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1. SUMMARY 

 

After central nervous system (CNS) injury, such as a traumatic spinal cord injury (SCI), damaged axons 

fail to regenerate resulting in a permanent loss of sensorimotor functions.  Regeneration is prevented by 

growth inhibitory factors in the lesion scar and in CNS myelin as well as by a poor axon intrinsic growth 

potential.  Microtubule dynamics regulate key processes that are instrumental in regeneration including 

axon growth and scar formation.  Moderate microtubule stabilization by the anti-cancer drug Taxol 

promotes axon integrity and axons growth and prevents the formation of the lesion scar leading to 

enhanced axon regeneration after SCI.  However, Taxol is impractical for clinical situations.  Due its poor 

blood-brain-barrier permeability Taxol requires CNS invasive delivery bearing the risk of additional 

neuronal tissue damage.  Here, I report that systemic and post-injury administration of epothilone B, a 

microtubule stabilizing drug that crosses the blood-brain barrier, has beneficial effects after SCI.  Systemic 

administration of epothilone B decreases fibrotic scarring in spinal cord injured rodents by disrupting cell 

polarity of meningeal fibroblasts, which abrogates directed cell migration.  Time lapse microscopy and in 

vivo live imaging of individual axons reveal that epothilone B allows the microtubular network to protrude 

into the distal tip of the axon to propel axon growth through an otherwise inhibitory environment.  Finally, 

epothilone B improves gait and coordinated walking after thoracic spinal cord contusion injury.  As the 

epothilone B derivative ixabepilone received clinical approval, these data suggest that epothilones hold 

promise for clinical translation in enabling axon regeneration and functional recovery after central nervous 

system injury.  
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2. INTRODUCTION 

 

2.1. Spinal cord injuries have devastating and debilitating consequences 

The spinal cord is a cylindrical structure of nervous tissue within the vertebral column, which together 

with the brain, forms the central nervous system (CNS) of the body.  The main function of spinal cord is 

mediating communication between the body and the brain and the autonomous control of organ functions.  

The spinal cord is composed of grey and white matter.  The butterfly shaped, spinal cord grey matter 

resides in the central region of the spinal cord (Fig. 2.1a) and consists of neuronal cell bodies.  The grey 

matter can be functionally subdivided into lateral horn, intermediate column and ventral horn.  The lateral 

horn contains sensory neurons processing incoming somatosensory information.  Neurons of the 

intermediate column control autonomic reflexes of the visceral and pelvic organs.  The ventral horn 

comprises the lower motor neurons that innervate peripheral skeletal and smooth muscles, thereby produce 

voluntary and involuntary movement.  The grey matter is surrounded by the spinal cord white matter (Fig. 

2.1a), which is an accumulation of neuronal fibers, called axons.  The white matter axons are responsible 

for transmitting electrical information between the brain and the body and vice versa.  Supraspinal neurons 

within the brain descend functionally bundled axonal projections, called tracts, through the white matter 

and innervate and control neurons in the spinal cord grey matter.  By contrast, neurons of the spinal 

nerves, called dorsal root ganglion (DRG) neurons, situated adjacent to the vertebral column receive 

sensory information from the periphery, which is transmitted by ascending axonal projections through the 

spinal cord to the brain. 

Besides its cross-anatomical structure, the spinal cord is rostro-caudally segmented.  Each spinal segment 

contains one pair of spinal nerves and integrates sensory-motor information of a specific part of the body 

(Fig. 2.1b).  The spinal segments are integrated into four structural and functional distinct regions 
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dependent on their position: the cervical, thoracic, lumbar and sacral spinal cord region (Fig. 2.1b).  The 

cervical segments control movement of the higher extremities, breathing and heart rhythm.  The thoracic 

segments are involved in fore- and hindlimb movement and important for trunk stability.  The major 

function of the lumbar spinal cord is the control of hindlimb movements e.g. walking in humans, while the 

sacral spinal cord regulates sex, bladder and bowel function (Fig. 2.1b). 

 

 

Traumatic injuries to the spinal cord cause substantial damage to nervous tissue (Fig. 2.2a), disrupt the 

descending and ascending axonal tracts of spinally projecting neurons and interrupt the communication 

between the brain and the body.  Depending on the location and severity of the damage, sensory motor 
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functions that are controlled by spinal segments below the injury site are permanently lost resulting in 

pronounced functional deficits (Fig. 2.2b). 

Epidemiological studies reveal, that the incidence of spinal cord injury (SCI) in western countries appears 

to be relatively low at around 10 to 40 people per million per year in the general population (Cadotte and 

Fehlings, 2011).  However, SCI is a chronic condition with an increased occurrence in young individuals 

(Chen et al., 2013).  Even though SCI patients have an increased risk of morbidity and mortality, many of 

them live with the condition for decades.  As a consequence the numbers of individuals that are affected 

by SCI is much higher than the incidence rate would suggest (Chen et al., 2013).  Thus, in addition to the 

disastrous physical and psychological impact of the injury for the affected individuals, SCI poses a 

significant economical burden to health care systems.  For instance, the economic costs for patient care 

and rehabilitation and also for restructuring the environment in a handicapped accessible manner are 

estimated in the billions of dollars per year for western countries such as the United States (Cadotte and 

Fehlings, 2011). 

Since the consequences of spinal cord injuries are so disastrous there is a crucial need for efficient and 

clinically practical therapeutic strategies to ameliorate the neurological deficits accompanying the 

condition.  In the past decades a substantial amount of basic research has been conducted, which has 

facilitated deeper insight into the disease pathology.  However, to date the only existing therapy, which is 

clinically approved to promote recovery of sensorimotor function in SCI patients, is rehabilitative training 

(Dietz and Fouad, 2013).  Rehabilitative training is effective in preventing atrophy of deinnervated body 

parts and promotes functional recovery in individuals with incomplete SCI by stimulating neuroplasticity 

(Dietz and Fouad, 2013).  Nevertheless, neurorehabilitation is not ideal because it ameliorates the 

condition symptoms rather than addressing its fundamental cause, which is the lack of functional axon 

regeneration after SCI. 
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2.2. The regeneration failure of the adult, mammalian CNS 

Damaged axons in the adult peripheral nervous system (PNS) and in the CNS of lower vertebra species 

such as fishes and amphibians are able to mount a substantial regenerative response (Ferretti et al., 2003).  

Upon injury, these axons form a new growth cone at their proximal tip which grows and navigates towards 

its former target structure, resulting in reestablishment of functional circuits.  By contrast, in the CNS of 

higher species, such as mammals, damaged axons do not form new growth cones, but develop dystrophic 
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end bulbs at their proximal tips that show only poor regenerative attempts (Bradke et al., 2012).  It has 

been hypothesized that this inability of mammalian CNS axons to regenerate is to control plasticity of an 

increasingly complex nervous system (Harel and Strittmatter, 2006).  This hypothesis is supported by two 

important observations.  On the one hand, embryonic CNS axons are able to regenerate while adult CNS 

axons lose their intrinsic regenerative capacity (Tom et al., 2004).  On the other hand, the injured, adult 

mammalian CNS expresses growth inhibitory molecules, which are important for consolidating plasticity 

after development, but counteract axon regeneration (Harel and Strittmatter, 2006).  These two features, a 

poor neuron-intrinsic growth capacity and neuron-extrinsic inhibitory factors in the CNS environment, are 

the major contributors to regeneration failure in the adult CNS. 

2.2.1. Adult CNS axons exhibit a poor intrinsic growth capacity 

Cell-autonomous mechanisms limit axon regeneration, which are developmentally regulated.  Embryonic 

neurons that are transplanted into the adult CNS show functional axon regeneration but this regenerative 

ability declines with neuronal age (Brundin et al., 1988; Hankin and Lund, 1990).  Similarly, cultured 

postnatal neurons show reduced axon growth in comparison to their embryonic counterparts (Wigley and 

Berry, 1988; Fawcett et al., 1989).  These experiments led to the conclusion that a transitional process 

from embryonic to adult neurons gradually represses the intrinsic neuronal growth capacity.  Similarly to 

embryonic neurons, adult neurons of the PNS are able to mount successful axon regeneration upon injury, 

which leads at least in part to targeted reinnervation and functional recovery.  This regenerative ability of 

PNS neurons is achieved by reactivation of the embryonic growth program (Smith and Skene, 1997).  A 

fundamental cause for the regeneration failure of injured, adult CNS neurons is their inability to reactivate 

this growth program.   

Over the past decades, a large amount of factors have emerged that regulate the growth state of embryonic 

and PNS neurons.  Among them the growth associated protein 43 (GAP-43), phosphatase and tensin 

homolog (PTEN) and cyclic adenosine monophosphate (cAMP) are particularly interesting because these 
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factors share common features: 1) Their developmental expression patterns or intracellular concentrations, 

respectively, reflect their function during the axon growth program. 2) They regulate cytoskeletal 

dynamics or synthesis, both critical for driving the axonal growth machinery (see chapter 2.4.1.).  For 

instance, GAP-43 is a positive regulator of axon regeneration, accordingly present in embryonic neurons, 

reduced in most neurons during adulthood and becomes activated during regeneration (Strittmatter et al., 

1992; Benowitz and Routtenberg, 1997).  GAP-43 regulates cytoskeletal remodeling in the neuronal 

growth cone, fundamental for axon elongation (Benowitz and Routtenberg, 1997) (see chapter 2.4.1.).  

By contrast, PTEN, a negative regulator of axon growth, shows increased expression during maturation of 

the CNS.  PTEN suppresses the activity of mammalian target of rapamycin (mTOR), which is a critical 

regulator of protein translation and cell growth (reviewed in (Tee and Blenis, 2005).  In addition, mTOR is 

involved in the regulation of the cytoskeleton as for instance actin and microtubule dynamics (Caccamo et 

al., 2013; He et al., 2013).  Genetic depletion of PTEN increases the capacity of adult neurons to 

regenerate their axons including retinal ganglion neurons (RGCs) (Park et al., 2008) and corticospinal 

neurons (Liu et al., 2010).  Cyclic adenosine monophosphate (cAMP) is growth-promotive for axon 

growth and regeneration.  Accordingly, postnatal neurons have lower levels of cAMP in comparison to 

embryonic neurons (Shewan et al., 2002) while injured PNS neurons elevate intraneuronal cAMP levels 

(Filbin, 2003).  Moreover, increasing endogenous cAMP levels by injecting dibutyryl cAMP, an 

membrane permeable cAMP analog, into the dorsal root ganglia (Neumann et al., 2002) or by systemic 

administration of rolipram (Pearse et al., 2004), a drug that inhibits cAMP degradation by 

phosphodieesterase-4, increases regeneration of injured CNS axons.  cAMP signals through protein kinase 

A (PKA) and induces transcriptional changes leading to increased amount of polyamine synthesis by 

arginase-1 (reviewed in (Filbin, 2003).  Polyamines regulate the expression of various cytoskeletal 

proteins (Kaminska et al., 1992) and are required for microtubule formation (Banan et al., 1998). 

Besides GAP-43, PTEN, and cAMP a variety of cell intrinsic factors regulate the axon growth program 

that is active during embryonic development and PNS regeneration but quiescent in injured axons of 
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mature CNS neurons (Harel and Strittmatter, 2006).  Interestingly, central axons of adult DRG neurons are 

able to adopt an increased growth state after an experimental procedure termed “conditioning”.  DRG 

neurons have a mixed identity because they exhibit a peripheral and a CNS axonal branch (see chapter 

2.1.).  When the peripheral branch is injured, DRG neurons are able to trigger the axon growth program by 

activating GAP-43, mTOR, cAMP and other growth-associated factors (reviewed in (Yang and Yang, 

2012) and regenerate their peripheral axons.  Remarkably, these growth competent DRG neurons have the 

ability to regenerate even their central axons after CNS injury, a phenomenon called the “conditioning 

effect” (Richardson and Issa, 1984).  However, the “conditioning effect” fails to promote axon 

regeneration in the CNS if the peripheral nerve injury is not performed prior to CNS injury.  In a recent 

study DRG neurons were “conditioned” 3 days after injury of their central branch.  Even though the DRG 

neurons obtained growth competence, the damaged central axon failed to regenerate through the lesion site 

(Ylera et al., 2009).  These findings suggest that increasing the intrinsic growth capacity of an injured 

CNS neuron alone is not sufficient to mount successful axon regeneration.  The reason for this is the 

additional, neuron extrinsic barrier for axon regeneration, which is the injured CNS environment. 

2.2.2. CNS lesion scar 

Besides a cell-autonomous loss of axonal growth capacity, extrinsic barriers to regeneration contribute to 

the regeneration failure in the adult mammalian CNS.  The most important extrinsic obstacle is the lesion 

scar which forms at the lesion site after CNS injury (Silver and Miller, 2004).  A traumatic insult to the 

CNS induces a disruption of blood vessels which opens the CNS blood-brain-barrier (BBB).  Thereby, 

various types of blood-derived immune cells enter into the CNS parenchyma and induce an inflammatory 

wound healing response.  However, in contrast to most peripheral tissues, wound healing in the CNS is 

aberrant and therefore results in excessive scar formation at the injury site.  The scar tissue that forms at 

the CNS lesion site is not homogenous and according to its cellular composition the scar can be divided in 

two major types. 
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The glial scar forms at the lesion borders and is mainly constituted by reactive astrocytes, often referred as 

to astrogliosis (Fig 2.3a), some activated microglia, oligodendrocytes and their precursors.  These cells 

express and release various factors that regulate fundamental processes for CNS tissue repair including 

inflammation, BBB consolidation and neuroprotection.  Reactive astrocytes are characterized by distinct 

anatomical changes that appear early after injury.  Resident astrocytes become hypertrophic, extend thick 

processes and show enhanced glial-fibrillary acidic protein (GFAP) immunofluorescence (Fig 2.3b).  

During the first days after injury, these reactive astrocytes increase in numbers, accumulate at the lesion 

borders and thereby enclose the lesion site (Mathewson and Berry, 1985).  The closure of the CNS through 

the astroglial scar is crucial for recovering CNS tissue homeostasis.  Genetic ablation of reactive 

astrocytes leads to failure in BBB repair, prolonged bleeding, secondary damage and lesion enlargement 

which consequently promotes neuronal death (Faulkner et al., 2004; Sabelstrom et al., 2013).  However, 

the role of the glial scar after CNS injury is diverse.  While the glial scar prevents further CNS tissue 

damage, it also contributes to the inhibition of axon regeneration.  Reactive astrocytes produce 

extracellular matrix (ECM) components and axon growth inhibitory molecules including chondroitin 

sulfate proteoglycans (CSPGs), semaphorins and ephrins (Silver and Miller, 2004). 

The second type of scar tissue at the lesion site is the fibrotic scar.  After SCI, adjacent meningeal and 

perivascular fibroblasts invade the lesion site, proliferate and deposit a dense connective tissue containing 

ECM molecules such as laminin, fibronectin, collagen and CSPGs.  Primarily, the fibrotic scar has been 

suggested to be important for the sealing of the injury site by entrapping blood-derived leukocytes (Berry 

et al., 1983).  However, more recent studies suggest that BBB consolidation and astrocyte reactivity is 

normal when fibrotic scarring is inhibited, (Yoshioka et al., 2010; Hellal et al., 2011) indicating that the 

fibrotic scar is not instrumental for CNS repair. 

The fibrotic scar is also a major impediment for regenerating axons.  Injured CNS axons stall regeneration 

at the border of the fibrotic scar (Stichel and Müller, 1994), which expresses growth inhibitory molecules 

including CSPGs (Tang et al., 2003), tenascin-C (Tang et al., 2003), semaphorins (Pasterkamp et al., 



  Introduction 

10 

 

1999) and EphB2 (Bundesen et al., 2003).  Interestingly, it has been shown that the loss of the axon 

regeneration capacity early after birth correlates with the ability of the injured CNS to form a fibrotic scar 

(Kawano et al., 2005).  Treatments that reduce fibrotic scarring render a CNS lesion growth permissive for 

regenerating axons, promoting axon regeneration and functional recovery after brain injury (Stichel et al., 

1999) and SCI (Klapka et al., 2005; Hellal et al., 2011). 

A major cellular source of fibrotic scar tissue are meningeal fibroblasts.  In the uninjured CNS, meningeal 

fibroblasts are quiescent and do not abundantly express ECM.  However, after CNS damage meningeal 

fibroblasts become migratory, invade the lesion site, proliferate and produce ECM components, ultimately 

leading to fibrotic scar tissue (Fig 2.3a,b).  By contrast, in a SCI model where minimal damage is applied 

to the meninges, no fibrotic scar formation is observed and axons are able to regenerate through the lesion 

site (Seitz et al., 2002).  The activation of meningeal fibroblasts after injury is induced by infiltrating 

blood-derived monocytes (Fig 2.3a) and by resident microglia that secrete different cytokines including 

TGF-β1 an important fibrogenic, anti-inflammatory factor (Komuta et al., 2010).  Manipulating TGF-β1 

signaling modulates fibrotic scar formation after CNS injury.  Local administration of TGF-β1 increases 

fibrotic scarring at the lesion site (Logan et al., 1994).  Accordingly, interfering with TGF-β1 signaling 

through local application of decorin or Taxol reduces fibrosis and enhances axon regeneration (Davies et 

al., 2004; Hellal et al., 2011). 
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Thus, the two components of the lesion scar have different significance for the wound healing response 

after SCI.  The astroglial scar is generally growth repelling but also neuroprotective.  Therefore, 

interfering with astrogliosis might have detrimental effects.  By contrast, the fibrotic scar is considered a 

strong impediment for regenerating axons and as an aberrant, but a redundant component of the lesion 

scar.  Therefore, targeting the fibrotic scar is a promising strategy to promote axon regeneration after SCI. 

