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Abstract

Complex network comprised of interconnected oscillatory systems are investi-
gated in various contexts in the natural sciences. It is an important goal to un-
derstand in which way synchronization phenomena in such networks are deter-
mined by the structure of the network itself and by properties of the oscillatory
systems. Contrasting the microscopic behavior which oen shows fluctuations,
many studies have characterized synchronization and desynchronization as con-
vergence towards oscillatory and constant macroscopic behavior, respectively.
However, very few models have been developed which show self-generated and
recurrent changes between randomness and order.

In this thesis, we study the influence of the connection structure on the dy-
namical behavior of complex networks of oscillators. More concretely, we con-
sider 𝛿-pulse-coupled, excitatory integrate-and-fire-like oscillators, possibly en-
dowed with refractory periods and time delayed interactions, and study their
dynamics when coupled onto random and onto small-world networks, i.e., net-
works with both short-ranged and long-ranged connections.

In random networks, these oscillators may exhibit both chaotic, asynchro-
nous behavior and synchronous behavior. We define and investigate different
types of continuum models which describe the thermodynamic limit of large
networks and allow us to characterize different mechanism for the loss of sta-
bility of asynchronous behavior. If stability is lost, oscillators may show par-
tially synchronous states and irregular behaviors. We relate the laer to recur-
rent times at which the firing rate in the networks diverges and a macroscopic
amount of oscillators spontaneously fires in unison.

Continuing one of these transitions to synchrony into the small-world regime
leads to a rich spectrum of dynamical behaviors which are determined by the in-
terplay between paern formation and synchronization phenomena. In addition
to various kinds of wave-dominated states, we report here on so-called chimera
states, in which the networks split into asynchronous and synchronous regions.
Depending on oscillator parameters, these regions may be fixed in shape and
size, or may evolve constantly leading to macroscopic observables which show
non-converging behavior. e laer may take the form of asynchronous fir-
ing interrupted by short and rare events of synchronous firing, or of a network
rhythm in which more and less synchronous behaviors alternate on a timescale
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well below the period duration of oscillators.
e non-converging synchronization phenomena that we describe in this the-

sis add new aspects to the discussion which may help in unravelling the com-
plicated relationships between the network structure, node dynamics, and the
collective network dynamics.
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1 Introduction

Systems that we denote as complex are usually comprised of a large number of
interconnected or interacting parts, and due to their complicated structure or
organization, they defy an exact description. Examples are as diverse as ant and
bee colonies, living organisms and in particular their nervous system, human
economies and social interactions, and the climate system [1]. Due to their ubiq-
uitous appearance in nature, complex systems are a central object of study in all
natural sciences. eir study is intimately connected to the study of non-linear
dynamics as the absence of the superposition principle hinders us to relate the
global dynamics to the dynamics of the constituents. In contrast, as soon as non-
linearity is involved, the global behavior of complex systems is oen crucially
influenced by their structure, and we can observe emerging features which are
not part of the dynamical spectrum of the constituents.

In many cases constituents can be classified into a small number of function-
ally different units which interact in such a way that the interaction represents
a weak disturbance of their intrinsic dynamics. In this case, the complexity lies
in the interaction network, while the dynamics of constituents is amenable and
oen well-understood. We denote such a system as a complex network, the con-
stituents as nodes or vertices of the network, andwe depict the interaction struc-
ture as connections or edges between nodes. e study of complex networks
touches many disciplines involving scientists which tackle different parts of the
issue. While experimentalists investigate the topology of natural networks or
describe their functional behavior, theorists relate structure to function in con-
trollable and simplified setups [2–5]. Examples of complex networks are contact
networks, in which connection means some kind of communication or interac-
tion between humans, technological and infrastructural networks, like the in-
ternet, streets and flight routes, and biological networks like food webs, blood
vessels, or mammalian brains in which a vast number of neurons is connected
by literally billions of synapses. Even if we can determine both nodes and edges
of complex networks in large numbers, it is not clear how we should charac-
terize these networks; when a hundred or more nodes are involved graphical
representations of networks become unmanageable and do not provide insight.
It is an challenge to describe natural networks by properties which are mean-
ingful and possibly relate to dynamical behavior of networks, or to define model
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1 Introduction

networks which capture some property of natural networks.
A sensible starting point for the investigation of networks, especially if their

structure is largely unknown, is to assume that connections or interactions can
be described as random. e study of the structure of random networks has a
long history in discrete mathematics [6,7], and much work has been devoted to
determine their statistical properties. Much less is known about the emerging
dynamics of these networks when they are interpreted as connection structure
of an ensemble of dynamical systems. Random networks represent a strong ide-
alization and are defined by a single parameter, the number of connections. As
models of natural networks, however, they have several shortcomings: e as-
sumed homogeneity is unreasonable when networks comprise regions with dif-
fering conditions. E.g., a infrastructural network which spans over different ge-
ographical regions, or a neural network which spans different brain structures is
most likely not homogeneous. Moreover, for random networks the distribution
of node degrees (which is the numbers of connections of a node) follows a Posso-
nian distribution while natural network show a prevalence towards power-law
distributions [8, 9]. A simple consequence is that natural network oen contain
hubs, i.e., nodes with very many connections, whose existence is very unlikely
in random networks.

A third point in which random and natural networks may differ, is that the
structure of natural networks oen reflects their embedding in space; the prob-
ability that two nodes in a natural network are connected depends on their dis-
tance and shows a strong preference towards shorter connections. is is to be
expected as communication over long distances usually is expensive. For the hu-
man brain, it is clear that a large amount of long synapses consumes space and
energy. Taking into account the mean number of synapses per neuron and the
space they consume, one can easily rule out the assumption of a large amount
of long-ranged synapses, as their volume would not fit into human skulls [10]. It
is plausible that evolution has provided us with an organization structure which
saves biological material. For man-made networks like infrastructure or contact
networks, the strong prevalence towards short-ranged connections is also evi-
dent; transportation over long distances is time- and resource-consuming.More-
over, even a small number of long-ranged connections can drastically reduce the
length of shortest paths between nodes in the network and may be sufficient to
guarantee global communication.is observation has led to the notion of small
worldswhich denotes a sparsely connected and large network in which arbitrary
nodes can communicate via only a few mediators. Was and Strogatz defined
model networks, which reflect the described observations in spatially embedded
social and biological networks and which contain a laice-like structure which
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is disturbed by some amount of random long-ranged connections [11]. e con-
struction rules allow to interpolate continuously between regular laices and
random networks, which both are classical and well-studied organization struc-
tures. Although the construction is nearly trivial, their seminal paper has since
inspired hundreds of studies aimed at investigating the dynamics of these net-
works, and characterizing the structure of natural networks to show that they
resemble the scheme.

Synchronization means an adjustment of rhythms of oscillatory systems [12].
Among more complicated possibilities, this adjustment can take the form that
all systems share a common phase (complete synchrony) or that they display
a fixed or approximately fixed phase difference (phase locking). Synchroniza-
tion can be induced via noise, common to all elements, or via mutual interac-
tion defined by some coupling network. Synchronization phenomena are ubiq-
uitous in nature. Examples in biological systems range from synchronized chirp-
ing of crickets, synchronized blinking of fireflies [13, 14], to mammalian phys-
iology [15], including pacemaker cells in hearts [16], insulin secreting cells in
the pancreas [17] and brains. Example from physics include Josephson junc-
tions [18] and laser [19]. For networks whose nodes are associated with humans,
rhythmic hand-clapping [20], La Ola waves [21] and synchronization of pedes-
trian motion [22] have been discussed. Also, consensus reaching in so-called
agent network has been shown to be strongly linked to synchronization [23]
and oscillator models have been considered as a technical means to achieve syn-
chrony in wireless networks [24].

A general observation which can be made across many structural different
systems is that synchronization is hindered by the presence of inhomogeneities.
Networks consisting of nodes with different dynamics [25, 26] are less likely to
synchronize than networks with homogeneous node dynamics. Also, networks
with heterogeneous interaction delays [27] or with nodes differing largely in
their degrees synchronize less easily than networks with fixed time delays or
degrees [28–32]. Correlations between the number of connections of a node and
its connected nodes (assortativity) [32, 33] or correlations between the number
of incoming and outgoing connections of a node have also been shown to have
a significant influence on the network’s synchronization propensity [34]. In ad-
dition, networks with short path lengths between nodes (like random networks)
oen synchronize completely, while networks with long path lengths (like lat-
tices) show phase-locking, especially in the presence of transmission delays.

Computational models which are defined by differential equations may de-
scribe oscillatory behavior in the form of a closed and aractive curve in state
space, a so-called limit cycle. Examples include the FitzHugh-Nagumo neuron,
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1 Introduction

the van-der-pol oscillator and many others. When we couple these oscillatory
systems weakly, so that the trajectories of the coupled systems still are very
close to the limit cycle, it is sensible to approximate the systems by phase oscil-
lator whose phase variable is a parametrization of the limit cycle. e coupling
for these phase oscillators is given as a phase response as every excitation leads
back to the limit cycle. In this way a potentially high dimensional systems is
reduced to one dimension and it is clear, that the approximation can only hold
for a limited range of coupling strengths. e described approach is called phase
reduction and has been discussed even in the presence of noise [35, 36] or for
chaotic oscillators like the Roessler or the Lorenz system [37].

In many biological networks (like the heart or the brain) interactions are
short-lasting and may be modeled as pulses, which are fired at a given oscilla-
tor phase [38, 39]. A classical example is the integrate-and-fire oscillator, which
is arguably the simplest neuron model and denotes a simple threshold element
which accumulates charge which, at some point in time, is released in form of
pulses to other oscillators. When these are modeled as some fast decaying func-
tion, even all-to-all coupled systems may show a rich dynamical spectrum in-
cluding asynchronous [40], synchronous or partially synchronous [41] states,
quasiperiodicity, and chaos [41–43]. In the limit of vanishing pulse duration,
systems interact via 𝛿-pulses which leads to dynamical systems which are non-
smooth and oen require one to develop new approaches for numerical methods
or analysis tools [43–45]. e size of the 𝛿-pulse depends on the phase of the os-
cillator which receives it and is usually specified in form of the phase response
curve (PRC). It is natural to study in which way the dynamical behavior is in-
fluenced by the choice of the PRC.

A central theme of research into complex systems is the study of the emer-
gence of macroscopic properties. We can thus ask the question what types of
macroscopic behaviors are generated by synchronization phenomena in com-
plex networks ? Clearly asynchronous motion leads to constant behaviors while
synchronousmotion leads to oscillatory behavior. Nevertheless, the microscopic
scale may show chaotic and highly fluctuating behavior. Similar as for Brownian
motion (or many other phenomena studied in the context of equilibrium ther-
modynamics or excitable media [46]) fluctuations average out when taking a
more distant point of view. However, there are exceptions to this rule in which
fluctuations and/or chaotic behaviors extend from themicroscopic to the macro-
scopic scale. A prominent example are extreme events which represent rare oc-
currences (compared to the timescale of the system) of abnormally low or large
amplitudes in macroscopic observables. Examples include earthquakes, torna-
does, stock market crashes, harmful algae bloom and epileptic seizures and are
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usually associated with disastrous financial and personal consequences [47–49].
e possible dynamical origins and mechanism that lead to such behaviors are
only poorly understood, and only few models are capable of supporting such
behaviors [50–58].

In this thesis, we study synchronization phenomena in complex networks of
oscillators. More concretely, we consider 𝛿-pulse-coupled, excitatory integrate-
and-fire oscillators, possibly endowed with refractory periods and time delayed
interactions, and describe their dynamics when coupled onto random networks
and onto spatial networks with both short- and long-ranged connections.

We demonstrate that in random networks, these oscillators show asynchro-
nous states and a broad range of synchronization phenomena which may lead to
completely or partially synchronous states, and to states with irregular macro-
scopic behavior, which persists aer long periods of time and for large networks.
To explain these observations, we define different types of continuum models
which describe the thermodynamic limit of large networks and provide a macro-
scopic point of view on the dynamics. For these continuum models, evolution
equations for the distribution of oscillator phases are derived. Investigations of
such equations have been widely successful in explaining synchronization phe-
nomena of similar systems [26, 39, 42, 59–63].

We show that in spatial networks with short and long-ranged connections,
the dynamics is determined by the interplay between paern formation and syn-
chronization phenomena. In addition to various kinds of wave-dominated states,
we report here on so-called chimera states [64–66], in which the networks split
into asynchronous and synchronous regions. Depending on oscillator parame-
ters, these regions may, aer transients, be fixed in shape and size, or may evolve
constantly leading to macroscopic observables which show non-converging and
complicated behavior. e laer take, in the simplest cases, the form of asyn-
chronous firing interrupted by short and rare events of synchronous firing, or of
a network rhythm in which more and less synchronous behaviors alternate on
a timescale well below the eigenfrequency of oscillators. We describe the mech-
anism that lead to the generation of these non-converging behaviors, which in-
timately rely on the dual structure of the considered networks.

All our investigations concern phase oscillators whose interactions are de-
fined by phase response curves. In Chapter 2.1, we provide a definition for these
notions and show in which way integrate-and-fire oscillators can be described
within the framework. In Chapter 3, we give an experimental description of the
dynamics of integrate-and-fire oscillators on random networks, before an in-
vestigation of different types of continuum models which are able to reproduce
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1 Introduction

and explain many of the observations. In Chapter 4, we discuss the dynamics
of integrate-and-fire oscillators on spatial networks containing both short- and
long-ranged connections, in which synchronization phenomena interplay with
the formation of spatial paern. Finally, we conclude our findings in Chapter 5.
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2 Pulse-coupled oscillators

Pulse-coupled oscillators (PCOs) are a paradigmatic model for the study of syn-
chronization phenomena [39]. ey present a general framework which com-
prises the small coupling strength limit of limit cycle oscillator and abstractmod-
els like IF neurons. We describe a pulse-coupled oscillator by its phase 𝜙 ∈ (0, 1],
which is assumed to increase linearly with 𝜙̇ = 1. Whenever the phase of an
oscillator reaches 1, it is said to fire, which is the only time when it interacts
with and excites other oscillators which are connected to it via some network.
We define this excitation with the phase response curve 𝛥(𝜙), i.e., the phase
change that an oscillator receives due to the firing of a connected oscillator. In
our model, excitations are 𝛿-pulses leading to a discontinuity of the phase vari-
able of the receiving oscillator. Note that in the literature the term pulse-coupled
oscillators is also used when excitations are defined by a pulse of finite duration
with a characteristic shape [41, 67, 68]. When oscillators are embedded into a
directed network, we will write 𝑛 ≺ 𝑛′ if oscillator 𝑛 is connected to 𝑛′ (i.e. 𝑛
influences 𝑛′ on firing). For every firing oscillator, we consider the following
update rule which is applied whenever at some time 𝑡f the phase of an oscillator
𝑛 reaches 1:

∀𝑛′ ≻ 𝑛 𝜙𝑛′ (𝑡+𝑓 ) = 𝜙𝑛′ (𝑡𝑓 ) + 𝛥 􏿴𝜙𝑛′ (𝑡𝑓 )􏿷 . (2.1)

Here we denote by 𝜙(𝑡+) the right-sided limit of 𝜙(𝑡). Oscillators have their phase
variable restart from 0 aer firing; the moment of firing is associated with a
phase 𝜙 = 1 (instead of 𝜙 = 0). To ease notation, we will also use the phase tran-
sition curve 𝑅(𝜙), which is defined as 𝑅(𝜙) = 𝛥(𝜙) + 𝜙 and describes the phase
of an oscillator aer excitation in dependence on its former phase. Phase re-
sponse curves (PRCs) and phase transition curves (PTCs) are commonly used
when describing neurons. ey can be calculated even for high-dimensional
neuron models as an approximation, which holds for small coupling strengths.
e phase oscillator represents for those neurons a one-dimensional approxima-
tion which can be verified by phase response curves of real neurons which are
measured by experimentalists [69, 70]. Moreover, more abstract models like os-
cillatory integrate-and-fire neurons can be expressed in terms of pulse-coupled
oscillators. In the following, we provide a short explanation of this neuronmodel
and calculate its PRC.
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2 Pulse-coupled oscillators

2.1 Integrate-and-fire neurons

e integrate-and-fire neuron (IF neuron) is a one dimensional model, which is
defined by an ordinary differential equation (ODE) and an update rule. Its dy-
namical variable is the membrane potential 𝑥(𝑡), which is the potential difference
between the interior and exterior of a neuronal cell. For the IF neuron, incom-
ing excitations which arrive at a high rate are approximated by a constant input
current 𝐼in. Moreover, As the neuron’s membrane is not a perfect isolator, a leak-
age current must be assumed, which is proportional to the membrane potential
and a leakage constant 𝑙. e following differential equation describes the time
evolution of 𝑥(𝑡):

𝑥̇(𝑡) = −𝑙𝑥(𝑡) + 𝐼in. (2.2)

e differential equation for the potential is identical to the one obtained for
charging of a capacitor and is solved—given the initial condition 𝑥(0) = 0—by
the following exponential charging function 𝑈(𝑡):

𝑈(𝑡) = 𝑥(𝑡) = 𝐼in
𝑙 (1 − 𝑒−𝑙𝑡). (2.3)

As soon as the membrane potential reaches the firing threshold 𝜃 the neuron is
said to fire and we reset the membrane potential to 0. Depending on the parame-
ters 𝑙, 𝐼in and 𝜃, the membrane potential will either saturate below the threshold
(at 𝑈 = 𝐼in/𝑙) or the neuron will fire periodically, with a time 𝑇 between firings.
In the laer case, we will speak of an oscillatory IF neuron. For the sake of sim-
plicity and by fixing a scale for the membrane potential, we assume 𝜃 = 1. e
condition for being oscillatory thus reads 𝐼in > 𝑙. By fixing a scale for the time,
we can also assume that the period of firing 𝑇 is one. is assumption forces a
relationship onto 𝐼in and 𝑙:

𝑥(1) = 1 = 𝐼in
𝑙 (1 − 𝑒−𝑙), 𝐼in = 𝑙

1 − 𝑒−𝑙 , (2.4)

and allows us to eliminate 𝐼in from the time dependence of the membrane po-
tential in Eq. (2.3):

𝑥(𝑡) = 1 − 𝑒−𝑙𝑡
1 − 𝑒−𝑙 . (2.5)

Interactions between IF neurons may be realized by a short, decaying pulse
which is injected at neuron 𝑛′ when the presynaptic neuron fires. roughout
this thesis, we will be considering 𝛿-pulses, and increase the membrane poten-
tial of excited neurons in a discontinuous way: Whenever neuron 𝑛 reaches the
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2.1 Integrate-and-fire neurons

firing threshold at time 𝑡𝑓 , the membrane potential of all connected neurons 𝑛′

is increased by the value of some coupling strength 𝑐. ere are some subtleties
in this definition of excitations for IF neurons which influence the synchroniza-
tion properties and which have no consensus in the literature. We will make the
following assumptions: Firstly, we limit excitations to the value which is needed
for the receiving neuron to fire immediately; excessive charge is not carried over
to the next firing cycle and no excited neuron can overtake the exciting neuron.
Secondly, we assume that neurons are not excitable in the moment of firing.
is has the following consequence; When two bidirectionally coupled neurons
have nearly identical membrane potentials, the one with the larger membrane
potential will fire first and excite the second neuron. e second neuron will
receive an excitation which is sufficient to make it fire immediately. By our first
assumption, the second neuron has a membrane potential 𝑥(𝑡) of 0 aer firing,
regardless how far 𝑥(𝑡)was pushed beyond the firing threshold. e first neuron
now will not be excited by the second neuron due to our second assumption,
and both will reenter their charging cycles synchronized. We will denote this
situation as an absorption and will say that the second neuron was absorbed by
the first. e notion was introduced in the context of all-to-all coupled networks
in which an absorbed oscillator is never separated from the absorbing oscilla-
tor by the dynamics and both combined can be conceived as a new oscillator
which emits excitations of a larger, effective coupling strength [39]. IF models
which have been investigated in the context of earthquakes and sand piles usu-
ally consider conservation of charge [71, 72]. We formalise both assumption in
the following update rule which is applied whenever at some time 𝑡𝑓 a neuron
𝑛 reaches a membrane potential of 1:

∀𝑛′ ≻ 𝑛 𝑥𝑛′ (𝑡+𝑓 ) =

⎧⎪⎪
⎨⎪⎪⎩

0 𝑥𝑛′ = 0,
𝑥𝑛′ (𝑡+𝑓 ) + 𝑐 0 < 𝑥𝑛′ < 1 − 𝑐,
1 1 − 𝑐 ≤ 𝑥𝑛′ ≤ 1.

(2.6)

Additionally, the membrane potential of the firing neuron is reset to 𝑥𝑛(𝑡+𝑓 ) = 0.
Note that for neurons which reach the firing threshold at the same time—due
to excitation or due to the intrinsic dynamics as defined in Eq. (2.2)—the time
evolution does not depend on the order in which the update rules are applied.
In this sense, the definition is thus well-defined.
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2 Pulse-coupled oscillators

Standard IF oscillators

Aswe fixed the frequency of IF-neurons to one (Eq. (2.5)), we can regard the time
during one charging cycle as a phase variable.emembrane potential increases
monotonously with time, which allows us to map each membrane potential 𝑥
bijectively to a phase 𝜙(𝑥) by seing:

𝜙(𝑥) = −1
𝑙 􏸋􏸍(1 − 𝑥(1 − 𝑒−𝑙)), 𝑥(𝜙) = 1 − 𝑒−𝑎𝜙

1 − 𝑒−𝑙 . (2.7)

We consider an oscillator which is excited at time 𝑡. To obtain the phase 𝜙(𝑡+)
directly aer the excitation, we can express the phase as membrane potential,
add the value of the coupling strength 𝑐, and re-express as phase. We obtain for
the second branch of the case distinction in Eq. (2.6):

𝜙(𝑡+) = 𝜙 􏿴𝑥(𝜙) + 𝑐􏿷 = −1
𝑙 􏸋􏸍

􏿴𝑒−𝑙𝜙 − 𝑐 􏿴1 − 𝑒−𝑙􏿷􏿷 . (2.8)

e first and third branch in Eq. (2.6) express that supra-threshold excitations
will lead to a membrane potential of 𝑥 = 0which corresponds to a phase of 𝜙 = 1
and thus to a phase response of 1 − 𝜙. We can thus express the phase response
for all three branches compactly by

𝛥(𝜙) = 􏸌􏸈􏸍􏿼−
1
𝑙 􏸋􏸍(𝑒

−𝑙𝜙 − 𝑐(1 − 𝑒−𝑙)) − 𝜙, 1 − 𝜙􏿿 . (2.9)

eminimum in Eq. (2.9) bounds the PRC by 1−𝜙 and the phase transition curve
𝑅(𝜙) becomes non-invertible; a firing oscillator may absorb oscillators with dif-
ferent phases leading to a phase of 1, independently of the former phase. In
Figure 2.1 we show the time evolution of the membrane potential and phase re-
sponse of an IF neuron with exemplary parameters. For the case of non-leaky IF
neurons (𝑙 → 0), the PRC in Eq. (2.9) can be continuously extended by:

𝛥(𝜙) = 􏸌􏸈􏸍 􏿺𝑐, 1 − 𝜙􏿽 . (2.10)

2.2 Linear IF oscillators

Many properties of IF neurons do not depend much on the exact form of the
charging function 𝑈(𝑡) as long as it is monotonously increasing and concave-
down. As an easier study object, it is possible [39] to obtain an affine linear PRC
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Figure 2.1: Le: Temporal evolution of the membrane potential 𝑥(𝑡) of a standard
IF oscillator with frequency 1 according to Eq. (2.5) for different parameters
(black: 𝑙 = 0.5, blue: 𝑙 = 1.0, red: 𝑙 = 1.5). Right: corresponding phase response
curves 𝛥(𝜙) for this oscillator for 𝑐 = 0.05 according to Eq. (2.9).

if we consider a charging function 𝑈(𝑡) of the following form:

𝑈(𝑡) = 1
𝛽 􏸋􏸍(1 + [𝑒𝛽 − 1]𝑡). (2.11)

e parameter 𝛽 is analogous to 𝑙 in the definition of the IF neuron’s charging
functions and determines the curvature of the function. e limit 𝛽 → 0 yields
𝑈(𝑡) = 𝑡, as does 𝑙 → 0 for integrate-and-fire neurons. e charging function can
be generated from the following differential equation:

𝑥̇(𝑡) = 1
𝛽 (𝑒

𝛽 − 1)𝑒−𝛽𝑥. (2.12)

From Eq. (2.11), one obtains with a similar calculation as for the PRC of the
standard IF oscillator:

𝜙(𝑡+) = 𝜙 􏿴𝑥(𝜙) + 𝑐􏿷 = 𝑒𝛽𝑐
𝑒𝛽 − 1𝜙 + 𝑒𝛽𝑐 = 𝑎𝜙 + 𝑏𝛽 + 𝜙. (2.13)

Here we used the abbreviations 𝑏 = 𝑒𝛽𝑐 and 𝑎 = 𝑒𝛽𝑐

𝑒𝛽−1
−1 with which the PRC now

takes the simple form:

𝛥(𝜙) = 􏸌􏸈􏸍 􏿺𝑎 + 𝜙𝑏, 1 − 𝜙􏿽 . (2.14)

We will denote an oscillator with this PRC in the following as linear IF oscil-
lator. In Figure 2.2 we show charging functions and phase response curves of
such an oscillator. In all our observations, both standard and linear IF oscilla-
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Figure 2.2: Le: Temporal evolution of the membrane potential 𝑥(𝑡) of a linear
IF oscillator with frequency 1 according to Eq. (2.11) for different parame-
ters (black: 𝛽 = 1.0, blue: 𝛽 = 2.0, red: 𝛽 = 3.0). Right: corresponding phase
response curves 𝛥(𝜙) for this oscillator for a coupling strength 𝑐 = 0.05 ac-
cording to Eq. (2.14).

tor exhibit qualitatively the same dynamical behaviors. We therefore report our
findings in terms of linear IF oscillators, which simplifies many calculations for
the continuum models in Chapter 3.4.

Synchronization of two coupled IF neurons

Peskin observed that two bidirectionally coupled excitatory integrate-and-fire
neurons synchronize completely [38]. Within the notion of phase oscillators,
this is easily verified. For two oscillators which fire shortly aer another, the
first one is excited shortly aer firing, while the second one is excited shortly
before firing. e phase difference thus diminishes if 𝛥(𝜙) has larger values near
𝜙 = 1 than near 𝜙 = 0. is is certainly the case for the PRCs of standard or lin-
ear IF oscillators which are monotonously increasing (see Figure 2.2 and 2.1).
Furthermore, if phases are close, the succeeding oscillator is absorbed as indi-
cated by the falling slope near 𝜙 = 1. e return map 𝑟(𝜙) allows us to calculate
the synchronization behavior more generally for arbitrary initial phases of two
oscillators. 𝑟(𝜙) maps the phase difference of the two oscillators to the phase
difference that is obtained aer each oscillator fired and excited the other one
once. Given a phase response curve, the return map 𝑟(𝜙) can be constructed in
the following way [39]:

𝑟̃(𝜙) ∶= 1 − 𝜙 + 𝛥(1 − 𝜙), 𝑟(𝜙) = 𝑟̃(𝑟̃(𝜙)). (2.15)
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Figure 2.3: Return map 𝑟(𝜙) according to Eq. (2.15) for linear IF oscillators (see
Eq. (2.14)) with 𝑎 = 𝑏 = 0.05. (black line). Fixed points are given as intersec-
tions of 𝑟(𝜙) with the identity map (blue line). e plot reveals an unstable
fixed point out of synchrony (at 𝜙 ≈ 0.6) and a stable fix point for synchrony
at 𝜙 = 0. For all initial conditions except the unstable fixed point, complete
synchrony is achieved in finitely many firings due to the horizontal curve
progression around 𝜙 = 0.

Fixed points of this map correspond to stable phase differences. For excitatory
IF oscillators the return map has a stable fixed point at 𝜙 = 0 and an unstable
fixed point at 𝜙 ≈ 0.6. In Figure 2.3 we show the return map 𝑟(𝜙) for linear IF
oscillators.

2.3 Refractoriness and time delay

e synaptic reception of an action potential in real neurons is not instanta-
neous. Accordingly, the PCO model has been generalized to include time de-
layed interactions [73], which change the dynamical behavior greatly. For time-
delayed interactions and a small phase difference, both oscillators receive exci-
tations aer firing [73]. In this case the oscillator which fires first is excited at
a smaller phase than the oscillator that fires last and receives a larger phase ad-
vance for increasing PRCs; for two bidirectionally coupled oscillators complete
synchrony is repelling for excitatory coupling and aracting for inhibitory cou-
pling. Intriguingly, the laer holds for arbitrary coupling topologies [74]. An-
other property which is present in real neurons is refractoriness. For a short
period aer firing, neurons are refractory, meaning that the emission of a sec-
ond action potential is either impossible or strongly inhibited. e length of the
refractory period can vary strongly among different kinds of neurons, but is
usually a few times larger than the assumed synaptic time delay. Extensions of
IF models which include these effects have been proposed [75,76]. In this thesis,

13



2 Pulse-coupled oscillators

we will study the influence of both refractoriness and time delay. We will use
a trick which allows us to incorporate both time delay and refractoriness into
the PRC, thereby keeping a formally undelayed system.is trick can be applied
for the case that the time delay is identical on all outgoing connections and its
duration is shorter than the refractory period. We start with defining a transfor-
mation which introduces a refractory period of length 𝜗. For phases at which the
oscillator is refractory, the phase response vanishes. We introduce an interval
𝜙 ∈ (0, 𝜗] into the PRC and rescale the original PRC 𝛥 to fit the remaining phase
interval (𝜗, 1]. e transformed PRC 𝛥𝜗 is defined as:

𝛥𝜗 =
⎧⎪
⎨⎪⎩

0 0 < 𝜙 < 𝜗
𝛥􏿴 𝜙−𝜗

1−𝜗 􏿷 𝜗 ≤ 𝜙 < 1.
(2.16)

Let 𝜏 denote the time delay of oscillator interactions, such that all excitations
which are emied due to the firing of an oscillator at time 𝑡f, will arrive at con-
nected oscillators at time 𝑡f + 𝜏. If the oscillator is not refractory aer firing,
we cannot know which phase it has when its excitations arrive, even multiple
excitations could be emied before the arrival of the first. However, if the oscil-
lator is refractory for a period which is larger than its time delay, its phase will
increase only due to the intrinsic dynamics and will be 𝜏 on arrival of its excita-
tions. is allows us to replace the oscillator and its delayed connections by an
undelayed oscillator without changing the dynamics. e replacement is done
by reinterpreting the phase and shiing the PRC in such a way that excitations
are again received at 𝜙 = 1. e new oscillator thus fires when the phase of the
old oscillator is 𝜏 and the transformed PRC 𝛥𝜏,𝜗 is given by

𝛥𝜏,𝜗 = 𝛥𝜗(𝜙 − 𝜏). (2.17)

For linear IF oscillators, the resulting PRC with both additions can be described
in the following form.

𝛥𝜏,𝜗(𝜙) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0 0 < 𝜙 ≤ 𝜗 − 𝜏
𝑎(𝜙 − 𝜗 + 𝜏) + 𝑏 𝜗 − 𝜏 < 𝜙 ≤ 𝜙ab

1 − 𝜙 𝜙ab < 𝜙 ≤ 1 − 𝜏
0 1 − 𝜏 < 𝜙 ≤ 1.

(2.18)

Here 𝜙ab is the smallest phase at which an absorption occurs which is given
by 𝜙ab = 1−𝑏−𝜗

1+𝑎 + 𝜗 − 𝜏. In Figure 2.4 we show the time evolution of the phase
difference for the PRC of linear IF oscillators with and without both transfor-
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Figure 2.4: Time evolution of the phase difference 𝛿𝜙 = 𝜙2 − 𝜙1 between two
bidirectionally coupled excitatory linear IF oscillators (𝑎 = 𝑏 = 0.05). Oscilla-
tors are undelayed and have no refractory periods in the le plot, oscillators
are endowed with time delays 𝜏 = 0.1 and refractory periods 𝜗 = 0.4 in the
right plot.
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Figure 2.5: Le: PRC for linear IF oscillators with time delay 𝜏 = 0.1, and refrac-
tory period 𝜗 = 0.2 and 𝑎 = 𝑏 = 0.05 according to Eq. (2.18). Right: return map
for this PRC (black line) together with the identity map (blue line).

mations. For larger phase differences, the evolution is similar. For the refractory
oscillator and starting from a phase difference of 𝑑 ≈ 0.2, the preceding oscilla-
tor is refractory when the excitations from the succeeding oscillator arrive. e
araction towards the synchronized state is increased at this point. e phase
difference does not vanish completely but aains a value between 0 and 𝜏 de-
pending on the initial condition. e return maps 𝑟(𝜙) confirm our observations
(see Figure 2.5 right). Due to refractoriness and time delay, the fixed point cor-
responding to synchrony is replaced by a fixed interval with marginal stability.
e horizontal evolution of 𝑅(𝜙) near this interval implies that araction to this
fixed interval is achieved aer a finite number of excitations. In networks in
which nodes are connected by long paths only, this inexact phase adjustment
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2 Pulse-coupled oscillators

may play an increased role as it adds up along the path. e time delay deter-
mines the level of phase adjustment for coupled oscillators. e behavior of two
coupled oscillators may give an impression for behavior of larger networks as
it provides a model for each pair of connected oscillators which, however, is
disturbed by other connections. erefore, it is plausible that in the dynamical
system we study (similarly as in many other dynamical systems), a large time
delay hinders synchronization, while a large refractory period promotes syn-
chrony in complex networks.

Measuring synchrony

A main focus of this thesis, is to investigate synchronization phenomena of IF
oscillators in complex networks. In particular, we are interested in such phe-
nomena, which do not lead to a certain amount of synchrony in the network,
but which show continuous changes. In this case, we cannot assign an amount of
order to the network, instead we have to investigate the amount of synchrony in
the network as dependent on the time. Tomeasure synchrony for a large number
of oscillators, we use the standard order parameter for phase oscillators which
is obtained by taking the vector sum of all phases of oscillators in the network:

𝑧(𝑡) = 1/𝑁􏾜
𝑛
𝑒2𝜋𝑖𝜙𝑛(𝑡), 𝑟(𝑡) = |𝑧(𝑡)| . (2.19)

e argument of 𝑧(𝑡) specifies the mean phase in the network, while its absolute
value 𝑟(𝑡) specifies their synchrony. In a way 𝑧(𝑡) carries information compara-
ble to both the mean and variance of the distribution of phases [77]. e order
parameter 𝑟(𝑡) takes a value of 1 for complete synchrony, i.e., identical phases
for all oscillators in the network, and 𝑟(𝑡) takes small values for a balanced dis-
tribution of phases. Note that a small value of 𝑟(𝑡) may be obtained by either
an asynchronous state with distributed phases or for example by a splay state
consisting of a small number of equi-distant phase clusters, in which oscillators
belonging to the same cluster are synchronized. Apart from these more or less
trivial exceptions, 𝑟(𝑡) may show non-converging and complicated behavior for
dynamical systems coupled onto complex networks.

Stability of complete synchrony

In their seminal work, Mirollo and Strogatz showed that a network of all-to-all
coupled excitatory oscillators with monotonously increasing and concave-down
charging function synchronizes completely for nearly all initial conditions [39].
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2.3 Refractoriness and time delay

For oscillators coupled on complex networks, however, multistability and irreg-
ular behavior can be observed (e.g. [74, 78]). Even regular configurations, like
laices with nearest neighbor coupling show (for two ore more spatial dimen-
sions) configurations which do not lead to synchrony [71,79]. Oen it is possible
to decide whether the completely synchronized state is stable, which clearly is a
much weaker claim than global convergence. For excitatory IF oscillators this is
the case for strongly connected networks, i.e., networks in which there is a path
in each direction for every pair of nodes. Stability means in our case, that if we
take a perturbation of the completely synchronized state {𝜙𝑛|𝑛 ∈ 𝑁} which has a
small size 𝛿 ∶= 􏸌􏸀􏸗𝑛 𝜙𝑛 −􏸌􏸈􏸍𝑛 𝜙𝑛 then the size 𝛿 will converge to 0 with time. If
we consider perturbations whose size is smaller than the range of phases 𝜙 < 1
at which absorption occurs (the phases of the slope of -1 of 𝛥(𝜙)), then a sin-
gle excitation will lead to an absorption. As the network is strongly connected,
the oscillator with the largest phase will start an avalanche which covers the
whole network leading to complete synchrony in finite time and aer a single
excitation. For inhibitory IF oscillators with delayed interactions, the synchro-
nized state is also stable (assuming that coupling strengths are normalized by
the mean degree). is has been shown for arbitrarily connected networks [74].
In contrast, both delayed excitatory IF oscillators and undelayed inhibitory os-
cillators usually have repelling synchronized states. We will now investigate the
stability of synchrony of a network of excitatory oscillators which are endowed
with both refractory periods 𝜗 and time delay 𝜏 < 𝜗 [53]. Let {𝜙𝑛|𝑛 ∈ 𝑁} with
size 𝛿 ∶= 􏸌􏸀􏸗𝑛 𝜙𝑛 −􏸌􏸈􏸍𝑛 𝜙𝑛 again be a perturbation from the synchronized state
and let 𝑛> (𝑛<) denote an oscillator with maximal (minimal) phase. For small
perturbations with 𝛿0 < 𝜗 − 𝜏, each oscillator will fire and will then stay refrac-
tory until every other oscillator has fired once. We can thus define the size of
the perturbation 𝛿1 = 􏸌􏸀􏸗𝑛 𝜙𝑛(𝑡1) − 􏸌􏸈􏸍𝑛 𝜙𝑛(𝑡1) for some time 𝑡1 at which each
oscillator has fired exactly once. We define 𝛿2, 𝛿3, ... analogously. e oscillator
𝑛> will not be excited at all and it is not possible for an excited oscillator to
overtake the oscillator which emied the excitation (as we limit our PRC by
1 − 𝜙). For purely positive PRCs, we can thus conclude 𝛿1 ≤ 𝛿0, or 𝛿𝑖+1 ≤ 𝛿𝑖 per
induction. Moreover, we can give an upper bound for 𝛿∞ ∶= 􏸋􏸈􏸌𝑖→∞ 𝛿𝑖. Since our
PRCs do not contain arbitrary small phase changes except near 𝜙 = 1 where
an excitation immediately leads to absorption, phase-locking of two oscillators
is always achieved in a finite number of oscillations. For a finite number of os-
cillators, we can choose a time 𝑡′𝑖 aer which all excitations are received in the
refractory state. e length of the shortest path between 𝑛> to 𝑛< measured at
time 𝑡′𝑖 is bounded by the diameter 𝐷 of the graph (the longest shortest path). As
excitations are received when oscillators are refractory, the difference in phase
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2 Pulse-coupled oscillators

for every pair of oscillators along such a path is smaller than or equal to 𝜏, and
therefore 𝛿∞ = 𝜙𝑛> − 𝜙𝑛< ≤ 𝑑𝜏. is implies that with time delay and refractory
periods, we still have aracting states in the state space with large synchrony
and 𝑟(𝑡) ≈ 1. However, a single synchronous state is replaced with a region
of almost synchronous states, whose spread of phases is smaller than 𝑑𝜏 and
which are marginally stable. ese states are surrounded by an aracting re-
gion in state space (assuming 𝑑𝜏 < 𝜗 − 𝜏). It is plausible that an increased size
of the aracting region around the stable states (larger 𝜗, smaller 𝜏) promotes
synchronization phenomena.

