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Abstract
Connecting some points in the plane by a road network is equivalent to constructing

a finite planar graph G whose vertex set contains a predefined set of vertices (i. e.,
the possible destinations in the road network). The dilation between two vertices p
and q of graph G is defined as the Euclidean length of a shortest path in G from p
to q, divided by the Euclidean distance from p to q. That is, given a point set P , the
goal is to place some additional crossing vertices C such that there exists a planar
graph G = (P ∪C,E) whose dilation is small. Here, the dilation of G is defined as the
maximum dilation between two vertices in G. We show that, except for some special
point sets P , there is a lower bound ∆(P ) > 1, depending on P , on the dilation of any
finite graph containing P in its vertex set.

The transportation problem is the problem of finding a transportation plan that
minimizes the total transport cost. We are given a set of suppliers, and each supplier
produces a fixed amount of some commodity, say, bread. Furthermore, there is a set of
customers, and each customer has some demand of bread, such that the total demand
equals the amount of bread the suppliers produce. The task is to assign each unit of
bread produced to some customer, such that the total transportation cost becomes
a minimum. A first idea is to assign each unit of bread to the client to which the
transport cost of this unit is minimal. Clearly, this gives rise to a transportation
plan which minimizes the total transportation cost. However, it is likely that not
every customer will obtain the required amount of bread. Therefore, we need to use a
different algorithm for distributing the supplier’s bread. We show that if the bread
produced by the suppliers is given by a continuous probability density function and
the set of customers is discrete, then every optimal transport plan can be characterized
by a unique additively weighted Voronoi diagram for the customers.

When managing the construction process of a building by a digital model of the
building, it is necessary to compute essential parts between walls of the building. Given
two walls A and B, the essential part between A and B is the set of line segments s
where one endpoint belongs to A, the other endpoint belongs to B, and s does not
intersect A or B. We give an algorithm that computes, in linear time, the essential
parts between A and B. Our algorithm is based on computing the visibility polygon
of A and of B, and two shortest paths connecting points of A with points of B.

We conclude the thesis by giving fault-tolerant algorithms for some fundamental
geometric problems. We assume that a basic primitive operation used by an algorithm
fails with some small probability p. Depending on the results of the primitive operations,
it is possible that the algorithm will not work correctly. For example, one faulty
comparison when executing a sorting algorithm can result in some numbers being
placed far away from their true positions. An algorithm is called tolerant, if with high
probability a good answer is given, if the error probability p is small. We provide
tolerant algorithms that find the maximum of n numbers, search for a key in a sorted
sequence of n keys, sort a set of n numbers, and solve Linear Programming in R2.
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Chapter 1

Introduction

Within the last few years, it has become more and more common to use navigation
systems for planning trips, or even for every day navigation. This development is a
consequence of the fact that navigation is an important problem for many people and
companies, and also of the fact that using data services on mobile devices becomes more
common. Since today’s road networks are very large, recent attention has been turned
to efficient computation of shortest paths in large road networks; see e. g. the Ninth
DIMACS Implementation Challenge [15] for a variety of results. Perhaps the most
outstanding result presented in [15] is an improvement in runtime by a factor of about
4 · 106 for shortest path queries, compared to using the classic Dijkstra algorithm [16].

Clearly, navigation requires good networks. It is said that the construction of a
network of high-quality roads was one of the main strategic advantages of the Roman
Empire. For example, their road network allowed for sending messages or soldiers
quickly from one place to another. When constructing road networks, the following
natural question occurs: how to design a road network such that good connections
exist between each pair of destinations? This question is, for instance, the subject of a
line of research called spanner construction. A wide range of algorithms is available
for constructing spanners that have some desired properties, e. g., low dilation, linear
size, bounded degree or small weight; see the book by Narasimhan and Smid [55].

In Chapter 2, we address a problem related to road network design. Our goal is to
ensure that for each pair p, q of destinations the dilation is small, that is, the Euclidean
length of a shortest path (using the road network) from p to q divided by the Euclidean
distance from p to q. The question we are interested in is if networks of arbitrary
low dilation can be constructed for arbitrary point sets, if only a finite number of
crossing points may be used (two roads, each connecting a pair of destinations, are
only allowed to cross at crossing points). For the special case where no additional
crossing points may be introduced, the Delaunay triangulation of a point set P yields
a network whose dilation is less than 2.42, see Keil and Gutwin [44]. Regarding lower
bounds, we observe that more recently Bose et al. [9] have constructed a point set
whose Delaunay triangulation has dilation > 1.5846. Proving lower dilation bounds
in the general case is quite more involved, since for any given point set we allow an

9



10 CHAPTER 1. INTRODUCTION

arbitrary finite number of crossing points, whose positions in the plane can be chosen
arbitrarily. We prove the following theorem in Chapter 2.

Theorem 2.4. If a finite point set S is not special, there exists a number ∆(S) > 1 such
that each finite plane graph P whose vertex set includes S is of dilation δ(P ) ≥ ∆(S).

Here, a point set P is called special, if P is not contained in the vertex set of a
triangulation of dilation 1.

Besides travelling, planning the transportation of goods is important. For example,
given a transportation network (or flow network), a fundamental question is how
many goods can be transported from a given source to a given destination. Another
interesting question is the transportation problem, i. e, how to move some identical
goods from a set of suppliers to some customers in order to satisfy the customer’s
demand, at minimum cost. If the set of suppliers and customers is discrete, then this
problem can be modelled as a minimum-weight matching problem. A more general
form of this transportation problem was formulated by Monge [54] in the year 1781,
which was finally solved in the 20th century by Kantorovich [42]; also see Gangbo and
McCann [32] and Villani [64] regarding geometric aspects of optimal transport.

In Chapter 3, we consider the following variant of the transportation problem.
While the set of customers is given by a discrete set S = {p1, . . . , pn} in Rd, we assume
that the goods offered by the suppliers are given by a continuous probability density
function µ whose support is a bounded open set C in Rd. For each point p ∈ S, the
distance between p and a point z is given by a function dp(z). We show

Theorem 3.3. Let n ≥ 2 and let dpi(·), 1 ≤ i ≤ n, be an admissible system as
in Definition 3.1. Let C be a bounded open subset of Rd. Suppose we are given n
real numbers λi > 0 with λ1 + λ2 + · · · + λn = µ(C). Then there is a weight vector
w = (w1, w2, . . . , wn) such that

µ(C ∩VRw(pi, S)) = λi

holds for 1 ≤ i ≤ n.
If, moreover, C is pathwise connected then w is unique up to addition of a constant

to all wi, and the parts Ci = C ∩VRw(pi, S) of this partition are unique.

Here, λi denotes the demand of customer pi ∈ S and VRw(pi, S) is the Voronoi
region of pi in the additively weighted Voronoi diagram of S based on the distance
functions dpi(·), where wi is the additive weight of pi. A set of distance functions dpi(·)
is called admissible, if, basically, the weighted bisector of every pair of points in S
has measure 0, regardless of the additive weights assigned to the points. We also
require that for any two points pi and pj in S there is a constant Cij , such that
|dpi(c)− dpj (c)| ≤ Cij holds for all points c ∈ C.

In other words, we show that under quite liberal assumptions on the functions
dp(·), there is an additively weighted Voronoi diagram of the point set S which can be
used to characterize every optimal solution to the given transportation problem, up to
assignment of sets of measure zero. Whereas Gangbo and McCann [32] derive this fact
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from a more general measure-theoretic theorem, our proof uses the minimization of a
quadratic objective function and geometric arguments. The purpose of Chapter 3 is to
show that such a simple proof is possible.

If we want to match our current position to a map (without using GPS), or if we
want to explore an unknown area, it is necessary to process visibility information. There
is a wide range of different visibility problems, e. g., computing efficiently the the set of
points visible from a given point in the plane, visibility graph recognition and polygon
reconstruction from visibility information, just to mention a few examples. For an
overview of efficient solutions for visibility problems in the plane we refer to the survey
of Asano et al. [4] and the textbook of Ghosh [37]. Furthermore, one can consider the
chapter covering visibility problems [56] in the Handbook of Computational Geometry
by Goodman and O’Rourke [38].

In Chapter 4, we show how to compute the union of visibility segments where one
endpoint lies on the boundary of one simple polygon P and the other endpoint lies
on the boundary of another simple polygon Q. We refer to this set of segments as
the visibility area between P and Q. Here, the technically most challenging case is
where no boundary point of polygon P belongs to the convex hull of the union of P
and Q, and P is not contained in Q. Our algorithm runs in optimal linear time, and
our analysis shows that the resulting region is defined by (i) the visibility polygon of P
and of Q and (ii) by two shortest paths, each connecting a point of Q with a point
of P . The above is summarized in the following theorem, which we prove in Chapter 4.

Theorem 4.12. The visibility area between two disjoint closed polygonal chains P
and Q in the plane can be computed in optimal time O(|P |+ |Q|).

In real life, nothing works without error. The final Chapter 5 is dedicated to the
construction of fault-tolerant algorithms. Standard computation models (e. g. REAL-
RAM, Decision tree) and the frequently used assumption of non-degeneracy of the
input allow for platform-independent high-level algorithm design. A given problem can
be analysed without worrying about special cases that have no influence on the general
structure of the problem. This way, it is easier to describe the – from a theoretical
point of view – relevant parts of the algorithm. However, when really implementing
such an algorithm, the so called degenerate cases also have to be considered. The
treatment of those degenerate cases is one possible source for implementation errors, if
only due to a lot of case distinctions that have to be done correctly. Moreover, there
are other reasons to assume that computation errors can occur. These range from
hardware or software problems to errors due to floating point imprecision.

We present some basic toolbox algorithms that can tolerate errors occurring
when performing primitive operations such as the comparison of two numbers. If
the probability for such a primitive operation to fail is sufficiently small, then our
algorithms will output a good result with high probability. For example, we study the
searching problem and the sorting problem and obtain the following results.

Theorem 5.14. Let p ∈ (0, 1/4) be an upper bound on the error probability of com-
parisons and let a1 < a2 < . . . < an be a sequence of n numbers. Let the block
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size parameter be t =

⌈
3(ln(logn)−ln p)

p·min{ 1
2p
−1,( 1

2p
−1)2}

⌉
. Given an arbitrary query key q 6= aj,

1 ≤ j ≤ n, Algorithm BinarySearch reports the rank of an element q with respect to
a1 < a2 < . . . < an in time O(log n · log logn) (p is assumed to be constant) and with
probability at least 1− f(p) for some function f(p) that goes to 0 as p goes to 0.

Theorem 5.10. Let p ≤ 1/20. There is a tolerant algorithm that given an input set S
of n numbers computes in O(n2) time and with probability at least 1− 1/n26 an output
sequence such that the position of every element in this sequence deviates from its rank
in S by at most O(log n).

Our sorting algorithm can be seen as an alternative to an algorithm by Braverman and
Mossel [10] who employed the same model. Their algorithm constructs the maximum
likelihood permutation using only O(n log n) comparisons. We achieve similar accuracy
using Θ(n2) comparisons, but with a substantially faster running time.

We have given some related work to provide a first overview of the topics considered
in this thesis. More related work will be mentioned later in the introduction of each
chapter.

This thesis is typeset using LATEX, and most figures have been created using the
extensible drawing editor Ipe by Otfried Cheong.



Chapter 2

Most finite point sets in the plane
have Dilation > 1

We prove the following fact for arbitrary finite point sets S in the plane. Either, S is a
subset of one of the well-known sets of points whose unique triangulation has dilation 1.
Or, there exists a number ∆(S) > 1 such that each finite plane graph containing S
among its vertices has dilation ≥ ∆(S).1

Keywords: Computational geometry, geometric networks, dilation, detour, span-
ning ratio, stretch factor.

2.1 Introduction

Let S be a finite set of points in the plane. We are interested in finite, plane geometric
graphs T = (V,E) of minimum dilation whose vertex set V contains S. Here, the
dilation of a graph T is defined by

δ(T ) := max
p 6=q vertices of T

δT (p, q),

where
δT (p, q) :=

|π(p, q)|
|pq|

denotes the dilation between vertices p and q, that is, the Euclidean length of a shortest
path π(p, q) from p to q in T , divided by the Euclidean distance between p and q. The
following simple fact will be quite useful.

Lemma 2.1. Every shortest path π(p, q) from p to q in T is contained in the ellipse with
foci p and q whose boundary consists of all points e satisfying |pe|+ |eq| = δ(T ) · |pq|.

Proof. For each point z on path π(p, q) we have |pz|+ |zq| ≤ |π(p, q)| = δT (p, q) · |pq| ≤
δ(T ) · |pq|.

1An extended abstract of this paper has appeared at SoCG’06 [46].
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14 CHAPTER 2. MOST FINITE POINT SETS HAVE DILATION > 1

Definition 2.2. Given an ellipse E, as in Lemma 2.1, with foci p and q whose boundary
consists of all points e satisfying |pe|+ |eq| = δ · |pq|, we denote by δ · |pq| the diameter
of E. Furthermore, we observe that Ellipse E is contained in the w-neighbourhood
of the line segment pq, where w = |pq|

2 ·
√
δ2 − 1; an example is shown in Figure 2.1.

Finally, we denote by 2w = |pq| ·
√
δ2 − 1 the width of E and observe that the two

tangents to E parallel to the line segment pq are at distance 2w.

2wq
p

π

w

w

Figure 2.1: In a triangulation of dilation ≤ δ, the shortest path π between vertices p
and q is contained in an ellipse of width 2w = |pq| ·

√
δ2 − 1.

We observe that, for p and q fixed, these ellipses become arbitrarily thin as δ
decreases to 1.

A motivation for the problem studied in this paper goes back to a scenario described
by D. Eppstein in [26]. Let S be a finite set of important locations on a university
campus (e. g. lecture halls, libraries, mensa, supermarket, dorms, etc.). These locations
must be connected by a path system, such that the dilation between any two of them
is small. Building bridges is impossible, due to budget limitations. Where two paths
cross, a new point of interest (cafeteria, copy shop) appears, because these points are
frequented by many people. Since students might want to get quickly from a cafeteria
to a lecture hall, such path crossings must also be considered in computing the dilation
of the whole system. If we treat these crossing points as vertices, just like the given
points of S, the whole path system is a plane graph. So, the following question appears.
What is the smallest dilation value that can be obtained by a finite plane graph whose
vertex set contains a given finite point set, S?

Clearly, we may assume that all edges are straight, because pulling them taut
cannot increase the dilation. Moreover, we can focus on triangulations, since adding

Figure 2.2: The triangulations of dilation 1.
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Figure 2.3: An embedding of five points in regular position into a triangulation of
dilation 1.02046.

edges without introducing crossings never hurts.
Eppstein [26] has characterized all triangulations of dilation 1, see Figure 2.2.

There are two infinite families and one special triangulation on six vertices. Exactly
for the subsets S of their vertex sets can a dilation strictly equal to 1 be achieved.

Definition 2.3. A finite point set S in the plane is called special if it is contained in
the vertex set of a triangulation of dilation 1.

The question we are interested in is the following. How small a dilation can be
achieved for those point sets S that are not special? Even for the most simple case,
five points evenly spaced on a circle, the answer is not known. The smallest value
known to us is ≈ 1.02046, by a construction due to D. Lorenz [50]; see Figure 2.3. It
is unknown if the dilation can be further lowered by more complicated graphs. The
purpose of this paper is in proving that for each point set S that is not special there is
a lower bound bigger than 1 that cannot be beaten by any finite plane graph whose
vertex set contains S.

Theorem 2.4. If a finite point set S is not special, there exists a number ∆(S) > 1 such
that each finite plane graph P whose vertex set includes S is of dilation δ(P ) ≥ ∆(S).

The difficulty in proving this result is as follows. Suppose we start with five points
in regular position. We could attempt to enforce low dilation by forming their complete
graph, that is, by connecting each point to any other by a straight line segment.
While this results in dilation 1 connections between the five points given, the resulting
crossing points form a new five-gon, which must again be dealt with, and so on. By
iterating this argument, a dilation 1 embedding is not possible in this case (as we
already know from the previous discussion). But if we settled for a dilation of 1 + ε,
there would be some slack in this construction. One could perhaps move crossing
points slightly away from their proper positions, such that, after some rounds, no
further crossings are introduced by forming the complete graph.

As we shall show, this is not possible for arbitrary small values of ε. The proof will
be given in two steps. In Section 2.4 we shall prove that repeating patterns cannot
be avoided if we consider, instead of five points on a circle, 548 points on a square.
Our analysis shows that for this point set P each finite plane graph containing P in
its vertex set must have a dilation bigger than 1.0000014. Then, in Section 2.5, we
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combine this finding with a density result by A. Grüne and S. Kamali [39] in order to
establish Theorem 2.4.

2.2 Preliminaries

First, we recall the definition of special point sets. A finite point set S is called special
if it is contained in the vertex set of one of the triangulations of dilation 1 shown in
Figure 2.2.

Definition 2.5. Let S be a finite set of points in the plane. The dilation, ∆(S), of S
is defined by

∆(S) := inf

{
δ(T )

∣∣∣∣ T = (V,E) finite triangulation with S ⊆ V
}
.

Here, δ(T ) denotes the dilation of T , as introduced in Section 2.1. We should
remark that the dilation of a point set is invariant under scaling because the quotient in
the definition of δ(T ) is. The grand challenge is in computing ∆(S), given a point set S.
Observe that we do not know if this value is actually achieved by some triangulation,
or if it is just a limit. In this paper, we prove ∆(S) > 1 for all sets S that are not
special.

2.3 Related Work

The problem of how to connect a given point set by a network of small dilation has
been extensively studied in the context of spanners, where the dilation of a graph
is also called its stretch factor or spanning ratio. There exists a wealth of results
on constructing spanners with a dilation arbitrarily close to 1, that have other nice
properties like linear size, a weight not much exceeding that of the minimum spanning
tree, or bounded degree; see, e. g., the monographs [27] and [55]. But these spanners
can contain many edge crossings. A notable exception is the result by Aronov et al. [3]
where the dilation of plane graphs with n− 1 + k edges, k < n, over n given points
was shown to be in Θ(n/(k + 1)).

In his handbook chapter [27], Eppstein has posed the following open problems.

• (Problem 8) Can the minimum dilation triangulation of a given point set be
computed in polynomial time?

• (Problem 9) How large a dilation can the minimum dilation triangulation have,
in the worst case?

In Problem 9, an upper bound is the dilation of the Delaunay triangulation, which has
been shown to be less than 2.42 by Keil and Gutwin [44]. More recently, Bose et al. [9]
have constructed a point set whose Delaunay triangulation has dilation > 1.5846. A
partial answer to Problem 8 was given by Eppstein and Wortman [28] who provided a
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randomized O(n log n) algorithm for computing an optimal star center for n points in
d-space.

The problem setting we are studying in this paper can be seen as the “Steiner
point” variant of Problem 9 above: Instead of looking for an optimal triangulation
on just the given point set, we allow ourselves the introduction of a finite number of
auxiliary “Steiner points” to help reduce the overall dilation. The crucial point here is
that dilation amongst the new points, which we introduce to reduce detours for the
given vertices, also needs to be controlled. Ebbers-Baumann et al. [24] have studied
Problem 9 in this model. They proved ∆(S) < 1.1247 for arbitrary finite point sets S,
but did not address the question of a non-trivial lower bound for finite point sets. The
present paper provides a first answer to this question.

A related measure called geometric dilation has been introduced and investigated
in [1, 19, 18, 25, 23, 22], where all points of the graph, vertices and interior edge points
alike, are considered in computing the dilation. The small difference in definition
leads to rather different results. For example, plane graphs of minimum geometric
dilation tend to have curved edges. Yet, it is interesting to observe that in this model
non-trivial upper and lower bounds could be established. Each finite point set can be
embedded into a plane graph of geometric dilation ≤ 1.678, and there are point sets
for which each plane graph containing them has a geometric dilation ≥ (1 + 10−11)π/2;
see [19, 22]. These results are based on methods from convex geometry that do not
apply here.

2.4 A Concrete Lower Bound

The goal of this section is to provide a concrete point set P whose dilation ∆(P ) can
effectively be bounded away from 1.

Definition 2.6. A set V ⊆ R
2 is an ε-cover of a set B ⊆ R

2 if the closed ε-
neighbourhood of every point of B contains a point of V .

The main idea presented in this section is the following. Suppose we have a point
set V that is the vertex set of a finite triangulation of dilation δ and, at the same
time, an ε-cover of the boundary B of some square. We shall prove that V is also an
α · ε-cover of a smaller square boundary B′, shrunk by the factor α. Since dilation is
invariant under shrinking, this argument can be repeated ad infinitum. But V would
have to be infinite in order to cover infinitely many square boundaries—a contradiction.

The proof of V ’s covering property is sketched in Figure 2.4. Given a point z′

on B′, we find points zl, zt, zr, zb on the four edges of B such that the line segments zlzr
and ztzb cross at z′. Since, by assumption, V is an ε-cover of the boundary B, points
zl, zt, zr, zb are ε-approximated by points vl, vt, vr, vb of V , respectively. Since V is
vertex set of a low dilation triangulation T , there are paths from vl to vr, and from vt
to vb, that are contained in thin ellipses; compare Lemma 2.1. Thus, the crossing
point v′ of these paths lies close to z′ and belongs to the vertex set V of T .



18 CHAPTER 2. MOST FINITE POINT SETS HAVE DILATION > 1

ε

B

B′

zl
vl

vt
zt

zr
vr

zb
vb

z′

v′

a

a

A− a

A+ a

Figure 2.4: Approximating a point z′ on B′ by an intersection point v′ of two shortest
paths in triangulation T , one connecting vl to vr, and the other connecting point vt
to vb. Point v′ will be shown to lie within distance α · ε of z′, where α = A−a

A+a < 1.
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In the remainder of this section we show how to make this idea precise.

Definition 2.7. Constants 0 < a < A, 0 < ε < a/2 and δ > 1 are called cover-
preserving if the following holds for arbitrary point sets V in the plane. If V is an
ε-cover of the boundary, B, of a square of side length A+ a, and if V is also vertex
set of a triangulation T of dilation δ, then V is an A−a

A+a · ε-cover for the boundary B′

of the smaller square of side length A− a, centred in B, see Figure 2.4.

Lemma 2.8. Every point set V as in Definition 2.7 must be infinite.

Proof. First, we observe that the points of V covering B′ are different from those
covering B; in fact, no point can be within distance ε of B and, at the same time, be
within distance εA−aA+a of B′, because B and B′ are at distance a and

a− ε− ε · A− a
A+ a

> a− a

2
− a

2
· A− a
A+ a

> 0

holds.
Second, we observe that, if 0 < a < A, 0 < ε < a/2 and δ > 1 are a set of

cover-preserving constants, then 0 < aA−aA+a < AA−a
A+a , 0 < εA−aA+a <

a
2 · A−aA+a , δ > 1 are

also cover-preserving. Note that the value δ remains unchanged because the dilation
of triangulation T , in Definition 2.7, is invariant under scaling.

Third, at least one point of V is necessary to ε-cover B, and at least 1 additional
point of V is needed to A−a

A+aε-cover B
′. Now the claim follows from iterating this

argument.

Lemma 2.9. Assume a,A, ε, δ are cover-preserving constants, see Definition 2.7.
Let P be a finite point set that ε-covers the boundary B of a square of size A+a. Then,
∆(P ) ≥ δ > 1.

Proof. Let T = (V,E) be a finite triangulation such that P ⊆ V . Trivially, V , too,
is an ε-cover for B. If the dilation of T were ≤ δ, Lemma 2.8 would imply that V is
infinite. Hence, δ(T ) > δ. By Definition 2.5, ∆(P ) ≥ δ follows.

Since it is not a priori clear that cover-preserving constants exist, we need to
provide concrete values for the parameters a,A, ε, δ before we can employ Lemma 2.9
to produce point sets P together with concrete lower dilation bounds. This will be
done in the proof of Lemma 2.10, to which Subsection 2.4.1 is devoted.

Lemma 2.10. The constants a = 1, A = 15, ε = 0.0588 and δ = 1.0000014 are
cover-preserving, according to Definition 2.7.

The rough idea of this proof is as follows. Let z′ be a point of the boundary B′

of the smaller square, as in Definition 2.7; we must show that it can be closely
approximated by some point of V . We can describe point z′ as the intersection point
of two line segments, one vertical and one horizontal, with endpoints on B. Now if V
is a point set as in Definition 2.7, these endpoints can be approximated by points
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of V , say vt, vb, vl, vr, that are situated near the top, bottom, left, and right edge
of B, correspondingly. The intersection, z, of the segments vtvb and vlvr very closely
approximates z′. Furthermore, V is also the vertex set of a triangulation T of dilation
≤ δ. Thus, there is a path π connecting vt to vb in T whose length does not exceed
δ ·|vtvb|. By Lemma 2.1, the whole path π is contained in the ellipse of diameter δ ·|vtvb|
with foci vt and vb; compare Definition 2.2.

A similar path exists between vl and vr. The two paths cross in the intersection of
their respective ellipses. The crossing point must be a vertex, v′, of triangulation T ,
that is, v′ is a point of V . The width of each ellipse equals the distance between
its focal points, times

√
δ2 − 1. The latter factor tends to zero as δ gets close to 1.

Therefore, v′ is a good approximation of z, which approximates, in turn, the given
point z′ on B′, compare Figure 2.4.

This idea will be made precise in the sequel. The main challenge is to achieve a
better approximation for the points on B′ than for the points on B. As the claim of
Lemma 2.10 is of quantitative nature, careful analysis cannot be avoided. We shall,
however, try to ease the reader’s way through the calculations in the proof.

2.4.1 The Existence of Cover-Preserving Values

The main part of this section is devoted to showing the existence of cover-preserving
values. We shall show that the values a = 1, A = 15, ε = 0.0588, and δ = 1.0000014
are cover-preserving, which proves Lemma 2.10. In order to prove this claim, let us
assume that we are given a triangulation T = (V,E) of dilation ≤ δ, such that V is an
ε-cover for the boundary, B, of a square of side length A+ a. As before, we denote
with B′ the boundary of the smaller square of side length A − a, centred in B, as
shown in Figure 2.4. Note that in this section, for simplicity of illustration, the figures
are not true to scale.

Let z′ be a point on the bottom edge of B′. We define a coordinate system such
that z′ = (0, 0) is the origin, the horizontal and vertical line through z′ define the X-
and Y -axis, respectively. Now let w = (0,−1) = (0,−a) be the point below z′ on B;
see Figure 2.5.

We shall need the following technical fact.

Lemma 2.11. There exists a point p ∈ V near w, and points q, r ∈ V near the upper
horizontal edge of B, such that the following properties hold for the line segments pq, pr
and their respective intersection points i, j with the X-axis, see Figure 2.5.

1. The distance from point p to point w is at most ε.

2. Points q, r have distance at most ε to some point t on the upper edge of B.

3. Points i and j lie on opposite sides of z′.

4. The distance, `, between i and j is at most

`max :=
2ε(a+ 2ε)

A+ a
=

2ε(1 + 0.1176)

16
= 0.1397ε < 0.14ε.
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i z′ j
` ξ

e

q ε

t r

a

Figure 2.5: Including point z′ in a wedge of segments that connect points of V .

5. The minimum angle, ξ, between the segments pq, pr and the X-axis is at least

ξmin := arctan
(a− ε)(A+ a− 2ε)

ε(A+ 3a− 2ε)
= arctan (14.216...) = 85.976...◦ > 85.97◦.

Proof. Since V is an ε-cover of B by assumption, we can in fact find a point p ∈ V in
the ε-neighbourhood of the point w = (0,−1).

To prove the existence of q and r we argue as follows. For each point u on the upper
horizontal edge of B its ε-neighbourhood contains a point, denoted by v(u), of V . Let
us specifically consider the point u1 = (−1, 15) on B. Let R denote the right tangent to
the bounding boxes of the ε-neighbourhoods of u1 and w, respectively; see Figure 2.6.
Since line R is passing through the points u′ = (−1 + ε, 15 + ε) and w′ = (ε,−1 + ε),
its equation is given by Y = −16X − 1 + 17ε. Thus, the intersection point of R with
the X-axis equals v′ = (17ε−1

16 , 0); it lies to the left of z′, if ε < 1
17 = 0.058823... holds,

which is true by our choice of ε. By construction, the line segment pv(u1) connecting p
with v(u1) also intersects the X-axis to the left of z′.

By an analogous argument one can show that the ε-neighbourhood of u2 = (1, 15)
contains a point v(u2) ∈ V such that the line segment pv(u2) with endpoints p and v(u2)
passes the X-axis to the right of z′. As we walk along the upper horizontal edge
of B from u1 towards u2 there must be a point t whose ε-neighbourhood contains two
points, q and r, of V , whose connecting segments to p cross the X-axis to the left and
to the right of z′, as shown in Figure 2.5.
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B

B′
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z′ = (0, 0)

v′
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u′v(u1)

p
w
ε

w′

Figure 2.6: Existence of a segment connecting points in V , passing to the left of z′.

Now that Properties 1, 2, and 3 have been verified we turn to Properties 4 and 5,
and prove an upper bound `max for the distance |ij|, and a lower bound, ξmin, for
the minimum angle between the segments pq, pr and the X-axis. First, we state a
geometric fact whose proof is straightforward.

Lemma 2.12. Let q, r be two points above two parallel, horizontal lines U and L in
the plane. For a point p on the lower line, L, let i, j denote the intersection points
of pq and pr, respectively, with the upper line U . Then the following holds for the
distance d(p) = |i− j|, as a function of p.

i) If q, r have identical y-coordinates, then d(p) is constant.

ii) Otherwise, we have d(p) = 0 when p is co-linear with q and r. Moving p along L
away from this position in either direction does strictly increase d(p).

Since we do not know the exact location of the points p, q and r, we cannot give a
straightforward lower bound for the minimum angle ξ between the segments pq, pr and
the X-axis or an upper bound to the maximum distance ` between the intersection
points i and j. We will thus move the points p, q and r inside the bounding boxes
of the ε-neighbourhoods of w and t, as indicated in Figure 2.7, at the same time
ensuring that the new resulting minimum angle ξ decreases and the resulting distance `
increases. Clearly, the bounds we obtain after moving the points also hold for the
original positions of p, q and r, i. e., the vertices p, q, r ∈ V .
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Figure 2.7: Maximizing ` and minimizing ξ.

