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Chapter 1

Introduction

1.1 The Mysteries of Dimension Four

Dimension four is different. It marks the border between low dimensional and high
dimensional topology and, while its two sides are well explored, the border itself is
still largely uncharted territory. Since this thesis is ultimately concerned with the
topology of smooth 4–manifolds, we begin with a brief review of the state of affairs.
In this discussion, all manifolds are assumed to be closed, connected and oriented,
and all homeomorphisms preserve orientations.

For a modern topologist there are two main flavors of manifolds: topological and
smooth. It is also common to speak of the smooth and topological categories in this
context. In all dimensions but four, both categories can be studied by the similar or
even the same means. In dimensions up to three, there is no difference between the
smooth and the topological categories and manifolds can be effectively studied by a
mixture of hands-on techniques such as handlebody theory and more sophisticated
geometric methods. In dimensions five and higher, essentially everything is governed
by the powerful machinery of surgery theory and the s–cobordism theorem which
allow to translate classification problems into homotopy theory and algebra. This
includes the difference between the smooth and the topological category which turns
out to be finite (in the sense that a topological manifold admits at most finitely many
non-diffeomorphic smooth structures).

In contrast, in dimension four, topological and smooth manifolds are studied by
drastically different means. By the groundbreaking work of Freedman [25], topolog-
ical 4–manifolds are to some extent accessible to the high dimensional techniques.
The key to these methods is the so called Whitney trick which is the main tool to
match geometry and algebra. This turns out to be possible if one restricts ones
attention to so called “good” fundamental groups, and the main open problem is
the question whether all groups are good. For smooth 4–manifolds, the situation is
much worse. On the one hand, the methods to show that two smooth 4–manifolds
are diffeomorphic are very limited. Either one is lucky enough to be able to write
down a concrete diffeomorphism, or one has to resort to handlebody theory in the
guise of Kirby calculus. Although far from useless, both methods are rather primi-
tive and usually not very effective. On the other hand, in order to tell two smooth
4–manifolds apart, a set of intricate invariants have been devised using ideas from
gauge theory and Floer homology. Using these invariants and many ingenious con-
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1.1. The Mysteries of Dimension Four

structions, it has been shown that – unlike in all other dimensions – topological
4–manifolds that admit one smooth structure tend to have infinitely many dif-
ferent ones. In other words, smooth 4–manifolds can have infinitely many exotic
copies, that is, smooth 4–manifolds which are homeomorphic but not diffeomorphic
to the given model. However, as powerful as these invariants are, they cannot dis-
tinguish all 4–manifolds. In fact, for technical reasons, they are only defined for
4–manifolds which contain a surface with positive self-intersection (this condition is
usually phrased as b+2 ≥ 1). In particular, they cannot be used directly to tackle the
smooth 4–dimensional Poincaré conjecture, which states that any smooth 4–manifold
which is homotopy equivalent to S4 should be diffeomorphic to S4. Furthermore,
all these invariants are conjectured to contain the same information and there are
ongoing programs to establish relations between them. The bottom line is, although
the past 30 years have brought many insights, the topology of smooth 4–manifolds is
still full of mysteries: it is not known whether all smooth 4–manifolds have infinitely
many exotic copies, there is not a single (smoothable) topological 4–manifold whose
smooth structures have been classified, and there is no structure theory in sight.

This thesis will not change the situation dramatically. However, one thing to
take away from the above discussion is that the theory of smooth 4–manifolds has
been stagnant and new idea should be pursued. And this is what we will do. Loosely
speaking, we will cut 4 into 2 + 2 by looking at certain maps from 4–manifolds to
surfaces which fail to be fiber bundles in a controlled way. Such a map exhibits
a 4–manifold as a singular family of surfaces parametrized by the target surface,
providing a link from smooth 4–manifolds to surface topology. This idea has been
around for a long time but has spiked in popularity in the recent years. We will give
a short review in the next section and start a thorough discussion in Chapter 3.

But before, we would like to mention some positive results about 4–manifolds.
First and foremost, there is Freedman’s celebrated classification of simply connected
topological 4–manifolds.

Theorem (Freedman [25]). Let X be a simply connected topological 4–manifold.
Then X is determined up to homeomorphism by its intersection form QX and Kirby–
Siebenmann invariant ks(X) ∈ Z2.

Recall that QX is the unimodular, symmetric bilinear form defined on H2(X)
as the Poincaré dual to the cup product form on H2(X), and ks(X) is zero if and
only if X ×R is smoothable. These two invariants are not completely independent.
In fact, if QX is even, then ks(X) ≡ σ(X)/8 mod 2. Here, QX is called even
if all “squares” QX(x, x) are even numbers (and odd otherwise), and σ(X) is the
signature of X defined as the difference of the numbers of positive and negative
eigenvalues of QX⊗Q. Moreover, a complimentary theorem of Freedman states that
any possible pair of a unimodular symmetric bilinear form Q (over Z) and k ∈ Z2

can be realized by a simply connected topological 4–manifold. From an algebraic
perspective, unimodular symmetric bilinear forms over Z fall into two categories:
definite and indefinite. The definite ones are the great unknown, while the definite
ones are easily classified.

Theorem (Serre [59]). Let Q : V × V → Z be a symmetric bilinear form defined on
a free Abelian group V . Then Q is determined up to isometry by its rank, signature
and type (even or odd).
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In this light, the following theorem of Donaldson is all the more miraculous.

Theorem (Donaldson [15]). Let X be a smooth 4–manifold. If QX is definite, then
it is diagonalizable over Z.

Not only does this theorem exclude many topological 4–manifolds from being
smoothable, it also shows that no complicated definite intersection forms appear
for smooth 4–manifolds! So there is some way in which smooth 4–manifolds are
well-behaved, after all. One can even write down a complete list of possible inter-
section forms of smooth 4–manifolds, these are k(1)⊕ l(−1) and mE8 ⊕ n ( 0 1

1 0 ),
where k, l,m, n ∈ Z, k, l, n ≥ 0, and E8 is the unique even, definite form of rank 8.
The only remaining question here is which combinations of m and n can be re-
alized and the famous 11

8 –conjecture states that n ≥ 6|m| (which is equivalent to
b2(X) ≥ 11

8 |σ(X)|). The upshot of this discussion is the following beautiful “cross-
category” result which follows from the three mentioned theorems.

Corollary (Freedman, Donaldson, Serre). Smooth, simply connected 4–manifolds
are classified up to homeomorphism by their Euler characteristic, signature and type.

1.2 Singular Fibrations on 4–Manifolds

At this point we have said everything we had to say about topological 4–manifolds
and we add the property “smooth” to our list of standing assumptions on mani-
folds. As mentioned above, we will later consider 4–manifolds as singular families
of surfaces parametrized by another surface. What follows is a brief overview of the
history of this philosophy.

Lefschetz fibrations and symplectic 4–manifolds. The idea of sweeping out
a geometric object by smaller sub-objects is quite common in algebraic geometry.
It was used extensively by Lefschetz in his study of complex projective varieties
(see Lamotke’s beautiful survey [42]). Since we are interested in 4–manifolds, we
will focus on projective surfaces and follow [32, Chapter 8.1]. Given such a sur-
face V ⊂ CPN , we choose a generic linear subspace A ⊂ CPN that is transverse
to V and has complementary (complex) dimension N −2. If we write A as the com-
mon zero locus of two linear homogeneous polynomials p0 and p1, then we obtain a
family of hyperplanes Ht ⊂ CPN containing A parametrized by t = [t0 : t1] ∈ CP1

where Ht is the zero locus of t0p0 + t1p1. The intersection P = A ∩ V ⊂ V is
a finite number of points and each Σt = Ht ∩ V is a (possibly singular) complex
curve containing P . Moreover, for each x ∈ V \ P there is a unique t ∈ CP1 such
that x ∈ Σt. This observation gives rise to a holomorphic map p : X \ P → CP1

which is known as a Lefschetz pencil with axis A and base locus P . It turns out
that p has only finitely many critical points which locally look like the quadratic
polynomial z2 +w2 defined on C2 – so called Lefschetz singularities – and around its
base points p looks like the projection C2 \ {0} → CP1 which is easily seen from the
construction. In particular, after blowing up the base points one obtains a Lefschetz
fibration p̃ : V#|P |CP2 → CP1.
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1.2. Singular Fibrations on 4–Manifolds

The notion of Lefschetz pencils and fibrations is easily generalized to arbi-
trary smooth 4–manifolds.1 A Lefschetz fibration is simply a surjective smooth
map X → B onto a (real) surface B – the so called base surface – with only finitely
many critical points which are all of Lefschetz type. A Lefschetz pencil is a Lefschetz
fibration on X \ P over S2 ∼= CP1 where the base locus P ⊂ X is a (non-empty)
finite set where the map is modeled on the projection C2\{0} → CP1. The repeated
use of the word “base” is a little unfortunate, but it does not lead to any confusion
because, by definition, Lefschetz fibrations have empty base loci and the base surface
of Lefschetz pencils is always CP1.

As opposed to the case of projective surfaces, Lefschetz pencils and fibrations
are significantly harder to construct on more general 4–manifolds. First of all, it
is not always possible. According to a theorem of Gompf, total spaces of Lefschetz
pencils admit symplectic structures and the same holds for Lefschetz fibrations with
only few exceptions, see [32, p.401ff.]. In particular, Lefschetz pencils can only
exist on symplectic 4–manifolds and it is a deep results due to Donaldson [16] that
this is always the case. Both results combined can be considered as a topological
characterization of symplectic 4–manifolds.

Theorem (Donaldson [16], Gompf [32]). A 4–manifold is symplectic if and only if
it admits a Lefschetz pencil.

In particular, topological properties of symplectic 4–manifolds should also be
visible through the eyes of Lefschetz pencils and fibrations. One of the most impor-
tant features of symplectic 4–manifolds is that they have non-trivial Seiberg–Witten
invariants and generally interact very well with Seiberg–Witten theory. Among
other things, Taubes [61] had shown that the Seiberg–Witten invariants of symplec-
tic 4–manifolds can be expressed as a certain count of pseudoholomorphic curves
which he called the Gromov invariant, thus providing a geometric interpretation.
In search for a counterpart on the Lefschetz side, Donaldson and Smith introduced
their standard surface count [17] which, roughly, counts certain pseudoholomorphic
multisections of a Lefschetz pencil or fibration. It was later shown by Usher [66]
that the standard surface count agrees with the Gromov invariant.

Near-symplectic 4–manifolds and broken Lefschetz fibrations. Obviously,
not all 4–manifolds are symplectic. But from the point of view of Seiberg–Witten
theory, the relevant one come quite close. We already mentioned that the Seiberg–
Witten invariants are only defined for 4–manifolds with b+2 ≥ 1. It turns out that the
latter condition implies the existence of a closed 2–form which is non-degenerate out-
side of a closed 1–dimensional submanifold, that is, a disjoint union of finitely many
embedded circles. Such a 2–form is called a near-symplectic structure. In search for
a general geometric interpretation of the Seiberg–Witten invariants, Taubes set out
a program to extend his methods to the near-symplectic setting [62,63]. This turned
out to be a challenging task and, as far as the author knows, Taubes’s program is still
ongoing. But the interest in near-symplectic structures raised the question for an
analogue of the Donaldson–Gompf correspondence, which was eventually discovered
by Auroux, Donaldson and Katzarkov [3].

1According to Matsumoto [48], non-holomorphic Lefschetz fibrations were first studied by
Moishezon [51, p.162].
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Theorem (Auroux–Donaldson–Katzarkov [3]). A 4–manifold is near-symplectic if
and only if it admits a broken Lefschetz pencil.

The trade-off for the degeneracy of the 2–form is the appearance of an additional
type of singularities in broken Lefschetz pencils, so called indefinite folds which we
will discuss in great detail later. Just as the degeneracy loci of near-symplectic
forms, indefinite folds appear in 1–dimensional families. In fact, the fold locus is
the direct counterpart of the degeneracy locus in the above correspondence; circles
of indefinite folds have also become known as round singularities in this context.
So instead of working with near-symplectic forms, one can also work with broken
Lefschetz pencils and fibrations. In particular, instead of trying to generalize the
Gromov invariant to the near-symplectic setting, one can also attempt to extend the
standard surface count to the broken setting. Such an effort was made by Perutz who
introduced his Lagrangian matching invariants [57,58]. However, this approach also
presents severe technical difficulties and it is still neither known if these invariants
agree with the Seiberg–Witten invariants, nor if they actually are invariants.

The passage to all 4–manifolds. Although Auroux, Donaldson and Katzarkov
had mainly focused on near-symplectic 4–manifolds, they exhibited a broken Lef-
schetz fibration on S4 over S2 (see Example 1 in [3, Section 8.2]). This simple
example turned out to be surprisingly influential. Since S4 is not near-symplectic, it
led to the question whether all 4–manifolds admit broken Lefschetz fibrations. The
first advance in this direction was made by Gay and Kirby [27] who used handle-
body techniques to prove the existence of so called achiral broken Lefschetz fibra-
tions. Since Gay and Kirby could not avoid achiral Lefschetz singularities (which
are modeled on z2 + w2) using their methods, they speculated that this might in-
deed be impossible. But shortly after, Lekili and Baykur [45] gave arguments to
remove achiral singularities, thus proving the general existence of broken Lefschetz
fibrations. Two further, independent existence proofs were given by Baykur [4] and
Akbulut–Karakurt [1] almost at the same time. In fact, the statement is stronger.

Theorem (Gay–Kirby, Lekili, Baykur, Akbulut–Karakurt). Let X be a 4–manifold.
Then any map X → S2 is homotopic to a broken Lefschetz fibration.

Lekili [45] and Baykur [4] both used methods from the singularity theory of
smooth maps in their proofs. Lekili realized that it was possible to trade (regular
and achiral) Lefschetz singularities for so called indefinite cusp singularities and vice
versa. Maps with only folds and cusps have a long history in singularity theory and
Lekili’s observation opened the door to study broken Lefschetz fibrations as well as
families thereof in this context. This led to a change of focus away from Lefschetz
singularities to maps with folds and cusps. In particular, Williams [67] introduced
a class of maps called simple wrinkled fibrations2 which have a particularly simple
critical point structure: the critical locus is a single circle consisting of indefinite
folds and finitely many cusps, which is mapped injectively into S2. Simple wrinkled
fibrations are closely related to broken Lefschetz fibrations. In fact, Lekili’s per-
turbations can be used to turn a simple wrinkled fibration into a broken Lefschetz
fibration with a single circle of folds (as studied by Baykur in [5]). Williams also
proved the existence of these maps.

2Williams uses the term “simplified purely wrinkled fibrations”.
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c3 c1

c2

c4

Figure 1: A surface diagram of S1 × S3#S1 × S3 due to Hayano [35].

Theorem (Williams [67]). Any map from a 4–manifold to S2 is homotopic to a
simple wrinkled fibration.

Meanwhile, Gay and Kirby initiated an in-depth study of maps from 4–manifolds
to surfaces [28–30] which have only fold and cusp singularities. This ends our his-
torical outline as far as the various singular fibration structures are concerned. In
our presentation we will essentially reverse the historical order. In Section 2.2 we
give a brief review of maps from 4–manifolds to surfaces from the perspective of sin-
gularity theory and from Chapter 3 onward we will mainly be interested in what we
call wrinkled fibrations (these are maps which only have indefinite folds and cusps).
Broken Lefschetz fibrations and Lefschetz fibrations will merely be used occasionally
for motivational purposes or as convenient tools.

Since their inception, broken Lefschetz fibrations and related structures have
received considerable attention in the research literature (see [5–8, 33–35, 40, 69],
for example). We will point out several other developments throughout the text.
Although the original motivation from Seiberg–Witten theory seems to have been
lost somewhere along the way, it has only been put aside in order to obtain a
better understanding of the newly discovered structures. As this understanding is
improving, so are the chances of finding a connection.

Surface diagrams. Williams’s existence theorem for simple wrinkled fibrations
together with another observation of Williams is the starting point of our work. An
important feature of Lefschetz fibrations over S2 is the classical observation that
they are accessible via handlebody theory and can be described more or less com-
binatorially in terms of configurations of simple closed curves on surfaces [32, 39].
Given a Lefschetz fibration, one can associate to each critical point a Lefschetz van-
ishing cycle which is a simple closed curve in a fixed regular fiber. Moreover, from
the vanishing cycles one can recover the fibration up to a suitable notion of equiva-
lence using a handlebody construction (see Section 4.3 for more details). This was
extended to the broken setting by Baykur [5]. The fold singularities contribute addi-
tional fold vanishing cycles which behave slightly differently than Lefschetz vanishing
cycles. In the setting of simple wrinkled fibrations there are only fold singularities
and Williams suggested recording the fold vanishing cycles in a regular fiber. Ab-
stractly, this leads to a closed, oriented surface Σ decorated with a cyclically indexed
set of simple closed curves c1, . . . , cl ⊂ Σ, such that ci and ci+1 (where l + 1 = 1)
have geometric intersection number one. Williams called this structure a surface
diagram [68], an example is shown in Figure 1. He also noticed that the surface
diagram of a simple wrinkled fibration contains enough information to reconstruct

6



1.3. Summary of Results

the total space [67, Corollary 2] which easily follows from results of Lekili [45] and
Baykur [5] via a detour over broken Lefschetz fibrations3. Combined with the ex-
istence theorem for simple wrinkled fibration over S2 this leads to the following
intriguing consequence.

Corollary (Williams [67]). All 4–manifolds can be described by surface diagrams.

However, there is a caveat with this simple statement. Remember that we re-
stricted our attention to closed 4–manifolds in the present discussion. Unfortunately,
it turns out that an arbitrary surface diagram as described above does not describe
a closed 4–manifold unless a certain trivial monodromy condition is satisfied. This
adds a lot of subtlety to the theory and we refer to Chapter 4 for further details.
The study of simple wrinkled fibrations, surface diagrams, and how they relate to
the topology of 4–manifolds is the central focus of our work.

1.3 Summary of Results

We now describe the contents of this thesis and state our main results. The main
body of the text is divided into three parts which each have a slightly different focus.

Part I is mostly of preliminary nature. After reviewing some background ma-
terial in Chapter 2, we turn to wrinkled fibrations and broken Lefschetz fibrations
in Chapter 3. We collect the central definitions and summarize important results
surrounding these classes of maps. In addition, in Section 3.2 we develop a theory
of parallel transport in the context of wrinkled fibrations which provides a solid
framework for the discussion of vanishing cycles.

In Part II we develop a self-contained theory of simple wrinkled fibrations and
surface diagrams. In the process we extend and clarify various aspects of the work
of Williams. Recall that Williams showed how to extract surface diagrams from
simple wrinkled fibrations over S2 and how their total spaces can be recovered from
surface diagrams assuming that the genus is at least three. We go further and show
that the map itself can be recovered as well. Unfortunately, the statement is a little
convoluted since we include the low genus cases.

Theorem 1.1 (Correspondence over the sphere). Let SWFg(S2) and SD0
g be the

sets of equivalence classes of genus g simple wrinkled fibrations over S2 and surface
diagrams with trivial monodromy, respectively. There is a surjective map

SWFg(S2) −→ SD0
g

whose point preimages have a transitive action of the group π1

(
Diff(Σg−1), id

)
. In

particular, the map is bijective for g ≥ 3.

We refer to Chapter 4 for the relevant definitions. In particular, we would like to
highlight the trivial monodromy condition which is hidden in Williams’s approach.
Without this condition we obtain a different correspondence result for certain simple
wrinkled fibrations over the disk which is much cleaner.

3See the discussion following Corollary 4.19 on page 52.
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Theorem 1.2 (Correspondence over the disk). Equivalence classes of surface di-
agrams correspond bijectively to equivalence classes of descending simple wrinkled
fibrations over the disk.

The main ideas used to prove Theorems 1.1 and 1.2 are outlined in Section 4.4.
Our discussion closely parallels the relation of Lefschetz fibrations and their vanish-
ing cycles which is reviewed in Section 4.3. However, the actual proofs are carried
out in a more general setting. In fact, we define simple wrinkled fibrations over ar-
bitrary base surfaces and explain how their study reduces to that of certain simple
wrinkled fibrations over the annulus which we call annular. We then give a purely
combinatorial definition of surface diagrams, whereas Williams always discusses sur-
face diagrams in relation to simple wrinkled fibrations. We also introduce generalized
surface diagrams as a combinatorial counterpart for annular simple wrinkled fibra-
tions as well as a natural notion of equivalence of (generalized) surface diagrams.
The following is the central result of Part II.

Theorem 1.3 (Annular correspondence). There is a bijective correspondence be-
tween annular simple wrinkled fibrations and generalized surface diagrams, both con-
sidered up to equivalence.

The proof is rather lengthy and occupies most of Chapter 5. We finally deduce
Theorems 1.1 and 1.2 in Section 5.3. In the course of the proof we will obtain a good
understanding how (generalized) surface diagrams encode the topology of the total
spaces of the corresponding simple wrinkled fibrations. In particular, we will see
that simple wrinkled fibrations are directly accessible to handlebody theory without
the previously customary detour over broken Lefschetz fibrations. This aspect is
revisited and further elucidated in Chapter 6 in the context of simple wrinkled
fibrations over the disk and the sphere. We described the structure of the handle
decompositions induced by these maps, explain how to draw Kirby diagrams, and
discuss some examples.

In Part III we leave simple wrinkled fibrations aside and focus on the interplay
between the combinatorics of surface diagrams and the topology of the 4–manifolds
they describe. In Chapter 7 we show how certain cut-and-paste operations on
4–manifolds can be realized in terms of surface diagrams, including connected sums
with S2 × S2 and CP2 with either orientation. These techniques turn out to be
a key ingredient in the proof of our next main result, namely the classification of
closed 4–manifolds that can be described by surface diagrams of the lowest genus,
which is the subject of Chapter 8. Our result should be compared to the attempts of
Hayano [33] and Baykur–Kamada [6] to classify 4–manifolds with genus one broken
Lefschetz fibrations.

Theorem 1.4. A closed 4–manifold admits a surface diagram of genus one if and
only if it is diffeomorphic to kS2 × S2 or mCP2#nCP2 where k,m, n ≥ 1.

In Chapter 9 we take on the task of understanding how surface diagrams en-
code basic homotopy information of 4–manifolds and give some applications. We
first discuss the fundamental and homology groups as well as intersection forms in
Section 9.1, for which we obtain descriptions in terms of surface diagrams. Using
these we derive an easily verifiable obstruction for surface diagrams to have trivial
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monodromy, see Section 9.2. We also discuss spin and spinc structures in Section 9.3.
As a final application, we elaborate on the following theorem in Section 9.4.

Theorem 1.5. Let w : X → S2 be a simple wrinkled fibration with surface dia-
gram S = (Σ; c1, . . . , cl). If X is simply connected and [Σ] = 0 ∈ H2(X), then the
homeomorphism type of X is determined by the homology classes [ci] ∈ H1(Σ).

An interesting observation is that the diffeomorphism type of X a priori depends
on the isotopy classes of the curves ci ⊂ Σ. Furthermore, the difference between
isotopy and homology for curves on a surface is measured in terms of the Torelli
group of the surface, which is the non-linear and mysterious part of the mapping class
group. This suggests the possibility of a relation between exotic smooth structures
on 4–manifolds and Torelli groups.

Finally, we include three appendices which provide detailed proofs of some results
that qualify as “mathematical folklore” which are used in the main body of the
text. In Appendix A we show how the intersection form of a closed 4–manifold can
be computed from a Kirby diagram. This is common knowledge in case that the
underlying handle decomposition is free of 1– and 3–handles but we are not aware of
a treatment of the general situation in the literature. The purpose of Appendix B is
to explain how the presence of a singular fibration leads to a geometric interpretation
of the set of spinc structures of a given 4–manifold. This is mainly an elaboration
on ideas of Taubes [64] and Perutz [58]. Appendix C deals with a problem in
3–dimensional Morse theory which is relevant for the proof of Theorem 1.3. Using
methods of Cerf [13] and basic mapping class group theory we show that a canceling
pair of critical points of a Morse function defined on an orientable 3–manifold can
be canceled in an essentially unique way.

Several results in this thesis, including Theorems 1.1 to 1.4, have already ap-
peared in the author’s article [7]. However, our exposition here is much more detailed
and several proofs have been completely rewritten in order to improve clarity. In
particular, we make consistent use of the theory of parallel transports which allows
to make many arguments more precise.
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Chapter 2

Background Material

The main theme of our work is to study smooth 4–manifolds in terms of curve
configurations in surfaces which are derived from certain maps to the 2–sphere. In
doing so, we will primarily rely on notions and methods from such varied fields as

• singularity theory of smooth maps,

• mapping class groups of surfaces, and

• handlebody theory.

As a service to the reader, as well as to set up some terminology, we include short
reviews of the necessary background from each of these three subjects. We deliber-
ately risk being overly detailed and suggest that the reader only skim this chapter
in order to become acquainted with our notation and terminology, and come back
to it when he or she feels that more information is needed.

General assumptions. We will work exclusively in the smooth category, mean-
ing that all manifolds and maps that appear are assumed to be smooth. In addition,
we make the standing assumptions that all manifolds are compact, connected, and
oriented. Deviations will be explicitly indicated. Occasionally, we will also restate
some of these assumptions for emphasis. We will freely use basic results from dif-
ferential topology such as the tubular neighborhood theorem, the isotopy extension
theorem, and transversality theory as covered in [11], for example. We often use no-
tation such as νA to indicate an open neighborhood of a subset A of some manifold.
If A is a submanifold, then we implicitly assume that νA is a tubular neighborhood.

Orientation conventions. Since we are working with oriented manifolds, we have
to settle on some conventions for induced orientations. If M is a manifold with
boundary, then we orient ∂M by the outward normal first convention. This is the
convention that gives the unit circle S1 ⊂ R2 the counterclockwise orientation when
thought of as the boundary of the unit disk D2. Furthermore, if p : E → B is an
oriented fiber bundle with fiber F , then we require that the orientations on E, B,
and the fibers Eb = p−1(b) are related by the fiber first convention. In the case
of the trivial bundle E = F × B this means that we consider the fiber as the first
factor and require that the product orientation of the right hand side agrees with
the orientation on E. This generalizes to arbitrary bundles by the choice of a bundle
atlas with fiber wise orientation preserving transition maps.
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2.1. 4–Manifolds and Kirby Calculus

Framings. Let M be an n–dimensional manifold and let K ⊂M be a submanifold
of codimension k. Recall that a normal framing or simply a framing for K is a
trivialization of its normal bundle. Equivalently, a framing consists of k point wise
linearly independent normal vector fields along K (that is, sections of TM |K that
are nowhere tangent to K). We use the latter interpretation and the obvious notion
for homotopies of framings. We will allow ourselves the common inaccuracy to blur
the distinction between framings and their homotopy classes. This is justified by the
tubular neighborhood theorem, which establishes a bijection between framings up
to homotopy and extensions of the inclusion K ⊂M to embeddings K ×Dk ↪→M
up to ambient isotopy, and the latter structures are what one is actually interested
in most of the time. If both M and K are oriented, then a framing is already
determined up to homotopy by the choice of (k − 1) normal vector fields, since the
orientations specify the last vector field up to homotopy. In particular, for k = 1
the orientations determine a canonical homotopy class of framings and for k = 2 it
is enough to specify a single normal vector field up to homotopy. We will sometimes
be sloppy and use this method even when K is only orientable but not oriented. In
those situations it is to be implicitly understood that the framing is only determined
after choosing an orientation. Usually this issue will arise in constructions which
require the choice of an orientation but whose result turns out to be independent of
this choice.

(Co-)Homology. Be default, (co-)homology groups are taken with integer coef-
ficients, that is, Hk(X) always means Hk(X;Z) and other coefficient groups will
be indicated explicitly. We will freely appeal to various forms of Poincaré dual-
ity (as found in Bredon’s book [10, p.348ff.], for example) and denote the corre-
sponding isomorphisms by PD. Finally, as customary in low dimensional topol-
ogy, we usually think of homology classes as represented by submanifolds. For
an oriented submanifold S ⊂ M we denote its homology class by [S] ∈ Hk(M)
where k = dimS. Furthermore, we equip the homology groups with the intersection
product Hk(M) × Hl(M) → Hk+l−n(M) defined as [S] · [T ] = [S t T ] where the
symbol t indicates a transverse intersection (possibly after an implicit perturbation
of either S or T ).

2.1 4–Manifolds and Kirby Calculus

We begin by reviewing some basic facts about 4–manifolds and their handle de-
compositions. The latter will be our main tool for relating properties of maps onto
surfaces as well as combinatorial structures in their fibers to the topology of the
source manifold.

Handle decompositions. Roughly speaking, handle decompositions are a mani-
fold version of cell decompositions and they are a central tool in manifold topol-
ogy. We briefly recall the 4–dimensional situation. For a detailed account we
refer to Gompf and Stipsicz [32, Ch. 4]. A (4–dimensional) k–handle is a copy
of hk = Dk × D4−k and can be thought of as a thickened k–cell. A k–handle is
attached to a 4–manifold X via an embedding ϕ : S1×D2 ↪→ ∂X resulting in a new
4–manifold X ∪ϕ hk. The subset Sk × D4−k of ∂hk is called the attaching region
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2.1. 4–Manifolds and Kirby Calculus

and Sk × {0} is the attaching sphere; both are usually implicitly identified with
their images in ∂X. Similarly, Dk × S3−k and {0} × S3−k are called the belt region
and belt sphere and so are their counterparts in ∂(X ∪ϕ hk). There are two further
important subsets of hk, namely the core Dk×{0} and the cocore {0}×D4−k which
are bounded by the attaching sphere and belt sphere, respectively.

A manifold that is obtained from the empty set by a sequence of handle at-
tachments is called a handlebody. Since only 0–handles can be attached to the
empty set, every handlebody must have a zero handle. A handle decomposition of
a 4–manifold X is a diffeomorphism from X to a handlebody. It is well known that
every 4–manifold admits a handle decomposition. Moreover, one can always arrange
the following extra properties (see [32, Ch. 4.2]) which we shall henceforth assume:

• the handles are attached in order of increasing index,

• there is a unique 0–handle, and

• there is at most one 4–handle which is needed if and only if X is closed.

Given such a handle decomposition ofX we denote byX≤k the union of all handles of
index at most k and call this the k–skeleton of X. An important observation is that
for closed X, equipped with a handle decomposition as above, the 2–skeleton X≤2 al-
ready determines X up to diffeomorphism. This follows from results of Laudenbach
and Poénaru [43], who implicitly show that any orientation preserving diffeomor-
phism of #k(S1 × S2) extends across \k(S1 × D3), and the observation that the
union of the 3– and 4–handles of X are diffeomorphic to \k(S1 × D3) with k the
number of 3–handles.1 In other words, if the boundary of a 2–handlebody diffeo-
morphic to #k(S1×S2), then up to diffeomorphism there is a unique way to attach
3– and 4–handles to obtain a closed 4–manifold. This is very convenient, since
4–dimensional 2–handlebodies can actually be visualized by 3–dimensional pictures,
as discussed below.

The last general fact about handle decompositions we will need is that they
can be used to compute homology groups in very much the same spirit as cell
decompositions. To a handle decomposition of a 4–manifold X one can associate
the handle complex

C4(X)
∂4−→ C3(X)

∂3−→ C2(X)
∂2−→ C1(X)

∂1−→ C0(X)

where Ck(X) is the free Abelian group generated by the k–handles and the differ-
ential ∂k counts the intersections between the attaching spheres of the k–handles
with the belt spheres of the (k − 1)–handles in ∂X≤k. As shown in [32, p.111], this
is a chain complex which computes the homology of X. Note that the assumption
about 0– and 4–handles force ∂4 and ∂1 to vanish, so that all interesting information
is concentrated in ∂2 and ∂3. Moreover, for closed X the fact that X is determined
by X≤2 shows that the whole homological information about X is encoded only in
the map ∂2 : C2(X)→ C1(X).

Kirby diagrams. As mentioned before, the structure of a 2–handlebody can be
described by a 3–dimensional picture known as a Kirby diagram. There are two

1A more explicit account can be found in an article of Montesinos [52, Theorems 1&2].

14



2.1. 4–Manifolds and Kirby Calculus

different ways to deal with 1–handles and we will employ the “dotted circle notation”
so that a Kirby diagram consists of the following data:

• An unlink U = U1 ∪ · · · ∪ Uh1 in S3 where each component is decorated with
a dot – these are the “dotted circles”.

• A framed link L = L1 ∪ · · · ∪Lh2 in the complement S3 \ U where the framing
of Li is specified by its framing coefficient fi ∈ Z which measures the difference
to the framing induced from a Seifert surface for Li in S3, also known as the
0–framing.

A Kirby diagram (U ,L) encodes the 2–handlebody part of a 4–manifold X as follows.
The ambient S3 is thought of as the boundary of the unique 0–handle of X, which
is implicitly identified with D4. Each dotted circle represents a 1–handle, albeit in
a slightly subtle way: we choose pairwise disjoint spanning disks for all components
of U , push their interiors into the interior of D4, and carve out open tubular neigh-
borhoods of these disks from D4. Up to diffeomorphism, this process turns out to
have the same effect as attaching 1–handles to D4 (see [32, Ch. 5.4]) so that the un-
link U represents X≤1. Note that this description of X≤1 naturally identifies ∂X≤1

with the 0–surgery on U so that the complement of a neighborhood νU ⊂ S3 can
be considered as part of ∂X≤1. With this understood, the framed components of L
simply specify the attaching regions of the 2–handles so that the description of X≤2

is complete. As a side note, there does not seem to be a convenient way to include
information about 3–handles in a Kirby diagram so that an arbitrary 4–manifold
with boundary cannot be described. However, for studying closed 4–manifolds (up
to diffeomorphism) this is irrelevant by the mentioned results of Laudenbach and
Poénaru [43]. This makes Kirby diagrams a powerful tool in the context of closed
4–manifolds.

Handle moves and Kirby calculus. Of course, handle decompositions and thus
Kirby diagrams of 4–manifolds are not unique. However, it is known that any two
handle decompositions of a given 4–manifold are related by isotopies of the attaching
maps, including the so called handle slides, and the creation/cancellation of pairs of
handles of adjacent index (see [32, Theorem 4.2.12]). Translated into the language
of Kirby diagrams, these handle moves are commonly known as Kirby calculus and
provide a visually accessible method for proving that two 4–manifolds are diffeomor-
phic. Very roughly, given a Kirby diagram (U ,L) the isotopies for the 1–handles
appear as isotopies and band sums among the components of U (dragging L along),
while the 2–handle isotopies affect L by isotopies and band sums with components
of both L and U . The creation/cancellation of handle pairs takes the form of inser-
tion/deletion of an isolated Hopf link with one dotted and one 0–framed component
(for pairs of index 1 and 2) or an isolated 0–framed unknot (for index 2 and 3).
For more detailed descriptions we refer to [32, Chs. 5.1&5.4]. In some arguments in
Section 6.3 and Chapter 7 we will use Kirby calculus so that some familiarity with
the subject is useful, although not strictly necessary because the manipulations are
rather simple.
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Intersection forms. For a 4–manifold X the intersection product and the canon-
ical isomorphism H0(X) ∼= Z give rise to a symmetric bilinear map

H2(X)×H2(X) −→ Z

called the intersection pairing and denoted by a ·b. The intersection pairing vanishes
on torsion classes and thus descends to a symmetric bilinear form QX on the free
Abelian group H2(X)/torsion, the so called intersection form of X. After passing
to rational coefficients, QX can be diagonalized and the numbers of positive and
negative eigenvalues are homotopy invariants of X denoted by b+2 (X) and b−2 (X),
respectively. The difference σ(X) = b+2 (X)− b−2 (X) is called the signature of X.

2.2 Singularities of Smooth Maps

Starting with Chapter 3 we will study certain maps from 4–manifolds to surfaces
which are characterized by their critical point structure. In order to put the central
definitions into a proper context, it is useful to know some general facts about
smooth maps and their singularities. However, we want to emphasize that the main
purpose of this section is simply to convince the reader that if one studies maps
from 4–manifolds to surfaces, then it is natural to consider maps with only folds
and cusps. Of course, we will also explain what folds and cusps are. The more
delicate parts of the discussion will actually not be used later on. General references
for the singularity theory of smooth maps are the textbooks of Golubitsky and
Guillemin [31] and Arnol’d et al. [2]. We will mostly follow [31].

For the moment, we consider two smooth manifolds M and N of arbitrary di-
mensions m and n, respectively. For simplicity we assume that M is closed and
that N has empty boundary. However, both may be non-orientable and/or have
several components. Given a smooth map f : M → N we denote its differential
by df : TM → TN . Recall that p ∈ M is called a critical point of f (or a singular-
ity) if the rank of dfp is not maximal, and the that image of a critical point is called
a critical value. We refer to the sets Cf of critical points and f(Cf ) of critical values
as the critical locus and the critical image of f . Sometimes we will also denote the
critical locus by C(f) for aesthetic reasons.

Since arbitrary smooth maps can be very complicated, one of the goals of sin-
gularity theory is to find reasonably large sets of maps with nice properties that
rule out as much pathological behavior as possible. In order fill the word large with
meaning, it is necessary to equip C∞(M,N) with a topology. For compact M there
is a natural choice, namely the C∞ topology of uniform convergence of all partial
derivatives.2 An obvious interpretation of large subsets of C∞(M,N) is to require
that they are open and dense. While this interpretation is not perfect, it serves for
our purposes and we will stick with it.

As a warm up, let us take a look at the situation of real valued functions. Recall
that for f ∈ C∞(M,R) and a critical point p ∈ Cf there is a well defined notion of

2Of course, in order to define this topology one has to make some choices, such as Riemannian
metrics or atlases, but for compact M all choices give rise to the same topology. In the non-compact
case one has to resort to a finer topology with better properties known as the Whitney topology or
strong C∞ topology (see [31, p.42ff.]). But these delicacies shall not concern us.
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2.2. Singularities of Smooth Maps

second derivative at p. This takes the form of a symmetric bilinear form on TpM
and is called the Hessian of f at p. Then p is called non-degenerate if its Hessian is
non-degenerate and the index of p is defined as the number of negative eigenvalues
of the Hessian. Functions with only non-degenerate critical points are known as
Morse functions. Following Cerf [13] we call a Morse function that is injective on
its critical points excellent. The following is well known.

Theorem 2.1. (Excellent Morse functions) Let M be a smooth n–manifold. The
set of all smooth functions f : M → R such that

(a) f is a Morse function, that is, all its critical points are non-degenerate, and

(b) f is injective on its critical points

is open and dense in C∞(X,R). Moreover, near each non-degenerate critical point
f has a local model of the form

(x1, . . . , xn) 7→ −x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n (2.1)

for some k ∈ {1, . . . , n}.

Since we will frequently work with local models for smooth maps, we want to
make absolutely clear what we mean by this.

Definition 2.2. Let f : M → N be a smooth map. We say that f has a local
model F : Rm → Rn at p ∈ M if there are local coordinates centered at p ∈ M
and f(p) ∈ N such that the coordinate representation of f agrees with F . If either M
or N are oriented the coordinates are required to respect orientations.

Many different proofs for Theorem 2.1 are available in the literature. One that
is very conceptual and anticipates a generalization to maps between arbitrary man-
ifolds can be found in [31, Ch. II.6]3. The key ideas are the notion of transversality
and the language of jet spaces, culminating in the so called Multijet Transversality
Theorem [31, Theorem II.4.13]. The latter is an extremely powerful tool whose im-
portance in differential topology can hardly be overstated. Unfortunately, we can
neither formulate nor explain this result without going too far astray. But just
to give a rough sketch of the proof of Theorem 2.1: the openness and denseness
of conditions (a) and (b) follows from two applications of the transversality theo-
rem, and the construction of the local models is the content of the classical Morse
Lemma [31, Theorem II.6.9].

Remark 2.3. The whole discussion above, including Theorem 2.1, extends verbatim
to the case when the target R is replaced by an oriented, 1–dimensional manifold.
It is convenient to speak of (excellent) Morse functions in this context as well.

As indicated, Theorem 2.1 admits a generalization to maps between arbitrary
manifolds and we will state the version for maps from 4–manifolds to surfaces in
Theorem 2.9 below. However, to give the proper context we embark on a small
digression about the general situation. Note that condition (a) in Theorem 2.1
is concerned with the nature of critical points in the source, while condition (b)

3As stated, Theorem 2.1 follows from Theorem II.6.2, Propositions II.6.6 and II.6.13, and The-
orem II.6.9 in [31].
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addresses how critical points are mapped into the target. Both conditions have
natural generalizations to arbitrary dimension.

The basic idea for finding an analogue of condition (a) is to partition the critical
points of a smooth map f : Mm → Nn according to their level of degeneracy. More
precisely, for a non-negative integer r ∈ Z≥0 we consider the sets

Sr(f) = {p ∈M | rk(dfp) = min{m,n} − r} ⊂M

of points where f drops rank by r. Note that S0(f) consists of the regular points
while each critical point lies in exactly one Sr(f) with r > 0. Of course, Sr(f) is
empty if r exceeds the dimension of either M or N . As explained in [31, p.143], for
sufficiently nice f the sets Sr(f) are submanifolds of M of codimensions

codimSr(f) = r2 + r|m− n|. (2.2)

This observation suggests the following inductive scheme which is attributed to
Thom [65]. Given a sequence of integers r1, . . . , rk+1 ∈ Z≥0 and assuming that
Sr1,...,rk(f) is a submanifold of M (and also of Sr1,...,rk−1

(f) if k > 1) we define

Sr1,...,rk+1
(f) = Srk+1

(f |Sr1,...,rk (f)).

Note that if Sr1,...,rk+1
(f) again turns out to be a submanifold of Sr1,...,rk(f), then

according to equation (2.2) it has positive codimension there unless rk+1 = 0. In
particular, the above process becomes stagnant after finitely many steps, in the sense
that f has no critical points when restricted to Sr1,...,rk(f) so that Sr1,...,rk+1

(f) is
empty for rk+1 > 0. So eventually, if f is nice enough for everything to work out,
the source M is partitioned into submanifolds of the form Sr1,...,rk,0(f). The general
analogue of condition (a) in Theorem 2.1 is that the above process can be carried
out. The fact that this is possible for a dense set of maps in C∞(M,N) was proved
by Boardman [9]; we follow [31, p.157] and call such maps Boardman maps.

The partition of M is commonly known as the Thom-Boardman stratification (or
TB stratification, for short). We will usually ignore the top stratum S0(f) of regular
points and only focus on the stratification of the critical locus. Again, a proper
exposition of the Thom-Boardman stratification requires the notion of jet spaces
and our discussion should be taken with a grain of salt. The interested reader is
referred to [31, Ch. VI.5] and [9] for more details.

