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Zusammenfassung

Im Rahmen dieser Arbeit werden zunächst Implementierungen zweier verschiedener Schalenmo-
delle zur Bestimmung von Bindungsenergien in bosonischen Mehrteilchensystemen vorgestellt und
verglichen.

Schwerpunktm̈aßig verwende ich das Schalenmodell zur Beschreibung von Bosonen mit Kontakt-
wechselwechselwirkungen, die in einem Oszillatorpotential eingesperrt sind, als auch für wechsel-
wirkende4He-Atome und ihre Clusterbildung. Ausgiebig werden Abhängigkeiten der Resultate im
Schalenmodell von seiner Modellraumgröße untersucht und M̈oglichkeiten gepr̈uft, eine schnel-
lere Konvergenz zu erreichen; wie etwa ein Verschmieren derKontaktkr̈afte sowie eine unitäre
Transformation der Potentiale. Hierbei werden Systeme betrachtet, die maximal aus zwölf Boso-
nen bestehen.

Zus̈atzlich wird ein Verfahren zur Bestimmung von Streuobservablen anhand von Energiespektren
von Fermionen im harmonischen Oszillator vorgestellt und gepr̈uft. Schlussendlich werden anhand
der Abḧangigkeit von Energiespektren von der Oszillatorbreite Position und Breite von Streureso-
nanzen extrahiert.

Teile dieser Arbeit sind zuvor in folgenden Artikeln veröffentlicht worden:

• S. Tölle, H.-W. Hammer, and B. Ch. Metsch, Universal few-body physics in a harmonic trap,
C. R. Phys.12, 59 (2011).

• S. Tölle, H. W. Hammer, and B. Ch. Metsch, Convergence properties ofthe effective theory
for trapped bosons, J. Phys. G40, 055004 (2013).
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Abstract

In this thesis, I introduce and compare an implementation oftwo different shell models for physical
systems consisting of multiple identical bosons.

In the main part, the shell model is used to study the energy spectra of bosons with contact interac-
tions in a harmonic confinement as well as those of unconfined4He clusters. The convergence of the
shell-model results is investigated in detail as the size ofthe model space is increased. Furthermore,
possible improvements such as the smearing of contact interactions or a unitary transformation of
the potentials are utilised and assessed. Systems with up totwelve bosons are considered.

Moreover, I test a procedure to determine scattering observables from the energy spectra of fermi-
ons in a harmonic confinement. Finally, the position and width of resonances are extracted from
the dependence of the energy spectra on the oscillator length.

Some parts of this thesis have been previously published in following articles:

• S. Tölle, H.-W. Hammer, and B. Ch. Metsch, Universal few-body physics in a harmonic trap,
C. R. Phys.12, 59 (2011).

• S. Tölle, H. W. Hammer, and B. Ch. Metsch, Convergence properties ofthe effective theory
for trapped bosons, J. Phys. G40, 055004 (2013).
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Chapter 1

Introduction

Strongly correlated systems play an important role in several fields of physics, ranging from atomic
and nuclear to condensed matter physics. The description and understanding of such systems is
challenging, since they defy a treatment by perturbative methods. A new perspective is offered in
the framework of effective theories and especially of effective field theories (EFT). In particular,
systems with a large magnitude of the scattering lengths|a|will be at the focus of this thesis. Below,
I shall introduce the concept of the scattering lengtha, discuss the importance of large scattering
lengthsa and the description of such a system. But first, I shall cover some relevant experimental
issues.

In atomic physics an active field of research concerns the so-called ”BEC-BCS crossover”. This
means the transition from the phase of a Bose-Einstein condensate (BEC) of weakly interacting
bosons, consisting of tightly bound fermions, to bosonic pairs of weakly interacting fermions,
called the cooper pairs, in the Bardeen-Cooper-Schrieffer (BCS) phase. The former phase be-
longs to small positive scattering lengths with the BEC-limit1/a → +∞. In contrast, the latter
phase is characterised by a small negative scattering length with the BCS-limit1/a → −∞. Con-
sequently, the crossover happens in the vicinity of the resonance where the interaction leads to an
unnatural absolutely large scattering length1/a ≈ ±0. After the discovery of high-temperature
superconductors in 1986 and the realisation that their phase seemed to be related to this crossover,
a lot of effort was made to examine the phenomenon in other experiments. In 1995, BEC’s could
finally be realised in gases of rubidium by Anderson et al. [1]. Great progress was made with the
realisation of a BEC in6Li and 40K by various groups in 2003 [2–4]. These systems enabled a
deeper investigation of the crossover with the help of Feshbach resonances, since Feshbach reso-
nances permit a continuous modification of the inter-particle interaction through external magnetic
fields and thus a tuning of the scattering lengtha. An extensive review of the research about the
BEC-BCS crossover is given in [5].

Strongly interacting systems with large scattering lengthoccur also in nuclear physics. Prominent
examples are the proton-neutron system [6] and the scattering ofα particles [7] as well. Further-
more, halo nuclei are at the focus of experimental research [8]. Along with large scattering lengths,
they are characterised by a small nucleon separation energyand a large radius, i.e. a long tail in
the nucleon density distribution. The main characteristicof halo nuclei is that the inner core is
surrounded by weakly bound nucleons. In nature, several halo nuclei could be identified: for ex-
ample11Li, the Borromean nucleus6He and the most exotic nucleus8He with four weakly bound
neutrons.

1



2 Chapter 1. Introduction

A successful theoretical approach towards understanding the low energy physics for strongly cor-
related systems is the application of effective theories. They exploit a separation of scales in
systems in order to find the appropriate degrees of freedom and describe their behaviour in a
model-independent and systematically improvable way. At each order of the corresponding ef-
fective theory there is a fixed number of unknown effective parameters which have to be matched
to observables. In the context of quantum field theories the technique of effective theories is used in
a multitude of applications. A prominent example is chiral perturbation theory (ChPT), an effective
description of quantum-chromo-dynamics (QCD) at low energies [9]. Another example is the halo
EFT, which is successfully applied for halo nuclei mentioned above and is based on a dominant
large scattering lengtha [10].

In this thesis, I shall use the framework of the non-relativistic local EFT. Since I shall concentrate
on small momenta, a non-relativistic approximation is justified. In the case of non-relativistic field
theories, quantum field theory is equivalent to quantum mechanics; such field theories conserve the
particle number. Consequently, the principles of effectivefield theories (EFT) can be applied to
quantum mechanical problems, as pointed out by Lepage [11]. Hence, I shall work in a quantum
mechanical framework. Deeply connected to the non-relativistic EFT’s is the effective range expan-
sion (ERE) in non-relativistic scattering theory [12]. The ERE is the low energy expansion in the
squared momentumk2 of the scattering phase shiftδ(k). The first and the second expansion param-
eter of the S-wave scattering phase shift are the negative inverse of the scattering length(−1/a)
and the effective ranger0, respectively. These parameters can serve as scattering observables to
determine the effective parameters in the EFT.

In the non-relativistic local EFT, the Hamiltonian is expressed as the integral of a Hamiltonian
density that depends on terms consisting of combinations ofquantum fieldsψ and their gradients at
the same point. The form of the interaction terms in the Hamiltonian are restricted by the principle,
that the EFT has to fulfil the same symmetries as the fundamental theory, such as Galilean symmetry
[6]. In the situation of a dominant scattering lengtha, the leading interaction term is the two-body
contact interaction without any range. In this case, the in principle highly complicated potentials
are then approximated by schematic contact potentials. Accordingly, observables depend only on
the scattering length in first order. This limit with vanishing effective range is called the scaling
limit. It can be applied to very different physical systems.Therefore regimes with unnaturally large
a are called universal. The theoretical interesting limit ofa→∞ is called the unitary limit.

In the three-body system, a new effect occurs in the vicinityof the unitary limit, which was pre-
dicted by Efimov in 1970 [13]. The Efimov effect signifies that in the universal regime there are
three-body bound states, so-called trimers, with binding energies which are approximately related
to the geometric series. In the unitary limit, there are infinitely many trimers with binding ener-
gies exactly related to the geometric series with an accumulation point at the 3-body scattering
threshold. The first experimental evidence for an Efimov trimer was provided in a trapped gas of
ultra-cold Cs atoms by its signature in the 3-body recombination rate [14]. Since this pioneering
experiment, there has been significant experimental progress in studying ultra-cold quantum gases
and in several experiments the Efimov effect could be detected [15]. So far these experiments were
carried out in a regime where the influence of the trap on the few-body spectra could be neglected.
However, the trap also offers new possibilities to modify the properties of few-body systems. In
particular, narrow confinements can lead to interesting newphenomena.

In the first part of this thesis, I shall focus on these effects. This work is partially an extension of
my diploma research topic [16]. For the sake of simplicity the confinement potential is idealised
by an isotropic harmonic oscillator potential (HOP). For such an harmonic confinement, the energy
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spectrum for the two-body sector was determined in the scaling limit by Busch [17]. Furthermore,
the binding energies of three-body states could be found in the unitary limit [18]. The main ob-
servation is that there are two types of states: The first typeincludes states, which are completely
specified by the scattering lengtha. States, which belong to the second type, are called Efimov-like
and are fixed by the scattering length and an additional three-body parameter. For finite scattering
lengths and systems with more particles analytic solutionsare unknown.

An established method to treat a confined strongly correlated few body system with spherical sym-
metry is the shell model. The basic idea is that the infinite-dimensional Hilbert space spanned by
(anti-)symmetric products of so-called single-particle wave functions is truncated e.g. by an energy
cutoff. Afterwards, a basis is chosen for this finite-dimensional model space. In this model space
the Schr̈odinger equation can be solved, since the Hamiltonian is just a finite matrix which can be
diagonalised numerically. There are several versions of shell model approaches which vary in de-
tails. I shall concentrate on shell models for bosons with a basis of symmetric products of harmonic
oscillator functions. Here, I work with the uncoupled oscillator basis in one-particle coordinates,
the so-calledM -scheme, as well as with angular momenta coupled basis states expressed in relative
coordinates, the so-calledJ-scheme. Both methods have specific advantages and drawbackswhich
are pointed out in section3.3.

The second part is devoted to the description of4He clusters consisting ofA atoms. The theoretical
and experimental investigation of atomic clusters is an important part of chemical physics. Helium
has two stable isotopes: the rare fermionic3He and the common bosonic4He. The latter has the
outstanding property that the Efimov effect can be observed directly because of the unnatural large
scattering length of4He atoms [6]. Furthermore, the understanding of4He clusters is the basis
to study properties of4He liquid droplets and the related phenomenon of super-fluidity of liquid
4He [19]. Also the resonant absorption of nanosecond laser pulses in doped Helium nanodroplets
is an active area of research [20].

The existence of4He A-body clusters could be proved by diffraction experiments from a trans-
mission grating [21]. Unfortunately, properties of the clusters cannot be measured in these experi-
ments, e.g. even the binding energies are not directly observable in these experiments. Only in the
two body sector the binding energy of the two-body cluster, the dimer, can be deduced from its
size [22].

Various theoretical approaches have been used to investigate such systems and determine the bind-
ing energies. Moreover, several ab initio potentials for4He-4He interaction are constructed within
different approaches. The potentials and these approachesare summarised in [23]. The binding
energies of the trimer ground and excited state are determined for a variety of these ab initio poten-
tials. I shall concentrate on the so-called LM2M2 potential[23].

For few atoms the sizes and energies ofA-body clusters have been calculated with Monte Carlo
methods and hyper-spherical adiabatic expansions. Up to the valueA = 10 numerical results for
the ground and first excited states for the LM2M2 potential are presented in [24]. The challenging
part in theA-body calculations, as in nuclear physics for the nucleon-nucleon potential, is the treat-
ment of the hard core repulsion of two4He atoms, which causes a coupling of low and high energy
physics. In order to solve the Hamiltonian numerically, some cutoff must be introduced. However,
the corresponding results contain large errors due to the coupling of the different energy scales. A
possible solution is to construct effective potentials andcircumvent the hard core repulsion. For
instance, in [25] Gattobigio et al. propose a parametric interaction consisting of an attractive He-He
Gaussian potential with a contribution of a Gaussian-hyper-central three-body force, which repro-
duces the LM2M2 ground state trimer binding energy. Due to the research location of the majority
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of the related research collaboration, I shall call this potential the Pisa potential. Gattobigio et al.
solved the Schr̈odinger equation with the Pisa potential in the hyper-spherical harmonic expansion
for up to six He-atoms and published the binding energies forthe ground state and first excited
state [25].

There exists, however, a systematic procedure of the similarity renormalisation group (SRG) trans-
formation to construct effective potentials based on unitary transformations. Numerical results
become more stable for SRG-transformed potentials at the expense of the introduction of effective
many body forces induced. In principle, these forces have tobe considered for few body systems.

With my shell model methods for bosons I shall investigate the 4He system for up to twelve parti-
cles. In cooperation with Prof. Forssén from Gothenburg, I utilise the Pisa potential as well as the
LM2M2 potential as inter-particle potentials. For the purpose of better convergence, here indeed
the SRG evolution is exploited.

My thesis is organised as follows. In chapter2, I outline the quantum mechanical scattering theory
and the basics of effective theories. Then the Efimov effect is elucidated and the SRG transfor-
mation is introduced. At the end of this chapter, relevant experimental techniques are mentioned,
which enable to observe the systems which I consider theoretically in this thesis. Subsequently,
I explain both the shell model approaches, which I used, in detail in chapter3 and compare their
merits and demerits. In the following chapter4, my results for few bosons in the scaling limit in
traps are presented. The calculations for atomic clusters of Helium atoms is the subject of chap-
ter 5. In chapter6, I collect alternative approaches and ideas. Finally, I summarise my results and
give an outlook of possible further studies in chapter7.



Chapter 2

Physical Background

In this chapter I introduce the theoretical concepts and basic principles of experiments for the phys-
ical systems considered. At first, the basics of scattering theory are summarised in section2.1. The
definition of differential cross sections, the connection to Green’s functions as well as the partial-
wave S-matrix are outlined. Afterwards, I give an introduction to effective theories in section2.2
and explain the local non-relativistic effective field theory (EFT) which will be utilised for resonant
interactions. In section2.3 the Efimov effect is elucidated with and without a confining trap in the
form of an oscillator potential. Subsequently, the similarity-renormalisation-group (SRG) transfor-
mation method is explained in section2.4, as I need this technique to handle realistic potentials. At
the end, in section2.5I mention some experimental techniques for observing the physical systems
considered theoretically in my thesis.

2.1 Scattering Theory

Here, I present an overview on the quantum theory of non-relativistic, elastic scattering. It follows
the introduction to scattering theory in the textbook of Taylor [12].

2.1.1 Differential Cross Section

For the sake of simplicity, I describe the scattering of a projectile on an infinite-heavy target
described by a potential. The reformulation for two-particle scattering in relative coordinates is
straightforward.

The starting point is the time-dependent Schrödinger equation with the HamiltonianH. The Hamil-
tonian consists of the free part, i.e. the kinetic energyH0 =

p2

2m
, and the time-independent potential

V . The formal solution of the initial value problem is given with the time evolution operatorU(t)
as

i
∂

∂t

∣∣ψ(t)
〉
= H

∣∣ψ(t)
〉
, U(t)

∣∣ψ
〉
:= e−iHt

∣∣ψ(0)
〉
=
∣∣ψ(t)

〉
. (2.1)

In general, a scattering experiment is designed to start with a free incoming wave packet, the asymp-
totic state

∣∣ψin(t)
〉
= U0(t)

∣∣ψin

〉
before the actual scattering process, and to detect long time after

5



6 Chapter 2. Physical Background

the scattering (t→∞) a free outcoming wave packet, the asymptotic state
∣∣ψout(t)

〉
. Both packets

are asymptotes of the actual orbitU(t)
∣∣ψ
〉

, i.e.

U(t)
∣∣ψ
〉
−U0(t)

∣∣ψin

〉 t→−∞−→ 0 , U(t)
∣∣ψ
〉
−U0(t)

∣∣ψout

〉 t→+∞−→ 0 . (2.2)

The maps between the actual orbit and the asymptotes define the Møller wave operatorsΩ+ and
Ω− by
∣∣ψ
〉
= Ω+

∣∣ψin

〉
= lim

t→−∞
U †(t)U0(t)

∣∣ψin

〉
,
∣∣ψ
〉
= Ω−

∣∣ψout

〉
= lim

t→+∞
U †(t)U0(t)

∣∣ψout

〉
. (2.3)

Thus, the whole scattering process from
∣∣ψin

〉
to
∣∣ψout

〉
is described by a combination of Møller

operators, which is called the S-matrixS. One finds
∣∣ψout

〉
= S

∣∣ψin

〉
:= Ω†

−Ω+

∣∣ψin

〉
. (2.4)

In momentum space equation (2.4) becomes

〈
~p
∣∣ψout

〉
=

∫
d3q

(2π)3
〈
~p
∣∣S
∣∣~q
〉〈
~q
∣∣ψin

〉
, (2.5)

with the S-matrix elements
〈
~p
∣∣S
∣∣~q
〉
. In the end, one is interested in the scattering part of the wave

function. Therefore, the trivial contribution is separated. The rest of the S-matrix defines the on-
shell T-matrixt(~q ← ~p). Because of energy conservation a factorδ(Eq − Ep) occurs and one
writes

〈
~p
∣∣S
∣∣~q
〉
= (2π)3 δ(3)(~q − ~p)− 2πi δ(Eq − Ep) t(~q ← ~p) , (2.6)

which definest(~q ← ~p). The observable in scattering experiments of spinless particles is the
differential cross section. The typical situation of scattering experiments is schematically depicted
in Figure2.1.

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

dΩ

∣∣ψin(t)
〉

∣∣ψin,~ρ(t)
〉

~p0

~p0

~ρ

Target

Figure 2.1: Two wave packets
∣∣ψin,0(t)

〉
=
∣∣ψin(t)

〉
and

∣∣ψin,~ρ(t)
〉

approach the target with their
identical mean momentum~p0 and two different impact parameters|~ρ|. The quantityw(dΩ← ψin,~ρ)
is the probability that

∣∣ψin,~ρ(t)
〉

is scattered into the solid angle dΩ.

The incident projectile approaches the target with the asymptote
∣∣ψin

〉
. Now, the detector measures

the outgoing particle under a given solid angle dΩ. The experiment consists of a sequence of
independent collisions. In general the incoming wave packets will have different impact parameters
ρ. The cross sectionσ(dΩ ← ψin) is the relation between the number of scattered particles inthe
solid angle dΩ and all incoming particles with different displacements~ρ. Thus, the cross section is
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the integration over the impact parameter of the probability w(dΩ ← ψin,~ρ). Here,w(dΩ ← ψin,~ρ)
is the probability that the projectile with~ρ is scattered into the solid angle dΩ. The cross section
can be expressed with the outgoing asymptote

∣∣ψout,~ρ

〉
via

σ(dΩ← ψin) = dΩ
∫

d2ρ

∫ ∞

0

dp
(2π)3

p2|ψout,~ρ(~p)|2 . (2.7)

By means of equation (2.5), this yields

σ(dΩ← ψin) = dΩ
∫

d2ρ

∫ ∞

0

dp
(2π)3

p2
∣∣∣∣
∫

d3q

(2π)3
〈
~p
∣∣S
∣∣~q
〉
ψin,~ρ(~q)

∣∣∣∣
2

. (2.8)

In general, the incoming asymptote is designed to be peaked around a definite momentum~p0 and
one measures approximatelyσ(dΩ← ~p0). The combination of equations (2.6) and (2.7) then leads
to

σ(dΩ← ~p0) =
m2

(2π)2
|t(~p← ~p0)|2 dΩ , (2.9)

:=
dσ
dΩ

(~p← ~p0) dΩ (2.10)

with the differential cross sectiondσdΩ(~p ← ~p0). The scattering amplitudef(~q ← ~p) is then defined
asf(~p← ~p0) := −m

2π
t(~p← ~p0).

2.1.2 Green’s Function

Green’s functions are an important concept for scattering theory. The full Green’s functionG(z)
and the free Green’s functionG0(z) are formally the resolvents of the Hamilton operatorH =
H0 + V and of the free HamiltonianH0, respectively:

G(z) := (z −H)−1 , G0(z) := (z −H0)−1 . (2.11)

The Green’s function is analytic in the complex energy planeapart from specific points like bound
state energies or resonances, and it has a branch cut on the real axis from0 to∞. In scattering
theory another useful operator is the T-matrix defined as

T (z) = V + V G(z)V . (2.12)

The integral equations, which relate the Green’s functionG(z),G0(z) andT (z), are the Lippmann-
Schwinger equations forG(z) and forT (z):

G(z) = G0(z) +G0(z)V G(z) , T (z) = V + V G0(z)T (z) . (2.13)

Then, forz = limǫ↓0(
p2

2m
+ iǫ) one finds

t(~q ← ~p) = lim
ǫ↓0

〈
~q
∣∣T (p2/(2m) + iǫ)

∣∣~p
〉
, (2.14)

with |~q| = |~p| for elastic scattering. Please note, that
〈
~q
∣∣T (z)

∣∣~p
〉

is more general thant(~q ← ~p).
In the complex plane ofz, poles in the T-matrix reflect important physical properties. We define
z = k2/(2m) and in thek-plane the poles in the T-matrixT (k2/(2m)) correspond to bound states,
if k lies on the positive imaginary axis. Ifk has an negative imaginary part and a non-vanishing real
part, these poles correspond to resonances. The poles on thenegative imaginary axis are unphysical
virtual states.
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2.1.3 Partial-Wave S-Matrix

In the following, I shall focus on stationary scattering theory. For a stationary plane wave
∣∣~p
〉

the
scattered wave function is given by

∣∣~p+
〉
:= Ω+

∣∣~p
〉
. For large distances from the scattering region

the scattered wave function has the following asymptotic behaviour

〈
~x
∣∣~p+

〉 |x|=r→∞−→ (2π)−3/2
(
ei~p·~x + f(px̂← ~p)

eipr

r

)
. (2.15)

In case of central forces, the S-matrix is diagonal in the angular momentum quantum numberℓ
as well as in the corresponding projection quantum numberm and one finds for the scattering
amplitude a multipole expansion

f(~q ← ~p) =
∑

ℓ

(2ℓ+ 1)fℓ(p)Pℓ(q̂ · p̂ = cos(θ)) , (2.16)

whereq̂ := ~q/|~q| andPℓ are the Legendre polynomials [97]. Unitarity of the S-matrix guarantees
that the amplitude can be expressed in terms of the scattering phaseδℓ(p) through

fℓ(p) =
1

p cot(δℓ(p))− ip
. (2.17)

For low energies the scattering phase behaves asδℓ ∼ p2ℓ+1. Therefore, the s-wave scattering
(ℓ = 0) dominates the scattering in the vicinity of the thresholdp = 0. The termp cot δ0(p) can be
expanded in even powers ofp. This is called the effective range expansion (ERE)

p cot(δ0(k)) = −
1

a
+

1

2
r0p

2 +O(p4) . (2.18)

Forp ≈ 0 the scattering lengtha dominates and determines at leading order all scattering quantities.
Poles in the scattering amplitude for non-negative imaginary p lead to bound states. For the limit
a ≫ r0 > 0, there is a pole in the vicinity ofp = +i/a; corresponding to a shallow bound state
at E ≈ − 1/(2ma2) ≈ 0. In general, the sign ofa is crucial for the physical interpretation.
A negativea means that the scattering potential is attractive but too weak to build a bound state.
Positive scattering lengths are ambivalent: The potentialcan be either repulsive or attractive, when
a bound state could emerge.

2.2 Effective Theories

Effective theories have proved to be very useful in a vast variety of physical systems to describe
low energy properties. The application of the concept of effective theories in the quantum field
theory framework is called effective field theory (EFT). In section2.2.1I give an overview of the
basic concepts of effective theories. Subsequently, I consider EFT’s and the so-called local EFT
for non-relativistic particles with short range interactions. I orient myself on the treatments given
in [6,26].

2.2.1 Basic Concept

An effective treatment is based on a separation of scales fora specific physical system. Separation
of scales means that the system has at least two scales with the propertyΛlow ≪ Λhigh. In the
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dimensionless small quantityΛlow/Λhigh≪ 1 then a perturbative expansion can be performed. The
expansion up to different orders then defines a tower of effective theories.

A popular simple example is an approximation of Newton’s gravitational law, which readsVNewton=
−GMm/(R + h) for an object with massm in a heighth above the earth which has the massM

and radiusR, by a constant earth accelerationg, which yieldsV (eff)
Newton = +mgh. The high scale is

the radiusΛhigh = R and the low scale is the heightΛlow = h. Newton’s potential can be expanded
in Λlow/Λhigh = h/R and one has

VNewton= −
GM

R
m

(
1− h

R
+

1

2

(
h

R

)2
)

+O
((

h

R

)3
)
. (2.19)

The first term is just a constant and irrelevant, since potentials can be measured only relatively
and not absolutely. The leading order in the effective theory is exactlymgh with identification
of GM/R2 = g as the coupling constant. At next to leading order a second coupling constant
g2 = −GM/(2R3) appears in the termg2mh2.

In spite of the simplicity of this example, several characteristic features of effective theories are
evident: The accuracy of the theory can be improved systematically with each order. The small
expansion parameter establishes a so-called power-counting scheme to sort the expansion terms by
importance. Coupling constants absorb the physics at the high scale and finally, the theory predicts
the scale of its own collapse ath ≈ R. In general the coupling constants cannot be determined by
the fundamental theory. Either the fundamental theory is unknown or the fundamental theory is too
complex to calculate the coupling constants explicitly. Inthese cases, the coupling constants are to
be determined by experimental data.

2.2.2 Effective Field Theory

Historically, EFT’s have been formulated in the field of nuclear physics. This was encouraged by
the endeavour to overcome model dependent descriptions of hadronic and nuclear properties and to
find a model-independent approach for the strong interaction with QCD as the fundamental theory.

Nowadays, two effective theories are used for strong interactions: chiral effective field theory
(χEFT) [9] and the pionless EFT (π/EFT) [27]. The former bases on the approximate chiral sym-
metry of the QCD Lagrangian, i.e. the invariance under the separate transformations of left-handed
and right-handed fields with the group SU(3)L×SU(3)R. However, the chiral symmetry is hidden
due to spontaneous breaking of this group to SU(3)V . According to the Goldstone theorem, this
spontaneous breaking induces eight mass-less Goldstone bosons. Consequently, the eight lightest
mesons in the spectrum, the pions, kaons andη, are identified with the Goldstone bosons as the
explicit dynamical degrees of freedom. Since the symmetry is broken explicitly by the small and
various quark masses, the Goldstone bosons obtain finite masses.

Thus, theχEFT is an expansion around the chiral limit and has two high scalesΛχ
high. The first one

is the so-called chiral symmetry breaking scaleΛCSB = 4πfπ wherefπ is the pion decay constant.
The second one is the massmρ of the lightest vector mesonρ, which is integrated out and is not a
dynamical degree of freedom anymore. The low scalesΛχ

low are the momentump of the considered
process and the masses of the dynamical degrees of freedommπ,κ,η. Consequently, the expansion
is in powers of the small parametersΛχ

low/Λ
χ
high, where

Λχ
low ∈ {mπ,mκ,mη, p} and Λχ

high ∈ {4πfπ,mρ} . (2.20)
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The pionless EFT (π/EFT) is used for nucleon-nucleon reactions for momentap≪ mπ. InχEFT the
nucleon interactions are strong and lead to non-perturbative phenomena. Thus, the effects cannot
be treated in the normal power-counting scheme ofχEFT. The reason behind this is the unnatural
large scattering lengtha ≫ 1/Λχ

high of the nucleon-nucleon scattering and the associated shallow
bound states at the vicinity ofE = 1

2µa2
with the reduced massµ. In the next section the basics of

theπ/EFT are considered.

2.2.3 Local Non-Relativistic EFT

The local non-relativistic EFT relies on the scattering length being large and is independent of the
mechanism responsible for this. This is summarised in the term universality. This theory can be
applied in nuclear physics, known asπ/EFT, in atomic as well as particle physics.

The starting points of EFT’s are the Lagrangian densities. In local quantum field theories the
Lagrangian density is constructed with terms consisting ofa combination of quantum fieldsψ and
their gradients at the same point only. Accordingly to the symmetry principle [28], e.g. all terms
which fulfil Galilean symmetry, are included. Furthermore,terms which differ only by integration
by parts are equivalent, because the difference is just a boundary term. Since one is interested in
small momenta, terms with higher derivatives are suppressed. Consequently, at leading order the
Lagrangian is given by

L = ψ†(~x, t)
(
i
∂

∂t
+

1

2m
∆x

)
ψ(~x, t)− g2

4

(
ψ†(~x, t)ψ(~x, t)

)2 − g3
36

(
ψ†(~x, t)ψ(~x, t)

)3
+ · · · .

(2.21)

The ellipses indicate the terms in higher power-counting order. The leading order corresponds to
the limit of zero range interactions, the so-called scalinglimit. It is equivalent to the truncation of
the ERE after the effective range term1/a, which is justified for1/k ≥ a≫ r0.