2.2.3. CNS myelin and Rho signaling 

Besides the lesion scar, a major inhibitory factor of the CNS lesion environment is CNS myelin.  CNS 

myelin ensheaths and insulates CNS axons, which is crucial for their function and maintenance.  The 

myelin sheaths contain axon growth inhibitory molecules, called myelin associated inhibitors (MAIs), 

including Nogo-A (Prinjha et al., 2000), myelin-associated glycoprotein (MAG) (McKerracher et al., 

1994) and oligodendrocyte myelin glycoprotein (Omgp) (Habib et al., 1998).  A SCI disrupts the axons 

and their myelin sheaths, consequently resulting to a release of the MAIs at the lesion (Filbin, 2003).  All 

MAIs bind to the NgR-P75 receptor complex (Filbin, 2003) which signals onto the small, intracellular 

GTPase RhoA (Dergham et al., 2002).  RhoA is a central regulator of the axonal cytoskeleton and its 

activation induces growth cone collapse and axon growth inhibition through different mechanisms.  (Fig. 

2.4):  First, RhoA induces actin contraction through its downstream effectors Rho Kinase (ROCK) and the 

non-muscular myosin light-chain II (MLCII) (McKerracher et al., 2012).  Second, RhoA prevents actin 

dynamics by inactivating the actin depolymerizing and severing protein cofilin through ROCK and LIM 

Kinase (Hsieh et al., 2006).  Third, RhoA promotes microtubule disassembly by inactivating collapsin-

response mediator proteins (CRMPs) 2 and 4 (Fukata et al., 2002; Alabed et al., 2007).  Besides MAIs, 

other important growth inhibitory molecules signal through Rho mediated pathways including CSPGs 

(Dickendesher et al., 2012) and semaphorins (Swiercz et al., 2002).  Accordingly, when RhoA is inhibited 

in neurons through the bacterial enzyme C3 transferase, neuronal growth cones do not collapse upon 

encountering various non-permissive substrates, and neurite growth is enhanced (reviewed in 

(McKerracher et al., 2012).  
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Taken together, there are 3 major impediments for axon regeneration in the adult CNS.  First, adult CNS 

neurons have a poor intrinsic ability to regrow injured axons.  Second, CNS injury leads to the formation 

of an axon-growth inhibitory lesion scar.  Third, CNS myelin components in the lesion area prevent axon 

regrowth by inducing growth cone collapse.  Thus, the most promising strategy to promote axon 

regeneration are multifactorial approaches that concurrently increase the regenerative capacity of CNS 

neurons and combat the inhibitory action of the lesion scar and CNS myelin.  Interestingly, a common 

regulator of these features is the cytoskeleton.  It controls the axonal growth machinery, regulates 

migration and proliferation of scar-forming cells and is the fundamental down-stream target of inhibitory 
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molecules, including CNS myelin components.  Thus, targeting one cellular structure, the cytoskeleton, 

might be sufficient to overcome both intrinsic and extrinsic obstacles to axon regeneration. 

 

2.3. The cytoskeleton 

Every cell contains structured arrays of fibrous proteins that are collectively termed as the cytoskeleton.  

Similar to the skeleton of the human body, the cytoskeleton acts as the major scaffold of the cell.  

However, in contrast to the human skeleton, the cytoskeleton is a highly dynamic structure.  The 

cytoskeleton plays an essential role in most cellular events including intracellular transport, cell division, 

cell migration and cell polarization.  It is formed by three major components: actin filaments also termed 

microfilaments, intermediate filaments and microtubules. 

2.3.1. Actin filaments 

With a diameter of approximately 7 nm actin filaments are the smallest component of the cytoskeleton.  

Filamentous actin, or F-actin, is a dynamic polymer that is built from globular G-actin subunits.  These 

subunits are bound in a head-to-tail orientation, which result in two structurally distinct endings and the 

intrinsic polarity of the F-actin polymer.  The F-actin “barbed” end preferentially binds G-actin bound to 

ATP (ATP-actin), which leads to polymer growth (polymerization).  After incorporation into the polymer, 

ATP is hydrolyzed to ADP and ADP-actin dissociates from the F-actin “pointed” end.  Soluable ADP-

actin recycles into ATP-actin and is reincorporated into the “barbed” end (Fig. 2.5). 

Actin filaments are organized into bundles or networks, which are structurally distinct.  While actin 

bundles contain tightly packed actin filaments that organize in parallel arrays, actin networks contain 

loosely packed filaments that criss-cross at various angles.  Both in bundles or networks, actin filaments 

are connected by actin cross linking proteins including fascin, spectrin or filamin (Fig. 2.5).  Fascin and 

spectrin organize actin filaments into bundles, while filamin mediates cross-linking of actin filaments into 
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networks.  Besides structural differences, actin bundles and networks have distinct functional differences, 

which are especially important for cell locomotion.  A key event of cell locomotion is membrane 

protrusion, which is conducted by actin filaments.  Actin bundles form spiky, finger-like membrane 

protrusions, called filopodia.  By contrast, the actin network forms flattened, veil-like membrane 

extensions, called lamellipodia.  Filopodia and lamellipodia can be observed in most migrating cells or 

cellular structures, reflecting their fundamental role in cellular migration. 

 

 

2.3.2. Intermediate filaments 

Intermediate filaments are a superfamily of α-helical proteins with a diameter of about 10 nm.  Unlike 

microfilaments or microtubules, intermediate filaments are composed of rod-shaped subunits of a widely 

divergent molecular origin.  The subunits organize in a head-to-head orientation and therefore 

intermediate filaments are nonpolar.  Moreover, in comparison to actin filaments and microtubules, 

intermediate filaments are extremely stable and show only slight dynamics.  Due to this lack of intrinsic 
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polarity and dynamics, intermediate filaments are not fundamentally involved in cell motility.  The most 

important function of intermediate filaments is to provide mechanical support to the plasma membrane 

when it contacts other cells or the ECM.  However, intermediate filaments such as GFAP have also been 

implicated with regulatory functions such as cell-cell communication, BBB function and wound healing in 

the CNS (Liedtke et al., 1996). 

2.3.3. Microtubules 

Microtubules, the largest component of the cytoskeleton, are tubular cylinders with a diameter of around 

25 nm.  Due to their cylindrical structure, they are stiffer than actin filaments and intermediate filaments.  

Similar to actin filaments, microtubules are polymers with a structural and functional polarity.  The 

microtubule is formed by α-tubulin and β- tubulin heterodimers, which are associated in a head-to-tail 

orientation, which leads to intrinsic polarity; the microtubule is said to contain a minus- and a plus-end.  

Both tubulin monomers bind GTP.  While the binding of GTP to α-tubulin is irreversible, β-tubulin binds 

and hydrolyzes GTP to GDP.  GTP bound tubulin assembles at the highly dynamic plus-end of the 

microtubule and disassembles after GTP hydrolysis (Fig. 2.6).  Thereby the plus-end undergoes periods of 

polymerization and depolymerization, which is termed dynamic instability (Fig. 2.6).  This dynamic 

instability allows the microtubule to switch abruptly from growth to shrinkage, termed “catastrophe”, and 

from shrinkage to growth, termed “rescue”.  Accordingly, microtubules can be subdivided into two 

populations: unstable, short-lived microtubules and stable, long-lived microtubules.  Unstable 

microtubules are observed in cell structures that require a rapid assembly or disassembly of microtubules 

such as the mitotic spindle during cell mitosis.  By contrast, some cell types, usually non-replicating cells, 

contain very stable and long-lived microtubules.  An extreme example for such long-lived microtubules is 

the neuronal axon.  Since neurons have to maintain axonal connections over long time, e.g. over decades 

in humans, the microtubules in these connections have to be highly stable in order to avoid the retraction 

of the axon and functional deinnervation. 
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Microtubule dynamics and stability are regulated by different factors.  First, GTP-tubulin acts as a 

protective ‘‘GTP cap’’ by assembling at the plus-end of the microtubule and averting dissociation of the 

GDP bound tubulin (Desai and Mitchison, 1997).  Second, microtubule dynamics are regulated by 

microtubule associated proteins (MAPs) (reviewed in (Mandelkow and Mandelkow, 1995).  MAPs 

structurally interlink microtubules within the cytoskeleton or to the plasma membrane.  In addition, MAPs, 

including Tau, MAP1b and 2, regulate microtubule stability (Fig. 2.6).  For instance, dephosphorylated 

Tau binds predominantly to axonal microtubules and strongly stabilizes them (Mandelkow and 

Mandelkow, 1995).  Dephosphorylated MAP2 binds specifically to microtubules in neuronal dendrites 

but, in contrast to Tau, preserves microtubule dynamics (Sánchez et al., 2000).  A specific subclass of 

MAPs are plus-end binding proteins termed +TIPs, which include cytoplasmatic linker proteins (CLIPs), 

CLIP-associated proteins (CLASPs) and end-binding proteins (EB1 and EB3).  +TIPs bind specifically to 

the plus-end of the microtubule and regulate microtubule growth and shrinkage (Fig. 2.6).  Moreover, 

+TIPs link microtubules to the actin cytoskeleton by binding to actin binding proteins (reviewed in 

Akhmanova and Steinmetz, 2008). 

Microtubule dynamics can be also manipulated with a variety of drugs.  They can be subdivided into 

microtubule stabilizing agents (MSAs) such as Taxol or epothilones and substances that destabilize 

microtubules such as nocodazole, colchicine or vinblastine.  Taxol or epothilones bind to free and 

incorporated β-tubulin subunits (Bollag et al., 1995; Giannakakou et al., 2000).  MSA binding to free 

tubulin enables polymer assembly without requiring GTP (Diaz and Andreu, 1993) and  within the 

polymer, MSAs stabilize the lateral contacts between the individual subunits (Wade, 2009).  Thereby, 

these drugs shift the dynamic equilibrium of polymer growth and shrinkage towards microtubule growth 

and furthermore protect the polymer against depolymerization similar to the microtubule stabilizing 

protein Tau (Kar et al., 2003).  The stability of microtubules is reflected by post-translational tubulin 

modifications.  Newly formed microtubules are mainly composed of subunits containing tyrosinated α-

tubulin, while in more stable and persistent microtubules, α-tubulin gradually becomes detyrosinated and 
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acetylated (Janke and Bulinski, 2011).  Accordingly, the very stable and persistent microtubules in 

neuronal axons show high levels of tubulin acetylation (Gomis-Ruth et al., 2008) and detyrosination 

(Janke and Bulinski, 2011). 

 

 

Microtubules are involved in a wide range of cellular functions including cell proliferation, vesicular 

transport, cell signaling and cell motility.  They underlie formation of the mitotic spindle during mitosis, 

control movement of cilia and flagella and act as scaffolds for vesicular transport in the cytoplasm.  

Microtubules also regulate every kind of cell motility including axon growth (see chapter 2.4.) and cell 

migration (see chapter 2.5.).  Importantly, these features are critical for the regeneration failure in the 

adult CNS as described above.  Therefore, targeting microtubules could offer a potential multifactorial 

approach to counteract intrinsic and extrinsic barriers in the injured CNS and to promote axon 

regeneration. 

http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7405/
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7505/
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7436/
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2.4. Microtubule stabilization controls axon growth 

Neurons represent extreme examples of cellular polarization.  During neuronal development they 

compartmentalize into three main structures:  1) The neuronal soma, which contains the nucleus and the 

major cellular machinery.  2) The axon, a single, long process that transmits information to other neurons.  

3) The dendrites, a set of typically short-growing processes that collect and integrate signals from other 

neurons.  Before polarization into axonal and dendritic compartments, neurons form multiple short 

neurites, which are functionally and structurally indistinguishable.  However, one of these neurites grows 

extensively and develops into the future axon.  A critical step of this enhanced growth, is the specific 

stabilization of axonal microtubules (Witte et al., 2008).  Accordingly, global stabilization of microtubules 

by low doses of Taxol (see Chapter 2.3.3.) leads to multiple axon formation in neurons (Witte et al., 

2008).  In addition, when the microtubules in one neurite are locally stabilized by photoactivatable Taxol, 

this neurite develops into an axon as reflected by an increased amount of axon-specific, dephosphorylated 

Tau and by an increased growth (Witte et al., 2008).  Thus, promoting microtubule stabilization is 

sufficient to induce axon formation and growth.  This fundamental effect of microtubules and their 

stability can be explained by their functional role as a part of the axonal growth machinery.  During 

development, axons grow for long distances until they successfully innervate their target structure.  

Therefore, axons require a motile element that steers and navigates them to their final target, sufficient 

construction material to extend in length and a stable “backbone” providing sufficient structural integrity. 

The motile element that drives the growing axon is the growth cone, a conical or fan-like structure at the 

distal axonal tip.  The growth cone is a highly dynamic structure that drives elongation of the axon by 

migrating in response to spatial cues.  The internal structure of the growth cone can be divided into three 

distinct domains, which are fundamental to its function (Fig. 2.7):  The leading edge of the growth cone, 

called the peripheral domain (P-domain), is mainly enriched with actin filaments which form highly 

dynamic filopodia and lamellipodia (see chapter 2.3.1.).  The central domain (C-domain) of the growth 
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cone comprises polymerizing microtubules and is the major delivery site of vesicles and organelles.  The 

C-domain also comprises neurofilaments.  The rim between the actin-rich P-domain and the microtubule 

rich C-domain is called transition zone and represents an interface for actin and microtubule interactions.  

Actin and microtubules have profound functions in axon growth and elongation.  In general, actin 

filaments regulate growth cone shape and axon guidance, while microtubules stabilize the elongating axon 

shaft and steer the growth cone.  Accordingly, growth cones cannot move forward when microtubules are 

destabilized by nocodazole (Tanaka et al., 1995), while growth cones without actin filaments can grow but 

in an undirected fashion (Bradke and Dotti, 1999). 

 

 

Growth cone migration and advance can be separated into three distinct stages (Fig. 2.8).  During the first 

stage, called protrusion, filopodia and lamellipodia extend and elongate, which is mediated by increased F-

actin polymerization.  In the second stage, called engorgement, pioneer microtubules polymerize into the 
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area in which the peripheral actin cytoskeleton has protruded.  The third and last stage is called 

consolidation.  At this point, stable and bundled microtubules enter from the C-domain into the newly 

formed growth cone area, are compressed by actin filaments and then consolidated into a new part of the 

axon shaft.  Finally, microtubules become stabilized and bundled by MAPs which are necessary for the 

structural integrity of the axon (Conde and Caceres, 2009).  A constant repetition of these steps ultimately 

leads to axon elongation (reviewed in (Lowery and Van Vactor, 2009; Stiess and Bradke, 2011). 

Besides their structural role in the axon shaft, stable microtubules have an instructive function for directed 

growth cone advance.  Polymerization of microtubules into the growth cone P-domain is sufficient to steer 

the growth cone in a certain direction, this is supported by the observation that local stabilization of 

microtubules through Taxol is sufficient to steer the growth cone in the direction of the site of Taxol 

application (Buck and Zheng, 2002).  Conversely, local destabilization of microtubules, through 

nocodazole treatment, induces growth cone turning away from the site of nocodazole application (Buck 

and Zheng, 2002).  This effect is mediated by microtubule dependent remodeling of the actin cytoskeleton 

through Rho GTPases, and by physically fixing and supporting the direction of the growth cone (Lowery 

and Van Vactor, 2009).  In addition, the site of microtubule stability receives an increased amount of 

vesicular cargo, providing the growth cone machinery with the necessary materials such as membrane 

vesicles and cytoskeletal elements (Zakharenko and Popov, 1998). 

Finally, microtubule stabilization is instrumental for growth cone formation after axonal injury.  Injured 

axons in the PNS normally form new growth cones and regenerate while injured CNS axons do not form 

growth cones but dystrophic endbulbs, termed retraction bulbs, that do not regenerate (Bradke et al., 

2012).  Growth cone formation in injured PNS axons requires bundling of microtubules in the distal axon 

(Erturk et al., 2007).  By contrast, microtubules in the CNS retraction bulbs are disassembled and 

disorganized (Erturk et al., 2007).  Moreover, when microtubules of regenerating PNS axons are 

destabilized by nocodazole or vincristine, growth cone formation is prevented (Pan et al., 2003; Erturk et 

al., 2007) and instead retraction bulbs are formed (Erturk et al., 2007).  Conversely, injured axons in the 
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CNS that are locally treated with low doses of Taxol do not form dystrophic retraction bulbs (Erturk et al., 

2007). 

 

 

 

Taken together, microtubule stabilization is critical for growth cone formation and migration.  Increasing 

microtubule stabilization is sufficient to induce axon growth.  Therefore, targeting microtubule stability in 

injured spinal cord axons is a conceivable strategy to stimulate their regeneration. 

 

2.5. Microtubule stabilization controls cell migration 

A key step of cell migration is polarization through which a migrating cell establishes a protrusive front, 

the leading edge, and a contractile rear, the trailing edge.  To achieve polarity, a migrating cell reorganizes 

its microtubule array through selective formation of stable, detyrosinated microtubules near the leading 
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edge (Fig. 2.9a) (Gundersen and Bulinski, 1988).  By contrast, microtubules in the rear of the cell remain 

dynamic, as indicated by tubulin tyrosination (Gundersen and Bulinski, 1988).   

But why does a migrating cell require such a polarized microtubule array?  During migration, the leading 

edge of a cell forms actin-dependent protrusions, called lamellipodia, which are attached to the substratum 

through focal adhesions in order to transmit actin protrusive forces into directional movement.  By 

contrast, the trailing edge of the cell detaches its focal adhesions from the substrate and retracts (Fig. 

2.9b).  Microtubule stability is fundamental for both leading edge protrusion and trailing edge retraction.  

The stabilized microtubule array in the cell front biases the delivery of membrane vesicles to the leading 

edge through kinesins that preferentially bind to stable microtubules (Schmoranzer et al., 2003).  In 

addition, stable microtubules maintain actin-dependent cell protrusions such as lamellipodia by binding 

and inactivating guanine exchange-factor (GEF) H1.  GEF H1 negatively regulates the activity of the 

GTPase RhoA (Krendel et al., 2002), which inhibits lamellipodia formation (Kaibuchi et al., 1999).  

Destabilization of microtubules through nocodazole induces massive GEF H1 release, global activation of 

RhoA, which in turn prevents leading edge protrusion and cell migration (Liao et al., 1995). 

In the trailing edge, however, dynamic and unstable microtubules are critical for cell locomotion.  

Depolymerizing microtubules release GEF H1, which induces actin contraction through RhoA (Enomoto, 

1996; Ganguly et al., 2013) and ultimately to trailing edge retraction.  Hence, increasing microtubule 

stability through Taxol leads to a concentration dependent inhibition of fibroblast migration (Liao et al., 

1995). 

