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Across the page the symbols moved in grave morrice, in the mummery
of their letters, wearing quaint caps of squares and cubes. Give hands,
traverse, bow to partner: so: imps of fancy of the Moors. Gone too
from the world, Averroes and Moses Maimonides, dark men in mien
and movement, flashing in their mocking mirrors the obscure soul of
the world, a darkness shining in brightness which brightness could not
comprehend. (..)

—It is very simple, Stephen said as he stood up.

(James Joyce, Ulysses)






Summary

Systems of interest in physics often consist of a very large number of interacting particles. In
certain physical regimes, effective non-linear evolution equations are commonly used as an
approximation for making predictions about the time-evolution of such systems. Important
examples are Bose-Einstein condensates of dilute Bose gases and degenerate Fermi gases.
While the effective equations are well-known in physics, a rigorous justification is very diffi-
cult. However, a rigorous derivation is essential to precisely understand the range and the
limits of validity and the quality of the approximation.

In this thesis, we prove that the time evolution of Bose-Einstein condensates in the Gross-
Pitaevskii regime can be approximated by the time-dependent Gross-Pitaevskii equation, a
cubic non-linear Schrodinger equation. We then turn to fermionic systems and prove that
the evolution of a degenerate Fermi gas can be approximated by the time-dependent Hartree-
Fock equation (TDHF') under certain assumptions on the semiclassical structure of the initial
data. Finally, we extend the latter result to fermions with relativistic kinetic energy. All our
results provide explicit bounds on the error as the number of particles becomes large.

A crucial methodical insight on bosonic systems is that correlations can be modeled by
Bogoliubov transformations. We construct initial data appropriate for the Gross-Pitaevskii
regime using a Bogoliubov transformation acting on a coherent state, which amounts to
studying squeezed coherent states.

As a crucial insight for fermionic systems, we point out a semiclassical structure in states
close to the ground state of fermions in a trap. As a convenient language for studying the
dynamics of fermionic systems, we use particle-hole transformations.

This thesis is based on the articles [BAS12, BPS13al BPS13b].
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1. Introduction

Systems of interest in physics usually consist of a very large number of particles, starting
at several thousand up to numbers of order 10? for samples in chemistry and even larger
numbers for astronomical objects like stars. While many of these systems are believed to
be described by versions of the Schrédinger equation and the laws of quantum mechanics,
the derivation of their macroscopic properties from these microscopic laws presents us with
challenging theoretical problems. As a matter of fact, based on heuristic arguments, in
many areas of physics and chemistry effective macroscopic equations are commonly used
to approximately understand the properties of such systems. However, to understand the
range and the limits of validity as well as the quality of these approximations, a rigorous
mathematical derivation is essential.

In this thesis, we derive two important effective theories from the microscopic laws of
quantum mechanics: The Gross-Pitaevskii equation for the dynamics of Bose-Einstein con-
densates and the Hartree-Fock equation for the dynamics of fermionic systems. Furthermore,
we extend the latter result to fermions with relativistic kinetic energy. The mathematical
technique both for the fermionic and the bosonic systems is inspired by the method of coher-
ent states introduced to study the mean-field theory of bosons [RS09, [CLS11l IGV79, [H74].
However, coherent states are not adequate for either of the systems we consider here. To
overcome this problem, we introduce Bogoliubov transformations as a tool for studying the
dynamics of many-body systems. In the dilute Bose gas in the Gross-Pitaevskii regime, it
is essential to find a description of the short-scale correlations in the many-body system. In
the study of fermionic systems, we point out a crucial semiclassical structure in states close
to the ground state.

To conclude this summary, let us give an overview for orientation in this thesis. First, we
proceed to Section where we give a short introduction to quantum mechanics and fix
some conventions.

Section [1.2]is a central part of the introduction, where we introduce the idea of effective
evolution equations and explain the physical background of the models considered in this
thesis.

In Section [1.3] we quickly review the mathematics of second quantization to set the back-
ground for the calculations following.

Then in Section [1.4] we review the method of coherent states as used for deriving the
Hartree equation for the bosonic mean-field regime. Since the method of coherent states was
the main inspiration for the work in this thesis, this section conveys important ideas.

In Section we then introduce Bogoliubov transformations, which are a crucial tool
in this thesis and a main new ingredient. In Subsection we explain how Bogoliubov
transformations can be used to construct initial data. Bosonic Bogoliubov transformations
can be used to implement correlations, and fermionic Bogoliubov transformations can be
used to construct Slater determinants.

We conclude Chapter [I] with three appendices. Appendix compares different conven-
tions for the definition of reduced density matrices and proves a useful lemma. Appendix [I.B]
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explains in detail the global well-posedness of the effective evolution equations in this thesis.
Appendix collects some notations.

In Chapters we present the new results and their proofs obtained in [BdS12, [BPS13a),
BPS13b]; at the beginning of the respective chapters, we give detailed introductions to the
methods and new ideas entering.

1.1. Many-body quantum mechanics

Quantum mechanics as a physical theory was invented at the beginning of the twentieth
century to describe matter on the atomic scale. Nowadays the laws of quantum mechanics
are believed to be fundamental to physics. In the following we will give a short introduction
to the quantum mechanical description of many-body systems. As we are interested in
systems at low energies, we restrict our attention to the non-relativistic theory. The pseudo-
relativistic model of Chapter [4] is a special case: it is not Lorentz invariant, but it includes
the effects of the relativistic dispersion relation.

We start with the description of non-relativistic N-particle systems, ignoring for the mo-
ment the question of quantum statistics (i. e. the bosonic or fermionic nature of the particles).

According to the laws of quantum mechanics the state of a system is identified with a
vector 9 in a complex Hilbert space H. For N particles in three dimensional space, we
have H = L?(R3Y), where we use the convention (f,g) = [ f(z)g(z)dz for the scalar
product of f,g € L?(R3*Y). We also call vy € L?*(R3") the wave function of the system
and generally assume the normalization ||| 2gs~vy = 1. We routinely use the identification
L2(R3N) ~ L2(R3)®N and call L?(R3) the one-particle Hilbert space; vectors ¢ in L%(R3)
normalized to ||¢[|z2rs) = 1 are also called one-particle wave functions or orbitals. Quantum
mechanics predicts the average of measuring an observable over a large number of repetitions
of the experiment. The average is calculated from the theory as the expectation value
<1/1,A1p>, where A is a selfadjoint, possibly unbounded, operator on L?(R3") modeling the
observable. Standard examples of observables are the position operator, acting on the j-th
particle as multiplication by the coordinate z; € R3, and the corresponding momentum
operator pj = —iVy,. A special role is played by the Hamilton operator Hy, which models
the total energy of the system: through the Schrodinger equation

i0ph(t) = Hyv(t) with initial data 1(0) € L2(R3Y) (1.1)
it generates the time evolution of the state vector of the system,
YR — LERNY), e a(t).

We will use the notation ¢, = 1 (¢) throughout. The solution of the Schrédinger equation is
given through the strongly continuous unitary group e Nt as ¢, = e *HNtq)y.
In this thesis, we consider Hamilton operators of the form

N N
Hy =3 (=g + Vext (7)) + XD Vi(wi — ;). (1.2)

j=1 1<j

Here, —A,; is the Laplace operator acting on the j-th particle (x; € R3) and the multi-
plication operator given by Vig : R® — R describes an external potential, which we think
of as modeling a trap. The term Z;V: 1 —Ag; corresponds to the total kinetic energy. The



1.2. Effective evolution equations

term )\Zf\ij V(x; — x;) describes pair interactions with a coupling constant A € R and an
interaction potential V : R? — R. Units were chosen such that Planck’s constant is & = 1
and particles have mass m = 1/2.

Next we introduce quantum statistics, the behavior of wave functions under permutation
of indistinguishable particles. We define the symmetrization operator Sy by its action on
Y € LAR3VN) as

1
(SNib)(xl,...;CN) = ﬁ Z w(xa(l)v"'xa(Nﬂ

) gESN

and the antisymmetrization operator Ay similarly by

(AN, o) = 17 S sam(0)b(ogy, - T

oceSN

By sgn(o) we denote the sign of the permutation o € Sy. The operators Sy and Ay are
orthogonal projections. As a principle of physics, bosonic indistinguishable particles are
described using wave functions ¢ € L2(R3*Y) := SyL?(R3V); fermionic indistinguishable
particles by 1 € L2(R3V) := ANyL?(R3M). More explicitly, L?(R3") is the subspace of
L2(R3N) consisting of all functions which are symmetric with respect to permutation of the
N particles, in formula

LERN) = {y € L*(R*N) : ¢(20(1)s - - -, To(vy) = Y(a1, ..., 2n) for all o € Sy}
Similarly L2(R3Y) is the subspace of antisymmetric functions,
LER3N) = {¢ € LA(R3Y) : V(Ta(1)s - To(ny) = sgn(o)Y(z1, ..., on) for all o € Sy}

It is a principle of physics that in three space dimensions, particles other than bosons and
fermions do not exist. Since both Sy and Ay commute with e =Nt 4y € L2(R3N) implies
Yy € L2(R3N) for all times ¢ € R and analogously for the fermionic case. The well-known
Pauli exclusion principle is a consequence of the antisymmetry of fermionic wave functions.
It can be stated, for example, as

AN(pRe@p1® - @pn_2)=0  (p,¢1,...on—2 € L*(R?)),

i.e. no two fermions can occupy the same one-particle orbital.

An important notion is the ground state of a system. At zero temperature the ground state
1o is the minimizer of the functional v <w, HN¢> among the v € L2(R3V) or L2(R3VN)
(for bosonic or fermionic systems, respectively) with normalization |[¢|| = 1. We study only
systems at zero temperature in this thesis.

1.2. Effective evolution equations

Only in some special cases it is possible to solve the Schrodinger equation explicitly.
In fact, for large systems of interacting particles — as present in many settings of physical
importance — even the numerical solution of the Schrédinger equation becomes impossi-
ble. Therefore, effective evolution equations which allow one to approximately calculate
expectation values of observables are of great importance.

In systems of indistinguishable particles, the results of measurements are averages over
all particles. To see how the result of such a measurement can be calculated from theory,
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let O be a selfadjoint operator on L?(R?), i.e. a one-particle observable. Extending it to
L2R*N)as 0;:=1®...1®@0®1...®1, where the operator O acts only in the j-th factor
of the tensor product, we obtain an observable on the N-particle system. For bosonic wave
functions 1 € L2(R3Y) (and in the same way for fermionic wave functions, since the signs
cancel in the expectation value) we find

N
(6, 000) = (4, SxOLSw) = = 3 (1,050,
j=1

i.e. explicitly the average over all N particles. In particular, the choice of Op is merely a
convention and we could just as well have chosen any O;.

We introduce the one-particle reduced density matrix 'yfpl) by taking the partial trace over

N-1 particlesﬂ of the projectionﬂ [9) (Y]
7 = try NIl

The one-particle reduced density matrix is a non-negative trace class operator on L?(R3).
In terms of the one-particle reduced density matrix we can write the expectation value as

(,019) = tr Oy},

Thus, to approximately determine the expectation value, it is sufficient to approximately

(1)

determine the one-particle reduced density matrix 'ywl . More precisely, for 4 an operator on

L?(R?) to be thought of as the approximation to 71(;) we have

[tr Oy —tr O3] < O] tr

) -
’Ygz, - '7’
if O is a bounded operator, and

1 ~ ) -
[tr 075 = tr O3] < [Ollus vy = Flms

if O is a Hilbert-Schmidt operator. Our goal is thus the following: Start with an initial
wave function 1y € L2(R3V) or L2(R3) (bosonic or fermionic, depending on the physical

situation to be described). Let 71(;]3 be the one-particle reduced density matrix of ¢ . Let

YNt = e Nty be the solution to the Schrédinger equation with initial data 10y, and 715}1]3 ,

its one-particle reduced density matrix. We want to find an effective evolution equation for
the one-particle reduced density matrix, i.e. a differential equation for an approximating
one-particle density matrix wy; such that the solution with agreeing initial data wy o = 71(/)1]3
makes the difference

tr i) — o or ||7(1) — WN,t||HS
YNt ’ YNt J
In general, we use the normalization that for ||| = 1, we have trfy$> = 1, since then “small” in the

discussion here means “much smaller than one”. However, in Chapters [3| and E| it is more convenient to
normalize the trace to tr 71(;) = N.

*We use the Dirac notation for projection operators, i.e. |1b)(¢)| is the operator acting on f € L*(R*M) by
)@l f = (b, ).
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small, for times ¢ > 0 as long as possible. In other words, we want to arrive approximately
(1)

at v, but avoiding to calculate ¢y ; and instead solving an effective evolution equation

starting from 71(;]\), Schematically in a diagram:

ef’iHNt

(3 VN

(1) effective evolution 7
/ysz N’t

Surely we can not expect this to be generally possible in interacting systems, but in certain
physical regimes, modeled through appropriate scaling of the parameters of the system, we
prove that good approximations of this kind can be obtained. In the following, we explain
the regimes considered in this thesis and introduce the respective effective equations. The
scalings will be parametrized with the number of particles IV, which is naturally a large
number so that we are interested in the asymptotic behavior as N — oo.

The physical setting for the application of effective evolution equations can be described
by the following steps which constitute a typical experiment.

Step 1 The system with a trapping external potential, e.g. Vix(z) = |z|?, is prepared (ap-
proximately) in the ground state 1)x by cooling it to very low temperatures. Since the
ground state is an eigenstate of the Hamilton operator the time evolution is trivial, i.e.
just multiplication with a phase which does not affect any expectation values.

Step 2 The traps are switched off, Vext = 0, so ¥ is not an eigenstate of the Hamilton operator
anymore and will thus evolve in a non-trivial way. It is this evolution that we describe
with an effective evolution equation. More generally, the external potential could be
changed instead of being switched off, which also leads to a non-trivial evolution.

The effective evolution equation can be studied analytically and is also numerically more
accessible than the original high-dimensional Schrodinger equation.

1.2.1. The Hartree equation for the bosonic mean-field regime

Let us start with a well-known simple example of an effective evolution equation, which
serves to illustrate the type of results and methods to be presented in this thesis. Consider
the Hamilton operator

N 1 N
Hy = (=Dg; + Vexs(z5)) + N > Viwi — ) (1.3)

j=1 i<j

for N indistinguishable bosons, i.e. on L?(R3Y). The coupling constant has been cho-
sen to be 1/N, so that the interaction term is formally of order N and thus of the same
order as the kinetic energy. (Considering a vector ¢®V as below, the kinetic energy is
{p®V, ijzl(—ij)<p®N> = N{(p,—A¢) = O(N), while the double sum of the interaction
term is O(N?).) This means that in the limit N — oo none of the terms becomes negligible
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with respect to the other, giving rise to a non-trivial limiting dynamics. Since the interaction
is weak and its range of order one and thus much larger than the typical distance N~/3 be-
tween particles (for N particles in a volume of order one, confined by the trapping potential),
in the spirit of the law of large numbers we can think of each particle as interacting with an
effective potential obtained through averaging over all other particles. For this reason, we
call this scaling the mean-field regime.

For bosons, a physically important and mathematically tractable class of initial data is
given by factorized wave functions

Uy = N e LHR3Y) (1.4)

where ¢ € L?(R3); written more explicitly ¥y (z1,...,28) = vazl @(xj). In fact, for van-
ishing interaction V' = 0, the ground state (at zero temperature) is exactly of the form ((1.4)),
and this form is approximately correct for non-vanishing interaction in the mean-field regime

’Yq(m\), _7¢®N’ =tr ’7¢Ng ‘90><90” — 0

as N — oo, with ¢ the minimizer of the Hartree functlonal given below. A simple proof of
this fact in the case V > 0 can be found in [GS12, Lemma 1J3| This phenomenon is known
as Bose-Einstein condensation and was first predicted in 1924 by Bose and Einstein, who
considered non-interacting bosons at positive temperature.

For a state approximately given by ¥n ~ ¢®V, the energy in the mean-field regime is
expected to be approximately

in the sense that the ground state vy 4 satisfies tr

N N
1
(@®N, Hyo®V) = (oY Z —Aa; + Vet (27)) + ;V(xi —z;)| o®N)
: 1<J
N(N =1
= N<30®N, (A, + %xt(m1))90®N> + (2N )<<,0®N, V(ry — x2)<,0®N>
N

~ N/dx (IVel? 4 Vexelg]?) + 2/dwdy () PV (z — y)le(y)

= NgHartree (SO) .

Here we introduced the Hartree energy functional Exartree-

Now suppose that, after having prepared the trapped ground state, the confining trap is
switched off, so now Vi = 0. The former ground state 1n ~ ¢®V is no longer stationary
and evolves non-trivially. However, we may expect that since in the mean-field regime
the interaction is weak, at any later time ¢ we still have an approximately factorized wave
function,

U = e TNy o pEN (1.5)

wherein ¢; should be a one-particle orbital evolved with an appropriate, self-consistent,
effective evolution equation. The evolution equation for ¢; can be obtained as the evolution
equation canonically associated with the Hartree energy functional:

10spr = —Apy + (V * ’¢t|2)90ta Yo = - (1-6)

This is a non-linear Schrédinger equation for ¢; € L?(R3) instead of a linear Schrodinger
equation for ¥y ; € L?(R3N), so the dimension has been extremely reduced at the cost of a

3Notice that in [GS12] a different indicator of condensation (the number of particles outside the Hartree
ground state) is used, but by [KP10, Lemma 2.3] it implies the convergence of the reduced density.
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non-linearity which models the interaction. The energy Exartree(t) as well as the L2-norm
of ¢; are conserved with respect to the evolution .

To give the reader a feeling of the results that we prove in this thesis, we now make (|1.5])
more precise citing the following theorem. The theorem holds if the interaction potential
is dominated by the Laplacian (the kinetic energy of one particle) in the sense that V2 <
C(1 — A) holds as an operator inequality for some C' > 0. This is true for example for the
physically important case of the attractive and repulsive Coulomb potential.

Theorem 1.2.1 (JRS09, [CLSTI]). Suppose V2 < C(1—A) for some C > 0. Let p € H(R3)
with |||z = 1 and let ¢ be the solution to the Hartree equation with initial data
wo =@. Letyn; = e_iHth0®N be the solution to the Schrodinger equation i0yn = HNYn
with mean-field Hamiltonian (with Vey = 0) and initial data Yo = ©®N . Then there
exist constants D, K > 0 such that

1
tr ”Yél]\)jyt - ‘Sot><90t’) < NDBKM for allt € R.

Notice that the projection |@¢)(p¢| is the one-particle reduced density matriz of QO?N.

Since the method of [RS09, [CLSTI] was the main inspiration for the work in this thesis, we
review it in detail in Section This method has been developed starting in [H74l I(GV79]
for the study of the classical limit. A remarkable feature of this method is that it provides
explicit strong estimates for the rate of convergence as N — oco. Furthermore it also allows
us to understand the behavior of the fluctuations in the limit, and in particular was used to
prove a central limit theorem [BKS11].

We conclude this subsection with a short overview of rigorous results on the dynamics of
bosonic systems in the mean-field limit. The first rigorous proof of validity of the Hartree
equation in the sense that fy](\})t — |pe)(pe| as N — oo was obtained in [S80], for bounded
interaction potentials. The meothod of [S80] was extended to particles interacting through a
Coulomb potential [EY0I], both in the attractive and repulsive case.

A different approach to obtain control of the rate of convergence towards the Hartree
evolution was developed in [KPI0, [P11] with the advantage that it can be extended to
potentials with more severe singularities. The convergence towards the Hartree dynamics
was proved as propagation of Wigner measures in [ANTI] for regular interaction potentials.
In [FKS09] the convergence towards the Hartree dynamics was proven as an Egorov-type
theorem, for particles interacting through a Coulomb potential.

In [GMMI0, [GMMI1], IGM12] it was shown how an approximation in Fock space norm
(instead of the trace norm of reduced densities) can be obtained by considering next-order
corrections to the Hartree dynamics. Many-body quantum dynamics in one and two dimen-
sions in appropriate mean-field limits have been studied in [AGT07, [KSS11] and were found
to give rise to Schrodinger equations with local non-linearity.

The study of the spectral properties of bosonic mean-field Hamiltonians also received a
lot of attention in the last years. A first proof of the emergence of a Bogoliubov excitation
spectrum has been found in [S11] for systems of bosons in a box and in [GS12] in the presence
of an external potential. A more general approach to the analysis of the excitation spectrum
of bosonic mean-field systems was given in [LNSS12].

A setting combining mean-field and semiclassical limit for bosonic systems has been con-
sidered in [GMPO03] and [FGS07]. This setting is similar to the joint mean-field and semi-
classical limit that naturally emerges in fermionic mean-field systems, as we will explain in

Subsection [[.2.3
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2ms 3ms 4ms 5ms

Fig. 1.: Experiment: At ¢ =0ms a Bose-Einstein condensate is released from (a) an almost
isotropic and (b) an anisotropic trap and expands. Shown is (in false colors) the
absorption of a beam of light by the condensate cloud. The initial condensate consists
of more than 50,000 chromium atoms at a temperature of about 10 K.

From with permission of the authors. Copyright 2005 by The American Physical Society.

1.2.2. The Gross-Pitaevskii equation for the dilute Bose gas

In dilute trapped Bose gases at very low temperatures Bose-Einstein condensation can be
observed in experiments, in the sense that a macroscopic fraction of particles is found to
occupy the same one-particle orbital. This is similar to the ground state for the bosonic mean-
field system that we discussed above, despite the physical regime being very different. The
first experimental evidence of this phenomenon was obtained in 1995 [AEM~+95] DMA +95]
and it was rewarded with a Nobel prize in 2001.

In typical experiments, the gas of bosonic particles is initially trapped using electromag-
netic fields and cooled down to very low temperatures. At a critical temperature, a phase
transition occurs and a condensate is formed. Afterwards the trapping fields are switched
off or changed and the time evolution of the condensate is observed. We show an example
of data obtained in this way in Figure[I} after releasing the condensate from the trap, the
condensate cloud expands and, in Figure b), also changes its shape. On the fundamental
level, the dynamics are described by many-body quantum mechanics. In the work pre-
sented in this thesis we show rigorously that the dynamics of Bose-Einstein condensates can
be approximated with an effective evolution equation, the time-dependent Gross-Pitaevskii
equation.

We now introduce the theoretical picture for the description of a condensate by Gross-
Pitaevskii theory. We start by making the notion of Bose-Einstein condensation rigorous,
following the idea of using reduced density matrices as hinted at in the mean-field setting in
the previous section. Considering the simplest non-trivial case, a factorized wave function
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in L2(R3V) of the form

YN = SN (<P®k1 ® LP%]Q) , {p,01)=0, ki+ks=N, (1.7)

we can simply count the number of tensor factors ¢ and speak of macroscopic occupation of
the orbital ¢ if k; is large, close to the total number of particles N. However, for systems
with interaction, the ground state is not factorized. To come up with a more general notion
of macroscopic occupation and Bose-Einstein condensation, let us consider the example of a
sequence (1n)nen of the form with ks = N, where a € [0, 1). For the trace norm one

finds
2

Nl-a’
In 95 we have a fraction k1 /N — 1 (as N — oo) of the particles in the condensate orbital

¢. Motivated by this example, we speak of complete (or 100%) Bose-Einstein condensation
if

tr i) — ) (el| = (1.8)

tr

W = @)l =0 (N = o)

for some ¢ € L?(R?). We then say that the one-particle orbital ¢ is macroscopically occupied.
Equivalently, complete Bose-Einstein condensation occurs if the largest eigenvalue of ’Y1(p1]3
converges to one as N — oco. The definition given in this paragraph is meaningful also for
non-factorized v, and thus also in systems with strong interaction.

Bose-Einstein condensation is difficult to prove mathematically, however there is a model
of physical importance in which Bose-Einstein condensation has been rigorously proven. This
model is the trapped Bose gas of N particles in the Gross-Pitaevskii regime, in which the
idea of the scaling is to model diluteness by making the effective range of interaction very
small. More precisely, the Hamiltonian is taken to be

N N
Hy = (=Ag; + Vet (7)) + N? Y V(N (i — ;) (1.9)
j=1 i<j

on L2(R3Y). The interaction potential is repulsive, i.e. V > 0, spherically symmetric and
decaying sufficiently fast at infinity. The scaling of the potential is chosen such that the
range of the interactio is of order N~!, much smaller than the typical distance N~1/3
of particles (for N particles trapped in a volume of order one). This means that collisions
are very rare and in this sense the model describes a dilute gas. The N? in front of
the potential is chosen such that collisions are very strong and thus despite diluteness not
negligible, the interaction term being formallyﬂ of order . Since the interaction is so strong
and short-ranged, the Gross-Pitaevskii regime is very different from the mean-field regime
discussed before, where collisions are frequent but weak. Indeed factorized wave functions
are not sufficient as an approximation in the Gross-Pitaevskii regime. Correlations play an
important role in the Gross-Pitaevskii regime as we will now discuss.

We will introduce below the scattering length, which measures the effective range of a potential. The
scattering length of the rescaled potential NV (Nz) appearing in the Hamiltonian (T.9) is a = ag/N.
®To see this, use symmetry of the wave function to write the interaction term as 3 Zi\;] N2V(N(xi —x;)) =

¥ Z;V:Q N2V(N(z1 —x;)). The particle at 21 mostly interacts with the particles in a volume of size N 3.

Since in volumes of order one there are N particles, the particle at 21 can interact with N =2 particles, so
Sl V(N (21 — ;) = O(N ).
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Let us introduce f: R? — R as the solution to the zero-energy scattering equation [LSSY05]
1
(—A + 2V> f =0 with boundary condition f(z) — 1 as |z| — oo. (1.10)

(For a physical interpretation, notice that this is the stationary Schrodinger equation with
energy eigenvalue E = 0 for two particles in relative coordinates.) The solution satisfies
0 < f <1 and has the asymptotic form

flz)~1- % for |x| > ay, (1.11)
where
ap == (87r)1/Vfda: (1.12)

is called the scattering length of the potential V. The scattering length plays a central role
in describing the effect of correlations. In fact, it was proven in [LSY00] that the quantum-
mechanical ground state energy

Ex= inf H 1.13
N= (v, Hnt) (1.13)
[¥ll=1

is approximated by the Gross-Pitaevskii energy in the sense that

im =Y = min &
Ngnoo N goerlrll;(rﬁ{?’) GP((IO)’

llell=1

where the Gross-Pitaevskii energy functional is defined as

Eap(p) = /df’«" (IV@|* + Vixt| o + 4mao o] ) - (1.14)

Here, the scattering length appears in front of the quartic term. Hence, in leading order
the ground state energy per particle depends on the interaction potential V' only through
its scattering length. The importance of correlations in the ground state can now be seen
observing that for factorized, i.e. uncorrelated, wave functions we have

N
(e®N Hyo®N) ~ N/dﬂf (IVel* + Vesslol®) + 5 /dwdy lp(2) PN?*V (N (z — )| (y)|?

b
o [an (1968 4 Voalol? 4 3161t) (V= 0,

where in the last step we took the limit to a delta distribution. The constant in front of the
quartic term is b = [ Vdz. Since % > 4mag (this follows from and the fact that f <1
and not constant), the energy of the factorized state differs from the ground state energy
in leading order! Due to this observation we expect that the ground state has a singular
structure on a short length scale. Rescaling the coordinates one finds that the solution fy
of

1
<—Am + 2N2V(Nx)> fn(z) =0 with boundary condition fy(xz) — 1 as |z| — oo

10
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is fx(z) = f(Nz). In Chapter [2] we use the function fy in a Bogoliubov transformation to
describe the correlations in the Bose-Einstein condensate on length scale 1/N. Notice also in
this context that according to [EMS06], a short-scale structure described by fy forms almost
immediately in an initially uncorrelated state ¢®V under the time evolution generated by
the Hamiltonian .

Nevertheless, despite the presence of correlations, the notion of complete Bose-Einstein
condensation introduced before still makes sense. In fact, it was proven [LS02] that the
ground state ¥y in the Gross-Pitaevskii limit exhibits complete Bose-Einstein condensation,

78 = leap)leep| (N = o0),
where the macroscopically occupied orbital pgp is the normalized minimizer of the Gross-
Pitaevskii energy functional Egp. The results of [LSY00, [LS02] show that the properties of
the ground state are well approximated by Gross-Pitaevskii theory.

Coming back to the experiments discussed above, the question is whether the dynamics
after switching off (or changing) the trap can also be described by Gross-Pitaevskii theory, i. e.
if the evolution governed by the Schrodinger equation i0;¢n,; = HnYn, with Hamiltonian

N N
Hy =Y Ay + > N°V(N(z; — ;) (1.15)
j=1 1<j

can be approximated by the evolution equation canonically associated with Eap,
iOppr = — Ay + 8mag| e o1 (1.16)

The answer is yes; in a series of articles [ESY06al, [ESY06b, [ESY10, [ESY07, [ESYS09] (see
also Subsection [2.1.1] for some details on the method) and by a different method in [P10] the
following result was established: Consider a family of vectors ¢y € L2(R3*") with bounded
energy per particle,

(YN, Hyyy) < CN,

and exhibiting complete condensation in a one-particle orbital ¢ € H'(R?) in the sense

750 = 1Ml (N = o).

Then, the solution ¢y; = e Nty of the Schrodinger equation still exhibits complete

(1)
¥

Bose-Einstein condensation, i.e. the reduced one-particle density ~y N associated with 1y ¢

satisfies

Y, = el (N = 00) (1.17)
at any fixed time ¢ > 0. Here ¢, is the solution of the time-dependent Gross-Pitaevskii
equation with initial data ¢. This result establishes the stability of complete Bose-
Einstein condensation with respect to the time-evolution, and the fact that the condensate
wave function evolves according to the Gross-Pitaevskii equation.

It is now desirable to obtain explicit bounds on the rate of convergence in , not least
because in view of an explicit bound gives an indication of the number of particles
outside the condensate, but also because in experiments the number of particles is always
finite and it is thus important to know how large the number of particles has to be in order
to obtain a good approximation. The techniques of [ESY06al [ESY06b, [ESY10, [ESY07,

11



1. Introduction

ESYS09] however do not tell us anything about the rate of convergence, since they conclude
convergence from a compactness argument. We nevertheless discuss these techniques in
Subsection [2.1.1] since they provide us with a better understanding of how to take into
account the effect of correlations.

For an extensive review on Bose-Einstein condensation (in the state of 2007) leading from
the experimental side to the mathematics, we recommend to the reader the thesis [M07].

In Chapter [2| we present our work providing quantitative bounds for , see Theorem
and Theorem The method, while inspired by the work [RS09, [CLS11] on mean-
field systems, is significantly more involved due to the need of controlling the correlations. In
particular, we introduce Bogoliubov transformations (see Subsection as a tool to model
correlations in the many-body system. On the mathematical side, the use of Bogoliubov
transformations presents a close link to our work on the Hartree-Fock theory for fermionic
systems, which we introduce next.

1.2.3. The Hartree-Fock equation for the fermionic mean-field regime

Another very important example of an effective evolution equation is the Hartree-Fock equa-
tion, describing the dynamics of systems of fermionic particles (e.g. electrons, neutrons,
protons, some atoms) in the mean-field regime. We consider the Schréodinger equation

N N
10N = Z(—ij) + )‘Z V(zi —x5) | YNy
j=1

1<j

for N indistinguishable fermions, i.e. in L2(R3"). As for the bosonic mean-field regime we
choose the coupling constant A small, such that kinetic and interaction energy are of the
same order as N — oo. To get a heuristic estimate of the order of the kinetic energy let us
consider non-interacting fermions confined to a box of volume of order one and with periodic
boundary conditions (in this example the energy can easily be calculated explicitly). Due to
Pauli’s principle, in fermionic systems particles can easily reach high energies: since no two
fermions can occupy the same one-particle orbital, they fill the eigenstates of the Laplacian
in order of increasing energy until all fermions found a place. As a consequence, already in
the ground state the kinetic energy is of order N°/3, the so-called Fermi energy. We thus
choose A = N~1/3. Since as a consequence of the high energy, fermions also have a high
velocity — of order N1/3 for the energetically highest occupied orbitals — we can only expect
to follow their dynamics with an effective evolution equation up to times of order N~1/3,
Introducing a new time variable 7 (which will be taken to be N-independent, and which is
called the semiclassical time) such that the physical time becomes

t=N"137,
we obtain the Schrodinger equation
N 1 XN
iNYBOpn - = | D (—Ay,) + 17 > Viwi— ;)| Ynr
j=1 i<j
We define a new parameter (we call it the semiclassical parameter)

e:= N3

12



1.2. Effective evolution equations

and multiply the Schrodinger equation by €2, resulting in

N

N
ieonbny = | S (—e2A,) + % SO V(wi—a5) | Gwr (1.18)

j=1 i<j
We introduce the Hamilton operator

N N
Hy =3 (—e2A,) + %Z V(ei—a)), =N, (1.19)
j=1 i<j
so the Schrodinger equation is i€0-¢n r = Hyt¢n. With the factor 1/N explicitly written
now, the interaction term is of the same form as in the bosonic mean-field system, but in
contrast to the bosonic case we also have to deal with the semiclassical regime, the parameter
¢ taking the role of Planck’s constant converging to zero. The factor ¢ in front of the time
derivative makes the analysis much more involved than for the bosonic mean-field regime.
For now, let us heuristically derive the Hartree-Fock equation as the effective equation
associated with the evolution . Typical initial data is prepared in an external trapping
potential just like for bosons. We expect the ground state of the weakly interacting fermions
in the trap to be close to the ground state of non-interacting fermions in the trap (or in a
box, as above), which has the form of a Slater determinant

YN =AN([1®...® fN).

Here f1,... fy € L?(R?) are orthonormal one-particle orbitalsﬂ Now suppose the trap is
switched off. The idea of the Hartree-Fock approximation is to approximate the evolved
wave function ¥, = e~ tHNT/ ¢y with a Slater determinant

AN(fir® ... ® fNyr), (1.20)

where the orbitals evolve with an effective evolution equation. Calculating the energy of a
Slater determinant we find

<¢N,HNwN>=/deeQ|VfJ|2+ dady 3" Vi — )l @ LW
3,j=1
(.21
dady Z V(z —y) fi(@) fi(y) filx) fi(y)
1,j=1

:ZEHF(fl)"'afN)u

where in the last step we defined the Hartree-Fock energy functional Egr. The first summand
containing the interaction potential V' is called the direct term, the second term containing
the interaction potential is called the exchange term. The self-consistent effective evolution
equation (to be precise, N coupled equations, one for each orbital) is obtained as the evolution
equation canonically associated with the Hartree-Fock energy functional Egp:

i587fi,T:_ ZAsz_" Z V*‘fj7| fz‘r_iz V* fZTf]T))ij (122)

5The non-interacting Hamilton operator can be written as Hy = Z;V:I hj, where h is a one-particle Hamil-

tonian —A + Vixe on L*(R?) (the subscript j meaning that it acts on the j-th particle). In this notation,
the f; would be the eigenvectors of h in order of increasing eigenvalues.

13
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The evolution defined by (1.22]) conserves the energy pyp and the orthonormality of the
orbitals. The Hartree-Fock equations can be rewritten in a convenient form by introducing
the one-particle reduced density matrix

1 N
WNr =y > i) Finl (1.23)
j=1

associated with the Slater determinant (1.20). The Hartree-Fock equation ((1.22]) then be-
comes
ie0rwN . = [~E2A+V % pr — X wn o). (1.24)

Here we have introduced the commutator [A, B] = AB — BA of operators A and B. Fur-
thermore, we introduced the configuration space density of particles p,(z) = wn (z, ), the
multiplication operator (V # p;), and the exchange operator X, which is defined through its
integral kernel X, (z,y) = V(z — y)wn (2, ).

Conversely, if the initial data wx, is a projection of rank N, so is wy, for all 7 (see
Section, and thus we can decompose it in the form to obtain the equations in the
orbital form again.

In Chapter [3] we present our work providing quantitative bounds on the difference of the
one-particle reduced density matrix of the Schrédinger evolution and the Hartree-Fock evo-
lution, for initial data satisfying certain semiclassical commutator bounds, see Theorem [3.3.1
and Theorem As an important ingredient, we prove that the Hartree-Fock equation
preserves the semiclassical properties of the initial data. In Chapter [4 we present similar
results (Theorem for the fermionic setting with relativistic dispersion relation, known
to physicists as relativistic degenerate matter.

The method is again inspired by the use of coherent states as initial data in [RS09, [CLS11],
but in contrast to the bosonic case there are no coherent states in fermionic Fock spacd’]
As a replacement for the Weyl operators creating coherent states in the bosonic Fock space,
on fermionic Fock space we find degenerate Bogoliubov transformations that create Slater
determinants. Since correlations are not important in the mean-field case, the Bogoliubov
transformations to be used for fermions are very different from those used to implement
correlations in the Gross-Pitaevskii setting. In fact, the fermionic Bogoliubov transforma-
tions to be used are particle-hole transformations. We would like to stress that the fermionic
Bogoliubov transformations are better compared with the Weyl operator in Chapter [2] and
[RS09, [CLS11] (see Section [1.4] for a review) than with the correlation-implementing Bogoli-
ubov transformations in Chapter

The Hartree-Fock equation still depends on N, through the semiclassical parameter
e =N"1/3 and through the initial data. This poses the question whether the Hartree-Fock
equation has a well-defined limit for ¢ — 0. The answer is yes: the semi-classical limit of the
Hartree-Fock equation is given by the non-linear Vlasov equation

%+2U'fot+F(ft) -V ft =0, (1.25)

where fi(z,v) > 0 is a time-dependent density in the classical phase space I' := R3 x R3,
with x position and v momentumlﬂ The force F' is given self-consistenly as the mean-field

"It is possible to define fermionic coherent states by extending Fock space with Grassmann variables (see
e.g. [CR12| [FKT02) [FK11]), but we found Bogoliubov transformations more convenient for us.

8The factor of 2 appears because we prefer to think of phase space over momentum instead of velocity, the
conversion factor being the mass m = 1/2.

14



1.2. Effective evolution equations

force F(f;) = —=V(V x p{) with p{(x) = [ fi(z,v)dv the configuration space density of
particles. For V' the Coulomb potential, is called the Vlasov-Poisson equation. The
non-linear Vlasov equation describes the mean-field theory of classical particles [BHT7T]; it is
of great importance for example in plasma physics [V68, Eq. II] and gives rise to intriguing
phenomena like Landau damping [MV11].

We now present a heuristic argument that the semiclassical limit of the Hartree-Fock
equation is given by the Vlasov equation. A standard tool for analyzing the semiclassical
limit is the Wigner function: For v a one-particle density matrix, it is defined as a function
on phase space I' = R? x R? through

Wy (z,v) = (271r)3 /ei"””y (x + Eg,x — 5%) dn for (z,v) € T (1.26)
Even though the Wigner function in general is not a probability density on the classical
phase space (Gaussians are the only pure states with non-negative Wigner function [SC83]),
it is nevertheless useful for comparing quantum mechanical theories to classical theories (c. f.
[B98l, Chapter 15]).
In Appendix in Chapter [3| we prove that the exchange term can be neglected, so we
can consider the Hartree equation

ie0rwN s = [~ A+ V % prwn ] (1.27)

instead of the Hartree-Fock equation ([1.24). To obtain the Vlasov equation, let us look at
the time-derivative of the Wigner function associated with the solution wy » to the Hartree
equation. We find

ie0; Wi 7 (z,v) (27)3

= /dn e~ (—€2A1 + €2A2) WN - (a: + sg, T — 6%) (1.28)
+ /dn et ((V * pr) (:1: + 6%) — (Vxp;) (m - 53)) WN,r (:1: + sg,z - 8%) , (1.29)

wherein A; and As denote the Laplacian acting on the first and the second argument,
respectively, of the integral kernel wy -(z1,22). We approximate the difference in ([1.29) by
expanding it to linear order in e:

((Vep) (s4+23) = (Vpr) (2= ) ) =en- V(V 5 pr)(a) + O).

We plug this into line ([1.29) and use integration by parts to convert the factor of n into a
gradient with respect to v; we obtain

(T:29) = iV (V * pr) () - VoW1 (2,0) + O(e?).
Furthermore it is easy to see that

2
(A1 — Ad)wn ~ <x + ag, T — 6%) = gVnVa;wN,T <x + sg, T — 6%) )

Plugging this into ([1.28]), using integration by parts with respect to n and dividing the whole
equation by ie, we finally arrive at

O W r(z,v) + 20 - VoW 1 (x,0) = Vo (V % pr) () - Vo Wi 2 (z,0) + Ofe). (1.30)

15
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To conclude, we notice that the configuration space density p?¥ of the Wigner function is

oV(x) = /WNjT(m,v)dv = wn, (2, 2) = pr(x).

Thus (|1.30) is indeed the Vlasov equation, up to an error term formally of order €. The
Vlasov equation has been rigorously derived starting directly from the quantum-mechanical
fermionic system in [NS81] for real-analytic potentials and in [S81] for more general
potentials. It has also been derived as a semiclassical limit starting from the Hartree-Fock
equation in [GIMSO98]. (The latter work is interesting as it shows that the step from
the Hartree-Fock equation to the Vlasov equation also holds for particles interacting via the
Coulomb potential, while the step from many-body quantum mechanics to the Hartree-Fock
equation has not yet been rigorously proven in the Coulomb case.)

We conclude with a review of the literature on the mean-field dynamics of fermionic
systems, which is much more limited than for bosonic systems. As far as we know, the first
rigorous results concerning the evolution of fermionic system in the regime we are interested
in were proven by [NS81] and [S81]. Neither [NS81] nor [S81] give a bound on the rate of
convergence. More recently, in [EESY04] the many-body evolution is compared to the N-
dependent Hartree dynamics described by : Under the assumption of a real-analytic

potential, it is shown that, for short semiclassical times, the difference between 'y](\})t and wy 4

is of order N~! (when tested against appropriate observables). The results that we present
in Chapter (3| are comparable with those of [EESY04]. In contrast to [EESY04] we obtain
convergence for arbitrary times (i. e. for arbitrary, N-independent 7 as appearing in )
and under much weaker assumptions on the regularity of the interaction potential.

