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Introduction

This thesis is dedicated to two types of “rigidity properties” occurring in certain

PDEs. These rigidity notions are rather complementary – the first originating from

the study of controllability, the second appearing in the context of material sciences.

While the first notion of rigidity is typical of elliptic (and parabolic) equations, the

second one is mainly associated with hyperbolic equations and systems.

Before describing precisely the setting of our problems, we recall two prototypes of

the rigidity properties we have in mind:

• The first rigidity property we deal with is associated with the unique continu-

ation principle. Here the model operator is given by the Laplacian. Due to its

analyticity, a solution which vanishes of infinite order at a point must already

vanish globally.

Thus, a naturally arising question is whether this extends to more general

operators and, in the case of a positive answer, to which ones. In this thesis

we deal with two problems of such a flavour: The first is concerned with a

parabolic “unique continuation problem at infinity”, while the second treats

the unique continuation problem for the fractional Laplacian. In the second

problem we put a particular emphasis on requiring as little regularity as pos-

sible.

• The second rigidity problem we investigate concerns a system of PDEs and

is related to the notion of characteristics (in first order equations). Although

we are confronted with a system, this type of “rigidity property” is already

present in scalar (hyperbolic) equations: A toy problem would, for example, be

the transport equation for which the characteristics of the system are straight

lines. A more elaborate (toy) model is, for instance, given by the following

two-dimensional gradient inclusion problem:

∇u ∈
{(

1 0

0 −1

)

,

(

−1 0

0 1

)}

+ Skew(2).

Using the discreteness of the symmetrized gradient and the compatibility con-

ditions, one finds that solutions, u, either satisfy e(∇u) := 1
2 (∇u + (∇u)t) =

f(x1−x2) or e(∇u) = g(x1+x2). Thus in both examples, the scalar transport

iv
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equation and the differential inclusion, the solutions are necessarily of the form

of waves propagating along certain characteristics. In this sense the solutions

are very rigid. We remark that although solving a PDE with the method of

characteristics is not uncommon when dealing with scalar equations, it often

poses problems in the context of systems as the resulting equations are not

closed.

In this thesis we deal with the classification of all possible solutions of a certain

(vector-valued) differential inclusion which arises in the study of phase transi-

tions in certain shape-memory materials such as CuAlNi. For this transition

we prove two complementary results: On the one hand, one cannot hope for

rigidity for a too weak notion of a solution. On the other hand, adding regular-

ity constraints, the problem becomes rigid and only very specific, essentially

two-dimensional patterns occur.

Keeping this brief description of the different notions of rigidity in mind, we present

the problems which are discussed in this thesis in greater detail:

The backward uniqueness property in conical domains. This problem deals

with the controllability of the heat equation (and perturbations thereof):

∂tu−∆u =W1u+W2 · ∇u in Ωθ × (0, T ),

u = u0 in Ωθ × {0},

Here Ωθ is a cone with opening angle θ.

We aim at understanding the interplay of the strong diffusivity and the unbounded

underlying geometry. As is known since, for example, the work of Zuazua and Micu

[MZ01a], [MZ01b], there is a major discrepancy between bounded and unbounded

domains. While the heat equation is null-controllable, i.e. by choosing adapted

boundary data it is possible to drive any L2 (initial) datum to zero in an arbitrarily

short time interval, in bounded domains, this is no longer the case in unbounded do-

mains. On top of that depending on the “degree of unboundedness of the domain”,

the heat equation is not only not null-controllable but even displays the backward

uniqueness property, i.e. in conical domains with sufficiently large opening angles

the only solution which can be driven to zero is the trivial solution.

In the first part of the thesis we provide a quantitative description of the large angle

regime in two spatial dimensions. In this context, it is known that the backward

uniqueness property can only hold in angles larger than 90◦ which is a consequence

of the Phragmen-Lindelöf principle [ESŠ03], [SŠ02]. Furthermore, it is conjectured

that the backward uniqueness property actually holds in all angles larger than 90◦,

reflecting the fact that the diffusivity is not strong enough to drive any nontrivial

L2 datum to zero. However, the furthest previous result in this direction only shows

that the backward uniqueness property holds in all angles down to approximately

109◦ [LŠ10].
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Motivated by understanding a related elliptic “unique continuation problem at infin-

ity”, we aim at improving this bound in two spatial dimensions via a more detailed

phase space analysis. As in the paper by Šverák and Li [LŠ10], the core of our

approach relies on Carleman estimates, i.e. exponentially weighted estimates of the

type

∥

∥eτφu
∥

∥

L2 .
∥

∥eτφ(∂t +∆)u
∥

∥

L2 , τ ≥ τ0.

Here, the main novelty in dealing with the backward uniqueness problem is the

identification of a necessary pseudoconvexity condition for a large class of two-

dimensional weight functions. Working with a product ansatz for the Carleman

weight, we obtain an ordinary differential inequality on the characteristic set. Using

solutions of this, we can prove the backward uniqueness property in conical domains

with opening angles down to approximately 95◦ in two dimensions.

The unique continuation property for fractional Schrödinger operators.

The unique continuation problem for Schrödinger operators is by now well-under-

stood, c.f. [JK85], [KT01a]. Motivated by dealing, for example, with the absence

of positive eigenvalues, c.f. [KT06], [IJ03], the main task was to understand up to

which “degree of roughness” of the potentials and metrics, the unique continuation

principle persists. Here, the threshold is provided by the respective scaling-critical

Lp and Lorentz spaces.

Thinking about unique continuation, an interesting question concerns the inter-

play of the local property of infinite order vanishing and non-local operators: How

strongly does the local property interact with non-local operators such as the frac-

tional Laplacian? Does the fractional Laplacian mirror the behaviour of its “local

relative”, the Laplacian? More precisely, does

(−∆)su = V u in R
n,

with u ∈ Hs
loc(R

n), s ∈ (0, 1), lim
r→0

r−m
∫

Br(0)

u2dx = 0 for all m ∈ N and V being in

an appropriate class of potentials, already imply u ≡ 0?

In the chapter dedicated to the unique continuation properties of the fractional

Laplacian we deal with these questions via Carleman inequalities and thus comple-

ment and extend results from the literature.

Here, the furthest previous results concerning unique continuation properties of the

fractional Laplacian are in the article [FF13] by Fall and Felli. The authors approach

the unique continuation property for the fractional Laplacian via frequency function

methods. They prove that for C1(Rn \ {0}) perturbations of certain scaling-critical

Hardy potentials the strong unique continuation property holds. We extend and

complement these results in several aspects, of which two of the most important

are:

• “Rough” potentials. It is possible to weaken various assumptions: If s ∈ [ 12 , 1)
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we, for example, prove the strong unique continuation property for potentials

V (y) = |y|−2sf( y|y|) + V2(y), |V2(y)| . |y|−2s+ǫ which, in particular, include

scaling-critical potentials. However, these need neither be of Hardy type nor

small. Moreover, in one-dimensional settings and if s ≥ 1
2 we show an analogue

of a result of Pan [Pan92] by proving the strong unique continuation property

for |V (y)| ≤ c|y|−2s.

• Flexibility. Our Carleman methods carry over to more general settings of

unique continuation at the boundary of a domain. In particular, it is possible

to treat perturbations of the metrics under consideration. Hence, we can deal

with “variable coefficient” fractional Schrödinger operators.

In dealing with the unique continuation principle, we argue via a combination of

Carleman estimates and a blow-up analysis. In particular, the Carleman estimates

imply doubling inequalities from which we obtain compactness. These allow to

reduce the strong unique continuation problem to the weak unique continuation

problem.

As already pointed out, the second part of the thesis is dedicated to capturing a

different rigidity property. Motivated by pictures of experimental configurations

of the cubic-to-orthorhombic phase transition, we investigate this phase transition

which occurs in certain shape-memory alloys. Here we proceed in two steps:

Non-rigidity properties of the cubic-to-orthorhombic phase transition. As

a first step we prove that sufficiently weak solutions (u ∈ W 1,p(Ω), p ∈ (1,∞)) of

the partial differential inclusion associated with the so-called cubic-to-orthorhombic

phase transition, i.e.

e(∇u) = ∇u+ (∇u)t
2

∈ {e(1), ..., e(6)}, (0.0.1)

e(1) = ǫ







1 δ 0

δ 1 0

0 0 −2






, e(2) = ǫ







1 −δ 0

−δ 1 0

0 0 −2






, e(3) = ǫ







1 0 δ

0 −2 0

δ 0 1






,

e(4) = ǫ







1 0 −δ
0 −2 0

−δ 0 1






, e(5) = ǫ







−2 0 0

0 1 δ

0 δ 1






, e(6) = ǫ







−2 0 0

0 1 −δ
0 −δ 1






,

are not rigid. We illustrate that, on the contrary, a very large set of boundary values

can be accommodated without causing stresses (e.g. for affine boundary data Mx

we only require e(M) ∈ intconv(e(1), ..., e(6))).

Using the framework of convex integration as developed by Müller and Šverák

[MŠ99], we construct a sequence of functions which comes closer and closer to being

a solution of the differential inclusion by successively adding increasingly high oscil-

lations. Working in the framework of the linear theory of elasticity, the differential
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inclusion involves an unbounded component. Thus, in order to obtain sufficient

compactness properties for the sequence of “almost solutions” to yield a solution in

the limit an additional tool is needed. This is provided by Korn’s inequality.

Non-rigidity phenomena in models describing shape-memory alloys as such are not

new: In the framework of nonlinear elasticity already the simplest toy model, the

two-well problem, displays non-rigidity for weak solutions. A similar behaviour is

known for the cubic-to-tetragonal phase transition: Again, in the nonlinear theory,

weak solutions are not rigid. However, for all these examples the linear theory of

elasticity differs dramatically: For the linearized versions of the discussed problems,

there are very strong rigidity properties. In this sense, the cubic-to-orthorhombic

phase transition can be considered as one of the simplest (real-life) transitions in

which this lack of rigidity can already occur in the framework of the linear theory

of elasticity. This is due to the presence of “sufficiently many” different phases.

Rigidity properties of the cubic-to-orthorhombic phase transition. Intro-

ducing regularity constraints (i.e. surface energy), we prove a rigidity result for

solutions of the cubic-to-orthorhombic phase transition. If the solutions are piece-

wise affine, i.e. the support of the different phases consists of an arbitrary but finite

number of polygonal domains, then the solutions are locally very rigid for generic

parameters of δ: Formulated in the whole space setting, we prove the following

proposition (c.f. Chapter 6 for the notation):

Proposition 1. Let δ /∈ {± 3
2 ,±3}. Then, any configuration such that the support

of each phase consists a union of only finitely many different polygons (also infinitely

extended polygons are allowed) and which satisfies (0.0.1) in Rn is either a twin or

a crossing-twin pattern.

This phenomenon of complementing a non-rigidity result has been observed both in

the nonlinear two-well problem and the nonlinear cubic-to-tetragonal phase transi-

tion. However, both of these differential inclusions exhibit much clearer structures

than our problem: Whereas the first can be reduced to its linearized version (for

which one has rigidity) if the solutions are in BV, the second one is “sufficiently

small” to handle its rank-one connections combinatorially. As our model contains

21 different symmetrized rank-one connections and as it displays non-rigidity al-

ready in the linearized setting, none of these strategies can be applied.

Instead, we argue via a classification of zero-homogeneous configurations which are

obtained by a mixture of combinatorial and analytical arguments. In a second step

these local constructions are used in order to deduce a characterization of global

solutions. Again, this involves strong combinatorial elements.



Part I

Rigidity Properties in

Inverse Problems and Unique

Continuation
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Chapter 1

Introduction

In this first part of the thesis we are concerned with two “rigidity properties” origi-

nating from the field of “inverse problems”. In general, these are problems in which

certain data are given or measured from which one tries to reconstruct certain un-

known parameters of the model.1 A typical problem from applications would, for

example, be to measure currents at the boundary of a material and deduce prop-

erties (inclusions, fractions, conductivities etc.) of the given sample. This allows

to use non-invasive strategies in the investigation of materials but also in medicine

(e.g. tomography).

Mathematically, problems from this field are “inverses” to the “usual” questions in

the sense that one “reverses” the dependences with respect to the “usual” treat-

ment of an equation. Instead of starting from initial and boundary data, u0, u1,

from some space X , and asking how this influences the equation (e.g. in terms of

well-posedness), one begins with a (well-posed) equation from which one would like

to recover certain information (e.g. boundary data, initial data, conductivities), c.f.

[Isa06].

In the sequel we will be confronted with such a problem in treating backward unique-

ness properties of the heat equation. Here, we pose the question whether for given

initial data it is possible to find boundary data such that in certain conical domains

with sufficiently large opening angles the solution of the heat equation with these

data is driven to zero at the final time (this is the so-called null-controllability prob-

lem). In this context a typical feature of inverse problems is displayed: Whereas

the original problem, i.e. in our case the heat equation, is a well-posed and well-

understood problem, the inverse question turns out to be highly ill-posed. This

1The term “inverse problem” is not defined very precisely; in the sequel we refer to it in the
sense of Isakov, [Isa06]: “An inverse problem assumes a direct problem that is a well-posed problem
of mathematical physics. In other words, if we know completely a “physical device”, we have a
classical mathematical description of this device including uniqueness, stability, and existence of
a solution of the corresponding mathematical problem. But if one of the (functional) parameters
describing this device is to be found from (additional boundary/experimental) data, then we arrive
at an inverse problem.”

2



3The Cauhy Problem for the Heat Equation
The Boundary Controllability Problem for the Heat Equationinitial & boundary data well-posedness in appropr. spaes ?

initial & �nal data existene of appropr. boundary data?
Figure 1.1: A schematic comparison of the Cauchy and the boundary controllability
problem for the heat equation. While the first is well-posed in the standard spaces,
the inverse problem is highly ill-posed.

ill-posedness is reflected in the fact that, in general, there are no solutions (in L2)

of the backward heat equation with zero final data and given initial data in L2 in

conical domains with sufficiently large opening angles.

This can be interpreted as a rigidity result for solutions of the heat equation in “suf-

ficiently unbounded” domains: Via L2 initial and boundary data it is not possible

to introduce sufficiently high oscillations into the evolution of the heat equation so

as to create strong cancellations.

The second problem treated in this first part of the thesis can also be regarded as a

rigidity property. In studying the fractional Laplacian, it is natural to ask whether

(and to which extent) it shares the strong rigidity properties of its local “relative”

– the Laplacian. Thus, we discuss the (strong) unique continuation problem for the

fractional Laplacian. This corresponds to the following uniqueness question: If a

solution to an appropriate fractional Schrödinger equation vanishes of infinite order

at a given point, does this already imply that it vanishes globally? As this property

holds true for (local) Schrödinger equations with appropriately chosen potentials,

it seems plausible that this property is shared by its non-local analogue. However,

a key challenge consists of relating the local information of infinite order vanish-

ing and the non-locality of the operator. As in the first problem, mathematically,

the main task is the derivation of appropriate lower bounds – i.e. ruling out (too

strong) oscillations.

Proving these lower bounds requires strong techniques which can, for instance, deal

with possible oscillations and which utilize the given local information (boundary

data, infinite order of vanishing) in a highly efficient manner. For that purpose we

rely on a relatively abstract approach first introduced by Carleman [Car39] in the

context of uniqueness issues of certain Cauchy problems. As this constitutes the

central mathematical tool in our analysis of both problems, we briefly point out its

key ideas.
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struture, equationloal in�nite order of vanishing global vanishing
(��)su = V u

l��
r!0

��m
R

B��0�

u2dy = 	 8
 � N

u � 	

Figure 1.2: The (strong) unique continuation problem: In the upper box a general
unique continuation principle is illustrated schematically. In the lower box this is
applied to the unique continuation problem for the fractional Laplacian. We aim at
finding appropriate conditions on V which ensure the strong unique continuation
property.

The Backward Uniqueness Property, Unique Continuation and

Carleman Estimates

Both properties which we seek to understand in this part of the thesis can be

phrased in a broader common framework. In both cases we aim at characterizing

solutions of certain equations by making use of their structure (which is determined

by the equation which they satisfy). Additionally, very specific information is given

at certain parts of the domain: In the unique continuation setting this information

is evidently the vanishing of infinite order at a given point. In the investigation

of the backward uniqueness property the information appears to be of a different

type. At first sight it seems to be restricted to the knowledge of the initial and

final state. However, it encodes more. In a sense, it is possible to interpret the

backward uniqueness property as a unique continuation property at infinity: The

null-controllability condition implies Gaussian decay at infinity. From this point of

view, both problems are closely related, which also explains the similarity in the

tools which we use to approach them.

The techniques, which we employ in dealing with the problems, originate from the

field of unique continuation. Thus, these are designed to replace more delicate tools

such as power series expansions or Holmgren’s theorem. One of the key methods

are so-called Carleman estimates. These are inequalities using weights of extremely

high concentration in certain parts of the underlying domain. As a consequence,

they are very popular and successful tools in proving unique continuation results,
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for which one can create concentration close to the points at which information on

the function under consideration is given (e.g. close to a zero of infinite order),

c.f. for example the articles [JK85], [KRS87], [KT01b], [CK10], [KT09], [Ken89],

[Wol93], [KT01a], [Tat96], [Tat99b]. In their simplest form, Carleman estimates are

inequalities of the following type

∥

∥

∥eφ(x,τ)u
∥

∥

∥

2

L2(Ω)
.
∥

∥

∥eφ(x,τ)P (x,D)u
∥

∥

∥

2

L2(Ω)
for all τ ≥ τ0, (1.0.1)

for all u ∈ C∞
0 (Ω). Here, in its easiest form, φ(x, τ) can be thought of as τψ(x),

and P (x,D) represents an operator which is controlled in the desired applications.

Thus, up to an error term, the right hand side of the inequality is very small, while

the left hand side explodes as τ → ∞.

At first sight such an inequality might appear to be a standard estimate, say, for

an elliptic operator P (x,D). As, however, the inequality is supposed to hold for

arbitrarily large parameters of τ ≥ τ0, it turns out to be more challenging. In fact,

the parameter τ plays the same role as a derivative (microlocally this can be made

rigorous).

Let us describe the general strategy of proving an (L2-) Carleman estimate, in order

to get a feeling for these inequalities. It consists of three key steps:

1. Conjugation: As it is difficult to prove an exponentially weighted estimate,

it is more convenient to switch to the function w = eφ(x,τ)u. Thus, the right

hand side of the inequality (1.0.1) turns into

∥

∥

∥(eφ(x,τ)P (x,D)e−φ(x,τ))w
∥

∥

∥

L2(Ω)
.

Hence, it becomes necessary to understand the conjugated operator

Lφ := eφ(x,τ)P (x,D)e−φ(x,τ).

2. Pseudoconvexity Analysis: Even for elliptic operators, after conjugation,

the operator Lφ = eφ(x,τ)P (x,D)e−φ(x,τ) loses its ellipticity properties in

general. Hence, it is not immediately clear how to obtain the desired lower

bounds. In order to understand the origin of these lower bounds, we separate

the symmetric and antisymmetric parts of the operator. Since the charac-

teristic set of these is non-empty in general, a phase-space analysis demon-

strates that on this set positivity – which is necessary for the existence of lower

bounds – can only be achieved via the commutator (or in microlocal language:

the Poisson bracket). Hence, it is necessary to show that this contribution is

positive/ non-negative (for limiting Carleman weights) on the respective char-

acteristic sets. This leads to a so-called pseudoconvexity condition that has to

be satisfied on the intersection of the characteristic sets of the symmetric and
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u = 0

P(x;D)u = 0

� = f'(x) = 0g

Figure 1.3: A (weak) unique continuation problem. For a general differential oper-
ator P (x,D) one tries to transport information across a surface Σ. If the surface is
strongly pseudoconvex with respect to the operator, it is possible to deduce u ≡ 0
globally. There is an intimate relation between pseudoconvex surfaces and the no-
tion of pseudoconvexity of the corresponding weight functions.

antisymmetric parts of the operator.

3. Choice of a Pseudoconvex Weight Function: The analysis of the com-

mutator/ Poisson bracket implies conditions on the weight function φ. Hence,

the final step consists of finding an appropriate weight satisfying these condi-

tions.

In the sequel, we carry out such an analysis for both elliptic and parabolic, local

and non-local operators.

Results of the Thesis

In the following two chapters we present our main results on the previously presented

questions. The main novelties here are an

• Improved understanding of the “large angle regime” for the two-

dimensional backward uniqueness problem for the heat equation.

In two dimensions we give a microlocal analysis of the backward uniqueness

problem based on Carleman estimates. Here, we extend the minimal angle

up to which the backward uniqueness property holds significantly (reaching

opening angles of approximately 95◦). We derive a simplified pseudoconvexity

condition for one-dimensional Carleman weights which we evaluate numeri-

cally. This suggests that as far as one-dimensional Carleman weights are

concerned, the angles which we reach are (nearly) optimal. Under additional

vanishing assumptions we prove the backward uniqueness property for conical

domains with opening angles larger than the critical 90◦.

• Improved understanding of unique continuation properties for frac-

tional Schrödinger operators. Via a Carleman based approach we prove

the strong unique continuation property for fractional Schrödinger equations,

thus complementing and improving various previous results from the litera-

ture. We rely on an argument in the spirit of Koch and Tataru [KT01a]. In
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this way we can treat arbitrarily large scaling-critical potentials (with lower

order perturbations) under low regularity assumptions. Furthermore, in the

one-dimensional case we give a full characterization of the spectrum of a cer-

tain (degenerate) elliptic operator which allows to treat arbitrary potentials

which are bounded by scaling-critical Hardy-potentials. Thus, we prove a

result in the spirit of the work of Pan and Wolff [PW98].

Let us finally comment on the organization of the remainder of this first part of

the thesis: In Chapter 2 we will deal with the backward uniqueness property of

the heat equation while Chapter 3 is dedicated to the understanding of the unique

continuation property of the non-local fractional Laplacian.



Chapter 2

Backward Uniqueness

Properties of the Heat

Equation in Unbounded

Domains

2.1 Introduction

In the sequel we will be concerned with controllability properties of the heat equa-

tion. More precisely, we will focus on the so-called “backward uniqueness property”

for the heat equation. This deals with the question of whether the prescription of

final data determines a solution of the heat equation uniquely. Does

(∂t −∆)u = V u+W · ∇u in Ω× (0, 1),

u(t = 1, x) = 0 in Ω,
(2.1.1)

already imply u ≡ 0 in Ω × (0, 1) for appropriate choices of the potentials V and

W? The validity of the backward uniqueness property would, in particular, entail

that there are no nontrivial initial and boundary data such that u satisfies (2.1.1).

Due to the linearity of the heat equation such a phenomenon can be interpreted

“causally”: Only a single choice of data can lead to a specific final state of a system

if it is evolved by the heat equation. In other words, the “final state determines

its past”. This would, for example, effect that if the temperature distributions of

two objects agree at a given time, the history of the temperature distributions must

have been identical at all previous times. From physical experience, e.g. heating a

plate, one would not expect such a behaviour (for objects of finite size).

The “opposite” extreme situation is given by (boundary) “controllability”: Here,

one poses the question whether it is possible to enforce a specific desired final tem-

perature distribution (for instance u(t = 1, x) = 0) starting from a given initial

8
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temperature distribution (in appropriate function spaces) via adapted boundary

data. Examples of situations in which such a behaviour would be desirable are,

for instance, the heating of a room so as to obtain a particularly comfortable tem-

perature distribution or the heating of a chemically reacting substance from the

boundary so as to control the respective reaction.

As we will see these properties strongly depend on the (un-)boundedness of the

underlying domain.

In bounded domains these issues have been investigated thoroughly, c.f. [LRL11],

[Zua07], [Zua06], [FR71], [Rus78], [TT11]. Choosing appropriate function spaces, it

is possible to derive (boundary) null-controllability in this situation. This strongly

agrees with our physical intuition. Mathematically, these results build on various

approaches relying on Carleman estimates, spectral estimates, the method of mo-

ments and observability inequalities.

In the case of unbounded domains the situation is less transparent. In searching for

controllability properties of the heat equation in unbounded domains, one might be

tempted to recall the infinite speed of propagation of the heat equation as well as its

strong diffusivity as indicators in favour of null-controllability. As a consequence,

one might hope for null-controllability in spite of the unboundedness of the domain.

On a second thought, however, this impression might be reversed by thinking of the

finite “mean speed of propagation” – i.e. the finite speed with which a Gaussian

diffuses in time. Whereas bounded domains do not “feel” this effect, it presents a

serious issue in the case of unbounded domains.

In fact, it turns out that the unbounded setting differs qualitatively from the

bounded one. We concentrate on unbounded, conical domains. There are two

regimes:

• In the case of “small” angles (θ < 90◦) there are initial data which can be

driven to zero (“null-controllable initial data”).

• For large angles, it is impossible to diffuse the information from the boundary

into the interior sufficiently fast.

Although reasonable heuristics suggest that the critical angle which distinguishes

between these regimes should be given by exactly θ = 90◦, there are no rigorous

proofs for this. In the sequel we are mainly concerned with the “large angle regime”,

pushing the upper bound closer to the conjectured 90◦ in the two-dimensional sit-

uation.

Mathematically, this regime is particularly interesting as most of the known techni-

cal tools break down: At first sight it seems impossible to obtain an expansion into

a basis of eigenfunctions for the underlying elliptic operator, observability inequali-

ties fail in general and Carleman estimates become much more restrictive as growth

assumptions at infinity have to be satisfied. Yet, there are various partial results
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on the “large angle regime”, c.f. [LŠ10], [MZ01a], [MZ01b], [Mil05]. The strongest

previous result can be found in the paper by Li and Šverák [LŠ10] who employ Car-

leman techniques to derive the backward uniqueness property for heat equations

with lower order terms in domains with opening angles of down to approximately

109◦. However, the underlying Carleman weight does not have sufficient convexity

properties in order to carry the estimate beyond this number.

In this chapter, we present two approaches dealing with the control problem in

the “large angle regime”: While the first approach is very direct and highlights

the difficulties in treating the backward uniqueness problem in conical domains, it

mainly serves as a motivation for our main, more abstract approach via Carleman

inequalities:

• Exponential Estimates. Our first approach is related to the papers [MZ01a],

[MZ01b] by Zuazua and Micu and provides some intuition on the interplay

between strong diffusion and possible cancellations. Its central tool consists

of the method of moments. As in the articles by Zuazua and Micu, we derive

a family of exponentially weighted estimates for the (L2) boundary controlled

heat equation. However, instead of obtaining the estimates via spectral prop-

erties of the operator in exponentially weighted spaces, we choose a direct

approach via the Fourier transform. Although the approach is limited to cer-

tain very specific lower order perturbations, it provides good intuition for the

problem and indicates that one can expect a continuum of exponential bounds

and not only countably many as the spectral approach suggests. For “separa-

ble” boundary data this approach “explains” the special role of the angle of

90◦.

• Carleman Estimates. In our second – and main – approach, we rely on the

more abstract method of Šverák and Li [LŠ10] and prove Carleman estimates,

c.f. also [ESŠ03]. Motivated by limiting Carleman weights for the Laplacian

in two-dimensions, c.f. [KSU07], we carry out a pseudoconvexity analysis of

the problem. Hence, we are able to improve the angular dependence in the

two-dimensional situation: Investigating the necessary properties of Carleman

weights, it is possible to give a condition guaranteeing pseudoconvexity –

i.e. admissibility – for a larger class of weight functions in two-dimensional

domains. With these it is possible to reach angles of (slightly) less than 95◦

in two dimensions.

Let us comment a little bit further on the Carleman approach. The guiding intu-

ition behind these estimates is provided by the time-independent setting: For lower

order perturbations of the Laplacian, Carleman estimates hold down to an angle of

90◦ in the two-dimensional case. Thus, these estimates provide backward unique-

ness for the heat equation if additionally u(0, ·) = 0 is assumed (c.f. Proposition

8). In particular, this proves that if certain initial data for the parabolic equation

were null-controllable, then the corresponding (boundary) control would necessarily
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be unique. However, the general case – i.e. the full proof of the backward unique-

ness result – is much more difficult to handle, as the very convenient orthogonality

relation on the characteristic set in the spatial variables is lost: While in phase

space the characteristic set of the elliptic symbol is given by the intersection of a

circle with the plane normal to ∇φ, in the full parabolic setting it is given by the

intersection with the same circle and arbitrary (time frequency) translations of the

described plane. This causes new challenges in understanding the combination of

the underlying geometry and convexity conditions.

Our choice of the weight function is essentially one-dimensional. We believe that for

this class the weights we use are (nearly) optimal. In order to improve the angle fur-

ther (towards the conjectured 90◦), one would have to find a new two-dimensional

class of functions. However, it is not immediately clear how this might be achieved.

We briefly indicate the organization of the remainder of the chapter: In the next

section we recall some basic notions from control theory. With this background, it is

possible to review the previously existing results, indicate certain central arguments

and explain their relation to our problem (Section 2.2). In Section 2.3 we present the

derivation of exponential bounds. These can be interpreted as heuristics indicating

that the critical angle should indeed be given by 90◦. We state our main results in

Section 2.4. The proofs are then presented in Sections 2.5 and 2.6: Here, we prove

the elliptic (Section 2.5) and parabolic (Section 2.6) Carleman estimates which

imply the backward uniqueness property.

2.2 Review: (Non-)Controllability – Definitions,

Basic Properties and Examples from the Lit-

erature

In this section we briefly recall some of the central notions used in control theory.

As the equivalence of the observability and null-controllability properties presents

a key element of control theory (for the heat equation), we include a short proof.

We only formulate the results in the setting of the linear heat equation. However,

generalizations to lower order perturbations can be treated along the same lines.

We follow the review article of Zuazua [Zua07].

Different Notions of Controllability

In the sequel we recall some of the most commonly used notions of controllability.

Definition 1 (Notions of Controllability). Let Ω ⊂ R
n and let u : Ω × [0, T ] → R

be a solution of the heat equation

(∂t −∆)u = 0 in Ω× (0, T ). (2.2.1)
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• The equation (2.2.1) is (boundary) null-controllable if for all initial data u0 :

Ω → R, u0 ∈ L2(Ω), there exist boundary controls f : ∂Ω × [0, T ] → R,

f ∈ L2(∂Ω× [0, T ]), such that u(T, x) = 0 for all x ∈ Ω.

• Initial data u0(x) ∈ L2(Ω) are (boundary) null-controllable if there exist

boundary controls f : ∂Ω × [0, T ] → R, f ∈ L2(∂Ω × [0, T ]), such that

u(T, x) = 0 for all x ∈ Ω.

Remark 1. • Due to the smoothing effect of the heat equation it is not possible

to reach arbitrary final data uT ∈ L2(Ω) via L2(∂Ω) boundary controls, in

this sense the equation is “not controllable”.

• As a consequence of the linearity of the equation, the null-controllability prop-

erty implies controllability for any other datum in eT∆L2 (that is the image

under the heat semi-group with zero boundary data).

Definition 2 (Adjoint System). Let ϕ : Ω × [0, T ] → R. It satisfies the adjoint

problem to the heat equation with final data ϕT if it solves

(∂t +∆)ϕ = 0 in Ω× [0, T ],

ϕ = 0 on ∂Ω× [0, T ],

ϕ = ϕT on Ω× {T }.
(Adjoint)

Remark 2. As can be seen from the definition, the adjoint heat equation is well-

posed in L2: By a reflection in time it turns into the standard heat equation with

zero boundary data.

Definition 3 (Approximate Controllability). The equation (2.2.1) is approximately

controllable if for any initial datum u0 ∈ L2(Ω) the set of reachable states is dense

in L2(Ω), i.e. {u ∈ L2(Ω)| ∃f : ∂Ω× [0, T ] → R, f ∈ L2(∂Ω× [0, T ]) such that u =

eT∆
f u0} is dense in L2(Ω), where the subscript f denotes the heat semi-group with

boundary data f .

Remark 3. The approximate controllability property can be related to unique con-

tinuation properties of the adjoint problem. Thus, there is an intimate relation to

Holmgren’s theorem, c.f. [Zua06].

Definition 4 (Backward Uniqueness). The heat equation satisfies the backward

uniqueness property (BUP) in the domain Ω if all solutions u : Ω × [0, T ] → R of

(2.2.1) with u(T, x) = 0 and ‖u‖L∞(Ω×[0,T ]) < ∞ already vanish identically, i.e.

u ≡ 0 in Ω× [0, T ].

It is interesting to observe the different degrees of “controllability”. Whereas the

heat equation is only null-controllable in bounded domains, it is only approximately

controllable in any (sufficiently regular) domain, c.f. [DT98].

Last but not least, we recall the following quantitative characterization of null-

controllability, [Zua07]:
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Proposition 2 (Equivalence of Null-Controllability and Observability, [Zua07]).

The heat equation is (boundary) null-controllable (in L2) iff an observability in-

equality holds, i.e. for any solution ϕ : Ω × [0, T ] → R of the adjoint equation

associated with an arbitrary final datum ϕT ∈ L2(Ω) the inequality

‖ϕ(0, ·)‖2L2(Ω) ≤ CT

T
∫

0

∫

∂Ω

|∂nϕ(t, x)|2dHn−1(x)dt (2.2.2)

holds.

It is important to note that in the observability inequality the initial data of the

adjoint equation are controlled by boundary contributions. Hence, the estimate is

highly nontrivial in general. In particular, it is not merely a consequence of the

regularization provided by the heat equation.

In demonstrating that null-controllability cannot hold (for general L2 data), it there-

fore suffices to prove that the observability inequality (2.2.2) does not hold true.

However, this does not rule out controllability in weighted spaces. Furthermore, it

also does not exclude the possibility of specific data being null-controllable.

Review of the Literature on the (Non-)Controllability Prop-

erties of the Heat Equation in Unbounded Domains

In this section we briefly review the literature on (non-)controllability properties

of the heat equation in certain unbounded domains. We focus on conical domains.

As these are obtained as blow-ups of (bounded) Lipschitz domains, it is of special

interest to understand the behaviour of the heat equation from a control theoretic

point of view on these.

• The whole space. The whole space situation is a classical result. For the

heat equation without lower order terms, the backward uniqueness property

can be proved by a reduction to an ODE in Fourier space. Via Carleman esti-

mates or alternative forms of convexity estimates, e.g. logarithmic convexity

[AN67], it is possible to extend this to the case of general uniformly elliptic

operators with lower order terms, c.f. [Fri64].

• The half space. The controllability properties of the heat equation in the

half space were considered by Micu & Zuazua [MZ01a], [MZ01b] in the con-

text of control theory. Using the method of moments, the authors prove the

backward uniqueness property in arbitrary (negative) Hs spaces. They com-

plement this with the observation that in spaces with exponentially growing

(generalized Fourier-) modes it is possible to find null-controllable (initial)

data.

As certain uniqueness questions for the Navier-Stokes equations can be re-

duced to a backward uniqueness statement for the heat equation, c.f. [SŠ02],
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Seregin and Šverák began to investigate the backward uniqueness properties

of this equation. Together with Escauriaza [ESŠ03], they employ techniques

originating from the field of unique continuation in order to derive the back-

ward uniqueness property in the half space.

• Conical Domains with Opening Angles θ ≥ 109◦. The ideas from

[ESŠ03] were further pursued in a paper by Šverák & Li [LŠ10], who deal

with conical domains with opening angles strictly less than 180◦. Again, the

main results are based on Carleman estimates.

As discussed in Section 2.4, our results rely on similar techniques as the ones of

Šverák et al. However, we make stronger use of the microlocal interpretation of

Carleman estimates which allows us to deduce necessary conditions for the Carle-

man weight. Via pseudoconvexity conditions we obtain a phase space differential

inequality. Hence, it becomes easier to derive appropriate weight functions via

“educated guesses”.

Characteristic Examples from the Literature

Last but not least, we review four examples in order to obtain an intuition for the

control problem in unbounded domains. Furthermore, we recall an elliptic non-

existence result which serves as a model situation for the backward uniqueness

property of the heat equation.

• The first example recalls a fundamental result of Lebeau and Robbiano, c.f.

[LR95], stating that in bounded domains the heat equation is null-controllable.

In briefly outlining a possible proof of the argument – we follow the presenta-

tion of Lebeau and Le Rousseau [LRL11] – it is possible to identify the strong

diffusivity of the heat equations as a key reason of the null-controllability prop-

erty in bounded domains. The techniques of the proof indicate the relevance

of the boundedness of the domain.

• With the second example, which is an argument due to Zuazua and Micu

[MZ01a], [MZ01b], we demonstrate that the difference between bounded and

unbounded domains is not merely an artifact of the techniques, but an intrin-

sic property. In unbounded domains the observability inequality (2.2.2) fails.

Therefore one cannot hope for null-controllability properties (in unweighted

spaces).

• Moreover, we present Escauriaza’s example of a caloric function which is null-

controllable in a conical domain with a sufficiently small opening angle. This

shows that for small angles it is not possible to extrapolate from the whole

space situation: In domains with small opening angles the backward unique-

ness property is not satisfied.

• Finally, we prove that there is no harmonic function with Gaussian decay

in an angular domain with an opening angle θ ≥ π
2 . Combined with the
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decay properties of caloric functions which are assumed to be null-controllable

(c.f. Lemma 5), this indicates that the elliptic equation provides the “right”

intuition for its parabolic analogue.

These examples highlight that for the “small angle regime” neither controllability

(in unweighted spaces) nor the backward uniqueness property holds in unbounded

conical domains. However, the elliptic non-existence result suggests that in the

“large angle regime” – the Phragmen-Lindelöf principle provides the threshhold –

the backward uniqueness property is satisfied.

Null-Controllability of the Heat Equation in Bounded Do-

mains

In bounded domains we have the following central result due to Lebeau and Rob-

biano [LR95]:

Theorem 1 (Lebeau, Robbiano, [LR95]). Let Ω ⊂ Rn be a bounded domain. Then

the heat equation is null-controllable from the boundary, i.e. for any u0 ∈ L2(Ω)

there exists a boundary control f ∈ L2(∂Ω× [0, T ]) such that

(∂t −∆)u = 0 in Ω× (0, T ),

u = f on ∂Ω× [0, T ],

u = u0 on Ω× {0},
u = 0 on Ω× {T }.

We briefly sketch the argument following Lebeau and Le Rousseau [LRL11]. The

proof relies on two key ingredients: A spectral estimate for the Dirichlet Lapla-

cian as well as a resulting observability inequality for a “finite-dimensional” control

problem. For a finite number of eigenfunctions, one has the following sharp bound:

Theorem 2 (Lebeau, Robbiano, [LR95]). Let Ω ⊂ Rn be bounded. Let φj be an

eigenfunction of the Dirichlet Laplacian on Ω, corresponding to the eigenvalue µj.

Then we have

∥

∥

∥

∥

∥

∥

∑

µj≤µ
αjφj

∥

∥

∥

∥

∥

∥

2

L2(Ω)

≤ KeK
√
µ

∥

∥

∥

∥

∥

∥

∑

µj≤µ
αj∂nφj

∥

∥

∥

∥

∥

∥

2

L2(∂Ω)

. (2.2.3)

The crucial observation here is that the boundary data – i.e. functions whose

support lies in a set of lower Hausdorff-dimension – control the bulk contributions.

Hence, there cannot be “too bad” cancellations on the boundary. Although the

original full orthogonality of the φj is lost, part of it is “inherited” by the boundary

contributions. The sharpness of this estimate can be observed by considering the

flow of eigenfunctions with the heat semi-group and using Weyl’s law.

Arguing via duality, it is then possible to prove a partial control result, i.e. a control

result in a finite-dimensional space spanned by a finite number of eigenfunctions
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associated with the Laplacian, and an exponential estimate on the L2 norm of the

boundary control. As a consequence of (2.2.3), the exponential factor involved in

the estimate only grows with the square root of the highest frequency.

Finally, this implies the desired controllability property, as it is now possible to

iteratively “project away” eigenmodes for any given initial datum. Combined with

a “relaxation phase” in which the strong diffusivity of the heat equation serves to

control the loss in the constant of the observability inequality, this entails the de-

sired result.

The detailed discussion of this (central) proof is instructive in highlighting mecha-

nisms that distinguish the bounded and the unbounded situation. The crucial in-

gredient, estimate (2.2.3), does not have an appropriate analogue in the unbounded

situation. Although it is possible to understand the notion of eigenvalues and eigen-

functions in an appropriate sense, such a strong bound cannot be obtained. In a

sense, the diffusivity is not strong enough to counteract the unboundedness of the

domain.

Lack of Null-Controllability

In the literature there is good reason indicating that the behaviour of solutions

of the heat equation in unbounded domains has to differ strongly from that in

bounded domains. In an unbounded domain it is not possible to expect that the

heat equation satisfies an observability inequality. As Micu and Zuazua [MZ01a]

point out, a simple translation argument proves that this cannot be possible without

an additional weight: Our starting point is the equivalence of the null-controllability

property (in L2) with an observability inequality for the adjoint system. In the half-

space, Rn+, this amounts to

‖ϕ(0)‖2L2(Rn
+) ≤ C

T
∫

0

∫

Rn−1

∣

∣

∣

∣

∂ϕ

∂xn

∣

∣

∣

∣

2

dx′dt,

where ϕ satisfies the adjoint heat equation with final data ϕT . Considering ϕT ∈
C∞

0 (Ω), ϕT ≥ 0, we define translations ϕT,k(x) := ϕT (x−ken). Then the boundary

integral decreases exponentially, while the L2 norm of the initial data does not

decrease for a sequence of sufficiently large k. As a result the observability inequality

cannot hold in general.

This heuristic argument (which can be adapted to an arbitrary cone) suggests that

the heat equation behaves differently in unbounded domains; yet it does not prove

the non-existence of (boundary) null-controllable initial data.

Escauriaza’s Example

We briefly recall Escauriaza’s example, c.f. [LŠ10]: It proves that in cones with

sufficiently small opening angles it is possible to find null-controllable initial data.
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Considering the remaining variables as dummy variables, it suffices to provide an

example in two dimensions only. For that purpose we introduce the Appell trans-

form. This is a symmetry transform of the heat equation in conical domains: It

allows to switch from a solution, u(x, t), of the forward heat equation to a solution,

v(y, s), of the backward heat equation. In particular, it can be employed in order

to transform a harmonic function into the desired example.

Assume that v is a solution of the backward heat equation

(∂t +∆)v = 0 in Ωθ × (0, T ),

where Ωθ is a cone with opening angle θ. Then the (two-dimensional version of the)

Appell transform is given by

u(x, t) =
1

4πt
e−

|x|2

4t v

(

x

t
,
1

t

)

.

It turns the backward caloric function v into the caloric function u and vice versa.

In particular, starting with a harmonic function, h, it becomes possible to associate a

backward caloric function, v, to it via Appell’s transform. We consider the harmonic

function

h(x) = ℜ(e−(x1+ix2)
α

), α > 2.

An application of Appell’s transform yields a solution of

∂tv +∆v = 0 in Ωθ × (0, 1),

v = 0 in (Ωθ × {0}) \ {(0, 0)}.

Explicitly, it is given by

v(x, t) =
4π

t
e

|x|2

4t h
(x

t

)

.

Away from the (spatial) origin, this function is uniformly bounded in any cone

of angle θ ∈ [0, πα ). Thus, translating in space and reflecting in time yields a

counterexample to the backward uniqueness property of the heat equation, i.e.

u(x, t) = v(x1 + 1, x2 + 1, 1− t).

satisfies

(∂t −∆)u = 0 in Ωθ × (0, 1),

u = 0 in Ωθ × {1},
|u| ≤ C in Ωθ × [0, 1].

Remark 4. We point out that Escauriaza’s example of the failure of the backward
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uniqueness property is limited to cones with opening angles strictly less than π
2 .

This follows from the growth condition imposed on complex analytic functions by

the Phragmen-Lindelöf principle. As we will see in the next section, there are no

nontrivial harmonic functions with a Gaussian decay rate in cones with opening

angles greater than or equal to π
2 .

Excursion: Non-Existence Results for Harmonic Functions

with Gaussian Decay Rates in 2D Cones

The non-existence of harmonic functions with Gaussian decay in 2D cones can be

derived via various methods such as elliptic Carleman inequalities or comparison

principles in unbounded domains (Phragmen-Lindelöf principles). In the sequel

we present a first proof of this non-existence result in cones of an opening angle

greater or equal to π
2 in two dimensions. We employ the complex Phragmen-Lindelöf

principle; later we provide a more stable proof via Carleman estimates (c.f. Section

2.5) .

Proposition 3. Let Ωθ ⊂ R
2 be a conical domain. Then there exist (nontrivial)

harmonic functions decaying with an at least Gaussian rate if and only if θ < π
2 .

For our proof we argue similarly as in Li [Li11]. As Li, we rely on the holomorphic

Phragmen-Lindelöf Theorem which is considerably stronger than the analogue for

harmonic functions (as both real and imaginary part have to satisfy the theorem):

Theorem 3 (holomorphic Phragmen-Lindelöf, [Mar77]). Let G be the interior of

a cone with opening angle of απ radians (0 < α ≤ 2) with boundary Γ, and let f(z)

be a complex analytic function in G, continuous up to the boundary. Suppose f(z)

satisfies

(i) f(z) ≤ C <∞ on Γ,

(ii) lim inf
r→∞

lnM(r)

r
1
α

≤ 0 where M(r) = sup
|z|=r,z∈G

|f(z)|.

Then |f(z)| ≤ C.

With this, we can carry out the proof of the non-existence proposition.

Proof of Proposition 3. Existence follows from choosing the real part of the holo-

morphic function which was already used in Escauriaza’s example:

u(x1, x2) = ℜ(e(x1+ix2)
α

),

where α > π
θ .

Thus, it remains to prove the non-existence of harmonic functions with a Gaussian

decay rate in cones with opening angles larger than or equal to π
2 . Here, it suffices

to argue that no such function exists in a cone of angle precisely π
2 , as this implies

the result on cones with larger angles by restriction.
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We argue by contradiction. Assume that we had a harmonic function with Gaussian

decay in R+ ×R+. By an even reflection this can be extended to a function on the

whole space solving

∆u = δ{x=0}f(y) + δ{y=0}g(x), (2.2.4)

where f = 2 lim
x→0

∂
∂yu(x, y) and g = 2 lim

y→0

∂
∂xu(x, y). From the Gaussian decay we

deduce that the Fourier transform of u and ∇u is bounded exponentially:

Fu(k) ≤ Ceℑ(k)2 . (2.2.5)

Therefore, it can be extended as a holomorphic function in each of its variables.

The same is true for Ff and Fg. Furthermore, in Fourier space the equation reads

(k21 + k22)Fu(k1, k2) = Ff(k2) + Fg(k1).

On the real axis both functions Ff,Fg are bounded and decay to zero. In order to

derive decay along the imaginary axis, we set k1 = ik = ik2. Inserted into (2.2.4),

this leads to

0 = Ff(ik) + Fg(k).

Thus Ff and Fg are also bounded on the imaginary axis. Now, we would like

to apply the Phragmen-Lindelöf theorem, the bound e|k|
2

, however, is insufficient

in the cone of angle π
2 . Nevertheless, with an idea of Li [Li11], it is possible to

uniformly apply the Phragmen-Lindelöf theorem in smaller angles tending to the

full angle. More precisely, consider the function Ff on

Gθ :=
{

z ∈ C s.t. 0 < θ < arg(z) <
π

2

}

.