This quantum field theory is equivalent to a quantum mechanical description because no anti-
particles terms are present and sectors with different particle numbers decouple in the Fock space.
In short, the quantum fieldsψ†(~x, t) andψ(~x, t) create a particle at position~x at timet or destroy a
particle, respectively. For bosons, the fields fulfil the commutator relation

[
ψ†(~x, t), ψ(~y, t)

]
− = δ(3)(~x− ~y) , (2.22)

and all other commutator relations vanish identically. With the relation to the Hamiltonian density

H(~x, t) = ∂L
∂ψ̇

ψ̇ − L , (2.23)

= ψ†(~x, t)
−∆
2m

ψ(~x, t) +
g2
4

(
ψ†(~x, t)ψ(~x, t)

)2
+
g3
36

(
ψ†(~x, t)ψ(~x, t)

)3
+ · · · , (2.24)

the quantum field formulation can be rewritten in the quantummechanical formulation with the
HamiltonianH. As an example I consider the 2-body sector where the three-body term in the
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Lagrangian density is then irrelevant. After normal ordering, denoted by two colons, one finds

〈
~x, ~y
∣∣
∫

d3z : H(~z, t) :
∣∣φ1, φ2

〉

=

∫
d3zd3vd3w

〈
~x, ~y
∣∣: ψ†(~z, t)

−1
2m

∆zψ(~z, t) +
g2
4

(
ψ†(~z, t)ψ(~z, t)

)2
:
∣∣~v, ~w

〉

〈
~v, ~w

∣∣φ1, φ2

〉
,

(2.25)

∝
[
− 1

2m
∆x −

1

2m
∆y +

g2
2
δ(3)(~x− ~y)

] (
φ1(~x, t)φ2(~y, t) + φ1(~y, t)φ2(~x, t)

)
, (2.26)

= H
(
φ1(~x, t)φ2(~y, t) + φ1(~y, t)φ2(~x, t)

)
. (2.27)

2.2.3.1 Two-Body Scattering

In this section I investigate the scattering of two identical bosons with the EFT described above. In
order to calculate the scattering amplitude from the Lagrangian in the scaling limit, the Feynman
rules read as follows: The Feynman propagator for a particleof massmwith energyk0 and momen-
tum~k is given byi/(k0−k2/(2m)+ iǫ). The only vertex contribution is a constant−ig2. Note that
g2 is not small in general. Thus, the scattering amplitude cannot be determined perturbatively with
the Dyson series: a re-summation of the loop-diagram contributions has to be performed. Finally,
this yields the Lippmann-Schwinger equation for theT -matrix, see equation (2.13). At on-shell
energies theT -matrix coincides with the scattering amplitude, see equation (2.14).

In Figure2.2the equations for the scattering amplitude are depicted diagrammatically. It describes
scattering of two identical bosons with reduced massµ = m/2, relative energyE = k2/(2µ) =

k2/m and momentum~k. Thus, in the centre-of-mass frame for|~k ′| = |~k| the integral equation
diagram reads

〈
~k ′∣∣T (E)

∣∣~k
〉

= +g2 +
i

2
g22

∫
d3q

(2π)3

∫
dq0
(2π)

1

q0 − q2

2m
+ iǫ

1

E − q0 − q2

2m
+ iǫ

〈
~q
∣∣T (E)

∣∣~k
〉
. (2.28)

Because of the contact interaction, the T-matrix simplifies and depends only on the energyE and
is independent of the direction̂k′. At on-shell energies,E = |~k|2/(2µ), the T-matrix is related to
the scattering amplitude as follows:

A2(E) := − lim
ǫ↓0

〈
~k ′∣∣T (E + iǫ)

∣∣~k
〉
= −t(~k ′ ← ~k) = +2

2π

µ
f(~k ′ ← ~k) . (2.29)

Due to the identity of the bosons, there is an additional factor of two.

Note that the integral over~q in equation (2.28) diverges. This signifies that the Lagrangian is
ill-defined as such and has to be regularised. Likewise, the corresponding Hamiltonian is not self-
adjoint because of the contact interaction in the form of theterm with theδ-distribution. A possible
regularisation is a momentum cutoffΛ, i.e. the integration is substituted by

∫
~q≤Λ

d3q. Thereafter,
the integral become finite but cutoff-dependent with the result

A2(E) = −g2
[
1 +

mg2
4π2

(
Λ− π

2

√
−mE − iǫ

)]−1
. (2.30)
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= + + + · · ·

= +

Figure 2.2: Lippmann-Schwinger equation for the scattering of particles in leading order of the
local non-relativistic EFT.

In order to predict observables, the coupling constant mustbe renormalised and matched for a fixed
Λ to an observable with the result thatg2 becomes a function ofΛ, the running coupling constant.
Explicitly, g2 is renormalised by the constraint that the scattering length a is fixed:

−a !
= lim

k→0
f(~k ′ ← ~k) = lim

E→0

µ

4π
A2(0) . (2.31)

Then, the renormalised scattering amplitude becomes independent of the ultraviolet cutoff and one
finds

A2(E + iǫ) =
4π

µ

1

−1/a+
√
−(2µ)E − iǫ

. (2.32)

The pole in the amplitude atED = − 1
2µa2

indicates the universal two-body bound, already men-
tioned in section2.1.3.

At the end of this section, I would like to stress that the completeΛ-independence in the amplitude
is accidental. In general, one expects only a suppressedΛ-dependence withE/Λ2. But, in the
scaling limit, the cutoff can be increased without bounds and at all energies the system can be
treated in the EFT. Note however, that in real physical systems a natural cutoff is usually given by
the inverse of the effective range1/r0. In short, the EFT is appropriate only for physical properties
at energy scales ofE < 1/r20.

2.2.3.2 Three-Body Scattering

The Lagrangian for the three-body sector now contains a three-body term. The description of three-
boson scattering within the EFT in the scaling limit is rather intricate. In the centre-of-mass frame
the 6-point Green’s function in momentum space

〈
0
∣∣T (ψψψψ†ψ†ψ†)

∣∣0
〉

depends on 4 momentum
vectors and 5 off-shell energies and such an solution of a integral equation in many variables is
highly complicated.

At this point, one introduces an auxiliary dimer field. The new quantum fieldd, the dimer field, is
a composite of twoψ’s. The 6-point Green’s function then reduces to a 4-point Greens function
A3 =

〈
0
∣∣T (dψd†ψ†)

∣∣0
〉
. A new Lagrangian, which involves the fieldd explicitly and is equivalent

to the former Lagrangian in leading order, can be constructed and is written as

L3 = ψ†(i ∂
∂t

+
∆

2m

)
ψ +

g2
4
d†d− g2

4

(
d†ψψ + ψ†ψ†d

)
− g3

36
d†dψ†ψ . (2.33)
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Based on this Lagrangian, Figure2.3depicts in terms of Feynman diagrams the scattering equation
for three bosons, in the case of elastic boson-dimer scattering.

= + + +

Figure 2.3: Three-body scattering rewritten in dimer-boson scattering.

The corresponding Feynman rules for the Lagrangian in equation (2.33) are collected in Figure2.4.
Note that, the Feynman propagator of the fieldd is naively just a constant, but the dimer can be split
into two bosons. Thus, the full propagator is a sum over all loop diagrams which leads to the same
integral equation as in the 2-body scattering apart from constants (see equation (2.28)). At the end,
one has for the full dimer propagator with energyP0 and momentum~P

iD(P0, ~P ) = i
32π

mg22

[
1

a
−
√
−mP0 + ~P 2/4− iǫ

]−1

. (2.34)

i
k0−~k2/2+iǫ

4i
g2

= +

−i g336−ig2
2

Figure 2.4: Feynman rules for Lagrangian in equation (2.33).

Using the Feynman rules with projection onto S-waves and with the help of the residue theorem,
one finds in the centre-of-mass frame for the dimer-boson amplitude

AS(p, k;E) =
16π

a

[
1

2pk
ln

(
p2 + pk + k2 − E − iǫ
p2 − pk + k2 − E − iǫ

)
+
H(Λ)

Λ2

]

+
4

π

∫ Λ

0

dq q2
[

1

2pq
ln

(
p2 + pq + q2 − E − iǫ
p2 − pq + q2 − E − iǫ

)
+
H(Λ)

Λ2

] AS(q, k;E)

− 1
a
+
√

3
4
q2 − E − iǫ

. (2.35)

Here,p andk denote the absolute value of the incoming and the outcoming momenta, respectively
andE is the energy. Since the original integral is again divergent, the integral has been regularised
with the cutoffΛ. In order to match to observables and to compensate theΛ-dependence, the
coupling constants must be renormalised. The cutoff dependence ofg3 is described in the function
H(Λ)/Λ2 := −g3/(9g22m). It can be shown, thatH(Λ) is a periodic function related to a UV
renormalisation group limit cycle.H can be parametrised as

H(Λ) =
cos
[
s0 ln

(
Λ
Λ∗
)
+ arctan

(
s0
)]

cos
[
s0 ln

(
Λ
Λ∗
)
− arctan

(
s0
)] . (2.36)
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The scaling-violation parameterΛ∗ is related to an observable in the three-body sector up to a
multiplicative factor ofexp(nπ/s0) with n ∈ N, wheres0 is an universal constant. For identical
bosons one findss0 ≈ 1.00624.

We will see that the integral equation (2.35) yields roughly geometrically distributed three-body
bound state energies, even for negative scattering lengths, where no two-body bound state exists.
The existence of these bound states is called the Efimov effect and it is discussed in the next sec-
tion 2.3 in more detail.

2.3 Efimov Effect

As mentioned in [29], Efimov published his studies about the three-nucleon system interacting
through short-ranged interactions with the natural lengthscalel in 1970 [13]. For interactions
with large scattering lengthsa ≫ l, he focused on the low-energy behaviour, i.e.E ≪ ~

2/(ml2).
In doing so, he discovered a sequence of roughly geometrically distributed bound state energies
between~2/(ml)2 and~2/(ma)2. If the scattering length is increased, new bound states appear in
the spectrum. For the unitary limit (a → ±∞), the bound state energies are exactly geometrically
distributed with an accumulation point at the thresholdE = 0. Afterwards, the Efimov effect was
formally proved by Amado and Noble in the following two years[30,31]. Within the local EFT we
will see that the Efimov effect is observed in the three-body scattering in the modern language of
quantum field theory and that it is a manifestation of an UV renormalisation group limit cycle.

More than 30 years after the prediction of Efimov trimers, thefirst experimental evidence for these
were found in a trapped gas of ultra-cold Cs atoms [14]. In this experiment, signatures in the
three-body recombination rate for negative scattering lengths indicate the existence of trimer states.
Their dependence on the scattering length was studied by tuning the scattering length by Feshbach
resonances (see section2.5.1.1). Since this pioneering experiment, a lot of progress was made and
Efimov physics was observed in several experiments.

Evidence for Efimov trimers in 3-body recombination was alsoobtained in a balanced mixture of
atoms in three different hyper-fine states of6Li [ 33,34], in a mixture of Potassium and Rubidium
atoms [35], and in an ultra-cold gas of7Li atoms [36]. In another experiment with Potassium atoms
[37], two bound trimers were observed with energies compatiblewith the geometric prediction for
Efimov states. Efimov states can also be observed as resonances in atom-dimer scattering. Such
resonances have been seen with atom-dimer mixtures of Cs atoms [38] and of 6Li atoms [39,40].
The first direct observation of Efimov trimers of6Li atoms created by radio frequency association
was recently reported by the Heidelberg group [41].

These experiments were carried out in a regime where the influence of the trap on the system could
be neglected. However, it is to be expected that with experimental advances the trap frequencies can
be increased and the trap itself could be used to modify and study internal properties of few-body
systems.

2.3.1 Efimov Effect and local EFT

Within the local EFT the Efimov effect can be studied via the scattering amplitude of the three-body
scattering. It turns out to be automatically related to the renormalisation group concept [6]. As in
the two-body sector, poles in the scattering amplitude for negative energies signify the existence of a
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bound state with binding energyE(n)
T . In order to extract the poles from the integral equation (2.35)

one exploits that the amplitude factorises in the vicinity of a pole:

AS(p, q;E)→
B(n)(p)B(n)(q)

E + E
(n)
T

as E → − E(n)
T . (2.37)

Then, combining equations (2.35) and (2.37), the bound-state integral equation for the amplitude
of Efimov states is found:

B(n)(p) =
4

π

∫ ∞

0

dq

q2

[
1

2pq
ln
(p2 + pq + q2 − E − iǫ
p2 − pq + q2 − E − iǫ

)
+
H(Λ)

Λ2

][
−1/a+

√
3

4
q2 − E − iǫ

]−1

B(n)(q) . (2.38)

The values forE for which this homogeneous equation has solutions are the binding energies
(−E(n)

T ) of the Efimov states. In fact the spectrum depends on two parameters determined by two
observables. The first one is the scattering lengtha and the second one is the parameterΛ∗ in the
functionH(Λ) which is matched to reproduce some binding energy of a singleEfimov trimer in the
spectrum. The rest of the spectrum is then independent of thearbitrary cutoffΛ. It can be chosen as
a rootΛ̃ of the periodic functionH(Λ). Λ̃ is fixed only up to the multiplicative factors of(emπ/s0)
with integerm. For a specific cutoff̃Λ, all Efimov states up to around the binding energy|En

T | ≤ Λ̃2

can then be calculated with equation (2.38) numerically. In order to compute more deeper bound
Efimov states, the cutoff has to be increased, i.e. one chooses a larger root̃Λ of the functionH(Λ).
The spectrum for a fixedΛ∗ is shown schematically as a function of1/a in Figure2.5.

sgn(E)
√
|E|

1/a
−Λ̃1

−Λ̃2

TTT
T D

Figure 2.5: Efimov statesT for a specificΛ∗ as a function of1/a with the dimer thresholdD. The
trimers are not drawn to scale. In fact, they scale with a factor of eπ/s0 ≈ 22.7. With Λ̃1 the deeper
Efimov states below̃Λ1 can not be found. Thus, a larger cutoffΛ̃2 is necessary to determine the
next Efimov state.

Note that the EFT describes systems in the scaling limit. Thespectrum of a real physical system
is restricted from below since all interactions have a finiterange and therefore a natural lengthl.
Exactly this additional scale restricts the scope of the theory. Hence, only Efimov trimers with
energiesET ≪ ~/(ml2) are described correctly. Physical properties at higher binding energies
depend on the details of the interaction beyond the EFT.
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2.3.2 Efimov Effect with External Confinement

Before reviewing the solution of the three-body problem in a harmonic trap, it is worthwhile to
inspect the confined two-body problem in the scaling limit.

I consider a two-body system confined by an isotropic harmonic oscillator. For simplicity, it is
sensible to express all lengths in the oscillator lengthb :=

√
~/(mω) with the massm and the fre-

quencyω. The dimensionless Jacobi coordinates (see appendixA) are defined by~s(b)i := ~si/b. The
contact interaction is parametrised with the regularisedδ-distributionδ(3)(~s(b)1 ) ∂

∂s
(b)
1

s
(b)
1 . The cou-

pling constant is related to the scattering lengtha, see [16]. Thus, the corresponding Hamiltonian
in Jacobi coordinates reads

H = ~ω
[
−1

2
∆

~s
(b)
1

+
1

2
|~s(b)1 |2 +

√
2π
a

b
δ(3)(~s

(b)
1 )

∂

∂s
(b)
1

s
(b)
1

]
. (2.39)

The spectrum of this Hamiltonian has been determined by Buschet al. [17]. Only the spectrum for
vanishing relative angular momentum is modified by the contact term and the energies E are given
by solutions of

b

a
=
√
2
Γ
(
− E

2~ω
+ 3

4

)

Γ
(
− E

2~ω
+ 1

4

) . (2.40)

Therefore, the spectrum is completely specified by the scattering lengtha. In principle, the scatter-
ing length could be extracted from a measurement of the energy spectrum. Note that a specification
of the scattering lengtha is equivalent to specifying any energy of the spectrum. Both procedures
determine the whole spectrum and both quantities can be usedas an observable to renormalise the
coupling constant in the effective theory.
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Figure 2.6: Spectrum of the two-body sector in the harmonic confinement as a function of1/a [17].
The dots indicate the spectrum in the unitary limitb/a→ 0.

The spectrum is depicted in Figure2.6. Forb/a→ −∞ the result is the spectrum of the oscillator
without any contact interaction. This spectrum is lowered by ∆E = 1 ~ω in the unitary limit
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b/a → 0. For the limitb/a → +∞ the states are again lowered by∆E = 1 ~ω apart from the
ground state, of which the energy diverges to−∞. Then again the oscillator spectrum is found
with an additional infinitely deeply bound ground state.

For an axial-symmetric or an anisotropic harmonic oscillator potential the two-body energy spectra
were derived analytically by Idziaszek et al. [42] and by Liang et al. [43], respectively.

The three-body sector is more complicated and the Hamiltonian cannot be solved in general. But
for the unitary limit, solutions are published for bosons byJonsell et al. [44] and for bosons and
fermions by Werner et al. [18].

The most noteworthy point is that for the bosons there are twotypes of energy states for vanishing
relative angular momentuml = 0. On the one hand, there are states for|a|/b→∞ with energies

En,q = ~ω(s0,n + 1 + 2q) , (2.41)

with a non-negative integerq and the positive real, not integer solutionss0,n of the transcendental
equation

+s0,n cos
(π
2
s0,n

)
=

8√
3
sin
(π
6
s0,n

)
. (2.42)

On the other hand, states of the second type are called Efimov-like. They belong to the single
imaginary solutions0,0 ≈ 1.0062 i of the transcendental equation. As for Efimov states, energies
of these states depend on a three-body parameterRt in addition to the scattering lengtha/b→∞.
The energies of Efimov-like states are the solutions of the following equation:

arg

[
Γ

(
1 + s0,0 − E/(~ω)

2

)]
= −|s0,0| ln(Rt/b) + arg

[
Γ
(
s0,0 + 1

)]
mod π . (2.43)

The spectrum of Efimov-like states is bounded neither from below nor from above. The scaling
with the factor of about22.7, known from the unconfined three-body system, can be observed for
adjacent, large negative energiesEn, En+1:

En

En+1

∼ (22.7)2 . (2.44)

2.4 Similarity Renormalisation Group

In 1990’s, Glazek and Wilson [45,46] as well as Wegner [47] developed independently the similar-
ity renormalisation group approach (SRG). The first application to the nuclear many-body problem
was published in 2007 by Bogner et al. [48]. I will exploit the SRG-transformation for the few-body
sector of4He-atoms treated with the realistic ab-initio LM2M2 potential in section5.

The motivation for the SRG approach is the strong intertwinement of high- and low-energy physics
for strong short-ranged potentials in particular for potentials with a hard core. Due to this, the
spectrum in shell-model calculations shows a strong cutoffdependence. Accordingly, only results
with large cutoffs are reliable, but at the same time, the determination is then very time-consuming
and elaborate. A possible expedient is the SRG approach whichdecreases the correlations at the
expense of introducing more-particle interactions.
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Wegner [47] formulates the SRG evolution as a flow equation of the Hamiltonian. The SRG evo-
lution is a unitary transformation of the Hamiltonian with aflow parameters and can be written
as

H(s) = U(s)HU †(s) . (2.45)

Owing to unitarity, the transformation matricesU(s) andU †(s) fulfil the following relation:

0 =
d
ds

1 =
d
ds

(U(s)U †(s)) = U ′(s)U †(s)︸ ︷︷ ︸
η(s)

+U(s)U †′(s)︸ ︷︷ ︸
η†(s)

. (2.46)

Therefore, the flow equation of the Hamiltonian is just givenby

d
ds
H(s) =

[
η(s), H(s)

]
− . (2.47)

Additionally, the generatorG(s) is defined by

η(s) =
[
G(s), H(s)

]
− . (2.48)

In our application, only the potential should be transformed and the kinetic energy is to be kept
constant. Accordingly, the kinetic energy can be used as thegeneratorG(s) = T . Hence, one has
with H(s) = T + V (s)

H ′(s) = V ′(s) =
[[
T, V (s)

]
−, T + V (s)

]
− . (2.49)

At the end, I would like to point out that many-body potentials are induced and that with the kinetic
energy as generator the correlation is suppressed in the evolution. The latter can be seen from
writing equation (2.49) in momentum space:

〈
~p
∣∣V ′(s)

∣∣~k
〉
=

d
ds
V (s, p, k) (2.50)

= −V (s, p, k)
(|~p|2 − |~k|2)2

4m2
+

∫ ∞

0

dq q2V (s, p, q)V (s, q, k)
|~p|2 + |~k|2 − 2q2

2m
.

(2.51)

The second term is suppressed with respect to the first one forsignificantly different momentap and
k for the physical potential. Neglecting this term, the solution of the differential equation (2.51) is
given by

V (s, p, k) = V (0, p, k) exp

(
−s(p

2 − k2)2
4m2

)
. (2.52)

Hence, the correlations of different energy scales are suppressed approximately exponentially. For
details see [49].

Within the occupation number formalism with creation operatorsa(†)i and annihilation operatorsai,
the induction of higher-body potentials can be seen explicitly in the flow equation. For instance,
typical terms occurring in equation (2.49) for 2-body potentials are

V
(2)
ijklV

(2)
pqrs

[
a†ia

†
jakal, a

†
pa

†
qaras

]
− . (2.53)



2.5. Experimental Techniques 19

These commutators have contributions of three-body interactions termsa†ia
†
ja

†
kalaman. Conse-

quently, many-body terms are induced by the evolution.

Finally we make a small comment on the physical dimension ofs: The dimension of the evolution
parameters is [s] = [E]−2. Typically, a new parameterΛ−4 = s/(4m2) is defined, which then
has the dimension of a momentum[Λ] = [p]. In section5, this parameterΛ will be used as flow
parameter instead ofs.

2.5 Experimental Techniques

In this section, I briefly discuss experimental techniques,which are used to investigate the physical
systems considered in sections4 and 5. This overview should convey the principle and issues
of modern experiments for atoms with resonant interactionsin external confinements and for4He
clusters.

2.5.1 Study of Atoms with Resonant Interactions in Traps

A review about experiments with ultra-cold atoms at Feshbach resonances is published by Chin
et al. [50]. An overview about experiments with Efimov physics is givenin [15]. Here, I just
summarise some relevant experimental techniques.

2.5.1.1 Feshbach Resonances

Due to Feshbach resonances cold atoms are the perfect systems to investigate universal behaviour.
The Feshbach resonances allow to modify the atom-atom interactions with external magnetic fields.
Therefore, the scattering lengtha can be tuned and the universal region is accessible for experi-
ments. The effect of Feshbach resonances can be illustratedin a two-channel model as in the left
panel of Figure2.7.
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Figure 2.7:Left panel: Two-channel model of Feshbach resonances. With the magnetic field B,
the open (red) and closed (green) channel can be tuned.Right panel: Scattering lengtha as a
function ofB in the vicinity of the Feshbach resonance atBres
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The effect requires at least an open and a closed channel which are only weakly coupled. The
resonance occurs when a binding energy of the closed channeland the threshold of the open channel
coincide. This coincidence can be generated by an external magnetic field if the magnetic moments
of the two channel states differ. For instance, this is the case for different spin structures in the two
channels.

The corresponding scattering length is depicted in the right panel of Figure2.7. For narrow Fesh-
bach resonances the dependence ofa fromB can be approximately described in the vicinity of the
resonance at the magnetic fieldBres by

a(B) ≈ abg

(
1 +

c

B −Bres

)
. (2.54)

Here,c denotes the width of the resonance andabg is the background scattering length far away
from the resonance.

For experiments, the width is a crucial quantity, since it signifies the necessary resolution for the
magnetic fields. The widths ofs-wave resonances are often larger than1 G. For higher partial
waves (e.g. d-or g-waves resonances) a resolution in the order of mG is usually required.

2.5.1.2 Traps and Cooling

In atomic physics, various techniques for realising a confinement by traps are available. To start
with, there are magnetic or magnetic-optical traps (MOT). However, in many experiments the low-
est atomic states should be studied and these states are high-field seeking and cannot be trapped
magnetically. Furthermore, the scattering length is to be tuned with external magnetic fields, which
would influence the trap field. Thus optical dipole traps are usually used in such experiments.
But they have typical depths below1 mK and this require strong cooling which can be achieved
more efficiently in magnetic traps. Consequently, MOT’s are often utilised to precool the atomic
gases. Subsequently, the atoms are loaded in optical dipoletraps to cool the system to the operating
temperature of the experiment.

In general, optical traps are realised by several counter-propagating laser beams. It is possible to
tailor geometries specially designed for specific experiments. The trap potential is caused by the
dispersive interaction between the induced dipole momentsin the neutral atoms and the intensity
gradient of the light field. A review of experimental techniques and theoretical models of optical
dipole traps can be found in Grimm et al. [51].

In order to study typical phenomena of Efimov physics the system has to be cooled to few10 nK.
For few100nK thermodynamical effects prevent the necessary resolution and the interesting phe-
nomena are obscured. These low temperatures are accessibleonly by combination of different
techniques.

With the so-called Doppler cooling, temperatures down to few 100 µK can be achieved. The basic
principle is the excitation of the atoms with an oriented laser beam. The subsequent spontaneous
emission is not oriented and in average the atoms loose kinetic energy. A theoretical limit is deter-
mined by the Doppler limit, which is connected to the width ofthe cooling transition.

Following this, the Sisyphus cooling is a possible method toachieve the recoil limit of the laser
beam of few100 nK [52]. It exploits the Zeeman sub-levels of the atoms. With two laser beams,
which propagate in opposite direction and are linearly polarised perpendicular to each other, an
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interference pattern of alternating clockwise and counterclockwise circular polarised light can be
generated. Along this pattern, the Zeeman sub-levels change their energies and switch their posi-
tion. Metaphorically, the energy levels move uphill and back to a valley. In average, more electrons
at the hill are optically pumped in an excited state and fall back in a valley. Thus the atom looses
energy and is cooled.

Finally, in order to achieve the10 nK region, the approach of forced evaporative cooling is used.
Originally proposed by Hess [53], the principle is that atoms confined in a trap with thresholdEsh

could generate constituents with energyE > Esh by collisions. These high-energetic atoms are
allowed to evaporate out of the trap. The remaining atoms rethermalise and the temperature drops.
The evaporation is enhanced by rf-induced spin flips [54], with slowly lowering of the depth of the
trap potential [55], or with a combination of both. The lowering of the depth is called the direct
forced evaporation.

2.5.2 Investigation of Helium Clusters by Diffraction

In section5, I will study clusters of4He-atoms within the present shell-model approach. These
clusters eluded an experimental investigation for a long time. Common experimental techniques in
molecular physics like spectroscopy with microwaves, infrared or visible light as well as electron
scattering disturb the investigated system. As a consequence, weakly bound systems are destroyed
if such techniques are used.

A breakthrough was made in 1994 by Schöllkopf et al. [21]. Improved measurements and even
dimer binding energies were published in 2000 by Grisenti etal. [22,56]. The detection of clusters
is based on diffraction off a transmission grating.

The schematic construction of the experiments is depicted in Figure2.8. A nearly mono-energetic,
supersonic beam of helium atoms is produced by expanding the4He gas through a5-µm-diameter
nozzle. The temperature and pressure of the4He source can be varied and hereby the de Broglie
wavelength of the4He atoms from0.56 Å to 1.81 Å. Two 10 µm slits in the beam arrange a
sufficient spatial coherence. The beam is diffracted at a perpendicular silicon nitride grating which
has a period ofd = 200 nm. The diffraction patterns are detected with a rotatable mass spectrometer
behind the transmission grating and collimation by anotherslit.

By virtue of the narrow velocity distribution, the experiment shows a high selectivity in cluster
sizes. Because of this narrow distribution, all clusters nearly have the same velocityv. The corre-
sponding de Broglie wavelengthλ of a cluster withN constituents is given with the mass of Helium
atomsmHe by

λ =
2π~

NmHev
. (2.55)

The diffraction angles for a beam are described in the Fraunhofer approximation by

sin(θ) ≈ n

d

2π~

NmHev
. (2.56)

With this formula, the mass of the clusters (NmHe) are determined from the diffraction angle.
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Figure 2.8: Schematic construction of the diffraction experiment designed by Schöllkopf et al. [21].
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Shell-Model Approach

Historically, shell models were introduced in order to explain the shell structure of the electron
configuration in atoms. As a first approximation, the electrons are assumed to be negatively charged
particles moving independently in the field of the positively charged atomic nucleus (coulomb
potential) complemented with a potential describing the average electron-electron repulsion, known
as the Hartree-Fock potential of the atom mean field approximation. In this approximation the
many-electron system is described by a single Slater-determinant of the single-particle orbitals.
In order to account for correlations the remaining electron-electron interaction can e.g. be treated
by diagonalisation of the corresponding Hamiltonian in an appropriate finite basis spanned by the
single-particle orbitals.

