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ABSTRACT 

The exponential increase of urban areas in Africa during the last decade has become a 

major concern in the context of local climatic change and the increasing amount of 

impervious surface. Major African cities such as Nairobi and Nakuru have undergone 

rapid urban growth in comparison to the rest of the world. In this research we 

investigated the land-use changes and used the results in urban growth modelling 

which integrates cellular automata (CA), remote sensing (RS) and geographic 

information systems (GIS) in order to simulate urban growth up to the year 2030. 

We used multi-temporal Landsat imageries for the years 1986, 2000 and 2010 

to map urban land-use changes in Nairobi and Nakuru. The use of multi-sensor 

imageries was also explored incorporating World view 2, and Advanced Land 

Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar 

(PALSAR) data for urban land-use mapping in Nakuru. We conducted supervised 

classification using support vector machine (SVM) which performed better than 

maximum likelihood classification. Land-use change estimates were obtained 

indicating increased urban growth into the year 2010. 

We used the land-use change analysis information to model urban growth in 

Nairobi and Nakuru. Our urban growth model (UGM) utilised various datasets in 

modelling urban growth namely urban land-use extracted from land-use maps, road 

network data, slope data and exclusion layer defining areas excluded from 

development. The Monte-Carlo technique was used in model calibration. The model 

was validated using Multiple Resolution Validation (MRV) technique. Prediction of 

urban land-use was done up to the year 2030 when Kenya plans to attain Vision 2030. 

Three scenarios were explored in the urban modelling process; unmanaged growth 

with no restriction on environmental areas, managed growth with moderate 

protection, and a managed growth with maximum protection on forest, agricultural 

areas, and urban green.  

Furthermore, we explored the spatial effects of varying UGM parameters using 

the city of Nairobi. The objective here was to investigate the contribution of each 

model parameter in simulating urban growth. The results obtained indicate that 
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varying model coefficients leads to urban growth in different directions and 

magnitude. However, several model parameters were observed to be highly correlated 

namely; spread, breed and road. The lowest spatial effect was achieved by at least 

maintaining spread, breed and road while varying the other parameters. The highest 

spatial effect was observed by at least keeping slope constant while varying the other 

four parameters. Additionally, we used kappa statistics to compare the simulation 

maps. High values of Khisto indicated high similarity between the maps in terms of 

quantity and location thus indicating the lowest spatial effect obtained. 

Kenya plans to achieve Vision 2030 in the year 2030 and information on spatial 

effects of our UGM can help in identifying different scenarios of future urban growth. 

It is thus possible to discover areas that are likely to experience; spontaneous growth, 

edge growth, road influenced growth or new spreading centres growth. Policy makers 

can see the influence of establishing new infrastructure such as housing and road in 

new areas compared to existing settlements.  

Moreover, the outcome of this research indicates that Nairobi and Nakuru are 

experiencing fast urban sprawl with urban land-use consuming the available land. The 

results obtained illustrate the possibility of urban growth modelling in addressing 

regional planning issues. This can help in comprehensive land-use planning and an 

integrated management of resources to ensure sustainability of land and to achieve 

social equity, economic efficiency and environmental sustainability. Hence, cellular 

automata are a worthwhile approach for regional modelling of African cities such as 

Nairobi and Nakuru. This provides opportunities for other cities in Africa to be studied 

using UGM and its adaptability noted accordingly. 

 

 

KEY WORDS: Urban growth model, multi-sensors, Radar, Cellular Automata, 
Geographic Information Systems, Remote sensing, Nairobi, Nakuru, Vision 2030, 
Sustainability. 
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ZUSAMMENFASSUNG 

Das exponentielle Wachstum afrikanischer Städte im letzten Jahrzehnt ist mit Blick auf 

die lokalen klimatischen Veränderungen und der zunehmenden Menge an versiegelten 

Oberflächen von besonderer Tragweite. Im Vergleich zu anderen Metropolen erfuhren 

afrikanische Städte wie Nairobi und Nakuru ein extensives Wachstum der urbanen 

Flächen. Die vorliegende Arbeit setzt sich mit dem urbanen Landnutzungswandel 

auseinander und modelliert die Siedlungsflächenausdehnung für das Jahr 2030 mit 

Hilfe eines Zellulären Automaten (CA), Fernerkundungsdaten (RS) sowie 

Geographischen Informationssystemen (GIS). 

Zur Kartierung der Siedlungsflächenausdehnung von Nairobi und Nakuru 

wurden multitemporale Landsat-Daten der Jahre 1986, 2000 und 2010 verwendet. 

Zusätzlich wurden multisensorale Daten von World View 2 und ALOS PALSAR für 

Nakuru eingesetzt. Die Landnutzungsklassifikation erfolgte mit support vector 

machines (SVM). Dieses Verfahren zeigte bessere Ergebnisse als eine Maximum-

Likelihood-Klassifikation.  

Auf Basis der klassifizierten Satellitendaten erfolgte die 

Landnutzungsmodellierung für Nairobi und Nakuru. Hierzu wurde die von Goetzke 

(2011) modifizierte Version von Clarke’s Urban Growth Model (Clarke, Hoppen, & 

Gaydos, 1997) benutzt. Neben den Landnutzungskarten fungieren Informationen zum 

Verkehrsnetz, zur Hangneigung und zu Ausschlussflächen als Hauptinputdaten. Die 

Kalibration erfolgte mit Hilfe von Monte Carlo Iterationen. Zur Validation des Modells 

wurde eine Multiple Resolution Validation (MRV) durchgeführt. Die 

Siedlungsflächenausdehnung wurde für das Jahr 2030 simuliert. Zu diesem Zeitpunkt 

plant das Land Kenia die Umsetzung des Vision 2030 Programmes. Es wurden 

insgesamt drei Szenarien mit dem Wachstumsmodell gerechnet: (1) Wachstum ohne 

Planungszwänge, so dass auch Siedlungsflächen in Naturschutzgebieten entstehen 

dürfen. (2) Siedlungsflächenausdehnung unter moderaten Planungsbedingungen. (3) 

Wachstum mit sehr restriktiven Planungsbedingungen, unter Einschluss des Schutzes 

von Wald-, Grün- und- Agrarflächen.  
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Des Weiteren wurde eine Sensitivitätsanalyse der modelleigenen 

Wachstumsparameter am Beispiel von Nairobi durchgeführt. Es konnte gezeigt 

werden, welchen Einfluss die Parameter auf die Intensität und das Muster der 

modellierten Siedlungsflächenausdehnung ausüben. Dabei zeigten die 

Wachstumskoeffizienten „spread“, „breed“ und „road“ eine signifikante Korrelation. 

Zur weiteren Analyse der erzielten Modellierungsergebnisse und zum Vergleich der 

räumlichen Muster wurden Kappa-Statistiken herangezogen.  

Die Arbeit sieht sich als Beitrag zum Vision 2030 Diskurs der kenianischen 

Regierung. Die simulierten Szenarien der Siedlungsflächenausdehnung von Nairobi und 

Nakuru identifizieren die für eine Urbanisierung wahrscheinlich in Frage kommenden 

Regionen. Die Studie zeigt zudem, dass sich die Siedlungsflächenausdehnung von 

Nairobi und Nakuru schnell und mit hohen Wachstumsraten vollzieht. Der Einsatz von 

CA Modellen ist ein wertvoller Ansatz zur regionalen Modellierung nicht nur von 

kenianischen sondern auch von afrikanischen Städten. Die Arbeit kann somit 

Entscheidungsträger aus Politik und Verwaltung unterstützen, indem sie die 

räumlichen Auswirkungen des zukünftigen Ausbaus der Infrastruktur und von 

Wohnflächen aufzeigt. Eine umfassende Planung von Landnutzungswandel und ein 

integriertes Management sind essentiell auf dem Weg zu einem bewussteren Umgang 

mit der Ressource Land sowie zu einer sozialen Gleichheit, wirtschaftlichen Effizienz 

und einer ökologischen Nachhaltigkeit. 
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INTRODUCTION 

1 

 

1 INTRODUCTION 

 

1.1 Purpose of the Research 

Urban studies are becoming significant tools for planners knowing that in the year 

2025 more than half the global population will be residing in cities (United Nations, 

2013). Thus, suitable urban planning ought to be a top priority for future development 

but unfortunately sound planning has not taken place in many African cities as heavy 

rural-urban migration continues to cause cities to expand at uncontrollable rates 

(Mundia & Aniya, 2007).  The population in urban areas in Africa has been increasing at 

a much faster rate than in the rest of the world and thus contributing to the 

augmentation of the existing problems such as unsuitable land-use planning (Lavalle, 

Demichili, Turchini, Casals Carrsco, & Niederhuber, 2001). The concentration of 

population in cities comprises almost 60% of the total population in most cases. In 

these immense urban settlements the environmental and social consequences are 

sometimes disastrous (Barredo & Demicheli, 2003). 

Cities in Africa such as Nakuru have experienced a fast growth rate of 13.3 per 

cent and Nairobi at 4.9 per cent (UN-HABITAT, 2010). The magnification has been 

attributed to a number of factors for Nakuru, mainly the aperture of the new 

Naivasha-Nakuru road, which links the town with Nairobi. Post-election violence is 

verbally expressed to be one of the contributing factors, since many displaced people 

from neighbouring towns visually perceived Nakuru as a safe haven. In the case of 

Nairobi, there has been high rural urban migration as people search for jobs and social 

amenities. 

The main consequences in these cities include; unsuitable land-use, inadequate 

transportation systems, pollution, depletion of natural resources, urban sprawl, 

collapse of public services, proliferation of epidemics, and other negative 

environmental and social effects (Mundia & Aniya, 2005). The changing of surrounding 

area due to city development and city residents ever-increasing demand for energy, 

food, goods and other options is behind the deterioration of local and localised 

environment which is harmful the basic environment solutions and bio-diversity. 
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Problems linked to unsustainable urban development in African cities are many and 

complex and requires an integrated approach. Such an integrated urban planning 

approach needs to recognise and anticipate urban dynamics and their consequences 

(Mundia, Aniya, & Murayama, 2010). 

Remote sensing (RS) techniques have been valuable in mapping urban 

dynamics as well as data sources which aid in the analysis and modelling of urban 

growth and land-use change (Batty & Howes, 2001; Clarke, Parks, & Crane, 2002; 

Donnay, Barnsley, & Longley, 2001). Remote Sensing offers spatially coherent data sets 

that cover big areas with both high spatial detail and high temporal frequency. These 

kinds of data sets are necessary for land-use analysis and are an essential element of 

ecological studies. As urbanisation occurs, changes in land-use accelerate and land 

making up the natural resource base such as forests and agricultural land are replaced, 

leading to fragmentation and land degradation (Mundia & Aniya, 2005). 

In this research we explored the use of multi-sensor datasets in monitoring 

land-use. SAR sensors are playing an increasingly important role in remote sensing due 

to their ability to operate day and night through cloud cover, and recent improvement 

in data availability (Rogan & Chen, 2004). Many studies have focused on the frequency 

and polarimetric dimensions of SAR data in land-use classification (Chen, Chen, & Lee, 

2003; Cloude & Potter, 1997; Lee, Grunes, & Kwork, 1994), whereas SAR image texture 

is found helpful in improving map accuracy, particularly for urban and forest categories 

(Dekker, 2003). 

The study of land-use changes is essential not only for land-use management 

but also in detecting environmental change and in formulating sustainable 

development strategies (Barnsley & Barr, 1997). Land-use changes should be 

accurately investigated and the information used in documenting urban growth, 

making policy decisions and improving land-use planning. Such information is also 

required for predictive modelling (Bullard & Johnson, 1999; Gross & Schott 1998; 

Jacobson, 2001; Epstein , Payne, & Kramer, 2002); Aitkenhead & Aalders, 2009; Mas, 

Pérez-Vega, & Clarke, 2012). 
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Models help in evaluation the land-use change phenomenon and predict 

plausible planning activities for sustainable cities. This is a vital topic in present 

research agenda and a noteworthy number of scientists are offering their efforts in the 

study of this phenomenon. Among all developed urban growth models, cellular 

automata (CA) urban growth models performance well in simulating urban 

development than conventional mathematical models. CA are able to predict urban 

growth based on the assumption that past urban development affects future patterns 

through local interactions among land-uses (Santé, García, Miranda, & Crecente, 

2010). Thus, CA simplifies the simulation of complex systems. Moreover CA are 

appropriate in urban modelling due to the fact that the process of urban spread is 

entirely local in nature. Therefore, CA models are outstanding depicters of urban 

dynamics (Divigalpitiya, Ohgai, Tani, Watanabe, & Gohnai, 2007).  

Models based on cellular automata are impressive in terms of their 

technological evolution in connection to urban applications. Development of a CA 

model involves rule definition and calibration to produce results consistent with 

historical data, and future prediction with set rules (Batty & Xie, 1994b; Clarke & 

Gaydos, 1998; Yang & Lo, 2003). 

Many CA-based urban growth models are documented in the literatures 

(Triantakonstantis & Mountrakis, 2012). CA model involves reduction of space into 

square grids (White & Engelen, 1993). They implement the defined transition rules in 

recursive form to match the spatial pattern. CA models are usually designed based on 

individual preference and application requirements with transition rules being defined 

in an ad hoc manner (Li & Yeh, 2003). Most of the developed CA models need intensive 

computation to select the best parameter values for accurate modelling.  

In this research, CA was used to study land-use change and prediction of future 

trends in Nairobi and Nakuru as Kenya attains Vision 2030 in the year 2030 

(Government of Kenya, 2007). The model used was an urban growth model (UGM) 

which was a modification of SLEUTH model. We developed an UGM for our two cities 

with different parameters. Three scenarios were explored in the urban modelling 

process; unmanaged growth with no restriction on environmental areas, managed 
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growth with moderate protection, and a managed growth with maximum protection 

on forest, agricultural areas, and urban green. Additionally, we explored the spatial 

effects of varying model parameters in the city of Nairobi. The objective here was to 

explore the contribution of each model parameter in simulating urban growth. 

The UGM’s for Nairobi and Nakuru were based on urban land-use change 

information obtained in the years 1986, 2000 and 2010. Furthermore, each model was 

calibrated using multi-stage Monte Carlo method and a 20 year prediction simulation 

ran until 2030. The models aimed at predicting the future land-use development under 

the existing and modified urban planning policies.  

1.2 Statement of the problem 

On a global basis, nearly 6.8 million km2 of forest, woodlands and grasslands have been 

converted to other land-uses over the last three centuries (Agarwal, Green, Grove, 

Evans, & Schweik, 2002) and most of the changes were into urban land-use. These 

changes in land-use have significant implications on the earth’s resources and climate.   

On a local basis, there has been rapid urban growth in Nairobi and Nakuru. 

Nairobi being Kenya’s capital city has witnessed high urban growth as Kenya gained 

independence in 1963. Much of the urban growth has been attributed to high rural 

urban as people search for jobs and social amenities. The land-use in Nakuru 

Municipality has been noted to have changed significantly; urbanisation began at a 

very high rate between 1973 and 1986, but still continued into year 2010 at a 

moderate rate (Mubea, Ngigi, & Mundia , 2011; Mundia, Mubea, & Gachari, 2011; 

Mubea & Menz, 2012; Mubea, Goetzke, & Menz, 2013). Nevertheless, in both cities 

there has been a decrease in agricultural land-use implying that such land has been 

converted into urban land-use. Furthermore, vegetation has decreased implying 

destruction of forests through deforestation and changing climatic conditions which 

inhibit natural growth of vegetation. Economic development and the rising population 

have been noted to be the major factors influencing land-use. Thus, consideration and 

careful assessment are required for supervising and designing land-use management, 

urban development and decision making.  
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This research on modelling urban land-use using GIS and RS is expected to 

provide a better understanding and give perspective into the impacts of human 

activities and associated land-use changes simulated over time till the year 2030 when 

Kenya attains Vision 2030. To achieve this we formulated three scenarios of urban 

growth. Specifically, the impacts of human activities and environmental conflicts that 

have risen as a result of competition over the limited resources in both cities were 

investigated. This in turn will allow for comprehensive land-use planning and an 

integrated management of resources. Thus, the resources should be managed in such 

a way as to ensure sustainability of land and to achieve social equity, economic 

efficiency and environmental sustainability. 

1.3 Research Questions 

i. How will the urban land-use classification using multi-sensor data perform? 

ii. How dynamic is the urban land-use change? 

iii. How precise can the urban land-use change be assessed and modelled? 

iv. What will be the extent of the land-use changes in the future? 

v. Which urban growth scenario will lead to sustainable development? 

1.4 Research objectives 

The main objective of this research was to develop a regionalised CA for Nairobi and 

Nakuru based on urban growth model (UGM) for better planning and management of 

resources. To achieve this, we formulated the following specific objectives: 

i. To develop a calibration algorithm that takes into consideration spatial and 

temporal dynamics of urban growth in Nairobi and Nakuru. 

ii. Monitor land-use information. 

iii. Explore multi-sensor image classification 

iv. Predict urban growth in Nairobi and Nakuru into the year 2030 under 

various scenarios. 

v. Compare UGM of Nairobi and Nakuru. 

vi. Explore spatial effects of varying our UGM parameters 
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1.5 Outline of the research 

This dissertation is organised into seven chapters as shown on Figure 1-1. Chapter 1 is 

the introductory chapter. It gives a general overview of the research. Here the 

objectives are outlined as well as the purpose of the research. 

Chapter 2 describes various modelling approaches. The history and elements of 

cellular automata as well as their theoretical background are explained. Additionally, 

modelling approaches are defined and explained. The role of GIS and RS is outlined. 

The role of CA in urban growth modelling is also described.  

Chapter 3 addresses urban growth in African cities with Nairobi and Nakuru as 

the case studies. The research areas are explained alongside urban growth in the cities. 

Chapter 4 illustrates the monitoring of land-use changes. The methods of RS 

data collection and processing are discussed. Land-use change dynamics are described 

using multi-temporal Landsat for the city of Nairobi and multi-sensor data for Nakuru. 

The results of land-use change analysis and urban growth in Nairobi and Nakuru are 

presented and discussed. We published the results of monitoring land-use using multi-

sensor satellite data in our first journal paper and poster sessions as shown below:  

 Mubea, K. and Menz, G. (2012) 'Monitoring Land-Use Change in Nakuru (Kenya) 

Using Multi-Sensor Satellite Data', Advances in Remote Sensing, vol. 1, no. 3, 

Dec, p. 74–84. 

 Mubea, K. and Menz, G. (2012) ' Monitoring Urban Land-Use and Land-Cover 

Changes for Nakuru (Kenya) using Multi-Sensor Datasets ', AK Fernerkundung 

Bochum, 4 – 6 October 2011, Bochum. 

 Mubea, K. and Menz, G. (2013) ' Monitoring Urban Land-Use Changes for 

Nakuru (Kenya) using Multi-Sensor Datasets ', ESA 4th Land Remote Sensing 

course - Harokopio University, 1 - 5 July 2013, Athens. (Best paper award in 

Land use land cover) 

Chapter 5 presents the modelling of urban growth in Nairobi and Nakuru using 

cellular automata. The methodology adopted is outlined and discussed. XULU 

modelling framework is explained. Urban growth model (UGM) is discussed. The 

method of multiple resolution validation (MRV) for model comparison and validation is 
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explained. The data sets used are introduced. The results of urban prediction Nairobi 

and Nakuru are presented and discussed based on the three urban growth scenarios. 

We published some of the results from this chapter in journals and poster sessions as 

follows: 

 Mubea, K., Goetzke, R. and Menz, G. (2014) Applying cellular automata for 

Simulating and Assessing Urban Growth Scenario Based in Nairobi. 

International Journal of Advanced Computer Science and Applications, Vol.5 

No.2. pp. 1 - 13. doi: 10.14569/IJACSA.2014.050201. 

 Mubea, K., Goetzke, R. and Menz, G. (2013) Simulating Urban Growth in 

Nakuru (Kenya) using Java-Based Modelling Platform XULU, 2013 UKSim-AMSS 

7th European Modelling Symposium, Manchester , pp. 97 - 102. doi: 

10.1109/EMS.2013.18.   

 Mubea, K., Goetzke, R. and Menz, G. (2013) ' Modelling Urban Land-Use in 

Nairobi Using Cellular Automata', AK Fernerkundung Tübingen, 26 – 27 

September 2013, Tübingen.  

 Mubea, K., Goetzke, R. and Menz, G. (2013) ' Simulating Urban Growth in 

Nakuru (Kenya) Based On a Constrained Cellular Automata Model And Decade 

Landsat-Data ', ESA Living Symposium, 9 – 13 September 2013, Edinburgh. 

 

Chapter six explores the spatial effects of varying model parameters. The 

objective here was to explore the contribution of each model parameter in simulating 

urban growth. Each model parameter influences urban growth independently. The 

results of this chapter were submitted for publication as follows: 

 Mubea, K., Goetzke, R. and Menz, G. (submitted to CEUS, Computers 

Environment and Urban systems journal) Spatial Effects of Varying Model 

Parameters in Urban Growth Modelling In Nairobi, Kenya (submitted on 

29.11.13, status: Under review) 

 

Chapter 7 summarises the findings of this research in comparison to the 

research objectives. The predicted results indicate rapid urban growth in both cities 
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with urban land occupying a large percentage. Furthermore the chapter offers 

suggestions for further research. 

 

 

Figure 1-1: Research flowchart 
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2 URBAN GROWTH MODELLING AND CELLULAR AUTOMATA 

 

2.1 Introduction 

This research aims at developing regionalised cellular automata for Nairobi and 

Nakuru, Kenya. This chapter introduces urban growth modelling, cellular automata and 

modelling with cellular automata.  

Approximately half of the world’s population (47 per cent) lives in urban areas, 

a figure which is expected to grow tremendously by 2025 (United Nations, 2013). An 

urban area is a system of essentially related sectors of industry, housing and 

population (Forrester, 1969). Urban areas include cities, towns and conurbations. 

Additionally, urban areas represent a mix of related units, but the degree and nature 

of the relationships are sometimes hard to establish (Barredo, Kasanko, McCormick, & 

Lavalle, 2003). Likewise, urban areas are characterised by certain land-uses such as 

residential, commercial, and industrial. Anderson, Hardy, Roach, & Witmer, (1976) 

describe the major land-use groups and disparities in spatial decrees of the satellite 

remote sensing sensors in the field of remote sensing (see appendices 9.1.2 and 9.1.3). 

Studies by Dalton (2006), Park (2007) and Hillier, Turner, Yang, & Park, (2007) 

suggest that three spatial factors could be involved in defining urban areas: internal 

structure, contextual structure, and the relation between the two. Urban areas 

typically have fuzzy boundaries which arise from the way space is structured internally 

and how this relates to the external structure of space. Fuzzy boundaries can be 

effective in supporting functional differentiation of areas or the growth of areal 

identities and characters, but do not depend on the area being either spatially self-

contained or geometrically differentiated, or having clear spatial limits. It is the 

relation of urban parts and their further surroundings that determine fuzzy boundaries 

of these urban parts (Yang & Hillier, 2007). 

Urban development and the migration of much of the population from rural to 

urban areas are important global phenomena in the 21st century. The driving forces of 

urbanisation include jobs and social amenities while in Africa, conflict, land 

degradation and depletion of natural resources are very significant (Mundia & Aniya, 
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2006). To a larger extent, more small isolated population centres are shifting into large 

metropolitan cities at the expense of agricultural land-use, deforestation, and the 

destruction of natural landscape and public open space (Liu, 2008). Consequently, this 

has been a topic of concern over the last few decades due to global climate change. 

Urban growth in African cities is explained in section 3. 

2.2 Urban growth modelling 

Urban growth modelling studies are currently considered an essential component for 

numerous complex environmental approaches (Triantakonstantis & Mountrakis, 2012). 

In this section we introduce models and their types. 

2.2.1 Models 

A model is a simplified representation of reality in either material form (tangible) or 

symbolic form (abstract) for purposes of description, explanation, forecasting of 

planning. GIS modelling involves symbolic representation of locational properties as 

well as thematic and temporal attributes describing characteristics and conditions of 

space and time (Berry J. K., 1995). 

Spatial models are increasingly employed as decision support tools in urban 

planning in order to inform planners and decision makers (Hill & Lindner, 2011; 

Fuglsang, Münier & Hansen, 2013). Spatially explicit models support the evaluation of 

land-use change and predict plausible planning activities for sustainable cities. This is a 

vital topic in present research agenda and a noteworthy number of scientists are 

offering their efforts in the study of this phenomenon.  

Urban models help scientists to analyse the form, speed, and impact of urban 

growth in the past, to assess current trends and to simulate scenarios of future 

development. A model maybe suitable for one area in terms of parameters and it has 

to be localised in another research area since the underlying factors of growth are 

different. An urban model has to be calibrated so as to “learn” the endogenous 

characteristics of the particular environment that they explain and simulate (Silva & 

Clarke, 2002). However, in order to model urbanisation processes across different 

areas, it is vital to test the efficiency of the model’s algorithms at capturing and 
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simulating the land transformations that are specific to a place (Batty & Xie, 1994b; 

Clarke, Hoppen, & Gaydos, 1996; Li & Yeh, 2000).  

Cellular automata (CA) models are ideal for modelling land-use in areas where 

data is unavailable and experiencing rapid urban growth (Hill & Lindner, 2011). CA and 

agent-based modeling, have shown potential in representing and simulating the 

complexity of the dynamic processes involved in urban growth and land-use change, 

and provide an additional level of knowledge and understanding of spatial and 

temporal change (Dietzel & Clarke, 2007). 

Decisions made on land-use planning and allocations have a direct 

consequence in the future development. In this context urban models serve as tools 

which help policy makers achieve sustainable development through highlighting 

various simulations of land-use scenarios and understanding the consequences of 

different driving forces (Verburg, Schot, Dijst, & Veldkamp, 2004). Thus, policy makers 

are able to make more informed, comprehensive and objective decisions on land-use 

planning so as to achieve social equity, economic efficiency and environmental 

sustainability. Among all developed urban growth models, CA perform well in 

simulating urban development (Triantakonstantis & Mountrakis, 2012).  This research 

aimed at developing regionalised cellular automata for Nairobi and Nakuru and Kenya. 

2.2.2 Types of Models 

Spatial models represent features under investigation in terms of space and attribute 

information. These models can be classified into the way they are formulated, 

representation of real-world phenomena, dimension and resolution, and whether they 

are static or dynamic. 

Firstly, spatial models are classified into the way they are formulated and we 

obtain namely scale, conceptualisation and mathematical models (Steyaert, 1993). 

Scale models usually represent real-world physical features such as digital terrain 

models (DTM). Conceptual models use quasi-natural language or flowcharts to outline 

the components of the system under investigation and highlight the linkages. 

Mathematical models operationalize conceptual models by representing their 
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components and interactions with mathematical rules. Additionally, mathematical 

models can use scale models to organise their data. 

Secondly, spatial models are classified into how they deal real phenomena 

(Berry J. K., 1995). Deterministic models generate repeatable solutions based on the 

direct evaluation of defined relationships such that they do not allow for the presence 

of random variables. Probabilistic models are based on probability distribution of 

statistically independent events and generate a range of possible solutions. Stochastic 

models are probabilistic models with conditional probability distribution taking into 

account temporal or spatial persistence. 

Thirdly, spatial models are classified according to their dimension and 

resolution in space which ranges from microscopic to macroscopic as well as according 

to time and attributes. The space dimension can be represented by objects with zero 

dimensions (points), one dimension (lines), two dimensions (areas) or three 

dimensions (volume). The size of the objects may range from a few metres to 

thousands or kilometres. Similarly, the time dimension is represented with zero 

dimensions (event) or one dimension (process), the resolution range of between a few 

seconds to hundreds of years. The attribute dimension can be single or multi-attribute 

while the resolution ranges from individual objects to large collectives. 

Lastly, spatial models are classified as either static or dynamic. A static model 

treats time as constant and model variables that do not vary over time e.g. a map of 

timber value based on forest inventory and relative access to existing roads (Berry J. K., 

1995). These models are associated with a steady state or equilibrium. Dynamic 

models use time as variable and model variables change as a function of time e.g. a 

map of the spread of pollution from a point source (Berry J. K., 1995).  

2.2.3 Challenges  

Models are used in a variety of fields, including land-use change science, to better 

understand the dynamics of systems, to develop hypotheses that can be tested 

empirically, and to make predictions and/or evaluate scenarios for use in assessment 

activities (Brown, Walker, Manson, & Seto, 2004). Usually the model results are 
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verified against reality. Nonetheless, in the case of prediction of the future, it is hard to 

verify and validate the simulation results. 

