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Abstract 

I 

Abstract 

To anticipate rhythmic changes and optimize timing of physiological events, 

many organisms have evolved an internal-timing mechanism named the circadian 

clock. In Arabidopsis, its clock system consists of the positive/negative feedback 

loops, which are formed by oscillating components. The internal circadian rhythm 

resonates with daily environmental changes. The circadian clock can be set by two 

major exogenous cues: light and temperature. The clock components CCA1, LHY, 

PRR7, PRR9, TOC1, GI, and ELF3 are involved in the temperature regulation on the 

circadian clock, but the detailed mechanism, for how their inputs are processed still 

remains poorly understood. Hsp90 is one of the most important protein chaperons in 

living organisms. Hsp90 is intensively involved in the heat-stress response. Therefore, 

I proposed that Hsp90 participates in clock regulation in Arabidopsis.  

In Chapter 3, Hsp90 was genetically and pharmacologically proved to influence 

the circadian clock. The period length was lengthened in the hsp90.2-3 mutant. 

Moreover, the phase response assay showed that Hsp90.2 particularly influenced the 

circadian clock before dawn. A chemical-epitasis assay on clock mutants revealed 

that CCA1 and LHY were involved in the Hsp90 regulation pathway. Interestingly, I 

found that the period length was closely related to the transcription patterns of CCA1 

and LHY. Furthermore, by using the qRT-PCR approach, I found that PRR9 which 

represses the transcription of CCA1 was also involved in the Hsp90 regulation 

pathway. ELF3 was demonstrated to be the transcription repressor of PRR9 and the 

repression is altered by temperature particularly in the dark. This is consistent with 

the result of my phase response assay. In  microscope assay, I found that Hsp90.2 

transferred into the nucleus and co-localized with ELF3. Afterwards, an in vivo protein 

binding assay showed the interaction between Hsp90.2 and ELF3. Together, I could 

connect Hsp90.2 to an input at an oscillator component. 

In Chapter 4, I examined the clock phenotypes of other hsp90.2 mutants after 

entrainment to either light or temperature. The hsp90.2-6 and hsp90.2-7 mutation 

resulted in a longer period under LD conditions whereas hsp90.2-4 and hsp90.2-8 

resulted in a shorter period under WC conditions. Together, allele specific effects 

were detected. 
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Taken together, my thesis has placed Hsp90 within the clock input pathway. 

CCA1, LHY, PRR9 and ELF3 were all identified as targets in Hsp90 regulation 

pathway. Since different hsp90.2 mutations caused different clock phenotype, 

therefore I propose that more than one input pathways are thought to be present in 

Arabidopsis.
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Zusammenfassung 

Um rhythmische Veränderungen zu antizipieren und zeitliche Abläufe 

physiologischer Ereignisse zu optimieren, haben viele Organismen einen internen 

Zeitmechanismus entwickelt, der „circadian clock“ (tagesrhythmische Uhr) genannt 

wird. Das Uhrsystem von Arabidopsis besteht aus positiv/negativ 

Rückkopplungsschleifen, die von oszillierenden Komponenten gebildet werden. Der 

interne zyklische Rhythmus schwingt mit täglichen Veränderungen der Umgebung. 

Die „circadian clock“ kann von zwei externen Hauptsignalen eingestellt werden: Licht 

und Temperatur. Die Uhrkomponenten CCA1, LHY, PRR7, PRR9, TOC1, GI, und 

ELF3 sind in die Temperaturregulation der „circadian clock“ involviert, aber der 

detaillierte Mechanismus darüber, wie die Beiträge dieser verarbeitet werden, ist 

weiterhin wenig verstanden. Hsp90 ist eines der wichtigsten Proteinchaperone 

lebender Organismen. Hsp90 ist stark in die Hitzestressreaktion involviert. Daher 

stelle ich die These auf, dass Hsp90 an der Regulation der „circadian clock“ in 

Arabidopsis partizipiert. 

In Kapitel 3 wurde genetisch und pharmakologisch bewiesen, dass Hsp90 die 

„circadian clock“ beeinflusst. Die Periode der Uhr war in der hsp90.2-3 Mutante 

verlängert. Weiterhin wurde durch ein Phasenreaktionstest gezeigt, dass Hsp90.2 die 

„circadian clock“ vor Sonnenaufgang teilweise beeinflusste. Eine chemische 

Epitasisuntersuchung an Uhrmutanten deckte auf, dass CCA1 und LHY in den Hsp90 

Regulationsweg involviert waren. Von starkem Interesse war mein Befund, dass die 

Länge der Periode eng mit den Transkriptionsmustern von CCA1 und LHY verwandt 

war. Weiterhin fand ich, durch den Einsatz von qRT-PCR, heraus, dass PRR9, 

welches die Transkription von CCA1 reprimiert, auch in den Regulationsweg von 

Hsp90 involviert war. ELF3 war als Transkriptionsrepressor von PRR9 vorgestellt 

worden und die Repression ist im Dunkeln temperaturabhängig. Dies stimmt mit den 

Ergebnissen meine Phasenreaktionstests überein. Über Mikroskopie fand ich heraus, 

dass Hsp90.2 in den Nukleus transferiert wurde und dort mit ELF3 kolokalisierte. 

Danach zeigte ein in vivo Proteinbindungsversuch die Interaktion zwischen Hsp90.2 

und ELF3. Zusammenfassend konnte ich Hsp90.2 mit einem Beitrag zu einem 

Oszillatorkomponenten verbinden.     
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In Kapitel 4 untersuchte ich die Phänotypen anderer hsp90.2 Mutanten in Bezug 

auf die Uhr, nachdem diese entweder durch Licht oder Temperatur konditioniert 

wurden. Die hsp90.2-6 und hsp90.2-7 Mutationen resultierten in längeren Perioden in 

LD Bedingungen, während  hsp90.2-4 and hsp90.2-8 in WC Bedingungen kürzere 

Perioden zeigten. Zusammenfassend wurden allelspezifische Effekte detektiert.  

Insgesamt konnte Hsp90 durch meine Thesis im Inputnetzwerk der Uhr platziert 

werden. CCA1, LHY, PRR9 und ELF3 wurden jeweils als Ziele des 

Regulationsweges von Hsp90 identifiziert. Da unterschiedliche hsp90.2 Mutationen 

unterschiedliche „circadian clock“ Phänotypen nach sich zogen, stelle ich die These 

auf, dass mehr als ein Weg für Inputs in Arabidopsis existiert. 
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1.1 Introduction to circadian rhythms 

        The Earth’s rotation constantly generates the rhythmic changes of environment 

conditions. The most obvious diurnal changes are light and temperature. As a 

consequence, many organisms have evolved an internal-timing mechanism to 

anticipate those rhythmic changes. This internal-timing mechanism is the called 

circadian clock. Circadian rhythms are endogenously generated by the circadian 

clock. To match the daily alternation, most organisms have an approximate 24-hour 

circadian clock, which drives sleeping and awaking, mental concentration, hormone 

levels, and body-temperature homeostasis. (Dunlap et al., 2004). The circadian clock 

also regulates processes that occur seasonally, including flowering in plants, 

hibernation in mammals, and long-distance migration in butterflies (Harmer, 2009). In 

Arabidopsis, the circadian clock regulates approximately one-third of genes and 36% 

of Arabidopsis promoters are circadian regulated (Covington et al., 2008; Michael and 

McClung, 2003). 

        Plants were the first organisms for which the observation of circadian rhythms 

was noted. The discovery and research on the circadian clock dates back to the 

fourth century B.C. Androsthenes discovered that tamarind opened and closed their 

leaves rhythmically over the course of 24 hours (Bretzl, 1903). The first experiment 

for circadian rhythm was performed in 18th century by a French astronomer, de 

Mairan. From his work on leaf movement of plants kept in the dark, he concluded that 

there was an internal-timing mechanism involved in growth (de Mairan J, 1729). The 

molecular study of plant clocks began in 1985 with the observation that mRNA 

abundance of the LIGHT-HARVESTING CHLOROPHYII A/B-BINDING PROTEIN 

(LHCB) of peas oscillated with a circadian rhythm (Kloppstech, 1985). In addition to 

plants, chronobiology studies were performed in many diverse organisms, such as 

cyanobacteria, fungi, yeast, insects and mammals. (Dunlap et al., 2004) 

The internal circadian clock is reset by exogenous cues daily to keep 

synchronized with the diurnal circle. This process is called entrainment and such 

exogenous cues are often referred to as “zeitgebers” (or “time-givers”). For most 

organisms, the dominant zeitgebers are light and temperature signals. Light input to 

the clock occurs via multiple types of photoreceptors. For example, in plants the 
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phytochrome and cryptochrome photoreceptors control red and blue light signaling to 

the clock (Devlin and Kay, 2000; Somers et al., 1998a). Light regulation of the 

circadian clock occurs within multiple loops of the circadian clock at transcriptional, 

posttranscriptional, and posttranslational levels (Kim et al., 2007; Lidder et al., 2005; 

Yakir et al., 2007). For temperature, however, the input and regulation pathway 

remains poorly understood. Entrainment is mediated by clock-input pathways. The 

central clock is likely composed of multiple interlocked feedback loops, clock outputs 

may also be directly regulated by clock input signaling pathways, and clock 

components may act both within the central clock and in input and output signaling 

pathways (Harmer, 2009).  

 

Figure 1.1 The plant circadian clock system.  

Many physiological processes are regulated by the circadian clock through the output pathways (black 

and blue items). Moreover, the clock is reset by the input pathways (black items). Simultaneously, the 

input pathways are circadian regulated through the output pathways. 

Cyanobacteria and higher plants gain an advantage when the endogenous 
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period is matched to the external diurnal cycle (Highkin and Hanson, 1954; Ouyang et 

al., 1998; Woelfle et al., 2004), which is named fitness advantage. Plants with a clock 

period matched to the environment contain more chlorophyll, fix more carbon, grow 

faster, and survive better than plants with circadian periods differing from their 

environment (Dodd et al., 2005).  
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1.2 The Arabidopsis circadian clock 

1.2.1Tools to investigate clock function 

Circadian rhythms can be mathematically described in the form of sinusoidal 

waves. The rhythm wave includes three main properties: period, phase, and 

amplitude (Figure 1.2). Period is the time length of one cycle and defines the speed of 

the circadian rhythm. Phase describes the timing of specific events within the 

circadian day. Amplitude is defined as half of the difference between the maximum 

and the minimum value of an oscillation. Additionally, the accuracy of circadian 

oscillation is described by its robustness. The lack of circadian rhythms being 

sustainable is defined as arrhythmicity. By circadian convention, the time of onset of a 

signal that resets the clock is defined as zeitgeber (“time-giver”) time 0, abbreviated 

ZT0. ZT0–ZT12 represents the “day”, the time when the organism was exposed to 

light, whereas ZT12–ZT24 represents “night”. (Harmer, 2009). Similarly, the 

organisms are in warmth during ZT0-ZT12, and in coolness during ZT12-24. 

 

Figure 1.2 Analysis of circadian rhythms.  

The figure shows the main features of bioluminescence-based circadian experiments. Period is the 

time length of one cycle and defines the speed of the circadian rhythm. Phase refers to the timing of 
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specific events within the circadian day. Amplitude is half the difference between the maximum and the 

minimum value of an oscillation. 

To monitor the plant circadian rhythm and investigate the mechanism underlying 

the circadian clock, various approaches have been established during the past 

centuries. The most obvious daily rhythm is that of leaf movement. Plant leaves 

change the position and leaf-angle state during a day. By monitoring leaf movement, 

it was found that in a free-running condition, plants have a non-24-hour periodicity (de 

Mairan J, 1729). Monitoring flowering time of plants led to the insights of the seasonal 

regulation of circadian clock (McClung, 2006). Many other bioprocesses such as 

growth, photosynthesis, state of stomata, are also recognized as being clock 

regulated (Yakir et al., 2007). 

In the early 90s, a reporter gene, firefly luciferase expressed under the control of 

a clock-regulated gene, provided a visual output of the endogenous rhythm. This 

boosted circadian research in Arabidopsis (Millar et al., 1992). The luciferase gene 

was fused to the promoter of a clock-regulated gene. Subsequently, in the presence 

of luciferin, the luciferase substrate, bioluminencense emission by the luciferase 

closely tracked the activity of the promoter driving its expression. Among the 

commonly monitored clock-controlled genes, CHLOROPHYLL A/B BINDING 

PROTEIN (CAB) was the first luciferase-fused reporter (CAB::LUC) to be used for 

clock study (Millar et al., 1995). Because the dampening of CAB expression in the 

dark limits the use of CAB::LUC for DD (constant darkness) experiments, the COLD 

AND CIRCADIAN REGULATED (CCR2) was accepted as an ideal substitute, which 

can also maintain its robust rhythm under DD condition (Covington et al., 2001; 

Hanano et al., 2006; Heintzen et al., 1997; McWatters et al., 2007; Schoning et al., 

2007). So far, the promoters of core-clock components, such as CCA1, LHY, TOC1, 

GI, PRR7, and PRR9, have been commonly fused with luciferase gene, serving as 

indicators of clock rhythm at different peak times. During the past years, luciferase-

based visualization assay in Arabidopsis has been a powerful tool for the discovery of 

clock traits (Martin-Tryon et al., 2007; Millar et al., 1995; Onai et al., 2004; Somers et 

al., 2000; Strayer et al., 2000). 

Other assays also contribute to the study of clock function. Quantitative reverse 
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transcriptase–polymerase chain reaction (qRT-PCR) assays allow quantifying the 

rhythmic expression of genes in diverse genetic backgrounds. DNA microarrays allow 

surveying genome-wide circadian regulation of gene expression, leading to important 

insights into clock function (Covington and Harmer, 2007; Covington et al., 2008; 

Edwards et al., 2006; Harmer et al., 2000; Michael et al., 2008; Schaffer et al., 2001). 

Taken together, these molecular-level assays have led to recent rapid progress in the 

plant circadian clock research field. 

1.2.2 The circadian clock model 

The mathematic model of the plant circadian clock consists of three interlocked 

transcriptional feedback loops: the core loop, the morning loop and the evening loop  

(Figure 1.3). The core loop consists of three components: CIRCADIAN CLOCK 

ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and TIME OF 

CAB EXPRESSION 1 (TOC1).  Both CCA1 and LHY are morning-phased Myb-

related transcription factors (Romero et al., 1998), while TOC1, also known as 

PSEUDO-RESPONSE REGULATOR 1 (PRR1), one of the pseudo-response 

regulator family members, is an evening-phased, clock-regulated gene. CCA1 and 

LHY bind directly to the TOC1 promoter and inhibit its expression during the day 

(Alabadi et al., 2001). However, TOC1 also represses transcription of CCA1 and LHY 

at night. In the absence of the core loop, the circadian clock stays arrhythmic, which 

suggests that CCA1, LHY, and TOC1 are notably important for the circadian clock in 

Arabidopsis. CCA1 and LHY are partially genetically redundant. The loss of CCA1 or 

LHY results in a shorter clock period (Green and Tobin, 1999; Mizoguchi et al., 2002). 

However, overexpression of either CCA1 or LHY causes arrhythmicity of the clock 

(Schaffer et al., 1998; Wang and Tobin, 1998). Overexpression of CCA1 or LHY can 

generate a long-hypocotyl and late-flowering phenotype. Similar with CCA1 and LHY, 

the loss of TOC1 results in a shorter period (Mas et al., 2003a; Millar et al., 1995; 

Somers et al., 1998b). The TOC1 promoter contains the evening element (EE), 

whose sequence is AAATATCT (Harmer et al., 2000). The EE was found in many 

clock-regulated genes showing a peak at dusk and was necessary for proper 

circadian expression (Harmer et al., 2000). CCA1 and LHY bind to the EE of the 
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TOC1 promoter to repress the transcription of TOC1 (Alabadi et al., 2001; Harmer et 

al., 2000). 

