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Abstract

Sparse signal structures have become increasingly important in signal processing applications as

the technology progresses and a plethora of data needs to be handled. It has been shown in

practice that various signals have fewer degrees of freedom compared to their actual sizes, i.e., can

be expressed in terms of a small number of elements from some dictionary. Alongside an increase in

applications, a recent theory of sparse and compressible signal recovery has been recently developed

under the name of Compressed Sensing (CS). This approach states that a sparse signal can be

efficiently recovered from a small number of random linear measurements.

Another powerful tool in signal processing is frames which provide redundant representations

for signals. Such redundancy is desirable in many applications where resilience to errors and losses

in data is important. The increase in data has also significantly increased the demand to model

applications requiring distributed processing which goes beyond the classical frames. The recent

theory of Fusion Frames, which can be regarded as a generalization of classical frames, satisfies

those needs by analyzing signals by projecting them onto multidimensional subspaces. Fusion

frames provide a suitable mathematical framework to model large data systems such as sensor

networks, transmission of data of communication networks, etc.

In this thesis, we combine these two recent theories and consider the recovery of signals that

have a sparse representation in a fusion frame. As in the classical CS, a sparse signal from a

fusion frame can be sampled using very few random projections and efficiently recovered using a

convex optimization that minimizes the mixed `1/`2-norm. This problem has close connections

with other similar recovery problems studied in CS literature such as block sparsity and joint

sparsity problems. A key contribution in this thesis is to exploit the incoherence of the fusion

frame subspaces in order to enhance the existing recovery results by incorporating this structure.

In particular, we derive upper and lower bounds for the number of measurements required for the

sparse recovery and the error derived by convex optimization. Aside from our results in the fusion

frame setup, we also present results in the classical CS where we focus on improving constants

appearing in the number of measurements required and prove optimal constants in the nonuniform

setting with rather concise and simple proofs.
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CHAPTER 1

Introduction

Many technological advances deal with the problem of measuring a signal and reconstructing it

from measured data. This is one of the main goals of signal and image processing. The conventional

way of data acquisition relies on Shannon’s celebrated sampling theorem, which dictates that a

signal can be perfectly reconstructed from its samples if the sampling rate is at least twice the

maximum frequency present in the signal (the so-called Nyquist rate). Following this principle,

in most devices used in consumer audio and visual communication, medical imaging, radar etc.,

the data acquisition typically works as follows: massive amounts of samples are collected through

the measurement device, and then a compression stage is invoked in which most of this data

is discarded and only the meaningful part is stored and transmitted. For instance, our modern

digital cameras which use JPEG standard [112] acquire data with millions of pixels and compress

it into a picture of only few hundred kilobytes. This is possible because many man-made and

natural images are ‘sparse’ in the sense that most of its components in an appropriate basis are

zero or close to zero. However this measurement process, where a lot of data is collected to be only

thrown away at the end, seems like a waste of energy and resources. Compressed sensing (CS)

initiated by the seminal papers by E. Candès, J. Romberg, T. Tao [18,20] and by D. Donoho [38]

merges the two steps of acquiring and compressing data into one step by exploiting the sparseness

inherent in many signals. Since the appearance of these papers, a large research activity has

been carried out at the interface of mathematics, engineering and computer science with a lot of

potential applications such as MRI (magnetic resonance imaging) [66,81], radar imaging [67,69],

single-pixel cameras [46]. The motivation in each of these applications for using the ideas of CS

may vary. For instance, as anybody who has sat through an imaging session in an MRI machine

knows, the sensing process might be quite slow. To speed up this process, applying undersampling

techniques from CS becomes very promising.

In mathematical terms, given a signal x ∈ CN , many measurement schemes in signal acquisi-

tion can be modelled by the linear system of equations

y = Ax

where y ∈ Cm and A ∈ Cm×N . Recovering x from its measurements y is not possible if the system

is underdetermined, i.e., m < N . CS shows that if x is sparse, i.e., has few nonzero entries, then

it can be recovered efficiently when m is much smaller than N .

This thesis comprises two parts. In the first part we provide our results in CS for the nonuni-

form setting, where we deduce the optimal number of measurements m in terms of the constants

appearing in the lower bounds. This has importance for the practical use of CS results. In the

second part, we focus on fusion frames which are generalizations of classical frames. We extend
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1.2. RECOVERY RESULTS FOR COMPRESSED SENSING CHAPTER 1.

the concepts of CS to fusion frames and improve existing results by taking a certain structure in

the fusion frames into account.

1.1. Compressed sensing

When the acquisition system is linear, the information of a signal f(t) is obtained by linear

functionals recording the values yk = 〈f, θk〉, k = 1, . . . ,m. This is a standard setup. For instance

linear functionals θk can be Dirac delta functions taking samples of f , can be indicator functions

of pixels as in a digital camera, or can be sinusoids which yield Fourier coefficients of f . After

an appropriate discretization step, we can consider our signal to be a vector f ∈ CN . Then the

measurement scheme can be written as

y = Θf

where Θ ∈ Cm×N consists of the rows θ1, . . . , θm ∈ CN . Most of the results in CS are in this

discrete setting which is conceptually simple and can be potentially extended to continuous time

signals as well. As mentioned earlier, many signals have a concise representation with respect to a

suitable basis. Mathematically speaking, the vector f ∈ CN can be expanded into an orthonormal

basis Φ = [φ1, . . . , φN ] as

f =

N∑
i=1

xiφi,

where x ∈ CN is a coefficient sequence. For instance, if sparsity is with respect to the discrete

Fourier transform (DFT) which is used in MRI, the φi are sinusoid functions. Then the measure-

ment can be written as

y = ΘΦx = Ax (1.1)

with A ∈ Cm×N . Before continuing, for the sake of simplicity, we will assume Φ to be the identity

matrix. The basic goal is to recover x from its measurements y. When m < N , (1.1) becomes

underdetermined, therefore there are infinitely many solutions to this system. In other words, it

is impossible to find the original x without additional information. CS shows that if x is sparse,

i.e., has few nonzero entries, then it can be recovered efficiently even when m is much smaller

than N . The sparsity assumption is related to the empirical observation that many real world

signals are approximately sparse. The CS problem consists of two main questions: a) how to

design the measurement matrix A, b) how to reconstruct x from y in an efficient and tractable

way. In Section 1.2, we will give an overview of the answers to these questions. We would like to

mention an interesting point of CS: often randomness plays an important role in the design of the

measurement schemes. All known provably optimal results of CS are obtained by such random

matrices, which are also a central theme of our theoretical results.

1.2. Recovery results for compressed sensing

The field of CS emerged after the appearance of the seminal papers by Candès, Romberg and

Tao [18] and Donoho [38]. There have been earlier works on the effectiveness of `1-minimization,

however the seminal works [18,38] have combined the random masurements with `1-minimization

in order to achieve near-optimal recovery results and have also pointed towards important appli-

cations in signal processing. We have seen that the central mathematical question in CS is solving

2



CHAPTER 1. 1.2. RECOVERY RESULTS FOR COMPRESSED SENSING

the underdetermined system (1.1) (m < N) under a sparsity assumption for x. A vector x ∈ CN is

called s-sparse if ‖x‖0 := card{` ∈ [N ], x` 6= 0} ≤ s, where [N ] = {1, . . . , N}. We note that ‖·‖0 is

called `0-norm although it is not a norm. As a first approach one is led to solve the combinatorial

problem

min
z∈CN

‖z‖0 subject to Az = y,

where y = Ax. Unfortunately, this problem is NP-hard in general. One of the initial ideas of CS

was to replace `0-norm by `1-norm which leads to the convex optimization problem

min
z∈CN

‖z‖1 subject to Az = y, (1.2)

where ‖z‖1 =
∑
i |zi|. This problem is also called the basis pursuit and can be solved in polynomial

time. There are other `1-type minimizations, e.g. LASSO, Dantzig selector, and greedy algorithms

that have been investigated for solving the original CS problem, but in this thesis we will only

focus on `1-minimization. A classical result of CS is that m ≥ Cs ln(N/s) many measurements

are sufficient for recovery via `1-minimization. This result is achieved by random measurement

matrices such as Gaussian or Bernoulli (±1 entries). Up to today, it is an open and very hard

problem to come up with deterministic constructions for A which gives the same result. It is also

known that m ≥ Cs ln(N/s) measurements are necessary for recovery of an s-sparse vector via any

reconstruction method. This implies that CS allows us to reduce the number of measurements

almost to the sparsity level s which is potentially far less than the dimension N of the signal.

Since we do not know a priori where the s nonzero entries of x are, we pay the factor of ln(N/s)

as a price to find those entries.

It is of interest to find what type of measurement matrices are in general suitable for CS.

One observation is that the measurement matrix needs to be incoherent with the sparsifying basis

matrix, which we chose to be the identity earlier. The coherence of a matrix A ∈ Cm×N is defined

as

µ := max
j 6=k
|〈aj , ak〉|,

where the aj are the `2-normalized columns of A. Analysis of various recovery algorithms including

`1-minimization yields the sufficient condition

(2s− 1)µ < 1 (1.3)

for sparse recovery. This suggests to choose A with low coherence to obtain good recovery guar-

antees. However the coherence obeys the lower bound

µ ≥

√
N −m
m(N − 1)

.

For large N , the right hand side scales like 1/
√
m. There are also deterministic constructions

of matrices achieving this lower bound such as equiangular tight frames. However, this bound

together with (1.3) only gives us the sufficient condition

m ≥ Cs2

for recovery. This quadratic scaling of the number m of samples in terms of sparsity s is only

suboptimal. In order to overcome this quadratic bottleneck, a stronger concept to measure the

3



1.2. RECOVERY RESULTS FOR COMPRESSED SENSING CHAPTER 1.

quality of a measurement matrix was given by Candès and Tao in [20,24] under the name restricted

isometry property (RIP). The RIP constant δ̃s of a matrix A ∈ Cm×N is defined as the smallest

δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (1.4)

for all s-sparse x. The matrix A is said to satisfy RIP if δ̃s is small for sufficiently large s. In other

words, A needs to be almost an isometry on its column submatrices of size s. The matrices which

satisfy RIP turn out to be suitable for CS. For instance it has been shown that if δ̃s < 1/3 [15],

then (1.2) recovers all s-sparse vectors from their measurements. The constant 1/3 is optimal.