A different mean-field regime of fermionic systems, characterized by ¢ = 1 in ,
has been considered in [BGGMO3|, [FK11], for regular interactions and for potentials with
Coulomb singularity, respectively. This alternative scaling describes physically interesting
situations if the particles occupy a large volume (so that the kinetic energy per particle is
of order one) and if the interaction has a long range (to make sure that also the potential
energy per particle is of order one). In this thesis we are interested in the evolution of initial
data describing N fermions in a volume of order one; correspondingly, we only consider the
scaling with e = N~1/3 appearing in .

To conclude our discussion of the Hartree-Fock theory, we would like to point out that
the time-dependent Hartree-Fock equation was adapted to a wide range of applications,
e.g. in nuclear physics [MRSU13, BKN76]. As an example, in Figure [2| and Figure |3 we
show numerical results, obtained by time-dependent Hartree-Fock methods, describing the
collision of two atomic nuclei.

1.3. Second quantization

In this section we quickly review second quantization; see e.g. [RS80, Sections I1.4 and
VIII.10] and [RST75, Section X.7] for details. As long as we work with states of exactly N
particles, the formalism of second quantization is just a convenient language for calculations.
In our derivation of the Gross-Pitaevskii equation in Chapter 2| however, second quantization
is indispensable since we consider states that do not have an exact number of particles. We
introduce the fermionic and bosonic setting both at once, pointing out differences only where
necessary.
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1.3. Second quantization

Fig. 2.: TDHF numerics: Excentric collision of a nucleus of Magnesium-24 with a nucleus
of Lead-208. Time from left to right and up to down. Colors correspond to the
total density, contour lines to the density of energetically lowest one-particle wave
functions in Magnesium-24. The Lead-208 nucleus has a radius of about 6fm. From
[M14].

Fig. 3.: TDHF numerics: A nucleus of Carbon-12 collides with a nucleus of Oxygen-16, with
initial relative energy 100MeV. Time from left to right and up to down. From [M14].
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Fock space is defined as the Hilbert space direct sum

F = @ S, L*(R3") (bosons),
n>0
F = @ A, L (R3™) (fermions),

n>0

where A, is the antisymmetrization operator and S,, the symmetrization operator, both as
introduced in Section By convention L?(R%) = L?(R3)®% = C. A vector ¢ € F can be
written as a sequence 1 = (zp(o),¢(1), ...), where P e A, L*(R3") for the fermionic and
Y™ € S, L?(R3) for the bosonic case. The vector (both in the fermionic and the bosonic
Fock space)

Q:=(1,0,0,...)

is called vacuum vector and describes a state not containing any particle. The scalar product
on Fock space (with respect to which Fock space is a Hilbert space) is

W)= (W™, 0") gsnys V0 EF.

n>0

In fact, any sequence 1) = (¢(0), pM ) with (™) e S, L2(R3") satisfying

Do Ip)? < oo

n>0

is an element of the bosonic Fock space, and analogously for ¢ ¢ A, L?(R?") an element
of fermionic Fock space.

In Fock space we can describe states where the number of particles is not exactly deter-
mined. The vector ¢ = (w(o),w(l), ...) € F describes a coherent superposition of states with
different numbers of particles; the n-particle component is described by (™. The probabil-
ity to find n particles in a measurement is given by [|1)(||2. We will generally identify states
of exactly N particles, ¥ € L2(R3N) or ¢ € L2(R3Y), with

(O,...,O,i/JN,O,...) e F,
i.e. (™ =0 for all n £ N and ) = ¢y
For calculations it is convenient to use creation and annihilation operators. In the bosonic

case, they are defined for every one-particle orbital f € L?(R3) by their action on the
individual elements of the sequence ¢ € F as

(a())™ (21, ...2n) == Vn+ 1 /f(a:)w(”+1)(x, Z1,...xn)de (annihilation operator),

(a*(f)z/;)(") (T1,...xy) = \}ﬁ Z F@) " (@, .. &g .. x) (creation operator).
k=1

The notation Zj; means that the argument x is left out. The sum in the definition of the
creation operator is required to make the result of applying a*(f) symmetric with respect
to permutation of particles, so that we stay in the bosonic Fock space. The domain of the
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bosonic creation and annihilation operators is equal to the domain of N'Y/2, with A/ being
the number operator

V)™ =™, D) = {p e Fi Y w22 < oo} (1.31)
n>0

on bosonic Fock space. The physical interpretation is that A/ counts the number of particles
of the Fock space vector 1. The bosonic creation and annihilation operators are densely
defined and closed, but unbounded. The creation operator a*(f) is the adjoint of the anni-
hilation operator a(f). Notice that a(f) is antilinear in f while a*(f) is linear in f. The
bosonic operators satisfy the canonical commutation relations (CCR)

[a(£),a*(9)] = (£.9), la(f),alg)] = la*(f),a"(9)] =0  forall f,g€ L*(R’). (1.32)

For fermions the definition is similar but taking into account the antisymmetry,

(a(f)z/;)(") (x1,...xp) = Vn+1 /f(x)w(”ﬂ)(x, x1,...Tp)dx (annihilation operator),
(a*(f)w)(") (T1,...2,) = \/1% ;(—1)k_1f(xk)1/)(”_l)(x1, ... 2k ...2Tp) (creation operator).

The fermionic operators satisfy the canonical anticommutation relations (CAR)

{a(f),a"(9)} = (f.9), {a(f),al9)} = {a"(f),a"(9)} =0  forall f,g € L*(R?), (1.33)

where we have introduced the anticommutator {A, B} = AB + BA. In particular, this
means that for fermions a*(f)? = 0, implementing Pauli’s exclusion principle. Unlike the
bosonic operators, the fermionic creation and annihilation operators are bounded operators,
a property that we will heavily use in the derivation of the Hartree Fock equation in Chapter

Indeed we have, using the CAR ,
la(H)wl? = (a(£)e, al£)e) = (W, a*(Ha(fe) = [ FI31017 = (b, a(Ha*(Hw) < IF1E16]1°,

which implies that the fermionic operators satisfy

la(HI < [lfllz and fla® (A < [[f]l2- (1.34)

The fermionic number operator is defined by the same expressions as the bosonic number
operator (1.31]), just on the fermionic Fock space.
Both for fermions and bosons, for any annihilation operator a(f), we have

a(f)Q=0.

The (anti)commutation relations make it possible to do many calculations in a systematic
way. Both in the fermionic and bosonic case, it is useful to introduce the operator-valued
distributions a}, and a,. Actually

(az)™ (21, ... 20) = Vn+ WD (2,21, ... 2y) (1.35)

defines a densely defined operator (the expression makes sense on continuous wave functions),
which we think of as destroying a particle at = € R3. It is easy to see that

a(f) = / F(2)apdz.
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On the other hand, a} can not be defined in a useful way as an operator, since its domain
would only contain the zero-vector (for a lucid discussion, see [W9G]). Nevertheless we can
make sense of it as a quadratic form through

(o, a5y == (azp, ), (1.36)

or by considering it as a distribution, since by formally integrating against a test function
f € L3(R3) we can take a’ back to the well-defined operator

[ f@azds = a(7),

In terms of the operator-valued distributions, the canonical commutation relations on bosonic
Fock space read

0 )l =8 —y)  and  [ag,a,) = [a3.a}] =0,

where 0 is the Dirac delta distribution. The canonical anticommutation relations on fermionic
Fock space read

{az,a,} =6(z —y) and {az,ay} ={ay, a,} = 0.

A product of creation and annihilation operators is called normal-ordered if all creation
operators are to the left of all annihilation operators. From and the CCR/CAR
in the distributional sense it is clear that non-normal-ordered products of operator-valued
distributions are often singular, and thus require a more careful treatment than normal-
ordered products.

As an example for the use of operator-valued distributions, let us derive a useful represen-
tation of the number operator N: Interpreting the integral in a weak sense, we have

<w,/a;ax dz o) :/<¢,a;ax<p>dx:/<axw,axg0>dx: (¥, Np),

or shorter N = [ dz a%a,.
For a one-particle operator O on L?(R?) with dense domain D(O), let O™ be the closure
of the operator (restriction to the symmetric/antisymmetric subspace is simple)

Ylg-le O @l@---1: DO)*" — LXRN).
= j-th factor

We then introduce the second quantization dI'(O) of the one-particle operator O by
(dr(0)$)™ = 0y,
which naturally has the domain

D(dr(0)) := {w € F: 9™ e DOM™) foralln € N, and Y _[|0M ™3, psn < oo}.
n>0

If O is essentially selfadjoint on some D C L?(R3), then dT'(O) restricted to the subspace
{w € F : only finitely many (™ £ 0, and ¥ € D®" for all n € N } is essentially selfad-
joint, too (using [RS80, Theorems VIII.33 and VIIL.3]).
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1.4. Derivation of the Hartree equation using coherent states

If the operator O on L?(R3) has an integral kernel O(z,y) we have

dr(0) = / dedy O(z, y)ata,. (1.37)

Expressions like the last one should again be interpreted as quadratic forms. As an example,
we have already discussed the number operator N' = dI'(1). A more complicated example
for the use of the operator-valued distributions is given by the second quantized Hamilton
operator. On the one hand we have the Hamilton operator H defined as an operator on
fermionic or bosonic Fock space by

(Hp)™ = HM ™) where H™M = Z —Ag; + Z V(xi — xj).
j=1

1<j

On the other hand, we have
7 * 1 * %
H= [ deV,a,Vya, + 3 drdy V(z — y)azayaya,
defined as a quadratic form on e. g.
.7-"[‘)S = {w € F: only finitely many ™ =0, and v™ e S(R3") for all n € N} )

with S(R3") denoting Schwartz space. As discussed in Section under general as-
sumptions on the potential, H(™ is essentially selfadjoint on S(R3") (and on the symmet-
ric/antisymmetric subspace), and consequently, H is essentially selfadjoint on ]-"(‘)9 by the
dense-range criterion [RS80, Theorem VHI.3]ﬂ Now for @,y € f(‘f , one can use to
check that <<,0, ”Hd)> = <g0, 7:[1,D>, so H and H coincide as quadratic forms on ]:69 .

Even for bounded operators O, the operator dI'(O) does not have to be bounded. However,
on fermionic Fock space, if O is trace class then dI'(O) is a bounded operator. This fact and
other important bounds are shown in Lemma [3.4.1] in Section We caution the reader
that this does not hold in the bosonic case.

Finally, let us remark that occasionally we use the notation a®(f) for an equation that
holds both for an annihilation operator a(f) and a creation operator a*(f) in this place.

1.4. Derivation of the Hartree equation using coherent states

Since it inspired the strategies followed in Chapters we give a review on the method
of coherent states [RS09, [CLSTI] for proving Theorem [[.2.1] Our review is based on the
presentation [SO8]. The main message we would like to convey in this section is that after
introducing appropriate fluctuation dynamics, the problem is reduced to proving a bound of
the type (1.45). The central object is <UN(t, 0)Q,NUN(t, O)Q>, which we call the number of
fluctuations, and the central task is to bound the number of fluctuations uniformly in N, for
example using Gronwall’s lemma. This idea was the main inspiration for the work in this
thesis.

9Furthermore, since H(™ is selfadjoint on (the symmetric/antisymmetric subspace of) H2(R®"), # is self-
adjoint on {¢ € F : 9™ € H*(R*"), 3, 5o [IH™ %™ 132 gan, < 00}
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We consider the bosonic mean-field regime introduced in Section [1.2.1] i.e. N bosons in
three-dimensional space, described by the Hamilton operator

Hy = Z Ag; + Zv (1.38)

z<]

We consider the time evolution given by the Schrodinger equation i0;¢n: = Hyvn, with
initial data ¥yo = @®V € L2(R3N), where the one-particle orbital is ¢ € L?*(R?) with
|¢ll2 = 1. We would like to prove that for the solution ¢y ; = e NN o the Schrodinger

equation the one-particle reduced density matrix 71(\})15 = tro, N|Un) (Y| satisfies

1
'y](v)t = |o) (e (N — oo at any fixed )
in trace norm topology. Here ¢y is the solution to the Hartree equation
iOupr = Ay + (V * i)y with initial data o = ¢. (1.39)

Furthermore, we would like to obtain quantitative estimates on the rate of convergence.
Here we present the method of Rodnianski and Schlein [RS09], giving

c
r i = e | < —=ef,

VN
which was later refined by [CLSII] to provide the optimal rate of convergence N~!. This
approach was originally proposed by [H74] for studying the classical limit of quantum me-
chanics; it was later extended by |[GV79] to a larger class of potentials. In this approach, the
N-body system is embedded in bosonic Fock space F and coherent states are considered as
initial data. Since coherent states do not have an exact number of particles, in the end one
has to project back from F to the N-particle space L2(R3"). Actually, for the one-particle
1)

density matrix «,.; , of a coherent state with expected number of particles NV, Rodnianski
and Schlein prove that the rate of convergence is tr héi%t - |cpt)(<pt|’ = O(N71), but in

projecting to the N-particle space they loose a factor N~1/2.

For N-particle vectors ¢y € L?(R3Y), the one-particle reduced density matrix can be
expressed as
1 1
fyqi;]\)] (13, y) = N<wN7 azawa>-

For vectors in Fock space, ¢ € F, this is generalized to

7 (,y) = oND) N¢> (¥, ayazy)).
Using the operator-valued distributions the Hamiltonian can be lifted to Fock space by
Hy = /dx Vaea,Viay + 2}V/dwdy V(z —vy)aya; Yy Q.
The operator Hy restricted to the subspace L2(R3Y) of Fock space coincides with Hy given

in ((1.38). Furthermore, M conserves the number of particles, i.e. it commutes with A/, so
that the n-particle subspaces evolve independently,

(efi'HNtw) (n) — efi?-ly;)tw(n)
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1.4. Derivation of the Hartree equation using coherent states

Here 7—[5\?) is the restriction of Hy to L?(R3?). In particular, starting with initial data in the
N-particle subspace, the evolution stays in the N-particle subspace for all times.
For f € L?(R3) one defines the Weyl operator

W(f) = exp(a™(f) — a(f))-
One then introduces the coherent state with one-particle orbital f € L?(R3) as

W(f)Q = e I113/2c07 (N = I3 /QZ o713 /22 f®n cF

n>0 n>0

(Here we used the Baker-Campbell-Hausdorff formula e4+# = e 3lABlAcB (for A, B oper-
ators that commute with their commutator [A, B]) with the canonical commutation relations
and then expanded the exponential.) Since W(f) is unitary, coherent states are always
normalized, ||W(f)Q|| = 1. Apparently coherent states are linear combinations of states with
all possible particle numbers. Coherent states have an extremely wide use in quantum me-
chanics. For us, their usefulness is due to the algebraic properties listed in the following
standard lemma:

Lemma 1.4.1 (Bosonic Weyl operators). Let f,g € L?(R?).

(i) Weyl operators satisfy the Weyl relations

W(f)W(g) = W(g)W(f)e—zz‘Imﬁ,g)Lz =W(f+ g)eﬂ'lmq,gm

(ii) W (f) is a unitary operator on F and W(f)~L = W*(f) = W(-f).
(By a common abuse of notation W*(f) =W (f)*.)
(iii) We have
W (Na(gW(f) = alg)+{g, f) ~ and — W (f)a*(g)W(f) = a’(9)+(f, ). (1.40)

In terms of the operator-valued distributions

W (f)aW(f) = ax+ f(z), W (f)azW(f) = a; + f().
(iv) Coherent states are eigenvectors of all annihilation operators,
a(g)W () = (g, /YW (f)S.
(v) The expected number of particles in a coherent state W (f)S is
(W(HQNW()Q) = |13

Proof of the lemma. The Weyl relations follow from the canonical commutation relations
and the Baker-Campbell-Hausdorff formula. Unitarity is clear since the exponent is anti-
selfadjoint. The identity W*(f) = W(—f) follows by taking the hermitian conjugation
into the exponent. The properties are proved by writing W*(f)a(g)W (f) — a(g) as an
integral over the derivative with respect to a dummy variable. Property follows from
(iii)} Finally, [(v)|is obtained by writing N' = [ dz a%a, and using|(iii) O
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1. Introduction

Rodnianski and Schlein study the dynamics of coherent states with expected number of
particles equal to N. Let ¢ € L?(R?) with |||z = 1. Consider the Schrédinger equation in
bosonic Fock space, i0;9n = Hn¥n,, with initial data chosen to be a coherent state

Uno =W (VNp)Q

The solution is given by ¥n; = e*mNtW(\/Ngo)Q. One expects ¥ to be approximately
coherent again i.e. of the form W (v/N;)Q, where ¢; should be the solution of the Hartree

equation (|1 with initial data ¢g = . This holds in terms of the reduced densities, and as
(1)

the first step of the proof, one expresses the difference between YNt the one-particle reduced
density matrix associated with ¥+, and |@¢) (@], the one-particle reduced density matrix
associated with QO?N , in terms of a unitary fluctuation dynamics. Consider

1 9) = 12 W (VR )™ a0, W (VR )Q).

One then inserts 1 = W (v/ N )W* (v Ng;) on the left and the right of ayaz. Using Lemma
and defining the unitary fluctuation dynamics

Un(t,s) = W*(VNgy)e MNED W (VN gy) (1.41)

one obtains

W) = @)By) = 3 (U (0% ajaUx (,0)9) (1.42)

¢\;(%)<UN(t,O)Q,aZUN(t,O)Q> (1.43)

+ Sit/%) (Un(t,0)9, a,Un(t,0)0). (1.44)
The N-dependence of the first term on the r.h.s. is already optimal; we can estimate it in
Hilbert-Schmidt norm by

1

1
—(UN(t,O)Q,az‘.)a(_)UN(t,O)Q> N
HS

B

<UN(t 0)Q, ./\/UN(t 0)Q>

It is now sufficient to prove the key bound
(Un(t,0)Q,NUn(t,0)Q) < CeflH] (1.45)

which can be done using Gronwall’s lemma. We will prove the same bound for a simpler
evolution U (t,0) in some detail below. The bound for Uy/(t,0) is more central (in fact, it
is a key point), but its proof is much more involved (although based on similar ideas), so we
refer the reader to [RS09, [SO8| for the details.

We could also control and in this way to obtain a bound of order N~1/2, but
here we will explain the technical argument allowing us to improve the rate (this inspired the
argument used to improve the trace norm estimate in Theorem 1| from N'/2 to N1/6),
The starting point is to notice that Uy (¢, s) is a unitary evolution determmed by the equation

i0Un(t,s) = Ly(t)Un(t,s), Un(s,s)=1
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1.4. Derivation of the Hartree equation using coherent states

with generator
£x(t) = (10W* (VN@) ) W(VN@) + W (VNe) Hy W (V@) (1.46)
— Uy + / da (V * o) (w)abas + / dzdy V (z — y)@, (x) e (y)a%as
45 [ @y V(o= ) (e@ewaia; + @p )
T jﬁ / dedy V(z - y)a (pe(w)a’ + By(y)ay) aa.

The Hartree equation @D is needed for cancelling the terms linear in a} or a, between
the two summands in (]@D This cancellation is crucial since individually, the linear terms
are of order N'/2, and we must not get anything larger than order one (w.r.t. N) here in
the generator to be able to apply Gronwall’s lemma.

Now, if Un(t,0) conserved the parity (—1)", we would immediately know that the ex-
pectation values <UN(t,O)Q,aZUN(t,O)Q> and (U (t,0)Q, azUn(t,0)Q) vanish completely.
However, the summand in the last line of the generator violates parity, but we notice that it
is formally of order N~/2. Therefore one introduces a new dynamics Uy, generated by

Ly(t)=Hny+ /dm (V x| H)(z)aka, + /da:dy V(z —y)@i(z)pe(y)a,az
45 [V - o) (@ + w@p W),

i. e. the parity-violating term has been dropped. In fact, using the Duhamel formula
Un(t,0) = Un(t,0) = Un(£,0) (1 = Un(t,0) U (£,0) )
_ /0 "dsUy(t.5) (£n(s) — £n(s)) O (s.0)
and below (and an analogous bound for the expectation of N*), one can prove that
(2,0 — O (1,02 < M.
VN

Since Uy conserves the parity it can be inserted in (1.43) and (1.44)), and eventually one
obtains the estimate

1
747 = leerlllns < (U (t 02, N U (2,0)2)

+ \/%”(UN(ta 0) — Un(t, 0)Q [N + 1)2Un (¢, 0)2
+ \/QNH(UN(@ 0) — Un(t, 0)Q (N + 1)2Un (¢, 0)2
< %(UN(t,O)Q,NUN(t, 0)2)

C N
+ 3¢ MWV +1D)Y2UN (8,009 + e[V +1)20n (1,009
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1. Introduction

The next step is to prove that
(Un(t,0)Q, (N + 1)Un(t,0)0Q) < CeXlH. (1.47)

Notice that the generator of U, ~(t,s) contains terms not conserving the number of particles,
so it is non-trivial to bound this expectation value. (From a physical point of view, this
is because U (t, s) describes fluctuations around the Hartree evolution and the fluctuations
are expected to grow in time. For us the important point is that they must not grow with
N.) To obtain a bound, one computes the time derivative using the generator Ly of Uy,

%<UN(1S,O)Q, (N +1)Tn(t,0)2)

= (Un (1,009, [Cn (t), N]UN(t, 0)22)

= 4Im/dxdy V(z —y)ee(@)er(y)(Un(t,0)Q, aha;Un(t,0)2),

and estimates the last line using the well-known lemma that creation and annihilation oper-
ators are bounded with respect to the number operator:

Lemma 1.4.2. Let f € L>(R3). Then, for any ¢ € F, we have the following bounds for the
bosonic creation and annihilation operators:

la(F)ell < [ FlI2lNVY 2],
la*(H)D|l < [ Fll2ll NV + 1)V 2], (1.48)
lo(F)w] < 20l Fll2|(NV + 1) 2.

Here we introduced the selfadjoint field operator ¢(f) := a*(f) + a(f).

Proof. The first inequality follows by writing out the definition of the annihilation operator
and using the Cauchy-Schwarz inequality on the integrals. The second inequality follows
from the first and the CCR. O

Assuming the potential to satisfy V2 < C(1 — A) for some C > 0, one obtains

d - - - .
3 (On (6009, (W + 1)U (£,002)| < C(UN(t,0)9, (N + 1)Un(t,0)9).
Applying Gronwall’s lemma, this implies (1.47)).

As mentioned before, the proof of (1.45)) is similar, but requires extra work to control
terms which are cubic in creation/annihilation operators.

Finally, one obtains

C
e = e el s < e (1.49)

and according to Lemma Hilbert-Schmidt norm and trace norm here only differ by at
most a factor of 2. The estimate here is for the one-particle reduced density matrix
of a solution to the Schrodinger equation with coherent state as initial data, but one can
project onto the N-particle component to obtain the result for initial data p®V, see [CLS1I]
for the optimal way.

After this review, we summarize the general strategy: For initial data obtained by applying
a unitary operator to the vacuum, one introduces fluctuation dynamics Uy in the spirit
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1.5. Bogoliubov transformations

of (1.41). For a well-chosen unitary (i.e. well-chosen initial data and well-chosen effective
(1)

evolution) one can then bound the difference between fy]\},t and its approximation by the
number of fluctuations <UN(t, 0)Q,NUN(t, 0)Q> The main task is to control this quantity,
which is typically done invoking Grénwall’s lemma.

This general strategy is the basis for the results in Chapter [2| (Derivation of the Gross-
Pitaevskii equation) and Chapter [3| and [4] (Derivation of the Hartree-Fock equation). How-
ever, for the Gross-Pitaevskii setting as well as for the Hartree-Fock setting, coherent states
are not well-adapted initial data. In fact, we use Bogoliubov transformations to define perti-
nent initial data. We then obtain bounds in terms of the number of fluctuations. To control
the number of fluctuations we have to develop new ideas beyond the bosonic mean-field
setting which we will explain in the respective chapters.

1.5. Bogoliubov transformations

In this chapter, we introduce the theory of Bogoliubov transformations. In particular, we
comment on the similarities and highlight the differences between the bosonic and fermionic
Bogoliubov transformations employed in this work.

Let us start with the abstract theory following [SO7]. In the most general setting, with an
abstract one-particle Hilbert space b, it is necessary to introduce the conjugate linear map
J : b — b* such that (Jg)(f) = (g, f)y (f,g € h). In this thesis we only consider quantum
mechanical systems which have one-particle space h = L2(R3), so we choose to formulate
the theory using explicit complex conjugation.

The appropriate language for studying Bogoliubov transformations is generalized creation
and annihilation operators. We give the bosonic and fermionic definitions at the same time;
unless we point out differences everything holds for bosons as well as for fermions. For
f,g € L?(R3) the generalized operators are defined as

A(f,9) =a(f) +a"(g), A"(f.g)=a"(f)+a(g)=(A(f.9)"- (1.50)

0 J

where J : L?(R3) — L?(R3) is complex conjugation, i.e. Jf = f for f € L?(R3). We observe
that

Let us define

A*(fvg) :A(j(fvg)) (1'51)

Notice that A* is linear in its arguments whereas A is antilinear in its arguments. The
canonical commutation relations (i.e. for the bosonic operators) take the form

[A(fla gl)a A*(f2a 92)] = <(flvgl)v S(f2’92)>L2(R3)EBL2(R3)’

1 0
0 -1

(1.52)

where S = < > 2R3 @ L*(R?) — L*(R3) @ L*(R®).

The canonical anticommutation relations (i. e. for the fermionic operators) take the form

{A(flagl)7A*(f2792)} = <(flagl)7 (f2792)>L2(]R3)@L2(]R3)' (153)

We caution the reader that in general {A(f1,91), A(f2,92)} # 0 and [A(f1,91), A(f2, 92)] # 0.
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A Bogoliubov transformation is an isomorphism v : L?(R3) @ L?(R?) — L?(R3) @ L?(R3)
such that

A*(v(f,9)) = AwI(f,9)) (1.54)
and for bosons
[A(v(f1,91)), A*(v(f2, 92))] = ((f1,91), S(f2, 92)), (1.55)
while for fermions
{AW(f1, 1)), A*(v(f2,92)} = ((f1,91), (f2, 92))- (1.56)

The bosonic property is equivalent to

v'Sv=S; (1.57)
the fermionic property is equivalent to

vy =1. (1.58)

In short, a Bogoliubov transformation linearly combines creation and annihilation operators
in such a way that the new operators B(f,g) := A(v(f, g)) satisfy the CCR or CAR again
and also the property B*(f, g) = B(J(f,g)). (Physically, one can think of the new operators
as describing quasiparticles.)

The property implies that (both for bosons and fermions)

vy = Jv, (1.59)

which implies that v can be decomposed into blocks as

V:<Z Z) (1.60)

where u,v : L?*(R3) — L?(R?) are bounded operators. Here we wrote u for Ju.J, which is
again a linear operator. If u has an integral kernel u(z,y), then u(z,y) is the integral kernel
of w. As a consequence of ((1.57)), in the bosonic case the blocks have to satisfy

uw'u =14+ v"v and 77u = T'v, (1.61)
and for fermions as a consequence of (|1.58|)
uw'u=1—v"v and 7'u = —u*v. (1.62)

Conversely, if v and v satisfy the appropriate (bosonic or fermionic) condition then a matrix
of the form defines a Bogoliubov transformation.

A bosonic or fermionic Bogoliubov transformations v is called implementable on the
bosonic or fermionic Fock space F, respectively, if there exists a unitary operator R, : F — F
such that

RLA(f, 9) Ry = A(v(f, 9))- (1.63)

According to the Shale-Stinespring condition (see e.g. [SO7, Theorem 9.5] or [R7§]), a Bo-
goliubov transformation is implementable if and only if the block v is a Hilbert-Schmidt
operator.
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1.5. Bogoliubov transformations

The quantum-mechanical time-evolution generated by a quadratic Hamiltonian is an ex-
ample of a Bogoliubov transformation [BD06], explaining why it can be expressed in terms of
the classical evolution. However, the Bogoliubov transformations that we use in this thesis
play a different role, which is to construct initial data for the many-body dynamics. To
elaborate on the role of Bogoliubov transformations, recall that for ¢ € F the one-particle
reduced density matrix is the operator on L?*(R3) with integral kernel

v (,y) = N ¢><w,ayam>

We define the pairing densitym oy, as the operator with integral kernel

a’ﬁ(x?y) <¢ Nlb> <1/1,ayax1/1>

For ¢» € L?(R3Y) the pairing density vanishes; only for Fock space vectors that do not have
an exact number of particles the pairing density can be non-zero.

A vector ¢ € F is called a quasifree pure state if it is of the form ¢ = R, for some
implementable Bogoliubov transformation v. (In the language of quasiparticles, R, is
the quasiparticle vacuum.) Quasifree states are particularly useful due to the fact that all
higher-order correlation functions (which includes all k-particle reduced density matrices)

(,ak, - ab )

can be expressed using only the one-particle reduced density matrix and the pairing density
by Wick’s theorem [S07, Theorem 10.2]:

<1/}7A(f1;gl)"’A(mengm)w>: Z (il)a <1/}7 (fa(l) 9o(1 ) (fa 90(2))"@

O’EPQ'm

o <1/}7 A(fo‘(?m—l)v go‘(2m—1))A(fU(2m)a go‘(2m))7p>

The expectation values on the r.h.s. are straightforwardly expanded in Vz(p) and oy, (Ex-
pectation values with an odd number of creation/annihilation operators vanish. The set of
pairings Pay, is defined in (3.77). In the fermionic case (£1)7 = sgn(c), in the bosonic case
(£1)? =1.)

Furthermore, it is an easy calculation to see that for a quasifree pure state ¢ = R, ) with
Bogoliubov transformation v of the form , the one-particle reduced density matrix is

NONINSE.
C Tyt
and the pairing density
1 o
Qy = ——— 0V
YT (W)

We have (¢, N9) = ||v||fg, so the Shale-Stinespring condition ensures that the number of
particles in quasifree states (in the quasiparticle vacuum) is finite. As a consequence of ([1.61))

10Since in this chapter we adapted the normalization tr 71(/)1) = 1, compared to Chapters [3|and [4| extra factors
appear in the following equations.
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or (1.62)) the one-particle reduced density matrix v = ’yfbl) and the pairing density a = ay,
of a quasifree pure state 1 satisfy

1
ya=0o7 and ~*—a@=—y——— (bosons) (1.64)
(¥, Ny)
or .
ya=0o75 and 7% —ad@=y——— (fermions), (1.65)
(¥, Np)
respectively.

1.5.1. Problem-specific constructions

Having introduced the abstract theory, let us now give concrete constructions for the fermionic
and the bosonic Bogoliubov transformations used in this thesis. Afterwards we will also dis-
cuss the differences.

In the fermionic case, we are interested in the mean-field regime, i.e. correlations can be
neglected and the initial data we are interested in is approximately a Slater determinant. We
are therefore interested in finding a unitary operator R on Fock space such that R} coincides
with a given Slater determinant. This is indeed possible by choosing R as the unitary
implementor of an appropriate Bogoliubov transformation. We will now give an explicit
construction of R as a particle-hole transformation. Assume (f;)$2; to be an orthonormal
basis in L?(R?). Define

R = a*(f1) - a* (f)Q

(this is exactly the Slater determinant Ay (f; ® ... ® fn)) and define transformed creation
operators by

wipnpr ) oalfi) fori <N
Rya™(£i) Ry = { a*(fi) fori> N.

An intuitive way of thinking of this transformation is that the Slater determinant R, (2
constitutes a Fermi sea, while R, a*(f;)R;, for i < N creates holes in the Fermi sea. Clearly
the transformed operators satisfy the canonical anticommutation relations and R, is a
vacuum for them. It is easy to see that R, is isometric and thinking of the occupation
number representation of Fock space, it is clear that R, is surjective. This implies that
R, is unitary. Furthermore its action on creation/annihilation operators coincides with the
Bogoliubov transformation given by

(o _ (1SS S5
- >‘<z§“1|9j><fj| -y, fj><fj>‘ (169

It is an amusing exercise to derive identities for particle-hole transformations. For example,
using the representation N' = Y2, a*(fi)a(fi), we find

gl <

N 00
RATR = (N = Y (falf)) + Y a'(f)alh)
=1 i=N+1

In physical terms, this can be interpreted as the number of holes plus the number of particles,
or in total as the number of excitations w.r.t. the Fermi sea. Restricting to the N-particle

30



1.5. Bogoliubov transformations

subspace, we obtain R,NR; = 2(N — Zf\il a*(fi)a(fi)), so in this case the number of
excitations is two times the number of holes.

We now turn to the bosonic case. It is a natural question whether it is also possible for
bosons to find a Bogoliubov transformation R such that RQ) = ¢ for a given N-particle
wave function ¥y, e.g. ¥y = p®VN. However, for states with an exact number of particles
we have a = 0, so if ¢y was a quasifree state, by , its one-particle reduced density
matrix would have to satisfy

72 = —yN -1

But 42 is clearly a positive operator and so is v, leading to a contradiction. So bosonic states
with exact number of particles are never quasifree. This is the reason why in the bosonic
case we use Weyl operators and coherent states and go through the extra complications of
leaving the N-particle subspace.

In view of Section [I.4]it is natural to ask if coherent states are quasifree, and if the coherent
states method can be reformulated in the framework of Bogoliubov transformations. For
the definition of quasifree states used in this thesis, one finds that coherent states are not
quasifree: Using Lemma one finds that the second formula in is not satisfied.

After these negative results, let us now explain the pertinent choice of initial data in
bosonic Fock space for the Gross-Pitaevskii regime. As pointed out in Section [1.2.2] corre-
lations play an important role in the Gross-Pitaevskii regime. On the other hand, we know
from the discussion of the mean-field regime in Section that coherent states are useful to
describe condensates. In Chapter [2] we therefore use a Bogoliubov transformation to imple-
ment appropriate correlations on a given coherent state. Concretely, we use the Bogoliubov
transformation implemented by the unitary operator

1 L
T(k) := exp (2 /dxdy (k(z,y)aya; — k(x, y)axay)> . (1.67)
The integral kernel k(z,y) is defined as

k(z,y) == =Nw(N(z - y))p(x)e(y),

where w(z) := 1 — f(z) with f the solution of the zero-energy scattering equation ((1.10)).
The initial data to be used is of the form

W(VN)T (k)i

for ¢ a vector in bosonic Fock space with bounded number of particles and bounded energy.
For ¢ = Q, this vector is a Bogoliubov transformed coherent state. (However, by moving
T'(k) to the left of the Weyl operator, the argument of the Weyl operator, i. e. the condensate
wave function, is also transformed.) In quantum optics such states are known as squeezed
coherent states and T'(k) is called a squeezing operator.

As shown in Lemma the operator T'(k) acts on creation and annihilation operators
as a Bogoliubov transformation

" (k)a(f)T(k) = a(ch(k)(f)) + a” (sh(k)(f)),

T*(k)a™(f)T (k) = a*(ch(k)(f)) + a(sh(k)(f)),

where ch(k) and sh(k) are the bounded operators on L?(R3) defined by the absolutely con-
vergent series

ch(k) =" (21”)!(1{14)” and  sh(k) =) L(k%)”k.

n>0
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Products of k& and k here have to be understood in the sense of operators.

In Lemma we show that the bosonic Bogoliubov transformation 7'(k) only changes
the expected number of particles by order one (small compared to the number N of particles
in the bulk) while it is easy to see that it affects expectation values of the kinetic energy
on order N. The last effect is important to ensure that states of the form W (v/Np)T (k)1
approximate the ground state energy correctly, see Remark (ii) after Theorem In this
sense the bosonic Bogoliubov transformations 7'(k) only introduce correlations and do not
create the bulk of the particles.

In our proofs, for the initial data introduced above, we compare the Fock space vec-

tors evolved by the Schrodinger equation with Fock space vectors of the same form as the

initial data, but with parameters f;¢, ¢ = 1,... N or @EN) (and ki(z,y) = —Nw(N(xz —

y))gogN) (:z)cpgN) (y)) that are evolved with the Hartree-Fock equation or modified Gross-
Pitaevskii equationE-L respectively. More precisely we introduce fluctuation dynamics fol-

lowing this idea, see (2.33]) and (3.36)).

For comparison, we mention that bosonic Bogoliubov transformations have also been used
in [BKS11] (to describe the limit of the fluctuation dynamics and prove a central limit
theorem) and in [GMMI10, [GMMI11l, [GM12] (to obtain an approximation for the mean-field
system which holds in Fock space norm, not only for reduced densities). However, in these
works, not only is the goal different, but also the choice of the Bogoliubov transformations:
In [BKS11], it is used that the fluctuation dynamics Uy (t,0) (1.41) in the limit N — oo
converges to a dynamics U (t,0) with generator

Loo(t) = /dx Vaea,Vzaz + /dx (V !¢t|2)($)a;aaz + /dxdy V(z —y)o(x)pe(y)ayax
+y [ @V =) (@ + w@p ).

which is quadratic in creation/annihilation operators and thus implements a Bogoliubov
transformation. In [GMMI0, [GMMI11], a Bogoliubov transformation of the form
with time-dependent kernel k; is used in defining a fluctuation dynamics, and the kernel is
chosen to satisfy a complicated non-linear equation such that terms of the form a*a* in the
generator are cancelled. The idea of [GM12] is similar, but the interaction potential is scaled
as N38V(NP.) with 8 < 1/3, which is reminiscent of the Gross-Pitaevskii scaling (3 = 1)
but less singular (in fact giving rise to a Gross-Pitaevskii equation with b = [ Vdx replacing
87ra0 [ESYIOJ).

1.A. Reduced density matrices and normalization conventions

In this section, we give an overview of the definitions of reduced densities, pointing out the
differences in normalization between Chapters [T and [2] and Chapters [3| and [4l We also state
a useful lemma concerning bosonic one-particle reduced density matrices.

Chapters [1] and [2 bosonic convention.
In the bosonic case, by the convention usually followed, the reduced density matrices are
all normalized such that their trace is one (for consistency, we also use this convention for

""The modified Gross-Pitaevskii equation is introduced in (2:4). For N — oo, its solutions converge to the
solution of the Gross-Pitaevskii equation with the same initial data.
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1.A. Reduced density matrices and normalization conventions

fermions in Chapter|l)). The k-particle reduced density matrix associated with ¢ € L?(R3V)
is then defined as the non-negative trace class operator 'y](\’;) on L?(R?*) with integral kernel

& _
’)/J(V)(X,X/) = /dxk+1 e deN ON (X Ta 1y - EN)UN (X T, TN, (1.68)
where x = (z1,...,7). Since we always assume that wave functions are normalized to
|vn|| = 1, we have tr 'y](\lf) = 1. In more compact notation

’Y](\];) = tryq1,. N|UN)(WUN|,

where [¢) (1| is the projection on ¢y € L*(R3Y), and trg,1__n the partial trace over all but
k particles. For Fock space vectors ¢ € F, the k-particle reduced density matrix is defined
as the non-negative trace class operators on L?(R3%) with integral kernel

(Y ay, ...ay, az, ... az, 1))

(k) o —
Vo (T T Y1y Yk) = W NN =1)... (N —k+ 1))’

where A is the number operator. Using the definition ((1.35)) of the annihilation operator a,

it is easy to check that for ¢ € L?(R3V) both definitions of 'yl(pk) coincide.
As the standard example of a one-particle reduced density matrix for bosonic systems, we
mention the case of a wave function given as an N-fold tensor product, ¥y = ®V with

one-particle orbital ¢ € L?(R3), for which we have 7](\’;) = |0} (p|®F.

Chapters [3] and [} fermionic convention.
In the fermionic case, by the convention usually followed, the one-particle reduced density
matrix is normalized such that it is a projection. This normalization is very convenient when
using Bogoliubov transformations.

The k-particle reduced density matrix associated with 1y € L2(R3Y) is then defined as

the non-negative trace class operator 'y](\];) on L?(R3%) with integral kernel

N! —
’y](\f)(x,x’) = m /dka e doN N (X Ta 1y - 2NN (X Teg 1, -, 2n). (1.69)
Since we assume that ||¢)n|| = 1, we have tr fy](\];) = (NL—'k)' For Fock space vectors ¢ € F,

the k-particle reduced density matrix is defined as the non-negative trace class operator on
L*(R3) with integral kernel
(k) - * *
Yoy (T1, e Ty Y1y -5 Uk) = (Y, ag, - Ay, Gy Ay ).
As the standard example of a one-particle reduced density matrix for fermionic systems,
we mention the case of a wave function given as a Slater determinant of N orthonormal

orbitals, Yy = An (f1 ® -+ ® fn), for which we have 7](\}) = E;y:1|fj><fj|. A useful property

of fermionic one-particle density matrices is that, while tr ’*y](\})‘ = N, in operator norm
Dy <1
vl < 1.

Trace norm and Hilbert-Schmidt norm

We close with a Lemma telling us that for the difference of exact one-particle reduced density
matrix and Hartree one-particle density matrix in the bosonic case, the trace norm is at most
twice the Hilbert-Schmidt norm. For comparison, notice that for a general operator A, one
only has the inequality || A|us < tr|A].
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Lemma 1.A.1 (JRS09], attributed to R. Seiringer). Let v > 0 be a trace class operator on
a separable Hilbert space b with try =1, and let ¢ € h. Then

tr |y = le)el] < 20y = le)ellas.

Proof. We set A := v — |¢)(p|, which is trace class and selfadjoint. We claim that A has
at most one negative eigenvalue and this eigenvalue has maximal multiplicity one. Assume
there are two negative eigenvalues p1 < 0 and ps < 0 (possibly p1 = p2),

APy = b1, Aa = paips.