In the following, we cannot avoid some case distinction. Remember that z′ is
the origin and we denote the coordinates of a point s by sx and sy. Recall that t
denotes the point on B whose ε-neighbourhood contains q and r. W.l.o.g. we assume
tx ≥ 0; the case tx < 0 can be analysed by symmetric arguments. Now px ≤ ε implies
px ≤ ε+ tx, so we know that point p does not lie very far to the right of point t. There
are two possible cases:

1. px ∈ (tx− ε, tx + ε]. As depicted in Figure 2.8, we move q to the lower left corner,
and r to the lower right corner of the box centred at t, thus increasing |ij| and
decreasing ξ. While the increase of |ij| is obvious, note that the angle formed
by the X-axis and one segment, e. g. pq, may increase. But since now both
segments, pq and pr, are tangents to the ε-box of t, one of the two segments
must minimize the angle of all segments {px |x belongs to the ε-box of t}.
Now the situation is as follows. If we moved p horizontally to the right until
px = tx + ε, then this would decrease the angle of segment pq to some value ξq
and increase the angle of segment pr to π/2. Moving p horizontally to the left
until px = tx − ε, as shown in Figure 2.9, increases the angle of segment pq to
π/2 and decreases the angle of segment pr to some value ξr. By symmetry, we
have ξq = ξr. Therefore, after moving p horizontally to the left until px = tx − ε,
the minimum angle ξ has decreased to ξr and it is now defined by segment pr.
Furthermore, by Lemma 2.12, |ij| remains unchanged while moving p, because q
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Figure 2.8: Moving q, r to the lower left and lower right corner of the box centred at t.
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Figure 2.9: Moving p to the left until px = tx − ε.
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and r have the same Y -coordinates. Instead of moving p to the left we may move
t, q, r to the right, ensuring that z′ remains between i and j. We have increased `
and decreased ξ, and, since px = tx − ε, now Case 2 applies.

2. px ≤ tx−ε. We move q to the upper left corner, and r to the lower right corner of
their box; see Figure 2.10. From px ≤ tx− ε, it follows that we have increased |ij|

p ε

w

e
ji

a

B B′

ξ

A

q

t

ε

r

z′

Figure 2.10: Moving q, r to the upper left and lower right corner of their box.

and decreased ξ. Now ξ is decreased as we move p, as shown in Figure 2.11, to
the left edge of its box. Furthermore, by Lemma 2.12, this can only increase `
because p lies to the left of the line through q and r. Afterwards, we move t, q, r
to the right until z′ lies on segment pq. By the same arguments as above, this
final step also decreases ξ and increases `.

The resulting configuration is shown in Figure 2.12. The lines L1, L2 through pq, pr
are given by the equations

L1(X) =
a− η
ε

X

=
1− η
ε

X, as follows from considering the coordinates of

p = (−ε, η − 1) and z′ = (0, 0).

L2(X) =
(a− η)(A+ a− ε− η)

ε(A+ 3a+ ε− 3η)
X − 2(a− η)(a+ ε− η)

A+ 3a+ ε− 3η

=
(1− η)(16− ε− η)

ε(18 + ε− 3η)
X − 2(1− η)(1 + ε− η)

18 + ε− 3η
,
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Figure 2.11: Moving p horizontally to the left edge of its box.
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Figure 2.12: ` and ξ depending on the height η of p in its box.
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where η ∈ [−ε, ε] parametrizes the height of p in its box. The equation of L2 can be
verified by substituting the coordinates of points p and r. The latter can be obtained
as follows. Since q ∈ L1 we have q = ((15+ ε) ε

1−η , 15+ ε). Obviously, r = q+(2ε,−2ε).

From the equation for L2 we obtain

` =
2ε(1 + ε− η)

16− ε− η
for the X-coordinate of the intersection point of line L2 with the X-axis. Since the
derivative by η is always negative this value is maximized for η = −ε, which leads to

`max =
2ε(1 + 2ε)

16
.

This proves Property 4. Angle ξ is minimized for p in the upper left corner of its box,
that is, for η = ε, which results in

tan ξmin =
(1− ε)(16− 2ε)

ε(18− 2ε)
,

using the coefficient of X in the equation of L2. This proves Property 5, and completes
the proof of Lemma 2.11.

Now let p, r ∈ V be the points depicted in Figure 2.5. Because the dilation of
triangulation T is at most δ, there is a path of length ≤ δ · |pr| in T that connects p
and r. By Lemma 2.1, this path must be completely contained in the ellipse of diameter
δ ·|pr| with foci p and r. The points p and r are at distance at most (A+a+2ε)/ sin ξmin,
see Figure 2.13. Thus, the ellipse is of width at most

2 · wB =
A+ a+ 2ε

sin ξmin

√
δ2 − 1 <

16 + 2ε

sin 85.97◦
√
δ2 − 1 (2.1)

= 0.02703... < 0.027048 = 0.46ε; (2.2)

using the values for a,A, ε, δ and the value for ξmin established in Lemma 2.11.

After these preparations we shall now prove that V contains close approximations
to the four corners of square B′. Let u denote the lower left corner of B′. We know
that within distance `max to the right of u, an almost vertical segment connecting the
points vb := p and vt := r of V is passing, whose angle with the lower edge of B′ is at
least ξmin. Symmetrically, there is an almost horizontal segment connecting two points
vl, vr ∈ V that passes the left vertical edge of B′ closely above u; see Figure 2.14. We
now provide a condition sufficient for the existence of a vertex v′ ∈ V close to the
intersection point, z, of the two segments.

Definition 2.13. An ellipse Eb,t of diameter δ · |vbvt| with foci vb, vt and another
ellipse El,r of diameter δ · |vlvr| with foci vl, vr intersect properly, if the segments vbvt
and vlvr intersect at some point z /∈ {vb, vt, vl, vr}, and furthermore {vb, vt} ∩El,r = ∅
and {vl, vr} ∩ Eb,t = ∅ hold.
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Figure 2.13: The ellipse with foci p and r and diameter δ · |pr|.
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Figure 2.14: Two segments connecting points in V intersect at some point z close to u.
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Suppose two ellipses Eb,t and El,r as in Definition 2.13 intersect properly, then
any two paths πb,t and πl,r from vb to vt and from vl to vr, that are contained in Eb,t
and El,r, respectively, must intersect at some point v′ ∈ Eb,t∩El,r; compare Figure 2.15
for an example. In the remainder of this section we use Definition 2.13 in the following
way.

vl

πb,t

vb

Sb,t

vt

v′

z

vr
Sl,r

πl,r

Figure 2.15: There must be an intersection point of the two paths connecting the foci
of two properly intersecting ellipses, if the paths may not leave their ellipis.

Lemma 2.14. Let vb, vt, vl, vr denote vertices of a triangulation T whose dilation is
at most δ, where the segments vbvt and vlvr intersect at some point z /∈ {vb, vt, vl, vr}.
Given an ellipse Eb,t of diameter δ · |vbvt| with foci vb, vt and another ellipse El,r of
diameter δ · |vlvr| with foci vl, vr, and two sets Sb,t ⊇ Eb,t and Sl,r ⊇ El,r, then the
following holds. If {vb, vt, vl, vr} ∩ {Sb,t ∩ Sl,r} = ∅, then there exists a vertex v′ of T
in Sb,t ∩ Sl,r.

Proof. Let πb,t and πl,r be two shortest paths in T that connect vb with vt and vl
with vr, respectively. Since the dilation of T is at most δ, we have πb,t ⊆ Eb,t and
πl,r ⊆ El,r. According to Definition 2.13, ellipses Eb,t and El,r intersect properly.
Hence πb,t and πl,r must intersect at some vertex v′ of T in Eb,t ∩El,r ⊆ Sb,t ∩Sl,r.

As described above, each point pair, vb, vt and vl, vr, defines an ellipse, Eb,t and El,r,
that is contained in a strip of width at most 2wB . Let Sb,t and Sl,r denote these strips.
We first give an upper bound on the distance from u to any point in the intersection
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Sb,t ∩ Sl,r of the two strips. Then, we use this upper bound and Lemma 2.14 to show
that Sb,t ∩ Sl,r must contain a vertex v′ of T ; see Figure 2.15.

Because of properties 4 and 5 (compare Lemma 2.11) strip Sb,t is contained in
region Rb,t depicted in Figure 2.16. Formally, region Rb,t is defined as the region

c′ ξmin B′

B

Rb,t

Sb,t

B′

≤ wB

sin ξmin

u c
ξminξmin

ξmin

Figure 2.16: The unbounded region Rb,t containing strip Sb,t. Recall that this figure is
not true to scale.

between four half lines emanating from the points c = (`max + wB
sin ξmin

, 0) and c′ =
(−(`max + wB

sin ξmin
), 0). The slope of each half-line is either tan ξmin or − tan ξmin.

Rotating Rb,t by 90 degrees, with u as centre of rotation, we obtain region Rl,r
containing Sl,r. Now any point v′ ∈ Sb,t ∩ Sl,r must be contained in the intersection
of Rb,t with Rl,r, and hence cannot be further away from u than the intersection point s
of two half-lines defining the boundary of Rb,t and Rl,r, depicted in Figure 2.17.

To calculate the distance from u to s, let us consider the triangle whose vertices
u, c, s are depicted in Figure 2.17. By symmetry, it has an angle of π/4 at vertex u,
and its edge uc is of length `max + wB/ sin ξmin. Applying the law of sines we obtain
for D := |us|

D

sin ξmin
=

`max + wB
sin ξmin

sin(ξmin − π
4 )
, hence

D =

(
`max +

wB
sin ξmin

) √
2

1− cot ξmin
.
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Figure 2.17: The intersection of region Rb,t with region Rl,r. Recall that this figure is
not true to scale.

Because of

1 > sin ξmin > sin 85.97◦ > 0 and 1 > 1− cot ξmin > 1− cot 85.97◦ > 0

we obtain D < 0.0331632 = 0.564ε, using `max < 0.14ε, ξmin > 85.97◦, wB < 0.23ε and
ε = 0.0588.

Now we use Lemma 2.14 to show that Sb,t ∩Sl,r contains a vertex v′ of T . The first
step is showing that the segments vbvt and vlvr intersect. The two lines supporting vbvt
and vlvr, respectively, cannot be parallel. Hence, they must intersect at some point
z ∈ Sb,t ∩ Sl,r. The following estimate on the Y -coordinates (vb)y, (vt)y and zy of the
points vb, vt and z

(vb)y ≤ −(1− ε) < −D ≤ zy ≤ D < 15− ε ≤ (vt)y

implies that z is interior point of the segment vbvt. By the same argument, applied to
the X-coordinates of the points vl, vr and z, z is also interior point of the segment vlvr.
The second step is showing that none of the points vb, vt, vl, vr is contained in Sb,t∩Sl,r.
Indeed, the distance of any of these four points to u is at least

a− ε = 1− ε = 0.9412 > D ≥ max
w∈Sb,t∩Sl,r

|uw|.

This completes the proof that the lower left corner u of B′ can be D-approximated by
some vertex v′ of T . Analogous arguments hold for the other three corners of B′.
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Figure 2.18: The ellipse E1 of width δ · |vuvw| with foci vu, vw will be used to show
that z′ can be approximated by a vertex in V , up to a distance of F < A−a

A+aε.

So far, we have shown that each corner of the boundary B′ of the smaller square can
be D-approximated by a point in V . Suppose vu, vw ∈ V are such D-approximations
to the endpoints u,w of the bottom edge e of B′, correspondingly. With E1 we denote
the ellipse with foci vu, vw and diameter δ · |vuvw|, where δ is the dilation value defined
at the beginning of this subsection.

Now let z′ denote an arbitrary interior point on e, as shown in Figure 2.18. We
shall show that z′ can be approximated by a point of V up to a distance of

F <
A− a
A+ a

ε;

this will conclude the proof of Lemma 2.10.
By Lemma 2.11, there exist points p, r ∈ V such that segment pr intersects e no

more than a distance `max away from z′, with an angle at least ξmin, see Figure 2.5.
From now on we shall use ` := `max and ξ := ξmin, for short. Let E2 be the ellipse
with foci p, r and diameter δ · |pr|. There are two cases. Either the two ellipses E1

and E2 intersect properly, compare Definition 2.13. Or, E1 and E2 do not intersect
properly.

We start with the first case. We fix one path π1 in T , connecting vu with vw, that
is contained in E1, and another path π2 in T , connecting p with r, that is contained
in E2. These paths must exist because the dilation of T is at most δ. Because E1

and E2 intersect properly, paths π1 and π2 intersect at some point v′ ∈ V . The width
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of ellipse E1 is

2wB′ ≤ (A− a+ 2D)
√
δ2 − 1 ≤ 0.0235375... < 0.0235788 = 0.401ε;

this upper bound follows from |vuvw| ≤ A− a+ 2D and D < 0.0331632. We conclude
that v′ is contained in the horizontal strip S1 = {(x, y) | −D − wB′ ≤ y ≤ D + wB′}
because π1 is contained in the wB′-neighbourhood of segment vuvw. As before, we
consider the region Rb,t, but centred in z instead of the left endpoint, u, of edge e. Thus,
region Rb,t is formally defined as the region between four half lines emanating from
the points c = (`+ wB

sin ξ , 0) and c′ = (−(`+ wB
sin ξ ), 0), assuming w.l.o.g. that z′ = (0, 0).

The slope of each half-line is either tan ξ or − tan ξ; compare Figure 2.19. Again, from
the construction of region Rb,t, it follows that ellipse E2 is a subset of Rb,t. Hence,
intersection point v′ is contained in the intersection of S1 with Rb,t. Therefore, v′

cannot be further away from z′ than the intersection point s of the horizontal line
{(x, y) | y = D+wB′} with line L = {(x, y) | y = x tan ξ−

(
`+ wB

sin ξ

)
·tan ξ}. To upper-

wB′

D

z′ `+
wB

sin ξ

ξ e S1

s

D

wB′

E2

Rb,t

c′

ξ
ξ
ξ

L

c

Figure 2.19: The distance from z′ to the closest point in V is at most |z′s|.

bound the maximum distance from z′ to point v′, we consider the triangle defined by
the points z′, c, s depicted in Figure 2.19, where z′ = (0, 0) and c = (`+ wB

sin ξ , 0). By
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the law of cosine we obtain∣∣z′v′∣∣ ≤ ∣∣z′s∣∣ =: F =

√
|z′c|2 + |cs|2 − 2 · |z′c| · |cs| · cos (π − ξ)

=

√
|z′c|2 + |cs|2 + 2 · |z′c| · |cs| · cos ξ

=

√(
`+

wB
sin ξ

)2

+

(
D + wB′

sin ξ

)2

+ 2 ·
(
`+

wB
sin ξ

)
·
(
D + wB′

sin ξ

)
· cos ξ

< 0.05145

= 0.875ε =
A− a
A+ a

ε.

The fourth line follows using ξ > 85.97◦, 1
sin ξ < 1

sin (85.97◦) , cos ξ < cos (85.97◦),
wB < 0.23ε, wB′ < 0.2005ε, ` < 0.14ε and D < 0.564ε.

We now continue with the second case, where ellipses E1 and E2 do not intersect
properly (recall that the foci of E1 are vu, vw and the foci of E2 are p, r). In this
case we show that |vuz′| ≤ F or |vwz′| ≤ F holds. We consider the rectangle
S1 = [ux −D,wx +D]× [−D,D], where, as before, u and w denote the lower left and
lower right corner the boundary B′ of the smaller square. Hence, the height of S1

is 2D and its width is A− a+ 2D. Furthermore, we consider the region Rb,t centred
at z′ as defined above. Let HLl denote the union of two half lines originating from
point c′, which lies at distance `+ wB

sin ξ to the left of z′ = (0, 0); see Figure 2.20. The
angles of these half lines with the (negative) X-axis are equal to ξ. In fact, HLl is the
left part of Rb,t’s boundary. Now point vu, our D-approximation to the left endpoint u
of edge e, can lie in a region labelled 1, 2 or 3 in Figure 2.20. If vu lies in region 1,
i. e. (vu)x ≥ 0, we obtain |z′vu| ≤ |uvu| ≤ D < F , the latter by plugging in values.
If vu lies in region 2, i. e. (vu)x < 0 and vu lies to the right of HLl (including the case
vu ∈ HLl), we conceptually move vu horizontally to the left until HLl is reached. This
can only increase |vuz′|. Now we have |vuz′| ≤ |sz′| where point s is the intersection
point of HLl with the horizontal line {(x, y) | y = D}, as depicted in Figure 2.20. Using
the same estimate as in the first case (where E1 and E2 intersect properly), applied to
v′ := vu, we obtain∣∣z′vu∣∣ ≤ ∣∣z′s∣∣ =

√
|z′c′|2 + |c′s|2 + 2 · |z′c′| · |c′s| · cos ξ

=

√(
`+

wB
sin ξ

)2

+

(
D

sin ξ

)2

+ 2 ·
(
`+

wB
sin ξ

)
·
(

D

sin ξ

)
· cos ξ

< 0.05145

= 0.875ε =
A− a
A+ a

ε.

Should vu be situated in region 3, that is, vu lies strictly to the left of HLl, we
consider the D-approximation, vw, of the opposite endpoint w of edge e; see Figure 2.21.
The set HLr of half-lines is defined analogously to HLl. More precisely, it is the union
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of two half-lines originating from point c, which lies at distance `+ wB
sin ξ to the right

of z′. The angles of these half lines with the X-axis are also equal to ξ, and HLr is
the right part of Rb,t’s boundary. If vw lies in region 1 or 2, we are done, since z′

is F -approximated by vw. Otherwise, vu and vw lie on opposite sides of the region
between HLl and HLr, as shown in Figure 2.22.

B

B′wB

S2

D

vu2D

HLl

S1
vw

p

z′

HLr

r

u
w

Figure 2.22: The segment pr passes between the two wedges containing vu and vw.

Let S2 denote the set of points whose distance to segment pr is at most wB (recall
that 2wB is the maximum width of E2 and 2wB′ is the maximum width of E1);
see Figure 2.22. Note that S2 contains ellipse E2, and that E1 is contained in the
wB′-neighbourhood of S1. By construction of HLl and HLr, every point in S2 lies
between HLl and HLr. Therefore, we have {vu, vw} ∩ E2 = ∅. From the inequalities
py ≤ −a + ε < −(D + wB′) and D + wB′ < A + a − ε ≤ ry we can derive that the
distances from r to S1 and from p to S1 are strictly greater than wB′ . Therefore,
neither r nor p can be contained in the wB′-neighbourhood of segment vuvw, which
contains ellipse E1. Hence, {p, r} ∩ E1 = ∅. Moreover, point r lies strictly above S1

and point p lies strictly below S1. Therefore, since vu (vw) lies strictly to the left
(right) of HLl (HLr), and segment pr is contained in the region between HLl and HLr,
the intersection of pr with vuvw is some point z, and z /∈ {vu, vw, p, r}. Now, according
to Definition 2.13, using Eb,t := E2, vb := p, vt := r, El,r := E1, vl := vu and vr := vw,
we obtain that ellipses E1 and E2 intersect properly – a contradiction.

We have shown that, for the values of a,A, ε and δ chosen at the beginning of this
subsection, the set V is an F -cover of the lower horizontal edge of B′, for some number
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F < A−a
A+aε. Analogous arguments hold for the other edges of B′. This completes the

proof of Lemma 2.10.

2.4.2 A Lower Dilation Bound

As a direct consequence of Lemma 2.10 we obtain the main result of this section.

Theorem 2.15. Let P be a set of 548 points that are evenly placed on the boundary of
a square, such that each corner of the square receives a point. Then, the dilation ∆(P )
is at least 1.0000014.

Proof. Without affecting ∆(P ), we can scale the square containing P such that its
side length equals A + a = 16. Let ε := 0.0588, and e be an arbitrary edge of the
square. There are two points of P placed at the endpoints of e, and (548− 4)/4 = 136
points placed in between.

The distance of two consecutive points of P on e is 16/137, so P is an 8/137-cover
for e, and thus for the whole boundary of the square. Now the theorem follows from
Lemma 2.9 and the fact that 8/137 < ε.

Furthermore, we observe that Lemmas 2.8 and 2.10 and the fact that dilation is
invariant under scaling imply the following corollary.

Corollary 2.16. Let α > 0 be a constant. The dilation ∆(P ) of any point set P is
least 1.0000014, if P is an 0.0588 · α-cover for the boundary of a square whose side
length is 16 · α.

2.5 The Existence of General Lower Bounds

In the previous section we have established a class of a finite point set P whose
dilation ∆(P ) is strictly greater than 1.

Now we want to generalize this result in the following way. Suppose that S is
an arbitrary finite point set in the plane. Then one of two cases applies. Either, S
is special, in that it happens to be contained in the vertex set of a triangulation of
dilation 1; see Figure 2.2. Or, there exists a lower dilation bound > 1, depending on S,
that cannot be beaten by any finite plane graph (V,E) where P ⊆ V .

The rest of this section is devoted to the proof of this fact. We need the following
two definitions.

Definition 2.17. Given a finite point set P in the plane, we obtain the complete
graph on P by connecting each pair of points p, q ∈ P by a straight edge iff the line
segment pq contains no points in P , except p and q.

Definition 2.18. For a finite point set P , we define P 0 := P and P k+1 as the union
of P k and all crossing points in the complete graph of P k.
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In Section 2.4 we have made use of the fact that the vertices of a triangulation
(V,E) of sufficiently low dilation approximate the set P 1 and P 2, for any P ⊆ V . The
following lemma generalizes this fact to arbitrary sets P k.

Lemma 2.19. For every finite point set P , every natural number k, and every ε > 0,
there exists a bound δ > 1 such that the following holds. If T = (V,E) is a finite
triangulation of dilation δ(T ) ≤ δ such that V contains P , then V is an ε-cover for P k.

Proof. We prove the lemma for a fixed point set P , using induction on the parameter k.

Induction base: k = 0: For any ε > 0, since the vertex set V contains P by assump-
tion, V is an ε-cover for the set P 0 = P , regardless of the dilation of T .

Induction step: k > 0: We assume that the lemma holds for the values 0, . . . , k − 1.
Hence, for any fixed value ε > 0, there exists a bound δk−1 > 1 such that if T is
a finite triangulation whose dilation is at most δk−1, and T contains P = P 0 in its
vertex set, then every point in the set P k−1 is ε-approximated by some vertex of T .
Now if we find a constant δk > 1 such that all the points in the set P k \ P k−1 are
ε-approximated by the vertices of any finite triangulation T of dilation ≤ δk, given
that T contains P = P 0 in its vertex set, then setting δ := min{δk−1, δk} > 1 proves
the lemma.

We consider the set of lines L containing (at least) two points in the set P k−1, and
we denote with Π the set of pairs {L1, L2} ⊆ L of distinct lines whose intersection is a
point z ∈ P k \ P k−1. We shall define δk using the following constants.

diam(P ) := max
p,q∈P

|pq|

is the diameter of P ,
α := min

{L1,L2}∈Π
α(L1, L2)

is the minimum angle α(L1, L2) formed by a pair of intersecting lines L1, L2 ∈ L, and,

ρ := min
p∈Pk−1

{
min

L∈L∧p/∈L
d(p, L)

}
the smallest distance d(p, L) from any point p ∈ P k−1 to its closest line in L not
containing p. Note that the constants α and ρ are both strictly greater than 0.

With the notation from above, we now define δk based on the values α, ρ and diam(P )
as follows. By the induction hypothesis there exists a constant δ∗ > 1 such that any
given finite triangulation T containing P in its vertex set also ε∗-approximates every
point in the set P k−1 by a vertex of T , where ε ≥ ε∗ = min{ρ3 , ε ·

sin(α)
3 } > 0. We will

now show that setting

δk := min

δ∗,
√(

ε∗

2ε∗ + diam(P )

)2

+ 1

 > 1.
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proves the correctness of the lemma.
As before, let T be any finite triangulation of dilation δk that contains P in its

vertex set. Because δk ≤ δ∗ holds, every point in the set P k−1 is ε-approximated by
some vertex of T . It remains to show that any point z in the set P k \ P k−1 is also
ε-approximated by some vertex of T . To this end, we chose a pair of lines {L1, L2} ∈ Π
and four points p1, q1, p2, q2 ∈ P k−1 such that point z is the (unique) intersection point
of the two segments s1 = p1q1 ⊂ L1 and s2 = p2q2 ⊂ L2.

First, we observe that since the ε∗-approximations vp1 , vq1 ∈ V of the points
p1, q1 are at distance at most ε∗ ≤ ρ

3 to p1, q1, respectively, the distances from vp1
and vq1 to line L2 are at least ρ − ρ

3 ≥ 2ε∗. Hence, the points vp1 and vq1 lie on
different sides of the closed 3

2ε
∗-neighbourhood S2 of L2. From the same argument,

it follows that the ε∗-approximations vp2 , vq2 ∈ V of the points p2, q2, respectively,
lie on different sides of the closed 3

2ε
∗-neighbourhood S1 of line L1. Together, this

implies that segments vp1vq1 and vp2vq2 intersect at some point z′ ∈ S1 ∩ S2, and that
{vp1 , vq1 , vp2 , vq2} ∩ (S1 ∩ S2) = ∅ holds.

Next, we consider the ellipse E1 with foci vp1 , vq1 of diameter δk · |vp1vq1 |. The
width of E1 is at most

|vp1vq1 | ·
√
δ2
k − 1 ≤ |vp1vq1 | ·

ε∗

2ε∗ + diam(P )
≤ ε∗.

Hence, the distance from any point r ∈ E1 to segment vp1vq1 is at most ε∗
2 . Since

the segment vp1vp2 is contained in the closed ε∗-neighbourhood of segment p1q1, we
conclude that the distance from r to segment p1q1 is at most ε∗ + ε∗

2 = 3
2ε
∗. Therefore,

ellipse E1 is contained in the set S1. Analogously, if we consider the ellipse E2 with
foci vp2 , vq2 of diameter δk · |vp2vq2 |, we obtain that E2 is contained in the set S2.

Now, from Lemma 2.14, using vb := p1, vt := q1, vl := p2, vr := q2, δ := δk, Eb,t :=
E1, El,r := E2, Sb,t := S1, and Sl,r := S2, we obtain that there exists a vertex v of T in
the set S1∩S2. By definition of α, the lines L1 and L2 form, at their intersection point z,
an angle α′ ≥ α > 0. Hence, the distance from z to v is at most 2 · 32ε∗ · 1

sinα′ ≤ 3ε∗
sinα ≤ ε.

Grüne and Kamali [39] have studied topological properties of the sets P k introduced
in Definition 2.18, independent of dilation issues. They obtained the following result.

Theorem 2.20 (Grüne, Kamali [39]). Let S = S0 be a finite point set in the plane.
If S is not special, then there exists a convex polygonal region K(S), such that S∞ is
dense in K(S).

Lemma 2.21 (Grüne, Kamali [39]). Let S be a finite point set in the plane. If S is
not special, then the region K(S) – compare Theorem 2.20 – contains a triangle whose
interior is non-empty.
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A similar density result for the intersection of lines has been shown by Ismailescu
and Radoičić [41].

Now we prove the main result of this section, i. e. Theorem 2.4, which states that
the dilation ∆(S) of any point set S that is not special is strictly greater than 1.

Proof of Theorem 2.4. Suppose that S is not special. By Theorem 2.20 and Lemma 2.21
there exists a polygonal region K(S) in which S∞ lies dense, and K(S) contains a
triangle, T (S), whose interior is non-empty. Let B be the boundary of a square
contained in T (S). Let (a,A, ε, δ) have the values provided in Subsection 2.4.1. We
scale the values of (a,A, ε) by the same factor, such that B is of size A+ a; the value
of δ remains unchanged. Observe that the values of (a,A, ε, δ) remain cover-preserving
upon rescaling the values of a,A and ε. Then we choose k so large that Sk is an
ε/2-cover for K(S) and, thus, for B. This is possible, since S∞ lies dense in K(S).
From Lemma 2.19 we obtain a value δ1 > 1 such that for each finite triangulation
T = (V,E) of dilation δ(T ) < δ1 the following holds. If S ⊆ V then V is an ε/2-cover
of Sk. Now assume that there exists a finite triangulation T = (V,E) such that S ⊆ V
and δ(T ) < min(δ, δ1), where δ = 1.0000014. By the above, V is an ε-cover for B.
Thus, Lemma 2.8 implies that V is infinite—a contradiction. Therefore,

∆(S) ≥ min(δ, δ1) > 1

holds.

Note that, given a finite point set S that is not special, we can compute the setK(S)
as described in [39], and scale the values of (a,A, ε) provided in Subsection 2.4.1 such
that a square B of size A + a fits into the set K(S). Then, after finding a value k
where Sk is an ε/2-cover for the boundary of B, we can indeed use the construction
used in the proof of Lemma 2.19 to find a lower bound δ > 1 on the dilation, ∆(S),
of S.

2.6 Conclusions

We have shown that all non-special point sets S have dilation ∆(S) > 1, and we have
provided a concrete lower bound to ∆(S) for one example set. One big challenge is in
computing ∆(S) for a given point set S. Not even for five points evenly spaced on the
unit circle is their dilation known. Another interesting question is if the value of ∆(S)
is always attained by a finite triangulation, or if there are cases where ∆(S) is just
the infimum of all values attainable. Can one prove that Steiner vertices outside the
convex hull of S are unnecessary in triangulations of dilation equal to or near ∆(S)?
And, finally, how can we efficiently construct such near-to-optimal triangulations? Is
it possible to upper bound the number (or, the total length) of edges used? We leave
these questions to further research.



Chapter 3

Optimal Transport

We consider the following variant of the well-known Monge-Kantorovich transportation
problem. Let S be a set of n point sites in Rd. A bounded set C ⊂ Rd is to be
distributed among the sites p ∈ S such that (i) each p receives a subset Cp of prescribed
volume and (ii) the average distance of all points z of C from their respective sites p
is minimized. In our model, volume is quantified by a measure µ, and the distance
between a site p and a point z is given by a function dp(z). Under quite liberal
technical assumptions on C and on the functions dp(·) we show that a solution of
minimum total cost can be obtained by intersecting with C the Voronoi diagram of
the sites in S, based on the functions dp(·) equipped with suitable additive weights.
Moreover, this optimum partition is unique, up to sets of measure zero. Unlike the
deep analytic methods of classical transportation theory, our proof is based directly on
simple geometric arguments. An extended abstract of this paper [35] has appeared at
EuroCG’12 [33] and COCOON’12 [34].

3.1 Introduction

In 1781, Gaspard Monge [54] raised the following problem. Given two sets C and S of
equal mass in Rd, transport each mass unit of C to a mass unit of S at minimal cost.
More formally, given two measures µ and ν, find a map f satisfying µ(f−1(·)) = ν(·)
that minimizes ∫

d(z, f(z)) dµ(z),

where d(z, z′) describes the cost of moving z to z′.
Because of its obvious relevance to economics, and perhaps due to its mathematical

challenge, this problem has received a lot of attention. Even with the Euclidean
distance as cost function d it is not at all clear in which cases an optimal map f exists.
Progress by Appell [2] was honored with a prize by the Academy of Paris in 1887.
Kantorovich [42] achieved a breakthrough by solving a relaxed version of Monge’s
original problem. In 1975, he received a Nobel prize in Economics; see Gangbo and
McCann [32] for mathematical and historical details.

41
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While usually known as the Monge-Kantorovich transportation problem, the mini-
mum cost of a transportation is sometimes called Wasserstein metric or, in computer
science, earth mover’s distance between the two measures µ and ν. It can be used to
measure similarity in image retrieval; see Rubner et al. [59]. If both measures µ and ν
have finite support, Monge’s problem becomes the minimum weight matching problem
for complete bipartite graphs, where edge weights represent transportation cost; see
Rote [58], Vaidya [63] and Sharathkumar and Agarwal. [60].