In nuclear physics, shell models were suggested after the discovery of the so-called magic numbers
in the separation energies of neutrons and protons. In 1963,M. G. Mayer and J. H. D. Jensen
were awarded the Nobel Prize for their studies concerning the nuclear shell structure. In contrast to
atomic physics, there exists a priori no strong central potential such as the Coulomb potential of the
central nucleus in atoms. But such a central mean-field potential can be imagined as being built by
the nucleons themselves and can again be constructed by the Hartree-Fock method. Traditionally in
treating the many-nucleon problem, only configurations spanned by a finite set of active valence or-
bitals were considered. In the 1990’s, work in so-called no-core shell models [57] became feasible.
In such models, allA constituents in aA-particle nucleus are treated as active. The Hamiltonian is
then diagonalised in a model space e.g. spanned by a finite harmonic oscillator basis. Nowadays,
with realistic nucleon-nucleon interactions the ab-initio no-core shell model is applicable for light
nuclei up toA = 16 [58]. For this purpose, the realistic hard-core short-ranged potentials have
to be transformed with unitary operators and this is done e. g. with the Okubo-Lee-Suzuki proce-
dure [59] [60] or the similarity renormalisation group (see section2.4). The principle idea of shell
models and no-core shell models is the basis on which I shall treat systems of resonantly interacting
atoms in an external confinement and also ”free space”4He-atom clusters.

In this thesis only non-relativistic systems are studied. Accordingly, the starting point is the Hamil-
tonian consisting of the kinetic terms and interaction potentials. Here, I will concentrate on bosons
with spin0. In section4 I consider systems with resonant interactions in an external confinement.
For this purpose, the local EFT described in section2.2.3is used. Thus, the interaction potentials
are just two- and three-body contact interactions. As such,the Hamiltonian is ill-defined and has to
be regularised. The external confinement is idealised by an isotropic harmonic oscillator potential
(HOP).

23
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In a second application, the binding energies of4He-atom clusters without any confinement are to be
determined in section5. The interaction between helium atoms is described by a two-body ab-initio
potential, the so-called LM2M2. Alternatively, an effective potential with schematic two-body and
three-body parts is used. These potentials are transformedwith the similarity-renormalisation-
group (SRG) method (see section2.4) in order to circumvent specific problems associated with the
short range repulsion. In all situations I consider at most three-body interactions. All potentials
considered are spherically symmetric. Hence, the relevantHamiltonian is of the form

H =
A∑

i=1

(∣∣~pi
∣∣2

2m
+

1

2
mω2

∣∣~xi
∣∣2
)

+
A∑

i<j

Vij +
A∑

i<j<k

Wijk . (3.1)

For the application without external confinement the oscillator frequency can simply be set toω =
0. All A particles have the same massm. Vij denotes the interaction between particlei andj at
the relative position~xi,j := ~xi − ~xj and with momentum~pi,j = −i~~∇~xi,j

. Likewise,Wijk is the
three-body interaction between particlesi, j andk.

In general, the spectrum of such a Hamiltonian cannot be found analytically and numerical methods
are necessary. Suitable methods for such a Hamiltonian are shell-model approaches. In contrast to
the no-core shell-model calculations in nuclear physics, Iconsider only bosons instead of fermions.
The first step is to construct a basis for the Hilbert space. Thereafter, this infinite-dimensional basis
is truncated by a constraint motivated physically and the model space is then the linear hull of the
finite basis. Automatically, this implies a regularisationof the Hamiltonian. Thirdly, all matrix
elements of the Hamiltonian are determined in the model space. Finally, the eigenvalues of the
Hamiltonian are found numerically by diagonalisation.

In detail, I have used two different methods, both based on spherical oscillator functions. On the one
hand, I work in the so-calledJ-scheme in Jacobi coordinates. On the other hand, I use the so-called
M -scheme in one-particle coordinates. In the next section3.1 the former procedure is explained.
Subsequently, I outline the latter in section3.2. Both approaches are compared in section3.3.

3.1 J -Scheme Shell Model in Jacobi Coordinates

To begin with, I exploit the possibility to decouple the centre-of-mass dynamics for the oscilla-
tor potential. For this purpose, the Hamiltonian (3.1) is rewritten in Jacobi coordinates (see ap-
pendixA). Since one is only interested in the internal structure, the trivial centre-of-mass dynamics
is omitted. By this procedure theA-particle problem is reduced to a(A − 1)-particle problem for
the internal excitations of the system; the uninteresting centre of mass excitations being separated.
However matrix elements of the interactions terms will be more expensive to determine.

In a second step, a basis has to be determined for the Hilbert space ofA identical bosons. The
”building blocks” for this basis are the spherical oscillator functions

〈
~ρ
∣∣nlm

〉
b := φb

nlm(~ρ) =
1

b3/2
φ1
nlm(~ρ/b) (3.2)

=
1

b3/2
〈
~ρ/b
∣∣nlm

〉
=

1

b3/2
Rnl(ρ/b)Ylm(ρ̂) . (3.3)
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For brevity, I shall writeφnlm instead ofφ1
nlm. They are the eigenfunctions of a one-particle Hamil-

tonianHosc with the isotropic harmonic oscillator potential:

Hoscφ
b
nlm(~ρ) =

(
− ~

2

2m
∆ρ +

1

2
mω2|~ρ|2

)
φb
nlm(~ρ) = ~ω

(
2n+ l +

3

2

)
φb
nlm(~ρ) , (3.4)

whereω is the oscillator frequency andb :=
√
~/(mω) the oscillator length with the massm of the

particle. HereYlm(ρ̂) are the spherical harmonics and the radial functions are explicitly given by

Rnl(r) = N (norm)
nl rl e−r2/2 L(l+1/2)

n (r2) , (3.5)

with the generalised Laguerre polynomialsL(l+1/2)
n and the normalisation factor

N (norm)
nl =

√
(2n)!!2l+2

(2(n+ l) + 1)!!
√
π
. (3.6)

A possible basis describing the internal dynamics of theA-particle system in Jacobi coordinates
simply consists of the product of(A− 1) oscillator functions in the Jacobi coordinates~s(b)i = ~si/b:

{A−1⊗

i=1

Rnili(s
(b)
i )Ylimi

(ŝi)
}
. (3.7)

However, an additional conservation law can be exploited. Since only problems with central poten-
tials are addressed, the total angular momentum is conserved. Hence, it is worthwhile to work in a
basis of coupled spherical harmonics which are eigenfunctions of the total angular momentumL.
The quantum theory of angular momenta is described in detailin [61]. The expansion coefficients
for the coupling are generically given by the Clebsch-GordancoefficientsCLM

l1m1l2m2
:

[
Yl1(ŝ1)⊗Yl2(ŝ2)

]L
M=m1+m2

=
∑

m1,m2

CLM
l1m1l2m2

Yl1m1(ŝ1)Yl2m2(ŝ2) . (3.8)

The basis with the uncoupled spherical harmonics I shall call theM -scheme, because the product
functions are eigenfunctions of the projectionsl̂3,i with the quantum numbersmi. In contrast, the
coupled spherical harmonics belong to the so-calledJ-scheme, because the total angular momen-
tum is a conserved quantum number and this is often calledJ . In this case, the basis is given
by
{[
· · ·
[[
Rn1l1(s

(b)
1 )Yl1(ŝ1)⊗Rn2l2(s

(b)
2 )Yl2(ŝ2)

]L12 ⊗Rn3l3(s
(b)
3 )Yl3(ŝ3)

]L123 ⊗ · · ·
]L
M

}
. (3.9)

Since the angular momentum operator~L is a generator of a symmetry transformation (rotations),
the matrix elements are independent ofM . Therefore, this quantum number is suppressed in the
following.

This basis is the general basis for a physical system ofA distinguishable particles. In the case
of A identical bosons, the basis has to be symmetric under permutations of the constituents. In
single particle coordinates the construction of a symmetric basis is trivial, but in theJ-scheme in
Jacobi coordinates it is more involved. The symmetric basisfor the model space can be constructed
iteratively starting from the symmetric basis for two particles. In the next section3.1.1this approach
is outlined, see also [16] and [62]. Based on this, the Hamiltonian matrix elements can be calculated
as outlined in section3.1.3. In order to illustrate the procedure, the prescription is sketched in
section3.1.4as a flow diagram.
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3.1.1 Symmetric Basis

The iterative procedure starts with the construction of unnormalised symmetric states̃φ(2)
nlm(~s

(b)
1 )

for the two-body sector. For this purpose I define the operator P (2) = (1 + T12) with the transposi-
tionTik between bodyi andk. This operator maps a two-body stateφ to a unnormalised, symmetric

stateφ̃(2). Thus, one has for two particles

P (2)φnlm(~s
(b)
1 ) = φnlm(~s

(b)
1 ) + φnlm(−~s(b)1 ) =

{
0 for l odd,

2φnlm(~s
(b)
1 ) for l even,

=: φ̃(2)
nlm(~s

(b)
1 ) .

(3.10)

Thus, an orthonormal basis for two particles with multi-indexα(= nlm) is given by

φ(2)
α(~s

(b)
1 ) =

1

2
φ̃(2)

nlm(~s
(b)
1 ) = φnlm(~s

(b)
1 ) for l even. (3.11)

In the next step, from the orthonormal two-body states the angular-momentum coupled mixed-
symmetric three-body states are constructed as

φ
(3)
MS(α, n, l, L) =

[
φ(2)

α ⊗ φnl

]L
. (3.12)

Analogous toP (2) for A = 2, a map on the symmetric, unnormalisedA-particle states is given by
the operator

P (A) = (1 + T1A + · · ·+ T(A−1)A)P
(A−1) , (3.13)

= (1 +
A−2∑

i=1

T(A−1)iT(A−1)ATi(A−1) + T(A−1)A)P
(A−1) . (3.14)

With P (A) it is possible to calculate the transformation matrixC(A−1)→A
sym from mixed-symmetric

A-body states to (unnormalised) symmetricA-body states. Its matrix elements are given by the
scalar product

C(A−1)→A
sym [z;α′, n′

2, l
′
2, L

′] :=
〈[
φ(A−1)

α′ ⊗ φn′
2l

′
2

]L′∣∣[φ̃(A)
z

]〉
, (3.15)

with multi-indicesα′ andz denoting the mixed-symmetricA-body state
[
φ(A−1)

α′ ⊗ φn′
2l

′
2

]L′
and

the symmetricA-body statẽφ(A)
z, respectively. This can be written as

C(A−1)→A
sym [z;α′, n′

2, l
′
2, L

′]

=
〈[
φ(A−1)

α′ ⊗ φn′
2l

′
2

]L′∣∣P (A)
∣∣[φ(A−1)

α ⊗ φn2l2

]L〉
, (3.16)

=
〈[
φ(A−1)

α′ ⊗ φn′
2l

′
2

]L′∣∣(1 + (A− 1)T(A−1)A)
∣∣[φ(A−1)

α ⊗ φn2l2

]L〉
, (3.17)

wherez = {α, n2, l2, L}.
Our goal is to construct an orthonormal basis of symmetricA-body statesφ(A)

ω. It is achieved by
diagonalisation of the non-negative definite symmetric norm matrix

N [z′; z] =
〈
φ̃(A)

z

∣∣φ̃(A)
z′
〉
. (3.18)
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This yields the diagonal matrixD of non-negative eigenvalues:

D = O · N ·OT . (3.19)

Vanishing eigenvalues do not correspond to linearly independent symmetric states and correspond-
ing eigenstates are eliminated. Thus, we find a (non-square)transformation matrixBsym from
mixed-symmetricA-body states to orthonormal symmetric states:

B(A−1)→A
sym [ω;α′, n′

2, l
′
2, L

′] =
1√

D[ω; j]
O[j; z]C(A−1)→A

sym [z;α′, n′
2, l

′
2, L

′] , (3.20)

where a sum overj andz with non-vanishingD(w; j) is implied. Accordingly, the orthonormal
basis of symmetric states is given by

∣∣φ(A)
ω

〉
= B(A−1)→A

sym [ω;α, n2, l2, L]
∣∣[φ(A−1)

α ⊗ φn2l2

]L〉
. (3.21)

In this way the orthonormal, symmetric states can be found iteratively. However, the determination
of the matrix elements in equation (3.17) is not trivial, see in the next section3.1.2.

3.1.2 Explicit calculation ofC(A−1)→A
sym

The explicit calculation ofC(A−1)→A
sym involves a Talmi-Moshinsky transformation [63] and a change

in the coupling scheme [61]. Equation (3.17) for (A − 1) → A can be rewritten with the known
transformationB(A−2)→(A−1)

sym as

C(A−1)→A
sym [α, n2, l2, L;α

′, n′
2, l

′
2, L

′] =

B(A−2)→(A−1)
sym [α; γ, n1, l1, Lα]B

(A−2)→(A−1)
sym [α′; γ′, n′

1, l
′
1, L

′
α′ ]

〈[[
φ(A−2)

L′
γ′

γ′ ⊗ φn′
1,l

′
1

]L′
α′ ⊗ φn′

2l
′
2

]L′∣∣(1 + (A− 1)T(A−1)A)
∣∣[[φ(A−2)

Lγ

γ ⊗ φn1,l1

]Lα ⊗ φn2l2

]L〉
.

(3.22)

In order to calculate matrix elements of the operatorT(A−1)A, a transformation from the standard

Jacobi coordinates~s(b)A−2 and~s(b)A−1 to new coordinates~λ and~µ is performed (see Figure3.1). It is
an orthogonal transformationR6 → R

6 defined by

(
−~λ
~µ

)
=



√

A−2
2(A−1)

−
√

A
2(A−1)√

A
2(A−1)

√
A−2

2(A−1)


 ·

(
~s
(b)
(A−2)

~s
(b)
(A−1)

)
. (3.23)

In the new coordinates, the operatorT(A−1)A is diagonal and its matrix elements can be determined
easily. In particular, the action ofT(A−1)A on φnλlλ(

~λ) is just the multiplication with the factor
(−1)lλ .

First, however, the transformations of the coupled oscillator functions must be determined. For
this purpose, the coupling scheme is changed by means of Wigner’s 6j symbols [61]. Following
this, the Talmi-Moshinsky transformation is exploited in the new coupling scheme. Details about
Talmi-Moshinsky transformations are summarised in appendix B.
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Figure 3.1: Talmi transformation from coordinates~s(b)(A−1) and~s(b)(A−2) to coordinates~λ and~µ.

Finally, the transformation can be written as

[[
φ(A−2)

Lγ

γ ⊗ φn1,l1(~s
(b)
(A−2))

]Lα ⊗ φn2l2(~s
(b)
(A−1))

]L
=

∑

L12

(−1)Lγ+l1+l2+L
√

(2L12 + 1) (2Lα + 1)

{
Lγ l1 Lα

l2 L L12

}

∑

lλ,nλ
lµ,nµ

(
−1
)lλ〈

nλlλ, nµlµ;L12

∣∣n1l1, n2l2
〉

A
A−2

[
φ(A−2)

Lγ

γ ⊗
[
φnλlλ(

~λ)⊗ φnµlµ(~µ)
]L12

]L
, (3.24)

with the Brody-Moshinsky brackets
〈
nλlλ, nµlµ;L12

∣∣n1l1, n2l2
〉

A
A−2

. The transformation is stored

in the matrix with elements

M (12)[α′, n′
2, l

′
2, L; γ, nλ, lλ, nµ, lµ, L12] =

〈[
φ(A−2)

Lγ

γ ⊗
[
φnλlλ ⊗ φnµlµ

]L12
]L∣∣[φ(A−1)

α′ ⊗ φn′
2l

′
2

]L〉
. (3.25)

In this way an orthonormal, symmetric basisφ(A) can be constructed in theJ-scheme with Jacobi
coordinates. In shell models, the next step is to truncate the basis and to determine all elements of
the Hamiltonian in this finite basis.

3.1.3 Model Space and Elements of the Hamiltonian

Since solutions in the full Hilbert space are not accessiblein general, a subspace, the model space
is built. Here, the Hilbert space is restricted with the cutoff parameterN to the model space
consisting of the linear hull of oscillator states{⊗A−1

i=1 φnilimi
(~s

(b)
i )} with the energy eigenvalues∑A−1

i=1 ~ω(2ni+ li+
3
2
) ≤ ~ω(N +(A− 1)3

2
) for the unperturbed harmonic oscillator. Because the

energy eigenvalues are independent ofmi, it does not matter, whether coupled or uncoupled wave
functions are considered. Both model spaces are identical. Of course, only symmetric states are
considered for identical bosons.

In the model space the matrix elements for the Hamiltonian are required. The Hamiltonian in
equation (3.1) can be written in Jacobi coordinates without the centre-of-mass contribution as

H =
A−1∑

i=1

~ω
(
−1

2
∆

s
(b)
i

+
1

2

∣∣~s(b)i

∣∣2
)
+

A∑

i<j

Vij +
A∑

i<j<k

Wijk . (3.26)
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Successively, I derive the elements of the Hamiltonian for the three different terms in the symmetric
basis states

∣∣φ(A)
ω

〉
.

The first term, the sum over the harmonic oscillator contribution, is trivial. The basis state
∣∣φ(A)

ω

〉

is by construction (see section3.1.1) a linear combination of coupled oscillator functions in the
Jacobi coordinates with the same total angular momentum andtotal energy, since the recoupling
and the Talmi-Moshinsky transformation conserve both quantum numbers. Each basis state

∣∣φ(A)
ω

〉

has a definite total angular momentumLω and energy expressed byNω. Accordingly

〈
φ(A)

ω

∣∣
A−1∑

i=1

~ω
(
−1

2
∆

s
(b)
i

+
1

2

∣∣~s(b)i

∣∣2
)∣∣φ(A)

ω′
〉
= δLω ,Lω′ δNω ,Nω′

(
Nω + (A− 1)3/2

)
~ω . (3.27)

In order to calculate the second term, one has to realise thatall terms in the sum over pairs yield
the same contribution for a symmetric state. Hence, only thecontribution of a single pair potential
must be determined which is then multiplied by the number of pairs

(
N
2

)
= N(N−1)

2
.

My construction of the symmetric states suggests that the potential contribution of the pair

V(A−1)A(|~x(A−1) − ~xA|)

is suited to determine this contribution. As shown in Figure3.1 the distance|~x(A−1) − ~xA| is
proportional to|~λ| and one has for the potential

V(A−1)A

(
|~x(A−1) − ~xA|

)
= V(A−1)A

(√
2|~λ|

)
. (3.28)

With the help of the matrixB(A−1)→A
sym and the transformation in equation (3.24), the symmetric

stateφ(A)
ω can be expanded in wave functions depending on~λ and~µ. In these wave functions, the

potential is diagonal in all quantum numbers apart fromnλ andlλ. Thus, the problem reduces to
the determination of

〈
φnλlλ

∣∣V(A−1)A

∣∣φn′
λ
l′
λ

〉
. (3.29)

The corresponding integral has to be calculated for the explicit potentials to be considered.

The calculation of the three-body interactions is more involved. Again, only the interaction for a
specific triplet in the sum must be calculated explicitly andthe result of the whole sum follows
by combinatorics. The number of triplets is given by

(
N
3

)
= N(N−1)(N−2)

6
. As for the two-body

potentials, the construction of the symmetric states suggests considering a particular three-body
contribution. Because the form of the wave function as a function of ~λ is known, the potential
contributionW(A−2)(A−1)A is a good choice. However,W(A−2)(A−1)A is not only a function in~λ and
~µ, but of~λ and a combination of~µ and~s(A−3). Therefore, a further Talmi-Moshinsky transformation
from the coordinates~λ, ~µ and~s(A−3) to the coordinates~λ, ~κ and~ν as depicted in Figure3.2 is
performed. Of course, this implies further angular momentum recouplings with Wigner-6j symbols.

The corresponding orthogonal coordinate transformation is given by

(
~ν
~κ

)
=



√

A
3(A−2)

−
√

2(A−3)
3(A−2)√

2(A−3)
3(A−2)

√
A

3(A−2)


 ·

(
~s(A−3)

−~µ

)
. (3.30)
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Figure 3.2: Talmi transformation from coordinates~s(A−3) and~µ to coordinates~ν and~κ

The transformation is stored in the matrix

M (123)[α′, n′
2, l

′
2, L; γ, nν , lν , nκ, lκ, nλ, lλ, Lλκ, L123] =〈[
φ(A−3)

Lγ

γ ⊗
[
φnν lν ⊗

[
φnλlλ ⊗ φnκlκ

]Lλκ
]L123

]L ∣∣∣
[
φ(A−1)

α′ ⊗ φn′
2l

′
2

]L〉
. (3.31)

In the new coordinates the three-body InteractionWA(A−1)(A−2) is diagonal in all quantum numbers
apart fromnλ, lλ, nκ, lκ. Thus, the matrix elements depend only on the three-body subsystem and
the following matrix elements has to be calculated with the explicit form of the interaction:

〈[
φnλlλ ⊗ φnκlκ

]L∣∣WA(A−1)(A−2)

∣∣[φn′
λ
l′
λ
⊗ φn′

κl
′
κ

]L〉
(3.32)

3.1.4 Numerical Approach

In this section I illustrate the structure of my algorithm for theJ-scheme shell model. Figure3.3
shows a schematic flow diagram, which emphasises the important points.

Diagonalise H

Start

End

Ar = 2
Generate Basisφ(Ar)

MS

Useφ(Ar−1)

GenerateC(Ar−1)→Ar

sym

GenerateB(Ar−1)→Ar

sym

GenerateM(12)

GenerateM(123)

Ar = A

Ar ≤ A

Ar = Ar + 1

tru
e

tr
uefalse

false

B
(A−1)→A
sym

B
(A−1)→A
sym

2-body ME

3-body ME

ME of
∑

ij Vij

ME of
∑

ijk Wijk

Construction ofH and Diagonalisation Construction of Symmetric Basis and Transformation Matrices

M(12)

M(123)

Figure 3.3: Schematic flow diagram for theJ-scheme algorithm. Note that, the construction of the
symmetric basis and transformation matricesM (12) andM (123) need to be done for each cutoffN
only once.
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Notably, the algorithm can be split into two parts. The first part, the construction of the symmetric
basis with matrixB(A−1)→A

sym and transformation matricesM (12) andM (123), needs to be calculated
for a fixed cutoffN only once. For each specific interaction they can be reused inthe second part.

In the first part the symmetric basis is iteratively determined using the approach described in sec-
tion 3.1.1. At the beginning, the mixed-symmetric statesφAr

MS are generated from the known sym-
metric statesφ(Ar−1) in equation (3.21). Afterwards, the matrixC(Ar−1)→(Ar)

sym is constructed by
using the procedure presented in section3.1.2. In the last iteration cycle, the transformation ma-
tricesM (12) andM (123) are stored, because they are required to determine the elements of the
Hamiltonian (ME). With equation (3.20) the matrixB(Ar−1)→(Ar)

sym is calculated.

In the second part the contributions of the two-body and three-body interaction in the ME’s of the
HamiltonianH can be calculated as outlined in section3.1.3. For this purpose, one needs the two-
body ME’s in equation (3.29), the matrixB(A−1)→(A)

sym , and the matrixM (12) or the three-body ME’s
in equation (3.32) andM (123), respectively. The final step is the numerical diagonalisation of H
which yields as a result the binding energies for a given cutoff N .

3.2 M -Scheme Shell Model in One-Particle Coordinates

An alternative approach is to construct the basis from the oscillator functions, given in equation
(3.2), in one-particle coordinates. Thus here, the centre-of-mass dynamics is not separated. The
A-boson system is really treated as anA-particle system and all excitations of the centre-of-mass
are included.

Moreover, product states of single particle functions withprojection quantum numbermi are used
instead of the coupled angular momenta and total angular momentumL. Accordingly, this kind of
basis is calledM -Scheme. As a consequence, it is not possible to calculate the energy spectrum for
a fixedL, but one determines automatically the energies for all possibleL values for a fixedM . In
the following subsections, the construction of the symmetric basis and the determination of matrix
elements are outlined.

3.2.1 Symmetric Basis

The A-body sector of identical bosons is described in one-particle coordinates byA oscillator
functions with quantum numbersn, l, andm, which are symmetric under permutation of bosons.
For brevity, the quantum numbers are collected in a multi-indexκi = ni, li,mi. Furthermore, an
order of these multi-indices is defined by

κi < κj , if





[ni < nj] ,

[ni = nj] ∧ [li < lj] ,

[ni = nj] ∧ [li = lj] ∧ [mi < mj] .

(3.33)

A generally non-symmetricA-body oscillator state is simply given by the tensor productof one-
particle oscillator states:

∣∣κ1, κ2, . . . , κA
〉
≡
∣∣κ1
〉
⊗
∣∣κ2
〉
⊗ . . .⊗

∣∣κA
〉
. (3.34)
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Note that these states mean oscillator functions with oscillator lengthb = 1 corresponding to
dimensionless coordinates~xi/b. The projectorS(A) on anA-body symmetric state is defined by

S(A) :=
1

A!

∑

σ∈SA

σ̂ , (3.35)

whereσ̂ is a permutation of the symmetric groupSA defined as

σ̂
∣∣κ1, κ2, . . . , κA

〉
:=
∣∣κσ(1), κσ(2), . . . , κσ(A)

〉
. (3.36)

Normalised states are then given by

∣∣κ1, κ2, . . . , κA
)
=

(
A!∏
α nα!

)1/2

S(A)
∣∣κ1, κ2, . . . , κA

〉
, (3.37)

with the occupation numbers of the one-particle statesα. Note that anA-boson state is completely
characterised by theκ’s in arbitrary order. The symmetric state is described uniquely with the
requirement

κ1 ≤ κ2 ≤ . . . ≤ κA . (3.38)

Furthermore, theA-boson state is also uniquely specified by the occupation numbersnα of each
single particle state

∣∣α
〉
. Consequently, the many-body state

∣∣I
)

can be denoted in (at least) two
different, but equivalent, ways

∣∣I
)
≡
∣∣κ1, κ2, . . . , κA

)
≡
∣∣n1, n2, . . . , nm

)
, (3.39)

with the assumption thatm different one-particle states exist and thatκ1≤κ2≤ . . .≤κA. In order to
represent anA-body state in numerical calculations, the former representation is more appropriate
sinceA≪m (see section3.2.3).

Thus, in theM -scheme in one-particle coordinates the construction of symmetric states are trivial
because the action of the projectorS(A) is obvious.

3.2.2 Model Space and Matrix Elements ofH

Apart from the centre-of-mass excitation I shall define the model space for the shell-model calcu-
lations in the same manner as for theJ-scheme in Jacobi coordinates. WithNi = (2ni + li) the
model space is defined as the linear hull of states

∣∣κ1, κ2, . . . , κA
)

with the restriction

A∑

i=1

Ni ≤ N , (3.40)

where N is the cutoff parameter.

In order to calculate the contribution of the three terms in the Hamiltonian in equation (3.1), it
is advantageous to rewrite these terms with creation and annihilation operatorsa†α and aα (see
e.g. [64]); accordingly for the states we have:

a†α
∣∣n1, n2, . . ., nα, . . ., nm

)
:=
√
nα + 1

∣∣n1, n2, . . ., (nα + 1), . . ., nm

)
, (3.41)

aα
∣∣n1, n2, . . ., nα, . . ., nm

)
:=
√
nα

∣∣n1, n2, . . ., (nα − 1), . . ., nm

)
. (3.42)
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With the definitions

V
(1)
A =

A∑

i=1

~ω
(1
2
∆

x
(b)
i

+
1

2
|~x(b)i |2

)
, V

(2)
A =

A∑

i<j

Vij , V
(3)
A =

A∑

i<j<k

Wijk , (3.43)

the terms of the Hamiltonian can be expressed in the occupation number formalism as:

V
(1)
A

∣∣n1, . . ., nm

)
=
∑

α,α′

〈
α′∣∣~ω

(1
2
∆x(b) +

1

2

∣∣~x(b)i

∣∣2)∣∣α
〉
a†α′aα

∣∣n1, n2, . . ., nm

)
, (3.44)

V
(2)
A

∣∣n1, . . . , nm

)
=

1

2

∑

ββ′αα′

〈
α′β′∣∣V

∣∣αβ
〉
a†α′a

†
β′aαaβ

∣∣n1, n2, . . . , nm

)
, (3.45)

V
(3)
A

∣∣n1, . . . , nm

)
=

1

6

∑

αβγ

∑

α′β′γ′

〈
α′β′γ′

∣∣W
∣∣αβγ

〉
a†α′a

†
β′a

†
γ′aαaβaγ

∣∣n1, n2, . . . , nm

)
. (3.46)

In this new notation it is clear that a many-body matrix element for the one-body, two-body or three-
body operators can only be non-zero if initial and final states differ in the quantum numbers of at
most one, two, or three one-particle states, respectively.Thus, a new abbreviation is introduced:
e.g. the state

∣∣(I − αβ;α′β′)
)

denotes the many-body state
∣∣I
)
, where a one-particle stateα is

substituted byα′ andβ by β′. In the next three paragraphs, the calculation of the many-body
matrix elements for these three operators are explained in detail.

Many-Body Matrix Elements for the One-Body Operators: In this paragraph, I specify the
many-body matrix elements for the harmonic oscillator terms. From equation (3.44) it follows that

(
(I − µ; ν)

∣∣V (1)
A

∣∣I
)
=
∑

α,α′

〈
α′∣∣~ω

(1
2
∆x(b) +

1

2

∣∣~x(b)i

∣∣2)∣∣α
〉 (

(I − µ; ν)
∣∣a†α′aα

∣∣I
)
, (3.47)

= δµ,ν ~ω (Nν + A
3

2
) nν . (3.48)

Many-Body Matrix Elements for the Two-Body Operators: With equation (3.45) a similar
relation for the two-body operators can be derived:

(
(I − αβ; γδ)

∣∣V (2)
A

∣∣I
)
=
1

2

∑

µνρσ

〈
µν
∣∣V
∣∣ρσ
〉 (

(I − αβ; γδ)
∣∣a†µa†νaρaσ

∣∣I
)
, (3.49)

=
1

2

∑

µ≤ν

∑

ρ≤σ

(2− δµ,ν )(2− δρ,σ )
1

4
〈
(µν + νµ)

∣∣V
∣∣(ρσ + σρ)

〉(
(I − αβ; γδ)

∣∣a†µa†νaρaσ
∣∣I
) . (3.50)

The one-particle states in
∣∣I
)

are sorted in ascending order. For the purpose of preservingthis order,
it is required thatα ≤ β andγ ≤ δ. Therefore the last term in the sum

(
(I − αβ; γδ)

∣∣a†µa†νaρaσ
∣∣I
)

does not vanish only ifα = ρ, β = σ, γ = µ, andδ = ν. The term only depends on the occupation
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numbers and one has for the factors e. g.