We can assume the eigenvectors to be orthogonal, <1/)1, ¢2> = 0. Now consider an arbitrary
vector w € span{vn, e}, w = ahy + bihy. Then

(w, Aw) = prlal?|[¢r]|* + p2lb]?[[¢2]* < 0.
By definition of A, this implies

0 < (w,yw) < {w, |p){plw) = w, )|

But given an arbitrary vector, in any two-dimensional subspace one can find a vector which
is orthogonal to it. In particular there exists w € span{t1, 12} such that

]<w,g0>|2 =0.

This contradiction concludes the proof of the claim.

Let us denote the eigenvalues of A by );, indexed by j > 0, counting the multiplicity.
Since tr A = 0 by linearity of the trace, there exists exactly one negative eigenvalue Ag < 0
(unless A = 0, for which the lemma is trivial). Thus, again from tr A = 0, we conclude that
[ Aol equals the sum of all other eigenvalues, ;- A;. Thus

tr|Al =D Al = 20l = 2/|Al| < 2] Ans-
320

For the last equality in the line we used that [[A|| = supyc,(a)[Al and Aj < [Aql. O

1.B. Well-posedness of evolution equations

In this section we comment on the well-posedness both of the linear many-body Schrédinger
equation and the non-linear effective evolution equations that we derive. Generally, no
difficulties appear under the assumptions used in this thesis. In the later chapters we just
assume the equations to be well-posed and do not comment on the background anymore.
We do not strive for the strongest results here.

Hamilton operators and the Schrédinger equation

It is well established that Hamilton operators Hy of the form are selfadjoint on L2 (R3N)
and L2(R3Y). Indeed, if the potentials Vey; and V are real-valued and in L?(R?) + L>°(R3),
then by the Kato-Rellich theorem [RS75, Theorem X.12 and X.15], Hy is selfadjoint on the
domain H?(R3*") and essentially selfadjoint on any core of the Laplacian, e.g. on Schwartz
space S (]R3N ) or on the smooth functions with compact support CgO(R?’N ). Furthermore,
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1.B. Well-posedness of evolution equations

by the Kato-Rellich theorem the Hamiltonian is bounded from below, so the ground state
energy En = inf), =1 <1p, H N¢> is finite. In particular, the Kato-Rellich theorem allows for
the Coulomb potential. Since the Hamiltonian commutes with the projections Sy and Ay,
it is simple to establish selfadjointness also on the symmetric and antisymmetric subspace.

For the preparation of initial data, one typically considers the Hamiltonian with added
external potential that models a trap with Veg(z) — oo as |x| — oo. If Ve > 0, such
a potential can be added under very general assumptions, and the Hamilton operator is
essentially selfadjoint on C$°(R3Y) [RS75, Theorem X.29]. For our results however, Hamilton
operators with trapping potentials are not necessary since we consider the initial data to be
given by assumption.

Since the Hamiltonian is selfadjoint, it generates a strongly continuous unitary group,
denoted e Nt which provides us with the unique solution vy = e Nty to the time-
dependent Schrédinger equation

i)y = Hytpy  with initial data ¢ € H2(R3N).

In particular, the Schrodinger equation is globally well-posed.
For the pseudo-relativistic Hamiltonian in Chapter [4] that is (with m > 0)

N N
HN :Z”_A“Tj +m2+)\ZV(xi—wj),
j=1

i<j

similar statements hold with the domain H?(R3") replaced by H*(R3V). In fact, the kinetic
energy operator Zjvzl \/— Az, +m? is selfadjoint on H! (R3M), and for bounded potentials
as we require in Chapter [d] the interaction is trivial to add.

Generally, for second quantized Hamilton operators corresponding to an (essentially) self-

adjoint Hamilton operator given in first quantization, we also have (essential) selfadjointness;
see Section [[.3]

Hartree- and Gross-Pitaevskii equations
The following results on non-linear Schrodinger equations in R™ are taken from [C96]. We
consider only the case of n > 3 space dimensions.

Consider the wave function u; : R — C where t € I, I being an (possibly infinite)
interval. We are interested in global well-posedness for the Cauchy problem of the non-
linear Schrodinger equation,

{ 10y = —Auy — g(uy) for almost all t € R; (1.70)

up = @.

Here{E g € C(HYR™), H~Y(R")) (or more generally g = g1 +. ..+ gi, where each g; individ-
ually satisfies the conditions given here for g). Assume that there exists the antiderivative
G, G' = g, where G € C'(H'(R"),R). Assume furthermore that there exist exponents
r,p € [2,2n/(n — 2)) such that

2By H~™(R™) we denote the dual of H™(R"), a space of distributions. The test function space D(R™) is
dense in H~™(R™). Despite H™(R") being a Hilbert space, one does not identify H~"™(R"™) with H™(R"),
but rather L?(R™) with its dual. We have L*(R™) C H ™(R™) C D'(R™). As an example, the Laplacian
takes the energy space H'(R"™) to H™'(R™). For more details, see [C96, Remark 2.3.8].
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1. Introduction
e ¢ can be written as a mappin HY(R") — L (R™) followed by continuous injection
LF(R") — H™Y(R);
e (local Lipschitz condition) for every M > 0 there exists a constant C; < oo such that

lg(v) = g(w)lly < Cullo = ull,
for all u,v € HY(R"™) with ||ul/z1 + |[v]| g < M.

Moreover, assume that for all u € H*(R") we have Im (g(u)u) = 0 almost everywhere in R™.
For v € H'(R"), one can define an energy functional

E(u) = % [ [Vu(a) e - Glu).

We then have the following result on local well-posedness for the Cauchy problem of the
non-linear Schrédinger equation (|1.70)):

Theorem 1.B.1 ([C96, Theorem 4.3.1]). For g as above, the following holds:

(i) For every p € H*(R") there exist T1,T> > 0 and a unique mazimal solution u(y on the
interval (—=T1,T>) such that

uy € C((-T1, T2), H'(R™)) and wugy € C' ((-T1,Tz), H H(R™)).

Here, u is mazximal in the sense that we have the blow-up alternative: if To < oo, then
llue]| g1 — 00 as t — To—, and analogously for —T.

(ii) There is conservation of mass and energy, that is

[uellz = [lll2 and  E(u) = E(p)
forallt € (=T, T>).

(iii) The solution depends on the initial data in a continuous way, in the sense that Ty and
Ts are lower semicontinuous as functions of @, and that, if we have a sequence of initial
data

Om — @ in H'(R")
and [—T13,Ty] C (=T1,T>), then

U, () = ugy in C ([T, Tul, H'(R)) .
(Here up, (y is the mazimal solution with initial datum ¢y, .)

Here u() is a solution in the sense that the differential equation (1.70) is satisfied in the
space of distributions H~1(R").
The assumptions of the theorem are in particular satisfied for (see [C96, Remark 4.3.2]):

e The Hartree equation: g(u) = Vextu + (V * \u\Q) u, if we take a real-valued external
potential Voxy € LP(R3)+L>®(R?) for some p > 3/2, and an even, real-valued interaction
potential V € LY(R3) + L*(R3) for some q > 3/4.

13We use the notation p’ for the conjugate exponent defined through 1/p+1/p =1.
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1.B. Well-posedness of evolution equations

e The modified Gross-Pitaevskii equation in Chapter This is a special case of the
Hartree equation, where g(u) = (N fnVa * |u]?) u, with fxVy(z) = N?f(Nz)V(Nz).
Here f is the solution to the zero-energy scattering equation, and by the assumptions
of Theoremwe have N fyVy € L'NL3(R3, (14 |x|%)dx), which implies N fyVy €
L(R3) + L*°(R3) with ¢ = 3 > 3/4.

e The Gross-Pitaevskii equation: g(u) = Vi + Aul?u, with Vo as in the Hartree
equation and A € R a coupling constant.

A similar result holds if the external potential has up to quadratic growth at infinity [C96l,
Section 9.2]. Since the physically most interesting situation is a vanishing external potential,
we do not give the precise statement here.

A discussion of propagation of regularity and smoothing effects can be found in [C96l
Chapter 5]. However, we are particularly interested in the modified Gross-Pitaevskii equa-
tion (2.25) where the non-linearity depends on N, and, to be able to apply Gronwall’s
lemma to control the expectation of AV in Chapter [2, we need estimates on Sobolev norms
that are independent of N. For this reason, in Proposition in Chapter [2| we reprove
some regularity properties of the Gross-Pitaevskii equation and the modified Gross-Pitaevskii
equation. In particular, we prove that for initial data in H"™(R3) also the solution lives in
H"™(R3); our derivation of the Gross-Pitaevskii equation uses H*(R?). Under the assump-
tions of Theorem on the potential, it is easy to see that for u € H?(R3) we have
g(ur) = (NfnVa * [ue?) we € L*(R?), so our calculations in Chapter [2| are well-defined (of
particular importance the cancellations in the linear terms of the generator).

Since in Chapter [2] we only study the case of repulsive interaction V' > 0 and Vex = 0,
conservation of energy implies that ||us|| g1 is bounded uniformly in time. This decides the
blow-up alternative for global existence.

Non-relativistic Hartree-Fock equations
Notice that for the following discussion of the well-posedness of the Hartree-Fock equation,
we use the normalization of the one-particle densities that trwy = N — like in Chapter
and Chapter [4 and differing from the convention elsewhere in Chapter
We now discuss well-posedness for the Hartree-Fock Cauchy problem
{ ’i@ﬂd}\gt = [—A + V x Pt — X, WN,t]’ (1 71)

WNO = WN-

In the normalization here, the configuration space density of particles is p;(x) = %w (T, ),
(V % p;) is a multiplication operator, and the exchange operator X; is defined through its
integral kernel X;(z,y) = +V (2 — y)wny(z,y). For the discussion in this section, N is a
fixed parameter, and thus we also set the semiclassical parameter € = 1 in this section.

The solution wy; to the Hartree-Fock equation should for all times ¢ be a fermionic one-
particle density matrix, i.e. a selfadjoint trace class operator on L?(R?) with 0 < wy; < 1.
Typical initial data is given as a rank-N projection, wy = Zfi 1| fi)(fi], which is the one-
particle reduced density matrix of the Slater determinant Ax(f; ® --- ® fn) € L2(R3V).
Here ( fj)j-vzl is an orthonormal system in L2(R3).

Let us now define the appropriate Banach spaces to rigorously solve the Cauchy problem,
following [BAF76] and [BAF74]. Denoting by S1(L?(R3)) the trace class operators on L?(IR?),
we define

H{? = {T € S1(L2(R%)) : T is selfadjoint and (—A + 1)/2T(—A +1)'/% ¢ 81(L2(]R3))} .
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This is analogous to Sobolev spaces for functions, and should be understood as the space of
one-particle density matrices 7" with finite kinetic energy (formally the kinetic energy can be
rewritten as tr(—A)T = tr(—=A)/2T(=A)Y? by cyclicity of the trace). Equipped with the
norm || 7|1, —a := tr|(=A + 1)Y2T(=A + 1)'/2)|, H® is a Banach space. We can consider
the commutator with the Laplacian as an operator a, (formally) acting on 7' € H; A by
aT := i[-A,T]. We denote by D(a) C H; > the domain of the operator a, as defined in
[BAET76, Equation (4.2)], and equip D(a) with the graph norm of a to make it a Banach
space. One can easily check that e.g. for T' = Zfiﬁfﬁ(ﬁ] with all f; € H3(R3) we have
T € D(a).
We have the following result for global well-posedness.

Theorem 1.B.2 ([BAE76, Proposition 5.5 and Section 6]). Assume V : R? — R is almost
everywhere differentiable and satisfies V? < C(—A + 1), for some C > 0.

If 0 <wy <1 and wy € HfA, then there exists a unique mild solutio wy,(.) to the
Cauchy problem defined on all the positive real axis.

Furthermore, if wn € D(a), then the solution is the unique global classical solution, in the
sense that

e we have wy ) € C([0, oo),HfA) and wy, () € C([0,00), D(a));
e the Hartree-Fock equation (1.71)) is explicitly satisfied.

The assumption V2 < C(—A +1) is easily checked to be satisfied with our assumptions of
T heoremon the potential. Consequently, for initial data wy € D(a), all our calculations
in Chapter [3| are valid. We notice that the earlier result of [BAET74], while it requires the
potential V' to be bounded (which is satisfied in Chapter [3)), requires less regularity from the
initial data. The result for Coulomb interaction given here is nevertheless of interest to us,
since it shows that Hartree-Fock theory also in this case is well-defined, while we can not yet
provide a proof of its validity.

The Hartree-Fock energy functional can be generalized to

Sitp(on) = tr(~A)ox + - [ dedyVi(z = pox (o by (y.v)

b _ 2
N dady V(z — y)|wn (z,y)]*.

For wy = SN £ (f| this coincides with Exp(f1,. .., fn) given in (L.21). One has the
well-known conservation laws of energy and number of particles,

5HF(OJN¢) = 5HF(wN,0), and trwy: = trwnp.

Furthermore, for initial data being a projection, also wy ¢ is a projection. This can be proven
noticing that

10 (wne)? = [~A+V x pp — Xy, wnalwng +wni[—A+Vx pp — Xp,wn ]
[—A+V xp — Xy, (WN,t)2]

1Mild solution means a solution to the variation-of-constant integral equation

t
WN,tT = et Pune e+ z/ el<t75)A[wNys, V% ps — Xs]eﬂ(tfsmx ds forall z € LZ(RS).
0
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1.B. Well-posedness of evolution equations

and (wMo)z = wnp; 1. e. (CL)N’t)Q solves the same Cauchy problem as wy ;. Consequently, by

uniqueness of the solution, we have (wN,lt)2 = wp, for all times t. In particular, we obtain
the useful fact that 0 < wp; < 1 for all times t.

Pseudo-relativistic Hartree-Fock equations
In Chapter [ we consider the pseudo-relativistic Hartree-Fock equation of the form

{ iOwnt =[V-A+1+Vxp — X, wnyl,

(1.72)
WN,0 = WN,

As explained when we introduced the non-relativistic Hartree-Fock equation , for initial
data given as a finite-rank projection (i.e. wy = S°N [¢)(¢s|, which is the class of initial
data relevant in this thesis), the density matrix formulation of the Hartree-Fock equation is
equivalent to the Hartree-Fock equation for the orbitals,

N N

) 1 1 S
iOfir =V-D+1fi+ N Z (V5| f54?) i — N Z (Vs (finfir) Fits
J=1 j=1
fio =¢i foralli=1,....N

(1.73)

The properties of the Hartree-Fock equation in orbital form (with Coulomb potential) are
established in the literature [FLO7, LO7] and the methods can easily be applied to the equation
with regular potential.

We first establish local well-posedness. Global well-posedness will be obtained from the
conservation laws. Local well-posedness for the semi-relativistic Hartree-Fock equations with
Coulomb interaction was proven as a side-result in [FLOT], essentially reducing it to proving
a local Lipschitz condition on the non-linearity, which in turn follows along the lines of [LOT7].
We assume

Ve L'®R®) and /\f/(p)yu + |p])2dp < oo, (1.74)

which makes the problem less delicate than it is for the Coulomb potential. The case s =1
of the following theorem is needed in Chapter

Theorem 1.B.3. Suppose s > 1/2 and that (1.74)) holds. Let ¢ = (qbk)]kvzl be a collection

of initial data with ¢, € H*(R3) for allk=1,...,N.
Then there exists a unique solution f(.) = (fk,(_))fj:l to the orbital Hartree-Fock equations

(1.73) with fro = ¢ such that

fry€C?([0,7), H*(R*) n C'([0,7),H* ' (R®)) forallk=1,...,N.
Here T' € (0,00] is the mazimal time of existence, and we have the blow-up alternative: If
T < oo, then limy_yp_ Zé\f:lnfk,t”[{lﬂ = 00.

Additionally, f(.) depends continuously on the initial data ¢ and we have the conservation
laws that for all 0 <t < T

o Eur(fy) = Enr(@) (where Epp was defined in (1.21))),

hd <fk‘,t7fl,t> = <¢kv¢l> for all k1 € {17 . aN}

Here f() is a solution in the sense that is satisfied in the space of distributions
H*~1(R3), the relevant case for us being s = 1.

The proof of Theorem follows the strategy of [FLO7] and reduces the problem to
proving the following local Lipschitz condition:
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1. Introduction

Lemma 1.B.4. Suppose that (1.74)) holds. Let F := (F},...,Fy) be a Hartree-Fock-like
non-linearity, i. e. for f = (fr)p_y

N N

=2 (VIHP) £ =20 (Vo (7)) -

j=1
Let s > 1/2. Then for all f,g € H> and r = max(s — 1,1/2) we have

1F(£) = F(@)ll o < C(1F7ren + IgFren) 1F = gl

1.75
IEE) o < Ol | F - (175)

Here H*N s the N-fold cartesian product of H*(R3) equipped with the norm ||f| gsn =
1/2
(Sl )

The proof of this lemma follows the strategy of [L07, Lemma 1] but is slightly simpler
since we have ||(1 — A)*V||o < 0o for all 0 < o < 1.

For the regular potentials we consider, the pseudo-relativistic Hartree-Fock equation is
always globally well-posed. In fact, direct and exchange term in the Hartree-Fock energy
functional both are bounded below since ||V || < co. This provides a bound on the HY/?-
norm in terms of the conserved total energy and thus global well-posedness. (In the repulsive
case, even with a singular potential, global well-posedness follows from local well-posedness
due to the fact that the sum of direct and exchange term in the energy is non-negative if
V >0, so that the conserved energy provides a bound on the H/ 2_norm.)

Notice however that there has been interest in the pseudo-relativistic Hartree-Fock equa-
tion with attractive Coulomb potential, in which case the equation has blow-up solutions.
These solutions describe stars collapsing under gravitational attraction [HS09]; see also
[FLOT]. Under our assumptions on the potential there is no blow-up.

1.C. Remarks on notation

Generally we use a plain ||z|| when we use the norm of the space in which x lives. In this
thesis, these are typically L? spaces of wave functions, L2(R?) or L?(R3"), or fermionic or
bosonic Fock space. Norms of LP spaces are denoted by |||/, where 1 < p < oo.

We denote by H*(R") the Sobolev space of functions that have s derivatives in L?(R"™),
and s > 0 is allowed to have non-integer values. The Sobolev norms are denoted by ||-|| .

The operator norm is also denoted by |[|-|]. Important other norms on operators are the
Hilbert-Schmidt norm, denoted by ||-||is, or by [|-||2 when we think about the integral kernel
of the operator. The trace norm is denoted by tr|-|. In general | Al < ||Allgs < tr|A|. We
also have the useful estimates tr|AB| < || Al tr|B|, || ABllus < ||A||||B|lus. We caution the
reader that in general, even if A has a sufficiently regular integral kernel a(z,z) to define
the integral, nevertheless tr|A| # [ dz|a(x, z)|.

We use the Dirac notation for projection operators, i.e. for ¥ a vector in a Hilbert space b,
|1) (1| is the operator acting on f € b by |¢)(¢|f = <w,f>w. For multiplication operators,
we use the same letter to denote the operator as for the corresponding function.

The time-dependence is generally denoted with a subscript, i. e. u; instead of u(t). Deriva-
tives are explicitly written as 9y or d/dt. We sometimes write u(,) and similar expressions
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1.C. Remarks on notation

when we want to highlight that we consider u as a function of the argument in the place
indicated by (.).

We use the symbol C' (and sometimes K and D) for constants that can change from step
to step. Dependencies on other quantities are mentioned when relevant. If it is necessary to
fix a specific constant, we introduce the constant explicitly and denote it by e.g. C, Cy, ...

For tensor products we use the shorthand ©®V to mean ®f\i | ¢, and similarly L?(R3)®N
for ®;L, L*(R®) and [ig) (| for [ip) (o] @ [} (o] © - @ ) (.

We use [A, B] = AB— BA for the commutator of two operators A and B (domain questions
should be clear from the context) and {A, B}AB + BA for the anticommutator.
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2. Quantitative Derivation of the
Gross-Pitaevskii Equation

In this chapter we prove that the evolution of the condensate of a dilute Bose gas can be
described with the time-dependent Gross-Pitaevskii equation. This chapter closely follows
the article [BdS12].

(k)

We use the bosonic convention tr vy’ = 1 for the normalization of density matrices, see

Section [T.Al

2.1. Introduction

To give the reader a heuristic understanding of the difficulties of the problem, we start
by reviewing the BBGKY hierarchy method, on which the first derivations of the Gross-
Pitaevskii equation were based. As a key idea, this discussion suggests to not directly
compare to the Gross-Pitaevskii equation but to use the modified Gross-Pitaevskii equation
in a first step and obtain cancellations from the zero-energy scattering equation.

Afterwards, in Subsection we explain our new approach, based on modeling the
correlation structure with Bogoliubov transformations, and then give the statement of our
main results.

2.1.1. The BBGKY hierarchy

The use of the BBGKY hierarchy for deriving effective evolution equations from many-body
quantum mechanics goes back to the derivation of the Hartree equation for the mean-field
limit. The first rigorous derivation of the Hartree equation was obtained by this
method in [S80] for bounded interaction potentials. The basic idea is to study directly the
time-evolution of the family of reduced densities ’y](\’f)t, k=1,2,...,N.

Rewriting the Schrédinger equation (with mean-field Hamiltonian , with Veyt = 0) in

terms of the density matrix 'y](\,]\? = |Yne) (VN as

iat'y](vj\ft) = [HN,%(VA,?]

and taking the partial trace, one derives a hierarchyE] of N coupled equations, known as the
Bogoliubov-Born-Green—Kirkwood—Yvon hierarchy:

k

Zat,y(k;) Z[— (k)} Nzk:[ %(m
1<)
N

7j=1

k+1
ZtrkH [ Ti— $/’f4r1)771(\f,t )] ,

!The system is called a hierarchy because the equation for ’yN depends on ’y(k+1).
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

for k = 1,... N, with the convention that 'y](\lfzf = 0 for £ > N, and with trgy; the partial

trace over the (k + 1)-th factor of the tensor product.

As N — oo, the BBGKY hierarchy converges, at least formally, towards an infinite hier-
archy of coupled equations. The limiting hierarchy is solved by tensor products |¢;)(p¢|®¥ of
the projection on the solution ¢; of the Hartree equation . Thus the problem of prov-
ing the convergence towards the Hartree dynamics in the sense 71(\})1, — |@e) (| essentially
reduces to showing the uniqueness of the solution of the infinite hierarchy.

This scheme was later extended to potentials with Coulomb singularities in [EY01] (and
in [ESOT7] to bosons with relativistic dispersion relation).

In [ESYO06D, ESY10, ESY07, [ESYSQ09], the same strategy was then applied to analyze the
dynamics in the Gross-Pitaevskii regime and to obtain a rigorous derivation of the
Gross-Pitaevskii equation .

The BBGKY hierarchy nicely shows the effect of correlations in the dynamical setting, as
we will discuss in the rest of this subsection. Writing as

N 1 N
Hy =) —Au + N > NN (2 — ;) (2.1)

Jj=1 1<j

one can formally interpret the Gross-Pitaevskii regime as a very singular mean-field scaling,
where the interaction potential N3V (N.) converges to a delta distribution as N — oo.
However, as explained on the level of energies (see Eq. and the discussion following
it), unlike in the mean-field regime correlations play a crucial role in the Gross-Pitaevskii
regime. To understand the role of correlations for the dynamics, let us consider the evolution

of the one-particle reduced density 'y](\})t according to the BBGKY hierarchy:

i@t*y](\i)t (x,2")

= (-Az + Ay) '71(\},)15(377 a') (2.2)
+ /de (N = )N2V(N(z — a3) — (N = YN2V(N(2' — 22))) 75 (2, 22, 2", 22).

Assuming that the initial data exhibits complete condensation and that condensation is
preserved by the time evolution, we expect 7](\}1 and 7](\?1 to be approximately factorized. In

7](51, however, one also wants to take into account the two-particle correlations. Describing

the correlations through the solution f of the zero-energy scattering equation (|1.10]), we use
the ansatz
(1) N —
Y (@, 2') = ou(z) Py (2), 23)
2 B B .
Y p(@r, e, 7, 7h) = F(N (21— 22)) (N () — 7)) i1 e (w2)u(@))7, ().

Plugging this into (2.2)), we obtain a new non-linear equation for ¢; (we call it the modified
Gross-Pitaevskii equation), given by

idhpr = — Ay + (N2(N = DV(N) (V) * o) . (2.4)

Since 8mag = [V fdz, we formally have N>(N — 1)V (Nz)f(Nz) — 8magd(z) as N — oo.
Therefore, in the limit, ¢; should be a solution of the Gross-Pitaevskii equation ((1.16)),
complementing the results for the ground state energy (c.f. (1.14).
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2.1. Introduction

The presence of the factor f(IV.) is crucial in this argument to understand the emergence
of the scattering length in the Gross-Pitaevskii equation. We conclude that any derivation
of the Gross-Pitaevskii equation must take into account the correlation structure. In fact,
understanding the correlations and adapting the techniques of [S80, [EY01l [ESO7] to deal
with them was one of the main challenges in [ESY06al, ESY06bl [ESY10, [ESY07, ESYS09].

2.1.2. Strategy and main results

Before stating the main result of this Chapter, let us discuss the strategy followed.

In view of Section [[L.4 we intend to use coherent states to obtain a derivation of the Gross-
Pitaevskii equation and bounds on the rate of the convergence. Recall the approach
to the mean-field regime explained in Section From , we notice that there are two
contributions to the generator Ly (t), one arising from the derivative of the Weyl operator
W*(vVNg;), the other from the derivative of et~

£x(t) = (W (VN@) ) W(VNg) + W (VN HNW (VNG).

The second contribution, given by W*(v/ N, )HyW (v N), can be computed recalling that
Weyl operators act as shifts on creation and annihilation operators (see ([1.40])). It turns out
that this contribution contains a term, linear in creation and annihilation operators, which
has the form

VN [ o [-aga) + (V ¢ o) @)e@)] a + e (2.5)

This term is large (of order N'/2) and does not commute with the number operator. With
such a term in the generator, it would be impossible to show uniform (in N) bounds for the
growth of the number of particles

<UN(t, 0)Q,NUN(t, 0)Q>

In the mean-field regime however, (2.5)) is exactly canceled by the contribution proportional
to the derivative of W*(v/ N¢y), which contains the term

—\/ﬁ/dx (10ype(x))ay — h.c. = —\/ﬁ/dx [—Api(z) + (V * o) (@) pe(z)] @k — hec.

where we used the Hartree equation . As a result, the generator Ly () in (|1.46))
contains only terms which, at least formally, are order one or smaller.

To adapt this approach to the Gross-Pitaevskii regime, we lift the Hamiltonian to Fock
space F as

Hy = /dx Vea,Vaa, + % /dxdyNQV(N(x —Y))a5ay0ya, (2.6)
and, following , we naively introduce the fluctuation dynamics
U (t,5) = W (VN )e MW (VNG ). (2.7)
As discsésed in Subsection we choose gogN) to solve the modified Gross-Pitaevskii
equatio

il = = D™ + (NV (N L) % oM ) o) (2.8)

2From now on we use the notation goiN) to distinguish the solution of the modified Gross-Pitaevskii equation

(2-8) from the solution ; of the Gross-Pitaevskii equation (1.16]).
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

where f is the solution of the zero-energy scattering equation . Since the solution of
the modified Gross-Pitaevskii equation can be shown to converge towards the solution
of the Gross-Pitaevskii equation with an error of order N~! (see Proposition m
(iv)), control of the fluctuations around the modified Gross-Pitaevskii equation also implies
control of the fluctuations around the Gross-Pitaevskii equation. Let £§F(¢) denote the

generator of (2.7)), given by

£§F (1) = (10 (VNe™)) W(VN™) + W Ny w (VNE™). (2.9)

As in the mean-field regime, the term W*(mng))HNW(ngN)) contains a large con-
tribution which is linear in creation and annihilation operators and given by

VI [do -8V + (V) ¢ o))V @)] 0 + e
On the other hand, the term (i, W*(vVN@!™))W (VN@!™) contains the linear summand
- VN / dz (0,08 ())a’ + h.c.]
- -VN / dz |-A¢(M (@) + (VYN FV) el @) Pe™ ()] a5 — e

In contrast to the mean-field regime discussed above, here there is no complete cancellation
between the two large linear terms (because of the factor f in the second term). Hence, the
generator E%P(t) of contains a large contribution which is linear in the creation and
annihilation operators and of the form

VN / do (N3V(N.)(1 — F(N) * |¢§N>\2) () (cpgN)(x)a; +h.c.). (2.10)

Due to this term it seems impossible to obtain a uniform (in V) bound on the growth of the
number of particles w.r.t. the fluctuation dynamics .

From a physical point of view, the reason for this failure is that we are trying to con-
trol fluctuations around the wrong evolution. When we approximate e "~ W(\/JV ) by

an evolved coherent state W(\/]V (pgN))w, we completely neglect the correlation structure
developed by the many-body evolution. As a result, fluctuations around the coherent ap-
proximation W (v N ngN))w are too strong to be bounded uniformly in N. Since correlations
are in first order an effect of two-body interactions, we are going to approximate them using
the unitary operator

1 L
T(k) = exp (2 /dxdy (k(x, Y)aya, — k(m,y)amay)>
for an appropriate k& € L?(R? x R3), which will be interpreted as the integral kernel of a

Hilbert-Schmidt operator (again denoted by k) on L?(R3). Recall from Section [1.5| that the
operator T'(k) acts on creation and annihilation operators as a Bogoliubov transformation

T (k)a(f)T (k) = a(ch(k)(f)) + a” (sh(k)(f)),
" f
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2.1. Introduction

where ch(k) and sh(k) are the bounded operators on L?(R?) defined by the absolutely con-
vergent series (where products of k£ and k are in the sense of operators)

ch(k) =>" (2;)!(%)” and  sh(k) =) (2n1+1)!(kk)"k.

n>0 n>0

(For a heuristic picture, it is often sufficient to think of the leading terms only, i. .e. ch(k) ~ 1
and sh(k) ~ k, and in fact we will treat the higher powers as error terms. In particular

T*a;T ~ a, + a(k(,z)),

showing that the contribution of the creation operator is singular while the annihilation
operator is regularized by k.)

Inspired by the discussion in Section where correlations were successfully described
by the solution of the zero-energy scattering equation, we define the time-dependent kernel

N N
k(@) = —Nw(N(z — )t (@)™ (), (2.11)
where cp,EN) is the solution of the modified Gross-Pitaevskii equation || and where
w(z) =1- f(z),

with f the solution of the zero-energy scattering equation (|1.10)). We will consider a ini-
tial data of the form W (v/N)T (ko)v, for ¢ € F with bounded number of particles and
bounded energy (think of the vacuum, ¢ = §2), and we will approximate its time evolution
by W (V' N)T (ks )1, leading to the fluctuation dynamics

U(t,s) = T* (k) W* (VN ) e N (VN )T (ks). (2.12)

In this way, the approximating dynamics takes into account the correlation structure and
we expect that the fluctuations are bounded. Indeed, we will show in Section that it is
possible to obtain a uniform (in V) control for the growth of the number of particles

(U, 00 NU(t,0)9Q).

To understand this, notice that the evolution U(¢, s) has the generator

£x(t) =1 (k) [ (100 (VNG WVNY) + W (VN M HaW (VNG| T(0)
+ (10T (k) T'(kt).

We will show that the summand (i0,7*(k:)) T (k:) does not play a role, see Proposition
Notice that the first line in the generator is of the same form as the generator ,
just conjugated with the Bogoliubov transformation T'(k;). In particular, the large linear
(in creation/annihilation operators) contribution still appears, but it is compensated
by a contribution arising from conjugating the cubic (in creation/annihilation operators)
term in W*(vVN @EN) YHNW (VN cpEN)) with the Bogoliubov transformation. More precisely,
after conjugating with the Bogoliubov transformation, some of the cubic terms will not be
in normal-order. By the canonical commutation relations, bringing them into normal-order
produces terms which are linear in creation and annihilation operators; some of these terms
cancel exactly the large contribution . Other important cancellations will emerge
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

between the quadratic and the non-normal-ordered quartic terms; see Section for the
details. The control of the growth of the number of particles w.r.t. will imply con-
vergence of the one-particle reduced density matrix associated with the fully evolved Fock
space vector e NV (/N )T'(k¢)t towards the orthogonal projection onto the solution of
the Gross-Pitaevskii equation , with a bound on the rate of the convergence.

The main theorem. Recall that the one-particle reduced density associated with a Fock
space vector V¥ is defined by the integral kernel

1 *
79 () = WD) (¥, aya, ). (2.13)

We are now ready to state our main result.

Theorem 2.1.1. Let ¢ € H*(R?), with |¢|l2 = 1. Let Hy be the Hamilton operator
defined in equation (@, with a non-negative and spherically symmetric interaction potential
Ve L' N L3(R3, (1 + |z|)dx). Let € F (possibly depending on N ) be such that

(0, N, 00 N2, 3, M) < D (2.14)
(1)

for a constant D > 0. Let ’y]\}t denote the one-particle reduced density associated with the

evolved vector e MNYW (VN )T (ko)tp. Then there exist constants C,c1,co > 0, depending
only on V. ||¢||g4 and on the constant D appearing in , such that

C'exp(cy exp(ealt]))
N1/2

1
tr | 7irs — |<Pt><<Pt|’ < (2.15)
forallt € R and N € N. Here ¢, denotes the solution of the time-dependent Gross-Pitaevskii
equation
i0ppr = — Ay + 8mag|ei] > (2.16)

with the initial condition pi—g = .
Remarks.

(i) Let us point out that we insert the correct correlation structure in the initial data. Our
result implies the approximate stability of vectors of the form W (v/Ng)T (ko)y with
respect to the many-body evolution (in the sense that the evolution of W (v/N)T (ko)1
has approximately the same form, just with evolved ¢, up to a small error). It does
not imply, on the other hand, that the correlation structure is produced by the time-
evolution. This is in contrast with the results of [ESY06b, [ESY10l ESY07, [ESYS09],
which can also be applied to completely factorized initial data. It remains unclear,
however, if it is possible to obtain convergence with a N~1/2 rate (or with any rate)
for initial data with no correlations (the problem of the creation of correlations was
studied in [EMSO06]).

(ii) Initial data of the form W (v N)T(ko)y, with ¢ satisfying (2.14), arise naturally as
approximation for the ground state of the Hamiltonian

1
HYP = /dx ay (—Az + Vexe(2)) az + 2 /dwdy N?V(N(x — y))azayayaz ,
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describing a Bose gas trapped by a confining potential Veyt, when the chemical po-
tential is tuned so that the expected number of particles is N (the number of parti-
cles in W (v N)T(ko)t concentrates around N, up to errors of order v/N). Hence,
W(\/N ©)T'(ko)y models the state prepared in experiments by cooling the trapped
Bose gas to very low temperatures. In fact, combining the results of Propositions
[2.6.1} [2.6.3] [2.6.5| and [2.6.6, and assuming 1) € F to satisfy (with Hn replaced
by Hy'P), one can easily show that

(W (VN YT (ko) KW (V)T (ko))
=V | [ ds (Tpl@) + Vs @@ + draalo()]) | + O/

= Négp(p) + O(VN)

with the Gross-Pitaevskii energy functional defined in (1.14). Choosing ¢ as the nor-
malized minimizer of Egp, it follows from [LSY00] that W (v N¢)T (ko)1 has, in leading
order, the energy of the ground state.

The time dependence on the r. h.s. of (2.15)) deteriorates fast for large ¢. This however
is just a consequence of the fact that, in general, high Sobolev norms of the solution

of (2.16]) can grow exponentially fast. Assuming a uniform bound for ||| 74, the time
dependence on the r.h.s. of (2.15]) can be replaced by Cexp(K|t]).

To simplify a little bit the computations, we did not include an external potential in the
Hamiltonian ([2.6)) generating the evolution on the Fock space. In contrast to [ESY06b!
ESY10, [ESY07, [ESYS09], the approach presented in this paper can be extended with
no additional complication to Hamilton operators with external potential. This remark
is important to describe experiments where the evolution of the condensate is observed
after tuning the traps, rather than switching them off.

The convergence (2.15]) and the fact that the limit is a rank-one projection immediately

implies convergence of the higher order reduced density 7](\];1 associated with the evolved

vector Wy, = e NV (v N)T (kg)y. Following the arguments in [KP10, Section 2],
the bound ([2.15)) implies that, for every k € N,

1/2
tr

exp (5 exp(ealt]))

k k
W~ le{wl®| < © :

N1/4

To obtain bounds for the convergence of the k-particle reduced density with the same
N~1/2 rate as in (2.15)), following the same approach used below to study 71(\})15 would
require to control the growth of higher powers of the number of particle operai’sor with
respect to the fluctuation dynamics . This may be doable, but the analysis

becomes more involved.

Theorem and the method used in its proof can also be applied to deduce the
convergence towards the Gross-Pitaevskii dynamics for certain initial data with exact
number of particles. In Appendix we consider initial N-particle wave functions
of the form PyW (v N)T(ko)ip, for ¢ € F satisfying , assuming that we have
|PNW (VN@)T (ko) > N~Y2 for large N (it is explained in Appendix why
this is a reasonable condition). Here Py denotes the orthogonal projection onto the
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

N-particle sector of F. It remains to be understood which class of N-particle vectors
can be written as PyW (v N@)T(ko)y, for a ¢ € F satistying (2.14)).

2.2. Lifting the evolution to Fock space

To define an evolution on Fock space, we lift the Hamilton operator to Fock space like in
Section [I.3l. We define
()™ = Hig o™

with the operator on the n-th sector defined as

HY =5 —Ap, + S NV(N (2 — ).
=1

1<j

Note that the subscript N in the notation Hy is not related to the number of particles
(which is not fixed on Fock space), but only reflects the scaling of the interaction potential.
Of course, we will relate the number of particles in the initial Fock space vector to N by
choosing the initial Fock space vector to have expected number of particles close to IV;
otherwise, there would be no relation with the regime discussed in Section Since Hn
commutes with N, the evolution generated by Hy leaves each n-particle sector invariant
and we have

€7iHNt(07...707¢N707..~):(07"'70767¢HNth707"‘)

where Hy is the N-particle Hamiltonian defined in ([1.15). In this sense, the N-body dy-
namics is embedded in the Fock space representation.
As discussed in Section the Hamilton operator H can be written as

1
Hy = /dx Vea,Vzay + 3 /dxdy N2V (N(zx — Y))a,a,aya;. (2.17)

The first term in the Hamiltonian is the kinetic energy; since it will play an important role
in our analysis, we introduce the notation

K= /dxvxa;Vax.

Note that, like Hy, K leaves every n-particle sector invariant, and for ¢» € F

(Kp)™ =" =gy,
j=1

The kinetic energy operator can also be written as K = dI'(—A).

2.2.1. Bogoliubov transformations implementing correlations

As explained before, we are interested in Bogoliubov transformations implemented by oper-
ator exponentials with exponent quadratic in creation and annihilation operators. We think
of these Bogoliubov transformations as implementing two-particle correlations. We will now
give a rigorous discussion of the Bogoliubov transformations we use.

50



2.2. Lifting the evolution to Fock space

For a kernel k € L?(R? x R3) with k(z,y) = k(y, x), we define the operator

T(k) = exp (; /dwdy (k(z,y)aya; — k(m,y)axay)> (2.18)
acting on the Fock space F.
Lemma 2.2.1. Let k € L*(R? x R3) be symmetric, in the sense that k(z,y) = k(y, z).
(i) The operator T(k) is unitary on F and
T(k)* =T(k)~ =T (k).
(ii) For every f,g € L*(R3), we have
T(k)"A(f,9)T (k) = A(vi(f, 9)) (2.19)
where vy, : L*(R3)@ L*(R3) — L?(R3)® L%(R3) is the Bogoliubov transformation defined

by the matriz ( h(k) h(k)>

sh(k) ch(k)
Here ch(k), sh(k) : L?>(R3) — L%(R3) are the bounded operators defined by
1 7.\ _ 1 7\
ch(k) =" m(kk) and sh(k) = G ) (kk)"k,

n>0 n>0

vV =

where products of k and k have to be understood in the sense of operators.

(iii) We decompose
ch(k) =1+ p(k), sh(k)=k+r(k), (2.20)

where 1 denotes the identity operator on L*(R3). Then p(k) and r(k) (and therefore
sh(k)) are Hilbert-Schmidt operators, with

(k)2 < €™z, lr(k)||2 < el™2, [lsh(k)||2 < e, (2.21)

(Here ||p(k)||2 denotes the L*(R® x R3) norm of the kernel p(k)(x,vy), which agrees with
the Hilbert-Schmidt norm of the operator p(k).)

(iv) Suppose now that k € L*(R3 x R3) is s.t. V1k € L*(R® xR3). Then, by symmetry, also
Vak € L2(R3 x R3). (We use the notation (V1k)(x,y) = V.k(x,y) and (Vak)(z,y) =
Vyk(z,y); note that Vik and Vak are the integral kernels of the operator products Vk
and —kV.) Moreover

IV 1p(k) |2, [ V1 (k)ll2 < el 91 (kB 2,
IV2p(R)l|2, [ Var (k)2 < el¥12 || W2 (RE)]| 2.