In addition, microtubule stability regulates focal adhesions, which mediate cell attachment to the 

underlying substrate.  In vitro imaging studies have demonstrated that dynamic microtubules contact focal 

adhesions and induce their disassembly.  Accordingly, assembly and disassembly of focal adhesions 

correlates with the distribution of dynamic and stable microtubules in a migrating cell; focal adhesion 
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assembly occurs predominant at the leading edge and disassembly at the trailing edge  (Kaverina et al., 

1999). 

Taken together, a fundamental basis for directed cell migration is polarization of the microtubule array, 

into stable microtubules in the cell front and dynamic microtubules in the cell rear.  Consequently, 

manipulating the microtubule array through drugs that stabilize or destabilize microtubules is sufficient to 

inhibit cell migration. 
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2.6. Microtubule stabilization reduces scarring and promotes axon regeneration 

after spinal cord injury 

Microtubule stability plays a dual role during axon growth and scar formation.  In axons, microtubule 

stability controls axon growth by regulating growth cone formation and migration (Bradke and Dotti, 

1999; Buck and Zheng, 2002; Witte et al., 2008).  In migrating fibroblasts, the balance between stable 

microtubules at the cell front and dynamic microtubules at the cell rear is critical for directed migration.  

Hence, perturbing this balance inhibits cell migration (Liao et al., 1995; Ganguly et al., 2013).  Therefore, 

targeting microtubule stability could offer a multifaceted approach to promote axon regeneration after 

CNS injury; one side by promoting growth cone formation and axon regrowth in injured CNS axons and 

the other side, by interfering with lesion scar formation by inhibiting the migration of scar forming 

fibroblasts into the lesion site. 

Indeed, a recent study showed that the microtubule stabilizing drug Taxol has promising effects on axon 

growth and regeneration as well as scar formation (Hellal et al., 2011).  In this study, cultured, postnatal 

CNS neurons plated in the presence of various inhibitory factors showed enhanced axon growth when 

treated with low doses of Taxol.  In addition, when Taxol was delivered locally to a spinal cord injury site, 

fibrotic scarring was strongly reduced.  This dual action of Taxol increased axon regeneration and 

improved the functional outcome after SCI. 

2.7. Research objectives:  Systemic administration of epothilone B promotes axon 

regeneration and functional recovery after spinal cord injury 

Taxol would represent a promising treatment for SCI pathologies, because the drug suppresses inhibitory 

scarring, promotes axon regeneration and as a consequence improves functional recovery after 

experimental SCI (Hellal et al., 2011).  However, Taxol has limited therapeutic value as a treatment for 
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SCI in patients, because it does not cross the blood-brain-barrier and is therefore impractical for clinical 

situations. 

Thus, I asked whether the therapeutic strategy of pharmacological microtubule stabilization could be 

translated in a more clinically feasible approach.  Three features are important to add clinical significance 

to a pharmacological treatment targeting the injured spinal cord.  First, the drug should be FDA approved 

even if in another medical application.  Second, the drug should be systemically delivered, so that the 

treatment is CNS non-invasive.  Third, the treatment should be effective when applied delayed after injury 

(Kwon et al., 2002).  Given these requirements, I sought a candidate drug, which stabilizes microtubules 

and matches the abovementioned criteria. 

I identified epothilone B as such a compound.  Epothilones bind and stabilize microtubules in a similar 

fashion to Taxol (see chapter 2.3.3.) (Prota et al., 2013).  In contrast to Taxol however, epothilones are 

able to penetrate through the blood-brain-barrier (Fellner et al., 2002; Rivera et al., 2008) and therefore are 

able to increase microtubule stability in the CNS upon systemic administration (Brunden et al., 2010).  In 

2011, a derivative of the epothilone B isoform, termed ixabepilone, received clinical approval as a 

treatment for various types of cancer (Lechleider et al., 2008). 

Given these promising features of epothilone B, I investigated whether systemic and post-injury 

administration of the drug has beneficial effects on SCI pathology.  I propose that this treatment strategy 

promotes functional axon regeneration after experimental SCI by counteracting intrinsic and extrinsic 

barriers for regenerating axons in the injured, adult mammalian spinal cord.  To test this hypothesis, I used 

different experimental animal models, including rats and transgenic mice with different types of spinal 

cord injury, to investigate axon regeneration, scar formation and functional recovery after SCI.  In 

addition, I used cell culture models, including postnatal neuronal cultures and wound healing assays of 

scar-forming meningeal fibroblasts, to examine the treatment effects on the cellular level. 
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3. RESULTS 

3.1. Local application of epothilone B promotes axon growth and reduces axon 

dystrophy and fibrotic scarring 

It has been shown that moderate microtubule stabilization through Taxol treatment promotes axon growth 

(Witte et al., 2008), counteracts dystrophy of injured CNS axons (Erturk et al., 2007), suppresses fibrotic 

scarring and promotes axon regeneration after SCI (Hellal et al., 2011).  Epothilone B similarly stabilizes 

microtubules (Bollag et al., 1995) and may therefore represent a promising treatment for spinal cord 

repair. 

To initially validate whether microtubule stabilization by epothilone B mimics the positive effects of 

Taxol on axon growth, dystrophy and fibrotic scar formation, I treated dissociated embryonic (E17) rat 

hippocampal neurons with epothilone B (3 nM) or Taxol (3 nM).  A similar proportion of neurons formed 

multiple axons in the two drug treated conditions (Fig. 3.1a, b; EpoB: 42.2% ± 1.6, P=0.0003; Taxol: 

39.97% ± 4.8, P=0.018). 
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Next, I tested the effects of epothilone B on axon dystrophy.  To this end, I transected GFP-positive 

sensory axons in the spinal cord of adult, transgenic Thy-1 GFP-M mice (Feng et al., 2000; Erturk et al., 

2007).  Then, I hourly applied either vehicle solution (5% DMSO in Saline), epothilone B (0.5 ng/µl) or 

Taxol (0.85 ng/µl), as a positive control, onto the injury site and repeatedly imaged the injured axons for 6 

hours by using fluorescent microscopy.  Almost 50% of the vehicle treated axons exhibited retraction 

bulbs at their proximal tip 6 hours after injury (Fig. 3.2a, b; 48.8% ± 5.3).  By contrast, retraction bulb 

formation was significantly reduced to less than 18% when injured axons were treated with epothilone B 

or Taxol (Fig. 3.2a, b; EpoB: 17.7% ± 4.4, P=0.0001, Taxol: 16.2% ± 7.8, P=0.0003).  Importantly, 

epothilone B and Taxol inhibited the formation of retraction bulbs to a very similar extent. 
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Finally, I compared the effects of local epothilone B and Taxol treatment on fibrotic scar formation after 

spinal cord injury.  Adult rats underwent a spinal cord dorsal hemisection at thoracic spinal segment T8.  

Subsequently, epothilone B, Taxol or vehicle solution were chronically delivered to the lesion site via an 

intrathecal catheter connected to an osmotic pump.  Vehicle treated animals showed a profound deposition 

of laminin-positive connective tissue at the lesion site 4 weeks post-injury (Fig. 3.3a, b; 1.5 mm² ± 0.2).  

By contrast, chronic perfusion of the injury with 30 ng/day epothilone B or 256 ng/day Taxol for 4 weeks 

led to comparable and significant reductions of laminin-immunopositive areas at the lesion site in 

comparison to injured control animals (Fig. 3.3a, b; EpoB: 0.99 mm² ± 0.1, P=0.016; Taxol: 0.7 mm² ± 

0.1, P=0.005). 
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Collectively, these results show that moderate microtubule stabilization through epothilone B promotes 

axon growth in cultured CNS neurons.  In addition, microtubule stabilization at the lesion site by local 

application of epothilone B counteracts dystrophy of injured CNS axons and suppresses fibrotic scar 

formation after SCI.  This suggests that microtubule stabilization by epothilone B mimics the effects of 

Taxol treatment upon axon growth and SCI pathology. 

 

3.2. Systemic administration of epothilone B is a suitable treatment strategy to 

increase microtubule stabilization at the spinal cord lesion site 

Epothilone B showed promising effects upon axon growth, axon dystrophy and fibrotic scar formation 

when given locally.  However, in contrast to Taxol, epothilone B penetrates the blood-brain-barrier (BBB) 

and enters the CNS (Fellner et al., 2002; Rivera et al., 2008).  Therefore, I asked whether systemic 

administration of epothilone B could be feasible to treat the injured spinal cord. 

To verify whether epothilone B can indeed cross the BBB, a single dose of epothilone B (1 mg/kg 

bodyweight (BW)) was administered intraperitoneally (i.p.) to adult rats.  Plasma and CNS concentration 

was then measured by mass spectrometry at specific time-points after injection.  Remarkably, 

approximately 40 ng/g epothilone B was found in the spinal cord at 6 hours after injection (Fig. 3.4a, 40.7 

ng/g ± 10.2) and remained at comparable levels until day 6 (Fig. 3.4a, 43.2 ng/g ± 13.6).  Drug entrance 

into the brain was slower, however, after 1 day concentrations were comparable to those in the spinal cord 

(Fig. 3.4a, 44.2 ng/g ± 7.5 (day 1), 48.4 ng/g ± 3.9 (day 6)).  By contrast, drug concentrations in the 

plasma remained below 8 ng/ml during the 6 days following injection (Fig. 3.4a, 3.4-7.8 ng/g).  Thus, 

upon intraperitoneal injection, epothilone B is rapidly up-taken from the plasma into the brain and spinal 

cord.  Furthermore, measurable CNS concentrations of epothilone B were maintained for almost one week 
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and exceeded plasma concentration at all times after injection, suggesting prolonged drug activity in the 

brain but not in the circulation. 

To test the activity of the drug within the CNS, I injected adult rats intraperitoneally with 0.75 mg 

epothilone B per kg BW or vehicle 1 day and 15 days after a thoracic spinal cord dorsal hemisection.  4 

weeks after injury, animals were sacrificed and the lesioned spinal cord was extracted from the vertebral 

column and processed for western blot analysis.  As a baseline control, I used the thoracic spinal cord of 

uninjured animals, which was processed in the same way.  A spinal cord dorsal hemisection decreased the 

levels of detyrosinated and acetylated tubulin, both markers for stable and persistent microtubules, in 

vehicle treated animals (see chapter 2.3.3.), suggesting that SCI induces microtubule disassembly (Fig. 

3.4b).  By contrast, epothilone B treated animals showed increased microtubule stability at the lesion site 

as reflected by increased levels of detyrosinated and acetylated tubulin that were comparable to uninjured 

controls (Fig. 3.4b).  Thus, epothilone B rescues microtubule stability at the spinal cord lesion site 

demonstrating the microtubule stabilizing activity of the drug upon CNS entry. 

Finally, I wanted to rule out severe, systemic side effects for the abovementioned treatment regimen.  Rats 

that were i.p. injected twice with epothilone B (0.75 mg/kg BW) at 1 and 15 day(s) after SCI maintained a 

similar body weight to vehicle treated animals for an observed time-period of 8 weeks (Fig. 3.4c).  In 

addition, the number of white blood cells was not significantly affected by systemic epothilone B 

administration when measured 2 weeks after the second injection (Fig. 3.4d, 640 cells ± 93 (vehicle) vs. 

738 cells ± 196 (EpoB), P=0.68).  Both results provide evidence, that the bi-weekly intraperitoneal 

injections of 0.75 mg/kg epothilone B did not provoke adverse side effects in the treated animals and are 

therefore a well-tolerated dose regimen. 

Taken together, these data provide evidence that epothilone B is pharmacological active in the CNS after 

systemic administration and suggest that the drug is feasible for treating SCI in rodent animal models. 
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3.3. Systemic and post-injury administration of epothilone B suppresses the 

formation of an inhibitory lesion scar after SCI 

Since systemic administration of epothilone B increased microtubule stability at the lesion site, I next 

asked whether this treatment strategy reduces fibrotic scar formation after SCI.  Adult rats received a 

spinal cord dorsal hemisection and were i.p. injected with epothilone B (0.75 mg/kg BW) or vehicle at 1 

day and, if applicable, at 15 days after injury.  One group of animals were sacrificed 4 days after injury, a 

second group of animals were sacrificed 4 weeks after injury.  Subsequently, the lesion site was examined 

by immunohistochemistry and western blotting.  Fibrotic scarring at the lesion site is characterized by 

intense deposition of extracellular matrix (ECM) components.  Immunolabeling of the ECM-protein 

laminin was significantly reduced upon epothilone B i.p. treatment 4 days (Fig. 3.5a, c; 0.96 mm² ± 0.05 

(vehicle) vs. 0.5 mm² ± 0.03 (EpoB), P=0.000008) and even 4 weeks after injury (Fig. 3.5a, c; 1.2 mm² ± 

0.1 (vehicle) vs. 0.9 mm² ± 0.1 (EpoB), P=0.019).  Concomitantly, a second ECM protein, fibronectin, 

was reduced in lesion site extracts 4 weeks post-injury (Fig. 3.5b).  The reduction of extracellular matrix 

(ECM) in the lesion site shows that systemic administration of epothilone B efficiently decreases fibrotic 

scar formation following spinal cord injury. 

Besides laminin and fibronectin, the fibrotic scar comprises other molecules that are associated with the 

ECM including axon growth inhibitory chondroitin sulfate proteoglycans (CSPGs) (see chapter 2.2.2.).  

Therefore, I tested whether the reduction of fibrotic scar tissue upon systemic administration of epothilone 

B was associated with a decrease of CSPGs.  Chondroitin sulfate immunostaining with the CS-56 antibody 

revealed a substantial reduction of CSPGs at the lesion site (Fig. 3.5a).  By using a glycosaminoglycan 

assay, I found that lesion site extracts of epothilone B treated animals showed a 35% reduction of the 

CSPG-specific glycosaminoglycan side chains (Fig. 3.5d; 5.1 mg/g ± 0.5 (vehicle) vs. 3.4 ± 0.4 mg/g 

(EpoB)).  In addition, neurocan protein levels, an abundant CSPG at the spinal cord injury site (Asher et 

al., 2000), were reduced in lesion site extracts as revealed by western blotting (Fig. 3.5b). 
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Finally, I wanted to examine whether epothilone B treatment affects astrogliosis.  Astrogliosis is 

characterized by reactive astrocytes that overexpress glial fibrillary acidic protein (see chapter 2.2.2.).  It 

has been shown that these reactive astrocytes are important for proper sealing of the injury site, which 

avoids secondary tissue damage and lesion spreading (Faulkner et al., 2004).  Histological analysis of the 

lesion site revealed that neither GFAP immunoreactivity (Fig. 3.6a) nor injury size (Fig. 3.6b, 1.6 mm² ± 

0.2 (vehicle) vs. 1.6 mm² ± 0.2 (EpoB), P=0.79) were different between vehicle and epothilone B treated 

animals, indicating a comparable astroglial response and sealing of the lesion site. 

 

 

 

Thus, systemic administration of epothilone B reduces the axon growth inhibitory fibrotic scar after SCI 

injury without adversely affecting the regular wound closure.  This suggests that systemic administration 

of epothilone B renders the spinal cord lesion site more favorable for regenerating axons. 
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3.4. Systemic administration of epothilone B reduces fibrotic scarring by abrogating 

meningeal fibroblast migration 

The fibrotic scar is mainly composed of meningeal fibroblasts that secrete ECM molecules including 

laminin, fibronectin and axon growth inhibitory CSPGs (Decimo et al., 2012; Kawano et al., 2012).  

Within the first week after SCI, meningeal fibroblasts proliferate and migrate towards the injury epicenter 

where they accumulate and deposit ECM components (Kawano et al., 2012).  Since systemic 

administration of epothilone B reduces fibrotic scar tissue formation after SCI, I asked whether the 

treatment affects cell proliferation and/or cell migration of meningeal fibroblasts at the lesion site. 

First, I examined the lesioned spinal cord immunolabeled for the cell proliferation marker phospho-histone 

H3 and for the apoptosis marker TUNEL.  7 days after dorsal hemisection, vehicle and epothilone B 

treated animals showed a similar amount of phospho-histone H3-positive cells (Fig. 3.7a, b; 73 cells ± 11 

(vehicle) vs. 76 cells ± 15 (EpoB), P=0.87) and of TUNEL-positive cells (Fig. 3.7a, c; 379 cells ± 53 

(vehicle) vs. 267 cells ± 41 (EpoB), P=0.17) at the site of the injury. 

Since the treatment did not affect cell proliferation or cell apoptosis at the lesion site, I examined whether 

epothilone B influences cell migration.  To address this, I cultured fibroblasts deriving from the meninges 

of postnatal rat (P4) brains and plated these cells in culture inserts of in vitro wound healing assays.  The 

culture insert was removed after 1 day, thereby uncovering a defined cell-free area which simulated an in 

vitro wound.  Then, cells were differentiated in a migratory stage by reducing serum content in the media 

to a minimal amount (Gundersen et al., 1994).  DMSO treated meningeal fibroblasts migrated into the cell 

free area (Fig. 3.8a) and after 48 hours more than 80% of that area was occupied with cells (Fig. 3.8b, 

83.3% ± 4.7).  In contrast, fibroblasts treated with epothilone B (2.5 ng/ml) displayed a significantly 

reduced migration and covered only 38% of the in vitro wound after 48 hours (Fig.3.8a, b, 38.1% ± 16.8, 

P=0.048). 
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Next, I sought to determine the underlying mechanism of the reduced fibroblast migration upon epothilone 

B treatment.  It has been shown that directed cell migration requires an intrinsic polarization of the 

microtubule array into stable microtubules in the cell leading edge and dynamic microtubules in the cell 

rear (Li and Gundersen, 2008).  To test whether epothilone B affects the polarization of the microtubule 

array, meningeal fibroblasts were immunostained for detyrosinated and tyrosinated tubulin to visualize the 

distribution of stable and dynamic microtubules respectively within the cells.  Interestingly, epothilone B 

treatment induced a drastic change of the intracellular microtubular network.  In control cells, the leading 

edge, facing the cell free area, was enriched with stable detyrosinated microtubules while the trailing edge 
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in the rear of the cell mainly comprised dynamic tyrosinated microtubules (Fig. 3.8c) as described 

previously (Gundersen and Bulinski, 1988).  By contrast, epothilone B treated fibroblasts lost their 

polarity and formed neither leading nor trailing edges (Fig. 3.8d).  Instead, epothilone B treated cells 

showed an increased amount of detyrosinated microtubules (Fig. 3.8e), which were evenly spread 

throughout the cell (Fig. 3.8d).  This suggests that epothilone B abrogates the polarization of cultured 

meningeal fibroblasts, which prevents their directed migration.  
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Finally, I wanted to verify that the abovementioned effect of epothilone B underlies the treatment-induced 

reduction of fibrotic scarring after SCI.  I performed a co-immunostaining for fibronectin, to visualize the 

meninges adjacent to the spinal lesion site, and for detyrosinated and tyrosinated tubulin to visualize the 

microtubule array of fibroblasts within the meninges.  In vehicle treated animals, meningeal fibroblasts 

exhibited a bipolar, migratory shape and were oriented towards the lesion epicenter.  By contrast, similar 

to in vitro conditions, systemic administration of epothilone B abrogated the intrinsic polarization of 

meningeal fibroblasts, leading to their transformation into a round and unpolarized morphology (Fig. 3.9). 
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These data provide evidence that epothilone B inhibits directed migration of meningeal fibroblasts by 

abrogating intrinsic cell polarity, which ultimately impedes fibrotic scar formation after spinal cord injury.  