The next question is: which matrices satisfy the RIP? There has been a great amount of research

in finding such matrices with good RIP constants. As mentioned before, most of the theoretical

results involve some degree of randomness in the design of the matrix and we will give an overview

of these results in Section 1.2.1. Proving RIP results is generally not easy and involves advanced

probabilistic techniques that have been successfully implemented and improved over the course of

CS. In this thesis, we will also use some of those techniques in proving our results.

In real world applications, one often measures a signal which is not exactly sparse but only

approximately sparse. These are vectors with small best s-term approximation error in `1-norm,

σs(x)1 := inf
‖z‖0≤s

‖x− z‖1,

also called ‘compressible’ vectors. In addition, noise is often present in the measurement process

due to the circuit imperfections which is modeled by

y = Ax+ e,

with ‖e‖2 ≤ η (in some settings the error is assumed to be stochastic as well). Reconstruction

by `1-minimization and other CS techniques is also robust with respect to such nonidealities. In

particular, if the matrix A satisfies the RIP with constant δ̃2s ≤ 1/
√

2 [16], the solution x̂ to

minz ‖z‖1 s.t. y = Az + e and ‖e‖2 ≤ η satisfies

‖x− x̂‖2 ≤ C
σs(x)1√

s
+Dη, and ‖x− x̂‖1 ≤ Cσs(x)1 +D

√
sη, (1.5)

with absolute constants C,D > 0. For random measurement matrices, one can speak of two types

of recovery results: uniform and nonuniform. A uniform recovery guarantee means that, with

high probability on the choice of a random matrix, one can recover all s-sparse vectors. The RIP

gives sufficient conditions for this type of recovery conditions. In nonuniform recovery, we deal

with specific sparse vectors rather than with all vectors with a given sparsity. A nonuniform result

states that a fixed sparse vector can be recovered with high probability with a random draw of

the matrix. We give a precise formulation of these two type of results in Section 2.1.1. In CS, a

significant theory dealing with the nonuniform recovery of sparse signals has been developed. In

particular, one requires weaker conditions than RIP in order to guarantee nonuniform recovery.

In Sections 2.2.1 and 2.3.1, we present sufficient conditions for nonuniform sparse recovery.

Our contribution: Practical experience suggests that constants appearing in the lower bounds

of the necessary number m of measurements are quite pessimistic, thus there is a huge gap between

theoretical guarantees and practical performance of CS techniques. Our main contribution is to

4
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bridge this gap by showing that subgaussian matrices provide explicit and good constants for

nonuniform recovery. In particular, our nonuniform analysis in Chapter 2 yields roughly that

m ≥ 2s ln(N) Gaussian or Bernoulli measurements are enough to guarantee exact and stable

recovery of s-sparse vectors with a rather concise and simpler proof than the other similar results

in the literature. This is interesting theoretically, since the constant 2 is shown to be optimal

(although the optimal term ln(N/s) is replaced by ln(N)) and our results hold for finite values of

m, s,N in contrast to some asymptotic results in the literature, see Section 2.4 for a review.

Next, we will state various important results of CS obtained in the last 10 years starting with

the pioneering CS papers and continuing with the subsequent line of theory.

1.2.1. Overview of RIP results

We begin by reviewing the relevant works of Candès and co-workers. The first nonasymptotic

results in CS were derived in [18, 38], showing that m & s ln(N) random Fourier measurements

are sufficient for exact recovery of a fixed s-sparse vector. This is a nonuniform result. Candès and

Tao introduced the concept of the restricted isometry property (RIP) in [20,24] for the first time.

They showed that the RIP implies uniform sparse recovery and proved exact and stable recovery

results for Gaussian, partial Fourier and Bernoulli random matrices. In particular, they gave the

sufficient condition δ̃2s + δ̃3s < 1 for exact recovery via `1-minimization (basis pursuit). Cai and

Zhang [16] recently improved this condition to δ̃2s < 1/
√

2 and this was shown to be optimal by

Davies and Gribonval [33]. Another optimal result concerning RIP for exact recovery is δ̃s < 1/3

shown by Cai and Zhang [15]. A uniform recovery result for Gaussian matrices was first given

by Candès and Tao [20] which requires m & s ln(N/s). This was also shown to be optimal up

to constants by using the works of Kashin [71] and Garnaev and Gluskin [56, 59]. Before CS

became a field, they gave sharp upper and lower bounds for the Gelfand widths of the `1-ball

BN1 in RN and provided substantial material in order to derive the RIP results for Gaussian and

Bernoulli matrices. A similar optimal result m & s ln(N/s) for subgaussian matrices was given

with a rather short proof by Baraniuk et. al. [3] and independently by Mendelson et. al. [84].

The stability and robustness of sparse reconstruction via basis pursuit as stated in (1.5) were

also established in earlier CS papers by Candès, Romberg and Tao [19] where they derived the

condition δ̃3s + 3δ̃4s < 2. This was later improved several times. In particular, Candès gave the

condition δ̃2s <
√

2− 1 in [17] which we follow similarly for proving stable recovery in the fusion

frame setup in Section 3.2.7. We also note that the condition δ̃2s < 1/
√

2 derived in [16] is optimal

for stable recovery.

While subgaussian random matrices provide optimal measurement matrices for CS, using a

fully random matrix may not be very desirable in some applications for a variety of reasons. First

of all, when the matrix is too large, it may be an issue to store the matrix. Secondly, in some

applications there are a priori contraints on the structure of the measurement matrix which do not

allow a liberal design of the matrix. In addition, some structure in the matrix allows for fast matrix

multiplications such as fast Fourier transform (FFT). Since, up to date, it has not been possible

to design fully deterministic matrices with optimal guarantees for CS, there has been a significant

body of research focused on other types of measurements ensembles, such as structured random

matrices, showing that they satisfy the RIP with high probability. It turns out that the additional

structure makes it harder to prove the RIP when compared to entirely random matrices such as

5
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Gaussian and Bernoulli. The RIP for partial random Fourier matrices was first analyzed in [20],

where the authors obtained the bound m & s ln5(N) on the number of measurements. This was

later improved by Rudelson and Verhsynin [95] by one log-factor by using involved probabilistic

analysis including Dudley’s inequality. A similar version of their method is also used in proving

our results given in Chapter 3. The proof techniques of [20, 95] apply also to general discrete

orthogonal systems. Krahmer, Mendelson and Rauhut [75] considered partial random circulant

matrices and obtained the sufficient condition m & s ln2(s) ln2(N) for uniform recovery via RIP.

It seems that extra log-factors appearing in the conditions are the price of having extra structure

in the measurement process when compared to fully random matrices.

While there has been a lot of work in `1-minimization based algorithms, e.g., basis pursuit,

LASSO [102] and the Dantzig selector [21], other types of reconstruction methods such as greedy

algorithms have also been considered for recovering sparse vectors from undersampled measure-

ments. A simple greedy algorithm is the orthogonal matching pursuit (OMP) which has initially

appeared in [34,82]. This algorithm builds up the support set of the sparse vector by adding one

index to the target support set at each step. Gilbert and Tropp [57] demonstrated that a fixed

s-sparse vector can be recovered from O(s ln(N)) Gaussian measurements via OMP in s iterations.

However, it is not possible to achieve uniform recovery of s-sparse signals via s OMP iterations

under RIP conditions [41,92]. This issue was solved by Needell and Vershynin [85,86] with the

regularized OMP algorithm. This method is stable to noise under RIP conditions, although an

additional log-factor appeared in the condition on the restricted isometry constant. This log-factor

was later removed by the compressive sampling matching pursuit (CoSaMP) introduced by Needell

and Tropp [104]. In particular they gave the condition δ̃4s < 0.17 for stable and robust recovery,

see also [54] where a slightly better condition appears.

1.2.2. Null space conditions

The null space property (NSP) is another important ingredient in CS theory. It gives necessary

and sufficient conditions for exact recovery of s-sparse vetors via `1-minimization.

Definition. A matrix A ∈ Cm×N is said to satisfy the null space property of order s if for all

subsets S ⊂ [N ] with |S| = s it holds that

‖vS‖1 < ‖vS‖1 for all v ∈ ker A \ {0}.

NSP basically requires that every vector in the null space of A is far from being sparse. It

first appeared in the CS literature implicitly in works of Donoho and Elad [42], of Donoho and

Huo [43] and of Elad and Bruckstein [48], and explicitly in the work of Gribonval and Nielsen [64].

Later on, stable and robust versions of NSP were also given in the context of recovery via basis

pursuit (see [54, Chapter 4] for a review). The next result indicates the link between the null

space property and exact recovery of sparse vectors via basis pursuit.

Theorem 1.1. Given a matrix A ∈ Cm×N , every s-sparse vector x ∈ CN is the unique solution

of (1.2) with y = Ax if and only if A satisfies the null space property of order s.

Even though NSP provides a necessary and sufficient condition for sparse recovery via `1-

minimization, it is hard to verify it by a direct computation. This is why many researchers have

instead worked with sufficient RIP conditions in order to prove their results. However there has

6



CHAPTER 1. 1.3. COMPRESSED SENSING MEETS FUSION FRAMES

been some work towards showing the null space property directly for Gaussian matrices. Foucart

and Rauhut [54, Theorem 9.29] used the escape through the mesh theorem due to Gordon [62]

in order to show NSP, see also [70]. This yields that m & s ln(N/s) Gaussian measurements

are sufficient for stable recovery of s-sparse vectors. Similar ideas were also used in [95, 98]. In

Section 3.2.8 we follow these ideas in order to prove NSP for fusion frames.

1.3. Compressed sensing meets fusion frames

Before introducing fusion frames, we would like to start with explaining ‘classical frames’. A frame

for a vector space equipped with an inner product can be seen as a generalization of a basis to

a linearly dependent set of vectors. One can obtain a frame by adding some more elements to a

basis. Formally speaking, a set of vectors {ek}Mk=1 ⊂ RN is called a frame if

A‖x‖22 ≤
M∑
j=1

|〈ek, x〉|2 ≤ B‖x‖22

for all x ∈ RN . Here A,B > 0 are called frame constants and ‖ · ‖2 denotes the Euclidean norm.