2.4 Numerical treatment

We have presented two distinct representation for integrate-and-fire neurons
in which the oscillator states are either described by a phase variable or by the
membrane potential. Both allow for a numerical treatment of the dynamics. e
representation via a membrane potential allows for clock-driven algorithms like
the Runge-Kua schemes when a handling of firing oscillators is included be-
tween stepping. Firing times, are in this way limited to the time grid on which
the algorithm is based. Moreover, as the intrinsic dynamics of oscillators has
analytic solutions, approximate numerical solvers may be overly resource de-
manding. e representation via a phase variable allows for an event driven
approach, which performs beer for networks of small mean degree [44, 80].
In this approach, oscillators are registered in a priority queue which is ordered
by the time of the next firing. Repeatedly, the first element in this queue is re-
moved, reinserted at the boom and excitations to other oscillators are han-
dled. Instead of a dense time grid, only firing times are considered in the event
based approach.e implementation of the priority queue must allow for an up-
date of priority of selected elements to account for excitations. e performance
for large networks depends crucially on the scaling of the required operations,
which are: selection of the element with the highest priority, removing of this
element, insertion of an element into the queue, increase of priority (for exci-
tatory oscillators), and/or decrease of priority (for inhibitory oscillators). With
a so-called calendar queue [81], all of these operations can be achieved in fi-
nite time if a parameter (the bucket size) is chosen in a sensible way. However,
this queue has a large overhead and relies on distributed firing times. For syn-
chronous oscillators the queue is slow. Tree structures do not share these disad-
vantages [82], they have however 𝑂(𝑁) scaling for decrease of priorities. ey
thus present a good choice for the excitatory oscillators which we are consider-
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Figure 2.6: Execution times per firing neuron 𝑇E in dependence on the mean de-
gree for random networks of 10000 integrate-and-fire neurons. Values were
obtained using event-driven approaches implemented in Conedy with a cal-
endar queue (“cq”, red), with a relaxed heap (“rh”, blue) and with a clock-
driven approach (“cd”, black; Runge-Kua-Fehlberg with step size control and
an absolute error of 10−5). e calculation was done for both inhibitory and
excitatory neurons.While the relaxed heap implementation is much faster for
excitatory neurons (“rh, excit.”), both types of neurons are integrated equally
fast with the calendar queue and the clock-driven integrator. Tests were per-
formed on a PCwith 1.5 GFLOPS (2.4 GHz). (Lines are for eye-guidance only).

ing here. To allow for an efficient numerical treatment of these oscillators, we
developed a computational tool (Conedy), which is wrien in C++ and com-
bines both event-driven and clock-driven approaches. e soware has been
published [83] under the GNU license and is available under www.conedy.org
and www.github.com/Conedy. In Figure 2.6 we present a comparison of exe-
cution times for the different integration schemes for pulse-coupled oscillators
implemented in Conedy.
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3 Dynamics on random networks

e study of the structural properties of random networks has a long history
[6, 7]. e dynamics which emerges when nodes of the network are associated
with dynamical systems, however, has only been a topic for a few decades. Ran-
dom networks are a popular choice for modeling purposes in cases in which the
knowledge about the organization structure of the system under investigation
is limited. In the following, we will introduce the different types of random net-
works that we study. Let 𝒩 = (𝑉,≺) be a network, which is in our notation an
index set 𝑉 ⊂ ℕ together with a binary relation such that for two nodes 𝑣1 ≺ 𝑣2
indicates that there is a directed connection from 𝑣1 to 𝑣2. Given such a network,
we define dynamics of PCOs according to Eq. 2.1. We fix a vertex set 𝑉 of size
𝑁 = |𝑉| and a mean degree 𝑚. Using these parameters, we connect 𝑉 according
to the following construction rule:

directed Erdős-Rényi network We add directed connections between ran-
domly chosen nodes 𝑣1 ≠ 𝑣2 which are still unconnected until the network
has a mean number 𝑚 of ingoing and outgoing connections per node.

Note that undirected networks can easily be described by this general framework
if we require that for each 𝑣1 and 𝑣2 with 𝑣1 ≺ 𝑣2 we also have a connection in
the opposite direction (𝑣2 ≺ 𝑣1):

undirected Erdős-Rényi network We add directed connections in both di-
rections between randomly chosen nodes 𝑣1 ≠ 𝑣2 which are still uncon-
nected until the network has a mean number 𝑚 of connections per node.

Networks resulting from this construction are denoted as random graphs by
mathematicians and are usually aributed to Erdős and Rényi. Note that very
similar networks can be constructed by choosing a uniform connection proba-
bility 𝑝 for every pair of nodes, as was proposed by Gilbert [6] independently
from the work of Erdős and Rényi. While a uniform connection probability also
follows from the described construction, the total number of connections 𝑁E

in the network is fixed whereas 𝑁E follows a binomial distribution for random
networks defined via 𝑝. However, for larger network sizes, 𝑁E is distributed
sharply around its mean 𝑁E = 𝑝𝑁2, which allows us to consider both construc-
tions schemes of random networks as essentially the same. When considering
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3 Dynamics on random networks

the dynamics of pulse-coupled systems a third type of network model has been
investigated (see e.g. [67,84]). In this model, we consider a collection of 𝑁 oscil-
lators which are coupled all-to-all, but whose connections do not function reli-
ably. Instead only a fraction of excitations are processed by these connections.
Similar as for Erdős-Rényi networks, we can equally specify the probability that
a connection transmits an excitation or we can specify the number of transmit-
ted connections for every firing oscillator. We chose the laer and define the
following dynamical rule for such a network:

synaptic failure network Whenever an oscillator 𝑣1 in the network fires, we
excite 𝑚 randomly chosen oscillators in the network.

Note that we use the symbol 𝑚 here to denote the number of excitations per
firing oscillator, whereas we used 𝑚 for the mean degree of Erdős-Rényi net-
works, which specifies the mean number of excitations per firing oscillator in
these networks. e term synaptic failure network is motivated by the obser-
vation that synapses in neuronal networks do not reliably transmit excitations
to post-synaptic neurons [85]. e activation of a neuron following a synaptic
excitation is dependent on the release of neurotransmier which are contained
in a number of so-called synaptic vesicle. Excitation is thus delivered in quants
which are given by the size of these vesicles. e strength of synapses is com-
monly described as stochastic and is determined by the probability that vesicles
are released and the number of available vesicles [86]. Release probabilities vary
largely even in the same brain structure and can be as low as 1%. We interpret
excitations as the release of a vesicle instead of as a post synaptic excitation.
Under this assumption synaptic failure networks represent an idealization of
this dynamics for a well-connected neuronal network. For various kinds of os-
cillator dynamics, comparable network dynamics can be observed for all three
kinds of random networks. Nevertheless, they may produce different dynam-
ics even for large networks. It can be argued that synaptic failure networks are
simpler objects than Erdős-Rényi networks as the network is symmetric with
respect to interchange of every pair of nodes. In fact, for given parameters 𝑁
and 𝑚, there is only one synaptic failure network whereas constructed directed
or undirected Erdős-Rényi networks with the same parameters differ. While the
construction of those is also symmetric with respect to nodes, constructed net-
works are most likely not. In particular, nodes in the network have different
number of connections which usually has a significant influence on their dy-
namical behavior. e distinction between Erdős-Rényi networks and synaptic
failure networks is comparable to quenched and annealed disorder in condensed
maer. While Erdős-Rényi networks have quenched disorder which is frozen at
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3.1 Asynchronous states

time of generation, the synaptic failure network defines interaction by making
use of a random influence which changes with time. In this chapter, we will de-
scribe and compare the dynamics which arises from the three notions of random
networks when endowed at each node within the network with the dynamics
of linear IF oscillators (Eq. (2.14)). Note that for all-to-all coupling convergence
to complete synchrony has been shown for nearly all initial conditions [39]. In
contrast, we observe—in dependence on oscillator parameters—asynchronous
states, (partially) synchronous states, and irregular behavior with self-generated
changes between randomness and order. e dynamics in all of these states can
be characterized as chaotic. Because of the discrete nature of the system under
study, an analysis of Lyapunov spectra is not straightforward. We will show
how these complications can be tackled and will provide an estimation of the
largest Lyapuonv exponent 𝜆 for dynamical states which are stationary. Finally,
we investigate continuum models which capture the thermodynamic limit and
allow us to characterize asynchronous states and their loss of stability in terms
of bifurcations.

3.1 Asynchronous states

We start with a discussion of asynchronous states than can be observed for
larger networks in all three types of random networks, and we first consider the
case of linear IF oscillators without time delays and refractory periods. When
not stated differently, we will use uniformly distributied initial phases as ini-
tial conditions for networks. Complete synchrony in Erdős-Rényi networks is
stable (see Chapter 2.2). For synaptic failure networks, it is in principle possible
that a perturbation may lead away from complete synchrony. As all excitations
in these networks are distributed randomly, we cannot even exclude situations
in which some oscillators receive no excitations at all during some observation
time. Nevertheless, once a highly synchronous state is achieved (in synaptic fail-
ure networks) a return to asynchronous dynamics is highly unlikely. For all three
types of randomnetworks and for network sizes above a few hundred oscillators,
we were able to find oscillator and network parameters such that synchrony is
not reached during the observation times we can consider due to computational
constraints. Choosing such parameters and starting from homogeneously dis-
tributed phases in [0, 1], we observe aer a short transient small values of the
order parameter 𝑟 with minor fluctuations only. In Figure 3.1 we show the tem-
poral evolution of 𝑟 for linear IF oscillators of exemplary parameters in directed,
sparse random networks of different sizes. Note that we do not claim that the
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Figure 3.1: Le: Temporal evolution of the order parameter 𝑟 for synaptic failure
networks of linear IF oscillators (see Eq. (2.14)) with a fixed mean degree of
15.0 and for different networks sizes 𝑁 . Black: 𝑁 = 2500, blue: 𝑁 = 10000,
red: 𝑁 = 250000. Measurements with directed and undirected Erdős-Rényi
networks give similar results. Right: Variance of 𝑟 in 𝑡 ∈ [100, 200] for synap-
tic failure networks (black), directed Erdős-Rényi networks (blue), and undi-
rected Erdős-Rényi networks (red) in dependence on the network size 𝑁 .
e variance of 𝑟 shows a 1/𝑥 scaling (black line). Oscillator parameters:
𝑎 = 0.01, 𝑏 = 0.04.

behavior as depicted in Figure 3.1 is stable, in the sense that no transition to
complete synchrony is possible. For synaptic failure networks a realization of
the stochastic influences can easily be constructed such that networks synchro-
nize. However, such a realization is so unlikely that we cannot observe transi-
tions. For Erdős-Rényi networks, it seems likely that the asynchronous behavior
is equally unstable, but has an very large live time. We discuss this point fur-
ther in Chapter 3.3 where we describe transients to synchrony. e question of
the stability of the asynchronous behavior is not important for the network dy-
namics. For all practical purposes it is stable, as its live time is so long that we
cannot observe transitions. During the asynchronous behavior, 𝑟 shows small
oscillations, which decrease in amplitude for larger networks and converges to
some small value larger than zero. e variance of 𝑟 scales with the network
size as 1/𝑁 . Such scaling is oen encountered in systems which are far from
critical transitions. Note that if we consider 𝑁 as a number of independent mea-
surements, then the average over these measurements will have variance which
scales as 1/𝑁 [87]. is is just the formula for the statistical error. In some sense,
the scaling is thus an indication for the independence of the dynamics at differ-
ent positions in the system [88]. Note that small values of 𝑟 can also result from,
e.g., balanced groups of phase clusters which are distributed evenly on the phase
circle. is is, however, not the case for the oscillator and network parameters
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Figure 3.2: Le: Number of different phases 𝑁𝜙 aer preiteration (at 𝑡 = 100)
of a directed Erdős-Rényi network (𝑚 = 50) of 2500 linear IF oscillators in
dependence on 𝑏 and for 𝑎 = 0 (black), 𝑎 = 0.001 (blue), 𝑏 = 0.002 (red).
Oscillators synchronize completely for 𝑏 > 0.015 leading to 𝑁𝜙 = 1. Smaller
value of 𝑏 may lead to asynchronous behavior with values of 𝑁𝜙 in the same
order of magnitude as 𝑁 . Measurements with undirected random or synaptic
failure networks gave comparable results. Right: phases of a directed Erdős-
Rényi network of 2500 oscillators (𝑎 = 0.0, 𝑏 = 0.015,𝑚 = 50).

of Figure 3.1. To verify that phases are not concentrated, we measured the num-
ber 𝑁𝜙 of oscillators in the network which have pairwise different phases at a
given point of time. In Figure 3.2 we show 𝑁𝜙 in dependence on the oscillator
parameters. With the exception of the non-leaky case (𝑎 = 0), we observe no ac-
cumulation of oscillators at a distinct phase in the asynchronous behavior. Even
then the number of different phases remains of the same order of magnitude as
the number of oscillators in the network. Although the oscillators we consider
adapt their phases completely when a supra-threshold excitation is received, we
observe that at any point in time nearly all oscillators in the network have dif-
ferent phases. erefore, it is possible to describe the distribution of phases in
the network at any point in time 𝑡 by a distribution function 𝜌(𝜙) which devi-
ates significantly from a uniform distribution. e distribution function itself
is smooth and shows only minor fluctuations in time. e order parameter can
be expressed by 𝑟 = ∫𝜌(𝜙)𝑒2𝜋𝑖𝜙𝑑𝜙. It is clear that we cannot expect 𝑟 = 0 for
distributions which are not uniform. In fact the order parameter can be quite
large depending on network and oscillator parameters. Guided by this observa-
tion, we will not use small values of 𝑟 as criterium for asynchronous behavior.
Instead we characterize the dynamics of networks as being in an asynchronous
state, if the network exhibits constant macroscopic observables and if the oscil-
lator phases in the network can be described by a phase distribution 𝜌(𝜙) which
shows small fluctuations over time only. Given this definition asynchronous
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3 Dynamics on random networks

states are asynchronous as synchrony or partial synchrony will lead in some
way to oscillations in 𝜌(𝜙). Furthermore, we associate the network behavior at
different times to the same asynchronous state, as we cannot (per definition)
distinguish between them macroscopically. For synaptic failure networks every
excitation is deposited at a random target node. e phase of an excited oscil-
lator is thus also described by 𝜌(𝜙). For Erdős-Rényi networks, however, it is
conceivable that oscillators which are connected to oscillators with a certain
phase 𝜓 have a distribution 𝜌𝜓(𝜙) which differs from 𝜌(𝜙) and that this distribu-
tion 𝜌𝜓(𝜙) depends non-trivially on𝜓.is canmean for example that connected
oscillators in the network have a different expected phase difference than un-
connected oscillators. For an Erdős-Rényi network in an asynchronous state, it
is plausible that for oscillators which tend to synchronize, the expected phase
difference is smaller for connected than for unconnected oscillators. As excited
oscillators in an Erdős-Rényi network are those, which are connected to a firing
oscillator with 𝜙 = 1, the distribution of phases of excited oscillators is given
by 𝜌1(𝜙). In Figure 3.3 and Figure 3.4, we show 𝜌(𝜙) and 𝜌1(𝜙) for all three con-
sidered notions of random networks. As expected, 𝜌(𝜙) and 𝜌1(𝜙) coincide for
synaptic failure networks, while they differ for Erdős-Rényi networks. We can
also consider 𝜌𝜓(𝜙) as a function 𝜚(𝜓, 𝜙) ∶= 𝜌𝜓(𝜙) which depends on two vari-
ables and which can be interpreted as the distribution of edges whose source
node has phase 𝜓 and whose target node has phase 𝜙. Correlation of the phases
of connected oscillators then means that 𝜚(𝜓, 𝜙) cannot be produced by a simple
product of the phase distributions (𝜌(𝜓)𝜌(𝜙) ≠ 𝜚(𝜓, 𝜙)). In Figure 3.5, we show
a measurement of 𝜚 for directed and undirected Erdős-Rényi networks in asyn-
chronous states. e two networks show clear differences in this distribution
although their macroscopic dynamics is similar. Although synaptic failure and
Erdős-Rényi networks oen have similar dynamics, Erdős-Rényi networks can
be considered as much more complicated mathematical objects; aer the con-
struction of the network, different nodes are not exchangeable. A prominent
difference between nodes in a Erdős-Rényi network is the degree of incoming
connections 𝑑i. For excitatory systems, we can expect that the sub-population
of nodes with larger 𝑑i will move faster around the phase circle and fire more
oen than those nodes with a smaller 𝑑i. e network can thus be conceived
as a collection of oscillators with different frequencies. In Figure 3.6, we show
the correlation between this frequency and 𝑑i and the phase distribution for
sub-populations of nodes with a fixed 𝑑i. Each of these phase distributions in
Figure 3.6 le, resembles the phase distribution of synaptic failure networks for
𝑚 = 𝑑i. In the following chapter, we investigate the dynamics of the asynchro-
nous states microscopically and study their sensitivity to initial conditions.
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Figure 3.3: Asynchronous states in networks of 100000 linear IF oscillators with
𝑎 = 0.002, 𝑏 = 0.01,𝑚 = 15.0. Top le shows the PRC 𝛥(𝜙). e other three
plots show the distribution 𝜌(𝜙) (black) of all phases in the network measured
in the interval 𝑡 ∈ [100, 150] every 𝛿𝑡 = 0.2, and the distribution of phases 𝜌1(𝜙)
(blue) of excited oscillators. Distributions were measured for oscillators cou-
pled on synaptic failure networks (top right), directed Erdős-Rényi networks
(boom le), and undirected Erdős-Rényi networks (boom right).

3.2 Chaoticity

e largest Lyapunov exponent is a well-established measure, which allows one
to characterize sensitivity to initial conditions and to give indications for chaos
in smooth dynamical systems [89]. Due to the discontinuities in integrate-and-
fire systems, the standard notion is not directly applicable. However, several
approaches have been undertaken to generalize the standard definition to non-
smooth systems [45, 78, 90, 91]. In the following, we will discuss the arising dif-
ficulties, and show how the largest Lyapunov exponent 𝜆 can be defined in our
system. Furthermore, we provide an estimation for dynamical states of which
we know the distribution of phases of excited oscillators. We use superscript in-
dices to denote different trajectories from some network, while subscript indices
are as before used to specify nodes in the network. When neurons are defined
by the membrane potential, the reset aer firing transports the state discon-
tinuously to another region in state space. Let us track the time evolution of a

27



3 Dynamics on random networks

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 0.2 0.4 0.6 0.8 1

𝛥(
𝜙)

𝜙

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜌 1
,𝜌

𝜙

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜌 1
,𝜌

𝜙

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜌 1
,𝜌

𝜙

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.2 0.4 0.6 0.8 1

𝛥(
𝜙)

𝜙

0.5

1.0

1.5

2.0

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜌 1
,𝜌

𝜙

0.5

1.0

1.5

2.0

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜌 1
,𝜌

𝜙

0.5

1.0

1.5

2.0

2.5

3.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜌 1
,𝜌

𝜙

Figure 3.4: Top four plots: same as Figure 3.3 but for linear IF oscillators with
𝑎 = 0.01, 𝑏 = 0.04 and a mean degree 𝑚 = 15.0. Boom four plots: same as
Figure 3.3 but for linear IF oscillators (𝑎 = 𝑏 = 0.05) with time delay 𝜏 = 0.01
and refractory periods 𝜗 = 0.02.
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Figure 3.5: e distribution of edges 𝜚(𝜓, 𝜙) whose source node has phase 𝜓 and
whose target nodes has phase 𝜙 for an undirected Erdős-Rényi network (le)
and a directed Erdős-Rényi network (right). Edges were measured in the in-
terval 𝑡 ∈ [50, 150] every 𝛿𝑡 = 0.01. e dynamics shows asynchronous states
in networks of 500,000 linear IF oscillators with (𝑎, 𝑏, 𝜏, 𝜗) = (0.05, 0.05, 0.1, 0.2)
and 𝑚 = 10.
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Figure 3.6: Asynchronous states in a directed Erdős-Rényi network (𝑁 =
10000,𝑚 = 15.0) of linear IF oscillators (𝑎, 𝑏, 𝜏, 𝜗) = 0.01, 0.04, 0.0, 0.0). Le:
Phase distribution 𝜌(𝜙) for the sub-populationwith a fixed degree 𝑑𝑖 of incom-
ing connections of 5 (black), 15 (blue), 25 (red), and 30 (green).e distribution
of the total population is in this plot indistinguishable from the distribution
for 𝑑𝑖 = 15. Right: Number of firings𝑁f in time interval [0, 300] in dependence
on the indegree 𝑑𝑖.
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single oscillatory integrate-and-fire neuron starting from two initial membrane
potentials 𝑥1(0) > 𝑥2(0), and let us consider two trajectories 𝑥1(𝑡) and 𝑥2(𝑡) and
in particular their distance at some time 􏿖𝑥1(𝑡) − 𝑥2(𝑡)􏿖. e firing and reset of the
first neuron will separate the trajectories. However, aer firing of the second
neuron, the distance shrinks back to the order of magnitude as before. Clearly,
it is not desirable to measure or account for this short-lasting large distance be-
tween trajectories. Note that this problem does not appear if we consider the
phase representation of neurons and define distances in such a way that phases
which correspond to shortly before firing and to shortly aer firing are close.
As Lyapunov exponents are invariant under variable transformations [92], we
obtain the same contributions for the continuous part of the dynamics for both
the phase and the membrane potential representations.e excitations in pulse-
coupled systems lead to a similar problem: consider the state space of two con-
nected neurons (and two sets of nearby initial conditions) and assume that one
neuron receives an excitation from the other at time 𝑡 (𝑡+𝛿) for the first (second)
set of initial condition. e distance between both trajectories then is large in
the time interval (𝑡, 𝑡 + 𝛿) as here the excitation did only occur in the first set of
initial conditions. To characterize the influence of the excitation on the distance
of trajectories, it is thus advisable to compare the distance before 𝑡 and aer 𝑡+𝛿
when the excitation was received in both sets of initial conditions. Neverthe-
less, the distance is enlarged by a finite value as consequence of the excitation.
As the times between excitations contribute to the dynamics in a trivial way, it
is sensible to transform the system into a map by restricting the time variable
to the times of firing neurons [40, 67, 93]. Lyapunov exponents can then be de-
fined as for other time-discrete dynamical systems. e approach we choose to
describe sensitivity to initial conditions will guarantee that two trajectories stay
at constant distance between excitations whereas excitations may decrease or
increase the distance discontinuously. For large networks and many excitations,
we observe an exponential dependence of the distance 𝑑 between two trajecto-
ries which evolve from nearby initial conditions. e slope of the exponential
dependence 𝑑 corresponds in a natural way to the largest Lyapunov exponent
𝜆. We will use 𝜆 to characterize the different dynamical behaviors that we de-
scribe in this thesis. Moreover, to gain a beer understanding of the chaoticity
of the asynchronous states in Erdős-Rényi networks, we define in this chapter
a stochastic model, which allows us to relate the measured values 𝜆 to the PRC
of oscillators, when the distribution of phases of excited oscillators is known.
We consider the state space 𝒱 which is spanned by all phases of oscillators in
the network. An arbitrary vector in 𝒱 thus is of the form 𝛷 = (𝜙1, ..., 𝜙𝑁 ), with
𝜙1,⋯ , 𝜙𝑁 ∈ [0, 1]. We endow the phase circle with a metric which takes the
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cyclicity of phases into account

‖𝜙1
𝑖 − 𝜙2

𝑖 ‖ = 􏸌􏸈􏸍{􏿖𝜙1
𝑖 − 𝜙2

𝑖 􏿖 , 1 − 􏿖𝜙1
𝑖 − 𝜙2

𝑖 􏿖} (3.1)

and sum quadratically over different components of state space vectors to obtain
a metric 𝑑(𝛷1, 𝛷2) for state space vectors:

𝑑 􏿴𝛷1, 𝛷2􏿷 = 1
𝑁

􏽭
⃓
⃓
⎷

𝑁
􏾜
𝑖=1

􏿎𝜙1
𝑖 − 𝜙2

𝑖 􏿎
2. (3.2)

Note that 𝒱 endowed with this metric is compact which excludes the case of
diverging trajectories in which we have positive Lyapunov exponents without
chaos. When we consider a PRC with 𝛥(0+) ≠ 𝛥(1), an arbitrary small distance
between two trajectories can lead to a finite separation aer a single excita-
tion. For this to occur, we need two connected oscillators, which have similar
phases, such that their order of firing is different in both trajectories. However,
the probability 𝑃 of this situation vanishes, when we consider two trajectories,
which are very close. Suppose the phases are distributed according to some dis-
tribution 𝜌(𝜙), we can estimate the probability for a pair of oscillators to have a
phase difference smaller than 𝜖 by the following integral:

𝑃 ∼
1

􏾙
0

𝑑𝜙1

𝜙1+𝜖

􏾙
𝜙1−𝜖

𝑑𝜙2𝜌(𝜙1)𝜌(𝜙2) ≈ 2𝜖􏾙
1

0
𝑑𝜙1𝜌2(𝜙1). (3.3)

e integral vanishes for small 𝜖 and phase distributions without concentration.
erefore, discontinuities in the PRC do not influence the divergence of trajec-
tories at small distances. We can estimate the probability at other discontinuities
of the PRC with similar arguments.

To characterize divergence of trajectories for a network of 𝑁 oscillators, we
consider two state space vectors 𝛷1 = (𝜙1

1,⋯ , 𝜙1
𝑁 ) and 𝛷2 = (𝜙2

1,⋯ , 𝜙2
𝑁 ) which

are seperated by a vector of differences ℰ ∶= 𝛷2 −𝛷1 = (𝜖1,⋯ , 𝜖𝑁 ). e networks
that we consider are homogeneous in the sense that we have, at least on the level
of construction, nodes which are interchangable. erefore, it is sensible to con-
sider the distribution of the components of ℰ . Note that a fixed point in the state
space 𝒱 is not conceivable in our system. is would mean that no oscillators
are firing anymore and phases would increase due to the intrinsic dynamics of
oscillators. e most trivial dynamics we can expect is a limit cycle, i.e., a so-
called splay state in which all oscillators have different phases and pass the firing
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threshold without overtaking one another. Such states have been observed for
oscillators with decreasing PRCs [68, 94]. State space vectors at different times
of a splay state will obviously not converge towards each other. e largest Lya-
punov exponent in such a state is therefore 0. We can, however, characterize the
convergence towards the limit cycles by the first non-vanishing Lyapunov ex-
ponent, which for the splay state is negative. Even when such a splay state is an
aractor of the dynamics for some network of PCOs, transients can be very long
for larger networks, and their mean duration has been shown to scale exponen-
tially with the network size. Similar as for turbulent systems, aractors may play
no role for the emerging behavior when transients become so long that it is not
possible to observe their ending. Moreover the behavior of single oscillators dur-
ing this transients may be highly irregular and fluctuating, and can be described
as chaotic in the original meaning of the word. is unexpected observation has
lead to the term stable chaos, which describes the co-occurence of non-negative
Lyapunov exponents and seemingly chaotic behavior that can be observed in
high dimensional systems [95]. Note that two state space vectors which mainly
differ by an offset in all phases are probably badly chosen to characterize the dis-
tance between the trajectories they belong to, as in first approximation phases
increase. For weakly coupled oscillators, the state space vector with the smaller
phases will move closer with time because the intrinsic dynamics increases the
phases of all oscillators in the network. We can always evolve the vector with
smaller phases until ℰ is approximately zero. erefore, we can assume that
the mean value of ℰ = (𝜖1, ..., 𝜖𝑁 ) vanishes. For difference vectors ℰ with zero
mean, the sample variance of the components of ℰ is (due to our definition in
Eq. (3.2)) given by the state space metric: Var (ℰ ) = 𝑁/(𝑁 − 1)𝑑2(𝛷1, 𝛷2). To es-
timate the largest Lyapunov exponent, we use the standard algorithm [96]; we
evolve two sets of initial conditions 𝛷1 and 𝛷2 whose distance Var (ℰ ) is of the
order of 10−10. We start with uniformly distributed components of ℰ . However,
the starting distribution has lile influence on the final results because it quickly
converges to some broad stable distribution which is not Gaussian. In Figure
(3.7) we show the time evolution of this distribution for a directed Erdős-Rényi
network of oscillators. Aer the distance has either grown or shrunk by a prede-
fined amount, we rescale one phase vector such that the distance is again 10−10.
For diverging trajectories, this rate of growth of the distance corresponds to the
largest Lyapunov exponent. However, for the case that we have only one van-
ishing Lyapunov exponent, we can characterize this convergence by the largest
non-vanshing Lyapunov exponent. To allow us to characterize a possible con-
vergence towards a limit cycle in 𝒱 , we introduce the necessary time offset 𝛿 in
one system as to eliminate the mean of ℰ at every rescaling. For small coupling

32



3.2 Chaoticity

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1e-13 1e-12 1e-11 1e-10 1e-09 1e-08 1e-07 1e-06

𝜌 (
𝜖)

𝜖

Figure 3.7: Divergence of trajectories in a directed Erdős-Rényi network (𝑁 =
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ing from uniformly distributed phases (black). e plot contains histograms
of the logarithm of components of the difference vector ℰ measured at time
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Figure 3.8: Time evolution of the distance between trajectories Var (ℰ ) (red) for
Erdős-Rényi networks (𝑁 = 1000, 𝑚 = 100) and for different PRCs. e mean
phase shi 𝔼 (ℰ ) is ploed in green and blue for positive and negative values,
respectively. Le: 𝛥(𝜙) = 0.01(1 − 􏸂􏸎􏸒(2𝜋𝜙)), right: 𝛥(𝜙) = 0.01(𝑒−10𝜙). e
distance was rescaled to 10−10 when it exceeded 10−6 or 10−10.

strengths, the addition of an time offset will reasonably correspond to a removal
of contributions to the zero Lyapunov exponent. To minimize the influence of
numerical artefacts, all computations were done with 128 bit double precision.
In Figure (3.8), we show the time evolution of the distance between trajectories
from twomeasurements of the largest Lyapunov exponent, whichwere obtained
for asynchronous states of directed Erdős-Rényi networks with different PRCs.
Using this measurement, the network of inhibitory oscillators shows conver-
gence of the distance of trajectories while the asynchronous state of the network
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of excitatory oscillators has a positive Lyapunov exponent. As a preliminary at-
tempt, we present the following argument to explain the difference in conver-
gence behavior for both PRCs. e derivative of the phase transition curve is
given by 𝑅′(𝜙) = 𝛥′(𝜙)+1. erefore, 𝑅(𝜙) is a contraction for phases 𝜙 at which
the PRC has negative slope and an expansion for positive slope. An excitation of
an oscillator with phase 𝜙will increase the distance between trajectories only if
the PRC has positive slope at this 𝜙. It can therefore be expected that trajectories
converge for the PRC which was used in Figure 3.8 right as the PRC contains a
phase jump at 𝜙 = 0 and is otherwise monotonously decreasing. e same is the
case for the PRC of inhibitory integrate-and-fire neurons for which stable chaos
and a non-positive Lyapunov spectrum has been reported [90, 91]. PRCs which
are derived from limit cycle oscillators, however, oen are continiuous and have
both increasing and decreasing parts (see Figure 3.8 le). e behavior remains
unexplained using this simple argument and depends specifically on the phases
of the excited oscillators. e PRC of excitatory integrate-and-fire oscillators,
contains a jump to larger values at 𝜙 = 0. e integral over the part of the PRC
with negative slope is thus larger than over the part with positive slope. Still,
we observe divergence of trajectories (similar as in Figure 3.8 le). is is be-
cause the falling edge with slope of -1 near 𝜙 = 1 does not effectively reduce
the distance between trajectories, as our preliminary argument did not account
for the uncertainty of the firing oscillator. When an oscillator with some index
𝑒 and phase near 1 is excited, its phase aer excitation (𝜙 = 1) is insensitive to
the phase before. However its phase aer the excitation depends on the time at
which it received the excitation from some firing oscillator with index 𝑓 . For two
close trajecties, the phase difference 𝜖𝑓 of the firing oscillator 𝑓 is carried over,
such that the phase difference of 𝑒 is −𝜖𝑒 aerwards. We will, in the following,
present a stochastic model which accounts for the uncertainty of firing oscilla-
tors and which allows us to estimate the largest Lyapunov exponent, thereby
relating it to the PRC and the distribution of excited oscillator phases. e laer
is assumed to be a characteristic of some stationary dynamical behavior, which
can be the aforedescribed asynchronous state, or some (partially) synchronous
state.

We consider a single excitation and compute its influence on the distance of
two trajectories we compare. Assume that an oscillator 𝑓 fires at some time
𝑡f and has a connection towards an excited oscillator 𝑒. For the second state
space vector with nearby phases, the oscillators have phases 𝜙𝑓 +𝜖𝑓 and 𝜙𝑒 +𝜖𝑒,
respectively. Oscillator 𝑓 will thus fire at time 𝑡f − 𝜖𝑓 . We compare the phases
for both space state vectors at some time aer oscillator 𝑓 has fired in both
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trajectories and calculate the new phase difference 𝜖′𝑒 as:

𝜖′𝑒 = 􏿮(𝜙𝑒 + 𝜖𝑒) + 𝛥(𝜙𝑒(𝑡f − 𝜖𝑓 ) + 𝜖𝑒)􏿱 − 􏿮𝜙𝑒 + 𝛥(𝜙𝑒(𝑡f))􏿱
= 𝜖𝑒 + 𝛥(𝜙𝑒(𝑡f) + 𝜖𝑒 − 𝜖𝑓 ) − 𝛥(𝜙𝑒(𝑡f)) ≈ 𝜖𝑒 + 𝛥′(𝜙𝑒)(𝜖𝑒 − 𝜖𝑓 )

.
(3.4)

e excitation will affect only the 𝑒-th entry in ℰ according to Eq. (3.4). Note that
𝜖𝑒 and 𝜖𝑓 may have different signs and thus compensate each other. We define
the following stochastic process to model the divergence of trajectories and the
evolution of the difference vector ℰ , which is facilitated by a large amount of
such excitations. e model depends on the distribution of phases of excited os-
cillators 𝜌1(𝜙) and on their PRC 𝛥(𝜙). We repeat that this distribution differs for
Erdős-Rényi networks from the distribution of oscillator phases in the network
(see Figures 3.3 and 3.4).

We start with a vector (ℰ = (𝜖𝑖|𝑖 = 1, ..., 𝑁))which represents at index 𝑖 the
phase difference of oscillator 𝑖 between two trajectories.

Recursively, we define the vectorℰ (𝑀) = (𝜖(𝑀)
𝑖 |𝑖 = 1, ..., 𝑁)which represents

the phase differences aer 𝑀 excitations.

For every iteration step we chose a source node index 𝑓 and a target node
index 𝑒 randomly from 1, ..., 𝑁 . Additionally, we draw a random phase 𝜙
from the distribution function 𝜌1(𝜙).

By recursion, we define ℰ (𝑀+1) to be identical to ℰ (𝑀) in all components
other than 𝑒. e 𝑒-th component is defined as

𝜖(𝑀+1)
𝑒 = 𝜖(𝑀)

𝑒 (1 + 𝛥′(𝜙) − 𝜖(𝑀)
𝑓 𝛥′(𝜙)). (3.5)

In Figure 3.9 we show different realizations of this stochastic process for differ-
ent𝑁 . Note that the evolution of the difference vector ℰ in the stochastic model
relies on the assumption that the components in the difference vector of oscil-
lators are uncorrelated to their phase. For Erdős-Rényi networks both source
and target nodes are not chosen randomly, and it is conceivable that difference
components 𝜖𝑖 and 𝜖𝑗 are correlated differently for connected or unconnected
oscillators. For synaptic failure networks (and for the stochastic model), the ex-
cited oscillator is chosen randomly. e firing oscillator, however, is not random
but given by the oscillator with the largest phase. Also, we change 𝜖e and 𝜖f af-
ter each firing, while in synaptic failure networks, we excite multiple oscillators
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Figure 3.9: Le: Variance of the difference vector ℰ as generated by the stochas-
tic process for 𝑁 = 100 (red), 𝑁 = 1000 (black) and 𝑁 = 10000 (blue). e
chosen distribution of excited phases 𝜌1(𝜙) (right) was measured from asyn-
chronous states of a directed Erdős-Rényi networks (𝑁 = 10000,𝑚 = 15) of
linear IF oscillators with (𝑎, 𝑏, 𝜏, 𝜃) = (0.045, 0.02, 0.0, 0.0).

depending on the mean degree. In sum, when estimating the divergence of tra-
jectories in random or synaptic networks by the evolution ofℰ for the stochastic
model, we make the approximation that for every excitation the index of excited
and firing oscillator, and the phase of the excited oscillator are independent.