 

3.5. Microtubule stabilization through epothilone B promotes axon growth in a 

growth-restraining environment 

While epothilone B hindered migration of meningeal fibroblasts, the treatment induced enhanced axon 

growth in cultured embryonic rodent neurons as described above.  Since axon growth after SCI is 

restrained by extrinsic factors in the CNS environment, I tested whether epothilone B also promotes axon 

growth of postnatal neurons that are confronted with inhibitory substrates.  I dissected and dissociated 

postnatal rat cortical neurons (P4) and plated them in media complemented with the most common axon 

growth inhibitory factors, which are present at the lesion site (Fitch and Silver, 1997; Silver and Miller, 

2004).  Then the neurons were treated with DMSO or epothilone B and after 48 hours cells were fixed and 

neurite length was measured.  Neurons treated with DMSO showed a profound reduction of neurite length 

in the presence of axon growth inhibitors Nogo-A (Fig. 3.10a, b; 63.2 µm ± 4.9, P=0.009 vs. growth-

permissive condition), CSPGs (Fig. 3.10a, b; 68.7 µm ± 1.6, P=0.015 vs. growth-permissive condition) or 

semaphorin 3A (Fig. 3.10a, b; 70.9 µm ± 6.4, P=0.01 vs. growth-permissive condition) in comparison to 

neurite lengths under permissive conditions  (Fig 3.10b, 114.3 µm ± 0.9).  However, when neurons were 

treated with epothilone B neurite growth was almost fully restored independent of the complemented 

growth inhibitory substrate (Fig. 3.10a, b; 96 µm ± 2.9 (on Nogo-A), P=0.008; 96.4 µm ± 5.5 (on 

CSPGs), P=0.008; 100.4 µm ± 8.3 (on Sema 3A), P=0.03).  The used epothilone B concentration was 1 

nM suggesting that moderate microtubule stabilization is sufficient to enable CNS neurons to grow 

neurites in an otherwise growth-restraining environment. 
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Next, I sought for a mechanism underlying the increased neurite outgrowth upon epothilone B treatment.  

To this end, neurons were transfected with microtubule plus-end binding protein 3 (EB3) fused to green 

fluorescent protein (GFP), plated in Nogo-A-complemented medium and imaged, using a microscopic live 

cell imaging setup.  EB3-GFP binds to the plus-ends of microtubules and thereby allows the visualization 
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of polymerizing microtubules (Flynn et al., 2012).  Before epothilone B treatment, EB3 was evenly 

distributed throughout the neurites (Fig. 3.11a).  However, addition of the drug led to a rapid and directed 

microtubule polymerization into the growth cones (Fig. 3.11a) indicated by increased EB3-GFP 

fluorescence within the neurite tip (Fig. 3.11a, b).  Moreover, measuring neurite growth rates revealed that 

2 hours after addition of epothilone B the neurite growth speed was significantly enhanced (Fig. 3.11c; 1.3 

µm/h ± 0.4 (EpoB) vs. -0.02 µm/h ± 0.7 (DMSO), P=0.021) and increased still at 4 hours (Fig. 3.11c; 1.9 

µm/h ± 0.8 (EpoB) vs. -0.04 µm/h ± 0.6 (DMSO), P=0.023).  This suggests that microtubule 

polymerization into the neurite tip, induced by epothilone B treatment, promotes neurite growth in a 

growth inhibitory environment.  To further validate this possibility, neurons were treated with low doses 

(10 nM) of the microtubule destabilizing drug nocodazole.  In contrast to epothilone B, nocodazole 

treatment induced microtubule retraction from neurite growth cone as indicated by reduced EB3-GFP 

fluorescence towards the neurite tip (Fig. 3.11b, d).  Strikingly, when nocodazole and epothilone B were 

co-administered, to the cortical neurons, they did not exhibit axon growth rescue when cultured in the 

presence of growth inhibitory factors.  Instead, nocodazole fully abrogated the growth promoting effect of 

epothilone B leading to inhibition of neurite growth that was similar to or greater than that observed in 

control cells (Fig. 3.10b; 57.6 µm ± 5.6 (on Nogo-A), P=0.49; 51.7 µm ± 3.2 (on CSPGs), P=0.03; 54.7 

µm ± 8.3 (on Sema 3A), P=0.19).   

This suggests that microtubule stabilization by epothilone B promotes microtubule polymerization into the 

neurite growth cone, which is necessary and sufficient to propel neurite growth in a non-permissive 

environment. 
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3.6. Systemic administration of epothilone B increases growth competence of injured 

axons in the CNS and promotes regeneration after spinal cord injury 

Axonal injury in the rodent CNS leads to axon degeneration which is followed by the formation of 

dystrophic retraction bulbs at the axon tip (Bradke et al., 2012).  Retraction bulb formation is generally 

referred as to axon dystrophy, results from depolymerization and disorganization of microtubules (George 

et al., 1995; Erturk et al., 2007) and limits axon regeneration (Saxena and Caroni, 2007). 

Given that local application of epothilone B prevents axon dystrophy in injured CNS neurons, I assessed 

the effect of the drug when given systemically.  Adult transgenic mice expressing GFP in a subset of 

axons, were injected with epothilone B (1.5 mg/kg BW i.p.).  Then, GFP labeled dorsal column axons 

were transected at the mid-thoracic spinal cord and imaged daily for 4 days (Erturk et al., 2007).  In 

injured controls, more than 50% of the injured axons formed retraction bulbs 6 hours after injury (Fig. 

3.12a, b; 51.8% ± 6.2).  Over the course of 4 days, the amount of retraction bulbs only slightly decreased 

(Fig. 3.12b; 46.4% ± 2.7 (day 1) to 41.8% ± 3.6 (day 4)).  Moreover, injured control axons frequently 

underwent axonal dieback and degeneration (Fig. 3.12a) leading to a steady increase of the distance 

between the axonal tip and the lesion site (Fig. 3.12c; 263.7 µm ± 22.2 (day 0) to 491.1 µm ± 62.9 (day 

4)).  By contrast, in epothilone B injected animals the distance between the axonal tip and the lesion site 

was significantly lower compared to injured control animals at days 3 and 4 (Fig. 3.12c; 222.73 µm ± 

77.9, P=0.03 (day 3); 169.6 µm ± 39.1, P=0.001 (day 4)).  Notably, in the treatment group the distance 

between lesioned axons and the injury site even decreased after day 2 (Fig. 3.12c; 202.9 µm ± 22.99 (day 

2) to 169.6 µm ± 39.1 (day 4)) indicating axon regeneration towards the injury.  Indeed, epothilone B 

treated animals showed significantly fewer retraction bulbs between 2 and 4 days post-injury (Fig. 3.12a, 

b; 29.3% ± 2.3, P=0.04 (day 2), 26.8% ± 3.9, P=0.019 (day 3); 25.3% ± 3, P=0.0032 (day 4)), which was 

accompanied by regenerative sprouting from the injured axonal tip (Fig. 3.12a).  These data suggest that 
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systemic administration of epothilone B reduces dystrophy of injured spinal cord axons, which is 

sufficient to increase their growth competence. 

 

 



  Results 

46 

 

Since systemic administration of epothilone B increases axon growth competence and reduces the 

inhibitory action of the lesion scar, I next tested whether the treatment promotes axon regeneration.  Adult 

rats received a mid-thoracic dorsal hemisection and were i.p. injected with epothilone B (0.75 mg/kg BW) 

at day 1 and day 15 post-injury.  4 weeks after injury, I investigated axon regeneration of fibers 

constituting the raphespinal tract.  The raphespinal tract is the only source for serotonin (5HT) in the 

spinal cord and therefore can be visualized by fluorescent antibodies against 5HT.  The raphespinal tract 

descends two main projections to the spinal cord, one in the ventral and one in the dorsal spinal cord.  

Since the dorsal projection is interrupted by the dorsal hemisection, every 5HT-positive fiber caudal to the 

injury site can be considered as a regenerated fiber from the dorsal projection or a collateral sprout arising 

from the intact ventral projection.  Epothilone B treated animals showed an approximately 3-fold increase 

in serotonergic fibers caudal from the lesion site (Fig. 3.13a, b; 208.6 fibers ± 43.1 (EpoB) vs. 73.8 fibers 

± 20.9 (vehicle), P=0.029) indicating that the treatment promoted growth of raphespinal fibers. 
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The perpendicular orientation of most fibers in epothilone B treated animals (Fig. 3.13a) suggest that these 

fibers are collateral sprouts from the spared, ventral raphespinal projection or distal sprouts from the 

dorsal projection that grew around the lesion site.  Taken together, systemic administration of epothilone B 

prevents axon dystrophy and instead increases growth of injured spinal cord axons after SCI.  

 

3.7. Systemic administration of epothilone B promotes functional recovery after 

clinically relevant spinal cord contusion injury 

The raphespinal tract innervates motor neurons in the spinal cord and thereby controls walking and fine-

tuned locomotion (Jordan et al., 2008).  Increased raphespinal innervation strongly correlates with 

improved functional recovery of hind limb locomotion after thoracic SCI (Kim et al., 2004; Kaneko et al., 

2006). 

Therefore, I examined whether systemic administration of epothilone B promotes functional recovery in a 

SCI model that closely mimics the human pathology (Onifer et al., 2007).  To this end, adult rats received 

a moderate mid-thoracic spinal cord contusion of 150 kdyn, which disrupts descending motor projections 

and provokes deficits of hindlimbs function (Scheff et al., 2003).  1 day and 15 days after injury, the 

animals were i.p. injected with epothilone B (0.75 mg/kg BW i.p.). 

As a first behavioral examination, animals were tested on the so-called catwalk.  This device is used to 

visualize and record footprints of rats, walking on a plane surface.  Analysis of the recorded footprints can 

be used for quantitative assessment of gait abnormalities resulting from the contusion injury (Pearse et al., 

2004).  In comparison to injured controls, epothilone B treated animals exhibited a more stable gait as 

reflected by increased stride length (Fig. 3.14a; 16.1 mm ± 0.4 (EpoB) vs. 14.4 mm ± 0.7 (vehicle), 

P=0.039) and a reduced foot exorotation (Fig. 3.14b; 18.1° ± 1.9 (EpoB) vs. 25.5° ± 2.5 (vehicle), 

P=0.031) 8 weeks after contusion injury. Moreover, epothilone B treated rats showed an increased fore- 
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and hindlimb coordination during walking, as indicated by increased gait regularity (Fig. 3.14c; 95.9% ± 

1.3 (EpoB) vs. 88.3% ± 1.3 (vehicle), P=0.0006). 

 

 

I next investigated how the treatment affects skilled walking on a more challenging surface.  Animals were 

therefore tested on a horizontal ladder at specific time-points after spinal cord contusion.  2 and 4 weeks 

post-injury, vehicle and epothilone B showed treated animals both showed a comparable recovery on this 

behavioral assay (Fig. 3.15c; 7.7-6.3 errors (vehicle) vs. 6.7–4.7 errors (EpoB), P=0.42 and 0.13, 

respectively).  However, at 6 and 8 weeks post-injury, functional recovery was significantly enhanced in 

epothilone B treated animals as indicated by a 50% reduction of foot misplacements in comparison to 

vehicle treated controls (Fig. 3.15c, 3.95 errors ± 0.5 to 2.3 errors ± 0.5 (EpoB) vs. 5.6 errors ± 0.6 to 4.05 

errors ± (vehicle), P=0.047 and 0.015, respectively). 

Together, these data demonstrate that systemic and post-injury administration of epothilone B improves 

the functional outcome after clinically relevant spinal cord contusion injury. 
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Next I sought an anatomical explanation for the aforementioned functional improvements.  As epothilone 

B increased raphespinal regeneration after SCI (Fig. 3.13a, b), I examined raphespinal innervation of the 

lumbar spinal cord ventral horn which comprises motor neuron pools controlling the hindlimbs.  

Remarkably, in epothilone B treated animals the 5HT-positive area in the ventral horn was more than 50% 

increased at 8 weeks after contusion injury (Fig. 3.15a,b; 6356.6 µm² ± 619.7 (EpoB) vs. 4114.5 µm² ± 

726.3 (vehicle), P=0.032), suggesting that the treatment increased raphespinal innervation of lumbar 

motor pools (Fig. 3.15a). 

Finally, I asked whether increased raphespinal innervation upon treatment caused the improved functional 

recovery.  8 weeks after contusion injury, I chemically ablated raphespinal neurons in vehicle and 

epothilone B injected animals by intracerebroventricular (i.c.v.) injections of 5,7-Dihydroxytryptamine 

(Carta et al., 2007).  Injections of 5,7-DHT ablated the majority of serotonergic fibers in the lumbar spinal 

cord, which lead to a similar amount of raphespinal innervation in both, epothilone B and vehicle treated 

animals (Fig. 3.15b; 1893.1 µm²  ± 257.4 (vehicle) vs. 1755.9 µm² ± 192.3 (EpoB), P=0.61).  Strikingly, 

this procedure abrogated the functional improvements on the horizontal ladder of epothilone B treated 

animals, which performed indistinguishably from injured controls (Fig. 3.15c; 3.9 errors ± 0.6 (epoB) vs. 

4.2 errors ± 0.5 (vehicle), P=0.69).  

Thus, epothilone B treatment improved functional recovery of hindlimb locomotion after contusion injury 

by increasing serotonergic innervation of the lumbar spinal cord. 
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4. DISCUSSION 

Damaged axons regenerate poorly after SCI, due to a low intrinsic axon growth potential and neuron 

extrinsic inhibitory barriers at the lesion site, including CNS myelin and the lesion scar.  Therefore, an 

ideal treatment to induce axon regeneration after SCI should have at least three features.  It should reduce 

scarring (Klapka et al., 2005) and growth inhibitory factors at the lesion site (Schnell and Schwab, 1990; 

Bradbury et al., 2002; GrandPre et al., 2002), reactivate the intrinsic axon growth potential (Neumann et 

al., 2002; Qiu et al., 2002; Liu et al., 2010) and be administrable as a medication after injury.  Recently, a 

number of combinatorial approaches have led to significant axon regeneration (Pearse et al., 2004; Alilain 

et al., 2011; Lu et al., 2012).  These approaches, however, involve multiple drugs, enzymes and 

interventions, rendering clinical translation difficult.  In contrast, a single drug, Taxol, acts on multiple 

cellular targets to promote axon regeneration through moderate microtubule stabilization (Hellal et al., 

2011).  Thus, microtubule stabilization is a promising therapeutic target to promote axon regeneration 

after CNS injury.  Since Taxol is a FDA approved drug, could it be used to treat SCI in human patients? 

Taxol poorly penetrates the blood-brain-barrier, which restricts the entrance of substances into the CNS 

(Fellner et al., 2002).  Therefore, Taxol must be delivered locally to the spinal cord injury site for instance 

through intrathecal catheters or injections.  Such CNS invasive approaches, however, pose a substantial 

risk of causing additional CNS damage, unreasonable danger for patients.  In addition, the Taxol treatment 

must be conducted immediately after SCI in order to efficiently inhibit fibrotic scarring (Hellal et al., 

2011).  This is impossible to achieve in clinical situations, because SCI is often caused by severe accidents 

and stabilization of the patient’s vital functions is necessary before a treatment can be initiated (Kwon et 

al., 2002).  The requirement for immediate and local delivery to the spinal cord injury site renders Taxol 

impractical for clinical translation and limits its therapeutic value. 

Although Taxol is not suitable for treatment of human SCI the fundamental strategy of targeting 

microtubule stability to induce axon regeneration in the injured CNS remains promising.  Thus, I sought 
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for a microtubule stabilizing compound that is able to mimic the positive effects of Taxol, has the ability 

to cross through the blood-brain-barrier and is efficient when given at clinically relevant post-injury time-

points.  A variety of compounds exist which bind and stabilize microtubules (reviewed in Ballatore et al., 

2012).  Among them, the family of epothilones is the most promising candidate to fulfill the 

abovementioned criteria.  Epothilones bind and stabilize microtubules very similar to Taxol (Bollag et al., 

1995).  However, in contrast to Taxol, epothilones are blood-brain-barrier permeable and therefore are 

able to stabilize microtubules in the CNS upon systemic administration (Rivera et al., 2008; Brunden et 

al., 2010).  In addition, the isoform epothilone B and its synthetic analog ixabepilone underwent human 

clinical trials and even received approval by the FDA, respectively (Lechleider et al., 2008; Rivera et al., 

2008). 

