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Abstract

Forecasts of convective precipitation have significantediainties. Among the main reasons
for these uncertainties are the non-linear dynamics of thesphere and approximations
within the equations of the numerical weather predictiod{®)) models by unresolved physical
processes, which have to be parametrized, and imperfeatation of resolved physical pro-
cesses. To account for the forecast uncertainties of ciomggermitting models, a convection
permitting ensemble prediction system (EPS) based on thsoctium for small-scale model-
ing (COSMO) model with a horizontal resolution aBRm covering whole Germany is being
developed by the Deutscher Wetterdienst (DWD). The detaéstic model is named COSMO-
DE. The potential of convective instability is affected b tvertical structures of temperature
and humidity. These vertical profiles of the COSMO-DE-EP8 amther ensembles will be
investigated in this work. For verification of the verticabdel profiles radiosonde observations
are used. However, the observations are uncertain by tthesssdue to the well-known limits
in observing the atmosphere.

The focus is to present a probabilistic method to verify amthjgare ensembles. The approach
considers explicitly the observation error as well as thelehaincertainty to validate mul-
tidimensional state vectors of temperature and equivgletgntial temperature profiles of
the COSMO-DE-EPS and of two meso-scale ensembles withdraakresolution of 1km
and parametrized convection. The meso-scale ensembldbea@OSMO short-range EPS
(COSMO-SREPS) and the COSMO limited-area EPS (COSMO-LEPS)

The approach is based on Bayesian statistics and allowstbrderification and comparison

of ensembles. Both investigated variables define the dryvamidt static stability of the atmo-

sphere, and therefore they determine the necessary aorslitf convection. The equivalent
potential temperature contains the effect of the humidaityich cannot directly investigated,

because the humidity is non-Gaussian. Since the temperatar equivalent potential temper-
ature can be assumed to be Gaussian distributed, the Baygspeoach is solved analytically.

Finally, the probabilistic approach gives an "evidence'tfe ensemble under investigation in
relation to a reference ensemble. This evidence is clagsiépending on the application either
comparison or verification of ensembles.

The investigation period comprises the August 2007 for apanmon of the COSMO-DE-
EPS with the COSMO-SREPS and the entire convective and apbgrally-induced precip-
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itation study (COPS) period 2007 for a verification of the GGBSREPS and COSMO-
LEPS against COSMO-EU analyses. It is shown that the terhpergrofiles modeled by
the COSMO-DE-EPS have a higher evidence in view of the obsens than those of the
COSMO-SREPS. Furthermore, the evidence for the equivptaehtial temperature is weaker
due to the larger uncertainty of this variable in the modela#i as in the observed state.
This shows the importance of the observation uncertaingveltheless, it seems that the
COSMO-DE-EPS as a short range convection permitting engeisila suitable approach to
consider the uncertainties in forecasting convection.vehniication of two meso-scale ensem-
bles COSMO-SREPS and COSMO-LEPS show a linear decrease pfahability (evidence)
of the vertical temperature and equivalent potential teatpee structure with increased fore-
cast lead time. Furthermore, it is shown that the predilitaluf the convective conditions are
up to 5 days. However, it is to consider that the typical tiraes of convection is about hours,
and beyond it is difficult to predict convection.

As a general result, the statistical model described in shisly is appropriate to compare
ensemble systems with each other. The score proposed iwahiisis a generalization of the
Ignorance score taking additionally into account the umagety of the observations as well
as the spatial correlation structure of the verified forecabhe approach based on Bayesian
statistics allows for a comprehensive evaluation of thedast quality of three-dimensional
samples by using just one score.



Zusammenfassung

Vorhersagen von konvektiven Niederschlagen beinhalteebdiche Unsicherheiten. Grinde
hierflir sind die nicht-lineare Dynamik der Atmosphéare und Naherungen in den Gle-
ichungen der numerischen Modelle fur die Wettervorherssmgie durch nicht aufgeldste
physikalische Prozesse, die parametrisiert werden mussenweiter durch fehlerhafte
Modellierung von physikalischen Prozessen. Zur Berutigjang der Unsicherheiten bei
der Vorhersage von konvektions-erlaubenden Modellen iekélt der Deutschen Wetterdi-
enst (DWD) ein Ensemble-Vorhersage-System (Ensembldgtied system - EPS) fiir die
Kurzfrist-Vorhersage, basierend auf dem COSMO-DE. Dasrdehistische COSMO-DE hat
eine Auflésung von Bkmund umfasst ganz Deutschland. Das Potenzial der konvekkive
stabilitat wird dabei durch die vertikalen Strukturen vamiperatur und Luftfeuchtigkeit bes-
timmt. Diese vertikalen Profile des COSMO-DE-EPS und weiténsembles werden in dieser
Arbeit untersucht. Fur die Verifizierung der vertikalen fleowerden Radiosondenbeobachtun-
gen verwendet. Diese Beobachtungen sind allerdings saibktunsicher aufgrund der bekan-
nten Grenzen der Beobachtungen der Atmosphére.

Das Hauptziel dieser Arbeit ist die Prasentation einer ghdistischen Methode zur Veri-
fikation und zum Vergleich von Ensemble-Vorhersagen. Didssatz berlcksichtigt explizit
die Beobachtungs-Fehler sowie die ModellunsicherheitdiérValidierung mehrdimension-
aler Zustandsvektoren der Temperatur und der Aquivaletgrpiellen Temperaturprofile des
COSMO-DE-EPS und zweier mesoskaligen Ensembles mit einéidgung von 1Bm und
parametrisierter Konvektion. Die mesoskaligen Ensemditess das COSMO short-range EPS
(COSMO-SREPS) und das COSMO limited-area EPS (COSMO-LEPS)

Der Ansatz basiert auf der Bayesischen-Statistik und eliofiigsowohl eine Verifizierung
als auch einen Vergleich der Ensembles. Beide untersudvdenblen definieren die Sta-
bilitdt der Atmosphére und bestimmen die Bedingungen finvéktion. Die Aquivalente-
potentielle Temperatur enthalt zudem die Wirkung der lauithtigkeit, welche nicht direkt
untersucht werden kann, da die Luftfeuchtigkeit nicht Gausrteilt ist. Die Temperatur und
die Aquivalente-potentielle Temperatur dagegen kénneiGalss-Verteilt angenommen wer-
den, so dass der Bayesische-Ansatz analytisch geltst méwate. Schliesslich ergibt der
probabilistische Ansatz einen "evidence" fur das zu untdrende Ensemble in Bezug auf
ein Referenz-Ensemble. Dieser "evidence" wird klassifizigobei die Klassifizierung dabei
von der Anwendung entweder Vergleich oder VerifizierungEesembles abhangt.
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Der Untersuchungszeitraum fir den Vergleich des COSMOHPE-mit dem COSMO-SREPS
umfasst den August 2007 und den gesamten Zeitraum der Kibnwald orographisch in-
duzierte Niederschlags-Studie (COPS) von 2007 fir diefikation des COSMO-SREPS und
des COSMO-LEPS gegen COSMO-EU Analysen. Es wird gezeigs, dia Temperatur-Profile
des COSMO-DE-EPS viel wahrscheinlicher sind (Sie habegnei®heren Beweis im Hinblick
auf die Beobachtungen) als die des COSMO-SREPS. FerneriBeuveis fur die Aquivalente-
potentielle Temperatur schwéacher aufgrund der gréssensichierheiten dieser Variablen im
Modell als auch in den Beobachtungen. Dies zeigt zudem dikeang der Beobachtungs-
Unsicherheiten. Dennoch scheint es, dass das COSMO-DEaEBH®nvektions-erlaubendes
kirzestfrist Ensemble dazu geeignet ist, um die Unsicliterihbei der Vorhersage von Konvek-
tion zu bertcksichtigen. Die Verifikation der zwei mesoglah Ensembles COSMO-SREPS
und COSMO-LEPS zeigt eine lineare Abnahme der Wahrschbkdit (evidence) der ver-
tikalen Temperatur- und Aquivalente-potentielle Tempar&rofile mit der Vorhersagezeit. Es
wird zudem gezeigt, dass die Vorhersagbarkeit von Koneaktiach etwa 5 Tagen endet, da
zu diesem Zeitpunkt die Vorhersage die gleiche Wahrsdabk#it wie die von Persistenz-
Vorhersagen erreicht. Dabei ist zu bertcksichtigen, dessydische Zeit-Skala von Konvek-
tion im Bereich von Stunden liegt und es dartiber hinaus satigvist Konvektion quantitative
vorherzusagen.

Es wird gezeigt, dass das statistische Modell, welches ésedi Studie beschrieben wird,
geeignet ist Ensemble-Systeme miteinander zu vergleidben Score, der in dieser Arbeit
vorgeschlagen wird, ist eine Verallgemeinerung des Igm@eéScores unter der zusatzlichen
Berlcksichtigung der Unsicherheiten der Beobachtunganesder raumlichen Korrelation.
Der Bayes-Faktor ermdglicht dabei eine umfassende Ausngider Prognosegtite mit einem
einzigen Score.



Chapter 1

Introduction

Water is indispensable to life on earth. In this, preciptats indispensable ingredient of the
water cycle. On the one side, precipitation is essentiafdfioning and consequently for food
for human beings, and on the other side precipitation hasaal®ry high potential for causing
damage e.g. through flash floods. Here, the atmosphericdsfitees the availability of pre-
cipitation. Therefore, predictability of the state of thenasphere in general and in particular
guantitative precipitation forecasts (QPFs) are amongrtbst important applications in nu-
merical weather prediction (NWP). On the short-timescaléouthe climate timescales, QPFs
are of special economic, social and political significance.

In particular, forecasts of precipitation associated wiglep convection have large uncertain-
ties, concerning the prediction of the location and timifighe respective events (Browning
et al., 2008). Figure 1.1 shows the verification results oF®fom different meteorological
weather services over several years. The forecast qualily of them is clearly worst during
the summertime with mainly convective precipitation (Ebatral., 2003b). Weckwerth et al.
(2004) underline this issue.

This is due to the fact that the instabilities of the largdesdw, e.g. expressed by positive
values of convective available potential energy (CAPE rateased by random events, which
themselves are triggered but not strictly determined bgrdfilow or boundary properties such
as orography, soil moisture etc. The instabilities of theaspheric flow evolution strongly
amplify small uncertainties either embedded in the largdestiow, in the boundary layer or
in the surface characteristics on time scales of the ordeheflife time of the convective
events releasing the instabilities. This limits the calitgtf NWP models to forecast the right
diurnal cycle of precipitation (Guichard et al., 2004) as@ne reason for a lack of significant
improvement in QPFs during the last decades in contrasthier dorecast variables (Hense
et al., 2006). Further reasons for this lack of improvemants(Hense et al., 2003):

(a) incomplete simulation of the components of the water cycWP models

(b) gaps, non-resolved structures and errors of the initialedat NWP models
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Figure 1.1: Time evolution of the Bias (a) and (b) of the equitable theeatre (ETS) over Germany
between January 1997 and June 2000 for a rain thresholdwic* (Ebert et al., 2003b). The ETS
measures the fraction of observed and forecasted evenish wiere correctly predicted (Ebert
etal., 2010).

(c) inadequate methods of data assimilation within NWP models

(d) limited predictability of the atmospheric state by detenistic NWP models

A priority program (PP1167) "Quanitative Precipitationr€casts" was initiated to challenge
these points in a joint and coordinated effort of universiistitutes and other research insti-
tutions. Within the PP1167 there was a close collaboratioth@se university institutes and
research institutions with the research and developmerdrtteent of the Deutsche Wetterdi-
enst (DWD). The PP1167 started in 2004 and lasted until 20%&s funded by the Deutsche
Forschungsgemeinschaft (DFG). The main target of the PPpidject was to improve the
short and medium range QPF over central Europa. Therefoeemiin assignment of tasks
were (Hense and Wulfmeyer, 2008):

| identification of physical and chemical processes resjmbasi
for the deficiencies in QPF

Il determination and use of potentials of existing and new data
and processes to improve QPF

[l determination of the prognostic potential of NWP models
by statistic-dynamic analysis with respect to QPF

Figure 1.2 shows the topics of the PP1167. The PP1167 wag/gldutlinto five topics. Topic
(A) had the aim to investigate the atmospheric processeihwbad to precipitation. The
second topic (B) aimed to improve the initial data of NWP bg tlse of more as well as of
additional observations within different data assimiatsystems. Topic (C) contained the de-
velopment of new data assimilation systems and of new metfuwd/alidation of NWP models
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Figure 1.2: Structure of the priority program PP1167 "Quantitativedjygation Forecasts", which
includes the general observation period (GOP) and the ctireeand orographically-induced pre-
cipitation study (COPS). The COPS campaign was subdividedseveral intensive observation
periods (IOPs) (Hense and Wulfmeyer, 2008).

and for investigations of the predictability. One campagyoontained in topic (E). These cam-
paign was the general observation period (GOP) includiegctinvective and orographically-
induced precipitation study (COPS). Finally, topic (D) wiae connection of all topic subject
areas into an operational test and evaluation environnfehed®WD.

The thesis, which is presented here is a part of the PP116belndgs to the topic subject
area (C) and has the aim to establish a new probabilistificeion method for vertical struc-

tures in temperature and moisture, which are important dorvective developments. At that,
the verification method offers also an access to probabilistecasts of ensemble prediction
systems (EPS), because the approach takes up the moddhimgdrom the ensemble.

Forecasts of EPS are important, because uncertainties inittal data and the requirement to
parametrize physical processes for the NWP models leadrtutad deterministic predictabil-
ity. Lorenz (1963) shows the impact of small variations & thitial state to forecasts of a
chaotic system. The atmosphere is such a chaotic systemefdte to deal with the limited
deterministic predictability of processes on the smaltigpacale the DWD has been devel-
oped an EPS based on the COSMO-DE, which is a convection fiegriimited-area model
with a horizontal resolution of.8km (Baldauf et al., 2011). The COSMO-DE was developed
in the framework of the consortium for small-scale modglfEOSMO). An intermediate state
of this COSMO-DE-EPS development is described in Gebhaalt €£011) and is investigated
by the new probabilistic verification method for NWP presehin this work.

An EPS provides a sample of several deterministic reatinatof the future atmospheric flow
development. In COSMO-DE-EPS, this sample is obtained byfEtions of the initial and
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boundary conditions and of the model physics to account ifterdnt types of uncertainties
leading to the uncertainties in the forecasts. The additimformation in the EPS, namely the
spreading of the possible future paths in the atmospheric éllution reflects the forecast
uncertainty in the predictions. The uncertainty can be tfiad in terms of probabilities. It
cannot be read off directly from the raw deterministic rzaiions, but requires a post process-
ing step for deriving a probabilistic forecast based on tlhergforecast ensemble. Once this
is done it can be shown that probability forecasts derivecthfan EPS are of greater bene-
fit for decision making under uncertainty than a single deisistic forecast produced by the
same model (Richardson, 2000). Similar as with deterniinistecasting, it has to be assured
that the probabilistic forecasts of the post processedzegmins indeed provide information
of the future atmospheric state (Murphy and Winkler, 1984s is the aim of verification of
probabilistic forecasts using observations. Note thatitha problem by itself, because an EPS
provides a sample of forecasts while nature provides onipglesevent. This will require to
compare the predicted probability density of the futuréesté the atmosphere to the single ob-
served state with the help of a score function (Gneiting aafieRy, 2007; Brocker and Smith,
2007a). This score has to show the specific properties ofigtggo allow an objective com-
parison of prediction and observations. Propriety mearssthat the score will always prefer a
more accurate forecast (Brocker and Smith, 2007a). Thesbest is obtained if and only if the
predicted probability density is identical to that PDF frevhich the observations are drawn.
Such a score is called strictly proper. The complete mattiesiaehind (strictly) proper scores
is reviewed and presented in Gneiting and Raftery (2007).

Furthermore, the observed state is by itself uncertain atrestlimited capabilities of observing
the atmosphere. This again has to be taken into account io tai the forecasts are consid-
ered exhibiting low skill in case of verifying observatiootlow quality. Currently, errors of
observations are an issue in research for verification. Bo{@008) discussed the significant
effect of observation errors on verification results. Irtioatar, the effect of observation errors
is not negligible when the forecast errors are small, e shattt lead times. This is confirmed by
Candille and Talagrand (2008a), who mentioned that witbirdast ranges up to two days the
uncertainty of the verification results is of the same ordetha uncertainty of the prediction
due to the observation error. Candille and Talagrand (20@&ze introduced a method treating
the observations as probability distribution. Howeveirirteork is focused on binary events
for given thresholds. In this work, the Bayesian statistiggproach is used, which allows in a
natural way to consider errors of the observations withrthdi probability density function
(PDF), which is not threshold dependent. In the presentgeg®an approach, the uncertainty
of the EPS as well as of the observation is taken into accammtitaneously in a statistically
consistent way without a restriction on the properties ef tihderlying PDFs. Using a prior
probability allows to incorporate additional an uncorahi@él prior knowledge. A further im-
portant advantage of the method is that a multivariate sthte continuous variable can be
investigated.

In this study radiosonde measurements are used as verifpisgyvations. Radiosonde obser-
vations can be considered to be of high quality, but ungeits (sometimes called errors) are



important in our case. In this work the radiosonde obsermatare placed into a single column
of the NWP model as a function of height. This is the same wathase observations are

assimilated into the model state. Kitchen (1989) showettthia procedure is acceptable for
the synoptic scale. However, for the COSMO-DE running aveotion permitting scales the

drifting of the radiosonde is certainly not neglectable.aA®sult the radiosonde observations
are erroneous beyond the standard instrumental errorhviaiais to be taken into consideration.
This is done by using the observation errors of the threesdsional variational (3dvar) data

assimilation system of the DWD.

Additionally, it is often necessary to compare a specific Ep8ems with another to decide
about the relative quality given the same observationah dat. Furthermore, in this work
vertical structures are verified (realizations of multigge random variables) to account for the
dependencies (correlations) between the vertical leVélis. is nearly impossible using single
point information of one selected variable.

Therefore, the key target of this work is to present a method

« to verify and compare ensemble predictions of atmospherictate vectors
* to include an uncertainty measure of the observations

« to allow for relative measures between different EPS system

All these aspects are important ingredients for verifyioge€asts at resolutions, which permit
convection and allow to study the predictability of conveatinitiation potential. For a bet-
ter physical understanding of the prediction of these m®es a multidimensional state vector
of the forecast ensemble has to be used characterizing ttiealéemperature and moisture
structure. The multivariate aspect is defined by severdicatitevels, which are treated simul-
taneously taking into account the dependencies betwedawbks. Other driving mechanisms
like moisture convergence are not readily available froringle radiosonde ascent, but could
be estimated better from a network of radiosondes. Thaxetbe approach should also be
capable to include several radiosondes profiles.

The probabilistic approach based on Bayesian statistasgn "evidence" for the ensemble un-
der investigation (i-ensemble) or rather against the egfee ensemble (r-ensemble). This evi-
dence is a continuous number ranges typically between -A4G-40, which will be classified.
This classification is introduced in Chapter 4 and dependb@application either comparison
or verification of ensembles. The investigated ensembldkisnwork are the COSMO-DE-
EPS, COSMO-SREPS and COSMO-LEPS. The COSMO-SREPS and {8 OQ.EPS are
ensembles based on the COSMO model, but with differentrdyismodels.

The key questions to be answered with the help of the new metbiare
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QL. Is there a significant evidence for the new convective-géngiCOSMO-DE-EPS with
respect to the forecasted vertical structures when it istivariate compared with the
coarser resolved COSMO-SREPS ?

Q2. How does the verification of the forecasted vertical strreguof COSMO-SREPS and
COSMO-LEPS behave with lead time ?

Q3. Is there predictability at long forecasted lead times of GM@BSREPS and COSMO-
LEPS ?

The probabilistic approach for the verification is basedr@nBayesian verification method for
climate change simulations by Min et al. (2004) and Min anah$4e(2006). An extension of
multivariate kernel dressing proposed by Schoélzel and &lé2810) is added to estimate in a
more flexible way the predictive probability density fronettaw ensemble samples. The new
probabilistic verification method for NWP forecasts neetusstimate of the inverse covariance
matrix of the internal variability of the ensemble. The stard maximum likelihood estimation
of the covariance matrix often leads to non-invertible argsiar matrices. This happens if
the sample size of the ensemble used to estimate the cosanaatrix is smaller than the
dimension of the vectors, characterizing the vertical amdzbntal temperature and moisture
structure. In this work a method is introduced recently tigyed by Friedman et al. (2007)
called the graphical lasso (gLasso) method, which is spatlifi designed to estimate non-
singular covariance matrices and their inverse from sraatiges.

Previous work has shown that the Bayesian approach proddesivenient way to compare
and verify ensemble climate simulations. Additionally,Gmeiting and Raftery (2007) it was
shown that this approach leads to a proper score allowinghbaiased evaluation of the fore-
casts either with respect to a climatology or a differenefaisting system.

The outline of the work is as follows: First, in Chapter 2 tlengral issue of verification and
predictability is introduced. Then, the meteorologicathround, especially the processes of
convection and convective initiation, is described in Gba3. In Chapter 4, the statistical
fundamentals including of the Bayesian approach is inttedu The data and the methodol-
ogy are described in Chapter 5. In Chapter 6, two meso-soalengbles are compared. These
two ensembles are the COSMO-DE-EPS and the COSMO-SREP €& OSMO-DE-
EPS (DE-EPS hereafter) as a convection permitting shogeransemble is compared with the
COSMO-SREPS, which uses parametrized convection. The GBSKEPS and COSMO-
LEPS (LEPS and SREPS hereafter) is verified on the basis dfsmsaof temperature and
equivalent potential temperature profiles as referenceeirindChapter 7. Finally, the conclu-
sions of this work and an outlook are given in Chapter 8.



Chapter 2

Numerical weather prediction
verification and predictability

Numerical models like the NWP models are used to simulateptexrphysical processes to
get information about the initial and the future state of pbal systems. In meteorology, data
assimilation combines observations with the numerical ehttiget the most possible accurate
current state of the atmosphere. In turn, this current sateed as initial condition for NWP
forecasts. Finally, for the assessment of the forecastication is essential. In more details,
verification is required (Ebert et al., 2010)

 to monitor the quality of NWP models,
« to improve the quality of NWP models and

» to compare the quality of different NWP models

The monitoring of the forecast quality is essential to anstlie question of how precise is
the forecast and whether the model developments reallyawapthe forecasts. Furthermore,
to improve the model, it is absolutely crucial to analyse dieficiencies in the model. This
is the necessary very first step for improving the model. Ahkerr aspect, the comparison
of NWP models is also very important and can be done with artdowt consideration of
observations. The comparison without consideration oénfadions is done typically e.g. to
investigate sensitivities of the model. However, for theeasment of two models, they have to
be verified against observations.

Commonly, when forecasts are verified against observatibey are considered as the true
state. However, they contain uncertainties. This issues@idsed in the next section and after-
ward the issue of verification of deterministic and proliatid forecasts.
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2.1 True state

It has been mentioned that the observed staite considered mostly as the true state. Thus
here an overview about observation errors will be givenrtdtel. (2010) pointed out that the
"true state" of the atmosphere, which is used for verificgttmmes from more or less uncertain
observations. In fact, all measurement instruments hapedfg error range and they measure
not exactly the truth. Daley (1993) divided the observatarmrs into natural and gross errors.
The gross errors require a quality control check of the datthe following, only the natural
errors are discussed, which are

* instrument error

 and error of representativeness

Daley (1993) introduced further that these errors can beeeitandom or systematic. Fur-
thermore, they can be spatially or temporally correlateth wach other or with the synoptic
situation.

Also when analysis are used for verification instead of tlve shservations, there exists al-
ways an uncertainty about the "truth state", which is inggle accessible e.g. if the analyses
problem is formulated as a statistical regression probléntil now, for verification, the errors
in observational data and the errors in analysis data aréymgisored. This proceeding seems
to be justified when the errors in the observations are mudailenthan the expected error in
the forecast.

For reliable verification results, the forecasts and theesponding observations are averaged
over space and/or time to cancel out the effect of incorreth,das far as possible. How-
ever, this required assumptions like independency of spadéor time if averaged over space
and/or time. Thus, this proceeding can lead to problemstikenasking of variations in non-
homogeneous data, because of e.g. diurnal cycle, diffareather regimes, station density etc.
and further, standard verification methods often do notaaicfor spatial correlations (Casati
et al., 2008).

Currently, methods to account for errors in the observatiare investigated e.g. in Bowler
(2008) or Candille and Talagrand (2008b). Candille and gralad (2008a) mentioned that
within forecast ranges up to two days the uncertainty of #wifigation results is of the same
order as the uncertainty of the prediction due to the obsiervarrors.

In this work radiosonde measurements are used as obses/afibe Bayesian statistics allow
here explicitly to consider errors of the radiosonde obs@was. This is important, because
in this work radiosonde data are used for verification in #ime way as in the COSMO-DE
where radiosonde data are used in the nudging scheme withiwattion for errors in position.
In Chapter 5, the specifications of the radiosonde obsenstnd of the observation errors are
discussed.
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Figure 2.1: The historical time evolution from 1980 to 2001 of anomalyretations of 508Pa
height for forecasts at days D+3 (blue), D+5 (red) and D+&€g) for ECMWF operational NWP
forecasts in both hemispheres (upper/lower curve reptésenorthern/southern hemisphere). The
area between the hemispheric anomaly correlations is diafpala et al., 2004).

2.2 Verification of deterministic forecasts

In general, forecast verification is the comparison of thredasted staté with the observed
stateo. Murphy and Winkler (1987) point out that this verificatidmosild be done based on the
joint distribution of forecasts and observations.

The common verification of forecasts can be subdivided into

» categorical (discrete/continuous predictands)

» and continuous (only continuous predictands)

verification methods. In the following, only the issue of ttentinuous verification methods is
discussed. Furthermore, a general overview of deterrigrsiatl probabilistic verification meth-
ods is presented. A detailed overview of the standard vatific methods including the cate-
gorical verification methods can be found in Wilks (1995)eE2002); Ebert et al. (2003a)
and Ebert et al. (2010).

As an example of forecast quality monitoring, Fig. 2.1 shéleshistorical improvements of
the operational deterministic NWP forecasts of the ECMWiEesi1979. The main reasons for
the improvement between 1980 and 2001 are the usage of atv&WP models, but also
of advanced data assimilation schemes (Uppala et al., 200dpy, the quality of a 5 days
forecast is comparable with the quality of 3 days forecad9i80.

The Bayesian verification method, which is used in this wortt he probabilistic scores with
which the Bayesian verification results are compared is emattically discussed in Chapter 4.
The overview here is given for the standard verification rméshand the term of predictability.
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| Range | Perfect scord

Mean Error ME) —00 {0 +00 0
Rout Mean Square ErroRMSE | 0to +oo 0
Anomaly Correlation AC) —1tol 1
Skill score —ootol 1

Table 2.1: Properties of few important scores (Ebert et al., 2010).

Standard verification methods

For the standard verification methods the observed statensidered commonly as the true
state. The model verification is done typically using staddaores like the mean errdvlg)

or the root mean square err®®NISB. The verification containsl pairs of forecast and corre-
sponding observation values.

1 N
= N_;(fi—oi) (2.1)

The ME measures the systematic error (Bias) of a forecast.

RMSE= 1 f; )2 2.2
= NI;( i —0j) (2.2)

In contrast, th(RMSErespectively theViSE measures the mean magnitude of the error. The
value range of this scores and of further scores mentiongrgtifollowing is given by Tab. 2.1.

The anomaly correlatiorAC) shown in Fig. 2.1 measures the spatial correspondencebptav
model forecast and the corresponding observations. Axbdiliiy, for theAC the climatological
meanc at each point is subtracted. The anomaly correlation isafsed to verify NWP models
(Ebert et al., 2010).

s (fi—c)(o—q) (2.3)

_\/Z. If—Cu 2,/3N 10— )?

At the end of this short introduction of selected verificat&cores, the concept of skill scores
should be introduced. A skill score gives information abthe benefit of a model forecast
with respect to a reference forecast. For NWP models, tleearte forecast is frequently the
persistence or the climatology.