For any θ, it is possible to find σ(θ) > 0 with σ(θ) → 0 as θ → 0, such that f̃ :=

eiσ(θ)z
2Ff is uniformly (independently of the angle θ) bounded on the boundary of

Gθ. This follows from the bound (2.2.5) in terms of the imaginary part only. As this

auxiliary function further satisfies |f̃(k)| ≤ Ce|k|
2

, the Phragmen-Lindelöf theorem

on the smaller conical domain Gθ implies |f̃ | < C uniformly in θ → 0. In the limit

θ → 0 and σ → 0, this reduces to |Ff | ≤ C in the first quadrant. Analogously, the

statement holds in any quadrant. Therefore, Liouville’s theorem yields Ff,Fg ≡ 0.

Finally, this also implies Fu = 0.
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2.3 Heuristics for the Backward Uniqueness Prop-

erty and Derivation of Exponential Bounds for

Null-Controllable Solutions

In this section we recover the results of Zuazua and Micu [MZ01a], [MZ01b] in the

setting of the heat equation without lower order perturbation terms via very direct

methods. This serves a two-fold purpose:

• On the one hand, the behaviour of the heat equation becomes more transpar-

ent than in the relatively abstract Carleman approach which is pursued in the

later sections. In choosing this direct approach via the explicit form of the

fundamental solution, the difficulties in dealing with the backward uniqueness

property are clarified. In this sense, the direct approach can be considered as

heuristics for the later, more abstract treatment.

• On the other hand, the results as such are already interesting. Although we use

similar techniques as Micu and Zuazua [MZ01a], [MZ01b] the crucial estimates

– our exponential bounds – are derived in a more direct manner than theirs

(which is also due to the fact that Micu and Zuazua aim at understanding

very rough solutions). The restriction to a special class of boundary data

highlights the critical role of the angle θ = π
2 .

In terms of the backward uniqueness property, the main result of this section is

the following null-controllability result for “separable data” (which is an intrinsic

feature of the unbounded situation):

Proposition 4. Let g1(x1, t) = g11(x1)g12(t) ∈ L2(R+ × [0, T ]) ∩ L1(R+ × [0, T ])

and g2(x2, t) = g21(x2)g22(t) ∈ L2(R+ × [0, T ]) ∩ L1(R+ × [0, T ]). Assume that

u0 ∈ L2(R+ × R+) ∩ L1(R+ × R+) and that

(∂t −∆)u = 0 in (R+ × R+)× (0, T ),

u = g1 on R+ × {x2 = 0} × [0, T ],

u = g2 on {x1 = 0} × R+ × [0, T ],

u = u0 on R+ × R+ × {0},
u = 0 on R+ × R+ × {T }.

(2.3.1)

Then u ≡ 0 (and in particular g1, g2 ≡ 0).

In their articles on the backward uniqueness properties of the heat equation, Micu

and Zuazua [MZ01a], [MZ01b] argue via an expansion into an eigenbasis of a “mod-

ified Laplacian”. Their method of proof can be summarized in two fundamental

steps:

• The derivation of bounds for sufficiently many exponentially weighted

integrals. The use of weighted norms compactifies the underlying elliptic op-

erator after a suitable change of coordinates. Hence, it is possible to consider
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an evolution driven by a self-adjoint, compact operator. In this setting the

spectrum of the (spatial) operator can be determined explicitly. This allows

to phrase the backward uniqueness question as a moment problem.

• A Titchmarsh-like theorem (c.f. Lemma 3). This second step implies

that the boundary data and hence the function itself must already be identi-

cally zero. The argument leading to the desired claim can be interpreted as a

quantification of the statement that if all moments of a function vanish, then

this function is identically zero.

However, this approach seems to be restricted to the half-space setting or to classes

of boundary data with additional structure (e.g. product structure), as otherwise

oscillations play a relevant, not easily controlled role.

In the sequel the exponential bounds are derived as a consequence of the repre-

sentation formula for the fundamental solution of the heat equation in the half-/

quarter-space. This allows to recover Micu and Zuazua’s bounds on exponentially

weighted integrals of the boundary data. Although this ansatz is restricted to the

unperturbed heat equation as well as a very limited scope of perturbations, com-

pared to the original approach of Zuazua and Micu it has the advantage of providing

a continuum of exponential bounds as one is not restricted to work with the discrete

eigenvalues. Furthermore, the structure of the fundamental solution indicates that

the case of an opening angle of 90◦ plays a special role.

Before proceeding with the proof of Proposition 4, we derive analogous statements

for the one and higher-dimensional control problems in the half space. Thus, we

recover the results of Zuazua and Micu.

The 1D case

Without invoking the decomposition into eigenstates, the argument of Micu &

Zuazua [MZ01a] can be recovered by using the explicit form of the fundamental

solution in the half-space case. We carry out the corresponding calculations in 1D

first.

Lemma 1. Let u0 : (0,∞) → R, u0 ∈ L2((0,∞)) ∩ L1((0,∞)), g : [0, T ] → R,

g ∈ L2([0, T ]) and let u : (0,∞)× [0, T ] → R satisfy

(∂t −∆)u = 0 in (0,∞)× (0, T ),

u = g on {0} × [0, T ],

u = u0 in (0,∞)× {0},
u = 0 in (0,∞)× {T }.

(2.3.2)
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Then the following exponential bounds hold:

∣

∣

∣

∣

∣

∣

T
∫

0

ek
2sg(s)ds

∣

∣

∣

∣

∣

∣

≤ C

|k| for all k ∈ R. (2.3.3)

Remark 5. As we will see from Lemma 5, the condition on the integrability –

u0 ∈ L2((0,∞)) ∩ L1((0,∞)) – can be significantly relaxed.

Proof. Using the method of reflection (mirror charges), the Green’s function, G(0,∞)(x, y, t),

of the one-dimensional heat equation in the half-space can be computed explicitly:

G(0,∞)(x, y, t) =
1√
2πt

(

e−
|y−x|2

4t − e−
|y+x|2

4t

)

.

As a consequence, the solutions of (2.3.2) can be represented as

u(x, t) = ((∂yG(0,∞))|y=0 ∗t g)(x, t) +
∫

(0,∞)

G(0,∞)(x, y, t)u0(y)dy.

Extending the initial data by zero, this can be rephrased in terms of the standard

heat kernel, G(x, y, t) = G(x− y, t):

u(x, t) = 2((∂yG)|y=0 ∗t g)(x, t) + (G ∗x (Pu0))(x, t),

where P is a reflection operator defined by

(Pw)(x) = w(x) − w(−x).

This yields a function which is caloric in (0,∞)×(0, T ] and belongs to L2(R)∩L1(R)

for almost every t ∈ [0, T ]. Thus, it is possible to carry out a spatial Fourier

transform:

Fu(x, t) = e−tk
2



FPu0(k)− k

t
∫

0

ek
2sg(s)ds



 ,

Evaluating the expression at time t = T and using the assumption that u(x, T ) = 0,

we obtain

FPu0(k) = k

T
∫

0

ek
2sg(s)ds. (2.3.4)

As Pu0 ∈ L2(R) ∩ L1(R), we have

|FPu0(k)| ≤ C <∞.

Dividing both sides of (2.3.4) by k, yields the desired result.
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This central bound being established, we proceed along the lines of Micu & Zuazua

[MZ01a], using the following statements. For the convenience of the reader we

include the proofs.

Lemma 2 (Micu & Zuazua, [MZ01a]). Let g ∈ L2(0, T ), 0 ≤ t ≤ T . Then we have

lim
x→∞

∞
∑

k=1

(−1)k−1

k!

T
∫

0

ekx(t−u)g(u)du =

t
∫

0

g(u)du.

Proof. The result follows from an application of the dominated convergence theorem

combined with the identity

∞
∑

k=1

(−1)k−1

k!
ekx(t−u) = (−1)[e−e

(t−u)x − 1].

Lemma 3 (Micu & Zuazua, [MZ01a]). Let g ∈ L2(0, T ) be such that there exist

constants δ > 0, Cδ > 0 with

∣

∣

∣

∣

∣

∣

T
∫

0

g(u)emudu

∣

∣

∣

∣

∣

∣

≤ Cδe
mδ for all m ≥ 1. (2.3.5)

Then supp(g) ⊂ [0, δ].

This lemma explains the term “method of moments”: By having sufficiently strong

estimates on “generalized moments”, i.e. on scalar products with a sufficiently large

family of weights, it is possible to deduce the desired uniqueness property.

Proof. For any 0 ≤ t < T − δ the previous lemma implies the identity

t
∫

0

g(T − u)du = lim
m→∞

∞
∑

k=1

(−1)k−1

k!

T
∫

0

ekm(t−u)g(T − u)du.

This expression can be bounded due to (2.3.5)

∣

∣

∣

∣

∣

∣

∞
∑

k=1

(−1)k−1

k!

T
∫

0

ekm(t−u)g(T − u)du

∣

∣

∣

∣

∣

∣

≤
∞
∑

k=1

1

k!
ekm(t−T )

∣

∣

∣

∣

∣

∣

T
∫

0

ekmτg(τ)dτ

∣

∣

∣

∣

∣

∣

≤
∞
∑

k=1

1

k!
ekm(t−T )Cδe

kmδ

= Cδ(exp(e
m(t−T+δ))− 1).

However, the last expression vanishes as m→ ∞.

Combining the observations of Lemma 2 and 3, it is possible to deduce backward

uniqueness of the one-dimensional heat equation in the half-space:
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Proposition 5. Let u0 : (0,∞) → R, u0 ∈ L2((0,∞))∩L1((0,∞)), g : [0, T ] → R,

g ∈ L2([0, T ]) and let u : (0,∞)× [0, T ] → R satisfy

(∂t −∆)u = 0 in (0,∞)× (0, T ),

u = g on {0} × [0, T ],

u = u0 in (0,∞)× {0},
u = 0 on (0,∞)× {T }.

(2.3.6)

Then u ≡ 0.

Proof. Due to the bounds (2.3.3) (applied to k =
√
n, for n ∈ N\{0}), it is possible

to apply Lemma 3 for any δ > 0. Due to the integrability of the solution of (2.3.6),

this implies the result.

The Case R
n

+: Reduction to the 1D Case

As in the argument of Zuazua and Micu [MZ01b], the case of the half-space can

be reduced to the one-dimensional situation. With our strategy this turns out to

be significantly easier than the original argument of Zuazua and Micu. Indeed, we

may employ the simple one-dimensional strategy as presented above.

As before, the Green’s function can be computed explicitly:

G(x, y, t) =
1

(4πt)
n
2

(

e−
|y−x|2

4t − e−
|y−x̃|2

4t

)

,

where x̃ = (x1, ..., xn−1,−xn).
Going through the same arguments as in the previous section, one obtains the

following identity:

FPu0(k) = kn

T
∫

0

ek
2sFg(k1, ..., kn−1, s)ds.

Fixing (k1, ..., kn−1) and considering a sequence {kmn }m∈N, k
m
n → ∞, again yields ex-

ponential bounds comparable to those in (2.3.3). By an application of the Titchmarch-

like result of Lemma 3, we infer the backward uniqueness property.

The Case R+×R+: Uniqueness in the Class of Product Bound-

ary Data – Proof of Proposition 4

In the sequel we investigate the (two-dimensional) control problem involving bound-

ary data which separate in the temporal and spatial variables, i.e.

gi(xi, t) = gi1(xi)gi2(t),

with i ∈ {1, 2}. Similar to the results in [MZ06], this additional restriction allows

to prove the backward uniqueness property for the heat equation restricted to this
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class of boundary data in R+ × R+. In order to prove Proposition 4, we derive a

representation formula for solutions of (2.3.1):

Lemma 4. Let u : (R+ × R+) × [0, T ] → R be a solution of (2.3.1). Then it has

the representation

u(x, t) = (G ∗x (Pu0))(x, t) + 2(∂y2G
∣

∣

∣

y2=0
∗x1,t Pg1)(x, t)

+ 2(∂y1G
∣

∣

∣

y1=0
∗x2,t Pg2)(x, t),

(2.3.7)

where G denotes the standard whole space fundamental solution and P denotes the

reflection operator (Pu)(x1, x2) = u(x1, x2)−u(−x1, x2)−u(x1,−x2)+u(−x1,−x2).
Furthermore, we obtain the Fourier representation

Fu(k, t)
k1k2

= −
T
∫

0

e−k
2(t−s)

(

F(P̃ g1)(k1, s)

k1
+

F(P̃ g2)(k2, s)

k2

)

ds

+ e−t|k|
2 F(Pu0)(k1, k2)

k1k2
,

(2.3.8)

where P̃ denotes the reflection operator P̃ (f)(r, s) = −2f(r, s) + 2f(−r, s).

Proof. The fundamental solution of the heat equation in the two-dimensional quar-

ter space can be computed with the help of the method of reflection. It yields

u(x, t) =

∫

R+×R+

Ḡ(x, y, t)u0(y)dy +

t
∫

0

∫

R+

∂y1Ḡ(x, y, t− s)g1(y1, s)
∣

∣

∣

y2=0
dy1ds

+

t
∫

0

∫

R+

∂y2Ḡ(x, y, t− s)g2(y2, s)
∣

∣

∣

y1=0
dy2ds =: u1(x, t) + u2(x, t),

where u1 and u2 represent the respective influence of the initial and boundary

data. Ḡ(x, y, t) – the Green’s function (in the 2D quarterspace) – can be computed

explicitly:

Ḡ(x, y, t) =
1

4πt
(e−

|y−x|2

4t + e−
|y+x|2

4t − e−
|y−x̃|2

4t − e−
|y−x̄|2

4t ).

Here x̃ = (x1,−x2), x̄ = (−x1, x2).
As above, this can be rephrased in terms of the whole space fundamental solution.

Extending u0 by 0, the initial data are, for example, propagated according to

u1(x, t) =

∫

R2

Ḡ(x, y, t)u0(y)dy =

∫

R2

G(x, y, t)Pu0(y)dy,

where G is the standard Green’s kernel for the heat operator and P is the reflection

operator defined above. A similar argument yields the expression for u2. Thus,
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evaluating at time t = T , leads to

e−Tk
2F(Pu0)(k) = e−Tk

2



k1

T
∫

0

ek
2sF(P̃ g2)(k2, s)ds+ k2

T
∫

0

ek
2sF(P̃ g1)(k1, s)ds



 .

Dividing by k1, k2 finally implies the claim.

With this preparation, we can finally attack the proof of Proposition 4.

Proof of Proposition 4. Again, we strongly rely on the representation formula, (2.3.8).

Without loss of generality, we may assume that there exist k1, k2 ∈ R \ {0} such

that

F(P̃ g11)(k1)

k1
6= 0 and

F(P̃ g21)(k2)

k2
6= 0,

as due to the representation formula, (2.3.8), the situation would otherwise reduce

to the one-dimensional case treated in the previous statements, e.g. Proposition

5. In order to prove the claim of the proposition, we distinguish two cases. In

the first case, we assume that, asymptotically, the weighted integrals of g12(s) and

g22(s) differ. Without loss of generality (and by passing to subsequences which we

suppress in our notation), we may assume that

∣

∣

∣

∣

∣

∣

T
∫

0

e|k|
2sg12(s)ds

∣

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

∣

T
∫

0

e|k|
2sg22(s)ds

∣

∣

∣

∣

∣

∣

, (2.3.9)

as |k| → ∞. By virtue of the representation formula, (2.3.8), this implies

∣

∣

∣

∣

Fu0(k)
k1k2

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

T
∫

0

e|k|
2sF(P̃ g1)(k1, s)

k1
ds

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

T
∫

0

e|k|
2sF(P̃ g2)(k2, x)

k2
ds

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

F(P̃ g11)(k1)

k1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T
∫

0

e|k|
2sg12(s)ds

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

F(P̃ g21)(k2)

k2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T
∫

0

e|k|
2sg22(s)ds

∣

∣

∣

∣

∣

∣

.

(2.3.10)

As

• the left hand side of (2.3.10) vanishes in the limit |k2| → ∞,

• the assumption (2.3.9) implies that the second term on the right hand side

is asymptotically strictly smaller than the first term (along respective subse-

quences and for an appropriately chosen fixed k1 ∈ R \ {0}),

•
∣

∣

∣

F P̃ (g21)(k2)
k2

∣

∣

∣→ 0 as |k2| → ∞,

Lemma 3 implies g12 ≡ 0. As a consequence of (2.3.9) and Lemma 3, this also

induces g22 ≡ 0. Thus, u ≡ 0.



2.4. STATEMENT OF THE MAIN RESULTS 27

Hence, we proceed with the second case. Here, we assume that

∣

∣

∣

∣

∣

∣

T
∫

0

e|k|
2sg12(s)ds

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

T
∫

0

e|k|
2sg22(s)ds

∣

∣

∣

∣

∣

∣

, (2.3.11)

asymptotically. Fixing k1 such that
∣

∣

∣

F P̃(g11)(k1)
k1

∣

∣

∣ 6= 0, taking the limit k2 → ∞
and noting |F P̃ (g21)(k2)| ≤ C, this again amounts to an inequality that cannot be

satisfied unless g12 ≡ 0. Hence, u ≡ 0. Combining the two cases, yields the full

claim.

Remark 6. • The argument strongly relies on the product structure of R+×R+

and the separation of variables in g1(x1) and g2(x2). A similar argument for

smaller angles (e.g. the case of θ = 45◦) fails as this orthogonality property

is lost: From a technical point of view, the separation of variables in (2.3.10)

does not work any more. This can be interpreted as an indication of the

criticality of domains with an opening angle of 90◦.

• The argument generalizes to arbitrary dimensions, i.e. domains of the form

R+ × ...× R+.

Discussion

We conclude this section with a brief discussion of the limitations of the direct ap-

proach. Although the direct approach is very tempting and provides good intuition

for the optimal angular dependence, it suffers from several drawbacks:

• Similar to the methods employed by Zuazua and Micu, the presented tech-

niques are restricted to a very narrow class of equations where explicit Green’s

function control (in Fourier space) is possible.

• Furthermore, it is not clear how to pass from the case of separable boundary

data (of Proposition 4) to the general case, as this might entail oscillations

which cannot be controlled with the aid of the presented tools.

Therefore, a more abstract approach appears inevitable. This is pursued in the next

sections.

2.4 Statement of the Main Results

In this section we present the main results on the backward uniqueness property for

the heat equation in two spatial dimensions. These will be derived as consequences

of certain Carleman estimates. Using the notation

Ωθ =

{

(x1, x2) ⊂ R
2
∣

∣

∣ tan(θ/2) ≥ |x2|
x1

, x1 ≥ 0

}

⊂ R
2,

we have:
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Proposition 6 (Carleman Estimate). Let u ∈ C∞
0 ([0, T ]× (Ωθ \ BR(0))), R ≫ 1

sufficiently large, θ ≥ 95◦. Then there exists a Carleman weight φ(t, x), |φ(t, x)| <
C |x|2

t such that

τ

∥

∥

∥

∥

∥

eτφ
(1 − t)

1
2

t
u

∥

∥

∥

∥

∥

L2

+ τ
1
2

∥

∥eτφu
∥

∥

L2 +
∥

∥eτφ∇u
∥

∥

L2 .
∥

∥eτφ(∂t +∆)u
∥

∥

L2 . (2.4.1)

�
x1

x2

Figure 2.1: The domain Ωθ.

The difficulty in proving this estimate stems from the loss of convexity of the weight

function. Due to the restrictions on its radial growth (which is necessary if the

inequality is to be applied to the backward uniqueness problem), it cannot be easily

convexified in the radial direction which would simplify the proof of the Carleman

inequalities significantly.

As in [LŠ10], the backward uniqueness property is a direct consequence of the

Carleman estimate:

Proposition 7 (Backward Uniqueness of the Heat Equation in Angular Domains).

Let θ ≥ 95◦ and assume that u : [0, 1]× Ωθ → R satisfies

|(∂t +∆)u| ≤ C(|u|+ |∇u|) in [0, 1]× Ωθ,

u(0, x) = 0 in Ωθ,

|u| ≤M in [0, 1]× Ωθ.

(2.4.2)

Then u = 0.

Remark 7. The angle θ ≥ 95◦ is not optimal. Various numerical experiments sug-

gest that evaluating the one-dimensional pseudoconvexity condition, i.e. expression

(2.6.2), it is possible to reach angles of less than 95◦. However, the gain seems to be

marginal (one reaches angles of ∼ 94.8◦); in fact, it seems not easy to reach angles

of less than 94◦ (via one-dimensional weight functions).
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Under the additional assumption that both the initial and final data vanish, it is

possible to prove the backward uniqueness property in angles strictly larger than

90◦ in two dimensions. This is a nontrivial result depending strongly on the un-

boundedness of the underlying domain. In fact, in any bounded domain it would be

possible to find a large variety of boundary controls satisfying the initial and final

condition.

As in the dissertation of Li [Li11], this (conditional) uniqueness statement is a conse-

quence of decay properties of the underlying elliptic problem: In domains of opening

angles greater than or equal to 90◦ there are no harmonic functions decaying with a

Gaussian rate. Instead of employing the Phragmen-Lindelöf theorem for harmonic

functions (as Li does), we argue via an elliptic Carleman estimate for which we use

a limiting Carleman weight in the sense of Kenig et al. [KSU07]. Compared with

the Phragmen-Lindelöf-Ansatz this strategy seems to be more stable and allows to

include lower order perturbations (with time independent coefficients).

Proposition 8 (Uniqueness of the Control Function in L2). Let θ > π
2 , α = π

θ and

assume that u : [0, 1]× Ωθ → R satisfies

(∂t +∆)u = c1(x)u + c2(x) · ∇u in [0, 1]× Ωθ,

|c2(x)| ≤ C
1

|x|b(θ) in Ωθ,

u(1, x) = 0 in Ωθ,

u(0, x) = 0 in Ωθ,

|u| ≤M in [0, 1]× Ωθ,

(2.4.3)

where b(θ) > 2−α
α and c1 ∈ L∞. Then u ≡ 0.

Remark 8. Proposition 8 demonstrates the uniqueness of the possible control func-

tion for the heat equation in an unbounded, conical domain of opening angle θ > π
2 .

This is in sharp contrast with the results for the heat equation in bounded domains,

in which case there are infinitely many possibilities for such controls [LR95].

Remark 9. Matsaev and Gurarii [GM84] claim that the backward uniqueness result

for the pure heat equation can be reduced to an existence result for the Laplacian

even if no additional assumption on the behavior of u(1, x) is made. However, there

seems to be no proof of this statement in the literature.

2.5 Proofs of the Elliptic Carleman Estimates and

Consequences

The Elliptic Pseudoconvexity Analysis

As indicated in Chapter 1 a key step in proving a Carleman estimate consists of the

analysis of the conjugated operator. In choosing our weight, we consider a general



30 CHAPTER 2. BACKWARD UNIQUENESS PROPERTIES

ansatz of the form τφ with the aim of proving an inequality of the type (1.0.1) with

P (x,D) = ∆. Calculating the conjugated operator yields

Lφ = eτφ∆e−τφ = ∆− 2τ∇φ · ∇+ τ2|∇φ|2 − τ∆φ.

The symmetric and antisymmetric parts of this operator are given by

Sφ = ∆+ τ2|∇φ|2,
Aφ = −2τ∇φ · ∇ − τ∆φ.

We remark that although the original operator was elliptic, the resulting symmet-

ric and antisymmetric parts of the conjugated operator are not elliptic anymore.

Expanding the L2 norm of Lφ, we thus infer

‖Lφw‖2L2(Ω) = ‖Sφw‖2L2(Ω) + ‖Aφw‖2L2(Ω) +

∫

Ω

([Sφ, Aφ]w,w)dx,

for w ∈ C∞
0 (Ω). Hence, on the intersections of the characteristic sets of the sym-

metric and antisymmetric parts, the necessary amount of positivity has to originate

from the commutator:

∫

Ω

([Sφ, Aφ]w,w)dx =

∫

Ω

4τ3∇φ · ∇2φ∇φw2 + 4τ∇w · ∇2φ∇w − τ∆2φw2dx.

In order to understand the behaviour of this expression, it is helpful to switch to a

microlocal point of view. The principal symbols of the symmetric, antisymmetric

and commutator part turn into

pr = −|ξ|2 + τ2|∇φ|2,
pi = −2τ∇φ · ξ,

{pr, pi} = 4(τ3∇φ · ∇2φ∇φ+ τξ · ∇2φξ).

Therefore, the intersection of the characteristic set of the symmetric and antisym-

metric parts of the operator is given by

{|ξ|2 = τ2|∇φ|2} ∩ {∇φ · ξ = 0}.

In the two-dimensional setting this leads to simplifications in the Poisson bracket:

{pr, pi} = 4τ3∆φ|∇φ|2 in {|ξ|2 = τ2|∇φ|2} ∩ {∇φ · ξ = 0}.

Hence, the corresponding pseudoconvexity condition for the weight turns into sub-

harmonicity:

∆φ ≥ 0 in {|ξ|2 = τ2|∇φ|2} ∩ {∇φ · ξ = 0}.
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In the sequel we will construct weights satisfying this property with sufficient de-

cay in infinity. These are exactly the “limiting Carleman weights” of Kenig et al.

[DSFKSU09], [KSU07].

Carleman Inequalities for the Laplacian in Conical Domains

Before turning to the proof of Proposition 8, we first focus on Carleman inequalities

for the Laplacian on conical domains. For this purpose, we use weights which are

concentrated in the interior of the domain and vanish on the boundary – the ne-

cessity of this stems form the lack of control of the boundary and initial data. The

explicit choice of the weight is motivated by the requirement of satisfying the elliptic

pseudoconvexity condition – which amounts to a considerably easier condition than

the corresponding parabolic analogue.

We prove the Carleman estimate by rescaling a local estimate. As the weight which

we use satisfies a strict pseudoconvexity condition on Ωθ \B1, the symbol calculus

directly implies the estimate

Proposition 9. Let Ωθ ⊂ R2 be the conical domain defined above with π
2 < θ < π.

Let φ(x, y) = ℜ((x+ iy)α) + ǫxα, with α = π
θ , ǫ > 0 arbitrary. Then for τ ≥ τ0 > 0

it holds

τ3
∥

∥

∥eτφ|x|
3α−4

2 u
∥

∥

∥

2

L2(Ωθ∩(B2\B1))
+ τ

∥

∥

∥eτφ|x|
α−2

2 ∇u
∥

∥

∥

2

L2(Ωθ∩(B2\B1))

.
∥

∥eτφ∆u
∥

∥

2

L2(Ωθ∩(B2\B1))

for all u ∈ C∞
0 (Ωθ ∩ (B2 \B1)).

Proof of Proposition 9. This follows immediately from a pseudoconvexity analysis,

see for example [Tat96], [Tat99a].

With this and the scaling properties of the weight, the global estimate can be

obtained via a decomposition and rescaling procedure.

Proposition 10. Let Ωθ ⊂ R2 be the conical domain defined above with π
2 < θ < π.

Let φ(x, y) = ℜ((x+ iy)α) + ǫxα, with α = π
θ , ǫ > 0 arbitrary. Then for τ ≥ τ0 > 0

we have

τ3
∥

∥

∥eτφ|x|
3α−4

2 u
∥

∥

∥

2

L2(Ωθ\B1)
+ τ

∥

∥

∥eτφ|x|
α−2

2 ∇u
∥

∥

∥

2

L2(Ωθ\B1)
.
∥

∥eτφ∆u
∥

∥

2

L2(Ωθ\B1)

(2.5.1)

for all u ∈ C∞
0 (Ωθ \B1(0)).

Proof of Proposition 10. Using a decomposition of space, a scaling argument yields

the claim: We decompose u =
∑

i∈N

ui, ui(x) := (uηi)(x) := u(x)η( |x|−2i

2i ), where

supp(η) ⊂ (0.5, 2.5), i.e. η is a cut-off function normalized so as to provide a
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partition of unity. Setting vi(x) := ui(2
ix), we obtain

τ3
∥

∥

∥
eτφ|x| 3α−4

2 u
∥

∥

∥

2

L2(Ωθ\B1)
. τ3

∑

i∈N

∥

∥

∥
|x| 3α−4

2 eτφui

∥

∥

∥

2

L2((Ωθ∩B2i+1)\B2i )

= τ3
∑

i∈N

∥

∥

∥|2ix|
3α−4

2 eτφ(2
ix)(ηu)(2ix)

∥

∥

∥

2

L2((Ωθ∩B2)\B1)
2in

.
∑

i∈N

τ̃32−4i
∥

∥

∥eτ̃φ(x)vi(x)
∥

∥

∥

2

L2((Ωθ∩B2)\B1)
2in

Prop.9
.

∑

i∈N

2−4i
∥

∥

∥
eτ̃φ(x)∆vi(x)

∥

∥

∥

2

L2((Ωθ∩B2)\B1)
2in

.
∑

i∈N

∥

∥

∥eτφ(x)∆ui(x)
∥

∥

∥

2

L2((Ωθ∩B2i+1)\B2i )

.
∥

∥eτφ∆u
∥

∥

2

L2(Ωθ\B1)

+
∥

∥eτφ|x|−1|∇u|
∥

∥

2

L2(Ωθ\B1)
+
∥

∥eτφ|x|−2u
∥

∥

2

L2(Ωθ\B1)
,

where we used the notation τ̃ = 2iατ . In this estimate the last terms are error terms

originating from the partition of unity. These will be absorbed in the left hand side

for sufficiently large τ .

Analogously, the result for the gradient term can be derived:

τ
∥

∥

∥eτφ|x|
α−2

2 ∇u
∥

∥

∥

2

L2(Ωθ\B1)
. τ

∑

i∈N

∥

∥

∥eτφ|x|
α−2

2 |∇ui|
∥

∥

∥

2

L2(Ωθ∩B2i+1\B2i )

= τ
∑

i∈N

∥

∥

∥
eτφ(2

ix)|2ix|α−2
2 |∇(uη)(2ix)|

∥

∥

∥

2

L2((Ωθ∩B2)\B1)
2in

. τ̃
∑

i∈N

2−4i
∥

∥

∥eτ̃φ(x)|x|
α−2

2 |∇vi(x)|
∥

∥

∥

2

L2((Ωθ∩B2)\B1)
2in

Prop.9
.

∑

i∈N

2−4i
∥

∥

∥eτ̃φ(x)∆vi(x)
∥

∥

∥

2

L2((Ωθ∩B2)\B1)
2in

.
∑

i∈N

∥

∥

∥
eτφ(x)∆ui(x)

∥

∥

∥

2

L2((Ωθ∩B2i+1)\B2i )

.
∥

∥eτφ∆u
∥

∥

2

L2(Ωθ\B1)

+
∥

∥eτφ|x|−1|∇u|
∥

∥

2

L2(Ωθ\B1)
+
∥

∥eτφ|x|−2u
∥

∥

2

L2(Ωθ\B1)
.

Adding both inequalities and noting 3α−4
2 ≥ −2, α−2

2 ≥ −1 for α ≥ 0, the error

terms can be absorbed. This yields the desired estimate.

Proof of Proposition 8 and an Alternative Non-Existence Proof

of Harmonic Functions with Gaussian Decay Rates in Cones

with Opening Angles Larger than π

2

In the sequel we assume α > 4
3 , which translates into a condition on the opening

angle of the domain: θ < 3π
4 . The backward uniqueness result for conical domains
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with larger opening angles immediately follows from this by restriction. It is deduced

from the elliptic Carleman estimates by an application of the Laplace or a one-sided

Fourier transform. Indeed, the t-independence of the coefficients of equation (2.4.3)

and Šverák’s decay result, Lemma 5, lead to

sLu(s, x) + ∆Lu(s, x) = c1(x)Lu(s, x) + c2(x) · ∇Lu(s, x) in R× Ωθ,

|Lu| ≤ Ce−β|x|
2

in R× Ωθ.

The backward uniqueness result is derived as a consequence of a Carleman estimate

– more precisely, of the elliptic estimate (2.5.1). Keeping s fixed and rescaling in x,

it is possible to assume the “smallness” condition:

|∆Lu(s, x)| ≤ λ(|c̃1(x)||Lu(s, x)| + |c2(x)||∇Lu(s, x)|) in R× Ωθ,

|u| ≤ Ce−βλ
2|x|2 in R× Ωθ,

(2.5.2)

with λ ≤ 1 and c̃1 = c1 + |s|. Using (smooth) cut-off functions which satisfy the

following limiting behaviour

w1,R(x1) :=

{

0, x1 ≤ R,

1, x1 ≥ 2R,
w2(r) :=

{

0, r ≤ − 4
3 ,

1, r ≥ − 1
2 ,

ηL(r) :=

{

1, r ≤ L,

0, r ≥ 2L,

we insert vR,L(x) := Lu(x)w1,R(x1)w2(φ)ηL(|x|) into the Carleman inequality (2.5.1).

Recalling the decay condition on the function Lu and invoking the dominated con-

vergence theorem, we can pass to the limit L → ∞. For vR := Luw1,Rw2(φ) we

then obtain

τ3
∥

∥

∥eτ(φ−C)|x| 3α−4
2 vR

∥

∥

∥

2

L2(Ωθ\B1)
+ τ

∥

∥

∥eτ(φ−C)|x|α−2
2 ∇vR

∥

∥

∥

2

L2(Ωθ\B1)

.
∥

∥

∥eτ(φ−C)∆vR

∥

∥

∥

2

L2(Ωθ\B1)
.

Defining w̃ := w1,Rw2, we inspect the right hand side of the inequality:

∆vR = w̃∆Lu + 2∇w̃ · ∇Lu+ Lu∆w̃.

Combining this with inequality (2.5.2) and choosing R ≥ 1 sufficiently large, yields

|∆vR| ≤ Cλ(|x| 3α−4
2 |vR|+ |x|α−2

2 |∇vR|) + 2|∇w̃||∇Lu|+ |Lu||∆w̃|. (2.5.3)

Thus, the first term on the right hand side can be absorbed into the left hand side

of the Carleman inequality. The remaining right hand side terms in (2.5.3) are only

active close to the boundary as well as at a spatial scale ∼ R. With R ∼ 1 and

choosing C > 0 in dependence of R, this leads to a right hand side term of the form

∥

∥

∥eτ(φ−C)(|∇w̃||∇Lu|+ |Lu||∆w̃|)
∥

∥

∥

L2(Ωθ\B1)
.
∥

∥

∥e−τ
C
2 e−β|x|

2

Pφ(x)
∥

∥

∥

L2(Ωθ\B1)
,
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where Pφ denotes a function with at most polynomial growth. As a consequence,

the right hand side term vanishes in the limit τ → ∞. Thus, the function Lu must

vanish on some open domain. By unique continuation this therefore implies that

Lu ≡ 0 in the whole domain. As this holds for all Laplace modes s, we obtain the

desired result Lu ≡ 0, hence u ≡ 0.

Remark 10. The Carleman estimate (2.5.1) dictates the decay assumption on the

potential c2. Comparing exponents, we obtain

b(θ) =
α− 2

2

for the exponent in Proposition 8.

As an alternative to the complex analytic argument presented in Section 2.2, we can

now present a second, more stable proof of the non-existence of harmonic functions

with Gaussian decay rates in cones with opening angles greater than π
2 via our

Carleman inequality (2.5.1):

Proposition 11. Let θ > π
2 . Let u : Ωθ → R be a solution of

∆u = c1(x)u + c2(x) · ∇u in Ωθ,

|c2(x)| ≤
1

|x|b(θ) in Ωθ, c1 ∈ L∞,

|u| ≤ e−β|x|
2

in Ωθ.

Then u ≡ 0.

Proof. This follows along the lines of the proof of Proposition 8 (after having carried

out the Laplace transform).

2.6 The Parabolic Situation – Pseudoconvexity Ana-

lysis and Weights for the Anisotropic Operator

The Pseudoconvexity Condition

As we are interested in proving an anisotropic Carleman inequality, we treat the

temporal and spatial variables according to the parabolic scaling in the usual con-

jugation procedure, c.f. [Tat97], [Tat03]. Using an arbitrary weight, φ, and setting

u = e−φw, this leads to the following expression

∥

∥eφ(∆ + ∂t)u
∥

∥

2

L2 =
∥

∥(∆ + |∇φ|2 − 2∇φ · ∇ −∆φ+ ∂t − ∂tφ)w
∥

∥

2

L2 .
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Separation into the symmetric and antisymmetric parts yields

∥

∥(∆ + |∇φ|2 − 2∇φ · ∇ −∆φ+ ∂t − ∂tφ)w
∥

∥

2

L2

=
∥

∥(∆ + |∇φ|2 − ∂tφ)w
∥

∥

2

L2 + ‖(∂t − 2∇φ · ∇ −∆φ)w‖2L2

+

∫

([∆ + |∇φ|2 − ∂tφ, ∂t − 2∇φ · ∇ −∆φ]w,w)dx.

Taking the anisotropy of the equation into account (and assuming φ ∼ τ), the

principal symbols of these expressions read

pr = −|ξ|2 + |∇φ|2,
pi = s− 2∇φ · ξ,

(in a bounded domain). As for all Carleman inequalities, it suffices to derive the

estimate on the characteristic set of the principal symbol. Here, the positivity has

to originate from the commutator expression. On the characteristic set the leading

order terms of the spatial commutator turn into

{pr, pi}x = 4∇φ · ∇2φ∇φ + 4|∇φ|2 ξ|ξ| · ∇
2φ

ξ

|ξ| ,

while the temporal commutator is of the following form

{pr, pi}t = −2∂t|∇φ|2.

As we will see in the sequel, both terms play an essential role for our analysis:

• Decay of Null-Controllable Solutions. An equilibrium condition for the

temporal and spatial commutators allows to deduce Gaussian decay for null-

controllable solutions of the heat equation. This was proved by Šverák et al.

[ESŠ03], c.f. Lemma 5, and can also be extended (with appropriately adapted

exponents) to higher order diffusion equations. The key idea here is to employ

non-convex weights in the x-variable which are not weighted by the (large)

prefactor τ , combined with convex weights in the temporal variable which are

weighted by a factor of τ . Although this implies that the spatial commutator

does not induce positivity on the intersection of the characteristic sets of the

symmetric and antisymmetric parts of the operator, positivity can be obtained

from the temporal part of the commutator. The uttermost, still controllable

amount of non-convexity in the spatial part is determined by an equality of

the scaling of the most negative commutator contributions, ∇φ · ∇2φ∇φ, and
the strongest positive commutator contributions, −∂t|∇φ|2. Thanks to the

strong τ weight in time, the temporal commutator provides enough positivity

in this case, c.f. Lemma 5.

• Backward Uniqueness Property. The spatial terms dictate the necessary

conditions for Carleman weights which can be used in proving the backward
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uniqueness property. In order to treat arbitrary boundary terms, we have to

truncate the weight function on the respective spatial and temporal bound-

aries. This, however, implies that the weight must be very small at the bound-

ary, while it has to become very large in the (spatial and temporal) interior of

the domain. This is achieved via weights with a factor τ both in their spatial

and their temporal components. From this we infer the existence of a spatial

regime in which the spatial commutator dominates over the temporal one due

to its scaling with τ3 (the temporal part only scales with τ2). Therefore, it

becomes necessary to study the spatial weight in detail.

We proceed with the analysis of the second observation. For that purpose, we

consider weights of the form τφ instead of φ. Therefore, a necessary and sufficient

condition for the positivity of the commutator on the characteristic set is given by

{pr, pi}x ≥ 4τ3∇φ · ∇2φ∇φ+ 4τ3|∇φ|2λmin(∇2φ) ≥ 0, (2.6.1)

where λmin(∇2φ) is the smallest eigenvalue of the Hessian ∇2φ. As a consequence,

the weight function has to be chosen such that this property is satisfied. For convex

functions φ this is always true. However, in order to prove the Carleman estimate,

the weight has to be “small” at the boundary of the domain and “large” in the

interior. In fact, our Carleman weight has to satisfy the following conditions:

1.) The weight function has to vanish on the boundary of the domain (both

spatially and temporally on the time slice on which the function itself is not

already vanishing), and has to be strictly positive in the (spatial and temporal)

interior of the domain. This can be slightly relaxed by asking for weight

functions which are “small” (instead of vanishing) on the boundaries of the

domain. As a consequence, the weight function has to be concave in the

angular variable ϕ (at least partially). As the pseudoconvexity condition is

strictly weaker than the standard convexity notion, it is still possible to find a

non-empty class of weights in domains with sufficiently large opening angles.

2.) As observed by Escauriaza, Seregin and Šverák [ESŠ03] null-controllable so-

lutions of the heat equation have Gaussian decay at infinity:

Lemma 5 (Gaussian Decay, [ESŠ03]). Let u : [0, T ]×BR(0) → R satisfy

|∂tu+∆u| ≤ c1(|∇u|+ |u|) in (0, T )×BR(0),

u(0, x) = 0 in BR(0),

|u| < M in (0, T )×BR(0),

for some constant c1 < ∞. Then there exist constants β, γ, such that for

t ∈ (0, γ)

|u(t, 0)| ≤ c2
min{1, T }Me−β

R2

t ,
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where c2 = c2(c1), γ = γ(c1, T ).

Microlocally, the estimate of Escauriaza, Šverák and Seregin uses an equilib-

rium between a relatively weak, non-convex spatial weight and a very strong,

convex temporal weight.

Lemma 5 implies that the growth of admissible Carleman weights is restricted:

Any Carleman weight, which is constructed with the aim of proving the back-

ward uniqueness property, has to have a subquadratic growth behaviour in

unbounded conical domains.

The Ansatz for the Weight Function: Necessary and Sufficient

Conditions

In analogy to the weight function of Šverák and Li [LŠ10], we make the ansatz

φ(r, ϕ) := rαf(ϕ),

for a two-dimensional (spatial) weight function in polar coordinates. In this case

the pseudoconvexity condition, (2.6.1), can be rephrased as a homogeneous cubic

ordinary differential inequality:

(α− 1)α3f(ϕ)3 + α(2α− 1)f(ϕ)f ′(ϕ)2 + f ′(ϕ)2f ′′(ϕ)

+
1

2

(

α2f(ϕ)2 + f ′(ϕ)2
) (

α2f(ϕ) + f ′′(ϕ)

−
√

(α− 2)2α2f(ϕ)2 − 2(α− 2)αf(ϕ)f ′′(ϕ) + 4(α− 1)2f ′(ϕ)2 + f ′′(ϕ)2
)

≥ 0.

(2.6.2)

Lemma 5, however, implies a restriction on the possible radial dependence of the

weight function: α ≤ 2. Difficulties in choosing appropriate weights therefore stem

from the fact that we cannot convexify the weight in the radial variable in an

arbitrarily strong manner.

Šverák’s Weight Function and a Modification

In order to analyze possible Carleman weights, we briefly review Šverák’s ansatz:

The weight function

φSv(r, ϕ) = rα
(

cosα(ϕ)− cosα
(

θ

2

))

(2.6.3)

satisfies the pseudoconvexity condition as long as the opening angle θ remains large

enough: θ ≥ arccos( 1√
3
). The necessity of this condition can be verified by ana-

lytically checking the pseudoconvexity condition at the boundary of the domain.

Indeed, Šverák’s weight function degenerates at the boundary although it displays

robust pseudoconvexity properties in the interior (c.f. Figure 2.2). A limitation

of Šverák’s weight certainly consists in choosing only a one parameter family of
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Figure 2.2: The pseudoconvexity condition is satisfied for Šverák’s weight func-
tion: The x−axis depicts the angle in radians while we plot the values of the
pseudoconvexity-expression (2.6.2) on the y-axis. We note that the pseudoconvex-
ity properties of the weight function degenerate at the boundary.

weights. If instead the same weight is considered with a second parameter β, e.g.

φα,β(r, ϕ) = rα
(

cosβ(ϕ)− cosβ
(

θ

2

))

the angle can be reduced significantly.

This ansatz has the advantage that although there are restrictions on the growth

of α there are none on the size of β, in particular β ≥ 2 is an admissible exponent.

Here the weight suffices to prove the backward uniqueness property in opening

angles of up to approximately 95.4◦. The drawback of this ansatz, however, is that

the pseudoconvexity condition can become fragile in the interior of the domain as

well (c.f. Fig. 2.3).
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Figure 2.3: For the angle θ ∼ 95.4◦ the pseudoconvexity condition is satisfied for
φα,β with α = 1.999999, β = 2.474917. For this weight function the pseudoconvexity
condition deteriorates at the boundary as well as in the interior.

This two-parameter family of weight functions is certainly not optimal. A more
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general ansatz for a weight function could consist of making a power series ansatz

and optimizing the coefficients so as to preserve pseudoconvexity in the domain.

With the weight

φ(r, ϕ) := r1.99999(0.987609− 1.22053ϕ2 + 0.562108ϕ4 − 0.162117ϕ6

+0.0481833ϕ8 − 0.000001ϕ10),
(2.6.4)

for example, it is possible to reach angles below 95◦.

The Numerical Analysis of the Pseudoconvexity Condition

Instead of trying to guess a suitable weight function, it is possible to numeri-

cally analyze the pseudoconvexity condition. As the ODE which encodes the one-

dimensional pseudoconvexity condition is invariant under the reflection

f(ϕ) 7→ f(−ϕ),

we expect the solution to be symmetric if the boundary conditions are prescribed

in a symmetric way. Unfortunately, the system seems to be numerically stiff; using

Mathematica calculations it seems impossible to reach an angle smaller than ap-

proximately 94.8◦ in the case of an equality in (2.6.2). Therefore, it would be very

interesting to understand the symmetric boundary value problem for (2.6.2) from

an analytical point of view. Due to the nonlinearity and square root in the equation

this seems to be challenging.

Apart from these (technical) difficulties, we believe that the fundamental problem of

determining admissible weights via the described one-dimensional approach is lim-

ited to approximately 95◦. In other words, the major drawback in reaching angles

closer to the conjectured 90◦ is caused by restricting to essentially one-dimensional

weight functions.

Proof of the Carleman Estimate (2.4.1)

Using the explicit weight φ1.999999,2.474917, it is possible to deduce a Carleman in-

equality and thus to prove backward uniqueness of the heat equation in conical

domains with angles down to approximately 95.4◦. As the computations for other

weights such as (2.6.4) are of a similar flavour but algebraically more complicated,

we concentrate on φ1.999999,2.474917.

Once an admissible, improved weight is found, the techniques of the proof of the

backward uniqueness property are not new; in fact we argue along the same lines as

Šverák and Li [LŠ10]. As already indicated by the phase space considerations the

proof has to use the pseudoconvexity properties of the weight. Although the proof

will not be a phase space argument but will instead rely on a direct argument, the

previous considerations form the basis of the result. Having ensured pseudocon-

vexity in the spatial variables, the final weight function can be chosen to have the
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following time dependence:

φ(t, r, ϕ) = φ1(t, r, ϕ) + φ2(t),

φ1(r, t, ϕ) =
1− t

t
φ1.999999,2.474917(r, ϕ), φ2(t) = ǫ(1− t)2,

for a sufficiently small constant 0 < ǫ≪ 1 to be chosen later.

Proof of Proposition 6. Let u ∈ C∞
0 ((0, T ) × (Ωθ \ BR)), R ≫ 1. Conjugating the

heat operator gives

Lφu = (∆ + τ2|∇φ|2 − 2τ∇φ · ∇ − τ∆φ + ∂t − τ∂tφ)u,

Aφu = (∂t − 2τ∇φ · ∇ − τ∆φ)u, Sφu = (∆ + τ2|∇φ|2 − τ∂tφ)u.

