3.28). We have to show that these functions con-
verge to their analogues from (3.25)—(3.27). We first verify that gb(n’n )(5 &) = o) (€€

T,resc
with n < n/. For y > %/, the integrand of ¢(™™)(y,+') in (6.14) has residue 0 at infinity and
thus the whole integral vanishes, while for y < 3/, there is no pole at z = 0 and therefore

o ) 1
My y) = Y u Lpy<y)-

i=n+1 i VT
Hence, for its rescaled version,
n’ (E=&WT+(n'—n)—1
T,resc\S» Z-_Zn;_l \/T o [y — Hi [£>¢']

which, as T' — oo, converges to

n/

o 1 (—1)=n o(€6)
S €9 ] H{M}ZT/ ds

i=ntl i H T R (2= Hng1) oo (2 = finr)
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6. Perturbed GUE Minor Process and Warren’s Process with Drifts

Next we show that """ (&) = U7 (¢) uniformly for ¢ € [—L, L]. We have

n—k, T resc
ﬁ e™T(z—1)
= — g —
271 o ZTT—f\/T—i—n—i-l

VT

27 Jp,

W 6)

n—k,resc

9(2)
(6.16)

T fo(2)+VT f1(2)+f2(2)

dze g(2)

with fo(2) =2—1—1Inz, fi(z) =&Inz, fo(2) = —(n+ 1) In z, and

VT(=1)+m) (VT(z= 1) + )
(VT(z= 1)+ ) (VT(z = 1) + )

9(z) =
A Taylor expansion around the double critical point of f, i.e., around 2. = 1 gives

fole) = (= = 17+ O((= ~ 1)),

filz) =€z = 1)+ O((= — 1)?),
fa(2) =04+ O(2 —1).

Fixr>1—p_/ VT and deform 'y, to the contour v = v; U 7y, with
=1—pu_/NT+i[-rr], v={z|=r}N{Rez<1—pu_/VT}.

Let us verify that -y is a steep descent path for fy. We have Re fy(z+iy) = z—1— % In(z2+y?%)
on the segment v, so

dRe fo(x + iy) Y

dy a2 g2

Yy S [_Ta T]a

with x = 1—p_/+/T. Thus fy is strictly increasing on 1 — ’\L/—‘T +i[—7, 0) and strictly decreasing
onl — % +1(0, r]. On the segment v, we compute

Re fo(re'¥) = rcosp — 1 —Inr, ¢ € (arccos 1,21 — arccos 1),
which means that f is strictly decreasing on 75 N {Imz > 0} and strictly increasing on
72 N {Imz < 0}. Thus 7 is a steepest descent path for f, and the major contribution comes
from a line segment ys = 1 — \’j—% +i[—6, 6] forany § € (0, 1). Indeed, the error we make when

we integrate along s instead of vy is of order O(e~?) with ¢ ~ §2. We therefore consider the
integral on s only,

27

o / dz g(2)etVTG=D+5 (=12 O (- 1V (= 2T (:-1)%) (6.17)
s
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6.2. 2+ 1 dynamics with different jump rates

Using |e® — 1| < |x|el®], the difference between (6.17) and the same integral without the error
term can be bounded by

T

eclfﬁ(zfl)%»cz %(zfl)2
27 J,

6

O (Z _1, ﬁ<z . 1)2,T(Z . 1)3,T(nfk)/2<z o l)nsz) ’

for some constants c¢; and ¢, that can be chosen arbitrarily close to 1 as 6 — 0. By a change
of variable Z = v/T(1 — z) one then sees that this error is of order O(T~'/2). Hence we can
consider the integral in (6.17) without the error term, which simplifies to

VT

o dze
i /.,

TT(z71)2/2+§ﬁ(zfl)g<z)‘

The error we make if we extend s to 1 — \”/—% +iR is of order O(e~T). All together the integral
from (6.16) agrees, up to an error O(e~", T~1/2) uniform in ¢ € [—L, L], with

\/T TT(2—1)2/2+46VT(2—1)

2 1-"—+iR dee o)
T

where the poles of g lie on the left of the integration axis. After applying the change of variable
7 = —/T(z — 1), this integral can be identified as ¥""7, (£).