In the following, we will calculate the dri of the stochastic process, i.e. the
expected increase of Var (ℰ ) per iteration step 𝑀. To account for and quantify
the possible compensation in the terms of Eq. (3.5), we consider the ensemble𝒮
of all possible evolutions starting from all initial vectors ℰ in which each com-
ponent is distributed independently and equally with variance 𝑣(0). In our cal-
culation the distribution itself has no influence on the trend. We leave the exact
form thus open. Regarding this ensemble𝒮 we consider the distribution 𝜁(𝑀)

𝑖 of
the phase difference 𝜖(𝑀)

𝑖 in some component 𝑖 aer 𝑀 iterations and investigate
the influence of a single excitation. Due to the symmetry in the construction, it
is clear that the distributions 𝜁(𝑀)

𝑖 are identically distributed for all 𝑖 ∈ 𝑁 . We will
denote the common variance of these distributions by 𝑣 ∶= 𝔼 􏿴𝜁(𝑀)

𝑖 𝜁(𝑀)
𝑖 􏿷 were we

use𝔼 as symbol for the expectation value defined for the ensemble𝒮 . Although
we chose initial conditions without correlations between components, the iter-
ations introduce some level of correlations between 𝜁𝑖 and 𝜁𝑗 for 𝑖 ≠ 𝑗 which we
will quantify. Again we assume that the correlation between two arbitrary com-
ponents 𝑖 ≠ 𝑗 is identical due to the symmetry of the problem. We denote it with
𝛾 ∶= 𝔼 􏿴𝜁(𝑀)

𝑖 𝜁(𝑀)
𝑗 􏿷. Let us calculate for some 𝑀 the value of 𝛾′ ∶= 𝔼 􏿴(𝜁(𝑀+1)

𝑖 𝜁(𝑀+1)
𝑗 )􏿷

aer a single excitation in dependence on 𝛾 = 𝔼 􏿴𝜁(𝑀)
𝑖 𝜁(𝑀)

𝑗 􏿷 before the excitation.
Using Eq. (3.5) we first average over the indices of firing and excited oscillators.
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e average over the phase distribution will be performed aerwards. Assum-
ing uniformly distributed indices, we have (𝑁 − 1)2 cases in which 𝛾 does not
change at all as neither oscillator 𝑖 nor oscillator 𝑗 is excited. For 2(𝑁 − 1) cases,
oscillator 𝑖 is excited and 𝑗 is not the firing oscillator (or vice versa). In this case
we obtain with

𝛾′ = 𝔼 􏿴𝜁(𝑀)
𝑖 𝜁(𝑀)

𝑗 􏿷 􏿴1 + 𝛥′(𝜙)􏿷 −𝔼 􏿴𝜁(𝑀)
𝑖 𝜁(𝑀)

𝑓 􏿷 𝛥′(𝜙) = 𝛾 􏿴1 + 𝛥′(𝜙)􏿷 −𝛥′(𝜙) = 𝛾 (3.6)

also no change in correlation. Finally, we have two cases in which 𝑖 is excited
and 𝑗 is the firing oscillator (or vice versa). We obtain

𝛾′ = 𝔼 􏿴𝜁(𝑀)
𝑖 𝜁(𝑀)

𝑗 􏿷 􏿴1 + 𝛥′(𝜙)􏿷 − 𝛥′(𝜙)𝔼 􏿴𝜁(𝑀)
𝑗 𝜁(𝑀)

𝑗 􏿷 = 𝛾 􏿴1 + 𝛥′(𝜙)􏿷 − 𝛥′(𝜙)𝑣 (3.7)

averaging over 𝑖 and 𝑗, we obtain

𝛾′ = 1
𝑁2 􏿴(𝑁 − 1)(𝑁 − 1)𝛾 + 2(𝑁 − 1)𝛾 + 𝛾(1 + 𝛥′(𝜙)) − 𝛥′(𝜙)𝑣􏿷
𝛾 + 2

𝑁2 𝛥′(𝜙)(𝛾 − 𝑣). (3.8)

Similarly, we calculate the change in variance 𝑣′ ∶= 𝔼 􏿴𝜁(𝑀+1)
𝑖 𝜁(𝑀+1)

𝑖 􏿷 due to a sin-
gle excitation. We have no influence if an oscillator other than 𝑖 is excited. If,
however, 𝑖 is excited, we obtain using Eq. (3.5)

𝑣′ = 𝔼 􏿴𝜁(𝑀)
𝑖 (1 + 𝛥′(𝜙)) − 𝜁(𝑀)

𝑓 𝛥′(𝜙)􏿷
2
=

= (1 + 𝛥′(𝜙))2𝔼􏿴𝜁(𝑀)
𝑖 𝜁(𝑀)

𝑖 􏿷 + 𝛥′2(𝜙)𝔼 􏿴𝜁(𝑀)
𝑓 𝜁𝑓 􏿷 − 2(1 + 𝛥′(𝜙))𝛥′(𝜙)𝔼 􏿴𝜁(𝑀)

𝑖 𝜁(𝑀)
𝑓 􏿷

= 𝑣(1 + 2𝛥′(𝜙) + 2𝛥′2(𝜙)) − 2(𝛥′2(𝜙) + 𝛥′(𝜙))𝛾.
(3.9)

Averaging over 𝑖, the change in variance is given by

𝑣′ = 𝑣 + 2
𝑁

􏿴𝛥′(𝜙) + 𝛥′2(𝜙)􏿷 􏿴𝑣 − 𝛾􏿷 . (3.10)

Averaging over the phase 𝜙 of the excited oscillator and using the abbreviations

𝛼 = 2
𝑁 􏾙

1

0
􏿴𝛥′(𝜙) + 𝛥′2(𝜙)􏿷 𝜌1(𝜙)𝑑𝜙, 𝛽 = 2

𝑁2 􏾙
1

0
𝛥′(𝜙)𝜌1(𝜙)𝑑𝜙 (3.11)

we can represent Eqs. (3.10) and Eq. (3.8) as the following linear equation:

􏿶
𝑣′
𝛾′ 􏿹 = 􏿶

1 + 𝛼 −𝛼
−𝛽 1 + 𝛽 􏿹 􏿶

𝑣
𝛾 􏿹 (3.12)

e matrix has an eigenvalue of 1 and of 1 + 𝛼 + 𝛽. For the case that 𝛼 and 𝛽 are
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positive, which is the case for the excitatory IF oscillator we study, contributions
to the smaller eigenvalue will vanish aer some excitations and the vector gets
aligned to the eigenvector (𝛼, 𝛽)𝑇 associated with the eigenvalue 1 + 𝛼 + 𝛽. As
𝛽 scales with 1/𝑁2 and 𝛼 scales with 1/𝑁 , correlations play no role in the limit
𝑁 → ∞ and we have in this case 𝑣′ = 𝑣(1 + 𝛼) for the growth of the variance. If
we assume that ℰ (𝑀), as generated by the stochastic model, estimates the vector
of phase differences between two trajectories, we can calculate the mean (taken
over realizations) of the distance aer 𝑀 excitations as:

𝔼􏿴𝑑2(𝛷(𝑀), 𝛷(𝑀) + ℰ (𝑀))􏿷 = 1
𝑁

􏾜
𝑖
𝔼 (𝜁𝑖𝜁𝑖) = 𝑣(𝑀) = 𝑣(0)(1 + 𝛼)𝑀. (3.13)

Considering a mean firing rate of 𝜈, we have at time 𝑡 an expected number of
𝜈𝑡𝑚𝑁 excitations and thus:

𝑣(𝑡) = 𝑣(𝜈𝑚𝑡𝑁) = 𝑣(0)
𝜈𝑚𝑡𝑁
􏾟
𝑖=1

􏿰1 +
2
𝑁 􏾙

1

0
􏿴𝛥′(𝜙) + 𝛥′2(𝜙)􏿷 𝜌1(𝜙)𝑑𝜙􏿳 . (3.14)

Using a well-known formula for the exponential function, we get for large 𝑁 :

𝑣(𝑡) ≈ 𝑣(0)
𝜈𝑚𝑡
􏾟
𝑖=1

𝑒2∫􏿴𝛥′(𝜙)+𝛥′2(𝜙)􏿷𝜌1(𝜙)𝑑𝜙 = 𝑣(0)𝑒𝜈𝑚𝑡∫􏿴𝛥′(𝜙)+𝛥′2(𝜙)􏿷𝜌1(𝜙)𝑑𝜙 (3.15)

We denote the estimation of the largest non-vanishing Lyapuonv exponentwhich
we obtain from the dri of the stochastic process by 𝜆SM and obtain

𝜆SM = 􏸋􏸍(
􏽱

𝑣(1)
𝑣(0) ) = 𝜈𝑚

1

􏾙
0

(𝛥′(𝜙) + 𝛥′2(𝜙))𝜌1(𝜙)𝑑𝜙. (3.16)

Given that the assumptions of the stochastic model are justified, we can estimate
the largest Lyapunov exponent by Eq. (3.16) for different stationary dynamical
behaviors in dependence on their distribution of excited oscillator phases 𝜌1(𝜙).
Recall that the term quadratic in𝛥′(𝜙) originates from the influence of the uncer-
tainty of the firing oscillator. As we see from Eq. (3.16), we have negative contri-
butions to 𝜆 for excitations to oscillators with phases 𝜙 for which −1 < 𝛥′(𝜙) < 0.
Let’s consider again absorption of oscillators, which happens if an oscillator is
excited near a phase of 1. e PRC then has a slope of −1. According to Eq. (3.16),
such an excitation has no influence on the largest Lyapunov exponent, which
is sensible: e phase of the oscillator before excitation has no influence on the
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phase aerwards (which is 1). However, the uncertainty of the firing oscillator
is carried over to the excited oscillator. erefore, only one value of the distance
vector is exchanged by another, which does not change the distance of trajecto-
ries on average. Note that for complete synchrony, all excitations are received
by oscillators with phase 𝜙 = 1. We therefore have 𝜌1(𝜙) = 𝛿(𝜙 − 1) and, as ex-
pected, 𝜆SM = 0. For excitatory, linear IF oscillators, excitations which do not
lead to absorption yield a positive contribution to 𝜆SM. is means that 𝜆SM is
positive for all stationary dynamical behaviors characterized by 𝜌1(𝜙) for which
𝜌1(𝜙) takes non-vanishing values outside the slope of −1 near 𝜙 = 1. We there-
fore expect stationary network behaviors which are asynchronous or partially
synchronous to be chaotic. For low-dimensional systems, if we chose two nearby
initial conditions on a chaotic aractor, their difference vector may have con-
tributions from other Lyapunov exponents. erefore, one usually evolves both
initial conditions to ensure that contributions to all but the largest Lyapunov
exponent die out. For the stochastic process, however, we do not have degrees
of freedom changing the speed of divergence/convergence. e distribution of
the components of 𝜖 may change with time (see Figure 3.7). Its shape, however,
does not influence 𝜆SM.

In Figure 3.10, the numerically estimated largest Lyapunov exponent is com-
pared to 𝜆SM as determined by Eq. (3.16) with measured distributions 𝜌1(𝜙) and
firing rates 𝜈 for asynchronous states of Erdős-Rényi networks. For the consid-
ered parameters, Eq. (3.16) presents a reasonable approximation to the largest
Lyapunov exponent, and we find no significant correlation between 𝜖𝑒, 𝜖𝑟 and
𝜙𝑟. However, for large mean degrees and strongly varying PRCs, the phases of
oscillators and their component of the difference vector become correlated. We
demonstrate this effect for linear IF oscillators with refractory periods 𝜗 and
time delays 𝜏. In Figure 3.11 we show a similar measurement as presented in
Figure 3.10 for oscillators with 𝜏 and 𝜗. When an oscillator 𝑟 is refractory, its
component in ℰ cannot increase. As other components do increase, 𝑟 in its re-
fractory period has on average smaller a smaller 𝜖𝑟 than oscillators which are not
refractory; the assumption that 𝜙𝑟 and 𝜖𝑟 are independent is just an approxima-
tion (see Figure 3.11 top right) which is beer for smaller Lyapunov exponents
as then the short time a oscillator is in its refractory period is not enough to
introduce large differences in 𝜖𝑟 compared to other oscillators.

In Figure 3.11, we measure 𝜆SM for different dynamical behaviors, including
complete synchrony (𝜏 ∈ [0, 0.05]), partially synchronous states (𝜏 ∈ [0.05, 0.08],
𝜏 ∈ [0.14, 0.15]) and asynchronous states (for the remaining range of 𝜏). We give
a detailed description of the dynamics of these states in Chapter 3.3. Note, that
the value of 𝜏 does not influence the shape of the distribution of excited phases
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Figure 3.10: Top: two dimensional histogram of the observed pairs (𝜖𝑒, 𝜖𝑟) and
(𝜙𝑟, 𝜖𝑟) when tracking the divergence of two nearby trajectories in asynchro-
nous states of Erdős-Rényi networks (𝑁 = 5000,𝑚 = 15) of linear IF oscillators
(𝑎, 𝑏, 𝜏, 𝜗) = (0.02, 0.03, 0.0, 0.0). e histograms are normalized column-wise.
For every excitation, 𝜖𝑒 and 𝜖𝑟 denote the component of the difference vector
of the emiing and receiving oscillator, respectively. 𝜙𝑟 denotes the phase of
the excited oscillator. Both histograms point to that 𝜖𝑒, 𝜖𝑟 and 𝜙𝑟 show no sig-
nificant correlations for the chosen parameters. Boom: Largest Lyapunov
exponent for asynchronous states of networks (𝑁 = 5000,𝑚 = 15) of linear IF
oscillators in dependence on their parameters. Numerical values are shown
as data points, lines represent calculated values obtained from Eq. (3.16) with
measured distributions of excited oscillators 𝜌1(𝜙) and firing rates 𝜈. Both
were done for directed Erdős-Rényi networks (black) and undirected Erdős-
Rényi networks (blue). e boom le (right) plot shows the influence of 𝑎
(b) for 𝑏 = 0.02 (𝑎 = 0.02).
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Figure 3.11: Top: two dimensional histogram of the observed pairs (𝜖𝑒, 𝜖𝑟) and
(𝜙𝑟, 𝜖𝑟) when tracking the divergence of two nearby trajectories in asynchro-
nous states of directed Erdős-Rényi networks (𝑁 = 10000,𝑚 = 15) of linear
IF oscillators (𝑎, 𝑏, 𝜏, 𝜗) = (0.05, 0.05, 0.012, 0.2). e histograms are normal-
ized column-wise. For every excitation, 𝜖𝑒 and 𝜖𝑟 denote the component of
the difference vector of the emiing and receiving oscillator, respectively. 𝜙𝑟
denotes the phase of the excited oscillator. e top right histogram show a
slightly tendency towards smaller values of 𝜖𝑟 for 𝜙 values in the refractory
period. Boom: Largest Lyapunov exponent for asynchronous states of net-
works (𝑁 = 10000,𝑚 = 15) of linear IF oscillators in dependence on their
parameters. Numerical values are shown as data points, lines represent cal-
culated values obtained from Eq. 3.16 with measured distributions of excited
oscillators 𝜌1(𝜙) and firing rates 𝜈. Inset shows 𝜌1(𝜙) for different 𝜏. From le
to right 𝜏 ∈ [0.0, 0.05], 𝜏 = 0.072371, 𝜏 = 0.132371, 𝜏 = 0.174871. Note that
simple relationships between 𝜏 and 𝜗 can lead to artifacts and were therefore
avoided.
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3 Dynamics on random networks

in asynchronous states, instead 𝜌1 is merely shied by 𝜏. We provide more jus-
tification for this observation in our discussion of the continuum models, which
allow us to describe 𝜌1(𝜙) in terms of differential equations. As both 𝜌1(𝜙) and
𝛥(𝜙) are merely shied for different 𝜏 in asynchronous states, it is clear that 𝜆SM

takes the same value and is constant in 𝜏 ∈ [0.08, 0.2]. However, 𝜆SM as approxi-
mation to the Lyapunov exponent of the network dynamics becomes worse with
increasing 𝜏 (see Figure 3.11), as here 𝜖𝑒 becomes more and more dependent on
𝜖𝑟. e expected absolute value of 𝜖𝑒 is smaller than those of 𝜖𝑟, as firing oscilla-
tors are refractory before firing for 𝜙 ∈ [1 − 𝜏, 1], while the excited oscillator is
and 𝜖𝑟 is likely to have increased by other excitations during this time. With this
observation in mind, we can specify when the approximation in Eq. (3.16) is rea-
sonable, namely when 𝜆 itself is small, such that the component of an oscillator
in ℰ changes lile during its transportation on the phase circle.

We have described that linear IF oscillators coupled on Erdős-Rényi networks
can give rise to asynchronous states with nearly constant order parameters and
distribution of phases. We also characterized the microscopic dynamics to be
chaotic. Now, we will discuss synchronous states and transients towards them.

3.3 (Partially) synchronous states

e asynchronous states that we described can only be observed for larger net-
works. If we choose some set of parameters (for which the oscillators exhibit
asynchronous ehavior) and decrease the network size, we will eventually ob-
serve transitions to synchrony. In Figure 3.12 we show the influence of the net-
work size on the mean transient durations for small networks. All three kinds of
random networks that we consider show exponential scaling. While we cannot
measure these transient durations for the network sizes we are interested in,
we have no reason to assume that the scaling is different for larger networks or
that transition become impossible at some critical network size. However, the
exponential scaling certainly means that transitions become unobservable for
even medium-sized networks. We note the analogy to turbulent fluids [97, 98],
where even for moderate volumes, the observable dynamics consists of tran-
sients and is unrelated to the aractor. Moreover, we remark the analogy to
stable chaos, where transient and fluctuating behavior eventually leads to limit
cycle behavior [68]. In our case, transient and fluctuationg behavior eventually
leads to synchrony [78, 99]. In both cases even medium sized networks may ex-
hibit transient durations which are orders of magnitude above the timescales
which can be observed with numerical simulations. e dependence of the tran-

42



3.3 (Partially) synchronous states

100

1000

10000

10 20 30 40 50 60 70 80 90 100

𝑇

𝑁

100

1000

10000

20 40 60 80 100 120 140 160 180 200

𝑇

𝑁

Figure 3.12: Mean transient duration 𝑇̄ for random networks (𝑚 = 15) of linear
IF oscillators in dependence on the network size 𝑁 . Blue: synaptic failure
networks, black: directed Erdős-Rényi networks, red: undirected Erdős-Rényi
networks. Le: 𝑎 = 0.02, 𝑏 = 0.02, right: 𝑎 = 0.02, 𝑏 = 0.028

sient duration on oscillator parameters shows a smooth transition for small net-
works which sharpens to a critical transition for large networks. We will discuss
in the following the behavior for reasonably large networks in which the notion
of asynchronous states as defined in Chapter 3.1 is practical, and discuss the
loss of stability of these states in dependence on oscillator parameters. We start
with a discussion of the behavior in Erdős-Rényi networks of linear IF oscillators
without refractory periods and time delays.

Linear IF oscillator

Depending on network and oscillator parameters, asynchronous states loose sta-
bility and we observe different kinds of transients which lead to synchronous
states when starting from distributed phases in [0, 1]. Surprisingly, the parame-
ter region in the (𝑎, 𝑏)-plane which we associate with asynchronous states, does
not contain small values of 𝑏, such that we observe with increasing 𝑏, first syn-
chronous, then asynchronous and again synchronous states. In Figure 3.13, we
show the average order parameter ⟨𝑟⟩ in dependence on the parameters 𝑎 and
𝑏 of linear IF oscillators coupled onto directed and undirected Erdős-Rényi net-
works. We can distinguish the parameter region with asynchronous states and
small values of ⟨𝑟⟩ from the region in which oscillators in the network synchro-
nize completely aer a few collective oscillations leading to ⟨𝑟⟩ = 1. Note that
complete synchrony is stable for arbitrary 𝑎 and 𝑏 (see Chapter 2.2). For the
black regions shown in Figure 3.13, the networks may show both synchronous
and asynchronous behavior depending on the intial condition. We observe two
boundaries of the parameter region with asynchronous states, which intersect
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Figure 3.13: Average order parameter ⟨𝑟⟩ in 𝑡 ∈ [100, 200] for directed linear IF
oscillator networks (see Eq. 2.18) in dependence on oscillator parameters 𝑎
and 𝑏. Random networks have 10000 oscillators and a mean degree of 15 (le)
and 50 (right) and are directed (top) or undirected (boom). e inset shows
a closer view which reveils a fine structure near the upper boundary of the
parameter region with asynchronous states.

with discontinuous slope. Both boundaries give rise to different transients to
synchrony when starting from homogeneously distributed phases. We will de-
note the boundarywhich lies at larger(smaller) values of 𝑏 in the following as up-
per(lower) boundary. e dynamical behavior near and above the upper bound-
ary is similar for directed and undirected Erdős-Rényi networks. For parameters
above the boundary, we observe a quick convergence to complete synchrony
within a few oscillations. Near the boundary, this convergence may set in aer
periods of seemingly stationary behavior which may vary considerably in du-
ration (see Figure 3.14 top). At the lower boundary, we observe irregular global
behavior which seems stable for undirected Erdős-Rényi networks and leads to
complete synchrony for directed Erdős-Rényi networks (see Figure 3.14 boom).
Macroscopically, we established in Chapter 3.1 that asynchronous states can be
described by a distribution of phases, which possibly represents some kind of
stable equilibrium. We will make this notion more concrete when discussing
the continumm models in Chapter 3.4, and regard it as a intuitive notion for
the moment. For finite networks, such a distribution can only be approximated
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Figure 3.14: Exemplary time evolutions of the order parameter 𝑟(𝑡) of directed
Erdős-Rényi networks (le) and undirected Erdős-Rényi networks (right) of
linear IF oscillators. Colors represent differeent sets of uniformly distributed
initial phases. Networks parameters: (𝑚 = 15,𝑁 = 10000). Different color-
coded curves correspond to different uniformly distributed phases as initial
conditions. Top: oscillator parameters (𝑎 = 0.02, 𝑏 = 0.053) were chosen from
the upper boundary of the regimewith asynchronous behavior (cf. Figure 3.13
le). Boom: oscillator parameters were chosen near the lower boundary (𝑎 =
0.02, 𝑏 = 0.0075). At the lower boundary, directed Erdős-Rényi networks show
complicated transients to complete synchrony, while undirected Erdős-Rényi
networks show stable, irregular behavior.

which automatically introduces finite-size fluctuations. If the basin of araction
of these equilibrium solutions is small, it is conceivable that it can be le due to
these fluctuations. e expected life time thus increases with the network size
because finite-size fluctuations diminish. Additionally, we can change the equi-
librium and its basin by changing model parameters, which also influences the
transient durations, or turns the equilibrium solution unstable.

In Figure 3.15, we show the dependence of the mean transient duration 𝑇̄
on oscillator parameter 𝑏 for different network sizes. For a fixed set of param-
eters near the upper boundary, we observe exponentially distributed durations
of transients. Moreover, transient durations of directed and undirected Erdős-
Rényi networks show similar distributions. For large network sizes the param-
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Figure 3.15: Statistical properties of transients to synchrony observed for param-
eters near the boundaries of the regime of asynchronous states for directed
Erdős-Rényi networks (cf. Figure 3.13). Top le: mean transient duration 𝑇̄
near the upper boundary in dependence on 𝑏 and for a fixed value of 𝑎 = 0.02
for different network sizes 𝑁 = 500 (black), 1000 (blue), 2000 (red), 10000
(green). Right: frequency distribution 𝜌(𝑇) of transient durations near the up-
per boundary 𝑎 = 0.02, 𝑏 = 0.0375 for directed Erdős-Rényi networks (blue)
and undirected Erdős-Rényi networks (black) with 𝑁 = 500 and 𝑚 = 15. Bot-
tom le: mean transient duration 𝑇̄ near the lower boundary in dependence
on 𝑏 and with 𝑎 = 0.02 for𝑁 = 500 (black) and𝑁 = 1000 (blue). Values for both
undirected (blue) and directed (black) Erdős-Rényi networks. Boom right:
distribution of transient durations 𝜌(𝑇) for networks of 𝑁 = 500, 𝑏 = 0.0085
for directed (blue) and undirected (black) Erdős-Rényi networks.
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Figure 3.16: Average order parameter ⟨𝑟⟩ in 𝑡 ∈ [100, 200] for linear IF oscillator
coupled onto synaptic failure networks in dependence on PRC parameters 𝑎
and 𝑏. Networks have 10000 oscillators and a mean degree of 15 (le) and 50
(right). e inset shows a closer view which reveals a fine structure near the
upper boundary of the parameter region with asynchronous states.

eter dependence shows a fine structure with multiple changes between more
stable and less stable states. is fine structure can also be observed in the two-
dimensional measurements presented in Figure 3.13. e dynamical origins of
the fine structure require further investigations. It is conceivable that it is in-
fluenced by the initial condition which is far from the system’s equilibrium in
this parameter regime. e boundary and its fine structure progress similarly
for directed and undirected Erdős-Rényi networks. Near the lower boundary,
we observe large differences in the distributions of transient durations, even for
small networks (see Figure 3.15 boom). Moreover, the transient durations are
not well described by an exponential function, which reflects the irregular and
complicated dynamics during the transients (Figure 3.14 boom le).

We will now discuss the dynamical behavior of synaptic failure networks,
which show comparable dynamics near the upper boundary (see Figure 3.16)
and a similar progression of the laer as for Erdős-Rényi networks. Near the
lower boundary, however, syanptic failure networks show additional dynami-
cal behaviors. To describe these, we assess the firing rate 𝜈(𝑡) by counting the
number of firing oscillators given some temporal discretization grid. e grid
size has to be chosen in a trade-off which guarantees enough firing oscillators in
each bin and sufficient resolution of the temporal changes of 𝜈(𝑡). In Figure 3.17
we show 𝜈(𝑡) and the order parameter 𝑟(𝑡) for such a partially synchronous state
near the boundary at which stability of asynchronous solutions is lost. Aer a
few oscillations 𝜈(𝑡), 𝑟(𝑡) and 𝜌(𝜙, 𝑡) show a simple periodic behavior. e phase
density shows a deviation from the equilibrium solution which is localized in
𝜙 and is periodically shied in direction of larger phase values. e continuum
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Figure 3.17: Le: Temporal evolutions of order parameter 𝑟(𝑡) and firing rate 𝜈(𝑡)
of a synaptic failure network (𝑁 = 106, 𝑚 = 15) of linear IF oscillators starting
from homogeneously distributed phases. Right: distribution of phases 𝜌(𝜙, 𝑡)
in the network in dependence on time aer the transient. Oscillator param-
eters 𝑎 = 0.02, 𝑏 = 0.023. Aer the transient, the dynamics shows a periodic
behavior.
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Figure 3.18: Average order parameter ⟨𝑟⟩ and largest avalanche size 𝐴 in the in-
terval 𝑡 ∈ [100, 200] for linear IF oscillators coupled onto synaptic failure net-
works (𝑁 = 106) in dependence on 𝑏 and for 𝑎 = 0.027,𝑚 = 15 (le), and
𝑎 = 0.003,𝑚 = 50 (right). e networks exhibit synchronous states for larger
values of 𝑏. Smaller values of 𝑏 lead to limit cycles with a periodic behavior
of 𝑟(𝑡) and eventually to complete synchrony at the appearance of avalanches
(cf. Figure 3.19 top).

model whichwe present in the next chapter provides evidence that the described
solutions are–in the limit of large networks–indeed periodic and can be consid-
ered as limit cycles which emerge from supercritical Andronov-Hopf bifurcation
points which lie on the boundary of the region with asynchronous states. ese
limit cycles are observable at the full length of the lower boundary. When we
choose parameters which are farer away from the parameter region with asyn-
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chronous states, e.g. by choosing lower values of 𝑏, the size of the deviation
increases as does the range of assumed values of the firing rate 𝜈(𝑡). Beyond
some critical parameter value for 𝑏, we observe, when starting from uniformly
distributed phases, the deviation to increase until the firing rate 𝜈(𝑡) diverges.
We explain the laer as follows: When a suprathreshold excitation is received,
the excited oscillator adapts its phase towards the firing oscillator and fires it-
self at the same instant. A large number of oscillators with phases near 1 may
lead to a kind of chain reaction in which every firing oscillator makes on aver-
age another oscillator fire. If this happens, an amount of oscillators which is of
the same order of magnitude as the network size fires simultaneously. e dis-
cretization grid we use to assess 𝜈(𝑡) limits the values we can detect from above.
To assess infinite values of 𝜈(𝑡) and thus avalanches, we computed for every fir-
ing oscillator, the number of oscillators which fired at exactly the same time.
We will denote an simultaneous firing as an avalanche, and measure its size 𝐴
by the fraction of the network that fires simultaneously. Avalanches can also be
observed in the asynchronous states but they rarely exceeds a few oscillators
and thus have no influence on the collective dynamics for large networks.

An avalanche represents a spontaneous adaptation of a large part of the os-
cillators to a common phase. It is therefore not surprising that the appearance
of avalanches may lead to complete synchrony aer a few collective firings as
we observe for larger values of 𝑎 (see Figures 3.18 and 3.19 top). For smaller
values of 𝑎, however, we observe partially synchronous states with recurring
avalanches, which are observable in a large parameter region (grey regions in
Figure 3.16) Depending on oscillator and network parameters, these states can
appear seemingly periodic (similar as the limit cycles near the lower boundary
of the asynchronous parameter regime) but with an avalanche of a fixed size
as part of the periodic behavior. However, we also observe more complicated
states in which the sizes of avalanches appear completely irregular. In those
states, avalanches have a desynchronizing influence on the dynamics. In the
middle part of Figure 3.19, we show a transient to a (seemingly) periodic state
with recurring avalanches. Due to the large number of excitations which are
emied from oscillators in the avalanche, the whole distribution of phases is
changed discontinuously. Aer the avalanche the firing oscillators have a phase
of 0 and represent—in the notion of the phase density—a 𝛿-peak. Due to the in-
trinsic dynamics of oscillators, the peak travels to larger phase values, and due
to excitations which arrive at its contributing oscillators, it decays rapidly. As
every oscillator will receive on average 𝑚 excitations during one firing cycle,
very few oscillators will remain at the 𝛿-peak when it reaches 𝜙 = 1. Excita-
tions to oscillators from the 𝛿-peak arrive at different times and lead to different
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Figure 3.19: Le: Temporal evolutions of order parameter 𝑟(𝑡) (black) and fir-
ing rate 𝜈(𝑡) (red) of a synaptic failure network of 106 linear IF oscilla-
tors starting from homogeneously distributed phases. Avalanche sizes 𝐴 are
marked in blue. Right: distribution of phases in the network 𝜌(𝜙, 𝑡) in de-
pendence on time aer the transient. Top: avalanches lead to a fast con-
vergence to complete synchrony (𝑎 = 0.003, 𝑏 = 0.009,𝑚 = 50). Middle:
seemingly periodic time evolution with a recurring avalanche of a fixed size
(𝑎 = 0.02, 𝑏 = 0.022,𝑚 = 15). Boom: irregular behavior with recurring
avalanches (𝑎 = 0.002, 𝑏 = 0.006,𝑚 = 50).
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3.3 (Partially) synchronous states

phase responses (provided 𝑎 ≠ 0). erefore, no additional phase concentrations
are generated. Instead, at a phase distance given by the phase response curve,
a local maximum is generated which consists of oscillators which were part of
the avalanche and received one excitation. Analogously, local maxima are gen-
erated with oscillators which received more than one excitation. is leads to
the characteristic structure in the phase distribution shown in the middle part of
Figure 3.19. As oscillators with a certain phase are influenced by random exci-
tations, their phases will differ aer some time. is leads to a smoothing of the
structurewhen it is transported to larger phase values.e resulting shape of the
structure when it reaches 𝜙 = 1 then determines the next avalanche. Although
the described state seems periodic, some variability remains even for large net-
work sizes. With our simulations it is not possible to decide if this variability is
due to finite size effects or if it has some dynamical origin.

For larger mean degrees, the global dynamics becomes irregular (see Fig-
ure 3.19 boom). Here, the phase distribution shows oscillations with increas-
ing amplitude until avalanches appear. ese have a desynchronizing influence,
which can be explained in the following way: When the oscillators of the ava-
lanche fire, their excitations shi 𝜌(𝜙) to larger phase values. However, oscilla-
tors are not excitable at the instant of their firing, which leads to a gap in the
phase distribution (see Figure 3.19 boom right) between the oscillators which
fired before the avalanche (with finite firing rates) and the oscillators of the ava-
lanche. Both parts are transported to larger phase values and are again smoothed
out to a single increase of lower amplitude with finite firing rates. e gap can
also be seen in the firing rate 𝜈(𝑡) which shows a bimodal behavior at the falling
slopes of 𝑟(𝑡). Intriguingly, the described mechanism does not necessarily lead
to a periodic behavior but to an irregular behavior which depends sensitively on
initial conditions and which persists for long periods of time. However, it is not
clear how strongly finite size fluctuations influence the observed irregularity.
We compared simulations with networks up to sizes of 107 oscillators and found
no loss of irregularity in observables like 𝑟(𝑡) for the parameters of Figure 3.19
boom. e introduced gap is more pronounced for smaller coupling strengths
and larger mean degrees, as here the smoothing back to a single increase is slow
and possibly takes many oscillations. It is therefore plausible that we observe
irregular behavior for𝑚 = 50, while smaller mean degrees lead to the seemingly
periodic behavior like in Figure 3.19 middle in which the gap is smoothed and
vanishes during its transport towards 𝜙 = 1 during a single oscillation.

Note that partially synchronous states as those described in Figure 3.17 lead to
a periodic behavior of 𝑟(𝑡). e range of assumed value for 𝑟(𝑡) is therefore no ad-
visable characteristic for irregularity. To characterize the deviation from simple
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Figure 3.20: Average order parameter ⟨𝑟⟩ (black), largest avalanche size 𝐴 (blue),
and range ⟩𝑟̄⟨ of the series of local maxima of 𝑟 (red). All three characteristics
were determined for the interval 𝑡 ∈ [1000, 2000] and for linear IF oscillators
coupled onto synaptic failure networks (𝑁 = 106) in dependence on 𝑏 and for
𝑎 = 0.02,𝑚 = 15 (le) and 𝑎 = 0.0015,𝑚 = 50 (right). e networks show
for larger 𝑏 asynchronous states. Smaller values of 𝑏 lead to limit cycles with
a periodic behavior in 𝑟(𝑡) and eventually to irregular states with recurring
avalanches (see Fig 3.19 boom and middle) . e insets show a closer view
on ⟨𝑟⟩ and 𝐴 near the loss of stability.

limit cycles in global observables, we calculate the series of local maxima 𝑟̄(𝑡) of
𝑟(𝑡). Both asynchronous states and limit cycles will lead to constant values of 𝑟̄(𝑡),
while more complicated time evolutions can be assessed by a statistical property
of 𝑟̄(𝑡) which characterizes fluctuation. In Figure 3.20 we show cuts through the
(𝑎, 𝑏)-plane in direction of 𝑏 for both 𝑚 = 15 and 𝑚 = 50. We observe from larger
to smaller values of 𝑏 first asynchronous states, then a small region with peri-
odic solutions as in Figure 3.17, and finally irregular behavior as in Figure 3.19
middle and boom. e irregular behavior can be observed for a large range
of parameters below the lower boundary. Note that the irregular behavior that
emerges in undirected Erdős-Rényi networks is also accompanied by avalanches
(Figure 3.14). In Figure 3.21, we show a time evolution for a larger networks for
whichwe detected avalanches in the sameway as we did for Figure 3.19. It seems
likely that the dynamics here is comparable for what we described for synaptic
failure network. However, this point needs further investigations, inparticular
regarding the absence of irregular behaviors in directed Erdős-Rényi networks.

Linear IF oscillator with refractory periods and time delay

Wewill now discuss the dynamics of oscillators with time delays and refractory
periods. Interestingly, we observe for these large differences in the dynamical
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Figure 3.21: Time evolution of the order parameter for an undirected Erdős-
Rényi network (𝑁 = 250000,𝑚 = 50) for parameters below the lower bound-
ary (𝑎 = 0.004, 𝑏 = 0.008). Avalanche are indicated as blue lines with a height
𝐴 which reflects the fraction of concurrently firing oscillators. e right plot
shows a closer view.

behavior of random and synaptic failure networks.While Erdős-Rényi networks
show asynchronous states similarly as before (see Figure 3.23 le), synaptic fail-
ure networks synchronize completely for arbitrary small coupling strengths (see
Figure 3.22). We explain the observed differences as follows. By adding a refrac-
tory period, the araction of two oscillators which are already synchronized is
increased, as the oscillator which precedes is refractory (cf. Figure 2.5) when the
excitation from the succeeding oscillator arrives. Note oscillators in a synaptic
failure network are stochastic and it is thus possible to separate both oscillators
if one receives more excitations than the other. However, they receive on aver-
age the same amount of excitations. is is in contrast to Erdős-Rényi networks
in which oscillators have different numbers of incoming connections. Refrac-
tory periods thus promote synchrony to a much smaller degree in those net-
works. In contrast to the simpler oscillators, we observe no fine structure near
the upper boundary of the regime with asynchronous solutions and no partially
synchronous states near the lower boundary for both directed undirected Erdős-
Rényi networks. e transition durations show near both boundaries exponen-
tial behavior for larger transient durations.

In the following chapter, we will provide descriptions of the dynamics in the
thermodynamic limit of 𝑁 → ∞. We represent the population of oscillators in
the network by a density function 𝜌(𝜙, 𝑡) and derive evolution equations for
𝜌(𝜙, 𝑡) for different conditions on the networks we want to desribe. We pro-
vide three descriptions which are tailored to dense networks, to sparse synaptic
failure networks and to sparse Erdős-Rényi networks. e evolution equations
will be formulated for PCOs of arbitrary PRC, whereaer we return to linear
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Figure 3.23: Le: Average order parameter ⟨𝑟⟩ for directed Erdős-Rényi networks
(top) and undirected Erdős-Rényi networks (boom) of linear IF oscillators in
dependence on PRC parameters 𝑎 and 𝑏. Oscillators are endowed with time
delay 𝜏 = 0.01 and refractory periods 𝜗 = 0.05 (see Eq. 2.18). ⟨𝑟⟩ was averaged
over 𝑡 ∈ [100, 200]. Network parameter: 𝑁 = 10000,𝑚 = 50. Right top: Mean
transient duration 𝑇̄ in dependence on 𝑏 and for a fixed value of 𝑎 = 0.001 for
directed Erdős-Rényi networks (black) and undirected Erdős-Rényi networks
(blue). Right boom: distribution of transient durations of directed Erdős-
Rényi networks 𝑁 = 10000 near the lower boundary (black, 𝑏 = 0.001) and
near the upper boundary (blue, 𝑏 = 0.009).
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IF oscillators to illustrate the equations. is approach allows us to provide an
explanation for many of the behaviors that we described before.

3.4 Continuum models

Let us consider a sequence of networks (𝒩𝑖|𝑖 ∈ ℕ) such that their number of
nodes diverges |𝒩𝑖| = 𝑁𝑖 → ∞. If we associate each network’s nodes with a dy-
namical system, we can define and investigate macroscopic observables. For the
right conditions on the networks in the sequence, these observables may show
similar behavior for large 𝑖 as we are considering systems which are less and less
influenced by finite-size effects. We can ask the question if it is possible to de-
fine a limiting dynamics, i.e., differential equations which describe the dynamics
in the thermodynamic limit of infinitely large networks. As candidates for such
conditions, we consider that either the mean degree𝑚𝑖 or the connection proba-
bility 𝑝𝑖 converges for 𝑖 → ∞. Given that𝑚𝑖 and 𝑝𝑖 are parameters of our network
construction, we can expect that they are parameters of the evolution equation
in the thermodynamic limit. As we have 𝑚𝑖 = 𝑁𝑖𝑝𝑖, the convergence behavior
of one of the two variables will determine the other. A converging connection
probability implies that the number of connections per oscillator diverges which
is why we denote the respective limit as limit of dense networks. In contrast, for
converging mean degrees, the number of links in the networks becomes small
compared to the number of possible links in the networks wherefore we denote
the respective limit as limit of sparse networks.

sparse limit 𝑚𝑖 → 𝑚,𝑁𝑖 → ∞, 𝑝𝑖 → 0

dense limit 𝑚𝑖 → ∞,𝑁𝑖 → ∞, 𝑝𝑖 → 𝑝

Note that for a given 𝑚, we can define very different sparse networks (e.g.
Erdős-Rényi networks or laices) with different dynamical behaviors even for
large network sizes. erefore, we cannot expect a unique limiting dynamics for
sparse limits. Although denseness seems to be a much stronger restriction for
a network, we are not aware of any result which has been obtained that dense
networks can be expected to have similar dynamics for large sizes, although it
seems plausible. In the following, we assume that the networks in limits are
either Erdős-Rényi networks or synaptic failure networks and discuss all four
possibilities that arise when combining these network notions with one of our
two limits.