(
(I − αβ; γδ)

∣∣a†γa†δaαaβ
∣∣I
)
=
√
(nγ + 1)(nδ + 1)nαnβ , (3.51)

(
(I − αα; γδ)

∣∣a†γa†δaαaα
∣∣I
)
=
√
nγnδ(nα − 1)nα , (3.52)

(
(I − αβ;αδ)

∣∣a†αa†δaαaβ
∣∣I
)
= nα

√
(nδ + 1)nβ , (3.53)

(
(I − αα;αα)

∣∣a†αa†αaαaα
∣∣I
)
= (nα − 1)nα . (3.54)

For the calculation of the two-body matrix elements it is notnecessary to calculate and store all four
combinations, but it can be simplified with symmetric two-body states. For symmetric two-body
states

∣∣µ̃ν̃
)

with µ̃ ≤ ν̃ it follows that

〈
(µν + νµ)

∣∣V
∣∣(ρσ + σρ)

〉
= 4

∑

µ̃≤ν̃

∑

ρ̃≤σ̃

〈
µν
∣∣∣∣µ̃ν̃

) (
µ̃ν̃
∣∣V
∣∣ρ̃σ̃
) (
ρ̃σ̃
∣∣∣∣ρσ

〉
. (3.55)

Therefore, only the matrix elements
(
µ̃ν̃
∣∣V
∣∣ρ̃σ̃
)

have to be precalculated and stored. In my im-
plementation, I do not store the two-body matrix elements inone-particle coordinates, but I save
memory and store them in Jacobi coordinates. Hence, a Talmi-Moshinsky transformation is neces-
sary ”on-the-fly” to transform the matrix elements in the single-particle basis.

Many-Body Matrix Elements for the Three-Body Operators: Similarly, the many-body ma-
trix elements of the three-body operators in equation (3.46) can be expressed as

(
(I − αβγ; δǫη)

∣∣V (3)
A

∣∣I
)

=
1

6

∑

µνρ

∑

σκτ

〈
µνρ

∣∣W
∣∣σκτ

〉 (
(I − αβγ; δǫτ)

∣∣a†µa†νa†ρaσaκaτ
∣∣I
)
,

(3.56)

=
1

6

∑

µ≤ν≤ρ

∑

σ≤κ≤τ

(
1− 1

2
( δµ,ν + δν,ρ ) +

1

6
δµ,ν δν,ρ

)(
1− 1

2
( δσ,κ + δκ,τ ) +

1

6
δσ,κ δκ,τ

)

〈
(µνρ+ νµρ+ ρνµ+ µρν + ρµν + νρµ)

∣∣W
∣∣(σκτ + κστ + τκσ + στκ+ τσκ+ κτσ)

〉
(
(I − αβγ; δǫτ)

∣∣a†µa†νa†ρaσaκaτ
∣∣I
)
.

(3.57)

Instead of calculating all 36 combinations of three-body matrix elements, only the matrix elements
of symmetric three-body states

∣∣µ̃ν̃ρ̃
)

with µ̃ ≤ ν̃ ≤ ρ̃ have to be considered:

〈
(µνρ+ νµρ+ ρνµ+ µρν + ρµν + νρµ)

∣∣W
∣∣(σκτ + κστ + τκσ + στκ+ τσκ+ κτσ)

〉

= 36
∑

µ̃ν̃ρ̃

∑

σ̃κ̃τ̃

〈
µνρ

∣∣∣∣µ̃ν̃ρ̃
) (
µ̃ν̃ρ̃

∣∣W
∣∣σ̃κ̃τ̃

) (
σ̃κ̃τ̃

∣∣∣∣σκτ
〉
. (3.58)

Consequently, I store only the matrix elements of symmetric three-body states
(
µ̃ν̃ρ̃

∣∣W
∣∣σ̃κ̃τ̃

)
.

Again, they are stored in Jacobi-coordinates with coupled angular momenta in order to save mem-
ory. Accordingly Talmi-Moshinsky transformations will berequired ”on-the-fly”.
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3.2.2.1 Shift of Centre-of-Mass Excitations

We are interested in the internal excitation energies of anA-body system inside a harmonic oscil-
lator potential with two- and three-body forces. Thus, possible excitations of the centre-of-mass
in this sense are spurious. In order to identify and eliminate centre-of-mass excitations in the en-
ergy spectrum the spurious excitations are energetically shifted with an additional centre-of-mass
potentialhα (see e.g. van Hees et al. [65]) containing the operator

HCM :=

∣∣~P
∣∣2

2M
+

1

2
Mω2

∣∣~R
∣∣2 , (3.59)

whereM := Am, ~R := 1/A
∑A

i=1 ~xi and ~P =
∑A

i=1 ~pi. The additional potential is defined by

hα := −HCM + α

(
HCM −

3

2
~ω

)
, α ∈ R , (3.60)

and due to the vanishing commutator
[
H, hα

]
− = 0 the eigenenergiesEα of the operator

Hα := H + hα (3.61)

read

Eα =
[
E − (Ñ + 3/2~ω)

]
+
[
αÑ~ω

]
, Ñ ∈ N . (3.62)

The term
(
E − (Ñ + 3/2~ω

)
is the value of the internal energy eigenvalue without the centre-of-

mass energy. All states with excited centre-of-mass are thus shifted by the valueαÑ~ω.

At the end, the new HamiltonianHα can be rewritten in single-particle coordinates with the result

Hα = −3

2
α~ω + α

A∑

i=1

(
|~pi|2
2m

+
1

2
mω2 |~xi|2

)

− (α− 1)

A




1

2m

A∑

i,j=1
i<j

|~pi − ~pj|2 +
1

2
mω2

A∑

i,j=1
i<j

|~xi − ~xj|2

+ V

(2)
A + V

(3)
A . (3.63)

I shall use Jacobi coordinates in order to determine the two-body part of the centre-of-mass oscil-
lator potential. Note the factor2 in the relation

|~x1 − ~x2|2 = 2 |~s1|2 . (3.64)

3.2.3 Numerical Procedure

In this section, I sketch the basics of the algorithm for generating the non-zero many-body matrix
elements in theM -scheme. Furthermore, I indicate some prescriptions in order to accelerate the
procedure. Figure3.4shows a schematic overview of the procedure.

At first, the basis for the model space is generated. Each basis vector is stored as an array ofA
ascending entriesκi and these are numbered consecutively. In order to find the contributions of
V

(2)
A andV (3)

A , the basic idea is to loop over all initial states
∣∣I
)

in the basis and to find all possible
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Figure 3.4: Schematic flow diagrom for the M-scheme algorithm.

final states
∣∣F
)

that can be reached by two-body or three-body jumps, respectively. Explicitly, only
the procedure for two-body potentials will be outlined.

In order to determine all matrix elements, the outer loop is over all initial many-body states
∣∣I
)
.

With a loop over all pairs of particle indices
∑A

i<j, each pair of one-particle statesκiκj is selected
once and can be removed. Subsequently, all possible new pairs of one-particle statesβiβj are
generated at this position. In this manner, the same final state is created several times and the
final state

∣∣(I − κiκj); βiβj
)

does not have the required property of ascending one-particle indexes
in general. This can be dealt with by sorting the states. The solution of the former problem is
explained below. In the next step, the precomputed two-bodymatrix elements in Jacobi-coordinates
are read in and transformed to single-particle coordinateswith Talmi-Moshinsky transformations.
Afterwards, one has to map the constructed final state to the index in the many-body basis. For
this step, hash tables are crucial. At the end, one has calculated all matrix elements

(
F
∣∣V (2)

A

∣∣I
)
.

In similar way, the three-body elements can be found and the required Hamiltonian
(
F
∣∣H
∣∣I
)

is
determined. The final step is the diagonalisation of the Hamiltonian.

Loop Over Permitted Final States: There are several constraints for the substitution of pairs
κiκj which must be considered. Because of the ascending order in many-body states, only pairs
with βi ≤ βj are relevant. Furthermore, the potentials conserve the total projectionM(κiκj) :=
(mκi

+mκj
) and the parityΠ(κiκj) = (lκi

+ lκj
mod2) in the two-body system. Thus the selection

rulesM(βiβj) = M(κiκj) andΠ(κiκj) = Π(βiβj) apply. At the end, only final states inside the
model space, defined by the cutoffN , are allowed to be generated. Therefore, the total energy of
the initial stateNI minus the energy of the pairN2(κiκj) := (2(nκi

+nκj
)+ lκi

+ lκj
) plusN2(βiβj)

must not be greater thanN .

Loop Over Unique Final States: In order to guarantee that each permitted final state is produced
exactly once, I choose the following procedure: The outer loop is overi and the inner loop over
j > i. At first j = i + 1, i.e. the pairκiκ(i+1) is selected and substituted by all permitted pairs
βiβ(i+1). Subsequently,j is increased as longj < A. Note that the increment depends on the
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occupation numbers. For instance, for the initial state

∣∣I
)
=
∣∣κ1, . . . ,

i

↓
γ,

j

↓
γ, . . . , γ︸ ︷︷ ︸

nγ

, δ, δ, . . . , δ︸ ︷︷ ︸
nδ

, ǫ, ǫ, . . . , ǫ︸ ︷︷ ︸
nǫ

, . . . , κA
)

(3.65)

j is increased with the increment(nγ − 1). Otherwise, a pairγγ is substituted a second time and
the same final states would be generated. Now, the pairγδ is changed into all allowed pairsβiβj.
Afterwards,j is increased with the incrementnδ and so on. Ifj > A, i is increased with the
incrementnγ andj is again(i+ 1) and so on.

3.3 Comparison of both Shell Models

In the last two sections I have introduced two different shell-model approaches, theM -scheme and
J-scheme, to treat theA-boson system with two- and three-body interactions. In this section the
merits and drawbacks are summarised.

To start with, the number of many-body states in theM -scheme and theJ-scheme approach are
compared. Due to separation of the centre-of-mass and exploiting of total-angular momentum con-
servation the number of relevant many-body states is much smaller in theJ-scheme. In Figure3.5
the number of states with total angular momentum and parityJP = 0+ or total angular momentum
projection and parityMP = 0+ are shown in dependence of the cutoff parameterN for various
A-body systems logarithmically. There are several orders ofmagnitude more basis states in the
M -scheme for the same cutoff parameter. Thus, the most elaborate task in the two schemes is
different. In theM -scheme the most time-consuming part is the diagonalisation of the many-body
Hamiltonian. For example for twelve particles a (120000 × 120000)-matrix is to be diagonalised
just for the cutoff parameterN = 14 in contrast to a4500× 4500-matrix in theJ-scheme.

12 bosons

3 bosons
4 bosons
5 bosons

N

N
um

be
r

of
ba

si
s

st
at

es

108

106

104

102

10 15 20 25

Figure 3.5: Number of many-body basis states versus the cutoff parameterN . Different point types
differentiate the number of bosons. Green points correspond to theJ-scheme basis-states with
JP = 0+ and red points to theMP = 0+ states for theM -scheme.

For theJ-scheme the most time-consuming task is the iterative construction of the symmetric basis
and of the corresponding transformation matrices (see Figure 3.3). The scaling behaviour of the



38 Chapter 3. Shell-Model Approach

runtime of this first part in the algorithm is depicted versusthe cutoff parameterN for various
A-boson systems in Figure3.6. More interesting than the absolute runtime (which dependson the
hardware) is the scaling behaviour reflected in the scope of the double logarithmic plot. As expected
the scope is increasing withA due to the higher complexity of the problem. Thus, an enhancement
inN would result in a massive larger runtime for largeA-boson systems. The runtime of the second
part of the algorithm is added as filled dots. Remarkably, the scopes are similar to the corresponding
first parts but the absolute runtime is smaller by an order of magnitude.
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Figure 3.6: Runtime of the algorithm for the construction of the symmetric basis with total angular
momentum and parityLP = 0+ versus the cutoff parameterN for variousA. The filled dots without
linear fit mark the runtime for the rest of the algorithm including construction of the Hamiltonian
and its diagonalisation.

From this the most eminent advantage of theJ-scheme in comparison to theM -scheme follows.
As illustrated in Figure3.3 theJ-scheme algorithm can be split. The most elaborate first partis
independent of the specific two- and three-body interactionand the coupling constant. Hence, the
first part must be calculated for givenN andA only once. Its results, the symmetric basis and
the transformation matrices, are stored and reused for the second part. Therefore, theJ-scheme
is definitely the favourable prescription to treat and analyse specific interactions globally, i.e. with
several coupling constants combinations, for several oscillator lengths etc.

The benchmarking of these two schemes for a single completely specified interaction is not clear.
The advantage of theM -scheme is that the most time-consuming problem is a standard problem
which is highly parallelisable. Owing to the size and the spareness of the huge symmetric matrix
in theM -scheme it is possible to find some extreme eigenvalues with Krylov subspace methods
in combination with QR-decomposition [66], e.g. Lanczos procedures. There are a multitude of
implemented and optimised routines which are offered also in parallelised versions in the message-
passing-interface (MPI) standard, e.g. ARPACK or BLZPACK.

The results in the following sections are produced in theJ-scheme, since several interactions and
the dependence on some parameters are investigated. Occasionally, someJ-scheme results were
compared withM -scheme results and they were found to numerically coincideat least to eight
decimal places.



Chapter 4

Few Bosons in Traps

In this section, I consider a system of bosons confined by a harmonic oscillator potential (HOP) in
the scaling limit. The two- and three-body systems which I studied in my diploma thesis [16] are
cited for completeness. Other results are partially published in [67] and [62].

4.1 Framework in the Scaling Limit

Within the shell-model approach, the eigenvalues of the Hamiltonian of equation (3.26) are deter-
mined for contact interactionsV (~s

(b)
1 ) = g(2)δ(3)(~s

(b)
1 ) andW (~s

(b)
1 , ~s

(b)
2 ) = g(3)δ(3)(~s

(b)
1 )δ(3)(~s

(b)
2 )

with Jacobi coordinates~s(b)i = ~si/b (see appendixA). As mentioned before, the model space is
restricted with a cutoffN and the coupling constantsg(2) and g(3) are renormalised to specific
observables. My strategy follows Stetcu et al. [68–70] where an effective theory for short-range
nuclear forces in the framework of the no-core shell model was formulated. The cutoffN is iden-
tified with a high energy (ultraviolet) cutoff of the effective theory: Usually a momentum cutoffΛ
is defined in effective theories to regularise the integral equation and one finds a linear dependence
of observables on1/Λ in first order of the theory. Because of the relationp ∝

√
E between mo-

mentump and energyE, one expects errors for the binding energies for systems with confinement
of the order1/

√
N + (A− 1)3/2. Here(A− 1)3/2 is the zero-point energy of the internal motion

in HOP.

In contrast to the momentum cutoffΛ used in free space, the regulatorN also implies an infrared
cutoff. In the literature there are two definitions of the IR-cutoff for an oscillator basis. Both the
expressionβ/

√
N + (A− 1)3/2 [71, 72], which quantifies the maximum size of structures that

can be captured in the given basis, or alternatively the oscillator lengthβ itself [73] have been
interpreted as an IR-cutoff. In my calculations, the harmonic oscillator represents a physical trap
and thusβ is a physical parameter. The trap acts like a finite box that confines the system. In this
case, only the first definition seems appropriate and I expecterrors of order1/

√
N + (A− 1)3/2

due to the infrared cutoff. These errors have the same scaling behaviour withN as the errors from
the ultraviolet cutoff and vanish forN →∞.

39
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Matrix Elements of V and W : The matrix elements of the two-body potentialsV with the
harmonic oscillator wave functionsφnlm(~s

(b)
1 ) =

〈
~s
(b)
1

∣∣nlm
〉

are given by
〈
nlm

∣∣V
∣∣n′l′m′〉 = g(2)φn00(0)φn′00(0) δl,0 δl′,0 δm,0 δm′,0 . (4.1)

Analogously, the matrix elements of the three-body interactionW are given by
〈
n1l1, n2l2;LM

∣∣V
∣∣n′

1l
′
1, n

′
2l

′
2;L

′M ′〉 =
g(3)φn100(0)φn′

100
(0)φn200(0)φn′

200
(0) δl1,0 δl2,0 δl′1,0 δl′2,0 δL,0 δL′,0 δM,0 δM ′,0 , (4.2)

where the three-body wave function is defined by
[
φn1l1m1(~s

(b)
1 )⊗ φn2l2m2(~s

(b)
2 )
]L
M

=
〈
~s
(b)
1 , ~s

(b)
2

∣∣n1l1, n2l2;LM
〉
. (4.3)

The value of oscillator functions at the origin is non-vanishing for l = 0 only and is given by

φn00(~s
(b)
1 = 0) =

1

π3/4

(
Γ(n+ 3

2
)

Γ(3
2
)Γ(n+ 1)

)1/2

=

(
(2n+ 1)!!

π3/2 n! 2n

)1/2

. (4.4)

Renormalisation of g(2): The coupling constantg(2) has to be renormalised by an observable
in the two-body sector such as a given energy levelE(2) or alternatively the scattering lengtha.
The relation betweeng(2) andE(2) for a given cutoffN can be found analytically by exploiting
the separability of the interaction. With the definitionfn := φn00(0), the matrix elements in the
two-body sector forl = 0 are given by

〈n
∣∣H(2)

∣∣n′〉 = ~ω

(
2n+

3

2

)
δn,n′ + g(2)fnfn′ . (4.5)

In the model space corresponding toN , the solution|ψE(2)〉 of the eigenvalue problem with the
eigenvalueE(2) is expanded in oscillator functions

∣∣ψE(2)

〉
=

N/2∑

n=0

cE
(2)

n

∣∣n
〉
. (4.6)

Applying the Hamiltonian to Eq. (4.6) and projecting on the oscillator state
∣∣k
〉
, one obtains

(
2k +

3

2

)
cE

(2)

k +

N/2∑

n=0

g(2)

~ω
fkfnc

E(2)

n =
E(2)

~ω
cE

(2)

k . (4.7)

Solving forcE
(2)

k and reinserting the result in Eq. (4.7), one finds the running of the coupling con-
stantg(2)(N) with N :

~ω

g(2)(N)
= −

N/2∑

n=0

f 2
n

2n+ 3
2
− E(2)/(~ω)

. (4.8)

For givenN the two-body spectrum can easily be calculated by diagonalisation. As an example,
Figure4.1 shows the result if one uses the ground state binding energyE

(2)
0 as renormalisation

energy: hereE(2)
0 = −1 ~ω. The dots at position0 refer to the exact result determined by equa-

tion (2.40). The corresponding scattering length isa ≈ 1.046 b with the oscillator lengthb. It is
clear from this figure, that the model-space results for the excited states approach the exact values
in the limitN →∞. Note that the ground state energy is constant by construction.
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Figure 4.1: Energy spectrum for two bosons in a harmonic confinement in the scaling limit with
angular momentuml = 0 and renormalisation energyE(2) = E

(2)
0 = (−1) ~ω. The dots refer to

the exact results determined by equation (2.40).

Renormalisation of g(3): As for g(2), the three-body coupling constantg(3) has to be renor-
malised for eachN characterising the model space. The three-body coupling constantg(3) can
be fixed by an energy of the three-body systemE(3). Again, the separability of the interaction is
exploited for the explicit renormalisation: Let the solution

∣∣αN

〉
for the three-body system in the

model space without the three-body interactionW for some value ofN be given by the expansion
in harmonic oscillator basis states as

∣∣αN

〉
=

∑

n1l1,n2l2,L

ZN (αN ;n1l1, n2l2, L)
∣∣n1l1, n2l2, L

〉
, (4.9)

with coefficientsZN (αN ;n1l1, n2l2, L). The corresponding energy eigenvalues are denoted by
DN(αN). Note that the eigenstates are degenerate in the total angular momentum projectionM .
With these states, I calculate the matrix elements for the complete Hamiltonian including the three-
body interaction

〈αN

∣∣H(3)
∣∣α′

N〉 = DN(αN) δαN ,α′
N

+ g(3)(N)
(∑

n1,n2

ZN (αN ;n10, n20, 0) fn1fn2

)(∑

n′
1,n

′
2

ZN (α′
N ;n

′
10, n

′
20, 0) fn′

1
fn′

2

)
. (4.10)

Requiring the energy of the state
∣∣αN

〉
to beE(3) for givenN , the renormalisation condition for the

three-body coupling follows:

1

g(3)(N)
= −

∑

αN

( ∑
n1,n2

ZN (αN ;n10, n20, 0) fn1fn2

)2

DN(αN)− E(3)
. (4.11)

Note that the expansion coefficientsZN (αN ;n10, n20, 0) as well as the eigenvaluesDN(αN) ex-
plicitly depend onN . The full spectrum in a model space for givenN can then be determined with
these coupling constants by diagonalisation of the Hamiltonian matrix. The general strategy for
calculating the Hamiltonian matrix for a system ofA identical bosons was described in chapter3.
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4.2 Energy Spectra in the Scaling Limit

After the renormalisation of the coupling constants, it is possible to calculate the energy spectra of
theA-body sector for various cutoffsN . In this section results up toA = 7 are presented.

4.2.1 Three-Body Sector

To start with, I compare the model-space results in the three-body sector with the exact results in
the unitary limit described by equations (2.41) and (2.43).
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Figure 4.2: Energy spectrum for completely symmetric states of three bosons in a harmonic trap
with total angular momentum and parityLP = 0+ as a function ofN and exact analytical results
from [18] given at limN → ∞. Efimov-like states are indicated by squares, other states are
indicated by crosses.

In Fig. 4.2, I show the spectrum for positive parity and total angular momentumL = 0 as a func-
tion of the cutoffN ≤ 70. For eachN the 3-body interaction was adjusted such that the 3-body
ground state has energyE(3) = (−1) ~ω. As shown by Werner and Castin [18] and mentioned
in section2.3.2, there are two different types of states. On the one hand, there are states indepen-
dent of the three-body potentialW (crosses). On the other hand, there are states which depend on
V (3) (squares) and are called Efimov-like. These Efimov-like states are the analogues in the trap
of the Efimov states without confinement. The exact results are given atN → ∞. Remarkably,
in the model space the non Efimov-like states are not completely independent ofW and the cou-
pling constantg(3). The dependence is an artifact of the regularisation methodwith the cutoffN .
Nevertheless, the dependence is in general much weaker thanfor the Efimov-like states.

For the non-Efimov-like states a linear extrapolation seemsappropriate forN → ∞. The Efimov-
like states, however, show a definite curvature. In this case, a quadratic term has to be included in
the extrapolation. Typical extrapolation errors for Efimov-like states are of order2 − 3% and less
than1% for the other states.
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4.2.2 Four-Body Sector

I now turn to the system of four bosons with angular momentum and parityLP = 0+. This system
is of high experimental interest and the behaviour of the bound states in free space is well known
[74, 75]. Figure4.3 shows the calculated spectrum in the unitary limit as a function of N again
for E(3) = (−1) ~ω. For most of the states there is a strongN dependence and an extrapolation
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Figure 4.3: Spectrum for symmetric0+ states of four identical bosons in the unitary limit for
E(3) = (−1) ~ω as a function ofN . The solid lines indicate the extrapolation toN =∞.

prescription is essential. Efimov-like states are extrapolated with a quadratic polynomial with the
constraint that it has no extremum for positive arguments. Some of the extrapolations are shown
by the solid lines in Fig.4.3. Since the exact results are not known, I estimate the uncertainty
from the extrapolation conservatively as being equal to theenergy shift from the last calculated
value to the extrapolated value. This prescription should give an upper bound on the extrapolation
uncertainty. Remarkably, with this procedure the estimateduncertainty of the ground is very small
and the extrapolation of the ground state has a positive slope in contrast to all other extrapolations.
In section4.3.4.2, this issue will be revisited.

I am now in the position to study the structure of the three- and four-body spectra. In the original
Efimov plot, the three-body spectrum is studied for fixed three-body interactionW while the two-
body ground-state energyE(2) or, equivalent, the scattering lengtha is varied [6,13]. Since there
is no four-body interaction at leading order, this plot can be extended to the four-body system and
has been studied extensively in free space [74,75]. I will compare the spectra in the trap with the
free space results. In Fig.4.4, the extrapolated spectra of the symmetric0+ four-body states for
variousǫ(2) are shown by filled dots. The three-body interaction is fixed by the requirement, that the
three-body ground state lies atE(3) = (−1) ~ω in the unitary limit. Additionally, the three-body
Efimov-like states are shown as squares. The dotted lines give the upper bound on the extrapolation
uncertainties for the lowest two four-body states. The higher excited states are connected by dashed
lines to guide the eye. Their extrapolation error is similarbut not shown explicitly. The harmonic
confinement has a strong effect on the spectrum. Compared to free space, it is no longer true that
two four-body states are related to each trimer state. Moreover, the levels appear to be mutually
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Figure 4.4: Extrapolated spectra of the symmetric 4-body states0+ for variousE(2) (circles) and
3-body Efimov-like states (squares). The 3-body interaction is fixed such thatE(3) = −1 ~ω in the
unitary limit E(2) = 0.5 ~ω. The dotted lines give the upper bound on the extrapolation error for
the two lowest states. The dashed lines are guides to the eye.

perturbed: There are various avoided crossings of four-body states, e.g. between the fourth and fifth
state aroundE(2) ≈ 0 ~ω and possibly also between the second and third state. These avoided level
crossings could be studied experimentally by varyingE(2) using Feshbach resonances.

The dependence onE(2) can be translated into a dependence on the scattering lengtha using equa-
tion (2.40). For (−2) ≤ E(2)/(~ω) ≤ 0, the scattering length is essentially zero. WhenE(2) is
varied from zero to one, however, the scattering length grows to become infinite atE(2) = 1/2 ~ω,
jumps to minus infinity and approaches a negative value closeto zero atE(2) = 1 ~ω. This is
the most interesting region from the point of universality and corresponds to the usual Efimov plot
in free space. In this region, the scattering length is much larger than all other length scales and
the effective theory is expected to describe systems of realatoms with van der Waals interactions.
The discrete scale invariance of the three- and four-body spectra in free space has disappeared in
Fig.4.4. It would be interesting to approach the free space limit by making the trap wider and wider
in experiment in order to see how the discrete scaling symmetry is restored. In the theoretical cal-
culation, taking this limit is computationally very expensive since the absolute value of the energy
cutoff for fixedN vanishes asβ →∞. Cold atom experiments could serve as a quantum simulator
to study this question.

4.2.3 Systems with more Bosons

In this section, I present some results for the five-, six-, and seven-boson system.

In Figure 4.5 a part of the energy spectrum of the five-body statesLP = 0+ is depicted as a
function of the cutoffN for E(2) = E(3) = 0.5 ~ω. Calculations are feasible with cutoffs of at
mostN = 20. The extrapolation is done with the typical quadratic polynomial. Remarkably, the
behaviour of the ground state is peculiar: it depends onN concavely, in contrast to the excited
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Figure 4.5: Energy spectrum of five-body statesLP = 0+ as a function of the cutoffN in the
unitary limit. The three-body interaction is adjusted to fixa three-body Efimov-like state at the
energyE(3) = 0.5 ~ω. The extrapolation is usually done with a quadratic polynomial. Due to the
concave dependence ofN of the ground state, this state is linear extrapolated.

states. In consequence, the extrapolation with the quadratic polynomial is problematic and the
energy of the ground state is estimated with a linear extrapolation of the last eigenvalues. The
first and second excited state are well described with a quadratic polynomial and conservative
uncertainties can be estimated as described above. For higher states there are level crossings for
N ≤ 20 and also in the extrapolated regionN > 20. But, crossings in the latter region inhibit the
extrapolation or compromise its validity. Consequently, for these states extrapolated values have
large uncertainties.
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Figure 4.6: Energy spectrum of states withLP = 0+ versus the cutoff parameterN ≤ 16 in the
unitary limit andE(3) = 0.5 ~ω. The extrapolation is done with a quadratic polynomial.Left
panel: A = 6. Right panel: A = 7.

As an example for the six-body and seven-body system, Figure4.6 shows the energy spectrum of
states with total angular momentum and parityLP = 0+ in the unitary limit forE(3) = 0.5 ~ω.
All states are extrapolated with the typical convex quadratic polynomial. The maximum cutoff
parameter is for both particle systemN = 16. Note again that extrapolations crossing each other
carry larger uncertainties due to possible interaction between these states. An example for this are
the adjacent third and fourth excited states for the system with seven bosonsA = 7.
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In summary it can be stated, that the convergence to the exactresults is slow and and one has to rely
on the extrapolation in the cutoffN . The reason for this ill-conditioned behaviour is the singular
nature of the contact interactions. In order to cushion thisproblematic effect, the genuine contact
interactions are approximated by smoothed functions in thefollowing.

