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Abstract

We consider the monoidal subcategory of finite-dimensional representations of
U,(gl(1]1)) generated by the vector representation, and we provide a graphical
calculus for the intertwining operators, which enables to compute explicitly the
canonical basis, as well as the action of U,(gl(1]1)). We construct a categori-
fication using graded subquotient categories of the BGG category O(gl,,) and
graded functors between them (translation, Zuckermann’s and coapproximation
functors). We describe then the regular blocks of these categories as modules
over explicit diagram algebras, which are defined using Soergel modules and
combinatorics of symmetric polynomials. We construct diagrammatically stan-
dard and proper standard modules for the properly stratified structure of these
algebras.
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Introduction

The Jones polynomial is a classical invariant of links in R3 defined using the vector rep-
resentation of the Lie algebra sly (or, more precisely, of the quantum algebra U, (sl)). In
his fundamental paper [Kho00], Khovanov constructed a graded homology theory for links
whose graded Euler characteristic is the Jones polynomial. Khovanov homology has two main
advantages over the Jones polynomial: first, it has been proved to be a finer invariant and
second, it has values in a category of complexes and it also assigns to cobordisms between
links chain maps between chain complexes. This categorical approach to classical invariants
is often called categorification. Khovanov’s work raised great interest in categorification, and
since then a categorification program for representations of more general semisimple Lie
algebras and even Kac-Moody algebras has been developed by several authors and motivated
various generalizations (see for example [FKS06|, [MS09], [Web13], [KL09], [KL11], [Rou08]).
The main tools in all these works come from representation theory and geometry related to
it.

Another very important invariant of knots is the Alexander polynomial [Ale2§|, which is
much older than the Jones polynomial. Originally defined using the topology of the knot
complement, the Alexander polynomial is not the quantum invariant corresponding to some
complex semisimple Lie algebra, like the Jones polynomial. Instead, it can be defined using the
representation theory of the general Lie superalgebra gl(1|1) (or, more precisely, its quantum
enveloping superalgebra U,(gl(1]|1)); alternatively, one can use the quantum enveloping
algebra U, (sly) where ¢ is a root of unity, see [Vir06], but we will not consider this approach).
A categorification of the Alexander polynomial exists, but comes from a very different
area of mathematics: a homology theory, known as Heegard-Floer homology, whose Euler
characteristic gives the Alexander polynomial, has been developed using symplectic geometry
([0S05], [IMOSTOQ7]). This homology theory, however, does not have an interpretation or a
counterpart in representation theory yet.

The present work is motivated by the attempt to construct/understand categorifications of Lie
superalgebras (and hopefully a categorification of the Alexander polynomial) using tools from
representation theory. In fact, there are only a few other recent works studying representation
theoretical categorifications of Lie superalgebras and related structures ([Khol0], [FL13]).
We hope that this thesis can be the starting point of a categorification program for gl(1]1),
beginning with a categorification of tensor powers of the vector representation and of their
subrepresentations. We point out that a counterpart of our construction in the setting of
symplectic and contact geometry has been developed by Tian [Tial2], [Tial3].

The main result of this thesis can be summarized as follows:

Main Theorem 1 (See Theorems and [6.5.4). Let V' be the (complex) vector represen-
tation of Uy(gl(1]1)), fix n > 0 and consider the commuting actions of Uy(gl(1]1)) and of
the Hecke algebra H,, = H(S,) on V&":

CY) Uy(gl(1]1)) © V& O H,.

1



2 Introduction

For each n > 0 there exists a triangulated category DV Q(n) whose Grothendieck group is
isomorphic to V&™ and two families of endofunctors {&€,F} and {€; |i=1,...,n—1} which
commute with each other and which on the Grothendieck group level give the actions of
U,(gl(1]1)) and of the Hecke algebra H,, on V™ respectively:

[€],[F] & KE@(DVQ(n)) © [e].

A remarkable property (and also a complication) of the finite-dimensional representations of
gl(1]1) (and more generally of gl(m|n)) is that they need not be semisimple. For example, if
V is the vector representation of gl(1|1), then V ® V* is a four-dimensional indecomposable
non-irreducible representation. It is not clear how the lack of semisimplicity should affect
the categorification, but it is plausible that this provides additional difficulties. What we
can categorify in the present work is indeed only a semisimple monoidal subcategory of the
representations of gl(1|1), that contains the vector representation V', but not its dual V*. We
remark that in this thesis we will develop all the details for the quantum version, but in order
to keep this introduction technically clean we avoid to introduce the quantum enveloping
algebra now.

Our categorification relies on a very careful analysis of the representation theory of gl(1|1)
and its canonical basis (based on [Zha09]). In the categorification, indecomposable projective
modules correspond to canonical basis elements, that we can compute explicitly via a diagram
calculus, analogous to the diagram calculus developed in [FK97] for sl;. The key-tool for
our construction is the so-called super Schur-Weyl duality (originally studied in [BR87| and
[Ser84]): the symmetric group algebra C[S,,] acts on the tensor power V®" and this action
commutes with the action of gl(1|1). The weight spaces of V®" are modules for C[S,], and
explicitly they are isomorphic to mixed induced modules of the form

(1) (trvs, Ksgng ) ®cis, xs,_x] ClSal-

In particular, they can be equipped with a canonical basis coming from the action of
symmetric group algebra. A crucial point is the following observation:

Theorem (See Proposition [3.2.5)). Lusztig’s canonical basis of V™, defined using the action
of gl(1|1), agrees with the canonical basis defined in term of the symmetric group action.

This Schur-Weyl duality is strictly related to a version of super skew Howe duality that
connects representations of gl(1|1), or more generally gl(m|n), with representations of gl
[CWO1]. In fact, the whole categorification process we develop works more generally for tensor
powers of the vector representation of gl(m|n). We will sketch the main ideas for the general
case using super skew Howe duality in Appendix [C| To develop the gl(1|1)—categorification
theory we will use super Schur-Weyl duality instead of Howe duality, and hence reduce the
problem to symmetric group categorification. The two approaches are equivalent, but we
personally prefer to work out the detail based on the first one.

The fundamental tool used in our construction is the BGG category O (named after Bernstein,
Gel'fand and Gel'fand, who introduced it in [BGGT6]), which plays already an important role
in many other representation theoretical categorifications. In particular, we will construct a
categorification of tensor powers of V' and of their subrepresentations using some subquotient
categories of O(gl,). These categories are built in two steps: first one takes a parabolic
subcategory and then a “g—presentable” quotient; the two steps can be reversed, and one
gets the same result. The process is sketched in Figure [T} which is also helpful to remember
how we index our categories. We will give the precise setup and definitions and discuss all
the technical Lie-theoretical details in Chapter
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Figure 1: Subquotient categories of O.

The construction of these subquotient categories is motivated by the following. Usually a
semisimple module M is categorified via some abelian category A. Now, M decomposes
as direct sum of simple modules, but the category A is not supposed to decompose into
blocks according to the decomposition of M. This is indeed one of the main points of the
categorification: we want A to have more structure than M. When M is equipped with some
canonical basis, the submodules generated by canonical basis elements in M give a filtration of
M (but not a decomposition!); this corresponds to a filtration of A with subcategories. This
principle has been applied in [MS08a] to categorify induced modules for the symmetric group:
the category Og(gl,,) is well-known to be a categorification of the regular representation of the
symmetric group S, ; these induced modules for the symmetric group are direct summands of
the regular representation of C[S,]; hence they can be categorified via subquotient categories
of Op(gl,).

In particular, [MS08a] provide some categories, which we denote by Qx(n), categorifying
the induced modules as vector spaces, and define on them a categorical action of C[S,,]
using translation functors. To categorify V®" we take the direct sum of all these categories
Qp(n) for k=0, ...,n. In addition, we consider also the corresponding singular blocks Q(a)
of the same subquotient categories. Note that singular blocks do not appear in [MS08a]
since they do not provide categorifications of C[S,]-modules; in our picture, they categorify
subrepresentations of V®™. The translation functors of category O(gl,,) restrict to all these
subcategories Q(a) and finally categorify the action of the intertwining operators of the
gl(1|1)—action.

What is left to complete the picture is to define functors that categorify the action of gl(1|1)
itself. There is a natural way to define adjoint functors € and F between Qi (a) and Qx11(a),
which portend to categorify the action of the generators F and F' of U(gl(1]1)). Although &
is exact, JF is only right exact in general, and we need to derive our categories and functors in
order to have an action on the Grothendieck groups. However, the following problem arises.
The categories we consider are equivalent to categories of modules over some finite-dimensional
algebras. Unfortunately, these algebras are not always quasi-hereditary; in general they are
only properly stratified (the definition of standardly and properly stratified algebras has
been modeled to describe the properties of some generalized parabolic subcategories of O,
introduced by [FKMO02], that include as particular cases the categories that we consider). A
properly stratified algebra does not have in general finite global dimension (this happens if
and only if the algebra is quasi-hereditary). As a consequence, finite projective resolutions
do not always exist, and we are forced to consider unbounded derived categories. But the
Grothendieck groups of these unbounded derived categories vanish by some Eilenberg-swindle
argument [Miy06]. A workaround to this problem has been developed in [AS13], using the
additional structure of a mized Hodge structure, which in our case is given by the grading.
Given a graded abelian category, [AS13| define a proper subcategory of the left unbounded
derived category of graded modules; this subcategory is big enough to contain projective
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resolutions, but small enough to prevent the Grothendieck group to vanish. In particular,
the Grothendieck group of this triangulated subcategory is a g—adic completion of the
Grothendieck group of the original graded abelian category. We will describe in detail how
the categories we consider and the functors € and F can be derived using these techniques.

We remark that the categories Qi (a) have a natural grading (inherited from the Koszul
grading on O(gl,,)) and all the functors we consider are actually graded functors between
these categories. In fact, this grading was used in [MS08a] to get an action of the Hecke
algebra instead of the symmetric group algebra for the induced modules . As a result,
the categorification lifts to a categorification of representations of the quantum enveloping
superalgebra U, (gl(1]1)). We will work out all the details in the graded setting.

Of course at this point one would like to understand and describe these involved categories
Qi (a) explicitly. Very surprisingly (at least for us), this is indeed possible. To give an idea,
let us present the categorification of V®2. First, we notice that V®2 has a weight space
decomposition as given by the following picture:

) FE
(VeR), = (ver), = (veR),
14 F 1 F 1
Sgllg, (C[SQ] trvs,

where E and F' are generators of gl(1|1) and the vertical isomorphisms are isomorphisms
of C[Sz]-modules. We let R = C[z]/(2%) and A = Endg(C @ R). The algebra A can be
identified with the path algebra of the quiver

a
I

1 2 with the relation ba = 0.

~

b

We denote by e; and e the two idempotents corresponding to the vertices of the quiver. Let
us identify C with A/Ae; A and notice that C becomes then naturally an (A, C)-bimodule.
Moreover, notice that R is naturally isomorphic to the endomorphism ring of the projective
module Aesy, so that we can consider Aes as an (A, R)-bimodule. The categorification of
V®2 is then given by the following picture:

0f (aly) Oo(gly) 05" (gly)
IR Cxe IR Homy (Aez, o) IR

where p = gl,. This should be compared with the standard categorification of W®? (see
[FKS06]), where W is the vector representation of sly:

08(9[2) 00(9[2) 08(9[2)
IR C®e IR Homu (C, e) IR

In particular, note that the first and the second leftmost weight spaces are categorified in
the same way for gl(1|1) and for sly. This will hold for all tensor powers V& and W®" and
is due to the fact that these weight spaces for gl(1]1) and for sl; agree as modules for the



Introduction 5

symmetric group. The second leftmost weight space, in particular, is categorified using the
well-known category of modules over the path algebra of the Khovanov-Seidel quiver [KS02]|

al a an—1

—~ — with relations bja; = 0 and
1 — 2 | e ~ — n .
b b b biai :ai_lbi_l for 311122,...,71—1.
1 2 n—1

One should however notice the remarkable difference in the rightmost weight space of our
example. Here our categorification differs from the sly picture and leaves the world of highest
weight categories. This is evident, since R has infinite global dimension.

In general, the description of our categories is slightly more involved, but still explicit. We
will develop the instruments for that in Part [[TI} where we will compute the endomorphism
algebras of the projective generators using Soergel’s functor V and Soergel modules [Soe90].
For this, we restrict ourselves for simplicity to regular blocks Qg (n), although we believe that
the same process can be applied more generally to the singular blocks. We determine the
Soergel modules VP(w - 0) corresponding to indecomposable projective modules in category
O(gl,,), where w is in some subset D of S,, consisting of shortest/longest coset representatives.
We compute then the homomorphism spaces Hom(VP(w - 0), VP(w’ - 0)) and the subspaces
of morphisms that factor through some VP(z-0) for z ¢ D; the quotient of the former by the
latter gives the homomorphism space between the corresponding parabolic projective modules
in the parabolic category OP(gl,,). We describe these homomorphism spaces diagrammatically
using some fork diagrams. In particular, we construct in this way the endomorphism algebra
A, 1 of a projective generator of Qx(n), and we get:

Main Theorem 2 (see Theorem [9.6.7). We have an equivalence of categories

modemk = Qk(n)

Soergel bimodules and their diagrammatics were studied already from different angles; for
the most recent treatment see [EW12| and [EW13|. However, as far as we know, this is the
first work in which the Soergel functor is used to compute explicitly endomorphism algebras
of indecomposable projective modules in the parabolic category OP. This is due to the fact
that the standard approaches cannot be applied in the parabolic case. The crucial point that
makes our computation work is the fact that the Soergel modules we consider are cyclic. This
is equivalent to the corresponding Schubert varieties being rationally smooth (cf. [Str03b]), a
property which was studied in detail in the non-parabolic case (see for example [Bil98] and
[BWOI]). In some sense, what we consider is a maximal subset of the symmetric group such
that the corresponding Schubert varieties are all rationally smooth (cf. [GR02]).

Having provided a diagrammatic description of the algebra A, ;, we reprove in purely
elementary terms the fact, known from Lie theory, that A,, j is cellular and properly stratified,
by explicitly constructing standard and proper standard modules. As a byproduct, we can
describe the functors & and F as bimodules and compute their endomorphism rings, proving
that they are indecomposable. We remark that one could expect an action of a KLR algebra
(see [KLO9|, [KLII] and [Rou08]) on powers of & and F. However, notice that since £2 = 0
and F2 = 0 it does not make sense to investigate the endomorphism spaces End(€) and
End(F%) for k > 1. At the moment it is not clear to us how one could get a 2-categorification
for gl(1]|1)-representations.

The Soergel functor and Soergel modules interplay the category O(gl,,) with the cohomology
of the flag variety. In our case, since the category Qx(n) is a quotient of the parabolic category
OP(gl,,), where p corresponds to a composition of n of type (1,...,1,n — k), one expects a
connection with the cohomology of the Springer fiber of hook type sitting inside the full flag
variety. Mimicking [SW12|, we compute in Appendix [B|the cohomology rings of the closed
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attracting cells of this Springer fiber for the corresponding torus action and we prove that
they are isomorphic to the endomorphism rings of the indecomposable projective modules
of our categories Qg (Nn). It should be possible to construct a convolution product on these
cohomology rings as in [SW12] so that we recover the full algebra A,, . We believe that this
interpretation could be used to establish a connection with the approach of Tian ([Tial2],
[Tiald]).

Outline of the thesis

The thesis is divided into three parts. Although they are closely related, they are concerned
with three different aspects of the story and have quite different points of view. In particular,
the three parts can be read separately and we think each of them can be of independent
interest.

In Part [[| we study in detail the representation theory of U,(gl(1|1)). In Chapter [I| we define
the Hopf superalgebra U, (gl(1|1)) and classify its irreducible representations. In Chapter [2] we
recall the definition of the Hecke algebra and of the Kazhdan-Lusztig basis, and study some
mixed induced sign-trivial modules which arise as weight spaces of Uy (gl(1]1))-representations.
In Chapter [3| we restrict to a semisimple subcategory Rep of representations, which contains
the tensor powers of the vector representation. The main achievement of Part [[] is the
construction of a graphical calculus for the category Rep, which we develop in §3.3| using
webs, similar to the sly—diagram calculus of [FK97|. In particular, we define a diagrammatic
category Web and a full functor

J : Web — Rep.

This allows to compute explicitly the canonical bases and the action of Uy (gl(1]1)). We point
out that we can even define a quotient Web of Web so that the functor 7 descends to an
equivalence of categories Web 2 Rep (see Theorem [3.3.12)).

In Part [[T] we construct the categorification of this graphical calculus using the BGG category
O. Chapter [4|contains some facts about the graded version of O and graded lifts of translation
functors, which are known in principle but cannot be found in the literature in full generality.
Chapter [p]is the technical heart of the paper and contains the definitions of the subquotient
categories Qi (a) of O(gl,,); here we study in detail their properties and the functors between
them. In Chapter [6] we then show how they can be used to construct a categorification of
the representations in Rep, defining a functor .#: Web — OCat, where OCat is a category
containing all our categories Q(a). We prove then our Main Theorem |1} which can be
restated as follows:

Theorem (See Theorems and [6.5.4). There is a commuting diagram:

OCat
a7
2
Web Rep

T

At least on the level of derived categories, the Uy(gl(1|1))-action on representations in Rep
can be lifted to an action of functors on the corresponding categories Q(a).

In Part we realize the categories Q(Nn) as module categories over some diagram algebras.
Chapter [7] contains some preliminary notions, in particular on the theory of symmetric
polynomials. The ideals generated by complete symmetric polynomials play an important
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role in our diagrammatic algebras as well as the geometric interpretation in term of Springer
fibers. In Chapter |8 we use them to describe the Soergel modules VP(wyx - 0), where x
is a shortest coset representative for §, Sn—k\Sn and wy, € Si is the longest element, and
morphisms between them. We determine moreover which morphisms die in the parabolic
subcategory OP, where p is a parabolic subalgebra with only one non-trivial block (cf.
Theorem [8.3.5)). Using these homomorphism spaces and some fork diagrams which remind of
the web diagrams, we construct in Chapter |§| diagram algebras A,, . Moreover, we construct
diagrammatically indecomposable projective, standard and proper standard modules, and we
describe explicitly the properly stratified structure of A, ;. Finally, we connect the diagram
algebras A, with the categories Qx(n), proving Main Theorem

The thesis is completed by three appendices. In Appendix [A] we describe the connection
between the category of U,(gl(1]1))-representations and the Alexander polynomial, which
motivates our interest in the whole categorification project. In Appendix [B] we compute
the cohomology rings of some attracting varieties for a torus action inside the Springer
fiber of hook type, and we prove that they are isomorphic to the endomorphism ring of
the indecomposable projective modules in the categories Qx(n). In Appendix [C] finally, we
sketch how the whole categorification generalizes to gl(m|n) for general m,n > 0.
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CHAPTER

The superalgebra U,(gl(1]1)) and
1ts representations

In this chapter, we define the Lie superalgebra gl(1]1) and its quantum enveloping superalgebra
Uy = Uy(gl(1]1)). We study then its representation theory. The material presented here is
well-known, although we do not know a suitable reference for it.

1.1 The quantum enveloping superalgebra U,(gl(1|1))

We will always work over the field of complex numbers C.

In the following, as usual, by a super object (for example vector space, algebra, Lie algebra,
module) we mean a Z/2Z-graded object. If X is such a super object we will use the notation
|z| to indicate the degree of a homogeneous element = € X. Elements of degree 0 are called
even, while elements of degree 1 are called odd. We stress that whenever we write || we will
always be assuming x to be homogeneous.

The Lie superalgebra gl(1|1)

Let C'' be the two-dimensional complex vector space on basis u;, ug viewed as a super
vector space by setting |ui| = 0 and |ug| = 1. The space of linear endomorphisms of C*I*
inherits a Z/2Z-grading and turns into a Lie superalgebra gl(1|1) once equipped with the
super commutator

(1.1.1) [a,b] = ab — (=1)l/1Plpq,

Evidently, gl(1]1) is four-dimensional and as a vector space it is generated by the elements

(1.1.2) h1<(1) 8), h2<8 ?) 6(8 (1)> f((1) 8)

11



12 1.1. The quantum enveloping superalgebra U, (gl(1[1))

with |hi]| = |ha| = 0 and |e| = | f| = 1. As Lie superalgebra elements, they are subject to the
defining relations

[h176]:67 [h2ae]:763 [h27f]:fa [hlaf]sza

(1.1.3) [h1,ha] =0, [e,fl=h1+ha, [e,e] =0, [f, f]=0.

Let h C gl(1]1) be the Cartan subalgebra consisting of all diagonal matrices. Let 1, &2 be
the dual basis to hi, ho in h*. We define a non-degenerate symmetric bilinear form on h* by
setting on the basis

1 ifi=j=1,
(1.1.4) (Ei,Ej) =<¢ -1 ifq :] = 2,
0 ifi#j

The roots of gl(1]1) are a = £; — €5 and —a; we choose « to be the positive simple root. We
denote by P = Zey @ Zeo C h* the weight lattice and by P* = Zhy & Zhs C b its dual.

REMARK 1.1.1. Note that in analogy with the classical Lie situation, we can set o = hy + ho.
Then e, f,a" generate the Lie superalgebra sl(1|1) inside gl(1|1). We work with gl(1|1) and
not with sl(1]1) since the latter is not reductive, but nilpotent.

Hopf superalgebras

We recall that if A is a superalgebra then A ® A can be given a superalgebra structure by
declaring (a ® b)(c ® d) = (—1)""lllac ® bd. Analogously, if M and N are A-supermodules,
than M ® N becomes an A® A-supermodule with action (a®b)-(m®n) = (=1)IImlam @ bn
fora,be A, me M,née N.

A super bialgebra B over a field k is a unital superalgebra which is also a coalgebra, such
that the counit u : B — k and the comultiplication A : B — B ® B are homomorphism
of superalgebras (and are homogeneous of degree 0). A Hopf superalgebra H is a super
bialgebra equipped with a k-linear antipode S : H — H (homogeneous of degree 0) such that
the usual diagram

HoH—2 g% . pgown
lu
(1.1.5) S®id k id® S
l1
HoH—Y He—Y  HeH

commutes, where V: H @ H — H and 1: k — H are the multiplication and unit of the
algebra structure. We recall that S is then an anti-homomorphism H — H.

If H is a Hopf superalgebra and M, N are (finite-dimensional) H—supermodules then the
comultiplication A defines a map H — H ® H and hence makes it possible to give M ® N
an H—module structure by letting

(1.1.6) z-(men)=A(x)(men)= Z(—l)‘x(2>”m|x(1)m ® x(2)n
()
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forz € H, m@n € M®N, where we used Sweedler’s notation A(z) = >,y x(1)®x(2). Notice
in particular that signs appear. The antipode S, moreover, allows to turn M* = Homy (M, k)
into an H-module via

(1.1.7) (20)(v) = (=Dl (S(2)0)
for x € H, ¢ € M*. We recall that the natural isomorphism M = M** for a super vector
space is given by z — (¢ — (—=1)1*1¢lp(z)).

Notice that in all formulas signs appear. A good rule to keep in mind is that a sign appears
whenever an odd element steps over some other odd element. A good reference for sign issues
is [Man97, Chapter 3].

The quantum enveloping superalgebra

The quantum enveloping superalgebra U, = U,(gl(1|1)) is defined to be the unital superalgebra
over C(q) with generators F, F, q" (h € P*) in degrees ]qh| =0, |[E| = |F| = 1 subject to
the relations

q' =1, q"q" = q"t", for h, W' € P*,
(1.1.8) q"E = ¢"VEq", q"F = ¢ " Fq", for h e P*,
K-K-!
E2:F2:07 EF +FE = —, WhereK:th-s-hQ.

qa—4q

The elements q”, which as generators of U, are just formal symbols, can be interpreted in
terms of exponentials in the A—version (see Appendix . Notice that all elements q” for
h € P* are products of g™ and q"2, so that U, is finitely generated. Note also that K is a
central element of Uy, very much in contrast to U, (sl2).

The Hopf superalgebra structure

We define a comultiplication A: Uy, — Uy @ Uy, a counit u: U, — C(q) and an antipode
S: Uy — U, by setting on the generators

AEY=EK '+1®E, A(F)=F®1+KQ®F,
S(E) = —EK, S(F)=-K'F,
(1.1.9) h h A h h
AlQ")=q"®q", S(@")=q7",
u(E) = u(F) =0, u(q") =1,
and extending A and u to algebra homomorphisms and S to an algebra anti-homomorphism

We have then:
Proposition 1.1.2. The maps A, u and S turn U, into a Hopf superalgebra.
Proof. This is a straightforward calculation. O

Notice that from the centrality of K it follows that S? = id; this is a special property of Uy,
that for instance does not hold in U, (gl(m|n)) for general m,n (see [BKKOQO| for a definition
of the general linear quantum supergroup).

We define a bar involution on U, by setting:

(1.1.10) E=E, F=F q'=q,

IS
|
S
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Note that A = (T® ~) o A o~ defines another comultiplication on Uy, and by definition

A(Z) = A(z) for all z € U,.
We define the following element ©' € U, ® U, which we will use later:
(1.1.11) O =1+(g'-qE®F.

Tt is easy to show (see also Lemma |A.2.3) that © intertwines the comultiplication A and its
barred version:

(1.1.12) O'A(z) = A(x)®"  for all x € U,,.
The following property
(1.1.13) (A®1)(0)O'®1)=(12A)O)(1x6%5)

allows us to define ©'(?) as the expression (I.1.13). More generally, one can define ©’(™ for
every n.

1.2 Representations

We define a parity function |-| : P — Z/2Z on the weight lattice by setting |e1] =0, |e2] =1
and extending additively. By a representation of U, we mean a finite-dimensional U,—
supermodule with a decomposition into weight spaces M = @, p M, with integral weights
X € P, such that q" acts as ¢{"* on M,. We suppose further that M is Z/2Zgraded, and
the grading is uniquely determined by the requirement that M) is in degree |\|.

Irreducible representations

It is not difficult to find all simple representations of Uy: up to isomorphism they are indexed
by their highest weight A € P. If A € Ann(hy + hg), then the simple representation with
highest weight \ is one-dimensional, generated by a vector v* in degree ’v)" = |A| with

(1.2.1) Ev* =0, Fuo* =0, q'v = ¢, Kot = oM

We will denote this representation by C(q)x, to emphasize that it is just the trivial module,
but with the h-action twisted by the weight A. In particular for A = 0 we have the trivial
representation C(q)o, that we will simply denote by C(g) in the following.

If A ¢ Ann(hy + ho) then the simple representation L(A) with highest weight X is two-
dimensional; we denote by v7 its highest weight vector. Let us also introduce the following
notation that will be useful later:

(1.2.2) g = gthith2.A) and [A] = [(h1 + ha, M),
where, as usual, [k] is the quantum number defined by
k_ .~k
q —q
1.2.3 k| =——.
(1.2.3) [£] =

Notice that if k > 0 then we have [k] = ¢~ + ¢ %3 + ... + ¢¥=3 + ¢*~1, and in general
[—k] = —[k].

As a vector space L(A) = C(q)(v) ® C(q)(vg) with |v?| = ||, |[v3| = [A] + 1 and the action
of U, is given by
Ev} =0, Fop =[Ny, q"of =¢"Voy, Ko} = ¢,

(1.2.4)
Ev())‘ = v}, Fv(’)\ =0, qhvé‘ = q<h7/\_”‘>v())‘, Kvé\ = q)‘ué‘.
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REMARK 1.2.1. As a remarkable property of U,, we notice that since E? = F? = 0 all
simple U;—modules (even the ones with non-integral weights) are finite-dimensional. In
fact, formulas define two-dimensional simple U;—modules for all complex weights
A € Cey @ Cey such that (A, hy + ha) # 0.

In the following, we set
(1.2.5) PP={NeP|X¢& Ann(h; + h2)}

and we will mostly consider two-dimensional simple representations L(A) for A € P’. Also,
PE = {\ € P | (\ hi+hs) = 0} will be the set of positive/negative weights and P’ = P+ UP~.

Decomposition of tensor products
The following lemma is the first step to decompose a tensor product of U,—representations:

Lemma 1.2.2. Let A\, i € P' and suppose also X+ u € P'. Then we have
(1.2.6) LA @L(p) 2L+ p) @ LA+ p — ).

Proof. Under our assumptions, the vectors
(1:27) B(w) ® o) = v} ® g o + ()N @ ol
(1.2.8) Fo} @ o) = o @ ot + ()Mo} @ [u]of

are linearly independent. One can verify easily that v} ® v}y and E(v) ® v) span a module

isomorphic to L(A + p — a), while v ® v¥' and F (v} ® v{') span a module isomorphic to

LA+ ). O
On the other hand, we have:

Lemma 1.2.3. Let A\, u € P’ and suppose A + u € Ann(hy + hg). Then the representation
M =L(\) ® L(p) is indecomposable and has a filtration

(1.2.9) 0=MyCc M, CMyCM

with successive quotients

(1.2.10) My = C(q)y, M2/Mi=C(q)v—a ®C(@Q)v+a, M/Mz=C(q),
where v = A+ 1 — a.

Moreover, LIA) @ L(p') =2 L(\) @ L(w) for any N, u' € P' such that N + ' = A+ p.

Proof. Since A + 1 € Ann(hy + hy) we have ¢* = ¢~* and [\] = —[y]. Using (1.2.7) and
(1.2.8) we get that
(1.2.11) Fo} @ vl) = (=) E(v) @ o).

In particular, since E2 = F? = 0, the vector F(v} ® vl') generates a one-dimensional
submodule M7 = C(¢)a4u—a of M. It follows then that the images of v? ® v{ and v{ ® vf
in M/M, generate two one-dimensional submodules isomorphic to C(g)x+, and C(¢)r+u—2a
respectively. Let therefore My be the submodule of M generated by v} ® v} and v} ® vy
Then M/Ms is a one-dimensional representation isomorphic to C(g),.

The last assertion follows easily since both L(A\) ® L(x) and L(\) ® L(y') are isomorphic as
left U,~modules to U, /I where [ is the left ideal generated by the elements q" — ¢\ for
heP. O
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The dual of a representation

Let us now consider the dual L(\)* of the representation L()\) for A € P’ and let (v)*, (v})*
be the basis dual to the standard basis v7, v}. By explicit computation, the action of U, on
L(A)* is given by:

B = —(-D)P )", Bwd) =0,
(1.2.12) F@)* =0, F)* = (DM ()7,
d'@) =PV, @) =P )

The assignment
Lla—A) — L(N)*
(1.2.13) 00— — (=) wg)*
o ()"
defines a Q(g)-linear map which is in fact an isomorphism of U,—modules

(1.2.14) LO)* 2 L(a — \).

REMARK 1.2.4. Together with Lemma[[.2.3]it follows that L(A) ® L(A)* is an indecomposable
representation. In the filtration , the submodule M; is the image of the coevaluation
map C(¢) — L(A) ® L(A)* while the submodule M is the kernel of the evaluation map
L(A) ® L(A)* — C(q), see also ([A.3.1)) and (A.3.2) in Appendix [A]

The vector representation

The vector representation V of U, is isomorphic to L(eq). Its standard basis is vi',vy", the
grading is given by |vi'| =0, |v5'| = 1, and the action of Uy is determined by

€1 __ €1 __ €1 h €1 __ <h,61> €1 €1 __ €1

(12.15) Evi' =0, Fol' =o', q'vi' =¢ vit, Kouit = quit,
- Evit =vf', Fuyg' =0 quit = ¢ et Kuft = qut

) b ) .

For V®™ we obtain directly from Lemma the following decomposition:

Proposition 1.2.5 ([BM13| Theorem 6.4]). The tensor powers of V decompose as
n—1 n—1

(1.2.16) ver =~ ( , >L(n51 — (o).
=0

Let us now consider mixed tensor products, involving also the dual V*. By (|1.2.14]) we have
that V* is isomorphic to L(—e3). The following generalizes Proposition

Theorem 1.2.6. Suppose m # n. Then we have the following decomposition:

o o m+n—1 m4+n—1
(1.2.17) vemevrer = , L(me; — nes — La).
£=0

On the other hand, we have
2271.72

(1.2.18) Ve g Ve = (B (Ve V)

i=1

and V @ V* is indecomposable but not irreducible.
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Proof. The decomposition (1.2.17)) follows from Lemma by induction. To obtain (|1.2.18)
write VO @ V*®n o (VO @ V*®n—1) @ V* and use (1.2.17)) together with Lemma
Finally, by Lemma [I.2.3]it follows also that V ® V* is indecomposable but not irreducible. [

In particular, notice that V™ @ V*®" is semisimple as long as m # n.

1.3 Lusztig’s bar involution and canonical basis

We briefly recall from [Lus10] some facts about the bar involution and based modules. For a
short but more detailed introduction see also [FK97, §1.5].

Bar involution

Recall that in we defined a bar involution on U,. It makes then sense to define a bar
involution on a U;—module to be an involution which is compatible with that:

Definition 1.3.1. A bar involution on a Ug—module W is a g—anti-linear involution — such
that 7o =T -0 for all t € Uy, v e W.

Note that v} = v}, vy = vy define a bar involution on every simple representation L(\),
A € P/, while v# = v* for ;1 € Ann(hy + hg) defines a bar involution on C(g),,.

Assume we have bar involutions on U;—modules W, W’. Then define on W @ W’

(1.3.1) wRw =06 (weuw)
using the element © from (1.1.11)). It follows from ([1.1.12)) that this defines a bar involution
on W@W’. Moreover, (1.1.13)) allows us to repeat the construction for bigger tensor products,

and the result is independent of the bracketing.

Standard basis

We call By = {v},v)} the standard basis of L(A\). Let A = (\1,...,\¢) be a sequence of
weights A; € P’. On the tensor product L(A1) ® - - ® L(Ag) we have the standard basis

(1.3.2) Bx=By @ @By, ={v)) @ - @uv) | n; €{0,1} for all i}

obtained by tensoring the elements of the standard basis of the factors.

On the elements of we fix a partial order induced from the Bruhat order on permuta-
tions, as follows. The weight space of L(A1) @ - - ® L(\¢) of weight Ay + -+ X — (£ — k)«
is spanned by the subset (By)x of the standard basis consisting of elements such that
> ;M = k. The symmetric group S acts from the right on the set of sequences {0, 1} by
permutations, hence on By. The action of Sy on each subset (By)y is transitive; mapping
the identity e € S; to the minimal element

(1.3.3) W QUE Ut @ @ v
k l—k

determines a bijection

(1.3.4) (Sp x S0 S)™ =5 (B,
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where (s, x gzik\SZ)Short is the set of shortest coset representatives for s, x s, ,\S¢. The
d

Bruhat order (see §2.1)) of the latter induces a partial order on (By); and hence on Bj.
Notice that the minimal element (1.3.3)) is bar invariant.

Canonical basis
We have the following analogue of [Lusl10, Theorem 27.3.2]:

Theorem 1.3.2. In L(\)®---®L(\), for each standard basis element v)! ®---Q@uv)¢ € By
there is a unique bar-invariant element

A A
(1.3.5) vt Qe Qupt

such that vf‘hl(} e Ovﬁf — vf‘hl R ® v%‘f is a qZlg]-linear combination of elements of the
standard basis that are smaller than v%‘ll R - ® vf]‘f

Proof. The proof is completely analogous to [Lus10, Theorem 27.3.2]. O

Since the standard basis elements form a basis of L(A1) ® -+ ® L(A¢), the condition in
Theorem implies that the canonical basis elements (|1.3.5)) form a basis as well.

Definition 1.3.3. The elements ([1.3.5)) constitute the canonical basis of L(A1)®---®@L(A\e).

EXAMPLE 1.3.4. On the two-dimensional weight space of V' ® V the bar involution is given
by
’U? R ,USI — vil ® ,081,
vgt @ =gt @t + (- it @
The canonical basis is then
’U[il 0,081 — ,Uil ® ,081’

®
€ € € € € €
o' Qv = vt @ vit + quit ® vyt

ExAMPLE 1.3.5. On the two-dimensional weight space of V* ® V* the bar involution is given
by
u? @ =0T ®uy
v @ = v+ (g g o @y
and its canonical basis is
vy Qv P =0 P @ g

®
—& —& —& —& —& —&
Vg 20U P =g 2 @y 24 quy P @t

EXAMPLE 1.3.6. On the two-dimensional weight space of V' ® V* the bar involution is given
by
vf @y =i @y,
vy v =0t @ = (¢ —q i @
and its canonical basis is
b Oug " = ot @y,

€1 —€2 __ ,,&1 —E€2 €1 —Eg
v Quy 2 = vgt @ vy 2 — quit ® vg .



CHAPTER

The Hecke algebra and Hecke
modules

Before continuing the study of U,-representations, we need to introduce the Hecke algebra
of the symmetric group. This will enter in the game in the next section, where we will use a
super version of Schur-Weyl duality to connect the representation theory of U, with the one
of the Hecke algebra.

We recall first the definition of the Hecke algebra of the symmetric group, together with its
bar involution and canonical basis. We study then in detail in mixed induced sign-trivial
modules; this generalizes work of Soergel [Soe97].

2.1 The Hecke algebra

Let S;, denote the symmetric group of permutations of n elements; it is generated by the

simple reflections s; for ¢ = 1,...,n — 1 subjected to the defining relations
(2.1.1&) 885 = 8;58; if IZ —j| > 2,

(2.1.1b) SiSi+1Si = Si+15iSi+1,

(2.1.1c) s2=1.

For w € S,, we denote by ¢(w) the length of w, which is the length of any reduced expression
w=8; 5, Let T ={ws;w™ |weS,,i=1,...,n— 1} be the set of transpositions; we
will indicate by < the Bruhat order on S,, which is the transitive closure of the relation
u -+ w whenever l(u) < £(w) and w = ut for some t € T.

Definition 2.1.1 ([KL79]). The Hecke algebra of the symmetric group S, is the unital
associative C(q)—algebra H,, generated by {H; |i=1,...,n— 1} with relations

(212&) Hz'Hj = HJHZ Zf |Z — ]| > 2,
(2.1.2b) H;H;WH; =H;(1H;H; 4,
(2.1.2¢) H? = (¢! —q)H; + 1.

19



20 2.1. The Hecke algebra

Notice that we use Soergel’s normalization [Soe97], instead of the original one. However, we
use the letter ¢ as parameter in analogy with the quantum parameter of Uj.

It follows from that the elements H; are invertible with Hi_1 =H;+q—q ! For
w € S,, such that w = s;, ---s;, is a reduced expression, we define H,, = H;, --- H;,. It is
a standard result (see for example [KT08, Lemma 4.16]) that this does not depend on the
chosen reduced expression. The elements H,, for w € S, form a basis of H,, (see [KT08|
Theorem 4.17]), called standard basis, and we have

H,. it f(ws;) > O(w),
(213) Hsz — i . 1 ('UJS) > ('UJ)
Hys, + (g7t — q)H, otherwise.

We can define on H,, a bar involution by H,, = Hu_,}l and § = ¢~ '; in particular H; =
H; +q—q~'. We also have a non-degenerate C(q)—bilinear form (—,—) on H,, such that
the standard basis elements are orthonormal:

(2.1.4) (Huy, Hy') = O for all w,w’ € S,,.
By standard arguments one can prove the following:

Proposition 2.1.2 (JKL79], in the normalization of [Soe97]). There exists a unique basis
{H, | we€S,} of Hy, consisting of bar-invariant elements such that

(2.1.5) H,=H,+ Z wa’,w(Q)Hw’

w’' <w

with Py 4 € qZ[q] for all w' < w.
The basis H,, is called Kazhdan-Lusztig basis. We will also call it canonical basis of H,,.

REMARK 2.1.3. There is an inductive way to construct the canonical basis elements. First,
note that by definition H, = H.. Then set H, = H; + ¢: since H, is bar invariant, we must
have H, = H,;. Now suppose w = w's; = w': then H,,H; is bar invariant and is equal to
H,, plus a Z[q, ¢~ ]-linear combination of some H, for w” < w. It follows that

(2.1.6) H,H,=H,+p forsomepe @ ZH,..

w' <w

Anyway, it is in general impossible to give a closed formula for canonical basis elements. One
of the rare examples in which this can be done is the following (cf. [Soe97, Prop. 2.9] — but

see also §7.2):

Lemma 2.1.4. Let W' C'S,, be a parabolic subgroup (that is, a subgroup generated by simple
transpositions) and let wg € W' be its longest element. Then the canonical basis element
H,, s given by
(2.1.7) H, = Z g wo =@

zeW’
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2.2 Induced Hecke modules

We will now consider induced Hecke modules which are a mixed version of the induced sign
and induced trivial modules studied in [Soe97]. In the following, all modules over the Hecke
algebra will be right modules.

Let W,, Wy be two parabolic subgroupsﬂ of W =S§,, (that is, they are generated by simple
transpositions) such that the elements of W, commute with the elements of W,. Note that
then Wy q = W, x W, is also a parabolic subgroup of W. Let H,, Hq and H,4q be the
corresponding Hecke algebras; they are all naturally subalgebras of H,. We denote by sgn,,
the sign representation of H,; this is the one-dimensional C(g)-vector space on which each
generator H; € H, acts as —g. Moreover, we denote by trv, the trivial representation of Hg,
which is the one-dimensional C(g)-vector space on which each generator H; € H4 acts as
g~! (this makes sense because of the relation (H; + q)(H; — ¢~') = 0, which follows directly
from ) We define the mized induced Hecke module

(2.2.1) MG = Indg:ﬂ (sgn, Wtrvg) = (sgny, Ktrvg) @, o Ha.

If W, is trivial, we omit p from the notation and we write M. Analogously, if W is trivial
we omit q and we write MP. Note that in M, and MP" are denoted respectively M9 and
N* in [Soe97].

Let WP, W9 and WP*9 be the set of shortest coset representatives for Wp\W, Wq\W and
Wp q\W respectively. Then a basis of M} is given by

(2.2.2) {N,=1® H,, | we WPt}
(where 1 is some chosen generator of the C(g)-vector space sgn, X trv,).