Therefore the L2 norm of the operator turns into

∫

|Lφu|2dxdt =
∫

|Aφu|2dxdt +
∫

|Sφu|2dxdt +
∫

([Sφ, Aφ]u, u)dxdt.

The idea is to derive the lower bound by using a combination of the commutator

and the symmetric part of the operator. A short calculation yields

∫

([Sφ, Aφ]u, u)dxdt = 4

∫

(τ3∇φ · ∇2φ∇φu2 + τ∇u · ∇2φ∇u)dxdt

+

∫

(−2τ2∂t|∇φ|2 + τ∂2t φ− τ∆2φ)u2dxdt.

As in the case of Šverák and Li [LŠ10], the difficulty originates from the fact that

the Hessian of the weight function is not globally positive-definite (which, however,

still suffices for our purposes as pseudoconvexity is a strictly weaker condition than

the usual notion of convexity). Nevertheless, the numerical analysis of the pseu-

doconvexity properties of this weight function suggests that on the characteristic

set of the symmetric and antisymmetric parts the commutator provides sufficient

positivity for the Carleman inequality to hold true. In real space, this condition

can be realized by deducing positivity from a combination of the commutator and

the symmetric part. As Šverák and Li, we introduce an auxiliary function F (t, x).

An integration by parts gives

∫

(Sφu, Fu)dxdt =

∫

−F |∇u|2 + (
1

2
∆F + τ2F |∇φ|2 − τ∂tφF )u

2dxdt.

Hence, by the binomial formula

∫

(Sφu, Sφu)dxdt ≥ −
∫

(Sφu, Fu)dxdt−
1

4

∫

F 2u2dxdt

≥
∫

F |∇u|2 − (
1

2
∆F + τ2F |∇φ|2 − τ∂tφF )u

2dxdt

− 1

4

∫

F 2u2dxdt.
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As in the paper of Šverák and Li [LŠ10], the combination of the commutator and

the symmetric part yield

∫

([Sφ, Aφ]u, u)dxdt+

∫

|Sφu|2dxdt ≥
∫

(4τ3∇φ · ∇2φ∇φu2 − τ2F |∇φ|2u2)dxdt

+

∫

(F |∇u|2 + 4τ∇u · ∇2φ∇u)dxdt

+

∫

(−2τ2∂t|∇φ|2 + τ∂2t φ− τ∆2φ)u2dxdt

−
∫

(
1

2
∆F − τ∂tφF )u

2dxdt − 1

4

∫

F 2u2dxdt.

In order to derive positivity for the gradient term, we set

F = −4τλmin(∇2φ1) +
2

5
.

We remark that for our choice of φ the smallest eigenvalue of the Hessian of φ,

λmin(∇2φ), is a smooth function of both the angular and the radial variables if

r > 0 (c.f. Figure 2.4). Thus, no additional mollification is necessary in order to

deal with expressions as for instance ∆F .
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Figure 2.4: The eigenvalues of the Hessian of the weight function φ1 depending on
the angular variable ϕ for fixed radial and temporal variables. Due to the concavity
along the angular and the convexity along the radial directions, the eigenvalues have
a fixed sign and do not cross. In particular, no mollification is needed in order to
deal with the derivatives of the auxiliary function F .

The choice of F immediately implies

∫

F |∇u|2 + 4τ∇u · ∇2φ∇udxdt ≥ 2

5

∫

|∇u|2dxdt.

As the weight function satisfies the pseudoconvexity condition, we also obtain

4τ3
∫

∇φ · ∇2φ∇φu2 + λmin(∇2φ)|∇φ|2u2dxdt ≥ 0.
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As a consequence, it remains to prove the positivity of the following terms

∫

(−2τ2∂t|∇φ|2 + τ∂2t φ− τ∆2φ− 2τ2

5
|∇φ|2)u2dxdt

−
∫

(
1

2
∆F − τ∂tφF )u

2dxdt − 1

4

∫

F 2u2dxdt.

We begin with the terms of order τ2 and treat the terms involving φ1 and φ2

separately: We start by estimating the φ1 contributions. Moreover, we note that

by choosing R ≫ 1 sufficiently large, the scaling of λmin(∇2φ) in the radial variable

implies that the τ2 contribution coming from the 1
4

∫

F 2u2dxdt integral can be

considered small with respect to the other terms of τ2 scaling. Thus, it will be

ignored in the sequel. Due to the homogeneity of the remaining terms in the radial

variable (−2τ2∂t|∇φ|2−4τ2∂tφ1λmin(∇2φ)− 2τ2

5 |∇φ|2 ∼ r2α−2, α = 1.999999) and

the multiplicative temporal dependence of the weight, the lower bound

∫

(−2τ2∂t|∇φ|2 − 4τ2∂tφ1λmin(∇2φ)− 2τ2

5
|∇φ|2)u2dxdt ≥ cτ2

∫

(1− t)

t2
u2dxdt

(2.6.5)

follows, once it is established in an (angular) cross-section of the domain. In order

to deduce this estimate, we observe

λmin(∇2φ)∂tφ1 = −1− t

t2
φα,β(x)λmin(∇2φα,β)−

(1 − t)2

t3
φα,βλmin(∇2φα,β),

∂t|∇φ|2 = −2
1− t

t2
|∇φα,β |2 − 2

(1− t)2

t3
|∇φα,β |2,

where α = 1.9999999, β = 2.474917. Thus, it suffices to prove the positivity of

3.6|∇φα,β |2 + 4λmin(∇2φα,β)φα,β .

As this expression attains a positive local minimum at ϕ = 0 and as this is a global

minimum on our domain of definition, the desired positivity follows, c.f. Fig. 2.5.

In order to estimate the full contribution in τ2, it remains to bound
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Figure 2.5: The figure depicts the term 3.6|∇φα,β|2 + 4λmin(∇2φα,β)φα,β with α =
1.9999999, β = 2.474917 in an angular cross-section of the domain. The numerical
evaluation shows that this expression is positive.
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−4τ2
∫

∂tφ2λmin(∇2φ)udxdt = −8τ2ǫ

∫

(1− t)λmin(∇2φ)u2dxdt.

For sufficiently small ǫ this can be absorbed into the right hand side of (2.6.5).

We proceed with the terms of τ -scaling. Due to the positivity of ∂2t φi, the estimate

|∂2t φi| ≥ |∂tφi|, i ∈ {1, 2}, and the scaling in the radial direction, the last term,

τ

∫

(∂2t φ−∆2φ− τ−1

2
∆F +

2

5
∂tφ+

2

5
λmin(∇φ1))u2dxdt,

is positive in the spatial interior of the domain (which in particular includes the time

slice t = 1) if a sufficiently large ball around the origin is excluded. Close to the

spatial boundary the scaling of the involved terms allows to absorb the (potentially)

negative parts, i.e.

τ

∫

(−∆2φ− τ−1

2
∆F +

2

5
λmin(∇φ1))u2dxdt,

into (2.6.5) for sufficiently large τ ≥ τ0 (here it is possible to ignore the also po-

tentially negative contribution 2
5∂tφ as it can always be absorbed into the larger

positive term ∂2t φ).

Furthermore, a small amount of the ∂2t φ1 contribution suffices to control the nega-

tive ∂tφ1 derivative. Hence, we obtain a further positive contribution of the form

τ

∫

(∂2t φ+
2

5
∂tφ)u

2dxdt & τ

∫

u2dxdt.

For sufficiently large τ , this contribution can then be used to absorb the last negative

term: − 1
25

∫

u2dxdt.

Proof of the Backward Uniqueness Result

Due to Lemma 5 null-controllable solutions of the heat equation have exponential

decay: For solutions of (2.4.2) the estimate of Šverák, Seregin and Escauriaza yields

|u| ≤ Ce−c
dist(x,∂Ω)2

t – which is, at first sight, only a non-uniform decay estimate,

deteriorating close to the boundary of the domain. Considering angles strictly larger

than 90◦, it is possible to reduce the angle slightly while still remaining arbitrarily

close to the original angle. In this case Šverák’s inequality implies a uniform decay

estimate:

|u| ≤ Ce−c|x|
2

.

In order to deduce the backward uniqueness property, we use the following strategy

of proof:

• In the first step the angle is reduced slightly, so as to obtain the Gaussian

decay estimate globally.

• Secondly, with the aid of a cut-off function, which is active at the boundary
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of the domain as well as close to the (spatial) origin, the Carleman estimate

can be applied.

• Finally, carrying out the limit τ → ∞ provides the desired conclusion.

Proof of Proposition 7. Step 1: Decay estimate, rescaling and choice of the test

functions.

We choose ǫ > 0 such that δ := θ− ǫ ≥ θ0 where θ0 is the angle down to which our

Carleman inequalities hold (e.g. θ0 = 95.4◦). Lemma 5 implies Gaussian decay:

|u| ≤ Ce−c
dist(x,∂Ωθ)2

t ≤ Ce−c
sin2(ǫ/2)|x|2

t .

Due to the assumptions, we have to deal with the differential inequality

|(∂t +∆)u| ≤ C(|u|+ |∇u|).

Rescaling u parabolically and translating, i.e.

uλ(x, t) := u

(

λ2
(

t− 1

2

)

, λx

)

,

we obtain a “small” right hand side:

|(∂t +∆)uλ| ≤ Cλ(|uλ|+ |∇uλ|) in [0, 1]× Ωδ,

uλ(t, x) = 0 in

(

0,
1

2

)

× Ωδ.
(2.6.6)

With slight abuse of notation, we will work with u satisfying (2.6.6) in the sequel

without changing notation.

In order to apply the Carleman estimate, it is necessary to cut off the solution of

the heat equation. Due to this, we introduce the cut-off functions

w1,R(x1) :=

{

0, x1 ≤ R,

1, x1 ≥ 2R,
w2(s) :=

{

0, s ≤ − 4
3 ,

1, s ≥ − 1
2 ,

which are chosen to be smooth interpolations in the intermediate regime. Further-

more, we define

w(x, t) := w1,R(x1)w2(φ(t, x) − C),

v(x, t) := w(x, t)u(x, t).

Although v does not have compact support, an additional limiting argument com-

bined with the Gaussian decay rate of this function, implies its admissibility in the

Carleman estimate.
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Step 2: Application of the parabolic Carleman inequality and limit τ → ∞. An

application of the Carleman inequality (2.4.1) leads to

τ
1
2

∥

∥

∥eτ(φ−C)v
∥

∥

∥

L2
+
∥

∥

∥eτ(φ−C)∇v
∥

∥

∥

L2
≤
∥

∥

∥eτ(φ−C)(∂t +∆)v
∥

∥

∥

L2
. (2.6.7)

Estimating the right hand side results in

|(∂t +∆)v| ≤ Cλ(|v| + |∇v|) + C(|u|+ |∇u|)(|∂tw|+ |∇w|+ |∆w|);

Due to the smallness of λ, the first part of the expression can be absorbed in the left

hand side of (2.6.7). For the remaining part, i.e. C(|u|+ |∇u|)(|∂tw|+ |∇w|+ |∆w|),
we use the definition of w. Indeed, in the set on which C(|∂tw|+ |∇w|+ |∆w|) 6= 0,

we have φ− C ≤ − 1
2 . Consequently,

C
∥

∥

∥eτ(φ−C)(|u|+ |∇u|)(|∂tw| + |∇w|+ |∆w|)|
∥

∥

∥

L2

≤ C
∥

∥e−
τ
2 (|u|+ |∇u|)(|∂tw|+ |∇w| + |∆w|)|

∥

∥

L2

≤ C
∥

∥

∥
e−

τ
2 −β|x|

2

Pφ(x)
∥

∥

∥

L2
,

where Pφ(x) has at most polynomial growth. In the limit τ → ∞ the right hand

side of the inequality vanishes. Hence,

τ
1
2

∥

∥

∥eτ(φ−C)v
∥

∥

∥

L2
+
∥

∥

∥eτ(φ−C)∇v
∥

∥

∥

L2
≤ C

∥

∥

∥e−
τ
2 e−β|x|

2

Pφ(x)
∥

∥

∥

L2
→ 0 as τ → ∞.

As a result,

u = 0 in Ωδ ∩ {φ− C ≥ 0}.

Now unique continuation across spatial boundaries implies the desired result.



Chapter 3

Unique Continuation for the

Fractional Laplacian

3.1 Introduction

In this chapter we encounter another rigidity property – the unique continuation

principle. In the last decades, unique continuation has been a very active field

of research. In its strong form, it states that if a solution of a certain differential

equation vanishes of infinite order at a certain point, it must already vanish globally.

This property and its “relative”, the weak unique continuation principle, are of

particular interest due to several reasons:

• Rigidity and Uniqueness. The unique continuation property is a natural

extension of the “identity principle” for harmonic functions: Two harmonic

functions which agree up to infinite order at a certain point are identical. As

this is a very strong rigidity property of harmonic functions, it is a natural

question to ask whether and which other operators possess similar rigidity

properties. In particular, it is interesting to investigate up to which extent

Schrödinger operators inherit the unique continuation properties (from the

Laplacian).

• Absence of Positive Eigenvalues. Apart from the intrinsic interest in

understanding the rigidity properties of solutions of certain classes of equa-

tions, an additional motivation for studying the unique continuation prin-

ciple is provided by understanding the absence of positive eigenvalues for

Schrödinger operators (with potentials). In its simplest form, the absence

of positive eigenvalues follows from a theorem of Rellich [Rel43], combined

with the weak unique continuation property for Schrödinger operators with

bounded potentials. Following the survey article of Kenig [Ken89], we briefly

sketch the argument relating the spectral properties of Schrödinger operators,

P (D, x) = −∆+ V , to a (weak) unique continuation result:

Assume that V is a compactly supported potential, supported, say, on BR(0).

46
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Suppose a positive eigenvalue E associated to an L2 eigenfunction existed.

Then Rellich’s theorem states that u ≡ 0 on Rn \ BR(0), i.e. the eigenfunc-

tion is compactly supported. If the operator

−∆+ V − E

has the weak unique continuation property, this implies that u ≡ 0 on Rn.

Hence, there can be no positive eigenvalue.

In general, it is of interest for which kind of potentials such a statement holds.

Here, the limiting behaviour of the potential, both in compact sets and at in-

finity, plays a decisive role. For example, in quantum mechanical applications

a naturally encountered potential consists of the Coulomb potential which is

singular at the origin but also displays long range effects. In order to deal with

this and similar situations, it is necessary to investigate unique continuation

properties under Lp integrability assumptions for the potential.

More elaborate arguments – and in a sense optimal ones – for the non-existence

of positive eigenvalues for Schrödinger operators can, for example, be found

in the papers of Jerison & Ionescu [IJ03] and Koch & Tataru [KT06]. In par-

ticular, the support condition on the potential can be dropped and replaced

by appropriate growth bounds at infinity.

• Connection to (Nonlinear) Elliptic Problems. Unique continuation

statements can be used to deduce uniqueness of solutions to linear and non-

linear problems. This is similar to the reduction of the uniqueness of certain

solutions of the Navier-Stokes equations to the backward uniqueness property

of the heat equation, which was mentioned in the previous chapter. A re-

cent example in which strong unique continuation results were used to deduce

uniqueness of radial solutions of certain nonlinear equations is, for instance,

contained in the article of Frank, Lenzmann and Silvestre [FLS13].

By now, an extensive literature on unique continuation properties has been devel-

oped. However, instead of reviewing all of these contributions, we focus on the

local model case, i.e. the standard Laplacian, and the non-local family of fractional

Laplacian operators with s ∈ (0, 1). Considering the fractional Laplacian instead

of the standard Laplacian is a natural extension as many models describing phys-

ical, economic or geometric situations are based on this non-local operator rather

than on the local analogues, e.g. [BS02], [Váz12], [CG11], [SV09]. Examples from

physics are relativistic Schrödinger equations involving the half-Laplacian or certain

approximations of the Navier-Stokes equations [Sil07]. An example originating from

economics are so-called American options [Sil10].

In the context of unique continuation properties this non-local, elliptic pseudodiffer-

ential operator poses an interesting challenge, as one has to find appropriate means

of exploiting the local information, i.e. the local high order of vanishing. More

precisely, in the sequel we will consider the following problem: Let u : Rn → R,
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u ∈ Hs, s ∈ (0, 1), be a (weak) solution of

(−∆)su = V u,

where u vanishes of infinite order at a certain point x0 (which we choose to be 0 in

the sequel). Does this already imply that u vanishes identically?

Here, the infinite order of vanishing means that for any n ∈ N we have

lim
r→0

r−n
∫

Br(0)

u2dx = 0.

In order to tackle this problem, we crucially rely on the Caffarelli-Silvestre extension.

This allows to interpret the fractional Laplacian as a (generalized) Dirichlet-to-

Neumann map of a certain degenerate elliptic operator. As a result, the problem

becomes tractable via Carleman inequality techniques.

The remaining part of the chapter is organized as follows: In the following two

sections we briefly review the literature on unique continuation properties for (stan-

dard) Schrödinger equations and recall important properties of the fractional Lapla-

cian. Section 3.4 is dedicated to the statement of the central Carleman estimates.

In Sections 3.5-3.7 we prove the decisive Carleman estimate and show how it implies

the strong unique continuation principle if s ∈ [ 14 , 1). Here, the methods of deducing

the estimates strongly rely on the ideas of [KT01a]. If s < 1
4 , we prove the strong

unique continuation property under differentiability conditions on the potential. For

this we use a slightly modified strategy of proving the crucial Carleman inequality,

c.f. Section 3.6.2. Moreover, we study the one-dimensional situation in detail, as

one can hope for stronger results in this case, c.f. Section 3.8. Last but not least,

Sections 3.9 and 3.10 deal with generalizations of our main estimates: In Section 3.9

we reduce the integrability assumptions in the case of the half-Laplacian, whereas

Section 3.10 is dedicated to the discussion of variable coefficient operators.

3.2 Review: Unique Continuation and Carleman

Estimates

Previous Works on Unique Continuation for Second Order

Elliptic Operators – Results

As unique continuation properties play an important role in understanding the

underlying (elliptic) operator, there has been a huge effort to obtain the strongest

possible conditions on the respective metrics and potentials in order to secure unique

continuation. Here one has to distinguish between the strong and the weak unique

continuation properties:

• The weak unique continuation property (WUCP) deals with the question of

whether vanishing in an open set already leads to global vanishing for solutions
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of a given PDE.

• The strong unique continuation property (SUCP) is concerned with the prob-

lem of whether vanishing of infinite order at a point already implies global

vanishing for solutions of a given PDE.

As far as (divergence form) perturbations of Schrödinger equations are concerned,

the picture is quite complete by now. As this serves as our model case, we briefly

review the positive and negative results for the equation

∆u = V u+W · ∇u.

• Heuristics. In order to understand in which settings unique continuation

might hold, it is instructive to consider the case of a high but finite (polyno-

mial) order of vanishing (c.f. [Wol93]): Assuming that u ∈ C∞
0 (B1(0)), u ∼ rk

for r ≪ 1, k ≫ 1, we would expect ∆u ∼ rk−2. This implies that |∆u|
|u| ∼ r−2,

which just fails to be in L
n
2 (Br(0)) (where n denotes the space dimension). As

a consequence, one expects that potentials V , lying in spaces of L
n
2 -scaling,

are the critical ones for unique continuation. An analogous argument suggests

that for gradient potentials, W , the scaling invariant (critical) space is given

by Ln(Br(0)).

• The Potential V . Considering functions of the form u = e−| ln(|x|)|1+ǫ

, one

finds that, in general, the strong unique continuation property does not hold

for potentials V in Lp-spaces with p < n
2 .

As a complementary result, the seminal paper of Jerison & Kenig [JK85]

demonstrated that it is possible to reach all Sobolev potentials with critical

scaling by proving the estimate

∥

∥|x|−τu
∥

∥

Lp .
∥

∥|x|−τ∆u
∥

∥

Lp′ ,

where 1
p′ − 2

n = 1
p and u ∈ C∞

0 (Rn \ {0}). Moreover, an appendix of

Stein [Ste85] illustrated that even potentials in certain scaling-critical Lorentz

spaces can be controlled under an additional smallness assumption. More

precisely, Stein showed that the unique continuation property holds for po-

tentials in L
n
2
w with small norms. The necessity of this smallness was later

demonstrated by Wolff [Wol92a].

Considering only radial potentials, much more can be said [PW98]. Indeed,

unique continuation properties hold in all scale-invariant spaces, i.e. up to

Lnw (with arbitrarily large norms). Further results by Pan [Pan92] and Pan &

Wolff [PW98], imply the strong unique continuation property for inequalities

of the form

|∆u| ≤ C

|x|2 |u|.
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This illustrates that the situation is more subtle than pure scaling arguments

suggest.

• The Gradient Potential W . The investigation of the unique continuation

property for equations with gradient potentials, turned out to impose sub-

stantial additional difficulties. In fact, it became clear that the techniques

which yielded the results for the potential V alone were not strong enough to

prove the conjectured sharp scaling result. The missing ingredient was found

by Wolff who introduced an osculation argument [Wol92b]. The “right” com-

bination of the osculation method and the previously existing techniques,

however, was first used in its full power by Koch & Tataru [KT01a]. Here

they showed that it is possible to prove unique continuation with W ∈ l1w(L
n)

with small norm (the space l1w(L
n) consists of functions whose Ln norms are

l1w “summable” on dyadic annuli). This result is essentially sharp as one can

infer from the counterexamples of Koch & Tataru [KT02] and Wolff [Wol94].

Similar to the case of the potentials V , Pan & Wolff [PW98] prove that one

can deal with singular potentials satisfying

|∆u| ≤ C

|x|2 |u|+
ǫ

|x| |∇u|,

for a sufficiently small constant ǫ > 0. Again, this result is essentially sharp,

as it is possible to construct counterexamples for the unique continuation

property satisfying the differential inequality

|∆u| ≤ C

|x| |∇u|,

if C > 0 is sufficiently large, c.f. [Wol93].

• Weak Unique Continuation. The strongest positive results on weak unique

continuation are due to Wolff [Wol93]. He deduces the weak unique continu-

ation property for potentials V ∈ L
n
2 , W ∈ Ln. On the negative side there

are several counterexamples, c.f. [KT02], [KN00], [Man02]. The strongest

ones complement the positive results by, for example, showing that for n ≥ 3

Schrödinger operators with potentials of the form V ∈ L
n
2
w or W ∈ Lnw, in

general, do not have the unique continuation property.

• Boundary Unique Continuation. A question related to unique continua-

tion problems consists of asking whether it is possible to control a Schrödinger

equation from the boundary. More precisely, one deals with the question

whether the vanishing of u on a relatively open subset V of the boundary of

a domain Ω ⊂ Rn and the vanishing of ∇u on a set Ṽ ⊂ V with positive

Hn−1 measure already implies the global vanishing of u. In dimensions n ≥ 3

this cannot be relaxed to only requiring that u and ∇u vanish on a common

boundary subset of positive Hn−1 measure, c.f. [BW90]. For further details

we refer to Isakov’s book [Isa06] and the references therein.
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In a sense, all the previously mentioned results rely on a spectral gap property of

the (spherical) Laplacian (which can be obtained by the explicit knowledge of the

eigenfunctions and eigenvalues). The spectral gap condition poses a severe restric-

tion on a given operator. As a consequence, it seems unlikely that this property

holds for the operator associated with the fractional Laplacian in the respective

conformal coordinates in any dimension larger than one (it could however be that

this property holds on very specific manifolds).

In spite of this, in general the results on the standard Laplacian can be considered

as a guideline for the setting involving the fractional Laplacian. However, in using

the Caffarelli-Silvestre extension strategy, one notices a crucial difference: For the

fractional Laplacian the standard potential V , i.e. the equation with

(−∆)su = V u,

poses similar difficulties as the gradient potential in the case of the standard Lapla-

cian.

Previous Works on Unique Continuation for Second Order

Elliptic Operators – Methods

Essentially two techniques are available in order to prove unique continuation re-

sults. On the one hand, there is a huge literature on Carleman estimates including,

for example [Hör07], [Isa06], [Isa04], [Kli92], [Tat97]. On the other hand, variational

approaches using frequency functions are also often applicable, c.f. [GL86], [GL87],

[Lin91], [Lin90], [Ken89]. Both methods rely on underlying (pseudo-)convexity

properties of the respective operator. In the sequel, we briefly introduce both meth-

ods.

• Carleman Estimates. Carleman estimates originate from the study of

uniqueness in elliptic Cauchy problems. They were first introduced in Carle-

man’s fundamental paper of 1939 [Car39]. Here, he used strongly weighted

estimates in order to derive uniqueness for a two-dimensional Cauchy problem.

Later, the concept of exponentially weighted estimates was further developed

by Hörmander who pointed out that the underlying principle of such an es-

timate consists of a certain convexity notion (which is related to convexity

notions in complex analysis). Today, Carleman estimates are an indispens-

able tool in dealing with a wide range of inverse problem (c.f. [Isa06] and the

references therein). A brief outline of the general strategy involved in proving

a Carleman estimate was pointed out in the introduction to this part of the

thesis, c.f. Chapter 1.

• The Frequency Function Approach. In [AJ79] Almgren introduced the

notion of a “frequency function” in order to measure the local growth of (har-

monic) functions. Garofalo and Lin [GL87] exploited its variational struc-

ture in deriving monotonicity properties. These lead to doubling estimates
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for the functions under consideration which then imply unique continuation.

Similarly to Carleman estimates, frequency function approaches rely on con-

vexity/monotonicity properties. We briefly indicate the main ideas of the

frequency function approach: For the Laplacian, one defines

D(r) :=

∫

Br

|∇u|2dx, H(r) =

∫

∂Br

u2dHn−1(x), N(r) =
rD(r)

H(r)
.

We observe that the scaling behaviour of rD(r) and H(r) agrees. For eigen-

functions of the Laplacian such as u(x) = sin(kx), a suitable version of the

frequency function N(r) describes the oscillatory behaviour of the associated

eigenfunction (one needs to carry out a “harmonic extension” by defining the

eigenfunction on an appropriate cone, c.f. the survey article of Zelditch [Zel09]

and the references therein). In general, the frequency function encodes the

local growth of a function u. For a harmonic function, u, it can be shown that

the frequency function is monotone: N ′(r) > 0. Together with the identity

∂r

(

ln
H(r)

rn−1

)

= 2
N(r)

r
,

this yields the key doubling estimate:

∫

B2r

u2dx . 2−2N(r)

∫

Br

u2dx.

From this it is possible to derive unique continuation properties.

Recently this approach has been used in order to obtain unique continuation

properties for the fractional Laplacian [FF13].

3.3 Review: The Fractional Laplacian and the Unique

Continuation Property

Various Definitions of the Fractional Laplacian

The fractional Laplacian can be defined in several ways. The most common def-

initions include the interpretation as a pseudodifferential operator with the aid of

the Fourier transform and its definition as a singular integral operator. Further

possibilities are given via (generalized) Dirichlet-to-Neumann operators or as gen-

erators of certain Lévy processes. These definitions are presented in various papers

and books including Caffarelli & Silvestre [CS07], DiNezza & Palatucci & Valdinoci

[DNPV11], Cabré & Sire [CS13], Landkof [LD72], Stein [Ste70] and many more. In

the sequel we briefly recall the different possibilities.
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Interpretation as Singular Integral Operator

It is possible to define the fractional Laplacian as a singular integral: Let s ∈ (0, 1)

and u ∈ S(Rn), then

(−∆)su(x) := C(n, s)P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy

= −C(n, s)
2

∫

Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy,

where C(n, s) = π−n
2 22s

Γ(n+2s
2 )

Γ(2−s) s(1 − s) is chosen such that the Fourier and singu-

lar integral definitions of the fractional Laplacian coincide, c.f. [DNPV11], [CS13].

Duality arguments allow to extend this definition to a much larger class of distri-

butions.

Furthermore, it is possible to define a weak notion of the fractional Laplacian via

its Dirichlet form. For u, v ∈ S it is given by

(u, v)s =
C(n, s)

2

∫

R2n

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dxdy =

∫

Rn

|ξ|2sFuFvdξ.

Due to Herbst’s inequality [Her77], this defines a scalar product on functions in Hs.

This definition of the fractional Laplacian motivates the notion of the associated

(homogeneous) fractional Sobolev spaces

‖u‖p
Ẇ s,p :=

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|n+sp dxdy.

These can also be interpreted as interpolation spaces between the standard Sobolev

spaces.

The solution operator associated with the fractional Laplacian is given by the Riesz

kernel, c.f. [LD72]:

(−∆)−sf(x) = C̃(n, s)−1

∫

Rn

f(y)

|x− y|n−2s
dy,

where C̃(n, s) = π
n
2 22s Γ(s)

Γ(n−2s
2 )

.

Interpretation as a Pseudodifferential Operator via the Fourier Trans-

form

Working in Rn, it is convenient to define the fractional Laplacian via its Fourier

symbol: Let u ∈ S, then

(−∆)su = F−1(| · |2sFu).
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r � y
1�2s
n+1 rv = 0

v = u

yn+1

R
n

Figure 3.1: The “s-harmonic” extension problem in the upper half-plane.

This notion is not straightforward to handle if one intends to deal with local prop-

erties of solutions in real space. However, it is very convenient to obtain (global)

properties in Fourier space.

Just as the singular integral definition leads to a certain notion of fractional Sobolev

spaces the pseudodifferential notion does as well. This results in the Hs,p spaces

which are equivalent to the previously mentioned W s,p spaces only if p = 2, c.f.

[AF03].

Interpretation as Dirichlet-to-Neumann Operator of Certain Degenerate

Elliptic Operators

In their celebrated paper [CS07], Caffarelli and Silvestre generalize the interpreta-

tion of the half-Laplacian as the Dirichlet-to-Neumann map of the harmonic exten-

sion to fractional Laplacian operators with s ∈ (0, 1). Let v be the “s-harmonic”

extension of u ∈ S(Rn), i.e.

∇ · y1−2s
n+1 ∇v = 0 in R

n+1
+ ,

v = u on {yn+1 = 0}.

Then, the fractional Laplacian reads

(−∆)su = −cs lim
yn+1→0

y1−2s
n+1 ∂n+1v.

In other words, the fractional Laplacian can be interpreted as a (generalized)

Dirichlet-to-Neumann map. The constant cs does not depend on the dimension

n and is given by cs = 22s−1 Γ(s)
Γ(1−s) [CS13]. By a slight abuse of notation we will

often drop the constant cs in the sequel.

Although the “s-harmonic” extension is not given by a uniformly elliptic equa-

tion, the representation as the Dirichlet-to-Neumann map of a degenerate elliptic

equation allows to use a large machinery in order to obtain existence, uniqueness

and regularity properties. In particular, the results on operators in Muckenhoupt

classes apply, c.f. [FKS82], [FJK83], [Gra08]. Via duality, it is possible to extend

this definition of the fractional Laplacian to a large class of distributions.
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Interpretation as a Generator of an α-stable Lévy Process

Finally, a stochastic interpretation is available as well, c.f. [BGR61]. The fractional

Laplacian can be interpreted as the infinitesimal generator of an α-stable Lévy

process – just as the Laplacian is the generator of Brownian motion. We will not

employ this notion in the sequel.

Unique Continuation for the Fractional Laplacian and Previ-

ous Results

Recently, the unique continuation problem for the fractional Laplacian has been

an area of intense research – just as the whole field of non-local equations, c.f.

for example Seo [Seo13a], [Seo13b], Fall & Felli [FF13], Bellová [Bel12], Frank &

Lenzmann & Silvestre [FLS13]. We briefly review the most important contributions:

• In terms of the strong unique continuation property the strongest results are

given by Fall and Felli [FF13]. The authors prove that for (regular, lower or-

der) perturbations of certain Hardy potentials the strong unique continuation

property holds. More precisely, they show that weak solutions of

(−∆)su(x)− λ

|x|2s u(x) = h(x)u(x) + f(x, u(x)) in Ω ⊂ R
n,

satisfy the strong unique continuation principle (at x = 0) if

(a) n > 2s, s ∈ (0, 1), λ < 22s
Γ2(n+2s

4 )

Γ2(n−2s
4 )

,

(b) h ∈ C1(Ω \ {0}), |h(x)| + |x · ∇h(x)| . |x|−2s+ǫ, ǫ > 0,

(c) f ∈ C1(Ω × R), t 7→ F (x, t) ∈ C1(Ω× R) and |f(x, t)t|+ |∂tf(x, t)t2|+
|∇xF (x, t) · x| . |t|p for a.e. x ∈ Ω and all t ∈ R, where 2 < p ≤ 2n

n−2s ,

F (x, t) =
t
∫

0

f(x, r)dr.

The proof strongly relies on the Caffarelli-Silvestre extension in order to define

an adapted notion of frequency function. For this frequency function, the

authors show that the limit r → 0 exists. In contrast to the usual frequency

function arguments, Fall and Felli do not prove monotonicity (of the frequency

function). Instead, the existence of the limit r → 0 suffices in order to argue

via a blow-up method, derive an eigenvalue problem and show that this implies

the strong unique continuation result.

• In [Seo13a] Seo deals with the weak unique continuation problem by expanding

the convolution kernel associated with the fractional Laplacian. In the range

2s ∈ [n − 1, n) the Taylor bounds suffice to derive Carleman-type estimates.

This is inspired by the work of Sawyer on the standard Laplacian [Saw84].

Very recently, Seo [Seo13b] improved these estimates by proving a stronger

Carleman inequality which is motivated by the estimates in the article of Kenig

and Jerison [JK85]. As a result, he obtains the weak unique continuation
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principle in the scaling-critical spaces. In fact, he proves the weak unique

continuation property for solutions of

|(−∆)su| ≤ |V u| in R
n, n ≥ 2,

under the assumptions

(a) V ∈ L
n
2s

w,loc with a sufficiently small norm,

(b) u ∈ L1 ∩ Lp,q and (−∆)su ∈ Lq with p = 2n
n−2s , q =

2n
n+2s .

if n ≥ 3, 0 < s < n
2 and under the assumptions

(a’) V ∈ Lp, p > 1
s (more generally, it is possible to work in the Kato class

K2s),

(b’) u ∈ L1 and (−∆)su ∈ L1,

if n = 2, 1
2 ≤ s < 1.

• Frank & Lenzmann & Silvestre [FLS13] deal with an issue related to unique

continuation. They prove that the only radial solution of

(−∆)su = V u,

satisfying the constraints u(0) = 0 and lim
r→∞

u(r) = 0 is the trivial solution,

u ≡ 0. This allows to deduce uniqueness of ground states for certain nonlinear

fractional equations. The authors argue via a monotonicity identity for the

“s-harmonic” extension of the fractional Laplacian.

• Bellová [Bel12] treats the Steklov eigenvalue problem on compact manifolds in

her thesis. This can be interpreted as the case s = 1
2 in our range of fractional

exponents. She applies frequency function methods in order to derive doubling

inequalities. With these she estimates the Hausdorff-dimension of the nodal

lines in the spirit of Yau’s conjecture and derives polynomial bounds.

3.4 The Main Results

We consider the strong unique continuation problem (SUCP) for (weak solutions

of) the fractional Laplacian, i.e. u ∈ Hs, s ∈ (0, 1), satisfies

(−∆)su = V u in R
n,

and vanishes of infinite order at the origin. We prove that under appropriate con-

ditions on V (including scaling-critical Hardy potentials) the solution u vanishes

identically:
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Proposition 12 (SUCP). Let u ∈ Hs, s ∈ (0, 1), solve

(−∆)su = V u in R
n, (3.4.1)

with V = V1 + V2,

V1(y) = |y|−2sh

(

y

|y|

)

, h ∈ L∞, |V2(y)| ≤ c|y|−2s+ǫ.

For s < 1
2 , we additionally require that one of the following assumptions is satisfied:

• the potential V2 satisfies V2 ∈ C1(Rn \ {0}) and |y · ∇V2| . c|y|−2s+ǫ,

• s ∈ [ 14 ,
1
2 ) and V1 ≡ 0.

Then if u vanishes of infinite order at y = 0, this already implies u ≡ 0.

Here the infinite order of vanishing is adapted to the degenerate elliptic equation

derived via the Caffarelli extension. We define the notions of vanishing of infinite

order for bulk and for corresponding boundary integrals.

Definition 5 (Vanishing of Infinite Order). A function u ∈ L2
loc(y

1−2s
n+1 dy,R

n+1
+ )

vanishes of infinite order at zero (in the bulk) if for every m ∈ N

lim
r→0

r−m
∫

B+
r (0)

y1−2s
n+1 u

2dy = 0.

A function u ∈ L2
loc(R

n) vanishes of infinite order at zero (at the boundary) if for

every m ∈ N

lim
r→0

r−m
∫

Br(0)

u2dy = 0.

In the present work, we approach the problem via Carleman inequalities. We argue

in two main steps:

• Carleman Estimates. This part constitutes the key estimate: We prove a

Carleman inequality at the boundary of the upper half-plane. Our strategy of

proving the decisive Carleman estimate relies on methods of Koch and Tataru

[KT01a]. We separate the conjugated operator into a radial and a spherical

part. Then, we decompose the spherical operator into its eigenspaces. Thus,

the necessary estimate is reduced to a bound on (the kernel of) an ordinary

differential operator. This procedure allows to handle very rough potentials

for s ≥ 1
4 (including scale-invariant ones if s ≥ 1

2 ). If s ∈ (0, 14 ) (and also if

s ∈ [ 14 ,
1
2 ) and involves scaling-invariant potentials), we argue with the help

of a slightly modified Carleman estimate which allows to exploit the differen-

tiability assumptions (and regularity properties of solutions to the associated

degenerate elliptic equations) in order to deduce the unique continuation prop-

erty (c.f. Section 3.6.2).
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In the case of a sufficiently strong spectral gap, e.g. as in the one-dimensional

situation, the unique continuation property can be deduced for any potential

which is bounded by a Hardy type potential, |V (y)| ≤ c|y|−2s (c.f. Section

3.8) if s > 1
2 (for s = 1

2 an additional smallness condition has to be satisfied:

0 < c≪ 1).

• Blow-up Procedure. With the previously discussed preparation, it becomes

possible to conclude that if the Caffarelli extension vanishes of infinite order in

the tangential and normal directions (with respect to the boundary), it must

already vanish identically. Hence, we can concentrate on extensions which

only vanish of finite order in the normal direction. For these we consider a

blow-up procedure which reduces the problem to the weak unique continuation

property.

Our approach does not only complement the article of Fall and Felli [FF13] by

relying on Carleman instead of frequency function methods. It also improves their

results in three main aspects:

• In the case of the one-dimensional situation and s ≥ 1
2 , it is possible to

treat arbitrary potentials which are bounded by scaling-critical Hardy type

potentials (with a smallness condition for s = 1
2 ). This is a consequence of the

explicit estimates on the spectral gap of the extension operator (c.f. Section

3.8).

• We allow for arbitrarily large scaling-critical potentials. Furthermore, our

subcritical potentials need not be differentiable. In the frequency function

framework a regularity restriction was needed in order to deduce Pohozaev

identities.

• Our approach allows for generalizations to variable coefficient problems. In

this sense we can treat “variable coefficient” fractional Laplacian operators,

c.f. Section 3.10.

If s ≥ 1
4 , our main results are derived as consequences of the following Carleman

estimate:

Proposition 13 (Symmetric Carleman Estimate). Let s ∈ [ 14 , 1) and let

φ(y) = − ln(|y|) + 1

10

(

ln(|y|) arctan(ln(|y|))− 1

2
ln(1 + ln(|y|)2)

)

.

Consider w ∈ H1(y1−2s
n+1 dy,R

n+1
+ ) with

∇ · y1−2s
n+1 ∇w = f in R

n+1
+ ,

lim
yn+1→0

y1−2s
n+1 ∂n+1w = h on R

n.
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Then for τ ≥ τ0 > 0 we have

∥

∥

∥
eτφ

(

1 + ln(|y|)2
)− 1

2 y
1−2s

2
n+1 ∇w

∥

∥

∥

L2(Rn+1
+ )

+ τ
∥

∥

∥eτφ
(

1 + ln(|y|)2
)− 1

2 y
1−2s

2
n+1 |y|−1w

∥

∥

∥

L2(Rn+1
+ )

+ τs
∥

∥

∥eτφ
(

1 + ln(|y|)2
)− 1

2 |y|−sw
∥

∥

∥

L2(Rn)

. τ−
1
2

∥

∥

∥eτφ|y|y
2s−1

2
n+1 f

∥

∥

∥

L2(Rn+1
+ )

+ τ
1−2s

2

∥

∥eτφ|y|sh
∥

∥

L2(Rn)
.

(3.4.2)

We remark that in the case of the half-Laplacian our results can be sharpened

by using the framework established by Koch and Tataru [KT01a] dealing with

equations of the following form:

∂ig
ij∂ju = V u+W1∇u+∇W2u, (3.4.3)

where V ∈ c0(L
n
2 ),W1,W2 ∈ l1w(L

n) (the function spaces are built by a dyadic sum-

mation over annuli) and where gij are Lipschitz perturbations of the Laplacian. Our

problem can be phrased in a similar strong unique continuation framework for (de-

generate) elliptic operators by considering the evenly reflected Caffarelli extension.

In this case we obtain an equation of the form (3.4.3) where gij = |yn+1|1−2sid

is now degenerate (unless s = 1
2 ), V = 0 and W1 = (0, ..., 0, H(yn+1))W (y′),

W2 = H(yn+1)W (y′) are Heaviside functions at the boundary. Hence, in the case of

the half-Laplacian, the strong unique continuation problem can directly be treated

with the methods of Koch and Tataru if V ∈ l1w(L
n+1). Via an improved extension,

c.f. Section 3.9, we show that this still remains true for V ∈ Ln+ǫ. For the gen-

eral fractional Laplacian it appears to be more difficult to reduce the integrability

requirements on the potentials via similar means, since the symmetric operator in

the Carleman estimates does not yield sufficiently strong positivity anymore.

Last but not least, we would like to stress that our strategy does not only apply

to the fractional Laplacian but also works for a much larger class of operators. For

any boundary value problem such that the underlying operator

• allows for a sufficiently strong Carleman inequality at the boundary,

• allows for sufficiently strong boundary estimates,

our strategy can be used to derive the strong unique continuation property.

3.5 The Weak Unique Continuation Property

As a first step towards the strong unique continuation result for the fractional oper-

ator, we recall the weak unique continuation property for the fractional Laplacian.
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Proposition 14 (Weak Unique Continuation). Let s ∈ (0, 1) and let u : Rn → R,

u ∈ Hs(Rn), solve

(−∆)su = V u on R
n,

u = 0 on R
n ∩B1(0).

Then u ≡ 0.

Although this property follows from the work of Fall and Felli, c.f. [FF13], by

considering the case V = 0, we provide an argument for it and strengthen the result

to a local statement on the Caffarelli-Silvestre extension. More precisely, we show:

Proposition 15. Let s ∈ (0, 1) and let ũ ∈ H1
loc(y

1−2s
n+1 dy,B

+
1 (0)) ∩ L∞(B+

1 (0))

solve

∇ · y1−2s
n+1 ∇ũ = 0 in B+

1 (0),

lim
yn+1→0

y1−2s
n+1 ∂n+1ũ = 0 on B+

1 (0) ∩ {yn+1 = 0}. (3.5.1)

Further, assume that ũ(y′, 0) = 0 on B+
1 (0) ∩ {yn+1 = 0}. Then ũ ≡ 0 in B+

1 (0).

In order to see this, we make use of the equation and regularity estimates for the

Caffarelli-Silvestre extension. These ingredients can be combined in a boot strap

argument.

Proof. We first point out the following two facts:

1. The regularity theory for H1
loc(y

1−2s
n+1 dy,B

+
1 (0)) ∩ L∞(B+

1 (0)) weak solutions

of

∇ · y1−2s
n+1 ∇ũ = 0 in B+

1 (0),

lim
yn+1ց0

y1−2s
n+1 ∂n+1ũ = f on B+

1 (0) ∩ {yn+1 = 0}, (3.5.2)

implies that if f ∈ C0,α(B1(0)∩{yn+1 = 0}), then y1−2s
n+1 ∂n+1ũ ∈ C0,β(B+

3
4

(0))

and

∥

∥y1−2s
n+1 ∂n+1ũ

∥

∥

C0,β(B+
3
4

(0))
≤ C1,

with C1 = C1(s, n, ‖f‖L∞(B1∩{yn+1=0}) , ‖f‖C0,α(B1(0)∩{yn+1=0})). This fol-

lows, for example, from the article by Cabré and Sire [CS13].

2. For a ∈ (−∞, 1) the mean value theorem and the fundamental theorem of

calculus imply that for u ∈ C1((0, 1)) ∩C0([0, 1)) the assumptions

u(0) = 0 and lim
yց0

yau′(y) = 0,

result in lim
yց0

ya−1u(y) = 0.
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Step 1: Beginning of the Iteration. We make use of the equation: For this we note

that the boundary conditions in (3.5.1) allow to carry out an even reflection and

interpret the solution as a H1
loc(|yn+1|1−2sdy,B1(0)) ∩ L∞(B1(0)) solution of

∇ · |yn+1|1−2s∇ũ = 0 in B1(0). (3.5.3)

For some α ∈ (0, 1) it is C0,α-regular (in any direction) and C∞-smooth in the

tangential directions [CS07] (quantitative estimates follow, for example, by carrying

out a tangential Fourier transform and treating the remaining equation as an ODE

in the normal variable). Thus, it is possible to differentiate (3.5.3) with respect

to the tangential directions up to an arbitrary order. Using the continuity of, for

instance, |yn+1|1−2s∂n+1∆
′ũ (in B 3

4
(0)) and recalling the even reflection, we obtain

lim
yn+1ց0

y1−2s
n+1 ∂n+1∆

′ũ = 0. (3.5.4)

By the second preliminary remark from above, this leads to

lim
yn+1ց0

y−2s
n+1∆

′ũ = 0 and y−2s
n+1∆

′u ∈ C0,γ(B 3
4
(0)). (3.5.5)

Hence, we can employ equation (3.5.1) to deduce

lim
yn+1ց0

∂n+1y
1−2s
n+1 ∂n+1ũ = − lim

yn+1ց0
y1−2s
n+1 ∆′ũ = 0.

For later use, we highlight that this implies

lim
yn+1ց0

y−2s
n+1∂n+1ũ = lim

yn+1ց0
y−2s−1
n+1 ũ = 0.

Step 2: Iteration. With the previous considerations, it is possible to differentiate

(3.5.1) in the yn+1-direction and consider a weak solution of

∆(y1−2s
n+1 ∂n+1ũ) = −(1− 2s)y−2s

n+1∆
′ũ in B+

3
4

(0),

lim
yn+1ց0

∂n+1(y
1−2s
n+1 ∂n+1ũ) = 0 on B+

3
4

(0) ∩ {yn+1 = 0}.
(3.5.6)

Using the observations (3.5.4) and (3.5.5), this leads to

lim
yn+1ց0

∂2n+1y
1−2s
n+1 ∂n+1ũ = − (1− 2s) lim

yn+1ց0
y−2s
n+1∂n+1ũ

− lim
yn+1ց0

y1−2s
n+1 ∂n+1∆

′ũ = 0.

Therefore,

lim
yn+1ց0

∂2n+1y
1−2s
n+1 ∂n+1ũ = lim

yn+1ց0
y−2s−2
n+1 ũ = 0.