Finally we show that ® """ (&) — @7, (¢'). We have

n—k, T resc

VT

@kaj’resc(f/) _ o= 3 dw eTT(lnw—w—l-l)—\/Tﬁ Inw+nlnw
(VT (w—1) +m) - (VT(w 1) + piy—1)
>< )
(VT (w—1)+ ) (VT(w = 1) + p)
and by a change of variable W = —+/T(w — 1) and a Taylor expansion in the exponent we

get

q)sz,T,resc (5/)

Y

- (_l)n'_kH % AW o= ™W?/2+EWHO(T~1/2) (w— ) - - (w — pp—)
2 Jp (W= pa) -+ (W — pin)
which converges uniformly for ¢’ € [—L, L] to @7, (£'). O

With the above results we can now prove the theorem that we named Result 12.
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6. Perturbed GUE Minor Process and Warren’s Process with Drifts

Proof of Result 12. Setm = N(N + 1)/2 and define ny, ..., n,, by
n=1, n=n3=2, ng=ns=ng=23, ..., Myp_N11 ="+ =Ny = V.

For A C R™ we set Ay = (71 — \/TA) N Z. Then, we have

VT(A> = Z det [f{g((%’m), (xj?nj>)}1§i,j§m

_ 2 /A &z det [KM2((rT — [wVT, ny), (7T = [V, ny))]

1<i,j<m
_ /A 4" det (K ryese ([ 1), () m)] o, oo

and
v(A) = Admxdet[Kﬁ((@”i,ni%<$janj))]1gi,j§m'

Since the determinants are continuous functions of the kernels, we have by Proposition 38 that

lim det[j%ﬁTﬁe$X(PrA7T“>7([xj]7n7)>]1gﬁj§nl:: det[l(f((1%77“>?(xj’nﬁ))}lgﬁjSWL

T—o0

for all z4,...,z, € R. Thus we have shown that the densities of the probability measures in
question converge pointwise to each other. Then, (3.29) is a direct consequence of Scheffé’s
theorem, see e.g. [12]. []

6.3. Warren’s process with drifts

We have seen in Section 6.1 that the eigenvalues’ density can be written as a product of deter-
minants, and, in Lemma 36, we calculated the normalization constant, so that the probability
measure on the eigenvalues reads

]P’( (| {Me dX,g}) = 5 (\) dX

1<k<n<N

with dA = [, <;<,.<y AN}, and

N N
Br(N) = det [T )] oy ey [T e 2 T det[0nX " AD] Lie (618)
n=1 n=1

In this section we explain the connection to a system of Brownian motions in Gy. More
precisely, we consider Brownian motions {B,?, 1 <k <n < N}in Gy starting from 0, with
drift p,,, and interacting as follows:

e The evolution of B}’ does not depend on the Brownian motions with higher upper index
(B} form > n + 1, and any ¢);
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6.3. Warren’s process with drifts

n+1 n+1
Ly, Lht1 \u

Figure 6.1.: The two reflection types in our system. They correspond to the boundary condi-
tion (6.19).

e Bl is reflected off By ' and B}~|.

These reflections are sometimes called oblique reflections [107], since in the (2}, 27)-plane
(resp. (932:}, x})-plane) the reflection directions are not normal, but oblique as indicated in
Figure 6.1. Note that the projection on {B},1 < n < N} differs from the process studied

in [78], where the reflections are in the normal direction.