We are interested in the case where only measure ν has finite support. More
precisely, we assume that a set S of n point sites pi is given, and numbers λi > 0
whose sum equals 1. A body C of volume 1 must be split into subsets Ci of volume λi
in such a way that the total cost of transporting, for each i, all points of Ci to their
site pi becomes a minimum. In this setting, volume is measured by some measure µ,
and transport cost d(z, z′) by some measure of distance.

Gangbo and McCann [32] report on the cases where either d(z, z′) = h(z − z′)
with a strictly convex function h, or d(z, z′) = l(|z − z′|) with a non-negative, strictly
concave function l of the Euclidean norm. As a consequence of deep results on the
general Monge-Kantorovich problem, they prove a surprising fact. The minimum cost
partition of C is given by the additively weighted Voronoi diagram of the sites pi,
based on cost function d and some additive weights wi. In this structure, the Voronoi
region of pi contains all points z satisfying

d(pi, z)− wi < d(pj , z)− wj for all j 6= i.

Villani [64] has more recently observed that this holds even for more general cost
functions, that need not be invariant under translations, and in the case where both
distributions are continuous. The existence of the weights wi is proved in a non-
constructive way.

Figure 3.1 depicts how to obtain this structure in dimension d = 2. For each
point site p ∈ S we construct in R3 the cone {(z, d(p, z)− wp) | z ∈ R2}. The lower
envelope of the cones, projected onto the XY –plane, results in the Voronoi diagram.
Independently, Aurenhammer et al. [5] have studied the case where d(z, z′) = |z − z′|2.

−wp

p
−wq

q

Figure 3.1: An additively weighted Voronoi diagram as the lower envelope of cones.

Here, a power diagram (see [6, 7]) gives an optimum splitting of C. In addition to
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structural results, they provide algorithms for computing the weights wi. Regarding
the case where the transportation cost from point z to site pi is given by individual
cost functions dpi(z), it is still unknown how to compute the weights wi.

In this paper we consider the situation where the cost d(pi, z) of transporting
point z to site pi is given by individual distance functions dpi(z). We require that
the weighted Voronoi diagram based on the functions dpi(·) is well-behaved, in the
following sense. Bisectors are (d− 1)–dimensional, and increasing weight wi causes
the bisectors of pi to sweep d–space in a continuous way. These requirements are
fulfilled for the Euclidean metric and, at least in dimension 2, if the distance function
dp(z) = d(z − p) assigned to each site p is a translate of the same strictly convex
distance function d(·).

We show that these assumptions are strong enough to obtain the results of [32]
and [5]: The weighted Voronoi diagram based on the functions dpi(·) optimally solves
the transportation problem, if weights are suitably chosen. Whereas [32] derives this
fact from a more general measure-theoretic theorem, our proof uses the minimization
of a quadratic objective function and geometric arguments. The purpose of our paper
is to show that such a simple proof is possible.

After stating some definitions in Section 3.2 we generalize arguments from [5] to
prove, in Section 3.3, that C can be split into parts of arbitrary given volumes by a
weighted Voronoi diagram, for a suitable choice of weights. Then, in Section 3.4, we
show that such a partition is optimal, and unique. In Section 3.5 we show that if C is
connected, these weights are uniquely determined, up to addition of a constant.

3.2 Definitions

Let µ be a measure defined for all Lebesgue-measurable subsets of Rd. We assume
that µ and the d-dimensional Lebesgue measure are mutually continuous, that is, µ
vanishes exactly on the sets of Lebesgue measure zero.

Let S denote a set of n point sites in Rd. For each p ∈ S we are given a continuous
function

dp : Rd → R≥0

that assigns to each point z of Rd a non-negative value dp(z) as the “distance” from
site p to z.

For p 6= q ∈ S and γ ∈ R we define the bisector

Bγ(p, q) := { z ∈ Rd | dp(z)− dq(z) = γ }
and the region

Rγ(p, q) := { z ∈ Rd | dp(z)− dq(z) < γ }.
The sets Rγ(p, q) are open and increase with γ. Now let us assume that for each site
p ∈ S an additive weight wp is given, and let

w = (w1, w2, . . . , wn)
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denote the vector of all weights, according to some ordering p1, p2, . . . of S. Then,
Bwi−wj (pi, pj) is called the additively weighted bisector of pi and pj , and

VRw(pi, S) :=
⋂
j 6=i

Rwi−wj (pi, pj)

is the additively weighted Voronoi region of pi with respect to S. It consists of all
points z for which dpi(z)− wi is smaller than all values dpj (z)− wj , by definition. As
usual,

Vw(S) := Rd \
⋃
i

VRw(pi, S)

is called the additively weighted Voronoi diagram of S; see [6]. Clearly, VRw(pi, S) and
Vw(S) do not change if the same constant is added to all weights in w. Increasing a
single value wi will increase the size of pi’s Voronoi region.

m Mγ

C

p q

(i) (ii)

5040

20

0

0

Rγ(p, q)

Bγ(p, q)

R−γ(q, p)

100

Figure 3.2: (i) Sets Rγ(p, q) for increasing values of γ. (ii) An additively weighted
Voronoi diagram.

Example. Let d = 2 and dp(z) = |p − z| the Euclidean distance. Given weights
wp, wq, the bisector Bwp−wq(p, q) is a line if wp = wq, and a branch of a hyperbola
otherwise. Figure 3.2(i) shows how Bγ(p, q) sweeps across the plane as γ grows from
−∞ to ∞. In fact, when |γ| = |p − q|, the bisector degenerates to a ray, and for
larger |γ|, the bisectors are empty. The bisector Bγ(p, q) forms the boundary of the
set Rγ(p, q), which increases with γ. Each bounded set C in the plane will be reached
at some point. From then on the volume of C ∩Rγ(p, q) is continuously growing until
all of C is contained in Rγ(p, q). Given n points pj with additive weights wj , raising
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the value of a single weight wi will cause all sets Rwi−wj (pi, pj) to grow until C is fully
contained in the Voronoi region Vw(pi, S) of pi.

Figure 3.2(ii) shows an additively weighted Voronoi diagram Vw(S) based on the
Euclidean distance. It partitions the plane into 5 two-dimensional cells (Voronoi
regions), and consists of 9 cells of dimension 1 (Voronoi edges) and of 5 cells of dimen-
sion 0 (Voronoi vertices). Each cell is homeomorphic to an open ball of appropriate
dimension.

The next definition generalizes the above properties to the setting used in this
paper.

Definition 3.1. A system of continuous distance functions dp(·), where p ∈ S, is
called admissible if for all p 6= q ∈ S, and for each bounded open set C ⊂ Rd, there
exist values mpq and Mpq, mpq < Mpq, such that γ 7→ µ (C ∩Rγ(p, q)) is continuously
increasing from 0 to µ(C) as γ grows from mpq to Mpq. Furthermore, C ∩Rγ(p, q) = ∅
if γ ≤ mpq and C ⊂ Rγ(p, q) if Mpq ≤ γ.

By symmetry we can assume w.l.o.g. that mqp = −Mpq and Mqp = −mpq; see
Figure 3.2(i). We will need the following structural property, which essentially says
that bisectors have measure 0.

Lemma 3.2. For a system of admissible distance functions dp(·), where p ∈ S, for
any two points p 6= q ∈ S and any γ ∈ R, and for any bounded open set C ⊂ Rd, we
have µ (C ∩Bγ(p, q)) = 0.

Proof. By definition of Rγ(p, q) and Bγ(p, q), for all ε > 0 and γ ∈ R the following
inequality holds:

µ(C ∩Rγ+ε(p, q)) ≥ µ(C ∩Rγ(p, q)) + µ(C ∩Bγ(p, q)).

We let ε decrease to 0. Since, according to Definition 3.1, the function γ 7−→
µ (C ∩Rγ(p, q)) is continuous, we get

lim
ε↘0

(µ(C ∩Rγ+ε(p, q))) = µ(C ∩Rγ(p, q)).

This implies µ(C ∩Bγ(p, q)) = 0.

3.3 Partitions of Prescribed Size

The following theorem shows that we can use an additively weighted Voronoi diagram
based on an admissible system of distance functions dp to partition C into subsets of
prescribed sizes.

Theorem 3.3. Let n ≥ 2 and let dpi(·), 1 ≤ i ≤ n, be an admissible system as
in Definition 3.1. Let C be a bounded open subset of Rd. Suppose we are given n
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real numbers λi > 0 with λ1 + λ2 + · · · + λn = µ(C). Then there is a weight vector
w = (w1, w2, . . . , wn) such that

µ(C ∩VRw(pi, S)) = λi

holds for 1 ≤ i ≤ n.
If, moreover, C is pathwise connected then w is unique up to addition of a constant

to all wi, and the parts Ci = C ∩VRw(pi, S) of this partition are unique.

Proof. The function

Φ(w) :=
n∑
i=1

(
µ(C ∩VRw(pi, S))− λi

)2
measures how far w is from fulfilling the theorem. Since each function γ 7→ µ(C ∩
Rγ(pi, pj)) is continuous by Definition 3.1, and because

|µ(C ∩VRw(pi, S))− µ(C ∩VRw′(pi, S))| ≤∑
j 6=i
|µ(C ∩Rwi−wj (pi, pj))− µ(C ∩Rw′i−w′j (pi, pj))|,

we conclude that the function Φ is continuous, too.
Let D := max{Mpq | p 6= q } with Mpq as in Definition 3.1. Note that mpq < Mpq

and our assumption mpq = −Mqp together imply that D > 0 is a positive constant. On
the compact set [0, D]n, the function Φ attains its minimum value at some argument
w. If Φ(w) = 0 we are done. Suppose that Φ(w) > 0. Since the volumes of the Voronoi
regions inside C add up to µ(C), there must be some sites pj whose Voronoi regions
have too large an intersection with C, i. e., of volume strictly larger than λj , while
other regions’ intersections with C are too small.

We now show that by decreasing the weights of some points of S we can decrease
the value of Φ. For any point pi ∈ S we consider the continuous “excess” function

φpi(w) := µ(C ∩VRw(pi, S))− λi

that indicates by which amount of volume the region of pi is too large or too small.
We have

n∑
i=1

φpi(w) = 0.

Let T ⊆ S be the set of points pi whose excess φpi(w) equals τ := maxs∈S φs(w). By
assumption, T is neither empty nor equal to S. We will reduce the weights of the
points in T by some amount δ, which is the same for all points in T , obtaining a new
weight vector w′. Note that, by construction, VRw(t, S) ⊇ VRw′(t, S) for any site
t ∈ T , and VRw(s, S) ⊆ VRw′(s, S), for any site s ∈ S \ T .
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Let w′(δ) denote the weight vector (w′1, . . . , w
′
n) where w′i := wi − δ if pi ∈ T , and

w′i := wi otherwise. The volume of the set of points of C, that is assigned by Vw(S) to
some point in T and by Vw′(δ)(S) to some point in S \ T is

Loss(δ) :=
∑
t∈T

(
φt(w)− φt(w′(δ))

)
Let τ := maxp∈S φp(w) > 0 and τ ′ := maxs∈S\T φs(w) < τ . Our goal is to choose δ in
such a way that

Loss(δ) =
τ − τ ′

2n
(3.1)

and to show that this choice decreases Φ strictly. Since Loss(0) = 0 and Loss(δ) is
a monotone and continuous function, our aim is to solve (3.1) by the intermediate
value theorem. For all δ > 2D we observe that Loss(δ) =

∑
pi∈T µ(C ∩VRw(pi, S)) =∑

pi∈T φpi + λi =
∑

pi∈T τ + λi > τ holds, since in this case the Voronoi region
VRw′(δ)(pi, S) of every point pi ∈ T contains no point of C. Now 0 < τ−τ ′

2n < τ
implies that we can indeed solve (3.1) by the intermediate value theorem. The latter
inequality is evident if τ ′ ≥ 0. Otherwise, it follows from −τ ′ ≤ −∑s∈S\T φs(w) =∑

s∈T φs(w) = |T | · τ ≤ (n− 1)τ .
In the following let w′ := w′(δ), for short. In order to prove the theorem we use

the following reformulation of the statement Φ(w) > Φ(w′):∑
t∈T

(
φt(w)2 − φt(w′)2

)
>
∑
s∈S\T

(
φs(w

′)2 − φs(w)2
)

(3.2)

Now, in order to prove inequality (3.2), we give an upper bound on the right-hand
side of the inequality, which will be compared with a lower bound on the left-hand
side of the inequality. Let εs ≥ 0 denote the volume increase, in C, of the region of
site s ∈ S \ T . By the choice of δ, we have

∑
s∈S\T εs = τ−τ ′

2n , and

∑
s∈S\T

(
φs(w

′)2 − φs(w)2
)

=
∑
s∈S\T

(
(φs(w) + εs)

2 − φs(w)2
)

=
∑
s∈S\T

2εsφs(w) +
∑
s∈S\T

ε2
s

≤ 2τ ′
∑
s∈S\T

εs +
( ∑
s∈S\T

εs

)2

= 2τ ′
τ − τ ′

2n
+

(
τ − τ ′

2n

)2

.

We now give a lower bound on the left-hand side of (3.2). If εt ≥ 0 denotes the
volume decrease, in C, of the region of site t ∈ T , then the corresponding calculation
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for the points in T yields:∑
t∈T

(
φt(w)2 − φt(w′)2

)
=
∑
t∈T

(
φt(w)2 − (φt(w)− εt)2

)
=
∑
t∈T

2φt(w)εt −
∑
t∈T

ε2
t

≥ 2τ
∑
t∈T

εt −
(∑
t∈T

εt

)2

= 2τ
τ − τ ′

2n
−
(
τ − τ ′

2n

)2

where we have used the same arguments as above and also that φt(w) = τ , by definition,
for all t ∈ T . It is easy to verify the inequality

2τ
τ − τ ′

2n
−
(
τ − τ ′

2n

)2

> 2τ ′
τ − τ ′

2n
+

(
τ − τ ′

2n

)2

for τ − τ ′ 6= 0 and n ≥ 2. Hence inequality (3.2) holds.
We have now shown the existence of a weight vector w′ with Φ(w′) < Φ(w). If w′

belongs to [0, D]n, we are done. Otherwise, suppose the maximum weight w′m occurs
for some point p′m. We add D − w′m to all weights. This does not change the Voronoi
diagram defined by w′, but now the maximum weight w′m is exactly D. Next we
observe that if now the weight of some point pj is negative, then its Voronoi region
contains no point of C, because C is contained in the set Rw′m−w′j (pm, pj), by definition
of D. Assigning weight 0 to each of those points also results in empty Voronoi regions,
in C, for those points. Altogether, we now have 0 ≤ w′i ≤ D for all pi ∈ S.

We have shown the existence of a weight vector w′ ∈ [0, D]n that satisfies Φ(w′) <
Φ(w). This contradicts the minimality of Φ(w). Hence the minimum value of Φ is 0.

The uniqueness of the partition will be discussed in Section 3.5.

3.4 Optimality

Again, let dp(·), p ∈ S = {p1, p2, . . . , pn}, be an admissible system as in Definition 3.1,
and let C denote a bounded and open subset of Rd. Moreover, we are given real
numbers λi > 0 whose sum equals µ(C).

By Theorem 3.3 there exists a weight vector w = (w1, w2, . . . , wn) satisfying

µ(C ∩VRw(pi, S)) = λi for i = 1, . . . , n.

Now we prove that this subdivision of C minimizes the transportation cost, i. e., the
average distance from each point to its site. It is convenient to describe partitions of
C by µ-measurable maps f : C → S where, for each p ∈ S, f−1(p) denotes the region
assigned to p. Let FΛ denote the set of those maps f satisfying µ(f−1(pi)) = λi for
i = 1, . . . , n.
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Theorem 3.4. The partition of C into regions Ci := C ∩VRw(pi, S) minimizes

cost(f) :=

∫
C
df(z)(z) dµ(z)

over all maps f ∈ FΛ. Any other partition of minimal cost differs at most by sets of
measure zero from (Ci)1≤i≤n.

If the measure µ was a discrete measure concentrated on a finite set C of points,
the optimum partition problem would turn into the classical transportation problem,
a special type of network flow problem on a bipartite graph. The weights wi would be
obtained as dual variables. The following proof mimics the optimality proof for the
discrete case.

Proof. Let fw be defined by fw(Ci) = {pi} for all i, and f ∈ FΛ be another map. The
cost of map f is

cost(f) =

∫
C

(
df(z)(z)− wf(z) + wf(z)

)
dµ(z)

=

∫
C

(
df(z)(z)− wf(z)

)
dµ(z) +

∫
C
wf(z) dµ(z) (3.3)

≥
∫
C

(
dfw(z)(z)− wfw(z)

)
dµ(z) +

∫
C
wf(z) dµ(z) (3.4)

= cost(fw)−
∫
C
wfw(z) dµ(z) +

∫
C
wf(z) dµ(z) (3.5)

where the inequality between lines (3.3) and (3.4) follows from the fact that

dfw(z)(z)− wfw(z) ≤ df(z)(z)− wf(z), (3.6)

by the definition of additively weighted Voronoi diagrams. Here we have assumed
for simplicity that the map fw assigns every point p ∈ Vw(S) to some weighted
nearest neighbor of p in S, according to some tie-break rule. Since Lemma 3.2 implies
µ(C∩Vw(S)) = 0, changing the assignment of those points has no influence on cost(fw).

Both maps f and fw partition C into regions of volume λi, 1 ≤ i ≤ n, i. e.,
µ(f−1

w (pi)) = µ(f−1(pi)) = λi for all pi ∈ S. Therefore,∫
C
wf(z) dµ(z) =

∑
pi∈S

∫
f−1(pi)

wf(z) dµ(z) =
∑
pi∈S

λiwi,

and the same value is obtained for fw:∫
C
wfw(z) dµ(z) =

∑
pi∈S

∫
f−1
w (pi)

wfw(z) dµ(z) =
∑
pi∈S

λiwi.

Now the optimality claim follows from (3.5).
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We still have to prove uniqueness of the solution, up to a set of measure 0. Assume
that f differs from fw on some set G of positive measure. We are done if we show
that the inequality between (3.3) and (3.4) holds as a strict inequality. We can remove
the points of Vw(S) from G, since they have measure 0. Then (3.6) holds as a strict
inequality on G. The difference between (3.3) and (3.4) is then the integral of the
positive function g(z) := c(z, f(z)) − wf(z) −

(
c(z, fw(z)) − wfw(z)

)
over a set G of

positive measure. Such an integral
∫
z∈G g(z) dµ(z) has always a positive value: the

countably many sets { z ∈ G | 1
k > g(z) ≥ 1

k+1 } and { z ∈ G | g(z) ≥ 1 } partition
G, and thus their measures add up to µ(G). Therefore, at least one of these sets has
positive measure, and it follows directly that the integral is positive.

3.5 Uniqueness

In contradistinction to Theorem 3.4, the weight vector w and the resulting weighted
Voronoi partition in Theorem 3.3 are not unique: if C is disconnected, changing w may
move the bisectors between different connected components of C without affecting the
partition, or only changing it in boundary points of C.

However, uniqueness can be obtained under the additional assumption that C
is pathwise connected. Then in Theorem 3.3, the weight vector w = (w1, . . . , wn)
that partitions C into regions of prescribed size is unique up to addition of the same
constant to all wi. Consequently, the parts in the weighted Voronoi partition outside
of C are also uniquely determined.

The proof uses the following lemma.

Lemma 3.5. Assume that C is path-connected, in addition to being an open bounded
set. Consider a partition of the point set S into two nonempty sets T and S \ T .
Suppose, that, for a given weight vector w, all regions C ∩ VRw(p, S) have positive
measure.

If we increase the weight of every point in T by the same constant δ > 0, then
µ(C ∩ VRw(t, S)) increases, for some t ∈ T .

Proof. In this proof, we will omit the reference to the set S from the Voronoi regions
and simply write VRw(p) instead of VRw(p, S), since the point set S is fixed.

It is clear that the regions VRw(t) for t ∈ T can only grow, in the sense of
gaining new points, but we have to show that this growth results in a strict increase
of µ(C ∩VRw(t)) for some t ∈ T .
For any weight vector w, consider the continuous function

dT,w(z) := min{ dp(z)− wp | p ∈ T }

and the function dS\T,w(z), which is defined analogously, and define

VRw(T ) := { z ∈ Rd | dT,w(z) < dS\T,w(z) }
VRw(S \ T ) := { z ∈ Rd | dT,w(z) > dS\T,w(z) }
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These two sets partition Rd, apart from some “generalized bisector” where equality
holds.

Roughly, VRw(T ) is obtained by merging all Voronoi regions VRw(t) for t ∈ T
into one set, together with some bisecting boundaries between them. Since these
boundaries have zero measure inside C, we have

µ(C ∩VRw(T )) =
∑
t∈T

µ(C ∩VRw(t)) (3.7)

Let w = (w1, . . . , wn) and w′ = (w′1, . . . , w
′
n), where w′i := wi + δ if si ∈ T and

w′i := wi otherwise. It suffices to show that in going from w to w′, µ(C ∩ VRw(T ))
increases, since then, by (3.7), one of the constituent Voronoi regions µ(C ∩VRw(t))
must increase. As mentioned, the set C ∩VRw(T ) can only grow, but we have to show
that this growth results in a strict increase of µ. Note that by the definition of w and
w′, both equalities dT,w(z)− δ = dT,w′(z) and dS\T,w(z) = dS\T,w′(z) are fulfilled.

If C ∩ VRw′(S \ T ) = ∅, we are done because µ(C ∩ VRw′(T )) has increased to
µ(C). Otherwise, consider a path in C connecting some point p1 ∈ VRw(T ) with
some point p2 ∈ VRw′(S \ T ). We have, by definition, dT,w(p1) < dS\T,w(p1) and
dT,w(p2)− δ = dT,w′(p2) > dS\T,w′(p2) = dS\T,w(p2). Hence, by the intermediate value
theorem, we can find a point p on the path with dT,w(p) − δ/2 = dS\T,w(p). This
point is an interior point of C ∩VRw(S \ T ) and C ∩VRw′(T ), and hence there is a
neighborhood of p which adds a positive measure to C ∩VRw(T ) when going from w
to w′.

To finish the proof of uniqueness in Theorem 3.3, suppose that two weight vectors
w,w′ produce the desired measures λi for the regions, but w′ − w 6= (c, c, . . . , c) for
any constant c. We may assume, by adding a constant to all entries, that w ≤ w′,
and wi = w′i for some i. We will now gradually change w into w′ by modifying its
entries. Let Tw := { si ∈ S | w′i−wi = maxj(w

′
j −wj) }. By assumption, Tw is neither

empty nor equal to S. We increase the weights of the points in Tw by the same amount
δ which is the same for all points in Tw, leaving the remaining values fixed. The
amount δ is chosen in such a way that w′i − (wi + δ) for i ∈ Tw equals the maximum
of the remaining differences w′j − wj for j ∈ S \ Tw. By Lemma 3.5, the measure of
the region assigned to some point t0 ∈ Tw strictly increases in this process. After
increasing the weights of the points in Tw by δ, the set Tw of points where w′i − wi
achieves its maximum is enlarged, and the whole process is repeated until w = w′.
During this process, t0 will always be among the points whose weight is increased,
and therefore, the measure of its region can never shrink back to the original value—a
contradiction.

3.6 Conclusion and Future Work

We have given a geometric proof for the fact that additively weighted Voronoi diagrams
can optimally solve some cases of the Monge-Kantorovich transportation problem,
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where one measure has finite support. Surprisingly, the existence of an optimal
solution—the main mathematical challenge in the general case—is an easy consequence
of our proof. In remains to be seen to what extent our assumptions on the distance
functions dpi can be further generalized.



Chapter 4

Visibility amongst two simple
polygonal chains in the plane

Introduction

We consider two visibility problems, given two non-intersecting open or closed simple
polygonal chains P and Q in the plane. The visibility region of P w. r. t. Q is the
union of all points visible from P , where Q is considered an obstacle. We present an
optimal linear time algorithm for computing this area. As has already been observed
by Ghosh [36], the visibility of a polygon P contained in a polygon Q can be computed
in linear time, using an algorithm that traverses shortest path trees. Lacking the
knowledge of this algorithm’s existence, we rediscovered this algorithm when designing
an algorithm for computing the visibility area between two polygons, as described
below. While Ghosh devised his algorithm in the context of visibility from a convex
set, our approach is slightly different. Our first goal was to extend an algorithm by
Guibas et al. [40] that computes the visibility region of a boundary edge, in order to
compute the visibility region of a connected boundary chain. We then observed that
using this algorithm we are also able to compute the visibility of a polygon P contained
in a polygon Q – obtaining essentially the same algorithm as Ghosh. In addition, we
show how to compute the (outer or inner) visibility of a polygon P w. r. t. an obstacle
polygon Q, without restrictions on the position of P relative to Q (i. e., P needs not
be contained in Q).

The visibility area between P and Q is the union of all line segments pq where p lies
on (the boundary of) P and q on (the boundary of) Q and pq does neither intersect
with P nor with Q. We also present an optimal linear time algorithm for computing
this area. The given problem arises in the context of a digital three dimensional
building construction model. An efficient computation of the visibility area between
two wall axes A and B in the digital model of a building is an important question for
computer aided construction management.

Computing the visibility among geometric objects is one of the most natural subjects
in the field of computational geometry. Furthermore, efficient solutions of visibility

53
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problems have application in many fields of computer science such as robotics [49],
computer graphics [17] and computer vision [29]. For an overview of efficient solutions
for visibility problems in the plane one can consider the survey of Asano et al. [4] or
the textbook of Ghosh [37].

This paper can be divided into two parts. In the first part we discuss a visibility
problem in the plane, given two non-intersecting open or closed simple polygonal
chains P and Q. The visibility region (or visibility polygon) of Q is the set of points
visible from Q, see Figure 4.1.

P
Q

Vis(Q)

Figure 4.1: The (outer) visibility region Vis(Q) of polygon Q w. r. t. polygonal chain P .

A point x is visible from Q iff there exists a point q ∈ Q such that the line
segment qx does not intersect P . If Q is (part of) a closed polygonal chain C, then
we can also consider the inner visibility region VisC(Q) of all points inside the region
bounded by C, visible from Q.

In the second part we also discuss a visibility problem in the plane, given two
non-intersecting closed or open simple polygonal chains P and Q. The problem stems
from an application in construction industry. More precisely, the problem arises in
the digital model of a building. For managing the construction process it is necessary
to compute an essential part between two wall axes in the digital three dimensional
representation of a building, see [62]. E.g. a construction schedule could contain an
activity for constructing all columns in the second building storey which are positioned
between two axes A and B. In addition, for large scale building elements which are
constructed in several parts, axes are used to outline the construction sections. E.g.
section II.2 of a floor slab may be defined as the part between two axes A and B, see
Figure 4.2.

Furthermore, currently the building industry is shifting from the document based
to a model based design approach where design data is managed within a digital three
dimensional building information model and data processing is being automated as
much as possible, see [20, 21]. In this context spatial queries based on sections would
be an equivalent tool for linking and extracting design data as well as for sectioning
the model. A first step in automatically evaluating spatial references based on axes is
to calculate the polygon which describes the boundary of the area between two axes.

Altogether, given two closed or open simple polygonal chains P and Q it is necessary
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II.1

II.2

A B

Figure 4.2: Section II.2 is given by two axes A and B in a digital building model.

to compute the visible part between P and Q efficiently. This means that if ∂P denotes
the boundary of P , we would like to compute the union of all line segments pq with
p ∈ ∂P and q ∈ ∂Q, so that pq does neither intersect with P nor with Q. Note, that pq
might of course touch P and/or Q. We can consider arbitrary non-intersecting open or
closed simple polygonal chains P and Q and compute the visibility area in the sense
described above, see Figure 4.3.

VA(P,Q)

Q

P

Figure 4.3: The visibility area VA(P,Q) between polygon P and polygon Q.

The paper is organized as follows. In section 4.2 we show how to compute the inner
visibility region of a connected boundary subchain Q of a simple polygon P in linear
time, extending a known algorithm by Guibas et al. [40] that computes the visibility
of a boundary edge of P . In section 4.3 we further generalize the algorithm, allowing
two disjoint simple closed polygonal chains P and Q as input, while maintaining linear
running time. In section 4.5 we describe how to compute, also in linear time, the
visibility area between two simple polygons. The latter two algorithms can be modified
to also accept open polygonal chains as input. An extended abstract of this work has
appeared at EuroCG [48].



56 CHAPTER 4. VISIBILITY AMONGST TWO POLYGONAL CHAINS

4.1 Definitions and Preliminaries

Throughout this paper we only consider simple polygonal chains in the plane, i.e.
polygonal chains without self-intersections. A closed simple polygonal chain P is called
a polygon, and we also denote with P the bounded region enclosed by the chain. In
that case we may also refer to the polygonal chain as the boundary ∂P of P . The
number of vertices of an open or closed polygonal chain P is denoted with |P |. Given
two points p and q we denote with pq the line segment connecting p with q. We
denote the convex hull of a point set X by ch(X), and given a simple polygon P , each
connected component of ch(P )\P is called a pocket P ′. The edge e that belongs to the
boundary of P ′, but not to the boundary of P is the edge defining P ′. A subchain C
of a polygonal chain P is a connected subset of P , unless we allow explicitly that C
has a finite number of connected components. Given a polygonal boundary subchain
Q ⊆ ∂P of a polygon P , then the inner visibility region VisP (Q) of Q in P is the set
of points {p ∈ P | ∃q ∈ Q : pq does not intersect with ∂P}. In general, if P is a simple
polygon and Q ⊂ P is a set of points, then we denote with VisP (Q) the visibility
polygon of Q in P , i.e. the set of points

VisP (Q) = {p ∈ P | ∃q ∈ Q : pq ∈ P}.

We will also refer to a connected component of the points in polygon P that are not
visible from Q as a pocket P ′. If the boundary part of P ′ that does not belong to the
boundary of P is a line segment c, then c is called a visibility cut.

Given two disjoint polygonal chains P and Q the visibility polygon Vis(Q) of Q is
the set of points {p | ∃q ∈ Q : pq does not intersect with P}. If the line segment pq
intersects no polygonal (boundary) chain, then we say q sees p, and the segment pq is
also called a visibility segment. Let X,Y be two point sets. Then a visibility segment uv
is of type XY if one endpoint, u, belongs to X and the other, v, belongs to Y . In most
cases we will consider X = P and Y = Q the two polygonal chains of the scene. A
ray originating from a point v in direction of a point u 6= v is denoted with ρv(u). A
ray passes tangential vertices or edges, but ends where it would intersect one of the
polygonal chains. Given a simple polygon P , then the unique oriented shortest path
in P from u ∈ P to v ∈ P is denoted with πu,v. The shortest path tree rooted at point
u ∈ P is the union of all shortest paths from u to any vertex of P . Finally we assume
general position of the vertices of the polygonal chains. That is, no three vertices are
collinear.