Frames were first introduced by Dustin and Schaeffer [47] in the context of nonharmonic Fourier

series. They typically provide non-unique representations of each vector in the space [29]. Due

to this redundancy, classical frames are nowadays a standard notion for modeling applications, in

which redundancy plays a vital role such as filter bank theory, sigma-delta quantization, signal and

image processing and wireless communication. During the transfer of data (i.e., frame expansion

coefficients of a signal), the overcompleteness of frames offers resilience to errors such as data loss,

stability to noise, and freedom to capture important signal characteristics.

Fusion frames are a relatively new concept which is potentially useful when a single frame

system is not sufficient to represent the whole sensing mechanism efficiently. Fusion frames were

first introduced in [26] under the name of ‘frames of subspaces’ (see also the survey [25]). They

analyze signals by projecting them onto multidimensional subspaces, in contrast to frames which

consider only one-dimensional projections. We define a fusion frame for Rd as a collection of N

subspaces Wj ⊂ Rd and associated weights vj that satisfy

A‖x‖22 ≤
N∑
j=1

v2
j ‖Pjx‖22 ≤ B‖x‖22 (1.6)

for all x ∈ Rd and for some universal fusion frame bounds 0 < A ≤ B < ∞, where Pj ∈ Rd×d

denotes the orthogonal projection onto the subspace Wj . If A = B, then (Wj)j is called a tight

fusion frame. The initial idea to construct a fusion frame [26] was to obtain a frame for the whole

space RN by first building ‘smaller’ frames, i.e., for subspaces Wj , and then fuse them together.

This idea allows managing the data by first projecting them to subspaces and then process them

within each subspace and finally collect the locally computed objects. There have been a num-

ber of applications where fusion frames have proven to be useful practically, such as distributed

processing [27,76], parallel processing [5,88], packet encoding [6]. In Section 3.1.2, we give more

details about these applications.

Sparse recovery in fusion frames. Often signals have additional a priori structure other than

just pure sparsity. For instance the support set to be recovered can exhibit a certain structure,

7



1.3. COMPRESSED SENSING MEETS FUSION FRAMES CHAPTER 1.

i.e., only specific support sets are allowed. Suppose that we have block vectors consisting of N

blocks x1, . . . , xN , where each xj ∈ Rd. The sparsity concept for such vectors is ‘block’ sparsity

which is the ‘`0- block norm’ defined as

‖x‖0 = card{j ∈ [N ] : xj 6= 0}.

Here we count the number of non-zero blocks instead of the number of non-zero entries. The

problem of recovering a sparse block vector from linear measurements can be considered as an

extension of the classical CS problem, where the vectors of interest now consist of blocks. The

block sparsity model [51] along with other types of similar problems (such as joint [52] and group

sparsity [91], see Section 3.1.4) has been already investigated in the literature. A usual proxy for

the `0-minimization algorithm for recovering the block signal is the `1/`2-minimization [51].

Boufounos, Kutyniok and Rauhut in their paper [9] further extend ideas from CS to the fusion

frame setup. In this paper, they consider N fusion frame subspaces W1, . . . ,WN in Rd and collect

block vectors x ≡ (xj)
N
j=1 with xj ∈Wj in the space

H = {(xj)Nj=1 : xj ∈Wj , ∀j ∈ [N ]}.

Then the authors consider the recovery of s-sparse vectors from the set H from m < N linear

measurements. Details of the problem setup is given in Section 3.1.3. The novelty of [9] is

the additional assumption that each block xj belongs to one of the fusion frame subspaces Wj .

Typically those subspaces are lower dimensional than the ambient space Rd, say dim(Wj) = k < d,

and they satisfy an incoherence property which is quantified by the parameter

λ = max
i 6=j
‖PiPj‖2→2, i, j ∈ [N ]

which gives the cosine of the least principle angle between the subspaces. In [9] it was shown that

m & s ln(N/s) measurements are sufficient for many random measurement ensembles as in the

classical CS. This result is also parallel to other results in block sparsity problems in the literature,

see Section 3.6.

Our contribution: In Chapter 3 we show that one can improve the condition m & s ln(N/s)

by using the incoherence property of the subspaces. This is mainly done by invoking the `1/`2-

minimization program where the a priori information of the subspaces, in which the original vector

lies, is encoded. In particular we show that as λ decreases, i.e., the incoherence of the subspaces

increases, fewer measurements are needed for sparse recovery. Our results are three-fold. First we

present a nonuniform result stating that

m & (1 + λs) lnα(N)

measurements suffice for nonuniform recovery with Gaussian or Bernoulli matrices. Secondly, we

show a similar result for uniform recovery in two separate ways giving the conditions

m & (λs+
√
s) ln(Nd) ln2(sk)

(
ln(N) + k ln

(
s
√
k
))

, and (1.7)

m & d(1 + λs) ln(N), (1.8)

respectively. Condition (1.7) is valid for subgaussian matrices and exhibits a slightly worse order

in s and more log-factors. Condition (1.8) is valid only for Gaussian matrices and has the ambient

dimension d as a linear factor, which we think is suboptimal. All nonuniform and uniform results
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are also shown to be robust with respect to noise and stable under passing to approximately sparse

signals. Finally we provide a necessary condition for sparse recovery via `1/`2-minimization. We

show that

m &
s

d
ln

(
N

s

)
+
ks

d

measurements are required for any type of linear measurement scheme – not necessarily random.

We also provide a comparison between our results and show that our sufficient recovery conditions

do not fall very short from the necessary ones in the special case when the subspaces are assumed

to be equi-angular, see Section 3.2.5.

In Sections 3.3.3 and 3.6, we briefly explain certain standard approaches in CS that we have

tried for proving recovery results for (sub-)Gaussian matrices but do not give the desired estimate

that becomes better with decreasing λ. Therefore, we employ more recently developed tools [75]

based on suprema of chaos processes and apply them to our problem in order to reach our results

presented in Chapter 3. We would also like to note that our results do not necessarily assume that

the subspaces satisfy the fusion frame property (1.6).

1.4. Organization

Each of the chapters below is self contained, including notation.

• Chapter 2: Here, we present nonuniform recovery results in the classical CS setting with

subgaussian matrices which include Gaussian and Bernoulli matrices as examples. We use

an RIP-less theory in order to achive our results. In many contributions the constant in the

optimal scaling m ≥ Cs ln(N/s) is either not provided explicitly or is rather large. In our

work we give an explicit constant C = 2 for Gaussian and Bernoulli matrices (with a slightly

suboptimal log-factor). The constant 2 is also shown to be optimal, and has been provided

by different authors almost simultaneously. We also show the stability and robustness of

our results. In the rest of the chapter, we give an overview and comparison of existing CS

results in the nonuniform setting.

• Chapter 3: Here, we extend the concepts of CS to fusion frames and present results on

the solution of the sparse recovery problem in fusion frames. Our model considers a block

sparsity setup which is induced by the fusion frames subspaces with an additional incoherence

property of these subspaces (quantified by the parameter λ). A sparse vector from the fusion

frame is measured by a random matrix and then recovered by using `1/`2-minimization. It

was shown earlier that m & s ln(N/s) many measurements are sufficient for recovery. We

improve this result to m & (1 + λs) ln(N) by incorporating the structure of the subspaces.

In Section 3.2.6, we present a number of numerical experiments in order to support our

theoretical results. Our proofs use various techniques from CS such as an extension of RIP

for fusion frames (see Section 3.2.7), the null space property (see Section 3.2.8) and several

tools from Banach space geometry, coding theory and probability theory, in particular,

random matrices and concentration inequalities.

• Chapter 4: Here, we give a brief summary of our results presented in the earlier chapters

and discuss some open problems and future research directions.

• Appendix: In order not to break the flow of the thesis, we present some auxiliary results

used in the main proofs in the appendix. These are mostly borrowed from probability theory.
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CHAPTER 2

Nonuniform Recovery with Subgaussian Matrices

2.1. Introduction

Compressed sensing (CS) allows to reconstruct signals from far fewer measurements than what

was considered necessary before. The seminal papers by E. Candès, J. Romberg, T. Tao [18,20]

and by D. Donoho [38] on this subject have triggered a large research activity in mathematics,

engineering and computer science with a lot of potential applications.

In mathematical terms we aim at solving the linear system of equations y = Ax for x ∈ CN

when y ∈ Cm and A ∈ Cm×N are given, and when m � N . Clearly, in general this task is

impossible since even if A has full rank as there are infinitely many solutions to this equation.

The situation dramatically changes if x is sparse, that is, ‖x‖0 := card{`, x` 6= 0} is small.

As a first approach one is led to solve the optimization problem

min
z∈CN

‖z‖0 subject to Az = y,

where y = Ax. Unfortunately, this problem is NP-hard in general. It has become common to

replace the `0-minimization problem by the `1-minimization problem

min
z∈CN

‖z‖1 subject to Az = y. (2.1)

This problem can be solved by efficient convex optimization techniques [11]. As a key result of CS,

under appropriate conditions on A and on the sparsity of x, `1-minimization indeed reconstructs

the original x. Certain random matrices A are known to provide optimal recovery guarantees with

high probability.

2.1.1. Nonuniform vs. uniform recovery

Throughout this thesis, we mainly talk about two types of recovery results:

• Uniform recovery: Such results state that with high probability on the draw of the random

matrix A, every sparse vector can be reconstructed under appropriate conditions.

• Nonuniform recovery: Such results state that a given sparse vector x can be reconstructed

with high probability on the the draw of the matrix A under appropriate conditions. The

difference to uniform recovery is that nonuniform recovery does not imply that there is a

matrix that recovers all x simultaneously. Or in other words, the small exceptional set of

matrices for which recovery fails may depend on x.

Clearly, uniform recovery implies nonuniform recovery, but the converse is not true. One pursues

different strategies in order to prove these different types of recovery results. In this chapter, we

deal with nonuniform recovery with subgaussian matrices (see Section 2.1.3 for definition). In

order to obtain such a result, a sufficient recovery condition for an individual vector is given by

11
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constructing a ‘dual certificate’ which is mainly based on the Lagrange dual problem of (2.1), see

Section 2.2.1.

