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Zusammenfassung

Im Rahmen dieser Arbeit werden ZAchst Implementierungen zweier verschiedener Schalenmo-
delle zur Bestimmung von Bindungsenergien in bosonischenteighensystemen vorgestellt und
verglichen.

SchwerpunktralRig verwende ich das Schalenmodell zur Beschreibung vomigasait Kontakt-
wechselwechselwirkungen, die in einem Oszillatorpo&ingesperrt sind, als audirfwechsel-
wirkende*He-Atome und ihre Clusterbildung. Ausgiebig werden Abbigkeiten der Resultate im
Schalenmodell von seiner Modellraurd@e untersucht und &ylichkeiten gegpift, eine schnel-
lere Konvergenz zu erreichen; wie etwa ein Verschmierenkaertaktkiafte sowie eine uritre
Transformation der Potentiale. Hierbei werden Systemeabletet, die maximal aus 2 Boso-
nen bestehen.

Zusatzlich wird ein Verfahren zur Bestimmung von Streuobseembnhand von Energiespektren
von Fermionen im harmonischen Oszillator vorgestellt uepligft. Schlussendlich werden anhand
der Abkangigkeit von Energiespektren von der OszillatorbreitsitRmn und Breite von Streureso-
nanzen extrahiert.

Teile dieser Arbeit sind zuvor in folgenden Artikeln @éentlicht worden:

e S. Tolle, H.-W. Hammer, and B. Ch. Metsch, Universal few-body ptg/s1 a harmonic trap,
C. R. Phys12, 59 (2011).

e S. Tolle, H. W. Hammer, and B. Ch. Metsch, Convergence propertidiseoéffective theory
for trapped bosons, J. Phys.48, 055004 (2013).



Abstract

In this thesis, | introduce and compare an implementatiawofdifferent shell models for physical
systems consisting of multiple identical bosons.

In the main part, the shell model is used to study the energgtepof bosons with contact interac-
tions in a harmonic confinement as well as those of unconfidedlusters. The convergence of the
shell-model results is investigated in detail as the siza®fmodel space is increased. Furthermore,
possible improvements such as the smearing of contacaetiens or a unitary transformation of
the potentials are utilised and assessed. Systems withtughbee bosons are considered.

Moreover, | test a procedure to determine scattering obbées from the energy spectra of fermi-
ons in a harmonic confinement. Finally, the position and kviaftresonances are extracted from
the dependence of the energy spectra on the oscillatohlengt

Some parts of this thesis have been previously publisheadllowiing articles:

e S. Tolle, H.-W. Hammer, and B. Ch. Metsch, Universal few-body ptg/g1 a harmonic trap,
C. R. Phys12, 59 (2011).

e S. Tolle, H. W. Hammer, and B. Ch. Metsch, Convergence propertiéseo¢ffective theory
for trapped bosons, J. Phys.4G, 055004 (2013).
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Chapter 1

Introduction

Strongly correlated systems play an important role in sgveids of physics, ranging from atomic
and nuclear to condensed matter physics. The descriptidruaderstanding of such systems is
challenging, since they defy a treatment by perturbativehods. A new perspective is offered in
the framework of effective theories and especially of daffecfield theories (EFT). In particular,
systems with a large magnitude of the scattering lengthsill be at the focus of this thesis. Below,

I shall introduce the concept of the scattering lengtlliscuss the importance of large scattering
lengthsa and the description of such a system. But first, | shall coverestelevant experimental
issues.

In atomic physics an active field of research concerns theaied "BEC-BCS crossover”. This
means the transition from the phase of a Bose-Einstein ceatkeBEC) of weakly interacting
bosons, consisting of tightly bound fermions, to bosonicspaf weakly interacting fermions,
called the cooper pairs, in the Bardeen-Cooper-Schrieffer jBib&se. The former phase be-
longs to small positive scattering lengths with the BEC-lifit. — +oco. In contrast, the latter
phase is characterised by a small negative scatteringhavigt the BCS-limitl /a — —oo. Con-
sequently, the crossover happens in the vicinity of thermrasoe where the interaction leads to an
unnatural absolutely large scattering lengtla ~ +0. After the discovery of high-temperature
superconductors in 1986 and the realisation that theirgpbasmed to be related to this crossover,
a lot of effort was made to examine the phenomenon in othegrexents. In 1995, BEC's could
finally be realised in gases of rubidium by Anderson etHl. Great progress was made with the
realisation of a BEC irfLi and “°K by various groups in 2002f4]. These systems enabled a
deeper investigation of the crossover with the help of Fashlsesonances, since Feshbach reso-
nances permit a continuous modification of the inter-plrtitteraction through external magnetic
fields and thus a tuning of the scattering lengthAn extensive review of the research about the
BEC-BCS crossover is given i

Strongly interacting systems with large scattering leragtbur also in nuclear physics. Prominent
examples are the proton-neutron systé&jnaind the scattering at particles [] as well. Further-
more, halo nuclei are at the focus of experimental rese&jclAJong with large scattering lengths,
they are characterised by a small nucleon separation ea@d)a large radius, i.e. a long tail in
the nucleon density distribution. The main characterigfibalo nuclei is that the inner core is
surrounded by weakly bound nucleons. In nature, severalmatlei could be identified: for ex-
ample!'Li, the Borromean nucleud¥He and the most exotic nucletisle with four weakly bound
neutrons.
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A successful theoretical approach towards understantim¢ptv energy physics for strongly cor-
related systems is the application of effective theoriesieyTexploit a separation of scales in
systems in order to find the appropriate degrees of freedaindascribe their behaviour in a
model-independent and systematically improvable way. agheorder of the corresponding ef-
fective theory there is a fixed number of unknown effectiveapgeters which have to be matched
to observables. In the context of quantum field theoriesabtlertique of effective theories is used in
a multitude of applications. A prominent example is chirtprbation theory (ChPT), an effective
description of quantum-chromo-dynamics (QCD) at low ere=x@]. Another example is the halo
EFT, which is successfully applied for halo nuclei mentwmdove and is based on a dominant
large scattering lengti [10].

In this thesis, | shall use the framework of the non-relatigilocal EFT. Since | shall concentrate
on small momenta, a non-relativistic approximation isifiest. In the case of non-relativistic field
theories, quantum field theory is equivalent to quantum rmeics; such field theories conserve the
particle number. Consequently, the principles of effecfigll theories (EFT) can be applied to
guantum mechanical problems, as pointed out by Lepatje Hence, | shall work in a quantum
mechanical framework. Deeply connected to the non-resitVEFT's is the effective range expan-
sion (ERE) in non-relativistic scattering theod2]. The ERE is the low energy expansion in the
squared momentui? of the scattering phase shiftk). The first and the second expansion param-
eter of the S-wave scattering phase shift are the negatiegse of the scattering length-1/a)
and the effective range,, respectively. These parameters can serve as scattersegvables to
determine the effective parameters in the EFT.

In the non-relativistic local EFT, the Hamiltonian is exgpsed as the integral of a Hamiltonian
density that depends on terms consisting of combinations@aftum fields) and their gradients at
the same point. The form of the interaction terms in the Hami&an are restricted by the principle,
that the EFT has to fulfil the same symmetries as the fundathtieiory, such as Galilean symmetry
[6]. In the situation of a dominant scattering lengththe leading interaction term is the two-body
contact interaction without any range. In this case, therincple highly complicated potentials
are then approximated by schematic contact potentialsoraogly, observables depend only on
the scattering length in first order. This limit with vanisyieffective range is called the scaling
limit. It can be applied to very different physical systenikerefore regimes with unnaturally large
a are called universal. The theoretical interesting limitof> oo is called the unitary limit.

In the three-body system, a new effect occurs in the vicioftthe unitary limit, which was pre-
dicted by Efimov in 197013]. The Efimov effect signifies that in the universal regimer¢hare
three-body bound states, so-called trimers, with bindimgrgies which are approximately related
to the geometric series. In the unitary limit, there are itdlg many trimers with binding ener-
gies exactly related to the geometric series with an accatmonl point at the 3-body scattering
threshold. The first experimental evidence for an Efimovérinvas provided in a trapped gas of
ultra-cold Cs atoms by its signature in the 3-body recommnatate [L4]. Since this pioneering
experiment, there has been significant experimental pssgnestudying ultra-cold quantum gases
and in several experiments the Efimov effect could be dedditsd. So far these experiments were
carried out in a regime where the influence of the trap on tivelfedy spectra could be neglected.
However, the trap also offers new possibilities to modifg groperties of few-body systems. In
particular, narrow confinements can lead to interesting ple@nomena.

In the first part of this thesis, | shall focus on these effedtsis work is partially an extension of
my diploma research topid §]. For the sake of simplicity the confinement potential isailiked
by an isotropic harmonic oscillator potential (HOP). Foclsan harmonic confinement, the energy



spectrum for the two-body sector was determined in thersgéitinit by Busch [L7]. Furthermore,
the binding energies of three-body states could be fountearunitary limit [L8]. The main ob-
servation is that there are two types of states: The first itydedes states, which are completely
specified by the scattering lengthStates, which belong to the second type, are called Efinkev-I
and are fixed by the scattering length and an additional thoely parameter. For finite scattering
lengths and systems with more particles analytic solutewasunknown.

An established method to treat a confined strongly correle body system with spherical sym-
metry is the shell model. The basic idea is that the infiniteethsional Hilbert space spanned by
(anti-)symmetric products of so-called single-partickve functions is truncated e.g. by an energy
cutoff. Afterwards, a basis is chosen for this finite-dimenal model space. In this model space
the Schodinger equation can be solved, since the Hamiltonian tsgjdimite matrix which can be
diagonalised numerically. There are several versions eif sitodel approaches which vary in de-
tails. | shall concentrate on shell models for bosons withsiof symmetric products of harmonic
oscillator functions. Here, | work with the uncoupled otor basis in one-particle coordinates,
the so-called\/-scheme, as well as with angular momenta coupled basis sgpeessed in relative
coordinates, the so-calleischeme. Both methods have specific advantages and dravwblaicks
are pointed out in sectid.3.

The second part is devoted to the descriptiotH clusters consisting of atoms. The theoretical
and experimental investigation of atomic clusters is anartgnt part of chemical physics. Helium
has two stable isotopes: the rare fermioftite and the common bosoniéle. The latter has the
outstanding property that the Efimov effect can be obseriredttly because of the unnatural large
scattering length ofHe atoms §]. Furthermore, the understanding 9fe clusters is the basis
to study properties ofHe liquid droplets and the related phenomenon of superifjuaf liquid
“He [19]. Also the resonant absorption of nanosecond laser putsésged Helium nanodroplets
is an active area of researc()].

The existence ofHe A-body clusters could be proved by diffraction experimentsrf a trans-
mission grating 21]. Unfortunately, properties of the clusters cannot be messin these experi-
ments, e.g. even the binding energies are not directly gakkr in these experiments. Only in the
two body sector the binding energy of the two-body clusteg, dimer, can be deduced from its
size 2.

Various theoretical approaches have been used to investgah systems and determine the bind-
ing energies. Moreover, several ab initio potentials*fée-*He interaction are constructed within
different approaches. The potentials and these approarthesummarised ir2f8]. The binding
energies of the trimer ground and excited state are detethfor a variety of these ab initio poten-
tials. | shall concentrate on the so-called LM2M2 poteria.

For few atoms the sizes and energiesdebody clusters have been calculated with Monte Carlo
methods and hyper-spherical adiabatic expansions. UpetealueA = 10 numerical results for
the ground and first excited states for the LM2M2 potential@esented in4]. The challenging
part in theA-body calculations, as in nuclear physics for the nucleocleon potential, is the treat-
ment of the hard core repulsion of tWble atoms, which causes a coupling of low and high energy
physics. In order to solve the Hamiltonian numerically, saatoff must be introduced. However,
the corresponding results contain large errors due to thplicg of the different energy scales. A
possible solution is to construct effective potentials amdumvent the hard core repulsion. For
instance, in25] Gattobigio et al. propose a parametric interaction cdimgjof an attractive He-He
Gaussian potential with a contribution of a Gaussian-hyeetral three-body force, which repro-
duces the LM2M2 ground state trimer binding energy. Due éxrésearch location of the majority
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of the related research collaboration, | shall call thissptitil the Pisa potential. Gattobigio et al.
solved the Scladinger equation with the Pisa potential in the hyper-sphEharmonic expansion
for up to six He-atoms and published the binding energieghferground state and first excited
state R5).

There exists, however, a systematic procedure of the sitgil@normalisation group (SRG) trans-
formation to construct effective potentials based on upiteansformations. Numerical results
become more stable for SRG-transformed potentials at thensepof the introduction of effective
many body forces induced. In principle, these forces habetoonsidered for few body systems.

With my shell model methods for bosons | shall investigae=the system for up to twelve parti-
cles. In cooperation with Prof. Fokss from Gothenburg, | utilise the Pisa potential as well &s th
LM2M2 potential as inter-particle potentials. For the pagp of better convergence, here indeed
the SRG evolution is exploited.

My thesis is organised as follows. In chap2et outline the quantum mechanical scattering theory
and the basics of effective theories. Then the Efimov effeeiucidated and the SRG transfor-
mation is introduced. At the end of this chapter, relevameexnental techniques are mentioned,
which enable to observe the systems which | consider thealgtin this thesis. Subsequently,

| explain both the shell model approaches, which | used, taild@ chapter3 and compare their
merits and demerits. In the following chap#&rmy results for few bosons in the scaling limit in
traps are presented. The calculations for atomic clustereebum atoms is the subject of chap-
ter5. In chapterb, | collect alternative approaches and ideas. Finally, Irsanise my results and
give an outlook of possible further studies in chapter



Chapter 2

Physical Background

In this chapter | introduce the theoretical concepts ant&tlmciples of experiments for the phys-
ical systems considered. At first, the basics of scattehiagry are summarised in sectigrl. The
definition of differential cross sections, the connectiorGreen’s functions as well as the partial-
wave S-matrix are outlined. Afterwards, | give an introdoictto effective theories in sectidh?2
and explain the local non-relativistic effective field tie(EFT) which will be utilised for resonant
interactions. In sectio@.3the Efimov effect is elucidated with and without a confinirgptin the
form of an oscillator potential. Subsequently, the sinityjarenormalisation-group (SRG) transfor-
mation method is explained in secti@r, as | need this technique to handle realistic potentials. At
the end, in sectio@.51 mention some experimental techniques for observing tlysipal systems
considered theoretically in my thesis.

2.1 Scattering Theory

Here, | present an overview on the quantum theory of nortivedtaic, elastic scattering. It follows
the introduction to scattering theory in the textbook of [day12].

2.1.1 Differential Cross Section

For the sake of simplicity, | describe the scattering of ajgmile on an infinite-heavy target
described by a potential. The reformulation for two-péaetiscattering in relative coordinates is
straightforward.

The starting point is the time-dependent Satinger equation with the Hamiltonidih. The Hamil-
tonian consists of the free part, i.e. the kinetic endiigy= % and the time-independent potential
V. The formal solution of the initial value problem is giventiwvthe time evolution operatdr (t)

as

z‘%\w» = H[p(t)) , U)|0) = e [1(0))= [(t)) - 2.1)

In general, a scattering experiment is designed to stdntamitee incoming wave packet, the asymp-
totic state|vin(t))= U°(t)|¢in) before the actual scattering process, and to detect loreyaiter

5
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the scatteringi(— oo) a free outcoming wave packet the asymptotic SF%& > Both packets
are asymptotes of the actual orbitt) W}

(0)|0) =)o) =70, U(0)|)=U°(#)] o) =5 0. (2.2)

The maps between the actual orbit and the asymptotes deé&nddtier wave operator€, and
Q_ by

|¢> Q-&-|¢|n>— hm UT UO }wm ) ’¢> Q_ ’¢out>— hm UT UO ‘¢0ut>- (2.3)

Thus, the whole scattering process fr¢|mh> to |¢out> is described by a combination of Mgller
operators, which is called the S-matix One finds

|Your)= S|tin):= QL |thn) - (2.4)

In momentum space equatio24) becomes

(o) = | (o (RS @5

with the S-matrix element@?\s}q‘}. In the end, one is interested in the scattering part of theewa
function. Therefore, the trivial contribution is separchtd he rest of the S-matrix defines the on-
shell T-matrixt(q < p). Because of energy conservation a factof, — E,) occurs and one
writes

(0]S|0) = 2m)* (7 — p) — 2mi 6(E, — E,) (7 + 1) , (2.6)

which definest(7 < p). The observable in scattering experiments of spinlessciestis the
differential cross section. The typical situation of seattg experiments is schematically depicted
in Figure2.1

Q

|¥in (1)) @ﬁ—o’
T N

. A,
in(t »
(8] S5 Target

Po

Figure 2.1: Two wave packelino(t))= |vin(t)) and|¢in 5(t)) approach the target with their
identical mean momentup and two different impact parametegg. The quantityw(dS2 < i, ;)
is the probability thawinyﬁ(t» is scattered into the solid angl€d

The incident projectile approaches the target with the mm]win>. Now, the detector measures
the outgoing particle under a given solid angke.dThe experiment consists of a sequence of
independent collisions. In general the incoming wave pigokél have different impact parameters
p. The cross sectioa(dS) < i) is the relation between the number of scattered particlésen
solid angle € and all incoming particles with different displacemepit§ hus, the cross section is
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the integration over the impact parameter of the probghilitd2 < i, 7). Here,w(dQ « i, 5)
is the probability that the projectile withiis scattered into the solid angl€2d The cross section
can be expressed with the outgoing asympmtg@ via

~ d
(02 ) = 69 [ [ T P 2.7)
By means of equatior(5), this yields
o) d d3 . 2
o6 v a0 [ & [T [ S sl - @8)

In general, the incoming asymptote is designed to be peakeshd a definite momentum}, and
one measures approximatelyd(2 < 7). The combination of equationg.6) and .7) then leads
to

m2

o(dQ < py) = 2n? (P po)|? d , (2.9)
do . .
= %(p  Po) d2 (2.10)

with the differential cross sectiofg (5" < 7). The scattering amplitudg(q + p) is then defined
an(ﬁ<— ﬁo) = —%t(ﬁ<— ]70)

2.1.2 Green’s Function

Green’s functions are an important concept for scattetiegry. The full Green’s functiot(z)
and the free Green'’s functio®’(z) are formally the resolvents of the Hamilton operatdr=
Hy + V and of the free Hamiltonia#/,, respectively:

G(z)=(2x—H)™", G2) == (z— H" . (2.11)

The Green’s function is analytic in the complex energy plapart from specific points like bound
state energies or resonances, and it has a branch cut onathexi® from0 to oc. In scattering
theory another useful operator is the T-matrix defined as

T(z)=V+VG(2)V . (2.12)

The integral equations, which relate the Green’s funofion), G°(z) andT'(z), are the Lippmann-
Schwinger equations fdr(z) and for7(z):

G(2) = G°(2) + G°(2)VG(2) , T(z) =V + VG (2)T(2) . (2.13)

Then, forz = limew(% + ie) one finds
Hq ) = lim(@|T (" /(2m) +ic)|) | (2.14)

with |g] = |p] for elastic scattering. Please note, ti@ll'(z)|p) is more general that{7 < p).

In the complex plane of, poles in the T-matrix reflect important physical propesti®Ve define

z = k*/(2m) and in thek-plane the poles in the T-matrik(k?/(2m)) correspond to bound states,

if k& lies on the positive imaginary axis. Afhas an negative imaginary part and a non-vanishing real
part, these poles correspond to resonances. The poles nagatve imaginary axis are unphysical
virtual states.
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2.1.3 Partial-Wave S-Matrix

In the following, | shall focus on stationary scatteringdahe For a stationary plane wa\@ the
scattered wave function is given ﬂ)ﬁ+>:: Q+]ﬁ>. For large distances from the scattering region
the scattered wave function has the following asymptoti@b@sur

r|=r—o0 P i
(E|p+) IS (2m) 2 (P 4+ f(pi mer

). (2.15)

In case of central forces, the S-matrix is diagonal in theulargnomentum quantum numbér
as well as in the corresponding projection quantum numbend one finds for the scattering
amplitude a multipole expansion

F(G D)= (20 + 1) fu(p)Pu(G - p = cos(6)) , (2.16)

whereqg := ¢/|q] and P, are the Legendre polynomial87]. Unitarity of the S-matrix guarantees
that the amplitude can be expressed in terms of the scaftehiase),(p) through

1

~ peot(0p) —ip (2.17)

fe(p)

For low energies the scattering phase behave$ as p?*!. Therefore, the s-wave scattering
(¢ = 0) dominates the scattering in the vicinity of the threshold 0. The termp cot o(p) can be
expanded in even powers pf This is called the effective range expansion (ERE)

peot(do(k)) = —% + %ropQ +O(ph) . (2.18)

Forp ~ 0 the scattering lengtlhhdominates and determines at leading order all scatteriagtdies.
Poles in the scattering amplitude for non-negative imagipdead to bound states. For the limit
a > ro > 0, there is a pole in the vicinity gf = +i/a; corresponding to a shallow bound state
atF ~ — 1/(2ma®) ~ 0. In general, the sign of is crucial for the physical interpretation.
A negativea means that the scattering potential is attractive but toakwe build a bound state.
Positive scattering lengths are ambivalent: The potecéialbe either repulsive or attractive, when
a bound state could emerge.

2.2 Effective Theories

Effective theories have proved to be very useful in a vasetaof physical systems to describe
low energy properties. The application of the concept cdaive theories in the quantum field
theory framework is called effective field theory (EFT). kcion2.2.11 give an overview of the
basic concepts of effective theories. Subsequently, liden&FT’s and the so-called local EFT
for non-relativistic particles with short range interacis. | orient myself on the treatments given
in [6,26].

2.2.1 Basic Concept

An effective treatment is based on a separation of scales $pecific physical system. Separation
of scales means that the system has at least two scales wittrapertyAy << Apign. In the
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dimensionless small quantityi,, /Anigh < 1 then a perturbative expansion can be performed. The
expansion up to different orders then defines a tower of efeetheories.

A popular simple example is an approximation of Newton'vgetional law, which read8yewton =
—GMm/(R + h) for an object with mass: in a heighth above the earth which has the mags
and radiusk, by a constant earth acceleratigrwhich yieIdsJ/,\(,gg,)mn = +mgh. The high scale is
the radiusAnign = R and the low scale is the height,y = h. Newton’s potential can be expanded
iN Ajow/Anigh = h/R and one has

b= -Gt (153 (1)) +o (&) ) - e

The first term is just a constant and irrelevant, since patsntan be measured only relatively
and not absolutely. The leading order in the effective thesrexactlymgh with identification
of GM/R?* = g as the coupling constant. At next to leading order a seconglitwy constant
go = —GM/(2R?) appears in the termymh?.

In spite of the simplicity of this example, several charast& features of effective theories are
evident: The accuracy of the theory can be improved systeatigtwith each order. The small
expansion parameter establishes a so-called power-ogwstheme to sort the expansion terms by
importance. Coupling constants absorb the physics at thedaigle and finally, the theory predicts
the scale of its own collapse at~ R. In general the coupling constants cannot be determined by
the fundamental theory. Either the fundamental theory isnawn or the fundamental theory is too
complex to calculate the coupling constants explicitlytiese cases, the coupling constants are to
be determined by experimental data.

2.2.2 Effective Field Theory

Historically, EFT’s have been formulated in the field of rear physics. This was encouraged by
the endeavour to overcome model dependent descriptioredobhic and nuclear properties and to
find a model-independent approach for the strong intenaetith QCD as the fundamental theory.

Nowadays, two effective theories are used for strong intemas: chiral effective field theory
(xEFT) [9] and the pionless EFT/EFT) [27]. The former bases on the approximate chiral sym-
metry of the QCD Lagrangian, i.e. the invariance under theisgp transformations of left-handed
and right-handed fields with the group SU(3)SU(3)z. However, the chiral symmetry is hidden
due to spontaneous breaking of this group to SiJ(3According to the Goldstone theorem, this
spontaneous breaking induces eight mass-less GoldstsoasfoConsequently, the eight lightest
mesons in the spectrum, the pions, kaons andre identified with the Goldstone bosons as the
explicit dynamical degrees of freedom. Since the symmaeatiyroken explicitly by the small and
various quark masses, the Goldstone bosons obtain finiteenas

Thus, theyEFT is an expansion around the chiral limit and has two higtesa\y, . The first one
is the so-called chiral symmetry breaking scaleg = 47 f, wheref, is the pion decay constant.
The second one is the mass of the lightest vector meson which is integrated out and is not a
dynamical degree of freedom anymore. The low scAfgsare the momentum of the considered
process and the masses of the dynamical degrees of freedom. Consequently, the expansion
is in powers of the small parameteXg,, /Ay, where

AX

low

€ {my, my, my,,p} and Aﬁigh e {4nfr,m,} . (2.20)
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The pionless EFTAEFT) is used for nucleon-nucleon reactions for momenta m,.. In yEFT the
nucleon interactions are strong and lead to non-pertwdatienomena. Thus, the effects cannot
be treated in the normal power-counting schemgEFT. The reason behind this is the unnatural
large scattering length >> 1/A}, of the nucleon-nucleon scattering and the associatedoghall
bound states at the vicinity df = ﬁ with the reduced mags. In the next section the basics of
theEFT are considered.

2.2.3 Local Non-Relativistic EFT

The local non-relativistic EFT relies on the scatteringggnbeing large and is independent of the
mechanism responsible for this. This is summarised in tha teniversality. This theory can be
applied in nuclear physics, known 4EFT, in atomic as well as particle physics.

The starting points of EFT’s are the Lagrangian densitigs.lotal quantum field theories the
Lagrangian density is constructed with terms consisting cdmbination of quantum fields and
their gradients at the same point only. Accordingly to theasetry principle 28], e.g. all terms
which fulfil Galilean symmetry, are included. Furthermdexms which differ only by integration
by parts are equivalent, because the difference is just adaoy term. Since one is interested in
small momenta, terms with higher derivatives are suppdesSensequently, at leading order the
Lagrangian is given by

L= wT(fa t) (22 + LAm)w(fv t) - %(wT(ﬁ t)w<f7 t))2 - g_g(wT(f7 t)w<f7 t))g +o

ot 2m :
(2.21)

The ellipses indicate the terms in higher power-countirdgor The leading order corresponds to
the limit of zero range interactions, the so-called scaliimgg. It is equivalent to the truncation of
the ERE after the effective range teinn, which is justified forl /k > a > .