The action of H,, on M} is given explicitly by the following lemma:

Lemma 2.2.1. For all w € WPT9 we have

Nuys, if ws; € WP and l(ws;) > {(w),
(2.2.3) N H — Nus, + (¢ — @) Hy  if ws; € WPH and (ws;) < £(w),

—qNy if ws; = sjw for s; € Wy,

g ' Ny, if ws; = s;w for s; € Wy.

The proof is analogous to the one in [Soe97, §3].

The module ./\/lg inherits a bar involution by setting N,, = 1 ® H,,. Moreover, the bilinear
form (2.1.4) induces a bilinear form on M} by setting (Ny, Ny) = (Hyp, Hyy ).

A canonical basis on M} can be defined by the following generalization of Proposition m

Proposition 2.2.2. There exists a unique basis {N,, | w € WPTI} of MY consisting of
bar-invariant elements satisfying

(2.2.4) Ny =Nu+ Y Rur (@) Nuy
w’ <w
with Ry € qZ[g] for all W' < w.
As described in Remark one can construct inductively the canonical basis of M}. In
particular, for WPT9 3> ws; = w one always has
(2.2.5) N,Ci =N, +p

where p is a Z-linear combination of N, for w’ < ws;.

1We use this notation because Wy and Wq will correspond later to two parabolic subalgebras p,q C gl,,.
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Maps between Hecke modules (I)

We will now construct maps between induced modules Mg corresponding to different pairs
of parabolic subgroups Wy, Wy. First, we consider the case in which we change the subgroup
Wy.

Let Wy C Wy be also a parabolic subgroup of W. Let us define a map i = ig/ : ./\/lg — Mg,
by

(2.2.6) it Ny +—> Z JH—t@ N,
zeW' N,

where wg, is the longest element of W' N Wy = (Wq,\Wq)Short. Note that for w € WP*9 and
zeWIn W the product zw is an element of Wweta’,

The map (2.2.6) is natural, in the sense that if Wy» C Wy is another parabolic subgroup

of W reflections then ig” = igj/ o igl; this follows because each element y € (1/Vq,,\Wq)ShOrt

factors in a unique way as the product ¥’y of an element 3" € (Wq,,\Wq/)Sho” and an element
short
y' € (W, \Wa) ™

Lemma 2.2.3. The map i just defined is an injective homomorphism of H,—modules that
commutes with the bar involution. Moreover it sends the canonical basis element N, to the
canonical basis element N o

q

Proof. The injectivity is clear, because i(N,,) is a linear combination of N, for w’ < wglw
and the coefficient of N o is 1. To prove that i is a homomorphism of H,—modules, it

q
is sufficient to consider the case Wy = {e}. Indeed, we have a commutative diagram of
injective maps

MP
(2.2.7) % N
i
q

p p
My e M,

and if i and iy are both H,—equivariant then so is i

Hence let i = iq and let us show using that i(NyH;) = i(Ny)H; foralli=1,...,n—1
and for each basis element N,, € M}. Note first that W9 C W¥; moreover, if ws; € WP +a
then zws; € WP for all x € Wy, so that the first two cases of are clear. Suppose then
that we are in the fourth case, that is ws; = s;w for some s; € Wy; then zws; = zs;w = sjzw
for every x € Wy, because elements of W, commute with elements of W,. We are left with
the third case of , that we will now examine.

’

Pick an index i such that ws; = s;w for some s; € Wy, and let AZ = {x € W, | £(zws;) =
{(zw)}; note that for x € A~ we have ¢(xs;) > £(x) and that the right multiplication by s;
is a bijection between A~ and A< (unless Wy = {e}, but this case is trivial since i is just the
identity). Compute:

i(Nw)Hi = Y ¢ O Ny, + D ¢ N (N, + (671 = @) Naw)
T€A> € A<

= Z g O ON, Z P (N s, + (71 = @) Naw)
weA> z€A<
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= Z g )=+, Z "D E (N + (07 = @) Naw)

@ €A< zeA<
= Z ¢ E@N e+ g7 Z gt wa—t@ N,
T€EA< TEA<
—q! Z DN g Z D@ N
aeA> zeA<

= q 'i(Nw) = i(g" ' Nyy) = i(Ny Hy).

It remains to show the bar invariance. Again, by the commutativity of it is sufficient
to consider the case Wy = {e}. It is enough to check it for a basis; in fact we will
prove by induction that i(N,,) is bar invariant for every w € WP, For w = e, we have
i(N,) =i(Ne) = erwq q“(wa)=4=) N that by Lemma s the canonical basis element of
‘Hqy corresponding to the longest element of Wy: hence 1t s bar invariant. For the inductive
step, suppose ws; > w and use :

i(ﬂwsi) = I(ﬂwcz _p) = I(Mw)c’b - I(p)
=i(N)Ci —i(p) = (N, Cs = p) = I(Nos,)-

ws;

(2.2.8)

The last claim follows by the uniqueness of the canonical basis elements, because i(N,,) is
bar invariant and the coefficient of N, in its standard basis expression is

’
o 1if w' =w] w,

e a multiple of ¢ if w' = zw” for some z € W9 N Wy and w” € W9 with w” < w (but
w' # wg w),

e 0 otherwise. O

Now we define a left inverse Q: ./\/ls, — M§ of i by setting

1 / /
(2.2.9) Q(N) = — Ne, where g = Z gt (wa )—2@),

zEW NW,

It is easy to show that Q is indeed well-defined (since M} is a quotient of ./\/lg,, and Q is, up
to a multiple, the quotient map). Moreover

Qo i(Nw) =Q Z qf(w‘q‘/)ff(x)wa

(2.2.10) wEW e W,
_ 1 3 g 2@ N N

N
9 zewa' nw,

for all basis elements N,, € ME.

Maps between Hecke modules (II)

Now let us examine the case in which we change the subgroup W,. Namely let W, C W, be
a parabolic subgroup of W, and define a linear map j = j';/ M — ./\/lg, by

(2.2.11) PPNy Y () PN,
zEWP NW,
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As for Lemma [2.2.3] it is easy to prove that j is an injective homomorphism of H,,—modules.
However, it does not commute with the bar involution and it does not send canonical basis
elements to canonical basis elements. Instead, j sends the dual canonical basis (defined to be
the basis that is dual to the canonical basis with respect to the bilinear form) to the dual
canonical basis.

Define also a H,—module homomorphism z: ./\/lzl — M} by setting z(N,) = N.. This gives

a well-defined homomorphism because M} is a quotient of /\/lg/ and it is cyclic.

Lemma 2.2.4. The map z is bar-invariant and sends the canonical basis element N, € ./\/lgl
to N, € ./\/lfI if we& WP and to 0 otherwise. Moreover zoj = Zzewp/ﬂwp ¢t @)id.

Proof. The map z is bar invariant by definition: in fact obviously z(N.) = z(N,), and then
by multiplying with the C;’s one can see that z is bar invariant on a set of generators.

If w € WP*9 then it is easily seen that z(N.,) € Ny + Y, ., ¢Z[q] Ny . By uniqueness of
the canonical basis elements it has to be z(N,,) = N, € MY. If w ¢ WP*9 then by the same
reasoning z(N,,) = 0.

Moreover

(2.2.12) z0j(Ny) =z Z (_q)f(w)wa _ Z q%(gg)]\[w7
TEWP NW, zE€WP' NW,

hence the last assertion follows as well. O



CHAPTER

Graphical calculus for
Uq(gl(1|1))-representations

In We have seen explicitly the well-known fact that the category of representations of Uy is
not semisimple. From now on, we will restrict ourselves to consider a semisimple subcategory
of representations of Uy, that contains the tensor powers of the vector representation V. In
particular, we will study in detail the intertwining operator. A key tool will be the so-called
super Schur-Weyl duality for the tensor powers of the vector representation, which we will
recall in We will then develop in a graphical calculus for gl(1|1)-representations,
similar to the one in [FK97].

3.1 A semisimple subcategory of representations

Given a positive integer number a let V(a) = L(ae1), and let V(0) = C(g) be the trivial
U,—representation. For a sequence a = (aq,...,a;) of natural numbers let us denote
V(a) = V(a1) ® --- ® V(ag). Let Rep be the monoidal subcategory of finite-dimensional
Ugrepresentations generated by V(a) for a € N: the objects of Rep are exactly {V(a) | a €
Upso N‘}. Note that this category is not abelian (it is not even additive). However, by
adding all direct sums and kernels we would get a monoidal abelian semisimple category,
with simple modules L(mje; + mags) for my, mg € N.

Since V(0) is the trivial one-dimensional representation and hence the unit of the monoidal
structure, it is enough to consider sequences a not containing 0; so, from now on, we
will always suppose that our sequences consist of strictly positive integer numbers. If
a1 + -+ 4 ap = n, we will often call the sequence a a composition of n. The sequence

(3.1.1) n=(1,...,1)

will be called the regular composition of n. Any other composition of n will be called singular.
Notice that V(n) = V(1)®" = V&,

aeq

We repeat formulas from for the special case of the representations V(a). Let v} = v;
for i =0,1. Then V(a) is a 2-dimensional vector space with basis vectors v§ in degree 0 and

25
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vg in degree 1; the action of U, is given by

a a a h,a h,ae a a __ .a,a
Ev =0, Fvi =g, qvlzq< 1>vl, Kv{ = q¢™7,

(3.1.2)

(h,aelfa)va

Evg = [a]v}, Fovg =0, qhvg =q 0, Kvg = qvg.

Projections and embeddings

Let a,b > 1. By Lemma V(a + b) is a subrepresentation of V(a) ® V(b). Let us define
explicit maps ®,: V(a) ® V(b) — V(a + b) and ®**: V(a + b) — V(a) ® V(b). We set

Qqp: V(a) ®V(b) — V(a+b)

V8 @y 0

b—1
vy ® vlf — g [a + }v‘”’b"

(3.1.3) b
b—-1
vf®v8|—>{a+a ]v‘O”b
b
v¢ @b — {LH— }v‘f“’
a
and
®*: V(a +b) — V(a) @ V(b)
(3.1.4) Ve g @ 8 + ¢ f @ vl

v v @b,

where as usual we set

(3.1.5) (k]! = [K][k —1]---[1] for all £ > 1,
(3.1.6) [Z] = [k}'[[:]ik]' foralln>1,1<k<n.

Lemma 3.1.1. The maps ®,; and O are morphisms of Uy —representations which com-
mute with the bar involution. Moreover, we have

(3.1.7) Doy W = [“ + b} id.
a

Proof. Tt is a straightforward computation to check that ®,; and ®*° are U,~equivariant. In
order to show that they commute with the bar involution, it is then sufficient to check what
happens on some generators (as U, representations). Notice first that from the definition
and the bar-invariance of v, v{ it follows that v¢ ® v} and v§ ® v} are bar-invariant.
Then ®*° commutes with the bar involution since applied to the bar-invariant element
v{ " it gives the bar-invariant element v§ ® v?. Analogously, ®,;, commutes with the bar
involution since ®,;(v§ @ v§) = 0 and D, ,(v1 ® v?) are both bar-invariant. Finally, (3.1.7)

is obviously true when applied to the vector vi”'b and so we are done by Schur’s Lemma. [

Canonical basis and bilinear form

Let a € Z~. The elements v§, v{ give the standard basis of V(a). Let now a = (aq,...,a)
be a sequence of (strictly) positive numbers. For any sequence = (11, ...,71¢) € {0,1}* we
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let vy = vl ®- - @wp!. The elements {v | n € {0, 1}4} are called the standard basis vectors

of V(a).

According to Definition for each standard basis vector v there exists a corresponding
canonical basis vector

(3.1.8) vRE =02 O Ot

The bilinear form

Fix a sequence of positive numbers a = (a1, ...,a;). We define a symmetric bilinear form on
V(a) by setting

51"4_4_/@;1

3N
(3.9 il A ) e

0y
where 5{ is the Kronecker delta,

a; —1 ifn; =0
3.1.10 R D i )
( : g ! i { a; otherwise

and

(3.1.11) {h1+---+hq ot bt

hi,..., he [Ae]l- - [he]!

Note that g2 % in (3.1.9) is exactly the factor needed so that the value of (3.1.9) is a
polynomial in g with constant term 1. We introduce the following non-standard notation:

(3.1.12) [hly = ¢" {1
(3.1.13) Bl = ¢ = [h]!
(3.1.14) [a—i—b} :qab[a—i-b}
a 0 a
hy+ -+ hy S mon, [+ T
1.1 = q&iFd M .
(3.1.15) {hl,...,hg L L v T

These are rescaled versions of the quantum numbers and factorials and of the quantum
binomial and multinomial coefficients so that they are actual polynomials in ¢ with constant

term 1. Hence we can rewrite (3.1.9) as

|:ﬁ{7_|__|_ﬁ27

3.1.16 v %) = oL h0e,
(3.116) e = | e

n oy

Notice that we have

(3.1.17) [h]o! = [Rlo[h — 1] -+~ [2],
hi+-+h [ + -+ 4 hy,!
(3.1.18) [ Moo by ELZM.

Lemma 3.1.2. For all v € V(a) ® V(b) and v' € V(a + b) we have

(3119) ((I)ayb(’l)), U/)(a—i-b) = (U, qiab@a’b(v/))((%b).
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Proof. This is a straightforward calculation on the basis vectors:

a a plat+bd—1 a —abga,b,.a
(Pa,b(vg ®”If)»”o+b)(a+b) =q° b } = (v§ @ o}, ¢ " ’bvo+b)(a,b)
a a at+b—1 a —abga,b, a
(q)a,b(vl Y Ug)vv()+b)(a+b) = |: a :| = (Ul ® US, q bcb ’bv()—,—b)(a,b)
a _a + b a —a a
(Pap (v @ 0Y), 071 (gap) = } = (vf @ v}, g P BUPVItY) (. O

Lemma 3.1.3. For all standard basis vectors vy, vS € V(a) we have

1]7

qa1+-~+ae71
3.1.20 Fu2 02y = —7———— (V2 EvS)q.
(3120 (Fonv3)e = iy O B

Proof. Suppose that there exists an index r such that n; = v; for all i # r and 0, =0, v, = 1
(otherwise both sides of (3.1.20]) are zero). Up to a sign (that we ignore, because it is the
same in both formulas), we have

(Fv,‘;,v,‘;)a — (qa1+~~+ar_1va Ua)a — qa1+‘-'+ar_1 |:

[3'1‘/++52
v Yy o

BY, B

and

(U%,E’U,ay)a = (v,‘;, [ar]qfarﬂf...—agv?a?)a = [a,]g oo [

ﬂ?+---+ﬁ£’}
B??vﬁ? 0.

Since 8! = B for i # r while 87 = 87 + 1 = a,., we have

(v3, EvS)a ~ o] (B 4 -+ B8] Bl BT +BT B a1y —ar g1 —a
Fogoma B !
=[B7 + -+ Blog T T,

which proves the claim. [

REMARK 3.1.4. If we enlarge U, with a new generator £’ such that

Bl = g
1.21 =g —FE'K~
(3.1.21) ¢ E

then we get an adjuction between F' and FE’.

Dual standard and dual canonical basis

We define the dual standard basis {U#“ | n € {0,1}*} of V(a) to be the basis dual to the
standard basis with respect to the bilinear form (-, -)q:

1 ifn=v
3.1.22 v®, o), = ’
( ) ( ey Ja {0 otherwise.

Of course, since the standard basis is already orthogonal, each vg’“ is a multiple of vy. In
particular, one has

(3.1.23) da — g2,

ﬂ{l++527 &a _ .a
n 4m =v
1o ¢ 0
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Moreover, we define the dual canonical basis {v;® | n € {0,1}*} of V(a) to be the basis dual
to the canonical basis with respect to the bilinear form (-, -)q:

1 ifn=xv
3.1.24 0% 1Y%, = ’
( ) ( mo Ja {O otherwise.

3.2 Super Schur-Weyl duality

Let us define a linear endomorphism H of V ® V by

1

(32.1) H(vg ®@vg) = —quy @ vy, H(vg®@v7) =vi @v5+ (¢ — q)ug @ vy
' H(vi ®vp) =vg@vi  H(vj @v}) =q "o} @ vy

By an explicit computation it can be checked that H can be expressed in terms of a projection

(3-1.3) and an embedding (3.1.4]):
(3.2.2) P, = H+q.
It follows in particular that H is Ug—equivariant.

We can consider on V" the operators
(3.2.3) H; =id® '@ A @id®" 1,
By definition, they are intertwiners for the action of U,. One can easily check that

(3.2.4) H? = (¢ — q)H, +id.

7

The category of U, —representation is braided (see , and the endomorphism H is just
the inverse of the braiding Ry . From this it follows directly that H is equivariant and
that the braid relation ﬁiﬁi+1ﬁi = ﬁi+1ﬁiﬁi+1 holds for all : = 1,...,n — 1. Since clearly
ﬁiﬁlj = fljfli for |i — j| > 1, it follows that the operators H; define on V®" an action of
the Hecke algebra #,,, which we regard as a right action.

The following result is also known as super Schur-Weyl duality. The non-quantized version
was originally proved by Berele and Regev [BR7| and independently by Sergeev [Ser84].

Proposition 3.2.1 ([Mit06]). The map

H, — Endy, (VE")
(3.2.5) V

s surjective. As a module for H, we have

n

(3.2.6) VO =B (S(knr) © S(ink)):

k=1

where fi, 1 is the hook partition (k,1"~%) and S(pn.x) is the g—version of the corresponding
Specht module.

By contrast, let us notice the following easy fact which we will use later:
Lemma 3.2.2. If n # m then Homy, (V™ V") = {0}.

Proof. This follows since K acts on V®™ by ¢™ and on V®" by ¢". Hence there is no
U,—equivariant map V™ — VO™ if m # n. O
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The Super Temperley-Lieb Algebra

It follows from Proposition that the kernel of is the two-sided ideal Z,, generated
by the idempotents projecting onto simple representations S(u) of H,, corresponding to
Young shapes p with n boxes that are not hooks. For n < 3 there are no such Young shapes.
For n = 4, the only Young shape that is not a hook is BH, and the corresponding idempotent
is, up to a multiple,

(3.2.7) (Hy+ q)(Hs + q)Ha(Hi — ¢~ ) (Hs —q 7).

For n > 4 every Young shape that is not a hook contains some B and it is easy to prove
that the ideal Z,, is generated by

(3.2.8) (Hi—1+ q)(Hiz1 + ) Hy(Hi—1 — ¢ ) (Hiz1 — g7 1)
fori=2,...,n—2.

As often occurs with the Hecke algebra, it is more convenient to choose generators C; = H; +q.
We introduce the Super Temperley-Lieb Algebra as follows:

Definition 3.2.3. For n > 1, the Super Temperley-Lieb Algebra STL,, is the unital
associative C(q)—-algebra generated by {C; | i =1,...,n — 1} subjected to the relations

(3.2.9a) C?=(q+q"C;

(329b) CZCJ = CjC’i for |Z —j| > 1,
(3.2.9¢) CiCi1C; — C; = Ci11CiCiyq — Cig,

and

(329d) Ci,lCiHCi((q + q_l) - 01;1)(((] + q_l) - Ci+1) =0,
(3.2.9¢) ((g+¢ ) -Cii)(g+q ") = Ciy1)CiCi1Ciyr = 0.

Since the first three relations are just the relations that the generators C; = H; + ¢ satisfy in
the Hecke algebra, it follows that STL,, is a quotient of H,,. Moreover, by the discussion
above, we have

(3.2.10) STL,, = Endy, (VE™).

Canonical basis revisited

Consider the weight space decomposition

(3.2.11) ver = e,
k=0
where
(3.2.12) (Ve = {v e VO | o = ghert(nhlez)

Clearly, every weight space is a module for the Hecke algebra. We have:

Proposition 3.2.4. Let Wy = (s1,...,85-1) and Wy = (Sp41,...,5,—1) as subgroups of
Sp. With the notation of §2.9 we have

(3.2.13) (VE™)p = M?
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as right H,-modules. The isomorphism is given explicitly by

U Mg — (V®n)k

(3.2.14) o
Ny — Uﬂmm‘w’
where
(3.2.15) Nin = (1,...,1,0,...,0).
k k

and S, acts on sequences of {0,1}"™ from the right by permutations.

Proof. Tt is straightforward to check that, by the definition of the action of H,, on V& (3.2.1]),
we have vy, - Hy = vy . ., Whenever w € WPT4_ In particular, (3.2.14) is a bijection. We
need to show that the action of the Hecke algebra is the same on both sides. This follows by

comparing (2.2.3) with (3.2.1)). O

As a consequence, there is a second notion of canonical basis on (V&™) defined using the
Hecke algebra action from Chapter 2] Not surprisingly, this coincides with Lusztig canonical
basis (compare with [FKK98, Theorem 2.5], that deals with the case of sl3):

Proposition 3.2.5. Under the isomorphism U (3.2.14), the canonical basis element N, of
./\/ls is mapped to the canonical basis element v,?jm,w.
Proof. By the uniqueness results (Proposition and Theorem [1.3.2)), it is enough to show
that the bar involution of M} is mapped to the bar involution of (VO under (3.2.14).
On Mg the bar involution is uniquely determined by N, = N, and X H; = XH;1 for all
X e ./\/lg. It is enough to show that the same holds for Lusztig’s bar involution on (V®").
Of course 7, — = vy,__, and one can show by standard methods (cf. [Zha09, Lemma 2.3])
that

(3.2.16) Hi(vy) = H; ()

?

for all standard basis elements vy,. O
The form (-,-) on M} and the form (-,-)n on (V®"); are proportional under ¥:

Lemma 3.2.6. Let U be the isomorphism , Then

(3.2.17) (U(X),T(Y))n = [k]o{X,Y) for all X, Y € M§.

Proof. 1t is enough to check (3.2.17) on the standard basis {N,, | w € W9} of M§. We
have

[klo!  if w =z,

(3.2.18) (U(Nw), U(N2))n = (U, ws Unpyz)n = .
0 otherwise.

By definition, this is the same as [k]o!(N,, N, ). O

3.3 Web diagrams and the intertwining operators

In this section we will provide a graphical calculus for the intertwining operators in the
category Rep.
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The category Web

We start by defining a diagrammatic category Web and a functor 7 : Web — Rep. We remark
that the category Web is similar to the category of SL,,—spiders (see [Kup96|, [Kim03], [Mor(07]
and [CKMI12]) which describes intertwining operators of representations of Ug(gl,,).

Web diagrams

A web diagram is an oriented plane graph with edges labeled by positive integers. For
simplicity we suppose that the edges do not have maxima or minima, and the orientation is
then uniquely determined by orienting all edges upwards. Only single and triple vertices are
allowed. Single vertices must lie on the bottom (respectively, top) line if they are sources
(respectively, targets) for the corresponding edge. Around a triple vertex, the sum of the
labels of the ingoing edges must agree with the sum of the labels of the outgoing vertices; this
means that only the following labelings are allowed for arbitrary strictly positive numbers
a,b:

a+b

a b
(3.3.1) /L\ T \T/
a b

a+b

We will not draw the orientation of the edges, because they are all oriented upwards. The
source of a web is the sequence a = (aq,...,ar) of labels on the bottom line. The target is

the sequence a’ = (af,...,a.) on the top line.

»s

If we have two webs 1, ¢ and the target of ¢ is the same as the source of 1, then we can
compose ¥ and ¢ by concatenating vertically:

Additionally, we can always concatenate two webs ¢, 1) horizontally, putting the second on
the right of the first; in this case we use a tensor product symbol:

PR = ® (G

The categories Web’ and Web

Definition 3.3.1. The category Web' is the category whose objects are sequences a =
(a1,...,a¢) of strictly positive integers; a morphism from a to a’ is a C(q)-linear combination
of web diagrams with source a and target a’. Composition of morphisms corresponds to
vertical concatenation of web diagrams. Horizontal concatenation of web diagrams gives, on
the other side, a monoidal structure on Web', whose unit is the empty sequence ().
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Definition 3.3.2. We define the category Web to be the quotient of Web' by the following
relations:

(3.3.2a) Orientation preserving isotopy
s (with source and target points fized)
a+b a+b
b
(3.3.2b) u %? b = [“* ]
a
a+b a+b
a+b+c a+b+c
e /%\ ) />\
a b c a b c
a b c a b c
(3.3.2d) \</ - \?/

at+b+ec a+b+ec

2 2
(33.26) 2 + = 2 + 2
2 2

We define the two elementary webs Aq ; and Yl by the diagrams

=
=
=
=
=
=
—
=
=
=
=
=

[\

—
=
-
=
=
=
[
[
—
=
=
=

a1 i1 A + i1 G2 ap
(3.3.3) )\a’i = )\

ai Ai—1 Qi G4l Q42 ap

al Ai—1  a; Gl Qiy2 ag
(3.3.4) N . Y

ai ai—-1  a; + aji4+1  Git2 ag

and notice that the category Web is generated by such elementary web diagrams. Given a
sequence a = (ay,...,ay) we let also

(3.3.5) a; = (ar,...,0i—1,0; + Qip1, 042, .., 0¢)

be the target of Aq,; (and the source of Ya’i).

It will be useful to consider also multivalent vertices with only one outgoing (respectively,
ingoing) edge: we define them to be equal to concatenations of trivalent vertices (3.3.1]). For
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example:
a b c d a b c a b c d a b c d
(336) \/ W v V
a+b+c a+b+c a+b+c a+b+c

Notice that this is well-defined by (3.3.2c)) and (3.3.2d)).

Let us define the web diagrams

(3.3.7) A = A and Y, = \v

n n
(3.3.8) Ao, =1 1 = [n]!
Given a composition a = (ay,...,as) of n, notice that we have a standard inclusion
(3.3.9) Yo, @Y, :a—n
and a standard projection
(3.3.10) A @AY n—a.

Webs as intertwiners

Now we are going to define a monoidal functor .7 : Web — Rep. On objects we set 7 (a) =
V(a) and (()) = C(q), where () is the empty sequence. To define Z on morphisms, it
suffices to consider elementary pieces of webs. An oriented edge is an identity morphism
from the source a to the target a in Web, hence the functor 7 assigns to it the identity
morphism of V(a):

a V(a)
(3.3.11) g = Tid
a V(a)

To triple vertices we assign projections and inclusions of subrepresentations, as follows:

a+b V(a+0)

(3.3.12) T )\ = T%,b

a V(a) ® V(b)
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a b V(a) ® V(b)
(3313) g \( = (I)a,b
a+b V(a+b)

Proposition 3.3.3. The assignments (3.3.11)), (3.3.12)), (3.3.13)) define a dense full monoidal
functor 7 : Web — Rep.

Proof. First, we have to check that .7 satisfies the relations defining Web. It is straightforward

to check that 7 assigns the same morphism to both sides of (3.3.2c|) and (3.3.2d)). Relation
(3-3.2b)) is satisfied thanks to (3.1.7). Relation (3.3.2€) is satisfied thanks to (3.2.9c).

The functors .7 is dense since, by definition, the objects of Rep are exactly the V(a)
for all sequences a of positive integer numbers. We prove now that 7 is full. By
Proposition and the map Homweb(N,N) — Homge,(VE™, V™) induced by
7 is surjective. Together with Lemma [3:2.2] it follows more in general that the map
Homwep (M, N) — Homgep (VE™, V™) induced by 7 is surjective for all m,n. Now each rep-
resentation V(a) € Rep embeds in some V®™, and the corresponding inclusion and projection
are images under .7 of the standard inclusion and of the standard projection .
Hence .7 induces a surjective map Homweb (@, @’) — Homgep(V(a), V(a’)) for all sequences
a,a’, hence 7 is full. O

In what follows, we are often going to omit to write the functor .7 and consider a web just
as a homomorphism of the corresponding representations.

Matrix coefficients

Let ¢ be a web from a = (ay,...,as) to @’ = (a},...,d}). Given € {0,1}¢,~ € {0,1}*,
we can consider the matrix coefficient

(3.3.14) (p(vg),v3 )

which is the coefficient of vg/ in gp(vZ) when expressed in the standard basis. We represent it
by a labeled web diagram

(3.3.15) @

where the i—th line below is labeled by A if n; = 1 and by V if n; = 0, and the i—th line above
is labeled by A if 7; = 1 and by V if v, = 0.

Diagrams provide a convenient way to compute matrix coefficients, as we are going to explain.
Let us fix a diagram ¢ and suppose that we want to compute the coefficient . We
start with the picture . Then we label every internal edge of the graph with A and
V, in all possible ways. Such a “completely labeled” graph is evaluated according to the
local rules in Figure (the missing label possibilities are evaluated to zero, and the total
evaluation is obtained via multiplication). To evaluate the initial picture, sum the evaluations
over all possible “complete labelings”.
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a b b a b
a-+b a+b a+b

a+b b a+b
a b b a b

TG0 | I G T R T

b a a

a+

a

Figure 3.1: Evaluation of elementary diagrams.

EXAMPLE 3.3.4. Consider the web diagram

a+b+ec

(3.3.16) p=

(a+b,c)) U(a+b+c)

and suppose we want to compute the matrix coefficient <g0(v(0_1) 1 (0) ), which corre-

sponds to the partially labeled diagram
a+b+c

(3.3.17)

a+b c

This diagram has eight “complete labelings”, but only the following two have non-zero
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T

Figure 3.2: The standard basis diagram for pGLa42L1)

(1,0,1,1,0,1,0)"

evaluation according to the rules of Figure 3.1}

at+b+e a+b+ec

(3.3.18)
a b a b
a+b c a-+b c

According to the evaluation rules, the first diagram evaluates to q“[
—-b [a-f—b—l] q—c [a—&-b—&-c—l}
b c

a+(l;71] q_c [a+b:§cfl}’ and

the second one evaluates to ¢ . Hence we have

+b, +b+
(p(wig 7, vl

Ja+b—=1| _Ja+b+c—1 pla+bdb—-1] _la+b+c—1
=q q +4q q

(3.3.19) a ¢ b c
_ _cla+blla+b+ec—1
o a c ’

Notice that we could have simplified the calculation using relation (|3.3.2b)):

at+b+c at+b+ec

(3.3.20) = [a * b} ®
a b a
a+b c a+b c

Webs and canonical basis

Fix a sequence a = (ai,...,as) and consider a standard basis element vy of V(a). This
standard basis element is represented by a (trivial) diagram, obtained as follows: take the
identity web a — a and label the edges from the left to the right with an A if n; =1 and a
V if n; =0, (as in Figure . We call it the standard basis diagram corresponding to vy.

Starting from this standard basis diagram, one can obtain the corresponding canonical basis
element as follows. For each consecutive VA (in this order), join the corresponding two edges
as follows:

Y
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31 44 2 11

| T

Figure 3.3: The canonical basis diagram for pB 1442 11)

(1,0,1,1,0,1,0)"

Repeat this process using at each step also the V’s created in the previous steps, until no
more VA is left. At the end, we will obtain some diagram C(vy;) that we call the canonical
basis diagram corresponding to vy (see Figure and Example below).

REMARK 3.3.5. Note that this canonical basis diagram is obtained joining recursively each
edge labeled by a V with all immediately following edges labeled by A’s. If we use multivalent
vertices (as defined by ), we can construct the canonical basis diagram in just one step.
In particular, the construction is independent of the order in which we consider the pairs VA.

We claim that canonical basis diagrams correspond to canonical basis elements via 7. In fact,
the diagram C'(vy) has an underlying web that represents some embedding V(a’) — V(a),
where a’ is some composition that is refined by a; this web carries on the bottom the labels of
a basis element of V(a'), which is at the same time a standard basis element and a canonical
basis element. Hence the diagram C(vy) is an “evaluated web”, that gives a bar-invariant
element of V(a) (since .7 (¢) sends bar-invariant elements to bar-invariant elements for all
webs ¢ by Lemma [3.1.1]). Examining the evaluation rules (Figure , one observes that
the matrix coefficients of C'(vj}) are all in ¢Z[q] except for the coefficient of vy, that is 1.
Summarizing, we have:

Proposition 3.3.6. The diagram C(vy) gives the canonical basis element v,?a of V(a).

EXAMPLE 3.3.7. Let @ = (3,1,4,4,2,1,1) and consider the element V{1 0,1,1,0,1,0) € V(a).
The corresponding standard and canonical basis diagrams are pictured in Figures P);%l and [3.3]
In particular, evaluating the canonical basis diagram according to the rules in Figure 3.1} we
get the corresponding canonical basis element

Sa —_ ,a a 5 a
(3.3.22) 0(1,0,1,1,0,1,0) = ¥(1,0,1,1,0,1,0) T 9Y(1,1,0,1,0,1,0) T ¢ Y(1,1,1,0,0,1,0)

2 a 3 .a 7..a
+4V(1,0,1,1,1,00) T V(1,101,100 T4 V(1,1,1,01,00- @

REMARK 3.3.8. Notice that for the regular composition n of n and for some standard basis
element vy, the corresponding canonical basis diagram C(vy) is a diagram of the type
Yo, ®--®Y,,, where a is some composition of n depending on 1, and it is labeled at the
bottom by a sequence of A’s followed by a sequence of V’s.

Webs and the action of £ and F

Using our diagram calculus we can easily compute the action of ' on canonical basis elements
(in an analogous way as [FK97] for sly).

Proposition 3.3.9. Fiz some representation V(a) and consider a canonical basis element

vf;“. We have

AL AHATES L ag 5 -1
(3.3.23) F(ui?) = {”0 Qupa &+ Qupt - if m )

n 0 otherwise.
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Proof. Suppose that ; =1 for ¢ = 1,..., h, while 1,41 = 0 (possibly h = 0). The canonical
basis diagram C'(vy) is

(3.3.24)

where there are some vertices in the box. We can also represent it as

(3.3.25)

because this is the same element according to our diagrammatic calculus. On the bottom we

have the labels of vf;/ for some composition a’ refining a, where v = (1,0,...,0). We have
(3.3.26) F'@u2®- - Quy”) =y ®ug> @ --- @ vy .
Hence

(3.3.27) F

which is exactly our assertion. O

By (3.1.20) it follows that E sends the dual canonical basis to the dual canonical basis (up
to a multiple):

Proposition 3.3.10. Fiz some representation V(a) and consider a dual canonical basis

element v,?a. We have

[BY + -+ B0 a1 an ,
(3.3.28) E(an) _ va@v%@ < Quptif m =0,

0 otherwise.

A faithful calculus

The functor .7 : Web — Rep we constructed is full, but not faithful. In the following we
will define a category Web by adding more relations to Web, so that .7 descends to a
faithful functor .7 : Web — Rep. We point out that in Part [II| we will be able to categorify
7 : Web — Rep (that is, we will define functors which satisfy categorical versions of the
relations defining the category Web); although we believe that these functors satisfy also the
additional relations defining Web, we will only be able to formulate a conjecture.

First, we need the following result:
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Lemma 3.3.11. Let w, € S, be the longest element. Then the image of H,, wunder the
map (3.2.5)) is the endomorphism

(3329) En =

Proof. One can check by a standard calculation using that the element H,, —acts by
0 on M§ unless W, is trivial. In particular, by it follows that H,, acts by 0 on
the weight space (V@) unless k = n — 1,n. Now, V®" decomposes as in and the
one copy of L(ney) is the unique summand whose weight spaces are contained in (V®"),,_;
and (V®"),. It follows that, up to a multiple, H, acts on V®" by projecting onto this
summand L(ne;). Hence the homomorphisms defined by H,, ~and coincide up to a
multiple. A standard calculation shows that H. ?un = [n]'H,, . By the same holds for
=,, hence the claim follows. O

From the web calculus we introduced we cannot see explicitly the action of the Hecke algebra.
However, we can enhance our web calculus allowing edges labeled by 1 to cross, and define

\

(3.3.30) = —q

More generally let Xn; = Y™ o Ap; — ¢idy (so that is just Xp; for n = 2,
i = 1). Since the X, ; satisfy the relations of the Hecke algebra generators, we can set
Knw = Kniy 00 Xny, forall w € S, where s;, - s;, is a reduced expression for w. We
have then:

Let Web be the quotient of the category Web modulo the relations

1 1 1 1 1 1 1 1 1 1 1 1
2 2
(3.3.31a) 2 =[2] +[2]
2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 2 2 2
(3.3.31b) +12%| e =[2] + (2]
2
1 1 1 1 1 1 1 1
and
(3.3.31¢) Ep= ) g T,

wESn
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Theorem 3.3.12. The functor 7 induces an equivalence of monoidal categories

(3.3.32) 7 : Web —> Rep.

Proof. First, the functor .7 respects relations (3.3.31al) and (3.3.31b]) thanks to (3.2.9d)) and
(3-2.9¢). Moreover, it respects relation (3.3.31c) by Lemma |3.3.11} Hence it descends to a
functor on Web. Since this functor is obviously essentially surjective (by the definition of

Rep), and is full by Proposition it remains to show that it is faithful.

Consider a web diagram ¢ with source and target n. Using multivalent vertices and using
relation to expand edges labeled by integers 7 > 1, we can suppose (up to a multiple)
that ¢ is obtained by concatenating horizontally and vertically only identities and diagrams
=, for r = 2,...,n. Moreover, using the relation together with the definition of
An,i to expand Z,, we can write ¢ as linear combination of web diagrams whose edges
are labeled only by 1 or 2. These correspond to generators of the Super Temperley-Lieb
Algebra STL,,. Since all relations defining STL,, also hold for web diagrams, and since STL,,
is isomorphic to Endge,(V®™), it follows that the map Endwes(N) — Endge, (V™) induced
by  is an isomorphism (and in particular injective).

Consider now a general web diagram ¢ with source a and target a’, where a and a’ are
compositions of n. As before we can suppose (up to a multiple) that ¢ is obtained by
concatenating horizontally and vertically only identities and multivalent vertices of the
type A" and Y, for » > 1. In particular, ¢ is the composition of the standard inclusion
a — N, a web diagram with source and target n, and the standard projection
n — a'. It follows that the map Homwes(a, a’) — Homgep(V(a), V(a’)) induced by 7 is an
isomorphism for all compositions a, a’. O






PART 11
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CHAPTER

Graded category O

The leading actor of our categorification construction is the BGG category O, first introduced
in [BGGT6], and its graded version [BGS96]. After some generalities about grading and
graded lifts in we recall the definition and the main properties of category O in
We define then the graded version ( using Soergel’s theorems, which we recall in §4.3| In
§4.4 we prove then some relations between translation functors in the graded setting. We will
follow quite closely [Str03a]; notice however that in [Str0O3a] only graded translation functors
involving regular and semi-regular weights are studied, while we consider here the general
case of arbitrary integral weights. Although the results of are well-known to experts, we
include them here since we do not know a good reference for them.

4.1 Gradings

If R is a ring we will denote from now on by mod— R the category of finitely generated (right)
R-modules. If moreover R is graded, then we will denote by gmod— R the category of finitely
generated graded R-modules. We stress that by graded we will always mean Z-graded. We
denote by f: gmod—R — mod—R the grading forgetting functor.

If M € gmod—R then M = @,_, M;. For m € Z let M(m) be the graded module defined
by M({m); = M;_,, with the same module structure as M, i.e. f(M) = f(M{m)). We will
also use the notation ¢M = M(1). Given two graded R-modules M and N we denote by
Homp (M, N) the set of non-graded homomorphisms. This contains the set Hompg (M, N);
of all morphisms which are homogeneous of degree i. Notice that

(4.1.1) Homp (M (i), N)o = Homp(M, N); = Hompg (M, N{—1i))o.
A module M € mod—R will be called gradable if it has a graded lift M e gmod—R such that
f(M) = M. If S is another graded module, then a functor F': mod—R — mod—S will be

called gradable if it has a graded lift, that is a functor F: gmod—R — gmod—S such that
fF = Ff. In general, not every module is gradable, see [Str03a] for an example.

Given an abelian category A which is equivalent to mod—R for some graded ring R, we will
say that A = gmod—R is a graded version of A.

We recall the following lemma:

45
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Lemma 4.1.1 (See [Str03al, Lemma 3.4] and [Bas68|, 2.2]). Let R and S be any rings. There
is an equivalence of categories

right-exact, compatible with
{ direct sums functors } +— R—(g)mod—S
(g)mod—R — (g)mod—S

F+— F(R)
eR¥p X +—1 X

(4.1.2)

The Grothendieck group
We recall the definition of the Grothendieck group of an abelian category:

Definition 4.1.2. Let A be an abelian category. Its Grothendieck group K (A) is the quotient
of the free Z-module on generators [M] for M € A modulo the relation [B] = [A] + [C] for
each short exact sequence A — B —» C in A.

If the category A is graded then K (A) becomes a Z[q, ¢ ']-module under ¢[M] = [¢M] =
[M(1)]. For an abelian graded category A we let moreover

(4.1.3) K9 (A) = C(q) ®zjq.q-1) K(A).

4.2 The BGG category O

Let us fix a positive integer n. Let gl,, = gl,,(C) be the general Lie algebra of n x n matrices
with the standard Cartan decomposition gl, = n~ @ b @ nT into strictly lower diagonal,
diagonal and strictly upper diagonal matrices respectively. Let also b = h@n™ be its standard
Borel subalgebra. We will indicate by ~ C h* the set of integral weights of gl,, and by + C
the set of integral dominant weights (with our choice of Borel subalgebra b). We let p €
be half the sum of the positive roots.

Definition 4.2.1 (IBGGT76]). The BGG category O = O(gl,,) = O(gl,, b) is the full subcate-
gory of U(gl,)-modules which are

(01) finitely generated as U(gl,)-modules,
(02) weight modules for the action of b with integral weights, and
(03) locally n*—finite.

We stress that we consider here only modules with integral weights. The category O is abelian,
Artinian and Noetherian and has enough projective objects. Moreover, it is obviously closed
under tensoring with finite dimensional gl,,—modules. We recall some standard facts on the
category O; for more details we refer to [Hum08].

Highest weight modules. For each integral weight A € let C) be the one-dimensional
h—module with generator 1, and action given by h -1y = (A, h)1). By extending the action
by zero to n*, we can consider C, as a b-module. One defines then the Verma module M())
with highest weight A to be

(4.2.1) M(X) = Ul(gl,) ®u) Ca.