As before, we need to complement this by limiting behaviour of tangential deriva-
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tives in order to estimate the contributions in the new right hand sides of a differenti-

ated version of (3.5.6). We obtain this by reflecting the function w(y) := y1−2s
n+1 ∂n+1ũ

evenly onto the whole unit ball. In analogy to the previous considerations from step

1, it solves an equation of the type (3.5.6) in the whole unit ball. We differentiate in

the tangential directions. For instance, if we consider second tangential derivatives,

this implies the continuity of ∂n+1∆
′w, which then results in lim

yn+1ց0
∂n+1∆

′w = 0

(for this we also use higher order analogues of (3.5.5) which follow from taking

higher order tangential derivatives in step 1). By virtue of the second remark from

above and the definition of w, this implies

lim
yn+1ց0

∂n+1y
1−2s
n+1 ∂n+1∆

′ũ = lim
yn+1ց0

y−2s
n+1∂n+1∆

′ũ = lim
yn+1ց0

y−2s−1
n+1 ∆′ũ = 0.

These terms, however, exactly form the right hand side contributions which result

from differentiating (3.5.6) in the normal direction once more. Thus, a bootstrap

argument is possible.

Step 3: Conclusion. Using the bootstrap procedure, we obtain

lim
yn+1ց0

y−mn+1ũ = 0

for all m ∈ N, i.e. ũ vanishes of infinite order in the normal direction at y =

0. Combined with the vanishing in the tangential direction and the Carleman

inequality from Proposition 13, this yields u ≡ 0 in B+
1 (0).

Remark 11. If s = 1
2 , the statement of the proposition follows from the weak

unique continuation property of the (n + 1)-dimensional Laplacian. This can be

seen by extending the Caffarelli-Silvestre extension, ũ, trivially in the negative yn+1-

direction.

3.6 Symmetric Carleman Estimates

3.6.1 Conformal Coordinates

In order to prove the desired Carleman inequality, we carry out a change of coordi-

nates similar as in [KT01a].

Starting from polar coordinates, the degenerate elliptic operator ∇ · y1−2s
n+1 ∇ reads

θ1−2s
n

1

rn
∂r(r

n+1−2s∂r) + r−1−2s∇Sn · θ1−2s
n ∇Sn ,

where θn = yn+1

|y| = sin(ϕ). We transform into conformal coordinates, i.e. r = et,

which yields ∂r = e−t∂t. This leads to

e−(1+2s)t
[

θ1−2s
n ∂2t + (n− 2s)θ1−2s

n ∂t +∇Sn · θ1−2s
n ∇Sn

]

.
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Conjugating with e−
n−2s

2 t (which corresponds to setting w = e−
n−2s

2 tu) and multi-

plying the operator with e(1+2s)t, results in

θ1−2s
n

(

∂2t −
(n− 2s)2

4

)

+∇Sn · θ1−2s
n ∇Sn . (3.6.1)

In the case of s = 1
2 this corresponds to the situation in [KT01a].

In the sequel we will be using several changes of coordinates. In order to avoid

confusion, we clarify the conventions we will be adhering to:

Remark 12 (Notation). In the proof of Proposition 13 (and in the remaining text)

• we use w to denote the original function in Cartesian variables,

• after a change to conformal coordinates u is obtained from w via u(et, θ) =

e
n−2s

2 tw(et, θ),

• v is deduced from u by multiplying with the normal variable: v = θ
1−2s

2
n u.

Proof of Proposition 13. Step 1: Change of coordinates. We carry out a change

of coordinates, as this simplifies the handling of the duality formulation of the

equation: We set v = θ
1−2s

2
n u and multiply (3.6.1) with θ

2s−1
2

n from the left. In this

formulation the conjugated version of equation (3.6.1) turns into

eϕ(t)
(

∂2t −
(n− 2s)2

4
+ θ

2s−1
2

n ∇Sn · θ1−2s
n ∇Snθ

2s−1
2

n

)

e−ϕ(t)v = θ
2s−1

2
n f,

lim
θn→0

θ1−2s
n ν · ∇Snθ

2s−1
2

n v = h,

(3.6.2)

where ϕ = τφ. In the new coordinates the desired Carleman inequality (3.4.2) then

reads

τ−
1
2

∥

∥

∥(ϕ′′(t))
1
2 θ

1−2s
2

n ∇Snθ
2s−1

2
n v

∥

∥

∥

L2(R×Sn
+)

+ τ−
1
2

∥

∥

∥(ϕ′′(t))
1
2 ∂tv

∥

∥

∥

L2(R×Sn
+)

+ τ
1
2

∥

∥

∥(ϕ′′(t))
1
2 v
∥

∥

∥

L2(R×Sn
+)

+ τ
2s−1

2

∥

∥

∥

∥

(ϕ′′(t))
1
2 lim
θn→0

θ
2s−1

2
n v

∥

∥

∥

∥

L2(R×∂Sn
+)

. τ−
1
2

∥

∥

∥θ
2s−1

2
n f

∥

∥

∥

L2(R×Sn
+)

+ τ
1−2s

2 ‖h‖L2(R×∂Sn
+) for τ ≥ τ0 > 0.

We test equation (3.6.2) with eigenfunctions of the spherical operator

θ
2s−1

2
n ∇Sn · θ1−2s

n ∇Snθ
2s−1

2
n

with vanishing generalized Neumann data. Then equation (3.6.2) turns into

eϕ(t)
(

∂2t − λ2 − (n− 2s)2

4

)

e−ϕ(t)Eλv = Eλθ
2s−1

2
n f + Ẽλh,

where we denote the projection of a function v onto the eigenvector vλ by Eλv and

its weighted boundary projection by Ẽλv. With a slight abuse of notation we will
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also use the symbol Ẽλv for the scalar
∫

∂Sn
+

v lim
θn→0

θ
1−2s

2
n vλdHn−1.

The existence of a countable, diverging sequence of eigenvalues for the spatial part

of the operator (3.6.2) follows from the compactness of its inverse operator in an

appropriate function space which is defined in the next step of the proof.

Step 2: An Adapted Space. We define the analogues of the spaces Ḣ1 with the aid

of our equation. Instead of the space Ḣ1, we use the modified space Ḣ1
θ :

Ḣ1
θ :=

{

v
∣

∣

∣

∥

∥

∥θ
1−2s

2
n ∇Snθ

2s−1
2

n v
∥

∥

∥

L2(R×Sn
+)

+ ‖∂tv‖L2(R×Sn
+) <∞

}

,

and its semi-norm

‖v‖Ḣ1
θ
= ‖v‖Ḣ1

θ,1
+ ‖v‖Ḣ1

θ,2
with

‖v‖Ḣ1
θ,1

=
∥

∥

∥θ
1−2s

2
n ∇Snθ

2s−1
2

n v
∥

∥

∥

L2(R×Sn
+)
, ‖v‖Ḣ1

θ,2
= ‖∂tv‖L2(R×Sn

+) .

We remark that intersected with L2
loc(R×Sn+) (and augmented by the right bound-

ary values), this space constitutes the natural setting for the weak formulation of

(3.6.2). Due to the compactness of the embedding H1(θ1−2s
n , Sn+) →֒ L2(θ1−2s

n , Sn+),

the solution operator associated with the vanishing Neumann version of the spheri-

cal operator contained in (3.6.2) is compact if we additionally impose a mean value

condition on the spaces (more precisely, the mean value property should be phrased

as
∫

Sn
+

θ
2s−1

2
n vdθ = 0). As a result, its inverse has the claimed sequence of diverging

eigenvalues.

Step 3: A trace estimate. A key tool in obtaining the desired Carleman estimates

consists of using the right trace estimates. We use the following interpolation in-

equality:

Lemma 6. Let s ∈ (0, 1) and let u : Sn+ → R be measurable. Then,

‖u‖L2(Sn−1) . τ1−s
∥

∥

∥θ
1−2s

2
n u

∥

∥

∥

L2(Sn
+)

+ τ−s
∥

∥

∥θ
1−2s

2
n ∇Snu

∥

∥

∥

L2(Sn
+)

(3.6.3)

for τ > 1.

Proof. By Herbst’s inequality (or the Hardy-trace inequality) we have

∥

∥|y′|−sw1

∥

∥

L2(Rn)
.
∥

∥

∥y
1−2s

2
n+1 ∇w1

∥

∥

∥

L2(Rn+1
+ )

,

with y = (y′, yn+1), y
′ ∈ Rn and s ∈ (0, 1). Applied to functions supported in

B+
1 (0) this leads to

‖w1‖L2(B1(0))
.
∥

∥

∥y
1−2s

2
n+1 ∇w1

∥

∥

∥

L2(B+
1 (0))

+
∥

∥

∥y
1−2s

2
n+1 w1

∥

∥

∥

L2(B+
1 (0))

.



3.6. SYMMETRIC CARLEMAN ESTIMATES 65

Rescaling, i.e. setting w1(x) = w(µx), yields

‖w‖L2(Bµ(0))
. µs−1

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(B+
µ (0))

+ µs
∥

∥

∥y
1−2s

2
n+1 ∇w

∥

∥

∥

L2(B+
µ (0))

.

From this, it is possible to obtain the multiplicative form of the inequality:

‖w‖L2(Bµ(0))
.
∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

s

L2(B+
µ (0))

∥

∥

∥y
1−2s

2
n+1 ∇w

∥

∥

∥

1−s

L2(B+
µ (0))

,

which – by scaling – can be applied to arbitrary functions in C∞
0 (Rn+1

+ ). As a

consequence, we obtain the estimate

‖w‖L2(Bµ(0))
. τ1−s

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(B+
µ (0))

+ τ−s
∥

∥

∥y
1−2s

2
n+1 ∇w

∥

∥

∥

L2(B+
µ (0))

,

for all µ ≥ 0. It remains to localize this estimate to the sphere. This can be

achieved by extending an arbitrary function u : Sn+ → R zero-homogeneously into

a neighbourhood of Sn+. Using a cut-off function η, we apply the previous estimate

to w = ηũ, where ũ corresponds to the (zero-homogeneous) extension of u. This

results in

‖u‖L2(Sn−1) . ‖w‖L2(Rn)

. τ−s
∥

∥

∥y
1−2s

2
n+1 ∇ũ

∥

∥

∥

L2(B+
2 \B+

1
2

)
+ (τ−s + τ1−s)

∥

∥

∥y
1−2s

2
n+1 ũ

∥

∥

∥

L2(B+
2 \B+

1
2

)

. τ−s
∥

∥

∥
y

1−2s
2

n+1 ∇Snu
∥

∥

∥

L2(Sn
+)

+ τ1−s
∥

∥

∥
y

1−2s
2

n+1 u
∥

∥

∥

L2(Sn
+)
,

for τ > 1.

Step 4: Conclusion. We conclude the argument with a commutator estimate: After

the projection onto the eigenvectors, the operator becomes purely one-dimensional

LEλv : =

(

∂2t + (ϕ′(t))2 − 2ϕ′(t)∂t − ϕ′′(t)− λ2 − (n− 2s)2

4

)

Eλv

= −Ẽλh+ Eλθ
2s−1

2
n f.

It decomposes into a symmetric and an antisymmetric part. Setting µ2 := λ2 +
(n−2s)2

4 leads to

S = ∂2t + (ϕ′)2 − µ2,

A = −2ϕ′∂t − ϕ′′.

As its commutator reads

∫

R

([S,A]Eλv, Eλv)dt =

∫

R

ϕ′′(ϕ′)2(Eλv)
2 + ϕ′′(Eλv

′)2 − ϕ′′′′(Eλv)
2dt,
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we obtain the estimate

‖LEλv‖2L2(R) ≥ ‖SEλv‖2L2(R) + ‖AEλv‖2L2(R) +

∫

R

([S,A]Eλv, Eλv)dt

≥
∥

∥(∂2t + ϕ′2 − µ2)Eλv
∥

∥

2

L2(R)
+ ‖(2ϕ′∂t + ϕ′′)Eλv‖2L2(R)

+

∫

R

ϕ′′(ϕ′)2(Eλv)
2 + ϕ′′(Eλv

′)2 − ϕ′′′′(Eλv)
2dt.

By assumption ϕ is a convex weight of the form ϕ(t) = −τt + τψ and ψ′′(t) =
1

10(1+t2) . Hence, we observe that the first two commutator contributions are positive

and it is possible to absorb the potentially negative ϕ′′′′(Eλv)2 contribution of the

commutator in the other positive contributions. Therefore, we obtain

∥

∥

∥(ϕ′′)
1
2ϕ′Eλv

∥

∥

∥

L2(R)
+
∥

∥

∥(ϕ′′)
1
2Eλv

′
∥

∥

∥

L2(R)
. ‖LEλv‖L2(R) . (3.6.4)

Moreover, we note that in the regimes λ ≥ 4τ and λ ≤ τ
2 the symmetric part of

the operator is elliptic (where the symbol of the operator is interpreted as a symbol

in the t- and τ -variables), as by virtue of the definition of the weight function

|ϕ′| ∈ [ 34τ, 2τ ]. Hence, by scaling we also obtain

λ2 ‖Eλv‖L2(R) + λ ‖Eλv′‖L2(R) . ‖LEλv‖L2(R) (3.6.5)

in these two elliptic regimes. By definition of the space Ḣ1
θ , it holds

‖Eλv‖Ḣ1
θ (S

n
+) = λ ‖Eλv‖L2(Sn

+) .

Integrating the estimates (3.6.4) and (3.6.5) over Sn+, shows

∥

∥

∥(ϕ′′)
1
2 (ϕ′)Eλv

∥

∥

∥

Ḣ1
θ (S

n
+)L2

t (R)
. ‖LEλv‖L2(Sn

+×R) .

Thus, these estimates yield the bulk contributions of the left hand side of the Car-

leman inequality.

We proceed by estimating the contributions on the right hand side of the Carleman

inequality:

‖LEλv‖L2(Sn
+×R) ≤ ‖Eλf‖L2(Sn×R) +

∥

∥

∥Ẽλh
∥

∥

∥

L2(∂Sn×R)
.

In this context, it suffices to discuss the second term. It can be estimated via the

trace inequality:

∥

∥

∥Ẽλh
∥

∥

∥

L2(∂Sn×R)
≤ λ1−s ‖Eλh‖L2(Sn×R) .

In the low and critical frequency regimes, i.e. if λ ≤ 4τ , this can be estimated by

τ1−s ‖Eλh‖L2(Sn×R). In the high frequency regime, we can also replace the λ factor
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by τ , as then the estimates become elliptic, e.g. the L2 bulk estimate (with f = 0)

then reads

‖Eλv‖L2(Sn
+×R) . λ−1−s ‖Eλh‖L2(Sn

+×R) . τ−1−s ‖Eλh‖L2(Sn
+×R) .

The other contributions can be treated analogously. Combined with the previous

considerations this implies the estimate

τ−
1
2

∥

∥

∥(ϕ′′(t))
1
2 θ

1−2s
2

n ∇Snθ
2s−1

2
n v

∥

∥

∥

L2(R×Sn
+)

+ τ−
1
2

∥

∥

∥(ϕ′′(t))
1
2 ∂tv

∥

∥

∥

L2(R×Sn
+)

+ τ
1
2

∥

∥

∥(ϕ′′(t))
1
2 v
∥

∥

∥

L2(R×Sn
+)

. τ−
1
2

∥

∥

∥θ
2s−1

2
n f

∥

∥

∥

L2(R×Sn
+)

+ τ
1−2s

2 ‖h‖L2(R×∂Sn
+) .

Now, the estimate on the boundary contributions follows from the interpolation

inequality (3.6.3) applied to u = θ
2s−1

2
n v, Fubini’s theorem and the condition |ϕ′| ∈

[ 34τ, 2τ ]:

τs
∥

∥

∥

∥

(ϕ′′(t))
1
2 lim
θn→0

θ
2s−1

2
n v

∥

∥

∥

∥

L2(R×∂Sn
+)

.
∥

∥

∥(ϕ′′)
1
2 (ϕ′)v

∥

∥

∥

L2(R2)
+
∥

∥

∥(ϕ′′)
1
2 v′
∥

∥

∥

L2(R2)

. ‖LEλv‖L2(R) .

This yields the full result.

Before deducing further results from this, we pause for a few remarks:

Remark 13 (Spectral Gap). The equations (3.6.1) and (3.6.2) contain the structure

of the operator in its cleanest form:

∆̃ := ∂2t −
(n− 2s)2

4
+ θ

− 1−2s
2

n ∇Sn · θ1−2s
n ∇Snθ

− 1−2s
2

n

=: ∂2t −
(n− 2s)2

4
− ∆̃θ.

(3.6.6)

The corresponding boundary values turn into

lim
θn→0

θ1−2s
n ν · ∇Snθ

− 1−2s
2

n v = e2st lim
θn→0

θ
− 1−2s

2
n V v.

At first sight, one could hope that the eigenvalue expansion of the spherical operator

leads to a situation comparable to that of Koch and Tataru [KT01a]. However, this

is not clear. As the θn-factors break the full rotation symmetry, the spectral gap of

the spherical Laplacian need not be preserved.

We note that in the case of a spectral gap of constant strength, the Carleman
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inequality, (3.4.2), can be further improved by an estimate of the form

dist(ϕ′(t), spec(∆̃θ))
∥

∥

∥θ
1−2s

2
n u

∥

∥

∥

L2(R×Sn
+)

. τ−
1
2

∥

∥

∥θ
2s−1

2
n f

∥

∥

∥

L2(R×Sn
+)

+ τ
1−2s

2 ‖h‖L2(R×∂Sn
+) .

A similar remark holds for the gradient inequality. This type of estimates can, for

example, be seen by constructing a parametrix for the operator

e−ϕ(t)
(

∂2t −
(n− 2s)2

4
− ∆̃θ

)

eϕ(t)

on each eigenspace. Following Koch and Tataru [KT01a], using ϕ′(t) ≤ 0, ϕ′′(t) > 0

and setting

µ =

√

(n− 2s)2

4
+ λ2,

the kernel of this parametrix reads

Kµ(t, s) = eϕ(t)−ϕ(s)











− 1
2µ

−1e−µ|t−s| if t > T (µ),

µ−1 sinh(µ(s− t)) if T (µ) > t > s,

0 if T (µ), s > t,

on the eigenspace associated with the eigenvalue µ. Here T (µ) is a solution of

ϕ′(t) = −µ,

if µ is in the range of ϕ′ and else is defined as

T (µ) =

{

−∞ if − µ < ϕ′,

+∞ if − µ > ϕ′.

Thus, using convexity, the kernel can be estimated by

|Kµ(t, s)| ≤ τ−1e− dist(ϕ′(t),µ)|t−s|

in the critical regime in which ϕ′ ∈ [ τ2 , 4τ ]. Combined with Young’s inequality

and the estimates in the low and high frequency elliptic regimes, this implies the

claimed L2 bound. We will use this for the one-dimensional fractional Laplacian,

c.f. Section 3.8.

Remark 14. From the antisymmetric part of the operator we can obtain further

L2 bounds in combination with Poincaré’s inequality. Using the same notation as

in Remark 12 and in the proof of Proposition 13, we assume that w is supported

in {δ ≤ |y| ≤ R} or in other words, v is supported in {ln(δ) ≤ t ≤ ln(R)} × Sn+.

Then, for 0 < c0 < c < C0 < ∞ and R ≥ C0δ, the antisymmetric operator can be
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estimated from below

‖Av‖2L2((ln(δ),ln(R))×Sn
+) ≥ ‖Av‖2L2((ln(δ),ln(cδ))×Sn

+)

= τ2
∥

∥(2∂tφ∂t + ∂2t φ)v
∥

∥

2

L2((ln(δ),ln(cδ))×Sn
+)

& τ2 ‖(∂tφ)∂tv‖2L2((ln(δ),ln(cδ))×Sn
+)

− τ2
∥

∥(∂2t φ)v
∥

∥

2

L2((ln(δ),ln(cδ))×Sn
+)
.

While considering the second quantity in this inequality as a controlled error con-

tribution, we further estimate the first one. Using

∂tφ∂tv = ∂t(∂tφv)− ∂2t φv

as well as ∂tv|(et,θ) = e−t∂tg|(t,θ) with g(t, θ) = v(et, θ) in combination with Poincaré’s

inequality leads to:

‖Av‖2L2((ln(δ),ln(R))×Sn
+) & τ2δ−2 ‖∂tφv‖2L2((ln(δ),ln(cδ))×Sn

+)

− 2τ2
∥

∥(∂2t φ)v
∥

∥

2

L2((ln(δ),ln(cδ))×Sn
+)
.

Recalling the proof of the Carleman estimate (3.4.2), we observe that the right hand

side of the inequality, in particular, bounds the antisymmetric part of the operator.

In v-variables and using ϕ = τφ, this amounts to the estimate

τ−
1
2

∥

∥

∥(ϕ′′(t))
1
2 θ

1−2s
2

n ∇Snθ
2s−1

2
n v

∥

∥

∥

L2(R×Sn
+)

+ τ−
1
2

∥

∥

∥(ϕ′′(t))
1
2 ∂tv

∥

∥

∥

L2(R×Sn
+)

+ τ
1
2

∥

∥

∥
(ϕ′′(t))

1
2 v
∥

∥

∥

L2(R×Sn
+)

+ τ−
1
2 ‖(2ϕ′(t) + ϕ′′(t))v‖L2(R×Sn

+)

+ τ
2s−1

2

∥

∥

∥

∥

(ϕ′′(t))
1
2 lim
θn→0

θ
2s−1

2
n v

∥

∥

∥

∥

L2(R×∂Sn
+)

. τ−
1
2

∥

∥

∥θ
2s−1

2
n f

∥

∥

∥

L2(R×Sn
+)

+ τ
1−2s

2 ‖h‖L2(R×∂Sn
+) for τ ≥ τ0 > 0.

Hence, as the error term can be absorbed in the Carleman inequality, the estimate

from above corresponds to

τ2δ−2
∥

∥

∥
eτφy

1−2s
2

n+1 w
∥

∥

∥

2

L2(Bcδ\Bδ)
.
∥

∥

∥
eτφy

2s−1
2

n+1 |y|∇ · y1−2s
n+1 ∇w

∥

∥

∥

2

L2(BR\Bδ)

in Cartesian coordinates (if h = 0).

3.6.2 Consequences of the Carleman Estimate (3.4.2)

From the previous estimates we obtain a unique continuation result in the case of

infinite order vanishing in both the tangential and normal directions.

Corollary 1 (SUCP I). Let s ∈ (0, 1) and let w : Rn → R, w ∈ Hs, be a solution
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of

(−∆)sw = V w,

with V = V1 + V2,

V1(y) = |y|−2sh

(

y

|y|

)

, h ∈ L∞, |V2(y)| ≤ c|y|−2s+ǫ.

For s < 1
2 , we additionally require that one of the following assumptions is satisfied:

• the potential V2 satisfies V2 ∈ C1(Rn \ {0}) and |y · ∇V2| . c|y|−2s+ǫ,

• s ∈ [ 14 ,
1
2 ) and V1 ≡ 0.

Let w̃ denote the Caffarelli extension of w. If w̃ vanishes of infinite order at 0 in

both the tangential and normal directions, then

w ≡ 0.

Remark 15. Before presenting the proof, we deduce an estimate for (critically)

weighted boundary terms, involving e.g. V (y) ∼ |y|−2s. Due to the infinite order

of vanishing of w along the boundary, for any ǫ > 0 and any m ∈ N, there exists a

radius r̄ = r̄(m, ǫ) > 0 such that for all 0 < r ≤ r̄

∫

B2r\Br

|V |w2dy . r−2s

∫

B2r\Br

w2dy ≤ ǫrm.

As a result,

∫

B2r

|V |w2dy =
∑

j∈N

∫

B
2−jr

\B
2−j−1r

|V |w2dy

. ǫrm
∑

j∈N

2−jm

. ǫrm.

Hence, the infinite rate of vanishing of u on the boundary also implies that (singu-

larly) weighted boundary integrals have an infinite rate of vanishing.

We present the proof for subcritically scaling potentials in the case s ≥ 1
4 first.

Then we indicate how to modify the previous arguments for 0 < s < 1
4 and in the

case of scale-invariant potentials.

Proof in the Case of Subcritical Potentials and s ≥ 1
4 . Step 1: Interpolation. For
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w ∈ C∞
0 (Q+

ǫ ) and 0 ≤ ǫ ≤ 1
2 the following interpolation inequality holds true:

1

ǫ2

∫

Q+
ǫ

y1−2s
n+1 |∇w|2dy .

C(µ)

ǫ4

∫

Q+
ǫ

y1−2s
n+1 |w|2dy + µ2

∫

Q+
ǫ

y2s−1
n+1 |∇ · y1−2s

n+1 ∇w|2dy

− 1

ǫ2

∫

Q+
ǫ ∩{yn+1=0}

wy1−2s
n+1 ∂n+1wdy

′,

where Q+
ǫ = [−ǫ, ǫ]n × [0, ǫ]. This estimate will be employed in deriving the in-

finite order of vanishing of the gradient from the infinite order of vanishing of
1
ǫ4

∫

Bǫ

y1−2s
n+1 w

2dy for (almost) solutions.

The inequality is a result of integration by parts and the support condition on w.

In fact, we have

∫

Q+
1

y1−2s
n+1 |∇′w|2dy = −

1
∫

0

y1−2s
n+1

∫

[−1,1]n

w∆′w(·, yn+1)dy
′dyn+1.

Moreover,

∫

Q+
1

y1−2s
n+1 |∂n+1w|2dy = −

∫

[−1,1]n

1
∫

0

w(∂n+1y
1−2s
n+1 ∂n+1w)dyn+1dy

′

−
∫

[−1,1]n×{0}

wy1−2s
n+1 ∂n+1wdy

′.

Combining these two estimates yields

∫

Q+
1

y1−2s
n+1 |∇w|2dy ≤

∫

Q+
1

|w∇ · y1−2s
n+1 ∇w|dy +

∫

[−1,1]n×{0}

wy1−2s
n+1 ∂n+1wdy

≤ µ2

∫

Q+
1

y2s−1
n+1 |∇ · y1−2s

n+1 ∇w|2dy + C(µ)

∫

Q+
1

y1−2s
n+1 |w|2dy

−
∫

[−1,1]n×{0}

wy1−2s
n+1 ∂n+1wdy.

The claimed inequality now follows from scaling.

Step 2: Cut-off Errors. Denoting the Caffarelli extension of w by w̃, we consider

w̄ = w̃ηδ,r where ηδ,r is a radial cut-off function which equals one on an annulus

with radii approximately determined by δ and r where 0 < δ ≪ r < 1. Thus, w̄
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satisfies

∇ · y1−2s
n+1 ∇w̄ = y1−2s

n+1 η
′′
δ,rw̃ + y1−2s

n+1 η
′
δ,r

y

|y| · ∇w̃

+ (n+ 1− 2s)y1−2s
n+1

1

|y|η
′
δ,rw̃ in R

n+1,

− lim
yn+1→0

y1−2s
n+1 ∂n+1w̄ = V w̄ on R

n.

(3.6.7)

Due to the cut-off, it is an admissible function in the Carleman inequality of Propo-

sition 13. Inserting it into the Carleman inequality, we notice that we may pass to

the limit δ → 0: This follows from step 1 (in which µ is chosen sufficiently small)

and the infinite order of vanishing of w̄. Hence, the only remaining cut-off is at the

scale r > 0.

Step 3: Conclusion for Potentials with Subcritical Scaling. We consider the different

contributions of the Carleman inequality:

∥

∥

∥eτφ
(

1 + ln(|y|)2
)− 1

2 y
1−2s

2
n+1 ∇w

∥

∥

∥

L2(Rn+1
+ )

+ τ
∥

∥

∥eτφ
(

1 + ln(|y|)2
)− 1

2 y
1−2s

2
n+1 |y|−1w

∥

∥

∥

L2(Rn+1
+ )

+ τs
∥

∥

∥eτφ
(

1 + ln(|y|)2
)− 1

2 |y|−sw
∥

∥

∥

L2(Rn)

. τ−
1
2

∥

∥

∥eτφ|y|y
2s−1

2
n+1 f

∥

∥

∥

L2(Rn+1
+ )

+ τ
1−2s

2

∥

∥eτφ|y|sh
∥

∥

L2(Rn)
.

As all the right hand side terms of (3.6.7) involve derivatives of η0,r (which are,

in particular, only active at scales r > 0), they can be treated as controlled per-

turbations. Thus, it remains to investigate the boundary contributions. We recall

|V (y)| ≤ |y|−2s+ǫ. This leads to a boundary contribution of

τs
∥

∥

∥(1 + ln(|y|)2)− 1
2 |y|−sw

∥

∥

∥

L2

on the left hand side of the Carleman inequality, and a contribution of the form

τ
1−2s

2 ‖|y|sh‖L2 . τ
1−2s

2

∥

∥|y|−s+ǫw
∥

∥

L2 , (3.6.8)

on the right hand side of the Carleman estimate. We note that in the case s ≥ 1
4

the τ contributions on the right hand side of the Carleman estimate are smaller or

equal to the τ contributions on the left hand side. Thus, a strategy in which the

dangerous terms of the right hand side are absorbed in the left hand side of the

Carleman inequality is possible. By virtue of the choice of the cut-off η0,r, it suffices

to consider |y| < r. Due to the subcriticality of V and as the loss on the left hand

side of the Carleman inequality is only logarithmic, the term on the right hand side

of (3.6.8) can be absorbed in the left hand side of the Carleman inequality. In the

limit τ → ∞ this yields the desired result for (rough) subcritical potentials.
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In the sequel, we comment on the proof of Corollary 1 in the case s ∈ (0, 14 ) and

in the setting involving scale-invariant potentials. For this, we argue via slightly

different methods in obtaining the crucial Carleman estimates: In contrast to the

previous arguments we do not carry out a decomposition into the spherical eigen-

values but work with the full operator.

Proof for s ∈ (0, 12 ) and for Scaling-Critical Potentials. Step 1: Conjugation and

bulk contributions. We carry out the Carleman argument without projecting onto

eigenvalues of the spherical operator. We start with the operator in conformal

coordinates

∂2t −
(n− 2s)2

4
+ θ

− 1−2s
2

n ∇Sn · θ1−2s
n ∇Snθ

− 1−2s
2

n .

Conjugation with an only t-dependent weight φ, leads to the following symmetric

and antisymmetric parts of the operator:

S = ∂2t + τ2(∂tφ)
2 − (n− 2s)2

4
+ θ

− 1−2s
2

n ∇Sn · θ1−2s
n ∇Snθ

− 1−2s
2

n ,

A = −2τ(∂tφ)∂t − τ∂2t φ.

If φ is sufficiently pseudoconvex this yields positive commutator terms. Further-

more, weighted gradient estimates can be obtained:

((∂2t φ)∂tv, ∂tv) + ((∂2t φ)θ
1−2s
n ∇Snθ

− 1−2s
2

n v,∇Snθ
− 1−2s

2
n v)

= − (Sv, (∂2t φ)v) +

∫

∂Sn
+×R

(∂2t φ)θ
1−2s
n (ν · ∇Snθ

− 1−2s
2

n v)θ
− 1−2s

2
n vdθdt + ((∂4t φ)v, v)

≤ 1

2τ2
‖Sv‖2L2 +

1

2
τ2
∥

∥(∂2t φ)v
∥

∥

2

L2 + τ2
∥

∥

∥
(∂2t φ)

1
2 ∂tφv

∥

∥

∥

2

L2
− (n− 2)2

4

∥

∥

∥
(∂2t φ)

1
2 v
∥

∥

∥

2

L2

+

∫

∂Sn
+×R

(∂2t φ)θ
1−2s
n (ν · ∇Snθ

− 1−2s
2

n v)θ
− 1−2s

2
n vdθdt+ ((∂4t φ)v, v)L2 ,

where ν = (0, ..., 0,−1) denotes the outer unit normal. For sufficiently pseudoconvex

φ the right hand side can be controlled by the commutator contributions of the

Carleman estimate. In fact, this can even be strengthened by noticing that the right

hand side remains controlled if it is multiplied by a factor of cτ , with c sufficiently

small; for example c ∼ 1
2 would work. The boundary integral can be evaluated to

yield

∫

∂Sn
+×R

(∂2t φ)(θ
1−2s
n ν · ∇Snθ

− 1−2s
2

n v)θ
− 1−2s

2
n vdθdt =

∫

∂Sn
+×R

θ−(1−2s)
n (∂2t φ)e

2stV v2dθdt.

The remaining boundary integral which originates from the commutator calculation
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is given by

4τ

∫

∂Sn
+×R

θ1−2s
n (ν · ∇Snθ

− 1−2s
2

n v)(∂tφ)θ
− 1−2s

2
n ∂tvdθdt

+ 2τ

∫

∂Sn
+×R

θ1−2s
n (ν · ∇Snθ

− 1−2s
2

n v)(∂2t φ)θ
− 1−2s

2
n vdθdt

= 4τ

∫

∂Sn
+×R

(∂tφ)θ
−(1−2s)
n e2stV v∂tvdθdt + 2τ

∫

∂Sn
+×R

(∂2t φ)θ
−(1−2s)
n e2stV v2dθdt.

Rewritten in terms of u = θ
− 1−2s

2
n v the Carleman estimate reads

cτ
∥

∥

∥
(∂2t φ)

1
2 θ

1−2s
2

n ∂tu
∥

∥

∥

2

L2
+ cτ

∥

∥

∥
(∂2t φ)

1
2 θ

1−2s
2

n ∇Snu
∥

∥

∥

2

L2
+ cτ3

∥

∥

∥
θ

1−2s
2

n (∂2t φ)
1
2 (∂tφ)u

∥

∥

∥

2

L2

+
∥

∥

∥S(θ
1−2s

2
n u)

∥

∥

∥

2

L2
+ τ−1

∥

∥

∥(∂2t + θ
− 1−2s

2
n ∇Sn · θ1−2s

n ∇Snθ
− 1−2s

2
n )θ

1−2s
2

n u
∥

∥

∥

2

L2

+ 4τ

∫

∂Sn
+×R

(∂tφ)e
2stV u∂tudθdt+ 2τ

∫

∂Sn
+×R

(∂2t φ)e
2stV u∂tudθdt

+ cτ

∫

∂Sn
+×R

(∂2t φ)e
2stV u∂tudθdt

≤ ‖Lφu‖2L2 ,

where

Lφ = θ
1−2s

2
n (∂2t + τ2(∂tφ)

2 − (n− 2s)2

4
− 2τ(∂tφ)∂t − τ∂2t φ)

+ θ
− 1−2s

2
n ∇Sn · θ1−2s

n ∇Sn .

Inserting the changes we made, i.e. w = e
n−2s

2 tu, and recalling the changes in the

volume element, yields a Carleman inequality which, up to the boundary contribu-

tions, is comparable to (3.4.2).

Step 2: Boundary Contributions under Differentiability Assumptions. In order to

obtain a unique continuation statement as in Corollary 1, it remains to deal with the

boundary contributions. We first present the argument under the differentiability

assumption

V2 ∈ C1(Rn \ {0}), |y · ∇V2| ≤ c|y|−2s+ǫ,

independently of the value of s ∈ (0, 1). In order to estimate the unsigned boundary

contributions, we consider the respective expressions in u-coordinates. Starting with
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the scaling-critical Hardy potentials, we have to bound

4τ

∫

∂Sn
+×R

(∂tφ)e
2stV1u∂tudθdt+ 2τ

∫

∂Sn
+×R

(∂2t φ)e
2stV1u

2dθdt

+ cτ

∫

∂Sn
+×R

(∂2t φ)e
2stV1u

2dθdt,

i.e. we have to control the boundary integrals involving the potential V1 = e−2sth(θ).

By an integration by parts in t, we obtain that most contributions drop out. Indeed,

the only non-vanishing term is given by

cτ

∫

∂Sn
+×R

∂2t φh(θ)u
2dθdt.

This can be controlled via the interpolation inequality (3.6.3):

τ

∫

∂Sn
+×R

(∂2t φ)h(θ)u
2dθdt . τ1−s

∥

∥

∥(∂2t φ)
1
2 θ

1−2s
2

n ∇Snu
∥

∥

∥

2

L2
+ τ2−s

∥

∥

∥θ
1−2s

2
n (∂2t φ)

1
2u
∥

∥

∥

2

L2
.

All the remaining boundary contributions involve the potential V2 which has sub-

critical growth at zero. Due to the form of φ, it suffices to deduce control of the

term

4τ

∫

∂Sn
+×R

∂tφe
2stV2u∂tudθdt.

Integrating by parts in t, using the subcriticality of V2 and the properties of φ, it

suffices to bound

Cτ

∫

∂Sn
+×R

eǫtu2dθdt.

As the condition on the support of u implies that t < 0, this can once more be

achieved via the interpolation inequality (3.6.3).

Step 3: Scaling-Critical Potentials for s ≥ 1
2 . Last but not least, we indicate how

to prove the desired Carleman estimate in cases involving scaling-critical potentials

without the differentiability assumptions from the previous step. While the scaling-

critical potential, V1, can be treated as the potentials in step 2, the subcritical

part of the potential, V2, cannot be differentiated. Thus, a direct estimate of this

boundary term is needed. This is achieved via interpolation and regularity estimates

for the operators. We only present the argument for the most critical boundary

contribution which (after localization to a small radius 0 < r ≪ 1) in Cartesian
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coordinates reads:

τ

∫

B+
r ∩{yn+1=0}

|V2||w(y · ∇w)|dy.

We estimate

τ

∫

B+
r ∩{yn+1=0}

|V2||w(y · ∇w)|dy . τ2
∫

B+
r ∩{yn+1=0}

|y|−2s+ǫw2dy

+

∫

B+
r ∩{yn+1=0}

|y|2−2s+ǫ|∇w|2dy.
(3.6.9)

The first term can directly be interpolated between controlled quantities:

τ2
∫

B+
r ∩{yn+1=0}

|y|−2s+ǫw2dy . τ
∥

∥

∥|y| ǫ2 y
1−2s

2
n+1 ∇w

∥

∥

∥

L2(B+
r )

+ τ3
∥

∥

∥|y| ǫ2−1y
1−2s

2
n+1 w

∥

∥

∥

L2(B+
r )
.

Here we have used s ∈ [ 12 , 1). The second quantity in (3.6.9) has to be controlled

using elliptic estimates. Due to L2 estimates for the respective degenerate elliptic

Neumann boundary value problem (which one can for example deduce by carrying

out a tangential Fourier transform), we have

∫

B+
r ∩{yn+1=0}

|y|2−2s+ǫ|∇w|2dy

. τ−1
∥

∥

∥|y|1+ ǫ
2 (y

2s−1
2

n+1 ∇ · y1−2s
n+1 ∇+ τ2|∇φ|2y

1−2s
2

n+1 )w
∥

∥

∥

2

L2(B+
2r)

+ τ2
∥

∥

∥|y|−1+ ǫ
2 y

1−2s
2

n+1 w
∥

∥

∥

2

L2(B+
2r)

+ τ
∥

∥

∥|y| ǫ2 y
1−2s

2
n+1 ∇w

∥

∥

∥

2

L2(B+
2r)

+ τ2−4s
∥

∥|y|s+ ǫ
2V w

∥

∥

L2(B+
2r∩{yn+1=0}) .

As all the right hand side terms are controlled by the bulk terms of the Carleman

inequality, we can also control perturbations of critically scaling potentials without

imposing differentiability constraints on the perturbation.

3.7 Doubling Estimates and Reduction to the Weak

Unique Continuation Property

3.7.1 Doubling Inequalities

In this section we deduce a doubling inequality which plays a decisive role in the

compactness argument reducing the strong to the weak unique continuation prop-

erty. We have

Proposition 16. Let s ∈ (0, 1) and let w : Rn+1 → R, w ∈ H1
loc(y

1−2s
n+1 dy,R

n+1) ∩
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H2
loc(y

1−2s
n+1 dy,R

n+1), be a solution of

∇ · y1−2s
n+1 ∇w = 0 in R

n+1
+ ,

− lim
yn+1→0

y1−2s
n+1 ∂n+1w = V w on R

n,

with V = V1 + V2,

V1(y) = |y|−2sh

(

y

|y|

)

, h ∈ L∞, |V2(y)| ≤ c|y|−2s+ǫ.

For s < 1
2 , we additionally require that one of the following assumptions is satisfied:

• the potential V2 satisfies V2 ∈ C1(Rn \ {0}) and |y · ∇V2| . c|y|−2s+ǫ,

• s ∈ [ 14 ,
1
2 ) and V1 ≡ 0.

Then the doubling property holds, i.e. there exists a constant C > 0 and a constant

R such that for all 0 < r < R we have

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(B+
2r(0))

≤ C
∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(B+
r (0))

.

Before commencing with the proof of the doubling property, a few remarks are in

order:

Remark 16. • We note that the doubling property can be shown for any R > 0.

However, in order to obtain a uniform dependence of C on r, this parameter

has to be fixed.

• We point out that the constant C > 0 depends on the function w.

• The doubling property is neither restricted to balls centered at the origin nor

to balls centered at the boundary of Rn+1
+ . Under the conditions of Proposition

16 the conclusion can be formulated as the existence of a constant C > 0 and

a constant R such that for all 0 < r < R and for all y0 ∈ BR(z), z ∈ R
n+1
+ ,

we have

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(B2r(y0)∩R
n+1
+ )

≤ C
∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(Br(y0)∩R
n+1
+ )

.

In this case C = C(R, z, w). We comment on the proof of this more general

statement after the proof of Proposition 16, c.f. Remark 17.

Proof. Without loss of generality, we restrict our attention to sufficiently small

radii and to balls centered at the origin. Via a covering argument, it is possible

to recover the statement for larger balls, c.f. Remark 17. In order to bound the

gradient contributions which will arise in the application of the Carleman inequality

(3.4.2), we recall the following elliptic gradient/ Cacciopolli estimate: Let ψ be a

cut-off function supported in an annulus given by 0 < r0
2 ≤ |y| ≤ 2r1 < ∞, which
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we will also denote by ( r02 , 2r1) in the sequel. Then,

∥

∥

∥y
1−2s

2
n+1 ∇(wψ)

∥

∥

∥

2

L2(
r0
2 ,2r1)

. r−2
0

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

2

L2(r0/2,2r1)

+

∫

(
r0
2 ,2r1)∩{yn+1=0}

ψw lim
yn+1→0

y1−2s
n+1 ∂n+1(ψw)dy,

(3.7.1)

with 0 < r0 < r1 <∞. If the boundary conditions are of the generalized Neumann

type as in our assumptions, it becomes possible to absorb these into the left-hand

side bulk gradient term, if they are sufficiently small, i.e. if V is either subcritical or

if it is a small scaling-critical potential. In the case of large scaling-critical potentials

it is still possible to absorb these contributions, if the vanishing rate in the tangential

direction is higher than in the normal direction. By virtue of Corollary 1 it is always

possible to reduce to this situation.

Keeping this in mind, we prepare for the application of the Carleman inequality

from Proposition 13: Let η be a radial cut-off function, which is equal to one on the

annulus |y| ∈ (δ, R̃/2) and vanishes outside of the annulus |y| ∈ (δ/2, R̃). Inserting

ηw into the Carleman estimate (in combination with Remark 14), using the elliptic

estimate as well as the explicit form of the boundary contribution, we obtain

δ−2τ
∥

∥

∥
eτφy

1−2s
2

n+1 w
∥

∥

∥

2

L2(δ,3δ)

+ τ2R̃−2
∥

∥

∥eτφ(1 + ln(|y|)2)− 1
2 y

1−2s
2

n+1 w
∥

∥

∥

2

L2(R̃/8,R̃/4)

. δ−2
∥

∥

∥eτφy
1−2s

2
n+1 w

∥

∥

∥

2

L2(δ/2, 3δ2 )
+ R̃−2

∥

∥

∥eτφy
1−2s

2
n+1 w

∥

∥

∥

2

L2(R̃/2,2R̃)
.

Here the boundary contributions were absorbed into the bulk contributions in the

way indicated above. Setting R̃ ∼ 1, we estimate further

eτφ(3δ)
∥

∥

∥
y

1−2s
2

n+1 w
∥

∥

∥

2

L2(B3δ)
+ eτφ(R̃/4)δ2τ2

∥

∥

∥
y

1−2s
2

n+1 w
∥

∥

∥

2

L2(R̃/8,R̃/4)

. δ2eτφ(R̃/2)
∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

2

L2(B2R̃)
+ eτφ(

δ
2 )
∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

2

L2(B3δ/2)
.

Now, we choose τ > 0 such that δ2eτφ(R̃/2)
∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

2

L2(B2R̃)
on the right hand side

can be absorbed in the term eτφ(R̃/4)τ2δ2
∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

2

L2(R̃/8,R̃/4)
on the left hand side.

A possible choice of τ , for example, is

τ ∼ 1

φ(R̃/2)− φ(R̃/4)
ln







∥

∥

∥
y

1−2s
2

n+1 w
∥

∥

∥

L2(R̃/8,R̃/4)
∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(B2R̃)






.

This implies the doubling inequality for r = δ with a constant which, by virtue of
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the structure of φ, does not depend on δ. Since 0 < δ ≪ R̃ was arbitrary, this

implies the doubling property.

Remark 17. The more general claim of Remark 16 follows from two ingredients: a

three balls inequality and an overlapping chains argument. The three balls inequal-

ity compares the value of w on a ball of size r with balls of size r
2 and 2r:

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(Br(y0)∩R
n+1
+ )

≤ C
∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

α

L2(B r
2
(y0)∩R

n+1
+ )

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

1−α

L2(B2r(y0)∩R
n+1
+ )

,

for sufficiently small radii r > 0. This inequality allows to compare the values of w

along a chain of overlapping balls. Thus, it is possible to deduce an estimate of the

form

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(Br(y0))
≥ Cr

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

L2(B2R(z))
.

Hence, the norms of w on smaller balls can be related to the norms on the whole

ball B2R(z). This then allows to deduce the stronger doubling inequality of Remark

16 as well as the reduction to sufficiently small balls in the proof of Proposition 16.

For further details we refer to the articles on quantitative unique continuation by

Bakri [Bak11].

3.7.2 Reduction to the Weak Unique Continuation Problem

In this section we explain how the previous estimates can be combined in order

to reduce the strong unique continuation problem to its weak analogue. The key

argument relies on a blow-up procedure.

Proposition 17 (SUCP II). Let s ∈ (0, 1) and let w : Rn+1 → R,

w ∈ H1
loc(y

1−2s
n+1 dy,R

n+1
+ ), be a solution of

∇ · y1−2s
n+1 ∇w = 0 in R

n+1
+ ,

− lim
yn+1→0

y1−2s
n+1 ∂n+1w = V w on R

n,

with V = V1 + V2,

V1(y) = |y|−2sh

(

y

|y|

)

, h ∈ L∞, |V2(y)| ≤ c|y|−2s+ǫ.

For s < 1
2 , we additionally require that one of the following assumptions is satisfied:

• the potential V2 satisfies V2 ∈ C1(Rn \ {0}) and |y · ∇V2| . c|y|−2s+ǫ,

• s ∈ [ 14 ,
1
2 ) and V1 ≡ 0.