Let us now describe the system of Brownian motions. Denote by p; be the probability density
of the Brownian motions in Gy (its existence will be a consequence of our result). Fol-
lowing [53], where Brownian motions with oblique reflections were studied, for a Brownian
motion with drift x reflected at the boundary in the direction v, the boundary conditions on the
density function may be expressed as follows. Denote by n the normal vector of the boundary,
let v be normalized such that n - v = 1 and let ¢ = v — n. Moreover, set Vo = V —n(n - V),
D* =n -V — q- V. Then, the boundary condition can be written as

D*py = (Vr-q+2u-n)p, on the boundary.

Specializing to our case, we get

0
S (@) + (a1 = pn)pe() =0, (6.19)
L
whenever 2} = 2}t or z = 2], for 1 <k < N — 1.

This process, without drifts, was introduced by Warren in [109], where he determined the
transition probability for any initial condition and also showed that the process is well-defined
when starting from zero. We here consider a system of Brownian motions with constant
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6. Perturbed GUE Minor Process and Warren’s Process with Drifts

(bounded) drifts, which can be expressed as follows,

1 (1)
BY(t) = pal + b7 (1) — Lgn— B;L(t)v n=2...,N,
Bii(t) = pnt + b (t) — Lgn-1_pa(t) + LBZ—B”_l(t>a 2<k<n<N,
BI(t) = puat + B2(t) + Ly _por(t), n=2,....N,

where the b7, 1 < k < n < N, are independent standard Brownian motions and Lx_y (t) is
twice the semimartingale local time at zero of X (¢) — Y'(¢). The question of well-definedness
was related to the, a priori possible, presence of triple collisions. Bounded drifts do not influ-
ence this property as can be seen by applying Girsanov’s theorem like in the works [54, 63].

A standard one-dimensional reflected Brownian motion can also be defined as the image under
the Skorokhod map of standard Brownian motion. More precisely, one defines a Brownian
motion B starting from y € R and being reflected at some continuous function f satisfying
f(0) < y via the Skorokhod representation [6,91] for ¢ > 0,

B(t) =y + b(t) — min {O, Oiggit(y + b(s) — f(s))}
= max {y + b(t), sup (f(s) + b(t) — b(s))},

0<s<t
where b is a standard Brownian motion starting at 0. In this work we take Warren’s pro-
cess with drifts as being the image of independent Brownian motions under the extended
Skorokhod map introduced by Burdzy, Kang and Ramanan, see Theorem 2.6 of [26] for an
explicit formula.

Proof of Result 13. Consider a particle system as in Section 6.2, but let the particles evolve
independently, i.e., 7} (0) = —n + k — 1 for 1 < k < n < N and the evolution of Z}(¢) is a
continuous time random walk with jump rate v,,. Consider now the scaling (3.28)
PN ‘%Z — 7T Hn
t=11T, DB, _ﬁ,vnlﬁ.

The 2} are independent, so in the 7" — oo limit, (B};, 1 <k <n < N) will converge weakly
to a Brownian motion (B}, 1 <k <n < N)in N(N + 1)/2 dimensions, where B} has drift
i, (see Donsker’s theorem). As shown in [S1] by Gorin and Shkolnikov, the particle with the
blocking/pushing dynamics converges wearkly, as 7" tends to infinity, to the Warren process
with level-dependent drifts. To be precise, the proof was written down for the drift-less case.
However, as they mention in Remark 10 of [51], the same proof applies to more general cases,
in particular to our case.

In Proposition 37 we have proven that the correlation functions hava a T'" — oo limit. Further,
the integral of the density is one, so that no mass is lost at infinity or localized in some Dirac
mass. Thus, the n-point correlation function of the reflected Brownian motion is the 7' — oo
limit of the n-point correlation function for the interacting particle system. []
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6.3. Warren’s process with drifts

For completeness, let us remark that the transition density p; in G satisfies:

(1) the Fokker-Planck equation (or Kolmogorov forward equation)

%m(as) => > (% aé;«) ~ fin aak) pi(x), (6.20)

n=1 k=1

(2) the initial condition
lim py(v)dz = IT o (6.21)

1<k<n<N

(3) the boundary condition (6.19).