The module M (A) has a unique simple quotient, which we denote by L(X). The objects
{L(A\) | A € } form a complete set of pairwise non-isomorphic simple objects in O. For each
A €  we denote by P(\) the projective cover of L(\).
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Block decomposition. Consider the dot action of the Weyl group S,, on  C b*, defined by
w-A=wA+p)—pforweS,, A€ . Two simple objects L(A), L(u) are in the same block
of O if and only if A and p are in the same S,,—orbit under the dot action. For an integral
dominant weight A € T we let O, be the block of O containing L()\). We have then a block
decomposition O = @, + Ox. For a weight A € let Sy C' S, be its stabilizer under the
dot action. The weight A is called regular if Sy is the trivial group, otherwise it is called
singular. The block O, is called regular (or singular) if X is regular (respectively, singular).

Highest weight structure. Each block O, is a highest weight category (JCPS88]|), where the
poset of weights is the set of shortest coset representatives (Sn /gA)ShOrt equipped with the
Bruhat order; the standard modules are the Verma modules M (u) for p € Sy, - A

Translation functors. Consider two weights A\, p € . The translation functor Th: Oy — O,
is defined by

(4.2.2) TX(M) = pr,(M @ E(u— X))

where pr), is the projection onto O, and E (1 — A) is the finite-dimensional gl,,—module with
extremal weight © — \. Translation functors are clearly exact. Moreover, the couple (T%, ']I‘l);)
forms a pair of adjoint functors. If A and p are weights with stabilizers Sy, S, with Sy C S,
we will use the expressions translation onto the wall and translation out of the wall to indicate
the translation functors T4 and ']I‘ﬁ respectively (note that in the literature these expressions
are often used only when A is regular and S, has order 2).

4.3 Soergel’s theorems

Soergel’s theorems, which we now briefly recall, give a description of blocks of O via
commutative algebra. Let R = C[zy,...,z,] be the polynomial ring in n variables. The
symmetric group S,, acts on R by permuting variables. We denote by Ri_” C R the ideal
generated by symmetric polynomials without constant term. Then we have:

Theorem 4.3.1 ([Soe90, Endomorphismensatz 3]). Let A € + and let w} be the longest
element of (Sn/SA)Short. Then there is an isomorphism of algebras

s
(4.3.1) Endo (P(w) - \) 2 (R/(RS)) ™.
The algebra R/ (Ri) is called the algebra of the coinvariants; we will denote it by B. We
denote its invariants under Sy by B* = B,

Thanks to (4.3.1]), one can define the functor V = Vy = Homg (P(w}-)),e): Oy — B —mod.
We have then:

Theorem 4.3.2 ([Soed0] Struktursatz 2|). Let A € + be an integral dominant weight. The
functor Vy is fully faithful on projective objects. That is, Vy induces an isomorphism

(4.3.2) Homg, (P, Q) — Hompx (VAP,V,Q)
for all projective modules P,Q € Oy.

Translation functors and the functor V are related by the following:

Theorem 4.3.3 ([Soe90, Theorem 10]). Let A\,p € T with Sy CS,,. Then we have
(4.3.3) VT 2reshVy  and  V,\T) = B*@pu V,,,

where res’)f: B*—mod — B*—mod and B* ®@pu ¢: B*—mod — B*—mod are the restriction
and extension of scalars respectively.
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4.4 Graded version

Let A€ T, and let Z()\) = EBa:e(Sn/S )
VADN
0. Set Ay = Endo(Z(N)). Then we have an equivalence of categories

s P(2 - A) be a (minimal) projective generator of

OA — modeA

(4.4.1) M — Homg (2(\), M),

see [Bas68, Theorem II.1.3]. Notice that by Theorem we have

(4.4.2) Ay =Endp(Z2(\) = EB Hompg(VP(x - \),VP(y - \))

z,yc (ST!/SA)ShOM

We consider now R as a graded ring with dega; = 2 for all i = 1,...,n. Since the ideal Ri’"
is homogeneous, B inherits a grading. Since the invariants are generated by homogeneous
symmetric polynomials, all B* for A € + are graded rings. Moreover, it is not difficult to
see that for A\ € T all VP(z-)\), z € (Sn/sl\)ShOrt can be considered as graded B*-modules
(see [Str03al, Theorem 2.1] and [BGS96]). We adopt the following usual convention: when
we regard VP(z - \) as graded module, its highest degree is ¢(x). We can then consider the
algebra Ay as a graded algebra, and define the graded category Zo \ by

(4.4.3) 29, = gmod—A,

This grading is natural in the sense that it is the unique Koszul grading on O,. Details can
be found in [Soe00] and [BGS96].

In [Str03a] it is proved that projective, simple and Verma modules are gradable, and a graded
shift is unique up to isomorphism and overall shift in the grading. We take their standard
graded lifts to be determined by requiring that the simple head is concentrated in degree 0,
and by a slight abuse of notation we will denote them again by L(A), M(\) and P(}). In
particular notice that we have a decomposition of graded modules Ay = P __ (5n/5,)" P(z-)),

and the idempotent projecting onto P(z - \) is homogeneous of degree 0.

Graded translation functors

Let A,z € T. Then the translation functors ']Tf; corresponds under the equivalence of

categories (4.4.1)) to
(4.4.4) e ®4, T)P (1) = @ ®4, Home (2(N), T)2()).

Let now A\, p € * with S, C S). By Theorem it follows that under the equivalence of
categories (4.4.1)

(4.4.5) TA corresponds to e ®4, Hompu (VZ(u), reshV2(N)),

(4.4.6) ’JT/AL corresponds to e @4, Hompx (VZ(N), B* @pe VP (1)).

Hence these functors are gradable. We define their graded lifts to be

(4.4.7) T, = e @4, Homps (V2 (1), resh V2(N)),

(4.4.8) T) = o ®4, Homps (VZ(N), B* @pu V2 (1) {—L(x0))),

where 2o = 24" is the longest element in (S;L/SA)ShOlrt The degree shift is such that

TAM(X) = P(u) and Ty M (p) = P(xo - A).
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Lemma 4.4.1. We have graded adjunctions
(4.4.9) T) H¢")Ty  and  Th ¢ )T,

Proof. By the classification theorem of projective functors in the category O (see [HumO8|
Theorem 10.8]) and its graded version (see [Str05]), it suffices to check the degree shifts,
hence to verify (4.4.9) on the dominant Verma modules. We have

¢"@)C = Hom(P(zo - \), M(\)) = Hom(T\ P(1), M (X))

4.4.10

a0 = Hom(P(p), "™ T4 M (X)) = Hom(P(p), ¢"**) P(n)) = ¢"**)C
and

(4411) C = Hom(P(p), M () = Hom (T4 M (X), M (1))

= Hom(M(\), ¢ “")T) M (1)) = Hom(M(X),q ") P(q - \)) = C.

For the first calculation, we used the well-known fact that the composition factor L(zg - A)
appears in M () only once in degree £(x¢); for the second one, we used the also well-known
fact that the shifted Verma module ¢*(*o) M (M) appears at the bottom of the projective
module P(xg - \). O

4.5 Translation functors

We prove now some relations between translation functors in the graded setting, which
correspond to the relations between web diagrams that we introduced in §3.3] We will use
the following lemma:

Lemma 4.5.1. Let \,p € + andlet Fy,Fy: Oy — O, be two right-ezact additive functors
which send projective objects to projective objects. Suppose V,Fy = F{Vy and V,F =
F3Vy for some functors F{,Fy: By—mod — B,—mod. If the two functors F{ and Fj are

isomorphic, then so are Fy and Fy. The same holds in the graded setting.

Proof. For i = 1,2, the functor F; corresponds to e ® 4, Home (£ (1), F;Z(\)) under the
equivalence of categories (4.4.1]). Now we have isomorphisms of (Ay, A, )-bimodules:

(4.5.1) =~ Hompu (VA (1

hence the two functors F} and F5 are isomorphic. ]

Multivalent vertices. The following corresponds to (3.3.2c) and ([3.3.2d)):

Proposition 4.5.2. Let \,pu,v € T and suppose Sy €S, CS,. Then ’]I‘Z’]I‘f\‘ =T} and
THTH = TS,

Proof. We use Lemma and the definitions (4.4.7)) and (4.4.8)) of the graded translation
functors. First, we have res)res) = resj, hence T} T4 = T}. Second, we have

(4.5.2) B* @pu B*(—{(0)) @p~ ® (—L(y)) = B* @5+ o (—(L(yo) + £(x0))),
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where g, yo are the longest elements of (Su /S)\)Short and (S, /Su)s}wrt, respectively. Notice

that yoxo is the longest element of (Sy/g,)™" and £(yo)f(x0) = £(yo) + £(x0). Hence
THTA = T, O

Squares. The following is the counterpart of (3.3.2b))

Proposition 4.5.3. Let A\,p € T with Sx €S, and suppose Sy =Sq, X -+ X Sq,, while

(4.5.3) S =Sa; X+ XS,y XSaitai. XS X -0 X Sq,.

i+1 ai42

Then TRT) = [“Fo+1]id.

(223

Proof. Let xy be the longest element of (SIL/SA)Short. Notice that £(xo) = a; + a;11. By
Lemma [£.5.1] it suffices to show that

Qi + Q41

(4.5.4) rest B @pu o (—(a; + aiy1)) = { h

:| BM ®Bu o,

Equivalently, it suffices to show that B* is free as left B*-module of (graded) rank
gt it [“i*a"_i“] = [‘“Jra‘fi“] . This follows directly from [Willll Lemma 4.2, (1)] (see

0
also [Dem73, Théoréme 2, (c)]). O

Isotopy invariance. Let now n',n” > 0 with n = n’ +n”, and consider the Lie algebras gl,,,
and gl,,» with standard Cartan subalgebras b’ and h”. Consider the inclusion gl,, ®gl,,,» C gl,,,
so that h = §’ ¢ h”. Given a weight X for gl,, and a weight \” for gl,,.,, let us denote by
N @& X' the weight for gl, whose restriction to b’ is A and to h” is A”. Then we have:

Proposition 4.5.4. Suppose X,y are integral dominant weights for gl,, and X', u" are
integral dominant weights for gl,... Suppose that either Sx» C S, or Sy DS, and either
S)\u C SH" or S)\u D) SM”' Let

(4.5.5) )\ — )\/ @)\/I, ’y1 — )\/ @/Iz”, 72 — MI 69 )\//’ /l — /J/ @/,L/I.

Then T# T} 2 T# T},

Proof. By Lemma and Theorem [£.3.3] we need to check some commuting relations
between restriction induction functors . If either Sy» C Syr and Sy C Sy, or Sy O Sy
and Sy» D S,~ then this is obvious, since restriction functors commute with restriction
functors, and induction functors commute with induction functors. So suppose Sy/ C S, and
Sx D S, (the remaining case is analogous). Then we need to check that for M € B*—gmod
we have a natural isomorphism of B*-modules rest) B™ @px M = B" ®p resy? M. Recall
that B is free as left B¥—module (cf. the proof of Proposition ; choose a basis
& =1,&,...,&n € B". By our assumptions it follows immediately that this basis can be
chosen in B" N B (since BYeXN' ~ BN g B’\”). Then the isomorphism is given by

B" @px M — B* @pwe M

4.5.6
( ) (b1£1+"'—|—bN§N)®m'—>bl®§1m+"'+bM®§Mm

Its inverse is just b ®@ m +— b ® m. O
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Braid relation. Fix now a regular weight A € T. Let s; € S,, be a simple reflection and
choose a dominant weight ;1 € * such that the stabilizer S, is the order two subgroup of S,,

generated by s; (u is sometimes called semi-regular). Let us denote by 6; = 0y, : Zo P Zo N
the composition ']I‘;\L'I[‘*;. If we set B; = B;, = B ®ps:; B then

(457) 0; = e XA,y Hompx (V@()\), B; ®p Vf@(/\))

It follows that the functor 6; does not depend on the choice of p (up to natural isomorphism).

The following result is standard (cf. [Soe92]):

Proposition 4.5.5. The functors 0; satisfy the relations

(4.5.8) 0:0; = 0;0;  if [i—j|>2
0:0;410; @ 0i41 = 0;410;0;41 D 0;.

Proof. Tt follows from Lemma [£.5.1] that it suffices to check that

(4.5.10) Bi®p B;=B;®pB; if |i—j|>2
(4.5.11) B; ®p Biy1 ®p B; ® Bi11(2) = Biy1 @ B; @ Biy1 ® B;(2).

This is well-known (see for example [EKQ09, §2.3] — notice that we need to quotient out the
invariants in order to obtain (4.5.10) and (4.5.11) from [EKQ9]). O







CHAPTER

Subquotient categories of O

We define now the subquotient categories of O which we will use for the categorification. This
chapter is purely Lie theoretical and is the technical heart of this part. We will start with
a quick reminder about Serre quotient categories (§5.1). We will then give two equivalent
definitions of the subquotient categories Oi’q'pres (nd 3) and describe their properly
stratified structure. Finally, in and we introduce and study the functors between
these categories that we will use in the next chapter to categorify the action of U, and of the
intertwining operators.

5.1 Serre subcategories and Serre quotient categories

Let A be some abelian category which is equivalent to the category of finite-dimensional
modules over some finite-dimensional C—algebra. Let {L(A) | A € A} be the simple objects
of A up to isomorphism. For all A € A let P(\) be the projective cover of L()). Let
P =@,cx P(A) be a minimal projective generator and let R = End, (P). Then we have an
equivalence of categories

(5.1.1) A = mod—R

via the functor Hom 4 (P, e). We recall some standard facts about Serre subcategories and
Serre quotient categories of A.

Serre subcategories

A non-empty full subcategory 8§ C A is called a Serre subcategory if it is closed under
subobjects, quotients and extensions. For a subset I' C A define 8t to be the full subcategory
of A consisting of the modules with all composition factors of type L(y) for v € I'. Then
Sr is obviously a Serre subcategory of A. Let It be the two-sided ideal of R = End4(P)
generated by all endomorphisms which factor through some P(n) for n ¢ T'. Notice that if
we let ey for A € A be the idempotent projecting onto End 4 (P()\)) C R and ef = > et €n

then It = Rei R. Then
(512) SF = mod—R/Ip.

33
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A complete set of pairwise non-isomorphic simple objects in Sr is given by the L(v)’s for
v €T and each of them has a projective cover P () in 8p, which is the biggest quotient of
P(+) which lies in 8Sp.

Serre quotient categories

Given a Serre subcategory 8 C A as above one defines the quotient category A/8 to be the
category with the same objects of A and with morphisms

(5.1.3) Hom /5(M, N) = limy Hom (M', N/N')

where the direct limit is taken over all pairs M’ C M, N’ C N such that M/M’' € § and
N’ € 8. The quotient category turns out to be an abelian category, and comes with an exact
quotient functor @: A — A/8 (see [Gah62]).

Also in this case, we have an equivalence of categories
(5.1.4) A/8p = mod— End 4 (P{),

where P = @D, ca_r P(n) (see for example [AMI1], Proposition 33]). The quotient functor

is @ = Homy(P;, ). In particular, we can deduce from (5.1.4) the abelian structure of
A/8r. Notice that End 4 (Pf) = ef Ref where e = > yeh-T E-

A complete set of pairwise non-isomorphic simple objects in A/8t is given by the L(n)’s for
n € A —T', with projective covers P(7).

Presentable modules

Let € be an additive subcategory of the abelian category A. We define the category of
C—presentable objects to be the full subcategory of A consisting of all objects M € A having
a presentation

(5.1.5) O — Q22— M

with @1, Q2 € C. Given a projective object P € A we let Add(P) be the additive full subcat-
egory of A consisting of all objects which admit a direct sum decomposition with summands
being direct summands of P, and we consider the category Add(P) of P—presentable or

Add(P)-presentable objects. By [Aus74, Proposition 5.3], the category Add(P) is equivalent
to mod— End 4 (P). In particular, if P = P as in (5.1.4)), then we have

(5.1.6) Add(Pg) = mod— End4 (Pf) = A/Sr.

Notice that this gives an equivalence between the quotient category A/8Sr and a full subcate-
gory of A.

REMARK 5.1.1. If M, N € A/8r then by definition M and N are also objects of A and we
can consider both the homomorphism spaces Hom (M, N) and Homy s (M, N): they are
in general different. But notice that if M and N, as objects of A, are Pﬁfpresentable, then
the two homomorphism spaces coincide by . In the following, we will most of the time
only deal with objects of Serre quotient categories which are also presentable.

5.2 Subquotient categories of O

Let us fix a positive integer n. We consider the Lie algebra gl,, and the BGG category
O = 0(gl,,). We will use the notation introduced in
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Parabolic category O

Given a standard parabolic subalgebra p C gl,, with Levi factor [, let OP be the full subcategory
of O consisting of modules that, viewed as U (I)-modules, are direct sums of finite-dimensional
simple [-modules. Let W, C S,, be the standard parabolic subgroup corresponding to p,
and let WP be the set of shortest coset representatives for WP\S"- Then OF is also the full
Serre subcategory of O generated by the simple objects L(z - A) for A dominant and = € W?
such that Sy C WP. We denote by P?(z - ) the projective cover of L(z - A\) in OF and by
MP(x - \) the corresponding parabolic Verma module. The block decomposition of O induces
a block decomposition OF = @, OF.

Let A € * with stabilizer Sy, and recall that O = mod—Ay. Let ¢y € Ay = End(Z (X))
be the idempotent projecting onto the direct sum of the projective modules P(x - A) for
z € S, such that Sy € WP. Then End(2? (X)) = Ax/Axey Ay and

(5.2.1) O’;\ = mod—(A,\/A,\ejAA).

Since the idempotent eg- is homogeneous, the latter quotient algebra inherits a graded

structure. In particular, there is a graded version Z(‘)i = gmod— (AA/A)\eIJ;A)\).

Generalized parabolic subcategories of O

Let now p, q be two orthogonal standard parabolic subalgebras of gl,, (by orthogonal we
mean that the corresponding subsets II,, II; of the simple roots II of gl,, are orthogonal; this
is equivalent to imposing that p 4 q is also a parabolic subalgebra of gl, and pNq =b). Let
Wy, W4 be the corresponding parabolic subgroups of the Weyl group S,,. Note that, since p
and q are orthogonal, W, x Wy is also a subgroup of S,,. Consider the general Lie algebras
gl,, gl C gl, with Weyl groups W), and W, respectively, so that p = gl, + b and q = gl +b.

Following [MS08al, we let P = Add(P(wq-0)) be the additive subcategory of O(gl,) generated
by the anti-dominant indecomposable projective module P(wyg - 0), where wq € Wy is the
longest element. Let also P4 be the category of P,-presentable modules (cf. 3.|

REMARK 5.2.1. The category Tq is equivalent to the category of finitely generated modules
over the endomorphism algebra of a projective generator of Py (see §5.1), and therefore is
an abelian category. In particular, if Wy = §; then by Theorem he category ?q is
equivalent to the category of finitely generated modules over the algebra of the coinvariants
R/(Ri_’“), where R = Clz1,. .., 2]

Let a = apyq = (gl, © gl,) + b and define ny, 4 by p+q = a ® nyyq. Given a gl,~module
M, we denote by E®M the a—module obtained by extending the action by 0. Let Tg be the
additive closure of the full subcategory of a—modules which have the form F ® &P, where
F is a simple finite-dimensional a—module and P € ?q is a projective object. Finally, let

AE = ?TE be the category of ngfpresentable a—modules. In other words, TPE is the category

(5.2.2) (E® €"P(wq - 0) | E is a simple finite-dimensional a—module)
and Af = ?ﬂ.

Definition 5.2.2. We define O{p + q,AE} to be the full subcategory of gl,,—modules which
are:

(GP1) finitely generated;
(GP2) locally nyqq—finite;
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(GP3) direct sum of objects of A§ as a-modules.

REMARK 5.2.3. The categories O{p + q, A} fall into a more general family of categories
that were first introduced in [FKMO02] (called generalized parabolic subcategories of Q) and
then generalized in [Maz04]. Our definition follows [MS08a], and in particular is a special
case of [MS08al, Definition 32]. However, in [MS08a| only the trivial block is studied, while
we are interested also in singular blocks. Notice that the category .AE is admissible (in the
sense of [MS08al §6.3]) by [MS08al, Lemma 33].

Lemma 5.2.4. The category O{p + q, A%} is a subcategory of OF.

Proof. Conditions |(GP2)| and [(GP3)| together imply that modules of O{p +q, A} } are locally
nt-finite; condition [(GP3)| also implies that modules of O{p + q, A%} are weight modules
for b; hence O{p + q, A4} is a subcategory of O. By condition [(GP3), moreover, objects of
Of{p + q, A} are direct sums of finite-dimensional simple gl,-modules. Hence O{p + q,.A}}
is a subcategory of OF. O

REMARK 5.2.5. If g = b then by definition O{p, A}} is the parabolic category OF.

It follows in particular that the block decomposition OF = @, O} induces a direct sum
decomposition

(5.2.3) Ofp+9. A2 =P O{p+q,A4%}
A

Lemma 5.2.6. We have the following inclusions of full subcategories:
(i) if ¥ Cp then Ofp +q,A5} C O{p' +q, 4% };
(ii) if ¢’ Cq then Of{p+q,A5} C O{p+q', A} }.

We warn the reader, however, that the second inclusion will not be an exact inclusion
of abelian categories (once we will have defined the abelian structure on the categories

O{p + g, AG}, see §5.3).

Proof. Let M € O{p + q,.A}. By definition, M is finitely generated and locally n*—finite.
Write M = @a M, as an apiq-—module, with M, € .Af,. Let P, —» Qo — M, be a
?gfpresentation of M,. Considering this as a sequence of a, i 4—modules (respectively,
ap+q—modules), we see that it is enough to show that

(i) every object of Tg decomposes, as an ay/q—module, into a direct sum of objects of TE,;

(ii) every object of P} decomposes, as an ay~module, into a direct sum of objects of (Pfl,.

Since |(i)|is straightforward (every object of Pj is, as an ay44—module, an object of fPE/), let us
verify For this it is enough to check that, for every dominant integral weight A of gl, the
anti-dominant projective module P(wq - A) € O(gl,) decomposes, as a gl,,—module, as direct
sum of objects of type E2® P(wq - p) for some weight p of gl;, and some finite-dimensional
glg~module E. This follows because O(gly) 3 P(wq - A) = U(gly) @u(qngr,) P(wy - Algr,, ),
and P(wgq - A) can be obtained from P(wg - A) in O(gl,) by tensoring with finite-dimensional
modules. O
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5.3 The parabolic category of g-presentable modules

We will give now another definition of the blocks of O{p + q,.A§}. Let A be a dominant
integral weight for gl,, with stabilizer Sy under the dot action. Define

(5.3.1) AP = { & (Sn/5,)™"

xSy C we
SA\NwWI£a |-

Notice that wqW1 is simply the set of longest coset representatives for Wq\Sn. Ifp=>bor
q = b in the following we will omit them from the notation. If X is regular then in particular
A§(N) = {wqz | x € WPT9} is the set of elements of S, that are shortest coset representatives
for yy7,\S» and longest coset representatives for Wq\S"~ Let

(5.3.2) 22N = @ PN
z€AR(N)

and let Add(2] (X)) be the full subcategory of O consisting of all modules which admit a
direct sum decomposition with summands being direct summands of 22§ (\).

Definition 5.3.1. We define the category O’j\’q'pms to be the full subcategory of O';\ which
consists of all Add(P2§ (N\))-presentable modules.

As we already announced, these categories coincide with the generalized parabolic categories
we defined in the previous section:

Proposition 5.3.2. For all integral dominant weights X, the categories O{p + CIJU;}A and
O 9P coincide as subcategories of O.

Proof. First we show the inclusion 059" C O{p + q, Af},. Consider the indecomposable
projective module PP(wq - A) in O}. Let L(Algt,) ® P(wq - Algr,) € O(gl,44) denote the
(g[p @ g[q)fmodule obtained as external tensor product of the finite-dimensional simple
gl,~module L(Alg,) € O(gl,) and the anti-dominant indecomposable projective module
P(wg - Agi,) € O(gly). Consider it as an a-module by extending the action to h with the
weight A, and then as a (p + q)-module by letting n,4 act by zero. By the analogue of the
BGG construction of projective modules in O [BGGT6], we have

(5.3.3) PP(wq - \) = Ul(gl,) @u(prq) (LAgr,) B P(wg - Agr,)).-

Since U(gl,,) decomposes as direct sum of finite-dimensional modules for the adjoint action
of gl, ® gl;, it follows that , as an a—module, decomposes as direct sum of objects of
fPf,. By tensoring with finite-dimensional gl,—modules we can obtain all projective
modules PP(z - \) for z € A}()); since P} is closed under tensor product with finite-
dimensional modules, it follows that each PP(x - \) for # € A§(\) decomposes as direct
sum of objects of P§. Now, if M € OF%P™ then we have a presentation Q1 — Q2 — M
with Q1, Q2 € Add(£§())). Considering this as a sequence of a-modules, it follows that M

decomposes as a direct sum of objects of .AE = Tg, and hence M € O{p + q,AE},\.

Now let us show the other inclusion O{p + q, A§}\ C OFIP™. Let M € O{p + g, Af}5. By
Lemma we have M € O';\. As an a—module, M is generated by elements of weight
x - A with sz < x for any simple reflection s € Wy (i.e. - A is an anti-dominant weight
for g[q). Of course this is also true as a gl,,—module. Hence the projective cover @ of M
in Of is an element of Add(22§())). Let K = ker(Q — M) in O, and consider the short
exact sequence K < @) — M as a sequence of a-modules. Since all objects of A} are finitely
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generated, we may assume (taking direct summands) that K < @ — M is a short exact
sequence of finitely generated a—modules, that is, we can suppose M € .AE and, by the first
paragraph, Q € P§. We can write Q = Qu @ Q" where Q) is the projective cover of M,
and K = Q' @ ker(Qy — M). Since M € A}, we have a presentation Pyy — Qun — M
with Py, Qu € fPE, hence we have a surjective map Py; — ker(Qpr — M) and therefore a
surjective map P’ — K for P’ = Q' & Py € P}. Since as an a-module P’ is generated by
elements of weight x - A with sz < z for any simple reflection s € Wy, the same holds for
K. Hence we can apply the same construction we did for M to K and get a presentation
P — Q —» M with P,Q € Add(Z§(\)). O

For p = b and A = 0 we get the category Og ™" of [MS05]. The results of [MS05] §2| carry
over to the case of an arbitrary integral weight A. For instance, we have:

Proposition 5.3.3 (see [MS05, §2]). The category O3 is an abelian category with a
simple preserving duality and is equivalent to End(Z4(X\))—mod. For x € Aq(\) the modules
P(z - \) are obviously objects of OIP**. Each P(x-\) has a unique simple quotient S(z - \)
in O3, and the S(z - \) for x € Ag(X\) give a full set of pairwise non isomorphic simple
objects of OFP".

We want to extend these results to the general case p # b. First, let us recall the definition of
the Zuckermann’s functor 3: O — OP. Given M € O, the object 3M is the largest quotient of
M that lies in OP. The functor 3 is right exact and 3P(x - \) = PP(x - \) for each A € AP()\).

p.q-pres q-pres
O)\ O)\

Lemma 5.3.4. The category
that are in O’;.

coincides with the full subcategory of objects of

Proof. Since both are full subcategories of O(gl,,), we need only to prove that they have
the same objects. Let M € 077" N Of and consider a presentation P — Q — M — 0
with P,Q € Add(Z(\)). Applying 3 yields a presentation 3P — 3Q — M — 0 with
3P, 3Q € Add(22] ().

The other inclusion follows from Proposition and Lemma [5.2.6 O

OB-a-pres OI P generated by the

Lemma 5.3.5. The category is the Serre subcategory of

simple objects S(x - \) for x € Aj(N).

Proof. First let us prove that S(z-\) € OTP"* isin O} if z € Aj(N). Let P — Q — S(z - \)
be a presentation of S(z - \) with P,Q € Add(Z;). Applying the Zuckermann’s functor
3 yields a presentation of 3S(x - \) with 3P,3Q € Add(Z)). Since 3P(x - \) # 0 (because
L(z - X\) is a quotient of P(z - A) in O) and S(z - A) is a quotient of P (z - A), it follows that
35(z - A) # 0. On the other side, 35(x - \) € O9P™ by Lemma [5.3.4 But 3S(z - A) is a
non-zero quotient in Q9P of the simple module S(z - \), hence 35’( A)=S(x-A). I
follows that S(z - \) € OF TP,

On the other side, if z € Aq(\) but z ¢ A§()), then clearly S(z - ) ¢ OF. Since O} is closed
under extensions, it follows that the objects of O7P*** that are also in OP are exactly the
objects whose composition factors are of type S(z - \) for z € A§(N). O

It follows that the modules S(x - \) for z € A§(\) give a full set of pairwise non-isomorphic
simple objects of O} 7P*. Moreover, the projective cover of S(z - A) is PP(z - \).

REMARK 5.3.6. We notice that in general the simple module S(z - A) € O™ is not
irreducible as a gl,~-module (unless q = b).
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The graded abelian structure

The category O %P is equivalent to the category of finitely generated (right) modules over
End(2§(\)):
(5.3.4) O 9P = mod— End (2§ (X)).

Via this equivalence we can define on O} a natural abelian structure. However, as we
already pointed out, this abelian structure is not induced by the abelian structure of Q.

The algebra End(2§(\)) can be obtained from A, = End(Z2())) in two steps. First, let
ey € End(22())) be the idempotent projecting onto the direct sum of the projective modules
P(z - X) for = ¢ AP(X). Then End(2?())) = Ax/AxeP Ax. Moreover, let g € Ay/Axey Ax
be the idempotent projecting onto the direct sum of the projective modules P?(x - \) for
z € A§()). Then End(2 (X)) = €q(Ax/Axrey Ar)Eg.

By Lemma @ the two steps can be done also in the inverse order: let e € Ay be
the idempotent projecting onto the direct sum of the projective modules P(z - A) for
z € Ag(N) (notice that &g = eq + Axey Ax). Then End(24(N)) = eqAxeq. Moreover, let
pr = eqe#eq € eqAxeq be the idempotent projecting onto the direct sum of the projective
modules P(z - \) for z ¢ A}()\). Then End(Z§()\)) = (eqAreq)/(eqAxeqfyeqAreq). Tt
follows that

(5.3.5) (quAeq)/(qu)\equLquAeq) = éq(AA/A)\ePLAA)Eq.

As far as we understand, this is not a trivial result, but instead a consequence of Lemma [5.3.5]

Recall from that the algebra A, has a natural grading. Since the idempotents e# and
€, are homogeneous, this induces a grading on the algebra (5.3.5). Summarizing, we have:
Proposition 5.3.7. The category O'j\’q'pms is equivalent to the category of finite-dimensional
(right) modules over a finite-dimensional positively graded algebra.

We will denote by ZOf\’q_pres the graded version of O %P™ | that is the category of finitely
generated graded modules over the algebra (5.3.5). We remark that the techniques of [Str03a]
ensure that simple and indecomposable projective modules are gradable, both as objects of
Oy and of O} TP (although the grading is different). We take their standard graded lifts to
be determined by requiring that the simple head is concentrated in degree 0.

The properly stratified structure

The results of [MS05, §2] extend to the categories O 7P*. Let us briefly sketch them.

Duality. First, we notice that the category O™ inherits from O, a simple-preserving
duality:

Lemma 5.3.8. The algebra (5.3.5)) inherits from Ay an anti-automorphism; this induces a

simple-preserving duality on O,

Proof. The category O has a simple-preserving duality (see for example [HumO8, §3.2]),
which restricts to a simple-preserving duality on Of\. This defines an anti-automorphism on
Endgs (£P(N)) = AA/AAeg-AA, which is the identity on the idempotents projecting onto the
indecomposable projective modules PP (w - A). Hence this restricts to an anti-automorphism

of €4(Ax/Axey Ax)Eq, see (5.3.5), which induces, by the equivalence of categories (5.3.4), a
simple-preserving duality on OF %P, (-3.4) :
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REMARK 5.3.9. One can also define the duality explicitly as in [MS05, Proposition 2.6].

Standard and proper standard modules. Let x € A§(\). The module P?(z-)) is the projective
cover of S(z - ) in O™ Given two modules M, N the trace of M in N is defined to be
Trar N = Uy, pryn Im f. Then we have S(z - \) = PP(x - )\)/Trg,g(/\)(rade(az - A)) as gl,—
modules. Let PP(< z) = @weA’;()\),w<z PP(w-)) and set A(x-\) = PP(x-)\)/ Trpp (<q) PP (-
A). As in [MS05, Lemma 2.8], one can show that the modules A(z - \) satisfy a universal
property, and as in [MS05l Proposition 2.9] this can be used to show that

(5.3.6) Az~ A) = U(gl,) Quprq) PV (2 A),

where P(®)(z - \) is the projective cover in OP7%(a) of the highest weight module with highest
weight = - A. Moreover, one can define

(537) Z(l‘ : /\) = U(g[n) ®U(p+q) S(a) (l‘ ’ )‘)7

where S(%)(z - \) is the simple module in A} with highest weight x - \.

Properly stratified structure. We recall the definition of a graded properly stratified algebra in
the sense of [Maz04] (see also [FKMO02], [Fri07]).

Definition 5.3.10. Let B be a finite-dimensional associative graded algebra over a field K
with a simple-preserving duality and with equivalence classes of simple modules {L(\){(j) |
A€ A, jeZ} where (A, <) is a partially ordered finite set. For each A € A let:

Then B is properly stratified if the following conditions hold for every A € A:

(PS1) the kernel of the canonical epimorphism P(A) — (X) has a filtration with subquo-
tients isomorphic to graded shifts of (n), p = A;

(PS2) the kernel of the canonical epimorphism —(X) — (X) has a filtration with subquo-
tients isomorphic to graded shifts of (\);

(PS3) the kernel of the canonical epimorphism —(\) — L(\) has a filtration with subquo-
tient isomorphic to graded shifts of L(u), < A.

The modules (i) and (i) are called standard and proper standard modules respectively.
The same argument as for [MS05, Theorem 2.16] gives:

Theorem 5.3.11. The algebra End(2§ (X)) with the order induced by the Bruhat order on
A§(X) is a graded properly stratified algebra. The modules A(z - \) and A(z - \) are the
standard and proper standard modules respectively.

It is easy to show that also the modules A(z - \) and A(x - \) are gradable. They are
indecomposable and hence a graded lift is unique up to isomorphism and overall shift. Again,
we choose their standard lifts by requiring the simple heads to be concentrated in degree 0.
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5.4 Functors between categories O}

We examine now natural functors between the categories we have introduced. We still fix
p,q C gl,, as above; for p’ C p and q’' C g we will define functors

3 Q
p’,q-pres — > 7, P,d-pres p,q’-pres 7, «P,0-pres
ZOA — "0y and ZO)\ 0, .

j i

Zuckermann’s functors

Suppose p’ is also a standard parabolic subalgebra of gl,, with p’ C p. Let us fix an integral
dominant weight \. We have then an inclusion functor j: O§ — O’; . Since the abelian
structure of O% is the restriction of the abelian structure of OF , this is an exact functor.
Using Lemma we see that this restricts to an exact functor j: OFIP* — OF 4Pres,
(©OP-a-pres ¥’ a-pres

A A :

which is just the inclusion functor of the Serre subcategory into

The left adjoint of j: OF — OF is the Zuckermann’s functor j: O'f\/ — OF, defined on

M € O';/ by taking the maximal quotient that lies in (‘)';\. Note that this is a generalization
of the Zuckermann’s functor that we defined and used in The functor 3 is right exact,
but not exact in general. Being right exact, 3 sends a presentation P —  — M with
PQ e Add(,@f;/()\)) to a presentation 3P — 3Q — 3M of 3M with 3P,3Q € Add(Z(N)),
hence it restricts to a functor 3: Oil’q'pres — O TPres,

Notice that the definitions of j and 3 make sense in the graded setting too, and we have
natural isomorphisms of graded vector spaces

(5.4.1) Homuzgp.a-pres (30, N') = HomZoir,q.pres(M,jN)
for all M € ZO’; TP and N e ZOi’q_pres. Hence we have also adjoint functors
3
! g-pres — ,q-pres
(5.4.2) zhopres T BT,

j

Coapproximation functors

Suppose that ¢’ is a standard parabolic subalgebra of gl,, with ¢’ C q and let us fix an
integral dominant weight A. According to Lemma [5.2.6] we have an inclusion functor
i: OpTPres O';\’q/'pres. This is right exact but not left exact in general (cf. [MS05, Example
2.3] for an example).

Its right adjoint 9Q: (‘)K’q/_pres — ORTPI g called coapprozimation, and can be described Lie
theoretically as follows. Take M € 07 P and let p: Q — Tr »p () (M) be a projective

cover in Oi’q/'pres (notice that 2§ ()) is a direct summand of ¥ (A) and in particular an

object of O'j\’q,'pres). Then define Q(M) = Q/ Trgp () (kerp). It is easy to verify that Q

is just a Serre quotient functor, and hence it is exact; indeed, it corresponds under the

equivalence of categories (5.3.4)) to Homop,qz_pres(ﬂg()\), o). Its left adjoint i, on the other
A
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hand, corresponds to the induction functor e @, q(5p (1)) End(ﬁ‘g,()\)). In particular, there
are graded lifts

p,q-pres p,q’-pres

(543) l = e ®End(@g()\)) End(z@;()\)) ZOA — ZO)\

(54'4) Q = HomZoiqu*prcs(yp()\)v .): Zo‘;\’q pres — Zoi,q_pres,

q

Our next goal is to compute the action of Q on proper standard modules. We will need the
following easy fact:

Lemma 5.4.1. Let q' C q and let w € Aﬂ,(/\). Then there exists a unique x € Wy such that
zw € A§(N) and {(zw) = {(z) + ((w).

Proof. Let Sy be the stabilizer of the weight A. Since p is orthogonal to q, we may assume
p = b. Moreover, since Aq/(A) C (Sn /SA)Short, it is clearly sufficient to prove the result for
w € (Sn /S)\)Shm. Then the lemma is simply a statement about double cosets. Let z be the
shortest element in the double coset W wSy. Then all shortest coset representatives for
Sn/gA contained in W,wSy can be obtained as yz for y € W (and in particular w = y, 2 for

Y1 € Wy). Let yo € Wy be the shortest element such that yzSxN (Wq\Sn)long # & (this exists,
since this is the unique element such that ygzw) is the longest element of the double coset
W,wSy, where wy is the longest element of Sy). Setting « = yoyfl we get the claim. O

First we suppose that we are in the extreme case q' = b, and we compute the action of Q on
Verma modules.

Proposition 5.4.2. Consider the coapprozimation functor L: ZOE\ — Z(‘)i’q_pres, Let X be a
dominant integral weight, let w € AP(X), and let x € Wy be the element given by Lemma
such that zw € A§(X). Then we have QMP(w - \) = ¢"@A(zw - \).

For the proof we will need some preliminary results in the ungraded setting.

Lemma 5.4.3. Suppose w € AP(N), let M(w-X) be a Verma module in Oy and MP(w-X) be
its parabolic quotient in O. Then for every simple reflection s € Wy such that £(sw) > £(w)
the map MP(sw-A) — MP(w - A) induced from the inclusion M(sw - X) < M(w - \) after
taking the parabolic quotients is injective.

EXAMPLE 5.4.4. Notice that in the statement of the lemma it is essential to assume that the
simple reflection s is orthogonal to the parabolic subalgebra p. As a counterexample when
this is not true, consider the regular block Of (gl3), where p C gl; is the standard parabolic
subalgebra corresponding to the composition (2,1). Then the inclusion M (sz - 0) — M(0)
of Verma modules in O(gl;) induces a map MP(sy - 0) — MP(0) which is not injective (the
kernel is isomorphic to the simple module L(s2s7 - 0)). ®

Proof of Lemma[5.4.3 Let vsy, vy be the highest weight vectors of M (sw - \) and M (w - \)
respectively. Then (cf. [HumO8, §1.4]) the inclusion M (sw - A) — M (w - A) is determined
by vew — fE v, for some k € N, where fo, € n™ is the standard generator of U(gl,)
corresponding to the simple root «;. This indeed defines an injective map because the Verma
modules are free as U(n~)-modules and U(n~) has no zero-divisors, both by the PBW
Theorem.

Let gl,, = p ©u, . The parabolic Verma modules M?(z - A\) = 3M(x - A) can alternatively
be defined through parabolic induction, hence they are free as U(u, )-modules (although in
general not of rank one). Since the simple reflection s is orthogonal to the set of reflections
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W,, the element f,, lies in U(u, ) and the map on the parabolic quotients is again given by
multiplication by it. By the same argument as before, this map has to be injective. O

Lemma 5.4.5. With the same notation as before, coker (MP (sw-X) < MP(w-\)) has only
composition factors of type L(y - \) with sy > y.

Proof. The inclusion is given by multiplication by f§ By the PBW Theorem, it follows
immediately that the cokernel is locally ( f§> ren—finite, hence all its composition factors are
indexed by elements of S,, that are shortest coset representatives for ( s>\Sn. O

Lemma 5.4.6. Let A € . For every w € AP(\) and x € Wy such that zw € AP(\) we
have

(5.4.5) ¢"PAMP (zw - \) = QM (w - \).

Proof. Of course, it is sufficient to prove the claim for a simple reflection s € Wy. Then the
result follows from Lemma [5.4.5] if we apply the exact functor Q to the short exact sequence

(5.4.6) 0— gMP(sw-A) — MP(w- ) — Q — 0. O
Lemma 5.4.7. Let A€ T and w € A§(X). Then QMP(w - \) = A(w - N).

Proof. The projective module PP?(w - A) has a filtration by parabolic Verma modules in O’;\.
Hence the projective module P¥(w - A) = QPP(w - ) in O™ has a filtration by modules
QMP(y-A) for y € AP(N), y < w.