Remark 2.4. Surprisingly, the set of Boardman maps fails to be open in general.
According to Wilson [70], its openness depends on the dimensions of M and N .
More precisely, the Boardman maps form an open set if and only if either n < 4
or 2n > 3m− 4.

We now shift our attention to maps f : X → B from a closed 4–manifold X to a
surface B. Before stating the analogue of condition (b) in Theorem 2.1 we want to
discuss two important examples of Boardman maps.

Example 2.5 (Fold models). Consider the maps F± : R4 → R2 given by

F±(t, x, y, z) =
(
t, x2 + y2 ± z2

)
. (2.3)
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2.2. Singularities of Smooth Maps

Figure 2: The critical images of the fold (left) and cusp models (right). In both
pictures the t–parameter increases from left to right and the origin of R2 is at
the center.

We will refer to these maps as the fold models, which come in two flavors called
definite (F+) and indefinite (F−). A direct calculation shows that

dF±(t, x, y, z) =

(
1 0 0 0
0 2x 2y ±2z

)
from which we immediately see that C(F±) = {(τ, 0, 0, 0) | τ ∈ R} is a 1–dimensional
submanifold of R4 and that F± drops rank by 1 at each critical point. In particular,
we find C(F±) = S1(F±). Moreover, the restriction of F± to its critical locus obvi-
ously has full rank so that F± is a Boardman map and its TB stratification has only
one non-empty singular stratum, namely C(F±) = S1,0(F±).

Example 2.6 (Cusp models). Next we take a look at the (indefinite and definite)
cusp models C± : R4 → R2 given by

C±(t, x, y, z) =
(
t, x3 + 3tx+ y2 ± z2

)
. (2.4)

Again, we compute the differential and obtain

dC±(t, x, y, z) =

(
1 0 0 0
3t 3(x2 + t) 2y ±2z

)
.

The critical locus is a parabola cut out by the equations x2 + t = y = z = 0. In
particular, it is again a 1–dimensional submanifold. Also, just as for the fold models,
the rank drops by 1 at all critical points, so that C(C±) = S1(C±). If we parametrize
the critical locus by the curve (−τ2, τ, 0, 0), then the restriction of C± corresponds
to the map

τ 7→ C±(−τ2, τ, 0, 0) = (−τ2,−τ3)

whose differential is non-zero for τ 6= 0 but vanishes for τ = 0. It follows that
the origin of R4 is contained in S1,1,0. So C± is also a Boardman map and its TB
stratification takes the more complicated form

C(C±) = S1,0(C±) q S1,1,0(C±)
=

{
(−τ2, τ, 0, 0)

∣∣ τ 6= 0
}
q {(0, 0, 0, 0)}.

The critical images of the fold and cusp models are shown in Figure 2; the
cuspidal shape is the reason for the name cusp.

It turns out that in some sense these examples capture the full local complexity
of singularities of maps from 4–manifolds to surfaces. Indeed, if f : X → B is
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a Boardman map, then the only candidates for non-empty TB strata are S1,0(f)
and S1,1,0(f). According to equation (2.2) the codimension of Sr(f) is r2 + 2r which
exceeds the dimension of X as soon as r ≥ 2. So Cf = S1(f) has codimension 3 and
is thus a 1–dimensional submanifold of X. Similarly, one argues that S1,s has to be
empty for s ≥ 2 while S1,1(f) has codimension 1 in S1(f), making it a finite set of
points. These two types of critical points have special names.

Definition 2.7 (Folds and cusps). Let f : X → B be a smooth map from a 4–mani-
fold to a surface. A critical point p ∈ Cf is called a fold point if f drops rank by 1
at p, Cf is a 1–dimensional submanifold near p, and f |Cf has non-zero derivative
at p. Similarly, p ∈ Cf is called a cusp point if f drops rank by 1 at p, Cf is a
1–dimensional submanifold near p, and the derivative of f |Cf vanishes at p. We

denote the sets of fold and cusp points of f by Cfo
f and Ccu

f , respectively.

The following is clear from the definitions.

Lemma 2.8. A map f : X → B from a 4–manifold to a surface is a Boardman
map if and only if all its critical points are folds and cusps. In that case we
have S1,0(f) = Cfo

f and S1,1,0(f) = Ccu
f .

Now, remember that we are still looking for an analogue of condition (b) in
Theorem 2.1, which should be a condition on how Cf is mapped into B. Loosely
speaking, the restriction of f to Cf and all its TB strata should be as regular as
possible. More precisely, since the cusp stratum S1,1,0(f) is a finite set of points, it
is natural to require that it is mapped injectively into B. Similarly, in the light of the
Whitney’s immersion theorem [31, Thm. II.5.7], f should restrict to an immersion
with normal crossings on the 1–dimensional fold stratum S1,0(f). Lastly, the images
of S1,0(f) and S1,1,0(f) should be disjoint, because a point and a line in the plane
are generically disjoint. We can now state the analogue of Theorem 2.1 for maps
from 4–manifolds to surfaces.

Theorem 2.9 (Maps from 4–manifolds to surfaces). Let X be a closed 4–manifold
and B a surface. The set of smooth maps f : X → B such that

(a) f is a Boardman map, that is, all its critical points are folds or cusps, and

(b) f |Cfo
f

is an immersion with normal crossings and f is injective on f−1(f(Ccu
f ))

is open and dense in C∞(X,B). Moreover, each fold or cusp point is locally modeled
on the fold or cusp models F± and C± from Examples 2.5 and 2.6.

Proof. The denseness of the conditions (a) and (b) is a special case of [31, Theo-
rem VI.5.2, p.157]. (Note that condition (b) is equivalent to “Condition NC” stated
on p.157 of [31].) Moreover, condition (a) is open by Remark 2.4 (since dimB < 4),
and the openness of condition (b) follows from the multijet transversality theorem
as in the proof of [31, Proposition VI.5.6, p.158] with the additional input that M is
compact. Finally, the construction of local models for folds and cusps is due to
Morin [53] and Levine [46, p.154f.].

Remark 2.10 (Definite or indefinite?). Given a map f : X → B with a fold or cusp
point p ∈ Cf , there are two candidates for a local model, the definite or the indefinite
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one. As in the case of Morse functions, one can decide which one fits by studying
a notion of second derivative. As explained in [31, p. 152] there is a well defined
symmetric bilinear map

δ2
pf : ker dfp × ker dfp −→ coker dfp = Tf(p)B/ im dfp

which naturally generalizes the Hessian (see also [2, p.60ff.]). If p is a fold or cusp
point, then coker dfp is 1–dimensional and the choice of a non-zero vector provides
an identification with the real line. Using such an identification, δ2

pf becomes a
symmetric bilinear form on ker dfp. (For example, in the fold and cusp models,
δ2
pf can be identified with the Hessian of either x2 + y2 − z2 or x3 + y2 − z2.) If all

non-zero eigenvalues of δ2
pf have the same sign, then the singularity is definite. If

there are eigenvalues of both sign, then we have an indefinite singularity. Note that
these conditions are independent of the choice of identification coker dfp ∼= R.

To summarize, for a map f : X → B from a 4–manifold to a surface that satisfies
the conditions in Theorem 2.9 the critical locus Cf ⊂ X is a 1–dimensional subman-
ifold which decomposes into finitely many open arcs, the connected components of
the fold locus Cfo

f = S1,0(f), whose ends limit to the cusp locus Ccu
f = S1,1,0(f) which

is a finite set. The critical points are locally mapped into B according to the models
discussed in Examples 2.5 and 2.6 (see also Figure 2) and the only multiple points
that occur in the critical image are transverse intersections between the images of
arcs of folds. For brevity we will sometimes refer to both, the arcs of folds in X and
their images in B, as fold arcs. This should not cause any confusion since it will
usually be clear from the context where the arcs in question live.

Remark 2.11 (Stability). Another important concept in singularity theory that we
have not discussed so far is the notion of stability. A smooth map f : M → N is
called stable if every g ∈ C∞(M,N) sufficiently close to f is equivalent to f , that
is, there are diffeomorphisms φ of M and ψ of N such that g = ψ ◦ f ◦ φ−1. For
1–dimensional N it is a classical fact that f is stable if and only if it is an excellent
Morse function (see [31, Ch. II.6]). Moreover, it turns out that the conditions stated
in Theorem 2.9 characterize the stable maps from 4–manifolds to surfaces. This is
well known folklore in singularity theory and can be proved along the lines of [31,
IV.6.3, Theorem 6.3] where the details are worked out for the more complicated case
of maps between 4–manifolds. Curiously enough, while Boardman maps fail to be
open in certain dimensions, stable maps are not always dense (see [31, p.160ff.]).
However, in the context that is most relevant to us the two notions agree and we
can enjoy the best of both worlds.

2.3 Surfaces and Their Mapping Class Groups

The regular fibers of a smooth map f : X → B, with both X and B oriented, are
compact, oriented surfaces and these fibers will play an important role later on, and
we are naturally led into the theory of surfaces and their mapping class groups. This
itself is a vast subject and, in the author’s experience, many different conventions
are in use, sometimes making it difficult to decide whether a statement in some
reference actually applies to a situation at hand. For this reason we will give very
precise definitions. As a general reference we use the book of Farb and Margalit [24].
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Surfaces and Simple Closed Curves. By a surface we mean a compact, ori-
entable, 2–dimensional manifold Σ, possibly with non-empty boundary, and possibly
equipped with a finite set of marked points P ⊂ Σ \ ∂Σ which is usually not men-
tioned explicitly. A simple closed curve in Σ is a closed, connected, 1–dimensional
submanifold a ⊂ Σ which neither meets the boundary nor the marked points. In
other words, it is the image of an embedding S1 ↪→ Σ\ (∂Σ∪P ). Similarly, a simple
arc r ⊂ Σ is the image of a proper embedding ([0, 1], {0, 1}) ↪→ (Σ, ∂Σ ∪ P ). Note
however, that the embedding is not part of the data. Also, simple closed curves
and simple arcs are unoriented objects according to our definition, but at times it
will be convenient to choose orientations in order to speak of (integral) homology
classes or fundamental group elements. In those situations we will sometimes use
the notation ~a for an oriented simple closed curve a ⊂ Σ. Simple closed curves and
other objects related to Σ are usually considered up to ambient isotopy in Σ via
isotopies which leave the boundary as well as the marked points fixed. We use the
notation a ∼ b to indicate that two given objects are isotopic.

Intersection numbers. Let a, b ⊂ Σ be a pair of simple closed curves. There are
several ways to count intersections between a and b. The crudest way is to simply
count the number of points in a ∩ b (sometimes called the numerical intersection
number). But this count might not be finite and it is certainly not invariant under
isotopies. With respect to these properties, a better approach is the geometric
intersection number

i(a, b) = min {#(α ∩ β)|α ∼ a, β ∼ b, α t β} ∈ N (2.5)

where the symbol t indicates a transverse intersection. Obviously, i(a, b) is finite,
isotopy invariant, and also symmetric in a and b. A third way of counting requires
that a, b, and Σ are oriented. In this situation the algebraic intersection number is
defined as

〈a, b〉 = 〈a, b〉Σ = 〈[a], [b]〉H1(Σ) ∈ Z

where bracket on the right hand side denotes the intersection form on H1(Σ). In
contrast to the geometric intersection number, 〈a, b〉 is skew symmetric and only
depends on the homology classes of a and b. However, both i(a, b) and 〈a, b〉 always
have the same parity (even or odd) and satisfy the inequality

|〈a, b〉| ≤ i(a, b). (2.6)

Note that the left hand side is actually independent of the chosen orientations.
As far as computability is concerned, assuming that a and b intersect transversely,

it is obviously easiest to determine #(a ∩ b) by simply counting points, followed
by 〈a, b〉 where one has to count with signs, and then there is i(a, b) which is harder
to come by. In order to compute i(a, b) one has to bring a and b in minimal position,
that is, one has to find isotopic curves that are transverse and minimize the number
of intersections. This seems difficult from the outset but it can be done in finitely
many steps due to the so called bigon criterion. Following [24, Section 1.2.4] we say
that a and b form a bigon, if there is an embedded disk ∆ ⊂ Σ whose interior is
disjoint from a and b, and whose boundary is a union of an arc of a and an arc of b
intersecting in exactly two points (see Figure 3). Given such a bigon, one can push b
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b

a

∆

b′

Figure 3: Two curves a, b ⊂ Σ forming a bigon ∆, and a curve b′ obtained
from b by a Whitney move across ∆.

across ∆ by a 2–dimensional Whitney move resulting in a curve b′ with two fewer
intersections with a. An immediate consequence of the following result is that one
can bring a and b in minimal position by finitely many Whitney moves.

Proposition 2.12 (Bigon criterion). Let a, b ⊂ Σ be simple closed curves intersect-
ing transversely. If a and b are not in minimal position, then they form a bigon.

Proof. See [24, Proposition 1.7].

Later on we will frequently encounter pairs of simple closed curves with geometric
or algebraic intersection number one and we find it convenient to introduce the
following terminology.

Definition 2.13 (Duality for curves). Two simple closed curves a, b ⊂ Σ are called

(a) algebraically dual if 〈a, b〉 = 1 (for some choice of orientations),

(b) weakly dual if i(a, b) = 1, and

(c) strongly dual if a and b intersect transversely in a single point.

Remark 2.14. In [7] we used the term “geometrically dual” instead of “weakly dual”.
However, it has been brought to our attention that this was misleading since “ge-
ometrically dual” is commonly used in the sense of “strongly dual”, especially in
higher dimensional contexts. In order to prevent this potential confusion, we de-
cided to change our terminology.

Diffeomorphisms and Mapping Class Groups of Surfaces. We turn to dif-
feomorphisms of surfaces. Let Diff+

∂ (Σ, P ) be the group of orientation preserving
diffeomorphisms that restrict to the identity on ∂Σ and preserve the set P of marked
points (possibly permuting the points). The mapping class group of Σ is defined as

Mod(Σ) = π0

(
Diff+

∂ (Σ, P ))
)
.

Simple closed curves play an important role in the theory of mapping class groups.
On the one hand, a simple closed curve a ⊂ Σ gives rise to an element τa ∈ Mod(Σ)
called the (right-handed) Dehn twist about a, which depends only on the isotopy
class of a. A diffeomorphism representing τa is obtained by taking out an annulus
neighborhood of a, applying a full right-handed twist to it, and gluing it back in.
Similarly, a simple arc r ⊂ Σ connecting two distinct marked points gives rise to
a half-twist τ̄r ∈ Mod(Σ), represented by a diffeomorphism supported in a disk
neighborhood D of r, ambiently isotoping r onto itself by a clockwise 180 degree
rotation, thus permuting the two marked points, while keeping ∂D fixed. (Note
that τ̄r is a square root of τ∂D in Mod(Σ).) We will frequently use the following
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elementary facts about Dehn twists. First of all, if a ⊂ Σ is a simple closed curve
and f ∈ Diff(Σ), then the Dehn twist about f(a) is given by

τf(a) = fτaf
−1 ∈ Mod(Σ) (2.7)

where the right hand side is to be understood as the isotopy class of fTaf
−1

where Ta ∈ Diff+
∂ (Σ) is some representative of τa (see [24, p.73f.]). Furthermore, if

a, b ⊂ Σ is a pair of weakly dual curves (that is, i(a, b) = 1), then we have

τaτb(a) ∼ b (2.8)

and the so called braid relation

τaτbτa = τbτaτb ∈ Mod(Σ) (2.9)

holds (see [24, p.78f.]).
It is well known that Mod(Σ) is generated by Dehn twists and half-twists (see [24,

Chapter 4], for example). On the other hand, mapping classes can be effectively
studied by their action on (isotopy classes of) simple closed curves and simple arcs.
In particular, it is desirable to understand the effect of Dehn twists on simple closed
curves. While this can be quite complicated for high geometric intersection numbers,
the situation becomes accessible on the level of homology.

Proposition 2.15 (Picard–Lefschetz formula). Let Σ be a surface, a ⊂ Σ a simple
closed curve and let x ∈ H1(Σ). Then for any orientation on a we have

(τka )∗x = x+ k〈[a], x〉[a]. (2.10)

In particular, if b is an oriented simple closed curve, then

[τka (b)] = [b] + k〈[a], [b]〉[a]. (2.11)

Proof. See [24, Proposition 6.3].

Remark 2.16. The Picard–Lefschetz formula is particularly useful when Σ = T 2. In
that case, mapping classes are completely determined by their action on homology
(see [24, Theorem 2.5], for example).

Another useful tool is the so called change of coordinates principle which roughly
states that any two configurations of simple closed curves on a surface with the same
intersection pattern can be mapped onto each other by a diffeomorphism. We will
only use the following special cases. For details we refer to [24, Chapter 1.3].

Proposition 2.17 (Change of coordinates principle). If a, b ⊂ Σ is a pair of non-
separating simple closed curves, then there exists some φ ∈ Diff+

∂ (Σ, P ) such that
φ(a) = b. Furthermore, if a, b and a′, b′ are two pairs of strongly dual curves, then
there is some φ ∈ Diff+

∂ (Σ, P ) such that φ(a) = a′ and φ(b) = b′.

It is worthwhile mentioning that the higher homotopy groups of the diffeomor-
phism groups of compact surfaces are well understood. In fact, the homotopy type
of the identity components (and thus of all components) was determined by Earle,
Eells, and Schatz.
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Theorem 2.18 (Earle–Eells, Earle–Schatz [19,20]). Let Σ be a compact, connected,
orientable surface and let Diff0

∂(Σ) be the identity component of Diff∂(Σ).

(i) If Σ is closed of genus g ≥ 2, then Diff0
∂(Σ) = Diff0(Σ) is contractible. Fur-

thermore, the canonical inclusions SO(3) ↪→ Diff0(S2) and T 2 ↪→ Diff0(T 2)
are homotopy equivalences.

(ii) If ∂Σ 6= ∅, then Diff0
∂(Σ) is contractible.

Proof. See [19, p.21, Corollary] for (i) and [20, p.170, 2nd Theorem] for (ii).

This has many important consequences. We would like to point out three
of them. The first concerns spaces of simple closed curves. We refer to [37,
Chs. 2.6&2.7] for a general discussion of spaces of embeddings and submanifolds
as well as a proof of the following result.

Corollary 2.19. Let Σ be a closed, orientable surface of genus at least two. Then
the space of non-separating simple closed curves has weakly contractible components
(that is, all homotopy groups of each component are trivial).

Proof. See [37, Theorem 2.7.H].

Another consequence concerns what we call the automorphisms of Σ×S1, that is,
the orientation and fiber preserving diffeomorphism of Σ×S1 considered as the trivial
Σ–bundle over S1. (More generally, we refer to orientation and fiber preserving
diffeomorphisms of total spaces of oriented fiber bundles as automorphisms.) These
form a group, denoted by Aut(Σ×S1), whose elements can be identified with maps
from S1 into Diff+(Σ), or in other words, loops in Diff+(Σ). By fixing a fiber and
identifying it with Σ, we obtain a short exact sequence of groups

1→ π1

(
Diff(Σ), id

)
→ π0

(
Aut(Σ× S1)

)
→ Mod(Σ)→ 1 (2.12)

where the map π0

(
Aut(Σ×S1)

)
→ Mod(Σ) induced by restricting an automorphism

to a fixed fiber which is canonically identified with Σ. Note that this sequence is
split by sending φ ∈ Diff+(Σ) to the constant automorphism φ × idS1 . Combining
the exact sequence above with Theorem 2.18 we immediately see that if the genus
of Σ is at least two, then every automorphism of Σ × S1 is isotopic to a constant
one. The following easy consequence will be important for our purposes.

Corollary 2.20. Let Σ be a closed, oriented surface. Then φ ∈ Aut(Σ×S1) extends
to an automorphism of Σ × S1 if and only if it is isotopic to a constant one. In
particular, if Σ has genus at least two, then all automorphism extend.

Finally, we would like to mention the classification of surface bundles over the
2–sphere.

Corollary 2.21. Let X → S2 be a surface bundle with closed fibers of genus g.

(i) If g = 0, then X is diffeomorphic to S2 × S2 or CP2#CP2.

(ii) If g = 1, then X is diffeomorphic to T 2 × S2, S1 × S3 or S1 × L(n, 1).

(iii) If g ≥ 2, then X is diffeomorphic to Σg × S2.
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Proof. Let Σg be a closed surface of genus g. It follows from Corollary 2.20 that
Σg–bundles over S2 are classified by elements of π1

(
Diff(Σg); id

)
. For g 6= 1 the

above classification is then easily deduced from Theorem 2.18. The genus one case
is slightly more complicated and is covered in [6, Lemma 10].
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Chapter 3

Wrinkled Fibrations and
Related Structures

3.1 Wrinkled Fibrations and Broken Lefschetz Fibra-
tions

After all these preliminaries we narrow in closer toward the core of our work. We
start with one of the central definitions. Let M be a 4–manifold and B a surface,
both satisfying our standing assumptions1.

Definition 3.1 (Wrinkled fibrations). A wrinkled fibration is a map f : M → B
satisfying ∂M = f−1(∂B) and the following conditions:

(a) All critical points of f are indefinite folds and cusps.

(b1) The cusp locus Ccu
f does not meet ∂M and f is injective on f−1

(
f(Ccu

f )
)
.

(b2) The fold locus Cfo
f is transverse to ∂M and f restricts to an immersion with

normal crossings on Cfo
f .

Two wrinkled fibrations f : M → B and f ′ : M ′ → B′ are called equivalent if
there are orientation preserving diffeomorphisms φ̂ : M → M ′ and φ̌ : B → B′ such
that f ′ = φ̌ f φ̂−1.

Our general philosophy is to consider wrinkled fibrations as generalized fiber
bundles and we will borrow some terminology from this context. We will usually
refer to the source and target as total space and base, respectively, and we call the
preimages of points fibers.

A closely related class of maps are the so called broken Lefschetz fibrations.
Their definition is almost the same as Definition 3.1 except that cusps are replaced
by Lefschetz singularities. The latter are defined in terms of the local model

L: C2 → C, (z, w) 7→ z2 + w2

using complex local coordinates. More precisely, broken Lefschetz fibrations have
only indefinite folds and Lefschetz singularities and satisfy the obvious analogues

1As a reminder, these are smooth, compact, connected and oriented.
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of conditions (b1) and (b2) in Definition 3.1. Broken Lefschetz fibrations without
indefinite folds are simply called Lefschetz fibrations. In fact, we have introduced
the maps in reverse chronological order. As described in Section 1.2, the correct
order is: first Lefschetz, then broken Lefschetz, and finally wrinkled fibrations.

Remark 3.2. It is important that Lefschetz singularities are modeled using orien-
tation preserving charts. The use of orientation reversing charts for the Lefschetz
model leads to so called achiral Lefschetz singularities. These can also be modeled
in orientation preserving charts by (z, w) 7→ z2 +w2. The point is that in orientation
preserving complex charts Lefschetz fibrations are locally holomorphic while achiral
singularities disrupt this property. For folds and cusps this does not really matter
because both models have an orientation reversing symmetry.

Remark 3.3. Before moving on we would like to point out the unfortunate diversity
of terminology used in the field. The term “wrinkled fibration” was originally in-
troduced by Lekili [45] as a mixture of broken Lefschetz fibrations and the“wrinkled
maps” studied by Eliashberg and Mishachev [21] (these are certain maps with only
folds and cusps). However, Lekili allowed his “wrinkled fibrations” to have Lefschetz
singularities and used “purely wrinkled fibration” for maps with only indefinite folds
and cusps; he also did not require (b1) or (b2). Williams [67] adopted Lekili’s ter-
minology of “purely wrinkled fibrations” but implicitly added the conditions (b1)
and (b2). Meanwhile, what we call wrinkled fibrations is called “indefinite generic
map” by Baykur [4] whereas Gay and Kirby [28] use the name “indefinite Morse
2–function”. Unfortunately, it is not foreseeable which terminology will eventually
catch on.

In order to make the connection with Section 2.2, we note that if M is closed,
then a wrinkled fibration f : M → B is just a map as in Theorem 2.9 with the addi-
tional assumption that all critical points are indefinite. So in some sense, wrinkled
fibrations can be considered as analogues of Morse functions without local extrema.
In the case of non-empty boundary the conditions (b1) and (b2)2 imply that wrinkled
fibrations restrict to excellent Morse functions3 over their boundary components. As
explained in Section 1.2, the questions of existence and uniqueness of wrinkled fi-
brations have a convoluted history that is largely intertwined with the analogous
questions for broken Lefschetz fibrations. Since all the due credits were already
given in Section 1.2, we limit ourselves to stating the most general existence result
due to Gay and Kirby [28]. The uniqueness will be discussed in Section 3.4.

Theorem 3.4 ([28, Theorem 1.1]). Let f : M → B be a map from a 4–manifold to a
surface such that ∂M = f−1(∂B) and f : ∂M → ∂B is an excellent Morse function.
Then f is homotopic relative to ∂M to a wrinkled fibration if and only if f∗π1(M)
has finite index in π1(B).

In particular, for B = S2 the finite index condition is always satisfied so that
all maps M → S2 are homotopic to wrinkled fibrations. In this case one can even
do better and obtain simple wrinkled fibrations as observed by Williams [67], see
Definition 4.1 and Theorem 4.2 below.

2The conditions (b1) and (b2) are most likely open and dense for maps f : M → B with
∂M = f−1(∂B) but we are not aware of any reference. However, we will actually not need this.

3See Remark 2.3 on page 17 for the definition.
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Let us discuss some immediate consequences of the definition of wrinkled fi-
brations. It follows from the discussion in Section 2.2 that Cf ⊂ M is a properly
embedded, 1–dimensional submanifold – in other words, Cf is the disjoint union of a
finite number of embedded circles in the interior and properly embedded arcs. More-
over, the critical image f(Cf ) ⊂ B is immersed except for the finitely many cusps,
and its complement B \ f(Cf ) has finitely many connected components to which we
refer as regions. The condition that ∂M = f−1(∂B) implies that all regular fibers
are closed, orientable surfaces, which are oriented by the fiber first convention and
the orientations of M and B. As mentioned before, we will usually think of wrinkled
fibrations as singular families of surfaces parametrized by the base. Since f restricts
to a proper submersion over each region, such a restriction is a fiber bundle. In
particular, if two fibers are mapped to the same region, then they must be diffeo-
morphic. In Section 3.3 we will study how the topology of the fibers changes near
indefinite folds and cusps. In particular, we will see that wrinkled fibrations are
automatically surjective (see the discussion after Definition 3.12). But first we have
to introduce some tools to relate different fibers in a wrinkled fibration.

3.2 Parallel Transport in Wrinkled Fibrations

As mentioned above, we not only want to understand the fibers of a wrinkled fi-
bration individually, but also how they fit together. For that purpose we will gen-
eralize the concept of parallel transport in fiber bundles along arcs in the base
(see [18, p.225ff.], for example). The main technical tool is a consistent choice of
complements for the tangent spaces of the fibers.

Definition 3.5. Let f : M → B be a wrinkled fibration. The vertical distribution
of f is the kernel of its differential Vf = ker(df) ⊂ TM . A horizontal distribution
for f , denoted by H ⊂ TM , is the orthogonal complement of Vf with respect to
some Riemannian metric on M .

Note that f restricts to a submersion outside of Cf so that the vertical distribu-
tion Vf has constant rank 2 on M \Cf and consists of the tangent spaces to the fibers.
However, at critical points the rank of Vf jumps up to 3 so that neither Vf nor any
horizontal distribution H are vector bundles unless f is a submersion. Nevertheless,
it is possible to speak of vector fields on M with values in Vf or H.

Remark 3.6. The set of all horizontal distributions for a given wrinkled fibration
is by definition a quotient of the space of Riemannian metrics4 and we give it the
quotient topology. Since the space of metrics is connected, it follows that the space
of horizontal distributions for a given wrinkled fibration is connected as well.

Now let us fix a wrinkled fibration f : M → B and a horizontal distribution H
for f . A smooth curve r̃ : [0, 1] → M is called H–horizontal if its velocity vectors,
denoted by ˙̃r(τ), are contained in H. The main idea for the definition of parallel
transport is to find H–horizontal lifts for curves in the base.

4The space of metrics is topologized as a subspace of the sections of the second symmetric power
of the cotangent bundle with its standard topology.
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Proposition 3.7. Let f : M → B be a wrinkled fibration, H a horizontal distribution
for f , and r : [0, 1]→ B an embedded arc such that r(0) and r(1) are regular values.
For convenience we write Σt = f−1

(
r(t)

)
.

(i) For any t ∈ [0, 1] and any regular point p ∈ Σt there is a unique H–horizontal
lift r̃t,p : It,p → M of r, defined on a maximal open interval It,p ⊂ [0, 1] con-
taining t, such that r̃t,p(t) = p. Furthermore, the curves r̃t,p have left and right
limits in either Σ0, Σ1 or Cf .

(ii) If H depends smoothly on some auxiliary parameters, then so do lifts r̃t,p.

Proof. Let R be the image of r and let Y = f−1(R)\Cf . Since f restricted to M \Cf
is a submersion, Y is a non-compact smooth 3–manifold with boundary ΣR

+ q ΣR
−.

Let Γ0 be the unique H–horizontal lift of the velocity vector field ṙ. Then Γ0 is
necessarily tangent to Y , thus providing a vector field on Y whose flow generates
the desired H–horizontal lifts r̃t,p. Moreover, if H depends smoothly on some pa-
rameters, then so do Γ0 and its integral curves.

It remains to study the limiting behavior of these lifts. For that purpose we let r̃
be some lift of r defined over an open interval (a, b) ⊂ [0, 1]. We will show that r̃ can
be extended to the closed interval [a, b]. Since the situation is symmetric, we only
give the arguments for b. For convenience, we choose a Riemannian metric on M
which induces H and a metric on B such that

|Γ0|M = |df(Γ0)|B = |ṙ|B. (3.1)

Let (tn) be a sequence in (a, b) converging to b. By the compactness of M the
sequence r̃(tn) must have an accumulation point b̃ ∈ M and the continuity of r
implies that f(b̃) = r(b). We have to distinguish two cases: either b̃ is regular point
of f or it is a critical point. If b̃ is a regular point, then (a, b) must intersect the
interval Ib,b̃ so that r̃ is just the restriction of the maximal lift r̃b,b̃. In particular,

r(t) converges to b̃ as t approaches b. On the other hand, if b̃ is a critical point,
then a priori the sequence r̃(tn) could have several accumulation points, or there
could be another sequence with a different accumulation point. In any case, it is
enough to treat the situation that tn has two different accumulation points. By the
above arguments, these have to be critical points in the fiber f−1(b). But each fiber
contains at most finitely many critical points so that the curve r̃(t) must oscillate
rapidly near b. In particular, the absolute value of ˙̃r = Γ0 cannot be bounded near b.
But this is impossible since ṙ is bounded by compactness and we have |Γ0|M = |ṙ|B
by equation (3.1).

Using Proposition 3.7 we can make the following definition which is similar to
the notions of ascending and descending manifolds in Morse theory. We use the
same notation as in Proposition 3.7.

Definition 3.8. Given a pair (t, p) with p ∈ Σt a regular point, we say that r̃t,p runs
into Cf (resp. emerges from Cf ) if its left (resp. right) limit lies in Cf . We define the
vanishing sets of r as follows:

V H0 (r) =
{
p ∈ Σ0

∣∣ r̃0,p runs into Cf
}

V H1 (r) =
{
q ∈ Σ1

∣∣ r̃1,q emerges from Cf
}
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Moreover, we define the parallel transport along r with respect to H

PTHr : Σ0 \ V H0 (r)→ Σ1 \ V H1 (r)

by sending x ∈ Σ0 to r̃0,x(1) ∈ Σ1.

Standard results on the smooth dependence of solutions of ordinary differential
equations on their initial conditions imply that PTHr is a diffeomorphism. Note that
if r is an arc of regular values, then its vanishing sets are empty and we recover the
notion of parallel transport in bundles. We will discuss more interesting situations in
Section 3.3 below. Next we want to investigate how the vanishing sets and parallel
transport depend on H.

Corollary 3.9. Let f and r be as in Proposition 3.7 and let H and H′ be two
horizontal distributions for f . Then the vanishing sets of r with respect to H and H′
are ambiently isotopic in the reference fibers.

Proof. This follows from part (ii) of Proposition 3.7 and the fact that the space of
horizontal distributions for f is connected (see Remark 3.6).

Conversely, we now show that all ambient isotopies of the vanishing sets can be
realized by changing the horizontal distribution. Recall that Diff0(Σ) is our notation
for the identity component of Diff(Σ).

Lemma 3.10. Let f : M → B be wrinkled fibration, and r : [0, 1]→ B an embedded
arc of regular values. As before, we let Σt = f−1(r(t)).

(i) If H and H′ are horizontal distributions for f , the PTHr and PTH
′

r are isotopic.

(ii) Conversely, if H is a horizontal distribution, then for any φ ∈ Diff0(Σ0)
and ψ ∈ Diff0(Σ1) there exists a horizontal distribution H′ which agrees with H
outside of an arbitrarily small neighborhood of R = r([0, 1]) and satisfies
PTHr = ψ ◦ PTHr ◦ φ−1.

Proof. The first claim again follows from part (ii) of Proposition 3.7 and the con-
nectivity of the space of horizontal distributions. To prove the second claim, we
can assume that B = R2, equipped with coordinates (τ, σ), and that r(τ) = (τ, 0)
by restricting to a neighborhood of R = r([0, 1]). Let Hτ and Hσ be the unique
H–horizontal lifts of the coordinate vector fields ∂τ and ∂σ. Then H is spanned
by Hτ and Hσ. Next observe that f−1(R) is a 3–dimensional cobordism from Σ0

to Σ1 and that
r−1 ◦ f : f−1(R) −→ [0, 1]

is a Morse function without critical points. Moreover, Hτ restricts to a gradient-like
vector field for r−1 ◦ f whose flow induces to the parallel transport PTHr . According
to [54, Lemma 2.28], we can find another gradient-like vector field H ′ on f−1(R)
whose flow induces ψ ◦ PTHr ◦ φ−1. Using standard arguments we can extend H ′ to
a vector field on M with the following properties:

• H ′ agrees with Hτ outside of f−1(U) where U ⊂ B is a small open neighbor-
hood of R.

• df(H ′) = ρ∂τ for some positive function ρ ∈ C∞(M).
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3.3. Folds, Cusps, and Vanishing Cycles

Then H ′ and Hσ span a new horizontal distribution H′ which and PTH
′

r agrees with
the gradient flow of H ′ by construction.

Corollary 3.11. Consider f , H and r as in Proposition 3.7 and let H and H′ be
two horizontal distributions for f . For all φ ∈ Diff0(Σ0) and ψ ∈ Diff0(Σ1) there
exists a horizontal distribution H′ such that

V H
′

0 (r) = φ
(
V H0 (r)

)
, V H

′
1 (r) = ψ

(
V H1 (r)

)
, and PTH

′
r = ψ ◦ PTHr ◦ φ−1.

Proof. Apply Lemma 3.10 near the endpoints of r.

It turns out that the vanishing sets as well as the parallel transport diffeomor-
phism of an embedded arc r : [0, 1] → B depend only on the oriented image of r,
which we denote by R = r([0, 1]). Indeed, any orientation preserving reparametriza-
tion of r only changes the flow used to define the lifts in the proof of Proposition 3.7
by rescaling with a bounded function, which only affects the speed of the integral
curves but not the flow lines. So we will only use R from now on unless we specifically
need a parametrization.

Lastly, although we have only discussed parallel transport and vanishing sets
for embedded arcs, there are obvious generalization to more general setting such
as immersed arcs, piecewise smooth arcs, and closed curves. Moreover, we will
usually refer to the parallel transport along a closed curve of regular values as the
monodromy along the curve.

3.3 Folds, Cusps, and Vanishing Cycles

We now try to compare the fibers over the different regions of a wrinkled fibra-
tion f : M → B. For that purpose, we focus on two neighboring regions in B \f(Cf ),
that is, two regions which are separated by a fold arc. We consider an embedded
arc R ⊂ B with regular endpoints that intersects the critical image of f trans-
versely in one fold point, say R t f(Cf ) = {f(p)}. Then the fold model implies
that f |f−1(R) : f−1(R) → R is a Morse function with a single critical point at p
which has index 1 or 2, depending on the choice of an orientation of R.5 The
following definition is central to all subsequent developments.

Definition 3.12 (Reference arcs). Let f : M → B be a wrinkled fibration. A
reference arc for f is an embedded arc R ⊂ B with the following properties:

(a) the endpoints of R are regular values,

(b) R intersects the critical image f(Cf ) transversely in one fold point, and

(c) R is oriented such that f |f−1(R) : f−1(R)→ R has an index 2 critical point.

The endpoints of R are also called reference points. The fibers over the initial and
final reference point are denoted by ΣR and Σ′R, respectively, and are called the
reference fibers of R.

5Indeed, we can choose coordinates around p and f(p) such that f appears as the fold
model (t, x, y, z) 7→ (t, x2 + y2 − z2) and R corresponds to {0} × R in the target of the model.
Then f |f−1(R) is locally given by ±(x2 + y2 − z2).
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R

R1

R2

cR
c1

c2

R3/2

Figure 4: The fibers and vanishing sets in the models for indefinite folds and
cusps

Given a reference arc R for f , basic Morse theory already gives qualitative in-
formation about the relation of the reference fibers ΣR and Σ′R. Indeed, since
f |f−1(R) has a single index 2 critical point, Σ′R is related to ΣR by a surgery on
a simple closed curve. It follows that the Euler characteristic of the fibers increases
by 2 along R, that is, χ(Σ′R) = χ(ΣR) + 2. If both reference fibers happen to be
connected, then this is equivalent to saying that the genus decreases by one along R.
In this case we will usually call ΣR and Σ′R the higher and lower genus fiber of R,
respectively. Note in particular that this discussion also shows that wrinkled fibra-
tion cannot have empty fibers. In other words, they are automatically surjective.
Using the machinery of parallel transport developed in the previous section we can
also quantify the relation between the fibers over neighboring regions.

Lemma 3.13. Let f : M → B be a wrinkled fibration equipped with a horizontal
distribution H. If R ⊂ B is a reference arc, then the vanishing sets of R consist of
a simple closed curve (that is, an embedded S1)

cR = V H0 (R) ⊂ ΣR

and two distinct points (that is, an embedded S0)

{wR, zR} = V H1 (R) ⊂ Σ′R.

Furthermore, the parallel transport PTHR : ΣR \ cR → Σ′R \ {wR, zR} provides an
identification of Σ′R with the surgery on cR ⊂ ΣR.

Definition 3.14 (Vanishing cycles). The simple closed curve cR ⊂ ΣR appearing
in Lemma 3.13 is called the (fold) vanishing cycle of R.

The situation is illustrated on the left side of Figure 4 (which is in fact an accurate
reflection of the fibers in the indefinite fold model).

Remark 3.15. Recall that the surgery on cR ⊂ ΣR is usually defined by removing
a tubular neighborhood of Σ and filling in the resulting boundary components with
disks. However, there is a different interpretation of this process which is more
convenient for our purposes. We simply consider the complement ΣR \ cR and take
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3.3. Folds, Cusps, and Vanishing Cycles

its endpoint compactification6. One can show that the smooth structure on ΣR \ cR
can be extended across the endpoints and the resulting manifold diffeomorphic to
the usual interpretation of surgery. In fact, this amounts to the same arguments
that show that the usual surgery results in a well-defined smooth manifold.

Proof of Lemma 3.13. We fix a parametrization r : [0, 1] → R ⊂ B and consider
the Morse function

fR = r−1 ◦ f |f−1(R) : f−1(R)→ [0, 1]

with its unique critical point p ∈ f−1(R). Let g be a Riemannian metric on M that
induces the horizontal distribution H, and let Γ be the gradient of fR with respect
to g|f−1(R). Then by definition Γ takes values in H and we can assume that the
unit length vector field Γ0 = Γ/|Γ| is the horizontal lift of ṙ (possibly after rescaling
the metric). But this means that, up to reparametrization, the H–horizontal lifts
of r constructed in Proposition 3.7 are exactly the non-constant gradient flow lines
of fR. In particular, the vanishing sets of R agree with the descending and ascending
spheres of p (considered as a critical point of fR) in ΣR and Σ′R. Since p has index 2,
the descending sphere has dimension 1 while the ascending sphere has dimension 0.
In other words, the vanishing sets are a simple closed curve cR ⊂ ΣR and two distinct
points {wr, zr} ∈ Σ′R, as claimed.

Finally, it is clear that the parallel transport along R identifies the endpoint
compactifications of ΣR \ cR and Σ′R \ {wr, zr}. The latter is canonically identified
with Σ′R while the former can be considered as the surgery on cR ⊂ ΣR as explained
in Remark 3.15.

Remark 3.16. One can think of wrinkled fibrations as “surface valued Morse func-
tions”. In this analogy, horizontal distributions correspond to gradient-like vector
fields and the vanishing cycles can be considered as analogues of the descending
spheres of critical points. Recall that an excellent Morse function can be recov-
ered up to equivalence7 from its set of critical values, the topology of intermediate
regular level sets, and the descending spheres of the critical points above the level
sets (see [50], for example). Put slightly differently, an excellent Morse function
decomposes into (necessarily trivial) fiber bundles over the intervals of regular val-
ues, and the descending spheres control how these are glued together. Similarly, a
wrinkled fibration f : M → B decomposes into a disjoint union of surface bundles
over B \ f(Cf ) and the vanishing cycles contain information how these are glued
together. However, the situation is slightly more complicated for the following rea-
sons. First of all, there can be non-simply connected regions over which f is a
non-trivial bundle. So the knowledge of the topology of the fibers alone is not suf-
ficient. Second, two regions can meet along several different fold arcs. In this case
the corresponding vanishing cycles can be different, but they must be compatible in
some sense and the compatibility conditions are not always obvious. Third, there

6Recall that there is an abstract notion of ends of a topological space. The endpoint compacti-
fication is obtained by adding one point for each end and declaring a neighborhood basis for each
endpoint. We will only consider endpoint compactifications of complements of curves or finite sets
in surfaces. In these cases it is intuitively clear what the ends and their neighborhoods are and we
will not discuss the details. For a formal definition see [26, p.60], for example.

7that is, up to composition with diffeomorphisms of source and target
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3.3. Folds, Cusps, and Vanishing Cycles

are additional gluing ambiguities cause by fibers whose diffeomorphism groups fail
to be simply connected. However, if all regions are simply connected and all fibers
are connected of genus at least two, then the knowledge of the fibers and vanishing
cycles is enough to recover f . We will discuss this phenomenon extensively in the
case of simple wrinkled fibrations (see Definition 4.1) in Part II. More general cases
have been studied by Gay and Kirby [30].