In my thesis, I provide the first evidence that systemic and post-injury administration of the microtubule 

stabilizing drug epothilone B has beneficial effects on anatomical and functional outcomes after SCI.  This 

treatment regime increases microtubule stabilization at the spinal cord injury site which hinders directed 

cell migration of scar forming fibroblasts and thereby reduces fibrotic scar formation.  Moreover, my work 

demonstrates that microtubule stabilization through epothilone B promotes microtubule polymerization 

into the axon tip, which decreases axon dystrophy and increases axon growth under growth restraining 

conditions.  Finally, I show that systemic and post-injury administration of epothilone B promotes 

functional recovery after clinically relevant spinal cord contusion injury by restoring raphespinal 

innervation to the spinal cord. 
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4.1. Moderate microtubule stabilization through epothilone B mimics the beneficial 

effects of Taxol 

It has been shown that moderate microtubule stabilization through the drug Taxol induces axon growth in 

embryonic neurons (Witte et al., 2008).  Furthermore, local application of Taxol reduces dystrophy of 

injured CNS axons (Erturk et al., 2007) and reduces fibrotic scar formation after SCI (Hellal et al., 2011).  

Originally, Taxol was identified as a potent anti-cancer treatment due to its ability to suppress mitotic 

spindle formation in rapidly dividing cancer cells.  In 1995 Bollag and colleagues identified the epothilone 

family as microtubule stabilizing agents with a Taxol-like mechanism of action (Bollag et al., 1995).  

Both, Taxol and epothilones, compete for the same binding site at the beta-tubulin subunit (Kowalski et 

al., 1997).  Binding stabilizes the lateral and longitudinal contacts between the tubulin-heterodimers and -

protofilaments, respectively, thereby increasing the stability and polymerization of the microtubule 

(reviewed in (Goodin et al., 2004). 

That Taxol and epothilones stabilize microtubules in a similar fashion is further supported by my data as 

epothilone B and Taxol produce comparable effects on axon growth, axon dystrophy and fibrotic scarring.  

In addition, these findings clearly demonstrate that these biological effects are a primary result of the 

microtubule stabilizing action of both drugs.  In this regard, epothilone B seems to be the more potent drug 

since its effective dose is lower compared to Taxol.  For instance, 256 ng/day of Taxol are required to 

inhibit fibrotic scar formation for 4 weeks after dorsal hemisection.  In comparison, only 30 ng/day of 

epothilone B are necessary to obtain a similar result.  The reason for this higher potency of epothilone B 

could be that both drugs, epothilone B and Taxol, are metabolized differently within cells or tissue.  

Moreover, it is possible that epothilone B binds more efficiently to microtubules than Taxol.  This is 

supported by the study of Kowalski and colleagues, who showed that epothilone B exhibits a higher 

affinity for beta-tubulin than Taxol (Kowalski et al., 1997).  In fact, the dissociation constant (Kd) of 
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epothilone B and tubulin is approximately 36 nM while the Kd for Taxol is between 60 and 100 nM 

(Raccor, 2008). 

However, besides the different potencies, locally applied epothilone B mimics several effects of Taxol that 

are beneficial for spinal cord repair.  This suggests that epothilone B is a valid treatment alternative to 

Taxol for promoting axon regeneration after SCI. 

 

4.2. Systemic administration of epothilone B is a clinically relevant treatment 

strategy 

A therapeutic strategy for human SCI is clinically relevant when it fulfills the following criteria (Kwon et 

al., 2002):  

1) The treatment must be currently available in a form that could be given to humans and must be 

approved as a clinical therapeutic or at least have been tested already in human clinical trials for some 

other related or unrelated conditions. 

2) The treatment must be neurologically efficient when delivered systemically. 

3) To be compatible with the complications that accompany human SCI, the treatment must be efficient 

when given at post-injury time-points. 

From the second consideration another important feature naturally emerges.  

4) The systemic application of the treatment must not cause adverse off-target effects on other organs. 

The microtubule stabilizing drug epothilone B matches all four criteria.  First, the epothilone B analog 

ixabepilone received clinical approval as a treatment for breast cancer in 2008 (Lechleider et al., 2008).  In 

addition, epothilone B was tested in clinical trials as a treatment for various types of cancer and was 
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considered as generally safe (Rivera et al., 2008).  These clinical trials revealed that peripheral neuropathy 

was not a primary side effect of epothilone B (Rivera et al., 2008).  Notably, peripheral neuropathy is one 

of the most severe side effects after systemic Taxol administration in cancer treatment (Chaudhry et al., 

1994). 

Second, epothilone B is neurological active when administered systemically.  My data show, that 

intraperitoneally injected epothilone B enters the CNS and increases microtubule stability as indicated by 

increased tubulin detyrosination and acetylation.  Penetrating the blood-brain-barrier is a general feature of 

the epothilone family.  In fact, the epothilones were developed because of their efficacy in Taxol-resistant 

cancer cells that overexpress the multi-drug-resistance (MDR) channel p-glycoprotein (p-gp) (Kowalski et 

al., 1997).  P-gp is a drug efflux pump that is highly expressed in brain capillary endothelial cells, which 

form the blood-brain-barrier, separating blood from the CNS (Beaulieu et al., 1997).  Taxol is a substrate 

of these efflux pumps and has therefore limited ability to penetrate the blood-brain barrier and to enter the 

CNS (Fellner et al., 2002).  By contrast, epothilones are not a substrate of p-gp and therefore can enter the 

CNS even after systemic administration (reviewed in Ballatore et al., 2012).  In addition, the CNS-activity 

of systemically delivered epothilone B is demonstrated by the fact that either local or systemic drug 

administration prevents axon dystrophy and scar formation.  Furthermore, this suggests that epothilone B 

mediates these effects by acting directly at the spinal cord injury site, independent of its route of entry.  

Notably, local administration leads to a more pronounced reduction of dystrophic axons and scar tissue, 

which may be a result of higher relative drug concentrations at the lesion site in comparison to systemic 

treatment. 

Third, my data show that delayed administration of epothilone B, at day 1 and day 15 post-injury, 

improves the outcomes following experimental SCI.  The efficacy of delayed epothilone B delivery may 

be a result of its pharmacokinetic properties.  The entry of epothilone B is rapid and measurable drug 

concentrations were present in the spinal cord after 6 hours, peaking after 1 day.  Notably, epothilone B 

was cleared only slowly from the CNS but rapidly from the blood plasma.  It is known that the drug is 
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rapidly metabolized and inactivated in the blood by carboxyesterases (Goodin et al., 2004).  Similar 

enzymes may not be present in the CNS, which could explain the reduced metabolism of the drug.  As a 

consequence, epothilone B concentrations remained at similar levels for at least 6 days.  Notably, within 

the first 7 days after SCI the fibrotic scar forms (Hellal et al., 2011).  My data suggest that due to the rapid 

CNS entry and slow clearance of epothilone B, a single, post-injury dosage of the drug is sufficient to 

reduce acute fibrotic scarring after SCI.  It is possible, that initial prevention of the scarring process is 

sufficient for prolonged inhibition of scar tissue formation after SCI.  However, when drug concentrations 

drop below a critical level the scarring process is presumably reinitiated.  Therefore, I applied a second 

dose of epothilone B at 15 days after injury.  Consequently, the amount of fibrotic scar tissue was still 

reduced 4 weeks after SCI (dorsal hemisection).  It is speculative whether a third shot of epothilone B at 

later post-injury time-points is necessary for sustaining fibrotic scar inhibition but this requires further 

elucidation. 

Fourth, my study provides evidence that systemic administration of epothilone B is safe under the tested 

parameters.  Due to their antiproliferative effects, microtubule stabilizing drugs, including epothilones, are 

used in clinics for treating various kinds of cancer (Rivera et al., 2008).  However, chemotherapeutic 

dosage regimens are not desirable for SCI treatment, because they cause a variety of terrible side effects.  

Therefore, I first sought a dosage that produces the desired effects without causing adverse events.  I tested 

different dosing regimens ranging from 0.5 to 1.5 mg/kg BW and their effects on fibrotic scar formation 

after SCI and systemic toxicity, determined by body weight measurements and blood analysis (data not 

shown).  I found that intraperitoneal administration of 0.75 mg epothilone B per kg bodyweight in adult 

rats, given at 1 and 15 days after SCI improved the anatomical and functional outcome of SCI without 

affecting bodyweight or white blood cell concentration of the experimental animals.  Notably,  one of the 

most common side effects of epothilone B in cancer treatment is neutropenia, a pathological reduction of 

white blood cells (Rivera et al., 2008).  This suggests that the effective drug concentrations for treating 

SCI are lower than those used for treating cancer.  In fact, two injections of 0.75 mg/kg of epothilone B is 



  Discussion 

57 

 

a cumulative dose that is significantly lower than what is used for treating different kinds of experimental 

tumor models.  For instance, in tumor-bearing nude mice a potent anti-tumor activity of the drug was 

observed when intravenously (i.v.) administered at a single dose of 4-6 mg/kg BW or after 2-3 i.v. 

injections of 3-4 mg/kg BW (Altmann et al., 2000).  

Thus, my findings imply two important conclusions.  First, they provide proof-of-principle evidence that 

systemic administration of epothilone B is a clinically practical treatment strategy to treat the injured 

spinal cord.  Second, the reduction of the fibrotic scar is most likely not a result of an antiproliferative 

drug effect of the drug on either the scar forming cells in the injured spinal cord or on other cell types that 

contribute to the wound healing response after injury including white blood cells (reviewed in Kawano et 

al., 2012).  The latter conclusion is further supported by the fact that the amount of proliferating or 

apoptotic cells at the lesion site was not altered by epothilone B treatment. 

 

4.3. Epothilone B inhibits fibrotic scarring by abrogating cell polarity and the 

directed cell migration of meningeal fibroblasts 

As described in the introduction, the fibrotic scar is formed by meningeal fibroblasts.  After spinal cord 

injury, these cells proliferate, migrate into the lesion site and form the fibrotic scar (reviewed in Kawano et 

al., 2012).  My data suggest that the treatment does not affect proliferation or apoptosis of meningeal 

fibroblasts.  In this context, neither lesion size nor glial scarring were changed in epothilone B treated 

animals, two features that would be fundamentally affected by an altered cell proliferation (Goritz et al., 

2011).  Thus, fibrotic scar reduction after systemic epothilone B treatment is probably a result of an 

impaired migration of scar forming cells into the lesion site.  Indeed, my data demonstrate that meningeal 

fibroblasts treated with epothilone B are unable to migrate in wound healing assays in vitro.  Furthermore, 

I show that epothilone B disrupts the polarization of the cell’s microtubule array, which prevents 
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polarization of the cell to form a leading and a trailing edge both in vitro and in vivo.  The inability of the 

epothilone B treated cells to polarize most likely underlies their migration failure.  It has been shown that 

polarization of the microtubule cytoskeleton is fundamental for cell migration and its disruption hinders 

directed cell migration (reviewed in Li and Gundersen, 2008).  Interestingly, a recent study showed that 

even at low concentrations microtubule stabilizing drugs are able to inhibit migration of vascular 

endothelial cells at low, nanomolar concentrations (0.5 nM for Taxol) by interfering with trailing edge 

retraction (Ganguly et al., 2013).  It is possible that due to their increased stability, microtubules are 

unable to depolymerize and thereby act as steric “struts” that prevent trailing edge withdrawal (Ganguly et 

al., 2013).  In addition, epothilone B induced microtubule stabilization may interfere with the regulatory 

function of microtubules during trailing edge retraction.  A recent publication suggests that microtubule 

destabilization and depolymerization is necessary for releasing focal contacts factor (Kamath et al., 2013).  

The authors suggest that an increased amount of stable microtubules bind GEF H1 and impede its 

regulatory action on RhoA and focal attachments.  Consequently, the migration failure of epothilone B 

treated fibroblasts could result from the inability to disengage from the underlying substrate. 

Another possible mechanism that underlies epothilone B induced fibrotic scar inhibition could be TGF-β1 

signaling.  TGF-β1 is one of the most abundant fibrogenic factors at the lesion site (Komuta et al., 2010).  

It was shown that the Taxol treatment in vitro and in vivo dampens TGF-β1 signaling by preventing 

microtubule dependent nuclear translocation of the TGF-β1 receptor target Smad2/3 (Batut et al., 2007; 

Hellal et al., 2011).  Hellal and colleagues demonstrated that local Taxol application to the lesion site 

inhibits cellular Smad2/3 nuclear translocation at the lesion site, which contributed to the reduction of 

fibrotic scar tissue.  Systemic administration of epothilone B did not induce obvious changes of Smad2/3 

nuclear translocation at the lesion site (data not shown).  It is possible that the critical concentration, which 

is necessary for inhibiting microtubule dependent signaling, was not achieved with the used epothilone B 

dosage.  Consistently, local application of Taxol to the lesion site more efficiently reduces fibrotic scarring 

than systemic administration of epothilone B. 
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Finally, the treatment could potentially reduce the amount of pro-inflammatory, fibrogenic factors at the 

lesion site by interfering with cell secretion.  Yet, protein levels of TGF-β1 were comparable between 

epothilone B treated animals and injured controls (data not shown).  Since TGF-β1 is the most potent 

fibrogenic factor at the lesion site (Komuta et al., 2010) it is unlikely that scar reduction after systemic 

epothilone B delivery is a result of perturbed cell secretion. 

This suggests that epothilone B reduces fibrotic scar formation primarily by perturbing the distribution of 

stable and dynamic microtubules in scar forming meningeal fibroblasts.  This disrupts cell polarization and 

in turn prevents directed meningeal fibroblast migration into the spinal cord lesion. 

As described previously, the fibrotic scar poses a major barrier for axon regeneration at the lesion site by 

expressing axon growth inhibitory molecules including CSPGs (Hellal et al., 2011; Kawano et al., 2012).  

Systemic administration of epothilone B reduces fibrotic scarring, which is accompanied by a significant 

CSPG reduction at the lesion site including neurocan one of the most abundant CSPG isoforms at the 

lesion site (Asher et al., 2000; Jones et al., 2003).  Therefore, my study provides further evidence that the 

fibrotic scar is a major source of axon growth inhibitory CSPGs in the lesion scar.  This is noteworthy, 

because cells of the glial scar were considered as the major contributors of CSPG expression after SCI 

(Jones et al., 2003; Silver and Miller, 2004).  It is yet possible that epothilone B treatment also interferes 

with CSPG production by astrocytes.  In fact, Taxol treated cultured astrocytes show a reduced expression 

of CSPGs (Hellal et al., 2011).  However, the pattern of CS-56 immunofluorescence in the lesion site, 

which specifically visualizes chondroitin sulfates, suggests that the CSPGs reduction is primarily caused 

by a lack of ECM deposition in the lesion epicenter.  It has been shown that meningeal fibroblasts express 

ECM molecules including laminin, fibronectin and also CSPGs (Decimo et al., 2012).  Since meningeal 

fibroblasts are incapable of migrating into the lesion epicenter upon epothilone B treatment, the cellular 

source for ECM expression is absent.  In addition, since CSPGs require the ECM as a binding-substrate, 

CSPGs secreted from glial cells may not disperse into the lesion site, leading to a further reduction. 
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Thus, my data provide evidence that systemically administered epothilone B suppresses CSPG deposition 

at the lesion site by preventing fibroblast infiltration and the concomitant ECM production. 

 

4.4. Microtubule polymerization into the growth cone propels axon growth 

It has been shown in previous studies that moderate microtubule stabilization by Taxol increases axon 

growth on a variety of growth inhibitory substrates (Erturk et al., 2007; Hellal et al., 2011; Sengottuvel 

and Fischer, 2011).  My data show that epothilone B increases axon growth of postnatal neurons in the 

presence of growth inhibitors in a similar fashion.  In addition, my study provides a cellular mechanism 

how a moderate increase of microtubule stabilization promotes axon growth.  I show that low doses of 

epothilone B induce massive polymerization of microtubules closer to the growth cone tip, which precedes 

increased neurite outgrowth in the presence of growth-inhibitory Nogo-A.  Similarly, epothilone B rescues 

neurite growth in the presence of inhibitory CSPGs and semaphorin 3A.  This growth-promotive effect of 

epothilone B is compromised by the microtubule destabilizing drug nocodazole, which induces 

depolymerization and retraction of microtubules from the growth cone.  Thus, the increased microtubule 

polymerization into the growth cone upon epothilone B treatment causes increased neurite growth under 

growth restraining conditions. 

Microtubule polymerization into the peripheral growth cone is a key mechanism of axon growth.  In fact, 

multiple axon formation by embryonic hippocampal neurons upon Taxol treatment is a direct consequence 

of microtubule polymerization into the distal neurite (Witte et al., 2008).  Microtubules are considered to 

act as a “pushing force” for the elongating axon, while the actin cytoskeleton functions as a “steric 

hindrance” which prevents microtubules from entering the growth cone periphery (Neukirchen and 

Bradke, 2011).  In accordance, removing the actin hindrance or promoting microtubule assembly into the 

P-domain is sufficient to induce axon elongation (Bradke and Dotti, 1999; Kabir et al., 2001).  Massive 

microtubule polymerization into the growth cone by epothilone B treatment may increase the microtubule 
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“pushing force” against the actin hindrance leading to microtubule entrance into the growth cone 

periphery.  In addition, the treatment could promote microtubule invasion into peripheral filopodia by 

stimulating the interaction between plus-tip bound EB3 and the actin-binding protein drebrin.  Drebrin 

captures EB3-bound microtubule plus-tips and guides them to filopodial F-actin bundles (Geraldo et al., 

2008).  How microtubule invasion into peripheral growth cone structures promotes axon elongation is not 

fully understood.  Microtubules may generate physical forces that are sufficient to drive the growth cone 

forward (Laan et al., 2008).  Moreover, microtubules could maintain, stabilize and/or induce the formation 

of actin protrusions (Lowery and Van Vactor, 2009).  Finally, microtubule-based transport provides an 

increased amount of cellular cargo to the site of growth, which is a rate limiting factor of axon elongation 

(Zakharenko and Popov, 1998). 