Moreover, verification and validation infers to the exactness and reliability of a 

model and its dependability in decision making (Parker, Manson, Janssen, Hoffmann, & 

Deadman, 2003). Thus, once a model has been verified we can say that its truth has 

been achieved. Techniques of model verification involve debugging the simulation 

algorithms as well as ensuring that model structure is appropriate. Model validation 

involves comparing the outcomes of the model to reference data and observations. 

Once a model is verified and works correctly, then the modeller is concerned with 

validation comparing model outcomes to outside data and expectations. However, the 

descriptions above are tied to models notwithstanding their modelling operations 

(Oreskes, Sharader-Freschete, & Belitz, 1994). 

Nevertheless, verification invokes the robustness of a model to be re-used in 

similar circumstances against a set of observations, reference data and assumptions. 

However, achievement of model verification involves striking a balance between 

theory and data (Batty 2001a; Batty 2001 b). Additionally, this involves varying model 

parameters and invovles modifying model objects and linkages among them in the 

software code. Currently, modellers are confirming to International Standard 

Organisation (ISO) standards so as to facilitate verification. 

The key to verification is sensitivity analysis of relationships between model 

parameters and the state or time path of variables endogenous to the modelled 

system (Parker, Manson, Janssen, Hoffmann, & Deadman, 2003). Thus, the changes in 

parameter are compared to model results so as to test the the limitations in applying 

the model in terms of spatial and temporal extent.  

Validation concerns how well model outcomes represents real system 

behaviour (Parker, Manson, Janssen, Hoffmann, & Deadman, 2003). Hence, this 

involves comparing model results with actual observations. Model results are 

compared to actual observation using a variety of techniques. Pontius Jr et al., (2008) 

compared results of 9 land-use change models using the method of multiple resolution 

map comparison. 
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Shortcomings in verification and validation in urban growth modelling are a 

result of scale related problems (Parker, Manson, Janssen, Hoffmann, & Deadman, 

2003). Nonetheless, Lam and Quattrochi (1992) disccuss the effects of changing scale 

and resolution in data analysis. Thus, analysing geographic phenomena at different 

scales and resolution can be advantageous for instance when a large area is 

represented at a small scale and analysis can be done with less computer times and 

memory. However, when a small area is represented using medium resolution data 

then this implies some geographic phenomena will not be captured fully depending on 

the focus of the research e.g. in urban planning studies. 

The spatial extent (window size) from which pattern metrics are estimated has 

been shown to influence and produce biases in the results of these spatial analyses 

(Saura & Martinez-mlian, 2001). Saura and Martinez-mlian (2001) explored the 

sensitivity of eight commonly used landscape configuration metrics. Their approach 

makes it possible to control and isolate the different factors that influence the 

behavior of spatial pattern metrics. 

The effects of scale have been noted to be mathematically casual, as the 

different variables vary as a function of the scale at which they are represented (Bian, 

1997). Thus, the choice of data for urban growth modelling depends on the geographic 

phenoma being modelled. For the example of a city, a big sample size ought to be 

selected so as to represent the diverse urban land-uses including urban and peri-urban 

uses. Recently, high spatial scale data products have become available with recent 

developments in remote sensing and technology. However, urban growth modelling 

requires historical data of which most is still in low resolution such as old aerial 

photographs. The challenge for modellers is combining the various data sources at 

different scales for urban growth modelling. 

There is need for assumptions necessary for verification and validation, such as 

normality and linearity (Parker, Manson, Janssen, Hoffmann, & Deadman, 2003). 

Nonetheless, understanding complexity of modelling is difficult and involves use of 

techniques such as such as active nonlinear testing, which seeks out sets of strongly 
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interacting parameters in a search for relationships across variables that are not found 

by traditional verification and validation. 

Furthermore, another challenge lies in abstraction, since many outcomes of 

human interaction, such as trust or learning, are imputed or abstract (Parker, Manson, 

Janssen, Hoffmann, & Deadman, 2003). Hence, validating abstract outcomes is 

difficult, since they are ill defined or not easily measured. 

In summary, after successful validation of a model, it can be used severaly to 

predict the real world. However, it should be possible to re-validate in case model 

parameters change considerably. As a common practise several sets of different 

validations are performed so as to ensure that the predicted results are in agreement 

with desired results or reference data. In this research we used a cellular automata 

UGM. Calibration and validation were performed in XULU. Calibration and validation 

are described in section 5. 

2.2.4 Model uncertainty 

Model uncertainty consists of four major components: uncertainty in model inputs, 

initial values, model structure, and uncertainty in the observations (Klepper, 1997). 

Nonetheless, accuracy of  spatial models depends on the accuracy of model inputs and 

their sources. For example land-use models use remotely sensed data which contain 

uncertainty and error related to the sensor systems, processing, analysis and image 

processing software employed (Lunetta, et al., 1991).  Besides, data used in simulation 

models also contain positional errors and attribute errors (Yeh & Li, 2006). This is 

illustrated in Figure 2-1. 
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Figure 2-1: Data errors, model uncertainties, and error propagation in modelling  

(Source: Yeh and Li, 2006) 

The issue of uncertainty in model structure can be solved by reformulating the 

model parameters. For example if we have two alternative (sub)models M 1 and M2, 

we could use the hybrid model pM 1 + (1- p)M2, with p a switch parameter between 0 

and 1 (Klepper, 1997). However, this solution might not work as different models are 

qualitatively different. 

Nonetheless, a quantitative approach to uncertainty analysis is proposed as the 

most appropriate way to deal with uncertainty (Frey, 1992). Uncertainity occurs 

naturally in data randomly due to precise measurements conducted. As introduced 

earlier on, models are representation of real world and their structure can be source of 

uncertainity. Models apply mathematical formulars to represent reality. Additonally, 

models intially calibrated for one region must be re-calibrated so as to be applied in 

other areas. Likewise, we have uncertainity in the data and calibration errors being 

introduced as a result of system biases, errors in estimation of model parameters 

(Frey, 1992). 

A majority of models are formulated using prior knowledge of the system 

rather than from observations and this often produces a large number of model 

parameters. Thus, uncertainity in model parameters involves conducting a parameter 

sensitivity or identifiability which is not a one-dimensional property, and differs for 

various outputs and output times (Klepper, 1997). 
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There is greater uncertainty (and potential for error) in predicting 

socioeconomic inputs in a model (Barton-Aschman Associates, Inc. and Cambridge 

Systematics, Inc., 1997). Thus, sources of significant uncertainty ought be identified 

early in an any operative validation process. Recent developments point to the use of 

intervals in analysis of uncertainty and thus to fuzzy set theory (Moore & Lodwick, 

2003). Interval analysis has been used in mathematics in areas such as logic, 

probability, computation of the range of functions, and validation methods. These has 

both direct and indirect relationships to fuzzy set theory. 

Interval mathematics is to estimate upper and lower limits on model 

predictions due to parameters that are known to be unknown while Fuzzy theory is 

used to represent uncertainty through the process of fuzzification (Pradhan & 

Kockelman, 2002). Moreover, uncertainity of model inputs are represented using 

probabilistic analysis which are delineated by probability distributions (Papoulis, 1991). 

Probabilistic approaches comprise analytical methods and sampling based methods. 

Sampling based on uncertainity analysis methods involve running the original 

model for a set of input and parameter combinations, and using the model outputs at 

those points to estimate model sensitivity (Pradhan & Kockelman, 2002). Such 

methods include the Monte Carlo and Latin Hypercube methods (Fishman, 1996), 

Fourier Amplitude Sensitivity Test (FAST) methods (McRae, Tilden, & Seinfeld, 1982), 

reliability based methods (Bjerager, 1990), and response surface methods (Fedorov, 

1983).  

Monte Carlo (MC) methods have been used in most cases for analysing 

uncertainty in complex urban systems. They involve random sampling from the 

distribution of inputs, and successive model runs until a statistically significant 

distribution of outputs is obtained (Pradhan & Kockelman, 2002). MC methods are a 

convenient way to study error propagation when mathematical models are 

problematic to define (Yeh & Li, 2006). Thus, perturbations are inserted in spatial 

variables so that the sensitivities of the perturbations in urban simulation can be 

examined. 
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MC has been implemented in various urban growth models such as CLUE-S 

(Menz, et al., 2010), SLEUTH (Silva & Clarke, 2002) and UGM (Goetzke, 2011). In this 

research MC was perfomed for our UGM in XULU. Additionally, we carried out 100 MC 

simulation runs of urbanisation maps and achieved model calibration using several 

iterations as shown in section 5.6. Furthermore, we conducted spatial effects of 

varying model parameters as well as the sensitivity of the model in urban growth 

simulation in section 6. 

 

2.3 Modelling urban growth 

2.3.1 Background 

Urban modelling thrived in the late 1950s and continued till the late 1960s. This was 

realised as the use of computer models of urban land-use and transportaion in urban 

planning began (Klosterman, 1994; Wegener, 1995). Computerised models of cities 

were introduced and developed further by emerging insights of regional science, linear 

programming, and operations research, to yield urban development models 

(Klosterman, 1994). In the 1970s urban modelling began to decline as a result of the 

massive transformation from an industrial to an information economy (Lee, 1973; Su, 

1998). In the period 1960s till 1980s modelling approaches were static and linear and 

consisted of regression analysis, mathematic programming, input-output analysis. 

These tehcniques were inadequate to reflect the complex, dynamic and non-linear 

factors inherent in urban systems (Klosterman, 1994; Su, 1998). The models were too 

ambitious as they tried to replicate complex sytsems all at once with limited 

background of urban structures and process. Urban modelling shifted from macro to 

micro, aggregate to dissaggregate, static to dynamic, linear to non-linear due to the 

uncertanity that existed in the process of urban evolution (Su, 1998).  

The development of the GIS as well as the integration of a GIS and 

transportation with urban modelling has facilitated urban modelling with rich data 

sources and new techniques (Liu, 2008). This has enabled users to go beyond data 

inventory and management stage to conduct sophisticated modelling and simulation 

including spatial analysis (Klosterman, 1994; Su, 1998).  
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The dimensions of time and space have been incorporated into urban 

modelling such as in CA models. CA focus on urban morphology and dynamics of urban 

growth and sprawl. These models have been recognised in simulating and predicting 

spatial patterns of urban development. CA represents a study area as fine-scale grid in 

which diffusion of development is embedded.  These models are dynamic and much 

better at conducting spatial modelling compared to traditional models used in 

industrial revolution time such as Weber’s (1909) industrial location model. 

Tradition models were driven by policy. Recent models are dynamic and 

influenced by technological developments in GIS and remote sensing, and view cities 

as complex systems in a bottom up approach (Batty, 2001b). These models help policy 

makers in understanding complex cities and in exploring scenarios of urban growth. 

2.3.2 Modelling approaches 

The first use of models in urban modelling was von Thünen classical model of 

agricultural location (von Thünen, 1826). Von Thünen theory states that the best 

location will be selected by a farmer depend on distance to the market, prices fetched 

for sale of goods and rent paid on land. Thus most expensive agricultural products with 

high transportation cost will be located near to the city while the low value goods with 

low transport cost will be located further from the city. 

Weber (1909) came up with an industrial location theory and was the first step 

into urban growth modelling. He noted that a location of an industry is guided by 

factors such as the availability of raw materials, power, politics, market, and 

transportation connection. Thus this can be regarded as location theory due to the 

availability of transportation networks.  

Christaller (1933) invented the Central Place Theory. The theory accounts for 

the size and distribution of settlements within an urban centre. The assumption is that 

a rural farm population is dispersed over a homogeneous plain. Thus a consumer will 

purchase from the closest central point and the seller will supply goods to a centralised 

high purchasing power location. 

Burgess (1925) invented the Concentric Zone Model. The model gave first 

instances on the concept of central business districts (CBD). This model was based on 
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the notion that various elements of a heterogeneous and economically complex urban 

society actively compete for favourable locations within the city. The competion in this 

context implies successive outward expansion of urban land thus forming a series of 

concentric zones that surround the main centre. Thus a city expanded outward, led by 

successively lower income groups in a continuing process of invasion and succession 

(Adams, 1970). The model did not account for biophysical factors such as topography 

and transportation. 

Hoyt’s (1939) invented the Sector Model. He studied residential patterns and 

discovered that residential areas tend to grow outward from the centre as people’s 

income increase. Unlike Burgess model which was static, Hoyt considered 

transportation and topography as well as land-use patterns. He concluded that as a 

city expanded in size and area the various economic activities and social-economic 

groups expanded their territories outward from the centre creating pie-shaped wedges 

of distinct land-use types (Adams, 1970). Thus high class residential areas were likely 

to spread to higher grounds and along waterfronts.  

Harris and Ullmans (1945) invented the Multiple Nuclei Model. The model 

suggested that urban growth patterns followed general ecological principles observed 

by Burgess. Urban gorwth was spread over growing points or nuclei. Such multiple 

nuclei attracted new populations whereas others discouraged urban growth. Multiple 

nuclei grew into big cities with new districts attracting more urban growth compared 

to others.  

Alonso (1964) invented urban land markets or bid-rent theory. He stated that 

land is developed in an area were rent is minimal and transportation costs are saved. 

He defined a bid-rent curve involving a set of combinations of rent and transport 

inputs to represent an equal satisfaction level for an individual. Thus the value of land 

decreases in a curvilinear function with increasing distance from the city centre. 

Lowry (1964) developed the model of metropolis. The model assumed that 

residential areas were distributed in a logical way around centres of employment. 

Another assumption was that the location and employment levels of the service sector 

were strongly influenced by accessibility to local customers whose effect was 
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progressively reduced the farther away they lived. Lowry categorised urban 

employment into basic and non-basic parts in an urban economic base. 

Janelle (1968) described urban growth based on transportation and 

investigated the aspect of time and space interaction. He proposed a time-space 

convergence model in which transportation influenced growth between two 

neighbouring towns. Thus two towns will tend to converge more if the travel times 

between them decreases as a result of an increased travel speeds and developments in 

transportation modes. 

Forrester (1969) developed the urban dynamics model.  It was based on system 

dynamics technique and was used for simulating urban development. He applied the 

concepts of industrial dynamics and simulated the development of housing and 

industry over a city divided into 16 zones (Burdekin, 1979). Forrester (1969) 

distinguished between activities in urban systems as population, housing and industry 

as well their interactions. However, the model lacked spatial disaggregation and 

omitted suburb areas. 

Crecine (1969) developed TOMM (Time-Oriented Metropolitan Model) and this 

among the first attempts into dynamic modelling. The model was designed for the 

Pittsburgh Community Renewal Program and was based upon a quasi-dynamic 

interpretation of Lowry's model of metropolis. However, the model was organised 

around the comparative-static framework used by Lowry, but was designed to 

simulate incremental changes in the structure of the urban system. 

Adams (1970) explored residential land-use in Midewestern cites in USA.  He 

came up with a hypothetical model illustrating residential pattern from construction 

data gathered from 1889 to 1960. The model was in agreement with distance-density 

decline interpretations of American urban population structre. He compared density 

gradients with the age of cities. His model assumed four transport eras: the 

walking/horsecar (before 1850), the electric streetcar (1880 – World War I), the 

recreational auto era (1920 – 1941) and the freeway era (post World War II). 

Residential development tended to occur at sites on the mrgins of built-up urban 
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areas. Population densities dropped as as more people owned cars. Urban areas 

expanded further outwards from their centres due to increased mobility and economy.  

During the 1970s and 1980s, the aggregate static approach to theory and 

modeling began to switch around to more bottom-up decentralised dynamics (Batty, 

2009). Batty (1972) made attempts to address the integration of system behaviour 

within models and developed a dynamic simulation model. His model treated both the 

temporal and spatial dimensions together. The model incorporated land-uses, 

activities and their interactions.  

2.3.3 Current practices in urban land-use modelling 

Urban land-use models are crucial as they support planning and development of 

sustainable urban areas (Herold, Menz, & Clarke , 2001). These models have been 

classified into several categories (Herold, Menz, & Clarke , 2001; Agarwal, Green, 

Grove, Evans, & Schweik, 2002). 

California Urban future 2 (CUF 2) is a deterministic and stochastic modelling 

framework for simulation of how growth and development policies might alter the 

location, pattern, and intensity of urban development (Landis & Zhang , 1998). It based 

on raster and for grid cell sizes of 100 m x 100 m. It has been used to model residential, 

commercial and industrial urban land-uses. It uses fixed time steps for prediction of 

land-use change in historical calibration time frame around 5 to 10 years. It requires 

input datasets on urban land-use, topography and transportation infrastructure. 

Land-use change analysis system (LUCAS) is a stochastic model used to examine 

the impact of human activities on land-use and the subsequent impacts on 

environmental and natural resource sustainability (Berry , Flamm , Hazen , & MacIntyre 

, 1996) . Its raster based and its resoultion varies. 90 m x 90 m grid cells have been 

used in previous studies. It uses variable time steps for example a case study of 100 

years and a 5 year time prediction step. It represents landscape as described by 

Anderson level I class (see appendices 9.1.2 and 9.1.3) and urban land-use comprises 

of residental land-use either as low or high density (Anderson, Hardy, Roach, & 

Witmer, A land use and land cover classification system for use with remote sensor 
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data, 1976). The model requires input datasets on urban land-use, topography, 

population density and transportation infrastructure.  

Land Transform Model (LTM) simulates land-use change processes using 

cellular automata (Pijankowski, Long , Gage, & Cooper, 1997). Forecasting of land-use 

change is based on ecological principles at the catchment scale. It is raster based and 

allows different spatial scales for process e.g. 30 x 30 m2 parcel, 100 x 100 m2 parcel 

and 300 x 300 m2 parcel. It uses variable time steps of 5 – 10 years for prediction for a 

study period of 20 – 50 years. It represent landscape as described by Anderson level I 

class and this is urban which contains residental land-use divided by density 

(Anderson, Hardy, Roach, & Witmer, A land use and land cover classification system for 

use with remote sensor data, 1976). The model requires input datasets on urban land-

use, topography, population, employment and transportation infrastructure. 

Klosterman (1999) introduced What If, a scenario-based deterministic planning 

support system which supports traditional planning activities such as land-use 

planning, urban modelling and emerging modes of collaborative planning. It is based 

on vector data and entitles unifrom analysis of zones which are homogenous land units 

and are derived from overlay of relevant layers of natural and human parameters. It 

uses variable time steps for instance for 5 – 10 years time steps will be used for a 25 

year prediction period. It has been used to model residential, commercial and 

industrial urban land-uses. The model requires input datasets on urban land-use, 

topography and transportation infrastructure. 

UrbaSIM is a software based, semi-empirical, object-oriented modelling system 

for integrated planning and analysis of urban, development, incorporating the 

interactions between land-use, transportation, and public policy (Waddell, 1998). It is 

vector based and parcels are modelled as entities for land development with grid cell 

sizes of 150 m x 150 m. It uses variable time steps of 1 year. It has been used to model 

parcel attributes such as socio-economic and land-use characters. The model requires 

input datasets on urban land-use, biophysical and socio-economic datasets. 

SLEUTH or Clark Urban Growth Model simulates urban growth in order to aid in 

understanding of interactions of urban areas with other land-uses (Clarke & Gaydos, 
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1998). It is raster based and case study areas are in grid sizes of 30 m x 30 m, 50 m x 50 

m, 1 km x 1 km. Yearly predictions are possible with case studies ranging up to 90 years 

of future prediction. It models urban/non-urban but more focused on delineation of 

urban land-uses. The model requires input datasets on urban land-use, topography 

and transportation infrastructure. 

Urban Growth Model (UPLAN) is a land use evalution and change analysis tool 

which aides communities create alternative development patterns based on local land 

development policies (Shabazian & Johnston, 2001). Its raster based with a resolution 

of 200 m x 200 m for low density residential areas and 50 m x 50 m in all other 

categories. It uses variable time steps for 20 to 40 years of prediction. It has been used 

to model residential (divided by density), commercial and industrial urban land-uses. 

The model requires input datasets on urban land-use, topography and transportation 

infrastructure. 

 Urban Growth Model (UGM) is a modification of SLEUTH and was first applied 

for the German federal state of North-Rhine Westphalia (Goetzke, 2011). It is raster 

based and case study areas are in grid sizes of 30 m x 30 m, 100 m x 100 m. Yearly 

predictions are possible with case studies ranging up to 30 years of future prediction. It 

models urban/non-urban but more focused on delineation of urban land-uses. The 

model requires input datasets on urban land-use, topography and transportation 

infrastructure. Thus, we applied UGM in this research to simulate urban growth in 

Kenya using the grid size of 30 m by 30 m for Nakuru (Mubea, Goetzke, & Menz, 2013), 

and 100 m by 100 m grid for Nairobi (Mubea, Goetzke, & Menz, 2014). 

2.3.4 Complexity of Urban Growth 

Urban growth modelling involves modelling complex processes within cities. Cities are 

among the most complex structures created by human societies and are characterised 

by complex patterns of land-uses (Barredo, Kasanko, McCormick, & Lavalle, 2003). 

Nonetheless, urban areas are dynamic and growth in different dimensions over time. 

Thus, understanding complexity helps in urban growth modelling successfully and 

eliminates uncertainty. Urban areas represent a mix of related units, but the degree 

and nature of the relationships are sometimes hard to establish (Barredo, Kasanko, 
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McCormick, & Lavalle, 2003). Therefore, elucidation of complexity in cities depends on 

the complexity of interactions and conversions of land-use patterns. Additionally, 

understanding of urban land-use dynamics helps in addressing complexities in cities. 

Tobler (1979) defined the first law of geography as follows, “Everything is 

related to everything else, but near things are more related than distant things”. 

Consequently, this has served as a basis in addressing urban land-use dynamics. Thus, 

for instance a new industrial area can attract urban land-use nearby as workers settle 

near factories and housing estates sprout in the periphery. Urban land-use dynamics 

are the direct consequence of the action of individuals, public and private corporations 

acting simultaneously in time over the urban space (Barredo, Kasanko, McCormick, & 

Lavalle, 2003). Subsequently, cities in Africa have grown from simple towns such as 

Lagos which began from a humble port to a modern megacity with a population of 

11.2 million in 2011 (United Nations, 2013). 

The urban transition can be seen as the passage from a predominantly rural to 

a predominantly urban society which takes place by the expansion of existing urban 

areas and the development of new cities (Mantelas, Prastacos, Hatzichristos, & 

Koutsopoulos, 2012). Thus, as a result of rural urban migration people move into urban 

areas in search for jobs, trade, and amenities. Furthermore, settlement in urban areas 

is influenced by environmental characteristics; local-scale neighbourhood 

characteristics; spatial characteristics of the cities (i.e. accessibility); urban and regional 

planning policies; factors related to individual preferences, level of economic 

development, socio-economic and political systems (Barredo, Kasanko, McCormick, & 

Lavalle, 2003). 

Nonetheless, urban planning should be made upon the understanding and 

analysis of the various interrelated components of the urban development process 

(Rakodi, 2001). Hence, this will help in achieving appropriate plans and policies which 

address sustainable development. Additionally, understanding the complexity of cities 

enables us to envisage the intricate nature of the structure, and thus essential for the 

effective operation of the city (White, Engelen, & Uljee, 1997).  
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Complexity was previously associated with randomness, and the role of science 

was to lessen this uncertainty and reveal the order, either by inferential statistics or by 

the construction of analytic models (Silva & Clarke, 2005). However, new approaches 

have been formulated to represent and quantify the complexity. The complexity of 

urban growth can be envisioned using urban growth models which integrate GIS. 

Furthermore, the integration of Cellular Automata (CA) with GIS has facilitated the 

urban growth modelling in that urban dynamics can be simulated regardless of the 

complexities of the cities being investigated. Thus, CA need to be calibrated so that 

they can be applied in other cities such as in Silva and Clarke (2005) whom applied 

SLEUTH model for two cities in Portugal using complex systems theory.  

Accordingly, CA models are preferably appropriate for modelling the 

complexity of urban systems since they have many more unknowns than measurable 

variables (Clarke & Gaydos, 1998). CA models have been used to simulate different 

types of urban forms and development densities and to investigate the evolution of 

urban spatial structure over time (Oguz, Klein , & Srinivasan, 2007). Thus, UGM model 

endeavours to curtail complexity via modelling the complex environment of cities 

merely using the physical parameters to development. UGM uses five parameters 

which are introduced in Chapter 5 (see section 5.3). Additionally, recent developments 

in remote sensing and GIS ensure the accessibility of data in several spatial and 

temporal scales. 

 

2.3.5 Role of GIS and remote sensing in urban growth modelling 

It is possible to conduct urban land-use modelling and prediciton with the aid of GIS 

using various data sets such as land-use, infrastructure, geomorphology and so on. GIS 

offers spatial analysis and representation of data in form of maps thus facililtating 

urban land-use modelling. GIS models are of varying degrees of comprehensiveness 

and sophistication and are applied to cities for purposes of research and policy 

analysis. GIS has been an indispensable tool in the model construction and calibration, 

and will play far more critical a role when the predictions are distributed and 

reproduced for other areas (Clarke & Gaydos, 1998). 
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Several approaches have been used to integrate GIS with urban growth 

modelling (Wegener, 1995; Takeyama & Couclelis, 1997; Su, 1998). Firstly, GIS like 

functionalities like spatial analysis and cartography are embeded in urban modelling 

packages (Openshaw, 1991; Clark et al., 1997). For example UrbanSim was designed 

specifically to address policy analysis requirements of metropolitan growth 

management and tested in Oregon in 1998 (Waddell, 2002). Secondly, urban modelling 

is embedded into GIS by software vendors  e.g. network topology in version 5.0 

ofARC/INFO (Miller, 1991). In Miller (1991) the analysis of requirements and feasibility 

for deriving space-time prism within a GIS and potential applications were explored. 

Vendors have made some progress to improve the analytical and modelling 

capabilities. Thirdly, loose coupling an urban model with GIS packages and urban 

modelling such that they are integrated through constant data exchanges. Examples 

include systems developed by Clarke and Gaydos (1998) whereby redundant 

programming was avoided. Lastly, urban models are embedded with commercial 

software package via GIS programming (Liu & Phinn, 2003).  In Batty and Xie (1994a) 

they explored extending proprietary GIS (ARC-INFO) to embrace system modelling 

using residential location models. Cellular automata Markov chain urban land-use 

modelling has been explored in Idrisi software in a couple of studies (Mundia et al., 

2011; Sang et al., 2011). Recently significant effort has been made to integrate urban 

models in open source modelling platforms such as XULU (eXtendable Unified Land 

Use Modelling Platform) developed by Schmitz et al., (2007). 

The current GIS urban modelling techniques are technology driven and further 

refinement in understanding urban forms is necessary. Different cities have different 

driving factors of urban land-use change. The tools should help in designing effective 

urban planning policies for sustainable development to be achieved. With the shift of 

urban modelling from the conventional top-down approach to the current practices in 

addressing localities, models such as those using diffusion-limited aggregation and 

cellular automata techniques have demonstrated considerable potential in the mutual 

benefits of urban modelling and GIS (Liu, 2008). 
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The potential of remote sensing in providing information for land-use planning 

has been explored by various scholars (Donnay, Barnsley, & Longley, 2001). There have 

been several challenges in mapping the urban land-uses due to the various land-uses, 

heterogenity of the urban environment and impervious layer (Herold, Clarke , & 

Scepan, 2002). Urban areas consist of: built-up structures such as buildings and 

transportation networks;  several vegetation cover types such as parks, gardens and 

agricultural areas; bare soil zones and water bodies (Barnsley M. J., et al., 1993). 

With recent times remote sensing data has become available at high resolution 

and spatial scale making it possible to map larger heterogeneous areas. Developments 

such as synthetic apertutre radar (SAR) products such as ALOS Palsar are able to 

penetrate cloud cover rampant in tropical areas. The integration of multi-sensor data 

has been found to be useful in urban land-use mapping (Mubea and Menz, 2012; Zhu, 

Woodcock, Rogan, & Kellndorfer, 2011). High spectral capability of remote sensing 

allows the delineation of diverse urban land-uses such as built-up areas, vegetation 

and water. Remote sensing urban land-use datasets are used as inputs in most urban 

growth modelling tools. 

 

2.4 Cellular automata modelling 

2.4.1 Introduction 

Von Neumann (1966) was one of the early pioneers of cellular automata (CA). He 

invented the idea of self-reproducing artificial structures. Von Neumann investigated 

whether mathematical-logical considerations could be used to discover the specific 

features of self-reproducing biological automata (Sipper , 1997). He worked together 

with his colleague Stanislaw Ulan at Los Alamos National Laboratories. 