The visibility area VA(P,Q) between two disjoint simple polygonal chains P and Q
is defined as the union of all segments of type PQ. If P and Q are both subchains of
the boundary of a simple polygon R, then we restrict the visibility area to the points
in R that lie on a segment of type PQ.
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4.2 Inner Visibility of a Boundary Subchain

Given a simple polygon P , we want to compute the inner visibility polygon of a
boundary subchain Q of P . Our first result on inner visibility of a polygonal chain is
the following.

Theorem 4.1. The inner visibility region of a connected boundary subchain Q of a
simple polygon P can be computed in optimal time O(|P |).

To prove Theorem 4.1, we modify an algorithm by Guibas et al. [40] for computing
the inner visibility region of a boundary edge of a simple polygon. A similar algorithm
has been previously published by Ghosh. In his paper [36] he describes how to use
the algorithm for computing the visibility polygon of a simple polygon Q which is
contained in another polygon P .

Theorem 4.2 (Ghosh [36]). The outer visibility region of a simple polygon Q inside a
simple polygon P can be computed in optimal time O(|P |+ |Q|).

We prove Theorem 4.1 in this section. In the following Section 4.3, we give a proof
for Theorem 4.2 and also show how to compute the (inner or outer) visibility region
of any simple polygon Q in the presence of one obstacle polygon P (inside or outside
of Q) in optimal time O(|P |+ |Q|).

4.2.1 The Algorithm of Guibas et al.

We first briefly sketch the algorithm of Guibas et al. [40] for a better understanding of
our extension to the algorithm. Given a boundary edge e of polygon P , the algorithm
computes the visibility polygon of e in P . Any point p ∈ P not visible from e lies
behind a vertex v of P that is visible from e. It suffices to compute the set of vertices
of P that are visible from e. At each such vertex v a simple test decides if some parts
of P not visible from P lie behind v. This test can be performed, for each vertex v, in
constant time using the information of the two shortest path trees rooted at the two
endpoints el, er of edge e. Furthermore, connecting subsequent visible parts of ∂P with
line segments, the boundary of the inner visibility region of edge e can be constructed
in linear time O(|P |).

If el is the vertex of ∂P adjacent to er, in clockwise direction along ∂P , then
Vertex v is visible from e iff either, (1) v sees exactly one point of e, namely el or er.
Or, (2) walking on the oriented shortest path πel,v from el to v we always turn left
at the inner vertices and walking on the oriented shortest path πer,v from er to v we
always turn right at the inner vertices. We denote such a pair πel,v and πer,v of paths
an outwards convex pair of paths.

How to test if a vertex v of P meets condition (1) or (2) above? Clearly, condition
(1) can be checked by testing if the father of v is el or er in either of the two shortest
path trees. In order to test condition (2) for all vertices of P one traversal of the two
shortest path trees suffices. In the shortest path tree rooted at el no right turns are
allowed, whereas in the shortest path tree rooted at er no left turns are allowed.
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A first observation is that conditions (1) and (2) together are equivalent to the
following condition: A vertex v of P is visible from edge e = (el, er) iff πel,v makes
no right turn at any vertex w /∈ e of P , and πer,v makes no left turn at any vertex
w′ /∈ e of P . We will see that, given the clockwise order of the vertices (ql, . . . , qr) of a
boundary chain Q of P , a vertex v /∈ Q of P is visible from Q iff the shortet path πq′l,v
in P makes no right turn at any vertex w /∈ Q, and the shortest path πq′r,v in P makes
no left turn at any vertex w′ /∈ Q. Here, q′l (q

′
r) denotes the last vertex of the oriented

shortest path πql,v (πqr,v) in P , that belongs to Q. Again, by a single traversal of the
two shortest path trees rooted at ql and qr, respectively, we can decide which vertices
of P are visible from Q. Connecting successive boundary parts of P visible from Q
with a line segment we obtain the visibility polygon of Q in P .

4.2.2 Inner Visibility of an Outwards Bent Boundary Subchain

We now describe how the algorithm of Guibas et al. [40] can be applied to compute
the visibility polygon of a boundary subchain Q (of polygon P ) that is bent outwards,
i.e. the interior angles at the the inner vertices of Q are > π. Visibility condition
(2) defined above is no longer correct if we consider the inner visibility polygon of a
polygonal boundary chain Q = (el, . . . , er) that is bent outwards, instead of a boundary
edge e of P . Given a vertex p of P , p /∈ Q, it is possible that the shortest paths πel,p
and πer,p start with a part of Q, and the full paths are no longer outwards convex,
although p is visible from some part of Q, see vertex x in Figure 4.4 for an example.
In order to test if p is visible from Q we consider the two shortest paths πel,p and πer,p.

z

x el

er

e′l

e′r

Q

y

Figure 4.4: The parts behind the segment xy are cut off when reaching x in the shortest
path tree rooted at er.

Let e′l, e
′
r denote the vertex of Q where πel,p, πer,p, leaves Q, respectively. Clearly,

vertex p cannot be seen from any point q of Q between el and e′l or between er and e′r:
If p were visible from q, then the shortest path πr,q would be a line segment. But πr,q
either makes a right turn at vertex e′r, or a left turn at vertex e′l. We now show that p
is visible from Q iff the two paths πe′l,p and πe′r,p are outwards convex.

Lemma 4.3. With the notation from above, point p is visible from Q iff the two
paths πe′l,p and πe′r,p are outwards convex.
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Proof. First, p is clearly visible from Q if the two paths πe′l,p and πe′r,p are outwards
convex. Second, let q be a point of Q that sees p. The oriented ray ρp(q) divides P
in two simple subpolygons (if ρp(q) lies tangential to a vertex v of P , one of the two
subpolygons is a weakly simple polygon1). Now πe′l,p is fully contained inside the
subpolygon Pl to the left side of the oriented ray ρq(p), and πe′r,p is fully contained
inside the subpolygon Pr to the right. It is well known that the vertices of shortest
paths inside (weakly) simple polygons are reflex vertices of the polygon. The only reflex
vertices of Pl (Pr) to the right (left) side of πe′l,p (πe′r,p) belong to Q. This implies that
the pair πe′l,p, πe′r,p of shortest paths is outwards convex, because πel,p, πer,p leaves Q
at e′l, e

′
r, respectively, and never returns to Q.

Now we know how to test if a vertex p of P is not visible from Q: we have to
test if πel,p (πer,p) turns right (left) at some vertex w /∈ Q. This information can be
preprocessed for each vertex p of P by traversing the two shortest path trees, rooted
at el and er, respectively, in P . Then, at each vertex p visible from Q the same test as
used by the algorithm of Guibas et al. in [40] decides if some points not visible from Q
lie behind p. Removing those points from P is also done as in [40], by connecting
subsequent visible parts of ∂P with line segments. Note that the shortest path trees
can be computed in linear time [40] after triangulating P , also in linear time [13].
Thus from the algorithm of Guibas et al. we obtain the following corollary.

Corollary 4.4. The inner visibility region VisP (Q) of an outwards bent boundary
subchain Q of a polygon P can be computed in optimal time O(|P |).

We should remark that Lemma 4.3 is also one of the key observations in the paper
of Ghosh [36] for computing the visibility from one polygon inside another polygon,
and that the same proof has already been established by Ghosh.

4.2.3 Inner Visibility of Arbitrary Boundary Chains

Now we are able to prove our main result, Theorem 4.1, on inner visibility of arbitrary
connected boundary subchains. Let Q be a boundary subchain of a simple polygon P .
The shortest path Qπ in P between the endpoints of Q divides P into subpolygons,
compare Figure 4.5. First, there are right subpolygons Ri, 1 ≤ i ≤ k, in sequential
order along Qπ, to the right of Qπ. The boundaries of the right subpolygons are defined
by Qπ and Q. Second, there are left subpolygons Lj , 1 ≤ j ≤ m, in sequential order
along Qπ, to the left of Qπ, whose boundaries are defined by Qπ and Qc = ∂P \ Q.
The left and right subpolygons are simple polygons, except where an edge of Qπ is
also an edge of ∂P , compare R2 in Figure 4.5. By Lemma 4.5 below, every point
p ∈ Ri inside a right subpolygon Ri is visible from Q, and a point q ∈ Lj inside a left
subpolygon Lj is visible from Q iff q is visible from the outwards bent boundary chain
Lj(Qπ) := Qπ ∩ ∂Lj of Lj that also belongs to Qπ. Before proving Lemma 4.5 we
discuss its consequences.

1By general position of the vertices of P , there can be at most one tangential vertex v of P .
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Qπ

Q

L1
L2

R2
R3 R4

R1
R5

Figure 4.5: The polygon P is divided into subpolygons Ri and Lj by the shortest
path Qπ, between the endpoints of the boundary chain Q.

After triangulating P in linear time [13], we compute the shortest path Qπ between
the endpoints of Q in linear time [40]. Knowing which vertices of Q and of Qc = ∂P \Q
belong to Qπ we divide P into left and right subpolygons. The inner visibility region
of Lj(Qπ) in Lj can, by Corollary 4.4, be computed time O(|Lj |). Each vertex of P
belongs to at most two left subpolygons. Hence, computing the visibility polygons
inside all left subpolygons is done in time O(|L1|+ · · ·+ |Lm|) ∈ O(|P |). We create a
copy of Qπ and attach to it the above visibility polygons, e.g. in order of appearance
along Qπ. Now replacing the copy of Qπ by a copy of Q we obtain, by Lemma 4.5,
the visibility region of Q in P . This completes the proof of Theorem 4.1.

It remains to formulate and to prove Lemma 4.5. For each right subpolygon Ri let
Ri(Qπ), Ri(Q) denote the part of Qπ, Q, respectively that is also part of ∂Ri. Boundary
chains Lj(Qπ) and Lj(Qc) are defined analogously for each left subpolygon Lj .

Lemma 4.5. With the notation from above, let P ′ = Ri or P ′ = Lj be an arbitrary
right or left subpolygon of P , then P ′(Qπ) is an outwards bent boundary chain of P ′.
Every point r ∈ Ri is visible from Ri(Q). Every point l ∈ Lj is visible from Q iff l is
visible from Lj(Qπ).

Proof. The following facts imply the correctness of the Lemma. Let Ri, Lj denote two
subpolygons of P , and let r ∈ Ri, l ∈ Lj be two points of P .

1. P ′(Qπ) is an outwards bent boundary chain of P ′:
By symmetry, it suffices to consider the case where P ′ = Ri is a right subpolygon
of P . We orientate Qπ such that the vertices of Q lie to the right of Qπ and the
vertices of Qc lie to the left of Qπ. The fact that the inner vertics of Qπ are reflex
vertices of P implies that Qπ turns left at every vertex of Qc. The endpoints u, v
of Ri(Qπ) belong to Q, while the inner vertices of Ri(Qπ), between u, v, belong
to Qc. Hence Ri(Qπ) is an outwards bent boundary chain of P ′ = Ri.

2. r is visible from Ri(Q):
Let T be a triangulation of Ri, and t be a triangle in T that contains r. Since the
boundary chain Ri(Qπ) of Ri is bent outwards, at most two corners of triangle t
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Figure 4.6: The four segments s, s′, u, u′ at vertex v.

belong to Ri(Qπ), so at least one corner v of t belongs to Ri(Q). Thus r is visible
from v ∈ Ri(Q).

3. If l is visible from r ∈ Ri(Q) then l is also visible from Lj(Qπ):
If r /∈ Lj , then the visibility segment rl must intersect ∂Lj at some point
l′ ∈ Li(Qπ), which implies that l is visible from Lj(Qπ). If otherwise r ∈ Lj , we
have r ∈ Ri ∩ Lj ⊆ Qπ, hence r ∈ Lj(Qπ) sees point l.

4. If l is visible from Lj(Qπ) then l is also visible from Q:
Suppose there is a path-segment s ∈ Lj(Qπ) of Qπ whose endpoints are collinear
with l, and l sees a point in s. Either s contains a vertex v of Q, or s is the only
segment of Lj(Qπ), which implies l ∈ s. In both cases l is visible from Q – either
from vertex v or because l ∈ s also belongs to some right subpolygon Ri, which
implies that l is visible from Ri(Q).

Otherwise, if there is no segment s ∈ Lj(Qπ) collinear to l where l sees a point
of s, then we consider an arbitrary point v of some segment s ∈ Lj(Qπ) where
a point of s is visible from l. If v ∈ Q we are done, so now we assume v /∈ Q.
Then, v /∈ Q implies that there is exactly one right subpolygon that contains v,
which we denote with Ri. It is a well-known fact that the intersection of two
shortest paths inside a simple polygon has at most one connected component.
Booth Qπ and ρl(v) are shortest paths in P . Thus if ρl(v) intersects Qπ at v,
after entering Ri, ρl(v) must intersect the boundary of Ri at some point v′ /∈ Qπ,
which implies that l is visible from v′ ∈ Q. Since, by assumption, s and l are
not collinear, if follows that if v is an interior point of segment s, then ρl(v)
intersects Qπ at v. Hence l is seen from some point v′ ∈ Q. It now suffices to
show that if v is a vertex of Qc, then ρl(v) intersects Qπ at v. This can be seen as
follows. Because v ∈ Qc is not an endpoint of Qπ, there is another path-segment
s′ ∈ Qπ adjacent to v. Since v is also a vertex of polygon P , there are two
boundary edges u, u′ of Qc adjacent to v, see Figure 4.6.

Let s, u denote the segments that belong to the boundary of Lj . Then, segments
s′, u′ belong to the boundary of Lk, where k ∈ {j − 1, j + 1}. The segment lv is
contained in the wedge formed by the segments s and u. Since the interior angle



62 CHAPTER 4. VISIBILITY AMONGST TWO POLYGONAL CHAINS

(between segments s and s′) at vertex v, in subpolygon Ri, is > π, ρl(v) must
intersect Qπ at vertex v.

4.3 Visibility of a Polygon in Presence of One Obstacle

This section is devoted to the proof of Theorem 4.6 about the visibility region of a
closed polygonal chain. Let P and Q be two disjoint simple closed polygonal chains.
As before, |C| denotes the number of vertices of a polygonal chain C.

Theorem 4.6. With the notation from above, the (outer or inner) visibility region
of Q w. r. t. P can be computed in optimal time O(|Q|+ |P |).

We have to distinguish between different cases, depending on the relative position
of P to Q. Note that we can compute the convex hull ch(P ), ch(Q), ch(P ∪Q) of P , Q
and P ∪Q in linear time [53, 61], and also check if one of the polygons is contained
in the other polygon, also in linear time, assuming that the boundary chains do not
intersect [45, p. 89]. Analogously, if one polygon is contained in a pocket of the other
polygon, then the boundary of the pocket can be identified in linear time. In particular,
we are able to identify in linear time which of the following cases applies.

4.3.1 Neither P ⊂ ch(Q) nor Q ⊂ ch(P )

The two outer tangents to P and Q, which can be identified in linear time [53, 61],
divide the region outside of P and Q into one unbounded region R and one bounded
region R. Once the tangents are known, computing the visibility region of Q in the
unbounded region R is a trivial task. By Theorem 4.1 we are able to compute the
visibility region of Q in polygon R in linear time. We conclude that we can compute
Vis(Q) = VisR(Q) ∪ VisR(Q) in linear time O(|P |+ |Q|).

4.3.2 P contained in ch(Q)

For the sake of coherent notation, in the following we always consider a polygon P
that is contained in a polygon Q, compare Figures 4.7 and 4.8.

There are four cases, each of which is considered in a separate part in the remainder
of this section:

1. The outer visibility region of P , where P ⊂ Q and the boundary of polygon Q is
considered an obstacle, compare Figure 4.7.

2. The outer visibility region of P , where Q is the pocket (containing P ) of some
polygon Q, see Figure 4.8. This case is identical to case 1, except that the edge e
defining Q, which belongs to the boundary of Q and the convex hull of Q, is not
considered an obstacle for P .
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P

Q

Figure 4.7: Polygon P contained
in polygon Q.

e
P

Q

Q

Figure 4.8: Polygon P contained in
a pocket Q of polygon Q. Dashed
(dotted / dash dotted) boundary
edges belong to Q (Q / the com-
mon boundary of Q and Q).

3. The inner visibility region of polygon Q, where polygon P ⊂ Q is considered an
obstacle, see Figure 4.7.

4. The outer visibility region of Q, where Q is the pocket (containing P ) of some
polygon Q.
This case is similar to case 2, but we are interested in the outer visibility polygon
of polygon Q. Therefore, the visibility from edge e (see 2.) in Q does not
contribute to the visibility of Q.

We now discuss cases 1 and 2 which cover the visibility region of polygon P . Thereafter,
we analyze cases 3 and 4 which relate to the visibility region of polygon Q.

As mentioned before, Ghosh [36] has independently devised an algorithm similar
to ours for computing the visibility polygon of a polygon P contained in a polygon Q
(case 1 described above). We show that this approach can also be applied for

• the computation of the inner visibility region of a boundary chain Q of a
polygon P (see Section 4.2).

• Cases 2, 3 and 4 described above.

The Visibility Region of Polygon P

Case 1: Polygon P contained in polygon Q

In order to compute the outer visibility region of polygon P contained in polygon Q,
we consider the two vertical tangents t1, t2 to P . The tangents divide the polygon
R = Q \ P into subpolygons, see Figure 4.9.

Formally, the division of polygon R into subpolygons is as follows. Let s denote
the segment between the highest point p ∈ P on t1 and the lowest point q ∈ Q on t1,
above p. Similarly, t denotes the segment between the lowest point p′ ∈ P on t1 and



64 CHAPTER 4. VISIBILITY AMONGST TWO POLYGONAL CHAINS

P

Rt

s

t

t1

Rb

u

v

t2

Q

Rl

Figure 4.9: Polygon Q containing polygon P , and the division of R = Q \ P into
subpolygons.

the highest point q′ ∈ Q on t1, below p′. Segments u, v on t2 are defined analogously.
The four segments s, t, u, v divide the polygon R = Q \ P into a top, bottom, left and
right polygon Rt, Rb, Rl and Rr, respectively. Finally, let Rx(P ), Rx(Q) denote the
boundary parts of P,Q that belong to Rx, for any x ∈ {t, b, l, r}.

We now consider the polygon Rl = Rt∪Rr ∪Rb. Polygon Rl is obtained from R by
connecting the boundaries of P and Q with the two segments s and t. The polygon Rl
is a simple polygon (allowing that s and t have one endpoint in common). We compute
the visibility polygon of boundary chain Rt(P )Rr(P )Rb(P ) in Rl, by Theorem 4.1 in
linear time. Clearly, no visibility segment in R between points r ∈ Rl and p ∈ ∂P can
intersect s or t, because in that case the segment pr must also intersect Rl(Q). We
conclude that we have correctly identified all points of Rl visible from P . Segments u
and v are visible from P , so we can separate the points of Rr visible from P from those
of Rt and Rb visible from P by adding u and v to the boundary of the visibility polygon
VisRl

(P ) = VisRl
(Rt(P )Rr(P )Rb(P )). Analogously, we can identify the points of Rl

visible from P . It remains to connect the boundaries of the four visibility polygons
of P in Rt, Rb, Rl and Rr at the endpoints of segments s, t, u and v. As result we
obtain, in linear time O(|P |+ |Q|), the visibility region of P in Q.

Case 2: Polygon P contained in pocket Q of polygon Q

We want to compute the outer visibility region of polygon P , where P is contained in
a pocket Q of a polygon Q. There is one edge e of ∂Q that does not belong to ∂Q,
namely the edge e that defines Q. Let w. l. o. g. e be a vertical edge. Computing the
visibility region of P w. r. t. Q is similar to the previous case P ⊂ Q. The only new
aspect is that edge e, which also belongs to the boundary of ch(Q), does not block
the view of P . We start with computing the visibility polygon of P in Q, as described
above. Only points in the half-plane H+(e), defined by the line supporting e, that
does not contain P can possibly contain points outside Q visible from P . This set of
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visible points is either empty or bounded by (edge e and) two visibility cuts2 of infinite
length, originating from e. Suppose some part of edge e is visible from P . The two
visibility cuts can be easily identified after computing the visibility polygon of P in Q.
If an endpoint a of edge e is not visible from P then we have to extend the visibility
cut separating a from P in Q to infinite length. Otherwise if a is visible from P , then
we create a visibility cut starting at a, like we would at any other reflex vertex of Q
that blocks the view of P on some other points. Proceeding analogously with the other
endpoint, b, of edge e, all points between the new infinite visibility cuts are visible
from P .

The Visibility Region of Polygon Q

Case 3: Polygon P contained in polygon Q

We now compute the inner visibility region of Q, assuming P ⊂ Q holds. Remember
the division of polygon R = Q \ P into subpolygons by the two vertical tangents to P ,
as shown in Figure 4.9. We start with the visibility polygon of Q in Rr. If some point
r ∈ Rr = Rt ∪ Rl ∪ Rb sees a point p ∈ Rr, then the segment pr intersects either
segment u or segment v. Hence, ray ρr(p) must reach a point q of Rr(Q) behind p, so p
is also visible from Rr(Q). This implies that any point in Rr visible from some point
r ∈ Rt(Q) ∪Rl(Q) ∪Rb(Q) is also visible from Rr(Q). Hence, the visibility polygon
of Q in Rr equals the visibility polygon of Rr(Q) in Rr. From the same argument, it
follows that if some point r ∈ Rt sees a point of segment s or segment u, then r is
seen from Q. This implies that the visibility polygon of Q in Rt equals the visibility
polygon of sRt(Q)u in Rt. Analogous arguments hold for the visibility polygons of Q
in Rl and Rb.

Case 4: Polygon P contained in pocket Q of polygon Q

We now show how to compute the outer visibility region of polygon Q, where the
obstacle polygon P is contained in a pocket Q of Q. Knowing which pocket of Q
contains P the only non-trivial part is computing the set of points inside Q visible
from Q. This case is similar to computing the inner visibility polygon of Q; yet we
have to keep in mind that now the visibility of edge e, that defines pocket Q, does not
contribute to the outer visibility region of Q. Remember that e ∈ ∂Q is also part of
the boundary of both polygons ch(Q) and ch(Q). Again, we assume that e is vertical,
and we consider the division of polygon R = Q \P into subpolygons Rt, Rb, Rl and Rr,
as before. We assume that Rr does not contain e on its boundary. Otherwise we
start with Rl, and analogous arguments hold. We compute the visibility polygon of
∂Q \ e in Rr by computing the visibility polygon of Rr(Q) in Rr (compare Case 3:
Polygon P contained in polygon Q). It remains to compute the visibility polygon
of ∂Q \ e in polygon Rr = Rt ∪ Rl ∪ Rb. Removing edge e /∈ {u, v} from boundary

2A visibility cut is a line segment (or half-line) that separates the points visible from P and some
points that are not visible from P .
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chain CQ = uRt(Q)Rl(Q)Rb(Q)v of Rr, we obtain two polygonal chains Q1 and Q2.
Let Q1 be the chain containing v and Q2 be the one that contains u, as depicted
in Figure 4.10. Again, since a point r ∈ Rr is visible from Rr(Q) iff r is visible
from u or v, it suffices to unite the visibility polygons VisRr

(Q1) and VisRr
(Q2) of Q1

and Q2 respectively in Rr, in order to compute the visibility polygon of ∂Q \ e in Rr.
We will successively cut off from polygon Rr all points not visible from both Q1 and Q2.

e
Rr

Rt

Rb

Rl
u

v

P

Q1

Q2

Figure 4.10: Removing edge e from the boundary of polygon Rr, we obtain two
boundary chains, Q1 and Q2, belonging to Q.

We now give a formal definition of the term visibility cut. As mentioned before,
the inner visibility polygon of a boundary subchain C of a simple polygon P can be
obtained by connecting consecutive visible boundary parts of P with line segments. If
C = (cl, . . . , cr) and vertex v /∈ C is visible from C, then the two shortest paths πc′l,v
and πc′r,v are outwards convex, where c′l (c

′
r) is the vertex of C on path πcl,v (πcr,v)

closest to v. Let the two boundary edges of P adjacent to v be denoted by p1v and p2v,
and let the path-segment of πcl,v and πcr,v adjacent to v be slv and srv, respectively. If
vertex v blocks the visibility of C on some points in P , then v must be a reflex vertex;
see Figure 4.11. Furthermore, both segments vp1 and vp2 lie to the left (or to the

v
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p2
πcl,v

cl

sl
sr
πcr,v

cr

vr

vl

c′r

c′l

C

Figure 4.11: The visibility cut vvr defined by boundary vertex v, and the pocket of
cut vvr (in dark grey colour). To simplify illustration, not all boundary parts are
displayed explicitly – e. g. some vertices defining πcl,v and πcr,v were omitted.
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right) of the two lines supporting slv and srv. Thus rays ρsl(v) and ρsr(v) intersect
the boundary of P at some point vl and vr, respectively, behind v. If segments p1v
and p2v lie to the left of the lines supporting slv and srv, then segment vvr is called
visibility cut. Otherwise (if the two segments lie to the right), segment vvl is a visibility
cut. The set of points behind vertex v not visible from C are called the pocket of the
cut. If c is a visibility cut, then we denote the pocket of c by Pc.

We are now able to describe how to identify the points of polygon Rr that are not
visible from both Q1 and Q2. The boundary of VisRr

(Q1) is defined by parts of ∂Rr
and a set C1 of visibility cuts. Each point of Rr not visible from Q1 lies behind a cut
c ∈ C1, and all points behind a cut c define the pocket Pc of c. We denote with C2 the
set of cuts defining the boundary of VisRr

(Q2). Since edge e is visible from both Q1

and Q2, and no endpoint of edge e is a reflex vertex, there is no cut in the set C1 ∪C2

whose endpoint lies on edge e or whose pocket contains e on its boundary. Furthermore,
if there were a cut c ∈ C1∪C2 of type Q1Q2, then either no point of e or no point of P
were visible either from Q1 or from Q2 – a contradiction. Hence there are only cuts
of type Q1Q1, Q1P,Q2P,Q2Q2, and of type PP . We now process the cuts depending
on their type. We first remove from C1 all cuts with both endpoints on Q2, and we
remove from C2 all cuts with both endpoints on Q1 (since all points behind those cuts
are visible from Q). Exactly one cut c1 = pq ∈ C1 exists where p ∈ P and q ∈ Q2

iff the endpoint w = Rt(P ) ∩ u of Q2 is not visible from Q1. This is due to the fact
that the endpoints of the cuts in C1 appear in consecutive order along the polygonal
chain Q2Rt(P )Rl(P )Rb(P ). No cut of C2 intersects c1, because c1 is visible from
q ∈ Q2. Hence the pocket of any cut in C2 is either contained in pocket Pc1 of c1 or
has an empty intersection with Pc1 . We cut off from Rr all pockets Pc of cuts c ∈ C2

whose endpoints lie on the boundary of Pc1 . Those points are seen neither from Q1

nor from Q2, since they lie behind a cut of C1 and also behind a cut of C2. Then we
remove c1 from C1. If a corresponding cut c2 = p′q′ ∈ C2 exists, where p′ ∈ P and
q′ ∈ Q1, then c2 is processed analogously. Now both endpoints of each remaining cut
belong to the polygonal chain CP = Rt(P )Rl(P )Rb(P ) ⊆ ∂P . The cuts of C1 appear
consecutively on CP , as do the cuts of C2. We push the remaining cuts of C1 and C2

on a stack S1 and S2, respectively, in order of appearance on CP . Simultaneously
we identify, for each endpoint x of each cut, the distance d(x) covered when walking
on CP from w (the endpoint of segment u) to x. From now on, whenever we pop a
cut c from S1 (S2) we also remove c from C1 (C2).

We now traverse the boundary of P . Whenever two pockets Pa and Pb intersect, we
cut off their intersection Pa ∩ Pb from Rr. The correctness of the subroutine described
below follows from the simple observation

Pca ∩ Pcb = ∅ ⇔ d(a′) ≥ d(b),

where ca = aa′ and cb = bb′ are two cuts of C1∪C2, assuming w. l. o. g. that d(a) > d(a′),
d(b) > d(b′) and d(a) ≥ d(b) holds. Because CP is a simple polygonal chain, and ca
is a visibility segment, we know that if the intersection of Pca and Pcb is non-empty,
then at least one endpoint, b, of cb lies, on CP , between the endpoints of ca. Note that
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the pocket of a cut in C1 can only intersect the pocket of a cut in C2, and vice versa.
On both stacks S1 and S2 the cuts are sorted, in ascending order, by their distance

(measured by function d(·)) to the endpoint, w = Rt(P ) ∩ u, of CP . The cut at the
bottom of S1 (S2) is the cut of C1 (C2) closest to point w. Let {ca = aa′, cb = bb′} =
{peek(S1) ∪ peek(S2)} denote the two cuts at the top of the two stacks S1 and S2.
Again, we assume w. l. o. g. that d(a) > d(a′), d(b) > d(b′) and d(a) ≥ d(b) hold. If
d(a) = d(b), then we also assume w. l. o. g. that d(b′) ≥ d(a′) holds. There are three
cases to consider:

1. d(a) ≥ d(b) > d(b′) ≥ d(a′)
Pcb is contained in Pca . We pop cb from its stack and replace the part of CP
between b and b′ by cb.

2. d(a) > d(a′) ≥ d(b) > d(b′)
No pocket of a cut of C1 ∪C2 intersects the pocket Pca of ca; we pop ca from its
stack.

3. d(a) > d(b) > d(a′) > d(b′)
The two cuts ca and cb intersect at some point s. We replace the part of CP
between b and a′ by the polygonal chain bsa′. Now we pop ca from its stack.

If at any time either stack is empty, then there are no further points to subtract
from Rr, and the subroutine terminates.

A simple proof, analogous to Exercise 1.8 in [45, p. 22], shows that a connected
subset of the boundary of a simple polygon Rr can, in Rr, see at most one connected
subset of a boundary edge of Rr. Hence, at any time at most four endpoints of cuts in
the set C1 ∪ C2 lie on a single boundary edge of Rr. Thus the endpoints of the cuts
in the set C1 ∪ C2, that lie on a given boundary edge of P , can be sorted in constant
time according to their distance d(·) to point w. We conclude that the sequential
order of the cut’s endpoints along the boundary of Rr can be determined in linear
time O(|P |+ |Q|), and thus

Lemma 4.7. With the notation from above,

1. removing the cuts with both endpoints on Q1 or on Q2 is done in time O(|Q|),

2. identifying the cuts whose pockets are contained in the same pocket as either of
the two endpoints of CP is done in time O(|CP |) ∈ O(|P |),

3. the order of cuts along CP and the distances from endpoint w to the cut’s
endpoints can be determined in time O(|CP |) ∈ O(|P |).

Proof. We store for each cut c = vv′ the reflex vertex v defining c and the boundary
edge of Rr that contains the other endpoint v′ of c. For each boundary edge of Rr
we store a list of (the up to four) cuts of which an endpoint lies on that edge. The
algorithm for computing the visibility polygon of Q1 and of Q2 can be easily modified
to maintain this information.
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1. In order to remove the cuts with both endpoints on Q1 we traverse Q1. Thus
in time O(|Q1|) we have access to all cuts where one endpoint lies on Q1. The
number of those cuts is at most 4|Q1|, and thus in time O(|Q1|) we can identify
which cuts to remove. The cuts with both endpoints on Q2 can be removed
analogously in time O(|Q2|). The total time needed is O(|Q1|+ |Q2|) = O(|Q|).
If, during this process, we encounter a cut of type PQ1 or of type PQ2, we store
those (up to two) cuts for using them later in step 2.