Proposition 39. Denote by p, : G — [0, 1] be the probability density defined in (6.18). Inside
Gy, this density satisfies the Fokker-Planck equation (6.20), the initial condition (6.21), and
the boundary condition (6.19).

Proof. First observe that by setting WY, (z) = e*~* TN (1), we can rewrite (6.18) as a
probability measure on G with density

N N—-1 n
- d t[ N ] eft,uﬁ/Q (n—pn+1)x
pi(x) = de Nk(xé)gk,egz\fkl;[l gl:[

for x = (2})1<k<n<n € Gy. The double product only depends on ()1 <x<n<n—1, While the
determinant is a function of (2} );<x<xn. We have

0 2 .
2Nt (@) — NN (@),

’ ‘1’ ’ H/

5002 UN-k(8) = 5

from which follows that

—_
VRS
E
=
S
|
=
=
2[0
N——
=
&
o)
\®)
\®)
A

LS O 5 = L)+ > e ila) + L
2 a(xN>2 pe\T) = atpt x 20\ o axé\l P\ T 9

Fork=1,..., N — 1, we have

G P8 = = e B), g PE) = o — B2 (629
and thus, putting (6.22) and (6.23) together,

N n 82 a
> oz (z) = 53 2e(®)

n=1 k=1

N | —

(Z pi— Nk + Z — 1) ) (). (6.24)
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6. Perturbed GUE Minor Process and Warren’s Process with Drifts

Using that

N-1

N N-—1
Npx = pp =Y (g =) =Y iy = png1)” = 2> gt (ptn = fins1) (6.25)
= n=1 =

n=1

the expression between the brackets in (6.24) simplifies to 2 > i, (fn, — fin+1). On the other
hand,

N

Z Z“na ; Pe(z Z N (fon, = pns1)Pe(T) + iy Z aaN Pe(x). (6.26)

n=1 k=1 k=1

Then, (6.20) follows from (6.24), (6.25) and (6.26). The initial condition (6.21) is satified
because as ¢ \, 0, we obtain the Dirac measure at ka = 0for1 < k < N and since we
consider p; on Gy, this immediately implies that xfb =0foralll <k <n < N — 1. Finally,
the boundary condition (6.19) holds trivially by (6.23). []

Remark 40. The three conditions in Proposition 39 are, in general, not enough to prove that
p: = pq. For that, one would need the backwards equation.
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A. Appendix

A.1. Spatial persistence for the Airy processes

At this place we provide the proofs for Results 5 and 6 from Section 3.1.3. Our presentation is
taken from [48]. The starting point of our analysis are two formulas on the continuum statistics
for the Airy, process [83] and for the Airy, process [32]. Let us start with the Airy; process.

Theorem 41 (Theorem 4 of [83]). It holds
P(A;(t) < g(t) forallt € [0,L]) = det(1 — By + A ge " Boy) r2(x)

where g is a function in H (|0, L)), A is the Laplacian, By(z,y) = Ai(x + y), and

o—(@—)?/(4L)
Apg(z,y) = T Vil

with b a Brownian Bridge from x at time 0 to y at time L and with diffusion coefficient 2.

Po0)=a.b(2)=y(0(s) < g(5),0 <'s < L)

To get the persistence probabilities, we have to determine the explicit kernel for the function
g(s) =c.

Proof of Result 5. We have to determine a formula for the Fredholm determinant of the op-
erator 1 — By + A Lyce_LABO. Since the Fredholm determinant is on all R, we can shift the
variables by ¢ and obtain the kernel

Bo(x+c,y+c)—/dzAL7c(:l:+c,y+c)(e_LABO)(z+c,y+c). (A.1)
R

Clearly, Ap .(z,y) = Apo(x — ¢,y — ¢), therefore

(A1) = Ai(x +y + 2¢) — / Apo(x, 2) (e 2 Bo)(z + ¢,y + c). (A.2)
R

By the reflection principle we have

Aro(z, 2) = Pyoy=apr)=-(b(s) < 0,0 <s < L)