SCOI&orecast— SCOlGeference
SCOI'Gerfect forecast— SCOI@eference

Skill score= (2.4)
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High resolution models like the COSMO-DE and probabiliticecasts require advanced ver-
ification methods. This means, the standard verificatiorhotst mentioned here are only for
deterministic forecasts and they are mainly for smoothdasefields of NWP models with res-
olutions of about 1Km Rossa et al. (2008) figured out this issue for QPFs. For lagblution
models like the COSMO-DE (8km) the reader is referred e.g. to Wernli et al. (2007). The
topic of verification of probabilistic forecasts needs noety which can deal with an ensemble
of deterministic forecasts. This will be discussed in théofeing. However first, the issue of
predictability is discussed.

Predictability

Predictability is a further important term. DelSole (2004fines the term predictability as "the
prediction errors have to be below those based on randoratiseleof a realistic state". In
general, four points are necessary to define adequatelictability of a deterministic model
forecast:

+ aforecastf (1) at lead timet

» the observation at time= 0 to define the initial error and
the observation at timeto define the final error

« areference forecast(t)
to define an error level at lead timdo be compared to the final error

predictability is given as long as an error metric at leatkti of the forecast
is less than the error of the reference forecast

A common score used to measure predictability isNtH&E or RMSE The RMSEincreases
with lead time and reaches asymptotically a finite valueledataturation value. There, all
predictability is lost. Figure 2.2 shows verification reésuf the global model GME viRMSE
For this verification, the temperature at B8@ in different regions is verified. In general, the
predictability is lost after about 7 days, because RMSEhas reached at this forecast lead
time the quality of a climatological forecast. In case ofgience as reference forecast in
place of climatology, there is also predictability up to #slaA saturation value can be seen
only for the persistence in Fig. 2.2. Furthermore, it is shdhat in the southern hemisphere
the forecast quality is smaller than in the northern hemasphThis is related to the density of
the observations, which are much higher in the northern $igimeire. However, in the southern
hemisphere, the usage of satellite measurements has adstola substantial improvement of
the forecasts (Simmons and Hollingsworth, 2002).
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Figure 2.2: Example for standard verification of the GME (blue lines) &omonth period in au-
tumn 2011 usindRM SEfor different global regions at DWD. The dashed lines shosvtibotstrap
confidence interval 5-95%. The verification of persistermoadenta crosses) and climate (black
lines) are also shown. The verified variable is temperatus@®@Pa(Damrath, 2011).

2.3 \Verification of probabilistic forecasts

Caused by the steady increase of computing power and beotise chaotic nature of the

atmosphere (Lorenz, 1984) a probabilistic point of view isrenand more used today. This
probabilistic forecast needs also to be verified, but witheotverification methods than in

the deterministic case. In this work, a probabilistic vedfion method to verify forecasts of
vertical profiles is used to investigate the predictabitifyconvection. This is necessary, be-
cause convection is still one of the worst predicted weatkients. More about the issue of the
limiting factors of predictability in NWP models relating the simulation of convection are

discussed in Chapter 3.

The general aspects about what an accurate probabilitgefstreystem has to have is specified
in Ebert et al. (2010) as:

« reliability - agreement between forecast probability and mean obsée@aency

» sharpness- tendency to forecast probabilities near 0 or 1

* resolution - ability of the forecast to resolve the set of sample eventts $ubsets with
characteristically different outcomes
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Figure 2.3: lllustration of different Rank histograms when the ensembkembers are selected
from a test probability distribution. (a) the probabilitisttibutions are two biased distributions
N(-1,1) or N(1,1). (b) the distribution has a lack of vari#piN(0,0.69). (c) Rank histogram of
a sample when ensemble members are selected from (a). (&)H&aogram of a sample when
ensemble members are selected from (b) (Hamill, 2001).

The main probabilistic verification methods are presenteithé following. This probabilistic
methods based mainly on scores. However, there are alsly guaphical verification methods
like the rank histogram, which does not explicitly need afietion score, but can be extended
actually to a single number as shown in Keller and Hense (R0t other verification is done
directly by a score. This scof®attempts to compare the observation with the model forecast

N
S = 3 S0l 25)

The verification score of probabilistic forecasts is heréingel as a functior§p(x),0]. The
ensemble forecasts is represented by a probability defiusittion (PDF) denoted g%(x) and

o is the observed state. A rough overview of the current staitéisrecast verification is given
by Casati et al. (2008). For more details, the reader isnedeo Gneiting and Raftery (2007);
Brocker and Smith (2007a, 2008) and Ebert et al. (2010).dridhowing, some scores will be
further described.
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a. Verification of the raw members of an ensemble

The analysis rank histogram (ARH) or Talagrand diagram (Hag001) represents the fre-
guency of the observation with respect to the single ensemieimbers sorted by class values.
The histogram shows, if the ensemble has enough spreadrasesp the forecast uncertainty.
An ensemble forecast with appropriate spread has a flat iatdgham. A "u-shape" histogram
can indicate that the spread is too small (see Fig. 2.3),atcatlarge quantity of observations
fall outside of the minimum or maximum of the ensemble fostcBurthermore, the rank his-
togram shows if the ensemble has too large spread or if tresrdsle contains a Bias. Figure
2.3 shows an example of a rank histogram where the ensenmgladsis too small.

The ARH is based on the raw ensemble members in contrast fwraobeability integral trans-
form (PIT), which based on the quantiles allowing also to pame ensembles e.g. with differ-
ent number of members. The PIT is defined by the value of thdiginee cumulative distribu-
tion function (CDF) at the observation point (Gneiting ef 2008). "The PIT histogram can be
interpreted in the same way as its discrete analogue, tlagrBald diagram" (Gneiting et al.,
2008). Keller and Hense (2011) shows further how the PIT eaextended to a single number
score. A "u-shape" histogram would correspond there to gative score.

b. Verification of PDFs based on the raw ensemble

The continuous rank probability scol@RPS becomes just to be a very popular score. The
CRPSin a member based formulation (Hersbach, 2000) belongshietaategory verification
of the raw members of an ensemble. TBRPSin a PDF based formulation is given by the
integral of the Brier score at all possible threshold valugsneiting et al., 2004) and belongs
to the category verification of PDF based on the raw ensemble.

SupelP(0),0] = | [F()~H(t o)t (26)
WhereH is the heaviside function arfél(t) := [* p(x)dxthe cumulative distribution function
(CDF). A mathematical introduction including a more degditiscussion of theRPSs given
in Chapter 4.

Another verification method of this type is the Ignorancered®rocker and Smith, 2007b).
The Ignorance score does not capture the whole PDF, butr tdithescore verifies only one
point of the ensemble PDF. The score is defined by

Sign[P(x), 0] = —log(p(0)) 2.7)

The Ignorance score is defined as the value of the PDF at tieevalti®n value. Because of the
negative sign, the logarithmic score cannot be negative.ldgmrithmic scoring rule is strictly
proper, and smaller values of the score are better.
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Figure 2.4: Reliability diagram of COSMO-LEPS T2accumulated precipitation forecasts in
spring 2006 on the left panel. The forecast rangeh{b8 precipitation thresholdrim(red solid
line), sSmm(green), 1ehm(blue), and 2Bim(purple). The right panel shows the corresponding PIT
histogram for the different thresholds (Walser and Linj@&08).

c. Verification of the forecast of the probability of an event

Finally, the Brier score verifies the forecasted probgbHitx) of an event against the observed
probability P(0). The observed probability is defined as binary value eith@bserved value
above the threshold) or 0 (observed value under the thrdshidie Brier score is defined by

Soe[P(x), 0] = (P(x) — P(0))? (2.8)

The score measures the squared deviation between prepictieabilities and their outcomes,
so a lower score represents higher accuracy, and the samedsptionally similar to the mean
square error.

Basically, both probabilities, which are used in the Brieore, the forecasted probability and
the observed probability of a certain event can be illusttah a Reliability diagram. The
Reliability diagram plots the observed frequency agaimstforecast probability for a specific
threshold. Figure 2.4 a) shows an example of such a Retialflagram from Walser and
Liniger (2008). The Reliability diagram shows a decreasmhgeliability with an increased
precipitation threshold. A perfect reliability would beetdiagonal black line. Additionally, it
is shown that the sample space becomes smaller for higleshibids (Fig. 2.4 b).

2.4 Current area of research

Every score, if deterministic or probabilistic, investigs merely a few aspects of the type of
model forecast errors. Thus, several scores have to be asget ta comprehensive quality
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picture about the verified NWP model. Until now, verificatgsores are mostly univariate and
do not consider the uncertainties of the observations. Memoth points are an actual issue
in the development of new verification scores.

In this work, probabilistic forecasted vertical profileg aterified. A multivariate verification
method based on Bayesian statistics is used including th&ideration of the uncertainties of
observations. The new verification score is an extensiohefgnorance score. The results of
this verification method for NWP forecasts is compared watults of the Ignorance score as
well as with theCRPS This comparison is based on univariate results and is sio@hapter

6. The details of the Bayesian verification method are desdrin Chapter 4.



Chapter 3

Fundamentals of convection and their
forecasts

Convection is defined as vertical movement of many air pargglimes) due to buoyancy. For
convection, the vertical structure of the atmosphere ig weportant, because it determines the
stability of the atmosphere and therefore, the convectamiiting conditions. This convection
permitting conditions decide if convection can be triggleoe not. The rising of the plumes are
caused by buoyancy. In more detail, Emanuel (1994) definkgw@epas a "buoyant jet in which
the buoyancy is supplied steadily from a point source; ttoyant region is continuous”. In this
processes, water vapor plays a crucial role. Water vaporeiaforce the convection by release
of latent heat. This physical processes are described i mhetail in this chapter. Vertical
temperature and humidity profiles, which determine the eotion permitting conditions, are
investigated in this work to study the predictability of @ention by NWP models.

Generally, numerical simulation of processes in the atmespis a great challenge for NWP
models. Since, this presupposes to consider processesamyesspectrum of spacial and tem-
poral scales. These processes can be resolved only pattigtdhe unresolved processes have
to be parametrized. Figure 3.1 shows the typical scaleseofrit and fluid dynamic processes
in the atmosphere. The spatial spectrum ranges fromirti@the micro-scale, e.g. the magni-
tude of the dissipation of small turbulent vortexes callddies) to 16m (the macro-scale, e.g.
planetary waves and large cyclones). The time scale haseraidje too from aboutsécin

the micro-scale to several years in the climatologicalescal

In particular, one of the greatest challenges for NWP moideis predict convection. In this,
convection belongs to the meso-scale with spatial scalesla 1- 10kmand the correspond-
ing time scale of about 1 hour. However, convection is aléectéd by processes on the micro
and the synoptic scale (macro-scale). NWP models, which tievexplicit task to give guide-
lines about convection are convection permitting NWP m&ad€his NWP models simulate
explicit convection without parametrizations. The guide$ relates to where the convection
occurs and about the strength of the convective event. €towepermitting models like the
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Figure 3.1: Scale definitions in meteorology and corresponding atmaspprocesses with their
characteristic scales of time and horizontal space (Cklah975).

COSMO-DE have a resolution of aboutra (COSMO-DE 28km) and thus belongs into the
meso-scale. Figure 3.1 shows that processes of turbulegglames, which are also very im-
portant for the convective initiation are still unresolweith these resolutions and nevertheless,
they have to be parametrized. NWP models with coarser résod e.g. the COSMO-EU, be-
long into the meso-scale too. But with a resolution kintonvection has to be parametrized
completely. To summarize, it is a great challenge for NWP @tetb consider this huge spec-
trum of length and time scales shown in Fig. 3.1.
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In this chapter, firstly, the general meteorological basiedg following, the fundamental me-
teorological processes of convection and convectiveatnith are described. Afterwards, the
simulation of convection in NWP models is explained. Moregisely, the convective per-
mitting NWP models as well as NWP models, which parametrae/ection are considered.
Finally, the issue of predictability of convection is dissed. The meteorological fundamentals
described in this chapter are based mainly on Kraus (2004).

3.1 The stability of the atmosphere

The atmosphere consists mainly of nitrogen (78%) and ox{g#&¥b). The remaining part con-
sists of the so-called trace gases such as argon, water aagaarbon dioxide. Nevertheless,
the water vapor in the atmosphere is extremely importanthfiermeteorological processes in
the atmosphere, because water vapor defines the generdiawndor precipitation through
the water cycle and its effects upon the radiation. Furtlegmwater vapor is able to transport
latent heat, which is very important for the energy balarfdbeearth-atmosphere system and
for convection too. These special characteristics of wadgor are detailed discussed in the
following.

Water vapor

Water vapor is the gas phase of water. It is one state of wathimwhe atmosphere beside
the solid and liquid state of water. The proportion of watapar content in the air can be
up to 4 volume percent in the tropics. The global mean totémeontent is on average about
25kgnm 2, corresponding to a 28mhigh water column. The source of the water vapor in the at-
mosphere is primarily evaporation from the surface, egfigdrom surfaces of the subtropical
oceans.

The proportion of water vapor is, in contrast to many othesega spatially and temporally
highly variable and decreases rapidly with height. Theitgbdf air to contain water vapor
depends entirely on the temperature. Roughly speakingneraair can hold more water va-
por than colder air. The Clausius-Clapeyron equation de=tthe exact characteristics of the
saturation vapor pressure curve,

dE L

4T~ Tav (3.1)

whereg—$ is the derivative of the saturation vapor presgtimgith respect to the temperatufe
In the following T has the dimensioK andd gives the temperature €. L is the latent heat of
vaporization, andV is the difference of specific volumes of the gas and liquidsghteansition.
In practical applications, the saturation vapor presssitesually calculated by empirical func-
tions. These empirical equation is the Magnus formula, sgeGibbins (1990) or Lawrence
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(2005). The Magnus formula for the saturation vapor pressuer water (temperatufefrom
0°C to 100C) is given by:

(3.2)

E =6.1078 exp( 17.0809-9 >

234175+ 9

and the Magnus formula for the saturation vapor pressureiced¢temperaturd from —50°C
to O°C):

(3.3)

E =6.1078 exp( 17.8436-9 )

245425+ 9

As mentioned in the introduction (see Chapter 1), the waapor plays a crucial role in the
atmosphere, because water vapor has the attribute to acthe atmosphere in all three phys-
ical forms (solid, liquid and gaseous). For the transitia@nf one into another aggregate phase
enthalpy is decreased or increased, e.g. water into wapar e@nsumes energy. This energy
is released again as sensible energy at the opposite plaasition called latent heat. The
property of the air to transport energy in form of latent hisatery important for the energy
transport on earth, but also for the dynamic processesthe glevelopment of hurricanes. The
latent heat of evaporation is thereby= 2.5-10°Jkg ! at °C.

In meteorology, there are two main processes which are uagamental related to the stability
of the atmosphere namely dry and wet adiabatic processesagdent of an air parcel can be
described either by a dry adiabatic process or by a wet diligmacess. The wet adiabatic
process is used if condensation of water vapor occurs. Batbepses are described in the
following.

a. Dry adiabatic process

In case of unsaturated air, dry adiabatic processes daemihatstability of the atmosphere.
The dry adiabatic process can be defined by the potentialdernye®. This temperature is a
theoretical temperature of an air parcel at presgunehich describes the entropy densityf
the air parcel. The potential temperature for dry air is gikg

R

o=T (%’)cp (3.4)

whereT is the current absolute temperature of the parRehe gas constant of air ang)
the specific heat capacity of dry air at a constant pressaorease of an adiabatic vertical
motion, the potential temperature is constant like the ifipdaumidity and the mixing ratio.

1The entropySis directly connected t® by dS= CpIndo (Kraus, 2004). Thus isentropes are also isolines of
equal potential temperature and entropy. Furthermore, ihés talked about the specific entropy corresponding to
entropy density.



3.1 The stability of the atmosphere 21

Correspondent to the potential temperature, the dry atitabertical temperature gradie%%
is given by

dr — rg=-3 (3.5)
dz ©=const Cp

The dry adiabatic vertical temperature gradient is denbyeldy.

b. Moist adiabatic process

In case when the air is saturated, the equivalent potemtimpératured, describes the en-

tropy density of moist air. Houze (1993) explained the eagjgnt potential temperature as the
theoretical temperature, which the parcel would have ifralwater vapor condense and the
complete latent heat convert into sensible heat. The elgnivaotential temperature is given

by

Lm

G)e:@-exp<cp—T> (3.6)
This formulation of®g is defined in Bolton (1980)L is here the latent heat of evaporation,
which was already mentioned before, anpd= 1004 kg 1K1 is the specific heat capacity of
dry air. The humidity is represented by the mixing ratipfor more details aboun and the
context to the specific humidity, see Appendix A.1. The equivalent potential temperature is
conserved in a reversible moist adiabatic process meahnitidghie condensed water remains in
the air parcel. Consequently, the vertical temperaturdigna for saturated air is lower as for
dry air, because of the release of the latent heat.

dT g

. 1
dz T 1+

Be=const

3.7)

The vertical temperature gradient for saturated s)irs(expressed b¥s.

Buoyancy

Vertical motion, more precisely, the raising of atmosphaii-masses is closely associated with
the physical processes, which are responsible for pratigit Reasons for vertical movement
can be ascent at mountains, frontal cross circulationszdmal wind convergence and con-

vection. In case of convection, the reason for the vertigation is buoyancy, which determines

the rate of chang%" . In Kraus (2004), the buoyancy acceleration for an air gasagiven by



22 Fundamentals of convection and their forecasts

Payerne

ycold front «

a) ' ./ Munich A b)
7 /. convergence Iing-

b e

2gohPal

/(K“‘ DB 7 low level AT
WYPB':": ._-_.,‘.. i \\__ A‘|..i;l..,.'_‘.-_... ‘-\cold‘air A

Figure 3.2: Vertical atmospheric structure along the cold front (a:d?ag), along the convergence
line (b: Munich) and within the unstable warm sector (c: Viahfrom radiosonde soundings of
3th August 2001 at 12UTC. The corresponding modified CAPHeagfor pre-storm environment
amounted up to 12Qkg ! at location Munich (b) and eastward to Vienna (c) up to 40@p?*
(Kaltenbéck, 2003).

dw  10p
dat -~ poz g (3.8)
_ (p_ pparcel>
pparcel

Tparcel =T
T

These calculations contain the gas equapoa R—pT, the hydrostatic balance of the environ-
ment%—‘z’ = —pg and that the pressure of the environment is equal to theyressthe parcel

P = Pparcel- The respective temperatuligarcel is the temperature of a parcel, which ascents
adiabatically, and is the temperature of the environment of the parcel. It issshthat the
parcel will rise up ifTyarcel > T. Therefore, the vertical velocity is strongly influenced by the
environmental temperature T and furthermosegepends on the vertical structure of the en-
vironmental temperatur%Tz. However, the parcel method is a simplification of the cotivec
occurring in the real atmosphere (Emanuel, 1994). In caserofection in the real atmosphere
processes like e.g. entrainment and detrainment has tortsédeoed too. In this sense, the
environmental vertical structure of the humidity is als@ortant. Redelsperger et al. (2002)
investigated the effect of advected dry air to convectiothintropics. It was shown that ex-
treme dry air has a clear effect on the convective developnespecially on the convective

cloud top height.

g
B

As main task in this work, the vertical structure of temperatand humidity is investigated.
Therefore, the humiditg, will be treated by the usage of the equivalent potential &napire
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Figure 3.3: lllustration of stability cases of vertical temperaturadjent (left panel) and of the
vertical potential temperature gradient (right panel)b{$al1996). The stability criteria for the
temperature gradient are complete, but they are not coatpltiown for the potential temperature
gradient. The detailed stability criteria are shown in Tah.

Be, which allows to investigate also the humidity indirecfline reason for this proceeding is
that in this case both variables can be treated as normaityilulited. More about this issue
is written in Chapter 4. Figure 3.2 shows an example for eakprofiles at different weather

situations. Figure 3.2 a) shows the case of a passing cotd &pPayerne, (b) the passing
of a convergence line at Munich and the pre-storm condit@mngienna (c). In the area of

the passing convergence line strong convection with thistolens was initiated. The vertical

structure of the atmosphere is significant for the strenftheoconvection, and Fig. 3.2 shows
the small scale structures especially of the dew point teatpe. The crucial variables are the
temperature and the humidity, which determine the potefutiahe convective instability.

Stability criteria of the atmosphere

The stability of the atmosphere is determined by the atmadplstratification of the atmo-
sphere. This stability can be described by the verticalniizietemperature gradier%@ in case
of dry air and by the vertical equivalent potential tempﬂmlgradienl‘% in case of moist air.

Figure 3.3 shows the case of stability in respect to dry anigtna@r. On the left hand side, the

stability classification for the vertical temperature deads is shown and the corresponding
classification for the vertical potential temperature geatdon the right hand side. The classi-
fication for the vertical potential temperature appliesydol dry air. The atmosphere is stable
if the environmental vertical temperature gradiEnt
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Vertical T-gradient| vertical © -gradient

Absolut stable M<Tls %: >0
Wet neutral r=rs % —0
Conditionally stable MFs<l <y %—? >0 and% <0
Dry neutral Fag=r ©=0
Absolut unstable Fg<T <0

Table 3.1: Classification of the atmospheric stability through sitibiriteria represented by the
vertical temperature gradient and the vertical potertiplivalent potential temperature gradiént.
without index represent the actual vertical temperatuaglignt. The indexl ands stands for dry
and wet adiabatic processes. The corresponding veBicalrather®, gradient are also shown.

aT < (stable)
M= 52\ = g (indifferent) (3.9)
> (unstable)

is smaller as the dry adiabatic temperature gradigrand unstable iF is greater thaii 4. This
can be expressed also by the use of the potential temper@tueeatmosphere is dry neutral,
if the vertical© gradient is equal zero and stable (unstable) if the gradsegteater (smaller)
than zero see Tab. 3.1.

Collectively, it be mentioned that an upward decreas®gis a necessary but not a sufficient
condition for parcel instability (Emanuel, 1994). In cadeunsaturated atmospheric air, the
case of conditional stability can appear. Conditional alpist means the atmosphere is dry
stable but the atmosphere becomes unstable eventuallydfeosation occurs. However, in
case of unsaturated atmospheric air, the equivalent patésmperature has to be calculated
using the temperature at the lifting condensation &gl in place ofT (Houze, 1993; Davies-
Jones, 2009). Table 3.1 gives an overview of the stabilityd@mns.

Indices for potential convection

An index for the possible strength of convection is the cative available potential energy
(CAPE). CAPE is thereby an index of the potential energy,ciwhian be released from the
unstable atmosphere.

EL
CAPE= B dz (3.10)

surface
CAPE is the vertical integral over the local buoyaifsee Eq. 3.8) of a parcel from the surface
to the equilibrium level (EL). The level of free convectidoHC) defines the level where the
air parcel rises up forced only trough his own buoyancy, ahdeans the level where the
buoyancy ends. CAPE is measuredky ..
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Figure 3.4: A schematic vertical profile of the troposphere. It is sholmlevel of free convection
(LFC), the equilibrium level (EL) and the lifted condensatievel (LCL). CAPE is represented by
the positive area ('+’ signes) minus the negative area igss) from the surface up to EL. CIN is
represented by the negative area from the surface up to bE@ceed from NOAA/ESRL (2011).

In the real atmosphere, there is often the case of an unsttkification, but with a stable
boundary layer. In this case, first, the unstable layer h&etovercome, e.g. by diabatic pro-
cesses like heating of the ground-level trough solar remfiaAn index for the stable layer is
the convective inhibition (CIN).

LFC
CIN= B dz (3.11)

surface

CIN describes the energy, which is needed to overcome aedtabindary layer and it is also
expressed idkg . Figure 3.4 shows a vertical sounding of the atmosphere.i€idarked as
the negative area between the ground and the LFC and CAPrésented as the positive area
minus the negative area in Fig. 3.4. However, it should betioeed that CAPE is a simplified
theoretical estimation of the potential of convection.
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So far, we have discussed the physical fundamentals abialtzid processes and the possible
stability conditions of the atmosphere. However, the citstance of an unstable stratification

of the atmosphere alone is not sufficient for initiation ofieection. It is a necessary require-

ment. Furthermore, an explicit initiation of the conveantig required. In the next section the

topics of convection and convective initiation are illaséd in more detail.

3.2 Convection and convective initiation

In general, in physic the term convection describes vénteation in fluids caused by differ-
ential densities. Rising plumes occur where the parcel ¢gatpre is warmer than his environ-
ment. This aspect was discussed previously in the sectioum &boyancy. Convection refers to
the transport of properties by fluid movement. As such, itis of the three main processes in
which heat is transported: namely radiation, conductiath @nvection. In meteorology, con-
vection describes the heat and mass transport by the \tlerticgoonent of the flow associated
with buoyancy.

Emanuel (1994) defines convection in the atmospheric seiasc

"A class of relatively small-scale, thermally direct cikation which result from
the action of gravity upon an unstable vertical distributiof mass".

The requirements for deep convection are (Doswell, 198Mhsand Doswell, 1992):

» "a moist layer of sufficient depth in the low or mid-troposgtie

» "a steep enough lapse rate to allow for a substantial pasitivea (substantial amount
of CAPE)"

 "and a lifting of a parcel from the moist layer to allow it toaeh its level of free convec-
tion (LFC)"

Doswell (1987) mentions too that an explicit trigger is resagy to initiate the process of con-
vection. The process of triggering of convection or simpyevection initiation (CI) can be

done by boundary-layer forcing, upper-level forcing ofiation by previous convection (sec-
ondary generation) described in detail in Bennett et alo§20Cl is one of the main topics
in current research. In campaigns like the convective siaitiation project (CSIP) the con-

vective initiation over the southern part of United Kingdaras investigated (Browning et al.,
2008).

In general, the triggering of convection can be separatedhly into strongly forced convec-
tion (SFC), weakly forced convection (WFC) and into air-sx@snvection (AMC) without
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PVA, WAA g NVA, CAA
500 hPa: ! Lifting 3 Subsidence

550 hPa

IOP 9c || IOP 4b || IOP 8b

Figure 3.5: Convective initiation processes on the synoptic scale. dlbe columns show the
weather conditions during the COPS IOP 9c, 4b, and 8b (see5r@)p The black solid lines
represent the 500Paflow and the dashed lines the low and high surface pressutensgswith
warm front (red) and cold front (blue). The area with positand negative vorticity advection is
shown by (PVA, NVA) with the corresponding warm air and coidaalvection (WAA, CAA). Ad-
ditional typical vertical profiles of potential temperaguB) and equivalent potential temperature
(6e) downstream the trough and ridge is shown (Kottmeier e28Dg).

forced convection. Figure 3.5 shows exemplary weatheritiond in different synoptic situa-
tions from(1) to(5) . The weather conditions ranging from blue &ky over single convective
cells with(2) and3) and organised deep convectid to overcast sky with embedded con-
vection5) (Kottmeier et al., 2008). The three convection types véleplained in more detail
in the following based on Fig. 3.5.

Strongly Forced Convection (SFC)

This kind of convection is initiated by frontal forced evemn the synoptic scale. The convec-
tion is mainly triggered by passing of fronts or convergelines. See Fig. 3.5 aréd) and5)

for SFC. SFC includes organized convective events likelstnes. For the classification of
the COPS-10OPs see Wulfmeyer et al. (2011).

Weakly Forced Convection (WFC)

The convection is initiated here by non-frontal forced désest upper levels. This can be
for example positive anomalies of potential vorticity asated with tropopause depressions



28 Fundamentals of convection and their forecasts

(Browning et al., 2008). The orography is more crucial ahindtrongly forced case, and the
convection is here more spatially distributed.

Air-mass Convection (AMC)

Figure 3.5 are@) shows the synoptic weather situation for AMC. In contrashe large-scale
forced convection types, in this weather situations, tlitealroutbreak is triggered mainly by
orography and by spatial variabilities on the small scale in

 temperature and humidity of the boundary layer
« land surface characteristics (land wetness)

» shadowing by clouds at higher levels

The occurrence of convection is here distributed on a wida ar contrast to SFC.