2. In step 1 above we have already identified any cut of type PQ1 or of type PQ2.
If there exists a cut pq of type PQ2 we traverse CP , starting at its endpoint
w = u ∩Rt(P ) = Q2 ∩ ∂P , in direction of p. This way we can identify every cut
whose endpoints lie between w and p, and therefore have to be removed (in total
time O(|P |)). If there is a cut p′q′ of type PQ1, we proceed analogously and
identify the cuts whose endpoints lie on P between w′ = v ∩ Rb(P ) = Q1 ∩ P
and p′, also in time O(|P |).

3. We traverse CP starting at endpoint w in direction to the other endpoint w′

and compute the distance d(v) for every vertex v of CP in the following way.
Suppose we have just computed the distance d(y) for some vertex y (initially, we
have y = w and d(y) = 0). Let x be the vertex following y on our way from w
to w′. Then we have d(x) = d(y) + |xy|, where |xy| denotes the length of the
line segment connecting x with y.

After the distance d(v) from w to every vertex v ∈ CP has been determined, we
traverse CP a second time, again starting from w in direction to w′. Now, for
each cut c where one endpoint z of c lies on edge xy, where d(x) < d(y), we
compute the distance d(z) = d(x) + |xz|. If z is the first endpoint of cut c whose
distance d(z) is determined, and c is contained in C1 (C2) we also push c on
stack S1 (S2). Note that for each edge of CP , in each of the sets C1 and C2 there
exists at most one cut that is pushed on S1 and S2, respectively. Since for each
edge e of CP there are at most 4 cuts in the set C1 ∪ C2 where one endpoint
lies on e, each edge of CP can be processed in constant time. When the second
traversal of CP is completed, the cuts in the set C1 (C2) are pushed on stack S1

(S2), in sorted order according to the distance d(·) of their endpoints.

Furthermore, we observe that the total number of push, pop and peek operations is
also linear in the total number O(|P |+ |Q|) of cuts. Cutting off the appropriate parts
of Rr is done in time O(|parts cut off |) ∈ O(|Rr|) ∈ O(|P |+ |Q|). Summing up, we
obtain a total running time O(|P |+ |Q|) that is linear in the number of vertices of P
and Q.
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Summary

In order to compute the (inner or outer) visibility polygon of a given polygon Q
w. r. t. another polygon P , we can decide in linear time whether we must apply the
algorithm formulated in Section 4.3.1, or one of the four algorithms presented in
Section 4.3.2. The runtime of any given algorithm is also linear. This completes the
proof of Theorem 4.6. Furthermore, an open polygonal chain C = (c1, . . . , cn) can be
treated as a closed polygonal chain C ′ = (c1, c2, . . . , cn, . . . , c2, c1). The visibility of C
is identical to the visibility of C ′, and we can modify our algorithm to also accept C ′

as input.

Corollary 4.8. Given two simple, non-intersecting open or closed polygonal chains P
and Q in the plane, the visibility region of Q w. r. t. P can be computed in optimal
time O(|P |+ |Q|).

4.4 The Visibility Area Between Two Boundary Chains
of a Polygon

We first restate some definitions. A segment pq between two mutually visible points p
and q is of type PQ, iff p ∈ P and q ∈ Q, where P and Q are sets of points. Given two
polygonal chains P and Q, then the visibility area VA(P,Q) consists of all points that
lie on a segment of type PQ. If P and Q are subchains of the same closed polygonal
chain C, then we restrict the visibility area to points in the bounded region defined
by C.

We shall also need the following definition.
Given the inner visibility polygon VisP (X) of a boundary subchain X of a poly-

gon P , and a subchain C of ∂P , we define a polygonal chain VisP (X)|C – which is a
boundary subchain of VisP (X) – as the union of all points c ∈ C visible from X, and
all line segments (i. e., visibility cuts) connecting the endpoints of subsequent parts
of C visible from X.

We would like to compute the visibility area between two subchains A and C on
the boundary of a common polygon P .

Let us consider a polygon P = (A,B,C,D), where A, B, C, D denote four
successive non-empty polygonal subchains of ∂P , see Figure 4.12; the endpoints of
subchains A, B, C and D are vertices of P . We want to compute the visibility area
between A and C inside P , that is, the union of all line segments ac ∈ P with a ∈ A
and c ∈ C.

Our first observation is, that C sees only parts of A and vice versa. We can extract
this information from the visibility polygons VisP (A) and VisP (C). More precisely,
we consider C∗ := VisP (A)|C and A∗ := VisP (C)|A. If no point of C is visible from A,
then VA(A,C) = ∅. So from now on we assume that some point of A is visible from C.

Now let C∗ = (c1, . . . , cm) and A∗ = (a1, . . . , an) be given in clockwise order, see
Figure 4.12. Note that c1, cm, a1 and an stem from visibility cuts between the chains C
and A. Moreover, obviously every visibility cut that restricts the visibility from A to C
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B

D

A∗

C
C∗

A

a1

an

cm

c1

πan,c1

πcm,a1

Figure 4.12: Four chains A, B, C and D define the polygon P . The chain A∗ (C∗) is
the part of A (C) which is seen from C (A). For the visibility area between A and C
one has to combine A∗ and C∗ with the shortest path from an to c1 and the shortest
path from cm to a1.
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(or vice versa) is given by two vertices of the polygon P . We consider the shortest
path, πan,c1 , from an to c1 and the shortest path, πcm,a1 , from cm to a1 inside P . We
would like to prove that the visibility area between A and C inside P is given by the
closed chain A∗πan,c1C∗πcm,a1 .

In the following we assume general position, that is, no three vertices of the
polygon P are collinear.

Lemma 4.9. With the notation from above, A∗πan,c1C∗πcm,a1 is the visibility area
between A and C inside a polygon P .

Proof. We first prove the equality VA(A,C) = VA(A∗, C∗).

⊆ Obviously, in P , every segment ac of type AC is also of type A∗C∗.

⊇ Let a∗c∗ ∈ P be a segment of type A∗C∗. We now show that a∗c∗ is also
contained in a segment ac ∈ P of type AC. We start with point a∗. If a∗ ∈ A,
we set a := a∗ and continue with c∗. Otherwise, by definition of A∗, point a∗

must be an interior point of a visibility cut cA of type AA. Now we know that
ray ρc∗(a∗) must intersect A at some point a ∈ A, behind a∗. Point a belongs to
the boundary of the pocket PcA defined by cut cA (this is also true if ρc∗(a∗) is
collinear with cA). A similar point c ∈ C exists for point c∗, and obviously the
visibility segment ac contains segment a∗c∗.

It remains to show that every segment of type A∗C∗ is contained in the region R
bounded by chain A∗πan,c1C

∗πcm,a1 , and every point in R lies on a segment of
type A∗C∗. Let a∗c∗ be a segment of type A∗C∗. We now show that a∗c∗ ∈ R.
We assume w. l. o. g. that a∗ /∈ {a1, an} and c∗ /∈ {c1, cm}. The case a∗ ∈ {a1, an} and
/ or c∗ ∈ {c1, cm} follows with minor modifications. Because segment a∗c∗ is a shortest
path in P , and the two points an and c1 (a1 and cm) lie in the region of P to the
left (right) side of the oriented segment a∗c∗, we know that the shortest path πan,c1
(πa1,cm) cannot intersect the segment a∗c∗ transversally. Moreover, segment a∗c∗ also
does not intersect A∗ or C∗ transversally. Now a∗c∗ ∈ P implies that a∗c∗ is contained
in region R. We continue by showing that every point r ∈ R lies on a segment of
type A∗C∗. We first show that every point r ∈ R is visible from A∗ and from C∗.
Then, we use a geometric argument to show that r also lies on a segment of type A∗C∗.

Our first observation is that the shortest paths πan,c1 and πa1,cm are bent outwards
(that is, the two boundary chains πan,c1 and πa1,cm of region R are bent outwards).
We first prove this claim for πa1,cm . We have to prove that when walking on πa1,cm
from a1 to cm, we always turn right at the inner vertices of πa1,cm . If a1 sees cm we
have πa1,cm = a1cm and we are done. Otherwise, since a1 ∈ A∗ we know that a1 sees
a point c ∈ C∗, c 6= cm, and point cm is contained in the region Pr of P to the right
of the oriented segment a1c. Furthermore, no vertex of Pr belongs to A∗, because
those vertices are contained in the region Pl of P to the left of a1c. Now it follows,
because cm is visible from A∗, that πa1,cm is bent outwards – a left turn at a vertex
v /∈ A∗ would imply that cm is not visible from A∗. Using the same arguments we
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obtain that the shortest path πan,c1 is bent outwards. We can now show that every
point r in R is visible from A∗. It suffices to show that every point on the boundary
of R is visible from A∗. By symmetry, from the same arguments it follows that every
point in R is also visible from C∗.

We first show that every point c ∈ C∗ is (in polygon R) visible from A∗. Point c is,
in polygon P , visible from some point a ∈ A∗. Neither of the two shortest paths πa1,cm
and πan,c1 can intersect the visibility segment ac transversally. We conclude that ac ∈ R
and thus that point c is, in R, visible from A∗. We continue by showing that every point
on both shortest paths πa1,cm and πan,c1 is visible from A∗. We first show that every
point r on the shortest path πa1,cm is visible from A∗. Because cm is visible from A∗,
we can assume r 6= cm. We know that the shortest path πa1,cm is bent outwards, i. e.,
walking on πa1,cm from a1 to cm we always turn right at the inner vertices. Let a∗ ∈ A∗
denote a point that sees point cm, as shown in Figure 4.13. Walking on πa1,cm from a1

to cm, we denote by v the first vertex of πa1,cm we encounter after reaching point r.
Now the ray ρv(r) must intersect A∗ at some point ar, between a1 and a∗. Thus, r
is visible from A∗. Using the same arguments we can show that every point of the
shortest path πan,c1 is also visible from A∗. Altogether, we have shown that every
point in R is visible from A∗. By symmetry, the same arguments hold for boundary
chain C∗, and therefore we have shown that every point in R is visible from A∗ and
from C∗. Now from Lemma 4.10, 1. below, using A := A∗, B := πan,c1 , C := C∗

cm

a1

c1

an
A∗

C∗

a∗

r
v

ar

πa1,cm

πan,c1

Figure 4.13: Ray ρv(r) must intersect A∗ at some point ar between a1 and a∗.

and D := πa1,cm , it follows that every point r ∈ R lies on a segment of type A∗C∗,
because r is visible from A∗ and from C∗.

In the following lemma we state some structural properties of the visibility area
between two subchains of the boundary of a polygon P .

Lemma 4.10. Let P = (A,B,C,D) be a polygon defined, as above, by four successive,
non-empty boundary chains A, B, C, D (the endpoints of the four chains are also
vertices of P ).

1. If chains B and D are bent outwards, then any point p ∈ P visible from both A
and C belongs to the visibility area VA(A,C) between A and C.
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2. Given two mutually visible points a1, a2 ∈ A, and a point p ∈ P contained in the
region RAa1a2 bounded by the segment a1a2 and the part of A between a1 and a2,
then the following holds

(a) p belongs to VA(A,C) iff p is visible from C.

(b) p belongs to VA(A,B ∪D) iff p is visible from B ∪D.

(c) p belongs to VA(A ∪ C,B) iff p is visible from B.

(d) If p does not lie on segment a1a2, then p does not lie on a segment of type
BB,CC,DD,BC,BD or CD.

Proof. 1. Given a point p ∈ P visible from A and from C, we consider four intervals
IB = [0, α1], IA = [α1, α2], ID = [α2, α3] and IC = [α3, 2π], given values
0 ≤ α1 ≤ α2 ≤ α3 ≤ 2π. We assume that (i) α1 ≤ π and (ii) α3 − α2 ≤ π.
The following simple proof shows that there exists a value p1 ∈ IA where
p2 = p1 + π ∈ IC . Let p1 = min{α2, π} and p2 = p1 + π. Now p1 ∈ IA holds
because (i) and α1 ≤ α2 imply α1 ≤ min{π, α2} = p1 ≤ α2. If α2 > π we
have, p1 = π and p2 = 2π, which implies p2 ∈ IC . Otherwise α2 ≤ π holds, and
thus p1 = α2 and p2 = α2 + π. Now from (ii) we obtain α3 ≤ α2 + π = p2 ≤ 2π,
which also implies p2 ∈ IC .
It now follows that p belongs to VA(A,C). We denote with α1, α2 the angles
defined by the extremal directions where p sees points of A and with α3, 2π the
angles defined by the extremal directions where p sees points of C, as shown
in Figure 4.14. Furthermore, we observe that α1 ≤ π and α3 − α2 ≤ π holds

p
A

C

B

D

α2

α1

α2 α3

0≡2π

Figure 4.14: The angles α1, α2 and α3 defined by the extremal directions where P sees
points of A and C.

because the extremal directions where p sees points of B or D form an angle of
at most π (since B and D are bent outwards). Note that the proof also holds
if p is not seen from B (D); in this case we use α1 = 0 (α2 = α3).

2. If point p is seen from another point x ∈ P \ RAa1a2 or x ∈ a1a2, then p lies on
a segment of type {x}A, compare Figure 4.15. This is due to the fact that the
ray ρx(p) must intersect the segment a1a2 transversally, or x ∈ a1a2 holds. In
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both cases ray ρx(p) must reach a point a ∈ A, behind p (a = p is possible).
Statements (a) to (d) are easy consequences of this observation.

A

a2

a1

RA
a1a2

a

p

x

Figure 4.15: If p is visible from point x ∈ (P \RAa1a2)∪ a1a2, then from x we must also
see a point a ∈ A, behind p (a = p is possible).

(a) According to the definition of VA(A,C), if p is not visible from C, then p
does not belong to VA(A,C). Now if p is visible from some point c ∈ C,
then using x = c we obtain from the observation above that p lies on a
segment ac of type AC.

(b) Using the same arguments as in the proof of (a), it follows that p belongs
to VA(A,B ∪D) iff p is visible from some point x ∈ B ∪D.

(c) If p ∈ VA(A ∪ C,B) holds, then p is visible from B. Using the same
argument as in the proof of (a), if p is visible from some point b ∈ B, then p
lies on a segment ab of type AB, and hence belongs to VA(A,B). Now the
claim follows from the fact VA(A,B) ⊆ VA(A ∪ C,B).

(d) Let x ∈ B ∪ C ∪D be a point that sees point p. The ray ρx(p) intersects
the segment a1a2 before reaching p. Since p does not lie on segment a1a2,
after reaching p the ray ρx(p) cannot reach further points of B,C or D,
before it ends when intersecting the boundary of RAa1a2 at some point
a ∈ A. This implies that given any segment ax ∈ P containing p, where
x ∈ B ∪ C ∪D, it holds that a ∈ A. Therefore, segment ax cannot be of
type BB,CC,DD,BC,BD or CD.

Corollary 4.11. The visibility area between two boundary subchains A and C of a
simple polygon P = (A,B,C,D) can be computed in linear time O(|P |).

Proof. We can compute VisP (A) and VisP (C) in linear time. Also in linear time, we
traverse the boundaries of VisP (A) and VisP (C) obtaining the polygonal chains C∗

and A∗. Connecting the endpoints of the chains with the shortest paths in P can also
be done in linear time.
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4.5 The Visibility Area Between Two Simple Polygons

The visibility area VA(P,Q) between two simple polygonal chains P and Q in the
plane is the union of all line segments pq, where p ∈ P and q ∈ Q holds, and p sees q.
This section is devoted to the proof of the following Theorem 4.12 about the visibility
area between two closed polygonal chains P and Q.

Theorem 4.12. The visibility area between two disjoint closed polygonal chains P
and Q in the plane can be computed in optimal time O(|P |+ |Q|).

Let P and Q be two disjoint closed polygonal chains. We distinguish between
different cases, depending on the position of P relative to Q. Note that we can
compute the convex hull of one or two polygons in linear time [53, 61] and also check
if a polygon is contained in another polygon, also in linear time, assuming that the
boundary chains do not intersect [45]. Furthermore, we can identify the pocket of one
polygon containing the other polygon in linear time. We first consider two simple
cases in sections 4.5.1 and 4.5.2. The technically most challenging case is discussed in
Section 4.5.3.

4.5.1 Neither P ⊂ ch(Q) nor Q ⊂ ch(P )

There are two outer tangents to P and Q, which can be identified in linear time [53, 61].
Those tangents divide the outside of P and Q into one bounded region and one
unbounded region, see Figure 4.16. The bounded region is a simple polygon R

P
Q

t1

t2

A

R

B

Figure 4.16: The visibility area between P and Q is contained in region R bounded
by P , Q, and the two outer tangents to P and Q.

(allowing that the two tangents share a common tangent point of P or of Q). The
boundary of R consists of two polygonal subchains A and B of ∂P and ∂Q, respectively,
connected by two tangential segments t1 and t2. Each tangential segment is part of
one of the two outer tangents. It is easy to see that the visibility area between P
and Q equals the visibility area between A and B in R. Thus, we can employ the
algorithm presented in Section 4.4 to compute, by Corollary 4.11 in linear time, the
visibility area between P and Q.
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4.5.2 P Contained in Q

Let R = Q \ P then every point of the visibility area between P and Q must be
contained in R. We compute the visibility polygon of Q and of P in R and cut off
from R the points not visible from P or Q. This can, by Theorem 4.6, be done in
linear time. We now verify that every remaining point r ∈ R belongs to the visibility
area between P and Q. If r ∈ ∂P (r ∈ ∂Q) we are done, because r is visible from ∂Q
(∂P ), so now we assume r /∈ ∂P ∪ ∂Q. Let pq be any visibility segment in R, where p
and q belong to the boundary of R, and pq contains r, see Figure 4.17. We are done

Q

P

p

r

q

p′
q′

Figure 4.17: Any point r ∈ Q \ P visible from P and Q belongs to the visibility area
between P and Q. Points not visible from P (Q) are drawn in light grey (dark grey)
colour.

if pq is of type PQ. Otherwise let pq be of type QQ. Because pq is of type QQ, pq
divides polygon R in two parts – one of them containing P . By assumption, there
exists a point p′ of P that sees r. Now ray ρp′(r) intersects segment pq at point r, and
intersects the boundary of Q at some point q′ behind r. Hence r lies on the visibility
segment p′q′ of type PQ. Using the same argument, it follows that if the segment pq
is of type PP , then r also lies on a segment p′q′ of type PQ.

4.5.3 Polygon P Contained in a Pocket Pe of Polygon Q

The situation is as depicted in Figure 4.18, and is similar to the situation depicted in
Figure 4.8 on page 63. Polygon P is contained in one pocket Pe of polygon Q that is
defined by an edge e of ch(Q). In other words, edge e is the unique edge that belongs
to the boundary of polygons Pe and ch(Q), but not to the boundary of polygon Q.

In order to compute the visibility area between polygons Q and P , it suffices to
compute the visibility area VA(P,Q) between P and the common boundary, Q, of Pe
and Q, in polygon R = Pe \ P , because every segment of type PQ (or, equivalently, of
type PQ) is contained in R. Note that Q can be obtained by removing from ∂Pe the
interior points of edge e. In contrast to the case where P is contained in a polygon Q,
in this case it is not sufficient only to identify the set of points in R visible from
both P and Q. It is possible that some points of R do not lie on a segment of type PQ,
although they are visible from both P and Q. Thus in a first step we will show how to
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e
P

Q

Pe

Figure 4.18: Polygon P contained in a pocket Pe of polygon Q. Dashed (dotted / dash
dotted) boundary edges belong to Pe (Q / the common boundary, Q, of Pe and Q).

identify these points. We also compute the set of points visible from both P and Q in
polygon R. Combining this information we obtain the visibility area between P and Q
in R.

We now describe how to remove from polygon R the points visible from both P
and Q, that do not lie on a segment of type PQ. It will turn out that we will, at the
same time, remove from R some points not visible from P – which of course do not
belong to the visibility area between P and Q. We will first decide if some point of P
is visible from edge e. If no point of P is visible from e, then any segment of type PPe
is of type PQ. In this case we can compute the visibility area between P and Q as
described in section 4.5.2, by computing VA(P,Q) = VA(P, Pe). So from now on we
assume that some point of P is visible from some point of e.

In the following we make use of arguments relying on properties of shortest paths.
These properties only apply for shortest paths inside simple polygons, but polygon
R = Pe \ P is not simple. We overcome this structural barrier by dividing polygon R
in two simple polygons and compute the visibility area in each polygon separately.

Let w. l. o. g. e be a horizontal edge, and P lies strictly below e, as do all points
of Q, compare Figure 4.19. We consider the lowest horizontal line, `, that intersects P .
Let pl denote the leftmost point of P on `, and ql denote the rightmost point of Q
on `, to the left of pl. Point pr is the rightmost point of P on ` and qr is the leftmost
point of Q on `, to the right of pr. Adding the segments plql and prqr to ∂R we
divide polygon R in two subpolygons, the top polygon Rt and the bottom polygon Rb.
Polygon Rt (Rb) is the subpolygon of R to the left (right) of the oriented segments qlpl
and prqr, as shown in Figure 4.19. In general (and, in fact, by general position of
the vertices of R) there is exactly one vertex v of P on line ` (since ` is parallel to
edge e and two distinct parallel lines contain at most three vertices, if the vertices are
in general position). Then, we have v = pl = pr. However, there are two occurrences
of vertex v on the boundary of Rt; the occurrence of vertex v adjacent to ql is denoted
by pl and the occurrence adjacent to qr by pr. Further note that e belongs to the
boundary of Rt, if some point of P is visible from e.

Each point rb ∈ Rb visible from P and Q belongs to the visibility area between P
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Figure 4.19: The division of polygon R into subpolygons Rb and Rt.

and Q. If rb lies (on or) below line ` (compare Figure 4.19) this is obvious, since the
ray ρp(rb) originating from some point p ∈ ∂P that sees rb must reach some boundary
point q ∈ Q of Rb, behind rb. If otherwise rb lies strictly above line `, then rb is
either not seen from P (see the points above ` contained in the triangle with endpoints
q1, q2, and q3, in Figure 4.19), or rb lies in the region belonging to Rb bounded by
segment plpr and the boundary of P (compare the points above ` contained in the
triangle with endpoints pl, pr, and p′, in Figure 4.19). In the latter case, if rb is visible
from some point q ∈ Q, then the ray ρq(rb) must intersect segment plpr and reach a
point of ∂P , behind rb.

We have already shown, in Section 4.3, how to compute the set of points in Rb
neither visible from P nor from Q (compare the part of “Case 1”, where the visibility
of P in subpolygon Rr is discussed and the part of “Case 3”, where the visibility
of Q in subpolygon Rr is considered, on pages 64 and 65). Since we know how to
identify the points in subpolygon Rb that belong to VA(P,Q), it remains to consider
the subpolygon Rt of R.

Let a0 and b0 denote the endpoints of edge e = (a0, b0), in clockwise order, on
the boundary of Rt. By assumption, there exists a point p of P that is visible
from some point e′ of edge e, therefore Q cannot intersect the segment e′p. Hence,
walking in clockwise direction on ∂Rt, starting at e′, we first reach b0 before reaching
qr, pr, p, pl, ql, a0, e

′, in that order; compare Figure 4.19. Now our goal is to identify all
points that lie on a segment of type PQ in Rt. We can treat the segments plql and prqr
of ∂Rt as parts of Q: consider any segment rr′ of type P (plql) (or, analogously, of
type P (prqr)). The ray ρr(r′) must intersect the segment plql at r′, and thus ρr(r′)
must reach a point q of Q, behind r′. Hence any point belonging to the segment rr′

also lies on segment rq of type PQ. We conclude that every point in Rt that belongs
to VA(P,Q) lies on a visibility segment pq between a point p ∈ P on the common
boundary of polygons P and Rt, and a point q that lies on one of the two two boundary
chains of Rt connecting the endpoints a0 and b0 of edge e with pl and pr, respectively.
Hence, for convenience, in the following we denote with P the common boundary of
polygons P and Rt, and by Q we denote the two boundary chains of Rt connecting
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the endpoints of edge e with the vertices pl and pr of P .
Next, we define a subpolygon R of Rt as follows. Suppose we walk, along boundary

chain P , from pl in direction of pr. At some time we reach the first point p′l of P that
is visible from e. Then, we reach point p before we finally reach the last point p′r of P
that is visible from e; see Figure 4.20. We obtain polygon R from Rt by replacing

p′l
p′r

R

ak

e′

p

e
a0 b0

Q

pr
plql

qr

P

bm

Figure 4.20: Region R ⊆ Rt defined by edge e, the shortest paths πa0,p′l and πb0,p′r ,
and the part of ∂P between p′l and p

′
r.

the boundary parts (a0, . . . , ql, pl, . . . , p
′
l) and (b0, . . . , qr, pr, . . . , p

′
r) of ∂Rt with the

shortest paths πa0,p′l and πb0,p′r in Rt, respectively. Note that the two pairs of paths
πa0,p′l , πb0,p

′
l
and πa0,p′r , πb0,p′r are outwards convex. In particular, walking on the

shortest path from a0 to p′l we always turn right at the inner vertices, and walking on
the the shortest path from b0 to p′r we always turn left. Further note that polygons
Rt, Rb and R can be obtained in linear time O(|R|) from polygon R.

Our previous observations and the following lemma imply that for every point r
in R visible from P and from Q, it holds that if r that does not belong to VA(P,Q),
then r is contained in region R.

Lemma 4.13. With the notation from above, if a point r ∈ Rt is visible from both P
and Q, and r does not lie on a segment of type PQ, then r ∈ R holds.

Proof. From the same arguments as used in Section 4.5.2, it follows that if r is visible
from P and Q, and r is not visible from edge e, then r lies on a segment of type PQ.
Thus it remains to consider the points in Rt \R, visible from e, P , and Q. To prove the
lemma we have to show that those points belong to VA(P,Q). Let point e′ ∈ e be a
point of edge e that sees a point r ∈ Rt \R, and r is also visible from P and Q. Clearly,
the visibility segment re′ must intersect either πa0,p′l or πb0,p′r . We now prove that if
the segment re′ intersects any segment of the shortest path πa0,p′l = (a0, a1, . . . , ak, p

′
l),

then r lies on a segment of type PQ. Analogous arguments apply if the segment re′

intersects a segment of the shortest path πb0,p′r = (b0, b1, . . . , bm, p
′
r).

We first define a division of the boundary of Rt into four successive boundary chains
A,B,C and D as follows. We traverse the boundary of Rt in counterclockwise direction,
starting at point a0, and obtain A = (a0, . . . , ak, . . . , ql, pl), B = P = (pl, . . . , pr),
C = (pr, qr, . . . , bm, . . . b0) and D = e. Hence P = B and Q = A ∪ C. Next, we
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observe that every vertex of πa0,p′l is visible from edge e, because p′l is visible from e.
Hence, from the definition of point p′l, it follows that p

′
l is the only vertex of πa0,p′l that

belongs to P ; the other vertices must belong to A ⊆ Q. Now if segment re′ intersects
a segment aiai+1, i ∈ {0, . . . , k − 1}, then we know that segment aiai+1 is of type AA.
Now we can apply Lemma 4.10, 2c, which implies r ∈ VA(Q,P ), using A∪C = Q and
B = P . It remains to consider the case where segment re′ intersects the segment akp′l.
Adding segment akp′l to ∂Rt subdivides polygon Rt in two subpolygons R1 and R2,
see Figure 4.21. We know that r is contained in the subpolygon R1 of Rt that does

p′l

ak
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v′
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R2

πa0,r

e
a0 b0
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Figure 4.21: Segment akp′l divides polygon Rt in two subpolygons R1 and R2.

not contain edge e on its boundary. Now since the shortest path πa0,r must intersect
the segment akp′l at some point z ∈ πa0,p′l , we know that all points of πa0,p′l between a0

and z also lie on the shortest path πa0,r. Hence πa0,r contains vertex ak. Now let v be
the vertex of πa0,r adjacent to r, as shown in Figure 4.21. The ray ρv(r) must intersect
the boundary of Rt at some point v′, that is visible from v. Both points v and v′

belong to the boundary of subpolygon R1. If segment vv′ is of type PQ, then r belongs
to VA(P,Q), by definition of the visibility area. Otherwise, if vv′ is of type PP (QQ),
from Lemma 4.10, 2b (2c), it follows that r ∈ VA(P,Q), using A = P and B ∪D = Q
(A ∪ C = Q and B = P ), because r is visible from Q (P ).

We have shown that, in order to remove from Rt every point r visible from both P
and Q, that does not lie on a segment of type PQ, we only have to consider the points
in R. More precisely, we only have to consider points in R visible from e, P and Q.
We shall use the following fact which follows from the general position of the vertices
of polygon R.

Lemma 4.14. If a point p ∈ P is, in polygon R, visible from some point e′ ∈ e, then p
is not the only point of P visible from e.

Proof. We show that p lies on a boundary edge e ∈ ∂P of which edge e sees at least
some connected segment pp′, where p′ ∈ e, p 6= p′. There are four different cases.

1. Both p and e′ are vertices of R.
The segment pe′ cannot contain another vertex of R, so there is one edge e
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e′ p

e
p′

∂R

e

Figure 4.22: Some point p′ near p on edge e is visible from e′.

adjacent to vertex p where the neighbourhood of p on e is visible from e′,
compare Figure 4.22.

2. Point p is a vertex of P and e′ is an interior point of e.
There is at most one tangential vertex v contained in the segment pe′. If there is
no such vertex v, we argue as in case 1. If a tangential vertex v exists we can
rotate the segment pe′, with v as centre of rotation, in a direction where the
visibility between e and P is maintained; see Figure 4.23.

p

e∂R

e′ v p′

e

Figure 4.23: Rotating segment pe′ while maintaining the visibility between P and
edge e.

3. Point p is not a vertex of P , but e′ is a vertex of e.
Again, we can assume that there is exactly one tangential vertex v contained in
segment pe′; see Figure 4.24. This time we can rotate the segment ep′ with centre
of rotation e′ to prove the existence of a point p′ 6= p on edge e containing p,
where p′ is visible from e′.

4. Neither p nor e′ is a vertex of R.
There are at most 2 tangential vertices v, v′ contained in the segment pe′; see
Figure 4.25 for an example. Independently of the positions of vertices v, v′ (and
on which side of the segment pe′ the boundary edges adjacent to v, v′ are on) we
can rotate the segment pe′ while maintaining the visibility between e and edge e.
This proves the existence of a point p′ ∈ e, p′ 6= p, visible from edge e.
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Figure 4.24: Some point p′ 6= p on edge e is visible from e′.
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Figure 4.25: Rotating the segment pe′ while maintaining the visibility between edge e
and edge e.

We will now have a closer look at those points in R that do not lie on a segment of
type PQ.