(v) If the kernel k depends on a parameter t (later, it will depend on time), and if deriva-
tives w. r.t. t are denoted by a dot, we have

(k) |2, |7 (k)[l2 < ||| el*ll2

and

IV 1508 2, 1737 (R) 2 < Cel®l> (1lla |91 (kR 2 + V1 (Rl + [ Va (k) )

IVep(k) 2. [ V2 (R)lla < Cellz (ol T2 (kR 2 + V2 (6R)ls + | Va(kE)2)
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

Proof. (i) is clear. To prove (ii), we observe that, setting
1 L
B = 3 /dxdy (k(a:,y)axay - k(w,y)axay) ,
we have, for any f,g € L?(R3),
! d
e_BA(f7g)eB = A(fa g) +/ d)‘lae_AlBA(fa g)€>\1B
0 1
1
—A(f.g) - [ e NEIB AL )N,
0

Iterating, we find a BCH formula with error term

e_BA(f,g)e A(f,g +Z adj A(f,9))
i=1

i

J J:
A1 An

1)ntt / d\; / dAg. .. A1 e M BadbH (A(F, g)) et B
0 0 0

(2.22)

where ad(C) = [B, C] and ady"™(C) = [B,ad(C)]. A simple computation shows that

adp(A(f,9) = [B, A(f,9)] = —A << P o ) ( g >>
and therefore that
adp;(A(f,9)) = (- >J'A((2 §>(§>>
We have

0 k™ [ (k)™ 0 ind 0 N\ /o (k&)™k

k0 ~\ 0 (kk)™ k0 U (kk)™k 0
for every m € N (the products of ks and ks are in the sense of operators, which means in
terms of integral kernels (k1k2)(z,y) = [ dz ki(x, 2)k2(z, y)). Inserting all this in (2.22), we
obtain (2.19), if we can show that the error converges to zero. We claim, more precisely,

that the error term on the r. h.s. of (2.22)) vanishes, as n — oo, when applied on the domain
D(N/?). To prove this claim, we start by observing that

[N+ 1)2e BN +1)71/2|| < eIkl (2.23)

for every A € R. Assuming for example, that n is odd, (2.23)) implies that
1 A1 An
| [an [T an [ arun e Badgi s g) e B v+ )|
0 0 0

_ ellkll2
~ (n+1)!

< (IIfll2 + llgll2) e

A ((RR)HDP2F, (Ri) D20 (A 1) 72

T D N P o L
n+1)!  — (n+1)
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2.2. Lifting the evolution to Fock space

which vanishes as n — oco. The case n even can be treated similarly. To prove (2.23), we
observe that

LN+ 1) 2B
= (e My, [B,N] e o)
— / dady k(z,y)(e P, ahay e Py) — / dady k(z, y)(e P9, azay e Pep)

<2 [ doflaze ] la*(h(z, ey
<2k fl2 (N + 1) /2e P2,
Gronwall’s Lemma implies (2.23)).

To prove (iii), we notice that

KB o L
(k)2 = | ((271))! <y ‘((272),”2 > ”(27[2)! < el
2

n>1

where we used that, by Cauchy-Schwarz, for any two kernels K7, Ko € L2(R? x R?)
2

K| = [ dady ‘ [ a= K2 Eaz0)

= / dedydzidzy Ki(z, 21) K1 (2, 22) Ka(21,y) K2 (22, 1) (2.24)

< /dxdydzleQ |K1(:C,Z1)|2 |K2(Z2ay)|2

= || K13 || K2lf3-

The bounds for (k) and sh(k) can be proven similarly.
To show (iv) we write, using the fact that the series for p(k), r(k) and sh(k) are absolutely
convergent,

Vip(k) = V1 (kF) [Z (;men—l] ,
n=1

o0

Vﬁ“(k) = Vl(k:E) [Z (27l1—i-1)'(kk)n1k] )
n=1 ’

Applying (2.24]), we find the desired bounds. The bounds for the derivative Vo can be
obtained similarly.
Finally, to show (v), we remark that

: 1 , . _
Ip(E)2 < W2n||k||2||k||§ L <[l el

n>1

The bound for 7(k) can be proven analogously. From the product rule, we also find that

IVip(k)ll2 < ?2
n=2

< ell¥la (HkHQ V1 (k) |2 + ||V (k) |2 + ||V1(kk)”2) :

220, (KE) |2 || V1 (KE)]|2 +Z — ukug“‘ RINGATTAI

The other bounds are shown similarly. O
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

2.3. Construction of the fluctuation dynamics

In this section, we will construct an approximation to the full many-body evolution of initial
data of the form W (v/N)T (ko)v, as considered in Theorem Our approximation will
consist of two parts. First of all, the evolution of a (approximately) coherent state will be
approximated by a coherent state with evolved one-particle wave function. We will take care
of the correlation structure later.

For a given p € H*(R3), we define gogN) as the solution of the modified Gross-Pitaevskii
equation

i) = =gl + (N3 NIV (V) # 16 2) ), (2:25)

where f denotes the solution of the zero-energy scattering equation ([1.10)). As will become

clear later on, it is more convenient to work with the solution go,EN) of the modified Gross-
Pitaevskii equation , rather than directly with the solution ¢; of the Gross-Pitaevskii
equation (2.16). Since N®f(Nz)V(Nz) — 8maod(z), the solution gogN) converges towards
the solution ¢y, as N — oo. This is proven, together with other important properties of
the solutions of the Gross-Pitaevskii and modified Gross-Pitaevskii equation, in the next

proposition.

Proposition 2.3.1. Let V € L' N L3(R3, (1 + |x(%)dz) be non-negative and spherically sym-
metric. Let f denote the solution of the zero-energy scattering equation , with boundary
condition f(z) — 1 as |z| = oo. Then, by Lemma[2.3.9 below, 0 < f < 1 and therefore
V>0 withVfe L'NL3(R3, (1 + |z|%dz). Let p € HY(R3), with |||z = 1.

(i) Well-posedness. There exist unique global solutions ¢y and cpg) € C(R, H(R?))

of the Gross-Pitaevskii equation and of the modified Gross-Pitaevskii equa-
tion (2.25), respectively, with initial data . These solutions are such that ||¢ll2 =

||<p§N)||2 =1 for all t € R. Moreover, there exists a constant C' > 0 such that
N
lell e o™l < € (2.26)

for allt € R.

(ii) Propagation of higher regularity. If we make the additional assumption that ¢ €

H™(R3), for some integer n > 2, then Lpt,cpgN) € H"(R3) for every t € R. More-

over there exists a constant C > 0 depending on ||¢| g» and on n, and a constant
K >0, depending only on ||¢||g1 and n, such that

lell e, ™ < CeXM (2.27)
for allt e R.

(iii) Regularity of time derivatives. Suppose ¢ € H*(R3). Then there exist a constant
C > 0, depending on ||¢||g4, and a constant K > 0, depending only on ||¢||g1, such
that

(N (N
16 g2, 18Vl < CeX M

for allt € R.
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2.3. Construction of the fluctuation dynamics

(iv) Comparison of dynamics. Suppose now ¢ € H?*(R3). Then there exist constants
C,c1,c2 > 0, depending on |||l g2 (c2 actually depends only on ||| 1) such that

Cexp(cy exp(czlt]))
N

N
ot = ill2 <
for allt e R.

The proof of Proposition can be found in Appendix

Using the solution @EN) of 1) we are going to approximate the coherent part of the

evolution. As explained in the introduction, however, this approximation is not good enough.
The many-body evolution develops a singular correlation structure, which is completely
absent in the evolved coherent state. As a consequence, fluctuations around the coherent
approximation are too strong to be controlled. To solve this problem, we have to produce
a better approximation of the many-body evolution, in particular an approximation which
takes into account the short-scale correlation structure. To reach this goal, we are going
to multiply the Weyl operator W(\/N gogN)), which generates the coherent approximation
to the many-body dynamics, by a Bogoliubov transformation 7'(k) having the form .
The kernel & € L*(R? x R?) has to be chosen so that T'(k) creates the correct correlations
among the particles. Since correlations are, in good approximation, two-body effects, we
can describe them through the solution f of the zero-energy scattering equation . We
write

flz)=1—w(zx) (2.28)
with lim;| o w(z) = 0. The scattering length of V' is defined as

8mag = /dx V(z)f(z).

Equivalently, ag is given by
ap = lim w(z)|z|.
|z| =00
Note that, if V has compact support inside {x € R3 : |z| < R}, then ap < R and w(z) =
ap/|z| for || > R. In general, under our assumptions on V', one can prove the following
properties of the function w.

Lemma 2.3.2. Let V € L' N L3(R3, (1 + |z(%)dx) be spherically symmetric, with V > 0.
Denote by f the solution of the zero-energy scattering equation and let w =1— f.
Then

0<w(x) <1 forallzcR

Moreover, there is a constant C > 0 such that

C C

< < —.
w(z) < FE and |Vw(z)| < E+1

(2.29)

Proof. Standard arguments show that 0 < f(x) < 1 holds for every z € R? (f(x) < 1 follows
from V' > 0, because of the monotonic dependence of f on the potential; see [LSSY05,
Appendix C]). This implies that 0 < w(z) < 1 for all z € R3. From the zero-energy
scattering equation, we have —Aw = V f/2. This implies that

m@:c/@ !

|z — y|

V) fy) and  Vu(z)=C / Q=L V)
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

for an appropriate constant C' € R. Using |z| < |z — y| + |y|, the fact that f < 1, and the
Hardy-Littlewood-Sobolev inequality, we find

(1 + |l |<c/dy< 14 ’3‘y|)v<y>f<y>
< O(IVllsjo + HvuLl V@) l)

and, analogously,

2
1+ [Py <0/dy( 71+ £l P) V) /()
<C(IV]s+ HVIh VL) -

The right hand side of the last two equations is bounded under the assumption V € L' N
L3((1 4+ |z|%)dx). O

The zero-energy scattering equation for the rescaled potential N2V (Nz) is solved by
f(Nzx). We define w(Nz) =1 — f(Nx). Clearly

ag
1 N —
lim w(Vola] = .
showing that the scattering length of N2V (Nz) is ag/N. Equivalently, this follows from
[dz N?V(Nz)f(Nz) = 8mag/N.
It follows immediately from Lemma that 0 < w(Nz) < ¢ for some ¢ < 1 and for all
x € R?, and that there exists C' with

C N
N 2W(N <(C—si—r—.
w(Nz) < and |Vyw(Nz)| < CNQMQ 1

2.30
N\ |+ 1 ( )

We will use the solution f(Nz) of the scaled zero-energy scattering equation to approx-
imate the correlations among the particles, arising on the microscopic scale. It is however
important to keep in mind that these correlations are also modulated on the macroscopic

scale. We describe the macroscopic variation by the solution cpgN) of the modified Gross-
Pitaevskii equation (2.25). We define therefore the kerne]ﬂ

ki(z,y) = —Nw(N(z — y)pi ()0t (y) (2.31)

and the corresponding unitary operator

T(ky) = exp (; / dedy (ky(z, y)asal - kt(x,y)axay)> |

In the next lemma, we collect several bounds for the kernel k; which will be useful in the
following.

Lemma 2.3.3. Let w(Nz) =1— f(Nx), where f solves the zero-energy scattering equation

. Let

k(z,y) = —Nw(N(z — y))e()e(y)
with ¢ € H'(R®). (This lemma holds for general @, not requiring it to be a solution of the
modified Gross-Pitaevskii equation. Nevertheless, the application is to the solution of the
modified Gross-Pitaevskii equation, and so in view of we treat ||¢|| g1 as a constant.)

3Some typos in the following part of the section in [BAS12] were corrected here.
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2.3. Construction of the fluctuation dynamics

(i) There exists a constant C, depending only on ||| g1 such that

k|2 < C,
IV1k|l2, |V2k|2 < CVN,
IV1(kke)|2, | Va(kke)|2 < C.

Defining p(k) and r(k) as in (2.20), so that ch(k) =1+ p(k) and sh(k) = k + r(k), it
follows from Lemma[2.2.1] part (iii) and (i), that

(k) 2, lIr(K)l2, [[sh(k)|2 < C,
IVip(k) 2, [Vap(F)ll2 < C,
IVar(k)l2, [[Var (k)2 < C.

(ii) For almost all x,y € R®, we have the pointwise bounds

Ik(z,9)| < min <N|<p(ﬂf)!|s0(y)l,

(k) (2, 9)| < Cle(@)lle ()],
p(k)(z, y)| < Cle(@)]le(y)] -

Iw(x)llw(y)l) ,

|z — |

(iii) Suppose further that ¢ € H*(R3). Then

sup [|k(., )[l2, sup [lp(k)(.,z)ll2, sup[|r(k)(.,z)ll2, sup|[[sh(k)(.,2)ll2 < Cllol g
z€ER3 z€R3 z€R3 z€R3

The proof can be found in Appendix We will also need bounds on the time derivative
of the kernels ky, p(kt), r(k¢). These are collected in the following lemma.

Lemma 2.3.4. Let ¢ € H*(R?), and goﬁN) € H4(R?) be the solution of , with initial
data ¢. Let w(Nz) = 1 — f(Nz), where f is the solution of the zero-energy scattering
equation . Let the kernel k; be defined as in (2.31)), so that

ke(@,y) = —NoV(@ =) (A @t ) + o @™ ). (2.32)

Then there are constants C, K > 0, where C depends on the ||| gs and K only on ||¢|| g
such that the following bounds hold:

(i)
|2 (112, 15 Cke) 12, 117 (ko) |2 < CeXI,
(it)
IV1B(E) 2, [V ap(k) 2, [V 17 (k) [l2, [V (k) [l < CeIH,
(iii)

supl[fe(,)ll2, supllp(ke) (- 2)ll2, supli(k) (. 2)ll2, sup [[sh(ke) (., )llz < CeXI.
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

The proof can be found in Appendix
As explained in the introduction, we are going to approximate the many-body evolution
e MNTW (VN )T (ko)

of a initial data which is almost coherent but has the correct short-scale structure, with
the Fock space vector W (v N @%N))T(k‘t)z/), which is again almost coherent and has again

the correct short-scale structure. Here cpgN) is the solution to the Gross-Pitaevskii equation

with initial data gp(()N) = ¢ (the same ¢ appearing in the Weyl operator of the initial data).

(We remark that in this ansatz the correlation structure, modeled by the time-independent
—Nw(N(x —y)) in (2.31)), is static.) This leads us to the fluctuation dynamics, defined as
the two-parameter group of unitary transformations

U(t, s) = T* (k) W* (VN ) e =37 (VN o) T (k) (2.33)

where U(s,s) =1 for all s € R.
The fluctuation dynamics satisfies the Schrédinger-type equation

i0U(t, s) = Ly (HU(t, s)
with the time-dependent generator
L (t) =T (k) |i0W*(VN@™) | W (VN )T (ke)
+ T (k) W* (VN YHNW (VNPT (k) + 10,7 (k) T (k).

The next theorem, whose proof is deferred to Section [2.6] is the main technical ingredient
of this paper. It contains important estimates for the generator £y (¢), which will be used in
the next section to control the growth of the expectation of the number of particles operator
with respect to the fluctuation dynamics U(t, s).

Theorem 2.3.5. Define the time-dependent constant (of order N; the precise form is not
of importanceﬂ)

Cn(t) = L0+ [ dudy |9.5h() (0. ) (2.34)
b [ dndyOV N ¢ o) @) ) 0,0
+ [ dodyds NV (@ ) @0 ()R 2. 2) (k) 2.
+ Re / dudydz NV (N (z = )™ (@)™ () sh(Fo) (2, 2) chlky) (2, 9)

+ / drdyN*V (N (z — 1))

2

“ i n ‘ / dz sh(k) (2, ) sh(z, y)

‘ / d sh(F) (2, ) ch(z, y)

+ / dz1dzg sh(ky) (21, x) sh(ky)(21,y)sh(k) (22, ) sh(k:) (22, y)]

“In fact, Cn(t) just collects all terms of the generator £y (t) which are constant in the sense that they do
not contain creation or annihilation operators. The form of these terms does not matter for our study of
the dynamics. However, if one attempts to use initial data without the squeezing operator T'(ko), Cn(t)
causes the constant of t = 0 in Gronwall’s lemma to be of order N, which is too large.
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2.4. Growth of fluctuations

and define the generator without constant terms by

Ln(t) == Ln(t) — Cn(2). (2.35)
Then we have, for some K > 0 depending only on ||¢| g1,
~ 1 2
Ln(t) > iHN — CA](T —Cef NV +1) (2.36)
and
~ 3 N2 Klt|
Ln(t) < 5HN+CW+Ce N+1). (2.37)
Moreover,
~ N2
+ [N, EN(t)] < Hy + O + CeMMA 4 1) (2.38)
and
" N2
+Ln(t) < Hy + CeKl <N + N+ 1) . (2.39)

The proof of Theorem [2.3.5] can be found in Subsection [2.6.6] The preceding parts of
Section provide the necessary explicit estimates of the terms of the generator Ly(t) of
the dynamics U(t, s).

2.4. Growth of fluctuations

The goal of this section is to prove a bound, uniform in N, for the growth of the expectation
of the number of particles operator with respect to the fluctuation dynamics. The properties
of the generator Ly (t) of the fluctuation dynamics, as established in Theorem [2.3.5] play a
crucial role.

Theorem 2.4.1. Suppose 1) € F (possibly depending on N ) with ||¢| =1 is such that

N2
<1/}7 (N + N+ HN) ¢> <C (2.40)
for a constant C > 0. Let ¢ € H*(R?), and let @EN) be the solution of the modified Gross-
Pitaevskiv equation with initial data @. Let U(t, s) be the fluctuation dynamics defined
n . Then there exist constants C,c1,co > 0 such that

(P, U*(t,0)NU(t,0)1)) < Cexp(cr exp(calt])).

The strategy to prove Theorem consists in applying Gronwall’s inequality. The
derivative of the expectation of N is given by the expectation of the commutator i[N', Ly (t)],
where £ (t) is the generator ([2.51]) of the fluctuation dynamicsﬂ By , this commutator
is bounded in terms of the energy, of (M + 1), and of N?2/N. The growth of the energy is
controlled with the help of . What remains to be done in order to apply Gronwall’s
inequality is to bound the term N2 /N. In the next proposition, we show that the expectation
of N2/N at time t can be controlled by its expectation at time ¢t = 0 (a harmless constant,
by assumption ([2.40)) and by the expectation of (A + 1) (which fits well in the scheme of
Gronwall’s inequality).

Sclearly the constant (2.34) can be ignored in this argument
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

Proposition 2.4.2. Let the fluctuation dynamics U(t, s) be defined as in . Then there
exists a constant C > 0 such that

U, 00N U(t,0) < C(NU*(t, 00N U(t,0) + NN + 1) + (N + 1)?).
The next lemma, is useful in the proof of Proposition [2.4.2

Lemma 2.4.3. Let k; € L*(R3 x R®) be as defined in (m Then there exists a constant
C, depending only on | k|2, such that

T* (k) N T (ky)

<CWN +1), (2.41)
T* (k) N2 T (ky) <

(N +1)? (2.42)
for allt € R.

Proof. We use the decomposition ch(k;) = 1 + p(k¢) and the shorthand notation c¢;(z) =
ch(ky)(z, ), pe(2) = p(ke)(z,z) and s;(2z) = sh(k)(z, x). We have

W, EINT()0) = [ do (0, (0" () + alsa))aler) + " (52)0)
= [delar +ate) + (520l
<C [defavlf+ [ delatpa)ol + [ dofa(svl?
< C(1+ p(ko) 3 + [sh(k) B IV + 120,

and (2.41)) follows by Lemma (since ||p(ke) |2, [|sh(ke) |2 < el¥ll2). To prove (2.42), we

observe that

(0. T NPT (k) = [ dady (6.7 (W) sy, T ()0)

— [ do 0 T )N T () + (6, T (RONT ()

— [ o ((alen) + 0" (520 T INT () alea) + " (52))) + (0. T (RONT(k)0).
Then, applying (2.41)), we obtain

(0, T* (ke)N*T (¢ ))
<C [ da | + )Y (alen) + a* ()P + Cl, (O + D)

< C/dx (laxN 29112 + [lalpe) 2P + fla* (s2) (N +2)20)1) + Clw, (N + 1)9)
< O+ Ip(ke) 13 + llsh(ke)[3) (v, (N + 1))

The bounds from Lemma imply (2.42). O
Proof of Proposition[2.4.3. From Lemma [2.4.3] we find

(.U (t, 00NZU(L, 0)) < O, U (1, 0)T (k)N T (ke )U (¢, 0)1)). (2.43)
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2.4. Growth of fluctuations

We now show how to bound the r.h.s. of the last equation. Using the definition of the
fluctuation dynamics U(¢,0) = T*(k‘t)W*(\/N@EN))e_mNtW*(\/Ngo)T(ko), we find

(b U (£, )T (ke)N>T (ke JU(t, 0))
= (N T(k)U(E 00, W*(VNg™) (N = VNG (™) + N)e ™5 (VN )T (ko))
= (N T(k)U(t, 0)0), W* (VN ) Ne M8 W (VN )T (ko)) (2.44)
— VN (N T(ke)U(t, 000, W* (VN g™ )e 3 W (VN )T (ko))
+ N (0, U (1, 0)T* (k) N'T (kU (t, 0))
where we used the notation ¢(f) = a(f) + a*(f), and the property to show that
W (VN IWW (VNe™) = N = VNo(e™) + N

In the first term on the r.h.s. of (2.44), we use now the fact that N' commutes with H . In
the second term, on the other hand, we move the factor ¢(<p£N)) back to the left of the Weyl
operator W(\/N(/J,EN)), using that

W (VN o(e™M) = (o(6™) + 2VN) W (VNG
We conclude that

(2 (2, 0)T* (kN T (ke JU (£, 0))

= (N T (kUL 0)0, W*(VN™M) e M W (VNQ) N + VN(g) + N) T (ko))
— VN (N T (t,009, (6(6™) +2VN ) W (VN{™) ™ W (VNQ)T (ko))
+ N, U (t,0)T* (k) N'T (kU (, 0)1))

= (N T(k)U(t, 0, W*(VN@™) e MW (VN Q)N T (ko))
+ VNN T (kUL 0y, W* (V™) e MW (VNG) 6 () T (ko))

— VN (N T(R)UH, 0, oYW (VN ™) e W (VN Q)T (ko))
(2.45)

By Cauchy-Schwarz, we obtain

(W, U (t,0)T* (ke N> T (ke JU(t, 0))
< VT (R )U(E, 0) |

x (I T (koY | + VNIIo() T(ko)bll + VN (™) T (ki 2, 0)] )
< SINT(ROU(E, 0y
+C (IN T (o) I* + Né(e) T(ho) |12 + Nlloef YT (kU (2, 0)w)?)

Subtracting the first term appearing on the r.h.s., and using the bound from Lemma [T.4.2]
that, [9(£)0] < 20 s + 1)Y2], we find that

(U (8, 0) T (ke )NT (ke JU(t, 0) )
< C (I To)wl? + NI + 1) (ko)bl]? + NI + 1) (kU (2,00
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

By Lemma we conclude that

(b, U* (t, 0)T* (ke )N 2T (kU (t, 0)2))
< ON[NY2U(L, 009 + CINY|? + CN (N + 1)y 2.

With ([2.43)), this concludes the proof of the proposition. O

We are now ready to show Theorem 2.4.1] The basic idea is to apply the Grénwall lemma.
Unfortunately we can not control 2 S, U(t, 0)NU(t, 0)ep) with (1, U* (¢, 0)NU(t,0)1)); how-
ever, we can bound it using L',N( ) + N. Similarly we can bound the derivative of the
expectation of £y (t t) using Ly(t ) + N. Consequently, we can bound the derivative of the
expectation value of Ly (t) + N using Ly(t) + A, and thus apply the Gronwall lemma. We
then use a lower bound for £ ~(t) to derive a bound for the expectation of . The precise
calculation looks a bit more complicated since we have to keep track of the constants (and
the exponential factors).

Proof of Theorem [2.4.1. Let Cn(t) be defined as in (2.34) and define

U(t,s) = e J: OV 4 ).
Then U (t,s) satisfies the Schrodinger type equation
iOU(t, s) = LU, s), withU(s,s) =1

for all s € R, and with generator Ly (t) = Ly(t) — Cn(t), as defined in (2.35). On the other
hand, since the two evolutions only differ by a phase, we have

(W, U (£, 0)NU(t, 0)1b) = (v, U* (£, 0)NU(t, 0)b).

We now use the properties of £ ~(t), as established in (]2.36[)%]2.39[). Eq. (|2.36|) implies

- 2
Hy < 2Ln(t) + Cj}[v + CefIUN 4 1). (2.46)

From Proposition we conclude that there exists a constant C7 (which depends on
(1, (N2/N + N + 1)3)), such that

0< <¢,z,7*(t, 0)%Nc7(t,0)¢> < <¢,z§t*(t,0) (QZN( ) 4+ CreKIH A + 1)) uit, 0)¢>. (2.47)

From (2.38), combined with (2.46) and Proposition there exists moreover a constant
Co > 0 (depending on (1, (N2/N + N + 1)v)) such that

d ~ ~ ~ ~ ~
= (V.U (L ONUE0) ) < (v, U (1,0) (2L (1) + Coe™ (N +1) ) U2 0))
dt
We now estimate the growth of the expectation of the generator L n(t). Using 1j together

with (2.46)) and Proposition we conclude that there exists a constant C3 > 0 (again,
depending on (¢, (N?/N + N + 1)1)), with

& (o (L O Ew (000 = (0,8 (1,0)En (1,010
< W, U (t,0) ( (t) + Ce 1N + 1))L~{(t,0)1/)>.
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2.5. Proof of the main theorem

We now fix D := max(Ci + 1,5, C5, K). Then, we have
<w U (t,0) (EN(t) + DK 4 1)) ut, 0)¢>
< <¢,u* (t,0) [(2 +2DeK M) (t) + (DM + DE XM 4 D2e2KI) (A 4 1)} uit, 0)¢>
4D

e (o, 0 (1,0) (En(t) + DM +1) ) (1,00 )

IA

By Gronwall’s lemma, we conclude that

<w,z1*(t, 0) (ZN(t) + DeKI(A 1 1)) U, 0)¢>
A <zp, (ZN(O) + DN + 1)) 1/1>
eAreh <¢, ( Hy + C/\ﬁ +C(N + 1)) ¢>

IN

| /\

where in the last inequality, we used the upper bound (2.37). From assumption (2.40) we
then obtain

<¢,z]*(t, 0) (ZN(t) + DRI+ 1)) u, 0)¢> < Cexp(er exp(ealt])). (2.48)

Furthermore, from we have
LR G0 (4, 0) N + (1, 0)) < (w80 (1,0 Ex()A(1, 0)0).

Inserting this in (2.48) as a lower bound for £y (t) and recalling D — C} > 1, we obtain the
intended bound for the expectation of N. O
2.5. Proof of the main theorem

Using the bounds established in Theorem we proceed now to prove our main result.

Proof of Theorem [2.1.1,. Let Uy, = e "N W (\/Np)T (ko). Recall that the one-particle
reduced density matrix of ¥y ; has the integral kernel

1) v
’YNt(x y) <\IJNt,N‘1JN7t> <\1th7 a QI\IJN t> (249)

We start by computing the denominator. Since Hy commutes with the number of particles
operator we find

(U, N ) = (1, T (ko) W* (VNN (VN@)T (ko))
= (1, T (ko) (M = VNG() + V) T(ko)¥)
= N+ (4, T (ko) (N = VNG(9)) T(ko))

By Lemma
(1, T* (ko) N'T (ko)) < C(¥,(N +1)9) < C
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

and
(1, T* (ko) () T (ko)) | < C(, T*(ko)(N + 1)'*T(ko)ip) < Ca, (N + 1)¢p) < C.
Hence, there exists C' > 0 with
(Un, NUy,) — N| < CNV2, (2.50)

On the other hand, with QDEN) denoting the solution of the modified Gross-Pitaevskii equation

, the numerator of can be written as
(UNts ayaz VN g)
= (1, T(ko)W (VN @)™ aXaze ™ MN'W (VN )T (ko))
= N oi(z)p(y)
+ VN i) (0, T (ko)W (VN Q)™ (a5 = VNG (1)) =N W (VN Q)T (ko))
+VNB() (0, T (ko)W (VN (0, = VNG (1)) N W (VN )T (ko))

+<¢,T*(k0)W*(\/Ncp)eimN a —

Recognizing that
(a — VNV () = W(VNe™M)yazw*(VNg™)
(az — VN () = WVNM)aa W (VN ™)
we obtain
<‘I’N,t, GZGI‘I’N,O
= No™ ()2 (1)
+ VN o™ (@) (o, T* (ko) W* (VN @)™y W (VN ™)
x ayW* (VN™)e M5 (VN Q)T (ko)e))
+ VN BN () (0, T* (ko) W* (VN @) e ™8 W (VN ™)
% a;W*(VNg™)e MW (VN Q)T (ko))
+ (W, T* (ko) W* (VN@)e ™" W (VN ™) a, W (VN o™ )e 7MW (VN )T (ko )).
Combining the last equation with and inserting in , we have that
Wrlw,y) =7 et (@)
< =l @lle )

+ | llaz WH(VNEM ) e 5t W (VN Q)T (ko)

jﬁwim )
- \/1zv|so£N> (@) [lay W*(VN{"™)e MW (VN@)T (ko )|
+ e llay W (V™) M (VN ) T (ko |

x |lag W*(VNo™M)e M8 W (VN )T (ko) |-

64



2.6. Key bounds on the generator of the fluctuation dynamics

Taking the square and integrating over z,y, we find

[ = 1606 < \ﬁH(NH)WW*(f f")e MW (VN )T (o) |2

Lemma [2.4.3| implies that

* * (N)\_ —iHnt
[ = 1™ 'HHS<T”W+1>”2TWW (VN MW (VN )T (ko) |

_ v 1/2 2
_\/NH(/\/Jrl) Ut 0)v||

with the fluctuation dynamics U(t, s) defined in (2.33)). From Theorem we conclude
that

My (puv)‘” < Gexplerexp(ealt))

VN

Hm [
By Lemma this implies

(1)

N)|‘ < Cexplerexp(ealt])) '

VN

Theorem 2.1.1|now follows because, if ¢; denotes the solution of the Gross-Pitaevskii equation

(2.16)), Proposition implies that

N
— o™

N N Cecrlt]
Mt = ™) 1| < 2llpr = iV le < =5 O

2.6. Key bounds on the generator of the fluctuation dynamics

In this section, we prove Theorem concerning the generator Ly (t) of the fluctuation
dynamics

U(t,s) = T (k)W (VN™)em M =W (VN M) T (k)
as defined in . We write

£x(t) = T () [0 (VNG™)| W (VN ™) T (k)
+ T (k)W* (VN YHNW (VN )T (k) + 10T ()| T(hy) — (251)
= T* (k) L ()T (ky) + [i0,T* (k)] T(ke)

with
Q) = [0 (VN™)| WNe™) + W (VN Ha W (VNG™).
A simple computation shows that

oW (VNe™) | W(VN™) = —a(VNide™M) - a*(VNioal) = N (o™, iang™).
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

On the other hand, using , we find
W (VN AW (V)
1
=¥ 1961+ 5 [ o V) o P 0
+ VN [a" (VY R+ a (VV (V) o)™ )
+ [/ dz Vza,Via, + /dx (N3V(N.) x |¢§N)|2)(x)a;ax
+ [ dadyN V(G = ) el ke,
1 ko k — —
+ 3 [ @t VG = ) () @e waey + 5 @Y ey
1 % N x| —(N
+— [ sty NV @ = g)at (o W)y + 7 W, ) o
+ L dzdyN3V (N (x — Y))ayayaya;.

2N
Combining the last two equations and using (2.25)), we conclude that

00 = [an (8ov)(5 - 10v) « VR ) @Il @)
+ VN [a (Vv (V) e 2)ef™) +a (N (V) el 2)ef)]
+ [ / da V.0V pa, + / da (N*V(N.) # o™ 12) () ataq
+ [ Aty VG - ) el Wt

1 * %k — —
+3 / dzdyN*V(N(z - y)) <¢§N>(x)¢§N) (azay+3, " ()7 (y)axay>]

1 « [ (N « | (N
+— [ daay NV @ = )at (o ) + 7 Wy ) o

1 k) k
+ N /dxdyN3V(N(x — Y))a5a,0yay
=: LN + L) + L (6) + LE (1) + L)

where E;?])V(t), for j =0,1,2,3,4, is the part of EE\?) (t) containing the products of exactly j
creation and annihilation operators. Recall here that w(z) =1 — f(z), as defined in ([2.28).
From (2.51)), we find that the generator of the fluctuation dynamics is given by

4
Lx(t) = LA (D) + Y T (k) L3N (T (ke) + 10T (k)] T (k). (2.52)
j=1

In the next subsections, we study separately the different terms on the r.h.s. of (2.52). The
final goal of this analysis, a proof of Theorem will be reached in Subsection [2.6.6

Remark. The reader is invited to convince himself first of the cancellations explained in
Subsection [2.6.6] and of their necessity. For understanding the estimates of the remaining
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2.6. Key bounds on the generator of the fluctuation dynamics

terms of the generator Ly (t) without going through all the technical estimates below, we
recommend to think of af(c;) as ab and of a¥(s;) as af(ky), neglecting p and r. Expand
the generator completely (which gives a large number of terms) and consider the individual
terms as inside an expectation value of a general vector in Fock space. The goal is to obtain
bounds on their expectation value in terms of
N2 1 2 * ok
CN, CEW’ ek and €3 /dxdyN V(N (z —y))aya,a,a.,

where € > 0 is to be chosen small later, and C. > 0 is a N-independent constant possibly
diverging as ¢ — 0. The terms originating from the kinetic energy contain derivatives but
are few and can be estimated one at a time. For the other terms, we have the following
receipe. First, the singular operator a}, has to be moved to the other argument of the scalar
product as a,. The operator a*(k;) can be kept and will be estimated by Lemma m
Also, we distribute the operators such that there are no more than two in either argument
of the scalar product. We then estimate scalar products by the Cauchy-Schwarz inequality
and use [ dazdyV (z—y)f(z,y)g(z,y) < [dadyV (z—y)|f(z,y)|*+ [ dedyV (z—y)|g(x, y)I?,
if necessary with a weight € and 1/¢ inserted for the two summands. Finally, we can use

sup, ||k 1%, ngEN)HOO and the L'-norm of NVy, which is N-independent. The procedure for

L(t) is similar but due to the even larger number of terms tedious. (Actually, £y /(t) is less
singular, because a*(¢;) = a*(p;), where p, is in L2.)

Notation. In the rest of this section, we will use the shorthand notation

cz(y) = ch(ke)(y, v), sz(y) = sh(ke)(y, z), px(y) = p(ke)(y, ), 72(y) = r(ke)(y,z). (2.53)

Moreover, [|p|l2, ||7|l2, ||sh||2 will denote the L?-norms of the kernels p(k:)(z,y), r(k:)(z,y),
and sh(k;)(z,y) over R3 x R? (in other words, they denote the Hilbert-Schmidt norms of the
corresponding operators). The norms ||pg||2, |7z ||2, ||shz||2, on the other hand, indicate norms
over R?. Finally, the notation (.,.) will denote the L? inner product. We will abbreviate

2.6.1. Analysis of the linear terms T*Eg?])v(t)T

Conjugating the linear term Es\?)l (t) with T produces again linear terms. From Lemma/|2.2.1

we obtain

LN ()T (2.54)

= VN / dady N*V(N(z = y))w(N(z = )let )P (o @07 + 7 (@)T*a,T)
- m/ dady N*V(N(z — y))w(N(z — )t )2 o7 (2) (a* (cz) + alsa)

* W/ dady N*V(N(z — y)w(N(z - 9)let™ @) P2 (2) (a(es) + a*(s2))-

These terms are potentially dangerous because they are large (of order v/ N) and do not com-
mute with the number of particles. We will see however that they cancel with contributions

arising from the cubic part Eéoj)v(t).
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

2.6.2. Analysis of the quadratic terms T*Eg?])\,(t)T
We split Lg,)])v (t) into a kinetic and a non-kinetic part, writing
0 0
Lon (D) = K+ L (1),

with K = [dx V,a%Va, being the kinetic energy operator, and we consider separately the
effects of K and of the other quadratic terms collected in E(Zoj)v(t).

Properties of the kinetic part T*CT
We have

T*KT = /dx Va(a™(er) + a(sz)) Va(aley) + a*(sz))
= /dxvxa*(cx)vxa(cm) + /dxvxa*(cx)vxa*(sx)
+ /dxvxa(sx)vxa(cx) + /dea*(sx)Vwa(sz) + /d:c||sz$H§
Following (2.20), we decompose ¢ (y) = 6(x —y) + pz(y) and s,(y) = k(x,y) + rz(y). Hence

T*KT = IC—l—/dwdy|V shy, (y, )|+ (2.55)
-i—/dxvxa a(Vepg) + [ dza™(Vape)V ax+/dxa*(vxpz)a(vxpw)
+/dxvxa;a*(vzkm) + [ dza®(Vapz)a* (Viks) —i—/d:pvxa;a*(vzm)
+/dxa*(VIpx) *(Vars) +/dx a(V ke )Veag + /dm(vm)vx%

/dxa(v ky)a(Vapg —i—/dxa (Varz)a(Vaeps) + /dma*(vxkx)a(vxkx)

—I—/d:ca*(erz)a(Vzk‘x) —i—/dx a*(Viky)a(Vyry) —I—/dxa*(vwrm)a(vzrw).

The properties of T*KT are summarized in the next proposition.

Proposition 2.6.1. We have

T*KT = /dxdylvxshkt(y,x)!2+lC

+ 80 [ dedy(Bw)(V @ - ) (6 @) Wiy + 7 @ ()asa,)
+ &k (1)
(2.56)

where the error Ex (t) is an operator such that for every § > 0 there exists a constant Cs > 0
with

+Ex (1) < 0K + Cse™ I (N + 1),
+ [V, Ex (1)] < 6K + Csem I (N + 1), (2.57)
+ Ex (1) < 0K + CseXIH (N +1).
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2.6. Key bounds on the generator of the fluctuation dynamics

To prove Proposition we will use the next lemma.

Lemma 2.6.2. Let ji,j2 € L*(R3 x R3). Let j; »(2) := ji(z,2) fori=1,2. Then we have

V dww,aﬁ(jl,x)aﬁ(jz,x)w‘ < Clljall2llizllz [N + 1)) 2. (2.58)

Here and in the following a* can be either the annihilation operator a or the creation operator
a*. Moreover, for every § > 0, there exists Cs > 0 such that

‘/ (i, vmazaﬁm,z)w\ < 5K+ CollA IV + DY20?  and, by conjugation
(2.59)
\ [ . aﬂm,z)vxaml < 6K + Cs i 2 IOV + 1) 22

Terms where the argument of a creation and/or annihilation operator is the kernel ¥V ky
(whose L?-norm diverges as N — oo) can be handled with the following bounds. For every
0 > 0 there exists Cs > 0 s.t.

‘/ dxw,a*(vxkx)aﬁ(naw' <K+ Cs(1+ 113NV + DV2|2 and, by conjugation
\ [ w. aﬁ<j1,x>a<vmkm>w>' < 5K + Co(1+ DI + 122

(2.60)

Moreover, we have

/ Qo (1, a*(V ok )a(Vaka) )| < CINY 2002, (2.61)

To control the time derivative of Ex(t), we will also use the following bounds. For every
6 > 0 there exists Cs > 0 such that

] [ . a*(%kx)aﬂ(jl,x)w\ < 5K+ CoMH 1 A2 IV + D2 (262)

Moreover,

[ st (T )alVka)u)| < CRAT (2.63)
Proof. To prove (2.58)), we compute
[ stttz < [ delet ool ot Ges)d
(f astinalilinsle) v+ 1202

< |lgullallall2 1NV + 1)),
Eq. (2.59), on the other hand, follows by

IN

\ / dxw,vma;aﬁ(ﬁ,z)w\ < [ alVaal oGl

S+ g O

< 80, K + Cs / Az j1.0
< 51, Kab) + Cs|l7a]13 |V + 1)1/ 2412,
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

To show ([2.60)), we need to integrate by parts. We write

/ dea (Voky)a (j1.0) = / dady Vok(y, 7) %o (j1.0)
and we observe that
Vak(y, @) = ~Vyk(y,2) = Nu(N(y - 2)) (Vo™ @)t () + oM @) ve™ ()

Hence

/d:ca (Vikg)a (31 z) = /dxdyk(m,y) Vyazaﬁ(jm)
- [ dsdyNo ¥ - ) Vel @ (0) 0y 1)

- / dzdyNw(N(z — ) Vel @)e™ (@) a a (j1.0).

This implies, using Lemma to bound Nw(N(z —y)),
| [t 0" (Vat ) G
< [ dady b )19, 0,81 oG

1
+C / dedy T (1964 @It W)l + 19647 W)l @)1) lay 10 Gy

Y|
<5 / dedy| o™ (@) 2V yay ¢ |2 + Cs / dedy

1 ,
el A OOLG I L [V DR

1 . N
+C / dady ‘QM W) P3N + 1)) 4 © / dady|Vel™ ()2 aye||?

1 N .
e[ dxdy‘x_y‘m @)Playdl +C [ dedylvel™ @)LV + 1M

Using Hardy’s inequality, we conclude that for every § > 0 there exists C5 > 0 (depending
i1z, 8, [lot™) h that
on [j1ll2, 8, ll; |l g1) such tha

‘w?/dm (Vakz)a (le)¢>' < 6(p, Ky + Cs(1+ [l51]13) (b, (N + 1)),
To show , we write
/d$ a*(ka‘x)a(ka‘x) :/d$dyldy2 vzk(ylal')vxg(yan) azlayQ

=: /dy1dyz 9(Y1,y2)a,, ay,.
‘We have
‘/dyld?ﬂg(’yl,y2)<¢aa21ay2¢>‘

< / dy1dyalg(yr, v2)lllap ]l oy ¥

1/2 1/2
( / dyldyzwg@l,yzn?) ( [ s a2 ||ay2w||2)

= llgllz IV

IN
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2.6. Key bounds on the generator of the fluctuation dynamics

Moreover, from the definition (2.31)) of the kernel k; and from the bounds of Lemma [2.3.2
we find

N N N N
(1) Plot™ (@) o™ (1) 1ot (32) 2
|21 — y1]?|e1 — y2 |22 — y1 2|22 — y2|?

N N N N
L /dyldwdmdmwwi @)1Vt (@2) Plet™ () [Pleof™ (92) 2
lz1 — y1||z1 — y2llze — yillze — 12l

o™ (@)™ (22)
21 — y1 P21 — yel?|ze — y1[?2e — yol?

N N N N
IVol™ (21) 21V o™ (22) Plo™ (1) 2 0™ (1) 12
|$1 - y1|2|332 - y2|2

(
ol <c / dy1dysdas dzs P!