4.3 Smeared Contact Interaction

Some results of this section are previously published in [62]. The central point in this section is,
that the contact interaction is regularised by smearing. This means, that the contact interactions are
replaced by (narrow) Gaussians with widthǫ. (The notationǫ(b) := ǫ/b, whereb is the oscillator
length, is used throughout.) In order to preserve the separability of the interaction the contact
interaction

〈
~s(b)
∣∣V
∣∣~s (b)′〉 = g(2)δ(3)(~s(b))δ(3)(~s(b) − ~s (b)′) = g(2)δ(3)(~s(b))δ(3)(~s (b)′) (4.12)

is substituted by

〈
~s(b)
∣∣Vǫ
∣∣~s (b)′〉 = g(2)(2π|ǫ(b)|2)−3/2e

− |~s(b)|2

2|ǫ(b)|2 (2π|ǫ(b)|2)−3/2e
− |~s (b)′ |2

2|ǫ(b)|2 , (4.13)

and the three-body contact interaction
〈
~s1

(b), ~s2
(b)
∣∣W
∣∣~s (b)′

1 , ~s
(b)′

2

〉
= g(3)δ(3)(~s1

(b))δ(3)(~s
(b)′

1 )δ(3)(~s2
(b))δ(3)(~s

(b)′

2 ) (4.14)

is replaced by

〈
~s1

(b), ~s2
(b)
∣∣Wǫ

∣∣~s (b)′

1 , ~s
(b)′

2

〉
= g(3)(2π|ǫ(b)|2)−6 exp

(
−|~s

(b)
1 |2 + |~s(b)2 |2 + |~s (b)′

1 |2 + |~s (b)′

2 |2
2|ǫ(b)|2

)
.

(4.15)

The case of contact interactions is then recovered in the limit ǫ(b) → 0.

4.3.1 Matrix Elements and Renormalisation

The calculation of the matrix elements in the oscillator basis for the smeared contact interaction is
very similar to those for the genuine contact interaction. According to appendixC.1, the two-body
matrix elements can be written as

〈
n1l1m1

∣∣Vǫ
∣∣n′

1l
′
1m

′
1

〉
=

g(2)

(1 + |ǫ(b)|2)3
(1− |ǫ(b)|2
1 + |ǫ(b)|2

)n1+n′
1

φn100(0)φn′
100

(0) δl1,0 δl′1,0 δm1,0 δm′
1,0

,

(4.16)

=
g(2)

(1 + |ǫ(b)|2)3
(1− |ǫ(b)|2
1 + |ǫ(b)|2

)n1+n′
1 1

π
3
2

√
(2n1 + 1)!!

n1!2n1

√
(2n′

1 + 1)!!

n′
1!2

n′
1

δl1,0 δl′1,0 δm1,0 δm′
1,0

, (4.17)

where the value of the oscillator function at the origin is given by

φn00(0) =
1

π3/4

(
Γ(n+ 3

2
)

Γ(3
2
)Γ(n+ 1)

)1/2

=

(
(2n+ 1)!!

π3/2 n! 2n

)1/2

. (4.18)
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Likewise, the matrix elements of the smeared three-body contact interaction are given by

〈
n1l1, n2l2, LM

∣∣Wǫ

∣∣n′
1l

′
1, n

′
2l

′
2, L

′M ′〉 =
g(3)

(1 + |ǫ(b)|2)6
(1− |ǫ(b)|2
1 + |ǫ(b)|2

)n1+n2+n′
1+n′

2

φn10(0)φn20(0)φn′
10
(0)φn′

20
(0)

δl1,0 δl′1,0 δl′2,0 δl2,0 δL,L′ δL,0 δM,M ′ δM,0 . (4.19)

In the next step, the coupling constantsg(2) andg(3) have to be renormalised with respect to the
regulatorN . As for the genuine contact interactions these coupling constants are fixed with a
specific two-body and three-body energyE(2) andE(3). Since the smeared interactions are also
separable, only the coefficients in the renormalisation equations (4.8) and (4.11) for the coupling
constantsg(2) andg(3) have to be modified. With the new definition

fnǫ :=

{
φn00(0) , for contact interactions (i.e.ǫ(b) = 0),

(1 + |ǫ(b)|2)−3/2
(

1−|ǫ(b)|2
1+|ǫ(b)|2

)n
φn00(0) , for smeared contact interactions.

(4.20)

the renormalisation equations yield

~ω

g(2)(N)
= −

N/2∑

n=0

f 2
nǫ

2n+ 3
2
− E(2)

~ω

, (4.21)

and

1

g(3)(N)
= −

∑

αN

( ∑
n1,n2

ZNǫ (αN ;n10, n20, 0) fn1ǫfn2ǫ

)2

DNǫ(αN)− E(3)
. (4.22)

Note that the eigenvaluesDNǫ and the corresponding eigenvectorsZNǫ now explicitly depend on
the range of the interactionǫ as well as the cutoffN . Subsequently in section4.3.4, the energy
spectra for various bosonic systems will be discussed. Prior to this, the next sections are devoted to
the behaviour of the running coupling constantsg(2)(N) andg(3)(N) and an error analysis.

4.3.2 Running of Coupling Constants

In this subsection, I study the running of the coupling constantsg(2)(N) andg(3)(N) for contact
interactions in detail. Stetcu et al. [77] rewrote the sum in Eq. (4.8) in terms ofΓ-functions and the
generalised hypergeometric function3F2. They found an explicit relation forg(2)(N) from which
the behaviour for largeN can be obtained.

Here, I provide an alternative and much shorter derivation of the behaviour ofg(2)(N) for large
values ofN using an integral representation of the sum in Eq. (4.8). ForE(2) < 3/2 ~ω each term
in the sum is positive and the denominator grows monotonously. I examine the behaviour for very
largeN . With the Euler-Maclaurin formula [97] the sum can be approximated as an integral

− ~ω

g(2)(N)
=

N/2∑

n=0

φ2
n00(0)

2n+ 3
2
− E(2)/(~ω)

(4.23)

=
1

π3/2

∫ N/2

1

Γ(x+ 3/2) dx
Γ(3/2)Γ(x+ 1)(2x+ 3

2
− E(2)/(~ω))

+O(1) , (4.24)
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whereφn00(0) was substituted with Eq. (4.18). The quotient of Gamma functions can be expanded
in x,

Γ(x+ 3/2)

Γ(3/2)Γ(x+ 1)
=

1

Γ(3/2)

√
x+O

(
1/
√
x
)
. (4.25)

Inserting this expansion in Eq. ((4.23)) and integrating, I find

g(2)(N)

~ω
= − π2

√
2

1√
N

+O (1/N) . (4.26)

Thus the coupling constant vanishes as1/
√
N . Identifying

√
N with the momentum cutoffΛ, this

is consistent with the renormalisation in free space [78]. I thus expect the leading errors from finite
N in the effective theory to scale with1/

√
N .

ForE(2) < 3/2 ~ω the coupling rapidly approaches zero asN is increased. In the case thatE(2) >
3/2 ~ω, the terms in the sum in Eq. (4.23) are negative at first untiln > (E(2)/(2~ω)− 3/4). The
couplingg(2)(N) as a function ofN ∈ R thus develops a minimum forN → (E(2)/(2~ω)− 3/4)
and has a pole asN is increased further. For even largerN it approaches zero as well.

For smeared contact interactions an additional damping factor appears. For Eq. (4.23), one has

− ~ω

g(2)(N)
=

1

(1 + |ǫ(b)|2)3
N/2∑

n=0

φ2
n0(0)

(2n+ 3
2
− E(2)

~ω
)

(
1− |ǫ(b)|2
1 + |ǫ(b)|2

)2n

(4.27)

=
1

π3/2(1 + |ǫ(b)|2)3
∫ N/2

0

dx
Γ(x+ 3/2)

Γ(3/2)Γ(x+ 1)(2x+ 3
2
− E(2)

~ω
)

(
1− |ǫ(b)|2
1 + |ǫ(b)|2

)2x

+O(1) . (4.28)

The integral now converges to a constant forN →∞ exponentially at a fixed value ofǫ(b). Thus, the
coupling constant converges to a finite number. Note that thelargerǫ(b) is, the faster the coupling
constant converges and the energy spectrum becomes independent ofN . This result reflects the
additional regularisation of the contact interaction by the smearing.

The inset of Fig.4.7 illustrates the behaviour of the running coupling constant
√
Ng(2) for ǫ(b) =

0. I show
√
N g(2) in the unitary limit for the renormalisation energiesE(2) = 0.5 ~ω (ground

state) andE(2) = 16.5 ~ω (eighth excited state). In the case ofE(2) = 0.5 ~ω, the running
coupling

√
N g(2) has already converged to a constant value for small values ofN and shows

no structure. ForE(2) = 16.5 ~ω, the situation is as described above. The coupling constant
approaches zero forN around14where the denominator of the right hand side of Eq. (4.23) changes
sign. Furthermore, it changes from large positive to large negative values aroundN = 21. This
behaviour can be understood by looking at the spectrum forE(2) = 16.5 ~ω shown in Fig.4.7.
For small values ofN , the model space is not large enough to describe the deeply-bound ground
state adequately. The behaviour of the coupling constant

√
N g(2) is exactly such that this new

state enters the renormalised spectrum from minus infinity keeping the other states unchanged.
In the continuum case, a similar behaviour is observed for the three-body spectrum [78, 79]. For
larger values ofN , when the model space is large enough to describe the ground state, the running
coupling

√
N g(2) approaches the same value for both cases.

For the coupling constantg(3) the situation is more complicated. The eigenvaluesDN(α) as well as
the eigenstates now depend on the cutoff parameterN . Therefore it is not straightforward to derive
the leading-order behaviour ofg(3) analytically. As mentioned earlier, Werner et al. have provided
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Figure 4.7: Energy spectrum in the two-body sector forE(2) = 16.5 ~ω. The dots on the left show
the exact energies. The inset shows the running coupling constants

√
N g(2) in the unitary limit

for renormalisation energiesE(2) = 0.5 ~ω andE(2) = 16.5 ~ω depicted with pluses and stars,
respectively.

a semi-analytic solution for the three-body problem in a harmonic trap in the unitary limit [18].
Again, these results for the energy spectrum are used to benchmark my three-body calculations.

In the left panel of Fig.4.8 the spectrum in the unitary limit for a three-body renormalisation en-
ergyE(3) ≈ 1.76 ~ω is depicted as a function ofN . At N = 16 a new three-body state enters
the spectrum of the model space from minus infinity. For largeN this state approaches the ex-
act eigenenergy at−4 ~ω. In the inset, the corresponding coupling constantg(3) is shown. As in
the two-body case, the coupling constant diverges, here aroundN = 16, and changes from large
positive to large negative values. The three-body spectrumand the coupling constant in the con-
tinuum case show the same behaviour [78]. The phenomena are the same as in the two-body case
discussed above. In the right panel of Fig.4.8, I present the energy spectra for the renormalisation
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Figure 4.8: Left panel: Energy spectrum of Efimov-like states in the three-boson sector in the
unitary limit (E(2) = 0.5 ~ω) for E(3) ≈ 1.76 ~ω. The dashed lines indicate the exact energies [18].
Right panel: Energy spectrum for Efimov-like states in the unitary limitE(2) = 0.5 ~ω with
E(3) ≈ 16.14 ~ω for contact interactions. The running coupling constantsN2 g(3) corresponding to
both cases are shown in the insets. Poles are indicated by vertical solid lines.
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E(3) ≈ 16.14 ~ω. This renormalisation energy belongs to the following energy spectrum in the
full Hilbert space with energy valuesE/(~ω): · · · , −5319.28, −10.29, 1.4, 3.68, 5.82, 7.92, 9.99,
12.05, 14.10, 16.14, · · · . The states with energies lower than1.4 cannot be found inside the feasible
model spaces for this renormalisation energy. Remarkably, the states approach the exact energies
but at specific values of the cutoff marked by vertical lines the spectrum rearranges. The smallest
value ofN corresponds to the appearance of a ground state at energy1.4.

At the two largest cutoff values marked, there are small discontinuities in the energy. These discon-
tinuities are artifacts of the renormalisation method and do not correspond to new states entering
the spectrum. Because of the finite model space, not only the Efimov-like states but also the uni-
versal states depend very weakly on the three-body interaction. In the special case when for a
given cutoffN̄ the renormalisation energyE(3) exactly coincides with the eigenvalue of a univer-
sal state corresponding to another spectrum with renormalisation energȳE(3), the computer code
used erroneously renormalises to the spectrum characterised by Ē(3). The energy values in the
neighbourhood of such points should therefore be discarded.

In the inset of the right panel of Fig.4.8, the behaviour of the corresponding coupling constant is
shown. The coupling constant has a salient behaviour at three positions indicated by the vertical
lines. At the smallest value ofN where the ground state enters into the spectrum from below,
the coupling changes from large positive to large negative values. The approximate pole which is
expected at this position due to the discrete nature of the cutoff N is strongly distorted on the right
wing due to finite cutoff effects. At the two larger values ofN , there are discontinuities due to the
renormalisation artifacts discussed above. Moreover, foreven largerN the coupling approaches an
approximate pole corresponding to the addition of a new ground state at energyE = (−10.29) ~ω.
This pole is not reached in my calculation; it would require alargerN .

4.3.3 Analysis of Uncertainties

There are various sources of uncertainties in my calculation. In this subsection, I perform a detailed
analysis of these uncertainties.

First, there are corrections due to the ultraviolet cutoff parameterN . The considerations in sub-
section4.3.2showed that the finite model space also implies an infrared cutoff which vanishes as
N is increased. The errors due to both cutoffs show the same scaling behaviour inN . Therefore,
one expects corrections in the energy eigenvalues of order1/

√
N + (A− 1)3/2 for largeN . The

shift of N by (A − 1)3/2 under the square root takes into account the zero-point energy of the
freeA-body system. I can extract the scaling behaviour of these corrections from the error anal-
ysis introduced by Lepage [11]. In Fig. 4.9, I show the deviation of the lowest three-body energy
eigenvalues from the exact values in the unitary limitE(2) = 0.5 ~ω with three-body renormalisa-
tion energyE(3) = −1 ~ω. The double-logarithmic plot shows a linear dependence of the energy
differences onlog(N +3) for largeN values. From a linear fit to the five largest values ofN , I find
a slope ofs ≈ −0.6 for the first four Efimov states above the state used for renormalisation. The
small difference to the expected value ofs = −0.5 could be due to contamination from higher order
corrections. As a consequence, the cutoff dependence for contact interactions is in agreement with
power counting arguments based on identifying the momentumcutoff Λ in the continuum theory
with

√
N + (A− 1)3/2. A similar power law dependence of the leading corrections to three-body

energies for contact interactions was observed by Furnstahl et al. [80].

In the case of smeared contact interactions, one finds an exponential dependence on
√
N . In the
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two-body sector, I consider model spaces with cutoffs up toN = 700. In a Lepage plot oflog(|EN−
E∞|) one finds for large cutoffs a slope of approximatelys = −0.5. This implies that for largeN
the calculated energies behave as

EN ≈ E∞ + c1e
−c2

√
N . (4.29)

Thus the smearing changes the leading corrections from an inverse power law to an exponential
behaviour.

The convergence properties of variational calculations using basis expansions have been studied
already in the 1970’s [81,82]. More recently, the convergence properties of ab initio calculations
of light nuclei in a harmonic oscillator basis were investigated [73, 83]. Due to their singularity,
one expects the contact interactions to behave quite differently, but it is interesting to compare the
results with smeared interactions to those of Refs. [73, 83]. However, one has to keep in mind
that I consider a physical trapping potential instead of a mere basis expansion. Moreover, in my
calculation the effective interaction is renormalised at eachN in order to keep the energies of a
given two- and three-body state fixed.

My results show the same exponential dependence on the ultraviolet cutoff and on the infrared
cutoffλsc ∝ 1/

√
N + 3/2 as observed by Coon et al. for the Idaho N3LO potential [73]. Furnstahl

et al. [83], in contrast, observed a Gaussian dependence on the UV cutoff

EN ≈ E∞ + A0e
−A1(

√
N)2 , (4.30)

using similarity renormalisation group (SRG)-evolved chiral interactions, but their dependence on
the infrared cutoff is consistent with mine. For fixed infrared cutoff and an ultraviolet cutoff below
the ultraviolet scale of the potential, a Gaussian dependence was also observed in [73]. A better
understanding of these observations requires further study.

While extracting the energies for genuine contact interactions from smeared contact interactions,
there are also errors due to the width parameterǫ which corresponds to a finite interaction range.
The corresponding two-body problem in free space is separable and can be solved analytically. In
my calculations, I determine the coupling constants from matching to energy levels in the oscillator.
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One two-body energy levelE(2) is kept constant in each model space and the coupling constant g(2)

is determined from this matching condition (cf. Eq. (4.8)). One finds:

~ω

g
(2)
N (ǫ)

= −
((

1 + |ǫ(b)|2
)√

π
)−3

N/2∑

n=0

(
1−|ǫ(b)|2
1+|ǫ(b)|2

)2n
(2n+1)!!
n! 2n

2n+ 3
2
− E(2)/(~ω)

, (4.31)

N→∞−→
((
1 + |ǫ(b)|2

)√
π
)−3
(
2
E(2)

~ω
− 3

)−1

2F1

(
3

2
,
3

4
− E(2)

2~ω
;
7

4
− E(2)

2~ω
;
(|ǫ(b)|2 − 1)2

(|ǫ(b)|2 + 1)2

)
,

(4.32)

where2F1(a, b; c; z) denotes a hypergeometric function. The limitN → ∞ yields the coupling
constant in the full Hilbert space.

The width ǫ(b) is used as a smearing parameter and the behaviour for smallǫ(b) is interesting.
Expanding the first and second line of Eq. (4.31), one finds:

g(2)∞ (ǫ(b)) = −2π 3
2 ǫ(b) − 4π2Γ(3

4
− E(2)

2~ω
)

Γ(1
4
− E(2)

2~ω
)
|ǫ(b)|2

− 2π
3
2

(
1 + 4

E(2)

~ω
+

4πΓ(3
4
− E(2)

2~ω
)2

Γ(1
4
− E(2)

2~ω
)2

)
|ǫ(b)|3 +O(|ǫ(b)|4) ,

(4.33)

g
(2)
N (ǫ(b)) = c0(N,E

(2)) + c2(N,E
(2))|ǫ(b)|2 +O(|ǫ(b)|4) . (4.34)

Remarkably, the results for finite and infiniteN differ fundamentally since the limitsǫ(b) → 0 and
N → ∞ do not commute. ForN → ∞, the coupling constant depends linearly onǫ(b) in leading
order and vanishes forǫ(b) → 0. For finiteN , the leading term is independent ofǫ(b) and the first
correction is of order|ǫ(b)|2. The constant term inǫ(b) is a consequence of regularisation withN but
the vanishing of the correction linear inǫ(b) is unexpected. The expansion parameterc0(N,E

(2))
vanishes like1/

√
N for N →∞.

The corresponding two-body energies show a similar behaviour. First, the value ofg(2) is fixed
for a givenǫ(b) andE(2). The other energiesE(2)

i can then be calculated numerically using a root-
finding algorithm. ForN = ∞ and smallǫ(b) the energiesE(2)

i (ǫ(b), E(2)) depend linearly onǫ(b).
In order to extract the results for a zero-range contact interaction from a calculation with smeared
interactions, a linear extrapolation inǫ(b) is thus appropriate. For finiteN , however, the depen-
dence of the excitation energiesE(2)

i (ǫ(b), E(2), N) on ǫ(b) is different. Forǫ(b) → 0, one finds
|E(2)

i (ǫ(b), E(2), N) − E
(2)
i (0, E(2), N)| ∝ |ǫ(b)|2 and an extrapolation inǫ(b) does not reproduce

the result for a zero-range contact interaction. Theǫ(b)-dependence of the energies is illustrated
schematically in Fig.4.10. In order to extract the contact interaction results from smeared interac-
tions, it is therefore important to extrapolate inN first (or use numerically converged values) and
then extrapolate toǫ(b) = 0 in a second step.

The variation of the energies withǫ(b) can be interpreted as a dependence on the effective range
r0 of the two-body interaction. The effective range parameters in terms of the effective coupling
constantg(2) in the continuum case are (See AppendixC.2):

b

a
=

√
2π

g(2)/(~ω)
+

1√
2πǫ(b)

and
r0
b

=
√
2

(
2ǫ(b)√
π
− 4π|ǫ(b)|2
g(2)/(~ω)

)
. (4.35)

These relations are valid in the full Hilbert space but not inthe restricted model space characterised
by finiteN . Analogous to the case without a trap, my numerical results and equation (4.35) then
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Figure 4.10: Schematic dependence of energies on the smearing parameterǫ(b) for finiteN (dashed
line) and infiniteN (solid line).

imply that the leading corrections to the energiesE
(2)
i for contact interactions are linear in the

effective ranger0.

I have also studied theǫ(b)-dependence in the three-body sector. In the left panel of Fig. 4.11,
the corrections from finiteǫ(b) for finite N are shown. I plot the deviation of results for smeared
interactions withǫ(b) 6= 0 from contact-interactions results withN = 70. I focus on the unitary
limit for contact interactions, which corresponds toE(2) = 0.5 ~ω. Note that I keep this two-body
ground state energy constant whileǫ(b) is changed. For finiteǫ(b), the system is not exactly in the
unitary limit anymore. For smallǫ(b) there is a linear dependence in the double-logarithmic plot.
The fit yields a slope of approximatelys = 2 for the state presented, which implies a quadratic
dependency of the corrections inǫ(b) for ǫ(b) → 0 in agreement with the behaviour in the 2-body
sector.
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Figure 4.11: Left panel: Corrections in energy eigenvalues as a function ofǫ(b) with A = 3,
E(2) = 0.5 ~ω, E(3) = 0.5 ~ω. Right panel: Corrections as a function of(E(2) − E(3))/E(2) for
the unitary limit withA = 3.

Finally, there are corrections from a mismatch in renormalisation energiesE(2) andE(3). In an
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effective theory, only states with excitation energies small compared to the cutoff scale of the
effective theory can be described. Clearly, the renormalisation energies must be chosen in this
energy range. ForE(2) 6= E(3), we expect errors governed by(E(2) − E(3)) from the mismatch
in the two- and three-body renormalisation energies. For contact interactions (ǫ(b) = 0), I have
investigated the errors in(E(2) − E(3)) numerically. For this purpose, I chose the unitary limit
and variedE(3). The right panel of Fig.4.11shows the deviation of the exact results from results
in the model space for various(E(2) − E(3)). As expected, the corrections grow with increasing
|E(2)−E(3)|. Thus in practise, it is desirable to chooseE(2) ≈ E(3) to minimise this type of errors.

4.3.4 Energy Spectra

With these insights, now the energy spectra ofA-boson systems are studied forA = 3, 4, 5, 6 in a
trap. The spectra are obtained from two different numericalcalculations:

(1) contact interactions and extrapolations in1/
√
N + (A− 1)3/2 are studied as in section4.2,

and alternatively

(2) smeared contact interactions and linear extrapolations inthe width parameterǫ(b) of the con-
verged results inN are investigated.

The difference between the two methods will be used to estimate the errors in my calculation.

4.3.4.1 Three Identical Bosons

At first, the 3-boson sector is considered. In the left panel of Fig. 4.12, the eigenvalues of the first
excitedLπ = 0+ state are shown as a function of the cutoff parameterN ≤ 70 for various smearing
parametersǫ(b) in oscillator lengthsβ. The corresponding renormalisation energies areE(2) = 0.5
andE(3) = −1. For small model spaces the results are identical for all interaction widths. With
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Figure 4.12:Left panel: Eigenvalue for the first excitedLπ = 0+ state withA = 3 as a function of
N with E(2) = 0.5 ~ω andE(3) = −1 ~ω for variousǫ(b). Right panel: The converged eigenvalues
as a function ofǫ(b). Lπ = 0+, E(2) = 0.5 ~ω andE(3) = −1 ~ω. The points atǫ/b = 0 denote
the exact eigenvalues from [18]. The dashed lines are linear fits to the values forǫ/b ≤ 0.3 used to
extrapolate toǫ/b = 0.

increasing interaction widthǫ the eigenvalues converge for smaller values of N. The converged
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eigenvalues do not coincide with the results for contact interactions. However, as discussed in the
previous section, the parameterǫ can now be used as a extrapolation parameter instead ofN .

The converged eigenvalues are given as a function ofǫ in the right panel of Fig.4.12for the five
lowestLπ = 0+ excited states. The solid lines are linear extrapolations of the data points for
ǫ/b ≤ 0.3 and the results agree with the exact values known for contactinteractions in the unitary
limit [ 18] within 3% errors. The error bars of the data points are estimated by thedifference of the
eigenvalues related to the two highest cutoff parametersN , i.e. with these two eigenvalues the exact
one is approximated by linear extrapolation and the error isestimated as the difference between the
state with the highest cutoff parameter and the estimated one. In Fig.4.12 the two model space
sizes correspond toN = 70 andN = 68.

In Fig. 4.13, the spectra of Efimov-like states are depicted in the unitary limit (E(2) = 0.5 ~ω)
for E(3) = 0.5 ~ω andE(3) = −4 ~ω in order to illustrate the significance of the mismatch in
renormalisation scales. With a linear extrapolation the exact values forE(3) = −4 ~ω are too
low systematically. For largerE(3) the extrapolation inN achieves better results than a linear
extrapolation inǫ. This method clearly has larger errors forE(3) = −4 ~ω.
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Figure 4.13: Spectrum of Efimov-likeLπ = 0+ states withA = 3 in the unitary limit as a function
of ǫ. At ǫ/b = 0 exact eigenenergies are drawn in.Left panel: Renormalisation energyE(3) =
0.5 ~ω. Right panel: Renormalisation energyE(3) = −4 ~ω.

Finally, Fig.4.14shows a non-unitary example withE(2) = −2 ~ω. In the left panel the eigenvalues
for the renormalisation energyE(3) = −1 ~ω are shown as a function of the widthǫ and in the
right panel forE(3) = −5 ~ω. The results are linearly extrapolated as in the unitary limit. At
ǫ/b = 0 the results for contact interactions extrapolated with a quadratic polynomial in1/

√
N + 3

are added. The uncertainties from the extrapolation are estimated conservatively as the energy shift
from the last calculated eigenvalues to the extrapolated one. Inside relative errors of3.5% referred
to the ground state with eigenenergy−5 ~ω respectively−1 ~ω both results coincide. This method
clearly has larger errors forE(3) = −5~ω.

4.3.4.2 Four Identical Bosons

In section4.2.2, results for a 4-boson system have been presented with contact interactions. Here
these calculations are revisited using smeared interactions. For instance, calculations for the unitary



56 Chapter 4. Few Bosons in Traps

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6

E
[~
ω
]

ǫ(b)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.1  0.2  0.3  0.4  0.5  0.6

E
[~
ω
]

ǫ(b)

Figure 4.14:Lπ = 0+ eigenvalues forA = 3 as a function ofǫ with E(2) = −2 ~ω. The points at
ǫ/b = 0 denote the extrapolated results for contact interactions.The lines are linear extrapolations
to ǫ/b = 0. Left panel: E(3) = −1 ~ω. Right panel: E(3) = −5 ~ω.

limit E(2) = 0.5 ~ω with E(3) = −1 ~ω with contact interactionsǫ/b = 0 are compared to calcula-
tions withǫ/b 6= 0. In my calculation I can reach cutoff values up toN = 26 which is significantly
smaller than in the three-body sector. In Fig.4.15, the eigenenergies for the ground and for the
first excited states are shown for various model-space sizes. The solid lines are extrapolations with
quadratic polynomials in1/

√
N + (4− 1)3/2. As in the three-body sector the eigenvalues con-
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Figure 4.15: Four-bosonLπ = 0+ states withE(2) = 0.5 ~ω andE(3) = −1 ~ω for various
smearing parametersǫ as a function of1/

√
N + 4.5. Left panel: Ground state.Right panel: First

excited state. Solid lines are polynomial extrapolations.

verge inN more rapidly for larger smearing parametersǫ. However, for smeared interactions the
eigenvalues of the ground state increase at first until they reach a maximum and begin to decrease
only afterwards. It is conceivable that for contact interactions andǫ/b = 0.1 the model spaces are
too small in order to see the decrease of the eigenvalues. Thus, the extrapolation given in the left
panel of Fig.4.15could have large systematic errors. Since contact interactions can behave quite
differently from smeared interactions, however, a definiteanswer requires calculations at larger
cutoffsN which however are beyond the scope of this work. If the renormalisation energiesE(2)

andE(3) are chosen equal, the non-monotonous behaviour inǫ does not appear and becomes more
pronounced only as the mismatch betweenE(2) andE(3) is increased. The excited states do not
show the non-monotonous behaviour inǫ at all. Their eigenvalues decrease monotonously withǫ
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and for largeǫ they converge inside the model-space sizes considered here.