Now, the proper standard module A(w - \) is defined to be the maximal quotient @ of
PP(w- ) in OF TP gatisfying

(5.4.7) rad@ : S(z-AN)] =0 for all z < w.

Obviously the quotient QM?P(w - A) at the top of PP(w - \) satisfies (5.4.7). Any bigger
quotient contains the simple head of some QMP®(y - A) for y < w. Consider such a y and let
x’ € Wy be the element given by Lemma for y. By Lemma the simple head in
OPapres of QMP(y - A) is the simple head of QMP(z'y - A); but this is the simple head of
QPP (z'y - A), that is S(z'y - A). Notice that 2’y < w (this follows because y < w and both
2y, w € A§(N)). Hence QM?(w - )) is indeed the maximal quotient satisfying (5.4.7). O

The proof of the proposition follows now easily:

Proof of Proposition[5.4.4 By Lemma we have QMP(w - \) = ¢“®QMP (2w - \) and
by Lemma this is ¢“@A(zw - \). O

From Proposition [5.4.2] one can directly deduce:

Corollary 5.4.8. Let q' be a standard parabolic subalgebra of gl,, with ' C q and consider

the coapprozimation functor £: ZOi’q L ZOi’q_pres. Let w € Aﬂ, (A) and let x € Wy be

the element given by Lemma m Then we have QA(w - \) 2 ¢“@A(zw - ).

Proof. Let Qg : ZOi — ZOi’q P and Qg : ZO'; — ZOi’q_pres be the coapproximation

functors. Tt follows from the definition that Q o Q4 = Qq. By Proposition [5.4.2] we have
Qg MP(w-A) = A(w- A) and QqMP(w - \) = ¢"®A(zw - \), and the claim follows. O
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The coapproximation functor 9 enables us to compute proper standard filtrations of standard
modules:

Proposition 5.4.9. Suppose that q has only one block (that is, Wy = Sy, for some integer
k) and let A be a dominant regular weight. Then
(i) for all w € A§(N) the proper standard filtration of the standard module A(w - \) €
O 9P has length k!
p,q-pres —

i) in the Grothendieck group of *O we have A(w - N)] = [klo! [A(w - N).
A

Proof. Since A is regular, w is a longest coset representative for y7 \S, hence w = wqw’. It
is well-known that in a Verma flag of the projective module P?(w - A) all Verma modules
MP(zw' - \) for x € Wy appear exactly once. Applying 9, by Proposition we get a
filtration of PP(w - A) in O%7P™ with A(w - \) appearing exactly k! times. Of course, this is
the part of the filtration that builds the standard module A(w - A). By the Kazhdan-Lusztig
conjecture, in the Grothendieck group of 209" we have

(5.4.8) [PPw-N] € D "I @D - N+ > qZ[g][MP(zz - M)
€Wy zEWq,z2=<w’

Applying 9 and considering only the part of the filtration that builds A(w - \) we get

(5.4.9) [Afw-N)] = > @D EN[Aw - )],
zeWy
which gives O

5.5 Translation functors on OP.9pres

We study now graded translation functors (cf. Chapter []) restricted to the categories
7, P-d-Pres
V) :

Restriction of translation functors

Translation functors preserve the subcategories we have introduced:

Lemma 5.5.1. Given two dominant weights A, p, the translation functor TX restricts to a
functor T : Oi"q_pms — OF 9P Moreover, translation functors commute with the functors

jaﬁaiag'

Proof. It follows directly from the definition that tensoring with a finite-dimensional gl,,—
module defines an exact endofunctor of the category O{p + q,Ag}. In particular, the
translation functor T preserves the category O{p + q,flﬁ}.

Since j, 1 are inclusions, it follows that T4 commutes with them. By adjunction, it commutes
with 3,Q as well. O

Of course we also have the graded versions

p,q-pres

(5.5.1) Th: 0, - %0

p.q-pres
" :

We will need the following easy result to compute the action of translation functors ([5.5.1))
in the category ZghaPres,
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Lemma 5.5.2. Let Sy,S, be standard parabolic subgroups of S, with Sy CS,. Then for

every w € (Sn/s,)™" there exist unique elements w' € (Sn/, Su)s}mt and x € (Su/s,)™"
such that w = w'x. Moreover {(w) = £(w') + £(z).

Proof. The element w determines some coset wS,, in which there is a unique shortest
coset representative w’. Hence w = w'z for some z € S, with ¢(w) = ¢(w’) + £(x). Since

w € (Sn/s,)™ " we have £(wt) > £(w) for all ¢ € Sy; but then also £(xt) > £(z) for all t € Sy,
hence z € (Su/gl\)smt. O

Translation of proper standard modules

Now we compute how translation functors act on proper standard modules.
Translation onto the wall. First, we consider translation onto the wall:
Proposition 5.5.3. Let A, 11 be dominant weights with stabilizers Sy,S,, respectively, and

suppose Sy C'S,. Let w € A§()), and write w = w'z as given by Lemma . Then we
have

@R ) i€ A (u),

5.5.2 TA(w - \) =
( ) A A) {O otherwise.

Proof. First, we compute in the usual category O(gl,,). It is well-known that translating
a Verma module to the wall gives a Verma module. In fact if we forget the grading then
TAM (w - X) = M(w' - p) (cf. [HumO8, Theorem 7.6]). The graded version can be computed
generalizing [Str03al Theorem 8.1], and is TA M (w - \) = ¢~ “@ M (w’ - ).

Now since the functors 3 and Q commute with TY, using Proposition we have
(5.5.3) TYA(w - A) =2 THQEM (w- A) =2 Q3TA M (w - \) = ¢ @ QM (w' - p).

If w' ¢ Af(p) then 3M (w' - p) 2 0. Otherwise we get TAA(w - \) = ¢~ “@A(w' - ). O

Translation out of the wall. Now let us compute translation of proper standard modules out
of the wall:

Proposition 5.5.4. Let A, be dominant weights with stabilizers Sy,S,, respectively, and
suppose Sy C'S,. Then for every w € Af(n) we have

(5.5.4) TiAw-p) = Y ¢ OHEI A wy - V],

ye (SH/SA) short

where yo is the longest element of (Su/gA)Short, and for every y € (Su/g)\)Short the element
Ty 15 the element given by Lemma for wy € AP(X).

Note that w € Afj(p) implies that wS,, € W¥; but as Sy C S, we have then wyS, C WP,
and in particular wy € AP(\) for all y € (SM/SA)ShO“.

Proof. Consider M (w - 1) in 0. Then T)M (w - p) has a Verma flag and we have

(5.5.5) MIM(w-w)= > ¢ @O [M(wy-N).

ye (SM/SA)ShOTt
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This is well-known in the ungraded setting (see for example [Hum08, Theorem 7.12]); the
graded version follows as in [Stz05]. Notice that wySy C wS, C W* for all y € (Su /SA)Shm.

In particular, 3M (wy - A) 20 for all y € (Su/g)\)s}mrt. Hence, by Lemma m below, we can
apply 3 to either side of (5.5.5) and we get in 2o,

(5.5.6) MAMP(w- )= > ¢ @I WP (wy - N)].

ye (SM/S/\ ) short

Now we can apply the exact functor Q to both sides. Using Proposition and the
commutativity of £ with TI); we obtain the claim. O

We include the technical lemma which we used in the previous proof:

Lemma 5.5.5. The Zuckermann’s functor 3: Oy — O’;\ 1s exzact on modules which admit a
Verma flag with Verma modules M(z - A) such that 3M (z - A) % 0.

Proof. Let LL'3 denote the left derived functor of 3. We need to show that for each module
X € 0, which satisfies the hypothesis of the lemma we have L?3X = 0 for all i > 0. By
induction on the length of a Verma flag, it is enough to check this for the Verma modules
M (z - A) such that 3M(z-X\) = MP(z-\) 20.

First, let us suppose that A is a regular weight. We proceed then by induction on the
Bruhat order. Since the dominant Verma module M (\) is projective, we have of course
Li3M(X) 22 0 for all ¢ > 0 (notice, on the other side, that 3M(\) is never zero, since it
has as quotient the finite-dimensional simple module L()), which is in Of). Now let us
consider some M(z - \) for z # e with 3M(z-\) = MP(z- X) % 0. Notice that the last
condition is equivalent to z € (Wp\Sn)Shm. Let s; € S,, be some simple reflection such that
2s; < z and zs; € (jy"\Sn)™™". Then we have a short exact sequence (see for example [[v85,
Proposition 2.2 (i)])

(5.5.7) 0— M(zs;-\) — 0;M(zs; - X\) — M(z-X) — 0.

By induction we can suppose that L'3M (zs; - A) 2 0 for all i > 0. Moreover, since 3 and 6,
commute, we can also suppose that LigﬂjM(zsj -A) 20 for all i > 0. From the long exact
sequence for IL*3 corresponding to we deduce then immediately that L¢3 M (zs5-A) =0
for all 4 > 1. Moreover, since the short exact sequence induces, after applying 3, the
short exact sequence

(5.5.8) 0— MP(zs;-\) — 0;MP(zs; - X\) — MP(z-A) — 0

(see [Irv85, Proposition 2.2 (v)]), it follows that also L'3M (zs; - A) = 0, and we are done.

It remains to consider the case in which X is a singular weight. Let z € (S /gA)ShOrt be

such that 3M(z - \) 2 0. Now, we have Ty M (z - 0) = M(z - ) (see for example [Hum08,
Theorem 7.6]) and 3M (2 - 0) % 0 because Ty3M (2 -0) = 3Ty M(z - 0) = 3M(z - A). Since 0
is a regular weight, we have then L3 M (2 - \) =2 Li3TyM (2 - 0) =2 TYLi3M (2 - 0) =2 0 for all
1 > 0, and we are done. O

Translation of projective and simple modules

Now we compute translations of projective modules out of the wall:
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Proposition 5.5.6. Let A, i be dominant weights with stabilizers Sy,S,, respectively, and

suppose that Sy C'S,,.. Then for every w € A§(u) we have in ZohaPres,

(5.5.9) TAPP (w - ) = PP(wyo - A)
where yo is the longest element of (SM/S/\)ShOI't_

Proof. Let P(w - \) € “0. By [Hum08, Theorem 7.11] we have ’]l’f;P(w -p) = Pwyo - A)
as ungraded modules. By (5.5.6), the top Verma module is not shifted under translation,
hence this also holds as graded modules. Applying the Zuckermann’s functor 3 we get ([5.5.9))

in 0", hence also in 20”7, Notice that we get for free that wyoy € A§()\) (although it
would be easy to check it directly). O

Using the adjunctions (4.4.9) we can then compute translations of simple modules onto the
wall:

Proposition 5.5.7. Let A, u be dominant weights with stabilizers Sy,S,, respectively, and
suppose that Sy C S,. Let yo be the longest element of (Su/g/\)s}mrt. Then for every

w € AR(N\) we have in ZParres,

g 'WIS(z - ) if w= zyo for some z € Af(n) €S,
0 otherwise.

(5.5.10) TES(w- \) = {

Proof. We use the previous result together with the adjunction Tf; . qe(yO)T’/{. For every
P,q-pres

L we have

projective module P?(z - u) € 20
(5.5.11) Hom(']l‘;\LPp(z 1), S(w - \)) = Hom(PP(z - ), ¢" W) TES (w - N)).

The left hand side is 0 unless w = zyg, in which case it is C, and the claim follows. O






CHAPTER

The categorification

This chapter is devoted to the construction of the categorification of the representations
studied in Chapter [3] We will define the categorification itself in and construct the
action of the intertwining operators in We will prove in that the indecomposable
projective modules categorify the canonical basis. In moreover, we will categorify the
bilinear form (3.1.9). Finally, in §6.5| we will construct the action of the generators of U, on
the categorification.

Notation. For every composition a of some n we fix, once and forever, a dominant integral
weight A, for gl,, with stabilizer S, under the dot action. We suppose for future notational
convenience that if n is the regular composition of n then \n = 0. Fix now a positive
integer n and k € {0,...,n}. If IT = {a1,...,ap—1} is the set of the simple roots of gl,,, we
let p and q be the standard parabolic subalgebras of gl,, with corresponding sets of simple
roots ITq = {a1,...,ap—1} and I, = {o, ..., n_1}, so that Sy xSy, = Wpq CS,. We
set

p,q-pres

(6.0.1) Ar(@) =A"(Na)  and  Qi(a) ="0)
From now on, for w € Ax(a) we denote by S x(w) € Q(a) the simple module S(w - Aq)
and by Qg r(w) its projective cover PP (w - Aq). We let also Ag k(w) and Ag i (w) be the

corresponding standard and proper standard module. We will sometimes omit the subscripts
k and a when there will be no risk of confusion.

6.1 Categorification of the representation V(a)

Fix a positive integer n and a composition a of n.

Combinatorics of tableaux

Given an integer k with 0 < k < n, recall that a hook partition of shape (n — k, k) is made of
a row of length n — k and a column of length k, arranged as shown in Figure We call the
first row just the row and the first column just the column of the hook partition. Keep in
mind that for us the box in the corner belongs to the row, but not to the column. Therefore

69
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Figure 6.1: Hook partitions of shape (3,2) and (2,3).

EEE
]

3

Figure 6.2: These are (3,4)-tableaux of type (1,2,2,2). The leftmost tableau is the minimal
one. Notice that only the last one is admissible.

we display the column slightly detached from the row. If @ = (a1, ..., ar) is a composition of
n, a (n — k, k)—tableau of type a is a tableau filled with the integers

(6.1.1) Lo 1,2,00,2, b, L
a1 times ag times ap times

If we number the boxes of the hook partition of shape (n — k, k) from 1 to n starting with
the column from the bottom to the top and ending with the row from the left to the right,
then the permutation group S,, acts from the left on the set of (n — k, k)—tableaux of type a
permuting the boxes. The stabilizer of this action is S,.

Define the minimal (n — k, k)-tableau T™® of type a to be the tableau obtained putting the
numbers (6.1.1]) in order first in the column, from the bottom to the top, then in the row,
from the left to the right (see Figure . Set also

(6.1.2) To(w) = w - T

for each w € S,,. Then we can define a bijection w — To(w) between (Sn /Sa)s}‘Ort and
(n — k, k)-tableaux of type a.

We say that a tableau is admissible if:

(a) the entries in the row are strictly increasing (from left to right),
(b) the entries in the column are non-increasing (from the bottom to the top),
as shown in the picture on the right. For an example see the last tableau in |/

Figure [6.2]
Proposition 6.1.1. The bijection

(Sn/ga)smm PELN {(n — k, k)-tableauz of type a}

(6.1.3) s T ()

restricts to a bijection

(6.1.4) Ax(a) PRt {admissible (n — k, k)—tableauz of type a}.

Proof. Given w € (Sn /Sa)Short, it is enough to observe that the condition |(a)|is equivalent to

w € WP and the condition @ is equivalent to wSq Nwq W9 # @. O
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The Grothendieck group of Q;(a)

Fix an integer 0 < k < n. It follows directly from the Jordan-Holder Theorem that a basis
of the Grothendieck group K (Qx(a)) as a Z[q, ¢~ ']-module is given by the simple modules
Sa.k(w) for w € Ag(a). Since Qi(a) is properly stratified, the matrix which expresses the
proper standard modules in the basis given by the simple modules is lower triangular (with
respect to the ordering <), with ones on the diagonal. Hence equivalence classes of the proper
standard modules also give a basis. On the other side, the standard modules do not give a
basis over Z[g, ¢~ '] in general (although they always give a basis of K@ (Qy(a)) over C(q)).

According to Proposition the set Ag(a) is in bijection with the set of admissible
(n — k, k)-tableaux of type a. For w € Ay(a) let v(,) = vy € V(a), where

(6.1.5) 0 = 0 if the n.umber i appears in the row of T4 (w),
1 otherwise.

We write also v(r, (w)) = V(w)- We can then define an isomorphism

KY9(Q(a)) — V(a)y

(6.1.6) - 1

[Aavk(w)] — V(w)-

(V(w)> V(w))a
Notice that if @ = (a1,...,as) then for k < n — ¢ the category Qi(a) is empty. We set
(6.1.7) a)= P Ula)

k=n—/{
and we get an isomorphism

(6.1.8) K®9(0(a)) = V(a).

6.2 Categorification of the intertwining operators

Let OCat be the category whose objects are finite direct sums of the categories Q(a) for
alln > 0,0 < k < n and for all compositions a of n, and whose morphisms are all functors
between these categories up to natural isomorphism. We define a functor .% : Web — OCat
as follows. If @ = (ay,...,as) is an object of Web, then we set

(6.2.1) F(a) = 9(a).

If \a, Ao with n =} " a; = > a are the fixed dominant weights of gl,, with stabilizers Sq, Sa/
let us denote T% = ’]I‘iz'. Then we define .% on the elementary webs (3.3.3)) and (3.3.4) by

(6.2.2) F(Aai) =TS  and  F(Y)=T2
where a,; was defined in (3.3.5)).

Lemma 6.2.1. The assignment (6.2.2) defines a functor % : Web — OCat.

Proof. We need to check that translation functors satisfy isotopy invariance and the relations
(3-3.2bH3.3.2€). By Propositions [4.5.4] 4.5.3} [4.5.2] and [4.5.5| respectively, these relations are
satisfied by translation functors on “O. Recall from the translation functors restrict
to the subquotient categories Qx(a). Of course these restricted translation functors also

satisfy the relations (3.3.2b{3.3.2¢)). O
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The functor .Z categorifies the functor .7 (cf. §3.3):
Theorem 6.2.2. The following diagram commutes:

OCat

(6.2.3) 7 kKuq)

Web —— Rep

Proof. Let a = (ay,...,as) and a’ = a;. We need to show that K@ (T¢) = 7(A,;) and
KC9(T2)) = 7 (Y,.). Of course it is sufficient to check this on the basis of proper standard
modules. Hence it suffices to check that

(6.2.4) [T Ag s (w)] = T (Mai)[Bak(w)],
(6.2.5) T8 Aar i(w)] = T (V) [Bar i (w)]

for all w € Ag(a) and w’ € Ag(a’) (for all possible values of k).

Let us fix k and start with (6.2.4). Fix w € Ax(a) and write w = w'z with w’ € (Sn/ga,)Shm,
z € (Sar /Sa)ShOrt as given by Lemma By Proposition we have

(6.2.6) T

a
a

L ff(x)za/ ’ ifw €A l
R () = q ) ifw 6. x(a'),
0 otherwise.

In what follows, we only write the i—th and (i+1)-th tensor factors of v(,,) and the i-th tensor
factor of vy, since the other ones are clearly the same. Let T, (w) be the (n — &, k)-tableau
of type a corresponding to w, and notice that the tableau T,/ (w) can be obtained from
To(w) by decreasing by one all entries greater or equal to i + 1.

We have four cases (see Figure [6.3):

(a) If vy = v§' @ vy then Ty (w) has both an entry i and an entry i + 1 in the row.
Then T/ (w) has two entries 4 in the row, and is not admissible; of course this also
holds for T/ (w') since w’ = wxr~!. Hence w’ ¢ Ax(a’) and T2 A, (w) = 0.

(b) If v(y) = vg' @vy""" then To(w) has an entry ¢ but no entry i + 1 in the row. It is casy
to see that in this case = is a permutation of length a;11 composed with the longest
S short
element of (Sai+aii-1/5, | xS, ) and therefore

i1

(6.2.7) T Ag i (w) = g%+ g~ (@D A, ().

s

(¢) If v(y) = vf @ v5"*" then To(w) has an entry i 4+ 1 but no entry i in the row. Then z

)Short and therefore

is the longest element of (Sai‘i’aiﬁ»l*l/Sa? X Saii1-1

(6.2.8) T A (w) = g~ 4@ =DA L 4 (w).

(d) If v(yy = v§* @ 07" then all entries ¢ and i + 1 of T, (w) are in the column. Then x is

the longest element of (Saitan /s, xs,,. )" and hence

@iyl

(6.2.9) T Ag k(W) = ¢~ %%+ Agr ().
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B a; — 1 ﬁ a; — 1 B a; — 1 ﬁ a; — 1
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] a1 —1 ﬁ ajpq —1 | ai — Qi1
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] ) U Tw(w) U ) U Tw(w)
Casem V(w) = V5" @ vy T Case |(b)t v(w) = vg' @ V7"
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| a; ﬁ a; B a; ﬁ Qi
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i+1] | i+1] i |

| ai+1 — 1 B ai+1 — 1 ﬁ Qit1 ﬁ Qi1

o T 20

U Tw) U Taw) ) e U Tww)
Case m V() = 07 ® vyt Case |(d)} v(w) = vf* @ 07"

Figure 6.3: Here are depicted the tableaux T, (w) and T,/ (w) appearing in each of the four
cases of the proof of Theorem [6.2.2]
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In cases and the tableau Ty (w’) has one entry i in the row, hence v, = vgﬁa"'“,
while in case@the tableau T,/ (w’) has all entries i in the column and hence v,y = ot
Hence in all four cases we have that (6.2.4]) holds up to a multiple, and we only need to verify

that the coefficients fit. For example in case comparing with (3.1.3)) we must check that

(6.2.10) g vitrg (@i ain (U(“’)’iv(w))a =q vt [ai e 1] :
(V(w) V') )a @it

Using the formula (3.1.16|) for the bilinear form and the notation as in (3.1.10)), we compute
the Lh.s. of (6.2.10)):

(6.2.11) qfai+1q7(ai*1)ai+1 [B1 + - -+ + Belo! [Bi)o! - -- [52—1]0!

[Bulo!-- - [Belo! [B1 + -+ Bp_ylo!
where if v(,) = vy and V() = V5 we set 3; = 5]" and B; = 5;’ Substituting 53 = p; for
J<i, B = Bjy1 for j >, Bl = a; + ait1 — 1, fi = a; — 1, B; = a; we get exactly the r.h.s.

of (6.2.10f). Similarly we can handle cases and @

Now let us consider (6.2.5). Let w’ € Ag(a’), and consider the corresponding tableau
T = Ty (w'). Suppose first that v(,y = vy = vgi+ai+1: then T has exactly one entry %
in the row, and we can apply Lemma below. Note that the tableaux T and T’ of
Lemma6.2.3] correspond to v§* @ vy*** and v} ® vy"*" respectively. Hence we just need to
check that the coefficients are the right ones. Let us start with the first term of the r.h.s. of
(6.2.18): comparing (6.2.18) with (3.1.4)), using the isomorphism defined by , we must
show that

(6.2.12)

|:ai + ajr1 — 1] ('U(T)7 U(T))a' 1
of

i1 U(T//), U(T”))a

or equivalently

it iy —1
(6.2.13) {a Tain

s :| (U(T)a U(T))a’ = (’U(T”)7’U(T”))ﬂ,'
i+1 0

Using the formula (3.1.16|) for the bilinear form and the notation as in (3.1.10)), we compute

the r.h.s. of (6.2.13)):

(6214) {ai—kai“ — 1:| |:51++52_1:| _ [a¢+ai+1 — 1}0' [Bi +"’+Bé_1]0!
@iq1 ol BBy 1y laisilolai — 1o! [Bilo!---[B)_1]o!
where as before if vip) = v and vy = v we set §; = 87 and §; = B]. Since ] =

a; +a;i11—1, ai41 = Biv1, a; — 1 = 5, 65- = B, for j < and ﬁ;- = 41 for j > i we see that

(16.2.14)) is equal to

(6.2.15) [Br+ -+ Belo!

[B1]o! - - - [Belo!
and we are done. Analogously for the second term of the r.h.s. of (6.2.18]) we have that

a; + Ai+1 — 1
Q;

(6.2.16) { ] (), v(1))ar = (V) V(1) )ar
0

Now suppose instead that v(,) = vy = fu(f#ai“: then T has all entries 4 in the column, and

we can apply Lemma below. The tableau 7" of Lemma corresponds to v{’ ® vy,
and we just need to check that

(6.2.17) =1

)

{ai + aiﬂ (very, ver))ar
a; 0 (U(T’)a U(T’))a

that follows as before. O
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Lemma 6.2.3. Let a,a’ as in the proof of Theorem . Let T be an admissible tableau
of type @' with exactly one entry i in the row. Construct admissible tableaux T', T" of type
a as follows: first increase by 1 all entries of T greater than i; then substitute the first
a;+1 entries i with i+ 1 (here first means, as always for our hook diagrams, that we first
go through the column from the bottom to the top and then through the row from the left to
the right). Call the result T'. Moreover, let T" = xo - T' where xq is the longest element of

(Sa//ga)Short. Then we have

(6.2.18) [T A(T)) = {ai +$: - 1] CRRTE [ai M aii“ - 1} ()

where for an admissible tableau Ty (w) we wrote A(Ty(w)) for A(w).

Proof. We just need to translate Proposition [5.5.4] into the combinatorics of tableaux. Let
w € Ag(a’) be such that T = T, (w). Consider the sum on the r.h.s. of (5.5.4). First
consider the set {T,(wy) | y € (Sa/g,)™""}: this consists of all tableaux obtained by
permuting the entries ¢ and i + 1 of 7'. Notice now that for all y € (Sa /ga)ShOrt the
tableau Tq(z,wy) is obtained from Tq(wz) permuting the entries ¢ and ¢ 4 1 in the column
so that it becomes admissible; in particular ¢(z,) + ¢(w) + £(y) = ¢(xz,wy) and the set

{Ta(zywy) |y € (S /Sa)smm} consists of the two tableaux T” and T"”. Notice also that for
each y € (Sa'/Sa)Short we have z,wy = wryy for a unique zj, € Sqr with {(z) = {(z,); in
particular £(x}) + £(y) = £(z}y). Let

b =(a1,...,a; +aiz1 — 1,1, ai49,...,a¢),
(6.2.19) (@ i 2 2
b=(ai,...,a;,a;41 —1,1,ai49,...,a0).

Then we have T = T, (wyg) and T = To(wyo) where yj is the longest element of (S /Sb)s}lort
and yp is the longest element of (Sar /Sa)Short. Now we can compute the two coefficients of

(16.2.18]); the second coefficient is

(6.2.20) S feotmrie) = N )26 )
ye(sa,/ga)short ye(Sa//Sa)short
T Y=Y T4 Y=Yy
— qf(yo)ff(yé) Z q2€(y6)72f(y) — |:ai + a:ﬂ - 1} ’
ve(En /)" Lo
while the first coefficient is
(6.2.21) S i) = N 2w
y€(§ar/Sa)short yE(SaI/Sa)short
T, Y=Yo T, y=yo
= Z qzz(ZO)*%(Z) - l:ai +aiy1 — 1]
Qi+1 0

€ (Satainn/s, 8 )short

ait1

where we restricted to Sy, 44,,, (since the permutations act trivially elsewhere) and we
substituted y = 22’ for 2’ = Saita;1—1"" " Sa;+15q;; the element zg is the longest element of

(Sa1+a1+1/8a171 xS )short. O

iyl

Lemma 6.2.4. Let a,a’ for fized i as in the proof of Theorem , Let T be an admissible
tableau of type a' with all entries equal to i in the column. Construct an admissible tableauz
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T’ of type a as follows: first increase of 1 all entries of T greater than i; then substitute the
first a; 41 entries © with i + 1 (here first means, as always for our hook diagrams, that we
first go through the column from the bottom to the top and then through the row from the left
to the right). Then we have

a; + Qiy1
Q;

(6.2.22) T8 (7] = [ ]O[A(T’)],

where for an admissible tableau To(w) we wrote A(Tq(w)) for A(w).

Proof. The proof is similar to the previous one, but easier. We just need to compute

(6.2.23) I Q) o 5T -2 |:Cli +ai+1] . 0
ai
ve(Sa/s,) v€(Sa'/s 0

short ) short

Let us consider in particular the regular composition n of n. Let @ = n and for every
i = 1,...,n — 1 consider a; as defined in . Define 0; = Tg o TS as a functor
0;: Q(n) — Q(n) (this is just the functor 6; defined in restricted to Q(n)). As a
consequence of Theorem [6.2.2] we have:

Corollary 6.2.5. The endofunctors 6; on Q(n) categorify (i.e. give, at the level of the
Grothendieck group) the action of the Super Temperley-Lieb Algebra STL,, (see Definition

:

It follows by Lemma that the functors 6; satisfy the relations

(6.2.24a) 07 = 0,(1) ® 0,(~1),
(6.2.24b) 0:0; = 0;0;,  for |i—j|>1
(6.2.246) 9i9i+19i D 9i+1 = 9i+19i9i+1 ®0;.

In fact, these relations are the categorical versions of the relations of the Hecke algebra
3.2.9a|-i3.2.9cb and are satisfied by the endofunctors 6; of 20 (ct. . By Corollary
the relations (3.2.9d}i3.2.9¢) are satisfied in the Grothendieck group. We conjecture that their
categorical versions are satisfied by the functors 6;:

Conjecture 6.2.6. The functors 0; on Q(n) satisfy the relations

0;—10;+10:0;—10; 11 @ [2]%0;-10;110;

&~ [2](0;—10;410:0i—1 & 0;,-10,410,0;11),
0;-10;110:0;_10; 11 @ [2]%0,0; 10,41

= [2[(0;-1050;—10;41 © 0;410:0;_10;11)

(6.2.24d)

(6.2.24¢)

for all i =2,...,n— 2, where we used the abbreviations [2]0; = 0;(1) ® 0;(—1) and [2]?0; =
9i<2> ©0;,D0; D 9i<_2>-

Although apparently harmful, we believe Conjecture [6.2.6] to be quite hard. The difficulty is
due to the lack of a classification of projective functors on the parabolic category OF if p is
not the Borel subalgebra b.
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6.3 Categorification of the canonical basis

Now we give a categorical interpretation of the canonical basis of V(a). First we restrict
ourselves to consider the regular composition n. Recall that by Proposition [3.2.5]the canonical
basis of (V®™), can be interpreted as a canonical basis for the Hecke algebra action. In this
section we will use the Hecke module structure of the Grothendieck groups of our categories.

Let p, q C gl,, be the parabolic subalgebras defined at the beginning of the chapter, such that

Q(n) = ZOg’q_preS. Using the notation introduced in Chapter |2, we fix isomorphisms
C(q) (Z C(q) (Z P

(63.1) K@ (%0,) - H, K@ (20)) — MP
[M(w-\)]— Hy [MP(w - )] = Ny,

As well-known, by the Kazhdan-Lusztig conjecture projective modules are sent to the
canonical basis elements of H,, and MP by the two isomorphisms.

Composing the isomorphism ([6.1.6)) with the isomorphism (3.2.13)) we get an isomorphism
Ko(PO0™) 5 mp
(6.3.2) ("0 ) “
[A(wqw - X)] = Ny

for w € WPT9, where wy € Wy is the longest element.

Lemma 6.3.1. The coapproximation functor Q: ZO';\ — ZO‘;’q_pres categorifies the map

Q: MP — Mﬁ (defined in .

Proof. Let w € AP(n) = WP. By Proposition we have QMP(w - 0) = ¢"®A(zw - 0)
where z € Wy is given by Lemma Now [MP?(w-0)] = Ny € MP and [A(zw - 0)] =
ﬁquww € M. On the other side, by definition QN,, = cq_lq_g(w“)”(””)quIw. The
claim follows since

(6.3.3) e lg~twa+E) = L @) _

£(x)
i ' .

kot
Lemma 6.3.2. Under the isomorphism (6.1.6) we have [Q(wqw)] — N, for all w € WPTA,

Proof. By Lemma and the discussion after it, it follows that Q sends the canonical
basis element NV, ,, € M¥ to N, € My}. By Lemma we have
(6.3.4) (Quwqw)] = [P (wqw - 0)] = QIP(wqw - 0)] = QIV,,,,, = I O

Y we
Now let us consider a general composition a.

Proposition 6.3.3. Under the isomorphism (6.1.6) the class of the indecomposable projective
module Q(w) maps to the canonical basis element v(?u) € V(a) corresponding to the standard
basis element vy .

Proof. By Lemma [6.3.2] we know the result for the regular composition n. Consider the
standard inclusion V(a) — V®" given by the web diagram ¢ = Y,, @ ---® Y, see (3.3.9).
We know that .7 (¢): Qx(a) — Qi (n), that categorifies ¢, sends indecomposable projective
modules to indecomposable projective modules (Proposition . On the other side, it
follows immediately from our diagrammatic calculus that what ¢ sends to a canonical basis
element is a canonical basis element (cf. Remark [3.3.8). O
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6.4 Categorification of the bilinear form

We give now a categorical interpretation of the bilinear form (3.1.9). Given a Z-graded
complex vector space M = @,., M*, let h(M) =Y, (dime M;)q" € Zlq, ¢ '] be its graded
dimension. Now let M, N be objects of Qx(a). Set

(6.4.1) h(Ext(M,N)) =Y (=1)h(Ext’ (M, N)).
JEL
Let also ~ be the involution of Z[q, ¢~!] given by § = ¢~ .
Fix now a composition @ = (aq,...,a¢) of n and an integer n — £ < k < n, and consider the

category Qi (a).

Proposition 6.4.1. For M, N € Q(a) we have
(6.4.2) R{ESU(, N) = (M), [N))a-

Proof. First, note that the Lh.s. of (6.4.2]) defines a bilinear form on the Grothendieck group.
Hence we only need to prove that the two sides coincide on a basis.

By the properties of properly stratified algebras (cf. [Fri07, Lemma 4]) we have

C ifz=wandi=0,

0 otherwise.

(64.3) Ext' (A(2), (A(w)") = {

Hence we are left to prove that

A w))a

(6.4.4) M =0z w for all w, z € Ag(a)
(V(w)> V(w))a

or equivalently that

(6.4.5) [A(2)] = vy = (V(2), V(2))alA(2)] for all z € Ax(a).

By the properties of a properly stratified algebra, it suffices for that to prove that the
proper standard module A(z) appears (v(z), V(z))-times in some proper standard filtration
of the indecomposable projective P(z). Since by and by Proposition we know
which basis the proper standard and the indecomposable projective modules categorify, this
follows. O

By Proposition [6.4.1] and since

C ifz=wandi=0,

0 otherwise,

(6.4.6) Ext’(A(2), (A(w))*) = {

C ifz=wandi=0,
0 otherwise,

(6.4.7) Ext!(Q(2), (S(w))") = {
we have:

Theorem 6.4.2. Under the isomorphism (6.1.6]) we have the following correspondences:

{standard modules} «— standard basis,
{proper standard modules} <— dual standard basis,
{indecomposable projective modules} +— canonical basis,

{simple modules} <— dual canonical basis.
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Note than an analog of this theorem for tensor products of representations of U,(g) was
established in [FKS06] for g = slp and in [Web13| for the a general semisimple Lie algebra g.

We conclude with an example of how the bilinear form can be used to compute combinatorially
dimensions of homomorphism spaces.

Lemma 6.4.3. Let w,z € Ap(n). Then the dimension of Hom(Qn k(w), @nx(2)) is k! times
the number of elements x € Ax(n) such that both the canonical basis diagrams C’(vgv)) and

C(U(i)) have nonzero value when labeled with the standard basis diagram v,y (the evaluation
is computed according to the rules in Figure .

Proof. Since the modules Q(w) and Q(z) are projective, we can compute the dimension of
Hom(Q(w), Q(z)) using Proposition [6.4.1}

(6.4.8) dime Hom(Q(w), Q(2)) = ([Q(w)], [Q(=)"Ni~",

where (-,-)¢=1 is the form (-,-)n evaluated at ¢ = 1. By the orthogonality of the standard
basis elements v(,, for w € Ax(n) we can write

(6.4.9) <[Q<w>],[cz<z>*1>n=ﬁ S QW) o), (v, [Q()"]),.

zEAk(n)

Since [Q(z)*] coincides with [Q(z)] after substituting ¢ with ¢! in the Grothendieck group,
we can also write

QRN =g X (REw)vw)y (v QEN

’ €A, (N)

g X (b)),

" zeAr(n)

(6.4.10)

Let C(v(w)), C(v.) be the canonical basis diagrams corresponding to v,y and v, respectively.

By the definition of the bilinear form, (U(Ow)7 v(z)) is equal to [k]! times the evaluation of

n

the diagram D, obtained by labeling the canonical basis diagram C(v(,)) with A’s and
V’s according to the standard basis diagram of v(,). If one analyzes the evaluation rules
(Figure , one sees immediately that the evaluation of D, is a monomial in ¢ if the
corresponding diagram C(v(,,)) labeled by z is oriented, and zero otherwise. Hence the claim
follows. O

6.5 Categorification of the action of U,(gl(1|1))

We want now to define functors that categorify the action of U;. As happens in the case of
sly, we are not able to categorify both the action of the intertwiners and the action of U, via
exact functors; hence we will need to consider the derived categories.

Functors & and F

Fix an integer n, a composition a = (ay,...,a¢) of n and an integer n — £ < k < n. Let

A =g, and let p,q,p’, g’ be the parabolic subalgebras of gl,, such that Qx(a) = Z(‘)i’q_pms
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! ’
,q’-pres

and Qp11(a) = ZOf\ . Notice that p’ C p and q C q’. We have a diagram

Zoi’,q—pres
(6.5.1) / \X
3 i
Qe (a) Qpy1(a)

Let us define £, = Q 0oj and F, = 3 0i. We get then a pair of adjoint functors Fy, 4 E:

Ex
(6.5.2) Q(a) " Qyi(a)
Tk

We remark that the functors £, F; commute with translation functors by Lemma [5.5.1

We can compute explicitly the action of F; on projective modules and of & on simple
modules:

Proposition 6.5.1. For w € Agy1(a) we have

Qak(w) if we Ag(a),

0 otherwise.

(653) .{.:FkQa’k+1(w) = {

Proof. Consider the diagram (6.5.1). Of course Ag(a) = AJ(N) C Ag/ (A), and we have

iQakr1(w) = Pp'(w “A) € ZO?\ Pres, By the definition of the Zuckermann’s functor we have
then 3PP (w- \) = PP(w - \) = Qax(w) € Qi(a) if w € A§(N), or 0 otherwise. O

Proposition 6.5.2. For w € Ag(a) we have
a ; A ,
(6.5.4) €1San(w) = {S kri(w) if w e Agii(a)

0 otherwise.
Proof. Consider the diagram (6.5.1)). By Lemma [5.3.5] the simple objects of Qx(a) are the
simple objects S(w - \) of ZO‘;\ TP such that w € Ay, (a). In particular, )Sg i (w) = S(w - A)
for each w € Agp(a). Let Qg : ZO?\ — Z(‘)i TP and Qq: Z(‘)i — ZOE\ TP be the
corresponding coapproximation functors. As we already noticed, it follows from the definition

that Qg = Q0 Qq. Since S(w - \) = QqL(w - ), we have QS(w - A) = Qg L(w - ). This is
Sak+1(w) € Qpy1(a) if w € Agyi(a), or 0 otherwise. O

Unbounded derived categories

Being the composition of exact functors, the functor £ is exact. On the other side, being the
composition of right-exact functors, Fy is right exact, but not exact in general. Therefore,
Fr does not induce a map between the Grothendieck groups, unless we pass to the derived
categories. Unfortunately, properly stratified algebras do not have, in general, finite global
dimension (this happens if and only if they are quasi-hereditary). Hence, we shall consider
unbounded derived categories. The main problem with unbounded derived categories is that
their Grothendieck group is trivial (see [Miy06]). A workaround to this problem has been
developed by Achar and Stroppel in [AS13]. We recall briefly their main definitions and
results, adapted to our setting.



Chapter 6. The categorification 81

Consider a finite-dimensional positively graded C-algebra A = €, A; with semisimple Ao,
and let A = A—gmod. Each simple object of A is concentrated in one degree. Achar and
Stroppel define a full subcategory DV.A of the unbounded derived category D~A by

for each m € Z only finitely many of the H® (X)}

(6.5.5) DVA=L{XeD A : s
contain a composition factor of degree < m

Recall that the Grothendieck group K(7) of a small triangulated category T is defined
to be the free abelian group on isomorphism classes [X] for X € T modulo the relation
[B] = [A] + [C] whenever there is a distinguished triangle of the form A - B — C — A[1].
As for abelian categories, if T is graded then K (7) is naturally a Z[q, ¢~ ]-module. Let

(6.5.6) I={x€DV(A)|[B<m]r =0in K(DV(A)) for all m € Z},

where B<,,: DVA — DVA is induced by the exact functor B<,,: A — A defined on the
graded module M = @,c, M; by B<mM = D,,,, Mi. Then K(DVA) = K(DVA)/I is
the topological Grothendieck group of DVA. The names is motivated by the fact that one

can define on K(DV.A) a (¢q)-adic topology with respect to which K(DV.A) is complete. It
follows that K(DVA) is a Z[[q]][¢”!]-module.

On the other side, let K (A) be the completion of the Z[g, ¢~ ']-module K (A) with respect to
the (¢q)—adic topology (JAS13, §2.3]). Then the natural map K(A) — K(DVA) is injective
and induces an isomorphism of Z[[q]][¢~!]-modules

(6.5.7) K(A) 2 K(DVA).

Moreover, if {L; | i € I'}, with I finite, is a full set of pairwise non-isomorphic simple objects
of A concentrated in degree 0 and P, is the projective cover of L;, then both {L;|i€I}and
{P; | i € I} give a Z[[q]][¢~*]-basis for K(A). In particular K (A) = Z[[q]][¢" ] ®z[g,4-1) K (A).

In our setting, we have for each category ZOi’q_pres naturally

p,g-pres, P,q-pres
KC@EUT) = C(g) @11 K(FOYTT)
A~ p7q—pres)

]
= C(g) ®zqnq—) K (“05
In particular, the same holds for Qx(a). We define also

(6.5.9) K (DYA) = C(q) @siqjq—1) K(DVA).

(6.5.8)

Let As,, be the full subcategory of A consisting of objects M = @,~,,, M;. An additive
functor G: A — A’ is said to be of finite degree amplitude if there exists some o > 0 such that
GAsm) C AL, forallm € Z. Let G: A — A’ be a right-exact functor that commutes
with the degree shift. If G has finite degree amplitude, then the left-derived functor LG
induces a continuous homomorphism of Z[[¢]][¢~"]-modules [LG]: K (A) — K (A’).