Let us consider a single oscillator and its equations of motion in a large net-
work. If we know all fire times 𝑡𝑗 of its connected oscillators, we can describe its
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phase as
𝜙̇(𝑡) = 1 +􏾜

𝑗
𝛿(𝑡 − 𝑡𝑗)𝛥(𝜙(𝑡𝑗)). (3.17)

For a Erdős-Rényi network, the excitation times are correlated in a complicated
way (depending on the network) and this formula is not directly useful. For
synaptic failure networks, however, it can be argued that the sum of 𝛿-pulses
can be expressed as a Poisson process. Note that the Poisson process can be
uniquely characterized as being memoryless and ordered [100, 101]. Memory-
lessness means that the excitation times in a specific interval do not depend on
the history up to this point. is is clearly the case for synaptic failure networks
in which all excitations are distributed independently and the rate of arriving ex-
citations depends only on the firing rate, not on the paerns of excitations so far.
In contrast, memorylessness is violated for Erdős-Rényi networks; when an os-
cillator has received many excitations in the near past, the probability to receive
more is small, as many connected oscillators just fired and are thus likely to have
small phases.is remains true even if the global firing rate is time independent.
Orderlinessmeans that excitations do not arrive simultaneously.is property is
violated in partially synchronous states, inwhich amacroscopic amount of oscil-
lators fires simultaneously as we described in Figure 3.19. en again, whenever
oscillator phases are distributed such that we can describe them by a normal-
ized distribution function 𝜌(𝜙, 𝑡), orderliness is fulfilled. Although the arrival rate
at oscillators in Erdős-Rényi networks is not memoryless, the assumption of a
Poissonian process may still provide a sensible approximation, which is beer
when we have many connections and asynchronous oscillators. We thus make
this assumption —aiming at both random and synaptic failure networks—and
denote with 𝜂𝜆(𝑡,𝜙)(𝑡) an inhomogeneous Poisson process with time and phase-
dependent rate 𝜆(𝑡, 𝜙). e firing rate 𝜈(𝑡) in the network is given by the fraction
of oscillators which cross 𝜙 = 1 in some small time interval, i.e., the probability
flux 𝐽(𝜙, 𝑡) at 𝜙 = 1:

𝜈(𝑡) = 𝐽(1, 𝑡). (3.18)

For deterministic dynamics, 𝐽(𝜙, 𝑡) can be expressed as the product of density
and velocity of oscillators at 𝜙 = 1. For finite coupling strengths, however, the
situation is more complicated, as even oscillators with 𝜙(𝑡) < 1 can cross 𝜙 = 1 at
time 𝑡 if they receive an excitation.Wewill defer the exact definition of the flux to
the corresponding chapters for synaptic failure and Erdős-Rényi networks. For
a specific oscillator in a synaptic failure network, the probability that it receives
an excitation when another oscillator fires is given by𝑚/𝑁 , independently on its
phase. e arrival rate, i.e. the rate of incoming excitations is thus independent

56



3.4 Continuum models

on the oscillator phase or network size and reads 𝜆(𝑡, 𝜙) = 𝜆(𝑡) = 𝑚𝜈(𝑡). Using
this, we can express the equation of motions of a single oscillator in the limit of
sparse synaptic failure networks as:

sparse limit synaptic failure network

𝜙̇(𝑡) = 1 + 𝜂𝜆(𝑡)(𝑡)𝛥(𝜙(𝑡)), 𝜆(𝑡) = 𝑚𝐽(1, 𝑡). (3.19)

Note that this equation only contains 𝑚 as network parameter which we as-
sumed to be finite in the sparse limit. For Erdős-Rényi networks, we described
in the last chapter (see Figures 3.3 and 3.4) that the distribution of excited phases
does not coincide with the distribution of phases in the network. To account for
this, we do need the dependence of the excitation rate 𝜆(𝑡, 𝜙) on the phase 𝜙.
We defer the definition of 𝜆(𝑡, 𝜙) to the chapter for the continuum model for
Erdős-Rényi networks and define

sparse limit Erdős-Rényi network

𝜙̇(𝑡) = 1 + 𝜂𝜆(𝑡,𝜙)(𝑡)𝛥(𝜙(𝑡)). (3.20)

For the dynamics in the limit of dense networks, the arrival rate diverges. In
order to retain a finite effective phase velocity, we rescale the coupling strength
to account for the diverging number of incoming connections 𝑚 for each node.
More exactly, we assume that the product of PRC and mean degree 𝑚 converges
to a limiting PRC, which we denote with 𝐹(𝜙) to avoid confusion with the PRC
of single excitations:

𝛥𝑖(𝜙)𝑚𝑖 → 𝐹(𝜙). (3.21)

𝐹(𝜙) can be interpreted as the phase change per time interval and per firing rate
that an oscillator in the network receives due to excitations. For the firing rate,
we assume no dependence on the phase for both synaptic failure networks and
Erdős-Rényi networks as we observe the distribution of phases 𝜌(𝜙) and the
distribution of excited phases 𝜌1(𝜙) to approximate each other for Erdős-Rényi
networks of large mean degrees𝑚. Moreover, the evolution equations for Erdős-
Rényi networks that we describe in Chapter 3.4.3, predicts a difference between
𝜌(𝜙) and 𝜌1(𝜙) which declines for larger 𝑚. Assuming a phase independent rate,
we can express the phase change 𝑑𝜙 in a small time interval 𝑑𝑡 by the number of
excitations which arrive during 𝑑𝑡. e laer follows a Poisson distribution and
is for large rates well approximated by a Gaussian distribution with mean and
variance 𝜆(𝑡):

𝜙̇(𝑡) ≈ 1 + (𝑚𝑖𝐽(1, 𝑡) + 􏽮𝑚𝑖𝐽(1, 𝑡)𝜉(𝑡))𝛥𝑖(𝜙(𝑡)). (3.22)
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Here we used 𝜉(𝑡) to denote Gaussian white noise with zero mean and unit vari-
ance. For the limit of dense networks, 𝑚𝑖𝛥𝑖 stays finite an therefore √𝑚𝑖𝛥𝑖 van-
ishes such that we end up with a purely deterministic equation for single oscil-
lators:

dense limit random and synaptic failure network

𝜙̇(𝑡) = 1 + 𝐽(1, 𝑡)𝐹(𝜙). (3.23)

Again, the equation does not depend on parameters which diverge in the limit of
dense networks (like𝑚 or𝑁). In the following chapters, we will revisit the limits
as described in Eqs.(3.19), (3.20), and (3.23) and investigate the corresponding
master equations.

3.4.1 Sparse synaptic failure networks

We intent to derive a master equation for Eq. (3.19). In the same way, as for fi-
nite networks, the point process of incomming excitations of a single oscillator
approximates Eq. (3.19), the macroscopic dynamics of finite networks will ap-
proximate the dynamics as given by the master equation. Note that the synaptic
failure networks can be regarded as Mont-Carlo simluations to the dynamics
of the master equation [102]. Monte-Carlo simulations are oen used as a nu-
merical validation of complex problems when solutions are hard to obtain. Here,
our description is different; we investigated the dynamics of finite networks and
consider the continuum model as a limit of those. e master equation will be
given in form of a continuity equation

𝜕𝑡𝜌(𝜙, 𝑡) + 𝜕𝜙𝐽(𝜙, 𝑡) = 0. (3.24)

e (probability) flux 𝐽(𝜙, 𝑡) is meant to describe the fraction of oscillators which
pass a imaginary membrane at phase 𝜙 per time interval. However, as we expect
phase densities which are discontinuouos in 𝜙, we have to be careful how 𝜌(𝜙)
should be defined and interpreted. Consider a distribution of objects in the unit
interval with identified end points, such that we have two different densities 𝜌1
and 𝜌2 for 𝜙 < 0.5 and 𝜙 > 0.5. e densities 𝜌(𝜙)𝑑𝜙 at 𝜙 = 0.5 and 𝜙 = 1.0 are
in this situation no well-defined quantity. For many applications it would not be
necessary to define 𝜌(0.5) and 𝜌(1.0) at all. However, for our dynamical system,
the number of oscillators with phase 𝜙 = 1 corresponds to the firing rate and
directly influences the dynamics and we thus need to define 𝜌(1.0) in some way,
at least in the sense of some limit.
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We will use a different approach here, and define 𝜌(𝜙) as the density of parti-
cles, in a small interval whose le boundary is fixed at 𝜙. In this sense we restrict
the notion of infinitesimal phase intervals 𝑑𝜙 in expressions like 𝜌(𝜙)𝑑𝜙.is de-
fines 𝜌(0.5) = 𝜌2 and 𝜌(1.0) = 𝜌1 and makes the density function continuous for
le-sided limites. Note that the choice to fix the right boundary is arbitrary, we
could equally well have required a fixed le boundary. Naturally, the definition
of 𝜌(𝜙) also influences the probability flux. Integrationg over Eq. (3.24) and using
the fundamental theorem of calculus, we obtain

𝜕𝑡 􏾙
𝜙0+𝜖

𝜙0

𝜌(𝜙, 𝑡) = −𝐽(𝜙0) + 𝐽(𝜙0 + 𝜖). (3.25)

e change of particles in the interval [𝜙0, 𝜙0 + 𝜖] is given by the flux through
the interval boundaries at 𝑎 and 𝑎 + 𝜖. Due to the nature of excitations in our
system, we have to discuss the influence of oscillators which are moved exactly
to 𝜙0 by an excitation and in particular if they pass the imaginary surface with
which we define 𝐽(𝜙). As oscillators with phase 𝜙 < 𝜙0 do not contribute to
𝜌(𝜙0) and oscillators with phase 𝜙 = 𝜙0 do, an oscillator passes the membrane if
its phase is 𝜙0 and was smaller before the excitation. However, oscillators with
phases 𝜙 > 𝜙0 do contribute to 𝜌(𝜙0) as do oscillators with phase 𝜙. erefore,
an oscillator does not pass the membrane if its phase is 𝜙0 and was larger before
the excitation.e fluxwhich follows from our interpretation of 𝜌(𝜙) can thus be
defined as the density of oscillators which pass a membrane which is infinitely
close to 𝜙 and below 𝜙. When we consider 𝜌 and 𝐽 at 𝜙 = 0, the expressions are
meant as a short notation of the right-sided limit (e.g. 𝜌(0, 𝑡) ∶= 􏸋􏸈􏸌𝜑→0 𝜌(𝜑, 𝑡)).
We assume 𝐽(𝜙, 𝑡) to depend continuously on 𝜙. In particular we assume 𝐽(1, 𝑡) =
𝐽(0, 𝑡) as all firing oscillators are injected aer firing. Integration on both sides
over 𝜙 in (3.24) immediately yields that the integral of 𝜌 does not change with
time, which allow us to interpret 𝜌 as a probability density.

In the following, we will provide some heuristic considerations, which al-
low us to infer the continuity equation, before we derive in a more axiomatic
approach both differential equation and boundary condition from a general def-
inition of the flux. We start by considering non-interacting oscillators. An ar-
bitrary initial phase distribution 𝜌0(𝜙) for such oscillators, will be shied un-
changed to larger values with constant velocity 1. e solution in this case is
given by 𝜌(𝜙, 𝑡) = 𝜌0(𝜙 − 𝑡), which is a solution of the one-dimensional, first
order convection equation:

𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙𝐽(𝜙, 𝑡), 𝐽(𝜙, 𝑡) = 𝜌(𝜙, 𝑡). (3.26)
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3 Dynamics on random networks

Requiring continuity for the flux immediately gives us the boundary condition:

𝜌(0, 𝑡) = 𝜌(1, 𝑡). (3.27)

We will now consider the influence of excitations. We can expect for a given
phase 𝜙 two terms which determine the change of the density 𝜌(𝜙). One term
corresponding to oscillators, which are excited and disappear at 𝜙 and one term
corresponding to oscillators with other phases which are excited and arrive at
𝜙 (see Figure 3.24). We will denote the possible origin phases for which oscil-
lator wills – aer excitation – arrive at 𝜙 by 𝑅−1

𝑖 (𝜙). More formally, we define
for a given phase 𝜙 and an appropriate index set 𝐼𝜙 the reverse images of the
phase transition curve 𝑅 under 𝜙 as {𝑅−1

𝑖 (𝜙)|𝑖 ∈ 𝐼𝜙}. e master equation for
𝜌(𝜙) contains a term for each of these inverse images, reflecting the oscillators
which are originating from 𝑅−1

𝑖 (𝜙) and arrive at 𝜙 due to an excitation. Con-
sider oscillators which are concentrated in a small interval of size 𝑑𝜙 around
𝑅−1

𝑖 (𝜙), namely [𝑅−1
𝑖 (𝜙), 𝑅−1

𝑖 (𝜙) + 𝑑𝜙]. Given the probability distribution 𝜌, the
fraction of oscillators in this interval is 𝜌(𝑅−1

𝑖 (𝜙), 𝑡)𝑑𝜙. For a rate 𝜆(𝑡) per time
interval 𝑑𝑡we expect a decrease in the density by 𝜌(𝑅−1

𝑖 (𝜙, 𝑡)𝜆(𝑡). Oscillators are–
aer excitation–contained in [𝑅(𝑅−1

𝑖 (𝜙)), 𝑅(𝑅−1
𝑖 (𝜙) + 𝑑𝜙)], which is an interval of

size 𝑑𝜙𝑅′(𝑅−1
𝑖 (𝜙)). We have to account for the different sizes of the origin and

target intervals, which reflects the fact that 𝑅 may expand or contract the dis-
tance between pairs of phases. If we interpret for a chosen discretization grid 𝑑𝜙
𝜌(𝜙, 𝑡)𝑑𝜙 as the number of oscillators contained in 𝑑𝜙, and if we use the same
tightness around 𝜙 and 𝑅−1

𝑖 (𝜙), we obtain an increase of the density 𝜌(𝜙) by
𝜆(𝑡)𝜌(𝑅−1

𝑖 (𝜙))/𝑅′(𝑅−1
𝑖 (𝜙)). Repeating this argument for every root and including

the convection term at the right hand side of Eq. (3.26) we get:

𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙𝜌(𝜙, 𝑡) − 𝜆(𝑡)𝜌(𝜙, 𝑡) + 𝜆(𝑡)􏾜
𝑖∈𝐼𝜙

𝜌(𝑅−1
𝑖 (𝜙), 𝑡)

1 + 𝛥′(𝑅−1
𝑖 (𝜙))

. (3.28)

Note that 𝜆(𝑡) = 𝑚𝐽(1, 𝑡) = 𝑚𝜌(𝜙, 𝑡) depends for 𝑚 ≠ 0 on 𝜌(𝜙, 𝑡) and Eq. (3.28)
is thus non-linear. If we have |𝛥′| < 1 for all phases, the phase transition curve
𝑅(𝜙) is strictly monotonous and we have exactly one reverse image of 𝑅(𝜙) for
every phase 𝜙. is is usually the case for PRCs which are derived from limit
cycle oscillators [103]. In this case we can express the probability flux for which
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phase

Figure 3.24: Schematic of the different terms in the equation (Eq. (3.28)) describ-
ing the evolution of the phase density 𝜌(𝜙, 𝑡). 𝜌(𝜙, 𝑡) is transported to larger
phases due to the intrinsic dynamics of oscillators. Additonally, it is decreased
due to oscillators with phase 𝜙 which are excited and disappear at 𝜙 and in-
creased due to oscillators with phase 𝑅−1(𝜙) which are excited and appear at
𝜙.

the continuity equation takes the form of Eq. (3.28) by:

𝐽(𝜙, 𝑡) = 𝜌(𝜙, 𝑡) + 𝜆(𝑡)
𝜙

􏾙
𝑅−1(𝜙)

𝑑𝜙̃𝜌(𝜙̃, 𝑡). (3.29)

However, we are interested in the case that entire intervals are mapped by 𝑅 to
a single value, as we have for absorbing oscillators. In this case, the expressions
(3.28) and (3.29) are ill-defined. Additionally, Eq. (3.28) does not allow us to de-
duce a formula for the firing rate which we defined in form of the flux.erefore,
we define a generalization of Eq. (3.29) which is expressed only in terms of 𝑅(𝜙)
and not in terms of its reverse image. To this end, we define 𝐼→(𝜙) as the set of all
phases smaller than 𝜙which are mapped by the PTC 𝑅(𝜙) to a phase larger than
𝜙. Oscillators with phases in 𝐼→(𝜙) contribute to the flux 𝐽(𝜙, 𝑡) as an excitation
will move them past 𝜙. Analogously we define 𝐼←(𝜙) at the set of phases larger
than 𝜙 which are mapped to smaller value of 𝜙 by 𝑅(𝜙):

𝐼→(𝜙) = {𝜙̃ < 𝜙|𝑅(𝜙̃) ≥ 𝜙}, 𝐼←(𝜙) = {𝜙̃ > 𝜙|𝑅(𝜙̃) < 𝜙}. (3.30)

Using this notation, the general definition of the flux is given as:

𝐽(𝜙, 𝑡) = 𝜌(𝜙, 𝑡) + 𝜆 􏾙
𝐼→(𝜙)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃ − 􏾙
𝐼←(𝜙)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃. (3.31)
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3 Dynamics on random networks

e first term in Eq. (3.31) corresponds to the flux induced by the intrinsic dy-
namics of oscillators. e second (third) term corresponds to excitations which
move oscillators past an imaginarymembrane at𝜙 in direction of larger (smaller)
values. Let us first argue, that Eq. (3.31) indeed reproduces Eq. (3.28) if 𝑅 has at
most countably many reverse images for some 𝜑. We write the sets 𝐼→(𝜙) and
𝐼←(𝜙) in the form of Heaviside functions and differentiate the flux in Eq. (3.31):

𝜕𝜙𝐽(𝜙, 𝑡) = 𝜕𝜙𝜌(𝜙, 𝑡)+𝜆􏾙𝜌(𝜙̃, 𝑡)𝑑𝜙̃𝜕𝜙 􏿮𝜃(𝜙 − 𝜙̃)𝜃(𝑅(𝜙̃) − 𝜙) − 𝜃(𝜙̃ − 𝜙)𝜃(𝜙 − 𝑅(𝜙̃))􏿱 .
(3.32)

e derivative of the integrals can then be calculated, using the product rule and
assuming that differentiating Heaviside functions yields 𝛿-distributions:

= 𝜕𝜙 􏿮𝜃(𝜙 − 𝜙̃)𝜃(𝑅(𝜙̃) − 𝜙) − 𝜃(𝜙̃ − 𝜙)𝜃(𝜙 − 𝑅(𝜙̃))􏿱
= 𝛿(𝜙 − 𝜙̃) 􏿮𝜃(𝑅(𝜙̃) − 𝜙) + 𝜃(𝜙 − 𝑅(𝜙̃))􏿱 + 𝛿(𝑅(𝜙̃) − 𝜙) 􏿮𝜃(𝜙 − 𝜙̃) + 𝜃(𝜙̃ − 𝜙)􏿱
= 𝛿(𝜙 − 𝜙̃) + 𝛿(𝑅(𝜙̃) − 𝜙).

(3.33)
Using the rule of substitution, we can evaluate the remaining 𝛿-distribution as
long as 𝑅(𝜙) has at most countably many reverse images. Together with the
convection term of Eq. (3.31), we immediately obtain Eq. (3.28).

Eq. (3.31) has the advantage that we can derive boundary conditions from
it. Assume we have a PRC 𝛥 which has an interval 𝐵 in which 𝛥 has a slope
of -1 pointing to some phase 𝜑 (as is the case for the PRC of IF oscillators for
𝜑 = 1). en the function 𝐼→(𝜙) which maps phases to sets is discontinuous in
the following sense: 𝐼→(𝜑) will contain 𝐴 while 𝐼→(𝜑+) may well be empty. We
can and should in this case still assume a continuous flux 𝐽(𝜑, 𝑡) (as defined in
Eq. (3.31)) which, however, forces a discontinuous boundary condition on the
phase distribution 𝜌(𝜙, 𝑡):

𝜌(𝜑, 𝑡) + 𝜆 􏾙
𝐼→(𝜑)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃ − 𝜆 􏾙
𝐼←(𝜑)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃

􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
𝐽(𝜑)

=

𝜌(𝜑+, 𝑡) + 𝜆 􏾙
𝐼→(𝜑+)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃ − 𝜆 􏾙
𝐼←(𝜑+)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃

􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
𝐽(𝜑+)

. (3.34)
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If we have many oscillators with phases slightly below the firing threshold, it
may be the case that an oscillator that fires at time 𝑡 will excite and make other
oscillators fire at the same time 𝑡. e firing of these other oscillators then may
further increase the firing rate 𝜈(𝑡) similar as in an avalanche. Our definitions
so far account for these avalanches. If we insert our formula for the arrival rate
𝜆(𝑡) = 𝑚𝐽(1, 𝜙) in Eq. (3.31) and set 𝜙 = 1, we obtain:

𝜆 = 𝑚𝐽(1, 𝑡) = 𝑚𝜌(1, 𝑡) + 𝑚𝜆 􏾙
𝐼→(1)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃ + 𝑚 􏾙
𝐼←(1)

𝜌(𝜑, 𝑡)𝑑𝜑). (3.35)

We can solve this equation with respect to 𝜆 to obtain an expression solely in
terms of the phase distribution:

𝜆 = 𝑚𝜌(1, 𝑡)/(1 − 𝑚 􏾙
𝐼→(1)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃ + 𝑚 􏾙
𝐼←(1)

𝜌(𝜑, 𝑡)𝑑𝜑). (3.36)

e last term in the denominator corresponds to oscillators which receive an
inhibitory excitation and traverse the firing threshold in the wrong direction.
Such oscillators decrease the firing rate as they are counted as negative flux
across 𝜙 = 1. is is clearly not desirable. We avoid this situation by considering
only PRCs which are bounded by −𝜙 from below. In this way, an inhibitory
excitation can at most set the phase of the excited oscillator to 0 and no threshold
crossing is possible.

e denominator of Eq. (3.36) may vanish, which leads to a diverging firing
rate. Although numerical solvers which base on some finite difference scheme
will fail at this point, the behavior of finite synaptic failure networks remains
meaningful. We observe an avalanche effect in those simulations. When every
firing oscillator absorbs–on average–at least one other oscillator, a macroscopic
amount of oscillators (of the order of the network size) will fire at the same time
instant. Avalanches appear, when the degree is large and when the phase dis-
tribution contains large values in the interval 𝐼→(1), which are phases at which
oscillators are moved past the firing threshold by a single excitation. At the ava-
lanche the noise which is injected into each oscillator due to the mutual in-
teraction (see Eq. (3.19)) is no longer ordered; oscillators may receive multiple
excitations at the same time and the phase distribution in the finite network
is changed discontinuously. Aer the avalanche, a phase cluster containing a
macroscopic amount of oscillators is injected at 𝜙 = 0. While this situation of-
ten leads to complete synchrony (in fact every transient to complete synchrony
contains such avalanches aer some time), it does not have to; In Chapter 3.3,
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we reported on limit cycles with partial synchrony in which avalanches occur
periodically. In the notion of the continuity equation, we have a 𝛿-peak which
is injected at 𝜙 = 0 at the time of the avalanche. However, the continuum dy-
namics and the framework introduced so far cannot account for this behavior,
especially when the firing rate as defined by Eq. (3.36) turns negative.

To summarize: Given a PTC 𝑅(𝜙) and a mean degree 𝑚, we consider the unit
interval [0, 1) in which 1 is identified with 0, and define on this interval a con-
tinuous conserved probability flux as in Eq. (3.31). is definition determines
a continuum model of oscillators which can be interpreted as the limiting dy-
namics of sparse synaptic failure networks. We infer from this definition the
differential equation

𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙𝜌(𝜙, 𝑡) − 𝜆(𝑡)𝜌(𝜙, 𝑡) + 𝜆(𝑡)􏾜
𝑖∈𝐼𝜙

𝜌(𝑅−1
𝑖 (𝜙), 𝑡)

1 + 𝛥′(𝑅−1
𝑖 (𝜙))

(3.37)

where the excitation rate is given by

𝜆 = 𝑚𝜌(1)/(1 − 𝑚􏾙
𝐼→(1)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃ + 𝑚􏾙
𝐼←(1)

𝜌(𝜑, 𝑡)𝑑𝜑). (3.38)

Additionally, we infer for phases 𝜑 at which 𝑅−1(𝜙) has uncountably many re-
verse images, the following boundary condition:

𝜌(𝜙, 𝑡) + 𝜆􏾙
𝐼→(𝜑)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃ = 𝜌(𝜑−) − 𝜆􏾙
𝐼←(𝜑−)

𝜌(𝜙̃, 𝑡)𝑑𝜙̃ (3.39)

Due to the non-linearity of the system (which is explicit in both the boundary
conditions and in the differential equation), solutions of differentmass∫1

0
𝜌(𝜙)𝑑𝜙

have different shape, although the time evolution does not change mass. If we
investigate solutions with a different mass, the firing and excitation rates are
interpreted wrongly as they both are entities relative to the size of the popula-
tion. To ensure that the firing rates are interpreted as expected, we additionally
require for the initial conditions that solutions are normalized to 1:

􏾙
1

0
𝜌(𝜙, 0)𝑑𝜙 = 1 (3.40)

In the following, we will provide a analysis of the equations for linear IF oscil-
lators.
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Figure 3.25: Phase response curve of linear IF oscillators (see Eq. (2.18)) for ex-
emplary parameters (𝑎, 𝑏, 𝜏, 𝜗) = (0.06, 0.06, 0.1, 0.2). Phase intervals are col-
ored depending on the number of reverse images of the PTC. Green for no
reverse image, yellow for one reverse image. e phase 1 − 𝜏, at which we
have uncountably many reverse images, is marked in red.

Linear IF oscillator

We consider the phase response curve of linear IF oscillators with time delay
𝜏 and a refractory period 𝜗 as given in Eq (2.18). To evaluate the differential
equation Eq. (3.37), we investigate the inverse images of the phase transition
curve (see Fig 3.25). For the interval [0, 𝑏], we have no reverse images and thus
no term reflecting arriving oscillators. For the interval [𝑏, 1], we have exactly one
reverse image at 𝑅−1(𝜙) = 𝜙−𝑏

1+𝑎 . For 𝜙 = 1 − 𝜏, we have uncountably many reverse
images reflecting the fact that all excited oscillators with phases in the interval
[𝜙ab, 1] have a phase of 1 aer excitation. In the intervals [0, 𝜗 − 𝜏] and [1 − 𝜏, 1],
the PTC is the identity and the two excitation terms in Eq. (3.37) cancel each
other out. e differential equation reads

𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙𝜌(𝜙, 𝑡) 0 < 𝜙 < 𝜗 − 𝜏
𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙𝜌(𝜙, 𝑡) − 𝜆(𝑡)𝜌(𝜙, 𝑡) 𝜗 − 𝜏 < 𝜙 < 𝑏 + 𝜗 − 𝜏
𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙𝜌(𝜙, 𝑡) − 𝜆(𝑡)𝜌(𝜙, 𝑡) + 𝜆(𝑡)

1+𝑎𝜌(
𝜙−𝑏
1+𝑎 , 𝑡) 𝑏 + 𝜗 < 𝜙 < 1 − 𝜏

𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙𝜌(𝜙, 𝑡) 1 − 𝜏 < 𝜙 < 1.
(3.41)

From Eq. (3.39) we obtain the following boundary condition for 𝜙 = 1 − 𝜏:

𝜌((1 − 𝜏)−, 𝑡) = 𝜌(1 − 𝜏, 𝑡) + 𝜆􏾙
1−𝜏

𝜙ab

𝜌(𝜙̃, 𝑡)𝑑𝜙̃. (3.42)

For other boundaries between the case distinctions in Eq. (3.41), we assume con-
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tinuity of 𝜌. For the case without time delay (𝜏 = 0), the boundary condition
concerns the firing threshold and we have according to Eq. (3.38):

𝜆 = 𝑚 𝜌(1, 𝑡)
1 − 𝑚∫1

𝜙ab
𝜌(𝜙̃, 𝑡)𝑑𝜙̃

. (3.43)

Otherwise, the rate is given by 𝜆 = 𝑚𝐽(1, 𝑡) = 𝑚𝜌(1, 𝑡).

Stationary solutions

We continue with a description of the stationary equilibrium solutions. Let 𝜌0(𝜙)
be such a solution, i.e., a normalized solution of Eqs. (3.41)–(3.43)with 𝜕𝑡𝜌0(𝜙, 𝑡) =
0. e differential equation can be described in the following way:

𝜕𝜙𝜌(𝜙, 𝑡) = 0 0 < 𝜙 < 𝜗 − 𝜏,
𝜕𝜙𝜌(𝜙, 𝑡) = −𝜆𝜌(𝜙, 𝑡) 𝜗 − 𝜏 < 𝜙 < 𝑏 + 𝜗 − 𝜏,
𝜕𝜙𝜌(𝜙, 𝑡) = −𝜆𝜌(𝜙, 𝑡) + 𝜆

1+𝑎𝜌(
𝜙−𝑏
1+𝑎 , 𝑡) 𝑏 + 𝜗 − 𝜏 < 𝜙 < 1 − 𝜏,

𝜕𝜙𝜌(𝜙, 𝑡) = 0 1 − 𝜏 < 𝜙 < 1.

(3.44)

We start with some easy conclusions which we can draw from this equation:
e shape of stationary solutions does not depend on the time delay 𝜏 since it
only influences the boundaries of the case distinction by an offset. erefore,
solutions with the same parameters apart from 𝜏 can be obtained from each
other by shiing the phase variable. Furthermore, solutions are constant during
the refractory periods of oscillators and decay exponentially in the interval [𝜗 −
𝜏, 𝑏 + 𝜗 − 𝜏]. Despite the seemingly simple form, the delay term in Eq. (3.44)
destroys all hope for analytic solutions in the interval [𝑏 + 𝜗 − 𝜏, 1 − 𝜏].

In the following, we will describe a shooting approach, which can be used
to obtain numerical solutions. For excitatory oscillators, which we consider, the
differential equation (3.44) depends for some phase 𝜙 only on smaller phases. If
we thus interpret 𝜙 as a time variable, we have a delay differential equation with
state-dependent delays which is causal and can be solved by some stepping al-
gorithm which evolves some initial state 𝜌(𝜙 = 0) incrementally to 𝜌(𝜙 = 1). e
solution obtained in this way depends on the initial value 𝑢0 ∶= 𝜌(𝜙 = 0, 𝑡 = 0)
and on the rate 𝜆, and we will denote it by 𝜌(𝜙; 𝑢0, 𝜆). For the findings pre-
sented in this chapter, we used the DDESOLVER to obtain such solutions, a
code which implements continuously embedded sixth-order Runge-Kua meth-
ods [104]. Note, for given fixed 𝜆 Eq. (3.44) represents a linear initial value prob-
lem, although the full boundary value problem, which describes the stationary
solutions is non-linear. If we chose 𝑢0 and 𝜆 positive, the solution 𝜌(𝜙; 𝑢0, 𝜆)will
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Figure 3.26: Stationary solutions of the continuum model with sparse connec-
tivity (𝑚 = 15) for IF oscillators determined numerically by shooting. Le:
(𝑎, 𝑏, 𝜏, 𝜗) = (0.04, 0.04, 0.0, 0.0), right: (𝑎, 𝑏, 𝜏, 𝜗) = (0.2, 0.1, 0.1, 0.2).

also be positive as the only negative term in Eq. (3.44) scales with 𝜌(𝜙, 𝑡). e
continuity equation in the stationary case states that the flux is constant in 𝜙
and we have 𝐽(0) = 𝐽(1) for 𝜌(𝜙; 𝑢0, 𝜆) . As our main assumption for deriving
boundary conditions is continuity of the flux, it is thus also clear that the so-
lution 𝜌(𝜙; 𝑢0, 𝜆) fulfills the boundary condition at the firing threshold. As all
firing oscillators are reinjected at phase 𝜙 = 0, we have 𝐽(0) = 𝐽(1) = 𝜆/𝑚. As we
do not consider excitations past the firing threshold, we have 𝜌(0) = 𝐽(0).We can
thus conclude that if we choose initial state 𝑢0 and excitation rate 𝜆 such that
𝑢0𝑚 = 𝜆, then solutions will fulfill our assumptions for the firing rate Eq. (3.38).
We are le with one degree of freedom given by 𝜆 which has to be chosen in
such a way that the solution 𝜌(𝜙; 𝜆/𝑚, 𝜆) is normalized.Wewill use the following
definition:

𝐼(𝜆) = 􏾙
1

0
𝜌(𝜙; 𝜆𝑚 , 𝜆)𝑑𝜙 (3.45)

e shooting approach now consists of starting with some initial value, and
calculating 𝐼(𝜆) in a iterative fashion with the goal to determine the value at
which 𝐼(𝜆) takes a value of 1. e approach thus depends highly on a continuous
dependence on parameters of the solution 𝜌(𝜙; 𝜆/𝑚, 𝜆), which is provided for
delay differential equations as ours which are defined by Lipschitz continuous
functions [105]. In Figure 3.26 we show solutions which we obtained with the
described shooting approach for different parameters.

Uniqueness and Existence of stationary solutions can be related to properties
of the function 𝐼(𝜆). Monotonicity of 𝐼(𝜆) is a sufficient requirement for station-
ary solutions to be unique. Moreover, any 𝜆′ > 0 with 𝐼(𝜆′) > 1 means that a
solution of 𝐼(𝜆) = 1 exists as 𝐼(0) = 0 and as 𝐼(𝜆) depends continuously on 𝜆.

Let us first consider 􏸋􏸈􏸌𝜆→∞ 𝐼(𝜆). For large excitation rates 𝜆 an oscillator with
phase 𝜙will be excited immediately without any time for convections. Its phase
value will thus instantly jump to 𝑅(𝜙), 𝑅(𝑅(𝜙)), etc. until it leaves the unit inter-
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val. Consider now that a flux 𝜆/𝑚 injected at 𝜙 = 0. e oscillators will traverse
the interval [0, 𝜗−𝜏]with velocity 1 as the phase response vanishes here. Starting
from 𝜙 = 𝜗−𝜏 oscillators receive excitations and the fraction of oscillators which
received no excitation decays as the following function 𝑓(𝜙; 𝜆) ∶= 𝜆/𝑚𝑒−𝜆(𝜙−𝜗+𝜏).
Note that the integral of 𝑓(𝜙; 𝜆) is 1/𝑚, independently of 𝜆 and 𝑓(𝜙; 𝜆) concen-
trates to 𝜙 = 𝜗−𝜏 for large 𝜆. In other words 𝑓(𝜙; 𝜆) converges to 1/𝑚𝛿(𝜙−𝜗+𝜏).
Analogously, we obtain 𝛿-peaks at phases which correspond to 1, 2, ... excita-
tions, until the oscillators reach 𝜙 = 1 − 𝜏. Every of these phases gives a con-
tribution of 1/𝑚 to 𝐼(𝜆). For large 𝜆 we can thus describe 𝐼(𝜆) by counting the
number of iterations of 𝑅(𝜙) that fit into [𝜗 − 𝜏, 1 − 𝜏] and add the constant be-
havior during the refractory periods:

𝐼(𝜆) ≈
􏸌􏸀􏸗𝑖 􏿺𝑅(𝑖)(𝜗 − 𝜏) < 1 − 𝜏􏿽

𝑚 + 𝜗 𝜆
𝑚 . (3.46)

is expression diverges for 𝜗 > 0, which implies that stationary solutions exist
for this case. However, for 𝜗 = 0 the expression converges to

𝐼(∞) =
􏸌􏸀􏸗𝑖 􏿺𝑅(𝑖)(0) < 1􏿽

𝑚 , (3.47)

which depending on 𝑚 may be below 1 such that we have no guaranee for a
solution in this case. Note, that we have stationary solutions for every value of
𝜆 because 𝜌(𝜙; 𝜆/𝑚, 𝜆) can always be interpreted as a stationary solution if we
choose the right value for𝑚. Assume, we have 𝜌(𝜙; 𝜆1/𝑚, 𝜆1)with some value for
𝐼(𝜆1). We can choose as parameter 𝑚′ ∶= 𝑚𝐼(𝜆1) and 𝜌(𝜙; 𝜆1/′, 𝜆1) and 𝜌(𝜙; 𝜆1, 𝜆1)
will only differ in their normalization because 𝜌 are solutions of a linear initial
value problem and are thus also linear in their initial value, which we speci-
fied as second argument in the notation 𝜌(𝜙; 𝑢0, 𝜆). Moreover, we easily see that
𝜌(𝜙; 𝜆1/𝑚′, 𝜆1) is normalized to 1:

􏾙
1

0
𝜌(𝜙; 𝜆

𝑚′ , 𝜆)𝑑𝜙 = 1
𝐼(𝜆1)

􏾙
1

0
𝜌(𝜙; 𝜆𝑚 , 𝜆)𝑑𝜙 = 1. (3.48)

In Figure 3.27 we show stationary solutions with increasing mean degrees and
firing rates which more and more approximate the menitoned sequence of 𝛿-
peaks that corresponds to 𝜆 → ∞.

Using the stationary solution for diverging firing rate, we can argue that a
unique solution cannot be expected for arbitrary phase response curves: For in-
finite excitation rate 𝜆, 𝜌(𝜙;∞/𝑚,∞) depends only on those values of 𝛥 where
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Figure 3.27: Stationary solutions of the continuum model with sparse connec-
tivity for IF oscillators (𝑎 = 0.1, 𝑏 = 0.1) and for 𝑚 = 5 ( black), 𝑚 = 7 ( blue),
𝑚 = 7.5 (red), and 𝑚 = 8.0 (green) as determined numerically by shooting.

𝜌(𝜙;∞/𝑚,∞) has 𝛿-peaks. Even if we take large but finite values of 𝜆, the solu-
tion will only depend on the values of 𝛥(𝜙) in a finite number of regions around
these 𝛿-peaks which we can make arbitrary small. If we now consider any of
stationary solutions (e.g. those in Figure 3.26), we can increase the PRC near
𝜙 = 0 in a region which is so small that the stationary solution is nearly un-
changed. Moreover, we can make the increase so drastic that a single excitation
will remove an excited oscillator from the unit interval. In this case, the firing
rate 𝜆0 and the norm 𝐼(𝜆0) = 1 of the stationary solution are not changed, while
in the limit 𝜆 → ∞ only a single 𝛿-peak at 𝜙 = 0 remains and we thus have
􏸋􏸈􏸌𝜆→∞ 𝐼(𝜆) = 1/𝑚. Also, we have 𝐼(0) = 0 such that we can chose 𝜆1 and 𝜆2
with 𝐼(𝜆1) = 𝐼(𝜆2) by the intermediate value theorem. As before 𝜆1 and 𝜆2 cor-
respond to stationary solutions for the right value of 𝑚 such we have indeed
more than one stationary solution for such a PRC. Altough the situation here
is somewhat obscure, it is conceivable that multistability plays a role for less
artificial PRCs which oscillate such that the frequency is slightly larger than the
amplitude. In this case, the oscillations in solutions have a similar frequency as
those in the PRC. Moreover as convection times also influence oscillations in
solutions, we can tune the frequency in some range by changing the firing rate
(see Figure 3.27).
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Uniqueness

In the following, we will show that stationary solutions are unique for linear IF
oscillators with arbitrary parameters 𝑎, 𝑏 > 0 and 𝜏 < 𝜗 < 1. More generally, we
will demonstrate that 𝐼(𝜆) is monotoneously increasing for PRCs with 𝛥′(𝜙) ≥
−1.