Fig. 4.16 (left panel) shows the converged or extrapolated eigenvalues as a function ofǫ for the
three lowest states with renormalisation energiesE(2) = 0.5 ~ω andE(3) = −1 ~ω. In comparison
to the three-body sector, the Hamiltonian can be diagonalised only in small model spaces (up to
N = 26). Thus, just untilǫ/b = 0.35 the eigenvalues have small error bars. The states are
linearly extrapolated toǫ/b = 0. At ǫ/b = 0 the eigenstates extrapolated viaN with a quadratic
polynomial in1/

√
N + (4− 1)3/2 and their estimated uncertainties are shown. Forǫ/b < 0.25 the

eigenvalues for the ground states cannot be determined withacceptable accuracy. The extrapolated
results differ significantly and are at odds with each other for the ground state. This is due to the
non-monotonic behaviour of the ground state energy withǫ/b discussed above. For the excited
states this problem is absent and the results of the two extrapolations are compatible. In the right
panel of Fig.4.16, I show the results forE(3) = 0.5 ~ω. SinceE(2) = E(3), one expects less
uncertainties for a fixedǫ than for the caseE(2) 6= E(3) (see section4.3.3). In particular, the ground
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Figure 4.16: Lowest three energy statesLπ = 0+ for E(2) = 0.5 ~ω as a function ofǫ for A = 4.
Left panel: E(3) = −1 ~ω. Right panel: E(3) = 0.5 ~ω. The eigenvalues are linearly extrapolated.
At ǫ/b = 0 extrapolated eigenvalues for contact interactions drawn in.

state energies show no non-monotonous dependence onǫ and the extrapolations inǫ andN are
consistent.

4.3.4.3 Five and Six Identical Bosons

The combined extrapolation technique is now applied to perform exploratory calculations of the
spectra of five and six identical bosons. In order to keep the uncertainties as small as possible, the
renormalisation energies are chosen to be identical, i.e.E(2) = E(3) = 0.5 ~ω. In particular, this
removes the problem of the non-monotonous behaviour of the energies as a function ofǫ discussed
above for the four-body system. The cutoff parameter isN = 20 for five bosons andN = 16 for
six bosons.

The results for the three lowest energyLπ = 0+ states with different smearing parametersǫ are
depicted in Fig.4.17. Due to the small model spaces, the uncertainties are significantly larger than
for three and four bosons. The eigenenergies for contact interactions are extrapolated inN with a
polynomial of second order in1/

√
N + (A− 1)3/2. They are shown atǫ/b = 0 with conservative

error bands. These approximated eigenvalues are consistent with extrapolations inǫ for smeared
contact interactions inside the error bands. Thus I conclude that the combined extrapolation inN
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Figure 4.17: Lowest three energy statesLπ = 0+ for E(2) = 0.5 ~ω, E(3) = 0.5 ~ω as a function
of ǫ. Left panel: A = 5 (N = 20). Right panel: A = 6 (N = 16). The solid lines are linear
extrapolations inǫ. At ǫ/b = 0 the eigenvalues extrapolated with a polynomial of second order in
1/
√
N + (A− 1)3/2 for contact interactions drawn in.

and ǫ makes calculations in five- and six-boson systems with moderate computational resources
possible.

In Table 4.1, the extracted energies of the lowest three Efimov-like states are collected for the
unitary limit (E(2) = 0.5 ~ω) and a three-body ground state energy fixed toE(3) = 0.5 ~ω
(cf. Figs. 4.13, 4.16, and4.17). The numbers in the first two columns are the exact values for

A = 2 A = 3 A = 4 A = 5 A = 6

0.5 0.5 -0.1(2) -0.9(2) -2.3(3)
2.5 2.9 2.7(3) 2.2(3) 1.1(2)
4.5 5.1 4.6(5) 4.3(5) 3.7(3)

Table 4.1: Energies of the three lowest Efimov-like states insystems withA = 3, 4, 5, 6 for the
renormalisation energiesE(2) = 0.5 ~ω corresponding to the unitary limit andE(3) = 0.5 ~ω. The
column labelledA = 2 contains the three lowest two-body states. All energies arein units of~ω.

A = 2 andA = 3 rounded to two digits of accuracy. The values for the columnslabelledA = 4,
A = 5, andA = 6 are extracted from my calculations. Here the number in parentheses gives the
difference in the last digit between the extrapolation inN andǫ which can serve as an estimate
of the numerical error. The spectra are much more compressedthan the corresponding free space
results [25,74,75,84–86]. However, a similar pattern can be observed: starting fromA = 3, every
A-body state is accompanied by a corresponding(A+ 1)-body state. However, a second(A+ 1)-
body state attached to theA-body state is not present in my calculation. It would be interesting to
study the spectra also away from the unitary limit for fixedE(3) to investigate their systematics.
However, due to the additional errors from the mismatch inE(2) andE(3) this is numerically more
challenging.



4.4. Conclusion 59

4.4 Conclusion

In this chapter I have studied the physical systems with up toseven identical bosons in a confining
of the harmonic oscillator potential. Due to the assumptionthat the boson-boson scattering length
dominates the effective range expansion, interactions between the bosons are approximated with
two-body and three-body contact interactions, i.e. the scaling limit. The energy spectra of the
A-boson systems have been determined with the shell-model approach introduced in chapter3 in
the model spaces spanned by finite oscillator bases for a given cutoff parameterN . Here, the
running coupling constantsg(2)(N) andg(3)(N) are renormalised and adjusted to reproduce two
given energy statesE(2) andE(3) in the two-body and three-body system.

To start with, I have referred to the spectrum for the three-boson system for the total angular mo-
mentum and parityLP = 0+. It consists of two types of states. There are states independent of
the three-body interaction and the Efimov-like states, the analogues in the trap to the Efimov states
without confinement. Afterwards, the spectrum for four-bosons and it dependence on the renor-
malisation energyE(2) has been investigated. The first part of this chapter has beencompleted with
selected energy spectra for systems with up to seven bosons.

However, I have found a slow convergence of the energy spectrum in dependence of the cutoff
parameterN . This problem has lead to the substitution of the contact interactions with narrow
separable Gaussians with widthǫ, so-called smeared contact interactions. The new parameter ǫ
has been used as another extrapolation parameter in order todetermine the energy spectra and for
variousA-boson systems the results have been presented. Remarkably,this new approach indicates
larger uncertainties in theN -extrapolated energy values for contact interactions thanexpected pre-
viously.

Additionally, the behaviour of the running coupling constantsg(2)(N) andg(3)(N) has been studied.
In particular, the consequences of different renormalisation energies has been investigated. Finally,
in a detailed error analysis the interplay of the finite cutoff parameterN , and the finite widthǫ has
been studied. It results in the following prescription to determine the energy values: Use converged
results in the cutoff parameterN for finite widthǫ or extrapolate in the cutoff parameterN first and
then extrapolate in the widthǫ linearly.



Chapter 5

Clusters of Helium Atoms

This chapter is devoted to physical systems without external confinements. I shall concentrate
on the formation of4He-clusters consisting ofA constituents. The following work is done in
collaboration with Prof. Forssén, Chalmers University, Gothenburg. His research group delivers the
matrix elements in the harmonic oscillator basis of two- andthree-body interactions and evolved
the genuine interactions with similarity renormalisationgroup (SRG) transformations.

5.1 Introduction

As mentioned in section2.5.2, the existence of4HeA-atom clusters withA constituents could be
shown by Scḧollkopf et al. in experiments based on diffraction of heliumclusters from a trans-
mission grating [21]. Within their experiments the resolution is sufficient to separate cluster with
different numbers of constituents. However, the binding energies of these clusters cannot be di-
rectly determined. Only the dimer binding energyEB

2 can be estimated by means of its measured
size of〈r〉 ≈ 4 Å to be aroundEB

2 = 1.1+0.3
−0.2 mK [22].

This result is consistent with predictions by ab initio potentials like TTY or LM2M2 withEB
2 =

1.30962 mK [6] andEB
2 = 1.302 mK [25], respectively. For larger clusters there are no measure-

ments of binding energies, only predictions based on such abinitio potentials exist. Results from
several ab initio potentials are collected in [23].

For up toA = 10 atoms predictions for the ground state binding energiesEB
A based on the ab initio

potential LM2M2 are calculated with Monte-Carlo methods by Blume et al. [24]. These predictions
will be later used as benchmark results.

Furthermore, Gattobigio et al. [25] have proposed an effective parametric potential for the LM2M2
ab initio potential consisting of attractive Gaussian two-body potentials and a repulsive Gaussian
three-body interactions. We call this effective potentialthe Pisa potential due to the research loca-
tion of the majority of the research collaboration involved. With their technique described in [87]
using the hyper-spherical harmonic expansion they determined predictions of binding energies for
up to clusters ofA = 6 atoms.

In the following sections we use the shell-model approach introduced in chapter3 to calculate the
binding energies of the ground states of4HeA clusters with angular momentum and parityLP = 0+.
The atom with the4He isotope as nucleus is a spinless boson. Thus, the spatial wave function of

60
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a 4HeA cluster has to be symmetric under permutation of atoms as assumed in this shell-model
approach. To start with, the unevolved LM2M2 potential is used as the interaction between theA
constituents in section5.2. As we will see the slow convergence in the cutoff parameterN due
to the hard core of the LM2M2 potential requires the SRG evolution of this potential. Results for
various evolution parameterΛ are presented for up toA = 10 in section5.3. Furthermore, the
binding energies for up to twelve atoms are determined basedon the Pisa potential in section5.4.
Depending on the strength of three-body interaction we distinguish between soft and hard Pisa
potentials. For the soft Pisa potential results are summarised in section5.4.1. The hard version of
the Pisa potential is studied in section5.4.2and we will see in section5.4.2.1that this version has
a slower convergence in the cutoff parameterN . Therefore the SRG-evolution is also utilised for
this potential and the results are shown in section5.4.2.2.

5.2 LM2M2 Potential

In this section, we present our results for atomic4He clusters consisting of up to ten constituents
using the LM2M2 potential. The LM2M2 potential is an ab initio potential for4He atoms con-
structed by Aziz et al. [23,88]. Its specification is given in appendixE. In the following the unit of
length au means Bohr radius:1 au≈ 0.5 · 10−10 m.

In the left panel of Fig.5.1, we show the LM2M2 potential as a function of the distance between
two 4He atoms. Aroundr = 3 Å the potential has its minimum with a depth of about−11 K. At
r = 2.5 Å the hard core starts and reaches the finite but huge value ofV (0) = 1.9 MK at the origin.
For r →∞ the potential approaches zero from below.
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Figure 5.1:Left panel: LM2M2 potential in position space.Right panel: Spectrum with LM2M2
potential for the ground state of4He3 as a function of the oscillator lengthb for various cutoffs
N . Convergence couldn’t be achieved. The horizontal solid line indicates the ground state energy
E3 = −125.8 mK from the literature [89].

Because of the hard core repulsion, the potential mixes the low and high energy regime strongly.
As a consequence, we expect a slow convergence in the energy cutoff of the model spaceN . This
is illustrated in the right panel of Fig.5.1where the ground state energyE3 of the4He trimer4He3
is presented as a function of the oscillator lengthb which here is a variational parameter. Up to
N = 50, no convergence is achieved for the trimer energy. Except for the largest value ofN ,
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the trimer even seems to be unbound. The exact value for the binding energy in the literature is
EB

3 = 125.8 mK according to Motovilov et al. [89].

Working with the genuine LM2M2 potential is therefore not a viable option and alternative strate-
gies have to be applied. In the following, we will consider two such strategies:

(1) Use an SRG-evolved version of the LM2M2 potential. As discussed above, this will generate
a softer potential accompanied by induced many-body forcesthat capture the physics of the
hard core.

(2) Construct softer effective parametric two- and three-body potentials that reproduce the two-
and three-body bound state energies of LM2M2 by adjusting the parameters. We will refer
to this effective potential as the Pisa potential.

Both approaches will be discussed below.

5.3 SRG-Evolved LM2M2 Interaction

The SRG is a powerful technique to generate unitarily equivalent interactions with better conver-
gence properties in many-body calculations. In the case of the LM2M2 potential the interaction is
softened at the expense of introducing many-body forces.

We have evolved the LM2M2 interaction using the flow equationin Eq. (2.49) as outlined in sec-
tion 2.4. It turns out that for the LM2M2 potential, the evolution of induced three- and higher-body
forces is computationally very expensive since a large number of partial waves contributes. We
were not able to carry out the evolution of the induced three-body forces far enough to achieve a
significant softening of the two-body interaction.

In the following, as a pilot study we will therefore perform calculations ofA-body systems with
A = 4 up toA = 10 neglecting these induced many-body forces. Apart from the parameter of the
ultraviolet cutoff of the model spaceN and the oscillator lengthb as a variational parameter, there
is the SRG parameterΛ which specifies the evolution status. ForΛ =∞ the potential is unevolved
andΛ = 0 corresponds to the furthest evolution. A variation of the SRGparameterΛ allows to
estimate the error from the omitted induced forces in our calculations.

In the left panel of Fig.5.2, we collect the eigenenergies for the model space with cutoff parameter
N = 30 as a function of the oscillator parameterb for variousΛ. There are minima in the energy
for certain ranges of valuesbmin which become more pronounced and form broader plateaus asΛ
decreases. In Table5.1the positions of the minimabmin are collected for variousΛ.

Λ 5 1 0.75 0.5 0.25
bmin 3.8 4.8 5.6 8.0 10

Table 5.1: Positions of the minimabmin in the eigenenergies forA = 4 with SRG-evolved LM2M2
potential for various flow parametersΛ. Λ is given in units of(au)−1 andbmin in units of au.

The energies at the minima appear to converge to a certain value. In order to investigate this
convergence, we plot the energies of the minima as a functionof 1/N for differentΛ in the right
panel of Fig.5.2. ForΛ ≤ 1 (au)−1, the calculations have obviously converged but differentΛ lead
to different values for the binding energy. This spread is due to the missing induced three-body
forces and can be used to estimate the error due to their omission.
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Figure 5.2: Ground state energy of4He4 determined with SRG-transformed LM2M2 potential.
Left panel: Energies as a function ofb for cutoffsN = 30 for variousΛ. Right panel: Energies
as a function of1/N for variousΛ inside the minimum inb.

The determination of the estimated result for the full Hilbert space is based on extrapolation to
N →∞. Since the exact relation between the energy eigenvalues and the cutoffN is unknown, we
apply the procedure illustrated in Figure5.3. The last two data points are extrapolated linearly to
the infiniteN limit. This gives our first estimate. The other estimate is given by the last data point
itself. Our final value is the arithmetic average of these twopoints while their spread is taken as the
uncertainty. We have tested this procedure in cases where convergence has been reached and found
that the exact value is always reproduced within errors by this extrapolation.
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Figure 5.3: Illustration of the extrapolation procedure for the example of ground state energy of
4He4 based on the LM2M2 potential evolved up toΛ = 1.0 (au)−1. The oscillator lengthb is fixed
at b = 4.8 au, see Table5.1, and the cutoff parameter isN = 42.

In Table5.2, we present the results for the binding energies ofN -body clusters up toN = 10
for different values ofΛ. For comparison the MC results of Blume et al. [24] for the genuine
LM2M2 potential are also shown. Similar to calculations of nuclear few-body systems with SRG
evolved potentials [90], there is no monotonous dependence of the calculated energies onΛ. As
Λ is decreased, the energies at first deviate further from the presumably accurate MC result before
they approach this value again at the smallestΛ calculated.
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a
a
a
a
a

N Λ 0.25 0.5 0.75 1.0 MC [24]

EB
3 58 125.941± 0.013 134.710± 0.079 131.75± 0.26 129.7± 1.0 125.5

EB
4 42 573.839± 4.3 · 10−5 620.50± 0.47 598± 3.2 579.4± 4 559.7

EB
5 24 1389.100± 0.002 1502.27± 0.22 1433± 20 1470± 160 1309

EB
6 18 2584.050± 0.008 2789.3± 3.0 2690± 200 2610± 490 2329

EB
7 16 4164.876± 0.002 4484± 12 4410± 650 - 3565

EB
8 16 6135.4± 0.1 6578± 16 - - 5044

EB
9 14 8499.63± 0.03 9101± 61 - - 6683

EB
10 14 11253.54± 0.07 - - - 8509

Table 5.2: Binding energiesEB
A in [mK] for various evolution parametersΛ fromΛ = 0.25 (au)−1

up toΛ = 1.0 (au)−1. For Λ = 5.0 (au)−1 no binding energies could be determined with ac-
ceptable uncertainties. The numbers are the extrapolated results with their uncertainties for the
oscillator lengthb with highest binding energies. For comparison the results from the Monte Carlo
calculations made by Blume et al. [24] are shown in the last column.

5.4 Effective Pisa Potential

Beyond the SRG-transformation, an effective potential can beconstructed by simple parametrisa-
tions in the form of short-ranged interactions. At leading order in the large scattering length then
both a two-body and a three-body contact interaction are required. In the practical application, we
follow the procedure used by Gattobigio et al. and choose a Gaussian potential as the regularised
form of a contact term [25]. The strength and range are chosen to reproduce the bindingenergyE2,
the scattering lengtha and effective ranger0 of the LM2M2 potential. The three-body interaction is
taken as a Gaussian-hyper-central three-body term designed to reproduce the LM2M2 three-body
ground state energyE3. Specifically, this so-called effective Pisa potential then consists of the
two-body interaction

VG(rij) = V0e
−

r2ij

R2 , (5.1)

in the coordinaterij := (~x2− ~x1) with V0 = −1.227 K andR = 10.03 au as well as the three-body
interaction

WG(ρijk) = W0e
−2

ρ2
ijk

ρ20 , (5.2)

in the hyper-radiusρijk :=
√
2/3(r2ij + r2ik + r2jk). The parameter pair (W0, ρ0) is not unique. There

is an infinite number of possible combinations which reproduce the LM2M2 ground state energy
for 4He3. In the following, we consider three combinations collected in Table5.3. The three-body
interaction with parametersρ0 = 14 au andW0 = 422 mK is relatively soft and long-ranged such
that we expect fast convergence with respect to the cutoff parameterN . In the following this is
called the soft Pisa potential. The other two parameter combinations are referred to as hard Pisa
potentials.

5.4.1 Soft Pisa Potential

We start with the 4-boson system. Fig.5.4 shows in the left panel the ground state of4He4 as
a function of the oscillator length parameterb for the soft Pisa potential. One expects a plateau
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W0 [mK] ρ0 [au]

soft 422 14
hard 306.9 · 103 4
hard 3 · 108 2.2511

Table 5.3: Considered combinations ofW0 andρ0, which reproduce ground state energyE3 of the
LM2M2 potential.

at the minimal energy, which becomes broader for larger model spaces. Indeed, we find such
a plateau aroundb = 8 au with an energyE4 = −568.8 mK. This coincides with the result
E4 = −568.79 mK found in [25]. In comparison to Monte Carlo calculations with the genuine
LM2M2 potential, published by Blume et al. in [24], there is a deviation of10 mK or 1.8 %.
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Figure 5.4: Ground state energy of4He4 determined with Pisa Potential withρ0 = 14 au and
W0 = 0.422 K. Left panel: As a function ofb for various cutoffsN . Right panel: As a function
of N for variousb. The Horizontal line is the result with genuine LM2M2 from Blume [24].

The determination of the estimated result for the full Hilbert space is again based on an extrapola-
tion toN → ∞. We apply the same procedure as for the SRG-evolved LM2M2 potential, i.e. the
last two data points are extrapolated linearly to the infiniteN limit. Our final value is the arithmetic
average of the extrapolated values and the last data point, while their difference is taken as the
uncertainty.

Using this extrapolation method, we have investigatedA-particle systems of4He atoms up toA =
12. The results are collected in Table5.4. Results from [25] and [24] are added for comparison.
Only up toA = 6 results are published in [25]. For that region both results are approximately
identical. Remarkable is the deviation from the Monte Carlo results: UntilA = 6 the binding
energies are larger for the effective Potential and differ from the MC results by less than2 %. For
A > 6 the binding energies are smaller and deviate approximatelyby 10 % for A = 10. The
trend of this deviation can be explained by a combinatorial argument. The original LM2M2 is
just a two-body interaction with a hard repulsive core. In contrast, the Pisa potential consists of
an attractive two-body interaction and a repulsive three-body interaction. The number of pairs
NP = 1/2A(A − 1) and tripletsNT = 1/6A(A − 1)(A − 2) depend on the particle numberA
differently. The number of pairs is larger or equal than the number of triplets untilA = 5. For
A > 5, the number of triplets and therefore the effect of the repulsive three-body interactions
dominate the number of pairs and therefore the effects of thetwo-body interaction increasingly.
This effect can be reduced by choosing a three-body interaction of shorter rangeρ0. The details of
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this interaction can then not be resolved by the more deeply bound systems with largerA. However,
the price one has to pay is a slower convergence of the calculation. In the case of SRG-evolution
the induced many-body forces thus become important at this point.

Soft Pisa Pisa [25] LM2M2 with MC [24] Pisa/MC

EB
4 568.832± 0.036 568.79 559.7 101.6 %

EB
5 1326.82± 0.18 1326.6 1309.3 101.3 %

EB
6 2339.57± 0.72 2338.9 2329 100.4 %

EB
7 3536.89± 0.76 - 3565 99.2 %

EB
8 4858.4± 1.8 - 5044 96.3 %

EB
9 6256.7± 3.8 - 6683 93.7 %

EB
10 7699.3± 5.5 - 8509 90.6 %

EB
11 9165.6± 3.5 - - -

EB
12 10647± 5 - - -

Table 5.4: Binding energies determined with soft Pisa potential for system withA = 4 for up to
A = 12 bosons. Energies are given in mK.First column: Soft Pisa potential withρ0 = 14 au and
W0 = 0.422 K. Second column: Results from [25]. Third column : Monte Carlo calculations
for genuine LM2M2 potential done by Blume et al. [24]. Fourth column: Relative deviation of
energies determined with Soft Pisa potential and Monte Carloresults of LM2M2.

In principle with the same approach systems withA = 11 andA = 12 can be examined. A cutoff of
N = 12 here is still feasible. The best values of the oscillator length and the ground state energies
can be estimated with the typical graphical analysis. Within error bars of4 mK the binding energy
of 4He11 is found to be equalE11 = (−9166± 4) mK as extracted from the left panel in Figure5.5
with extrapolation ofN−1 to 0. From the right panel we likewise findE12 = (−10647± 5) mK.
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Figure 5.5: Ground state energy of4He11 and4He12 determined with the Pisa potential withρ0 =
14 au as a function of the cutoff parameterN . Left panel: A = 11. Right panel: A = 12.

We emphasise that these results are obtained with the effective Pisa potential and not with the
genuine LM2M2 potential. As discussed above, this leads to areduced binding compared to the
genuine LM2M2 interaction. We expect from the results displayed in Table5.4that forA = 11 the
deviation to MC results is of the order15 % and for theA = 12 about20 %.
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5.4.2 Hard Pisa Potentials

In this section theA-boson system is examined with the other parameter combinations forW0 and
ρ0 listed in Table5.3. Since these hard Pisa potentials are more similar to the original hard core
LM2M2 potential, the deviation observed in the last sectionfor the soft potential should be smaller
at the expense of a slower convergence inN .

5.4.2.1 Unevolved Hard Pisa Potentials

To start with, the four boson system is studied with the unevolved hard Pisa potentials. In Figure5.6
the results for the ground state energy of4He4 are presented as a function of the oscillator length
b for the hard Pisa potential with parameterρ0 = 4 au in the left panel and in the right panel
with ρ0 = 2.2511 au. Two features are clearly visible in this figure. At first, the position of the
minimum depends on the interaction range. Forρ0 = 4 au the minimum is aroundb = 5.5 au and
for ρ0 = 2.2511 au aroundb = 4.5 au. Secondly, theN dependence is the weaker for longer ranged
interactions. As a consequence approximately converged results are not feasible for the hard Pisa
potentials. Only with extrapolations correct results can be estimated, albeit with large uncertainties.
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Figure 5.6: Ground state energy of4He4 determined with the hard Pisa potential.Left panel:
ρ0 = 4 au.Right panel: ρ0 = 2.2511 au.

As depicted in the left panel of Figure5.7the ground state energy eigenvalue forρ0 = 4 au isE4 =
(−571.7 ± 9.5) mK. Unfortunately, the model spaces are too small to investigate the discrepancy
between the MC results with the genuine LM2M2 potential and results with soft Pisa interactions
systematically by a study of the hard core versions. But, it isobvious that also forρ0 = 4 au the
estimated binding energy is larger than the MC result and still compatible with the result with the
soft Pisa potential.

In the right panel of Figure5.7 the eigenenergiesE4 for ρ0 = 2.2511 au are shown versus the
inverse cutoff parameter1/N . We find an extrapolated energy eigenvalueE4 = (−586± 69) mK.
The uncertainties in the energy are larger than the difference between the soft Pisa result with
ρ0 = 14 au and the MC result.

But in spite of the large uncertainties, it is possible to makea statement about the errors caused by
the discrepancy between the effective Pisa and the ab-initio LM2M2 potential in the many body
sector. For instance, we consider the system withA = 10 bosons and the hard Pisa potential
with parameterρ0 = 4 au. It is clear from Figure5.8 that the estimated binding energy ofEB

10 =
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Figure 5.7: Ground state energy of4He4 determined with the Pisa potential as a function ofN . Left
panel: ρ0 = 4 au.Right panel: ρ0 = 2.2511 au.

(7699.3 ± 5.5) mK for the soft Pisa potential andEB
10 = (9335 ± 1236) mK for the hard Pisa

potential withρ0 = 4 are mutually exclusive. The hard Pisa potential indeed seems to produce
binding energies more similar to the results with the LM2M2 potential obtained with Monte Carlo
methods.
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Figure 5.8: Ground state energy of4He10 determined with the hard Pisa potential as a function of
N with ρ0 = 4 au.

Nevertheless, the slow convergence is a severe obstacle forthe hard Pisa potential which becomes
more and more severe for larger particle systems because of the necessity to use smaller and smaller
model spaces. A possibility to guarantee a faster convergence is the SRG-evolution. As explained
in section2.4 here the hard Pisa potential is modified in order to separate high and low energy
physics. In the next section results with the evolved potential are summarised.

5.4.2.2 SRG-Evolved Hard Pisa Potentials

In order to circumvent the problematic weak convergence inN for short interaction ranges, we
apply the SRG-transformation to the hard Pisa Potentials with ρ0 = 4 au orρ0 = 2.2511 au.
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Note however, that there are two simplifications assumed here. Firstly, we neglect all induced forces
apart from two- and three-body forces. They are supposed to be suppressed. Secondly, the three-
body evolved forces are difficult to determine for higher angular momenta. Thus, we are forced to
restrict the potential matrix elements which are used and byhand have to set the other elements to
zero, specifically this means that only matrix elements are considered where the 3-body subsystems
have total angular momentaL12 ≤ 4 and that for the two Jacobi angular momental1 ≤ 4 andl2 ≤ 4
hold.

Before we will show results for the SRG-evolved Pisa potential, it is worthwhile to discuss the
effect of this restriction in angular momenta. For this purpose, some genuine Pisa potentials results
are compared.

Figure5.9shows the absolute values of the relative deviation|ẼB
4 −EB

4 |/EB
4 of binding energies

ẼB
4 andEB

4 . Here,ẼB
4 denotes the result with restrictions in angular momenta mentioned above

andEB
4 the result without those. The left panel shows the deviations for the soft Pisa potential

and the right one those for hard Pisa potential withρ0 = 4 au. Remarkably, the deviations are
very small in comparison to uncertainties caused by the use of effective potentials and the involved
extrapolations. For the hard as well as for the soft Pisa potential the relative deviations are smaller
than one percent for all oscillator lengths in the range fromb = 2 au tob = 20 au. The same
behaviour is found forA = 5. The restrictionL12 ≤ 4, l1 ≤ 4 andl2 ≤ 4 for the 3-body interaction
is thus empirically justified in order to simplify the SRG-evolution.
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Figure 5.9: Relative deviation of binding energies calculated with and without restrictions in angu-
lar momenta for the 3-body interactionL12 ≤ c, l1 ≤ c andl2 ≤ c, see text. As a function ofb for
two different model spacesN = 16 orN = 24 three restrictions are shown withc = 0, 2, 4. Left
panel: Soft Pisa potential.Right panel: Hard Pisa potential withρ0 = 4 au.

Returning to the SRG-transformed Pisa potential the binding energies for several boson systems
are determined. As for the unevolved Pisa potential the fourboson system is studied. As shown in
the left panel of Figure5.10the binding energyEB

4 for the SRG-evolved hard Pisa potential with
the flow parameterΛ = 0.25 (au)−1 and widthρ = 4 au isEB

4 = (560.96± 0.05) mK. It is smaller
than for the unevolved hard Pisa potential which led to the resultEB

4 = (571.7± 9.5) mK.