After Browning et al. (2008), these variabilities possibalst on scales too small to be resolved
by numerical models. The importance of variations in bomptiyer temperature and humidity
for convective initiation is shown by Crook (1996). At sytigpscales, the area of convective
initiation is most sensitive to the variability in tempanat (Fabry, 2006). Keil et al. (2008)
investigated the sensitivity of QPFs to variations in hutyith different layers. It was shown
that an increased moistening in the boundary layer leads @adier initiation of convection
and a higher amount of precipitation.

Differentiation of convection-type

To distinguish the different kinds of convection from stghnforced to weakly forced con-
vection, the convective time scalgdescribed in Keil and Craig (2011) can be used. This time
scale describes the theoretical time period for the decsitipo of the potentiaCAPEthrough

dCAPE The convective time scale is defined by:

CAPE . CAPE
' = goave U TOT_pREC (3.12)
t —_—

WheredcdﬁE is here estimated roughly speaking by the precipitatiom TQT _PREC In Keil
and Craig (2011)1. of about & is defined to distinguish between forced and local/weakly
forced convection:

Tc > 6h Local-forced convection
Tc < 6h Forced convection
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However, Zimmer et al. (2011) shows that this choice is eahjit The threshold value range
between 3 to 12 hours in the majority of cases, which werestiyated in their study. Fur-
thermore, it is shown that the convective time scale is auls@hplification for a numerical
distinction of the predominant convection type.

Current state of research

The last field campaign in Germany, which included the irgaibn of convective initia-
tion, was the international field experiment convective armhraphically-induced precipita-
tion study (COPS) (Wulfmeyer et al., 2008). The goal of theRSXampaign in 2007 was to
study the full life cycle of convective precipitation. COR@s embedded in the DFG PP1167
project with the aim to improve the orographically inducedwective QPFs. Several hypothe-
ses had been developed for COPS (Wulfmeyer et al., 2008):

» Accurate modeling of orographically controlled conventis essential and only possible
with advanced meso-scale models featuring a resolutionfefvkilometers

» Location and timing of the initiation of convection critigadepends on the structure of
the humidity field in the planetary boundary layer

The investigation of the measurement data is partly ongddrne of the first results of the
COPS campaign is from Kottmeier et al. (2008), Kalthoff et(2009) and Barthlott et al.
(2009) the significant role of boundary layer convergencediin relation to convective initia-
tion. Wulfmeyer et al. (2011) underlines this result ofimtibn of convection by convergence
lines and assess the model performance of convection-gigigninodels in this case as promis-
ing. The convection-permitting models are clearly morerappate to forecast convection and
they give also a better guideline for orographically inflceth convection. It is further shown
that the vegetation is also crucial for the sensible anchidteat flux.

In the next section the explicit simulation and predictiapibf convection in NWP models will
be discussed.

3.3 Simulation of convection in NWP models

As mentioned before, upward vertical motion is the main gader precipitation and there-
fore, it is very important to simulate this process corgeatl NWP models. For convection,
buoyancy is mainly responsible for this vertical motion.eT¢omplexity of convection and
convective initiation was also explained in the previoustisa. In this section the numerical
treatment of convection is shown. The strength of thunderst is also very critically depen-
dent on the vertical velocity among others. The currenestaNWP models in respect to their
ability to simulate convection is shown. Therefore, theatguns of the COSMO model are
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Figure 3.6: Mean diurnal cycle of 1 hour precipitation amounts in sum2@®09. over south-
western Germany. The NWP models GME (red), COSMO-EU (majemtd COSMO-DE (blue)
are compared with the observation of 25 SYNOP stationsd ddick) (Baldauf et al., 2011).

shortly described in particular the equation for the vaitielocity. This description includes
the approach of parametrization of convection.

Current state of forecasts of convective precipitation

In addition to the COPS results, which were shown in the kestien, verification results of the
first few years since the operational launch of the convagtiermitting COSMO-DE shows
that NWP models still have problems with the diurnal cycl€bénd the corresponding precip-
itation. Baldauf et al. (2011) show in compliance to Wulfraegt al. (2011) that a convection-
permitting NWP model is very well in the position to simuldtés issue. Figure 3.6 shows the
diurnal cycle of the hourly forecasted precipitation in @@PS region. The observed diurnal
cycle of precipitation shows two maxima. The first maximakisven between 7 and 8 UTC
and the second between 15 and 16 UTC. It is shown that thelgtoddel GME with a reso-
lution of 4Gkmand the COSMO-EU with a resolution ok are not able to forecast this two
maxima. Only the COSMO-DE is able to predict these two maxifine reason for this is their
coarser resolution and consequently the requirement getrize the convection. In contrast,
the COSMO-DE as a convective-permitting model with a resmiuof 2.8kmis almost able
to simulate the diurnal cycle, but with a small phase delaglafut one hour (Baldauf et al.,
2011).

As mentioned in the beginning of this chapter, for mesoesBBWWP models with a grid resolu-
tions about> 10kmthe convection has to be parametrized. In case of param@tciznvection,
there is an unclean physical formulation when the convectells themselves are of the order
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Figure 3.7: Accumulated surface precipitation for 9 June 2007, 6 UTCR®TIC. (a) shows the
German radar composite, (b) 00 UTC +1BOSMO-DE forecasts using the operational configu-
ration of the PBL scheme and (c) using a reduced mixing le(Bgiidauf et al., 2011).

of the grid resolution and therefore partly resolvable (Kewal., 2007). Originally, convection
schemes like Tiedtke (Tiedtke, 1989) were developed fdpajlnodels with horizontal reso-
lutions, which are too coarse for this effect. For deep cotws, this problem is completely
solved in a convective-permitting model where the coneects explicitly computed by the
model. However, the convection has to be computed explibitithe model. Here the trigger-
ing is one important challenge of the convective event. Be,NWP model has to simulate
both, the convective-permitting conditions as well as tiggering of the convection.

The COSMO-DE has problems in forecasting moist convectapeeially in weakly forced
situations one reason is a too stable boundary layer. Tlsidban improved by the use of a
shorter maximum turbulence mixing lendth(Baldauf et al., 2011). Results of this adjustment
are shown in Fig. 3.7. Figure 3.7 a) shows the radar obsenstor the case study. The second
figure (b) shows the precipitation forecast with the staddarand finally, the third figure (c)
shows the precipitation forecast for the redutgd-orl, = 60m, the precipitation forecast is
significantly improved. Particularly, the post-frontakpipitation structures are better captured.

For secondary convection the model is additionally serssiid the cloud microphysics (Bal-
dauf et al., 2011). Figure 3.8 shows the precipitation fasetby the usage of a more sophis-
ticated cloud microphysic scheme (two-moment schemeurgi@.8 c) shows here slightly
improvements for the precipitation forecast in contragh®current operational one-moment
scheme shown in figure (b).

However, in spite of all this improvements remains in theiation of the convection as the
great weakness of a deterministic NWP model. Baldauf e8lL]) pointed out that an en-
semble is needed to reasonably handle the uncertaintié® afeterministic NWP model. An
ensemble can capture almost all uncertainties which oct@mveonvection is deterministi-
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Figure 3.8: Accumulated surface precipitation for 20 July 2007 6 UTC&dUTC. (a) shows the
German radar composite, (b) 00 UTC +lBOSMO-DE forecasts using the one-moment scheme,
and (c) the two-moment scheme (Baldauf et al., 2011).

cally simulated. More about the issue of predictability ofigection is given in section 3.4.
Nevertheless, the model development of the determiniSDSKO-DE is still going on. This
means increased resolution, more model levels and advgazadhetrization schemes espe-
cially for the turbulence in the boundary layer are indisgadle to improve the deterministic
NWP forecast as well as the EPS forecasts. Furthermore gndgthproved deterministic NWP
model and the ensemble approach complement each other.

The governing equations of the COSMO model

The basic equations of the COSMO model and the approach afrdrization of sub-grid

processes, e.g. like turbulence is introduced in the foligwFor a more detailed description
see the COSMO documentation. For dynamics and numerics @es Bnd Schattler (2002)
and for the physical parametrization Doms and Forstnerq{R00

The basic conservation laws of momentum, mass and heat @@&MO model are repre-
sented by the following budget equations:

p%=—Dp+pg—2Q><(DV)—D-L (3.13)

dp

gt = POV (3.14)
p%—? =—U-Ix+Ix (3.15)
pdE(Ot =—pOd-v—0-(Je+R)+¢ (3.16)
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The indexx is used here for

dry air [d],

water vapor Y],

liquid water []

» and for water in the solid statd], e.g. ice.

Eqg. (3.13) describes the motion equation. The other equatame the continuity equation
(3.14), the transport equation (3.15) and the energy emu#8.16) for the total specific in-
ternal energ\E; . This equation system formulates the basic dynamic equatistem for the

atmospheric flow.

In the following, the focus is on the equation of the verticaition ‘fj—‘{" which is contained in
Eq. (3.13) wherev = (u,v,w)". More about the variables (see also the list of physical sym-
bols, Appendix B), the other equations, the explicit foratign in rotated, terrain-following
coordinates and the numerical discretization can be foarigbims and Schattler (2002). The
state variableg) are separated into a base-state valy@nd a deviation valugy/'. Finally, the

linearized, non hydrostatic equation of the vertical vigyow in the COSMO model is given
by

dw lop
— =——-—+B+M A7

at 0 0z +B+ My (3.17)
The vertical acceleration of an air par%ﬂ is due to three different forces: pressure gradient
%, buoyancyB and subgrid effects like moist convection. The subgridatffare denoted by
M. Therefore, the buoyancy is given by

po [T Top (R\, > }
B=g—{———+(——-1)g,—q — 3.18
gp{T T Ry Qv— 0 — s (3.18)

A detailed list of symbols here are shown in Appendix B toa. &#NWP model at the meso-
scale, moist convection is the dominating subgrid scalegqa®, which has to be parametrized.
Thus, the subgridscale terlty, which represent the to be parametrized processes cotitains
following terms for a prognostic model variahle

My = Mg® + M€+ Mg+ MGM + MEP, (3.19)

where the individual terms have the following meaning (D@nd Schéttler, 2002):
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COSMO-EU COSMO-DE

Mesh-size Km 2.8km

ML, £0 £0 3-D TKE-based prognostic closure
M7 P #0 #0

Mgy’ #0 #0

MMC =0 =0 (Tiedtke, 1989)

MMC £0 =0

MMC #0 —0

Table 3.2: Overview of the single tendencies in the operational COSMtdais after Doms and
Forstner (2007). The subgrid scale terms for moist conwe¢iIC) and for turbulent mixing (TD)
are shown.

M,P tendency due to small scale turbulent mixing,

Mq“j'c tendency due to subgrid scale moist convection,

Ml'l-JB lateral boundary relaxation term for one-way
nesting of the model,

Mg'\" source term representing computational mixing,

M{P tendency of} due to a Rayleigh damping scheme

applied within the upper boundary.

The variables) refers to all prognostic variables of the COSMO model. TabR shows a
comparison of the COSMO-EU with the convection permittingSMO-DE for the sub-grid
scale terms for moist convection (MC) and for turbulent mix{TD). Both are crucial for the
prediction of convection. The turbulent mixing is importam the COSMO-DE as well as in
the COSMO-EU. In contrast, the sub-grid scale terms for tremavection are only essential
for the COSMO-EU. An overview of the sub-grid scale termsubtilent mixing (TD) and
moist convection (MC) is given in Tab. 3.2.

The parameterization of convection is explained in moraitiein the following. The Tiedtke
scheme as well as the Kain-Fritsch scheme both will be intted below, because they are
used in the investigated ensembles. This ensembles ar&x8&10-SREPS and the COSMO-
LEPS. A detailed description of this ensembles can be fonr@@hiapter 5.1.

The parameterization of convection

The most common parametrization schemes used to simukateutiigrid scale processes of
convection in NWP models are summarized for an overview énfdllowing. An approach
developed originally for global models is the Tiedtke sche(fiedtke, 1989) used in the
COSMO-EU. A later developed scheme is the Kain-Fritsch ifkaid Fritsch, 1990). Both
schemes are used in the COSMO-SREPS as well as in the COSNAS:LEne of the latest
schemes is the Bechtold scheme (Bechtold et al., 2001) hasélde Kain-Fritsch scheme.
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Figure 3.9: Schematic figure of the Tiedke scheme with up and downdradiéiski, 2008).

The current research includes also stochastic schemes.&Pld Craig (2008) introduce such
a stochastic parametrization scheme, which based on teemeistic Kain-Fritsch scheme.
In this scheme the plumes are treated in stochastic mannaningethe convective plumes
are drawn from a PDF, which describes the probability of apgece of a plume of a given
size within a given grid cell (Plant and Craig, 2008). Howeugthis section only the Tiedtke
and the Kain-Fritsch scheme are introduced in more detadabse only they are used in the

investigated models.

a. The Tiedtke scheme

The convection parametrization scheme according to Tée(tR89) is a mass-flux approach
based on the moisture convergence below the cloud basesasekssumption to represent the
moist convection in the model. A schematic figure of the Teedkheme is shown in Fig. 3.9.

The feedback of sub-grid scale vertical fluxes of mass, hezisture and momentum in up- and
downdrafts is calculated using a simple bulk cloud modelilg\the mass-flux in the updraft is
determined by the moisture convergence below the cloud Hasenass-flux in the downdraft

is proportional to the mass-flux in the updratt.

A necessary assumption for the Tiedtke scheme is that thzombal area for averaging has to
be large enough to contain an ensemble of cumulus cloudsetwthe convective-scale eddy
transport of dry static energy, moisture and momentum fromudus updrafts, downdrafts
and the cumulus-induced subsidence in the environmentarainot described in terms of
contributions from the single ensemble components, bytdhe represented by their averaged
values using an one-dimensional bulk cloud model after ivaina. (1973). This approximates
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the net effects of an ensemble of clouds as resulting fronprsentative single cloud. For a
more detailed description of the physics and the numerieS mitke (1989); Keil (2000) and
Doms and Foérstner (2007). Emanuel (1994) criticise thedgadte theoretical formulation of
the Tiedtke scheme.

b. The Kain-Fritsch Scheme

The Kain-Fritsch scheme (KF) after Kain and Fritsch (1990another mass-flux scheme. In
contrast to the Tiedtke scheme, the closure assumptioredfaim-Fritsch scheme is based on
CAPE. In case of convection in the model, the KF scheme negesamass in a column using
updraft and downdraft, and environmental mass-fluxes ahtdast 90% of CAPE is removed.
The details of the Kain-Fritsch scheme are described in laith Fritsch (1990, 1993) and
(Kain, 2003).

A comparison of both schemes is published in Dierer and Sgh@008). In both schemes, a
parcel is lifted level by level to test if positive buoyansygresent. In the Tiedtke scheme the
convection is triggered when the parcel temperature esctmdenvironment temperature by

a fixed temperature threshold oB68. The temperature threshold in the KF scheme depends
additionally on the large-scale vertical velocity, be@lerge scale vertical upward motion
favours convective developments.

3.4 Predictability of convection

In the last sections the fundamental physical processeshveine responsible for convection
and the deterministic approach to simulate convection infFNMbdels were described. Bal-
dauf et al. (2011) shows that convection permitting modksthe COSMO-DE can provide
improved forecast guidance about location, timing andngtite of deep convection and im-
prove precipitation forecasts compared to coarser NWP tadkat apply a parametrization of
deep convection. Baldauf et al. (2011) also denote thatiohaial convective cells are hardly
predictable beyond a time scale determined by the life tifrengle cells of about & — 1h.

To deal with this uncertainties of deterministic NWP modéie COSMO-DE model is being
adapted to a convective-permitting ensemble named COSMERS at the DWD. It seems to
be nearly impossible to forecast the right location of singdnvective cells by the approach of
increasing the resolution of NWP models (Browning et alQ&0 Accordingly to Hense et al.
(2003), there are three principle points which limit thedicéve options of NWP models,
especially for forecast of convection:
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|. Resolution of NWP models

The convective initiation is triggered by the spatial vhifity on the small scales in the tem-
perature and humidity fields in the boundary layer. This s&ea8al, especially in case of very
weakly forced weather situations.

Il. Imperfect NWP models

Models like the COSMO-DE have to simulate all processesectly, which are responsible for
convection including the convective initiation. On the eective-scale a suitable parametriza-
tion of the boundary layer is absolutely crucial for the ssscof the forecast, especially for the
explicit initiation of deep convection. But this is still @nea of research and till now, the NWP
models have significant weaknesses in handling the bouraey, because large parts of the
theoretical basis of boundary layer parametrization Iktstsed on simplifications not valid at
COSMO-DE resolutions.

[1l. Chaotic nature of NWP models

After Lorenz (1963), it is impossible to predict exactly thimte of the atmosphere beyond
certain time scales, owing to the chaotic nature of the flyithehic equations and the imperfect
knowledge about the inital state of the NWP model. This haldneif the NWP model is
assumed to be perfect.

The existing observation networks have limited spatial srdporal resolution. Especially
over the Oceans, which introduces uncertainty into the imitel state of the atmosphere.
DelSole (2005) summarizes that classical deterministidetsoare perfectly predictable (no
lost of predictability with lead time) if both, the initialondition and dynamical model are
known perfectly, but not otherwise. Since the initial cdiwhs and the dynamical model for
NWP are not perfect, ensemble prediction systems (EPS)karkta capture the uncertainty of
the forecast. An EPS involves multiple forecasts created evfferent model systems, different
physical parametrization, or varying of initial state amd fhe local models varying of the
boundary conditions too.

As an example of the limits of predictability of a chaotic regdhe Lorenz attractor is shortly
introduced in the following. For a more detailed descriptaf the Lorenz attractor and his
reference to NWP and climate models see Lorenz (1963); B2201) and Anwender (2007).

The Lorenz attractor

The Lorenz attractor (Lorenz, 1963) is considered to be &egemodel. The key point is
here the sensitivity to the initial state. So, the model imdnstrative toy-model of the flow
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a) b) €)

Figure 3.10: The two-dimensional Lorenz attractor for different init@nditions illustrated by
the black cycle. The figure (a) shows a highly predictableade, (b) a reasonably predictable
scenario and (c) a scenario where the predictability idlyotst (Buizza, 2001).

development depending on the initial state. The developrimetime and space of a three-
dimensional non-linear system with three variables in pls@ce x1, X», X3 is given by

Xm

i 0(X1 —X2)

Z—)? = IX1 — Xp — X1X2 (3.20)
dx

d—t?’ = X1Xo — bX3

The time development of these three variables of the mod#stermined by the time deriva-
tions of the variables. The parameters of the equation myster and b are kept constant
(Lorenz, 1963). However, the parameters can be changed toggthering of solutions. The
phase space has the dimensions of the three independeatilgaxi, x, andxz of Eq. (3.20).

Figure 3.10 shows two dimensiors andx, of the phase space. In this phase space, the solu-
tions of Eq. (3.20) are trajectories. An attractor chaméts how a dynamical system envolves
over time. The black circles in Fig. 3.10 can be regarded Xan®wle as forecasts for different
initial states of the atmosphere. The points in the firstieint Fig. 3.10 a), (b) and (c) are cre-
ated by adding small variations to points on the attractortHermore, the points in the circle
can be imagined by probability density function (PDF) of #dimosphere state in the phase
space. In case of the Lorenz attractor, the two regimes dtthector can be considered as two
different weather regimes (Buizza, 2001).

The first Fig. 3.10 a) shows the case of a highly predictatiieson. The second picture (b)
of a quite predictable situation and the third (c) for totadd of predictability. If the small
perturbations are added in regions that are stable, théspamia close together also even after a

2The phase space represents all possible instantaneoes stat system. Every trajectory in phase space is
defined by a certain initial state and describes the timeutionl of a single state of this system (Lorenz, 1963).
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longer forecast lead time. Small perturbations lead onntall deviations within an increase
of the forecast lead time. All points in Fig. 3.10 a) descibe regime only including a regime
change. The case where the points are added in a less stgiole ieshown in Fig. 3.10 b).
In this situation, in the beginning the points are close tiogie which is the same behavior as
before in the stable region and indicates good predictgbllater, the regime change could
be forecasted only with a certain probability. In the venstable regions (Fig. 3.10 c) the
predictability is given only for a very short time at the bagihg. For longer lead times, the
solutions evolve into completely different states.

The Lorenz attractor shows an example for limits of preditityg of a simple model, which
can be considered as perfect. In comparison to the Lorenzlntbé NWP models are much
more complex and they are far away to be perfect (espectadlyparametrizations), and it is
impossible to know exactly the initial state of the atmosph@&his example shows that NWP
models can predict the atmospheric state only with a cepraibability for a certain time. After
this time, the predictability is diminished as describe€hmapter 2.

3.5 Issue of verification of forecasted vertical profiles

In this chapter, the importance of vertical temperature fanaidity profiles and their impact
on convective permitting conditions were shown. The coagselution, the imperfection of
NWP models and the chaotic nature of the atmosphere limgtptadictability of convective
conditions.

Nevertheless, precise forecasts of the vertical strucincetherefore, of the convective con-
ditions are crucial, but not sufficient to simulate conwetiThe triggering of convection is
necessary to initiate the convection. This issue is notgfdHis work. Here, only the aspect of
the quality of the vertical conditions is investigated.

Two ensembles, one which explicit permits convection awedotiner one, which parametrizes
convection will be compared in Chapter 6. This is done by #ame of three radiosonde stations
to compare the forecasts of the vertical profile given thenlaions. The comparison aimed
to investigate, which ensemble profiles are more likely amal &trong is the evidence.

As discussed before in the introduction (Chapter 1) theosamtide observations have uncer-
tainties too. Thus, for this investigation, the unceriambf NWP models and of observations
are considered. This is possible, because the ensembleprfe verified by a sophisticated
probabilistic approach allowing in a natural way to consithe uncertainty of the observations
as well as the forecast uncertainty. This Bayesian appridotroduced in the next chapter.






Chapter 4

Basic theory of Bayesian statistics

The Bayesian approach used in this work for comparison arificagion of ensembles is de-
scribed in this chapter. First, the statistical fundamlerase explained based on the frequency
probability. After that, the extension to the Bayesian jaifuility or Bayesian statistics is intro-
duced. An more detailed introduction to statistical fundatals for atmospheric sciences can
be found e.g. in Wilks (1995).

4.1 Statistical Funhdamentals

Statistical methods are essential for a quantitative aimlyf large data sets. In general, this
methods are applied to describe complex systems too eltg iquantum mechanics where the
whole state of the system can be described only statisti¢talineteorology, statistical methods
are applied in a variety of ways including the evaluation rafiqabilistic forecasts.

In general, the probability? of an eventA is denoted byP(A) meaning in the context of fre-
quency statistics that the number of tim&#\) that an evenA occurs in an experiment or a
study normalized by the total number of cadkis given by

. N(A)
P(A) = lim =5~ *1)
Furthermore, the set describes the sample space in which the event spasa subset of
(A C$). The fundamental axioms for the probability theory are dbsd by the Kolmogorov

axioms (Kolmogorov, 1933):

1. 0<P(A) <1
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The first axiom describes the probability of an evArgs a non-negative real number between
zero and one. The second axiom shows that the probabilityeocdample space is one. This
means that there is no event outside the sample space.yf-thallthird axiom describes the
probability of the union of the single evenésand B. This probability is determined as the
sum of the single probabilities #éfandB minus the probability of the intersection of the single
event space8 andB denoted byP(ANB). For the case that the evertaindB are independent,
the probabilityP(AN B) will be the product of the single probabilitiéqANB) = P(A)P(B).

In the other case that the events are dependent, the nudtipgé law of probabilities?(ANB)

is given by

P(ANB)=P(A|B)P(B) = P(B|A)P(A) (4.2)

In which, the probability oA givenB is called conditional probabiliti?(A|B). Furthermore, if
the eventsA andB exclude each other the probabiliB(ANB) = 0 is zero. In the following,
the statistical basics are described using continuousapitity density functions (PDFs). The
parameters of the PDF are estimated from the event sample.

Continuous random variables

A continuous random variable is defined Xy= {(x,9(x)); x € [a,b]}*. Then the PDFy de-
scribes the theoretical distribution of the respectivelcan variable, and the probabilif§(A)
is given by the integral of the PDgrover the event spack

P(A) = /A g(x) dx 4.3)

The normal distribution is described in the following in ra@letail as a very important example
of a PDF. The next function described here is the cumulatisgildution function (CDF) of
a PDF. The CDF describes the probability of an ew&no fall into the continuous interval
| —oo,t]. Thus the CDR-(t) is the probability or frequency of occurrence of values thas or
equal tot.

F(t) :/toog(x)dx (4.4)

The CDF is a monotone increasing (not necessarily striftiggtion with a value range be-
tween 0 and 1 defined mathematically by

IHere, every event is associated with a real number, and the i€@ continuously differentiable function:
g(x) = F’(x). Furthermore, the event spagés defined a#\ = {x; x € [a,b]}.
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Name ‘ Mathematical formulatiod Estimator ‘
1st Moment | Expected valug p= E[X] p=31sN, %
2nd Moment| Variance 0’ =E[(X—p)?| 02= 2oy (% —p)?

Table 4.1: Moments of a distributions and their corresponding MaxirdLikelihood Estimation
(MLE) estimators.

0<F(a)<F(b) <1 (4.5)
lim F(t)=0 (4.6)
Jim F(t) =1 (4.7)

Moments of distributions and further statistical indices

The expectation value of a continuous random varidbis represented bl [X] and the vari-
ance byE[(X — p)?]. In statistics, a random variable can be described by onés afeiveral
moments too. The k-th moment of a random variablis denoted by

my=E[X] = /xkg(x)dx (4.8)

and the k-th central moment as

= EIX =14 = [ (x=my)¥gx)dx 4.9)

The first momentm, is the expected value, and the second central mopgeistthe variance.
Table 4.1 show an estimator for the expectation value andahance of a given sample.

Furthermore, the quantile of a continuous distributionegfirled by a point taken at a regular
interval from the CDF of a random variable by

F(th) =T (4.10)

The number describes the-quantile of a random variablé. Finally, the median is defined
as 0.5-quantilet(= 0.5).

The normal distribution

As mentioned before, in probability theory, the normalrdisttion, which is also called Gaus-
sian distribution, is one of several possible PDFs to dbscsets of data. This PDF is quite
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normal distribution
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Figure 4.1: Normal distributionN(p, 0%) with the meanu = 0.0 and the variance® = 1.

simple and often applicable. In physics and meteorologynttrmal distribution is often used
as an approximation of the distribution for random variablike the averagedr@temperature

in climate simulations. In statistics, a very importantjegbis the central limit theorem (CLT),
which states that the mean of a sufficiently large set of irddpnt random variables described
by a wide variety of probability densities with a finite sedanoment can be assumed as nor-
mally distributed. This assumption becomes exactly trudirioy .. Wilks (1995) mentioned
that this assumption is frequently valid already fbe> 30. This illustrates the special place of
the normal distribution in statistic.

In the following, first, the univariate normal distributiem described and then the multivariate
normal distribution. The univariate normal distributiendefined by

exp(—} (x= ”)2> (4.11)

2 @2

X) =
9(x) >

Its described by only two parameters, the meaand the variance?. Figure 4.1 shows a
normal distribution with meap = 0 and variances? = 1. p and 62 can be estimated from
the sample space in which the estimators for the mean antdorariance are defined by the
maximum likelihood estimation (MLE) shown in Tab. 4.1 foethnivariate case. A normal
distributed random variabl¥ is denoted here a§ ~ N(, 0).

Multivariate normal distribution

The univariate normal distribution of a random variable baly one dimension. In the multi-
variate case, the random variable is described by a vectdaioing several "one dimensional”
random variables, which could be additionally correlatéddis means that the multivariate
case treats several variables simultaneously. The midtiearandom variabl&X is here ag-
dimensional vector of random variabl¥s= (xj, - ,xq)T and it is called normal distributed if
the density is given by
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g(¥) = 3<2—n>>Tzl<>'<—n)> (4.12)

1
V(e oo
In the multivariate case, the Gaussian distribution isrd@teed by the mean vect@rand the
covariance matrixz. The covariance matrix contains the variancsof the univariate cases
in the diagonal elements of the matrix. The calculatior=aé introduced in the following
including the non-diagonal elements of the matrix, représg the correlations between the
different variables oK. In general, the covariance matrix is defined as

T=E[(X-p(X-1T] (4.13)

The estimation and properties of the covariance matrate introduced in the following sec-
tion.