1
_ (e—<x—z>2/<4L> _ e—(x+z>2/<4L>>

VAL

]l[a:,z<0] .
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A. Appendix

Moreover, it is known (see e.g. the review [44]) that

e FABy(z + ¢,y 4 ¢) = e B EHRIL Nj(o 4y 4 90 4 [P).
Putting all together we have that (A.2) is equal to

Ai(x 4y + 2¢) — 1jp<q) ([A(m(x, Y+ 2c) — IA(LL(—JC, Y+ 20)) ;
where

Kin(z,y) dz e~ @2 /AL =2L3 3= L+2) Aj(y 4 o 4 [2).

x/F .

Finally, using the identity (see below)

/ dz e~ (@2 /AL =2L3/3o=Ll+2) Aj(y 4+ 2 4 L) = Ai(z + y)

\/R
we get
IA(LL(x, y) = Ai(x +y) — [N(LL(Q:, ).
Replacing this into (A.3) gives the desired result (3.11).

Finally, let us verify (A.4). By the integral representation of the Airy function,

ei‘n’/3oo

Ai(b? 4 ¢)e?’/3Hbe = L / dp g’ /3+bw* —ew
27T]. e—im/3

and a Gaussian integration we get

1 2 3
dz e—(m—z) /4Le—2L /3€—L(y+z) Ai(y p [2)
VarL /]R

ei7'r/3C><>

27

(A.3)

(A4)

(A.S5)

_ eL(:c+y)eL3/3i'/ dw ew3/3+Lw27w(m+ny2) _ Al(l’ +y),
e—im/3

where we used again (A.5).

]

Now we consider the Airy, process. The analogue of Theorem 41 for the Airy, process is

given by
Theorem 42 (Theorem 2 of [32]). It holds
P(As(t) < g(t) forall t € [0, L]) = det(1 — Ka; + A geX™ Kp5) 2w

where g is a function in H'([0, L)), Kai(z,y) = [p_dX\ Ail(z+A) Ai(y+A) is the Airy kernel,

Hyx; = —A + x is the Airy operator, and

pyjge@V/AD)

Ay (z.y) = e e 7
L79(:Uy> \/m

Py0)=a,p(r)=y—r2(b(s) < g(s) — s2,0<s<1L)

with b a Brownian Bridge from x at time 0 to y — L* at time L and with diffusion coefficient 2.
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A.2. Determinantal correlations

We have to determine the kernel for the special function g(s) = c.

Proof of Result 6. We have to compute the Fredholm determinant of 1 — K x;+ A, .o~ FHAi Ky
over L?(R). As in the proof of Proposition 5, we first do a shift in the variables by ¢ and obtain
the kernel

KAi(x+c,y+c)—/dzALyc(x—kc,z+c)(eLHAiKAi)(z—|—c,y+c) (A.6)
R

It is easy to verify that
AL,c(l"a y) = AL,O(QS —C,Y — c)e*LC.

Therefore, the kernel becomes
(A.6) = Kpi(x + ¢,y +¢) — eLC/ dz Apo(z, 2) (" Kz5) (2 4+ ¢,y + ¢).
R

Thus, the desired formula follows if we can show that
—(z—2)%/(4L)
._13/3€
La=L3/3 Pr0)—zp(r)==—12(b(s) < —s%,0 < s < L)

V 4 L - (A7)
- ﬂ[a:,zSO} /]Rdlu euL¢(I7 M)¢(27 M)

AL,0<x7 Z) =¢

To this end we use another representation of the kernel Ay o, that can also be found in [32]
and that follows from (A.7) by applying the Girsanov theorem and the Feynman-Kac formula.
According to this characterization, Az o(z, 2) = u(L; x, 2)1[.<0) is the solution at time ¢t = L
of the boundary value problem

Owu+ Hayu=0 forx <Oandt € (0,L),
u(0;2,2) = 6,
u(t;xz,z) =0 forx > 0.