Suppose that w(·, 0) vanishes of infinite order at 0. Then

w ≡ 0.
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Proof. Without loss of generality we may assume that w does not vanish of infinite

order in both the normal and tangential directions. We consider a rescaled version

of w: Let 0 < σ ≪ 1. We define

wσ(y) =
w(σy)

σ− n+1
2 σ− 1−2s

2

∥

∥

∥
y

1−2s
2

n+1 w
∥

∥

∥

L2(B+
σ (0))

.

Using the gradient estimate, we obtain

∥

∥

∥y
1−2s

2
n+1 ∇w

∥

∥

∥

2

L2(B+
σ )

.
1

σ2

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

2

L2(B+
2σ)

+

∫

B+
2σ∩{yn+1=0}

η2y1−2s
n+1 w∂n+1wdy,

.
1

σ2

∥

∥

∥y
1−2s

2
n+1 w

∥

∥

∥

2

L2(B+
σ )
,

where the last line is a consequence of the doubling inequality as well as the finite

order of vanishing of w in the normal direction, c.f. Remark 15: Due to the infinite

order of vanishing, the boundary contributions can be absorbed in the other terms

for sufficiently small σ. In effect, we have

•
∥

∥

∥
y

1−2s
2

n+1 wσ

∥

∥

∥

L2(B+
1 )

= 1,

•
∥

∥

∥y
1−2s

2
n+1 ∇wσ

∥

∥

∥

L2(B+
1 )

≤ C.

Hence, (along a not relabeled subsequence) we may pass to the limit σ → 0 and

obtain wσ → w0 strongly in L
2 via Rellich’s compactness theorem. As a consequence

of the infinite order of vanishing (and the finite order of vanishing in the normal

direction), wσ converges to zero on the boundary. Furthermore, w0 weakly solves

∇ · y1−2s
n+1 ∇w0 = 0 in B+

1 (0),

lim
yn+1→0

y1−2s
n+1 ∂n+1w0 = 0 on B+

1 (0) ∩ {yn+1 = 0}.

Due to the weak unique continuation principle (c.f. Proposition 15), w0 has to

vanish (which contradicts
∥

∥

∥y
1−2s

2
n+1 w0

∥

∥

∥

L2(B+
1 )

= 1).

3.8 The One-Dimensional Situation

In the case of one-dimensional fractional Schrödinger equations it is possible to

deduce stronger estimates than in the general case since the eigenvalues of the

spherical contribution of the symmetric part of the operator satisfy a spectral gap

condition. Moreover, they can be computed explicitly. For a fixed s ∈ (0, 1) the one-

dimensionality of the problem reduces the eigenvalue equation to a one-parameter
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family of odes:

(

∂2

∂2ϕ
+

(1 − 2s)(1 + 2s)

4

1

sin(ϕ)2
− (1− 2s)2

4

)

v = λv in [0, π],

lim
sin(ϕ)→0

sin(ϕ)1−2s ∂

∂ϕ
sin(ϕ)

2s−1
2 v = 0 on {0, π}.

(3.8.1)

This can be reduced to generalized Legendre equations which allow to determine

the admissible values of λ:

Lemma 7. Let s ∈ (0, 1). Then the eigenvalues of (3.8.1) are of the form

λk = − (1− 2s)2

4
−
(

k − s+
1

2

)2

, k ∈ N≥0.

Apart from the characterization of the eigenvalues, it is also possible to determine

(some of) the associated eigenfunctions explicitly. This boils down to finding ap-

propriate solutions of a generalized Legendre equation:

Lemma 8. Let ν = k − µ, k ∈ N≥0, µ ∈ (0, 1). Then the generalized Legendre

equation

(1− x2)w′′(x)− 2xw′(x) +

(

ν(ν + 1)− µ2

1− x2

)

w(x) = 0, (3.8.2)

has a solution of the form

fµν (x) =
Pk(x)

(1− x2)µ/2
,

where Pk(x) is a polynomial of degree (exactly) k.

Proof of Lemma 8. We consider solutions of the generalized Legendre equation (3.8.2)

for our choices of parameters µ and ν. In order to solve the equation, we consider

the ansatz

w(x) =
Pk(x)

(1− x2)µ/2
.

Inserting this into the generalized Legendre equation (3.8.2), results in an equation

for the Pk:

(1− x2)P ′′
k (x) + 2(µ− 1)xP ′

k(x) + (k2 − 2kµ+ k)Pk(x) = 0.

For a polynomial ansatz, Pk(x) =
k
∑

j=0

αjx
j , this turns into a recursion formula for
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the coefficients αj :

2α2 + (k2 − 2kµ+ k)α0 = 0,

6α3 + (2µ− 2 + k2 − 2kµ+ k)α1 = 0,

(j + 1)(j + 1)αj+2 + (j(j − 1) + 2j(µ− 1) + k2 − 2kµ+ k)αj = 0, if j ≥ 2.

(3.8.3)

This yields k equations for the k+1 coefficients of the polynomial Pk(x). Due to the

restrictions µ ∈ (0, 1) and k ≥ 0, the (coefficient) equations can be solved explicitly

if k ≤ 3. Moreover, we notice that the equation

x(x− 1) + 2x(µ− 1) + k2 − 2kµ+ k = 0,

has pairs of complex-valued solutions if k ≥ 4 and µ ∈ (0, 1) – but no real ones.

Hence, by the last equation in (3.8.3), aj+2 6= 0 if aj 6= 0. In effect, it is always

possible to find a one-parameter family of solutions of system (3.8.3). For even k

this depends on a0, while for odd k it depends on a1. This proves the claim.

Proof of Lemma 7. The general (complex valued) solution of the ODE (3.8.1) is

given by

v(ϕ) = C1(cos
2(ϕ)− 1)

1
4P s1

2 (−1+
√
−1−4λ+4s−4s2)

(cos(ϕ))

+ C2(cos
2(ϕ)− 1)

1
4Qs1

2 (−1+
√
−1−4λ+4s−4s2)

(cos(ϕ)),
(3.8.4)

where Pµν (x) and Qµν (x) are Legendre functions of the first and second kind, i.e.

solutions of the generalized Legendre equation (3.8.2). In order to be an eigen-

function, the solution has to have vanishing generalized Neumann data. Setting

ν = k− s = 1
2 (−1+

√
−1− 4λ+ 4s− 4s2), k ∈ N, leads to simplifications: Accord-

ing to Lemma 8 there are solutions of the form

fµν (cos(ϕ)) =
Pk(cos(ϕ))

sin(ϕ)s
,

where Pk(x) is a polynomial of degree k. Thus, for this choice of ν the general

solution (3.8.4) becomes

vk(ϕ) = sin(ϕ)
1−2s

2 Pk(cos(ϕ)).

Inserting this into the boundary condition, we infer that these functions do not only

satisfy (3.8.2) but also obey the right boundary conditions. Thus, these functions are

indeed eigenfunctions of our equation. It remains to show that the corresponding

eigenvalues constitute the whole spectrum, i.e. there are no further eigenvalues

(which we might have missed by computing only special eigenfunctions). This

follows from recurrence relations for the generalized Legendre functions. Setting
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hµν (x) = c1P
µ
ν (x) + c2Q

µ
ν (x) with c1, c2 ∈ R, we have (c.f. [OLBC10]):

sin(ϕ)1−2s ∂

∂ϕ
(sin(ϕ)shsν(cos(ϕ))) = s(sin(ϕ)s−1 cos(ϕ)hsν(cos(ϕ))

− (sin(ϕ))s−1[(s− ν − 1)hsν+1(cos(ϕ))

+ (ν + 1) cos(ϕ)hsν(cos(ϕ))])

= − (sin(ϕ))−s[cos(ϕ)(s − ν − 1)hsν(cos(ϕ))

− (s− ν − 1)hsν+1(cos(ϕ))].

Due to the asymptotics of Qµν (cos(ϕ)) at ϕ = 0 (a symbolic Mathematica compu-

tation yields Qµν (cos(ϕ)) ∼ 2−sπ21/ sin(πs)1/ sin(π(s+ν))
Γ(s)Γ(−s−ν)Γ(1−s+ν) ), it follows that c2 = 0 unless

ν = k− s for k ∈ N≥0, as P
µ
ν (cos(ϕ)) satisfies the boundary conditions at ϕ = 0 for

µ ∈ (0, 1) and arbitrary ν. We claim that, in effect, only ν = k − s is admissible

(in particular, none of the P sν (cos(ϕ)) are admissible for ν 6= k − s). This is a

consequence of the connection formulas, c.f. [OLBC10], for Legendre functions:

Pµν (−x) = − 2

π
sin((ν + s)π)Qµν (x) + cos((ν + s)π)Pµν (x).

Evaluated at x = cos(π), the asymptotics of Qµν (cos(ϕ)) and of Pµν (cos(ϕ)) imply

that ν = k− s, k ∈ N, is the only admissible family of parameters. Thus, assuming

the validity of the boundary conditions at ϕ = 0 and at ϕ = π necessarily leads to

ν = k − s, k ∈ N. Combined with the form of ν given in (3.8.4), this determines

the possible eigenvalues.

Remark 18. The explicit representation of the eigenvalues illustrates that in the

one-dimensional situation the spectral gap of the extension problem related to the

fractional Laplacian is comparable with the spectral gap for the pure Laplacian (in

that case λ = −k2, k ∈ Z).

The characterization of the spectrum of the one-dimensional Caffarelli extension

allows to deduce stronger L2 Carleman estimates similar to the ones in [KT01a]. In

particular, it is possible to avoid the logarithmic loss in the Carleman estimate. As

a consequence, it is possible to treat the strong unique continuation principle for

potentials which are bounded by arbitrary scaling invariant Hardy type potentials:

Proposition 18. Let s ∈ [ 12 , 1) and let w ∈ Hs(R) be a solution of

(−∆)sw = V w in R.

Assume that w vanishes of infinite order at the origin and that |V (y)| . |y|−2s if

s > 1
2 and that |V (y)| ≤ c|y|−1 for 0 < c≪ 1 if s = 1

2 . Then w ≡ 0.

Sketch of Proof. The proof relies on strengthened Carleman bounds. In the case of

a spectral gap, it is possible to give bounds which do not depend on the convexity

parameter of the weight in exchange of a loss of half a power of τ , c.f. Remark 13.

Roughly speaking, in the u-coordinates, this results in a boundary estimate of the
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form

τ
2s−1

2 ‖u‖L2(R×∂Sn
+) . τ

1−2s
2

∥

∥e2stV u
∥

∥

L2(R×∂Sn
+)

+ bulk contributions.

This explains the slightly modified s-dependence of the estimate.

3.9 Lp-Regularity: Understanding the Half-Lapla-

cian in the Framework of Koch & Tataru

As pointed out in the introduction, by an even reflection it is possible to inter-

pret the unique continuation problem for the fractional Laplacian in the framework

of Koch and Tataru [KT01a]. The potentials W1 and W2 are essentially given

by H(yn+1)V (y′), with H(yn+1) denoting a Heaviside function. The result of Koch

and Tataru immediately demonstrates that for the half-Laplacian the strong unique

continuation property holds with V ∈ l1w(L
n+1) under additional smallness assump-

tions as described in [KT01a]. For the half-Laplacian scaling arguments, however,

suggest that the critical space is given by potentials V ∈ Ln (possibly obeying

some smallness assumption). Thus, it is natural to pose the question whether this

can still be achieved in the framework of Koch and Tataru [KT01a]. As we briefly

illustrate below, this is indeed possible for subcritical potentials:

Proposition 19. Let w ∈ H
1
2 (Rn) be a solution of

(−∆)
1
2w = V w in R

n.

Assume that V ∈ Ln+ǫ(Rn) and that w vanishes of infinite order at the origin.

Then w ≡ 0.

Proof. The proof is based on a refined extension. We consider the following auxiliary

problem: Let φ denote the harmonic (Neumann) extension of the potential V , i.e.

∆φ = 0 in R
n+1
+ ,

∂n+1φ = V on {yn+1 = 0}.

Then by regularity of the elliptic Neumann problem

φ ∈W 1+ 1
n+ǫ ,n+ǫ(Rn+1

+ ).

Hence, ∇φ ∈ W
1

n+ǫ ,n+ǫ and by the Sobolev embedding theorem for Besov spaces

(c.f. for example [Leo09]), we obtain ∇φ ∈ Ln+1+δ(Rn+1
+ ), with δ = δ(ǫ) being

a continuous function in ǫ for sufficiently small 0 ≤ ǫ ≪ 1 and satisfying δ ≥ 0,

δ(0) = 0. This integrability property is preserved under an even reflection. With a

slight abuse of notation the reflected solution then distributionally satisfies

∆φ = V δ0(yn+1) in R
n+1.
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Reflecting the solution, w̃, of the Caffarelli extension of (3.4.1) evenly and setting

W = ∇φ, we infer

∆w̃ = ∇(Ww̃)−W∇w̃ in R
n+1.

As the previous considerations imply that W ∈ Ln+1+δ(Rn+1), the result of Koch

and Tataru can be applied. Their machinery then proves the claim.

Remark 19. This reduction to the Koch/Tataru setting suggests that the potential

V appearing in the equation for the half-Laplacian should be interpreted as a gra-

dient rather than a usual potential for an elliptic problem. In this case one cannot

expect to deal with arbitrarily large potentials (in contrast to [Pan92]) as a coun-

terexample by Wolff indicates [Wol93] (exactly scaling-critical potentials represent

an exception).

3.10 The Carleman Estimates for Variable Coeffi-

cient Operators

In this final section on unique continuation properties of the fractional Laplacian

we extend the previous results to operators with variable coefficients and operators

on domains which are not half-spaces. The methods we present allow to deal with

three situations:

• First, we restrict our attention to the flat half-space, Rn+1
+ , but consider a

class of more general operators with non-constant metrics:

(∂n+1y
1−2s
n+1 ∂n+1 +∇′ · y1−2s

n+1 a(y
′)∇′)w = 0 in R

n+1
+ ,

lim
yn+1→0

y1−2s
n+1 ∂n+1w = V w on R

n.

Here a(y′) is a tensor which satisfies certain Lipschitz bounds. We note that,

in particular, this situation corresponds to generalizations of the Caffarelli-

Silvestre extension for variable coefficients. Thus, it is possible to think of the

results on these operators as statements on “variable coefficient” fractional

Laplacians.

• In the second case, we study the analogous situation on manifolds with suffi-

ciently regular boundaries. As we are only interested in a local statement, we

consider the situation in local coordinates in a coordinate patch:

(∂νd∂Ω(y)
1−2s∂ν +∇tan · d∂Ω(y)1−2sa(ytan)∇tan)w = 0 in Ω,

lim
d∂Ω(y)→0

d∂Ω(y)
1−2s∂νw = V w on ∂Ω.

(3.10.1)

In this context we use ∂ν to denote the “normal” and ∇tan the “tangential”

derivatives in appropriate normal coordinates; d∂Ω(y) represents the distance
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function with respect to the boundary. This setting can be treated in analogy

to the flat situation (here we emphasize that first order contributions which

originate from the global formulation via corresponding Laplace Beltrami op-

erators on the manifold represent controllable errors, c.f. step 4 in the proof of

Proposition 20). As before, the equation can be interpreted as a generalization

of the Caffarelli-Silvestre extension to domains with non-flat boundary.

• Last but not least, we comment on the half-Laplacian and the one-dimensional

situation for which stronger results are available due to the presence of the

already discussed spectral gap. As a consequence, perturbation techniques as

in [KT01a] are available.

Since the second situation can be reduced to the first one, we emphasize the details

in the R
n+1
+ -case and only point out the modifications in the second situation.

3.10.1 The Half-Space Situation with Variable Coefficients

and Differentiability

In this section we address the half-space situation with variable coefficients. In this

context, we use the following conventions and notations, c.f. [Jos11]:

• Let (M, g) be a Riemannian manifold of dimension m, assume that p ∈ M ,

v ∈ TpM and let cv : [0, ǫ] → M be a geodesic with cv(0) = p, ċv(0) = v. Set

Vp := {v ∈ TpM | cv is defined on [0, 1]}. Then we define

expp : Vp →M, v 7→ cv(1).

If we want to point out the dependence on the metric, we also use the notation

expg,p. We remark that if TpM is identified with Rm the exponential map

yields a local choice of coordinates.

• Let (M, g) = (R ×M, 1 × g(y′)). We set lg(y) :=
√

y2n+1 + l̄g(y′)2 with y =

(y′, yn+1) and l̄g(y
′) being the geodesic distance of y′ from the origin with

respect to the metric g(y′) on Rn.

With this, we can prove the following Proposition:

Proposition 20 (Variable Coefficient Carleman Estimate). Suppose that a : Rn →
Rn×n with

λ|ξ|2 ≤ ξ · a(y′)ξ ≤ Λ|ξ|2, 0 < λ ≤ Λ <∞, aij = aji, a ∈ C2.

Let s ∈ [ 14 , 1) and set

φ(y) = − ln(la−1(y)) +
1

10

(

ln(la−1(y)) arctan(la−1(y))− 1

2
ln(1 + ln(la−1(y))2)

)

.
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Assume that w ∈ H1(y1−2s
n+1 dy,R

n+1
+ ) with supp (w) ⊂ Br(0)+, 0 < r = r(a) ≪ 1,

satisfies

(∂n+1y
1−2s
n+1 ∂n+1 +∇′ · y1−2s

n+1 a(y
′)∇′)w = f in R

n+1
+ ,

lim
yn+1→0

y1−2s
n+1 ∂n+1w = V w on R

n,

and vanishes of infinite order at 0. Further assume that V = V1 + V2,

V1(y) = la−1(y)−2sh

(

y

la−1(y)

)

, h ∈ L∞, |V2(y)| ≤ c la−1(y)−2s+ǫ,

V2(y) ∈ C1(Rn \ {0}), |∇V2(y)| ≤ la−1(y)−2s+ǫ−1.

Then for τ ≥ τ0 > 0 we have

τs
∥

∥

∥eτφ(1 + ln(la−1(y))2)−
1
2 la−1(y)−sw

∥

∥

∥

L2(Rn)

+ τ
∥

∥

∥eτφ(1 + ln(la−1(y))2)−
1
2 la−1(y)−1y

1−2s
2

n+1 w
∥

∥

∥

2

L2(Rn+1
+ )

+
∥

∥

∥eτφ(1 + ln(la−1(y))2)−
1
2 y

1−2s
2

n+1 ∇w
∥

∥

∥

2

L2(Rn+1
+ )

. τ−
1
2

∥

∥

∥
eτφ la−1(y)y

2s−1
2

n+1 f
∥

∥

∥

L2(Rn+1
+ )

+ τ
1−2s

2

∥

∥eτφ la−1(y)sV w
∥

∥

L2(Rn)
.

Remark 20. • The C2 regularity condition on the metric is an artifact of our

strategy of proof: We make use of the exponential map associated with the

metric a−1(y′) in order to pass to geodesic polar coordinates. An alternative

strategy using arguments from [KT01a] would have been possible. With this

method it is possible to reduce to the (optimal) setting of Lipschitz metrics.

• The radius r > 0 in the proposition is chosen so small that we may pass to

geodesic normal coordinates in it. This is no restriction in general, as it is

possible to use appropriate cut-off functions.

• We use the notation a(y′)−1 to denote the pointwise inverse of a(y′), i.e.

a(y′)−1a(y′) = δij .

In order to prove the desired Carleman inequality, we carry out a change of co-

ordinates similar to the one described in the article of Koch and Tataru [KT01a].

Working with variable metrics, we have to introduce appropriate normal coordi-

nates first. Thus, we cast our equation into a Riemannian framework where the

Riemannian metric g is given by a−1. We note that after the change of coordinates

our argument strongly resembles the proof of Corollary 1 in the case of .

Proof of Proposition 20. Step 1: Choice of Coordinates. We cast the equation into

a Riemannian framework. In this context we may interpret the tangential part of
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the operator as

∇′ · a(y′)∇′ = ∆′
a−1 −

1

2
va−1(y′) · a(y′)∇′ = ∆′

a−1 −
1

2
va−1(y′) · ∇′

a−1 ,

where va−1(y′) is a vector with i-th component given by va−1,i(y
′) = tr(a−1(y′) ∂a∂yi ).

Here ∆′
a−1 and ∇′

a−1 denote the Laplace-Beltrami and gradient operators with re-

spect to the metric a(y′)−1. We point out that the thus introduced metric is truly

Riemannian as – due to the y′-dependence of a – it depends on the point of evalua-

tion. For the moment, we ignore the first order contribution in the definition of our

operator. It can be considered as “small” and can be treated as a controlled error

contribution.

With this interpretation of the tangential operator, the full operator can be in-

terpreted as a (degenerate) elliptic operator acting on the Riemannian manifold

(R+×Rn, 1×a(y′)−1). In this setting, we aim at reducing the situation to geodesic

polar coordinates. These can be obtained by first introducing Riemannian normal

coordinates in the tangential directions and then passing to (geodesic) polar coor-

dinates in the tangential and normal variables.

We commence by considering the tangential geometry: We may interpret it as the

manifold (Rn, aij(y
′)−1). Using (the locally well-defined) exponential map, we ob-

tain normal coordinates on an open subset of Rn (here we make use of the C2

condition on the metric g). As our Carleman estimates are formulated as local es-

timates for functions which are supported sufficiently close to zero, we assume that

the change of coordinates is a global one and that our new manifold is given by

(Rn, ḡij). This change of coordinates straightens out the geodesics passing through

the origin.

Now we consider the full operator in the whole of (R+ × Rn, 1 × ḡij) and intro-

duce polar, instead of Cartesian coordinates in R
n+1
+ . This leads to a new spherical

metric gθθ and to a modified operator:

θ1−2s
n

1

rn
∂r(r

n+1−2s∂r) + θ1−2s
n r−1−2s 1

2
tr(gθθ∂rg

−1
θθ )∂r

+ r−1−2s 1√
det gθθ

∂θi · θ1−2s
n g−1

θθ (r, θ)
√

det gθθ∂θj .

In the sequel, we will also denote the spherical metric gθθ(r, θ) by g(r, θ) and ignore

the first order term involving the derivatives of gθθ. Due to the smallness of the

homogeneous Lipschitz norm of g, it can be treated as a controlled error contribution

which can be absorbed in the positive bulk terms.

We carry out the change into conformal coordinates, i.e. r = et, which yields

∂r = e−t∂t. This results in

e−(1+2s)t
[

θ1−2s
n ∂2t + (n− 2s) θ1−2s

n ∂t + ∇̃Sn · θ1−2s
n ∇̃Sn

]

,

where for brevity of notation we used ∇̃Sn to denote the spherical gradient with

respect to our (non-standard) spherical metric. Conjugating with e−
n−2s

2 t (which
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corresponds to setting w = e−
n−2s

2 tu) and multiplying the operator with e(1+2s)t,

results in

θ1−2s
n

(

∂2t −
(n− 2s)2

4

)

+ ∇̃Sn · θ1−2s
n ∇̃Sn .

Due to the product structure of our original manifold, the boundary condition turns

into lim
θn→0

θ1−2s
n ∂ϕnu = e2stV u. In analogy to the flat case and with a slight abuse

of notation, we use the symbol dθ to denote the volume form of our (non-standard)

spherical metric. In the sequel all the integrals will be computed with respect to

this volume form.

Step 2: Computing the Commutator. In order to separate the spherical and the

radial variables, we set u = θ
2s−1

2
n v and multiply with θ

2s−1
2

n . Although the function

v becomes increasingly singular (if s > 1
2 ), this form of the equation has the advan-

tage that the operator is symmetric and strictly separates the radial and spherical

variables. Thus – up to the first order error terms originating from the first step –

our equation turns into

∂2t −
(n− 2s)2

4
+ θ

2s−1
2

n ∇̃Sn · θ1−2s
n ∇̃Snθ

2s−1
2

n .

Conjugation with an only t-dependent weight, φ, leads to the following “symmetric

and antisymmetric” parts of the operator:

S = ∂2t + τ2(∂tφ)
2 − (n− 2s)2

4
+ θ

2s−1
2

n ∇̃Sn · θ1−2s
n ∇̃Snθ

2s−1
2

n ,

A = −2τ(∂tφ)∂t − τ∂2t φ.

We point out that the ∂t-contributions are not actually symmetric and antisymmet-

ric with respect to our non-standard spherical metric, yet this separation of the full

operator into S and A proves to be convenient for the calculations of the pairing

(Su,Au)L2(Sn
+×R). All the occurring error terms can be controlled. If φ is sufficiently

pseudoconvex the separation into S and A yields the following “commutator” terms:

4τ3
∥

∥

∥(∂2t φ)
1
2 ∂tφv

∥

∥

∥

L2(Sn
+×R)

+ 4τ
∥

∥

∥(∂2t φ)
1
2 ∂tv

∥

∥

∥

L2(Sn
+×R)

− τ

∫

Sn
+×R

∂4t φv
2dθdt

+ (ER),

where (ER) is used to denote any bulk term involving derivatives of g which is

controlled by

τ

∫

Sn
+×R

|∂tφ||∇̃v|2|∇g|dθdt. (3.10.2)

We remark that all integrals are calculated with respect to our non-standard spher-
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ical metric. In these calculations one has to be slightly more careful than in the

case of the standard sphere as the metric tensor, and thus the volume element, also

depends on the t-variable. As a consequence, it is more convenient to calculate some

of the quantities appearing in (Su,Au)L2
g(S

n
+×R) directly, instead of symmetrizing

and antisymmetrizing the respective contributions. Contributions of the form (ER)

will be treated as errors, c.f. Step 4.

Furthermore, weighted gradient estimates can be obtained:

((∂2t φ)∂tv, ∂tv) + ((∂2t φ)θ
1−2s
n ∇̃Snθ

− 1−2s
2

n v, ∇̃Snθ
− 1−2s

2
n v)

= − (Sv, (∂2t φ)v) +

∫

∂Sn
+×R

(∂2t φ)(θ
1−2s
n ν · ∇̃Snθ

− 1−2s
2

n v)θ
− 1−2s

2
n vdθdt

+ ((∂4t φ)v, v) + (ER)

≤ 1

2τ2
‖Sv‖2L2 +

τ2

2

∥

∥(∂2t φ)v
∥

∥

2

L2 + τ2
∥

∥

∥(∂2t φ)
1
2 ∂tφv

∥

∥

∥

2

L2
− (n− 2)2

4

∥

∥

∥(∂2t φ)
1
2 v
∥

∥

∥

2

L2

+

∫

∂Sn
+×R

(∂2t φ)(θ
1−2s
n ν · ∇̃Snθ

− 1−2s
2

n v)θ
− 1−2s

2
n vdθdt

+ ((∂4t φ)v, v) + (ER),

(3.10.3)

where ν = (0, ..., 0,−1) denotes the outer unit normal. For sufficiently pseudo-

convex weight, φ, the right hand side can even be controlled via the commutator

contributions if everything is multiplied by a factor of cτ , for example c ∼ 1
2 would

work. The boundary integral can be evaluated to yield

∫

∂Sn
+×R

(∂2t φ)(θ
1−2s
n ν · ∇̃Snθ

− 1−2s
2

n v)θ
− 1−2s

2
n vdθdt

=

∫

∂Sn
+×R

θ−(1−2s)
n (∂2t φ)e

2stV v2dθdt,

where by a slight abuse of notation we also denote the lower dimensional volume

form by dθdt. We note that the gradient contribution in (3.10.3) (multiplied with

τ) in particular suffices to absorb the bulk contribution of (3.10.2).

The remaining boundary integral which originates from the commutator calculation
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is given by

4τ

∫

∂Sn
+×R

(θ1−2s
n ν · ∇̃Snθ

− 1−2s
2

n v)(∂tφ)θ
− 1−2s

2
n ∂tvdθdt+ (BER)

+ 2τ

∫

∂Sn
+×R

(θ1−2s
n ν · ∇̃Snθ

− 1−2s
2

n v)(∂2t φ)θ
− 1−2s

2
n vdθdt

= 4τ

∫

∂Sn
+×R

(∂tφ)θ
−(1−2s)
n e2stV v∂tvdθdt

+ 2τ

∫

∂Sn
+×R

(∂2t φ)θ
−(1−2s)
n e2stV v2dθdt + (BER),

where (BER) denotes boundary contributions involving derivatives of the metric,

e.g. terms bounded by τ
∫

∂Sn
+×R

|∂tφ∂tḡe2stV |u2dθdt. Rewritten in terms of u =

θ
− 1−2s

2
n v the Carleman estimate reads

cτ
∥

∥

∥(∂2t φ)
1
2 θ

1−2s
2

n ∂tu
∥

∥

∥

2

L2
+ cτ

∥

∥

∥(∂2t φ)
1
2 θ

1−2s
2

n ∇̃Snu
∥

∥

∥

2

L2

+ cτ3
∥

∥

∥θ
1−2s

2
n (∂2t φ)

1
2 (∂tφ)u

∥

∥

∥

2

L2

+
∥

∥

∥
S(θ

1−2s
2

n u)
∥

∥

∥

2

L2
+ τ−1

∥

∥

∥
(∂2t + θ

− 1−2s
2

n ∇̃Sn · θ1−2s
n ∇̃Snθ

− 1−2s
2

n )θ
1−2s

2
n u

∥

∥

∥

2

L2

+ 4τ

∫

∂Sn
+×R

(∂tφ)e
2stV u∂tudθdt+ 2τ

∫

∂Sn
+×R

(∂2t φ)e
2stV u2dθdt

+ cτ

∫

∂Sn
+×R

(∂2t φ)e
2stV u2dθdt+ (BER)

≤ ‖Lφu‖2L2 ,

(3.10.4)

where

Lφ = θ
1−2s

2
n (∂2t + τ2(∂tφ)

2 − (n− 2s)2

4
− 2τ(∂tφ)∂t − τ∂2t φ)

+ θ
2s−1

2
n ∇̃Sn · θ1−2s

n ∇̃Sn .

It remains to discuss the unsigned boundary contributions and the error terms.

Step 3: Bounding the Boundary Contributions. In order to estimate the unsigned

boundary contributions from the previous steps, we consider the respective expres-

sions in polar coordinates as in (3.10.4). Starting with the scaling-critical potentials,
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we have to bound

4τ

∫

∂Sn
+×R

(∂tφ)e
2stV1u∂tudθdt+ 2τ

∫

∂Sn
+×R

(∂2t φ)e
2stV1u

2dθdt

+ cτ

∫

∂Sn
+×R

(∂2t φ)e
2stV1u

2dθdt+ τ

∫

∂Sn
+×R

|∂tφ(∂tg)e2stV1|u2dθdt,

i.e. we have to control the boundary integrals involving the potential V1 = e−2sth(θ).

By an integration by parts in t, we obtain that most contributions drop out. Indeed,

the conditions on a imply that the only non-vanishing terms can be estimated by

Cτ
∫

∂Sn
+×R

|∂2t φ||h(θ)|u2dθdt. However, by appealing to the interpolation inequality

(3.6.3), this can be controlled by the positive quantities of the Carleman inequality:

τ

∫

∂Sn
+×R

(∂2t φ)u
2dθdt ≤ τ1−2s

∥

∥

∥(∂2t φ)
1
2 θ

1−2s
2

n ∇u
∥

∥

∥

2

L2(Sn
+×R)

+ τ3−2s
∥

∥

∥(∂2t φ)
1
2 θ

1−2s
2

n u
∥

∥

∥

2

L2(Sn
+×R)

,

where ∇ = (∂t, ∇̃Sn). Here we also used the explicit expression of φ and the support

condition on u.

All the remaining boundary contributions involve the potential V2 which has sub-

critical growth at zero. Due to the form of φ, it suffices to deduce control of the

term

4τ

∫

∂Sn
+×R

(∂tφ)e
2stV2u∂tudθdt.

Integrating by parts in t, using the subcriticality of V2 and the properties of φ and

a, it suffices to bound

Cτ

∫

∂Sn
+×R

eǫtu2dθdt.

Again, this can be controlled by the interpolation inequality (3.6.3).

Step 4: Treatment of the Error Contributions. It remains to comment on the

first order error terms from step 1 and from the conjugation process. The terms

from step 1 also undergo the conjugation process. Under this they either remain

unchanged or involve a derivative of φ and a prefactor of τ . Instead of including

these contributions – which, in the following, we denote by (Er) – in the commutator

calculation, we treat them as errors:

∥

∥eτφLw
∥

∥

L2 = ‖(S +A+ Er)u‖L2 ≥ ‖(S +A)u‖L2 − ‖(Er)u‖L2 .
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Due to the assumptions on a and the fact that these terms are only of first order, it is

possible to absorb these specific errors – as well as any error terms of the form (ER)

– into the positive commutator contributions which were deduced in step 3.

Combined with a blow-up procedure comparable to the one carried out in Section

3.7.2, the strong unique continuation property follows. As the blown-up solution

satisfies an equation with constant coefficients, the strong unique continuation result

can be regarded as a consequence of a weak unique continuation statement of the

same flavour as the one presented in Section 3.5.

3.10.2 Carleman Inequalities in the Case of Non-Flat Do-

mains

The previous discussion of the situation in R
n+1
+ illustrates that it is possible to

deal with our (degenerate) elliptic operators if they are defined on a manifold of the

form (R+ ×M, 1 × gij). Here (M, gij) is a Riemannian manifold which has – in a

Lipschitz sense – a metric which is sufficiently close to a constant non-degenerate

metric. In particular, this allows to deal with operators of the form (3.10.1) –

i.e. operators in which there is a clear distinction between normal and tangential

variables, as, sufficiently close to the boundary, an appropriate choice of normal

coordinates allows to cast the equation into (a lower order perturbation of) the

previously discussed setting of Rn+1
+ .

3.10.3 Comments on the Situation with a Spectral Gap

In settings involving a spectral gap, the situation improves significantly. In fact,

under these assumptions it is possible to argue as in the article of Koch and Tataru

[KT01a] in which a radial summability condition is required – which is based on

stronger estimates originating from a spectral gap condition. Thus, in situations

involving a spectral gap, it is possible to control equations with leading order con-

tributions of the form ∂iy
1−2s
n+1 gij(y)∂j and bounds of the type |y||∇g| ∈ l1(L∞), c.f.

[KT01a].
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Chapter 4

Introduction

Shape-Memory Materials

Shape-memory materials are metal alloys which undergo a diffusionless, tempe-

rature- or stress-induced solid-solid phase transition with a single, highly symmetric

high temperature state – the so-called austenite – and various less symmetric low

temperature states – the different variants of martensite. This variety of low tem-

perature states is reflected in a great flexibility of shape-memory materials at low

temperatures: A sample of a shape-memory alloy can, for example, be deformed

into very different shapes with comparably little energetical effort in the low tem-

perature regime. On heating this deformed material above its (material-specific)

critical temperature, the atoms are forced back into their original, highly symmetric

lattice. As a consequence, the deformation is “undone”; the material “remembers”

its original shape – it displays the shape-memory effect [Bha03].

As is easily conceivable, such materials are very promising for various industrial

applications as they can be produced to “remember” their high temperature shape

which is a desirable property for certain applications. For example, this can be

exploited in transporting bulky devices efficiently: Instead of directly transporting

the device to the position at which it is needed, it can be more efficient to first trans-

form it into a less bulky transportation shape. For shape-memory alloys this can be

achieved by cooling the material into its martensitic phase and then deforming it

at very low energy cost. On reaching the place at which the shape-memory device

is needed, a temperature- or stress-induced phase transformation can then return

the material into its original, high temperature form. Applications of this are, for

example, essential in aeronautics (e.g. for sun collectors of satellites) or medicine

(e.g. stents which are introduced into the body, braces etc.). Further applications

are feasible.

Such materials, however, are not only interesting from an engineering or physical

point of view but also deserve an intensive investigation due to the challenging

mathematical features of the associated models describing them. In this context the

95
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modeling of material properties imposes conditions which cannot be treated with

the “standard” tools of convex variational analysis. In describing these materials (in

a static situation) within a continuum theory, there are essentially two approaches

from a mathematical point of view:

• Differential Inclusions. On the one hand, the stress-free strains of a ma-

terial can be explicitly measured. On the other hand, the Hamiltonian de-

termining the material behaviour is, in general, not known. Therefore, it is

attractive to consider only the stress-free states as assumptions of the model,

while not requiring additional physical input. This leads to a so-called m-well

problem. In the linear theory of elasticity it reads

e(∇u) = 1

2
(∇u +∇tu) ∈ {e1, ..., em}. (4.0.1)

Thus, without asking for further physical assumptions, the possible (exactly

stress-free) material configurations can be analyzed. This approach has been

pursued by various authors (both in the linear and nonlinear settings), c.f.

[DM95b], [DM95a], [Kir98], [CDK07].

• (Non-quasiconvex) Energy Functionals. Working more quantitatively

(which might for example be necessary if one does not only consider exact

solutions of the differential inclusion but also configurations which deviate

from the stress-free solutions by a small amount), it becomes necessary to

model a (continuum) Hamiltonian. As this has to reflect both the material

invariances and the frame indifference, it is impossible to work with convex

or quasiconvex integrands. This implies that certain tools originating from

the direct method of the calculus of variations cannot be applied directly –

for example, the functionals are no longer lower semicontinuous in general.

This is reflected in a variety of minimizing sequences which depict different

material patterns. Introducing surface energy, i.e. higher order regularizing

energy contributions, these microstructures can be used to predict the mate-

rial behaviour [DM95a], [CO12].

A related approach (which is a possible relaxation of non-quasiconvex in-

tegrands) consists of avoiding the lack of weak lower semicontinuity in the

functionals by working in weaker spaces, in general in measure spaces. Here

the notion of “Young measures” provides a very strong tool in understand-

ing (oscillation) properties of the microstructures (in the absence of surface

energy contributions) [Ped97], [Bal89], [KP91].

Although the previous distinction is very crude – in the treatment of both of these

directions various different methods evolved which can be used to tackle the respec-

tive problems – it depicts the basic choice in the modeling of shape-memory alloys

(in a static regime).
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The Results of the Thesis

In the sequel we investigate a specific martensitic phase transition – the so-called

cubic-to-orthorhombic phase transition (c.f. below for the details of the model).

Here a cubic lattice is deformed into an orthorhombic one at the critical tempe-

rature. The industrially most important material undergoing this transition is

CuAlNi. This material is of particular interest as physical experiments suggest

that it displays a large variety of microstructures, i.e. it is very flexible in its low

temperature phase.

In the present work we mathematically investigate the six-well problem as a differ-

ential inclusion describing the (exactly stress-free) material (in its low temperature

phase). In this setting we obtain two main results:

• Non-Rigidity. Investigating the six-well problem in the linear theory of

elasticity, we observe a mathematically very interesting, but physically un-

expected behaviour: There is a rich variety of very “wild” solutions, which

are mathematically correct but which have to be rejected on physical grounds

(they do not depict any type of characteristic length scale). This phenomenon

indicates that the pure six-well problem does not fully capture the physical fea-

tures of the cubic-to-orthorhombic phase transition. Similar observations were

previously made in the context of nonlinear models [DM95b], [DKMŠ00a],

[CDK07]. In a sense, our phase transition describes one of the simplest three-

dimensional, physically relevant settings in which already the linear theory

exhibits very “wild”, non-rigid solutions. This is presented in Chapter 5.

• Rigidity. The previously described “physical ill-posedness result” is comple-

mented by a rigidity result in the case of additional surface energy control. As

the non-rigidity properties are consequences of highly irregular phase distribu-

tions, a natural strategy to rule these out consists of introducing higher order

regularizing constraints. Here, we use the “most primitive” version of surface

energy by restricting to piecewise polygonal configurations, i.e. configurations

for which the support of each phase consists of an arbitrary but finite number

of disjoint, piecewise polygonal domains. For these configurations we prove

rigidity: Instead of the very wild convex integration configurations, we iden-

tify twin and crossing twin patterns as the generic configurations if surface

energy contributions are included in the model (c.f. Chapter 6 and Figure

4.3).

Experimentally observed configurations, however, are, in general, neither given by

piecewise polygonal nor only by the exactly stress-free configurations but also in-

clude those which are nearly stress-free in an energetic sense. Hence, natural further

questions/topics are

• Rigidity under BV conditions. A natural question to pose, is whether the

rigidity result which is proved in the setting of piecewise polygonal configu-

rations remains true under “milder” surface energy constraints. The existing
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literature suggests that imposing BV conditions should be the right frame-

work to provide rigidity. However, it seems as if this were not tractable with

the presented methods.

• Energy Quantification. An extremely interesting issue in eventually under-

standing the structure of microstructures would be a rigorous quantification

of the energy scaling of the phase transition. As in the seminal paper of Kohn

and Müller [KM94], this would provide hints on the optimal shape of the

emerging patterns. Analogous to the work of Conti [Con00], this could be a

starting point for a more refined analysis of the microstructures.

An energy quantification in the spirit of the articles by Capella and Otto

[CO09], [CO12] has been carried out in a simplified version of the cubic-

to-orthorhombic phase transition in [Rül10] (however, this simplified model

excludes convex integration solutions in the stress-free setting). It remains

an outstanding challenge to carry this out for the full model. In particu-

lar, it would be extremely interesting to analyze how the existence of convex

integration solutions is reflected in the scaling of the energy, c.f. [Bal02].

These and related questions are possible directions of future research.

4.1 The Model

The cubic-to-orthorhombic phase transition is an important example of a solid-solid,

diffusionless, temperature- or stress-induced phase transition. In its face-to-body

centered transition it describes the deformation of a highly symmetric cubic lattice

into a less symmetric orthorhombic one (c.f. [Bha03] for further information).

Derivation of the Strain Matrices

Thinking of the phase transition as a deformation of the underlying atomic lattice, a

martensitic solid-solid phase transition can be described by its respective transition

matrices or bain strains. In the face-to-body centered cubic-to-orthorhombic phase

transition (c.f. Figure 4.1) this amounts to the following linear deformation
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Rewriting this in terms of the austenitic basis leads to the following transition

matrix

U =







α+γ
2 0 α−γ

2

0 β 0
α−γ
2 0 α+γ

2






,
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Figure 4.1: The transformation from the cubic austenite lattice to the low tempe-
rature lattices associated with the different variants of martensite. The austenite
lattice is cubic (top). The martensite lattices are obtained by stretching and com-
pressing along a given edge of the austenite lattice and associated face diagonals.
This leads to the six (symmetry related) variants of martensite (bottom).

where α =
√
2a
a0

, β = b
a0

,γ =
√
2c
a0

. In CuAlNi, these parameters are of the order

a0 = 5.8 Å, a = 4.38 Å, b = 5.36 Å, c = 4.22 Å, c.f. [Bha03]. Taking into account

the symmetry of the cubic and the orthorhombic lattices, implies that there are

five further strain matrices. Indeed, for a fixed parameter b it is always possible

to exchange the roles of a and c. Moreover, it is also possible to permute the

austenitic basis vectors. As a consequence, the phase transition is characterized by

the following six transformation matrices

U1 =







β 0 0

0 α+γ
2

α−γ
2

0 α−γ
2

α+γ
2






, U2 =
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2 0
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α+γ
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2 0

α−γ
2

α+γ
2 0

0 0 β






.
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Cauchy-Born Hypothesis and Linearization

The previously derived discrete model is now linked to a continuum model via the

Cauchy-Born hypothesis. This assumes that microscopically the atomic lattice is de-

formed according to the macroscopic deformation F (x). More precisely, if a macro-

scopic deformation at a point x is given by F (x), we assume that a local microscopic

lattice spanned by the vectors {v1(x), v2(x), v3(x)} is deformed accordingly, yield-

ing a new lattice {F (x)v1(x), F (x)v2(x), F (x)v3(x)}. Under certain assumptions

this rule can be rigorously verified, c.f. [Eri08], [CDKM05], [WnPb07]. Although it

does not hold true in general, we will make this assumption in the sequel. Hence,

it is heuristically justified to assume that a stress-free macroscopic deformation is

described by the transformation matrices U1, ..., U6.

However, these are not all possible stress-free states. Apart from the invariance

dictated by the material – which gives rise to the different martensitic wells in the

first place – a second symmetry has to be taken into consideration. The model

has to be frame indifferent. As a consequence, the set of stress-free deformation

matrices is given by

∇u ∈
6
⋃

j=1

SO(3)Uj .

This leads to a so-called six-well problem. In this model there are two sources

of nonlinearity: On the one hand, the material symmetry leads to six possible

martensitic variants. On the other hand, the frame indifference creates an additional

geometric nonlinearity in matrix-space by imposing SO(3) invariance.

In order to avoid this second nonlinearity we adopt a geometrically linear point of

view. Formally linearizing (around the identity) leads to

∇u ∈ {e(1), ..., e(6)}+ Skew,

or, written as a differential inclusion for the symmetrized gradient,

e(∇u) = 1

2
(∇u+∇tu) ∈ {e(1), ..., e(6)},

as the skew symmetric matrices are the linearization of SO(n) at the identity and

e(i) = Ui − Id. Rescaling and concentrating on (infinitesimally) volume preserving

transformations, we adopt the following notation

e(1) = ǫ







1 δ 0

δ 1 0

0 0 −2






, e(2) = ǫ







1 −δ 0

−δ 1 0

0 0 −2






, e(3) = ǫ







1 0 δ

0 −2 0

δ 0 1






,

e(4) = ǫ







1 0 −δ
0 −2 0

−δ 0 1






, e(5) = ǫ







−2 0 0

0 1 δ

0 δ 1






, e(6) = ǫ







−2 0 0

0 1 −δ
0 −δ 1






,



4.2. HEURISTICS 101

where ǫ and δ are the remaining (dimensionless) material parameters.

As a consequence of the linearization procedure, the material symmetry remains the

only source of nonlinearity in the resulting six-well problem. This allows to study

the problem from a mathematically simpler point of view while still preserving the

model’s main physical feature. However, one has to keep in mind, that linearized

models of elasticity can provide very accurate predictions in certain situations but

can also lead to major discrepancies with the corresponding nonlinear models (c.f.

the discussion in [Bha93] and [Bha03]). In our situation we expect to obtain quali-

tatively accurate results while the precise quantitative behaviour of the material is

certainly not captured.

b

b

U1

QU1

b U1 + S

b

b

U2

QU2

b

b

U3

QU3

Figure 4.2: The nonlinear and linearized energy wells.

4.2 Heuristics

In this section we discuss properties of the previously derived model for the cubic-

to-orthorhombic phase transition. In particular, we describe compatible piecewise

affine constructions.

Symmetrized Rank-One-Connections

Motivated by classifying possible stress-free patterns which occur in the cubic-to-

orthorhombic phase transition, we remark that any pair of strains is (symmetrized)

rank-one-connected (c.f. Table 4.1), i.e. there exist (up to permutation) unique
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e(j1) e(j2) normals

e(1) e(2) [1, 0, 0], [0, 1, 0]
e(1) e(3) [0, 1,−1], [2δ, 3, 3]

e(1) e(4) [0, 1, 1], [2δ, 3,−3]

e(1) e(5) [1, 0,−1], [3, 2δ, 3]
e(1) e(6) [1, 0, 1], [3, 2δ,−3]

e(2) e(3) [0, 1, 1], [2δ,−3, 3]
e(2) e(4) [0, 1,−1], [−2δ, 3, 3]

e(2) e(5) [1, 0, 1], [−3, 2δ, 3]

e(j1) e(j2) normals

e(2) e(6) [1, 0,−1], [3,−2δ, 3]
e(3) e(4) [1, 0, 0], [0, 0, 1]

e(3) e(5) [1,−1, 0], [3, 3, 2δ]
e(3) e(6) [1, 1, 0], [3,−3, 2δ]

e(4) e(5) [1, 1, 0], [−3, 3, 2δ]

e(4) e(6) [1,−1, 0], [3, 3,−2δ]
e(5) e(6) [0, 1, 0], [0, 0, 1]

Table 4.1: Pairs of strains with their respective (symmetrized, not normalized)
rank-one-connections.

vectors nij ∈ S2, aij ∈ R3 \ {0} such that

e(i) − e(j) =
1

2
(aij ⊗ nij + nij ⊗ aij) if i 6= j. (4.2.1)

From this we deduce that any pair of strains can form laminates/ twin configu-

rations, i.e. there exists a vector field u : R3 → R3, u ∈ W 1,∞, and a plane

determined by one of the vectors nij (or aij) such that e(∇u) = e(i) for x · nij ≥ 0

and e(∇u) = e(j) for x · nij < 0 (c.f. Figure 4.3, (b)). This is a result of tangential

continuity.