< C/dy1dy2dl’1d$2

+C'/dy1dy2d$1dI2
1 (N) (N6 (V) g2

<C | deydwg———
< C [ andzy gl @)1 wo)

1 N 2 N
0 (sw [l R ) 1™ 1

<C

for a constant C' depending only on the H'-norm of gogN). The last two bounds prove (2.61)).

The inequalities (2.62), (2.63) can be proven similarly to (2.60) and (2.61)); this time,

however, the bounds will contain the norm Hgng) || 71, which is bounded by CeXIt, as proven
in Proposition [2.3.1 O

Proof of Proposition[2.6.1. We prove the first bound in . To this end, we observe
that Lemma can be used to bound all factors on the r.h.s. of (using the uniform
estimates for || V1p(ki) || 12(r3xr3), [| V17, || £2(R3 3y from Lemma7 with two exceptions,
given by the term

/dxvxa;a*(vxkx) (2.65)

and its hermitian conjugate. To control (2.65]), we use that, from (2.31)),

Voki(y, #) = —N*Vu(N(z — 1)tV (@) (y) = Nu(N(z — 1) Vel (@)e™ ().

Hence

[ o Vaaia (Vahe) == N [ dadyVu iz - )l @6l ) Vaaia
(2.66)

N N * %

- [ dadyu Ve = )TV @) ) Vi,

The last term can be written as

/dxvia;a*(jx) (2.67)
with j(y,z) = —Nw(N(z — y))V«pEN) (:L‘)cpgN)(y). Combining Lemma and Proposi-
tion we find that j € L?(R® x R3), with uniformly bounded norm. Hence, Lemma
implies that, for every § > 0, there exists Cs > 0 with

] [ <w,vza;;a*<jz>w>\ < SR 2|2 + CollV + )2y 2. (2.68)
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2. Quantitative Derivation of the Gross-Pitaevskii Equation
The first term on the r.h.s. of (2.66)), on the other hand, can be written as
N N * %
N2 [ dadyVuN @ - )o@V () Vot

= N3 / dedy(Aw)(N(z — y)pi™ ()™ (y)aza,

4N / dedy V(N (@ — 1)Vel™ @)™ )ata.

The first contribution on the r. h.s. of the last equation is large and appears explicitly on the

r.h.s. of (2.56|) (it will cancel later, when combined with terms arising from 2(20])\, and EZ(LO) ).
The second term, on the other hand, is an error; integrating by parts, it can be expressed as

N? / dzdy V(N (z — 1)) Vo™ @)e™ (y)ata]

- N / dzdyw(N(z — 1)) Vol (@) Vo™ (y)atal

N / dedyw(N(z — ) Vel (@)™ (1)ar v, a

_ / AoVl (@)ata* (Nw(N(z — JVol™) + / dyV,aa’ (jy)

with j(z,y) = —Nw(N(x — y))chgN) (w)wEN) (y). The second term is bounded as in 1)

The first term, on the other hand, is estimated by

| / ArV ™) (@) a0t (N (N — )Tl )

< Csup [Nw(N(e = DV o (W + )22 (2:69)

< Clle™ ||V + 1))

and .

Also the second bound in follows from Lemma, m In fact, when one takes the
commutator of AV with the terms on the r.h.s. of one either finds zero (for all terms
with one creation and one annihilation operators, which therefore preserve the number of
particles), or one finds again the same terms (up to a possible change of sign). This follows
because by the canonical commutation relations

WNia(f)] =—=a(f)  and  [N,a"(f)] =a*(f)

for every f € L?(R?). Finally, the third bound in is a consequence of Lemma as
well. In fact, the time derivative & K (t) is a sum of terms very similar to the terms appearing
on the r.h.s. of , with the difference that one of the appearing kernels contains a time-
derivative. Combining the estimates from Lemma m (including, in this case, also ,
(2.63))) with the bounds for |V1ip, |2, |V17k,||2 from Lemma [2.3.4 and with the bound for
HngN)H gt from Proposition h (needed to control terms similar to d2.66b, d2.69|), with a
factor of gogN) replaced by ¢; '), we obtain the last inequality in M O

(N)
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2.6. Key bounds on the generator of the fluctuation dynamics

Properties of the non-kinetic part T*E(z?j)v(t)T

We consider now the other quadratic terms, collected in /jgoj)v(t), defined by Lgoj)v(t) =

K+ Zg)])\,(t) We have

T EQOT = [ do (NVOV) ¢ olVP) ()@ () + as2))aler) +a"(s2)

+ / dady N2V (N (2 — )t ()2 (9) (0" (c2) + a(s52))(aley) + a*(s,)
+ ;/dmdy N3V (N(z —v))
% e @™ () (@ (ea) + als2)) (@* () + alsy)) + hie.]
Expanding the products, and bringing all terms to normal-order, we find

T* LY\ ()T

/dx (MV ) [t ()
< [0 (ex)ales) + 0 (s)alss) + " (e0)a”(s0) + also)a(eo) + (50, ,)
+ [ dadyN VG - ) @l )
< [0 (ex)ale,) + a(sy)a(se) + a*(e)a”(5,) + alsaley) + (se,5,)] - (270)
+ % / dedyN*V (N (@ = 9))er (@)er ()
x [a*(cz)a™(cy) + a*(cz)a(sy) + a”(cy)a(ss) + a(sz)a(sy) + (52, cy)]
4y [ asdn v - )Y @ )

x la(es)a(ey) +a*(sy)alcs) + a*(sz)alcy) +a*(sp)a* (sy) + ey, 50)] -
The properties of T *Zéoj)v(t)T are summarized in the following proposition.
Proposition 2.6.3. We have
T* L) (t)T
= [ @V ¢ VP @) s
+ [ dodyNoy (N - )l @ 0) (015) +
+Re [ drdyV VNG~ )o@ ) 50,c,)

1 X ok
45 [t VG = ) [V @6 ) aia; + AV @ ) s

+ &E()

73



2. Quantitative Derivation of the Gross-Pitaevskii Equation

where the error Ey(t) is such that, for appropriate constants C, K > 0,

+&(t) < CefIM (N +1),
+ [N, &) < CefI (N +1), (2.71)
+&(t) < C KN +1).

To show Proposition [2.6.3], we will make use of the next lemma.

Lemma 2.6.4. Let ji,jo € L?(R? x R?). Let j;.(2) := ji(z,x) for i = 1,2. Then there
exists a constant C such that

/ dedyN*V (N (z — )0t (@)™ () l1a* ()8l la? Gz )0

N . .
< Cllet™ Iz il 2 ll2 1OV + 1)129] %

(2.72)

Moreover,

/ dedyN*V (N(z — )t @)1t @) la* (r,2) 0 ||y

N .
< Clet™ 2 1 2l + 1)) 2

(2.73)

and
/ dedyN*V (N (z—y) o™ @)™ @) azt] layll < Clet™ |2 WD) Y20)2. (2.74)

The bounds remain true if both creation and/or annihilation operators act on the same
variable, in the sense that

/ dedyN*V (N(z — )t (@) Pllaf (1,)0 | |0 (o))
< ™2 i llalldallz 1IN + 1)24)12,

/ dedyN*V (N(z — )|t (@) Pllaf (G1)0 | laye ]| < Cllos™ 122 12|V + 1)),

/ dedyN*V (N(z — )|t (@) Pllayil|? < Cllot™ |22 IV 24012
(2.75)

Proof. To prove ([2.72)), we notice that for any a > 0
N N . .
/ dedyN3V (N (z — )|t (@)1t ()| llat Gr,2) 0| b Gz )b
N .
<a / dzdyN*V (N (z — ))|oi™ @) Pz BV + 1)12p)2

+a‘1/dwdyN3V(N(ﬂf—y))lwﬁN)(y)\QHjl,xII%!(N+ D27

N . _ .
<INV (V) # o™ Plloo (@lliall3 + o Yljall3) 1NV + 1)1,
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2.6. Key bounds on the generator of the fluctuation dynamics

M)

Using ||[N3V(N.) * ]¢§N)|2Hoo < CH()DE 22, and optimizing over a > 0, we obtain 1'

Analogously, (2.73]) follows from

/ dzdyN3V (N (z — 9)|et™ @)t )llla Gre) el lay |

<a / dzdyN*V (N (z — )|t () |ayv]?
tat / dedy N3V (N (z — )™ @) Pl 13N + 1) 20)?

N _ .
<INV (N # o™ P oo (@ + @ AR NN + 1))

for any a > 0. Optimizing over « gives (2.73)). Eq. (2.74)) follows from Cauchy-Schwarz. The
bounds in (2.75) can be shown similarly. O

Proof of Proposition|2.6.5 To prove the first bound in , we notice that the quadratic
terms on the r.h.s. of can be controlled with Lemma decomposing, if needed,
a(cy) = az + a(py) and then applying (2.72)), (2.73)), or (2.74). There are two exceptions,
given by the terms proportional to a*(c;)a*(cy) and its hermitian conjugate, proportional to
a(cg)a(cy). For these two terms the bounds from Lemma do not apply. Instead, using
a*(cp) = ak + a*(psz), we write

/ ddyN*V(N (2 — 1) (@)™ (1)a* (ea)a* (cy)

— / dedyN*V (N (z — )™ (@)™ (y)atal
(2.76)

~

4 / dzdyN*V (N (z — )™ @)™ ()" (pa)a

~

4 / drdyN*V (N (2 — 1)) (@)™ (1)a* (c2)a* (by).

The contribution of the last two terms can be bounded by Lemma because one of the
arguments of the creation operators is square integrable. In fact

| [ sty NV = ) @l ) )]

< [ dsayN V- )l @1 Wl o] o 2]
< Cllef™ 2 |V + 1) 2917 < CMMIV + 1) 2

by and , and similarly for the last term on the r.h.s. of . The hermitian
conjugate of , proportional to a(c;)a(cy), can be handled identically.

The second bound in follows similarly, using the fact that the commutator of N
with the terms on the r.h.s. of leaves their form unchanged (apart from the constant
terms and the quadratic terms with one creation and one annihilation operators, whose
contribution to the commutator [N, E2(t)] vanishes).

Also the third bound in @ can be proven analogously, using the bounds for ||shkt||2

and ||p, ||2, as proven in Lemma [2.3.4]. When the time derivative hits the factor gogN)

(x) or
gogN) (y), it generates a contribution which is bounded by HngN)HHz < C||g0§N)H§{4 < CeXlt
(for some K depending only on ||| g1; here we used Proposition [2.3.1]). O
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

2.6.3. Analysis of the cubic terms T*E(g?}v(t)T

We consider now the contributions arising from the cubic terms in .C:(}?j)\,(t). We have
T LY (0T
1
= — [ dady N*V(N(z —
= [ @y NV (N =)
(N)

X [@t (y) (a*(ca) + alsz))(a(¢y) + alsy))(alez) + a*(sz)) + hec.

_ \/1N / dzdyN3V (N (z — 1)tV ()

x [a*(cz)a™(cy)a™(sz) + a*(ca)a*(cy)ales) + a”(cx)alsy)a™(sz) + a”(cx)alsy)alcr)
ta(sz)a*(cy)a”(sz) + a(sz)a™(cy)alcs) + alsz)a(sy)a™(sz) + alsz)alsy)alcs)]
+ h.c.

Writing the terms in normal-order, we find
L) ()T
1 N)
= — [ dedyN*V(N(z — )¢}
= [ arauN VG - ) )

x [a*(ez)a”(¢y)a™(se) + a”(er)a™(cy)alca) + a”(cr)a™(sz)alsy) + a™(cz)a(sy)alex)
+a'(¢y)a”(so)a(sz) + a*(ey)alsr)alez) + a*(s)a(sz)alsy) + alse)a(sy)alcs)]
(N)

+ \;ﬁ/dxdyN?)V(N(fﬂ—?/))‘Pt ()

X [(sy, s2)(a”(cz) + als2)) + (52, ¢y) (alca) + a7 (52)) + (82, 52) (a7 (cy) + alsy))]

+ h.c.
(2.77)
The properties of T’ *.Cé?])\,(t)T are summarized in the following proposition.
Proposition 2.6.5. We have
T L\ T
1
= — [ dedyN3V(N(z —
= [ NV )
N (N E * 2N Nk *
X Jor W)k, y) (alca) +a"(s2)) + @7 (W)ke(2, ) (@ (ca) + alsz))
+ E3(t)
— _JN / dvdyN*V (N (z — y))w(N (z — y)|ef )Pt (@) (aler) + a*(52)) + hoc.
+ &3(t)
(2.78)

where we used the definition of the kernel ki and where the error term Es(t) is such
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2.6. Key bounds on the generator of the fluctuation dynamics

that for every 6 > 0 there exists a constant Cs > 0 with
+&(t) <6 / dvdyN?V (N (z — y))asaazay + 0 /Xf + CseRI N + 1),
+ [N, &(1)] < 5/ drdyN?V (N (z — Y))ayayaza, + 0 '/X; + CseSIM (N + 1), (2.79)
+&3(t) <0 / dvdyN?V (N (z — y))asaazay + 0 %2 + CsefIt (N +1).

Notice here that the first term on the r. h.s. of (2.78)) cancels exactly with the contribution
(2.54]); we will make use of this crucial observation in the proof of Theorem below.

Proof. To bound the cubic terms on the r.h.s. of (2.77)), we systematically apply Cauchy-
Schwarz. This way, we control cubic terms by quartic and quadratic contributions, which
are then estimated making use of Lemma (the quadratic part) and Lemmas and

(the quartic part). For example,
= [ @tV VNG =)l ) o) () (50)0)
< jﬁ / dzdyN*V (N (z — 9))|et™ @)llalca)aley )i la* (s2)|
< [ ddy NV = ) aleale,)u P
+Cj / dzdyN*V (N (z — y))ef™ ()2l a* (s:)0]?
< [ dstuNV (VG - 9))layarv P + GV + 1) 2w

where, in the last line, we used (2.87)) (from Lemma [2.6.8) and (2.75) (from Lemma [2.6.4)).

All other cubic terms can be bounded similarly. We always separate the three creation
and/or annihilation operators putting a small weight 0 in front of the quartic term and in
such a way that, in the resulting quartic contribution, two operators depend on the x and
two on the y variable. The corresponding quadratic term depends on x and can always be
bounded by . It should be noted that the quartic contribution has either the form
la(cz)ale,)¥|)? or |la(cs)af(j,)¥||? or [|a*(j1.4)af (ja,u)¥||?, With square-integrable arguments
Jj1,jo (here a? is either a or a*). These terms can always be controlled using Lemma or
Lemma As for the linear contributions on the r.h.s. of , the first and third can
simply be bounded by N~1/2 (N + 1)1/2, since

(59,520 < Clet™ @)™ ().

To bound the second linear term, we write
= [ QN V(¥ =)o) ) ale) +7(50)
= = [ ANV (¥ @ = )l i) (ales) +0" () +E0)

where £E(t) < N™V2(N + 1)1/2 because, using Lemma [2.3.3

(500 ¢y) — Fe(2,9)] < Clo™ @)1 ()]
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

From , this concludes the proof of the first estimate in . The other two estimates
are proven analogously, using the fact that the commutators of N' with the terms on the
r.h.s. of - have the same form as the terms on the r.h.s. of (2.77) (with possibly just
a different sign), and using the bounds for ||shy, ||z and ||pg,||2 from Lemma M and the

bound for ||<,b£N || 72 from Proposition O

2.6.4. Analysis of the quartic terms T*ﬁf&)\,T

We consider next the contributions arising from the quartic part Efloj)v of Eg\?)(t). We have

LT =g [ dedy NV (N - )
x (a*(ex) + als))(a” (¢y) + als))(aley) +a*(s,))(ale) +a*(s2)).

Expanding the products, we find

= /dwdyNZV(N(iE—y)) a*(cz)a’(cy)a”(sy)a” (s2) + a*(cz)a™(cy)a” (sy)alcr)

+a*(cz)a’(cy)aley)a™(sz) + a’(cr)a” (ey)aley)alea) + a”(cz)alsy)a®(sy)a™ (sz)
+a*(cz)alsy)a”(sy)alca) + a*(cz)alsy)aley)a®(sz) + a™(cx)alsy)alcy)alcz)
+a(sz)a’(cy)a’(sy)a”(s2) + a(sz)a*(¢y)a*(sy)alcz) + alsz)a®(cy)aley)a” (s2)
+ a(sz)a” (cy)aley)alcr) + a(sz)a(sy)a™(sy)a™(sz) + a(sz)a(sy)a* (sy)a(ca)
+ a(sz)a(sy)alcy)a”(sz) + a(sx)a(sy)a(cy)a(cx)}
Writing all terms in normal-order, we obtain
2T LN ()T (2.80)

= /dxdyNQV(N(w—y)) a*(cz)a’(cy)a™(sy)a” (s2) + a*(cz)a™(cy)a” (sy)alce)

+a"(ea)a”(ey)a (sc)aley) + a*(ex)a” (e JaleyJaler) + a*(ex)a’ (s,)a” (s:)als,)
+a*(en)a (s)a(sya(ea) + a*(ca)a* (s2)a(syJaley) + a*(ca)alsy)aley)a(cr)
+a*(e)a’ (5,)a" (s2)als:) + a*(¢,)a’ (s,)alss)ales) +a*(e,)a* (s:)as.Jale,)
+a*(ey)a(sa)ale,Jaler) +a*(s,)a” (sa)alss)als,) + a*(sy)a(sz)als,)a(c:)
+a*(s2)als)a(s,)ale,) + a(sz)als,)ale)a(es)|

+/HﬂwN%«Nu—y»<%»aw@wf@w+w%mwm%mwm

+ 2(sy, sy)a”™ (cz)a™(sz) + 2(sy, sy)a(sz)alcey) + 2(sy, sz)a™(cz)a* (sy)

)
+ 2(s2, 8y)a(sy)alcz) + 2(sy, sy)a” (cz)alcz) + 2(sy, sz)a” (cz)alcy)
+ 2(52, 8y)a" (sz)a(sy) + 2(sy, sy)a” (sz)a(sz) + (cy, sz)a” (cz)a(sy)
+ (82, cy)a”(sy)a(cs) + (52, cy)a™(sy)a™(sz) + (cy, su)a(sz)a(sy)
+ (82, ¢y)a’ (sz)a(cy) + (cy, 5r>a*(cy)a(5x)] +

78



2.6. Key bounds on the generator of the fluctuation dynamics

+ [ dady NV = ) [sare) + s 5P+ ) 50052

The properties of T*ESLOJ)VT are summarized in the next proposition.

Proposition 2.6.6. We have
* 0
2T LN (0T = / dedyN?V (N(z —y)) [[(52, cp)[2 + {52, 501> + (55 85) (50, 52)]
+ / drdyN?V (N (z — Y)) iy (2.81)

+ / dx dy NQV(N(QC —9)) (k(x, y)a;a; + E(l‘, y)axay) + &4(t)

where the error E4(t) is such that, for every § > 0, there exists a constant Cs > 0 with
A2
LE() <6 / dedyN>V (N (x — y))asajayas + Csye + Cac! (W 4 1),
A2
+ [N, E4(1)] <6 / drdyN?V (N (z — y))asaayaq + Ciy + Csef N +1),  (2.82)

) 2
+E4(t) < 5/ dzdyN*V (N (z — Y))aza,ayaz; + CjelItl (A]/\; + N+ 1) .

To prove Proposition [2.6.6] we will make use of the following two lemmas.

Lemma 2.6.7. Suppose ji,jo € L*(R3 x R3) are kernels with the property that

M; 1= max <sup [ dnlie)Posup [ o |ji<x,y>|2> < oo
x y
for i =1,2. Let ji+(2) := ji(z,x) and recall the definition c,(z) = chy,(z,x) from (2.53).
Then there exists a constant C depending only on My, My and on the L*-norms ||j1l2, [l72]l2
such that

/ dedyN*V (N — y))llaf (r.a)ay |2 < CM||(N + 1)) (2.83)
and
/ dedyN*V (N (z — ))[[a*(j1.2)a* (o612 < C min (My | jal|2, Ma | |2) [N + D)2
(2.84)

AS a consequence
/ drdyN*V (N (z — y))||a* (j1,0)alcy)e||* < CMy (N + 1) (2.85)

The inequalities remain true (and are easier to prove) if both operators act on the same
variable. In other words

/dxdyN?’V(N(w —y)lle*(jrz)aztl® < OMy (W + 1)9 1%,
/dxdyN3V(N(x — YD a*(1,0)@* (j20)¥0|* < O min(Myljz]13, Malljn13) [N + Dwl?,

/ dedyN*V (N (z - y))l|a* (1) a(ey )62 < CML [N + 1))
(2.86)

Here a? is either the annihilation operator a or the creation operator a*.
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2. Quantitative Derivation of the Gross-Pitaevskii Equation
Proof. To prove (2.83)), we observe that

/dxd?JN3V(N($ — )l Gre)ay

< / dedy N3V (N (2 — 1)) |12 2| + 1) 2a,0]?

< [ dsdy NV (N = )la, Ao
= CMy||NY|*.
As for (2.84), we notice that (considering for example the case a(ja,) = a*(j2.y))
[ Adg NV (N = )G g

o[V + 1)V2a* (o) 0|2

< / dzdyN*V (N (z — 1))l j10

lla” (2y) N +2) 122

< / dedyN3V (N (z — 1)) |lj1.0

B2y lIBIN + 1YW +2) 2y

< / dzdyN3V (N (z — 1)) |lj1.0
< CMi |23 (N + )92

Eq. follows from the first two, by writing a(c,) = ay + a(py) (recall here that we
are using the notation py,(z) = p(kt)(2,y) with the kernel p(k;) € L*(R3 x R3) defined
in Lemma . Eq. follows similarly; in this case, however, one can immediately
integrate over the variable y, simplifying the proof. O

Terms of the form (2.85)), but with j; ., replaced by ¢, (which is not in L?) are treated
differently.

Lemma 2.6.8. Recall the definition cz(2) = chy,(z,x) from . Then there ezists a
constant C > 0 with

/d:cdyN3V(N(:v —y)lla(cs)aley)v[* < C/ dzdyN°V (N (z — y))l|azay||”
+C |V + D)ol

(2.87)

More precisely, we have
/ dedyN*V (N (z — y))lla(cz)alc,)v||* = / dedyN*V(N(z — y))aza,d|* + E(t) (2.88)
where the error g(t) s such that, for every 6 > 0, there exists a constant Cys with
+E(t) < 5/ dedyN*V (N (z — y))llazayd[|” + Csl|(N + 1)v|[>.

Proof. We write a(cy) = ag + a(pg), using the notation p,(z) = p(k:)(z,x) introduced in

(2.53]). We have

la(cz)a(cy)Pll < [lazayd]l + llaza(py) ]l + lla(pz)aley)]-
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2.6. Key bounds on the generator of the fluctuation dynamics

Therefore, using (2.83) and (2.85), we immediately find (using Lemma to bound ||p||2
and sup, [|pz||2)

[ sty (¥ a-y)llateaate vl < € [ dadyN V(N (e—9) fasay bl +CIN-+1) 0]
To prove (2.88)), we notice that
[ AsdyN V(@ = ) aten)ae, 0l
— [ Ay NV (V@ - ) (00" ()0 (0 ale Jalen)w)
— [ Aty NV @ - )0t agaa)
+ [ dadyNV (VG = ) (8. 0" () + o (ea)a’ (a0
+ 0 (e2)a” (e )alpy)as + a*(e)a” (e)aley)alpa)] )
= [ dsdyNOV (N @ = g)asay ol + E)
where
B0l < [ dsdyN*V (N - ) lapa)aybl loyers] + la(eoalp, ) layars]
+ lla(es)aley ¥l lap,)as] + lalealey b lale,)atps)w ]
<5 [ dedyN VN = ) [lasay bl + ales)afe, 0|
+Cs [ dsdyNOV(N @ ) [lalpo)ayl + lalealp,) o]
< 5/dxdyN3V(N(:c — y)|lazay¥||* + Cs||(N + )%

Here, in the last inequality, we used (2.83)), (2.85) from Lemma and (2.87)). O

Proof of Proposition[2.6.6. To prove the first bound in (2.82) we observe that all quartic
terms on the r.h.s. of (2.80) can be bounded using Lemmas [2.6.7| and [2.6.8, For example,
the contribution arising from the first term on the r.h.s. of (2.80f) is bounded by

| [ oty NV NG - ) (00 (c2)a ()0 ()0 (52) 1)
< [ sy VPV (N - ) lalen)ale,) ol o (5,)a" (52
<6 [ dedyN*V (N = ) a(er)ale, o P
+Cs [ dsdyNPV (N =) (5)a"(52)

C
< €5 [ dadyN* V(N = y)lasay bl + NN + 10
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

where, in the last inequality, we used and . All the other quartic terms on the
r.h.s. of , with the exception of the fourth term (the one containing only ¢, or ¢, as
arguments of the creation and annihilation operators), can be bounded similarly; the key
observation here is that all these terms have at least one creation or annihilation operator
with square integrable argument (this allow us to apply Lemma. Moreover, in all these
terms, the quartic expression does not contain the annihilation operators a(c;) and a(cy) in
the two factors on the left, nor the creation operators a*(c;) and a*(c,) in the two factors
on the right (in Lemma in particular in it is of course important that the factor
a(cy) in the norm appears as an annihilation and not as a creation operator). To bound the
fourth term on the r.h.s. of , where all the arguments of the creation and annihilation
operators are not integrable, we cannot apply Lemma Instead, we use from
Lemma [2.6.81 We obtain

[ Aty NV (V@ = )0 ()0 (e ale Jalen)w)
= /d:cdyNZV(N(a: — Y)W, azayayazp) + E(t)
where the error £(t) is such that, for every & > 0, there exists C5 > 0 with
E(t)] < 5/dwdyN2V(N(x — ) llazayy||® + %H(/\Nr 1)y|%.

The quadratic terms on the r.h.s. of (2.80]) can be bounded using Lemma To this
end, we observe that

(52, 89)], | (52 e | < ON|™ (@)1 ().

It is therefore easy to check that all the quadratic terms, with the exception of the first two
(the quadratic terms appearing on the eighth line of ), have a form suitable to apply
one of the bounds in Lemma More precisely, we apply , if the arguments of the
two creation and/or annihilation operators are either s, or s,. If, on the other hand, one of
the two arguments is ¢, or ¢, and the other one is s, or s,, we write af(cy) = a?} +a*(p,) and

then we apply (2.72) (to bound the contribution proportional to af(p,)) and (2.73) (to bound
8

the contribution proportional to az). Finally, if both arguments are either ¢, or ¢, (and we
have exactly one creation and one annihilation operators), we write a*(c,) = at +a (ps) and

we apply (2.72), (2.73]) and (2.74]). To control the two remaining quadratic contributions,

we observe that, writing a*(c;) = a’ + a*(py),

/ dzdyN2V (N (z — 1)) {cy, 52) (1, a* (ca)a* (c,))
— [ Ay NV (V@ = ) ey )t )
(2.89)
+/dxdyN2V(N(my))(cy,5x><¢aa*(px)agj¢>

i /dxdyNQV(N(fc = Y)){ey, 52) (¥; 0" (ca)a™ (py) ).

Since [(¢y, s2)| < C’N]cpgN) (m)HgogN) (y)|, the last two terms can be bounded (in absolute

82



2.6. Key bounds on the generator of the fluctuation dynamics

value) using (2.73)) and ([2.74)), respectively. We find

/dxdyN?V(N(m - y))<0y78z><¢,a*(m)a2¢>‘ < Cllef™ I3 IV + 1)1 292,

* * N
/ dedyN2V (N (x — y)){cy, 52) (1, a*(cz)a <py>w>\ < Cll™ |2 (N + 1)V 2|2
As for the first term on the r.h.s. of (2.89)), we notice that

<Cya 5x> = k(x’ y) + g(aj7 y)
where g(x,y) = r(x,y) + (py, Sz) is such that

l9(z,9)| < Clot™ (@) 1™ (y)].
Therefore,

/dxdyN2V(N(fC—y))<cyasx><w,a2§a;§ ) = /dxdyNQV(N(x—y))k(way)(%aia’; )

4 / dzdyN2V(N(z — y))g (e, y) (b, a%ali).

The second term can be bounded by
)/dxdyNQV(N(a: —y)g(z, y) (¥, azay >’
<c / dadyN2V (N (z — y)le!™ @)™ W)llasay ] 1]
<9 / dzdyN?V (N (z — y))llasaye|* + Cs / dzdyN?V (N (z — )lle™ (@) Plet™ ()

< [ dedyN*V(N(z = p)llasa, bl + ol e

Proceeding analogously to control the second quadratic term on the r.h.s. of (2.80), we
conclude that

/da:dy NQV(N(QU —9)) KCyv Sz) a*(cw)a*(cy) + (a, Cy) a(cy)a(cz)]

= /dxdy NQV(N(QZ —9)) [k(a:, y)a;a;; + k(, y)axay]
+E(t)

where the error £ (t) is such that, for every ¢ > 0 there exists Cs with
ig(t) < (5/dxdyN2V(N(x —y))aya,a,a, + C’gH(pgN)H%{z (N +1).

We then use to conclude the proof of the first bound in .

The proof of the second inequality in is analogous, because commuting the terms
contributing to &£4(t) with the number of particles operator N either gives zero or leaves the
terms essentially invariant (up to a constant and a possible sign change). Finally, also the
third estimate in can be proven similarly, because the time derivative of the terms
contributing to £4(t) can be expressed as linear combination of terms having the same form,
just with one argument c,, ¢y, s; or s, replaced by its time derivative. These terms can then
be handled as above, using however the bounds for ||shy, |2 and |px,|l2 from Lemma

and the bound for Hgng) || g2 from Proposition O
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

2.6.5. Analysis of [i0,7*|T

In this subsection we will show that the term [¢0;T7*]T is only an error term, in the sense
that it can be controlled with the number operator N, without any need for employing
cancellations. We set

1
B := 3 /dxdy (kt(x,y)afcaz — kt(:c,y)axay)

and .
B = 5 /dxdy (l{:t(x,y)a;az — kt(x,y)axay>
with N N
ki(z,y) = —Nw(N(z — )oY (@) 0™ (v)
and

u(@,y) = ~NuN @ =) (o™ @t @) + ot @) W)

Then T' = exp(B). Using the BCH formula (2.22)), we find

(_1)n+1

1
N A —AB(t) 13 () AB(t) _
(8,T*)T / dre B(t)e E:(n—i—l)!

0 n>0

ad’b(B). (2.90)

More precisely, the integral can first be expanded as a finite sum and an error term; the error
term however converges to zero in expectation values on the domain D(N) of the number
operator (this can be shown as in Lemma [2.2.1]). By the estimates in Prop. the series
is absolutely convergent in expectation values. Since D(N) is invariant w. r. t. the fluctuation
dynamics U(t, s) (this is proven similarly to Prop. , we can use to compute the
expectation of (9,7*)T in the vector U(t,0)v for any ¢ € D(N).

Next, we compute the terms on the r.h.s. of .

Lemma 2.6.9. For each n € N there exist fn 1, fn2 € L*(R® x R3) such that

. 1
ad(B) = 3 / dx dy (fn,l(:c,y)a;a; + fnyg(x,y)axay) for all even n and
(2.91)

. 1
adz(B) = 5 / drdy (fni1(z,y)ahay + fn,g(sc,y)axa;) for all odd n

where .
[ frilla < 2%\ Kell5 [ el 2, (2.92)

foralln >0 andi=1,2,

o { A (2.93)
S A aly ™ (Wkdlallkells + 1) irn =1 |

and

[ el < 2WlBlials, [ dolfustoo)] < 4kl (1l + el )
(2.94)
for alln > 1.
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2.6. Key bounds on the generator of the fluctuation dynamics

Proof. The proof is by induction in n. For n = 0,

) .1 . i
ad%(B) = B = 3 /dxdy (kzt(aj,y)a; v kt(:n,y)axay> .

Hence fo1(z,y) = ki(z,y) and foo(x,y) = ki(z,y), and the estimates d2.92l) and (I2.93I) are
clearly satisfied. Suppose now the statement holds for some n € N. We prove the step to
(n+1). We start with the case that n is even: Using the canonical commutation relations

(L32), we find
adjH(B)
= [B,adp(B)]

1 - 1 o
= [2 /dxdy (kt(x,y)ax y kt(%y)axay) 5 /dxdy (fn,1(x,y)axay + fn,2($,y)azay)]

1
/ Qrdz (fas11 (2, 2)0%as + fusto(, 2)asa’)

T2
where
1 -
Frrnae2) == [ dy (ke9) na(0) + Fools2) + T 2) (ralans) + Fua(w:2)))
fn+172($, Z) = _% /dy (kt(y) Z) (fn,1($,y) + fn,l(yax)) + kt(xvy) (fn,1(27y) + fn,l(ya Z))) .
(2.95)
By Cauchy-Schwarz (similarly to (2.24])), we have
Itk < 2lkellal falle < 2kl il 200

I farrzlle < 2llkellzll faallz < 27 |1Rell5 ™ |1 Kell2,
where we used the induction assumption. Moreover, again by Cauchy-Schwarz,

/dsv |far11(x,2)] < 2lkell2ll fazll < 270 [Kell5 ™ [1Rel2

As for the time-derivative of fy 41, we find

frna(e.2) == 5 [ dy(fae.0) (sl w) + Fooly,2)) + bilon) (Faaleo) + Fua(w. )

k(. 2) (fa2(@,9) + Fas(y,2) + Ky, 2) (Fuz(@,9) + faz(y,2)) )

and similarly for fn+1,2. Hence, we find

I faralle < 2 (IEellall fa2ll2 + [Rella ] Foollz)
<2 (2 alBel3 + 4" el (WEela el + 1)3) )
< @ ) a3 + 2 4 Nkl
<4 ka3 (el + 1))
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

proving (2.93|) for i = 1. The same bound for i = 2 and the second bound in (2.94) for
1 = 1,2 can be proven similarly.
We now prove the case where n is odd: using again the canonical commutation relations

ad (B)

1 1
= [2/dwdy <kt($,y)a2 v~ kt(xay)axay) ,2/dwdy (fra(z,9)azay + foo(z,y)azay)

1 E 3 3
=3 /dxdz(axazfn+171(x, 2) + aga; fni12(x, z))

where
fraa(e.) == [ dykile,w) (Fa(220) + Faa(0: )
(2.97)
fnti2(x,2) = —/dy ki(z,y) (fn1(y, 2) + fo2(z,9)) -
The bounds (2.92), (2.93)), (2.94)) follow as above. O

Using Lemma we obtain the following properties of (0,7*)T.

Proposition 2.6.10. There exists a constant C > 0 with

+ (i0,T")T < Cef (N 4+ 1),
+ [N, (i0,7)T] < Ce"XIM (N + 1), (2.98)
+0; [(10,T*)T) < CeXMt (N +1).

Proof. We observe first of all that, for all fi, fo € L*(R® x R3) with [ dz|fa(z,z)| < oo, we
have

‘<w, [ sy (5o 9)aza; + falo)os) ¢>' < (Mulla + [fell2) (0. (N + 1)) (2.99)
and

(0. [ dody (Plz)ata, + folop)asap)o)
(2.100)
< (Ifills + 1 fall2) (o, N0S) + / oz, 2))de |2

In fact, follows because
(0. [ dady (fla)aiay + ol p)asa, )
< /dl‘ (lag®lllla”(f1(z, )Yl + lla*(fa(z, )P lase]])

< |V + 1)y /dév(llfl(fm N2+ [1f2(z, )ll2) [las |
< (Ifallz + L2l NV + 12012,

86



2.6. Key bounds on the generator of the fluctuation dynamics

Eq. (2.100) can be proven similarly. Combining the last estimates with Lemma and

with (2.90)), we find

(8, (BT T < Z (. adj (B)0)]

(n+1)!

< Z (I Fnallz + [ n2ll2) [V + D)2

+ ZW </dx\f2n—1,2($79€)‘dw> ||w”2

<oy BRI e v+ 122 +ZMHM ]

n>0 ( ) n>1 )
< Cel2 o (W + 1)1 297
< CeMM W+ 1) 2y

using also Lemma The second inequality in ([2.98]) follows similarly because, essentially,
the only consequence of taking the commutator with A is to eliminate the terms ad(B)
for all odd n. Also the third bound in can be proven analogously, taking the tlme

derlvatlve of the expressions for ad’}(B) given in , using the bounds for || f,..¢||2 in (2.93)
and and, finally, using the estimate for HktHQ proven in Lemma O

2.6.6. Cancellations in the generator (proof of Theorem [2.3.5)

Proof of Theorem [2.3.5. In this subsection, we combine the results of the previous subsec-
tions to obtain a proof of Theorem From ([2.54) and Propositions [2.6.1] [2.6.3] [2.6.5]
[2.6.6] it follows that

1
Ly(t)=Cn(t)+ K+ oN dady N*V(N(z — y))asa)ayaq

+ [V [ dady Q)@ — )o@l i

45 [ Ay NV = ) (1 - wV G~ )l @l ) aiaj + e

+E(t)
(2.101)

where the constant Cn () is defined in (2.34)) and the error £(¢) is such that, for every § > 0
there exists Cy > 0 with

2
+E(t) <o <IC + /dxdyN2V(N( —y))aya yayax> + C(;/\]/\’[ + Cse® M (M +1),
2
H[N,EM)] <6 (IC + /dxdyN2V(N(a: - y))a;ag’jaya:& + C’gj\]/\; + CseSIM (N + 1),
2
+£() <6 <IC + /da:dyNQV(N(x - y))a;az‘/ayax) + Cselflt <A]<[ + N+ 1> :

(2.102)
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

In deriving (2.101f), we made use of the crucial cancellation between the linear contributions
in (2.54]) and the linear terms in (2.78). Next, we notice another crucial cancellation. The
terms on the second and third line in (2.101f) can be written as

W [astyaay | (-a+ 3v) - w)] (5 - eV ) =0

since f =1 — w is a solution of the zero-energy scattering equation (—A + (1/2)V)f = 0.

We conclude that

1 k%
Ly(t)=Cn(t)+K+ oN dzdyN3V (N (z — Y))agayayaz; + E(1) (2.103)

where the error £(t) satisfies (2.102)). Then (2.36|) follows from the first bound in (2.102),
taking 6 = 1/2. Also (2.38) and (2.39) follow from the second and third bounds in (2.102]),
since both K and the quartic term on the r.h.s. of (2.103) commute with A and are time-
independent.

This concludes the proof of Theorem [2.3.5 0

2.A. Properties of the solution of the Gross-Pitaevskii equation

Proof of Proposition[2.3.1. (i) This part of the proposition is standard. One proves first local
well-posedness of the two equations in H'(R?). The time of existence depends only on the
H'-norm of the initial data. Since V, f > 0, the H'-norm is bounded by the energy, which
is conserved. Hence one obtains global existence and a uniform bound on the H'-norm.

(ii) Also this part is rather standard, but since the non-linearity in (2.25) depends on N,
(227

and we need bounds uniform in N, we sketch the proof of the bound (2.27)) for H(piN) || rn
(the bound for ||¢¢|| g~ can be proven analogously). We present the proof for the case ¢t > 0.
We claim, first of all, that there exists T' > 0 depending only on ||¢|| g1 and n € N such that

N N
sup [l |[am < 2l + sup o™ [3nos (2.104)
te0,T] t€(0,7]

Introducing the short-hand notation Uy (z) = N3V (Nx)f(Nz), we write the solution %EN)

of as
¢
M) = eith, i/o ds eI Uy # M [2) (M),

Differentiating this equation w.r.t. the spatial variables we find that
90N — cithgar, _ Z/ ds elt=92 37 5 (B) (5) (Un # (87295 o)) g8 o).
0
B<av<p

Here « is a three-dimensional multi-index of non-negative integers, with |a| < n.
The L$°([0,T], L2)-norm of the above expression can be controlled using Strichartz esti-
mates for the free Schrédinger evolution e (see [KT98, Theorem 1.2]). We find

o (N
1600 | eo 2
lo" @ B v— —v a—
<torlie+ 30 5 (5) ()1« @90 )02l 0

B<av<p v
(03 « B V— —UV o —
<9 <PHL2+T1/ZZZ<B)< ) sup [|(U * (@050 B oM o
B<av<p V/ tel0,1) ©
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2.A. Properties of the solution of the Gross-Pitaevskii equation

By Holder and Young inequality, we find

1% e 12

<Ha%\|L2+CT1/QZz( )( ) sup 10" o 050 106N oo

B<av<s t€[0,7]

for p1,p2,p3 > 1 with pl_1 + p2_1 + pgl = 5/6. It is important to note that the indices
(p1,p2,p3) can be chosen differently for each term in the summation. In some of the terms
with |a| = n, all n derivatives hit the same (pgN). Since 1/6 +1/6 4+ 1/2 = 5/6, these terms
can be bounded by

let™ 126 190%™ Iz < Cllgt™ ln (2.105)
for C' depending only on ||¢| g1 (recall here t(ha)t the H'-norm is bounded uniformly in ¢, by
N

part (i)). In some of the other terms, one ¢, ’ has n — 1 derivatives, one has at most one

derivative and the last one has no derivatives. Since H@“chgN)HLa < HgogN)HHn, if [y| <n-—1,
these terms are bounded by the r.h.s. of (2.105)). In all other terms, the three copies of gogN

have at most n — 2 derivatives. These terms are bounded by

107 ™ sl 1 el0of Ml 2 < Cllet™ s

for all multi-indices 71, y2,7v3 with |y;| < n — 2, for i = 1,2,3. We conclude that

1%V lzeorz < 1072 + CTY2 sup ot || + CTY2 sup fof™ |3
te[0,7] te[0,T]

Summing over all o with |a] < n, we find

N N N
sup (ot g < |lllmm +CTY? sup ||t g + CTY? sup [0t |31
t€[0,T] t€[0,T] t€[0,T]

Choosing T' > 0 so small that CT/? < 1/2, we find .