Of course, the vanishing cycle cR associated to a reference arc R depends on the
choice of a horizontal distribution, but according to Corollary 3.9 its isotopy class
does not. Next we want to understand the dependence of cR on R.

Definition 3.17. Two reference arcs R1, R2 ⊂ B are called isotopic if there is an
ambient isotopy that moves R into R′ through reference arcs. Furthermore, they
are called strictly isotopic if they have the same reference points and are isotopic
relative to the reference points.

Lemma 3.18. Let f : M → B be a wrinkled fibration and let H be a horizontal
distribution for f . If R1, R2 ⊂ B are strictly isotopic reference arcs, then their
vanishing sets are isotopic.

Proof. Let Rt, t ∈ [1, 2], be a 1–parameter family of reference arcs obtained from a
strict isotopy from R1 to R2. We first assume that all Rt agree in a neighborhood of
the critical image. In this situation the claim follows from the fact that the parallel
transport in fiber bundles has the property that two homotopic paths (relative to
their endpoints) induce isotopic parallel transport diffeomorphisms (see [18, p.226ff.],
for example). If Rt is also allowed to move near the critical image, then the situation
can be reduced to the fold model as follows. Assume that R0 meets the critical
image in f(p). We choose model coordinates for f around p and let U ⊂ B be the
support of the coordinates around f(p). For small t the intersection point of Rt
with f(Cf ) is contained in U and we can assume that the image of Rt in R2 contains
the arc {ρ(t)} × [−1, 1]. Now the fold model provides canonical identifications of
the vanishing sets of {ρ(t)} × [−1, 1] and, combined with the property of parallel
transport in bundles, this argument shows that the vanishing sets of Rt depend
smoothly on t.

The above result is closely related to the fact that for a 1–parameter family of
Morse functions ft : Y → [0, 1] on a fixed 3–manifold Y the ascending and descending
spheres move by isotopies. In fact, the fold model can be considered as a model
for a 1–parameter family of 3–dimensional Morse functions near a critical point.
Similarly, the cusp model is related to 3–dimensional Morse theory in that it models
the cancellation of a pair of critical points of index 1 and 2. This observation
will allow us to understand the vanishing cycles of the two fold arcs near a cusp.
Recall that it is necessary and sufficient for a pair of critical points of a Morse
function to cancel each other that the index 1 ascending sphere and the index 2
descending sphere (with respect to some metric) intersect transversely in one point
in an intermediate level.

Definition 3.19. Let f : M → B be a wrinkled fibration. Two reference arcs R1

and R2 for f with common reference points are called adjacent if their union R1∪R2

bounds a disk in B that contains exactly one cusp.
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3.3. Folds, Cusps, and Vanishing Cycles

A visual account of this definition and the following lemma can be found in the
right side of Figure 4.

Lemma 3.20. Let f : M → B be a wrinkled fibration and let H be a horizontal
distribution for f . If R1 and R2 are adjacent reference arcs with initial reference
fiber Σ, then the corresponding vanishing cycles c1, c2 ⊂ Σ are weakly dual, that is,
they have geometric intersection number one8.

Proof. For convenience, we assume that the unionR1∪R2 is smooth. This can always
be achieved by a perturbation near the common reference points and, according
to Lemma 3.18, such a perturbation preserves the isotopy class of the vanishing
cycles. We orient the circle R1 ∪ R2 be taking the reverse orientation on R1 and
observe that f restricts to a circle valued Morse function over R1∪R2. By removing
a neighborhood of the lower genus reference point from R1 ∪ R2, we obtain an
honest Morse function with a pair critical points of index 1 and 2. The important
observation is that c2 appears as the descending sphere of the index 2 point, while
c1 is the ascending sphere of the index 1 point (since we reversed the orientation
of R1). Now we can use a similar localization idea as in the proof of Lemma 3.18.
We choose model coordinates around the cusps and isotope the union R1 ∪R2 into
the support of the model coordinates in such a way that R1 and R2 stay reference
arcs throughout the isotopy. This reduces the problem to a study of the cusp model,
since the vanishing cycles c1 and c2 can be recovered up to isotopy from those of
the isotoped reference arcs (by parallel transport along the path traces out be the
reference points and using Lemma 3.18). But in the cusp model the critical points
of the Morse function cancel, meaning that the vanishing cycles corresponding to c1

and c2 intersect transversely in one point.

Remark 3.21. Another interesting case is to consider parallel transport along the
intermediate arc R3/2 shown in Figure 4 which passes directly through a cusp. It
can be shown that vanishing set in the higher genus fiber is an embedded figure
eight which appears as the union c1 ∪ c2 of two simple closed curves intersecting
transversely in one point, while in the lower genus fiber the vanishing set is a single
point x. Moreover, these vanishing sets can be related to the vanishing sets of the
reference arcs R1 and R2 by considering families of reference arcs starting with Ri
and converging to R3/2. What happens is that the vanishing sets of Ri will converge
to x on the lower genus side and to the simple closed curve ci on the higher genus end.
However, the proofs of these claims require lengthy and rather painful computations
in the cusp model. Since we will not use these results, we will not prove them here.

Remark 3.22 (Lefschetz vanishing cycles). The theory of parallel transport and van-
ishing sets immediately generalizes to include Lefschetz singularities and thus can
be applied to (broken) Lefschetz fibrations. In that setting one usually considers
arcs running into Lefschetz points, originating from a regular value. For such an
arc R it is classically known that one also obtains a simple closed curve cR in the
initial regular fiber Σ. These curves are the famous Lefschetz vanishing cycles (see
[32, Ch. 8.2], for example). As seen in Figure 5, the local picture is similar to the
case of a fold arc, which explains the name fold vanishing cycles.

8See page 22 for the definitions.
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R

cR

Figure 5: The vanishing cycle of a Lefschetz singularity

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: Elementary homotopies of wrinkled fibrations as seen in the base:
(a) birth/death, (b) merge, (c) flip, (d) R2, (e) R3 and (f) fold-cusp crossing.

3.4 Moves for Wrinkled Fibrations

We briefly summarize what is known about the uniqueness of wrinkled fibrations up
to homotopy. In [45] Lekili gave a list of local modifications for wrinkled fibrations
which take the form of homotopies supported in balls in the total space; we will refer
to these as elementary deformations. Lekili also used the term moves because he
used them to manipulate critical images much like link diagrams are manipulated
by the Reidemeister moves (see Figure 6). The elementary deformations can be
subdivided into two families. The members of the first family change the structure
of the critical locus, while the members of the category only affect the way the critical
locus is mapped into the base. Since we will not make essential use of these moves
we will only describe them briefly and refer to [45] for more details (see also [28,67]).
We begin by describing the first family.

Birth. The birth deformation is described by the local model

Bs
(
t, x, y, z

)
=
(
t, x3 − 3(s− t2)x+ y2 − z2

)
.

For s < 0 there are no critical points and for s > 0 the critical locus is an indefinite
circle with two cusps. In the latter case, the critical image appears eye shaped as
in Figure 6(a). One can show that the fibers outside and inside the eye are open
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disks and once punctured tori, respectively. The reverse deformation of a birth is
naturally called a death.

Merge. Another model which is looks quite similar to that of the birth defor-
mation describes the merge deformation

Ms

(
t, x, y, z

)
=
(
t, x3 + 3(s− t2)x+ y2 − z2

)
.

Its effect on the critical image is shown in Figure 6(b). Throughout the deformation
two cusps approach each other and eventually merge, while in the reverse deforma-
tion two fold points approach each other. It is thus intuitive to speak of cusp merge
and fold merge instead of merge and inverse merge. The fibers for s < 0 are again
disks outside the cusps and once punctured tori inside. For s > 0 the two outer
regions have open disks as fiber while the middle strip has once punctured tori.

Flip. The first family is completed by the flip deformations modeled on

FLs
(
t, x, y, z

)
=
(
t, x4 − sx2 + tx+ y2 − z2

)
.

As shown in Figure 6(c) it begins with a single fold arc for s < 0 and introduces two
cusps and a double point when passing to s > 0. Considered as a map R5 → R3 the
flip deformation is known as swallowtail or dovetail singularity. The fibers for s < 0
are exactly as in the fold model and once can show that inside the swallowtail shaped
region the fibers are twice punctured tori.

The elements of the second family all have a local model of the form

Ps
(
t, x, y, z

)
=
(
t, x2 + y2 − z2 ± sρ(t)

)
, s ∈ [0, 1]

where ρ : R→ [0, 1] is a smooth function satisfying ρ(0) = 1 and ρ(t) = 0 for |t| � 0.
Note that the initial map P0 is just the standard indefinite fold model and the
deformation leaves the critical locus unchanged while pushing the critical image from
the straight line R × {0} to the graph of ρ. Such a deformation is not interesting
by itself, but only in relation to other singularities present in a wrinkled fibration.
Again, there are three basic cases shown in Figure 6(d), (e), and (f).

R2 moves. As shown in Figure 6(d) an R2 move starts with two parallel fold arcs
in the base and pushes one across the other, resemblant of the type two Reidemeister
move for link diagrams.

R3 moves. Similarly, an R3 move shown in Figure 6(e) mimics a Reidemeister
move of type three where one arc is pushed across a crossing of two other arcs.

Fold-cusp crossings. The final deformation is very similar to an R2 move in
that a fold arc moves across an arc of critical values that stays stationary, only this
time the stationary arc contains a cusp. This deformation is shown in Figure 6(f)
and carries the suggestive name fold-cusp crossing.

The following result was originally conjectured by Lekili [45, p.309] and first
proved by Williams [67, Theorem 1] for closed base surfaces. The general case is
due to Gay and Kirby [28, Theorem 1.2].

Theorem 3.23 (h–principle for wrinkled fibrations). If two wrinkled fibrations are
homotopic (rel. boundary), then they can be connected by a finite sequence of ele-
mentary deformations and homotopies through wrinkled fibrations.
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(a) (b)

Figure 7: (a) Wrinkling and (b) unsinking a Lefschetz singularity.

Remark 3.24. Figure 6 shows how the critical image of a given wrinkled fibration
can evolve in homotopies. Conversely, it is natural to ask to what extent these
modifications can be prescribed. More precisely, given a wrinkled fibration whose
critical image contains some configuration shown in Figure 6, is it possible to find
an elementary deformation realizing the corresponding modification in Figure 6? It
turns out that the answer is usually no. The only known exceptions are the passages
from left to right in (a) and (c), that is, prescribing the effect of birth and flip
deformations is always possible. In all other cases extra conditions are necessary.
For example, in order to realize the passage from left to right in (b) by a cusp
merge it is sufficient that the fiber along an arc connecting the cusps are connected
(see [8, Corollary 3.12] for a necessary and sufficient condition). Conversely, going
from right to left in (b) via a fold merge is possible if and only if the vanishing
cycles of the fold arcs, measured in the interior region with respect to a suitable
horizontal distribution and reference arcs, intersect transversely in one point (see [8,
Section 3.4]). In the remaining cases there are similar obstructions coming from
vanishing cycle configurations but precise conditions have yet to be worked out.
Further details about vanishing cycles in merge deformations and R2 moves can be
found in [8] and [35].

Trading cusps and Lefschetz singularities. Lekili [45] also showed how to
go back and forth between broken Lefschetz fibrations and wrinkled fibrations via
homotopies. One direction follows from the behavior of Lefschetz singularities under
small perturbations which was well known. In fact, a small perturbation of the local
model converts it into a map with only indefinite folds and cusps. For example, the
critical locus of the perturbation

Ls(z, w) = z2 + w2 + 2sz̄, s ≥ 0

is the circle {|z| = s, w = 0} and contains three cusps for s > 0, one for each solutions
of z3 = s3. The critical image of Lε, ε > 0, appears as on the right side of Figure 7(a).
Furthermore, one can show that all fibers are connected which implies that all critical
points must be indefinite. (The fibers outside the triangle are cylinders and inside
they are twice punctured tori.) Lekili called the process of passing from L = L0 to Lε
for some ε > 0 wrinkling a Lefschetz singularity [45]. Conversely, one can also trade
a cusp for a Lefschetz singularity and an arc of indefinite folds as in Figure 7(b). This
process is called unsinking a Lefschetz singularity and we refer to [45, Section*2].

Moreover, Lekili observed that wrinkling and unsinking work equally well with
achiral Lefschetz singularities, which can thus be converted to Lefschetz singularities
and folds. This, together with the results of [27], proves the existence of broken
Lefschetz fibrations on closed 4–manifolds.
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Part II

Simple Wrinkled Fibrations and
Surface Diagrams
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Chapter 4

Definitions and The
Correspondence

We specialize from general wrinkled fibrations to a class of maps which we call
simple wrinkled fibrations. As the name suggests, these maps have a particularly
simple critical point structure. They were introduced by Williams [67] who proved
that all maps from closed 4–manifolds to S2 are homotopic to simple wrinkled fibra-
tions. Williams also extracted combinatorial gadgets from simple wrinkled fibrations
over S2 which have become known as surface diagrams, and showed how the total
space of a simple wrinkled fibrations can be recovered up to diffeomorphism from a
surface diagram. However, the arguments involved a detour over broken Lefschetz
fibrations. Here we develop a more natural approach to studying the interplay
between simple wrinkled fibrations and surface diagrams which allows us to prove
precise correspondence results. In particular, our methods not only recover the total
spaces of simple wrinkled fibrations from surface diagrams but also the maps.

4.1 Simple Wrinkled Fibrations

We start with the central definition which is due to Williams [67, p.1052].

Definition 4.1 (Simple wrinkled fibrations). A wrinkled fibration w : M → B is
called simple if the following conditions are satisfied:

(a) Cf is connected and contained in the interior of M .

(b) f is injective on Cf .

(c) All fibers of f are connected.

(d) Cf contains a cusp.

Two simple wrinkled fibrations are called equivalent if they are equivalent as wrinkled
fibrations (see Definition 3.1). Lastly, the genus of w is the maximal genus among
all fibers.

Williams’s original definition1 was slightly different in that he only considered the
case B = S2 and did not require the presence of cusps. While the latter assumption

1Williams actually used the name “simplified purely wrinkled fibrations”.
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might seem peculiar at this point, it ultimately leads to a more uniform theory
(see Remark 5.10). Wrinkled fibrations that satisfy the conditions (a), (b), and (c)
but fail to have cusps must be treated separately. These are either surface bundles
or maps with a single circle of indefinite folds; in the latter case we will speak of
fake simple wrinkled fibrations. Simple wrinkled fibrations are interesting from the
perspective of 4–manifold topology because of the following existence result, which
is also due to Williams [67, Corollary 1, p.1052].

Theorem 4.2 (Williams [67]). Let X be a closed, oriented 4–manifold. Then any
map X → S2 is homotopic to a simple wrinkled fibration of arbitrarily high genus.

This makes simple wrinkled fibrations over S2 a potential tool for studying closed,
oriented 4–manifolds. In fact, this is the central theme the present work. Although
we will only use Theorem 4.2 as a black box, we include a brief sketch of the proof
in order to give an idea of the involved ideas.

Proof of Theorem 4.2 (sketch). The proof relies on a different existence theorem of
Gay and Kirby [27] which asserts the following. Let X be a closed, oriented 4–
manifold and let Σ ⊂ X be a closed, oriented surface with trivial self-intersection.
Then there exists a broken achiral Lefschetz fibration2 X → S2 with Σ as a fiber [27,
Theorem 1.1]. Using Lekili’s wrinkling modification, these maps can be trans-
formed into wrinkled fibrations (see Section 3.4). As Williams points out, the Gay–
Kirby construction starts by identifying a neighborhood of Σ in X with Σ × D2,
which amounts to choosing a framing for the normal bundle of Σ, and the projec-
tion Σ ×D2 → D2 is then extended to X in a controlled way. So according to the
Pontrjagin–Thom theorem, all homotopy classes of maps to S2 can be realized by
wrinkled fibrations. Williams also notes that the Gay–Kirby construction produces
maps which are injective on their critical loci and that the wrinkling modification
preserves this property. Finally, he uses the moves discussed in Section 3.4 to devise
an algorithm to turn a wrinkled fibration which is injective on its critical locus into
a simple wrinkled fibration by a homotopy. Moreover, the genus of a simple wrin-
kled fibration over S2 can be increased by performing a so called flip-and-slip move
discussed in Remark 4.4 below.

Remark 4.3. The Gay–Kirby construction [27] relies on deep results in 3–dimensional
contact topology.3 This somewhat unnatural dependence for Theorem 4.2 could be
removed by refining the singularity theory based approach of Baykur [4] to the
existence of wrinkled fibrations to produce maps which are injective on their critical
locus.

Remark 4.4 (Flip-and-slip moves). For simple wrinkled fibrations over S2 there is an
important homotopy known as a flip-and-slip move, which was originally introduced
by Baykur [4] in the context of broken Lefschetz fibrations. A flip-and-slip move
increases the genus of a simple wrinkled fibration by one and introduces four addi-
tional cusps. The effect on the critical image is shown in Figure 8. The move begins
with two flips preformed on the same fold arc, introducing four new cusps and two

2That is, a broken Lefschetz fibration which is also allowed to have achiral Lefschetz singularities.
3More precisely, these are Eliashberg’s classification of overtwisted contact structures and the

Giroux correspondence between contact structures and open book decompositions.
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4.1. Simple Wrinkled Fibrations

Figure 8: A “flip-and-slip move” performed on a simple wrinkled fibration
over S2. (The pictures show the complement of a disk in the lower genus
region of the initial fibration.)

new regions with fiber genus g+ 1 (where g is the genus of the original simple wrin-
kled fibration). Then follows a sequence of fold-cusp crossings and R2 moves that
“slips” the indicated fold arc across the lower genus region, eventually eliminating it
completely, and connecting the two regions with fiber genus g+ 1. For more details
see [35,67].

Although we are mainly interested in simple wrinkled fibrations over S2, we will
mostly work with fibrations over disks or annuli. These naturally arise by removing
neighborhoods of regular fibers from fibrations over S2. More generally, the study of
simple wrinkled fibrations over arbitrary base surfaces can be reduced to the study
of certain fibrations over the annulus. We will say more about this below. We first
fix some ground rules for notation.

Notation. From now on we reserve the letters X, Z, and W (possibly with
further decorations) for the following types of objects:

• X always stands for a closed 4–manifold.

• Z is used for compact 4–manifolds with connected boundary.

• W indicates a compact 4–manifold with two boundary components.

Moreover, whenever X, Z, or W are used it is implicitly understood that the man-
ifold in question carries a winkled (or broken Lefschetz) fibrations over a sphere,
disk, or annulus, respectively. So the letter used to denote a 4–manifold determines
the designated target of fibration structures on the manifold. For example, when-
ever some simple wrinkled fibration is mentioned in the context of a 4–manifold Z,
then the base has to be a disk. With this understood, we will sometimes abbrevi-
ate f : Z → D2 as (Z, f).

Now let us take a closer look at the structure of simple wrinkled fibrations. Given
a genus g simple wrinkled fibration w : M → B, the discussion in Section 2.2 shows
that Cw ⊂ M is a smoothly embedded circle and that w restricts to a topological
embedding of Cw into B. In fact, w|Cw is a smooth homeomorphism whose inverse
fails to be smooth only at the cusps. A neighborhood of w(Cw) appears as in Figure 9.
It follows that B \ w(Cw) has at most two connected components, at least one of
which must have fibers of genus g. Since the singular locus is non-empty, it must
contain indefinite fold points and by Lemma 3.13 there must be a second region
with fibers obtained by a surgery on a simple closed curve in a genus g fiber. But all
fibers are connected, so the second region must have fibers of genus g − 1. We will
refer to these two regions as the higher genus region and the lower genus region.
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4.1. Simple Wrinkled Fibrations

Figure 9: A neighborhood of the critical image of a simple wrinkled fibration.

Building on these observations we divide the base surface into three pieces

B = B+ ∪A ∪B−

where A is a annular neighborhood of the critical image as in Figure 9, and B±
are the closures of the complement of A; the subscript in B± indicates whether the
surface is contained in the higher or lower genus region of w. Since A contains all
the critical values, w restricts to surface bundles over B± and, although complicated
in their own right, surface bundles over surfaces are well studied. To conclude,
the unexplored part of w is the restriction to w−1(A), which is a simple wrinkled
fibration over the annulus A with the additional property that the critical image is
boundary parallel. These kinds of fibrations can thus be considered as the cores of
general simple wrinkled fibrations.

Definition 4.5. A simple wrinkled fibration w : W → A is called annular if the
base surface A is an annulus, and the critical image w(Cw) ⊂ A is boundary parallel.

The upshot of the above discussion is that a general simple wrinkled fibration
decomposes into an annular simple wrinkled fibration and a pair of surface bundles.
As a consequence, the study of general simple wrinkled fibrations can be divided
into studying annular simple wrinkled fibrations, surface bundles, and how they can
be glued together. The latter two can be translated into the language of mapping
class groups of surfaces. Indeed, surface bundles correspond to representations of
the fundamental group of the base surface in the mapping class group of the fiber,
and the study of fiber preserving diffeomorphisms of surface bundles over S1 (up to
isotopy) boils down to studying the centralizer of the monodromy in the mapping
class group of the fiber. This leaves the problem of understanding annular simple
wrinkled fibrations for which we provide a combinatorial counterpart in Theorem 1.3.

We end this section with some elementary constructions of simple wrinkled fi-
brations. These provide useful examples and also illustrate how one should think of
simple wrinkled fibrations.

Example 4.6 (Surface bundles). Let π : P → B be a surface bundle with closed
fibers of genus g. Then performing a birth deformation on π gives rise to a simple
wrinkled fibration of genus g + 1 with two cusps.

Example 4.7 (Lefschetz fibrations). Let f : M → B be a Lefschetz fibration (pos-
sibly achiral) with closed fibers of genus g. By wrinkling all the Lefschetz points
we obtain a wrinkled fibration with a number of “triangles” of critical values as in
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4.2. Surface Diagrams

Figure 7(a), one for each Lefschetz point. By suitably merging cusps we can turn
this configuration into a single cusped circle resulting in a simple wrinkled fibration
of genus g + 1.

In this light, it is natural to think of simple wrinkled fibrations as a common
generalization of surface bundles and Lefschetz fibrations. The following example
illustrates the classification approach outlined after Definition 4.5.

Example 4.8 (Fake simple wrinkled fibrations over S2). Consider a 3–dimensional
cobordism Ω from a genus g surface Σg to a surface Σg−1 of one genus lower, equipped
with a Morse function µ : Ω→ I with exactly one critical point of index 2. By taking
the product with S1 we obtain a map µ× id : Ω× S1 → I × S1 whose critical locus
is a circle of indefinite folds, which is embedded into I × S1 by µ× id, and all fibers
of µ × id are connected. In other words, µ × id is a fake simple wrinkled fibration
of genus g. In fact, one can show that all fake annular simple wrinkled fibrations
with non-empty critical locus are of this form, see [3, Section 8.1]. By definition,
the boundary components of Ω×S1 are diffeomorphic to Σg ×S1 and Σg−1×S1 so
that we can close off to a fake simple wrinkled fibration over S2 by gluing in copies
of Σg ×D2 and Σg−1 ×D2 and extending µ× id by projecting onto the D2 factors.
If g ≥ 3 (so that g − 1 ≥ 2), then it follows from Corollary 2.20 that the gluing on
both sides of Ω × S1 is unique up to equivalence. Moreover, it is known that the
closed 4–manifold obtained by this procedure is diffeomorphic to Σg−1×S2#S1×S3

(see [5, Example 3.1]). For g ≤ 2 gluing ambiguities arise and the closed 4–manifold
is not uniquely determined. For example, if we use the trivial gluing (that is, the
identity map) on the higher genus side, then the arguments in [5, Example 3.1] show
that

(Σg ×D2) ∪id (Ω× S1) ∼= Σg−1 ×D2#S1 × S3.

As a consequence, filling in the remaining boundary component with Σg−1 ×D2 re-
sults manifolds of the form P#S1×S3 where P is a Σg−1–bundle over S2 (see Corol-
lary 2.21). Finally, a non-trivial gluing on the higher genus side is only possible
for g = 1 which results in a family of closed 4–manifolds with finite cyclic funda-
mental groups (see [33, Main Theorem B]), including the famous wrinkled (or broken
Lefschetz) fibration on S4 discovered by Auroux, Donaldson and Katzarkov [3].

4.2 Surface Diagrams

We now introduce the combinatorial counterparts of simple wrinkled fibrations which
also appeared in the work of Williams, first implicitly in [67] and later explicitly
in [68]. Again, our definitions differ slightly from those of Williams and we will
explain the differences in Remark 4.20 at the end of this chapter. At this point we
recommend that the reader (re-)familiarize himself with the notions of intersection
numbers and duality for simple closed curves discussed on page 22.

Definition 4.9 (W–chains and –cycles). Let Σ be a surface and let Γ = (c1, . . . , cl)
be an ordered collection of simple closed curves ci ⊂ Σ.

(1) Γ is called a W–chain if i(ci, ci+1) = 1 for all i < l.

(2) A W–chain G is called a W–cycle if it is closed in the sense that i(cl, c1) = 1.
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c3 c1

c2

c4

Figure 10: An example of a surface diagram.

(3) If Γ is a W–chain and satisfies i(cl, ψ(c1)) = 1 for some ψ ∈ Diff(Σ), then it is
called a ψ–twisted W–cycle.

In other words, a W–chain is an ordered collection of curves c1, . . . , cl ⊂ Σ such
that curves with adjacent index are weakly dual. To avoid misunderstandings, we
want to emphasize that we do not assume that adjacent curves are strongly dual,
that is, they do not necessarily intersect transversely in a single point. In fact,
we do not even assume that the intersections are transverse. However, in many
situations only the isotopy classes of the vanishing cycles are important and we are
free to assume these properties whenever they make things simpler. Also, there
are no restrictions on the intersections between non-adjacent curves in W–chains,
as opposed to the more common “chains” of simple closed curves used in mapping
class group theory. The latter satisfy i(ci, cj) = 0 for |i − j| > 1 (see [24, p.107ff.],
for example). Altogether, W–chain can look rather complicated.

Remark 4.10. In [7] W–chains and W–cycles were called “circuits” and “closed cir-
cuits”, respectively. However, in the meantime we realized that various other math-
ematicians in the field were using variations of the chain/cycle terminology in con-
versations and we decided to adopt this. We added the prefix W to avoid confusion
with the above mentioned chains of curves. We leave it to the reader’s imagination
to choose his favorite interpretation of the letter, some suggestions are Williams,
wrinkled, or wild.

Definition 4.11 (Surface diagrams). A surface diagram is a pair S = (Σ,Γ) con-
sisting of a closed, oriented surface Σ and a W–cycle Γ = (c1, . . . , cl) in Σ. The
curves ci ⊂ Σ are called the vanishing cycles of S.

An example of a surface diagram is shown in Figure 10. Note that a W–cycle
must contain at least two curves because a single curve is not weakly dual to itself.
In particular, surface diagrams always contain at least two curves.

Remark 4.12. For convenience we will only draw surface diagrams whose vanishing
cycles are in general position such that all intersections are transverse. Obviously,
general position can always be achieved by isotopies of the vanishing cycles. One
can even go further and bring the diagram intro minimal position, meaning that the
vanishing cycles are in general position and for i 6= j we have i(ci, cj) = #(ci t cj).
In fact, an arbitrary collection of simple closed curves a1, . . . , ak ⊂ Σ can be brought
into minimal position, for example by isotoping the curves to geodesics with respect
to some constant curvature metric and taking parallel push offs in the case that the
collection contained isotopic curves (see [24, p.29ff.]).
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4.2. Surface Diagrams

As indicated above, we want to consider two surface diagrams as equivalent if
their vanishing cycles are isotopic. But it turns out that we ultimately need a more
flexible notion of equivalence. We will give the complete definition of equivalence in
the context of the following generalization of surface diagrams.

Definition 4.13 (Generalized surface diagrams). A generalized surface diagram is a
triple G = (Σ,Γ, ψ) where Σ is a closed, oriented surface, ψ : Σ→ Σ is an orientation
preserving diffeomorphism, and Γ is a ψ–twisted W–cycle. The curves in Γ are also
called the vanishing cycles and ψ is called the twist.

So surface diagrams are exactly those generalized surface diagrams (Σ,Γ, ψ) that
are untwisted in the sense that the twist ψ is isotopic to the identity. Note that
generalized surface diagrams are allowed to have only one curve, but then the twist
has to be non-trivial.

Definition 4.14 (Equivalence). Let G = (Σ,Γ, ψ) and G′ = (Σ′,Γ′, ψ′) be two
generalized surface diagrams of the same length with vanishing cycles ci and c′j .
We say that G and G′ are equivalent if they are related by a finite sequence of the
following operations:

• Isotopy: Σ = Σ′, ci ∼ c′i, and ψ ∼ ψ′ (possibly with different isotopies)

• Diffeomorphism: c′i = φ(ci) and ψ′ = φ−1ψφ for some orientation preserving
diffeomorphism φ : Σ→ Σ′

• Twisted cyclic permutation: Σ = Σ′, ψ = ψ′, and Γ′ =
(
c2, . . . , cl, ψ(c1)

)
Twisted cyclic permutation may seem strange at first sight and its origin will

only become clear in Section 5.1.1. But observe that for a surface diagram it simply
amounts to a cyclic permutation of the vanishing cycles.

To complete our terminology surrounding surface diagrams we give another def-
inition which might seem rather unmotivated at this point. Let G = (Σ,Γ, ψ) be
a generalized surface diagram with Γ = (c1, . . . , cl). For the moment it will be
convenient to blur the distinction between isotopy classes and their representatives,
both for diffeomorphisms and simple closed curves. Since c1 and ci+1 are weakly
dual for i < l, equation (2.8) shows that the product of Dehn twists τciτci+1 maps ci
to ci+1. By iteration, we see that the product τcl−1

τcl . . . τc1τc2 maps c1 to cl, and the
condition that cl and ψ(c1) are weakly dual implies that τclτψ(c1) maps cl to ψ(c1).
Altogether, it follows that the mapping class

ψ−1τclτψ(c1)τcl−1
τcl . . . τc1τc2 ∈ Mod(Σ)

preserves the isotopy class of c1. We denote the subgroup of Mod(Σ) of mapping
classes that fix c1 up to isotopy by Mod(Σ)(c1). Denoting by Σc1 the surface obtained
by surgery along c1, there is a homomorphism

Φc1 : Mod(Σ)(c1) −→ Mod(Σc1)

obtained by choosing a representative that fixes c1 as a set, thus giving a diffeomor-
phism Σ \ c1, and considering Σc1 as the endpoint compactification of Σc1 . We will
explain this construction in more detail Section 5.2.1.
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Definition 4.15 (Monodromy). Let G = (Σ,Γ, ψ) be as above. The mapping class

µ(G) = Φc1

(
ψ−1 τclτψ(c1) τcl−1

τcl . . . τc1τc2
)
∈ Mod(Σc1)

is called the monodromy of G.

Now that we have introduced our main objects of interest, namely simple wrin-
kled fibrations and (generalized) surface diagrams, we want to understand how they
are related. As a motivation we briefly recall the relation between Lefschetz fibra-
tions and their vanishing cycles.4

4.3 Interlude: Lefschetz Fibrations and Their Vanish-
ing Cycles

For simplicity we restrict our attention to Lefschetz fibrations over D2 or S2. Gen-
eral references are [32, Chs. 8.1&8.2] and [41, Ch. 3] (see also [39, 48]). Since this
material is well known and only serves as a motivation, we will not give more precise
references. We first discuss Lefschetz fibrations over the disk. Let f : Z → D2 be
such a map. By an appropriate choice of reference arcs5 for the critical points one
can record all the corresponding Lefschetz vanishing cycles in one regular fiber Σ.
The result is an ordered collection of simple closed curves λ1, . . . , λk ⊂ Σ and it is
easy to understand how these curves depend on the choice of reference arcs. More-
over, one can show that the monodromy of the boundary fibration f |∂Z : ∂Z → S1

(which is only well-defined up to isotopy) is given by the word in Dehn twists

τλk · · · τλ1 ∈ Mod(Σ). (4.1)

Conversely, given an ordered collection of simple closed curves λ1, . . . , λk ⊂ Σ in
a closed, oriented surface – or equivalently, a word in positive Dehn twists as in
equation (4.1) – one can construct a Lefschetz fibration by the following procedure.

(1) Take Σ×D2 and choose θ1, . . . , θk ∈ S1 ordered according to the orientation.

(2) Build a 4–manifold Z by attaching 2–handles to Σ×D2 along λi×{θi} ⊂ Σ×S1

with respect to the framing in Σ×S1 induced by the inclusion λi×{θi} ⊂ Σ×{θi}
corrected by −1.

(3) Then the projection Σ × D2 → D2 extends to a Lefschetz fibration on Z over
a slightly larger disk in a natural such that there is one critical point for each
2–handle.

We pause to give a definition for later reference.

Definition 4.16. (Fiber framing) Let Y be a 3–manifold, Σ ⊂ Y a regular fiber of
a smooth map Y → S1, and c ⊂ Σ a simple closed curve. Then the framing of c
in Y induced by the inclusion c ⊂ Σ is called the fiber framing.

4See pages 27 and 36 for the definitions.
5See Figure 5.
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In the light of the above we will refer to 2–handles attached along simple closed
curves in fibers with “fiber framing −1” as Lefschetz handles. It is well known that
the constructions give rise to a bijective correspondence between Lefschetz fibrations
over the disk up to equivalence and ordered sequences of simple closed curves up to
certain moves.

Remark 4.17. The above discussion easily generalizes to achiral Lefschetz fibrations6.
These correspond to words in positive and negative Dehn twists since the achiral
singularities contribute negative Dehn twists about their vanishing cycles to the
analogue of the formula (4.1) for the boundary monodromy. The construction of
achiral Lefschetz fibrations with prescribed words is almost the same except that
for each negative twist one has to attach a 2–handle along the corresponding curve
with “fiber framing +1” instead of −1.

Now let us discuss Lefschetz fibrations over S2. Given such a map f : X → S2

we obtain a Lefschetz fibration over the disk by removing a fibered neighborhood
of a regular fiber. For concreteness, let νΣ = f−1(intD) where D ⊂ S2 is disk over
regular values and let Z = X\νΣ. The monodromy of f |∂Z : ∂Z → ∂D is necessarily
trivial so that for any collection of curves {λi} extracted from f |Z we must have

τλk · · · τλ1 = 1 ∈ Mod(Σ).

Conversely, if an ordered sequence of simple closed curves λ1, . . . , λk ⊂ Σ satisfies
this condition, then the corresponding Lefschetz fibration f : Z → D2 over the disk
has trivial boundary monodromy. One can then close off to a fibration over S2 using
a fiber preserving diffeomorphism ϕ : Σ× S1 → ∂Z and extending f to a map

X = Z ∪ϕ (Σ×D2) −→ D2 ∪D2 = S2

the projection Σ × D2 → D2. Moreover, Corollary 2.20 shows that the different
choices of ϕ give equivalent extensions if Σ has genus at least two, while ambiguities
can appear for genus at most one.7

The above discussion can be summarized by saying that Lefschetz fibrations
over the disk correspond to arbitrary words in Dehn twists, while Lefschetz fibra-
tions over the sphere correspond to factorizations of the identity into positive Dehn
twists. Lefschetz fibrations thus provides a bridge between 4–manifold topology and
mapping class groups of surfaces which has proved to be very useful (see [41] for a
survey of results in this area).

4.4 An Outline of The Correspondence

We now want to paint a similar picture for simple wrinkled fibrations and surface
diagrams. Here we focus on simple wrinkled fibrations over the disk and the sphere,
although most of the work will actually be done in the context of annular wrinkled
fibrations. Before stating the results, we observe that there are two substantially
different types of simple wrinkled fibrations over the disk. The critical image of a
simple wrinkled fibration w : Z → D2 divides the target into an open sub-disk and

6See Remark 3.2 on page 28 for the definition.
7It turns out that there is no ambiguity for genus one but this not obvious, see [32, p.311].
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a half-open annulus containing S1 = ∂D2. Either of these can be the higher genus
region. If the open disk is the higher genus region, then the fiber genus drops while
moving toward the boundary. We will thus speak of descending simple wrinkled
fibrations in this situation, and of ascending simple wrinkled fibrations in the other.
From the perspective of surface diagrams it turns out to be more natural to work
with descending simple wrinkled fibrations and, in fact, we will never encounter
any ascending ones. With this understood, we will eventually prove the following
correspondence results which were already stated on page 7.

Theorem 1.2 (Correspondence over the disk). Equivalence classes of surface di-
agrams correspond bijectively to equivalence classes of descending simple wrinkled
fibrations over the disk.

Theorem 1.1 (Correspondence over the sphere). Let SWFg(S2) and SD0
g be the

sets of equivalence classes of genus g simple wrinkled fibrations over S2 and surface
diagrams with trivial monodromy, respectively. There is a surjective map

SWFg(S2) −→ SD0
g

whose point preimages have a transitive action of the group π1

(
Diff(Σg−1), id

)
. In

particular, the map is bijective for g ≥ 3.

Note that these results are instances where the philosophy of Remark 3.16 is
successful. In fact, they can by now be considered as a special case of a more
general result of Gay and Kirby [30, Theorem 1] which appeared while the author
was writing [7]. As mentioned before, we will deduce Theorems 1.1 and 1.2 from a
correspondence result for annular simple wrinkled fibrations and generalized surface
diagrams.

Theorem 1.3 (Annular correspondence). There is a bijective correspondence be-
tween annular simple wrinkled fibrations and generalized surface diagrams, both con-
sidered up to equivalence.

The details are deferred to Chapter 5. We now give a non-technical outline of the
constructions involved in the correspondences over the disk and the sphere which
closely resembles the discussion of Lefschetz fibrations in the previous section.

Let w : Z → D2 be a descending simple wrinkled fibrations over the disk. To
obtain a surface diagram we fix a point in the higher genus region and consider its
fiber Σ. We number the fold arcs in the critical image from 1 to l according to the
boundary orientation induced from the higher genus region and choose one reference
arc for each fold arc. The resulting collection of fold vanishing cycles c1, . . . , cl ⊂ Σ
turns out to have the structure of a W–cycle so that Sw = (Σ; c1, . . . , cl) is a
surface diagram. This process is explained in detail in the discussion surrounding
Lemma 5.3. For the boundary fibration w|∂Z : ∂Z → S1, we find a surface bundle
over S1 whose fiber is not Σ but a surface of lower genus. In Proposition 5.12 we
explain how to identify the boundary fibers with the surface Σc1 (obtained from Σ by
surgery on c1) and show that the monodromy of w|∂Z corresponds to the mapping
class

µ(Sw) = Φc1

(
τclτc1 τcl−1

τcl . . . τc1τc2
)
∈ Mod(Σc1)

from Definition 4.15. This also explains why we call µ(Sw) the monodromy of Sw.

50



4.4. An Outline of The Correspondence

The other way around, given a surface diagram S = (Σ; c1, . . . , cl) we can con-
struct a descending simple wrinkled fibration by the following recipe.

(1) Start with Σ×D2.

(2) Build a 4–manifold ZS by attaching fiber framed 2–handles to Σ × D2 along
ci ×{θi} ⊂ Σ× S1 for some θ1, . . . , θl ∈ S1 ordered according to the orientation
of S1.

(3) Extend the projection Σ×D2 → D2 to a descending simple wrinkled fibration
wS : ZS → D2 (over a larger disk, strictly speaking) in a natural way.

The difficult part is the last step and we refer to Lemma 5.8 and its proof for the
details. Quite notably, the only difference to the construction of Lefschetz fibrations
lies in the framings of the 2–handles. We simply have to use the fiber framing instead
of correcting it by −1. The following terminology will be useful.

Definition 4.18. (Fold handles) A 2–handle attached along a simple closed curve
in a fiber with respect to the fiber framing is called a fold handle.

The passage to fibrations over S2 is exactly the same as in the Lefschetz case.
Given a simple wrinkled fibration w : X → S2 we remove a fibered neighborhood
of a lower genus fiber to obtain a descending simple wrinkled fibration over a disk8

with surface diagram Sw. The boundary monodromy is necessarily trivial so that

µ(Sw) = 1 ∈ Mod(Σc1),

again by Proposition 5.12. Conversely, if a surface diagram S has trivial monodromy,
then wS : ZS → D2 has trivial boundary monodromy and can be closed off to a
simple wrinkled fibration over S2. More specifically, we can choose a fiber preserving
diffeomorphism ϕ : Σg−1× S1 → ∂ZS (where g is the genus of Σ) and extend wS to
a simple wrinkled fibration

wϕS : Xϕ
S = ZS ∪ϕ (Σg−1 ×D2) −→ D2 ∪D2 ∼= S2

using the projection Σg−1×D2 → D2. The ambiguity for the choice of ϕ is controlled
by the group π1

(
Diff(Σg−1), id

)
which vanishes for g ≥ 3 by Theorem 2.18.

One thing that should be remembered from this discussion is that simple wrinkled
fibrations are directly accessible via handlebody theory. In fact, a surface diagram
of a descending simple wrinkled fibration over the disk (Z,w) can be considered as a
construction manual for a handle decomposition of Z. For simple wrinkled fibrations
over the sphere the process of closing off makes the handlebody approach a little more
cumbersome. This issue will be discussed in more detail in Section 5.3. Nevertheless,
we obtain a rather direct link between surface diagrams and the topology of the
4–manifolds they describe. This observation will be further exploited in Part III.

Combining Theorems 1.1 and 4.2, we arrive at the following intriguing conse-
quence which was already observed by Williams [67, p.1054, Corollary 2].

Corollary 4.19 (Williams [67]). All closed, oriented 4–manifolds can be specified
up to diffeomorphism by surface diagrams of genus g ≥ 3 with trivial monodromy.

8Note that if we removed a neighborhood of a higher genus fiber, then we would obtain an
ascending simple wrinkled fibration over a disk.
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Curiously, Williams actually did not explain how to construct a 4–manifold from
a surface diagram, although it was clear at the time that this can be done via a
detour over broken Lefschetz fibrations using results of Lekili [45] and Baykur [5].
More precisely, Lekili’s wrinkling modification discussed in Section 3.4 shows how to
turn a simple wrinkled fibration into a broken Lefschetz fibration and the vanishing
cycles of the latter are determined by the surface diagram. Baykur’s handlebody
approach to broken Lefschetz fibrations [5] then allows to reconstruct the total space.
Finding a more intrinsic proof for Corollary 4.19 was our main motivation for proving
Theorem 1.1.