The morning loop is formed by CCA1, LHY, PRR7, and PRR9. Besides TOC1 

(PRR1), the PRR family contains the other four members: PRR3, PRR5, PRR7, and 

PRR9. Reverse-genetic studies revealed that these PRR genes all play a role in the 

plant clock (Eriksson et al., 2003; Farre et al., 2005; Kaczorowski and Quail, 2003; 

Michael et al., 2003; Nakamichi et al., 2005; Salome and McClung, 2005). During the 

day, PRR9 and PRR7 bind to the promoter of CCA1 and LHY to repress their 

transcription (Nakamichi et al., 2010; Nakamichi et al., 2005). Reciprocally, LHY and 

CCA1 induce the expression of PRR9 and PRR7 by direct binding to their promoter 

(Farre et al., 2005; Portoles and Mas, 2010). The prr7, prr9, and the double mutant 

prr7 prr9, all display long-period phenotypes (Alabadi et al., 2001; Farre et al., 2005; 

Yamamoto et al., 2003), while the prr5 prr7 prr9 triple mutant is essentially arrhythmic 

(Nakamichi et al., 2005). 

Mathematical modeling suggests there is an evening loop comprising TOC1 and 

an unknown component Y. Y positively regulates TOC1 expression and the 

expression of Y is predicted to be negatively regulated by TOC1 (Locke et al., 2005). 

Partial Y function was assigned to the evening gene GIGANTEA (GI). Both GI mRNA 

and protein are clock regulated, with peaks around dusk. The timing of GI 

accumulation would be consistent with TOC1 (Alabadi et al., 2001). However, high 

levels of TOC1 found in the gi mutants suggested additional components may assist 

in Y function (Martin-Tryon et al., 2007).  
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Figure 1.3 One Arabidopsis circadian clock model.  

Circadian-clock components are arranged in interlocked feedback loops. In the core loop, CCA1 and 

LHY negatively regulate TOC1 expression whereas TOC1 represses CCA1 and LHY. In the morning 

loop, PRR7 and PRR9 negatively regulate LHY and CCA1 whereas CCA1 and LHY induce PRR7 and 

PRR9. In the evening loop, TOC1 represses GI expression, whereas GI activates TOC1 expression. In 

addition, CCA1 and LHY represses ELF3, ELF4, and LUX expression. LUX, ELF3, and ELF4 form a 

evening complex and repress PRR7, PRR9, and GI expression.  

In addition to transcriptional regulation, posttranscriptional process also plays a 

critical role in proper clock functions. The stability and translation of some mRNAs are 

influenced by the circadian clock and light signaling (Gutierrez et al., 2002; Kim et al., 

2003; Lidder et al., 2005), and the abundance of many clock proteins is under 

posttranslational control. For example, ZTL, an F-box protein, interacts with both 

TOC1 and PRR5, leading to their degradation by the 26S-proteasome (Baudry et al., 

2010; Kiba et al., 2007; Mas et al., 2003b). ZTL protein interactions are mediated by 

the LOV (Light, Oxygen, or Voltage) domain that also functions as a blue-light 

photoreceptor. The blue light stimulates the physical interaction between GI and ZTL. 
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This interaction stabilizes both ZTL and GI (David et al., 2006; Fujiwara et al., 2008; 

Kiba et al., 2007; Kim et al., 2007; Mas et al., 2003b). 
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1.3 Temperature sensing and signalling in plants 

Plants are exposed to daily and seasonal fluctuations in temperature. As an 

environmental variable, temperature limits the distribution and induces the variation of 

plants on the earth, partially due to strong influence on plant development by non-

stress temperatures.  

1.3.1 Temperature affects plant development 

Within the non-stress range of 12–27°C, plants dramatically differ in growth rates 

and developmental responses (Samach and Wigge, 2005). Lower temperature slows 

down growth. This is generally due to reduced enzymatic activities and biochemical 

reactions (McClung and Davis, 2010). However, mutations in growth repressor gene 

DELLA in gibberellic acid (GA) signaling, are able to compromise the inhibition effect 

of low temperature (Kumar et al., 2012; Stavang et al., 2009). As one thermal 

response, hypocotyl lengthening helps Arabidopsis to adapt to hotter conditions 

(Crawford et al., 2012; van Zanten et al., 2009). Temperature controls hypocotyl 

elongation through a regulator PHYTOCHROME INTERACTING FACTOR 4 (PIF4) 

(Proveniers and van Zanten, 2013). The pif4 mutants are unable to increase 

hypocotyl length at warmer temperatures (Koini et al., 2009; Stavang et al., 2009). 

The flowering of plant is also strongly affected by temperature (Kumar and Wigge, 

2010). Warm temperature induction of flowering in Arabidopsis is triggered by an 

upregulation in the expression of the floral integrator gene FLOWERING LOCUS T 

(FT) (Balasubramanian et al., 2006). A class of micro- RNAs (miRNAs) responsive to 

ambient temperature mediates the temperature regulation on flowering timing. 

Changes in the ambient temperature range lead to alterations in steadystate miRNA 

abundance. Furthermore, with the overexpression of miR172, expression of FT 

ignores higher temperature and increases. On the other hand, the acceleration of 

flowering in response to a high temperature requires the activity of PIF4 (Proveniers 

and van Zanten, 2013). FT expression regulated by PIF4 binding to its promoter is 

highly temperature-dependent (Kumar et al., 2012). 

1.3.2 Hormones signaling pathway is temperature-dependent 
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Plant hormones play a major role in both cell division and cell expansion. As a 

key hormonal factor, auxin can facilitate both division and elongation (Mockaitis and 

Estelle, 2008), which are sensitive to the changes of ambient temperature. PIF4 is 

also involved in the auxin signalling pathway in response to higher temperature. PIF4 

increases auxin biosynthesis in response to higher temperatures by binding to 

promoters of three auxin biosynthesis genes, TRYPTOPHAN 

AMINOSTRANSFERASE OF ARABIDOPSIS 1 (TAA1), CYTOCHROME P450, 

FAMILY 79, SUBFAMILY B, PEPTIDE 2 (CYP79B2) and YUCCA8, and subsequently 

upregulating their expresssion (Franklin et al., 2011; Hornitschek et al., 2012; Sun et 

al., 2012). 

1.3.3 Circadian clock is temperature-regulated 

Two major influences of temperature on the circadian clock are entrainment and 

compensation. Entrainment of the circadian clock, primarily via the detection of 

changes in light and temperature, maintains synchronization between the surrounding 

environment and the endogenous clock mechanism. In Arabidopsis, thermocycles are 

able to entrain the clock in constant light. A key player necessary for thermal 

entrainment is the evening loop component EARLY FLOWERING3 (ELF3), as elf3 

mutants are unable to entrain in thermocycles in darkness (Thines and Harmon, 

2010). Circadian clocks are able to maintain robust rhythms that are constant over a 

broad range of physiological temperatures. This property is termed temperature 

compensation. A dynamic balance between LHY and GI functions maintains robust 

and accurate rhythmicity at higher temperatures, while at lower temperatures, CCA1 

plays a greater role than LHY in temperature compensation (Gould et al., 2006). 

Thermocycles also act on a number of processes such as cell cycle, protein synthesis 

and DNA replication independently of photocycles, suggesting that different sensory 

mechanisms are involved in transmitting temperature information to the clock 

(Michael et al., 2008). Enrainment and compensation are described in further details 

below. 
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1.4 Temperature regulation on circadian clock 

1.4.1 Temperature entrainment 

Acting as a zeitgeber, temperature can set the phase of the clock. This process 

is termed temperature entrainment. It appears that temperature and light 

entrainments are two partially independent processes, as nonoverlapping QTL for the 

two entrainment conditions exists (Boikoglou et al., 2011).  

PRR7 and PRR9 are demonstrated as the key components in temperature 

entrainment. The prr7-3 mutant display a long period for CCA1, LHY and TOC1 and 

the prr9-1 mutant exhibit a long period phenotype as well. The prr7-3 prr9-1 double 

mutant displays a much longer period (>32 h), compared to either single mutant, 

indicating that PRR7 and PRR9 are partially functionally overlapped. The prr7-3 prr9-

1 mutant is compromised in its ability to entrain to thermocycles. When transferred 

from photocycles to thermocycles, the prr7-3 prr9-1 seedlings fail to maintain the 24h 

period and even becomes arrhythmic under some conditions, indicating an inability to 

entrain. Additionally, when exclusively entrained to thermocycles, the prr7-3 prr9-1 

double mutant is seen to be arrhythmic either during or after entrainment. However, 

the entrainment defect is rescued when the prr7-3 prr9-1 mutant is entrained to 

higher-temperature (28°C /22°C) thermocycles. Furthermore, the prr7-3 prr9-1 double 

mutant is not able to be reset by temperature pulses (Salome and McClung, 2005; 

Salome et al., 2010). Taken together, PRR7 and PRR9 are required for temperature 

to set the clock.  

ELF3 is also involved in the temperature entrainment. The elf3 mutant is unable 

to maintain rhythmicity following 4°C or 10°C thermocycle differences (McWatters et 

al., 2000; Thines and Harmon, 2010). The temperature induction of PRR7, PRR9, 

and GI mRNA accumulations are eliminated in the elf3-1 mutant. However, the basal 

accumulation levels of these genes are elevated, especially at night. In contrast, 

overexpression of ELF3 does not affect the phase response to temperature, which 

indicates that ELF3 is a target of temperature input, but not a perceiver of 

temperature (Thines and Harmon, 2010).  
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1.4.2 Temperature compensation 

Plants are naturally exposed to fluctuations of ambient temperature. However, 

the circadian clock can maintain robust and accurate rhythms over a broad range of 

physiological temperatures, which is termed temperature compensation. 

In Arabidopsis, the morning loop components CCA1, LHY, PRR7, and PRR9 

play an important role in the temperature-compensation mechanism. The prr7 prr9 

mutant maintains the same period length as wild type at 12°C, but is lengthened at 

higher temperatures, demonstrating overcompensation (Salome et al., 2010). 

Temperature compensation is restored when expression of CCA1 and LHY are 

reduced, demonstrating that temperature compensation through PRR7 and PRR9 at 

high temperature is completely CCA1-/LHY-dependent (Salome et al., 2010). 

Furthermore, reduction of CCA1 and LHY expression in wild type and prr7 prr9 

resulted in a short period at all temperatures, suggesting that PRR7 and PRR9 are 

regulated by CCA1 and LHY in the temperature compensation mechanism (Salome 

et al., 2010).  

In addition to CCA1 and LHY, GI is also involved in the temperature-

compensation mechanism (Gould et al., 2006). The GI gene encodes a 127-kD 

nuclear protein. GI is regulated by the circadian clock, with a peak in expression 12 h 

after dawn (Fowler et al., 1999). In addition to its role in flowering, GI was also 

identified to affect the circadian clock, as the gi mutant cause a short-period 

phenotype (Park et al., 1999). Meanwhile, the gi mutation results in a reduction in the 

expression of CCA1 and LHY (Fowler et al., 1999). The gi mutant shows normal 

period phenotypes at low temperatures, but becomes sensitive to high temperatures, 

suggesting that the existence of GI expands the temperature range, over which the 

circadian rhythm can remain robust and accurate. It has been demonstrated that GI 

maintains robustness and accuracy of the circadian clock at higher temperatures by 

the temperature-dependent regulation of TOC1, thereby maintaining expression of 

CCA1 and LHY to sustain clock functions. A dynamic balance between LHY and GI 

functions at higher temperature partially explains the temperature compensation 

mechanism. At lower temperatures, CCA1 plays a greater role than LHY in 
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temperature compensation and the maintenance of rhythm robustness (Gould et al., 

2006). 
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1.5 Hsp90 and plant circadian clock 

1.5.1 Molecular chaperones and heat stress 

Molecular chaperones are families of proteins that assist the folding of newly 

synthesized or misfolded proteins, prevent protein aggregation and protect subunits 

from stresses during the assembly of complexes (Saibil, 2013). Their increased 

expression in response to stress is a key characteristic for cell self-protection. Most of 

the main chaperones work in the ATP-dependent way, facilitating their folding or 

unfolding (Mayer, 2010), particularly in response to thermal changes in protein folding.  

Organisms are sometimes exposed to various stressful conditions, including 

sudden temperature increases. Proteins and cell structures are evolutionarily 

optimized to be only stable at certain temperatures. Even a small increase in 

temperature can cause protein unfolding, degradation, and unspecific aggregation. In 

response to heat stress, organisms have evolved a protection mechanism leading to 

the transient expression of heat shock proteins (Hsps). The increased levels of Hsps 

in response to moderate stress conditions are the basis for this resistance (Lindquist, 

1986). Hsps are located in the cytoplasm under normal physiological conditions. 

However, under stress conditions, some of these Hsps rapidly transfer to the nucleus 

(Horwitz, 1992; Lindquist and Craig, 1988). Interestingly, increased Hsps due to one 

type of stress provide protection against other stresses, which is termed 

‘‘crossprotection’’ (Lindquist, 1986). 

Based on molecular mass, Hsps are divided into five major and conserved 

families—Hsp60s, Hsp70s, Hsp90s, Hsp100s (the number indicates the molecular 

mass of each HSP subunit), and small heat shock proteins (sHsps). Hsp60 acts at 

early stages of folding whereas Hsp90 acts at a late stage of folding of substrates, 

integrating signaling functions. Hsp70 directs substrates for unfolding, disaggregation, 

refolding or degradation.  Hsp100 cooperates with either a protease ring for 

degradation or Hsp70 for disaggregation, avoiding the toxic effects of aggregation. 

Hsp70 and Hsp90 are highly interactive, functioning with many partners and cofactors. 

The domains of Hsp70 and Hsp90 interact with specific co-chaperones, which 

regulate their functions in a variety of ways. 
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1.5.2 Heat shock protein 90 

Heat shock protein 90 (Hsp90) is a highly conserved and abundant (i.e., ~1% of 

total proteins) protein in prokaryotic and eukaryotic cells, involved in the assembly, 

maturation, stabilization and activation of key signaling proteins and in assisting cell 

survival under stresses (Pearl and Prodromou, 2006; Picard, 2002). 

In animals, Hsp90 mediates extensive signal transduction, including assisting 

folding of steroid hormone receptors, protein kinases, and transcription factors, as 

well as activation of the substrate to initiate stress signal transduction (Jackson et al., 

2004; Shinozaki et al., 2006; Wegele et al., 2004; Zuehlke and Johnson, 2010). 

Hsp90 is involved in controlling normal growth of human cell and in promoting tumor 

cell development (Scroggins et al., 2007; Zuehlke and Johnson, 2010). So far, a 

number of Hsp90 genes have been identified from many plants. It was recently shown 

that Hsp90s play an important role in plant development, stress response, and 

disease resistance (Jarosz and Lindquist, 2010; Rizhsky et al., 2002; Sangster and 

Queitsch, 2005). 

Hsp90 is a flexible dimer with intrinsic ATPase activity. Almost all homologs of 

Hsp90 are conserved, containing three domains: an N-terminal conserved ATP-

binding domain, a middle domain, and a C-terminal dimerization domain (Cowen, 

2008; Terasawa et al., 2005; Wayne et al., 2011; Young et al., 2001). The N-terminal 

ATP-binding domain contains the ATP/ADP binding site. ATP binding and hydrolysis 

causes the conformational alteration of the N-terminal domain (Hessling et al., 2009; 

Mickler et al., 2009). Some natural substances, such as GDA, closely bind to this 

position to interfere with Hsp90 functions (Whitesell et al., 1992). The middle domain 

plays a key role in binding to substrate. The C-terminal domain is necessary for 

dimerization, and it also serve as the binding site of calmodulin and other substrates 

(Jackson et al., 2004). 