As the first step, we relate 𝐼(𝜆) defined for some PRC to an exit time problem
for the stochastic dynamics of single oscillators in Eq. (3.19). To this end, we
consider the interval (0, 1) to be open and with no oscillator in it at time 𝑡. If we
now inject a constant flux 𝐽(0), oscillators will traverse the interval and exit at
𝜙 = 1 aer some time which varies due to the stochastic nature of Eq. (3.19).
We consider the distribution 𝑃(𝑡) of these exit times. e flux 𝐽(1, 𝑡) will increase
from 𝐽(1, 0) = 0 and eventually approach the injected amount 𝐽(0), at which time
the same amount of oscillators leave and exit the interval. If we inject 𝐽(0) = 𝜆/𝑚,
then the number of oscillators which are in the interval at a large time 𝑡, is given
by 𝐼(𝜆) as defined in Eq. (3.45) and can be expressed by integrating over the
difference of incoming and outgoing fluxes:

𝐼(𝜆) = 􏾙
∞

0
𝐽(0) − 𝐽(1, 𝑡)𝑑𝑡 = 􏾙

∞

0

𝜆
𝑚 − 𝐽(1, 𝑡)𝑑𝑡. (3.49)

Given the distribution of exit times 𝑃(𝑡), we can express the outgoing flux by in-
tegrating over the time 𝑡0 at which the oscillators were injected into the interval

𝐼(𝜆) = 􏸋􏸈􏸌
𝜅→∞

􏾙
𝜅

0

𝜆
𝑚 − 𝐽(1, 𝑡)𝑑𝑡 = 􏸋􏸈􏸌

𝜅→∞
􏾙

∞

0
𝑑𝑡􏾙

𝑡

0
𝑑𝑡0 􏿰

𝜆
𝑚 − 𝑃(𝑡 − 𝑡0)

𝜆
𝑚􏿳 . (3.50)

e domain of the second integral is the area of the quadrant (𝑡0, 𝑡) ∈ [0,∞] ×
[0,∞]which lies above the diagonal. If we parameterize this domain by 𝑢 ∶= 𝑡−𝑡0
and 𝑡0, we obtain, using substitution for multiple variables,

𝐼(𝜆) = 􏸋􏸈􏸌
𝜅→∞

􏾙
∞

0
𝑑𝑢􏾙

𝜅−𝑢

0
𝑑𝑡0 􏿰

𝜆
𝑚(1 − 𝑃(𝑢))􏿳 =

𝜆
𝑚 􏾙

∞

0
𝑑𝑢 [1 − (1 − 𝑢)𝑃(𝑢)] . (3.51)

As every oscillator eventually reaches 𝜙 = 1, we have ∫∞

0
𝑃(𝑢)𝑑𝑢 = 1, and we

obtain a surprisingly simple relationship, which says that the norm of 𝐼(𝜆) is
given by the product of the injected flux and the mean exit time.

𝐼(𝜆) = 𝜆
𝑚 􏾙

∞

0
𝑢𝑃(𝑢)𝑑𝑢 (3.52)

For inhibitory PRCs, the mean exit time obviously increases with 𝜆 and 𝐼(𝜆) is
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monotonously increasing as desired. Let us compare the exit times of the os-
cillators subject to Poissonian noise with the naive approximation in which we
consider an effective velocity of 𝑣(𝜙) = 1 + 𝜆𝛥(𝜙). e resulting approximation

is 𝐼(𝜆) ≈ 𝜆/𝑚∫1

0
1/𝑣(𝜙)𝑑𝜙. Compared to the exit times as described by Eq. (3.54),

the approximation does not account for the fact that when 𝛥(𝜙) has large values
for some phase, silghtly larger phases are likely to be jumped over by oscillators.
e effective velocity 𝑣(𝜙) does not account for the probability that an oscilla-
tor which starts at 𝜙 = 0 actually reaches phase 𝜙. Note that the probability for
an oscillator to reach a certain phase 𝜙 again is proportional to the stationary
solutions (see Figure 3.26) and may show large fluctuations.

Let us represent Eq. (3.52) by an integral equation. We define 𝑀(𝜑) as the
mean time an oscillator with phase 1 − 𝜑 driven by its intrinsic dynamics and
Poissonian excitations (Eq. (3.19)) remains in the unit interval before it reaches
𝜙 = 1. e mean exit time for the entire interval then is 𝑀(1), while we define
𝑀(𝜑) = 0 for𝜑 < 0.𝑀(𝜑) can now be expressed by an average over the time of its
next excitation. Assuming an exponential distribution 𝑤(𝑡) ∶= 𝜆𝑒−𝜆𝑡 for the times
between excitations, we can relate these times to probabilities. For the case that
the oscillator receives an exitation at time 1 −𝜑′, it has a phase of 1 −𝜑+ 𝑡+𝛥(𝑡)
aerwards. e mean time the oscillator needs to travers the remaining phase
distance (from 1−𝜑+𝑡+𝛥(𝑡) to 1) can again be expressed by𝑀(𝜑)which results
in the following integral equation for 𝑀(𝜑):

𝑀(𝜑) = (1 −􏾙
𝜑

0
𝑤(𝑡)𝑑𝑡)𝜑 +􏾙

𝜑

0
𝑤(𝜑 − 𝑡) 􏿮(𝜑 − 𝑡) +𝑀(𝑡 − 𝛥(1 − 𝑡))􏿱 𝑑𝑡. (3.53)

Here the first term corresponds to the situation, that the oscillator does not re-
ceive another excitation before leaving the unit interval. Inserting 𝑤(𝑡), we ob-
tain:

𝑀(𝜑) = 1 − 𝑒−𝜆𝜑
𝜆 +􏾙

𝜑

0
𝜆𝑒−𝜆(𝜑−𝑡)𝑀(𝑡 − 𝛥(1 − 𝑡))𝑑𝑡. (3.54)

Multiplying Eq. (3.54) by 𝜆/𝑚, we obtain for 𝐼(𝜆, 𝜑) ∶= ∫𝜑

0
𝜌(𝜙; 𝜆/𝑚, 𝜆) a similar

equation which we define as generalization of 𝐼(𝜆) such that 𝐼(𝜆, 1) = 𝐼(𝜆):

𝐼(𝜆, 𝜑) = 1 − 𝑒−𝜆𝜑
𝑚 +􏾙

𝜑

0
𝜆𝑒−𝜆(𝜑−𝑡)𝐼(𝜆, 𝑡 − 𝛥(1 − 𝑡))𝑑𝑡. (3.55)

e equation is a Volterra integral equation of second kind. Its solution depends
on the boundary condition that 𝐼(𝜆, 𝜑) = 0 for𝜑 < 0whichmeans that oscillators
which are already past the boundary at 𝜙 = 1 have no contribution to the mean
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exit time. As the kernel 𝜆𝑒−𝜆(𝜑−𝑡) is conitunuous, so is the solution 𝐼(𝜆, 𝜑) in the
second argument. Note that for constant phase responses (non-leaky oscillators),
Eq. (3.55) can be solved analytically using the Laplace transform.

Finally, we can demonstrate that 𝐼(𝜆) is strictly increasing in 𝜆 for PRCs with
𝜕𝜙𝛥(𝜙) ≥ −1. For convenience, we will use the abbreviations 𝐺(𝜆, 𝜑) ∶= (1 −
𝑒−𝜆𝜑)/𝑚, 𝐻(𝜆, 𝑢) ∶= 𝜆𝑒−𝜆𝑢, and 𝑧(𝜑, 𝑢) ∶= 𝜑 + 𝑢 − 𝛥(1 − 𝜑 − 𝑢). 𝐺(𝜆, 𝜑) is strictly
increasing in both arguments. Using our assumption about the PRC, we see that
𝑧(𝜑, 𝑢) is increasing in both arguments but not necessarily strictly increasing.
Eq. (3.55) takes the following form:

𝐼(𝜆, 𝜑) = 𝐺(𝜆, 𝜑) +􏾙
∞

0
𝐻(𝜆, 𝑢)𝐼(𝜆, 𝑧(𝜑, −𝑢))𝑑𝑢. (3.56)

Note that we have extended the integral from 𝜑 to ∞ using 𝐼(𝜆, 𝜑) = 0 for 𝜑 < 0.
We will first argue that 𝐼(𝜆, 𝜑) is monotoneously increasing in its 2nd argu-

ment for every 𝜆 > 0. Assume this were not the case. As 𝐼(𝜆, 𝜑) is continuouos
in its 2nd argument, we can choose 𝜑0 such that 𝐼(𝜆, 𝜑) is increasing up to 𝜑0
and such that 𝜑0 is the largest number with this property. Moreover, we choose
𝜑1 > 𝜑0 silghtly larger, such that 𝐼(𝜆, 𝜑0) decreases in [𝜑0, 𝜑1] and such that the
falling slope in [𝜑0, 𝜑1] has arbitrary small integral. Let us compare 𝐼(𝜆, 𝜑0) and
𝐼(𝜆, 𝜑1) as determined by the R.H.S. of Eq. (3.56). 𝐺(𝜆, 𝜑) is strictly increasing in
𝜑. 𝐼(𝜆, 𝑧(𝜑, −𝑢)) as function of 𝜑 is a composition of two increasing functions and
therefore itself increasing up to 𝜑0. Moreover, the interval [𝜌0, 𝜌1] yields an ar-
bitrary small contribution to the integral. We can deduce that 𝐼(𝜆, 𝜑1) > 𝐼(𝜆, 𝜑0)
which is in contradiction to the assumed maximality of 𝜌0. erefore, 𝐼(𝜆, 𝜑)
must be increasing in its 2nd argument. Using Eq. (3.56), we calculate the deriva-
tive of 𝐼(𝜆, 𝜑):

𝜕𝜆𝐼(𝜆, 𝜑) = 𝜕𝜆𝐺(𝜆, 𝜑) +
∞

􏾙
0

𝐼(𝜆, 𝑧(𝜑, −𝑢))𝜕𝜆𝐻(𝜆, 𝑢) +
∞

􏾙
0

𝐻(𝜆, 𝑢)𝜕𝜆𝐼(𝜆, 𝑧(𝜑, −𝑢))𝑑𝑢.

(3.57)
e first term of the R.H.S. of Eq. (3.57) is positive as 𝐺(𝜆, 𝜑) is increasing in its
first argument. For the second term, we use the functional form of𝐻(𝜆, 𝑢). Using
𝜕𝜆𝐻(𝜆, 𝑢) = 𝜕𝜆𝜆𝑒−𝜆𝑢 = 𝜕𝑢(𝑢𝑒−𝜆𝑢) and integrating by parts, we obtain a positive
contribution for the second term as 𝐼 and 𝑧 are increasing in their 2nd arguments.
We now fix 𝜆 and show analogous as before that 𝜕𝜆𝐼(𝜆, 𝜑) is increasing in 𝜑. As
𝜕𝜆(𝐼(𝜆, 0)) = 0, we can thus conclude that 𝜕𝜆𝐼(𝜆, 1) > 0 as desired.

As the PRC of linear IF oscillators with time delay 𝜏 and refractory periods 𝜗
satisfies the assumption that we made (𝛥′(𝜙) ≥ −1), we have unique stationary
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solutions for the case we are interested in. We continue with a discussion of the
existence of these stationary solutions.

Existence

As 𝐼(𝜆) is strictly increasing for linear IF oscillators, we only have to investi-
gate the limit of large excitations rates 𝐼(∞) to determine existence of solutions.
Solutions exist if 𝐼(∞) exceeds 1. If 𝐼(∞) is below 1, then 𝐼(𝜆) stays below 1 for ar-
bitrary excitation rates 𝜆 ∈ [0,∞). We already characterized 𝐼(∞). For oscillators
with refractory periods, 𝐼(∞) diverges and we thus have stationary solutions for
every set of the other parameters 𝑎, 𝑏, 𝑚 > 0 and 𝜏 < 𝜗. For oscillators with-
out refractory periods, we use the formula in Eq. (3.31) and obtain the following
condition:

1 < 􏸌􏸀􏸗𝑖{𝑅(𝑖)(0) < 1}
𝑚 . (3.58)

In Figure 3.28, we show the firing rate of solutions in dependence on parame-
ters 𝑎, 𝑏 and 𝑚 of linear IF oscillators obtained by shooting. For large coupling
strengths (above the red lines given by 𝐼(∞) = 1), no solutions could be obtained.
If we approach the boundary at which stationary solutions become impossible,
the firing rate diverges. In Figure 3.29, we show firing rates for those oscillators.
In contrast to the case without time delay, we observe that solutions have a
bounded firing rate, which is in agreement with the observation that oscillators
with refractory periods 𝜗 have a maximum fire frequency of 1/𝜗.

Time-dependent Solutions

To obtain numerical solutions for the time-dependent case, the partial differen-
tial equation (PDE) for the continuummodelwith sparse connectivity (Eq. (3.37))
can be approximated by a system of ordinary differential equations, which then
can be solved with standard algorithms. Due to the non-linear and complicated
boundary condition, it is difficult to apply spectral methods, in which the solu-
tion is expressed in some function space basis. Such methods would rely on a
function basis which fulfills the boundary condition.

Instead we pursue a finite difference approach in which the continuous phase
variable 𝜙 is replaced by a grid with a constant tightness of 𝛥𝑥 = 1/𝐵. We in-
tent to obtain approximations for 𝜌(𝜙, 𝑡) at the phases of the 𝐵 grid points. e
evolution equations for {𝜌𝑖|𝑖 = 1,⋯ , 𝐵} will form a coupled system of ordinary
differential equations. We define 𝐴𝑖 ∶= [𝑖/𝐵, (𝑖 + 1)/𝐵] and interpret 𝜌𝑖 as an ap-
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Figure 3.28: Firing rate of normalized stationary solutions of Eqs. (3.41)–(3.43)
for 𝜏 = 𝜗 = 0 as determined by shooting. White points indicate parameter
combinations for which no normalized stationary solution could be obtained.
Le: dependence on oscillator parameters 𝑎 and 𝑏 for 𝑚 = 15. Right: depen-
dence on the mean degree 𝑚 and on 𝑏, for 𝑎 = 𝑏. e red line indicates the
boundary up to which solutions can be obtained, given by Eq. (3.58).
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Figure 3.29: Same as Figure 3.28 but for oscillators with time delays and refrac-
tory periods (𝜏 = 0.01, 𝜗 = 0.05).

proximation of the values of 𝜌 in the interval 𝐴𝑖:

𝜌𝑖(𝑡) ≈ 􏾙
𝐴𝑖

𝜌(𝜙, 𝑡)𝑑𝑡. (3.59)

e discretization of the terms in the partial differential equation in Eq. (3.37)
is standard with the exception of the state-dependent non-local term. In fact,
we are not aware of any study in which such terms have been discretize. e
2nd term on the r.h.s. of Eq. (3.37) is easily aprroximated by 𝜆(𝑡)𝜌𝑖. ere are
different possibilities, in which way the derivatives of the first term can be es-
timated, which differ in the numerical stability of the resulting ODE system.
Approximations are denoted as first-order if the differential equation for some
bin depends only on two bin counts, of its own bin or of neighboring bins. Under
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this restriction, we still have different possibilities to estimate the slope of 𝜌(𝜙)
locally:

forward/downwind 𝜕𝜙𝜌(𝜙) ≈ (𝜌𝑖+1 − 𝜌𝑖)/𝛥𝑥,

backward/upwind 𝜕𝜙𝜌(𝜙) ≈ (𝜌𝑖 − 𝜌𝑖−1)/𝛥𝑥,

centered 𝜕𝜙𝜌(𝜙) ≈ (𝜌𝑖+1 − 𝜌𝑖−1)/2𝛥𝑥.

e convection term transport a wave train to larger phases without change to
the shape. Intuitively, the time evolution at some bin 𝜌𝑖 thus must depend on
𝜌𝑖−1 rather than on 𝜌𝑖+1, as the same amplitude of the wave first appears in 𝜌𝑖−1
and then in 𝜌𝑖. erefore, the upwind scheme in which 𝜕𝑡𝜌𝑖 depends on 𝜌𝑖 and
𝜌𝑖−1 seems a good choice. In fact both the forward and the centered scheme are
unconditionally unstable for explicit integration methods, i.e. the integration di-
verges for arbitrary small step sizes. ey can, however, be applied when using
implicit integration algorithms. To allow for a fast numerical integration with
explicit methods, we used backward schemes for all our computations. Twomain
influences of error are introduced due to discretization. For one, discretized sys-
tems may show numerical dispersion and spurious oscillations. Additionally,
discretized systems show some amount of diffusion even if no diffusion was
present in the continuous system [106]. As our primary interest is synchroniza-
tion, we have to be aware of this influence as it is plausible that asynchronous
solutions are stabilized by this diffusion term. However, both errors can be con-
trolled by increasing the tightness of the discretization grid.

For the third term on the r.h.s. of Eq. (3.37), we aim – with a view on a bifur-
cation analysis –at an discretization such that the time derivative of each bin 𝜌𝑖
depends continuously on both parameters 𝑎 and 𝑏. It is therefore not sufficient to
round and associate the oscillators in an entire bins with oscillators in an origin
bin. Instead, we have to account for the case that the oscillators of some ori-
gin bin are distributed along various destination bins. We will account for this
in the following computation in which we denote with 𝜕𝑡𝜌𝐷

𝑖 (𝑡) the contribution
to 𝜕𝑡𝜌𝑖 of the delay term. Denoting with 𝛸𝐴 the function which takes a value
of 1 for phases in 𝐴 and 0 otherwise, we can define an orthogonal finite basis
with 𝑎𝑖(𝜙) = 𝛸𝐴𝑖 /𝐵. Using this basis, we can express Eq. (3.59) as a projection:
𝜌𝑖 = 􏾉𝑎𝑖, 𝜌􏽼. We obtain for the contribution of the non-local term in Eq. (3.37)

𝜕𝑡𝜌𝐷
𝑖 (𝑡) = 𝜆(𝑡) 􏾋􏾜

𝑗∈𝐼𝜙

𝜌(𝑅−1
𝑖 (𝜙), 𝑡)

1 + 𝛥′(𝑅−1
𝑖 (𝜙))

, 𝑎𝑖􏽾 = 𝜆(𝑡)
𝐵

􏾜
𝑗∈𝐼𝜙

􏾙
𝐴𝑖

𝜌(𝑅−1(𝜙))
𝑅′(𝑅−1(𝜙)) 𝑑𝜙 (3.60)
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Figure 3.30: Stationary solution 𝜌0(𝜙) for sparse networks (𝑚 = 15) of linear
IF oscillators (𝑎 = 0.01, 𝑏 = 0.04) obtained by shooting (blau), together with
the obtained distribution aer transients of finite difference approximations
to 1000 dimensions (red) and of synaptic failure networks of 106 oscillators
(black).

Applying the rule of substitution and approximating 𝛸𝑅−1 (𝐴𝑖) in the basis 𝑎𝑖 we
obtain

𝜕𝑡𝜌𝐷
𝑖 (𝑡) ≈ 𝜆(𝑡)

𝐵
∑

𝑗∈𝐼𝜙
∫
𝑅−1(𝐴𝑖)

𝜌(𝜙)𝑑𝜙 = 𝜆(𝑡)
𝐵

∑
𝑗∈𝐼𝜙

∫𝜌(𝜙)𝜒𝑅−1(𝐴𝑖)𝑑𝜙

= ∑
𝑗∈𝐼𝜙

𝜆(𝑡)
𝐵 ∫𝜌(𝜙)∑𝑘 􏾊𝑎𝑘, 𝜒𝑅−1(𝐴𝑖)􏽽 𝑎𝑘(𝜙)𝑑𝜙

= ∑
𝑗∈𝐼𝜙

∑
𝑘 𝜌𝑘

𝜆(𝑡)
𝐵2

𝜇(𝐴𝑘 ∩ 𝑅−1(𝐴𝑖)).
(3.61)

Here, we have denoted with 𝜇 a one-dimensional volume measure. For linear
IF oscillators, the term leads to many case distinctions. However, the term de-
pends continuously on the model parameters 𝑎 and 𝑏 as required. e treatment
of the integrals in the firing rate and in the non-linear boundary condition is
straightforward. To validate the discretization, we choose oscillator parameters
for which stationary solutions are stable. We can then compare the distribu-
tion aer transients, with results we obtain from the shooting approach (Chap-
ter 3.4.1) or with the dynamics of synaptic failure networks (Chapter 3), which
can be regarded as Monte-Carlo simulations. In Figure 3.30, we show such an
comparison.

Stability

e finite difference approach allows us to probe the stability of the asynchro-
nous solutions numerically. When we start with a phase distribution which dif-
fers from some asynchronous solution by a small localized perturbation, it may
be the case that this perturbation either declines or increases with time. In the
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laer case the asynchronous solutions are unstable and not observable. Stability
can be studied in dependence of model parameters, and the critical parameters
at which stability is lost can be characterized in terms of bifurcations, which al-
lows one to explain and predict the dynamical behavior near the loss of stability.
Bifurcation analysis is usually performed for finite dimensional systems of or-
dinary differential equations (ODE). One way to compute bifurcations of PDEs
is to choose a discretization which approximates the PDE by a finite dimensio-
nal ODE (e.g. by a finite difference approach), which can then be analyzed with
established numerical tools. In order for the results to be trustworthy, the bifur-
cation diagram has to converge, showing small differences only between higher
dimensional discretizations.e asynchronous solution of the continuummodel
corresponds to a fixed point in the discretized ODE system. We can investigate
the change of position of this fixed point in state space if we change model pa-
rameters, and more importantly, we can track the loss of stability. To assess the
type of bifurcation the spectrum of the Jacobi matrix has to be computed. e
Jacobi matrix is singular at the bifurcation point and the way in which one or
more of its eigenvalues change sign at the bifurcation point determines the type
of bifurcation. For details, we refer to reader to standard textbooks [107].

e prototypical bifurcation in the context of synchronization is the supercri-
tical Andronov-Hopf bifurcation (AHB). e typical behavior at this bifurcation
is that stability is lost, and near the bifurcation limit cycles are created which
increase in amplitude with the distance to the bifurcation. Compared to, e.g.,
the saddle-node bifurcation, these limit cycles have arbitrary small amplitude
near the bifurcation. is is the behavior that we observe for the discretizations
and for synaptic failure networks with parameters near the lower boundary of
the parameter region with asynchronous states (see Figures 3.31 and 3.17). As
mentioned, discretization introduces numerical diffusion which can be expected
to spuriously stabilize solutions and to enlarge the parameter regions which
lead to asynchronous solutions. In contrast, finite size fluctuations of synaptic
failure networks may allow the system to leave the basin of araction of the
asynchronous solution and thus diminish the parameter region in which they
are prevalent.

To explain the loss of stability from an intuitive point of view, we consider
a small perturbation localized in 𝜙 of the stationary solution. e phase of an
oscillator represented by this perturbation is shied to larger phase values due
to its intrinsic dynamics and due to excitations, according to the stochastic dif-
ferential equation given in Eq. (3.19). e uncertainty of the oscillator’s phase
aer some time leads to a broadening of the perturbation and increases with
the strength of excitations and thus with |𝑏| (and to some degree with 𝑎). When
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Figure 3.31: Largest and smallest value of the firing rate 𝜆 in the interval 𝑡 ∈
[100, 200] for the sparse continuum model (𝑚 = 15) of linear IF oscillators
in dependence on the oscillator parameter 𝑏 and for 𝑎 = 0.01. Values were
obtained by a finite difference approximations to 50 dimensions (red), to 100
dimensions (blue), to 1000 dimensions (black) and for synaptic failure net-
works (green) of 106 oscillators.

oscillators which are represented by the perturbation fire, positive values of 𝑎
lead to a sharpening of the perturbation as oscillators receive larger excitations
if they are close to the perturbation. As a consequence of both (sharpening and
broadening), the perturbation either vanishes or increases steadily, depending
on 𝑎 and 𝑏. Provided that 𝑎 influences the sharpening more strongly than the un-
certainty of oscillators, we expect stable asynchronous states to be observable
for large 𝑏 and small 𝑎.

We will now return to the loss of stability of asynchronous states in synaptic
failure networks. e continuum model allows us to explain the emergence of
the boundaries of the parameter regime with asynchronous states (as presented
in Figure 3.16). For large coupling strengths, stationary solutions do not exist.We
have characterized the boundary at which they appear in Eq. (3.58). When they
do exist, they may be either stable or unstable. Continuation of the stationary
solution (via finite difference andAUTO) reveals a locus of AHB points.eHopf
points have a positive first Lyapunov coefficient, which implies that limit cycles
are generated beyond the critical parameter at which stability is lost. is locus
moves closer to the lower boundary of the parameter region with asynchronous
solutions that we observe in synaptic failure networks.

Note that the states with recurring avalanches, that we described in 3.3 (see
Figure 3.19) cannot be described with the framework so far. For avalanches, the
firing rate as defined in Eq. (3.38) is negative and an integration in the same way
as before would lead to phase distributions with negative values. However, it
is probably possible to extend the model by defining the dynamics for the time
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Figure 3.32: Mean Kuramoto’s order parameter averaged over the time interval
𝑡 ∈ [100, 200] of synaptic failure networks (𝑁 = 10000) of linear IF oscillators
for a mean degree of 𝑚 = 15 (le) and 𝑚 = 50 (right). e black line indicates
the boundary up to which stationary solutions exist (according to Eq. (3.58)).
e red line indicates the locus of supercritical AHB points obtained byAUTO
via finite difference discretizations of the continuum model to 150 and 250
dimensions in the le plot and to 1000 and 2000 dimensions in the right plot.

intervals at which 𝜆 is infinite or negative. At the avalanche the distribution
𝜌(𝜙) is changed discontinuously. However, we can connect the discontinuity by
a smooth change if we introduce an auxiliary time variable which increases lin-
earlywith firing oscillators. During the avalanche no time passes and convection
plays no role. We could, therefore, assume for time of avalanches the differen-
tial equation in Eq. (3.37) without the convection term. Aer the avalanche the
firing rate is again finite, and all oscillators that fired are injected as a 𝛿-peak
at 𝜙 = 0. Note that we did not observe irregular behavior without avalanches.
e equations of the continuum model are non-linear, and it is conceivable that
it is able to produce chaotic dynamics for other parameter or PRCs. e dy-
namics of the states with recurring avalanches (Figure 3.19) do not decrease in
irregularity even for larger network sizes (up to 107) and depend sensitive on
initial conditions. It seems sensible to compare them to other chaotic behaviors
that can be observed in PDEs. However, this point needs further investigations.
e behavior at the upper boundary of the regime with asynchronous solutions
is not related to a bifurcation in the strict sense. Asynchronous solutions be-
come impossible due to diverging firing rates. Shortly below this divergence,
they show large fluctuations and are therefore easily le due to finite size fluc-
tuations which are seen in simulations of synaptic failure networks. Note that
we find no correspondence in terms of bifurcations to the fine structure that we
observed at the upper boundary (see Figure 3.13 and 3.16). Even for high dimen-
sional discretizations (𝑁 = 1000) no loss of stability can be observed before the
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divergence of the asynchronous solution.
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3.4.2 Dense random networks

In this chapter, we will discuss the master equation for a continuummodel of os-
cillators whose dynamics is described by the deterministic differential equation
(3.23).emodel is meant to describe the limit of both dense random and synap-
tic failure networks, as well as the dynamics for all-to-all coupling.e obtained
equation has been investigated in [108] where the authors were able to describe
the dynamical behavior for PRCs which are monotonous as being dichotomous:
For increasing 𝛥(𝜙) the probability density concentrates to a single phase in fi-
nite time for arbitrary initial distributions. In particular, partially synchronous
states as in Figure 3.17 do not exist for dense connectivity. For decreasing 𝛥(𝜙),
solutions converge to the stationary solution, for initial conditions which do not
immediately lead to avalanches.e excitatory linear IF oscillators that we study
in this thesis, have a linearily increasing PRC and synchronize thus completely
in the dense limit. Similar as in the sparse limit, stationary solutions exist for
small coupling strengths. However, here they are unstable for arbitrary 𝑎, 𝑏 > 0.
In the following, we will derive the evolution equations for the continuum with
dense connectivity and calculate the asynchronous solutions and the parameter
regime in which they exist. Additionally, we provide a linear stability analysis
which reproduces the results in [108] for the special case of linear IF oscilla-
tors and allows us to determine the stability when oscillators are endowed with
time delays and refractory periods. e continuity equation which describes the
macroscopic dynamics can be directly obtained from the deterministic motion
of single units. We can however, also consider dense networks as limit of the
continuum model for sparse networks which we described in the last chapter.
We choose the laer as it illustrates what happens to solutions (and in particular
to the bifurcation diagrams in Figure 3.32) for large 𝑚. Let 𝑚𝑖 be a sequence of
mean degrees such that 𝑚𝑖 → ∞ and let 𝛥𝑖(𝜙) be a sequence of PRCs such that
𝛥𝑖(𝜙)𝑚𝑖 converges to the limiting PRC 𝐹(𝜙). Furthermore, let 𝐽𝑖(𝜙, 𝑡) be the flux
of the continuum with sparse connectivity as defined in Eq. (3.31) for the PRC
𝛥𝑖(𝜙).

We define the dynamics of the continuum model with dense connectivity by
assuming a probability flux 𝐽(𝜙, 𝑡) which is the limit of 𝐽𝑖(𝜙, 𝑡) for 𝑖 → ∞. Our
assumptions for the sparse limit were continuity of the flux 𝐽𝑖(𝜙, 𝑡) and its defi-
nition as given in Eq. (3.31). e boundary conditions and the partial differential
equation were derived from these assumptions. In a similar way all properties
of this model will be deduced from the definition and the continuity of 𝐽(𝜙, 𝑡).
e excitation rate for sparse connectivity is defined as 𝜆(𝑡) = 𝑚𝐽𝑖(1, 𝑡). For dense
connectivity 𝜈 diverges, and we will instead use the excitation rate 𝜈(𝑡) = 𝐽(1, 𝑡).
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As the phase response curves 𝛥𝑖(𝜙) vanish in this limit, the sets 𝐼→(𝜙) and 𝐼←(𝜙)
only contain elements in close proximity to 𝜙, so that we can, for large 𝑖, assume
that the integrands in Eq. (3.31) are constant and we have:

𝐽𝑖(𝜙, 𝑡) ≈ 𝜌(𝜙, 𝑡) + 𝜈(𝑡)𝜌(𝜙, 𝑡) 􏿴􏿖𝐼→(𝜙)􏿖 − 􏿖𝐼←(𝜙)􏿖􏿷 . (3.62)

When we exclude pathological examples of highly fluctuating PRCS, we can
assume that in addition to𝛥𝑖(𝜙) also its derivative vanishes for 𝑖 → ∞. Under this
assumption we have 𝑅′

𝑖 (𝜙) = 1 + 𝛥′
𝑖 (𝜙) ≈ 1, and 𝑅(𝜙) is monotonous, invertible

and preserves distances between pairs of oscillators. If𝛥𝑖(𝜙) is positive (negative)
the set 𝐼←(𝜙) (𝐼→(𝜙)) vanishes. e size of the other set can then be calculated as

|𝐼→(𝜙)| = |{𝜑 < 𝜙|𝑅(𝜑) ≥ 𝜙}| = 􏿖{𝜑 < 𝜙|𝜑 ≥ 𝑅−1(𝜙)}􏿖
≈ |𝑅−1(𝜙) − 𝜙| = |𝜙 − 𝑅(𝜙)| = |𝛥(𝜙)|

.
(3.63)

Seing Eq. (3.63) into Eq. (3.62) we obtain

𝐽𝑖(𝜙, 𝑡) ≈ 𝜌(𝜙, 𝑡) 􏿴1 + 𝐽(1, 𝑡)𝑚𝑖𝛥𝑖(𝜙)􏿷 (3.64)

which converges for 𝑖 → ∞ because of our assumptions on the PRCs to

𝜌(𝜙, 𝑡) 􏿴1 + 𝐽(1, 𝑡)𝐹(𝜙)􏿷 =∶ 𝐽(𝜙, 𝑡). (3.65)

e flux is given as the product of the density 𝜌 and an effective oscillator veloc-
ity 𝑣(𝜙, 𝑡) ∶= 1 + 𝐽(1, 𝑡) which accounts for the intrinsic dynamics and for excita-
tions between oscillators. If we assume a firing rate of 𝜈(𝑡) = 𝐽(1, 𝑡) and evaluate
the flux as defined in Eq. (3.65) at 𝜙 = 1, we get the following equation for 𝜈(𝑡):

𝜈(𝑡) = 𝐽(1, 𝑡) = 𝜌(1, 𝑡) 􏿴1 + 𝐹(𝜙)𝐽(1, 𝑡)􏿷 → 𝜈(𝑡) = 𝜌(1, 𝑡)
1 − 𝐹(1)𝜌(1, 𝑡) . (3.66)

e continuity equation which corresponds to the flux in Eq. (3.65) takes the
following form:

𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙 􏿰􏿶1 + 𝐹(𝜙) 𝜌(1, 𝑡)
1 − 𝐹(1)𝜌(1, 𝑡𝑓) 􏿹 𝜌(𝜙, 𝑡)􏿳 . (3.67)

We focus our investigations on oscillators for which excitations are limited to
the firing threshold. Note, that the slope of -1 ending in 𝜙 = 1, which is present
in 𝛥𝑖(𝜙) will usually not be present in the limit 𝐹(𝜙) as the excitation strength
vanishes. For example, if we chose an function 𝐹(𝜙), rescale it to the mean degree
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3.4 Continuum models

and limit it to the firing threshold 𝛥𝑖(𝜙) = 􏸌􏸈􏸍 􏿺𝐹(𝜙)/𝑚𝑖, 1 − 𝜙􏿽 then the product
𝛥𝑖(𝜙)𝑚𝑖 will converge pointwise to the function 𝐹(𝜙):

𝛥𝑖(𝜙)𝑚𝑖 = 􏸌􏸈􏸍{𝛥(𝜙),𝑚𝑖(1 − 𝜙)} → 𝐹(𝜙). (3.68)

If the slope of -1 was present in 𝛥𝑖(𝜙) in the sequence, then we have a value
𝐹(1) ≠ 0 in the dense limit. Analogously as for sparse connectivity, this can give
rise to diverging firing rates and avalanches if 𝐹(1)𝜌(1) ≥ 1.

As in the case for the sparse limit, we deduce boundary conditions from the
continuity of the flux 𝐽(𝜙, 𝑡); for phase response curves 𝐹(𝜙)with a discontinuity
at some 𝜙 = 𝜑, continuity leads to a jump at 𝜙 = 𝜑 in the phase distribution
𝜌(𝜙, 𝑡):

𝐽(𝜑+, 𝑡) = 𝜌(𝜑+, 𝑡) 􏿴1 + 𝐹(𝜑+)𝜈(𝑡)􏿷 = 𝜌(𝜑, 𝑡) 􏿴1 + 𝐹(𝜑)𝜈(𝑡)􏿷 = 𝐽(𝜑, 𝑡). (3.69)

is equation reflects the fact that if the convection velocity is abruptly in-
creased, than the density of oscillators will be stretched proportionally to the
velocity. For absorbing oscillators we have 𝐹(0) = 0 ≠ 𝐹(1) such that we obtain
for 𝜑 = 1 from Eq. (3.69)

𝜌(0, 𝑡) (1 + 𝐹(0)𝜈(𝑡)) = 𝜌(1, 𝑡) (1 + 𝐹(1)𝜈(𝑡)) . (3.70)

which using the definition of 𝜈(𝑡) in Eq. (3.66) simplifies to:

𝜌(0, 𝑡) = 𝜌(1, 𝑡)
1 + 𝜌(1, 𝑡) (𝐹(0) − 𝐹(1)) . (3.71)

Eqs. (3.70) and Eq. (3.67) define the continuum model in the sparse limit. It
may seem surprising thatwe can investigate synchronization evenwith this sim-
ple equation. Note that a non-trivial evolution depends crucially on the intrinsic
motion of oscillators. In fact, if we leave the 1 in Eq. (3.67) out, the oscillator ve-
locity decomposes into a product by factors which depend on 𝑡 or 𝜙 only.We can
then get rid of both by a transformation of 𝑡 and 𝜌 and obtain trivial convection
with no change of the shape of the distribution.

Stationary solutions

In contrast to the continuum model with sparse connectivity, we can easily ex-
press the stationary solutions analytically if we set 0 = 𝜕𝑡𝜌0(𝜙) in Eq. (3.67):

𝜌0(𝜙) =
𝑐

1 + 𝐹(𝜙)𝜈 (3.72)
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Here, 𝑐 is an integration constant, which has to be chosen such that 𝜌0(𝜙) is
normalized. Evaluating 𝜌0 at 𝜙 = 1 and compairing with Eq. (3.66) yields 𝜈 = 𝑐.
If we define 𝐼(𝜈) as

𝐼(𝜈) =
1

􏾙
0

𝜈
1 + 𝐹(𝜙)𝜈𝑑𝜙, (3.73)

we have to chose a positive firing rate 𝜈 such that 𝐼(𝜈) = 1. If such a choice is not
possible, than the continuum model does not have a stationary solution. Note
that 𝐼(𝜈) is defined in analogy to Eq. (3.45) for the case of sparse connectivity.
Similar as there, we here also relate uniqueness and existence of stationary so-
lutions to 𝐼(𝜈). ere exist at most one choice for 𝜈 which fulfulls 𝐼(𝜈) = 1 as 𝐼(𝜈)
depends monotonously on 𝜈 which can be seen by the following calculation:

𝜕𝜈𝐼(𝜈) =
1

􏾙
0

1
1 + 𝐹(𝜙)𝜈 − 𝜈𝐹(𝜙)

(1 + 𝐹(𝜙)𝜈)2 𝑑𝜙 =
1

􏾙
0

1
(1 + 𝐹(𝜙)𝜈)2 𝑑𝜙 > 0. (3.74)

However, depending on 𝐹(𝜙) the continuummodel with dense connectivity may
not have an acceptable stationary solution. Before performing a stability analysis
for the stationary solution, we will bring Eq. (3.67) into a slightly simpler form:

𝜕𝑡𝜌(𝜙, 𝑡) =
1

1 − 𝐹(1)𝜌(1, 𝑡) − 𝜕𝜙 􏿮􏿴1 − 𝐹(1)𝜌(1, 𝑡) + 𝐹(𝜙)𝜌(1, 𝑡)􏿷 𝜌(𝜙, 𝑡)􏿱 . (3.75)

Note that the factor which now appears at the beginning of the right side of
Eq. (3.75) just corresponds to a transformation of the time 𝑡. It does not influence
the distribution of phases that are obtained in solutions 𝜌(𝜙, 𝑡) of Eq. (3.75), only
the times 𝑡 at which they appear. We can get rid of the factor by going over to
𝜌̃(𝜙, 𝑡) = 𝜌(𝜙,∫𝑡

𝑡0
1 − 𝐹(1)𝜌(1.𝑡)𝑑𝑡). As the integrand is always positive for physical

relevant solutions, this defines a one-to-one relationship. If 𝜌(𝜙, 𝑡) is a solution
of Eq. (3.76) then the so defined 𝜌̃ will be a solution of the simpler equation:

𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙 􏿮􏿴1 + 𝜌(1, 𝑡)(𝐹(𝜙) − 𝐹(1))􏿷 𝜌(𝜙, 𝑡)􏿱 . (3.76)

We will omit the ˜ in the following and use 𝐹̄(𝜙) ∶= 𝐹(𝜙) − 𝐹(1) for ease of nota-
tion.e stationary solution of the simplified equation read:

𝜌0(𝜙) =
𝜈

1 + 𝜈𝐹̄(𝜙) . (3.77)
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Again, we define 𝜈 by requiring that 𝜌0 has an integral of 1. Note that Eq. (3.77)
is in fact identical to Eq. (3.72). Our transformation of time changes the firing
rate and thus the normalization factor, not the spatial form.