Lemma 4.15. There exists a simple polygonal chain C in polygon R that divides Rt
in two regions A and B, such that any point r ∈ Rt belongs to the visibility area
between P and Q iff r /∈ B \ C and r is visible from both P and Q. The polygonal
chain C can be computed in linear time O(|P |+ |Q|).

Proof. Using the notation from above, we consider the two shortest paths πa0,p′r
and πb0,p′l in R, see Figure 4.26. Because p′r is visible from e, walking on πa0,p′r
from a0 to p′r, we always turn right at the inner vertices. Furthermore the first
vertices (a0, . . . , ai) of πa0,p′r = (a0, . . . , ai, pa, . . . , p

′
r) belong to Q and the last vertices

(pa, . . . , p
′
r) of πa0,p′r belong to P . Analogously we have πb0,p′l = (b0, . . . , bj , pb, . . . , p

′
l),

where the vertices (b0, . . . , bj) of πb0,p′l belong to Q, and the vertices (pb, . . . , p
′
l) of πb0,p′l

belong to P . The shortest path πb0,p′l must intersect the unique segment aipa of πa0,p′r
that connects a vertex of Q with a vertex of P , because, by Lemma 4.14, b0 and p′l
lie, in R, on different sides of πa0,p′r and – more precisely – on different sides of the
segment aipa. By symmetry, πa0,p′r intersects the corresponding segment bjpb on πb0,p′l .
Hence, the two paths intersect at point p′ = aipa ∩ bjpb (it is impossible that πb0,p′l
intersects the visibility segment aipa in more than one point). After triangulating R
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Figure 4.26: The two shortest paths πa0,p′r and πb0,p′l divide R in two regions A and B.

in linear time [13], we can compute the two shortest paths in linear time [40], and the
polygonal chain C = (ai, p

′, bj) also in linear time.
Connecting the boundary vertices ai and bj of R with the polygonal chain C =

(ai, p
′, bj) ∈ R divides R in two subpolygons A and B; see Figure 4.26. Edge e belongs

to the boundary of subpolygon B, and P is part of the boundary of subpolygon A.
Furthermore, chain C divides polygon Rt in two subpolygons A and B, where A ⊇ A
and B ⊇ B. More precisely, we have A = A∩R and B = B ∩R, compare Figure 4.27.

p′l
p′r

e
a0 b0

P

A

B

p′

ai

Figure 4.27: The polygonal chain C = (ai, p
′, b0) divides polygon Rt in two polygons A

and B. The bold polygonal chain indicates the boundary of polygon R.

Now, we first show that any point of P visible from B lies between p′l and p
′
r, and

that no point of B \B is visible from P . Then, we use this fact to show that a point
r ∈ Rt belongs to VA(P,Q), iff r /∈ B \C and r is visible from P and Q. We shall first
state a technical fact based on the general position of the vertices of R (that is, no
three vertices of R are collinear).

Lemma 4.16. With the notation from above, point p′ does not belong to Q.

Proof. Point p′ is the intersection point of two visibility segments between vertices
of R. We will show in the proof of Lemma 4.17 that the first segment s1 is either bjak
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or bjpb, and that the second one, s2, is either segment aibm or segment aipa; in any
case the endpoints of both segments s1 and s2 are vertices of R. We can assume
pa 6= pb, because in that case we have pa = pb = p′ ∈ P . Hence the endpoints of the
visibility segments s1 and s2 are four distinct vertices of R. None of those four vertices
can be the intersection point p′, by general position of the vertices of polygon R. Now
if p′ belongs to Q, then point p′ can only be a vertex of Q which implies that there
are more than two vertices of R collinear – a contradiction.

Lemma 4.17. With the notation from above, let p ∈ ∂P be a point that lies between pl
and p′l or between pr and p′r, where p /∈ {p′l, p′r}. Now for any given point r ∈ B, it
holds that p is not visible from r.

Proof. By symmetry, we can assume w. l. o. g. that p 6= p′l lies between pl and p
′
l. There

are two cases.
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Figure 4.28: No point p, p 6= p′l, between pl and p
′
l is visible from a point r ∈ B.

1. Vertex p′l lies tangentially to ray ρak(p′l), as depicted in Figure 4.28.
Ray ρak(p′l) ends where it intersects the boundary of Rt at some point ak+1,
behind p′l. Point ak+1 is visible from e, because the two shortest paths πa0,ak+1

and πb0,ak+1
are outwards convex. Therefore, ak+1 /∈ P holds and p /∈ {p′l, ak+1}

lies between p′l and ak+1. It follows that the shortest path πr,p makes a left turn
at its inner vertex p′l. Hence, p is not visible from r.

2. Ray ρak(p′l) intersects the boundary of P at p′l (this situation occurs at point p′r
depicted in Figure 4.28, compare the ray ρbm(p′r)).
We first observe that (i) region B is contained in the region bounded by edge e
and the two outwards convex shortest paths πa0,p′l and πb0,p′l , and that (ii) B is
also contained in the region bounded by edge e and the two outwards convex
shortest paths πa0,p′r and πb0,p′r , see Figure 4.29. Furthermore, because the
segment akp′l is a visibility cut defined by a vertex v ∈ πb0,p′l and by vertex
ak ∈ πa0,p′l , the three points v, ak and p′l are collinear; point ak is an interior
point of the segment vp′l. Hence the segment akp′l is part of the last segment
of both shortest paths πa0,p′l and πb0,p′l . Now because point p ∈ P cannot be



86 CHAPTER 4. VISIBILITY AMONGST TWO POLYGONAL CHAINS

pl pr

a0 e b0

p′l

ak
bm

p′r

Bai bj

πb0,p′l

p

ql qr

v
p′

πa0,p′r

P

Q

Figure 4.29: Region B is contained in the region bounded by edge e and the two
shortest paths πa0,p′l and πb0,p′l . For convenience, most parts of Q are not displayed
explicitly, but are indicated as dashed lines.

contained in segment akp′l, (i) implies that it if ak /∈ B, then the oriented shortest
path πr,p must turn right at its inner vertex ak, which implies that p is not
visible from r. Thus in the following we will show that indeed ak /∈ B holds. If
v ∈ P (as shown in Figure 4.29), then the shortest path πa0,p′r intersects πb0,p′l
at some point p′ between v and bj . Hence point ak, which is interior point of the
segment vp′l, cannot be contained in the region bounded by edge e and the two
shortest paths πa0,p′r and πb0,p′r . Now from (ii), it follows that ak /∈ B. It remains
to consider the case where v ∈ Q. Then, we have v = bj and p′l = pb because
segment vp′l is the first segment of type QP on the shortest path πb0,p′l ; compare
Figure 4.30. Furthermore, the segment vp′l is a tangent to vertex ak, and πa0,p′r
intersects the segment vak. Assuming ak ∈ B for a contradiction, (ii) implies

pl pr
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bm

p′r

Bai v
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ql qr
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P
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Figure 4.30: If the vertex v defining the visibility cut akp′l belongs to Q, then we have
v = bj and p′l = pb.

that πa0,p′r intersects segment vak at point p′ = ak ∈ Q. This is a contradiction
to Lemma 4.16. Altogether, we have shown ak /∈ B which implies that p is
not visible from r. Using the same arguments we can show that if p 6= p′r lies
between pr and p′r, then p is also not visible from r.
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From Lemma 4.17 we obtain the following corollary.

Corollary 4.18. If r ∈ B and p ∈ P are two mutually visible points of Rt, then p lies
between p′l and p

′
r.

Proof. Segment pr must intersect chain C at some point r′ ∈ B, and r′ sees P . Now
the correctness of the corollary follows from Lemma 4.17.

Corollary 4.19. No point q ∈ Q, that lies between a0 and ai or between b0 and bj,
where q /∈ {ai, bj}, is visible from P .

Proof. We assume w. l. o. g. that q lies between a0 and ai and we assume for a con-
tradiction that q is visible from some point p ∈ P . Now our assumption q /∈ {ai, bj}
implies i > 0, q ∈ B, and that q lies in the region of Rt to the right of the oriented
shortest path πa0,ai . From Corollary 4.18, it follows that p lies between p′l and p

′
r and

thus that p lies in the region of Rt to the right of the oriented shortest path πai,p′r ;
compare Figure 4.31. Since the oriented shortest path πa0,p′r is bent outwards (and

p′l
p′r

p

e
a0 b0

P

ai
q

πa0,p′r

Figure 4.31: Point q (p) lies in the region of Rt to the right of the oriented shortest
path πa0,ai (πai,p′r).

the vertices of R are in general position), it makes a right turn at its inner vertex ai.
Hence, the oriented shortest path πq,p also makes a right turn at its inner vertex ai,
because πq,p cannot intersect πa0,p′r transversally. Therefore, q is not visible from p – a
contradiction. Using analogous arguments we can also show that if q lies between b0
and bj , then q is not visible from P .

Now we are finally able to complete the proof of Lemma 4.15. Let pq be a segment
in Rt of type PRt that contains a point r, where r ∈ B \C. Since p ∈ P is visible from
point r ∈ B, Corollary 4.18 implies that point p lies (on the boundary of Rt) between p′l
and p′r. Hence before reaching point r ∈ B \ C, ray ρp(q) must intersect both shortest
paths πa0,p′r and πb0,p′l , and thus the intersection with chain C is transversal. Now
Corollary 4.19 implies that after reaching point r, ray ρp(q) can leave region B – and
thus region B – only by intersecting edge e at some point e′ (more precisely, the
segment re′ cannot contain any point of Q); otherwise a point of Q between a0 and ai
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or between b0 and bj were visible from P . Hence no point r ∈ B \ C belongs to the
visibility area VA(P,Q) between P and Q.

The final step in the proof of Lemma 4.15 is to show that a point r ∈ A visible
from P and from Q belongs to VA(P,Q). By Lemma 4.13, this holds for the points in
A \A, and, trivially, this also holds for the points r ∈ P ∪Q. So in the following we
assume r ∈ A \ (P ∪Q), where A = A ∩R. Point r must lie, in R, either to the right
of the oriented shortest path πai,p′r or to the left of the oriented shortest path πbj ,p′l ,
compare Figure 4.32. Suppose w. l. o. g. that r lies to the right of πai,p′r = (ai, pa, . . . , p

′
r)
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Figure 4.32: Point r ∈ A visible from P and from Q belongs to VA(P,Q).

(analogous arguments hold if r lies to the left of πbj ,p′l = (bj , pb, . . . , p
′
l)). If r lies inside

the region to the right of a segment of πpa,p′r (which is of type PP ) – compare point r1

in Figure 4.32 – we obtain from Lemma 4.10, 2b (using A = P and B ∪D = Q), that r
belongs to VA(P,Q). Otherwise, r lies in the region to the right of segment aipa. As
in the proof of Lemma 4.13, we consider the shortest path πai,r in R and denote by
v ∈ P ∪Q the inner vertex of πai,r adjacent to r, see Figure 4.32. Ray ρv(r) must reach
a point p on the boundary of Rt, behind r. Since the shortest path πai,p′l is a boundary
subchain of R that is bent outwards, and πai,pa = aipa is a line segment, it follows
that if r ∈ πai,p′l or r ∈ πaipa holds, then p lies on P between p′l and pa. Otherwise, if
r /∈ πai,p′l ∪ πaipa , then the oriented shortest path πai,p cannot intersect πai,p′l or πaipa
after reaching r. Hence, p also lies on P between p′l and pa. Now if v ∈ Q holds, then r
belongs to VA(P,Q) since r lies on segment vp of type QP . Otherwise, if v ∈ P , then
by Lemma 4.10, 2b, point r also belongs to VA(P,Q), because r is visible from Q. We
have shown that if r ∈ A lies to the right of πai,p′r and is visible from P and Q, then r
belongs to the visibility area between P and Q. Analogous arguments hold for the
points of R to the left of πbj ,p′l .

We have shown how to compute, in linear time O(|P |+ |Q|), a polygonal chain C
that divides Rt in two subpolygons A and B, such that no point in B \ C belongs to
VA(P,Q) and every point in A visible from P and from Q belongs to VA(P,Q). This
completes the proof of the lemma.

We recapitulate that in order to compute the visibility area between P and Q
we first divide polygon R into the two polygons Rb and Rt. If edge e belongs to the
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boundary of Rb, or if e ∈ ∂Rt and no point of P is, in Rt, visible from edge e, we
use the algorithm presented in Section 4.5.2 to compute VA(P,Q) = VA(P, Pe). It
remains to consider the case where e ∈ ∂Rt and some point of P is visible from e.
After computing the visibility area between P and Q in Rb, we compute the visibility
polygon of Q and of P in Rt. Now we compute chain C, see Lemma 4.15, and cut
off from Rt the region B, keeping C as new boundary chain of Rt. Then we cut off
all remaining points of Rt not visible from P or Q, using the visibility polygons of P
and Q computed previously. Note that every point of chain C lies on a segment of
type PQ, so C does not intersect with the boundary of the visibility polygon of P
or Q in Rt – hence we can cut off region B and the points not visible from P and Q
independently. In total, our algorithm runs in linear time O(|P |+ |Q|). The correctness
of the algorithm follows from Lemma 4.15.

Summary

In sections 4.5.1, 4.5.2 and 4.5.3 we have shown how to compute the visibility area
between two closed polygonal chains P and Q in linear time O(|P | + |Q|). Also,
deciding which of the given algorithms has to be used is done in linear time. This
completes the proof of Theorem 4.12.

An open polygonal chain C = (c1, . . . , cn) can be treated as a closed polygonal
chain C ′ = (c1, c2, . . . , cn, . . . , c2, c1). The visibility of C and C ′ is identical and we
can modify our algorithm to also accept C ′ as input.

Corollary 4.20. The visibility area between two disjoint open or closed polygonal
chains P and Q in the plane can be computed in optimal time O(|P |+ |Q|).

4.5.4 The Visibility Area in Presence of an Obstacle

Shanni Cai [12] showed how to extend the previous algorithms to compute the visibility
area between two simple polygons P and Q whose boundaries are disjoint, in the
presence of an additional obstacle polygon H. Polygon H is also simple, and its
boundary is disjoint from the boundaries of polygons P and Q. The different cases
considered are that either all three polygons are disjoint, or, any two of the three
polygons are contained in the third one.

Theorem 4.21 (Cai [12]). Given three simple polygons P,Q and H whose boundaries
are pairwise disjoint, the visibility area VA(P,Q) between P and Q in presence of
obstacle polygon H can be computed in optimal linear time O(|P |+ |Q|+ |H|).
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Chapter 5

Tolerant Algorithms

Assume we are interested in solving a computational task, e.g., sorting n numbers,
and we only have access to an unreliable primitive operation, for example, comparison
between two numbers. Suppose that each primitive operation fails with probability
at most p and that repeating it is not helpful, as it will result in the same outcome.
Can we still approximately solve our task with probability 1− f(p) for a function f
that goes to 0 as p goes to 0? While previous work studied sorting in this model, we
believe this model is also relevant for other problems. We

• find the maximum of n numbers in O(n) time,

• solve 2D linear programming in O(n log n) time,

• approximately sort n numbers in O(n2) time such that each number’s position
deviates from its true rank by at most O(log n) positions,

• find an element in a sorted array in O(log n log log n) time.

Our sorting result can be seen as an alternative to a previous result of Braverman
and Mossel [10] who employed the same model. While we do not construct the
maximum likelihood permutation, we achieve similar accuracy with a substantially
faster running time. An extended abstract of this paper has appeared at ESA’11 [47].

5.1 Introduction

Many algorithms can be designed in such a way that the input data is accessed only
by means of certain primitive queries. For example, in comparison-based sorting an
algorithm might specify two key indices, i and j, and check whether the relation qi < qj
holds. Except for such yes/no replies, no other type of information on the key set
{q1, . . . , qn} is necessary, or this information might not even be available. Similarly, in
solving a linear program, given a point and a line, the primitive may return which side
of the line the point is on.

91
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Given an oracle that can answer all possible primitive queries on the input data,
one can develop an algorithm without worrying about the input data type or numerical
issues. This allows for more modular and platform-independent algorithm design. A
natural question is what happens if the oracle errs?

There are several ways to model such errors. One natural model is that each
time the oracle is queried it returns the wrong answer with a small error probability
bounded by some p > 0, independent of past queries. In this case, repeating a query
can be used to boost the success probability at the cost of additional work. In this
paper we shall employ a different model introduced by Braverman and Mossel [10] in
the context of sorting. The oracle errs on each query independently with probability at
most p, but now each possible primitive query on the input is answered by the oracle
only once.

There are good reasons to study this model. First, it may not be possible to
repeat a query, as observed in [10]. For example, in ranking soccer clubs, or even
just determining the best soccer club, the outcome of an individual game may differ
from the “true” ordering of the two teams and it is impossible to repeat this game.
A different example is ranking items by experts [10], which provides an inherently
noisy view of the “true” ranking. Another reason to study this model is that the
oracle may err on a particular query due to a technical problem whose consequences
are deterministic, so that we would obtain the same wrong answer in any repetition.
This is common in computational geometry algorithms due to floating point errors.
Geometric algorithms based on primitive queries that additionally work with faulty
primitives are more modular and tolerant to errors.

In this model, two natural questions arise: (1) Given the answers to all possible
primitive queries, what is the best possible solution one can find if the computational
time is unlimited? (2) How good of a solution can be found efficiently, i. e., by using
only a subset of the set of oracle answers?

Previous work. Braverman and Mossel [10] consider the sorting problem and
provide the following answers to the questions above. With high probability, they
construct the maximum likelihood permutation σ with respect to the set of oracle
answers. They prove that permutation σ does not place any key more than O(log n)
positions away from its true position. This fact allows the computation of σ using
only O(n log n) key comparisons. The algorithm employs dynamic programming
and has running time in O(n3+24c3) for some c3 > 0 that depends on the error
probability p. In a subsequent paper [11] they also consider the problem of constructing
a maximum likelihood permutation π for generating a given set of r randomly generated
permutations {π1, . . . , πr} (cf. [51]), where for any two permutations π and πj the
probability of π generating πj decreases exponentially with the number of inversions
between π and πj .

Feige et al. [30] and Karp and Kleinberg [43] study the model where repeated
queries are always independent. Searching games between questioner and a lying
responder have been extensively studied in the past; see Pelc [57]. In his terminology,
our model allows the responder random lies in response to nonrepetitive comparison
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questions in an adaptive game. Another related model is studied by Blum, Luby and
Rubinfeld [8]. They consider self-testing and self-correction under the assumption that
one is given a program P which computes a function f very quickly but possibly not
very reliably. The difference with our approach is that we need to work with unreliable
primitives.

In a series of papers culminating in work by Finocchi et al. [31], a thorough study
of resilient sorting, searching, and dictionaries in a faulty memory RAM model was
performed. Here, at most δ memory words can be corrupted, while there is a small set
of O(1) memory words that are guaranteed not to be corrupted. The main difference is
that only non-corrupted keys need to be sorted correctly. In contrast to this approach,
we need to ensure that with high probability every key appears near its true position.

Our results. In this paper we assume the same model as in [10]. That is, primitive
queries may fail independently with some probability at most p and noisy answers
to all possible queries are pre-computed and available to the algorithm. While [10]
only considers the problem of sorting, we initiate the study of a much wider class of
problems in this model.

In Section 5.2 we show how to compute, with probability 1− f(p), the maximum
of n elements in O(n) time. Here f(p) is a function independent of n that tends
to 0 as p does. There is only a constant factor overhead in the running time for this
problem in this model. In Section 5.3 we show how obtain running time guarantees for
(randomized or deterministic) tolerant algorithms, at the cost of success probability.
In Section 5.4 a sorting algorithm is discussed. Like the noisy sorting algorithm
presented by Braverman and Mossel [10], ours guarantees that each key is placed
within distance O(log n) of its true position, even though we do not necessarily obtain
the maximum likelihood permutation. Also, we need Θ(n2) rather than O(n log n)
key comparisons. However, our algorithm is faster than the algorithm of [10], as the
running time is O(n2), providing a considerable improvement over the O(n3+24c3)
time of [10]. Finally, in Section 5.5, we briefly discuss the noisy search problem.
By a random walk argument we show that the true position of a search key can be
determined in a correctly sorted list with probability (1 − 2p)2 if all n comparison
queries are made. With O(log n log log n) comparisons, we can find the correct position
with probability 1− f(p). As an application of our max-finding result, we present in
Section 5.6 an O(n log n) time algorithm for linear programming in two dimensions.
Linear programming is a fundamental geometric problem which could suffer from errors
in primitives due, e.g., to floating point errors. Our algorithm is modular, being built
from simple point/line side comparisons, and robust, given that it can tolerate faulty
primitives. It is based on an old technique of Megiddo [52]. We do not know how to
modify more “modern” algorithms for linear programming to fit our error model. The
correctness and running time hold with probability 1− f(p).
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5.2 Finding the Maximum of n Numbers

We are given an unordered set a1, . . . , an of n distinct numbers and we would like to
output the maximum using only comparison queries. Each comparison between input
elements fails independently with probability p. If the same comparison is made twice,
the same answer is given.

Our algorithm LinearMax consists of two phases and each phase consists of
several stages. In each stage the set of input numbers is pruned by a constant fraction
such that with sufficiently high probability the maximum remains in the set. The
pruning is done by sampling a set S and comparing each number outside of S with each
number inside of S. During the first phase the size of the sample set increases with
each stage. The second phase begins once the size of the set of numbers is successfully
reduced to below some critical value. Then, we sample fewer elements in each stage
so that the probability to accidently sample the maximum remains small. We will
say that a stage has an error if either the maximum is removed during the stage or
the input is not pruned by a constant fraction. If during a stage the input set is
not sufficiently pruned, the algorithm stops and outputs “error”. We remark that the
purpose of this stopping rule is to simplify the analysis (this way, we make sure that
any stage is executed only once and allows us directly to sum up error probabilities of
different stages).

If the maximum is removed this will not be detected by the algorithm. In our
analysis we derive a bound for the error probability of each stage and then use a union
bound to bound the overall error probability.

Theorem 5.1. For any constant 1/2 > λ > 0 there exists a constant C = C(λ)
such that for any p ≤ 1/64, algorithm LinearMax succeeds with probability at least
1− C · p 1

2
−λ.

LinearMax(M,p)
1. n = |M |
2. while |M | ≥ max{n1−λ, 100√

p } do
3. j = 0

4. Select i ∈ N such that n ·
(

15
16

)i−1 ≥ |M | > n ·
(

15
16

)i
5. while j < 100 · i · log(1/p) and |M | > n ·

(
15
16

)i do
6. Select a set S of si = 4i elements from M uniformly at random
7. Remove all elements in S from M
8. Compare all elements from S with M
9. Let M be the list of elements larger than at least 3

4 · si elements of S
10. j = j + 1

11. if |M | > n ·
(

15
16

)i then output “error” and exit
12. while |M | ≥ 100√

p do
13. j = 0

14. Select i′ such that
(

16
15

)i′ ≥ |M | > (16
15

)i′−1 and
(
i′ − log16/15

100√
p + 1

)
∈ N
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15. i = i′ − log16/15
100√
p + 1

16. while j < 100 · i · log(1/p) and |M | >
(

16
15

)i′−1 do
17. Select a set S of si = 4i elements from M uniformly at random
18. Remove all elements in S from M
19. Compare all elements from S with M
20. Let M be the list of elements larger than at least 3

4 · si elements of S
21. j = j + 1

22. if |M | >
(

16
15

)i′−1 then output “error” and exit
23. Let currentMax be any element x from M
24. Remove x from M
25. while M 6= ∅
26. Remove an arbitrary element x from M
27. if x > currentMax then currentMax = x
28. return currentMax

Proof of Theorem 5.1. Phase 1 of the algorithm begins at line 2 and Phase 2 begins
at line 12. Each phase consists of several stages, which correspond to the value
of i. We refer to the loops starting in line 5 and in line 16 as to the inner loop
respectively of Phase 1 and of Phase 2. Lines 11 and 22 ensure that in each stage i
of Phase 1 and of Phase 2 the inner loop is entered at most once. Therefore, in
Phase 1 and in Phase 2 the body of the inner loop is, in any given stage i, executed
at most 100 · i · log (1/p) times. More precisely, in Phase 1, i starts with value 1
and increases only while i ≤ log16/15

(
nλ
)

+ 2 and i ≤ log16/15

(
n
√
p

100

)
+ 2 hold. In

Phase 2, i =
⌈
log16/15

( |M |√p
100

)⌉
+ 1 decreases in each stage while i ≥ 1 holds, because(

16
15

)i′ ≥ |M | ≥ 100/
√
p implies i ≥ 1, and i ≤ 0 implies |M | < 100/

√
p.

We first analyse the expected running time of the algorithm. We observe that the
running time is dominated by the number of comparisons the algorithm performs. In
the first phase in stage i in each iteration of the loop the algorithm samples 4i elements
uniformly at random and compares them to at most n ·

(
15
16

)i−1 elements of M . We
will show that the expected number of loop iterations in each stage is O(1). We need
the following lemma.

Lemma 5.2. The probability that in a fixed stage i of Phase 1, after more than 100k

iterations of the body of the inner loop, |M | > n ·
(

15
16

)i holds is at most
(

1
2

)k. Similarly,
the probability that in a fixed stage i of Phase 2, after more than 100k iterations of the
body of the inner loop, |M | >

(
16
15

)i′−1 holds is at most
(

1
2

)k.
Proof. We show that in a single iteration of the loop, with probability at least 1/15
the size of the list shrinks by a factor of 15/16. Let n be the current size of M in
the current stage i. With probability 1/2, S contains at least |S|/2 items in the top
dn/2e ranked elements of M . Call this event E . Suppose E occurs, and let SH be
this subset of items of S. Consider an arbitrary element x ∈ (M \ S) among the least
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bn/2c elements of M . Since we are in Phase 1 or 2, we know that n ≥ 100/
√
p ≥ 100

and so we can say,
bn/2c
n
≥ 50

101
.

In order for x to be included in M after processing line 9 (or line 20, if we are in Phase
2), it must be reported larger than at least half of the elements of SH . The probability
this happens is at most

p|S
H |/2

( |SH |
|SH |/2

)
≤ p|S

H |/22|S
H |

≤
(

1

82

)|SH |/2
2|S

H |

≤
(

1

8

)|SH |
2|S

H |

=

(
1

4

)|SH |

≤ 1

2|S|
,

where we have used that p ≤ 1
64 and |SH | ≥ |S|/2. For each element x among the

least bn/2c ≥ 50n/101 elements of M we have that either x ∈ S and therefore x is
later removed from M , or x stays in M with probability at most 1/2|S|. Let ñ be the
number of elements in M after the loop iteration, i. e., after in line 9 (or in line 20, if
we are in Phase 2) the elements have been removed from M . It follows that

E[ñ] ≤ 1

2
· n+

1

2
·
(

50n

101
· 1

2|S|
+

51n

101

)
≤ 7n

8
,

where the last inequality follows because |S| ≥ 4. We say that an iteration is successful,
if ñ ≤ 15

16 · n. By Markov’s inequality, with probability at least 1/15, an iteration is
successful:

Pr [iteration not successful] = Pr

[
ñ >

15

16
· n
]

≤ E [ñ]
15
16 · n

≤ 7n

8
· 16

15n

=
14

15

If an iteration is successful the algorithm proceeds with a different stage. The
probability that no iteration out of 100k is successful is at most(

14

15

)100k

≤
(

1

2

)k
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In the remainder of this section, by n we denote (again) the number of elements
in M when algorithm LinearMax is invoked, i. e., the number computed in the first
line of the algorithm. From the lemma, it follows immediately that the expected
number of loops in a fixed stage is O(1). By linearity of expectation, the overall
expected running time for Phase 1 is

O

(
n ·

∞∑
i=1

E [iterations in Stage i] · i ·
(

15

16

)i−1
)

= O(n),

since, in stage i, in each iteration at most |M |·4i ≤ n·4i·
(

15
16

)i−1 comparisons are made.

In order to analyse the second phase, let i0 = O(log n) be the maximal value of i,
i. e. the first value of i computed in line 15 when the algorithm enters Phase 2. We
observe that for any stage i ≤ i0 we have

(
16
15

)i ≤ n1−λ. It follows that the expected
running time of the second phase is

O

(
i0∑
i=1

E [iterations in Stage i ] · i ·
(

16

15

)i)
≤ O

(
i0∑
i=1

i · n1−λ
)

= O
(
n1−λ · (log n)2

)
= O

(
n · (log n)2

nλ

)
= O(n).

The running time of the standard maximum search is also O(n). Hence, the overall
expected running time is O(n). We continue by analysing the error probability of the
algorithm. An error happens at any stage i if

(a) the maximum is contained in the sample set S,

(b) the maximum is reported to be smaller than 1
4 · si of the elements of S, or

(c) after the body of an inner loop has been executed 100i · log(1/p) times in this
stage, the algorithm stops (in line 11 or 22) with output “error”.

We start by analysing (a) during the first phase. The error probability at each
loop iteration is |S|/|M |. The number of items in M in stage i of Phase 1 is at least
n ·
(

15
16

)i ≥ n1−λ. We also have i = O(log n). Hence, |S|/|M | ≤ O(log n)/n1−λ and
summing up over the at most O(i log(1/p)) ≤ O(log2 n) loop iterations, we obtain
that the overall error probability of item (a) in Phase 1 is at most O(log3 n)/n1−λ ≤
O(1)/n1−2λ. Since we are in Phase 1, n ≥ 100/

√
p holds which implies n1−2λ ≥

(100/p1/2)1−2λ ≥ 1/(p1/2−λ). Altogether, we obtain that the overall error probability
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of item (a) in Phase 1 is at most C
5 · p1/2−λ for a sufficiently large constant C > 0. In

the second phase, the error probability of item (a) is at most

∞∑
i=1

4 · i(
16
15

)i′−1
=

∞∑
i=1

4 · i(
16
15

)i+log16/15
100√

p
−2

=
∞∑
i=1

4 · i
100√
p · 15

16 ·
(

16
15

)i−1

=
64
√
p

1500
·
∞∑
i=1

i ·
(

15

16

)i−1

≤ C

5
· √p,

for a sufficiently large constant C > 0, using the definition i = i′− log16/15
100√
p + 1 (see

line 15 of the algorithm).
We continue by analysing (b). Here, an error occurs in stage i if at least 1

4 · si
comparisons fail. By the following lemma, this probability is small.

Lemma 5.3. Let 1 ≥ p ≥ 0 be the failure probability of a comparison. Let k > 0 be a
multiple of 4. The probability that at least k/4 out of k comparisons fail is at most
(4p)k/4.

Proof. The probability for at least k/4 failures is at most

pk/4 ·
(
k

k/4

)
.

Plugging in (
4n

n

)
=

n−1∏
j=0

4n− j
n− j =

n−1∏
j=0

(
3n

n− j + 1

)

≤
n−1∏
j=0

(
3n

n
+ 1

)
= 4n

using n = k/4 we obtain

pk/4 ·
(
k

k/4

)
≤ pk/4 · 4k/4 = (4p)k/4 .