In Arabidopsis, several isoforms of Hsp90 have been found. Among these 

isoforms, Hsp90.1, Hsp90.2, Hsp90.3, and Hsp90.4 are identified to be located in the 

cytoplasm. Hsp90.5, Hsp90.6, and Hsp90.7 were predicted to be located within the 

plastidial, mitochondrial, and endoplasmic reticulum, respectively (Milioni and 

Hatzopoulos, 1997; Sangster and Queitsch, 2005). Hsp90.2, Hsp90.3, and Hsp90.4 
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have high similarity, which suggests that they are functionally redundant. Loss of 

Hsp90 function in plants resulted in abnormal plant phenotypes, including an 

epinastic cotyledon, disc or radial symmetry of cotyledons, and abnormal growth of 

root hairs (Queitsch et al., 2002). It has been demonstrated that Hsp90 participated in 

the seed embryo formation and seed germination and Hsp90 also affected elongation 

of the hypocotyl (Prasinos et al., 2005; Sangster et al., 2008b).  

Hsp90 can be induced by both abiotic and biotic stresses in plants. One of the 

typical abiotic stresses is heat shock stress. Hsp90 is known to be involved in 

regulation of heat shock response. In the promoters of Hsps, there are several heat 

shock elements (HSEs) which can be bound by heat shock factors (HSFs). Under 

normal conditions, Hsp90.2 negatively regulates transcription of heat-induced genes 

by suppression of HSF. Under heat shock stress, Hsp90.2 is inactivated while HSF is 

activated to induce expression of genes containing HSF elements (Yamada et al., 

2007). Under stress conditions, the HSFs closely integrate with HSE to initiate 

transcription of Hsp genes (Jarosz and Lindquist, 2010; Lohmann et al., 2004). In 

addition, it was identified that overexpression of Hsp90.2 suppresses HsfA2 

transcription whereas HsfA2 is induced under inhibition of Hsp90.2 (Nishizawa-Yokoi 

et al., 2010). In response of biotic stress, Hsp90 mediates signaling pathways of 

disease resistance in plants. Plant immunity is initiated by resistance (R) proteins 

which provide disease resistance specificity by conferring resistance to pathogen 

strains expressing the certain molecule. The largest class of R protein contains a 

nucleotide-binding site and leucine-rich repeats, which are termed NB-LRRs 

(Sangster et al., 2008a). The interactions of Hsp90 and SGT1 (suppressor of the G2 

allele of skp1) and RAR1 (required for Mla12 resistance) stabilize NLR (nucleotide-

binding domain and LRR) proteins, which mediate plant defense mechanisms 

(Shirasu and Schulze-Lefert, 2003). Disease resistance mediated by RPM1, an NB-

LRR protein, was weakened in hsp90.2 mutant plants (Hubert et al., 2003).  

1.5.3 Hsp90 and the clock 

As described above, Hsp90 can assist the assembly, maturation, stabilization of 

signaling proteins and it has a broad range of client proteins in Arabidopsis. 

Interestingly, a number of the cytosolic Hsp90 genes oscillate with an evening phase 
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under light-dark cycles. Recent studies showed that inhibition of cytoplasmic Hsp90 

by Hsp90-specific inhibitor GDA and RNAi-mediated depletion results in a long-period 

phenotype. Meanwhile, it was proposed that the clock component ZEITLUPE (ZTL) is 

the client of Hsp90, which suggests that Hsp90 is involved in the clock regulation 

pathway. in vitro “holdase” assay showed that Hsp90 associates with ZTL, protecting 

ZTL against denaturation. Furthermore, the gene expression of TOC1 and PRR5 was 

found to be altered when Hsp90 is depleted, which is subsequently thought to be 

mediated by ZTL. As the stabilizer of ZTL, neither of the mRNA and protein levels of 

GI is affected by inhibition of Hsp90. However, GI was demonstrated to be linked with 

Hsp90 in the posttranslational regulation of ZTL (Kim et al., 2011). So far, how Hsp90 

regulates the circadian clock in Arabidopsis still remains poorly understood and 

further studies are needed for the detailed mechanism.  
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1.6 Thesis objectives 

Previous studies have shown that temperature is an important external cue to 

influence the plant circadian clock through two processes named entrainment and 

compensation. It has been demonstrated that PRR7, PRR9 and ELF3 are the key 

components involved in the temperature entrainment process. The prr7-3 prr9-1 

mutant is not able to be entrained to normal temperature cycles (Salome and 

McClung, 2005). Similarly, the elf3 mutant shows arrhythmicity following 4°C or 10°C 

thermocycle differences (McWatters et al., 2000; Thines and Harmon, 2010). 

Temperature compensation is a collaboration work of CCA1, LHY, PRR7, PRR9, and 

GI. Temperature compensation through PRR7 and PRR9 at high temperature is 

completely CCA1-/LHY-dependent (Salome et al., 2010). However, GI also maintains 

robustness and accuracy of the circadian clock at higher temperatures by maintaining 

expression of CCA1 and LHY to sustain the clock function (Gould et al., 2006). In 

addition, Hsp90 has been shown to influence the circadian clock through ZTL (Kim et 

al., 2011). 

My PhD thesis aimed to identify the role of Hsp90 in temperature regulation on 

the circadian clock. As Hsp90 is a chaperon protein responding to temperature 

change and stress, it is highly likely that Hsp90 serves as a temperature sensor and 

mediates the temperature signaling. For this, I examined the alteration of clock 

phenotypes by both mutating Hsp90.2 and inhibiting Hsp90 protein with its specific 

inhibitor, GDA. To identify the detailed molecular pathway, I tested if the gene 

expression of clock components are affected by Hsp90.2 under temperature 

conditions. Finally, I examined the interaction between Hsp90.2 and its potential 

targets. Further, I examined the other hsp90.2 mutants to see how their circadian 

clock behaves. 
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2.1 Materials 

2.1.1 Mutant lines 

Table 2.1 Mutant and transgenic lines previously made 

Mutant and transgenic lines 
previously made 

Background Reference 

hsp90.2-1 Col  David A. Hubert, 2003 

hsp90.2-3 Col  David A. Hubert, 2003 

hsp90.2-4 Col  David A. Hubert, 2003 

hsp90.2-6 Col  David A. Hubert, 2003 

hsp90.2-7 Col  David A. Hubert, 2003 

hsp90.2-8 Col  David A. Hubert, 2003 

PRR7::PRR7-GFP Col  Nakamichi N, 2010 

PRR9::PRR9-GFP Col  Nakamichi N, 2010 

prr7-3 Col  Salome and McClung, 2005 

prr9-1 Col  Salome and McClung, 2005 

prr7-3 prr9-1 Col  Salome and McClung, 2005 

 

Table 2.2 Luciferase lines 

LUC marker Background Selection marker 

CCR2:LUC Ws-2 Hygromycin 

CCA1:LUC Col PPT 

LHY:LUC Col Hygromycin 

GI:LUC Col PTT 

TOC1:LUC Col PTT 

hsp90.2-1 GI:LUC Col PTT 

hsp90.2-3CCR2:LUC Ws-2 Hygromycin 

hsp90.2-4 GI:LUC Col PTT 

hsp90.2-6 GI:LUC Col PTT 

hsp90.2-7 GI:LUC Col PTT 

hsp90.2-8 GI:LUC Col PTT 

prr7 LHY:LUC Col Hygromycin 

prr9 LHY:LUC Col Hygromycin 

prr7 GI:LUC Col PTT 

prr9 GI:LUC Col PTT 

cca1 CCR2:LUC Ws-2 Hygromycin 

lhy CCR2:LUC Ws-2 Hygromycin 

cca11 lhy CCR2:LUC Ws-2 Hygromycin 

toc1 CCR2:LUC Ws-2 Hygromycin 
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2.1.2 Chemicals 

1,4 Dithiothreitol (DTT) (biomol, #04010.5) 

2-(N-morpholino)ethanesulfonic acid, MES (Duchefa, #M1503) 

3′,5′-Dimethoxy-4′-hydroxyacetophenone, Acetosyringone (Sigma, # D134406) 

Acrylamide (29:1) (Roth, #A124.1) 

Adenine hemisulfate (Sigma, #A-9126) 

Agarose (Bio-Budget, #10-35-1020) 

Ammonium persulfate (Sigma, #A7460) 

Bactoagar (BD, #214040) 

Bacto-tryptone (BD, #211705) 

Beef extract (BD, #212303) 

Boric acid (Merck, #1.00165) 

Bromophenol blue (Sigma, #47522) 

Carbenicillin (Sigma, #C-1389) 

Chloramphenicol (Sigma, #C-0378) 

Chloroform (Merck, #1.02445) 

cOmplete® EDTA-free tablets (Roche, #11873580001) 

cOmplete® Mini EDTA-free tablets (Roche, #11836170001) 

Dimethyl sulfoxide, DMSO (J.T. Baker, #7157) 

DL-Phosphinothricin, PPT (Duchefa, #P0159) 

D-Luciferin (Synchem, #S039) 

Ethanol (J.T.Baker, #8006) 

Ethidium bromide (Sigma; #46067) 

Ethylenediaminetetraacetic acid, EDTA (Merck, #944) 

GDA (Sigma, #G3381) 

Gentamicin sulfate (Sigma, #G-3632) 

GFP-Trap (ChromoTek, #110714001A) 

Glutathione sepharose 4B (GE Healthcare Life Sciences, #17-0756-01) 

Glycerol (Roth, #7530.1) 

Glycine (Roth, #3908.2) 

Hygromycin (Duchefa, #H0192) 

Imidazole (Sigma, #56750) 

IPTG (Roth, #2316.2) 
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Isopropanol (Appli. Chem., #A0900) 

Kanamycin sulfate (Duchefa, #K4378) 

KLORIX®, commercial sodium hypochlorite solution 

Lithium Acetate (Sigma, #L-5750) 

Lithium chloride (Li Cl) (Roth, #3739.1) 

Magnesium chloride (Roth, #KK36.3) 

Methanol (Chem Solute, #1437.2511) 

Murashige and Skoog media, MS (Sigma, #M5524 and Duchefa, #M0221) 

Na2HPO4 (Sigma, #S0876) 

NaH2PO4 (Merck, #1.06346) 

Ni-NTA Agarose ( Qiagen, #139298931) 

Peptone (Difco, #0122-17-4) 

Phenol /Chloroform (Roth, #A156.1) 

Phytoagar (Duchefa, #P0001) 

Protease Inhibitors Cocktail for plant cell and tissue extracts (Sigma, #P9599) 

Rifampicin (Sigma, #83907) 

Sodium Acetate (Merck, #1.06268) 

Sodium chloride, NaCl (Mecrk, #1.37017) 

Sodium deoxycholate (Fluka, #30970) 

Sodium dodecyl sulfate, SDS (Roth, #23.26.2) 

Spectinomycin (Sigma, #S-9007) 

Streptomycin (Sigma, #S-9137) 

Sucrose (Roth, #4621) 

Tetramethylethylenediamine (TEMED) (Fluka, #87689) 

Tris (hydroxymethyl) aminomethane Hydrochloride, Tris HCl (Roth, #5429.3) 

Triton-X100 (Roth, #3051) 

Urea (Sigma, #33247) 

Yeast extract (BD, #212750) 
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2.1.3 Reagents for each method 

Seed sterilization 

Bleach solution: 33% KLORIX® (v/v) 

0.01% agar in sterile ddH2O (w/v) 
 

Growth media for plants 

Table 2.3 MS media for plants 

MS1 MS1 (3% agar) MS3 

4.4 g/L MS 4.4 g/L MS 4.4 g/L MS 

0.5 g/L MES 0.5 g/L MES 0.5 g/L MES 

10 g/L Sucrose 10 g/L Sucrose 30 g/L Sucrose 

1.5% Phytoagar 3% Phytoagar 1.5% Phytoagar 

pH 5.7 pH 5.7 pH 5.7 

 

Table 2.4 Antibiotics for plant selection 

Antibiotics Stock Final concentration 

PPT 12 mg/mL in ddH2O 12 μg/mL 

Hygromycin 30mg/mL in ddH2O 15 μg/mL 

 

Bioluminescence analysis 

50 mM D-luciferin stock 

1 g Firefly D-Luciferin 

71.3 mL 1M Triphosphate buffer (Na2HPO4 / NaH2PO4) pH 8.0 
 

5 mM D-luciferin working solution 

1.5 mL 50 mM D-luciferin stock 
13.5 mL 0.01% (w/v) Triton-X100 

 

Plant DNA extraction 

TE buffer 

10 mM Tris-Cl pH 8.0 
1 mM EDTA 

 

DNA Extraction Buffer (DEB) 

200 mM Tris pH 8.0 
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240 mM NaCl 
25 mM EDTA 

1% (w/v) SDS 
 

PCR 

Primers (Invitrogen) 

dNTP Set, 100 mM Solutions (Fermentas, # R0182) 

Taq-DNA polymerase (Genaxxon Bioscience : PeqLab, #01-1000) 

Pfu II Ultra® II Fusion HS DNA polymerase (Stratagene, # 600670) 

QIAprep® Spin Miniprep kit (Qiagen, #27104) 

10 mg/mL Ethidium bromide 

6X DNA loading buffer (Fermentas, # R1151) 

2X TBE Electrophoresis buffer 

67.23 g/L Tris-Cl 

34.31 g/L Boric acid 
37.22 g/L EDTA pH 8.0 

 

RNA extraction 

RNeasy® Plant Mini Kit (Qiagen, #74904) 

DNase I recombinant, RNase free (Roche, #04716728001) 

Protector RNase Inhibitor (Roche, #03335402001) 

 

qRT-PCR 

OligodT primer (Invitrogen) 

Superscript® II reverse transcriptase (Invitrogen, #18064-014) 

iQTM SYBR® Green supermix (Bio-rad, #170-8882) 

Table 2.5 Primers for qRT-PCR 

CCA1 
F TCTGTGTCTGACGAGGGTCGAATT 

R ACTTTGCGGCAATACCTCTCTGG 

LHY 
F CAACAGCAACAACAATGCAACTAC 

R AGAGAGCCTGAAACGCTATACGA 

PRR7 
F TGAAAGTTGGAAAAGGACCA 

R GTTCCACGTGCATTAGCTCT 

PRR9 
F GCACAGAGAAACCAAAGGAA 

R CTTTCACTCGAGGACGTTGT 
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Genotyping 

GoTaq DNA Polymerase (Promega, #M830B) 

Eva green (Biotium, #31000) 

 

Table 2.6 Primers for genotyping Hsp90.2 mutations 

Mutant lines Primers 
Changes in 
amino acid 

Mutation 
sites* 

hsp90.2-1 
F TGT TGG CTA ATT CGT GCT TC 

G95E 
G/A at 

284bp R TCC ATG AAT TCC TTG GTT CC 

hsp90.2-4 
F TGT TGG CTA ATT CGT GCT TCT 

S100F 
C/T at 

299bp R CCA GTG CTT CCA TGA ATT CCT 

hsp90.2-6 
F TTG TTT GCT TAC GAT TGT GAT TC 

A42T 
G/A at 

124bp R ACC ATC GAG CTT GCT CTT GT 

hsp90.2-7 
F GCT GAA ACC TTT GCT TTC CA 

A11T 
G/A at 
31bp R CTG ATG AGT TCA CGG AGG AAG 

hsp90.2-8 
F AGC CCA ACA ACA TCA AGC TC 

R337C 
C/T at 

1009bp R TCC GAG GTA CTC AGG GAT GA 

* cDNA information of Hsp90.2 (AT5G56030.1) from TAIR  

 