Linear Stability Analysis

To determine the stability of the stationary solution, we consider a small, ar-
bitrary variation 𝜂(𝜙, 𝑡) around the stationary solution 𝜌(𝜙, 𝑡) = 𝜌0(𝜙) + 𝜂(𝜙, 𝑡).
From the partial differential equation which describes the evolution of 𝜌(𝜙, 𝑡)
(Eq. (3.76)), we intent to obtain a similar evolution equation for the variation
𝜂(𝜙, 𝑡), which is linear. e approximation will thus only hold for small varia-
tions. In return, we obtain a simpler problem which can be solved by methods
from linear algebra:

𝜕𝑡𝜌(𝜙, 𝑡) = 𝜕𝑡(𝜂(𝜙, 𝑡)) = −𝜕𝜙 􏿮􏿴1 + 𝐹̄(𝜙) 􏿴𝜌0(1) + 𝜂(1, 𝑡)􏿷􏿷 􏿴𝜌0(𝜙) + 𝜂(𝜙, 𝑡)􏿷􏿱 . (3.78)

Using the stationarity of 𝜌0(𝜙) and neglecting terms which are quadratic in 𝜂
(e.g.: 𝜂(𝜙, 𝑡)𝜂(1, 𝑡)) we get:

𝜕𝑡𝜂(𝜙, 𝑡) = −𝜕𝜙 􏿰􏿴1 + 𝜈𝐹̄(𝜙)􏿷 𝜂(𝜙, 𝑡) + 𝜂(1) 𝜈𝐹̄(𝜙)
1 + 𝜈𝐹̄(𝜙) 􏿳 . (3.79)

From the boundary condition for 𝜌 in Eq. (3.69), we derive the corresponding
boundary condition for the perturbation:

􏿴𝜌0(𝜑+) + 𝜂(𝜑+, 𝑡)􏿷 􏿮1 + 𝐹̄(𝜑+) 􏿴𝜈 + 𝜂(1, 𝑡)􏿷􏿱 = 􏿴𝜈 + 𝜂(𝜑, 𝑡)􏿷 􏿮1 + 𝐹̄(𝜑) 􏿴𝜌0(1) + 𝜂(1, 𝑡)􏿷􏿱 .
(3.80)

e boundary condition also needs to be linearized. We thus ignore terms which
are quadratic in 𝜂, subtract Eq. (3.69) and replace all occurences of 𝜌0(𝜙) by the
expression in Eq. (3.77):

𝜂(𝜑+, 𝑡) = 1 + 𝐹̄(𝜑)𝜈
1 + 𝐹̄(𝜑+)𝜈

⎡
⎢
⎢
⎣
𝜂(𝜑, 𝑡) + 𝜈𝜂(1, 𝑡) 𝐹̄(𝜑) − 𝐹̄(𝜑+)

􏿴1 + 𝜈𝐹̄(𝜑+)􏿷 􏿴1 + 𝜈𝐹̄(𝜑)􏿷
2

⎤
⎥
⎥
⎦

(3.81)

Note that the size of the jump at some phase 𝜑 ≠ 1 depends on 𝜑(1), which was
not the case for jumps in the phase density. Applying this equation to the firing
threshold (𝜑 = 1), Eq. (3.81) simplifies to:

𝜂(0, 𝑡) = 𝜂(1, 𝑡)

􏿴1 + 𝜈𝐹̄(0)􏿷
2 . (3.82)

85



3 Dynamics on random networks

e boundary value problem defined by Eqs. (3.79), (3.81), and (3.82)) is linear
and determines the time evolution of the variation 𝜂(𝜙, 𝑡). In contrast to 𝜌(𝜙, 𝑡),
however, we do not expect the norm ∫1

0
𝜂(𝜙, 𝑡)𝑑𝜙 to be constant with time. e

stationary solution is stable if all functions 𝜂(𝜙, 𝑡) vanish over time. Note that
Eq. (3.79) is again a contininuity equation, however the boundary conditions
are not defined as to guarantee conservation flux. We will denote the linear
differential operator at the right side of Eq. (3.79) as 𝐿. As the defining equation
for its eigenfunctios is a ordinary differential equation of 1st order, we have one
degree of freedom. However, as we are only interested in functions which satisfy
the boundary conditions, we have to choose the solution accordingly and can
expect the eigenvalues spectrum of 𝐿 to be discrete. Let 𝛼𝑗(𝜙) and be a complete
set of its eigenfunctions with corresponding eigenvalues 𝜆𝑗. We can thus express
an initial variation 𝜂0(𝜙) ∶= 𝜂(𝜙, 0) in terms of its eigenfunctions 𝜂0(𝜙) = ∑

𝑖 𝛼𝑗(𝜙).
e time evolution can then be expressed as

𝜂(𝜙, 𝑡) = 􏾜
𝑖
𝛼𝑗(𝜙)𝑒𝜆𝑗𝑡. (3.83)

A variation vanishes over time only if all eigenfunctions, which appear in its
expansion have eigenvalue with negative real part. We thus have in this way
expressed the stability of the stationary solution by a condition on the spectrum
of 𝐿. A stationary solution is stable for all variations iff all eigenvalues of 𝐿 have
negative real part. e defining differential equation for the eigenfunctions can
be simplified to

𝛼′
𝑗 (𝜙) + 𝛼𝑗(𝜙)

𝜆𝑗 + 𝑐𝐹′(𝜙)
1 + 𝜈𝐹̄(𝜙) + 𝛼(1) 𝜈𝐹′(𝜙)

􏿴1 + 𝜈𝐹̄(𝜙)􏿷
3 = 0 (3.84)

and is a linear differential equationwith varying coefficients and a function eval-
uation at 𝜙 = 1. Its solution can be expressed by integrals using an integration
factor, which for most choices of 𝐹̄(𝜙) is unlikely to lead to analytic expressions.
Intriguingly, for linear IF oscillators, we can perform the integrations analyti-
cally. We will drop the general approach at this point and discuss the dynamics
for linear IF oscillators with PRC 𝐹(𝜙) = 𝑎𝜙 + 𝑏.
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3.4 Continuum models

Linear IF oscillators with refractory period and time delay

For the case of linear IF oscillators, we can determine the firing rate 𝜈 for the
stationary solutions explicitly:

1 =
1

􏾙
0

𝜈
1 + (𝑎𝜙 + 𝑏)𝜈 𝑑𝜙 = 1

𝑎 􏸋􏸍 􏿴1 + (𝑎𝜙 + 𝑏)𝜈􏿷
􏿙
􏿙

1

0

= 1
𝑎 􏸋􏸍 􏿶

1 + (𝑎 + 𝑏)𝜈
1 + 𝑏𝑐 􏿹 . (3.85)

Similar as in the continuum with sparse connectivity, asynchronous solutions
exist for small coupling strength only. For large values of 𝑏, the firing rate 𝜈 as
determined by Eq. (3.85)

𝜈 = 𝑒𝑎 − 1
𝑎 − 𝑏 (𝑒𝑎 − 1) (3.86)

turns negative and the stationary solutions defy a stochastic interpretation. For
the parameter regime we are considering (𝑎, 𝑏 > 0), Eq. (3.86) is positive if the
parameters satisfy:

𝑏 < 𝑎
𝑒𝑎 − 1 . (3.87)

In Figure 3.33 right, we show the firing rates of the stationary solutions in de-
pendence on 𝑎 and 𝑏 (cmp. Figure 3.28). Near this boundary in the (𝑎, 𝑏)-plane
at which solutions are lost, the firing rate diverges. In Figure 3.33 le, we show
asynchronous solutions of the model with sparse connectivity together with
their limit which is the asynchronous solution for dense connectivity. Note that
solutions do not converge for 𝜙 = 0 where we observe large excursions in 𝜌(𝜙)
which increase in frequency with 𝑚. However, the phase interval around 𝜙 = 0
with excursions shrinks for larger 𝑚.

We now investigate stability of the stationary solutions by calculating the
spectrum of the linear operator 𝐿. Inserting the PRC 𝐹(𝜙) = 𝑎𝜙 + 𝑏 of linear IF
oscillators into the simplified equation (3.76), we get:

𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙 􏿮􏿴1 + 𝑎 􏿴𝜙 − 1􏿷 𝜌(1, 𝑡)􏿷 𝜌(𝜙, 𝑡)􏿱 (3.88)

is equation does not depend on 𝑏, and the stability of the asynchronous state
obviously is only determined by the parameter 𝑎. For simplicity, we will use the
parameter 𝜅 = 𝑐𝑎 = 1 − 𝑒−𝑎 for the following calculation of the linear stability
problem. 𝜅 can again be interpreted as coupling strength, which is normalized
in such a way that 𝜅 = 0 corresponds to no coupling and 𝜅 → 1 corresponds to
the limit of large 𝑎. e defining equation for the eigenfunctions (3.84) takes the
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Figure 3.33: Le: Stationary solutions for the continuummodel of linear IF oscil-
lators with dense connectivity(Eq. (3.77), 𝑎 = 𝑏 = 0.5, black) and with sparse
connectivity (𝑎 = 𝑏 = 0.5/𝑚 for𝑚 = 500 (blue),𝑚 = 50 (red) and𝑚 = 5 (green)).
Right: firing rate 𝜈(𝑡) for stationary solutions of the dense connectivity in de-
pendence on oscillator parameters 𝑎 and 𝑏. Parameter for which no stationary
solution exists, are marked in white.

following form:

𝛼′
𝑗 (𝜙) + 𝛼𝑗(𝜙)

𝜅 + 𝜆𝑗

1 + 𝜅(𝜙 − 1) + 𝛼𝑗(1)
𝜅

(1 + 𝜅(𝜙 − 1))3 = 0 (3.89)

Let us first – as a simple check of consistency – consider the uncoupled case
(𝜅 = 0). From Eq. (3.89) we get 𝛼′

𝑗 (𝜙) + 𝜆𝑗𝛼𝑗(𝜙) = 0 which has 𝛼𝑗(𝜙) = 𝑒𝜆𝑗𝜙 as
solution, which are either waves or exponential functions (depending on 𝜆𝑗).
e boundary condition, however, implies 1 = 𝛼𝑗(0) = 𝛼𝑗(1) = 𝑒𝜆𝑗 , which means
that the eigenvalues are of the form 𝜆𝑗 = 2𝜋ℤ𝑖. e spectrum is thus purely
imaginary, which reflects the marginal stability of solutions for the case without
coupling.

We now calculate the eigenfunctions in Eq. (3.89) for 𝜅 ≠ 0. e appearance
of the evaluation of 𝛼 at 𝜙 = 1 can be removed by the substitution 𝛽𝑗(𝜙) =

𝛼𝑗(𝜙)
𝛼𝑗(1)

𝛽′𝑗 (𝜙) + 𝛽𝑗(𝜙)
𝜅 + 𝜆𝑗

1 + 𝜅(𝜙 − 1)􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍
𝐺(𝜙)

+ 𝜅
(1 + 𝜅(𝜙 − 1))3􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍

𝐻(𝜙)

= 0. (3.90)

We obtain a inhomogeneous linear differential equation of first order with vary-
ing coefficients 𝐺(𝜙) and 𝐻(𝜙). e solution can be expressed using an integrat-
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Figure 3.34: Real part of the eigenfunctions 𝛼𝑗 of the linear stability problem for
linear IF oscillators with 𝜅 = 𝑎𝜈 = 0.8 according to Eq. (3.93) for the three
lowest eigenvalues (𝜆0 (black), 𝜆1 (blue) and 𝜆2 (red)).

ing factor:

𝛽𝑗(𝜙) =
∫𝐻(𝜙)𝑒∫𝐺(𝜙) + 𝐶

𝑒∫𝐺(𝜙)
. (3.91)

Fortunately, the integrals can be treated analytically in our case. A straight-
forward calculation yields

𝛽𝑗(𝜙) =
𝐶 − 𝜅

𝜆𝑗−𝜅
􏿴1 + 𝜅 􏿴𝜙 − 1􏿷􏿷

𝜆𝑗−𝜅
𝜅

􏿴1 + 𝜅 􏿴𝜙 − 1􏿷􏿷
𝜆𝑗+𝜅
𝜅

. (3.92)

e integration constant 𝐶 can be determined by seing 𝛽𝑗(1) = 1which follows
directly from our definition of 𝛽𝑗. We obtain 𝐶 = 1+ 𝜅

𝜆𝑗−𝜅
. Using this value of 𝐶,

𝛽𝑗(𝜙) is a solution of the original equation Eq. (3.89), which is normalized in such
a way that it takes a value of 1 at 𝜙 = 1

𝛼𝑗(𝜙) =
1 − 𝜅

𝜆𝑗−𝜅
((1 + 𝜅(𝜙 − 1)

𝜆𝑗−𝜅
𝜅 − 1)

(1 + 𝜅(𝜙 − 1))
𝜆𝑗+𝜅
𝜅

. (3.93)

For linear IF oscillators, the boundary condition for the variation in Eq. (3.82)
takes the form:

𝛼𝑗(0)
𝛼𝑗(1)

= 1
(1 − 𝜅)2 (3.94)

Combining (3.94) and (3.93) we get the condition for the eigenvalues
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1
(1 − 𝜅)2 =

1 − 𝜅
𝜆𝑗−𝜅

((1 − 𝜅)
𝜆𝑗−𝜅
𝜅 − 1)

(1 − 𝜅)
𝜆𝑗+𝜅
𝜅

(3.95)

which simplifies to

𝜅
𝜅 − 𝜆𝑗

(𝑒􏸥􏸧(1−𝜅)
𝜆𝑗−𝜅
𝜅 − 1) = (𝑒􏸥􏸧(1−𝜅)

𝜆𝑗−𝜅
𝜅 − 1). (3.96)

We can immediately read the solutions of this equation. For

𝜆𝑗 = 𝜅 + 𝑖 2𝜋𝜅
􏸋􏸍(1 − 𝜅) 𝑗, 𝑗 ∈ ℤ (3.97)

both sides vanish. Additionally for 𝜆 = 0 the factor at the front of the le side
is 1 and we have equality. e zero eigenvalue can be related to the symmetry
of the original problem which does allow for solutions with different integral. A
speciality of the PRCwe consider is that the real part is identical for all eigenval-
ues. An perturbation from the asynchronous solution will thus always increases
with the same speed, independent on its shape.

For excitatory oscillators (𝜅 > 0) we have eigenvalues with positive real part
and the stationary solution is thus unstable even for arbitrary small coupling
strength. In Figure 3.34, we show the real part of first three eigenfunctions as
given in Eq. (3.93). ese eigenfunctions present perturbations of the stationary
solution which grow and reassume their shape aer some time which is given
by the imaginary part of the eigenvalue.

Linear IF oscillator with refractory periods and time delay

In the following, we will discuss the case of linear IF oscillators with time delays
𝜏 and refractory periods 𝜗.

𝜕𝑡𝜌(𝜙, 𝑡) = −𝜕𝜙 􏿮􏿴1 + 𝜌(1)(𝐹(𝜙) − 𝐹(1))􏿷 𝜌(𝜙, 𝑡)􏿱 . (3.98)

Interpreting 𝜌(𝜏) as firing rate is only possible if oscillators are not excitable in
the interval 𝜙 ∈ [0, 𝜏], such that solutions are only subject to convection in this
interval and we have 𝜌(𝜏, 𝑡) = 𝜌(1, 𝑡−𝜏). Again, we can only consider time delays
which are shorter than refractory periods in this way.

In the following, wewill discuss stability of asynchronous solutions of Eq. (3.98)
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for PRCs 𝐹(𝜙) given by:

𝐹̄(𝜙) =

⎧⎪⎪
⎨⎪⎪⎩

0 0 < 𝜙 < 𝜃 − 𝜏
𝑎(𝜙 − 𝜃 + 𝜏) + 𝑏 𝜃 − 𝜏 < 𝜙 < 1 − 𝜏
0 1 − 𝜏 < 𝜙 < 1

(3.99)

We will use the notations 𝑉(𝜙) = 1 + 𝜈𝐹̄(𝜙) and 𝜙1 = 𝜗 − 𝜏, 𝜙2 = 1 − 𝜏 in
the following to keep formulas concise. Note that 𝑉(𝜙1) = 𝑉(𝜙+

2 ) = 1. With this
definition Eq. (3.84) takes the form 𝛼𝑗(𝜙) + 𝛼𝑗(𝜙)𝜆𝑗 for the intervals where 𝐹(𝜙)
vanishes reads

𝛼′
𝑗 (𝜙) + 𝛼𝑗(𝜙)

𝜈𝑎 + 𝜆𝑗

𝑉(𝜙) + 𝛼𝑗(1)
𝜈𝑎

𝑉3(𝜙) = 0 (3.100)

otherwise. We have to solve each of the three parts seperately and choose
parameters in such a way, that the function 𝛼𝑗 solves the boundary condition
for discontinuities in 𝐹(𝜙) in Eq. (3.81). e solutions in [1 − 𝜏, 1] and [0, 𝜗 − 𝜏]
are exponential function, while the solution [𝜗−𝜏, 1−𝜏] is obtained analogously
as for the undelayed case (see Eq. (3.92). As the boundary value problem which
defines 𝛼𝑗(𝜙) is linear, we can choose a normalization 𝛼𝑗(𝜙) by fixing 𝛼𝑗(𝜙) at
some phase. We choose 𝛼𝑗(1) = 1, which simplifies Eq. (3.100) and allows us to
express the solution in [𝜗 − 𝜏, 1 − 𝜏] by

𝛼𝑗(𝜙) =
𝐶 − 𝜈𝑎

𝜆𝑗−𝜈𝑎
𝑉(𝜙)

𝜆𝑗−𝜈𝑎
𝜈𝑎

𝑉(𝜙)
𝜆𝑗+𝜈𝑎
𝜈𝑎

. (3.101)

Using the simple form of the solutions in [0, 𝜗−𝜏] and [1−𝜏, 1] and the boundary
condition Eq. (3.81), we can calculate the values of of 𝛼(𝜙2) and 𝛼(𝜙1+):

𝛼𝑗(𝜙2) = 1
𝑉(𝜙2)

􏿮𝛼𝑗(𝜙+
2 )+𝛼𝑗(1) 1−𝑉(𝜙2)

𝑉(𝜙2)
􏿱 = 𝛼𝑗(1) 􏿯 𝑒𝜏𝜆

𝑉(𝜙2)
+ 1−𝑉(𝜙2)

𝑉2(𝜙2)
􏿲 ,

𝛼𝑗(𝜙+
1 ) = 1

𝑉(𝜙+
1 )
􏿯𝛼𝑗(𝜙1)+𝛼𝑗(1)

1−𝑉(𝜙+
1 )

𝑉(𝜙+
2 )

􏿲 = 𝛼𝑗(1) 􏿯 𝑒
−(𝜗−𝜏)𝜆

𝑉(𝜙+
1 )

+ 1−𝑉(𝜙+
1 )

𝑉2(𝜙+
1 )
􏿲 .

(3.102)

Enforcing these two relations on the solution for the interval [𝜗−𝜏, 1−𝜏], allows
us to eliminate 𝐶 and finally determine the eigenvalues 𝜆𝑗 for which solutions
are possible. Solving Eq. (3.93) with respect ot 𝐶, we obtain

𝛼(𝜙+
1 )𝑉(𝜙+

1 )
𝜆𝑗+𝜈𝑎
𝜈𝑎 + 𝜈𝑎

𝜆𝑗 − 𝜈𝑎𝑉(𝜙
+
1 )

𝜆𝑗−𝜈𝑎
𝜈𝑎 = 𝛼(𝜙2)𝑉(𝜙2)

𝜆𝑗+𝜈𝑎
𝜈𝑎 + 𝜈𝑎

𝜆𝑗 − 𝜈𝑎𝑉(𝜙2)
𝜆𝑗−𝜈𝑎
𝜈𝑎 (3.103)
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Figure 3.35: Real part of the eigenfunctions 𝛼𝑗 of the linear stability problem for
linear IF oscillators with (𝑎, 𝑏, 𝜏, 𝜃) = (0.2, 0.2, 0.15, 0.2) according to Eq. (3.93)
for the three lowest eigenvalues (𝜆0 (black), 𝜆1 (blue) and 𝜆2 (red)).

which using the expressions in Eq. (3.102) simplifies to the desired condition for
the eigenvalues:

􏿶
𝑉(𝜙+

1 )
𝑉(𝜙2)

􏿹

𝜆𝑗−𝜈𝑎
𝜈𝑎

=
1+􏿴𝑒𝜏𝜆 − 1􏿷𝑉(𝜙2)+ 𝜈𝑎

𝜆𝑗−𝜈𝑎

1+ (𝑒−(𝜗−𝜏)𝜆 − 1)𝑉(𝜙+
1 )+ 𝜈𝑎

𝜆𝑗−𝜈𝑎
(3.104)

Note that we lost the solution 𝜆𝑗 = 0 in the transformations between Eq. (3.103)
and (3.103), which is related to the symmetry of the original equation allowing
solutions with different mass.

When we choose refractory periods, the real parts of eigenvalues take differ-
ent values, which is plausible as depending on the eigenmode, the eigenfunctions
take different contributions in the intervals where 𝐹̄(𝜙) vanishes and where it
does not. When we then introduce time delays 𝜏 < 𝜗 (see Figure 3.36) some of
the eigenmodes are stabilized. However, independently on our choices for 𝜏 and
𝜗, we cannot stabilize all eigenmodes. In fact, the first eigenmode, which is not
oscillatory and has a real eigenvalue, will remain unstable for arbitrary 𝜏 < 𝜗.
To show this, we assume that 𝜆 were a real and negative solution of Eq. (3.104).
en the term in paranthesis in the nominator of the r.h.s. is positive, while the
term in the numerator is negative. e r.h.s is thus smaller than one. Solving
this inequation with respect to 𝜆, and therby considering that 𝑉(𝜙+

1 )/𝑉(𝜙2) < 1
for excitatory oscillators (𝑎 > 0), we obtain 𝜆 > 𝜈𝑎 which is greater than zero
in contradiction to our assumption. As long as a single eigenmode is unstable,
the stationary solutions of the continuum model are unstable. erefore, the
continuum model with dense connectivity does not allow for stable stationary
solutions for linear IF oscillator with arbitrary values of 𝑎, 𝑏 > 0 and 𝜏 < 𝜗. e

92



3.4 Continuum models

-150

-100

-50

0

50

100

150

0 0.2 0.4 0.6 0.8 1

ℑ(
𝜆)

ℜ(𝜆)

-150

-100

-50

0

50

100

150

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ℑ(
𝜆)

ℜ(𝜆)

Figure 3.36: Eigenvalue spectra of the linear stability problem for linear IF os-
cillators (𝑎 = 0.2, 𝑏 = 0.2) according to Eq. (3.104). Different values for time
delay 𝜏 and refractory periods 𝜗 were chosen. Le: 𝜏 = 0; black :𝜗 = 0, blue:
𝜗 = 0.005, red: 𝜗 = 0.015, green: 𝜗 = 0.05. Right: 𝜗 = 0.05; green: 𝜏 = 0.0, red:
𝜏 = 0.01, blue: 𝜏 = 0.02, black: 𝜏 = 0.03, grey: 𝜏 = 0.04

stationary solution of the continuum model with sparse connectivity rely on
sparseness and on the non-local terms. We cannot describe them by consider-
ing the much simpler equation that we investigated in this chapter.

3.4.3 Sparse Erdős-Rényi networks

For synaptic failure networks, every excited oscillator is chosen randomly from
the network. is means that the distribution of phases of excited oscillators is
the same as the distribution of oscillators in the network. is allowed us to as-
sume, for the sparse limit of synaptic failure networks (Chapter 3.4.1), the same
excitation rate for all oscillators in the network, independently on their phase.
For Erdős-Rényi networks, however, connections are static, and it is conceiv-
able that two oscillators which are connected have a different expected phase
difference than oscillators which are not connected. In particular, the subset of
oscillators which are connected to firing oscillators, may have a different dis-
tribution of phases than the distribution of all phases in the network (see Fig-
ures 3.3 and 3.4). erefore, the excitation rate 𝜆 depends on the phase of the
excited oscillator.

In the following, we will derive a two-dimensional kinetic equation which
accounts for this dependence and which is intended to approximate the limit-
ing dynamics of large, sparse Erdős-Rényi networks. With dimension, we mean
here the number of dimensions of the flux, or equivalently the number of argu-
ments of the distribution function under study. Using this equation, we can re-
produce the qualitative behavior of the distribution of excited phases as shown
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in Figures 3.3, 3.4, and 3.5. e kinetic equation is no exact description of the
network dynamics but a refinement of the continuum with sparse connectivity
in the sense that it accounts for phase dependent excitation rates observable in
Erdős-Rényi networks. Instead of considering the distribution of phases 𝜌(𝜙),
we here consider the density 𝜚(𝜓, 𝜙) of edges in the network which have source
and target nodes with phases 𝜓 and 𝜙, respectively. We norm this density to the

mean degree 𝑚: ∫1

0
𝑑𝜓∫1

0
𝑑𝜙𝜚(𝜓, 𝜙) = 𝑚. When we identify 0 and 1, the phases 𝜓

and 𝜙 form a torus. In absence of excitations, phase difference between 𝜓 and 𝜙
stay constant, and the distribution 𝜚(𝜓, 𝜙) is transported parallel to the diagonal
characterized by 𝜓 = 𝜙. e excitation rate in the network can be expressed
by the edges which are connected to an oscillator with phase 1. Note that the
density 𝜚(𝜓, 𝜙) carries no information about the degree distribution in the net-
work.erefore, we have no exact way of calculating the phase distribution 𝜚(𝜙)
from 𝜚(𝜓, 𝜙); a large value of 𝜚(𝜓, 𝜙) could in principle go along with just a sin-
gle oscillator with phase 𝜙 if all edges which contribute to 𝜚(𝜓, 𝜙) connect to
this same oscillator. However, for networks with a narrow degree distribution
(like Erdős-Rényi networks), it may be justified to assume that the distribution
of phases in the network can be obtained by integrating 𝜌(𝜓, 𝜙) over one of the
two variables:

𝜌(𝜙) = 1
𝑚 􏾙

1

0
𝑑𝜓𝜚(𝜓, 𝜙) = 1

𝑚 􏾙
1

0
𝑑𝜙′𝜚(𝜙, 𝜙′). (3.105)

e desired equations which govern the evolution of 𝜚 are as before described
by a continuity equation:

𝜕𝑡𝜚(𝜓, 𝜙) = −𝜕𝜓𝐽1(𝜓, 𝜙) − 𝜕𝜙𝐽2(𝜓, 𝜙) 𝐽⃗(𝜓, 𝜙) = 􏿶
𝐽1(𝜓, 𝜙)
𝐽2(𝜓, 𝜙)􏿹

. (3.106)

e excitation rate for oscillators with phase 𝜙 is determined by the flux of edges
which cross the boundary 𝜓 = 1 of the unit square:

𝜆(𝜙) = 𝐽1(1, 𝜙). (3.107)

It remains to define the probability flux 𝐽⃗ (𝜓, 𝜙) and the boundary conditions.e
choice of the exact definition here will allow us to distinguish between directed
and undirected networks, and to reproduce the dynamics of the synaptic failure
model in higher dimensions.
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Two-dimensional description of synaptic failure networks

Let us—for comparison with the models to follow—derive a two-dimensional
representation of the synaptic failure network model (presented in Chap. 3.4.1).
In such a network, excitations are distributed evenly among oscillators, and the
notion of connections between oscillators does not apply. However, if we imag-
ine that every excitation to an oscillator with phase 𝜙 would be mediated by a
connection, then the number of connections would be proportional to the prod-
uct of the density of firing oscillators 𝜌(1) and the density at phase 𝜙. erefore,
it is plausible to define the two dimensional density 𝜚(1, 𝜙) in such a way that it
decomposes into a product of 𝜌(1) and 𝜌(𝜙). Our ansatz for the two-dimensional
representation is to generalize this product to arbitrary phases by defining:

𝜚(𝜓, 𝜙) = 𝑚𝜌(𝜓)𝜌(𝜙). (3.108)

As a consistency check for the two-dimensional equations of synaptic failure
networks, we can investigate if this factorization property is preserved if we
chose initial conditions which fulfill it. We compute the time evolution of the
product in Eq. (3.108) assuming that 𝜌(𝜙) solves the one-dimensional continuity
equation of the continuum model with sparse connectivity (Eq. (3.31)):

𝜕𝑡𝜚(𝜓, 𝜙) = 𝑚𝜌(𝜙)𝜕𝑡𝜌(𝜓) + 𝑚𝜌(𝜓)𝜕𝑡𝜌(𝜙) = 𝑚𝜌(𝜙)𝜕𝜓𝐽(𝜓) + 𝑚𝜌(𝜓)𝜕𝜙𝐽(𝜙). (3.109)

Comparing with (3.106) we conclude that

𝐽⃗ (𝜓, 𝜙) = 􏿶
𝑚𝜌(𝜙)𝐽(𝜓)
𝑚𝜌(𝜓)𝐽(𝜙)􏿹 . (3.110)

Using the definition for the flux of the continuum model with sparse connectiv-
ity (Eq. (3.31), we obtain:

𝐽⃗ (𝜓, 𝜙) =

⎛
⎜
⎜
⎜
⎝

𝜚(𝜓, 𝜙) + 𝑚 ∫
𝐼→(𝜓)

𝐽(1)𝜌(𝜓′)𝜌(𝜙)𝑑𝜓′ − 𝑚 ∫
𝐼←(𝜓)

𝐽(1)𝜌(𝜓′)𝜌(𝜙)𝑑𝜓′

𝜚(𝜓, 𝜙) + 𝑚 ∫
𝐼→(𝜙)

𝐽(1)𝜌(𝜙′)𝜌(𝜓)𝑑𝜙′ − 𝑚 ∫
𝐼→(𝜙)

𝐽(1)𝜌(𝜙′)𝜌(𝜓)𝑑𝜙′

⎞
⎟
⎟
⎟
⎠

. (3.111)

As we intend to define an equation for the edge density 𝜚(𝜓, 𝜙), we have to
eliminate all appearances of the first order density and flux; Using

𝜌(𝜙) = 𝜌(𝜙)𝜌(𝜓)𝜌(𝜓) = 𝜚(𝜓, 𝜙)
∫1

0
𝑑𝜙′𝜚(𝜓, 𝜙′)

(3.112)
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we finally obtain

𝐽⃗ (𝜓, 𝜙) =

⎛
⎜
⎜
⎜
⎝

𝜚(𝜓, 𝜙) + 𝑚( ∫
𝐼→(𝜓)

− ∫
𝐼←(𝜓)

) 𝐽1(1,𝜓′)𝜚(𝜓′ ,𝜙)

∫1
0
𝜚(𝜓′ ,𝜙)𝑑𝜙

𝑑𝜓′

𝜚(𝜓, 𝜙) + 𝑚( ∫
𝐼→(𝜙)

− ∫
𝐼→(𝜙)

) 𝐽1(1,𝜙′)𝜚(𝜓,𝜙′)

∫1
0
𝜚(𝜓,𝜙′)𝑑𝜓

𝑑𝜙′

⎞
⎟
⎟
⎟
⎠

. (3.113)

We endow the flux with the boundary conditions of a torus:

𝐽⃗ (0, 𝜙) = 𝐽⃗(1, 𝜙), 𝐽⃗ (𝜓, 0) = 𝐽⃗(𝜓, 1). (3.114)

e problem defined by Eqs. (3.113) and (3.114) is entirely equivalent to the one-
dimensional problem we studied in Chapter 3.4.1, and we cannot expect new
dynamics from it. Let us interpret the formula with a Erdős-Rényi network in
mind, to see in which way Eq. (3.113) needs to be changed as to break the factor-
ization property in Eq. (3.108) and to yield a more accurate description for Erdős-
Rényi networks. e first term of the r.h.s. of Eq. (3.113) represents convection
in direction of the diagonal 𝜓 = 𝜙. e second term describes the influence of
excitations.

e first component of 𝐽⃗ defines the flux in direction of the𝜓-axis. In this com-
ponent we integrate over phases at which oscillators are moved past 𝜓 by a sin-
gle excitation. 𝐽1(1, 𝜓′) is the flux of edges across (1, 𝜓′) in direction of the phase
variable of source nodes. Every crossing edge has a firing source node while the
target node is excited and of phase 𝜓′. We have to account for the change of
𝜚(𝜓, 𝜙) due to every excited oscillator. e oscillator will have other edges at-
tached to it, both ingoing and outgoing. However, we have no knowledge about
the phases of the oscillators at the other side of these edges. At this point, we
make the assumption that the aached edges are random and distributed homo-
geneously among possible ones. is assumption makes the description inexact
when we compare it to Erdős-Rényi networks. In fact, the assumption is similar,
as when we approximate a Erdős-Rényi network by a synaptic failure network.
For synaptic failure networks we do not know the phases of excited oscilla-
tors and assume that the phases are chosen randomly. For the two-dimensional
model, we do know the phase 𝜓′ of an excited oscillators, but have no knowl-
edge of the phases of those oscillators excited oscillators are connected to. We
can, however, make an educated guess using 𝜚(𝜓, 𝜙).

Suppose an oscillator 𝑜 with phase 𝜙𝑜 is excited and we are interested in the
influence of 𝑜’s changed phase on 𝜚(𝜓, 𝜙). Let us first consider the edges which
have 𝑜 as a source node. All edges which could fit this description are accounted
for in 𝜚(𝜓′, 𝜙), 𝜙 ∈ [0, 1]. If we assume that 𝑜’s edges are some random subset of
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these possible edges, we can express the possibility that 𝑜 connects to an edge
with phase 𝜙 by

𝑃1(𝜙𝑜, 𝜙) = 𝑚 𝜚(𝜙𝑜, 𝜙)
∫1

0
𝜚(𝜙𝑜, 𝜙)𝑑𝜙

(3.115)

Analogously, we can represent the probability 𝑃2𝜓′(𝜙), that 𝑜 is the target oscil-
lator of an oscillator with phase 𝜙 by

𝑃2(𝜙, 𝜙𝑜) = 𝑚 𝜚(𝜙, 𝜙𝑜)
∫1

0
𝜚(𝜙, 𝜙𝑜)𝑑𝜙

(3.116)

We can conceive the products 𝐽1(1, 𝜓)𝑃1(𝜓, 𝜙) and 𝐽1(1, 𝜙)𝑃2(𝜓, 𝜙) as excitation
rates for edges in the sense that they describe the rates with which edges are
moved discontinuously on the (𝜓, 𝜙)-torus due to excitation of source and target
oscillator, respectively. ese excitations rates are exactly the terms that we in-
tegrate over in Eq. (3.113). In the following, we will use the two-dimensional de-
scription of synaptic failure networks (Eqs. (3.113) and (3.114)) as starting point
to derive equations tailored to Erdős-Rényi networks.

Two-dimensional description of undirected Erdős-Rényi networks

Let us consider the dynamics of an undirected Erdős-Rényi network. As every
connection in such a network is bidirectional, we have 𝜚(𝜓, 𝜙) = 𝜚(𝜙, 𝜓) and
the defined probability flux has to preserve this property. Compared to the two-
dimensional description of synaptic failure networks, we have to change two
things. Firstly, when an edge with oscillator phases (1, 𝜙) crosses the boundary
of the unit square, the target oscillator is excited and has a phase of 𝑅(𝜙) aer-
wards. e edge thus reappears at (0, 𝑅(𝜙)) aerwards. As we here discuss undi-
rected networks, we can argue analogously for an edge at (𝜓, 1) which crosses
the boundary. We obtain the following boundary conditions

𝐽⃗ (0, 𝜙) = 𝐽⃗(1, 𝑅−1(𝜙)), 𝐽⃗ (𝜓, 0) = 𝐽⃗(𝑅−1(𝜓), 1) (3.117)

Secondly, when an oscillator is excited, it is by necessity connected to an oscilla-
tor with phase 1.erefore, if we assume an average degree of𝑚 in the network,
it only has𝑚−1 connections which connect it to other oscillators with unknown
phases. We thus scale the interaction terms in the definition of the flux by 𝑚− 1
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instead of 𝑚.

𝐽⃗ (𝜓, 𝜙) =

⎛
⎜
⎜
⎜
⎝

𝜚(𝜓, 𝜙) + (𝑚 − 1)( ∫
𝐼→(𝜓)

− ∫
𝐼←(𝜓)

) 𝐽1(1,𝜓
′)𝜚(𝜓′𝜙)

∫1
0
𝜚(𝜓′𝜙)𝑑𝜙

𝑑𝜓′

𝜚(𝜓, 𝜙) + (𝑚 − 1)( ∫
𝐼→(𝜙)

− ∫
𝐼→(𝜙)

) 𝐽1(1,𝜙′)𝜚(𝜓𝜙′)

∫1
0
𝜚(𝜓,𝜙′)𝑑𝜓

𝑑𝜙′

⎞
⎟
⎟
⎟
⎠

(3.118)

For the continuum model for synaptic failure networks, we were able to ex-
press the firing rate explicitly in terms of the phase density. Note that depending
on the PRC, the same may be impossible for the continuum model for directed
and undirected Erdős-Rényi networks. Seing 𝜓 = 1 in Eq. (3.118), we obtain a
Fredholm integral equation of second kind:

𝐽1(1, 𝜙) = 𝜚(1, 𝜙) + (𝑚 − 1)( 􏾙
𝐼→(1)

− 􏾙
𝐼←(1)

) 𝐽1(1, 𝜓
′)𝜚(𝜓′𝜙)

∫1

0
𝜚(𝜓′𝜙)𝑑𝜙

𝑑𝜓′, (3.119)

is equation determines the excitation rate 𝜆(𝜙) = 𝐽1(1, 𝜙) which appears both
inside and outside the integral.e solution of such an equation can be expressed
by the Liouville-Neumann series. e implementation of finite size discretiza-
tions nevertheless is hindered by this. We restrict ourselves here to the case of
linear IF oscillators with delay and refractory periods, for which 𝐼→(1) = 0 and
Eq. (3.119) reduces to 𝐽(1, 𝜙) = 𝜚(1, 𝜙).

Two-dimensional description of directed Erdős-Rényi networks

We will now define the flux for directed Erdős-Rényi networks. As for the de-
scription tailored to undirected Erdős-Rényi networks, we consider the influ-
ence of an edge contributing to 𝜚(1, 𝜙) whose source and target oscillators have
phases 1 and 𝜙 respectively. e target oscillator with phase 𝜙 is excited and
we calculate the influence of its changed phase on the distribution 𝜚 . For a di-
rected network, the number of incoming and outgoing edges per node have the
same average value 𝑚. e excited oscillator has 1 incoming edge coming from
the firing oscillator and 𝑚 − 1 incoming edges coming from other oscillators. In
addition, we have to account for—on average—𝑚 outgoing edges of the excited
oscillator.

𝐽⃗ (𝜓, 𝜙) =

⎛
⎜
⎜
⎜
⎝

𝜚(𝜓, 𝜙) + 𝑚( ∫
𝐼→(𝜓)

− ∫
𝐼←(𝜓)

) 𝐽1(1,𝜓
′)𝜚(𝜓′𝜙)

∫1
0
𝜚(𝜓′𝜙)𝑑𝜙

𝑑𝜓′

𝜚(𝜓, 𝜙) + (𝑚 − 1)( ∫
𝐼→(𝜙)

− ∫
𝐼→(𝜙)

) 𝐽1(1,𝜙′)𝜚(𝜓𝜙′)

∫1
0
𝜚(𝜓,𝜙′)𝑑𝜓

𝑑𝜙′

⎞
⎟
⎟
⎟
⎠

(3.120)
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synaptic failure directed undirected

m

m m-1

m m-1

m-1

Figure 3.37: Schematic comparison of two-dimensionalmodels for the three con-
sidered types of networks. All three models have convection parallel to the
diagonal 𝜓 = 𝜙 of the unit square. Additionally, we have jumps in direction
of the axes due to excitations to the source or target oscillators of edges. For
synaptic failure networks, both types of excitations scale with the mean de-
gree𝑚. For directed Erdős-Rényi networks excitations to the source oscillator
scales with 𝑚 while excitations to the target oscillator scale with 𝑚 − 1. For
undirected Erdős-Rényi networks, both types of excitations scale with 𝑚 − 1.
Continuous boundary conditions at the edges of the unit square are marked
in black, while boundary conditions at which the flux is mapped by the PTC
are marked in red.

e different factors make it obvious that the evolution equation which results
from Eq. (3.118) will lead to phase densities which are not symmetric under ex-
change of the arguments 𝜓 and 𝜙. For the boundary conditions, we know that
an edge with phases (1, 𝜙) is injected at (1, 𝑅(𝜙)). In contrast to undirected net-
works, we cannot conclude that the source oscillator of an edge (𝜓, 1) is excited
at threshold crossing. At this boundary, we thus have to choose the simpler
boundary condition.