This quantum field theory is equivalent to a quantum meclahrmescription because no anti-
particles terms are present and sectors with differenigi@rtumbers decouple in the Fock space.
In short, the quantum fields'(Z, ¢) andy (7, t) create a particle at positiahat timet or destroy a
particle, respectively. For bosons, the fields fulfil the camator relation

[, t),0(5,t)] =D& —7), (2.22)

and all other commutator relations vanish identically. Wifte relation to the Hamiltonian density

H(Z,t) = g—j}@b — L, (2.23)
—A . .
= U@ 1) o (@) + D@ ORE ) + (@ ORE D)+, (2.24)

the quantum field formulation can be rewritten in the quantaecthanical formulation with the
Hamiltonian H. As an example | consider the 2-body sector where the thodg-berm in the
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Lagrangian density is then irrelevant. After normal ordgridenoted by two colons, one finds

T y_"/dgz cH(Z,t) :}¢1,¢2>
:/d32d3vd3w< ‘ Ui(z, t z¢( t)+ %(ﬂﬁ(it)lﬁ(?,t))
(0,61, 62) .
x [ B 58+ 260 - )] (41 005.0) + 61T 0a(E D) . (226)
t

:17,IU>

(2.25)

2m 2
= H (¢1(Z »t)¢< t) + 61(, 1) pa (T, 1)) - (2.27)

2.2.3.1 Two-Body Scattering

In this section | investigate the scattering of two idertimasons with the EFT described above. In
order to calculate the scattering amplitude from the Lagjemin the scaling limit, the Feynman
rules read as follows: The Feynman propagator for a paxiaieassn with energyk, and momen-
tum k is given byi/(ko — k2/(2m) +ic). The only vertex contribution is a constantg,. Note that

g2 1s not small in general. Thus, the scattering amplitude ctiha determined perturbatively with
the Dyson series: a re-summation of the loop-diagram daritans has to be performed. Finally,
this yields the Lippmann-Schwinger equation for thematrix, see equatior2(13. At on-shell
energies thd-matrix coincides with the scattering amplitude, see equd®.14).

In Figure2.2the equations for the scattering amplitude are depictegtaimamatically. It describes
scattering of two identical bosons with reduced mass m /2, relative energys = k?/(2u) =
k2/m and momentunk. Thus, in the centre-of-mass frame fér| = |k| the integral equation
diagram reads

(k'|T(B)|k)

i, d*q /dqo 1 -
= +g2 + = 5 qT(E)k) . 2.28
w+ 5 | ooy | G do— gy +ic E - 0——+ze<j KGR

Because of the contact interaction, the T-matrix simplifie$ depends only on the energyand
is independent of the directidd. At on-shell energiest = |k|?/(2u), the T-matrix is related to
the scattering amplitude as follows:

Ay(E) = —1%1@ IT(E +ie)|k) = —t(k' + k) = +22§f(l§’ — k). (2.29)

Due to the identity of the bosons, there is an additionabiaat two.

Note that the integral ovef in equation 2.28 diverges. This signifies that the Lagrangian is
ill-defined as such and has to be regularised. Likewise,dh@sponding Hamiltonian is not self-
adjoint because of the contact interaction in the form oténe with thed-distribution. A possible
regularisation is a momentum cutoff i.e. the integration is substituted By, d’q. Thereafter,
the integral become finite but cutoff-dependent with thelltes

Ay(E) = —go[1+ 22 (A = I/ ZmE—ie)] (2.30)

472 2
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e
o

Figure 2.2: Lippmann-Schwinger equation for the scatteohparticles in leading order of the
local non-relativistic EFT.

In order to predict observables, the coupling constant imeisenormalised and matched for a fixed
A to an observable with the result thatbecomes a function of, the running coupling constant.
Explicitly, g, is renormalised by the constraint that the scattering leags fixed:

-

oL lim f(k 4 F) = lim 2 4,(0) . (2.31)

k—0 E—0 47

Then, the renormalised scattering amplitude becomes eralmt of the ultraviolet cutoff and one
finds

47T

As(E + ie 2.32
( )= po—1/a++/— 2u — i€ (2.32)
The pole in the amplitude &f, = —Qﬁ indicates the universal two-body bound, already men-

tioned in sectior?.1.3

At the end of this section, | would like to stress that the ctatg\-independence in the amplitude
is accidental. In general, one expects only a suppreasaependence withy /A% But, in the
scaling limit, the cutoff can be increased without boundd ahall energies the system can be
treated in the EFT. Note however, that in real physical syste natural cutoff is usually given by
the inverse of the effective randér,. In short, the EFT is appropriate only for physical propeesti
at energy scales df' < 1/72.

2.2.3.2 Three-Body Scattering

The Lagrangian for the three-body sector now contains @&thoely term. The description of three-
boson scattering within the EFT in the scaling limit is ratimtricate. In the centre-of-mass frame
the 6-point Green’s function in momentum sp&o€T (v yyyTTe)1)|0) depends on 4 momentum
vectors and 5 off-shell energies and such an solution ofegrat equation in many variables is
highly complicated.

At this point, one introduces an auxiliary dimer field. Thevguantum field/, the dimer field, is
a composite of twa)’s. The 6-point Green’s function then reduces to a 4-poirde@s function

= <O\T(d¢dw*)\0>. A new Lagrangian, which involves the fiedexplicitly and is equivalent
to the former Lagrangian in leading order, can be constduatal is written as

W( o+ —)¢ + Zatd = 2ty + luld) - Ldlayty . (2.33)
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Based on this Lagrangian, Figu2e3depicts in terms of Feynman diagrams the scattering equatio
for three bosons, in the case of elastic boson-dimer scaiter

Figure 2.3: Three-body scattering rewritten in dimer-bosoattering.

The corresponding Feynman rules for the Lagrangian in emqué.33 are collected in Figurg.4.
Note that, the Feynman propagator of the fi¢ld naively just a constant, but the dimer can be split
into two bosons. Thus, the full propagator is a sum over alpldiagrams which leads to the same
integral equation as in the 2-body scattering apart fronstzons (see equatio8.@8). At the end,
one has for the full dimer propagator with enetgyand momentun®

, = 321 1 - 1!
iD(Py, P) = v {a — \/—mPO + P2%/4 — e : (2.34)
+ —»7: d
ko— k2 /2+ie —1%2 —i%
—— &
92
e = @ ———— 1

Figure 2.4: Feynman rules for Lagrangian in equat@33.

Using the Feynman rules with projection onto S-waves ant thié help of the residue theorem,
one finds in the centre-of-mass frame for the dimer-bosoriardp

16m [(1  (p*+ph+k —E—ie\  H(A)
- B = 1
As(p ki E) = — [2pkn(p2_pk+k2—E—ie e

4 (A 1 2 2_F—i H(A ki E
T Jo 2pq  \p*—pqg+q*—E —ie A2 )y 32— F — e

Here,p andk denote the absolute value of the incoming and the outcommgenta, respectively
andF is the energy. Since the original integral is again divetgie integral has been regularised
with the cutoff A. In order to match to observables and to compensate\tdependence, the
coupling constants must be renormalised. The cutoff degerelofg; is described in the function

H(A)/A? := —g3/(9g3m). It can be shown, that/(A) is a periodic function related to a UV
renormalisation group limit cyclefd can be parametrised as

H(A) = cos [so ln(%) + arctan(so)]

 cos [50 ln(ﬁ) — arctan(so)] ' (2.36)



14 Chapter 2. Physical Background

The scaling-violation parameté, is related to an observable in the three-body sector up to a
multiplicative factor ofexp(nm/so) with n € N, wheres is an universal constant. For identical
bosons one finds, ~ 1.00624.

We will see that the integral equatio.85 yields roughly geometrically distributed three-body
bound state energies, even for negative scattering lengtiere no two-body bound state exists.
The existence of these bound states is called the Efimowvt effetit is discussed in the next sec-
tion 2.3in more detail.

2.3 Efimov Effect

As mentioned in 29|, Efimov published his studies about the three-nucleonesysnteracting
through short-ranged interactions with the natural lersgthle/ in 1970 [L3]. For interactions
with large scattering lengths > [, he focused on the low-energy behaviour, Fe< 1?/(mi?).

In doing so, he discovered a sequence of roughly geomdyridaitributed bound state energies
betweeni?/(ml)? andh?/(ma)?. If the scattering length is increased, new bound statesapp

the spectrum. For the unitary limit (— +o00), the bound state energies are exactly geometrically
distributed with an accumulation point at the threshbld-= 0. Afterwards, the Efimov effect was
formally proved by Amado and Noble in the following two yef8§, 31]. Within the local EFT we

will see that the Efimov effect is observed in the three-bamhttering in the modern language of
guantum field theory and that it is a manifestation of an U\bramalisation group limit cycle.

More than 30 years after the prediction of Efimov trimers fitst experimental evidence for these
were found in a trapped gas of ultra-cold Cs atord¥.[ In this experiment, signatures in the
three-body recombination rate for negative scatteringtlemindicate the existence of trimer states.
Their dependence on the scattering length was studied loygttime scattering length by Feshbach
resonances (see sectidrb.1.]. Since this pioneering experiment, a lot of progress wadenaand
Efimov physics was observed in several experiments.

Evidence for Efimov trimers in 3-body recombination was abtained in a balanced mixture of
atoms in three different hyper-fine states’bf [ 33,34], in a mixture of Potassium and Rubidium
atoms B5], and in an ultra-cold gas 6f.i atoms [B6]. In another experiment with Potassium atoms
[37], two bound trimers were observed with energies compatiitie the geometric prediction for
Efimov states. Efimov states can also be observed as resgnare®m-dimer scattering. Such
resonances have been seen with atom-dimer mixtures of Cs §@&hand ofLi atoms B9, 40].
The first direct observation of Efimov trimers &fi atoms created by radio frequency association
was recently reported by the Heidelberg grodf] [

These experiments were carried out in a regime where themftiof the trap on the system could
be neglected. However, itis to be expected that with expertal advances the trap frequencies can
be increased and the trap itself could be used to modify ardy shternal properties of few-body
systems.

2.3.1 Efimov Effect and local EFT

Within the local EFT the Efimov effect can be studied via thattgring amplitude of the three-body
scattering. It turns out to be automatically related to #r@ormalisation group concef][ As in
the two-body sector, poles in the scattering amplitude égiative energies signify the existence of a
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bound state with binding energi/(T”). In order to extract the poles from the integral equatB%)
one exploits that the amplitude factorises in the vicinity @ole:

B™ (p)B™(q)

as E— — EW™. (2.37)
E+EW ’

Then, combining equation2.85 and @.37), the bound-state integral equation for the amplitude
of Efimov states is found:

4 o0
B™(p) = ;/ dg
0

ol 1 PP+ pa+q®—E—ie\  H(A)
q —ln< .)+
2pq  \p* —pq+q* — E —ie A?

-1

B™(q). (2.38)

3
—1/a+ ZQQ—E—Z'E

The values forE' for which this homogeneous equation has solutions are thairlg energies
(—E(T”)) of the Efimov states. In fact the spectrum depends on two peteasdetermined by two
observables. The first one is the scattering lengiimd the second one is the parametein the
function H (A) which is matched to reproduce some binding energy of a skiieov trimer in the
spectrum. The rest of the spectrum is then independent afbiary cutoffA. It can be chosen as
a rootA of the periodic functiorH (A). A is fixed only up to the multiplicative factors ¢&" /%)
with integerm. For a specific cutoff\, all Efimov states up to around the binding enegy| < A2

can then be calculated with equati¢h38 numerically. In order to compute more deeper bound
Efimov states, the cutoff has to be increased, i.e. one chaosgger roof\ of the functionH (A).
The spectrum for a fixed, is shown schematically as a functioniofa in Figure2.5.

sgn(E)y/[E|

Figure 2.5: Efimov states for a specificA, as a function ofl /a with the dimer threshold. The
trimers are not drawn to scale. In fact, they scale with aofacte™ 0 ~ 22.7. With A, the deeper
Efimov states belowh; can not be found. Thus, a larger cutoff is necessary to determine the
next Efimov state.

Note that the EFT describes systems in the scaling limit. Sgextrum of a real physical system
is restricted from below since all interactions have a fingbege and therefore a natural length
Exactly this additional scale restricts the scope of th@the Hence, only Efimov trimers with
energiesbEr < h/(mi?) are described correctly. Physical properties at highedib@energies
depend on the details of the interaction beyond the EFT.
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2.3.2 Efimov Effect with External Confinement

Before reviewing the solution of the three-body problem inaantonic trap, it is worthwhile to
inspect the confined two-body problem in the scaling limit.

| consider a two-body system confined by an isotropic harmoscillator. For simplicity, it is
sensible to express all lengths in the oscillator lerdgth \/h/(mw) with the massn and the fre-

guencyw. The dimensionless Jacobi coordinates (see appd&ydaxe defined by?ﬁb) :=§;/b. The
contact interaction is parametrised with the regulariselistribution 5(3)(#))%3?). The cou-

pling constant is related to the scattering lengtisee L6]. Thus, the correspoﬁding Hamiltonian
in Jacobi coordinates reads

9
as—gb)sl . (239)

1 1
H = hw _§A§(b) + §|§§b)’2 + ﬁﬂ%(g(:’»)(g(lb))
The spectrum of this Hamiltonian has been determined by Beisah [17]. Only the spectrum for
vanishing relative angular momentum is modified by the adrterm and the energies E are given
by solutions of

E 3
b_ptCaeti) o * ‘1*) . (2.40)
o I (=5 + 1)

Therefore, the spectrum is completely specified by theestadf lengtha. In principle, the scatter-
ing length could be extracted from a measurement of the grspectrum. Note that a specification
of the scattering length is equivalent to specifying any energy of the spectrum. Botitgdures
determine the whole spectrum and both quantities can beassad observable to renormalise the
coupling constant in the effective theory.

8 - - ——————
7_ 4
6_ ]
5_ 4
- 4 ]
2 3l -
w o ]
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1/a [1/b]

Figure 2.6: Spectrum of the two-body sector in the harmooidinoement as a function @f a [17].
The dots indicate the spectrum in the unitary liliz. — 0.

The spectrum is depicted in Figu2es. Forb/a — —oo the result is the spectrum of the oscillator
without any contact interaction. This spectrum is lowergd¥ = 1 Aw in the unitary limit



2.4. Similarity Renormalisation Group 17

b/a — 0. For the limitb/a — +oc the states are again lowered byw = 1 hw apart from the
ground state, of which the energy divergestec. Then again the oscillator spectrum is found
with an additional infinitely deeply bound ground state.

For an axial-symmetric or an anisotropic harmonic osaHlabtential the two-body energy spectra
were derived analytically by Idziaszek et &2] and by Liang et al.43], respectively.

The three-body sector is more complicated and the Hamdtonannot be solved in general. But
for the unitary limit, solutions are published for bosonsJdoynsell et al. 44] and for bosons and
fermions by Werner et al1].

The most noteworthy point is that for the bosons there aretypes of energy states for vanishing
relative angular momentuin= 0. On the one hand, there are statesffb — oo with energies

E,,=hv(son+1+2q), (2.41)

with a non-negative integerand the positive real, not integer solutiongs, of the transcendental
equation

T 8 . (m
+50,n COS (5307n> = 7 sin <€So,n) : (2.42)

On the other hand, states of the second type are called Efikeov-They belong to the single
imaginary solutiors, o ~ 1.0062 ¢ of the transcendental equation. As for Efimov states, eegrgi
of these states depend on a three-body paranmigtier addition to the scattering length'b — oc.
The energies of Efimov-like states are the solutions of tHeviing equation:

v [F <1 + S0,0 ; E/(hw))} = —|soo|In(R;/b) +arg [[(sop+1)] mod 7. (2.43)

The spectrum of Efimov-like states is bounded neither frolovb@or from above. The scaling

with the factor of abou®2.7, known from the unconfined three-body system, can be obddove

adjacent, large negative energigs, F,, . 1:
E,

n+1

~ (22.7)%. (2.44)

2.4 Similarity Renormalisation Group

In 1990’s, Glazek and Wilsorp, 46] as well as Wegne[7] developed independently the similar-
ity renormalisation group approach (SRG). The first apphbceto the nuclear many-body problem
was published in 2007 by Bogner et &g]. | will exploit the SRG-transformation for the few-body
sector of'He-atoms treated with the realistic ab-initio LM2M2 pofahin section.

The motivation for the SRG approach is the strong intertwiaeinof high- and low-energy physics

for strong short-ranged potentials in particular for ptisda with a hard core. Due to this, the

spectrum in shell-model calculations shows a strong cutefiendence. Accordingly, only results
with large cutoffs are reliable, but at the same time, themeihation is then very time-consuming

and elaborate. A possible expedient is the SRG approach wleicteases the correlations at the
expense of introducing more-particle interactions.
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Wegner 7] formulates the SRG evolution as a flow equation of the Hamidto. The SRG evo-
lution is a unitary transformation of the Hamiltonian wittflaw parameter and can be written
as

H(s) =U(s)HU(s) . (2.45)
Owing to unitarity, the transformation matrice$s) andU(s) fulfil the following relation:

0= d—dsl = :S(U(S)UT(S)) — U/(S)UT(S)J—FE](S)UT,(S)I : (2.46)

UE;) WT‘(rS)
Therefore, the flow equation of the Hamiltonian is just giten

d

G H(s) = [n(s), H(s)] . (2.47)
Additionally, the generatof/(s) is defined by
n(s) = [G(s),H(s)}_ . (2.48)

In our application, only the potential should be transfadna@d the kinetic energy is to be kept
constant. Accordingly, the kinetic energy can be used agé¢heratoG(s) = 7. Hence, one has
with H(s) =T + V(s)

H'(s)=V'(s)=[[T.V(s)]_.T+V(s)]_. (2.49)
At the end, | would like to point out that many-body potergiate induced and that with the kinetic

energy as generator the correlation is suppressed in tHatievo The latter can be seen from
writing equation 2.49 in momentum space:

(V' (5)|k) = ==V (s, p, k) (2.50)
= —V(s,p,k )(\ﬁ\ _‘ i / dg ¢*V (s,p,q)V (&q,k)Iﬂ H;;L_Qq
(2.51)

The second term is suppressed with respect to the first osegfaficantly different momentaand
k for the physical potential. Neglecting this term, the soluiof the differential equatior2(51) is
given by

V(s,pok) = V(0, p, Ky exp (—s B =42 (2.52)
S7p7 - 7p7 eXp S 4m2 . .
Hence, the correlations of different energy scales areregppd approximately exponentially. For
details see49].

Within the occupation number formalism with creation o;bmrsaal(.ﬂ and annihilation operators,
the induction of higher-body potentials can be seen exlio: the flow equation. For instance,
typical terms occurring in equatio.49 for 2-body potentials are

Vwi)lv(z [ akal, ;agaras} . (2.53)

pgrs
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These commutators have contributions of three-body iotieras termSa;ra}a,talaman. Conse-
guently, many-body terms are induced by the evolution.

Finally we make a small comment on the physical dimensiaon dhe dimension of the evolution
parametes is [s] = [E]~2. Typically, a new parametek—* = s/(4m?) is defined, which then
has the dimension of a momentury = [p|. In sectionb, this parameten will be used as flow
parameter instead of

2.5 Experimental Techniques

In this section, | briefly discuss experimental techniqudsch are used to investigate the physical
systems considered in sectiodsand 5. This overview should convey the principle and issues
of modern experiments for atoms with resonant interactiorexternal confinements and féide
clusters.

2.5.1 Study of Atoms with Resonant Interactions in Traps

A review about experiments with ultra-cold atoms at Feshbrasonances is published by Chin
et al. 60]. An overview about experiments with Efimov physics is givar{15]. Here, | just
summarise some relevant experimental techniques.

2.5.1.1 Feshbach Resonances

Due to Feshbach resonances cold atoms are the perfect sytstémestigate universal behaviour.
The Feshbach resonances allow to modify the atom-atonaitiens with external magnetic fields.
Therefore, the scattering lengthcan be tuned and the universal region is accessible for iexper
ments. The effect of Feshbach resonances can be illustratetivo-channel model as in the left
panel of Figure2.7.

| Bound State-— |

V
a/apg

o 1 2 3 4 5 6 6543210123845 6
(B - Bres)/c
Figure 2.7:Left panel: Two-channel model of Feshbach resonances. With the madredtl 5,

the open (red) and closed (green) channel can be tuReght panel: Scattering lengthu as a
function of B in the vicinity of the Feshbach resonancezai;
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The effect requires at least an open and a closed channehwahéconly weakly coupled. The
resonance occurs when a binding energy of the closed chandéhe threshold of the open channel
coincide. This coincidence can be generated by an exteraghaetic field if the magnetic moments
of the two channel states differ. For instance, this is tlse ¢ar different spin structures in the two
channels.

The corresponding scattering length is depicted in thet pghel of Figure2.7. For narrow Fesh-
bach resonances the dependencefodm B can be approximately described in the vicinity of the
resonance at the magnetic fighls by

&
B) ~ 14+——. 2.54
a( ) abg< + B _ Bres) ( )
Here, c denotes the width of the resonance amglis the background scattering length far away
from the resonance.

For experiments, the width is a crucial quantity, sincedgngies the necessary resolution for the
magnetic fields. The widths ofwave resonances are often larger tha@. For higher partial
waves (e.g. d-or g-waves resonances) a resolution in tlez ofenG is usually required.

2.5.1.2 Traps and Cooling

In atomic physics, various techniques for realising a cemiant by traps are available. To start
with, there are magnetic or magnetic-optical traps (MOTowever, in many experiments the low-
est atomic states should be studied and these states aréehibbeeking and cannot be trapped
magnetically. Furthermore, the scattering length is taibed with external magnetic fields, which
would influence the trap field. Thus optical dipole traps asaally used in such experiments.
But they have typical depths beloivmK and this require strong cooling which can be achieved
more efficiently in magnetic traps. Consequently, MOT’s dteroutilised to precool the atomic
gases. Subsequently, the atoms are loaded in optical dippleto cool the system to the operating
temperature of the experiment.

In general, optical traps are realised by several countgrggating laser beams. It is possible to
tailor geometries specially designed for specific expenitsie The trap potential is caused by the
dispersive interaction between the induced dipole momertse neutral atoms and the intensity
gradient of the light field. A review of experimental techuég and theoretical models of optical
dipole traps can be found in Grimm et &J].

In order to study typical phenomena of Efimov physics theeydtas to be cooled to feW) nK.
For few 100nK thermodynamical effects prevent the necessary resolatnd the interesting phe-
nomena are obscured. These low temperatures are accessiplby combination of different
techniques.

With the so-called Doppler cooling, temperatures down ¥o fe0 ;K can be achieved. The basic
principle is the excitation of the atoms with an orientecetaseam. The subsequent spontaneous
emission is not oriented and in average the atoms loose&imaergy. A theoretical limit is deter-
mined by the Doppler limit, which is connected to the widthlod cooling transition.

Following this, the Sisyphus cooling is a possible methoddbieve the recoil limit of the laser
beam of fewl100 nK [52]. It exploits the Zeeman sub-levels of the atoms. With twsetabeams,
which propagate in opposite direction and are linearly pe¢a perpendicular to each other, an
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interference pattern of alternating clockwise and couwtekwise circular polarised light can be
generated. Along this pattern, the Zeeman sub-levels ehtnggr energies and switch their posi-
tion. Metaphorically, the energy levels move uphill andkbtca valley. In average, more electrons
at the hill are optically pumped in an excited state and fatlkin a valley. Thus the atom looses
energy and is cooled.

Finally, in order to achieve th&) nK region, the approach of forced evaporative cooling igluse
Originally proposed by Hes®§], the principle is that atoms confined in a trap with thredh@l;,
could generate constituents with enetjy> FEs, by collisions. These high-energetic atoms are
allowed to evaporate out of the trap. The remaining atonieretalise and the temperature drops.
The evaporation is enhanced by rf-induced spin flgg8,[with slowly lowering of the depth of the
trap potential 5], or with a combination of both. The lowering of the depth &led the direct
forced evaporation.

2.5.2 Investigation of Helium Clusters by Diffraction

In section5, | will study clusters of'He-atoms within the present shell-model approach. These
clusters eluded an experimental investigation for a lomgtiCommon experimental techniques in
molecular physics like spectroscopy with microwaves,ardd or visible light as well as electron
scattering disturb the investigated system. As a conseguereakly bound systems are destroyed
if such techniques are used.

A breakthrough was made in 1994 by 8tkopf et al. [21]. Improved measurements and even
dimer binding energies were published in 2000 by Griserdl.§22,56]. The detection of clusters
is based on diffraction off a transmission grating.

The schematic construction of the experiments is depict&digure2.8. A nearly mono-energetic,
supersonic beam of helium atoms is produced by expandintHbeas through &-;m-diameter
nozzle. The temperature and pressure of‘the source can be varied and hereby the de Broglie
wavelength of the'He atoms from0.56 A to 1.81 A. Two 10 um slits in the beam arrange a
sufficient spatial coherence. The beam is diffracted at pgreticular silicon nitride grating which
has a period of = 200 nm. The diffraction patterns are detected with a rotatal@ssspectrometer
behind the transmission grating and collimation by anostier

By virtue of the narrow velocity distribution, the experintestnows a high selectivity in cluster
sizes. Because of this narrow distribution, all clusterglgdsave the same velocity. The corre-
sponding de Broglie wavelengthof a cluster with/V constituents is given with the mass of Helium
atomsmye by

21h
A= ) 2.55
Nmpev ( )
The diffraction angles for a beam are described in the Frafi@enlapproximation by
27h
sin(0) ~ =" (2.56)

d Nmpev

With this formula, the mass of the cluster$«f.e) are determined from the diffraction angle.
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Figure 2.8: Schematic construction of the diffraction expent designed by S¢tikopf et al. [21].
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Shell-Model Approach

Historically, shell models were introduced in order to explthe shell structure of the electron
configuration in atoms. As a first approximation, the eletdrare assumed to be negatively charged
particles moving independently in the field of the posiyveharged atomic nucleus (coulomb
potential) complemented with a potential describing threxage electron-electron repulsion, known
as the Hartree-Fock potential of the atom mean field appratkam. In this approximation the
many-electron system is described by a single Slateriti@tant of the single-particle orbitals.
In order to account for correlations the remaining electtactron interaction can e.g. be treated
by diagonalisation of the corresponding Hamiltonian in pprapriate finite basis spanned by the
single-particle orbitals.