Alan Turing’s computational machine (1936) illustrates an early innovation of 

automata. He created the Universal Turing Machine which served as a hypothetic 

automaton and was capable of many mathematical functions. Consequently, this was 

followed by the discovery of artificial intelligence (AI) by Wiener and Rosenblueth 

(1946). This formed a platform for viewing spatial systems as excitable media 

(Benenson & Torrens, 2004).  
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Early CA models viewed space as a lattice of identical cells in the 1960s and 

1970s in modelling urban land-uses. Cities were considered as spatial distributed 

systems. CA models were improved once the concept of raster and regional modelling 

was incorporated in the 1970s and 1980s (Lee D. , 1973).  Over the years CA models 

were applied to the study of general phenomenological aspects of the world, including 

communication, computation, construction, growth, reproduction, competition, and 

evolution (Sipper , 1997).  

In the 1980s CA were used to study ecology and environmental phenomena but 

then urban CA were developed towards the end of 1980s (Benenson & Torrens, 2004). 

Early urban CA models represented the urban space based on raster and ignored 

neighbourhood relationship of pixels. Tobler (1979) explored urban CA simulation in 

his work and came up with a geographic model. The model was dynamic with several 

land-uses namely residential, commercial, industrial, public and agriculture, as cell 

states and enforced neighbourhood rules in the model. Wolfram (1984) did a 

systematic research on CA and their relationships with dynamic systems, and came up 

with classes of CA behaviour.  

White and Engelen (1993) developed a constrained CA and this was a big step 

into urban modelling using CA. They integrated the CA models in 1960s and Tobler’s 

geographic model (Tobler, 1979). Neighbourhood rules which are one of the 

fundamental elements of CA were refined from 3 by 3 grid space (Von Neumann, 

1966) to 6 by 6 grid space. 

Batty and Xie (1994c) developed life cellular automata models. The model was 

born on the idea of Conway’s Game of Life. Cells are treated like life and cells are born 

which grown and later die within a certain time frame. The birth of cells is determined 

by neighbouring single cells which serve as parents and cells die as a function of the 

system. 

Clarke, Hoppen and Gaydos (1997) developed self-modifying cellular automata. 

The model was called SLEUTH (Slope, Land-cover, Exclusion, Urban, Transportation and 

Hill shade) and explored complexities of urban cells and incorporated biophysical 

factors namely: urban, road, transportation, slope and exclusion layer. The model used 
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several factors in simulating urban growth namely diffusion, breed, spread, slope 

resistance and road gravity. SLEUTH was initially applied in Santa Barbara in California 

and then applied to other areas in North America. The model has also been used in 

other parts of the world (Silva & Clarke, 2002; Caglioni, Pelizzoni & Rabino, 2006; 

Mundia & Aniya, 2007). 

Modern geographic applications combine geometry and simplicity of the von 

Neumann system with cybernetics views of Wiener and Rosenblueth (Benenson & 

Torrens, 2004).  CA offer many advantages for modelling urban phenomena, including 

representing urban dynamics and space-time dynamics (Torrens & O'Sullivan , 2001). 

2.4.2 Elements of Cellular Automata 

CAs are dynamical systems in which space and time are discrete and consists of an 

array of cells, each of which can be in one of a finite number of possible states, 

updated synchronously in discrete time steps, according to a local, identical interaction 

rule (Sipper , 1997; Parker, Manson, Janssen, Hoffmann, & Deadman, 2003). The state 

of each cell is updated according to local rules, that is, the state of a cell at a given time 

depends on its own state and the states of its neighbours at the previous time step 

(Wolfram, 1994).  

Cellular automata are seen not only as a framework for dynamic spatial 

modelling but as a paradigm for thinking about complex spatial-temporal phenomena 

and an experimental laboratory for testing ideas (Itami, 1994).  A cellular automaton 

consists of five basic elements namely cell space, cell state, cell neighbourhood, 

transition rules and time. A cellular automaton (A) can be represented mathematically 

as shown in Equation 1 where (S) is the state of individual cells, (T) is a set of transition 

rules, (N) is a neighbourhood of all cells providing input input. 

Equation 1 

                                                                                              

 

Several approaches have been identified in defining the basic elements of a 

cellular automaton to simulate the process of urban development (Torrens and 
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O'Sullivan, 2001; Li and Yeh, 2000; Takeyama & Couclelis, 1997; White, Engelen, & 

Uljee, 1997). 

The cell space 

The space in which an automaton exists is called a cell space or lattice. A typical 

cellular automaton begins with a one- or two-dimensional lattice of sites or cells. In a 

one-dimensional cellular automaton the sites are a single row of identical cells while in 

a two-dimensional cellular automaton the sites are composed of a matrix of identical 

cells regularly arranged in rows and columns (Itami, 1994).  

Figure 2-2 illustrates a one-dimension cellular automata where in (a) 

Neighbourhood consists of two cells on the left and on the right of a given cell and in 

(b) Neighbourhood consists of two cells on each side of the given cell. Figure 2-3 

illustrates a two-dimension cellular automata where in (a) Von Neumann 3×3 

neighbourhood; (b) Moore 3×3 neighbourhood; (c) Von Neumann 5×5 neighbourhood. 

 

 

Figure 2-2: Typical neighbourhood configurations of one-dimension cellular automata.  

(Source: Benenson and Torrens, 2004) 
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Figure 2-3: Typical neighbourhood configurations of two-dimension cellular automata.  

(Source: Benenson and Torrens, 2004) 

The two-dimensional grid of cells is the most common form of a cellular 

automaton used in modelling urban growth and land-use change (Liu, 2008).  

Rectilinear grid systems have obvious advantages both in terms of compatibility with 

raster-based data systems and in terms of computational efficiency (White & Engelen, 

2000). Nevertheless, most grid space is typically assumed to be homogeneous, and 

usually different models adopted different grid size (Barredo, Kasanko, McCormick, & 

Lavalle, 2003; Clarke, Hoppen, & Gaydos, 1997; White & Engelen, 1993). Conversely, 

one-dimensional CA has been used to depict linear objects such as in urban traffic 

modelling (Nagel, Rasmussen, & Barrett, 1997; DiGregorio , et al., 1996). However, in 

one-dimension CA the linear CA are concatenated in order to represent the network 

structure of the road system (White & Engelen, 2000). 

The state 

Cell states most commonly represent land-use, but may be used to represent any 

spatially distributed variable for the purpose of modelling its spatial dynamics (White & 

Engelen, 2000). Each cell in CA can take only one state from a set of states at any one 

time and it can be a number that represents a property (Liu, 2008). Portugali and 

Benenson (1995) used cell states to depict social categories of populations (immigrant 
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vs. native population). Urban development is therefore a continuous process in space 

and over time and thus there is no sharp boundary between non-urban and urban 

areas (Herbert, 1997). In some cases some cell states can be in a fixed state such as 

rivers and parks, so that while cells in these states can influence the state transitions of 

other cells, they are not themselves subject to changes of state (White, 1998).  

The transition rules 

Transition rules defines how the state of one cell changes in response to its current 

state and the states of its neighbours (Liu, 2008). These rules determine how CA states 

adapt over time and can be designed using any combination of conditional statements 

or mathematic operators (Benenson & Torrens, 2004). Transition rules may be 

deterministic or stochastic; very simple (e.g. a cell changes to the modal state of its 

neighbourhood), or quite elaborate, like the transition rules of the urban model 

(White, 1998).  

In a strict CA, the transition rules are usually uniform and are applied 

synchronously to all cells within the system (Liu, 2008). The transition rules serve as 

the algorithms that drive the change of cells from one state to another over time. 

Fotheringham, Batty and Longley (1989) developed the diffusion-limited aggregation 

model for modelling the dynamic urban growth which was a cellular automaton in 

nature, and the rule applied in this model was simple: a vacant cell would convert to 

an occupied one if it is within the neighbourhood of an occupied cell. 

The neighbourhood 

The cellular neighbourhood of a cell consists of the surrounding (adjacent) cells (Sipper 

, 1997). The neighbourhood is outlined by the grid (cell space) in which the CA are 

located. In one dimension CA the neighbourhood comprises of two cells; one on the 

left and the other on right of a given cell as shown in Figure 2-2. In two dimensional 

rectilinear CA as shown in Figure 2-3 and Figure 2-4, the most commonly used 

neighbourhoods are the Von Neumann (4-cell) and the Moore (8-cell) (White, 1998).   
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Figure 2-4: Cellular automata neighbourhoods 

(Source: Benenson and Torrens, 2004) 

There are also other types of neighbours e.g. de Kok et al., (2001) adopted 

RaMCo model whose neighbourhood is defined as circular region around a cell up to a 

radius of 8 cells.  Normally, the size of the neighbourhood should is defined with 

reference to the distance over which the processes represented by the transition rules 

operate (White, 1998). 

The time 

Liu, (2008) defines time as the temporal dimension in which a cellular automaton 

exists and thus the states of all cells are updated simultaneously at all iterations over 

time. In the modelling of urban land-use, time steps are normally yearly but in other 

cases such as traffic flow modelling time steps of seconds or minutes are ideal.  

There are situations where it is convenient to nest time scales, with some parts 

of the CA running a number of time steps for each step in the rest of the model (White, 

1998). Uljee, Engelen & White (1996) used a model at different temporal speed for 

different cells which simulated the low-lying areas on a monthly basis and the upland 

areas on a yearly basis. 

2.4.3 Cellular automata models 

CA are worthwhile because of their ability to replicate complex spatial and temporal 

dynamics at a global scale using local rules (García, Santé, Boullón, & Crecente, 2012). 
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Tobler (1979) was the first to apply CA in modelling geographic phenomena. However, 

early applications of CA to urban growth modelling were theoretical as seen in 

Couclelis (1985), Itami (1988), White and Engelen (1993), Portugali and Benenson ( 

1995), Takeyama and Couclelis (1997), Liu and Phinn (2003), and Kocabas and 

Dragicevic (2006). 

Tobler’s work in the development of urban CA modelling was further extended 

in the 1980s by Couclelis (1985). This formed the basis for linking theory and complex 

systems and unravelled the potential of CA in urban planning. She further developed 

CA through separating the neighbourhood set and transition rules from each cell. 

Hence, micro-macro dynamics could be captured by the cells which were able to 

possess their own set of neighbourhood and simple transition rules. Thus, complex 

spatial patterns of urban growth could be simulated. 

Takeyama and Couclelis (1997) formulated Geo-Algebra, an extension and 

generalisation of map algebra, enabled integration of CA with GIS. This was a 

mathematical framework capable of expressing a variety of dynamic spatial models 

and spatial data manipulations. Additionally, map dynamics made it possible for 

modelling of supplementary dynamic behaviours and phenomena. 

Urban simulation models which could simulate reality were designed based on 

the theoretical developments from the 1980s and subsequent developments in GIS. 

Nonetheless, calibration and validation were mandatory so that the models could 

simulate real world case scenarios as seen in Clarke, Hoppen, & Gaydos (1997).  

White and Engelen (1993) introduced the notion of constrained CA. Their CA 

model which was able to simulate urban land-uses over time in Cincinnati, Ohio (USA). 

The modelling approach focused on the fractal dimensions of land-use patterns of an 

urban area. Thus, the potential for transition between cells for different land-uses was 

calculated as a function of the neighborhood and land-use suitability (White, Engelen, 

& Uljee, 1997). It was possible to capture a high level of spatial detail and reality.  

Batty and Xie (1994c) developed an urban CA model through simulating the 

development of the historical 'cell' city of Savannah, Georgia (USA). Additionally, they 

illustrated how their model could be adopted to predict urban growth dynamics of a 
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sub-urban city. Hence, such an approach was able to captured the microprocesses 

which lead to aggregate development patterns. 

Xie (1996) invented the dynamic urban evolutionary modeling (DUEM).  DUEM 

lay its foundation on the theoratical concept and technical fundamentals of  Couclelis’s 

CA model and contemporary techniques of GIS, and was applied in suburban area of 

Buffalo, New York. The model addressed the aspects of complexity and dynamics in 

urban growth modelling.  

Clarke, Hoppen, and Gaydos (1997) came up with a self-modifying cellular 

automaton model of historical urbanization in the San Francisco Bay area called 

SLEUTH. SLEUTH model was first used to predict urban growth in San Francisco and 

later applied to other regions in North America (Clarke & Gaydos, 1998).  Our model 

UGM is a modification of SLEUTH (Goetzke, 2011). 

Alongside the development of CA, other modelling techniques have been 

developed which apply the concept of CA in simulating urban growth. Such 

developments such as Fuzzy-logic have aimed at improving CA calibration and 

addressing complexity of urban growth. 

Wu (1998a) developed a prototype of a simulation model based on cellular 

automata (CA), and multi-criteria evaluation (MCE) which was integrated in GIS. The 

CA was integrated into Arc/Info GIS software. Thus, with this method it was possible to 

visualise decision-making process enabling faster access to spatial information. The 

transition rules were addressed reality of urban growth.  

Wu (1998b) further developed a computer-based approach for simulating land 

encroachment with fuzzy-logic-controlled CA. Additionally fuzzy logic was introduced 

in order to monitor land-use conversion processes and CA was applied to predict 

growth using local transition rules in GIS. Liu and Phinn (2003) developed and applied a 

CA model using fuzzy-set approaches in Sydney, Austrialia. 

Benenson (1998) developed a muilti-agent (MA) simulation model of 

population dynamics in a city. The agents applied were autonomous units and were 

identified by the economic status and cultures which vary in nature. The MA model 

inegrated housing infrastructure information and socio-economic information of 
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residents. Thus, the residents were considered as free agents whom migrate into the 

city and dwell in various residential areas based on social and cultural factors. 

Li and Yeh (2001) formulated the first CA-based model that used artificial 

neural networks (ANN) for calibration and simulation of urban growth in Pearl River 

Delta, China. The model parameter values were automatically determined using 

artificial neural networks. The model performed well compared to traditional CA 

models in the simulation of nonlinear complex urban systems. 

O’Sullivan (2001) developed a CA-based model that combined aspects of 

mathematical concepts - graphs and CA, and was applied in Hoxton in East London. 

This enabled research into relationships between spatial structure and urban dynamics 

processes. The irregular spatial units introduced were able to capture urban growth 

dynamics. 

Triantakonstantis & Mountrakis (2012) conducted a review of urban growth 

models and concluded that CA remains the most popular modelling technique used 

today as seen in Figure 2-5. Thus, CA are currently a worthwhile approach to urban 

growth modelling. 

 

Figure 2-5: Underlying Urban Growth Model algorithms sorted by popularity 

(Source: Triantakonstantis & Mountrakis, 2012) 
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2.4.4 Advantages of CA urban models 

CA urban models have several benefits according to: Oguz, Klein , and Srinivasan, 

(2007); Santé, García, Miranda, and Crecente, (2010) and Blecic, Cecchini, and Trunfio, 

(2013):  

 They are interactive and user friendly 

 Their modularity and transparency 

 Potential outcomes can be visualised and quantified,  

 They can be closely linked and integrated with GIS and remote sensing, 

 They can use raster based spatial data derived from remote sensing as input for 

modelling, 

 CA are able to replicate emergent complex dynamics in cities using on simple 

transition rules, 

 Visualisation of model results, 

 They can be applied across large geographic areas ranging from cities to 

continents. 

2.4.5 Limitations of CA urban models 

The background conventions of CA limit their ability to realistically simulate complex 

geographical phenomena. Such challenges include: 

 There is difficulty in addressing urban dynamics, 

 Integration of CA with real databases is a tough exercise due to different 

database design and dimensions of spatial data, 

 The use of regular grids in CA is not sufficient to implement high resolution 

data in urban growth modelling, 

 Spatial heterogeneity. Growth in cities is not homogeneous as assumed by 

conventional CA, 

 CA assumes regular neighbourhoods which in turn limits modelling, 

 CA assumes spatial and temporal invariance for transition rules. Thus, they are 

unable to address stochasticity, 
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 CA need significantly larger computational power in terms of running models 

and their calibration. 

The above challenges have been addressed by developments in CA models as 

seen in section 2.4.6. 

2.4.6 Developments in CA models 

Several approaches have been formulated to overcome the limitations of CA and thus 

improve CA models. Such modification involves modifying the original structure of CA 

in order to introduce more complexity (Couclelis , 1997) . The most common 

modifications as noted by Santé, García, Miranda, and Crecente, (2010) include: 

Modification of cell space 

In a typical CA, the cell space exists in a regular grid which is classically made of square 

cells. However, Iovine, D’Ambrosio, and Di Gregorio (2005) proposed the use of 

hexagonal cells so as to represent a more homogeneous neighbourhood. Likewise, 

Semboloni (2000) proposed a three-dimensional (3-D) model which was applied to an 

urban area and the results were found to be more realistic. Thus, with a 3-D model 

there is the possibility of representing the critical aspects of urban development such 

as clusters and variation of density. 

There have been attempts to modify the regular grid space. Shi and Pang 

(2000) used Voronoi-based CA in which the CA was modified using a Voronoi spatial 

model as the spatial framework. The Voronoi spatial model delivered an immediate 

solution to handling neighbourhood relations among spatial objects dynamically. 

Additionally, the Voronoi-based CA was able to model local interactions amid spatial 

objects to produce multifaceted global patterns. Hence, irregular spatial units may 

provide a more authentic representation of the objects being modelled (Santé, García, 

Miranda, & Crecente, 2010).  

Classically the cell space in CA is homogeneous. Thus, the cells are usually equal 

in dimension and are identified by their states which can be either urban or non-urban. 

Nonetheless, land-use is dynamic and is influenced by a myriad of factors such as 

altitude, gradient and accessibility to transportation and. Nevertheless, the cell space 
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needs to be modified so as to represent a mix of land-uses and thus, this forms a step 

into making the cell space to be non-uniform. 

Modification of neighbourhood  

Ideally the CA neighbourhood is the same for all cells and comprises of a grid of cells as 

shown in Figure 2-4. Thus, neighbourhood is outlined by the grid (cell space) in which 

the CA are located. However, extending the local neighbourhood ensures that the 

model is dynamic and able to simulate urban growth which is complex. The influence 

of extending neighbourhood depends on the extended distance between neighbouring 

cells so as to effectively represent complexity of urban systems.  

The neighbourhood space for each cell can be delineated differently, an 

approach which has been recognised, but hardly applied. Several attempts have been 

made in implementing models in which cell neighbourhoods have different sizes and 

shapes. White and Engelen (1993) made such an attempt in that they developed a CA 

model which produced fractal land-use structures for the urbanised area and for each 

individual land-use type. Hence, such an approach makes it possible to model reality 

fully in that we are able to capture high level of spatial detail. 

Modification of transition rules 

Typically the CA transition rules are static and determine how states adapt over time. 

However, they depend on the neighbouring cells. Nevertheless, land-use is dynamic 

and depends on factors such as altitude, urban land-use policies. Thus, the transition 

rules of CA can be modified so as to consider external factors influencing urban 

growth. Hence, it is crucial that the transition rules are able to adapt to the specific 

characteristics of the area the CA model is applied as well as the time period. This 

makes it possible for a model to be applied in another research area through model 

calibration.  

Clarke, Hoppen, and Gaydos (1997) developed a self-modifying cellular 

automaton model of historical urbanisation in the San Francisco Bay area. Their model 

was called SLEUTH and had transition rules that vary over time. Thus, the model used 
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in this research, UGM, is a modification of SLEUTH and can be applied in other areas 

through calibration using Monte Carlo techniques (see section 5.4). 

Constraints 

Classically, the CA transition rules determine the cell states. Nevertheless, urban 

growth is influenced by a myriad of factors among them being physical constraints 

such as steep slopes which inhibit growth. Additionally, urban growth is influenced by 

social constraints such as the segregation of residential areas into low, middle and high 

income residential areas. Moreover, urban land-use policies determine which areas 

can be developed. 

Accordingly, it has been possible to introduce constraints in modern day CA 

urban models such as an exclusion layer depicting areas restricted from development 

as integrated in our UGM model (Goetzke & Judex, 2011). Other constrains introduced 

include slope and transportation as witnessed in SLEUTH and UGM. Thus, the 

constraints enable reality to be achieved while modelling urban growth.  

 

2.4.7 Cellular automata in urban growth modelling 

CA models have been used to simulate different types of urban forms and 

development densities and to investigate the evolution of urban spatial structure over 

time (Oguz, Klein , & Srinivasan, 2007). Liu (2008) illustrates CA modelling of a city in a 

two-dimensional regular grid of n x n cells or land parcels as shown in Figure 2-6. The 

black cells represent urban while grey cells are non-urban and the time step is t. A land 

parcel can either be urban or non-urban and is determined by transition rules 

(stochastic or dynamic) within a neighbourhood.  
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Figure 2-6: A cellular automata-generated urban development in a plain area. 

 

Thus, our UGM operates as shown above in Figure 2-6. The input data include 

land-use, exclusion layer, slope data and road data. Urban growth simulation is done 

using simple transition rules adopted from SLEUTH.  Model calibration is achieved 

through varying five model parameters in XULU using Monte Carlo calibration 

technique. UGM modelling is described in section 5. 
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3 URBAN GROWTH IN AFRICAN CITIES 

 

3.1 Introduction 

Since the beginning of the industrial revolution in 1850s, cities have gone from being a 

minor feature on our planet to a major one and global population has increased almost 

six times while the earth’s urban population has increased over 100 times (Hauser, 

Gardner, Laquian, & El-Shakha, 1982). Rapid urbanisation has been noted globally. 

Urbanisation can be defined from a global environmental context as the conversion of 

natural to artificial land-use characterised by human settlements and workplaces 

(Clarke, Hoppen, & Gaydos, 1997). This occurs as agricultural land is converted to 

urban use. 

Urbanisation has continued unabated into the 21st century and by 2008 the 

largest cities by continent with high urban population were Tokyo (Asia) with 35 

million, New York (North America) with 19.18 million and Cairo (Africa) with 15.55 

million (UN-Habitat, 2012). Additionally, it is expected that half of the population of 

Asia will live in urban areas by 2020, while Africa is likely to reach a 50 per cent 

urbanization rate only in 2035 (United Nations, 2013). Urbanisation and urban growth 

go hand-in-hand, and generate many other land transitions, with several varied land 

use types eventually converting to urban use (Clarke & Gaydos, 1998).  Urbanisation 

has become a positive force for transformation that makes countries more advanced, 

developed and richer, in most cases (UN-Habitat, 2012) . However, persistent dynamic 

urban change processes, especially the remarkable worldwide expansion of urban 

populations and urbanised areas, affect natural and human systems at all geographic 

scales, and are expected to accelerate in the next several decades (Thapa & 

Murayama, 2012).  

Africa was the least urbanised continent in the world in 1950s, with only 14.7% 

of its population living in urban settlements. However, the proportion of urban 

population has risen with 42.7% of the African population living in urban areas in the 

year 2010 and 52.9 % in 2030 (United Nations, 2013). Nevertheless, these figures are 

still lower compared to other continents as the annual growth rates of the urban 



URBAN GROWTH IN AFRICAN CITIES 

44 

 

population are high in Africa (Owour, 2006). The total population increased about 

three-fold between 1950 and 1990 within a sample of 39 countries in sub-Saharan  

(United Nations, 1995) but the urban population increased about ten-fold during the 

same period.  In Kenya, the share of its urban population increased from 596,757 in 

1960 to 9,549,269 in the year 2010 (United Nations, 2013). 

Moreover, Kenya's population is growing rapidly and has more than tripled 

from 10.9 million people in 1969 to 38.6 million people in 2009 (Population Reference 

Bureau, 2011). Thus the population will continue to increase steadily due to the fact 

that there are high numbers of births per woman and it is projected to 65.9 million in 

2030. The average annual growth for our research cities were noted as 4.9 % for 

Nairobi and 13.3% for Nakuru between 1990 and 2006 (UN-HABITAT, 2010). 

In the last decade sustainability has been considered a relevant issue in most 

forums on environment (European Environment Agency, 2002). The ramifications of 

poorly planned urban growth in the megacities of developing countries can be less 

catastrophic if sustainable urban planning activities are adopted (Barredo & Demicheli, 

2003).  Likewise, urban population is increasing in developing countries at a much 

faster rate than the overall average (Lavalle, Demichili, Turchini, Casals Carrsco, & 

Niederhuber, 2001). This has been due to rural urban migration, thus posing a strain 

on existing amenities. 

There has been a trend where agricultural land is converted into urban land-

uses in the urbanisation processes and this has become a serious issue for sustainable 

urban development in the developing countries (Li & Yeh, 2000). Unsuitably, in recent 

years, a large amount of such land has been unnecessarily lost and the forms of 

existing urban development cannot help to sustain its further development (Yeh & Li, 

1997; Yeh & Li, 1998). For example this has been seen in Kenya over last decade where 

coffee and tea zones have been converted into commercial and residential plots. 

However, the use of land unsuitable for development may cause harm to both the 

natural environment and human life (Yeh & Li, 1997). The fundamental issue of 

sustainable urban development is the search for better urban forms that can help to 
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sustain development, especially the minimization of unnecessary agricultural land loss 

(Li & Yeh, 2000). 

Dynamism and growth are two of the elements which are used to characterise 

most urban areas (Barredo, Kasanko, McCormick, & Lavalle, 2003). However, 

modelling these two elements can be difficult without tools which embrace their 

complexity. White & Engelen, (1993) define cities as complex objects from the point of 

view of their intricate mix of urban activities. Furthermore, cities’ complexity can be 

seen from two points of view: the complexity represents the information-rich nature 

of the system, and the complexity is necessary for the successful functioning of the city 

as system (White, Engelen, & Uljee, 1997).  

Assessing the impact of urban growth on the environment and understanding 

the dynamics of complex urban systems involves modelling and simulation (Oguz, Klein 

, & Srinivasan, 2007). This is achieved using urban growth models. Model building using 

Cellular Automata (CA) has recently gained attention for its utility in predicting spatial 

patterns of urban development and in the investigations on planning regimes and land 

use patterns (Silva & Clarke, 2002). In this research we used an urban growth model 

based on cellular automata to model and predict urban growth in Nairobi and Nakuru. 

Thus this chapter introduces sustainable development, factors that influence urban 

growth and gives a background of urban growth in African cities. Later on the cities 

Nairobi and Nakuru are described in detail. 

3.2 Sustainable growth and characteristics of African cities 

Sustainable development refers to the development that meets the needs of the 

present generation without compromising the ability of future generations to meet 

their own needs (World Commission on Environment and Development, 1987). 

Additionally, sustainable development is one of the most fundamental objectives in 

policy making and planning activities (Shi & Pang, 2000).  Thus, sustainable urban 

planning is ideal so as to improve the quality of life in urban cities. 

However, sound planning has not taken place in most African cities due to high 

rural urban migrations as people search for employment and basic amenities. Such 

cities continue to attract population from surrounding areas while they still lack basic 
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amenities and infrastructure. Subsequently, urban population has increased at a much 

faster rate than the rest of the world and these has resulted to negative consequences 

(Lavalle, Demichili, Turchini, Casals Carrsco, & Niederhuber, 2001). Such problems 

include unsuitable land-use, inadequate transportation systems, pollution, urban 

sprawl and propagation of epidemics.  

Cities in developing world are characterised by rapid growth in population 

which is not matched by growth in delivery of land for housing, services, utilities and 

infrastructure important to sustain a reasonable quality of life (Bishop, Escobar, 

Karuppannan, Williamson, & Yates, 2000). This is witnessed by establishment of 

informal settlements in African cities such as Kibera in Kenya. Additionally, there is lack 

of spatial information making it difficult to plan and cater for the increasing 

population. For example some cities still use development plans which were developed 

in the 1970s. Thus informal settlements continue to growth within and around most 

cities as the demand for housing, energy and other resources increase. This leads to 

degradation of local and regional environment and possess a threat to ecosystem and 

biodiversity.  

Nonetheless, addressing urban dynamics is one of the most complex tasks in 

sustainable planning of cities while also conserving natural resources. Cities are made 

up of complex and numerous components which need to be documented and 

incorporated in the legislation of land-use policies. Nevertheless, sustainable urban 

planning ought to be implemented at national, regional and local levels. However, 

most cities in developing countries typically lack the capacity to obtain the necessary 

data and to carry out the comprehensive analyses needed in order to set and achieve 

sustainability targets (Lavalle, Demichili, Turchini, Casals Carrsco, & Niederhuber, 

2001). The use of new technologies such as remote sensing and GIS can help these 

cities monitor their resources and be prepared for any eventualities in the near future. 

Therefore, there is need for capacity development as developing countries adopt new 

technologies in terms of personnel, data and procedures. Hence, if sustainable urban 

planning actions are taken into account, the consequences of poorly planned urban 
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growth in the megacities of developing countries can be less dramatic (Barredo & 

Demicheli, 2003). 

Accordingly, problems associated with sustainable urban development in 

African cities are myriad and complex. Thus, an integrated approach should be 

adopted which anticipates urban growth dynamics and ramifications.  The integration 

of remote sensing and GIS in sustainable land development is useful in updating the 

land information in the GIS database, improvement of land-use change detection and 

environmental modelling and analysis (Yeh & Li, 1997). This research explored scenario 

based urban growth of two Kenyan cities so as to come up with plausible development 

agenda. The pillars of sustainable development are social, economic, political and 

equity. Thus these ought to be addressed so that Kenya can achieve Vision 2030 

(Government of Kenya, 2007) with the goal of transforming Kenya into a newly 

industrialised middle-income country by 2030. 