4.2 Maximum likelihood estimation (MLE)

In statistics, MLE is a method to estimate statistical pai@rs. The log-likelihood. for aN
multivariate normal distributed samplg(...,XN) of dimensiong represented by the Gaussian
PDFg(X) is shown in Ueno and Tsuchiya (2009). With the arithmeticage as MLE of the
expectation valud, can be written as

L = log(g(%)) (4.14)
— —g[Iog(Zn)—Iog(detZ’l)+trac€(SZ*l)] (4.15)

This is the basis for the MLE of the covariance matrix and fin&ads to the standard MLE
estimatorS of the covariance matriX

o2 - o2

S=[0flgxg=| : . (4.16)
2 2
Oq =" Oqq

2 1 X _ _

o} = N——lk;(xik — %) (Xjk — X)) (4.17)

The covariance matrix has certain properties. The covegiamatrix

* is symmetric
s5y=3T
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* is positive definitewith only positive eigenvalueky
& VAk>0&det(Z) >0

 hasreal eigenvalues\ andeigenvectorsé defined by

= 8=)\é
=W = PTZP:C“ag(}\l, ’)\q) with P= [éla 7éq]
=3 =PWF

To complete the topic of statistical fundamentals of maltiate random variables, the correla-
tion between two random variabl@sandX; is given by

J (4.18)

The correlation ternpj; has a range of & pj; < 1. Wilks (1995) (p.368) shows the relation
between the covariance matfand the correlation matriX as

R= [pijlaxq (4.19)
R=D1'sD! (4.20)
with .
= 0
Di=|: .. (4.21)
1
0 G

As example, Fig. 4.2 shows a two-dimensional normal digtign with p1> = po; = 0.

4.3 Statistics of NWP-model forecasts

After introducing the general statistical fundamentdis, $tatistical application to NWP mod-
els will be described now. In the following, the model forstcaf the state vector of dimension

g of a NWP-model is denoted witli. The difference between the true (but unknown) state
vector fy and f is described by the err@rof the model.

e=f— f (4.22)

The statistics of the model error are fully described by tBd-R(g) (Bouttier and Courtier,
1999). Here it is assumed that the expectatioaisfzero, meaning there is no systematic error
of the model.
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Figure 4.2: Two-dimensional normal distributioN ([, Z) with the meangy = 2 = 0, the vari-
anceSIil = 0%72 = 1 and with the correlation coefficiepi> = pp1 = 0.

E[f—f]=Elg =0 (4.23)

The ensemble can be understood as a Monte Carlo procedampbesthis PDF of. The en-
semble consists of single membédgsvith k=1, ..,K and the density( f). Following Scholzel
and Hense (2010), this density can be described as the atpaatf a sum of Dirac delta func-
tionsd( f — fy) regarding the density of the model ergie) as

k=1

p(f)=E [g o(e—(f— fk))] (4.24)

Furthermore, the expectation value of a functlooan be formulated a&[h] = [h-g(g)de
for continuous random variables (Rade and Westergren,)2bi@de, the functiorh is defined
according to Eq. 4.24 as the Dirac delta function. This tedirally in

o(e—(f—fk))-g(e)de (4.25)
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showing the PDF of the ensemble forecpst) can be formulated by a simple mixture model,
which is also known as standard kernel dressing (SKD) in ttieaniate case see Brocker and
Smith (2008).

The standard MLE estimator of the covariance matrix was shiovthe last section. Schdlzel
and Hense (2010) present a further method to calculate tregiaoce matrix without using of

the arithmetic mean of the ensemble. This means, the coearimatrix can be described by
the expectation value of all possible distances betweesnatmble memberfs.

E[(f— fio) (fc— fie) ) = Efexex — exe — exex + ek (4.27)
= Elexes | + E[ewey] (4.28)
= 2E ek} ] (4.29)
=2S (4.30)

Schoélzel and Hense (2010) use the assumption that the efregsare independent. The scaled
difference betweeff and f, can be defined ady = %(fk — fw). Thus, the expectation value
of dy results as the covariance mat8x

E[duddc] =S (4.31)

Finally, the estimato§ of the error covariance matrix is given by the normalizedage over
all possible distances betweéfy — fy).

In the following, the error covariance matrix is calculated this way. In the next section, the
extension of the classical statistic to Bayesian statistintroduced. Bayesian statistics de-
scribe a convenient way to join all information and theirerdmnt uncertainties (Berger, 1985).
The approach on Bayesian statistics for forecast validasaused in this work, because the
Bayesian statistics allows for a more extended consideradf probability than the classical
statistics and an easy inclusion of the observational tmiogy. In the following the Bayesian
statistics will be introduced.

4.4 Bayesian Statistics

In the previous section, the fundamentals of the classiegjuiency probability were intro-
duced. Generally, the difference to the Bayesian prolighgithe different interpretation of
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probability. The classical statistics interpret probipids a frequency of observed events. In
contrast, the Bayesian statistics interprets this term 'aegree of plausibility" with the ex-
tended consideration on the given state of knowledge (3ay2@03). More precisely, they
differ mainly in the contemplation of the prior probabilififhe Bayesian statistic based on the
Bayes theorem, which goes back to Thomas Bayes'’s originerpga 1763 and is given by

P(D[H)P(H)

P(H|D) = PO)

(4.33)

The Bayesian approach "allows you to start with what yousalyebelieve (prior) and then see
how new information changes your confidence in that beliet{grior). The Bayes theorem
says simply that the probability of the hypothesis H, given the data D, is equal to the proba-
bility of the data, given the hypothesis is correct, muigidiby the probability of the hypothesis
before obtaining the data, divided by the average prolalafithe data" (Malakoff, 1999).

In this work, the Bayesian approach is used to assess ersdonbtasts given observations.
The complete forecast ensemble at lead timepresent the hypothedit. This is not applied
to the full model state vector where the dimensipis of orders @q) ~ 1%. The aim of
this Bayesian investigation is a multivariate verificatiohforecasts of vertical temperature
and moisture profiles of several ensemble systems at a geteof sadiosonde places and
measurement heights. Partly this circumvents the probliedintension reduction which will
not be discussed here in detail and is referred to e.g. Jardo 009) or Hense and Rémer
(1995).

The multivariate structure is given by temperature and tagésat various levels. Because
several ensembles are compared generated by BRPE=£ 1,2) among each other or with the
climatologyi = 0 each EPS is considered as the realization of a discretemawadriablem =

mi (1) at forecast lead time. Each of these ensembles is characterized by the prior Ipitiipa
P(M)(1).

For verification the evidence of a specific ensemi|ér) given the observational datais
wanted to be found. This can be expressed as the conditicoiadipility P(mi(t)|0), which is
also called the posterior probability. The Bayes theorelates the likelihood (ojm(1)), the
prior probabilityP(m(t)) and the posterior probability(mi(t)|0) as:

| (o|mi(1))P(mi(T))
y(o)

P(mi(1)]o) = (4.34)

with
y(0) = 3 41 (0lm; (1)) P(m; (1)) (4.35)

The posterior shows the evidence of an ensemble in view ofiéiie The posterior evolves
from the existing knowledge (the priors) and its modificatibrough the likelihood of the
observations (Min et al., 2004). The likelihood has to béhfer refined. For simplicity reasons
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Figure 4.3: Univariate illustration of two Gaussian PDFs representireggmodel and the observa-
tion uncertainty shown by the left figure. The correspondikejihood of this two PDFs is shown
in the right figure.

the lead time is dropped in the following. Each ensemhigis defined through the realizations
flf”, werek is the number of the respective ensemble member. Then glénhblod| (o|my) is

the integral over two PDFs. The firpt(o|f) describes the uncertainty of the observations and
the second the uncertainty within the ensemble of the model

I(olm) = [ polf)pi(fim)df (4.36)
Figure 4.3 shows a univariate example of two PDFs. In this]ikelihood is a measure of the
agreement of this PDFs. The likelihood is going to zero irecalen both PDFs are far apart
or also when the PDFs have nearly the same mean, but one PR2FR/baglarge standard de-
viation. Finally, the likelihood increases until both PDdre nearly identical. In the following,
the prior and posterior probability are discussed in motaide

The prior probability

The Bayesian statistic allows to combine personal belipvier) with informations stem from
data. The prior quantifies given knowledge about the fotegasystem possibly in a subjective
way e.g. assessed by a questionnaire among professionhlené@ecasters. In Jaynes (1968),
there is a citation about what Laplace said to the selectiqmiors

"When the probability of a simple event is unknown, we mapas® all values
between 0 and 1 as equally likely".

In this work, an uniform prior (called Laplace prior) is usethich gives equal probability to
each ensemble under investigation.
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1

P(m) - Neps

(4.37)

Furthermore, in this work always two ensembbg,s= 2 are investigated. Additionally, the
prior is systematically varied to investigate the significa of the prior to the posterior proba-
bility. A detailed discussion about the selection of pri@tidbutions can be found e.g. in Kass
and Wasserman (1996).

The posterior probability

The posterior probability?(m;|o) can be denoted as marginal probability with respect to the
forecasted state vectdr
P(mo) = [ p(m, flo)df (4.38)

With the Bayes theorem (Eq. 4.33) the Eq. (4.38) can be wrage

P(mo) = | plolm. f)p(m, f)df- o (4.39

Using the Bayes theorem once maugmn;, f) = p(f|m)p(my) the prior probability could be
factored out.

P
P(m/o) = [ pioim. f)p(flm)df- = (4.40
Furthermore, the equation gd(ojm;, f) = p(o|f) can be simplified, because of indepen-
dence with respect to the modei. The probability of observation can be expressed as
p(o) = 3N P(m) = 1. The posterior probability is finally given as

P(m|o) = LD P(fim)df-P(m) (4.41)

)3 Ij\lzlp(mj o)

If for the errors in the observations an unbiased multivar@aussian distribution is assumed,
the conditional probabilityy (o[ f) can be formulated as Eqg. (4.42). Additionally, a multivegia
Gaussian distributiom, ( f|m) is assumed for the ensemble state shown in Eq. (4.43).

P(OIf) = e —5(0- ()" o= 1(1)) 4.42)
18 Lo cnTs 1 ()
pi(flm) = Ekzlme)(p<—§(f— fi ) Zi~(F = fy )) (4.43)
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2, denotes the error covariance matrix of the observationszatite error covariance matrix
of the modelm;. Z; is calculated by using thi€; simulated vertical profiles, interpolated to the
position of the radiosonde observatidroperator) assumed to be linddrf) = | - f. For esti-
mating the uncertainty in the ensemble the multivariateédedressing approach by Schdolzel
and Hense (2010) is used, which defines the predictive PDEhéostate vectof of the en-
semble as a Gaussian mixture model with dressing covariswatex >; summed over alK
realizations. The basic idea of this approach was showrcitiosed. 3.

Basically, the distribution of the ensemble realizatiobased on the SKD. Brécker and Smith
(2008) show the SKD for the univariate case based on Silve i286). In his work Silverman
(1986) introduced additionally the usage of the so callddeBnan’s factorhs as a scaling
factor for the raw covariance matrix. The covariance magrithen; = hg- S With

4 q+4
hs = <m> (4.44)

In which, Say is the first approximation after Eq. (4.32) nam@&8y,, = S. This factor ensures
that with increasing ensemble siKgthe used dressing covariance maftiy, becomes very
small. The Silverman’s factdns is also called as the smoothing parameter. Larger dressing
standard deviations by the factor leads also to a smootHitigeacorresponding PDF shown
by Fig. 4.5. An illustration of the SKD method and of the vau# hs are shown in Fig. 4.4.
In case oths = 2 a strong smoothing is shown losing the bimodal structurh@fSKD PDF
in Fig. 4.5 c). Figure 4.5 shows further that the likelihosdjuite similar forhs = 1 as well as
for hs = 0.75, which would be a typical value ¢k for an ensemble witl; = 20 andq = 8
(see Fig. 4.4 b). Thus in this work, a subjectively selectiébB8nan’s factor oths = 1 is used.
Nevertheless, a sensitive study to the Silverman’s fastahown in Chapter 6 to investigate
the effect ofhs for the comparison of two ensembles and to underline thigestile selection.

The issue of the observation uncertainty is mentioned aktieres before in this work mainly
in the introduction (Chapter 1) and in the chapter desagiliie data of this work (Chapter 5).
Figure 4.6 shows the sensitivity of the likelihood in viewtbé magnitude of the observation
uncertainty represented by variation of the observatiomigances, = y- %,. It is shown that
the variation of the observation error has a much strondectebn the likelihood than the
Silverman’s factor, which was shown in Fig. 4.5. Due to thisthe comparison of the ensem-
bles (Chapter 6) and for the verification of the ensemblepéidix A.3) a sensitivity study in
respect to the observation uncertainty is shown in the otispechapters.

Finally, inserting Egs. (4.42) and (4.43) into Eq.(4.36)d applying some linear algebra the
integral in Eq. (4.36) can be evaluated analytically with tbsult
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Figure 4.4: The left figure (a) illustrate the kernel estimation by SKbwing the individual
kernels. The individual gaussian PDFs are shown with a smatider of magnitude for a clear
presentation (Silverman, 1986). Figure (b) shows the watiiehe Silverman’s factor for different
g-dimensional vectors and different ensemblesizes.
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Pmlo) =y |
<2 v

o)

< 1( —Ailbs)))TAi(o—Ailbl((i))>df (4.45)

and the definitions

A=tz T
bl =15, %0+ 5 "
A = 1T T(TEil +50) Ho—-1TH) (4.46)

The integral over all model realizatiorisfinally leads to the following expression:

1k AT 1 ) P(m)
P(mj|o) = Ek;—i(Zﬂ)q!ZiHZo! exp(—él\k ) ‘o) (4.47)

This shows that the posterior probability is a function &f tMahalanobis distances (MD\)(:)
(Maesschalck et al., 2000; Mahalanobis, 1936) which dessiihe variance-weighted distance
between the forecasted state vedl;ﬁ)r and the observation. The MD is invariant to nonsin-
gular linear transformations of the state vectqf% and o meaning that the final results are
independent from the actual chosen basis (Sole and Tigg@#¥). Among other advantages
this means that one can compare e.g. different variables typeariables with largely different
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Figure 4.5: Univariate temperature PDF of one level (850hPa) at onepgiid of the 6 hour
SREPS forecast at 15. July 2007 (red line) and the correspgotservation PDF (green line) are
shown. The raw ensemble forecasts are markedtbhpnd the observation byw’. On the left the
construction of the kernel dressing PDF is shown and on tite the likelihood function of the
observation PDF and the kernel dressing PDF. The vertieglrgline shows the point at which the
likelihood is evaluated. All this is shown for different @érman’s factordis = 0.75 (a),hs = 1.0
(b) andhs = 2.0 (c).
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Figure 4.6: Univariate temperature PDF of one level (850hPa) at onepgiid of the 6 hour
SREPS forecast at 15. July 2007 (red line) and the correspgobtservation PDF (green line) are
shown. The raw ensemble forecasts are markedtbyhd the observation by¥’. The figure is
equal to Fig. 4.5, but here the sensitivity to the obsermagioor is shown for differen factors

y=0.75 (a),y= 1.0 (b) andy = 2.0 (c).
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logB;; Evidence for ensemble Validation against analysis
>5 Decisive form, n.a.

25-5 Strong fom n.a.

1-25 Substantial fom n.a.

-1-1 Neutral High level of confidence
—2.5-—-1 Substantial fom; Medium level

—5--25 Strong form; Low level

<-5 Decisive form; Very low level

Table 4.2: Descriptive scales of the Bayes factor for the comparisdawofensembles after Kass
and Raftery (1995). The evidence for an ensemble is usedeafecomparison of two ensembles.
For verification the validation column is used which is alscomparison, but against an NWP
model analysis.

variability ranges as long as the errors are realization&aissian distributed random vari-
ables. Additionally, the advantage of the posterior prdlgbs the explicit inclusion of the
uncertainty of the forecast ensemble and the observafidrnis.has been not often considered
in verification studies.

The ratio of the posterior from the modea to a reference modeh, can be used to compare
two ensembles with each other. This ratio is called Bayasfamnd is further discussed in the
next section. As reference model a specific deterministidaghcan be defined (Chapter 7) or a
specific ensemble (Chapter 6). In the deterministic casdéberministic model is considered
as the mean of an artificial one member ensemble, but stilldimey the uncertainty.

Bayes factor

The Bayes factor characterizing the relative performaridevo ensemblesn, andm, or the
performance o relative to an analysis. The Bayes factor is defined as theeoftihe posterior
probabilities

_ P(mio)
~ P(m|o)

Bir (4.48)

Using of the Bayes factor has the advantage that the mangiobhbility of the datg(o) can-
cels out. The Bayes factor can be used to decide which enedsninlore likely with respect to
the posterior probability. Gneiting and Raftery (2007)wlbat the logarithm of the Bayes fac-
tor logB;; is proportional to the so called Ignorance score, which hasmportant properness
feature. Therefore from now on tiheg of the Bayes factor is discussed.

In case of an analysis as reference madeelog Bayes factor near zero means a nearly perfect
forecast, because the analysis is considered as an apptainof the truth under a given
uncertainty. If comparing two ensembles|og Bayes factor greater than zero describes the
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Figure 4.7: Time series of the Bayes facttwg B;; of a control scenario (CTL) and a scenario (G)
given NCEP reanalysis?and 7thPatemperature anomalies for the period 1979-1999. The upper
(lower) shaded area indicates the interval "strong" ewideagainst CTL (G) scenario (Min et al.,
2004).

case in which the specific moda is more likely than the reference modwgl. Numbers less
than zero indicate that the reference model is more likety aidues around zero show that
both ensemble prediction systems can not be distinguisbidelen each other.

Table 4.2 according to Kass and Raftery (1995) introducesifip levels of evidence including
a description for comparing the performance of ensembles. ensemblen; and the level of
confidence of the predictive performance of the ensemblehen compared to a verifying
analysismy.

Min et al. (2004) used the Bayes factor for climate changeaignalysis. In Fig. 4.7, the time
series of natural logarithm of Bayes factors given the NCEFXR reanalysis from 1979 to
1999 is shown. Positive values indicate evidence in favth@fjreenhouse-gas forced scenario
(G) while negative values show evidence in favor of the adrgcenario (CTL). According to
Tab. 4.2, if the naturalog of the Bayes factor exceeds 2.5 [5], the evidence againstethe
spective alternative scenario is at least "strong" ["dee?$ Since the late 1990s an increasing
number of observations indicate partly strong evidencéh®G scenario while over large parts
of the record in 1980s there is substantial evidence for the €€enario given the data (Min
et al., 2004).
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4.5 Comparison of the Bayes factor with other probabilisticscores

The logarithm of the Bayes factor has parallels to the Igmogascore. But the Bayes factor has
several advantages in contrast to the Ignorance scoree Haeantages are

» consideration of the observation error
« multivariate state vector

+ standard kernel dressing (SDK)

The Bayesian approach includes in a natural way the unogrtaf the observations via the
so called likelihood and the approach allows to investigatdtidimensional state vectors of
ensemble forecasts which can be treated by the standarel kizessing.

The dissadvantage of the Bayesian approach is the limitéadisnormal distributed variables.
The integral for the likelihood can be analytically solvedyofor normal distributed PDFs. But
previous works has shown that the Bayesian approach poedenvenient way to compare
and verify ensemble climate simulations e.g. Min et al. @0&nd Min and Hense (2006).
Additionally, Gneiting and Raftery (2007) show the propess of the logarithm of the Bayes
factor allowing an unbiased evaluation of the forecastseeitvith respect to a climatology or
a different forecasting system.

In the following the Ignorance scofi&N and the continuous ranked probability sc@BPS
are compared with the Bayes factor in more detail. Both scorere already mentioned in
Chapter 2. However, here they will be discussed in moreldetai

a. lgnorance score

The Ignorance scordGN) is defined by the value of a PDF at the observation point. For a
normal distributed PDB(x) ~ N(i,0?), thelGN is defined by

IGN = —log(p(0)) (4.49)

2
= %Iog(Zmz) + (© qu) (4.50)

In general, the Ignorance score is a special case of théhidael | (o|my) for the case that the
observation error goes to zerooli/ﬁo. This used for the likelihood Eqg. (4.36) gives
Y—

fim  1(olm) = [ im p (0] ) pr(flm)d (4.51)
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Using the Dirac delta function as limit for a Gaussian disttion

. 1 _(f_o)Z B _ . .
{Iﬂ@o (\/ﬁexp< = ))_B(f 0) into Eq. (4.51) leads finally to

lim I(o|m):/6(f—o) p(fjm)df (4.52)

y—0
_ /6(f —o)p(f)df (4.53)

Furthermore, using of the Dirac delta function propefty” 8(f — o)p(f) = p(0) shows the
final connection of the likelihood to the Ignorance score.

lim I(ojm) = p(0) (4.54)
y—0

This shows that the Bayes factor IBg is a generalization of the Ignorance score taking ad-
ditionally into account the uncertainty of the observasiaas well as the spatial correlation
structure of the verified forecasts.

\I/i_% (IogBir):y_% IOg(P(mr|o)> (4.55)
o |(mi|o) P(my)
“m 09 (finie) pin ) (459
= lim  log (l(m0)) —log(l(m¥|0)) (4.57)
= log(pm (0)) —log(pm (0)) (4.58)
—IGN; — IGN, (4.59)

Finally, the Bayes factor can be expressed in the caseoomgras a summation of two Igno-
—%

y
rance scorelGN; andIGN; with the usage of the Laplace prior, which gives all prioesshme
probability P(my) = P(m,) = 0.5.

b. Continuous ranked probability score (CRPS)

The continuous ranked probability scof@RPS is an extension of the Brier score. TGRPS
is the integral of the Brier score at all possible thresh@lligst (Gneiting et al., 2004).

CRPS= /W[F (t) —H(t—o0))%dt (4.60)

Gneiting et al. (2004) derive the analytic solution of theegral using normal distributions as
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CRP&G{%1 {2¢ (%‘) —1] + 20 (%‘) _%1} (4.61)

WhereH is the Heaviside functiony (°5*) the CDF andb (°5*) the PDF.

The investigation results of tl@RPSwill be compared with those of the Bayes factor in Chap-
ter 6. To compare theRPSwith the Bayes factor, theRPSs extended using a mixture model.
That means, the single CDF which is investigated in the stal@RPSs replaced by; CDFs

as a mixture scor€RPShixture- Ki described here the number of members of ensempl&éhe
extended version of tHeRP S$hixture IS

o | Ki 2
CRPS uture = | [z<Fk<t>—H<t—o>>] dt (4.62)

© k=1

Like in the standard case, the integral can be analyticallyes by using of normal distribu-
tions. The final formulation of thERP Ssixture iS

o Ul fo—p (o—m), 0k  (0—H
CRP%,Xture_ci;JZl{ . .q>< - >+ . .cp< = )
0 W Hi— B W M — 1
S = —=-F
a o <\/§0>+0 <ﬁ0> (4.63)
0— I O—Hj
o (%5 ) e (3)

where® and¢$ denote the PDF and the CDF of normalized distribution. ThedardCRP Sof
Eq. (4.61) is identical for the case that jlmember of an ensemble are identical.

Gneiting et al. (2004) summarize the differences and siitida of those two scores. Both, the
IGN andCRPSare proper scores where smaller values are better. The #egedice between
both are that th€ RPSgrows linearly with the normalized err&g—“, whereas théGN grows
gquadratically. On the basis of the greater robustness aCRieS the CRPSis to prefer. The
IGN tends to be sensitive to events, which are outliers or exrevents. However, both scores
are univariate and do not consider observation uncersinti

c. Skill scores oflGN and CRPS

The comparison of the Bayes factor with #@&N and theCRPSis done by usage of the skill
scores §9 of those scores. In the following, ti&Sof the|GN and theCRPSare denoted by
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IGN; — IGN;

CRP$—- CRP$
CRPS 4.
S CRP%erf — CRP$% ( 65)







Chapter 5

Data and methodology

In this investigation, ensemble data of the demonstratigerababilistic hydrological and at-

mospheric simulation of flood events in the alpine regiorjquto(D-Phase) project (Arpagaus
et al., 2009) are used. The D-Phase project is a forecastrdgration project (FDP) of the

world weather research programme of WMO (WWRP). D-Phasesésl uo investigate the
ability of forecasting heavy precipitation and related éimgy events in the Alpine region. The
domain of the D-Phase forecasts covers the whole COPS aitha isouth-western part of
Germany and is shown in Fig. 5.1.

COPS domain

EUMETSAT special
j | satellite observations

| ETReCO7
target area

Figure 5.1: International collaboration within COPS during summer20lhe green circles show
the locations of major observatories, where data are steitbth the GOP. The red circles indicate
the COPS supersites, and the yellow circle is the ARM Mobdeility (AMF). The blue arrows
indicate the mean flow (Wulfmeyer et al., 2008).

The ensemble suite contains the SREPS and the LEPS enseifideSREPS is initialized
by four global NWP models, while the LEPS is initialized by répresentative members of
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geometrical height m  9eometrical height m

Figure 5.2: Model domain of COSMO-SREPS, COSMO-LEPS (left side) and RIOSDE-EPS
(right side).

the global ECMWF-EPS. Both ensembles are based on the COSbt@lrand contain per-
turbations of the model physics. The COSMO-DE-EPS (DE-E&8dfter) provides the third
regional forecast ensembile. It is development at the DWDiaadghort range ensemble based
on the non-hydrostatic COSMO-DE model. This model is a cotiwe permitting limited-area
model with a horizontal grid spacing of8km and 50 vertical model levels (Baldauf et al.,
2006).

The ensemble data of the DE-EPS presented here are fromttivesAVD with an experimen-
tal version of the DE-EPS, which comprises perturbatiorie@fnitial and boundary conditions
and of the model physics. The initial perturbations and thendary data based on the courser
resolved SREPS (k@) with parametrized convection. Table 5.1 gives an ovenabaut the
specifications of the ensemble systems SREPS, LEPS and BETER model domains of the
SREPS, LEPS and DE-EPS are shown in Fig. 5.2.

As observations radiosonde ascents of the COPS campaigii@yer et al., 2008) are used
provided by DWD. During the COPS IOPs radiosondes weresetbavery 6 hours within the
COPS area.

In the following, the three ensembles are presented in metailds well as the observation
technique by radiosondes. Finally, the procedure for thiie&tion of vertical profiles of the
ensembles is shown.



COSMO-SREPS COSMO-LEPS COSMO-DE-EPS
experimental version, not operational versi

Members 16 16 20
Mesh-size 10km(0.09°) 10km (0.09°) 2.8km(0.025°)
Vertical levels 40 40 50
Convection Tiedtke/Kain-Fritsch Tiedtke/Kain-Fritsch explicitly resolved
Grid points 258 x 306 258 x 306 461 x 421
Rotated Nordpol | 40N, 170E 40N, 170E 40N, 170E
in rotated coord.
Lower left corner| -16, -12.5 -16, -12.5 -5,-5
Forecastrange | 72h 132h 24h
Initial time 00 UTC 12 UTC 00 UTC
Initialisation No analysis, initialized by down-scaled forecasts COSMO-DE Analysis;
and 4 global-models 16 representative initial perturbations
boundary (IFS, GME, AVN, UM); | ECMWF-EPS members] and boundary data
conditions for each global model | for each of these memberbased on SREPS

4 COSMO runs one COSMO run
Institutions ARPA Emilia-Romagna] ARPA Emilia-Romagna | DWD

Table 5.1: Ensemble systems of SREPS, LEPS from the ARPA-SIMC and D& fEn runs at DWD. The four global model are: ECMWF globaRJFDWD
global (GME), NCEP global (AVN), and UKMO global (UM). The sembles of SREPS and LEPS contain perturbations of the rpbgsics.