2.1.2. Obtaining good constants for compressed sensing

Uniform recovery via `1-minimization is for instance satisfied if the by-now classical restricted

isometry property (RIP) (1.4) holds for A with high probability [17,19]. A common choice is to

take A ∈ Rm×N as a Gaussian random matrix, that is, the entries of A are independent normal

distributed random variables. If, for ε ∈ (0, 1),

m ≥ C(s ln(N/s) + ln(2/ε)), (2.2)

then with probability at least 1 − ε, we have uniform recovery of all s-sparse vectors x ∈ RN

using `1-minimization and A as measurement matrix, see e.g. [20, 40, 84]. The constant C > 0

is universal and estimates via the restricted isometry property give a value of around C ≈ 200,

which is significantly worse than what can be observed in practice. A direct analysis in [95] for the

Gaussian case, which avoids the restricted isometry property, gives C ≈ 12. Foucart and Rauhut

in [54] follows a similar approach to obtain C ≈ 8, see also [70]. This is still somewhat larger

than the constants we obtain in the nonuniform setting. Our main results consider nonuniform

sparse recovery using Gaussian and more general subgaussian random matrices in connection with

`1-minimization and provide nonuniform recovery guarantees with an explicit and good constant

C = 2. In particular, we also obtain the same constant for Bernoulli matrices whose entries are

independent random variables taking the values +1 and −1 with equal probability. Moreover,

our results can treat also the recovery of complex vectors and they extend to the stability of

reconstruction when the vectors are only approximately sparse and measurements are perturbed.

Gaussian and subgaussian random matrices are very important for the theory of CS because

they provide a model of measurement matrices which can be analyzed very accurately (as shown in

this chapter). They are used in real-world sensing scenarios, for instance in the one-pixel camera

[46]. Moreover, even if certain applications require more structure of the measurement matrix

(leading to structured random matrices [94]), the empirically observed recovery performance of

many types of matrices is very close to the one of (sub-)Gaussian random matrices [44], which

underlines the importance of understanding subgaussian random matrices in CS.

2.1.3. Main results

• The Gaussian case

We say that an m×N random matrix A is Gaussian if its entries are independent and standard

normal distributed random variables, that is, having mean zero and variance 1. Our nonuniform

sparse recovery result for Gaussian matrices and `1-minimization reads as follows.

Theorem 2.1. Let x ∈ CN with ‖x‖0 = s. Let A ∈ Rm×N be a randomly drawn Gaussian matrix,

and let ε ∈ (0, 1). If

m ≥ s
[√

2 ln(4N/ε) +
√

2 ln(2/ε)/s+ 1
]2
, (2.3)

then with probability at least 1−ε the vector x is the unique solution to the `1-minimization problem

(2.1).
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Remark. For large N and s, Condition (2.3) roughly becomes

m > 2s ln(4N/ε). (2.4)

Comparing with (2.2) we realize that the log-term falls slightly short of the optimal one log(N/s).

However, we emphasize that our proof is short, and the constant is explicit and good. Indeed, when

in addition s/N becomes very small (this is in fact the interesting regime) then we nevertheless

reveal the conditions found by Donoho and Tanner [39,40], and in particular, the optimal constant

2. We note that Donoho and Tanner used methods from random polytopes, which are quite

different from our proof technique. For a detailed overview see Section 2.4.

• The subgaussian case

We generalize our recovery result for matrices with entries that are independent subgaussian

random variables. A random variable X is called subgaussian if there are constants β, θ > 0 such

that

P(|X| ≥ t) ≤ βe−θt
2

for all t > 0.

It can be shown [111] that X is subgaussian with EX = 0 if and only if there exists a constant c

(depending only on β and θ) such that

E[exp(tX)] ≤ ect
2

for all t ∈ R. (2.5)

Important special cases of subgaussian mean-zero random variables are standard Gaussians, and

Bernoulli (also called Rademacher) variables, that is, random variables that take the values ±1

with equal probability. For both of these random variables the constant c = 1/2, see the Bernoulli

case.

A random matrix with entries that are independent mean-zero subgaussian random variables

with the same constant c in (2.5) is called a subgaussian random matrix. Note that the entries

are not required to be identically distributed.

Theorem 2.2. Let x ∈ CN with ‖x‖0 = s. Let A ∈ Rm×N be a random draw of a subgaussian

matrix with constant c in (2.5), and let ε ∈ (0, 1). If

m ≥ s
[√

4c ln(4N/ε) +
√
C(3 + ln(4/ε)/s)

]2
, (2.6)

then with probability at least 1−ε the vector x is the unique solution to the `1-minimization problem

(2.1). The constant C in (2.6) only depends on c.

More precisely, the constant C = 1.646c̃−1, where c̃ = c̃(c) is the constant in (2.17).

• The Bernoulli case

We specialize the previous result for subgaussian matrices to Bernoulli matrices. We are then able

to give explicit values for the constants appearing in the result of Theorem 2.2. If Y is a Bernoulli

random variable, then by a Taylor series expansion

E(exp(tY )) =
1

2

(
et + e−t

)
≤ e 1

2 t
2

.

This shows that the subgaussian constant c = 1/2 in the Bernoulli case. Further, we have the

following concentration inequality for a matrix B ∈ Rm×N with independent entries taking values

13
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of ±1/
√
m with equal probability,

P
(∣∣‖Bx‖22 − ‖x‖22∣∣ > t‖x‖22

)
≤ 2e−

m
2 (t2/2−t3/3), (2.7)

for all x ∈ RN , t ∈ (0, 1), see e.g. [1, 3]. We can simply estimate t3 < t2 in (2.7) and obtain

c̃ = 1/12 in (2.17) and consequently C = 1.646c̃−1 = 19.76.

Corollary 2.3. Let x ∈ CN with ‖x‖0 = s. Let A ∈ Rm×N be a matrix with entries that are

independent Bernoulli random variables, and let ε ∈ (0, 1). If

m ≥ 2s
[√

ln(4N/ε) +
√

29.64 + 9.88 ln(4/ε)/s
]2
, (2.8)

then with probability at least 1−ε the vector x is the unique solution to the `1-minimization problem

(2.1).

Roughly speaking for large N and mildly large s the second square-root in (2.8) can be ignored

and we arrive at m ≥ 2s log(4N/ε).

• Stable and robust recovery

In this section we state extensions of our results for nonuniform recovery with Gaussian matrices

that show stability when passing from sparse signals to only approximately sparse ones and that

are robust under perturbations of the measurements. In this context we assume the noise model

y = Ax+ e ∈ Cm with ‖e‖2 ≤ η
√
m. (2.9)

It it natural then to work with the noise constrained `1-minimization problem

min
z∈CN

‖z‖1 subject to ‖Az − y‖2 ≤ η
√
m. (2.10)

For the formulation of the next result we also recall the best s-term approximation error of x in

`1-norm

σs(x)1 = inf
‖z‖0≤s

‖x− z‖1.

Theorem 2.4. Let x ∈ CN be an arbitrary fixed vector and let S ⊂ {1, 2, . . . , N} denote the index

set corresponding to its s largest absolute entries. Let A ∈ Rm×N be a draw of a Gaussian random

matrix. Suppose we take noisy measurements as in (2.9). If, for θ ∈ (0, 1),

m ≥ s

[√
2 ln(12N/ε)

1− θ
+
√

2 ln(6/ε)/s+
√

2

]2

, (2.11)

then with probability at least 1− ε, the solution x̂ to minimization problem (2.10) satisfies

‖x− x̂‖2 ≤
C1

θ
η +

C2

θ

σs(x)1√
s

. (2.12)

The constants C1, C2 > 0 are universal.

Remark. Condition (2.11) on the number of required measurements is very similar to (2.3) in

the exactly sparse and noiseless case. When θ tends to 0 we almost obtain the same condition,

but then the right hand side of the stability estimate (2.12) blows up. In other words, we need to

take slightly more measurements than required for exact recovery in order to ensure stability and

robustness of the reconstruction. Also, a version for subgaussian random matrices can be shown.
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We note that the `2-estimate for the reconstruction error in (2.12) is as strong as the `2-error

guarantee implied by the RIP in (1.5), as the coefficient of σs(x)1 is 1/
√
s and the coefficient of η

is a constant in both. In our proof of Theorem 2.4, we use a weaker concept of RIP introduced in

Section 2.3.1 which allows us to obtain this strong error estimate and also have good constants in

(2.11).

2.1.4. Notation

We now set up some notation needed in this chapter. Let [N ] denote the set {1, 2, . . . , N}. For

a set S ⊂ [N ], S denotes the complement set [N ] \ S. The column submatrix of a matrix A

consisting of the columns indexed by S is written AS = (aj)j∈S and aj ∈ Rm, j = 1, . . . ,m denote

the columns of A. Similarly xS ∈ CS denotes the vector x ∈ CN restricted to the entries in S. We

further need to introduce the sign vector sgn(x) ∈ CN having entries

sgn(x)j :=

{
x
|xj | if xj 6= 0,

0 if xj = 0,
j ∈ [N ].

The Moore-Penrose pseudo-inverse of a matrix B such that (B∗B) is invertible is given by B† =

(B∗B)−1B∗, so that B†B = Id, where Id is the identity matrix.

2.2. Exact sparse recovery

2.2.1. Dual certificate

In this section we state some auxiliary results that are used in the proofs of the main theorems,

directly or indirectly. The proofs of Theorems 2.1 and 2.2 require a condition for sparse recovery,

which not only depends on the matrix A but also on the sparse vector x ∈ CN to be recovered.

The following theorem is due to J.J. Fuchs [55] in the real-valued case and was extended to the

complex case by J. Tropp [103], see also [94, Theorem 2.8] for a slightly simplified proof.

Theorem 2.5. Let A ∈ Cm×N and x ∈ CN with S := supp(x). Assume that AS is injective and

that there exists a vector h ∈ Cm such that

A∗Sh = sgn(xS),

|(A∗h)`| < 1, ` ∈ [N ] \ S.

Then x is the unique solution to the `1-minimization problem (2.1) with y = Ax.

Choosing the vector h =
(
A†S

)∗
sgn(xS) leads to the following corollary.

Corollary 2.6. Let A ∈ Cm×N and x ∈ CN with S := supp(x). If the matrix AS is injective and

if

|〈(AS)†a`, sgn(xS)〉| < 1 for all ` ∈ [N ] \ S,

then the vector x is the unique solution to the `1-minimization problem (2.1) with y = Ax.