3.3 Prosperity of cities 

The State of the World’s Cities Report 2012/2013 report introduces prosperity of cities 

as places where successful, flourishing or thriving conditions prevail for the 21st 

Century (UN-Habitat, 2012). Prosperity is viewed as development which integrates 

economic success with tangible and more intangible aspects. Thus this includes 

environmental sustainability, equity and social inclusion, quality of life, infrastructure, 

and productivity. Prosperity is seen as a step further over sustainable development 

with the inclusion of intangible aspects such as the quality of life of citizens. 

There have been demands by developing countries in Africa such as witnessed 

in the uprisings in Egypt and Tunisia in 2011 for more equality and inclusion in the 

national economy. This was a result of social, political and cultural inequalities. 

Additionally, unequal access to opportunities and resources has pushed many people 

into informal settlements within cities. Cities can offer remedies to the worldwide 

crises if only we put them in better positions to respond to the challenges of our age, 

optimizing resources and harnessing the potentialities of the future (UN-Habitat, 

2012).  
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Nevertheless, prosperity means different things to different people around the 

world and ultimately refers to a sense of general and individual socioeconomic security 

for the immediate and foreseeable future, which comes with the fulfilment of other, 

non- material needs and aspirations (United Nations, 2013). Thus, the development 

agenda and policies of each country should incorporate all the citizens so as to ensure 

sustainable urban development is attained. This approach to prosperity will put cities 

and countries in a better position not just to respond to the effects of the crisis and 

provide safeguards against new risks, but also to steer the world towards 

economically, socially, politically and environmentally urban futures (United Nations, 

2013). 

Prosperity echoes the ideal city of the 21st Century. Thus these cities are able to 

respond to disasters and vulnerabilities such as food security. Furthermore, jobs 

should be created so as to achieve socio-economic equity and ensure citizens have 

equal access to social amenities and infrastructure. Additionally, citizens should have 

equal rights promoting good governance and policies ensuring sustainable 

development. Lastly, the five dimensions of prosperity should be harmonised so as to 

boost the prospects for a better future. 

Prosperity implies success, wealth, thriving conditions, and well-being as well as 

confidence and opportunity (UN-Habitat, 2012). Hence, a prosperous city offers stable 

economic growth, equitable distribution of infrastructure, equity and social inclusion 

of its inhabitants, and environmental sustainability. Thus informal settlements should 

be minimised through construction of low cost houses and sustainable urban planning 

policies. Likewise, natural resources should be preserved so as to ensure that there is 

adequate land for future generations and thus achievement of sustainable 

development. 

The UN-Habitat has identified eight factors which promote prosperity of cities. 

These are: effective urban planning and management; decentralisation polices and 

appropriate institutions; a system that creates equal opportunities for all; participation 

of civil society; elected local officials; a favourable business environment; access to 

basic amenities; and public transport and mobility (United Nations, 2013).  
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Kenya has made some progress such as the introduction of a new constitution 

in 2010 which advocated for the devolution of government. The general elections in 

2013 introduced a devolved government with the establishment of 47 counties 

(Government of Kenya, 2010). Such counties will enable equitable distribution of 

social, economic, and political pillars of sustainable development. Besides, Kenya plans 

to achieve Vision 2030 and incorporating the concept of prosperity of the 21st Century 

cities will be resourceful. Hence, this will ensure that sustainable development is 

achieved countrywide alongside prosperous cities. 

3.4 Factors influencing urban growth 

In the 1960s most countries in sub-Saharan Africa gained independence from their 

colonialists, a transitional period ensued in which the achievement of autonomous 

economic and political status was attempted by means of state-centred, 

interventionist strategies paralleled by a regulatory approach to urban development 

(Rakodi, 1997). The colonialists sold land to African governments and the major 

challenge was equal distribution to its citizens. The new governments experienced 

economic or urban development challenged as they endeavoured in integrating into 

the world economy in terms of trade and industrialisation. 

Rapid urbanisation has been rampant and has resulted to poverty which has 

outpaced the financial and administrative capacity of governments to ensure that 

cities provide efficient locations for economic activity and satisfy the basic needs of all 

their citizens (Rakodi, 1997). 

The urban population has increased over the last couple of decades in Africa 

and this has strained the economic growth rates due to global recession. The incomes 

per capita fell considerably in the 1980s and 1990s as real wages continued to decline 

while open unemployment and cuts in government expenditure on infrastructure and 

services increased (Rakodi, 1997).  

As some sub Saharan countries have been crippled by governance issues over 

the years there have been sanctions from International Monetary Fund policies such as 

limiting subsidies, increasing food prices and restricting wage levels. These have been 

disproportionately borne by the urban poor (Tacoli, 2002). As a consequence urban 
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poverty has increased posing a challenge to urbanisation. This has led to informal 

settlements within towns and growth in crime. The existing amenities have not been 

expanded to cope with the high growing population trends. Thus this has led to 

negative effects on the social and economic development. 

Reports from World Bank, International Monetary Fund (IMF), Organization for 

Economic Co-operation and Development (OECD) and United Nations Development 

Programme (UNDP), including national studies, indicate that approximately over 40% 

of the population of sub-Saharan Africa is living in absolute poverty or on a Purchasing 

Power Parity of less than one US dollar per day (Obura, 1996; Odhiambo and Manda, 

2003).  Thus this implies that nearly half of the urban population in most sub Saharan 

countries live below the poverty line. 

In the 1980s and 1990s urban economies in sub- Saharan Africa declined 

significantly (Maxwell, 1999). Urban poverty has been increasing with undesirable 

consequences such as unemployment, as the population continues to increase. Life 

has become very expensive in most urban areas in terms of high food prices, fuel, and 

other essential commodities. 

 In most sub-Saharan countries, wage employment in the modern sector has 

fallen in absolute terms over time (Odhiambo & Manda, 2003). In the 1980s and 1990s 

there were massive retrenchments in the public sectors in Kenya as most parastatals 

and corporations downsized or collapsed. With the fall in formal-sector employment, 

many former wage earners have moved into the informal sector (Owour, 2006). The 

informal sector was coined a Swahili name jua kali. 

The gross domestic product (GDP) in Kenya was 5.9 % in 2005, 6.3 % in 2006, 

7.0 % in 2007, 1.6 % in 2008 and 2.6 % in 2009 (Republic of Kenya, 2010). The decline 

in GDP in 2008 was due to the post-election violence witnessed after the general 

elections in December 2007 until early January 2008. Nonetheless, the GDP grew to 

5.8 % in 2010 and dropped to 4.4 % in 2011 (Republic of Kenya, 2012). This was due to 

high oil prices globally and uncertainties as the country approached general elections 

in 2013. Agriculture has been the major contributor of the Kenyan economy followed 

by industries. There has been a gradual decline in the share of the GDP attributed to 
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agriculture, from over 30 % during the period 1964 - 1979 to 25 % in 2000 – 2002 

(Kenya National Bureau of Statistics and ICF Macro, 2009). However, in 2007 and 2008 

the agricultural sector contributed directly 22 and 23 % of the GDP. 

As discussed above, Kenya has also experienced rapid urban growth over the 

last few decades. This served as the impetus to explore model urban growth using 

remote sensing techniques in Nairobi and Nakuru. Background on Nairobi and Nakuru 

are explained in the following sections below. 

3.5 Nairobi 

3.5.1 Research area 

Nairobi extends between latitudes 1° 09' and 1° 28' South, and longitude 36° 04' and 

37° 10' East in Kenya, with an average altitude of 1,700 meters above sea level, 

covering an area of 696 km²  (Figure 3-1 and Figure 3-2). Nairobi is the capital city of 

Kenya. The administratively defined town has land-uses divided roughly into urban 

use, agriculture, rangeland, open/transitional areas, and remnants of evergreen 

tropical forests.  
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Figure 3-1: Location of Nairobi  

(Source: False colour composite using bands 4, 3, 2, Landsat 2010) 
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Figure 3-2: Location of Nairobi 

3.5.2 Background  

The name Nairobi originated from the Maasai phrase enkare Nairobi, which means a 

place of cold waters. In the early times Nairobi served as grazing land and a livestock 

watering point for most pastoralists among them the Maasai community (City Council 

of Nairobi, 2007).  

Nairobi was selected a terminal railway station connecting Mombasa and 

Kisumu by the colonial Government because it offered a suitable stopping place; 

adequate water supply from the nearby Nairobi and Mbagathi rivers; ample level land 

for railway tracks and sidings; elevated cooler ground to the west suitable for 

residential purposes; and apparently deserted land offering freedom for land 

appropriation (Rakodi, 1997). The railway to Uganda reached Nairobi in 1899 and thus 

making it the administrative centre for the British East Africa protectorate and 

headquarters of the Kenya Uganda Railway. Consequently this led to Nairobi’s growth 

as a commercial and business hub of the British East Africa protectorate (Mitullah, 

2003).  
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In 1900 Nairobi was officially defined as an urban centre under the Nairobi 

Municipal Community regulations and it became the capital of Kenya in 1907 

(Mitullah, 2003). Later on in 1919, the Nairobi Municipal Community was replaced by 

Nairobi City Council (NCC). The administrative boundaries were extended in 1926 with 

the introduction of the first urban plan of Nairobi. In 1948 a master plan of Nairobi was 

developed and covered approximately 90 Km2. Kenya gained independence in 1963 

and thus the boundaries were extended to cover 696 Km2. The expansion included 

neighbouring peri-urban settlements, game parks, Embakasi ranch and other ranches 

as shown in Figure 3-3.  

However, the factors which facilitated the establishment and growth of Nairobi 

led to undesirable consequences which the city experiences as a burgeoning African 

metropolis (Lamba, 1994). The choice of the railway yard was challenging especially in 

terms of sanitation due to poorly drained black cotton clay soils. This has been noted 

to be a constraint in the development of the city. 

Most commercial and official activities are located within the central block and 

it is commonly referred as the central business district (CBD). Subsequently after 

independence residential areas have sprawled outwards from the CBD into the eastern 

areas typically referred to as eastlands, to the western areas commonly referred as 

westlands and the southern areas referred as southlands. The industrial area has 

grown adjacent to the CBD to the east with the growth of industries such as 

manufacturing, processing and vehicle assembly industries.  
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Figure 3-3: Nairobi: Boundary changes, 1900-1963  

(Source: Mitullah, 2003) 

 

Nairobi has blossomed into a vibrant city with a current population of 3.2 

million. The city has emerged as one of the leading hubs of business, education and 

informational technology (IT) in Africa. It serves as the headquarters for United Nations 

Environment Programme (UNEP) and the United Nations Centre for Human 

Settlements (UN-Habitat) plus also hosting other United Nations agencies. Nairobi 

serves as the administrative, commercial, industrial and social-cultural centre for the 

republic of Kenya. 

3.5.3 Physical characteristics 

The geological history of Nairobi has been dominated of volcanic activities and resulted 

in different types of rocks in two physiographic regions; the plateau and the plains 

(Lamba, 1994). The altitude of Nairobi ranges from 1,455 to 1,945 metres above sea 

level as obtained from digital elevation model (DEM). The northern and western parts 

of the city are part of the plateau, which is characterised by ridge and valley landscape 
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with steep slopes with an elevation of 1,905 to 1,975m. The southern and eastern 

portions of Nairobi are part of the flat and rather feature low-lying plains.   

Soils in Nairobi fall into several categories (Lamba, 1994). Deep, well drained 

red volcanic soils cover the high western and northern zones; on the plains the 

impermeable phonolite strata has led to the formation of black and dark grey clays 

known as black cotton soils. These soils cover about 35 % of the city’s area, while 

shallow yellow to yellow-red friable soils overlying a laterite horizon or rock cover 

about 16 %. Swamp grey soils, alluvium and clay soils occur along the river valleys.  

The climate is generally temperate tropical climate as Nairobi lies near the 

Equator. There are two rainy seasons; long rains which occur between March to May 

and short rains which occur between October to December. The southwest and 

northeast trade winds influence the rainfall patterns with a mean annual rainfall of 

900mm. The average temperatures are 29 degrees Celsius in the dry season and 24 

degrees Celsius in the rest of the year. 

The lower eastern areas were grassland with scattered acacia trees. The higher 

areas to the west and the north were forested with hardwood trees. The valley 

bottoms were poorly drained and supported grassland or swamp vegetation. Most of 

the natural vegetation has been cleared to pave way for urban developments. 

3.5.4 Urban growth in Nairobi 

Nairobi has a high growth rate per annum compared to other growth rates in Africa 

with 75 % of urban population living in informal settlements (UN-HABITAT, 2005). 

From a population of 8,000 in 1901 the population reached 118,579 in 1948, 310,000 

in 1960, 510,000 in 1970 (Republic of Kenya, 1970), 828,000 in 1979 (Republic of 

Kenya, 1981), 1,321,000 in 1989 (Republic of Kenya, 1994), 2,137,000 in 1999 (Republic 

of Kenya, 2000) and 3,138,369 in 2009 (Republic of Kenya, 2010) as shown in Figure 

3-4. The projected population in the year 2020 will be almost six million (UN-HABITAT, 

2005). 
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Figure 3-4: Population trends in Nairobi  

(Source: Pravettoni, R; GRID-Arendal, UNEP, 2011) 

 

Urban sprawl has a negative impact on infrastructure and the sustainability of 

cities (UN-HABITAT, 2010). This is exhibited for instance in the increase of transport 

costs, public infrastructure of residential and commercial development. Most African 

cities show characteristic patterns of urban sprawl where urban development evolves 

around the nexus of the main transportation routes, with urban growth tending to 

grow in sectors emanating from city centres (Mundia & Aniya, 2007). Many urban 

areas are faced with environmental problems like water pollution, uncontrolled waste 

disposal, bad air quality and noise.  
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3.6 Nakuru 

3.6.1 Research area 

Nakuru municipality lies in Central Rift Valley in Kenya between latitudes 0° 15' and 0° 

31' South, and longitude 36° 00' and 36° 12' East, with an average altitude of 1,859 

meters above sea level, covering an area of 290km² (Figure 3-5, Figure 3-6, and Figure 

3-7). Within Nakuru municipality is Nakuru town, and Lake Nakuru National Park. The 

Lake Nakuru National Park is a tourist attraction of great economic value for the 

country with Lake Nakuru being one of the largest bird sanctuaries in the world with 

the flamingo and pelican bird species.  

 

 

Figure 3-5: Location of Nakuru in the Central Rift Valley of Kenya  

(Source: World Resource Institute) 
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Figure 3-6: Location of Nakuru in the Central Rift Valley of Kenya  

(Source: False colour composite using bands 4, 3, 2, Landsat 2010) 

 

The town of Nakuru is located 160 km North West of Nairobi along the twin 

east-west railroad transport route from Mombasa to Kampala and is the fourth largest 

city in Kenya following Nairobi, Mombasa and Kisumu. The administratively defined 

city has land-uses divided into urban use, agriculture, rangeland and remnants of 

evergreen tropical forests. Such land-uses are similar to other cities in Kenya and sub-

Saharan Africa (Mundia & Aniya, 2007).  

 

3.6.2 Background 

Nakuru was formerly occupied by nomadic pastoral communities, mainly the Maasai, 

as grazing land until the arrival of the railway at the beginning of the 20th century 

(Municipal Council of Nakuru, 1999). The name Nakuru means a place of winds in the 

Maasai language. Similar to Nairobi and Kisumu, the town owes its existence to the 
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Kenya-Uganda railway. Nakuru came into existence in 1904 as a railway station on the 

great East-African railway (or Kenya-Uganda railway) and soon developed into an 

important regional trading and market centre because of its strategic location in the so 

called “White High-lands”  (Mwangi, 2003; Foeken & Owuor , 2000; Municipal Council 

of Nakuru, 1999).  

In the 1920s, the town began to grow outside its original boundary. In the  

zoning plan of 1929, Nakuru’s further expansion was laid down in accordance with the 

then generally  accepted principles of functional zoning, i.e. with an industrial quarter, 

residential districts for the various social classes, a suitable location for a hospital and 

cemetery, recreational facilities, a site for the airfield, etc (Foeken & Owuor , 2000). 

Since independence, Nakuru Municipality has had three major extensions of its 

boundaries, namely in 1963, 1972 and 1992 (Figure 3-7).  
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Figure 3-7: Municipality of Nakuru: Boundary changes, 1923-1992  

(Source: Owour, 2006) 

 

The 1992 extension included Lake Nakuru National Park and the agricultural 

land to the northwest and northeast boundaries of the park within the municipality’s 

boundaries (Mwangi, 2003). However, as a result of the subdivision of former farms 

into small plots for residential use, this stretch is now largely a sub-urban area and is 

part of the Nakuru planning area (Foeken & Owuor , 2000). The total area of the 

municipality is approximately 290 Km2, of which Lake Nakuru covers 40 Km2 (Municipal 

Council of Nakuru, 1999).  
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The main economic activities in Nakuru are commerce, industry, tourism, 

agriculture and tertiary services (Foeken & Owuor , 2000). Most commercial activities 

are situated in the Central Business District (CBD). Nakuru serves as an agro-based 

industrial and manufacturing centre due to its rich agricultural hinterland. Additionally, 

almost 100 agro-industrial institutions exist ranging from food processing to farm 

machinery assembly plants (Municipal Council of Nakuru, 1999). 

3.6.3 Physical characteristics 

Being on the floor of the Rift Valley, Nakuru is situated in an area of loose volcanic soils 

such that during the dry season, the town is engulfed in whirlwinds of dust, giving the 

town its name (derived from the Maasai dialect meaning “the place of dust”).  Nakuru 

was declared the first Ramsar Site in 1990. Ramsar sites are wetlands of international 

importance. This means that specific urban development and environmental 

management interventions are necessary in order to protect this wetland. The altitude 

of Nakuru ranges from 1,751 to 2,188 metres above sea level as obtained from the 

digital surface model (DSM). 

The volcanic and tectonic activities in Nakuru yielded varying landscape units. 

These include; Menengai Crater (8060 - 2040m above sea level) to the North, the 

Bahati and Mau Escarpments to the North East and South West respectively and a 

number of hills such as the Lion (1780 - 2040m), Neylan (1870 - 1920m), Hyrax (1800 - 

1840m) and Honey Moon Hill (1800 - 1840m). These are characterised by steep slopes. 

At the extreme south, these activities give rise to the Lake Nakuru water catchment at 

1758 metres above sea level, which is served by an array of rivers, and natural albeit 

seasonal drains. The five main rivers draining into the lake include rivers Njoro, Nderit, 

Lamudiak, Ng’ossor and Naishi. They discharge very low volume of water to the lake 

due to high seepage through numerous faults found upstream (Municipal Council of 

Nakuru, 1999).  

Nakuru generally has a dry sub-humid equatorial climate and has an average 

annual rainfall of 950 mm. There are two rainy seasons; long rains which occur 

between March and May, and short rains between October and December. The 
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average temperatures in Nakuru are 28 degrees Celsius in the dry season and 24 

degrees Celsius in the rest of the year.  

3.6.4 Urban growth in Nakuru 

The urban pattern of Nakuru town and its environs are characterised by intense urban 

pressures, first along the main highways and through the planned development of sub 

urban areas. Since 1962 Nakuru population has been growing at the mean annual rate 

of 5.6%. From a population of 38,181 in 1962, the population reached 47,151 in 1970 

(Republic of Kenya, 1970), 92,851 in 1979 (Republic of Kenya, 1981), 163,927 in 1989 

(Republic of Kenya, 1994), 289,385 in 1999 (Republic of Kenya, 2000), and 473,288 in 

2009 (Republic of Kenya, 2010). By the year 2015, the population is projected to rise to 

760,000, which is approximately 50% above the present levels (Mwangi, 2003).  

Urban sprawl has a negative impact on infrastructure and the sustainability of 

cities (UN-HABITAT, 2010). This is exhibited for instance in the increase of transport 

costs, public infrastructure of residential and commercial development. Most African 

cities show characteristic patterns of urban sprawl where urban development evolves 

around the nexus of the main transportation routes, with urban growth tending to 

grow in sectors emanating from city centres (Mundia & Aniya, 2007). Connected with a 

fast-growing urban city in Africa like Nakuru is the spontaneous development of slums, 

a large increase in the number of street children, unemployment and high rates of 

crime, and strain on existing urban infrastructure and services. Many urban areas are 

faced with environmental problems like water pollution, uncontrolled waste disposal, 

bad air quality and noise. With respect to institutional arrangements, the local 

governments, entrusted with the provision of urban basic infrastructure, have been 

unable to perform as a result of administrative problems and lack of capability (Obura, 

1996). 
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4 MONITORING LAND-USE CHANGES  

4.1 Introduction 

Quantitative urban studies are becoming increasingly important for planners knowing 

that in the year 2015 more than half the global population will be residing in cities 

(UNECE, 2003). Suitable urban planning ought to be a top priority for future 

development but unfortunately sound planning has not taken place especially in many 

African cities as heavy rural-urban migration continues to cause cities to expand at 

uncontrollable rates (Mundia & Aniya, 2007). As a consequence, the urban population 

in Africa is increasing at a much faster rate than in the rest of the world, contributing 

to the augmentation of the existing problems such as unsuitable land-use (Lavalle, 

Demichili, Turchini, Casals Carrsco, & Niederhuber, 2001). The concentration of 

population in cities comprises as much as 60% of the total population in most 

countries. In these immense urban settlements the environmental and social 

consequences are sometimes disastrous (Barredo & Demicheli, 2003). 

Remote sensing techniques have been valuable in mapping urban land-use 

pattern as well as data sources which aid in the analysis and modelling of urban 

growth and land-use change (Clarke, Parks, & Crane, 2002). Remote Sensing offers 

spatially coherent data sets that cover large areas with both high spatial detail and 

high temporal frequency. These data characteristics are necessary for land-use 

monitoring, which is an essential element of socio-ecological studies. As urbanisation 

occurs, changes in land-use accelerate and land making up the natural resource base 

such as forests and agricultural land, leading to modification and conversion of existing 

land-uses (Mundia & Aniya, 2006). This is referred to as land take (Tóth, 2012). 

We evaluated the spatial dimension of the imageries using Nakuru. The spatial 

dimension of remote sensing images as assessed by image texture contains 

information on local spatial structure and variability of land-use categories, and can 

raise land-use classification accuracies in heterogeneous landscapes (Ghimire, Rogan, 

& Miller, 2010). Texture information has improved classification accuracy for optical 

sensors such as the Satellite Pour l'Observation de la Terre (SPOT) High Resolution 

Visible (HRV) sensor (Franklin & Peddle, 1990), Landsat TM (Chica-Olmo & Abarca-
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Hernandez, 2000), Multispectral Electro optical Imaging Scanner (MEIS-II) (Anys, 

Bannari, He, & Morin, 1994), and airborne multispectral sensors (Franklin, Hall, 

Moskal, Maudie, & Lavigne, 2000). The optimal window size for texture measurements 

is highly dependent on the image spatial resolution and the land-use characteristics 

(Pesaresi, 2000). Normally, window size should be large enough to include the entire 

texture pattern, and at the same time small enough to include only one land-use type 

(Dell'Acqua & Gamba, 2006; Pesaresi, 2000; (Puissant, Hirsch, & Weber, 2005). Shaban 

& Dikshit (2001) computed texture measurements with different window sizes as 

inputs for urban area classification using SPOT HRV.   

Very high resolution SAR sensors are playing an increasingly important role in 

urban remote sensing due to their ability to operate day and night through cloud 

cover, recent improvement in data availability and spatial resolution (Rogan & Chen, 

2004). Many studies have focused on the frequency and polarimetry of SAR data in 

land-use classification (Chen, Chen, & Lee, 2003), whereas SAR image texture is found 

helpful in improving map accuracy, particularly for urban and forest categories 

(Dekker, 2003). 

The study of land-use changes is essential not only for land-use management 

but also in detecting environmental change and in formulating sustainable 

development strategies (Barnsley & Barr, 1997). Accurate information on land-use 

changes is needed for documenting urban growth, making policy decisions and 

improving land-use planning. Information concerning land-use changes is also required 

for predictive modelling (Mas, Pérez-Vega, & Clarke, 2012).  

The aim of this chapter was to perform different land-use classification using 

multi-temporal and multi-sensor data to monitor land-use change. We used multi-

temporal Landsat images of 1986, 2000 and 2010 for land-use analysis of Nairobi. In 

the case of Nakuru, we used both optical and SAR datasets. Optical datasets included: 

Landsat of 1986, 2000 and 2010; Worldview-2 of 2010; and ALOS PALSAR imagery of 

the year 2010. Image classification was performed on resampled datasets at 12.5 

meters and 28.5 meters. Several image classification algorithms were explored and 

their performance evaluated using accuracies measured such as overall accuracies and 
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kappa coefficient values. Support vector machine (SVM) performed better compared 

to maximum likelihood classifier (ML) (Mubea & Menz, 2012). Thus combining images 

from optical and SAR yielded better results in image classification. Land-use change 

monitoring was achieved by comparing the change between two corresponding years 

and the result given as a percentage. 

 

4.2 Utility of multi-sensor satellite data 

Urban landscapes remain one of the most challenging environments to be analysed 

from remotely sensed data. They are complex, featuring spatial and spectral 

heterogeneity and are composed of multi-fold artificial and natural surface types 

(Herold, Roberts, Gardner, & Dennison, 2004). In a comparative analysis of urban 

reflectance, Small (2005) concluded that sensors with similar spectral and radiometric 

properties to Landsat Thematic Mapper (TM) principally comprise a three-dimensional 

spectral feature space. In such a feature space, linear combinations of spectral end 

members (high albedo, vegetation and low albedo) cover approximately 98% of the 

variance contained in an urban scene (Griffiths, Hostert, Gruebner, & Linden, 2010). 

Challenges of urban mapping can be solved using more temporal information 

and data from different sensors. Integrating multi-temporal information helps 

distinguish urban from non-urban surfaces as urban spectral responses are largely 

persistent over time compared to non-urban surface phenology (Griffiths, Hostert, 

Gruebner, & Linden, 2010).  

Multi-temporal SAR images have proven to be useful in urban, forest, and 

agriculture land-use classification (Le Toan, Laur, Mougin, & Lopes, 1989; Pellizzeri, 

Gamba, Lombardo, & Acqua, 2003; Quegan, Toan, Yu, Ribbes, & Floury, 2000; Schotten 

, Rooy, & Janssen, 1995). Recent studies report that the integration of optical and SAR 

data is useful due to their distinct of features. Optical images contain information on 

surface reflectance and emissivity characteristics, while SAR images capture the 

structure and dielectric properties of the Earth surface materials (Zhu, Woodcock, 

Rogan, & Kellndorfer, 2011). Land-use types that are impossible to separate in optical 

images might be distinguishable with SAR images and vice versa because of the 
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complementary information contained in the two datasets (Amarsaikhan & Douglas, 

2004). 

Many approaches employing both optical and SAR images have been explored 

for land-use classification (Amarsaikhan & Douglas, 2004; Blaes, Vanhalle, & Defourny, 

2005; Chust, Durcot, & Pretus, 2004; Corbane, Faure, Baghdadi, Villeneuve, & Petit, 

2008; Kuplich, Freitas, & Soares, 2000; Michelson , Liljeberg, & Pilesjo, 2000; Shupe & 

Marsh, 2004; Solberg , Jain, & Taxt, 1994; Waske & Benediktsson, 2007; Zhu, 

Woodcock, Rogan, & Kellndorfer, 2011). The results from integrating optical and SAR 

sensors are always significantly higher than those obtained from using an individual 

sensor, particularly for certain land-uses, such as urban (Corbane, Faure, Baghdadi, 

Villeneuve, & Petit, 2008; Toll, 1985), agriculture (Blaes, Vanhalle, & Defourny, 2005; 

Chust, Durcot, & Pretus, 2004), wetlands (Augusteijin & Warrender, 1998; Li & Chen, 

2005; Mwita, Menz, Misana, & Nienkemper, 2012), and desert vegetation (Shupe & 

Marsh, 2004). 

Combining multi-spectral imagery with data from the microwave spectral 

domain has also proven to be a powerful strategy, especially for monitoring urban 

areas and for overcoming spectral ambiguities (Phinn, Stanford, Scarth, Murray, & 

Shyy, 2002; Pacifici, Del Frate, Emery, Gamba, & Chanussot, 2008). The combined use 

of synthetic aperture radar (SAR) and multispectral optical imagery has been 

successfully used to delineate built-up areas (Gomez-Chova, et al., 2006).  

Urban mapping requires the selection of an appropriate scale of observation. 