Remark 4.20. We now comment on the difference between our definition of surface
diagrams and Williams’s original one [68, Definition 2]. Williams defines a surface
diagram as the collection of vanishing cycles associated to a simple wrinkled fibra-
tion over S2 of genus at least three. In our language this corresponds to surface
diagrams of genus g ≥ 3 with trivial monodromy. We found that Williams’s def-
inition two drawbacks. First, it makes it difficult to consider surface diagrams as
abstract combinatorial gadgets, mostly because the relation between the implicit
trivial monodromy condition and the vanishing cycles does not become clear. Sec-
ond, it excludes low genus simple wrinkled fibrations from the discussion which, in
spite of the gluing ambiguities, seem to be more accessible than fibrations of genus
three and higher. Our goal was to provide an abstract definition of surface dia-
grams which can be studied without the reference to simple wrinkled fibrations, just
as Heegaard diagrams of 3–manifolds can be discussed without reference to Morse
functions or Heegaard splittings.
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Chapter 5

The Correspondence: Proofs

The present chapter is the technical core of Part II. We first prove the annular
correspondence theorem which we restate again.

Theorem 1.3 (Annular correspondence). There is a bijective correspondence be-
tween annular simple wrinkled fibrations and generalized surface diagrams, both con-
sidered up to equivalence.

The proof is contained in Section 5.1. In Section 5.2 we give a geometric inter-
pretation of the monodromy of generalized surface diagrams as defined in Defini-
tion 4.15. Finally, in Section 5.3 we deduce Theorems 1.1 and 1.2.

5.1 The Annular Correspondence

For convenience, we denote by aSWF the set of equivalence classes of annular simple
wrinkled fibrations and by gSD the set of equivalence classes of generalized surface
diagrams. In Sections 5.1.1 and 5.1.2 we will define maps

aSWF −→ gSD and gSD −→ aSWF

and show that they are mutually inverse, thus proving Theorem 1.3.

5.1.1 From Annular Simple Wrinkled Fibrations to Generalized
Surface Diagrams

The first step is to assign generalized surface diagrams to annular simple wrinkled
fibrations. As indicated in Section 4.4, we need a method to record all (fold) vanish-
ing cycles in one fiber. The key ingredients are the notions of reference arcs and their
adjacency discussed in Section 3.3. The following concept makes sense for arbitrary
base surfaces.

Definition 5.1 (Reference systems). Let w : M → B be a simple wrinkled fibration
with l cusps (and thus l fold arcs). A reference system for w is a collection of pairwise
disjoint reference arcs R = {R1, . . . , Rl} with common reference points such that

(a) Ri and Ri+1 are adjacent for i < l,

(b) each fold arc of w meets exactly one reference arc, and
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Figure 11: A reference system for an annular simple wrinkled fibration. On the
left hand side, the annulus is drawn as a rectangle where the top and bottom
are identified.

(c) the reference arcs leave the initial reference point in order of increasing index.

Generalizing the concept of isotopy for reference arcs, we say that reference systems
are isotopic if they are ambiently isotopic in B through reference systems, and
strictly isotopic if the ambient isotopy fixes the reference points.

In the annular case we will always assume that the reference points lie on the
boundary of the base annulus as shown in Figure 11.

Remark 5.2. Condition (c) might need some further explanation. Suppose that we
have a collection of embedded arcs in an oriented surface B, all emanating from a
point b ∈ B, and having pairwise disjoint interiors. Depending on whether b lies in
the interior or the boundary of B we consider a small disk or half disk D around b
whose boundary intersects all arcs transversely once. The boundary orientation
on ∂D then induces a cyclic order on the arcs which is easily seen to be independent
of the choice of D. By declaring one arc as the first, the cyclic order becomes an
absolute order. Moreover, if b ∈ ∂B and the arcs are properly embedded, then there
is a natural choice for the first arc, namely the one that intersects ∂D after the
part ∂D ∩ ∂B.

Now let w : W → A be an annular simple wrinkled fibration. We denote the
boundary components of A by ∂±A, where ∂+A lies in the higher genus region,
and we let ∂±W = w−1(∂±A). We fix a reference system R = (R1, . . . , Rl) and
a horizontal distribution H for w and denote the higher and lower genus reference
fibers of R by Σ and Σ′, respectively. According to Lemma 3.13, each Ri has a
vanishing cycle ci ⊂ Σ and we let Γ = (c1, . . . , cl). Finally, we denote the parallel
transport with respect to H around ∂±A by

ψ = PTH∂+A : Σ −→ Σ and µ = PTH∂−A : Σ′ −→ Σ′

which we will refer to as the higher and lower genus monodromy of w.
Before continuing we would like to point out that the part of R that is contained

in the lower genus region will be largely irrelevant in the subsequent discussion. The
reason is that it does not affect the vanishing cycles. In fact, it will not be used until
Section 5.2 where we relate µ, which lives on the lower genus side, to the vanishing
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R

S

R

S′

Figure 12: Swinging an arc around a boundary component.

cycles. However, we will keep track of the full reference systems in the proofs below
and one should not get distracted by the fact that we seemingly ignore half of the
information.

Lemma 5.3. With the notation introduced above, the triple GR,Hw = (Σ,Γ, ψ) is a
generalized surface diagram.

In the proof we will need the following construction. Let B be an oriented surface
and let R,S ⊂ B be two properly embedded arcs with disjoint interiors. Suppose
that they both meet a boundary component ∂iB ⊂ ∂B transversely in the same
point such that S enters ∂iB after R (as explained in Remark 5.2). Then we can
modify S by moving its endpoint along ∂iB as indicated in Figure 12, resulting in
a new arc S′ which enters ∂iB before R and whose interior is still disjoint from R.
We say that S′ is obtained from S by swinging once around ∂iB.1

Proof of Lemma 5.3. Since the reference arcs Ri and Ri+1 are adjacent for i < l,
it follows from Lemma 3.20 that ci and ci+1 are weakly dual. In order to see
that ψ(c1) and cl are weakly dual, we swing R1 once around ∂+A and once negatively
around ∂−A. The result is a new reference arc R′1 which is by construction adjacent
to Rl so that its vanishing cycle c′1 is weakly dual to cl. In addition, R′1 is homotopic
to the concatenation (∂+A)−1∗R1∗(∂−A)−1 which shows that the parallel transport
around ∂+A maps c1 to c′1, in other words c′1 = ψ(c1). Since c′l and c1 are weakly
dual, so are their images under ψ, showing that cl and ψ(c1) are weakly dual.

Of course, the generalized surface diagram GR,Hw not only depends on w but also
on the choices of R, H. However, it turns out that its equivalence class does not.

Lemma 5.4. The equivalence class of GR,Hw is independent of R and H.

Proof. It follows from Corollary 3.9 and part (i) of Lemma 3.10 that a different
choice of H only changes ψ and the vanishing cycles by isotopies. Of course, Σ does
not change at all so that GR,Hw is independent of H up to isotopy.

To investigate the R–dependence, we note that R is determined up to (strict)
isotopy by the (strict) isotopy class of the first reference arc R1. This follows from
the observation that R1 cuts the base annulus A into a disk and there is a unique
reference arc adjacent to R1. Proceeding by induction, we can reconstruct R up to
isotopy. Now suppose that S = (S1, . . . , Sl) is another reference system for w and
let di be the vanishing cycle of Si.

1Note that swinging around ∂iB is not the same as performing a boundary parallel Dehn twist.
Dehn twists are supported in the interior of B and thus fix a collar of the boundary. In particular,
they cannot change the order of arcs at the boundary and, moreover, in Figure 12 a boundary
parallel Dehn twist applied to S would produce an arc that intersects R in its interior.
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We first assume that S and R have the same reference points and that S1 is
strictly isotopic to Rk for some k. Since Σ and ψ depend solely on the reference
points, we only have to discuss the relation of the vanishing cycles. If k = 1, then the
arguments above show R and S are strictly isotopic and, according to Lemma 3.18,
c′i is isotopic to ci for all i. For k = 2 we argue as follows. As in the proof of
Lemma 5.3 we swing R1 around ∂±A to obtain a reference arc R′1 adjacent to Rl
whose vanishing cycle is isotopic to ψ(c1). Since S1 and R2 are strictly isotopic,
it follows as in the case k = 1 that the reference system R′ = (R2, . . . , Rl, R

′
1) is

strictly isotopic to S and we deduce that (d1, . . . , dl) ∼ (c2, . . . , cl, ψ(c1)). But this
shows that GR,Hw and GS,Hw differ by isotopies and a twisted cyclic permutation and
are therefore equivalent. For arbitrary k we repeat the above argument.

Finally, for general R and S we can assume by swinging that S1 and R1 hit the
same fold arc. Obviously, S1 and R1 cannot be strictly isotopic if their reference
points differ, however, they are isotopic since we allow ambient isotopies of A that
move the boundary. And since R and S are determined by R1 and S1 they are
isotopic as well. After a strict isotopy of eitherR or S we can assume that they agree
in a neighborhood of the critical image. Moreover, we can find an isotopy from S
to R that fixes this neighborhood so that the movement of R and S is confined to
regular values of w. Throughout such an isotopy the higher genus reference point
of S traces out a curve δ in ∂+A, and each Si is homotopic to the concatenation
of σ and Ri. But now we can appeal to the fact that in fiber bundles, homotopic
curves give rise to isotopic parallel transport diffeomorphisms, which shows that the
parallel transport along δ provides a diffeomorphism from GS,Hw to a generalized
surface diagram isotopic to GR,Hw . This finishes the proof.

Remark 5.5. As an addendum to the last step of the proof, note that if we connect R
and S by a different isotopy, then we obtain a different curve δ′ in ∂+A connecting
the reference points and the concatenation δ−1δ′ is a closed curve in ∂+A. In par-
ticular, the parallel transports along δ and δ′ differ by some power of ψ so that the
diffeomorphisms that relate GS,Hw and GR,Hw are in fact unique up to isotopy and
powers of ψ.

As a consequence, to an annular simple wrinkled fibration w : W → A we can
associate a well-defined equivalence class of generalized surface diagrams – simply
denoted by Gw from now on – and if the higher genus monodromy ψ is isotopic to
the identity, then Gw consists of surface diagrams. We thus define the desired map
as

aSWF → gSD, w 7→ Gw

and the next lemma shows that this is well-defined.

Lemma 5.6. Equivalent annular simple wrinkled fibrations have equivalent gener-
alized surface diagrams.

Proof. Let w : W → A and w′ : W ′ → A′ be annular simple wrinkled fibrations and
assume that they are equivalent via a commutative diagram

X

w
��

φ̂ // X ′

w′

��
A

φ̌ // A′
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where φ̂ and φ̌ are orientation preserving diffeomorphisms. Moreover, let G be a
generalized surface diagram for w, induced by a reference system R = (R1, . . . , Rl)
and a horizontal distribution H. It suffices to exhibit a single generalized surface
diagram for w′ which is equivalent to G since all surface diagrams of w′ are equivalent
by Lemma 5.4. To construct such a diagram we use φ̂ and φ̌ to transfer R and H
over to w′. More precisely, we take the reference system φ̌(R) =

(
φ̌(R1), . . . , φ̌(Rl)

)
for w′ and the horizontal distribution φ̂∗H obtained by pushing H forward. By
construction the corresponding surface diagram for w′ is then diffeomorphic to G
via a diffeomorphism between the reference fibers induced by φ̂.

5.1.2 From Generalized Surface Diagrams to Annular Simple Wrin-
kled Fibrations

We now describe a procedure to build annular simple wrinkled fibrations with pre-
scribed generalized surface diagrams. The construction generalizes the one outlined
in Section 4.4. We begin by setting up some notation. Given a surface diffeomor-
phism ψ : Σ→ Σ, we consider its mapping torus

Σ(ψ) =
(
Σ× [0, 1]

)
/(x, 1) ∼ (ψ(x), 0).

As a temporary notation, we denote the image in Σ(ψ) of a subset E ⊂ Σ × [0, 1]
under the quotient map by [E]ψ ⊂ Σ(ψ). The mapping torus Σ(ψ) is a 3–manifold
and it comes a canonical map

pψ : Σ(ψ)→ S1, pψ(x, θ) = e2πiθ

which is easily seen to be a submersion. In what follows we will identify S1 with
the quotient [0, 1]/ {0, 1} via the map θ 7→ e2πiθ. Moreover, when writing θ ∈ S1

we will implicitly think of the unique representative in [0, 1) and expressions of the
form θ1 < θ2 are to be understood in this sense. For brevity we also write the unit
interval as I = [0, 1].

In the subsequent arguments we will make essential use of the following con-
struction of Morse functions that appears in Milnor’s classic [50].

Remark 5.7. Let Σ be a surface and let c ⊂ Σ be a simple closed curve. In [50,
Theorem 3.12] Milnor constructs a cobordism ω(Σ, c) from Σ to Σc together with a
Morse function

fc : ω(Σ, c) −→ D1 = [−1, 1]

with a single critical point of index 2 whose descending sphere is isotopic to c. We
briefly recall the construction. For the omitted details we refer to [50, p.30ff.]. Con-
sider the subset H ⊂ R3 consisting of all points (x, y, z) which satisfy the inequalities

−1 ≤ −x2 − y2 + z2 ≤ 1 and (x2 + y2)z2 ≤ sinh2(1) cosh2(1).

Milnor defines the cobordism ω(Σ, c) as a quotient

ω(Σ, c) =
(
(Σ \ c×D1)qH

)/
∼

where the identification depends on the choice of an embedding ϕ : S1 × D1 ↪→ Σ
with ϕ(S1 × {0}) = c. However, this choice is essentially unique since simple closed
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curves in surface have canonical framings. The Morse function on ω(Σ, c) is then
defined by

Σ \ c×D1 3 (p, s)  fc(p, s) = s

H 3 (x, y, z)  fc(x, y, z) = −x2 − y2 + z2.

This process can be interpreted as an inherently smooth version of a 3–dimensional
2–handle attachment to Σ × I along c × {1}, together with an extension of the
projection Σ × I → I to a Morse function across the handle. Milnor also shows
in [50, Theorem 3.13] that any other pair (W, f), where W is a cobordism from Σ
to Σc and f : W → [a, b] is a Morse function with a single index 2 critical point whose
descending sphere is isotopic c, is equivalent2 to (ω(Σ, c), fc). It is clear from the
construction that a diffeomorphism φ : Σ→ Σ′ gives rise to a commutative triangle

ω(Σ, c)
φ̄ //

fc ��

ω(Σ′, φ(c))

fφ(c)}}
[−1, 1]

(5.1)

where φ̄ is a diffeomorphism that restricts to φ× id on Σ \ c×D1.

Lemma 5.8. Let G = (Σ,Γ, ψ) be a generalized surface diagram. There exists an
annular simple wrinkled fibration

wG : WG −→ S1 × I,

well-defined up to equivalence, with surface diagram G. Furthermore, the total
space WG has a relative handle decomposition on Σ(ψ) with fold handles3 attached
along [ci × θi]ψ for some 0 < θ1 < · · · < θl < 1.

Proof. The construction is divided into three steps.

Step 1: We consider the product W1 = Σ(ψ)×
[
0, 1

3

]
and define a map

w1 = pψ × id : W1 −→ S1 ×
[
0, 1

3

]
.

Note that we can identify each fiber

w−1
1 (θ, s) = [Σ× {θ}]ψ × {s}, θ ∈ [0, 1)

with Σ using the injectivity of the quotient map Σ× I → Σ(ψ) on Σ× [0, 1).

Step 2: This is the core of the construction. As in Remark 5.7, we construct a
3–dimensional cobordism ω(Σ, ci) from Σ to Σci together with a Morse function

fi : ω(Σ, ci) −→
[

1
3 ,

2
3

]
with a single critical point pi of index 2 (with f(pi) = 1

2 , say). Next we choose
pairwise disjoint, closed intervals Θi ⊂ (0, 1) ⊂ S1 such that Θi < Θi+1 for i < l
and define

Ωi = Θi × ω(Σ, ci), Bi = Θi ×
[

1
3 ,

2
3

]
⊂ S1 × I, and

2in the sense that f = ψ ◦ fc ◦φ−1 for diffeomorphisms φ and ψ between the sources and targets
3That is, fiber framed 2–handles (see Definition 4.18 on page 51.)
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Figure 13: Building annular simple wrinkled fibrations from generalized surface
diagrams. Each picture shows an annulus (top and bottom are understood to
be identified). Bold lines are critical values while dashed lines are reference
arcs.

Fi = idΘi ×fi : Ωi −→ Bi.

By construction the critical locus of Fi is Θi × {pi} which is an arc of indefinite
folds mapping to Θi × {1

2} ⊂ Bi. In particular, Fi is a wrinkled fibration over the
square Bi. Note that we have canonical identifications of both F−1

i (Θi × {1
3}) and

w−1
1 (Θi×{1

3}) with Σ×Θi so that w1 and the Fi can be glued together to a wrinkled
fibration

w1 ∪
(
qi Fi

)
: W1 ∪

(
qi Ωi

)
−→

(
S1 ×

[
0, 1

3

] )
∪
(
∪i Bi

)
⊂ S1 × I

onto a “bumpy annulus” inside S1 × I with one arc of folds on each bump, see
Figure 13(b). Moreover, the obvious corners in this construction can be smoothed
using standard methods.

Observe that gluing Ωi = Θi × ω(Σ, ci) to W1 can be considered as attaching a
fold handle along the copy of ci in w−1

1 (θi,
1
3) ∼= Σ where θi ∈ Θi is some interior

point. Indeed, recall that ω(Σ, ci) can be considered as a 3–dimensional 2–handle
attachment along ci, and that the product of a 3–dimensional 2–handle with an
interval is a 4–dimensional 2–handle. Moreover, the attachment is fiber framed
since the framing is obtained by taking the product of the 3–dimensional framing
with an interval, and 3–dimensional 2–handles are automatically attached with the
fiber framing. Conversely, the above construction can be reinterpreted as follows.
Whenever a fold handle is attached to the total space of a wrinkled fibration, then
the fibration extends uniquely up to equivalence across the handle with an extra arc
of folds (over a bump added to the base surface) – whence the terminology.

As a consequence, the 4–manifold W2 = W1 ∪
(
qi Ωi

)
is obtained by a sequence

of fold handle attachments to W1 = Σ(ψ) ×
[
0, 1

3

]
and therefore has the desired

relative handle decomposition on Σ(ψ). For cosmetic reasons we flatten the bumps
of the target annulus of w1 ∪

(
qi Fi

)
(using an isotopy of S1 × I with support in a

small neighborhood of S1 ×
[

1
3 ,

2
3

]
) and denote the resulting wrinkled fibration by

w2 : W2 −→ S1 ×
[
0, 2

3

]
.

Step 3: By construction w2 : W2 → S1 ×
[
0, 2

3

]
restricts to an excellent Morse
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function on ∂2W2 = w−1
2

(
S1 ×

{
2
3

} )
and we denote the restriction by

w2,∂ : ∂2W2 −→ S1 ×
{

2
3

} ∼= S1.

The crucial observation is that all critical points of w2,∂ are arranged in canceling
pairs, which follows from the condition that Γ = (c1, . . . , cl) is a ψ–twisted W–cycle.
Indeed, the fold handle attachment along ci results in two consecutive critical values
and, going around S1×

{
2
3

}
according to the boundary orientation, the first critical

value has index 2 while the second has index 1. Furthermore, for i < l the ascend-
ing sphere of the index 1 point of the ith fold handle and the descending sphere
of the index 2 point of the (i + 1)st fold handle can be identified with ci and ci+1,
respectively. But these two curves are weakly dual so that the critical points can be
canceled. Similarly, the ascending and descending spheres of the lth and the 1st fold
handles correspond to cl and ψ(c1) because of the twisted gluing in the construction
of Σ(ψ). As explained in Appendix C, we can choose a path of death for w2,∂ (see
Definition C.2 on page 132), that is, a homotopy emanating from w2,∂ to a submer-
sion which realizes the cancellation of critical points in a minimal way. Let wt be
such a path of death, conveniently parametrized by t ∈

[
2
3 , 1
]

such that w2/3 = w2,∂ .
To finish the construction we let

WG = W2 ∪∂2W2

(
∂2W2 ×

[
2
3 , 1
] )

and note that WG is diffeomorphic to W2 from which it inherits the desired handle
decomposition. Finally, we extend w2 to across ∂2W2 ×

[
2
3 , 1
]

as the trace of the
homotopy (wt) – that is, the map (x, t) 7→ (wt(x), t) – and thus obtain a map

wG : WG → S1 × [0, 1].

As explained in Appendix C on page 136, while tracing out the path of death the
fold arcs of w2 eventually end in a cusp and the critical image of wG appears as in
Figure 13(d) which shows that wG is an annular simple wrinkled fibration. Moreover,
the reference system for wG shown in Figure 13 recovers G.

It remains to show that wG is well-defined up to equivalence. Observe that the
only essential choices made in the construction were those of fi : ω(Σ, ci) →

[
1
3 ,

2
3

]
and the path of death (wt). We already mentioned in Remark 5.7 that each fi
is unique up to equivalence so that the same holds for Fi = idΘi ×fi. Finally, it
follows from Corollary C.5 that the trace of (wt) used to extend w2 is unique up to
equivalence as well. This finishes the proof.

Our next result shows that the construction in Lemma 5.8 exhaust all equiva-
lence classes of annular simple wrinkled fibrations and that annular simple wrinkled
fibrations can be recovered up to equivalence from any of their generalized surface
diagrams.

Lemma 5.9. Let w : W → A be an annular simple wrinkled fibration with general-
ized surface diagram G. Then w is equivalent to wG : WG → S1 × I as constructed
in Lemma 5.8.

Proof. The proof of Lemma 5.8 can essentially be reversed. But this requires some
preliminary considerations. For simplicity, we assume that A = S1 × I. As before
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0 1
tf tc

T

Figure 14: The interaction of T and critical values of w.

we fix an identification S1 ∼= [0, 1]/ {0, 1} and denote the coordinates on S1× I by θ
and t. For convenience we let

S1
t = S1 × {t} and Iθ = {θ} × I.

Intuitively, we want the critical image of w to appear as on the right side of Figure 11.
More formally, we will assume the following conditions which can all be achieved by
a suitable reparametrization of the base annulus.

(a) Each Iθ contains exactly one critical value of w, and if Iθ contains a fold point,
then the intersection Iθ ∩ w(Cw) is transverse.

(b) The critical image of w is contained in S1 × [tf , tc] for some 0 < tf < tc < 1.

(c) All folds are mapped to S1 × [tf , tc) while the cusps are mapped to S1
tc .

(d) The image of the fold arcs meets S1
t transversely for t ∈ (tf , tc) and has quadratic

tangencies with S1
tf

.

Note that the last condition implies that the projection T : S1× I → I restricts to a
Morse function on the fold part of w(Cw). Assuming the above properties, we claim
that the map

f = T ◦ w : W −→ I

is a Morse function on W with only critical points of index 2. This can be seen by
a direct investigation of f around its critical points. Since T is a submersion, we
have Cf ⊂ Cw and we are thus led to study f near critical points of w. According
to the properties (c) and (d), we have to distinguish three cases: p ∈ Cw is either
a cusp point, a fold point such that T |w(Cw) is regular at w(p), or p is a fold point
and w(p) is a local minimum of T |w(Cw); see Figure 14 for an illustration. It turns
out that only the minima of T |w(Cw) contribute critical points of f . Indeed, if p is
either a cusp point or a fold point where T |w(Cw) is regular, then we can find model
coordinates around p such that (up to a sign) the map T corresponds to the vertical
projection in the fold or cusp model, that is, the projection of R2 onto the first
factor. As a consequence, f is modeled around p by one of the compositions

(t, x, y, z) 7→ (t, x3 + 3tx+ y2 − z2) 7→ t

(t, x, y, z) 7→ (t, x2 + y2 − z2) 7→ ±t

which shows that p is a regular point of f . In the remaining case, when p is a
fold point and T |w(Cw) is minimal at w(p), Figure 14 suggests that T should be
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modeled on the horizontal projection in the fold model. Of course, this is not
quite possible because the horizontal projection is not a Morse function on the
critical image of the fold model. But this obstacle is easily overcome by a change
of coordinates. Composing the fold model with either of the diffeomorphisms of R2

given by (t, s) 7→ (t, s± t2), we obtain two new models

(t, x, y, z) 7→ (t, x2 + y2 − z2 ± t2) (5.2)

which we call the ±–modifications of the fold model. In the ±–modification the crit-
ical image is parametrized by t 7→ (t,±t2) so that the horizontal projection restricts
to the Morse function t 7→ ±t2. What is more, note that the composition of the mod-
ified models with the horizontal projection is the standard model for a 4–dimensional
Morse critical point of index 2 or 3. Returning to the function f : W → I and the
fold point p ∈ Cw with w(p) a minimum of T |w(Cw), we can find modified model
coordinates around p such that, up to a sign, T corresponds to the horizontal pro-
jection. In order to find out which modified model fits, we observe that the Euler
characteristic of the fibers of w increases as T increases, while in either of the mod-
ified models the Euler characteristic decreases in the positive horizontal directions.
So T must be modeled on the negative horizontal projection, and since T |w(Cw) has
a minimum at p, we have to use the (−)–modification. In particular, we see that
p is a non-degenerate critical point of f and has index 2.

With these remarks in place, we return to the study of w. We choose a horizontal
distribution H and a reference system R = (R1, . . . , Rl) for w which induce the
generalized surface diagram G = (Σ,Γ, ψ). It will be convenient to use the notation

W[s,t] = f−1([s, t]) for s, t ∈ I, s < t.

Note that f−1([s, t]) = w−1
(
S1× [s, t]

)
and that w maps f−1(t) = w−1(S1

t ) onto S1
t .

In order to prove the equivalence of w and wG, we choose σ, τ ∈ I close to tf
such that σ < tf < τ < tc, and try to relate the pieces W[0,σ], W[σ,τ ], and W[τ,1] to
the three steps in the in construction of wG in the proof of Lemma 5.8.

Step 1: Using the parallel transport with respect to H it is easy to construct a
commutative diagram

W[0,σ]

w   

∼= // Σ(ψ)× [0, σ]

pψ×idzz
S1 × [0, σ]

where pψ : Σ(ψ)→ S1 is the canonical fibration of the mapping torus. For example,
for θ < 1 and t ≤ σ we can obtain a diffeomorphism

Σ = w−1(0, 0)
∼=−→ w−1(θ, τ)

by parallel transport along the arc in S1 × [0, σ] given by s 7→ (sθ, st), s ∈ [0, 1].
This directly identifies the restriction of w to W[0,σ] with the result of the first step
in the construction of wG.
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Step 2: Note that the restriction of w to W[0,τ ] closely resembles the map

w2 : W2 →
[
0, 2

3

]
obtained in the second step of the construction of wG. It is a wrin-

kled fibration with l properly embedded fold arcs with boundary on S1
τ = S1×{τ},

each bounding a half disk in S1× I, and over S1
τ we find a circle valued Morse func-

tion with l canceling pairs of critical points. Moreover, the Morse function f tells
us that W[0,τ ] is diffeomorphic to W[0,σ] with l 2–handles attached. We now take a
closer look a these 2–handles.

Let p1, . . . , pl ∈W be the critical points of f labeled such that w(pi) lies on the
fold arc corresponding to Ri. For convenience, we assume that

Ri ∩
(
S1 × [σ, τ ]

)
= {θi} × [σ, τ ] and Ri ∩ w(Cw) = w(pi) = (θi, tf ),

for some 0 < θ1 < · · · < θl < 1. In other words, Ri is a straight line near the critical
image and the intersection agrees with the minimum of T |w(Cw) on the corresponding
fold arc. This can always be achieved by an isotopy of R which only changes
the vanishing cycles by isotopies (which can then be compensated by modifying H
according to Lemma 3.10). Next we choose a gradient-like vector field ξ for f as
follows. As in the proof of Lemma 3.13, the restriction of f to w−1(Ri) is a Morse
function and has a gradient-like vector field ξi which takes values in H. Moreover,
the descending sphere of the pair (f |w−1(Ri), ξi) is exactly the vanishing cycle ci ⊂ Σ.
We define ξ to be ξi on w−1(Ri) ∩W[σ,τ ] and extend it arbitrarily to a gradient-like
vector field for f . Now everything is set up so that the descending manifold of (f, ξ)
for pi ∈ Cf intersects f−1(σ) = w−1(S1

σ) in the copy of ci in the fiber w−1(θi, σ).
It follows that the 2–handle corresponding to pi is attached along this copy of ci
and the framing must be the fiber framing since it restricts to the framing of the
3–dimensional 2–handle corresponding to the critical point of (f |w−1(Ri), ξi).

To sum up, W[0,τ ] is obtained from W[0,σ] by fold handle attachments in the same
way as W2 is obtained from W1. It now follows from the uniqueness of fold handle
attachments mentioned in the proof of Lemma 5.8 that w|W[0,τ ]

is equivalent to w2.

Step 3: Since f has no critical values in [τ, 1] we can use the flow of ξ to obtain

a diffeomorphism f−1(τ) × [τ, 1]
∼=−→ W[τ,1]. Moreover, we can assume that ξ maps

to ∂t under dw. Since f−1(τ) = w−1(S1
τ ), we obtain a commutative diagram

w−1(S1
τ )× [τ, 1]

∼= //

pr2

�� ((

W[τ,1]

w

��
[τ, 1] S1 × [τ, 1].

Too

But this shows that the restriction of w to W[τ,1] can be considered as the trace of a
path of death for the circle valued Morse function w : w−1

(
S1
τ )→ S1

τ which matches
the third step in the construction of wG.

Remark 5.10. We can now explain why we require simple wrinkled fibrations to have
cusps. In the above proof it was crucial that we could arrange the restriction of T
to the fold part of the critical image to be a Morse function with only local minima.
Each minimum then contributed an index 2 critical points of f . However, if there
were no cusps but only a circle of indefinite folds, then there would also have to be
local maxima which would contribute index 3 critical points of f . (T would have
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to be modeled on the negative horizontal projection in the (+)–modification of the
fold model.) So the presence of cusps guarantees that the total space of an annular
simple wrinkled fibration has a relative handle decomposition on the higher genus
boundary component with only 2–handles. For fake simple wrinkled fibrations 3–
handles become necessary. Note that this is in accordance with Baykur’s work on
handle decompositions of broken Lefschetz fibrations where each circle of indefinite
folds contributes a 2–handle and a 3–handle, see [5, Ch. 2]. Finally, we would like
to mention that the observation that certain projections of wrinkled fibrations are
Morse functions was made independently by Gay and Kirby in their work on Morse
2–functions, see [28, p.43ff.].

Returning to the proof of Theorem 1.3, we want to define a map

gSD −→ aSWF

by sending a generalized surface diagram G to the annular simple wrinkled fibra-
tion wG : WG → S1 × I constructed in Lemma 5.8. Assuming that this map is
well-defined, it follows from Lemmas 5.8 and 5.9 that it is an inverse for the map
aSWF → gS constructed in Section 5.1.1. The proof of Theorem 1.3 is completed
with the following lemma.

Lemma 5.11. If G and G′ are equivalent, then wG and wG′ are equivalent.

Proof. First, it is clear from the proof of Lemma 5.8 that if G and G′ are isotopic,
then wG and wG′ are equivalent. Second, if G and G′ differ by a twisted cyclic
permutation, then we claim that wG has a reference system whose diagram is isotopic
to G′ and Lemma 5.9 shows that wG is equivalent to wG′ . Indeed, as we saw in
the proof of Lemma 5.4, twisted cyclic permutations can be realized by suitably
swinging reference arcs. So we simply have to take the reference system for wG

shown in Figure 13 and swing the first or last reference arc to obtain a reference
system that induces G′. Lastly, suppose that G = (Σ,Γ, ψ) and G′ = (Σ′,Γ′, ψ′)
are diffeomorphic via a diffeomorphism φ : Σ → Σ′. We claim that φ induces a
diffeomorphism Φ: WG → WG′ such that wG = wG′ ◦ Φ. To construct Φ we go
through the steps of the proof of Lemma 5.8. Let Wi and W ′i , i = 1, 2, be the
manifolds resulting from the first two steps for G and G′, respectively. Since we
are assuming that ψ′ = φψφ−1, we obtain a diffeomorphism Σ(ψ)→ Σ′(ψ′) induced
by φ × id : Σ × I → Σ′ × I. In turn, this provides a diffeomorphism Φ1 : W1 → W ′1
which maps the attaching regions of the fold handles in WG to those of WG′ . It
then follows from the discussion surrounding equation (5.1) in Remark 5.7 that Φ1

extends across the fold handles to Φ2 : W2 → W ′2. Finally, the extension to the
rest WS follows from Corollary C.5.

5.2 Identifying the Monodromy

Let w : W → A be an annular simple wrinkled fibration with generalized surface
diagram G = (Σ,Γ, ψ). As on page 54, we fix a reference system R and a hori-
zontal distribution H for w that induce G and denote that higher and lower genus
monodromies of w by

ψ = PTH∂+A : Σ −→ Σ and µ = PTH∂−A : Σ′ −→ Σ′.
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By definition, ψ is part of the data of G and we will now give an interpretation of µ
in terms of G. Recall from Lemma 3.13 that the parallel transport with respect to H
along the first reference arc of R induces an identification of Σ′ with the surface Σc1

obtained by surgery on c1 ⊂ Σ.

Proposition 5.12. Let w : W → A be an annular simple wrinkled fibration with
generalized surface diagram G = (Σ,Γ, ψ). Under the identification Σ′ ∼= Σc1 ex-
plained above, the monodromy diffeomorphism µ is represents the monodromy of Σ

µ(G) = Φc1

(
ψ−1 τclτc1 τcl−1τcl ··· τc1τc2

)
∈ Mod(Σc1).

Moreover, all representatives of µ(G) can be realized in this way.

Before going into the proof, we embark on a small digression and describe the
map Φc1 appearing in the definition of µ(G) in more detail. These so called surgery
homomorphisms have also appeared in the work of Baykur [5, p.214] on broken Lef-
schetz fibrations and their importance for the theory of (simple) wrinkled fibrations
is highlighted by results of Hayano [35] and Hayano and the author [8]. A different
approach to relating the higher and lower genus monodromy from the persepective
of the lower genus side can be found in [3, Section 8.1].

5.2.1 Mapping Class Groups and Surgery

Let Σ be a closed, orientable surface of genus g and let c ⊂ Σ be a non-separating
simple closed curve. As before, we denote by Mod(Σ)(c) the subgroup of Mod(Σ)
consisting of all elements that fix the isotopy class of c, and by Σc the surface
obtained by surgery on c ⊂ Σ. Recall that we consider Σc as the endpoint compact-
ification of Σ \ c. We define the surgery homomorphism

Φc : Mod(Σ)(c) −→ Mod(Σc)

as follows. By the isotopy extension theorem, every θ ∈ Mod(Σ)(c) has a represen-
tative T ∈ Diff+(Σ) which satisfies T (c) = c. Such a T restricts to a diffeomorphism
of Σ \ c which, in turn, extends uniquely to a diffeomorphism T̂ of the endpoint
compactification Σc. We define Φc(θ) as the mapping class represented by T̂ .

In order to see that Φc is well-defined, we first observe that if Σ has genus one,
then Φc takes values in a trivial group and there is nothing to check. For genus
two and higher we have to show that two representatives of θ which preserve c as
a set are isotopic through diffeomorphisms with this property. But as explained
in [36, Ch.7.5], this follows from the fact that the space of simple closed curves
isotopic to c is simply connected (see Corollary 2.19).

It is sometimes useful to think of Φc as a composition. Observe that Σc con-
tains two distinguished points, namely the endpoints, and the construction used to
define Φc produces diffeomorphisms which preserve these points. We can thus con-
sider Σc as a surface with marked points, for which we shall use the notation Σ∗c ,
and we obtain a homomorphism Φ∗c : Mod(S)(c) → Mod(Σ∗c). Composing with the
forgetful map F : Mod(Σ∗c)→ Mod(Σc), which simply forgets the marked points, we
recover Φc. The advantage of this interpretation is that both Φ∗c and F are known
to be surjective and their kernels are known. The kernel of Φ∗c is generated by the
Dehn twist about c (see [24, Proposition 3.20]), and that of F is isomorphic to the
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d

c

∆c,d

τ̄d′

d′

Figure 15: The effects of ∆–twists and half-twists.

braid group of Σc on two strands (see [24, Theorem 9.1]). This shows that Φc is
surjective and gives some idea about its kernel.

Let us discuss some special elements of Mod(Σ)(c) and their images under Φc.

Example 5.13. Let b ⊂ Σ be a simple closed curve with i(b, c) = 0. Then b can
be made disjoint from c by an isotopy and the Dehn twist τb is obviously contained
in Mod(Σ)(c). Moreover, a Dehn twist about a curve isotopic to b and disjoint from c
gives a representative for Φc(τb).

Example 5.14 (∆–twists). More interesting elements can be obtained from simple
closed curves d ⊂ Σ with i(c, d) = 1. We define the ∆–twist about c and d as

∆c,d = (τcτd)
3 = (τcτdτc)

2 = (τdτcτd)
2 = (τdτc)

3 = ∆d,c

where the equalities follow from the braid relation (2.9). A repeated application of
equation (2.8) shows that ∆c,d fixes c (and also d) up to isotopy. In order to obtain a
more geometric interpretation of ∆c,d we assume that c and d intersect transversely
in one point. Then a neighborhood ν(c∪d) is a one-holed torus and a representative
for ∆c,d is obtained by a half-rotation of ν(c ∪ d) relative its boundary as shown in
Figure 15. It is clear from the picture that such a half rotation preserves the curve c
(while reversing its orientation) and thus gives rise to a representative of Φc

(
∆c,d

)
.

Observe that in the surgered surface Σc the curve d appears as an arc d′ connecting
the two endpoints while the one-holed torus ν(c ∪ d) becomes a disk containing d′.
Moreover, the half rotation in ν(c∪d) descends to the half-twist4 about d′ as shown
in Figure 15. Put differently, we have Φ∗c

(
∆c,d

)
= τ̄d′ ∈ Mod(Σ∗c). But since half-

twists are realized by isotopies of Σc, they are annihilated by the forgetful map and
we have

Φc

(
∆c,d

)
= F(τ̄d′) = 1 ∈ Mod(Σc).

It turns out that the elements discussed in Examples 5.13 and 5.14 are enough
to generate the group Mod(Σ)(c).

4See page 23 for the definition.
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Lemma 5.15. Let c ⊂ Σ be a non-separating simple closed curve. Then Mod(Σ)(c)
is generated by elements of the form τb where i(b, c) = 0 and ∆c,d where i(c, d) = 1.
Moreover, the elements ∆c,d are contained in the kernel of Φc and so is τc.

Proof. As mentioned above, there is a short exact sequence

1 −→ 〈τc〉 −→ Mod(Σ)(c)
Φ∗c−→ Mod(Σ∗c) −→ 1

and it is well known that the group Mod(Σ∗c) is generated by Dehn twists about
curves that are disjoint from the marked points together with half-twists about arcs
connecting the marked points (see [24, Corollary 4.15]). The Dehn twists obviously
lift to Mod(Σ)(c) since they are supported in Σ \ c ⊂ Σc. Moreover, the arguments
in Example 5.14 show that half-twists in Mod(Σ∗c) lift to ∆–twists in Mod(Σ)(c).
The claim about generators for Mod(Σ)(c) thus follows from the exact sequence.
The fact that τc and all ∆–twists are annihilated by Φc was observed before.

So in principle, one can compute Φc(θ) by expressing θ in terms of Dehn twists
disjoint from c and ∆–twists involving c, which we call the standard generators
of Mod(Σ)(c). However, this can be difficult in practice. For example, if θ is given
as an word Dehn twists that might involve twist about curves that intersect c, then it
is at all not clear how to rewrite θ in terms of the standard generators of Mod(Σ)(c).
It would be desirable to have an algorithm for this, but no such algorithm is known.
On the subject of unknown things, it is conceivable that the kernel of Φc is actually
generated by τc and the ∆–twists involving c but we have not been able to prove
this.

5.2.2 The Proof of Proposition 5.12

We return to the problem of identifying the lower genus monodromy of an annular
simple wrinkled fibration w : W → A in terms of a generalized surface diagram
G = (Σ,Γ, ψ). We first discuss this in the context of for a fake annular simple
wrinkled fibration, that is, for a map w : W → S1× I whose critical locus is a single
circle of indefinite folds which is mapped injectively onto a boundary parallel circle
in S1 × I. Such maps are also known as round cobordisms (see [5, 33]).

Lemma 5.16. Let w : W → A be a round cobordism and let R ⊂ A be a refer-
ence arc from ∂+A to ∂−A with higher and lower genus reference fiber Σ and Σ′.
Let c ⊂ Σ be the vanishing cycle of R with respect to a horizontal distribution H and
let φ : Σ′ → Σc be the diffeomorphism induced by parallel transport along R. Then
the higher and lower genus monodromies ψ and µ satisfy

Φc(ψ
−1) = φ µ φ−1 ∈ Mod(Σc)

on the level of mapping class groups.

Proof. Again, the statement is trivial if Σ has genus one. We can assume that
the genus of Σ is at least two. We consider a 1–parameter family of arcs Rt ⊂ Σ
such that R0 = R, ∂Rt = ∂R for all t, Rt is a reference arc for t < 1, and R1

agrees with the concatenation ∂+A
−1 ∗ R ∗ ∂−A, see Figure 16. According to
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R

R

∂+A ∂−A

Figure 16: Relating the boundary monodromies of a round cobordism.

∂+A ∂−A

unsink

c1

c2

cl

cl+1

λ1

λl

Figure 17: Turning an annular simple wrinkled fibration into a broken Lefschetz
fibrations.

Lemma 3.13, we obtain 1–parameter families of vanishing cycles ct ⊂ Σ and dif-
feomorphisms φt : Σ′ → Σct with c0 = c and φ0 = φ. But all the vanishing cycles
are isotopic by Lemma 3.18 and, since the component of c in the space of simple
closed curve is simply connected (see Corollary 2.19), we can use Lemma 3.10 to
modify H in the complement of R such that ct = c for all t. In particular, we now
have a 1–parameter family of diffeomorphism φt : Σ′ → Σc. Furthermore, the higher
genus monodromy ψ maps c to itself so that the canonical extension of ψ|Σ\c to Σc,

denoted by ψ̂, represents Φc(ψ). Now, it follows from the definition of R1 that

φ1 = ψ̂ ◦ φ ◦ µ : Σ′ → Σc

which finishes the proof since φ1φ
−1 ∈ Diff(Σc) is isotopic to the identity.

Proof ofProposition 5.12. As in the beginning of this section, let w : W → A be an
annular simple wrinkled fibration together with a horizontal distribution H and a
reference system R = (R1, . . . , Rl). As shown in Figure 17, we turn w into a broken
Lefschetz fibration βw using Lekili’s unsinking modification5 to trade all cusps for
Lefschetz singularities in the higher genus region. Let λi be the Lefschetz vanishing
cycle of the Lefschetz singularity created by unsinking the cusp between the ith
and (i + 1)st fold arc with respect to the indicated reference arc. It is well known
that the monodromy around a loop that encircles the ith (Lefschetz) reference arc
in a counterclockwise fashion is the Dehn twist about λi. Since the blue circle in
Figure 17 is homotopic to the successive concatenation of such loops and a loop that
travels once around ∂+A in the negative direction, the monodromy around this loop
satisfies

µ̃ = ψ−1τλl . . . τλ1 ∈ Mod(Σ).