Derived functors € and F

Let us now go back to our functors £, and Fy. Being exact, &, induces a functor
&r: DV(Qk(a)) — DV(Qxri(a)). On the other side, it is immediate to check that the
functors i and 3, and therefore also F, have finite degree amplitude. Hence LF}, restricts
to a functor LIy : DV (Qxy1(a)) — DV (Qx(a)). Since & is exact, it follows by standard
arguments that we have a pair of adjoint functors LFy, 4 Ej:

Ex
/—\

-
LI

(6.5.10) DVQ(a) DVQy11(a)
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REMARK 6.5.3. Since i sends projective modules to projective modules, it follows from
[Wei94], Corollary 10.8.3] that LFy, = Lj o Li.

Theorem 6.5.4. The functors LF, and & categorify F and E’ respectively, that is, the
following diagrams commute:

L €
DYQy(a) "t DVQys1(a) DVQy(a) —— DYy (a)
[Kc(q) kKC(q) [KC(q) kKC(q)
/
V(a)y ————— V(a)r41 V(a)y ———— V(a)i+1

Proof. We use Proposition [6.5.1] to check that the first diagram commutes on the basis
given by indecomposable projective modules. Let w € Ag41(a) and write V() = v;’]. Then
in KC9(DVQ, 1 (a)) we have [Qqrs1(w-N)] = v,?“. Now w is in Ag(a) if and only if
it is a shortest coset representative for yy,\Sn. Let T3 (w) (respectively, Ty (w)) be the
(n — k — 1,k 4+ 1)—tableau (respectively, (n — k, k)—tableau) of type a corresponding to w.
Obviously T¥(w) can be obtained from T*!(w) by removing the upper box b of the column
and adding it to the row in the leftmost position. Clearly T (w) is admissible if and only if
the entry of this box b is 1. Hence w € Ag(a) if and only if 71 = 1, and in this case we have
[Qak(w)] = vg* G2+ - Qupf in K®@(DVQy(a)). By Proposition this is the action
of F.

Since &y is the adjoint functor of LFy, the commutativity of the second diagram follows from
the adjunction (3.1.20) and Proposition (of course we could also argue as for LF}, and
check directly the commutativity of the second diagram above using Proposition [6.5.2)). [

We define & = @_} ,&, and F = @}_} ,F as endofunctors of Q(a). We have the
following categorical version of the relation E? = F? = 0:

Proposition 6.5.5. The functors & and F satisfy Eoc &€ =FoF =0.

Proof. Let S € Q(a) be a simple module. It follows from Proposition that €25 = 0.
Since € is exact, this implies that &€ = 0.

On the other side, it follows from that F2 is zero on projective modules. Since JF is right
exact, hence in particular preserves surjective maps, and any object of Q(a) has a projective
presentation, it follows that F? is the zero functor. O

Since £ sends projective modules to projective modules, it follows (cf. [Wei94, Corollary
10.8.3]) that LF o LF =L(F o F) = 0.

We summarize the results of this section in the following:

Theorem 6.5.6. Let ¢ be a web defining a morphism V(a) — V(a'). Then the diagram

&, L
DVA(a')

(6.5.11) 9’(@)]

DVQ(a’)
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commutes and categorifies (i.e. gives, after applying the completed Grothendieck group KC(Q))
the diagram

E.F
V(a') — V(a')
(6.5.12) 9(@)] 7o)
E.F
V(a) V(a)

In particular, for a = n we have two families of endofunctors {&€,LF} and {C; | i =
1,...,n—1} of DVQ(n) which commute with each other and which on the Grothendieck
group level give the actions of U, and of the Hecke algebra H, on V™ respectively.
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CHAPTER

Preliminaries

In this chapter we collect some general notions which we will need in the following.

First, in we introduce some combinatorics for the shortest coset representatives for the
quotient §, x s, _,\S» of the symmetric group. In particular, we will describe some different
ways of parametrizing such cosets; the notation we introduce here will be omnipresent later.
In §7.2] we compute explicitly some canonical basis elements of the Hecke algebra; these will
be used in Chapter [§]to determine the dimension of the corresponding Soergel modules.

In §7.3] we introduce complete symmetric polynomials and Demazure operators and recall
some formulas for them. In §7.4 we define a class of ideals of a polynomial ring which are
generated by some complete symmetric polynomials in a subset of the variables, and we
determine homomorphism between the corresponding quotient modules using the machinery
of Groebner basis. The Soergel modules which we will study in the next chapter will turn
out to be of this type. Finally, in §7.5] we recall the definition of Schubert polynomials, which
will be used later in Chapter [0}

7.1 Combinatorics of coset representatives

Let us fix an integer 0 < k < n. If s1,...,$,_1 are the simple reflections in S,,, let W, be the
subgroup generated by sip,...,sx—1 and W,ﬁ- be the subgroup generated by sg4+1,...,Sn—1-
Notice that Sy x S, = W), x W,i- C S,,. Let wy be the longest element of Wy, and let

D = D, i, be the set of shortest coset representatives (1, x WkL\Sn)Short.

REMARK 7.1.1. The notation agrees with the more general one introduced in §2:2} Indeed,
here we are considering only the particular case Wq = Wy, = (15 -y Sk—1)5 W, = W,j- =
(Sk+1s-- -, Sn—1). Accordingly, we have wy = wq and D = WP*4,

The set D is in natural bijection with AV—-sequences consisting of k A’s and n — k V’s, by
mapping the identity e € S,, to the sequence

(7.1.1) e=A---AV---V
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and letting S,, act by permutation of positions; in order to obtain a bijection with right coset
representatives we regard this as a right action. From now on, we identify an element z € D
with the corresponding AV-sequence.

There are a few different ways to encode an element z € D, which we explain now.

1) The position sequences. In an AV—sequence z € D, we number the A’s (resp. the V’s) from
1 to k (resp. from 1 to n — k) from the left to the right. Moreover, we number the positions
of an AV—sequence from 1 to n from the left to the right. We let A7 be the position of the
i~th A and V3 be the position of the j—th V in z. For example, in the sequence

z = AVVAVAA

we have A3 = 4 and V§ = 2. Notice that either of the sequences (Af,...,A) and
(V§,...,VZi_,) uniquely determines z.

2) The N—distance sequence. We set

(7.1.2) =N —i  fori=1,...,k,
so that
(7.1.3) (Nfyo A = (1 + 20k + 27).

In other words, z;* measures how many steps the i—th A of the initial sequence e has been
moved to the right by the permutation z. This defines a bijection z — 2" between D and
the set

(7.1.4) {2 =(20,...,20) |0< 20 < <z <nm—k}.
Define the permutation
(715) tz/'tf = 5;Si41 """ Si4+4—1

foralli=1,...,.n—1and £ =1,...,n — i (and set t7/j\,0 = ¢e). Then we have a reduced
expression for z:

(7.1.6) 2=ttt

3) The V—distance sequence. Analogously, set

(7.1.7) 2 =i—-Vi_, fori=k+1,....,n
so that
(7.1.8) Vi, o Vi) =(k+1—20q,....,n—2)_}).

In other words, z; measures how many steps the (i — k)-th V of e has been moved to the
left by the permutation z. This defines a bijection z — 2V between D and the set

(7.1.9) {2V =) k> 20 > > 2] >0}

Define

(7.1.10) tZH,@ = Ski—1Sk+i—2 """ Skti—t

fori=1,...,n—kand £ =1,...,k (and set t],, ; = e). Then we have another reduced

expression for z:

— 4V Y \%
(7111) Z = tk+1,zlg+ltk+2,z;f+2 T tn,zx'
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4) The b—sequence. Finally we want to assign to the element z € D its b—sequence b®. Let

k+1>b;>--->b, =1,
(7.1.12) Bpr=1_b=(by,...,b,) € N" 222 b
’ bi <bi+1foralli=1,....n—1

and define b* € %, . by
(7.1.13) b =#{j | \; >} + 1.

In other words, b7 — 1 is the number of A’s on the right of position i. It is clear that b
uniquely determines the element z € D. In fact, this defines a bijection between D and %, .

ExAMPLE 7.1.2. Let n = 8, k = 4 and consider the element z = s48586s3 € D. The
corresponding AV-sequence and the b-sequences are:

We also have 2" = (0,0,1,3) and 2¥ = (2,1,1,0). Note that we can write either z = s45556- 53

as in ([7.1.6) or z = s483 - s5 - s as in ([7.1.11)). ®

7.2 Some canonical basis elements

As we anticipated, in this section we will compute some canonical basis elements of the Hecke
algebra H,, (for the definition of which we refer to §2.1).

Applying Lemma [2.1.4] to the parabolic subgroup Wy, C S,, we get

(7.2.1) H, = Z ,Ue(wk)fﬁ(z)Hm_
zeWy

In the next proposition we will generalize (7.2.1]) and give explicit formulas for the canonical
basis elements H,, , for z € D. But first we introduce the following notation: we set

h h
(@) (' (@ . —i .
(7.2.2) Yo fwh= Y M) and YT g()) =) a (i)
w’ €Sy, w’ €Sy, =0 =0
for whatever functions f defined on S; and ¢ defined on {0,...,h}.
Proposition 7.2.1. Let z € D, and write z = t'ZH,Z,XH "'tvva' Then
7.2.3 g NSO NN sy
(7.2.3) =wpz T Z Z Z q w’tX+1,7,k+1"'tX,in'

w’ €Sy ik1=0 in=0

Proof. First, we note that all words u/t}c/ﬂ’ik+1 e txﬂ-n that appear in the expression on the
right are actually reduced words. This is clear if we look at the action of this permutation
on the string

(7.2.4) Ap-- ApViss - Vi

from the right: the length of the permutation is the cardinality of the set X of the couples
of symbols of this string that have been inverted. To X belong ¢(w’) couples consisting
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of two A’s; moreover, every Viio appears in X exactly i, times coupled with some A or
some Vg for 8 < a. Hence the length of the permutation w/tlZH,ikH t){z is exactly
l(w') +igy1 + -+ - + i, and therefore this is a reduced expression.

Now, in the r.h.s. of (7.2.3)) the coefficient of H,, . is one, while the coefficient of every other

basis element H,, ’tzﬂ ..4v is divisible by q. Hence the only thing we have to prove is
7'k+1 n,in

that the r.h.s of is bar invariant.

We proceed by induction on the length of z, the case z = 0 being given by (7.2.1). Let h be
the greatest index such that z)/ # 0. Hence we have z =t -ty 2y First suppose

that 2z > 2. Set 2/ =t/

k+1 zk+1 o

Kt1,2) ~-th’z}{71 and j = h — z)/ so that z = z’s;. We compute:

k+1

(a) (@) ~@ g/
(7.2.5) H, .H;= % ZO Z we2 ) g W1 T, (Hj +q)
w’ €Sk k1= in=
(@) Zk+1 h l(q)
o E(w 2)—z) +1
(7.2.6) = % ZO > y T T Huy ity
w k 1k+1 ih_1=
) “t
(7.2.7) DD D Z ¢ Hy, ey |
w’ €Sk 1k+1—0 ip=0 L
(9) k“ e 71((1)
(7.2.8) T D DR SRS W T
w' €Sy ir41=0 =0

The element H,,, . H; is obviously bar-invariant. Moreover, the sum of (7.2.6) and (7.2.8)
gives exactly the r.h. s of (7.2:33) for H,, _; hence we only need to prove that (7.2. Z) is bar
invariant. It is easy to check that in (7.2.7) the term H on the rlght acts as ¢~ *; hence

(7.2.7) is equal to the r.h.s. of (7.2.3) for H,, .., where 2" =t/ | e .tX&;VﬁQ, and this is
bar-invariant by induction.

Now suppose instead that 2 = 1. Set 2’ =t/ e Sty sy, 5O that z = 2’s,_1, and
e 24
compute:

k+1

(@) (@) {(a) gltwez
(7.2.9) Hoyppor iy = Z Z Z * )H“’ Bty i1, Hyy

w’ ESy lk+1 0 ih—1=0

B (@ e <) fwrs')
(7.2.10) =2 D e AU Hun e, e

w’ €Sk ik+1=0 ip—1=0

ol @ R@ R gy g
( - ) + Z Z Z q Wity i1 th,ih_l'

w’ €Sk ik+1=0 ip—1=0

This is exactly the r.h.s. of - ) for H hence this is also bar invariant. O

7wkz7

We will need some other canonical basis elements that we now compute.

Proposition 7.2.2. Let z € D, with z =t tY v. Suppose that for some index j

k+1, zk+1 n,z
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vV _ LV :
we have 2] =2{44. Then ﬂsjwkz is equal to
4 \4 . Vv
ZE+1 Zj Ly Zn
(q) (@) (9) (9) (q)
(7212) E E e § E e E qZ(wkz)Hs]‘1z)/tZ+l ) ety Y Y
g V41 Jetg i+ Lig4q Myin
w’ €Sk ik+1=0 ;=0 1;41=0 i =0
v v . v
Zk+1 Zj T z
+ Z(Q) Z(Q) i(Q) ZJ(Q) Z (9) é(wkz)"l‘lH
. . v v v v .
q W1 L e i
w’ €Sk ik+1:0 ij:0 ij+1:0 1, =0

Proof. Analogously as for the previous proof, we only need to check that is bar-
invariant. We prove this claim by induction on the length of z, using Proposition for
the expression of H,, .. In the following computation, we do not write the sums over w’ € Sy,
and over the indices ij, for h # 7,5 + 1.

@) TR s
(7.2.13) ﬂjﬁwkz = Ej Z Z qf( * )Hw’-utxi_ MRS
i;=0 ij31=0 o

Zj\v/ ij
B (9) (a) f(wrz)
(7214) - ﬂj Z Z q i Hw/"'t;'/,ijt}/+lwij+1w
4 =0 1;4+1=0

z;/ (Q) z;/+1((I) @( )
(7.2.15) HH)Y TS T g oy

Jiig j+1177j+1.“
15=014j41=1;+1

Permutations w'---t, ¢/, ; -+ occurring in (7.2.14) become longer when multiplied on
the left with s;. Hence (7.2.14]) becomes

I (@) Pala)
(7.216) > "y ¢ I H gy, iy

AR A
ijZO ij+1:0

5 (0) Gala)
+ Z Z qg(wkz)+1Hw/...tV. tY

Jetg i+ Liij4q
ij=0 ij+1=0

This is exactly ([7.2.12]). Hence we are left to show that (7.2.15)) is bar invariant.

For the permutations occurring in (|7.2.15)) we have

A A = s -ty Yoo
(7.2.17) Wty i =St

Hence ([7.2.15)) is equal to

z 2
(r218) S0 S gy,

;=0 ijp1=i;+1

Vo Y, .
Jrijp1—17+1,4,
\4 \2
@) LR
E(wkz)H
’ \2 4
+ E : E : q LI FPL) S

ij:O ij+1:’i]‘+1

Note that for i; = ZJV the second sum runs over an empty set of indices. Therefore we can
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rewrite ([7.2.18]) as

J+l

(q) (Q) (wpz)—2
(7219 Z Z ()= HSJU’I tﬂj+1tj+11 -

;=0  ij41=1;

\/

(rI) e (q)
l(wkz) 1H T
2 : 2 : Jeij ALy

;=0  ij41=1,

or, renaming the indices and swapping the sums,

zy —1 i
@ @D g
(72200 3 D¢ P H ey e,

=0 4;4+1=0

Lo &
q q
N Z Z qf(wkz IH“’I P IR

Let 2/ € D be determined by z;¥ = zh for b # j,j + 1 while 2/ = 204, = 2/ — 1. By
induction (7.2.20) is H, ,,, ./, hence it is bar-invariant. O

We will not need the explicit expression (|7.2.12)), but only the following

Corollary 7.2.3. Let z € D, with z = tk+1 2 Y

have 2] = z},,. Then the canonical basis element H

n,zy - Suppose that for some index j we

H, .. is a sum of

(7.2.21) Kz + 1) (5 + D=0 +2) (2 + 1) (20 +1)

standard basis elements with monomial coefficient in q.

7.3 Complete symmetric polynomials

Let R = C[zy,...,x,] be a polynomial ring. The complete symmetric polynomials are defined
as

(731) h]‘ (Il, [SRN ,Z‘n) = Z Tjy v v xij

1<in <-+<i;<n

for every j > 1 so that for example ha(x1,72) = 23 +x122+23. We set also ho(z1,...,2,) = 1,
while if n = 0 (i.e., we have zero variables), we let h;() = 0 for every ¢ > 1. The symmetric
group S,, acts on R permuting the variables, and the polynomials h;(z1,...,x,) are invariant
under this action; in fact, they generate the whole algebra RS of invariant polynomials (see
[Ful97, Section 6]).

We will consider complete symmetric polynomials in some subset of the variables of R. The
following formula helps us to decompose a complete symmetric polynomial in k variables as

complete symmetric polynomials in ¢ and k& — £ variables, for every £ =1,... k — 1:
J
(7.3.2) hi(z1,...,25) = Z ho (1, x)hjn(Tega, - - - Tx).
n=0

It is also possible to express a complete symmetric polynomials in k — 1 variables in terms of
complete symmetric polynomials in &k variables:

(733) hj(xl, “e ,xk,l) = hj(ﬁl, N ,{Ek) - xkhj,l(:vl, . ,xk).
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Both (7.3.2) and ([7.3.3)) can be verified easily by comparing which monomials appear on
both sides.

Demazure operators. For 1 <i <n —1 let R* be the subring of R consisting of polynomials
invariant under the simple transposition s;. We recall from [Dem73| the definition of the
classical Demazure operator 0;: R — R, given by

(7.3.4) o fr L5

Ti — Tit1 .
The operator 9; is linear, vanishes on R® and satisfies
(7.3.5) 0i(fg) = f0ig whenever f € R%.

Let also P;: R — R be defined by P;(f) = f — z;0;(f). It is easy to show that P; has also
values in R*". The following commutation rules hold:

(736) [P“ xi—&-l] = —XT;Sq, [81,‘%1} = S;.

The operators 9; and P; can be used to define the decomposition R = R% & x;R% as a
R**—module, by

Demazure operators have the nice property of sending complete symmetric polynomials to
other complete symmetric polynomials:

Lemma 7.3.1. For all j > 1 we have

(738) Bkhj(ml,...,xk) :hjfl(.’tl,...,l'lﬁ,l).

Proof. Using (7.3.2) for £ = k — 1 we compute
J
8khj(:nl, e ,.’ﬂk) = 8k <Z hj_g(l‘l, e ,mk_l)xi)
=0

J
=> hj(z1,.. . wp_1)Ok(z))

(7.3.9)

J ’ ‘

. h L = Lpq1
= je(T1, . ) ————
Tk — Th41

j
= Z hj—e(x1, ... xp—1)ho—1(Th, Tpy1)

=hj_1(z1, 22, ..., Thy1).
Notice that in the last equality we used ([7.3.2)) again. O
7.4 ldeals generated by complete symmetric polynomials

We are going to study quotients rings of R generated by some of the h;’s. Let
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In other words, %’ is the set of weakly decreasing sequences of positive numbers such that
the difference between two consecutive items is at most one. Notice also that for all £ > 0 we
have B, C A, see (7.1.12). For every sequence b € &’ let I, C R be the ideal generated
by

(7.4.2) hoy (1), hoy (21, 22), - <oy b, (T, -+ 0, X))

Set also Rp = R/Ip.

We recall shortly the definition of Groebner basis, which are a useful tool for studying
ideals in polynomial rings; for a complete reference see [CLOQT, Chapter 2|. Let us fix a
lexicographic monomial order on R with

(7.4.3) Ty > Tpo1 > 0 > T1.

With respect to this ordering, each polynomial p € R has a leading term LT(p). Given an
ideal I C R, let LT(I) = {LT(p) | p € I} be the set of leading terms of elements of I and let
(LT(I)) be the ideal they generate. We recall that a finite subset {p1,...,p,} of an ideal I of
R is called a Groebner basis if the leading terms of the pq,...,p, generate (LT(I)). Then we
have:

Lemma 7.4.1. The polynomials (7.4.2) are a Groebner basis for Iy with respect to the order
(17.4.3).

Proof. By [CLOQT, Theorem 2.9.3 and Proposition 2.9.4] it is enough to check that the leading
monomials of the polynomials (7.4.2)) are pairwise relatively prime. This is obvious. O

Proposition 7.4.2. Let b € #'. The quotient ring Ry = R/Ip has dimension by - - b, and
a C-basis is given by

(7.4.4) {ad =l xdn |0 < ji < b}

Proof. By the theory of Groebner bases (cf. [CLOOT, Proposition 2.6.1]), any f € R can be
written uniquely as f = g+ r, with g € I, and r such that no term of r is divisible by any
of the leading terms of the Groebner basis ; that is, r is a linear combination of the
monomials . This means exactly that the monomials are a basis of Rp. O

ExXAMPLE 7.4.3. Let b= (1,...,1). Then z; = hy(z1,...,z;) — h1(x1,...,2,-1) lies in I
for each i, hence I, = (x1,...,x,) and Rp = C is one-dimensional. ®

EXAMPLE 7.4.4. Let b= (n,n—1,...,1). Then it is easy to show that the ideal I, is the
ideal generated by the symmetric polynomials in n variables with zero constant term, and
Ry, is the ring of the coinvariants B = R/ (RSJ_”), cf. also isomorphic to the cohomology
of the full flag variety of C™ (see [Ful97, §10.2, Proposition 3]). ®

Morphisms between quotient rings

Next, we are going to determine all R—module homomorphisms between rings Rp. This
section will be devoted to the proof of the following proposition:

Proposition 7.4.5. Let b,b' € %', and let ¢; = max{b. — b;,0}. Then a C-basis of
Hompg(Ry, Ry ) is given by

7.4.5 1 gdtepin | ¢ < i < bU).
1 n [
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The proof consists of several lemmas.
Lemma 7.4.6. Let b€ #'. Then hy(xy,...,2;) € Iy for every a > b;.

Proof. We prove by induction on £ > 0 that hy,¢(x1,...,2;) € Ip for every i = 1,...,n. For
¢ = 0 the statement follows from the definition. For the induction step, choose an index ¢
and pick j < i maximal such that b; = b; + 1 (or let j = 0 if such an index does not exist)

and write using iteratively (7.3.3)):

hbi+é($17 s 7%) = hbﬁe(ﬂcl, cee ,xj) + l'j+1hbi+€71(1'17 cee $j+1)
+o At xihy g1 (T, i) F il e (2, - X)),

Since b; + ¢ = bj + £ — 1, the terms on the right all lie in I by the inductive hypothesis. [

Lemma 7.4.7. Let b= (by,...,b,) € B' and
(7.4.6) b = (b, bic1 b+ 1 bisrs. .. bn)

for some i. Suppose that also b’ € %B'. Then Iy C Iy while x;Iy C Iy .

Proof. Tt follows directly from Lemma that Iy C I. For the other assertion, since
hy,(21,...,2;) € Iy for all j # i, we only need to prove that x;hs, (z1,...,2;) € Iyy. By

(7.3.3) we have
(747) xihbi (1’1, ‘e ,.TZ') = hbi+1(£€1, PN ,ZL’i) — hb,;+1(x17 e ,ZL’i_l).

Since we suppose b’ € £, it follows that b;_1 = b; + 1, hence the r.h.s. of (7.4.7) lies in
Iy. O

We will say that two sequences b, b’ € 4’ that satisfy the hypothesis of Lemma (without
regarding the order) are near each other.

Lemma 7.4.8. Let b,b' € &' and set ¢; = max{b} — b;,0}. Then 7' - 25Ty C Iy .

Proof. We can find a sequence b=>b" " ™) = b with b € & for each k and
N = ¥, |b; — b}| such that b*) and b(Hl) are near each other. Then the claim follows
applying iteratively Lemma [7.4.7] O

Lemma 7.4.9. Let b,b' € #'. Let ¢; = max{lb, — b;,0}. Suppose p € R is such that
ply C Iy Then a7' - 2z | p.

Proof. We prove the claim by induction on the leading term of p, using the lexicographic
order . Let p’ be the leading term of p and pick an index 1 < i < n. By assumption,

phy, (xl, . xz) € Iy. By the theory of Groebner basis, the leadlng term of phy, (z1,...,2;)

is divisible by xl{ . xz , and this leading term is just p’z’?. It follows 1mmed1ate1y that

- xfr | p'. By Lemma we then know that p'I C Ib/, hence also (p — p')Ip C Iy.
By induction, we may assume that z' --- a5~ | (p — p'), and we are done. O

Proof of Proposition[7.4.5 It follows from Lemma that the elements of (7.4.5)) indeed
define morphisms R, — Rp. By Proposition [7.4.2] they are linearly independent, and by
Lemma they are a set of generators. O



96 7.5. Schubert polynomials

Duality

The category of finite-dimensional R—modules has a duality, given by
(7.4.8) M* = Hom¢ (M, C).

In fact, the vector space M* is endowed with an R-action by setting (r - f)(m) = f(r-m)
forall f € M*, me M, r € R (since R is commutative).

We will consider R as a graded ring, with the variables x; in degree 2. If the module M is
graded, the dual inherits a grading declaring (M™*); = (M_;)*.

Now consider some b € %’. Notice that I, is a homogeneous ideal and hence Ry is a graded
R-module. The monomial basis of Rp has a unique element of maximal degree
b=2(0by + -+ b, —n), namely 2! where 1 = (1,...,1) and b — 1 is the sequence
(by —1,...,by, — 1). We define a symmetric bilinear form (-, -) on Rp by letting

. . 1 if1q ' =b—1
(7.4.9) (@f, iy =4 "ITI !
0 otherwise

on the monomial basis ((7.4.4), where sequences are added termwise. In other words, (p, q) is
the coefficient of 2%~ in the expression of pg € Ry as a linear combination of elements of
the basis (7.4.4). Since this form is clearly non-degenerate, we get an isomorphism of graded
R-modules

(7.4.10) Ry = Rp(—b) for every b € #'.

The degree shift comes out because the bilinear form pairs the degree i component of Ry
with its component of degree b — i.

By the properties of a duality, we have
(7.4.11) HOHIR(Rb, Rb’) = HOIHR(RZ/, R;) = HomR(Rb/,RbXb/ — b>

for any b,b’ € %' It is not difficult to see that the composite isomorphism is given explicitly
by

_ a:bfl

7.5 Schubert polynomials

We recall some basic facts about Schubert polynomials, referring to [Mac91] for more details.
Let w € S,, be a permutation; then the operator 0,, = 0, - - - 0;,, where w = s;, -+ s;, is
some reduced expression, does not depend on the particular chosen reduced expression and
is hence well-defined. Let w, € S,, be the longest element. Then one defines the Schubert
polynomial

(7.5.1) Guw(1,...,2n) = Oy-14,, (x?flmgfz e :Cn,l)

for each w € S,,. The Schubert polynomials give a basis of R/(R5") [Dem73]. It follows from
the definition that deg &, (z1,...,x,) = 20(w).

For our purposes, it will be more convenient to have a monomial basis of R/ (Ri_“), indexed
by permutations w € S,.
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Definition 7.5.1. For each w € S,, we define & (x1,...,x,) to be the leading term of
Sy(x1,...,zyn) in the lexicographic order (7.4.3).

Being the leading terms of a basis of R/ (Ri"), it follows by the theory of Groebner bases
(see §7.4]) that also the monomials &/ (z1,...,x,) give a basis. Indeed, this is the basis

(7.5.2) {adt - adn |0<j; <n—i}

given by Proposition (see also Example [7.4.4). The advantage of using Schubert
polynomials is that they give us a way to index the basis elements through permutations.

There is an easy way to construct the monomials &}, (z1,...,2,) (cf. [BIS93]): let c,(;) =

#{j <i|w(j) >w(i)}; then & (z1,...,2,) =2 -2,

ExAMPLE 7.5.2. The following table contains the Schubert polynomials and the polynomials
&!, in the case n = 3.

w E Ss3 (G 621)
e 1 1
S T1 T
t 1+ 22 T2
st T1To 1T
ts x? x?

2 2

ws T1T2 T1T2






CHAPTER

Soergel modules

In this chapter we will describe some Soergel modules as quotient rings Ry (defined in
§7.4). The strategy is the following: given a Soergel module M, we prove that the ideal
Iy is contained in the annihilator of M; we use then a dimension argument comparing the
dimension of R (Proposition with the dimension of M (given by the corresponding

canonical basis element computed in §7.2)).

In the homomorphism spaces between these Soergel modules we will define illicit morphisms,
which are the morphisms which factor through some “wrong” Soergel modules. We will
determine explicitly the homomorphism spaces between Soergel modules modulo illicit
morphisms in

Of course there is a connection between this chapter and §4.3] where we recalled Soergel’s
theorems. In we explain the commutative algebra side of the picture from [Soe90], but
we postpone the connection with Lie theory to §9.6] Here we anticipate only that taking
the quotient by illicit morphisms corresponds, in the Lie-theoretical setting, to considering a
parabolic subcategory of the category O.

8.1 Soergel modules

Fix a positive integer n and let R = C[xy, ..., x,] be the polynomial ring in n variables. Let
moreover B = R/ (Ri") be the ring of the coinvariants (cf. also Example [7.4.4). For a simple
reflection s; € S,,, let B% denote the invariants under s;, that is

(811) B = (C[.’Eh ey L1, T4 + Lid1s LiLi41y Li42y - - 7$n]/(R§f‘)

In the following, we will abbreviate ®ps; by ®; while ® g will be simply ®. We let also
B, = B®; B.

We define now Soergel modules for the symmetric group S,, by recursion on the Bruhat
ordering. First we set C, = C. Let then w € S,, be a permutation and choose some reduced
expression w = s;, - - - 8;, where s;,,...,8;. €S, are simple reflections. We have:

r

Theorem 8.1.1 ([Soe90]). The B-module B; & ---® B;, ® C has a unique indecomposable
direct summand C,, which is not isomorphic to some Cy for w' < w. This is the unique

99
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indecomposable summand containing 1 ® ---® 1. Up to isomorphism, C,, does not depend on
the particular reduced expression chosen for w.

We call the C,,’s for w € S,, Soergel modules.

ExaMPLE 8.1.2. Consider a simple reflection s; € S,. According to the theorem, the
indecomposable object C; = C;, is a summand of B; ® C. But it is immediate to check that
the two dimensional B-module B; ® C is indecomposable, hence C; = B; ® C. This module
is in fact isomorphic to R/(Z1,...,Ti—1,Ti + Tit1, Tiit1, Tit2y .- Tn). ®

Notice that since B is a quotient of R we have
(8.1.2) Hompg (M, N) = Homg (M, N)

for all M, N € B—mod. In other words, the category of B—modules embeds as a full
subcategory into the category of R—modules. Hence, it is harmful to consider B—modules as
R-modules.

To compute Soergel modules we will need to know their dimension. This is given by
Proposition [0.6.2] which we postpone because we will need to use Lie theory and the
Kazhdan-Lusztig conjecture for the proof.

8.2 Some Soergel modules

We determine now explicitly some modules C,. In the following, we use the notation
introduced in We recall the following well-known fact:

Lemma 8.2.1. As a C-vector space, a basis of B®;, B®;, -+ ®;,_, B®;, C is given by

(8.2.1) {o5l @ @27 @1 e € {0,1}}.

Proof. The claim follows since each polynomial f € R can be written uniquely as f =

Pi(f) +:0:(f), with Pi(f),8:(f) € R*, cf. (7.3.7). O

A key-tool to determine the Soergel modules is given by the next proposition; its proof is
based on a lemma which uses facts about the BGG category O, and that we hence postpone

to
Proposition 8.2.2. For all z € D the module C,, . is cyclic. In particular, we have

(8.2.2) Cupz 2 R/ Anng Cy,» = B/ Annp Cy, .

Proof. By Proposition [7.2.1, H, appears exactly once with coefficient ¢*(***) in the canonical
basis element H,, .. By Lemma[0.6.4] this implies that C,,. is cyclic. O

Lemma 8.2.3. For every z € D the dimension of C,, . over C is given by

(8.2.3) dime Cypz = k(2040 + 1) -+ (2 +1) =bF -+ b7,
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Proof. The first equality follows directly from Proposition [9.6.2] and Proposition [7.2.1] We
want to show the second equality. As in Example [7.1.2] we imagine the b—sequence written
on top of the AV-sequence for z. In order to compute b7 - - - b7 we have to take the product
of all the numbers appearing. Over the A’s we have the numbers between 1 and k, each
appearing once: hence their contribute is k!. Over the j—th V, we have a number measuring
how many A’s are on its right, plus one: this coincides with how many times this V has been
moved to the left plus one, that is, 2 +; 1 The claim follows immediately. O

Lemma 8.2.4. The module C,, 1is isomorphic to Rpe, where e € S,, is the identity element.
Proof. By Proposition [8:2.2} the module C,, is cyclic over B. Choose any reduced expression

Siy -+ Siy for wy and build the corresponding module B, = B;, ® ---® B;; ® C. It is
easy to show that, as in Example the ideal Ipe is generated by the polynomials with

zero constant term which are symmetric in the variables x1, ..., zg. It follows immediately
that Iye C Anng B,,, C Anng C,,,, hence C,, is a quotient of R/Ipe. By Lemma and
Proposition |7.4.2] dim¢ C,,, = dimg R/Ipe, hence Cyy, = Rpe. O

As we said, we will use the same notation introduced in For ¢}, see (7.1.5), let
(8.2.4) By, = Bist-1 @ Bipe2® -+ @ B;
and for z = tQZ,ﬁ o -tfzf let

(8.2.5) Bl=By  ® @By .
121 -

AN
k

Moreover, for t/,, see (7.1.10), let

(8.2.6) Biy, = Bit ® Bimes1 ® -+ ® Biy
and for z =t | 2 sty let
41 n
Vo _ v - v .
(827) Bz - Btn’z;{ ® ® Btk+1,zk\{+1

From Soergel’s Theorem [8.1.1] and Proposition [8:2.2} it follows that C,, . is isomorphic both
to the B-submodule of B, @ C,,, generated by 1 =1®---® 1 and to the B-submodule of
BY ® Cy, generated by 1=1®---® 1.

The following lemma is the crucial step to determine the annihilator of C,, ..

Lemma 8.2.5. Let z € D, and let m be the number of nonzero z{*’s. Then

(828) hg(l‘l, R 7xk—m+2’;§,m+1) € Ann kaz

for all £ >m.

Proof. Let us prove the assertion by induction on the sum N of the z/*’s (that is also the

length of z). The case N = 0 is given by Lemma (Notice that he(x1, ..., Tk—m) € Ipe
for £ > m by Lemma[7.4.6])

For the induction step, let : =k —m + z,@_mH = /\i_m_|r1 — 1, write z = z’s; and compute
in B®,; (B ® Cy,):
hepi(zy,..z) - (1®1)
(82.9) = (Pi(heﬂ(ﬂ?h oy @) + 2 0i (hega (21, - - 7331))) 1ol
=1 (Pi(her1(z1,. -y x)) - 1) + 2 @ (Oi(hegr (21, ..., 25)) - 1).
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Since Cy, » is a summand of B ®; (B}, ® Cy, ), it is sufficient to show that (8.2.9)) is zero. In
fact, we prove that both terms P;(hyt1(z1,...,2;)) and 9;(het1(z1,...,2;)) act as 0 on B,

Let us start considering the second term. Let y € D be determined by y/* = z{* for
i#k—m+1,k—m+2, whileyy_, ., =0and y;_, .o = 2;_,,, - Notice that our chosen
reduced expression ([7.1.6) for z splits as 2’ = yz”’, so that

z

(8210) B/\/ = Bilei72 M Bk,m+1 Bijfl e Bi+2 B?/J\ = BZHB;\

forj=k—m+1+ Z,QimJr2 = Aj_myo — 1, where we omitted the tensor product signs.
By (7.3.8), 0;(hey1(x1,...,2;)) = he(z1,...,x;41); being symmetric in the variables z, for
a # 1,1+ 1, this steps over B, and acts on Bé\ ® Cy, - By induction, this action is zero.

Now let us consider the action of the term P;(hoy1(x1,...,2;)). Write
Pi(hes1 (21, .. 20) = hepa (2,0, 2) — 20ihuga (T, .-, @)
(8.2.11)
= hprl(l‘l, ce ,.’L‘i) — .’L‘ihg(xl, N 7.’13i+1).

Of these two summands, the second acts as zero exactly as before. For the first one, write
y'six1 = y so that Bﬁ = B ®;41 ByA,. Then hgyq1(x1,...,2;) steps over the first tensor
product, and by induction acts as zero on Bz//\" O

Proposition 8.2.6. Let z € D with corresponding b—sequence b®. Then the complete
symmetric polynomial hy: (21, ..., 2;) lies in AnnCy, ;. for all i =1,...,n.

Proof. We subdivide the indices i € {1,...,n} corresponding to the positions in the AV—
sequence of z in three subsets: we call an index i such that z* = 0 initial, we call an index i
for which b7 =1 final, and we call all other indices in between in the middle:

A AVX o XAV -V
—— ——

initial  maddle final

where a X stands for a A or a V. Notice that it can happen that an index 7 is both initial
and final if and only if there are no V’s, that is k = n. Since in this case we already know
the claim, we can exclude it.

If ¢ is final, then wiz € S; C'S,, (where S; is the subgroup generated by the first i — 1 simple
transpositions) and obviously hq(z1,. .., ;) annihilates C,, ,.

If z is not the identity (in which case there are no indexes in the middle), then i =
k —h+ 2;_j,,, is in the middle, and Lemma states that hy: (z1,...,7;) € AnnGC,, ..
For the other indexes in the middle, we can use Lemma, after letting hy: (21, ..., ;)
step over some initial tensor symbols of BZ.

If i is initial, then z is a permutation in the subgroup of S, generated by s;y1,...,Sn—1,
hence hp: (x1,...,m;), when acting on B ® C,, , can step over B., and we only need to

z

prove that hy: (21, ...,2;) € AnnC,, . This follows by Lemma O
We now identify the Soergel modules with the rings Ry = R/Ip defined in

Theorem 8.2.7. Let z € D with corresponding b—sequence b*. Then AnnC,, , = Ip= and
Cupz = Rp=. A basis of Rp= is given by

(8.2.12) {aft a0 < ¢ < bF}.

Proof. Let b = b*. By Proposition Iy € AnnC,, ., so we have a surjective map

R/I, - R/(AnnC,, ). By Proposition and Lemma the dimensions agree, hence
Iy = Ann C,,,, .. The basis of Ry is given by Proposition O]
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As an application, by translating Proposition [7.4.5 into the setup of Theorem [8:2.7] we can
determine the homomorphism spaces between the Soergel modules C,, ,:

Corollary 8.2.8. Let z,2/ € D with b—sequences bz,bzl. Let ¢; = max{bf' — bZ,0} for
i=1,...,n—1. Then a C-basis of Hompg(Cy, z, Cu, ) is given by
(8.2.13) (T aloadn e <ji < b7 )

n—1

We will need in the following some other Soergel modules, corresponding to elements w’ € S,,
which differ from some wyz only by a simple reflection, as in Proposition [7.2.2]

Proposition 8.2.9. Let z € D with corresponding b—sequence b*. Suppose ZJV = Z;/—H for
some index j. Let { = j — z;/, so that sjz = zsy. Then Cg,y, . is the quotient of R modulo
the ideal generated by the complete symmetric polynomials

(8.2.14) ha,(T1,. .., 2;) fori=1,...,n,
where a; = b; for i # { while ay = by ;.
Notice that the sequence a = (a1, ...,ay) is not an element of %', since ay = ap—1 + 1.

Proof. The proof is analogous to the proof of Theorem [8:2.7] hence we will only give a sketch.
By Corollary the module Cy 4, is cyclic. In particular, it is the submodule generated
by 1 inside B ®@; Cy, .. First, let us prove that the polynomials lie in Ann Cy, 4, 2,
or equivalently that they vanish on B ®,; C,,,. This is clear for i # ¢: in this case, these
polynomials can step over the first tensor product, and then they vanish because they lie in
Ann C,, . by Theorem For the remaining case, we have

(8.2.15) ha,(z1,...,2¢) - (1®1)
=1® (Po(ha, (@1, .- 2¢)) - 1) + e ® (Op(ha, (21, ..., 20)) - 1).

By (7.3.8) both Py(hg,(21,...,2¢)) and O¢(hg,(x1,...,2¢)) are contained in the ideal gen-
erated by hg,(21,...,2¢) and hg,—1(21,...,Tey1), which both lie in Ann C,, », and we are
done.

It remains to prove that the polynomials (8.2.14]) are a set of generators. Let I be the
ideal generated by them. We know that Csjwkz is a quotient of R/I. As for Lemma
the polynomials are a basis of I. As for Proposition the quotient R/I has
dimension ay - - - a. By Corollary[7.2.3]and an argument similar to the proof of Lemma [8.2.3
this coincides with the dimension of Cy, 4, -, and we are done. O

8.3 Morphisms between Soergel modules

In each basis set there is exactly one morphism of minimal degree, which we call
the minimal degree morphism C,, . — Cy, .. For each z € D, the homomorphism space
Homp(Cy, 2, Cw,2) is a ring that is naturally isomorphic to C,, .. Moreover, for z, 2’ € D the
homomorphism space Hompg(Cy, 2, Cw,») is naturally a (Cy, .7, Cy,»)-bimodule. It follows
directly from Corollary that this bimodule is cyclic (even more, it is cyclic both as a left
and as a right module), generated by the minimal degree morphism. In what follows, we will
often refer to this fact saying that the minimal degree morphism divides all other morphisms.

We let D’ be the set of shortest coset representatives for WICL\Sn. In particular, for every
z € D we have z,wgz € D'.
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Definition 8.3.1. For z,z’ € D we say that a morphism Cy, . — Cy, o 4s illicit if it factors
through some C,, where y is a longest coset representative for Wk\Sn with y ¢ D'.