This involves a certain trade-off between the richness of detail of very high resolution 

(VHR) remote sensing imagery and the generalizing nature of moderate to high 

resolution sensors such as the 30 m of Landsat data (Griffiths, Hostert, Gruebner, & 

Linden, 2010). The long-term and future data record is an advantage of Landsat data 

compared to very high resolution sensors (NASA, 2008; Wulder, et al., 2008). Optical 

and SAR systems operate in different wavelengths, ranging from visible to microwave. 

Landsat sensors include MSS (Multi-Spectral Scanner), TM (Thematic Mapper) 

and ETM+ (Enhanced Thematic Mapper Plus) (properties of Landsat TM and ETM + are 

shown in appendix 9.1.1). Figure 4-1 illustrates a false colour composite Landsat RGB 
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(red, green and blue bands) and panchromatic band of Nakuru municipality. World 

view-2 was launched on 8th October 2009. It is the first commercial eight multispectral 

bands high resolution satellite (sensor). Figure 4-2 illustrates Worldview-2 True colour 

bands of the central business district (CBD) of Nakuru. 

 

 

Figure 4-1: (a) False colour composite Landsat TM (Path 169, Row 60) RGB of 1986 for Nakuru 

municipality (b) Panchromatic band of 1986 for Nakuru Municipality 
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Figure 4-2: Worldview-2 True colour image of year 2010 for Nakuru CBD 

Radar wavelength has an ultimate influence on the interaction between the 

electromagnetic wave and the natural medium (Garestier, Dubois-Fernandez, Dupuis, 

Paillou, & Hajnsek, 2006). As wavelength increases, surface roughness criteria will also 

change. In general, more surface features will appear smoother at longer wavelengths 

than at shorter wavelengths.  

The capability to penetrate through precipitation clouds or into a surface layer 

is increased with longer wavelengths. Typically the penetration is half the wavelength 

and as wavelength increases and frequency decreases, respectively, the penetration 

becomes higher (Henderson & Lewis, 1998). 

Radar is able to receive and process all four combinations of polarizations: 

HH, HV, VH, and VV. HH stands for horizontal transmit and horizontal receive, VV 

stands for vertical transmit and vertical receive, HV stands for horizontal transmit and 

vertical receive, and VH stands for vertical transmit and horizontal receive. HH and VV 

are referred to as like-polarized because the transmit and receive polarizations are the 

same, while HV and VH are referred to as cross-polarized because the transmit and 

receive polarizations are orthogonal to one another. The channels have varying 
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sensitivities to differentiate surface characteristics and properties. For instance, the 

dynamic range of the like-polarized module is larger than that of the cross-polarized 

module for urban areas; this is in contrast to the measurement for forested areas, 

where the dynamic range of the cross-polarized component is larger than that of the 

like-polarized component (Dong, Forster, & Ticehurst, 1997).  

Multiple polarizations help to distinguish the physical structure of the 

scattering surfaces e.g.  HH vs. VV is used in the alignment with respect to the radar, 

HV is used in the randomness of scattering for vegetation cover, HH VV phase angle is 

used for the corner structures and urban land-use mapping. Past studies showed that 

radar imagery collected using different polarization may provide different and 

complementary information about the targets on the surface and thus improve the 

interpretation of different urban features (Dong, Forster, & Ticehurst, 1997).  The use 

of polarimetric datasets for urban analysis has been accelerated in recent years with 

more and more fully-polarimetric SAR systems being in operation for example Terra 

SAR-X. Several studies demonstrated that polarimetric datasets have great potential 

for urban applications Garestier, Dubois-Fernandez, Dupuis, Paillou, & Hajnsek, 2006; 

Schneider, Papathanassiou, Hajnsek, & Moreira, 2006).  

 

4.3 Land-use change analysis in Nakuru 

4.3.1 Data 

The approach adopted for the analysis of land-use involved: Landsat images for 1986, 

2000 and 2010, Worldview-2; and Advanced Land Observing Satellite (ALOS) Phased 

Array type L-band Synthetic Aperture Radar (PALSAR) image for 2010 were selected for 

the study area. The ALOS PALSAR was at level 1.5 and polarimetric mode, multi-

polarized images, HH Horizontal-Horizontal + HV Horizontal-Vertical + Vertical-

Horizontal + VV Vertical-Vertical. Nakuru municipality is entirely contained within 

Landsat TM path 169, rows 60. The Landsat data sets include TM, and ETM+ images. 

Digital elevation model (DEM) at spatial resolution of 90 meters was obtained from the 

United States Geological Survey (USGS) and used to pre-process the SAR data. 

Reference data included a topographic map (scale 1:50,000) and ground truth 
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information about land-use from 50 GPS points which were used for classifier training 

and accuracy assessment. Stratified random sampling was adopted for selecting 

samples. The datasets used for land-use change analysis of Nakuru are shown in Table 

1. 

Table 1: Datasets for land-use change analysis of Nakuru 

Data type Source Resolution Application 

Satellite imagery Landsat TM (28.1.1986) 28.5 metres Land-use mapping 

Landsat ETM+ 

(27.1.2000) 

28.5 metres 

Landsat ETM+ 

(30.1.2010) 

30 metres 

World view 2 (2010) 2 metres 

ALOS (2010) 12.5 metres 

Topographic 

map 

 Map scale 

1:50000 

Geometric correction 

Ground truthing 

GPS points   Ground truthing 

4.3.2 Land-use classification 

Two approaches were implemented for the land-use classification of Nakuru; Nakuru 

municipality with six land-use classes (namely urban, water, forest, agriculture, barren 

land and rangeland) and Nakuru Central Business District (CBD) with three land-use 

classes (namely urban, forest and agriculture). The three classes were selected for 

Nakuru CBD since it is the centre of major activities and infrastructure. Several factors 

were considered during the design of categorization scheme such as the major land-

use categories within the research area, disparities in spatial rules of the sensors, and 

the need to always discriminate land-use classes irrespective of seasonal disparities 

(Anderson, Hardy, Roach, & Witmer, 1976). See appendix 9.1.2 and 9.1.3 for more 

information on the land-use classification categories. 

Image pre-processing steps for the optical datasets were radiometric and 

geometric correction as illustrated in Figure 4-3. GPS points were used for image to 
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map registration. UTM 37 South was selected as reference system for the research 

area. The processing of the SAR data was done using European Space Agency (ESA) 

NEST SAR Remote Sensing software. Multi-look correction was applied. Radar speckle 

which appear as grainy “salt and pepper” texture in imagery, was reduced prior to 

interpretation and analysis using Gamma Map filter with 5 X 5 kernel. The DEM used 

was an SRTM (Shuttle Radar Topography Mission) and was used to remove relief 

displacement in SAR data.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3: Image pre-processing workflow of the multi-sensor satellite data sets 

 

In order to find the optimal spatial resolution scenarios of upscaling and 

downscaling of the data sets were explored. Upscaling refers to the decrease in spatial 

resolution while downscaling is the increase in spatial resolution. Scale has several 

definitions according to Lam & Quattrochi (1992) namely: cartographic or map scale; 

observational or geographic scale that refers to the size or spatial extent of the study; 

measurement scale or resolution that refers to the minimum size that can be 

distinguished; and finally operational scale that refers to the scale at which certain 

processes operate in the environment. 
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In a nutshell, scale is the spatial and temporal dimension of the research while 

at the same time; scale also refers to the spatial extent and frequency that a certain 

phenomenon or process occurs (Ming, Yang, Li, & Song, 2011). Additionally, scale 

shows the level on which the object is understood. Hence scale can either be temporal 

or spatial scale, and of which both were investigated in this research. Combinations of 

the reflective spectral bands from images (i.e., stacked vector) were used for 

classification of the 1986, 2000 and 2010 images. The ratio of HH/HV was used for the 

case of the ALOS PAL-SAR imagery which yields best results for urban areas (Idol, 

Haack, Sawaya, & Sheoran, 2008; Zhu, Woodcock, Rogan, & Kellndorfer, 2011). 

Image processing techniques were applied to the data sets both at spatial 

resolution of 12.5 meters and 28.5 meters using nearest neighbour interpolation. 

Therefore the Worldview-2 data was resampled from 0.5 meters (original) to 12.5 

meters and 28.5 meters. Landsat was resampled from 28.5 meters (original) to 12.5 

meters while ALOS PALSAR was resampled from 12.5 meters (original) to 28.5 meters. 

The objective was to assess how classification accuracy changes with spatial resolution. 

Image processing workflow is illustrated in Figure 4-4. 
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Figure 4-4: Image workflow for classification and change detection of multi-sensor data sets 

Training sites representing the land-use classes of interest were collected using 

the region growing tool in ENVI 4.8. Such sites were homogeneous and extensive to 

provide excellent statistics. ML was applied to the multi-sensor datasets, and 

performance assessed using the corresponding confusion matrices. SVM classification 

in ENVI 4.8 was applied to all the data sets and its performance assessed using 

confusion matrices. The SVM classifier has four kernels namely linear, polynomial, 

Radial Basis Function (RBF) and sigmoid. Radial basis function kernel is the default and 

works well in most situations (Shafri & Ramle, 2009). 

SVM is well recognized in the field of machine learning and pattern recognition 

(Waske & Benediktsson, 2007) and has recently been introduced in context of remote 

sensing image analysis (Melgani & Bruzzone, 2004). SVM has been applied successfully 

for classifying multispectral imagery for example in (Huang, Davis, & Townshend, 2002) 

and outperformed other methods in the very most recent cases. In some studies SVM 

has been seen to produce higher accuracies than other classifiers, as a maximum 

likelihood classifier, an ANN and a simple decision tree (Melgani & Bruzzone, 2004). 
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Different voting schemes for multi class SVMs have been explored (Melgani & 

Bruzzone, 2004).  

Post-classification refinements were enforced to diminish categorization errors 

as a result of the similarities in spectral responses of certain training classes such as 

bare fields and urban areas and some crop fields and wetlands. Independent samples 

of about 100 pixels for each class were randomly selected from each classification 

category to assess classification accuracies. Confusion matrices as cross-tabulations of 

the mapped class versus the reference class were used to assess classification 

accuracies (Congalton & Green, 1999). Overall accuracy, user’s and producer’s 

accuracies, and the Kappa statistic were then derived from the error matrices. The 

Kappa statistic incorporates the off diagonal elements of the confusion matrices (i.e., 

classification errors) and represents agreement obtained after removing the 

proportion of agreement that could be expected to occur by chance. Following the 

classification of imagery from the individual years, a GIS based multi-date post 

classification comparison (PCC) change detection strategy was employed to determine 

changes in land-use in Nakuru. Change detection analysis entailed finding the type, 

amount and location of land use changes that had taken place.  

4.3.3 Results and Discussion 

Image classification of Landsat for 1986, 2000 and 2010 with 28.5 meters (original) 

spatial resolution was successfully performed and the results tabulated in Table 2. SVM 

produced better results compared to ML for example SVM in 2010 yielded an overall 

accuracy of 86.96 % compared to ML of the same year with 83.80%. Land-use maps for 

Nakuru municipality for the three years are illustrated on Figure 4-5. 
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Table 2: Confusion Matrix for Land-cover classification for Nakuru municipality (Landsat data from 

1986, 2000 and 2010) 

Method Landsat 

SVM   1986 2000 2010 

  

Overall Accuracy 93.42% 83.77% 86.96% 

Kappa 

Coefficient 
0.9087 0.7988 0.8393 

ML     

 Overall Accuracy 89.00% 82.50% 83.80% 

Kappa 

Coefficient 

0.8527 0.7862 0.8025 

 

 

  
 

Figure 4-5: Land-use Map for Nakuru Municipality from Landsat for 1986, 2000 and 2010 

Furthermore, the Radial Basis Function (RBF) kernel of support vector machine 

at various percentages was explored. RBF performed best at 0.33 compared to 0.5 and 

0.7. The RBF value of 0.33 is the default value in ENVI software. For example the 

overall accuracy value of 93.42 % was obtained for the year 1986 at RBF value of 0.33 

compared to 93.14 % at 0.5 and 93.14% at 0.7. Similarly an overall accuracy value of 

83.77% was obtained for the year 2000 at RBF value of 0.33 compared to 82.75% at 0.5 

and 82.75% at 0.7. 
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Land-use summary for Nakuru municipality (using Landsat at spatial resolution 

of 28.5 meters) was performed in ENVI and results tabulated in Table 3.  SVM gave 

better results compared to ML. For example, looking at the urban class, using SVM 

growth was from 4.78 km2 in 1986, 12.73 km2 in 2000 and 27.84 km2 in 2010 

compared to ML.  

Table 3: Land-use estimates for Nakuru municipality using Landsat (28.5 spatial resolution) 

  1986 2000 2010 

Land-use 

classes (km2) 

MLC SVM MLC SVM MLC SVM 

Water 33.29 36.95 38.77 40.09 27.25 30.78 

Urban 16.65 4.78 26.4 12.73 26.83 27.84 

Forest 16.95 20.55 25.77 27.1 21.91 26.93 

Barren land 24.69 13.46 9.5 5.98 18.82 19.84 

Rangeland 93.63 150.07 70.44 134 111.15 122.57 

Agriculture 104.78 64.20 119.12 70.1 84.03 62.03 

Total 290.00 290.00 29.00 290.00 290.00 290.00 

 

Next we analysed the upscaling of World view-2 and ALOS for Nakuru CBD 

which yielded low classification accuracy as shown in Table 4. World view-2 was up 

scaled from 0.5 to 28.5 meters and ALOS PALSAR from 12.5 to 28.5 meters. 
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Table 4: Comparison of classification accuracies for the three multi-sensor data sets at 28.5 spatial 

resolution for Nakuru CBD 

Method  Landsat Worldview-2 ALOS PALSAR 

 
  1986 2000 2010 2010 2010 

 SVM 

Overall 

Accuracy 
96.18% 93.22% 99.51% 76.76% 59.37% 

Kappa 

Coefficient 
0.9343 0.7321 0.9914 0.6358 0.3555 

ML 

Overall 

Accuracy 95.24% 93.22% 99.60% 76.76% 18.62% 

Kappa 

Coefficient 0.9196 0.7321 0.9929 0.6358 0.0000 

 

Land-use summary for Nakuru CBD, using all data sets at spatial resolution of 

28.5 meters, was performed in ENVI and results tabulated in Table 5 and Figure 4-6. 

From Table 5 the respective SVM values of Landsat 2010, Worldview-2 and ALOS 

PALSAR for the three land-uses were different because of the different sizes of the 

training polygons and heterogeneity of the individual land-use classes. 

Table 5: Land-use estimates for Nakuru CBD (28.5 spatial resolution) 

Land-use classes 

(km2) 

Landsat Worldview-2 ALOS PALSAR 

1986 2000 2010  2010 2010 

  SVM SVM SVM SVM SVM 

Forest 13.3 13.7 10.7 16.1 11.3 

Urban 12.4 15.4 22.3 22.3 17.4 

Agriculture 32.3 28.9 25.0 19.6 29.4 

 Total 58.0 58.0 58.0 58.0 58.0 
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Figure 4-6: Land-use estimates for Nakuru CBD (28.5 metres) 

Land-use summary for Nakuru CBD, using all data sets at spatial resolution of 

12.5 meters, was performed in ENVI and results tabulated in Table 6. Relatively good 

values of urban class were achieved using SVM ALOS data as compared to Landsat data 

and World view-2 at 12.5 meters spatial resolution. Land-use maps for Nakuru CBD are 

illustrated in Figure 4-7, Figure 4-8, Figure 4-9, Figure 4-10 and Figure 4-11.  

Table 6: Land-use estimates for Nakuru CBD (12.5m spatial resolution) 

Land-use classes 

(km2) 

Landsat Worldview-2 ALOS PALSAR 

1986 2000 2010 2010 2010 

  SVM SVM SVM SVM SVM 

Urban 15.9 18.9 23.3 23.6 27.7 

Forest 8.9 9.2 9.7 14.1 7.1 

Agriculture 33.2 29.9 25.0 20.3 23.2 

 Total 58.0 58.0 58.0 58.0 58.0 
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Figure 4-7: Land-use Map for Nakuru CBD using Landsat TM 1986 

 

 

Figure 4-8: Land-use Map for Nakuru CBD using Landsat ETM 2000 
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Figure 4-9: Land-use Map for Nakuru CBD using Landsat ETM + 2010 

 

 

Figure 4-10:  Land-use Map for Nakuru CBD using World-view 2 2010 
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Figure 4-11: Land-use Map for Nakuru CBD using Landsat ETM + 2010 and ALOS 

From the Table 7, downscaling of Landsat data sets did not affect classification 

accuracy.  Landsat was downscaled from 28.5 meters to 12.5 meters. For example, the 

kappa coefficient value of 96.18% in Table 4 for Landsat 1986 classification is close to 

that one of 96.23% in Table 7 of the same data set classification using SVM. 
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Table 7: Confusion Matrix for Land-use classification for Nakuru CBD (12.5 spatial resolution) 

Method 

 

Landsat Worldview-2 

ALOS 

PALSAR 

   1986 2000 2010 2010 2010 

 SVM 

Overall 

Accuracy 
96.23% 96.91% 99.05% 77.47% 84.09% 

Kappa 

Coefficient 
0.943 0.9507 0.9836 0.6343 0.6878 

 

      

ML 

Overall 

Accuracy 96.66% 97.09% 98.68% 77.47% 21.00% 

Kappa 

Coefficient 0.9495 0.9485 0.9774 0.6343 0.0000 

 

The ratio of HH/HV ALOS PALSAR was combined with (bands 2, 3, 4) Landsat 

2010 as a layer stack and SVM carried out. The combined ALOS PALSAR (2010) and 

Landsat (2010) gave better results in terms of classification accuracies. For example an 

overall accuracy value of 93.64 % and kappa statistic 0.8795 was obtained using the 

combined Landsat and ALOS PALSAR compared to that of ALOS PALSAR alone 84.09 % 

and 0.6878 respectively as illustrated on Table 7 using SVM. 

Based on the results from the different image classification, land-use change 

was calculated using post classification technique and results tabled in Table 8 and 

maps illustrated on Figure 4-12 and Figure 4-13. From Table 8, 6.25 km2 of land 

changed to urban land-use from non-urban between the years 1986 to 2000 compared 

to the value of 19.70 km2 between the years 2000 to 2010. Non-urban land-use 

included forest and agriculture land-uses. Thus rapid urban growth has taken place 

between the years 2000 to 2010 due to urbanization. This has been witnessed by the 

high population growth (Republic of Kenya, 2000; Republic of Kenya, 2010), and rapid 

infrastructure developments such as more houses to cater for the growing demand for 

housing. 
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Table 8: Land-use change estimates based on post classification comparison 

  1986 to 2000 2000 to 2010 

Land-use change Change (km2) Change (km2) 

No change 36.69 23.69 

From non-urban to urban 6.25 19.70 

from urban to non-urban 8.93 7.75 

 

 

 

Figure 4-12: Land-use change conversion in Nakuru CBD using Landsat TM (1986) and Landsat ETM 

(2000) 
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Figure 4-13: Land-use change conversion in Nakuru CBD using Landsat ETM (2000) and ALOS PALSAR 

(2010) 

Monitoring urban land-use and spatial-temporal changes is essential for guiding 

decision making in resource management. We analysed land-use changes between 

1986 and 2010 using multi-sensor satellite datasets. The performances of various 

classifiers were assessed. SVM algorithm gave better results compared to ML classifier. 

Image upscaling and downscaling were explored in this research. Downscaling of 

Landsat data sets did not affect classification accuracy as compared to upscaling of 

Worldview-2 and ALOS PALSAR datasets.  The integration of Landsat and ALOS PALSAR 

yielded good results compared to when ALOS PALSAR was classified alone. Post 

classification comparison was performed to determine the land-use changes and 

conversion. 
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4.3.4 Factors influencing land-use changes and urban growth 

The results from the land-use change analysis for Nakuru indicate that the city has 

undergone rapid urban growth. This has been attributed to economic growth and rapid 

urbanisation. 

Economic growth 

Nakuru has developed rapidly as it lies on the Kenyan-Uganda railway and the Trans-

African highway linking the coastal region. It’s close proximity to Nairobi, good climate 

and rich agricultural hinterland has seen the town develop into the fourth largest town 

in Kenya. 

Figure 4-14 shows the main economic activities in Nakuru. Commerce and 

industry has blossomed along the main transportation corridor. Economic 

development has led to the development of industries, roll out of residential areas and 

expansion of built up areas. Poor performance of crops due to changes in local climatic 

conditions and drought has made more farmers turn into other alternative sources of 

income such as trade and industry. Such agricultural land has been converted into 

urban development. 

Over the last decades there have establishment of more colleges, universities, 

banks and big companies such as Geothermal Development Corporation (GDC). This 

has led to a strain on existing housing and causing a rise in the value of urban land. 

Only a fraction of the labour force in Nakuru town is actually employed in the formal 

sector such as in county government administration, industries, schools and 

parastatals (Mwangi, 2003). Consequently, limited access to formal employment has 

resulted in the rapid increase of informal trading activities not only in the Central 

Business District (CBD) but in the residential areas as well (Owour, 2006).  
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Figure 4-14: Economic structure of Nakuru Municipality (Source: Owour, 2006) 

The municipal council of Nakuru is always engaging in battles with hawkers and 

other small scale traders whom fail to comply with city by-laws. The challenge is 

providing a common market for small scale traders with adequate facilities such as 

market stalls, water and sanitation. 

Tourism has flourished over the last decades. The presence of key natural 

features such as Lake Nakuru, the Menengai Crater and archaeological sites like 

Sirikwa holes and Hyrax Hill have made Nakuru to be a top tourist destination in the 

country (Mwangi, 2003).  The location of Nakuru at the centre of the rift valley has 

contributed to its success as a tourist destination. The Lake Nakuru National Park has 

received visitors both domestic and international and the numbers have doubled over 

the years due the country tourism marketing locally and abroad. Accordingly, more 

hotels have been built up to accommodate the growing numbers of tourists. 

Urbanisation 

From a population of 38,181 in 1962 the population in Nakuru has growth up to 

473,288 in 2009 (Republic of Kenya, 2010). The rise in population growth has been 
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attributed to natural urban increase, rural-urban migration from the local hinterland 

and other parts of Kenya and boundary extensions (Owour, 2006). 

Housing and real estate has occurred in ad hoc manner in response of high 

rural urban migration into Nakuru. As a result informal settlements have sprouted on 

the peripheries of the city so as to cater for the low income and urban poor inhabitants 

as seen in Figure 4-15. The development of the town’s infrastructure and regulatory 

structures has failed to keep up with the rapid population growth (Owour, 2006). This 

has resulted in a relatively majority of the population inhabiting in informal, 

unregulated and poorly serviced settlements. 

 

 

Figure 4-15: Settlement structure of Nakuru municipality (Source: Owour, 2006) 

Physical factors 

Rapid urban growth has occurred mostly along the transportation corridor of the 

major highway and railway which links the city to Nairobi and Kisumu. The availability 

of cheap construction material due to the presence of different volcanic rocks has 
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contributed to the burgeoning of housing and real estate development. Cement and 

sand are readily available as well cheap labour from low income settlement zones. 

From Figure 4-15 we can see that in the southern east part of the city most 

urban growth has occurred and it is a fairly flat area at average height of 1800 metres 

above sea level. This area has middle income and high residential houses.  

In the northern part of the city towards the west we have high residential areas 

and it is pretty step at 1,900 metres above sea level. Here construction is limited by the 

steep slopes but ideal for high income inhabitants who can afford the high prices of 

land and rent. Low income residential areas including informal settlements are located 

on the southern western part of the city. The area is fairly flat at an average altitude of 

1780 metres above sea level.  

4.3.5 Consequences of Nakuru’s urban growth 

The results from the land-use change analysis of Nakuru demonstrate that major 

changes have occurred. These significantly diminish the achievement of sustainable 

development. Urban growth has resulted in reduction of forest and conversion of 

agricultural land into urban development. 

There has been high demand for housing due to high rural urban migration 

resulting in high prices of land. The house rent has also gone up leading to the 

flourishing of informal settlements for low income inhabitants. The urban growth has 

sprout into the edges and into the neighbouring towns as people search for low-priced 

land for development of homes.  

The quality of infrastructure has also decreased with an increase in housing 

density (Owour, 2006). This is because a high proportion of the population is mainly 

located in the low-income settlements which offer affordable rent. Nonetheless, there 

have been high traffic congestions in rush hours. 

There has been a strain on the water and sanitation facilities in the city. Some 

areas have little or no access to piped water and are forced to buy water from water 

kiosks. In some low income estates bathroom and toilets are communal posing 

hygiene hazards.  
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The price of food has gone up as agricultural produce is fetched from 

neighbouring towns. The suppliers pass the high transportation costs to consumers 

translating to high food budget prices for each household. As a result, poor households 

continue to rent low income houses and dwell in informal settlements so as to survive 

(Owour, 2006). 

 

4.4 Land-use change analysis in Nairobi 

4.4.1 Data 

The approach adopted for the analysis of land-use involved: cloud-free Landsat images 

for 1986, 2000 and 2010. Nairobi is entirely enclosed within Landsat TM path 168, 

rows 61. The Landsat data sets used included TM, and ETM+ images. Reference data 

was developed for each of the separate years and then randomly divided for classifier 

training and accuracy assessment. Ground truth data included a topographic map 

which was used as reference data for the 1986 and 2000 classifications while GPS 

points served as reference data for the 2010 classification.  

Table 9: Datasets for land-use change analysis of Nairobi 

Data type Source Resolution Application 

Satellite imagery Landsat TM (3.5.1986) 28.5 metres Land-use mapping 

Landsat ETM+ 

(2.5.2000) 

28.5 metres 

Landsat  ETM+ 

(31.2.2010) 

30 metres 

Topographic 

map 

 Map scale 

1:50000 

Geometric correction 

Ground truthing 

GPS points   Ground truthing 
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4.4.2 Land-use classification 

Land-use classification of Nairobi consisted of six land-use classes; namely urban, 

forest, agriculture, open/transitional areas, water and rangeland. Urban land-use 

included built-up areas within the research area. Forest included evergreen forest, 

mixed forests with high densities of trees, little or under-storey vegetation. 

Open/transitional areas included bare land, exposed areas, quarries and transitional 

areas. Water included rivers and reservoirs. The sewage treatment plant in Ruai was 

also captured under water class. Rangeland included bush land and ground layer 

covered by grass and sparsely disturbed scrub species. The design of the classification 

scheme involved consideration of factors such as the major land-use groups within the 

research area, disparities in spatial resolution of the sensors, and the need to always 

discriminate land-use classes irrespective of seasonal disparities (Anderson, Hardy, 

Roach, & Witmer, 1976).  

Image pre-processing steps for the optical datasets were radiometric correction 

and geometric correction. GPS points were used for image to map registration. 

Combinations of the reflective spectral bands from images (i.e., stacked vector) were 

used for classification of the 1986, 2000 and 2010 images. Training sites representing 

the land-use classes of interest were collected using the region of interest tool. Such 

sites were homogeneous and extensive to provide excellent statistics. Support vector 

machine (SVM) classification was applied to all the data sets and its performance 

assessed using error matrices. SVM is well recognized in the field of machine learning 

and pattern recognition (Vapnik, 1998; Schölkopf & Smola, 2002) and has recently 

been introduced in context of remote sensing image analysis (Huang, Davis, & 

Townshend, 2002; Foody & Mathur, 2004; Melgani & Bruzzone, 2004). Recently SVM 

has been found to perform better compared to maximum likelihood classifier (Mubea 

& Menz, 2012). 

Post-classification refinements were enforced to diminish categorisation errors 

as a result of the similarities in spectral signatures of certain classes. Spatial modeller 

and additional rule based procedures were adopted to overcome these classification 

challenges and differentiate between classes.  
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Independent samples of pixels for each class were randomly selected from 

each classification category to assess classification accuracies. Error matrices as cross-

tabulations of the mapped class versus the reference class were used to assess 

classification accuracies (Congalton & Green, 1999). Overall accuracy, user’s and 

producer’s accuracies, and the Kappa statistic were then derived from the error 

matrices. The Kappa statistic incorporates the off diagonal elements of the error 

matrices (i.e., classification errors) and represents agreement obtained after removing 

the proportion of agreement that could be expected to occur by chance.  

4.4.3 Results and discussion 

Land-use summary for Nairobi was performed and results tabulated in Table 10 and 

Figure 4-16. Land-use maps for Nairobi are illustrated on Figure 4-17, Figure 4-18 and 

Figure 4-19. The urban/built-up areas increased from 35.16 km2 in 1986 to 52.50 km2 

in 2000 and 79.38 km2 in 2010. Forest increased from 62.87 km2 in 1986 to 71.14 km2 

in 2000 but decreased to 66.86 km2 in 2010. In areas where forest decreased such land 

was classified as agriculture or urban due encroachment of the forest.  