Since, p ≤ 1/64, it follows by a union bound that for C > 0 sufficiently large, the
probability of failure in Phase 1 is at most

∑O(logn)
i=1 100i · log(1/p) · (4p)i ≤ C

10 ·
√
p ,

because in stage i the maximum is compared with k = 4i elements, up to 100i · log(1/p)



5.2. FINDING THE MAXIMUM OF N NUMBERS 99

times. The same estimate holds for the error probability of item (b) in Phase 2.
Therefore, the total error probability for item (b) is bounded by C

5 ·
√
p. Next, we

analyse (c). By Lemma 5.2 and since p ≤ 1/64, we have that in both Phase 1 and
Phase 2 respectively the error probability for this item is bounded by

∞∑
i=1

(
1

2

)i·log 1
p

=
∞∑
i=1

pi = p
∞∑
i=0

pi ≤ C

10
· √p ,

for C > 0 a sufficiently large constant. Finally, we consider the error probability
of the standard maximum search. A maximum search over a set of n items uses
n − 1 comparisons. If n ≤ 100/

√
p then the expected number of errors is at most

100p/
√
p = 100

√
p. Let X be the random variable for the number of errors. Since

the number of errors is integral, by Markov’s inequality we get that the probability of
error is

Pr [at least one error occurs] ≤ Pr

[
X ≥ 1

100
√
p
·E [X]

]
≤ 100

√
p ≤ C

5
· √p

for a sufficiently large constant C. Summing up all errors yields an overall error
probability of at most C

5 · p
1
2
−λ + 4C

5 ·
√
p ≤ C · p 1

2
−λ.
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5.3 Expected Running Time vs. Worst-Case Running Time

Given that primitive operations fail with a certain probability, we observe that the
runtime of even a deterministic algorithm depends on the randomness due to the
probability of error for each primitive operation. However, sometimes we are not
only interested in tolerant algorithms with good expected running time, but also in
algorithms with the same asymptotic running time in the worst case. We now show
how to construct such algorithms at the cost of success probability. Note that the
construction works for deterministic and randomized algorithms alike. At the end of
this section, we will show how to construct a modified tolerant algorithm LinearMax∗

which finds the maximum of n given numbers, and whose runtime is O(n) in the worst
case.

Let Alg denote a tolerant algorithm that solves a computational task. That is,
Alg computes the correct result with probability ≥ 1− f(n, p) where p is an upper
bound on the error probability for the primitive operations used by Alg, and n denotes
the size of the input. Moreover, function f goes to 0 as p goes to 0 and / or n goes
to ∞. If T (n) is (an upper bound on) the expected running time of Alg, then the
following holds.

Theorem 5.4. Given a tolerant algorithm Alg that computes the correct result with
probability 1 − f(n, p) and a positive function g(n, p), we can construct a tolerant
algorithm Alg∗ that solves the same computational task as algorithm Alg, with
probability 1− f(n, p)− g(n, p). The worst-case running time of Alg∗ is T (n)/g(n, p).

Proof. We modify algorithm Alg to obtain Alg∗ as follows. Algorithm Alg∗ performs
the same calculations as algorithm Alg. If the algorithm has not terminated after
T (n)/g(n, p) time, the algorithm terminates with output “error” (or the algorithm
returns the currently most promising solution). Since the claimed runtime bound
obviously holds, it remains to prove that algorithm Alg∗ computes the correct result
with probability 1−f(n, p)−g(n, p). For the analysis, we run the unmodified algorithm
Alg on the same input as Alg∗ and consider the following two events.

• E1 = Alg does not compute the correct result.

• E2 = Alg needs more than T (n)/g(n, p) computation time.

By assumption, we have Pr [E1] ≤ f(n, p). If we denote the running time of algorithm
Alg with T , then by Markov’s inequality we have

Pr [E2] ≤ Pr [T ≥ T (n)/g(n, p)]

≤ Pr [T ≥ E [T ] /g(n, p)]

≤ E [T ]

E [T ] /g(n, p)

= g(n, p).

The theorem now follows by a union bound.
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Corollary 5.5. Given a tolerant algorithm Alg that computes the correct result with
probability 1 − f(n, p), where for any constant p > 0 the function f(·, p) is bounded
from below by some positive constant cp, there is a tolerant algorithm Alg∗ that solves
the same computational task as algorithm Alg, with probability 1 − 2f(n, p). The
worst-case running time of Alg∗ is O(T (n)).

Proof. We construct ALG∗ according to Theorem 5.4, using g(n, p) := f(n, p). By
construction, the correctness probability of Alg∗ is at least 1 − f(n, p) − g(n, p) =
1− 2f(n, p). Moreover, since p is constant, we have by assumption that f(n, p) ≥ cp
holds. Therefore the running time of Alg∗ is at most T (n)/g(n, p) = T (n)/f(n, p) ≤
T (n)/cp = O(T (n)).

We now give a modification of our LinearMax algorithm, with worst-case running
time O(n) (where again n = |M | is the size of the input). Note that "line x" always
refers to line x of the algorithm LinearMax.

LinearMax∗(M,p)

• Run algorithm LinearMax(M,p).

• Stop the execution of the algorithm after T (n)/(C · p 1
2
−λ) time, where C = C(λ)

is the same constant as in Theorem 5.1, and T (n) = O(n) is the expected running
time of algorithm LinearMax.
– If the algorithm has been stopped while processing line 8 or 19, jump

immediately to line 23.

– Replace line 8 and line 19 by an unconditional jump to line 23.
• Continue executing the LinearMax algorithm, but with the above modification

to lines 8 and 19.

Our stopping rule guarantees that the running time of algorithm LinearMax∗ is
O(n)/(C · p 1

2
−λ) + O(n) = O(n). Using the same arguments as in the proofs of

Theorem 5.4 and Corollary 5.5, we have the following.

Corollary 5.6. Algorithm LinearMax∗(M,p) succeeds with probability at least
1− C · p 1

2
−λ, for any p ≤ 1/64 and 1/2 > λ > 0 where C = 2C(λ) is a large

enough constant, in worst-case time O(|M |) = O(n).

5.4 Sorting

In the following section we are given a set S of n distinct keys and the comparison
relation <E with errors. We present an algorithm SortWithBuckets that computes
an output sequence such that the position of every key in this sequence differs from
its rank by at most an additive error of O(log n). In the following, we use rank(x,R)
to refer to the (true) rank of input key x within R ⊆ S, i. e., 1 + |{y ∈ R : y < x}|.
We also use rankE(x,R) to refer to the virtual rank of x with respect to a set R, i. e.,
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1 + |{y ∈ R : y <E x}|. Note that there may be more than one key having the same
virtual rank.

The algorithm. In the following, we will assume that n is a power of 2. If this is
not the case, we can add additional special items which will be assumed to be larger
than any input key and run our algorithm on the modified input. Here we may assume
no errors in the comparisons as the algorithm can keep track of these items. The
algorithm will partition the set {1, . . . , n} into buckets each corresponding to a set
of 2i consecutive numbers for certain i. We call this set the associated range of the
bucket. At the beginning we will assume that there is a single bucket with associated
range {1, .., n}. In the next step, we will subdivide this bucket into two buckets,
with associated ranges {1, . . . , n/2} and {n/2 + 1, . . . , n}, respectively. Then the two
resulting buckets are further subdivided into four buckets, and so on. The algorithm
stops, if the associated ranges contain O(log n) numbers. Ideally, we would like our
algorithm to maintain the invariant that each bucket contains all input numbers whose
ranks are in its associated range, e.g., the bucket corresponding to numbers {1, . . . , 2i}
is supposed to contain the 2i smallest input numbers. Due to the comparison errors,
the algorithm cannot exactly maintain this invariant. However, we can almost maintain
it in the sense that an item with rank k is either in the bucket whose associated range
contains k or it is in one of the neighbouring buckets.

This is done as follows. Let us consider a set of buckets Bj with associated ranges
of 2i numbers such that bucket Bj has associated range{(j − 1)2i + 1, . . . , j2i}. Now
assume that the input numbers have been inserted into these buckets in such a way
that our relaxed invariant is satisfied. For each bucket Bj let us use Sj to denote the set
of input keys inserted into Bj . Now we would like to refine our buckets, i. e., insert the
input numbers in buckets B′j with associated ranges {(j − 1)2i−1 + 1, . . . , j2i−1}. This
is simply done by inserting an item x that is previously in bucket Bj into bucket B′r,
where

r =


rankE

(
x,
⋃
j−2≤k≤j+2 Sk

)
+
∣∣∣⋃k<j−2 Sk

∣∣∣
2i−1

 .
Thus, the algorithm computes the cardinality of the buckets up to Bj−3 and adds to it
the virtual rank of x with respect to buckets Bj−2, . . . , Bj+2. The idea behind this
approach is that rank(x, S) can be written as

∣∣⋃
k<j−3 Sk

∣∣+ rank(x,
⋃
j−2≤k≤j+2 Sk)

since, by our relaxed invariant, the keys in buckets 1, . . . , j − 3 are smaller than x
and the keys in j + 3, . . . are larger than x. Now, since we do not have access to
rank(x,

⋃
j−2≤k≤j+2 Sj) we approximate it by rankE(x,

⋃
j−2≤k≤j+2 Sj). Since the

rank involves fewer elements when the ranges of the buckets decrease, this estimate
becomes more and more accurate.

Analysis. Thus, it remains to prove that the relaxed invariant is maintained. The
difficulty in analysing this (and other) algorithms is that there are many dependencies
between different stages of the algorithm. In our case, the bucket of an element x
is highly dependent on the randomness of earlier iterations. Since analysing such
algorithmic processes is often close to impossible, we use a different approach. We first
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show that certain properties of the comparison relation <E hold for certain sets of
elements with high probability. Then we show that these properties already suffice to
prove that the algorithm sorts with additive error O(log n).

Lemma 5.7. Let p ≤ 1/20. Let R ⊆ S be a set of |R| = 9·2i ≥ 100000 log n keys and let
x ∈ R. Let X = |{y ∈ R : x < y and y <E x}|+ |{y ∈ R : x > y and y >E x}| be the
number of false comparisons of x with elements from R. Then Pr

[
X ≥ 2i−1

]
≤ n−29 .

Proof. For simplicity of calculations, we allow an additional ’dummy error’ correspond-
ing to a self-comparison of x. Then we have E [X] = p · |R|. We will assume that
p = 1/20 as this maximizes the expected number of errors. Hence, using X =

∑
Xi

with Xi being independent 0− 1−random variables with Pr [Xi = 1] = p we can apply
Chernoff bounds to obtain

Pr
[
X ≥ 2i−1

]
= Pr

[
X ≥ E [X]

18p

]
= Pr

[
X ≥

(
1 +

1

9

)
·E [X]

]
≤ e−

1
3
·( 1

9)
2·E[X]

= e−
1

243
·E[X] .

The correctness of the lemma follows using

e−
1

243
·E[X] = e−

|R|
4860 ≤ e− 100000

4860
·logn = e−

100000
4860 ln 2

·lnn ≤ n−29.

Using the same arguments as in the proof of Lemma 5.7, we obtain the following.

Lemma 5.8. Let p ≤ 1/20, S be a set of |S| ≥ 100000 log n keys and x ∈ S. Let X be
the number of false comparisons of x with elements from S. Then Pr [X ≥ |S|/16] ≤
n−29 .

Proof. Again, we allow an additional ’dummy error’ corresponding to a self-comparison
of x, and we assume p = 1/20 as this maximizes the number of errors. As in the proof
of Lemma 5.7, using X =

∑
Xi with Xi being independent 0− 1−random variables

with Pr [Xi = 1] = p, we can apply Chernoff bounds to obtain

Pr

[
X ≥ |S|

16

]
= Pr

[
X ≥ E [X]

16p

]
≤ Pr

[
X ≥ E [X]

18p

]
≤ e−

1
243
·E[X] .

The correctness of the lemma follows using

e−
1

243
·E[X] = e−

|S|
4860 ≤ e− 100000

4860
·logn = e−

100000
4860 ln 2

·lnn ≤ n−29.
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Corollary 5.9. For log(100000 log n) ≤ i ≤ log n and 1 ≤ j ≤ max {n/2i − 8, 1} let
Sij = {x ∈ S : (j − 1) · 2i + 1 ≤ rank(x) ≤ (j + 8) · 2i}. With probability at least
1−1/n26 we have that every x ∈ Sij has less than 2i−1 comparison errors with elements
from Sij.

Proof. For all values of i where log(100000 log n) ≤ i ≤ log n − 4 we can apply
Lemma 5.7 for each Sij since the corresponding number of buckets is n/2i ≥ 9, and
therefore |Sij | = 9 · 2i ≥ 100000 log n holds for any value of j, where 1 ≤ j ≤ n/2i − 8.

For any value of i ∈ {log (n)− 3, . . . , log (n)}, we have j = 1 and Sij = S, so we
can apply Lemma 5.8 to bound the probability that some key x ∈ S has at least n

16

comparison errors with elements in S. Observe that n
16 = 2log (n)−4 ≤ 2i−1 holds for

any value of i ∈ {log (n)− 3, . . . , log (n)}.
The number of choices for indices i, j and x ∈ Sij is bounded by log n ·n ·n. Hence

by a union bound, the probability that there are at least 2i−1 false comparisons with
any element x ∈ Sij in any of the sets Sij is at most n2 log (n)/n29 ≤ n−26.

We now claim that if the comparison relation <E satisfies Corollary 5.9 then our
algorithm computes a sequence such that any element deviates from its true rank by
at most O(log n). In order to prove this claim, let us assume that our relaxed invariant
is maintained for a set of buckets Bj with associated ranges of size 2i ≥ 100000 log n.
Let x be an element and j∗ be the bucket whose associated range contains x. By our
relaxed invariant, x is either in bucket Bj∗−1, Bj∗ or Bj∗+1. Hence, to sort x into the
next finer bucket, the algorithm inspects (a subset of) buckets Bj∗−3, . . . , Bj∗+3. By
our relaxed invariant, these buckets only contain elements x with rank(x) ∈ Si` for
some value 1 ≤ ` ≤ max {n/2i − 8, 1}. In general we have ` = j∗ − 4. One exception
is the case n/2i − 8 ≤ 1 where we use ` = 1 (for the analysis, not in the algorithm).
The other exception is where n/2i − 8 > 1 and (1) j∗ − 4 < 1 or (2) j∗ − 4 > n/2i − 8.
Then, we use (1) ` = 1 or (2) ` = n/2i − 8. Now, in order to sort x into a finer
bucket, the algorithm compares x with a subset of elements from Si`. Therefore, the
number of errors in this comparison is certainly bounded by the number of errors
within Si`, which is less than 2i−1. Since the next finer buckets have associated ranges
of size 2i−1 and the virtual rank of x differs from its true rank at most by the number
of comparison errors, this implies that our relaxed invariant will be maintained. We
summarize our results in the following theorem.

Theorem 5.10. Let p ≤ 1/20. There is a tolerant algorithm that given an input set S
of n numbers computes in O(n2) time and with probability at least 1− 1/n26 an output
sequence such that the position of every element in this sequence deviates from its rank
in S by at most O(log n).

5.5 Searching

In this section we assume that we are given a sorted sequence of keys a1 < a2 < . . . <
an < an+1 =∞, and a query key q. We know that the sorting is accurate, and that q
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is different from all ai. Our task is to determine rank(q), the smallest index i such
that q < ai holds. A noisy oracle provides us with a table containing answers q <E ai
or q >E ai to all possible key comparisons between q and the numbers ai. Each of
them is wrong independently with probability p < 1/2.

Let conf(j) denote the number of table entries that would be in conflict with
rank(q) = j. Our first algorithm, Search, takes O(n) time to read the whole table
and to output a position j that minimizes conf(j); ties are broken arbitrarily. By
the same argument as in Braverman and Mossel [10], Search reports a maximum
likelihood position for q, given the answer table. As opposed to the sorting problem,
we can prove a lower bound to the probability that Search correctly computes the
rank of q.

Theorem 5.11. Search reports rank(q) with probability at least (1− 2p)2.

Proof. We want to argue that positions j to the left or to the right of rank(q) are less
likely to get reported because they have higher conflict numbers. By definition,

conf(j) =

{
conf(j − 1) + 1, if q <E aj−1

conf(j − 1)− 1, if q >E aj−1

holds, as can be quickly verified. Let us first consider the indices j = rank(q), . . . , n
to the right of rank(q). The oracle’s process of producing these answers, for indices j
increasing from rank(q) to n, corresponds to a random walk of the value of conf(j)
through the integers, starting from conf(rank(q)). With probability 1− p, the value of
conf(j) will increase by 1 (since q < aj holds, by assumption), and with probability p
decrease. Using Lemma 5.12 with values r = conf(rank(q)) + 1, m = 1 and s = n we
conclude that with probability ≥ (1− p) · (1− p

1−p) = 1− 2p, conf(j) will increase in
the first step and never sink below this value again. Thus, with probability ≥ 1− 2p,
all j to the right of rank(q) will have values conf(j) higher than conf(rank(q)) and,
therefore, not get reported. A symmetric claim holds for the indices j to the left of
rank(q). Consequently, Search does with probability ≥ (1− 2p)2 report rank(q).

We consider a random walk through the integers with starting position conf(0) = r.
For any integer t > 0, if conf(t) denotes the state of the random walk at time t, we
have

conf(t) :=

{
conf(t− 1) + 1 with probability 1− p
conf(t− 1)− 1 with probability p

where p < 1/2 is the probability that the oracle gives a wrong answer.

Lemma 5.12. Let r denote the current state of a random walk, as defined above.
Then, given any integer values m ≥ 1, s ≥ 0, the probability that the random walk will
reach state r −m within the next s steps is at most

(
p

1−p

)m
.

Proof. Let P (s,m) denote the probability that the the random walk, with current
state r, reaches state r −m within the next s steps. We show by induction over s
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that P (s,m) is at most
(

p
1−p

)m
.

Base case s = 0:

P (0,m) = 0 ≤
(

p

1− p

)m
Induction step s→ s+ 1:

There are two cases, m = 1 and m > 1:

1. m = 1

P (s+ 1, 1) = p · P (s, 0) + (1− p) · P (s, 2)

= p · 1 + (1− p) · P (s, 2)

≤ p+ (1− p) ·
(

p

1− p

)2

=

(
p

1− p

)1

=

(
p

1− p

)m
2. m > 1

P (s+ 1,m) = p · P (s,m− 1) + (1− p) · P (s,m+ 1)

≤ p ·
(

p

1− p

)m−1

+ (1− p) ·
(

p

1− p

)m+1

=

(
p

1− p

)m
This completes the proof of the lemma.

Theorem 5.11 casts some light on what can be achieved utilizing all information
available. If sequence a1, . . . , an is given as a linear list, the O(n) time algorithm
Search is of practical interest, too. For a sorted sequence stored in an array, we have
a more efficient tolerant binary search algorithm based on Search.

Our algorithm is a tolerant version of binary search. We pick a block of pivot
elements uniformly at random from the “middle” elements of the current array and
compare q with this block. If q is smaller than the majority of the elements, we
continue our search to the left, if q is larger than the majority of the elements, we
continue on the right. After the block elements are used for key comparisons, they
are removed from the set of elements considered. The algorithm requires a block size
parameter t whose value will be determined below.
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BinarySearch(A, l, r, q)
1. if r − l ≤ t/p then return l − 1 plus the result of algorithm Search

on the sequence al, . . . , ar
2. pick k ∈ {l + d(r − l)/4e, . . . , l + b3

4(r − l)c} uniformly at random
3. Compare q with keys ak, ak+1, ..., ak+t

4. if the majority of the comparisons says q <E aj then return
BinarySearch(A,l,k-1,q)

5. else return BinarySearch(A,k+t+1,r,q)

For the analysis we use the fact that r − l shrinks by a factor of at least 3/4 at
every recursive call of the algorithm. Remember that p < 1/4 and k ≤ l+ 3

4(r− l) hold.
Together with t < (r− l)p (which holds if the algorithm executes lines 2-5), this implies
k + t < r, so in each iteration t items are compared with q. The algorithm cannot
compute the rank of q if in line 2 some value k is chosen where ak < q < ak+t holds, i. e.,
where rank(q) ∈ {k + 1, . . . , k + t}. The probability that rank(q) ∈ {k + 1, . . . , k + t}
is at most

t

#choices for k
=

t

l +
⌊

3
4(r − l)

⌋
−
(
l +
⌈

1
4(r − l)

⌉)
+ 1

=
t⌊

3
4(r − l)

⌋
−
⌈

1
4(r − l)

⌉
+ 1

≤ t
3
4(r − l)− 1− 1

4(r − l) + 1

=
2t

r − l
Now assume that rank(q) /∈ {k+1, . . . , k+t}. Then either the whole block ak, . . . , ak+t

is to the left of q or the whole block is to the right of q. An upper bound for the
probability that the majority of the elements used for comparison is faulty is given in
the next lemma. It also contains the definition of block size t. We use n to denote the
number of elements when BinarySearch is invoked for the first time.

Lemma 5.13. Let Xj be independent 0− 1−random variables with Pr [Xj = 1] = p

and let t ≥ 3(ln(logn)−ln p)

p·min{ 1
2p
−1,( 1

2p
−1)2} . Then Pr

[∑t
j=1Xj ≥ t

2

]
≤ p/ log n.

Proof. By a Chernoff bound we obtain

Pr

 t∑
j=1

Xj ≥ t/2

 = Pr

 t∑
j=1

Xj ≥
(

1 +

(
1

2p
− 1

))
· pt

 ≤ e− 1
3
·min

{
1
2p
−1,( 1

2p
−1)2

}
·pt

as E
[∑t

j=1Xj

]
= pt. Setting t ≥ 3(ln(logn)−ln p)

p·min
{

1
2p
−1,( 1

2p
−1)2

} proves the lemma.

In the following, we will assume that t satisfies the requirement of Lemma 5.13.
It remains to find an upper bound for the error probability. We distinguish between
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errors that are caused by the fact that the majority of the comparisons are faulty and
errors caused by the fact that during one recursion of the algorithm some value for k
is chosen such that rank(q) ∈ {k + 1, . . . , k + t} holds. Since the algorithm recurs at
most log 4

3
n times, by the previous lemma the error caused by false comparisons is at

most log 4
3
n · p

logn = O(p). The total error caused by a bad choice for the value of k
during any recursion of the algorithm is at most

log 4
3
n−log 4

3
(t/p)∑

i=0

8

3
· t
n
·
(

4

3

)i
=

8

3
· t
n
·

log 4
3

np
t∑

i=0

(
4

3

)i
≤ 8

3
· t
n
· 3 ·

(
4

3

)log 4
3

np
t

+1

= O(p).

This is due to the fact that in every recursion the value of r − l shrinks by a factor
of at least 3/4. Hence for any i ∈

{
0, 1, . . . , log 4

3
n− log 4

3
(t/p)

}
there is at most one

invocation of BinarySearch(A, l, r, q) where n ·
(

3
4

)i ≥ r − l > n ·
(

3
4

)i+1, and the
error probability for this invocation is at most 2t

n ·
(

4
3

)i+1
= 8

3 · tn ·
(

4
3

)i.
Finally, the error probability in line 1 of algorithm BinarySearch is also in O(p),

by Theorem 5.11. Hence, the algorithm returns rank(q) with probability 1− f(p) for
some function f(p) that goes to 0 as p goes to 0.

Theorem 5.14. Let p ∈ (0, 1/4) be an upper bound on the error probability of com-
parisons and let a1 < a2 < . . . < an be a sequence of n numbers. Let the block

size parameter be t =

⌈
3(ln(logn)−ln p)

p·min{ 1
2p
−1,( 1

2p
−1)2}

⌉
. Given an arbitrary query key q 6= aj,

1 ≤ j ≤ n, Algorithm BinarySearch reports the rank of an element q with respect to
a1 < a2 < . . . < an in time O(log n · log logn) (p is assumed to be constant) and with
probability at least 1− f(p) for some function f(p) that goes to 0 as p goes to 0.

5.6 Linear Programming in 2 Dimensions

As an application of our LinearMax algorithm, we consider the linear programming
problem in two dimensions, namely, the problem of minimizing a linear objective
function subject to a family F of half-plane constraints. We assume our problem is in
standard form [14], namely that the problem is to find the lowest (finite) point in the
non-empty feasible region, defined by the intersection of a non-degenerate family F
of n half-planes. Define a floor to be a half-plane including all points in the plane
above a line, whereas a ceiling is a half-plane including all points in the plane below a
line. We say a half-plane is vertical if the line defining it is vertical. In the standard
setting, we can assume that vertical half-planes have been preprocessed and replaced
with the constraint L ≤ x ≤ R for reals L and R, and that no two ceilings and no two
floors are parallel. The half-planes are given in a sorted list according to their slope.
Our algorithm is based on several basic geometric primitives which can make mistakes.

Error Model: We are given a few black boxes that perform side comparisons.
The first box is SideComparator, which is given four lines `A, `B, `C , and `D,

and decides if the the intersection of `A and `B is to the left of the intersection of `C
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and `D. This description can be simplified to the following: “given two points, is one
to the left of the other”? (however, since the input does not contain explicit points, we
have chosen to describe the test in this more abstract way).

The second box is VerticalComparator, which is given four lines `A, `B, `C ,
and `D, and returns the line in the set {`C , `D} whose signed vertical distance is larger
from the intersection point of `A and `B. This description can be simplified to the
following: “given a point and two lines, which line is closer in vertical distance”? (again,
since the input does not contain explicit points, we choose to describe the test in this
more abstract way).

More precisely, if the intersection of `A and `B is the point (α, β), and we draw the
line x = α, then we look at the signed distance from (α, β) to the intersection point
of `C and x = α as well as the intersection point of `D and x = α. Here, by signed,
we mean that if (α, β) is above one of these intersection points, then its distance to
that point is negative, otherwise it is non-negative. If the signed distances are the
same, i. e., the lines `C and `D meet x = α at the same point, VerticalComparator
reports this.

Such primitives are basic, and play an essential role in geometric algorithms.
We assume the primitives have a small error probability p of failing. In the case of

SideComparator, the box reports the opposite side with probability p. In the case of
VerticalComparator, the box reports the further line (in signed vertical distance),
or fails to detect if two lines have the same signed distance, with probability p. Multiple
queries to the tester give the same answer.

The output of our algorithm is not given explicitly, but rather is specified as the
intersection of two half-planes in F (since this is all that can be determined given
abstract access to the input lines).

Theorem 5.15. There is an algorithm LP that with probability 1 − f(p) termi-
nates in O(n log n) time and solves the linear programming problem in 2 dimensions,
where f(p) approaches 0 as p approaches 0.

We now review Megiddo’s algorithm and then describe our main new ideas.
Megiddo’s Algorithm: Megiddo’s algorithm defines: g(x) = max{aix + bi |

y ≥ aix+ bi is a floor}, and h(x) = min{aix+ bi | y ≤ aix+ bi is a ceiling}. A point
p = (x, y) is feasible iff g(x) ≤ h(x), that is, if the intersection points of all floors with
a vertical line ` through p lie below the intersection points of all ceilings with `. The
algorithm has O(log n) stages. The number of remaining constraints in F in the i-th
stage is at most (7/8)i · n. If at any time there is only a single floor g in F , then the
algorithm outputs the lowest point on g that is feasible. Otherwise it arbitrarily groups
the floors into pairs and the ceilings into pairs, and computes the pair (`A, `B) whose
intersection point has the median x-coordinate of all intersection points of all pairs.

The algorithm checks if the intersection point (α, β) of `A and `B is feasible, i. e.,
if g(α) ≤ h(α). The algorithm then attempts to determine if the optimum is to the
right or the left of (α, β). It is guaranteed there is a feasible solution - an invariant
maintained throughout the algorithm - and only one side of (α, β) contains a feasible
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point if (α, β) is infeasible. Megiddo defines the following:
sg = min{ai | y ≥ aix+ bi is a floor and g(α) = aiα+ bi},
Sg = max{ai | y ≥ aix+ bi is a floor and g(α) = aiα+ bi},
sh = min{ai | y ≤ aix+ bi is a ceiling and h(α) = aiα+ bi},
Sh = max{ai | y ≤ aix+ bi is a ceiling and h(α) = aiα+ bi}.

Suppose first that (α, β) is infeasible. This means that g(α) > h(α). Then if
sg > Sh, any feasible x satisfies x < α. Also, if Sg < sh, then any feasible x satisfies
x > α. The last case is that sg−Sh ≤ 0 ≤ Sg−sh, but this implies the LP is infeasible,
contradicting the above invariant.

Now suppose that (α, β) is feasible. As Megiddo argues, if g(α) < h(α) then if
sg > 0, then the optimal solution is to the left of α. Also, if Sg < 0 then the optimal
solution is to the right of α. Otherwise sg ≤ 0 ≤ Sg, and (α, β) is the optimal solution.
Finally, if g(α) = h(α), then if (1) sg > 0 and sg ≥ Sh, then the optimum is to the left
of α, or if (2) Sg < 0 and Sg ≤ sh, then the optimum is to the right of α. Otherwise
(α, β) is the optimum.

Hence, in O(n) time, the algorithm finds the optimum or reduces the solution
to the left or right of (α, β). In this case, in each of the pairs of constraints on the
other side of α, one of the two constraints can be removed since it cannot participate
in defining the optimum. When there are a constant number of constraints left, the
algorithm solves the resulting instance by brute force.

Intuition of Our Algorithm: Let Π be a partition of the set F of input floors and
ceilings into pairs. Inspired by our maximum-finding algorithm, instead of computing
the median of pairs of intersection points, we randomly sample a set S of Θ(log |F|)
pairs from Π. For each pair in S, we find if the optimum is to the left or right of the
intersection point. If (α, β) is the intersection point of a pair of constraints in S, we
use VerticalComparator to find the lower floor {y ≥ aix+ bi is a floor and g(α) =
aiα+ bi} as well as the upper ceiling {y ≤ aix+ bi is a ceiling and h(α) = aiα+ bi}.
By non-degeneracy, each of these sets has size at most 2. We modify our earlier
LinearMax algorithm to return the maximum two items (i. e., constraints) instead of
just the maximum, using VerticalComparator to perform the comparisons. By a
union bound, we have the lower floor and upper ceiling with large probability. Using
the slope ordering of sg, Sg, sh, and Sh we know which side of (α, β) the optimum is
on.

To avoid performing the same comparison twice, in any phase each primitive
invocation has as input at least one of the lines in our sample set. Since we discard the
sample set after a phase, comparisons in different phases are independent. To ensure
that comparisons in the same phase are independent, when computing the upper
ceiling and lower floor of a sampled intersection point (α, β), we do not include the
other sampled pairs of constraints in the comparisons. This does not introduce errors,
with high probability, since we have only O(log |F|) randomly sampled constraints,
while the union of the upper ceiling and lower floor of an intersection point has at most
four constraints, and so it is likely the upper ceilings and lower floors of all sampled
pairs are disjoint from the set of sampled constraints.
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Since the sample size is Θ(log |F|), we can show that with high probability we
throw away a constant fraction of constraints in each phase, and so after O(log n)
recursive calls the number of remaining constraints is bounded as a function of p alone.
The total time is O(n log n). Our main algorithm is described below.