We remark that, as all matrices e(j) are tracefree, the vectors aij and nij are orthog-

onal: aij ·nij = 0. We further point out that the respective normals nij , aij include

vectors with and without δ entries (up to normalization). While the ones without δ

entries occur exactly twice as the normals between two pairs of distinct strains, the

vectors involving δ entries can be uniquely associated with a single pair of strains

(up to permutation). In the case of δ = 0 the rank-one connections collapse to those

of the cubic-to-tetragonal phase transition.

Corners of Higher Degree

Experiments suggest that apart from simple laminates the cubic-to-orthorhombic

phase transition also allows for so-called crossing twin constructions. These are

configurations in which two distinct pairs of twins meet at a given plane. At this

plane necessarily corners consisting of three or four strains are involved. As a

consequence, it is desirable to develop an understanding of conditions allowing for

such corners of higher degree. Due to the necessary tangential continuity at the jump

interfaces, the twinning condition (4.2.1) imposes a necessary condition. However,

it does not provide a sufficient condition as in the case of three or more strains

an additional condition is needed in order to ensure the compatibility of the skew

symmetric parts of the vector field u. If a corner is constituted of the strains

A1, ..., An satisfying

Aj −Aj+1 =
1

2
(aj ⊗ nj + nj ⊗ aj) for j ∈ {1, ..., n},
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the compatibility of the skew symmetric part is equivalent to

n
∑

j=1

aj ⊗ nj = 0. (4.2.2)

Computing this condition for the cubic-to-orthorhombic phase transition for arbi-

trary combinations of four strain variants, leads to the observation that for specific

combinations of the strain matrices such corners exist and can be combined to yield

crossing twin constructions (as predicted by the experimental results), c.f. Fig-

ure 4.3, (a) and Figures 6.4, 6.5 and 6.6 in Chapter 6 for further crossing twin

configurations.

e(4) e(2) e(4)

e(3) e(1) e(3)

e(4) e(2) e(4)

e(3) e(1) e(3)

[0, 1, 0]

[1,−1, 0]

[1, 1, 0]

(a)

e(1)

e(2)

e(1)

e(2)

(b)

Figure 4.3: Examples of (a) crossing twin structures, (b) laminate structures. The
crossing twin structures are built up of two pairs of twins: There is an “outer
structure” determined by the common jump plane of the twinning pairs (in our
picture these are the planes with normal [0, 1, 0]) as well as an “inner structure”
made up of “zig-zag bands” of twins (in our picture these are the twining bands
given by e(4) − e(3) and e(2) − e(1), respectively).

Compatible Microstructures

The cubic-to-orthorhombic phase transition allows for a variety of microstructures:

Apart from the exactly compatible configurations described above, it is possible

to accommodate any boundary condition whose symmetrized gradient lies in the

convex hull of the strains [Bha03], [BK97] (in the geometrically linear situation).

This corresponds to the fact that the quasiconvex hull of the strains agrees with

the convex hull, i.e. it is very large. Moreover, (in the geometrically linear setting)

any convexification of the strains coincides with the convex hull of the strains:

{e(1), ..., e(6)}lc = {e(1), ..., e(6)}co.
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Although it is a very interesting and challenging topic to determine the “energeti-

cally most efficient” microstructures corresponding to certain boundary conditions,

we do not pursue this any further in the sequel. We only remark that such an

investigation would be the natural next step after analyzing all exactly stress-free

patterns, as microstructures can usually accommodate a much larger variety of

boundary conditions than exactly stress-free patterns and as these are usually the

physically observed states of the material. Such an analysis has been carried out for

a simplified model of the cubic-to-orthorhombic phase transition in [Rül10]. The

energetic scaling analysis of the full model would be of particular interest – not only

from a physical point of view but also from a mathematical viewpoint as it would in-

dicate whether the “wild” convex integration solutions are “seen” in an energetically

quantified model. John Ball has rated this open issue as one of the most fascinating

and challenging problems in elasticity, c.f. [Bal02], Problem 17. Although there are

some promising attempts pointing to an improved understanding of this problem

(c.f. [Cha13]), it remains an outstanding challenge in the mathematical theory of

elasticity/ shape-memory alloys.



Chapter 5

Non-Rigidity

5.1 Introduction

This first part dedicated to the cubic-to-orthorhombic phase transition can be

viewed from two perspectives: On the one hand, it deals with the (meta-) ques-

tion of whether the described pure six-well problem can be considered a “physically

correct” model for the cubic-to-orthorhombic phase transition. On the other hand,

it is a mathematical investigation of solutions of the differential inclusion problem

associated with this phase transition.

In experiments a variety of different microstructures are observed for this phase

transition. However, none of them is “too wild” (in the sense that only very char-

acteristic patterns occur). In the sequel we will show that our first mathematical

model which is given by the differential inclusion (4.0.1) does not reflect this fea-

ture. In a sense, it admits “too many” exactly stress-free solutions. Mathematically,

this is a consequence of the method of convex integration as crucially developed by

Müller and Šverák [MŠ99].

Convex Integration and Elasticity

Convex integration is a technique which was first introduced by Nash and Kuiper in

their seminal papers on the rigidity of isometric immersions, c.f. [Nas54], [Kui55].

Using this technique they demonstrate that C1 isometric embeddings of the sphere

S2 (into R3) are not only given by rigid motions as in the case of C2 isometric

immersions but allow for much greater flexibility. Effectively this is achieved by

sophisticatedly introducing high oscillations, c.f. [Nas54], [Kui55], [Gro73], [Spr98],

[CDLSJ12], [SJ13]. This idea was systematically extended by Gromov [Gro73] who

applied these methods to general differential inclusions. In the following decades the

techniques were developed further by authors such as Dacorogna [DM95b], [Dac07]

and Müller & Šverák [MŠ99], [MŠ98]. While the first school emphasized the ideas

of the Baire category approach, the second developed the method of convex integra-

tion based on in-approximations. Later these approaches were unified in the work

105
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of Kirchheim [Kir98].

Both approaches were in part driven by the aim of improving the understand-

ing of certain martensitic phase transitions. The relevance of these techniques to

(mathematical) material scientists is highlighted by John Ball referring to the in-

vestigation of the m-well problem as the 17th problem in his personal choice of the

most interesting open tasks in elasticity [Bal02]. For certain phase transitions this

problem has been solved. In the sequel we review a few contributions to this field.

Again, this selection is rather crude. It excludes important facets, but is intended

to display characteristic properties of certain models of phase transitions which are

comparable to our setting.

• The Two-Well Problem. The (two-dimensional) two-well problem deals

with the following inclusion problem:

∇u ∈ SO(2)U0 ∪ SO(2)U1, det(U0), det(U1) > 0

or ∇u ∈ {E0, E1}+ Skew(2)

in the nonlinear and in the linear situations, respectively.

While the linear theory predicts a very rigid picture – locally any configura-

tion consists of simple laminates – the nonlinear model does not reflect this.

On the contrary, in their seminal paper Müller and Šverák [MŠ99] prove that

(in the presence of rank-one connections) there are extremely many, extremely

wild solutions to this problem. In order to do so, they extend the theory of

Gromov in two directions: On the one hand, they work with a nonlinear co-

dimension one inclusion problem (this is a necessary precondition in order to

deal with the volume preserving two-well problem). On the other hand, they

extend the methods to the rank-one-convex hull (instead of the laminar con-

vex hull – which is not necessary for the two-well problem but, for example,

for the cubic-to-monoclinic phase transition).

However, using regularizing effects, e.g. by imposing BV conditions on the

deformation gradient, it is possible to recover a rigidity result also in the non-

linear picture [DM95b]. Thus, the additional regularity assumptions rule out

the “wild” convex integration solutions.

As this model serves as a prototype for the more involved realistic phase tran-

sitions, it is particularly well understood: For instance, the explicit structure

of the various convex hulls is known in two dimensions [Mül99] (however, this

is no longer true in three or higher dimensions, c.f. [DKMŠ00b] – which illus-

trates how difficult these computations are). Moreover, in the linear situation

even the energy scaling of the model can be described – yielding the same

results as the scalar models introduced by Kohn & Müller [KM94] (in most

cases), c.f. also [Con00], [Cha13]. In the nonlinear situation this seems to be

a much more subtle challenge as the role of the convex integration solutions

is not clear yet. However, first successful approaches to tackle parts of the

problem have recently been developed in [Cha13].
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• The Cubic-to-Tetragonal Phase Transition. This problem deals with a

three-well differential inclusion of the form

∇u ∈
3
⋃

i=1

SO(3)(λ2ei ⊗ ei +
1

λ
(Id− ei ⊗ ei))

or ∇u ∈
3
⋃

i=1

(−1

2
Id+

3

2
ei ⊗ ei) + Skew,

in its nonlinear and linear versions. This represents one of the simplest (real-

istic) martensitic phase transitions (which, however, is highly nontrivial from

a mathematical point of view). As in the two-well problem the linear theory

predicts rigidity: In [DM95a], Dolzmann and Müller prove that locally the

only compatible, stress-free patterns consist of simple laminates with normals

dictated by the associated rank-one conditions. Again, the nonlinear differ-

ential inclusion does not exhibit this behaviour: Convex integration solutions

can be shown to exist [CDK07]. Due to the non-commutativity of SO(3), it is

not possible to transfer the methods of the nonlinear, BV constrained rigid-

ity result of Müller & Dolzmann [DM95b] into the three-dimensional setting.

Yet, in [Kir98] Kirchheim shows that the statement still holds true in spite

of the described difficulties. Using strongly combinatorial elements which are

specific to the cubic-to-tetragonal phase transition, he proves rigidity under

BV assumptions.

For this phase transition not all the convex hulls are known explicitly: While

the linear theory states that

{e1, e2, e3}lc = {e1, e2, e3}co,

the nonlinear picture is not as clear [Bal02], [CDK07].

As in the two-well problem the scaling of the linear, energetically quantified

model is fully understood, c.f. [CO09], [CO12]: Capella and Otto prove that

the scaling corresponds to that of the scalar Kohn-Müller model. Even nu-

cleation problems [KKO13] can be treated in the linear framework. However,

again, the nonlinear problem poses much greater difficulties. It is not clear

what to expect in that situation.

• The Cubic-to-Orthorhombic Phase Transition. For the cubic-to-ortho-

rhombic phase transition several properties are known: As in the cubic-to-

tetragonal phase transition, all its convex hulls coincide with the standard

convex hull in the setting of the linear theory of elasticity. Experimentally,

a large number of microstructures is observed. In particular, the exactly

stress-free setting already allows for more complex solutions than the cubic-

to-tetragonal phase transition – so-called crossing twin structures emerge,

c.f. [Bha03]. In [Rül10], the author considered a simplified model for the

cubic-to-orthorhombic phase transition and classified all stress-free states in
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this setting. Furthermore, it was possible to prove (energetically quantified)

stability of these constructions in the simplified model.

• The Cubic-to-Monoclinic Phase Transition. This phase transition is of

particular interest, as it represents the class of the industrially most popular

materials – including for instance NiTi. In the associated inclusion prob-

lem the cubic-to-monoclinic wells strictly contain the ones of the cubic-to-

orthorhombic phase transition. Hence, it is plausible to expect a large number

of different exactly stress-free states.

Mathematically, the cubic-to-monoclinic phase transitions is particularly in-

teresting, as it is the first phase transition for which the laminar convex hull

does not coincide with the convex hull in the setting of the linear theory

of elasticity (this is a consequence of the fact that not all strains are pair-

wise symmetrized rank-one connected). As a consequence, already the linear

theory poses fascinating new questions. This phase transition has been the

subject of recent research by Schlömerkemper & Chenchiah [CS12].

• Young Measures. A very powerful alternative approach of understanding

the behaviour of the inclusion problems associated with the respective phase

transitions consists of investigating the corresponding Young measures. These

are measures describing the local distribution of strains/deformation in strain-

/matrix-space. It is an important tool in understanding oscillatory behaviour

(of microstructures) and in computing the different convex hulls (via duality),

c.f. [Mül99], [Ped97], [KP91], [Bha03].

Summarizing, these results create the following picture:

• In experiments configurations with “characteristic” patterns are observed. Of-

ten the materials even display rigidity in the sense that only certain patterns,

e.g. simple laminates, can occur (if only small stresses are allowed).

• While the linear theory of elasticity often (at least in “model cases” such as

the two-well problem or the cubic-to-tetragonal phase transition) predicts the

“physically correct patterns”, this breaks down in the “simplest” models of

the nonlinear theory.

• In general, the mathematical n-well models predict extremely irregular so-

lutions which display a mixing of scales. Thus, the physical picture is not

described “correctly”. A length scale has to be introduced by adding regular-

izing higher order terms into the model.

In this context our results provide an example of an industrially relevant phase

transition which already displays non-rigidity properties in the linear theory of

elasticity. More generally, this phenomenon can occur, if there are sufficiently many

different (pairwise symmetrized rank-one connected) stress-free strains. As in the

nonlinear situations in which one observes such a behaviour, the physical solutions

can be separated from the unphysical ones by adding regularity constraints.
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5.2 The Main Results

From a technical point of view the linearized theory of martensite differs from a

gradient inclusion problem by an unbounded ingredient: The inclusion problem is

of the form

∇u ∈ K + Skew(3), (5.2.1)

where K ⊂ R
3×3 is a compact set in the tracefree matrices (which corresponds to

the energy wells in the case of a phase transition). In the sequel we will investigate

this inclusion problem which is slightly more general than the described six-well

problem. Hence, the specific application to the six-well problem (4.0.1) will be a

consequence of this discussion.

Our strategy of tackling the problem consists of keeping the unbounded ingredient,

while else following the arguments of Müller and Šverák [MŠ99] in the linearized

setting. Instead of using a W 1,∞ bound, which we lack due to the unboundedness

of the problem, we make use of Korn’s inequality to derive slightly weaker W 1,p,

p ∈ (1,∞), bounds. Thus, the unbounded aspects of this argument account for a

loss of regularity in the final solution of the symmetrized gradient inclusion.

An alternative approach, which would yield slightly stronger non-rigid solutions

(solutions in W 1,∞) could consist of applying the ideas established by Kirchheim

[Kir07]. Instead of working with the bounds obtained via Korn’s inequality, one

could directly “lift” the problem to a bounded differential inclusion for the gradi-

ent. In order to proceed with such a strategy, it would be necessary to identify the

lamination extreme points of the lamination convex hull of the resulting set. While

the situation can be handled for analogous two-dimensional problems (involving

three strains, e.g. the hexagonal-to-rhombic transition) due to the low dimension-

ality in matrix-space, this poses greater difficulties in the three-dimensional setting.

We do not pursue this idea further, but concentrate on the strategy outlined above.

In the case of the six-well problem, we observe that despite its linear character the

inclusion problem (4.0.1) mirrors the analogous nonlinear situation described by

Müller and Šverák [MŠ99] as well as Conti [Con08]. In fact, at first sight rather

surprisingly, the three-dimensional linear situation needs the full strength of the

technique of convex integration. This is in sharp contrast to the two-dimensional,

linear hexagonal-to-rhombic phase transition. In this two-dimensional example the

convex integration solutions can be constructed without the use of the oscillation

control lemma – the core of the convex integration method. This is a consequence

of the fact that the existence of symmetrized rank-one connections is trivial in two-

dimensions.

As a result, for all the investigated inclusions central ingredients of our proofs of
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the existence of “wild” convex integration solutions are

• a linearization of Conti’s construction, c.f. [Con08],

• an application of the oscillation control lemma of Müller and Šverák, c.f.

[MŠ99].

In the following, we distinguish between the different convex hulls from which we

choose the boundary values for the inclusion problem (5.2.1).

The Case of the Laminar Convex Hull

In the first case of interest, we consider (5.2.1) combined with boundary data, v,

whose symmetrized gradient originates from the lamination convex hull of K. More

precisely, v is assumed to be a piecewise affine function with e(∇v) ∈ K lc. Although

this is included in the case of e(∇v) ∈ Krc, we discuss both cases separately, em-

phasizing the details in the easier situation. This can be justified by trying to

avoid technical discussions as far as possible. As the case of the lamination convex

hull provides the easiest setting to describe the strategy of proof (and as we are

motivated by the cubic-to-orthorhombic phase transition), it is natural to discuss

this case in detail. As indicated above, we interpret the gradient inclusion as an

unbounded gradient inclusion.

As in the nonlinear setting a major difficulty of problem (5.2.1) arises from the

constraint (in our situation this amounts to the vanishing trace condition), which

is stable under taking the lamination convex hull (c.f. Section 5.3 for the definition

and properties). Phrasing our results in analogy to Müller & Šverák [MŠ99], we

define:

V := {E ∈ R
3×3
sym; tr(E) = 0}.

With this notation our main results can be formulated. Before dealing with the

actual six-well problem, we provide an existence result for differential inclusions

with values in open sets U ⊂ V .

Proposition 21. Let U ⊂ V be relatively open and bounded, Ω ⊂ R3 bounded,

open, Lipschitz and assume that v : Ω ⊂ R3 → R3 is piecewise affine such that

e(∇v) ∈ U lc a.e. in Ω.

Then there exists a Lipschitz map u : Ω → R3 such that

e(∇u) ∈ U a.e. in Ω,

u = v on ∂Ω.

We remark that the Lipschitz constant of the map u strongly depends on the bound-

ary data v. In fact, central factors playing a role, are the skew-symmetric part of
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∇v as well as the order of lamination of e(∇v).

In order to deal with non-open sets, we reduce the situation to the previously

described case of open sets by working with the notion of “in-approximations”.

Morally speaking, an in-approximation is a collection of bounded, open sets that

can be reached by an application of Proposition 21 and which approximate the

actual (non-open) set increasingly well. Thus, a countable number of iteration

steps allows to deduce the desired existence result for the non-open situation.

We follow the notation of Müller and Šverák [MŠ99].

Definition 6. Let K ⊂ V . A sequence {Ui}i∈N of relatively open sets Ui ⊂ V is

an in-approximation of K in V if it satisfies

1. each Ui is uniformly bounded,

2. Ui ⊂ U lci+1,

3. Ui → K, i.e. if Fi ∈ Ui converges to F this implies F ∈ K.

In contrast to the geometrically nonlinear setting, the in-approximation will be

applied to the strain (and not to the gradient), hence an additional tool for deducing

compactness is necessary. This is provided by Korn’s inequality. Using the notion

of an in-approximation, we prove the following proposition:

Proposition 22. Let V be as above, K ⊂ V and let {Ui}i∈N be an in-approximation

of K. Assume that v : Ω ⊂ R3 → R3 is piecewise affine and satisfies

e(∇v) ∈ U1 in Ω.

Then there exists u : Ω → R3, u ∈ C0,α for all α ∈ [0, 1), such that

e(∇u) ∈ K a.e. in Ω,

u = v on ∂Ω.

The unboundedness of the sets we are dealing with is reflected in weaker regular-

ity properties of solutions of the differential inclusion (5.2.1): Instead of Lipschitz

solutions as in the case of bounded gradient inclusions our ansatz only yields C0,α

solutions for any α ∈ [0, 1). This regularity property is derived via the bounded-

ness of the inclusion in the set of symmetric matrices in combination with Korn’s

inequality.

The loss of regularity is – in a weaker form – already contained in the first proposi-

tion. The strong dependence of the Lipschitz constant on the skew-symmetric part

of ∇u, makes it difficult to carry out a countable iteration of Proposition 21 without

losing the Lipschitz property.

Finally, Proposition 22 enables us to deal with the six-well problem and to conclude

non-rigidity for the cubic-to-orthorhombic phase transition.
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Corollary 2. Let e1, ..., e6 ∈ R3×3
sym, tr(ei) = 0, be such that

dim(intconv(e1, ..., e6)) = 5 and such that there exist aij ∈ R3 \ {0}, nij ∈ S2 with

ei − ej =
1

2
(aij ⊗ nij + nij ⊗ aij) for i 6= j.

Then for any Lipschitz domain Ω and any M ∈ R3×3 such that 1
2 (M + M t) ∈

intconv(e1, ..., e6) there exists a function u : R3 → R3, u ∈ C0,α for all α ∈ [0, 1),

satisfying

∇u =M on R
3 \ Ω̄,

1

2
(∇+∇t)u ∈ {e1, ..., e6} a.e. in Ω.

In particular, this result applies to the six-well problem and provides a very large

set of highly irregular solutions to the inclusion problem associated with the cubic-

to-orthorhombic phase transition.

The Case of the Rank-One Convex Hull

In the final part of Section 5.6 we deal with piecewise affine boundary conditions

originating from the rank-one-convex hull of K, v ∈ Krc. Although these boundary

conditions include the previously discussed ones and it would have been possible to

incorporate the first case into this one, we choose to present them separately as this

final case causes additional technical difficulties.

Again, our strategy of proof leads to a loss in regularity. We only prove the results

of Proposition 21 and 22 with the reduced C0,α properties. The case involving

rank-one convex hulls might, for example, be of interest for the cubic-to-monoclinic

phase transition, c.f. [CS12].

The remainder of the chapter is organized as follows: Section 5.3 recalls the notions

of lamination and rank-one convexity. Section 5.4 contains all auxiliary construc-

tions, including the linearized Conti construction as well as various iterations of it.

After this we reproduce the oscillation control lemma of Müller and Šverák [MŠ99],

which forms the core of the convex integration procedure. Finally, in Section 5.6

we present the proofs of the results described above.

5.3 Preliminaries

Lamination Convexity

A crucial notion for the further discussion is (symmetrized) lamination convexity.

Therefore, we briefly recall this notion, c.f. [Dac07], [MŠ99], [Kir07]. As we work

in the framework of the linear theory of elasticity, we consider all notions adapted
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to symmetric matrices (e.g. symmetrized rank-one-connections instead of rank-one-

connections).

Definition 7. A set U ⊂ Rn×nsym is (symmetrized) lamination convex iff for any

pair of (symmetrized) rank-one connected elements a, b ∈ U the whole interval [a, b]

is contained in U . We denote the lamination convex hull of a set U by U lc. It is

characterized as the smallest lamination convex set containing U .

In the sequel we will make use of the following properties of the lamination convex

hull:

• the lamination convex hull can be characterized as U lc =
∞
⋃

j=0

Lj(U), with

L0(U) = U,

Lj(U) = {c ∈ R
n×n
sym ; c = λa+ (1− λ)b, λ ∈ [0, 1], a, b ∈ Lj−1(U),

rank(a− b) ≤ 1}.

• If U is open, the same holds for Lj(U) for any j ∈ N.

• If n ∈ N is minimal with c ∈ Ln(U) we denote it as the order of lamination

(of c).

Rank-One Convexity

Since our strategy of proof displays strong enough robustness in order to apply it

to the case of boundary data whose gradient originates from rank-one convex hulls,

we recall the central aspects of this notion of convexity, c.f. [MŠ99]. We only deal

with the case of symmetrized rank-one convex hulls. As above we make use of the

notation V = {M ∈ R3×3
sym, tr(M) = 0}.

Definition 8. • Let K be a compact subset of R3×3
sym (or of V ). X ∈ Krc (or

X ∈ Krc
V ) iff for any f : R3×3

sym → R, which is symmetrized rank-one convex

(on V ), we have f(X) ≤ sup
K
f .

• Let O be a bounded, (relatively) open subset of R3×3
sym (or of V ). X ∈ Orc

(X ∈ OrcV ) iff there exists K ⊂ O, compact, such that X ∈ Krc (X ∈ Krc
V ).

• A probability measure µ supported on a compact set K ⊂ R3×3
sym is a laminate

iff 〈µ, f〉 ≥ f(µ̄) for any symmetrized rank-one convex function f : R3×3
sym → R,

where µ̄ =
∫

R
3×3
sym

id(Y )dµ(Y ). We denote the set of all such probability measures

by Mrc(K).

• Let O ⊂ R3×3
sym (O ⊂ V ) be (relatively) open. Then we define the collection of

finite-order laminates as

L(O) :=
∞
⋃

j=0

Lj(O),
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where the Lj(O) are defined inductively as sets of laminates of order j:

L0(O) := {ν = δA, A ∈ O},

Lj(O) := {ν =

j−2
∑

k=1

λkδAk
+ λj−1sδB0 + λj−1(1 − s)δB1 ,

such that there exists a probability measure ν′ ∈ Lj−1(O) with

ν′ =
j−1
∑

k=1

λkδAk
, Aj−1 = sB0 + (1− s)B1, s ∈ (0, 1),

and B0, B1 are symmetrized rank-one connected}.

Just as in the non-symmetrized situation, we have the following facts (c.f. [MŠ99],

p.400):

• Let K ⊂ V , then Krc
V = {ν̄; ν ∈ Mrc(K)}.

• Let K ⊂ V be compact, ν ∈ Mrc(K). Let O ⊂ V be a (relatively) open set

containing Krc
V . Then there exists a sequence of finite laminates νj ∈ L(O)

such that

νj
∗
⇀ ν in measure,

ν̄j = ν̄.

• For a (relatively) open set O the rank-one convex hull, Orc (OrcV ), remains

(relatively) open.

5.4 Constructions

Conti’s Construction: 2D and 3D

In this subsection we present “linearized” versions of a construction of Conti [Con08].

Instead of satisfying the determinant constraint appearing in the nonlinear setting,

our construction with zero boundary data satisfies a zero trace condition. As in

the original construction, we prove the statement in two steps: We first give a

two-dimensional construction and then extend it to three dimensions.

In the two-dimensional setting we have:

Lemma 9. Let λ ∈ (0, 1), δ > 0 and define

M0 =

(

0 0

1− λ 0

)

, M1 =

(

0 0

−λ 0

)

.

Then there exists a piecewise affine Lipschitz map u : R2 → R2 and domains Ω =

Ω0 ∪ Ω1, Ω1,Ω0 (up to null sets) disjoint (each consisting of a union of triangles),

such that
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• ∇u attains at most five different values in Ω,

• we have

∇ · u = 0 in Ω,

u = 0 in R
2 \ Ω̄,

• it holds

|M0 −∇u| ≤ δ in Ω0,

|M1 −∇u| ≤ δ in Ω1.

µ

−µ

1

−1

−ǫ −ǫλ ǫλ ǫ

M1 +M3

M0 +M3

M1 +M3

M1 +M3

M0 +M3

M1 +M3

M1 +M2 M0 +M2 M1 +M2 P2

P3

P1

Figure 5.1: Conti’s construction in 2D and 3D. The picture on the left describes the
gradient distribution in the two-dimensional construction and depicts the triangles
(dashed) where the construction is interpolated. The final domain Ω is given by the
diamond. The picture on the right illustrates the extension of the construction to
higher dimensions.

Proof. In analogy to Conti’s construction in the nonlinear case [Con08], we construct

the desired function in the diamond depicted in the left part of Figure 5.1. We first
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focus on the construction in the first quadrant. The gradients of the functions

vM0(x) :=

(

0

(1 − λ)x1

)

, vM1(x) :=

(

0

−λx1 + λǫ

)

,

vM2(x) :=

(

−q(1− µ)x2

0

)

, vM3(x) :=

(

qµx2 − qµ

0

)

,

are given by

M0 =

(

0 0

1− λ 0

)

, M1 =

(

0 0

−λ 0

)

,

M2 =

(

0 −q(1− µ)

0 0

)

, M3 =

(

0 qµ

0 0

)

.

Due to the rank-one connections between M0, M1 and M2, M3, respectively, it

is possible to define a piecewise affine, continuous function ũ with the gradient

distribution indicated in Figure 5.1:

ũ(x) =























vM0(x) + vM2(x) in [−ǫλ, ǫλ]× [−µ, µ],
vM0(x) + vM3(x) in [−ǫλ, ǫλ]× [µ, 1],

vM1(x) + vM2(x) in [ǫλ, ǫ]× [−µ, µ],
vM1(x) + vM3(x) in [ǫλ, ǫ]× [µ, 1].

Furthermore, by the choice of the functions vMi , we obtain ũ(P2) = ũ(ǫ, 0) =

0 = ũ(0, 1) = ũ(P1). In order to obtain the desired conditions on the boundary

of the diamond, we interpolate the values of ũ at P1, P2, P3 linearly. This yields

a new piecewise affine, continuous function u. By construction we have u(P1) =

0 = u(P2), thus, u vanishes on the whole line segment connecting the points P1

and P2. Moreover, by choosing q = λ(1−λ)
µ(1−µ) ǫ

2, it is ensured that the resulting

(interpolated) vector field remains divergence free (this can be seen by an application

of Gauß’s theorem or by the explicit computation of the gradient in the interpolation

region). Thus, in the interpolated region the gradient of u can be computed to yield

∇u = p

(

−ǫ −ǫ2
1 ǫ

)

with p = −λ 1
1− µ

1−λ
= −λ + O( µ

1−λ ). On the remaining part

of the first quadrant of the diamond, i.e. on the polygon defined by the points

P1, (0, 0), P2, P3, the gradient distribution of u coincides with that of ũ. Now the

claim on the closeness of the gradients to the matrices M0,M1 follows by choosing

• µ = ǫ,

• ǫ > 0 sufficiently small in dependence of λ and δ.

Carrying out similar considerations in the fourth quadrant, we obtain that the

gradient in the corresponding interpolation region is given by p

(

ǫ −ǫ2
1 −ǫ

)

. Finally,

using the point symmetry of the overall construction, u(x) = −u(−x), we obtain

the desired construction involving only five gradients.
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The two-dimensional Conti construction can be extended to an arbitrary dimension

by inductively adding new points in each direction orthogonal to the already present

((n− 1)-dimensional) building block. On these, the extended function is prescribed

so as to satisfy the correct boundary conditions. The final higher-dimensional con-

struction is obtained by interpolating between the “new points” and the lower di-

mensional construction (c.f. Figure 5.1, right part).

Lemma 10. Let λ ∈ (0, 1) and consider

M0 =







0 0 0

1− λ 0 0

0 0 0






, M1 =







0 0 0

−λ 0 0

0 0 0






.

Then for any δ > 0 there exists Ω ⊂ R3, Ω = Ω0 ∪ Ω1 (each consisting of a finite,

non-empty union of tetrahedra), and there exists a piecewise affine, Lipschitz map

u : R3 → R3 such that

• ∇u takes on at most 10 different values in Ω,

• we have

∇ · u = 0 in Ω,

u = 0 on R
2 \ Ω̄,

• it holds

|M0 −∇u| ≤ δ on Ω0,

|M1 −∇u| ≤ δ on Ω1.

Proof. We prove this lemma by applying the previous two-dimensional construction

and an additional interpolation. In fact, considering the three-dimensional diamond

given by the convex hull of the points

P1 = (0, 1, 0), P2 = (ǫ, 0, 0),−P1,−P2, (0, 0, 1), (0, 0,−1),

we define u(x) =







u1(x)

u2(x)

0






by the previously constructed two dimensional function

in the {x3 = 0}-plane. We extend it to the three-dimensional tetrahedron by setting

u(±e3) = 0 and interpolating in the resulting three-dimensional tetrahedra. As a

consequence, we obtain at most 10 different gradients. Since u3(x) = 0 on all of

the vertices on which u is interpolated, we infer u3(x) = 0 by linearity. Thus, the

gradient of u reads

∇u =

(

∇(u1, u2) b

0 0

)

.
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Combined with the divergence freeness of the two-dimensional matrix ∇(u1, u2),

this demonstrates that the divergence freeness is preserved under the described

interpolation procedure.

In order to control the volume distribution of the gradients/ symmetrized gradients

appearing in Conti’s construction, we use the following Lemma, which is again an

adaptation of the nonlinear situation treated by Conti [Con08].

Lemma 11. Let λ ∈ (0, 1) and consider

M0 =







0 0 0

1− λ 0 0

0 0 0






, M0 =







0 0 0

−λ 0 0

0 0 0






.

For any δ > 0 there exist domains Ω,Ω0,Ω1 ⊂ R
3, Ω = Ω0 ∪Ω1 (each consisting of

a finite union of tetrahedra and rectangular boxes), and a piecewise affine Lipschitz

map u : R3 → R3 such that

• ∇u takes on at most 20 different values,

• we have

∇ · u = 0 in Ω,

u = 0 on R
3 \ Ω̄,

• it holds

|M0 −∇u| ≤ δ on Ω0,

|M1 −∇u| ≤ δ on Ω1,

• the volume fractions satisfy

|{x ∈ Ω;∇u /∈ {M0,M1}}| ≤ δ|Ω|.

Proof. We follow the ideas of Conti. Defining u(1) as the function from Lemma 10,

we set

u(k)(x) :=











u(k−1)(x− Lek), xk > L,

u(k−1)(x− xk), |xk| ≤ L,

u(k−1)(x+ Lek), xk < −L,

for k ∈ {2, 3} and L > 0 sufficiently large, to be chosen later. By definition,

this is a Lipschitz function. Its gradient remains unchanged for |xk| ≥ L, while

the structure of M0,M1 implies ∇u ∈ {M0,M1} for |xk| ≤ L. Finally, choosing

L = L(δ) sufficiently large, also yields the claim on the volume fractions.
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Remark 21. Such a precise volume control as provided by the previous lemma is

actually only needed when dealing with the case of rank-one convex hulls. Since it

does not impose additional technical difficulties, it is included already in the simpler

context of lamination convex hulls.

Application of Conti’s Construction to General Rank-One Con-

nected Matrices

In this section we illustrate that Conti’s construction can be generalized to satisfy

arbitrary boundary conditions and to take on prescribed gradient values (up to

a previously determined error) in certain tetrahedra. With this construction, we

obtain a function which satisfies the correct boundary condition and whose interior

gradient configuration is modified along a rank-one segment.

Lemma 12 (Deformation of Conti’s Construction). Let δ > 0 and assume that

M ∈ R3×3, tr(M) = 0, such that there exist a ∈ R3 \ {0}, n ∈ S2, M0,M1 ∈ R3×3,

λ ∈ (0, 1) with

M = λM0 + (1− λ)M1,

M1 −M0 = a⊗ n, a · n = 0.

Then there exist sets Ω,Ω0,Ω1 ⊂ R3, Ω = Ω0 ∪ Ω1; Ω0,Ω1 each being a union

of finitely many tetrahedra, and there exists a piecewise affine Lipschitz function

u : R3 → R3 satisfying:

• the gradient of u attains at most 20 different values; it is constant on the

tetrahedra which are the components of Ω0 and Ω1,

• ∇u =M in R3 \ Ω̄,

• ∇ · u = 0,

• |∇u−M0| ≤ δ on Ω0, |∇u−M1| ≤ δ on Ω1,

• |{x ∈ Ω;∇u /∈ {M0,M1}}| ≤ δ|Ω|.

Proof. By a translation in matrix-space, a rotation in x-space and a rescaling in

u-space we may assume

M = 0, n =







1

0

0






, a =







0

1

0






.

Hence, we obtain

M0 =







0 0 0

1− λ 0 0

0 0 0






, M1 =







0 0 0

−λ 0 0

0 0 0
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Now the claim follows from an application of Conti’s construction, Lemma 11.

Rank-One-Connections from Symmetrized Rank-One-Connec-

tions in R
3

In constructing the in-approximation, it will be necessary to move the involved

strains closer and closer to the strains of the approximated set K. In order to do

so, we intend to apply the deformed Conti construction iteratively. As the first

step consists of finding the “right” rank-one connected matrices (M0 and M1 in

Lemma 12), the following gives a characterization of the property of being rank-

one-connected.

Lemma 13. Let ei ∈ R3×3
sym, tr(ei) = c, i ∈ {0, 1}, e0 6= e1. Then the following

statements are equivalent:

1. There exist matrices M0,M1 and vectors a ∈ R3 \ {0}, n ∈ S2 such that

1

2
(Mi +M t

i ) = ei, i ∈ {0, 1},

M0 −M1 = a⊗ n, a ⊥ n.

2. There exist vectors a ∈ R3 \ {0}, n ∈ S2 such that

e1 − e0 =
1

2
(a⊗ n+ n⊗ a).

3. It holds det(e1 − e0) = 0.

Proof. The statements 1 ⇒ 2 ⇒ 3 and 2 ⇒ 1 are clear. It remains to prove that the

third statement implies the second. As e1−e0 is symmetric, there exist orthonormal

eigenvectors v1, v2, v3 ∈ S2 with eigenvalues λ1, λ2, λ3 ∈ R such that

e1 − e2 = λ1v1 ⊗ v1 + λ2v2 ⊗ v2 + λ3v3 ⊗ v3.

As the determinant vanishes, we may assume that λ3 = 0. Furthermore, the

condition on the traces of the strains, ei, implies tr(e1 − e0) = 0, leading to

λ2 = −λ1 =: −λ. Hence,

e1 − e0 = λ(v1 ⊗ v1 − v2 ⊗ v2)

=
λ

2
((v1 + v2)⊗ (v1 − v2) + (v1 − v2)⊗ (v1 + v2))

=
1

2
(a⊗ n+ n⊗ a),

for n := v1 − v2, a := λ(v1 + v2) (a reversal of the signs in a, n would also have

been possible).
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Remark 22. • In an arbitrary dimension, d, the first two statements remain

equivalent. The third condition becomes a necessary but not sufficient condi-

tion.

• The choice n = v1−v2, a = λ(v1+v2) implies a bound for the skew symmetric

part S = 1
2 (a⊗ n− n⊗ a) of M1 −M0: |S| ≤ 4|λ|.

With the previous lemma we have obtained a necessary and sufficient condition for

(symmetric) rank-one-connectedness. This will be applied to the strains contained

in the wells. We will move an arbitrary strain in the interior of the lamination

convex hull of the wells closer and closer to the extreme points, i.e. the wells.

The procedure we apply is iterative in the sense that we first show that a given

strain in Li(U) can be moved towards Li−1(U). This is the content of Lemma 14.

Lemma 14. Let M ∈ R3×3, tr(M) = 0, e0, e1 ∈ R3×3
sym, tr(ei) = 0 and assume that

the matrices e0 6= e1 are symmetrized rank-one-connected such that for ẽ := e(M)

there exists λ ∈ (0, 1) with

ẽ = λe0 + (1− λ)e1.

Then there exist M0,M1 ∈ R3×3, a ∈ R3 \ {0}, n ∈ S2 such that

e(M0) = e0,

e(M1) = e1,

M1 −M0 = a⊗ n, a · n = 0,

M = λM0 + (1 − λ)M1.

Proof. By an application of Lemma 13 we obtain a skew symmetric matrix S̄ and

vectors a ∈ R
3 \ {0}, n ∈ S

2 such that

e1 − e0 + S̄ = a⊗ n.

Setting S(M) := 1
2 (M −M t), we have

M = λ(e0 + S(M)) + (1− λ)(e1 + S(M))

= λ(e0 + S(M) + (1− λ)S̃) + (1 − λ)(e1 + S(M)− λS̃),

for an arbitrary skew symmetric matrix S̃. Choosing S̃ := S̄ and setting

M0 := e0 + S(M)− (1− λ)S̄,

M1 := e1 + S(M) + λS̄,

yields the desired rank-one-connected matrices.
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5.5 Controlled Convergence Lemma

The key to the overall construction is provided by the “oscillation control lemma”

of Müller and Šverák [MŠ99]. It states that a very strong L∞ control allows to

improve weak W 1,p, p > 1, convergence to strong W 1,1 convergence. The central

idea is a “separation of scales”: While the gradient may vary on scales of order

one, the L∞ bound implies that these oscillations take place on an extremely small

spatial scale. Simultaneously, a convolution bound ensures that this scale is not

arbitrarily small, which avoids the danger of creating only weak – and not strong –

convergence.

Lemma 15 (Müller-Šverák). Let Ω ⊂⊂ Rn be a bounded set, ρ ∈ C∞
0 (Ω), ρǫ(x) :=

1
ǫn ρ(

x
ǫ ),

∫

Ω

ρdx = 1, ρ ≥ 0. Suppose that v is a piecewise affine function on Ω.

Assume that uj : Ω → Rn is a sequence satisfying

‖uj‖W 1,p(Ω) ≤ C <∞ for some p > 1,

uj = v on ∂Ω,
∥

∥∇uj ∗ ρǫj −∇uj
∥

∥

L1(Ω)
≤ 2−j ,

δj+1 = ǫjδj , δ0 ≤ 1, ǫj ≤ 2−(j+1),

‖uj+1 − uj‖L∞(Ω) ≤ δj+1, u0 = v,

‖uj+2 − uj+1‖L∞(Ω) ≤
‖uj+1 − uj‖L∞(Ω)

2
.

Then

uj → u∞ in L∞(Ω) ∩W 1,1(Ω) as j → ∞.

Proof. We follow the proof of Müller & Šverák [MŠ99]. Denoting uj+1 − uj =: φj

and considering the geometric bounds on δj we have the estimate

‖uj − uj′‖L∞ ≤
∞
∑

min{j,j′}
‖φj‖L∞ ≤ 2

∥

∥φmin{j,j′}
∥

∥

L∞ .

Thus, there exists u∞ such that uj → u∞ in L∞. Due to the boundedness of the

W 1,p norm and the L∞ convergence, we may further assume uj ⇀ u∞ in W 1,p. We

prove strong convergence in W 1,1:

‖∇(uj − u∞)‖L1(Ω) ≤
∥

∥∇uj −∇uj ∗ ρǫj
∥

∥

L1(Ω)
+
∥

∥∇u∞ ∗ ρǫj −∇u∞
∥

∥

L1(Ω)

+
∥

∥∇uj ∗ ρǫj −∇u∞ ∗ ρǫj
∥

∥

L1(Ω)
.

Here the first term converges to zero by the assumptions, while the second one

converges by properties of convolution. For the third term we make use of the
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strong L∞ control. Denoting Ωj := {x : dist(x, ∂Ω) > 2ǫj}, we have

∥

∥∇uj ∗ ρǫj −∇u∞ ∗ ρǫj
∥

∥

L1(Ω)
=
∥

∥∇uj ∗ ρǫj −∇u∞ ∗ ρǫj
∥

∥

L1(Ωj)

+
∥

∥∇uj ∗ ρǫj −∇u∞ ∗ ρǫj
∥

∥

L1(Ω\Ωj)
.

The second term on the right hand side can be bounded by means of Young’s

inequality combined with the smallness of |Ω\Ωj | and the uniformW 1,p assumption

on the uj . For the first term we apply the following estimate:

∥

∥∇uj ∗ ρǫj −∇u∞ ∗ ρǫj
∥

∥

L1(Ωj)
=
∥

∥(uj − u∞) ∗ ∇ρǫj
∥

∥

L1(Ωj)

≤ 1

ǫj
‖uj − u∞‖L∞(Ω) .

Since by assumption

‖uj − u∞‖L∞(Ω) ≤ 2 ‖uj − uj+1‖L∞(Ω) ≤ 2ǫjδj ,

also the last term can be made arbitrarily small for sufficiently large j.

By invoking Conti’s construction in successively building up a Müller-Šverák se-

quence, i.e. a sequence satisfying the conditions of the controlled convergence

lemma, it will be relatively easy to obtain improved volume fractions on which

the strains are closer and closer to the desired sets. However, the necessary differ-

ence in the displacements will not automatically be small. As a consequence the

following construction will repeatedly play an essential role, allowing to change the

L∞ norm of a function and preserving the gradient distribution at the same time.

Remark 23 (Vitali-Construction). Let f : Ω → Rm, f ∈ W 1,∞
0 (Ω). Partitioning Ω

into rescaled copies of Ω of side length ǫi, Ω =
∞
⋃

i

Ωi :=
∞
⋃

i

(xi + ǫiΩ), and setting

u(x) := ǫif(
x−xi

ǫi
), yields a function which has the same gradient distribution in Ω

as f and which satisfies the L∞ estimate

‖u‖L∞(Ωi)
≤ ǫi ‖f‖L∞(Ωi)

.

This construction makes it possible to preserve a gradient distribution while im-

proving the L∞ control.

5.6 Proofs of Propositions 21 & 22, Corollary 2

Finally, we combine the previous considerations and construct a Müller-Šverák se-

quence with the in-approximation properties.
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Proof of Proposition 21

Proof of Proposition 21. Let Ω ⊂⊂ R3 be a bounded set, U ⊂ R3×3
sym open, trace-

free, v : Ω → R3 piecewise affine such that

e(∇v) ∈ U lc.

Without loss of generality, we may assume that v is affine (else we restrict to the

affine parts), v =Mx.

We construct a solution of the inclusion problem via iteration. Setting u1 := Mx,

we modify this function by applications of Conti’s construction.

By Whitney’s decomposition theorem for any ǫ > 0 we obtain a disjoint covering

of Ω :=
∞
⋃

j=1

(ǫjΩǫ+ bj) =
∞
⋃

j=1

Ωj by translated and rescaled versions of the domains,

Ωǫ, used in Lemma 12.

Since e(M) ∈ U lc there exists n = n(M) < ∞ such that e(M) ∈ Ln(U). As a con-

sequence, it is possible to find e0, e1 ∈ Ln−1(U), symmetrized rank-one-connected,

such that

e(M) = λe0 + (1− λ)e1.

For each k ∈ N, we apply Lemma 14 combined with Lemma 12 on Ωk. This yields

a Lipschitz function uk2 : Ωk → R3 as well as a partition of Ωk into Ωk0 and Ωk1 , each

being a finite union of tetrahedra satisfying

uk2 =Mx+ φk1 on Ωk,

with φk1 ∈ W 1,∞
0 (Ωk). Combining the functions uk2 , u2 =

∑

k∈N

uk2 , we have

∇u2 =M on R
3 \ Ω̄,

∇ · u2 = 0 on R
3,

u2 =Mx+ φ1 on Ω,

where φ1 ∈ W 1,∞
0 is piecewise affine taking on at most 20 different values for its

gradient. Moreover, e(∇u2) is close to Ln−1(U):

e(∇u2) = ej + ejδ1 , j ∈ {0, 1}

with |ejδ1 | ≤ δ. Choosing ǫ = ǫ(δ,M,U) sufficiently small, we deduce e(∇u2) ∈
Ln−1(U), as the openness of U implies the openness of Ln−1(U) (c.f. Section 5.3).

On the rescaled tetrahedra on which the gradient is constant, we iterate the con-

struction described above. Since now e(∇u2) ∈ Ln−1(U), we deduce that n − 2
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further steps yield Lipschitz functions φn−1 ∈W 1,∞
0 (Ω), un−1 : R3 → R3 such that

∇un−1 =M on R
3 \ Ω̄,

un−1 =Mx+ φn−1 on Ω,

e(∇un−1) ∈ U in Ω.

This implies the desired conclusion.