Moreover, the restriction of βw to the region bounded by the blue circle and ∂−A is
a round cobordism. Since βw agrees with w near ∂−A, it follows from Lemma 5.16
that the lower genus monodromy µ of w represents Φc1(µ̃).

5This was explained in Section 3.4.

68



5.3. The Correspondence over the Disk and the Sphere

It remains to show that Φc1(µ̃) = µ(G). According to Lekili [45, p.285], we
have λi = τci(ci+1) where cl+1 = ψ(c1) so that by equation (2.7)

µ̃ = ψ−1 τclτcl+1
τ−1
cl

. . . τc1τc2τ
−1
c1 .

Moreover, we can move all the inverses to the left by a repeated application of the
relation τciτci+1τ

−1
ci = τ−1

ci+1
τciτci+1 (which follows from the braid relation (2.9) for ci

and ci+1) and we obtain

µ̃ = ψ−1 τ−lcl+1
τclτcl+1

· · · τc1τc2 .

Finally, another application of equation (2.7) gives

ψ−1τcl+1
= ψ−1τψ(c1) = ψ−1(ψτc1ψ

−1) = τc1ψ
−1

and we end up with
µ̃ = τ−lc1 ψ−1 τclτcl+1

· · · τc1τc2
and the fact that τc1 ∈ ker Φc1 finishes the proof.

Remark 5.17. Of course, there are many different lifts of µG to Mod(Σ). For example,
using the braid relation as in the proof above we can also write

µ̃(G) = Φc1

(
ψ−1τclτc1 τcl−1

τcl · · · τc1τc2
)

= Φc1

(
τ lc1ψ

−1τclτc1 τcl−1
τcl · · · τc1τc2

)
= Φc1

(
ψ−1(τclτc1τcl)(τcl−1

τclτcl−1
)(τc1τc2τc1)

)
.

The latter expression can also be useful.

5.3 The Correspondence over the Disk and the Sphere

It remains to prove the correspondence theorem for surface diagrams and simple
wrinkled fibrations over the disk and the sphere. The following terminology will be
useful.

Definition 5.18 (Fibered neighborhoods). Let f : M → B be wrinkled fibration
and let b ∈ B be a regular value. An open (or closed) fibered neighborhood of
Σ = f−1(b) with base D ⊂ B is a neighborhood of the form f−1(D) ⊂ M where
D ⊂ B is an open (or closed) disk of regular values containing b as an interior point.

For convenience we recall the statements before their proofs.

Theorem 1.2 (Correspondence over the disk). Equivalence classes of surface di-
agrams correspond bijectively to equivalence classes of descending simple wrinkled
fibrations over the disk.

Proof. Let w : Z → D2 be a descending simple wrinkled fibration and let N be a
closed fibered neighborhood of a higher genus fiber Σ with base D ⊂ D2. Then w
restricts to an annular simple wrinkled fibration on Z \ intN and, since ∂N is diffeo-
morphic to Σ× S1, any generalized surface diagram (Σ,Γ, ψ) for w|W must be un-
twisted, that is, ψ is isotopic to the identity. In other words, Sw = (Σ,Γ) is an honest
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surface diagram in the sense of Definition 4.11. Moreover, the map (Z,w) 7→ Sw is
well-defined on equivalence classes by one half of Theorem 1.3 and the obvious ob-
servation that equivalent descending simple wrinkled fibrations restrict to equivalent
annular simple wrinkled fibrations.

Now let S = (Σ,Γ) be a surface diagram. By construction, the higher genus
boundary component of WS is the trivial mapping torus Σ(id) which is canonically
identified with Σ× S1. We can thus close off the annular simple wrinkled fibration
(WS, wS) to a descending simple wrinkled fibration

wS : ZS = Σ×D2 ∪id WS −→ D2 ∪ (S1 × I) ∼= D2

which we also denote by wS. We claim that the map S 7→ (ZS, wS) is also well-
defined on equivalence classes. Indeed, if S = (Σ,Γ) is equivalent to S′ = (Σ′,Γ′),
then the diffeomorphism Φ: WS →WS′ constructed in the proof of Lemma 5.11 re-
stricts to the higher genus boundary components as φ×id : Σ×S1 → Σ×S1 for some
diffeomorphism φ : Σ→ Σ′. Using the canonical extension φ× id Σ×D2 → Σ′×D2

we can therefore extend Φ to a diffeomorphism ZS → ZS′ which establishes the
equivalence of (ZS, wS).

It remains to show that both constructions are mutually inverse on the level of
equivalence classes. Obviously, (ZS, wS) is mapped back to surface diagram S. Now
suppose that another simple wrinkled fibration (Z,w) is sent to S. We have to show
that (Z,w) is equivalent to (ZS, wS). As above, we take a fibered neighborhood
N ⊂ Z of a higher genus fiber of w. Then by Theorem 1.3 the restriction of w
to W = Z \ intN is equivalent to (WS, wS). Moreover, the restriction of w to N is
clearly equivalent to the projection Σ × D2 → D2. But the problem is that these
equivalences might not match along ∂N . In fact, we can only conclude that (Z,w)
is equivalent to a simple wrinkled fibration of the form

(Σ×D2) ∪ϕWS → D2 ∪ (S1 × I)

where ϕ is a fiber preserving diffeomorphism of Σ×S1; or in the language introduced
on page 25, ϕ ∈ Aut(Σ × S1) is an automorphism of the trivial bundle Σ × S1. If
we can show that ϕ extends across either Σ×D2 or WS, then the proof is finished.

If Σ has genus at least two, then according to Corollary 2.20 all such automor-
phisms extend to Σ × D2. So problems can only arise when Σ is a torus and for
simplicity we assume that Σ = T 2. In this case, Corollary 2.20 allows us to restrict
our attention to (isotopy classes of) automorphisms corresponding to non-trivial ele-
ments of π1(Diff(T 2), id). Such automorphisms cannot be extended across T 2×D2,
so our only chance is to extend them across WS. Fortunately, this is possible.
We can assume that the first vanishing cycles in S are the curves a = S1 × {1}
and b = {1} × S1 in T 2 = S1 × S1 ⊂ C2. Since a and b generate π1(T 2) (whose
base point (1, 1) we omit from the notation), it follows from Theorem 2.18 that
π1(Diff(T 2), id) is generated by loops of the form

haθ(z, w) =
(
e2πiρ(θ)z, w

)
and hbθ(z, w) =

(
z, e2πiρ(θ)w

)
(θ ∈ [0, 1])

where ρ : [0, 1]→ [0, 1] is a smooth function such that for a sub-interval [σ, τ ] ⊂ [0, 1]
we have ρ|[0,σ] ≡ 0 and ρ|[τ,1] ≡ 1. It is thus enough to extend the corresponding

automorphisms across WS; we denote these by ha, hb ∈ Aut(T 2 × S1). We explain
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how this for ha, the argument for hb is completely analogous. Recall that WS was
built by attaching fold handles to T 2×S1× I in the boundary T 2×S1×{1} which
we identify with T 2×S1 for brevity of notation. The attachment of the fold handle
along a was realized by gluing on a copy of Θa × ω(T 2, a) where Θa ⊂ S1 is an
interval and ω(T 2, a) was obtained from Milnor’s construction in Remark 5.7. By
an appropriate choice of ρ we can assume that ha restricts to the identity outside
of T 2 × Θa. The crucial observation is that haθ maps a to itself for all θ ∈ Θa (in
fact, for all θ ∈ S1). As explained in Remark 5.7, this implies that haθ extends
to a self-diffeomorphism of ω(T 2, a) and all these extensions piece together to an
extension over Θa×ω(T 2, a). Since ha is the identity outside of T 2×Θa, we obtain
the desired extension to all WS.

Theorem 1.1 (Correspondence over the sphere). Let SWFg(S2) and SD0
g be the

sets of equivalence classes of genus g simple wrinkled fibrations over S2 and surface
diagrams with trivial monodromy, respectively. There is a surjective map

SWFg(S2) −→ SD0
g

whose point preimages have a transitive action of the group π1

(
Diff(Σg−1), id

)
. In

particular, the map is bijective for g ≥ 3.

Proof. Let w : X → S2 be a simple wrinkled fibration. We argue exactly as in
the proof of Theorem 1.2. By removing a fibered neighborhood of a lower genus
fiber we obtain a descending simple wrinkled fibration over a disk whose boundary
fibration has trivial monodromy. According to Proposition 5.12, the corresponding
surface diagram Sw must has trivial monodromy. Then sending the equivalence
class of (X,w) to that of Sw is the desired map.

Now let S be a genus g surface diagram with trivial monodromy. Then the cor-
responding descending simple wrinkled fibration wS : ZS → D2 restricts to a trivial
Σg−1–bundle on ZS, again by Proposition 5.12. The choice of a fiber preserving
diffeomorphism ϕ : Σg−1 × S1 → ∂ZS then determines a simple wrinkled fibration

wϕS : Xϕ
S → S2

whose surface diagram is S. It follows that the map (X,w)→ Sw is surjective. Note
that this time there is no canonical choice for ϕ and different choices can result in
inequivalent simple wrinkled fibrations over S2 (see Section 6.3.1 for an example).
However, by Corollary 2.20 the ambiguity is controlled by π1

(
Diff(Σ), id

)
. This

finishes the proof.

Remark 5.19. The correspondence result for simple wrinkled fibrations over S2 em-
phasizes the importance of the monodromy of surface diagrams. One might wonder
whether there are a priori restrictions on the monodromy of surface diagrams. How-
ever, this is not the case as the following easy argument shows. Since the mapping
class group of a closed surface is generated by Dehn twists, it follows from the dis-
cussion in Section 4.3 that every mapping class can be realized as the boundary
monodromy of an achiral Lefschetz fibration over D2. But wrinkling and merg-
ing as in Example 4.7 turns such an achiral Lefschetz fibrations into a descending
simple wrinkled fibration while preserving the boundary fibration. Hence, every

71



5.3. The Correspondence over the Disk and the Sphere

mapping class appears as the boundary monodromy of a descending simple wrin-
kled fibration over D2 and therefore also as the monodromy of a surface diagram by
Proposition 5.12.
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Chapter 6

Simple Wrinkled Fibrations over
the Disk and the Sphere

We continue where we left off in Section 4.4 and return to simple wrinkled fibrations
over D2 and S2. By Theorems 1.1 and 1.2 these correspond to honest surface dia-
grams as defined in Definition 4.11 and, in fact, we will not encounter any generalized
surface diagrams anymore. Throughout Chapter 5, we have gained some valuable
insights into the interactions of simple wrinkled fibrations, surface diagrams, and the
topology of 4–manifolds. Here we summarize these in the context of simple wrinkled
fibrations over D2 and S2.

6.1 Handle Decompositions

Let w : Z → D2 be a descending simple wrinkled fibration with surface diagram
S = (Σ; c1, . . . , cl). According to Theorem 1.2, we can identify (Z,w) with the fi-
bration (ZS, wS) constructed in Lemma 5.8. Recall that ZS was built by attaching
fold handles to Σ ×D2 along copies of the ci in boundary fibers cyclically ordered
around S1. If we choose a handle decomposition of Σ (as usual, with unique 0–
and 2–handles), then ZS becomes a handlebody, and an identification of (Z,w)
with (ZS, wS) gives rise to a handle decomposition of Z. These handle decomposi-
tions consist of:

• A 0–handle and 2g 1–handles coming from (the handle decomposition of) Σ
where g is the genus of Σ

• A 2–handle coming from Σ which we will call the fiber 2–handle

• l further 2–handles, namely the fold handles

In particular, the total spaces of descending simple wrinkled fibrations have handle
decompositions with handles of index at most two and can thus can be described
faithfully in terms of Kirby diagrams. This observation will be very useful later on.

Now let w : X → S2 be a simple wrinkled fibration over S2 with higher and
lower genus fibers Σ and Σ′, respectively, and let S = (Σ; c1, . . . , cl) be a surface
diagram for w. By removing a fibered neighborhood νΣ′ we obtain a descend-
ing simple wrinkled fibration on Z = X \ νΣ′, and an identification with ZS pro-
vides a handle decomposition of Z. We would like to complete this to a handle
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decomposition of X. For that purpose, we choose a (fiber preserving) diffeomor-
phism ϕ : Σ′ ×D2 → νΣ′ and a handle decomposition of Σ′ with a unique 2–handle
given by a disk D ⊂ Σ′. Then D×D2 can be considered as a 2–handle of a relative
handle decomposition of Σ′×D2 on its boundary Σ′×S1 and the 0– and 1–handles
of Σ′ contribute 3–handles and a 4–handle. In this way, we obtain a handle de-
composition of X ∼= Z ∪ϕ (Σ′ ×D2). Note that, whereas the 3– and 4–handles are
for the most part negligible when working with closed 4–manifolds, the additional
2–handle appearing in the passage from Z to X is important. For obvious reasons
we will call it the last 2–handle. The last 2–handle is the more mysterious part in
the handle decomposition of X as it turns out to be rather intractable in practice.
Recall that if the genus of w is at least three, then the pair (X,w) is determined up
to equivalence by S. In particular, the attaching information of the last 2–handle
should be encoded in S. This is indeed the case but with the currently available
techniques this information is hard to extract in practice. We will say more about
this problem later.

For now, let us take a closer look at the last 2–handle. For simplicity, we assume
that Z = ZS so that Z is obtained from Σ ×D2 by attaching fold handles. Using
the notation above, the attaching curve of the last 2–handle is given by

κ′ = ϕ({p} × S1) ⊂ ∂Z

where p ∈ D is an interior point and its framing is determined by the choice of a
tangent vector v ∈ TpΣ′. Since the order of 2–handle attachments is interchangeable
we could also attach the last 2–handle directly to Σ × D2. In order to see the
attaching curve in Σ × S1, we note that κ′ is a section of w|∂Z and appeal to the
following lemma.

Lemma 6.1. Let w : W → A be an annular simple wrinkled fibration. Then any sec-
tion of w defined over one of the boundary components of A, say γ± : ∂±A→ ∂±W ,
extends to a section Γ± : A → W . Moreover, any normal framing of γ± in ∂±W
extends to a normal framing of Γ± in W .

The idea for the proof is to push the section through the cobordism using parallel
transport. We postpone the details for a moment and continue with our discussion of
the last 2–handle. As a consequence of Lemma 6.1, we can extend κ′ to a section of
the annular simple wrinkled fibration given by the fold handle attachments to Σ×D2

and thus get a section κ̃ : S1 → Σ× S1 which in turn can be considered as a map

κ : S1 −→ Σ.

Moreover, if κ′ was framed by a tangent vector v ∈ TpΣ
′, then the construction

produces a lift κ : S1 → TΣ. However, observe that we are not claiming that κ̃ or κ
are uniquely determined by κ′.

Definition 6.2 (Closing curves). Let w : X → S2 be a simple wrinkled fibration
with surface diagram S. Any curve κ : S1 → Σ (or κ : S1 → TΣ) obtained by the
above procedure is called a (framed) closing curve for S.

To summarize, the 2–skeleton of a handle decomposition of X is completely
determined by S and a framed closing curve. This statement is true regardless
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of the genus of S. So one way to understand the last 2–handles would be to find
framed closing curves for surface diagrams with trivial monodromy. As explained by
Hayano [35, Remark 6.6], the problem of finding closing curves can be attacked by
mapping class group techniques and his methods can be adapted to obtain framings
as well. However, this process is usually hard to carry out in practice and we will
not make use of it. In Remark 6.6 we explain a different approach for finding the
last 2–handle based on Kirby calculus.

We now give the pending proof of Lemma 6.1.

Proof of Lemma 6.1. Let γ± : ∂±A→ ∂±W be sections of w. Let H be a horizontal
distribution for w. We choose a parametrization α : S1 × I → A and consider the
arcs Iθ = α({θ} × I). We denote by V θ

± ⊂ ∂±W the vanishing sets of Iθ and we
let V± = ∪θV θ

±. Observe that if the image of γ± is disjoint from V±, then the parallel
transport with respect to H immediately provides the desired extensions of γ± to a
section of w over all of A. It is therefore enough to show that one can always find H
and α such that V± does not meet γ±.

For that purpose we first choose H arbitrarily and for α we require the same
properties as in the proof of Lemma 5.9. Then each Iθ contains a unique critical
value and is either transverse to a fold arc or passes through a cusp. In the former
case, the structure of the vanishing sets is determined in Lemma 3.13: V θ

+ is a
simple closed curve (the fold vanishing cycle of Iθ) and V θ

− consists of two points.
If Iθ passes through a cusp, one can argue in two ways. Either one determines the
vanishing sets in the cusp model as indicated in Remark 3.21 or one uses Lekili’s
unsinking move to reduce the problem to the known cases of folds and Lefschetz
singularities. We choose the latter approach.

Let βw : W → A be the broken Lefschetz fibration obtained from unsinking
all the cusps. Since the unsinking deformations can be chosen with supports in
arbitrary small neighborhoods of the cusps, it suffices to extend γ± to sections
of βw. Now, with respect to βw any Iθ has one transverse intersection with the fold
locus while for finitely many θ it will also pass through a Lefschetz singularity. In
the latter situation the structure of the vanishing sets is as follows. We consider an
intermediate fiber along Iθ whose image lies between the Lefschetz and the fold point
and let V θ

0 be the union of the vanishing sets of the critical points. As before, the
fold point contributes a fold vanishing cycle in V θ

0 and two points in V θ
−. According

to Remark 3.22, the Lefschetz point gives rise to a Lefschetz vanishing cycle in both
V θ

+ and V θ
0 . Moreover, we can assume that the fold and Lefschetz vanishing cycles

in V θ
0 are transverse (possibly after a small perturbation of H and appealing to

Lemma 3.10). Depending on whether the fold and vanishing cycles intersect in V θ
0 ,

the parallel transport along Iθ takes the fold vanishing cycle either to a simple closed
curve in V θ

+ disjoint from the Lefschetz vanishing cycle or a collection of open arcs
that limit to the Lefschetz vanishing cycle. Similarly, the Lefschetz vanishing cycle
of V θ

0 appears in V θ
− as a simple closed curve or a collection of arcs connecting the

two points coming from the folds. However, we do not need to know the precise
nature of the vanishing sets. What is important is that they are certainly small
enough to be made disjoint from γ± (which meets each fiber in a single point) by
a fiber preserving isotopy which can be realized by modifying H. Finally, it follows
from Lemma 3.10 that any fiber preserving ambient isotopy of V± in ∂±W can be
realized by a suitable change of H.
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6.2 Drawing Kirby Diagrams

Our next goal is to describe convenient methods to draw Kirby diagrams for the
handle decompositions discussed in the previous section. Since the handle decom-
positions have the same structure as those coming from Lefschetz fibrations (except
for the framings), the same holds Kirby diagrams. A discussion in the Lefschetz
setting can be found in [32, Ch. 8.2] (see also [5]). As mentioned in Section 2.1, we
use the “dotted circle notation” for 1–handles in order to have well-defined framing
coefficients. By a slight abuse of notation we will sometimes blur the distinction
between handles and their representations in Kirby diagrams.

Simple Wrinkled Fibrations over the disk

Let S = (Σ; c1, . . . , cl) be a surface diagram of genus g and let (ZS, wS) be the
associated descending simple wrinkled fibration over the disk. Since ZS is obtained
by attaching fold handles to Σ × D2, in order to draw a Kirby diagram for ZS,
we need a one for Σ × D2 in which the boundary fibers are as clearly visible as
possible. We will use two different diagrams for Σ × D2, one is more useful for
abstract reasoning while the other is better suited for Kirby calculus – we call these
the tactical and the practical diagrams , see Figures 18 and 19. Both are obtained
from the following recipe:

• Choose a handle decomposition of Σ with unique 0– and 2–handles.

• Embed the 1–skeleton Σ◦ (that is, the union of 0– and 1–handles) into R3.

• Put a dotted circle around each 1–handle.

• Decorate the boundary of Σ◦ with a 0.

Then each dotted circle represents a (4–dimensional) 1–handle in the product handle
decomposition of Σ × D2 and the fiber 2–handle is attached along ∂Σ◦ with the
0–framing. In such a diagram a boundary fiber Σ × {θ}, θ ∈ S1, can be visualized
as Σ◦ capped off with the core of the fiber 2–handle. Moreover, by thickening Σ◦

in R3 we obtain an interval worth of boundary fibers, say Σ×Θ where Θ ⊂ S1 is an
interval that contains the interval [θ1, θl] needed for the fold handle attachments.1

The tactical approach. The first diagram for Σ × D2, shown in Figure 18, is
induced from the obvious embedded 1–skeleton Σ◦ of Σ. Figure 18 also shows a
symplectic basis a1, b1, . . . , ag, bg for H1(Σ), oriented such that 〈ai, bi〉Σ = 1. As for
orientations, we require that the orientation of the fiber agrees with the standard
orientation of the plane so that, according to the fiber first convention, the positive
S1–direction points out of the paper toward the reader.

It is now easy to locate the attaching curves of the fold handles in Figure 18.
Assuming that the vanishing cycles ci ⊂ Σ are disjoint from the 2–handle of Σ,
which can always be achieved, we draw c1 in one surface layer in Figure 18, then go
to a higher layer to draw c2, and so on. To complete the Kirby diagram for ZS it
remains to determine the framing coefficients of the fold handles. At this point it

1It does not seem to be possible to see the full circle of fibers in Figure 18. However, this is not
necessary for our purposes.
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Figure 18: The “tactical diagram” Σ×D2 where fiber and blackboard framing
agree. The red curves show a basis for H1(Σ).

Figure 19: The “practical diagram” for Σ×D2.

comes in handy that the fiber framing equals the blackboard framing in Figure 18.
The framing coefficient of latter can be obtained by a count of crossings, which
turns out to be expressible in terms of intersection data in Σ. In a similar fashion
we can also describe the linking numbers for two curves in different fibers. To state
the result we denote the cohomology class of an oriented simple closed curve c ⊂ Σ
expressed in terms of the basis {ai, bi} by

[c] =

g∑
i=1

(
nai(c) ai + nbi(c) bi

)
∈ H1(Σ).

Remark 6.3. There are two other useful interpretations of nai(c) and nbi(c).

(i) Since the basis {ai, bi} of H1(Σ) satisfies 〈ai, bj〉Σ = δij we have nai(c) = 〈c, bi〉Σ
and nbi(c) = 〈ai, c〉Σ.

(ii) Let Ai and Bi be the dotted circles in Figure 18 that link with ai and bi, re-
spectively. If we orient Ai such that lk(Ai, ai) = 1 and draw c ⊂ Σ in Figure 18,
then we have nai(c) = lk(c, Ai) and similar arguments apply to nbi(c).

Lemma 6.4. Let c ⊂ Σ be a simple closed curve and let θ ∈ Θ ⊂ S1. Then the
framing coefficient for the fiber framing of cθ = c × {θ} ⊂ Σg × S1 in Figure 18 is
given by

ff(cθ) =

g∑
i=1

nai(c)nbi(c). (6.1)
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c

d
θ > θ′

θ < θ′

cθ

dθ′

cθ

dθ′

(−)

(+)

Figure 20: A positive intersection of c and d in Σ turns into a positive or
negative crossing of cθ and dθ′ depending on θ and θ′.

Furthermore, if c, d ⊂ Σ are oriented simple closed curves and θ′ 6= θ ∈ Θ, then the
linking number of cθ and dθ′ in Figure 18 is

lk(cθ, dθ′) =
1

2

(
εθθ′
〈
c, d
〉

Σ
+

g∑
i=1

[
nai(c)nbi(d) + nai(d)nbi(c)

])
(6.2)

where εθθ′ denotes the sign of θ − θ′.

Note that the right hand side of equation (6.1) requires the choice of an orienta-
tion of c but both orientations result in the same number.

Proof. In order to compute the framing coefficient ff(cθ) we first push c ⊂ Σ off the
2–handle of Σ if necessary so that cθ is completely visible in Figure 18. Since the
fiber framing and blackboard framing of cθ agree, the framing coefficient is given by
the writhe of cθ in the diagram, that is, the signed count2 of crossings with some
chosen orientation (see [32, Proposition 4.5.8]). From the way the diagram is drawn
it is clear that each crossing of cθ is caused by c running over both ai and bi for
some i so that the writhe of cθ is given by the right hand side of equation (6.1).

The statement about linking numbers follows from a similar count of crossings.
Again, if necessary we first push c and d off the 2–handle of Σ and we also make
them transverse. Recall that the linking number of two oriented knots in S3 can be
computed from any link diagram as half of the signed number of crossings (see [12,
p.63], for example). The second term on the right hand side of equation (6.2) arises
just as above. The first term can be understood as follows. Each intersection point
of c and d in Σg contributes a crossing in the diagram. Now, the sign of the crossing
depends on two things: the sign of the intersection point in Σ and the information
which strand is on top in the diagram. From Figure 20 we see that the contribution
of each crossing is as in equation (6.1).

Example 6.5. Consider the curves c = a1 and d = b1. Then equation (6.1) shows
that ff(c) = ff(d) = 0. Of course, this is also clear from Figure 18. More in-
terestingly, let us look at the curves τkc (d) for k ∈ Z whose framing coefficients
in Figure 18 are not that obvious. By the Picard–Lefschetz formula (Proposi-
tion 2.15) we have [τkc (d)] = [d] + k[c] = k[a1] + [b1] and equation (6.1) shows
that ff(τkc (d)) = k. This example will be useful later on since we will frequently

2Our sign convention for crossings is illustrated in Figure 20.
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slide & isotope

isotope

Figure 21: Understanding the relation between Figures 18 and 19.

normalize arbitrary pairs of simple closed curves c, d ⊂ Σ that intersect transversely
in one point to (c, d) = (a1, b1) using Proposition 2.17.

Returning to the surface diagram S = (Σ; c1, . . . , cl) and the corresponding
4–manifold ZS, the upshot of Lemma 6.4 and Remark 6.3 is that Figure 19 provides
an interface between linking information in a Kirby diagram for ZS and intersection
numbers in Σ. This will be further exploited in Section 9.1.2 where we describe the
intersection form of ZS purely in terms of S.

The practical approach. Although the tactical Kirby diagrams of simple wrin-
kled fibrations based on Figure 18 are useful for abstract reasoning, they tend to get
quite confusing when one actually tries to draw them. This makes them not very
well suited as a starting point for Kirby calculus. For practical purposes, it is better
to start with a cleaner diagram for Σ×D2 such as the one shown in Figure 19. As
indicated, this diagram is obtained from a different embedded 1–skeleton Σ• of Σ. A
symplectic basis {a′i, bi} for H1(Σ) appears again as meridians for the dotted circles.
One can also think of Σ• as the obvious spanning disk of the unknot representing the
fiber 2–handle, surgered to avoid the punctures by the dotted circle on the bottom
such that the tubes resulting from the surgeries wrap around the upper halves of
the dotted circles. This is interpretation might be helpful since we typically draw
the diagrams as in Figure 23 where the fiber 2–handle has been slightly isotoped
and the fiber is a little harder to spot.

Locating the attaching curves of the fold handles works exactly as in the tac-
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tical approach. However, in Figure 19 the fiber framing does not agree with the
blackboard framing. In order to understand the framing coefficients, we observe
that Figure 19 can be obtained from Figure 18 by a series of 1–handles slides. The
reason is that the underlying embedded 1–skeleta Σ◦ and Σ• of Σ can be related by
a sequence of embedded 1–handle slides as shown in Figure 21 for the genus 2 case.
There it is also shown how the curve a2 is dragged along throughout the slides. This
picture easily generalizes to arbitrary genus and the translation to the 4–dimensional
context is standard. The important observation is that the 1–handles slides do not
affect bi while ai appears in Figure 19 as a curve freely homotopic to

a′i ∗ [bi−1, a
′
i−1] ∗ · · · ∗ [b1, a

′
1] ∈ π1(Σ)

where [x, y] = xyx−1y−1. In particular, ai is homologous to a′i in Σ. Now we can
compute the framing coefficients in Figure 19 as follows. Suppose that we have lo-
cated in curve cθ in Figure 18 and we compute its fiber framing using equation (6.1).
We can then locate cθ in Figure 19 by dragging it around throughout the 1–handle
slides. The latter do not affect the framing coefficient so that equation (6.1) contin-
ues to hold. But since ai and a′i are homologous in Σ the framing coefficient of cθ
in Figure 19 can be computed by the same formula as in equation (6.1) with ai
replaced by a′i, that is,

ff(cθ) =

g∑
i=1

nai(c)nbi(c) =

g∑
i=1

na′i(c)nbi(c).

Moreover, the numbers na′i and nbi can be interpreted as linking numbers as in
Remark 6.3.

Locating the Last 2–Handle

Now suppose that S = (Σ; c1, . . . , cl) has trivial monodromy. Suppose that we are
also given a framed closing curve κ : S1 → TΣ and let κ : S1 → Σ be its projection
to Σ. Recall that the last 2–handle is attached along the section of Σ × S1 given
by κ̃(θ) = (κ(θ), θ) and the framing is determined by the normal vector field induced
by κ. So in order to locate the attaching curve of the last 2–handle in Figures 18
and 19, we have to understand how sections of Σ×S1 appear. The method explained
below works for both pictures.

Note that there is a canonical bijection between sections of Σ × S1 and maps
from S1 into Σ induced by the projection onto Σ. A distinguished homotopy class
of sections are those of the form {∗} × S1 corresponding to the constant loop based
at ∗ ∈ Σ. One such constant section is given by the belt circle of the fiber 2–handle
in Σ×D2 which is isotopic to a meridian of the attaching curve. In other words, a
meridian of the attaching curve of the fiber 2–handle in the Kirby diagram repre-
sents a constant section. We fix such a meridian m and the corresponding constant
section {∗} × S1. Now, for an arbitrary section such as κ̃, which projects to κ, we
can assume that κ(θ) = ∗ for some θ ∈ S1. We start at the point corresponding
to (∗, θ) ∈ Σ×S1 and travel once around the meridian and then follow the copy of κ
in Σ × {θ}. The resulting curve in Σ × S1 is homotopic to κ̃ and we can recover κ̃
up to isotopy by resolving the self-intersections as follows. The intersection of the
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κ

m

Figure 22: Resolving a crossing of a closing curve and a meridian for the fiber
2–handle.

meridian and κ is resolved according to the orientations as shown in Figure 22, and
at each double point of κ we push the strand that is traversed first to a lower θ–level
in the diagram. Finally, the framing coefficient of the last 2–handle can be computed
by hand in concrete examples. One simply has to push the attaching curve off itself
in the direction of the normal vector field determined by κ : S1 → TΣ and compute
the linking number.

However, instead of starting with a framed closing curve, one can also try to find
possible attaching curves for the last 2–handle directly using Kirby calculus. The
following method is explained in the context of Lefschetz fibrations in [32, p.299f.]
and we refer there for further details.

Remark 6.6 (The last 2–handle via Kirby calculus). Suppose that we have a Kirby
diagram for ZS. By trading all dotted circles for 0–framed unknots we obtain a
surgery diagram for ∂ZS. We then modify this diagram using 3–dimensional Kirby
moves until we arrive at a known diagram for Σ′×S1 in which we can recognize the
circle {∗}×S1 and its product framing. For example, we know that in Figure 18 or
19 this framed circle appears as a 0–framed meridian of the fiber 2–handle. Finally,
we pull the framed circle back to the original diagram by dragging it along while
we undo the Kirby moves again. Since we have the a priori information that ∂ZS

and Σ′ × S1 are diffeomorphic, by Kirby’s theorem3 this strategy always works.
However, one should not expect that a suitable sequence of Kirby moves will be
easy to find in general.

6.3 Some Examples

We consider some simple examples of surface diagrams with trivial monodromy,
mainly in order to illustrate our methods for drawing Kirby diagrams.

6.3.1 Surface Diagrams with Two Curves

We begin by studying the simplest possible surface diagrams, namely those that
contain only two curves. Up to equivalence there is a unique such diagram for each
genus g ≥ 1; this follows from the change of coordinates principle (Proposition 2.17).
We can thus fix our favorite model surface Σg and our favorite pair of curves a, b ⊂ Σg

that intersect transversely in one point and restrict our attention to the surface
diagram S = (Σg; a, b) shown in Figure 23. To demonstrate the methods developed

3See Theorem 5.3.6 in [32], for example.
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0

0
0

b

a

Figure 23: The surface diagram S = (Σg; a, b) and a Kirby diagram for ZS.
The dashed meridian for the fiber 2–handle is an attaching curve for the last
2–handle.

in Section 5.2, let us compute the monodromy. We have

µ(Σ; a, b) = Φa

(
τbτaτaτb

)
= Φa

(
τ−1
a τaτbτaτaτbτaτ

−1
a

)
= Φa

(
τ−1
a ∆a,bτ

−1
a

)
= 1

where the last equality uses Lemma 5.15. It follows that S has trivial monodromy
and thus arises as the surface diagram of a simple wrinkled fibration over S2. How-
ever, it turns out that the above calculation was not really necessary since the Kirby
diagram in Figure 23 immediately shows that ZS is diffeomorphic to Σg−1 × D2.
Indeed, we can simply unlink the fiber 2–handle from the two left most 1–handles
by sliding over the fold handles and then cancel the 1–handles against the fold han-
dles. What remains is the genus g − 1 version of Figure 19. In particular, we have
also succeeded in carrying out half of the procedure for finding the last 2–handle
explained in Remark 6.6. In the diagram for Σg−1 × D2 the last 2–handle can be
attached along a 0–framed meridian of the fiber 2–handle, resulting in the double
of Σg−1 × D2, that is, Σg−1 × S2. Moreover, we can take such a meridian in a
region that was not affected by the Kirby moves so that it pulls back to a 0–framed
meridian for the fiber 2–handle in the original diagram for ZS.

Altogether, we see that (Σg; a, b) with our choice of last 2–handle attachment
describes the closed 4–manifold Σg−1×S2, that is, the trivial Σg−1–bundle over S2.
In fact, we should have seen this coming. Recall from Example 4.6 that Σg−1 bundle
over S2 can be turned into a genus g simple wrinkled fibration with two cusps by
performing a birth homotopy. The corresponding surface diagram has two curves
and is thus equivalent to (Σg; a, b). In particular, the non-trivial S2– and T 2–bundles
over S2 have the same surface diagrams which shows that the ambiguity of closing
off really matters in low genus situations.

6.3.2 Doubles

Let Σ be an oriented surface and let Γ = (c1, . . . , cl) be a W–chain in Σ (not
necessarily a W–cycle). Then we can form a W–cycle

DΓ = (c1, . . . , cl−1, cl, cl−1, . . . , c2)

which we call the double of Γ.

Lemma 6.7. The surface diagram (Σ;DΓ) has trivial monodromy.
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c1

cl

c2

cl−1

Figure 24: The critical image of wΓ : PΓ → D2

Proof. For convenience write τi = τci . As explained in Remark 5.17, the monodromy
of (Σ, DΓ) can be lifted from Mod(Σc1) to Mod(Σ) as

µ̃ = (τ2τ1τ2) . . . (τl−2τl−1τl−2)(τl−1τlτl−1)(τlτl−1τl)(τl−1τl−2τl−1) . . . (τ1τ2τ1)

= (τ2τ1τ2) . . . (τl−2τl−1τl−2)∆cl−1,cl(τl−1τl−2τl−1) . . . (τ1τ2τ1)

that is, we have Φc1(µ̃) = µ(Σ;DΓ). Our goal is to factor the above expression
into a sequence of ∆–twists involving c1 which are annihilated by Φc1 according to
Lemma 5.15. The key observation is that

(τl−2τl−1τl−2) ∆cl−1,cl (τl−1τl−2τl−1)

=(τl−2τl−1τl−2) ∆cl−1,cl (τl−2τl−1τl−2)

=(τl−2τl−1τl−2) ∆cl−1,cl (τl−2τl−1τl−2)−1 ∆cl−2,cl−1

=∆τl−2τl−1τl−2(cl−1),τl−2τl−1τl−2(cl) ∆cl−2,cl−1

=∆cl−2,τl−2τl−1τl−2(cl) ∆cl−2,cl−1
.

Applying this repeatedly, we eventually obtain

µ̃ = ∆c1,δl∆c1,δl−1
. . .∆c1,δ2

where δk = τ1τ2τ1 . . . τk−2τk−1τk−2(ck).

As a consequence, (Σ;DΓ) describes a closed 4–manifold together with a simple
wrinkled fibration over S2. However, this can also be seen directly. In fact, we
now show that (Σ, DΓ) arises as the surface diagram of a simple wrinkled fibration
over S2 defined on the double of a compact 4–manifold PΓ associated to Γ.

The construction of PΓ follows a familiar pattern. We take Σ×D2, attach fold
handles to ci × {θi} with θi ∈ S1 ordered according to the orientation, and extend
the projection Σ×D2 → D2 across the fold handles as in the second step of the proof
of Lemma 5.8. The result is an oriented 4–manifold PΓ together with a wrinkled
fibration over disk which restricts to a circle valued Morse function on ∂PΓ. Since
Γ is a W–chain, we can proceed as in third step of the proof of Lemma 5.8 and
trade critical points on the boundary for cusps in the interior. However, since we do
not assume that Γ is a W–cycle, there is one pair of critical points that cannot be
canceled, namely the index 1 point of the lth fold handle and the index 2 point of
the first fold handle. Altogether we obtain a wrinkled fibration wΓ : PΓ → D2 with
critical image as in Figure 24. Now we simply double this map, that is, we define

ŵΓ = wΓ ∪ wΓ : DPΓ = PΓ ∪id PΓ −→ D2 ∪id D2 ∼= S2
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c1 c3 c2g−3 c2g−1

c2 c4 c2g−4 c2g−2
c2g

Figure 25: The non-separating chain Chg,2g and the 4–manifold PChg,2g . (All
2–handles are 0–framed and the fold handles are drawn in red.)

and it is clear from the construction that this is a simple wrinkled fibration. Indeed,
the singular arcs of the two copies of wΓ piece together to one singular circle in the
double which is mapped injectively into S2. Moreover, we can choose a reference
system for ŵΓ by taking the reference arcs in D2 indicated in Figure 24 and their
copies in D2. However, we can neglect the outermost reference arcs in D2 since
the corresponding fold arcs of ŵΓ are already covered by the reference arcs in D2.
Of course, the vanishing cycles of the reference arcs in D2 are the same as their
counterparts from D2 but because of the reversed orientation they are recorded in
reverse order. It follows that the surface diagram of ŵΓ is

(Σ; c1, . . . , cl−1, cl, cl−1, . . . , c2) = (Σ, DΓ).

We have thus proved:

Lemma 6.8. Let Γ be a W–chain in Σ. Then the surface diagram (Σ, DΓ) obtained
from doubling describes the double DPΓ of the 4–manifold PΓ described above.

Using the doubling construction it is easy to write down many surface diagrams
with trivial monodromy. We end this chapter by working out a concrete series of
examples.

Example 6.9 (Doubles of non-separating chains). Let Σg be an oriented surface of
genus g. We consider the non-separating chains of curves in Σg

Chg,l =
(
c1, . . . , cl

)
, l ≤ 2g

with ci ⊂ Σg as in Figure 25, and the doubled surface diagrams

Chg,l =
(
Σg;DChg,l

)
=
(
Σg; c1, . . . , cl, cl−1, . . . , c2

)
.
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For convenience, we assume g ≥ 3 so that Chg,l unambiguously describes the double
of the 4–manifold PChg,l constructed above. We claim that

PChg,l
∼=

{
Σg−k ×D2 if l = 2k

Σg−k ×D2\S1 ×D3 if l = 2k − 1
(6.3)

which can be seen using Kirby calculus. Figure 25 also shows a Kirby diagram
of PChg,l for the maximal chain length l = 2g; in the cases where l ≤ 2g one simply
has to erase the rightmost fold handles. Note that the upper left fold handle is a
0–framed meridian for the upper left 1–handle. As indicated in Figure 26, it can
be used to unlink the fiber 2–handle from the 1–handle so that the 1–handle can
be canceled against the fold handle. This maneuver has the additional effect that
the fiber 2–handle also becomes unlinked from the lower left 1–handle. Moreover,
if l ≥ 2 then the lower left 1–handle is linked geometrically once by the lower left fold
handle and the pair can be canceled; if not, then and isolated 1–handle remains. By
iterating this procedure we can eventually cancel all fold handles against 1–handles
and what is left is a Kirby diagram of Σg−k × D2 (as in Figure 19) with k as in
equation (6.3) and an isolated 1–handle for odd l which represents a boundary sum
with S1 ×D3.

We now pass to the doubles. After some minor relabeling, we conclude that
for h ≥ 2 and k ≥ 1 the surface diagrams Chh+k,2k and Chh+k,2k−1 describe

Σh × S2 and Σh × S2#S1 × S3,

respectively. In particular, we have found genus g surface diagrams for these mani-
folds for all g ≥ h+ 1. Moreover, in equation (9.1) we will obtain a formula for the
Euler characteristic which excludes surface diagrams of genus g ≤ h in the case at
hand so that we have surface diagrams for every possible genus.

Remark 6.10. The surface diagrams for Σh×S2 and Σh×S2#S1×S3 obtained in Ex-
ample 6.9 were discovered independently by Hayano [35, Example 6.9 & Remark 6.9]
using different methods. Hayano’s arguments are more complicated than ours but
they also give more information. In fact, Hayano shows that simple wrinkled fi-
brations Σh × S2 → S2 corresponding to Chh+k,2k is homotopic to the projection
onto S2 via k flip-and-slip moves. Similarly, he shows that Chh+k,2k−1 represents
a simple wrinkled fibration Σh × S2#S1 × S3 → S2 homotopic to one of the fake
simple wrinkled fibrations discussed in Example 4.8. In contrast, our method are
limited to identifying the total spaces of these fibrations.
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slide & cancel

isotope

Figure 26: Identifying PChg,l
as in equation (6.3).
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Part III

The Topology of Surface
Diagrams
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According to Corollary 4.19, all closed 4–manifolds can be described by surface
diagrams with trivial monodromy. Moreover, we saw in Chapter 6 that surface
diagrams naturally encode handle decompositions of 4–manifolds. Building on this
observation, we investigate further how the topology of 4–manifolds is reflected in
the combinatorics of surface diagrams. Since isotopic surface diagrams give handle
decompositions with isotopic attaching maps, it will be convenient to consider simple
closed curves up to isotopy. Once more for emphasis:

In the remaining chapters we will blur the distinction between
simple closed curves and their isotopy classes.