The solution of this problem can be found in [70, eq. (40)],

u(t; @, z) = Il[x<0]Adue“t¢(x,u)¢(z,u)-

Note that in [32] the boundary value problem describes the action of the operator Ay, o while
our formulation considers the kernel of this operator. [

A.2. Determinantal correlations

Since we refer several times to Lemma 3.4 of [17], we report it here.
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Lemma 43 (Lemma 3.4 of [17]). Assume we have a signed measure on {z' : 1 <i <n < N}
given in the form,

N—-1
1
7 T detlon (@}, 27 i<ijcnss det[TN (23 )i<ijen,

n=1
where x;, | are some “virtual” variables and Z is a normalization constant. If Z # 0, then
the correlation functions are determinantal.

To write down the kernel we need to introduce some notations. Define

¢(n1’n2)(xay) - {(¢n1 Kok ¢n271>($,y), np < na,

O, nq Z na,

where (a x b)(x,y) = > ., a(z, 2)b(z,y), and, for 1 <n < N,
Un_j(2) = (@« UX_)(y), j=1....,N.

Set ¢o(29,x) = 1. Then the functions

{(@o % o) (@1, 2), o (g ¥ ¢ ) (@23, 2), P (2, 2))

are linearly independent and generate the n-dimensional space V,,. Define a set of functions
{®3(x),5 =0,...,n — 1} spanning V,, defined by the orthogonality relations

> Or ()W (x) = b,
Jor0<i,5<n-—1
Under Assumption (A): ¢, (27,1, x) = cnq)(()nﬂ)(:c), for some ¢, # 0,1 < n < N —1, the

kernel takes the simple form

n2
K(ny, 21509, 72) = —¢(n1’n2)($17x2) + Z Wt _(@1) Pl (22).
k=1

A.3. Space-like determinantal correlations

For convenience we report here the statement of Theorem 4.2 of [16].

Let X1,...,Xy be finite sets and ¢(1), ..., c¢(NN) be arbitrary nonnegative integers. Consider
the set
X=XU---ux)u---u(xyu---uxy

with ¢(n) + 1 copies of each X,,. We want to consider a special form of the weight 1V (.X) for
any subset X C X, which turns out to have determinantal correlations.
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A.3. Space-like determinantal correlations

To define the weight we need a bit of notations. Let
Oy ) X1 x X, = C, n=2,...,N,
¢n(virt, - ) : X, = C, n=1,..., N,
U¥(-): Xy —C, j=0,...,.N—1,
be arbitrary functions on the corresponding sets. Here the symbol virt stands for a “virtual”

variable, which is convenient to introduce for notational purposes. In applications virt can
sometimes be replaced by +co or —oo. The ¢,, represents the transitions from X,,_; to X,,.

Also, let

N N N-1 N-1 N-2 2 1 1
ty < - <tun) =tg S"'Stc(z\/—n:to S"'Stc(g):toﬁ'“ﬁtc@)

be real numbers. In applications, these numbers refer to time moments. Finally, let

Tengn (-, ) Xy x X, = C, n=1...,N, a=1,...,¢(n),

a—1
be arbitrary functions. The 7 sn  represents the transition between two copies of X,, associ-

ated to “times” ¢]_, and ¢.

Then, to any subset X C X we assign its weight W (X) as follows. W (X) is zero unless X
has exactly n points in each copy of X,,, n = 1,..., N. In the latter case, denote the points of
X in the mth copy of X,, by 27 (¢,), k=1,...,n,m =0,...,¢(n). Thus,

X=Azf(tr)|k=1,...,n;m=0,...,¢(n);n=1,...,N}.

Set
N
W(X) = IT | det [on(zi (6671, 27 ()] oy
n=1
e(n)
X Hdet [7;3,152,1(]"7];@2)? m?(ﬂi—l))] 1<k,I<n det [\Ij%—l<x;€\[(té\7))} 1<k,I<N?
a=1
where 2"~ !(-) = virt foralln =1,..., N.