2.2.2. Proof of Theorem 2.1

We set S := supp(x), which has a cardinality s. By Corollary 2.6, for recovery via `1-minimization,

it is sufficient to show that

|〈(AS)†a`, sgn(xS)〉| = |〈a`, (A†S)∗sgn(xS)〉| < 1 for all ` ∈ [N ] \ S.
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Therefore, the probability of recovery failure is bounded by

P := P(∃` 6∈ S |〈(AS)†a`, sgn(xS)〉| ≥ 1).

If we condition X := 〈a`, (A†S)∗sgn(xS)〉 on AS , it is a Gaussian random variable. Further,

X =
∑m
j=1(a`)j [(A

†
S)∗sgn(xS)]j is centered so its variance ν2 can be estimated by

ν2 = E(X2) =

m∑
j=1

E[(a`)
2
j ][(A

†
S)∗sgn(xS)]2j

= ‖(A†S)∗sgn(xS)‖22 ≤ σ−2
min(AS)‖sgn(xS)‖22 = σ−2

min(AS) s,

where σmin denotes the smallest singular value. The last inequality uses the fact that ‖(A†S)∗‖2→2 =

‖A†S‖2→2 = σ−1
min(AS). The tail of a mean-zero Gaussian random variable X with variance σ2 obeys

P(|X| > t) ≤ e−t
2/2σ2

. (2.13)

(See [94, Lemma 10.2].) Then it follows that

P ≤ P
(
∃` 6∈ S |〈(AS)†a`, sgn(xS)〉| ≥ 1

∣∣∣‖(A†S)∗sgn(xS)‖2 < α
)

+ P(‖(A†S)∗sgn(xS)‖2 ≥ α)

≤ 2Nexp(−1/2α2) + P(σ−1
min(AS)

√
s ≥ α). (2.14)

The inequality in (2.14) uses the tail estimate (2.13), the union bound, and the independence of

a` and AS . The first term in (2.14) is bounded by ε/2 if

α ≤ 1√
2 ln(4N/ε)

. (2.15)

In order to estimate the second term in (2.14) we use (A.9) as follows

P(σ−1
min(AS)

√
s ≥ α) = P(σmin(AS) ≤

√
s/α) = P

(
σmin(AS/

√
m) ≤ 1√

m

√
s

α

)
≤ exp

(
−m(1− (α−1 + 1)

√
s/m)2

2

)
. (2.16)

If we choose α that makes (2.15) an equality, plug it into condition (2.16), and require that (2.16)

is bounded by ε/2 we arrive at the condition

m ≥ s
[√

2 ln(4N/ε) +
√

2 ln(2/ε)/s+ 1
]2
,

which ensures recovery with probability at least 1−ε. This concludes the proof of Theorem 2.1. �

2.2.3. Proof of Theorem 2.2

• Conditioning of subgaussian matrices

We start with a definition.

Definition. Let Y be a random vector in RN . If E|〈Y, x〉|2 = ‖x‖22 for all x ∈ RN , then Y is called

isotropic. Furthermore, if for all x ∈ RN with ‖x‖2 = 1, the random variable 〈Y, x〉 is subgaussian

with subgaussian parameter c being independent of x, that is,

E[exp(θ〈Y, x〉)] ≤ exp(cθ2), for all θ ∈ R, ‖x‖2 = 1,
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then Y is called a subgaussian random vector.

While the following lemma is well-known in principle, the right scaling in δ has only recently

appeared in [54], compare with [3,84]. We include its proof for the sake of completeness.

Lemma 2.7. Let S ⊂ [N ] with card(S) = s. Let A be an m×N random matrix with independent,

isotropic, and subgaussian rows with the same parameter c as in (2.5). Then, for δ ∈ (0, 1),

normalized matrix Ã = 1√
m
A satisfies

‖Ã∗SÃS − Id‖2→2 ≤ δ

with probability at least 1− ε provided

m ≥ Cδ−2(3s+ ln(2ε−1)),

where C depends only on c.

Proof. The following concentration inequality for subgaussian random variables appears, for

instance, in [1,84].

P(|‖Ãx‖22 − ‖x‖22| > t‖x‖22) ≤ 2exp(−c̃mt2), (2.17)

where c̃ depends only on c. We will combine the above concentration inequality with the net

technique. Let ρ ∈ (0,
√

2 − 1) be a number to be determined later. According to a volumetric

argument given in Proposition 3.47, see also [94, Proposition 10.1], there exists a finite subset U

of the unit sphere S = {x ∈ RN, supp(x) ⊂ S, ‖x‖2 = 1}, which satisfies

|U | ≤
(

1 +
2

ρ

)s
and min

u∈U
‖z − u‖2 ≤ ρ for all z ∈ S.

The concentration inequality (2.17) yields

P
(∣∣∣‖Ãu‖22 − ‖u‖22∣∣∣ > t ‖u‖22 for some u ∈ U

)
≤
∑
u∈U

P
(∣∣∣‖Ãu‖22 − ‖u‖22∣∣∣ > t ‖u‖22

)
≤ 2|U | exp

(
−c̃t2m

)
≤ 2

(
1 +

2

ρ

)s
exp

(
−c̃t2m

)
.

The positive number t will be set later depending on δ and on ρ. Let us assume for now that the

realization of the random matrix Ã yields∣∣∣‖Ãu‖22 − ‖u‖22∣∣∣ ≤ t for all u ∈ U. (2.18)

By the above, this occurs with probability exceeding

1 − 2

(
1 +

2

ρ

)s
exp

(
−c̃t2m

)
.

Next we show that (2.18) implies
∣∣∣‖Ãx‖22 − ‖x‖22∣∣∣ ≤ δ for all x ∈ S, that is ‖Ã∗SÃS − Id‖2→2 ≤ δ

(when t is determined appropriately). Let B = Ã∗SÃS − Id, so that we have to show ‖B‖2→2 ≤ δ.
Note that (2.18) means that |〈Bu, u〉| ≤ t for all u ∈ U . Now consider a vector x ∈ S, for which

we choose a vector u ∈ U satisfying ‖x− u‖2 ≤ ρ <
√

2− 1. We obtain

|〈Bx, x〉| = |〈B(u+ x− u), u+ x− u〉|

17
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= |〈Bu, u〉+ 〈B(x− u), x− u〉+ 2 〈Bu, x− u〉|

≤ |〈Bu, u〉|+ |〈B(x− u), x− u〉|+ 2 ‖Bu‖2 ‖x− u‖2
≤ t+ ‖B‖2→2 ρ

2 + 2 ‖B‖2→2 ρ.

Taking the supremum over all x ∈ S, we deduce that

‖B‖2→2 ≤ t+ ‖B‖2→2

(
ρ2 + 2ρ

)
, i.e., ‖B‖2→2 ≤

t

2− (ρ+ 1)2
.

Note that the division by 2 − (ρ + 1)2 is justified by the assumption that ρ <
√

2 − 1. Then we

choose

t = tδ,ρ :=
(
2− (ρ+ 1)2

)
δ,

so that ‖B‖2→2 ≤ δ, and with our definition of t,

P
(
‖Ã∗SÃS − Id‖2→2 > δ

)
≤ 2

(
1 +

2

ρ

)s
exp

(
−c̃δ2(2− (ρ+ 1)2)2m

)
.

Hence, ‖Ã∗SÃS − Id‖2→2 ≤ δ with probability at least 1− ε provided

m ≥ 1

c̃(2− (ρ+ 1)2)2
δ−2

(
ln(1 + 2/ρ)s+ ln(2ε−1)

)
. (2.19)

Now we choose ρ such that ln(1+2/ρ) = 3, that is, ρ = 2/(e3−1). Then (2.19) gives the condition

m ≥ Cδ−2
(
3s+ ln(2ε−1)

)
with C = 1.646 c̃−1. This concludes the proof. �

• Proof of Theorem 2.2 continued

We follow a similar path as in the proof of the Gaussian case. First denote S := supp(x). The

failure probability P can be bounded by

P ≤ P
(
∃` 6∈ S |〈(AS)†a`, sgn(xS)〉| ≥ 1

∣∣∣‖(A†S)∗sgn(xS)‖2 < α
)

+ P(‖(A†S)∗sgn(xS)‖2 ≥ α).

(2.20)

The first term in (2.20) can be bounded by using Lemma A.1. Conditioning onAS and ‖(A†S)∗sgn(xS)‖2 <
α, we obtain

P(|〈(AS)†a`, sgn(xS)〉| ≥ 1) = P(|
m∑
j=1

(a`)j [(A
†
S)∗sgn(xS)]j | ≥ 1) ≤ 2exp(−1/(4cα2)).

So by the union bound the first term in (2.20) can be estimated by 2Nexp(−1/(4cα2)), which in

turn is no larger than ε/2 provided

α ≤
√

1/(4c ln(4N/ε)). (2.21)

For the second term in (2.20), we have

P(‖(A†S)∗sgn(xS)‖2 ≥ α) ≤ P(σ−1
min(AS)

√
s ≥ α)

= P(σmin(AS) ≤
√
s/α) = P

(
σmin(AS/

√
m) ≤ 1√

m

√
s

α

)
,

18
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where σmin denotes the smallest singular value. By Lemma 2.7 the normalized subgaussian matrix

ÃS := AS/
√
m satisfies

P(σmin(ÃS) < 1− δ) < P(σmin(ÃS) <
√

1− δ) < P(‖Ã∗SÃS − Id‖2→2 ≥ δ) < ε/2

provided m ≥ Cδ−2(3s+ ln(4ε−1)) and δ ∈ (0, 1), where C depends on the subgaussian constant

c. The choice 1√
m

√
s
α = 1 − δ yields δ = 1 −

√
s

α
√
m

. Combining these arguments and choosing α

that makes (2.21) an equality, we can bound the failure probability by ε provided

m ≥ C

(
1−

√
4cs ln(4N/ε)√

m

)−2

(3s+ ln(4/ε)). (2.22)

Solving (2.22) for m yields the condition

m ≥ s
[√

4c ln(4N/ε) +
√
C(3 + ln(4/ε)/s)

]2
.