Gateway cloning 

GATEWAY® BP Clonase II enzyme mix (Invitrogen, 11789-020) 

GATEWAY® LR Clonase II enzyme mix (Invitrogen, 11791-020) 

 

Table 2.7 Plasmid used for molecular cloning 

Plasmid antibiotic 

pDONR201 Kanamycin 

pDEST22 Gentamicin 

pDEST32 Carbenicillin 

pJIC8 Carbenicillin 

N-TAP Spectinomycin 

pGEX-6p1 Carbenicillin 

pET28b Carbenicillin 

35s::GW::cherry Carbenicillin 

35s::GW::GFP Carbenicillin 
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Table 2.8 Primers for cloning cDNAs into pDONR 201/207 (Invitrogen) 

Hsp90.2 

F 
GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGC GGA 
CGC TGA AAC CTT 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC TTA GTC GAC TTC 
CTC CAT CT 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC GTC GAC TTC CTC 
CAT CTT GC (no stop codon) 

CCA1 
F 

GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT AAT GGA GAC AAA 
TTC GTC TGG 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTA TGT GGA AGC 
TTG AGT TTC CT 

LHY 
F 

GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT AAT GGA TAC TAA 
TAC ATC TGG 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTA TGT AGA AGC TTC 
TCC TTC CA 

PRR7 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC TTA GCT ATC CTC 
AAT GTT TT (no stop codon) 

F 
GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GAA TGC TAA 
TGA GGA GGG 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC GCT ATC CTC AAT 
GTT TTT TA 

PRR9 

F 
GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGG GGA 
GAT TGT GGT TTT 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC TCA TGA TTT TGT 
AGA CGC GT 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC TGA TTT TGT AGA 
CGC GTC TG (no stop codon) 

ELF3 

F 
GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GAA GAG 
AGG GAA AGA TGA 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC TTA AGG CTT AGA 
GGA GTC AT 

R 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC AGG CTT AGA 
GGA GTC ATA GC (no stop codon) 

 

Growth media for bacteria 

Luria Bertani (LB)  

10 g/L Bacto-tryptone 

5 g/L Yeast extract 
5 g/L NaCl 
1% Agar 

pH 7.5 
 

YEBS 

5 g/L Beef extract 
5 g/L Peptone 

5 g/L Sucrose 
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1 g/L Yeast extract 
0.5 g/L MgSO4 

1% agar 
pH 7.0 

 

Table 2.9 Antibiotics for bacteria selection 

Antibiotics Stock Final concentration 

Gentamicin  100 mg/mL in ddH2O  10 μg /mL 

Carbemicilin  100 mg/mL in ddH2O 
100 μg /mL (E. coli) 

50 μg/mL (Agrobacterium) 

Kanamycin  100 mg in ddH2O  50 μg /mL 

Chloramphenicol  10 mg/mL in ethanol  30 μg /mL 

Rifampicin  25 mg/mL in methanol  25 μg /mL 

Spectinomycin 30 mg/mL in ddH2O  30 μg /mL 

Streptomycin  30 mg/mL in ddH2O  30 μg /mL 

 

Extraction and purification of E.coli expressed proteins 

Table 2.10 Buffers for protein extraction and purification 

Lysis buffer Wash buffer Elution buffer 

50mM NaH2PO4 50mM NaH2PO4 50mM NaH2PO4 

300mM NaCl 300mM NaCl 300mM NaCl 

10mM imidazole 20mM imidazole 250mM imidazole 

pH 8.0 pH 8.0 pH 8.0 

 

1X PBS 

8g NaCl 
1.54g Na2HPO4·12H2O 

0.29g KH2PO4 

1% Triton-X100/PBS 

1% Triton-X100 
1X PBS 

 

5mM Glutathion solution 

15.4mg Glutathion powder 

5ml 50mM Tris-Cl pH 8.0 
 

Dialysis buffer 

10mM Tris-Cl pH 8.0 
30% Glycerol 
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In vitro binding buffer 

Binding buffer 

50mM Tris-Cl pH7.5 
1mM EDTA 

150mM NaCl 
0.1% Triton X-100 
10% Glycerol 

1X BSA 
 

Tobacco Agro-infiltration 

Infiltration solution 

1 mM MgCl2 
1 mM MES  

ddH2O 
 

MES 

MS (4.4G/L) 
10% Sucrose 

2.6mM MES 
pH 5.8 (adjust pH with KOH) 

 

Co-immuneprecipitation buffer 

IP buffer 

50mM Tris-Cl pH 8.0  
150mM NaCl 
1mM EDTA 

10% Glycerol 
1% Triton X-100 
½ tablet/10mL cOmplete® EDTA-free tablets 
50mM MG132 

 

Washing buffer 

50mM Tris-Cl pH 8.0 
140mM NaCl 
1mM EDTA 

0.1% Triton X-100 
 

Protein extraction 
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Denaturation buffer 

100mM NaH2PO4 

10mM Tris-Cl (pH8) 
8M Urea 

 

SDS-PAGE 

SDS-PAGE gel 

Table 2.11 Separation gel for 1.5mm case 

Gel 
concentration 

ddH2O 
(mL) 

Seperation 
buffer (mL) 

Acrylamide 
(mL) 

APS (μL) 
TEMED 

(μL) 

8% 4 2 2 50 5 

15% 2 2 4 50 5 

 

Table 2.12 Stacking gel for 1.5mm case 

ddH2O 
(ml) 

Stacking 
buffer (ml) 

Acrylamide 
(ml) 

APS (μL) 
TEMED 

(μL) 

2.25 0.94 0.5 22.5 7.5 

 

Speration buffer 

1.5M Tris 

0.4% SDS 
pH 8.8 

 

Stacking buffer 

0.5M Tris 

0.4% SDS 
pH 6.8 

 

5X SDS gel running buffer (1L) 

15.17g Tris 

72g glycine  
5g SDS 

 

5X SDS sample buffer 

0.225M/Tris-Cl pH 6.8 

50% glycerol 
5% SDS 
0.25% bromophenol 

0.25M DTT 
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Comassie Blue staining solution 

0.25g Comassie Blue 
100mL of destaining solution 

 

Destaining solution 

500mL methanol 
400mL ddH2O 
100mL acetic acid 

 

Western blot 

Transfer buffer 

25mM Tris 
192mM glycine 
10% methanol 

 

10X PBS-T 

80g NaCl 
15.395g Na2HPO4·12H2O 
2.905g KH2PO4 

5mL Tween 
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2.2 Methods 

2.2.1 Seed sterilization 

Seeds were placed in clean 1.5mL eppendorf tubes. Seeds were rinsed with 

800μl of 100% ethanol for 2 minutes. Afterwards, ethanol was removed and seeds 

were rinsed with 800μl of bleach solution for 2 minutes. The bleach solution was 

removed and seeds were washed with 900μl of sterile water. Finally the seeds were 

suspended in sterile 0.01% agar water. Seeds were plated on the appropriate MS 

agar plate with specific antibiotics listed in Table 2.5 (if required). The plated seeds 

were kept at 4°C for 2-3 days in the dark, and then transferred to the growth cabinet. 

2.2.2 Bioluminescence 

Seedlings were entrained for 7 days in the growth carbinet. On day 7, seedlings 

were transferred to black 96-well Microplates (OPTIPLATE TM-96F, PerkinElmer) 

containing 200μl of MS3 agar in each well. After seedlings were successfully 

transferred, 15μl of 5mM Luciferin was added to each well and plates were sealed 

with transparent film. Finally, each well was perforated using a needle. An additional 

day of entrainment in the growth cabinet was applied before plates were transferred 

to the TOPCOUNT® (PerkinElmer). The tri-chromatic LED panels were attached to 

the stackers which loads the plates.The LED panels can output red light, blue light 

and far red light individually or combination of these three light source. The room 

temperature was normally set at 22°C. 

The luminescence signals were collected by the TOPCOUNT®. Data was 

visualized and analyzed by using TOPTEMP II macro and Biological Rhythms 

Analysis Software System 2.1.2 (BRASS) macro for EXCEL (Southern and Millar, 

2005). For period analysis, period values weighted by relative amplitude error (RAE) 

were considered. RAE was the value of the amplitude error estimate divided by the 

value of the most probable amplitude estimate. This means that RAE is a measure of 

how well the actual data fit to the cosine curve generated by the least-squares 

method. Theoretically, RAE can range from 0 to 1. When RAE=0, the rhythm curve 

perfectly fits the cosine curve. When RAE=1, the curve is entirely arrhythmic. 
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For phase response curve (PRC) assay, plants were grown for 7 days under LD 

condition (12 hours in light and 12 hours in darkness) and then transferred on to 

TOPCOUNT® with red and blue light on for one full day before 3 hours 27°C heat 

pulses were applied every 3 hours to each 96-well plate one after another. The time 

of the first peak after heat pulse was picked and the time difference between pulsed 

and non-pulsed populations was calculated (Covington et al., 2001).  

2.2.3 Plant DNA extraction 

In order to extract DNA from Arabidopsis, firstly, the plant tissue was held in 

1.5mL eppendorf tube with 100µl DNA extraction buffer (DEB) and ground at room 

temperature (RT). Then, an additional 400µl of DEB and 100µl chloroform was added, 

followed by a 5-minute vortex. The tubes were centrifuged for 10 minutes at the 

maximum speed (14,000rpm). A total of 350µl of supernatant was transferred to a 

new tube and mixed with an equal volume of isopropanol. Another 10-minute 

centrifuge and the supernatant was discarded. The pellet was rinsed by 500µl 70% 

(v/v) ethanol. Ethanol was then removed after another 5-minute centrifuge 

(14,000rpm). Finally, the pellet was air-dried and resuspended in 100µl 1X TE buffer. 

Additionally, the concentration of DNA was measured by NanoDrop 1000 

spectrophotometer (Peqlab). 

2.2.4 Gene cloning 

For the PCR amplification of the Hsp90.2 and the clock genes, the PCR mixture 

was prepared as follow: 

 
10x Pfu Ultra II buffer 5.0µl 

dNTP 5.0µl 
DNA 1.0µl 
Primer mix 2.0µl 

Pfu Ultral II DNA polymerase 1.0µl 
H2O 36.0µl 

Total 50.0µl 
 

Primers used for PCR are listed in Table 2.9. 
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2.2.5 Genotyping 

To genotype Arabidopsis, especially to test for single mutation sites, genomic 

DNA was extracted from individual seedlings. The following mixtures were prepared 

before for melt curve genotyping in the LightCycler 480 II (Roche):  

2x Eva buffer (1μL) 

Water 0.69μL 
EBB 0.1μL 
dNTPs 0.04μL 

GoTaq 0.02μL 
Eva green 0.15μL 

Total 1 μL 
 

PCR reaction mixture  

(for 1 reaction) 
Water 3.6μL 
2x Eva buffer 5μL 

Primer (f) 0.2μL 
Primer (r) 0.2μL 
DNA 1μL 

Total 10μL 
 

Program setting and data analysis followed the Manual of LightCycler 480 II 

(Roche). 

2.2.6 Cloning with Gateway 

All Gateway® empty vectors were propagated in Escherichia coli (E. coli) DB3.1 

cells. E. coli DH5α cells were used to propagate transformed vectors. BP reaction 

was performed to recombine PCR products into pDONR201. The BP reaction was set 

up as follow: 

 

Target DNA  0.5μl (≈100fmol) 
pDONR201 0.5μl (≈100fmol) 
TE buffer 3μl 

BP Clonase Enzyme mix 1μl 

Total 5μl 

 
The reaction was left at 25°C for at least 6 hours. After that, 1μl of this reaction 

mix was used to transform E. coli DH5α cells. 
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LR reaction was performed to transfer targert genes from entry vectors to 

destination vectors. LR reaction was set up as follow:  

 
pDONR201  0.5μl  
Destination vector 0.5μl  

TE buffer 3μl 
LR Clonase Enzyme mix 1μl 

Total 5μl 
 

The reaction was left at 25°C for at least 6 hours. Then, 1μl of LR reaction was 

used to transform E. coli DH5α cells.  

2.2.7 E.coli transformation 

For E. coli transformation, an aliquot (50μl) of chemical-competent E. coli cells 

was thawed on ice and 1μl of plasmid was added to the cells. After being left on ice 

for 30 minutes, the cells were heated at 42°C for 1-2 minutes. Then the cells were 

immediately moved onto ice and cooled for 2 minutes. After that, 500μl of LB media 

was added to the cells, and they were incubated at 37°C for 1 hour, with gentle 

shaking. After incubation, 100μl of the cell suspension was plated on an appropriate 

selective LB agar plate. Plates were sealed with parafilm and incubated overnight at a 

37°C. 

2.2.8 Isolation of Plasmid DNA 

A single colony growing on the selective plate was picked and inoculated in 

10mL of selective LB media. The cells were cultured at 37°C for approximately 16 

hours. Then the cells were collected by centrifuging at 4000rpm for 10 minutes. 

Plasmid was extracted by using the Qiaprep® Spin Miniprep Kit (Qiagen). Finally, 

DNA concentration was measured by NanoDrop 1000 spectrophotometer (Peqlab). 

2.2.10 Isolation and purification of proteins 

To express proteins in E. Coli BL21 (DE3) or E. Coli Rosetta, 10mL cells were 

pre-cultured in selective LB media overnight.  From 10mL culture, 2mL of cell culture 

was added to 300mL fresh selective LB medium. The new culture was subsequently 

incubated at 37°C until its OD600 reached 0.8-1.0. IPTG was added to induce protein 

expression (1mmol IPTG for pET28b plasmid). Then, the cell culture was incubated at 
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18°C overnight.  On the next day, cells were collected by centrifuging at 4000rpm for 

10 minutes. To isolate the protein, 10mL lysis buffer together with 1 piece of 

proteinase inhibitor was added to the cells and these cells were broken by sonification. 

After that, particulate material was pelleted by centrifugation at 13,000rpm for 30 

minutes. Meanwhile, 1mL Ni-NTA Agarose was rinsed by 10mL lysis buffer for 3 

times in 15mL falcon tube. After centrifuging, the clarified supernatant was loaded 

onto the Ni-NTA Agarose beads. For maximal binding of the His- tagged protein, the 

tube was rotated for 2 hours at 4°C. The fully bound Ni-NTA Agarose beads were 

spun down at 500rpm for 2 minutes and the supernatant was removed. The Ni-NTA 

Agarose beads were twice rinsed by 10mL wash buffer and resuspended in 10mL 

wash buffer before loaded onto an empty column.  The flow through wash buffer was 

discarded. In the end, the His-tagged protein was eluted by 10mL elution buffer.  

To isolate and purify GST-tagged proteins (encoded by pGEX6p-1 plasmid), the 

E.coli culture was harvested, and the cells were washed with 1X PBS and centrifuged. 

The pellet was resuspended in 10mL of 1X PBS. Afterwards, 100μl of lysozyme (100 

mg/mL) was added, followed by a 15-minute incubation on ice. One tablet of 

proteinase inhibitor was added and the cells were sonicated. After sonication, 1% of 

Triton X-100/PBS was added. This mixture was centrifuged at 10000rpm at 4°C for 20 

minutes after rocked at 4°C for 30 minutes. During the centrifuge, 100μl of glutathione 

sepharose 4B resin was prepared and equilibrated with 1X PBS three times. After 

centrifuge, the clarified supernatant was rocked with pre-equilibrated resin at 4°C for 

2 hours. The resin was collected by centrifuging at 1500rpm for 5 minutes and 

washed by 1X PBS. In the end, the GST-tagged protein was eluted with 5mM, 10mM, 

or 20mM glutathione solutions. 