In Chapter 7 we study how certain cut-and-paste operations on 4–manifolds
can be realized by modifying their surface diagrams. We discuss connected sums
with S2×S2, CP2 and CP2, as well as surgeries on curves and 2–spheres. Our main
application of these techniques is given in Chapter 8 where we obtain a complete
classification of closed 4–manifolds that admit surface diagrams of genus one, the
lowest possible genus.

In the final Chapter 9 we address the question how some basic information about
the homotopy type of a 4–manifold can be extracted from a given surface diagram.
We give surface diagram descriptions of the fundamental group, homology, and
the intersection form, see Section 9.1. As a first application, we obtain an easily
accessible obstruction for a surface diagram to have trivial monodromy in Section 9.2.
We then go on to discuss spin and spinc structures in Section 9.3.
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Chapter 7

Substitutions in Surface
Diagrams

Let S = (Σ,Γ) be a surface diagram with Γ = (c1, . . . , cl) and let (ZS, wS) be the
corresponding simple wrinkled fibration over the disk. Furthermore, let Λ′ be an
arbitrary W–chain in Σ that starts with cr and ends with cs for some 1 ≤ r ≤ s ≤ 1.
If we remove Λ = (cr, . . . , cs) from Γ and replace it with Λ′, then the result is a new
W–cycle Γ′ and thus a new surface diagram S′ = (Σ,Γ′).

Definition 7.1 (Substitutions). Let S and S′ be as above. We say that S′ is
obtained from S by a substitution Λ Λ′.

On the 4–manifold side, a substitution can naturally be interpreted as a cut-and-
past operation. Roughly, ZS contains a submanifold of the form PΛ (as discussed on
page 83) and ZS′ is obtained by removing PΛ and replacing it with PΛ′ . However, this
observation is not very useful unless we have a good understanding of PΛ and PΛ′ .

Definition 7.2. Let O be some operation on 4–manifolds. We say that the substi-
tution Λ Λ′ corresponds to O if ZS′ is diffeomorphic to O(ZS).

Another problem is to keep track of the monodromy. Indeed, if S has triv-
ial monodromy and thus describes a closed 4–manifold, then we would like S′ to
have trivial monodromy as well. Of course, this is wrong in general. For exam-
ple, S = (Σ; c1, . . . , cl) is obtained from the diagram (Σ; c1, cl) by a substitution,
and while the latter has trivial monodromy (see Section 6.3.1), we know from Re-
mark 5.19 that the monodromy of S can be any element of Mod(Σc1).

Definition 7.3. Let S′ be obtained from S by a substitution Λ Λ′ as above. We
say that the substitution is monodromy preserving if µ(S′) = µ(S).

In order to verify this property for a given substitution one can argue in two
ways. On the one hand, one can simply compute the monodromies before and after
the substitution and show directly that they agree. On the other hand, one can
also consider the corresponding 4–manifolds and try to show that the effect of the
substitution does not change the boundary. One can then deduce a posteriori that
the substitution must have trivial monodromy.
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7.1. Blow-Ups and Stabilizations

In the following we will discuss some simple substitutions which correspond to
well known operations on 4–manifolds. These substitutions happen to be mon-
odromy preserving and are therefore applicable in the context of closed 4–manifolds
and simple wrinkled fibrations over S2. The central tool are the handle decomposi-
tions of simple wrinkled fibrations and their Kirby diagrams discussed in Sections 6.1
and 6.2.

Remark 7.4. Similar substitution techniques have been studied for Lefschetz fibra-
tions by Endo et al. in [22, 23] where certain rational blowdowns are realized by
the corresponding notion of substitutions. Our goals are more modest in the sense
that the we discuss much more basic cut-and-paste operations. However, we will
gain some first practical insights into how surface diagrams encode geometric infor-
mation and it is quite conceivable that many other interesting operations can be
rephrased as substitutions in surface diagrams.

7.1 Blow-Ups and Stabilizations

In the context of 4–manifolds the operations of taking connected sums with CP2

and S2×S2 are commonly known as blow-up and stabilization. We will also use this
terminology for connected sums with CP2 and the non-trivial S2–bundle over S2,
which is diffeomorphic to CP2#CP2. For convenience, we let

Sk =

{
S2 × S2, k even

CP2#CP2, k odd

and recall that a Kirby diagram for Sk is given by the (0, k)–framed Hopf link.

Lemma 7.5 (Blow-up and stabilization). Let S = (Σ; Γ) be a surface diagram and
let a, b ⊂ Σ be two consecutive vanishing cycles in S.

(i) A substitution of the form (
a, b
)
 
(
a, τ±1

a (b), b
)

(7.1)

corresponds to a blow-up with ±CP2.

(ii) A substitution of the form(
a, b
)
 
(
a, b, τkb (a), b

)
, k ∈ Z (7.2)

corresponds to a stabilization with Sk.

In particular, the substitutions (7.1) and (7.2) are monodromy preserving.

For obvious reasons, we will refer to the substitutions described in equations (7.1)
and (7.2) as blow-up and stabilization substitutions. Of course, the substitutions
are reversible and whenever a surface diagram contains a configuration as in the
right hand sides of the equations, the associated 4–manifold must be a blow-up or
stabilization of some other 4–manifold. These configurations are shown in Figure 27
and we call them blow-up and stabilization configurations. The following proof
of Lemma 7.5 is a simplification of that given by the author in [7, Lemma 5.1]
using a localization idea inspired by Hayano’s proof of Lemma 7.8 below (see [35,
Lemma 6.13]).
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a

b

τ−1
a (b)

(a, τ−1
a (b), b) (a, b, a, b)

a

b

Figure 27: Blow-up and stabilization configurations.

0

0

0

a

b

Figure 28: Excerpts of the surface diagram S = (Σ; . . . , a, b) and a Kirby
diagram for ZS. In the latter, the omitted fold handles are supported in the
shaded region.

Proof of Lemma 7.5. For simplicity we assume that a and b are the last vanishing
cycles in S – that is, S = (Σ; · · · , a, b) – and that they intersect transversely in one
point. Let T ⊂ Σ be a regular neighborhood of a ∪ b which is diffeomorphic to a
one-holed torus as shown in the left of Figure 28. The right side of Figure 28 shows
the corresponding excerpt of a practical Kirby diagram of ZS (where a and b have
been normalized to the curves a′1, b1 in Figure 19).

Let N(a,b) be the codimension 0 submanifold of ZS given by T ×D2 with the fold
handles attached along a and b. In the Kirby diagram in Figure 28, N(a,b) appears
as the two dotted circles and their meridians, a cleaner picture is shown on the right
of Figure 29. Obviously, N(a,b) is diffeomorphic to D4. In order to prove (i) and (ii)
we consider the 4–manifolds N(a,τ±1

a (b),b) and N(a,b,τkb (a),b) obtained by attaching fold

handles to T ×D2 along the curves indicated in the subscripts, as usual in the order
determined by the orientation of S1. The blow-up and stabilization substitutions
result in surface diagrams

S′ =
(
Σ; . . . , a, τ±1

a (b), b
)

and S′′ =
(
Σ; . . . , a, b, τkb (a), b

)
and it follows from the construction of ZS′ and ZS′′ that these manifolds are obtained
from ZS by removing N(a,b) and replacing it with N(a,τ±1

a (b),b) and N(a,b,τkb (a),b), re-

spectively. It remains to identify the latter pieces and for that purpose we use Kirby
calculus. Recall that a blow-up with ±CP2 can be realized in a Kirby diagram by
inserting an isolated unknot with framing ±1, while for a stabilization with Sk one
has to add an isolated Hopf link with framings (0, k).

Figure 29 contains a Kirby diagram for N(a,τ−1
a (b),b) and the indicated 2–handle

slides exhibit this manifold as the blow up N(a,b)#CP2. Note that the framing
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0

0

−1 0

0
slide blow-up

N(a,τ−1
a (b),b) N(a,b)

0

0

−1

Figure 29: Understanding the blow-up substitution (a, b) (a, τ−1
a (b), b).

0

0 0

0 0

0
0

0

slide stabilize

N(a,b,a,b) N(a,b)

0

0

Figure 30: Understanding the stabilization substitution (a, b) (a, b, a, b).

coefficient of the fold handle corresponding to τ−1
a (b) is −1 according to Exam-

ple 6.5. For N(a,τa(b),b) one finds a very similar Kirby diagram where τa(b) con-
tributes a fold handle with framing coefficient +1 and the same arguments show
that N(a,τa(b),b)

∼= N(a,b)#CP2. It follows that the substitution (a, b) (a, τ−1
a (b), b)

corresponds to a blow-up with ±CP2 and we succeeded in proving (i).
A proof of (ii) can be obtained similarly. In order to keep the Kirby diagrams

simple, we only treat the case k = 0, that is, the substitution (a, b)  (a, b, a, b).
A Kirby diagram for N(a,b,a,b) is shown in Figure 30, and the indicated handle
slides result in the diagram for N(a,b) alongside a (0, 0)–framed Hopf link. It follows

that N(a,b,a,b)
∼= N(a,b)#(S2 × S2), as desired. In the general case, the curve τkb (a)

would lead to a slightly more complicated attaching circle and requires more slides.
However, the argument is essentially the same: sliding over the fold handles cor-
responding to a and b results in an isolated Hopf link with framing (0, k). An
alternative proof of the general case is given in Lemma 7.8 and Example 7.10.

Remark 7.6. It is interesting to observe that very similar pictures for blow-ups of
4–manifolds appear in the context of Heegaard Floer theory [56, Section 6]. Indeed,
Ozsváth and Szabó represent blow-ups by certain Heegaard triples containing a
punctured torus E together with three curves α, β, γ ⊂ E (see Figure 6, loc. cit.).
Once the curves are ordered, they form a blow-up configuration in our sense. The
author believes that this is not a coincidence, although the precise relationship
between these pictures has not been understood yet.
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7.2. Surgeries on Curves and Spheres

7.2 Surgeries on Curves and Spheres

Another interesting class of substitutions was independently discovered by Hayano
in [35, Lemma 6.13]. Consider a surface diagram S = (Σ,Γ) and let c ⊂ Σ be some
vanishing cycles in S. If δ ⊂ Σ is a simple closed curves with i(c, δ) = 1 (that is, a
weakly dual curve for c), then we can perform the substitution (c) (c, δ, c). Hayano
shows that this substitution corresponds to a surgery on the curve δ ⊂ Σ ⊂ ZS with
respect to its fiber framing, that is, the framing in ZS induced by the canonical
framing of δ in Σ and the framing of Σ in ZS as a regular fiber of wS : ZS → D2.

Remark 7.7. The attentive reader has probably noticed a small inaccuracy in the
above discussion. Strictly speaking, we have to choose an orientation for δ to ob-
tain the framing in Σ. However, different orientations yield diffeomorphic surgeries
because the diffeomorphism of S1 × S2 given by complex conjugation on the first
factor has canonical extensions to both S1 × D3 and D2 × S2. Our sloppiness is
therefore justified.

Comparing Hayano’s substitution with equation (7.2), one immediately notices
that the stabilization substitutions are special cases. We will say more about this in
Example 7.10 below. This observation also paves the way for a minor generalization
of Hayano’s result which captures not only the fiber framed surgery but also the one
with the opposite framing.1

Lemma 7.8. (Surgery on curves) Let S = (Σ,Γ) be a surface diagram and let c ⊂ Σ
be a vanishing cycle in S. If δ ⊂ Σ is a simple closed curve with i(c, δ) = 1, then
the substitution

(c) (c, τkc (δ), c), k ∈ Z, (7.3)

corresponds to the surgery on δ ⊂ Σ ⊂ ZS with respect to the fiber framing when k
is even and the opposite framing when k is odd.

Again, the proof relies on Kirby calculus. The following interpretation of surgery
in terms of Kirby diagrams is well known but hard to find in the literature.

Remark 7.9 (Surgery in Kirby diagrams). Let δ be an embedded circle in an oriented
4–manifold M . Then we can draw a Kirby diagram for M which contains a dotted
circle whose meridian is isotopic to δ as shown in the top left of Figure 31 (by taking
a handle decomposition of M based on an S1 × D3 neighborhood of δ). The gray
ribbon indicates 2–handles that might link the dotted circle. In order to perform
surgery on δ we equip δ with the k–framing in the Kirby diagram which canonically
extends to a framing of δ in M ; of course, the framing in M will only depend on
the parity of k.2 The surgery is then realized by the replacement shown in the top
row of Figure 31 where two extra 2–handles appear, one is attached along δ with
the k–framing and the other along a 0–framed meridian of δ. The latter 2–handle
represents the embedded D2 × S2 in the surgered manifold. In fact, the right hand
side is easily seen to be diffeomorphic D2 × S2 by canceling the 1–handle and the
k–framed copy of δ after unlinking it from the gray ribbon, which acquires k full
twists and now links the meridian of δ. Alternatively, one can also realize the surgery

1Recall that an embedded circle in an orientable 4–manifold always has trivial normal bundle
and there are exactly two framings since π1(SO(3)) ∼= Z2.

2Again, strictly speaking, we need an orientation on δ. See Remark 7.7.
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δ

k
0

k

δδ

0
k

∼ ∼

surger δ

surger S2

Figure 31: Surgery in terms of Kirby diagrams: k–framed surgery on δ and
reverse surgery on a 2–sphere.

by going directly from the top left to the bottom right. This amounts to turning
the dotted circle into a 0–framed unknot while putting in k full twists in the gray
ribbon.

For the reverse surgery on D2×S2 we simply replace the 0–framed unknot with
a dotted circle as shown in the bottom row of Figure 31. The equivalence of the
two diagrams on the left is a standard trick in Kirby calculus (see [32, p.174f.]) and
shows that we always recover M regardless of the value of k. In fact, whenever a
Kirby diagram of a 4–manifold contains a 0–framed unknot that does not link any
of the dotted circles, replacing it with a dotted circle represents the surgery on the
2–sphere given by union of the spanning disk and the core of the corresponding
2–handle. Moreover, the surgery on an arbitrary 2–sphere in M with trivial normal
bundle can be realized in this way.

Proof of Lemma 7.8. We employ a similar localization strategy as in the proof of
Lemma 7.5. We assume that c and δ intersect transversely in one point and fix a
regular neighborhood T ⊂ Σ of the union c ∪ δ diffeomorphic to a one-holed torus.
We denote by N(c) and N(c,τ2(δ),c) the 4–manifolds obtained by attaching fold handles
to T ×D2 along the curves in the respective subscripts. It is then enough to show
that N(c,τkc (δ),c) is obtained from N(c) by surgery on δ.

We first consider the case k = 0 which is Hayano’s original surgery substitu-
tion (c)  (c, δ, c). A Kirby diagram for N(c) is shown on the right of Figure 32.
δ appears as a meridian for the upper 1–handle and the fiber framing agrees with
the 0–framing in this diagram. Obviously, N(c) is diffeomorphic to S1×D3. On the
left of Figure 32 we see a Kirby diagram for N(c,δ,c) and the indicated 2–handle slide
exhibits N(c,δ,c) as the fiber framed surgery on δ in N(c) (compare Figure 31). In
particular, N(c,δ,c) is diffeomorphic to D2 × S2.

Kirby diagrams for the cases k = 1, 2 are shown in Figures 33 and 34 and the in-
dicated 2–handle slides combined with Figure 31 again prove the claim. The general
pattern should also be clear by now. For arbitrary k the fold handle corresponding
to τkc (δ) wraps around the lower 1–handle k times and becomes a k–framed meridian
for the upper 1–handle after sliding k times over the lower left fold handle. Com-
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0
0

0 0

0
0 0

slide surgery

δ

N(c)N(c,δ,c)

Figure 32: The substitution (c)  (c, δ, c) corresponds to surgery on δ with
respect to the fiber framing.

0

1 1
slide slide

00 0

1

0
0

N(c,τc(δ),c)

Figure 33: Simplifying N(c,τc(δ),c).

0

2 2
slide slide

00 0

2

0
0

N(c,τ2
c (δ),c)

Figure 34: Simplifying N(c,τ2
c (δ),c).
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a

b c

d

ε δ

Figure 35: The curves in Σ3 used in Example 7.11.

paring with Figure 31 shows that N(c,τkc (δ),c) is a surgery of N(c) on δ with the fiber
framing if k is even and the opposite framing if k is odd.

Example 7.10. (Stabilization revisited) Recall the stabilization substitution from
Lemma 7.5 of the form (a, b)  (a, b, τkb (a), b). Of course, this is equivalent to the
surgery substitution (b)  (b, τkb (a), b) and thus corresponds to a surgery on the
curve a in ZS. But a is the attaching curve of a fold handle and it is therefore
null-homotopic in ZS. As is well known, a surgery on a null-homotopic curve results
in a connected sum with either S2 × S2 or CP2#CP2, depending on the framing.
This also constitutes an alternative proof of part (ii) of Lemma 7.5.

Example 7.11 (A surface diagram of S4). The following constructions are due
to Hayano [35, Example 6.10]. We consider the curves in Σ3 shown in Figure 35.
Hayano first uses Kirby calculus to show that (Σ3; a, b, c, d) is a surface diagram for
S1×S3#S1×S3 and then performs surgery substitutions using the curves δ, ε ⊂ Σ3.
He shows that these curves generate the fundamental group so that each surgery
kills one S1×S3 summand. This implies that the surface diagrams (Σ3; a, b, c, δ, c, d)
and (Σ3; a, ε, a, b, c, δ, c, d) represent S1 × S3 and S4, respectively.

Recall that a surgery on a circle leaves behind a framed 2–sphere in the surg-
ered manifold and that the original manifold can be recovered by surgering on this
2–sphere. In the Kirby diagram interpretation of surgery in Figure 31, this 2–
sphere is visible in either picture on the right as the obvious spanning disk of the
0–framed unknot hand sight capped off with the core of the corresponding 2–handle.
Comparing with Figure 32, we see that the 2–sphere resulting from the surgery sub-
stitution (c)  (c, δ, c) appears as the obvious annulus spanning between the two
0–framed unknots that link the lower dotted circle capped off with the cores of the
2–handles. Moreover, we can even see this 2–sphere in the surface diagram after the
substitution. We explain in how this works in a more general context.

Remark 7.12 (2–spheres in surface diagrams). Suppose that S = (Σ; c1, . . . , cl) is a
surface diagram such that for some i 6= j the vanishing cycles ci and cj are isotopic.
Without loss of generality we can assume that they are disjoint and thus bound
an annulus A ⊂ Σ. Observe that in ZS the curves ci and cj bound disks, namely
the cores of the corresponding fold handles, so that A can be capped off to a 2–
sphere in ZS. Moreover, since the 2–handles are attached with the fiber framing,
this 2–sphere has trivial normal bundle.

In other words, a repetition of vanishing cycles (up to isotopy) in a surface dia-
gram represents an embedded 2–sphere with trivial self-intersection. In the situation
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where a repetition occurs with only one vanishing cycle in between, we obtain the
following converse of Lemma 7.8.

Lemma 7.13 (Surgery on spheres). A substitution of the form (c, δ, c)  (c) cor-
responds to a surgery on the 2–sphere represented by the two copies of c.

A closely related construction to surgery on curves and spheres is the so called
Gluck twist. This operation consists of removing an embedded copy of S2 × D2

from a given 4–manifold M and re-gluing it with the non-trivial automorphism
of S2 × S1 corresponding to the generator of π1

(
SO(3)

)
. A different interpretation

is as follows. One first performs surgery on the original S2×D2 which leaves behind
a copy of D3 × S1 in the surgered manifold. In particular, the circle {0} × S1 has
a canonical framing and the surgery with this framing gives back M . The surgery
with the other framing gives the Gluck twisted version of M . As a consequence of
Lemmas 7.8 and 7.13, we immediately obtain the following.

Corollary 7.14 (Gluck twists). A substitution of the form (c, δ, c)  (c, τc(δ), c)
corresponds to a Gluck twist on the 2–sphere represented by the two copies of c.

We end this chapter with some remarks about the scope of Lemmas 7.8 and 7.13
and Corollary 7.14. Note that one frequent application of surgery on curves is to
kill the fundamental group of a given 4–manifold. This process can be realized
in terms of surface diagrams using Lemma 7.8. Indeed, given a surface diagram
S = (Σ; c1, . . . , cl) it follows from the handle decomposition of ZS, that π1(ZS) is
generated by simple closed curves in Σ ⊂ ZS (see Lemma 9.1 for more details). More-
over, an arbitrary simple closed curve δ ⊂ Σ can be transformed into a curve δ′ ⊂ Σ
with i(δ′, ci) by taking band sums with ci+1 ⊂ Σ. Since ci+1 is null-homotopic in ZS,
it follows that δ and δ′ represent the same element of π1(ZS) and surgery on δ′ is
realizable by Lemma 7.8.

On the other hand, the use of Lemma 7.13 (andCorollary 7.14) is more limited
since the 2–spheres must appear in a rather special way in S. For example, in the
surface diagrams for Σg × S2 with only two curves discussed in Section 6.3.1, there
is no repetition of vanishing cycles and it is not clear how to realize the surgery
on {∗}× S2 using Lemma 7.13. Also, when a vanishing cycle is repeated with more
than one curve in between it is unclear what kind of substitution might realize the
surgery on the corresponding 2–sphere.
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Chapter 8

Manifolds with Genus One
Surface Diagrams

In this chapter we address the question which closed 4–manifolds can be described
by surface diagrams of genus one, the lowest possible genus. This means that we
have to study surface diagrams that are supported on the torus T 2. Using the blow-
up and stabilization substitutions discussed in Section 7.1 we obtain the following
classification result which was already stated in the introduction on page 8.

Theorem 1.4. A closed 4–manifold admits a surface diagram of genus one if and
only if it is diffeomorphic to kS2 × S2 or mCP2#nCP2 where k,m, n ≥ 1.

The condition k,m, n ≥ 1 means that S4, CP2, and CP2 are not in the list.
In fact, it will be clear from the proof that all manifolds with genus one surface
diagrams must contain an S2–bundle over S2.

Before going into the proof we make some general observations about genus one
surface diagrams. First, note that monodromy is not an issue in the genus one case.
In fact, genus one surface diagrams automatically have trivial monodromy since the
mapping class group of the sphere is trivial. However, the price to pay is that we have
to deal with a mild gluing ambiguity caused by π1

(
Diff(S2), id

)
= Z2. Second, and

more importantly, many questions about simple closed curves on the torus (which
are intractable for higher genus surfaces) reduce to problems in linear algebra by
passing to homology. We will make use of the following facts. Let a, b ⊂ T 2 be
two simple closed curves; we choose arbitrary orientations and denote the oriented
curves by ~a and ~b.

• a and b are isotopic if and only if ~a = ±~b ∈ H1(T 2).

• The geometric and algebraic intersection numbers satisfy

i(a, b) = |〈~a,~b〉|,

that is, the inequality (2.6) is an equality.

Building on these observations we obtain the following result about the structure of
genus one surface diagrams.

Lemma 8.1. Any surface diagram of genus one of length at least three contains a
blow-up or stabilization configuration.
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8. Manifolds with Genus One Surface Diagrams

Proof. We first consider an arbitrary W–chain Γ = (c1, . . . , cl) in T 2 of length l ≥ 3
which is not necessarily a W–cycle, that is, we do not require cl and c1 to be weakly
dual. We transfer the discussion to the level of homology by choosing orientations
on the curves in Γ. In principle, we could choose random orientations on the curves
but the following convention turns out to be convenient: we choose an arbitrary
orientation on c1 and orient the remaining curves by requiring that

〈~ci,~ci+1〉 = +1 for i < l (8.1)

where ~ci denotes the oriented version of ci. We can then consider each ~ci as an
element of H1(T 2) and using the notation

σi = 〈~c1,~ci〉 ∈ Z

the condition for Γ to be a W–cycle is equivalent to |σl| = 1. Next we observe
that any two adjacent curves in Γ form a basis of H1(Σ) (which follows from equa-
tion (8.1)). In particular, for i ≥ 3 we have expressions of the form

~ci = ki~ci−1 − ~ci−2, ki ∈ Z (8.2)

where the coefficient of ~ci−2 is determined by the instances of equation (8.1) involv-
ing ~ci, ~ci−1 and ~ci−2.

We claim that if |ki| ≥ 2 for all i ≥ 3, then we have |σi+1| > |σi| for all i.
Note that |σ2| > |σ1| is trivially satisfied because we have σ2 = 〈~c1,~c2〉 = 1 by
equation (8.1) and obviously σ1 = 〈~c1,~c1〉 = 0. Now, equation (8.2) shows that
for i ≥ 2 we have σi+1 = ki+1σi − σi−1 which enables us to proceed by induction.
We can estimate

|σi+1| = |ki+1σi − σi−1|
≥
∣∣|ki+1||σi| − |σi−1|

∣∣
= |ki+1||σi| − |σi−1| > |σi|

where we have used the reverse triangle inequality, the induction hypothesis that
|σi| > |σi−1|, and the assumption that |ki+1| ≥ 2. In particular, if |ki| ≥ 2 for i ≥ 3,
then we must have |σl| > |σ2| = 1 and Γ is not a W–cycle.

Now let Γ be a W–cycle so that (T 2,Γ) is a surface diagram. The above discussion
shows that we must have |ki| ≤ 1 for some i. Assume first that ki = ±1. To keep
the notation clean we momentarily rename the relevant curves to

(~ci−2,~ci−1,~ci) = (a, ξ, b). (8.3)

The condition ki = ±1 then translates into b = ±ξ−a and thus ξ = ±(a+b). More-
over, our orientation convention (8.1) implies 1 = 〈a, ξ〉 = ±〈a, b〉 so that 〈a, b〉 = ±1.
Combining this with the Picard–Lefschetz formula (Proposition 2.15) we obtain

τ±1
a (b) = b± 〈a, b〉a = a+ b = ±ξ.

But this shows that (a, ξ, b) is a blow-up configuration (since orientations are irrel-
evant for that matter).
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8. Manifolds with Genus One Surface Diagrams

Lastly, suppose that we have ki = 0 for some i which means that ~ci = −~ci−2.
This can only happen if Γ contains at least four curves, for if there were only three
curves, then we would only have k3 which would have to be ±1 (by the definition of
W–cycles). Moreover, possibly after a cyclic permutation we can assume that i ≥ 4
so that we find a configuration of the form(

~ci−3,~ci−2,~ci−1,~ci
)

=
(
a, b, kb− a, −b

)
(8.4)

within Γ where a = ~ci−3, b = ~ci−2 and k = ki−1. Again, from the Picard-Lefschetz
formula we see

kb− a = −τ−kb (a)

which exhibits (8.4) as a stabilization configuration after forgetting orientations.

It is now easy to prove Theorem 1.4 with an inductive argument.

Proof of Theorem 1.4. We first show that k(S2×S2) and mCP2#nCP2, k,m, n ≥ 1,
have genus one surface diagrams. Recall from Section 6.3.1 that both S2–bundles
over S2 are described by the diagram (T 2; a, b) of length two. Using Lemma 7.5 we
can then add summands of the form S2 × S2, CP2 and CP2 at will.

Conversely, suppose that X is described by a genus one surface diagram S.
According to Lemma 8.1, S must contain a blow-up or stabilization configuration
and we can use Lemma 7.5 to split off summands of the form S2×S2, CP2 and CP2

while reducing the length of the surface diagram. By repeating this process, we
eventually arrive at a diagram of length two which describes the S2–bundles over S2.
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Chapter 9

Homotopy Information in
Surface Diagrams

Our next goal is to show how some basic information about the homotopy type of
a given 4–manifold can be extracted from a surface diagram. We first discuss the
fundamental group, homology, and the intersection form, and then go on to spin and
spinc structures. As applications, we obtain an obstruction for a surface diagram to
have trivial monodromy (see Section 9.2) and a proof of Theorem 1.5 on which we
elaborate further in Section 9.4.

Notation. In what follows we consider a surface diagram S = (Σ; c1, . . . , cl) of
genus g which may or may not have trivial monodromy. We choose arbitrary orien-
tations on the vanishing cycles and use the notation ~ci whenever the orientations are
relevant. For brevity, we denote the descending simple wrinkled fibration associated
to S by (Z,w) = (ZS, wS) and we fix a boundary fiber Σ′. If S happens to have triv-
ial monodromy, the we choose a fiber preserving diffeomorphism ϕ : Σ′ × S1 → ∂Z
and denote the simple wrinkled fibration over S2 obtained from closing off (Z,w) us-
ing ϕ by (X,w) = (Xϕ

S, w
ϕ
S). We fix handle decompositions of Σ and Σ′ with unique

0– and 2–handles and consider the corresponding handle decompositions of Z and X
described in Section 6.1. We denote the attaching curve of the last 2–handle of X
by

κ′ = ϕ
(
{p} × S1) ⊂ ∂Z, p ∈ Σ′

and we fix a closing curve
κ : S1 → Σ

as in Definition 6.2. Finally, the framing of κ′ is determined by the choice of a
tangent vector v ∈ TpΣ′ and we also fix a framed lift κ : S1 → TΣ′ of κ.

Recall that for g ≥ 3 the choice of ϕ is essentially unique, and framed closing
curves can in principle be extracted from S although this can be complicated in
practice (see page 75).
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9.1. Fundamental Group, Homology, and Intersection Form

9.1 Fundamental Group, Homology, and Intersection
Form

Here we take a look at the basic algebraic topology of Z and X from the perspective
of their surface diagrams.

9.1.1 Fundamental Group and Euler Characteristic

We begin with some easy consequences of the handle decompositions of Z and X.

Lemma 9.1. The inclusions Σ ↪→ Z and Σ ↪→ X induce isomorphisms

π1(Z) ∼= π1(Σ)/〈〈c1, . . . cl〉〉 and π1(X) ∼= π1(Σ)/〈〈c1, . . . cl, κ〉〉

as well as

H1(Z) ∼= H1(Σ)/〈c1, . . . cl〉 and H1(X) ∼= H1(Σ)/〈c1, . . . cl, κ〉

where the brackets indicate (normal) subgroups generated by the enclosed elements.

Proof. The 2–handle attachments to Σ×D2 along ci and κ kill the normal subgroups
generated by these curves in π1(Σ×D2) ∼= π1(Σ).

In particular, one can extract presentations for the fundamental groups of Z
and X from the knowledge of S. We also see an emerging pattern. Information
about Z is directly accessible from S while information about X also depends on a
closing curve which complicates the situation. This is true with only few exceptions
and we will usually study Z first and discuss the passage to X separately. One
exception where the closing curve is irrelevant is the Euler characteristic.

Lemma 9.2. The Euler characteristics of Z and X are

χ(Z) = 2− 2g + l and χ(X) = 6− 4g + l. (9.1)

Proof. This follows from the decompositions of X into Z and Σ′ × D2, and Z
into Σ × D2 and the fold handle cobordism. In the case of X the additivity of
the Euler characteristic then implies

χ(X) = χ(Z) + 2− 2(g − 1) = (2− 2g) + l + (4− 2g)

which also contains the computation for Z.

Remark 9.3. In particular, Euler characteristic agrees modulo 2 with the number of
vanishing cycles which in turn is just the number of cusps of the associated simple
wrinkled fibration. This is in accordance with a more general result of Thom which
states that the number of cusps of a Boardman map from a manifold of arbitrary
dimension to an orientable surface reduces modulo 2 to the Euler characteristic of
the source (see [65, p.84]).
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9.1. Fundamental Group, Homology, and Intersection Form

9.1.2 Second Homology and Intersection Form of Z

In order to compute H2(Z) we use the handle complex of Z, that is, the chain
complex derived from the handle decomposition of Z (see Appendix A for more
details). Since there are no handles of index three or higher, this takes the form

C2(Z)
∂2−→ C1(Z)

∂1−→ C0(Z). (9.2)

Moreover, the fixed handle decomposition of Σ allows us to identify Ci(Z) withHi(Σ)
for i = 0, 1 and ∂1 must be the zero map. As for the 2–handles, if we denote by VS
the free Abelian group generated by the vanishing cycles ci, then C2(Z) can be
identified with H2(Σ) ⊕ VS. The first summand is generated by the fiber 2–handle
which is a 2–cycle in the handle complex that represents the homology class of the
fiber [Σ] ∈ H2(Z). We can describe the boundary map ∂2 in this setting as follows.
Observe that the orientations on the vanishing cycles give rise to a homomorphism

ρ : VS −→ H1(Σ)
ci 7→ [~ci]

and by the definition of the boundary operator (and Remark 6.3) we have a com-
mutative diagram

C2(Z)
∂2 // C1(Z)

H2(Σ)⊕ VS

∼=

OO

ρ̃ // H1(Σ)

∼=

OO
(9.3)

where ρ̃(k[Σ], v) = ρ(v). It follows that H2(Z) is isomorphic to the direct sum
of H2(Σ) and the group

KS = ker
(
ρ : VS → H1(Σ)

)
.

Put differently, KS is the subgroup of VS that records all the linear relations
in H1(Σ) that hold among the oriented vanishing cycles. To summarize, we have
proved:

Lemma 9.4. H2(Z) is isomorphic to Z⊕KS where the first summand is generated
by the homology class of the fiber [Σ] ∈ H2(Z).

Remark 9.5. Alternatively, one can also appeal to the Mayer–Vietoris sequence for
the decomposition of Z into Σ × D2 and the disjoint union of the fold handles.
The intersection is given by the disjoint union of the attaching regions and its first
homology is naturally identified with VS. This results in an exact sequence

0 −→ H2(Σ)
incl∗−→ H2(Z)

δ−→ VS
ρ−→ H1(Σ)

incl∗−→ H1(Z) −→ 0

from which H1(Z) and H2(Z) are easily computed as in Lemmas 9.1 and 9.4.

Having described H2(Z) purely in terms of Z we now study how the intersection
form of Z appears in this description. We define a symmetric bilinear form on KS

as follows. For ξ, η ∈ KS, written as ξ =
∑

i ξi~ci and η =
∑

j ηj~cj , we define

QS(ξ, η) =1
2

∑
i,j

ξiηj εij〈~ci,~cj〉Σ, εij =

{
+1, i > j

−1, i < j
(9.4)
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where 〈·, ·〉Σ denotes the intersection pairing on H1(Σ). Note that QS is indeed
symmetric since both 〈~ci,~cj〉Σ and εij change signs when i and j are switched. It
can be thought of as a symmetrization of 〈·, ·〉Σ which takes the order of the vanishing
cycles into account.

Proposition 9.6. Under the isomorphism H2(Z) ∼= Z ⊕KS the intersection form
QZ corresponds to (0)⊕QS.

Proof. Since Z has a handle decomposition with handles of index at most two,
we can determine QZ from the linking information in a Kirby diagram for Z as
described in Appendix A, see Proposition A.2 on page 120. Here we use the tactical
Kirby diagrams derived from Figure 18 on page 77. As before, we identify the 2–
chains C2(Z) in the handle complex with Z ⊕ VS and blur the distinction between
the 2–handles and their attaching curves in the Kirby diagram.

According to Proposition A.2, QZ is isomorphic to the restriction of the linking
form on Z ⊕ VS, which we denote by lk, to the 2-cycles in the handle complex. To
compute the linking form we first observe that the fiber 2–handle is unlinked from
all the fold handles. Indeed, any fiber in the Kirby diagram that is not occupied
by a fold handle provides a Seifert surface that is disjoint from the fold handles.
Moreover, since the fiber 2–handle is 0–framed, the linking from splits off a trivial
summand. To investigate the linking form on VS we appeal to Lemma 6.4 and also
use its surrounding notation. If we orient the fold handles by identifying them with
the oriented versions ~ci of the vanishing cycles, then equation (6.2) gives

lk(~ci,~cj) = 1
2εij〈~ci,~cj〉Σ + 1

2

g∑
k=1

[
nak(~ci)nbk(~cj) + nak(~cj)nbk(~ci)

]
. (9.5)

Now, the 2–cycles in the handle complex are given by Z⊕KS and the linking form
vanishes on Z which is generated by the fiber 2–handle. Moreover, for ξ ∈ KS we
have nak(ρ(ξ)) = nbk(ρ(ξ)) = 0, so that the second term in equation (9.5) vanishes
on KS. Consequently, lk restricts to QS on KS and the proof is finished.

Second Homology via Domains

We can obtain another description of H2(Z) which parallels a construction used
in Heegaard–Floer theory. Instead of considering the curves in S, we focus on
their complement. By a slight abuse of notation, we write Γ = ∪ici ⊂ Σ and
consider the connected components of Σ\Γ. We call the closure of such a component
an elementary domain and let D(S) be the free Abelian group generated by all
elementary domains; elements of D(S) are simply called domains. By sending an
elementary domain to its boundary we obtain a map

∂ : D(S) −→ H1(Γ).

Note that D(S) is naturally isomorphic to H2(Σ,Γ) and the map ∂ can also be inter-
preted as the connecting homomorphism in the homology sequence of the pair (Σ,Γ).

Definition 9.7. A domain D ∈ D(S) is called cyclic if its boundary ∂D is a linear
combination of the vanishing cycles ci. The group of all cyclic domains is denoted
by Dc(S).
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This definition is reminiscent of the “periodic domains” that are prominently
featured in Heegaard–Floer theory (see [55, p.1040 ff.], for example). However, the
term “periodic” has no apparent meaning in the present setting and we decided to use
“cyclic” instead. This is further justified by the fact that cyclic domains correspond
to 2–cycles in the handle complex of Z as seen in the proof of the following lemma.

Lemma 9.8. The group Dc(S) of cyclic domains is isomorphic to H2(Z).

Proof. This is a consequence of the commutative diagram

0 // H2(Σ) //
� s

[Σ] 7→DΣ %%

H2(Σ,Γ) // H1(Γ) // H1(Σ) // · · ·

Dc(S)
?�

OO
∂

99

// VS
?�

OO

ρ

::

which we shall now explain. The first row is simply an excerpt of the homology
sequence of the pair (Σ,Γ). As for the second, we proceed from right to left. The
first thing to note is that VS can naturally be considered as the subspace of H1(Γ)
spanned by the classes [~ci] ∈ H1(Γ). From this observation it becomes clear that ρ
and ∂ can be factored as in the diagram. Moreover, as we already pointed out,
the group of all domains is isomorphic to H2(Σ,Γ) so that Dc(S) embeds therein.
Finally, note that there is a special domain DΣ ∈ D(S) given by the sum of all
elementary domains (each with multiplicity one). This domain generates the kernel
of ∂ (in particular, it is cyclic) and it naturally corresponds to the image of the
fundamental class of Σ in H2(Σ,Γ). Now, from the diagram above we can extract a
short exact sequence

0 −→ H2(Σ) −→ Dc(S) −→ KS −→ 0

which splits because KS is free. In fact, a concrete splitting KS → Dc(S) is obtained
by fixing an elementary domain E ⊂ Σ and sending an element ξ ∈ KS to the unique
cyclic domain with boundary ξ and multiplicity zero at E. It follows that Dc(Σ) is
isomorphic to H2(Σ)⊕KS and thus to H2(Z) according to Lemma 9.4.

Remark 9.9. A concrete, geometric isomorphism D(S)→ H2(Z) can be constructed
as follows. One can think of a cyclic domain D ∈ Dc(S) as the image of an im-
mersion ι : S → Σ of a compact, oriented surface S whose boundary components
are mapped to the ci ⊂ Σ. If we cap off all boundary components of S with disks,
then we obtain a closed, oriented surface Ŝ and, thinking of Σ as sitting inside Z,
we can first perturb ι to an embedding ι̃ : S ↪→ Z and then further extend to an
embedding of ι̂ : Ŝ ↪→ Z using the cores of the fold handles. Thus we obtain a ho-
mology class H(D) = ι̂∗[Ŝ] ∈ H2(Z) and one can show that this construction gives
rise to a well-defined isomorphism H : Dc(S) → H2(Z) by adapting the arguments
in [55, Section 2.5].

The domain interpretation of H2(Z) certainly has its appeal, especially in the
light of a potential relationship between surface diagrams and Heegaard–Floer the-
ory. However, the curve interpretation given in Lemma 9.4 is better suited for our
purposes since we are currently not aware of a good description of the intersection
form in terms of domains.
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9.1.3 Second Homology and Intersection Form of X

Now let us try to describe the homology of X. We begin with some remarks about
the homology class of the fiber which turns out to play an important role. Note that
the fiber class [Σ] ∈ H2(X) is an invariant of the homotopy class of w : X → S2.
Since simple wrinkled fibrations can be found in all homotopy classes, it follows
from the Pontrjagin–Thom construction that every class in H2(X) with trivial self-
intersection can appear as a fiber class. In particular, while the fiber class is always
primitive1 in H2(Z) by Lemma 9.4, it can be torsion or divisible in H2(X). These
properties of the fiber class can be related to closing curves as follows.

Lemma 9.10. The following conditions are equivalent.

(i) The fiber class [Σ] ∈ H2(X) is essential.

(ii) The attaching curve κ′ ⊂ ∂Z has finite order in H1(Z).

(iii) The closing curve satisfies d[κ] ∈ 〈c1, . . . , cl〉 ⊂ H1(Σ) for some d ≥ 1.

Proof. The equivalence of (ii) and (iii) follows from Lemma 9.1 and the observation
that κ′ ⊂ ∂Z and κ ⊂ Σ are homologous when considered as curves in Z. To see
that (i) and (ii) are equivalent we will show that d[κ′] = 0 ∈ H1(Z) for some d ≥ 1
if and only if [Σ] ∈ H2(X) has infinite order.

Assume first that d[κ′] = 0. Then the union of d parallel copies of κ′ in ∂Z
(parallel with respect to the framing of κ′) bounds a properly embedded, oriented
surface (S, ∂S) ⊂ (Z, ∂Z) which we can cap off to a closed surface Ŝ ⊂ X using paral-
lel copies of the core of the last 2–handle. By construction, this surface intersects Σ′

transversely in d points of the same sign, and since Σ′ and Σ are homologous in X,
we see that [Σ] · [Ŝ] = d. In particular, [Σ] has infinite order by the unimodularity
of the intersection form of X.

Now suppose that the fiber class [Σ] = [Σ′] ∈ H2(X) has infinite order. We
can essentially reverse the above argument. The unimodularity of the intersection
form of X implies that there is a closed, oriented surface Ŝ ⊂ X pairing non-
trivially with Σ′, say [Ŝ] · [Σ] = d 6= 0. By general position, we can assume that
Ŝ meets Σ′ × D2 ⊂ X in disks of the form {p} × D2. But then S = Ŝ ∩ Z is
properly embedded surface Z such that ∂S ⊂ ∂Z consists of parallel copies of κ′

which represent the class d[κ′] ∈ H1(Z). Thus d[κ′] is trivial in H1(Z).