G9
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IC and BC pl=default p2=KF p3=tur_len p4=pat_len
Global Model > 25km

IFS > COSMO-25| ml m2 m3 m4
GME > COSMO-25| m5 m6 m7 m8
NCEP > COSMO-25| m9 m10 ml1l m12
UM > COSMO-25| m13 ml4 ml5 ml6

‘ f|CO(1JTC = f”:512h—forecast’ fGMElzhfforecast’ fNCEHm—forecast’ fU Mi2h-— forecast ‘

Table 5.2: The COSMO-SREPS consist of 16 members. Four different glabdels (IFS, GME,
NCEP, UM) are used for the initial and the boundary cond#iesombined with four different
physic perturbations (p1, p2, p3, p4) after Marsigli et 2047).

5.1 Ensemble Prediction Systems (EPS)

COSMO-SREPS

The COSMO short-range ensemble prediction system (COSREFPS) is a limited-area EPS.
The SREPS is developed in a framework of a priority projedhef COSMO consortium by
ARPA-SIMC in Bologna (Marsigli et al., 2008). The ensemblsH6 members, and each
of them is based on the limited-area non-hydrostatic COSM@eahwith a horizontal grid-
spacing of 1@mand 40 vertical levels. The model domain is shown in Fig. 5.2.

The model uncertainty is considered using a multi-analysiti-boundary approach (Marsigli
et al., 2007). The generation of the 16 single membelrto m16 of the SREPS is shown by
Tab. 5.2. The initial (IC) and boundary condition (BC) pepiations are applied by driving the
10km COSMO runs with four 26m COSMO members of the multi-analysis/multi-boundary
system of AEMet-SREPS. The AEMet-SREPS is developed by dtierral weather service
agencia estatal de meteorologia (AEMet) in Spain. This fower resolved COSMO runs of
the AEMet-SREPS are nested finally into four different glabhadels. This global models are
the IFS (ECMWEF), the GME (DWD), AVN (NCEP) and UM (UKMO).

The global models (IFS, GME, GFS, UM) are provided by the eetipe national weather
service and the AEMet-SREPS by AEMet for this purpose. Agsgntation of the small scale
uncertainty is accomplished by applying limited-area npéeturbations to the KimCOSMO
runs. In particular, 4 different set-ups of the model phys$iave been adopted:

(pl) default set-up

(p2) use of the Kain-Fritsch (KF) scheme for the parameioraof the deep convection,
instead of Tiedtke as in the control

(p3) tur_len (maximal turbulent length scalenm
parameter equal to 1000 instead of 500 as in the control
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IC and BC pl=KF/Tiedtke, p2=tur_len, p3=pat_lgn
Global Model (GM) > clustering
| ECMWF EPS > RM1..RM16 | m1..m16 |

‘ f|C12UTC = fRMlIFS—AnaIysis’ o fRMlBIF&AnaIySiS ‘

Table 5.3: The COSMO-LEPS consist of 16 member based on the COSMO mibldelpertur-
bations are caused by the use of the global ECMWF EPS whidhsteced into 16 representative
member (RM) for the initial conditions and the boundary dtods combined with random choice
of KF or rather Tiedtke (Montani et al., 2007; COSMO-Wehsi@11).

(p4) pat_len (length scale m of sub-scale surface patterns over land)
parameter equal to 10000 instead of 500 as in the control.

Finally, the combination of the 4 possible choices for theidg run with the 4 possible choices
for the physics set-up leads to the 16 members ensembleifiatsal., 2008).

COSMO-LEPS

The COSMO limited-area ensemble prediction system (COSM®S) is a limited-area EPS
too. Montani et al. (2003) describe the detailed generatibthe ensemble. In a first step,
the single ensemble members of the ECMWF-EPS are clusteted 6 groups with similar
characteristics. From each of those groups a representatmber (RM) is selected. Then, the
RMs are used to provide the initial and boundary conditiarghe single limited-area model
runs of the LEPS. The LEPS consists of 16 COSMO runs with azbotal grid-spacing of
10km

A special feature of the LEPS is the use of two consecutive BREMEPS runs started at 00 and
12UTC for the 12UTC LEPS run. This leads to the opportunityge a 102-member ensemble
for the clustering of the IC and BC of the LEPS. In contrast, standard ECMWF-EPS has
only 51 ensemble members.

In particular, three different set-ups of the model physiage been adopted in the ensemble
suite. Since December 2007, new random perturbations m@&SMO-LEPS integration are
used:

(p1) random selection of the convection scheme (Kain-¢hits Tiedtke)
(p2) random selection of tur_len parameter
(p3) random selection of pat_len parameter.

The usage of these three possible choices for the physiagpseithin the 16 COSMO runs
with IC and BC from the 16 RMs leads to the 16 members ensemble.
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COSMO-DE-EPS

The COSMO-DE-EPS is developed for very short-range prdistibiforecasts. The COSMO-
DE-EPS is also a limited-area EPS. Each single member of @@MO-DE-EPS is based on
the COSMO-DE. The COSMO-DE is a non-hydrostatic and conmegiermitting model with
aresolution of Bkm It has been developed in the framework of COSMO at the DWDd@d
et al., 2006).

The COSMO-DE is operational since April 2007. The model dionodthe COSMO-DE (Fig.
5.2) covers entire Germany. The model has 50 vertical lewplso 3thPa The cloud mi-
crophysical processes are modeled by a two-category iarsshwhich explicitly includes
graupel, snow and rain. Because of its resolution, the maltel's explicitly to assimilate the
high-resolved radar data through the latent heat nudgiftiNjLand to simulate deep convec-
tion without a parametrization scheme like KF or Tiedtkee Bdvantageous of the explicit
simulation of deep convection was discussed in Chapter 3.

In the DE-EPS, the uncertainties of the COSMO-DE are desdrlty perturbations of the
initial state, the boundary conditions and of the model f@sysThe initial and boundary con-
dition perturbations origin from the SREPS. However, thignpapplies only to the here used
experimental DE-EPS version, which is not equal to the djmeral DE-EPS at the DWD.
Additionally, the model physics are perturbed by change®wf namelist parameters of the
COSMO-DE. The set-up of the DE-EPS is shown in Tab. 5.4 inofythe vertical filtering of
the initial conditions of the DE-EPS (Peralta et al., 2012).

In the experimental DE-EPS version, the DE-EPS is nestedtivdt COSMO-SREPS (k@)
and further as mentioned before, the COSMO-SREPS into tidedSREPS (2km) allowing

to transfer the forecast uncertainty from the global scalthé short-range scale of the DE-
EPS. Basically, the initial and the boundary conditionshef DE-EPS are defined by the four
different global models.

The COSMO-DE-EPS is operational since May 2012. Howevdr avilightly modified set-up
constellation as described here. The COSMO-SREPS is explaca COSMO-7 EPS similar
to the SREPS. In particular, five different set-ups of the ehpthysic have been adopted in the
DE-EPS:

(p1) entr_sc (entrainment rate of shallow convection)
parameter equal to 0.0003 instead of 0.002 as in the default

(p2) rlam_heat (scaling factor of laminar sublayers)
parameter equal to 0.1 instead of 1.0 as in the default

(p3) rlam_heat (scaling factor of laminar sublayers)
parameter equal to 10.0 instead of 1.0 as in the default

(p4) qg_crit (critical value for normalized over-saturatjo
parameter equal to 1.6 instead of 4.0 as in the default
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IC and BC pl=entr_sc p2=rlam_heat p3=rlam_heat p4=q_crit p5:eurj_l

SREPS IFS m1l m2 m3 m4 m5

SREPS GME | m6 m7 m8 m9 ml10
SREPS NCEF mil1 m12 m13 m14 m15
SREPS UM | ml16 m17 m18 m19 m20

f|C0(1JTC - fDEAnaIysis+W(k)(fSREP&—forecast_ fEUOh—forecast)
Vertical low pass exponential filteW(k) = eXp(—C\ k/Nke’y), with O < k < Nke =50

Order of the filter: y = 14, here the 5 levels closest to the surface are undisturbed

Constant:C == 7368

Table 5.4: The COSMO-DE EPS consists of 20 members. Four different neesnbf SREPS
including the four different global models are used for th¢ial conditions and the boundary

conditions combined with four different physic perturats (Gebhardt et al., 2011; Peralta et al.,
2012).

(p5) tur_len (maximal turbulent length scalenm)
parameter equal to 150 instead of 500 as in the default.

The combination of this set-ups leads to the 20 members @E:&PS. In addition to the EPS
in the next section the used observation method is described

5.2 Radiosonde observations

Radiosondes are still important measurements for thalrstate of NWP models and for the
verification of NWP models. Recently, for limited area NWPduals air plane and satellite
measurements become important too. The radiosonde obeassare used with additional
observations in the data assimilation to provide the initieditions for NWP models. World-
wide, there are more than 800 radiosonde launch sites paardhiyn Europa alone, more than
100 per day. Figure 5.3 shows the measurement network ajs@wliles in Europa. The ra-
diosonde stations are not uniformly distributed. Espiciarer the north sea, there are large
gaps without measurement data. This is one reason for obstaassimilate additional obser-
vations like satellite data into limited area NWP models.

Furthermore, the data are shared with other weather serkicéhe global telecommunication
system (GTS) through international agreements. The reutidiosonde launches occur about
45 minutes before the official observation time of 00UTC aAWTC to provide an instanta-
neous profile of the atmosphere. For the initialization of RWiodels and for verification of
NWP models radiosonde data are still very important. Tilnsatellite data are nearly almost
used for global models like the GME. However limited area pisdike the COSMO-EU and
COSMO-DE do not use them operationally till now.

Generally, a radiosonde is a measuring instrument on a eeb#tloon that measures various
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Figure 5.3: Locations of the radiosonde stations in Europe. The colth®inarks represents the
available radiosonde ascents in august 2011. The colongneans 0 ascents, the colors blue 5,
violet 32, yellow 63 and orange 94 ascents (Ermert, 2011).

atmospheric parameters on his ascent and transmits theradihev services like the DWD.
Modern radiosondes measure and partly calculate the foltpwariables:

Temperature

e Pressure

Relative humidity

Wind speed and wind direction

Altitude

Geographical position (latitude/longitude)

Since July 2007, the DWD used radiosondes from Vaisala difieeRS92. These radiosondes
operate with a radio frequency of 18801 zand have a measurement range from 1B&Qp to
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Temperature / K Relative humidity / - PressutePa

Measurement range —90.. + 60 000..1.00 1080.3
Resolution a 0.01 01
Accuracy 015 002 04

Measurement cycle 1 second

Table 5.5: Technical data of the Vaisala Radiosonde RS92-D (Vais@lkQp

3hPa Table 5.5 shows the technical specifications of the radidsd& S92 for the temperature,
the humidity and the pressure sensor.

The data of the radiosondes are available in a special dateafpthe BUFR format, which are
converted typically into the more usable netCDF format riaya. The ascent of a radiosonde
(called "TEMP") is stored in four parts (Part A, B, C and D)bl&a5.6 shows, which data are
stored in each part. The data sections A and C contain oliggrsat the standard atmospheric
pressure levels. These levels are also called the mandat@ig. The significant levels of part
B and C contain only observations of levels where in the teatpes or rather humidity are
significant changes. In this work radiosonde data of parteAused. This has the advantage to
use the observed variables on the same pressure levels on tithimodel data are available.

Range Levels
Part A SFC to 108Pa Mandatory Levels
PartB SFC to 106Pa Significant Levels
Part C 10@Paand higher Mandatory Levels
Part D 10®mPaand higher Significant Levels

Table 5.6: Data section of the radiosonde obeservations.

Measurements of radiosondes are point or rather line me@as&unts. This measurements con-
tain atmospheric variations in time and space due to thediréample space of the measure-
ments (Kitchen, 1989). Additionally, it has been shown bydglevich et al. (2009) that there
was a significant daytime Bias in the measurements, becdube effect of solar radiation.
This measurements have to represent the "true state" ofrtimsphere, which is discussed in
detail in Chapter 2.

In this work, the observation uncertainties of radiosoraiesexplicitly considered. However,
the previously mentioned Bias is not further treated. Thadird deviation for the radiosonde
data is extracted from the 3dvar data assimilation schenteeoDWD. TheRMSEused in
the 3dvar for the temperature at different heights is shawab. 5.7 and based on the IFS
documentation (White, 2003a). However, tRMSE of the 3dvar is beyond the standard in-
strumental error shown in Tab. 5.5, because for the datm#agon the total uncertainty of the
sounding has to be considered. This includes that the sogimslnot corrected for positioning
errors until now. Kitchen (1989) indicates that the usageatfposition corrected radiosonde
data is justified for the synoptic scale. Thus, this does pplyafor NWP models like the high
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Temperature error / K Relative humidity error / -

100thPa 1.7 0.15
85hPa 1.5 0.15
70thPa 1.3 0.15
50thPa 1.2 0.15
40thPa 1.2 0.15
30thPa 1.4 0.15
25hPa 1.5 0.15
20thPa 1.5 0.15
15hPa 1.6 0.15
10hPa 1.7 0.15

Table 5.7: TheRMSEheight errors at standard pressure levels of radiosond&l8lIPE) used in
3dvar. TheRMSEis based on the IFS documentation (White, 2003a).

resulted COSMO-DE with a mash size oBRm There are plans at the DWD to use position
corrected radiosonde data in near future. Until then, #sge is treated poorly by an increased
standard deviation.

For this investigation, the observations are radiosondasarements of the DWD and of the
COPS-Campaign. During the entire COPS campaign radiosondee released every 6 hours
(00,06,12,18 UTC) within the COPS area. During the COPSgite observation periods
(IOP) additional radiosondes at the German stations wareestat 5,8,11,15,18 and 21 UTC.
In this study the radiosonde stations Stuttgart, Idar-6tbar and from MeteoFrance Nancy
are used. The COPS radiosondes were Burnhaupt, Meistratierd and Karlsruhe. All ra-
diosonde stations are shown in Fig. 5.4. The pressure lavel$000, 925, 850, 700, 500, 300,
250 and 208Pa

5.3 Methodological procedure

The proceeding for the comparison and for the verificatiad@scribed in this section. For
both, comparison and verification, the Bayes factor is d¢aled mainly for three radiosonde
stations. The profiles are Stuttgdgt,, Idar-Obersteirfig; and Nancyfna, showed by the black

triangle in Fig. 5.4. The three stations are treated

« arithmetically averaged to get a mean profile

1
favg = é ( fstu+ fida + fnan) (5-1)

+ and together unaveraged.

T
feor = [f;w figav fnTanv] (5.2)
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Figure 5.4: Radiosonde stations of the DWD (Stuttgart and Idar-Obstef MeteoFrance
(Nancy) and of the COPS campaign (Burnhaupt, Meistratz,efAttand Karlsruhe). The black
triangle shows the main stations used in this work.

The reasons for this proceeding are on the one hand, thesteffereliable results by the
investigation of the arithmetically averaged profiles amdtioe other hand, the request for
significant results as far as possible by the investigatfdheounaveraged case.

The case of three stations together unaveraged in one vemtsiders the vertical correla-
tions between the levels as well as the horizontal cororlatbetween the stations. This allows
among others a stricter, a more meaningful comparison. Merven the case of treating the
three stations together in one vector the dimensgjofthe vector (Eg. 5.1) makes the estima-
tion of the covariance matrix by the standard maximum Ik@did method impossible in case
of a singular covariance matrix. In this case, the recendlyetbped gLasso method by Fried-
man et al. (2007) is used to estimate the covariance matetaild of the method are presented
in the Appendix A.5. Additionally, in Appendix A.5 a comparison of the standard covariance
matrix with the approximated gLasso-covariance matrixe@man et al., 2007) is shown. The
comparison for the verification scenario SREPS vs. COSMOQaRBélysis with three levels
(g = 3% 3 =9) shows that the gLasso method provides nearly identia#loation results.

In the following, the technical steps are explained, firstlyen, the underlying scientific issue
is discussed.
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Technical issue

In this work, a first step in the analysis is the conversionhef single ensemble predictions
into a predictive PDF. Several methods have been describédrature e.g. Wilks and Hamill

(2007) among which ensemble Gaussian kernel dressing ctoubd. The theoretical back-
ground was explained in Chapter 4. Essential to the methttkigstimation of the dressing
covariance matrix (Brécker and Smith, 2008; Scholzel anddde2010). The following steps
are applied:

 This point has to be done only in case of investigation ofafeivalent potential tem-
perature®@,. This variable allows to investigate the humidity calcathby a physical
transformation described by Eq. (3.6). The basic humidigasured variables and their
conversions are introduced Appendix A.1.

« the first step for the temperature or the seconddgis the interpolation from the sur-
rounding grid points to the observation point. This has tamre by a bi-linear interpo-
lation described in théppendix A.4.

» from a given ensemble at a fixed date and a fixed forecast ilwedall possible differ-
ences between each single realization has to be calculatacdbee-whitening filter to
remove approximately the true signlin Eq. (4.22).

« the differences are assumed to be realizations of the steded by a factor of/2 from
which a first covariance matrix can be estimated shown by£81j.

* the single covariance matrices for the past 5 days arelesdclby this way.

* these covariance matric@sy; are averaged over the pa$t= 5 days including the day,
which has to investigated{ = 0). In doing soAt describes the time distance (in days)
to the investigation dagt = 0. The daily cycle is taking into account by averaging only
over the corresponding forecast lead time. The avefagés calculated as a weighted

average:
& aWat
[zi] _ ZAt:CLJ1 At i,At (5.3)
> at—oWat
The weightwy; is given as
war = N — At (5.4)

 even this averaging is not based on a large enough samplinsiase of treating three
stations with eight levelgy(= 3 8 = 24) to guarantee a hon-singular covariance matrix
from the standard maximum likelihood estimation as just tioeed. Therefore, it is
used the gLasso method by Friedman et al. (2007) to estirhatedvariance matrix.
Appendix A.5 shows the details.

« in the following the Bayes factor is averaged over a longeetperiod. If the covariance
matrix has to be calculated for a day located at the edge diitteerange then the period
for the averaging is mirrored at this edge.
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Figure 5.5: Comparsion of the advantages and disadvantages of casesstsdlong term evalu-
ations (Ament, 2010).

finally, the averaged matrix defin&sin Eq. (4.43).

the radiosonde observations are processed as columrvatises at fix points
at eight pressure levels:
(1000 925,850, 700,500,300, 250,200hPg) for the comparison DE-EPS vs. SREPS and

at three pressure levels:
(850,700 50thP3) for the verification SREPS and LEPS vs. COSMO-EU analysis.
The forecasted temperature and moisture values at thessupedevels are used.

if the surface pressure of the radiosonde station is loleam L00BPa, the surface tem-
perature of the radiosonde is extrapolated under the su(fadhe 100BPalevel). The
approach used here is based on White (2003b) and is also used COSMO model
when the variables are calculated on pressure levels. IDetiathe approach are pre-
sented in thé\ppendix A.4.

the covariance matrix of the observatidnsis assumed to be diagonal with the variances
taken from the 3dvar data assimilation scheme used at the DWD

for the equivalent potential temperature, the covarianagix of the observations, has
to be approximated based on the variances taken from the. 3tche@ details are shown
in Appendix A.2.

now, the Bayes factdB;; is calculated and averaged over several days. The resalts ar
given by the logB;, described for the comparison and for the verification by %ah.
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IOPs Time period| Weather type
IOP-1 a/b/c 5./6./7. Junel AMC/AMC /AMC
IOP-1d 8. June| AMC-SFC
I0OP-2 12. June| WFC

IOP-3 a/b 14./15. Jung WFC/ SFC
IOP-4 a/b 19./20. Jung AMC/SFC
IOP-5 a/b 1./2. July| SFC/SFC
IOP-6 4. July | SFC

IOP-7 a/b 8./9. July| SFC/SFC
IOP-8 a/b 14./15. July| AMC/AMC
IOP-9 a/b/c| 18./19./20. July] SFC/SFC/SFC
IOP-10 23. July | SFC

IOP-11 a/b 25./26. July| AMC/AMC
IOP-12 30. July | WFC

IOP-13 a/b 1./2. Aug | AMC/SFC
IOP-14 a 6.-7. Aug | WFC

IOP-14 b 8. Aug | WFC

IOP-15 a/b 12./13. Aug| AMC/WFC
IOP-16 15.-16. Aug| SFC

IOP-17 a 21.-22. Aug| WFC

IOP-17 b 22. Aug | WFC

IOP-18 a/b 24./25. Aug| AMC/ AMC

Data and methodology

Table 5.8: 10Ps of the COPS campaign in 2007 with corresponding wedgiper classification
(AMC: Air-mass convection, WFC: weakly forced convecti@kC: strongly forced convection)
after Wulfmeyer et al. (2011).

Scientific issue

The aim of this work is to investigate the predictability afnwection. More precisely, the
predictability of convective permitting conditions wilebinvestigated. To do this, the scientific
proceeding contains the investigation of the three radidstations in a long term evaluation
as well as a regime dependent comparison and verificatigreectigely. This includes cases
studies too. A schematic overview of the advantages andiséages of long term evaluations
or rather cases studies are shown in Fig. 5.5.

» Long-term evaluation
The long-term evaluation is needed to get reliable invatbg results.

» Regime-dependent verification
To investigate the ability of the models to predict the ctinds for convection a regime-
dependent comparison and verification relating to Tab.ba®plied. This kind of inves-
tigation is very important to see if the results are diffeéfendifferent weather regimes. It
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has been shown in the past that QPFs are of varying qualityifferent weather regimes
(Keil and Craig, 2011). Table 5.8 shows the intensive olsem periods (IOPs) of the
COPS campaign. These |IOPs are categorized into air-maseatmm, weakly forced
condition and strongly forced condition. This classifioatis used for the verification
of SREPS and LEPS. For the comparison of the DE-EPS with tHePSRa regime-
selection by the convective timescalgis applied (Keil and Craig, 2011).

» Case-study vs. long-term study

The Bayes factor can be used to investigate explicitly simgisemble runs respectively
case studies. For more meaningful results, longer timegerare mainly investigated
in this work. Furthermore, a regime-dependent analysisneld the investigation results
here. To complete this work, one detailed case-study isstigeted (8th August 2007
in Chapter 6 and 15th July 2007 in Chapter 7) to illustrate tiwsvBayesian approach
works and to use additional radiosonde data, which are ordifadle for few COPS-
IOPs.

The probabilistic verification method presented here isgetely new for NWP mod-

els. Because of this, both, the applicability of the Bayesiatistic as well as the pre-
dictability of convective conditions, have to be investeghby a combination of long-
term, regime-dependent and case studies. The limitingrfaetating to the investigated
ensemble data is the availability of the ensemble data duhia D-Phase project and
missing radiosonde launches during the COPS period.

In the following, Chapter 6 shows the comparison of the DESEfth the SREPS. The appli-
cation of the Bayes factor for verification is shown in Chafte






Chapter 6

Comparison of ensemble prediction
systems

The Bayesian approach allows explicitly to compare and tdywensembles, considering the
uncertainties of the observations as well as of the modetmmioty as shown in Chapter 4.
This is advantageous when two ensembles have to be compsainedesin this chapter, because
the aim is knowledge about the significance of the result efdbmparison. Particularly, in
the case of a conscious investigation of a small area like&€BES region to investigate there
the predictability of the convective conditions. For thigdstigation, it is very important to
consider the uncertainties of the observations. Sincenwkeraging over whole Germany, the
effect of uncertain observations is weaker, because tfereiift observation errors are averaged
out. This is shown in Fig. 6.1 that even though that the teatpee is nearly free of a Bias
(especially for vv=0), theRMSEis quite high. This already shows, it is almost impossible to
forecast exactly the convective conditions in a small donbgia deterministic model forecast.
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Figure 6.1: Standard verification of the forecasted vertical tempeegpuofiles of vww=0,6,12,118
(black, red, green, blue lines) of the COSMO-DE from 00UT@sraveraged over all available
radiosonde stations within the COSMO-DE domain. The thackline represent the observation.
The left panel shows thRiasand the right panel thRMSE Additionally, the number of available
radiosonde stations are shown (Pfliger, 2007).

To investigate the benefit of a highly resolved EPS with aseraiesolved EPS relating the pre-
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dictability of convection here the convection permitting{EPS is compared with the SREPS.
The aim of this comparison is to investigate the quality &f ¥iertical profiles of the DE-EPS
in comparison to the SREPS. In Chapter 3, the importanceeo¥¢itical structure of the at-
mosphere related to the occurrence of convection was shiegpecially, a realistic vertical
structure is important for the DE-EPS, because the COSMOw3Ho simulate the convection
explicitly without the usage of a convection scheme.

The Bayes factor can be evaluated separately for each dajoaméch forecast lead time,
which is available. This is explicitly done for the COPS |Q#b (8th August 2007). However
first, for a greater representativeness the results aragagrover 21 days of August 2007. In
general, the weather in this period was alternating betw&emass convection (AMC), weakly
forced convection (WFC) and also strongly forced convec{eFC). The period contains the
COPS IOPs 13a/b, 14a/blc, 15a/b, 16, 17a/b and 18a/b (sed.TabDifferent convection
types are classified according to Keil and Craig (2011), aeg aire investigated by a regime
dependent investigation. Additionally to the regime dejmsn investigation, the robustness of
the results are investigated and the results are compatbdtiase of further probabilistic
scores.

6.1 Probabilistic comparison of COSMO-DE-EPS with the
COSMO-SREPS

Regarding the comparison of the DE-EPS with the SREPS, liestamperature is compared
and secondly the equivalent potential temperature. Theaguat potential temperature reflects
additionally the impact of humidity.

Comparison of temperature

Figure 6.2 a) shows that the DE-EPS is more likely than theFSR& each forecast time. This
result could be explained by the increased resolution obDiaeEPS of 28kmhorizontally and
50 model levels in the vertical in contrast to thek@rOgrid spacing and 40 model levels of
the SREPS. This means that in the DE-EPS there are less paratiens and more physical
processes explicitly resolved by the model e.g. the coiwecthis is a possible cause for the
more likely temperature profile. Another reason is the afization of the DE-EPS. The DE-
EPS is based on the COSMO-DE analysis including the LHN (@) in contrast to the
SREPS, which strongly relies on the four global forecast esd

The evidence for the DE-EPS in case of the calculation of thgeB factor of three vertical
profiles averaged arithmetically to get a mean profile isofgll', see Tab. 4.2. Furthermore,
the evidence for the DE-EPS is even larger ("decisive") endase of the simultaneous, joint
treatment of the three profiles in one vector. In this cagediimension of the model state vector
is g = 24 having the advantage to get potentially clearer restitis.error covariance matrix
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COPS |OPS‘ Basic Data| Weather type‘ Tc ‘

IOP-13 a 1. Aug. 2007| AMC
IOP-13 b 2. Aug. 2007| SFC
IOP-13 b 3. Aug. 2007
4. Aug. 2007
5. Aug. 2007
IOP-14 b 8. Aug. 2007| WFC ~ Oh
IOP-14 ¢ 9. Aug. 2007| WFC ~ Oh
10. Aug. 2007 < 6h
11. Aug. 2007 < 6h
IOP-15 a 12. Aug. 2007| AMC > 6h
IOP-15Db 13. Aug. 2007 WFC > 6h
14. Aug. 2007 > 6h
IOP-16 15. Aug. 2007| SFC < 6h
IOP-16 16. Aug. 2007| SFC < 6h
18. Aug. 2007
20. Aug. 2007
IOP-17 a 21. Aug. 2007| WFC
IOP-17 a 22. Aug. 2007
27. Aug. 2007
29. Aug. 2007
30. Aug. 2007

Table 6.1: Basic data of the comparison DE-EPS vs. SREPS. Overall, 24 alsAugust 2007
are available with corresponding weather type classiicafAMC: air-mass convection, WFC:
weakly forced convection, SFC: strongly forced convedtefter Wulfmeyer et al. (2011) and the
convective time scale; at afternoon from Keil and Craig (2011). The convective tgoalet. is
introduced in Chapter 3.

is estimated by the graphical lasso (gLasso) method froedRran et al. (2007), because in
this case the covariance matrix is singular in consequehtieedact that the ensemble size
Ki = 16 (SREPS) o= 20 (DE-EPS) is smaller as the dimension of the model statovgc

The meaning of the correlations between the levels and legtwlee stations of this investi-

gation is shown in Fig. 6.2 (c,d). Figure 6.2 c) shows thatvisical correlations are almost
meaningless, because between the cases of consideratimm@itonsideration of the vertical
correlations there is nearly no difference. However for ¢berelations between the stations
the evident for the DE-EPS gets smaller if the horizontatedations are explicitly considered

shown by Fig. 6.2 d). Thus, the correlations between thé@stseems to be more important
than the correlations between the vertical levels. But thdeat is "decisive” in all cases if

the horizontal correlations are considered or not. Thealization of the corresponding corre-
lation matrices are shown in the Appendix A.6. For the rasptesented in the following all

correlations are considered.
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Figure 6.2: Time series of the Bayes factor of COSMO-DE-EPS for the teatpee at forecast
time (vv time) with respect to SREPS. The blue band descthmearea from which the evidence
for each model starts to be strong, see Tab. 4.2. Part (a)sstitmvmultivariate case with eight
vertical levels averaged over August 2007, while (b) shdvesunivariate (858Pa) case. (c) and
(d) show the case of consideration and non-consideratitmeaforrelation between the levels and
stations. The mean (solid lines) and the standard deviafidwmgust 2007 are shown.