Remark 24. By an application of Vitali’s theorem the construction described above

shows that for any δ > 0 it is possible to obtain an L∞ bound of the form

‖u− v‖L∞ ≤ δ

for the solution u of the differential inclusion with boundary data v.

Proof of Proposition 22

Proof of Proposition 22. Without loss of generality, we may again assume that u =

Mx on ∂Ω. We iterate the construction described in the previous proof. In fact, by

the first two properties of in-approximations and an application of Proposition 21,

it is possible to choose ui : R
3 → R3 such that

e(∇ui) ∈ Ui in Ω,

ui = ui−1 on ∂Ω,

‖ui − ui−1‖L∞(Ω) ≤ δi,

for arbitrary, given δi > 0. In order to apply the Müller-Šverák Lemma which

would allow to iterate Proposition 21 and still obtain a convergent subsequence,

we have to deduce Lp bounds on the resulting gradients. Although Proposition 21

yields Lipschitz solutions, the Lipschitz constants are not uniform. On the contrary,

they strongly depend on the order of lamination of the boundary data and on the

skew-symmetric part of the boundary data. Hence, instead of deriving L∞ bounds

for the gradient, we refer to Korn’s inequality, c.f. [KO88], [CDM12]: As for each

i ∈ N, e(∇ui) ∈ U lc and U lc is bounded, we infer via Korn’s inequality that

{∇ui −M}i is bounded in Lp(R3), for all p ∈ (1,∞).

As a result, for any p ∈ (1,∞) we can rely on uniform bounds for ‖ui‖W 1,p(Ω).

Furthermore, in each iteration step, ǫi > 0 can be chosen such that

‖∇ui ∗ ρǫi −∇ui‖L1(Ω) ≤ 2−i.

Thus, the sequence ui can be constructed satisfying the assumptions of the Müller-
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Šverák Lemma, i.e.

‖ui‖W 1,p(Ω) ≤ C(p) <∞, p > 1,

ui =Mx on ∂Ω,

‖∇ui ∗ ρǫi −∇ui‖L1(Ω) ≤ 2−i,

δi+1 = ǫiδi, δ0 ≤ 1, ǫi ≤ 2−(i+1),

‖ui+1 − ui‖L∞(Ω) ≤ δi+1, ‖uj+2 − uj+1‖L∞(Ω) ≤
‖uj+1 − uj‖L∞(Ω)

2
,

∫

Ω

dist(e(∇ui),K)dx ≤ C

2i−2
.

Combining the statement of the Müller-Šverák Lemma and the third property of

the in-approximation, this implies that for all p ∈ (1,∞) there exists u ∈W 1,p
loc (R

3),

such that (up to a subsequence)

ui → u in W 1,1
loc (R

3),

u =Mx on ∂Ω,

e(∇ui) → K in L1.

Hence, e(∇u) ∈ K, which proves the proposition.

Proof of Corollary 2

Proof of Corollary 2. By Proposition 22 it suffices to construct an appropriate in-

approximation to the problem. In order to construct this, we remark that due to the

(pairwise symmetrized) rank-one connectedness of the matrices the (symmetrized)

rank-one-convex hull agrees with the convex hull of the strains:

{e1, ..., e6}lc = {e1, ..., e6}co.

Thus, an in-approximation of {e1, ..., e6} is provided by

U1 := intconv{e1, ..., e6},
U jk := {x : dist(x, ej) < ǫk} ∩ intconv{e1, ..., e6},

Uk :=
6
⋃

j=1

U jk ,

for ǫk > 0 such that ǫk → 0 as k → ∞. The first and third properties of an

in-approximation are satisfied by definition. The second one follows from the sym-

metrized rank-one-connectedness of the strains, ej.
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The Case of Rank-One-Convex Hulls

Also the inclusion problem with boundary conditions originating from the rank-one-

convex hull can be studied with the methods from the previous sections. The results

of Chenchiah & Schlömerkemper [CS12] indicate that this might be necessary in

order to deal with the cubic-to-monoclinic phase transition.

We formulate the central approximation lemma which corresponds to Lemma 4.1

in [MŠ99]. Instead of gradients, we have to consider symmetrized gradients.

Lemma 16. Let ǫ > 0 and let O ⊂ V be relatively open, F ∈ R3×3 such that

e(F ) ∈ OrcV . Then there exists a piecewise affine map u : Ω ⊂ R3 → R3 such that

e(∇u) ∈ OrcV a.e. in Ω and

|{e(∇u) /∈ O}| ≤ ǫ|Ω|, (5.6.1)

u = Fx on ∂Ω.

Proof. As in the argument of Müller and Šverák [MŠ99], this statement is proven

inductively. Let F ∈ R3×3 with e(F ) ∈ Orc be given. By definition of the rank-one

convex hull there exists a compact set K ⊂ V such that e(F ) ∈ Krc. Therefore,

the characterization of the rank-one convex hull via laminates implies that there

exists ν ∈ Mrc(K) such that F = ν̄. By the approximation argument of Müller and

Šverák there exists a sequence νj ∈ L(O) such that νj
∗
⇀ ν, ν̄j = e(F ). In order to

prove the lemma, we distribute the masses according the the measure ν. For the

general case we argue by induction: If ν = λ1δe1 + λ2δe2 Lemma 11 together with

a covering argument yields the existence of a function u : Ω → R
3 such that

||{|e(∇u)−Ai| ≤ δ}| − λi|Ω|| ≤ ǫ,

for any ǫ > 0.

Let νn :=
n−2
∑

j=1

λjδAj +sλnδA1
n
+(1−s)λnδA2

n
be a laminate of finite order. Then the

inductive hypothesis allows to assume that there exists a laminate νn−1 =
n−1
∑

j=1

λjδAj

with the property that An−1 = sA1
n+(1−s)A2

n, A
1
n, A

2
n being symmetrized rank-one

connected. Furthermore, the inductive hypothesis yields

||{|e(∇u)−Ai| ≤ δ}| − λi|Ω|| ≤ ǫ, i ∈ {1, ..., n− 1}.

Let En be the set on which |e(∇u) − An−1| ≤ δ. On each of the components on

which e(∇u) is affine, we apply Lemma 9 with the strains Akn − (e(∇u) − An−1),

k ∈ {1, 2}. This yields the desired approximation corresponding to νj . Since O
rc is

open and due to the convergence of νj to ν, there exists j ∈ N such that (5.6.1) is

satisfied.

Using this lemma, the arguments for Propositions 21, 22 with boundary data in
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U rc, Krc, respectively, follow as in the previous proofs by an application of the

W 1,p bounds obtained by Korn’s inequality.



Chapter 6

Rigidity of Piecewise

Polygonal Configurations

6.1 Introduction

As pointed out in the previous chapter – morally speaking – convex integration

techniques yield “physically unrealistic, wild” solutions of the differential inclusion

(4.0.1). Complementary to this, results from the literature indicate that combining

the n-well problem with a regularity constraint on the deformation or on the strain

allows to recover rigidity, c.f. [DM95a], [Kir98]. We pursue this philosophy in the

sequel in its most primitive form: We investigate the differential inclusion (4.0.1)

under the assumption of dealing with piecewise polygonal phase distributions, i.e.

the support of each phase only consists of a finite (but arbitrarily large) number

of polygons. In this case we prove that locally the most complicated, compatible,

exactly stress-free configurations are crossing twins.

Overview of the Previously Existing Results and Methods

As reviewed in the previous chapter, it is not unusual that non-rigidity results

for a partial differential inclusion can be complemented by rigidity results under

additional regularity requirements. In the sequel we recall some of the techniques

which are used in the literature.

• The Two-Well Problem. As already described, the nonlinear two-well

problem does not feature rigidity in general. However, it is possible to re-

cover this property if additional BV conditions are imposed, c.f. [DM95b].

Dolzmann and Müller approach this rigidity property by “linearizing” the

nonlinear problem: The BV conditions allow to extract information from the

nonlinear compatibility equations in order to give an explicit description of

the jump set of the strain gradient. Then the commutativity of the group

SO(2) can be exploited for a “linearization” procedure.

129
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• The Cubic-to-Tetragonal Phase Transition. In the case of the three-

dimensional cubic-to-tetragonal phase transition, the strategy of Dolzmann

and Müller cannot be pursued any more, as, in contrast to the rotations

of R2, the group SO(3) of rotations of R3 is no longer commutative. As

a consequence, the “linearization” technique cannot be applied any more.

Instead, Kirchheim [Kir98] uses a more combinatorial approach: Referring to

the explicit structure of the normals involved in the phase transition, combined

with (general) properties of BV functions, he tackles the problem.

For our problem neither of the strategies seems to be applicable: The approach

of Dolzmann & Müller does not provide a suitable framework as the non-rigidity

phenomena occur in the linear model in our situation. Thus, there is no immediate

chance of reducing the model to a simpler differential inclusion with stronger rigidity

properties. Furthermore, the ideas of Kirchheim strongly rely on the structure of

the cubic-to-tetragonal phase transition and its relatively small number of rank-one

connections.

However, instead of facing six different normals, each uniquely associated with a

single jump, we are confronted with 21 different normals, allowing for non-unique

jumps. As a result, we choose a different strategy in order to deal with the problem:

Motivated by considerations concerning two-dimensional toy models and by having

good compatibility conditions for two-dimensional homogeneous corners, we first

investigate the homogeneous situation (which can be considered as the blow-up

of the more general piecewise polygonal case). Then, combinatorial considerations

allow to carry these local insights over to the global situation of piecewise polygonal

configurations.

Bifurcations with Respect to the Different Parameters for δ

In studying the cubic-to-orthorhombic phase transition, it is interesting to under-

stand the behaviour of patterns in their dependence on the parameter δ, c.f. Figure

6.1. As we will see in the sequel, this changes very discontinuously at certain dis-

crete values. In fact, exceptional cases are given by δ ∈ {0,± 3
2 ,±3}. In all the

other cases – and in this sense we refer to these parameters as being “generic” –

the behaviour of the emerging patterns is comparable: Here, possible configurations

have at most the complexity of crossing twin structures. Moreover, in all these cases

there are explicit examples of patterns consisting exactly of crossing twins.

If one compares these crossing twins, one realizes that there are (up to symmetries)

essentially two different cases, c.f. Figures 6.4, 6.5, 6.6 in Section 6.6. In the first

case (including e.g. configurations K1 and K3 in Figure 6.4) the situation collapses

to the usual laminate construction for δ → 0. However, the situation is different

in the second case (including e.g. configuration K2 in Figure 6.4): There is no

continuous transition from δ > 0 to the laminate situation of δ = 0. In this sec-

ond situation the slopes of the inner twins converge against the slopes of the outer

twins. Instead of combining two phases which both collapse to the same variant of
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0
3

2
3 δ

Figure 6.1: The generic behavior of possibly emerging patterns in dependence of
the parameter δ.

martensite in the limit δ → 0, the individual inner twins “form new bands”.

Regarding the non-generic situations δ ∈ {0,± 3
2 ,±3}, the simplest case consists of

δ = 0. As this (formally) corresponds to the cubic-to-tetragonal phase transition,

the results of Dolzmann & Müller [DM95a] imply that the possible patterns are

less complex than in the generic situation: Locally, at most laminates occur. The

remaining cases δ ∈ {± 3
2 ,±3} display a much greater variety of different configura-

tions. This is a result of various normals coinciding or falling into the same planes

in these situations (c.f. Section 6.7 for a brief discussion).

6.2 The Main Results

Let us now describe the main results and the methods of our proof. We are interested

in classifying the possibly emerging stress-free patterns for generic δ – i.e. δ /∈
{± 3

2 ,±3}. From the discussion of our model, c.f. Section 4.2, we know that:

• All of the strains determining the cubic-to-orthorhombic phase transition are

pairwise (symmetrized) rank-one connected via two possible normals, i.e. for

each i 6= j there exist vectors aij ∈ R3 \ {0}, nij ∈ S2 with the property

e(i) − e(j) =
1

2
(aij ⊗ nij + nij ⊗ aij). (6.2.1)

• Thus, possible non-constant configurations of these strains are, for example,
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given by laminates, i.e. twin configurations jumping at the normals deter-

mined by (6.2.1).

• In contrast to other martensitic phase transitions such as the cubic-to-tetragonal

transition, laminates do not constitute the only possible configurations. On

the contrary, so-called crossing twin structures can form as well (c.f. Fig. 4.3).

The main result of this chapter states that, generically, twins and crossing twins

are the only possible configurations; in particular, more complicated structures can

be excluded. In fact, we prove the following statement:

Proposition 23. Let δ /∈ {± 3
2 ,±3}. Assume that Ω ⊂ R3 is a Lipschitz domain.

Then any piecewise polygonal strain with

e(∇u) ∈ {e(1), ..., e(6)} in Ω,

is locally either given by a laminate or a crossing twin configuration (c.f. Figures

6.4, 6.5, 6.6). More precisely, there exists a universal constant c > 0 such that for

any ball Br(x0) ⊂⊂ Ω the configuration in Bcr(x0) is either a simple laminate or a

crossing twin configuration.

Rigidity statements of this form have been a topic of very active research in the

last two decades. In particular, after the unexpected discovery of “wild” convex

integration solutions by Müller & Šverák [MŠ99] a strong interest in rigidity prop-

erties of the underlying models developed. Starting with the work of Dolzmann

& Müller [DM95a], [DM95b] on the two-well problem, such properties have been

studied systematically, c.f. [Kir98], [Con08], [DKMŠ00a], [CDK07], [CO12]. For ex-

ample, Dolzmann andMüller prove the following theorem for the cubic-to-tetragonal

phase transition (which can, mathematically, be interpreted as a special case of the

cubic-to-orthorhombic phase transition) in a geometrically linear framework:

Proposition 24 (Dolzmann & Müller, [DM95a]). Let δ = 0. Then any configura-

tion of strains taking values in {e(1), ..., e(6)} is locally a simple laminate.

A central observation underlying all previously mentioned articles consists of noting

that while the respective (nonlinear) n-well models can display convex integration

solutions, models involving surface energy constraints do not. On the contrary, the

above cited works have shown that under BV conditions strong rigidity properties

hold.

As the first part of our discussion exemplifies, the cubic-to-orthorhombic phase

transition displays such non-rigidity already in the geometrically linearized theory

of elasticity. Therefore, a better understanding of conditions guaranteeing rigidity

in this case seems desirable. Due to the large number of possible jump planes, such

an analysis involves strong combinatorial elements already in the piecewise affine

setting.

The proof of our result consists of two central elements:
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• Classification of zero-homogeneous strain configurations (i.e. e(∇u)(λx) =

e(∇u)(x)). This corresponds to characterizing all possible three-dimensional

corners involving strains of the cubic-to-orthorhombic phase transition. Here,

we prove the following central proposition.

Proposition 25. Let δ /∈ {± 3
2 ,±3}. Then any zero-homogeneous strain is

given by a laminate or a crossing twin configuration (c.f. Figures 6.4, 6.5,

6.6).

The classification of all homogeneous solutions can be considered as a neces-

sary initial step in attaining a full understanding of configurations involving

finite surface energy, i.e. piecewise polygonal structures and, in possible future

work, also configurations involving BV constraints.

• Combining zero-homogeneous corners. As there are only finitely many jumps

in piecewise polygonal configurations, these may be considered as combina-

tions of only finitely many homogeneous corners which possibly yield a new,

possibly more complex compatible structure.

Technically, the proof of our rigidity result consists of four key ingredients:

• Regularity. In a first step the strain equations are used in order to characterize

homogeneous corners. We show that the “piecewise affine situation” is the

correct one, i.e. strains can indeed only jump at planes determined by the

piecewise affine compatibility conditions.

• Blow-up procedure. Instead of investigating the behaviour of a possible corner

close to the origin, we “blow up” the corner. In three dimensions it is sufficient

to understand the patterns which a corner induces on a sphere surrounding

this corner, as compatibility amounts to a second order condition. Hence,

if a configuration is compatible on the sphere, it is also compatible at the

origin. (This would not be true in two dimensions as configurations which are

compatible on the circle might still induce Dirac masses at the origin.)

• Combinatorics on the sphere. In a third step a Mathematica aided (sym-

bolic) “brute force” computation combined with combinatorial considera-

tions demonstrates that the only possible zero-homogeneous configurations

are made up of laminates or crossing twins. An alternative approach without

Mathematica computations is presented in the appendix. There we make ex-

tensive use of combinatorial considerations.

Combinatorial considerations for certain special lines (“invariant lines”) also

play a central role in proof of the piecewise polygonal result, Proposition 23.

• Strain equations. In certain planes combinatorial arguments do not suffice.

As, however, in this situation only four of the six strains have to be taken

into account, we argue via the classical strain equations. In these planes we

deduce rigidity.
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The remaining part of the chapter is organized as follows: In Section 6.3 we recall

various properties of strain tensors. Sections 6.4 and 6.5 treat zero-homogeneous

strains. In a first step we derive regularity properties of zero-homogeneous strains

(Section 6.4) and in a second step we carry out the necessary combinatorial consid-

erations (Section 6.5). In Section 6.6 we address the piecewise polygonal situation.

Last but not least, in the appendix, we give an additional computer-free, yet com-

binatorially more involved proof of the main rigidity result and briefly comment on

the situation of δ ∈ {± 3
2 ,±3}.

6.3 Preliminaries

Some Properties of Strains

We recall that a strain can be characterized by a Poincaré-like condition:

Lemma 17. Let U ⊂ R3 be simply connected, e : U → R3×3
sym. Then the following

are equivalent:

• e is a strain corresponding to a deformation u,

• e (distributionally) satisfies the strain equations

∇× (∇× e) = 0, (6.3.1)

i.e. the following system of partial differential equations is satisfied distribu-

tionally:

∂233e22 + ∂222e33 = 2∂2∂3e23,

∂233e11 + ∂211e33 = 2∂1∂3e13,

∂222e11 + ∂211e22 = 2∂1∂2e12,

(6.3.2)

∂2∂3e11 = ∂1(−∂1e23 + ∂2e13 + ∂3e12),

∂1∂3e22 = ∂2(∂1e23 − ∂2e13 + ∂3e12),

∂1∂2e33 = ∂3(∂1e23 + ∂2e13 − ∂3e12).

(6.3.3)

Remark 25. As a strain tensor (six degrees of freedom) originates from a displace-

ment field (three degrees of freedom) only three of the six equations are independent.

Proof of Lemma 17. As the first implication only amounts to a simple calculation,

we only consider the second one. For that purpose we regard the vectorial formu-

lation

∇× (∇× e) = 0.

Since U is simply connected, Poincaré’s lemma implies

∇× e = ∇w (6.3.4)
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for a field w : U → R3. Defining ωij := −ǫijkwk, we obtain

(∇× ω)ij = ǫilk∂lωjk

= −ǫilkǫjks∂lws
= −ǫilkǫjks(∇× e)sl

= −(δisδlj − δijδls)(∇× e)sl

= −(∇× e)ij ,

where we exploited symmetry properties of the expressions involved. As a conse-

quence, we have

0 = ∇× e+∇× ω.

Therefore, a second application of Poincaré’s lemma yields the existence of a field

u : U → R3 satisfying

∇u = e+ ω.

The uniqueness of such a decomposition implies the claim.

As we will rely on various changes of coordinates, we briefly recall the transformation

behaviour of strains. Being tensors of order two, they obey the following rule:

Lemma 18. Let e : R3 → R3×3
sym be a strain corresponding to a displacement field

u. Let C ∈ GL(3) and consider new coordinates given by

x̂ = C−tx, û = Cu.

Then the transformed strain ê(∇̂û)(x̂) := ∇̂û(x̂)+(∇̂û(x̂))t
2 can be derived from the

original strain e:

ê(∇̂û)(x̂) = Ce(∇u)(x)Ct.

Polar Coordinates for Zero-Homogeneous Strains

Working with homogeneous strains, equation (6.3.1) can be rewritten as an equation

on the sphere. For this purpose we use the following polar coordinates convention

x =







r cos(ϕ) sin(ψ)

r sin(ϕ) sin(ψ)

r cos(ψ)






, ψ ∈ [0, π), ϕ ∈ [0, 2π).

Hence, on the unit sphere the second derivatives for zero-homogeneous functions
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turn into

∂2

∂2x1
=

(

sin(ϕ)

sin(ψ)

∂

∂ϕ
− cos(ϕ) cos(ψ)

∂

∂ψ
+ cos(ϕ) sin(ψ)

)

×
(

sin(ϕ)

sin(ψ)

∂

∂ϕ
− cos(ϕ) cos(ψ)

∂

∂ψ

)

,

∂2

∂2x2
=

(

cos(ϕ)

sin(ψ)

∂

∂ϕ
+ sin(ϕ) cos(ψ)

∂

∂ψ
− sin(ψ) sin(ϕ)

)

×
(

cos(ϕ)

sin(ψ)

∂

∂ϕ
+ sin(ϕ) cos(ψ)

∂

∂ψ

)

,

∂2

∂2x3
=

∂

∂ψ
(sin2(ψ)

∂

∂ψ
),

∂2

∂x1∂x2
=

(

− sin(ϕ)

sin(ψ)

∂

∂ϕ
+ cos(ϕ) cos(ψ)

∂

∂ψ
− cos(ϕ) sin(ψ)

)

×
(

cos(ϕ)

sin(ψ)

∂

∂ϕ
+ sin(ϕ) cos(ψ)

∂

∂ψ

)

,

∂2

∂x1∂x3
=

(

− cos(ϕ) cos(ψ)
∂

∂ψ
+

sin(ϕ)

sin(ψ)

∂

∂ϕ
+ cos(ϕ) sin(ψ)

)(

sin(ψ)
∂

∂ψ

)

,

∂2

∂x2∂x3
=

(

− sin(ϕ) cos(ψ)
∂

∂ψ
− cos(ϕ)

sin(ψ)

∂

∂ϕ
+ sin(ϕ) sin(ψ)

)(

sin(ψ)
∂

∂ψ

)

The difficulty of working directly with the strain equations on the sphere stems

from the dependence on two independent variables, i.e. in contrast to toy models

on one-dimensional spheres, we are confronted with a PDE instead of an ODE.

6.4 A Regularity Result

We now turn to proving the rigidity statement. As a first step, we give a justification

of the “piecewise affine” picture for zero-homogeneous strains. For that purpose we

deduce “one-dimensional conditions” from the strain equations.

More precisely, this step is achieved by considering the strain equations restricted

to certain great circles on the sphere. On these, the equations turn into equations

of a single variable from which it is possible to deduce additional regularity of the

strains along these great circles. Carrying out a change of coordinates allows to

conclude that similar equations hold on (almost) all great circles. Thus, via the

regularity gain we can characterize all great circles on which jumps in the strains

may occur. As a consequence, we derive the “piecewise affine” picture.

In order to carry out such an argument we need the following consequence of the

coarea formula. This becomes necessary in order to show that there are sufficiently

many “well-behaved” great circles.

Lemma 19. Let e ∈ L∞(S2;R3×3
sym) and let ηǫ be a mollifier. Then for almost every

great circle C we have convergence of the convolution eǫ := e ∗ ηǫ restricted to this
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one-dimensional set:

eǫ(x) → e(x) as ǫ→ 0,

for H1 almost every x ∈ C.

With this statement we can derive one-dimensional compatibility conditions from

the strain equations. Using our polar coordinates convention with r = 1, we have:

Lemma 20. Let C be one of the following great circles:

x(·, π
2
), x(0, ·), x(π, ·), x(π

2
, ·), x(3π

2
, ·).

Assume that e ∈ L∞(C;R3×3
sym) and that eǫ|C → e|C as ǫ → 0. Then the strain

equations imply (depending on the respective great circle, one of) the conditions

cos2(ϕ)e11 + sin2(ϕ)e22 + 2 sin(ϕ) cos(ϕ)e12 ∈ W 1,∞
ϕ ,

sin2(ψ)e11 + 2 cos(ψ) sin(ψ)e13 + cos(ψ)e33 ∈W 1,∞
ψ ,

sin2(ψ)e11 − 2 cos(ψ) sin(ψ)e13 + cos(ψ)e33 ∈W 1,∞
ψ ,

cos2(ψ)e33 + sin2(ψ)e22 + 2 cos(ψ) sin(ψ)e23 ∈ W 1,∞
ψ ,

cos2(ψ)e33 + sin2(ψ)e22 − 2 cos(ψ) sin(ψ)e23 ∈ W 1,∞
ψ ,

(6.4.1)

where W 1,∞
ψ := {u ∈ L∞(S2)| u(ϕ, ·) ∈W 1,∞} and W 1,∞

ϕ is defined analogously.

Remark 26. The different signs in the second and third as well as the fourth and

fifth equation correspond to a rotation of π2 with respect to the x3-axis.

Proof. We consider the first equation, i.e. the equation for the angle

ψ =
π

2
.

The heuristic idea of the proof consists of considering the strain equation on the

given great circle. Under the assumption of a sufficiently regular strain, we may

restrict the strain equation onto this great circle:

sin2(ϕ)
∂

∂ϕ
e22 + cos2(ϕ)

∂

∂ϕ
e11 + 2 sin(ϕ) cos(ϕ)

∂

∂ϕ
e12 = 0.

Commuting the derivatives with the functions of ϕ, yields

∂

∂ϕ
(sin2(ϕ)e22 + cos2(ϕ)e11 + 2 sin(ϕ) cos(ϕ)e12) ∈ L∞,

which implies that as a function of ϕ

sin2(ϕ)e22 + cos2(ϕ)e11 + 2 sin(ϕ) cos(ϕ)e12 ∈W 1,∞
ϕ .

In order to make this argument rigorous we use convolution and the assumed con-
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vergence properties of the convolved strains. In fact we have

∂

∂ϕ
(sin2(ϕ)eǫ22 + cos2(ϕ)eǫ11 + 2 sin(ϕ) cos(ϕ)eǫ12) = P (sin(ϕ), cos(ϕ), eǫ) ∈ L∞,

where P is a linear expression in the strain.

We formulate this as a distributional equality

−
∫

C

(sin2(ϕ)eǫ22 + cos2(ϕ)eǫ11 + 2 sin(ϕ) cos(ϕ)eǫ12)
∂

∂ϕ
ζdϕ

=

∫

C

ζP (sin(ϕ), cos(ϕ), eǫ)dϕ.

Passing to the limit ǫ→ 0 leads to

−
∫

C

(sin2(ϕ)e22 + cos2(ϕ)e11 + 2 sin(ϕ) cos(ϕ)e12)
∂

∂ϕ
ζdϕ

=

∫

C

ζP (sin(ϕ), cos(ϕ), e)dϕ.

Hence, we conclude

sin2(ϕ)e22 + cos2(ϕ)e11 + 2 sin(ϕ) cos(ϕ)e12 ∈W 1,∞
ϕ (C)

for ψ = π
2 . The remaining equations can be derived analogously.

Remark 27. Due to Lemma 19, the assumptions on the convergence of the strains

on the specified great circles can always be achieved after an appropriate change of

coordinates.

In the sequel we extend the one-dimensional equations obtained above to equations

on the whole sphere. For this purpose we carry out a change of coordinates which

transforms a given great circle into one of the special great circles of Lemma 20.

We only consider the first equation in (6.4.1) for the moment. Changing coordi-

nates with a constant rotation matrix P (ψ) =







cos(ψ) 0 − sin(ψ)

0 1 0

sin(ψ) 0 cos(ψ)






the equation

remains valid:

Lemma 21. Let v(ϕ, ψ) = P (ψ)







cos(ϕ)

sin(ϕ)

0






and ê(x̂) = P (ψ)te (v(ϕ, ψ))P (ψ).

Then (6.4.1) holds true for H1 a.e. choice of ψ ∈ [0, π]:

f(ϕ, ê(ϕ, ψ)) := sin2(ϕ)ê22 + cos2(ϕ)ê11 + 2 sin(ϕ) cos(ϕ)ê12 ∈ W 1,∞
ϕ .
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This can be rephrased as







cos(ϕ)

sin(ϕ)

0






P (ψ)t · e(v(ϕ, ψ))P (ψ)







cos(ϕ)

sin(ϕ)

0






= v(ϕ, ψ) · e(v(ϕ, ψ)) v(ϕ, ψ) ∈W 1,∞

ϕ .

(6.4.2)

Remark 28. Heuristically speaking, Lemma 21 illustrates that we may assume

(6.4.1) to be valid on the whole sphere. In particular, it demonstrates the use-

fulness of frame indifference.

Proof. After an appropriate change of coordinates (6.4.1) holds on ψ = π
2 . Thus,

we carry out the change of coordinates (determined by P t(ψ))

P (ψ)







cos(ϕ)

sin(ϕ)

0






7→







cos(ϕ)

sin(ϕ)

0






.

Applying the transformation formula for strains yields the desired result.

Finally, the “piecewise affine” picture can be justified by combining the previously

derived results.

Lemma 22. Let e1, ..., e6 ∈ R3×3
sym be such that there exist aij ∈ R3 \ {0}, nij ∈ S2

with ei−ej = 1
2 (aij⊗nij+nij⊗aij). Then zero-homogeneous solutions of the strain

equations are piecewise affine and jumps in the strains can only occur at planes with

normals given by aij or nij.

Proof. Let ψ ∈ [0, π) be arbitrary but fixed. Using the notation introduced in the

previous lemma, we are interested in finding possible values of ϕ for which e(∇u)
may jump from one strain, ei, to another one, ej , on the great circle parametrized

by v(ϕ, ψ). As f(ϕ, ê(ϕ, ψ)) is aW 1,∞ function of ϕ, a jump from strain ei to strain

ej can only occur at an angle ϕ0 if

f(ϕ0, êi(ϕ0, ψ)) = f(ϕ0, êj(ϕ0, ψ)). (6.4.3)

Thus, in order to find the points on a given great circle on which the strains can

jump, it suffices to use (6.4.3) to calculate ϕ0 as a function of ψ and of arbitrary

strain configurations.

Recalling (6.4.2) and dim(ei − ej) ≤ 2, equation (6.4.3) reads

0 = v(ϕ, ψ) · (ei − ej)v(ϕ, ψ) =
1

2
v(ϕ, ψ) · (aij ⊗ nij + nij ⊗ aij)v(ϕ, ψ)

= (aij · v)(nij · v).

This implies that jumps can only occur at angles ϕ0 with

aij · v(ϕ0, ψ) = 0 or nij · v(ϕ0, ψ) = 0.
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Combining this with the other equations in (6.4.1), yields the claim (it is in fact nec-

essary to use the other equations as well, since the previous Lemma only guarantees

the validity of the equations on almost every great circle).

6.5 Combinatorics on the Sphere

In this section we present the second key ingredient of the rigidity proof for zero-

homogeneous configurations. This includes (symbolic) Mathematica computations

and a combinatorial argument showing that the configurations cannot be more com-

plex than the crossing twin structures. (A Mathematica-free proof involves slightly

more combinatorics and is postponed to the appendix.)

We make use of two central elements.

• Local combinatorics. Firstly, we calculate – with a symbolic calculation in

Mathematica – all possible intersections of the jump planes/ jump great cir-

cles on the sphere, saving the respective points, normals and strain variants

involved. This yields a two-dimensional situation in which it becomes possible

to determine all compatible configurations by checking simple compatibility

conditions. Thus, Mathematica calculations characterize all spherical points

at which two-dimensional corners can occur.

• Global combinatorics. In the second step it remains to combine the local

information into global structures on the sphere. This is carried out “by

hand” by checking all possible patterns on a graph on the sphere.

Before discussing the situation on the sphere, we recall the following compatibility

condition.

Lemma 23. Let e1, ..., en ∈ R3×3
sym and assume that there exist vectors aij ∈ R3\{0},

nij ∈ S2 such that

ei − ej =
1

2
(aij ⊗ nij + nij ⊗ aij) for i 6= j.

Assume that there exists a point at which m of these strains form a corner. Then

turning once around the corner, it holds

m
∑

k=1

aikjk ⊗ nikjk = 0.

Remark 29. In the formulation of the lemma we keep track of the orientation, i.e.

while the normal and shear corresponding to a jump from ei to ej is given by nij , aij

the normal and shear for a jump from ej to ei is given by nji = −nij , aji = aij .



6.5. COMBINATORICS ON THE SPHERE 141

Proof. This follows from the fact that in order to have a compatible corner not only

the symmetric parts of the strain, but also its antisymmetric parts have to “fit”,

i.e. turning once around the corner, one has to arrive at the initial skew symmetric

matrix.

We begin by characterizing all possible intersection points of different phases on the

sphere. At this stage we make use of symbolic Mathematica computations in order

to obtain the intersection points, and to subsequently derive all admissible corners.

When speaking about intersection points, it will be convenient to use the notion of

degree. Therefore, we introduce the following definition.

Definition 9. A point x ∈ S2 is a corner of degree n or an n-fold corner if in an

arbitrarily small neighbourhood of x there are n (not necessarily pairwise different)

strain variants separated by great circle segments such that neighbouring strains are

pairwise different.

Excluding the cases δ ∈ {± 3
2 ,±3} (which are briefly discussed in the appendix), we

have:

Lemma 24. Let e ∈ {e(1), ..., e(6)} and δ /∈ {± 3
2 ,±3}. Then there are only corners

of degree two (which locally correspond to twin configurations) or of degree four on

the sphere. The corners of degree four can only occur at the points

(1, 0, 0), (0, 1, 0), (0, 0, 1), (
1√
2
, 0,

1√
2
), (

1√
2
, 0,− 1√

2
), (

1√
2
,
1√
2
, 0), (

1√
2
,− 1√

2
, 0),

(0,
1√
2
,
1√
2
), (0,

1√
2
,− 1√

2
),

and at their respective antipodal points. A schematic overview of all possible corners

is given in Figures 6.4, 6.5, 6.6.

Proof of Lemma 24. The lemma follows from a Mathematica computation: In a

first step we compute all possible points of intersection of the various jump planes.

Secondly, we compute the possible configurations at these points. As at most four

planes intersect at a given point, this yields an upper bound on the degree of the

corner – the degree is at most 8. Then the admissible corners are found by checking

the (oriented) compatibility condition

m
∑

k=1

nikjk ⊗ aikjk = 0.

The characterization of the possible corners allows to combine the local information,

i.e. the possibility of forming corners, with the global structures on the sphere.

This is achieved via a “brute force” argument successively considering all possible

combinations of jumps. Fortunately, this reduces to understanding the behaviour



142 CHAPTER 6. RIGIDITY

of the strains at the four-fold corners; thus the necessary combinatorial effort is

limited.

Proof of Proposition 25. It suffices to prove the statement at the points (1, 0, 0) and

( 1√
2
, 1√

2
, 0), as the other points can then be obtained by a rotation of the coordinates

(which coincides with symmetries of the strains). For these two points we argue

combinatorially, i.e. we start with a four-fold corner at the given point and show

that any configuration resulting from this has to be a crossing twin structure. In

the sequel we will make extensive use of the following claim.

Claim 1. Starting from a given four-fold corner, the configuration remains un-

changed until the next corner at which a possible four-fold corner can occur is

reached. More precisely, for each edge of the currently considered configuration

there is a neighbourhood such that the configuration remains constant until the next

possible corner is reached.

Proof of Claim 1. We show that if this were not the case, another four-fold corner

would exist prior to the next corner: This follows from the fact, that, on the one

hand, there is only a finite number of corners. On the other hand, any change of

configuration not occurring at one of the admissible corners of degree four would

create a corner of degree at least three on one of the edges, which is impossible

before reaching the next admissible corner.

The argument excluding structures different from crossing twins consists of succes-

sively considering all possible configurations starting from a given one and proving

that, apart from the initially chosen four-fold corner, the only further compatible

corner of degree four is the antipodal point of the initial corner. In the sequel we

carry out the argument for δ /∈ {± 3
2 ,±3}.

Step 1: Configurations at (1, 0, 0) involving K3.

We begin with the configuration K3 at (1, 0, 0) (in Figure 6.4 this corresponds to the

third configuration). We remark that the schematic notation of Figure 6.4 actually

corresponds to four different configurations (c.f. Figure 6.2), K3a - K3d.

By symmetry it suffices to consider the first two configurations, K3a, K3b. The

phase arrangement of K3c and K3d can be obtained from these by a rotation by

180◦. Due to the observation contained in Claim 1, it suffices to exclude a change

in the configuration at the next four-fold corner. Thus, step by step, we check

compatibility at the vertices of the graph which is made up of the points at which

possible corners of degree four are located.

Before going through the individual vertices on the spherical graph, we point out

the following observation:

Observation 1. For both configurations K3a, K3b, the great circle passing through

the points (1, 0, 0), (0,− 1√
2
, 1√

2
) always remains a phase interface, i.e. it always

separates two non-equal phases.
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K3a

e(3) e(2)

e(4) e(1)

[0,0,1] [0,1,0]

[0,1,1]

K3b

e(4) e(1)

e(3) e(2)

[0,0,1] [0,1,0]

[0,1,1]

K3c

e(1) e(4)

e(2) e(3)
[0,1,0] [0,0,1]

[0,1,1]
K3d

e(2) e(3)

e(1) e(4)
[0,1,0] [0,0,1]

[0,1,1]

Figure 6.2: Possible configurations K3a-K3d.

Proof of Observation 1. In order to understand this, we consider the possible changes

of the initial configuration at the points (0,− 1√
2
, 1√

2
) and (0, 1√

2
,− 1√

2
). As the con-

figuration at (0,− 1√
2
, 1√

2
) has to contain a direct interface between the strains e(1)

and e(4) in case of K3a and a direct interface between e(2) and e(3) in case of K3b,

this implies that at this point either no change occurs or the configuration changes

to K2. In both cases the great circle with normal [0, 1, 1] remains an interface. At

(0, 1√
2
− 1√

2
) an analogous argument shows that the configuration either remains

unchanged or changes but preserves the phase interface determined by the normal

[0, 1, 1]. Hence, the claim follows.

With this observation, we investigate the situation on the spherical graph. It is

possible to deal with the cases K3a and K3b simultaneously:

• ( 1√
2
,− 1√

2
, 0): Here possible configurations are provided by K13 and K14.

K13 can be excluded immediately as in this configuration e(3) and e(4) are

not neighbouring strains. K14 cannot be realized as this would cause a non-

admissible corner on the great circle passing through (1, 0, 0) and (0,− 1√
2
, 1√

2
)

if δ /∈ {± 3
2 ,±3}.

• ( 1√
2
, 0, 1√

2
): At this point the possible configurations are K11 and K12. As

above K11 can be excluded due to the arrangement of neighbouring strains.

In order to be compatible, we would need a corner in which e(1) and e(2)

constitute neighbouring strains. Due to δ /∈ {± 3
2 ,±3}, configuration K12

cannot occur as this would involve a non-admissible corner on the great circle

connecting (1, 0, 0) and (0,− 1√
2
, 1√

2
).

• (0,−1, 0), (0, 0, 1): At these points the configuration remains unchanged as

the configurations K9, K10 at (0, 1, 0) do not involve e(4) and K15, K16, as

the possible configurations at (0, 0, 1), do not involve e(1).
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e
(1)

e
(2)

e
(3)

e
(4)

Figure 6.3: The configuration K3a on the sphere.

• (− 1√
2
,− 1√

2
, 0): On the one hand, configuration K17 can be excluded as there

is no interface connecting e(3) and e(4). On the other hand, K18 would produce

a non-admissible corner on the great circle passing through (−1, 0, 0) and

(0, 1√
2
,− 1√

2
).

• (− 1√
2
, 0, 1√

2
): Here, configuration K7 can be excluded immediately as it does

not contain a direct interface between e(1) and e(2). As in the previous consid-

erations, configuration K8 would entail a non-admissible corner on the great

circle passing through (−1, 0, 0) and (0, 1√
2
,− 1√

2
).

As a consequence, we deduce that at (−1, 0, 0) the configuration has to coincide with

K3, i.e. there are no changes in the configuration at (0,− 1√
2
, 1√

2
). Furthermore, this

implies that the configuration also remains unchanged at (0, 1√
2
,− 1√

2
). Also, no

changes in the configuration are possible at ( 1√
2
, 1√

2
, 0) or at (− 1√

2
, 1√

2
, 0) since the

configurations at these points neither involve the strain e(1) nor e(2). Therefore, the

configuration is stable at (0, 1, 0) and (0, 1√
2
, 1√

2
) as well. An analogous argument

shows that there are no changes at ( 1√
2
, 0,− 1√

2
), (− 1√

2
, 0,− 1√

2
), (0,− 1√

2
,− 1√

2
)

and at (0, 0,−1). Hence, the configuration is given by the expected, simple four-

fold corner.

Step 2: Configurations at (1, 0, 0) involving K4.

We consider the initial strain distribution given by K4. As in Step 1, we note that

the “diagonal” great circle remains an interface independent of possible changes

in the configuration. As above, we follow the possible four-fold corners for the

configurations K4a, K4b:

• ( 1√
2
, 1√

2
, 0): K17 can be excluded as there is no direct interface between e(3)

and e(4). The second configuration, K18, causes a non-admissible corner on
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the great circle connecting (1, 0, 0) and (0, 1√
2
, 1√

2
) for δ /∈ {± 3

2 ,±3}.

• ( 1√
2
, 0, 1√

2
): On the one hand, K11 is incompatible as there is no neighbouring

connection between e(1) and e(2). On the other hand, K12 would imply a

non-admissible corner on the great circle joining (1, 0, 0) and (0, 1√
2
, 1√

2
) if

δ /∈ {± 3
2 ,±3}.

• (0, 1, 0), (0, 0, 1): These configurations are both incompatible as K9 and K10

do not include e(3) and e(4) and as K15 and K16 do not involve e(1) and e(2).

• (0, 1√
2
, 1√

2
): The configuration K6 is not admissible since it does not contain

a direct interface between e(1) and e(3). The second possibility, K5, can be

excluded since it would cause a non-admissible corner on the great circle

joining (1, 0, 0) and (0, 1√
2
, 1√

2
).

• (− 1√
2
, 1√

2
, 0): Again, configuration K13 cannot occur as this configuration

does not involve a direct interface between e(3) and e(4). K14 would cause

a non-admissible corner on the great circle passing through (0, 1√
2
, 1√

2
) and

(−1, 0, 0).

As in step 1 this suffices to deduce that at (−1, 0, 0) the only compatible configura-

tion coincides with the initially chosen four-fold corner K4. Furthermore, the same

arguments as above imply that there cannot be any changes of this configuration.

Step 3: Four-fold configurations at ( 1√
2
, 1√

2
, 0).

At this point the various versions of configurations K17 and K18 represent possible

four-fold corners:

• All initial configurations include the normals [3,−3,−2δ], [3,−3, 2δ]. If δ /∈
{± 3

2 ,±3} then the great circles corresponding to these normals do not contain

any admissible corners except the starting point, ( 1√
2
, 1√

2
, 0), and its antipodal

point, (− 1√
2
,− 1√

2
, 0). Hence, the configuration along both great circles is not

changed until the antipodal point is reached. As this holds for both great

circles, the configuration at the antipodal point has to coincide with the one

at the starting point. In effect, the whole great circle segments which are

determined by the normals [3,−3,−2δ], [3,−3, 2δ] must be phase interfaces.

• Due to the considerations carried out at the point (1, 0, 0), there cannot be a

change of the configuration at any of the points ±(1, 0, 0), ±(0, 1, 0), ±(0, 0, 1)

as else this would have appeared in the analysis of the configurations at

(1, 0, 0).

• At the remaining points ±( 1√
2
, 0, 1√

2
), ±(− 1√

2
, 0, 1√

2
), ±(0, 1√

2
, 1√

2
),

±(0,− 1√
2
, 1√

2
), ±(− 1√

2
, 1√

2
, 0), no changes can occur, as any of the admis-

sible configurations at these points contains normals which are of the form

[±3,±3,±2δ] (and permutations thereof). Since theses great circles do not



146 CHAPTER 6. RIGIDITY

intersect any other admissible corner except the one antipodal to the start-

ing configuration, this necessarily leads to a non-admissible intersection point

with the great circles determined by the normals [3,−3,−2δ], [3,−3, 2δ] if

δ /∈ {± 3
2 ,±3}.

This proves the claim.

6.6 Piecewise Affine Strains

Due to the previous results on zero-homogeneous configurations, it is possible to

tackle the piecewise polygonal situation without any homogeneity assumption for

the full six-well problem. In this setting we deal with structures involving an ar-

bitrary but finite number of jumps. These can also be characterized as piecewise

affine configurations according to Liouville’s theorem. Arguing via the classification

of the homogeneous strains, further combinatorial considerations and the classical

strain equations, we deduce that – like in the homogeneous case – the most in-

volved configurations locally consist of crossing twin structures in piecewise affine

arrangements of strains:

Proposition 23. Let δ /∈ {± 3
2 ,±3}. Assume that Ω ⊂ R3 is a Lipschitz domain.

Then any piecewise polygonal strain with

e(∇u) ∈ {e(1), ..., e(6)} in Ω,

is locally either given by a laminate or a crossing twin configuration (c.f. Figures

6.4, 6.5, 6.6). More precisely, there exists a universal constant c > 0 such that for

any ball Br(x0) ⊂⊂ Ω the configuration in Bcr(x0) is either a simple laminate or a

crossing twin configuration.

Such a result can only be proven locally since boundary effects cannot, in general,

be neglected. This means that in bounded domains there might be configurations

that do not correspond to simple laminates or crossing twins as the incompatible

corners are avoided by first hitting the boundary. In the sequel, we investigate the

following class of configurations:

Definition 10. A piecewise polygonal configuration of strains is an arrangement

of a finite number of strains such that

• the strains are locally constant,

• the domains with constant strains are polygons,

• for each strain variant there are only a finite number of different connected

components.

Remark 30. Similar definitions can be used in the periodic and whole space setting.
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(0,− 1√
2
, 1√

2
) K1

e(1)

e(2)

e(4)

e(3)

[2δ, 3, 3]

[1,0,0] [−2δ, 3, 3]

[1,0,0]

K2

e(1)

e(4)

e(2)

e(3)

[2δ, 3, 3]

[0,1,1] [−2δ, 3, 3]

[0,1,1]

(1,0,0) K3

e(1)

e(4)

e(3)

e(2)

[0,1,1]

[0,0,1][0, 1, 1]

[0,1,0]

K4

e(1)

e(3)

e(4)

e(2)

[0, 1,−1]

[0,0,1][0, 1,−1]

[0,1,0]

(0, 1√
2
, 1√

2
) K5

e(1)

e(3)

e(2)

e(4)

[0, 1,−1]

[2δ,−3, 3][0, 1,−1]

[2δ, 3,−3]

K6

e(1)

e(2)

e(3)

e(4)

[2δ, 3,−3]

[1,0,0] [2δ,−3, 3]

[1,0,0]

Figure 6.4: Compatible corners involving the strains e(1), e(2), e(3), e(4). The dashed
lines depict the outer twins while the straight lines represent the “zig-zag bands”
of the inner twins.
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(− 1√
2
, 0, 1√

2
) K7

e(1)

e(6)

e(2)

e(5)

[3, 2δ, 3]

[1,0,1] [3,−2δ, 3]

[1,0,1]

K8

e(1)

e(2)

e(6)

e(5)

[3, 2δ, 3]

[0,1,0] [3,−2δ, 3]

[0,1,0]

(0,1,0) K9

e(1)

e(5)

e(6)

e(2)

[1,0,-1]

[0,0,1][1,0,-1]

[1,0,0]

K10

e(1)

e(6)

e(5)

e(2)

[1, 0, 1]

[0,0,1][1, 0, 1]

[1,0,0]

( 1√
2
, 0, 1√

2
) K11

e(1)

e(5)

e(2)

e(6)

[1, 0,−1]

[3,−2δ,−3][1, 0,−1]

[3, 2δ,−3]

K12

e(1)

e(2)

e(5)

e(6)

[3, 2δ,−3]

[0,1,0] [3,−2δ,−3]

[0,1,0]

Figure 6.5: Compatible corners involving the strains e(1), e(2), e(5), e(6).
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(− 1√
2
, 1√

2
, 0) K13

e(3)

e(5)

e(4)

e(6)

[3, 3, 2δ]

[1,1,0] [3, 3,−2δ]

[1,1,0]

K14

e(3)

e(4)

e(6)

e(5)

[3, 3, 2δ]

[0, 0, 1] [3, 3,−2δ]

[0, 0, 1]

(0, 0, 1) K15 K16

e(3)

e(6)

e(5)

e(4)

[1,1,0]

[0, 1, 0][1,1,0]

[1, 0, 0]

e(3)

e(5)

e(6)

e(4)

[1,−1, 0]

[0, 1, 0][1,−1, 0]

[1, 0, 0]

( 1√
2
, 1√

2
, 0) K17 K18

e(3)

e(5)

e(4)

e(6)

[1,−1, 0]

[3,−3,−2δ][1,−1, 0]

[3,−3, 2δ]

e(3)

e(4)

e(5)

e(6)

[3,−3, 2δ]

[0,0,1] [3,−3,−2δ]

[0,0,1]

Figure 6.6: Compatible strains involving e(3), e(4), e(5), e(6).
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We first consider certain planar configurations of strains. In the proof of Propo-

sition 23 these cannot be dealt with in a purely combinatorial manner. Instead,

the particular planar dependence of the strains allows for an analytic approach.