With these remarks in place, we return to the homology of X. Recall that
X = Z ∪ϕ (Σ′ ×D2) where ϕ : Σ′ × S1 → ∂Z is a fiber preserving diffeomorphism.
In addition to the curve κ′ = ϕ(∗ × S1) ⊂ ∂Z we also consider tori of the form

ϕ(γ × S1) ⊂ ∂Z

where γ ⊂ Σ′ is a simple closed curve; these are commonly called rim tori in similar
contexts. We denote the subgroup of H2(Z) generated by the rim tori by

R = ϕ∗
(
H1(Σ′)× [S1]

)
⊂ H2(Z).

1We use the following standard terminology. Let H be an Abelian group. An element e ∈ H is
called essential if it is not torsion. We call p ∈ H primitive if it is essential and indivisible, that is,
it cannot be written as a non-trivial multiple of any other essential element. Any essential e ∈ H
can be written as dp for some primitive p ∈ H and a uniquely determined d ∈ Z with d ≥ 1 called
the divisibility of e.
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Proposition 9.11. If the fiber class [Σ] ∈ H2(X) is torsion, then the inclusion
Z ↪→ X induces an isomorphism

H2(X) ∼= H2(Z)/R.

If the fiber class is essential, then there is a short exact sequence

0 −→ H2(Z)/R −→ H2(X) −→ Z −→ 0. (9.6)

Proof. The homology sequence of the pair (X,Z) provides an exact sequence

0→ H2(Z)/δH3(X,Z)→ H2(X)→ H2(X,Z)→ H1(Z)→ H1(X)→ 0

and the claim follows from an inspection of the relative groups Hk(X,Z) and the
connecting homomorphisms. By excision, we have

Hk(X,Z) ∼= Hk(Σ
′ ×D2,Σ′ × S1)

and the latter group is isomorphic to Hk−2(Σ′) via the cross product with the relative
fundamental class [D2, S1] ∈ H2(D2, S1). It follows that H2(X,Z) is infinite cyclic,
generated by

(
ϕ(∗ ×D2), ϕ(∗ × S1)

)
⊂ (X,Z) and we have

δ[ϕ(∗ ×D2), ϕ(∗ × S1)] = [ϕ(∗ × S1)] = [κ′] ∈ H1(Z).

Similarly, H3(X,Z) is generated by
(
ϕ(γ × D2), ϕ(γ × S1)

)
⊂ (X,Z) for simple

closed curves γ ⊂ Σ′ which shows that δH3(X,Z) agrees with R.

As far as our goal to describe everything as directly as possible in terms of S
is concerned, Proposition 9.11 leaves something to be desired. In fact, even the
knowledge of a closing curve is not enough since it only gives information about
the fiber class. The main problem is the appearance of the rim tori whose relation
to S remains intangible. In principle, they should be visible in either description
of H2(Z) in Lemmas 9.4 and 9.8, but it is not at all clear how they would appear.
Hopefully, the future will shed some light on this problem.

However, we can still say something useful about the intersection form of X. To
begin with, we can determine its signature.

Corollary 9.12. The signature of X agrees with the signature of QS. Moreover,
σ(X) only depends on the homology classes [~ci] ∈ H1(Σ).

Proof. On the one hand, Novikov’s additivity theorem shows that σ(X) is the sum
of σ(Z) and σ(Σ′×D2), but the latter is obviously zero. On the other hand, Propo-
sition 9.6 shows that σ(Z) agrees with the signature of QS. Lastly, the expression
for QS given in equation (9.4) only involves the homology classes of the vanishing
cycles.

As a consequence, we can compute the signature of X directly from S without
even knowing a closing curve. In fairness, we should mention that this still requires
some work in practice. One has to choose a basis of KS, evaluate QS to obtain
a matrix, and then compute its signature. If KS has high rank, then this process
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is almost impossible to carry out by hand and the help of a computer becomes
necessary. It would be more desirable to have a description of σ(X) that bypasses
the full computation of QS, ideally in the form of a closed formula. Unfortunately,
we have not been able to obtain such a formula yet.

We now try to describe the intersection form of X. To state the results, we need
some algebraic terminology which is discussed in more detail in Appendix A. More
precisely, we consider the radical of QZ

rad(QZ) = {x ∈ H2(Z) |QZ(a, b) = 0 for all b ∈ H2(Z)} ,

and the form induced by QZ on the quotient H2(Z)/rad(QZ). We call this the
reduced form of QZ and denote it by Qred

Z .
We follow the same strategy as in the computation of QZ and study the linking

form on the 2–chains in the handle complex induced by a Kirby diagram. We take
the Kirby diagram of Z used in the proof of Proposition 9.6 and complete it to a
diagram forX by including the last 2–handle as explained in Section 6.2. Specifically,
we draw the attaching curve by resolving the double points of a meridian for the
fiber 2–handle followed by the image of κ in a fiber in the diagram above all the fold
handles. Then we have

C2(X) ∼= Z2 ⊕ VS
where the two copies of Z are generated by the fiber 2–handle and the last 2–handle
which we denote by F and L, respectively. As before, we denote the linking form
on C2(X) by lk.

By definition, λ = lk(L,L) is the framing coefficient of the last 2–handle. More-
over, the discussion on page 80 shows that the last 2–handle links the fiber 2–handle
algebraically and geometrically once. In particular, we have lk(L,F ) = 1. Finally,
the linking between the last 2–handle and the fold handles is given by

νi = lk(L,~ci) =
1

2

(〈
κ,~ci

〉
Σ

+

g∑
i=1

[
nai(κ)nbi(~ci) + nai(~ci)nbi(κ)

])
which follows from a similar count of crossings as in the proof of equation (6.2) in
Lemma 6.4. Note that 〈κ,~ci〉Σ appears with positive sign since the last 2–handle is
attached above the fold handles. Altogether, the linking matrix takes the form

0 1
1 λ

0 . . . 0
ν1 . . . νl

0 ν1
...

...
0 νl

lk(~ci,~cj)


where lk(~ci,~cj) is given by equation (9.5).

Now let us look at the 2–cycles in the handle complex of X. As before, these
contain F and KS but there might be an extra cycle caused by the last 2–handle.
Observe that ∂2L ∈ C1(X) corresponds to [κ] ∈ H1(Σ) under the identification
C1(X) ∼= H1(Σ) which follows just as in the case of the fold handles from the
definition of ∂2 and Remark 6.3. So a relation of the form

d[κ] =
∑
i

αi[~ci] ∈ H1(Σ) (9.7)
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gives rise to a 2–cycle dL −
∑

i αi~ci in the handle complex. But by Lemma 9.10
such a relation exists if and only if the fiber class [Σ] ∈ H2(X) is essential. We thus
arrive at the following conclusion.

Lemma 9.13. If [Σ] ∈ H2(X) is torsion, then QX is isomorphic to Qred
S .

Proof. In this situation the last 2–handle does not contribute a 2–cycle so that the
2–cycle group of X is the same as that of Z. According to Proposition 9.6 the
restricted linking form is isomorphic to Z⊕QS and Proposition A.5 implies that

QX ∼=
(
(0)⊕QS

)red ∼= Qred
S .

Note that the passage to the reduced form is where the fiber class is killed (rationally)
since it is contained in the radical of QZ .

So if the fiber class is torsion, then the last 2–handle does not cause any problems
and the intersection form of X can be computed solely in terms of S. In the
case when the fiber is essential, we have gathered all the necessary information
to compute QX . Given a relation of the form (9.7) we get an additional 2–cycle
C = dL −

∑
i αici and the 2–cycle group is given by Z2 ⊕ KS where the first

summand is now generated by F and C (not L!). Unfortunately, the expressions
for the linking of C with itself and elements of KS are not very enlightening. For
example, the self-linking is given by

γ = lk(C,C) = d2λ+
∑
i

α2
iff(ci)− 2d

∑
i

αilk(L,~ci)

where ff(ci) is the framing coefficient of the corresponding fold handle. However,
since the fiber 2–handle does not link the fold handles, we have lk(F,C) = d so that
the linking form on the 2–cycles takes the form

0 d
d γ

0 . . . 0
∗ . . . ∗

0 ∗
...

...
0 ∗

QS


and in order to obtain the intersection form of X we have to divide out this form by
its radical. In general, this is all we can say but there is one more special case where
a more concise description is available, namely if d = 1. The proof of Lemma 9.10
shows that this is equivalent to the primitiveness of the fiber class. In this situation
the unknown contributions in the above matrix can be removed by a base change
and we obtain the following statement.

Lemma 9.14. If [Σ] ∈ H2(X) is primitive, then QX is isomorphic to
(

0 1
1 γ

)
⊕Qred

S .

Finally, we note that the discussion of the intersection form also gives us a little
more information about the group H2(X). Indeed, the intersection form is defined
on H2(X)/tors which is related to the Kred

S = KS/rad(QS) as follows.

Corollary 9.15. Depending on whether [Σ] ∈ H2(X) is torsion or essential we have

H2(X)/tors ∼= Kred
S or H2(X)/tors ∼= Kred

S ⊕ Z2.
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9.2 Betti Numbers and an Obstruction for Trivial Mon-
odromy

We now derive formulas for the Betti numbers of X and use them to produce an
obstruction for surface diagrams to have trivial monodromy. The formulas involve
the following quantities.

• rk(S) : the rank of the subgroup 〈c1, . . . , cl〉 ⊂ H1(Σ), called the rank of S

• rk(QS) : the rank of the symmetric bilinear form QS defined in equation (9.4)

• δ ∈ {0, 1} : defined to be zero if [Σ] ∈ H2(X) is torsion and one otherwise.

Lemma 9.16. The Betti numbers of X are given by

b1(X) = 2g(Σ)− rk(S)− (1− δ)
b2(X) = rk(QS) + 2δ.

Proof. Recall from Lemma 9.1 that

H1(X) ∼= H1(Σ)/〈c1, . . . , cl, κ〉.

Moreover, it follows from Lemma 9.10 that δ = 0 if and only if κ is linearly indepen-
dent of the vanishing cycles. The formula for b1(X) follows. The claim about b2(X)
follows from Corollary 9.15 since rk(QS) = rk(Kred

S ).

Corollary 9.17. If S = (Σ; c1, . . . , cl) has trivial monodromy, then

l = 2 rk(S) + rk(QS)− 2.

In particular, we have l ≥ 2 rk(S)− 2.

Proof. According to equation (9.1) we have

χ(X) = 2− 2b1(X) + b2(X) = 6− 4g(Σ) + l.

Inserting the expressions for b1(X) and b2(X) from Lemma 9.16 and solving for l
finishes the proof.

So roughly speaking, if S is supposed to describe a closed 4–manifold, then only
every second curve in S is allowed to generate a new class in H1(Σ). We illustrate
this obstruction for trivial monodromy in a simple example.

Example 9.18. Consider the surface diagram Cg = (Σg; c1, . . . , c2g), g ≥ 2, shown
in Figure 36. This very symmetric diagram is obtained from a non-separating chain
of length 2g − 1 in Σg by adding one extra curve c2g which produces a W–cycle. In
particular, we have rk(Cg) = 2g−1 and Corollary 9.17 shows that Cg must have non-
trivial monodromy for g ≥ 3. On the other hand, C2 agrees with the diagram Ch2,4

from Example 6.9 where we saw that it actually has trivial monodromy.
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c1 c3 c2g−3 c2g−1

c2 c4 c2g−4 c2g−2

c2g

Figure 36: The surface diagram Cg from Example 9.18.

9.3 Spin and Spinc Structures

So far we have focused on computations of homotopy invariants of Z and X. We now
shift our attention toward structures on their tangent bundles, namely spin and spinc

structures. Recall that a spin structure on an oriented Riemannian manifold M of di-
mension n can be considered as a lift of the classifying map M → BSO(n) of the tan-
gent bundle to BSpin(n). In this picture two spin structures are isomorphic if their
corresponding lifts are homotopic. We denote the set of isomorphism classes of spin
structures by Spin(M). We say that M is spin if it admits a spin structure which is
equivalent to the vanishing of the second Stiefel–Whitney class w2(M) ∈ H2(M ;Z2).
Moreover, if M is spin, then Spin(M) is a torsor over H1(M ;Z2), that is, it admits a
free and transitive action of this group. More precisely, for ξ, ξ′ ∈ Spin(M) their dif-
ference is measured by a class δM (ξ′, ξ) ∈ H1(M ;Z2), and for fixed ξ the map δM (·, ξ)
is a bijection between Spin(M) and H1(M ;Z2).

The discussion of spinc structures follows the same pattern. In the definition
one only has to replace Spin(n) with the group Spinc(n) = (Spin(n)× S1)/Z2. It is
known that M admits a spinc structure if and only if w2(M) is the mod 2 reduction of
a class in H2(M ;Z), and if so, then the set of equivalence classes of spinc structures
Spinc(M) is a torsor over H2(M ;Z). The difference of s, s′ ∈ Spinc(M) is measured
by a class ∆M (s′, s) ∈ H2(M ;Z). An extra feature is that each s ∈ Spinc(M) comes
equipped with a complex line bundle det(s), the so called determinant line bundle,
whose first Chern class is denoted by c1(s).

While spin structures fundamental objects in manifold topology, spinc struc-
tures are especially important in the 4–dimensional context. It is well known that
spinc structures exist on all oriented 4–manifolds and that they are closely tied
to the topology of 4–manifolds. For example, for a closed 4–manifold X the set
{c1(s) | s ∈ Spinc(X)} is Poincaré dual to the set of characteristic elements2 for the
intersection pairing. Moreover, spinc structures are basic ingredients in the defini-
tions of the delicate invariants coming from Seiberg–Witten theory and Heegaard–
Floer theory.

9.3.1 Spin Structures and Surface Diagrams

We first discuss how spin structures can be described in terms of surface diagrams.
Our approach is essentially the same as that taken by Stipsicz in [60] who character-
izes spin structures on (total spaces of) Lefschetz fibrations in terms of their vanish-
ing cycles by analyzing the handle decomposition induced by Lefschetz fibrations.

2ξ ∈ H2(X) is called characteristic if x · x ≡ ξ · x mod 2 for al x ∈ H2(X).
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Since the structure of the handle decompositions obtained from simple wrinkled fi-
brations only differs in the framings, the arguments in [60] can be translated to this
setting almost word by word.

As a preparation, we need to recall some more generalities about spin structures.
As before, let M be an oriented Riemannian manifold. If K ⊂ M is an oriented
submanifold with trivial normal bundle, then a trivialization of the normal bundle
induces a restriction map Spin(M) → Spin(K). In particular, if K has codimen-
sion ≤ 1, then the normal bundle is canonically trivialized (by the orientation and
Riemannian metric of M) and spin structures on M have well-defined restrictions
to K. Now suppose that M = M1 ∪N M2 where Mi ⊂ M are codimension 0 sub-
manifolds with common boundary ∂Mi = N . Then any ξ ∈ Spin(M) restricts
to ξi = ξ|Mi ∈ Spin(Mi), i = 1, 2, such that ξ1|N = ξ2|N where N is equipped with
the boundary orientation of M1. Moreover, if ξ′ ∈ Spin(M) satisfies ξ′|Mi = ξ|Mi ,
i = 1, 2, then the difference class δM (ξ′, ξ) must be contained in the image of the
connecting homomorphism δ : H0(N ;Z2) → H1(M ;Z2) of the Mayer–Vietoris se-
quence of the decomposition M = M1 ∪N M2. In particular, if N is connected, then
this image is trivial so that ξ ∈ Spin(M) is uniquely determined by its restrictions
to Mi. Conversely, any pair ξi ∈ Spin(Mi) with ξ1|N = ξ2|N can be glued together
to a spin structure on M and the gluing is unique if N is connected.

Finally, we need to be familiar with spin structures in low dimensions. First of
all, in dimension one it is enough to understand the circle, which admits two spin
structures for each orientation: there is the trivial spin structure induced from the
(unique) spin structure on the disk, and another one which does not extend over any
surface bounded by the circle. In order to understand spin structures on an oriented
surface Σ we argue as follows. Given ξ ∈ Spin(Σ) there is a well defined map

qξ : H1(Σ;Z2)→ Z2

which has the property that for a homology class represented by an oriented simple
closed curve c ⊂ Σ we have

qξ([c]) =

{
1 if ξ|c is non-trivial

0 if ξ|c is trivial

and satisfies the equation

qξ(x+ y) = qξ(x) + qξ(y) + 〈x, y〉2 (9.8)

where 〈·, ·〉2 is the intersection form on H1(Σ;Z2). Functions from H1(Σ;Z2) to Z2

satisfying equation (9.8) are called quadratic refinements of the intersection form
of Σ, or for brevity just a quadratic refinements on Σ. It is well known that the send-
ing ξ to qξ gives a bijective correspondence between spin structures and quadratic
refinements on Σ [38].

After these preliminaries, we return to the notation set up in the beginning of
the chapter on page 101 and attempt to describe spin structure on Z in terms of S.

Proposition 9.19. Spin structures on Z correspond bijectively to those on Σ whose
restriction to each vanishing cycle ci in S is trivial. Moreover, Z is spin if and only
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if any relation of the form ci1 + · · ·+ cir = 0 ∈ H1(Σ;Z2) implies∑
k<l

〈cik , cil〉2 = 0. (9.9)

As mentioned above, the proof is essentially the same as that of [60, Theorem 1.1]
with only minor adjustments. For the reader’s convenience we repeat the arguments.

Proof. We think of Σ as a subspace of Z and try to extend a given spin struc-
ture ξ ∈ Spin(Σ) to all of Z. Obviously, ξ extends uniquely to Σ × D2 and it
remains to understand when we can extend further across the fold handles. Since
the fold handle corresponding to ci is attached with fiber framing, it follows that the
unique spin structure on the handle induces the trivial spin structure on ci. Con-
sequently, ξ extends across the fold handles if and only if it restricts to the trivial
spin structure on each ci. Conversely, every spin structure on Z restricts to Σ and is
trivial on all vanishing cycles because these spin bound the cores of the fold handles.

For the second claim we work with quadratic refinements. Note that for any
quadratic refinement q on Σ satisfies

q(ci1 + · · ·+ cir) = q(ci1) + . . . q(cir) +
∑
k<l

〈cik , cil〉2 (9.10)

for an arbitrary sum of vanishing cycles. This follows from iterating equation (9.8).
Now, if Z is spin and ξ ∈ Spin(Σ) is the restriction of a spin structure on Z,
then the discussion above shows that the corresponding quadratic refinement sat-
isfies qξ(ci) = 0 which implies the condition (9.9). On the other hand, if condi-
tion (9.9) is satisfied, then we can define a quadratic refinement on Σ as follows.
Let V ⊂ H1(Σ;Z2) be the subspace generated by the vanishing cycles and let V ′

be a complementary subspace. We first choose a basis for V consisting of vanishing
cycles ci1 , . . . , cir and define q(cij ) = 0. Then we choose a basis for V ′ and define q
randomly on the basis elements. Finally, we extend q to H1(Σ) according to equa-
tion (9.8) to obtain a quadratic refinement. In order to see that the corresponding
spin structure on Σ extends to Z, we have to show that for every vanishing cycle cj
that was not among the a basis elements we still have q(cj) = 0. But this follows
from condition (9.9) and equation (9.10).

The condition (9.9) has another interpretation. According to Wu’s formula, for
a 4–manifold M the second Stiefel–Whitney class w2(M) evaluates on an element
of H2(M ;Z2) as the mod 2 self-intersection. In particular, M is spin if and only if all
mod 2 self-intersections vanish. Now, an easy adaption of the proofs of Lemma 9.4
and Proposition 9.6 to the mod 2 setting shows that

(a) the left hand side of equation (9.9) is the mod 2 self intersection of a class
in H2(Z;Z2) determined by the relation ci1 + · · ·+ cir = 0 ∈ H1(Σ;Z2), and

(b) H2(Z;Z2) is generated by such classes and the class of the fiber Σ ⊂ Z (which
obviously has trivial self-intersection).

This point of view also indicates how to pass to X.

Lemma 9.20. X is spin if and only if Z is spin and either [Σ]2 = 0 ∈ H2(X;Z2)
or there is a class x ∈ H2(X;Z2) with (x · [Σ]2)2 = 1 and (x · x)2 = 0.
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The following proof is inspired by that of [60, Theorem 1.3].

Proof. If X is spin, then the other conditions are obviously satisfied. Conversely,
assume first that Z is spin and that Σ is trivial in H2(X;Z2). Then the homology
sequence of the pair (X,Z) shows that the map H2(Z;Z2) → H2(X;Z2) is surjec-
tive. In particular, all mod 2 self-intersections in X can be computed in Z and must
therefore be even. So X is spin. Now suppose that Z is spin but [Σ]2 = [Σ′]2 is non-
trivial in H2(X;Z2). Then we can find a (possibly non-orientable) surface F ⊂ X
that intersects Σ′ transversely in one point. A neighborhood N of Σ′ ∪ F can be
identified with a plumbing of D2–bundles and its mod 2 intersection form is repre-
sented by the matrix ( 0 1

1 n ) where n is the mod 2 self-intersection of F . In particular,
N is spin if and only n = 0. Moreover, we can assume that the complement X \N is
a subset of Z so that every spin structure on Z induces one on ∂N . Now, since the
intersection form of N is unimodular (over Z2), an investigation of the cohomology
sequence of the pair (N, ∂N) shows that H1(N ;Z2) → H1(∂N ;Z2) is surjective.
But this implies that, if N is spin, then every spin structure on ∂N can be extended
over N .

Remark 9.21. Similar results to Proposition 9.19 and Lemma 9.20 have also been ob-
tained independently by Hayano [34, Corollary 5.3] using the handle decompositions
coming from broken Lefschetz fibrations.

Again, the question whether or not the fiber Σ ⊂ X is trivial in H2(X;Z2) is
related to properties of a closing curve κ ⊂ Σ by a mod 2 version of Lemma 9.10.

Lemma 9.22. The fiber Σ ⊂ X is trivial in H2(X;Z2) if and only if the closing
curve κ ⊂ Σ is linearly independent of the vanishing cycles in H1(Σ;Z2).

However, if the fiber is non-zero in H2(X;Z2), then the mod 2 square of a dual
remains mysterious.

9.3.2 Spinc Structures and Simple Wrinkled Fibrations

Next we focus on spinc structures. Here we take a slightly different approach and
establish a relation between spinc structures and simple wrinkled fibrations over S2.
This is done by a minor modification of a construction which was originally used by
Perutz [58, p.1500] in the context of broken Lefschetz fibrations. In fact, elaborating
on Perutz’s ideas, we show in Appendix B how spinc structures interact with a rather
general class of singular fibration structures on closed 4–manifolds.

We briefly summarize the results of Appendix B in the special case of a simple
wrinkled fibration w : X → S2. The first thing to note is that w restricts to a sub-
mersion outside the critical circle Cw and thus induces a spinc structure sw on X \Cw.
It follows from Lemma B.4 that sw does not extend across Cw so that there is no
canonical spinc structure induced by w. But sw can still be used to parametrize
spinc structures on X as follows. Every s ∈ Spinc(X) can be compared to sw after
restricting to X \ Cw. The difference is measured by a class in H2(X \ Cw) whose
Poincaré dual we denote by τw(s) ∈ H2(X, Cw). This construction gives rise to the
so called Taubes map

τw : Spinc(X) −→ H2(X, Cw).
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In Proposition B.1 we show that τw is injective and that its image consists of those
elements in H2(X, Cw) that are mapped to [Cw] ∈ H1(Cw) by the connecting homo-
morphism δ : H2(X, Cw) → H1(Cw) of the homology sequence of the pair (X, Cw).
Here we use the orientation on Cw obtained by lifting the orientation of the critical
image w(Cw) ⊂ S2 considered as the boundary of the higher genus region. In more
geometric terms, the Taubes map identifies spinc structures on X with homology
classes of “Seifert surfaces” for Cw in X, that is, oriented surfaces with oriented
boundary Cw. This observation together with the fact that all smooth 4–manifolds
admit spinc structures leads to the following surprising conclusion.

Lemma 9.23. Let w : X → S2 be a simple wrinkled fibration. Then the critical
circle Cw ⊂ X is null-homologous.

Now suppose that S is a surface diagram for (X,w). If we want to describe spinc

structures on X in terms of S, then the above discussion tells us to understand how
the critical circle Cw and its Seifert surfaces appear in S. Unfortunately, this is not
as straightforward as one might hope and remains an open problem at the time of
writing.

9.4 Smooth 4–Manifolds and Torelli Groups

Using what we have learned about homotopy information in surface diagrams, we
can finally prove our last main result.

Theorem 1.5. Let w : X → S2 be a simple wrinkled fibration with surface dia-
gram S = (Σ; c1, . . . , cl). If X is simply connected and [Σ] = 0 ∈ H2(X), then the
homeomorphism type of X is determined by the homology classes [ci] ∈ H1(Σ).

Note that the condition on the fiber does not put any restrictions on X. Indeed,
according to Theorem 4.2, the homotopy class of constant maps X → S2 contains
simple wrinkled fibrations and their fibers are clearly null-homologous in X.

Proof. According to the theorems of Freedman, Donaldson and Serre stated in the
introduction, the homeomorphism type of X is determined by its Euler character-
istic, signature, and type (that is, whether X is spin or not). As we have seen
in equation (9.1) and Corollary 9.12, χ(X) depends only on the genus of Σ and
the number of curves in S, while σ(X) agrees with the signature of QS which, in
turn, only depends on the homology classes of the vanishing cycles. As for the type,
since Σ is null-homologous in X, Lemma 9.20 shows that X is spin if and only if Z is
spin. But this depends only on the mod 2 reductions [ci]2 ∈ H2(Σ;Z2) according to
Proposition 9.19.

What makes Theorem 1.5 interesting is that the diffeomorphism type of X a
priori depends on the isotopy classes of the vanishing cycles. In particular, it is
conceivable that a homologous substitution, that is, changing some vanishing cycles
in S within their homology classes, might produce an exotic copy of X.

Definition 9.24. Two surface diagrams (Σ; c1, . . . , cl) and (Σ; c′1, . . . , c
′
l) are called

homologous if [ci] = [c′i] ∈ H1(Σ) (for some choice of orientations) for i = 1, . . . , l.
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c1

c3

c2

c6

c5

c4

S S′

c1

c3

c5

c4

c2

c′6

Figure 37: Homologous surface diagrams.

On a different note, the difference between homology and isotopy for simple
closed curves in Σ is measured by the so called Torelli group I(Σ) – this is the
subgroup of Mod(Σ) consisting of all mapping classes whose action on homology
is trivial. Indeed, two non-separating simple closed curves in Σ are homologous if
and only if they can be mapped onto each other by an element of I(Σ) (see [24,
Proposition 6.14]). The Torelli groups can be considered as the non-linear and more
mysterious parts of mapping class groups and they are an active area of research.
Not surprisingly, their structure is quite complicated; for example, it is not known
whether the I(Σg) is finitely presented for g ≥ 3.3 With a good amount of optimism,
one can take Theorem 1.5 as a pointer that there might be a relation between Torelli
groups and exotic smooth structures on 4–manifolds. But as usual in 4–manifold
topology, there are subtleties. First, it is unlikely that the monodromy of S depends
only on the homology classes of the vanishing cycles and homologous substitutions
could destroy trivial monodromy. (It is interesting to note that such a failure of
trivial monodromy would happen below the radar of Corollary 9.17.) Second, even
if some particular substitution preserves the trivial monodromy condition, and thus
actually produces a new closed 4–manifold, it might change the fundamental group as
in Example 9.25 below. Nevertheless, if one manages to control the monodromy and
the fundamental group, then homologous substitutions can produce exotic copies.

Example 9.25. We consider the two surface diagrams

S = (Σ3; c1, c2, c3, c4, c5, c6) and Slog = (Σ3; c1, c2, c3, c4, c5, c
′
6)

shown in Figure 37. Obviously, these diagrams are homologous. Indeed, Slog is
obtained from S by substituting c6 with c′6 and these curves bound a two-holed
torus T ⊂ Σ3. Moreover, both diagrams are known to have trivial monodromy
and, since the genus is three, they describe unique closed 4–manifolds. In Exam-
ple 7.11 we saw that S represents S1 × S3, while Slog appeared in Example 6.9
under the name Ch3,4 (the double of a non-separating chain of length 4 in Σ3) and it
describes T 2 × S2. In particular, we see that the fundamental groups are different.

However, this substitution is interesting for another reason. If we write T 2 × S2

as S1 × (S1 × S3), then a relation between T 2 × S2 and S1 × S3 becomes appar-
ent. Indeed, since S1 × S2 is obtained from S3 by Dehn surgery on a 0–framed
unknot U ⊂ S3, we see that T 2 × S2 is obtained from S1 × S3 by “S1 times Dehn
surgery”; this operation is also known as a logarithmic transformation (of multi-
plicity 0) along the embedded torus S1 × U ⊂ S1 × S3 (see [32, p.310]). Another
embedded torus T̂ ⊂ S1 × S3 is visible in the surface diagram S. It is obtained

3I(Σ2) is a countably generated free group [49] while I(T 2) is trivial [24, Theorem 2.5].
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by capping off the holed torus T bounded by c2 and c4 using the cores of the fold
handles. Moreover, it follows from Proposition 9.6 that T̂ has trivial self-intersection
(T̂ is represented by c2 + c4 ∈ KS and the right hand side of equation (9.4) vanishes
its square since c2 and c4 are disjoint.) We suspect that the tori T̂ and S1 × U
are isotopic and that the substitution (c6)  (c′6) corresponds to the logarithmic

transformation on T̂ . Unfortunately, we have been unable to prove this so far.

Altogether, it seems feasible to realize some logarithmic transformations as ho-
mologous substitutions. Since it is well known that logarithmic transformations can
produce exotic copies (see [32, Ch. 3.3], for example), this is one possible approach
to construct exotic 4–manifolds via homologous substitutions. We plan to continue
this train of thought in future research.
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Appendix A

Kirby Diagrams and
Intersection Forms

In this appendix we show how the intersection form of a 4–manifold can be deter-
mined from a Kirby diagram. This material is probably well known among experts
but we could not find an account in the literature that covers the most general
situation with the presence of 1– and 3–handles. We assume basic knowledge of
handlebody theory and Kirby diagrams and we use the same notation as in Sec-
tion 2.1.

Let X be a 4–dimensional handlebody and let (U ,L) be a Kirby diagram for the
2–skeleton X≤2. We orient the cores of all handles and consider the handle complex.
The orientations of the cores induce orientations for all components of U and L so
that we have well defined linking numbers. Recall that the linking number of two
disjoint, oriented knots K,L ⊂ S3 is an integer lk(K,L) ∈ Z which has several
different descriptions. We will use the following two:

• If Σ is a Seifert surface for K, then lk(K,L) = [Σ]·[L] (the intersection number
of Σ and L computed in S3 \K). (see [32, Proposition 4.5.5])

• The group H1(S3 \K) is generated by a right-handed meridian µ for K and
we have [L] = lk(K,L)[µ] ∈ H1(S3 \K). (see [32, Definition 4.5.1])

The general idea is then to relate the intersection form of X to linking information
in the Kirby diagram, more precisely to the linking form of L. This is the symmetric
bilinear form on the free Abelian group generated by the components of L defined
by the matrix of linking numbers lk(Li, Lj) where lk(Li, Li) = fi. The following well
known fact is a prime example for this connection between 4–dimensional topology
and knot theory (see [32, Proposition 4.5.11]).

Proposition A.1. Let X be a 4–dimensional handlebody without 1– and 3–handles
and let L be the framed link which constitutes the Kirby diagram of X. Then the
intersection form of X is isomorphic to the linking form of L.

Proof (sketch): Since there are no 1– and 3–handles, the handle complex has trivial
differentials and H2(X) is isomorphic to the 2–chains C2(X). Moreover, since the
2–handles are in one to one correspondence with the components of L, the linking
form can be considered as a form on the 2–chains of the handle complex. Now, each
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component Li bounds a Seifert surface Σi in S3 which can be capped off to a closed
surface Σ̂i in X by adding the core of the 2–handle attached along Li. The thus
obtained surfaces, or rather their homology classes, constitute a basis of H2(X) and
their intersection numbers can be related to linking numbers by carefully pushing
the Seifert surfaces into D4. For more details see [32, Proposition 4.5.11].

In the general situation where X might have 1– and 3–handles, the linking form
of L can still be considered as a form

lk: C2(X)× C2(X) −→ Z

but the relation to the intersection form becomes less obvious. This is mostly because
the computation of H2(X) from the handle complex

C3(X)
∂3−→ C2(X)

∂2−→ C1(X)

becomes non-trivial. We first establish a generalization of Proposition A.1 which
allows the presence of 1–handles.

Proposition A.2. Let X be a 4–dimensional handlebody with Kirby diagram (U ,L).
If there are no 3–handles, then the intersection form of X is isomorphic to the linking
form of L restricted to the 2–cycles ker ∂2 ⊂ C2(X).

For the lack of a better name, we will call the restriction of lk to ker ∂2 the
restricted linking form of L. For the proof of Proposition A.2 we will need two
lemmas that relate the algebra of the handle complex to the geometry of the Kirby
diagram. The first one gives a description of the differential ∂2 : C2(X)→ C1(X) in
terms of linking numbers.

Lemma A.3. Using the canonical identification of C2(X) and C1(X) with the free
Abelian groups generated by the components of L and U we have

∂2Li =
∑
j

lk(Li, Uj)Uj .

Proof. By definition, the coefficient of Uj in ∂2Li is given by the intersection number
of the belt sphere of the 1–handle corresponding to Uj and the attaching sphere of
the 2–handle corresponding to Li computed in ∂X≤1. But the belt sphere appears
in the Kirby diagram as a spanning disk for Uj while the attaching sphere is Li itself.
So the relevant intersection number agrees with lk(Li, Uj).

We also need a geometric interpretation of what it means for a formal sum
ξ =

∑
i kiLi ∈ C2(X) to be a 2–cycle in the handle complex. For that purpose, we

construct a framed link L(ξ) in S3 \U by taking ki parallel copies of Li with respect
to the framing and giving each parallel copy the same framing as Li. In fact, it
is technically more convenient to fix a thin tubular neighborhood νU of U and to
construct L(ξ) in the complement of νU .

Lemma A.4. For ξ =
∑

i kiLi ∈ C2(X) the following statements are equivalent:

(i) ξ is a 2–cycle in the handle complex, that is, ∂2ξ = 0.
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(ii) L(ξ) is null-homologous in S3 \ νU .

(iii) L(ξ) is null-homologous in ∂X≤1.

Proof. We first argue that (ii) and (iii) are equivalent, which follows from the
interpretation of ∂X≤1 as 0–surgery on U (as explained on page 15). In detail,
there is an inclusion S3 \ νU ↪→ ∂X≤1 which is known to induce a surjection
H1(S3 \ νU)� H1(∂X≤1), and since U is an unlink, this map is actually an isomor-
phism (see [32, Proposition 5.3.11]). To establish the equivalence of (i) and (ii) we
note that H1(S3 \ νU) is free Abelian, generated by right-handed meridians of the
components of U – let µj be such a meridian for Uj . Using the meridian description
of linking numbers it is easy to see that

[Li] =
∑
j

lk(Li, Uj)[µj ] ∈ H1(S3 \ νU)

and Lemma A.3 combined with the fact that [L(ξ)] =
∑

i ki[Li] ∈ H1(S3 \ νU)
implies the claim.

Proof of Proposition A.2. The proof uses the same ideas as that of Proposition A.1
but has some additional twists (compare [32, Proposition 4.5.11]). Since there are no
3–handles, the handle complex shows that H2(X) is isomorphic to ker ∂2. To obtain
a concrete isomorphism, we fist have to choose a basis ξ1, . . . , ξk of ker ∂2. Next,
according to Lemma A.4 the links L(ξj) are null-homologous in S3 \ νU and thus
bound Seifert surfaces Σi ⊂ S3 \ νU – for convenience, we assume that the L(ξi) are
pairwise disjoint and intersect the Σj transversely. Since the parallel copies of the Li
in L(ξj) were obtained using the framing of Li, we can cap them off with parallel

copies of the core in the corresponding 2–handle to obtain a closed surface Σ̂i in X.
The map sending ξi to [Σ̂i] then gives an isomorphism ker ∂2 → H2(X).

It remains to show that [Σ̂i] · [Σ̂j ] = lk(ξi, ξj). For i 6= j we perturb Σ̂j as follows.
We take a collar of the form ∂X≤1 × [0, 1], push Σj into S3 \ νU × {ε} for some
small ε, add the cylinder L(ξj)× [0, ε], and cap off with the cores of the 2–handles.

The result is a closed surface Σ̂′j ⊂ X isotopic to Σ̂j and transverse to Σ̂i. Counting

intersection points, we see that [Σ̂i] · [̂(Σj)] = [Σi] · [L(ξj)] where the right hand
side is an intersection number in S3 \ L(ξi). But the expression [Σi] · [L(ξj)] also
computes the linking number of L(ξi) and L(ξj))

1 which is just lk(ξi, ξj). For i = j
we have to use a slightly more complicated perturbation. Instead of using the
cylinder L(ξj)× [0, ε], we choose an isotopy that pushes L(ξj) off itself according to
the framing and take the trace of this isotopy in Σ3 \ νU × [0, ε]. Then we cap off
to a closed surface Σ̂′j using copies of the cores of the 2–handles, which are disjoint

from those used in the construction of Σ̂j . The same arguments as above now show

that [Σ̂j ] · [Σ̂j ] = lk(ξj , ξj).

Finally, we turn to the case where X is also allowed to have 3–handles, but we
require that X is closed. In order to describe the intersection form of X we need
some purely algebraic terminology. If H is an Abelian group of finite rank equipped

1 Note that this does not immediately follow from the expression of linking numbers in terms
of Seifert surfaces for knots. The generalization to Seifert surfaces for links is given in Cromwell’s
book [12, Theorem 5.7.3].
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with a symmetric bilinear form Q, then the radical of Q is the subgroup of H defined
by

rad(Q) = {v ∈ V | q(v, w) = 0 for all w ∈ V } .

Furthermore, Q descends to a form on Hred = H/rad(Q) which we denote by Qred

and call the reduced form of Q. Note that the radical has the property that
if kh ∈ rad(Q) for some k 6= 0, then h itself must be contained in rad(Q). In
particular, rad(Q) contains the torsion of H and Hred is torsion free. Also, the
radical of Qred is obviously trivial, so that Qred is non-degenerate. As an example,
consider the intersection pairing Q̃X of a closed 4–manifold X. Then by Poincaré du-
ality the radical is precisely the torsion subgroup of H2(X) and Q̃red

X is by definition
just the intersection form QX .

Proposition A.5. Let X be a closed 4–dimensional handlebody with Kirby dia-
gram (U ,L). Then the intersection form QX is isomorphic to the reduced restricted
linking form of L, that is, the reduced form of lk : ker ∂2 × ker ∂2 → Z.

Proof. The idea is to relate the intersection forms of X and its 2–skeleton X≤2.
For the sake of cleaner notation we let V = X≤2. We first observe that the inclu-
sion V ↪→ X induces a surjection H2(V ) → H2(X), which can either be seen from
the handle complex or from the homology sequence of the pair (X,V )2. Since the
intersection pairing is natural under codimension 0 embeddings, the following purely
algebraic lemma applies.

Lemma A.6. Let ϕ : H̃ → H be a surjective homomorphism of Abelian groups. If Q
is a symmetric bilinear form on H and Q̃ = ϕ∗Q is its pullback to H̃, then Q̃red

and Qred are isomorphic via an isomorphism induced by ϕ.

Proof. It follows from the surjectivity of ϕ and the definition of Q̃ that

rad(Q̃) = ϕ−1
(
rad(Q)

)
so that ϕ induces a homomorphism ϕred : H̃red → Hred which is again surjective
and preserves the reduced forms. Moreover, since the kernel of ϕ is contained in the
radical of Q̃, ϕred is also injective.

In the situation above, this means that QX is isomorphic to Qred
V , but since

V = X≤2 has no 3–handles, QV is isomorphic to the restricted linking form of L by
Proposition A.2. This finishes the proof of Proposition A.5

2 Excision and Poincaré duality imply that H2(X,V ) ∼= H2(X≥3) which vanishes since X≥3 is
homotopy equivalent to a wedge of circles.
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Appendix B

Spinc Structures and the Taubes
Map

In this appendix we will explain the details behind a short remark in a paper of
Perutz [58, p.1500], which gives a geometric description of the set of Spinc structures
on a given 4–manifold in the presence of a broken Lefschetz fibration. We will work in
a slightly more general setting and allow our maps to have fold and cusp singularities,
both indefinite and definite, as well as Lefschetz and achiral Lefschetz singularities.
Note that we do not put any restriction on how the critical locus is mapped into the
base since this turns out to be irrelevant for the discussion. For the lack of a better
name we shall call such maps singular fibrations.

For simplicity we only consider the case when X is a closed, oriented 4–manifold,
although a generalization to the case when X has non-empty boundary can be
worked out as well. If f : X → B is such a singular fibration and S ⊂ X denotes
the 1–dimensional part of the critical locus of f (consisting of the folds and cusps),
then the relation to Spinc structures is given by the so called Taubes map

τf : Spinc(X)→ H2(X,S)

defined in equation (B.9) below. Recall that our convention is to orient S so that
the normal bundle of a fold arc in B is oriented in the direction of increasing Euler
characteristic of the fibers. Our goal is to prove the following.

Proposition B.1. The Taubes map τf : Spinc(X) → H2(X,S) is injective with
image ∂−1([S]) where δ : H2(X,S)→ H1(S) is the connecting homomorphism of the
homology sequence of the pair (X,S).

In more geometric terms, this means that spinc structures on X correspond to
homology classes of Seifert surfaces for S in X, that is, orientable surfaces in X
bounded by S. A similar idea first appeared in a paper of Taubes [64] (in the
closely related context of near-symplectic 4–manifolds) and was later exploited by
Perutz [58] in his approach to construct smooth invariants of 4–manifolds from
broken Lefschetz fibrations – Perutz also introduced the name Taubes map. The
author would like to thank David Gay for bringing this aspect of [58] to his attention
and Tim Perutz for explaining his reference to [64].
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Partial Spinc Structures of Singular Fibrations

As in Section 9.3, we use the classifying space interpretation of spinc structures. We
begin by discussing some further particulars. Let M be an oriented n–manifold,
implicitly equipped with a Riemannian metric. Recall that the set Spinc(M) of (iso-
morphism classes of) spinc structures has a free and transitive action of H2(M). We
identify H2(M) with the set of isomorphism classes of complex line bundles via the
first Chern class and denote the action of L →M on s ∈ Spinc(M) by s⊗L. The ef-
fect of this action on the determinant line bundles is given by det(s⊗L) = det(s)⊗L2.
In this language, the difference map

∆M : Spinc(M)× Spinc(M)→ H2(M)

takes the form ∆M (s ⊗ L, s) = c1(L). The difference map is natural in the sense
that for a smooth map φ : M → N (for which pulling back spinc structures makes
sense) and s, s′ ∈ Spinc(N) we have ∆M (φ∗s, φ∗s′) = φ∗∆N (s, s′).