The large standard deviation for the one month investigapieriod of August 2007 in Fig.
6.2 a) indicates that there are days of the investigatiociwiave partly an evidence substan-
tially larger or rather smaller as the mean of the Bayes fadtais is figured out mainly by
the standard deviation in the case of the joint treatmenh®three profiles. Furthermore, to
confirm this evidence for the DE-EPS it would be necessammestigate a longer time period.
In this chapter, the one month investigation period is itigaged in more detail by a regime
dependent comparison of the DE-EPS with the SREPS, whidlbajpresented in section 6.3
to investigate the large differences in the Bayes factottersingle days.

Figure 6.2 b) shows the results for the univariate case galimtested variable the 8H@a
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temperature. In this case all relevant correlations betwhe temperature values at various
levels and stations are completely lost and it is not possidtiecide, which ensemble system is
more likely. It clearly shows the advantage of using the ivailtate approach. In the following
an eof analysis is used to investigate the multivariate Ggagdr in more detail. Additionally,
the sensitivity of the results to the observation error anthé Silverman’s factor is shown in
section 6.2. More details about the used gLasso method fr@edrRan et al. (2007) including
a sensitivity study to the gLasso paramef@rig shown in Appendix A.5.

Comparison of equivalent potential temperature

The humidity is very important for the occurrence of conimttas was shown in Chapter
3. Thus, it follows the investigation of the humidity. Thereerature investigated before is
assumed as normally distributed. Such assumptions forethpdrature are used typically in
applied statistical works like e.g. Jewson and Caballe@®82. In this work, a kernel dressing
approach is used additionally as shown in Chapter 4.3 taioafie partly bimodal distribution
of the temperature at a single grid point. An illustrationtftis approach of the estimated PDF
is shown in Chapter 4 (Fig. 4.5). In case of the humidity trsuawption of normally distributed
data is no longer valid. An alternative way is to investighteequivalent potential temperature,
because they also reflects the impact of the humidity. Thisisvased here with the extension
of kernel dressing too. An exemplary visualization of thisthod is shown in the following in
Fig. 6.15 for the equivalent potential temperature as welloa the temperature. A statistical
treatment of the specific humidity itself would be also pblesby the usage of a log-normal
distribution. However, this procedure failed, due to thersj decrease of the humidity with
height.

Figure 6.3 a) shows the same result as for the temperatueeDEAREPS is more likely than
the SREPS in case of the equivalent potential temperatwwelrkr, in contrast to the inves-
tigation of the temperature, this applies mainly for thé i&ecast lead time and for the case
of the simultaneous, joint treatment of the three profildge &vidence for the DE-EPS is here
"strong" and thus weaker as in the case of the temperatureghEmther forecast times, the
evidence is largely "neutral". The generally weaker evigeis due to the larger standard de-
viation of the calculated equivalent potential tempeminirthe observed state. Investigations
to this issue including a reduction of the standard deviatibthe observed state are discussed
later in section 6.2 by results of a sensitivity study of thay/8s factor to the observation uncer-
tainty. Nevertheless, it is shown that for thehX@recast lead time the profile of the DE-EPS is
again more likely. The reasons for that are the same as inafdke temperature. This result
shows that the DE-EPS seems to have the preferable morsgticeadirtical profiles of temper-
ature and equivalent potential temperature compared 8REPS and consequently the better
conditions to forecast convective events.

Figure 6.3 b) shows the univariate case in which it is agaipussible to decide, which
ensemble system is more likely. This is the same result aastskown for the comparison of
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Figure 6.3: Time series of COSMO-DE-EPS for the equivalent potentiaerature at forecast
time (vv time) with respect to SREPS. The blue band descri#igrdficant area, see 4.2. (a) shows
the multivariate case with eight vertical levels, while fiows the univariate (8% case. The
mean (solid lines) and the standard deviation (error bdr&ugust 2007 are shown.

the temperature.

Comparison of the vertical profiles

The corresponding vertical profiles of the temperature drtdeoequivalent potential temper-
ature used for the Bayesian results averaged over 21 dayghana in Fig. 6.4. The vertical
profiles are mean-profiles of the three radiosonde statiodsatso averaged over those 21
days. This illustration allows us in a first steep to look intore detail about the reasons of the
Bayesian results before.

Figure 6.4 shows the mean errM) and the standard deviation of the DE-EPS and the
SREPS. The reasons for the more likely vertical temperattofiies of the DE-EPS are shown
by Fig. 6.4 a) and b). The DE-EPS is nearly free of a Bias witetka SREPS has a clear
positive Bias. This means, the SREPS is at all levels abidubd warm. The positive bias of
the SREPS is also present for the equivalent potential teatyre shown in Fig. 6.4 ¢) and d).

The standard deviation of the mean error shows especialihéoequivalent potential temper-
ature (Fig. 6.4 b,d) clearly higher values as for the tentpega(Fig. 6.4 a,c). Additionally, it
is shown that the DE-EPS is not perturbed in the lowest miadels at initial time (vw=0).
This is caused by the vertical low pass exponential filteoohiced in Tab. 5.4.

The vertical profiles fit well to the Baysian results, but tiadlpw only a simplified comparison
of the DE-EPS with the SREPS. A regime dependent comparitboth ensembles, which
will be presented later will give us the opportunity to havmare detailed view to the reasons
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Figure 6.4: Vertical bias of the mean temperature of the DE-EPS (a) artieoSREPS (c) for
Oh, 12h and 24 forecast lead time. (b) and (d) show the bias for the mearvalguit potential

temperature. The dashed lines show the standard devidtismpnus the mean at the respective
forecast lead times.

of the positive Bias of the SREPS.

EOF-Analysis of the probabilistic comparison

The purpose of empirical orthogonal function (EOF) analysito extract important patterns
from large data sets. The fundamentals are described a/glka (1995)(p. 372) or Hannachi
et al. (2007). The EOFs are obtained from the solution of theralue problem (Eg. 6.1).
Where€are the eigenvectors aindhe eigenvalues of the covariance mafjx

(6.1)
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Figure 6.5: Empirical orthogonal function (EOF) of the Bayes factorexhiperature (a,c) and (b,d)
for the equivalent potential temperature. In (a,b) the teaf8 means that the first three EOFs are
used (eofl-3) to present the Bayes factor as function othé fime. Figures (c,d) show the Bayes
factor for th, 12h and 24 forecast lead time as function of the considered EOFs qooreting to
(a,b).

The EOF analysis is used to investigate patterns like ththraifantic oscillation (NAO) or

the madden julian oscillation (MJO). A detailed discussabt the application in atmospheric
science can be found e.g. in Hannachi et al. (2007). The E@Fysis will be used here to
investigate the vertical patterns, which are responsibielfe greater probability of the DE-

EPS.

., eof T
X = Z (X &)6&
b=1

(6.2)

Eq. (6.2) shows the vecto¢ described by a linear combination of EOFs. In this sectian th



6.2 Significance of the results of the comparison 87

EOF-analysis is done by systematically variation of thigdir combinations frormof =1 to
eof = 8. Therefore, eofl including only the first EO&o(f = 1), eof2 including the first two
EOFs eof = 2). Finally, eof8 including all EOFp f = 8), and the results of the Bayes factor
are identical to Fig. 6.2 a) for the temperature and 6.3 a&hequivalent potential temperature
where three profiles are treated as an arithmetically aedrpgpfile.

Figure 6.5 a) shows for the first EOF almost no difference betwDE-EPS and SREPS. This
means, both profiles, the profile of the DE-EPS and the profilhe® SREPS, are equally

probable when all vectors and matrices are expressed bysh&®F. The gain on probability

for the DE-EPS results from with the higher EOFs. This issndetlines Fig. 6.5 c) where

the Bayes factor is shown depending on the amount of corslde®Fs. Finally, the DE-EPS
becomes significantly more likely if at least five EOFs aredudénis result can be connected
to the higher resolution of the DE-EPS and shows that the PE-E better appropriated to
handle the fine vertical structures and therefore, the &eolwf the temperature.

We have seen that the first EOFs are not enough to explain fieeedice between the DE-
EPS and the SREPS. The EOF-analysis for the equivalenttipdteemperature (Fig. 6.5 b),d)
shows no clear results like in the case for the temperature.

6.2 Significance of the results of the comparison

Until now a clear evidence for the DE-EPS has been shownidrs#ttion, an investigation of
the sensitivity and robustness of this result is preserfiiest, the sensitivity of the result with
respect to the Silverman’s factor and the observation taicty is investigated relating to the
theoretical reflections in Chapter 4. Secondly, the mairaathge of the Bayesian statistics is
applied, which means the prior probability is varied to stigate the strength of the evidence.

Sensitivity to the Silverman’s factor

The Silverman’s factor was introduced in Chapter 4 and wasedktheir as the smoothing pa-
rameter for PDFs. In this section the Silverman’s factoreisated as defining the covariance
matrix as

ii =0a-2j (6.3)

Figure 6.6 shows the sensitivity of the Bayes factor to theeBinan’s factor. The sensitivity of
the Bayes factor in view to the Silverman’s factor is quiteaimin case when the three profiles
are averaged, there is almost no difference (Fig. 6.6 ak béliongs also for the case where
the three profiles are put into one vector. However,dce 2.0 it is shown that the evident
for the DE-EPS becomes weaker, but the evidence is stiliStet. Additionally, it should be
mentioned that it was shown in Chapter 4 that 2.0 leads to a quite strong smoothing of the
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Figure 6.6: Time series of the Bayes factor of COSMO-DE-EPS for the teatpee at forecast
time (vv time) with respect to SREPS. (a) shows the case ektprofile averaged and (b) shows
the case of three profiles jointly together unaveragedebsfit weighting factora = 0.75, 1.0, 2.0
for the covariance matrix are used.

PDF, which is not required in this work. All in all, this confis the theoretical considerations
from Chapter 4. The next step is the investigation of theiteitys of the Bayes factor relating
to the observation uncertainty where a much stronger infleigvas implied in contrast to the
Silverman’s factor.

Sensitivity to the observation uncertainty

In the introduction (Chapter 1) and several times later. @t@pter 5) it was mentioned that the
observed state is by itself uncertain due to the limited biifias of observing the atmosphere.
In this work the radiosonde observations are placed intaglescolumn of the NWP model as
a function of height. However, for the COSMO-DE running atvection permitting scales, the
drifting of the radiosonde is certainly not neglectable.aA®sult the radiosonde observations
are erroneous beyond the standard instrumental error simovab. 5.5, which has to be taken
into account. This is done by using the observation errots@8dvar data assimilation system
of the DWD. The sensitivity of the Bayes factor to the obsgovauncertainty is shown by
multiplication of the observation error covariance makjxby a constant factoy

5o = Y2, (6.4)

The factotyis variated between.B< y < 2.0. Values smaller than one are investigated, because
of in the current IFS data assimilation scheme nowaday®samaller than those in the DWD
scheme are used, which correspond approximately yvit0.9.
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Figure 6.7: Time series of COSMO-DE-EPS at forecast time (vv time) wébpect to SREPS.
(a,b) shows the Bayes factor for the temperature and (c;théathe equivalent potential tempera-
ture. (a,c) shows the case of three profile averaged anddtiosl)s the case of three profiles jointly
together unaveraged. Different weighting factpes 1.0, 1.5, 2.0 for the observational covariance
matrix are used.

Figure 6.7 shows the sensitivity relating to the observagioror, in each case (a,b) for the
temperature and (c,d) for the equivalent potential tentperaln case of an increased observa-
tion error (increased values g, it is shown that the Bayes factor and therefore the evielenc
for the DE-EPS decrease with an increased observation étemrce, the observations error
is an index, which influence significantly the strength of évidence. In case of a twice as
large observation error, the evidence for the DE-EPS is talpstantial”. This is caused by a
smaller likelihood (Eq. 4.36) due to a wider PR o|f) given in Eq. (4.42). This shows that
the observation error has a crucial effect on the result.f@uthe comparison of the DE-EPS
with the SREPS the existing evidence for the DE-EPS can libduused, because the stan-
dard deviation of the radiosonde observations are realtichosen by the values of the data
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assimilation scheme.

For the equivalent potential temperature, the influencé@fiteighting factoy > 1.0 is quite
weak, because for the equivalent potential temperaturelibervation uncertainty is already
large. Hence, an additional increase of the observatiar bas only weak effects in this case.
However, it is shown that a decrease of the observation taior has here a significant effect
and lead to a "decisive" evident for the DE-EPS whien0.25 1 showing that if the observation
variance is large this makes all details of the predicted R&tshed. Only reliable enough
observations allow an accurate evaluation of the ensembles

Before as next step the sensitivity of the Bayes factor toptier probability is discussed it
should be mentioned that the sensitivity results corredipgnto the Silverman’s factor and to
the observation uncertainty agree quit well with Chaptend anderline the importance of the
observation uncertainty.

Sensitivity of the Bayes factor to the prior probability

The Bayes factor for the comparison DE-EPS vs. SREPS waslinted in Chapter 4 as

B — I(O‘mde—eps) P(mde—eps)
" I (Olmsrepg P(msreps)

(6.5)

In which, the prior probabilitied®(Mge_eps) and P(mgrepg Of the DE-EPS as well as of the
SREPS were kept constant.

P(rnd&eps) = P(rnSrepQ == 05 (66)

This is an approximation for the case in which we are doulitfuwhat we have to belief. In
this case no EPS is preferred corresponding to a unifornm, pricich is also called "Laplace
Prior". The Bayesian theory allows in this case to selectea-defined prior probability. But
nevertheless, the data has been shown an evidence for tHePSHR view of the "Laplace
Prior".

Furthermore, to test the robustness of this evidence foDtd=PS, in the Bayesian statistics
it is possible to vary the prior probability(my) for the models under investigation, here the
DE-EPS and the SREPS. Because two models are compared, we get

P(Mde-eps) = 1 — P(Msreps (6.7)

If P(mge_eps) is larger [smaller] thafP(msrepg then the personal belief in the DE-EPS, e.g. of
a professional forecaster, is higher [lower] than for thee8R.

Icalculated only for the equivalent potential temperatoredse of three profiles jointly together unaveraged
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Figure 6.8: The distribution of the Bayes factdogB for DE-EPS (hpe_gpg and SREPS
(msrepg given the prior ofmpe_gps[Msrepd varies from 0.01 to 0.99 [from 0.99 to 0.01]. Figure
a) shows the case for the temperature and (b) the case foguiheakent potential temperature.

The effect of varying the prior probabilities relating thay®s factor and further the comparison
of the DE-EPS with the SREPS for the temperature is showngn@:8 a). The figure shows
that the evidence of DE-EPS is higher than for the SREPS é\ha prior probability of the
DE-EPS is as small as 0.2. The previous case shown in Fig) &2reluded here for the case
that both ensembles have the same prior probalilitype _gps) = P(msrepg = 0.5.

The prior variation for the equivalent potential temperatis shown in Fig. 6.8 b). It is shown
that the DE-EPS is more likely too. However, at most foretiasts varying of the prior prob-
ability leads to a widely "neutral" Bayes factor. If the prigrobability of the DE-EPS is quite
small as 0.2, there is only a "neutral" evidence for the DESEFhis applies only in the case of
the 12 forecast lead time. For then@nd 24 forecast lead time, there is even a "substantial”
evidence for the SREPS.

Summarized, it is figured out that the shown results (theemdd for the DE-EPS) are robust.
Consequently, it seems the DE-EPS is appropriated to ecthilez vertical profiles, but mainly
for the temperature. For the equivalent potential tempegathere is not such a clear evident
for the DE-EPS.

Sensitivity of the posterior probability to the prior proba bility

Figure 6.8 and all the previous figures have shown the Bay#sriB;,, thus the ratio of the
posterior probability of the DE-EPS to them of the SREPStHarmore, it is also important to
have a look at the single posterior probabilitREnye epd0) andP(msepd0). Because of that
the posterior probabilities are shown in Fig. 6.9.

| (0|Mge—eps)P(Mye-—eps)
> ?‘:1' (om;)P(my;)

P(Mge-epd0) = (6.8)
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Figure 6.9: The distribution of the posterior probabili®(m;|o) for DE-EPS (npe_epg and
SREPS insrepg given the prior ofmpe_gps [Msrepd varies from 0.01 to 0.99 [from 0.99 to
0.01]. (a,b) show®(mi|o) for the temperature and (c,d) for the equivalent potergiaerature.

The figure shows a definite result of a higher posterior priibabf the DE-EPS in contrast to
the SREPS for this one month period. Quantified in valuesptisterior probability values for
the DE-EPS are largely between 0.7 and 0.9 and correspotitérgpsterior probability values
of the SREPS are around 0.2. This regards for the tempersthoren in Fig. 6.9 (a,b). Figure
6.9 (c,d) show the posterior probability for the equivalpatential temperature. The posterior
probabilities for the DE-EPS are here weaker with valuesvbeh 0.4 and 0.7 and therefore
only just a little more likely than the SREPS.

Thus with the previous sensitivity studies relating thev@inan’s factor, the observation un-
certainty and the prior probability it was shown that theulessfor the DE-EPS are robust. In
the following, the reasons for this results are investig@emore detail via a regime dependent
investigation including a single case study.
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Figure 6.10: Time series of the ensemble mean total precipitation (dimle) and the mean con-
vective time scale averaged over the COPS domain for theegreriod from 8 to 16 August 2007
(Keil and Craig, 2011).

6.3 Regime-dependent comparison

In the last section, it was shown that there is an evidenceh®DE-EPS both for the temper-
ature and to a lesser degree for the equivalent potentigddeature too. To learn more about
the DE-EPS to forecast convection allowing conditions,gime dependent comparison is a
further option, which is applied in the following.

For this regime dependent comparison of the DE-EPS with REERS, the August 2007 period
has to be spitted into different periods with respectivevgiting weather regimes. This is done
by the usage of the results of a convective adjustment tirale smalysis from Keil and Craig

(2011). A threshold value of convective time scale= 6h is used to distinguish between equi-
librium and non-equilibrium convection (see Chapter 3hdfi, the Bayes factor is averaged
over this periods taking into account the diurnal cycle.

Figure 6.10 shows the time series of the mean total pretigpitéin conjunction with the mean
convective time scale averaged over the @&Ikn? COPS region. The period is split into
three different episodes introduced in Tab. 6.2.

Figure 6.11 shows the Bayes factor averaged over the réapénte periods specified in Tab.
6.2. The Bayes factors for the first period (8-10 August) aodtifie second period (12-14
August) are nearly identical. The evidence for thé I&mperature forecast of the DE-EPS is
here "decisive" and so a little bit smaller than for the ageraver the whole August 2007. For
the equivalent potential temperature, the evidence isstantial" and in general, again weaker
as for the temperature. Only for the third period (11, 15-1@@st) the evidence is comparable
to the whole month average. The regime-dependent compagsione for the joint treatment
of the three profiles to see clearer differences betweendheds.

The regime-dependent comparison shows that there is a behife DE-EPS for the forecast
of the vertical conditions of convection. However, it is pplossible to distinguish rudimental
the quality of the vertical profiles in respect to the diffgreonvective weather regimes due to
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Period Synoptic weather situation
8th - 10th August 2007 [relevant forecast lead times: vv=00,12p4
The weather situation is dominated by strong precipitafitensities
and small convective time scalag & 1h) due to a trough across
central Europa leading to an easterly flow in the COPS region
(Keil and Craig, 2011).
12th - 14th August 2007 [relevant forecast lead time: vv=1p
The period is dominated by small mean precipitation amoants
a large mean convective time scatg £ 6h) indicating weakly foreced
conditions at the synoptic scale. However, a short-terradd+frontal
situation occurred in the night from 12 to 13 August indichby
a short-lived decrease in the convective time s¢ikdl and Craig, 2011).
11th, 15th - 16th August 2007 [relevant forecast lead time: vv=Hp
The meteorological conditions were dominated by synatide
disturbances crossing the COPS region and leading to
a synoptically forced regime{ < 6h).
3rd - 5th August 2007 [relevant forecast lead times: vwv=00,12h24
A trough from England is moving very fast eastwards.
It follows a marked ridge moving also very fast eastwards.
In central Europe, between the next trough in the west andidge in
the east, extremely warm air is advected by the synoptic flow.
The end of this synoptic evolution (5th August 2007, 00UTC)
is shown in Fig. 6.13.

Table 6.2: Time periods for the regime depended comparison. The régplydorecast lead time
(vv) shows the forecast time of interest.

the small sample of cases. Nevertheless, the period (116ttbAugust; . < 6h), shows that
the only typical strongly forced convection period has Hrgést evident for the temperature of
DE-EPS without the 3-5th August. This shows that the DE-E&8cal temperature profiles
here are clearly more likely as those of the SREPS anyway.

For the period from the 3-5th August, which is not includedKigil and Craig (2011), the
DE-EPS is significantly more likely than the SREPS for thegerature as well as for the
equivalent potential temperature. The reason for this isspmediction of the vertical structure
of the atmosphere from the SREPS. The passage of a ridge shdvign 6.13 a) is predicted
too early leading to a significant too warm temperature Biasearly all levels up to 20@Pa
shown in Fig. 6.12 b) whereas the DE-EPS is almost Bias frag @12 a). Figure 6.13 b)
shows the corresponding advection of warm air (aboveCl& 85MP3) into the COPS region
from the southern part of France. This misprediction is duth¢ initialization of the SREPS
using no analysis, but rather Aforecasts of the global models as initial state. This haseto b
kept in mind to interpret the clear result for the DE-EPS dasethe Bayes factor.
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Figure 6.11: Time series of the log Bayes factor for three time periodsctet by the convective
time scale averaged over the COPS domain for four time pgritiee first from 8 to 10 August, the
second from 12 to 14 August and the third 11, 15 to 16 Augusi @¢el Craig, 2011). The fourth
time period (3 to 5 August) is selected due to the large Bagetwfs. Figure (a) shows the case for
the temperature and (b) the case for the equivalent potéenigerature. The standard deviation is
shown by the error bars
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Figure 6.12: Vertical bias of the mean temperature of the DE-EPS (a) andeoSREPS (b) for
Oh, 12h and 24 forecast lead time at the 4th August 2007. The dashed lines fie standard
deviation plus minus the mean at the respective forecadtiees.

Case study of single COPS IOPs

Additionally to the previous regime-dependent investaathe Bayes factor is used for a sin-
gle case study. Up to now, a limiting factor for the tempoesalution was the radiosonde
launch-times. The COPS campaign gives an excellent opptytto use temporal highly re-

solved radiosonde ascent data. For COPS additional radlesovere ascented at additional
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Figure 6.13: NCEP Reanalysis of the synoptic weather situation at theAGtiust 2007 O0UTC.
The geopotential at 50Paand the corresponding surface pressure is shown at figues@the
temperature is shown at the pressure-leveh&igure (b) (Wetterzentrale, 2011).

places and with a higher launching frequency (see Chapter 5)

These data will be used for a comparison with higher temparélspacious resolution inside
the COPS area of the DE-EPS with the SREPS. The Bayes faqtoesented separately for
each COPS radiosonde station as well as for the three peestations.

Figure 6.14 shows the comparison of the DE-EPS with the SR&RBe 8th August 2007 un-
averaged as a case study. The black line shows once, thgewdrthe three stations Stuttgart,
Nancy and Idar-Oberstein and the joint treatment of theethtations. Furthermore, the stations
Stuttgart, Nancy and Idar-Oberstein are also shown seghardihe COPS stations in this case
are Karlsruhe and Burnhaupt. In general, the COPS stationelfiwith the DWD stations for
the temperature (Fig. 6.14 a) as well as for the equivaleterpial temperature (b). For the
temperature only Nancy shows at then¥8recast a "substantial" evidence for the SREPS. All
other stations show a "neutral” to "strong" evidence for Bite EPS. However, the "strong"
evidence for the DE-EPS occurs only in the case where the #iations are treated jointly.

The case study shows the great variability of the qualityesfigal profiles at small space. This
explains the difficult task to forecast convection. The agerover several profiles (temporal
and spatial) are free of a Bias, e.g. see vertical profilee@DiE-EPS (Fig. 6.4). However, the
single forecasted events can extremely differ from the nbsiens.

For a complete reflexion about the case study, the univadBtes for the temperature and
for the equivalent potential temperature at 888 are shown in Fig. 6.15. The PDF of the
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Figure 6.14: Time series of the log Bayes factor for one day (8th Augus720Bigure (a) shows
the case for the temperature and (b) the case for the equiyadéential temperature.

temperature shows less spread for both ensembles in caopaoi the observation uncertainty
at vv=(h. The spread grows with increased forecast lead time, batdrmtembles are not able
to represent the observation uncertainty aften ftecast time. For the equivalent potential
temperature, the spread is fundamentally larger, but didy a4h approximately similar. It is

also shown that the observation uncertainty for the caledlaquivalent potential temperature
is quite high, which indicates that it is difficult to get cteavidences for one ensemble relating
this comparison. So further ways to handle the non-gaussianidity has to be investigated.

In the next section, the Bayesian results are compared Witr probabilistic scores. In order
to assess if the results are to a certain degree comparaidg. or

6.4 Comparison with other probabilistic scores

The comparison of the Bayes factor with other scores is donis section to verify the
previous results with further probabilistic scores. Fas,tthe Bayes factor is compared with
thelGN andCRPS(see Chapter 2 or rather 4), which are presented as skittsceurthermore,
the comparison is done univariat and at the same points vtthe®ayes factor was calculated.
This requires to go back to a univariate contemplation offthecasted variables represented
here by the temperature at the &B@alevel.

Ignorance score

Figure 6.16 a) shows the Ignorance skill scd®NSS$ for the DE-EPS with the SREPS as
reference ensemble and (b) shows the corresponding Bagtes. fahe investigated variable
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Figure 6.15: Univariate temperature (a,c,e) and equivalent potergraperature (b,d,f) PDFs of
DE-EPS and SREPS for one level (885®) for different forecast lead time vv+((a,b), vw=12

(c,d) and vv=24 (e,f) at gridpoint Stuttgart.
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Figure 6.16: Time series of the Ignorance skill scol6&NSS (a) and of the Bayes factor (b) for
the temperature at 86@a

is the temperature at 86Pa In contrast to the Bayes factor, th&NSSis nhormed to one.
The results of both scores show differences. Both have thakimum at the 1R forecast
lead time, which means at this time the DE-EPS is most likaky,thel GN SShas additional
negative values at thehGand 24 forecast lead times. However, it has to be considered, the
positive and the negative scales of a skill score are not ecaye, because the skill score is
bounded above, but not downward. Hence, this distorts thdtrand in addition théGNSS
does not consider the observation uncertainty, which isehson for the extremely "neutral”
evidence trough the Bayes factor.

Furthermore, the Ignorance score considers only one pbthiecensemble PDF (see Chapter
2) while the Bayesian approach allows to consider the fulF®Df the observation as well as
of the EPS. Therefore, this comparison is not sufficient. Bages factor has to be compared
with another probabilistic score.