In the right panel of Figure5.10the binding energiesEB
5 are shown versus1/N for ρ = 4 au and

the SRG flow parameterΛ = 0.25 (au)−1. In comparison to the unevolved hard Pisa potential with
ρ0 = 4 au, to the Monte Carlo calculations and to the soft Pisa potential with binding energiesEB

5 =
(1341± 59) mK, EB

5 = 1309.3 mK andEB
5 = (1326.82± 0.18) mK, respectively, the calculation

with the evolved hard Pisa potential yield a smaller bindingenergy ofEB
5 = (1277.86± 0.25) mK.
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Figure 5.10: Energy eigenvalues for SRG-evolved hard Pisa potential with widthρ0 = 4 au and
flow parameterΛ = 0.25 (au)−1 versus1/N . The angular momenta are restricted withL12 ≤ 4,
l1 ≤ 4 andl2 ≤ 4. Left panel: A = 4. Right panel: A = 5

5.5 Conclusion

In this chapter we have studied4He-atom clusters with up toA = 12 constituents using the shell-
model approach. Starting with the two-body ab-initio potential LM2M2 we found for binding
energiesEB

A a very slow convergence in the cutoff parameterN . Therefore, the LM2M2 potential
was unitarily transformed with the SRG evolution. Omitting the induced many-particle potentials
binding energies for various flow parameterΛ was determined. The extracted binding energies
strongly depend on the flow parameter and deviate from predictions based on Monte Carlo calcu-
lations with the unevolved LM2M2 potential. As in nuclear few-body systems with SRG-evolved
potentials, we found no monotonous dependence onΛ. Hence, a prediction of binding energies is
subject to large uncertainties.

Instead of using an effective potential constructed systematically with the SRG transformation, we
also determined binding energies with the so-called Pisa potential which is an effective parametric
potential constructed to reproduce the two- and three-bodyground state binding energies consist-
ing of a two- and a three-body Gaussian potential. We studiedtwo different versions with a soft
long-ranged or a hard short-ranged three-body potential. We calculated binding energies in finite
model spaces for up to twelve atoms for the soft Pisa potential. The true binding energies could be
estimated with small uncertainties with linear extrapolations. For up to ten4He atoms these results
deviate less than∆E/E = 10 % from results obtained by Monte-Carlo methods.

Finally, binding energies based on the hard Pisa potential were determined. Because of the strong
short-range three-body force we found a slower convergencein the cutoff parameterN . Accord-
ingly, the SRG transformation was also applied to the hard Pisa potential with three-body potentials.
Due to the time-consuming SRG-evolution of three-body potentials a truncation in relative angular
momenta was necessary. For this evolved potential binding energies with very small uncertainties
were estimated by linear extrapolations.



Chapter 6

Miscellanea

In this chapter two miscellaneous topics are covered. At first, I outline the idea to determine the
atom-dimer and dimer-dimer scattering length and effective range from the energy spectrum of
fermions in a harmonic confinement. Secondly, a promising study to extract information about
scattering resonances within the shell-model approach is presented.

6.1 Scattering Observables from Energy Spectra

The idea to determine elastic scattering quantities from the energy spectrum in a finite volume was
firstly proposed by L̈uscher [91, 92]. In lattice QCD the energy spectrum is generally calculated
on a cubic lattice with the extentL with periodic boundary condition. If the range of interaction
R is much smaller than the size of the boxL, the scattering phase shift can be determined from
the energy spectrum of discrete states. A recent review is given in [93]. For the energy splitting
∆En of the two-hadron states and the hadron massesm one finds the following so-called Lüscher
relation:

pn cot (δ(pn)) =
1

πL
S

[(
pnL

2π

)2
]
, S(x) :=

|~j|<Λ∑

~j

1

|~j|2 − x
− 4πΛ , (6.1)

where the splitting is given by∆En = 2
√
p2n +m2−2m and the limitΛ→∞ is understood. As a

consequence, with the energy spectrum in the finite volume the energy-dependent phase shiftδ(pn)
can be determined.

In 2010, L̈uscher’s idea was adapted to trapped particles in a harmonicpotential by Stetcu et al. [77].
Moreover, Luu et al. used this approach for nucleon-nucleonscattering in a harmonic potential [94].

Following Jonsell’s procedure to derive the energy spectrum of two trapped bosons with contact
interactions [95], Stetcu et al. generalised the Busch formula derived for contact interactions to
interactions with finite ranges
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Γ
(
− E

2~ω
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) =
b

a

(
1− r0a

b2
E

~ω
+O

((
E

~ω

)2
))

, (6.2)
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with the oscillator lengthb =
√

~/(µω), the scattering lengtha and the effective ranger0. Sim-
ilarly, Suzuki et al. considered the two-atom energy spectrum near Feshbach resonances at higher
partial waves in 2009 [96].

Note that the oscillator length is defined with the reduced mass in this section, which belongs to
the usage of standard relative coordinates. In former sections I used Jacobi coordinates and the
oscillator length was defined byb =

√
~/(mω) =

√
~/(2µω). In the next paragraph, I outline the

derivation of equation (6.2).

Derivation of Equation (6.2): Consider the situation where the oscillator length is much larger
than the range of the interactionb ≫ R. Additionally, consider only states with small energiesE,
i.e.
√
E/(~ω)R/b ≪ 1. Now one observes that usually the effective ranger0 is of the same order

of magnitude asR. In this situation the main point is that for distancesr ≪ b the influence of the
harmonic oscillator potential compared that of the short-ranged potential on the wave function can
be neglected. Therefore, it is sensible to compare at distancesR < r ≪ b the free wave function
scattered on the potential without any confinementψsca(r) with the solutionψosc(r) of the harmonic
oscillator outside the range of the short range interaction.

For the sake of readability, I define the dimensionless variablesξ := E/(~ω) andρ := r/b. With
the relation

√
2ξ = bp between the energy and the momentump the scattering wave function with

energyξ for ρ > R/b and vanishing relative angular momenta reads

ψsca(ρ) =
c2
ρ

[
sin
(√

2ξ ρ
)
+ tan

(
δ0

(√
2ξ
))

cos
(√

2ξ ρ
)]

. (6.3)

For
√
2ξρ ≪ 1 the trigonometric functions in the wave functionψsca(ρ) can be expanded and this

yields

ψsca(ρ) = c2 tan
(
δ0

(√
2ξ
)) 1

ρ

(
1 + ρ

√
2ξ cot

(
δ0

(√
2ξ
))

+O
((√

2ξρ
)2))

. (6.4)

The solution with energyξ and vanishing angular momentum of the Schrödinger equation with
spherical oscillator potential with frequencyω is given in terms of the confluent hypergeometric
functionM [97] as

ψosc(ρ) = ce−|ρ|2/2 1

ρ

[
M

(
1

4
− ξ

2
,
1

2
, |ρ|2

)
− 2ρ

Γ
(
3
4
− ξ

2

)

Γ
(
1
4
− ξ

2

)M
(
3

4
− ξ

2
,
3

2
, |ρ|2

)]
. (6.5)

For smallρ≪ 1 this function can be expanded and one finds

ψosc(ρ) = c
1

ρ

[
1− 2ρ

Γ (3/4− ξ/2)
Γ (1/4− ξ/2) +O

(
|ρ|2
)]

. (6.6)

Within the effective range expansion (ERE) the cotangent of the scattering phase reads

cot
(
δ0

(√
2ξ
))

= − 1√
2ξ

b

a

(
1− r0a

b2
ξ
)
+ . . . . (6.7)

As long
√
2ξR ≪ 1, higher terms are suppressed. By comparison ofψsca(ρ) andψosc(ρ) in equa-

tions (6.6) and (6.4) and with the ERE one finds the sought relation (6.2).
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6.1.1 Atom-Dimer Scattering

Rotureau et al. suggested to apply formula (6.2) for the three-body sector in order to determine the
atom-dimer scattering lengthaAD and effective rangerAD [98]. For this purpose, they considered
fermionic atoms having two spin states, i.e. the total spin of the system isS = 1/2, Ms = ±1/2.
Hence, no three-body short-ranged interactions contribute.

To apply formula (6.2) to this case the oscillator length must be modified tobAD =
√

~/(µADω)
with the atom-dimer reduced massµAD = 2m/3. Secondly, the energyE should be inserted
as follows: Since the threshold for the three-body system isnow the ground state energy of the
two-body systemE2,0, the relevant energy is then

∆E3,n := E3,n − E2,0 . (6.8)

and one finds

2
Γ
(
−∆E3,n

2~ω
+ 3

4

)

Γ
(
−∆E3,n

2~ω
+ 1

4

) ≈ bAD

aAD

− rAD

bAD

∆E3,n

~ω
. (6.9)

The energyE2,0 coincides with the renormalisation energyE(2) in the shell-model approach.

The scattering lengthaAD and the effective rangerAD can be determined with two three-body
energiesE3,1 andE3,2. Using the definitionf(x) := 2Γ

(
− x

2~ω
+ 3

4

)
/Γ
(
− x

2~ω
+ 1

4

)
one finds

bAD

aAD

=
∆E3;2f(∆E3;1)−∆E3;1f(∆E3;2)

∆E3;2 −∆E3;1

, (6.10)

rAD

bAD

=
f(∆E3;1)− f(∆E3;2)

∆E3;2 −∆E3;1

~ω . (6.11)

The next step is to test this approach for applicability and stability. Rotureau et al. in [98] argued
that equation (6.9) is only valid if the atom-dimer relative momenta

√
∆E3;n/(~ω) are smaller than

b/a. Hence, large scattering lengths are preferable. However,the size of the dimer is proportional
to a and the dimer can only form inside the trap ifa is small compared to the typical size of the trap
b. Consequently,a/b must not be too large.

6.1.1.1 Atom-Dimer Scattering Length

In this section, the atom-dimer scattering lengthsaAD are determined with equation (6.10) for
various two-body scattering lengthsa. In order to test the approach, these values are compared
with the reference value of the relation between the atom-dimer scattering lengthaAD and the
two-body scattering lengtha

aAD

a
= 1.18 , (6.12)

predicted in numerous calculations summarised in [99].The shell-model approach is used to deter-
mine the required three-body energy spectrum. The spectrumis calculated for several values of the
two-body scattering lengtha. Table6.1contains the renormalisation energies and the correspond-
ing scattering lengthsa considered.
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E(2) = E2,0 0.49 0.0 -1 -2.5 -5 -10 -20 -50
a 56.8 1.48 0.68 0.44 0.32 0.22 0.16 0.10

Table 6.1: Renormalisation energiesE(2) and scattering lengtha which are considered to test the
expected relationaAD/a = 1.18. The energies are given in units of~ω and a in units of the
oscillator lengthb.

In Figure 6.1 the ground and the first excited state withLP = 0+ are depicted for the three-
body fermionic system with total spinS = 1/2 for various renormalisation energiesE(2). The
energy levels are shown as a function of the cutoff parameter1/

√
N + (3− 1)3/2. The model

space results are extrapolated toN → ∞ with quadratic polynomials. The eigenvalues for large
renormalisation energies|E(2)| have a larger curvature and a stronger dependence on the parameter
N in comparison to the results for smaller|E(2)|. Consequently, the extrapolated spectra for these
large energies|E(2)| are less precisely determined. We shall see that this impedes an accurate
determination of the relationaAD/a.
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E(2) = −20.0 ~ω, a/b = 0.16

E(2) = −50.0 ~ω, a/b = 0.10

Figure 6.1: Ground and first excited states withLP = 0+ for the three-body fermionic system with
S = 1/2. The energy levels are shown as a function of the cutoffN for several renormalisation
energiesE(2). The energies are extrapolated toN →∞ with quadratic polynomials.

In order to determine the atom-dimer scattering lengthaAD for the various renormalisation ener-
giesE(2), the extrapolation functions for the energy levels of the ground stateE3;0(N) and the
first excited stateE3;1(N) are used to determine∆E3;0(N) and∆E3;1(N). These two variables
are inserted in equation (6.10) with the resultaAD(N), i.e. a model space dependent atom-dimer
scattering length.

The quantityaAD(N)/a is shown in Figure6.2as a function ofN for various renormalisation en-
ergiesE(2). The reference valueaAD/a = 1.18 is also displayed as a straight horizontal line. Note
that the other lines are no direct extrapolations ofaAD(N), but indicate the atom-dimer scattering
lengthaAD(N) determined with the extrapolated energy values, see also Figure6.1. One observes
that there is a large discrepancy for the scattering lengtha/b = 1.48 (corresponding toE(2) = 0 ~ω)
between the reference valueaAD/a = 1.18 and the extrapolated valuelimN→∞ aAD(N)/a = 2.33.
This deviation could be interpreted as a consequence of the fact that the dimer could not form inside
the trap due to its size of the order of magnitude ofa > b. Moreover, the discrepancies become
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Figure 6.2:aAD for various renormalisation energiesE(2) (or scattering lengthsa). The solid hori-
zontal straight line indicate the reference value1.18. The points are the energy spectra for specific
cutoff parameterN and the lines correspond to the extrapolation polynomials.Both inserted in
equation (6.10). Left panel: results for scattering length up toa/b = 0.22. Right panel: results
for a/b = 0.16 anda/b = 0.10.

larger for very small scattering lengths, for example for the curve fora/b = 0.22 (corresponding to
E(2) = −10 ~ω), wherelimN→∞ aAD(N)/a < 1.

The situation is even more complicated for smaller scattering lengths. In the right panel of Fig-
ure6.2 the atom-dimer scattering lengthaAD is depicted for the renormalisation energiesE(2) =
−20 ~ω andE(2) = −50 ~ω. With the extrapolation in the energy eigenvalues the atom-dimer scat-
tering forN → ∞ is estimated. For these two renormalisation energies one finds approximately
aAD(∞)/a ≈ 1.03 andaAD(∞) ≈ 0.92, respectively. In spite of the poles in equation (6.10) de-
termining the atom-dimer scattering length, the values forN →∞ lie in the vicinity of the correct
value at1.18. Nevertheless, it seems delicate to assess the applicability of this equation also in this
case.
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Figure 6.3: Contour plot of the ratioaAD/a as a function of∆E3;0 and∆E3;1. E(2) = 0 ~ω. The
solid straight lines indicate the energies∆E3;0 and∆E3;1 extrapolated toN → ∞. The rectangle
enclosed by the dashed lines indicates the uncertainty region. One expects that this region contains
the correct value.
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Especially, one should notice, that the extrapolation of the energy eigenvalues itself contains un-
certainties. In order to investigate the influence of these uncertainties on the estimated atom-dimer
scattering lengthaAD for various energiesE(2), I show contour plots of the ratioaAD/a as a func-
tion of∆E3,0 and∆E3,1 for various energiesE(2). To start with, Figure6.3shows the contour plot
for E(2) = 0 ~ω (a/b = 1.48). The solid horizontal or vertical straight lines represent the energies
∆E3;0 and∆E3;1 extrapolated toN → ∞, respectively. These extrapolated values carry uncer-
tainties which are conservatively estimated as half of the distance between the extrapolated energy
values and the corresponding eigenvalues determined with the largest cutoff parameterN . The un-
certainty estimate is indicated in the following figures by adashed rectangle. One thus expects, that
the rectangle enclosed by the dashed lines represents the region which contains the correct value.
Explicitly, in Figure6.3it is obvious that a prediction of the ratioaAD/a is highly problematic. The
intersection of the two black solid lines marks the positionwith the valueaAD/a ≈ 2.33. However,
in the vicinity of this point inside the uncertainty rectangle, there is a pole between the contour
line aAD/a = 20 andaAD/a = −20. Hence, the predicted value has infinity large errors and it is
impossible to conclude on the basis of my or of Rotureau’s [98] results that equation (6.10) is not
applicable for the scattering lengtha/b = 1.48.

In the next Figure6.4 the contour plots for the renormalisation energiesE(2) = −4 ~ω andE(2) =
−10 ~ω are depicted. The intersection points again indicate the extrapolated energy values with
the resultaAD/a = 1.10 andaAD/a = 0.95. The main difference to the former plot for energy
E(2) = 0 ~ω is that the rise in the vicinity of the pole is slower. As a consequence, the distances
between the contour lines are more pronounced, particularly in the vicinity of the intersection point.
Thus, the uncertainties in the results of the atom-dimer scattering length are smaller. However, the
problem with the pole persists in a moderated form: Here, thepole is at the edge of the uncertainty
rectangle estimated conservatively and not in the middle anymore.
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Figure 6.4: Contour plot of the ratioaAD/a as a function of∆E3;0 and∆E3;1. The solid lines
indicate the energies∆E3;0 and∆E3;1 extrapolated toN → ∞. The rectangle enclosed by the
dashed lines indicates the uncertainty region. One anticipates that this region contains the correct
value.Left panel: E(2) = −4 ~ω. Right panel: E(2) = −10 ~ω.

Finally, the contour plot for the extremely negative renormalisation energyE(2) = −50 ~ω is
shown in Figure6.5. In this case, the contour lines are clearly separated whichin principle is a
favourable situation to determine the atom-dimer scattering length. But here the obstacle is the
uncertainties in the extrapolated eigenvalues, in particular for the first excited state with value
∆E3;1 = (4.1 ± 1.7) ~ω. As shown in the spectrum in Figure6.2 the first excited state forE(2) =
−50 ~ω has a large curvature and a strong dependence onN leading to a large uncertainty. This
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uncertainty prohibits an accurate determination of the atom-dimer scattering lengthaAD.
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Figure 6.5: Contour plot of the ratioaAD/a as a function of∆E3;0 and∆E3;1. E(2) = −50 ~ω. The
solid lines indicate the energies∆E3;0 and∆E3;1 extrapolated toN →∞. The rectangle enclosed
by the dashed lines indicates the uncertainty region. One anticipates that this region contains the
correct value.

6.1.1.2 Atom-Dimer Effective Range

This section considers the determination of the atom-dimereffective rangerAD. With Eqn. (6.11)
also the effective range can be determined from the energy spectrum given in Figure6.1. Two
inconsistent predictions for the atom-dimer effective range rAD were published by Grinyuk et al.
[100] and by Stecher et al. [101]. Recently, the result of Grinyuk et al. has been confirmed by Bour
et al. [99] who found that the ratio of the atom-dimer effective rangerAD and the scattering length
a is given approximately by

rAD

a
≈ −0.0383 . (6.13)

Firstly, theN -dependent atom-dimer effective rangerAD(N) is calculated for the typical scattering
lengthsa from the model-space spectra and their extrapolations. Theresults are shown in Fig-
ure6.6. For all scattering lengths up toa/b = 0.32 the results are in the vicinity of the reference
value. For smaller scattering lengths the discrepancies become large, particularly for the very small
scattering lengtha/b = 0.10. In the next step, the influence of uncertainties in the extrapolation is
studied. For this purpose, contour plots forrAD/a are shown in the following figures as a function
of the energies∆E3;0 and∆E3;1.

In the first contour plots in Figure6.7 the results for the renormalisation energiesE(0) = 0 ~ω
(a/b = 1.48) andE(0) = −4 ~ω (a/b = 0.68) are shown. Note that the colours of the contour lines
on the left and right side correspond to different levels. For large scattering lengths the function is
very flat. Therefore,rAD/a can be determined fora/b = 1.48 rather precisely. From the left panel
one extracts a value ofrAD/a = +0.035 ± 0.28 which is still compatible with the reference value
of rAD/a = −0.0383. From the right panel a value ofrAD/a = 0.29+2.5

−5 can be extracted. Also
this value is still compatible with the reference value, butit has much larger uncertainties.
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Figure 6.6:rAD for various renormalisation energiesE(2). The solid horizontal straight line repre-
sents the reference valuerAD/a = −0.0383. The points are the values for specific cutoff parameters
N and the curves correspond to the extrapolation polynomials, both inserting in equation (6.10).
Left panel: results for scattering length up toa/b = 0.22. Right panel: results fora/b = 0.16 and
a/b = 0.10.

Finally, I consider the contour plots for renormalisation energiesE(2) = −10 ~ω (a/b = 0.22)
andE(2) = −50 ~ω (a/b = 0.10) in Figure6.8. Obviously, the atom-dimer effective range cannot
be determined with the intersection point due to two problems: Firstly, the extrapolations contain
larger uncertainties and secondly, the contour lines lie closer together, i.e. the function is steeper.

6.1.1.3 Conclusion

In the last two sections I have investigated the applicability of equations (6.10) and (6.11) in order
to determine the atom-dimer scattering length and effective range. In conclusion, it can be stated
that values foraAD andrAD with acceptable error bands can be extracted only for a smallrange of
two-body scattering lengths0.32 < a/b < 0.68. For other values the uncertainties are too large to
make a statement. Fora/b > 1 one expects that the dimer cannot form in the trap. However, the
validity of the approach can neither be verified nor be excluded for these large scattering lengths due
to uncertainties. The combination of poles in the functionsand uncertainties in the extrapolations
impede a conclusive statement concerning a possible inconsistency with the reference values. For
very small scattering lengths the main problem for the determination ofaAD is the uncertainty in
the extrapolations. In principle, the function (6.10) is rather flat in the region of smalla/b which
would guarantee a moderate propagation of uncertainties. In contrast, the dimer-atom effective
rangerAD was found to show an opposite behaviour.

6.1.2 Dimer-Dimer Scattering

In this section, the former approach for dimer-atom scattering is adapted to the dimer-dimer scat-
tering. The 4-body sector with two pairs of identical fermions is the appropriate system to inves-
tigate this scattering. There is no three-body interactionand no bound trimer. Therefore, it is not
necessary to distinguish between dimer-dimer and trimer-atom scattering. In principle the dimer-
dimer scattering lengthaDD and effective rangerDD should be analogous to the equations (6.10)
and (6.11). Only two things have to be changed. The threshold for the tetramer is the double dimer
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Figure 6.7: Contour plot of the ratiorAD/a as a function of∆E3;0 and∆E3;1. The solid straight
lines indicate the energies∆E3;0 and∆E3;1 extrapolated toN → ∞. The rectangle enclosed by
the dashed lines indicates the uncertainty region; one expects that this region contains the correct
value.Left panel: E(2) = 0 ~ω. Right panel: E(2) = −4 ~ω.
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Figure 6.8: Contour plot of the ratiorAD/a as a function of∆E3;0 and∆E3;1. The solid lines
indicate the energies∆E3;0 and∆E3;1 extrapolated toN → ∞. The rectangle enclosed by the
dashed lines indicates the uncertainty region. One anticipates that this region contains the correct
value.Left panel: E(2) = −10 ~ω. Right panel: E(2) = −50 ~ω.

energy. Thus the relevant energy is

∆E4;n = E4,n − 2E2,0 . (6.14)

Additionally, the reduced mass of the dimer-dimer system isµDD = m. The ratio between the
oscillator lengthsb andbDD is given in this case bybDD = b/

√
2.

With the shell-model approach the energy spectrum of this four-body system is calculated for var-
ious renormalisation energiesE(2) and values of the cutoff parameterN . Afterwards, the ground
state energies, the first excited state energies and their extrapolations are used to determine the
scattering observables. The reference value is

aDD/a = 0.6 , (6.15)

which was predicted by Petrov et al. [102]. Unfortunately, both difficulties arising from the un-
certainties and poles in the functions are even more severe in the four-body sector. At first, it
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is more elaborate to calculate the energy spectra and consequently, only smaller values of cutoff
parameterN are numerically tractable. Hence, the extrapolations, in particular for the first ex-
cited state, contain larger uncertainties. Secondly, the extrapolated combination of∆E4;0(∞) and
∆E4;1(∞) lie often at awkward positions in the proximity of poles. As examples, the contour plots
for E(2) = −0.5 ~ω (a/b = 0.88) andE(2) = −1 ~ω (a/b = 0.68) as well asE(2) = −4 ~ω
(a/b = 0.35) andE(2) = −5 ~ω (a/b = 0.32) are presented in Figures6.9and6.10, respectively.

In these figures the horizontal and vertical black lines markextrapolated energy levels for∆E4;0(N)
and∆E4;1(N). Their intersection points indicate the predicted value for the dimer-dimer scattering
lengthaDD/a. In Figure6.9 one can extract the valuesaDD/a = 0.24 andaDD/a = 0.03 for
E(2) = −0.5 ~ω andE(3) = −1 ~ω, respectively. But one can recognise that the extracted values
contain inestimable large uncertainties because of the poles in their vicinity. It is not possible
to verify the adaption of equation (6.10) to the dimer-dimer scattering for these renormalisation
energies.
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Figure 6.9: Contour plot of the ratioaDD/a as a function of∆E4;0 and∆E4;1. The solid horizontal
and vertical black lines indicate the energies∆E4;0 and∆E4;1 extrapolated toN → ∞. The
rectangle enclosed by the dashed lines indicates the uncertainty region. One anticipates that this
region contains the correct value.Left panel: E(2) = −0.5 ~ω. Right panel: E(2) = −1 ~ω.

In Figure6.10the results forE(2) = −4 ~ω andE(2) = −5 ~ω are shown. For the dimer-dimer
scattering length the valueaDD/a = −0.037 andaDD/a = 0.22 can be found at the intersection
point of the extrapolated energies. In contrast to the former situation, the uncertainties are now
small. Particularly for the left panel, it follows that the result is inconsistent with the reference
valueaDD/a = 0.6. Only at the lower edge the reference value lies in the uncertainty rectangle. To
a lesser extent, this statement is correct for the right panel. Here the correct value lies slightly more
in the middle of the uncertainty rectangle.

In conclusion, the extraction of dimer-dimer scattering observables for the four-body sector in a
harmonic confinement seems to be problematic. For the example with E(2) = −4 ~ω one finds
that the result contradicts the reference value. For the other renormalisation energies the large
uncertainties in the results impede an interpretation. It thus remains doubtful if the adaption of the
formula from the atom-dimer approach is indeed correct.
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Figure 6.10: Contour plot of the ratioaDD/a as a function of∆E4;0 and∆E4;1. The solid horizontal
and vertical black lines indicate the energies∆E4;0 and∆E4;1 extrapolated toN → ∞. The
rectangle enclosed by the dashed lines indicates the uncertainty region. One anticipates that this
region contains the correct value.Left panel: E(2) = −4 ~ω. Right panel: E(2) = −5 ~ω.

6.2 Description of Resonances with a Shell Model

In this section the possibility to study the energy and the width of resonances within the shell-model
approach is investigated. For this purpose, the two-boson system with repulsive smeared contact
interactions is considered. Due to the separability of the interaction the T-matrix itself is separable
and in momentum space reads (see appendixC.2)

〈
~p
∣∣T (z)

∣∣~p ′〉 =
(

1

g(2)
− B(z)

)−1

v(~p)v(~p ′) , (6.16)

wherev(~p) := exp(−|~p|2ǫ2/2) and

B(z) =
m

π2

∫ ∞

0

dw
w2e−ǫ2w2

2mz − w2
. (6.17)

With the substitutionz = (q2 + i∆)/(2m) one finds from appendixD

lim
∆↓0

B(q2 + i∆) =
m

π2
(−√π)

(
1

2ǫ
− qF (ǫq) + i

√
π

2
pe−ǫ2q2

)
, (6.18)

where

F (x) := e−x2

∫ x

0

dy ey
2

(6.19)

is Dawson’s integral.

A resonance at the energyER = q2/(2m) corresponds to a pole in the T-matrixT (q2) at momentaq
with negative imaginary part in the vicinity of the real axis. On the real axis the resonance manifests
in a peak of the on-shell T-matrix with the widthΓ approximately described by the Breit-Wigner
formula:

〈p |T (E ≈ ER)|p〉 ∝
(Γ/2)

(E − ER)2 + (Γ/2)2
, (6.20)
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wherep =
√
2mE.

Figure6.11shows the transition amplitudet(p ← p) for the smeared contact interactions with the
coupling constantmg(2)/ǫ = 100. One recognises a peak in the amplitude at the energyER ≈
3.2 1

mǫ2
with a widthΓ ≈ 0.2 1

mǫ2
.
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Figure 6.11: On-shell T-matrixt(p ← p) versus the energyE = p2/(2m) for the smeared contact

interaction
〈
~s
∣∣g(2)Vǫ

∣∣~s ′〉 = g(2)

(2πǫ2)3
exp

(
− |~s|

2ǫ2

)
exp

(
− |~s ′|

2ǫ2

)
with mg(2)/ǫ = 100.

Likewise, one finds for more repulsive interactions sharperresonances with the detection of peaks
in the T-matrix. A selection of coupling constantsg(2) with the corresponding resonance energies
ER and their widthsΓ is collected in Table6.2.

mg(2)/ǫ 100 200 300 400

ER 3.2 5.36 7.5528 9.77722
Γ 0.24 0.02 6.8 · 10−4 1.6 · 10−5

Table 6.2: Selection of coupling constantsmg(2)/ǫ and their corresponding resonance energiesER

and widthsΓ. Both are given in the energy unit1/(mǫ2).

In the next step the two-body problem is solved within the shell-model approach. The matrix
elements of the Hamiltonian in oscillator states

〈
s
(b)
1

∣∣nlm
〉

are given by

b

〈
n′l′m′∣∣H

∣∣nlm
〉
b =

1

mℓ2

(
1

β2 1

〈
n′l′m′∣∣Tkin

∣∣nlm
〉
1 +

mg(2)

ℓ

1

β3 1

〈
n′l′m′∣∣Vǫ

∣∣nlm
〉
1

)
, (6.21)

whereℓ is an arbitrary length scale,Tkin is the kinetic energy operator andβ = b/ℓ is the oscillator
lengthb in units of the length scaleℓ. The range of the interactionǫ is chosen as the length scale,
i.e. ℓ = ǫ.