In nuclear physics, shell models were suggested after suedtry of the so-called magic numbers
in the separation energies of neutrons and protons. In 196%. Mayer and J. H. D. Jensen
were awarded the Nobel Prize for their studies concerniagtitlear shell structure. In contrast to
atomic physics, there exists a priori no strong centralq@ésuch as the Coulomb potential of the
central nucleus in atoms. But such a central mean-field patexatn be imagined as being built by
the nucleons themselves and can again be constructed bythreétFock method. Traditionally in
treating the many-nucleon problem, only configurationsigpd by a finite set of active valence or-
bitals were considered. In the 1990’s, work in so-calledcare shell modelsy7] became feasible.
In such models, all constituents in &-particle nucleus are treated as active. The Hamiltonian is
then diagonalised in a model space e.g. spanned by a finiteohér oscillator basis. Nowadays,
with realistic nucleon-nucleon interactions the ab-mitb-core shell model is applicable for light
nuclei up toA = 16 [58]. For this purpose, the realistic hard-core short-rangaergials have
to be transformed with unitary operators and this is done with the Okubo-Lee-Suzuki proce-
dure p9] [60Q] or the similarity renormalisation group (see sectid). The principle idea of shell
models and no-core shell models is the basis on which | gieall systems of resonantly interacting
atoms in an external confinement and also "free spédeatom clusters.

In this thesis only non-relativistic systems are studiedc@dingly, the starting point is the Hamil-
tonian consisting of the kinetic terms and interaction pbéds. Here, | will concentrate on bosons
with spin0. In section4 | consider systems with resonant interactions in an exteorginement.
For this purpose, the local EFT described in secBdh3is used. Thus, the interaction potentials
are just two- and three-body contact interactions. As stiehiHamiltonian is ill-defined and has to
be regularised. The external confinement is idealised bg@mnopic harmonic oscillator potential
(HOP).

23
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In a second application, the binding energie$é-atom clusters without any confinement are to be
determined in sectioh. The interaction between helium atoms is described by ditwdy ab-initio
potential, the so-called LM2M2. Alternatively, an effegipotential with schematic two-body and
three-body parts is used. These potentials are transfomitbdthe similarity-renormalisation-
group (SRG) method (see sectidd) in order to circumvent specific problems associated wigh th
short range repulsion. In all situations | consider at mbetd-body interactions. All potentials
considered are spherically symmetric. Hence, the relédantiltonian is of the form

A ‘@‘2 1 b2 A A
H =) | 5t gme?| T |+ Vit D Wi (3.1)
1=1

i<j i<j<k

For the application without external confinement the ogtwh frequency can simply be setto=
0. All A particles have the same mass V;; denotes the interaction between particlend ; at
the relative positiorr; ; := 2, — Z; and with momentunp; ; = —z‘iﬁ@.,j. Likewise, Wy, is the
three-body interaction between particleg andk.

In general, the spectrum of such a Hamiltonian cannot bedfamalytically and numerical methods
are necessary. Suitable methods for such a Hamiltoniarhatiereodel approaches. In contrast to
the no-core shell-model calculations in nuclear physicenisider only bosons instead of fermions.
The first step is to construct a basis for the Hilbert spacerddfter, this infinite-dimensional basis
is truncated by a constraint motivated physically and the@hepace is then the linear hull of the
finite basis. Automatically, this implies a regularisatiohthe Hamiltonian. Thirdly, all matrix
elements of the Hamiltonian are determined in the modelesp&ally, the eigenvalues of the
Hamiltonian are found numerically by diagonalisation.

In detail, | have used two different methods, both based bersgal oscillator functions. On the one
hand, | work in the so-called-scheme in Jacobi coordinates. On the other hand, | use itallsol
M-scheme in one-particle coordinates. In the next se@ianhe former procedure is explained.
Subsequently, | outline the latter in secti®r2 Both approaches are compared in sec8dh

3.1 J-Scheme Shell Model in Jacobi Coordinates

To begin with, | exploit the possibility to decouple the aerbdf-mass dynamics for the oscilla-
tor potential. For this purpose, the Hamiltonighlj is rewritten in Jacobi coordinates (see ap-
pendixA). Since one is only interested in the internal structurefiivial centre-of-mass dynamics
is omitted. By this procedure thé&-particle problem is reduced to(al — 1)-particle problem for
the internal excitations of the system; the uninterestengre of mass excitations being separated.
However matrix elements of the interactions terms will be@expensive to determine.

In a second step, a basis has to be determined for the HilpacesofA identical bosons. The
"building blocks” for this basis are the spherical oscilatunctions

Pty = 6, () = 2373 G 10) (32)

= A nim) = s Rut(p/5)Yin5) (33
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For brevity, | shall writep,,;,,, instead ofp!, . They are the eigenfunctions of a one-particle Hamil-
tonian Hsc With the isotropic harmonic oscillator potential:

Hostun(7) = (— 0By 4 2t |7) 01 (7) = o2+ 14 2) (7). 3

wherew is the oscillator frequency arid= +/h/(mw) the oscillator length with the mass of the
particle. HereY},,,(p) are the spherical harmonics and the radial functions arkcékpgiven by

Ru(r) = N ot e 712 LETD(2) (3.5)

n

with the generalised Laguerre polynomiél%“/ 2 and the normalisation factor

(norm) (2n)!120+2
e \/(2(n I ERIN (3.6)

A possible basis describing the internal dynamics of Akparticle system in Jacobi coordinates
simply consists of the product 61 — 1) oscillator functions in the Jacobi coordinaé@ = 5;/b:

{(X)Rn” Wi, (30} (3.7)

However, an additional conservation law can be exploitéaceSonly problems with central poten-
tials are addressed, the total angular momentum is corcserence, it is worthwhile to work in a
basis of coupled spherical harmonics which are eigenfanstof the total angular momentum
The quantum theory of angular momenta is described in datf#ll]. The expansion coefficients
for the coupling are generically given by the Clebsch-GomzefficientsC/") -

[Yll(‘§1)®Y12(‘§ ) M=mi+ms Z Cl1m1l2m2 l1m1( )Yl2m2(52)~ (3-8)

mi,ma

The basis with the uncoupled spherical harmonics | shdltleal)/-scheme, because the product
functions are eigenfunctions of the projecti(fgyswith the quantum numberg;. In contrast, the
coupled spherical harmonics belong to the so-callestheme, because the total angular momen-
tum is a conserved quantum number and this is often calledn this case, the basis is given

by
{F (R 5V (31) © Rty (587)Y2,(32)]) ™ © Ry (s§)V2u (39)]) "2 @ - ] - (39)

Since the angular momentum operafo'rs a generator of a symmetry transformation (rotations),
the matrix elements are independent\df Therefore, this quantum number is suppressed in the
following.

This basis is the general basis for a physical systerd distinguishable particles. In the case
of A identical bosons, the basis has to be symmetric under pationg of the constituents. In
single particle coordinates the construction of a symrmdiasis is trivial, but in the/-scheme in
Jacobi coordinates it is more involved. The symmetric biasithe model space can be constructed
iteratively starting from the symmetric basis for two pelgs. In the next sectia®i1.1this approach

is outlined, see alsd p] and [62]. Based on this, the Hamiltonian matrix elements can be tatied

as outlined in sectio.1.3 In order to illustrate the procedure, the prescriptionkistshed in
section3.1.4as a flow diagram.
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3.1.1 Symmetric Basis

=b)
nlm( 1 )
for the two-body sector. For this purpose | define the opet = (1 + T},) with the transposi-
tion 7}, between body andk. This operator maps a two-body stateo a unnormalised, symmetric

The iterative procedure starts with the construction ofarnralised symmetric state@

stateg(®. Thus, one has for two particles

0 for [ odd, =
P(2) nim ") = @Pnim ) + nim __(b) = ) .
Grim(51) = Gum(51") + nim(—51") 26mm(3?) for i even,” = 6@,,,.(5")
(3.10)
Thus, an orthonormal basis for two particles with multiérd (= nim) is given by
— 1_
0D (5") = 5 0P, (5") = dum(3)") for L even. (3.12)

In the next step, from the orthonormal two-body states thgukm-momentum coupled mixed-
symmetric three-body states are constructed as

le(\/?%(aﬂ n, l? L) = [ﬁa ® (bnl]L . (312)

Analogous toP® for A = 2, a map on the symmetric, unnormaliséeparticle states is given by
the operator

PW = (14 TlA ++Ta 1)A)P(A71) 5 (3.13)

1+ZT(A niTa1yaTia1y + Ta_1ya) PAY (3.14)

With P it is possible to calculate the transformation matti, /" from mixed-symmetric
A-body states to (unnormalised) symmetAebody states. Its matrix elements are given by the
scalar product

Co AL o, by, L] = ([0 © Gy [[6@.]) (3.15)
with multi-indicesa’ and = denoting the mixed-symmetrid-body state[¢(4-1 , ® d)nélé}y and
the symmetricd-body states(1) _, respectively. This can be written as

C(A71)~>A

RPN A ] I
sym [27a>n27l27L]

= ([0 @ du]) " [P [6AT,, @ ] ) (3.16)
— ([0 0 ® Gy ] [(1+ (A = )Tia 1)) | [6A D, ® 6] ™), (3.27)

wherez = {«a, no, Iy, L}.

Our goal is to construct an orthonormal basis of symmetrizody states)(4) . It is achieved by
diagonalisation of the non-negative definite symmetrigmaoratrix
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This yields the diagonal matrik of non-negative eigenvalues:
D=0-N-0". (3.19)

Vanishing eigenvalues do not correspond to linearly inddpat symmetric states and correspond-
ing eigenstates are eliminated. Thus, we find a (non-squere$formation matrixBsym from
mixed-symmetricA-body states to orthonormal symmetric states:

1
B(A_l)_}A[w;alvn/%l/QvL/} = —O[.]a Z]C(A_l)%A[Z;O/,TL&J&,L/] ) (320)

sym D[w;j] sym
where a sum ovef and z with non-vanishingD(w; j) is implied. Accordingly, the orthonormal
basis of symmetric states is given by

‘Ww>: Béfm_l)—}A[wa a, Mg, l2a LH [gb(A_l)a ® ¢n212} L> : (321)

In this way the orthonormal, symmetric states can be fowardiitvely. However, the determination
of the matrix elements in equatio8.(17) is not trivial, see in the next secti@l.2

3.1.2 Explicit calculation of C{1--1) =4

The explicit calculation oCS(fnTl)*A involves a Talmi-Moshinsky transformatio3] and a change
in the coupling schemesll]. Equation 8.17) for (A — 1) — A can be rewritten with the known

transformationBSm 2 74" as

C(A_ 1)—A

RN AN TR R
sym [Oé,n27l27L,OZ 7n2al27L] -

B 27U Vo, 1, b, La) Bl 27UVl y/ 0l 1, L]
L'Y

<[[¢<Af2>f§/ @ b 1] ® by ]| (1 4+ (A = DTiay )| [0, @ ] ™ @ Gia] ™) -
(3.22)

In order to calculate matrix elements of the operafor ), a transformation from the standard

Jacobi coordinategffl’)_2 andéﬁf)_1 to new coordinate and/i is performed (see Figui@1). It is
an orthogonal transformatidk® — R° defined by

— A—-2 o A b
(—)\) B \/2(A—1) \/2(.4—1) . (5(2_2)> (3.23)
i) A A—2 b) ‘ :
a \/ \/ 2 S(a-1)

2(A—1) (A=)

In the new coordinates, the operaiQi )4 is diagonal and its matrix elements can be determined
easily. In particular, the action df 414 on qﬁnm(X) is just the multiplication with the factor

(1P

First, however, the transformations of the coupled odoitlfunctions must be determined. For
this purpose, the coupling scheme is changed by means oférégsj symbols $1]. Following
this, the Talmi-Moshinsky transformation is exploited lre thew coupling scheme. Details about
Talmi-Moshinsky transformations are summarised in appeBd
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o0 O oo O
o0 o e oo \
oA A
Figure 3.1: Talmi transformation from coordlnatég 0 and”(b) 5 O coordinates\ and/i.

Finally, the transformation can be written as

— L b La b "
[[gb(f‘ 2, @ by (58_2))] ® ¢n212(§§,4)_1)>} B

S (B L 1) L+ 1) 4 b b ke
l2 L Lo

L2

Ix 2 L2 L
Z(—1> <nAlA,nulu;L12‘n1l1,n2l2>ﬁ [Qb(A 2" @ [dnaiy (N) @ G, (/)] ] . (3.24)
Ixomy

Ly

with the Brody-Moshinsky brackel(snlx, Nyl ng\nlll, n2l2>i. The transformation is stored
A—2
in the matrix with elements

M(m) [04,7 77,/2, ll27 L; Y5 TN l/\a Ty, lua L12] =
- L
<[¢<A—2>§” ® [Py, @ %;H}L”} 1[04 @ duy]”) . (3.25)

In this way an orthonormal, symmetric bagis!) can be constructed in thescheme with Jacobi
coordinates. In shell models, the next step is to truncaddsis and to determine all elements of
the Hamiltonian in this finite basis.

3.1.3 Model Space and Elements of the Hamiltonian

Since solutions in the full Hilbert space are not accessibgeneral, a subspace, the model space
is built. Here, the Hilbert space is restricted with the duparameterN to the model space
consisting of the linear hull of oscillator stat@@f;ll qﬁnilimi(éﬁb))} with the energy eigenvalues
ZA Y hw(2n; + 1 + %) < hw(N + (A —1)3) for the unperturbed harmonic oscillator. Because the
energy eigenvalues are independent%f it does not matter, whether coupled or uncoupled wave
functions are considered. Both model spaces are identidato@se, only symmetric states are
considered for identical bosons.

In the model space the matrix elements for the Hamiltoniaraquired. The Hamiltonian in
equation B8.1) can be written in Jacobi coordinates without the centrezags contribution as

hS

-1

A A
H = m(—%As@ + %\gﬁb)f) +> Vi Y Wi (3.26)

i=1 i<j i<j<k
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Successively, | derive the elements of the Hamiltonianterthree different terms in the symmetric
basis stategp(4),).

The first term, the sum over the harmonic oscillator contrdy is trivial. The basis statb@u)

is by construction (see sectidl.]) a linear combination of coupled oscillator functions i th
Jacobi coordinates with the same total angular momentuntaiabenergy, since the recoupling
and the Talmi-Moshinsky transformation conserve both turamumbers. Each basis staté?) )
has a definite total angular momentum and energy expressed By,. Accordingly

A-1
<WUJIZFM(—%AS@ n %lggb)|2>|ww,> = 0r1, OnyN, (Nuw+ (A—=1)3/2)hw . (3.27)
i=1

In order to calculate the second term, one has to realisathi#rms in the sum over pairs yield

the same contribution for a symmetric state. Hence, onlgtmribution of a smgle pair potential
must be determined which is then multiplied by the numbequf(N) = MO0,

My construction of the symmetric states suggests that tkengial contribution of the pair
Via—ya(|Za—1y — Tal)

is suited to determine this contribution. As shown in Fig8r& the distanc€z(4_1) — #4| iS
proportional to|X| and one has for the potential

Viacya(|Zazny — Za]) = V(Aq)A(\/?’X’) : (3.28)
With the help of the matrixBé;,“nTl)_”4 and the transformation in equatio8.24), the symmetric

state¢(4) | can be expanded in wave functions depending @nd 7. In these wave functions, the
potential is diagonal in all quantum numbers apart frograndl,. Thus, the problem reduces to
the determination of

(Gnain | Via—nya| b ) - (3.29)
The corresponding integral has to be calculated for thei@kpbtentials to be considered.

The calculation of the three-body interactions is more Ived. Again, only the interaction for a
specific triplet in the sum must be calculated explicitly dhd result of the whole sum follows
by combinatorics. The number of triplets is given ﬁ\fﬁ/) = w As for the two-body
potentials, the construction of the symmetric states sstggeonsidering a particular three-body
contribution. Because the form of the wave function as a fanabf X is known, the potential
contributionW 4 _2)a—1)a is a good choice. Howevel 4_2)4-1)4 iS not only a function in\ and

i, but of X and a combination gf ands(,_s. Therefore, a further Talmi-Moshinsky transformation
from the coordinates, fi and 5 4_3) to the coordinates, # and 7 as depicted in Figur8.2is
performed. Of course, this implies further angular momemteicouplings with Wigner-6j symbols.

The corresponding orthogonal coordinate transformasajiven by

. A _[2(A-3) .
(1/) _ \/3(A—2) \/3(A—2) _ (S(A3)> ' (3.30)

R \/ 2(A-3) \/ A —fi
3(A—2) 3(A-2)
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3 4 A-3 4.1 A

Figure 3.2: Talmi transformation from coordinats_s, and;i to coordinates’ and<

The transformation is stored in the matrix

=

123 /A . o
( )[CY y Mo, 2aLv’YanV7lu>nnalﬁan)\al)\aL/\mLIZS] -

<[—¢<A—3)j” & [Snt, @ (Dt @ St ] ' [0, @ 6] ") - (331)

In the new coordinates the three-body Interactiof 4—1)(4—2) is diagonal in all quantum numbers
apart fromn,, [, n., .. Thus, the matrix elements depend only on the three-bodyystem and
the following matrix elements has to be calculated with tkgieit form of the interaction:

{[Pny1y ® an,{lﬁ]L‘WA(Afl)(Af?)‘ [Py ® ¢n;l;]L> (3.32)

3.1.4 Numerical Approach

In this section I illustrate the structure of my algorithnr fbe /-scheme shell model. Figu@3
shows a schematic flow diagram, which emphasises the imyqténts.

Construction off and Diagonalisation Construction of Symmetric Basis and Transformation Matrices
Start

~ 4 _5 Generate Basi$,(v|’4s">
2-body ME "

Useg(Ar—1)

- o
B VA | —= ME o2, Vis “% i £ Y Generate\/ (12)

MO Generatei‘s(ﬂ_l)_m" i
y S ,
e Generatel/ (123)
3-body ME
— MEOsz‘jk W’ij ‘

A—-1)—A
Bs(ym ) falsey
A7(123) -
GenerataBs(;?{ DAy
Diagonalise H L A, =A-+1
- End

Figure 3.3: Schematic flow diagram for thiescheme algorithm. Note that, the construction of the
symmetric basis and transformation matridg¢§ and /(2% need to be done for each cutdff
only once.
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Notably, the algorithm can be split into two parts. The firsttpthe construction of the symmetric
basis with matrixBSm '~ and transformation matrice’ 12 and/(123), needs to be calculated

for a fixed cutoff N only once. For each specific interaction they can be reustittisecond part.

In the first part the symmetric basis is iteratively detemulimising the approach described in sec-
tion 3.1.1 At the beginning, the mixed-symmetric staﬁgﬁs are generated from the known sym-
metric statesp(4-—1) in equation 8.21). Afterwards, the matriﬂéfnﬁ_l)*“’“) is constructed by
using the procedure presented in secBoh2 In the last iteration cycle, the transformation ma-
trices M (2 and M (1?3 are stored, because they are required to determine the reemiethe
Hamiltonian (ME). With equation3(20 the matrixB&m "~ is calculated.

In the second part the contributions of the two-body andetfiredy interaction in the ME’s of the
HamiltonianH can be calculated as outlined in sect®t.3 For this purpose, one needs the two-
body ME'’s in equation3.29), the matrixBim ", and the matrixi/(12) or the three-body ME's

in equation 8.32 and M/ (1?3, respectively. The final step is the numerical diagonatisabf 4

which yields as a result the binding energies for a givenftuto

3.2 M-Scheme Shell Model in One-Particle Coordinates

An alternative approach is to construct the basis from tledlator functions, given in equation
(3.2, in one-particle coordinates. Thus here, the centre-adsrdynamics is not separated. The
A-boson system is really treated as Aparticle system and all excitations of the centre-of-mass
are included.

Moreover, product states of single particle functions witbjection quantum numben, are used
instead of the coupled angular momenta and total angularentamm L. Accordingly, this kind of
basis is called/-Scheme. As a consequence, it is not possible to calculatnirgy spectrum for
a fixed L, but one determines automatically the energies for alliptesé values for a fixedV/. In
the following subsections, the construction of the symiodiasis and the determination of matrix
elements are outlined.

3.2.1 Symmetric Basis

The A-body sector of identical bosons is described in one-gartoordinates byA oscillator
functions with quantum numbers [, andm, which are symmetric under permutation of bosons.
For brevity, the quantum numbers are collected in a muttekx; = n,, [;, m;. Furthermore, an
order of these multi-indices is defined by

A generally non-symmetriel-body oscillator state is simply given by the tensor prochfabne-
particle oscillator states:

|/<1,/12,...,/~f,4>£ |%1>®‘52>®...®}/{A> ) (3.34)



32 Chapter 3. Shell-Model Approach

Note that these states mean oscillator functions with lasoil lengthb = 1 corresponding to
dimensionless coordinatés/b. The projectorS*) on anA-body symmetric state is defined by

1 .
S = T P (3.35)

gESA

whereg is a permutation of the symmetric grosp defined as

(Af‘lﬁ, Ro, ..., I€A>I= ‘Iia(l),lig(g), sy ’fa(A)> . (336)

Normalised states are then given by

Al 1/2
}/‘Ql,/ig,...,/ﬁ]A): (W) S(A)’K)l,lﬁg,...7/€A> s (337)

with the occupation numbers of the one-particle stateNote that amnA-boson state is completely
characterised by the’s in arbitrary order. The symmetric state is described uelg with the
requirement

Iilgligg...<I{A. (338)

Furthermore, thed-boson state is also uniquely specified by the occupationbeusn,, of each
single particle stat{n). Consequently, the many-body stMe) can be denoted in (at least) two
different, but equivalent, ways

|1)= |k1, Koy oo Ba)= [na,no, o ) (3.39)

with the assumption that different one-particle states exist and thatr,< ... <k 4. In order to
represent am-body state in numerical calculations, the former repregem is more appropriate
sinceA<m (see sectiol.2.3.

Thus, in theM -scheme in one-particle coordinates the construction winsgtric states are trivial
because the action of the projectir!) is obvious.

3.2.2 Model Space and Matrix Elements of

Apart from the centre-of-mass excitation | shall define thoeelel space for the shell-model calcu-
lations in the same manner as for thiescheme in Jacobi coordinates. With = (2n; + [;) the
model space is defined as the linear hull of st@ws@, ce /sA) with the restriction

A
Y N, <N, (3.40)
=1

where N is the cutoff parameter.

In order to calculate the contribution of the three termshi@ Hamiltonian in equation3(1), it
is advantageous to rewrite these terms with creation anthitation operatorsz! and a,, (see
e.g. p4]); accordingly for the states we have:

aunl,nQ, Ny, . .,nm) =Vng+1 |n1,n2, e (ng +1),.. .,nm) , (3.41)
aa‘nl,nQ, Ny, .,nm) = /Mo ‘nl,ng,..., (N — 1),...,nm) . (3.42)
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With the definitions
A 1 1 A A
(1 _ =) |2 @ _ Ny (3) _ ;
Vy —;hw(iAxgw +51EF) . Vi _;v,], vy _K;kwwk, (3.43)

the terms of the Hamiltonian can be expressed in the ocaupatimber formalism as:

1 1
Vf)’nl, .. .,nm) = Z<O/|h&)(§Ax(b) + 5‘@(1))‘2) ‘a>aL,aa|n1, Na, ..., nm) , (3.44)
Vf§2)|n1, o ,nm) = % Z <a’ﬁ"v‘aﬁ>a2,ag,aaa5‘nl, No, ... ,nm) , (3.45)
BB ac!
1
V1§3)|n1, M) = 6 Z Z <o//3’7"W|a67>al,a2,a;aaa5aw|n1, No,...,Ny) .  (3.46)
afy o' By

In this new notation it is clear that a many-body matrix elatrier the one-body, two-body or three-
body operators can only be non-zero if initial and final Satéfer in the quantum numbers of at
most one, two, or three one-particle states, respectividiys, a new abbreviation is introduced:
e.g. the staté(/ — af; /') denotes the many-body statg), where a one-particle state is
substituted by’ and g by 4’. In the next three paragraphs, the calculation of the maalyb
matrix elements for these three operators are explaineetaild

Many-Body Matrix Elements for the One-Body Operators: In this paragraph, | specify the
many-body matrix elements for the harmonic oscillator ®rfrom equation3.44) it follows that

(T = ) ViO11) = S (g + 3|20 )a) (1 = swlabadl D). (347)

a,af

= 6, hw (N, + A g) n, . (3.48)

Many-Body Matrix Elements for the Two-Body Operators: With equation 8.45 a similar
relation for the two-body operators can be derived:

(1 - aﬁ;75)|Vf§2)|1) :% Z<uu‘V‘po> (1 - aﬁ;v&)}a;&ala/,aa‘]) : (3.49)
1 1
=— 2—0,,)(2— 0,0 )~

2;;( w2 = 8p0)7 s

(v + vp)|V|(po + op)) (I — ap;~0)|alalayas| 1)

The one-patrticle states jm) are sorted in ascending order. For the purpose of presethismgrder,
it is required thaty < 8 andy < 6. Therefore the last term in the suft — a8;~4)|al,ala,a.|1)
does not vanish only it = p, § = o,y = 1, andd = v. The term only depends on the occupation
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numbers and one has for the factors e. g.