CRPS

A more sophisticated probabilistic score is @RPSskill score CRPS$ The comparison of
the DE-EPS with the SREPS using t8&®PSJs shown in Fig. 6.17. ThERPSHits very
well together with thd GNSS Consequently, théGN, the CRPSand the Bayes factor have
similar characteristics. ThHERPSSs shown for two cases. The first case, the red line, shows
the standar€ RPSSvere the ensemble is represented by one normal distribufitbrthe two
parameters ensemble mean and standard deviation. In #as tt@CRPSSagrees quite well
with the IGNSS The second case, the green line, represents the ensemigl the extended
SKD (see Eg. 4.63). Here, tl@ERPS3grees better with the Bayes factor than withiB& SS

For the O and 24 forecast lead times, theRPSSand thel GN SSshow that it is not possi-



100

Comparison of ensemble prediction systems

a) b)
cosmo-de-eps Vs. sreps cosmo-de-eps Vvs. sreps
August 2007 August 2007
1.0 ! ! ! 1 ! ! ! 1 ! ! ! 1 ! ! ! 6.0 | - n - - n n n | - n -
05 F 40
0.0 - 2.0
2 1 r =
4 = I
o -05 o F m o0 T I
c 1 F >
o ] o
1.0 - 2.0
1.5 7 CRPS with SKD[ -4.0
1 CRPS
3 6.0 4———————————————————
0 6 12 18 24 0 6 12 18 24
vv time/h vv time/h

Figure 6.17: Time series of the Continuous ranked probability skill ec@RPS$ The red line
described the ensemble by a normal distribution trough raedrstandard deviation and the green
line trough the SKD (a) and of the Bayes factor (b) for the terafure at 850Pa

ble to decide, which ensemble, the DE-EPS or the SREPS, is fikety. This is the same
result, which we got from the Bayes factor. Furthermorehts#ill scores show for the 12
forecast that the DE-EPS is more likely. The Bayes factowshihe same result in principle,
but the evidence is "neutral”, because the Bayes factoriderssadditionally the observation
uncertainty, which the others do not.

In general, all probabilistic scores including the Bayestda show an almost "neutral” evi-
dence, which prefers no ensemble. In contrast, when usmgitiht pressure levels for the
Bayes factor a "strong" to "decisive" evidence has be seen.

6.5 Summary and conclusion

The aim of the comparison of the DE-EPS with the SREPS in thepter was to investigate if
there is an improvement of the forecasts of the higher resloDE-EPS to the courser SREPS
relating convection permitting conditions. Therefore, altiariate probabilistic verification
method based on Bayesian statistics was used to comparensgmble forecasts with each
other relating the vertical temperature and equivalenémqi@l temperature profiles. In which
the model as well as the observation uncertainty was comside

It was shown that the forecasted temperature profiles of EEBS are much more likely than
those of the SREPS even if the prior belief (e.g. of a profesdiforecaster) in the DE-EPS
might be as low as 0.2, the posterior probability for the DESHs anyhow about 0.8. Further-
more, the equivalent potential temperature was analysksdito more about the predictability
of the convective potential. The equivalent potential terafure is important for the vertical
stability of the atmosphere including the impact of hunyidithe DE-EPS profiles are also
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more likely for the equivalent potential temperature, butas shown that the observation un-
certainty diminishes here the strength of the evidencehé@tthour and at the 24 hour forecast
lead times, there was no evidences that one ensemble is thetitethe other. This result shows
that the short range ensemble weather forecasts from tivecton permitting COSMO-DE-
EPS are a valid and useful way to quantify the uncertaintyhoftsrange weather forecasts
at least for the hindcasts performed for August 2007. Howevdonger period of investiga-
tions seems necessary to underline this result. This islynfigured out by the large standard
deviation, which covers over several significance leveltb(®.2). Additionally, it has to be
considered that until now, only profiles at three radiosastdéons within the COPS area were
investigated.

In spite of the larger probability of the DE-EPS, the singdse& study has shown that there are
large variabilities on small areas (the COPS domain) in tidesces for the probability of the
vertical profiles. This shows that it is an ongoing challeatg® for the development of ensem-
bles to consider this small scale variabilities. Anothepamant point is that in this study only
the forecasts of the convection permitting conditions avestigated. The initiation of convec-
tion is another important point, which was not investigalede. This point is especially for
convection permitting NWP models a great challenge, bectus model has to simulate ex-
plicitly the convection initiation without parametrizati. The COPS campaign has also shown
that there is the preference to work on, because the vepioéiles looking promising when
the NWP model uncertainty is considered.

Summarized, the issue of observation uncertainty is a veppitant point, because it is im-
possible to measure the exact truth state of the atmosph&ras shown, reliable observation
are needed to get meaningful results. Finally, we have desrnthie DE-EPS is able to fore-
cast more precisely vertical profiles, but it has also lirnitthe potential to forecast the exact
conditions of convection.






Chapter 7

Verification of ensemble prediction
systems

In the previous chapter two ensembles were compared. THeapm of verification of en-

sembles is presented in this chapter. However, it is agaiongparison of respectively two
ensembles. This means in detail that the ensemble, whictolzs verified is compared with
an analysis of the corresponding forecast lead time. Thiysigawill be treated as the "true
state", but with the extension of consideration of the utadety of this "true state". For the
Bayesian verification, the analysis has to be considered agiéicial one member ensemble.

The SREPS and the LEPS are verified for only three Levels, @@8)500hPa) due to missing
data. The temperature and the equivalent potential teryerare investigated. Furthermore,
the investigation contains again a regime dependent \atidit and a detailed analysis of a
case study where eight levels are verified.

7.1 \Verification of SREPS and LEPS over the whole COPS period

The verification results in this section are averaged owewthiole COPS period (three months,
see Tab. 7.1). The Bayes factor contains three levels ferwhiification. Furthermore, the
reference model is an analysis from COSMO-EU for the vetificaconsidered as an artificial
ensemble of analysis. This means, the ensemble mean oftifigizdrensemble is the actual
value of the analysis. However the standard deviation hdsetestimated. The analysis of
the COSMO models is done by a nudging scheme (Schraff and Bi@83). For this nudging
scheme, itis difficult to estimate the analysis uncertai@tye way would be to use an ensemble
analysis e.g. from an ensemble kalman filter (EnKF). Howetes is not possible in this work.
Hence, the estimation of the standard deviation is doneeviaral ways, which are compared
with each other to get an understanding about the influentieecdinalysis uncertainty for the
application of verification. This approaches are describhdte following.
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COPS IOPs

Basic Data

Weather type

IOP-3 a
IOP-3 b

9.
10.
11.
13.
14.
15.
24.
25.
27.
28.
30.

June 2007
June 2007
June 2007
June 2007
June 2007
June 2007
June 2007
June 2007
June 2007
June 2007
June 2007

WFC
SFC

IOP-8 b

IOP-9 a

IOP-9 b

IOP-10

IOP-11 a

11.
13.
15.
16.
17.
18.
19.
21.
. July 2007
. July 2007
. July 2007

July 2007
July 2007
July 2007
July 2007
July 2007
July 2007
July 2007
July 2007

AMC

SFC

SFC

SFC

AMC

IOP-13 a
IOP-13 b

IOP-14 b

IOP-15 a
IOP-15 b

IOP-16
IOP-16

. Aug. 2007
. Aug. 2007
. Aug. 2007
. Aug. 2007
. Aug. 2007
. Aug. 2007
. Aug. 2007

Aug. 2007
Aug. 2007
Aug. 2007
Aug. 2007
Aug. 2007
Aug. 2007
Aug. 2007

AMC
SFC

WFC

AMC
WFC

SFC
SFC
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18. Aug. 2007
20. Aug. 2007
IOP-17 a 21. Aug. 2007 WFC
IOP-17 b 22. Aug. 2007 WFC
27. Aug. 2007
29. Aug. 2007
30. Aug. 2007

43 days

Table 7.1: Basic data of the verification of the SREPS and LEPS againSNIO-EU analysis.
Overall, 61 days of the COPS period 2007 are available withesponding weather type classi-
fication (AMC: Air-mass convection, WFC: weakly forced cewtion, SFC: strongly forced con-
vection) after (Wulfmeyer et al., 2011).

Standard deviation of the artificial COSMO analysis enseml#

The first approach to estimate the standard deviation of (D8MO-EU analysis is derived
from the data assimilation and describes the variance ohalysis erroio? for a least-square
analysis. Bouttier and Courtier (1999) show that in thisecthe standard deviation is deter-
mined by the sum of the inverses of the observation erroamagic? and of the background
error variancesy.

11,1 &

oz 05 Of
This formula shows that the analysis error variance is sntiian each contributory variances.
In this work, it is assumed that the analysis uncertaintydsecto the observation uncertainty,
which is known. Furthermore, it is assumed, that the baakutarror is equal to the observa-
tion erroro, = 0,. This approximation is applied due to the circumstancetti@background
error can be assumed normally to be of the same order as tieevatien error. Finally, the
analysis uncertainty is given by

02=202 (7.2)

NI

The standard deviation of the analysis is then equal to tHehthe standard deviation of the
observations, and consequently smaller as the observatimertainty. However, additional ap-
proaches have to be used, because Eq. (7.2) is only an ap@atioi of the uncertainty for the
nudging analysis of the COSMO model. Against that, Eq. (@ebcribes the real analysis error
of a least-square data assimilation scheme like 3-d vanati(3dvar) or rather 4-d variational
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(4dvar) technique, which are based on the minimization af eafled "cost function" (Boulttier
and Courtier, 1999).

The second approach in this study is the simple usage of tregiance matrix of the ensemble,
which has to be verified. In this case, first, the covarianceiraf the corresponding ensemble
is calculated for the initial time (vv#) and then, the covariance matrix is kept constant for the
verification time range of the respective run for the refeeemodel. Finally, the third approach
uses also the covariance matrix of the corresponding erleebt the covariance matrix is
used from the corresponding ensemble calculated for trexdst lead time (vv). Table 7.2
shows an overview of these approaches.

Mean value Standard deviatiod

APPROACH 1| Ha = fcosmo-eu-analysis 03 = %Og

APPROACH 2| a = foosmo-eu-analysis | O3 = OZcpenv—on)

APPROACH 3| pa = feosmo e analysis | 02 = 02

srepsgvv)

Table 7.2: Overview about the different approaches used for the stdrkviation of the artificial
COSMO analysis ensemble. The overview is given for the SRB®elongs also for the LEPS.

In the following, the verification results of the SREPS witlistthree estimation variants for
the standard deviation are shown.

Verification of SREPS with different standard deviation approximations

Figure 7.1 shows the verification of the SREPS over the wh@lEE period for APPROACH 1.
The verification is applied to the complete 72 hour forecaftee SREPS. At the initialization
time, the Bayes factor is slightly positive. This shows ttiedre is a small evidence against
the COSMO-EU analysis at initial time and hence, a smallevwie for the SREPS initial
state. This result is in contrast to the fact that the SRERSbawn data assimilation and is
started from dynamical downscaled forecasts of global nsothowever, the SREPS standard
deviation is larger as the approximated standard deviatidthe COSMO-EU analysis at the
initial time leading to this verification result. Howevetdg after 12 hours the evidence for the
SREPS and corresponding against the COSMO-EU analysisiishead. With advanced lead
time, the evidence against the SREPS increases and reaBhgesfactor of abolj, = —2.0
after 72 hours forecast time. This is equivalent to a foreqaslity of a "medium level of
confidence" according to Tab. 4.2.

The results using the other approaches to estimate thei@ogamatrices (APPROACH 2 and
3) are shown in Fig. 7.2. In this alternative cases, the ¢@vee matrix is used from the ensem-
ble itself, which has to be verified. Figure 7.2 a) shows theeaghere the covariance matrix
at the initial time is kept constant (vwhpand Fig. 7.2 b) where the covariance matrix is used
of the corresponding forecast lead time (vv). Both apprations fit essentially well together.
At the first few hours, they are consistently nearly idertieepwever, for APPROACH 3, the



7.1 Verification of SREPS and LEPS over the whole COPS period 107

Cosmo-sreps

COPS Periold 2007 ) ) ) TT

log B_ir

90 120
vv time/h

Figure 7.1: Time series of the Bayes factiyg B, for the verification of the SREPS with respect to
the temperature at forecast time (vv time) against COSMQaRalysis at the same time. The red
line shows the Bayes factor for three stations (Stuttgaati-Dberstein and Nancy). The blue band
describe the area where the forecast becomes of a low legehdiience, see Tab. 4.2. The mean
(solid line) and the standard deviation (error bars) of tl@PS period are shown. The standard
deviation of the COSMO-EU analysis is estimated after APREBD 1.

evidence against the SREPS is only of "medium level of confidéwhile in APPROACH 2,
the evidence is of "low level of confidence" at the end of thedast range. But in general, the
order of magnitude of all three approaches fit together.

In the following, APPROACH 1 is used. This approximatioroals further a comparison of the
SREPS with the LEPS, because the covariance matrix of tren#hie under investigation is
not used as covariance matrix for the reference ensembéediShdvantage of this approxima-
tion could be that the approximated standard deviation efttalysis might be to small. This
fact could give the SREPS and LEPS the advantage to havelgligter verification results,
because they have a greater uncertainty already in thalin@gnditions. For the comparison
of SREPS and LEPS, this disadvantage is not so importarauksedoth ensemble are treated
equally.

Verification of COSMO-SREPS and COSMO-LEPS

In this section, firstly, verification results of the SREP® éme LEPS are presented together,
so that they can be compared with each other. The covariaatréxraf the analysis is approx-
imated following APPROACH 1 of Tab. 7.2. The investigatioontains again three profiles.
The three stations are averaged arithmetically and iniaddibey are treated together in one
vector unaveraged.

Figure 7.3 shows the temperature verification results ofSREPS on the left side (a,c) and
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Figure 7.2: Time series of the Bayes factay B;; for the verification of the SREPS with respect to
the temperature at forecast time (vv time) against COSMakdlysis at the same time. The mean
(solid lines) and the standard deviation (error bars) of QS period are shown. The standard
deviation of the COSMO-EU analysis is estimated after APR8BB 2 (a) and APPROACH 3 (b).

of the LEPS on the right side (b,d). The verification resuftthe SREPS agree quite well
with those of the LEPS. The LEPS allows additionally to wegflonger forecast range up to
132 hours. For both ensembles, the forecast quality is gh'to medium level" of confidence
within the first 72 hours, when the three profiles are treab@uly in one vector unaveraged.
After 132h, the LEPS reaches a "low level of confidence". lrarrhore, the Bayes factor de-
creases linearly with an increased lead time. This linearadese is in contrast to the almost
constant progress of the Bayes factor for the comparisoheoDE-EPS with the SREPS in
Chapter 6 (e.g. Fig. 6.2), which has shown that the DE-EP ®1ie tikely over all forecast lead
times constantly. The verification of both ensembles shdvasthe main difference between
the cases of three stations together unaveraged and tateastaveraged is the strength of de-
crease of the forecast quality. This decrease is much strangase of verifying three stations
together unaveraged and corresponds with the strongegréviiol the DE-EPS in Chapter 6 in
case where the three stations are investigated jointlyTibe.jointly investigation shows also
in case of verification clearer results, but with the disatlvge of an increased standard devi-
ation. The standard deviation has to be considered indig#tiat also when averaged over the
whole COPS period there is a large variability inside théedént ensemble runs. This applies
mainly for the three stations together unaveraged. Therstdndard deviation is clearly larger
as those for the three stations averaged. This indicateagotbers the need for a longer time
period.

In Fig. 7.3 (c,d) are again the prior probabilities variedy& an idea about the robustness of
the results.

P(m) = 1— P(Mana) (7.3)
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Figure 7.3: The distribution of the Bayes factbog B for the SREPS (a,c) and the LEPS (b,d)
respectively against COSMO-EU analysis. For the SREPSSREPS ifisrepg and COSMO-EU
analysis fnceuang given the prior ofmsreps[Mceuangd varies from 0.01 to 0.99 [from 0.99 to
0.01]. The same applies to LEPS.

Also here, both ensembles agree again very well with eaar.cdrsubjective determined prior
probability e.g. for the COSMO-EU analysis B{mang) = 1 — P(Msrepg = 0.2 shows that the
verification results are absolute robust, which means, avéme case when the the prior for
the COSMO-EU analysis is to be assumed as quite small, theM@BBU analysis is much
more likely as the SREPS forecast. The standard prior is\abaiLaplace prior as in Chapter
6.

P(Mana) = P(Msrepg = P(Migps) = 0.5 (7.4)

The verification of the equivalent potential temperaturghiswn in Fig. 7.4. The representation
of the results is the same as in Fig. 7.3. The verificationlte$ar the equivalent potential

temperature are quite similar to those of the temperatungchhmeans the SREPS and LEPS
fit again very well with each other. However, the decreasevafemce against the SREPS,
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Figure 7.4: The distribution of the Bayes factéog By for the SREPS (a,c) and the LEPS (b,d)
respectively against COSMO-EU analysis. For the SREPSREPS ihsgrepg and COSMO-EU
analysis fnceuang given the prior ofmsreps[Mceuang varies from 0.01 to 0.99 [from 0.99 to
0.01]. The same applies to LEPS.

respectively LEPS, is weaker as for the temperature. Tewreia here, like for the comparison
of the DE-EPS with the SREPS regarding the equivalent piatéatnperature in Chapter 6 that
the uncertainties of the observed state for the equivaletengial temperature are larger as for
the temperature. This is the reason for a weaker decreabke &frecast quality. In Appendix
A.3 a sensitivity study for the uncertainties for the obsergtate is shown, which figures out
that also for the equivalent potential temperature in cdseedfication the strength of the
decrease of evidence depends on the amount of the obsaruati@rtainty. This means, the
uncertainty of the real state of the equivalent potentiigerature in the atmosphere leading to
the circumstance that there are limits of verification aretdfore, it is only possible to judge
the forecast quality in a particular instance if reliables@tvations are available. In Chapter 6
the important impact of the uncertainty of the observedesiats already shown.

Furthermore, the results show that for the equivalent piailetemperature it is very helpful to
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Figure 7.5: Linear regression of the Bayes factor for the temperatub® éand for the equivalent
potential temperature (c,d). The Bayes factor is markededscrosses. Additionally, the Bayes
factor (red squares) is shown in case when the initial staieed as persistence with COSMO-EU
analysis as reference model.

verify three profiles jointly together unaveraged, becanshis case a clearer result is shown.
The forecast quality is here within the first 72 hours of "highmedium level" of confidence
and for the LEPS of "low level of confidence" after 132

The same behavior can be seen, when the sensitivity of tbegobability is varied shown by
Fig. 7.4 (c,d).
Predictability of convection

For the predictability investigation of convective comatits the Bayes factor for the tempera-
ture and the equivalent potential temperature of thre@gossmbveraged are shown in Fig. 7.5
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including a linear regression for both ensembles and foh batiables. The regression line
illustrate the nearly linearly decrease of the logarithnthef Bayes factor with lead time.

In Chapter 2, it was shown that the predictability for the ER&temperature is going lost af-
ter approximate 168 hours (Fig. 2.2). This could not be itigated here due to the maximal
forecast range of only 132 hours. However, at the end of thecést range of 132 hours the
regression lines of the SREPS and the LEPS show a Bayes fmboit logBj; = —2.5 cor-
responding to a "medium level" of confidence, and thus thecfasts are slightly more likely
than the persistence verification. The verification of thesigéence forecasts of the SREPS
and LEPS are done keeping the 0 hour forecasts constant wgiilg the covariance matrix of
each forecast lead time from the previous Bayes verificalitve reference model is again the
COSMO-EU analysis.

All'in all, it is shown that there is predictability up to therécast lead time of 132or about

5 days. This correspond with the univariate predictab#itydies of Buizza et al. (2008) and
Bougeault et al. (2010), who have shown that the predidtaluf the geopotential at 50Pa
reached up to 15 days and of the temperature ahB&Qp to 7 days. This concerned for the
geopotential of the northern hemisphere and for the tenyreran the tropics of the ECMWF
EPS.

7.2 Regime-dependent verification

The previous verification results covers temporal the wi@RPS period. Additionally, a se-
lected verification or regime dependent verification is egem investigate if some convective
regime conditions could be better forecasted as other diésrefers to the regime dependent
comparison of the DE-EPS with the SREPS in Chapter 6. TheseAtigust 2007 period was
split into three periods with different convective weathegimes. This was done by the usage
of a convective adjustment time scale analysis from Keil@ralg (2011).

In this regime-dependent verification here, the selectfatifferent convective regimes is done
according the weather classification of the single COPS If@i?s Wulfmeyer et al. (2011).
The convective weather regimes are air-mass convectionGAMeakly forced convection
(WFC) and strongly forced convection (SFC). For a detaibgulanation of this type of con-
vection and for the connection with the convective adjusiintine scale see Chapter 3. Fur-
thermore, for the regime dependent verification, the SREfISI®e LEPS forecasts are inves-
tigated separately for the forecast ranges 0 tg 24 to 48 and 48 to 78. Each forecast range
covers temporal a convective event of either AMC, WFC or SH@s allows to investigate
the behaviour for an increased forecast lead time and treréfie investigation of the forecast
guality regarding to the different convection types.

The first regime dependent verification in Fig. 7.6 belonghéademperature. The figure shows
the verification results of the selected days with the canmedypes AMC, WFC and SFC. For
the 0— 24h period (Fig. 7.6 a), the SREPS forecasts of the SFC convetyjge are slightly
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Figure 7.6: Regime-depentend verification of the SREPS (a,c,e) andEfRsSL(b,d,f) for the tem-
perature. (a,b) cover the-024h forecast period, (c,d) the 2448h and (e,f) the 48- 72h forecast
period. The convection types are AMC, WFC and SFC followimg €OPS-10P classification of

Wulfmeyer et al. (2011).
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Figure 7.7: Regime-depentend verification of the SREPS (a,c,e) and E#SL(b,d,f) for the
equivalent potential temperature. (a,b) cover theZ¥h forecast period, (c,d) the 2448h and
(e,f) the 48— 72h forecast period. The convection types are AMC, WFC and SHGwimng the
COPS-IOP classification of Wulfmeyer et al. (2011).
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better than those of AMC. For the LEPS forecast (Fig. 7.6 ilre is nearly no difference
recognizable between the different convection types AMEGMNd SFC. For the 2448h
period (Fig. c,d), only a very small difference is recogbizawhich can be seen with increased
forecast lead time for the 4872h period clearer. Namely, it is shown that the vertical temper
ature profiles of SFC are slightly better predictable thas¢of WFC and AMC. However, the
sample is too small to get a robust result. Neverthelessgxtpianation would be in strongly
forced weather situations the vertical stratification igdyepredictable as in weakly forced or
non forced weather situations. Summarized, for the SREHSarthe LEPS the vertical tem-
perature is of "high" to "medium level of confidence". Butlwihcreased forecast lead times,
there are more and more verification values in the "low le¥edamfidence" area. It is also
difficult to see differences between the SREPS and the LEBStdahe fact that the LEPS is
initialized 12 hours later as the SREPS.

Figure 7.7 shows the same plot, but for the equivalent piaieteimperature. For this forecast
variable, there can be seen no differences between thedbneection types. Only the LEPS
shows at the 48 72h (Fig. e,f) period the same behaviour as before for the teatper. How-
ever, the difference between the three convection typestism clear as in the case of the
temperature. The verification classification is also vermilsir to those for the temperature.
"high" to "medium level of confidence" for the majority paift the forecasts. But also with
increased forecast lead times, there are more and morecaéafi values in the "low level of
confidence" area.

The regime-dependent analysis of the two ensembles shawst fls quite hard to select a
convection type, which is better or worse forecasted raseto the vertical structure. This
results from a too small sample of convective days and framtitertainty of the observations.
To get more reliable results here more levels have to be @grind more convective days have
to be investigated. This investigation here can be only #ginming of a regime dependent
verification, but it seems promising to get a clearer resulnfore levels and a larger data set.
In Appendix A.7 this regime-dependent verification is alkoven for the case of the jointly
treatment of the three profiles unaveraged, which is herehmwn due the too less humber of
cases for the single convective weather regimes and the &agdard deviation (Fig. 7.3 and
7.4). To complete this work, for the SREPS the 15th July 280iviestigated in more detail as
a case study and demonstration of verification via the Bag@sif of a single run.

7.3 \Verification of COSMO-SREPS - Case study 15th July 2007

Now, the Bayes factor is used to verify a single ensemble FUBREPS. As case study, the
15th July 2007, is presented, because at this day the COP8b@romise an interesting syn-
optic situation as a demonstration of how the Bayesian agbravorks. Furthermore, this day
provides the opportunity to use additional COPS radiosatade to verify the SREPS at sev-
eral different places, which are very close together. ThEBRis verified here for eight Lev-

els (1000925,850,700,500 400 300 250,20thPa) in case of temperature and for five Levels
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Figure 7.8: Time series of the Bayes factlog B, of the temperature (a,c) and of the equivalent
potential temperature (b,d) at forecast time (vv time) wibpect to the COSMO-EU analyses
at the same time. In (a,b) the green line shows the Bayesrfaldo for three stations averaged,
but with the inital state of the SREPS from later runs as esfee model. The red line shows
the three stations (Stuttgart, Idar-Oberstein and Naromy@ther unaveraged while the black line
shows the three stations averaged. (c,d) shows28h forecast period with the single verified
station (Stuttgart, Idar-Oberstein and Nancy) plus the E&@&tions (Meisnitz, Achern, Burnhaupt
and Karlsruhe) with COSMO-EU analyses as reference model.

(1000 925,850,700,50thP3a) in case of the equivalent potential temperature.

In Fig. 7.8, the time series of the SREPS at 15th July 200h&®00UTC run is shown. Because
of the verification of only one run, there is more fluctuatiarthe Bayes factor. Nevertheless,
the decrease of the Bayes factor due to the growing foreoastveith time can be seen. Figure
7.8 a) shows the verification of the temperature. At the b@gm of the forecast the Bayes
factor is still near zero. This shows that the model forecast on a "high level of confidence"
in the first few hours. Later, the model skill of the SREPS isMeen a "medium” and a "low
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0%/ K? 02/ K?

run 2007071600 2007071500
vwtime (h 24h

100thPa 9.5402 2.6315
925hPa 4.8148 2.8864
85hPa  1.2468 3.5299
70hPa  2.3935 3.4425
50thPa  0.5476 0.6219

Table 7.3: Variances of the SREPS for the case study of the equivaléehpal temperature.

level of confidence". At the forecast lead time of 18 hours,fthure shows a strong decrease
of evidence against the SREPS indicating a very unlikelgdast of the vertical temperature
profile of the SREPS given the vertical profile of the COSMO-&talysis. The comparison of
the forecasted SREPS temperature profiles with the obsmrgathow a strong cold Bias in the
boundary layer (see Fig. 7.9 a) being responsible for thag dir the score. Finally, the usage
of the 0 hour forecast of the SREPS itself as reference moatal fater runs has the benefit to
verify the SREPS forecast with its own initial state. Bussthias the disadvantage of a lower
temporal resolution, because the SREPS was initialized eviéry 24 hours. The previous
results with COSMO-EU analysis as reference model are ieeament with the results in this
case.

Additionally, Fig. 7.8 c¢) shows the first 24 hours forecadtshe SREPS in more detail. The
three stations investigated before are verified separatelyplus additional COPS stations. At
the beginning of the forecast, they are all close togethea tmigh level of confidence". But
then, the single stations show partly large differencesh@nverification results relating that
already on a small area the forecast quality of the verticatgire can be completely different.
This shows the challenging task to predict convection. Brehe first hours, it seems to be
hard to predict the right convective conditions. This haddiso for the equivalent potential
temperature shown in Fig. 7.8 d). Additionally, it is showattthe forecasts of the temperature
and of the equivalent potential temperature have a "medawal lof confidence" when the
average over all stations and over all forecast lead timeséstigated.