2.2.11 in vitro protein binding assay 

To identify if proteins interacted with each other in vitro, 2μg His-tagged protein 

were mixed with 2μg GST-tagged protein, binding buffer and Ni-NTA agarose, and 

then was incubated at 4°C for 2 hours. The Ni-NTA agarose was spun down at 

8000rpm at 4°C and washed with 400μl of binding buffer. This was repeated for 4 

times. In the end, 50μl 1X SDS sample buffer was added and boiled at 95°C for 5 

minutes. This sample was ready for SDS-PAGE. 
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2.2.12 Western blot 

To transfer proteins onto Immobilon-P membrane (Millipore), the membrane was 

activated by rinsing with 100% methanol. Protein transferring was done with Mini-

PROTEAN® Tetra System (Bio-rad). The cassette including protein gel, membrane 

and paper was assembled and inserted into the tank filled with transfer buffer. For 

transferring, constant voltage was set at 100V for 1mm gel.  

After transferring, the membrane was immediately incubated in 5% milk/PBS-T 

for 30 minutes. After briefly washed with 1X PBS-T, the membrane was incubated 

with primary antibody in 5mL 1X PBS-T at 4°C overnight. The membrane was 

washed with 1X PBS-T for 4 times before incubated with secondary antibody in 1X 

PBS-T for 2 hours. In the end, after washed for 4 times, to visualize the protein, the 

membrane was incubated with solution A and solution B (GE Healthcare) in 1X PBS-

T for 5 minutes before developments in the dark room.  

2.2.13 Agrobacterium transformation 

Agrobacterium tumefaciens (Agrobacterium) strain ABI (Schomburg et al., 2001) 

was used. An aliquot (50μl) of electrocompetent cells was thawed on ice. Then, 1μl of 

plasmid and 80μl of sterile ddH2O were added to the cells. The diluted cells were 

transferred to an electroporation cuvette for electroporation. After electroporation, 

cells were immediately mixed with 900μl of LB media and transferred to 1.5mL 

eppendorf tube. After incubated for 2 hours at 28°C, 100μl of the cell culture was 

plated on selective YEBS agar plate. Plates were sealed with parafilm and incubated 

at 28°C for 2 days to allow for colony growth (Weigel and Jurgens, 2002). 

2.2.14 Tobacco infiltration 

Agrobacterium cells were cultured in 100mL selective YEBS media for 2-3 days 

at 28°C at 250rpm. Before infiltration, the cell cultures were centrifuged at 4000rpm 

for 10 minutes, and the supernatant was discarded. Pellets were resuspended in 

infiltration buffer. Cell density was determined by measuring OD600. The 

resuspended cells were diluted with infiltration buffer to OD 1.0. Then, 1μl of 1M 

acetosyringone was added and the cultures were left in the darkness at room 

temperature for 3 hours. Appropriate bacterial strains were mixed with the 
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Agrobacterium strain P19 harboring the expression vector (Voinnet et al., 2003). 

Bacterial mixtures were infiltrated into N. bentamiana leaves with a 1mL syringe. 

Plants were watered several hours before the infiltration. After infiltration, plants were 

kept in the greenhouse for 3 days before microscope observation or sample collection. 

2.2.15 Co-immunoprecipitation 

The deep-frozen infiltrated tobacco leave tissue was ground with TissueLyser 

(Retsch MM301) for 1 minute at frequency of 1/30s. Then, 1mL of IP buffer was 

added before centrifuging at 14,000rpm for 15 minutes at 4°C. Afterwards, the 

supernatant were loaded onto pre-equilibrated GFP trap beads and incubated at 4°C 

for 2.5 hours on an orbital shaker. After incubation, the GFP trap beads were washed 

with 1mL washing buffer. This was repeated for 4 times. In the end, the buffer was 

removed and 50μl of 2X SDS sample buffer was added, followed by a boiling at 95 °C 

for 5 minutes. 

2.2.16 RNA extraction 

Arabidopsis seedlings were grown for 7 days. Around 100 mg seedlings was 

harvested and transferred to a 1.5mL eppendorf tube together with two metal beads.  

Immediately the tube was frozen in liquid nitrogen. To grind the harvested samples, 

tubes containing samples were loaded onto TissueLyser (Retsch MM301). The 

grinding took 30 seconds for Arabidopsis tissue. During the grinding process, tissue 

sample was kept frozen. RNeasy® Plant Mini Kit was used to extract RNA. In the end, 

the RNA was resuspended in 80μl RNase-free water.  

Before performing DNA digestion, resuspended RNA was centrifuged at 

14,000rpm at 4°C for 30 minutes. Then, 70μl of the supernatant was transferred to a 

fresh tube. To do this, 2μl DNase, 1μl RNase inhibitor and 8μl DNase recombinant 

buffer were added. This was incubated at 37°C for 2 hours.   

Subsequently, RNA was precipitated by adding 8μl 3M NaAc (pH 5.2) and 160μl 

100% ethanol. The precipitation lasted overnight at -20°C. RNA was collected by 

centrifuging at 14000rpm at 4°C for 1 hour. The supernatant was removed and the 

pellet was washed three times with 100% ethanol. In the end, the pellet was 

resuspended in 32μl RNase-free water. From this 32μl RNA, 1μl was used to 
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measure the RNA concentration by using NanoDrop 1000 (Peqlab) and 1μl was used 

as template to check for genomic DNA contamination.  

2.2.17 Reverse transcription 

cDNA was generated by RNA reverse transcription. Before reverse transcription, 

RNA concentration was measured and 3μg RNA was taken for reverse transcription.  

Reverse transcription was performed, according to cDNA synthesis protocol for 

Superscript® II RT (Invitrogen). 

2.2.18 qRT-PCR 

Enrichment of DNA sequences was measured by qRT-PCR. Primers were 

designed using Primer3Plus (Untergasser et al., 2007) to obtain amplicon sizes that 

ranged from 150-200bp (Table 2.5). qRT-PCR was performed with iQTM SYBR® 

Green supermix (Bio-rad) on the LightCycler 480 II (Roche).  

2.2.19 Confocal imaging 

For all microscopy experiments, a Zeiss LSM 780 confocal laser scanning 

microscope and Zeiss ZEN 2011 Software was used. N. benthamiana leaf excisions 

and A. thaliana seedlings were submerged in water. The spectral settings were as 

follows: for GFP, excitation 488 nm and emission 505-580nm; for mCherry RFP, 

excitation 587nm and emission spectra 605-700nm. 
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Some of the results in this chapter represent collaborative work: 

Koumis philippou performed Topcount assay in Figure 3.1 

Amanda Davis performed Topcount assay in Figure 3.2 

Amanda Davis analyzed the data of phase response curve in Figure 3.4. 
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3.1 Introduction 

        Recent studies showed that Hsp90 is involved in the regulation of the clock. 

Inhibition of cytoplasmic Hsp90 by Hsp90-specific inhibitor GDA and RNAi-mediated 

depletion results in a long period phenotype (Kim et al., 2011). Hsp90 is a heat-

induced protein chaperon. As such, I tested if Hsp90 affects the clock phenotype 

under temperature conditions. 

        At the molecular level, the clock component ZTL was proposed to be the client of 

Hsp90. GI was demonstrated to be linked with Hsp90 in the posttranslational 

regulation of ZTL (Kim et al., 2011). However, my data showed that GDA lengthened 

the period of ztl mutant, which indicated that ZTL may be the only target of Hsp90. 

Thus, I tested other clock genes to reveal the potential targets of Hsp90. 

        In this chapter, the phase response assay revealed that Hsp90.2 is involved in 

the clock regulation pathway before dawn. CCA1, LHY, PRR7, PRR9, GI, and ELF3 

are all activated and highly expressed within this time window. As previously shown, 

ELF3, PRR7, and PRR9 are key components in temperature entrainment (Salome 

and McClung, 2005; Salome et al., 2010)  (McWatters et al., 2000; Thines and 

Harmon, 2010). The morning clock loop (CCA1, LHY, PRR7, and PRR9) and GI were 

identified to be involved in the temperature-compensation mechanism (Salome et al., 

2010) (Gould et al., 2006). Therefore, I examined these potential targets by applying 

GDA to the clock mutants of Arabidopsis. 

        Core clock components CCA1 and LHY are highly likely to be targets of Hsp90.2, 

as the clock period of their mutants were not influenced by GDA. However, I 

confirmed that CCA1 and LHY are not the direct targets of Hsp90.2. As PRR7 and 

PRR9 are transcription repressors of CCA1 and LHY (Nakamichi et al., 2010; 

Nakamichi et al., 2005), therefore, I tried to identify if CCA1 and LHY are indirect 

targets of Hsp90.2 through PRR7 and PRR9.  

        Finally, PRR7 and PRR9 were proved to be involved in the Hsp90.2 regulation 

pathway in this chapter, but they were not the direct targeted by Hsp90.2. However, 

ELF3 was demonstrated to repress transcription of PRR9 (Eva, 2012).  Therefore, I 

tested if ELF3 has a direct interaction with Hsp90.2.  
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3.2 Results 

3.2.1 Hsp90 is involved in the clock regulation pathway 

 

Figure 3.1 The hsp90.2-3 mutation resulted in a more pronounced long-period phenotype under 

both LD and WC conditions. 

(A) Bioluminescence of CCR2:LUC under LD condition. (B) Bioluminescence of CCR2:LUC under WC 

condition. (C) Period length of CCR2:LUC under LD condition. Ws LD, 25.68±0.09h; hsp90.2-3, 

26.34±0.08h. (D) Period length of CCR2:LUC under WC condition. Ws LD, 25.74±0.08h; hsp90.2-3, 

26.56±0.10h. Error bars indicate SEM, n=48. LD = light-dark. WC = warm-cool. 

To test if Hsp90 contributes to oscillator behavior, the hsp90.2 known alleles 

were analyzed (Hubert et al., 2009). The hsp90.2-3 was one of these mutants and 

was first used to test Hsp90 function on clock activity. After (light-dark) LD 

entrainment condition, the hsp90.2-3 mutant had a period of 26.34h, slightly longer 

than Ws wild type, whose period length was 25.68h (Figure 3.1A, C). More 

pronounced than LD condition, under WC condition, the hsp90.2-3 mutant achieved a 

26.56h daily cycle, longer than that 25.74h of Ws wild type (Figure 3.1B, D). 

Therefore, the period phenotype difference under both conditions suggested that 

Hsp90 could influence plant circadian clock. 
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Figure 3.2 GDA lengthened circadian period and reduced the circadian robustness under both 

LD and WC conditions. 

(A) Bioluminescence of CCR2:LUC under LD condition. (B) Bioluminescence of CCR2:LUC under WC 

condition. (C) Period length of CCR2:LUC under LD and WC conditions. Ws LD DMSO, 26.10±0.13h; 

Ws LD GDA, 27.30±0.28h; Ws WC DMSO, 26.27±0.09h; Ws WC GDA, 27.23±0.23h. (D)Robustness 

of CCR2:LUC under LD and WC conditions. Ws LD DMSO, 4013.97±288.48cps; Ws LD GDA, 

870.58±86.31cps; Ws WC DMSO, 5152.67±314.95cps; Ws WC GDA, 878.26±64.87cps. Error bars 

indicate SEM, n=48. LD = light-dark. WC = warm-cool. 

Hsp90 has several isoforms in Arabidopsis (L.H. Pearl, 2006). To mimic the total 

hsp90 loss-of-function mutation, Ws wild-type seedlings were treated with 2µM GDA. 

The optimal concentration (2µM) of GDA was determined by dose-response assay. 

After either photic or thermal entrainment, GDA triggered a longer period, which was 

similar to hsp90.2-3 mutation (Figure 3.2A, B, C). Additionally, GDA dampened the 

bioluminescence signals and reduced robustness of circadian clock (Figure 3.2A, B, 

D). These pharmacological data by GDA phenocopied the hsp90.2-3 effect and 

provided confirmation that Hsp90 is involved in clock regulation. 
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To ensure that the phenotype caused by hsp90 loss-of-function did not 

specifically exist in Ws background with CCR2:LUC promoter. Bioluminescence 

assays were repeated in Col background with TOC1:LUC promoter. The results are 

consistant with those in Ws background (Figure 3.3). These replicates in Col 

background showed that Hsp90 broadly existed in Arabidopsis clock regulation 

system.   

 

Figure 3.3 GDA lengthens circadian period and reduced the circadian robustness in Col 

background under both LD and WC conditions. 

(A) Bioluminescence of TOC1:LUC under LD condition. (B) Bioluminescence of TOC1:LUC under WC 

condition. (C) Period length of TOC1:LUC under LD and WC conditions. Col LD DMSO, 25.37±0.15h; 

Col LD GDA, 26.34±0.16h; Col WC DMSO, 25.71±0.21h; Col WC GDA, 27.36±0.40h. (D)Robustness 

of TOC1:LUC under LD and WC conditions. Col LD DMSO, 196.64±20.19cps; Col LD GDA, 

52.91±5.03cps; Col WC DMSO, 137.24±13.07cps; Col WC GDA, 37.13±2.80cps. Error bars indicate 

SEM, n=48. LD = light-dark. WC = warm-cool. 
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Figure 3.4 Ws wild type and hsp90.2-3 mutant responded to heat shock differently at late night 

and early morning. 

The phases were shifted due to the heat shock (27°C).  The X axis shows different circadian time 

points, at which the plant phases data were collected. The time point “0” is the time when light is on. 

The Y axis is the phase differences between the heat-shocked plants and the negative control, the 

non-heat-shocked plants.  Error bars indicate SEM, n=48. 

        I performed the phase response assay to identify how Hsp90 contributes to the 

temperature regulation on the clock at different times. The responses to heat shock 

were different between hsp90.2-3 and Ws wild type before dawn. At ZT(-3), the Ws 

wild type had an 8h phase shift whereas the hsp90.2-3 mutant had a 6h phase shift, 

2h lower than the Ws wild type. It was similar at ZT0 when the light was just on. There 

was a 2h difference between hsp90.2-3 and the wild type. During the morning time, at 

ZT3 and ZT6, there was almost no significant difference between hsp90.2-3 and Ws 

wild type (Figure 3.4). In conclusion, the pre-dawn phase shifts indicate that Hsp90 

assists circadian clock to keep stable before dawn.   
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3.2.2 Hsp90 affects circadian clock through morning clock genes 

 

Figure 3.5 Morning-clock-gene mutants were not GDA sensitive. 

(A) The blue and red bars represent period length of CCR2:LUC under WC condition with DMSO 

treatment and with GDA treatment, respectively. Ws DMSO, 26.22±0.11h; Ws GDA, 28.00±0.29h; 

CCA1 DMSO, 25.73±0.11h; CCA1 GDA, 25.97±0.15h; lhy DMSO, 24.13±0.07h; lhy GDA, 24.96±0.13h; 

toc1 DMSO, 22.27±0.11h; toc1 GDA, 22.10±0.18h; gi DMSO, 24.51±0.19h; gi GDA, 25.87±0.16h; 

CCA1 lhy DMSO, 20.00±0.30h; CCA1 lhy GDA, 19.50±0.34h. (B) The purple bars represent the 

difference of period length between DMSO-treated seedlings and GDA treated seedlings. Error bars 

indicate SEM, n=48. 