This condition also implies δ ∈ (0, 1) which concludes the proof of Theorem 2.2. �

2.3. Stable and robust recovery

2.3.1. Weak RIP

The concept of weak restricted isometry property (weak RIP) was introduced in [22].

Definition. (Weak RIP) Let S ⊂ [N ] be fixed with cardinality s and fix δ1, δ2 > 0. Then a matrix

A ∈ Rm×N is said to satisfy the weak RIP with parameters (S, r, δ1, δ2) if

(1− δ1)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δ2)‖v‖22

for all v supported on S ∪R and all subsets R in [N ] \ S with cardinality |R| ≤ r.

The weak RIP is a combination of the RIP and the local conditioning of A on the column set

S. The next theorem derives conditions for a Gaussian matrix to satisfy the weak RIP for a given

set S and r value.

Theorem 2.8. Let A ∈ Rm×N be a randomly drawn Gaussian matrix. Then the normalized matrix

Ã = A/
√
m satisfies the weak RIP with parameters (S, r, δ1, δ2) for r ≤ N and δ1, δ2 ∈ (0, 1) with

probability at least 1− ε provided that

m ≥ min
{

1−
√

1− δ1,
√

1 + δ2 − 1
}−2 [√

s+ r +
√

2r ln(eN/r) + 2 ln(2/ε)
]2
. (2.23)

Proof. Let us denote the event E := {Ã satisfies weak RIP with parameters (S, r, δ1, δ2)} and

the set

D = {x : ‖x‖2 = 1, supp(x) ⊂ S ∪R, |R| ≤ r, S ∩R = ∅}.

Then

sup
x∈D
‖Ãx‖22 ≤ (1 + δ2)‖x‖22 and inf

x∈D
‖Ãx‖22 ≥ (1− δ1)‖x‖22 (2.24)

implies E. It is easy to see that (2.24) is equivalent to

sup
|R|≤r

σmax(ÃS∪R) ≤
√

1 + δ2 and inf
|R|≤r

σmin(ÃS∪R) ≥
√

1− δ1,

19



2.3. STABLE AND ROBUST RECOVERY CHAPTER 2.

where σmax and σmin denote the largest and smallest singular values, respectively. Therefore we

obtain

P(Ec) ≤ P(∃R, σmax(ÃS∪R) >
√

1 + δ2) + P(∃R, σmin(ÃS∪R) <
√

1− δ1).

The terms on the right hand side of the inequality can be bounded by (A.10) which gives

P(σmax(ÃS∪R) > 1 +
√

(s+ r)/m+ t1) ≤ exp−mt
2
1/2 .

Equating 1 +
√

(s+ r)/m + t1 =
√

1 + δ2 yields t1 =
√

1 + δ2 − 1 −
√

(s+ r)/m. Similarly by

(A.9)

P(σmin(ÃS∪R) > 1−
√

(s+ r)/m− t2) ≤ exp−mt
2
2/2 .

Now we choose t2 = 1−
√

(s+ r)/m−
√

1− δ1. We have

P(σmax(ÃS∪R) >
√

1 + δ2) + P(σmin(ÃS∪R) <
√

1− δ1) ≤ exp−mt
2
1/2 + exp−mt

2
2/2 .

Taking the union bound over all subsets R, we have

P(Ec) ≤
∑
|R|≤r

(
P(σmax(ÃS∪R) >

√
1 + δ2) + P(σmin(ÃS∪R) <

√
1− δ1)

)
≤
(
N

r

)
(exp−mt

2
1/2 + exp−mt

2
2/2) ≤

(
eN

r

)r
exp−mt

2
1/2 +

(
eN

r

)r
exp−mt

2
2/2 . (2.25)

The last estimate is due to [54, Lemma C.5]. Now we require that both terms on the right hand

side of (2.25) are bounded by ε/2. For the first term this holds provided

m(
√

1 + δ2 − 1−
√

(s+ r)/m)2 ≥ 2r ln(eN/r) + 2 ln(2/ε).

Taking square roots on both sides and rearranging yields

√
m ≥ (

√
1 + δ2 − 1)−1[

√
s+ r +

√
2r ln(eN/r) + 2 ln(2/ε)]. (2.26)

Similarly the second term in (2.25) is bound by ε/2 provided

√
m ≥ (1−

√
1− δ1)−1[

√
s+ r +

√
2r ln(eN/r) + 2 ln(2/ε)]. (2.27)

Squaring (2.26) and (2.27), we arrive at condition (2.23). This completes the proof. �

Before proceeding, we state an auxiliary result from [94, Prop. 2.5(c)] that will be useful

shortly.

Lemma 2.9. Let A ∈ Rm×N satisfy the RIP (1.4) with constants δ̃s and let u, v ∈ RN with

disjoint supports, supp(u) ∩ supp(v) = ∅. Let s = |supp(u)|+ |supp(v)|. Then

|〈Au,Av〉| ≤ δ̃s‖u‖2‖v‖2.

The key to the proof of Theorem 2.4 is the following stable and robust version of the dual

certificate based recovery condition of Theorem 2.5. Its proof follows a similar strategy as in [22]

and [69, Theorem 3.1].

Lemma 2.10. Let x ∈ CN and A ∈ Rm×N . Let S be the set of indices of the s largest absolute

entries of x. Assume that A satisfies weak RIP with parameters (S, r, δ1, δ2), r ≤ N even and

δ1, δ2 ∈ (0, 1), and there exists a vector v ∈ Cm such that, for some θ ∈ (0, 1),

A∗Sv = sgn(xS), (2.28)
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|(A∗v)`| < 1− θ, ` ∈ S, (2.29)

‖v‖2 ≤ β
√
s. (2.30)

Suppose we take noisy measurements y = Ax+ e ∈ Cm with ‖e‖2 ≤ η. Then the solution x̂ to

min
z∈CN

‖z‖1 subject to ‖Az − y‖ ≤ η

satisfies

‖x− x̂‖2 ≤
√

1 + δ2
1− δ1

2η +

(
2
√

2 max{δ1, δ2}
1− δ1

+
√

2

)(
2β

θ

√
s

r
η +

2

θ

σs(x)1√
r

)
. (2.31)

Proof. Set x̂ = x + h. Our goal is to bound the norm of h. Due to (2.10) and the assumption

on the noise level ‖e‖2η, we have

‖Ah‖2 = ‖Ax− y − (Ax̂− y)‖2 ≤ ‖Ax− y‖2 + ‖Ax̂− y‖2 ≤ 2η. (2.32)

Since x̂ is a minimizer of (2.10),

‖x‖1 ≥ ‖x̂‖1 = ‖(x+ h)S‖1 + ‖(x+ h)S‖1

≥ Re〈(x+ h)S , sgn(x)S〉+ ‖hS‖1 − ‖xS‖1

= ‖x‖1 + Re〈hS , sgn(x)S〉+ ‖hS‖1 − 2‖xS‖1.

Rearranging gives

‖hS‖1 ≤ |Re〈hS , sgn(x)S〉|+ 2‖xS‖1. (2.33)

Using assumptions (2.28), (2.29), (2.30) together with the Cauchy-Schwarz and Hölder’s inequal-

ities

|Re〈hS , sgn(x)S〉| = |Re〈hS , (A∗v)S〉| ≤ |〈h,A∗v〉|+ |〈hS , (A
∗v)S〉|

≤ ‖Ah‖2‖v‖2 + ‖hS‖1‖(A
∗v)S‖∞ ≤ 2ηβ

√
s+ (1− θ)‖hS‖1.

Plugging this into (2.33) yields

‖hS‖1 ≤
2ηβ

θ

√
s+

2

θ
σs(x)1. (2.34)

We have bounded the off-support part of h above. Now we proceed to bound the norm of hS .

We will use the weak RIP of the matrix A. As assumed r is even in the definition of the weak

RIP. We begin by partitioning S into subsets S1, S2, . . . of length r/2. Let S1 be the indices of the

r/2 largest entries of hS , S2 be those of the next r/2 largest and so on. Denote S01 = S ∪ S1. We

first bound ‖hS01‖2. The weak RIP assumption gives

(1− δ1)‖hS01
‖22 ≤ ‖AS01

hS01
‖22 = 〈AS01

hS01
, Ah〉 − 〈AS01

hS01
, AS01

hS01
〉. (2.35)

The first part on the right hand side of the equality above can be bounded by the Cauchy-Schwarz

and the weak RIP,

|〈AS01
hS01

, Ah〉| ≤ ‖AS01
hS01
‖2‖Ah‖2 ≤ 2η

√
1 + δ2‖hS01

‖2. (2.36)

We also used (2.32) here. For the second term, we again split into two further terms,

|〈AS01
hS01

, AS01
hS01
〉| ≤ |〈AShS , AS01

hS01
〉|+ |〈AS1

hS1
, AS01

hS01
〉|.
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We have

|〈AShS , AS01
hS01
〉| ≤

∑
j≥2

|〈AShS , ASjhSj 〉|.

According to Lemma 2.9, the weak RIP implies

|〈AShS , ASjhSj 〉| ≤ max{δ1, δ2}‖hS‖2‖hSj‖2.

Therefore,

|〈AShS , AS01
hS01
〉| ≤ max{δ1, δ2}‖hS‖2

∑
j≥2

‖hSj‖2.

We bound the sum following a well-known argument from [21, (3.10)]. First we note that for each

j ≥ 2,

‖hSj‖2 ≤
√
r/2‖hSj‖∞ ≤

1√
r/2
‖hSj−1

‖1,

where ‖ · ‖∞ gives the largest absolute entry, and thus∑
j≥2

‖hSj‖2 ≤
1√
r/2

(‖hS1
‖1 + ‖hS2

‖1 + . . .) ≤ 1√
r/2
‖hS‖1. (2.37)

This yields

|〈AShS , AS01
hS01
〉| ≤ max{δ1, δ2}√

r/2
‖hS‖2‖hS‖1.

Similarly we obtain

|〈AS1
hS1

, AS01
hS01
〉| ≤ max{δ1, δ2}√

r/2
‖hS1

‖2‖hS‖1.

Then,

|〈AS01
hS01

, AS01
hS01
〉| ≤ 2

√
2

max{δ1, δ2}√
r

‖hS01
‖2‖hS‖1.

Plugging this and (2.36) into (2.35) yields

‖hS01
‖2 ≤

√
1 + δ2

1− δ1
2η +

2
√

2 max{δ1, δ2}
(1− δ1)

√
r
‖hS‖1.