The verification of the equivalent potential temperaturerahe complete 72 hour forecast is
shown by Fig. 7.8 b). In this case, two aspects have to begfiecu The first point concerns the
forecast quality of "low level of confidence" of the equivatigotential temperature over the
whole forecast lead time. This shows that it is importanbtiklat several stations to get a com-
prehensive picture of the verification. The equivalent ptisd temperature is forecasted very
badly in this case study. The respective vertical profilesdeh minus observation) are shown
in Fig. 7.9 b). For the single stations, the verification tsslook slightly better. At the first

hours, the stations Idar-Oberstein and Nancy have alreddseeast quality of "medium/low

level of confidence". The second point is the behaviour oBREPS when verified against his
own initial state. In this case, the result differs compiefeom the verification result where
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Figure 7.9: Vertical temperature profiles (a) and vertical equivalesteptial temperature profiles
(b) from SREPS at Stuttgart (model minus observation) ferfthecast lead time vv=0,18,A8

the COSMO-EU analysis is used as reference model. This seday the variance of the own
initial state (vv=M) of the SREPS for the 2¢forecast lead time, which is nearly three times
larger as those variance at the vvhZdrecast state at the 100Pa pressure level. In numbers
this is shown in Tab. 7.3.

7.4 Summary and conclusion

In this work, the second application for the Bayes factohes erification of ensembles. For
the comparison of two ensembles, it is of particular impuréato consider the uncertainties
of the model as well as of the observations. The aim was tltesed if the evidence for an
ensemble is significant or not. For verification, this poaresimportant too, because an analysis
as reference model has also an uncertainty like the obgmmgat

The verification results of the COSMO-SREPS and COSMO-LERS the whole COPS pe-
riod have shown that both ensembles are quite similar inioaldo the forecasted convective
permitting conditions. However, it is difficult to compatgg both ensembles exactly, because
they are initialized at different times. At the beginningtbé forecast, the ensembles are not
distinguishable from the COSMO-EU analysis. With an insezhlead time, the Bayes factor
decreases linearly and reaches at 72 hour a "medium levehéiflence". In case of the LEPS,
the forecast length is 132 hours. At the end of this fore@sl time, the evidence for the LEPS
is going to a "low level of confidence".

The longer forecast range of the COSMO-LEPS allows to inyat& the time when the pre-
dictability of the convective conditions is going lost. lag/shown that there is predictability
up to the end of the forecast range of 5 days.
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Finally, the results show that it is possible to verify NWPsembles with this method. This
applies without restriction for the temperature. For thaiegent potential temperature, the
results are also very useful, but it has been shown that tfe lancertainty of the state of this
variable reduces the strength of the evidence. It might be hélpful to investigate further
variables like the specific humidity, which will lead to thifidulty of a non-Gaussian PDF.
The large standard deviation shows again the need for adamggstigation time period. This
is especially true for the jointly unaveraged treatmenhoée profiles.






Chapter 8

Conclusion and Future Works

A discussion of the main points for comparison and verifaratof ensembles through the
Bayes factor is presented at the end of Chapter 6 and 7. ICHadpter, the main investigation
results of this work are concluded and an outlook of futurekweill be given, regarding
the possibilities of application or rather verification e Bayesian statistic in the area of
verification of NWP models.

8.1 Conclusion

QPFs are among the most demanding applications in NWP, bechare were only a slight
improvements of QPFs over the last years. Particularlgdasts of convective precipitation
have large uncertainties. However, for just in time warsi@PFs are essential due to the high
potential for damage of convective precipitation.

Probabilistic forecasts of EPS are used to deal with thentaioies of deterministic NWP
model forecasts. They allow to handle with the chaotic matfrthe physical processes in the
atmosphere, which are responsible for convection. Howewnsemble forecasts have also to be
verified. There is a chain of probabilistic standard vertf@amethods, but in case of convec-
tion forecasts, the whole vertical state is decisive anditde verified. Hence, a verification
method is needed, which allows to verify these whole profibedtivariately at small areas to
avoid the effect of averaging out information of horizontakrelations. This requires a new
verification technique.

The probabilistic verification approach used in this worlkwas to verify whole profiles con-

sidering explicitly the observation error as well as the slaghcertainty. It is important to

take into account that the observed state by itself is uaicedue to the limited capabilities
of observing the atmosphere. The verification approachssdan the Bayesian verification
method of climate change simulations from Min et al. (2004 Min and Hense (2006). The
key targets of this work were to use a probabilistic method
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Conclusion and Future Works

« to verify and compare ensemble predictions of atmospherictate vectors

« to include an uncertainty measure of the observations

« to allow for relative measures between different EPS system

These aspects are important items to verifying forecasteratection-permitting resolutions
and to study the predictability of convection initiationtpmtial. Therefore, a multidimensional
state vector of the forecast ensemble has to be used chariacteat least the vertical tem-
perature and moisture structure. The multivariate aspastdefined by several vertical levels,
which are treated simultaneously taking into account thpeddencies between the levels, be-
cause the vertical profile of temperature and humidity #éféloe potential for the convective
instability. Radiosonde data are used for the verificatioih® vertical profiles.

The investigated ensembles in this work are the COSMO-DE;Hire COSMO-SREPS and
the COSMO-LEPS. The main questions to answer in this worlewer

Q1. Is there a significant evidence for the new convective-perrtting COSMO-DE-EPS

Q2.

with respect to the forecasted vertical structures
when it is multivariate compared with the coarser resolved ®@SMO-SREPS ?

The COSMO-DE-EPS developed by the Deutscher Wetterdi&ws)), which is based
on the deterministic convection permitting COSMO-DE, waspared with the coarser
resolved COSMO-SREPS. The comparison of the vertical testyme profiles has
shown a significant evidence for the COSMO-DE-EPS (posteriabability of the DE-
EPS about 80 %) in contrast to the COSMO-SREPS. The evidenoespect to the
equivalent potential temperature is much weaker, becdube targer uncertainty of the
observed state. Therefore, the DE-EPS is appropriate tWidéme uncertainties of the
convective permitting conditions much better than coansedels.

However, this applies to the vertical profiles. For conwecinitiation, it is absolutely
crucial to simulate the triggering of the convective evemtss issue was not investigated
in this work. Furthermore, the investigation period coraesi the August 2007 for this
comparison. However, a much longer period of investigatissems to be necessary to
underline these result.

How does the verification of the forecasted vertical structies of COSMO-SREPS
and COSMO-LEPS behave with lead time ?

The COSMO-SREPS and the COSMO-LEPS are meso-scale ensemiilb

parametrized convection. The verification results oventhele COPS period for both
ensembles against COSMO-EU analyses are close togethibough, the COSMO-
LEPS was initialized at 12UTC, which is 12 hours later as tl@S8IO-SREPS. Both
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ensembles show an almost linear decrease of skill with lisael. fThe temperature of
both ensembles reached a "medium level" of confidence a#tdrotir. The COSMO-
LEPS shows a "low level" of confidence after 132 hours. Forefeivalent potential
temperature representing the humidity, the decrease ofemeé with lead time is
significantly weaker. This is again due to the larger unaetteof the observed state.

The verification has shown that it is possible to verify enslesiwith the great advantage
to consider several levels simultaneously. This confirims Bayes factor allows explicit
both comparison as well as verification of ensembles.

Q3. Is there predictability at long forecasted lead times of COMO-SREPS and
COSMO-LEPS ?

To answer this question, mainly the COSMO-LEPS is consijdvecause the forecast
range of the LEPS is substantially longer with 132 hours asG®SMO-SREPS. It is

shown that within the first 132 hours (about 5 days) of thedasethe skill (confidence

level) of the verification is higher than those where a ptrsie forecast is verified

indicating that the predictability of convective conditforeached up to about 5 days.

Furthermore, it has to be considered that the time scalesrwictive processes occur-
ring in nature comprise only several hours. So, in gendrial only rudimentary possible
to forecast convection over several days. However, it sébatdoth ensembles can give
here helpful guidelines about the occurrence of conveditmwing conditions includ-
ing the first 5 days. The main limitation is the fact that irsthiudy only three levels are
investigated. For more meaningful results, the numben@iseas well as the considered
time period should be increased.

Last but not least, it should be mentioned that this studyncabe considered as a full scale ver-
ification analysis of the D-Phase ensembles or the COSMCEBE- At least this task would
require a much larger radiosonde network and forecastsriogvenuch larger time periods.
This work is rather a proof-of-concept or pilot study to idBndemonstrative strengths and
weaknesses of the presented approach, and it has been statvihretprobabilistic verification
method described in this study is appropriate to comparemsble systems with each other
and to verify ensembles. The Bayes factor used as a scoresisegiadjization of the Ignorance
score taking additionally into account the uncertaintyhaf tbservations as well as the spatial
correlation structure of the verified forecasts. The carsition of the observation uncertainty
is important, because the observations are also defectiv&l@ not represent exactly the true
state of the atmosphere. The effect of the observation taiogris shown by the results for the
equivalent potential temperature. Here the large observaincertainty leads to a significant
decrease of evidence for a respective model, because thsimply a wide area of possible
atmospheric states. Till now, the most verification methamisot consider this.

The Bayes factor allows for a comprehensive evaluation efftimecast quality of three di-
mensional samples by using just one score. Even an extetsi@mporal-spatial structures
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is readily possible provided that there is a method availablestimate non-singular covari-
ance or correlation matrices of high dimensional stateorsct-uture prospects are given in
the following.

8.2 Outlook

The Bayes factor is a helpful score to investigate the gualitd predictability of NWP mod-
els. The Bayes factor can be used for case studies as well lasfer time periods. This work
shows only a small area of possible applications. An ovenabout possible future applica-
tions will be given in the following.

Another investigation area, another weather regimes and p&ition corrected ra-
diosonde data

In this study the focus was on convection inside the COPS ark@h is an orographically
influenced area. Other areas like the northern part of Ggrmanuld be also of interest to
compare the current results with results for flat terrain.

It is also thinkable to look at additional weather situatidike winter storms. For the 10
wind gusts the vertical structure is also very importanpeesally again the stratification in
the boundary layer. The strongest wind gusts down to thaseirdccur during the passing of
cold fronts. For higher-resolution models well forecastedical profiles become extremely
important.

Radiosonde data used in this work have not been positioeaed, leading to a larger obser-
vation covariance matrix. The usage of the position coegcadiosonde data, which would
require a smaller observation standard deviation, wowd te clearer results.

Evaluation of longer time periods

Furthermore, a simple but important point is the invesiigabf longer time periods, which
requires longer data sets. Therefor, extended data setwaith than only three vertical levels
for a long term period would be needed. Particularly, thgdastandard deviation has shown
the need for this point. The limiting factor in this work waeetlack of stored EPS data. The
Bayes factor is explicitly applicable to case studies, butfieaningful results an evaluation of
a longer time period would be necessary.
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Usage of additional reference models

A further aspect would be the usage of additional referenodets. The Hans-Ertel centre
for weather research (in German HErZ) founded by the DWD aiindeveloping a model
climatology based on the planed COSMO-DE reanalysis (Ohhetal., 2011). For a model
climatology a reanalysis is needed, because the standalgsesncomprises different model
versions over climatological timescales and therefors wrily of limited usability. The ap-
plication of a model climatology as reference model wouli@oédditional opportunities for
predictability studies.

Bayesian model averaging

The last point, which will be discussed in this outlook is thy@portunity to use the Bayes
factor for the so called Bayesian model averaging (BMA) dbed in Min and Hense (2006)
and Raftery et al. (2005). The Bayes factor could be usediaddily as a weight for forecast
calibration e.g. to use a combination of COSMO-LEPS and COSBREPS. The BMA can

be defined here as a weighted average of the model-forecststedvectorf;, which describes

the arithmetic mean (AEM) of the corresponding moiel

N O
.= 2B (8.1)
BMA 34 Bijr

If all Bayes factors would be identical to each other, the BMduld be equal to AEM for all
ensemble member of all ensembles.

[F] _1g it (8.2)

Therefore, the Bayesian statistics provide a conveniegttavéreat both the predictability and
the forecast calibration in a single approach. TherebyBthesian statistics can be also applied
to deterministic models, if the deterministic model is tegbas an artificial ensemble like the
deterministic COSMO-EU analysis in this work.






Appendix A

Methodology

A.1 Moisture variables

In the following a short overview over the moisture variabis given used in this work. A
detailed description can be found in Kraus (2004). The $ipdniimidity gy is the ratio of the
densities of water vapgy, to air p; (including water vapor and dry giy) in a particular mass.
The specific humidity ratio is expressed as a ratio of kiloggaf water vapor to kilogram of
total moist airp; = pg + Pv-

Q= (A
respectively o

e
~ 0.622— (A.2)

p
wheree denotes the partial pressure of water vapor prttie total pressure of the air. The
mixing ratiomis the ratio of the densities of water vagmsto dry airpq. Specific humidity is
related to mixing ratio (and vice versa) by:

m= 2 _0622-°_ ~0622
p—e

Pd

e

5 (A.3)

Relative humidity is defined as the ratio of the partial puessof water vapor (in a gaseous
mixture of air and water vapor) to the saturated vapor pressiwater at a given temperature.
In other words, relative humidity is the amount of water vapdhe air at a specific temperature
compared to the maximum water vapor that the air is able td Wwithout condensing at that
given temperature. Relative humidity is expressed as aeptage and is calculated in the
following manner

th = 1002 (A.4)
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Absolute humidity on a volume basis is the quantity of wateriparticular volume of air,
which is the density of water vapor. The dew point is the terajpee to which a given parcel
of humid air must be cooled, at constant barometric presfargvater vapor to condense into
water. The condensed water is called dew. The dew point islgasi@n temperature. The dew
point is associated with relative humidity. A high relatimemidity indicates that the dew point
is closer to the current air temperature. Relative humidft§00% indicates the dew point is
equal to the current temperature and the air is maximallyratgd with water vapor. When the
dew point remains constant and temperature increasetyedtamidity will decrease.

A.2 Equivalent potential temperature

The equivalent potential temperature was introduced irp@&ne8. Here the calculation of the

standard deviation of the equivalent potential tempeeatill be discussed. The standard devi-
ation of the temperature is taken from the data assimilaitreme (3dvar) of the DWD. Based
on this, the standard deviation 8t is approximated as follows.

The equivalent potential temperat@g describes the content of energy of air masses including
the humidity (mixing ratiom) and describes additionally the stability of the atmospher

B Po % Lm
Oe_T<F> -exp(cp—_l_> (A.5)

The equation 06 is here approximated in first order:  @xp= 1+ x

ocr(8)" () ()
p p Cp

For approximation of the standard deviation@f, a formula of error propagation for func-
tions of two variables (NIST/SEMATECH, 2010) is usedo? = a04 +b?03  with the
assumption that there are no correlations betw&emd B. Additionally, the simplification
o% — 0 is taken. Therefore, all variables excdpandm are treated as constant. Finally,
the deviationog, can be written as

2R 2R L 2
Cp cp
%~ (5) 4 (5)(5) % A
L 2
o%+<c—> 051] (A.8)

In the data assimilation scheme of the DWD, only the standaxdation of the relative hu-
midity is given. This requires additional the calculatidrttee standard deviation of the mixing
ratio ms O.623%f . This is done by
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E 2
02 = <0.6226> .02 (A.9)

~0.0001

The approximation is done because for simplification andettuce the run time in case of
calculation the Bayes factor for the equivalent potengaiperature. Thus, there is finally

02 ~ <@> ®
Oe p

A.3 The observation error statistics

Cp

L 2
0% + (—) o.ooom%] (A.10)

In meteorology, observations are used in the data assiomilats well as for verification. How-
ever, almost entirely in the data assimilation the uncetyadf the observed state itself is con-
sidered. For the most part this does not belong for veriboati

In this work, the observation error is considered expijdithsed on the 3dvar from the DWD
(only height dependent, see Tab. 5.7) and it is shown thathths a meaningful effect on
verification results. For further investigations a systtoah variation of the observation error
via a constant factoris done to investigate the sensitivity of the Bayes factdhé&oobservation
error.

For the observation error in the current 4dvar system of tBM®B/F a slightly different ap-
proach for the observation error is used in contrast to thar3slystem at the DWD. At ECMWF
the observation error consists of

* a persistence observation error (season and geograpleisitibn dependent)

+ and of a prescribed observation error (height dependent)

The final observation error is then a combination of this tiwov@ mentioned error types. The
details can be found in ECMWF (2011).

A sensitivity study of the observation error is shown in Cleais. Additionally, a sensitivity
study of the observation error in case of the verificatiorhiswan here. Figure A.1 shows the
corresponding sensitivity study for the verification of thEPS in Chapter 7 regarding the
sensitivity of the LEPS in view of the observation uncetifrigure (a) shows the sensitivity
study for the temperature and (b) for the equivalent padétdimperature. It is shown that the
verification strongly depends on the value of the obsermatiacertainty, which is variated by
a constant factoy.

The main point, which will be here discussed is that when theeovation uncertainty for the
equivalent potential temperature is reduceé: .5) the verification is much stronger as in the



130 Methodology

log B_ir

cosmo-leps cosmo-leps
a=1.0 T a=1.0 TE
15 71 . n 1 n n 1 n n 1 n n 1 n r 15 1 n n 1 n n 1 n n 1 n n 1 n r
10 = 10 F
®E I N |

|
|

0 30 60 90 120 0 30 60 90 120
vvtime/h vv time/h
Figure A.1: The distribution of the Bayes factéog By for the LEPS (a,b) respectively against
COSMO-EU analysis. Different weighting factors- 0.25, 0.5, 1.0, 1.5, 2.0 for the observational
covariance matrix are used.

opposite casey(= 2.0) where it is nearly impossible to decide, which one theyamiglor the
LEPS forecast is more likely.

A.4 Interpolation

For the verification, the model variables calculated at gouhts has to be interpolated to the
observation point. This has to be done only for the horidzpbtcause in the vertical the model
variable as well as the observation are available at the gaessure levels.

Horizontal interpolation to the observation point

The horizontal interpolation to the observation point iaelby a bilinear interpolation e.g. see
White (2003b); Hackbusch et al. (2003). The method of bdiriaterpolation consists of three
linear interpolations.
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The first two interpolations interpolate the grid poirfitgs and 2, to fa and the remaining two
grid points tofg. Finally, the third linear interpolation interpolates thexiliary pointsf, and
fg to the observation poinfy,s. The equations for the bilinear interpolation are given by

f
fa = f21+ﬂ' Xa — X1) (A.11)
fio—f
fB = f]_l 12 11-(XA—X1) (A.12)
X2 — X1
fg—f
fobs = fa+ 8B4, (Yobs— Y1) (A.13)
Y2—Y1

Vertical interpolation

The vertical interpolation from the model levels to the aliadon levels is not necessary,
because the model data are used on pressure levels andetbssifgr levels correspond to the
mandatory measurement levels of the radiosondes.

Only in case of the 100Pa model level, here the lowest radiosonde measurement has to b
vertical interpolated to the 108@amodel level, but only if the lowest radiosonde measurement
is above 1000Pa In this case the lowest radiosonde measurement is exatapiaio thepy =
100thPamodel level. The reason for this proceeding is that there sxact way to reconstruct
the NWP model value at the lowest radiosonde observatiomeXtrapolation under the surface
is done by the approach of White (2003b) which is also useder@OSMO model. The basic
idea is

(A.14)

y2y3>

T = Tsurt <1+y+5+—

6
~dTrg Ps
y= 9z g Iog<p0> (A.15)

with:
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The extrapolation is only used for the temperature. Thdiveldumidity is kept constant on
the value at the surface value. In this work the implememrafiiom the COSMO source code
is used.

A.5 The gLasso method

The log-likelihoodL for aK multivariate Normal distributed sample of dimensprepresented
by the Gaussian PDF is shown in Eg. 4.15. This is the basisht®oMLE of the covariance
matrix. Sindicates the standard estimate of the covariance matithe log-likelihood can be
reformulated as a cost functidnwhich has to be maximized.

J=log(detz 1) —tracg Sz 1) (A.16)

The basic starting point for the gLasso method (Friedman. e2@07) used in this work is
to estimate a sparse mati®&= ! which is the inverse of a covariance matrix and which
maximizes the log-likelihood cost functiahpenalized by an additional terdge, and already
maximized partially with respect to the mearSindicates the standard estimate of the covari-
ance matrix as mentioned previously, @dhe determinant o® and the factop controls the
influence of the penalizing term. The magnitudgpofnges between 0.01 and 0.6 (in this work
p =0.01).

J = log(det®©) — tracgSO) + ppen (A.17)

The Hammersley-Clifford theorem (Wainwright and Jorddd0Q&) (p.45) proves that two com-
ponentsi and j of a Gaussian distributed random vector variable (here éhgérature or
equivalent potential temperature values at various I@@&ks conditionally independent given
the remaining components if the en®y, is zero. Therefore, it makes sense to require as much
as possible entrig®;; to be zero as an additional information to estimate the ¢cavee matrix

and its inverse. Similar procedures in data assimilatigulieg to the covariance matrix are
called localization. This can be achieved by a penalize tehich sums the absolute values of
the matrix entries the so calléd matrix norm of®

Jpen= Y (O] (A.18)
N

The maximization of the absolute values guarantees thaextreme value ofl is attained
at©;; = 0 (Knight and Fu, 2000). The procedure to find the extremeevaf is called least
absolute shrinkage and selection operator (lasso). Iféhvcomponents are viewed as nodes
of a network which are linked if they are not conditionallyd@pendent and not connected if
they are conditionally independent the method defines alkagraph (the joint set of nodes
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Figure A.2: Part (a) shows the time series of the Bayes fdcigB;, of the temperature at forecast
time (vv time) with respect to COSMO-EU analysis at the same tThe red line shows the Bayes
factor calculated using the gLasso (Friedman et al., 2@0did)the green line shows the Bayes factor
calculated using the standard covariance matrix. The tdune bescribe a significant area, see Tab.
4.2. Part (b) shows the difference between the Bayes fastoghe gLasso and the Bayes factor
using the standard method for different valuep of

and links) or graphical model for the interactions of theteecomponent. Therefore, the term
gLasso was coined. The interpretation of the method is thanasingular matrix is estimated
which inverse®1 is as similar as possible to the standard sample covariamtexrs and
which itself has least non zero entries or the smallest sacggraph to explain the covariances
among the vector components.

The algorithm of Friedman et al. (2007) is used which is add through their program pack-
age glLasso for the R programming environment. Figure A.2hajvs a comparison of a cal-
culation of the Bayes factor between the standard covariamatrixX; and the case where the
covariance matrix is approximated by Friedman et al. (200fe method works quite well,
there is almost no difference between those two cgses@.01 used in this work), see Fig.
A.2 b). The difference to the standard method increasesfoeased values @, but shows
even withp = 0.6 only a maximal difference of.0 (Fig. A.2 b).

A.6 The correlations

The correlation matrices for the comparison of the DE-EP{8 thie SREPS in Chapter 6 for
three forecast lead timeg= 0,12, 24h) are shown in Fig. A.3 in this section. The correlation
matrices for the August 2007 period of the comparison sholy weak correlation between
the single levels. Only for the hX¥orecast lead time, larger correlation between the first two
levels can be seen each for the DE-EPS and also for the SREBER3e$ult of low correlations
between the single levels is shown before in Chapter 6 ing=Ryc).
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Figure A.3: Correlation matrices of the DE-EPS (a,c,d) and of the SRBREfJ. Shown are three
forecast lead times (0 12h and 24). The correlation matrices are shown for the August 2007.
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A.7 Regime-dependent verification

A regime-dependent verification of the SREPS and LEPS is showChapter 7. In addition
here, the same regime-dependent verification is shown inA&#and A.5 for the case of
the jointly treatment of the three profiles unaveraged. Was not shown before, because of
the large standard deviation of the Bayes factor coming ftomnless number of cases for
the convective weather regimes. The weather regimes amgagis convection (AMC), weakly
forced convection (WFC) and strongly forced convectionGEF
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Figure A.4: Regime-depentend verification of the SREPS (a,c,e) andERrRsSL(b,d,f) for the tem-
perature. (a,b) cover the-024h forecast period, (c,d) the 2448h and (e,f) the 48- 72h forecast
period. The convection types are AMC, WFC and SFC followimg €COPS-10P classification of
Wulfmeyer et al. (2011).
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Figure A.5: Regime-depentend verification of the SREPS (a,c,e) and BRSL(b,d,f) for the
equivalent potential temperature. (a,b) cover theZth forecast period, (c,d) the 2448h and
(e,f) the 48— 72h forecast period. The convection types are AMC, WFC and SHOwng the
COPS-I0OP classification of Wulfmeyer et al. (2011).
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List of symbols

Physical symbols

Symbol Description Units

B Buoyancy kg ms?

Cp Specific heat capacity of air JkgK 1
e Vapour pressure over water hPa

E Max. vapor pressure over water hPa

Etot Total specific internal energy

€ Kinetic energy dissipation due to viscosity

g Acceleration of gravity ms?

r Temperature gradient (goom)—*
s Wet-adiabatic Temperature gradient (oom)—*
Mg Dry-adiabatic Temperature gradient (¥ 00m)—*
I Term of sources/sinks

J Diffusion flux

kp Boltzmann constant JK

L Latent heat of evaporation JKkY

Q Constant angular velocity of earth rotation

p Pressure hPa

as Specific humidity of water in the solid state kgKg

a Specific humidity of liquid water kg kgt

Qv Specific humidity of water vapor kgkd

m Mixing ratio kgkg?

R Universal gas constant JmolK 1
R flux density of solar and thermal radiation

Ra Gas constant for air Jmotk 1
Ry Gas constant for water JmdiK1
rh

Relative humidity



List of symbols

P Density kgm3
T Air temperature K

t Time S

t Stress tensor due to viscosity

TOT_PREC Total precipitation kgm?
© Potential temperature K
Oc Equivalent potential temperature K
Te Convective timescale h

v Forecast lead time h

v =(u,v,w)" Wind vector ms?
z Height m
Statistical symbols

Symbol Description Units
Bir Bayes factor -

€ Model uncertainty

EX]=u Expected value

E[(X —w?] = o? Variance

fK Forecast state vector of ensembig memberk

fi True state vector

hs Silverman’s factor -

[(f) [-Operator -

Ki Number of ensemble members -

[ (ofmy) Likelihood -

M ref Ensemble system re ference -

0 Observation vector

P(my) Prior probability -
P(m|o) Posterior probability -

q Dimension offX ando -

S Estimator ofZ;

2 Error covariance matrix of the modei

Error covariance matrix of the observations
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List of abbreviations

Abbreviation

Description

AC
AMC
ARPA-SIMC

BC
CAPE
CDF

Cl

CIN
CMC
COPS
COSMO
CRPS
D-Phase

DE-EPS
DWD
ECMWF
EL

EPS
FDP
FRA
GFS
GME
GOP

IFS

Anomaly Correlation
Air-mass Convection
Agenzia Regionale Prevenzione e Ambiente dellliBrfRomagna
Servizio Idro-Meteo-Clima
Boundary Conditions
Convective Available Potential Energy
Cumulative Distribution Function
Convective Initiation
Convective Inhibition
Canadian Weather Service
Convective and Orographically-induced PrecipitaBtudy
Consortium for Small-scale Modeling
Continuous Rank Probability Score
Demonstration of Probabilistic Hydrological
and Atmospheric Simulation of flood Events in the Alpine cegi
COSMO-DE Ensemble Prediction System
Deutscher Wetterdienst (German Weather Service)
European Centre for Medium-Range Weather Forecasts
Equilibrium level
Ensemble Prediction System
Forecast Demonstration Project
Meteo France
Global Forecast System
Global Model at DWD
General Observation Period
Initial Conditions
Integrated Forecast System
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List of abbreviations

IGN
IOP
LEPS
LFC
ME
NCEP
NWP
PDF
QPF
RMSE
SKD
SFC
SREPS
UK
UKMO
UM
WFC
WMO
WWRP

Ignorance Score
Intensive Observation Period
COSMO Limited-Area Ensemble Prediction System
Level of free convection
Mean Error
National Centers for Environmental Prediction
Numerical Weather Prediction
Probability Density Function
Quantitative Precipitation Forecast
Root Mean Squared Error
Standard Kernel Dressing
Strongly Forced Convection
COSMO Short-Range Ensemble Prediction System
UK Met Office
see UK
Unified Model
Weakly Forced Convection
World Meteorological Organization
World Weather Research Programme
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