(I — aB;~o) ’a a(saaag}[) \/(n7 + 1)(ns + D)nang , (3.51)
( — aa;’y5)‘aTa5aaaa}I) = \/n,yn(;(na — ng , (3.52)
( — af;ad) |a a(;aaaﬁ}l) nar/ (ns + 1)ng , (3.53)
(( — oo oo |aT Taaaa}[) = (Mo — DNy . (3.54)

For the calculation of the two-body matrix elements it ismetessary to calculate and store all four
combinations, but it can be simplified with symmetric twadpestates. For symmetric two-body
states i) with /i < i it follows that

{(pv + V/L)‘V‘(p(f +op)) = 42 Z<,uy‘ ’ﬂﬂ) ([L17|V|,56) (ﬁ&”pa> : (3.55)

A<p <

Therefore, only the matrix elemen(ﬁﬁ\v\ﬁc}) have to be precalculated and stored. In my im-
plementation, | do not store the two-body matrix elementsria-particle coordinates, but | save

memory and store them in Jacobi coordinates. Hence, a Tdbmshinsky transformation is neces-

sary "on-the-fly” to transform the matrix elements in thegsgparticle basis.

Many-Body Matrix Elements for the Three-Body Operators: Similarly, the many-body ma-
trix elements of the three-body operators in equat®A§) can be expressed as

(1 — apy;den)|[Vi7|1)

:éZZ<uup|W’am’> ((1- aﬁ*y,éer)}a ala;aaaRaT’]) : (3.56)
Hvp OKT
:_Z Z + Oup) + 15 0 )(1—1(5 ) )+l5 Srr)
“V wp 6 v P 9N TOR K, T G o T

p<v<po<k<Tt
< pwrp +vup + prp 4 ppv 4+ puv + vpp |W‘ OKT + KOT + TKO + 0TK + TOK + /‘67’0)>
( — afv; der) ‘aL ,T/ LagaHaT|I) :

(3.57)

Instead of calculating all 36 combinations of three-bodyrma@&lements, only the matrix elements
of symmetric three-body stat¢&ﬁ,5) with i < 7 < p have to be considered:

<(/U/p +vup + prp 4+ ppv + pur + Vpu)’W| (0KT + KOT + ThO + 0TK + TOK + /WJ)>
=36 > (uvp||iwp) (avp|W|6i7) (577||orT) . (3.58)

Consequently, | store only the matrix elements of symmetned-body stateéﬂﬁﬁ\wa%%).
Again, they are stored in Jacobi-coordinates with couptegliar momenta in order to save mem-
ory. Accordingly Talmi-Moshinsky transformations will lbequired "on-the-fly”.
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3.2.2.1 Shift of Centre-of-Mass Excitations

We are interested in the internal excitation energies afldody system inside a harmonic oscil-
lator potential with two- and three-body forces. Thus, guesexcitations of the centre-of-mass
in this sense are spurious. In order to identify and elina@re@ntre-of-mass excitations in the en-
ergy spectrum the spurious excitations are energetichiftes with an additional centre-of-mass
potentialh,, (see e.g. van Hees et ab4]) containing the operator
. ‘ﬁ‘Q 1 2| 3|2
Hew = 5o r + 5 Mw?|R[” (3.59)

whereM := Am, R :=1/AY % andP = 2| ;. The additional potential is defined by
he = —Heyw + o <Hc|\/| — ;h&)) , o c R , (360)

and due to the vanishing commutafdf, h,] = 0 the eigenenergies,, of the operator
H,:=H+ h, (3.61)
read
E, = [E— (N +3/2hw)] + [aNhw]|, NeN. (3.62)

The term(E — (N + 3/2hw) is the value of the internal energy eigenvalue without thereeof-
mass energy. All states with excited centre-of-mass aeghifted by the value N hw.

At the end, the new HamiltoniaH,, can be rewritten in single-particle coordinates with treute

3 (P 1
Ha = —5047%) + (IZ (% + §mw2 |fz|2)

=1

(cx

A A
~1n [ 1 1
1 ) %E 7= I+ gme® D 1E — 3 + VP +v® | (3.63)

4,j=1 ij=1
1<J 1<)

| shall use Jacobi coordinates in order to determine theli@ay part of the centre-of-mass oscil-
lator potential. Note the factarin the relation

|7 — ) =25 . (3.64)

3.2.3 Numerical Procedure

In this section, | sketch the basics of the algorithm for gatieg the non-zero many-body matrix
elements in thel/-scheme. Furthermore, | indicate some prescriptions ieraim accelerate the
procedure. Figur8.4shows a schematic overview of the procedure.

At first, the basis for the model space is generated. Eacls bastor is stored as an array 4f
ascending entries; and these are numbered consecutively. In order to find th&ilsotions of
Vf) andvf), the basic idea is to loop over all initial state§ in the basis and to find all possible
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Construction ofif and Diagonalisation

Generate Basi% \I)}
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I=1,...,Imax

Hash table J
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Figure 3.4: Schematic flow diagrom for the M-scheme algarith

final states}F) that can be reached by two-body or three-body jumps, respsctExplicitly, only
the procedure for two-body potentials will be outlined.

In order to determine all matrix elements, the outer loopvisrall initial many-body state[s[).

With a loop over all pairs of particle indicegfq, each pair of one-particle states:; is selected
once and can be removed. Subsequently, all possible new glone-particle states;s; are
generated at this position. In this manner, the same fintd stacreated several times and the
final state|(] — KiKj); /Bzﬂj) does not have the required property of ascending one-|eairtidexes

in general. This can be dealt with by sorting the states. Thatisn of the former problem is
explained below. In the next step, the precomputed two-Ipoalyix elements in Jacobi-coordinates
are read in and transformed to single-particle coordinattts Talmi-Moshinsky transformations.
Afterwards, one has to map the constructed final state tonithexiin the many-body basis. For
this step, hash tables are crucial. At the end, one has agécuibll matrix element§F| V> |1).

In similar way, the three-body elements can be found andebaired Hamiltoniar‘(F\H\I IS
determined. The final step is the diagonalisation of the Htaman.

Loop Over Permitted Final States: There are several constraints for the substitution of pairs
rir; which must be considered. Because of the ascending orderng-bwly states, only pairs
with g; < j3; are relevant. Furthermore, the potentials conserve tla¢ povjectionM (k;x;) =

(., +m,,;) and the parityI(x;r;) = (1., + 1., mod2) in the two-body system. Thus the selection
rulesM (8;8;) = M(k;x;) andll(k;x;) = I1(3;5;) apply. At the end, only final states inside the
model space, defined by the cutdff, are allowed to be generated. Therefore, the total energy of
the initial stateV; minus the energy of the pal, (rir;) 1= (2(nx, +7k;) +1x, +1i;) PIUSNo (5 535)

must not be greater thas.

Loop Over Unique Final States: In order to guarantee that each permitted final state is extiu
exactly once, | choose the following procedure: The outepls over: and the inner loop over
J > i. Atfirst j =i+ 1, i.e. the pairs;x;41) is selected and substituted by all permitted pairs
BiBi+1)- Subsequently; is increased as long < A. Note that the increment depends on the
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occupation numbers. For instance, for the initial state

i
|I): ‘Iih...,%/,}Y,...,7,575,...75,6,6,...,6,...,/@4) (3.65)
Ty ns Ne

j is increased with the incremefit, — 1). Otherwise, a paityy is substituted a second time and
the same final states would be generated. Now, theypas changed into all allowed pair$5;.
Afterwards, j is increased with the increment and so on. Ifj > A, i is increased with the
incrementr., andj is again(i + 1) and so on.

3.3 Comparison of both Shell Models

In the last two sections | have introduced two different shreddel approaches, the-scheme and
J-scheme, to treat thd-boson system with two- and three-body interactions. Ia #gction the
merits and drawbacks are summarised.

To start with, the number of many-body states in fiiescheme and thé-scheme approach are
compared. Due to separation of the centre-of-mass andigrglof total-angular momentum con-
servation the number of relevant many-body states is muetienin the.J-scheme. In Figur8.5
the number of states with total angular momentum and pdfity= 0" or total angular momentum
projection and parity\/” = 0" are shown in dependence of the cutoff paramatefior various
A-body systems logarithmically. There are several ordemhagnitude more basis states in the
M-scheme for the same cutoff parameter. Thus, the most alebtask in the two schemes is
different. In the)M/ -scheme the most time-consuming part is the diagonalsafithe many-body
Hamiltonian. For example for twelve particles2(000 x 120000)-matrix is to be diagonalised
just for the cutoff paramete¥ = 14 in contrast to a500 x 4500-matrix in the.J-scheme.

108 : :
0 3 bosons +
) 4 bosons  x .
8 5 bosons o
o 106 || 12bosons - O
2 y E
fU O * * +
o] v X n
Y= X * *
S 104 % . + . ¥
Q % n a] ¥
-g A

¥
S + o - . +
< 102 FoY . + - N )
10 15 20 25

N

Figure 3.5: Number of many-body basis states versus théf patameterN. Different point types
differentiate the number of bosons. Green points corresporthe J-scheme basis-states with
JP = 0% and red points to tha/” = 0 states for thel/-scheme.

For theJ-scheme the most time-consuming task is the iterative nactgin of the symmetric basis
and of the corresponding transformation matrices (seer&@3). The scaling behaviour of the
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runtime of this first part in the algorithm is depicted vershis cutoff parameteNV for various
A-boson systems in Figu@6. More interesting than the absolute runtime (which depemdhe
hardware) is the scaling behaviour reflected in the scogeealduble logarithmic plot. As expected
the scope is increasing with due to the higher complexity of the problem. Thus, an enhaec¢

in V. would result in a massive larger runtime for latgoson systems. The runtime of the second
part of the algorithm is added as filled dots. Remarkably, tbpas are similar to the corresponding
first parts but the absolute runtime is smaller by an orderagmitude.

" / 1hazs

2 I G0
T J1)] [l A=T
> 4 = A=8
I [ /I A=9 o
s I /
£ 12 [/ A
2 14t . .
012 1/8

1/24 + :

1/48 | ¢

10 20 30 40 50

N

Figure 3.6: Runtime of the algorithm for the constructionre symmetric basis with total angular
momentum and parity” = 0% versus the cutoff parametai for variousA. The filled dots without
linear fit mark the runtime for the rest of the algorithm irdilug construction of the Hamiltonian
and its diagonalisation.

From this the most eminent advantage of thecheme in comparison to the-scheme follows.
As illustrated in Figure8.3 the J-scheme algorithm can be split. The most elaborate firstipart
independent of the specific two- and three-body interadiwhthe coupling constant. Hence, the
first part must be calculated for gives and A only once. Its results, the symmetric basis and
the transformation matrices, are stored and reused foreibensl part. Therefore, thé-scheme

is definitely the favourable prescription to treat and asalgpecific interactions globally, i.e. with
several coupling constants combinations, for severallasmi lengths etc.

The benchmarking of these two schemes for a single comyplspelcified interaction is not clear.
The advantage of th&/-scheme is that the most time-consuming problem is a steratablem
which is highly parallelisable. Owing to the size and therspass of the huge symmetric matrix
in the M-scheme it is possible to find some extreme eigenvalues wigfoiX subspace methods
in combination with QR-decompositio§], e.g. Lanczos procedures. There are a multitude of
implemented and optimised routines which are offered algarallelised versions in the message-
passing-interface (MPI) standard, e.g. ARPACK or BLZPACK.

The results in the following sections are produced in.fhkgcheme, since several interactions and
the dependence on some parameters are investigated. @wihsisome/-scheme results were
compared with//-scheme results and they were found to numerically coinatdeast to eight
decimal places.



Chapter 4

Few Bosons in Traps

In this section, | consider a system of bosons confined by adwic oscillator potential (HOP) in
the scaling limit. The two- and three-body systems whichutligd in my diploma thesislp] are
cited for completeness. Other results are partially pbbtisin [67] and [62)].

4.1 Framework in the Scaling Limit

Within the shell-model approach, the eigenvalues of the iHanman of equation .26 are deter-
mined for contact interactions (3”) = ¢@§® (&) and W (3?, 5) = ¢@5®)(552)5@ (50
with Jacobi coordinatesﬁb) = §;/b (see appendiA). As mentioned before, the model space is
restricted with a cutoffV and the coupling constantg® and ¢'® are renormalised to specific
observables. My strategy follows Stetcu et &8f70] where an effective theory for short-range
nuclear forces in the framework of the no-core shell moded feamulated. The cutofiV is iden-
tified with a high energy (ultraviolet) cutoff of the effeati theory: Usually a momentum cutoff

is defined in effective theories to regularise the integgaladion and one finds a linear dependence
of observables om/A in first order of the theory. Because of the relatipnc /' E between mo-
mentump and energy, one expects errors for the binding energies for systentsaeinfinement
of the orderl /\/N + (A — 1)3/2. Here(A — 1)3/2 is the zero-point energy of the internal motion
in HOP.

In contrast to the momentum cutoffused in free space, the regulatéralso implies an infrared
cutoff. In the literature there are two definitions of the I&aff for an oscillator basis. Both the
expressions/ /N + (A — 1)3/2 [71,72], which quantifies the maximum size of structures that
can be captured in the given basis, or alternatively thellatmi length 5 itself [73] have been
interpreted as an IR-cutoff. In my calculations, the harroascillator represents a physical trap
and thusg is a physical parameter. The trap acts like a finite box thafiges the system. In this
case, only the first definition seems appropriate and | exgreats of orderl /\/N + (A — 1)3/2
due to the infrared cutoff. These errors have the same gdadihaviour withV as the errors from
the ultraviolet cutoff and vanish fa¥ — oc.

39
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Matrix Elements of V and W: The matrix elements of the two-body potenti&dswith the
harmonic oscillator wave functiomsllm(ib)) = <§(1b)|nlm> are given by

<nlm’V|n’l’m’> = 9(2)¢n00(0)¢n/00(0> 5170 (5[/7[) (Sm,g 5m’,0 . (41)
Analogously, the matrix elements of the three-body intéoadl” are given by
{(nily, nalo; LM|V i1y, nyly; I'M') =
@ 611,00(0) 9500 (0)Hn200(0) D00 (0) 01y 0 81,0 .0 G130 01,0 010 s darrg , (4.2)
where the three-body wave function is defined by

[Snstim: (5) @ bugiamy ()] 7, = (37, 57| naly, naly; LM . (4.3)

The value of oscillator functions at the origin is non-véunig for/ = 0 only and is given by
1 [ Tm+%) "7 /@n+1Dm\"?
ol = 0) = = (gt D - (Gl (4.4)
/AT (n+1) m3/2nl 2n

Renormalisation of g?: The coupling constani’® has to be renormalised by an observable
in the two-body sector such as a given energy |évél or alternatively the scattering length
The relation betweep® and E®? for a given cutoff N can be found analytically by exploiting
the separability of the interaction. With the definitign := ¢,,00(0), the matrix elements in the
two-body sector fof = 0 are given by

n ‘H(z)‘n/> = hw <2n + ;) O + g(Q)fnfn, ) (4.5)

In the model space correspondingAQ the solution| ;) of the eigenvalue problem with the
eigenvalueZ® is expanded in oscillator functions

N/2

[ Vg )= Z E(2)|n>. (4.6)

n=0
Applying the Hamiltonian to Eq4(6) and projecting on the oscillator stdﬁe>, one obtains

N/2

&) E@)
(2k¢+ ) E® +Zg Fufuc?? = — = FY (4.7)

Solving fOI’cE( " and reinserting the result in E@L.{), one finds the running of the coupling con-

stantg® (N )Wlth N:

N/2

ho fn
gO(N) ; o+ 2 — BE®(hw) (4.8)

For givenN the two-body spectrum can easily be calculated by diageet@din. As an example,
Figure 4.1 shows the result if one uses the ground state binding enﬁfdyas renormalisation
energy: hereEéZ) = —1 hw. The dots at position refer to the exact result determined by equa-
tion (2.40. The corresponding scattering lengthuise 1.046 b with the oscillator lengttb. It is
clear from this figure, that the model-space results for #o#ted states approach the exact values
in the limit N — oco. Note that the ground state energy is constant by constructi
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Figure 4.1: Energy spectrum for two bosons in a harmonic nenfent in the scaling limit with
angular momentum = 0 and renormalisation energy?) = EéQ) = (—1) ;lw. The dots refer to
the exact results determined by equati2rt().

Renormalisation of g(: As for ¢(®, the three-body coupling constagt’) has to be renor-
malised for eachV characterising the model space. The three-body couplingtantg® can
be fixed by an energy of the three-body systBfY. Again, the separability of the interaction is
exploited for the explicit renormalisation: Let the sodluti]aN> for the three-body system in the
model space without the three-body interactibrfor some value ofV be given by the expansion
in harmonic oscillator basis states as

‘aN>: Z ZN (O-/N;nlllaanQ,L) ‘n1l17n2l27L> s (49)

nili,nala,L

with coefficientsZy (an;nily, nale, L). The corresponding energy eigenvalues are denoted by
Dy (ay). Note that the eigenstates are degenerate in the totalangoimentum projectiofi/.

With these states, | calculate the matrix elements for tingpdete Hamiltonian including the three-
body interaction

<OZN ‘H(S) ‘ Oé§V> = DN(O[N) 50{N7QIN

+ g<3><N>(Z Zn (an; 110,150, 0) fo, fn2> (Z Zn (3 740,250, 0) four fo ) . (4.10)

ni,n2 nfnl

Requiring the energy of the stdteN> to be £ for given N, the renormalisation condition for the
three-body coupling follows:

2
( Z ZN (aN;nlOvn?OvO) fmfnz)

ni,n2

1
PR Dv(an) — 50

aN

(4.11)

Note that the expansion coefficierfs; (ay;n10,n20,0) as well as the eigenvaludsy (ay) ex-
plicitly depend onVN. The full spectrum in a model space for giv&ncan then be determined with
these coupling constants by diagonalisation of the Hamdato matrix. The general strategy for
calculating the Hamiltonian matrix for a systemidentical bosons was described in cha@er
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4.2 Energy Spectra in the Scaling Limit

After the renormalisation of the coupling constants, itasgible to calculate the energy spectra of
the A-body sector for various cutoff¥. In this section results up td = 7 are presented.

4.2.1 Three-Body Sector

To start with, | compare the model-space results in the thogly sector with the exact results in
the unitary limit described by equatiorz 41) and @.43.
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Figure 4.2: Energy spectrum for completely symmetric stafethree bosons in a harmonic trap
with total angular momentum and parify’ = 0* as a function ofV and exact analytical results
from [18] given atlim N — oo. Efimov-like states are indicated by squares, other states a
indicated by crosses.

In Fig. 4.2, | show the spectrum for positive parity and total angulanmeatum/Z = 0 as a func-

tion of the cutoff N < 70. For eachN the 3-body interaction was adjusted such that the 3-body
ground state has energy® = (—1) hw. As shown by Werner and Castifi§] and mentioned

in section2.3.2 there are two different types of states. On the one hantk #re states indepen-
dent of the three-body potentidll’ (crosses). On the other hand, there are states which depend o
V) (squares) and are called Efimov-like. These Efimov-likeestare the analogues in the trap
of the Efimov states without confinement. The exact resuésgaren atN — oo. Remarkably,

in the model space the non Efimov-like states are not conipligtéependent oil” and the cou-
pling constany®. The dependence is an artifact of the regularisation mettitidthe cutoff N.
Nevertheless, the dependence is in general much weakefathidne Efimov-like states.

For the non-Efimov-like states a linear extrapolation seapmsopriate forN — oo. The Efimov-
like states, however, show a definite curvature. In this,casgiadratic term has to be included in
the extrapolation. Typical extrapolation errors for Efirlike states are of ordexr — 3% and less
than1% for the other states.
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4.2.2 Four-Body Sector

| now turn to the system of four bosons with angular momentachgarity L = 0*. This system
is of high experimental interest and the behaviour of thenblostates in free space is well known
[74,75]. Figure4.3 shows the calculated spectrum in the unitary limit as a fonobf N again
for E®) = (—1) hw. For most of the states there is a stradglependence and an extrapolation

-4 ]

0 005 01 015 0.2 025 03 035 04
1/\/N+ (4 —1)3/2

Figure 4.3: Spectrum for symmetric™ states of four identical bosons in the unitary limit for
E®) = (—1) hw as a function ofV. The solid lines indicate the extrapolationo= cc.

prescription is essential. Efimov-like states are extrafigol with a quadratic polynomial with the
constraint that it has no extremum for positive argumentsné&of the extrapolations are shown
by the solid lines in Fig4.3. Since the exact results are not known, | estimate the wanéyt
from the extrapolation conservatively as being equal toethergy shift from the last calculated
value to the extrapolated value. This prescription showd gn upper bound on the extrapolation
uncertainty. Remarkably, with this procedure the estimatezgrtainty of the ground is very small
and the extrapolation of the ground state has a positiveestopontrast to all other extrapolations.
In section4.3.4.2 this issue will be revisited.

| am now in the position to study the structure of the threel fair-body spectra. In the original
Efimov plot, the three-body spectrum is studied for fixede¢Hpedy interactioi’ while the two-
body ground-state energy® or, equivalent, the scattering lengthis varied p, 13]. Since there

is no four-body interaction at leading order, this plot canelstended to the four-body system and
has been studied extensively in free spatgT5]. | will compare the spectra in the trap with the
free space results. In Fig.4, the extrapolated spectra of the symmetricfour-body states for
variouse® are shown by filled dots. The three-body interaction is fixgthle requirement, that the
three-body ground state lies Bt = (—1) hw in the unitary limit. Additionally, the three-body
Efimov-like states are shown as squares. The dotted lineslggwupper bound on the extrapolation
uncertainties for the lowest two four-body states. The éigixcited states are connected by dashed
lines to guide the eye. Their extrapolation error is similat not shown explicitly. The harmonic
confinement has a strong effect on the spectrum. Compareddafrace, it is no longer true that
two four-body states are related to each trimer state. M@mredhe levels appear to be mutually
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Figure 4.4: Extrapolated spectra of the symmetric 4-bodiest for various £? (circles) and
3-body Efimov-like states (squares). The 3-body interadsdixed such thaf®) = —1 7w in the
unitary limit £ = 0.5 iw. The dotted lines give the upper bound on the extrapolatior éor
the two lowest states. The dashed lines are guides to the eye.

perturbed: There are various avoided crossings of fouy-Btates, e.g. between the fourth and fifth
state around?® ~ 0 iw and possibly also between the second and third state. Thewsked level
crossings could be studied experimentally by varyi#ig) using Feshbach resonances.

The dependence afi®® can be translated into a dependence on the scattering lengihg equa-
tion (2.40. For(—2) < E® /(hw) < 0, the scattering length is essentially zero. WHeR is
varied from zero to one, however, the scattering length grmibecome infinite ab® = 1/2 fw,
jumps to minus infinity and approaches a negative value diosero atF® = 1 hw. This is
the most interesting region from the point of universaliyg @orresponds to the usual Efimov plot
in free space. In this region, the scattering length is macgelr than all other length scales and
the effective theory is expected to describe systems ofateahs with van der Waals interactions.
The discrete scale invariance of the three- and four-bodgtsp in free space has disappeared in
Fig.4.4. It would be interesting to approach the free space limit lakimg the trap wider and wider
in experiment in order to see how the discrete scaling symynetestored. In the theoretical cal-
culation, taking this limit is computationally very expéressince the absolute value of the energy
cutoff for fixed V vanishes ag — oo. Cold atom experiments could serve as a quantum simulator
to study this question.

4.2.3 Systems with more Bosons

In this section, | present some results for the five-, Sixd, s&ven-boson system.

In Figure 4.5 a part of the energy spectrum of the five-body statés= 0" is depicted as a
function of the cutoffN for E® = E®) = 0.5 hw. Calculations are feasible with cutoffs of at
mostN = 20. The extrapolation is done with the typical quadratic polymal. Remarkably, the
behaviour of the ground state is peculiar: it depends\Vononcavely, in contrast to the excited
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Figure 4.5: Energy spectrum of five-body stafés = 0" as a function of the cutoffV in the
unitary limit. The three-body interaction is adjusted to dithree-body Efimov-like state at the
energyE®) = 0.5 fw. The extrapolation is usually done with a quadratic polyranDue to the
concave dependence &f of the ground state, this state is linear extrapolated.

states. In consequence, the extrapolation with the quadratynomial is problematic and the
energy of the ground state is estimated with a linear extadipo of the last eigenvalues. The
first and second excited state are well described with a atiadoolynomial and conservative
uncertainties can be estimated as described above. Farhstdtes there are level crossings for
N < 20 and also in the extrapolated regidh> 20. But, crossings in the latter region inhibit the
extrapolation or compromise its validity. Consequently, tftese states extrapolated values have

large uncertainties.
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Figure 4.6: Energy spectrum of states with = 0* versus the cutoff parametéf < 16 in the
unitary limit and £ = 0.5 fw. The extrapolation is done with a quadratic polynomiaéft
panel A = 6. Right panel: A =7.

As an example for the six-body and seven-body system, Figérehows the energy spectrum of
states with total angular momentum and paiity = 0* in the unitary limit for G = 0.5 hw.

All states are extrapolated with the typical convex quadnablynomial. The maximum cutoff
parameter is for both particle systeh = 16. Note again that extrapolations crossing each other
carry larger uncertainties due to possible interactiowbenh these states. An example for this are
the adjacent third and fourth excited states for the systémseven bosond = 7.
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In summary it can be stated, that the convergence to the eqdts is slow and and one has to rely
on the extrapolation in the cutoff. The reason for this ill-conditioned behaviour is the siagu
nature of the contact interactions. In order to cushion phidblematic effect, the genuine contact
interactions are approximated by smoothed functions ifidh@wing.