In what follows we assume that the partition function of our weights does not vanish,

Z:=> W(X)#0.

XCXx

Under this assumption, the normalized weights W (X) = W (X)/Z define a (generally speak-
ing, complex valued) measure on 2% of total mass 1. One can say that we have a (complex
valued) random point process on X, and its correlation functions are defined accordingly, see
e.g., [25]. We are interested in computing these correlation functions.
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A. Appendix

Let us introduce the compact notation for the convolution of several transitions. For any

n =1,..., N and two time moments ¢ > t; we define
no__
Ty = Topee * Ty * T T =T g

where we use the notation (f xg)(z,y) := >, f(,2)g(z,y). For any time moments £} > {72

with (al, ni) # (ag, ny), we denote the convolution over all the transitions between them by
¢(ta1 ta3)-

nl ny
¢( ay ’ta2) — T"l tnl * ¢n1+1 * Tn1+1 + 3k ¢n2 * Tn2 2.

c(n2) raz

.. . . . tnl’th .
If there are no such transitions, i.e., if 1 < ¢72 or (a1,n1) = (a2, n2), we set gller-fez) = (),

Furthermore, define the matrix M = || M}, ||sz:1 by

My = (¢px TF s x gy TV % UY_,) (virt)

and the vector
te , _
e — g0« wN o 1=1,...,N.

The following statement describing the correlation kernel is a part of Theorem 4.2 of [16].

Theorem 44 (Part of Theorem 4.2 of [16]). Assume that the matrix M is invertible. Then
Z = det M # 0, and the (complex valued) random point process on X defined by the weights
W (X) is determinantal. Its correlation kernel can be written in the form

K(ny, tyl, w1309, 152, 09) = —ot ai “2)(171,352)

a27

ni,tq _ Lo g2 .
+ Z S0 () (¢ 0D vint, ).

k=1 I=1

Remark 45. As stated in the complete statement of Theorem 4.2 of [16], there is one situation
where the kernel takes a simple formula. Namely, when the matrix M is upper-triangular, then

n2

natas _ Loogna )
q)n2fk2 (x) := Z[M Mea (e * oo a2)) (virt, z)

=1

are the function biorthogonal to ¥ " “3( ) obtained for the non-extended kernel (i.e., at fixed
level and fixed time). In the case of random matrices which we consider, the functions @, ot
k=0,.. — 1, have to be polynomlals of degree k because det(®}"(7;))1<;x<n must be
proportional to A(z) = det(x® 257 ")1<j k<n, the Vandermonde determinant. Then, the kernel is
simply written as

7L1 tn2

n 5ta atZLLQ
K(ny, t)h, wy;mg, th2, mg) = —glar'e2) (2, +Z‘I’Zi W (1)@, (). (A-8)
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A.4. q-Pochhammer symbols, q-hypergeometric functions

Remark 46. Looking at the proof of the above theorem in [16] one also sees that the time
evolutions 7 can be taken to be level-inhomogeneous, i.e., the 7;3»@6‘ can be a function of
7.ty and also of the level n. Such a situation occurs for the Wishart matrices case.

The proof of Theorem 44 given in [16] is based on the algebraic formalism of [25]. Another
proof can be found in Section 4.4 of [50]. Although we stated Theorem 44 for the case when
all sets X,, are finite, one easily extends it to a more general setting. Indeed, the determinantal
formula for the correlation functions is an algebraic identity, and the limit transition to the case
when the X,,’s are allowed to be countably infinite is immediate, under the assumption that all
the sums needed to define the x-operations above are absolutely convergent.

A.4. g-Pochhammer symbols, ¢g-hypergeometric functions

Here we collect some identities on g-Pochhammer symbols and ¢-hypergeometric functions,
used for the PASEP. We use the standards as in [65]. The g-Pochhammer symbol is defined by

(150)00 = [ J(1 = pg") and (3 q)n = 1:[(1 — ug®).