We let W, .- be the vector subspace of Hompg(Cy, 2, Cy,») consisting of all illicit morphisms.
Since it is a (Cy, 27, Cuy, »)—submodule, we can define the quotient bimodule

(831) Zz,z’ = HomR(kaza kaz/)/WZ,Z"

We are going to determine all the subspaces W, ./, and consequently the quotients Z, ..
Lemma 8.3.2. Let 2,2’ € D, and suppose that for some index j we have

(3.2) Z{V_{zrﬂ fori=j,3+1,
.3. =9 _

z; otherwise.
In particular 2’ = zsyspy1 for £ = j— ZJV —1, and the corresponding AV -sequence in positions
£0+1,0+2 are

(8.3.3) 2= AVV--- and 2= VVA---.
Then
(8.3.4) W, o =Hompg(Cy,z,Cs,2r) and W, , =Hompg(Cy, ., Cs,2)-

Proof. It is enough to show that ¢ € Hompg(Cuy,z, Cupzr), ¢: 1 = zjzj41 and ¢ €
Homp(Cy, 2, Cuyz), ¥: 1 — 1 are illicit, since they divide all other morphisms. First
of all, note that by construction

(8.3.5) by =

/ b; +1 fori=140,0+1,
b? otherwise.

Let y = sjz = zs¢41, and note that y ¢ D’. We computed C,,,, in Proposition Since
Ann(Cy,.) € Ann(Cy,,) € Ann(C,, .+), the morphism ¢ can be written as the composition
of the natural quotient maps

(836) kaz’ L) kay ;) kaz;

hence it is illicit.

On the other side, 71 Ann(C,, .) € Ann(C,,,) because by (7.3.3)

(8.3.7) l‘g+1hbz

poa (@ o) = hey (@, Teg) = e, (@ T)

and hyz, 11(21,...,2¢) € Ann(Cy,y) by the argument of the proof of Lemma Moreover,
xy Ann(Cy,y) € Ann(C,, ./) because by (7.3.3) we have

(8.3.8) ffhbj (.Tl, PN ,.1‘@) = hb§+1(-7517 ey xg) — hbj+1<x1, ce ,xg,l)

and this is in Ann(C,, .) by Lemma Hence ¢ can be written as the composition

(839) kaz u—+l> kay $_£> kaz’>

and therefore is illicit. O

Lemma 8.3.3. Let z € D and suppose zjv = ;/Jrl for some index j. Let { = j — z}/, so that
sjz = zs¢. Then the endomorphism 1 +— xy of Cy, . is illicit.
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Proof. Let y = sjwyz and notice that y ¢ D’. We claim that =, Aun(C,, ) € Ann(C,) and

hence that 1+ x, defines a morphism C,,, — C,. By Theorem and Proposition
the only thing to check is that xohp; (21, ...,2¢) € Ann(Cy). By (7.3.3) we have

(8310) Ighbz (581, R ,l‘g) = hbz+1($1, ey .Tg) — hbz+1(1’1, - ,:L'g_l) S Ann(Cy)

On the other side, again by Theorem [8:2.7 and Proposition [8.2.9] it is clear that 1 — 1
defines a morphism C, — C,, .. Hence the endomorphism 1 — x, of C,,, . factors through
C, and is therefore illicit. O

More generally we have:

Lemma 8.3.4. Let z € D. For every j between k+1 and n—1 the endomorphism of Cy, »
(8311) 1 —> TyXTpy1 Ty,

where £ =j —z/ and l' = (j+1) — 2/, — 1, is dllicit.

Proof. Let y € D be defined by y; = 2’ for i # j, while yy = 2/, ;. From Corollary we
have that 1+ 1 and 1 — x,2¢41 - - - £—1 define morphisms C,, , — Cy,y and Cyyy — Cyppz

respectively. By Lemma the endomorphism 1 — x4 of Cy,, is illicit, and so is (8.3.11)),
since it can be expressed as composition of these three morphism. O

Theorem 8.3.5. For all z,2’ € D define a subbimodule V~VZ,Z/ of the homomorphism space
Homp(Cy, 2, Cuyzr) as follows:

(i) if for some index 1 < j <mn—k—1 we have Vi > \/jf;r1 or \/;;’ > Vi, then we set
Wz,z’ = Hom(kaZ, kaz’);

(i) otherwise we define V~Vz72r to be the subbimodule generated by the morphisms
(8.3.12) L= (@vzaviir - @) (@] st t) for1<j<n—k,

n—1

where ¢; = max{b? — b?,0} and

(8.3.13) 8(j) = min{V,,, Vi } =1 ifj<n-—Fk,
n ifj=n—k.

Then we have W, ,r =W, ..

ExXAMPLE 8.3.6. Let us consider the following example:

1 2 34 5 6 7 8 9 10 11 12 13 14
b* 10 10 9 8 7 6 5 5 5 4 3 2 2 1
2 AV A A A A A(V2) VeI A A ATV A
Z Vi AN ANV A A A A A VS AN VY]
b 11 10 9 8 8 76 5 4 3 3 2 1 1
L2324 To9l10T11T12

For convenience we have written the subscripts of the V’s, indicating their progressive number.
We are in case m and the generating morphisms (8.3.12)) of W, .. are
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‘ morphism

J

1 1+— ($2$3$4)($11‘5$6$7)

2 1— (338)(7,‘1335.7361‘7)

3 1+— (zoz10211712)(T1T5T627)
4 11— (1[,’13)(.%1%51’@%7)

In the picture, the case j = 1 is highlighted in solid and the case j = 3 is highlighted in
dashed. ®

Proof of Theorem[8.3.5 First, we assume that Vi > Vi +1 for some index 1 < j < n — k.
Pick j minimal with this property. Notice that by the mlnlmahty of j we have Vi_; < \/Z

(if j > 1), and hence on the left of the j—th V of z there is an A (this remains true also i
j =1, since in this case Vi > V3 > V% >1). Let a = Viand £ =V ; — V7, and define 21

and 2(? as ,

—_——

z AV A -+ AV

(8.3.14) 20 = ZSait—18at0—2 " Satl AVV - AN
(8.3.15) 22 = Ws, s, VVA - AA

where on the right we pictured the corresponding AV-sequences between positions aw — 1 and
a+ ¢ (and we included z for clarity). The composition

(8.3.16) Cunz — Copaty 5 Copy s

is illicit by Lemma [8.3.2] Composing with the minimal degree morphism C,,, .2 — Cyyr We
obtain the minimal degree morphism C,, . — C,, ., which is therefore illicit. It follows that
HomR(kaza kaz/) = Wz,z’-

A straightforward dual argument (cf. §7.4) proves that Homp(Cy, 27, Cuyz) = Wy .. Swapping
z and 2’ implies that Hompg(Cy, 2, Cs,2r) = W, o if \/;’?/ > Vi,

Now assume we are in case and fix an }ndex j. First, let us consider the case \/514-1 < Vi
so that 8(j) = \/]Z_|r1 Let v =V3, 0 =Vi,y, e = Vi Define 21 22 and 2B by

z VA AN AV
(8.3.17) 2 =25 5,41 851 A AVA--- AV
(8.3.18) 22 = 2Mg _15c g 8541 A AVVA -+ A
(8.3.19) 23 = 2@ g5 155 A VVAA--- A

where on the right we pictured the corresponding AV—sequences between positions v and ¢.
The composition
(8.3.20) O N RTINS

wkz(2> wkz(3)

is illicit by Lemma By construction, the composition of (8.3.20) with the minimal
degree morphism C,, . — Cy, . equals the morphism (8.3.12)) from Cy, . to Cy, ./, that is
therefore illicit.

Let us now consider the other case Vi, ; < V§/+1~ By Lemma the endomorphism of
Cuw, > defined by

(8.3.21) L= wyeyepr - vz

is illicit. This morphism divides the morphism (8.3.12]), which is therefore illicit.
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To conclude the proof we are left to check that in case W, . C V~VZ72/. Unfortunately we
are not able to check this directly. Instead, by Lemma[9.2.2] in the next chapter we have
that the dimensions of the quotients of Homp(Cy, 2, C., ») by W, ,» and W, . agree. This
implies that W, ,» = VNVZ,Z/. O

Grading

In order to keep the computations more transparent, we decided to postpone the introduction
of the grading until now. The ring R is graded with degz; = 2. Since the ideal (Ri) is
homogeneous, B is also graded, and the graded definition of the module B; is B; = B®; B(—1).
By Soergel’s theorems all C,, for w € S,, are gradable (cf. [Str03al Lemma 1.4]). The grading
is unique up to isomorphism and overall degree shift, hence we fix the standard graded lift of
the module C,, ,, which by a slight abuse of notation we will again denote by C,, ., so that
the cyclic generator is in degree —{(wyz).

By our discussion in §7.4] and with the opportune degree shifting we put on the modules
Cuy 2, it follows that all modules C,,, , are graded self-dual. In particular

(8322) HOHlR(kau ka.z’) = HomR(kaz/, kaz)

as graded vector spaces for all z,z’ € D. An explicit isomorphism was described in ([7.4.12]).

Finally, by Theorem [8.3.5] the spaces W, . are homogeneous subbimodules, and the quotients
Z, , are then graded bimodules.






CHAPTER

The diagram algebra

We want now to define diagram algebras A,, j, over C, which are isomorphic to the endomor-
phism rings of the minimal projective generators of the categories Qx(n). They are analogous
to the generalized Khovanov algebras defined in [BS1I], which instead are isomorphic to the
endomorphism rings of the minimal projective generators of the maximal parabolic categories
OF used for categorifying representations of sly. We will use some diagrams which represent
morphisms between the Soergel modules we studied in the previous section. We remark that
the diagrams will remind of the graphical calculus of Chapter [3] exactly as the diagrams of
IBS11] reminds of the graphical calculus [FK97].

We point out that the major difficulty is the definition of the multiplication of two basis
diagrams, which is not simply stacking one on the top of the other (as in many other
diagram algebras), but instead a quite involved process. In [BS11], Brundan and Stroppel
use Khovanov’s TQFT to define this multiplication. Since there is not an analogous of such
a TQFT in our case, we construct the multiplication in an indirect way using composition of
morphisms between Soergel modules. A drawback of our definition of the multiplication is

that it is not clear how to define diagrammatically bimodules for the diagram algebra, as in
[BS10].

We will introduce the diagrams in §0.1]and we will define the algebras A,, ; in §9.2} Mimicking
the techniques of [BS11] we will describe explicitly the graded cellular and properly stratified
structure ( In we determine and study indecomposable projective-injective modules
using a bilinear form on our diagram algebras. In we define diagrammatic versions of
the functors €& and F from

Finally, in §9.6] we explain the connection between Part [[T|and Part [[TI] by establishing an
equivalence of categories between Qi (n) and A, —gmod. As a consequence, we will be
able to determine the endomorphism rings of the functors £, and Fy, proving that they are
indecomposable.

9.1 Diagrams

We start introducing the diagrams on which our algebras will be built. We will redefine some
keywords that are commonly used in Lie theory (such as weight and block) in a diagrammatic

109



110 9.1. Diagrams

sense.

Weights and blocks

Weights. A number line L is a horizontal line containing a finite number of vertices indexed
by a set of consecutive integers in increasing order from left to right. Given a number line, a
weight is obtained by labeling each of the vertices by A or V. On the set of weights there is
the partial order called Bruhat order, generated by AV = VA.

Blocks. For weights A, u declare A ~ p if p can be obtained from A\ by permuting A’s and
V’s. A block T' is a ~—equivalence class of weights. From now on, let us fix a block I'. Let
also k be the number of A’s and n — k be the number of V’s of any weight of I'. The weights
of T" can be identified with AV-sequences in the sense of and hence with elements of
D,, ;.. For a weight A, we can then define as in the position sequences (A7,...,A) and
(V3,...,V}_,) and the b-sequence b*.

Enhanced weights. An enhanced weight \° is a weight A\ together with a bijection o between
the vertices labeled A in A and the set {1,...,k}. By numbering the A’s from the left to the
right we may view o as an element in Si and call it the underlying permutation. We call A
the underlying weight. We will also say that we obtain the enhanced weight A? by enhancing
the weight A with the permutation o. Notice that there are exactly k! enhanced weights with
the same underlying weight.

We define a partial order on the set of enhanced weights by the following rule:
(9.1.1) N 2p" <= XA=<p or (A=pand (o) <{(r)).

ExAMPLE 9.1.1. Consider a block I" consisting of weights with two A’s and one V. The order
on the set of enhanced weights of T" is then

(9.1.2) (AAV)® = (AAV)E = (AVA)® = (AVA)® = (VAA)® = (VAA)®

where s € Ss is the unique transposition. ®

Fork diagrams

Forks. An m—fork is a tree with a unique branching point (the root) of valency m; the other
m vertices of the tree are called the leaves. A 1-fork will be also called a ray. Here is an
example of a 5—fork:

leaves

N

root

Lower fork diagrams. Let V be the set of vertices of the number line L, and let H_ (resp.
H, ) be the half-plane below (resp. above) L. A lower fork diagram is a diagram made out
of the number line L together with some forks contained in H_, such that the leaves of each
m~—fork are m distinct consecutive vertices in V; we require each vertex of V to be a leaf of
some fork. The forks and rays of a lover fork diagram will be also called lower forks and
lower rays.

Upper rays, upper forks and upper fork diagrams are defined in an analogous way. If ¢ is a
lower fork diagram, the mirror image ¢* through the horizontal number line is an upper fork
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diagram, and vice versa. The following are examples of a lower fork diagram c and its mirror
image c*:

Oriented diagrams

If ¢ is a lower fork diagram and A is a weight with the same underlying number line, we can
glue them to obtain a diagram cA. We call c\ an unenhanced oriented lower fork diagram if:

e each m—fork for m > 1 is labeled with exactly one V and m — 1 A’s;

e the diagram begins at the left with a (possibly empty) sequence of rays labeled A, and
there are no other rays labeled A in c.

Notice that by definition each A and V of A labels some fork of ¢. Analogously, we call
pd an unenhanced oriented upper fork diagram if d*u is an unenhanced oriented lower fork
diagram. The orientation of an unenhanced oriented lower (or upper) fork diagram is the
corresponding weight.

An (enhanced) oriented lower fork diagram ¢\’ is an unenhanced oriented lower fork diagram
cA together with a permutation o € Si such that A7 is an enhanced weight. Similarly we
define an (enhanced) oriented upper fork diagram. If not explicitly specified, our oriented
lower /upper fork diagrams will always be enhanced.

For m > 1 and 1 < i < m we define A(m, i) to be the weight formed by one V and m — 1 A’s,
where the V is at the i—th place. Note that a lower fork diagram c consisting of only a lower
m—fork admits exactly m! orientations, and they are exactly A(m,i)? for i € {1,...,m},
oES_1.

By a fork diagram we mean a diagram of the form ab obtained by gluing a lower fork diagram
a underneath an upper fork diagram b, assuming that they have the same underlying number
lines. An unenhanced oriented fork diagram is a fork diagram a\b obtained by gluing an
oriented lower fork diagram aX and an oriented upper fork diagram Ab, as in the picture:

An (enhanced) oriented fork diagram is obtained by additionally enhancing the corresponding
weight.

Degrees

Define the degree of an unenhanced oriented lower (or upper) m—fork by setting

(9.1.3) deg(cA(m, 1)) = deg(A(m,i)c*) = (i — 1).
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Define then the degree of an unenhanced oriented lower (resp. upper) fork diagram to be the
sum of the degrees of all the lower (resp. upper) forks. Finally, we define the degree of an
unenhanced oriented fork diagram aAb to be

(9.1.4) deg(aAb) = deg(a) + deg(Ab).

Moreover, define the degree of a permutation o as deg(c) = 2¢(0). Then we define the degree
of enhanced oriented diagrams by

(9.1.5) deg(aX?) = deg(aX) + deg(o),
(9.1.6) deg(A7b) = deg(A\b) + deg(o),
(9.1.7) deg(aX?b) = deg(ab) 4 deg(o) = deg(aX) + deg(A\b) + deg(o)

In particular, enhancing with the neutral element e € Sy preserves the degree.

ExAMPLE 9.1.2. Consider the fork diagram aAb given by:

We have deg(a)) = 1 and deg(Ab) = 2+ 3 = 5, so that deg(alb) = 6. We can enhance the
diagram with any permutation o € S5, and then deg(aA?b) = 6 + 2¢(0). ®

The lower fork diagram associated to a weight
There is a natural way to associate a lower fork diagram to a weight A:

Lemma 9.1.3. For each weight \ there is a unique lower fork diagram, denoted A\, such
that AN is an oriented lower fork diagram of degree 0.

Proof. Suppose that some oriented lower fork diagram cA® of degree 0 exists. Recall that,
by the definition of orientation, each fork of ¢ is labeled by at most one V of A; by the
assumption on the degree, this V has to be the leftmost label of the corresponding fork.
As a consequence, each m—fork of ¢, with the only exception of some initial rays labeled
by A, has to be labeled by the weight A(m,1). In other words, the lower fork diagram c
is obtained in the following way: examine the weight A from the left to the right and find
all maximal subsequences consisting of a V followed by some (eventually empty) set of A’s;
draw a lower fork under each of these subsequences, and then draw lower rays under the
remaining A’s which are at the beginning of A. It follows at once that ¢ exists and is uniquely
determined. O

Analogously we let A = (A)* be the unique upper fork diagram such that A°) is an oriented
upper fork diagram of degree 0.

EXAMPLE 9.1.4. As an example, let us illustrate the procedure of constructing A for A =
AAVAAAVVAV. First, we circle all maximal subsequences consisting of a Vv followed by A’s:

A A TR A DOE DO
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Then we draw a lower fork under each of such subsequences, and lower rays under the
remaining A’s at the beginning of .

NVZaRY

The resulting lower fork diagram is then

MIRVZANY @

REMARK 9.1.5. Notice the analogy with the construction of the canonical basis diagram

(B3

For weights p and A, we use the notation 1 C A to indicate that ;1 ~ A and pA® is an oriented
lower fork diagram.

Lemma 9.1.6. Let A, p1 be two weights in the same block T'. If A = p then A = p. If pA is
oriented then p =< X in the Bruhat order.

Proof. Being in the same block, the weights A and g have the same number of A’s and V’s;
let h be the number of V’s. Consider the h rightmost forks of A and let aq,...,a, be their
initial positions; then A is uniquely determined by the condition of having V’s in the positions
ai,...,ap and A’s elsewhere. Hence the first claim follows.

Now, given the lower fork diagram p, let Fy, ..., F}, denote its h rightmost forks. Let also
[, ={\ €Tl | pAis oriented}. Then A € I',, if and only if each V of \ labels exactly one of
the Fy’s. Since i is the weight of I, with the V’s in the leftmost positions, it follows that u
is the minimal element in I';, with respect to the Bruhat order. O

In particular, given our fixed block T, it follows that every lower fork diagram a (such that
ap is oriented for some pu € T') determines a unique weight A with A = a. In what follows, we
will sometime interchange a and A in the notation: for example, we will write V¢ for \/3\ or

b® for b and so on.

We collect now some lemmas that we will need later.

Lemma 9.1.7. Let A\, pu be two weights in the same block T.
(i) The lower fork diagram Au is oriented if and only if

(9.1.8) Vi<V < VA, foralliel,...,n—k—1
(ii) There exists an oriented fork diagram Ang for some n € T if and only if
(9.1.9) VI<VEL and VE <V, foralli€l,... n—k—1.
Proof. 1t is clear that follows from so let us prove It is easy to see that the lower
fork diagram Ap is oriented if and only if each lower fork of A is labeled by exactly one V;

this is exactly the same condition as ((9.1.8]). O

Lemma 9.1.8. Consider weights A\, i € T' with the corresponding b—sequences b>‘, b,
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(a) If pw= X, then b < b} for alli=1,...,n.
(b) If A is oriented, then b} — bl <1 for all i=1,...,n.
(c) If An° is oriented (for some weight n € T'), then |b;\ — bﬂ <1forali=1,...,n.

Proof. If ;= X then the i—th V of u is not on the right of the i—th V of A, and the first claim
follows.

Let Au be oriented. By Lemma we have v} < V¥ < V2, . This means that for every
vertex v € V there is at most one A more to the right of v in A than in u. This is exactly @

The last claim follows from the second: if An? is oriented (for some weight n with b—sequence

b"), then b} — bt = b} — b +b] —b' € {1 -1,1+0,0—1,0+ 0}. O

Since we have identified I with D,, j, we can define the length £(\) of any weight A € I" to
be the length of the corresponding permutation in D, j.

Lemma 9.1.9. Consider weights A\, 7 in the same block T". Then

(9.1.10) deg(An®) = £(\) — £(n) + 2£(c).

Proof. Since An is oriented, the weight 7 is obtained from A permuting the A’s and V’s on
each lower fork of A\. The degree of An is the sum of how much each V of A has been moved
to the right to reach the corresponding V of 7; hence it is just the length of this permutation.
In other words, if we let z, 2’ € D, be the permutations corresponding to A, 7 respectively,
then we have z = 2’y for some y € S,, with £(z') = £(z) + ¢(y), and deg(An) = £(y). O

9.2 The algebra structure

We connect now our diagrams with the commutative algebra from Chapter [8] Let us fix a
block I' with £ A’s and n — k V’s.

Relations with polynomial rings

We associate to the weight A the ring Ry = Ry» = R/Ip» (defined in , and we want to
describe Z, ,/ from (8.3.1]) diagrammatically.

Given an oriented lower fork diagram An?, we define the polynomial
n—k

(9.2.1) Pane = G (Tan, ..y zpn) - H TAT A4y - Ty € R
j=1

with ij(x,\vlz7 e ,m/\z) as defined in Notice that the terms on the right always make

sense because, since An? is oriented, \/;’ > \/5‘ for all indices j (cf. Lemma . Often
we will consider py.- as an element in the quotient Ry, but it will be convenient to have a
chosen lift in R. Notice that we have

(9-2.2) deg(pan-) = 2(¢(0) + £(A) — £(n))-
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Proposition 9.2.1. Let A\, u € T’ be weights, and let z,z’ be the corresponding elements of
D. Let Z, x be the graded vector space with homogeneous basis

(9.2.3) {un” X | X is an oriented fork diagram}.
With VNVZ,Z/ as defined in Theorem we have an isomorphism of graded vector spaces

524 U: Z, \ — Homp(Cuyz, Cuprr) /W, 0
Hn“X — (1 — pﬁna) +W, .

Proof. First, note that p,. = pMEGZ,(x/q, .. ,x/\z). We have py;e = it - asr by defi-
nition, where ¢; = b} — b]. By Lemma by > bj for every j, hence e; > b — b}. By
Corollary the map 1 — pyye induces a well-defined morphism in Hompg(Cy, 2, Cuy 2 )s
hence also in the quotient.

Let us show that is homogeneous of degree 0. The degree of the morphism 1 — p,,y;-
in Homp (Cuy 2, Cuy2r) is deg(pune ) — l(w2") + £(wy2), that is the same as deg(pun-) — (") +
U(2) = deg(pyun-) — (1) +£(\). By this is £(\) +£(p) —26(n) +2¢(0). By Eemma
this is the same as deg(un”\).

Next, we want to see that p,,- is always a monomial of the basis . For this, note
that we have £; = 1 exactly when b = b] + 1. Moreover, the monomial &, (zn,...,z.n) =

:z:’i1 -+ zl» is by construction in the basis of R,,, that means that i; < b;? for every j. It follows
that i; +¢; < b;‘, hence p,,- is a monomial of the basis (8.2.13).

We claim now that none of the p,,- is in V~\/Z7z/. Note that by construction the indeterminate
. - A n n A

@yn does not appear in py,-. By Lemma we have V3 < V7 and both V] <V}, and

V7 < V4, ;. This means that both Ty ecwyy g and zyx e zye -y do not divide ppye.

To conclude the proof, we need to construct an inverse of W. Take a basis monomial
m =z .. z'" € Homg(Cy, -, Cuw,»/) that does not lie in V~VZ7Z/. For every j, let ¢; be the
maximum such that TyuTyhgy - Ty divide m. Since m does not lie in \/~VZ7Z/7 we obtain
4 < v§+1 and £; < V¥ ;. Form a weight n in the same block of X\ and p with the V’s in
positions ¢1,...,£,_ . By Lemma the diagram an is oriented. Let m’ be the quotient
of m by ppye. By construction, b =7 if 2; does not appear in pyy,e, and b = b + 1 if z;
appears (with coefficient 1) in pj,e. Hence, it is clear that m’ is a monomial &, (zxn, ..., zan).
By construction, we get an inverse of the map , that is hence an isomorphism. O

As a consequence we obtain the following result, which completes the proof of Theorem [8:3:5}

Lemma 9.2.2. For all z,2' € D we have

(925) dimc HOI’HR(kaz, kazz)/\/~vz7z/ = dim(c Zz7z/.

Proof. By Proposition the dimension of HomR(kaz,kaz/)/\TVz,zf is the same as
dimg Z, », where A, p € T are the weights corresponding to z, z’. This dimension is simpl

k! times the number of unenhanced weights 7 such that un) is oriented. By Lemma
this is the same as dimZ, .. N L]

Being I' and D), ;, identified, we will often write Cy for C,, -, where 2 € D,, ;. is the element
corresponding to A. If ¢ = A and b = A we will even write C, or C; instead of Cy. We will do
similarly for W, ., and Z, .
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The algebra structure

Thanks to Proposition [9.2.1] we can define a graded algebra A = Ar over C. As a graded
vector space, it has as homogeneous basis the elements

(9.2.6) {(aX\?B) | for all a, A, B € T, 0 € Sy, such that a D A C B}
that is the same as

(9.2.7) {(aA?b) | for all oriented fork diagrams aA\b with A € T'}.

The degree on this basis is given by the degree function on fork diagrams. For A € T" we
write ey for (AAX). Note that the vectors ey give a basis of the degree 0 component of A.

EXAMPLE 9.2.3. Let us consider a block I' of weights with 2 A’s and 1 V, that is
(9.2.8) I'={A1 = AAV, da = AVA, A3 = VAAL

Then the basis {ey,} of the degree 0 component is given by

(929) ex, = s €r, = @\a €Ny = @\

From Proposition we get the following:

Corollary 9.2.4. There is an isomorphism of graded vector spaces

(9.2.10) A= @ Hom(Cy, 2, Cuy2r) /W v
z,2'eD

In particular, A inherits from the r.h.s. a graded algebra structure.

Proof. We just notice that the r.h.s. of is indeed an algebra under composition of
homomorphisms. In fact, if f € Hom(Cy, », Ciyzr)/Ws 2 and g € Hom(Cypy v, Coppozr) /Wr oo
then g o f € Hom(Cy, », Cuyz7) /W, o is well-defined because a morphism which is divided
by an illicit morphism is itself illicit. O

The product of two basis vectors of A can be computed explicitly using the isomorphism
(19.2.10) as explained in details in the following Remark Unfortunately, we are not able
to describe the multiplication in the algebra A purely in terms of diagrams. Nevertheless,
the diagrammatic description proves useful to find other properties of the algebra A, as we
will explain in the following.

REMARK 9.2.5. Explicitly, the multiplication of the basis vectors (aA?b) and (cu"d) can be
computed in the following way. First, if b* # ¢ then set it to be zero. Now suppose b = c*.
Then take p.,~ and psr- in R and multiply them. By construction, the result gives a well
defined morphism of the corresponding Soergel modules: write it as a linear combination
of the basis and translate it in the diagrammatic algebra A using the isomorphism
from Proposition [9.2.1
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EXAMPLE 9.2.6. Let

aib = --

Let also 0 = s1 € S3, 7 = ¢ € S3. We want to compute the product (aA?b)(cu”d). First
notice that b* = ¢ (otherwise the product would be trivially zero). By (9.2.1)) we have

(9.2.11) Paxe = T1 - T1T4
(9212) Peprd = 1. 1

(for the computation of the polynomials & and &/ we refer to Example|[7.5.2)). The product
is ParePepr = x3z4. The b-sequence of a is (4,3,2,1,1), hence z3x4 is not an element of the
monomial basis (8.2.13) of R,. We need to do some computations in the ring R,: using the

relations x1 + a9 + x3 + x4 = 0 and :z:‘ll = 0 we have
(9.2.13) w3ry = —a] — adry — adey = —adry — 2dus.

This is now a linear combination of monomials of the basis (8.2.13). The monomial —z3x,,
although not zero in R,, is of type (8.3.12), hence defines an illicit morphism and is zero in
the quotient. We are left only with the monomial m = x3x3. This is an element of
and, according to Theorem [8.3.5] does not define an illicit morphism. We need to translate
it into a diagram via Proposition The AV-sequence corresponding to a is VAAAV; in
particular, the indices of the V’s are 1,5. Now, x5 does not divide m, and the biggest index 4
such that z1zq -+ x; | mis 1. Hence the monomial m corresponds to a diagram an™d where n
has \’s in positions 2, 5. Moreover, the permutation 7 is determined by &/ (1, ¥3, 74) = z3x3.
By Example 7 is the longest element of S3. Hence (aA?b)(cu™d) = —(an™d), where

By construction, pyxe = 1 for any A € I'. Under the isomorphism of Proposition [9.2.1] the
element ey is sent to idc € Endg(Cs, ), where z € D corresponds to A; hence the elements
ey satisfy

wy z

ap’h if a = X,

0 otherwise,

ap’b if b= ),

9.2.14 °p) =
( ) exlan’t) { 0 otherwise

|

for any basis element au”b € A. That is, the vectors {e) | A € '} are pairwise orthogonal
idempotents whose sum is the identity 1 € A. The decomposition ((9.2.10f) can be written as

(9.2.15) A= @ exAe,,.

A,pel

A basis of the summand ey Ae,, is

(9.2.16) {An°@| for all n € T,o € Sy such that A D n C p}.
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Duality

Recall from that for every z,2’ € D we have an isomorphism

=: HomR(kam kaz’) — HomR(kaz’a kaz)7

(9.2.17) -

(1=p)— 1=z " p),

where b and b’ are the b-sequences of z and 2/, respectively, b — b" = (by — b}, ..., b, — b))

and the notation is as in (7.4.12)).

Lemma 9.2.7. Let A\,u € T and let z,z" be the corresponding elements of D, .. We have
E(W; o) =W,/ .. Therefore the isomorphism Z descends to an isomorphism Z: Z, .o — 2,
such that

(W(pn?A)) = W (An"R)

(1]

(9.2.18)

for all enhanced weights n° such that Hn"x is oriented.

Proof. Let b, b’ be the b-sequences of A and p, respectively. Note that

b—1
T b—b’ -1 —1
(9219) F =X = H (l‘vj "'l‘\/;ffl) H (xvy "'Z‘vj/v\il)
va<VvE vi<vy
as an element in C[zF', ..., zF!]. If (1 ~ m) is a monomial morphism of the basis (8.2.13)

of Homp(Cy, 27, Cuyz), it follows immediately that (1 — m) € W,/ , if and only if (1 —
2 ~bm) € W, ./, hence E(W,, ) = W, ...

Moreover, it follows from the definition (9.2.1) of the polynomials py,s and pg,- that
Pune = 2% ¥ prye, hence E(¥(un X)) = ¥ (An7R). O

Recall that for a fork diagram a we denote by a* its mirror image. We define then a linear
map x: A — A by

(9.2.20) (a\b)* = (b* Aa™).

As a direct corollary of Lemma [9.2.7 we have:

Corollary 9.2.8. The map x: A — A is an anti-isomorphism, hence gives an isomorphism
A = A°PP,

As follows from the definition, the algebra A only depends on the number of A’s and V’s in
the block T

Definition 9.2.9. We define A, = Ar for some block I with k A’s and n —k V’s.

9.3 Cellular and properly stratified structure

This section is devoted to prove that the algebras A, ; are graded cellular and properly
stratified, by constructing explicitly standard and proper standard modules. As before, we
fix n and k and we let A = A, . The following is inspired by [BS1I].
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Graded cellular structure

The key-step for proving that A is graded cellular is the following result:

Proposition 9.3.1. Let (aAb) and (cud) be basis vectors of A. The product (a\?b)(cu”d)
is equal to:

0 if b#c*,
T if b=c* =\, 0=c and
(ap”d) (apd) is oriented,
(9.3.1) . -
- ™ (o if b= c*, (aud) is oriented,
Z Hareey (17) - (™ d) + () and either b # X or o # e,
£(r)>L(T)
) otherwise,
where:

(i) the scalars t(T(;/\UC)(uT) are independent of d;

(i) () denotes a linear combination of basis vectors of A of the form (avXd) with v > p.

Proof. If b # ¢* the claim is obvious, so let us suppose b = ¢*. Suppose moreover that there
is some weight v such that avd is oriented (or equivalently that Z, , is not trivial) otherwise
the claim is also obvious.

Of course we have

(9.3.2) (aX7b)(cu"d) = Z C(vX) (avXd).

vel,xeSk

for some coefficients C(vX) € C. Let us first prove that only terms with vX = u” occur in
the sum, i.e. if C(vX) # 0 then vX = pu”.

Before continuing, let us stress the subtlety in the argument. We want to understand which
element of A corresponds to the morphism 1+ pgaepcu-: in general this morphism is not a
monomial morphism of the basis (8.2.13)), and we have to use the relations defining R, to
rewrite it as a linear combination of the monomial morphisms .

Let us fix some vX such that C'(vX) # 0. First, let us prove that v = p. By definition, v > u

is equivalent to V¥ > V! for all j = 1,...,n — k. Fix an index j. If vV > V¥, then also

VY > VY by Lemma Hence suppose V4 < V4. By construction, the monomial
(933) (‘T\/?l’\/;_l_i_l cee I\/j’.\—l)(x\/;x\/;-i-l cee I\/;.‘fl)

divides paropeu~. In particular, since \/j‘ > \/2 = V5§, also Tyalyayy - Tyk_y divides
DarePep~. Hence, if poropeyr is a monomial of the basis (8.2.13), we can conclude that
VY > VY. Otherwise, we get the same conclusion using the technical Lemma below.

Now, to check that vX > u™ we have to show that in the case v = p we have £(x) > ¢(7). So
let us suppose v = u. Since the multiplication is graded, we must have

(9.3.4) deg(aX?b) + deg(cu”d) = deg(apXd).

If a = n we write ¢(a) for £(n), and similarly for b, ¢,d. Then, using Lemma we get
from (9.3.4)

(9.3.5) 20(x) = 20(7) + 20(c) + 20(b) — 2¢(N).
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Since A7) is oriented, by Lemma [9.1.6] the diagram b corresponds to some weight that is
smaller or equal than A in the Bruhat order. This implies that £(A) < £(b) (notice that under
the identification of I' with D,, j, the Bruhat order on weights corresponds to the opposite of
the usual Bruhat order on permutations). It follows that ¢(x) > ¢(7). Hence we have shown
that

(9.3.6) (@b (ep™d) = Y Cu ) (ap™d)+ Y. CWY) (avXd).

L(T)>L4(T) v, X ESk

Now suppose that C(u¢) # 0 for some & € Sy, with £(¢) = £(7). If we substitute in
x = &, we get 20(o) + 24(b) — 2¢(X\) = 0. Since £(b) > ¢()\), we must have (o) = 0 and
£(b) = £(X\). This implies 0 = e and b = \. It is easy to see that in this case the morphism
1 = parepeu~ is an element of the monomial basis 18.2.13 , and hence we have exactly
(aA?b)(cpu™d) = (ap™d). This shows the second case of E:ﬁband also that if either b # X or

o #* e then we can rewrite (9.3.6]) as

(9.3.7) (@A7b)(ep™d) = > Cu ) (ap™d)+ Y CWY)(arXd).
)

L)y >Le(T v, X €Sk

Since C(u™) is automatically zero unless apud is oriented, this concludes the proof of (9.3.1)
and

We are left to show In order to determine the coefficients of (9.3.2)), consider the
expression of the polynomial p,xepe,r in the basis (8.2.12) of R,:

(9.3.8) Pare Pepr = Z oyt
jeJ

Define .J”” C .J to be the subset of tuples j such that the morphism (1 — 29) € Homg(Cq4, C,)
dies in the quotient Z4 4, since it is divided by some morphism of the type of Theorem
Let also J' = J\ J”. Fix some j € J'; by Proposition the basis morphism
(1 x9) € Z4, corresponds to a diagram avXd: then we have C(vX) = a;. Notice that the
unique dependence on d is in determining the subset J” C J.

Now suppose apud is oriented, fix some 7/ € Sy, and let (1 +— z9) € Z,;, be the morphism of
the basis corresponding to the diagram a;ﬂld. By the definition of orientation, for
all i we have V{§ < VI < Vi, and v§ < Vi < Vv§,. Since @7 € Clz s, ..., z,0], neither
TydTydyy e Tyd, | MO Tydlydyy - Tye,, canl divide 7. Hence for all d such that aud is
oriented we have (1 — x7) ¢ W, and with the notation of the preceding paragraph j € J'.
Hence C(uT') is independent of d, proving O

Lemma 9.3.2. Fiz some b € B and let m be an index such that by, _1 = b,,. Suppose that
T Tl - - Tme divides some polynomial p € R. Write p =), v;&* in Ry, where x* are
monomials of the basis (8.2.13)). Then Ty Tmi1 -+ Tmtr divides all monomials x* for which
Y # 0.

Proof. We will use the relations defining the ideal I to write the expression of p as a linear
combination of basis monomials. Of course, it is sufficient to examine the case in which
p = & is a monomial.

Consider the maximum r for which j,. > b,: if there is no such r, then p is a monomial
of the basis (8.2.13)) and we are done. If » < m or r > m + £ then using the relation
hy.(x1,...,2,) = 0 we can rewrite p as a linear combination of monomials 7 with j,. < j,
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and Ty T4l * - Tmae | xd’: so by an induction argument we may suppose m < r < m + /.
If ¢ > 1 we can write

je—1
(9.3.9) Tr1 2l = p_1hj (T1,..., %) — Z To1xihy —s(x1, ... Tro1).
s=0

Since hj, (x1,...,z,) € Iy because j,. > b,, and also z,_1h; (z1,...,2,-1) € Ip by (7.3.3)),
the expression (9.3.9)) gives in Ry

a1
(9.3.10) Y A— Z xr_1xphy, —s(x1, ..., xr—1) mod Ip.
s=1
In the special case ¢{ = 0, r = m, we write instead
Jm—1
(9.3.11) = hj (T1,...,Tm) — Z ol —s(T1, o Tm—1),
s=0
that in Ry is
Jm—1
(9.3.12) rim = — Z xphj, —s(x1,...,xm_1) mod Ip,
s=1

since jm > bym—1, bm. Both in (9.3.10)) and (9.3.12)), on the r.h.s. we have a sum of monomials
x? with 1 < j/ < j,: by an induction argument on j,, the claim follows. O

The main result of this subsection is the graded cellular algebra structure of A in the sense
of [GL96], [HMI0]. A graded cellular algebra is an associative unital algebra H together with
a graded cell datum (X, 1,C,deg) such that:

(GC1) X is a finite partially ordered set;
(GC2) I(\) is a finite set for each A € X;

(GC3) C: |Uyex I(N) X I(X) = H, (i, j) = C}\; is an injective map whose image is a basis
of H;

(GC4) the map H — H, Ci):j — C;‘l is an algebra anti-automorphism;
(GC5) if A € X and ¢,5 € I(\) then for any « € H we have that
(9.3.13) xC), = Z ro(i',1)C3;  (mod Hs)),
ireI(N)

where the scalar r,(i’,) is independent of j and Hs ) is the subspace of H spanned
by {C} [ w>Aand k,l € I(n)};

(GC6) deg: | yex I(A) = Z,i— deg? is a function such that the Z-grading on H defined
by declaring deg C’i):j = degg\ + deg; makes H into a graded algebra.

We have:

Proposition 9.3.3. The algebra A = Aj,, is a graded cellular algebra with graded cell
datum ((T x Sy, <), I,C,deg) where:

(a) IN)={a el |aCA};
(b) C is defined by setting Céig = (a)\?B);
(¢) deg)” = deg(a)’) — £(o).

Proof. Conditions (GAI}3) and (GJE) are direct consequences of the definitions. Condition
(G(fd) follows from Lemma Condition (GC) follows from Proposition O
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Properly stratified structure

As before, let us fix a block I and let A = Ar. We construct now explicitly a properly
stratified structure on A (Theorem [9.3.7). The construction is similar to the one of [BSTI].

An A-module will always be a finite-dimensional graded left A—module. Let A—gmod be
the category of such modules. If M = € M; is a graded A-module then we will write M (j)
for the same module structure but with new grading defined by (M {j)); = M;_;. If M, N
are graded A-modules then Hom 4 (M, N) is a graded vector space.

Irreducible and projective A-modules

As we already noticed, the algebra A is unital with 1 =3, ex. Let Ao be the sum of all
components of A of strictly positive degree. Then

(9.3.14) AfAso =P exCer=PC
A

el

is a split semisimple algebra, with a basis given by the images of the idempotents e,. The
image of ey spans a one-dimensional A/A-j—modules, and hence also a one dimensional
A-module which we denote L(X). Thus L()\) is a copy of the field concentrated in degree 0,

and (au’b) € A acts on it as 1 if (au®b) = (AA°A) and as 0 otherwise. The modules
(9.3.15) {LN){G) | eT,jeZ}

give a complete set of isomorphism classes of irreducible graded A-modules.

For any finite-dimensional graded A-module M, let M* denote its graded dual. That is,
(M*); = Homgc(M_;,C) and « € A acts on f € M* by xzf(m) = f(z*m). As el = ey we
have that

(9.3.16) LA = L)

for each A € I
For each A € T let also P(\) = Aey. This is a graded A-module with basis

(9.3.17) {(zu’N) | for all v, u € T and o € Sg with v C u D A}

The module P()\) is a projective module; in fact, it is the projective cover of L(A) in A—gmod.
The modules

(9.3.18) {POVG) | AeT,j ez}

give a complete set of isomorphism classes of indecomposable projective A—modules.