4.3 Smeared Contact Interaction

Some results of this section are previously published#j. [ The central point in this section is,
that the contact interaction is regularised by smearings iteans, that the contact interactions are
replaced by (narrow) Gaussians with width(The notatione®) := ¢/b, whereb is the oscillator
length, is used throughout.) In order to preserve the sbpiyaof the interaction the contact
interaction

(FOV |50 = g@5E) (50)5@ (50 — 5O) = 4563 (50))5E) (30 (4.12)
is substituted by

15012 15®2

<§(b)}V6’§(b)'> :g(z)(Qﬂ"E( ‘ ) 320 2B 2 (271"6( ‘ ) 3/2,7 Qle(b)|27 (4.13)
and the three-body contact interaction
(510,505, 57) = g6 (D)) (55O (4.14)

is replaced by

2 2 (b)Y 2 4 -(0) 2
. . (b)Y (b _ + + s S
<51(b),52(b)|We|S§b) ,SS’) > _ 9(3)(27‘6(17)‘2) 6 eXp< | ’ | ’2|€ | |21 >+ 155 | ) _

(4.15)

The case of contact interactions is then recovered in thie dith — 0.

4.3.1 Matrix Elements and Renormalisation

The calculation of the matrix elements in the oscillatori®&sr the smeared contact interaction is
very similar to those for the genuine contact interactioncdtding to appendik.], the two-body
matrix elements can be written as

(nilymq [Ve|nilim)) =

e (1 — Je®)

ni1+ny
(1 + |€(b)|2)3 1 + |€(b)|2) ¢n100(0)¢n’100(0) 511,0 51/1,0 5m1,0 6m/1,0 ’

(4.16)
2) 1— [e®)2\m+ni 1 [(2ny + DI [(2n] + 1)
o g € 1_ 1 1 , ,
= (1 n ‘E(b)‘Q)S <1 + ‘E(b)P) ﬂ% n1!2n1 /1!2n 511 0 (51 ,0 5m1 0 5m 0 > (4 17)
where the value of the oscillator function at the origin igegi by
1 Tin+32) \'"* [0+ 1)\
Pnoo(0) = =77 | 773 =\ S ) (4.18)
T r)rn+1) m3/2n!2
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Likewise, the matrix elements of the smeared three-bodyacbimteraction are given by

{(nily, nala, LM|W|nhl}, nyly, I'M") =
g® 1 — [e®) |2 natnatny+nh
(1+ |e®2)6 (1 + |€<b>|z>

¢n10(0)¢n20(0>¢n10<0)¢n’20 (0)

01,0 04,0 01,0 01,0 Oz, 00 Onsarr Onro - (4.19)

In the next step, the coupling constaptd and¢® have to be renormalised with respect to the
regulator N. As for the genuine contact interactions these couplingstaois are fixed with a
specific two-body and three-body ener{?) and £®). Since the smeared interactions are also
separable, only the coefficients in the renormalisatioraggqaos é.8) and @.11) for the coupling
constantg® andg¢® have to be modified. With the new definition

Gnoo(0) for contact interactions (i.e!*) = 0),
fne = (b)12\—3/2 1—]e®)2 n . . (420)
(14 [e”]%) RO ®noo(0), for smeared contact interactions.
the renormalisation equations yield
N/2
hw e
el R D ey g 2
and )
1 ( Z ZN€ (aN;nl();nQOaO) fn1efn26)
_ m1,n2 4.22
g (N) Z Dye(ay) — E® (4.22)

an
Note that the eigenvaludsy,. and the corresponding eigenvectafg, now explicitly depend on
the range of the interactionas well as the cutoffv. Subsequently in sectioh3.4 the energy
spectra for various bosonic systems will be discussedr Rrithis, the next sections are devoted to
the behaviour of the running coupling constagitd( V) andg®® (N) and an error analysis.

4.3.2 Running of Coupling Constants

In this subsection, | study the running of the coupling cantstg® (V) and¢® (N) for contact
interactions in detail. Stetcu et a¥.q] rewrote the sum in Eq4(8) in terms ofl’-functions and the
generalised hypergeometric functigh,. They found an explicit relation fag® (N) from which

the behaviour for largéV can be obtained.

Here, | provide an alternative and much shorter derivatibthe behaviour ofy® (N) for large
values ofN using an integral representation of the sum in Beg)( For £?) < 3/2 hw each term
in the sum is positive and the denominator grows monotogouskamine the behaviour for very
large N. With the Euler-Maclaurin formulad7] the sum can be approximated as an integral

N/2

. 2o0(0)
CgAN) HZ_O 2+ 3 — E@ /(hw) (4.23)
_ 1o (x+3/2) do
B W/l [(3/2)T(x+ 1)(2z + 3 — E®/(hw)) o), (4.24)
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whereg,00(0) was substituted with Eq4(18. The quotient of Gamma functions can be expanded
inz,

L(x+3/2)
[(3/2)0(x +1) (3/2)

Inserting this expansion in Eq423) and integrating, | find

Vz+ 0 (1/Vx) . (4.25)

:__—N+(’)(1/N) : (4.26)

Thus the coupling constant vanishesl@s/N. Identifying /N with the momentum cutoff, this
is consistent with the renormalisation in free spat&}.[l thus expect the leading errors from finite
N in the effective theory to scale witty+/N.

For E? < 3/2 hw the coupling rapidly approaches zero/dss increased. In the case that? >
3/2 hw, the terms in the sum in E¢ 23 are negative at first until > (£ /(2hw) — 3/4). The
couplingg® (N) as a function ofV € R thus develops a minimum fa¥ — (E®) /(2hw) — 3/4)
and has a pole a¥ is increased further. For even larg€rit approaches zero as well.

For smeared contact interactions an additional dampirtgrfappears. For Eq4(23, one has

N/2
hw 1—|e |2
B 4.27
) = T o 2 2n+-—E<2><1+|e<b>|2) (@27

hw

_ 1 N/ I(z+3/2) (1 — |e® \2) 2
= 7'('3/2(1 + |6(b)’2)3 /0 dz T (3/2)0 (= + )2z + 3 i;)) T+ |€(b)|2 +0O(1). (4.28)

The integral now converges to a constantfor— oo exponentially at a fixed value ef?). Thus, the
coupling constant converges to a finite number. Note thalatyere® is, the faster the coupling
constant converges and the energy spectrum becomes imdepeari V. This result reflects the
additional regularisation of the contact interaction by $mearing.

The inset of Fig4.7illustrates the behaviour of the running coupling constdntg® for ¢ =

0. 1 show /N ¢ in the unitary limit for the renormalisation energi&$? = 0.5 iw (ground
state) andE® = 16.5 hw (eighth excited state). In the case Bf? = 0.5 hw, the running
coupling /N ¢® has already converged to a constant value for small value§ ahd shows
no structure. Forx® = 16.5 hw, the situation is as described above. The coupling constant
approaches zero f@¥ aroundl4 where the denominator of the right hand side of B changes
sign. Furthermore, it changes from large positive to larggative values arountd = 21. This
behaviour can be understood by looking at the spectrunfdr = 16.5 hw shown in Fig.4.7.
For small values ofV, the model space is not large enough to describe the deeplydbground
state adequately. The behaviour of the coupling consgality® is exactly such that this new
state enters the renormalised spectrum from minus infirégping the other states unchanged.
In the continuum case, a similar behaviour is observed feithinee-body spectrun?@, 79]. For
larger values ofV, when the model space is large enough to describe the greated e running
couplingv/N ¢® approaches the same value for both cases.

For the coupling constant® the situation is more complicated. The eigenvallgg ) as well as
the eigenstates now depend on the cutoff paraniétérherefore it is not straightforward to derive
the leading-order behaviour ¢f® analytically. As mentioned earlier, Werner et al. have fites
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Figure 4.7: Energy spectrum in the two-body sector#6Y = 16.5 hw. The dots on the left show
the exact energies. The inset shows the running couplingtaotsy/N ¢ in the unitary limit

for renormalisation energie5® = 0.5 hiw and E®® = 16.5 hw depicted with pluses and stars,
respectively.

a semi-analytic solution for the three-body problem in anf@mic trap in the unitary limit18].
Again, these results for the energy spectrum are used tdbeark my three-body calculations.

In the left panel of Fig4.8the spectrum in the unitary limit for a three-body renorsetion en-
ergy E®®) ~ 1.76 hw is depicted as a function af. At N = 16 a new three-body state enters
the spectrum of the model space from minus infinity. For lakgéhis state approaches the ex-
act eigenenergy at4 hw. In the inset, the corresponding coupling constghtis shown. As in

the two-body case, the coupling constant diverges, hewdrd = 16, and changes from large
positive to large negative values. The three-body specandithe coupling constant in the con-
tinuum case show the same behavioi8]] The phenomena are the same as in the two-body case
discussed above. In the right panel of g, | present the energy spectra for the renormalisation
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Figure 4.8: Left panel: Energy spectrum of Efimov-like states in the three-bosaosen the
unitary limit (£® = 0.5 hw) for E®) ~ 1.76 hw. The dashed lines indicate the exact enerdi€ |
Right panel: Energy spectrum for Efimov-like states in the unitary limhit? = 0.5 hw with
E®) ~ 16.14 hw for contact interactions. The running coupling consta¥its/® corresponding to
both cases are shown in the insets. Poles are indicated tigaeolid lines.
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E®) ~ 16.14 hw. This renormalisation energy belongs to the following ggespectrum in the
full Hilbert space with energy values/(aw): ---, —5319.28, —10.29, 1.4, 3.68, 5.82, 7.92, 9.99,
12.05, 14.10, 16.14, - - - . The states with energies lower thard cannot be found inside the feasible
model spaces for this renormalisation energy. Remarkdidystates approach the exact energies
but at specific values of the cutoff marked by vertical lines $pectrum rearranges. The smallest
value of N corresponds to the appearance of a ground state at ehdrgy

At the two largest cutoff values marked, there are smallatisouities in the energy. These discon-
tinuities are artifacts of the renormalisation method aaddt correspond to new states entering
the spectrum. Because of the finite model space, not only theokfiike states but also the uni-
versal states depend very weakly on the three-body interacin the special case when for a
given cutoff N the renormalisation energy‘®) exactly coincides with the eigenvalue of a univer-
sal state corresponding to another spectrum with renosatain energy=®, the computer code
used erroneously renormalises to the spectrum charadeng£®). The energy values in the
neighbourhood of such points should therefore be discarded

In the inset of the right panel of Fig.8, the behaviour of the corresponding coupling constant is
shown. The coupling constant has a salient behaviour a fhositions indicated by the vertical
lines. At the smallest value oV where the ground state enters into the spectrum from below,
the coupling changes from large positive to large negatalees. The approximate pole which is
expected at this position due to the discrete nature of ttedfcly is strongly distorted on the right
wing due to finite cutoff effects. At the two larger values/of there are discontinuities due to the
renormalisation artifacts discussed above. Moreovegyen largerV the coupling approaches an
approximate pole corresponding to the addition of a newmpiatate at energl = (—10.29) fw.

This pole is not reached in my calculation; it would requilargerN.

4.3.3 Analysis of Uncertainties

There are various sources of uncertainties in my calculatiothis subsection, | perform a detailed
analysis of these uncertainties.

First, there are corrections due to the ultraviolet cutaffgmeterN. The considerations in sub-
section4.3.2showed that the finite model space also implies an infraréoffoirhich vanishes as
N is increased. The errors due to both cutoffs show the santiegtehaviour inNV. Therefore,
one expects corrections in the energy eigenvalues of ardgtN + (A — 1)3/2 for large N. The
shift of N by (A — 1)3/2 under the square root takes into account the zero-poinggredrthe
free A-body system. | can extract the scaling behaviour of thesecions from the error anal-
ysis introduced by Lepagd]]. In Fig. 4.9, | show the deviation of the lowest three-body energy
eigenvalues from the exact values in the unitary lilif¥) = 0.5 fiw with three-body renormalisa-
tion energyE® = —1 hw. The double-logarithmic plot shows a linear dependenca@gnergy
differences orog (N + 3) for large N values. From a linear fit to the five largest values\ofl find

a slope ofs ~ —0.6 for the first four Efimov states above the state used for reatisation. The
small difference to the expected valuesof —0.5 could be due to contamination from higher order
corrections. As a consequence, the cutoff dependence éactanteractions is in agreement with
power counting arguments based on identifying the momermwiwif A in the continuum theory
with /N + (A — 1)3/2. A similar power law dependence of the leading correctiorthtee-body
energies for contact interactions was observed by Furhstaih [80].

In the case of smeared contact interactions, one finds amerfial dependence offN. In the
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Figure 4.9: Corrections in energy eigenvalues as a funcfiav @ 3 with A = 3, E® = 0.5 Jw,
E®) = —1 hw.

two-body sector, | consider model spaces with cutoffs ulg te 700. In a Lepage plot ofog(|Ex—
E..|) one finds for large cutoffs a slope of approximatel —0.5. This implies that for largeVv
the calculated energies behave as

En =~ Eo + cre=2VN (4.29)

Thus the smearing changes the leading corrections fromvans@ power law to an exponential
behaviour.

The convergence properties of variational calculationsgubasis expansions have been studied
already in the 1970's31, 82]. More recently, the convergence properties of ab initicuations

of light nuclei in a harmonic oscillator basis were inveatay [73,83]. Due to their singularity,
one expects the contact interactions to behave quite @iftist but it is interesting to compare the
results with smeared interactions to those of Ref8, §3]. However, one has to keep in mind
that | consider a physical trapping potential instead of aentasis expansion. Moreover, in my
calculation the effective interaction is renormalised atre/N in order to keep the energies of a
given two- and three-body state fixed.

My results show the same exponential dependence on theialetacutoff and on the infrared
cutoff A\;. o< 1/4/N + 3/2 as observed by Coon et al. for the Idaho N3LO poteniig]. [Furnstahl
et al. B3], in contrast, observed a Gaussian dependence on the UYf cuto

En ~ Eo + Age VN (4.30)

using similarity renormalisation group (SRG)-evolved ahinteractions, but their dependence on
the infrared cutoff is consistent with mine. For fixed infdrcutoff and an ultraviolet cutoff below
the ultraviolet scale of the potential, a Gaussian deperelemms also observed ii3]. A better
understanding of these observations requires furtheystud

While extracting the energies for genuine contact inteoastifrom smeared contact interactions,
there are also errors due to the width parametghich corresponds to a finite interaction range.
The corresponding two-body problem in free space is sefeeaatal can be solved analytically. In
my calculations, | determine the coupling constants frortchiag to energy levels in the oscillator.
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One two-body energy levél® is kept constant in each model space and the coupling cdngtan
is determined from this matching condition (cf. E4.8)). One finds:

2n
N/2 1—|e(b>\2 (2n4+1)!!
hw ( -3 <1+|6<b>\2 nl2n
(14 |0 \/%) , (4.31)
o~ V) s )

Nosoo 3 [ E® - 33 E®@ 7 EO® (|02 _1)
14 [e®)? 2=~ — —3 F(=,>— — — ;
—_— (( + |€ | )ﬁ) 21 2a4 2h¢d’4 27:&0.1’ (‘E(b)‘2+1)2 )
(4.32)

wheresF;(a, b; ¢; z) denotes a hypergeometric function. The limit — oo yields the coupling
constant in the full Hilbert space.

The width ® is used as a smearing parameter and the behaviour for sfiall interesting.
Expanding the first and second line of E4.31), one finds:

21 (3 _ E®
g2 (W) = —arh ) 2T Ffz ;(wa) @2
I'(; — 2)
E® 4773 - B2y (439
3 (] — S
o (L ag— ) O] + 00T,
(31— 2)
g 2(e®) = co(N, EP) + (N, E?)[e® > + O(|e®[1) . (4.34)

Remarkably, the results for finite and infinité differ fundamentally since the limit$® — 0 and
N — oo do not commute. FON — oo, the coupling constant depends linearlyett in leading
order and vanishes fef” — 0. For finite N, the leading term is independent«? and the first
correction is of ordefe(”’|2. The constant term id®) is a consequence of regularisation withbut
the vanishing of the correction linear iff) is unexpected. The expansion parametenN, £(2))

vanishes likel /v/N for N — oo.

The corresponding two-body energies show a similar bebavibirst, the value of)® is fixed

for a givene® and E. The other energieB.” can then be calculated numerically using a root-
finding algorithm. ForN' = oo and smalk(® the energie€” (), E?)) depend linearly on(®.

In order to extract the results for a zero-range contactaeten from a calculation with smeared
interactions, a linear extrapolation i) is thus appropriate. For finit&, however, the depen-
dence of the excitation energidg” (¢®), E N) on ¢® is different. Fore® — 0, one finds
IEP(e®, E@ N) — E® (0, E® N)| « [¢®]2 and an extrapolation ia® does not reproduce
the result for a zero-range contact interaction. Ftiedependence of the energies is illustrated
schematically in Fig4.1Q In order to extract the contact interaction results fronearad interac-
tions, it is therefore important to extrapolateAnfirst (or use numerically converged values) and
then extrapolate te®) = 0 in a second step.

The variation of the energies wid?) can be interpreted as a dependence on the effective range
ro Of the two-body interaction. The effective range paranseteterms of the effective coupling
constany® in the continuum case are (See Appendi®):
b 2 1 2¢®)  4r|e®)|?
o _ \/_7r+ and 7_0:\/55_77’5’ '
a  g?/(hw)  2re® b VT g®/(hw)

These relations are valid in the full Hilbert space but ndhmrestricted model space characterised
by finite V. Analogous to the case without a trap, my numerical resuidsemjuation 4.35 then

(4.35)
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Figure 4.10: Schematic dependence of energies on the smeaiameter® for finite N (dashed
line) and infiniteN (solid line).

imply that the leading corrections to the energlég) for contact interactions are linear in the
effective ranger.

| have also studied the®-dependence in the three-body sector. In the left panel @f 4.1,

the corrections from finite(® for finite NV are shown. | plot the deviation of results for smeared
interactions withe®® £ 0 from contact-interactions results with = 70. | focus on the unitary
limit for contact interactions, which correspondsAt’ = 0.5 hw. Note that | keep this two-body
ground state energy constant while is changed. For finite®®, the system is not exactly in the
unitary limit anymore. For smal® there is a linear dependence in the double-logarithmic plot
The fit yields a slope of approximately= 2 for the state presented, which implies a quadratic
dependency of the correctionsdty for ) — 0 in agreement with the behaviour in the 2-body
sector.
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Figure 4.11:Left panel: Corrections in energy eigenvalues as a function®fwith A = 3,
E® = 0.5 hw, E® = 0.5 hw. Right panel: Corrections as a function ¢f2?) — £®))/E® for
the unitary limit with A = 3.

Finally, there are corrections from a mismatch in renorsadion energies’® and £4). In an
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effective theory, only states with excitation energies Isrmampared to the cutoff scale of the
effective theory can be described. Clearly, the renormadisaenergies must be chosen in this
energy range. FoE®) # E®) we expect errors governed by? — E®)) from the mismatch

in the two- and three-body renormalisation energies. Fotam interactionse(”’ = 0), | have
investigated the errors i0Z?) — E£®)) numerically. For this purpose, | chose the unitary limit
and variedE®). The right panel of Fig4.11shows the deviation of the exact results from results
in the model space for varioy&® — E®). As expected, the corrections grow with increasing
|E® — E®)|. Thus in practise, it is desirable to chods&) ~ E®) to minimise this type of errors.

4.3.4 Energy Spectra

With these insights, now the energy spectraleboson systems are studied fér= 3,4,5,6 in a
trap. The spectra are obtained from two different numedabdulations:

(1) contact interactions and extrapolationd jn /N + (A — 1)3/2 are studied as in sectigh2,
and alternatively

(2) smeared contact interactions and linear extrapolatiotissinvidth parameter® of the con-
verged results iV are investigated.

The difference between the two methods will be used to egtith@ errors in my calculation.

4.3.4.1 Three ldentical Bosons

At first, the 3-boson sector is considered. In the left pahé&li@. 4.12, the eigenvalues of the first
excitedL™ = 0" state are shown as a function of the cutoff paramstet 70 for various smearing
parameters”) in oscillator lengths3. The corresponding renormalisation energiesigre = 0.5

and E® = —1. For small model spaces the results are identical for adraution widths. With
3.6
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Figure 4.12:Left panel: Eigenvalue for the first excited™ = 0" state withA = 3 as a function of
N with E® = 0.5 hw and E® = —1 hw for variouse”). Right panel: The converged eigenvalues
as a function ot®. L™ = 0%, E® = 0.5 hw and E® = —1 hw. The points at/b = 0 denote
the exact eigenvalues frorh§]. The dashed lines are linear fits to the valuessfér< 0.3 used to
extrapolate ta/b = 0.

increasing interaction width the eigenvalues converge for smaller values of N. The cgewer
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eigenvalues do not coincide with the results for conta@rattions. However, as discussed in the
previous section, the parametezan now be used as a extrapolation parameter insteAd of

The converged eigenvalues are given as a functianimfthe right panel of Fig4.12for the five
lowest L™ = 0% excited states. The solid lines are linear extrapolatidngh® data points for
¢/b < 0.3 and the results agree with the exact values known for coitasiactions in the unitary
limit [ 18] within 3% errors. The error bars of the data points are estimated hyiffieeence of the
eigenvalues related to the two highest cutoff parameYteise. with these two eigenvalues the exact
one is approximated by linear extrapolation and the errestgnated as the difference between the
state with the highest cutoff parameter and the estimated omFig.4.12the two model space
sizes correspond ty = 70 and N = 68.

In Fig. 4.13 the spectra of Efimov-like states are depicted in the uniianit (E® = 0.5 hw)

for E® = 0.5 hw and E® = —4 hw in order to illustrate the significance of the mismatch in
renormalisation scales. With a linear extrapolation thacexalues forE®) = —4 hw are too
low systematically. For largeE® the extrapolation inV achieves better results than a linear
extrapolation ire. This method clearly has larger errors #8f*) = —4 hw.
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Figure 4.13: Spectrum of Efimov-like™ = 0" states withA = 3 in the unitary limit as a function
of e. At ¢/b = 0 exact eigenenergies are drawn lreft panel: Renormalisation energig®) =
0.5 hw. Right panel: Renormalisation energif® = —4 hiw.

Finally, Fig.4.14shows a non-unitary example wifl{?) = —2 hw. In the left panel the eigenvalues
for the renormalisation energy® = —1 hw are shown as a function of the widthand in the
right panel forE® = —5 hw. The results are linearly extrapolated as in the unitarytlimt
¢/b = 0 the results for contact interactions extrapolated with adgatic polynomial in. /+/N + 3
are added. The uncertainties from the extrapolation anmat&d conservatively as the energy shift
from the last calculated eigenvalues to the extrapolated mside relative errors &5% referred

to the ground state with eigenenerg¥ fw respectively—1 iw both results coincide. This method
clearly has larger errors fat®) = —5hw.

4.3.4.2 Four ldentical Bosons

In section4.2.2 results for a 4-boson system have been presented withatontaractions. Here
these calculations are revisited using smeared interectleor instance, calculations for the unitary
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Figure 4.14:L™ = 0" eigenvalues ford = 3 as a function ot with £ = —2 hw. The points at

¢/b = 0 denote the extrapolated results for contact interactidhs.lines are linear extrapolations
toe/b = 0. Left panel: E® = —1 hw. Right panel: E®) = —5 hw.

limit £ = 0.5 hw with E®® = —1 hw with contact interactions/b = 0 are compared to calcula-
tions withe/b # 0. In my calculation | can reach cutoff values upXo= 26 which is significantly
smaller than in the three-body sector. In Fgl5 the eigenenergies for the ground and for the
first excited states are shown for various model-space.sltessolid lines are extrapolations with
quadratic polynomials in//N + (4 — 1)3/2. As in the three-body sector the eigenvalues con-
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Figure 4.15: Four-bosoi™ = 0% states withE® = 0.5 hw and E® = —1 hw for various

smearing parameteesas a function ofl /v/ N + 4.5. Left panel: Ground stateRight panel: First
excited state. Solid lines are polynomial extrapolations.

verge inN more rapidly for larger smearing parameterdHowever, for smeared interactions the
eigenvalues of the ground state increase at first until thaglr a maximum and begin to decrease
only afterwards. It is conceivable that for contact intéicats ande/b = 0.1 the model spaces are
too small in order to see the decrease of the eigenvaluess, Tl extrapolation given in the left
panel of Fig.4.15could have large systematic errors. Since contact iniereectan behave quite
differently from smeared interactions, however, a defiaswer requires calculations at larger
cutoffs N which however are beyond the scope of this work. If the remdisation energie&
and E® are chosen equal, the non-monotonous behavioudoes not appear and becomes more
pronounced only as the mismatch betwde® and £ is increased. The excited states do not
show the non-monotonous behaviouriat all. Their eigenvalues decrease monotonously with
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and for larges they converge inside the model-space sizes considered here

Fig. 4.16 (left panel) shows the converged or extrapolated eigepgafis a function of for the
three lowest states with renormalisation energi€s = 0.5 hw and £®) = —1 hw. In comparison

to the three-body sector, the Hamiltonian can be diagadialy in small model spaces (up to
N = 26). Thus, just untile/b = 0.35 the eigenvalues have small error bars. The states are
linearly extrapolated te/b = 0. At ¢/b = 0 the eigenstates extrapolated Wawith a quadratic
polynomialinl/\/N + (4 — 1)3/2 and their estimated uncertainties are shown.efok 0.25 the
eigenvalues for the ground states cannot be determinechaciptable accuracy. The extrapolated
results differ significantly and are at odds with each otloeittie ground state. This is due to the
non-monotonic behaviour of the ground state energy withdiscussed above. For the excited
states this problem is absent and the results of the twopstaaons are compatible. In the right
panel of Fig.4.16 | show the results fo?®) = 0.5 hw. SinceE?® = E®), one expects less
uncertainties for a fixedthan for the cas&® # E®) (see sectiod.3.3. In particular, the ground
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Figure 4.16: Lowest three energy stafes= 0* for £ = 0.5 hw as a function of for A = 4.
Left panel: E®) = —1 hw. Right panel: E® = 0.5 hw. The eigenvalues are linearly extrapolated.
At ¢/b = 0 extrapolated eigenvalues for contact interactions drawn i

state energies show no non-monotonous dependeneend the extrapolations inand N are
consistent.