𝐽(0, 𝜙) = 𝐽(1, 𝑅−1(𝜙)), 𝐽(𝜓, 0) = 𝐽(𝜓, 1) (3.121)

is concludes the definition of the model for directed Erdős-Rényi networks
which is defined by Eqs. (3.120) and (3.121). e integral equation which deter-
mines the firing rate is the same as for undirected Erdős-Rényi networks. In Fig-
ure 3.37, we show a graphical comparison of the three defined two-dimensional
fluxes. Note, that the difference between all three two-dimensional continuity
equations obviously vanishes in the limit of large 𝑚. e equations can be dis-
cretized analogously as for the continuummodel with sparse connectivity aimed
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Figure 3.38: Top le: Distribution 𝜚(𝜓, 𝜙) of edges with given source and target
phases 𝜓 and 𝜙 in asynchronous states of directed Erdős-Rényi Networks
(𝑚 = 10,𝑁 = 106) of linear IF oscillators (𝑎, 𝑏, 𝜏, 𝜗) = (0.05, 0.05, 0.1, 0.2). Bot-
tom le: distribution of oscillator phases 𝜌(𝜙) and distribution of phases of
excited oscillators 𝜌1(𝜙). Le: Histogram obtained from a network of 106 os-
cillators. Right: Finite size discretization to 500 ⋅ 500 dimensions of the two-
dimensional continuum model tailored towards undirected Erdős-Rényi net-
works.

at synaptic failure networks, which allows us to reproduce, qualitatively, the
observed behavior of the asynchronous states of Erdős-Rényi networks. In Fig-
ure 3.39 and 3.38, we show a comparison of 𝜚(𝜓, 𝜙) as assessed from asynchro-
nous states of Erdős-Rényi networks with 𝜚(𝜓, 𝜙) as produced by the kinetic
equations derived in this chapter. e kinetic equations are able to reproduce
the characteristic features that we observed in Erdős-Rényi networks. An de-
tailed analysis of differences in dynamical behaviors that emerge from the ki-
netic equations and from Erdős-Rényi networks is le for future study. Although
the kinetic equations, we present here, possibly provide a beer description to
the dynamics of Erdős-Rényi networks, it can not be expected that the descrip-
tion is exact. Other influencing factors like the degree distribution are known to
have a large impact on the dynamical behavior and are not accounted for by our
approach [32].
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Figure 3.39: Same as Figure 3.38 but for directed Erdős-Rényi networks .

3.5 Summary

We investigated and compared the dynamics of integrate-and-fire-like oscilla-
tors coupled onto Erdős-Rényi - and synaptic-failure random networks. ese
networks are defined under the assumption that

each two nodes in the network have the same probability for a connection
(for Erdős-Rényi networks) or for an interaction (for synaptic failure networks).
We defined interaction of oscillators by 𝛿-pulses and endowed them with time
delayed interactions and refractory periods 𝜗 > 𝜏.

For the same parameters, these oscillator networks are able to support both
stable synchronous motion and chaotic transients to synchrony whose length
grows exponentially with the network size. Similar behavior has been observed
for comparable 𝛿-pulse coupled systems in Refs. [74, 78]. However, the larger
network sizes that we are considering here allowed us to describe the observed
behaviors by distributions of the oscillator phases, and thus to provide a macro-
scopic point of view on the dynamics. During the transients, oscillators show
nearly constant statistics and we thus related the transient behavior to an equi-
librium phase density distribution. Using statistical properties (the distribution
of phases of excited oscillators) we estimated the largest non-vanishing Lya-
punov exponent in such states, which confirmed that the transient asynchro-
nous behavior can be considered as chaotic.
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3 Dynamics on random networks

Furthermore, we investigated different kinds of continuummodels which rep-
resent the network dynamics in the limit of large networks. Such continuum
models allow the definition of evolution equations for the distribution of os-
cillator phases. Similar approaches have furthered insights into the dynamics
of excitatory integrate-and-fire neurons [109,110], oscillators coupled by short-
decaying pulses [42], and of continuously interacting oscillators like those of
Kuramoto type [59].

Note that we cannot investigate the dynamics in the commonly assumed
mean- or fluctuation-driven limits. Investigating the continuum model for the
mean-driven limit (which corresponds to dense networks), we linearized the
evolution equations near the stationary solution and found that the laer is un-
stable for the oscillators we are considering. e mean-driven limit is thus not
sufficient to describe asynchronous or phenomena neartheir loss of stability.

For synaptic failure networks, we were able to describe the equilibrium phase
distribution analytically, and show that it is unique. Two different mechanism
may prevent the emergence of asynchronous behavior in these networks. Firstly,
the equilibrium solutions do not exist for arbitrary parameters. When they do
not, networks synchronize nearly instantaneous, similar as in a chain reaction or
avalanche. Secondly, the equilibrium solutionmay turn unstable via anAndronov-
Hopf bifurcation, leading to small oscillations around it and eventually to irreg-
ular more complicated behaviors (cf. [111]).

Generally, synaptic failure networks and Erdős-Rényi networks show for the
most part very similar dynamical behaviors. erefore, we are confident that
descriptions and notions still are useful to understand the dynamics of Erdős-
Rényi networks, although they present only an approximation here. Moreover,
we defined a continuum model tailored towards Erdős-Rényi networks, which
provides a further refinement towards their dynamics.emain dynamical vari-
able here is not a distribution of phases but a distribution of edges in the network.
Although the description is not exact, it is able to reproduce further statistical
properties that can bemeasure in Erdős-Rényi networks, namely the distribution
of phases of excited oscillators. Although a detailed analysis of this equation still
has to be done, we are confident that further studies into the presented equations
may improve our understanding of the emerging dynamics of systems coupled
onto random networks.

Near the loss of stability of the equilibrium phase distribution, we observed
various kinds of more complicated behaviors which emergewhen oscillators ful-
fill the condition for a chain reaction; If every firing oscillator will excite on aver-
age one other oscillator beyond its firing threshold, then a macroscopic amount
of oscillator fires in unison much like in an avalanche. While such avalanches
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may lead to a rapid convergence to synchrony, it may also lead to irregular be-
havior in which continuous dynamics and avalanches interplay continuously,
leading to irregular macroscopic behavior in which synchrony builds up and is
recurrently diminished by the occurrence of avalanches.
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4 Dynamics on spatial networks

In the following chapter, we investigate the dynamics of linear IF oscillators on
networks with a spatial structure. Laices with nearest neighbor-coupling are
the simplest of such networks and have been studied extensively in the con-
text of condensed maer. Due to their homogeneity and the large amount of
symmetries, they are amenable to analytical approaches which aim at predict-
ing critical parameter values, at which the site’s states organize either globally
or locally ( [112]). However, even simple node dynamics easily leads to difficult
problems. One of the more famous examples is the Ising model which for three
or more spatial dimensions, has defied an analytical treatment despite intense
effort. Oscillators as considered by Peskin have been shown to synchronize com-
pletely for nearest neighbor coupling in 1 spatial dimension [79], however start-
ing from two dimensions, stable firing configurations have been found which do
not lead to synchrony [71].

e situation gets even more complicated, when timescales are chosen for
the oscillators as we did by introducing time delays 𝜏 and refractory periods 𝜗.
As distant oscillators on a laice can only communicate via several intermedi-
ating oscillators, delays between these oscillators add up, making global syn-
chrony an unlikely scenario. Instead, local synchrony and phase-locking can
be observed in various types of wave-dominated states [113, 114]; two distant
oscillators which communicate via waves traveling recurrently between them
may lock their phases to a constant difference. We expect the typical phenom-
ena known from excitable media like spiral waves [46]. For nearest neighbor
coupling, a wave front may travel into the direction of one of the laice’s axis
with a speed of one site per time delay. It is followed by a tail of refractory os-
cillators. For a stable wavefront, we need 𝜏 < 𝜗 and a large coupling strength
such that a single excitation suffices to make the excited oscillator fire imme-
diately. When we consider a laice defined by a radius of influence such that
each oscillator is connected to more than the nearest four neighbors in a net-
work, smaller coupling strengths may suffice, as each oscillator is excited several
times due to the firing of the oscillators on the wavefront. In this case the possi-
bility for wave propagation and the wave speed depend on the oscillator phases
of the laice sites the wave travels on; waves may travel faster on a region with
large phases as then even the second-next neighbors in direction of wave prop-
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agation may be excited by the wavefront. When two wavefronts collide, they
annihilate, as the refractory tails of both waves come from both sides and the
wave cannot spread in either direction. Our oscillators do not allow for total
quiescence. Nevertheless, they can be expected to behave similar as excitable
elements when excitations dominate over the intrinsic charging, which may be
the case for wave-dominated states.

Small-World Media

Natural networks that are studied in the life and social sciences oen contain
a laice-like structure which is complemented by some amount of connections
between distant nodes. Many recent studies have constructed and studied the
dynamics of model networks which mimic this property. A popular construc-
tion scheme is to start with a laice, remove a certain number of connections and
introduce the same number of connections between randomly chosen source
and target nodes. e newly introduced connections will, with large probabil-
ity, connect nodes which are far apart on the laices; simplifying, we will denote
them as long-ranged connections. Varying the fraction of long-ranged connec-
tions 𝜌 between 0 and 1 allows to interpolate continuously between regular lat-
tices and random networks while keeping the total number of connections in
the network fixed.e generated networks are denoted as small-worlds because
replaced connections [11] may be considered as short-cuts and lead to short
paths between pairs of nodes in the network, even for small 𝜌. e archetypical
dynamical behavior of laices are waves, while for random networks synchro-
nization phenomena are prevalent. Both behaviors can be expected to be carried
over to spatial networks with short- and long-ranged connections, which allows
us to study the interplay of local paerns and global oscillations. e influence
of the described replacement on synchronization has many facets. Firstly, re-
placed connections allow nodes to communicate more immediate. Secondly, the
distribution of node degrees in the networks becomes inhomogeneous, which
usually hinders synchronization, similar as many other sources of inhomogene-
ity in complex networks. In many studies the coupling strength per node is nor-
malized to account for that. irdly, the laice structure is weakened, which
may change the spatial paerns in the network which in turn may promote or
hinder the global organization of the networks.

When we replace connections with probability 𝜌 = 1, the spatial structure is
completely destroyed and we obtain some random networks. We will construct
and study three different kinds of small-world networks such that for 𝜌 = 1 each
of the three types of randomnetworks is obtained thatwe discussed in Chapter 3.
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All three kinds of small-world networks are based on a bidirectionally connected
square laice that we construct as follows:

We start with a square arrangement of nodes, in which every node is con-
nected bidirectionally to its 𝑘 nearest neighbors. In case 𝑘 does not define
a unique set of neighbors, we choose randomly between nodes with the
same distance.

We use cyclic boundary conditions such that the laice forms a torus.

For example for 𝑘 = 5, we will connect each nodes to its 4 nearest neighbors and
choose for each node one of the 4 diagonal neighbors randomly.e replacement
is performed according to one of the three following rules, yielding directed and
undirected networks as well as networks which interpolate between laices and
synaptic failure networks.

directed For each directed connection in the network and with probability
𝜌, we remove it and introduce a connection between randomly chosen
source and targets nodes.

undirected For each directed connection and its counterpart with reverse di-
rection and with probability 𝜌, we remove it both with probability 𝜌 and
introduce a bidirectional connection between randomly chosen source
and targets nodes.

synaptic failure For each directed connection in the network, we remove it
with probability 𝜌. Every firing oscillator 𝑜 will distribute 𝑚 excitations
randomly among oscillators where 𝑚 is the number of removed connec-
tions with 𝑜 as source node.

e construction schemes depend on the fraction of long-ranged connections
𝜌 and on the number of nearest neighbors 𝑘. Constructed networks with the
same parameters may differ, even for the third rule concerning synaptic failure
networks. For large networks, however, the dynamical behavior of these net-
works will be very similar. In addition, for larger 𝑘, we generate networks in
which different nodes have similar amounts of short- and long-ranged connec-
tions. e synaptic failure variants of small-world networks then are approxi-
mately translation invariant. However, even for the Erdős-Rényi networks the
target nodes of the replaced connections are well distributed over the network.
We can think of it as an excitable medium in which the mean activity is coupled
to every site. We will used the term small-world medium, which underlines this
spatial homogeneity of the network.
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We start with a discussion of the dynamics of linear IF oscillator endowed
with time delays 𝜏 and refractory periods 𝜗. Compared to plain IF oscillators,
they show a richer dynamical spectrum, allowing for various kinds of wave
dominated states that we cannot observe for plain IF oscillators. Furthermore,
the generated non-converging behaviors that we report on seem less irregular
for the more complicated oscillators. In Chapter 3, we have discussed two dis-
tinct mechanism that may lead to synchrony. In parameter space, we found two
boundaries at which the asynchronous behavior was lost (see Figs. 3.13, 3.16,
and 3.23). Depending on the type of random network, the oscillators show com-
plicated states of partial synchrony at the lower boundary (which lies at smaller
values of 𝑏) whereas the behavior at the upper boundary consisted of sponta-
neously initiated fast transient to complete synchrony. As the behavior at the
upper boundary seems easier, we focus – as a first step – on this transition,
and investigate how the dynamics is changed when we replace some amount of
the random connections by a laice structure. For comparability with the find-
ings presented in Chapter 3.3, we choose a mean degree 𝑚 of 50, 𝜏 = 0.01, and
𝜗 = 0.05. Furthermore, we chose a linear dependence between 𝑎 and 𝑏 such that
the corresponding line in the (𝑎, 𝑏)-plane intersects with the upper boundary of
the parameter regime with asynchronous states. Note that the dynamical behav-
iors we describe here do not depend on leakyness in the sense of integrate-and-
fire neurons. In fact, we can observe all behaviors for 𝑎 = 0, i.e., for non-leaky
oscillators. As can be seen in Figure 3.23, directed and undirected Erdős-Rényi
networks undergo—with increasing oscillator parameters satisfying 𝑎 = 0.5𝑏—
a transition from asynchronous states to synchrony. Near the boundary long,
chaotic transients can be observed which end in a spontaneous and rapid transi-
tion to complete synchrony. In contrast, synaptic failure networks with 𝜏 = 0.01
and 𝜗 = 0.05 synchronize completely independent on the coupling strength.

In the following, we investigate the emerging network behavior in depen-
dence on the fraction of long-ranged connections 𝜌 and on the oscillator pa-
rameter 𝑏 . In dependence on 𝜌 and 𝑏, the networks show a large spectrum of
dynamical behaviors which are crucially influenced by the formation of spatial
paerns. For small timescales 𝜏 and 𝜗, wave phenomena are fast compared to
the intrinsic frequency of oscillators, and wave-dominated states are possible in
which oscillators mostly fire because they are excited and not because of their
intrinsic dynamics. e dynamics of the wave dominated states then is similar
to what can be observed for excitatory IF neurons [115].

Macroscopically, we observe partially synchronous states with nearly con-
stant firing rate and states with periodic time evolutions of the firing rate. Addi-
tionally, we observe a regime in which the oscillators show irregular behavior
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with no convergence to limit cycles even for large networks. To characterize
the global network behavior, we assess the order parameter 𝑟(𝑡) and the firing
rate 𝜈(𝑡) when starting from distributed phases. A visual inspection of statisti-
cal properties of 𝑟(𝑡) and 𝜈(𝑡) (Figure 4.1 and Figure 4.2) allows us to distinguish
different regions in parameter space spanned by 𝑏 and 𝜌 which are separated by
boundaries and differ in the dynamical behavior.

In Figure 4.3, we show a schematic with a separation of the parameter space
into regimes according to the dynamical behavior. e scheme is representa-
tive for either directed, undirected, or synaptic failure small-world media, which
show for themost part similar progressions of the boundaries between behaviors
and show qualitatively the same dynamical behaviors, the exception being the
absence of asynchronous states for small coupling strengths in synaptic failure
small-world media.

We provide a description of the different dynamical behaviors and start with
cyclic wave states that can be observed for spatial network with a strong laice
structure (small 𝜌 and large values of 𝑎 and 𝑏).

4.1 Wave paern

Cyclic waves

A traveling wavefront of firing oscillators excites other oscillators which lie in
the direction of wave propagation. Oscillators which lie in the opposite direc-
tion are refractory. For cyclic waves, firing oscillators on the wave front must
distribute enough excitation as to make other oscillators in direction of wave
propagation fire, independently of the oscillator phases of the medium before
arrival of the wave. When the coupling strength is large enough, cyclic waves
are ignited at some site in the laice, the focus, and spread outwards. e same
wave cannot return to any point it has previously reached and for cyclic bound-
ary conditions, it eventually extinguishes itself.While spreading, thewave resets
the phases in the network according to the distance to the focus.

For regular laices (𝜌 = 0), we observe cyclic waves, which quickly cover the
whole network, and quiescence in which the phases of oscillators increase until
the same waves are ignited again (see Figure 4.4 le). Aer waves have travelled
the network once, all laice sites have adapted their phases accordingly and
oscillators would fire by themselves anyway at the arrival of the next wave. Aer
a few collective oscillations, the laices are phase-locked and show constant
values of 𝑟(𝑡). Cyclic wave foci emit waves with a frequency of 1. In this time the
wave front may travel a hundred times to new laice sites (assuming 𝜏 = 0.01).
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Figure 4.1: Statistical properties of the order parameter 𝑟(𝑡) of small-world net-
works (𝑁 = 250 × 250,𝑚 = 50) of linear IF oscillators in dependence on the
fraction of long-ranged connections 𝜌 and the oscillator parameter 𝑏. Other
oscillator parameter: 𝑎 = 0.5𝑏, 𝜏 = 0.01, 𝜗 = 0.05. Le: average value ⟨𝑟⟩, Right:
range of observed values ⟩𝑟⟨. Values were obtained for 𝑡 ∈ [100, 200] to avoid
influence of transients. Top: directed small-world media, boom: synaptic
failure small-world media. Undirected small-world media show very similar
results as directed small-world media (data not shown).
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Figure 4.2: Same as Figure 4.1 but for the firing rate 𝜈
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Figure 4.3: Schematic of the parameter regimes with different dynamical behav-
iors in dependence on the fraction of long-ranged connections and on oscilla-
tor parameters 𝑏 = 0.5𝑎 (cf. Figures 4.1 and 4.2). All three investigated types of
small-worldmedia of linear IF oscillators show qualitatively similar behaviors
with the exception that regime V cannot be observed for synaptic failure me-
dia (for the chosen parameters). e observed behaviors show different spa-
tial paerns which may or may not co-occur with periodic behavior of global
observables: Ia: cyclic waves without global synchrony, Ib: cyclic waves with
global synchrony, II: spiral waves without global synchrony, IIIa: networks
split into synchronous regions and asynchronous regions which are unstruc-
tured for smaller phase responses and take the form of turbulent-like waves
for larger ones. e relative size of synchronous and asynchronous regions is
fixed. IIIb: networks split into synchronous and unstructured asynchronous
regions which fluctuate in both size and shape. IV: almost complete synchro-
nization, V: asynchronous state with constant firing rate and distribution of
phases.

erefore, very few waves will travel the networks at the same time for the
laice sizes we can investigate numerically. e phase-locked states thus have
large order parameters.

For 𝜌 > 0 the laice structure of the networks is weakened and we need larger
coupling strengths to observe cyclic waves. At the same time the translation
symmetry of the laices is broken and the dynamics did not reach any periodic
aractor during the times we observed the networks. With increasing fraction
of long-ranged connections, oscillators on wavefronts distribute a large number
of excitations via long-ranged connections. As these are distributed homoge-
neously over the network, they increase the effective frequency of oscillators
and thus decrease the time 𝑇 between emiing of cyclic waves from the wave
focus. When 𝑇 comes into the same order of magnitude as the wave speed, we
can observe states in whichmanywaves travel the network at the same time (see
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Figure 4.4: Top: Order paramter 𝑟(𝑡) and firing rate 𝜈(𝑡) for linear IF oscillators
coupled onto directed small-world networks (𝑁 = 500 × 500,𝑚 = 50). Bot-
tom: Snapshot of the spatial distribution of phase values for linear IF oscilla-
tors coupled onto directed small-world networks (𝑁 = 500 × 500,𝑚 = 50).
Oscillator parameters: a: 𝜌 = 0.04, 𝑏 = 0.0592, b: 𝜌 = 0.2, 𝑏 = 0.04, c:
𝜌 = 0.34, 𝑏 = 0.0752, d: 𝜌 = 0.32, 𝑏 = 0.072. e dynamics shows cyclic waves
which dominate the dynamics (a and b) or co-occur with collective firing of
large parts of the network (c and d).

Figure 4.4 b). When the mean firing rate is much larger than 1 (see Figure 4.2
le), the phase change due to excitations outweighs the phase change due to
the intrinsic dynamics. In this case, it can be expected that the observed dynam-
ics is similar to the one for excitable elements. e situation is comparable as
in [116] where small-world networks of excitable units where shown to exhibit
sustained activity on one-dimensional networks. To obtain an indication, if the
states for 𝜌 > 0 also sele onto a limit cycle or possibly are chaotic, we estimated
the largest Lyapunov exponent 𝜆 as described in chapter 3.2 (see Figure 4.5).

To our surprise the parameter regime with cyclic waves, splits into two re-
gions. For small 𝜌, we observe 𝜆 = 0, while for larger 𝜌, trajectories diverge
indicating a chaotic dynamics. A negative or vanishing largest Lyapunov expo-
nent indicates that will vanish to a fixed point or a limit cycle. However, the
corresponding transients can be very long for high dimensional systems as it
is the case for systems showing stable chaos [95]. Most oscillators in the cyclic
wave states fire because they receive a supra threshold excitation.e dynamics
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Figure 4.5: e largest Lyapunov exponent 𝜆 in dependence on 𝜌 and 𝑎 = 0.5𝑏
for directed small-world media (𝑚 = 50,𝑁 = 100×100) of linear IF oscillators.
e dynamical regimes IIIa and IIIb as defined in Figure 4.3 are revealed to
be chaotic. Cyclic wave states have converging trajectories for small 𝜌 and
diverging trajectories for larger 𝜌. For large 𝜌 the laices synchronize com-
pletely leading to 𝜆 = 0.

is thus insensitive to a perturbation in the phases of these oscillators. Only the
oscillators which fire when reaching the threshold due to their intrinsic dynam-
ics may propagate a perturbation of the oscillator phase.

e propagation of a cyclic wave depends lile on the oscillator phases of
the network sites it travels on. Aer the wave passes some position, phases of
oscillators are reset to 0, independently on the phases before the passing. As long
as the number of wavefronts is large enough to clear the network of the charging
repeatedly, the network shows no global oscillations and is wave-dominated. For
larger coupling strengths, however, we observe states with global oscillations
and cyclic waves (see Figure 4.4 c and d) in a small range of rewiring probabilities
around 𝜌 ≈ 0.25. A wave in an oscillating medium increases its speed with the
oscillator phase of the collective oscillation. At the point of collective firing,
only the oscillators which just le their refractory periods, can support wave
propagation. e wave is thus moved back by a distance which is given by the
size of its refractory tail. e parameter region for cyclic waves co-occurring
with collective firing is much larger for synaptic failure small-world networks
as these have to a much lesser degree inhomogeneities in the laice structure
which possible serve as wave foci for cyclic waves.

Spiral waves

In a spiral wave focus, excitation spreads along a cycle whose size is determined
by the refractory period 𝜗; if excitation reaches back to some oscillator on the
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circle, the refractory period 𝜗 of that oscillator just ended (otherwise the ex-
citation would spread on a larger cycle). e speed with which the excitation
spreads on the cycle is determined by the time delay 𝜏. e size of the cycle and
the frequency with which waves are emied from the focus is thus determined
by the timescales of the oscillators and independent on the intrinsic dynamic of
oscillator in contrast to cyclic waves. For our parameter, the emiing of spiral
waves is much faster than for the cyclic wave states, which is why spiral wave
states have much higher firing rates and are stable once created. Note that spi-
ral waves are supported whenever cyclic waves are supported by our networks.
eir generation, however, is unlikely when starting from uniformly distributed
phases in the regime with cyclic waves (regime Ia of Figure 4.3). A spiral wave
can be generated by choosing initial conditions, which generate a wave that ends
at some point [115]. Starting from such initial conditions, the cyclic wave states
cannot be observed anymore and the dynamics is dominated by spiral waves.

Additionally, Spiral waves are generated reproducibly even for distributed
initial conditions in a small region around 𝜌 ≈ 0.3. We describe the mechanism
which lead to this generation in Figure 4.6. To the le of the region, networks
have a strong laice structure, such that waves are fast even directly aer col-
lective firings. To the right of the region, the number of generated turbulent-like
waves is too small and they are too slow to continuously reset the network and
keep it from firing collectively.

Turbulent-like paerns

Wenow describe the dynamical behavior for networks inwhich the laice struc-
ture does not allow for wave phenomena to dominate the dynamics (small cou-
pling strengths and large fractions of long-ranged connections 𝜌). For 𝑏 = 𝜌 = 0
oscillators are uncoupled and maintain their random initial phases. With in-
creasing coupling strength, the phases organize locally. Small worm-shaped re-
gions are formed in which oscillators fire subsequently (see Figure 4.7 a). e
regions retain their shape overmany firing cycles.When the coupling strength is
further increased, paerns becomemore volatile and obtain the form of turbulent-
like waves (see Figure 4.7 b). In these states, wave propagation is only possible at
regions where the oscillators already have large phases. At other regions waves
die out leaving the medium partially excited. is leads to irregular paerns
which show bending wave fronts which at times resemble spiral waves.

For 𝜌 = 0, these states show no global organization and we observe only
small fluctuations in network observables, possibly related to finite-size effects.
In the small-world regime, however, similar wave phenomena co-occur with
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Figure 4.6: Consecutive snapshots of the spatial distribution of phases for linear
IF oscillators coupled onto directed small-world networks (𝑁 = 500×500,𝑚 =
50) for 𝜌 = 0.32 and 𝑏 = 0.056 starting from uniformly distributed phases. e
dynamics shows the generation of spiral wave foci. At 𝑡 = 0.88, the laice
shows a few wavefronts in a synchronized background. e laice structure
of the networks is too weak to allow for supra threshold excitation of oscil-
lators ahead of the wavefronts. ese oscillators, however, are le with large
phases and fire soon, reaching the firing threshold due to their intrinsic dy-
namics. In this way, waves travel with a speed of less than one site per time
delay. For the chosen parameters, the waves are so slow that oscillators be-
hind wavefronts leave their refractory period and are excited, leading to the
double wavefront structure seen at 𝑡 = 1.0 or 𝑡 = 1.38. e inner wavefront
collides with the outer leading to spiral wave foci (seen at 𝑡 = 1.92) which
soon dominate the laices (𝑡 = 10.6)
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Figure 4.7: Top: Order paramter 𝑟(𝑡) and firing rate 𝜈(𝑡) for linear IF oscillators
coupled onto directed small-world networks (𝑁 = 500×500,𝑚 = 50). Boom:
Snapshot of the spatial distribution of oscillator phases for directed small-
world media. Values range from 0 (black) to 1 (white). Different oscillator
parameters were chosen for a (𝑏 = 0.0064, 𝜌 = 0.0), b (𝑏 = 0.0176, 𝜌 = 0.0), c
(b=0.0352, 𝜌 = 0.4), and d (𝑏 = 0.064, 𝜌 = 0.6). e dynamics shows turbulent-
like paerns without (a, b) and with collective firing (c, d).

partial synchronization, such that the time-resolved firing rate shows a periodic
behavior with alternating times of low and high activity (see Figure 4.7 c and d).

e networks splits into synchronous parts and parts with spatial paerns,
whereby the oscillators in the synchronous parts share a common phase. For
a given set of parameters, the networks have preferred relative sizes of syn-
chronous parts and wave paerns. e frequency of collective firings in the net-
work increases with the size of wave paerns; oscillators which are part of the
spatial paerns fire and excite oscillators in the synchronous parts. As the exci-
tations are distributed in time, only few are received by oscillators shortly before
or aer firing for which the phase response is either small (due to absorption)
or vanishes (due to refractory periods). is is in contrast to excitations which
originate and are received by oscillators in the synchronous part, which do not
increase the frequency of collective firing as the receiving oscillators are refrac-
tory. In the completely synchronized state, oscillators fire with their eigenfre-
quency in our model. e collective firing in turn suppresses wave propagation
as wavefronts are moved back to the laice sites where oscillators leave their
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refractory periods. is feed-back mechanism allows for an equilibrium; when-
ever the size of wave paerns grows large, the frequency of collective firings is
increased and the size of wave paerns shrinks. en again if we start with few
wave paerns, the frequency of collective firings is small, which gives wave pat-
terns time to invade the synchronous regions and increase in size. e preferred
size of wave paerns increases with increasing 𝜌 as does the order parameter
(see Figure 4.1).

With weaker laice structure, (smaller 𝑏 and larger 𝜌) wave paerns become
more stationary, less wave-like, and change form and shape over many firing cy-
cles only. For 𝜌 > 0.5 and 𝑏 shortly above the synchronization threshold, the spa-
tial paerns in the asynchronous parts of the network show distributed phases
with nearly no distinctive structure. Depending on parameters, these asynchro-
nous paerns may evolve in size and shape, or may lead to some configuration
which changes lile aer the transient. We will first describe the laer case.

4.2 Chimera states

In a chimera state a network of identical oscillators splits into two domains, one
of which is synchronized and phase-locked while the other is asynchronous and
chaotic [64, 65, 117–123]. In many studies, the considered networks are laices
such that the domains are separated in space. Chimera states have been observed
first in laices of identical Kuramoto oscillators and have beenmet with surprise
by the community as they present a form of symmetry breaking: the equations of
motions are translation invariant while the chimera state, which oen emerges
in a self-organized way, is not.

Starting from uniformly distributed phases, networks of linear IF oscillators
may split into some partition of asynchronous and synchronous regions. For
𝜌 > 0.6 and small coupling strengths, the partition is frozen aer the transient.
e directed and undirected small-world media that we study have construc-
tion rules which are translation invariant. In addition, for larger mean degrees
constructed networks are fairly homogeneous and almost translation invariant,
more so the synaptic failure small-world networks. e frozen paern is thus
determined by the initial condition and not by inhomogeneities in the network;
the same region in the network which is asynchronous aer some transient may
be synchronous when starting from a different initial condition. Networks pre-
fer a certain size of asynchronous paerns, similar as for the aforedescribed,
turbulent-like paerns that can be observed for larger coupling strengths. If we
start with a small asynchronous region, it will grow until it reaches a certain
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size. en again the same total size of asynchronous regions is reached if we
start from distributed phases. In Figure 4.8 and 4.9, we show transients which
start from a small localized disturbance in an otherwise synchronous network
for a directed small-world network and a synaptic failure small-world network,
respectively. For the chosen parameters, the disturbance grows in size via the
short-ranged connections. Moreover, excitations via long-ranged connections
lead to a small jier in the synchronized background. At times additional dis-
turbances may be created, which also grow in size. Intriguingly, the speed of
growth is not constant but diminishes with the increase of the asynchronous re-
gions. When a critical size is reached, the growth stops which leads to the frozen
partition of the network. e different asynchronous regions do not form per-
fect circles, which we relate to inhomogeneities in the network structure. Note
that the disturbances which are created later stop growing at a size when the
first disturbances still were growing. We can thus conclude that the growing of
an asynchronous region is influenced by the overall distribution of paerns, by
the relative fractions of synchronous and asynchronous regions.

An Oscillator in the network is connected by long-ranged connections to
other oscillators which are distributed randomly over the network. For larger
mean degrees𝑚, the incoming excitations of an oscillator can be considered as a
sampling of the mean firing rate in the network. Neighboring oscillators will be
subject to sequences of excitations by long-ranged connections which are dif-
ferent but which have similar statistical properties. As approximation, we can
assume that every oscillator in the network is subject to a Poisson process which
we can regard as a kind of mean field mediated by excitations via long-ranged
connections. For a given fraction of long-ranged connections 𝜌, this Poisson pro-
cess has a rate of𝑚𝜌𝜈(𝑡) determined by the firing rate 𝜈(𝑡) in the network. Similar
as for our discussion of continuum models in Chapter 3.4, the assumption of the
Poisson process is only exact for the limit of large synaptic failure small-world
networks whereas it presents an approximation for Erdős-Rényi small-world
networks.

e firing rate 𝜈(𝑡) of a network in a chimera state consists of distributed
firings of the oscillators in the asynchronous regions and a collective pulse orig-
inating from the synchronous part (see Figure 4.8 and 4.9 top right). With in-
creasing size of the asynchronous part, the collective pulse will decrease in fa-
vor of the distributed excitations. However, also the frequency of the collective
pulses changes (see Figure4.8 and 4.9 top le), which we relate to excitations
from the asynchronous to the synchronous part of the network. ese excita-
tions are received when oscillators in the synchronous part are not refractory
and may thus decrease the time to the next collective firing. is is in contrast
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Figure 4.8: Snapshots of the spatial distribution of oscillators phases taken from
a spatial network (𝑁 = 500 × 500, 𝜌 = 0.64,𝑚 = 50) of linear IF oscilla-
tors (𝜏 = 0.01, 𝜗 = 0.05, 𝑎 = 0.004, 𝑏 = 0.008). Phase values range from 0
(black) to 1 (white). As initial condition we chose a small circle of radius
10 with uniformly distributed oscillator phases, other oscillators start with
phase 0. Times of snapshots are marked as vertical lines in the top le plot,
which shows the time evolution of the order parameter 𝑟(𝑡) and the inverse
𝜔 ot times between collective firings. e small disturbance with distributed
phases grows in size, other asynchronous regions are generated. Aer asyn-
chronous regions reach a certrain size, their shape is frozen. e top right
plot shows a closer view on the firing rate 𝜈 and the order parameter 𝑟(𝑡) for
𝑡 ∈ [5000, 5002].
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Figure 4.9: Boom: Same as Figure but for synaptic failure small-world networks
with (𝜌 = 0.7,𝑚 = 50,𝑁 = 500 × 500).
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to excitations which originate from and are received by oscillators in the syn-
chronous parts. As those excitations are received by refractory oscillators, they
cannot increase the frequency of the collective firing. In short, the collective
pulse becomes weaker and more frequent which changes the local conditions at
the boundary of asynchronous regions and influences the speed and the possi-
bility of their growth. When the asynchronous regions reach a critical size, the
growth stops and the partition of the network into synchronous and asynchro-
nous regions is frozen. For Erdős-Rényi small-world network additional asyn-
chronous regions were created at inhomogeneities in the network which was
not observed for synaptic failure networks which are much more homogeneous.
Aer the partition is frozen, we observe changes in the spatial paern only on
a much larger time scale. Note that the dynamics of the networks in the frozen
states is still chaotic (see Figure 4.5), although the dynamics is trapped on a lower
dimensional subspace due to the synchronous parts.

Wewill now investigate the behaviorwhen the size of the synchronous part of
the network is much smaller than the preferred size (for the parameters used in
Figure 4.8 and 4.9). Note that for Erdős-Rényi small-world networks, the critical
coupling strength up to which asynchronous states remain stable is nearly inde-
pendent on 𝜌 ∈ [0.6, 1.0]. We thus assume that the dynamical behavior is similar
to what we can study with random networks. For large coupling strengths these
show fast avalanche-like synchronization in which large parts of the network
are entrained to a synchronous part during a few oscillations. For small-world
media, the emerging spatial paerns are different compared to those that are
generated by growing of asynchronous regions. During an avalanche, only those
oscillators will be entrained, which also are shortly before the firing threshold.
Due to the irregular dynamics such oscillators are distributed all over the net-
work. Accordingly, the emerging synchronous part is distributed over the net-
work, contrasting the connected asynchronous regions that are formed by the
growing of asynchronous regions (see Figures 4.10 and 4.11). e large surface
between the synchronous part and the asynchronous regions seems to favor syn-
chronization as oscillators may be entrained to via short-ranged connections in
addition to long-ranged connections; when we compare spatial distributions of
oscillator phases with the same order parameter 𝑟(𝑡) then 𝑟(𝑡)will decrease if the
asynchronous regions form connected regions and 𝑟(𝑡)will increase if asynchro-
nous and synchronous regions are intertwined. For the transient starting from
uniformly distributed phases, this will lead to an overshoot behavior in 𝑟(𝑡) (see
Figure 4.10).

Synchronization is not complete. As discussed, the size of the collective pulse
increases, while its frequency diminishes. At some point, the spatial-temporal
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Figure 4.10: Snapshots of the spatial distribution of oscillators phases taken from
a directed small-world medium (𝑁 = 500 × 500, 𝜌 = 0.64,𝑚 = 50) of linear IF
oscillators (𝜏 = 0.01, 𝜗 = 0.05, 𝑎 = 0.004, 𝑏 = 0.008). Phase values range from 0
(black) to 1 (white). Times of snapshots are marked as vertical, red lines in the
top le plot, which show the time evolution of the order parameter 𝑟(𝑡) and
the inverse𝜔(𝑡) of times between collective firings. Note the change of scaling
at 𝑡 = 25. Starting from uniformly distributed phases, oscillators synchronize
rapidly but not completely. A few asynchronous regions remain which grow
until they reach a critical size. Aerwards smaller regions shrink and vanish
in favor of the larger ones until a partition of the network into synchronous
and asynchronous parts is frozen.
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Figure 4.11: Same as Figure 4.10 but for synaptic failure small-world networks
with 𝜌 = 0.7,𝑚 = 50,𝑁 = 500 × 500.
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4 Dynamics on spatial networks

chaotic dynamics becomes resistant to the collective pulse. Synchronization stops
when only a few asynchronous regions remain. Aerwards, they grow in size as
described before until the stable size of asynchronous regions is reached and the
partition is again frozen. On a much longer timescale, the shape and distribution
of asynchronous regions also has an influence on their stability and evolution.
Even aer long periods of time, smaller asynchronous shrink and vanish in fa-
vor of larger ones. For synaptic failure small-world networks (see Figure 4.11),
the distribution of oscillator phases eventually showed a single connected asyn-
chronous region. is was, however, not observed for directed small-world me-
dia during the observation time, in which the dynamics is to a larger degree
influenced by inhomogeneities. A circular arrangement of the asynchronous re-
gion, minimizes its surface to the synchronous region. It is plausible that such
an arrangement is preferred; Assuming this configuration, every deviation from
this shape will create an insular which receives more excitations from the syn-
chronous part than other regions.is insular is thus more likely to be entrained
than other regions, leading back to the circular shape. However, the chaoticity
of the asynchronous region does allow for deviations from the preferred shape
to some degree (see Figure 4.11).