To show , we iterate now . We proceed by induction over n. For n = 1,
the claim follows from part (i). Suppose now that HQOEN)HH(nfl) < Cp_1exp(Kp_1]t]), for
constants Cp,_1, K;,—1 depending on ||¢|| yx-1) and, respectively, on |||/ g1. Let T be as in
(2.104). For an arbitrary t > 0, there exists an integer j € N such that (j — 1)7T < t < jT.
Then

o™ < sup [l gm
s€[(j— 1)T7jT]

<2l pllim +2 sup oM
s€[(j—1)TyT]

N K1
< 2HSOEJ_)1)THHTL —+ 202_163 1]T‘
Similarly we have
HSD(] eyl < 2||90 THHn 4203 _ | SKn1G-DT
Iterating j-times, we obtain

J
H%EN)HH" < QjHQOHHn + 202_1 22£€3Kn—1(j—Z)T < CneK"t,
/=0
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

for some constant C), depending on ||| g» and K, depending only on ||¢|| g:1.
(iii)ﬁ From the modified Gross-Pitaevskii equation (2.25), letting Uy (z) = N3V (Nz)f(Nx),
we find

18l < el + || (0 16671) 6]

N
< etz + ||Uw « 1™ |H o™ oo

N
< 1™ g2 + ClON ™ 12 108 oo
< Cllpt™M 3 < CeX M

for a constant C' depending only on ||¢|| g2 and ||[Un]1, and for K > 0 depending only on
|ol| 1. Here we used part (ii). Applying the gradient to ([2.25]), we find

g™ = —vapl™ + (Un « [¢M2) Vo)

(U * wiN)VsO(N)) oM + <UN * V%EN)@N)> o,

Clearly, HVAcpt Hg < Hgot H p3. The second term on the first line is bounded in norm by

(2.106)

N N
| <16 B Ve <l 1Pl 1
< Un et 219t Nz < Cllet™ e

The terms on the second line of (2.106|) can be bounded similarly. From part (ii), we conclude
that |\V¢§N)||2 < Cexp(K|t]). Analogously, we can also show that HV2¢§N) |2 < CeKIH. We

conclude that ||¢§N)H g2 < Cef Finally, implies
—¢™ = — aipl™ + (U + @ Vig™M)) o
+ (UN * (iéﬁN)soﬁN))) o + (UN * \@ﬁN)F) iy,
Plugging in the r. h.s. of for ingN), we arrive at
—g™ = A2 — A (On 1V P)eN) + (U s \@(N)P)Q o
+ (Ox + 2 (Aol + 2 [Un + (18 PO 6V )) ] o)
+ (Un + (A7)t + (U 6V P) (-a6™).
Proceeding similarly as above, we find that Hgb,EN)Hz < CH%gN)HH‘l < Cexp(K]|t|).
(iv) Using (2.16) and -, we find
alle = i3 = ~21m (ior, (U * [o™ P — 8raolerl) o™ )
= —2Im <90t, (Un * |od|* — 8mao|ee]?) ¢ (N)> (2.107)

—2Im <g0t, (UN * (|901; |2 - |90t|2)) Pt )> '

5Some typos in [BAS12] in this part were corrected here.
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2.A. Properties of the solution of the Gross-Pitaevskii equation

The second term on the r.h.s. can be written as
Im <s0t, (UN # (P - !cptIZ)) ¢§N)> =Im <‘Pt7 <UN # (P - \%\2)) (o1 — ¢§N))> :
Hence, by Hoélder’s and triangle’s inequality,
|1 (i, (U o+ (™1 = lerl?) ) i)
< letleo || (U + (0812 = 16i) ) (0 = ™)

N N
< lletlloo U3 = (08 = 1) llee = o™l

2.108
()2 (2.108)

o 2
el?|,
N N
< ON N ltloo (Iilloo + 165 oo ) Nloe = o113
N N
< C (it + 16 132 ller — o™ I3,

As for the first term on the r.h.s. of (2.107)), we find (since [ Un(y)dy = 8may)

N
< [Unlhlletlloclies = £z |le

’<<Pt7 (Un * !¢t|2—87mo\80t|2)90§m>’
_ ‘ / o7, (1) (2) / dyUn(y) (Jee(e — ) — [u(@)]?)
< / dzdy Uy (y) [ (@)™ (@) |lon( — )2 — o) 2]

Writing Uy (z) = N3U(Nz), with U(z) = V(z)f(z) and changing integration variables, we
find

‘<90t, (Un \90t|2—87rao|90t\2)90§m>‘
< / dzdyU(y)|eu(@)|let™ (@)] || @e(a — y/N)? = [pe(2)?] -

Using

1
liora = u/ NP = lna)P| =| [ dsg ot = su/m

1
<2y [ aslViute - su/Wligito — sy
we conclude that
‘<<Pt7(UN x oe]® — 87Ta0|80t\2)<PEN)>‘

1
<oN! / dady /0 s UW)lyllen@) o™ @IV oela — sy/N)lpe(a — sy/N)|

_ ! 2.109
<Nl [dasdy [ asUl (16 @F + Verta - su/NF) (2109

— N
<N il (et 13 + 1)
< ON7erllye
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

where the constant C' depends on [ dyU(y)|y| and on ||¢| 1. Inserting (2.109) and (2.108)
into (2.107)), and using the estimate from part (ii) for ||| g2, we find

N N C
arlle™ — eul3 < Ce Mo — i3 + e M.
The claim now follows from Gronwall’s inequality, since ¢;—g = (p]gg. O
2.B. Properties of the kernel £;
This section is devoted to the proof of Lemma [2.3.3| and Lemma [2.3.4

Proof of Lemma[2.3.3, Recall that the constant C' here can depend on ||¢|| 7.
(i) We will make use of the bounds (2.30)). The first bound implies immediately that

[k(z,9)| < min (N|so<x>|\so<y>|, so(xmso(y)\) (2.110)

|z — |

and therefore, by Hardy’s inequality

1
%113 < C/dwdyu_ww(ﬂﬁ)laﬂy)ﬁ < Clelinlelz < C.

As for the gradient of k, we have
Vik(z,y) = —=N*Vw(N(z —y))p(@)p(y) — Nw(N(z —y))Ve(a)p(y)

and thus, from the second bound in (2.30)),

4

|z —y[*+1

N3 4

IVikl < C [ dady 5 @)l

where we used Young and then Sobolev inequalities, and for the very last inequality the
substitution Nz +— y. Next we compute

Vi (kR (2, y) = Vs / dz k(z, 2)E(z, )
=V, {@(ﬂf)w(y) /dZNQW(N(fU — 2))w(N(z — y))|e(2)]?
= Vo(z)p(y) /dZN2w(N($ —2)w(N(z —y))|e(2)]?

+ e(@)e(y) /dzN3Vw(N($ — 2))w(N(z = y))le(2)]*.
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2.B. Properties of the kernel k;

Using (2.30), we find

2 2 2 2
V2 (R < € [ dodydaadzs V(@) o) Ple(21) Ple(z)]

|z — z1]lz1 — yllz — 22]|22 — ¥
o(2) Pl (W) Pl (z1) Ple(z2) 2
[z — 21?|21 — yllw — 22]?|22 — ¥
Ve (@) *le(y) Pl e(21) e (22)]?

|z — 21[?|z2 — y|?

(@) | (y) 20 (21) [ (22) I

|z — 2’1|2\Z1 — yP!m - 22’2

+C / dxdydzidzy

< C/dxdydzldzg

+C / dxdydzidzo
< Clelinliels.

(ii) The pointwise bound for k(z,y) follows directly from (2.30]), as noticed in (2.110]). To
bound |r(k)(x,y)|, we observe that, by Holder’s inequality, (2.30)) and part (i),

|(KF)" (. )
— KE(E)™ (2, )
— lo(@)lo()]
dz1dzs N?w(N(z — z1))w(N(z2 — y))p(21)p(z2)k(kk)" ! (21, 22)
< Lo (@)l )] I[FRR)™ 2
1/2
‘ ( / Aoy N2 (N (z — 21))2 o) / dz N2w(N (23 - y))2|¢(22)|2>

< Cle@)lle@)lIIVel3lIkl3"

Thus

QUICHEDY (2711—{—1)' [(kR)" k(2 y)| < Clio(@)lip(y)e2.
n=1 '

The pointwise estimate for p(k)(x,y) can be proven similarly. This completes the proof of
part (ii). Part (iii) follows easily from the pointwise bounds in part (ii). O

Proof of Lemma[2.3.4) In the following proof we will use the bounds Hgng)HHz, ||<,25£N)H2 <
CeXM from Proposition

(i) From ([2.32)), we find

. 1 (N N (N N
lee]|2 < 4 / dxdy_—ypwi @)1 w)1? < Cllp™ 31N 2 < e (2111)

|z
by Hardy’s inequality, and from Proposition part (iii). Similarly,
ellz < Cllgt™ N2 + Clle™M 2l V™Ml < CeM

by Proposition |2.3.1} Writing p(k;) = kiki)™/(2n!), we find immediately
n>0

[B(ke)]2 < Z nHktH ke 271 < [l |2 etz < CeT
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

applying (2.111). The bound for 7(k;) can be proven analogously.
(ii) From [2.2.1] part (v), we have

IV1p(ke)[l2 < Celltel (IIktllz IV 1(keke) |2 + ClIV 1 (Rike) |2 + Cllvl(ktﬁt)lb) :

We are left with the task of estimating Hvl(ktzt)]b and ”Vl(ii‘t%t)”Q. We start by applying
the product rule:

V. / az (Nu(N(@ - 2))5" @7 (2) + No(N (@ - 2) 21 (@)7 " (2))

x Nu(N(z — 1) (2)o™M (1)

<4 / dady ‘ / =N TN — B @l P NN - )| @112)
+4 / ddy / ax Nu(N(: — )V @l )P NV - )| 2113)
4 / dady / dz N2Vu(N (2 — 27 @)™ (2)

< ()™ () Nu(N(y - 2))| (2114)
+4 / ddy / 4z Nu(V(z — )V @H (e e ) NNy — )|
(2.115)

Next, we estimate the four terms on the r. h. s. of the last equation. For the summands
and we use that, from , Nw(Nz) < Clz|~t. Applying Hardy’s inequality, both
terms are bounded by C' HV@EN |2 < Cexp(K|t|), using Proposition Since, again by
([2:30), N?Vw(Nz) < C|z|2, the contribution is bounded by

1 , 2
¢ [asay [ as g @l @I 0]
o / dodydzrdz 20 @P WP 0Pl () P

21 = yllzz — ylla — 1Pl — 2P

() 21,,(V) 2 (N), \ 12
_C/d$’¢§N)(w)‘2/dzldz2‘§0t (20)Ples " (22)] /dy - loe ()]
1

|z — 212|2 — 222 —yllz2 — ¥

(N N
< CIM B8 < CeK

by Proposition Analogously, we can also bound the contribution (2.114)). This shows
the bound for |[Vip(k:)||2. The bounds for ||Vap(ke)||2, [[Vep(ki)ll2, [|[Vap(ki)||2 are proven
similarly.

(iii) From (2.32)), using Nw(Nx) < Clz|~!, we find immediately that

: (N N N (N
sup [k 2)ll2 < € (V&Y allet™ lloo + 17017 6™ 1) < C*
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2.B. Properties of the kernel k;

by Proposition To show the bound for p(k:), we observe that

plke) (,y) = 0 S (;n), [ derdza e, 20) (k) D e, 2200, 0)
n>0 )
= 71 2142 A T,z (n— )Z z z
-3 i ez 20 (k) Y 1, 2 (2.9 -

+ / dzydzs ke, 20) (O (Feke) ™) (21, 22)F (22, )
+ /dzldzz e, 21) (Feke) "V (21, 22)ke(22,9) |
The first term in the parenthesis can be bounded in absolute value by
‘/d21d22 (2, 20) (Reke) "V (21, 2) By (22,?/)‘

(165 @lle )] + \¢£N><x>|r¢§“<zl>\)

1
S C/d21d22 ’x ’

r<ktkt>< (21, 2)| = ‘IsO(N)(@)HsDﬁN)(y)I
<C dzd (N (N) Fookey) D)
< 0l @)le™M )] [ dz 2 Hy FE— Yenlet™ ()] | (Feke) ™V (21, 20)
+ OV W) [ e ol e ol k) o)

< CllReke)" 2 (let™ @)™ <>|||wt el + 16 @™ @) Vet 1) -
< ClkallZ™ V(1Y @1+ e @Dlet ™ W)l

The last term in the parenthesis on the r.h.s. of (2.116]) can be bounded analogously. The
middle term, on the other hand is bounded in absolute value by

| [ dsadza ke, 20) @) ) e, 22 )

(V)11 (V) 1o )™ (22)] 1
< Clgy (@) (y)] /dzldzz | |0y (kike)™ ™ (21, 22)|
T — Zl\ly — 2|

< C||0s (Reke)" 2 Vel Hm““( Ne™ ()]
< Cllkellz 1kl 1272 0™ (@)™ ().

Inserting the last bounds in (2.116f), we find

(k) (2, )| < CeXMelbllz (10N (@) 4 168N (@) (108 ()] + 1™ (W)])-

Integrating over x and taking the supremum over y gives, as before using ([2.27)),

sup [[p(ke) (-, y)l2 < Ce™l.
Yy

The bound for #(k;) can be proven analogously. Combining the bound for 7 (k) with the one
for k., we also obtain the bound for sh(k;). O
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

2.C. Convergence for N-particle wave functions

In this section, we show how the result of Theorem [2.1.1] stated there for initial data of the
form W (v/N)T (ko)1 can be extended to a certain class of data with number of particles
fixed to N.

Theorem 2.C.1. Let p € H*(R3) and suppose 1 € F with ||1||z = 1 is such that

<¢, <A]<,2 + N+ HN> w> <C (2.117)

for a constant C' > 0. Let Py denote the projection onto the N-particle sector of the Fock
space and assume that

IPNW (VNQ)T (ko)ipl| > CN~'4 (2.118)

for all N € N large enough. We consider the time evolution

iyt PNW(VN)T (ko)t)
|PNW (VN Q)T (ko) |

wN,t =€

and we denote by 71(\})15 the one-particle reduced density associated with the N -particle vector

Y. Then there exist constants C,cy,ca > 0 with

C' exp (c1 exp(ealt]))

tr Ni/d

W — el <

for all t € R and all N large enough. Here p; denotes the solution of the time-dependent
Gross-Pitaevskii equation , with initial data pi—g = .

Remarks.

(i) If we relax (2.118) to the weaker condition ||PyW (v Ng)T (ko)w| > CN~%, for some

1/4 < a < 1/2, the proof below still implies the convergence 'y](\})t — |¢t) (@¢| but only

with the slower rate N—1/2+e

(ii) The assumption (2.118)) and its weaker versions mentioned in the previous remark are
very reasonable; let us explain why. The expected number of particles in the Fock
space vector W (v N)T' (ko)1) is given by

(W(/NT (ko) N'W (VN Q)T (ko))

(2.119)
= N + VN(T(ko), p()T (ko)) + (T (ko)o, N'T (ko )1))

with the notation ¢(p) = a(¢) + a*(¢). Let us introduce the shorthand notation
W) 1= (W(VN)T (oo, N W (VNQ)T (ko) ¥ )
From Lemma Lemma and the assumption (2.117)) we then conclude that

there exists a constant C' > 0 with

N —CNY2 < (N) < N +CNY2 (2.120)
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2.C. Convergence for N-particle wave functions

The expectation of A2, on the other hand, is given by

(W(VN@)T (ko)to, N* W (VN Q)T (ko))
= (T(ko)¥, (N + VN@(p) + N)*T (ko)1)
= N+ 2N32(T (ko ), ()T (ko)) + 2N (T (ko)tb, N'T (ko)1)
+ N(T (ko), p(0)*T (ko)) + VN (T (ko) (N () + d(0)N) T (ko))
+ (T (ko) o, N T (ko)1)

Subtracting the square of (2.119)), and applying again Lemma Lemma and
the assumption (2.117)), we estimate the variance of the number of particles in the

vector W (v N)T (ko) by
(W(/NQ)T ko), (N = (M)W (VNQ)T (ko)) < CN
for an appropriate constant C' > 0. We conclude that
(W/N)T ko), 1 (W = (W) = KVN) W(VNQ)T (ko)) < CK2.

(Here 1(|N — (N)] > K\/N) denotes the spectral projection defined by applying the
functional calculus of the number operator A to the characteristic function of the set

{reN:|z— (N)| >KVN}.)
Choosing K > 0 sufficiently large, we find

(W/NOIT (ko). 1 (IN = (V)| < KVN) W(VN@)T (ko)) > 1/2.
From , adjusting the value of K, we obtain
(W(/N)T(ko)p, 1 (W = N| < KVN) W(VNQ)T (ko)) > 1/2.

This means that
N+KVN

2
> [rweEa TG > 172
j=N—-K+vVN
The average value of || P;W (v N@)T (ko)||? for j between N — Kv/N and N+ K+/N is
therefore larger or equal to N —1/2in accordance with the assumption 1) In fact,
this argument shows that for every N there exists an M € [N — Kv/N,N + K+/N|
with || Py W(VN@)T (ko)w|| > N~1/4. Letting

—iHpt Py W(\/N@)T(k'ow
|1 Par W(VN)T (ko)

YN ML =€
and denoting by ’y](\})Mt the one-particle reduced density associated with 9y p7¢, one
can show, similarly to Theorem that

C' exp (c1 exp(ca|t]))

N1/4
The fact that the number of particles M does not exactly match the parameter N
entering the Hamiltonian and the Weyl operator W (v N¢) does not affect the analysis
in any substantial way, since [M — N| < CN'/?2 < N.

(1)

b VYN — |80t><90t\‘ <

97



2. Quantitative Derivation of the Gross-Pitaevskii Equation

Proof of Theorem [2.C.1. We write the integral kernel of ’y](\})t as

AN
B 1
~ N||PxW(VN@)T (ko)t)|2
o <e_iHNtPNW(\/NQ0)T(k’O)¢, aZawe—mNtPNW(\/N@)T(ko)lb>
1
N[ PyW(VNe)T (ko) |2

x (M PN W (VNQ)T (ko) WVNe™) (4 + VN ()
% (as + VNG (@) W (VNM)e W (VNQ)T (ko))

Hence, we find
(N N
T y) = W)t (@)

o™ (@)

~ VN PyW(VN)T (ko) |2
x (P W (VN T (ko). W(VNM g (VN ™M )e 5w (VN Q)T (ko))
20
T NP W (/N )T (ko) |2
" <e—mNtPNW(\/ﬁSO)T(kO)¢, W(\/N%EN))%W*(\/N¢§N))e‘iHNtW(\/NSO)T(k‘oW>
1
* N||PNW (VN@)T (ko) |2 <e

“UNE PN (VN Q)T (ko)wo, W(VN@M)

xaia, W* (VN ))e‘mNtW(\/Ncp)T(k:o)w> :
Therefore, for any compact operator J on L?(R3) we find

tr J () = et ™) e™)
1
~ VNIPYW (VN T (ko) |
% (a(7ef™) + a* (o)) WHVN ™ )em MW (V)T (ko))

(=M Py W (VN T (o), (VNG

1
T NP (VI o)y
<dD() W (VN e YW (VN Q)T (ko))

Since [|dT(J)y[| < ||J|| |N¥]|, we find, applying Lemma [1.4.2]

o 7 (30 = ™™ |
_ 1]
~ VN|PyW(VN@)T (ko) ||
7]
N||PNW (VNQ)T (ko) ||

(7N Py W (VNG T (ho), W(VN@™Y)

1N + DY2WH (VN ) e 5t W (VN Q)T (k)|

IV W (VN M) e VW (VN )T (ko) |
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2.C. Convergence for N-particle wave functions

where ||.J|| denotes the operator norm of J. From Lemma|2 recalling the definition ([2.33))
of the fluctuation dynamics, we find

1 N N
w7 (48~ 1ot (M) |
1]

_\ﬁHPNW(\ﬁSO) (ko) |l
1

T NP W (N )T (ko)
I DY u 0l N0l
~ VN|PxW(VNO)T (k)| N|PnW (VN@)T (ko)

Using Proposition 2.4.2] we conclude that

INY2T* (k) W* (VN e N0 (VN Q)T (ko) |

IV T* (k) W* (VN e W (VN Q)T (ko) |

7 (3~ 18 () | < CIJI N + DY2U(t,0)y| CIIN + 172
Nt VN||PxW(VNE)T (ko)||  VN|PvW (VN)T (ko) ||
CIN + DY

NPy W (VN@)T (ko) ||’
From the assumptions ([2.117]) and (2.118)), we obtain

er 7 (380 = 16 61™1)| < I + ) 2200.000] +

Nt N1/4 N1/4

Finally, Theorem implies that

)| < OWlesp ey exfeat) o.12)

‘tr J (’YNt "Pt ><<Pt N1/
Since the Banach space £!'(L?(R3)) is the dual space to the space of compact operators,

equipped with the operator norm, (2.121)) (followed by Proposition M(IV)) implies the
claim. O
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3. Mean-Field Evolution of Fermionic
Systems

In this chapter, we prove that the evolution of a fermionic many-body system in the mean-
field regime can be approximated with the Hartree-Fock equation. This chapter is based on

the article [BPS13al.
We use the fermionic convention tr fyj(\];) = ﬁ for the normalization of density matrices,
see Section [L.Al

3.1. Introduction

As explained in Section the fermionic mean-field regime is naturally linked to the
semiclassical regime. Recall the Schrodinger equation on the semiclassical time scale
(for readability, from now on we use ¢ for the semiclassical time that was called 7 in Chapter
the physical time does not appear anymore)

N
iedhN s = —252Aj+ Zv zi —x;) | YN (3.1)
j=1

1<J
The mean-field scaling, characterized by the 1/N coupling constant in front of the potential
energy, is combined with the semiclassical regime characterized by ¢ = N~/3 « 1.

Similarly to the bosonic case, typical initial data can be prepared by confining the N
fermions to a volume of order one and cooling them to very low temperatures. In other
words, interesting initial data for (3.1)) are ground states of Hamilton operators of the form

N
Hy™ =" (—e*As; + Vexi () Z V(z (3:2)

7j=1 Z<]

where Vit is an external trapping potential, confining the N particles to a volume of order
one. Such initial data are well approximated by Slater determinants

wslater(xla R Z Sgn )fz( Lr(2) ) IN (ajTr(N))

WGSN

with a family of N orthonormal orbitals ( f]) Y, in L?(R?) (sgn(m) denotes the sign of the
permutation m € Sy). Slater determinants are quasifree states, so they are completely
characterized by their one-particle reduced density matrix, given by the orthogonal projection

N
W=
j=1
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3. Mean-Field Evolution of Fermionic Systems

In fact, a simple computation shows that (¥gater, H}\?apwslateg is given by the Hartree-Fock
energ

() = tr (22D + Vo) w + o1 / drdyV (z — y)o(, z)o(y, )
(3.3)

o [ ¥ — e,y

We expect that the evolution determined by the Schrédinger equation (3.1]) of an initial Slater

determinant approximating the ground state of H]t\l;ap remains close to a Slater determinant

with an evolved reduced one-particle density, given by the solution of the time-dependent

Hartree-Fock equation

ie@twt = [—E2A + (V * Pt) — Xt,wt} (34)

canonically associated with the energy functional (3.3). Here p;(z) = N lwi(x,z) is the
normalized density associated with the one-particle density w;, while X; is the exchange
operator, having the kernel

Xy(z,y) = N7V (2 — y)wi(z,y).

Of course, we cannot expect this last statement to be correct for any initial state close to
a Slater determinant. We expect minimizers of the Hartree-Fock energy functional to
be characterized by a semiclassical structure which is essential to understand the evolution.
In fact, as we will argue next, we expect the kernel w(zx, y) of the reduced density minimizing
(or approximately minimizing) the functional to be concentrated close to the diagonal
and to decay at distances |z — y| > €. To understand the emergence of this semiclassical
structure, and to find good characterizations, let us consider a system of N free fermions in a
box of volume one, for example with periodic boundary conditions. The ground state of the
system is given by the Slater determinant constructed with the N plane waves f,(z) = e™*
with p € (27)Z% and |p| < ¢N'/3, for a suitable constant ¢ (guaranteeing that the total
number of orbitals equals exactly N). The corresponding one-particle reduced density has

the kernel A
w(z,y) = Z e (=)
|p|<cN1/3

where the sum extends over all p € (21)Z% with [p| < eNY3. Letting ¢ = ep (with & =
N—1/3), we can write

» 1 ; 1 T —
_ ig(z—y)/e ~ ig(z—y)/e _ L Yy
w(z,y) E e ~ 3 /|q|§c dge pid ( . > (3.5)

lg|<c

with

an (sin(clé))
W‘w( G

Hence, at fixed N and e, w(z,y) decays to zero for |x — y| > . Moreover, the fact that w
depends only on the difference 2z — y (for z,y in the box) implies that the density w(x, ) is
constant inside the box (and zero outside). This is of course a consequence of the fact that
we consider a system with external potential vanishing inside, and being infinite outside the

— ccos(cyg|)> , ECR3 (3.6)

n this formula in [BPS13al, the factors 1/2 are missing; the typo is corrected here.
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3.1. Introduction

box. More generically, if particles are trapped by a regular potential Voyy with Voy(z) — 00
for |z| — oo, we expect the resulting reduced one-particle density to have approximately the

form o) = E%so (m ; y> y <x—£y> (3.7)

for appropriate functions ¢ and y, or to be a linear combination of such kernels. While x
determines the density of the particles in space (because ¢(0) = 1, to ensure that trw = N),
p fixes the momentum distribution.

Next we look for suitable bounds, characterizing Slater determinants like which have
the correct semiclassical structure. To this end, we observe that, if we differentiate the r. h.s.
of with respect to x or y, a factor e =1 will emerge from the derivative of ¢ (this produces
a kinetic energy of order N°/3 as expected). However, if we take the commutator [V,w], its
kernel will be given by

Vo) = Vot oo = 5o () v (T3Y) . e

In this case the derivative only hits the density profile x; it does not affect ¢, and therefore
it remains of order one (of course, in the example with plane waves in a box, there is the
additional problem that y is the characteristic function of the box, and therefore that it is
not differentiable; this is however a consequence of the pathological choice of the external
potential). We express the fact that the derivative in does not produce additional !
factors through the bound

tr [[V,w]] < CN. (3.9)

Similarly, the fact that w(z,y) decays to zero as |z — y| > e, suggests that the commutator
[z,w], whose kernel is given by

[z, w](z,y) = (z — y)w(z, y), (3.10)

is smaller than w by order €. In fact, one has to be a bit careful here. Going back to the plane
wave example, we observe that the function ¢ computed in does not decay particularly
fast at infinity. For this reason, it is not immediately clear that one can extract an € factor
from the difference (x —y) on the r.h.s. of . Keeping in mind the plane wave example,
let us compute the commutator of the reduced density w with the multiplication operator
er® for a fixed r € (27)Z3. We find

[eir"r,w] _ Z [lei(r+p)'x><eip-x| - ‘eip.x><ei(10*r)-x‘:| _

‘p|§CN1/3

A straightforward computation shows that

[emo,w] [ = 3 o) (e (3.11)

pElr

where

I, = (2m)Z* N {p€R3 tlp—r] < eNYE |pl > NV or [p—r| > eNY3 [p| < cN1/3}.
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3. Mean-Field Evolution of Fermionic Systems

It follows that |[e"%, w]| = |[¢"*,w]|? is a projection, and therefore that
tr|[e"",w]| < CNelr|. (3.12)

Hence, the trace norm of the commutator is smaller, by a factor €, compared with the norm
of the operators e”?w and we*. The fact that the kernel w(z,y) is supported close to the
diagonal allows us to extract an additional € factor from the trace norm of the commutator
[e?P® w]. Notice, however, that if we considered the Hilbert-Schmidt norm of [e??, w], we
would find from that

. , 1/2
I [e“"'x,w] s = <tr ‘ [e”'x,w] ‘2> < (CNEM)UQ.

In other words, the Hilbert-Schmidt norm of the commutator [e?’?, w] is only smaller than
the Hilbert-Schmidt norm of the two operators e??w and we* by a factor e'/2. This is
consistent with the fact that, in (3.7)), the function ¢ does not decay fast at infinity (which
follows from the fact that w is a projection corresponding to a characteristic function in
momentum space).

So far, we verified the bounds and for the ground state of a system of confined
non-interacting electrons. It is natural to ask whether these bounds also hold in systems
with mean-field interaction. Can we still expect the minimizer of the Hamiltonian (3.2)) to
satisfy and ? We claim that the answer to this question is affirmative, and we
propose a heuristic explanationﬂ Semiclassical analysis suggests that the reduced density of
the minimizer of can be approximated by the Weyl quantization w = Opf; of the phase
space density M (p,z) = x(|p| < (67%p(z))'/?), where p is the minimizer of the Thomas-Fermi
type functional

crelp) = 2n [ng@) + [ daVealolpte) + 3 [ drdyV @ = pot)oty)

over all non-negative densities p € L'(R3) N L3(R3) normalized so that ||p||; = 1. Here,
the Weyl quantization Opf; of M is defined by the kernel

w 1 T+ ip T=Y
w(z,y) = Opyy(z,y) = W/dPM <pa 2y> e

It turns out that the commutators of w with the position operator x and with the momentum
operator V are again Weyl quantizations. In fact, a straightforward computation shows that

[z,w] = —ieOpy,rr,  [V,w] = Opy, ur-
Hence, semiclassical analysis predicts that

I
bl w]] & = / dpdg|V,M(p, g)] = CNe / 3 (q)dg

(2me)
and that

tr [V, ]| ~ 1)3 / dpdg|V,M(p,q)| = N / Vp(g)] dg

(2me

2We would like to thank Rupert Frank for pointing out this argument to us.
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3.1. Introduction

Under general assumptions on Vet and V', we can expect the integrals on the r.h.s. of the
last two equations to be finite, and therefore, we can expect the bounds and to
hold true ((3.12) easily follows from the estimate tr |[z,w]| < CNe). Although one could
probably turn the heuristic argument that we just presented into a rigorous proof, we do
not pursue this question in the present work. Instead, we will just assume our initial data
to satisfy and . We consider these bounds as an expression of the semiclassical
structure that emerges naturally when one considers states with energy close to the ground
state of a trapped Hamiltonian of the form .

For initial data ¥ close to Slater determinants and having the correct semiclassical struc-
ture characterized by li and 1} we consider the time evolution ¥n; = e HN /)y
generated by the Hamiltonian

N N

1

Hy=-Y *Aj+ v > Viw —ap) (3.13)
j=1 i<j

and we denote by ’y](\})t the one-particle reduced density associated with 1y ;. Our main

result, Theorem shows that, under suitable assumptions on the potential V', there

exist constants K, cq,co > 0 such that

17, = wnllus < K expley expleslt])) (3.14)
and
tr |7 — wwve| < KNV exp(ey exp(eal) (3.15)

where wy ; denotes the solution of the time-dependent Hartree-Fock equation (3.4 with the

initial data WNt=0 =7 . The bounds . an . show that the difference Y — WN.¢
initial s ](\}7)0 ds (3.14 d (3.15) sh h he diff ](\}7)15 7
)

is much smaller (both in the Hilbert-Schmidt norm and in the trace class norm) than 71(\},t

and wy; (recall that HCU;)tHHS, H’Y](\})tHHs ~ N'/2 while trwN,t,trfy](\})t ~ N).

It turns out that the exchange term is small compared to the other terms in the Hartree-
Fock equation ; in fact, for the class of regular potential that we consider in this paper,
it is of the relative size 1/N. As a consequence, the bounds , and also all other
bounds that we prove in Theorem |3.3.1|for the difference between 71(\}),5 and the solution of the
Hartree-Fock equation remain true if we replace the solution of the Hartree-Fock equation
wn,+ by the solution wy; of the Hartree equation

ie@tfuN,t = [—€2A + (V * [A)Jt),(:jN’t] (316)
with the same initial data wy —o = fy](\})o (here py(z) = N~'&(x,z) is the normalized den-
sity associated to wy). For more details, see the last remark after Theorem and
Proposition [3.A.1]in Appendix

Observe that both the Hartree-Fock equation (3.4) and the Hartree equation still
depend on N, through the initial data and through the semiclassical parameter ¢ = N~1/3.
In the semiclassical limit ¢ — 0, the Hartree (and the Hartree-Fock) dynamics can be ap-
proximated by the solution of the Vlasov equation, as we will explain now. We define the
Wigner transform Wy ; associated with the solution wy; of the Hartree-Fock equation by

1 y AN
Whni(z,p) = W /dwat (x +5§;x - 5§> e Y,
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3. Mean-Field Evolution of Fermionic Systems

In the limit e — 0, the Wigner transform Wy of the solution of the Hartree-Fock equa-
tion (3.4 (or the Wigner transform of the solution Wy, of the Hartree equation) converges
[GIMSO98] towards the solution of the Vlasov equation

W (x,p) +p- VW (z,p) = V, (V * pZI) (x) - VW (z,p). (3.17)

where p}l(z) = [dp W' (z,p). The difference between the Wigner transform Wy, of wy
and the solution of the Vlasov equation W} is of the order eN = N?/3  and therefore much
larger than the difference between the reduced one-particle density ’y](\})t associated with the
solution of the many-body Schrodinger equation and the solution wy; of the Hartree-Fock
equation (or the solution wy ¢ of the Hartree equation). In other words, the Hartree-Fock
approximation (or the Hartree approximation) keeps the quantum structure of the problem
and gives a much more precise approximation of the many-body evolution compared to
the classical Vlasov dynamics. Our result is therefore a dynamical counterpart to [B92l
(GS94], where the Hartree-Fock theory is shown to give a much better approximation to the
ground state energy of a system of atoms or molecules as compared to the Thomas-Fermi
energy (although in contrast to [B92l [(GS94] our analysis does not apply so far to Coulomb
interaction).

3.2. Embedding the system in Fock space

We start by embedding the system in Fock space. To define the Hamilton operator Hy on
Fock space F, we set (Hy1)™ = 7—[5\7)1#(”), with

n

n l§
HE\,) = Z —e? Ny, + N Z Vi(x; —xj),
j=1 i<j

where, as discussed before, ¢ = N~1/3. The Hamiltonian Hy leaves the n-particle sectors
of Fock space invariant. On the N-particle sector, it agrees with . Notice that in the
notation Hy, the index N does not refer to the number of particles, since Hy acts on the
whole Fock space. It reminds instead of the coupling constant 1/N in front of the potential
energy, and of the semiclassical parameter ¢ = N~1/3. Of course, in order to recover the
mean-field regime, we will consider the time evolution of states in F having approximately
N particles. Observe that, in terms of the operator-valued distributions a, and a}, we can
express the Hamiltonian Hy as

1
Hy = 52/dx Vaea,Vzag + IN /dxdy V(z —y)ayayaya,. (3.18)

Notice that the kinetic energy &2 [ dzVa:Va, can also be written as the second quanti-
zation dI'(—g2A).

Since it is more convenient in this and the next chapter to use the normalization tr ’yq(;) =N

for ¢ € L?(R3N) with ||¢|| = 1, we now give some definitions for fermionic systems again
and repeat part of the discussion. Notice also that we simplify the notation by writing -y,

for the one-particle reduced density matrix ’yl(/)l).
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3.2. Embedding the system in Fock space

Given a Fock space vector ¢ € F, we define the one-particle reduced density +y, associated
with v as the non-negative operator with the integral kernel

Y (@,y) = (¢, ayazy)).

Notice that -, is normalized such that tr v, = (1), N'¢). Hence 7y, is a trace class operator if
the expectation of A in the vector 1) is finite. A very useful property of one-particle density
matrices is that in the sense of operators 0 < v, < 1, and especially |vy| < 1 in operator
norm on L?(R3). This only holds for fermionic, not for bosonic, one-particle density matrices
and allows us to get bounds without loosing factors of NV, even if trvy, = V.

In general, if v does not have a fixed number of particles, it is also important to track
the expectations (¢, aya,v)) and (¢, azay). We define therefore the pairing density oy
associated with ¢ as the one-particle operator with integral kernel

O ($, y) = W, ayazw>'

Then we also have @y (w,y) = (1, aya;1). The operators vy and a, can be combined into
the generalized one-particle density I'y : L?*(R3) & L?(R3) — L?(R3) & L*(R3) defined in
terms of the generalized creation/annihilation operators (1.50]) by

((f1,91), Ly f2, g2)) = (¥, A*(f2, 92) A(f1, 91)9) -

A simple computation shows that

_ (W @
Ty = ( S 1o, ) (3.19)

It is simple to check that 0 <T'y < 1.

Knowledge of the generalized one-particle density I'y, allows the computation of the ex-
pectation of all observables which are quadratic in creation and annihilation operators. To
compute expectations of operators involving more than two creation and annihilation oper-
ators, one needs higher order correlation functions, having the form

<¢, i, ... agk@ (3.20)

where each af is either an annihilation or a creation operator. Recall that a quasifree pure
state is a vector in F of the form ¥ = R (), where R, is the unitary implementor of an
implementable Bogoliubov transformation v. As discussed in Section quasifree states
are completely described by the one-particle reduced density matrix <, and the pairing
density oy, or in other words by their generalized one-particle reduced density I'y. If v is
a Bogoliubov transformation of the form , it is simple to check that the generalized
one-particle density associated with ¢ = R,{2 has the form

vty v'u
I, =
¥ ( T T ) ’
and we also denote it by I', = I'y,. Hence, the reduced density of the quasifree state associated
with the Bogoliubov transformation v is v, = v*v, while the pairing density is o, = v*u. As

v is by assumption implementable, v is a Hilbert-Schmidt operator and we conclude that -,
is trace class. In particular the expectation value of the number of particles is always finite
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3. Mean-Field Evolution of Fermionic Systems

for quasifree states. Moreover, it follows that I'2 =T, i.e. I', is a projection. Conversely,
for every linear projection I' : L*(R3) @ L?(R?) — L*(R3) @ L?(R?) having the form

_ (7 «
F_<—a 1—7)

for a trace class operator vy, there exists a quasifree state, i.e. an implementable Bogoliubov
transformation v, such that I' = T',, i.e. ' is the generalized one-particle density associated
with the Fock space vector R,{). Restricting the Hamiltonian to quasifree states of the
form R, one obtains the Bardeen-Cooper-Schrieffer (BCS) energy functional. BCS theory
plays a very important role in physics. Originally introduced to describe superconductors, it
has been later applied to explain the phenomenon of superfluidity observed in dilute gases
of fermionic atoms at low temperature. In the last years, there has been a lot of progress in
the mathematical understanding of BCS theory; see, for example, [HS08, HHSS08, [FHSS11],
HS11] for results concerning equilibrium properties and [HLLS10, [HS12|] for results about
the time-evolution in BCS theory.

In this thesis we are interested in quasifree pure states without pairing, i.e. with o = 0.
Since I' must be a projection, the assumption a = 0 implies that v is a projection. We
require the number of particles to be N, i.e. tr v = N. Then we know that there exists a
Bogoliubov transformation v such that v is the reduced density of R, 2. In fact, it is easy
to construct such a Bogoliubov transformation. Since we assumed v to be an orthogonal
projection with tr v = N, there must be an orthonormal system ( fj)é-vzl such that v =

N N | F - N F
Zj:l |fi)(fjl. We define v := Zj:l |fj)(fj|. Then we have v* = v = Zj:l | f5)(f;] and
vy = Zﬁvzl |fi)(fil = . We also set v = u* :=1— Zjvzl |fi)(fil =1—~. Then u is a

2 =y =1—+~. Hence v*u + v*v = 1, and v*u = 0. It follows that

projection and u*u = u
(e 1=y o SN 491
=0 7) (zjiufmfj\ 1=y ) (3:21)

is an implementable Bogoliubov transformation, with

I‘l,:(g ?_ﬁ). (3.22)

Both the quasifree pure state R, and the N-particle Slater determinant tgater(X) =
(N!)~12 det ( [i(@i)); j< satisfy the Wick theorem and are therefore fully characterized
by their generalized one-particle density (up to a phase, which is equivalent to a unitary
transformation in the space spanned by (f;)~ ;). Since coincides with the generalized
one-particle density of tgater, it follows that R,Q = (0,...,0, ¥gater, 0, ...) (again, up to a
phase). Hence, Slater determinants are the only quasifree pure states with vanishing pairing
density.

Although we will not make use of this fact, let us notice that unitary implementors
of Bogoliubov transformations of the form , generating Slater determinants, can be
also conveniently constructed as particle-hole transformations. This construction has been
demonstrated in Section [L.5l

gl <

3.3. Main results

The next theorem is our main result. In it, we study the time evolution of initial data
close to Slater determinants, and prove that their dynamics can be described in terms of the
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Hartree-Fock (or the Hartree) equation. Of course, we cannot start with an arbitrary Slater
determinant. Instead, we need the initial data to have the semiclassical structure discussed
in the introduction. We encode this requirement in the assumption below. We do
not expect the result to be correct if the initial data is not semiclassical, i.e. if is not
satisfied. Notice however that, as discussed before, we expect the semiclassical structure
to naturally emerge when one tries to minimize the energy. Hence, the assumption
is appropriate to study the dynamics of initially trapped fermionic systems close to the
ground state of the trapped Hamiltonian (traps are then released (or changed) to observe
the dynamics of the particles, which would otherwise be trivial).