I assumed that Hsp90, as a chaperone, affects the clock by regulating known 

clock components, including CCA1, LHY, TOC1, and GI. As shown in Figure 3.3 and 

3.4, by inhibiting Hsp90, GDA phenocopied the Hsp90.2 loss-of-function mutant. 

Applying GDA to clock mutants could identify if the effect of this Hsp90 inhibition on 

circadian clock requirs CCA1, LHY, TOC1, or GI. If the effect on circadian clock is 

dependent on these clock components, their mutants should not show a lengthened 

period. For the cca1, lhy, toc1, gi and cca1 lhy mutants, the period were all shorter 

than Ws wild type (Figure 3.5A). The GDA-treated Ws wild-type seedlings showed a 

longer period, compared to non-treated seedlings. This GDA effect was also 

observed in the gi mutant. However, in the cca1 and toc1 mutants, GDA had almost 

no effect on period length. In the lhy mutant, the effect of GDA was weaker. Moreover, 

in the cca1 lhy double mutant, GDA even shortened the period length (Figure 3.5A, B). 

To conclude, as period length of the cca1, lhy, toc1 mutants were not affected by 

GDA. Taken together, CCA1, LHY, and TOC1 were identified genetically as potential 

transcriptional targets of Hsp90.  
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Figure 3.6 Accumulation of CCA1 and LHY were altered by GDA under WC condition. 

(A) and (B), accumulation of CCA1 and LHY are not affected by GDA under LD condition. (C) and (D), 

accumulation of CCA1 and LHY are altered by GDA under WC condition. Samples were collected 

every 2 hours from ZT20 to ZT12 next morning. Expression values are normalized to PP2A and are 

representative of three biological replicates. Error bars indicate SD. 

As shown in the phase response assay, Hsp90 contributed to pre-dawn clock 

function (Figure 3.2). Furthermore, I identified that morning component CCA1 and 

LHY were genetically required by Hsp90. Therefore, I first checked gene expression 

of CCA1 and LHY under both LD and WC conditions, respectively. Under LD 

condition, accumulation of CCA1 and LHY were not affected by GDA (Figure 3.6A, B). 

However, under WC condition, GDA-treated seedlings have reduced accumulation of 

CCA1 and LHY at early morning and increased accumulation CCA1 and LHY after 

ZT4, compared to the non-treated seedlings. The accumulation curve turned “flatter” 

with “fatter” tails as the day progressed (Figure 3.6C, D). For CCA1, it no longer 

peaked at ZT0. Instead, accumulation of CCA1 maintained at a relatively high level 

from ZT0 to ZT6 (Figure 3.6C). For LHY accumulation, GDA resulted in the similar 
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effect as CCA1 (Figure 3.6D). In conclusion, although GDA caused a longer period 

phenotype in Arabidopsis under both LD and WC condition, here the qRT-PCR 

results indicated that the way Hsp90 regulated the clock might be different. Under WC 

condition, Hsp90 profoundly regulated the accumulation of CCA1 and LHY. 

 

Figure 3.7 Accumulation of PRR7 and PRR9 were altered under WC condition. 

(A) and (B) Accumulation of PRR7 and PRR9 are altered by GDA under WC condition. Samples were 

collected every 2 hours from ZT20 to ZT12 next morning. Expression values are normalized to PP2A 

and are representative of three biological replicates. Error bars indicate SD. 

Hsp90 potentially regulated the morning clock components CCA1 and LHY. 

PRR7 and PRR9 were proposed to inhibit transcription of CCA1 and LHY by binding 

to their promoter regions (Farre EM, 2005). Hsp90 was likely to indirectly regulate 

transcript accumulation of CCA1 and LHY through PRR7 and PRR9. Therefore, I 

tested if PRR7 and PRR9 were likely targets of Hsp90. Examining transcript 

accumulation as above, I first checked the wave-form of PRR7 and PRR9. Similar to 

CCA1 and LHY, accumulation of PRR7 and PRR9 were affected by GDA and both 

were reduced. Particularly, the transcription curve of PRR9 was shifted and the peak 

value was reduced by more than half. Therefore, in addition to CCA1 and LHY, 

transcript abundance of PRR7 and PRR9 were also regulated by Hsp90. 
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3.2.3 Hsp90 regulates transcription of CCA1 and LHY through PRR9 

 

Figure 3.8 Accumulation of CCA1 and LHY are not altered in prr9 mutants in the morning. 

(A) and (B) Accumulation of CCA1 and LHY in prr7 mutant are altered in the morning. (C) and (D) 

Accumulation of CCA1 and LHY remain unchanged in prr9 mutant in the morning. (E) and (F) 

Accumulation of CCA1 and LHY in prr7 prr9 mutant remain unchanged in the morning. Samples were 

collected every 2 hours from ZT0 to ZT12 next morning. Expression values were normalized to PP2A 

and are representative of three biological replicates. Error bars indicate SD. 

As previously mentioned, it was proposed that gene accumulation of CCA1 and 

LHY are inhibited by PRR7 and PRR9. Therefore, my hypothesis was that Hsp90 

could affect transcription of CCA1 and LHY through PRR7 and PRR9. To genetically 
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test this, I applied GDA to prr7, prr9, and prr7 prr9 mutants and focused on gene 

transcription in the morning. In GDA-treated prr7, transcription levels of CCA1 and 

LHY exceeded the non-treated ones after ZT4, which was similar to the Col wild type 

(Figure 3.8A, B). Accumulation of LHY diverged more significantly from ZT6 to ZT10 

(Figure 3.8B). Without PRR7, transcription of CCA1 and LHY are still sensitive to 

GDA, which indicated that PRR7 was not the sole target of Hsp90. In GDA-treated 

prr9, transcription levels of CCA1 and LHY remained the same as non-treated plants. 

This could be interpreted as PRR9 is a critical target of Hsp90, as GDA did not affect 

transcription of CCA1 and LHY in the morning without PRR9 (Figure 3.8C, D). Not 

surprisingly, in prr7 prr9, there was no significant difference in transcription levels of 

CCA1 and LHY in the morning, especially from ZT6 to ZT10 (Figure 3.8E, F). To 

summarize, the morning clock component PRR9 is a genetic target of Hsp90, 

whereas PRR7 could not be proved to be a target of Hsp90. 

3.2.4 Clock period is related to transcription level of CCA1 and LHY 
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Figure 3.9 Accumulation of CCA1 and LHY are positively related with the concentration of GDA 

applied. 

(A) and (B), accumulation of CCA1 and LHY with GDA treatment at different concentrations (0.25μM, 

0.5μM, 1μM and 2μM) at ZT6 (blue bar) and ZT8 (red bar), respectively. (C) and (D), averaged 

accumulation of CCA1 and LHY at different concentration. The replicate samples were treated with 

GDA at different concentrations (0.25μM, 0.5μM, 1μM and 2μM) for two days. Samples were collected 

at ZT6 and ZT8. Expression values were normalized to PP2A and are representative of three biological 

replicates. Error bars indicate SD. 

As GDA lengthened period (Figure 3.3) and raised accumulation of CCA1 and 

LHY in the morning (Figure 3.6 C, D), my hypothesis was that period length was 

positively related to the accumulation of CCA1 and LHY in morning. Time points ZT6 

and ZT8 were selected to monitor the effect of GDA at different concentrations 

(0.25μM, 0.5μM, 1μM, and 2μM), because as shown, GDA resulted in the most 

significant effect at ZT6 and ZT8 (Figure 3.6C, D). When the concentration of GDA 

gradually increased from 0 to 2μM, accumulation of CCA1 slightly increased at ZT6. 

However, at ZT8, accumulation of CCA1 steadily increased with the increasing 

concentration of GDA. Compared to the amount at 0μM (DMSO), which is 0.05, the 

accumulated CCA1 at 2μM reached 0.22, which is 4 times as much as that at 0μM 

(Figure 3.9A). To clarify the trend, I averaged the accumulation at ZT6 and ZT8. The 

accumulation of CCA1 was positively related with concentration of GDA (Figure 3.9C). 

Accumulation of LHY was similar to CCA1. Although there was an unexpected 

decrease at ZT8 (2μM), the averaged amount showed the trend that accumulation of 

LHY increased with the increasing concentration of GDA (Figure 3.9 B, D). In parallel, 

period length was measured at different concentrations of GDA treatment. For both 

Col LHY::LUC and GI::LUC, the periods became longer when concentration of GDA 

gradually increased (Figure 3.10A, B). In conclusion,   period length was positively 

related to the transcription levels of CCA1 and LHY in the morning.  
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Figure 3.10 Period length increases with increasing concentration of GDA. 

(A) Period length of Col LHY:LUC with GDA treatment at different concentrations. DMSO, 26.71±0.24h; 

0.25μM, 27.03±0.19h; 0.5μM, 27.23±0.12h; 1μM, 27.35±0.18h; 2μM, 29.14±0.43h. (B) Period length of 

Col GI:LUC with GDA treatment at different concentrations. DMSO, 26.93±0.13h; 0.25μM, 28.27±0.19h; 

0.5μM, 28.23±0.27h; 1μM, 30.49±0.42h; 2μM, 30.04±0.35h.Error bars indicate SEM, n=24. 
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3.2.5 GDA reduces the amount of ELF3 

 

Figure 3.11 Protein amount of clock components after GDA treatment. 

Confocal microscopy of CCA1, LHY, PRR7, PRR9, and ELF3 in N. benthamiana. All proteins tagged 

with GFP protein were expressed under the 35s promoter. The confocal microscopy experiment was 

performed 3 days after Agrobacterium being infiltrated, The images were generated 3 hours after 10μM 

GDA was injected into tobacco leaves. The left lane shows GFP signals after DMSO was injected, 

which served as a negative control. The right lane shows the GFP signal after GDA was injected.  

    As previously shown, GDA affected the circadian clock through morning genes. 

Therefore, I measured the protein amount of CCA1, LHY, PRR7, and PRR9 before 

and after GDA treatment to see if any of these were potentially controlled at the 
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protein level by Hsp90 action. In infiltrated tobacco leaf cells after 3-hour GDA 

treatment. GFP signals of CCA1-GFP and LHY-GFP remained the same, compared 

to those without GDA treatment. This indicates that Hsp90 is unlikely to directly 

control the amount of CCA1 and LHY at the protein level. The qRT-PCR data 

suggested that GDA alters gene accumulation of CCA1 and LHY through PRR9 

(Figure 3.8C-F). However, protein accumulation of PRR7 and PRR9 were also not 

affected by GDA (Figure 3.11). As such, the regulator of PRR9 and PRR7 could be a 

protein target. 

    As demonstrated, gene accumulation of PRR9 was altered by GDA (Figure 

3.7B). I next focused on examining its transcriptional regulator ELF3. Since ELF3 

binds to the PRR9 promoter to repress its expression (Eva et al., 2012), my 

hypothesis was that GDA altered gene accumulation of CCA1, LHY, and PRR9 

through an ELF3 cascade. Therefore, I next examined if GDA affects the protein 

amount of ELF3. The image showed that after GDA was injected into tobacco leaves, 

the fluorescent signal of GFP-tagged ELF3 was significantly reduced, compared to 

the non-GDA treated cells. In conclusion, GDA reduces ELF3 protein, which 

implicates that Hsp90 activity in stabilizing ELF3 levels. This might result in the 

alteration of gene accumulation of PRR9, which subsequently result in alterations of 

gene accumulation of CCA1 and LHY. 
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3.2.6 ELF3 is co-localized with Hsp90.2 
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Figure 3.12 ELF3 is co-localized with Hsp90.2. 

(A) Confocal microscopy of Hsp90.2-RFP versus PRR7-GFP, PRR9-GFP and ELF3-GFP in N. 

benthamiana.  (B) Confocal microscopy of ELF3-RFP versus PRR9-GFP in N. benthamiana. All 

proteins were expressed under the 35S promoter. The images were generated 3 days after co-

infiltration. From left to right in (A) and (B), they were RFP channel, GFP channel and GFP/RFP mixed 

channel. 

        As GDA is a specific inhibitor of Hsp90, the reduction of ELF3 after GDA 

treatment (Figure 3.11) suggested that ELF3 was likely to be a target of Hsp90. To 

identify if ELF3 and Hsp90.2 physically interact with each other, I co-expressed 

Hsp90.2 and ELF3. Meanwhile, I co-expressed PRR7 and PRR9, since it was shown 

that PRR9 is a potential target of Hsp90 (Figure 3.8). When Hsp90.2-RFP was co-

expressed with GFP as a negative control, the fluorescent signal only existed in the 

cytoplasm and no signal was detected in the nucleus. When Hsp90.2-RFP was co-

expressed with PRR7-GFP, Hsp90.2 was still in the cytoplasm while PRR7 was 

expressed only in the nucleus. This shows there is no overlap between Hsp90.2 and 

PRR7. When Hsp90.2-RFP was co-expressed with PRR9-GFP, Hsp90.2 appeared 

both in the cytoplasm and in the nucleus. PRR9 was highly focused in the center of 

the nucleus with relatively low accumulation around the outer ring. Interestingly, after 

co-expression, the Hsp90.2 was not homogeneously localized in the nucleus, but was 

focused in PRR9’s outer ring area, which indicates that there is an overlap in 

accumulation. When Hsp90.2-RFP was co-expressed with ELF3, both ELF3 and 

Hsp90.2 appear in both the cytoplasm and nucleus, which shows that ELF3 relocates 

some Hsp90.2 proteins into the nucleus. In both the nucleus and the cytoplasm, there 

was an exact overlapping between ELF3 and Hsp90.2 (Figure 3.12A).  

        To answer why Hsp90.2 appeared only in the outer ring area of PRR9 in the 

nucleus when Hsp90.2 and PRR9 were co-expressed, I co-expressed ELF3-RFP and 

PRR9-GFP. The results showed that ELF3 also appeared in the PRR9 outer ring area 

only. This is quite different from the single ELF3-RFP expression and PRR9-GFP co-

expression with RFP, in which the RFP signals homogeneously existed in the nucleus 

(Figure 3.12B). According to Figure 3.12A and B, Hsp90.2 and ELF3 exactly 

overlapped with each other. In conclusion, ELF3 relocated the Hsp90.2 to the nucleus 
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and had a co-localization with Hsp90.2, which indicated that there might be a physical 

interaction between ELF3 and Hsp90.2. 

 

 

Figure 3.13 ELF3 can bind with Hsp90.2 in vivo. 

The Co-immunoprecipitation assay showed that ELF3 could physically bind to Hsp90.2 in vivo. 

Agrobacteria carrying two target plasmids to express ELF3 and Hsp90.2 were injected into tobacco 

leaves. After three days, the leave sample was collected and proteins were extracted. The N-terminal 

GFP tagged ELF3 was pulled down by the GPF trap beads and the N-terminal N-TAP tagged Hsp90.2 

was detected by western blot. 

ELF3 was able to bind to Hsp90.2 in tobacco. In the first lane, the sample 

contained both N-TAP-tagged Hsp90.2 and GFP-tagged ELF3. When ELF3 was 

pulled down by GFP trap beads, Hsp90.2 was also pulled down together and could 

be detected by western blot. In the second lane, the sample did not contain Hsp90.2 

protein. Therefore, although ELF3 was pulled down, there is no Hsp90.2 signal on the 

film. In the third lane, the sample lacked of ELF3 protein. However, Hsp90.2-GFP 

signals were detectable. The reason might be that the huge amount of Hsp90.2 in the 

sample could unspecifically bind to the GFP trap beads. Therefore, some GFP 

signals could be detected. In the fourth lane, neither ELF3 nor Hsp90.2 was included 

and there was no signal detected. To conclude, ELF3 and Hsp90.2 could physically 

interact with each other in vivo, indicating that ELF3 might be a direct target of Hsp90. 
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3.3 Discussion 

In this chapter, I showed that Hsp90 was involved in the temperature-regulation 

of the Arabidopisis circadian clock. Hsp90 indirectly affected gene accumulation of 

CCA1 and LHY through PRR9, which resulted in the changing of clock period length. 