4.3.4.3 Five and Six Identical Bosons

The combined extrapolation technique is now applied togoerfexploratory calculations of the
spectra of five and six identical bosons. In order to keep tfeerainties as small as possible, the
renormalisation energies are chosen to be identicalFi@.= E®) = 0.5 hw. In particular, this
removes the problem of the non-monotonous behaviour ofrieegées as a function efdiscussed
above for the four-body system. The cutoff paramete¥ is- 20 for five bosons andv = 16 for

Six bosons.

The results for the three lowest enerfjy = 0" states with different smearing paramete@re
depicted in Fig4.17. Due to the small model spaces, the uncertainties are signify larger than
for three and four bosons. The eigenenergies for contamtaations are extrapolated v with a
polynomial of second order it/ /N + (A — 1)3/2. They are shown at/b = 0 with conservative
error bands. These approximated eigenvalues are cortsigtrextrapolations ire for smeared
contact interactions inside the error bands. Thus | corcthdt the combined extrapolation i
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Figure 4.17: Lowest three energy stafes= 0* for £® = 0.5 hw, E® = 0.5 lw as a function
of e. Left panel: A =5 (N = 20). Right panel: A = 6 (N = 16). The solid lines are linear
extrapolations ire. At ¢/b = 0 the eigenvalues extrapolated with a polynomial of secodérin
1/4/N + (A — 1)3/2 for contact interactions drawn in.

and e makes calculations in five- and six-boson systems with naadesomputational resources
possible.

In Table 4.1, the extracted energies of the lowest three Efimov-likeestaire collected for the
unitary limit (£ = 0.5 hw) and a three-body ground state energy fixed¥® = 0.5 hw
(cf. Figs.4.13 4.16 and4.17). The numbers in the first two columns are the exact values for

|A=2[A=3[A=4]| A=5]| A=6|
05 [ 05 [-0.1(2)] -0.9(2) | -2.3(3)
25 | 29 | 273)| 22(33) | 1.1(2)
45 | 5.1 | 46(5)| 43(5 | 3.7(3)

Table 4.1: Energies of the three lowest Efimov-like statesystems withA = 3,4, 5,6 for the
renormalisation energigs®) = 0.5 7w corresponding to the unitary limit and® = 0.5 hw. The
column labelledd = 2 contains the three lowest two-body states. All energiesnamaits of iw.

A =2 andA = 3 rounded to two digits of accuracy. The values for the colutabslledA = 4,

A =5, andA = 6 are extracted from my calculations. Here the number in gheses gives the
difference in the last digit between the extrapolatiomirand e which can serve as an estimate
of the numerical error. The spectra are much more comprekaaedhe corresponding free space
results R5,74,75,84-86]. However, a similar pattern can be observed: starting from 3, every
A-body state is accompanied by a corresponditig- 1)-body state. However, a secofd + 1)-
body state attached to thebody state is not present in my calculation. It would beriegéng to
study the spectra also away from the unitary limit for fixe® to investigate their systematics.
However, due to the additional errors from the mismatcRi# and £® this is numerically more
challenging.
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4.4 Conclusion

In this chapter | have studied the physical systems with wgeten identical bosons in a confining
of the harmonic oscillator potential. Due to the assumpti@t the boson-boson scattering length
dominates the effective range expansion, interactionsdest the bosons are approximated with
two-body and three-body contact interactions, i.e. theirsgdimit. The energy spectra of the
A-boson systems have been determined with the shell-mogebagh introduced in chapt8rin

the model spaces spanned by finite oscillator bases for a gutoff parameterV. Here, the
running coupling constantg? (N) and¢® () are renormalised and adjusted to reproduce two
given energy state8® and £®) in the two-body and three-body system.

To start with, | have referred to the spectrum for the threselm system for the total angular mo-
mentum and parity.” = 0F. It consists of two types of states. There are states indi=perof
the three-body interaction and the Efimov-like states, tr@dagues in the trap to the Efimov states
without confinement. Afterwards, the spectrum for fourdoms and it dependence on the renor-
malisation energy’(® has been investigated. The first part of this chapter hasdmapleted with
selected energy spectra for systems with up to seven bosons.

However, | have found a slow convergence of the energy spacin dependence of the cutoff
parameterN. This problem has lead to the substitution of the conta@rautions with narrow
separable Gaussians with widthso-called smeared contact interactions. The new paramete
has been used as another extrapolation parameter in ordetaonine the energy spectra and for
variousA-boson systems the results have been presented. Rematkéabhew approach indicates
larger uncertainties in th&-extrapolated energy values for contact interactions éxqected pre-
viously.

Additionally, the behaviour of the running coupling comgty® (V) andg® (V) has been studied.
In particular, the consequences of different renormatisagnergies has been investigated. Finally,
in a detailed error analysis the interplay of the finite cupaframeterV, and the finite width has
been studied. It results in the following prescription téeslmine the energy values: Use converged
results in the cutoff parameté¥ for finite width e or extrapolate in the cutoff paramet®rfirst and
then extrapolate in the widthlinearly.



Chapter 5

Clusters of Helium Atoms

This chapter is devoted to physical systems without extezoafinements. | shall concentrate
on the formation of'He-clusters consisting ofi constituents. The following work is done in
collaboration with Prof. For&sn, Chalmers University, Gothenburg. His research groupetslthe
matrix elements in the harmonic oscillator basis of two- #mwée-body interactions and evolved
the genuine interactions with similarity renormalisatgmoup (SRG) transformations.

5.1 Introduction

As mentioned in sectio.5.2 the existence ofHe,-atom clusters withd constituents could be
shown by Schllkopf et al. in experiments based on diffraction of heligiasters from a trans-
mission grating 21]. Within their experiments the resolution is sufficient &parate cluster with
different numbers of constituents. However, the bindingrgies of these clusters cannot be di-
rectly determined. Only the dimer binding energ¥ can be estimated by means of its measured
size of (r) ~ 4 A to be arounds? = 1.1193 mK [22).

This result is consistent with predictions by ab initio putals like TTY or LM2M2 with EF =
1.30962 mK [6] and EZ = 1.302 mK [25)], respectively. For larger clusters there are no measure-
ments of binding energies, only predictions based on suchitd potentials exist. Results from
several ab initio potentials are collected 28].

For up toA = 10 atoms predictions for the ground state binding energi@dased on the ab initio
potential LM2M2 are calculated with Monte-Carlo methods byrBé et al. 4]. These predictions
will be later used as benchmark results.

Furthermore, Gattobigio et aR}] have proposed an effective parametric potential for th&M2

ab initio potential consisting of attractive Gaussian twamly potentials and a repulsive Gaussian
three-body interactions. We call this effective potent Pisa potential due to the research loca-
tion of the majority of the research collaboration involvétlith their technique described i8T]
using the hyper-spherical harmonic expansion they detetnpredictions of binding energies for
up to clusters oA = 6 atoms.

In the following sections we use the shell-model approattoduced in chapte to calculate the
binding energies of the ground stateskg, clusters with angular momentum and parity = 0.
The atom with thé/He isotope as nucleus is a spinless boson. Thus, the spatial fanction of

60
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a*He, cluster has to be symmetric under permutation of atoms asreskin this shell-model
approach. To start with, the unevolved LM2M2 potential isdigas the interaction between tHe
constituents in sectioh.2 As we will see the slow convergence in the cutoff paramétedue

to the hard core of the LM2M2 potential requires the SRG ewatubf this potential. Results for
various evolution parametéy are presented for up td = 10 in section5.3. Furthermore, the
binding energies for up to twelve atoms are determined basdte Pisa potential in sectidn4.
Depending on the strength of three-body interaction werdjaish between soft and hard Pisa
potentials. For the soft Pisa potential results are suns@diin sectiorb.4.1 The hard version of
the Pisa potential is studied in sectid@.2and we will see in sectioh.4.2.1that this version has
a slower convergence in the cutoff parameter Therefore the SRG-evolution is also utilised for
this potential and the results are shown in seciigh2.2

5.2 LM2M2 Potential

In this section, we present our results for atoritite clusters consisting of up to ten constituents
using the LM2M2 potential. The LM2M2 potential is an ab iaifootential for*He atoms con-
structed by Aziz et al.Z3,88]. Its specification is given in appendi In the following the unit of
length au means Bohr radiusau~ 0.5 - 10~ m.

In the left panel of Fig5.1, we show the LM2M2 potential as a function of the distancevieen
two “He atoms. Around = 3 A the potential has its minimum with a depth of abetitl K. At
r = 2.5 A the hard core starts and reaches the finite but huge valié®f= 1.9 MK at the origin.
Forr — oo the potential approaches zero from below.
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Figure 5.1:Left panel: LM2M2 potential in position spacdRight panel: Spectrum with LM2M2
potential for the ground state 6He; as a function of the oscillator lengthfor various cutoffs
N. Convergence couldn’t be achieved. The horizontal soliel iindicates the ground state energy
E3 = —125.8 mK from the literature §9].

Because of the hard core repulsion, the potential mixes thetal high energy regime strongly.
As a consequence, we expect a slow convergence in the endajyaf the model spacé&/. This
is illustrated in the right panel of Fig.1where the ground state energy of the*He trimer*He;
is presented as a function of the oscillator len@gtivhich here is a variational parameter. Up to
N = 50, no convergence is achieved for the trimer energy. Excepthi® largest value ofV,
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the trimer even seems to be unbound. The exact value for titknigi energy in the literature is
EP =125.8 mK according to Motovilov et al.g9).

Working with the genuine LM2M2 potential is therefore notiable option and alternative strate-
gies have to be applied. In the following, we will consideotsuch strategies:

(1) Use an SRG-evolved version of the LM2M2 potential. As disedssbove, this will generate
a softer potential accompanied by induced many-body faitscapture the physics of the
hard core.

(2) Construct softer effective parametric two- and three-baatemtials that reproduce the two-
and three-body bound state energies of LM2M2 by adjustiegptirameters. We will refer
to this effective potential as the Pisa potential.

Both approaches will be discussed below.

5.3 SRG-Evolved LM2M2 Interaction

The SRG is a powerful technique to generate unitarily egentahteractions with better conver-
gence properties in many-body calculations. In the caskeoEM2M2 potential the interaction is
softened at the expense of introducing many-body forces.

We have evolved the LM2M2 interaction using the flow equatiokq. .49 as outlined in sec-
tion 2.4. It turns out that for the LM2M2 potential, the evolution afiuced three- and higher-body
forces is computationally very expensive since a large rarmalb partial waves contributes. We
were not able to carry out the evolution of the induced thredy forces far enough to achieve a
significant softening of the two-body interaction.

In the following, as a pilot study we will therefore perforralculations ofA-body systems with
A =4 uptoA = 10 neglecting these induced many-body forces. Apart from Hrampeter of the
ultraviolet cutoff of the model spac¥ and the oscillator lengthas a variational parameter, there
is the SRG parameter which specifies the evolution status. Foe= oo the potential is unevolved
andA = 0 corresponds to the furthest evolution. A variation of the SBEameter\ allows to
estimate the error from the omitted induced forces in ourwdations.

In the left panel of Fig5.2, we collect the eigenenergies for the model space with tpgwameter

N = 30 as a function of the oscillator parametefor variousA. There are minima in the energy
for certain ranges of valuédsg,, which become more pronounced and form broader plateaiis as
decreases. In Tabk1the positions of the miniméa,,;, are collected for various.

A 5] 1 ]0.75/05]0.25
bmin || 3.8 4.8 5.6 | 8.0| 10

Table 5.1: Positions of the minimig,, in the eigenenergies fot = 4 with SRG-evolved LM2M2
potential for various flow parametets A is given in units of(au) ! andbm, in units of au.

The energies at the minima appear to converge to a certaire.vdh order to investigate this
convergence, we plot the energies of the minima as a funofiariV for different A in the right
panel of Fig5.2 ForA < 1 (au)?, the calculations have obviously converged but differetead

to different values for the binding energy. This spread is thuthe missing induced three-body
forces and can be used to estimate the error due to their iomiss
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Figure 5.2: Ground state energy tfle; determined with SRG-transformed LM2M2 potential.
Left panel: Energies as a function éffor cutoffs V.= 30 for variousA. Right panel: Energies
as a function ol /N for variousA inside the minimum irb.

The determination of the estimated result for the full Hitb&pace is based on extrapolation to
N — oo. Since the exact relation between the energy eigenvaluetharcutoff/NV is unknown, we
apply the procedure illustrated in Figuse3. The last two data points are extrapolated linearly to
the infinite N limit. This gives our first estimate. The other estimate i&giby the last data point
itself. Our final value is the arithmetic average of these pwimts while their spread is taken as the
uncertainty. We have tested this procedure in cases whaveigence has been reached and found
that the exact value is always reproduced within errors tsyektrapolation.
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Figure 5.3: lllustration of the extrapolation procedure tlee example of ground state energy of
*He, based on the LM2M2 potential evolved upfo= 1.0 (au)~'. The oscillator lengtth is fixed
atb = 4.8 au, see Tablé.1, and the cutoff parameter i§ = 42.

In Table5.2, we present the results for the binding energiesvebody clusters up tavV = 10
for different values ofA. For comparison the MC results of Blume et &@4] for the genuine
LM2M2 potential are also shown. Similar to calculations atlear few-body systems with SRG
evolved potentialsgQ], there is no monotonous dependence of the calculated iesesgA. As

A is decreased, the energies at first deviate further fromrggumably accurate MC result before
they approach this value again at the smallestlculated.
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0.25 0.5 0.75 1.0 MC [24]
EP 58 125.941 £0.013 | 134.710 £ 0.079 | 131.75+0.26 | 129.7+1.0 | 125.5
EP 42 573.839 £4.3-107° | 620.50 & 0.47 598 + 3.2 579.4+4 | 559.7
EP 24 1389.100 +0.002 | 1502.27 +0.22 1433+£20 | 1470 +£160 | 1309
Ep 18 2584.050 =+ 0.008 2789.3 + 3.0 2690 +200 | 26104490 | 2329
E5 16 4164.876 + 0.002 4484 4 12 4410 + 650 - 3565
ES 16 6135.4 +0.1 6578 & 16 - - 5044
Ef 14 8499.63 4 0.03 9101 + 61 - - 6683
EER 14 11253.54 4+ 0.07 - - - 8509

Table 5.2: Binding energies? in [mK] for various evolution parametersfrom A = 0.25 (au) !
uptoA = 1.0 (au~'. For A = 5.0 (au)~! no binding energies could be determined with ac-
ceptable uncertainties. The numbers are the extrapolatadts with their uncertainties for the
oscillator length with highest binding energies. For comparison the restdis the Monte Carlo
calculations made by Blume et a24] are shown in the last column.

5.4 Effective Pisa Potential

Beyond the SRG-transformation, an effective potential caodpestructed by simple parametrisa-
tions in the form of short-ranged interactions. At leadimdey in the large scattering length then
both a two-body and a three-body contact interaction areired;. In the practical application, we
follow the procedure used by Gattobigio et al. and choosewsslan potential as the regularised
form of a contact termdb]. The strength and range are chosen to reproduce the biedargyFs,
the scattering lengtth and effective range, of the LM2M2 potential. The three-body interaction is
taken as a Gaussian-hyper-central three-body term destgneproduce the LM2M2 three-body
ground state energy;. Specifically, this so-called effective Pisa potentialnttwnsists of the
two-body interaction

r2.

Vg(nj) = ‘/()e_ﬁ s (51)
in the coordinate;; := (¥, — 2;) with 1, = —1.227 Kand R = 10.03 au as well as the three-body

interaction

2
_oPijk

We(pije) = Woe ~ 70

(5.2)

in the hyper-radiug;;, := :

is an infinite number of possible combinations which reposdthe LM2M2 ground state energy
for “He;. In the following, we consider three combinations colleldte Table5.3. The three-body
interaction with parameters = 14 au andiV, = 422 mK is relatively soft and long-ranged such
that we expect fast convergence with respect to the cuteéfrpaterN. In the following this is
called the soft Pisa potential. The other two parameter aoaibns are referred to as hard Pisa
potentials.

2/3(ry; + 1, +13.). The parameter paiiXj, po) is not unique. There

5.4.1 Soft Pisa Potential

We start with the 4-boson system. Fkg4 shows in the left panel the ground state‘bfe, as
a function of the oscillator length parametefor the soft Pisa potential. One expects a plateau



5.4. Effective Pisa Potential 65

| | Wo [mK] | po [ad |
soft 422 14
hard | 306.9 - 103 4
hard 3-10° 2.2511

Table 5.3: Considered combinationsldf, and py, which reproduce ground state energyof the
LM2M2 potential.

at the minimal energy, which becomes broader for larger mspaces. Indeed, we find such
a plateau around = 8 au with an energy, = —568.8 mK. This coincides with the result
E, = —568.79 mK found in [25]. In comparison to Monte Carlo calculations with the genuine
LM2M2 potential, published by Blume et al. i24], there is a deviation of0 mK or 1.8 %.
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Figure 5.4: Ground state energy tfle, determined with Pisa Potential with, = 14 au and
Wy = 0.422 K. Left panel: As a function ofb for various cutoffsV. Right panel: As a function
of N for variousb. The Horizontal line is the result with genuine LM2M2 from Bie [24].

The determination of the estimated result for the full Hittepace is again based on an extrapola-
tionto N — oo. We apply the same procedure as for the SRG-evolved LM2Mxgatgei.e. the
last two data points are extrapolated linearly to the irdinitlimit. Our final value is the arithmetic
average of the extrapolated values and the last data poimlie their difference is taken as the
uncertainty.

Using this extrapolation method, we have investigateparticle systems ofHe atoms up tol =

12. The results are collected in Talded. Results from 25] and [24] are added for comparison.
Only up to A = 6 results are published ir2§]. For that region both results are approximately
identical. Remarkable is the deviation from the Monte Carkuits: Until A = 6 the binding
energies are larger for the effective Potential and diffemfthe MC results by less than. For

A > 6 the binding energies are smaller and deviate approximatell0 % for A = 10. The
trend of this deviation can be explained by a combinatoniguaent. The original LM2M2 is
just a two-body interaction with a hard repulsive core. Imtcast, the Pisa potential consists of
an attractive two-body interaction and a repulsive thredybinteraction. The number of pairs
Np = 1/2A(A — 1) and tripletsNy = 1/6A(A — 1)(A — 2) depend on the particle numbér
differently. The number of pairs is larger or equal than thenher of triplets untilA = 5. For

A > 5, the number of triplets and therefore the effect of the reipalthree-body interactions
dominate the number of pairs and therefore the effects ofwtleebody interaction increasingly.
This effect can be reduced by choosing a three-body interaot shorter range,. The details of
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this interaction can then not be resolved by the more deeplnth systems with larget. However,
the price one has to pay is a slower convergence of the cttmuldn the case of SRG-evolution
the induced many-body forces thus become important at ting.p

| | SoftPisa | PisaP5] | LM2M2 with MC [24] | Pisa/MC]

EB [568.832+0.036 | 568.79 559.7 101.6 %
EB | 1326.82+£0.18 | 1326.6 1309.3 101.3 %
EB | 233957 +£0.72 | 2338.9 2329 100.4 %
EB | 3536.80 +0.76 - 3565 99.2 %
EB | 48584+18 - 5044 96.3 %
EB | 6256.7+3.8 - 6683 93.7 %
ER | 7699.345.5 - 8509 90.6 %
EB | 9165.6+3.5 - - -

EB | 1064745 - - -

Table 5.4: Binding energies determined with soft Pisa pakfdr system withA = 4 for up to
A = 12 bosons. Energies are given in mKirst column: Soft Pisa potential withy, = 14 au and
Wy = 0.422 K. Second column Results from 25]. Third column: Monte Carlo calculations
for genuine LM2M2 potential done by Blume et a24]. Fourth column: Relative deviation of
energies determined with Soft Pisa potential and Monte Gadolts of LM2M2.

In principle with the same approach systems with- 11 andA = 12 can be examined. A cutoff of
N = 12 here is still feasible. The best values of the oscillatogterand the ground state energies
can be estimated with the typical graphical analysis. Wigrtror bars oft mK the binding energy
of “Hey, is found to be equak;; = (—9166 4 4) mK as extracted from the left panel in Figuse
with extrapolation ofNV ! to 0. From the right panel we likewise finfl;, = (—10647 & 5) mK.
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Figure 5.5: Ground state energy‘ie;; and*He;, determined with the Pisa potential with =
14 au as a function of the cutoff paramef€r Left panel: A = 11. Right panel: A = 12.

We emphasise that these results are obtained with the ieffeRisa potential and not with the
genuine LM2M2 potential. As discussed above, this leadsredaced binding compared to the
genuine LM2M2 interaction. We expect from the results digpt in Tablé.4that forA = 11 the
deviation to MC results is of the ordeéb % and for theA = 12 about20 %.
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5.4.2 Hard Pisa Potentials

In this section thed-boson system is examined with the other parameter conibnsafor 11, and
po listed in Table5.3 Since these hard Pisa potentials are more similar to tlygnatihard core
LM2M2 potential, the deviation observed in the last sectmrthe soft potential should be smaller
at the expense of a slower convergencé/in

5.4.2.1 Unevolved Hard Pisa Potentials

To start with, the four boson system is studied with the uh@dhard Pisa potentials. In Figuses

the results for the ground state energy‘de, are presented as a function of the oscillator length
b for the hard Pisa potential with paramejger = 4 au in the left panel and in the right panel
with py = 2.2511 au. Two features are clearly visible in this figure. At firéte fposition of the
minimum depends on the interaction range. kot 4 au the minimum is aroundl= 5.5 au and

for po = 2.2511 au around = 4.5 au. Secondly, thé&/ dependence is the weaker for longer ranged
interactions. As a consequence approximately convergrdtseare not feasible for the hard Pisa
potentials. Only with extrapolations correct results caebtimated, albeit with large uncertainties.

"N=8 —— —
X H N=16 —~ X H \ — 1
< MC £
@ -200 \\ @ -200 \& \
3 3
© ©
> -300 > -300 /
c c N=8 ——
2 \ -8 \ W/ N=16
° 400 \\ / ° -400 NT\nzé ——
o " o l\\\:ﬁé """"" -
g -500 — — S 500 [\«
i K e i wi
-600 -600
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
Oscillator length b in au Oscillator length b in au

Figure 5.6: Ground state energy tfle, determined with the hard Pisa potentidleft panel:
po = 4 au.Right panel: py = 2.2511 au.

As depicted in the left panel of FiguBe7the ground state energy eigenvaluejpe= 4 au isky =
(—=571.7 £ 9.5) mK. Unfortunately, the model spaces are too small to ingagti the discrepancy
between the MC results with the genuine LM2M2 potential aggllts with soft Pisa interactions
systematically by a study of the hard core versions. But, aogious that also fop, = 4 au the
estimated binding energy is larger than the MC result adiccstinpatible with the result with the
soft Pisa potential.

In the right panel of Figur&.7 the eigenenergieg), for po = 2.2511 au are shown versus the
inverse cutoff parametdr/ N. We find an extrapolated energy eigenvakie= (—586 + 69) mK.
The uncertainties in the energy are larger than the diffterdretween the soft Pisa result with
po = 14 au and the MC result.

But in spite of the large uncertainties, it is possible to malstatement about the errors caused by
the discrepancy between the effective Pisa and the ab-ioii2M2 potential in the many body
sector. For instance, we consider the system wiith= 10 bosons and the hard Pisa potential
with parametep, = 4 au. It is clear from Figur&.8that the estimated binding energy bf} =
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Figure 5.7: Ground state energy‘sfe, determined with the Pisa potential as a functioiVofLeft
panel py = 4 au.Right panel: py = 2.2511 au.

(7699.3 + 5.5) mK for the soft Pisa potential anA7 = (9335 + 1236) mK for the hard Pisa
potential withp, = 4 are mutually exclusive. The hard Pisa potential indeed seenproduce
binding energies more similar to the results with the LM2Mi2gmtial obtained with Monte Carlo
methods.
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Figure 5.8: Ground state energy ‘e, determined with the hard Pisa potential as a function of
N with Po = 4 au.

Nevertheless, the slow convergence is a severe obstadleefbiard Pisa potential which becomes
more and more severe for larger particle systems becaulse nétessity to use smaller and smaller
model spaces. A possibility to guarantee a faster conveggsithe SRG-evolution. As explained
in section2.4 here the hard Pisa potential is modified in order to sepairigte dnd low energy
physics. In the next section results with the evolved pakate summarised.

5.4.2.2 SRG-Evolved Hard Pisa Potentials

In order to circumvent the problematic weak convergencé/ifor short interaction ranges, we
apply the SRG-transformation to the hard Pisa Potentials pyit= 4 au orp, = 2.2511 au.
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Note however, that there are two simplifications assumesl lerstly, we neglect all induced forces
apart from two- and three-body forces. They are supposed guppressed. Secondly, the three-
body evolved forces are difficult to determine for higher@agmomenta. Thus, we are forced to
restrict the potential matrix elements which are used anklanyg have to set the other elements to
zero, specifically this means that only matrix elements ansiclered where the 3-body subsystems
have total angular momenia, < 4 and that for the two Jacobi angular momeht& 4 andi, < 4
hold.

Before we will show results for the SRG-evolved Pisa potentiak worthwhile to discuss the
effect of this restriction in angular momenta. For this g, some genuine Pisa potentials results
are compared.

Figure5.9shows the absolute values of the relative deV|a’[i@ﬁ4 EP|/EP of binding energies

EB4 andEB. Here, EB denotes the result with restrictions in angular momentatioiead above
and E2 the result without those. The left panel shows the deviation the soft Pisa potential
and the right one those for hard Pisa potential wigh= 4 au. Remarkably, the deviations are
very small in comparison to uncertainties caused by the tisfextive potentials and the involved
extrapolations. For the hard as well as for the soft Pisanpialethe relative deviations are smaller
than one percent for all oscillator lengths in the range fiom 2 au tob = 20 au. The same
behaviour is found fod = 5. The restrictionl, < 4, [, < 4 andl, < 4 for the 3-body interaction
is thus empirically justified in order to simplify the SRG-&wion.
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Figure 5.9: Relative deviation of binding energies caladawvith and without restrictions in angu-
lar momenta for the 3-body interactidn, < ¢, I; < candl, < ¢, see text. As a function dffor
two different model space¥ = 16 or N = 24 three restrictions are shown with= 0, 2, 4. Left
panel: Soft Pisa potentialRight panel: Hard Pisa potential witly, = 4 au.