This together with (2.34) leads us to the desired bound,

‖h‖2 ≤ ‖hS01
‖2 +

∑
j≥2

‖hSj‖2 ≤ ‖hS01
‖2 +

1√
r/2
‖hS‖1

≤
√

1 + δ2
1− δ1

2η +

(
2
√

2 max{δ1, δ2}
1− δ1

+
√

2

)
1√
r
‖hS‖1

≤
√

1 + δ2
1− δ1

2η +

(
2
√

2 max{δ1, δ2}
1− δ1

+
√

2

)(
2ηβ

θ

√
s

r
+

2

θ

σs(x)1√
r

)
.

This completes the proof. �

2.3.2. Proof of Theorem 2.4

The proof relies on Lemma 2.10. We will set β, δ1, δ2 and r later on. First observe that (2.10) is

equivalent to

min
z∈CN

‖z‖1 subject to

∥∥∥∥ 1√
m
Az − 1√

m
y

∥∥∥∥
2

≤ η.
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Our candidate for the dual certificate is v = (Ã†S)∗sgn(xS) as in the noiseless case, where Ã =

A/
√
m is the normalized matrix. We will check the assumptions of Lemma 2.10 for this choice.

First, Theorem 2.8 says that Ã satisfies weak RIP with parameters (S, r, δ1, δ2) with at least

probability 1− ε provided

m ≥ min
{

1−
√

1− δ1,
√

1 + δ2 − 1
}−2 [√

s+ r +
√

2r ln(eN/r) + 2 ln(2/ε)
]2
. (2.38)

Assumption (2.28) is satisfied by definition. In the proof of Theorem 2.1, it was shown that

Condition (2.29) is satisfied for θ = 0 with probability at least 1−ε provided (2.3) holds. Replacing

1 by 1− θ, basically changes the condition (2.15) to

α ≤ 1− θ√
2 ln(4N/ε)

,

where α appears as a variable in the proof of Theorem 2.1. Then we can similarly show that (2.29)

is satisfied provided

m ≥ s

[√
2 ln(4N/ε)

1− θ
+
√

2 ln(2/ε)/s+ 1

]2

, (2.39)

with probability at least 1− ε. Finally we seek a condition for (2.30) to hold. Observe that

‖v‖2 = ‖(Ã†S)∗sgn(xS)‖2 ≤ σ−1
min(ÃS)‖sgn(xS)‖2 = σ−1

min(ÃS)
√
s.

It remains to show that σ−1
min(ÃS) ≤ β with high probability. In fact the assumed weak RIP implies

such a bound but the following analysis gives tighter bound. We start this analysis by observing

that

P(σ−1
min(ÃS) > β) = P(σmin(ÃS) < 1/β).

Using (A.9), we set 1
β = 1−

√
s
m − r. Then we have

P(σ−1
min(ÃS) > β) ≤ exp

(
−m

2

(
1−

√
s

m
− 1

β

)2
)
.

The previous expression is bounded by ε provided

√
m ≥ β

β − 1

(√
s+

√
2 ln(1/ε)

)
. (2.40)

Hence we conclude that if (2.38), (2.39) and (2.40) hold, the recovery error satisfies (2.31) with

probability at least 3ε. Now we assign values to the variables. Set r = s/8, δ1 = δ2 = 0.75, and

β = 3.5. Then all three conditions are implied by

m ≥ s

[√
2 ln(4N/ε)

1− θ
+
√

2 ln(2/ε)/s+
√

2

]2

.

Plugging these numbers into (2.31) and replacing ε by ε/3 completes the proof. �

2.4. Discussion

2.4.1. Comparison to related theoretical results

Asymptotic results and phase transitions: Donoho and Tanner [39, 40] obtain sparse re-

covery results via `1-minimization with Gaussian matrices via methods from random polytopes.
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They operate essentially in an asymptotic regime (although some of their results apply also for

finite values of N,m, s). Donoho and Tanner consider the case that

m/N → δ, s/m→ ρ, log(N)/m→ 0, N →∞,

where ρ, δ ∈ [0, 1] are some fixed values. Recovery conditions are then expressed in terms of ρ and δ

in this asymptotic regime. In particular, they obtain transition curves that separate the regions in

the [0, 1]2 plane of ρ, δ in which the recovery succeeds and the recovery fails with probability 1 when

N → ∞. They distinguish nonuniform and uniform recovery with the terminology “weak phase

transition” and “strong phase transition” respectively. They obtain a weak transition curve δW (δ)

and a strong transition curve δS(δ) such that δ < δW (δ) implies recovery with high probability

and δ > δW (δ) mean failure with high probability (as N →∞), and similarly for δS(δ). Explicit

formulas for these curves are not available, but implicit formulas are available that can be evaluated

numerically in the limiting case δ → 0. As a consequence, translated back into the quantities

N,m, s this gives roughly the uniform recovery condition

m > 2es ln(N/(
√
πm)),

and the nonuniform recovery condition

m > 2s ln(N/m)

in an asymptotic regime. We note that the nonuniform condition is very close to our condition

(2.4). Donoho and Tanner provide precise statements about when `1-minimization fails in both

cases which allows to deduce that the constants 2e and 2 are indeed optimal. Even though the

results in the papers of Donoho and Tanner are derived for real vectors, combined with the fact

that the real null space property are equivalent to the complex one [54], they apply also to the

complex vectors. Their methods, however, do not cover stability issues and it is not clear whether

their results can be extended to Bernoulli or subgaussian random matrices. In addition to Donoho

and Tanner’s work, Dossal et. al. [45] derive a recovery condition for Gaussian matrices of the

form m ≥ cs ln(N), where c approaches 2 in an asymptotic regime where they also obtain stability

results for noisy measurements.

Nonasymptotic results: There have been several papers dealing with nonuniform recovery.

Most of these papers consider only the Gaussian case. In [22], Candès and Plan give a rather gen-

eral framework for nonuniform recovery which applies to measurement matrices with independent

rows having bounded entries. In fact, they prove a recovery condition for such random matrices

of the form m ≥ Cs ln(N) for some constant C and also cover the stability of the reconstruction.

However, they do not obtain explicit and good constants. The work [23] of Candès and Recht

derives closely related results to ours. For Gaussian measurement matrices, they show that, for

any β > 1, an s-sparse vector can be recovered with probability at least 1− 2N−f(β,s) if

m ≥ 2βs lnN + s,

where

f(β, s) =

[√
β

2s
+ β − 1−

√
β

2s

]2

.
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Their method uses the duality based recovery Theorem 2.5 due to Fuchs [55] like in our approach,

but then proceeds differently. They are also able to derive a similar recovery condition for sub-

gaussian matrices but only state it for the special case of Bernoulli matrices. Furthermore, they

also work out recovery results in the context of block sparsity and low-rank recovery. However,

they do not cover stability of the reconstruction.

Finally, Chandrasekaran et al. [28] use convex geometry in order to obtain nonuniform recovery

results. They develop a rather general framework that applies also to low-rank recovery and

further setups. However, they can only treat Gaussian measurements. They approach the recovery

problem via Gaussian widths of certain convex sets. In particular, they estimate the number m of

Gaussian measurements needed in order to recover an s sparse vector by m ≥ 2s(ln(N/s− 1) + 1)

which is essentially the optimal result, see also [54, Chapter 9]. Their method heavily relies on

properties of Gaussian random vectors and therefore, it does not seem possible to extend it to

more general subgaussian random matrices such as Bernoulli matrices.
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CHAPTER 3

Sparse Recovery with Fusion Frames

3.1. Introduction

In this chapter, we consider the recovery of signals that have a sparse fusion frame representation.

Signals of interest are collections of vectors from fusion frame subspaces which can be considered

as ‘block’ signals. In other words, say we have N subspaces, then we have a collection of N

vectors from those subspaces which is the (block) signal we wish to recover. We are allowed to

observe linear measurements of the signal and we aim to reconstruct the original signal from those

measurements. In order to do so, we use ideas from CS. We assume a block sparsity model on

the signals to be recovered where a few of the vectors in the collection are assumed to be nonzero.

For instance, we are not interested whether each vector is sparse or not within the subspace it

belongs to. For the reconstruction, a mixed `1/`2-minimization is invoked in order to capture the

structure that comes with the sparsity model.

This problem was studied before in [9] where the authors proved that it is sufficient for sparse

recovery to take m & s ln(N) random measurements. Here s is the sparsity level and N is the

number of subspaces. Our setup reduces to the problem of recovering a block sparse vector if

the subspaces are not assumed to satisfy the fusion frame property. It is worth emphasizing that

our model assumes in addition that the signals of interest lie in particular subspaces which is not

assumed in block sparsity problems. In this chapter, our goal is to improve the results in [9] when

the subspaces have a certain incoherence property, i.e., they have nontrivial mutual angles, and

we assume the knowledge of the subspaces.

3.1.1. Notation

We denote the Euclidean norm of vectors by ‖ · ‖2, the spectral norm of matrices by ‖ · ‖ and

the Frobenius norm by ‖ · ‖F . Boldface notation refers to block vectors and matrices throughout

this chapter. Let [N ] = {1, 2, . . . , N}. For a block matrix A = (aijBij)i∈[m],j∈[N ] ∈ Rm·d×N ·d

with blocks Bij ∈ Rd×d, we denote the `-th block column by A` = (ai`Bi`)i∈[m] ∈ Rm·d×d and

the column submatrix restricted to S ⊂ [N ] by AS = (aijBij)i∈[m],j∈S . Similarly for a block

vector x = (xi)
N
i=1 ∈ RN ·d with xi ∈ Rd, we denote the vector xS = (xi)i∈S restricted to S. The

complement [N ] \ S is denoted S. The `∞ → `∞ and `2 → `∞ norms of a matrix A ∈ Rm×n are

given as

‖A‖∞ = max
i∈[m]

n∑
j=1

Aij , and ‖A‖2,∞ = max
i∈[m]

 n∑
j=1

A2
ij

1/2

,

respectively. Furthermore, we define the `2,∞-norm of a block vector x = (xi)
N
i=1 with xi ∈ Rd as

‖x‖2,∞ = max
i∈[N ]

‖xi‖2.
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Given a block vector z with N blocks from Rd, we define sgn(z) ∈ RdN analogously to the scalar

case as

sgn(z)i =

{
zi
‖zi‖2 : ‖zi‖2 6= 0,

0 : ‖zi‖2 = 0.