As two examples, Figure6.12shows the complete energy spectrum forN = 10 with vanishing
relative angular momentum versusβ = b/ǫ for mg(2)/ǫ = 100 andmg(2)/ǫ = 400. In spite
of the small cutoff parameterN one sees a noticeable structure in theβ dependence at energy
levels around the resonances energiesER = 3.2 1

mǫ2
andER = 9.77722 1

mǫ2
in the left and right

panel, respectively. The behaviour of the highest excited state is salient. At first, it decreases with
increasingβ up to the resonance energy and afterwards, it keeps approximately constant for a wide
region ofβ. Furthermore, the behaviour of the ground state is remarkable in the right panel. There
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Figure 6.12: Energy spectrum for the two-body system with smeared contact interactions forLP =
0+ andN = 10. Left panel: mg(2)/ǫ = 100. Right panel: mg(2)/ǫ = 400.

is a plateau atE ≈ 7 1
mǫ2

which seems to be related to the resonance. However, its energy level
differs fromER by∆E ≈ 2.7 1

mǫ2
.

In order to extract an estimate of the resonance position andits width from the energy spectrum, I
show an enlarged area in Figure6.13. Concentrating on the next-to-last excited states, the plateau
of this state is bounded from left and right in contrast to theplateau in the highest excited state. The
region of the plateau is marked with red horizontal lines. Inthe right panel the determination of this
region is obvious formg(2)/ǫ = 400. For the small coupling constant the plateau is not as distinctive
as for the large one. Hence, the borders of the region themselves contain some uncertainty. The
resonance energies are estimated with the arithmetic average of the borders and the corresponding
uncertainties as the half of the distance of the borders. Formg(2)/ǫ = 100 andmg(2)/ǫ = 400 one
findsER = (3.21± 0.22) 1

mǫ2
andER = (9.777218± 2.5 · 10−5) 1

mǫ2
, which is consistent with the

values in Table6.2. Moreover, the uncertainties are of the same order of magnitude as the width of
the resonances.
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Figure 6.13: Energy spectrum for the two-body system with smeared contact interactions forLP =
0+ andN = 10. Left panel: mg(2)/ǫ = 100. Right panel: mg(2)/ǫ = 400.

In Table6.3resonance energiesER in units of 1
mǫ2

for various coupling constantsg(2) and cutoff pa-
rametersN are collected. The estimated resonance energiesER and the corresponding uncertainties
are independent ofN . In larger model spaces it is not possible to determine the resonance energies
more precisely. The uncertainties are for allN in the order of the widthΓ of the resonances. For



84 Chapter 6. Miscellanea

the smallest coupling constantmg(2)/ǫ = 10 the limits of the plateau are indeterminable for the
larger cutoff parameterN ≥ 100. Although the resonance energy itself can be identified withthe
help of the behaviour of the highest excited state, the uncertainties cannot be estimated from the
next-to-last excited state.

a
a

a
a
a
a

aa

N
mg(2)/ǫ 100 200 300 400

10 3.21± 0.22 5.359± 0.018 7.5529± 1.0 · 10−3 9.777221± 2.6 · 10−5

100 - 5.359± 0.018 7.5527± 1.4 · 10−3 9.777218± 2.5 · 10−5

200 - 5.358± 0.015 7.5528± 1.3 · 10−3 9.777218± 2.5 · 10−5

300 - 5.360± 0.015 7.5527± 1.4 · 10−3 9.777211± 5.2 · 10−5

400 - 5.357± 0.014 7.5527± 1.8 · 10−3 9.777217± 4.0 · 10−5

Table 6.3: Estimated resonance energiesER in 1
mǫ2

for various coupling constantsg(2) and cutoff
parameterN .

In conclusion, the numerical study of the repulsive smearedcontact interaction in the two-body
system suggests that the energy levels and widths of resonances can be extracted from theβ-
dependence of the energy spectrum in the model space. A sharpresonance corresponds to a dis-
tinctive plateau in theβ-dependent energies. The corresponding widthΓ can be extracted from the
borders of the plateau. In order to formalise the prescription to estimate the resonance energies
and widths, an approach used for the analyses of spectra in finite volumes could be helpful [103].
So far, only the two-body system is investigated. The extension on systems with more particles is
straightforward. However, one expects more complicated spectra with several resonances.



Chapter 7

Conclusion and Outlook

In this thesis, I have covered issues ranging from the implementation and comparison of two dif-
ferent shell-model approaches, their application to bosonic systems with and without external con-
finement and finally to the extraction of scattering properties from energy spectra in a harmonic
oscillator potential.

In the first shell-model framework I used the so-calledM -scheme. In this scheme the many-body
basis consists of the product of oscillator functions in one-particle coordinates. In contrast, the basis
in the second framework consists of the angular momentum coupled oscillator functions expressed
in relative coordinates, the so-calledJ-scheme. In theJ-scheme the most time-consuming task is
the construction of the symmetrised many-body basis and corresponding transformation matrices.
This has to be done only once for a specific model space independently from the interaction. Hence,
in a comparison of theM -scheme with theJ-scheme procedure I have found a definite preference
for the latter in order to determine energy spectra for various potentials globally, i.e. for a variety
of coupling constants and parameter combinations.

However, for a specific problem the performance depends on the number of particles, the actual
implementation and the hardware. For up to six particles theJ-scheme is distinctly more advanta-
geous than theM -scheme. For systems with more particles this is not so obvious since one should
note that the most time-consuming part of theM -scheme is the diagonalisation of the many-body
Hamiltonian; matrix diagonalisation is a standard problem, which is highly parallelisable. In fu-
ture applications, benchmarking the diagonalisation routines for the many-body Hamiltonian in the
M -scheme would therefore be instructive.

At first the shell-model approach has been applied to systemsconsisting of bosons with spin0 in a
harmonic confinement. Assuming dominating scattering lengthsa in the effective range expansion,
the interactions have been approximated by two-body and three-body contact interactions; this is
called the scaling limit. In the model space the corresponding coupling constants have been renor-
malised and adjusted to reproduce given two-body and three-body energy levelsE(2) andE(3),
respectively. Here, the two-body energyE(2) is directly related to the scattering lengtha. For
systems with up to seven bosons selected energy spectra havebeen presented for various renormal-
isation energiesE(2) andE(3) as a function of the cutoff parameterN . With quadratic polynomials
in the variable1/

√
N energy spectra in various model-spaces are extrapolated tothe limitN →∞.

In particular, the dependence onE(2), or equivalently on the scattering lengtha, for constant three-
body interactions has been studied in the four-body sector in detail. The harmonic confinement
strongly modifies the energy spectra with the consequence that energy levels are mutually per-
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turbed. Furthermore various avoided level crossings have been found.

Throughout, I have found a slow convergence of the binding energies in the dependence of the
cutoff parameterN in all studies. This defies an accurate extrapolation with small uncertainties
to the limit N → ∞. As a possible expedient the contact interactions have beenmodified to
finite-ranged separable Gaussian interactions of widthǫ. For the new interactions I have found that
the energy values depending onN converges for finite widthǫ exponentially. This widthǫ has
been used as an additional extrapolation parameter beside the cutoff parameterN . In a detailed
uncertainty analysis the mutual dependence of the finite cutoff parameterN and the finite widthǫ
has been studied. For practical applications, the appropriate prescription can be summarised briefly
as: Use converged results in the cutoff parameterN or extrapolate in the cutoff parameterN for
finite width ǫ first and then extrapolate in the width toǫ = 0 linearly.

For several renormalisation energies the energy spectra have been shown as a function of the width
ǫ. Usually, the extrapolated binding energies in the widthǫ for smeared contact interactions and
extrapolated energies in the cutoff parameterN for genuine contact interactions coincide within
the estimated uncertainties. But for certain combinations of renormalisation energies I have ob-
served that these extrapolations disagree with each other significantly. These deviations indicate an
underestimation of the errors and reveal parameter combinations with problematic extrapolations.
Therefore it would be interesting to study the reason for this behaviour for specific renormalisation
energies and to extract precise energy values with larger model spaces or alternative procedures.

As an example for a system without an external confinement potential, which has a short range
strongly repulsive interaction combined with an attractive interaction of long range, I have con-
sidered systems with few4He atoms. Using the shell-model approach the ground state binding
energies of4He atom clusters4HeA have been determined. In these studies the interaction between
the 4He atoms was described by the ab-initio two-body potential LM2M2. Due to the shape of
this interaction the energy levels in the model spaces used show a very strong cutoff dependence.
Therefore, it has not been possible to predict binding energies accurately for the genuine LM2M2
potential.

Alternatively, exploiting the unitary SRG-transformationthe coupling of low and high energy
physics can be reduced and a faster convergence has indeed been achieved. For various flow pa-
rameterΛ the ground state energies have been determined for up to ten atoms. These values have
been compared to predictions with Monte-Carlo methods. However, unitary SRG-transformation
induces many-body forces, which have so far been omitted in these calculations. As a consequence
a large dependence of the results on the flow parameterΛ has still been found. In particular, as
in nuclear physics, a non-monotonous behaviour has been observed. In order to stabilise the es-
timated binding energies, the induced three-body interactions should be included. However, this
requires more sophisticated solutions of the integro-differential equation for the three-body SRG-
transformation. Furthermore, up to now only the kinetic energy has been used as generator for
the SRG-transformation. Possibly, this is an inappropriatechoice and in future studies the use of
alternative generators should be investigated.

Instead of constructing an effective interaction of the LM2M2 potential systematically with the
SRG-evolution, I have also studied an effective parametric interaction consisting of two- and three-
body Gaussian interactions, here called the Pisa potential. The strength and range of the attractive
two-body force are chosen to reproduce the two-body ground state energy of the cluster4He2, the
scattering lengtha, and the effective ranger0 of the LM2M2 potential. The strength and range of
the repulsive three-body force are not unique. There is an infinite number of possible combinations
which reproduce the LM2M2 ground state energy for4He3.
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For a version of the Pisa potential with a relatively soft (and thus long-ranged) three-body Gaussian
interaction, binding energies for clusters with up to twelve constituents have been estimated by
linear extrapolations in the cutoff parameterN . Due to the soft repulsive interaction the dependence
onN is weak and uncertainties in the extrapolation are acceptably small. In comparison with results
based on Monte-Carlo procedures using the genuine LM2M2-potential the ground state energy
differs only by at most∆E/E = 10% for up to ten atoms.

In two hard versions of the Pisa potential the strong short-ranged three-body Gaussians lead to
a slower convergence in the cutoff parameterN . Hence, the predictions via linear extrapola-
tions carry larger uncertainties. With the SRG-transformation, faster convergence inN have been
achieved. However, the complex integro-differential equation in the transformation of three-body
potentials constrains the magnitude of the angular momentafor which the SRG-transformed inter-
actions can be calculated reliably. The influence of the higher angular momenta terms was found
to be minor in a pilot study. However, this and the effects of multiple-body induced forces as well
as the flow parameter dependence should be investigated systematically.

Apart from these three main parts, the shell-model approachhas been used to extract atom-dimer
and dimer-dimer scattering observables from the energy spectrum of the three- and four-body sys-
tem with identical spin-1/2 fermions in a harmonic confinement. For various two-body scattering
lengths the atom-dimer scattering length and effective range as well as the dimer-dimer scattering
length have been studied. Because of the intricate behaviourof the modified Busch formula for the
energies, the extraction of these scattering observables have large uncertainties or could not been
determined at all.

Finally, in the two-body system without any confinement it has been shown for the example of
smeared contact interactions that the position and width ofa resonance can be extracted from the
energy spectrum dependence on the oscillator lengthb for a constant cutoff parameterN . Remark-
ably, these quantities can be determined even for small cutoff parameters. An extension of this
method to systems with more particles would certainly be interesting.



Appendix A

Jacobi Coordinates

Jacobi coordinates are a set of coordinates to describe the relative motion in many-body systems.
They are used for example to separate the centre-of-mass motion in a harmonic oscillator confine-
ment potential. For two particles at positions~x1 and~x2 the Jacobi coordinates are defined by:

~s1 :=
1√
2
(~x1 − ~x2) , (A.1a)

~R2 :=
1√
2
(~x1 + ~x2) , (A.1b)

where~s1 is the first Jacobi coordinate and~R2 the corresponding centre-of-mass. The Jacobi coor-
dinates fulfil the relation

∣∣~x1
∣∣2 +

∣∣~x2
∣∣2 =

∣∣~s1
∣∣2 +

∣∣~R2

∣∣2 . (A.2)

Hence, the transformation from single-particle coordinates~x1 and~x2 onto Jacobi coordinates is an
orthogonal and isometric transformation. In general, forA particles at positions~x1, ~x2,. . .,~xA the
Jacobi coordinates are defined by

~sn :=
1√

(n+ 1)n
(~x1 + ~x2 + · · ·+ ~xn − n · ~xn+1) n = 1, . . . , A− 1 , (A.3a)

~RA :=
1√
N

(~x1 + ~x2 + · · ·+ ~xA) . (A.3b)

Again, the transformation is orthogonal and isometric:
∣∣~x1
∣∣2 +

∣∣~x2
∣∣2 + · · ·+

∣∣~xN
∣∣2 =

∣∣~s1
∣∣2 + · · ·+

∣∣~s(N−1)

∣∣2 +
∣∣~RA

∣∣2 (A.4)

and as a consequence also for the sum of laplace-operators one finds

∆~x1 +∆~x2 + · · ·+∆~xN
= ∆~s1 +∆~s2 + · · ·+∆~s(N−1)

+∆~RA
. (A.5)

From Eq. (A.4) and (A.5) it follows that the centre-of-mass motion can be separatedfor theA-body
harmonic oscillator, i.e. one finds

H =
A∑

i=1

(
−∆xi

2m
+

1

2
mω2

∣∣~xi
∣∣2
)
, (A.6)

=
A−1∑

i=1

(
−∆~si

2m
+

1

2
mω2

∣∣~si
∣∣2
)
+

(
−
∆~RA

2m
+

1

2
mω2

∣∣~RA

∣∣2
)
. (A.7)
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Appendix B

Talmi-Moshinsky Transformation

The orthogonal and isometric Talmi transformation maps a set of two coordinates~ρ and~λ onto a
new set of coordinates~ρ ′ and~λ ′:

(
~ρ ′

~λ ′

)
=



√

1
1+d

−
√

d
1+d√

d
1+d

√
1

1+d




︸ ︷︷ ︸
Md

·
(
~ρ
~λ

)
, d ∈ R, d ≥ 0 . (B.1)

whereMd is a general orthogonal matrix. For historical reasons the matrix is parametrised by the
weightd. For example, the matrixM1 is the orthogonal and isometric transformation from the set
of two single-particle coordinates~x1 and~x2 onto the Jacobi coordinates~s1 and ~R2:

(
~s1
~R2

)
=M1 ·

(
~x1
~x2

)
. (B.2)

A particular feature of the Talmi transformation is that theangular momentum coupled oscillator

function
[
φnρlρ(~ρ)⊗ φnλlλ(

~λ)
]L
M

depending on the coordinates~ρ and~λ is a finite linear combi-

nation of angular momentum coupled oscillator function
[
φnρ′ lρ′ (~ρ

′)⊗ φnλ′ lλ′ (
~λ ′)
]L
M

depending

on the coordinates~ρ ′ and~λ ′. The corresponding coefficients are given by the so-called Brody-
Moshinsky brackets

〈
nρ′lρ′nλ′lλ′ ;L

∣∣nρlρ, nλlλ
〉
d

[63], i.e.

[
φ
(b)
nρlρ

(~ρ)⊗ φ(b)
nλlλ

(
~λ
)]L

M
=

∑

nρ′ lρ′nλ′ lλ′

〈
nρ′lρ′ , nλ′lλ′ ;L

∣∣nρlρ, nλlλ
〉
d︸ ︷︷ ︸

Brody-Moshinsky-Brackets

[
φ
(b)
n~ρ ′ l~ρ ′ (~ρ

′)⊗ φ(b)
n~λ ′ l~λ ′

(
~λ ′
)]L

M
, (B.3)

where the sum is subject to following constraints:

• energy conservation:N := 2nρ′ + lρ′ + 2nλ′ + lλ′
!
= 2nρ + lρ + 2nλ + lλ,

• parity conservation:(−1)l′ρ′+l′
λ′ !
= (−1)lρ+lλ ,

• total angular momentum conservation.
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Appendix C

Smeared Contact Interactions

C.1 Matrix Elements of Smeared Contact Interactions

In section4.3, the following expression for matrix elements of the smeared contact interactions in
the oscillator functions are used:

〈
n1l1

∣∣VG
∣∣n′

1l
′
1

〉
=

1

(1 + ǫ2)3
φn10(0)

(1− ǫ2
1 + ǫ2

)n1

φn′
10
(0)
(1− ǫ2
1 + ǫ2

)n′
1

δl1,0 δl′1,0 . (C.1)

In this section, the corresponding derivation is given. Forthe seperable smeared contact interaction

〈
~s
∣∣VG
∣∣~s ′〉 = 1

(2πǫ2)3
e−

~s2

2ǫ2 e−
~s ′2
2ǫ2 , (C.2)

the matrix elements are given by

〈
n1l1

∣∣VG
∣∣n′

1l
′
1

〉
=

1

(2πǫ2)3

∫
d3s φnl(~s)e

− ~s2

2ǫ2

∫
d3s′ φnl(~s

′)e−
~s ′2
2ǫ2 . (C.3)

Then, by straightforward computation one finds:

∫
d3s φnl(~s)e

− ~s2

2ǫ2 = δl,0
√
4π

∫ ∞

0

dr r2e−
r2

2ǫ2Rn0(r) (C.4)

= δl,0
√
4πNn0

∫ ∞

0

dr r2e−
1
2
(1+ 1

ǫ2
)r2L

( 1
2
)

n (r2) , (C.5)

with the associated Laguerre polynomialsL
( 1
2
)

n and the normalisation factor

Nn0 :=

√
1√
4π

2n+3n!

(2n+ 1)!!
. (C.6)
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With the substitution ofr2 = x and the definitionρ2 := 1
2
(1 + 1

ǫ2
), one finds for this integral, using

the expansion of the Laguerre polynomials in monomials,
∫

d3s φn0(~s)e
− ~s2

2ǫ2 =

√
4πNn0

2

n∑

i=0

(−1)i
i!

Γ(n+ 3
2
)

Γ(i+ 3
2
)Γ(n− i+ 1)

∫ ∞

0

dx x
1
2
+ie−ρ2x (C.7)

=

√
4πNn0

2

n∑

i=0

(−1)i
i!

Γ(n+ 3
2
)

Γ(n− i+ 1)

1

ρ3+2i
(C.8)

=

√
4πNn0Γ(n+ 3

2
)

2ρ3
1

n!

n∑

i=0

(
n

i

)
(−ρ−2)i (C.9)

=

√
4πNn0(2n+ 1)!!

2n+2n!ρ2n+3
(ρ2 − 1)n

√
π . (C.10)

Finally, the quantitiesρ andNn0 are replaced by their definitions and one finds

〈
n1l1

∣∣VG
∣∣n′

1l
′
1

〉
=

δl1,0 δl′1,0(
1 + ǫ2

)3
π

3
2

√
(2n1 + 1)!!

n1!2n1

√
(2n′

1 + 1)!!

n′
1!2

n′
1

(
1− ǫ2
1 + ǫ2

)n1
(
1− ǫ2
1 + ǫ2

)n′
1

(C.11)

=
1

(1 + ǫ2)3
φn10(0)

(1− ǫ2
1 + ǫ2

)n1

φn′
10
(0)
(1− ǫ2
1 + ǫ2

)n′
1

δl1,0 δl′1,0 . (C.12)

C.2 Effective Range Expansion for Smeared Contact Interac-
tions

For separable potentials
〈
~s
∣∣V
∣∣~s ′〉 = gω(~s)ω(~s ′) , (C.13)

the T-matrix is given by

〈
~p
∣∣T (z)

∣∣~p ′〉 =
(
1

g
−B(z)

)−1

v(~p)v(~p ′) with B(z) :=

∫
d3q

(2π)3
|v(~q)|2

z − q2

2m

(C.14)

as a solution of the Lippmann-Schwinger equation

T (z) = V + V (z −H0)
−1T (z) . (C.15)

Here,v(~p) denotes the Fourier transform ofω(~s)

v(~p) =

∫
d3s ei~p·~sω(~s) . (C.16)

Separable central potentials only contribute to s-wave (ℓ = 0) scattering and one finds for the
scattering amplitudefℓ(p) for ℓ = 0 with the effective range expansion

f0(p) = −
m

2π
lim
∆→0

〈
~p
∣∣T (p2/2 + i∆)

∣∣~p ′〉 , (C.17)

=

[
−2π

m
|v(p)|−2

(
1/g − B(p2/2 + i∆)

)]−1

, (C.18)

=

[
−1

a
+

1

2
rp2 +O(p4)− ip

]−1

. (C.19)
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For the smeared contact interaction one has

ω(~s) =
1

(2πǫ2)
3
2

e−
~s2

2ǫ2 , v(~p) = e−
~p2ǫ2

2 , (C.20)

B(p2/2 + i∆) =
m

π2

∫ ∞

0

dq
q2e−ǫ2q2

p2 − q2 + i∆
=

m

2π2

∫ ∞

0

dk

√
ke−ǫ2k

p2 − k + i∆
, (C.21)

where

lim
∆→0+

∫ b

a

dx
f(x)

x± i∆ = ∓iπf(0) + P
∫ b

a

dx
f(x)

x
. (C.22)

Then for the imaginary part

ℑ 1

f0
= −π2πe+ǫ2p2 1

2π2
pe−ǫ2p2 = −p (C.23)

and for the real part

ℜ 1

f0
=



−2π

g
− m

π

[
P
∫ +∞

−∞
dq

q2e−ǫ2q2

q2 − p2

]

︸ ︷︷ ︸
A(p2)



eǫ

2p2 (C.24)

follows. Moreover, it can be shown, that

A(p2) =
√
π
1− 2ǫpF(ǫp)

ǫ
, (C.25)

where the Dawson function is defined by (see appendixD)

F(x) = e−x2

∫ x

0

dy ey
2

= x− 2

3
x3 +O(x5) . (C.26)

The functionsA(p2) andeǫ
2p2 can be expanded in powers ofp2. Since in particular the scattering

lengtha and the effective ranger0 are to be determined the expansion is terminated atO(p4):

−1

a
+

1

2
r0p

2 +O(p4) = −
(
2π

gm
+

1√
πǫ

)
+

1

2

(
2ǫ√
π
− 4πǫ2

gm

)
p2 +O(p4) . (C.27)

Note that the vector~s is the first Jacobi coordinate and~p the corresponding Jacobi momentum.
However, the ERE is canonically defined in the relative coordinate~x = ~x1 − ~x2. In this coordinate
the potential reads

〈
~x
∣∣V
∣∣~y
〉
=
[
2
√
2g
] 1
(
2π
[√

2ǫ
]2)3/2 e

− x2

2[
√
2ǫ]2

1
(
2π
[√

2ǫ
]2)3/2 e

− y2

2[
√
2ǫ]2 (C.28)

Hence, the scattering lengtha and the effective ranger0 in canonical relative coordinates read

1/a = 1/
√
2

(
2π

2gµ
+

1√
πǫ

)
, r0 =

√
2

(
2ǫ√
π
− 4πǫ2

2gµ

)
, (C.29)

with the reduced massµ = m/2.
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Dawson Integral

To calculate:

A(p2) = lim
ε↓0

∫ ∞

0

dq
q2 e−b2 q2

q2 − p2 − iε (D.1)

Substitutingy := b q , x = b p :

A(p2) = lim
ε↓0

1

b

∫ ∞

0

dy
y2 e−y2

y2 − x2 − iε
= lim

ε↓0

1

b

∫ ∞

0

dy
y2 e−y2

y2 − (x+ iε)2
.

Now, from ABRAMOWITZ & STEGUN [97] (7.1.3) :

w(z) := e−z2
(
1 +

2 i√
π

∫ z

0

dt et
2

)
= e−z2erfc(−i z) (D.2)

and (7.1.4) :

w(z) =
i
π

∫ ∞

−∞
dt

e−t2

z − t =
2 i z
π

∫ ∞

0

dt
e−t2

z2 − t2 (ℑz > 0) . (D.3)

Indeed, (D.2) and (D.3) are equivalent: Writez = x+ iε , ε > 0 . Then

w(x+ iε) =
2 i (x+ iε)

π

∫ ∞

0

dt
e−t2

(x+ iε)2 − t2

=
i
π

∫ ∞

0

dt e−t2
(

1

x+ iε+ t
+

1

x+ iε− t

)

=
i
π

(
−
∫ −∞

0

dt
e−t2

x+ iε− t +
∫ ∞

0

dt
e−t2

x+ iε− t

)
=

i
π

∫ ∞

−∞
dt

e−t2

x+ iε− t .

Now

−2 i
∫ ∞

0

due2i(x+iε±t)u = −2 i
e2i(x±t)ue−2 ε u

2i(x+ iε± t)

∣∣∣∣
∞

0

=
1

x+ iε± t .

Therefore, with ∫ ∞

0

dt e−(t+z)2 =

∫ ∞

z

dxe−x2

=:

√
π

2
erfc(z)
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we find

w(x+ iε)

=
2

π

∫ ∞

0

dt
∫ ∞

0

du
(

e−t2+2i(x+iε+t)u + e−t2+2i(x+iε−t)u
)

=
2

π

∫ ∞

0

du
∫ ∞

0

dt
(

e−(t−iu)2 + e−(t+iu)2
)

e−(u−i(x+iε))2e−(x+iε)2

=
2

π

∫ ∞

0

du

√
π

2
(erfc(−iu) + erfc(iu))︸ ︷︷ ︸

=2

e−(u−i(x+iε))2e−(x+iε)2

=
2√
π

e−(x+iε)2
∫ ∞

0

due−(u−i(x+iε))2 =
2√
π

e−(x+iε)2
√
π

2
erfc(−i(x+ iε))

= e−(x+iε)2erfc(−i(x+ iε)) .

Finally,

erfc(−i z) =
2√
π

∫ ∞

−i z
dt e−t2 =

2√
π

∫ 0

−i z
dt e−t2 +

2√
π

∫ ∞

0

dt e−t2

= − 2 i√
π

∫ 0

z

dueu
2

+ 1 = 1 +
2 i√
π

∫ z

0

dueu
2

.

Thus

lim
ε↓0

∫ ∞

0

dy
y2 e−y2

y2 − (x+ iε)2

= lim
ε↓0

∫ ∞

0

dy
(x2 − y2) e−y2

(x+ iε)2 − y2 − lim
ε↓0

x2
∫ ∞

0

dy
e−y2

(x+ iε)2 − y2

=

∫ ∞

0

dy e−y2 − π x2

2 i x
lim
ε↓0

w(x+ iε) =

√
π

2
+ i

π x

2
lim
ε↓0

w(x+ iε)

=

√
π

2
+ i

π x

2
e−x2

(
1 +

2i√
π

∫ x

0

dy ey
2

)

=

√
π

2
+ i

π x

2
e−x2 −√π xe−x2

∫ x

0

dy ey
2

=

√
π

2
+ i

π x

2
e−x2 −√π xF (x) ,

where

F (x) := e−x2

∫ x

0

dy ey
2

(D.4)

is DAWSON’s Integral. NowF (0) = 0 and

F ′(x) = −2xe−x2

∫ x

0

dy ey
2

+ e−x2

ex
2

= −2xF (x) + 1 , (D.5)

thusF ′(0) = 1 , which, forF (x) =
∑∞

k=0 ck x
k leads to

∞∑

k=0

k ck x
k−1 + 2

∞∑

k=0

ck x
k+1 = 1

or

(k + 2) ck+2 + 2 ck = 0 ⇔ ck+2 = −
2

k + 2
ck , k ≥ 0 ,



95

with c0 = 0 , c1 = 1 . Thusc2k = 0 , c2k+1 =
(−2)k

(2k+1)!!
and

F (x) =
∞∑

k=0

(−2)k x2 k+1

(2k + 1)!!
. (D.6)

Accordingly

A(p2) =

√
π

2 b
+ i

π

2
p e−b2 p2 −√π pF (b p)

=

√
π

2 b
+ i

π

2
p
(
1− (b p)2 +O((b p)4)

)
−√π p

(
b p− 2

3
(b p)3 +O((b p4))

)
.



Appendix E

Specification of the LM2M2 Potential

The LM2M2 potentialV was constructed by Aziz et al. [23,88]. It consists of a basic HFD-B part
Vb and a so-called add-on potentialVa.

V (r) = ǫ
(
Va(r/rm) + Vb(r/rm)

)
, (E.1)

Va(x) =

{
Aa

(
sin
(

2π(x−x1)
(x2−x1)

− π
2

)
+ 1
)
, x1 ≤ x ≤ x2 ,

0 , x < x1 ∨ x > x2 ,
(E.2)

Vb(x) = A∗ exp(−α∗x+ β∗x2)− F (x)
( c6
x6

+
c8
x8

+
c10
x10

)
, (E.3)

with

F (x) =

{
exp

(
−
(
D
x
− 1
)2)

, x < D ,

1 , x ≥ D .
(E.4)

The constants are collected in TableE.1.

Vb LM2M2 Va LM2M2

A∗ 1.89635353 · 105 Aa 2.6 · 10−3

α∗ 10.70203539 x1 1.003535949
β∗ -1.90740649 x2 1.454790369
D 1.4088 rm 2.96905Å
c6 1.34687065 ǫ 10.97 K
c8 0.41308398
c10 0.17060159

Table E.1: Constants of the potential LM2M2
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