Now let X be a closed, oriented 4–manifold. Given a singular fibration f : X → B
we decompose the critical locus as

Cf = P ∪ S

where P is the finite set of Lefschetz and achiral Lefschetz singularities, and S is the
1–dimensional submanifold formed by the folds and cusps. In other words, Cf is a
submanifold of dimension at most one; this terminology will be used from now on.
We denote the vertical distribution by Vf = ker(df) ⊂ TX and we take a horizontal
distribution H given as the orthogonal complement of Vf with respect to some
Riemannian metric on X which we fix once and for all. The trivial but important
observation that f is a submersion outside of its critical locus implies that both V
and H have constant rank 2 on X \ Cf . Moreover, for a regular point p ∈ X the

fibers Hp and Vfp are oriented since dfp : Hp → Tf(p)B is an isomorphism and the

orientation of B pulls back toH, and Vfp is oriented by requiring that TpX = Vfp ⊕Hp
be an oriented sum. This means that we have a splitting

T (X \ Cf ) = V|X\Cf ⊕H|X\Cf (B.1)

of T (X \ Cf ) into two oriented 2–plane fields. Since oriented 2–plane fields can be
identified with complex line bundles, we have exhibited an almost complex struc-
ture Jf on X \ Cf . More precisely, the splitting (B.1) (and the metric on X) re-
duce the structure group of T (X \ Cf ) to SO(2) × SO(2) and, using the standard
identification of SO(2) with U(1), we obtain a reduction to U(1) × U(1) ⊂ U(2)
which gives an almost complex structure. Moreover, using the standard embedding1

U(2) ↪→ Spinc(4) we obtain a Spinc structure s̃f ∈ Spinc(X \ Cf ) whose determinant
line bundle is given by

det(s̃f ) = Λ2
C
(
T (X \ Cf ), Jf

) ∼= V|X\Cf ⊗C H|X\Cf . (B.2)

We want to investigate whether Jf or s̃f can be extended across Cf or at least parts
thereof.

1See [44, p.392f.], for example.
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Extending Spinc Structures and Line Bundles

Abstracting the above situation, we consider a closed, oriented 4–manifold X to-
gether with a partial Spinc structure s defined in the complement of a submani-
fold A ⊂ X of dimension at most one. Since complex line bundles are certainly
more accessible than spinc structures, it would be advantageous if the problem of
extending s across A reduced to merely extending the determinant line bundle det(s).
Fortunately, this is indeed the case in the situation at hand.

Proposition B.2. Let X be a closed, oriented 4–manifold, A ⊂ X a compact sub-
manifold of dimension at most one, and s ∈ Spinc(X \ A). Then the following
statements are equivalent.

(i) s can be extended across A.

(ii) det(s) extends across A.

(iii) c1(s) is contained in the image of the map H2(X)→ H2(X \A).

Furthermore, if either s or det(s) extend across A, then the extensions are unique.

Proof. Obviously, (ii) is equivalent to (iii), and (i) implies (ii). It remains to show
the implication (ii)⇒ (i). So we assume that det(s) can be extended to a complex
line bundle L → X and try to extend s. Note that the extension of det(s) is unique
since the map H2(X) → H2(X \ A) is injective. Indeed, the cohomology sequence
for pairs gives

· · · −→ H2(X,X \A) −→ H2(X) −→ H2(X \A) −→ · · ·

and by Poincaré duality we have H2(X,X \A) ∼= H2(A) = 0.
Now, the extension problem for s is equivalent to the relative lifting problem

BSpinc(4) // BSO(4)× CP∞

X \A //

s

OO

X

TX×L

OOhh
(B.3)

where the dotted arrow indicates the missing piece. Note that we have identified
s, TX and L with their respective classifying maps for brevity of notation. This
problem can be attacked using obstruction theory (see for example [14, Section 7]).

The map BSpinc(4) → BSO(4) × CP∞ is induced from the standard group
homomorphism Spinc(4) → SO(4) × S1 which is known to have kernel Z2.2 It
follows that the map BSpinc(4)→ BSO(4)×CP∞ is a Serre fibration with homotopy
fiber BZ2 ' RP∞ ' K(Z2, 1). The relevant obstructions thus take values in the
homology groups

H i+1
(
X,X \A ; πi(RP∞)

)
which obviously vanish for i 6= 1. Moreover, for i = 1 it follows from Poincaré
duality and the fact that A has dimension at most one that

H2
(
X,X \A ; π1(RP∞)

) ∼= H2(A;Z2) = 0.

2To be precise, recall that Spinc(4) = Spin(4)×Z2 S
1 where (a, ξ) ∼ (−a,−ξ), and that the map

to SO(4)×S1 sends a class [a, ξ] ∈ Spinc(4) to the pair (ρ(a), ξ2) where ρ : Spin(4)→ SO(4) the stan-
dard universal covering map. The kernel of Spinc(4)→ SO(4)×S1 is generated by [1,−1] = [−1, 1].
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Hence, the lifting problem (B.3) can always be solved. Moreover, its solutions can
be parametrized by H1(X,X \A;Z2) which also vanishes for dimension reasons.

Having reduced the problem of extending Spinc structures to extending their
determinant line bundles, the next step is to try and extend line bundles across
submanifolds of dimension at most one.

Lemma B.3. Let X and A be as before and let L → X \A be a complex line bundle.

(i) If A is a finite set of points, then L can be uniquely extended across A.

(ii) If A is an oriented circle, then there is an integer valued obstruction o(L, A)
for extending L whose vanishing guarantees a unique extension.

Proof. If we identify complex line bundles with their first Chern classes, then the
cohomology sequence of the pair (X,X \ A), Poincaré duality, and the fact that A
has dimension at most one provide an exact sequence

0 −→ H2(X)
i∗−→ H2(X \A)

δ−→ H3(X,X \A) ∼= H1(A).

If A is zero dimensional, then i∗ is an isomorphism and the first claim follows. On
the other hand, if A is an oriented circle, then we have

PD
(
δc1(L)

)
= −o(L, A) [A] ∈ H1(A) (B.4)

for some o(L, A) ∈ Z and L extends across A if and only if o(L, A) = 0. Moreover,
since i∗ is still injective, the extension is unique.

The obstruction o(L, A) encountered in the case when A is an oriented circle has
a geometric interpretation. Since X is oriented, the normal bundle of A must be
trivial. In particular, if ν̄A is a closed tubular neighborhood of A (with interior νA),
then ∂ν̄A is a trivial S2–bundle over A and H2(∂ν̄A) is generated by the homology
class [S] of a sphere fiber. (Let us be precise about orientations: ν̄A inherits an
orientation from X and we orient ∂ν̄A as the boundary of ν̄A by the outward nor-
mal first convention. Moreover, given the orientation of A and ∂ν̄A the fiber first
convention specifies an orientation on S.)

Lemma B.4. In the above notation, the obstruction o(L, A) agrees with the Euler
number of the restriction L|S. In particular, L extends across A if and only if L|S
is trivial.

Proof. We first note that the Euler number of L|S is given by 〈c1(L|S), [S]〉. More-
over, we compute

〈c1(L|S), [S]〉S = 〈c1(L|∂ν̄A),PD[S] ∩ [∂ν̄A]〉∂ν̄A
= 〈c1(L|∂ν̄A) ∪ PD[S], [∂ν̄A]〉∂ν̄A
= −[S] · PD c1(L|∂ν̄A).

Next, we observe that we have the following commutative squares:

H2(X \ νA)

PD
��

incl∗ // H2(∂ν̄A)

PD
��

H2(X \ νA, ∂ν̄A)
∂ // H1(∂ν̄A)

H2(X \A)

PD
��

δ // H3(X,X \A)

PD
��

H2(X,A)
∂ // H1(A)
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Note that H1(∂ν̄A) is generated by a class [A′] where A′ is a parallel push off of A;
moreover, our orientation conventions imply that [S] · [A′] = 1. Using this and the
left square we see that

∂ PD c1(L|X\νA) = PD c1(L|∂ν̄A)

=
(
[S] · c1(L|∂ν̄A)

)
[A′] (B.5)

= −〈c1(L|S), [S]〉[A′] ∈ H1(∂ν̄A)

and the right square shows that

∂ PD c1(L) = PD δc1(L) = −o(L, A)[A] ∈ H1(A). (B.6)

In order to compare the expressions in equations (B.5) and (B.6) we consider the
diagram

H2(X \A)

PD
��

∼= // H2(X \ νA)

PD
��

H2(X,A)

∂
��

∼= // H2(X, ν̄A)

∂
��

H2(X \ νA, ∂ν̄A)

∂
��

∼=oo

H1(A)
∼= // H1(ν̄A) H1(∂ν̄A)

∼=oo

where all horizontal maps are induced by inclusions. The lower squares commute by
the naturality of the homology sequence of a pair while the upper square is commu-
tative, essentially by definition. Finally, since both [A] ∈ H1(A) and [A′] ∈ H1(∂ν̄A)
are mapped to the same element in H1(ν̄A), the commutativity of the diagram to-
gether with equations (B.5) and (B.6) implies o(L, A) = 〈c1(L|S), [S]〉.

The Proof of Proposition B.1

With these remarks in place we return to a singular fibration f : X → B. As before
we write Cf = P ∪ S with P and S the 0– and 1–dimensional parts of the critical
locus. By Proposition B.2 and Lemma B.3 the Spinc structure s̃f ∈ Spinc(X \ Cf )
can be uniquely extended across P to a Spinc structure sf ∈ Spinc(X \S). However,
a further extension is not possible.

Lemma B.5. For all connected components Si of S we have o
(

det(sf ),Si
)

= 2.

Proof. Since any component of S contains a fold point, it is enough to prove the
statement for the fold models, that is, we can assume that

f = F± : R4 → R2, (t, x, y, z) 7→ (t, x2 + y2 ± z2).

In this case we have Cf = S = R × {(0, 0, 0)} ⊂ R4 and as a normal sphere fiber
at the origin we take S = {0} × {x2 + y2 + z2 = 1}. A quick calculation shows
that the vertical distribution V = ker(df) is given by the orthogonal complement
of the vector fields (1, 0, 0, 0) and (0, x, y,±z) with respect to the Euclidean metric.
Conversely, this shows that the horizontal distribution H – which was defined as the
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orthogonal complement of V – is canonically trivialized outside the critical locus. In
particular, we see from equation (B.2) that

det(sf ) ∼= V|X\Cf ⊗C H|X\Cf ∼= V|X\Cf .

So by Lemma B.4 it remains to compute the Euler number of V|S . Note that the
Euler number of V|S is given by the total index of section with only isolated zeros.
Such a section is given by the vector field (0, y,−x, 0) which has two isolated zeros
at the poles p± = (0, 0, 0,±1) of S. Since this vector field is also tangent to S, the
total index must be ±χ(S) = ±2 and we have to show that the sign is positive.

This is a tedious exercise in orientation bookkeeping and we first have to set up
some notation. We will have to keep track of two independent signs appearing in F±
and p±, and in order to tell them apart we let pε = (0, 0, 0, ε) where ε = ±1. Note
that ker(dF±) is tangent to S at pε and it is enough to compare the orientations
of ker(dF±|pε) and TpεS

±, where S± is the oriented version of S with respect to F±.
We also let V±p = ker(dF±|p) and H±p = ker(dF±|p)⊥. As a last piece of notation,

we consider an orientation of a real vector space E as elements or(E) ∈ ΛdimEE.
For example, we orient the source and target of F± by

or(R4) = ∂t ∧ ∂x ∧ ∂y ∧ ∂z
or(R2) = ∂u ∧ ∂y

where (t, x, y, z) and (u, v) are the Cartesian coordinates on R4 and R2, respec-
tively. We first determine the orientation of V±ε . Observe that for a general point
p = (t, x, y, z) we have

H±p =
〈
∂t, x∂x + y∂y ± z∂z

〉
and the spanning vectors are mapped as follows:

dF±|p(∂t) = ∂u and dF±|p(x∂x + y∂y ± z∂z) = (x2 + y2 + z2)∂v.

The fiber first convention requires that dF±
(

or(H±pε)
)

= or(R2) = ∂u ∧ ∂v so that

or(H±pε) = ±ε∂t ∧ ∂z,

and furthermore or(V±pε) ∧ or(H±pε) = or(R4) which shows

or(V±pε) = ±ε∂x ∧ ∂y. (B.7)

Now we turn to TpεS
±. Let C± be the critical locus of F±. Of course, the set C± is

independent of the sign, but it turns out that the orientations are different. Indeed,
for F+ the region {v < 0} has empty fibers while the fibers over {v > 0} are
2–spheres. So the Euler characteristic increases in direction of ∂v and the critical
image of oriented by −∂u. It follows that C+ is oriented by −∂t. Similarly, for F−
the fibers over {v < 0} and {v > 0} are pairs of disks and annuli, respectively, so
that C− is oriented by ∂t. It follows from the fiber first convention for the normal
bundle of C± that

or(R4) = or({0} × R3) ∧ or(T0C±) = ±∂t ∧ or({0} × R3)
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B. Spinc Structures and the Taubes Map

from which we see that

or({0} × R3) = ±∂x ∧ ∂y ∧ ∂z.

Finally, we can use the outward normal first convention to determine or(TpεS
±).

The outward normal to S± at pε is ε∂z, so that

or({0} × R3) = ε∂z ∧ or(TpεS
±) = ±∂x ∧ ∂y ∧ ∂z

and thus
or(TpεS

±) = ±ε∂x ∧ ∂y. (B.8)

Comparing equations (B.7) and (B.8) we see that we are done.

Remark B.6. Let us briefly comment on extending the almost complex structure Jf
defined over X \Cf by the splitting (B.1). Although K̃f extends across all Lefschetz
points as a line bundle it does not necessarily extend as a 2–plane field, that is, the
extended line bundle may not embed into the tangent bundle anymore. It is well
known that such an extension is only possible for Lefschetz singularities, but not for
achiral ones (see [32, Chapter 8.4]). As a consequence, the splitting (B.1) as well
as Jf only extend across Lefschetz singularities. In the presence of achiral Lefschetz
singularities, sf does not come from an almost complex structure anymore.

To summarize the discussion above, whenever a singular fibration has folds or
cusps there is no canonical spinc structure. This might seem disheartening at first
sight, but it turns out that there is at least a way to parametrize Spinc structures
on X. Using the difference map and the canonical Spinc structure sf on X \ S we
can define the anticipated Taubes map

τf : Spinc(X)→ H2(X,S)

associated to f by the formula

τf (s) = PD
(
∆X\S(s|X\S , sf )

)
. (B.9)

We can now prove Proposition B.1 which stated that τf is injective and that τf (s)
is mapped to [S] under the connecting homomorphism ∂ : H2(X,S)→ H1(S).

Proof of B.1. For the proof of injectivity observe that τf is the composition of three
maps: restriction of Spinc structures from X to X \S, taking the difference with sf ,
and Poincaré duality. Since the latter two maps are bijections, it suffices to show
that the restriction map Spinc(X)→ Spinc(X \ S) is injective. By the naturality of
the difference map under restrictions, this is equivalent to the injectivity of the map

j∗ : H2(X) → H2(X \ S) induced by the inclusion X \ S
j
↪→ X. This follows from

the cohomology sequence of the pair (X,X \ S); the relevant excerpt reads

· · · → H2(X,X \ S)→ H2(X)→ H2(X \ S)→ · · ·

and the left term vanishes since it is Poincaré dual to H2(S) and S is 1–dimensional.
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B. Spinc Structures and the Taubes Map

It remains to determine the image of τf in H2(X,S). Note that H2(X) acts
on H2(X,S) by sending x ∈ H2(X,S) and ξ ∈ H2(X) to x+ j∗ PD(ξ) and the long
exact homology sequence of the pair (X,S)

H2(S) = 0 −→ H2(X)
j∗−→ H2(X,S)

∂−→ H1(S)→ · · ·

shows that this action is free. It follows from the definitions that τf is H2(X) equiv-
ariant which shows that the image of τf is some coset of H2(X) in H2(X,S). More-
over, these cosets are parametrized by their image under ∂ in H1(S). So altogether
it is enough to compute ∂τf (s) for one s ∈ Spinc(X). Let L be the line bundle
over X \ S determined by s|X\S ∼= sf ⊗L. Then by definition τf (s) is Poincaré dual
to c1(L) and the arguments leading up to equation (B.6) show that

∂τf (s) = ∂ PD(c1(L)) = −
∑
i

o(L,Si)[Si] (B.10)

where Si are the connected components of S. In order to compute o(L,Si) we
observe that, on the one hand, we have

o
(

det(sf ⊗ L),Si
)

= o
(

det(s|X\S),Si
)

= 0

since s|X\S obviously extends across Si. On the other hand, the interpretation of
o as an Euler number (Lemma B.4) shows that o is additive under tensor products
of line bundles and we get

o
(

det(sf ⊗ L),Si
)

= o
(

det(sf )⊗ L2,Si
)

= o
(

det(sf ),Si
)

+ 2o
(
L,Si

)
.

But by Lemma B.5 we have o
(

det(sf ),Si
)

= 2 so that o(L,Si) = −1 and it follows
from equation (B.10) that ∂τf (s) =

∑
i[Si] = [S], which finishes the proof.
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Appendix C

Cancellation in 3–Dimensional
Morse Theory

In this appendix we address the following question about Morse functions in the
special case of orientable 3–manifolds.

Given a Morse function with a canceling pair of critical points, can the
cancellation be realized uniquely in a suitable sense?

This question was studied by Cerf [13, Chapitre III] with an emphasis on dimensions
six and higher, but some of his methods work in all dimensions. We obtain an
affirmative answer to the above question for orientable 3–manifolds in Theorem C.3
below. We also give a 4–dimensional interpretation of Theorem C.3 in Corollary C.5
which is relevant for our proof of the annular correspondence in Chapter 5.

We begin by introducing some notation and terminology. Let (W ;V0, V1) be
an orientable 3–dimensional cobordism, that is, W is an orientable 3–manifold
with ∂W = V0 q V1. We consider smooth maps

f : W −→ [0, 1]

with the properties that Vi = f−1(i) for i = 0, 1 and that f has no critical points on
the boundary; for brevity we usually write I for the unit interval [0, 1]. These maps
form a subspace of C∞(W, I) denoted by F . Moreover, by a homotopy in F (ema-
nating from f) we mean a 1–parameter family of maps ft ∈ F , t ∈ I, (with f0 = f)
which is smooth in the sense that the map (w, t) 7→ ft(w) is smooth. We consider
the set of all homotopies in F as a subset of C∞(W × I, I) and equip it with the
subspace topology.

Now let f ∈ F be a Morse function. Suppose there is a pair of critical points p
and q of index k and k+ 1, respectively, such that f(p) < f(q) and no other critical
point maps to the interval [f(p), f(q)]. The choice of a Riemannian metric on W
gives rise to the ascending manifold Ã of p and descending manifold D̃ of q. We fix
an intermediate level set Σ = f−1(σ), where f(p) < σ < f(q), and denote by

a = Ã ∩ Σ and d = D̃ ∩ Σ

the ascending and descending spheres in Σ, which are embedded spheres in Σ
with dim(a) = 2 − k and dim(d) = k. We also consider truncated versions of
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C. Cancellation in 3–Dimensional Morse Theory

the ascending and descending manifolds

A = Ã ∩ {f ≤ σ} and D = D̃ ∩ {f ≤ σ}

which constitute embedded disks in W with ∂A = a and ∂D = d.

Definition C.1. Two critical points p and q as above are called a canceling pair if
there is a Riemannian metric such that a and d intersect transversely in one point.

It is well known that if p and q form a canceling pair, then they can be removed
from f by a homotopy in F . We have to understand in more detail what kind of
homotopies realize this cancellation (or death) of p and q. Homotopies in F were
studied in great detail by Cerf [13] and we briefly recall their basic structure.

The starting point is a natural stratification of F by a notion of codimension.
Roughly, a function has codimension k if it exhibits singular behavior that can
be avoided by small perturbations in (k − 1)–parameter families in F but not
in k–parameter families. We are thus only interested in functions with codimen-
sion ≤ 1. The codimension 0 functions are the excellent Morse functions, that is,
Morse functions which are injective on their critical points. These form an open
and dense subset of F . In codimension 1 one finds two types of functions: Morse
functions with one critical value of multiplicity two, and functions with one degen-
erate critical point whose Hessian has 1–dimensional kernel. In the 3–dimensional
context the degenerate critical points can be modeled on cubic polynomials of the
form x3±y2±z2 (where the signs are understood to be independent). It then follows
from standard transversality arguments that the set of homotopies (gt)t∈I in F such
that gt is a Morse function for all but finitely many t where gt has codimension 1
is open and dense in the space of all homotopies. For the lack of a better name
we will call these generic homotopies. Moreover, for the passage through a cubic
degeneracy a local model is given by the 1–parameter family of functions on R3

Ct(x, y, z) = x3 + 3tx± y2 ± z2 (C.1)

which has two non-degenerate critical points of adjacent index for t < 0, one cubic
critical point for t = 0, and no critical point for t > 0.

Returning to our Morse function f ∈ F with the canceling pair of critical
points p, q ∈ Cf , it is clear that every homotopy that cancels p and q must pass
through a cubical degeneracy. We are interested in homotopies that realize the
cancellation in a minimal way.

Definition C.2. Let f ∈ F be a Morse function and let p and q be a canceling pair
of critical points. A path of death1 for p and q is a generic homotopy (ft)t∈I in F
emanating from f = f0 with the following properties:

(a) There is a small neighborhood U of [f(p), f(q)] without further critical values
such that ft agrees with f outside f−1(U) for all t.

(b) (ft) passes through exactly one codimension 1 function which has a cubical
degeneracy in which p and q collide and then disappear.

We denote the space of all paths of death for p and q by Death(f ; p, q).

1called “chemin de mort” in [13]
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C. Cancellation in 3–Dimensional Morse Theory

Using this terminology we can state the main result of this appendix.

Theorem C.3 (Uniqueness of deaths). Let f ∈ F be a Morse function defined on
an orientable 3–dimensional cobordism W . If p, q ∈ Cf is a canceling pair of critical
points, then Death(f ; p, q) is non-empty and connected.

As mentioned before, the fact that Death(f ; p, q) is non-empty is well known
and we will concentrate on its connectivity. Using the machinery developed by
Cerf [13], the question whether Death(f ; p, q) is connected can be translated into
a question about embeddings of ascending and descending spheres as follows. We
fix a Riemannian metric such that a and d intersect transversely in one point. We
consider the space

E = Emb(d,Σ) ⊂ C∞(d,Σ)

of embeddings of d into Σ and the subspace

E1 = {φ ∈ E |#(φ(d) t a) = 1}

of all embeddings of d whose images intersect a transversely in a single point (both
equipped with the subspace topology induced by C∞(d,Σ)). Note that E and E1

have preferred base points given by the inclusion d ⊂ Σ which we also denote
by d ∈ E1 ⊂ E by a slight abuse of notation. In Lemme 2 and the proof of Proposi-
tion 4 in III.2.4 of [13, p.72ff.], Cerf proves the following result.

Lemma C.4 (Cerf). If π1(E , E1; d) = 1, then Death(f ; p, q) is connected.

We include a brief outline of the arguments.

Proof (sketch). Cerf first defines a notion of elementary paths of death, denoted by
El, which are defined using embeddings of (a compactly supported version of) the
model C−1 = x3−3x±y2±z2 into f . He then shows that each connected component
of Death(f ; p, q) contains an elementary path so that it suffices to show that El is
connected. More or less by definition there is a surjection P → El, where P is the
space of embeddings of C−1 into f , so that it suffices to show that P is connected.
To that end, Cerf observes that an element of P gives rise to a pair of truncated
ascending and descending manifolds for p and q, and he considers the space N of
such pairs. The map P → N turns out to be a locally trivial fiber bundle with
connected fibers, leading to the last reduction to showing that N is connected. Note
that N has a preferred base point, namely the truncated ascending and descending
spheres (A,D) of f with respect to our fixed metric. Finally, the connection to E
and E1 is established by the above cited Lemme 2 which states that

πj
(
N ; (A,D)

) ∼= πj+1(E , E1; d).

To summarize, we have a surjection π0(P) → π0

(
Death(f ; p, q)

)
and an injec-

tion π0(P)→ π1(E , E1; d). The lemma follows.

In fact, Lemma C.4 holds in all dimensions and the connectivity of Death(f ; p, q)
can always be deduced from a sufficiently good understanding of embeddings of
spheres of complementary dimension in Σ. But one can imagine that the structure
of π1(E , E1; d) can be quite complicated in general. Luckily, in the 3–dimensional
context Σ is a surface and embeddings of spheres in surfaces are well understood.
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Figure 38: The two possible types of bigons for b and c.

Proof of Theorem C.3. By Lemma C.4 it is enough to show that π1(E , E1; d) = 1.
According to the homotopy sequence of the pair (E , E1)

· · · → π1(E1; d)→ π1(E ; d)→ π1(E , E1; d)→ π0(E1)→ π0(E)

this is equivalent to the following claims:

(a) π0(E1)→ π0(E) is injective

(b) π1(E1; d)→ π1(E ; d) is surjective

Recall that d ∼= Sk and a ∼= S2−k where k ∈ {0, 1, 2} is the index of p. We first discuss
the extremal cases when k ∈ {0, 2}. Since these are interchanged by replacing f
with −f , it is enough to treat k = 2. In this situation we find that a is a 2–sphere,
and thus appears as a connected component of Σ, while d consists of two points, one
of which lies on a. The conditions (a) and (b) are almost trivially satisfied.

It remains to treat the case k = 1 where both a and d are simple closed curves
in Σ. For simplicity we assume that Σ is connected and has genus g, the general
case is only notationally more complicated. Note that g ≥ 1 since no two curves on
a sphere can intersect transversely in one point.

Proof of (a): Suppose that b, c ∈ E1 are contained in the same component of E .
We have to show that we can connect b and c within E1. We first observe that
if b and c have the same image in Σ, then they differ by an orientation preserving
diffeomorphism of b. But b is diffeomorphic to S1, so that Diff+(d) is homotopy
equivalent to SO(2) ∼= S1 and therefore connected. So not only can c and b be
connected through elements of E1, but in fact through elements with the same image.
We can thus assume that b and c have different images and it is also safe to blur the
distinction between embeddings and their images.

Next suppose that b and c are disjoint. Since they are isotopic, they must bound
and annulus in Σ and it follows from the assumptions that a intersects this annulus
in a properly embedded arc connecting the two boundary components. Using the
annulus as a guide, it is easy to construct an isotopy connecting b and c through
curves that intersect a in a single point, as desired.

Finally, if b ∩ c 6= ∅, then we claim that c can be moved within E1 to become
disjoint from b, reducing to the disjoint case discussed above. By general position
we can assume that b and c are transverse and that the triple intersection a∩ b∩ c is
empty. It follows from the discussion surrounding Proposition 2.12 on page 23 that
c can be pushed off b by a finite sequence of Whitney moves across bigons and we
have to argue that the Whitney moves can be performed within E1. Suppose that b
and c form a bigon ∆ ⊂ Σ. Then ∆ is either disjoint from a or a passes through ∆
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in a properly embedded arc connecting the boundary parts ∂∆ \ d and ∂∆ \ d (see
Figure 38). In both cases, the Whitney trick can be performed within E1.

Proof of (b): We begin by describing some obvious elements in π1(E ; d). If
we choose an identification d ∼= S1, we obtain an S1 action on d which rotates
the image of d in Σ. One full rotation gives rise to a loop in E based at d and
represents an element of π1(E ; d) which is contained in the image of π1(E1) since the
rotations of d preserve its image. Moreover, if Σ has genus one, then we can choose

a diffeomorphism T 2
∼=→ Σ that identifies d with S1×{1} and a with {1}×S1. This

gives rise to an additional rotation of d along the a direction and another element
of π1(E ; d). Although these rotation do not preserve the image of d, they still move d
through embeddings whose images intersect a transversely in one point, so that the
all elements of π1(E ; d) obtained by rotations lie in the image of π1(E1). The upshot
of this discussion is that in order to prove (b) it suffices to show that

π1(E) ∼=

{
Z for g ≥ 1

Z2 for g = 1
(C.2)

generated by the rotations along d and a described above.
To see this we follow Ivanov [37, p.533ff.] and note that the group D = Diff(Σ)

acts on E and which gives rise to map Diff(Σ)→ E sending φ ∈ Diff(Σ) to φ|d. By
the change of coordinates principle (Proposition 2.17) this map is surjective and,
in fact, it is a Serre fibration with fiber Dd = Diffd(Σ), the diffeomorphisms of Σ
that restrict to the identity on d (see [37, Theorem 2.6A]). We can thus try to
determine π1(E ; d) from the exact sequence of homotopy groups

· · · → π1(Db; id)→ π1(D; id)→ π1(E ; d)→ π0(Db)→ π0(D)→ π0(E).

The success of this approach rests on the following two observations:

• The group π1(Db; id) is trivial since Db can be identified with the diffeomor-
phism group of a compact surface with boundary and thus has contractible
components by Theorem 2.18(ii). Indeed, let Σ̃ be the surface obtained by
compactifying Σ \ d with two copies of d as boundary components. Then Dd
is naturally identified with Diff∂(Σ̃).

• The map π0(Db) → π0(D) can be identified with the so called inclusion ho-
momorphism Mod(Σ◦) → Mod(Σ), where Σ◦ = Σ \ νd and νd is a tubular
neighborhood of d in Σ, which is induced by extending elements of Diff+

∂ (Σ◦)
to Σ by the identity on νd. In fact, the inclusion homomorphism factors

through π0(Dd) → π0(D) via an isomorphism Mod(Σ◦)
∼=→ π0(Dd). To see

this, note that we also have an inclusion Σ◦ ↪→ Σ̃ and Σ̃ retracts onto Σ◦ by
a smooth isotopy supported in a collar neighborhood. We thus have isomor-
phism Diff∂(Σ◦) ∼= Diff∂(Σ̃) ∼= Diffd(Σ)

From this point on we have to distinguish the cases when Σ has genus one or higher.

Case 1: Σ ∼= T 2. In this situation Σ◦ is an annulus whose core is isotopic to d
in Σ. In particular, the inclusion homomorphism is injective since it maps the Dehn
twist about the core (which generates Mod(Σ◦) ∼= Z) to the Dehn twist about d and
the latter has infinite order in Mod(Σ). The long exact homotopy sequence thus
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shows that π1(D; id) → π1(E ; d) is an isomorphism. Moreover, according to Theo-
rem 2.18(i), an identification Σ ∼= T 2 provides an isomorphism π1(T 2) ∼= π1(D; id).
The composition gives an isomorphism

π1(T 2)
∼=−→ π1(E ; d)

and it follows from the definition that the generators of π1(T 2), which are identified
with a and d, are mapped to the rotation loops in π1(E ; d).

Case 2: g > 1. By Theorem 2.18(i) we have π1(D; id) = 1 so that π1(E ; d)
corresponds to the kernel of the inclusion homomorphism Mod(Σ◦) → Mod(Σ).
And according to [24, Theorem 3.18] the inclusion homomorphism has infinite cyclic
kernel generated by (τd−)−1τd+ where d± are the two boundary components of Σ◦.
If we choose representatives T± for τd± , then T−1

− T+ is isotopic to the identity when
considered as an element of Diff+(Σ). Moreover, a choice of an isotopy to the
identity gives rise to a well defined element of π1(E ; d) which is easily identified with
the rotation loop along d. This finishes the proof of Theorem C.3.

Lastly, we want to give 4–dimensional interpretation of paths of death and dis-
cuss a consequence of Theorem C.3. Given a smooth 1–parameter family of func-
tions ft : W → I, t ∈ I, we consider the map

F : W × I → I × I, F (p, t) =
(
ft(p), t

)
which we call the trace of (ft). Note that the trace F has a 4–dimensional source
and a 2–dimensional target. Thus we are back in the setting of Section 2.2 where
we discussed the structure of smooth maps between manifolds of these dimensions.
Note that the critical locus of F is just the trace of critical points of the maps ft;
the trace of the critical values in I × I is commonly known as the Cerf graphic of
the family (ft). A simple but important observation is that the above construc-
tion applied to the constant family of maps ft = ±x2 ± y2 ± z2 recovers the local
models for fold singularities (equation (2.3)), and for the standard model for deaths
Ct(x, y, z) = x3 + 3t± y2 ± z2 we get the cusp models (equation (2.4)). This shows
that for a generic homotopy (ft) in F the map f has only fold and cusp singularities,
where the cusps occur for those maps ft of codimension 1 with a cubical degener-
acy, and it is easy to see that the normal crossing condition in Theorem 2.9 is also
satisfied for F . In particular, as pointed out in Remark 2.11, it follows the trace of
a generic homotopy is a stable map. For example, if (ft) is a path of death, then F
has one arc of folds emanating from W × {0} for each critical point of f = f0 and
the two fold arcs corresponding to p and q eventually run into a cusp while all others
persist until W × {1}. Moreover, F is injective on its critical locus (since double
point would require another codimension 1 function) so that F is stable.

We now discuss a consequence of Theorem C.3 that was used in the proof of
Lemma 5.8 during the construction of annular simple wrinkled fibrations with pre-
scribed generalized surface diagrams. Let Y be a closed, orientable 3–manifold
equipped with a circle valued Morse function f : Y → S1. Since the definitions of
canceling pairs, paths of death, as well as the arguments in the proof of Theorem C.3
are of local nature with respect to the target space, the whole discussion carries over
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Figure 39: The Cerf graphic of a path of death.

to this new setting. We identify S1 with [0, 1]/{0, 1} and denote the coordinate
on [0, 1] by θ. We assume that f : Y → S1 has critical points {pi, qi}Ni=1 with

0 < f(p1) < f(q1) < · · · < f(pN ) < f(qN ) < 1 (C.3)

such that pi and qi form a canceling pair for each i. We would like to cancel all critical
points simultaneously. To that end, we consider the space Death(f) of homotopies
emanating from f for which there are intermediate levels f(qi) < θi < f(pi+1) such
that the restriction to f−1[θi−1, θi] is a path of death in the sense of Definition C.2.
The following result shows that the trace of such a path of death for f is unique in
a suitable.

Corollary C.5. Let f : Y → S1 be as above and let (f0,t), (f1,t) ∈ Death(f) be two
paths of death for f . Then the corresponding traces F0, F1 : Y × I → S1 × I are
equivalent via diffeomorphisms Φ ∈ Diff(Y × I) and Ψ ∈ Diff(S1 × I), that is,

F1 = Φ ◦ F0 ◦Ψ−1,

such that Φ|Y×{0} = idY×{0} and Ψ|S1×{0} = idS1×{0}

Proof. It is an easy consequence of Theorem C.3 that Death(f) is connected. Hence,
we can find a 2–parameter family of functions fs,t : Y → S1 such that for fixed s we
have (fs,t)t∈I ∈ Death(f) and the traces Fs give rise to a homotopy from F0 to F1.
As we noted above, each Fs is a stable map and the stability implies the existence
of Φs ∈ Diff(Y × I) and Ψs ∈ Diff(S1 × I) such that

Fs = Ψs ◦ F0 ◦ Φ−1
s . (C.4)

Moreover, according to [47, Theorem 3] the diffeomorphisms Ψs and Φs can be
chosen with smooth dependence on s. In particular, we see that F0 and F1 are
equivalent via Φ1 and Ψ1. However, these maps do not necessarily restrict to the
identity on Y × {0} and S1 × {0} and we have to remedy this fact.

Let Φs,0 ∈ Diff(Y ) and Ψs,0 ∈ Diff(S1) be the diffeomorphisms given by restrict-
ing Φs and Ψs to Y ×{0} and S1×{0}, respectively. By construction the restriction
of Fs to Y × {0} is naturally identified with fs,0 which, in turn, agrees with f by
definition. Thus for all s we have

f = Ψs,0 ◦ f ◦ Φ−1
s,0. (C.5)
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For each δ > 0 we define diffeomorphisms of Y × [0, δ] and S1 × [0, δ] given by

Φ̃δ(y, t) =
(
Φ−1

1−t/δ,0(y), t
)

and Ψ̃δ(θ, t) =
(
Ψ−1

1−t/δ,0(θ), t
)

which, according to equation (C.5), make the following square commutative:

Y × [0, δ]

f×id
��

Φ̃δ // Y × [0, δ]

f×id
��

S1 × [0, δ]
Ψ̃δ // S1 × [0, δ]

Moreover, the restrictions of Φ̃δ to the boundary of Y × [0, δ] satisfies

Φ̃δ|Y×{0} = Φ−1
1 |Y×{0} and Φ̃δ|Y×{δ} = id (C.6)

and the analogous properties hold for Ψ̃δ. Our strategy is to identify F1 with f × id
in some collar neighborhood of Y × {0} of the form Y × [0, δ] and to modify Φ1

and Ψ1 in this collar using Φ̃δ and Ψ̃δ.

To obtain such a collar, we recall that excellent Morse functions are also stable
maps. In particular, f = fs,0 : Y → S1 is stable and there must be some ε > 0
such that fs,t is stable for t ≤ ε. Reasoning as above we obtain φs,t ∈ Diff(Y )
and ψs,t ∈ Diff(S1) with φs,0 = idY and ψs,0 = idS1 for all s such that

fs,t = ψs,t ◦ fs,0 ◦ φ−1
s,t = ψs,t ◦ f ◦ φ−1

s,t .

We now define diffeomorphisms of Y × [0, ε] and S1 × [0, ε]

φ̃s(y, t) = (φs,t(y), t) and ψ̃s(θ, t) = (ψs,t(θ), t)

and for each s we obtain a commutative diagram:

Y × [0, ε]

Fs
��

φ̃s // Y × [0, ε]

f×id
��

Φ̃ε // Y × [0, ε]

f×id
��

S1 × [0, ε]
ψ̃s // S1 × [0, ε]

Ψ̃ε // S1 × [0, ε]

Note that by equation (C.6) the composition φ̃s ◦ Φ̃ε ◦ φ̃−1
s restricts to the identity

on Y ×{ε} and thus extends to all of Y ×I. Similarly, ψ̃s ◦Ψ̃ε ◦ ψ̃−1
s extends to S1×I

and we have
Fs =

(
ψ̃s ◦ Ψ̃ε ◦ ψ̃−1

s

)
◦ Fs ◦

(
φ̃s ◦ Φ̃ε ◦ φ̃−1

s

)−1
. (C.7)

In particular, combining equations (C.4) and (C.7) for s = 1 we get

F1 =
(
ψ̃1 ◦ Ψ̃ε ◦ ψ̃−1

1

)
◦ F1 ◦

(
φ̃1 ◦ Φ̃ε ◦ φ̃−1

1

)−1

=
(
ψ̃1 ◦ Ψ̃ε ◦ ψ̃−1

1

)
◦Ψ1︸ ︷︷ ︸

Ψ

◦F0 ◦ Φ−1
1 ◦

(
φ̃1 ◦ Φ̃ε ◦ φ̃−1

1

)−1︸ ︷︷ ︸
Φ−1

.

Now, recall that φ̃1 is the identity on Y × {0} while Φ̃ε is inverse to Φ1 by equa-
tion (C.6). It follows that Φ ∈ Diff(Y × I) defined above restricts to the identity
on Y × {0} and the same arguments show that Ψ ∈ Diff(S1 × I) restricts to the
identity on S1 × {0}. This finishes the proof.
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Summary

The broad context of this thesis is the topology of smooth, 4–dimensional manifolds.
The central idea is to study certain maps from 4–manifolds to surfaces known as
simple wrinkled fibrations, which can be described combinatorially in terms of curve
configurations on surfaces, so called surface diagrams. These notions were introduced
by Williams [67, 68] who also showed that all closed, oriented 4–manifolds admit
simple wrinkled fibrations over S2 and that the corresponding surface diagrams
determine the topology of the 4–manifolds. In principle, this allows to translate the
complexities of smooth 4–manifolds into 2–dimensional problems. We investigate
how simple wrinkled fibrations and surface diagrams interact with the topology
of the underlying 4–manifolds. The results of this thesis have partially already
appeared in the author’s article [7].

The thesis has two more or less independent parts. The first one is concerned
with foundational questions about simple wrinkled fibrations, surface diagrams, and
their relation. We define simple wrinkled fibrations over arbitrary base surfaces
and show how to reduce the general case to the study of certain simple wrinkled
fibration over the annulus which we call annular. As a combinatorial counterpart
we introduce generalized surface diagrams and establish the following result.

Theorem. There is a bijective correspondence between annular simple wrinkled fi-
brations and generalized surface diagrams (up to suitable notions of equivalence).

From this we deduce precise correspondence results for simple wrinkled fibrations
over D2 and S2. These improve the aforementioned result of Williams [67] in that
they not only recover a 4–manifold from a surface diagram but also the simple
wrinkled fibration that gave rise to the surface diagram. Along the way, we also
exhibit handle decompositions induced by simple wrinkled fibrations and explain
how they are encoded in surface diagrams.

In the second part we focus on the interplay between the combinatorics of sur-
face diagrams and the topology of the corresponding 4–manifolds. Among other
things, we give surface diagram interpretations of certain cut-and-paste operations
on 4–manifolds. These include connected sums with S2 × S2 and CP2 (with either
orientation) as well as surgeries on curves and 2–spheres. Using these techniques,
we classify the closed 4–manifolds that can be described by surface diagrams of the
lowest possible genus.

Theorem. A closed, oriented 4–manifold admits a genus one surface diagram if
and only if it is diffeomorphic to kS2 × S2 or mCP2#nCP2 where k,m, n ≥ 1.
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We then investigate how surface diagrams encode homotopy information. We
discuss the fundamental group, homology, the intersection form, as well as spin and
spinc structures. Our main application is the following.

Theorem. Let w : X → S2 be a simple wrinkled fibration with surface diagram
S = (Σ; c1, . . . , cl). If X is simply connected and the fibers of w are null-homologous
in X, then the homeomorphism type of X is determined by the homology classes
[ci] ∈ H1(Σ).

Note that the condition on the fibers does not put restrictions on X since it
is known that all maps X → S2 are homotopic to simple wrinkled fibrations. In
particular, we can work with the homotopy class of the constant map. An interesting
observation is that the diffeomorphism type of X a priori depends on the isotopy
classes of the curves ci ⊂ Σ. Furthermore, the difference between isotopy and
homology for curves on a surface is measured in terms of the Torelli group of the
surface, which is the non-linear and more mysterious part of the mapping class
group. This suggests the possibility of a relation between exotic smooth structures
on 4–manifolds and Torelli groups.
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