LP(F , p)
1. If there are at most C(p) constraints in F solve the problem by brute force.
2. If there is at most one floor constraint f ∈ F , if the slope of f is positive,

output the intersection of f and the line x = L. If the slope of f is negative,
output the intersection of f and the line x = R.

3. Otherwise, randomly partition the floors into pairs, as well as the ceilings
into pairs (possibly with one unpaired floor and one unpaired ceiling).
Let the set of pairs be denoted Π.
Draw a set S of 1000 log |F| pairs of constraints from the pairs in Π
uniformly at random, without replacement.

4. Let ΦF be the set of floors in F , excluding those in S.
Let ΦC be the set of ceilings in F , excluding those in S.

5. For each pair (`A, `B) of constraints in S,
a. Let U(`A, `B) =Lowest(`A, `B,ΦC , p).
b. Let L(`A, `B) =Highest(`A, `B,ΦF , p).
c. Compute Tester(`A, `B, U(`A, `B), L(`A, `B)).
6. Let T ⊆ S be the pairs for which Tester does not output “fail”, and compute

the majority output direction dir of the result of Tester on the pairs in T .
7. For each pair (`A, `B) of constraints in Π \ S,
a. For each pair (`C , `D) ∈ S, compute SideComparator(`A, `B, `C , `D).
b. If for at least a 2/3-fraction of pairs in S, the pair (`A, `B) is to the right

(resp. to the left), and if dir is to the left (resp. to the right), then
remove the constraint in the pair (`A, `B) from F that cannot
participate in the optimum assuming the optimum is really
to the left (resp. to the right) of the pair (`A, `B).

8. Return LP (F \ S, p).

Our analysis will show that Theorem 5.15 holds if we use C(p) = 160000/p1/5 in
line 1 of the algorithm LP.

Intuitively, Lowest finds the upper envelope1 of a point (that is, the lowest
ceilings), and Highest finds the lower envelope (the highest floors). Tester tests
which side of the optimum the point is on based on the slope information in the union
of upper and lower envelopes. Both Highest and Lowest employ the following
subroutine.

2Max(M,p)
1. Let x =LinearMax∗(M,p).

1Sometimes envelope refers to all boundary lines that touch the convex hull. Here we use it to
simply refer to the extremal two constraints of a point.
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2. Let y =LinearMax∗(M \ {x}, p).
3. Output (x, y).

Theorem 5.16. 2Max returns the largest two elements of M in time O(n) with
probability at least 1− 2f̃(p), where f̃(p) is the error probability of LinearMax∗ with
comparison error probability p.

Proof. Let r be the random string used by the LinearMax∗ algorithm (see Theo-
rem 5.1 and Corollary 5.6), and let s be the random characteristic vector of comparisons.
Let LinearMax∗r,s be the (deterministic) output of LinearMax∗ given r and s. Let
σ = max(x ∈M) and let τ = max(x ∈M \ {σ}). Then our prior analysis shows both

Pr[LinearMax∗r,s(M,p) = σ, in time O(n)] ≥ 1− f̃(p),

and
Pr[LinearMax∗r,s(M \ {σ}, p) = τ, in time O(n)] ≥ 1− f̃(p),

where the probability is over the joint distribution of r and s. It follows by a union
bound that 2Max succeeds in time O(n) with probability at least 1− 2f̃(p).

In our application of 2Max, we set the universe M to be either ΦF , a subset of floors
in the constraint set F , or ΦC , a subset of ceilings in the constraint set F . We then
fix an intersection point (α, β) of two lines `A and `B. Our universe is the set of
intersection points of the lines in ΦF (or ΦC) with the vertical line x = α. The line
` ∈ ΦF whose intersection point is the highest point on the line x = α is considered
the maximum of ΦF , while the line ` ∈ ΦC whose intersection point is the lowest on
the line x = α is considered the maximum of ΦC . To do the comparison between two
lines `C , `D ∈ ΦF , we invoke VerticalComparator(`A, `B, `C , `D), which reports
the line whose intersection point has the larger signed vertical distance (if instead
considering ΦC , we use the line with the smaller signed vertical distance).

By non-degeneracy, the upper envelope of (α, β) contains at most two lines, each
of which will be found by 2Max with probability at least 1− 2f̃(p), while the lower
envelope of (α, β) contains at most 2 lines, each of which will be found by 2Max with
probability at least 1 − 2f̃(p). Hence, with probability 1 − 4f̃(p), both invocations
of 2Max will succeed. Finally, given two lines ` and `′, the purported maximum and
second maximum in ΦF , we need a way of checking if ` and `′ intersect the line x = α
in the same point. This can be done by invoking VerticalComparator(`A, `B, `, `′),
which succeeds with probability 1 − p. We can similarly compare the purported
maximum and second maximum in ΦC . Notice that these additional two applications
of VerticalComparator may have already been applied (as subroutines in 2Max).
Nevertheless, by a union bound, all these algorithms jointly succeed with probability
at least 1− 4f̃(p)− 2p. Summarizing the algorithms above:

1. Let Lowest(`A, `B,ΦC , p) be the above algorithm for finding the maximum
and second maximum of ΦC (where maximum, as defined with respect to ΦC ,
actually means the lowest points on the line (α, β)). Further, given the purported
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maximum ` and second maximum `′, it determines if the two lines intersect the
line x = α at the same point.

2. Let Highest(`A, `B,ΦF , p) be the above algorithm for finding the maximum
and second maximum of ΦF . Given the purported maximum ` and second
maximum `′, it determines if the two lines intersect the line x = α at the same
point.

The above analysis shows,

Theorem 5.17. Given `A, `B,ΦF , and ΦC , with probability at least 1 − 4f̃(p) − 2p,
algorithms Lowest(`A, `B,ΦC , p) and Highest(`A, `B,ΦF , p) succeed.

We also need the following subroutine in Figure 5.1, which takes two lines `A
and `B, two sets Up and Low of size at most two, the purported upper and lower
envelopes of the intersection point of `A and `B, and determines if the optimum is to
the left, the right, or equals the intersection of `A and `B. It does so by analysing
slopes as in Megiddo’s algorithm [52]. Recall that after preprocessing the vertical
constraints, we know that L ≤ x ≤ R. Here Up contains only ceilings, while Low
contains only floors.

The assumption of the algorithm is that Low 6= ∅, yet Up may equal ∅. Note that
this assumption holds e. g. if Highest(`A, `B,ΦF , p) succeeds and the (up to) two
constraints defining the optimum are contained in F .
Theorem 5.18. Conditioned on U and L being the upper and lower envelopes of the
intersection point q of `A and `B, and on q not being the optimum point, Tester
correctly locates which side of the optimum q is on with probability at least 1− 4p.

Proof. By a union bound, with probability at least 1− 4p, both SideComparator
tests and both VerticalComparator tests succeed. We condition on this event in
the rest of the proof. It follows that if Tester halts in step 2 or 3, then it succeeds. It
also follows that q is correctly classified as feasible or infeasible in step 5. If Tester
halts in step 7, correctness follows from the correctness of Megiddo’s algorithm [52], as
the algorithm performs the same comparisons. Notice that the algorithm cannot return
“fail”, since conditioned on U and L being the upper and lower envelopes of q, this
would mean (as shown in Megiddo’s analysis) that the LP is infeasible, a contradiction.

The last case is that Tester halts in step 8. If the upper and lower envelopes
are not equal, then since we condition on q not being the optimum point, our test
coincides with that of Megiddo’s algorithm. Since we also condition on U and L being
the upper and lower envelopes of q, we cannot output “fail”, as this would mean (as
shown in Megiddo’s analysis) that q is the optimum point.

Finally, it cannot be that the upper and lower envelopes are equal since the point q
is the intersection of two ceilings or two floors. Since q is also feasible, this means if
it is the intersection of two ceilings, a floor must also intersect it, while if it is the
intersection of two floors, a ceiling must also intersect it. This contradicts the non-
degeneracy of the input. Hence, our test coincides with Megiddo’s and q is correctly
located.
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Tester(`A, `B ,Up,Low)

1. Let Low1 be the first line in Low , and if |Low | = 2, let Low2 be the second.
If Up 6= ∅, let Up1 be the first line in Up, and if there is a second, denote it
by Up2. Let point q = (α, β) refer to the intersection of `A and `B .

2. If SideComparator(`A, `B , x = L, y = 0) reports that α < L, return “to the
right”.

3. If SideComparator(`A, `B , x = R, y = 0) reports that α > R, return “to the
left”.

4. Run VerticalComparator(`A, `B , `A,Low1) to determine if Low1 is above
or below q. If Up 6= ∅, run VerticalComparator(`A, `B , `A,Up1) to deter-
mine if Up1 is above or below q.

5. If Low1 is below q and Up1, if it exists, is above q, then q is declared feasible.
Otherwise it is declared infeasible.

6. Let sg be the smaller of the two slopes of lines in Low , and let Sg be the larger
(if there is only one line, then sg = Sg.) Let sh be the smaller of the two slopes
of lines in Up, and let Sh be the larger. If Up is empty, let sh = Sh = 0.

7. If q is declared infeasible,

(a) if sg > Sh, then return “to the left”.

(b) if Sg < sh, then return “to the right”.

(c) otherwise return “fail”.

8. Otherwise, q is declared feasible, and

(a) if sg > 0, then return “to the left”.

(b) if Sg < 0, then return “to the right”.

(c) otherwise return “fail”.

Figure 5.1: Tester pseudocode.
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Theorem 5.19. Given any constant 1 > ε > 0, there is a constant C̃(ε) such that if
C(p) ≥ C̃(ε), then with probability 1− ε Algorithm LP(F , p) terminates in O(n log n)
time with O(log n) recursive calls.

Proof. Note that step 1 can be done in constant time for constant p. Also, since
LinearMax∗ takes O(n) time, so does 2Max and so do Lowest and Highest.
Note that Tester can be done in O(1) time. Notice that step 5 takes O(n log n)
time. To prove the theorem we will provide a function C̃ where for every constant ε
with probability 1− ε in every iteration at least |F|/200 constraints are removed, if
C(p) ≥ C̃(ε). It will follow that there are O(log n) recursive calls and the overall time
complexity is dominated by that of the first recursive call, or O(n log n).

Consider any call to LP with some value of |F| > C(p). We need a property
of F that follows from the lines being in general position. Namely, consider any given
x-coordinate x0. We claim that the number of pairs of lines in F whose intersection
point has x-coordinate equal to x0 is at most |F|. We know that since no two floors and
no two ceilings are parallel, if there are r floors, there can be at most r/2 intersection
points of pairs of floors which have x-coordinate equal to x0. There are also |F| − r
ceilings, and there can be at most (|F| − r)/2 pairs of ceilings which have intersection
point with x-coordinate equal to x0. Hence, there are at most |F|/2 pairs of the same
type (floor or ceiling) which have the same x-coordinate.

In what follows we shall assume that |F| is even for simplicity (the case of odd
cardinality follows with minor modifications). Recall that Π is randomly chosen. Let
us consider the process of choosing the pairs in Π one at a time. Let Zi be an indicator
variable if the x-coordinate of the intersection of the i-th pair in Π does not equal the
x-coordinate of the intersection of the j-th pair in Π, for any 1 ≤ j < i. For any choice
of the first i− 1 pairs of Π, there are s = |F| − 2(i− 1) remaining constraints, and so
at least 2

(
s/2
2

)
= (s/2)(s/2− 1) possible pairs of the same type. Moreover, the number

of pairs of the same type with intersection point realizing any fixed x-coordinate is at
most s/2, by the previous paragraph. Hence,

Pr [Zi = 1] ≥ 1− s/2

(s/2)(s/2− 1)
= 1− 1

s/2− 1

For i ≤ 99|F|/200, s ≥ |F|/100, and so

Pr [Zi = 1] ≥ 1− 201

|F| ≥
99

100
,

assuming |F| is larger than a large enough constant (as otherwise step 1 will solve the
LP). It follows that Z =

∑99|F|/200
i=1 Zi stochastically dominates Z ′ =

∑99|F|/200
i=1 Z ′i,

where the Z ′i are i. i. d. Bernoulli(99/100), and so

Pr [Z < (9/20)|F|] < e−Ω(|F|),

by a Chernoff bound. Hence, with probability at least 1− e−Ω(|F|), there are at least
9|F|/20 distinct x-coordinates among the intersection points formed by pairs in Π.
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More precisely, we have

Pr [Z < (9/20)|F|] = Pr

[
Z <

(
1− 89

1089

)
· 99|F|

200
· 99

100

]
(5.1)

< e−
1
2
·( 89

1089)
2· 99|F|

200
· 99
100 (5.2)

= e−
7921

4840000
·|F| (5.3)

= |F|−
7921|F|

4840000 ln |F| (5.4)
≤ |F|−6 (5.5)

≤ 81

100
· |F|−5 (5.6)

where inequalities (5.5) and (5.6) follow from |F| being larger than a sufficiently large
constant.
Let L be the list of intersection points of the pairs in Π, that is,

L = {x | ∃π = (`A, `B) ∈ Π, ∃ y ∈ R : `A ∩ `B = (x, y)}.

Consider the set W of the smallest |F|/100 intersection points in this list. Then, con-
ditioned on there being at least 9|F|/20 distinct x-coordinates among the intersection
points formed by pairs in Π, it follows that every item in the set W is strictly less than
at least |F|(9/20− 1/100) = (11/25)|F| intersection points (in terms of x-coordinate).
On the other hand, Π contains at most |F|/2 distinct intersection points, and we draw
a set of 1000 log |F| pairs without replacement. Hence, with probability at least

11
25 |F| − 1000 log |F|

|F|
2

=
22

25
− 2000

log |F|
|F| ≥

21

25
,

an intersection point in the set W has smaller x-coordinate than that of a random pair
in Π, where the last inequality follows from |F| being larger than a large enough constant.
Using a Chernoff bound we obtain that, with probability 1− e−(135/28) ln (|F|)/ ln (2) ≥
1− |F|−6, an intersection point in the set W is smaller than at least a 3/4-fraction
of the points in S. The number of pairs in Π whose intersection point’s x-coordinate
belongs to W is at most |F|/2− (9/20− 1/100)|F| = (6/100)|F|. Hence, by a union
bound, this property holds of all points in W with probability at least 1− 6/(100|F|5).
Analogously, letting W ′ be the set of largest |F|/100 intersection points in this list,
with probability at least 1− 6/(100|F|5), every point in W ′ is larger than at least a
3/4-fraction of the points in S. Hence, with probability at least 1− 12/(100|F|5), both
of these events (for W and W ′ occur), which we condition on.

It follows that since the SideComparator comparisons in step 7a are independent,
for small enough p, by a Chernoff and union bound, all points in W are declared to
be to the left of at least a 2/3-fraction of the points in S, and all points in W ′ are
declared to be to the right of at least a 2/3-fraction of the points in S. For a fixed
point w in W let Z be number of points s in S declaring w to the left of s. Since E [Z]
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is at least 3/4 · |S| · (1− p) we obtain

Pr [Z < (2/3)|S|] = Pr

[
Z <

3

4
· (1− p) ·

(
1− 9p− 1

9p− 9

)
· |S|

]
(5.7)

≤ Pr

[
Z <

(
1− 9p− 1

9p− 9

)
·E [Z]

]
(5.8)

< e
− 1

2

(
9p−1
9p−9

)2
·E[Z] (5.9)

≤ e
− 1

2

(
9p−1
9p−9

)2
· 3
4
·|S|·(1−p)

. (5.10)

Using |S| = 1000 log |F| we obtain e−
1
2

(
9p−1
9p−9

)2
· 3
4
·|S|·(1−p)

= |F|
125(81p2−18p+1)

27(p−1) ln (2) . A simple
calculation shows that 125(81p2−18p+1)

27(p−1) ln (2) ≤ −6 holds for all p ≤ 0.00612. Thus, with
probability at least 1− |F|−6, w is reported to be smaller than at least a 2/3-fraction
of the points in S. The same estimate holds for any point in W ′. Since the number of
pairs whose intersection point’s x-coordinate is in W ∪W ′ is at most

|F|/2− |F| · (9/20− 2/100) = 7|F|/100,

by a union bound, with probability at least 1−7/(100|F|5), all the points inW andW ′

are reported to be to the left and right respectively of at least a 2/3-fraction of the
points in S.

Now it follows that no matter which direction dir is equal to, in step 7b either all
pairs of constraints in W or all those in W ′ will have at least one of their constraints
removed. Hence, at least |F|/200 constraints are removed. In summary, we have shown
that with probability at least 1− 1/|F|5, at least |F|/200 constraints are removed.

Now, by construction the comparisons in different recursive calls are independent.
Notice that the recursion stops when |F| is at most a large enough constant C(p)
(depending on p). We will now provide a function C̃ such that after O(log n) recursive
calls, |F| will be at most C(p) with probability at least 1− ε, if C(p) ≥ C̃(ε).

Let a = 200/199. We say a recursive call LP(F , p) happens in phase i, i ∈ N, if
ai ≤ |F| < ai+1 holds. Our goal is to define a function C̃ such that if the recursion
stops when the size of F is smaller than C(p), and C(p) ≥ C̃(ε), then with probability
at least 1 − ε no two consecutive recursive calls happen in the same phase. This
property clearly holds if in each recursion of the algorithm the number of constraints
is reduced by at least a 1/200-fraction.

We say an error occurs during a recursive call if the number of constraints is not
reduced by the required amount of a 1/200-fraction. Let Zi denote the indicator
variable for the event that an error occurs during the first recursive call in phase i. The
preceding analysis shows that Zi = 1 holds with probability at most 1/|F|5 ≤ 1/a5i.
Consequently, we have Zi = 0 with probability at least 1− 1/a5i. From the definition
of the Zi it follows that if all the Zi are 0, then in each recursion the amount of
constraints is reduced sufficiently.
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We define C̃(ε) = ak where k = 5 ln a−ln(ε(a5−1))
5 ln a . Now for any value of C(p) ≥ C̃(ε)

the total error probability is at most

Pr
[
∃i :

(
ai ≥ C(p)

)
∧ (Zi = 1)

]
≤ Pr [∃i ≥ k : Zi = 1] (5.11)

≤
∞∑
j=k

(
a−5
)j (5.12)

=
1

a5(k−1) · (a5 − 1)
(5.13)

≤ ε, (5.14)

where the last inequality can be verified by plugging in the value of k. Note that, by
definition of k and a, C̃(ε) = ak equals a

(a5−1)1/5
· 1
ε1/5

= 200
(7920399001ε)1/5

.
The above analysis shows that with probability at least 1 − ε the total running

time of our algorithm LP is

O

( ∞∑
i=0

n(199/200)i log (n(199/200)i)

)
= O

( ∞∑
i=0

n(199/200)i log n

)
= O(n log n).

This completes the proof.

Now, the following theorem implies the correctness of Theorem 5.15.

Theorem 5.20. With probability 1 − f(p), LP(F , p) correctly finds the optimum.
Here f(p) goes to 0 as p goes to 0.

Proof. In Theorem 5.19 above, we showed that with probability at least 1 − p, the
algorithm terminates in O(log n) rounds, if C(p) ≥ 200

(7920399001p)1/5
. Now, the only

way for the algorithm to terminate is in step 1 or step 2. It is clear that if the two
constraints defining the optimum are in F , then with probability 1− f ′(p), for some
positive function f ′(p) that goes to 0 as p goes to 0, step 1 succeeds, since with
this probability all calls to the comparators are correct, as we have only a constant
number C(p) of remaining constraints. Step 2 is correct with probability 1. Hence, we
just need to bound the probability that in each of O(log n) rounds, neither of the two
constraints defining the optimum is discarded from F . We will first give upper bounds
on different error probabilities before constructing a constant C(p), depending on p,
where those error probabilities are small enough. Afterwards we give an upper bound
on the error probability when the algorithm terminates in step 1.
We now define events E1, E2, E3, E4 and E5, and bound the probability of each occurring:

• E1 is the event that one of the constraints of the optimum is in the set S.

• E2 is the event that one of the constraints in the set S is part of the upper or
lower envelope of another constraint in S.
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• E3 is the event that for at most a 2/5-fraction of the points in S, the optimum is
in the direction dir from these points (where dir is the direction computed in
step 6).

• E4 is the event that if a pair of constraints (`A, `B) ∈ Π \S has intersection point
in direction dir′ from at least a 3/4-fraction of the intersection points in S, then
of the |S| invocations of SideComparator with first two arguments `A and `B ,
less than a 2/3-fraction of them will return the answer dir′.

• E5 is the event that one of the constraints defining the optimum is removed from
set F in step 7b.

To bound Pr [E1], let Πopt denote the set of (up to two) pairs which contain a constraint
defining the optimum. We consider the process of randomly drawing the set S from Π.
Now with probability at least

¬Pr [E1] ≥
|S|∏
i=1

|Π| − |Πopt| − i+ 1

|Π| − i+ 1

none of the constraints in Πopt is contained in S, since before drawing the i-th pair
there are |Π| − i+ 1 pairs in Π of which at least |Π| − |Πopt| − i+ 1 do not contain a
constraint defining the optimum. As there are at least (|F| − 2)/2 ≥ |F|/3 pairs in Π,
we have

|S|∏
i=1

|Π| − |Πopt| − i+ 1

|Π| − i+ 1
≥
( |F|/3− 2− |S|
|F|/3− |S|

)|S|
=

(
1− 2

|F|/3− |S|

)|S|
.

Using the definition |S| = 1000 · log |F| and the fact that |F| is larger than a large
enough constant, we obtain(

1− 2

|F|/3− |S|

)|S|
≥
(

1− 8

|F|

)|S|
.

Now(
1− 8

|F|

)|S|
= 1−

(
|F|
(
1− |F|1000(log (|F|−8)−log (|F|)))

8000 log(|F|)

)
·
(

8|S|
|F|

)
≥ 1− 8|S|

|F| ,

implies that

Pr [E1] ≤ 8|S|
|F| =

8000 log |F|
|F| .

To bound Pr [E2], fix two sampled pairs s1, s2 ∈ S, and let us look at the event
X(s1, s2) that one of the constraints in s1 is in the upper or lower envelope of the
intersection point of the constraints in s2. The union of upper and lower envelopes of
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the intersection point for s2 contains at most 4 constraints. In the worst case, these 4
constraints lie in 4 distinct pairs of Π. Hence,

Pr [X(s1, s2)] ≤ 4

|F|/3− 1
≤ 16

|F| .

Then,

Pr [E2] ≤
∑
i,j

Pr [X(si, sj)] ≤ 16
|S|2
|F| = 16000000

(log |F|)2

|F| .

We now bound Pr [E3]. Suppose at most a 2/5-fraction of points in S go in direction
dir to reach the optimum. Since the majority vote is dir, it means that when Tester
did not return fail in step 5c, it returned the value dir at least half of the time. Now,
conditioned on ¬E2, for each pair (`A, `B) of constraints in S, the corresponding ΦF

and ΦC contain the upper and lower envelope of the intersection point of the pair.
Then, by Theorem 5.17, for a fixed (`A, `B), with probability 1− 4f̃(p)− 2p, we have
that U(`A, `B) and L(`A, `B) are the upper and lower envelopes of the intersection
point z of `A and `B. It follows by conditioning on ¬E1 and applying Theorem 5.18,
Tester correctly locates which side of the optimum z is on, with probability 1− 4p.
So, conditioned on ¬E1 ∧ ¬E2, with probability at least 1− 4f̃(p)− 6p, any given pair
in S has its intersection point correctly located with respect to the optimum. This
probability is at least 999/1000 for p sufficiently small.

By assumption at most a 2/5-fraction of the points in S go in direction dir to
reach the optimum, so at least a 3/5-fraction of the points in S goes in the opposite
direction dir′ to reach the optimum. Now in order for dir to be reported in step 6 it is
necessary that at least a 1/10-fraction of the points in S is not correctly located with
respect to the optimum. Since the comparisons performed are independent for the
different iterations of step 5, if Z denotes the number of points in S that are correctly
located, it follows by a Chernoff bound that

Pr [E3] ≤ Pr

[
Z <

(
9

10
|S|+ 1

)]
= Pr

[
Z <

(
1−

(
11

111
− 1000

999|S|

))
· |S| · 999

1000

]
.

Now using |S| ≥ 1000 which implies 1−
(

11
111 − 1000

999|S|

)
≤ 1− 10

111 we obtain that

Pr [E3] ≤ Pr

[
Z <

(
1− 10

111

)
· |S| · 999

1000

]
< e−

1
2
·( 10

111)
2·|S|· 999

1000 < |F|−5.

We can now bound Pr [E4] by a Chernoff and union bound because the tests for
different constraints (`A, `B) are independent of each other. Given a fixed pair (`A, `B)
of constraints whose intersection point is in direction dir′ from at least a 3/4-fraction
of the intersection points in S, let Z denote the number of invocations of SideCom-
parator that return dir′. Now using the same estimate as in inequalities (5.7) –
(5.10) shows that E4 occurs for pair (`A, `B) with probability at most |F|−6. By a
union bound over (`A, `B) ∈ Π \ S,

Pr [E4] ≤ 1

|F|5 .
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Finally, we can bound Pr [E5]. In the following, we condition on the event ¬E1 ∧
¬E2 ∧ ¬E3 ∧ ¬E4. Since we conditioned on the event ¬E1, a constraint defining the
optimum could only be discarded in step 7b. But this is only possible if a pair (`A, `B)
of constraints in Π \ S contains a constraint defining the optimum, and for at least a
2/3-fraction of pairs in S, (`A, `B) is to the right (resp. to the left) and dir is to the
left (resp. to the right). Let dir′ denote the direction opposite to direction dir. Now if
(`A, `B) ∈ Π \ S is the pair defining the optimum, and either `A or `B is discarded in
step 7b, then (`A, `B) lies in direction dir′ of at least a 2/3-fraction of the pairs in S.
Since we conditioned on ¬E3, (`A, `B) also lies in direction dir of at least 2/5 · |S| pairs
of constraints, which is a contradiction because 2/3 + 2/5 > 1. Therefore, if the pair
defining the optimum is in Π \ S, we have Pr [E5] = 0. Otherwise, we consider a pair
(`A, `B) where `A is a constraint defining the optimum, whereas `B does not define
the optimum. Remember that (`A, `B) is either a pair of floors or a pair of ceilings.
Constraint `A is discarded in step 7b if (`A, `B) goes in direction dir′ to reach the
optimum. Otherwise, `B is discarded, according to the slope ordering of `A and `B , so
in the following we assume that (`A, `B) goes in direction dir′ to reach the optimum.
Conditioned on ¬E3, there are at least 2/5 · |S| pairs in S that go in direction dir to
reach the optimum. Since (`A, `B) goes in direction dir′ to reach the optimum, there
are at most 3/5 · |S| pairs (`C , `D) ∈ S where (`A, `B) lies in direction dir′ of (`C , `D).
Thus in order for `A to be removed in step 7b it is required that at least a 1/15-fraction
of the |S| invocations of SideComparator(`A, `B, `C , `D), where (`C , `D) ∈ S, fail.
Now let Z denote the number of pairs (`C , `D) ∈ S where in line 7a the invocation of
SideComparator(`A, `B, `C , `D) fails. Since the invocations of SideComparator
are independent, we can apply a Chernoff bound to obtain

Pr

[
Z ≥ 1

15
|S|
]

= Pr

[
Z ≥

(
1 +

1

15p
− 1

)
· p · |S|

]
= Pr

[
Z ≥

(
1 +

1

15p
− 1

)
·E [Z]

]
≤ e

− 1
3
·
(

1
15p
−1
)2
·1000·p·log |F|

= |F|−
40(15p−1)2

27p ln(2)

≤ |F|−6

where we have used that −40(15p−1)2

27p ln(2) ≤ −6 for all p ≤ 0.043. Since there are at most
two pairs of constraints containing a constraint defining the optimum, by a union
bound, we have shown in the previous paragraph that

Pr [E5] ≤ 2 · 1

|F|6
≤ 1

|F|5 .
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Hence,

Pr [¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4 ∧ ¬E5] ≥ 1− 8
|S|
|F| − 16

|S|2
|F| −

1

|F|5 −
1

|F|5 −
1

|F|5

≥ 1− 8
|S|
|F| − 16

|S|2
|F| −

3

|F|

≥ 1− 9
|S|
|F| − 16

|S|2
|F|

= 1− 9000
log |F|
|F| − 16000000

(log |F|)2

|F|

≥ 1− 16010000
(log |F|)2

|F| .

By Theorem 5.19, our choice of constant C(p) ≥ 200
(7920399001p)1/5

ensures that with
probability at least 1 − p in each round at least a 1/200-fraction of constraints is
removed from F . We now condition on this event and provide an upper bound on the
probability that during any round any of the events E1, E2, E3, E4 or E5 occurs.

Let a = 200/199 andA = 16010000, for short. With probability 1−A(log |F|)2/|F| ≥
1−A/|F|1/2, no constraint of the optimum is discarded in any given round. By con-
struction, the comparisons performed in different rounds are independent. Because
in each round the algorithm discards at least a 1/200-fraction of the constraints
in F , for any fixed integer i, there is at most one invocation of the algorithm where
ai ≤ |F| < ai+1 holds. Now, if C(p) ≥ ak ≥ 200

(7920399001p)1/5
, then with probability at

most ∞∑
i=k

A · 1

ai/2
=

A

a(k−1)/2(a1/2 − 1)

a constraint defining the optimum is removed from the set F . If we choose C(p) ≥ ak
where k = ln a−2 ln (p1/10(a1/2−1))

ln a , then this probability is less than A · p1/10. Note that
by definition of a and k, ak equals a

(a1/2−1)
2
p1/5

= 200

199( 10
100

√
398−1)

2
p1/5
≤ 160000

p1/5
. Finally,

we define C(p) = 160000
p1/5

.
For the analysis we have used the assumption that p > 0 is smaller than some

constant p̃, and algorithm LP solves the problem by brute force in step 1 unless |F| is
larger than a large enough constant F̃ (in fact, it is sufficient to use F̃ := 106). These
two assumptions can be summarized by the condition

p ≤ min

{(
160000

F̃

)5

, p̃

}
,

since p ≤
(

160000
F̃

)5
implies F̃ ≤ 160000

p1/5
= C(p).

It remains to give an upper bound on the error probability for when the algorithm
terminates in step 1. Let B = 160000 for short, then C(p) = B/p1/5 by the definition
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of C(p) above. Remember that for each primitive test (i. e., VerticalComparator or
HorizontalComparator) the input consists of two pairs of constraints in F . There
are up to

(
B/p1/5

2

)
possible choices for the first pair (`A, `B), and for each such pair

there are at most
(
B/p1/5−2

2

)
choices for the second pair (`C , `D). Hence the number of

possible inputs is bounded by
(
B/p1/5

2

)
·
(
B/p1/5−2

2

)
≤ 1

4 · B4/p4/5, and thus the total
number of different primitive queries in step 1 is less than 1

2 ·B4/p4/5. Now Markov’s
inequality implies that the probability for at least one comparison error is at most the
expected number of errors, which is less than p · 1

2 ·B4/p4/5 = 1
2 · p1/5 ·B4. The proof

of the theorem now follows by a union bound.
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