Agriculture increased from 144.72 km2 in 1986 to 152.53 km2 in 2000 but 

decreased to 148.21 km2 in 2010. Typical agriculture land-use include small-scale crop 

gardens and peri-urban agriculture for cultivation, and such land-use was converted to 

urban land-use namely building up of residential and commercial buildings to cater for 

the increased urban population in Nakuru. Open/Transition areas increased from 99.54 

km2 in 1986 to 146.94 km2 in 2000 but decreased to 117.94 km2 in 2010. Rangeland 

increased from 361.11 km2 in 1986 to 261.74 km2 in 2000 but decreased to 257.61 

km2 in 2010. Water increased from 9.60 km2 in 1986 to 11.15 km2 in 2000 and 

increased further to 26.00 km2 in 2010.   
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Table 10: Land-use summary and error estimates for Nairobi 

Year 1986 2000 2010 

Land-use classes Area (km2) % Area (km2) % Area (km2) % 

Urban  35.16 4.9 52.50 7.4 79.38 11.1 

Forest  62.87 8.8 71.14 10.0 66.86 9.4 

Agriculture  144.72 20.3 152.53 21.4 148.21 20.8 

Open/transition 

areas 99.54 14.0 146.94 20.6 117.94 16.5 

Rangeland 361.11 50.6 261.74 36.7 257.61 36.1 

Water 9.60 1.3 11.15 1.6 26.00 3.6 

Total  696 100 696 100 696 100 

    

Overall Accuracy 

(%) 92.64 

  

90.9 

  

91.87 

  Kappa Coefficient 0.8679 0.8834 0.8953 

 

 

 

Figure 4-16: Land-use estimates for Nairobi 
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Figure 4-17: Land-use map for Nairobi using Landsat TM 1986 

 

 

Figure 4-18: Land-use map for Nairobi using Landsat ETM 2000 
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Figure 4-19: Land-use map for Nairobi using Landsat ETM + 2010 

4.4.4 Factors influencing land-use changes and urban growth 

The results from the land-use change analysis for Nairobi indicate that the city has 

undergone rapid urban growth. This has been attributed to the fast economic 

development witnessed over the last decade among other factors such as rapid urban 

growth, physical factors. 

Economic development 

Nairobi, with 8.4 per cent of the country’s population, accounts for almost 20 per cent 

of national GDP (UN-Habitat, 2012). Nairobi hosts the Nairobi Stock Exchange which is 

one of Africa’s largest bourses. Several international companies have established their 

headquarters in Nairobi such as Coca-Cola and Google. United Nations Environment 

Programme (UNEP) and UN-Habitat have their headquarters in Nairobi. 

Over the last few decades transport and communications infrastructures have 

been developed in Nairobi, with tangible results in terms of efficiency and productivity 

in various economic sectors. This has been as result of the East African Community 
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(EAC) enabling a common market for East Africa comprising Kenya, Uganda, Tanzania 

and Rwanda.   

Economic development has led to a boom in industries and consequently 

expansion of built up areas. Consequently this has also led to the blossom of the real 

estate and housing as more people migrate into Nairobi in search for jobs and 

amenities. Nonetheless housing has become expensive resulting in informal 

settlements and expansion of the city at the fringes where land is slightly affordable. 

Small-scale businesses have sprouted sporadically due to lack of employment 

and hard economic times. This has seen a rise in hawkers fighting battles with the City 

Council of Nairobi (CCN) as they seek grounds to sell their merchandise. The challenge 

for CCN has been that of providing market stalls for low income earners as well as 

regulating business through licences and taxes. However, most hawkers are not able to 

cope with the taxes and regulations imposed by CCN. Hawkers engage mainly in selling 

second hand clothes from abroad and groceries.  

There has been construction of bypasses and new roads in Nairobi to cope with 

the high economic growth and traffic congestions witnessed in the rush hours. The 

bypass roads have been built on the outer rings of the city to minimise traffic coming 

into the central business district. 

Economic development has growth countrywide maintaining a positive growth 

a GDP of 4.5 % in 2012. Nairobi has become an information and communication 

technology centre (ICT) hub with the large telecommunication companies such as 

Orange and Huawei establishing their bases. Tourism has blossomed in Nairobi with 

the role out of more international flights through Jomo Kenyatta International Airport 

(JKIA) and the refurbishment of the Nairobi National Park (NNP). 

Urban population growth 

The population of Nairobi has been increasing from 310,000 in 1960 to 3,138,369 in 

2009 (Republic of Kenya, 2010). The rapid population growth has seen an increase in 

urban population due to rural urban migration. Thus this is responsible for the land-

use changes as shown in Figure 4-17, Figure 4-18 and Figure 4-19. 
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The high population has resulted in high demand for food and subsequent 

demand for agricultural. However, most agricultural land has been cleared for urban 

expansion within Nairobi city resulting in import of agricultural produce from the 

neighbouring towns on the edges of Nairobi such as Naivasha and Kiambu. This has 

translated into high food prices as sellers pass the transportation costs to consumers. 

The existing infrastructure and public services have not expanded at per with 

the increasing population growth. This has led to a strain on water supply with some 

residents experiencing water shortages. There have been blackouts due to a high 

demand for electricity for residential, commercial and industrial use. 

The city’s wastewater management has not kept up with increasing demands 

from the growing population and is inadequate to treat the amount of industrial and 

municipal effluent entering the Nairobi River and other surface waters (UNEP, 2009). 

Currently the city has only two sewage treatment plants, one in Dandora and the new 

one in Ruai.  

60 % of Nairobi’s inhabitants live in informal settlements with inadequate 

access to quality water and are forced to buy their water at kiosks at a higher price 

(Engel, Jokiel, Kraljevic, Geiger, & Smith, 2011). This has translated into the lack of 

access to sanitation resulting in untreated waste and wastewater not only endangering 

human health, but also deteriorating the river systems. 

Nairobi’s high population growth has resulted in urban sprawl with emergence 

of informal settlements and consequently influencing land-use changes. Poor planning 

coupled with rapid population increase has worsened the existing physical, social, 

economic and environmental problems. 

Physical factors 

Urbanisation has occurred on the flat areas in Nairobi. In the eastern part of the city 

urbanisation has continued unabated with the high rise residential areas being 

constructed in ecological fragile areas such as Nairobi River. The existing land which 

was open/transitional areas and rangeland has been converted into urban use with 

such growth expanding into the surrounding neighbouring towns to the east of 

Nairobi. 
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In areas to the west of Nairobi are higher in altitude and predominately high 

class residential areas. Here expansion has been constrained by steep slopes ranging 

1760 metres to 1945 metres above sea level. However, looking at Figure 4-19 we can 

see that urban growth has replaced forest and agricultural land. 

Towards the south eastern part of the city urban growth has been constrained 

by the boundary of JKIA airport and to the south by Nairobi National Park. The national 

park serves as a protected area for conservation of wildlife and flora. The park is a big 

tourist attraction for Nairobi. The area around the airport has been protected from 

urban development and serves a safety zone and noise corridor for taxing of 

aeroplanes. 

The availability of cheap construction material due to the presence of different 

volcanic rocks has contributed to the flourishing of housing and real estate. Cement 

and sand are readily available from the neighbouring towns such as Athi River which 

are linked by the Nairobi Mombasa highway. 

4.4.5 Consequences of Nairobi’s urban growth 

The analysis of land-use changes in Nairobi reveal that major changes have occurred. 

These changes pose challenges in the achievement of sustainable development. 

Hereto, current forest, natural areas and agricultural land have been cleared to pave 

way for urban development. 

Planning of Nairobi has been done in a haphazard manner based on old master 

plans. New roads have been constructed on existing urban land where residents are 

either compensated or forcefully evicted since they hold fictitious title deeds. The 

land-use zone has changed over time with unclear gaps between various land-uses. 

The expansion of the city has been random and mostly influenced by transportation 

network and speculation of land prices. 

Housing and real estate has blossomed with exorbitant prices being charged. In 

some cases houses are built on available spaces with little consideration for basic 

infrastructure and amenities. Nairobi’s rapid growth increased the demand for land 

and led to land speculation, forcing the poor to settle in fragile and unsavoury areas 

where they face hardships due to a lack of proper housing and public services and 
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where they are vulnerable to environmental change (UNEP, 2009). This has led to 

emergence of informal settlements adjacent residential areas which are comprise 

about 60 % of Nairobi’s inhabitants. 

Urbanisation has occurred in ad hoc manner posing environmental challenges. 

Some houses are located close to each with inadequate water supply and sanitation 

services such as seen in informal settlements. There is immense pressure on urban 

land that even areas prone to flooding or landslides are often built up for residential 

use (Lamba, 1994). 
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5 MODELLING URBAN GROWTH 

5.1 Introduction 

Urban growth is a complicated process involving the spatio-temporal changes of all 

socio-economic and physical components at different scales (Han, Cao and Imura, 

2009).  Using models of urban growth this process can be illustrated in a simplified way 

and be analysed empirically. Numerical simulation models for land-use change 

comprise highly complex applications that have been developed to solve specific 

problems in urban areas. Consequently, a majority of these models have been 

developed at universities and are a result of long-time research (Goetzke & Judex, 

2011). 

In section 2 we introduced urban growth modelling and cellular automata. A 

majority of urban growth models as introduced in Chapter two are restricted to 

simulate changes of one land-use category, which is urban, and that typically just in 

one direction, which is growth (Goetzke & Judex, 2011). SLEUTH is such a model and is 

an acronym for “Slope, Land use, Exclusion, Urban, Transport, Hill shade”, as its main 

input parameters. SLEUTH is a cellular automaton (CA) based urban growth and land-

use change model (Clarke, Hoppen, & Gaydos, 1997). The model was initially applied in 

the United States of America but has also been applied in other regions of the world 

such as in Europe (Silva & Clarke, 2005), South America (Leão, Bishop, & Evans, 2004), 

Southeast Asia (Lebel, Thaitakoo, Sangawongse, & Huaisai, 2007) and Africa (Mundia & 

Aniya, 2007). SLEUTH consists of two components, an urban growth model based on 

the Clarke Urban Growth Model (UGM) described in Clarke, Hoppen, & Gaydos, (1997) 

and a so-called Land cover Deltatron Model (Candau & Clarke, 2000) to simulate other 

land-use changes induces by urban growth. In most of the studies using SLEUTH 

described in the scientific literature only the UGM component of SLEUTH is applied. 

UGM (Urban Growth Model) has been implemented in the modelling platform 

XULU (eXtendable Unified Land Use Modelling Platform) in a modified way (Goetzke, 

2011; Goetzke & Judex, 2011). UGM requires four spatial input parameters namely; a 

map of urban land-use, transportation, slope and exclusion/restriction. The exclusion 

layer determines, which areas in the study area cannot be changed (e.g. water bodies 
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or protected areas) or, if not excluded, are by a certain degree resistant against 

urbanisation. The transportation layer represents the road network in a research area. 

While SLEUTH needs at least four urban land-use data sets to calculate a set of 

calibration coefficients (Silva & Clarke, 2002), the modified UGM in XULU only needs a 

map for the starting year of the calibration phase and a reference map at the end year. 

The simulated urban area of the end year is compared to the reference map with the 

Multiple Resolution Validation (MRV) as described in Pontius Jr, Shusas, & McEachern, 

(2004). 

Monitoring of land-use change requires understanding and predicting the 

dynamic process and spatial patterns of urbanisation at different time periods (Thapa 

& Murayama, 2012). Thus we modelled urban growth in Nairobi and Nakuru using 

regionalised UGM in 2010 and 2030. The modelling approach adopted for this research 

is shown in Figure 5-1. Modelling of Nairobi and Nakuru involved dataset preparation, 

model calibration and urban growth simulation. Urban growth modelling for Nairobi 

and Nakuru utilised four data layers namely urban land-use, road layer, slope, and 

exclusion layer. The urban land-use data for Nairobi and Nakuru for 1986, 2000 and 

2010 were extracted from land-use maps as illustrated in section 4. For our UGM we 

used urban land-use maps for 1986 and 2010 which covered a period of 14 years. The 

simulation period was from 2010 to 2030 covering a period of 20 years. The urban 

land-use for 1986 was used to initialise the model during the calibration phase. 

 



MODELLING URBAN GROWTH 

102 

 

 

Figure 5-1: Flowchart of urban growth modelling 

 

Calibration is the most crucial step in any modelling application (Clarke, 

Hoppen, & Gaydos, 1996). In the calibration phase of UGM a brute-force method is 

used in order to determine five calibration parameters. These parameters control the 

transition rules that are implemented in the model. A number of Monte-Carlo 

iterations are performed in the brute-force calibration to obtain the best set of the five 

calibration parameters. Since testing all possible parameter combinations in Monte-

Carlo iterations in a brute-force way would be way too time consuming, calibration is 

performed in sequential phases ranging from a coarse to a fine calibration (Silva & 

Clarke, 2002).  

The simulation of the three scenarios of urban growth was achieved by varying 

the protection levels in our exclusion layer. The exclusion later included national parks, 

public parks, dams, airport and military bases. Scenarios one involved an unmanaged 

growth with no exclusion layer. Scenario two was based on an exclusion layer with 70 

% protection level. Scenario three was based on an exclusion layer with 100 %. At the 
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end of this chapter we compared the urban growth parameters for the two cities; 

Nairobi and Nakuru.  

5.2 The modelling framework (XULU) 

Schmitz, Bode, Thamm, & Cremers, (2007) developed XULU (eXtendable Unified Land 

Use Modelling Platform), a modelling framework that enables model integration and 

carries out tasks using functionalities such as data storage, input/output methods, 

editing and visualisation. XULU was first used to compute the future land-use for 

different scenarios with their specific boundary conditions for a watershed in Benin 

(Menz, et al., 2010). Therefore, the CLUE-s land-use change model, developed by 

Verburg et al., (2002) was implemented in the XULU modelling framework. 

XULU as a modelling framework has functionalities which include input, output, 

editing and visualisation. XULU is implemented in Java 1.6 and offers a model 

independent graphical user interface. The core program contains the fields of data 

management, input/output routines for data import and export, data structure, 

memory management and data visualisation as shown in Figure 5-2 (Schmitz, Bode, 

Thamm, & Cremers, 2007). 

At any one time several models can be plugged into the framework at the same 

time offering the possibility to combine different models and model types. Since all 

models are based on the same data structures and use the same data pool, the output 

of one model can be used immediately as input for another model. XULU can be 

executed in any operating system namely Windows and LINUX.  
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Figure 5-2: Separation of the XULU modelling framework from a certain model implementation  

(Source: Goetzke, 2011) 

 

XULU is a stand-alone JAVA application with a user-friendly and clearly 

arranged graphic user interface (GUI) as shown in Figure 5-3. The user has to load the 

necessary data objects into the data pool and allocate them to the individual model 

resources. The following plug-ins for land-use modelling are implemented in XULU: 

spatial data types for raster and vector data, I/O routines for shape files and different 

raster types (e.g. ASCII and GeoTIFF) and a layer-based visualisation for raster and 

vector maps (Schmitz, Bode, Thamm, & Cremers, 2007). Land-use change models are 

loaded as plug-ins as well. Models that are implemented so far include CLUE-s and the 

Urban Growth Model UGM (Goetzke & Judex, 2011). As Figure 5-2 shows, a model or 

any plug-in is separated from the main software. This means that only the specific 

model algorithm has to be programmed when a model is to be implanted in XULU. 
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Other plug-ins include a routine to copy results from one model to another and the 

MRV for evaluating the goodness-of-fit of models. 

 

 

Figure 5-3: The main window of the XULU modelling platform 

 

5.3 Model Parameters and Growth Types 

Urban growth model begins with historical data and other biophysical factors which 

served as inputs into our UGM. The CA model randomly selects potential cells for 

urbanisation and the transition rules evaluate the properties of the cell and its 

neighbours. For example this is demonstrated by the probability that a given cell is 

selected and whether it is urban or non-urban, as well as its slope value and proximity 

to a road. The CA knows only two states: 1 = urban/built-up and 0 = non- urban/non-

built-up. 
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The number and location of the randomly selected cells is controlled by the 

growth parameters. UGM uses five parameters (whose values range from 0 and 100) 

to simulate urban growth with a set of transition rules. They include: dispersion, breed, 

spread, slope resistance and road gravity. Dispersion determines the dispersiveness of 

the outward distribution and controls the number of pixels that are selected randomly 

for possible urbanisation. Breed refers to the probability that a newly generated 

settlement starts its own growth. Spread controls how much existing settlements 

radiate. Slope resistance influences the likelihood of growth on steep slopes. Road 

gravity influences the creation of new centres along roads. We used starting values of 

1, 50 and 100 for each parameter so as to achieve a coarse calibration. 

Urban growth modelling leads to simulation of four types of urban land-use 

change (Mundia & Aniya, 2007). These include spontaneous growth, new spreading 

centres growth, edge growth, and road-influenced growth. These growth types are 

applied sequentially each year during each growth step and are controlled through the 

interactions of the five growth parameters. These growth parameters determine the 

probability of any chosen location becomes urban or non-urban. Table 11 shows the 

summary of growth types simulated by our UGM and illustrates the contribution of 

each parameter as well as when combined with others and several different growth 

processes (Jantz, Goetz, & Shelley, 2004). Figure 5-4 shows the growth types simulated 

by UGM. Supplementary illustrations on urban growth types are shown in appendix 

9.2.1.  
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Table 11: Summary of growth types simulated by the UGM model 

Growth 

cycle order 

Growth type Controlling 

parameter (s) 

 

Summary description 

 

1 spontaneous dispersion Randomly selects potential new growth 

cells. 

 

2 new spreading breed Growing urban centres from centre 

spontaneous growth. 

 

3 edge spread Old or new urban centres spawn 

additional growth. 

 

4 road-influenced Road gravity, 

dispersion, 

breed. 

 

Newly urbanized cell spawns growth 

along transportation network 

Throughout slope resistance slope  

 

Effect of slope on reducing probability of 

urbanisation. 

 

Throughout excluded layer user-defined  

 

User specifies areas resistant or excluded 

to development. 

 

 

 

 

 

 

 

 

 

 

 

Spontaneous growth occurs when a randomly chosen cell falls in a suitable 

location for urbanisation at the boundary of an existing settlement, simulating the 

Figure 5-4: Growth types simulated by the UGM model  

(Source: Rienow et al., (2011) 

SLEUTH.swf
SLEUTH.swf
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fragmenting influence urban areas have on their surroundings (Clarke & Gaydos, 

1998). The dispersion parameter determines the probability that a non-urban cell will 

be urbanised.  

New spreading centre growth produces new urban centres by generating 

neighbouring urban cells around areas that have originated from spontaneous growth. 

The breed parameter governs that a pixel produced through spontaneous growth also 

undergoes new spreading centre growth. 

Edge growth is the outward growth experienced in old or new urban centres. It 

is determined by spread parameter and influences the possibility of a non-urban cell in 

becoming urbanised. 

Road-influenced growth results in spread of new urban cells emerging on road 

networks. It is influenced by breed parameter in areas where new growth is observed 

due to establishment of new roads. Furthermore road-influenced growth is influenced 

by road gravity parameter where growth of urban centres occurs within a certain 

radius to the proximity of roads. Dispersion parameter also influences road-influenced 

growth when the model searches randomly on where to place an urbanised cell with a 

search distance along a road. 

The slope parameter influences growth tremendously. Areas with high slope 

value will experience less urban growth whiles reality flat areas attract most urban 

growth. Thus suitable areas with relatively flat or gentle slopes will attract high urban 

growth. The value of slope was set at 15 % in our model according to previous studies 

by Goetzke (2011). 

The exclusion layer significantly controls urban development. The percentage 

of exclusion used is used in simulating scenarios of urban growth. Ideally sustainable 

development is possible to simulate with an exclusion layer which has national parks, 

water resources, researved areas such as cementaries, military bases and airports. In 

this research we explored three scenarios of urban growth. 
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5.4 Model calibration  

Model calibration was performed using a brutal force Monte Carlo calibration 

technique for Nairobi and Nakuru respectively. This method uses the first starting 

image of urban extent (in our case 1986) and applies an initial set of control 

parameters. Thus, the model is able to approximate the observed data. The technique 

simulates the iteration of components of CA, that is, time, space, state, transition rules 

and neighbourhood. 

The initial set of control parameters include slope, spread, dispersion, breed 

and road whose values were varied between 1 and 100. Thus, calibration was 

performed in four stages. The first stage was coarse calibration and we assigned values 

between 1 and 100 in order to get an approximate set of parameters. The second, 

third and fourth stages were fine calibration and were obtained using increments of 25 

such as 1, 25, 50, 75 and 100. This aimed at obtaining the best set of model 

parameters which mimic reality. Simulated urban growth was a result of an interaction 

of the five model parameters and resulted in various urban growths as seen in Table 

11. 

The calibration was a vigorous exercise aimed at determining whether a given 

cell is urban or non-urban with various model parameter combinations as shown in 

Figure 5-4. This was achieved using various metric measures such as pixels, edges, and 

clusters. The calibration using Monte Carlo predictions computed the averages across 

multiple runs to ensure robustness of the solutions.  

Our two cities exhibit different and unique characteristics. Thus Monte Carlo 

calibration was done separately for each city. Finally, we achieved predicted urban 

growth for our cities. The next step was validation of our results using multiple 

resolution validation method (MRV) as explained in section 5.5. 

5.5 Model validation 

It is difficult to test the accuracy and efficiency of land-use models. Nevertheless, 

different model users have different ways of assessing land-use models. Whereas 

there is a group of model users who wish to make predictions as accurate as possible, 
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another group emphasises on the ability of a model to support the general knowledge 

of processes and mechanisms of land-use change (Pontius Jr & Malanson, 2005).  

The method of multiple resolution validation (MRV) was used in a comparison 

of land-use models in which the tests were conducted in seven laboratories with 13 

applications, 9 different models and in 12 study areas (Pontius Jr, et al., 2008). This was 

the first time that a consistent method for model validation was applied. MRV 

technique is described in detail for the comparison of categorical land-use data by 

Costanza (1989) and Pontius Jr, Huffaker & Denman (2004). It takes into account the 

magnitude as well as the position of change. Typically maps are compared pixel-wise. A 

limitation of the method is that it does not consider neighbourhood effect. This causes 

a problem for land-use modelling, because models rarely target the exact position of 

real change, nevertheless they serve as agents for representing patterns of change. At 

a pixel-by-pixel analysis every pixel is calculated as an error, where the model map 

does not exactly fit with the reference map. In MRV technique four neighbouring pixels 

are averaged stepwise. Thus with every step the length of the pixel side increases by 

the factor two. The amount of correct pixels increases in every step, until in the last 

step when the whole research area is inside of one big pixel and both location 

agreement and location disagreement approach 0 (Goetzke & Judex, 2011). The MRV 

technique was incorporated in UGM. 

Since a research area is normally not a perfectly square, every cell has to be 

weighted according to its fraction in the larger framework. The weight Wn results from 

the number of smaller cells that make up a larger cell. Equation 1 shows the 

agreement Fg between the maps R (reference) and S (simulation) at resolution g, 

where every cell n has the weigh Wn. Rnj (Snj) is the fraction of class j in grid cell n of 

the reference map R (or simulation map S) and Ng is the number of grid cells in the 

given map resolution. With Equation 2 the overall agreement for every resolution can 

be calculated as follows (Pontius Jr, 2000):  
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Equation 2 

 

 

 

The weighted average of each resolution was used since it is useful to look at a 

measure of agreement that combines all resolutions. Thus the higher resolutions gain 

a higher weight and coarser resolutions gain a lower weight, but without ignoring 

them. Here the following Equation 3 taken from Costanza (1989) was used: 

Equation 3 

 

 

Where Ft is the weighted average over all resolutions, Fg the measure of 

agreement at resolution g, and k is a constant. Together with this exponentially less 

weight is given to the agreement at coarser resolutions. The constant k gives 

subjectively more weight to the higher or coarser resolution. If k = 0 all resolutions 

have the same weight, if k = 1 only the first resolution levels are considered. To assess 

land-use patterns Costanza (1989) proposes a value of k = 0.1, which we retained.  

In order to evaluate model results with the technique described above, three 

datasets are necessary:  a reference map of time 1, a reference map of time 2 and a 

simulation map of time 2. The reference map of time 1 is the initial point for 

modelling, that is, land-use map of 1986 and at the same time serves as a Null-model, 

which is the assumption that no change has taken place. Therefore, the reference 
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maps of t1 and t2 are compared. To evaluate the model result, the simulation map of 

t2 is compared with the reference map of t2. 

We performed four iterations for the calibration of our UGM. The first 

calibration was coarse which began with the values of 1, 25, 50, 75, and 100 for each 

of the five parameters. A good set of five parameters were selected based on the best 

MRV obtained. For the subsequent iterations we used narrow range of values within 

the best set of parameters obtained. On the fourth calibration we obtained the best 

set of parameters that best fit the historical data and used them to forecast urban 

growth in 2010 and 2030. 

We used Pontius Jr, Huffaker & Denman (2004) method to validate our results. 

We compared the simulation model with a null model. The null model obtained used 

the 2010 reference map as the prediction for 2010. We used the UGM script for model 

calibration and validation as shown in appendix 9.2.2. 

5.6 Scenarios of urban growth 

Scenarios use words, numbers and graphics to describe how future events could 

unfold, and suggest lessons on how to direct the flow of events towards sustainable 

pathways and away from unsustainable ones (City Council of Nairobi, 2007). Thus 

scenarios enable us make wise decisions enabling plausible success stories in the 

future. The use of scenarios to address land-use changes have become useful tools in 

the assessment of land-use dynamics (Verburg, Schulp, Witte, & Veldkamp, 2006). This 

approach is required to anticipate the consequences of various development scenarios. 

However scenarios are not predictions but rather they are an approach to help 

manage decisions based on the interpretation of qualitative descriptions of alternative 

futures translated into quantitative scenarios (Petrov, Lavalle, & Kasanko, 2009).  

There is need for such scenarios to be integrated in land legislation. Several 

policies and strategies have been formulated by various national and regional 

governments in order to minimise the negative impacts caused by improper urban 

developments (Zhang, Ban, Liu, & Hu, 2011). Nevertheless, such policies are not well 

defined in the context of Kenya. Thus, exploring various scenarios by predicting future 

urban land-use patterns under different ‘‘what-if’’ conditions can help in the 
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management of urban expansion and change as well as in the development of 

alternative plans before irreversible transformations occur (Conway & Lathrop, 2005). 

This paradigm can help Kenya to manage its resources sustainably. 

Usually baseline predictions have been used in simulating urban growth other 

than scenario based studies as seen in Clarke & Gaydos (1998). Furthermore, the 

scenarios developed have focused on specific development strategies in specific cities 

such as seen in Conway & Lathrop (2005) whom modeled the ecological consequences 

of four land-use policy scenarios in New Jersey, USA. In our research we conducted 

urban growth scenarios of two cities in Kenya using UGM. The simulation of future 

urban growth scenarios and the related environmental assessments can therefore 

assist policymakers in evaluating alternative development schemes, and can form a 

basis for urban planning policy recommendations for sustainable city development 

(Zhang, Ban, Liu, & Hu, 2011). 

The Government of Kenya formulated Kenya Vision 2030 (Government of 

Kenya, 2007). This was an attempt at maximum protection of natural resources so as 

to ensure sustainable development is attained in the year 2030. Cities in Kenya have 

undergone rapid urbanisation as people migrate into cities in search of employment 

and better amenities. Thus this gave us the motivation to investigate scenarios of 

urban growth in Nairobi and Nakuru simultaneously. Nairobi is Kenya’s capital city. 

Nakuru is the fourth largest city in Kenya. Currently there are a few studies on 

scenario-based urban growth simulation in Nairobi and almost none for Nakuru. 

Nevertheless, Mundia & Aniya (2007) used SLEUTH to model urban growth in Nairobi. 

This is the first time that UGM has been used to model urban growth in the context of 

African cities. At this time, we made an assumption that there will be stable economic 

and political conditions up to the year 2030. 

In order to test the usefulness of the urban growth modelling and to provide a 

coherent and alternate framework for the policy makers, we explored three scenarios 

in the modelling process. First scenario depicts an unmanaged growth with no 

restriction on environmental areas, such as forest, agriculture and wetland. Thus urban 
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growth continues with the historical trend of land transition and permits future urban 

growth allocation without any constraint.  

The second scenario assumes a managed growth with moderate protection. 

Here the exclusion layer included government buildings and forest cover. Cities in 

Kenya have undergone rapid urbanisation due to high rural to urban migration as 

people search for employment and social amenities (Mundia & Aniya, 2005). There has 

been significant effect to preserve forest cover in Kenya under the Forest Act, 2005 

(Laws of Kenya, 2012).  