Theorem 3.3.1. Assume that, in the Hamiltonian , V € LYR3) and

/ ap (1 + [p)? [V (p)] < oo (3.23)

Let wy be a sequence of orthogonal projections on L*(R3), with trwy = N and such that

tr [[¢??, wy]| < CNe(1+|p|) and

(3.24)
tr |[eV,wn]| < CNe

for all p € R® and for a constant C > 0. Let vy denote the sequence of Bogoliubov transfor-
mations constructed in such that R, ) has the generalized one-particle density

_( wn O
FVN_(O 1—wN)'

Let &n € F be a sequence with (En, N&n) < C uniformly in N. Let 7](\})15 be the reduced
one-particle density associated with the evolved vector

Unyg = e HNER, gy (3.25)

where the Hamiltonian Hy has been defined in . On the other hand, denote by wn ¢
the solution of the Hartree-Fock equation

iaath,t = [—EZA + (V * Pt) — Xt,(A)N7t:| y (326)

with the initial data wyn —0 = wn. Here py(z) = Nflevt(x, x) is the normalized density and
X, is the exchange operator associated with wx ¢, having the kernel Xi(z,y) = N1V (z —
Y)wn,(x,y). Then there exist constants K, c1,co > 0 such that

H%(\Pt - wN,tHHS < K exp(cg exp(cilt])) (3.27)
and X
tr ‘7](\,7)15 — wNﬂg‘ < KNY2 exp(cy exp(c1]t])) (3.28)
for allt € R.

Assume additionally that dTU(wy)én = 0 and (Ex,N?En) < O for all N € N. Then there
exist constants K, c1,co > 0 such that

tr "71(\},1 - wN,t‘ < KNS exp(ey exp(est])) (3.29)
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3. Mean-Field Evolution of Fermionic Systems

for all t € R. Moreover, under this additional assumption, we obtain that

)

tr et Y (30 —wny )| < K(1+ lal + b)) 2 exp(esexplerlt)  (3.30)

for every q,p € R3, t € R.

Remarks.

110

e Using (3.42)) below, it is simple to check that Rj NR,, = N — 2dI'(wy) + N. The

assumption (£, N€xn) < C implies therefore that
‘tr 7J(\},)O —tr WN‘ = [(¢n, Ry N R, &N) — N| < C

uniformly in N (this bound is of course preserved by the time-evolution). Following
the arguments of Section it is also easy to check that

H’Y](\},)o —wnllus < C, and tr "Yj(vl,)o —wn| < CN1/27

if (¢n, N€én) < C. Under the additional assumption dI'(wy )&y = 0, one can even show
that
tr )7}\}7)0 - WN’ < Ca

uniformly in N (applying the arguments at the beginning of Step 3 in Section .
This proves that, at time ¢ = 0, the bulk of the particles is in the quasifree state
generated by R,,. The small fluctuations around the quasifree state are described by
¢n. In particular, it follows that the bounds (3.27), (3.28), (3.29) and (3.30]) hold at
time t = 0. Results similar to (3.27), (3.28), (3-29), (3.30) also hold if (£, Nén) = N@
and (Ex, N2€x) ~ NP, for some a, 8 > 0, but then, of course, the errors become larger.

Suppose that the initial data is wy = Zjvzl |fi)(f;] for a family (fj)j»v:l of orthonor-
mal functions in L?(R3). Then the condition dI'(wy)éy = 0, required for and
, is satisfied if a(f;)ény = 0 for all i = 1,..., N, meaning that particles in {y are
orthogonal to all orbitals f; building the quasifree part of the state.

All our results and our analysis remain valid if we included an external potential in
the Hamiltonian generating the time-evolution. This is the case if the exter-
nal potential is not switched off but changed. The external potential would then, of
course, also appear in the Hartree-Fock equation (3.26]). (Its contribution would can-
cel completely already in Proposition [3.4.3| and only trivial changes are necessary in

Proposition )

Eq. (3.27)) is optimal in its N dependence (it is easy to find a sequence {y € F with
(EN, NEN) < oo such that, already at time ¢ = 0, the difference between '71(\})0 and
wn,o is of order one). On the other hand, we do not expect (3.28) and (3.29)) to be

optimal (the optimal bound for the trace norm of the difference should be, like (3.27)),
of order one in N). Since the Hilbert-Schmidt norm of 71(\})1: and of wy; is of the

order N'/2 (while their trace-norm is of order N), it is not surprising that in (3.27)
we get a better rate than in and in . We point out, however, that we can
improve (3.29) and get optimal estimates, if we test the difference ’y](\})t — wn,¢ against
observables having the correct semiclassical structure, even if these observables are not

Hilbert-Schmidt; see (3.30]).
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e The bounds (3.27), (3.28), (3.29)), (3.30) deteriorate quite fast in time. The emergence
of a double exponential is a consequence of the fact that when we propagate along
the solution wy; of the Hartree-Fock equation (3.26) we get an additional factor which
is growing exponentially in time. It is reasonable to expect that in many situations, the
exponential growth for the commutators [P, wy ] and [eV,wy ] is too pessimistic.
In these situation, it would be possible to get better time-dependence on the r.h.s. of

(3.27), (3.28), (3.29) and (3.30).

e Let wy denote the solution of the Hartree equation

Z.é’ata]\[ﬂg = [—EZA + (V * ﬁt),&N,t] (331)

with the initial data wpy. Under the assumptions of Theorem [3.3.1)on the initial density
wy and on the interaction potential V', we show in Appendix that the contribution
of the exchange term [X;,wn ;] in the Hartree-Fock equation ([3.26) is of smaller order,
and that

trijwn: — wn | < Cexp(er exp(eslt])).

It follows from this remark that the bounds (3.27)), (3.28), (3.29) and (3.30) remain
true if we replace the solution wy ¢ of the Hartree-Fock equation with the solution wy
of the Hartree equation (with the same initial data).

We can also control the convergence of higher order reduced densities. Recall that the k-
particle reduced density associated with the evolved Fock space vector ¢+ defined in (3.25))

is defined as the non-negative trace class operator 'y](\l;)t on L?(R3F) with integral kernel given
by
k
’y](V;(a:l, TR, T, xz,) = <@Z)N’t, a;/l .. a;‘:;caxk .. am@ZJN’t>.
The k-particle reduced density associated with the evolved quasifree state with one-particle
density wy; (obtained through the solution of the Hartree-Fock equation ([3.26))) is given,
according to Wick’s theorem, by

k
w](\lz)t(xl, T, T, T) = Z sgn(m) H wi(xj, x;(j)). (3.32)
j=1

TES

Recall also that the normalization is tr w](\lf)t = N!/(N — k).

Theorem 3.3.2. We use the same notations and assume the same conditions as in The-
orem (the condition dI'(wn)én = 0 is not required here). Let k € N and assume,
additionally, that the sequence £y is such that (Ex,(N + 1)kén) < C. Then there exist
constants D, c1,co > 0 (with ¢1 depending only on V and on the constant on the r.h.s. of
3.24), and D, co depending on V' and on the constants on the r.h.s. of and on k)
such that

H’yj(\’f)t — w](\lf)tHHS < DNF=D/2 exp(eq exp(er]t])) (3.33)
and
tr ‘7](\]7; - w](\]z)t‘ < DN*3 exp(ca exp(cilt])). (3.34)
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3. Mean-Field Evolution of Fermionic Systems

Remark. The N-dependence of the bound (3.33) is optimal. On the other hand, the N-
dependence of (3.34)) is not expected to be optimal, the optimal bound for the trace norm of

the difference 'y]\l,it — wg\lz)t should be of the order N*~1.

In order to show Theorem [3.3.1] and Theorem [3.3:2] we are going to compare the fully
evolved Fock space vector ¢y ; = e~ Hnt/e R, &N with the quasifree state on F with reduced
one-particle density given by the solution wy, of the Hartree-Fock equation . To this
end, we write wy; = Zjvzl |fj.¢)(fjt] for an orthonormal family (fj’t)j-v:l in L?(R3). Recall
that alternatively, the functions f;; can be determined by solving the system of N coupled
non-linear equations

N
201 0(@) = A L) + 5 2 [ V@ = )l P Fiala)
=1

1 7
~ 3 2 [ V@ 50T furle)
i=1

with the initial data fj;—o = f; appearing in (3.21)). Using this equivalent form of the
Hartree-Fock equation, we can avoid any ambiguity between wy; and the decomposition

into orbitals. We define then un = 1—wn,; and vy = Z;VZI |fj,t><fj7t|. Similarly to 1)
we define the Bogoliubov transformation

VN’t:<uN,t UN,t>: ( L— S i) (Tl ) (3.35)

_ N 5 _
UN,t uN7t Zj:l |fj,t><f.7’t| 1- wNJ

The generalized reduced density matrix associated with the quasifree state R, ) is given

by
. WN.t 0
FVN’t o ( O 1 —wN,t ) ’

We expect ¢+ to be close to the quasifree state R, ,{). To prove that this is indeed the
case, we define {y; € F so that

Yy = e TINUER, £y = Ruy &Nt

for every t € R. Equivalently, £+ = Un(t,0){n, where we defined the two-parameter group
of unitary transformations

Un(t,s) = Ry, e HVI=9)/ep

VNt VN, s

(3.36)

for any t,s € R. We refer to Uy as the fluctuation dynamics; it describes the evolution of
particles which are outside the quasifree state.

As we will show in detail in Section the problem of proving the convergence of ’y](\})t

towards the solution of the Hartree-Fock equation w; can be reduced to the problem of
controlling the expectation of the number of particles operator (and of its powers) in the
vector {x¢, or, equivalently, of controlling the growth of the number of particles operator
with respect to the fluctuation dynamics Uy .
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3.4. Bounds on growth of fluctuations

In this section we prove bounds for the growth of the expectation of the number of particles
operator and of its powers with respect to the fluctuation dynamics Uy (t, s). To obtain such
estimates, we will make use of the following lemma, where we collect a series of important
bounds for operators on the fermionic Fock space.

Lemma 3.4.1. For every bounded operator O on L*(R3), we have
1AL (O)¢ || < O] IVl
for every v € F. If O is a Hilbert-Schmidt operator, we also have the bounds
AT (O)4 || < Ol ms IN >4,

H/dmd$’0(m,x/)axax’?/)H < 10|l s [|INY?y], (3.37)

< 2/|O| s [|(N + 1)1/2y|.

/ drdx’ O(z, 2" )akalp

for every ¢ € F. Finally, if O is a trace class operator, we obtain

1AL (O)[| < 2tr O],

/ /
H/dxdx O(z, 2" )aga, || <2tr|O], (3.38)
/dxdx'O(x,x')a;a;, <2tr|0|.

Proof. For any bounded operator O on L?*(R3) we have

lar(O)y|* = Z Z ) < llo]” anllﬂ) N1 = ORIV

n=11,7=1 n=1

For a Hilbert-Schmidt operator O on L?(R?), we have, using ,

H/da:dm'O(x',x) ai,axqﬁH < /dx”aﬁ(O(.,x))aﬂbH

< [asfot. o)z o] (3.39)

1/2
< Ollss ( / dxnazw) < O/l |IN 24|

where a? is either an annihilation operator a or a creation operator a*. This proves the first

two bounds in (3.37)). The third bound in (3.37) can be reduced to the previous bound as

follows:
‘ [ a0t aa; <% / dxdyO(m,y>a;a;w>]

= sup
weF, |lpll=1

= sup </dxdy0(:r,y)axay(/\/+ 1)71/2@7 (N+3)1/21/)>’
e, lpl=1

IA

sup  [[Olls |2V + 1) 2|V + 3)! 2y
PEF, lel=1

< |O]lus||(N + 3)2|.
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Finally, we prove (3.38)). Assume first that O is a selfadjoint trace class operator. Then
we have the spectral decomposition

0= Al il

for a real sequence ();); of eigenvalues with 3, [A;| = tr|O] and an orthonormal family of
eigenvectors f; € L?(R3). We find

dada’ f;(2')f;(x) aba’,

x

H/dxdemx a,

ZmHﬁf] I

where f] is either f; or its complex conjugate fj. We conclude from 1) that

H/dxdw’O(:c,m’)aiai

Now, for an arbitrary, not necessarily selfadjoint, trace class operator O, we write

o+0* 0-0*
5 +1 9 .

<> ISP = trlO] (3.40)

J

0=

Therefore, applying (3.40)), we find

H /dxdx'O(:U ') da
H/ <O+O )(x,x/)aiai/ n H/dxdx’ (O;.O )(%w’) aas,
{2

o[ 5% 4| 25 % < 2erion. n

IN

+ tr

| /\

We are now ready to state the main result of this section, which is a bound for the growth
of the expectation of (N + 1)* with respect to the fluctuation dynamics.

Theorem 3.4.2. Assume (3.25) and (3.24]). LetUn(t,s) be the fluctuation dynamics defined
n and k € N. Then there exist a constant c; > 0, depending only on'V, and a constant
cy > O dependmg on 'V and on k such that

(&:Un (00 W + DFUN(E0)€) < explezexplealt])) (€ (N + 1)) (3.41)

The first step in the proof of Theorem is an explicit computation of the time derivative
of the expectation of the evolved moments of the number of particles operator appearing on

the 1. h.s. of 1D Recall from l’ that Uy (t,0) = R;Nte_iHNt/aR,,N, where
UNt = ( UNt BN’t >
UNt UNL
is the Bogoliubov transform defined in 1 , with vy, une = wnve and uyy = 1 — wi e

In the rest of this section, we will use the shorthand notation R; = Ry wt =unyg, ve =
un and Ty = Ty,. Moreover, we define the functions w5, vt o, Ut o by ue2(y) = un(y, ),
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Ut,x(y) = UN,t(ya l’) and 61‘,,.%(3;/) = ﬁN,t(y7 1’), where uN,t(y7 l’), UN,t(yv ZL‘) and @N,t(ya ZE) denote
the integral kernels of the operators un, vy, and Ty ;. Notice that, from (1.63)), the action
of the Bogoliubov transformation R; on the operator-valued distributions a,, a}, is given by

RiayRi = a(ury) + a*(Ury) and  RiapRe = a*(urz) + a(Uez). (3.42)

Proposition 3.4.3. Let Un(t, s) be the fluctuation dynamics defined in (3.36), £ € F, and
k € N. Then

15% (U (8,006 OV + 1)Uy (1, 0)€)

. k
44
= —Nlmz;/dazdy‘/(x—y)
J:

) {(Un (1,008, (V + 17710 (ut,0)a(T1y )l )aluse) (N + 1)y (£,0)¢)
+ <UN(t, 0)¢, (N + 1)jf1a(Ut,x)a(ﬁt7y)a(ut7y)a(ut7x)(/\/+ 1)k*jL{N(t, 0)§>

+ (UN (006, (N + 1)1 ()" (B, )" (B )i )N + 1)F U (1,006 |
(3.43)

Proof. A simple computation using (3.42)) shows that
R NR! =N — 2d0(wyy) + N
and therefore that

Uy (t, 0" NUy(t,0) = R} eiHNt/E(N — 2dT(wyy) + N)efiHNt/sRO
= RN Ry~ SR e R 4

Hence
is% Uz (£, 0)NUN(t,0) = —2 R eV {dT (ieduwnz) — [Ha, dT (wi )]} e HNER,
= —2UN(t,0)R; {dT'(icOwn ) — [Hn,dl(wny)]} ReUn (2, 0).
On the one hand, from the Hartree-Fock equation for wyn ¢ we find
dl(iedywn ¢) = dT ([—EQA,wNA) +dU ([V * pr — Xt,wni])

where we recall the definitions of the normalized density p(z) = (1/N)wn+(x,z) and of the
exchange operator X;(z,y) = (1/N)V(z — y)wn(z,y). On the other hand

[(Hy,dU(wny)] = [dT(—2A), dT (wie)] + [V, dT(wn )]
with the interaction term
1 * %
VN = N /dxdyV(x ) [N
We conclude that

ie- L (4, 0\ WU (1, 0)

dt (3.44)
= —2UxN(t, 0)R; {dT ([V * pr — X¢,wn4]) — VN, dl (wn )]} Reldn (2, 0).
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Next, we compute the two terms in the brackets. The first term is given by

dU([V x pr — Xy, wive])

1
=5 /ledZQ a az, /dx V(z1 —x) [wN,t(zl, 20)wn (T, ) — w21, 2)wn (2, 22)]

—h.c.
(3.45)
Using (3.42)), we find
Rz‘dF([V * Pt — Xt7WN,tDRt
1 * — * (—
= [ e (@ (n) + 0(01) (@) + (@) (3.46)

X /dx V(z1 — x) [wng(21, 22)wni (@, 2) — wne(21, 2)wn (@, 22)] — hee.

The integration over z3 can be done explicitly using the property [ dzo ut(y1, 22)wn i (y2, 22) =
(wntut) (Y2, y1) = 0 and the fact that wy v, = v, We get

R:dF([V * Pt — Xt,wN7t])Rt
1 X _
— 3 [ 48 @ ) + (1)
X /dx V(21 — @) [a*(0p,2) )wn i (@, 2) — a* (Vpo)wn (21, )] — hec.

= % /dxdy V(z —vy) [wN,t(x, x)a™ (Ut y)a* (Ury) — wni(y, x)a™ (usy)a™ (Ue,2) | — hec.
(3.47)

where in the last step the contributions containing a(7; ., ) are cancelled by their hermitian
conjugates.

We now consider the second contribution in the brackets on the r.h.s. of (3.44). Using

the canonical anticommutation relations, we obtain
1 k %k
Wn,dl(wne)] = N /dxdydz V(z — y)wni(z,y)asaaya, — h.c.
Conjugating with the Bogoliubov transformation R;, we find
Ri[Vn, dl(wn,0)| Ry
1
— [ dndyde Vo = ()

x (0" (utz) + a(Vez)) (a*(ure) + a(Vee)) (a(uey) + a”(Vey)) (a(ure) + a*(Vee))
—h.c.

Integrating over z, using again wy ;u; = 0 and wy Uy = V¢, we find
Ry [Vn, dT'(wn )] Ry

= % / dady V(z — y)a(Try) (a*(uts) + a(0rs)) (aluey) + a*(Ory)) (a(urs) + a* (0 )
—h.c.
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Since (Vyy, urz) = 0 the operators a(vsy) and a*(us ) anticommute. Taking into account
the fact that many contributions cancel after subtracting the hermitian conjugate, we find

R} [Vn,dT (wn )| Re

= — Jb/dxdy Viz—1y) {a*(um)a(vty)a(ut,y)a(um)
+ (Tt z)a(Tyy)a(uty)a(ut,z) — a(Utz)a(Usy)a” (Trz)a(ugy) | — hc.

Normal ordering the last term in the brackets using <Ut,y,®m> = wn(z,y), we conclude
that

RI [VN, dF(wN,t)]Rt
= [ Vi~ ) |a*wa)atonyatun,atue,)

+ a(Us)a(Vry)a(usy)a(uez) + a* (ugy)a™ (Tey)a® (vm)a(vt,m)] — h.c.

+ % /dxdy V(z—y) [wMt(x, x)a* (ugy)a* (Tyy) — wne(y, x)a” (uty)a*(vt’x)} —h.c.
(3.48)

Combining (3.47) with (3.48)), we find
R; {dl’ ([V * py — Xy,wny]) — [N, dl(wnt)]} Ry

1 " _
= —— [dadyV(z—y) [a (ut,z)a(Ur,y)a(ugy)a(ug )
+ a(Urz)a(Vry)a(usy)a(u ) + a* (ury)a” (e y)a™ (Uz)a(Tez) | — hec.
From ({3.44)), we obtain

ie% U (1, )N Uy (1 0)
= — %Im / dedy V(x — y) Ux(t,0) {a*(ut,x)a(vty)a(ut,y)a(ut,x)
+ (Ut ) a(Ury)a(usy)a(uz) + a* (ury)a™ (Tey)a*™ (U )a(Ve ) |Un (L, 0).
Eq. now follows from the observation that
i S (& U (1, 0V + 1)t (1, 0)¢
= i (& Uz (6, 0V + 1)
j=1

X Un (t,0) [z‘gizﬁv(t, 0)NUN (¢, 0)} U (t, 0) (N + 1)F Ity (t, 0)§>. O
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3. Mean-Field Evolution of Fermionic Systems

Next, we have to bound the three terms on the r.h.s. of by the expectation of
(N 4 1)* in the vector Uy (t,0)¢. A key ingredient to obtain such bounds is an estimate for
the trace norm of the commutator [e??® wy,]. For ¢t = 0 such an estimate was assumed in
. In the next proposition, whose proof is deferred to Section we show that the
bound can be propagated to all t € R.

Proposition 3.4.4. Let V € L*(R?) such that

/ dp (1+ pf2) [P (p)] < 0.

Let wy be a non-negative trace class operator on L*(R3), with trwy = N, |lwy|| < 1 and
such that

sup ——— tr|[wy, e?%]| < CNe
pers 1+ p] (3.49)
tr|jwn,eV]| < CNe.

for all p € R3. Let wn,¢ be the solution of the Hartree-Fock equation with initial data
wn. Then, there exist constants K,c > 0 only depending on the potential V' such that

sup ——— tr |[wi s, €P7)| < K Ne exp(c|t|)
pers 1+ [p| (3.50)
tr [[wn e, eV]| < KNe exp(clt])

for all p € R? and t € R.

We are now ready to estimate the three terms appearing on the r.h.s. of (3.43).

Lemma 3.4.5. Under the assumptions (3.23) und (3.24) of Theorem there exists a
constant ¢1 > 0 depending on V and a constant C > 0 depending on V and on k € N, such
that

’% / dedyV(x —y) <L{N(t, 0)¢, (N + 1)j_1 {a*(ut,x)a(vt,y)a(u@y)a(ut,x)

+ (10T )a(uey)a(uee) + a* (e )a” (T )a <vt7x>a<vt,x>}w + 1) U (1, 0)¢ )|

< Ceexp(er|t]) (Un(t,0)€, (N + D*uy (¢, 0)¢)
(3.51)

forallj=1,...,k and t € R.

Proof. We estimate the contributions arising from the three terms in the parenthesis sepa-
rately. Let us start with the first term,

[:— ‘Jif/dxdyV(x—y) <uN(t, 0)€, (N + 1)

X 0 ()T )ty ) )N+ DF U (£,0)6)|
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3.4. Bounds on growth of fluctuations

Inserting 1 = (N + 3)¥/273(N 4 3)~%/2+7 pulling (N + 3)~%/>*J through the fermionic
operators to the right, and using the Cauchy-Schwarz inequality, we get:

1< [P o) H/ 4 0 ()6 o )+ 3)2 (N + 17 U (1,0 H

(3.52)
X /dya(vtyy)e_ip’ya(ut,y)(/\f—l— l)k/2MN(t,0)§H .
The first norm can be bounded using that, for any ¢ € F:
H/dx a* (ugg)ePa(uyy) || = H/dxdmdrz Ut(m,x)eip'mut(a:,rz)ailamaﬁ‘
= Hd].“(uteip'mut)cbﬂ (3.53)
< IV

where the last line follows from Lemma together with ||uge®®u|| < 1 (with a slight
abuse of notation, e”* denotes a multiplication operator). As for the second norm on the

r.h.s. of (3.52), we use that:
H/dya(vt,y)e_ip’ya(uw)gi)H = H/drldrg (vte_ip'mut) (rl,rg)arlar2q5'
= H/drldrg (vt[e*ip'x,wN,t]) (rl,rg)arlamcb‘
2tr [orfe™ P, wn ]| |9

< 2Ke(1+ |p))Net||g) (3.54)

where the second line follows from v;u; = 0 and u; = 1 — wn, the third from Lemma
and the last from ||v;|| <1 and Proposition Using the bounds (3.53)), (3.54) in ([3.52)
we get:

IN

—
IN

2Ke < / dp|V(p)I(1 + \p|)> el W+ 8YF273 (1) U (8, 0

< || + 12 (2, 0|
Cee™||(NV + 1) 2Un (t, 0)¢||? (3.55)

IN

for a suitable constant C' > 0 (depending on k). Consider now the second term on the r.h.s.
of (3.51)),
1 .
M = ’N /d:cdy Viz—y) <uN(t,0)g, (N + 1)1
X a(B1,2)a(Byy aluy Jalu) (N + DF Uy (1, 0)6)|

Inserting a 1 = (N + 5)¥/2H1=J(N 4 5)=%/2=147 and pulling (N + 5)~%/2~1*J through the
annihilation operators to the right, we get:

o< [ dpdedy V) [0+ 17T 4 5)72 1 0,01

X

/dxdy a(Tz)eP aug ;) a(Try)e P Ya(ug,) (N + 1)k/2_1UN(t7O)£H (3.56)
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3. Mean-Field Evolution of Fermionic Systems

Using that v;u; = 0 and that u; = 1 — wy ¢, we obtain, for any ¢ € F:

H/dx a(vm)eima(um)qﬁH = H/drldrgdxvt(Tba:)eipxut(a:,rg)arlam(j)

oele™, wn s [N 2]
(2tr |7, wn])? N2
< (2Ke(1+ [p])N) 26t | A 20 (3.57)

A

IN

where the second line follows from Lemma 3.4.1L the third from |ju]| < 1, |2 < 1,
lwn|| < 1 and the last follows from Proposition [3.4.4] (the constants K, ¢ > 0 depend on
V but not on k). Applying this bound twice, we can estimate the last norm in the r.h.s. of

| [ axayatea)e“atua)at)e ot O + 1 (s 01|

< (2Ke(1 + [p))N)"2e

/dy a(@ty)e_ip'ya(ut,y)/\/‘lﬂ(N+ 1)k/2_luN(t,0)£H
< 2Ke(1 + |p|) Nelt HN(/\/ )Ry (2, 0)§H

< 2Ke(1+ [p|)NeXl H(N+ 152U (t, 0)§H . (3.58)
Plugging this bound into (3.56)), we conclude that
~ 2
< 2e ([ anlPeI0+ ) ) 0 + 5 (e, 0
2
< Ceel H(N+ 1)k/2uN(t,0)5H

where the constant ¢ > 0 depends on V while the constant C' > 0 depends on V and on
k. The last term in (3.51)) is bounded analogously to term I. This completes the proof of
(13.51]). O

Proof of Theorem [3.4.3. Combining Proposition [3.4.3] and Lemma [3.4.5] we find

is% <UN('5= 0)&, (N + 1)Fun (¢, 0)§>’ < Ceerlt <UN(t7 0)¢, (N + 1)kUN(t70)§>-

Gronwall’s Lemma implies that

(Un(£,0)€, (W + 1)F U (2, 0)€ ) < expleaexplent]) (&, (W + 1)¥e)

where the constant c¢; depends only on the potential V', while co depends on V' and on
k e N. O
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3.5. Proof of main results

3.5. Proof of main results

In this section we prove our main results, Theorem and Theorem As in Section
we will use the notation Ry = R, ,, uy = uny, v = UN,t, Uy = Uy, Moreover, we define
the functions us o (y) = un (Y, ), ve2(y) = vN (Y, z) and Ty (y) = Un+(y, ).

Proof of Theorem|3.3.1. We start from the expression
’Y](\}’)t(x: y) = <1r[}N,t7 az;awa,t>
= (7 MNYE Rty ajageMNE Ryg ) (3.59)
_ <£N’ RSeiHNt/saZaxe_iHNt/sRQ§N>.
Introducing the fluctuation dynamics Uy defined in (3.36)), we obtain
Yn(@,y) = (En UK (1,0) Ri ajas R (£,0)Ex )
= (&N, UN(L,0) (a" (ury) + a(Try)) (a(ua) + a*(Tee)) Un (L, 0)EN)

= (&N, Un (1, 0){a" (ury)a(urz) — a™ (T e )a(Try) + (Tty, ra)
+ a* (ugy)a”™ (Ve e) + a(it,y)a(um)}l/{]v(t, O)§N>.

Here we used the defining property (3.42)) of the Bogoliubov transformation R; and, in the
third line, the canonical anticommutation relations (1.33)). We observe that

@t,ya@t,ﬁ = /dzvt(z,y)vt(z,x) = (vv)(y, z) = wN,t(x,y).
This implies that

Y2, y) — (@, y) = (En, Uk (8, 0){a* (ury)a(ure) — a*(Tra)a(Tey)

+a* (Ut,y)a* (Et,a:) + a(@t,y)a(ut,x)} Un (t7 O)£N>-

Step 1: Proof of (3.27). We integrate this difference against the integral kernel of a
Hilbert-Schmidt operator O on L?(R3) and find

tr O ('71(\},1 — wNyt)
= (&n, UN(L,0) (dT(wOuy) — dT' (0:0%vy)) Un(t,0)EN) (3.60)

+ 2Re (&N, U (¢,0) </ dndrg(vtOut)(rl,rg)arlam) Un(t,0)En ).

From Lemma and using |lu¢|| = ||v¢]| = 1, we conclude that

tr0 (14 —wni) | < (lueOudl] + 1707 ll) v, Uiy (1, ONUn (2, 0)én)
+ 2fjuOusllus || (W + 1) 22U (2, 0)6w | ew] (3.61)
< C|Ollus (& Un (£, 0)(N + Un (2, 0)n).
From Theorem and from the assumption (x, NEn) < C, we obtain

1
b - = ottty
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3. Mean-Field Evolution of Fermionic Systems

which completes the proof of (3.27)).

Step 2: Proof of (3.28). We start anew from (3.60]), assuming now O to be a compact
operator on L?(IR?), not necessarily Hilbert-Schmidt. Proceeding as in (3.61]), we find

trO (71(\})75 — wMt) )
< 20|0] [V + 1) (¢, 0)&w I + 2loeOutllms || (N + 1) (8, 0)&wv |l
< 2[O[H [N + 1)Uy (£, 0)&n* + O] ve s | (N + 1) 2 (£, 00w [[|n]]-

Applying Theorem the assumption (£, Néx) < C, and |jvg|lus = N'/2, we obtain

‘ trO (7](\})75 - wN,t> ‘ < CNY2 exp(e; exp(ealt])) .

)

This completes the proof of ([3.28]).

Step 3: Proof of (3.29). Let us now assume additionally dI'(wy)én = 0. Let 51(\7;) the n-
particle component of the Fock space vector 5. With a slight abuse of notation, we denote
again by 51(\7) the Fock space vector (0, ...,0, fj(\?), 0,...) € F. The assumption implies that

dF(wN)ﬁxl) =0 for all n € N. Hence
NBR, &% =R,y (N + N = 2dT(wn))eW = Ry (n+ N)EW = (n+ N)R, & . (3.62)

In other words, R,,ij(\?) is an eigenstate of the number of particles operator with eigenvalue
n + N. Hence

(1)

YN (2,Y)
_ Z <e—iHNt/€RVN€](\T;)’ a;axe_iHNt/gRuij(\T[L)>
n>0
= 7 Un (8,008 (0" (uey) + () @(ut0) + a* (5r) U (1, 0)ER).
n>0

Proceeding as in the proof of the first part of Theorem [3.3.1] for a compact operator O on
L?(R?), we end up with:

tr O(’y](\},)t — WNt)
= 37 (€ Uz (,0) (AT (uOur) — dT (5,0%0,)) Un (£, 0)€5)

n>0

+2Re > (€, Uk (t,0) ( / drydry (v:0u) (11, 72) an, ar2> Un (t, 00

n>0
= 1+1I.

(3.63)

We estimate separately the two lines in the r.h.s. of Eq. (3.63]). Let us start with

L= (€W, Uk (,0) (dT (uOug) — dT(T,0%0r)) U (£, 0)EN).

n>0
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3.5. Proof of main results

From Lemma we get
1< (lueOul| + [0:0%0: ) S (€80, Uk (8, 00N UN (2, 0)6F)

n>0
< O||0] expler exp(ealt])) Y (€5, NeW) (3.64)
n>0

= C||O|l exp(e1 exp(ealt]))(€n, NEn) < C||O] exp(cr exp(calt]))

where we used the fact that ||us]| = ||v¢|| = 1, Theorem to control the growth of the
expectation of N w.r. t. the fluctuation dynamics Uy, and that by assumption (En, NEn) <
C'. Therefore, we are left with

II=2Re> (€, Uk (t,0) < / dridra(v,0uy) (1, m)anam) Un(t, 00 . (3.65)

n>0

We now introduce the generator Ly (t) through icOUn(t,s) = Ln(t)U(t,s). The generator
has a part which commutes with the number operator N; this operator we call £(t). From
Proposition [3.4.3] we know the part of the generator which does not commute with the
number operator; writing this part explicitly we get

Ly(t) = Zb/dxdy V(e — y){a*(um)a(ﬁt,y)a(ut,y)a(um)

+ g0l)a(m)aluny)alune) - ' (u)a* 7y)a" (s )alwr) +hep G0

+E().

We are going to compare the dynamics Uy (¢, s) with a modified dynamics U ](\})(t, s), whose

generator E%) (t) only contains one of the three explicitly written terms on the r.h.s. of

(3.66]), and the term £(t), which commutes with A/. We define
W .o L 1 @ Va(®
£ (0) = < [ dodyV (- y){5a(vt,x)a(vmy)a(uw)a(um) + h.c.} +EW®).
Notice that Eg\lf) (t) can only create or annihilate four particles at a time. This implies that,
although Eg\l,) (t) does not commute with A, it satisfies
LN €n+42)uV (t,0) =UP (1,00 1(NV € n+4Z)  foralln € N. (3.67)

Here 1(N € n+4Z) is the projection defined by applying the functional calculus of N to the
characteristic function of the set n 4+ 4Z. We will use the shorthand 1,147 = 1(N € n+47)
from now on.

We now rewrite (3.65)) as

II=2ReY {< O w0 ( / dridra(v,0uy) (71, r2)ar1ar2> uP(t, 00

n>0

(68, (U (t,0) — U (1,0)) ( / drldrg(vtOut)(rl,rg)arlam) Ul (,00e0) (3.68)

+( ](\7)72/{1@(75,0) </ dmdrz(vtOUt)(?“la7"2)6”1&7"2) <MN(t’ 0) - Ll](\;) t 0)> 51(\7)>}

=: IIl —+ IIQ -+ IIg .
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3. Mean-Field Evolution of Fermionic Systems

The key observation which allows us to improve the rate of convergence with respect to
Eq. 1' is that II; = 0. This follows from the remark that L{J(\}) can only create or

annihilate particles in groups of four. Thus, the expectation of a product of two annihilation

operators (or two creation operators) in the vector L{](Vl )(t, 0)51(\7) must vanish. To prove this

fact rigorously, we use (3.67)), which implies that for each n € N
<§](\7,"°),L{J(\})*(t, 0) </ dndrg(vtOut)(rl,rg)amam) Z/{](\})(t,O) ](\?)>
o (n) , ,(1)x 0 (1) (n)
= (Lnqazy Uy (t,0) dridra(viOue) (11, r2)ar ar, | Uy (t,0)1n1az8y")
_ em) 4 (1)« drmd 0 (1) (n)
= (En Uy (1,0)1n 44z r1dra(viOug) (11, 72)ary ary | Lngazly’ (8, 0)657)

= <§1(\7),U](vl)*(t70)1n+4zln+4z+2 </ dndT’z(vtOut)(?‘h7’2)ar1ar2> U](\})(tvo)ﬁz(?)>
—0, (3.69)

where in the last step we used that the range of the projections is disjoint, 1, +471,4+47+2 = 0.
We are left with bounding the last two terms in (3.68)); let us start with

I =2Re Y <g§3), (uj{,(t, 0) —uV (¢, 0))

n>0

(3.70)
X </ drldrg(vtOut)(rl,rg)aTlar2> Z/l](\;)(t,O) 5\7)>
We expand Uy in terms of U ](\} ) using the Duhamel formula
) i f 5o
uN@m)—uN(umzz—g/(huuﬁan@uN(&m, (3.71)
0

wherein
L (t) = Ly(t) - LY (1)
— ;f/dﬂ:dy Viz—1y) {a*(ut’x)a(@w)a(ut,y)a(ut,x) (3.72)

— a* (upy)a* (Ty.y)a* (Te.0)a(Tra) + h.c.}

Plugging (3.71)) into (3.70)) and using (3.72]) we end up with
1, < - Sy / t dstd\V*(s,0)
— eN N> 0 N ’

n>0
X </ dady V(z — y)a* (usz)a(vsy)a(us,y)a(us ) + h.c.)
X UN(t, s) (/drldrg(vtOut)(rl,rg)arlam> U](\;)(t,O) ](\7)>’

¢
+ ’< ](\7),/0 dsZ/{](\})*(s,O) </ daedy V(z — y)a™ (usy)a™ (Vs y)a* (Us z)a(Us,z) —|—h.c.> X
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3.5. Proof of main results

x Un(t,s) < / drldw(vt()ut)(rl,r2)am%> U t,0) ]@N}
=:1Ip1 + 122 (3.73)

We start by estimating IIs 1. We find
2 ¢ .
Iy < — / dS/dp’V(PN

sN;% 0

AW U (5. 0)dr (wgeea,)
X </ dwidws (vseimus)(wl,wg)awlaw) Un(t,s)
X </drldrg(vtOut)(rl,rg)arlam) L{](\})(t,O) ](\7)>‘
(n) 5 (1)« dw-d = ,—ipT * ok

+ (&N, UNT (5,0) widws (vse™ P us) (wr, w2)a, ag,,

X dT (useP s UK (t, 5) </ drld?“z(vtout)(”’TZ)a”am> L{](\})(t, 0)51(\?)»} ’

Using the Cauchy-Schwarz inequality, we obtain

2 t > ipT 1) (n)
Iy < az\r; /O ds / Ap|V (p)[[dr (use P U (5, 0)€;

X

(/ dwidws (vseipxus)(wl,wg)awlaW2> Un(t, s)

X </ drldrg(vtOut)(rl,rg)amam) L{](\})(t,O) ](\7,1)

+25 [as [aivo

n>0

X |[(N + 2)712dT (uge™ i)

X </ dwidwy (vse_imﬂs)(wl,wg)awlam> u}\})(s,o)gﬁ)

X (N + 2)1/21/{}%(25, s) </ drldrg(vtOut)(rl,rg)arlam) L{](\})(t,O)ﬁj(\?)

From Lemma it follows that

2 ! - n
< 23 [ as [ ap V) V) s, 006
n>0

%

ipr -
lose™ s |y

X

./\/'1/21/{;;(75, s) (/ drldrg(vtOut)(rl,rg)arlam) Z/{](\})(t,())fj(\?)

72 ' Y —ipT — n
#2035 [as [ aplP @l vals Ve .08
n>0

X

N+ 2)V2U5 (¢, 5) < / dridrs (v:0uy ) (1, rg)arlam) uP (¢, 00w
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3. Mean-Field Evolution of Fermionic Systems

Using Theorem to control the growth of N' w.r.t. the unitary evolutions, and again
Lemma |3.4.1] we conclude that

1, < C'exp(c1 exp(calt]))

(3.74)

eN
t R . 12
«3 /0 ds [ dplV )] ey orOuals | (7 + 20687

n>0

Here we also used a bound of the form H./\/'Z/l](\})(t,())ﬁﬂ < Cexp(eq exp(ca|t])|NE|| for the

growth of the expectation of the number of particles w.r. t. the modified dynamics Z/{J(\}) (t,0).
This bound can be proven exactly as the estimate in Theorem for the dynamics Uy (¢, 0),

with the only difference that when we compute the derivative of <§,L{](\})(t, 0)(NV + 1)ku}\})§>
only one of the three terms on the r.h.s. of (3.43) appears.

Since |lu;Ove|pg < |O||NY/? and, using Proposition
[vse s 1 < tr s, €77]| < C(1+ [p]) Ne exp(c]s]),
we find that
1 < O[O/ expler explealt))) D |V +2)€0| 2

n>0
< C|0||e™"2 exp(er exp(ealt)) (N + 2)én .

The same strategy is followed to bound I35 in (3.73), and II3 in (3.68]). Hence, we have
shown that, for every compact operator O,

10 (1, — woxp)| < CIOINYE excp ez exple ) (- (N + 2)%n)
< CJOINF exp (e explcr]t)

where we used the assumption (£, N2€y) < C. This completes the proof of ([3.29).

Step 4: Proof of . We consider an observable O = ¢™®9tP"V with p, ¢ € R3. As in

(3.63) we decompose
tr O('yﬁ?t —wny) = I+1L

The bound for I obtained in for an arbitrary bounded operator O is already consistent
with . However, we have to improve the bound for II, using the special structure of
the observable O. Writing II = II; 4 IIs 4 I3 as in , and noticing again that II; = 0,
we are left with the problem of improving the bound for IIs and II3. To bound Ils, we use
and the remark that, for O = e ateVp,

lvOulfs = [Jone™™ V|1 (3.75)
< tr ‘ [(A.)Nﬂg, eix'quEp'v] ‘ <‘tr ‘ [WN,t; eix'q] ‘ + tr | [WN,h esp-V] ‘ :
Using that
1
[, €P V] = wn PV — ePVuy, = —/ ds %€SSP~VWN¢6(1—S)EP'V
0

1
_ _/ ds esap-V[Ep -V, wN’t]e(l—s)ep-V
0
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3.5. Proof of main results

we conclude from Proposition that

trllwne, V]| < [pl tr][eV, wnl| < Clpl Ne exp(clt]).

Therefore, using Proposition also to bound tr |[wp ¢, €|, implies that
lviOuellfis < C(1+ lg| + [p) Ne exp(c]t]).
Inserting this bound in , we obtain that, for O = e/ 4+eVp,
Il < C exp(ey exp(eaft])) (1 + [pl + )|V + D .
A similar bound can be found for the contribution II3. Hence
tr VP (30— won )| < OO+ [pl + la) 2 exp(e exp(calt)I|V + Déw?
< C(1+Ip| + g2 exp(er exp(ealt])),

where we used the assumption ||(N+1)&x||? < C. This concludes the proof of Theorem m

L]
Next, we proceed with the proof of Theorem [3.3.2
Proof of Theorem[3.3.3. We start from the expression
k
'yj(\,’)t(xl, .. ,xk,az/l, o x%)
= <e_mNt/€R0§, a;% e a;,laxl .. .axke_mNt/sROQ
= (Un(t,0)¢, Riay, ... a5 az, ... az, Ry (t,0)€) (3.76)

= (Un (8,008, (0" () + alBy)) -+ (0" (r0g) + 0(0107))
X (a(uz,) + a* (Tea,)) - (a(ueg,) + " (Tea,) Un(t,0)E).
This product will be expanded as a sum of 22 summands. Each summand will be put
in normal order using Wick’s theorem, which gives rise to contractions. The completely
contracted contribution will be identified with the Hartree-Fock density matrix w](\];)t, all
other contributions will be of smaller order.