Moreover, Hsp90 could directly interact with ELF3, and this involves redirection of 

PRR9 protein as well.  ELF3 were shown to be an upstream regulator of PRR9 

(Herrero et al., 2012; Thines and Harmon, 2010). Therefore, Hsp90, one of the most 

important protein chaperons, might affect the Arabidopsis circadian clock sequentially 

through ELF3, PRR9, and CCA1/LHY.  

The effect of Hsp90 on clock period length was examined under both light-dark 

and warm-cold entrainment conditions (Figure 3.1). Under both conditions, the 

hsp90.2-3 mutants showed a longer period than the Ws wild type, which suggested 

that Hsp90 was involved in both light- and temperature-regulation. However, the 

lengthening effect caused by hsp90.2-3 mutation was more significant when 

seedlings were entrained under warm-cold condition. Since the light and temperature 

pathway were partially independent, Hsp90 is likely not only involved in the common 

signaling pathway shared by light and temperature but also specifically involved in the 

independent temperature signaling pathway.  

As a specific inhibitor of Hsp90, GDA treatment on the seedlings resulted in 

longer period phenotypes in both Ws and Col background (Figure 3.2 and Figure 3.3). 

The lengthening effect of GDA was even stronger than the hsp90.2-3 mutation. Since 

Hsp90 has several isoforms in Arabidopsis, as long as the concentration was high 

enough, GDA results in ATP-binding defects in all Hsp90s, whereas hsp90.2-3 

mutation only altered the ATP-binding site of Hsp90.2. Therefore, it was reasonable 

that GDA could strongly lengthen the period by inhibiting more Hsp90s. In addition, 

GDA could also dampen bioluminescence signals and the reduce robustness of 

circadian clock (Figure 3.2 and Figure 3.3). This might be due to the ATP-binding 

defects of Hsp90 (Whitesell et al., 1992). Furthermore, Col wild type was more 

sensitive to GDA, as the period differences between GDA-treated and non-GDA-

treated seedlings were larger compared the differences in Ws wild type, which 

suggested that Col might be more sensitive to stress condition due to its sensitivity to 
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the defects of Hsp90. As a conclusion, it was again demonstrated that Hsp90 was 

involved in the thermal regulation of the clock.  

The phase response curve assay revealed that Hsp90.2 influenced the clock 

response to heat shock stress before dawn. The differences in phase shift were only 

observed at ZT(-3) and ZT0, which suggested that Hsp90 could affect the circadian 

clock by interacting with the late-evening or early-morning clock components. It is 

consistent with previously published results, which showed that Hsp90 can influence 

the clock through three evening components TOC1, GI and ZTL (Kim et al., 2011). 

Therefore, I tested all the potential targets of Hsp90.  

GDA resulted in different period phenotypes in the different clock mutants. The 

cca1, lhy, and toc1 single mutants maintained a similar period length after GDA 

treatment. The period was even shorter for cca1 lhy double mutant (Figure 3.5), 

indicating that these three clock components were potential targets of Hsp90. 

Consistently, CCA1, LHY and TOC1 were previously identified to be involved in 

temperature regulation (Gould et al., 2006; Salome et al., 2010). In addition, the 

periods of both elf3 and gi mutants were lengthened by GDA, indicating that ELF3 

and GI transcripts were not the targets of Hsp90. This does not preclude these as 

protein targets. However, previous findings showed that both ELF3 and GI are the 

key components in temperature regulation processes (Gould et al., 2006; Thines and 

Harmon, 2010). This point will be discussed later in the final chapter. 

The gene accumulation patterns showed that as potential targets of Hsp90, the 

gene expression of CCA1 and LHY were not affected by GDA under light-dark 

entrainment while their expression patterns were altered under warm-cold 

entrainment condition (Figure 3.6). This set of results suggested that in light-

regulation pathway CCA1 and LHY were not targets of Hsp90. In addition, the 

alteration in expression of CCA1 and LHY indicates that CCA1 and LHY are the 

indirect targets of Hsp90 in temperature-regulation pathway. Interestingly, the 

influence of Hsp90 on gene accumulation of CCA1 and LHY was PRR9-dependent. 

In the prr9, the gene accumulation pattern was not affected by GDA (Figure 3.8). 

PRR9 was demonstrated to be one of the transcriptional repressor of CCA1 and LHY 

(Nakamichi et al., 2010; Nakamichi et al., 2005). Therefore, PRR9 is proposed to be 
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one component in the Hsp90 regulation, downstream of Hsp90 and upstream of 

CCA1 and LHY.  

        In Figure 3.9 and 3.10, I linked gene expression levels to period length. When 

the expression of CCA1 and LHY increased at ZT6 and ZT8, the period lengths also 

increased gradually. Although expression of CCA1 and LHY in GDA-treated plant was 

lower than non-treated at peak times (Figure 3.6), period was lengthened due to the 

relatively higher expression late in the morning. This indicates that period length was 

not determined by the peak expression amount of CCA1 and LHY, whereas it was 

somehow determined by the width of the time window of expression above certain 

level. To conclude, Hsp90 lengthens period by raising expression in the morning and 

thus lengthening the effective-expression time window.  

        GDA reduced ELF3 protein amount, instead of CCA1, LHY, PRR7, and PRR9 

(Figure 3.11). In addition, Hsp90.2 co-localized with ELF3 in both nucleus and 

cytoplasm (Figure 3.12).  Furthermore, in vivo protein binding assay demonstrated 

that Hsp90.2 physically interacted with ELF3 (Figure 3.13). These results filled the 

gap between PRR9 and Hsp90.2. ELF3 was demonstrated to repress PRR9 by 

binding to its promoter (Herrero et al., 2012). Also, the increase of PRR9 and PRR7 

by thermal induction was eliminated in the efl3-1 mutant (Thines and Harmon, 2010). 

Therefore, as the upstream regulator of PRR9, ELF3 was considered as the direct 

target of Hsp90, mediating the regulation of Hsp90 on the circadian clock. Further 

discussion would be in the final chapter. 
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4.1 Introduction 

Alleles of Hsp90.2 beyond hsp90.2-3 were previously reported. These include 

hsp90.2-1 (G95E), hsp90.2-4 (S100F), hsp90.2-6 (A42T), hsp90.2–7 (A11T) and 

hsp90.2-8 (R337C). Here these alleles were examined for clock phenotypes. 

 

Figure 4.1 Point mutations in Hsp90.2. 

Hsp90 contains three domains: an N-terminal conserved ATP-binding domain, a middle domain, and a 

C-terminal dimerization domain. Six point mutations are included: hs90.2-1 (G95E), hsp90.2-3 (D80N), 

hsp90.2-4 (S100F), hsp90.2-6 (A42T), hsp90.2-7 (A11T), and hsp90.2-8 (R337C). 

hsp90.2-1 (G95E) is adjacent to residues making contact with ATP. The G95E 

change alters the local charge density (David A. Hubert, 2003). hsp90.2-3 (D80N) 

alters a residue previously shown to make multiple ATP contacts in the crystal 

structure of yeast Hsp90 (Prodromou et al., 1997). The hsp90.2-4 (S100F) is adjacent 

to residues making direct contact with ATP, resulting in the addition of a large 

hydrophobic side chain (David A. Hubert, 2003). hsp90.2–7 encodes an A11T change 

at the N-terminal strand of an Hsp90 protein. hsp90.2–8 encodes a R337C change at 

the middle domain physically adjacent to the ATPase domain in the closed 

conformation of Hsp90 dimer. The hsp90.2–8 mutation (R337C) exhibits a nearly full 

loss of ATPase activity (Figure 4.1).  

To identify the influence of these hsp90.2 mutations on the clock, and 

subsequently reveal the different functions of Hsp90, I crossed the hsp90.2 mutants 
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with GI::LUC-containing Col-0 and screened the homozygous lines for periodicity 

analysis. Differentiated phenotypes were detected.  

  



Chapter 4    Allele specific actions of Hsp90.2 on the clock 

71 

4.2 Results 

4.2.1 Light-entrained Hsp90.2 mutants  

 

Figure 4.2 hsp90.2 mutations resulted in different period phenotypes under LD condition. 

(A) Bioluminescence of GI:LUC in hsp90.2-1 mutant; (B) Bioluminescence of GI:LUC in hsp90.2-4 

mutant; (C) Bioluminescence of GI:LUC in hsp90.2-6 mutant; (D) Bioluminescence of GI:LUC in 

hsp90.2-7 mutant; (E) Bioluminescence of GI:LUC in hsp90.2-8 mutant. (F) Period length of Col, 

hsp90.2-4, hsp90.2-6, hsp90.2-7 and hsp90.2-8. Col, 27.38±0.11h; hsp90.2-4, 27.41±0.30h; hsp90.2-6, 

28.26±0.11h; hsp90.2-7, 27.63±0.15h; hsp90.2-8, 27.25±0.23h. The blue curve in (A)-(E) is Col 

GI:LUC. All lines were entrained under LD condition. Error bars indicate SEM, n=48. LD = light-dark. 
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To identify the effect on the circadian clock resulting from different mutations in 

the Hsp90.2 protein, I crossed the respective hsp90.2 alleles to Col GI:LUC plants 

and screened the homozygous lines to measure their period length after entrainment. 

First, I phenotyped these plants under light-dark entrainment conditions. The hsp90.2-

1 bioluminescence signal was significantly lower. Perhaps the luciferase reporter was 

silenced. However, the original data showed that the bioluminescence signal was at 

normal strength before the free-running period started.  This indicated that the low 

signal strength was conditional (Figure 4.2A). A shorter period length was observed in 

the rhythmic curve for hsp90.2-4 (Figure 4.1B). However, the period length remained 

the same as Col wild type (Figure 4.2F). For hsp90.2-6, period length was 

significantly longer than that of Col wild type (Figure 4.2C, F). For hsp90.2-7, the 

period was slightly longer compared to the wild type (Figure 4.2D, F). For hsp90.2-8, 

the period was slightly shorter than wild type, which is more obvious in the rhythmic  

curve chart (Figure 4.2 E, F). In conclusion, beside hsp90.2-1, which had a 

dampened bioluminescence signal, another two alleles, hsp90.2-4 and hsp90.2-8, 

had no significant period difference compared to wild type. In contrast, hsp90.2-6 and 

hsp90.2-7, had a longer period than the wild type.  
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4.2.2 Temperature-entrained Hsp90.2 mutants 

 

Figure 4.3 hsp90.2 mutations resulted in different period phenotypes under WC condition. 

(A) Bioluminescence of GI:LUC in hsp90.2-1 mutant; (B) Bioluminescence of GI:LUC in hsp90.2-4 

mutant; (C) Bioluminescence of GI:LUC in hsp90.2-6 mutant; (D) Bioluminescence of GI:LUC in 

hsp90.2-7 mutant; (E) Bioluminescence of GI:LUC in hsp90.2-8 mutant. (F) Period length of Col, 

hsp90.2-4, hsp90.2-6, hsp90.2-7 and hsp90.2-8. Col, 27.52±0.19h; hsp90.2-4, 26.74±0.31h; hsp90.2-6, 

27.50±0.10h; hsp90.2-7, 27.19±0.17h; hsp90.2-8, 26.71±0.21h. The blue curve in (A)-(E) is Col 

GI:LUC. All lines were entrained under WC condition. Error bars indicate SEM, n=48. WC = warm-cool. 
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Hsp90 is associated to the temperature signaling pathway, as demonstrated in 

Chapter 3. I thereby measured the additional alleles period length under warm-cold 

entrainment condition. As in the light-dark condition, hsp90.2-1 has a dampened 

bioluminescence signal was dampened (Figure 4.3A). For hsp90.2-4, the period was 

significantly shortened (Figure 4.3B, F). hsp90.2-6 had no period change compared to 

Col wild type (Figure 4.3C, F). For hsp90.2-7, according to the bar chart, the period 

was slightly shortened compared to the Col wild type (Figure 4.3D, F). The period of 

hsp90.2-8 was significantly shortened, as was hsp90.2-4 (Figure 4.3E, F). In 

conclusion, hsp90.2-1 again had a dampened bioluminescence signal. hsp90.2-4 and 

hsp90.2-8 had a much shorter period compared to the Col wild type. hsp90.2-7 had a 

slightly shorter period phenotype, while the period length of hsp90.2-6 remained the 

same as the Col wild type. 
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4.3 Discussion 

In this chapter, I identified that the examined alleles of hsp90.2 resulted in 

different period phenotypes. After light-dark entrainment, hsp90.2-6 and hsp90.2-7 

mutations resulted in a longer period (Figure 4.2), while under warm-cold condition, 

hsp90.2-4 and hsp90.2-8 mutations resulted in a shorter-period phenotype (Figure 

4.3). Therefore, the diverged period phenotype suggested that Hsp90 affects the 

circadian clock in various ways.  

Including previously mentioned hsp90.2-3 (D80N) in chapter 3, most of the 

hsp90.2 mutation I studied are located in the N-terminal ATP-binding domain (Figure 

4.1), with the exception of hsp90.2-8, which was located in the middle domain. 

Interestingly, according to both the period phenotypes and the location sites of the 

mutations, hsp90.2 could be divided into two groups. The first three mutations located 

at the beginning of N-terminal site, including hsp90.2-7 (A11T), hsp90.2-6 (A42T) and 

hsp90.2-3(D80N) caused a longer period phenotype. However, hsp90.2-4 (S100F) 

and hsp90.2-8 (R337C) were the last two mutations, causing a shorter period 

phenotype.  

Interestingly, although the mutations similarly cause the reduction of ATPase 

activity, they resulted in different clock phenotypes. Both hsp90.2-7 (A11T) and 

hsp90.2-8 (R337C) destabilize the lid-closed conformation. As previously 

demonstrated, the lid-closed conformation is important for ATPase activity of Hsp90 

(Ali et al., 2006). Moreover, the two mutations reduce Hsp90-ND dimer formation in 

vitro (Hubert et al., 2009). However, the two mutations resulted in different period 

phenotypes. Furthermore, as shown in Chapter 3, GDA also resulted in a longer 

period, the same as the hsp90.2-3, hsp90.2-6, and hsp90.2-7 while hsp90.2-4 and 

hsp90.2-8 resulted in shorter periods. Therefore, in addition to reducing ATPase 

activity, hsp90.2-4 and hsp90.2-8 should have other functions in clock regulation.  

One possible interpretation is that hsp90.2-8 causes defects in substrate binding. 

Hsp90 can assist the folding, stabilization and activation of various substrate proteins, 

including kinases and transcription factors involved in signal transduction and 

regulatory processes (Jackson et al., 2004; Krukenberg et al., 2011; Milioni and 

Hatzopoulos, 1997; Pratt et al., 2004). Importantly, the middle domain of Hsp90 plays 
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a key role in binding to substrate (Jackson et al., 2004). The hsp90.2-8 mutation may 

alter the structure of the protein binding site. Thus, this alteration may affect the 

folding or stabilization of clock transcription factors, such as CCA1, LHY, and ELF3. 

Similarly, the hsp90.2-4 mutation site might physically adjacent to the binding sites of 

the substrate proteins. The additional hydrophobic side chain may interfere the 

binding of substrate proteins. 