Cell modules and standard modules

We introduce now standard modules. The terminology will be motivated at the end of the
section. For p € T', define A() to be the vector space with basis

(9.3.19) {QQu7| | for all A € T', 7 € Sy, such that A C u}
or, equivalently,

(9.3.20) {(cp™| | for all oriented lower fork diagrams cu™}.
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We put a grading on A(u) by defining the degree of (¢u™| to be deg(cu™), and we make it
into an A—module through

(9.3.21) (@Xb) (™| = > rresy, Harepy (W) (ap™ | if b= c* and (ap) is oriented,
' 0 otherwise,
where t(T(; A7b) (u") is the scalar defined by Proposition This is well-defined by the axiom

(G. Note that t(T(;/\(,b) (1™) was defined only for 7/ = 7 or for ¢(7') > ¢(7); otherwise we
set t(Ta)\ab)(,uT) =0.
Proposition 9.3.4. For A\ € T’ enumerate the distinct elements of the set {u € T | p D A}

as p1, 12, - - fhm = A S0 that if p; < p; then i > j. Set M(0) = {0} and fori=1,...,m
define M (i) to be the subspace of P(\) generated by M (i — 1) and the vectors

(9.3.22) {(cuI ) | for all oriented lower fork diagrams cul }.
Then
(9.3.23) {0} =MO0)c M(1)C---C M(m)=P())

is a filtration of P(\) as an A—module such that

(9.3.24) M (i) /M (i — 1) = A(p;){deg 11:A)

foreachi=1,...,m.

Proof. Tt follows from Proposition that M (%) is indeed a submodule of P(\). The map

fir A(pi)(deg puiA) — M (i) /M (i — 1)

(9.3.25) 7 _
(cpf | — (cpf ) + M (i - 1)

gives an isomorphism of graded vector spaces. This map is of degree zero because

(9.3.26) deg(cul A) = deg(cpl ) + deg(u;\).

Through the vector space isomorphism ((9.3.25)) we can transport the A—module structure of
M(3)/M (i — 1) to A(p;). Using Proposition we see that the module structure we get

on A(y;) is given by (9.3.21)). Hence (9.3.21) defines indeed an A-module structure on A(y;)
and is an isomorphism of A—modules. Since any weight p arises as p; for some A
as in the statement of the theorem (take for example A = u, i = m), we conclude also that
defines an A—module structure for every pu. O

Let us now define cell modules and proper standard modules. Let p™ € T' X S be an enhanced
weight and define V(u™) to be the vector space on basis

(9.3.27) {(Qu"] | for all A € T’ such that A C p}
or, equivalently,

(9.3.28) {(cp™| | for all oriented lower fork diagrams cu’}.

We remark that the difference with (9.3.19) and (9.3.20) is that now the permutation 7 is
fixed. As before, we put a grading on V(u™) by defining the degree of (cu™ | to be deg(cu™),
and we make it into an A-module through

(9.3.20) (A7) (cu | = tarepy(17) - (au™] if b= c* and (ap) is oriented,
0

otherwise.
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From Proposition we have that t(Ta/\ab)(,uT) does not depend on 7. Hence (9.3.29) is the
same as

(9.3.30) (aA7B)(en” | = (ap™] ifb= c.* =\, 0 = e and (ap) is oriented,
0 otherwise.

It will follow from Proposition that this indeed defines an A-module structure. It is
clear from that all cell modules V(™) for a fixed p are isomorphic (up to a degree
shift). Explicitly we have V(™) = V(1) (deg(7)). We recall that deg(r) = 24(7). Therefore
for a weight ;1 € T' we define the proper standard module A(p) to be the vector space with
basis

(9.3.31) {(Ap] | for all X € T" such that A C u}
or, equivalently,
(9.3.32) {(cpe] | for all unenhanced oriented lower fork diagrams cu}.

We put a grading on A(u) by defining the degree of (cu| to be deg(cut), and we make it into
an A-module through

.f = c* = by = is 1
9.3.33) (aA7B)(cp) = {(au] ifb=c"= X, o =e and (au) is oriented,

0 otherwise.
Of course we have an isomorphism A(u) 22V (u°).
Proposition 9.3.5. Let p € I'. Enumerate the elements of S as o1,09,...,0 = € in

such a way that if £(o;) > £(0;) then i < j. Let N(0) = {0} and for i =1,... k! define
N (i) to be the subspace of A(u) generated by N(i — 1) and the vectors

(9.3.34) {(cp®| | for all oriented lower fork diagrams cu’}.
Then
(9.3.35) {0} =N(0)C N(1) C---CN(k!)=A(p)

is a filtration of A(p) as an A-module such that
(9.3.36) N@)/N(@i — 1) = A(p)(20(0;)).
Proof. Tt follows from Proposition that N(z) is indeed a submodule of A(u). The map

fir A(u)(26(03)) — N(i)/N(i - 1)

(9.3.37) (cp| — (ep® |+ N(i — 1)

gives an isomorphism of graded vector spaces. The degree shift comes from
(9.3.38) deg(cu?) = deg(cp) + 2¢(o;).

Through f; we can transport the A-module structure of N(i)/N (i —1) to A(p). The module
structure on N (i)/N (i — 1) is described by (9.3.21)). It follows that A(u)(2¢(0;)) is endowed
with the module structure of V' (117¢) described by ; this shows in particular that
defines indeed an A—module. We have already argued that this is the same as the
module structure described by on A(p). O
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Proposition 9.3.6. For p €T, let Q(j) be the submodule of A(u) spanned by all homoge-
neous vectors of degree > j. Then

(9.3.39) A =Q(0)2Q(1)2Q[2) 2

is a (finite) filtration of A(u) as an A-module such that

(9.3.40) Q/RG+1 = B L)
ACp with
deg(Au)=j

for all 7 > 0.

Proof. Since A is positively graded, it is clear that each Q(j) is a submodule. The quotient
Q(7)/Q(j + 1) has basis

(9.3.41) {Qu] + Q@ + 1) | for all A € T such that A C p and deg(Ap) = j}.

We need to show that for each A\ which occurs the one-dimensional subspace Q'(\) of
Q(7)/Q(j + 1) spanned by (Aun] +Q(j + 1) is an A—module isomorphic to L(X){j). It is clear
where the degree shift comes from. If x € A has deg(z) > 0 then obviously = vanishes on
Q(7)/Q(j +1). So let us consider ¢, € A. It follows from that

Au] fv=2A,
0 otherwise.

(9.3.42) ey (Aul = {
Hence Q'()) is isomorphic to L(\)(j). O

The Grothendieck group

The Grothendieck group K(A—gmod) of A—gmod is a free Z-module with basis given by
equivalence classes of simple modules. The group K (A—gmod) becomes a Z[q, ¢~ !]-module
if we set g[M] = [M(1)] for all graded A—modules M. It is also free as a Z[q, ¢~ *]-module,
with basis {[L(A)] | A € T'}.

For A\, € T, define

(9.3.43)

- qdesn) if X p,
o 0 otherwise.

By Propositions [9.3.4], [0.3.6] and [9.3.5] respectively we have that

(9.3.44) [PON)] = daulAw),
(9.3.45) [A(u)] =Y daulLOV)],
(9.3.46) [A()] = [K]o! - [A(w)],

Since dy » = 1, the matrix (d,,) is upper triangular with determinant 1, hence it is invertible
over Zlg,q~1]. In particular, the proper standard modules give also a Z[q, ¢~ !]-basis of
Ko(A—gmod). On the other side, notice that the matrix [k]o!Id is not invertible over
Z[q,q™ '] unless k = 0, 1. In particular, standard and projective modules do not give a basis
of the Grothendieck group in general (cf. also .

Our algebra is graded properly stratified in the sense of Definition [5.3.10
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Theorem 9.3.7. For every block I' the algebra Ar is a graded properly stratified algebra.
The partially ordered set indexing the simple modules is (T, <). The modules A(p) and A(p)
are the standard and proper standard modules respectively. Moreover, the diagonal matrix
of the multiplicity numbers of the proper standard modules in the filtrations of the standard

modules is a multiple of the identity, given by (9.3.46)).

Proof. We already noticed that A = Ar is a finite-dimensional associative unital graded
algebra over C with a duality with respect to which the simple modules are self-dual. For
A €T let L(A) = L()\) and define P(\), (A) and ()) as in Definition
By the uniqueness of the projective cover we have P(A) = P()). From ((9.3.46)) and (9.3.45)
we have that A(\) is a quotient of P()A) such that [A(X) : L(u)] = 0 for every p > A; from
Proposition it follows that it is maximal with this property, hence A(A) = (\). By

the same argument using (9.3.45)) and Proposition we get that A(\) = ()\). Hence
we need to show that properties (PS1H3|) are satisfied. But this follows immediately from

Propositions [9.5.4] [9.3.5] and [9.3.6] O

9.4 A bilinear form and self-dual projective modules

We define now a bilinear form on A and we determine which projective modules are self-dual.
As above, we fix a block I with & A’s and n — k V’s.

Defect

Let A be a weight in some block I'. We say that an A of X is initial if it has no V’s on its left.
Let us define the defect of \ to be

(9.4.1) def(A) = #{non initial A’s of A\}.

We have the following elementary result:

Lemma 9.4.1. Let A € I'. The mazimal degree of exAey is k(k — 1) + 2def(X) and the
homogeneous subspace of mazrimal degree of exAey is one dimensional.

Proof. 1t is straightforward to notice that the homogeneous subspace of maximal degree of
exAey is one dimensional: the diagram of maximal degree is An°\, where 7 orients every
fork of A with maximal degree (that is, each V is at the rightmost position) and o is the
longest element of Si. By definition, the degree of this diagram is obtained by adding 2¢(c)
to the sum of 2(m — 1) for every m—fork of A\. Hence, this degree is 2¢(c) plus twice the
number of non-initial A’s of A. O

Lemma 9.4.2. Consider A\, € I' and suppose that eyAe,, is not trivial. Then the homoge-
neous subspaces of minimal and mazimal degree of exAe,, are one dimensional. The minimal
degree is

n—k

(9.4.2) v = v

i=1
and the maximal degree is

n—=k
(9.4.3) Kk —1)+ > [V — 1=V} + vl — 1= v
=1
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where V™ = min{V}, v/} and V)_, . =n+ 1.

If def()\) > def(u) then the sum of (9.4.2) and (9.4.3) is equal to the mazimal degree of
GAAEA.

Proof. We use the condition to determine if a diagram is oriented. The minimal
degree diagram is An°u where V] = max{V}, V#}. The maximal degree diagram is A"
where wy, € Sy, is the longest element and V) = min{\/f‘ﬂ, \/é‘_H} — 1. Computing their
degrees we obtain exactly (9.4.2]) and (9.4.3]).

Let us now check the last assertion. The sum of (9.4.2) and (9.4.3) is

n—k
(9.4.4) (k= 1)+ > 2 (Vi — 1 — vimin)

i=1

This is the maximal degree of e, Ae, where n € I is the weight with V] = V" Of course
def(n) = max{def(\),def(x)}, and by Lemma the maximal degrees of ey Aey and e, Ae,,
are the same. O

Notice that a weight A is of maximal defect if and only if it starts with a V. If A is not of
maximal defect, let A be obtained from A by swapping the first V and the first A. Otherwise,
let A = A. In particular, A is always of maximal defect.

Lemma 9.4.3. For every A € T the socle of P()\) contains a copy of L(S\), possibly shifted
in the degree.

In fact, the socle of P(\) is simple, hence it is isomorphic to a degree shift of L(S\), but we
will not need this in what follows.

Proof. 1t is straightforward to check that the diagram of maximal degree in Ae, is of type
An?A. The claim follows. O

A bilinear form

Let 'V C T be the subset consisting of weights of maximal defect. For every A € I'V,
let us choose a non-zero element {7 € ey Aey of maximal degree (for example, we can
choose it to be the diagram An°\ of the previous proof). For every element z € A write
exzey = tEN* + terms of lower degree, and set ©(z) = t. Moreover, define

(9.4.5) 0(z) = Y ().

A€V

Finally, define a bilinear form §: A x A — C by setting 6(y, z) = ©(yz). Obviously, this form
is associative in the sense that 6(y, zw) = 6(yz, w) for all y, z,w € A.

Lemma 9.4.4. For every A, the form 0 restricted to eyAey is associative, symmetric and
non-degenerate.

Proof. Let A\ correspond to z € D. Up to a degree shift, exAey = Z. .. Since Z, . is
commutative, the form @ is symmetric on ey Aey. Consider the monomial basis {1 — z*}
that consists of the elements of that are not divisible by . It is clear that for
every element ¢ in that basis there exists exactly one element ¢’ in the same basis with
0(p,¢T) # 0. This proves that the form is non-degenerate. O
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Let ¥ =3\ crv ex-
Lemma 9.4.5. The form 0 restricted to eV A x Ae" is non-degenerate.

Proof. We may take t € e, Aey for some A of maximal defect and suppose 6(y,t) = 0 for
all y € exAe,. Let yo be a generator of the minimal-degree subspace of eyAe, (which by
Lemma [9.4.2] is one-dimensional). In particular, 6(y’, yot) = 0(y'yo,t) = 0 for all y’ € ey Aej.
By Lemma [0.4.4] this implies that yot = 0. From the following Lemma [9.4.6] it follows then
that t = 0.

The vice versa follows because (y,t) = 0(t*, y*). O

Lemma 9.4.6. Suppose \ is of mazimal defect and let 0 #t € e, Aey. Let also 0 # yo €
exAe, be of minimal degree. Then yot # 0.

Proof. First, let 0 # to € e, Aey be of minimal degree, and let us prove that yotg # 0. By
definition, yoto: 1 — ", where h; = |bf‘ — bﬂ € {0,1}. First let us suppose that 1+ x® is
an element of the basis , that is h; < bf‘ for every i. It is quite easy to argue that
for every i there exist an index j with vV} < j < V2, and b} = b/'; in fact it is sufficient to
choose j = V' if V& > vV} or j = V) otherwise. This means that 1 — x® is not illicit (cf.
Theorem [8.3.5)), hence it is not zero.

We should now consider the case in which 1 — " is not an element of the basis .
This happens if h; = 1 for some i with b} = 1 and b} = 2. Let j be such that \/JA- is the
rightmost V in a position \/;‘ <. It is easy to argue that for e, Aey to be non-trivial we must
actually have V3 < i. Let also i’ = VI = max{V},V/} <i. Then we have b}, = bl; > 2.
Using the relation hq(z1,...,z;) = 0 to write 2" in our fixed monomial basis we get in
particular a term divided by z;;. Applying the techniques of the previous paragraph to
this term we get that ygty # 0: the only thing to notice is that T AL\ 41 Tyd, g Dever

divides a monomial basis element, since b’% =1L

J+1

Now, it follows from the proof of Lemma [0.4.4] that there is some element u € R such
that yotou generates the maximal degree subspace of ey Aey. In particular yotou # 0. By
Lemma tou is of maximal degree in e, Aey. It is then clear by our characterization of
e, Aey that there exists an element v’ € R such that u't = tou. Now yotu’ = you't = yotou # 0
implies that yot # 0. O

Self-dual projective modules

Finally, we can determine which indecomposable projective modules are self-dual.

Lemma 9.4.7. Let X\ be of mazimal defect. Then P(X) is self-dual up to a degree shift. In
particular, it is an injective module.

Proof. By Lemma [9.4.5] the map
(9.4.6) y— 0(y",-)

defines an isomorphism between P()\) and its dual up to a degree shift. O

Theorem 9.4.8. Let A € T'. Then P()) is an injective module if and only if X is of mazimal
defect.
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Proof. By Lemma if X\ is of maximal defect then P(\) is injective. On the other side,
suppose P () is injective. Then P()) is a tilting module, and by standard theory it is self
dual (as an ungraded module). In particular, the socle of P(\) is L(A). By Lemma A
has to be of maximal defect. O

ExAMPLE 9.4.9. Consider the block I' = I'; 5. The weights of I" are AAV, AVA and VAA, and
have defect 2, 1 and 0 respectively. In particular, the only indecomposable projective-injective
module in A3 3—mod is P(VAA). Indeed, one can explicitly compute that the socle of both
P(AAV), P(AVA) and P(VAA) is isomorphic to L(VVA) (up to a degree shift), and that only
P(VAAN) is self-dual. ®

REMARK 9.4.10. Let w® be the longest element of D. The weights A of maximal defect are
exactly the ones that correspond to permutations wyz, z € D which are in the same right
Kazhdan-Lusztig cell of w,w®. This can be easily checked using the equivalence between
Kazhdan-Lusztig cells and Knuth equivalence (see [KL79, §5]), and either applying directly
the definition of Knuth equivalence or using its description through the Robinson-Schensted
correspondence (cf. [Knu73| §5.1.4] and also [Du05]). This gives another proof of a particular
case of [MS08bl Theorem 5.1] (for the relation with the category O see below).

9.5 Diagrammatic functors E; and F;

The goal of this section is to construct functors

Fr®e
Y
(9.5.1) A, r—gmod Ay p+1—gmod,
\/

E,®e

which will turn out to be the diagrammatic version of the functors ¥ and & defined in
(see below).

Let us fix an integer n. For all k = 0,...,n let us set in this section Ay = A, ;. Let T')
be the subset of weights of I'y, of maximal defect, and let I'jy = T'y, — T')/. Notice that given
A € T, we have A € I') if and only if the leftmost symbol of X is a V, and conversely A € T'y
if and only if the leftmost symbol of A is an A. Let also

(9.5.2) ey = Z ex and ep = Z €ex-

Aery Aelp
Consider now P,/ = Aye)/, that is the sum of all indecomposable projective-injective Aj—
modules (cf. Theorem [9.4.8). Our next goal is to describe a right Aj,;—action on it.

For any A € T'Y let A\(N) € T} 1 be the weight obtained from A by substituting the leftmost

symbol, which by assumption is a V, with an A. Conversely, given u € I'}) 4 let pv) € ry
be the weight obtained from p after substituting the leftmost symbol, which by assumption
is an A, with a V. Clearly the map A — A\(") defines a bijection T} — '}y, with inverse

= ).

Lemma 9.5.1. Let \,pu € AQ_H. Then we have an isomorphism of R-modules
(9.5.3) Homp(Cx, C,) = Hompg(Cyv), Con)

that induces a surjective algebra homomorphism

(9.5.4) e'uAk+16)\ — e#(wAke)\(v).
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Proof. Since the b-sequences of A and A\(Y) are the same, the first claim follows. By
Theorem the bimodule W)\(\/)7M(v) is generated by W, , together with the morphism
1 x1---x; where j = min{V3, V4'}. Hence e, Arene is a quotient of e, Apyien. O

Corollary 9.5.2. There exists a surjective algebra homomorphism
(9.5.5) U: e Appiene — e Arey.

Proposition 9.5.3. The homomorphism V¥ induces a well-defined surjective algebra homo-
morphism

(9 5 6) Ak+1/Ak+1€X+1Ak+1 — €>€/Ak6>€/
o [7] — (epy 1€k 41)

for x € Agyq.

Proof. We need to show that does not depend on the particular representative x
chosen, or equivalently that W(ep  zep, ) = 0 for all z € Api1e) | Apy1. By linearity, it
suffices to consider the case z € Ay 1€, Ag11 for some v € F}C/_H. Pick such an z and fix
A1 €Ty . Choose some morphism f € Hompg(Cy, C,) which corresponds to e,zey in the
quotient Homp(Cy, C,)/Wy 4. Since x € Ajy1e,Agq1, we can write f as the composition
fa o f1 with f; € Homg(Cy,C,) and f» € Hom,(C,,C,). By Corollary f1 is divisible
by x - - Ty, hence f is as well. By Theorem (cf. also the proof of Lemma above)
we have f € Wy ), and hence W(e,rey) = 0. Since A and y were chosen arbitrarily in
Iy, it follows that W(ep, zep, ) = 0.

The surjectivity of (9.5.6)) is a direct consequence of the surjectivity of (9.5.5). O

The functor F;

Let us now define Fy, to be the (A, Ag41)-bimodule P/, where the right Aj4q—structure
is induced by the quotient map Agy; — AkH/AkHeZ_HAkH composed with (9.5.6). The
bimodule F}, defines a right-exact functor

Fr®ay,
.. k41— gmMo k—gmod.
(9.5.7) Apgp1—gmod — 5 A —gmod

Notice that for each indecomposable projective module P(u) = Ajp41€, we have

(9.5.8) Fr®a,,, (Apsien) =

Apex if AN =y for some \ € T,
0 otherwise.

The functor E;

The usual hom-tensor adjunction gives a natural isomorphism
(9.5.9) Homy, (Fy ®a,., M,N) = Homy, (M, Homy, (Fy, N))

for all M € Apy1—gmod, N € Ap—gmod. Notice that we have a natural isomorphism
Homa, (F, N) 2 Homy, (Fi, Ax)®a4, N, where Homa, (Fi, Ay) is regarded as a (Ag41, Ax)—
bimodule. Let us therefore define E;, to be the (Ag41, Ag)-bimodule Homy4, (Fi, Ag). The
functor

E
(9.5.10) Ar—gmod Do, Agy1—gmod.

is right adjoint to (9.5.7). Since F, is a projective Ap—module, the functor (9.5.10)) is exact.
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REMARK 9.5.4. Since Fj, = Age) as a left Ay—module, we have Homy, (Fi, Ax) = e Ay, as
a right Ax—module. Notice that the anti-isomorphism x of A, see , restricts to an
isomorphism of vector spaces ¢: F, — Ej such that ¢(axzf) = *¢(z)a* for all z € Fy,
o€ Ak, 5 S A}C+1.

9.6 Diagram algebra and category O

The goal of this final section is to prove that the diagram algebra A, ; is isomorphic to
the endomorphism ring of a minimal projective generator of the category Qx(n) defined in
Chapter [f] We will need some of the notation introduced in Part [[I]

Soergel modules and category O

Fix a positive integer n. The following result of Soergel connects category O with Soergel
modules, and in particular §4.3 with §81]

Theorem 9.6.1 ([Soe90, Zerlegungssatz 1 and Theorem 4]). For each z € S,, the B-module
VP(z-0) is isomorphic to the Soergel module C.. defined in §8.1

We prove now two results which we used in Chapter [} We postponed the proofs until now
because we need the connection with category O.

Proposition 9.6.2. For all w € S,, we have

(9.6.1) dime C,py = Z P (1),

w!' <jw

where the Py . ’s are the Kazhdan-Lusztig polynomials (2.1.5)).

Proof. By Theorems and we have C,, 2 Homp (B, Cy) = Home (P(wp-0), P(w-0)),
where wy is the longest element of S,,. Hence

(9.6.2) dim¢ C, = dime Home (P(wp - 0), P(w - 0)) = [P(w - 0) : L(wyg - 0)],

where the latter denotes the multiplicity of the simple module L(wy - 0) in some composition
series of P(w-0). Since P(w-0) has a Verma filtration, and since [M (z-0) : L(wg-0)] = 1 for all
Verma modules M (z-0), we have further that [P(w-0) : L(wo-0)] = >_ g (P(w-0) : M(2-0)),
where (P(w - 0) : M(z-0)) denotes the multiplicity of M(z - 0) in some Verma filtration of
P(w - 0). The Kazhdan-Lusztig conjecture [KL79] (see [EW12] for a proof) states precisely
that (P(w-0): M(z-0)) =P,,,(1), and this concludes the proof (notice that P, ,(1) =0
unless z < w). O

REMARK 9.6.3. There is also the following graded version of (9.3.1]):

(9.6.3) grdime C, = ¢~ /(wr?) Z P 2 (q?)-

w' <z

Lemma 9.6.4. The module C; is cyclic if and only if P. . = @ d.e. if and only if H,
appears exactly once with coefficient ¢**) in the expression of the canonical basis element
H

2
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Proof. Let P, . be the Kazhdan-Lusztig polynomial which gives the coefficient of H, in the
expression of H, in the standard basis. Let (P(z-0) : M(0)) denote the multiplicity of
the dominant Verma module M (0) in some Verma flag of the indecomposable projective
module P(z - 0) in the category O(gl,). By the Kazhdan-Lusztig conjecture we have
Pe,2(1) = (P(z-0) : M(0)). By [Str03bl Lemma 7.3], (P(z-0) : M(0)) is the cardinality of a
minimal system of generators for C,. O

The algebra A, ; and the category Qx(n)

Fix two integers n > 0 and 0 < k < n. Let Wy, WkL be the parabolic subgroups of S,, defined
in Let q,p C gl,, be the standard parabolic subalgebras with W, = W), and W, = W;-
so that Sy x S,,_p = Wy x W, CS,,. As before, let w, be the longest element of Wj,.

As in let D be the set of shortest coset representatives for s, x s, ,\Sn, that is
D=WIinW? =Wr+a, We let 2§ = 2¥(0) be a minimal projective generator of Of) 1P,
Recall the Definition [8:3.1] of illicit morphisms.

Proposition 9.6.5. We have an isomorphism of graded algebras

(9.6.4) Endzq (£!) = Endg (@ kaz>/{illicit morphisms}.
z€D

Proof. By (5.3.5) we have Endz () = Endz(2,)/I,, where 2, = @U,quwq P(w-0)
and I, is the ideal of all morphisms which factor through some P(y - 0) for y ¢ W¥. Since
Endzo(Z,) = Gaw,zquWq Homzq (P(w - 0), P(z - 0)) and any morphisms with source or

target some P(y - 0) for y ¢ WP lies in the ideal I,, we have

(9.6.5) Endeg (29) 2 Endz g ( P Plwqw- 0)) /Tp.

weD

After applying the isomorphism (4.3.2)), the ideal Tp becomes exactly the ideal generated by
illicit morphisms. Hence the claim follows from Soergel’s Theorem O

It follows also that
(9.6.6) Homz o (Q(wy2), Q(wyz")) =& Homp(Cuy, 2, Cugzr ) /Wi o = 2, o

for all z,2 € D. We deduce then the following lemma, which completes the proof of
Lemma [9.2.2)

Lemma 9.6.6. Let T' be a block of weights with k N’s and n—k V’s. Let z,2' € Dy, i, and
let A\, €T be the corresponding weights. The dimension of Z . is k! times the number of
unenhanced weights 1 such that unX is oriented.

Proof. We computed the dimension of the homomorphism space in Lemma in
terms of evaluation of canonical basis diagrams labeled by standard basis diagrams. This
translates immediately in terms of oriented fork diagrams (notice that a canonical basis

diagram is the same as a lower fork diagram and a standard basis diagram is the same as an
unenhanced weight, cf. also Remark [9.1.5]). O

We can now state the main theorem of this whole part:



Chapter 9. The diagram algebra 133

Theorem 9.6.7. We have an isomorphism of graded algebras
(9.6.7) Ank = Endg, (n) (),

and in particular we have an equivalence of categories

(9.6.8) gmod—A4,, = Q(n).

Proof. We just need to identify the quotient of the endomorphism algebra appearing in the
r.h.s. of (9.6.4]) with A, . This follows from Corollary O

In the previous sections we focused on left A,, ;—modules, but the whole chapter could be
rewritten for right modules. Alternatively, one could use the anti-automorphism *, see
, to identify A with its opposite algebra A°PP and hence identify the categories of
right and left graded A,, ;—modules. Therefore we actually have an equivalence

(969) Amkfgmod = Qk(n)

Although the equivalence (9.6.8)) implies that working with right A,, ;—modules is conceptually
more correct, we personally prefer to work with left A,, ;—modules.

The functors ¥, and &,

We want now to relate the diagrammatic functors Fy and Ej defined in @ with their Lie
theoretical versions from §6.5

Proposition 9.6.8. Under the equivalence of categories the functor Fp ®a,,, ®
corresponds to the functor Fy.

Proof. Let p,q C gl,,, be the parabolic subalgebras corresponding to k and p’,q' C gl,, be

the parabolic subalgebras corresponding to k 4+ 1. Recall that the functor Fj is defined as
p',q/—pres p’,q—pres

the composition of the inclusion i: ZOO — ZOO and the Zuckermann’s functor
3 Z(f)g e, Z(‘)g’q_pms. Let H = Endzo(?}’g/). Let also fy; € H be the idempotent

projecting onto the direct sum of the projective modules Pp/(x -0) for x € wq/Wq/ AW* and
fpl € H be the idempotent projecting onto the direct sum of the indecomposable projective
modules P* (z - 0) € ZOS TP for x € wq/Wq/ N WP but « ¢ wyW9. Then we have (using
the transitive property of taking parabolic subcategories and presentable quotient categories
discussed in Chapter [5)

(9.6.10) Ay 2 H/HffH  and  App = foHfq.

Moreover, the inclusion functor i corresponds to H ® forHfyr ® while the Zuckermann’s functor
corresponds to (H/H fle ) ® g o. Hence the functor Fj, corresponds to

(9.6.11) M — (H/HfH) ®; 15, M,
that is the same as
(9.6.12) M — (H/Hfy H)fo @505, M,

where fq, is the image of fy in H/prLH Obviously (H/prLH)?q, = P as a left Aj,—
module. It is easy to notice that also the right Ax,1—module structure is the same, since in
both cases it is the natural structure induced by the bigger algebra Endz (&), where &2 is

a minimal projective generator of Z(‘_)O. O
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By the uniqueness of the adjoint functor we get:

Proposition 9.6.9. Under the equivalence of categories the functor Ep ® e corre-
sponds to the functor Ej.

Using our diagrammatic description of the functors &, and Fj together with their Lie
theoretical interpretation we can compute their endomorphism rings:

Theorem 9.6.10. We have End(&;) = End(F%) = Clay, ..., x,]/Ix where I} is the ideal
generated by the complete symmetric functions

hit1(Tiys .- ymi,,)  for all 1<m<n-—k,

(9.6.13)
Pn—mi1(@iyy oo yx,) forall n—k+1<m<n.

In particular, € and Fy are indecomposable functors.

Proof. Let us first compute End(F). By Proposition we have an isomorphism
End(Fx) = Endy,gace (Fi). Since the structure of right Apii-module is induced by
the surjective map (8.1.1)), this is the same as Enda, g(ey ayey)or (Fi), that is the center of
e)/ Are). This algebra is the endomorphism algebra of the indecomposable projective-injective
modules of OF TP where as before p, q C gl,, are the parabolic subalgebras corresponding to
k. Since the projective-injective modules of O} 9P" are the same as the projective-injective
modules of O}, it is also the endomorphism algebra of the indecomposable projective-injective
modules of Of. By a standard argument using the parabolic version of Soergel’s functor V
(see [Str03D, Section 10]) it follows that this endomorphism algebra is isomorphic to the center
of Of. Brundan [Bru08, Main Theorem| showed that this center is canonically isomorphic to
Clx1, ..., 2y /I, where I} is the ideal generated by

he(xiyy ... 2, ) for all 1<m<n—-k, r>k

(9.6.14)
he(ziy,... @) forall n—k+1<m<n, r>n—m.

Notice that this result builds on a conjecture of Khovanov [Kho04, Conjecture 3] (proved
in [Bru08, Main Theorem], [Str09, Theorem 1]), that the center of O} agrees with the
cohomology ring of a Springer fiber. Under this identification, the presentation
can be deduced from Tanisaki presentation [Tan82] of the cohomology of the Springer fiber.
Using one can easily prove that the polynomials (9.6.14)) generate the same ideal as

(©.6.13).

For &}, by Proposition we have End(€) = Endy, ,,gacr (Ex). By Remark it
follows that

(9615) End(c‘lk_) = EndAk+1®AZP (Ek) = EndAk®A;p+l (Fk) = End(?k)

The middle isomorphism can be explained as follows: E; and Fj have the same underlying
vector space V; since the action of Ax11 ® A} on Ey is just the action of Ay ® A% on
F), twisted (see Remark [9.5.4), a C-linear endomorphism of V' is (Ax+1 ® A;”)—equivariant
(i-e. it is an endomorphism of Ej as a (Aj41, Ax)-bimodule) exactly when it is (Ax @ A% )~
equivariant (i.e. it is an endomorphism of Fy as a (Ax, Ax+1)-bimodule).

The fact that the functors € and Fj are indecomposable follows since End(€y) = End(Fy)
is a graded local ring (cf. [Str05] and references therein). O
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APPENDIX

The Alexander polynomial

One of the main motivation for us for studying the problem of categorification of representa-
tions of Uy(gl(1|1)) was the aim of constructing a representation-theoretical categorification
of the Alexander polynomial. Relations between the representation theory of U,(gl(1]1)), or
more generally U,(gl(n|n)), and the Alexander polynomial have been noticed, studied and
generalized by lots of authors (see for example [Deg89], [Sal90], [KS91], [GLZ96], [DWIL05],
[GPMO07], [GPM10], [Vir06]). The purpose of this appendix is to provide, from a purely
representation theoretical point of view, a short but complete and self-contained explanation
of how the Alexander polynomial arises as quantum invariant corresponding to the vector
representation of U, (gl(1|1).

A.1 Introduction

The Alexander polynomial is a classical invariant of links in the three-dimensional space,
defined first in the 1920s by Alexander [Ale28]. Constructed originally in combinatorial
terms, it can be defined in modern language using the homology of a cyclic covering of the
link complement (see for example [Lic97]).

The Alexander polynomial can also be defined using the Burau representation of the braid
group (see for example [KT08, Chapter 3]). As well-known to experts, this representation
can be constructed using a solution of the Yang-Baxter equation, which comes from the
action of the R—-matrix of U, (gl(1]1)) [KS91] (or alternatively of U,(sly) for g a root of unity;
see [VirQ6] for the parallel between gl(1|1) and slz).

In other words, the key-point of the construction is the braided structure of the monoidal
category of finite dimensional representations of Ug(gl(1|1)), that is, there is an action of an R~
matrix satisfying the braid relation. This can obviously be used to construct representations
of the braid group. Considering tensor powers of the vector representation of U, (gl(1[1)),
one obtains in this way the Burau representation of the braid group. Given a representation
of the braid group, one can extend it to an invariant of links considered as closures of braids
by defining a Markov trace.

Here we exploit this construction a bit further, proving that the category of finite-dimensional
Uq(gl(1]1))-representations is not only braided, but actually ribbon. A ribbon category is
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exactly what one needs to use the Reshetikhin-Turaev construction [RT90] to get invariants
of oriented framed tangles. The advantage of the ribbon structure is that one can consider
arbitrary diagrams of links, and not just braid diagrams.

To construct a ribbon structure on the category of modules over some algebra, a possible
strategy is to prove that the algebra is actually a ribbon Hopf algebra. Unfortunately,
similarly to the case of a classical semisimple Lie algebra, the Hopf algebra U, (gl(1]1)) is not
ribbon. We consider hence another version of the quantum enveloping algebra, which we call
Ur(gl(1]1)), and which is a topological algebra over C[[#]]. The price of working with power
series pays off, since Ux(gl(1]1)) is in fact a ribbon Hopf algebra. By a standard argument,
we see that the R—matrix and the ribbon element of Uy (gl(1]1)) act on finite-dimensional
representations of U,(gl(1|1)) and deduce hence the ribbon structure of this category.

Given an oriented framed tangle T" and a labeling £ of the strands of T" by finite-dimensional
irreducible U, (gl(1|1))-representations, we get then an invariant Q*(T), which is some
Uy (gl(1|1))—equivariant map. In particular, restricting to oriented framed links (viewed as
special cases of tangles), we obtain a C(g)—valued invariant.

If we label all the strands by the vector representation of U,(gl(1]|1)), an easy calculation
shows that the corresponding invariant of oriented framed tangles is actually independent of
the framing and hence is an invariant of oriented tangles (as well-known, the same happens
for the ordinary sl,—invariant).

Unfortunately, when considering invariants of closed links, there is a little problem we have
to take care of. Namely, it follows from the fact that the category of finite-dimensional
Uy(gl(1]1))-modules is not semisimple (cf. that the invariant Q#(L) is zero for all closed
links L (see Proposition . The work-around to this problem is to choose a strand of
the link L, cut it and consider the invariant of the framed 1-tangle that is obtained in this
way (Theorem . The resulting invariant will be an element of the endomorphism ring
of an irreducible representation (the one that labels the strand being cut); since this ring
can be naturally identified with C(g), the invariant that we obtain in this way is actually
a rational function. The construction does not depend on the strand we cut, but rather
on the representation labeling the strand. In particular for a constant labeling £ of all the
components of L we get a true invariant of framed links.

Applying this construction to the constant labeling by the vector representation, one obtains
as before an invariant of links. In fact, it is easy to prove that this coincides with the
Alexander polynomial (see Theorem [A.3.10).

A.2 The h—version of the quantum enveloping superalge-
bra

Our goal is to construct a ribbon category of representations of U,, so that we can define
link invariants. The main ingredient is the R-matrix. Unfortunately, as usual, it is not
possible to construct a universal R-matrix for U,; instead, we need to consider the A-version
of the quantum enveloping superalgebra, which we will denote by Uy and which is a C[[A]]-
superalgebra completed with respect to the i—adic topology. We will prove that Uy, is a ribbon
algebra. Then, using a standard argument of Tanisaki [Tan92], we obtain a ribbon structure
on the category of finite-dimensional U,-representations. For details about topological C[[R]]-
algebras we refer to [Kas95, Chapter XVI|. We will denote by the symbol & the completed
tensor product of topological C[[A]]-algebras.

Throughout the section we will use some standard facts about Hopf superalgebras. The
analogous statements in the non-super setting can be found for example in [CP94], [Kas95],
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[Oht02]. The proofs carry directly over to the super case.

The Hopf superalgebra U

We define Uy, = Up(gl(1]1)) to be the unital C[[h]]-algebra topologically generated by the
elements F, F, Hy, Hy in degrees |Hy| = |Hs| =0, |E| = |F| = 1 subject to the relations

HyHy = HoHy,
HlE — EH7 = <H1',OL>E, HZF — FHz = 7<Hi,Oé>F,
e Hi+Hz) _ o—h(H1+Hz)

EF + FE = — : E*=F?=0.
e’ —e

(A.2.1)

Note that although e — e~" is not invertible, it is the product of & and an invertible element
of C[[A]], hence the fourth relation makes sense.

Although the relation between U, and Uy, is technically not easy to formalize (see [CP94] for
details), one should keep in mind the following picture:

(A.2.2) 1 "
- th’ ehHi'.

This also explains why we used the symbols q” as generators for U, in In the following,
we set ¢ = e/ as an element of C[[A]] and K = e"H1+Hz2) a5 an element of Uy.

As for Uy, we define a comultiplication A: U — Uy @ Uy, a counit u: Uy, — C[[h]] and an
antipode S: Uy — Uy by setting on the generators

AEY=E®K '+10E, A(F)=F®1+K®F,
S(E)=—-EK S(F)=—-K'F
(A.2.3) (B) : () :
A(H))=H;®1+1®H,;, S(H;)=—-H,,
u(E) =u(F) =0, u(H;) =0,

and extending A and u to algebra homomorphisms and S to an algebra anti-homomorphism.
We have then:

Proposition A.2.1. The maps A, u and S turn Uy into a Hopf superalgebra.

The proof requires precisely the same calculations as the proof of Proposition [I.1.2}
As for U,, we define a bar involution on Uy by setting:

(A.2.4) E=F, F=F  H,=H, h=-h

Again, A = (T® 7)o Ao~ defines another comultiplication on Uy, and by definition
A(Z) = A(z) for all x € Uy,

The braided structure

We are going to recall the braided Hopf superalgebra structure (cf. [Zha02], [Oht02]) of Up.
The main ingredient is the universal R-matrix, which has been explicitly computed by
Khoroshkin and Tolstoy (cf. [KT91]). We adapt their definition to our notationH

LOur comultiplication is the opposite of [KT91], hence we have to take the opposite R-matrix, cf. also
[Kas95, Chapter 8§].
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We define R = ©Y € Uy, ® Uy where
(A.2.5) T = MH1®H ~Ha®H2)

(A.2.6) O=1+(¢—q¢ "FRE.

Notice that the expression for T makes sense as an element of the completed tensor product
Ur, ® Uy. Recall that a vector w in some representation W of Uy, is said to be a weight vector
of weight p if Hyw = (H;, u)w for ¢ = 1,2. The element T is then characterized by the
property that it acts on a weight vector w; ® wy by ¢(#1:#2) = eflh:12) if 1) and wy have
weights 1 and us respectively.

The element O is called the quasi R-matrix; it is easy to check that it satisfies
(A.2.7) PO =00=131.

It follows in particular that R is invertible with inverse R~! = Y~1@~! = T~10.

Recall that a bialgebra B is called quasi-cocommutative ([Kas95, Definition VIII.2.1]) if there
exists an invertible element R € B ® B such that for all € B we have A°P(x) = RA(z)R™1,
where A°P is the opposite comultiplication AP = g o A with o(a ® b) = (=1)I*?l(b @ a).

Lemma A.2.2. For all x € Uy we have
(A.2.8) RA(z) = A°P(z)R.

Hence the Hopf algebra Uy, is quasi-cocommutative.

Proof. Using Lemma [A:2.3] below we compute

RA(z) = OTA(z) = OA™ (2)T = A (2)OT = A°P(z)R. O

Lemma A.2.3. The following properties hold for all x € Uy:

(A.2.9) OA™ (z) = A°P(2)0
(A.2.10) TA(z) = A% (2)T.

Proof. Tt is enough to check (A.2.9) and (A.2.10) on the generators. We have

OA"(E)=0(K®E+E®]1)
=K®E+FE®1+(q-¢  HYFK®FE* - (¢q—q¢ ' )FE®E
=K®F+FE®1+(q—¢ YEF®FE - (K-K ')®F
=K '®E+E®1+(q—q¢ ' )EF®E
= (K '®9E+E®1)0=A®(E)0

and

OA"(F)=0(19 F+ Fo K1)
—1@F+FK '+ (q—q¢ YWFQ®EF—(q—q¢ YF?® EK™!
=1@F+FK'-(q—¢ Y VF®FE+F®(K—-K")
=1@F+F®K-(q—-q¢ ' )F®FE
= (1 F+F®K)O =A(F)©
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and for ¢ =1,2

OA"(H) =01 ® H, + H;®1)
=10H+H®1+(q-¢ YFRFEH; +(q—q¢ " YFH,;® E
=19H,+H;®1—(¢q—q¢ ")H;,a)FRE+ (q—q ")F @ H;E+

+@—q ) H,)FOE+(q—q YHF®E
=10H+Ho1+(q-¢ YFH,E+(q—q¢ YVH,F®E
=(1® H;+ H;®1)© = A°°(H;)0.