In addition, microtubule stabilization through epothilone B may promote neurite growth by desensitizing 

the neurites to extracellular growth inhibitory factors.  One major effector of Nogo-A, CSPGs and 

semaphorin 3A is the GTPase RhoA (reviewed in McKerracher et al., 2012) which regulates microtubule 

dynamics through its downstream target collapsin response mediator protein 2 (CRMP-2).  CRMP-2 binds 

tubulin heterodimers and promotes increased microtubule assembly (Fukata et al., 2002).  Nogo-A, CSPGs 

and semaphorin 3A inactivate CRMP-2 through RhoA signaling, thereby inducing microtubule 

disassembly and growth cone collapse (Mimura et al., 2006; McKerracher et al., 2012).  Epothilone B 

mediated microtubule stabilization and polymerization may compensate for the loss of CRMP-2 activity; a 

recent publication demonstrates that CRMP-2 is replaced by epothilone B indicating a similar mode of 

action (Lin et al., 2011).  Semaphorin 3A induces microtubule instability through an additional effector 

which is glycogen synthase kinase 3 beta (GSK-3 beta).  GSK-3 beta phosphorylates and inactivates 

CRMP-2 (Yoshimura et al., 2005) and MAP 1B, a microtubule-associated protein that protects 

microtubules from depolymerization (Goold et al., 1999).  Consistently, the semaphorin 3A-induced loss 

of the microtubule stabilizing function of CRMP-2 and MAP 1B may be rescued by microtubule 

stabilization through epothilone B. 
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Taken together, I hypothesize that epothilone B enables neurite outgrowth on growth inhibitory substrates 

by two mechanisms.  On the one side, the drug promotes microtubule invasion into the growth cone P-

domain which per se promotes neurite elongation.  On the other side, the microtubule stabilizing action of 

epothilone B neutralizes growth inhibitory signaling.  Further studies are required to elucidate how these 

mechanisms individually contribute to the growth promotive effect of microtubule stabilizing agents. 

 

4.5. Systemic administration of epothilone B reduces axon dystrophy 

Injured neurons in the PNS form new growth cones, regenerate and reinnervate, at least in part, their 

former target structure.  By contrast, damaged axons in the CNS do not form growth cones but become 

dystrophic, reflected by the formation of retraction bulbs (Bradke et al., 2012). 

It has been shown that axon dystrophy is caused by disorganization and disassembly of microtubules 

within the tip of the injured CNS axons (Erturk et al., 2007).  Increasing microtubule stability by local 

application of Taxol or by systemic administration of epothilone D rescues axon dystrophy and axon 

degeneration (Erturk et al., 2007; Brunden et al., 2010). 

My research demonstrates that local or systemic administration of the microtubule stabilizing drug 

epothilone B substantially decreases retraction bulb formation after SCI in mice.  Since local application 

of Taxol produces a similar effect, perturbed microtubule stability within the injured axons must be a 

fundamental cause of axon dystrophy.  There are certain lines of evidence that support this statement.  

Injured PNS axons that are treated with the microtubule destabilizing drug nocodazole or vincristine, a 

drug that inhibits microtubule assembly, do not form new growth cones but become dystrophic and stall 

regeneration (Pan et al., 2003; Erturk et al., 2007).  In addition, Erturk and colleagues reported that 

microtubules within the retraction bulbs of injured CNS neurons are unbundled and disorganized, while 

Taxol treatment promoted microtubule rebundling and reorganization (Erturk et al., 2007).  Remarkably, 
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injured axons of invertebrate neurons form bulb like-endings with disorganized and disassembled 

microtubules.  However, these neurons have the intrinsic ability to reorganize their axonal microtubules 

into bundles, which leads to axon regeneration (Erez et al., 2007).  Erturk and colleagues reported a 

reduction of retraction bulbs after local application of Taxol but not the formation of new growth cones at 

the axonal stumps.  However, this could be attributed to the short observation interval of only 6 hours.  In 

my study, reduction of retraction bulbs upon systemic administration of epothilone B precedes increased 

regenerative sprouting towards the injury site within one day.  This suggests that microtubule stabilization 

is sufficient for growth cone formation of injured CNS axons presumably by promoting functional 

reorganization of the distal microtubules. 

In addition, my study shows that systemic administration of epothilone B decreases axon dieback from the 

lesion site after CNS injury.  A recent study from the Yaron lab demonstrated that microtubule 

depolymerization precedes degeneration of axotomized DRG axons in culture (Maor-Nof et al., 2013).  In 

addition, this study revealed, that microtubule stabilization through Taxol prevents this degenerative 

process (Maor-Nof et al., 2013).  An important trigger of microtubule disassembly is calcium, which 

enters the injured axon through its disrupted cell membrane and calcium-specific ion channels (George et 

al., 1995; Bradke et al., 2012).  Even though calcium seems to be important for the formation of a new 

growth cone after axotomy (Kamber et al., 2009), it also induces axon degeneration (George et al., 1995) 

by activating microtubule-degrading calpains (Spira et al., 2003) and by inducing microtubule disassembly 

(O'Brien et al., 1997).  Interestingly, epothilone B protects microtubules from calcium-induced 

depolymerization (Kowalski et al., 1997) which may contribute to the reduced axonal dieback that is 

observed in treated animals.  Alternatively, increased microtubule stabilization may counteract calpain 

induced microtubule degradation.  This assumption is supported by the fact that, similar to epothilone B, 

calpain inhibition prevents axonal dieback upon CNS injury (Kerschensteiner et al., 2005).  Finally, 

epothilone B might compensate for axotomy-associated loss of microtubule stabilizing proteins such as 

Tau.  Axotomy induces axon degeneration which is accompanied by Tau depletion from microtubules 
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(Maor-Nof et al., 2013).  Interestingly, microtubule stabilizing agents such as Taxol and epothilones bind 

to a similar binding site as Tau and might thereby compensate for its loss.  Along these lines, microtubule 

stabilizing agents prevent axon degeneration in experimental models of tauopathy (Zhang et al., 2005; 

Brunden et al., 2010) indicating that these drugs indeed rescue a loss of Tau function. 

Taken together, my data suggest that systemic administration of epothilone B reduces axon dystrophy of 

injured mammalian CNS sensory axons by protecting microtubules from disassembly and disorganization 

and by promoting microtubule reorganization.  The contribution of both features requires detailed 

investigation in future studies. 

 

4.6. Systemic administration of epothilone B promotes functional raphespinal tract 

restoration 

Damaged axons in the spinal cord poorly regenerate, which leads to permanent functional deficits after 

SCI.  Axon regeneration is restricted by the intrinsic inability of mature CNS neurons to regrow their 

injured axons (Bradke et al., 2012), by the inhibitory lesion scar and by CNS myelin (Fitch and Silver, 

2008; Kawano et al., 2012). 

In my study I show that systemic administration of epothilone B promotes the growth capacity of injured 

CNS axons and reduces the inhibitory spinal cord lesion environment.  Consequently, this leads to an 

increased amount of raphespinal axons caudal to the lesion site, which correlates with increased recovery 

of hindlimb function after spinal cord contusion injury in rats. 

This latter observation is especially notable, because the rat spinal cord contusion injury model is 

considered as clinically relevant.  The vast majority of human injuries are contusion injuries that e.g. result 

from spinal cord compression through delocalized vertebrae (Norenberg et al., 2004).  Depending on the 

severity these injuries are accompanied by lesion cavitation or extensive fibrous scarring (Norenberg et al., 
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2004).  To test potential therapeutics for clinical translation, researchers have developed devices that 

produce experimental spinal cord injuries that mimic the pathophysiological aspects of human SCI 

(reviewed in Onifer et al., 2007).  For my research, I used one of these devices, which is the “Infinite 

Horizon” (IH) impactor (Scheff et al., 2003).  The IH impactor allows precise control over the kinetic 

forces applied to the spinal cord, which produces highly standardized contusion injuries (Scheff et al., 

2003).  For my studies, I used an impact force of 150 kdyn to produce moderate spinal cord contusions in 

the mid-thoracic rat spinal cord.  I chose this force, because a force of 100 kdyn produces injuries that are 

too mild, leading to an intense spontaneous recovery that generally renders the assessment of a therapeutic 

intervention difficult.  By contrast, a force of 200 kdyn produces injuries that are too severe, which 

strongly limits functional recovery and may mask positive treatment effects.  Along these lines, I showed 

in earlier studies that local Taxol treatment to the lesion site improves recovery of walking after 150 kdyn 

contusion injury (Hellal et al., 2011) but not after 200 kdyn contusion injury (data not shown).  In 

addition, the 150 kdyn contusion model offers the advantage that the injured rats recover weight supported 

stepping already 2 weeks after injury.  Therefore, it is possible to study the effect of a treatment on gait 

abnormalities and the functional recovery of walking after SCI. 

To assess these, I used two behavioral assays, the catwalk and the horizontal ladder, which are specifically 

sensitive to even mild disturbances of hindlimb function during walking.  The catwalk is used to record 

and analyze paw placement of animals walking on a plane surface.  These analysis provide detailed 

information about inter limb coordination, body balance and walking stability (Metz et al., 2000).  The 

horizontal ladder test requires forelimb-hindlimb coordination and voluntary movement control and is 

therefore used to reveal deficits in descending fine motor control after SCI, that are not apparent during 

normal walking (Metz et al., 2000). 

Foot-print analysis of the catwalk system revealed that a 150 kDyn contusion injury induces substantial 

gait abnormalities in injured controls.  8 weeks after contusion injury, control animals show less stable and 

less coordinated walking when compared to uninjured animals indicating the interruption of descending 



  Discussion 

66 

 

and ascending spinal cord projections that control body balance, walking stability and coordination.  By 

contrast, systemic administration of epothilone B significantly ameliorates these functional deficits 

suggesting that the treatment partially restores spinal cord circuits that are necessary for normal walking. 

The horizontal ladder test revealed that both, epothilone B treated animals and injured controls, showed a 

considerable reduction of footfall errors within the first 4 weeks after contusion injury, probably owing to 

spontaneous recovery of walking function.  In fact, the 150 kdyn contusion injury spares a substantial 

amount of white matter that probably contributes to these spontaneous improvements (Scheff et al., 2003).  

However, systemic administration of epothilone B appears to enhance this spontaneous recovery, because 

6 and 8 weeks post-injury treated animals showed significantly less footfalls than control animals.  Thus, 

my data suggest that systemic delivery of epothilone B promotes the functional restoration of descending 

motor tracts that control the voluntary and precise paw placement on the ladder steps. 

Besides the functional data, systemic administration of epothilone B increases the amount of descending, 

serotonin-positive raphespinal fibers in the lumbar spinal cord ventral horn.  There, raphespinal fibers, 

which use serotonin (5HT) as neurotransmitter, control the activity of motor neuron pools that express 

5HT-receptors (Sławińska et al., 2013).  My data show that in epothilone B treated animals, an increased 

amount of raphespinal fibers contact choline acetyltransferase (ChAT)-positive motor neuron pools that 

innervate the hindlimb muscles (Gilerovich et al., 2008).  When this increased innervation is destroyed by 

5,7-DHT, a serotonergic neurotoxin, the functional improvements of the treated animals are fully 

abrogated.  This suggests that systemic administration of epothilone B increases recovery of function by 

increasing raphespinal innervation to spinal motor neurons.  In accordance, a variety of studies 

demonstrated that increasing raphespinal regeneration promotes recovery of hindlimb function after SCI 

(Kim et al., 2004; Pearse et al., 2004; Kaneko et al., 2006; Hellal et al., 2011). 

The specific role of the raphespinal tract in hindlimb locomotion is controversial.  Earlier studies 

suggested that descending raphespinal projections have a modulatory rather than a mediatory function 
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during walking (Jacobs and Fornal, 1997).  However, recent studies indicate that intrathecal application of 

serotonin or serotonin agonists is sufficient to produce hind limb locomotion in rodents with a complete 

spinal cord transection (Jordan et al., 2008).  This suggests a more crucial involvement of raphespinal 

projections for hindlimb movement and walking.  One major function of serotonin in the spinal cord is to 

increase motor neuron excitability and the amplitude of the motor response (Barbeau and Rossignol, 1990; 

Schmidt and Jordan, 2000).  The contribution of serotonergic input to motor neuron excitation may even 

be enhanced after SCI, since motor neurons up-regulate 5HT receptors after injury and become 

hypersensitive to the neurotransmitter (Husch et al., 2012).  Accordingly, serotonin exhibits direct effects 

on walking parameters.  Application of serotonin to the spinal cord increases step length (Barbeau and 

Rossignol, 1990) and forelimb-hind limb coordination (Slawinska et al., 2013).  Notably, similar gait 

improvements are induced by systemic administration of epothilone B, which suggests that the drug 

mediates these effects by promoting raphespinal function. 

This raises the question how epothilone B ameliorates raphespinal function.  Potentially, the treatment 

promotes regeneration or regenerative sprouting of raphespinal fibers and/or protects spared raphespinal 

projections from injury-induced degeneration.  Since the data arise from analysis of fixed tissue sections, it 

is difficult to judge whether the increased density of raphespinal fibers in epothilone B treated animals 

should be attributable to increased regeneration or to neuroprotection (Tuszynski and Steward, 2012).  

However, certain lines of evidence suggest that epothilone B may contribute to both.  The cell culture data 

show that neurons treated with epothilone B exhibit enhanced growth in the presence of growth inhibitory 

factors including the CNS myelin component Nogo-A.  Neutralizing the inhibitory action of Nogo-A is 

sufficient to induce regeneration of raphespinal fibers after SCI in rats (Kim et al., 2004).  In addition, 

systemic administration of epothilone B reduces growth inhibitory CSPGs at the lesion site, which is 

accompanied by an increased amount 5HT-positive fibers caudal to the injury site.  Comparably, digestion 

of CSPGs by the bacterial enzyme chondroitinase ABC promotes regeneration of raphespinal axons to the 

caudal injury site (Alilain et al., 2011).  Hence, epothilone B may promote regeneration of raphespinal 
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axons by desensitizing them to extrinsic growth inhibitors and by rendering the hostile lesion environment 

more permissive.  I addition, I show by in vivo live imaging that local or systemic application of 

epothilone B protects injured sensory axons from dieback after injury.  In accordance, it has been shown 

that systemic delivery of epothilone D, another epothilone analog, rescues axon degeneration in different 

models of neurodegenerative diseases by counteracting microtubule disassembly and dysfunction 

(Brunden et al., 2010; Cartelli et al., 2013).  This suggests that systemic administered epothilones have a 

neuroprotective effect and conserve CNS axons under degenerative conditions.  Even though SCI is not a 

neurodegenerative disease, the injury triggers an inflammatory process leading to degeneration of axons 

that were not severed by the primary insult (Cadotte and Fehlings, 2011).  Accordingly, neuroprotective 

treatments have positive implications on SCI pathology (reviewed in (Kwon et al., 2002). 

Thus, I assume that systemic administration of epothilone B promotes regeneration and prevents 

degeneration of raphespinal fibers thereby improving raphespinal function and locomotor recovery after 

spinal cord contusion injury. 
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4.7. Concluding remarks 

Microtubules are fundamental for numerous cellular processes, including cell migration (Gundersen and 

Bulinski, 1988), signal integration (Hellal et al., 2011), proliferation (Glotzer, 2009) and axon growth 

(Witte et al., 2008).  The finding that the stabilization of microtubules disrupts mitotic spindle formation 

and inhibits cell division established the usage of systemic microtubule stabilizing agents as a therapeutic 

standard for the treatment of cancer (Dumontet and Jordan, 2010).  My work shows that systemic 

administration of the microtubule stabilizing agent epothilone B, at doses below those currently accepted 

for cancer treatment (Altmann et al., 2000), promotes functional recovery after SCI.  My approach focuses 

on a single molecular target, the microtubules, yet overcomes multiple obstacles that restrain axon 

regeneration after SCI.  This is possible because of the dichotomy of microtubule dynamics in the 

polarization of different cell types.  In neurons, microtubule stabilization reactivated an embryonic-like 

growth program by promoting microtubule protrusion into the axon tip, which induced axon regeneration 

under pathological, growth-restraining conditions.  By contrast, in scar forming fibroblasts the 

stabilization of microtubules abrogated cell polarity and directed cell migration, which reduced the 

inhibitory fibrotic scar.  This dual effect of microtubule stabilization through epothilone B promotes 

functional restoration of the spinal cord raphespinal tract which leads to an enhanced locomotor recovery 

after SCI. 

My study provides evidence that microtubule stabilization through epothilone B administration represents 

a promising treatment strategy for CNS injuries with a strong translational perspective:  1) Epothilone B 

has beneficial effects for SCI recovery when given by systemic and post-injury administration.  2) 

Epothilone B counteracts clinically relevant impediments of SCI including axon dystrophy and fibrotic 

scarring.  3) Epothilones are clinically approved which enables an efficient clinical translation.  Thus, 

future work can be valuably undertaken to study the effect of epothilones in animal models of SCI to 

further validate their safety, efficacy and translational value. 
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5. MATERIAL AND METHODS 

5.1 Materials 

5.1.1. Chemical substance 

 Ammonium chloride (NH4Cl)       VWR 

 β-Mercaptoethanol        VWR 

 Borax (Sodium borat)        VWR 

 Boric acid         VWR 

 Bovine serum albumin (BSA)       Sigma 

 Cremophor El         Sigma 

 Dimethyl sulfoxide (DMSO)       Roth 

 Donkey serum         Invitrogen 

 EDTA (ethylene diamine tetraacedic acid)     VWR 

 Ethanol          VWR 

 Fetal bovine serum (FBS)       Invitrogen 

 Hanks balanced salt solution (HBSS)      Invitrogen 

 Hepes (N-2-Hydroxyethylpiperazine-N´-2-ethane sulfonic acid)   Invitrogen 

 Hydrochloric acid (HCl, 1 M)       VWR 

 Laminin (0.5 mg/ml)        Roche 

 Glutamine 100x         Invitrogen 

 Glycine          Sigma 

 Goat serum         Invitrogen 

 Methanol         VWR 

 Minimal essential medium (MEM) 10x      Invitrogen 
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 MEM essential amino acids 50x       Invitrogen 

 MEM non-essential amino acids 100x      Invitrogen 

 3-morpholinopropase sulfonic acid      VWR 

 Paraformaldehyde        Sigma 

 Parrafin          VWR 

 Disodium hydrogen phosphate (Na2HPO)     VWR 

 Sodium chloride (NaCl)        VWR 

 Sodium hydroxide (NaOH)       VWR 

 Sodium dodecylsulfate (SDS)       Sigma 

 Sucrose          Sigma 

 Tris base         Sigma 

 Triton X-100         Sigma 

 Tween 20 (Polyoxyethylene)       Sigma 

5.1.2. Buffers and solutions 

 50 mM ammonium chloride (NH4Cl): 1.34 g ammonium chloride in 500 ml PBS 

 Blocking solution for immunocytochemistry:  2% Fetal bovine serum, 2% BSA and 0.2% Fish 

gelantine in H2O 

 Borate buffer:  1.24 g Boric acid and 1.90 g Borax in 400 ml H2O at pH 8.5 

 Citrate buffer: Sodiumcitrate 4.4 g, NaCl 8.76 g, bring to 500 ml with H2O 

 5,7-DHT solution: 150 µg (free base) 5,7-DHT dissolved in 20 µl 0.02% ascorbate-saline 

 Glycosaminoglycan extraction buffer: 3 M guanidine hydrochloride/0.05 M Tris HCL buffer (pH 

7.5) 

 1 M Hepes:  28.8 g Hepes in 100 ml H2O at pH 7.25 (solution is autoclaved) 
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 7 mM Hepes buffered Hanks balanced salt solution (HBSS):  3.5 ml 1 M Hepes in 500 ml HBBS 

(solution is sterile filtered) 

 5x Laemmli buffer:  250 mM Tris/HCl (pH 6.8), 1 M β-Mercaptoethanol, 10% (w/v) SDS, 30% 

(v/v) Glycerol and bromophenolblue in H2O 

 MEM: 50 ml 10x MEM, 15 ml 20% glucose, 20 ml 5.5% NaHCO3. 10 ml MEM essential amino 

acids 50x, 10 ml MEM non-essential amino acids 100x, bring 1 L with H2O (pH 7.3; solution is 

sterile filtered) 

 MEM-FBS 10%:  10 ml heat-inactivated FBS in 90 ml MEM (medium is sterile filtered). 