The third scenario simulates a managed growth with maximum protection on 

forest, government reserved areas, government buildings, military bases, airports, and 

urban green. Government reserved areas include parks, cemeteries.  

We used the UGM resource mapping script shown in appendix 9.2.3 to 

simulate the three urban growth scenarios using the best model parameters obtained 

after model calibration and validation. The script was applied respectively for each city. 

The input parameters varied included the best model coefficients of slope, breed, 

spread, dispersion and road as well as the simulation periods up to the year 2030. 

5.7 Scenarios of urban growth in Nakuru 

5.7.1  Data 

The urban growth modelling of Nakuru utilised land-use classification information for 

the years 1986, 2000 and 2010 as well as other biophysical data. A Digital Surface 

Model (DSM) at spatial resolution of 30 metres was obtained from Intermap 

Technologies and was used as an input parameter for urban land-use modelling 

yielding slope information. Road network data for Nakuru was obtained from Nakuru 

municipality and comprised all the roads within the city. An exclusion layer was 

obtained from Nakuru municipality and comprised of government property buildings 

and other land marked as reserved.  

Inputs for UGM included land-use datasets (1986 and 2010), slope data, 

exclusion data and road data for Nakuru CBD as shown in Table 12. Urban land-use 

data for 1986 (Figure 5-5) was used as the base data for modelling while land-use data 

for 2010 (Figure 5-6) were used as the reference grid. The land-use maps used satisfied 
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the minimum accuracy requirement of 85 % stipulated in Anderson classification 

scheme (Anderson, Hardy, Roach, & Witmer, 1976). The land-use data has been 

reclassified to a binary map showing only urban and non-urban land-use. Slope data 

was derived from Digital Surface Model of Nakuru at 30 metres spatial resolution. 

Exclusion data included areas within Nakuru where development is restricted e.g. 

government buildings and property. Road data included all road networks in Nakuru 

CBD and the major roads where given a higher weight for the purposing of modelling. 

Most development is likely to occur along the major roads in Nakuru.  

Table 12: Data for urban growth modelling of Nakuru 

Data layer Source Description Resolution 

Urban 

extent 

Land-use map Urban extent extracted from 

land-use map for 1986, 2000 

and 2010 

30 metres 

Slope DSM Derived from Digital Surface 

Model 

30 metres 

Exclusion Topographic 

map 

Vector coverage of protected 

areas 

 

Road Road network Vector coverage of classified 

roads 
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Figure 5-5: Urban extent in Nakuru (1986) 

 

Figure 5-6: Urban extent in Nakuru (2010) 
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UGM operates in two steps. Firstly, the model was run using default 

parameters of slope, breed, dispersion, road and spread. This was done in order to get 

a view of where the appropriate values lie before model calibration. Model calibration 

was done successfully in four sequences from coarse to fine calibration while the 

parameters were varied. The MRV method was used to achieve the optimal 

parameterisation for our model during the calibration phase as well as for the 

validation of the model results. 

5.7.2 Modelling of urban growth in Nakuru 

Modelling of Nakuru utilised urban extents extracted from land-use maps for 1986 and 

2010 as inputs. Other layers used included slope, areas excluded from development 

and road network. The road layer included three weight values of 100, 50 and 25 (Silva 

& Clarke, 2005). A weight value of 100 was assigned to class A roads (International 

trunk roads), 50 was assigned to class B and C roads (National Trunk Roads), and 25 

was assigned to local streets (Minor roads). The road classification in Kenya is 

explained in Wasike (2001). Thus a road with a value of 100 has the highest potential 

of attracting urban growth compared to a local street with a value of 25. 

Three scenarios were explored in the modelling process. First scenario depicts 

an unmanaged growth with no restriction on environmental areas, such as forest, 

agriculture and wetland. The second scenario assumes a managed growth with 

moderate protection. Here the exclusion layer included government buildings and 

forest cover. The forest cover is currently protected under the Forest Act, 2005 (Laws 

of Kenya, 2012). The third scenario simulates a managed growth with maximum 

protection on forest, agricultural areas, and urban green. Best model parameters for 

UGM using the three scenarios were evaluated based on the weighted average 

calculated with the MRV using land-use 2010 as reference grid as shown in Table 13.  
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Table 13: Best model parameters obtained for Nakuru  

 

Model parameters 

 Scenario Slope Spread Dispersion Breed Road Weighted value 

1 50 3 100 100 100 0.8396 

2 6 6 60 65 10 0.8448 

3 1 6 60 65 60 0.8442 

 

In the first scenario, best model parameters were obtained using land-use 

dataset with slope at 50, spread at 3, dispersion at 100, breed at 100, road at 100 and 

a weighted value of 0.83959. In the second scenario, best model parameters were 

obtained using land-use dataset with slope at 6, spread at 6, dispersion at 60, breed at 

65, road at 10 and a weighted value of 0.84488. In the third scenario, best model 

parameters were obtained using land-use dataset with slope at 1, spread at 6, 

dispersion at 60, breed at 65, road at 60 and a weighted value of 0.84415. From all the 

three approaches we can conclude that the calibration of the UGM resulted in an 

agreement of approximately 84% for the built-up / non-built-up categories between 

the reference map of 2010 and the map of 2010 fitted with the model. The weighted 

average shows that 84% were modelled correctly. The null correct percentage value 

shows the proportional similarity between urban growth reference map of 2010 and 

the simulated urban growth maps in 2010. 

In summary the exclusion layer was varied so as to arrive at the three 

scenarios. These scenarios in turn can be viewed as scenarios which can show the 

regional and urban planners the consequences of different planning actions. The 

model parameters observed in Table 13 show slight similarities in the values between 

scenarios two and three but none for scenario one.   

Scenario one illustrates unmanaged growth as shown in Figure 5-7 and Figure 

5-8.  In scenario two and three we have managed growth with different values of the 

exclusion layer as shown in respectively. Scenario two has an exclusion layer of 70 % 

where government buildings and forest cover were included as shown in Figure 5-9 

and Figure 5-10. Scenario three has an exclusion layer of 90 % where government 
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buildings and forest, agricultural areas, and urban green were included as shown in 

Figure 5-11 and Figure 5-12.  

The influence of slope in urban growth was at a minimum in scenario two and 

three with values of 6 and 1 respectively whereas it was high in scenario one with a 

value of 50. Thus we can observe growth in steep slopes where we have forests in 

scenarios one. The influence of road parameter in urban growth was highest in 

scenario at a value of 100, moderate in scenario three with a value of 60, and lowest in 

scenario two with a value of 10.  

The highest weighted value was obtained in scenario two at 0.8448 and 

scenario three at 0.8442. However, scenario three presents maximum protection of 

resources which will in turn ensure sustainable development is achieved and a 

plausible development agenda. Thus this implies that scenario three gives the best 

model parameters for the urban growth model of Nakuru.  

 

 

Figure 5-7: Urban growth simulation in 2010 in Nakuru (scenario one) 
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Figure 5-8: Urban growth simulation in 2030 in Nakuru (scenario one) 

 

Figure 5-9: Urban growth simulation in 2010 in Nakuru (scenario two) 
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Figure 5-10: Urban growth simulation in 2030 in Nakuru (scenario two) 

 

Figure 5-11: Urban growth simulation in 2010 in Nakuru (scenario three) 

 



MODELLING URBAN GROWTH 

122 

 

 

Figure 5-12: Urban growth simulation in 2030 in Nakuru (scenario three) 

 An evaluation of the three scenarios was conducted as shown in Table 14. The 

simulated urban growth values of scenario one, two and three were 22.15 km2, 21.21 

km2, and 21.33 km2 in 2010 and 29.65 km2, 28.41 km2, and 29.42 km2 in 2030 

respectively. The values of 22.15 km2 in scenario one in 2010 and 21.33 km2 in scenario 

three in 2010 were close to the actual urban growth value of 22.3 km2 obtained from 

land-use classification.  

Table 14: Model evaluation for Nakuru 

Year 2010 2030 

Scenario 1 2 3 1 2 3 

Actual Urban (km2) 22.3 22.3 22.3 
   

Simulated Urban (km2) 22.15 21.21 21.33 29.65 28.41 29.42 

Error (%) -0.67 -4.89 -4.35 
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In order for an urban growth model to be convincing to land managers and 

policy makers, more work has to be done other than calibration. Simulation of urban 

growth ought to be done after successful validation of the model with an independent 

dataset. Therefore, we carried out the prediction of land-use in 2030, starting with the 

year 2010 for all scenarios using land-use 2010 as reference data during the UGM 

calibration. The expansion of urban land-use (built-up areas) was modelled with the 

UGM with the same model parameters obtained in the 1986-2010 calibration as 

shown in Table 13.  

Consequently the simulated urban land-use estimates achieved using the 

calibrated UGM for Nakuru in scenario one indicates that urban land-use increased 

from 22.15 km2 in 2010 to 29.65 km2 in 2030. In scenario two, urban land-use 

increased from 21.21 km2 in 2010 to 28.41 km2 in 2030. In scenario three, urban land-

use increased from 21.33 km2 in 2010 to 29.42 km2 in 2030. Adopting scenario three to 

advice policy makers on simulation of urban growth, the simulated urban growth in 

the year 2030 will be approximately 29.42 km2.  

We conducted two map comparisons in Erdas imagine 2011 model maker for 

scenario three. According to Pontius Jr (2008) there are three possible two-map 

comparisons namely observed change, prediction change and prediction error. 

Observed change compares the reference map of time 1 and the reference map of 

time bearing in mind the dynamics of the landscape. Prediction change compares 

between the reference map of time 1 and the prediction map of time 2 and thus 

revealing the behaviour of the model. Prediction error compares between the 

reference map of time 2 and the prediction map of time 2 and thus ascertains the 

accuracy of the prediction. In our case time 1 referred to as the year 1986 and time 2 

as the year 2010. 

 The observed change in urban land-use between 1986 and 2010 is illustrated 

on Figure 5-13 and Figure 5-14. Here we have observed built gain of 13.41 km2, 

observed built persistence of 8.77 km2, observed non-built persistence of 31.98 

Km2and observed built loss of 3.59 km2 obtained from the observed map of the year 

2010. Observed built gain refers to areas which we converted into urban land-use in 
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the year 2010. Observed built persistence refers to areas that remained as urban land-

use in the year 2010. Observed non-built persistence refers to areas which remained 

as non-built in the year 2010. Observed built loss refers to areas which were converted 

to non-built in the year 2010.  

The predicted change in urban land-use between 1986 and 2010 is illustrated 

on Figure 5-15 and Figure 5-16. Here we have predicted built gain of 8.94 km2, 

predicted built persistence of 12.39 km2, and predicted non-built persistence of 36.58 

km2 obtained from the predicted map of the year 2010. Predicted built gain refers to 

areas which were converted into urban land-use in year 2010. Predicted built 

persistence refers to areas that remained as urban land-use in year 2010. Predicted 

non-built persistence refers to areas which remained as non-built in the year 2010.  

The predicted error in urban land-use between 1986 and 2010 is illustrated on 

Figure 5-17 and Figure 5-18. Here we can see four categories: non-built observed and 

built predicted of 8.28 km2; built observed and built predicted of 13.02 km2; non-built 

persistence and non-built predicted of 27.41 km2; and built observed and non-built 

predicted of 9.20 km2 obtained using the observed map of the year 2010 and the 

predicted map of the year 2010. A question here arises on whether the model predicts 

the year 2010 accurately. The total disagreement between the maps is discussed in 

Pontius Jr (2004). The two most important components are quantity disagreement 

(i.e., net change) and location disagreement (i.e., swap change), which sum to the total 

disagreement (Pontius Jr., 2008). Quantity disagreement can be obtained using spatial 

analyst tools in ArcGIS so as to get the size in kilometres squared for each category as 

seen in Table 14. In our case we have simultaneous built gain of 13.41 km2 and built 

loss of 3.59 km2 as most of the observed change is quantity disagreement and thus our 

gain of built is larger than the loss of built by 9.82 km2.  Location disagreement can be 

resolved by rearranging the pixels spatially within one map so that its agreement with 

the other map is as large as possible, Pontius Jr (2008). Thus, our UGM for Nakuru 

predicts the year 2010 accurately since our gain of built is larger than the loss of built. 

The regionalised cellular automata, UGM, performed well using urban land-use 

2010 as reference data. Since the base year period 1986 to 2010 was a difference of 24 
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years this perhaps gives a better simulation later into year 2030 which is a 20 year 

period from the year 2010. Scenario three was selected as the best approach to ensure 

sustainable development is achieved. Thus the likelihood of new settlements or built-

up areas in Nakuru CBD was obtained at a weighted value of 0.8442. Thus, new areas 

are likely to be developed for residential and commercial uses, which lie in proximity to 

roads. Such growth could be as a result of high rural urban migration in Nakuru as new 

people move into Nakuru in search for employment, social amenities and business 

opportunities.  

 

 

Figure 5-13: Observed change 1986 – 2010 in Nakuru 
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Figure 5-14: Estimates of observed change 1986 – 2010 in Nakuru 

 

 

Figure 5-15: Predicted change 1986 – 2010 in Nakuru 
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Figure 5-16: Estimates of predicted change 1986 – 2010 in Nakuru 

 

 

 

Figure 5-17: Predicted error 1986 – 2010 in Nakuru 
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Figure 5-18: Estimates of predicted error 1986 – 2010 in Nakuru 

 

Using scenario three we generated the urbanisation probability map for Nakuru 

as shown in Figure 5-19 using 100 Monte Carlo simulations (see appendix 9.2.4). High 

urbanisation within the range of 85 – 100 % is located near Nakuru CBD and is 

composed of residential areas. High urbanisation tends to occur along roads such as 

along the major roads and local roads leading to house dwellings. High urbanisation of 

85 – 100 % tends to occur in fairly low altitude as shown in Figure 5-20. Relative high 

urbanisation of 60 – 85 % occurs adjacent to high urbanisation areas followed by 38 – 

60 % urbanisation areas. Comparatively low urbanisation of 15 – 38 % comprises of 

industrial zones, education institutes and urban agriculture areas. 

Low urbanisation in the range of 0 – 15 % is located in the forest area and 

military base to the east side of Nakuru, and these areas were excluded from urban 

growth modelling.  Other areas excluded from modelling included the state house and 

reserved land by the government. 
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Figure 5-19: Urbanisation probability map for Nakuru 

 

 

Figure 5-20: Urbanisation probability map for Nakuru showing high urbanisation areas 
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The modelled urban growth for Nakuru between 2010 and 2030 will be 32%. 

The value was obtained as follows: 

               
                                        

              
  

 

               
            

     
  

                              

 

5.8 Scenarios of urban process in Nairobi 

5.8.1 Data 

The model process utilised information from land-use classification in the years 1986, 

2000 and 2010 as well as other biophysical datasets as shown in Table 15. A Digital 

Elevation Model was obtained from SRTM and used to yield slope information for our 

model. Road network data for Nairobi was obtained from Nairobi City Council and 

comprised all the roads within the city. An exclusion layer was obtained from Survey of 

Kenya and comprised of government property buildings and other land marked as 

reserved. 

Inputs for UGM included land-use datasets (1986 and 2010), slope data, 

exclusion data and road data for Nairobi. Urban land-use data for 1986 (Figure 5-21) 

was used as the base data for modelling while urban land-use data for 2010 (Figure 

5-22) were used as the reference grid. The land-use maps used satisfied the minimum 

accuracy requirement of 85 % stipulated in Anderson classification scheme (Anderson, 

Hardy, Roach, & Witmer, 1976). The land-use data has been reclassified to a binary 

map showing only urban and non-urban land-use. Slope data was derived from Digital 

Elevation Model of Nairobi at 30 metres spatial resolution. Exclusion data included 

areas within Nairobi where development is restricted e.g. government buildings and 

property. Road data included all road networks in Nairobi and the major roads where 

given a higher weight for the purposing of modelling. Most development was likely to 

occur along the major roads in Nairobi. 
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Table 15: Data for urban growth modelling of Nairobi 

Data layer Source Description Resolution 

Urban 

extent 

Land-use map Urban extent extracted from 

land-use map for 1986, 2000 

and 2010 

30 metres 

Slope DEM Derived from Digital Elevation 

Model 

30 metres 

Exclusion Topographic 

map 

Vector coverage of protected 

areas 

 

Road Road network Vector coverage of classified 

roads 

 

 

 

Figure 5-21: Urban extent in Nairobi (1986) 
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Figure 5-22: Urban extent in Nairobi (2010) 

 

Model calibration of UGM involved running the model using default 

parameters of slope, breed, dispersion, road and spread. The default parameter values 

are 1, 50 and 100. Model calibration was done iteratively in four sequences from 

coarse to fine calibration as the parameters were varied. The MRV method was used to 

achieve the optimal parameterisation for the UGM during the calibration phase as well 

as for the validation of the model results (Pontius Jr, Huffaker, & Denman, 2004). 

5.8.2 Modelling of urban growth in Nairobi 

First scenario depicts an unmanaged growth with no restriction on environmental 

areas, such as forest, agriculture and wetland. The second scenario assumes a 

managed growth with moderate protection (70 %) on national park, forest, military 

base and airport. The last scenario simulates a managed growth with maximum 

protection (100 %) on forest, national parks, parks, golf courses, dams, military base 

and airport.   
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Modelling of Nairobi utilised urban extents extracted from land-use maps for 

1986 and 2010 as inputs. Other layers used included slope, areas excluded from 

development and road network. Calibration was done using land-use 2010 as a 

reference grid. Best model parameter for UGM was evaluated based on the weighted 

average calculated with the MRV using land-use 2010 as reference grid. The road layer 

included three weight values of 100, 50 and 25 (Silva, 2005). A weight value of 100 was 

assigned to class A roads (International trunk roads), 50 was assigned to class B and C 

roads (National Trunk Roads), and 25 was assigned to local streets (Minor roads). The 

road classification in Kenya is explained in Wasike (2001). The exclusion layer included 

forest cover and urban green areas within the research area. Urban green areas refer 

to natural vegetation and gardens both public and private within a city.  

Table 16: Best model parameters obtained for Nairobi 

Scenario 
Model parameters 

Weighted value 
Slope Spread Dispersion Breed Road 

1 50 25 1 50 75 0.9449 

2 52 25 1 50 25 0.9470 

3 52 27 1 52 2 0.9477 

 

Table 16 shows the final model coefficients obtained after successful 

calibration of UGM for the three scenarios. We can see the values as follows: slope at 

50, spread at 25, dispersion at 1, breed at 50, road at 75, and a weighted value of 

0.9449 for scenario one; slope at 52, spread at 25, dispersion at 1, breed at 50, road at 

25, and a weighted value of 0.9470 for scenario two; and slope at 52, spread at 27, 

dispersion at 1, breed at 52, road at 2, and a weighted value of 0.9477 for scenario 

three. We adopted scenario three since it will ensure sustainable development is met 

in the future. 

An evaluation of the three scenarios was conducted as shown in Table 17. The 

simulated urban growth values of scenario one, two and three were 82.87 km2, 76.61 

km2, and 73.14 km2 in 2010 and 141.72 km2, 127.96 km2, and 118.35 km2 in 2030 

respectively. The values of 73.14 km2 in scenario three in 2010 was close to the actual 
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urban growth value of 79.38 km2 obtained from land-use classification. The urban 

growth simulation maps for the three scenarios are illustrated in Figure 5-23, Figure 

5-24, Figure 5-25, Figure 5-26, Figure 5-27 and Figure 5-28. 

Table 17: Model evaluation for Nairobi 

Year 2010 2030 

Scenario 1 2 3 1 2 3 

Actual Urban (km2) 79.38 79.38 79.38 
   

Simulated Urban (km2) 82.87 76.61 73.14 141.72 127.96 118.35 

Error (%) 4.40 -3.49 -7.86 
 

 

 

Figure 5-23: Urban growth simulation in Nairobi in scenario one (2010) 
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Figure 5-24: Urban growth simulation in Nairobi in scenario one (2030) 

 

 

Figure 5-25: Urban growth simulation in Nairobi in scenario two (2010) 
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Figure 5-26: Urban growth simulation in Nairobi in scenario two (2030) 

 

Figure 5-27: Urban growth simulation in Nairobi in scenario three (2010) 
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Figure 5-28: Urban growth simulation in Nairobi in scenario three (2030) 

 

We conducted two map comparisons in Erdas imagine 2011 model maker for 

scenario three for the city of Nairobi. According to Pontius Jr (2008) there are three 

possible two-map comparisons namely observed change, prediction change and 

prediction error as described above in urban growth modelling of Nairobi (See section 

5.7.2).  

The observed change in urban land-use between 1986 and 2010 is illustrated 

on Figure 5-29 and Figure 5-30. Here we have observed built gain of 65.25 km2, 

observed built persistence 17.80 km2, observed non-built persistence of 607.19 km2 

and observed built loss of 3.41 km2 obtained from the observed map of the year 2010.  

The predicted change in urban land-use between 1986 and 2010 is illustrated 

on Figure 5-31 and Figure 5-32. Here we have predicted built persistence of 73.79 km2 

and predicted non-built persistence of 620.51 km2 obtained from the predicted map of 

the year 2010.  
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The predicted error in urban land-use between 1986 and 2010 is illustrated on 

Figure 5-33 and Figure 5-34. Here we have: non-built observed and built predicted of 

57.95 km2; and built observed and built predicted of 40.99 km2 obtained using the 

observed map of the year 2010 and the predicted map of the year 2010. Our UGM for 

Nairobi predicts the year 2010 accurately since our gain of built is larger than the loss 

of built as seen in Figure 5-30.    

 

 

Figure 5-29: Observed change 1986 – 2010 in Nairobi 
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Figure 5-30: Estimates of observed change 1986 – 2010 in Nairobi 

 

 

Figure 5-31: Predicted change 1986 – 2010 in Nairobi 
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Figure 5-32: Estimates of predicted change 1986 – 2010 in Nairobi 

 

 

Figure 5-33: Predicted error 1986 – 2010 in Nairobi 
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Figure 5-34: Estimates of predicted error 1986 – 2010 in Nairobi 

In order for an urban growth model to be resourceful to various stakeholders 

such as policy makers and urban planners, simulation of urban growth has to be 

performed after calibration. Scenarios three was selected as the best plausible cause 

for urban planning management. Thus the likelihood of new settlements or built-up 

areas in Nairobi was obtained at a weighted value of 0.9477 as per scenario three. This 

indicates that new urban growth is most likely to be caused by breed (at 52), i.e. 

probability that a newly generated settlement starts its own growth, then followed by 

slope (at 52) influenced growth and spread (at 27), and finally followed by road and 

dispersion as least likely factors for new urban growth. Thus, this implies that new 

areas are developed for residential and commercial uses, which lie in proximity to 

roads. Such growth could be as a result of high rural urban migration witnessed in 

Nairobi as new people move immigrate in search for employment, social amenities and 

business opportunities.  

Using scenario three we generated the urbanisation probability map for Nairobi 

as shown in Figure 5-35 using 100 Monte Carlo simulations (see appendix 9.2.4). High 

urbanisation within the range of 85 – 100 % is located near Nairobi CBD. Furthermore, 

high urbanisation tends to occur along roads such as along the major roads and local 

roads leading to housing developments. This area includes residential areas and 

industries. Comparative high urbanisation of 60 – 85 % occurs adjacent to high 
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urbanisation areas followed by 38 – 60 % urbanisation areas. Moderately low 

urbanisation of 15 – 38 % comprises of new housing developments which are occurring 

adjacent to high urbanisation areas.  

Low urbanisation in the range of 0 – 15 % consists of reserved areas such as 

Nairobi national park, parks, JKIA airport, military air base, Nairobi sewerage treatment 

plant which were excluded from urban growth modelling. Additionally, the low 

urbanisation area also includes high steep areas to the west of Nairobi city, and 

open/transitional areas to the east of Nairobi.  

 

 

Figure 5-35: Urbanisation probability map for Nairobi 

 

High urbanisation of 85 – 100 % tends to occur in fairly low altitude near the 

CBD as shown in Figure 5-36. Urbanisation is inhibited towards the west side of Nairobi 

which is fairly high at an average of 1900 metres above sea level. Here land values are 

relatively high leaving the land only to high income earners who can commute long 

distances to the CBD. 
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Figure 5-36: Urbanisation probability map for Nairobi showing high urbanisation areas 

The modelled urban growth for Nairobi between 2010 and 2030 will be 49 %. 

The value was obtained as follows: 

               
                                        

              
  

 

               
             

     
  

 

                               

 

5.9 UGM comparison 

We compared UGM modelling for Nairobi and Nakuru using values from the scenario 

three respectively as shown in Figure 5-37. In both cases we can see that the values for 

breed were at least above 50 with 52 for Nairobi and 65 for Nakuru. As we can recall 

from Table 11 breed refers to the probability that a newly generated settlement starts 

its own growth, thus we can conclude it is a major parameter influencing urban growth 
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in Nairobi and Nakuru. Yet, breed is also used in road influenced growth and this is 

confirmed in the case of Nakuru with a road parameter value at 60.  

 

 

Figure 5-37: UGM comparison for Nairobi and Nakuru 

Closely observing the UGM parameters for Nairobi we can see that slope at 52 

and breed at 52 were the greatest contributors of urban growth while dispersion at 1 

and road at 2 being the least. Spread was a moderate factor at 27 indicating that 

urbanised centres generate urban growth in their neighbourhoods and surroundings. 

From Figure 5-36 we can see that the altitude for Nairobi ranges from 1455 to 1945 

metres above sea level with most urbanisation occuring around the central business 

district and in relatively low areas. All the same slope was one of major contributor in 

urban growth modelling of Nairobi alongside breed. Dispersion and road were  least 

contributors of urban growth suggesting that growth was not random as per definition 

of dispersion from Table 11 and not enitrely road influenced. Accordingly, urban 

growth was systematic alongside other residential areas including informal 

settlements. We can also note that road was least contributor to urban growth 

modelling in Nairobi compared to the other model parameters. 

Similarly, dispersion at 60, breed at 65 and road  at 60 were the major 

contributors for ubran growth in Nakuru with slope at 1 and spread at 6 being the 

least. Thus we can see that urban growth was random in Nairobi with a high dispersion 
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value as well as spontaneous growth with a high value of breed parameter. 

Additionally, urban growth was also influenced by road with a high value of road 

parameter. Breed was also noted to influence growth on road. Spread was a least 

contributor at value 6 to urban growth demonstrating that urbanised centres are least 

likely to simulate urban growth in their neighbourhoods. Thus urban growth in Nakuru 

was unanimously spontaneous, random and road influenced as we can see from Figure 

5-19 and Figure 5-20. The main parameters which can give an idea of urban sprawl 

phenomenon are breed, dispersion and spread; but even the road disposition and the 

resultant accessibility have influence upon it. (Caglioni, Pelizzoni, & Rabino, 2006). 

Nakuru has undergone more urban sprawl compared to Nairobi as we can see from 

Figure 5-37 with the highest values of breed, dispersion and road being observed. 

Hence, we can conclude that in both cities at least breed was a major 

contributor to urban growth. The question on whether the model parameters are 

correlated and if their variation influences urban growth arose. Thus, the UGM 

comparison for both cities was the impetus for investigating the influence of the model 

parameters individually as addressed in section 6. 

The modelled urban growth between 2010 and 2030 for Nairobi is 49 % while 

that of Nakuru is 32%. Thus, we can conclude that Nairobi will experience rapid urban 

growth compared to Nakuru. This can be attributed to the fact that Nairobi is currently 

the capital city of Kenya serving as an administrative, political and judicial centre.  
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6 SPATIAL EFFECTS OF VARYING MODEL PARAMETERS 

6.1 Introduction 

We tested the spatial effects of varying model coefficients namely spread, dispersion, 

breed, slope and road in Nairobi. This aided in understanding the land-use system 

dynamics in our research area. The results obtained indicate that varying model 

coefficients leads to urban growth in different directions and magnitude. This 

information is useful to planners and policy makers indicating areas which require 

infrastructure and amenities so as to ensure sustainable development is realised. 

6.2 Model parameter variation 

In order to explore spatial effects of our UGM, we conducted combinations and 

permutations according to the Equation 4 for Nairobi city. The value of runs for each 

combination was obtained where n is the number of parameters which was five and r 

is the parameters to be maintained constant. We obtained five sets for the first 

combination, ten sets for the second combination, ten sets for the third combination, 

five sets for the fourth combination, and one set for the fifth combination.  

Equation 4 

  

          
 

 

In total we obtained 31 simulated urban growth maps. In order to evaluate 

spatial effects, we used the Map Comparison Kit (MCK) software (Visser & de Nijs, 

2006) to generate kappa statistics (K) using the predicted map of 2010. Hagen (2002) 

describes K statistics and additional statistics within K including Khisto and Klocation. 