The configurations under consideration correspond to “parallel invariant lines” (c.f.

Observation 2).

In a second step we establish rigidity for “transversal invariant lines”. For these we

argue combinatorially.

Planar Configurations

In the sequel we demonstrate that in specific planes any configuration of marten-

site variants consists of at most crossing twins. The key ingredients are based on

characterizing strain tensors which only depend on the respective planar variables,

exploiting the discrete structure of the components of the strains, and on employing

the right change of coordinates. A similar version of this two-dimensional argument

already appeared in [Rül10].

As will become clear from the proof of Proposition 23, we only need to consider

configurations of four strains depending on two variables which are in a plane

orthogonal to one of the following vectors:

[1, 0, 0], [0, 1, 1], [0,−1, 1] and the strains e(1), e(2), e(3), e(4);

[0, 1, 0], [1, 0, 1], [1, 0,−1] and the strains e(1), e(2), e(5), e(6);

[0, 0, 1], [1, 1, 0], [1,−1, 0] and the strains e(3), e(4), e(5), e(6).

However, we prove a slightly stronger statement involving six strains in the planes

described above.

In this planar setting it proves to be advantageous to carry out a change of coor-

dinates and to renormalize the strains. As all the strains are symmetry related, it

suffices to consider the first case, i.e. the respective planes are normal to one of

the vectors [1, 0, 0], [0, 1, 1], [0,−1, 1]. This suggests to use the following change of

coordinates which consists of a rotation combined with a renormalization step: We

define y = Cx, with

C =
√
3δ







0 1 1√
2 0 0

0 1 −1















1√
3

0 0

0
√
3√
2δ

0

0 0 1√
3









.

Correspondingly, the strains transform according to Lemma 18. As a result, we are
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left with the following strain matrices

ẽ(1) =
1

2d







d1 1 1

1 d2 1

1 1 d3






, ẽ(2) =

1

2d







d1 −1 1

−1 d2 −1

1 −1 d3






,

ẽ(3) =
1

2d







d1 1 −1

1 d2 −1

−1 −1 d3






, ẽ(4) =

1

2d







d1 −1 −1

−1 d2 1

−1 1 d3






,

ẽ(5) =
1

2d







2+2δ
3 0 0

0 − 6
δ2 0

0 0 2−2δ
3






, ẽ(6) =

1

2d







2−2δ
3 0 0

0 − 6
δ2 0

0 0 2+2δ
3






,

where d−1 = 6δ2, d1 = − 1
3 , d2 = 3

2δ2 , d3 = − 1
3 . In the sequel we will suppress the

tildes in the notation.

Again, due to symmetry considerations, it suffices to consider strains which only

depend on the first two variables. With a slight abuse of notation, we also denote

these by e = e(y1, y2) in the sequel. For these we prove the following:

Proposition 26. Let U ⊂ R3 be open, convex, δ /∈ {± 3
2 ,±3}. Assume e(∇u) :

U → R3×3
sym, e(∇u) = e(y1, y2) =

∇u+(∇u)t
2 , u ∈W 1,∞(U,R3) such that

e(∇u) ∈
{

e(1), e(2), e(3), e(4), e(5), e(6)
}

in U . Then the following statements hold:

1. Either e(∇u) ∈ {e(1), ..., e(4)} or e(∇u) ∈ {e(5), e(6)}, in particular the second

case implies that locally only simple laminates occur.

2. If e(∇u) ∈ {e(1), ..., e(4)}, then the following dichotomy holds:

e12 = e12(y1) or e12 = e12(y2).

3. In the case e12 = e12(y1) there exists a function g(t) such that:

(e13 ◦ Φ)(s, t) = e12(s)g(t) and (e23 ◦ Φ)(s, t) = g(t),

where Φ(s, t) = (s,−E12(s) + t) and E′
12(y1) = e12(y1), E12(0) = 0.

Due to symmetry, e = e(y1, y2) can also be replaced by e(y1, y3) and e(y2, y3) re-

spectively which yields analogous results. Furthermore, the case e12 = e12(y2) can

be treated analogously.

Proposition 26 corresponds to a rigidity result: Two-dimensional martensitic struc-

tures consist at most of crossing twins in the respective planes.
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Remark 31. The statement of the theorem remains true if δ ∈ {± 3
2 ,±3} and if one

only allows (up to permutations)

e(∇u) ∈ {e(1), e(2), e(3), e(4)}.

As a crucial ingredient of the proof of the rigidity result, we observe that the strain

equations (6.3.2), (6.3.3) simplify for the two-dimensional strains under considera-

tion. Due to the planar dependence of the strains, e = e(y1, y2), the system (6.3.2) of

strain compatibility equations decouples into two equations for e33 and an equation

coupling e11, e22, e12:

∂11e33 = 0,

∂22e33 = 0,

∂11e22 + ∂22e11 = 2∂1∂2e12.

Due to the y3-independence of the strain and the discreteness of the values attained

by e33 this, in particular, implies e33 = const. However, if δ /∈ {± 3
2 ,±3}, this can

only be the case if e(∇u) ∈ {e(1), e(2), e(3), e(4)} or e(∇u) = e(5) or e(∇u) = e(6)

(or e(∇u) ∈ {e(5), e(6)} if δ = 0). Thus, if δ /∈ {± 3
2 ,±3} it remains to study the

4-well problem e(∇u) ∈ {e(1), e(2), e(3), e(4)}. Here, the strain equations turn into

0 = ∂1∂2e12,

0 = ∂1(−∂1e23 + ∂2e13),

0 = ∂2(∂1e23 − ∂2e13).

Remark 32. If δ = ± 3
2 the previous argument does not yield a result which is as

strong as the one above. This is due to the fact that in the case δ = ± 3
2 it is possi-

ble that up to five matrices satisfy the condition e33 = const. in the given planes.

Hence, in the case δ = ± 3
2 , configurations involving five different strains are not

excluded by the previous argument (c.f. the appendix).

In the sequel the structure of solutions of the 4-well problem

e(∇u) ∈ {e(1), e(2), e(3), e(4)}

is examined. For that purpose it has to be remarked that the two-dimensionality of

the strain e = e(y1, y2) does not imply the two-dimensionality of the displacement

fields involved. Yet, the following statement holds:

Lemma 25. Let U ⊂ R3 be open, convex. Let e(∇u) ∈ L∞(U,R3×3
sym), e(∇u) =

e(y1, y2) be a strain tensor corresponding to a displacement field u : U → R3, u ∈
W 1,∞(U,R3) with e(∇u) ∈ {e(1), e(2), e(3), e(4)} in U . Then there exists v ∈
H1
loc(U), such that locally the following dichotomy holds:
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1.

e(∇u) =







d1/2d e12(y1) ∂1v(y1, y2) + Cy2

e12(y1) d2/2d ∂2v(y1, y2)− Cy1

∂1v(y1, y2) + Cy2 ∂2v(y1, y2)− Cy1 d3/2d







or

2.

e(∇u) =







d1/2d e12(y2) ∂1v(y1, y2) + Cy2

e12(y2) d2/2d ∂2v(y1, y2)− Cy1

∂1v(y1, y2) + Cy2 ∂2v(y1, y2)− Cy1 d3/2d






.

Proof of Lemma 25. Making use of convolution, we can assume to deal with smooth

functions. Due to the characterization of strain tensors in Lemma 20 and the two-

dimensionality of the strains, we obtain the following system of equations

∂1∂2e12 = 0, (6.6.1)

∇
(

∇×
(

e13

e23

))

= 0. (6.6.2)

For the argument we proceed in two steps:

Step 1: Discrete wave argument.

Recalling the convexity of the domain and the two-dimensionality of the strains, the

structure of the solution of the wave equation (6.6.1) can be determined explicitly:

e12(y1, y2) = f12(y1) + g12(y2).

Further the two-valuedness of e12 implies that locally only a single wave can be

non-constant:

e12(y1, y2) = f12(y1) or e12(y1, y2) = g12(y2).

Step 2: Curl argument.

Considering (6.6.2), we immediately obtain

∇×
(

e13

e23

)

= 2C

for C ∈ R. Consequently the identity

∇×
(

e13 − Cy2

e23 + Cy1

)

= 0
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combined with Poincaré’s lemma yields

(

e13

e23

)

= ∇v +
(

−Cy2
Cy1

)

,

with v ∈ H1
loc(U).

With the previous lemma the “outer structure” of the martensite configuration is

determined. It remains to argue that the “inner structure” is given by the claimed

“zig-zag-bands”. For that purpose we reason that the affine rotation field must

vanish, i.e. C = 0. In the periodic or whole space case this would be no issue, in

the case of a domain with finite diameter we make use of an appropriate change of

coordinates. In these the zig-zag-structures are straightened out.

Lemma 26. 1. Let C ∈ R and U ⊂ R
2 be an open, convex domain. Assume

that e12, e13, e23 : U → {−1, 1} with

e13 − e12e23 = 0, (6.6.3)

e12 = e12(y1), (6.6.4)

are given. Let u : U → R, u ∈W 1,∞(U,R) satisfy

∇u =

(

e13

e23

)

+

(

−Cy2
Cy1

)

. (6.6.5)

Then we have C = 0.

2. In particular this implies that in the situation of Lemma 25 we have C = 0.

Remark 33. Condition (6.6.3) is essential for the statement to be true: Using convex

integration techniques one can show that a similar statement lacking this additional

restriction is false.

Proof of Lemma 26. We give the argument for the second statement first:

As pointed out in Lemma 25 we have

(

e13

e23

)

= ∇v +
(

−Cy2
Cy1

)

.

Without loss of generality we can restrict to case (1) of Lemma 25 and thus, e12 =

e12(y1). As the structure of the strains implies that (6.6.3) is satisfied, the first

statement of the present lemma can be applied.

In order to verify the first statement of the lemma, we multiply (6.6.5) with the
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vector

(

1

−e12(y1)

)

to obtain

∂1u(y1, y2)− e12(y1)∂2u(y1, y2) = −Cy2 − Ce12(y1)y1. (6.6.6)

Taking into account (6.6.4) and defining E12(y1) via

E′
12(y1) = e12(y1), E12(0) = 0,

(6.6.6) can be reformulated as

d

dy1
(u(y1, y2 − E12(y1))) = −Cy2 + h(y1)

for a function h. Integrating this, results in

u(y1, y2 − E12(y1)) = −Cy1y2 +H(y1) + k(y2),

where k is a generic function of y2. Taking the y2-derivative yields

∂2u(y1, y2 − E12(y1)) = −Cy1 + k′(y2). (6.6.7)

By combining (6.6.5) and (6.6.7), we find

{−1, 1} ∋ e23(y1, y2 − E12(y1)) = −2Cy1 + k′(y2).

Varying y1 for fixed y2 yields the desired result, C = 0, as otherwise the left hand

side of the equation were discrete, while the right hand side were depending on y1

continuously.

Lemma 27. Let u : R2 → R, u ∈ W 1,∞(R2,R). Let Φ(s, t) : R2 → R2 be

bilipschitz, γt(s) := Φ(s, t).

Then for L1 a.e. t we have that for L1 a.e. s, the function (u ◦ γt)(s) is classically

differentiable and the classical chain rule holds:

d

ds
(u ◦ γt)(s) = ∂1u(γt(s))γ

′
t1(s) + ∂2(γt(s))γ

′
t2(s). (6.6.8)

Proof of Lemma 27. In order to prove the statement of the lemma we have to show

that Rademacher’s theorem holds for u◦Φ. For this purpose it suffices to prove that

a Lipschitz function maps sets of measure zero to sets of measure zero. Thus, let

N ⊂ R2 be a null set and ǫ > 0 be arbitrary. Then N can be covered by countably

many cubes Qk with
∞
∑

k=1

L2(Qk) < ǫ. The Lipschitz property of Φ implies that

Φ(Qk ∩ N) can be covered by cubes of the size Lip(Φ)2L2(Qk), which yields a

bound of ǫLip(Φ)2 for the image set Φ(N). Letting ǫ ↓ 0 proves the claim.
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Proposition 27. Let U ⊂ R3 be open, convex. Let e ∈ L∞(U,R3×3
sym), e(∇u) =

e(y1, y2) be a strain tensor associated with a displacement field u : U → R3,

u ∈W 1,∞(U,R3), with e(∇u) ∈ {e(1), e(2), e(3), e(4)} in U .

Then in situation (1) of Lemma 25 the configuration of the phases locally corre-

sponds to a crossing twin structure: More precisely, there exists g ∈ L∞(R3) such

that locally

e12 = e12(y1), (e13 ◦ Φ)(s, t) = e12(s)g(t), (e23 ◦ Φ)(s, t) = g(t),

where Φ(s, t) = (s, t− E12(s)) and E
′
12(s) = e12(s), E12(0) = 0.

Due to symmetry reasons similar results also hold for case (2) of Lemma 25.

Proof of Proposition 27. In situation (1) of Lemma 25 the discreteness of the strains

gives rise to the following algebraic relation which can – in the notation of Lemma

26 – be reformulated in terms of the function v:

e13(y1, y2)− e12(y1)e23(y1, y2) = 0

⇒ ∂1v(y1, y2)− e12(y1)∂2v(y1, y2) = 0. (6.6.9)

Defining γt(s) := (s, t − E12(s)) and noticing that Φ(s, t) := (s, t − E12(s)) is by

definition a bilipschitz mapping with inverse Ψ(s, t) := (s, t + E12(s)), Lemma 27

can be applied. Consequently the chain rule yields

d

ds
(v(Φ(s, t))) = ∂1v(s, t− E12(s)) − e12(s)∂2v(s, t− E12(s))

(6.6.9)
= 0.

Finally, using the given change of coordinates, we obtain the desired result:

(

e13 ◦ Φ
e23 ◦ Φ

)

=

(

(∂1v) ◦ Φ
(∂2v) ◦ Φ

)

=

(

1 e12(s)

0 1

)(

∂s(v ◦ Φ)(s, t)
∂t(v ◦ Φ)(s, t)

)

=

(

1 e12(s)

0 1

)(

0

∂tv(t)

)

=

(

e12(s)∂tv(t)

∂tv(t)

)

.

Proof of Proposition 23

Due to the piecewise polygonal structure of the configuration under consideration,

we can rely on the classification result of the homogeneous case: Via a “blow-up

procedure” at the respective corners we may deduce that any corner or any edge

corresponds to one of the homogeneous constructions.



6.6. PIECEWISE AFFINE STRAINS 157

Lemma 28. Consider a piecewise polygonal configuration determined by its defor-

mation u. Any corner involved in this arrangement of strains corresponds to one

of the homogeneous constructions. Any edge corresponds to one of the compatible

edges provided by the affine calculations.

Proof. We consider a “blow-up” of the deformation u at a given corner. Without

loss of generality, we may assume that the corner is located at x = 0 and the

deformation vanishes at that point, u(0) = 0. Furthermore, due to the polygonal

structure of the strain configuration, we may suppose that the configuration is zero-

homogeneous in B2(0) (else we choose a smaller radius). For 0 < λ≪ 1 we consider

the following rescaled version of u:

vλ(x) :=
u(λx)

λ
.

As u ∈ W 1,∞ and u(0) = 0, vλ
∗
⇀ v in W 1,∞

loc for a subsequence λk → 0. Moreover,

e(∇vλ)(x) = e(∇u)(λx).

Thus, the zero-homogeneity of e(∇u) implies the existence of a pointwise limit

of e(∇vλ) which is independent of the sequence λ → 0 and is zero-homogeneous.

Furthermore, the limiting strain corresponds to e(∇v) by virtue of the uniqueness

of limits. As a consequence, e(∇v) has a corner at x = 0. This corner coincides with

the corner of u at x = 0 and it corresponds to one of the classified homogeneous

ones. This implies the desired result.

Remark 34. • Instead of using a “blow-up procedure”, it would have been pos-

sible to argue via Liouville’s theorem.

• The blow-up lemma links the homogeneous case with the piecewise polygonal

situation. It can be interpreted as a local classification result. As a conse-

quence, the following analysis can rely on local information in order to obtain

a global rigidity result.

Before proving the proposition, we point out the following central observation which

is true for δ /∈ {± 3
2 ,±3}.

Observation 2. All the crossing twin structures are planar. The planes which

separate the different phases involved in a corner intersect in a line. We call this line

the invariant line of the associated corner. Along this line there cannot be a further

jump, as locally the invariant line is surrounded by four different phases. Therefore,

if another plane with different phases intersected the invariant line, we would obtain

a corner of degree larger than four. This would contradict the characterization of

homogeneous corners, as we could carry out a blow-up at this point.

With this we can come to the proof of the desired result.
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Proof of Proposition 23. Step 1: Elimination of boundary effects.

In the sequel, we only deal with the case Ω = R3. The case of a general bounded

domain can, however, be treated similarly: The slopes of the invariant lines (and of

the twinning planes) determine the size of the global constant c > 0 from the Propo-

sition. More precisely, it can be chosen such that whenever a configuration in Bc(0)

is compatible but not a twin or crossing twin configuration, the non-admissible point

must lie in B1(0). This can be achieved as there are only a finite and fixed number

of possible slopes for the jump planes and the invariant lines (compare with the R3

argument below).

Step 2. Combinatorics.

We argue via contradiction. If there were a configuration which is neither laminar

nor a crossing twin, then there would exist at least one four-fold corner corre-

sponding to one of the above classified homogeneous ones. As we assume that the

configuration is not globally given by a crossing twin configuration, there is a plane

intersecting the configuration determined by our corner which is not compatible

with a crossing twin configuration. As we have excluded boundary effects, this

plane has to cross at least two phases of the original four-fold corner (here, we have

two possibilities: either the intersection is in a straight line or it is a result of two

lines intersecting the two original phases, c.f. Fig. 6.7).

Figure 6.7: Possible intersections. The dashed lines depict the possible intersection
implying a change of the original four-fold corner.

Since this causes an at least three-fold corner, the classification of homogeneous

corners implies that at this point there is a second four-fold corner. Moreover, the

original and the new four-fold corner have a common jump plane (c.f. Fig. 6.8).

Therefore, the respective invariant lines of the two corners are located in this plane.

This yields two possible scenarios: Either the invariant lines are parallel or they are

not. As the invariant lines are located in the same plane the second case implies

that the lines have an intersection point. By our observations on invariant lines this

leads to a contradiction. Thus, the remaining alternative consists of the invariant

lines being parallel.

In this case we are left with globally planar configurations (if the configuration

were not globally planar we could repeat the argument from above). Reviewing all
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Figure 6.8: Common intersection plane of four-fold corners. The dashed lines depict
the new four-fold corner. It shares a jump plane with the original four-fold corner.

e(j1) e(j3)

e(j4)e(j2)

e(j5)

e(j6)

n1

n2

n3

n4

n5

n6

n7

Figure 6.9: Arrangement of planar phases. The schematic picture illustrates that
the neighbouring corners share at least a common jump plane and have two strain
variants in common.

homogeneous constructions (c.f. Fig. 6.4, 6.5, 6.6) and taking into account that

the respective corners have to share two strain variants along a common normal,

we note that all possible planar situations are given by the following normal vectors

and strains:

[1, 0, 0], [0, 1, 1], [0, 1,−1] together with the strains e(1), e(2), e(3), e(4),

[0, 1, 0], [1, 0, 1], [1, 0,−1] together with the strains e(1), e(2), e(5), e(6),

[0, 0, 1], [1, 1, 0], [1,−1, 0] together with the strains e(3), e(4), e(5), e(6).

Hence, it suffices to consider strain configurations which globally only depend on

the variables normal to one of these vectors. Due to the results of the section on

planar strains, Section 6.6, these configurations are either given by laminates or by

crossing twin structures. This proves the proposition.

6.7 Appendix

A Combinatorial Proof of Lemma 24 and Proposition 25 in

the Case δ /∈ {±3
2
,±3}

As an alternative to a Mathematica aided proof, the arguments leading to Lemma

24 and Proposition 25 can also be carried out “by hand”. In order to do so, we

follow the same strategy as in the computer aided situation:

• As an initial step, we identify points on the sphere which lie at the intersection
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of the possible jump planes. We notice that there are at most corners of degree

eight. Thus, in a first step, we focus on the points involving three or more

possible jump planes, in other words, on the points of possible maximal degree

six or eight.

• Secondly, we argue that at these points of potentially high order the local

configurations can at most consist of crossing twins. Furthermore, we show

that these can only occur at very specific points. In particular, at many of the

determined possible high order intersection points only laminates can form.

• Finally, we prove that at the remaining intersection points, i.e. at those of

maximal degree four, which were not treated as parts of the higher order cases,

only laminates can be observed.

We recall that the normals of the possible jump planes associated with the cubic-

to-orthorhombic phase transition are given by

{[1, 0, 0], [0, 1, 1], [0, 1,−1], [0, 1, 0], [1, 0, 1], [1, 0,−1], [0, 0, 1], [1, 1, 0],

[1,−1, 0], [3, 3, 2δ], [3, 2δ, 3], [2δ, 3, 3], [3, 3,−2δ], [3,−2δ, 3], [−2δ, 3, 3],

[−2δ,−3, 3], [−2δ, 3,−3], [−3,−2δ, 3], [3,−2δ,−3], [−3, 3,−2δ],

[3,−3,−2δ]}.

(6.7.1)

We note that the sign of the normals is irrelevant. From these we compute all points

of intersection on the sphere in which three or more planes meet. As a first obser-

vation, we note that for any δ 6= ±3 at most four different planes intersect in one

point (this can be seen by checking how many different planes have normals lying

in a common given plane). Starting from this, we list all the intersection points

involving three or four planes.

If δ /∈ {± 3
2 ,±3} then there are nine possible eight fold corners (i.e. corners involving

four planes) at the points (1, 0,−1), (1, 0, 1), (0, 1, 0) (as well as the corresponding

permutations of the entries). Up to the corresponding (three) permutations each,

these are given by the planes with the following normals:

[1, 0, 1] [−1, 0, 1] [ 1, 0, 1]

[0, 1, 0] [ 0, 1, 0] [−1, 0, 1]

[3, 2δ, 3] [−3, 2δ, 3] [ 1, 0, 0]

[3,−2δ, 3] [−3,−2δ, 3] [ 0, 0, 1].

(In the first and second configurations, one can think of the respective permutations

as being determined by moving the δ entries to the first, second and third position

– and shifting the entries of the other normals correspondingly. In the third con-

figuration the position of the zero in the [1, 0, 1] and [−1, 0, 1] normals yields the

different possibilities.)
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As these configurations are, by definition, two-dimensional and as their respective

normals are given by (a permutation of) one of the vectors [1, 0,−1], [1, 0, 1], [0, 1, 0],

the result on planar configurations with these normals, Proposition 26, implies that

at any such corner there can at most be crossing twins.

Apart from the corners involving four normals, there are also corners involving three

normals. For a generic δ, i.e. δ /∈ {± 3
2 ,±3}, there are the following possibilities

(a1)− (c):

(a1) (a2)

[ 1, 0, 0] [ 1, 0, 0]

[ 3, 2δ,±3] [ 3,±3, 2δ]

[−3, 2δ,±3] [−3,±3, 2δ],

with corresponding intersection points (0,∓3, 2δ) and (0, 2δ,∓3). Cases (a1) and

(a2) are symmetry related via a rotation of 90◦ in the x2, x3 plane. Considering all

possible permutations, these correspond to a total of 12 possibilities.

Further cases are given by

(b1) (b2) (b3) (b4)

[ 1,− 1, 0] [ 1,− 1, 0] [ 1, 1, 0] [ 1, 1, 0]

[2δ, 3,±3] [−2δ, 3,±3] [ 3,−2δ,±3] [2δ, 3,±3]

[ 3, 2δ,±3] [ 3,−2δ,±3] [−2δ, 3,∓3] [ 3, 2δ,∓3],

with corresponding intersection points given by (1, 1,∓(1 + 2δ
3 )), (1, 1,∓(1 − 2δ

3 )),

(1,−1,∓(1+ 2δ
3 )), (−1, 1,∓(1− 2δ

3 )). We remark that (b3), (b4) are rotations by 90◦

of (b1), (b2). Considering all possible permutations, cases (b1)− (b4) correspond to

a total of 24 possibilities.

Finally, the only remaining corners involving three normals are given by

[0, 1,−1] [ 0, 1, 1] [ 0, 1, 1] [0, 1,−1]

(c) [1, 0,−1] [ 1, 0, 1] [−1, 0, 1] [1, 0, 1]

[1,−1, 0] [−1, 1, 0] [ 1, 1, 0] [1, 1, 0],

with the intersection points (1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1). (That there are

no further corners at which three planes intersect, can, for example, be seen by

computing the determinants of all the remaining three tuples of normals. In the

cases δ /∈ {± 3
2 ,±3} these are nontrivial.)
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Combining the previous considerations, we obtain that in the generic case there are

#(number of possible four-fold corners)

−#(number of possible six-fold corners)

((

3

2

)

− 1

)

−#(number of possible eight-fold corners)

((

4

2

)

− 1

)

= 210− 40× 2− 9× 5 = 85

intersection points at which the possible configurations have to be investigated. As

we will see from Observation 3, symmetry considerations reduce the previously de-

scribed configurations (a1)− (c) to only three (instead of 10) different cases.

In order to understand that only crossing twins and laminates can appear, we have

to exclude other possible configurations emerging from the corners with possibly

three intersecting planes. By symmetry considerations it will be possible to reduce

the situation to the following two auxiliary results:

Proposition 28. Let e = e(∇u) = 1
2 (∇u + (∇u)t), with u : Ω → R3 Lipschitz.

Assume that e ∈ {e(i1), e(i2), e(i3)} with

e(i1) ∈ {e(1), e(2)}, e(i2) ∈ {e(3), e(4)}, e(i3) ∈ {e(5), e(6)}. (6.7.2)

Suppose that δ /∈ {± 3
2 ,±3}. Then, locally, e is a simple laminate.

Proof. The proposition follows from the fact that if a three valued strain satisfies

(6.7.2), then it can be mapped to the corresponding Dolzmann-Müller situation,

Proposition 24. In order to prove this, we notice that (with the normalization of

(6.7.1)) the rank-one connections between the strains e(i1), e(i2), e(i3) each involve a

normal with and a normal without δ entries. Denoting the normals with δ entries

by nδi , a mapping to the Dolzmann-Müller case is given by

(M δ)−1 : (nδ1, n
δ
2, n

δ
3) 7→ (n0

1, n
0
2, n

0
3),

which sends the normals involving δ entries to the ones with δ = 0. In order to

check that this indeed fulfills the desired mapping properties, it suffices to carry out

the computations for the three-tuples satisfying

(e(i1), e(i2), e(i3)) ∈ {(e(1), e(3), e(5)), (e(1), e(4), e(5)), (e(1), e(4), e(6)),
(e(1), e(3), e(6))},

since the remaining cases follow by reflecting δ: δ 7→ −δ. As an example, we carry

out one of these computations: In case of (e(1), e(3), e(5)) such a mapping would for
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example be given by







0

1

−1






7→







2δ

3

−3






,







1

−1

0






7→







3

−3

−2δ






,







1

0

1






7→







3

2δ

3






,

or

M :=M δ =
1

2







6 + 2δ 2δ −2δ

2δ 6 + 2δ 2δ

−2δ 2δ 6 + 2δ






.

Then the strains, ê(i) =M−1e(i)M−t, in the new coordinates turn into

ê(1) =









9−7δ2

4(−3+δ)2(3+2δ)2
δ(3+δ(2+δ))

4(−3+δ)2(3+2δ)2 − δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

9−7δ2

4(−3+δ)2(3+2δ)2
δ(3+δ(2+δ))

4(−3+δ)2(3+2δ)2

− δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

−9+δ2−δ3
2(−3+δ)2(3+2δ)2









,

ê(3) =









9−7δ2

4(−3+δ)2(3+2δ)2
δ(3+δ(2+δ))

4(−3+δ)2(3+2δ)2 − δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

−9+δ2−δ3
2(−3+δ)2(3+2δ)2

δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

− δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

9−7δ2

4(−3+δ)2(3+2δ)2









,

ê(5) =









−9+δ2−δ3
2(−3+δ)2(3+2δ)2

δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2 − δ(3+δ(2+δ))

4(−3+δ)2(3+2δ)2

δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

9−7δ2

4(−3+δ)2(3+2δ)2
δ(3+δ(2+δ))

4(−3+δ)2(3+2δ)2

− δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

δ(3+δ(2+δ))
4(−3+δ)2(3+2δ)2

9−7δ2

4(−3+δ)2(3+2δ)2









.

Subtracting a constant matrix given by the off-diagonal entries and renormalizing

yields the Dolzmann-Müller situation.

We remark that these transformationmatrices degenerate in the cases δ ∈ {± 3
2 ,±3}.

Lemma 29. Let e ∈ {e(1), e(2), e(5)} be independent of the variable 3x2−2δx3. Then

the only possible homogeneous corners consist of two strain variants, i.e there is a

single flat interface and at most two strains are involved. An analogous statement

holds for the case e ∈ {e(1), e(2), e(6)}.

Proof. We only consider the first case. In this very specific situation we have four

linear conditions:

tr(e) = 0, e22 = 1, e13 = 0, e23 = − δ
3
e11 +

δ

3
.

Furthermore, e = e(x1, 2δx2 + 3x3). Then the first three strain equations, (6.3.2),

yield

(−∂11 + ∂33)e11 = 0,
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which, due to the two valuedness of the e11 component, leads to

e11 = f(3x1 + 2δx2 + 3x3) or e11 = g(3x1 − 2δx2 − 3x3).

Considering only the first case, e11 = f(3x1 + 2δx2 + 3x3), (the argument for the

second one is analogous), the remaining three (curl type) strain equations, (6.3.3),

yield

∂3(−2δ∂1 + 3∂2)e12 = 0,

∂3(∂1 − ∂3)e12 = 0,

∂3(−2δ∂1 − 3∂2)e12 = 0,

if the expression for e11 and the linear dependence of e11 and e22 is inserted. Due

to the assumed structure of e, the transversality of the vectors [3, 2δ, 3] and [1, 0, 0]

and e12 = e12(e11), this leads to

e12 = e12(3x1 + 2δx2 + 3x3) or e12 = e12(x1).

Thus, either e11 = const. or if e11 = f(3x1 + 2δx2 + 3x3) 6= const. then e12 =

e12(3x1 + 2δx2 + 3x3). In both cases we deduce that the configuration is a simple

laminate.

Last but not least, we have to show that any corner involving three normals satisfies

the conditions of Proposition 28 or of Lemma 29. Furthermore, we have to identify

those intersection points at which crossing twin structures can appear. For that

purpose, we prove the following claim.

Claim 2. All corners at which three or four planes intersect and which are not

located at (up to permutations) one of the points (1, 0, 0), (0, 1, 1), (0, 1,−1) involve

configurations with at most three strains e(i1), e(i2), e(i3). Up to symmetries these

satisfy the conditions of Proposition 28 or of Lemma 29.

This claim then proves Lemma 24, since in the case of three involved strains, Propo-

sition 28 or Lemma 29 assert that the configuration only consists of simple laminates.

If only two strains are involved in a possible corner and do not satisfy condition

(6.7.2) (restricted to two strains), these strains commute. The strains being si-

multaneously diagonalizable, implies that these can also be transformed into the

Dolzmann-Müller situation. Hence, in that case only simple laminates can occur.

For abbreviation, we use the following convention:

Definition 11. We use the notation (2, 3) to denote a possible jump between e(2)

and e(3).

Proof of the claim. In order to reduce the situation to as few examples as possible,

we make use of the symmetries of the phase transition. We observe
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Observation 3. Any rotation of 90◦ around one of the coordinate axes transforms

compatible corners into compatible corners.

Under the reflection which leaves the x1, x2-plane invariant, the phases transform

according to

e(1) 7→ e(1), e(3) 7→ e(4), e(5) 7→ e(5),

e(2) 7→ e(2), e(4) 7→ e(3), e(6) 7→ e(6).

Similar results hold for reflections with respect to the other coordinate axes. In

particular, reflections with respect to the coordinate axes preserve the assumptions

of Proposition 28.

In order to prove the claim, we first rule out more complicated behaviour for the

corners involving three normals. We only have to consider the cases (a1), (b1) and

(c), as the other ones follow from symmetry. Note that normals involving δ entries

uniquely (up to symmetry) describe a single jump, e.g. at the normal [2δ, 3, 3] there

can only be the jump (1, 3), while the ones without δ entries allow for two possible

jumps (up to symmetry), e.g. the normal [1, 0, 0] allows for the jumps (1, 2) and

(3, 4). In the sequel, we discuss the cases (a1), (b1), (c) separately:

(a1) We first consider the case of the plus signs. At each of the normals we have the

following jump possibilities (here the left column contains the jump normals

and the right hand side the possible corresponding jumps associated with the

respective normal)

[ 1, 0, 0] (1, 2), (3, 4),

[ 3, 2δ, 3] (1, 5),

[−3, 2δ, 3] (2, 5).

Thus, at this intersection point only the combination of phases

{e(1), e(2), e(5)} or of {e(3), e(4)} is possible. While the second case directly

implies that only laminates can appear, we have to invoke Lemma 29 for the

first one. By carrying out a reflection with respect to the x1, x2-plane, it is

possible to transform the case with the plus signs into that with the minus

signs. By Observation 3 this reduces the case of the minus signs to the second

case treated in Lemma 29.

(b1) We begin with the case with the plus signs. The possibly present phases are

given by

[1,−1, 0] (3, 5), (4, 6),

[2δ, 3, 3] (1, 3),

[3, 2δ, 3] (1, 5)

This corresponds to a three-fold combination {e(1), e(3), e(5)} and a two-fold
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f1

g1

f2

g2
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n2

A2

f2

f1
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n1 n1
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Figure 6.10: Excluding configurations with possible maximal degree four.

combination {e(4), e(6)}. In particular, the configuration satisfies the assump-

tions of Proposition 28. As the case with the minus signs is obtained by a

reflection along the x1, x2-plane, Observation 3 asserts that again the condi-

tions of Proposition 28 are fulfilled.

(c) Due to 180◦ rotation symmetries (around the coordinate axes), it suffices to

consider the first case. Here, the possible normals and jumps are given by:

[0, 1,−1] (1, 3), (2, 4),

[1, 0,−1] (1, 5), (2, 6),

[1,−1, 0] (3, 5), (4, 6).

Thus, the admissible configurations involve either only the strains

{e(1), e(3), e(5)} or {e(2), e(4), e(6)} (which satisfy the requirements of Proposi-

tion 28).

Hence, it remains to discuss the corners at which only two planes intersect. Here

we have to distinguish three cases:

• Both normals are elements of {[1, 0, 0], [0, 1, 1], [0, 1,−1]} or they are permuta-

tions thereof. In this case the configurations already appeared in the discussion

of corners at which three or four planes intersect.

• Both normals involve δ entries. Then, at each of the two normals there is a

unique jump possibility: (f1, g1) and (f2, g2). We claim that in this case only

two different strains can be involved in a possible corner. Indeed, the possible

configurations are depicted in Figure 6.10. As only two different normals are

involved, configurations A1 and A2 schematically illustrate the only possible

higher order corners. Since the jumps are uniquely determined by the normals,

this implies that the sets {f1, f2} and {g1, g2} have to coincide in configuration

A1. Due to the same reason, the jumps (f2, g1) and (f1, f2) have to agree (up

to permutations) in configuration A2. This entails that only two phases are

involved in the respective configuration. Hence, only simple laminates can

occur.

• Only one of the normals involves δ entries. This implies that at most three
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phases are part of the respective corner as the jumps at the normal involv-

ing δ entries are unique. Arguing in the setting of Figure 6.10, one notices

that configuration A1 can only consist of two different strains due to the

uniqueness of the jump given by the normal involving δ entries. Hence, it

remains to investigate the situation of configuration A2. If the normal n1

corresponds to the normal without δ entries, it would, in principle, be pos-

sible that three phases are involved in configuration A2. However, recalling

the rank-one connections of the cubic-to-orthorhombic phase transition, we

note that the non-uniqueness emerging in jumps involving normals with non-

δ-entries is “strictly disjoint”: In other words, if (f1, g1) and (f2, g2) denote

the possible jumps at normals with a non-unique jump, these sets are strictly

disjoint – their union involves a total of four different strains. In effect, the

situation of configuration A2 can also be excluded. As above, only corners

involving two strains emerge. These configurations, however, correspond to

simple laminates.

The Cases δ = ±3
2

In this section we briefly comment on the situation of δ = 3
2 . By symmetry, the

case δ = − 3
2 can be treated analogously.

The exceptional role of this case is already indicated by the fact that for δ = 3
2

various of the normals involving δ entries “collapse”. If δ = 3
2 the local situation on

the sphere is already highly nontrivial. Apart from the crossing twin structures,

there are corners involving three, five, six and seven (not necessarily different)

phases (c.f. discussion in Remark 31). For completeness we briefly list the possible

configurations at the points (1, 0, 0), (− 1√
2
, 0, 1√

2
), ( 1√

3
, 1√

3
, 1√

3
). All the other

nontrivial intersection points are symmetry related to these. As a consequence, the

configurations at the other points can be computed from the ones listed below.(1,0,0) C1

e(1)

e(4)

e(3)

e(2)

[0,1,1]

[0,0,1][0, 1, 1]

[0,1,0]

C2

e(1)

e(3)

e(4)

e(2)

[0, 1,−1]

[0,0,1][0, 1,−1]

[0,1,0]

Figure 6.11: Compatible corners at the point (1, 0, 0).
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(− 1√
2
, 0, 1√

2
) C3

e(1)

e(6)

e(2)

e(5)

[3, 2δ, 3]

[1,0,1] [3,−2δ, 3]

[1,0,1]

C4

e(1)

e(2)

e(6)

e(5)

[3, 2δ, 3]

[0,1,0] [3,−2δ, 3]

[0,1,0]

Figure 6.12: Compatible crossing twin configurations at the point (− 1√
2
, 0, 1√

2
).

(− 1√
2
, 0, 1√

2
) C5

e(6)

e(5)

e(2)

e(3)

e(1)

[1, 0, 1]

[0,1,0]

[1, 0, 1] [−1, 1,−1]

[1, 1, 1]

C6

e(3)

e(5)

e(2)

e(1)

e(6)

[−1, 1,−1]

[1,1,1]

[1, 0, 1] [0, 1, 0]

[1, 0, 1]

Figure 6.13: Compatible crossing configurations involving five strains at the point
(− 1√

2
, 0, 1√

2
).
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(− 1√
2
, 0, 1√

2
) C6

e(6)

e(5)

e(2)

e(3)

e(5)

e(2)

[1, 0, 1][-1,1,-1]

[0, 1, 0]

[1, 0, 1] [−1, 1,−1]

[1, 1, 1]

C7

e(3)

e(5)

e(2)

e(1)

e(5)

e(2)

[1, 0, 1][-1,1,-1]

[1, 1, 1]

[1, 0, 1] [0, 1, 0]

[1, 1, 1]

Figure 6.14: Compatible corners involving six strains at the point (− 1√
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The Cases δ = ±3

We only discuss this situation very briefly. The situation for δ = ±3 differs from

the generic one by allowing for intersection points involving up to six normals at

permutations of the points (± 1√
3
,± 1√

3
,± 1√

3
). As a Mathematica based computa-

tion illustrates, these intersection points of higher order in fact produce new planar

configurations: Even twelve-fold corners can be realized. Due to the large number

of possible planar configurations, it is not clear whether they can be combined to

yield non-planar global configurations. This would be an interesting topic for future

research.



Summary of the Dissertation

In this dissertation, we deal with various rigidity properties in PDEs. We address

• the backward uniqueness problem for the heat equation in conical domains
with large opening angles,

• unique continuation for the fractional Laplacian,

• the rigidity and non-rigidity of the so-called cubic-to-orthorhombic phase tran-
sition.

These rigidity properties are qualitatively quite different: While the first two prob-
lems aim at “extending” the “identity principle” of analytic functions to rougher
classes of equations, the third question treats characteristic patterns occurring in
certain models of shape-memory alloys. Mathematically, the third problem exhibits
properties of hyperbolic equations, while the first two problems display “elliptic and
parabolic properties”.

The first two problems deal with the questions of whether a certain vanishing be-
haviour, i.e.

• vanishing at the final time, in the case of the heat equation in conical domains
with large opening angles,

• and vanishing of infinite order at a certain point, in the case of the fractional
Laplacian,

implies that the solution of the respective PDE already vanishes globally. In study-
ing these phenomena, we are confronted with possible oscillatory behaviour of so-
lutions of the respective PDE. Thus, the key ingredient of deducing the desired
properties consists of proving highly concentrated, lower bounds for the respec-
tive operators – so-called Carleman inequalities. Establishing such estimates, we
prove the backward uniqueness property for the heat equation (with lower order
perturbations) in two-dimensional conical domains with opening angles down to
approximately 95◦. For the fractional Laplacian, we show the unique continuation
property involving scaling-critical potentials (with rough lower order perturbations).

In the second part of the thesis, we turn to the so-called cubic-to-orthorhombic
phase transition in the theory of shape-memory alloys. Motivated by experimental
results in which one observes so-called crossing twin constructions, we aim at a
classification of all possible stress-free states. In this context, we prove two comple-
mentary results: Using convex integration methods, we show that there is a large
number of weak (W 1,p, p ∈ (1,∞)) solutions. Complementary to this, we prove that
under surface energy constraints (we consider “piecewise polygonal” solutions), this
behaviour can be excluded and, locally, only solutions with fixed characteristics, i.e.
crossing twin and twin configurations, can emerge.
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[CG11] Sun-Yung Alice Chang and Maŕıa del Mar González, Fractional Lapla-
cian in conformal geometry, Advances in Mathematics 226 (2011),
no. 2, 1410–1432.

[Cha13] Allan Chan, Energieskalierung, Gebietsverzweigung und SO(2)-
Invarianz in einem fest-fest Phasenübergangsproblem, Dissertation,
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[KKO13] Hans Knüpfer, Robert V. Kohn, and Felix Otto, Nucleation barriers
for the cubic-to-tetragonal phase transformation, Comm. Pure Appl.
Math 66 (2013), no. 6, 867–904.

[Kli92] Michael V. Klibanov, Inverse problems and Carleman estimates, In-
verse Problems 8 (1992), no. 4, 575.

[KM94] Robert V. Kohn and Stefan Müller, Surface energy and microstructure
in coherent phase transitions, Communications on Pure and Applied
Mathematics 47 (1994), no. 4, 405–435.

[KN00] Carlos E. Kenig and Nikolai Nadirashvili, A counterexample in unique
continuation, Mathematical Research Letters 7 (2000), no. 5/6, 625–
630.

[KO88] Vladimir Aleksandrovich Kondrat’ev and Olga Arsen’evna Oleinik,
Boundary-value problems for the system of elasticity theory in un-
bounded domains. Korn’s inequalities, Russian Mathematical Surveys
43 (1988), no. 5, 65–119.

[KP91] David Kinderlehrer and Pablo Pedregal, Characterizations of Young
measures generated by gradients, Archive for rational mechanics and
analysis 115 (1991), no. 4, 329–365.

[KRS87] Carlos E. Kenig, A. Ruiz, and Christopher D. Sogge, Uniform Sobolev
inequalities and unique continuation for second order constant coef-
ficient differential operators, Duke Mathematical Journal 55 (1987),
no. 2, 329–347.

[KSU07] Carlos E. Kenig, Johannes Sjöstrand, and Gunther Uhlmann, The
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[Rül10] Angkana Rüland, Rigidity properties of the cubic-to-orthorhombic
phase transition in the linear theory of elasticity with surface energy,
Diploma Thesis (2010).

[Rus78] David L. Russell, Controllability and stabilizability theory for linear
partial differential equations: recent progress and open questions, Siam
Review (1978), 639–739.

[Saw84] Eric T. Sawyer, Unique continuation for Schrödinger operators in di-
mension three or less, Ann. inst. Fourier (Grenoble) 34 (1984), no. 3,
189–200.

[Seo13a] Ihyeok Seo, On Unique Continuation for Schrödinger Operators of
Fractional and Higher Orders, ArXiv preprint, arXiv:1301.2460v1
(2013).

[Seo13b] , Unique Continuation for Fractional Schrödinger Operators
in Three and Higher Dimensions, ArXiv preprint, arXiv:1309.0120v1
(2013).

[Sil07] Luis Silvestre, Regularity of the obstacle problem for a fractional power
of the Laplace operator, Communications on pure and applied math-
ematics 60 (2007), no. 1, 67–112.

[Sil10] , Eventual regularization for the slightly supercritical quasi-
geostrophic equation, Annales de l’Institut Henri Poincare (C) Non
Linear Analysis, vol. 27, Elsevier, 2010, pp. 693–704.
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tions and backward uniqueness, Nonlinear Problems in Mathematical
Physics II, In Honor of Professor OA Ladyzhenskaya, International
Mathematical Series II (2002), 353–366.



BIBLIOGRAPHY 181

[Ste70] Elias M. Stein, Singular integrals and differentiability properties of
functions, vol. 30, Princeton university press, Princeton, 1970.

[Ste85] , Appendix to “Unique continuation and absence of positive
eigenvalues for Schrödinger operators”, The Annals of Mathematics
121 (1985), no. 3, 489–494.

[SV09] Yannick Sire and Enrico Valdinoci, Fractional Laplacian phase transi-
tions and boundary reactions: a geometric inequality and a symmetry
result, Journal of Functional Analysis 256 (2009), no. 6, 1842–1864.

[Tat96] Daniel Tataru, Carleman estimates and unique continuation for so-
lutions to boundary value problems, Journal de mathématiques pures
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