We claim that the incompleteness of synchronization can be understood as
a resonance phenomenon. A single oscillator has an eigenfrequency of one and
is thus best entrained by repeated excitations which arrive with a frequency of
one. However, oscillators in a asynchronous region with spatial-temporal dy-
namics fire on average with a larger frequency and are not susceptible to en-
trainment by a collective pulse with frequency near 1. To test this hypothesis,
we construct laices with only short-ranged connections in which oscillators
are subject to a periodic forcing. e laices are meant to describe a small re-
gion in a small-world network whose influence on the whole network can be
neglected. e forcing consists of, firstly, Poissonian excitations which repre-
sent excitations originating from other asynchronous regions in the network,
and secondly, a collective pulse consisting of a large number of concurrently ar-
riving excitations distributed randomly over the small network. e laer rep-
resents excitations from other synchronous parts of the large network. In a way
the considered laices represent small-world media which are simplified in such
a way that we have constant conditions. In Figure 4.12, we show the influence
of the time 𝑇 between collective pulses on the emerging order parameter of the
network. As initial condition, we chose a distribution of phases which contains
both synchronous and asynchronous regions.

As expected, the laice synchronizes according to this external forcing only
for frequencies of the collective pulse in a small range of values below 1. For
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Figure 4.12: Average order parameter 𝑟 assessed in 𝑡 ∈ [100, 200] of laices of lin-
ear IF oscillators (𝑎 = 0.0055, 𝑏 = 0.011, 𝜗 = 0.05, 𝜏 = 0.01) subject to external
forcing. Starting from a square laice (𝑁 = 150 × 150) in which each oscil-
lator is connected to its 50 nearest neighbors, a fraction 𝜌 of connections is
removed without subsequent addition of connections. e laices are forced
by collective pulses with period 𝑇 in which 25𝑁 times a randomly chosen
oscillators is excited. Furthermore, every oscillator in the laice is subject
to Poissonian excitations with rate 12.5. Le: influence of 𝑇 and 𝑏 on 𝑟 for
𝜌 = 0.65, right: influence of 𝑇 and 𝜌 on 𝑟 for 𝑏 = 0.005.

𝑇 ≈ 1, the networks are not susceptible to the applied forcing as the effective
frequency of oscillators mismatches the pulse frequency. e range of values of
𝑇 which lead to synchronization shis to smaller frequency values when the
laice structure is strengthened, either by increasing the number of local con-
nections or by increasing the coupling strength. is can be expected as both
increase the effective frequency of oscillators in asynchronous regions. In addi-
tion to the region in which frequencies match, we observe emerging order in the
laices also, when the frequencies satisfy simple rational relationships, which
correspond to synchronization phenomena in which the modelled laices pro-
duces a rhythm which coincides with the external pulse only for some subset of
the collective firings.

For the chimera states, we have described an entrainment to the asynchro-
nous part mediated by short-ranged connections (see Figure 4.8 and Figure 4.9)
and an entrainment to the synchronous part mediated by long-ranged connec-
tions (see Figure 4.10 and Figure 4.11). However, for the forced laices we can
also observe the other two cases of entrainment to the synchronous part via
short-ranged connections and entrainment to the asynchronous part via long-
ranged connections. In Figure 4.13, we show snapshots of the time evolution
of the 4 cases of synchronization/desynchronization mediated by short/long-
ranged connections. Interestingly, we observe different behaviors at both bound-
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4 Dynamics on spatial networks

0
0.2
0.4
0.6
0.8
1

1.2

0 20 40 60 80 100

𝑟(𝑡
)

𝑡

0
0.2
0.4
0.6
0.8
1

1.2

0 100 200 300 400 500 600 700 800

𝑟(𝑡
)

𝑡

Figure 4.13: : exemplary time evolutions of the order parameter taken from the
parameter scan presented in Figure 4.12. Le: parameter values at the le
boundary of the range of period durations 𝑇 which leads to synchronous
states for 𝜌 = 0.65, 𝑏 = 0.004, black: 𝑇 = 0.7, blue: 𝑇 = 0.74, red: 𝑇 = 0.76,
green: 𝑇 = 0.79. Right: 𝑏 = 0.005, 𝑇 = 0.9 which is at the right boundary of the
range of period durations which lead to synchronous states. Black: 𝜌 = 0.65,
blue: 𝜌 = 0.7, red: 𝜌 = 0.72, green: 𝜌 = 0.73. Boom: Snapshots of the spatial
distribution of oscillator phases taken from the black curve in the top le plot
(1st column), green curve top le plot (2nd column), red curve top right plot
(3rd column), green curve top right plot (4th column). Times of snapshots are
indicated as vertical lines in the top plots.
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4.2 Chimera states

aries of the resonance region. When 𝑇 is too small, the synchronous regions be-
come unstable. At this boundarywe observe states inwhich all regions in the lat-
tices, locally, show similar amounts of order. e order parameter can take any
value and synchronization and desynchronization depends on the long-ranged
connections. At the other boundary, we observe no partially synchronous states.
When starting from a state which is split into synchronous and asynchronous
regions, we observe either growing or shrinking of asynchronous regions. Al-
though transients can become quite long, the dynamics eventually seles to syn-
chrony or asynchrony.

Let us return to the small-world media and be a bit more concrete how these
compare to the forced laices. For large networks, we can consider point pro-
cess of incoming excitations as a mean field which is mediated by long-ranged
connections. is mean field consists of concentrated excitations due to the fir-
ing of the synchronous part complemented by distributed excitations due to the
firing of the asynchronous part. e mean field depends on the relative sizes of
synchronous and asynchronous parts (which can be related to the order param-
eter) and only marginally on the spatial paern they form. We will thus write
𝐹𝑟(𝑡) to denote the periodic mean field that is generated for a given order pa-
rameter 𝑟, assuming the sizes of synchronous and asynchronous regions were
stationary. Note that the adaption of the frequency of the collective pulse is re-
lated to the refractory periods that we chose for the oscillators and can probably
not be observed without them. When oscillators are excitable at the moment of
firing, the timing of excitations has a much smaller influence on the frequency
as with increasing size of the synchronous part, the synchronous part receives
more and more self-excitations which increase the frequency just as excitations
from asynchronous regions do.

For the forced laices, we can observe synchronization and desynchroniza-
tion both as volume and as surface phenomenon. For small-world networks in
the parameter regime spanned by 𝜌 and 𝑏, however, only synchronization as a
volume phenomenon and desynchronization as a surface phenomenon seems to
play a role. With an eye on the non-converging behaviors that we shall describe
in the next chapter, we define two sets 𝑆 and𝐷, which will aid us in our explana-
tion in which way non-converging behaviors are generated. Note that we do not
measure or calculate 𝑆 and 𝐷. Let us assume a distribution of oscillator phases
in which synchronous and asynchronous regions are separated. We define

𝐷 ⊂ [0, 1] set of order parameters 𝑟, for which the mean field 𝐹𝑟(𝑡) generated by
excitations via long-ranged connections allows for growing of asynchro-
nous regions,
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Figure 4.14: Time evolution of the order parameter 𝑟(𝑡) for directed small-world
media (𝑁 = 500 × 500, 𝜌 = 0.65,𝑚 = 50) of linear IF oscillators (𝜏 = 0.01, 𝜗 =
0.05). Other oscillator parameters were 𝑎 = 0.005, 𝑏 = 0.01 for the le and
𝑎 = 0.00175, 𝑏 = 0.0035 for the right plot. Initial condition: uniformly dis-
tributed phases for all oscillators within a distance 𝑅 of some chosen oscilla-
tor, 𝜙 = 1 for other oscillators. Different radii 𝑅 were chosen for the circular,
asynchronous region: black: 𝑅 = 10, blue: 𝑅 = 100, red: 𝑅 = 200, grey: 𝑅 = 250,
green: 𝑅 = 300. e red and green bars outline 𝑆 and𝐷, respectively (see text).
As both bars do not overlap, we can observe chimera states for both param-
eter choices of the le and right plot. For the right plot asynchronous states
are also stable.

𝑆 ⊂ [0, 1] set of order parameters 𝑟 for which the mean field 𝐹𝑟(𝑡) generated by
excitations via long-ranged connections allows for entrainment of oscil-
lators in the asynchronous regions to the synchronous part.

Note that once entrainment of asynchronous regions (as defined in 𝑆) sets in, the
distribution of paerns shows no longer a separation of synchronous and asyn-
chronous regions such that 𝑟will increase above values which are no longer part
of 𝑆. Regarding time evolutions of 𝑟(𝑡), we can interpret 𝑆 and 𝐷 graphically: 𝑆
can be regarded as the set of values from which the order may jump to a larger
value, while order parameters in 𝐷 allow for a steady decrease of 𝑟(𝑡). Chimera
states and a preferred size of asynchronous regions in the network, can be re-
lated to the fact that 𝑆 and 𝐷 do not overlap. In Figure 4.14, we show time evo-
lutions of 𝑟(𝑡) starting from initial conditions with different order parameters.
Both routes to the chimera state—starting from asynchronous regions which
are either smaller or larger than the preferred size—rely on different dynamical
mechanism: e growing of asynchronous regions is a surface effect between
the different regions and relies on the short-ranged connections. Synchroniza-
tion of asynchronous regions from within, on the other hand, is mediated by
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4.3 Non-converging behavior

long-ranged connections. By changing the fraction of long-ranged connections,
we can thus expect to control the relative strength of both mechanism. It is con-
ceivable that we can, for a given partition into synchronous and asynchronous
regions, chose parameters such that only one or both mechanism are possible.
Moreover, it seems conceivable that the growing of asynchronous regions does
not stop but continues until the network is again susceptible to the forcing of
the mean field which is created by the long-ranged connection, which means
that the sets 𝑆 and 𝐷 overlap. is is what happens in the small regions with
non-converging behavior we are le to describe.

4.3 Non-converging behavior

It is a common observation in dynamical systems which are designed to model
spatially extended, natural systems that local observables are a lot more irregu-
lar and fluctuating than macroscopic ones. Although the local dynamics may be
stochastic (as for Brownian motion) or chaotic (as for turbulent flows), govern-
ing equations for global observables of large systems oen show convergence
to either fixed points or simple limit cycles. Intriguingly, small-world networks
of linear IF oscillators support different kinds of non-converging collective be-
haviors when the number of short- and long-ranged connections is comparable
(𝜌 ≈ 0.5). e order parameter in these states also shows small amplitude oscil-
lations, which reflect the average phase velocity of oscillators. However, these
oscillations range around absolute values which themselves may exhibit compli-
cated time evolutions. To distinguish non-converging from limit cycles behavior,
we calculate the series of local maxima 𝑟̄(𝑡) of 𝑟(𝑡). In this way, we have eliminated
the small amplitude oscillations. Both asynchronous states and limit cycles will
lead to constant values of 𝑟̄(𝑡), while more complicated time evolutions can be
assessed by a statistical property of 𝑟̄(𝑡) which characterizes fluctuation. In Fig-
ure 4.15, we show the range of assumed values of 𝑟̄(𝑡) aer transients for different
network sizes. While the mean of 𝑟̄(𝑡) provides similar information as the mean
of 𝑟(𝑡) itself (see Figure 4.1 top le), the range of assumed values reveals a region
around 𝜌 = 0.5 with non-converging network activity. For the considered net-
work sizes𝑁 , the fluctuations in 𝑟̄(𝑡) do not decrease with𝑁 , nor does the size of
the region in parameter space decrease. We therefore assume, that the behavior
is not a consequence of finite-size effects but has a different dynamical origin.
In Figure 4.15 boom right, we show a closer view of the parameter region with
non-converging behavior. Compared to the chimera states, the non-converging
collective behaviors are observed at smaller 𝜌 at which asynchronous regions
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Figure 4.15: Range ⟩𝑟̄⟨ of local maxima of 𝑟 observed in 𝑡 ∈ [100, 200] for directed
small-world media (𝑚 = 50) of linear IF oscillators (𝜏 = 0.01, 𝜗 = 0.05) in
dependence on the fraction of long-ranged connections 𝜌 and oscillator pa-
rameters 𝑏 = 2𝑎. Different laice sizes were chosen: 𝑁 = 50 × 50 (top le),
𝑁 = 100 × 100 (top right), 𝑁 = 250 × 250 (boom le and right). Boom right:
Closer view of the region with non-converging behavior.

are growing until synchronization may set in, leading to a constant interplay of
synchronization and desynchronization phenomena. In the following, we will
discuss now the different dynamical behaviors that emerge, traversing the re-
gion with non-converging behavior in direction of increasing 𝑏.

For small 𝑏 directed and undirected small-world media exhibit asynchronous
behavior which is for all practical purposes stable; transients starting from some
distribution of synchronous and asynchronous regions show growing of the lat-
ter until they cover the whole network (see Figure 4.16). Regarding our defini-
tions, 𝑆 is empty, while 𝐷 covers nearly the whole unit interval.

When we increase the coupling strength, the asynchronous states loose sta-
bility and their lifetimes assume values such that we can observe transitions.
e networks show long periods of asynchronous behavior before a phase clus-
ter is formed and the networks spontaneously start to synchronize. e behav-
ior is similar to the chaotic transients leading to complete synchrony that can
be observed for random networks (see Figure 3.14 top le and Figure 3.15, and
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Figure 4.16: Time evolution of the order parameter 𝑟(𝑡) for directed small-world
media (𝑁 = 500 × 500, 𝜌 = 0.5,𝑚 = 50) of linear IF oscillators (𝜏 = 0.01, 𝜗 =
0.05, 𝑎 = 0.00175, 𝑏 = 0.0035). Initial condition: uniformly distributed phases
for all oscillators within a distance 𝑅 of some chosen oscillator, 𝜙 = 1 for
other oscillators. Different radii 𝑅 were chosen for the circular, asynchro-
nous region: black: 𝑅 = 10, blue: 𝑅 = 100, red: 𝑅 = 200, grey: 𝑅 = 250,
green: 𝑅 = 300.e green bar outlines𝐷 (see text). 𝑆 is empty as Synchroniza-
tion along long-ranged connections is not possible for the chosen parameters.
(cmp. Figure 4.14).

Figure 3.23 ). Here, synchronization is not complete but stops when the net-
works exhibit only a few small asynchronous regions embedded in a synchro-
nized background.ese asynchronous regions grow until they cover the whole
network, and the dynamics reenters the quasi-stable asynchronous state. e
emerging network behavior can be described as short, spontaneously generated
events of synchrony which are embedded into extended periods of asynchro-
nous behavior. In Figure 4.17 top, we show a time evolution of the order pa-
rameter for this behavior. For larger laice sizes, the macroscopic observables
of events show very similar progressions. However, the spatial paerns which
are formed by the oscillator phases are different for every event. Note that for
synaptic failure small-world media, asynchronous states are unstable even for
arbitrary small phase responses. erefore, we cannot observe events in those
networks for our choice of parameters. When we further increase the coupling
strength, the frequency of events increases (see Figure 4.17 boom right).e es-
cape from the quasi-stable asynchronous state becomes faster, similar as we ob-
served for random networks where transients lead to complete synchrony. e
shape and dynamics during events, however, is nearly unaffected. e rewiring
probability has an influence on the duration of events (see Figure 4.17 boom
le); when the laice structure is weakened, growing of asynchronous regions
becomes slower and eventually stops. At this point, the event is turned into a
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Figure 4.17: Top: Time evolution of the order parameter 𝑟(𝑡) and of the firing
rate 𝜈(𝑡) for a directed small-world medium (𝜌 = 0.56) of linear IF oscilla-
tors (𝑏 = 0.004). e right plot shows a closer view on the first event of
synchronous behavior. For the chosen parameters 𝐷 (indicated as the green
bar) contains the whole unit interval. Synchronization is not possible and
𝑆 is therefore empty. However, the asynchronous states are unstable syn-
chronize spontaneously with a small probability. Initial condition: uniformly
distributed phases. Boom le: 𝑟(𝑡) obtained from small-world media of lin-
ear IF oscillators (𝑏 = 0.0045) with different fraction of long-ranged con-
nections 𝜌. From top to boom: 𝜌 = 0.55, 𝜌 = 0.57, 𝜌 = 0.59, 𝜌 = 0.64.
Events are aligned such that the maximum value of 𝑟(𝑡) lies at 𝑡 = 0. With
increasing 𝜌 growing of asynchronous regions slows down and eventually
stops, leading to chimera states. Boom right: 𝑟(𝑡) for 𝜌 = 0.56 and differ-
ent phase responses. From top to boom: 𝑏 = 0.0042, 𝑏 = 0.0044, 𝑏 = 0.0046
and 𝑏 = 0.0048. With increasing coupling strength, the times of asynchronous
behavior between events diminishes, while the shape of events is nearly un-
changed. Additional parameters chosen for the networks in this plot were
𝑎 = 0.5𝑏, 𝜏 = 0.01, 𝜗 = 0.05,𝑚 = 50,𝑁 = 250 × 250.
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Figure 4.18: Top: Closer view of the first event of Figure 4.17 top le. Boom:
snapshots of the spatial distribution of oscillator phases. Times of snapshots
are indicated as vertical lines in the upper plot. Times at which snapshots
were taken increase in the first row and decrease in the second row, such that
snapshots which lie under another relate to the same order parameter 𝑟.

transient to a chimera state, similar as described in Figure 4.10. In Figure 4.18,
we show a closer inspection of the dynamics during a single event. Let us com-
pare the distribution of paerns at times on the ascending and descending parts
of events which have the same value of 𝑟(𝑡). Note that a snapshot of the spatial
distribution of phases, as presented in the lower part of Figure 4.18 represents
the complete state space of the system. e time evolution is thus fully deter-
mined by the paern which must differ at the ascending and descending parts
of events. Similar as for the transients to chimera states, the synchronous re-
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gion is distributed over the network at the ascending parts and forms connected
regions at the descending parts.

Note that the generation of the events does not rely on leakyness of oscilla-
tors; in fact, all of the dynamical behaviors that we discuss in this chapter can be
observed for 𝑎 = 0. For the sake of an investigation of statistical properties of the
events, we searched for parameters for which events are generated by smaller
network sizes, such that the characteristic behavior is not masked by finite-size
effects. Observing networks of 𝑁 = 75 × 75 oscillators, we measure statistical
properties of the distribution of events in time (see Figure 4.19).

e measured durations between events is consistent with an exponential
distribution. Moreover, we find no correlation between subsequent durations
between events. e events are thus distributed in time similarly as if generated
by a Poisson process. is means, that the probability for an event to occur is
constant during the time the networks show asynchronous behavior. Moreover,
this can be regarded as an indication that events are difficult to predict. Events
themselves show a duration 𝑇E that is characteristic and varies lile.

Due to the smaller network sizes, we can expect significant differences for
networks which are constructed using the same parameters. In Figure 4.19 mid-
dle le, we show the mean duration between events for 15 networks starting
from 15 different initial conditions. While the initial condition has only a mi-
nor influence on the distribution of durations between events 𝑇A, different con-
structed networks show a large deviation of the average duration ⟨𝑇A⟩ of a few
hundred percent. Which differences in the constructed networks are responsible
for these large differences requires further investigations.

With increasing 𝑏, ⟨𝑇A⟩ decreases until events immediately start as soon as
the whole network is covered with asynchronous regions. At this point the net-
works generate a periodic macroscopic behavior, which is much slower than the
frequency of single oscillators and which is an emerging property of the net-
work, not directly related to their timescales (𝜏 and 𝜗). In Figure 4.21, we show
different examples of emerging rhythms. e dynamics during one oscillation is
very similar as presented in our description of a single event (Figure 4.18). e
frequency of the network rhythm is determined by the size of phase responses
and thus by 𝑎 and 𝑏. For small phase responses, paerns of arbitrary type change
over the course of many oscillations only, and thus both the period duration of
the rhythm or the duration of extreme events is large. We can shi the values of
𝑎, 𝑏 which lead to oscillatory behavior to smaller values, by increasing 𝜏 and 𝜗
(and keeping their relation fixed). is allows us to control the frequency of the
network rhythms. A further increase of 𝑏 leads to non-converging behavior in
which synchronization may set in even before the network is completely asyn-
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Figure 4.19: Top le: frequency distribution 𝜌(𝑇A) of times between synchronous
events 𝑇A in directed small-world networks of non-leaky IF oscillators. Blue:
𝑏 = 0.0075, red: 𝑏 = 0.008, green: 𝑏 = 0.0085. Top right: distribution of event
durations 𝑇E. Event beginnings and ends were determined by threshold cross-
ings at 𝑟 = 0.2. A single simulation was used for each of the given distri-
butions. Middle le: correlation between subsequent inter event durations
(𝑏 = 0.008). Middle right: exemplary section of the time evolution of 𝑟(𝑡) for
𝑏 = 0.008. Boom le: mean duration between events in dependence on 𝑏, bot-
tom right: mean event duration in dependence on 𝑏. Other parameters used
for the simulations in this plot: (𝑁 = 75 × 75,𝑚 = 50, 𝜌 = 0.55, 𝜏 = 0.01, 𝜗 =
0.05, 𝑎 = 0).
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Figure 4.20: Mean duration between events ⟨𝑇A⟩ (le) and mean duration of
events ⟨𝑇E⟩ (right) for different constructed networks of the same parameters
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tributed initial phases as initial conditions. Oscillator parameters:𝜏 = 0.01, 𝜗 =
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Figure 4.21: Time evolution of 𝑟(𝑡) for directed small-world media (𝑁 = 250 ×
250,𝑚 = 50, 𝜌 = 0.54) of linear IF oscillators. Oscillator parameters: top
le: (𝑎, 𝑏, 𝜏, 𝜗) = (0.0, 0.005, 0.02, 0.1), top right: (0.0, 0.012, 0.01, 0.05), boom
le: (0.0, 0.014, 0.005, 0.025), boom right: (0.0, 0.0165, 0.002, 0.01). e red and
green bars outline 𝑆 and 𝐷, respectively (see text).
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Figure 4.22: Time evolution of the order parameter 𝑟(𝑡) for directed small-world
media (𝑁 = 250× 250,𝑚 = 50, 𝜌 = 0.54). Le: oscillator parameter :(𝑎, 𝑏, 𝜏, 𝜗) =
(0.007, 0.014, 0.01, 0.05), right: = (0.00325, 0.0065, 0.02, 0.1) . e red and green
bars outline 𝑆 and 𝐷, respectively (see text).

chronous. Naturally, this decreases the range of fluctuations that we observe in
macroscopic observables and may lead to complicated and irregular behavior
(see Figure 4.22).

If we further increase 𝑏, the range of fluctuations in 𝑟(𝑡) vanishes and we
observe constant macroscopic observables in states in which synchronization
and desynchronization phenomena continuously interplay. In contrast to the
chimera states, however, these states are accompanied by highly volatile spatial
paerns (see Figure 4.23) which grow at boundaries and are synchronized from
within at the same time.

Let us summarize our observations of the different macroscopic behaviors
which are generated when networks split into asynchronous and synchronous
regions. In Figure 4.24 we show a closer view of the region in the (𝜌, 𝑏)-plane in
which networks show non-converging behavior with markers at the parameters
that we used when describing the different dynamical behaviors.

In Figure 4.24we show a schematic of the parameter regimewith non-converging
behavior. For our networks and in dependence on the parameters, the evolution
of these paerns is determined by growing of asynchronous regions and syn-
chronizations of these regions via long-ranged connections. e possibility for
either of these phenomena is influenced by the amount of order in the network,
i.e., the cumulative size of synchronous regions in the network. We described
the possibility of both phenomena by the set of values of 𝑟 for which avalanche-
like synchronization may set in (𝑆), and the set of values for which growing of
asynchronous regions is possible𝐷. Graphically, this means that if 𝑟 is in𝐷, then
the order parameter 𝑟will decrease as asynchronous regions are growing. When
𝑟 is in 𝑆, then 𝑟 will jump to larger values during the next few oscillations due to
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Figure 4.23: Snapshots of the spatial distribution of oscillators phases taken from
a directed small-world medium (𝑁 = 500 × 500, 𝜌 = 0.5,𝑚 = 50) of linear IF
oscillators (𝜏 = 0.01, 𝜗 = 0.05, 𝑎 = 0.008, 𝑏 = 0.016). Phase values range from
0 (black) to 1 (white). Times of snapshots are marked as vertical lines in the
top le plot, which shows the time evolution of the order parameter 𝑟(𝑡). e
networks show volatile spatial paerns in which synchronization and desyn-
chronization phenomena facilitate an equilibrium in the size of asynchronous
paern.

avalanche-like synchronization. e generation of the non-converging behav-
ior, relies on the situation that exactly one of both phenomena is possible for a
given amount of the order in the network, such that both synchronization and
desynchronization phenomena may take turns. For 𝜌 values which are larger
than those of the region with non-converging behavior, 𝑆 and 𝐷 do not overlap
such that growing of asynchronous regions is only possible for larger values of
𝑟 and stops at some value of 𝑟 which is neither in 𝑆 nor in 𝐷. At this point the
spatial paern is frozen into a nearly immobile chimera state (regime II and I of
Figure 4.24). For coupling strengths below the region with non-converging be-
havior, synchronization is not possible even when asynchronous regions cover
the whole network. For 𝑏 values above the circumscribed region both synchro-
nization and desynchronization phenomena are possible at the time, leading to
an equilibrium of asynchronous regions which are growing and are synchro-
nized from within at the same time. Finally, for small values of 𝜌 and large val-
ues of 𝑏, the laice-structure is enforced and the networks eventually exhibit
wave-like paerns at which point the dynamics is no longer governed by these
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Figure 4.24: Le: Partition of the (𝜌, 𝑏) into regimes according to the presence
or absence of (de-)synchronization phenomena (cmp. Figure 4.15). I: chimera
states (cmp. Figure 4.14 le), II: chimera states co-existing with asynchronous
states (cmp. Figure 4.14 right), III: asynchronous states (cmp. Figure 4.16, IV:
volatile asynchronous paerns (cmp. Figure 4.23), V: non-converging collec-
tive behavior (Figure 4.21 and 4.22). Right: sketch of the range of value of the
order parameters 𝑆 for which synchronization may set in (red) and range 𝐷
for which growing of asynchronous regions is possible (green) indicated as
bars schematically.

two distinct routes to synchrony that we described for the chimera states.

Linear IF oscillator without refractory periods and time delays

In Chapter 3.3, we described for randomnetworks two transitions at which asyn-
chronous states loose their stability. We investigated these transitions both for
linear IF oscillators with and without refractory periods and time delays. In this
chapter, we then chose one of the more simple transitions and continued it into
the small-world regime. A detailed of the analysis of the dynamical behaviors
that can arise at the other transitions, in particular those at which we observed
partially synchronous states and irregular behavior, is le for future studies. We
will, however, provide some indications which parts of the dynamical behaviors
can be expected to carry over to linear IF oscillators without refractory periods.
e line which is parallel to the 𝑏-axis and runs through 𝑎 = 0.004 crosses both
boundaries of the asynchronous regime with increasing 𝑏. We can thus con-
tinue both transitions into the small-world regime when we choose 𝑎 = 0.004,
and study the dynamical behavior in dependence on 𝑏 and on the fraction of
long-ranged connections 𝜌 (see Figure 4.25). It suggests itself to compare the
dynamics near the upper boundary with the dynamics of oscillators with re-
fractory periods. From Figure 4.25, we find no indication for wave-dominated or
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Figure 4.25: Statistical properties of the order parameter 𝑟(𝑡) of small-world net-
works of linear IF oscillators in dependence on the fraction of long-ranged
connections 𝜌 and the oscillator parameter 𝑏. Other oscillator parameter:
𝑎 = 0.004, 𝜏 = 0.0, 𝜗 = 0.0. Network parameter: 𝑁 = 10000,𝑚 = 50. Top: aver-
age order parameter ⟨𝑟⟩, boom: range ⟩𝑟̄⟨ of local maxima of 𝑟. Values were
obtained for 𝑡 ∈ [100, 200]. Le: directed small-world media, right: synaptic
failure small-world media.

chimera states above the transition to synchrony at 𝑏 ≈ 0.015. We do, however,
observe a small region with non-converging behavior around 𝜌 ≈ 0.25. In Fig-
ure 4.26 le, we show an exemplary time evolutions of the order parameter in
this region. e behaviors seem comparable to the short events of synchronous
firing that we described in this chapter. However, this point requires further in-
vestigations. Even more complicated behavior can be expected near the lower
boundary. Note that the mechanism that lead to the irregular collective behav-
iors that we described, are different for random networks and for spatial net-
works. In random networks the irregular behaviors seemed related to a build up
in synchrony and avalanches which introduce a gap in the phase distribution of
oscillators. For spatial networks irregular behavior is generated due to the dual
structure of the networks which allows for synchronization/desynchronization
as mediated by either short- or long-ranged connections. It seems obvious that
even more complicated behaviors can be observed when we choose parameters
which enable both sources of irregularity, i.e. by continuing the irregular be-

138



4.4 Summary

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

𝑟(𝑡
)

𝑡

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

𝑟(𝑡
)

𝑡

Figure 4.26: Top: Time evolutions of the order parameter 𝑟(𝑡) for linear IF oscil-
lators without refractory periods and time delays. Le: directed small-world
networkwith 𝑎 = 0.004, 𝑏 = 0.016,𝑚 = 50, 𝜌 = 0.26,𝑁 = 10000 , Right: synaptic
failure small-world network with 𝑎 = 0.002, 𝑏 = 0.003,𝑚 = 50.0, 𝜌 = 0.5,𝑁 =
250000. e right plot also contains Avalanche sizes indicated as blue lines.

havior that we observed near the lower boundary into to small-world regime
(see Figure 4.26 right). Equally, the behaviors that can be observed here require
further investigations.

4.4 Summary

We investigated the dynamics of linear integrate-and-fire-like oscillators cou-
pled onto spatial networks which have both short and long-ranged connections
(small-world networks). We focused on linear IF oscillators endowed with time
delay and refractory periods.

Small-world networks represent a mixture of two well-studied organization
structures, namely random networks and regular laices. Accordingly, we can
expect to observe their typical dynamical behaviors also for small-world net-
works. Moreover, we reported on several dynamical behaviors that uniquely
rely on their dual structure and thus underline their importance for modeling,
especially in contexts of social networks or neural networks. In the small-world
regime, the formation of spatial paerns co-occurs with collective organization
mediated by long-ranged connections. While laices allow for different kinds of
wave phenomena, random networks allow for synchronous and asynchronous
collectivemotion. In small-world networkswe can observe combinations of both
behaviors co-occurring (e.g. cyclic waves with collective motion or turbulent-
like waves without collective motion, etc.).

Furthermore, we observed dynamical behaviors, which rely on the co-occurrence
of synchronous and asynchronous motion. In random networks, we can choose
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parameters in such a way that both are stable. However, we did not observe both
at the same time, because they are too tightly knit together. In contrast, net-
works with a spatial dimension as the small-world networks allow for the nec-
essary spatial separation, that enables a self-organized split of the network into
synchronous regions (sharing a common phase) and asynchronous region with
distributed phases and unstructured spatial paerns. ese split states are com-
monly denoted as chimera states [124], and they introduce two distinct routes
to synchrony/asynchrony. Depending on parameters and dynamical properties,
the asynchronous behavior may turn unstable and be entrained to the syn-
chronous part of the network. Similarly, the synchronous behavior may turn
unstable and be entrained to the asynchronous part of the network. In these
cases entrainment is mediated by long-ranged connections. Moreover, we can
observe entrainment at the boundaries between synchronous and asynchronous
parts as a surface phenomenon; asynchronous regions may grow or shrink in
which case entrainment is mediated by short-ranged connections. Both routes
are influenced by network parameters and by the relative sizes of synchronous
or asynchronous regions in the network. For example, we found parameters in
which growing of asynchronous regions is only possible while their total size in
the network is small, and asynchronous regions are only unstable when their to-
tal size is large. Depending on the possibility of (de-)synchronization over both
routes, we can observe various kinds of non-converging macroscopic behaviors.

e dynamics of a neuronal network is the most obvious context for our dy-
namical system. In the following paragraphs we will interpret our findings with
regard to such networks. One of these non-converging behaviors are events of
partially synchronous firing which are embedded in extended periods of asyn-
chronous behavior of variable length. From a quantitative point of view, this
behavior is comparable to the dynamics seen in epilepsy patients: e standard
accepted notion is that epileptic seizures represent short periods of overly syn-
chronous firing, while the normal functioning of the brain is usually connoted
with asynchronous firing. However, the mechanisms which lead to transitions
into and out of seizures are still unclear for many types of epilepsy [125,126]. Re-
cent computational models of epileptic brain networks usually consider a noise-
induced aractor switching which leads to exponentially distributed seizure and
inter-seizure times [127–130]. However, especially so-called focal epilepsies are
oen related to seizure-times which follow a modal distribution, which possibly
points to a mechanismwhich is responsible for seizure termination.emerit of
our work may be to display a mechanism for desynchronization which persists
even without inhibitory interactions and noise, and which could be comparable
to the dynamics seen during the initiation and termination of epileptic seizures.
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A different non-converging behavior that can be observed in the small-world
regime is an emergent rhythmwhich is much slower than the firing of single os-
cillators. By changing network or oscillator parameters, we can control the fre-
quency of this rhythm nearly arbitrarily. e mechanism of this oscillation may
improve, e.g., our understanding of the generation of the respiratory rhythm.
e laer is generated in a small brain region, the so-called Pre-Bötzinger Com-
plex, and persists in small slices even when inhibition is blocked pharmacologi-
cally [131]. e mechanisms which lead to this generation are unknown and are
believed to be a network phenomenon.
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In this thesis, we have investigated the dynamics and in particular synchroniza-
tion phenomena seen in complex networks of pulse-coupled oscillators. Com-
plex networks appear ubiquitously in nature. An important question is in which
way their dynamical behavior and in particular macroscopic properties are in-
fluenced and determined by the structure of the network and by the dynamics
of constituents.

A fundamental question is whether the dynamical systems allows for stable
macroscopic behaviors such as stable equilibria or phase-locked states, or if fluc-
tuations and/or chaotic motion extent to themacroscopic scale. Fluctuations and
in particular extreme events (like epileptic seizures, stock market crashs or tor-
nadoes) in macroscopic observables are oen connected to disastrous financial
and personal consequences. It is therefore important to understand the mecha-
nism that lead to their emergence, and possibly, to predict or even control their
occurrence. For our investigations, we focused on random networks and on spa-
tial networks which reflect the strong prevalence towards short-ranged connec-
tions in many spatially extended networks. As random networks, we investi-
gated the emerging dynamics of Erdős-Rényi and of synaptic failure networks.
ese networks assume that for each pair of nodes, a connection (for Erdős-
Rényi networks ) or an interaction (for synaptic failure networks) is equally
likely, and they are obvious first candidates for modeling purposes when the
knowledge about the underlying connection structure is limited. In addition,
to synchronous and asynchronous states, we observed different kinds of more
complicated behaviors which show irregular macroscopic behaviors even for
large networks and aer long periods of time. To improve our understanding of
these networks, especially for larger arrangements, we investigated several con-
tinuum models, which provide a macroscopic point of view onto the dynamics.
is investigation allowed us to provide statistical properties of oscillators (like
their phase distribution) analytically and to unravel the mechanism that leads
to the loss of stability of the asynchronous behavior.

For synaptic failure networks of integrate-and-fire-like oscillators, we found
two different mechanisms that lead to synchronous motion in large networks.
e equilibrium phase distribution that we associated with asynchronous be-
havior may disappear for certain choices of oscillator and network parameters,
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or it may turn unstable leading first to oscillations and finally to irregular macro-
scopic behaviors which persist for large networks and aer long periods of time.
A specific dynamical feature of our oscillators are avalanches in which a macro-
scopic amount of oscillators fires in a short period of time. We related these
avalanches to the generation of the irregular macroscopic behaviors in which
synchrony builds up and is recurrently aborted by avalanches. Synaptic failure
networks represent a significant simplification to Erdős-Rényi networks. Nev-
ertheless, the generated dynamical behaviors that emerges from both types of
networks is oen surprisingly similar. e continuum model tailored to Erdős-
Rényi networks that we proposed may further our understanding of the dif-
ference between both models. Although it cannot be expected to represent the
limit dynamics of Erdős-Rényi networks completely, it yields a refined approx-
imation. A detailed analysis of this equation is le for future studies. We are
confident that the introduced methodology and the proposed continuum mod-
els could improve the understanding of other system that can be described by
phase response curves.

In the second part of this thesis, we investigated the dynamics of small-world
networks.ese are networks with a laice structure which is complemented by
some amount of long-ranged connections. ese networks represent a bridging
generalization of regular laices and random networks and allow for the inter-
play between synchronization phenomena and spatial paerns. We described
different kinds of wave paerns which may co-occur with collective firing, or
may dominate the dynamics in such a way that macroscopic observables show
constant behavior. Additionally, we observed a variety of states in which asyn-
chronous and synchronous behavior occurs at the same time in so-called chimera
states [124]. As we found for random networks, synchronous and asynchro-
nous states can be stable for the same networks, depending on initial condi-
tions. Given a spatial dimension, networks split into synchronous and asyn-
chronous regions. Moreover, such split states are generated generically and in a
self-organized way. ey add a new layer of complexity to (de-)synchronization
phenomena, as entrainment to either the synchronous or asynchrous part of the
network can occur either at the boundary or inside a region. e duality of the
networks containing both short- and long-ranged connections is mirrored by
the two distinct roads to synchrony/asynchrony, and allows for novel dynami-
cal behaviors. In particular, we described extreme events of synchronous firing
and a network rhythm which may emerge from these networks. We related the
behaviors, to open problems of neural dynamics, namely epileptic seizures and
the generation of the respiratory rhythm. e dynamical behaviors intimately
rely on the dual structure of the considered networks containing both short- and
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long-ranged connections. It remains to be investigated, however, if the described
dynamics can be observed for other dynamical systems possibly described by
ODEs. Or if not, to which extent the behaviors rely on singularities that are
present in the studied integrate-and-fire systems.

In contrast to the our work on random networks, the definition of a con-
tinuum model, which captures the described dynamics on spatial networks is
pending. It suggests itself to describe the continuum limit of a spatial network
of phase oscillators by a complex-valued function. However, for asynchronous
regions such a function will not be continuous and thus probably not very prac-
tical. e majority of the work that has been devoted to neural fields [132], re-
duces the state of neurons at some point in time, to a single value, the firing rate.
While suchmodels are able to describe excitation waves, it is probably necessary
to extend them if they should be able to describe the evolution of the asynchro-
nous regions that we reported on. Asynchronous and synchronous regions do
not differ in their activity but in the local phase coherence, the amount of syn-
chrony assessed near some position in the network. A continuum description of
the investigated phenomena could possibly include a field of local synchrony.

ere are several factorswhich influence synchronization phenomena in com-
plex networks which we did not address here. e degree distribution of net-
works is known to have a large influence on synchronization phenomena, sim-
ilar as assortativity, i.e., the correlation between the degrees of of connected
nodes. Moreover, some variance between different units in a natural, complex
network can oen be assumed and the influence of this should be studied, es-
pecially for the dynamical behaviors that intuitively rely on homogeneity of
parameters: e dynamics of avalanches is possibly changed when we assume
distributed time delays for oscillators. Similarly, chimera states could be influ-
enced by a distribution of oscillator frequencies. Other extensions of the studied
model could include the study of negative phase responses either globally or
in more complicated scenarios like negative phase responses for long-ranged
connections and positive phase responses for short-ranged connections.

Most of the behaviors that we described probably do not rely on some arac-
tor in phase space, but probably have to be considered as very long transient to
synchrony. Similar as for turbulent flows, the high dimensionality of complex
networks yields that transients oen must be considered as the typical generic
behavior of the systems. is underlines the importance of the investigation of
large systems as some phenomena – like those with irregular macroscopic be-
haviors that we reported on in both random and small-world networks – might
not be observable for small systems and thus are difficult to relate to the dynam-
ics of the constituents.
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