K is a measure of similarity between two maps based on a contingency table ( 

(Foody, 2004; Visser and de Nijs, 2006). K is defined according to Equation 2 where P 

(A) is the proportion of cases in agreement (i.e., correctly allocated) and P (E) is the 

proportion of agreement that is expected by chance: 
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Equation 5 

 

Klocation is a measure of the similarity of the spatial allocation of categories of 

the two compared maps (Pontius Jr, 2000). P (max) gives the maximal similarity that 

can be found based upon the total number of cells allocated to each category. 

Klocation is calculated according to Equation 3: 

Equation 6 

  
          

           
 

 

Khisto is a measure of the quantitative similarity of the two compared maps 

(Hagen, 2002). Thus Khisto makes it possible to express K as a combination of similarity 

in quantity and location as shown in Equation 4: 

Equation 7 

 

  
            

      
 

 

6.3 Results 

The model parameters were varied by + 1 and their simulated urban growth obtained 

so as to explore the influence of each model parameter. We used the best model 

parameters obtained using UGM for Nairobi (scenario three) as tabulated in Table 16 

with a simulated urban growth of 73.14 km2. A total of 31 simulations were conducted 

and the results of the five combination sets tabulated in Table 18, Table 19, Table 20, 

Table 21, and Table 22. We used K for map comparison. 
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Table 18 summarizes the 1st combination. In this combination, the four best 

parameters were each varied by a value of +1, with one parameter remaining constant 

(shown in bold in Table 18). The simulated urban growth figures all exceed the 73.14 

km2 figure obtained using the best model parameters (Table 16). The highest spatial 

effect is realized in Set 5, where the slope value is held constant while the other values 

were varied. In Set 5, urban growth = 79.99 km2, with the lowest resultant Khisto value 

of 0.950. Again, the Khisto measure makes it possible to express K as a combination of 

similarity in quantity and location. The lowest spatial effect (75.77 km2) with the 

highest Khisto value (0.980) was observed in Set 4, where the road value was held 

constant while the others were varied.   

Table 18: Model parameter variation in 1st combination 

Simulation using urban land-use classification of 2010 as reference 

Set 

Model parameters Simulation 

(km2) 

Kappa statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

1 27 2 53 3 53 76.99 0.740 0.762 0.971 

2 28 1 53 3 53 76.76 0.751 0.772 0.973 

3 28 2 52 3 53 78.71 0.739 0.770 0.959 

4 28 2 53 2 53 75.77 0.737 0.752 0.980 

5 28 2 53 3 52 79.99 0.741 0.780 0.950 

 

 

Table 19 shows the 2nd combination in which the three best parameters were 

varied by +1 and two parameters (shown in bold in the table) remained constant. 

Again, simulated urban growth values are uniformly greater than the 73.14 km2 figure 

predicted using the optimal model parameters (Table 16). Set 8 yielded a value of 

73.31km2 with a high Khisto value of 0.999. This value is quite close to the simulated 

urban growth value of 73.14 km2, indicating a minimum of spatial effect in this model. 

The highest spatial effect (79.14 km2) and lowest Khisto value (0.954) was observed in 

Set 14, in which the slope and breed parameters were held constant while the others 

were varied. 
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Table 19: Model parameter variation in 2
nd

 combination 

Simulation using urban land-use classification of 2010 as reference 

Set 

Model parameters Simulation 

(km2) 

Kappa statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

6 27 1 53 3 53 74.06 0.747 0.752 0.993 

7 27 2 52 3 53 76.73 0.745 0.766 0.973 

8 27 2 53 2 53 73.31 0.739 0.740 0.999 

9 27 2 53 3 52 76.06 0.749 0.766 0.978 

10 28 1 52 3 53 78.01 0.755 0.783 0.964 

11 28 1 53 2 53 73.93 0.759 0.764 0.994 

12 28 1 53 3 52 78.23 0.745 0.774 0.962 

13 28 2 52 2 53 77.02 0.737 0.759 0.971 

14 28 2 52 3 52 79.41 0.744 0.780 0.954 

15 28 2 53 2 52 74.03 0.753 0.758 0.993 

Table 20 summarizes the 3rd combination, where the two best parameters were 

varied by +1 and the other three parameters remained constant (again shown in bold). 

Again, the simulated urban growth values are greater than the 73.14 km2 figure 

obtained using best model parameters as shown in Table 16. Set 19 yielded a 

simulated urban growth value of 73.16 km2 with a high Khisto value of 0.996.  This 

simulated urban growth value is very close to the figure of 73.14 km2 produced by the 

original calibrated UGM model. Thus, varying two model parameters -- Dispersion (at 

2) and Slope (at 53) -- in Set 19 yields a good fit curve for urban growth modelling 

along with the least spatial effect. In contrast, Set 20 yielded the highest spatial effect 

(77.32 km2) with a low Khisto value (0.985). These figures result from varying 

Dispersion at 2 and Slope at 52 (rather than 53 as in Set 19). 
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Table 20: Model parameter variation in 3
rd

 combination 

Simulation using urban land-use classification of 2010 as reference 

Set 

Model parameters 

Simulation 
(km2) 

Kappa statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

16 27 1 52 3 53 74.08 0.752 0.757 0.993 

17 27 1 53 2 53 72.68 0.759 0.761 0.996 

18 27 1 53 3 52 75.09 0.749 0.760 0.985 

19 27 2 52 2 53 73.16 0.750 0.750 1.000 

20 27 2 52 3 52 77.32 0.742 0.766 0.969 

21 27 2 53 2 52 73.28 0.743 0.743 0.999 

22 28 1 52 2 53 72.94 0.757 0.758 0.998 

23 28 1 52 3 52 76.93 0.743 0.765 0.972 

24 28 1 53 2 52 75.19 0.764 0.776 0.985 

25 28 2 52 2 52 73.92 0.762 0.767 0.994 

 

Table 21 shows the 4th combination where the single best parameter was 

varied by +1 while keeping the other four parameters constant (shown in bold). The 

simulated urban growth values are greater than the value of 73.14 km2 obtained using 

best model parameters (Table 16). Set 26 yielded a value of 73.18 km2 with the highest 

Khisto value of 1.000.  The 73.18 km2 value was closest to the simulated urban growth 

value of 73.14 km2. Varying only the Slope parameter in set 26 yielded the least spatial 

effect.  It is useful to compare these results with those produced in Set 30 in which 

only the Spread parameter was varied.  Set 30 yielded the highest spatial effect; an 

indication of the sensitivity of our UGM in modelling urban growth.   

Table 21: Model parameter variation in 4
th

 combination 

Simulation using urban land-use classification of 2010 as reference 

Set 

Model parameters 

Simulation 
(km2) 

Kappa statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

26 27 1 52 2 53 73.18 0.758 0.759 1.000 

27 27 1 52 3 52 74.70 0.751 0.760 0.988 

28 27 1 53 2 52 75.70 0.749 0.763 0.981 

29 27 2 52 2 52 73.74 0.752 0.755 0.995 

30 28 1 52 2 52 76.48 0.757 0.776 0.975 
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Table 22 shows the 5th combination under which all of the best parameters 

were varied by a value of +1. The simulated urban growth value produced by this 

combination was 77.29 km2 with a Khisto value of 0.969.  This growth value 

significantly exceeds the 73.14 km2 figure yielded by using best model parameters. It is 

clear that varying all parameters affects our UGM significantly. 

Table 22: Model parameter variation in 5
th

 combination 

Simulation using urban land-use classification of 2010 as reference 

Set 

Model parameters 

Simulation 
(km2) 

Kappa statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

31 28 2 53 3 53 77.29 0.736 0.760 0.969 

 

In this research we explored the spatial effects of varying the UGM model 

parameters and the results indicate the sensitivity of our UGM in urban growth 

modelling. Varying at least one model parameter while leaving the other parameters 

constant had a significant effect on the resulting simulated urban growth values. The 

highest spatial effect obtained was 79.99 km2 (Table 18) while the lowest value derived 

was 73.16 km2 (Table 20). The value of 79.99 km2 was obtained as the Slope parameter 

was held constant while the others were varied. The value of 73.16 km2 was obtained 

by holding Spread, Breed, and Road parameters constant while varying Dispersion and 

Slope. In addition, examining Table 21 shows that the value of 73.18 km2 was the 

second lowest value obtained for spatial effect. This figure was obtained by varying the 

Slope parameter and holding the other parameters constant.  

Analysis of the lower spatial effect values (73.16 km2 from Table 20 and 73.18 

km2 from Table 21), shows that these results are produced by holding Spread, Breed 

and Road parameters constant. This suggests that these three model parameters are 

closely correlated in the production of similar amounts of urban growth cells. Model 

sets yielding a low spatial effect and those with a high spatial effect are shown in Table 

23 and Table 24. 
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From Table 19, Table 20 and Table 21 it is clear that maintaining constant 

values for Dispersion and Slope at a minimum yielded high spatial effects (78.23 km2, 

76.93 km2 and 76.48 km2). As the value of the Road parameter was increased we 

observed in all simulations increasing urbanisation of more accessible areas. This 

connection to the road network is evident with equal growth rates (due to the values 

of the other parameters), an effect observed by Caglioni, Pelizzoni and Rabino (2006). 

Figure 6-1 shows the urban growth simulations for the 31 Sets. Again, the 

simulated urban growth value of 73.14 km2 was produced by UGM using the best 

model parameters (Table 16). Figure 6-1 shows that Set 19 produced an urban growth 

value of 73.16 km2, the closest to that produced by the UGM (also in Table 20). 

 

 

Figure 6-1: Urban Growth Simulation 

Figure 6-2 shows the K and Klocation values for the 31 simulations. In Set 24 

model parameters of Dispersion, Road and Slope were held constant. Set 24 had the 

highest K value of 0.764 indicating the high spatial effect associated with this Set 

(75.19 km2). In set 31 all model parameters were varied and Set 31 yielded the lowest 

K value (0.736) along with a high spatial effect of 77.02 km2. High K values indicate low 

similarity between the maps and therefore a high spatial effect. In Set 10 two model 
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parameters -- Dispersion and Breed -- were kept constant. Set 10 generated the 

highest Klocation value of 0.783; this is indicative of the high spatial effect, measured 

at 78.01 km2. In set 8 where the two parameters of Spread and Road were kept 

constant, both a low K value and a low spatial effect (73.31 km2) were produced. High 

K and Klocation values describe low similarity between the maps and indicate high 

spatial effects. 

 

 

Figure 6-2: K and Klocation values for urban growth simulation 

Additionally, Figure 6-2 shows that low K and Klocation values were observed in 

Sets 8 and 9; 0.739 in Set 8 and 0.740 in Set 9, with the lowest Klocation value being 

observed in Set 8. In these two Sets only the Spread model parameter was held 

constant. Set 31 yielded the lowest K value at 0.736. 

Figure 6-3 shows the Khisto values for the 31 simulations. The highest value of 

Khisto (1.000) was obtained in both Set 19 and in Set 26. In Set 19 three model 

parameters (Spread, Breed, and Road) were kept constant, In Set 26 four parameters 

(Spread, Dispersion, Breed and Road) were held constant. This high Khisto value 

indicates the lowest spatial effect. In set 5, where a single parameter (Slope) was kept 

constant, the lowest Khisto value of 0.950 was produced, indicating the highest spatial 
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effect observed at 79.99 km2. High Khisto values indicate a high degree of similarity 

between the maps in terms of quantity and location of predicted urban growth and 

indicate the lowest spatial effect.  

 

 

Figure 6-3: Khisto values for urban growth simulation 

Table 23 presents the set of parameters that yielded the minimum urban 

growth levels and indicate low spatial effect. The lowest spatial effect of 73.16 km2 is 

indicated by the highest Khisto value of 1.000. It is clear that maintaining the values of 

the Spread, Breed and Road parameters leads to a low spatial effect and indicates that 

these three model parameters are highly correlated. The growth types predicted were: 

new spreading growth as a result of Breed; edge growth as a consequence of Spread; 

and road-influenced growth as a result of the Road parameter. 
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Table 23: Model parameter sets with low spatial effect for UGM of Nairobi 

Simulation using urban land-use classification of 2010 as reference 

Set 

Model parameters 

Simulation 
(km2) 

Kappa statistics 

Spread Dispersion Breed Road Slope K Klocation Khisto 

4 28 2 53 2 53 75.77 0.737 0.752 0.980 

8 27 2 53 2 53 73.31 0.739 0.740 0.999 

19 27 2 52 2 53 73.16 0.750 0.750 1.000 

26 27 1 52 2 53 73.18 0.758 0.759 1.000 

 

Table 24 presents the set of parameters that produced the maximum urban 

growth levels. Maintaining only the Slope parameter and increasing the values of the 

other four parameters resulted in a high spatial effect at 79.99 km2 along with the 

lowest Khisto value of 0.950. However, holding the Dispersion, Breed and Road 

parameters constant while varying the other two parameters produced a low spatial 

effect (76.48 km2) with a high Khisto value of 0.975. This suggests that the Dispersion, 

Breed and Road model parameters are moderately correlated, but less so than the 

Spread, Breed and Road model parameters (see Table 23). 

Table 24: Model parameter sets with high spatial effect for UGM of Nairobi 

Simulation using urban land-use classification of 2010 as reference 

  Model parameters 

Simulation 
(km2) 

Kappa statistics 

Set Spread Dispersion Breed Road Slope K Klocation Khisto 

5 28 2 53 3 52 79.99 0.741 0.780 0.950 

14 28 2 52 3 52 79.41 0.744 0.780 0.954 

20 27 2 52 3 52 77.32 0.742 0.766 0.969 

30 28 1 52 2 52 76.48 0.757 0.776 0.975 

31 28 2 53 3 53 77.29 0.736 0.760 0.969 

 

Maintaining Spread, Breed and Slope constant resulted in the lowest spatial 

effect value of 73.16 km2 (Table 23) with the highest Khisto value of 1.000, as 

illustrated in Figure 6-4. The highest spatial effect of 79.99 km2 (Table 24) with the 

lowest Khisto value of 0.950 is mapped in Figure 6-5. Figure 6-4 and Figure 6-5 both 

include the 2010 simulated urban growth map and the simulated spatial effect map. 
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Additionally, statistics from Figure 6-4 and Figure 6-5 including the four map categories 

are shown in Table 25. 

 

 

Figure 6-4: Lowest spatial effect based parameters values obtained from set 19  

(See Table 23) 
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Figure 6-5: Highest spatial effect based parameters values obtained from set 5  

(See Table 24) 

Table 25: Statistics of spatial effect maps 

 

Lowest Spatial Effect Highest Spatial Effect 

Category Description Area (km 
2
) Area (km 

2
) 

1 In none of the maps 604.78 600.1 

2 In both maps 56.78 58.93 

3 Reference map 16.38 14.21 

4 Spatial effect 16.38 21.06 

 

From Table 25 it can be seen that for the lowest spatial effect case identical 

values are present for Categories 3 and 4. In the highest spatial effect case the values 

for Categories 3 and 4 differ significantly; 14.21 km2 for Category 3, and 21.06 km2 for 

Category 4. The values for Categories 1 and 2 are quite similar. Examining the spatial 

effect as shown in Category 4, reveals a difference of 4.68 km2 (16.38 km2 and 21.06 

km2), confirming the sensitivity of our UGM.  

These results can help regional and urban planners to understand the 

implications of varying the parameters in the Urban Growth Model. This can allow 
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planners to simulate differing future urban growth scenarios by incorporating varying 

combinations of model parameters. Higher spatial effects in model outputs translate 

to simulations with increasing urban sprawl. Lower spatial effects translate to less 

urban sprawl simulation. This information can be effective in the design of “smart” 

cities, which is a vital research agenda in modern urban planning. 
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7 SUMMARY AND CONCLUSIONS 

The modelling of urban growth and prediction of future growth has been the 

goal of many urban planners in the 21st century. Nairobi and Nakuru as major cities in 

Kenya were used as examples of fast expanding African cities to analyse the dynamics 

of land-use changes between 1986 and 2010, and to simulate urban growth into 2030 

using a regionalised urban growth model (UGM). We used multi-temporal Landsat 

images of 1986, 2000 and 2010 to quantify changes in land-use changes within the 

research period. Furthermore, we explored the use of multi-sensor data in monitoring 

land-use in Nakuru. SAR data improved our classification results. Moreover, we 

conducted supervised classification using support vector machine (SVM) which 

performed better than maximum likelihood classification as noted in Chapter 4. Land-

use statistics revealed that substantial changes have taken place as a result of rapid 

urban growth. At times there is no recent timely land-use information in Kenya. In this 

research remote sensing techniques were effective in obtaining historic as well as 

recent information on land-use.  

This research revealed that UGM can be used for predicting future urban 

growth in both cities. Inputs for our model included information from land-use of 1986 

and 2010 as well as other data namely slope, road data and exclusion layer. The slope 

data was generated from digital elevation model for Nairobi and digital surface 

elevation model for Nakuru. The exclusion layer defined areas where development is 

controlled.  

Model calibration and validation were done simultaneously in XULU. The 

Monte Carlo iterative method was applied in the UGM calibration. The MRV technique 

was applied in model validation phase. The model results were compared with the null 

model. Kenya plans to achieve Vision 2030 in the year 2030 and is to be implemented 

in successive five-year Medium Term plans having started with the period 2008 – 2012. 

Thus to achieve the economic and social strategy there is need for land-use simulation 

in order to cater for the increased economic growth which translates to an increase for 

housing and urbanisation. 
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Accordingly in order to predict alternative urban growth patterns for Nairobi 

and Nakuru, we formulated three scenarios namely; unmanaged, managed and 

maximum protection. These scenarios were an attempt to model urban growth based 

on historic urban patterns as well as what is ideal for sustainable urban planning. We 

used our UGM to come up with three scenarios for the year 2010 and 2030. The 

results obtained indicate urban growth dynamics for different time periods up to the 

year 2030 for both cities. Scenario three was selected as plausible cause of action for 

sustainable planning of our cities with maximum protection on resources. Here the 

assumption was that we have stable economic and political conditions up to the year 

2030. Hence, we observed that our model was suitable in simulating various scenarios 

and can be used as planning tool. Scenario one indicated a situation where there is lack 

of a comprehensive plan and can lead to unsustainable urban growth.  

Simulated urban growth results for the year 2030 indicate that there is the 

need for strategic planning under different scenarios so as to control the expansion of 

built-up areas. There is need for appropriate measures to control the high rural urban 

migration into Kenyan cities in consideration to the existing demography, economic 

and social as well as physical constraints. The accuracy of our model was resolved by 

using Monte Carlo calibration technique. The urban growth values (scenario three) 

obtained using MRV techniques indicated accuracies of approximately 85% as the 

minimum for land-use classification as stated in Anderson et al., (1976). We obtained 

urban growth values of 95% for Nairobi and 84 % for Nakuru.  

Closely comparing the UGM parameters for out two cities we observed that 

breed was a major parameter influencing urban growth in both cities. Breed 

contributes to road influenced growth and this was confirmed in the case of Nakuru. 

Slope and breed were the greatest contributors of urban growth modelling in Nairobi. 

Breed, dispersion and road were the major contributors of ubran growth in Nakuru. 

Nakuru was noted to have undergone more urban sprawl compared to Nairobi.  

Additionally, we observed that Nairobi and Nakuru will undergo rapid growth 

of 49 % and 32 % respectively between the years 2010 and 2030. Hence, Nairobi is 

likely to experience more rapid urban growth compared to Nakuru. Nairobi serves as 
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the capital city of Kenya and attracts more population as people come in search of 

employment and social amenities.  

Different UGM parameter combinations were explored and spatial effects of 

urban growth obtained for Nairobi city. Each model parameter influences urban 

growth independently. However, several model parameters were observed to be 

highly correlated namely; spread, breed and road. The lowest spatial effect was 

achieved by at least maintaining spread, breed and road while varying the other 

parameters. The highest spatial effect was observed by at least keeping slope constant 

while varying the other four parameters. We also used kappa statistics to compare the 

simulation maps. High values of Khisto indicate high similarity between the maps in 

terms of quantity and location thus indicating the lowest spatial effect obtained. 

 Thus our cellular automata model represents a worthwhile approach for 

regional planning as it is able to simulate complex behaviour. The model provided a 

good guide to the spatial growth of Kenyan cities illustrating areas which can be 

expanded under different scenarios. This can help cities to manage their resources 

efficiently and sustainably. Thus cellular automata are a worthwhile approach for 

regional modelling of African cities such as Nairobi and Nakuru. This provides 

opportunities for other cities in Africa to be studied using UGM and its adaptability 

noted accordingly. 
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9 APPENDICES 

 

9.1 Appendix 1: Monitoring land-use 

9.1.1 Landsat TM and ETM spectral and spatial properties 

 
Band 
 

 
Landsat 4/5  
 
Spectral (_m) 

 
TM 
 
Spatial 
(m) 

 
Landsat 7 
 
Spectral 
(_m) 

 
ETM 
 
Spatial 
(m) 

 
 
 
Utilization 

 
Blue  
 
 
Green  
 
 
Red 
 
 
Near Infrared  
 
Middle Infrared  
 
Thermal                  
Infrared  
 
Middle Infrared  
 
Panchromatic  
 

 
0.45-0.52  
 
 
0.52-0.60 
 
 
0.63-0.69 
 
 
0.76-0.90 
 
 
1.55-1.75 
 
 
10.40-12.50 
 
 
2.08-2.35 
 
 
n/a 

 
30 
 
 
30 
 
 
30 
 
 
30 
 
 
30 
 
 
120 
 
 
30 
 
 
n/a 

 
0.45-0.52  
 
 
0.52-0.60 
 
 
0.63-0.69 
 
 
0.76-0.90 
 
 
1.55-1.75 
 
 
10.40-
12.50 
 
 
2.08-2.35 
 
 
0.50-0.90 

 
30 
 
 
30 
 
 
30 
 
 
30 
 
 
30 
 
 
60 
 
 
30 
 
 
15 

 
Water mapping, 
vegetation identification 
 
Green reflectance from 
vegetation 
 
Chlorophyll absorption, 
vegetation identification 
 
Biomass, water 
distribution 
 
 
Vegetation moisture, 
snow/cloud 
identification 
 
Thermal mapping, plant 
heat stress 
 
Hydrothermal mapping 
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9.1.2 USGS Land-use classification system for use with Remote Sensor Data 

Level I Level II 

1. Urban or built-up land 11 Residential 
12 Commercial and service 
13 Industrial 
14 Transportation, communication, and utilities 
15 Industrial and commercial complexes 
16 Mixed urban or built-up land 
17 Other urban or built-up land 

2.  Agricultural land 21 Cropland and pasture 
22 Orchards, groves, vineyards, nurseries, and               
     ornamental horticultural areas 
23 Confined feeding operations 

3. Rangeland 31 Herbaceous rangeland 
32 Shrub and brush rangeland 
33 Mixed rangeland 

4. Forest land 41 Deciduous forest land 
42 Evergreen forest land 
43 Mixed forest land 

5. Water  51 Streams and canals 
52 Lakes 
53 Reservoirs 
54 Bays and estuaries  

6. Wetland 61 Forested wetland 
62 Non-forested wetland 

7. Barren land 71 Dry salt flats 
72 Beaches 
73 Sandy areas other than beaches 
74 Bare exposed rock 
75 Strip mines, quarries, and gravel pits 
76 Transitional areas 
77 Mixed barren land 

8. Tundra 81 Shrub and brush tundra 
82 Herbaceous tundra 
83 Bare ground tundra 
84 Wet tundra 
85 Mixed tundra 

9. Perennial snow or ice 91 Perennial snowfields 
92 Glaciers 

 

The table above is on USGS land-use classification system for use with remote 

sensor data and is adopted from Anderson, Hardy, Roach, and Witmer, (1976). 
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9.1.3 Representative Image Interpretation Formats for various Land-use 

Classification Levels 

 
Land-use Classification 
Level 
 

 
Representative Format for Image Interpretation  

 
I 
 

Low to moderate resolution satellite data (e.g., Landsat MSS data) 

II 
 

Small-scale aerial photographs; moderate resolution satellite data 
(e.g., Landsat TM data) 
 

III 
 

Medium-scale aerial photographs; high resolution satellite data 
(e.g., data acquired by commercial high resolution systems) 
 

IV 
 

Large-scale aerial photographs 

 

The table above is on representative image interpretation formats for various land-

use classification levels as borrowed from Anderson, Hardy, Roach, and Witmer, 

(1976). 

 

9.2 Appendix 2: Urban growth modelling 

9.2.1 Urban growth types 

 

Figure 9-1: Illustration of spontaneous growth 

(Source: www.ncgia.ucsb.edu/projects/gig) 

http://www.ncgia.ucsb.edu/projects/gig
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Figure 9-2: Illustration of new spreading centre growth 

(Source: www.ncgia.ucsb.edu/projects/gig) 

 

 

Figure 9-3: Illustration of edge growth 

(Source: www.ncgia.ucsb.edu/projects/gig) 

 

 

Figure 9-4: Illustration of road-influenced growth 

(Source: www.ncgia.ucsb.edu/projects/gig) 

http://www.ncgia.ucsb.edu/projects/gig
http://www.ncgia.ucsb.edu/projects/gig
http://www.ncgia.ucsb.edu/projects/gig
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Figure 9-5: Influence of slope on urban growth modelling 

 

9.2.2 UGM Calibration Resource Mapping script  

UGM-Parameter.Step Count 

Base LU Scenario.Grid 

Out: Actual LU.Grid 

Area Restrictions.Grid 

Road Grid.Grid 

Slope Grid.Grid 

Reference Grid.Grid 

UGM-Parameter.Spread Coefficient Start 

UGM-Parameter.Spread Coefficient Step 

UGM-Parameter.Spread Coefficient End 

UGM-Parameter.Dispersion Coefficient Start 

UGM-Parameter.Dispersion Coefficient Step 

UGM-Parameter.Dispersion Coefficient End 

UGM-Parameter.Breed Coefficient Start 

UGM-Parameter.Breed Coefficient Step 

UGM-Parameter.Breed Coefficient End 

UGM-Parameter.RoadGravity Coefficient Start 

UGM-Parameter.RoadGravity Coefficient Step 

UGM-Parameter.RoadGravity Coefficient End 

UGM-Parameter.Slope Coefficient Start 

UGM-Parameter.Slope Coefficient Step 

UGM-Parameter.Slope Coefficient End 

UGM-Parameter.Critical Slope 

UGM-Parameter.Number of MonteCarlo Iterations 

Out: Step Results 

 

From the script above, someone can see the implementation of the start, 

intermediate and end points for model parameter values between 1 and 100 (Goetzke, 

2011). For example, in first phase of calibration the values are 1, 50 and 100 with 
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subsequent increments of 25 or lesser to achieve fine calibration of UGM. We used this 

script to achieve calibration of our two UGM models for Nairobi and Nakuru.  

9.2.3 UGM Resource Mapping script  

UGM-Parameter.Step Count 

Base LU Scenario.Grid 

Out: Actual LU.Grid 

Area Restrictions.Grid 

Road Grid.Grid 

Slope Grid.Grid 

UGM-Parameter.Spread Coefficient 

UGM-Parameter.Dispersion Coefficient 

UGM-Parameter.Breed Coefficient 

UGM-Parameter.RoadGravity Coefficient 

UGM-Parameter.Slope Coefficient 

UGM-Parameter.Critical Slope 

Out: Step Results 
 

From the script above, someone can see the simulation of urban growth using the 

best model parameters obtained using Monte Carlo calibration and MRW validation 

(Goetzke, 2011). The Base LU Scenario.Grid represents the starting year e.g. 1986. The 

Area Restrictions.Grid represents the exclusion layer with areas excluded from 

development. The Road Grid.Grid represents road network layer used. The Slope 

Grid.Grid represents the slope data adopted. We used this script to obtain urban 

growth maps for all scenarios using different model parameters. 

9.2.4  UGM Resource Mapping Monte Carlo 

UGM-Parameter.Step Count 

Base LU Scenario.Grid 

Out: Actual LU.Grid 

Area Restrictions.Grid 

Road Grid.Grid 

Slope Grid.Grid 

UGM-Parameter.Spread Coefficient 

UGM-Parameter.Dispersion Coefficient 

UGM-Parameter.Breed Coefficient 

UGM-Parameter.RoadGravity Coefficient 

UGM-Parameter.Slope Coefficient 

UGM-Parameter.Critical Slope 

UGM-Parameter.Monte Carlo  

Out: Step Results 
 



APPENDICES 

196 

 

From the script above, someone can see the Monte Carlo simulation for urban 

growth using 100 iterations (Goetzke, 2011). We used this script to obtain high 

potential urbanisation maps as shown in Figure 5-19, Figure 5-20, Figure 5-35 and 

Figure 5-36. 

 