 MEM-FBS 0.5%:  500 µm heat-inactivated FBS in 90 ml MEM (medium is sterile filtered). 

 3-morpholinopropase sulfonic acid (MOPS) SDS buffer: 0.05 M 3-morpholinopropase sulfonic 

acid, 0.05 M Tris base, 0.1% SDS, 20 mM EDTA 

 Complete neurobasal medium:  48 ml neurobasal A medium, 1 ml FBS, 1 ml B-27, 0.5 ml 

glutamine (100x), 0.5 ml penicilin/streptomycin solution 

 Neuronal growth medium / N2 Medium:  50 ml 10x N2 Supplement and 100 mg ovalbumin in 

450 ml N-MEM (medium is sterile filtered). 

 N-MEM:  50 ml 10x MEM, 5 ml 1.1% pyruvic acid, 5 ml 200 mM glutamine, 15 ml 20% glucose, 

20 ml 5.5% NaHCO3, in 405 ml H2O (medium is sterile filtered). 

 16% Paraformaldehyde stock solution (for transcardiac perfusion): 320 g paraformaldehyde, 800 

ml 1 M PBS bring to 2 L with H2O, 20 NaOH pellets, pH 7.4 

 16% Paraformaldehyde stock solution (for immunocytochemistry): 160 g paraformaldehyde, 160 

g sucrose, 100 ml 10x PBS, bring to 1 L with H2O, NaOH pellets, pH 7.4 

 Physiological saline solution (for transcardiac perfusion): 9 g NaCl in 1 L H2O 

 Phosphate buffered saline (PBS) 1x: 0.2 g KCl, 0.2 g KH2PO4, 1.15 g Na2HPO4 and 8 g NaCl in 1 

L H2O (pH 7.4) 

 1 M PBS: 114.9 g Na2HPO4, 26.41 g NaH2PO4, 90 g NaCl bring to1 L H2O (pH 7.4) 
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 Poly-L-lysine (PLL) solution:  1 mg/ml Poly-L-lysine hydrobromide in borate buffer.  Solution is 

sterile filtered (all glass cover slips or glass bottom dishes for neuronal cultures are incubated with 

PLL solution overnight and then washed three time with sterile H2O) 

 Radioimmunoprecipitation buffer: Sigma 

 0.1% Triton X-100: 50 µl (v/v) Triton X-100 in 50 ml PBS 

 0.5% TBS-Triton X-100:  5 ml (v/v) Triton X-100 in 1 l TBS 

 TBS-T glycine: TBS-T with 0.3 M glycine 

 Trypsin solution:  1 ml 1M Hepes in 99 ml Trypsin-EDTA-solution 

 Transfer Buffer for western blotting:  3.2 g TrisHCL, 14.4 g Glycine and 200 ml methanol in 800 

ml H2O 

 Tris-acetate buffer:  50 mM Tricine, 50 mM Tris base, 0.1% SDS, pH 8.24 

 0.05% Trypsin-EDTA solution:  0.05% Trypsin, 0.53 mM EDTA*4Na Invitrogen 

 0.25% Trypsin-EDTA solution:  0.25% Trypsin, 0.53 mM EDTA*4Na Invitrogen 

 

5.1.3. Commercial kits 

Name Provider 

Amaxa Nucleofector kit   Lonza 

EndoFree Plasmid Maxi Kit Quiagen 

Proteoglycan Detection kit Astarte Biologics 

Super signal West Dura Extended Duration Substrate kit Thermo Scientific 

TUNEL staining kit Invitrogen 
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5.1.4. Compounds, proteins and enzymes 

Name Concentration Provider 

Chicken chondroitin sulfate proteoglycans 1 µg/ml Milipore 

5,7-Deshydroxytryptamine creatine sulfate 150µg per 20 µl Sigma 

Epothilone B (for cell culture) 1–5 nM Sigma 

Epothilone B (for in vivo studies) 0.75 mg/ml Biozol 

Horseradish peroxidase 1:10000 Acris 

Nocodazole 10 nM Sigma 

Nogo-A 400 ng/ml R&D systems 

Proteinase k 40 µg/ml Applicam 

Semaphorin 3A 200 ng/ml R&D systems 

Taxol 3 nM Sigma 

 

5.1.5. Primary antibodies  

Antigen Host, type Dilution Application Provider 

Acetylated tubulin Mouse, monoclonal 1:100000 WB Sigma 

Beta-3 tubulin antibody (Tuj-1) Mouse, monoclonal 1:1000 ICC Sigma 
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Choline acetyltransferase (ChAT) Goat, polyclonal 1:100 IHC Chemicon 

Chondroitin sulfate (CS-56) Mouse, monoclonal 1:100 IHC Sigma 

Detyrosinated tubulin (DetyrTub) Rabbit, polyclonal 1:500 IHC Milipore 

Detyrosinated tubulin (DetyrTub) Rabbit, polyclonal 1:5000 WB Millipore 

Fibronectin Sheep, polyclonal 1:100 IHC Abcam 

Fibronectin Rabbit, polyclonal 1:1000 WB Abcam 

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) 

Mouse, monoclonal 1:10000 WB Abcam 

Glial fibrillary acidic protein (GFAP) Mouse, monoclonal 1:200 IHC Sigma 

Laminin Rabbit, polyclonal 1:50 IHC Sigma 

MAP-2 Rabbit, polyclonal 1:2000 ICC Milipore 

Neurocan Mouse, monoclonal 1:100 WB Milipore 

Phospho(Ser 19)-histone-H3 Mouse, monoclonal 1:100 IHC Millipore 

Serotonin (5HT),  Rabbit, polyclonal 1:500 IHC Sigma 

Synaptophysin (Syn) Mouse, monoclonal 1:1000 IHC Chemicon 

Tau-1 Mouse 1:1000 ICC Milipore 

Tyrosinated tubulin (TyrTub) Mouse, monoclonal 1:250 IHC Sigma 
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5.1.6. Secondary antibodies and dyes  

Name Type Dilution Application Provider 

Alexa 350 anti-goat Donkey antibody, polyclonal 1:400 IHC Invitrogen 

Alexa 488 anti-mouse Donkey antibody, polyclonal 1:400 IHC Invitrogen 

Alexa 568 anti-rabbit Donkey antibody, polyclonal 1:400 IHC Invitrogen 

Alexa 647 anti-sheep Donkey antibody, polyclonal 1:400 IHC Invitrogen 

Alexa 488 anti-mouse Goat antibody, polyclonal 1:400 IHC Invitrogen 

Alexa 568 anti-rabbit Goat antibody, polyclonal 1:400 IHC Invitrogen 

Cy3-Streptavidin Biotin-binding protein  1:400 Histology Invitrogen 

4',6-diamidino-2-

phenylindole (DAPI) 

DNA-binding fluorophore 1:10000 Histology Invitrogen 

Alexa 488 anti-mouse Goat antibody, polyclonal 1:500 ICC Invitrogen 

Alexa 488 anti-rabbit Goat antibody, polyclonal 1:500 ICC Invitrogen 

Alexa 568 anti-rabbit Goat antibody, polyclonal 1:500 ICC Invitrogen 

Alexa 647 anti-mouse Goat antibody, polyclonal 1:500 ICC Invitrogen 

Phalloidin-rhodamine Actin-binding fluorophore 1:100 ICC Invitrogen 

Giemsa Leukocyte staining 10% Histology Sigma 
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5.1.7. Consumables 

Name Application Provider 

Rat intrathecal catheter  Intrathecal drug delivery Alzet 

Osmotic pumps  300 µl, 

0.25 µl/day delivery 

Intrathecal drug delivery Alzet 

 

Laboratory tubes Osmotic pump – catheter connection Sylastic 

Histoacryl tissue adhesive  Osmotic pump – catheter connection B.Braun 

Shandon M1 embedding matrix Tissue embedding for cryosectiong Thermo Scientific 

Embedding molds 16x8 mm  Tissue embedding for cryosectiong Polysciences Inc. 

Menzel Superfrost Plus 

microscope slides 

Tissue mounting after cryosectioning Thermo Scientific 

Fluoromount Mounting of tissue and cultured cells Sigma 

3-8% Tris-Acetate-gels Gelelectrophoresis of fibronectin and 

neurocan 

Novex 

Nitrocell membrane 0.45 µm Proteintransfer for western blot Biorad 

Biomax MR photographic films Chemiluminescence detection Kodak 

Slide-A Lyzer Dialysis Cassete Dialysis of  Thermo Scientific 

96-well black/clear imaging plate Glycosaminoglycan assay BD Falcon 
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Culture inserts In vitro wound healing assay Ibidi 

Glass-bottom dishes Live imaging of cultured cortical neurons MatTek 

 

5.1.8. Special equipment 

Name Application Provider 

Infinite Horizon impactor device SCI studies Precision Systems 

Stereotactic device I.c.v. injections Kopf 

Masterflex perfusion pump Transcardiac perfusion Cole-Parmer 

Cryostat microtome Ultrathin cryosectioning Leica 

Xcell lock electrophoresis cell SDS-polyacrylamide gel electrophoresis Invitrogen 

Transblot transfer unit Protein transfer Biorad 

Curix 60 Processor Film developing Agfa 

Multiplate reader Absorption measurements Envision 

Deltavision RT live imaging 

setup 

Live cell imaging of cortical neurons Applied precisions 

MVX10 fluorescent macroscope In vivo live imaging Olympus 

Catwalk Automated footprint analysis Noldus 
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Footmisplacement device Horizontal ladder Bioseb 

LSM 700 confocal microscope Confocal imaging Zeiss 

Axiovision inverted microscope Phase-contrast and epifluorescent imaging Zeiss 
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5.2. Methods 

 

5.2.1. Pharmacokinetic analysis of epothilone B 

Pharmacokinetic analysis was performed by Pharmacelsus GmbH (Saarbrücken, Germany).  Study was 

conducted according to German animal protection law (TierSchG).  Animals were i.p. injected with 1 

mg/kg epothilone B and were euthanized at specific time-points after injection.  Brain and spinal cord 

were extracted and homogenized in PBS (1:1, w/v).  Aliquots of homogenates and plasma were mixed 

with 1 volume acetonitrile containing 50 ng/ml diazepam as internal standard and the mixture was 

centrifuged at 12,000 g.  Aliquots of the resulting supernatants were diluted with deionised water (1:1, v/v) 

and transferred to autosampler vials for LC-MS analysis.  Calibration standards in the range of 0.1-240 

ng/ml and quality controls were prepared in the same way as the corresponding unknown samples.  HPLC 

system consisted of an autosampler and a HPLC pump (Surveyor, Thermo Scientific), connected to a 

triple quadrupole MS (TSQ Quantum Discovery Max, Thermo Scientific) equipped with an electrospray 

(ESI) interface (Thermo Fisher Scientific, USA) connected to a PC running the standard software Xcalibur 

2.1.  The HPLC pump flow rate was set to 600 μl/min and samples were separated on a Kinetex 2.6 μm 

Phenyl-Hexyl 100 50x2.1 mm analytical column with a Security Guard Ultra cartridge UHPLC Phenyl for 

2.1 mm ID column (Phenomenex, Germany). Gradient elution was facilitated using acetonitrile/ 0.1% 

formic acid as organic phase (A) and 0.1% acetic acid (B): % A =5 (0-0.1 min), 97 (0.4-1.7 min), 5 (1.8-

2.5 min).  Full scan mass spectra were acquired in the positive mode using syringe pump infusion to 

identify the protonated quasimolecular ions [M+H]
+
. Auto-tuning was carried out for maximizing ion 

abundance followed by the identification of characteristic fragment ions using a generic parameter set. 

Ions with the highest S/N ratio were used to quantify the item in the selected reaction monitoring mode 

(SRM) and as qualifier, respectively. The limit of quantification (LOQ) was defined as the lowest standard 

concentration taken for the corresponding calibration curve, i.e. 0.1 ng/ml.  
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5.2.2. Spinal cord injury studies 

All animal experiments were performed in compliance with the German animal protection law 

(TierSchG).  The animals were housed and handled in accordance with good animal practice as defined by 

the Federation for Laboratory Animal Science Associations (FELASA).   

5.2.2.1. Spinal cord dorsal hemisection 

Spinal cord dorsal hemisection was performed at thoracic spinal segment T8 as previously described 

(Hellal et al., 2011).  Adult female Sprague-dawley rats (200-250 g) were deeply anaesthetized by 

continuous inhalation of isoflurane (2% isoflurane/oxygen).  Laminectomy of the thoracic vertebra 8 was 

performed to expose the spinal cord.  Then, the dorsal half of the spinal cord was cut with an iridectomy 

scissor (FST) by transversely transecting the spinal cord extending from the dorsal surface down to 1 mm 

depth.  For local delivery of epothilone B (30 ng/day for 4 weeks; Sigma), Taxol (256 ng/day for 4 weeks; 

Sigma) or vehicle (1:1 mixture of cremophor EL (Sigma) and ethanol) to the injury site an intrathecal 

catheter was placed at the spinal cord lesion as previously described (Hellal et al., 2011).  Continuous 

delivery was driven by an osmotic mini-pump (Alzet) that was connected to the catheter.  For systemic 

administration, animals received intraperitoneal (i.p.) injections of epothilone B (Biozol, 0.75 mg/kg 

bodyweight (BW)) or vehicle solution (50% DMSO/sterile saline) 1 day and 15 days after injury. 

5.2.2.2. Spinal cord contusion injury 

A moderate spinal cord contusion injury was performed at thoracic spinal cord segment 9 using the 

Infinite Horizon impactor device (Precision Systems) as previously described (Scheff et al., 2003).  Adult 

female Sprague-dawley rats (200-250 g) were deeply anaesthetized by continuous inhalation of isoflurane 

(2% isoflurane/oxygen).  Laminectomy of the thoracic vertebra 9 was performed to expose the spinal cord.  

Vertebral column was stabilized with 2 forceps, which were holding the lateral processes of thoracic 

vertebra 8 and 10.  The exposed spinal cord was placed and aligned under the impactor according to 
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manufactures instructions.  Finally, an impact of 150 kilodyne (kdyn) was applied to the spinal cord.  The 

impact was controlled and monitored with device-specific software.  1 day and 15 days after contusion 

injury, animals received a single i.p. injection of epothilone B (Biozol, 0.75 mg/kg bodyweight (BW)) or 

vehicle solution (50% DMSO/sterile saline).  Bodyweight of injected animals was monitored biweekly. 

5.2.2.3. Intracerebroventricular (i.c.v.) injections of 5,7-dihydroxytryptamine (5,7-DHT) 

8 weeks after contusion injury, 5,7-DHT was bilaterally injected into the lateral ventricles to disrupt 

raphespinal neurons as previously described (Carta et al., 2007).  Rats were fixed in a stereotactic device 

(Kopf) and were kept anaesthetized by continuous inhalation of isoflurane (2% isoflurane/oxygen) during 

the whole procedure.  150 µg of 5,7-DHT (Sigma) were dissolved in 10 µl ascorbate-saline solution and 5 

µl solution was infused into the lateral ventricle at the following coordinates: anterior-posterior: -0.8 mm, 

medio-lateral: ±1.4 mm and dorso-ventral: -4.6 mm.  5,7-DHT was injected for 1 min and the cannula was 

kept in place for 3 min before it was carefully withdrawn.  30 min prior to 5,7-DHT injection, the specific 

catecholamine re-uptake inhibitor desipramine (Enzo Life Sciences) was injected i.p. (20 mg/kg BW) to 

prevent damage of noradrenergic neurons. 

 

5.2.3. Histology 

5.2.3.1. Immunohistochemistry 

Immunohistochemistry was performed as previously described (Hellal et al., 2011).  For tissue fixation, 

animals were perfused transcardially with 4% paraformaldehyd (PFA) solution (in 0.1 M PBS).  Full 

spinal cord and brain were extracted from the vertebral column or skull, respectively.  CNS tissue was 

post-fixed in 4% PFA solution for 24 h and then transferred to 30% Sucrose solution for cryopreservation 

(48 h).  Subsequently, a 1 cm piece of spinal cord containing the lesion site or a 0.5 cm piece of the lumbar 

spinal cord, respectively, were embedded in embedding medium (Thermo Scientific) and frozen on dry 
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ice.  25 µm sagittal or coronal sections, respectively, were obtained using a cryostat (Leica) and mounted 

on superfrost plus microscope slides (Thermo scientific).  Sections were quenched with 0.3 M glycine (in 

TBS) for 30 min and then permeabilized with TBS-TritonX (0.5%) for 30 min at room temperature.  