Since hsp90.2-4 and hsp90.2-8 resulted in shorter periods, instead of the longer 

period phenotype of hsp90.2-x, which was thought to be caused by the reduction of 

ATPase activity, the proposed defects of substrate protein binding should be more 

dominant. The reason could be that Hsp90.2 is specifically recruited by some 

transcription factors involved in clock regulation while reduced ATPase activity can be 

made up by other Hsp90s. 

In conclusion, Hsp90 may be involved in the regulation of the circadian clock in at 

least two ways. One is possible to be ATP-dependent, as once the ATPase activity of 

Hsp90 was reduced, the clock period was lengthened.  The other might be directly 

binding to its client proteins to assist their folding, stabilization, and activation. This 

could relate to the short period effects after thermal entrainment.  
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5.1 Final discussion 

5.1.1 ELF3 and GI collaborate in thermal signal input pathway 

I identified that the hsp90.2-3 mutant and GDA-treated seedlings showed a 

longer period phenotype (Figure 3.1 and 3.2). I further identified ELF3 is one client of 

Hsp90. Once Hsp90.2 in the cell was inhibited by GDA, the amount of ELF3 was 

reduced (Figure 3.11, 3.12, and 3.13). Transcription levels of PRR7 and PRR9 were 

not significantly elevated by GDA treatment (Figure 3.7). However, it was 

demonstrated that ELF3 is the transcription repressor of PRR9. In the elf3 mutant, the 

gene accumulation level of PRR9 was elevated. Meanwhile, the period of weak 

alleles of elf3 was shortened (Kolmos et al., 2011). In addition, the gi mutant was still 

influenced by GDA. However, it has been proposed that Hsp90 influences the clock 

through ZTL, a downstream protein regulated by GI. Hsp90 and GI are tightly 

connected in the ZTL-stabilization, as the low levels of ZTL in gi mutant is not 

significantly reduced by GDA, which suggests that GDA should not result in a longer 

period in the gi mutant (Kim et al., 2007).  

To explain these conflicts, I propose that both ELF3 and GI are involved in the 

temperature input pathway. These two components may be involved in two partially 

independent pathways. ELF3 and GI influence transcription of CCA1 and LHY in 

opposite ways. ELF3 represses the transcription of PRR9 whereas PRR9 represses 

the transcription of CCA1 and LHY (Herrero et al., 2012; Nakamichi et al., 2005). 

Therefore, in theory, ELF3 positively regulates the transcription of CCA1 and LHY. 

However, GI was demonstrated to positively regulate the transcription of CCA1 and 

LHY. The gi mutations result in a reduction in the expression of CCA1 and LHY 

(Fowler et al., 1999). Meanwhile, the gi mutants cause a short-period phenotype 

(Park et al., 1999). Interestingly, the nighttime repressor ELF3-ELF4-LUX negatively 

regulates the transcription of GI (Mizuno et al., 2014). Thus, the accumulation level of 

CCA1 and LHY may reach the balance between the regulations of ELF3 and GI. In 

conclusion, Hsp90 influences the circadian clock through both ELF3 and GI, and 

ELF3 and GI are involved in partially independent pathways.  
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5.1.2 PRR9 and CCA1 may serve as stress indicators 

Under normal conditions, Hsps are mainly located in the cytoplasm. However, 

under stress conditions, Hsps rapidly transfer to the nucleus (Horwitz, 1992; Lindquist 

and Craig, 1988). When HS90.2 was expressed alone in tobacco cells, it was found in 

the cytoplasm. However, Hsp90.2 was co-expressed with 35s::PRR9, some Hsp90.2 

transferred to the nucleus (Figure 3.12A), which suggested that accumulation of 

PRR9 may be recognized as a signal of stress.   

The gene accumulation of PRR9 was elevated in warm conditions (Mizuno et al., 

2014). Considering this point, it is reasonable to match the expression of PRR9 to the 

daily cycle. Normally, temperature increases from early morning to the middle of the 

day. Meanwhile, expression of PRR9 gradually increases in the morning and reaches 

its peak level in the middle of the day. The oscillation of PRR9 accumulation perfectly 

matches the daily rhythmic changes of temperature. The average accumulation level 

of PRR9 may match the seasonal changes, as in summer the average level of PRR9 

would be higher than that in winter. Therefore, my hypothesis is that PRR9 could 

serve as a “thermometer” which tells the plant the temperature. Overexpression of 

PRR9 may mislead the plant in sensing the actual temperature, simulating a heat 

stress and triggering stress responses, which is like a “fever”. 
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Figure 5.1 CCA1-GFP is co-expressed with Hsp90.2-RFP in N. benthamiana. 

When CCA1 was highly expressed in the nucleus, Hsp90.2 transferred into nucleus but is not 

completely co-localized with CCA1. The green channel is GFP tagged CCA1. The red channel is RFP 

tagged Hsp90.2 

CCA1 may be also recognized as another stress indicator. Hsp90.2 transferred 

to the nucleus when CCA1 was highly expressed (Figure 5.1). It appears that CCA1 

was involved in the biotic stress regulation pathway. When I injected transformed 

agrobacteria with several clock constructs into tobacco leaves, only the 

Agrobacterium containing 35s::CCA1 resulted in a severe infection, which might 

indicate that CCA1 is involved in the plant immune system. However, it was 

previously demonstrated that CCA1 controls the expression of defense genes and 

timing of the immune response. The cca1 mutant showed compromised resistance 

whereas the CCA1-overexpression line showed enhanced resistance (Wang et al., 

2011). This is completely opposite to my observation. One explanation is that the 

exogenous CCA1 strongly competes with native CCA1 in tobacco, which heavily 

interfere with the CCA1 immune regulation pathway, resulting in higher susceptibility 
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to pathogens. If considering the low expression level of CCA1 at higher temperature, 

there should be a “clock-temperature-immune triangle” in Arabidopsis.  

5.1.3 Temperature alters the functions of evening complex ELF3-ELF4-LUX 

CCA1, LHY, PRR7, PRR9, and GI respond to a temperature upshift only during 

the dark period. The transcription of these genes were regulated by the evening 

complex (EC) night repressor ELF3-ELF4-LUX. A warmer temperature inhibits EC 

function, whereas a cooler temperature stimulates its function (Mizuno et al., 2014).  

It is still unclear whether DNA-binding of EC to the target promoters is inhibited 

by a warm temperature or a warm temperature inhibits the repressor ability of EC. 

Considering the role of Hsp90, it can either regulate the protein stability of ELF3 or 

correct formation of EC. When Hsp90 is not sufficient to stabilize the proteins, the 

ability of EC may be inhibited under a warm condition.  

5.1.4 Hypothesis on CCA1/LHY-PRR7/PRR9 self-balancing loop 

CCA1/LHY activates transcription of PRR7/PRR9 whereas PRR7 inhibits 

transcription of CCA1/LHY (Nakamichi et al., 2005). When the accumulation of CCA1 

and LHY were reduced from ZT20 to ZT2 by GDA, the accumulation of PRR7 and 

PRR9 also increased at a slower pace (Figure 3.6 and 3.7). After ZT4, the lower 

accumulation of PRR7 and PRR9 in GDA-treated seedlings did not inhibit CCA1 and 

LHY as much as in the non-treated seedlings. Therefore, the accumulation of CCA1 

and LHY became relatively higher after ZT4. Meanwhile, expression of PRR7 and 

PRR9 after ZT10 was also elevated, which might be due to the higher amount of 

CCA1 and LHY. It was noted that the expression peaks of CCA1/LHY and 

PRR7/PRR9 were all shifted (Figure 3.6 and 3.7).  

As mentioned in the discussion part of Chapter three, the effective expression 

window of CCA1/LHY was widened by GDA, which may explain the long period 

phenotype. In fact, less active Hsp90 may make the clock more sensitive to 

temperature. GDA may degrade clock-related components at 22°C as fast as that at 

30°C, and thus switched the seedlings into a “summer state”. Based on this 

hypothesis, the wider effective expression window of CCA1/LHY matches the long-

day conditions in summer. In summer conditions, temperature typically reaches its 
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peak around 2 p.m., which is around 8 hours after dawn. This point matches the 

shifted expression pattern of PRR7/PRR9. 

In summary, my hypothesis is that the CCA1/LHY-PRR7/PRR9 morning loop 

model may tell us how the plant anticipates the daily rhythmic changes in different 

seasons. 

5.1.5 three-layer clock model 

So far, developed mathematical models consist of the core loop, the morning 

loop and the evening loop. However, one question remains to be answered: which 

component contributes more to the clock? Here I propose a modified model, in which 

the clock components are classified into three hierarchies. 

The first layer (inner layer) contains three core components: CCA1, LHY, and 

TOC1 (Figure 5.2 ). These three components define the “clock”. These three genes 

are notably crucial, as in the cca1 lhy toc1 triple mutant, the clock stays arrhythmic 

(Green and Tobin, 1999; Mizoguchi et al., 2002). Moreover, overexpression of either 

CCA1 or LHY causes arrhythmicity of the clock  (Schaffer et al., 1998; Wang and 

Tobin, 1998). The second layer (middle layer) contains the “adjusters” (Figure 5.2). 

The signal receivers are the outputs of clock. They form interlocked loops with core 

components, which reciprocally regulate each other. Once they receive the signals 

from the third layer (outer layer), their own expression or function are altered. They 

form interlocked loops with core clock components, thus the core clock is finely 

adjusted. PRR7 and PRR9 are two of the adjusters. The prr7, prr9, and the double 

mutant prr7 prr9, make the clock slower (Alabadi et al., 2001; Farre et al., 2005; 

Yamamoto et al., 2003). In addition, the prr7-3 prr9-1 double mutant is not able to be 

reset by temperature pulses (Salome and McClung, 2005; Salome et al., 2010). The 

third layer (outer layer) contains the “signal mediators” (Figure 5.2). The signal 

mediators interact with the signal receivers to complete the signal transduction. The 

signal mediators do not have to be clock outputs. ELF3 may be one of the mediators. 

The repressing efficiency of ELF3 on PRR7 and PRR9 changes at different 

temperatures (Mizuno et al., 2014). The temperature induction of PRR7 and PRR9 

mRNA accumulations were eliminated in the elf3-1 mutant. (Thines and Harmon, 

2010). 
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Figure 5.2 The three-layer clock model. 

The three-layer clock model divides the clock into three hierarchies. The core components CCA1, LHY, 

and TOC1 are included in the first layer (white cycle). Defined as “adjuster”, PRR7 and PRR9 are 

included in the second layer (light green cycle). The third layer (dark green cycle) contains the “signal 

mediators”, such as ELF3 

In conclusion, since many organisms have evolved a circadian clock, the clock 

itself should be fairly conserved. Therefore, I propose that the clock only contains two 

genes, a MyB and a PRR. Considering the algae, its clock may not contain a 

temperature-regulation pathway, due to constant temperature in water. From an 

evolutionary perspective, living organisms may develop temperature-regulating clock 

systems when they left the water and started to live on the land. This could have 

driven an increase in clock complexity. 
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5.2 Perspectives 

5.2.1 Clock rhythms under different temperature 

The hsp90.2-3 mutant under warm-cold entrainment showed a longer period 

compared to the Ws wild type. The entrainment condition was 22°C for 12h and 16°C 

for 12h. The free running stage was at 22°C. To examine effect of Hsp90 on the clock 

at different temperature, more experiments can be performed under different 

entrainment conditions.  

The warm entrainment condition can be set as 28°C for 12h and 22°C for 12h 

while the cool entrainment condition can be set as 16°C for 12h and 12°C for 12h. As 

the period is lengthened by higher temperature and shortened by lower temperature, 

but what remains unclear is how the clock behaves under these entrainment condition 

when Hsp90 is inhibited. There must be several temperature regulation-pathways 

involved in the Arabidopsis circadian clock, as the dynamic balance between LHY 

and GI at higher temperature provides temperature compensation while at lower 

temperatures CCA1 plays a greater role in temperature compensation and the 

maintenance of rhythm robustness (Gould et al., 2006). It will also be interesting to 

examine how cca1, lhy, toc1, prr7, prr9, gi, and elf3 mutants respond to higher and 

lower temperatures when Hsp90 is inhibited. 

5.2.2 Temperature effect on transcription 

The mRNA accumulation data was collected from seedlings growing under 

normal temperature entrainment condition. This revealed how Hsp90 influenced the 

transcription of clock genes. However, at different temperatures, the gene 

accumulation of CCA1, LHY, PRR7, PRR9, and GI can vary, especially in darkness 

(Mizuno et al., 2014). Thus, it is worth testing the effect of Hsp90 on gene 

accumulation at different temperatures.  

As demonstrated in Chapter 3, ELF3 is one target of Hsp90. Moreover, evening 

complex ELF3-ELF4-LUX represses the transcription of PRR7, PRR9 and GI,  but 

this repression was compromised by exposure to higher temperatures (Mizuno et al., 

2014). However, elevated PRR7, PRR9, and GI mRNA accumulations were 

eliminated in the elf3-1 mutant (Thines and Harmon, 2010). Examining the 
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accumulation of clock genes in elf3 mutant with or without Hsp90 being inhibited may 

reveal how Hsp90 influence the clock through ELF3. 

5.2.3 Analysis of other Hsp90.2 mutants 

I measured the period of other hsp90.2 mutants (hsp90.2-1, hsp90.2-4, hsp90.2-

6, hsp90.2-7, and hsp90.2-8), which gave a basic insight on the clocks of these 

hsp90.2 mutants. More experiments should be performed to examine the other clock 

properties of these hsp90.2 mutants. These could include measuring period under 

cool and warm temperature, measuring phase, and examine the transcription and 

protein levels of the clock components.  

The hsp90.2-4 and hsp90.2-8 mutations are more interesting, because they 

resulted in a short period, which is different from other hsp90.2 mutations. However, 

the mechanism is still unclear. As GDA can lengthen the period, it will be interesting 

to test if the period shortening in hsp90.2-4 and hsp90.2-8 mutants can be 

compromised or enhanced by GDA.  

In the future, it can be helpful to generate hsp90.2 cca1, hsp90.2 lhy, hsp90.2 

elf3 double mutants. These mutants can be used to identify potential targets of 

Hsp90.2 involved in different regulation pathways. GDA can mimic the hsp90.2-3 

mutation, as they may both result in defects of ATP-binding. However, for hsp90.2-4 

and hsp90.2-8 mutants, they showed a shorter period. To identify how hsp90 

shortens the period, the hsp90.2 and clock genes double mutants are required.  

5.2.4 Protein assays on Hsp90.2 and clock components 

As I identified in Chapter 3, ELF3 could physically interact with Hsp90 (Figure 

3.13). However, the detailed mechanism needs to be further studied. It is possible 

that the interaction is ATP-dependent. Therefore, blocking ATP-binding may interrupt 

the interactions between Hsp90.2 and ELF3. Either adding GDA or removing ATP 

can reveal if the interaction between Hsp90 and ELF3 is ATP-dependent. By adding 

ATP analogues instead of ATP, the interaction may also be interrupted.  

The Hsp90.2-ELF3 interaction may not only be ATP-dependent. The point 

mutations of hsp90.2-4 and hsp90.2-8 may also alter the conformation of the protein-

binding sites of Hsp90.2, which may directly interrupt the interaction between Hsp90.2 
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and its protein clients. It is possible that the clock components bind to different site on 

the middle domain of Hsp90.2. Therefore, when one binding site is mutated, only 

some of components, but not all are influenced.  In conclusion, how Hsp90 functions 

regulatory roles will be explored in further details using the available biochemical, 

genetic, and chemical tools.  
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