Step 1: Ezxpanding the product and applying Wick’s theorem. We recall Wick’s theorem.

For j =1,...,2k, we denote by ag either an annihilation or a creation operator acting on the
fermionic Fock space F. We denote by : agl .. .au-Z : the product a?-l . age in normal order

(obtained by moving all creation operators on the left and all annihilation operators on the
right, proceeding as if they were all anticommuting operators). Wick’s theorem states that

k — —
a%ag...agk:;agag...agk;_|_Z Z :a%...a%l...a%%...agk:
J=1n1<-<ngj

x Z (-nl7ie, agla(nagla(z)m (2 ag“bcr(zj—l)aglcr(zj)m

O'Gsz
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3. Mean-Field Evolution of Fermionic Systems

where P; is the set of pairings

ng:{0652j10(2€—1)<0'(2€) Vl=1,...,5 and

3.77
o(20—1) <o(20+1)Ve=1,...,5 -1}, (3.77)

and |o| denotes the number of pair interchanges needed to bring the contracted operators
in the order agg(l)anam ...a&zo(zj). We call <Q,a§a§-§2> the contraction of ag and ag. The
notation with the hats indicates operators that do not appear in the product.

Next, we apply Wick’s theorem to the products arising from . To this end, we observe
that the contraction of a af(uy ., )-operator with a a®(7; .,)-operator is always zero because
uUy = viuy = 0. Furthermore, the aﬁ(ut, »)-operators among themselves are already in normal
order, so their contractions always vanish. Hence, the only non-vanishing contractions arising

from the terms on the r.h.s. of (3.76)) have the form
(Q, a(@t,x;)a*@t,mj)9> = wn(z;, ;). (3.78)

Since each contraction of the form involves one z- and one z’-variable, the normal-
ordered products in the non-vanishing contributions arising from Wick’s theorem always have
the same number of z- and x’-variables. So, all terms emerging from after applying
Wick’s theorem have the form

= (Un (8,006, : (w1 (-, 2ly1)) - @ (w2 y)
X a0 (1)) - @O (s T )+ Un(E0)E ) (3.79)
X WN (T (k—j41)s To(h—jr1) " WN(Tr(h) To )

where j < k denotes the number of contractions, 7, c € S; are two appropriate permutations,
and, for every j = 1,...,k — j, wj,n; : L*(R3) — L?(R3) are either the operator u; or the
operator U; (the operators are identified with their integral kernels).

Step 2: Estimating (3.79)) in the case 0 < j < k. We will use the shorthand notation
X, = (x1,...,7;) € R3* and similarly xp = (2],...,2}) € R3*. Let O be a Hilbert-Schmidt
operator on L?(R3%), with integral kernel O(xy,x}). Integrating (3.79) against O(x,x}),
we set

i | [ dxud O, x4) (U (.0)6, 5w afy)) -y ()
x a*(1(, Tr(1)) - @ (e (s Tr(e—j)))  Un (2, 0)E) (3.80)
X wNvt(xW(k—j-‘rl)? x;(k—jJrl)) e 'WN,t(xw(k)yff;(k))‘-
We remark that
1-| / s, [ T 0l ] o )

X <Z/{N(t, 0)¢, :ai, d, at dh : UN(t,0)§>

(1) To(k—g) (1) Ir(k=g) ~
/ !
X WN (T (k—j+1) To(h—ji1)) * WNH(Tr(k)> To(ry)

where néﬁ(m and wgy(z)) denote the one-particle operators 1, and wy acting only on particle

m(¢) and, respectively, on particle o(¢). Notice that to be precise some of the operators
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3.5. Proof of main results

né”(m and wéa(@) may need to be replaced by their transpose, their complex conjugate, or

their hermitian conjugate. In the end, this change does not affect our analysis, since we will
only need the bounds ||n;||, ||w;|| < 1 for the operator norms. From Hélder’s inequality, we
get

(1 a(k—i o(1 (ke
T< [7FO) T 0T ) i)

. # . 2

X </dxkdxﬁC [(Un(t,0)¢, : Tt .a$;(k_j)a§cﬂ(1) .'.aﬁxw(k—j) L Un(t,0)€)]
) ) 1/2

X }wN,t(JUw(k—jH)a$;(k_j+1))‘ "'}WN,t(xw(k)wxif(k))‘ )

J

HS

< [|Ol[sllwn.|

1/2
<|Un(t, 006 af, oodh, --aim>:uw<t,0>£>\2) -

M To(h—j) L)

Since |lwn ¢llas = N 1/2 and since the operators in the inner product are normal-ordered, we

obtain ' '

1< C|O]lus N2 Un (£,0)€, (N + DF Ty (t,0)6) -
Hence, the contribution of each term with j < k arising from (3.76|) after applying Wick’s
theorem and integrating against a Hilbert-Schmidt operator O can be bounded by

C|Olus NED72 Uy (¢,0)€, (N + 1)FUn (¢, 0)€) - (3.81)

Step 3: Fully contracted terms, j = k. To finish the proof of Theorem we consider the
fully contracted terms with j = k arising from after expanding and applying Wick’s
theorem. Since <Q, a(ﬁt,.,yi)a*(@,zj)9> = wn (2, y;) are the only nonzero contractions, only
the term

a(Vty,) - a(Vgy, )a* (Vez,) - - 0" (Viay,)

on the r. h.s. of (3.76]) produces a non-vanishing, fully contracted, contribution. From (3.78)
and comparing with the definition (3.32)), this contribution is given by

Z sgn(m) wN,t(ﬂﬁl,m;u)) i -WN,t(QCk?x;(k)) = W%C,)t(xkaxk)-
TESk

Combining the results of Step 2 and Step 3, we conclude that

60 (480 = W} | < ONFD20 s Un (1,008, (N + DF 2 (2, 0)¢)

)

for every Hilbert-Schmidt operator O on L?*(R3%). Eq. (3.33) now follows from Theorem
0.4.2)

Step 4: Bound for the trace norm. Eq. (3.34) follows, similarly to (3.33)), if we can show
that, for any bounded operator O on L2(R3¥), the contribution (3.80)) can be bounded by

I < C|O|| N'%* exp(er exp(calt]) (3.82)
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3. Mean-Field Evolution of Fermionic Systems

for all £ € F with (£, N*¢) < 0o, and the number of contractions 0 < j < k. In fact, because
of the fermionic symmetry of ’y](\];)t and w](\];)t, it is enough to establish (3.82)) for all bounded

O with the symmetry

O(Tr(1), -+ > Tr(k)s a:'a(l), ceey z;(k)) = sgn(m)sgn(o) O(z1, ..., Tk, T, ... T})

for any permutations 7,0 € Si. For such observables, (3.80|) can be rewritten as

1= | [ i OG0, x0) U8 0)6, & abwn () - by )
< af(mi(, 1)) @ (e (- 2p—j)) < Un(£,0)€)
X WN(Th—jt1, T jir) *+ WN (T ff»‘k)‘
k j k
= ’/dxk—jdxkj [U%l) .. .771(@7]]) (trk —j+1,...k O(l ®w%ft)) wgl) wl(c jﬂ)] (Xk—jaxggfj)

X <L{N(t,0)£, :ai,l--ﬂi ‘aﬁ coeadl Z/IN(t,O)£>

where
(tfk—j+1,...,k O(1® w?%?;)) (Xk—j» Xp—;)

/
_/d:):kjﬂdxkjﬂ...dxkdxk (X, X)) H WN ¢ (g, 7))
l=k—j+1

denotes the partial trace over the last j particles. Using Cauchy-Schwarz, we obtain

I < Hn%l) .. .n,i]i;.j) (trk_j_i_]_’m,k o1 ®w%{t)) wgl). wkk jj H H./\/ Un(t,0) {H

IN

I S [ e

,- . — 2
< N o 00 @ W) IV un 0k
where in the second line we used that ||w](-j)\| =1forallj=1,...,k—j. Since
‘ tre—jt1,..6 O(1® w}%ﬁ)H = sup ‘<¢> (trk—j+1,...,k o(1® M%ﬁ)) s0>‘
$,p€L?(R3(F—))
lol=lvl<1
= sup ‘tr (@) <|gp><¢| ® w%{t)‘
€L (R3(KF—))
loll=l¥lI<1
< (trlong]) IO < NO] (3.83)
we get
1< N O] |V F U, 0]
which, by Theorem proves ((3.82)). O
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3.6. Propagation of semiclassical structure

3.6. Propagation of semiclassical structure

In this section we prove Proposition which propagates the bounds (3.24) along the
solution of the Hartree-Fock equation and plays a central role in our analysis.

Proof of Proposition[3.4.4. Let wy denote the solution of the Hartree-Fock equation ((3.26])).
We define the (time-dependent) Hartree-Fock Hamiltonian
hup(t) = = A+ (V * pr) — Xi

where pi(z) = (1/N)wn (x,x), (V *p;) is the operator of multiplication with (V  p;)(x) and
X is the exchange operator, having the integral kernel X;(z,y) = V(z — y)wn+(x,y). Then
wn,¢ satisfies the equation

i{:‘ath’t == [hHF(t)7WN,t]~

Therefore, we obtain

PN = €77, [hup(t), wi ]

= [hup(t), [€P*, wnel] + (Wi, [har(t), eP 7] (3.84)
= [hHF(t), [eipw’ WN,tH . [WN,ta [52A, eip.x“ . [WN,ty [Xta eip'm]]

iei [e
dt

where we used the Jacobi identity and the fact that [p; * V,e®*] = 0. We compute
[£2A, eP®) = ieV - epeP® 4 P Tep - ieV
and hence
(W, [E2A, €P?]] = [wi g, €V - epeP® + ePPep - ieV]
= [wny,€V] - epePT 4 2V - plwnt, eip'm]
+ epe"p'””[wN,t, ieV] + [wnt, eip'x]isgv p.

From (3.84) we find

z&t&[ep J Wit = A) [P wny) — (€7, w4 B(t)

— epePTlwny, ieV] — (Wi, i€V] - epePT — [wn g, [Xi, €]
where we defined the time dependent operators
A(t) = hur(t) + i€V -p and  B(t) = hup(t) — e’V - p.
Observe that A(t) and B(t) are selfadjoint for every ¢ € R (the factor +ic?p - V can be

interpreted as originating from a constant vector potential). They generate two unitary
evolutions U (t, s) and Us(t, s) satisfying
i€ (t,s) = A()U(t,s) and  iedlha(t, s) = B(t)Ua(t, s)

with the initial conditions U (s,s) = Ua(s,s) = 1. We observe that, by definition of the
unitary maps U (¢, s) and Ua(t, s),

d .
ie& UL (t,0)[e™?, wn ] Ua(t,0)

dt
= — Ui (t,0){epe™ " wn s, ieV] + [wnt, ieV] - epe? ™ + Wiy, [Xi, €7} Us(t, 0).

= U (t,0) {A(t) [eip'x,wN,t] + [eip'x,wN,t]B(t) + isd[eip'x,wN,t]}UQ(t, 0)
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3. Mean-Field Evolution of Fermionic Systems

Hence
Z/{f (t, 0) [eip'z, wNJ] Uy (t, 0)

— [6ip-:v’wN]
-
+ 2/ dsUi (s,0){epe?*|wn s, ieV] + [wn,s, i€V] - epe™ + (w5, [ X, €] }a(s, 0)
0

and therefore

[, W]

= Uy (t,0)[e*, wn]| U (t,0)

-t
+ 2/ dsUy (t, s){epe*[wn s, 1€V] + [wn,s, i€V] - epe™ + [wiv s, [ X, €P*]] JUa(s, t).
0
Taking the trace norm, we find

¢ ¢
. 4 1 .
tr|[eP ", wn ]| < tr ][ wi]| + 2|p]/ ds tr|[eV,wn s]| + 8/ dstr|jwn,s, [Xs, eP]]|.
0 0

(3.85)
To control the contribution of the last term, we observe that

1 1 o 1 -
Xo(oy) = 3 VG = pona(en) = [ V@@ o (oy) = 5 [ da7@waalen)

where we defined the operator wy; = eiq'wate*iq'I (here x indicates the multiplication
operator). Hence, we get

1

[wﬂ&ﬁ%=N/@Wqu%wmn

and therefore, using [|wy || < 1,
- 1 . N
o, o 71 < 5 [ dal¥ (@) o e, )
2 ) .
2 [ @l @) rfisgare™

< 2 ([ alP@1) wloveer

where in the last line we used that [wg ¢, €P%] = €% [wp 4, €P*]e %, From (3.85)), we conclude
that

IN

. A t C [t .
e[, x| < tr e ond] +20pl [ ds e BV, cow ]|+ - [ dstr (€77, wy, ]| (3.56)
0 0

and therefore, from (3.49)), we find

sup

t
tr|[eP®, wn §C€N—|—2/ ds tr |[eV,wy
P I ] ; It s

(3.87)

t
1 ,
+C/ ds sup tr |[[ePT, wy
o » LtIp| I 2
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3.6. Propagation of semiclassical structure

Next, we need to control the growth of tr |[eV,wn]|. Consider

iei[sv,aw,t] =[eV, [hur(t), wn ]

dt
[hir (1), [eV, wn ] + [wi e, [hiae(t), V]
[hHF(t)ﬂ [€V>WN¢H + [wNﬂfv [V * Pt EVH - [WN,t’ [Xt7 EVH .

As before, the first term on the r.h.s. can be eliminated by an appropriate unitary conjuga-
tion. Denote namely by Us(t, s) the two-parameter unitary group satisfying

ie&t U3(t, S) = hHF(t) Ug(t, S)

and Us(s, s) = 1. Then we compute

is%blg(t,O)[EV,wN,t] Us(t,0) = U3(t,0) {—[hHF(t)a [eV,wn ] + ig(i[gvvwf\f»t]}u?)(t’o)

=U5(t,0) {{wn, [V * pr, eV]] — [wne, [Xe, eV]] FUs(2,0).
This gives
[eV,wn ] =Us(t,0)[eV,wn]Us (t,0)

+ 15/t dsUs(t, s) {[wn,s, [V * ps, eV]] — [wn s, [Xs,eV]]} Us(s, 1)
€ Jo

and therefore

tr|[eV,wn | < tr |[eV,wn]]|
’ (3.88)

1t 1
+ 5/ ds tr|jwns, [V * ps,eV]]| + 6/ ds tr |[wn.s, [Xs, eV]]].
0 0

The second term on the r.h.s. can be controlled by

tr|[wns, [V * ps, eV]]| = € tr|[wn,s, V(V * ps)]|

< E/dqf/((J)HCJIIﬁs(Q)! tr|lwn,s, €]

<e ( [aavwia- W) sup

)|
¢ 1+ |Q‘

tr|[wns, e

where we used the bound ||ps|lec < ||ps|l1 = 1. As for the last term on the r.h.s. of (3.88),
we note that

o XerVl) = 7 [ da V(@) owes loger 7

where, as above, we set wy s = €'7*wn 74", Hence, we obtain

t|[wne, [Xo, V]| < / dq |7 ()] tr | [wger V|

([ aaP@1) trlionan=vl

[wq.s,€V] = €% [wn s, e(V +ig)le "% = %[y, eV]e 9" .

<

2l 2w

where in the last inequality we used that
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3. Mean-Field Evolution of Fermionic Systems

From ({3.88)), we conclude that

t 1 ) t
tr|[eV,wn ]| < CeN + C/ ds sup ——— tr |[wns, €"T7]| + C/ ds tr|[wn,s,eV])].
0 g 1+]q] 0

Summing up the last equation with (3.87)) and applying Gronwall’s lemma, we find constants
C, ¢ > 0 such that

sup tr |[e?®, wn ]| < CeN exp(c|t]),

p 1+ |pl
tr|[eV,wn ] < CeN exp(clt|). O

3.A. Comparison between Hartree and Hartree-Fock dynamics

In the next proposition we show that, under the assumptions of Theorem [3.3.1], the solution
wn,¢ of the Hartree-Fock equation (3.26]) is well-approximated by the solution wy; of the
Hartree equation (3.31). Since we can show that the difference wy; — Wy, remains of order
one in N for all fixed times ¢t € R, this result implies that all bounds in Theorem [3.3.1|remain
true if we replace wy; by wy ;.

Proposition 3.A.1. Assume that the interaction potential V € L'(R3) satisfies and
that the sequence wy of orthogonal projections on L?(R3) with trwy = N satisfies .
Let wn ¢ denote the solution of the Hartree-Fock equation

ieath,t = [—SQA + (V * Pt) — thN,t]
and wn the solution of the Hartree equation
is@tfuN,t = [—E2A + (V * ﬁt),aj]\[’t]

with initial data wni—0 = WN—0 = wn (recall here that py(x) = N7 wni(z,2), pr(x) =
NN ¢(z,2) and Xi(z,y) = N2V (z—y)wni(x,y)). Then there exist constants C,cy,co >
0 such that

trwn e — Wil < Cexp(er exp(ealt]))

for allt € R.

Proof. Let W(t, s) be the unitary dynamics generated by the Hartree Hamiltonian hy(t) =
—&2A + (V % py). In other words, W(s, s) = 1 for all s € R and

is%W(t, §) = ha(EW(L, s)

Then, we have

ie@tW* (t, O)(:J]\LtW(t, 0) =0 y
i&atw*(t, O)WN7tW(t, 0) == W*(t, 0) ([V * (pt — ﬁt) ,(JJN7t] — [Xt, (JJt]) W(t, 0)

Integrating over time, we end up with

wN,t = W(t, O)WNW*(t, O) y
WN it = W(t, O)QJNW* (t, O)

_ 2/0 dsW(t,s) ([V x (ps — ps) swn.s] — [Xs,wn s]) WH(t, 5)
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3.A. Comparison between Hartree and Hartree-Fock dynamics
and thus

~ 1/t ~
trlus = Gval £ 2 [ ds{er [V« (- pe) o
0

[Xs,wns)|} = T+IL (3.89)
Let us first estimate II. We get
1 t
= / ds tr|[Xs, w,s]|

< / ds/dp\V ]tr ’pwa e ipx,wN,SH

N/ ds/dp\V )| tr | [P, was] |

< Cexp/(clt]), (3.90)

IN

where in the last step we used Proposition 4| (e’”® denotes here the multiplication oper-
ator). We are left with I. Writing

V- )@ = [V (70) - 7)) e

1 [t .
I < /ds/dp\wp)
€ Jo

t
< CNeXp(c]t])/ ds sup
0 p€eER3

we find

= 5u()| tr [P, ]|

ps(p) —ﬁs(p)‘
t

< Cexplelt]) / ds tr [y s — Bas] (3.91)
0

where in the second inequality we used again Proposition while in the last inequality
we used the bound

1 . - 1 -
=¥ ’tre”’m(w]v,s — wN’s)| < Ntr lwN,s — WN,s]-

Inserting (3.90) into , and applying the Gronwall lemma, we get
trjwn: —wn | < Cexp (c1exp (czlt])) (3.92)

for some C, ¢1, co only depending on the potential V. O
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4. Mean-field Evolution of Fermions with
Relativistic Dispersion

In this chapter we provide an extension of the derivation of the Hartree-Fock equation in
Chapter [3| to the analogous model with relativistic dispersion law. This chapter is based on
the article [BPS13b].

We use the fermionic convention tr ’y](\]f) = =R N k) for the normalization of density matrices,

see Section [[LAl

4.1. Introduction

As in the previous chapter, we are interested in the dynamics of a system of N fermions
moving in three spatial dimensions, but now with a relativistic dispersion law. In units
where the Planck constant and the speed of light are i = ¢ = 1, the evolution is governed
by the Schrodinger equation

N N
ON g = Z —Ag; +m? + AZ Vizi — ;) | ¥y (4.1)
- i<j

for the wave function ¢, € LZ(R?*Y), in accordance with Pauli’s principle. The constant
m > 0 is the mass and A € R a coupling constant.

We are interested in the mean-field limit, characterized by N > 1 and weak interaction
|A| < 1. Notice that in contrast to the non-relativistic case, the kinetic energy of N fermions
in a volume of order one is only of order N*/3, so that we take AN%/3 = 1 fixed. For
technical reasons, we also consider large masses m, keeping mN —1/3 = my fixed in the limit.
Introducing the semiclassical parameter e = N~'/3, we can then rewrite as

Zaatw]\ft - Z \/ _€2Ax] + mo N Z V .’L'J ¢N’t. (42)

1<J

Unlike in the non-relativistic case, the velocity of particles (think of the group velocity for
the free evolution) with relativistic dispersion is always bounded by one, so it is physically
plausible that we have not rescaled time.

From the physical point of view, it is important to understand the dynamics of initial data
which can be easily prepared in labs. Hence, it makes sense to study the evolution of initial
data close to the ground state of a Hamiltonian of the form

N

HY™ =) [, [—e20y, + M3 + Vexe(z; ] Z V(zi — ), (4.3)

7=1 z<]
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

where Voy : R? — R is an external potential, trapping the particles in a volume of order
one. It is expected that the ground state of can be approximated by the Slater de-
terminant with one-particle reduced density wy minimizing the (relativistic) Hartree-Fock
energy functional

Eur(wy) = tr {\/—QTqu?ﬁr Véxt] WN

+ % dedy V(z — y) (wn (2, 2)wn (y,y) — [wn (2, y)]?)

(4.4)

among all orthogonal projections wy on L?(R3) with trwy = N (recall that the reduced
density of an N-particle Slater determinant is such an orthogonal projection).

In Chapter (3] we considered the evolution of N non-relativistic fermions, governed by the
Schrodinger equation

] N €2Amj 1 &
ie0 N = Z " ome TN Z Vizi —x5) | YN (4.5)
j=1 i<j

In particular, we were interested in the evolution of initial data close to Slater determinants
minimizing a non-relativistic Hartree-Fock energy (similar to , but with a non-relativistic
dispersion law). To this end, we argued that minimizers of the Hartree-Fock energy satisfy
semiclassical commutator estimates of the form

tr|[z,wn]| < CNe, and tr|[eV,wn]| < CNe, (4.6)

where x denotes the position operator (i.e. multiplication with x). Motivated by this obser-
vation, we assumed initial data to be close to Slater determinants with reduced one-particle
density satisfying . For such initial dataEL we proved that for sufficiently regular inter-
action potential V' the many-body evolution can be approximated by the time-dependent
non-relativistic Hartree-Fock equation

. e2A

iedwnt = |——+ (Vxpr) — Xe,wne| - (4.7)

2m0

Here pi(x) = N~ lwy(z, ) is the density of particles close to x € R? and X; is the exchange
operator, having the integral kernel X;(z,y) = N7V (x — y)wn (z, y).

In this chapter we proceed analogously but for fermions with relativistic dispersion. Sim-
ilar to the non-relativistic case, the arguments presented in Chapter [3] and semiclassical
analysis suggest that (approximate) minimizers of the Hartree-Fock energy satisfy the
commutator bounds . For this reason, we will consider the evolution for initial
data close to Slater determinants, with reduced density wy satisfying . For such initial
data, we will show in Theorembelow that the solution of the Schrodinger equation
stays close to a Slater determinant with one-particle reduced density evolving according to
the relativistic Hartree-Fock equation

ic‘fat(,c)N’t = |:\/ —€2A + m% + (V * Pt) — Xt, WNt| » (48)

n fact, instead of assuming tr|[z,wn]| < CNe, we only imposed the weaker condition tr|[e®* wy]| <
CN(1+ |p|)e, for all p € R. However, here we find it more convenient to work with [z, wn].
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4.2. Main result and sketch of its proof

Wherev like in " Pt(l‘) = N_le,t(m7x) and Xt($,y) = N_1V(:L‘ - y)WN’t(x,y)-

For initial data minimizing the Hartree-Fock energy (4.4)), the typical momentum of the
particles is of order e, meaning that the expectation of ¢|V| is typically of order one.
Hence, for mg > 1, we can expand the relativistic dispersion as

2A 2A —2A
\/ —€2A + md = my 1—62:m0<1—82):m0+ el
mg 2mg 2my

Since the constant mg only produces a harmless phase, this implies that in the limit of
large mg, one can approximate the solutions of the relativistic Schrodinger equation
and of the relativistic Hartree-Fock equation by the solutions of the corresponding
non-relativistic equations and, respectively, . On the other hand, for fixed mg
of order one as we consider it here, the relativistic dynamics cannot be compared to the
non-relativistic dynamics.

If we start from and consider the limit of large N > 1 and weak interaction AN%/3 = 1
without scaling the mass m, we obtain a Schréodinger equation like , but with mg replaced
by em (recall that e = N~'/3). In the limit N > 1, this evolution can be compared with
the massless relativistic Schrodinger equation

N N
. 1
Ny = Z €|V, | + N Z Vi — ) | ¥ng (4.9)

j=1 i<j

In this case, we expect the dynamics of initial data close to Slater determinants satisfying
the commutator estimates (4.6)) to be approximated by the Hartree-Fock equation

lewNt = [€|V\ + (Vxp) — Xt,wNyt}. (4.10)

For technical reasons, we do not consider this case in the present work. Proving the conver-
gence of (4.9) towards (4.10) remains an interesting open problem.

4.2. Main result and sketch of its proof

To state our main theorem, we switch to the Fock space representation. In terms of the
operator-valued distributions a, a, we define the Hamilton operator

1
Hy = /dx ai/—e2DNy +md a, + N /dxdy V(z —y)azayaya, (4.11)

on fermionic Fock space F. As in the other models discussed, Hy commutes with the
number of particles operator N'. When restricted to the N-particle sector, Hy agrees with
the Hamiltonian generating the evolution (4.2)).

Let wy be an orthogonal projection on L?(R3), with tr wy = N. Then there are orthonor-
mal functions fi,..., fx € L?(R3) with wy = Zé\le |fi)(fj]- We complete fi,..., fy to an
orthonormal basis (f;)jen of L*(R®). We introduce a (unitary) particle-hole transformation
R, : F — F by setting as before

Ry =a*(f1) - a"(fn) (4.12)
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

a Slater determinant with reduced density wy. Moreover we require that

R, a(fi)Ruy = { Z({f)) iii 2 x (4.13)

The operator R}, implements a fermionic Bogoliubov transformation on F. We consider
the time evolution of initial data of the form R, &y, for a {y € F with (v, Nén) < C
uniformly in N (i.e. R, &N is close to the N-particle Slater determinant R,,, ).

We are now ready to state our main theorem.

Theorem 4.2.1. Let V € L*(R3) with

JI7wIa+ o)y < . (4.14)

Let wy be a sequence of orthogonal projections on L*(R3) with tr wy = N, satisfying the
semiclassical commutator bounds @ Let &y be a sequence in F with (Eny,N&y) < C
uniformly in N. We consider the time evolution

Ung = e TINER, En (4.15)

generated by the Hamiltonian , with e = N™Y3 and with a fized mg > 0. Here R,
denotes the unitary implementor of a Bogoliubov transformation defined in and .

Let fy](\})t be the one-particle reduced density associated with 1y ¢. Then there exist constants
¢,C' > 0 such that

2
tr "y](\}’)t - wNJ‘ < Cexp(cexp(clt])) (4.16)

where wy ¢ s the solution of the time-dependent Hartree-Fock equation (@ with initial data
WN,t=0 = WN-

Remarks:

(i) The bound (4.16) should be compared with tr (71(\2)2 and tr (wy¢)?, which are both of
order N. The N-dependence in (4.16]) is optimal, since one can easily find a sequence
En € F with <§N,N§N> < C such that 'yj(\}’)o —wn,o = O(1) (for example, just take
Ev = a”(fn41)8).

(ii) As in Chapter [3| under the additional assumptions that we have dI'(wy){n = 0 and
<§N,N2£N> < C for all N € N, we find the trace norm estimate

tr]’y](\?t —wny| < CNY6 exp(cexp(c|t])). (4.17)

(

(iii) We can also control the convergence of higher order reduced densities. If ’y]\lf 1 denotes

the k-particles reduced density associated with (4.15)), and if w](\]f)t is the antisymmetric

tensor product of £ copies of the solution wy; of the Hartree-Fock equation (4.8), we
find, similarly to [3.3.2

2
tr 'y](\lfl — w%ﬁ)t‘ < ONF-1 exp(cexp(c|t])). (4.18)

This should be compared with tr (7](\],61)2 and tr(w](\lf’)t)Q, which are of order N*.
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4.2. Main result and sketch of its proof

(iv) Just like in the non-relativistic model (see Appendix [3.A]) the exchange term [X;, wy ¢]
in the Hartree-Fock equation (4.8)) is of smaller order and can be neglected. The bounds
(4.16)), (4.17), (4.18) remain true if we replace wy,; with the solution of the Hartree

equation
ie@tfth = |:\/ —€2A + m% + (V * ﬁt), &N,t:| (419)

with the density pi(z) = N 1oy +(z, z).

(v) The relativistic Hartree-Fock equation and the relativistic Hartree equation (4.19))
still depend on N through the semiclassical parameter ¢ = N —1/3. As N — oo, the
Hartree-Fock and the Hartree dynamics can be approximated by the relativistic Vlasov
evolution. If Wiy +(x, v) denotes the Wigner transform of the solution wy ; of (or,
analogously, of the solution wy; of ), we expect that in an appropriate sense
Wit — Wa as N — oo, where W ; satisfies the relativistic Vlasov equation

v
Vo2 +m3

where pooi(z) = [ dvWeot(z,v). In fact, the convergence of the relativistic Hartree
evolution towards the relativistic Vlasov dynamics has been shown in [AMSO0§| for
particles interacting through a Coulomb potential. In this case, however, a rigorous
mathematical understanding of the relation with many-body quantum dynamics is
still missing (because of the regularity assumption , Theorem does not
cover the Coulomb interaction). In view of applications to the dynamics of gravitating
fermionic stars (such as white dwarfs and neutron stars) and the related phenomenon of
gravitational collapse studied in [HS09, [HLLSI0], this is an interesting and important
open problem (at the level of the ground state energy, this problem has been solved in
[LY8T]). Notice that the corresponding questions for bosonic stars have been addressed
in [ESO7, MS12).

atWoo,t + : vaoo,t - vaoo,t Y (V * poo,t) =0,

Next, we explain the strategy of the proof of Theorem which is based on the proof
of Theorem In fact, the main body of the proof can be taken over without significant
changes. There is, however, one important ingredient of the analysis which requires non-
trivial modifications, namely the propagation of the commutator bounds along the
solution of the Hartree-Fock equation . We will discuss this part of the proof of Theorem

separately in Section |4.3

Sketch of the proof of Theorem[{.2.1. We introduce the vector &+ € F describing the fluc-
tuations around the Slater determinant with reduced density wy; given by the solution of
the Hartree-Fock equation (4.8) by requiring that

YNy = e HNUER ey = Ry &Nt

This gives Eny = Un(t,0)En, with the fluctuation dynamics

Un(t,s) = RS, e "NYER,

WN, ¢

Notice that Uy(t, s) is a two-parameter group of unitary transformations. The problem of
proving that ¢ is close to the Slater determinant R, reduces to showing that the
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

expectation of the number of particles in £ stays of order one, i. e. small compared to the
N particles in the Slater determinant. In fact, it is easy to check (see Section the bound
for the Hilbert-Schmidt norm

us < C¢En, Néng) = CEN, Un(t, 0)NUN(t,0)EN) - (4.20)

1
V), — wie

To bound the growth of the expectation of the number of particles with respect to the
fluctuation dynamics U (¢, s) we use Gronwall’s Lemma. Differentiating the expectation on

the r.h.s. of (4.20]) with respect to time gives (see Proof of Proposition (3.4.3))

%@N, U (t, )N U (£, 0)€n)
= (&N, Ux (8, O)RZNJ (dF(iE@th,t) - [HNadF(wN,t)]>RWN,tUN(t’ 0)&n)-

There are important cancellations between the two terms in the parenthesis. In particular,

since
[/ dzai\/—e?A+mday, dI‘(wN,t)] = [dF (\/—e’:‘QA + m%) ,dF(wN,t)}
=dr <|:\/—€2A + m% , wNi])

the contributions of the kinetic energy cancel exactly. The remaining terms are then identical
to those found in the non-relativistic case. Hence, analogously to Proposition [3.4.3] we
conclude that

is%(&v, UN(t, 0)NUN(t,0)¢N)

- —;l\jlm/dxdy V(e — y){(UN(t, 0)éN, a™ (Ut z)a(ut,z)a(Try)a(uy) Un(t, 0)En) (4.21)

+ <UN (tv 0)§N7 a* (Et,x)a(ﬁt,:c)a(ﬁt,y)a(ut,y)UN (t7 O)§N>
+ (Un(t,0)éN, a(Tr ) alu e )a(Ory)a(ury ) Un (t,0)En) }

where the functions u;, and v;, are defined byE|

RS, ,azRyy, = aluz) + a* (Vi)

WN,t T

It is easy to express u¢, (which is actually a distribution) and v, (a L?-function) in terms
of wy; see, for example, . Notice that in Proposition we also considered the
expectation of higher moments of /. This can be done in the relativistic setting as well,
and is needed to prove the trace norm bound .

Proceeding as in the proof of Lemma we can bound the terms on the r. h.s. of (4.21))
to show that

is% (€N, UN(t,0)(N + 1)Un(t, 0)5N>‘
< ON1 sup PET Nl (4.22)

pER 1+ |p‘ <€N7UZ>:/(t70)(N+ 1)UN(t70)€N>'

*We changed T to v compared to [BPS13b], to make the notation in this thesis consistent.
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4.3. Propagation of the semiclassical commutator bounds

Using the integral representation

1
(e wn ] = / ds e P [ip - x,wn 4] gll=s)pz
0

we conclude that ,

tr|[e"", w4
sup ———
peR3 1+ ‘p |

Hence, (4.22) implies the bound (4.16) in Theorem if we can show that there exist
constants C, ¢ > 0 with

< tr|[z, wn ]| (4.23)

tr |[z,wn )| < CNeexp(clt]) (4.24)
for all t € R. We show (|4.24)) in Proposition below. O

4.3. Propagation of the semiclassical commutator bounds

The goal of this section is to show the estimate , which is needed in the proof of Theorem
4.2.11 To this end, we use the assumption on the initial data, and we propagate the
commutator estimates along the Hartree-Fock evolution. This is the genuinely new part
of the present paper, where the ideas of Chapter [3| need to be adapted to the relativistic
dispersion of the particles.

Proposition 4.3.1. Let V € L'(R3) with

[P0+ bl < . (4.29

Let wy be a trace class operator on L*(R3) with 0 < wy < 1 and trwy = N, satisfying the
commutator estimates @) Denote by wyn ¢ the solution of the Hartree-Fock equation @
(with & = N_1/3) with initial data wyo = wn. Then there exist constants C,c > 0 such that

tr|[z, wn ]| < CNeexp(clt]) and
tr|[eV,wn ]| < CNeexp(c|t|)

for allt € R.
Proof. We define the Hartree-Fock Hamiltonian

h(t) == \/—e2A+m3 + (V * p) — Xy

where pt(z) = N lwy (2, z) and X; is the exchange operator defined by the integral kernel
Xi(x,y) = N7V (x — y)wn(z,y) (note that p, and X; depend on the solution wy+ of the
Hartree-Fock equation (4.8])). Then wy ¢ satisfies the equation

isé?th,t = [h(t), WNJg]. (426)
Using the Jacobi identity we obtain

ez, wn | = [z, [h(t), wnt]]

= [h(t), [z, wng]] + [wth, [\/m 7 x” ~owe [Xoa]]. (4.27)
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

We can eliminate the first term on the r.h.s. of the last equation by conjugating [x,wy ]
with the two-parameter group W (¢, s) generated by the selfadjoint operators h(t), satisfying

ieoW(t,s) = h(t)W(t,s) with W(s,s) =1 forall se€R. (4.28)
In fact, we have

ie0y W*(t,0)[z, wn ] W(t,0)

— W*(t,0) ( [wmt, [\ [—e2A +m2, x” — wn, [Xe, x]])W(t, 0)

and therefore

W*(t,0)[z, wn+|W(t,0)

= [x,wN,o] + 115/(; ds %(W*(s,O)[x,wN7S]W<S,O))

= [z, wno] + % /Ot ds W*(s,O)([wMt, [\/—EQA + m%,m” — lwn g, [Xt,m]]>W(s,0).

This implies that

1 t
tr|[z, wn ]| < tr|z, wno]| + 5/ ds tr ‘ [WN,57 [\/—é‘ZA +m3, x” ’ (4.29)
0
1 t
- / ds tr|[wons, [Xs, ]| (4.30)
0
To control the term (4.30) we observe that
1 ~ . .
Xs = N /dq V(Q) elq.wa,seilq-x- (431)

Since |lwns|| < 1 (because of the assumption 0 < wy s < 1, as required for fermionic one-
particle density matrices), we find

1 -~ . .
tr|[wiv,s, [Xs, 2]]] < N/dQ|V(Q)| tr|[wn,s, [T Pwn se ™, 2]

2 i iq-x —iq-x
<2 / dq |7 ()] tr|[e % wn.se %, ) (4.32)

2 - : : 2|V
=~ /dq\V(q)] tr|e' T lwy s, xle | < ”Xf“ltr\[wN,s,xH-

To control (4.29) we notice that

[\/—EQA +m3, x} = _52€Z2.
—& +m

0
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4.3. Propagation of the semiclassical commutator bounds

and thus

[wMS, [\ [—e2A + mg, x” ’ < emgttr|[eV,wi ]| +etr

1

WN, s,
V—e?A 4+ md

tr eV

(4.33)

Here we used the estimate ||(—2A +m2)~1/2|| < mg*. To bound the second term on the
r.h.s. we will use the integral representatio
1 1 [ dX

=== —=A+)N"! 4.34

Vi~ wh AT 39
and the identity

[(A+ X", Bl=(A+)N)"'BAA+N"

for A > 0, B selfadjoint operators. Now consider the j-th component (j € {1,2,3}) of the
operator whose trace norm we have to estimate:

tr] e L ‘
T T ) S —
! ? V—e?A 4+ mk
1 [/ dX 1 1
<= — tr |0, A
“rl j—EzA—i-m%—i-/\[wN’s’E ]—€2A+m%+)\’

3
1 ° dA —£20;0% 1
<2 ) i trl[wn s, 20
_W;/o \EH—52A+m3+AH o ’“”H—62A+m%+AH

3 .
1 > dA —ie0;
+=5 Sl j
TI'kzl/O ﬁ”(—z‘sV)QerngA‘

Using the bounds |[[(—e2A +m2 + X\) 7Y < (m3 + \) 71,

—1e0y, H

trilwn.s, 04| H (—ieV)2 +m3 + A

—4 1 2 )
258k2 < and € 8k823 <1
—2A +mg + A m3 + A —2A+mi+ A
all of which can be easily proved in Fourier space, we conclude that
1 dx 1
tr|ed; |wns, ———=|| < C tr |[eV,w / —_——
J[N"” Van || SO Eenl | R

< Cmgttr |[eV,wn ]

Inserting this estimate in (4.33]), we obtain

[wMS, [\ [—e2A +md, x” ’ < Cemg ' tr][eV, w4l

Plugging this bound and (4.32]) into (4.29) and (4.30), we arrive at

tr

t t
tr|[z, wn ]| < tr|[z,wno]| + Cmg? / ds tr|[eV,wn ]| + CN_2/3/ dstr|[z,wns]|. (4.35)
0 0

3To check this operator identity, first use the functional calculus and Fubini’s theorem to reduce it to the
analogous identity for A € R. Then substitute A = ¢* and use the residue theorem to calculate the integral.
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

Next, we bound the growth of the commutator [eV,wx|. Since the kinetic energy com-
mutes with the observable eV, we can proceed here exactly as in the non-relativistic case. For
completeness, we reproduce the short argument. Differentiating w.r.t. time and applying
Jacobi identity, we find

ie L 1V, wn i) =[eV, (A1), ]

de
[h(t), [eV,wna]] + [wng, [R(t),eV]]
[h(t), [eV,wn ] + [wni, [V * pr,eV]] — [wn s, (X, eV]].

As before, the first term on the r.h.s. can be eliminated by conjugation with the unitary

maps W (t,0) defined in (4.28). Thus we find

tr|[eV,wn ]| < tr [[eV,wn ]|

L 1 [t (4.36)
+ E/ ds tr|{wns, [V * ps,eV]]| + 5/ ds tr |[wn,s, [Xs, V]|
0 0

The second term on the r. h.s. of the last equation can be controlled by

tr |[wns, [V * ps, eV]]| = € tr|[wn,s, V(V * ps)]|

: 8/dq V(@)llallps(a)] tr|[[wn,s, €7

s6</dmﬁmwl+mwﬁs?)

< Ce tr|z,wn,s|

1 .
tr|fwn.s, €97

where we used the bound ||ps]|cc < ||psl|1 = 1, the estimate (4.23]) and the assumption (4.25)

on the interaction potential. As for the last term on the r. h.s. of (4.36]), we note that, writing
the exchange operator as in (4.31)),

1 i iq-x —1q-x
tr |lwn s, [Xs,eV]]| < N/dq|V(q)\ tr|[wN757[elq wn,se 7EV]H

2 ~ . .
< [ V@ leroy e o2

2[[V[lx
N

IN

tr|[wn,s,eV]].
In the last inequality we used that
[eiq'wa,se_iq'm, eV] = eiq'x[wNys, e(V+ iq)]e_iq""j = eiq’x[wN,s, EV]e_iq'm )

From ({4.36)), we conclude that
t t
tr|[eV,wne]| < tr|[eV,wno]| + C/ ds tr|[z,wn ]| + CN_2/3/ ds tr|[eV,wn |-
0 0

Summing up the last equation with (4.35)), using the conditions (4.6 on the initial data and
applying Gronwall’s lemma, we find constants C, ¢ > 0 such that

tr|[z,wn ]| < CNe exp(c|t|) and
tr|[eV,wn ] < CNe exp(clt]). O
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