Returning to the SRG-transformed Pisa potential the bindiregges for several boson systems
are determined. As for the unevolved Pisa potential thelbogon system is studied. As shown in
the left panel of Figuré.10the binding energy=? for the SRG-evolved hard Pisa potential with
the flow parametet = 0.25 (au)~! and widthp = 4 au isEP = (560.96 +0.05) mK. It is smaller
than for the unevolved hard Pisa potential which led to tlselt@B (571.7 £ 9.5) mK.

In the right panel of Figuré.10the binding energie&? are shown versus/N for p = 4 au and
the SRG flow parameteY = 0.25 (au)~!. In comparison to the unevolved hard Pisa potential with
po = 4 au, to the Monte Carlo calculations and to the soft Pisa piademith binding energie&? =

(1341 £+ 59) mK, EZ = 1309.3 mK and EZ = (1326.82 + 0.18) mK, respectively, the calculation
with the evolved hard Pisa potential yleld a smaller bindingrgy of B = (1277.86 4 0.25) mK.
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Figure 5.10: Energy eigenvalues for SRG-evolved hard Pisangal with widthp, = 4 au and
flow parameter\ = 0.25 (au)~! versusl/N. The angular momenta are restricted with < 4,
l1 <4andl, < 4. Leftpanel: A =4. Rightpanel: A =5

5.5 Conclusion

In this chapter we have studiédie-atom clusters with up td = 12 constituents using the shell-
model approach. Starting with the two-body ab-initio pénLM2M2 we found for binding
energiesE? a very slow convergence in the cutoff parameterTherefore, the LM2M2 potential
was unitarily transformed with the SRG evolution. Omittilg induced many-particle potentials
binding energies for various flow parametemwas determined. The extracted binding energies
strongly depend on the flow parameter and deviate from predgbased on Monte Carlo calcu-
lations with the unevolved LM2M2 potential. As in nucleawf®ody systems with SRG-evolved
potentials, we found no monotonous dependencé.oHence, a prediction of binding energies is
subject to large uncertainties.

Instead of using an effective potential constructed syatemally with the SRG transformation, we
also determined binding energies with the so-called Pisanpial which is an effective parametric
potential constructed to reproduce the two- and three-lgodynd state binding energies consist-
ing of a two- and a three-body Gaussian potential. We stuveddifferent versions with a soft
long-ranged or a hard short-ranged three-body potential.cfitulated binding energies in finite
model spaces for up to twelve atoms for the soft Pisa poteiiiie true binding energies could be
estimated with small uncertainties with linear extrapiolas. For up to teiHe atoms these results
deviate less thannE/ E = 10 % from results obtained by Monte-Carlo methods.

Finally, binding energies based on the hard Pisa potengat wetermined. Because of the strong
short-range three-body force we found a slower convergentiee cutoff parametelN. Accord-
ingly, the SRG transformation was also applied to the haral pagential with three-body potentials.
Due to the time-consuming SRG-evolution of three-body pitdémna truncation in relative angular
momenta was necessary. For this evolved potential bindieggées with very small uncertainties
were estimated by linear extrapolations.



Chapter 6

Miscellanea

In this chapter two miscellaneous topics are covered. At firsutline the idea to determine the
atom-dimer and dimer-dimer scattering length and effectange from the energy spectrum of
fermions in a harmonic confinement. Secondly, a promisingysto extract information about

scattering resonances within the shell-model approactesepted.

6.1 Scattering Observables from Energy Spectra

The idea to determine elastic scattering quantities fraeretiergy spectrum in a finite volume was
firstly proposed by Lischer 91,92]. In lattice QCD the energy spectrum is generally calculated
on a cubic lattice with the exterit with periodic boundary condition. If the range of interaati

R is much smaller than the size of the béxthe scattering phase shift can be determined from
the energy spectrum of discrete states. A recent reviewengn [93]. For the energy splitting
AL, of the two-hadron states and the hadron massese finds the following so-calledilscher
relation:

CONRIEERS »

J

1

FIERE

P cot (0(pn)) = . (6.1)

1
7L

where the splitting is given b E,, = 2/p2 + m? — 2m and the limitA — oo is understood. As a
consequence, with the energy spectrum in the finite volumeriergy-dependent phase shit,, )
can be determined.

In 2010, Lilscher’s idea was adapted to trapped particles in a harrpoteatial by Stetcu et al7[7].
Moreover, Luu et al. used this approach for nucleon-nucseaittering in a harmonic potenti&).

Following Jonsell’'s procedure to derive the energy spectofl two trapped bosons with contact
interactions 95|, Stetcu et al. generalised the Busch formula derived fotamrnteractions to
interactions with finite ranges

F(—%+%)_b roa E E\?
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with the oscillator lengtth = \/i/(uw), the scattering length and the effective range,. Sim-
ilarly, Suzuki et al. considered the two-atom energy speetnear Feshbach resonances at higher
partial waves in 200996).

Note that the oscillator length is defined with the reducedsna this section, which belongs to
the usage of standard relative coordinates. In former@esti used Jacobi coordinates and the

oscillator length was defined lly= \/h/(mw) = /k/(2puw). In the next paragraph, | outline the
derivation of equationg.2).

Derivation of Equation (6.2): Consider the situation where the oscillator length is muahelia
than the range of the interactiérz>> R. Additionally, consider only states with small energigs
i.e.\/E/(hw)R/b < 1. Now one observes that usually the effective ranges of the same order
of magnitude ask. In this situation the main point is that for distanees b the influence of the
harmonic oscillator potential compared that of the shantged potential on the wave function can
be neglected. Therefore, it is sensible to compare at distah < r» < b the free wave function
scattered on the potential without any confinemegi(r) with the solutiony,s(r) of the harmonic
oscillator outside the range of the short range interaction

For the sake of readability, | define the dimensionless et := £/ (hw) andp := r/b. With
the relation\/2¢ = bp between the energy and the momentuthe scattering wave function with
energy¢ for p > R/b and vanishing relative angular momenta reads

Vscd p) = %2 [Sin(\/i p) + tan (5()(\/%)) cos(\/2_§ p)} ) (6.3)

For /2¢p < 1 the trigonometric functions in the wave functigg. p) can be expanded and this
yields

k) = cxtan (3, (VEE)) £ (14 py/2Econ (i VEE) ) +0 ((vEER)) ) - (6

The solution with energy and vanishing angular momentum of the Sxhnger equation with
spherical oscillator potential with frequencyis given in terms of the confluent hypergeometric

function M [97] as
1 3 ¢ 3
<z_1 — 3 ’/)!2)] : (6.5)

—Ipl?/2 2 I (% — %)
zﬂosc(ﬂ) =ce PME—IM|(-—2 = ]p] — 2,0—1 M
p L(i—3

For smallp < 1 this function can be expanded and one finds

_ 1 I'(3/4-¢/2) 2
Within the effective range expansion (ERE) the cotangert@ttattering phase reads
B 1 b roa

As long /2¢R < 1, higher terms are suppressed. By comparisonsgf p) andiesdp) in equa-
tions 6.6) and 6.4) and with the ERE one finds the sought relati6r).
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6.1.1 Atom-Dimer Scattering

Rotureau et al. suggested to apply form@&) for the three-body sector in order to determine the
atom-dimer scattering length, , and effective range,p [98]. For this purpose, they considered
fermionic atoms having two spin states, i.e. the total spithe system isS = 1/2, M, = +1/2.
Hence, no three-body short-ranged interactions congibut

To apply formula 6.2) to this case the oscillator length must be modifiedtp = /%/(papw)
with the atom-dimer reduced mags, = 2m/3. Secondly, the energ¥ should be inserted
as follows: Since the threshold for the three-body systemows the ground state energy of the
two-body systent; ,, the relevant energy is then

AEgm = Egm - E270 . (68)

and one finds

AE: ,n 3
QF <_ 2th + 71) - bAD _ "AD AEgm

2hw

(6.9)

The energyt, , coincides with the renormalisation energ¥?) in the shell-model approach.

The scattering length 4, and the effective range,, can be determined with two three-body
energies; ; and E; ». Using the definitionf (z) := 2T (—5% + 2) /T (=% + 1) one finds

bap _ AFEssf(AEs,) — A3,y f(AFEsy)

6.10
aAD AEso — AEs, 7 ( )
TAD f(AE:H) - f(AE3-2)

= : ~ hw . 6.11
bap AFEs39 — AFE3, ( )

The next step is to test this approach for applicability aadbisty. Rotureau et al. in98] argued
that equation@.9) is only valid if the atom-dimer relative mome Es../(hw) are smaller than
b/a. Hence, large scattering lengths are preferable. Howtwesize of the dimer is proportional
to a and the dimer can only form inside the trapifs small compared to the typical size of the trap
b. Consequently; /b must not be too large.

6.1.1.1 Atom-Dimer Scattering Length

In this section, the atom-dimer scattering lengths, are determined with equatio.00 for
various two-body scattering lengtlhs In order to test the approach, these values are compared
with the reference value of the relation between the atamediscattering length ., and the
two-body scattering lengtt

b _ 8, (6.12)
a
predicted in numerous calculations summarise®8).The shell-model approach is used to deter-
mine the required three-body energy spectrum. The sped$raaiculated for several values of the
two-body scattering length. Table6.1 contains the renormalisation energies and the correspond-
ing scattering lengths considered.
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E® =FE,,] 049] 00| -1 |-25] -5 | -10 | -20 | -50
a 56.8] 1.48| 0.68| 0.44 | 0.32| 0.22] 0.16| 0.10

Table 6.1: Renormalisation energie§” and scattering length which are considered to test the
expected relatiom,p/a = 1.18. The energies are given in units b anda in units of the
oscillator lengthb.

In Figure 6.1 the ground and the first excited state with = 0% are depicted for the three-
body fermionic system with total spifi = 1/2 for various renormalisation energié$?. The
energy levels are shown as a function of the cutoff parametgfN + (3 — 1)3/2. The model
space results are extrapolatedo— oo with quadratic polynomials. The eigenvalues for large
renormalisation energieé® ®)| have a larger curvature and a stronger dependence on tiragiara

N in comparison to the results for smallg?®|. Consequently, the extrapolated spectra for these
large energiesE(?)| are less precisely determined. We shall see that this inspadeaccurate
determination of the relatiomp /a.

E®) = 40.49 hw, a/b=56.8 +
0k E®) = —5.00 hw, a/b=0.32 o
E®) = —10.0 hw, a/b=0.22
E® = -20.0 hw, a/b=0.16 .
-10 - E®) = —50.0 hw, a/b=0.10 A
2 20F
K
-30 |
40
-50 : : : :
0 0.1 0.2 0.3 0.4
1/VN+3

Figure 6.1: Ground and first excited states with = 0* for the three-body fermionic system with
S = 1/2. The energy levels are shown as a function of the cutofor several renormalisation
energiest?). The energies are extrapolated¥o— oo with quadratic polynomials.

In order to determine the atom-dimer scattering lengtp for the various renormalisation ener-
gies E), the extrapolation functions for the energy levels of theugid stateFs,(N) and the
first excited state”s;,; (N) are used to determin@E;,,(N) andAEs,(N). These two variables
are inserted in equatio.(10 with the resulta4p(N), i.e. @ model space dependent atom-dimer
scattering length.

The quantityasp(N)/a is shown in Figureés.2 as a function ofV for various renormalisation en-
ergiesE?). The reference value,p/a = 1.18 is also displayed as a straight horizontal line. Note
that the other lines are no direct extrapolationg @f(/N), but indicate the atom-dimer scattering
lengtha4p(N) determined with the extrapolated energy values, see alpod6.1 One observes
that there is a large discrepancy for the scattering lemgth= 1.48 (corresponding t@& ) = 0 hw)
between the reference valugp/a = 1.18 and the extrapolated vallieny ., a4p(N)/a = 2.33.
This deviation could be interpreted as a consequence oathéat the dimer could not form inside
the trap due to its size of the order of magnitude:af b. Moreover, the discrepancies become
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Figure 6.2:a4p for various renormalisation energi&s? (or scattering lengthg). The solid hori-
zontal straight line indicate the reference valuks. The points are the energy spectra for specific
cutoff parameterV and the lines correspond to the extrapolation polynomiBigth inserted in
equation 6.10. Left panel: results for scattering length up tob = 0.22. Right panel: results
fora/b = 0.16 anda/b = 0.10.

larger for very small scattering lengths, for example fer trve fora/b = 0.22 (corresponding to
E® = —10 hw), wherelimy_,o, axp(N)/a < 1.

The situation is even more complicated for smaller scaitelengths. In the right panel of Fig-
ure 6.2 the atom-dimer scattering length , is depicted for the renormalisation energie) =
—20 hw andE® = —50 hw. With the extrapolation in the energy eigenvalues the adéimer scat-
tering for N — oo is estimated. For these two renormalisation energies ods &ipproximately
aap(00)/a ~ 1.03 andasp(co) ~ 0.92, respectively. In spite of the poles in equati@lQ de-
termining the atom-dimer scattering length, the values\for» oo lie in the vicinity of the correct
value atl.18. Nevertheless, it seems delicate to assess the appligaifithis equation also in this
case.
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Figure 6.3: Contour plot of the ratio,p/a as a function oA E5, andAEs;,,. E® =0 hw. The
solid straight lines indicate the energiéd’s,, and A Es.; extrapolated taV — oo. The rectangle
enclosed by the dashed lines indicates the uncertaintgrme@ine expects that this region contains
the correct value.
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Especially, one should notice, that the extrapolation eféhergy eigenvalues itself contains un-
certainties. In order to investigate the influence of thegeertainties on the estimated atom-dimer
scattering lengtla 4, for various energie®®, | show contour plots of the ratio,p/a as a func-
tion of AE5, andAEjs ; for various energie® . To start with, Figuré.3shows the contour plot
for £ = 0 hw (a/b = 1.48). The solid horizontal or vertical straight lines repretsttie energies
AFE;, and AFE;, extrapolated taV — oo, respectively. These extrapolated values carry uncer-
tainties which are conservatively estimated as half of ik&dce between the extrapolated energy
values and the corresponding eigenvalues determined hgtlatgest cutoff parametéf. The un-
certainty estimate is indicated in the following figures Ijeshed rectangle. One thus expects, that
the rectangle enclosed by the dashed lines representsgiloa kghich contains the correct value.
Explicitly, in Figure6.3it is obvious that a prediction of the ratio , /a is highly problematic. The
intersection of the two black solid lines marks the positioth the valuen 4 /a =~ 2.33. However,

in the vicinity of this point inside the uncertainty rectdagthere is a pole between the contour
line ayp/a = 20 andaap/a = —20. Hence, the predicted value has infinity large errors arsl it i
impossible to conclude on the basis of my or of Roturea@ fesults that equatior6(10 is not
applicable for the scattering lengilib = 1.48.

In the next Figurés.4the contour plots for the renormalisation energi#d = —4 hw andE® =
—10 hw are depicted. The intersection points again indicate thapalated energy values with
the resultasp/a = 1.10 andaap/a = 0.95. The main difference to the former plot for energy
E® = 0 hw is that the rise in the vicinity of the pole is slower. As a aemsence, the distances
between the contour lines are more pronounced, partigutathe vicinity of the intersection point.
Thus, the uncertainties in the results of the atom-dimettestiag length are smaller. However, the
problem with the pole persists in a moderated form: Hereptie is at the edge of the uncertainty
rectangle estimated conservatively and not in the middjenane.
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Figure 6.4: Contour plot of the ratie4p/a as a function ofAE5, and AEs;. The solid lines
indicate the energieA Es, and AEs; extrapolated taV — oo. The rectangle enclosed by the
dashed lines indicates the uncertainty region. One aatiegpthat this region contains the correct
value.Left panel: E? = —4 hw. Right panel: £® = —10 hw.

Finally, the contour plot for the extremely negative renalisation energy2® = —50 hw is
shown in Figureb.5. In this case, the contour lines are clearly separated whigminciple is a
favourable situation to determine the atom-dimer scaitelength. But here the obstacle is the
uncertainties in the extrapolated eigenvalues, in pddicior the first excited state with value
AFE3, = (4.1 4 1.7) hw. As shown in the spectrum in Figuée2 the first excited state fab? =
—50 hw has a large curvature and a strong dependenc¥ teading to a large uncertainty. This
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uncertainty prohibits an accurate determination of thenadlimer scattering lengti, .
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Figure 6.5: Contour plot of the ratio, p /a as a function of\ E,g andAEs.,. E® = —50 hw. The
solid lines indicate the energiésts,, andA Es.; extrapolated tdV — oo. The rectangle enclosed
by the dashed lines indicates the uncertainty region. Ofieipaites that this region contains the
correct value.

6.1.1.2 Atom-Dimer Effective Range

This section considers the determination of the atom-diffective range- 4. With Eqn. 6.11)
also the effective range can be determined from the energgtrgpn given in Figuré.l Two
inconsistent predictions for the atom-dimer effectivegan, , were published by Grinyuk et al.
[10Q and by Stecher et al1p1]. Recently, the result of Grinyuk et al. has been confirmed byrBo
et al. P9] who found that the ratio of the atom-dimer effective ramgg and the scattering length
a IS given approximately by

TAD  0.0383 . (6.13)

a

Firstly, the N-dependent atom-dimer effective rangg, (V) is calculated for the typical scattering
lengthsa from the model-space spectra and their extrapolations. ré&belts are shown in Fig-
ure6.6. For all scattering lengths up t9'b = 0.32 the results are in the vicinity of the reference
value. For smaller scattering lengths the discrepanciesrbe large, particularly for the very small
scattering lengtla /b = 0.10. In the next step, the influence of uncertainties in the exiigion is
studied. For this purpose, contour plots far, /a are shown in the following figures as a function
of the energied\ Es., andAEs,.

In the first contour plots in Figur6.7 the results for the renormalisation energie® = 0 hw
(a/b = 1.48) andE(® = —4 hw (a/b = 0.68) are shown. Note that the colours of the contour lines
on the left and right side correspond to different levels. Iaaye scattering lengths the function is
very flat. Thereforeyp/a can be determined far/b = 1.48 rather precisely. From the left panel
one extracts a value of,p,/a = +0.035 £ 0.28 which is still compatible with the reference value
of rap/a = —0.0383. From the right panel a value of,p/a = 0.29f§5 can be extracted. Also
this value is still compatible with the reference value, ibbbias much larger uncertainties.
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Figure 6.6:1 4 for various renormalisation energi&s?. The solid horizontal straight line repre-
sents the reference valugp /a = —0.0383. The points are the values for specific cutoff parameters
N and the curves correspond to the extrapolation polynomnai#h inserting in equatior5(10).

Left panel: results for scattering length up &b = 0.22. Right panel: results fora/b = 0.16 and

a/b = 0.10.

Finally, | consider the contour plots for renormalisatioresgiesE? = —10 hw (a/b = 0.22)
andE® = —50 hw (a/b = 0.10) in Figure6.8. Obviously, the atom-dimer effective range cannot
be determined with the intersection point due to two prolsleRirstly, the extrapolations contain
larger uncertainties and secondly, the contour lines tiearl together, i.e. the function is steeper.

6.1.1.3 Conclusion

In the last two sections | have investigated the applidgiii equations§.10 and 6.11) in order

to determine the atom-dimer scattering length and effectawnge. In conclusion, it can be stated
that values for 4, andr 4, p with acceptable error bands can be extracted only for a saradje of
two-body scattering lengths32 < a/b < 0.68. For other values the uncertainties are too large to
make a statement. Far/b > 1 one expects that the dimer cannot form in the trap. Howeker, t
validity of the approach can neither be verified nor be exetlfdr these large scattering lengths due
to uncertainties. The combination of poles in the functiand uncertainties in the extrapolations
impede a conclusive statement concerning a possible irstensy with the reference values. For
very small scattering lengths the main problem for the deit@ation ofa 4 is the uncertainty in
the extrapolations. In principle, the functio®.10 is rather flat in the region of smadl/b which
would guarantee a moderate propagation of uncertaintiesomtrast, the dimer-atom effective
ranger,p was found to show an opposite behaviour.

6.1.2 Dimer-Dimer Scattering

In this section, the former approach for dimer-atom sciaieis adapted to the dimer-dimer scat-
tering. The 4-body sector with two pairs of identical fermsds the appropriate system to inves-
tigate this scattering. There is no three-body interactiod no bound trimer. Therefore, it is not
necessary to distinguish between dimer-dimer and trirt@mnacattering. In principle the dimer-
dimer scattering length, and effective rangepp should be analogous to the equatioBsLQ)
and 6.11). Only two things have to be changed. The threshold for ttrarteer is the double dimer
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Figure 6.7: Contour plot of the ratiosp/a as a function oA E5,, and A Es5,. The solid straight
lines indicate the energieSLEs;,, and AEs,; extrapolated taV — oo. The rectangle enclosed by
the dashed lines indicates the uncertainty region; onectxpleat this region contains the correct
value.Left panel: E® = 0 hw. Right panel: E?) = —4 hw.
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Figure 6.8: Contour plot of the ratin,p/a as a function ofAFEs, and AEs;. The solid lines
indicate the energiea E3, and AEs,, extrapolated taV — oco. The rectangle enclosed by the
dashed lines indicates the uncertainty region. One aatiegpthat this region contains the correct
value.Left panel: E? = —10 hw. Right panel: E? = —50 fw.

energy. Thus the relevant energy is
AE4;n - E4,n - 2E2,0 . (614)

Additionally, the reduced mass of the dimer-dimer systemjs = m. The ratio between the
oscillator lengths$ andbpp is given in this case bypp = b/v/2.

With the shell-model approach the energy spectrum of this-fmdy system is calculated for var-
ious renormalisation energigs? and values of the cutoff parametat. Afterwards, the ground
state energies, the first excited state energies and thieapekations are used to determine the
scattering observables. The reference value is

CLDD/CL =0.6 5 (615)

which was predicted by Petrov et aLJZ. Unfortunately, both difficulties arising from the un-
certainties and poles in the functions are even more sewetieei four-body sector. At first, it
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is more elaborate to calculate the energy spectra and coeisty] only smaller values of cutoff
parameterN are numerically tractable. Hence, the extrapolations,artiqular for the first ex-
cited state, contain larger uncertainties. Secondly, xtrajgolated combination ok £,.,(c0) and
AE,;(oc0) lie often at awkward positions in the proximity of poles. Aeamples, the contour plots
for E® = —0.5 hw (a/b = 0.88) and E® = —1 hw (a/b = 0.68) as well asE® = —4 hw
(a/b = 0.35) andE® = —5 hw (a/b = 0.32) are presented in Figur&s9and6.1Q respectively.

In these figures the horizontal and vertical black lines neatkapolated energy levels faE,.,(N)
andAFE,;(N). Their intersection points indicate the predicted valuatie dimer-dimer scattering
lengthapp/a. In Figure6.9 one can extract the values,p/a = 0.24 andapp/a = 0.03 for
E® = —0.5 hwand E® = —1 hw, respectively. But one can recognise that the extractedgsalu
contain inestimable large uncertainties because of thespial their vicinity. It is not possible
to verify the adaption of equatior6.(L0 to the dimer-dimer scattering for these renormalisation
energies.
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Figure 6.9: Contour plot of the ratio, ,/a as a function o\ Ey andA E,,;. The solid horizontal
and vertical black lines indicate the energig%’,,, and AE,; extrapolated taV — oco. The
rectangle enclosed by the dashed lines indicates the antgrtegion. One anticipates that this
region contains the correct valueeft panel: £ = —0.5 hw. Right panel: £ = —1 hw.

In Figure6.10the results forE® = —4 hw and E® = —5 hw are shown. For the dimer-dimer
scattering length the value,p/a = —0.037 andapp/a = 0.22 can be found at the intersection
point of the extrapolated energies. In contrast to the forsiteiation, the uncertainties are now
small. Particularly for the left panel, it follows that thesult is inconsistent with the reference
valueapp/a = 0.6. Only at the lower edge the reference value lies in the uaitgytrectangle. To
a lesser extent, this statement is correct for the rightlp&texe the correct value lies slightly more
in the middle of the uncertainty rectangle.

In conclusion, the extraction of dimer-dimer scatteringevables for the four-body sector in a
harmonic confinement seems to be problematic. For the exawith £ = —4 hw one finds
that the result contradicts the reference value. For therattnormalisation energies the large
uncertainties in the results impede an interpretatiornus remains doubtful if the adaption of the
formula from the atom-dimer approach is indeed correct.
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Figure 6.10: Contour plot of the ratig, 5 /a as a function oA\ E,., andAE,.;. The solid horizontal
and vertical black lines indicate the energig#’,, and AE,; extrapolated taV — oo. The
rectangle enclosed by the dashed lines indicates the anugrtegion. One anticipates that this
region contains the correct valueeft panel: E® = —4 hw. Right panel: E®?) = —5 hw.

6.2 Description of Resonances with a Shell Model

In this section the possibility to study the energy and thethvof resonances within the shell-model
approach is investigated. For this purpose, the two-bogstes with repulsive smeared contact
interactions is considered. Due to the separability of tiberaction the T-matrix itself is separable
and in momentum space reads (see appe@dix

AT = (5= BO) o), 6.16)
whereuv(p) := exp(—|p|*¢?/2) and
m 00 w2€—62w2
B(z) = F/o dw py— (6.17)

With the substitution: = (¢*> + iA)/(2m) one finds from appendi®

' 2 Ay = L VT o
i Bla? +i2) = (V) (5 = o) + i GTpe ) (6.18)
where
F(z) = em2/ dy ¥ (6.19)
0

is Dawson’s integral.