They satisfies the following identities:

nqn(n—l)/Z

(155 ¢)n = ((HA (@)oo = ) <_1>( " (A9)

14" q)oo ¢ q)n

n=0
so that in particular (0;¢)s = 1 and (1;¢)s = 0.
The g-hypergeometric function is defined by

aly...,0p
r¢s
(bl,...,bs

- ((1,1; Q)n T (ar; Q)n z" n_n(n—2)/2\+s—r
2] = ~1 . (A0
& Z) 2 (b1; Q-+ (bs; O (60 (=1 ) (A.10)

n=0

In particular, it holds

a1, ..., 0r-1 . T aly...,0p i
r—1¢s< bl;---ybs q,2> _algnmr(ﬁS(bl,...,bs q; ar> : (All)
The g-Gauss identity is
a, B (v/ 0 @)oo (7/B5 @)
q; = . (A.12)
2¢1( g | 7) (7 @oe(7/(B); @)oo
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A. Appendix

A.5. Hermite polynomials

The Hermite polynomial of degree n is denoted here p,, (x). We use the normalization of [65],

/ dx e_m2pn(x)pm(x) = OmnV/m2"nl. (A.13)
R

There are two useful integral representations for the Hermite polynomials p,,(z),

277,

w2—2zw, n

pu(T) = e’ dwe w

1\/,% iR+e (A.14)
i) = 5o dee Pz,

27Tl To

as well as the identities (with 0 < g < 1) which can be found in [59, 65]

1 (x —qYy _ —xQ - pk
T () R A
/Oo dy eV’ pn(y> =e” p”—l(‘r)’
pn(x) = (_1)npn<_x)'

These identities can be useful to rewrite the double integral representation into an expression in
terms of Hermite polynomials (as it was made e.g. in Lemma 24 of [20] for the antisymmetric
GUE minor kernel).

A.6. Laguerre polynomials

The generalized Laguerre polynomials L? of degree &k and order p are polynomials on R
defined by
xPe® dF

Li(@) = T (arhe),
They satisfy the orthogonal relation
k)!
/ dz 2Pe ™" L2 (2) LA (z) = v Z' i (A.15)
R+ °

and have integral representations,

1 —z(w—1),,p+k
o= o f w0
'

271 (w—1)k+1 7
Py = PR L (2~ 1)f
L) = Klap 27 J dz Zptktl
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A.7. Harish-Chandra/Itzykson-Zuber formulas

A.7. Harish-Chandra/Itzykson-Zuber formulas

Here we report the Harish-Chandra/ltzykson-Zuber formula as well as its generalization for
rectangular matrices.

Let A = diag(ay,...,ay) and B = diag(by, ...,by) two diagonal N x N matrices. Let du
denote the Haar measure on the unitary group U ( ). Then,

N— eazb] )
dp(U) exp (Tr(AUBU*)) 1<”<N, (A.16)
/LI(N) H A(b)
where A(a) is the Vandermonde determinant of the vector a = (ay, ..., ay).

The extension to rectangular matrices can be found in section 3.2 of [111] and was derived
in [56]. Let A be a complex N; x Ny matrix, B a complex N, X Ny matrix so that the Ny X Ny
matrices A*A and BB* are diagonal with (real positive) eigenvalues a = (ay,...,ay,) and
b= (by,...,bn,) respectively. W.l.o.g. we assume N7 > N,. Then,

/ du(U) / du(V) exp (Tr(AUBV* + B*U*A*V))
(N2) U(N1)

) H;le Ll HM1 Yl det (In,—ny (24/asb; ))1<”<N2 N
It AAG) T (ab) a2t

where [, is the modified Bessel function defined by

1 ea:(erz*l) > xk xk+|n\
L(22)= — ¢ dz— N2 ¢ A18
(22) mfiﬂ T kz_% k! (k + |n|)! (A.18)

forn € Z.
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