Moreover, we have

YA(E) = M ®H—H:0H2) (B @ K—1 | 1 @ E)
— (B @ K1)t )OH~(H:-1)&H:) | (1 g F)h(Hi®(Hi+1)~Hao(Ha 1))
= (E RTI+KEKR E)eh(H1®H17H2®H2) _ ZOP(E)T

and

TA(F) = MUheHi-hot) (P g1+ K@ F)
_ (F ® 1)eh((H1—1)®H1—(H2+1)®H2) + (K ® F)eh(H1®(H1—1)—H2®(H2+1))
= (F@ K ' +1® F)hhefi-Het) _ XP(pyy.

Finally, for i = 1,2 we have YA(H;) = A(H;)Y since the elements H;, Hy commute with
each other. Since A" (H;) = A(H;) we get YA(H;) = A°"(H;)Y and we are done. O

Given an element X = > T(1) @ x(2) € Up ® Uy, and two indices 0 < i < j < n, let us denote
by Xi; € UP™ the element

i— j—i— n—j

A quasi-cocommutative Hopf algebra is called braided or quasi-triangular if the following
quasi-triangular identities hold:

(A.2.12) (A ® ld)(R) = Ri3R23 and (ld ® A)(R) = Ri3R15.
In this case, the element R is called universal R-matriz.

Proposition A.2.4. The Hopf superalgebra Uy is braided.

Proof. Since

(A ®id)(T) = HI®I®H1 +H1®H1®H1 — Ha®1® Ha —1® Ha @ Hz) _ Y1303

we can compute using Lemma [A7275] below

(A®id)(R) = (A®id)(0) - (A ®id)(T) = ©13T 13023 13 T13T23 = RizRo;.
Similarly we get (id ® A)(R) = Ri3Ri2. O
Lemma A.2.5. In Uy the following identities hold:

(A213) (A ® ld)(@) = @13T13623T;31,
(A214) (ld & A)(@) = @13T13612T;31.
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Proof. The two computations are similar, so let us check (A.2.13)) and leave (A.2.14) to the
reader. The Lh.s. is simply

(A.2.15) (ARid)(O)=1+(¢—q) ' FRI®E+(—¢ YVKQF®E.

We will now compute the r.h.s. First we have

Ti3(1® F @ E)Yr = T13(1® F @ B)e "M E10H) HLE10H:)
_ Tlge—h(H1®1®(H1—1))<1 QF® E)eh(H2®1®H2)

(A.2.16)
_ Tlgefﬁ(H1®1®(H171))eﬁ(H2®1®(H2+1))(1 ® F ® E)
=KQFQ®E.
Therefore
(A.2.17) 013713023 5 = (14+(¢—¢) 'FR1E)(1+(q—q 'K®F®E)
coincides with (A.2.15)) since E2 = 0. O

As an easy consequence of the braided structure, the following Yang-Baxter equation holds
(see [Kas95, Theorem VIII.2.4] or [CP94, Proposition 4.2.7]):

(A.2.18) Ri2R13R93 = RozRizRao.

The ribbon structure
Write R = )" a, ® b, and define

(A.2.19) u=>Y (~1)llltrls(b,)a, € Uy

T

Then (cf. [CP94l Proposition 4.2.3]) u is invertible and we have
(A.2.20) S%(z) = uru™! for all z € Uy,.

In our case, in particular, since S? = id, the element u is central. By an easy explicit
computation, we have

(A.2.21) u= 1+ (q—q ")EKF)eMH:—HD)
and
(A.2.22) S(u) = e"H=H) (1 — (¢ — ¢ YFK'E).

We recall that a braided Hopf superalgebra A is called ribbon (cf. [Oht02, Chapter 4] or
[CP94l §4.2.C]) if there is an even central element v € A such that

v? = uS(u), u(v) =1, S(v) =,

(A.2.23) B
A(v) = (Ra1R12)” (v ®0).

In Uj, let

(A.2.24) v=K lu=uK"'=(K '+ (¢g— qfl)EF)eh(Hg—Hf)'

Then we have:
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Proposition A.2.6. With v as above, Uy, is a ribbon Hopf superalgebra.

Proof. Since both u and K~ are central, so is v. Let us check that S(u) = uK 2. Indeed
we have

(1+(q— q " EFK)e"H =)

= MUE-HD (1 4 (¢ — ¢ EFK)

= MHH) (1 4 (K — KY)K — (¢ — ¢ ") FEK)
= ) (K2 (g — ¢ ) FEK) = S(u)K2.

S
I

(A.2.25)

It follows then immediately that v? = u?K 2 = uS(u) and S(v) = S(u)K = uK ! = v.

The relations A(v) = (Rg1R12) (v ® v) and u(v) = 1 follow from analogous relations for u,
that hold for every quasi-triangular Hopf superalgebra (see [Oht02, Proposition 4.3]). O

A.3 Invariants of links

In this section we define the ribbon structure on the category of representations of U, and
derive the corresponding invariants of oriented framed tangles and links. We refer to for
the representation theory of U,.

Recall that if W is an n—dimensional complex super vector space the evaluation maps are
defined by

eviy: W@ W — C(q), vy WeW* — Clg),

(A.3.1)
P ®w— p(w), w® — (1)l (w),

and the coevalutaion maps are defined by

coevy : Clq) — W @ W™, coevy : Clq) — W @ W,
A3.2 - -
( ) 1»—>Zwi®wf, 1»—)2(—1)‘””10;"@101-,
i=1 =1

where w; is a basis of W and wj is the corresponding dual basis of W*. Note that if oz w
denotes the map
ozw: ZQW —W®Z

(A.3.3)
z@wr— (=1l @ 2.

then évyy = evyy o oW W and coevyy = OW, W+ © COeVyy .

Ribbon structure on U,-representations

Following the arguments of Tanisaki [Tan92| (see also [CP94, §10.1.D]), we can construct
a ribbon structure on the category of U,-representations using the ribbon superalgebra
structure on Uj. We indicate now the main steps of those arguments.

The key observation is that, although YT does not make sense as an element of U, ® Uy,
it acts on every tensor product Z ® W of two finite-dimensional U,~modules. In other
words, there is a well-defined operator Yz w € Endcg)(Z @ W) determined by setting
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Tzw(zx@w,) = ¢A (zy@w,) if 2y and w,, have weights A and y respectively. Note however
that Y 2w is not U,—equivariant, since Y satisfies TA(z) = A (2)T (see Lemma [A.2.3)).

On the other hand, notice that the definition (A.2.6)) of © makes sense also in Uy, and (A.2.9)
holds in U,. Moreover, one has the following counterpart of equations (A.2.13)) and (A.2.14):

(A34) (A (24 ld)(@) = @13(Tz7y)13@23(’r
(A35) (ld X A)(@) = @13(TZ y)lg@lg(T

This is now an equality of linear endomorphisms of Z ® W ® Y for all finite-dimensional
U, representations Z, W,Y . Setting

(A36) RZ,W = GTZW S Endc(q)(Z & W)

one gets an operator which satisfies the Yang-Baxter equation. Note that Rz y is invertible,
since © and Yz both are. Because of (A.2.8)), if we define Rz w = 0 o Rz w, then we get
an Ug—equivariant isomorphism Rz w € Homy, (Z @ W, W ® Z).

Analogously, although the elements u and v do not make sense in Uy, they act on each finite-
dimensional U, representation Z as operators uy,vy € Endy, (Z) (they are U;-equivariant
because u, v are central in Uy,). In the following, we will forget the subscripts of the operators

R, v and v.

For convenience, we give explicit formulas for the (inverse of the) operator Ry (y () for
A€ P

B0 @ oft) = (—1) A+l = (umad=a)p g 2
R0 @ oft) = (—1) Al (g (er=a) bt @ .

(A.3.7) + (—1)Hg =N (=1 _ ) [ulvt @ Ui\),
BN} @ uf) = (—1)AUeED g=(imad) i g 0 2
R_l(vi\ Quy) = (—1)"\”“|q_(“v’\)vi‘ ® Uf\~

Invariants of tangles

Let D be an oriented framed tangle diagram. We will not draw the framing because we will
always suppose that it is the blackboard framing. (Recall that a framing is a trivialization of
the normal bundle: since the tangle is oriented, such a trivialization is uniquely determined
by a section of the normal bundle; the blackboard framing is the trivialization determined by
the unit vector orthogonal to the plane — or to the blackboard — pointing outwards.)

We assume D C R x [0,1] and we let s(D) = DN (R x0) = {sP,...,sP} with sP < ... < sP
be the source points of D and ¢(D) = DN (R x 1) = {tP, ... tP} with tP < .- < tP be the
target points of D. Let also £ be a labeling of the strands of D by simple two-dimensional
representations of U, (that is, a map from the set of strands of D to P’). We indicate by
05, ..., 05 the labeling of the strands at the source points of D and by £4,..., ¢! the labeling
at the target points. Moreover, we let ~5,...,75 and 74,...,7} be the signs corresponding
to the orientations of the strands at the source and target points (where +1 corresponds to a
strand oriented upwards and —1 to a strand oriented downwards).

Given this data, one can define a Uj—equivariant map

(A.38) QD) L) @ L) — L) @ - @ L),
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where L(A)™! = L(A\)*, by decomposing D into elementary pieces as shown below and
assigning the corresponding morphisms as displayed.

LY LO*
o(] )= ] o] )= ]
LY LoV
\ L) &L / L) &L
) \” LY & L(a) A/ ) el
C(q) C(q)
Q (O) = &o (vl ®id)] Q <Q> _ ev]
L(A) @ L(A)* LOA)* ®@L(N)
LIA)* ® L) L(A) @ L(A)*
Q (U) ~ itomo | 0 (U) - o]
C(q) C(q)

As we already mentioned, although U, itself is not a ribbon superalgebra, its representation
category is a ribbon category. Hence we have:

Theorem A.3.1. The map Q*(D) just defined is an isotopy invariant of oriented framed
tangles.

The proof, for which we refer to [Oht02, Theorem 4.7], is a direct check of the Reidemeister
moves (or, more precisely, of the analogues of the Reidemeister moves for framed tangles).
In fact, the axioms of a ribbon category are equivalent to the validity of these moves.

If all strands are labeled by the same simple representation L(A) (i.e. £ is the constant map
with value \), then we write Q*(D) instead of Q*(D).

\

Let us indicate a full +1 twist by the symbol

(A.3.9) -

Then we have (cf. [Oht02] §4.2])
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Lemma A.3.2. The element v acts by the identity on the vector representation L(e1) and
on its dual L(e1)*.

Proof. Recall that we denote by vi*, vg' the standard basis of L(1). We have

vt = (K~ 4 (¢ — ¢ ) EF)g~ (2 n=ha)yh
(A310) = (K71 + (q _ q*l)EF)q*(hH*hz,El)<h1*h2,€1>vil
= (¢ +a—q g v =i

Since L(eq) is irreducible and v acts in an U,—equivariant way, it follows that v acts by the
identity on L(e1). Since S(v) = v, the element v acts by the identity also on L(e1)*. O

As a consequence, if we label all strands of our tangles by the vector representation then we
do not have to worry about the framing any more:

Corollary A.3.3. The assignment D +— Q°*(D) is an invariant of oriented tangles.

Invariants of links

Since links are in particular tangles, we obtain from Q* an invariant of oriented framed links;
unfortunately, this invariant is always zero:

Proposition A.3.4. Let L be a closed link diagram and £ a labeling of its strands. Then
QUL) = 0.

Proof. The invariant associated to L is some endomorphism ¢ of the trivial representation
C(q). Up to isotopy, we can assume that there is some level at which the link diagram L
has only two strands, one oriented upwards and the other one downwards, labeled by the
same weight \. Without loss of generality suppose that the leftmost is oriented upwards.
Slice the diagram at this level, so that we can write ¢ as the composition ¢ o 1 of two
Ug—equivariant maps ¢1: C(g) = L(A) ® L(A)* and ¢2: L(A) ® L(A)* = C(q). If o = w201
is not zero, then we have an inclusion ¢ of C(g) inside L(A) ® L(\)* and a projection ¢y of
the latter onto C(gq), so that C(¢q) would be a direct summand of L(A) ® L(A)*. But this is
not possible, since L(\) ® L(A)* is indecomposable (by Lemma [1.2.3)); hence ¢ = 0. O

To get non-trivial invariants of closed links we need to cut the links, as we are going to
explain now. First, we need the following result:

Proposition A.3.5. Let D be an oriented tangle diagram with two source points and two
target points. Let £ be a labeling of the strands of D such that €5 = 5 = ¢ = (5 = X for
some A € P'. Then

(A.3.11) Q* =qQ*

Proof. Then Q%(D) = ¢ where ¢: L(\) ® L(A\) — L(A\) ® L(\). By Lemma the
representation L(A\) ® L(\) is isomorphic to the direct sum L(2)\) @ L(2A — «). Let eq, es be
the two orthogonal idempotents corresponding to this decomposition.

We consider formal C(g)-linear combinations of tangle diagrams, and we extend Q* to them.
Since Endy, (L(A\) ® L(A)) is a two-dimensional C(g)-vector space and Rj  is not a multiple
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of the identity by (A.3.7), there are some C(g)-linear combinations of tangle diagrams E;
and F, such that Q¢(E;) = e; and Q¢(E>) = es. Hence we can write

(A.3.12) Q* +Qf = Q*

Now we have

(A.3.13) =Q* g +Qf g

fQZ n +Qe m fQE

The second equality here follows because we must have
(A.3.14) Rei = e1R = areq and Res = eaR = ases

for some a1, a9 € C(q), since the elements e; and es project onto one-dimensional subspaces
of Endy, (L(A\) ® L(A)). The penultimate equality follows by isotopy invariance. O

Let now D be an oriented framed link diagram, £ a labeling of its strands and A € P’ some
weight which labels some strand of D. By cutting one of the strands labeled by A, we can
suppose that D is the closure of a tangle D with one source and one target point, as in the
picture

A
(A.3.15) D |=

Then we define Q¢*(D) = ¢ € C(q) where

(A.3.16)

We have:

Theorem A.3.6. The assignment D > QE’)‘(D) € C(q) is an invariant of oriented framed
links.
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Proof. Since QY(D) is an invariant of oriented framed tangles, we need only to show that
Qe * is independent of how we cut D to get D. If D’ is obtained by some different cutting,
but always along some strand labeled by A, then after some isotopy we must have

for some tangle D(®). By Proposmon A 3.5 we have then Qe O

If £ is the constant labeling by the weight A, we write Q* instead of Q4. For A = ¢, we
write simply Q. As a consequence of Corollary [A n and Theorem 6| we obtain:

Corollary A.3.7. The assignment D — Q(D) € C(q) is an invariant of oriented links.

Recovering the Alexander polynomial

If we compute the action of the R-matrix on L(e1) ® L(g1) we get by (A.3.7)), setting vy = vg!
and vy = vi':

(A.3.18) R (vo ®vp) = —quo ®v9, R '(vo@v1) =v1 ®vo+ (¢7" — q)vo @1y
o R~ Y (v, @ wo) = vo @ vy R Y v ®@v)=q¢ vy @ vy,

On can easily check that

(A.3.19) (R =(¢ ' —¢R* +1d.
and hence

(A.3.20) R=R'4q-—q"

It follows:

Proposition A.3.8. The invariant of links Q satisfies the following skein relation

- -

A ’/,\ \\\ A '/\/\‘\\ 1 N ’//> <\\\
(A.3.21) Q .’/; -Q | =@-q)-Q| |
\\\ \/// \\/ // \\\ ///

~ ~ -

where the pictures represent three links that differ only inside a small neighborhood of a
Crossing.

We recall one of the equivalent definitions of the Alexander-Conway polynomial ([Ale28],
[Con'0]):

Definition A.3.9. The Alexander-Conway polynomial is the value of the assignment
(A.3.22) A: Links — Z[t7 ¢~ 3]

defined by the following skein relations:

(A.3.23) A (O) —1,
(A.3.24) A <\> N </ 3';) (-t .A (”}(’) .
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Notice that obviously Q(O) = 1 since Q*! (T) =1Id. As a consequence, we have that @Q is
essentially the Alexander-Conway polynomial:

Theorem A.3.10. For all oriented links L in R® we have

(A.3.25) A(L) = Q(L),

1.
q=t2

In particular, Q(L) € Z[q,q7 '] is a Laurent polynomial in q.






APPENDIX

Cohomology of the Springer fiber

In this appendix we prove that the endomorphism rings of the indecomposable projective
modules Aey over the diagrammatic algebra A, ; defined in are isomorphic to the
cohomology rings of some subvarieties of the Springer fiber. Conjecturally, it should be
possible to describe the whole algebra A, , using a convolution product on the direct sum
of cohomologies. This would be the counterpart for gl(1|1) of the result of Stroppel and
Webster [SW12] for sls.

We warn the reader that in this appendix we will use an ad hoc notation, which differs
sometimes from the one used in the rest of the thesis.

B.1 The Springer fiber of hook type

Let us fix a positive integer n and an integer 0 < £ < n. Let G = GL(n) be the general linear
group of invertible n X n matrices, B the Borel subgroup of upper triangular matrices, T’
the torus of invertible diagonal matrices. Let NV be the standard nilpotent matrix of Jordan
type (€,1"7%). If {e1,...,es, f1,. .., fn_s} is the standard basis of C", then Ne; = e;_; for
i=2,...,0,and Ne; = Nf; = 0. Let By = (G/B)" be the Springer fiber consisting of all
flags fixed by Id + V.

To keep the connection with the notation of Part we think £ =n — k. In Chapter [§ we
described the Soergel modules for the parabolic category Og, where p was of type (1,...,1,n—
k). But dealing with the Springer fiber, we prefer to follow the standard convention and to
“reorder variables, indices and positions” so that the composition (1,...,1,n — k) becomes a
partition (n — k,1,...,1). This is the reason why in this appendix we are using a somehow
‘dual’ notation.

Tableaux of hook shape

We consider a Young diagram of hook shape (£, 1"~%). This shape is formed by a row with ¢
boxes and a column with n — ¢ boxes; according to our convention, the box in the corner
belongs to the row and not to the column: note that this makes a difference between the

151
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Figure B.1: These are tableaux of shape (3,4). The second one is row-strict, the third one is
row-strict-column-strict and the fourth one is standard.

hook shape (1,1"~!) and the hook shape (0,1"). A tableaux of shape (£, 1"~) is obtained
by filling the row with numbers ry,...,7; from the left to the right and the column with
numbers ¢y, ..., cp—¢ from the top to the bottom, such that {r;,c¢;} ={1,...,n}:

T r1

C1

(B.1.1)

Cn—¢

Definition B.1.1. We say that a tableau of shape (£,1"7%) is

e row-strict if rg >rp_q1 >0 > 1,
e row-strict-column-strict if moreover ¢; > co > -+ > cp_y,
e standard if moreover rp = n.

We denote by Rs(n, ), RsCs(n,£), St(n,£) respectively the sets of row-strict, row-strict-
column-strict and standard tableauz of shape (£,1"~%).

Note that this is not the usual definition (although there is a straightforward correspondence
with the usual definition).

Irreducible components of the Springer fiber

Let 7 € St(n, ). Define Y, to be the subset of %y consisting of all flags F, such that

ImN“! CF, CkerN,
Im N“~2 C F,, C ker N?,

(B.1.2)

ImN!' CF,, , Cker N L

-1

Then (cf. [Fun03l Theorem 2.1]) Y, is a locally closed subset of &y whose closure is an
irreducible component.
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For future convenience, we rewrite the conditions (B.1.2)) in the following equivalent way:

(e1) C Fpy C (e1) +Q,
(e1,e2) C Fr, C (e1,e2) + Q,
(B.1.3)
<ela .. -a€€—1> g Fm,l g <ely~ . 'ae€—1> +Q7
<ela"'7e€> g F’l‘g g <617'-'56Z> +Q
where Q = (f1,..., fn—s). Of course, the last condition is unnecessary since for a standard

tableau we have F,,, = F,, = C".

B.2 Fixed points and attracting varieties

Let S C T C GL(n) be the centralizer of N in T. One can easily see that S isa (n — ¢+ 1)-
dimensional torus and consists of all invertible diagonal matrices whose first ¢ elements are
all equal. The action of 7" on G/B induces an action of S on Zy.

Lemma B.2.1. We have a bijection T — Fo(T) between Rs(n, ) and the set of fixed points
for the action of S on PBy, given by

(B.2.1) Fi(t) =(ep | p < Ri) +(fq | cq < 4)
where R; is the number of elements r; in the row of T that are smaller than or equal to 1.

Proof. Tt is clear that if Fy € By is fixed by S then each F; is generated by some of the
standard basis vectors. Conversely, every flag generated by basis vectors is obviously fixed
by S. Such a flag is in Zy if and only if whenever e; € F; then also e;_; € Fj. O

Fix the cocharacter
c* — S
(B.2.2) t— diag(t™, ..t 2 ),
¢

This determines an action of the one-dimensional torus C* on #Ay. For 7 € Rs(n, ¢) let us
define the attracting variety

(B.2.3) Y2 ={F. € Bn | tlir&t - Fy = Fo(7)}

and let Y, = 9: be its closure.

We connect now the combinatorics of tableaux with the diagrammatic weights from §9.1] We
number the first n vertices on the number line from n to 1 from the left to the right. Then
we have obviously:

Lemma B.2.2. There is a bijection between RsCs(n, ) and a block T',_, consisting of
weights with n — ¢ N’s and £ V'’s, given by putting the V’s in positions r¢,r¢_1,...,71 and
the N’s in positions c1,Co,...,Cp—g.

Recall that in we defined for every weight A\ a weight A of maximal defect. This
assignment together with the lemma above gives for every row-strict-column-strict tableau 7
a standard tableau 7.
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Proposition B.2.3. Let 7 € RsCs(n,f). The set Y, is the set of flags Fe € B such that
(e1) C
-

g <el> + Q7
(e1,e2) c

F,
FTQ <61»€2> +Q7
(B.2.4)

<61, ey eg_1> + Q,

<€15"'a€€—1> gFr
- (e1,---,e0) +Q

0—1
<61,...,€g> FT@

N 1N

where Q@ = (f1,. .., fa—e). In particular Y, C Yz and if 7 is a standard tableau then Y, =Y.

Proof. First observe that since P = {ey,...,ey) has minimal weight for the action of C*, if
v ¢ P then lim; ,o, v ¢ P. Hence we have

(B.2.5) dim lim (- F)) N P < dim F; N P

for all 7.

Now let Fy, € Zx and suppose (ej,...,¢e;) € F,, for some i. Then dim F,,, N P < i. By

(B.2.5)) this also holds for the limit. Hence ¢ - Fy # Fo(7). On the other side, it is clear that
if (B.2.4) holds then generically ¢ - Fg — Fo(T). O

B.3 The cohomology rings

In the following we will denote by H* the cohomology with complex coefficients. Our next
goal is to compute the cohomology rings H*(Y,) for all 7 € RsCs(n, £).

Dimension

In [Fun03, Theorem 3.2] the dimension of H*(Y,) for T a standard tableau is computed. We
generalize it now to 7 € RsCs(n, £). We will need the following lemma:

Lemma B.3.1. For every 7 € RsCs(n, ) we have a fibration
(B.3.1) Yo — Yr — G(n — £, (rg, 1"7770))

where o is the standard tableau obtained from T after removing all boxes containing entries
i > 1y, while G(n — £, (rg, 1"~*77¢)) is the partial flag variety of C"~* consisting of flags

(B.3.2) Fo: {0}=FCF, CFr4;1C-CFp_4=C"

Proof. The fibration Y, — G(n — ¢, (rg, 1"7¢77¢)) is defined by

(B.3.3) For—{0}=F CF,/PCF, /PC---CF, (=C"/P=C""*

where as before P = (ey, ..., eq). O

Proposition B.3.2. For all 7 € RsCs(n, ) we have

(B.3.4) dimH*(Y,)=(n =0 -ri(ra —r1) - (re —ro—1).
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Proof. For T € St(n,{), since Y, = Y, this is just [Fun03, Theorem 3.2]. If 7 is not standard,
we use the fibration . Since we are dealing with complex varieties, the dimension of
the cohomology of the total space is just the product of the dimensions of the fiber and of
the base space. Notice that the tableau o is standard (o € St(ry, £)), hence we know already
that

(B.3.5) dim H*(Yo) = (re = O - r1(rg — 1) - - (rg — 70—1).
Since the dimension of the cohomology of G(n — ¢, (ry, 1"~¢77¢)) is
(B.3.6) (n—0On—L€—1)(re—£+1),

the claim follows. O

Surjectivity

We want now to find a set of generators. The following argument is inspired by [DCP&I1].

Let 7 € RsCs(n, ¢). Let p: Y, — P(ker N) be the projection Fy — F;. We fix the following
complete flag of ker N:

Wo = {0}
W1 = <€1>
Wa = (e1, f1)

(B.3.7)

Wi—e ={e1, f1,- -5 fa—t—1)
Wn_g_H = ker N.

We let AJ = P(W;) — P(W;_1); this is of course an open affine cell of P(ker N), isomorphic
to C/~1. Let moreover V7 = p~*(P(W)).

Given a tableau 7 and an entry a of 7, we define 7 to be the tableau obtained from 7 by
removing the box containing a and then subtracting 1 to all entries bigger than a. Note that
if 7 € RsCs(n, £) then 7% is also a row-strict-column-strict tableau.

Lemma B.3.3. The set VI — VI~ is either empty or isomorphic to AJ x Yz for j > 1
and to A x Yz, for j = 1.

Proof. Let U = P(ker N) —P(W7) and U’ = P(W1), so that UUU’ = P(ker N). Notice that p
is surjective onto P(ker V) if and only if 1 is not in the row of 7, that is r; # 1; otherwise p is
onto P(W7). Now pl,-1(y) is a locally trivial fibration with fiber isomorphic to Yzr (in this
specific case, the base space is even a point), while p[,-1(yy is a locally trivial fibration with
fiber isomorphic to Y1 (if non-empty). In particular, for every j the projection p restricted
to VJ — VJ~1 is a locally trivial fibration; since the base space is isomorphic to C/~1, the
fibration has to be trivial, hence isomorphic (if non-empty) to the product of A7 and the
fiber. O

Thanks to Lemma we have a recursive construction of a cell decomposition of Y, with
even dimensional cells.

Proposition B.3.4. For every 7 € RsCs(n,{) the inclusion Y, — G/B of Y, into the full
flag variety induces a surjective homomorphism H*(G/B) — H*(Y,) in cohomology.



156 B.3. The cohomology rings

Proof. We prove by induction on n that it is possible to construct a cell decomposition of
G /B with even dimensional cells such that Y,, with the CW-structure that we have defined,
is a subcomplex of it. For n = 0 there is nothing to prove, so let us consider n > 0. Notice
that G/B = Y, where o is the unique element of RsCs(n,0). Complete the flag W, of
for 7 to a full flag of C*. Then by Lemma VI —VIi=t 2 AJ x Yy, where
5! € RsCs(n —1,0), while V7 — VZ~1 is either isomorphic to A7 x Y.q; for some a; or empty.
By induction, we can suppose that Y:a; is a subcomplex of Ys1; then the claim for Y, follows.

Since the cells are even dimensional, they give a basis of the cohomology as a vector space.
It follows that the homomorphism H*(G/B) — H*(Y.) in cohomology is surjective. O

The isomorphism with Z, ,

For 7 € RsCs(n, ¢) let us define an ideal I, of R = Clxy,...,z,] as follows. Let b be the
b-sequence of the weight corresponding to 7. Let

(B38) I‘lr = (hbi(;vn,mn,l,...,xi))i:n’,,,,l
and
(B.3.9) I = (&, @p;—1 Ty +1)imh,... 1

where ro = 0. Set

(B.3.10) I =I.+1/

Finally, set

(B.3.11) R, =Clzy,... x5/ ;.

Note that according to Theorems [8:2.7] and B:3.5] and Corollary [9.2.4] we have
(B.3.12) R; =27, . =exAnn—rex

where z € Dy, ,,_¢ and X € I';,_; are the permutation and the weight corresponding to the
tableau 7. Since we work in the dual pictures (with reordered indices), the isomorphism is
given by x; — ;.

We recall that the elementary symmetric polynomials are defined as

(B313) ej(xl,...mcn) = Z Ly .’EZJ

1<iy <-<i;<n
for 0 <j<n.

We are now ready to state the main theorem of this appendix.

Theorem B.3.5. For every T € RsCs(n, f) the cohomology ring of Y. is isomorphic to R;.
The Chern class of the canonical bundle F;/F;_1 over Y, is sent to the class of x; under
this isomorphism.

The proof will consist of several reduction steps. Let us remark that by Proposition we
know that the cohomology ring of Y, is generated by the Chern classes of its canonical line
bundles F;/F;_; (since this holds for the full flag variety). Moreover, by Proposition [B.3.2]
we already know that the dimensions agree. Hence it suffices to prove that for every
7 € RsCs(n, £) the Chern classes of the canonical bundles F;/F;_; on Y, satisfy the relations
of the ideal I.
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Lemma B.3.6. Let 7 be the row-strict-column-strict tableau of shape (1™). Then Theo-
rem [B.3.5 holds for Y.

Proof. In this case, R, is the cohomology ring of the full flag variety. But Y, is the full flag
variety, since conditions (B.2.4) are void for it (the row of 7 is empty). O

We recall that the isomorphism is given by sending the Chern class of the canonical bundle
Fi/Fi—l to Xi.

Lemma B.3.7. Suppose X\ € I')/_, is a weight starting with a V, and let AN s defined in

. Let 7,0 be the tableauz corresponding to A and XN respectively. If Theorem
holds for o, then it holds for T.

Proof. For notation convenience, let a = ry—1. We have I, = I, + (z, - xq+1). A flag
F, € Y, obviously satisfies the relations (B.2.4) also for 0. Moreover, if it is invariant for
the nilpotent N, of shape (¢,1"%), it is a fortiori invariant for the nilpotent N, of shape
(£—-1, 1”_“1). Hence we have an inclusion map Y, — Y., and the relations that x1,...,x,
satisfy in H*(Y,) are also satisfied in H*(Y,).

We are left to prove that the relation x,, - - - 7,1 holds on H*(Y,). By for 7, we know
that F, C K = {e1,...,ep—1) + Q. Let us work in K-theory for bundles over Y, and write
[C"/F,] = [C"/K] + [K/F,]. Since the bundle C"/K is a one-dimensional trivial bundle,
the (n — a)-th Chern class of C"/F, is trivial. But this class is equal to the elementary
symmetric function e, _4(Zpn, ..., Tat1) = Tp - Tap1 by the Whitney sum formula, and we
are done. O

Lemma B.3.8. Suppose T is a row-strict-column-strict tableau that is not standard. If
Theorem holds for the standard tableau 7 (defined in , then it also holds for T.

Proof. Remember that 7 is obtained permuting the leftmost A with the leftmost Vv of the
AV-sequence corresponding to 7. As before, since Y, C Yz, all relations of H*(Y;) also hold
in H*(Y,). Hence we need to prove that in H*(Y,) the relations hy, (xy, ..., z;) for i > ry
hold.

The variety Y, consists of all flags F, in Y that satisfy also P C F,,. Let a > r,. We argue
as in the previous proof: we have in K-theory [F,| = [F,/P]+ [P]; since P is a trivial bundle,
by the Whitney sum formula we have

(B.3.14) ei(zqy...,21) =0 for all i > a —¢.

Note that a — ¢ is equal to the number of A’s that are on the right of position a, that is
be — 1. Let us consider the following identity of symmetric functions:

(B315> ha,g+1(.’1}n7 sy g4

ISR —

—£

_ <—1>a—f+1( (1) hs(ms s Fap)eatis1 (s -y 21)
1=0

- ea—i—&-l(xaa cee 7551)) :
It follows that hg—rr1(Zn, ..., Zay1) = 0. O

Proof of Theorem[B.3.5 Let 7 € RsCs. Applying repeatedly Lemmas [B:3.7] and [B-3.8| we
can restrict to the case in which 7 is a sequence with A’s only. Then the theorem holds by

Lemma [B.3.6 O
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REMARK B.3.9. It is also possible to derive Theorem from [GRO2, Theorem 3.1], where
cohomology rings of varieties defined by inclusions are computed. The varieties Y, are
particular cases of such varieties, and to get Theorem [B.3.5 one could check algebraically
that the quotient ring given by [GR02, Theorem 3.1] is isomorphic to R,. We included
nevertheless a direct proof of Theorem for two reasons: first, because our particular case
is quite easier than the more general one treated in [GR02|, and second, because the proof we
presented suggests an inductive way to construct such cohomology rings, and conjecturally
the whole algebra A,, ,_¢, starting with the cohomology of the full flag variety.

Let 7,7’ € RsCs(n,?), and let 2,2 € D, ¢ and A\, X € T',,_, be the permutations and
the weights corresponding to them. Set 4(7) = £(z) and ¢(7') = ¢(z'). Generalizing
Proposition (using the techniques of [Fun03]), it is actually possible to check that the
graded dimension of H*(Y, NY, ) is the same, up to a degree shift of |¢(7) — £(7')], as the
graded dimension of 7. ., which is the graded dimension of eyA,, ,,—¢ex. As a consequence,
we have an isomorphism of vector spaces

(B.3.16) A2 P H YY) () = )]).

7,7’ €RsCs(n,L)

We conjecture that, as in [SW12], it is possible to define a convolution product on the direct
sum

(B.3.17) B HU-0Y) () - o))

7,7’ €RsCs(n,£)

such that the resulting algebra is isomorphic to the algebra A,, ,_¢. This would give a
geometric realization of the endomorphism algebras coming from Lie theory and of their

diagrammatic versions (9.2.10)).



APPENDIX

Categorification of representations
of gl(m|n)

The construction we presented in Part [II| for U,(gl(1]|1)) can be extended to the case of
Uy (gl(m|n)) for m,n > 1. However, as we have seen, the combinatorics for Uy (gl(1|1)) is
already quite involved; developing the analogous combinatorics for general U, (gl(m|n)) would
make this work unreadable.

Nevertheless, in order to be complete, we want to present in this appendix a categorification
result for gl(m|n), avoiding some of the technicalities. In order to do that, we make the
following simplifications:

e we consider the classical (non-quantum) version;

e we consider only tensor powers of the vector representation (and not their subrepresen-
tations);

e we categorify only the action of the intertwining operators (and not of U, (gl(m|n)).

We derive the categorification from super skew Howe duality instead of from Schur-Weyl
duality, although the two approaches are equivalent.

C.1 Super skew Howe duality

Let I, = {1,...,m +n} with a parity function |-| : I, — Z/27Z defined by
0 ifi<

(C.1.1) =4 ="
1 ifi>m

for each i € I,,),. Let also C™" be a (m + n)—dimensional super vector space on basis
{ei | i € I} such that |e;| = |i|, where as usual |v| denotes the degree of an homogeneous

element v € C™™. Then the Lie superalgebra gl(m|n) is the super vector space of matrices
End(C™") equipped with the Lie super bracket

(C.1.2) [2,y] = &y — (~1)FWye.

159
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In particular note that gl(m|0) = gl(0jm) = gl,,. The Lie superalgebra gl(m|n) acts by
matrix multiplication on C™": this is the vector representation of gl(m|n).

If V is a super vector space, we define an action of the symmetric group Sy on the tensor
power ®N V by setting

(C.1.3) se- (11 ®--@ay) = (_1)|1?e||fre+1\zl R RTp1 DL DTN

for every simple reflection s; € Sy. Let 7°,7/A € C[S,] be the idempotents projecting onto
the trivial and sign representations respectively. We set then

(C.1.4) SVVv=r* (@ V) and AV=aA(Q"V).

In particular, notice that if V' is a vector space concentrated in degree zero then this definitions
coincide with the usual symmetric and exterior powers of V.

REMARK C.1.1. Notice that SN (C™™) = AN(C"I™). It follows in particular that, in contrast
to the classical case, /\N V' can be non-zero also for N > 0.

If v1,..., v, is a basis of V', then a basis of /\N V' is given by

(C.1.5) Vi, Ao Ay =N (0, @ @iy

IN

for all sequences (i1, ...,in) of indices iy € {1,...,r} such that iy < is < -.- < iy and if

i¢ = i¢41 then |v;,| = 1. Moreover a basis of SV V' is given by

(016) ’l)il@“'@’l)iN=7TS~(Ui1®-~-®UiN)

for all sequences (i1, ...,iy) of indices iy € {1,...,7} such that iy < iy < .-+ <iy and if
i¢ = ig41 then |v;,| = 0.

We have the following result (cf. [CWO01], [CW10]):

Proposition C.1.2 (Super skew Howe duality). Let p,m, N € Z~q be positive integers and
q,n € Z>q. The natural actions of gl(p|q) and gl(m|n) on /\N(Cp|q ® C™™) commute with
each other and generate each other’s centralizer. As a gl(m|n)-module, A" (CPl4 @ C™In)
decomposes as the direct sum

(C.1.7) P AcCcihe-epATCItgSnCTInE .- @ SiraCmn,
i1t tippg=N

Note that inverting the roles of p|¢ and m|n we have a similar decomposition (C.1.7) as a
gl(p|g)—module.

Proof. The first part is [CWO01, Theorem 3.3 and Corollary 3.2]. We check the decomposition
(C1.7).

Let {e1,...,ep1q} and {f1,..., fmin} be the standard bases of CPI9 and C™I™ respectively.
We fix the following ordered basis of CP17 © C™I™:

(C.18) €1® fiy-- €1 ® Frrtms - prg ® flree 1 €prg ® fren.

We get then a basis of A~ (CPl7 @ C™") as in (C15). Let M be equal to (C.I.7). We
define an isomorphism ¥ from /\N((Cp‘q ® C™") to M in the following way. Given a
basis vector w = (e;; @ fj,) A--- A (eiy @ fjn) of AN (CPle @ C™In), define functions
a,b: {1,...,p+q} — {e,1,...,N} by a(h) = min{¢ | i, = h} and b(h) = max{{ | i, = h} or
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a(h) = b(h) = e if this set is empty. Set also c(h) = b(h) — a(h) + 1, with the convention
e —e = —1. Then we define

(C.1.9) U(w) € /\C(l) Ccmlng ... /\0(17) cmin g gelr+l) o ... g ge@ gmin

to be the element

(C.l.lO) (fja,(l) ARERRA fjb(1)> Q- (fja(m) ARERRA fjb(m))
® (fju(7n+1) ©-0 fjb('rrz+1)) @ ® (fja(7n+n) ©-0 fjb(nz+n))'

It is straightforward to check that this is indeed an element of the basis, and that W is
bijective and gl(m|n)—equivariant. O

REMARK C.1.3. Another kind of duality, called super Schur-Weyl duality, relates gl(m/|n)
and the symmetric group Sy: the natural action of C[Sy] on V&V is gl(m|n)-equivariant;
moreover, the map C[Sy] — End g n) (VEY) is always surjective, and it is injective if and
only if N < (m+1)(n+ 1) (see [BR87], [Ser84]).

C.2 Categorification of gl(m|n)

Set now V = C™". Our goal is to construct a categorification of VEN for N > 0.

Set p = N and ¢ = 0 in Proposition We have then that A™ (CY @ V) decomposes as
a gl(m|n)-module as

(C.2.1) @ ANV a ANV
i1+ +in=N
and as a gly—module as
(C.2.2) @ /\j1 cN R ® /\jm cN ® Sjm+1 cN R ® Sjm+n CN.
j1+"‘+j1n+n:N
Notice that one summand of (C.2.1)) is in particular V®V. A categorification of the gly—

module (C.2.2)), although not written in the literature, is in principle known to experts, and
is what we are going to use to categorify the gl(m|n)-module (C.2.1)).

In order to state the categorification theorem, we need some notation. Let us fix the standard
basis {v1,...,Umin} of V =C™" with

0 fori=1,...
(C.2.3) o] = T he
1 fori=m+1,...,n.

Let h C gl(m|n) be the subalgebra of diagonal matrices. Then V¥V decomposes as direct
sum of weight spaces for the action of h. Let A be the set of compositions A = (A1, ..., A\ppn)
of N with at most m + n parts (that is, we allow A; = 0 for some indices 7). Then the weight
spaces of V& are indexed by A, and the correspondence is given by

(C.2.4) (V®N)>\ = Span{va(a?) Q- ® Vo (ay) | o €8Sn},
where
(C.2.5) ad=(1,...,1,2,...,2,...,m+n,...,m+n).
—— ——
A] )\2 A7n+n

We can now state our main result:
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Theorem C.2.1. Given A € A, let qx C gly be the standard parabolic subalgebra corre-
sponding to the composition (A1,...,Am,1,...,1) and px C gly be the standard parabolic

subalgebra corresponding to the composition (1,...,1, Apt1,---, Amin). Then there is an
isomorphism
(C.2.6) C @z K(OF P (gly)) — (VEN),

sending equivalence classes of standard modules to standard basis vectors.

The translation functors 6; give a categorical action of the generators s; + 1 of C[Sy], which
descends to the action (C.1.3) at the level of the Grothendieck group.

We refer to Chapter [5| for the definitions of the categories appearing in ((C.2.6) and of the
translation functors 6;.

Proof. The first claim follows from the definition of the categories Of* P (gl,) (cf. §5.3).
The second claim can be proved generalizing the proof of Theorem [6.2.2 O

REMARK C.2.2. Combining Zuckermann’s/coapproximation functors and their adjoints (see
§5.4] for the definitions) one can define functors €;, F; for j = 1,...,m + n — 1 between
some opportune unbounded derived categories, as in §6.5] These functors commute with the
functors 6; and give an action of gl(m|n) at the level of the Grothendieck groups.

We remark that for n = 0 Theorem gives exactly the categorification of (C™)®N
developed in [MSQ9].
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