Aresonance at the ener@, = ¢*/(2m) corresponds to a pole in the T-matfiXq®) at momentay
with negative imaginary part in the vicinity of the real ax@3n the real axis the resonance manifests
in a peak of the on-shell T-matrix with the widthapproximately described by the Breit-Wigner
formula:

IT(E ~ Ba)lp) x = Ef)/i) ol (6.20)
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wherep = v2mFE.

Figure6.11shows the transition amplitudép < p) for the smeared contact interactions with the
coupling constantng® /e = 100. One recognises a peak in the amplitude at the engigy
3.2~ 2 with a widthI" ~ 0. 2—

t(pe<p) [e/m]

N N a - ET1 2

> 3 p s E[1/(me)]

Figure 6.11: On-shell T-matrikp « p) versus the energfy = p /(2m) for the smeared contact
interaction(s]g®V,|5") =5 (:2))3 exp <_ﬁ> exp ( ol ) with mg® /e = 100.

Likewise, one finds for more repulsive interactions sharpsonances with the detection of peaks
in the T-matrix. A selection of coupling constant® with the corresponding resonance energies
E'r and their widthd" is collected in Tablé.2

| mg®/e | 100 | 200 [ 300 | 400 |
Ep [ 32]536] 75528 [ 9.77722
I ]024[002[68-107[1.6-107°

Table 6.2: Selection of coupling constantg?) /e and their corresponding resonance energigs
and widthsl". Both are given in the energy urlif (me?).

In the next step the two-body problem is solved within thellsinedel approach. The matrix
elements of the Hamiltonian in oscillator sta(eéb) ]nlm) are given by

)1

1 (
b<n’l’ ’H{nlm>b (52 1<nlm’Tk,n|nlm>1+ s <nl' ’Ve‘nlm>1), (6.21)

where/ is an arbitrary length scal&i, is the kinetic energy operator apd= /¢ is the oscillator
lengthb in units of the length scalé The range of the interactianis chosen as the length scale,
i.e.l =e.

As two examples, Figuré.12 shows the complete energy spectrum for= 10 with vanishing
relative angular momentum versgs= b/e for mg® /e = 100 andmg® /e = 400. In spite
of the small cutoff parameteV one sees a noticeable structure in ﬁ‘lelependence at energy
levels around the resonances enerdigs= 3.2 2 and Fr = 9.77722 — in the left and right
panel, respectively. The behaviour of the hlghest excitatd $s salient. At first, it decreases with
increasing’ up to the resonance energy and afterwards, it keeps appatedintonstant for a wide
region of 3. Furthermore, the behaviour of the ground state is remé&kathe right panel. There
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Figure 6.12: Energy spectrum for the two-body system witeamd contact interactions féf =
0" andN = 10. Left panel: mg®® /e = 100. Right panel: mg® /e = 400.

is a plateau af? ~ 7 —-; which seems to be related to the resonance. However, itg\eteel

me?
differs from Eg by AE ~ 2.7—L;.
In order to extract an estimate of the resonance positioritanadth from the energy spectrum, |
show an enlarged area in Figel3 Concentrating on the next-to-last excited states, thealat
of this state is bounded from left and right in contrast toglageau in the highest excited state. The
region of the plateau is marked with red horizontal lineghmright panel the determination of this
region is obvious forng® /e = 400. For the small coupling constant the plateau is not as disti
as for the large one. Hence, the borders of the region theasebntain some uncertainty. The
resonance energies are estimated with the arithmeticgaz@fahe borders and the corresponding
uncertainties as the half of the distance of the bordersnf6t /e = 100 andmg® /e = 400 one
finds Er = (3.21 +0.22) -5 andEp = (9.777218 + 2.5 - 10~°) —L, which is consistent with the
values in Tablé.2 Moreover, the uncertainties are of the same order of madmias the width of
the resonances.

4 9.77745

38| 9.7774
— — 977735 |
—~ 3_6 |- —~
L v g7l
g 34 g
= = o725 |
~ ~
=, 32y = et
S S R—

28| | 97771 |

9.77705 |
26|
L L L L L L 9.777 L L L L
1 114 12 13 14 15 16 17 18 0.6 0.7 0.8 0.9 1 14
p=bje g =ble

Figure 6.13: Energy spectrum for the two-body system witbamd contact interactions fof =
0T andN = 10. Left panel: mg® /e = 100. Right panel: mg® /e = 400.

In Table6.3resonance energiés; in units of# for various coupling constantg? and cutoff pa-
rametersV are collected. The estimated resonance enefgieand the corresponding uncertainties
are independent a¥. In larger model spaces it is not possible to determine then@nce energies
more precisely. The uncertainties are for@llin the order of the width™ of the resonances. For
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the smallest coupling constantg® /e = 10 the limits of the plateau are indeterminable for the
larger cutoff parameteN > 100. Although the resonance energy itself can be identified tiéh
help of the behaviour of the highest excited state, the waicdgies cannot be estimated from the
next-to-last excited state.

mg'?) /e 100 200 300 400

10 3.21 £ 022 ] 5359 £ 0.018 | 7.5520 £ 1.0 10-° | 9.777221 £ 2.6 - 10
100 - 5.350 £ 0.018 | 7.5527 £ 1.4-10-3 | 9.777218 £ 2.5 - 107
200 - 5358 = 0.015 | 7.5528 £1.3- 107 | 9777218 £ 2.5- 107
300 : 5.360 £ 0.015 | 7.5527 £ 1.4-10-3 | 9.777211 £5.2- 100
400 : 5357 £ 0.014 | 7.5527 £ 1.8 - 103 | 9.777217 £ 4.0- 107

Table 6.3: Estimated resonance enerdigsin % for various coupling constantg? and cutoff
parameterV.

In conclusion, the numerical study of the repulsive smeadact interaction in the two-body
system suggests that the energy levels and widths of resesaran be extracted from thie
dependence of the energy spectrum in the model space. A sfsopance corresponds to a dis-
tinctive plateau in the-dependent energies. The corresponding widdan be extracted from the
borders of the plateau. In order to formalise the presonptd estimate the resonance energies
and widths, an approach used for the analyses of spectratemvoiumes could be helpfullD3J.

So far, only the two-body system is investigated. The exbengn systems with more particles is
straightforward. However, one expects more complicatedtsa with several resonances.
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Conclusion and Outlook

In this thesis, | have covered issues ranging from the imptgation and comparison of two dif-
ferent shell-model approaches, their application to bimssystems with and without external con-
finement and finally to the extraction of scattering progsrfrom energy spectra in a harmonic
oscillator potential.

In the first shell-model framework | used the so-callddscheme. In this scheme the many-body
basis consists of the product of oscillator functions in-pagicle coordinates. In contrast, the basis
in the second framework consists of the angular momenturpledwscillator functions expressed
in relative coordinates, the so-calldescheme. In the/-scheme the most time-consuming task is
the construction of the symmetrised many-body basis angsponding transformation matrices.
This has to be done only once for a specific model space indepdg from the interaction. Hence,

in a comparison of thé/-scheme with the/-scheme procedure | have found a definite preference
for the latter in order to determine energy spectra for wegripotentials globally, i.e. for a variety
of coupling constants and parameter combinations.

However, for a specific problem the performance depends @maimber of particles, the actual
implementation and the hardware. For up to six particles/tseheme is distinctly more advanta-
geous than thé/-scheme. For systems with more particles this is not so oiswsince one should
note that the most time-consuming part of tlescheme is the diagonalisation of the many-body
Hamiltonian; matrix diagonalisation is a standard prohl&rhich is highly parallelisable. In fu-
ture applications, benchmarking the diagonalisationinestfor the many-body Hamiltonian in the
M-scheme would therefore be instructive.

At first the shell-model approach has been applied to systemsisting of bosons with spinin a
harmonic confinement. Assuming dominating scatteringtlengin the effective range expansion,
the interactions have been approximated by two-body arebthody contact interactions; this is
called the scaling limit. In the model space the correspmndoupling constants have been renor-
malised and adjusted to reproduce given two-body and thoeg-energy levelsZ? and E®),
respectively. Here, the two-body energy? is directly related to the scattering lengih For
systems with up to seven bosons selected energy spectradéenw@resented for various renormal-
isation energie®® andE® as a function of the cutoff parametat. With quadratic polynomials
in the variablel //N energy spectra in various model-spaces are extrapolatid tionit N — oo.

In particular, the dependence @&i¥?, or equivalently on the scattering lengthfor constant three-
body interactions has been studied in the four-body sentadetail. The harmonic confinement
strongly modifies the energy spectra with the consequerateetiergy levels are mutually per-
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turbed. Furthermore various avoided level crossings haea fiound.

Throughout, | have found a slow convergence of the bindingrgias in the dependence of the
cutoff parameterV in all studies. This defies an accurate extrapolation withlsoncertainties
to the limit N — oo. As a possible expedient the contact interactions have bemtified to
finite-ranged separable Gaussian interactions of widBor the new interactions | have found that
the energy values depending &nconverges for finite widtle exponentially. This widthe has
been used as an additional extrapolation parameter bdwdeutoff parameteN. In a detailed
uncertainty analysis the mutual dependence of the finitefficgparameterV and the finite widthe
has been studied. For practical applications, the ap@tgpprescription can be summarised briefly
as: Use converged results in the cutoff paramaétesr extrapolate in the cutoff parametat for
finite width € first and then extrapolate in the widthde= 0 linearly.

For several renormalisation energies the energy spectealdeen shown as a function of the width
e. Usually, the extrapolated binding energies in the widfbr smeared contact interactions and
extrapolated energies in the cutoff parametefor genuine contact interactions coincide within
the estimated uncertainties. But for certain combinatidn®ormalisation energies | have ob-
served that these extrapolations disagree with each dgrefisantly. These deviations indicate an
underestimation of the errors and reveal parameter comdnsawith problematic extrapolations.

Therefore it would be interesting to study the reason fa li@haviour for specific renormalisation
energies and to extract precise energy values with largeehspaces or alternative procedures.

As an example for a system without an external confinemergnpiad, which has a short range
strongly repulsive interaction combined with an attraetinteraction of long range, | have con-
sidered systems with fedHe atoms. Using the shell-model approach the ground stattirig
energies ofHe atom cluster$He, have been determined. In these studies the interactiorelbetw
the *He atoms was described by the ab-initio two-body potentfPM2. Due to the shape of
this interaction the energy levels in the model spaces used a very strong cutoff dependence.
Therefore, it has not been possible to predict binding eesm@ccurately for the genuine LM2M2
potential.

Alternatively, exploiting the unitary SRG-transformatitime coupling of low and high energy
physics can be reduced and a faster convergence has indee@digeved. For various flow pa-
rameterA the ground state energies have been determined for up taaers.aThese values have
been compared to predictions with Monte-Carlo methods. Meweinitary SRG-transformation
induces many-body forces, which have so far been omittdukiset calculations. As a consequence
a large dependence of the results on the flow parametas still been found. In particular, as
in nuclear physics, a non-monotonous behaviour has bearnass In order to stabilise the es-
timated binding energies, the induced three-body intemastshould be included. However, this
requires more sophisticated solutions of the integraedgfitial equation for the three-body SRG-
transformation. Furthermore, up to now only the kineticrggehas been used as generator for
the SRG-transformation. Possibly, this is an inappropgatace and in future studies the use of
alternative generators should be investigated.

Instead of constructing an effective interaction of the LW potential systematically with the
SRG-evolution, | have also studied an effective paramettaraction consisting of two- and three-
body Gaussian interactions, here called the Pisa poteiiti& strength and range of the attractive
two-body force are chosen to reproduce the two-body grotatd snergy of the clustéHe,, the
scattering lengtla, and the effective range of the LM2M2 potential. The strength and range of
the repulsive three-body force are not unique. There isfamt&number of possible combinations
which reproduce the LM2M2 ground state energyfide;.
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For a version of the Pisa potential with a relatively softd#mus long-ranged) three-body Gaussian
interaction, binding energies for clusters with up to tveebonstituents have been estimated by
linear extrapolations in the cutoff parametér Due to the soft repulsive interaction the dependence
on N is weak and uncertainties in the extrapolation are accgpsatall. In comparison with results
based on Monte-Carlo procedures using the genuine LM2M&npial the ground state energy
differs only by at mosi\E/E = 10% for up to ten atoms.

In two hard versions of the Pisa potential the strong steorged three-body Gaussians lead to
a slower convergence in the cutoff paramedér Hence, the predictions via linear extrapola-
tions carry larger uncertainties. With the SRG-transforomatfaster convergence iN have been
achieved. However, the complex integro-differential éopumain the transformation of three-body
potentials constrains the magnitude of the angular monfentahich the SRG-transformed inter-
actions can be calculated reliably. The influence of thedmngimgular momenta terms was found
to be minor in a pilot study. However, this and the effects oftiple-body induced forces as well
as the flow parameter dependence should be investigateshsistally.

Apart from these three main parts, the shell-model apprbashbeen used to extract atom-dimer
and dimer-dimer scattering observables from the energgtspe of the three- and four-body sys-
tem with identical spint/2 fermions in a harmonic confinement. For various two-bodytedag
lengths the atom-dimer scattering length and effectivgeaas well as the dimer-dimer scattering
length have been studied. Because of the intricate behavidne modified Busch formula for the
energies, the extraction of these scattering observalhes large uncertainties or could not been
determined at all.

Finally, in the two-body system without any confinement it lieeen shown for the example of
smeared contact interactions that the position and widtnrelsonance can be extracted from the
energy spectrum dependence on the oscillator lelfitha constant cutoff parametéf. Remark-
ably, these quantities can be determined even for smalffquéivameters. An extension of this
method to systems with more particles would certainly berggting.



Appendix A

Jacobi Coordinates

Jacobi coordinates are a set of coordinates to describelditéaze motion in many-body systems.
They are used for example to separate the centre-of-massmnoia harmonic oscillator confine-
ment potential. For two particles at positiofis and 7, the Jacobi coordinates are defined by:

7 = % (& — %) | (A12)
- 1
Ry = — (71 + 72) , (A.1b)

&

where3, is the first Jacobi coordinate art} the corresponding centre-of-mass. The Jacobi coor-
dinates fulfil the relation

= 12 - 12 =12 =

71|+ |2 = [5] + | R (A2)
Hence, the transformation from single-particle coordisat andz, onto Jacobi coordinates is an

orthogonal and isometric transformation. In general,Aqguarticles at positions,, 7s,...,74 the
Jacobi coordinates are defined by

‘ 2

1
Spi=——— (T + o+ +Tp—n-Tpi1) n=1...,A—1, (A.3a)
(n+1)n
= r . . -
R4 I:\/—N(iﬂl—{—l’g—i-“'—l-x,q). (A.3b)

Again, the transformation is orthogonal and isometric:
B+ 7 T = 8 e S| |Ral (A-4)
and as a consequence also for the sum of laplace-opera®fsda
Ap+ Az + -+ A8z, =8z + Az + -+ D5y, + A5, (A.5)

From Eq. A.4) and @A.5) it follows that the centre-of-mass motion can be separatetthe A-body
harmonic oscillator, i.e. one finds

A
B Ay, 1 5
H = 2 (— o —|—§mw ‘xl| ) , (A.6)
_A_l A;Z 1 2] = |2 AEA 1 2 R’ 2 A7
_.E (—2m+§mw|si‘>+(—2m+§mw‘ A‘). (A.7)
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Appendix B

Talmi-Moshinsky Transformation

The orthogonal and isometric Talmi transformation mapst@fsevo coordinates’ and X onto a
new set of coordinates’ and\:

~, [ [ d .
(g,) = (VR V). (g») L deER d>0. (B.1)
Vit V1

v~

M,

where M, is a general orthogonal matrix. For historical reasons th&imis parametrised by the
weightd. For example, the matriX/; is the orthogonal and isometric transformation from the set
of two single-particle coordinate§ andz; onto the Jacobi coordinatés and R,:

(;;12) =M - (2) . (B.2)

A particular feature of the Talmi transformation is that #regular momentum coupled oscillator
1L o
function [(bnplp(ﬁ) ® qbnm()\)} depending on the coordinat@sand X is a finite linear combi-
M

L, AL
nation of angular momentum coupled oscillator functi[(mp,lp, (P") @ bny1,, (A) y depending

on the coordinateg’ and X'. The corresponding coefficients are given by the so-callextiBr
Moshinsky bracket$n, lynylx; L|n,l,, naly), [63], i.e.

60, e o, (7)) =

Z <n L movl /L’n l,,nyl > |:¢(b) (_’/) ®¢(b) <X/)]L (B 3)
Nt U plps TUNUN d nzilz P nxls Va '

np/lp/nA/lA/

Brody-Moshinsky-Brackets

where the sum is subject to following constraints:
e energy conservationy := 2n, + [,y + 2ny + ly L 2n, + 1, + 2ny + 1y,
e parity conservation{—1)% ™ = (—1)

e total angular momentum conservation.
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Appendix C

Smeared Contact Interactions

C.1 Matrix Elements of Smeared Contact Interactions

In section4.3, the following expression for matrix elements of the smdamentact interactions in
the oscillator functions are used:

2

600 (25 o0 (5) o dge . (€

<n1l1|Vg‘n'1l’1> == 1 T 62 1 Te

1
(1+ )3

In this section, the corresponding derivation is given. therseperable smeared contact interaction

s = 1 _2 52
(8]ve|s") = () 2?e 27 (C.2)
the matrix elements are given by
Bl 1 3 -~ 3 il
(mly|Va|nil) = (2rcy d’s g (5)e 22 [ s’ g(5)e 27 (C.3)

Then, by straightforward computation one finds:

52 o0 r?
/dSS Dni(5)e 2 = b9 \/47r/ dr r’e” 22 R,0(r) (C.4)
0
= 6,0 VAT N,y / dr r2e 30+ (@) (2) (C.5)
0

1
with the associated Laguerre polynomiafs) and the normalisation factor

\/47r 2n +1 "

(C.6)
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With the substitution of? = « and the definition? := (1 + %), one finds for this integral, using
the expansion of the Laguerre polynomials in monomials,

/dSS ¢n0(§)67% _ \/ENnO Z (_1)Z F(n + / dz $2+z€ P’z (C 7)

2 & r(¢+g)r(n—z+1
VAT Ny = (—1)" T 3 1
_ VAN g~ (£ Tnty) 1 (C.8)
2 = il Pln—i+1)p*t>
VATN, o T(n+32) 1 <K (n o
— 27 m;(i)w ) (C.9)
VAT Nyo(2n + 1)1 .
- 2y 2nt3 (p* = 1)"Vr. (C.10)

Finally, the quantitiep andV,,, are replaced by their definitions and one finds

01,0 0150 2ny+ D! [+ DI (1 —\" (1 ¢ n
h|Velmh) = ———5 1 — c.11
<n1 1‘ G’nl l> (1 + 2)3 3 n1!2n1 n/1|2n’1 (1 +€2> <1 +€2> ( )

om0 (15) 000 (%) o (€.12)

T +62)

C.2 Effective Range Expansion for Smeared Contact Interac-
tions

For separable potentials

(5]V]5") = gw($w(3"), (C.13)
the T-matrix is given by
. - i . d’q [o(@)’
T(z = (- —B(») (P)v(p’) with B(z) = - (C.14)
(AT E)P") = ( ) o(p)u(p 2 /(2w>32_;—m

as a solution of the Lippmann-Schwinger equation
T(z) =V +V(z—Hy) 'T(2) . (C.15)

Here,v(p) denotes the Fourier transformofs)
v(p) = /d3 Py (C.16)

Separable central potentials only contribute to s-wave=(0) scattering and one finds for the
scattering amplitudg,(p) for ¢ = 0 with the effective range expansion

folp) = == him (PIT(p*/2 + i) [ ") . (C.17)
- [FEbort s - Berrz )] c.18)

1 1 !
= [—a + 57“])2 +O(p*) — z'p} . (C.19)
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For the smeared contact interaction one has

1 i 22

w(s) = e 22 v(p)=e€e 2 |, C.20
= G ) (.20
(9 2, —e2¢? 00 \/E —e2k
9 Ay m q‘e _m e
B(p /2+ZA)—7T2/0 dqu—qQ—i—iA =N dkp—Q—k+iA’ (C.21)
where
b b
. f(z) : / f(z)
1 = — 22
Jim, i dx:c:i:iA Fir f(0) + P i dx " (C.22)

Then for the imaginary part

2,2 1 2,2
%% = —m2meteP 2—72]96’6 P =_—p (C.23)
and for the real part
1 2 Feo 2¢—¢*¢ 2,2
R = |-— - P/ dg L || e (C.24)
Jo g T N 4
Ap?)
follows. Moreover, it can be shown, that
1 — 2epF
) = 2P (.25)
€
where the Dawson function is defined by (see appeDlix
2 r 2 2
Flz)=e" / dy e’ =z — 5333 +0(2°) . (C.26)
0

The functions4(p?) ande’?” can be expanded in powers @t Since in particular the scattering
lengtha and the effective range are to be determined the expansion is terminated(at):

11 2m 1 1 /(2  4mé

——+ = op") = - —+ — - —=- 2+ 0(>p") . C.27
st 000 = () e g (2T ot . (2
Note that the vectog is the first Jacobi coordinate amdthe corresponding Jacobi momentum.
However, the ERE is canonically defined in the relative cowmt#ir = 7, — 7. In this coordinate
the potential reads

22 2
(#v]5) = |22 e T e AT (C.28)

(2 [V2d )" (2 [V2e])"”

Hence, the scattering lengéhand the effective range in canonical relative coordinates read

l/a=1/V2 <229_7;+ﬁ> , ro=\/§<%—§;i) : (C.29)

with the reduced mags = m/2.




Appendix D

Dawson Integral

To calculate:
q e7b2 2
= 1&}%1/ dq (D.1)
Substitutingy :=bq,x =bp:
1 [ eV’ eV’
A(p?) = lim — dy y — = lim — / y
0 b Jy 2 —22—ie  <cob Y2 — (x+ie)?”

Now, from ABRAMOWITZ & STEGUN[97] (7.1.3:

w(z) = e (1 + 7 dt et2) — e *erf(—i 2) (D.2)

and (7.1.9:

. s _ 2 —t2
:'—/ dt 2 2'2/ At (32> 0). (D.3)
7)o 22—

Indeed, D.2) and D.3) are equivalent: Write = x + i, > 0. Then

w(z +ie) = 2ifztie) /Ooodt ( (.a_tQ

s T +ig)? — 12

I 1 1
= — die . + .
T Jo r+le+t x+le—1
i —o° e’ > e’ i[> e’
= — —/ dt.—+/ dt —— :—/ dt ——.
m 0 T+le—1 0 T+le—1 T ) o THle—1

o0

Now
) e2i (x:l:t)ue—2 eu

1
| ————— =
2i(x +icxt)|,

—2i / " du s -
0 TH+lext

Therefore, with

/ dt e (t+2)° :/ dze™ = %%erfC(d
0 z
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we find
w(z + ie)
_ z/oodt /Oodu g 22w He . | o242 (e e t))
™ Jo 0
— z/ du dt —(t—iu)? +e (t+iu)? )e—(u—i(z+ig))2e_(m+i5)2
T Jo 0
2 [~ oo _
= —/ du\/—_(erfc(—lu)+erfc(|u))e (ui(a+ie)? g (wtie)?
T Jo 2
—2
2 e [0 i((4is))2 2\/_
_ —(z+ie) —(u—i(z+ie))* _ (z+ie)
= —e due = —e ~—erfc(—i [
= /0 u ﬁ c(—i(z +ie))
= e @ erfo(—i(x +ie)).
Finally,
erfe(—iz) = 2 [Taer = / dtet2+—/ dte
\/_ —iz
= /due +1—1+—/due
Thus
2 —y2
lim d L
el0 y? — (z +ig)?
= lim dy (w —y)e —hmx / dy
£l0 (x—i—lg) el0 (v 4ig)? — 92
o) 2
= /0 dy e_y2 — % l;rglw(x—i- i) = % + i? lgﬂ]lw(x—i- i€)
VLS U /
= —+i— 1+ — [ dye”
> 5 i Y
= TWjLi%e’x Vrre /dyey |—e v maF(x),
where .
F(z) = / dy e (D.4)
0

is DAWSON's Integral. NowZ'(0) = 0 and

F'(z) = —zxe—x“’/ dye’ + e e’ = —22F(z)+1, (D.5)
0

thusF'(0) = 1, which, for F'(z) = 32, ¢y 2* leads to

or

o0 (o]
E ket +2 E cp xt Tt =
k=0 k=0

2
k+2

(k4+2)chro+2c,=0 & Cppa=— ck, k=0,
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Wlth CO = 0 9 Cl = 1 . ThUSC2k e O , 02k+1 — (2(’;42»?;;” and

; o 06)
Accordingly
A(pQ) = 2—\/;)?+Igp _\/Eppa)p)
N g i g (1= @®p)?*+0((bp)") = Vrp (bp - ;(bp)3 + O((bp4))> ,



Appendix E

Specification of the LM2M2 Potential

The LM2M2 potentiall” was constructed by Aziz et aR3,88]. It consists of a basic HFD-B part
V, and a so-called add-on potentig|.

V(r) = e(Va(r/rm) + Vi(r/rm)) , (E.1)
: 2r(z—x1) 7 <<
V() = A, <Sln ( e 2) + 1) , 1<z <19, (E.2)
0, r<z1 VI >y,
Vilw) = A" exp(—a’s + §°a%) = () (S5 + 5 + ) - E3)
with

— (2 1) D
Fz) = eXp( (% -1) ) B (E.4)

1, x>D

The constants are collected in TaBeL

(V, | LM2M2 [V.] Lm2m2 |
A* [ 1.89635353-10° || A, | 2.6-10°3
o* | 10.70203539 || z; | 1.003535949
B | -1.90740649 | z, | 1.454790369
D 1.4088 r | 2.96905A
Ce 1.34687065 || « 10.97 K
cs 0.41308398
co | 0.17060159

Table E.1: Constants of the potential LM2M2
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