Sections were transferred to custom made wet-chambers and blocked with 5% heat-inactivated goat or 

donkey serum (both Invitrogen) in TBS-TritonX (0.5%) for 1 h.  After blocking, sections were incubated 

overnight at room temperature with different combinations of antibodies diluted in TBS-TritonX (0.5%):  

rabbit anti-laminin (1:50; Sigma), monoclonal mouse anti-glial fibrillary acidic protein (GFAP; 1:200; 

Sigma), monoclonal mouse anti-chondroitin sulfate (CS-56, 1:100; Sigma), monoclonal mouse anti-

tyrosinated tubulin (1:250; Sigma), rabbit anti-detyrosinated tubulin (1:500; Millipore), sheep anti-

fibronectin (1:100; Abcam), rabbit anti-serotonin (5HT, 1:500; Sigma), goat anti-choline acetyltransferase 

(ChAT, 1:100; Chemicon), monoclonal mouse anti-synaptophysin (Syn, 1:1000; Chemicon) and/or 

monoclonal mouse anti-phospho(Ser 19)-histone-H3 (1:100; Millipore).  After 3 washes with TBS-

TritonX (0.5%) sections were incubated with corresponding secondary antibody conjugated to 

fluorophores Alexa 405, 488, 555, 568 (1:400; all Invitrogen) or DAPI (1:10000; Invitrogen) for 3 h at 

room temperature.  Finally, sections were covered with Fluoromount mounting media (Invitrogen) and 

20x40 mm coverslips (Marienfeld). 

5.2.3.2. TUNEL staining 

TUNEL staining was performed as previously described (Hellal et al., 2003).  In brief, microscope slides 

containing 25 µm sagittal spinal cord sections were dehydrated with increasing concentrations of ethanol 

(75%, 90%, 100%) and then permeabilized with proteinase k (40 µg/ml in 1xPBS) at 37 °C for 30 min.  

After 3 washes with TBS-TritonX (0.5%) sections were incubated with terminal deoxynucleotidyl 

transferase and dUTP-biotin (Invitrogen) at 4 °C overnight.  After stopping the reaction by incubation with 

citrate buffer for 15 min at room temperature, sections were 3x rinsed with TBS-TritonX 0.5%, then 

blocked with 5% heat-inactivated goat-serum (in TBS-T 0.5%) and incubated with Cy3-Streptavidin 
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(1:400; Invitrogen) for 3 h at room temperature.  Finally, sections were covered with Fluoromount 

mounting media and 20x40 mm coverslips (Marienfeld). 

5.2.2.2. Giemsa staining 

White blood cells were measured in blood samples, which were collected by intracardiac puncture from 

vehicle (50% DMSO/Saline) or epothilone B (2x 0.75 mg/kg i.p.) treated animals 4 weeks after dorsal 

hemisection.  10 µl of blood were smeared onto glass slide, fixed with methanol and stained with 10% 

Giemsa solution (Sigma).  The amount of white blood cells was obtained by counting the total number of 

Giemsa positive cells per slide in triplicates. 

 

5.2.4. Biochemical analysis of spinal cord tissue 

5.2.4.1. Western blotting 

Spinal cord lesion sites (T8 dorsal hemisection) of vehicle (50% DMSO/Saline) or epothilone B (2x 0.75 

mg/kg i.p.) treated animals and unlesioned spinal cords of naive animals were extracted from the vertebral 

column.  Tissue was weighed and frozen in liquid nitrogen.  10 µl of radioimmunoprecipitation buffer 

(RIPA, Sigma) were added per 1 mg tissue.  The mix was sonicated to homogenize the tissue and then 

incubated for 15 min (4 °C) for protein extraction.  Subsequently, samples were centrifuged (10.000 rpm 

at 4 °C for 20 min) and the supernatant was mixed 1:1 with 1x Laemmli buffer and boiled for 5 min (95 

°C).  Denatured samples were electrophoresed in reducing 10% Bis-Tris-gels (custom made, for tubulin 

modifications) or 3-8% Tris-Acetate-gels (Novex, for fibronectin and neurocan) polyacrylamide gels by 

using Xcell lock electrophoresis cell containing morpholinopropase sulfonic acid (MOPS) buffer (0.05 M 

3-morpholinopropase sulfonic acid, 0.05 M Tris base, 0.1% SDS, 20 mM EDTA) or Tris-acetate buffer 

(50 mM Tricine, 50 mMTris base, 0.1% SDS, pH 8.24), respectively.  Gels were ran at 100-150 V for 2 h 

and subsequently transferred overnight (4 °C) onto 0.45 µm nitrocell membranes (Biorad) with Transblot 
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transfer unit (Biorad) containing transfer buffer (25 mM Tris, 192 mM glycine, 20% methanol in ddH20).  

After protein transfer, the membranes were blocked with 5% BSA in TBS-Tween (0.1%) for 1 h at room 

temperature and then incubated with the following primary antibodies overnight (4 °C): rabbit anti-

detyrosinated tubulin (1:5000; Millipore), mouse anti-acetylated tubulin (1:100000; Sigma), rabbit anti-

fibronectin (1:1000; Abcam), mouse anti-neurocan (1:100; Millipore) and mouse anti-glyceraldehyde 3-

phosphate dehydrogenase (GAPDH, 1:10000; Abcam).  After washing 3x with TBS-Tween (0.1%), the 

membranes were incubated with the corresponding secondary antibodies conjugated to horseradish 

peroxidase (HRP, 1:10.000; Acris) for 1 h at room temperature.  Immunoblots were developed by 

chemiluminescence (Super signal west dura, Thermo scientific) using light sensitive photographic films 

(Kodak). 

5.2.4.2. Glycosaminoglycan assay 

Biochemical quantification of sulfated glycosaminoglycans (GAGs) was performed as previously 

described (Hellal et al., 2011).  Spinal cord lesion sites (T8 dorsal hemisection) of vehicle (50% 

DMSO/Saline) or epothilone B (2x 0.75 mg/kg i.p.; Sellek) treated animals were extracted from the 

vertebral column.  Tissue was weighed and frozen in liquid nitrogen.  Samples were homogenized with a 

pestle and incubated with 3 M guanidine hydrochloride/0.05 M Tris HCl buffer (pH 7.5) overnight (4 °C) 

in a ratio of 10 µl solution for 1 mg of tissue.  Extracts were then dialyzed against 1x TBS overnight at 

room temperature.  Dialyzed samples were diluted 1:3 in 1x PBS and 50 µl of diluted samples were loaded 

into a 96-well black/clear imaging plate (BD falcon).  50 µl of 1,9-dimethylmethylene solution (Astarte 

Biologics) was added to each well.  Shift of the absorption spectrum (A525) was measured with an Envison 

Multilabel reader (Perkin Elmer) and amount of sulfated GAGs was determined by using a calibration 

curve in accordance to manufacturer’s instructions (Astarte Biologics). 
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5.2.5. Cell culture and immunocytochemistry 

 

5.2.5.1. Culture of primary cortical neurons 

Primary cortical neurons were obtained from postnatal day 4 (P4) rat cortices as previously described 

(Tahirovic et al., 2010).  Cortices were trypsinized (0.25% Trypsin) at room temperature for 5 min.  

Trypsinization was stopped by adding MEM-FBS (10%) and cells were dissociated and collected from the 

medium by centrifugation (800 g for 5 minutes).  After 2 h of pre-plating in 75 cm
2
 flasks containing 

MEM-FBS (10%), cells were collected from the medium by centrifugation (800 g for 5 min) and plated in 

glass bottom dishes (MatTek) containing complete neurobasal medium.  The medium was mixed with 5 

µg/ml laminin (Roche) plus Nogo-A (400 ng/ml, R&D systems), Semaphorin 3A (200 ng/ml; R&D 

systems) or chondroitin-sulfate-proteoglycans (1 µg/ml; Millipore), respectively.  48 h after plating, cells 

were fixed within the dish with pre-warmed PFA solution (4%) for 15 min.  After 3 washes with 1x PBS, 

cells were quenched with 50 mM ammoniumchloride solution for 10 min and permeabilized with PBS-

Triton (0.1%) for 3 min both at room temperature.  Cells were incubated with blocking solution (2% FBS, 

2% BSA, 0.2% fish gelatin in 1x PBS) for 1 h at room temperature and then immunostained with primary 

mouse anti-beta-3 tubulin antibody (Tuj-1; 1:1000; Sigma) for 1 h at room temperature.  Afterwards 

dishes were washed 3 times with 1xPBS and incubated with secondary anti-mouse Alexa 488 antibody 

(1:400, Invitrogen) for 30 min (room temperature).  Finally, dishes were washed 4 times with 1x PBS and 

cells were covered with fluoromount (Invitrogen) and coverslips. 

5.2.5.2. Culture of primary meningeal fibroblasts 

Primary meningeal fibroblasts were obtained from P4 rat brains.  Brains were trypsinized (0.25% Trypsin) 

at room temperature for 5 min.  Trypsinization was stopped by adding MEM-FBS (10%) and cells were 

dissociated and collected from the medium by centrifugation (800 g for 5 minutes).  Cells were cultured in 
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10 cm flasks containing MEM-FBS (10%) until reaching confluence and then extracted from the flasks by 

trypsinization and passaged into new 10 cm flasks.  After 3 passages, cells were extracted from the flasks 

by trypsinization and plated in culture inserts placed on 35 mm glass-bottom dishes (Ibidi).  24 h after 

plating, culture inserts were removed and medium was exchanged to MEM-FBS (0.5%).  After 24 h, cells 

were treated with vehicle (DMSO) or epothilone B (5 nM).  24 h after treatment, cells were fixed with 

PFA solution (4%), and immunolabeled as described above with primary monoclonal mouse anti-

tyrosinated tubulin antibody (1:500; kindly provided by Dr. Michael Schleicher) and rabbit anti-

detyrosinated tubulin antibody (1:1500; Millipore) for 3 hours at room temperature and afterwards with 

corresponding secondary antibodies conjugated to Alexa 488, 647 fluorophores (1:400) and phalloidin-

rhodamine (1:100; all Invitrogen). 

5.2.5.2. Culture of primary embryonic hippocampal neurons 

Primary hippocampal neurons were prepared from dissected E17 rat hippocampi as previously described 

(Witte et al., 2008).  Briefly, hippocampi of embryonic day 17 rats were dissected, and trypsinized (0.05% 

Trypsin).  Neurons were plated on poly-L-lysine (1mg/ml) coated glass cover slips in 6 cm petridishes 

containing MEM FBS (10%).  After 6 hours, coverslips were transferred to a 6 cm dish containing 

cultured astrocytes in MEM and N2 supplement.  To obtain astrocytes, E17 rat hippocampi and cortex 

were dissected, trypsinized (0.05% Trypsin) and dissociated.  Cells were pre-plated in 75 cm² cell culture 

flasks.  After reaching 80% confluence, astrocytes were trypsinized and transferred to 6 cm dishes.  

1 day after transferring coverslips to astrocyte containing dishes, cells were treated with DMSO, 

epothilone B (3 nM; Sigma) or Taxol (3 nM; Sigma).  After 1 day in vitro, neurons were fixed with 4% 

PFA and stained as described above with the primary antibodies mouse anti-Tau-1 (1:1000, Milipore) and 

rabbit anti-MAP2 (1:2000, Milipore) and the corresponding secondary antibodies.  
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5.2.6. Live imaging studies 

5.2.6.1. Live cell imaging studies 

Primary cortical neurons were obtained as described above.  Before plating on glass-bottom dishes 

(MatTek), neurons were transfected with the Amaxa Nucleofector kit using EB3-GFP DNA construct 

(kindly provided by Drs. Vic Small and Anna Akhmanova) according to the manufacturer’s instructions.  

Cells were plated in Nogo-A (400 ng/ml; R&D systems) containing serum and incubated for 24 h.  After 

24 h, image sequences (3 min every 3 s) were obtained with the DeltaVision RT live-cell imaging setup 

(Applied Precision).  Epothilone B (1 nM; Sigma) was added to the neuronal culture while on the 

microscope stage.  2-6 h following epothilone B treatment, image sequences were obtained as before.  

EB3 fluorescence was measured in maximum intensity projections of 10-20 images in the aforementioned 

image sequences using ImageJ software.  The quantifications were performed on the 2-h time-point 

following epothilone treatment.  Plot profiles of EB3-GFP fluorescence of the most distally 20 µm of all 

cellular neurites were background-subtracted and plotted as arbitrary units (a.u.).  For testing EB3 

fluorescence upon nocodazole treatment, a single imaging sequence (3 min every 3 s) was taken after 24 h 

of nocodazole (10 nM; Sigma) exposure.  EB3 fluorescence was measured as aforementioned.  For long-

term imaging experiments examining neurite growth rates, images were acquired every 5 min for 4 h 

before and for 4 h after epothilone B treatment. 

 

5.2.6.3. In vivo live imaging 

In vivo live imaging experiments were performed in compliance with the German animal protection law 

(TierSchG) and animals were housed and handled in accordance with good animal practice as defined by 

the Federation for Laboratory Animal Science Associations (FELASA).  Adult Thy1-GFPM mice (2-4 

months, 20-30 g (Feng et al., 2000)) were deeply anaesthetized with a 2:1 mixture of xylazine (24 mg/kg) 
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and ketamine (115 mg/kg) diluted in sterile saline (1:3).  Spinal cord injury was performed as described 

previously (Erturk et al., 2007).  In brief, after laminectomy of thoracic vertebra T12, small bilateral 

lesions were performed at the level of the spinal cord dorsal column by using iridectomy scissors (FST).  

Animals were kept on heating pads during imaging sessions.  For local drug delivery 10 µl of epothilone B 

(1 µM, Sigma), Taxol (1 µM, Sigma) or vehicle solution (5 % DMSO/ saline) were hourly applied onto 

the exposed spinal cord for 6 h.  For systemic administration animals received a single intraperitoneal 

(i.p.) injection of 1.5 mg/kg epothilone B (Sellek) or vehicle solution (50% DMSO/Saline) 1 day before 

injury.  In vivo live imaging was performed as previously described (Erturk et al., 2007).  Animals were 

anaesthetized by injecting (i.p.) a mixture of midazolam (Dormicum; 2 mg/kg), medetomidine (Domitor; 

0.15 mg/kg), fentanyl (0.05 mg/kg) and sterile saline.  For every imaging session, the site of the 

laminectomy was re-exposed and the animal was placed under an Olympus MVX10 fluorescent 

macroscope.  Image sequences (27 images in 5 s) were obtained by using Olympus cellSens software.  

After imaging, the lamina was covered with dura patch and skin flaps were stapled.  To antagonize 

anaesthesia after the imaging sessions, animals were i.p. injected with a mixture of flumazenil (Antisedan; 

0.2 mg/kg), atipamezole (Anexate; 0.75 mg/kg), naloxone (Narcanti; 0.12 mg/kg) and sterile saline.  To 

quantify retraction bulb formation and fiber retraction image sequences were analyzed by using cellSens 

software (Olympus). 

 

5.2.7. Behavioral analysis  

5.2.7.1. Automated footprint analysis 

To analyze functional recovery of walking, rats were tested 8 weeks after contusion injury on the 

automated gait analysis system Catwalk (Noldus).  Animals crossed twice over an illuminated 1 m glass 

bottomed runway to visualize footprints.  Footprints were recorded by a camera positioned 50 cm below 

the runway.  Recording settings were defined as follows: maximum range = 150-180; frames before delta 
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= 5; intensity minimum = 40; camera gain = 30; intensity threshold = 0.1.  Footprint recordings were 

processed semi-automatically by using device-specific software quantifying step distance of the hindlimbs 

(stride length), interpaw coordination (regularity index) and external rotation of the hindpaws (foot 

exorotation). 

5.2.7.2. Horizontal ladder test 

To analyze functional recovery of skilled walking, rats were tested on a foot misplacement device at 2, 4, 

6 and 8 weeks after contusion injury as well as after 1 and 2 weeks after 5,7-DHT i.c.v. injections.  

Animals crossed over a 1 m horizontal ladder, elevated 15 cm over the ground with a ladder-step distance 

of approximately 2 cm.  2 passages per animal were video recorded and foot misplacements were 

manually quantified. 

 

5.2.8. Microscopy and image analysis 

5.2.8.1. Confocal microscopy 

Confocal images of spinal cord sagittal and coronal sections were obtained with a Zeiss LSM 700 confocal 

system in a sequential scanning mode.  In order to compare immunofluorescence, standard acquisition 

parameters were used for each antibody staining.  Quantitative measures in sagittal sections were 

performed in 3 representative sections of the lateral, the medio-lateral and the medial spinal cord injury 

site (300 µm interval between each section).  Fibrotic scarring was quantified by pixel counts of laminin 

staining at the lesion site using Adobe Photoshop software as previously described (Hellal et al., 2011).  

GFAP immunointensity profiles were measured in 1.5 mm plot profiles covering the rostral lesion site by 

using Image J software.  Quantitative measurements in coronal sections were performed in 8 sections of 

the lumbar spinal cord between 0.5 cm and 1.5 cm caudal to lesion epicenter (1.4 mm interval between 

each section).  5HT-immunopositive pixels were quantified upon background subtraction in the left and 
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right ventral horns as mentioned above.  Injury size was determined as the area delineated by GFAP-

immunolabeling and quantified with ImageJ software.  Cell free area in the wound healing assay was 

quantified with ImageJ software. 

5.2.8.2. Fluorescence microscopy and phase contrast imaging 

Zeiss Axioserver microscope was used to acquire phase contrast images of Giemsa staining and meningeal 

fibroblasts.  Epifluorescence was used to visualize neurites of cultured neurons after fixation and 

immunostaining.  Images were acquired by using Zeiss Axiovision software.  Length of the longest neurite 

in neuronal cultures and cell free area in in vitro wound healing assays were measured by using ImageJ 

software. 

 

5.2.9. Statistical analysis 

All values are expressed as means ± s.e.m.  Two group comparisons were performed by using a Students t 

test with two-tailed distribution and unequal variances. 
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