3.1.2. Fusion frames and applications

A fusion frame for Rd is a collection of N subspaces Wj ⊂ Rd and associated weights vj that

satisfy

A‖x‖22 ≤
N∑
j=1

v2
j ‖Pjx‖22 ≤ B‖x‖22 (3.1)

for all x ∈ Rd and for some universal fusion frame bounds 0 < A ≤ B < ∞, where Pj ∈ Rd×d

denotes the orthogonal projection onto the subspace Wj . For simplicity we assume that the

dimensions of the Wj are equal, that is dim(Wj) = k. For a fusion frame (Wj)
N
j=1, let us define

the space

H = {(xj)Nj=1 : xj ∈Wj , ∀j ∈ [N ]} ⊂ Rd×N ,

where we denote [N ] = {1, . . . , N}. We define the mixed `2,1-norm of a vector x ≡ (xj)
N
j=1 ∈ H as

‖x‖2,1 =

N∑
j=1

‖xj‖2.

Furthermore, the ‘`0- block norm’ of x ∈ H is defined as

‖x‖0 = card{j ∈ [N ] : xj 6= 0}.

We say that a vector x is s-sparse, if ‖x‖0 ≤ s. In this chapter we consider the recovery of

sparse vectors from the set H which collects all vectors from fusion frame subspaces. However

our results do not assume necessarily that the subspaces satisfy the fusion frame property (3.1)

but rather assume they satisfy an incoherence property as explained in Section 3.1.5. We note

that the fusion frame setup can be considered as a refinement of the ‘block’ sparsity setup [51],

in which we assume that Wj = Rd, in other words the vectors xi are not assumed to lie in certain

subspaces Wi of Rd. This setup is explained in Section 3.1.4 in more detail.

• Applications

In this section we mention some applications of fusion frames.

• Distributed Processing. In distributed sensing, typically a large number of sensors are de-

ployed in an area to measure a physical quantity such a s temperature, sound etc. Due to the

physical or economical restraints it is easier to cluster them locally and process information

within each of their regions. Such a large sensor network can be viewed as a redundant

collection of subnetworks forming a set of subspaces. Each information produced by those

local systems are then gathered and submitted to a central joint processor and by the help

of fusion frame theory, the original vector would be reconstructed [27,76].

• Parallel Processing. Consider a classical frame system which models the application in hand.

If this frame system is too large, it can be computationally too hard to handle. Then it

is advantageous to split this system into many smaller frame systems where we also have

redundancy within those systems. The information can be processed within the subsystems
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parallelly in a way which is robust against errors due to the failure of a subsystem. Fusion

frames provide a natural setting for such a splitting and reuniting subsystems [5,88].

• Packet Encoding. When some data is transferred over a communication network like the

internet, it is often first encoded into a number of packets. After the transfer, these packets

are decoded in the receiver in order to acquire the original data. By introducing redundancy

in the encoding process, the communication scheme can be made resilient against corruption

or even loss of some packets. We can also think of each packet as a vector from fusion frame

subspaces, and encoding as a linear measurement of this vector. Therefore fusion frames

provide a means to achieve such redundant subspace representations [6].

• Music segmentation. Consider a music piece performed by an orchestra where the sound we

hear is a combination of many instruments playing at the same time. A note contributed

by each instrument is not characterized by a single frequency, but by the subspace spanned

by the fundamental frequency of the instrument and its harmonics [31]. Then the collection

of these instruments can be thought as a fusion frame. Furthermore, depending on the

instrument, certain harmonics might or might not be present in the subspace and also the

subspaces occupied by distinct instruments may overlap with each other. This gives the

redundancy in our fusion frame.

3.1.3. Problem formulation

Our measurement model is as follows. Let x0 = (x0
j )
N
j=1 ∈ H be s-sparse and we observe m linear

combinations of those vectors

y = (yi)
m
i=1 =

 N∑
j=1

aijx
0
j

m

i=1

, yi ∈ Rd,

for some scalars (aij). Note that, for all i ∈ [m], each vector yi is a measurement of the vectors

x0
1, . . . , x

0
N , thus the measurement vector y is itself a block vector like x0. Let us introduce the

block matrices AI = (aijId)i∈[m],j∈[N ] and AP = (aijPj)i∈[m],j∈[N ] that consist of the blocks

aijId ∈ Rd×d and aijPj ∈ Rd×d respectively. Here Id is the identity matrix of size d× d. Then we

can formulate this measurement scheme as

y = AIx
0 = APx0, for x0 ∈ H.

We replaced AI by AP since the relation Pjxj = xj holds for all j ∈ [N ]. We wish to recover x0

from those measurements. This problem can be formulated as the following optimization program

(L0) x̂ = argminx∈H‖x‖0 s.t. APx = y.

This optimization program is NP-hard. Instead we propose the following convex program

(L1) x̂ = argminx∈H‖x‖2,1 s.t. APx = y.

We shall show that block sparse signals can be accurately recovered by solving (L1). In the rest

of the chapter, P denotes the N × N block diagonal matrix where the diagonals are projection

matrices Pj , j ∈ [N ]. PS denotes the s × s block diagonal matrix with entries Pi, i ∈ S with

|S| = s.
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3.1.4. Relation to other sparsity models

A special case of the sparse recovery problem above appears when all subspaces coincide with the

ambient space Wj = Rd for all j. Then the problem reduces to the well studied joint sparsity

setup [52] in which all the vectors have the same sparsity structure. In order to see this, say we

have N vectors {x1, . . . , xN} in Rd and write them as rows of a matrix X ∈ RN×d. Assuming only

s of the rows are non-zero, the d vectors consisting of the columns of the matrix X have the same

common support set, i.e., are jointly sparse. To be more precise, if (Xi)
d
i=1 denote the columns of

X, supp(Xi) = supp(Xj) for all i 6= j.

Furthermore, our problem is itself a special case of block sparsity setup [51], with significant

additional structure that allows us to enhance existing results. Without the subspace structure,

we would have N vectors {x1, . . . , xN} in Rd where only s of them are non-zero, i.e., card{i ∈
[N ] : xi 6= 0} = s. The reason this is called block sparsity is because we count the vectors which

are non-zero as a block rather than checking if its entries are sparse.

Another related concept is group sparsity [91] where each entry of the vector is assigned to a

predefined group and sparsity counts the groups that are active in the support set of the vector.

In mathematical notation, consider a vector x of length p and assume that its coefficients are

grouped into sets {Gi}Ni=1, such that for all i ∈ [N ], Gi ⊂ [p]. The vector x is group s-sparse if

the non-zero coefficients lie in s of the groups {Gi}Ni=1. Formally,

card{i ∈ [N ] : supp(x) ∩Gi 6= 0} = s.

This is similar to the block sparsity with p = Nd except that the groups may be allowed to overlap,

i.e., Gi∩Gj 6= ∅. We also note that, for sparse recovery, a natural proxy for group sparsity becomes

the norm
∑
i ‖xGi‖2.

Finally in the case d = 1, the projections equal 1, and hence the problem reduces to the

standard CS recovery problem Ax = y with x ∈ RN and y ∈ Rm.

3.1.5. Incoherent subspaces

In this section we adapt the notion of mutual incoherence of vectors to more general situation of

fusion frames involving the angles between the fusion frame subspaces. Such a notion of incoher-

ence will be useful for incorporating the a priori knowledge about the signal structure which in

turn will provide additional information that can be exploited in the measurement process. We

begin by defining an incoherence matrix Λ associated with a fusion frame

Λ = (αij)i,j∈[N ], (3.2)

where αij = ‖PiPj‖ for i 6= j ∈ [N ] and αii = 0. Note that ‖PiPj‖ equals the largest absolute value

of the cosines of the principle angles between Wi and Wj . Then, for a given support set S ⊂ [N ],

we denote ΛS as the submatrix of Λ with columns restricted to S, and ΛS as the submatrix with

columns and rows restricted to S. We will use the following norms

‖ΛS‖2,∞ = max
i∈[N ]

 ∑
j∈S,j 6=i

‖PiPj‖2
1/2

and ‖ΛS‖2,∞ = max
i∈S

 ∑
j∈S,j 6=i

‖PiPj‖2
1/2

,
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and

‖ΛS‖∞ = max
i∈[N ]

∑
j∈S,j 6=i

‖PiPj‖ and ‖ΛS‖∞ = max
i∈S

∑
j∈S,j 6=i

‖PiPj‖.

Moreover, we define the parameter

λ = max
i 6=j
‖PiPj‖, i, j ∈ [N ].

Clearly λ equals the largest entry of Λ. In addition it holds that

‖ΛS‖2,∞ ≤ ‖ΛS‖∞ ≤ λs (3.3)

for any S with |S| = s. If the subspaces are all orthogonal to each other, i.e., λ = 0 and Λ = 0,

then only one measurement y =
∑
i aixi suffices to recover x0. In fact, since xi ⊥ xj , we have

xi =
1

ai
Piy.

This observation suggests that fewer measurements are necessary when λ becomes smaller. In this

chapter our goal is to provide a solid theoretical understanding of this intuitive behavior.

3.2. Main results

3.2.1. Nonuniform recovery results

This section studies nonuniform recovery from fusion frame measurements. Our main results state

that a fixed sparse signal can be recovered with high probability using a random draw of a Bernoulli

or Gaussian random matrix A ∈ Rm×N . Also we assume for simplicity that the subspaces (Wj)
N
j=1

of the fusion frame in Rd has dim(Wj) = k for all j and use this assumption in our main results

below. We remark that in the general case where the dim(Wj) are different than each other, our

results follow similarly with slight modifications.

• The Bernoulli case

Our first nonuniform recovery result concerns Bernoulli matrices and involves the incoherence

matrix Λ.

Theorem 3.1. Let x ∈ H be s-sparse and S = supp(x). Let A ∈ Rm×N be a Bernoulli matrix

and a fusion frame (Wj)
N
j=1 be given with the incoherence matrix Λ. Assume that

m ≥ C(1 + ‖ΛS‖∞) ln(N) ln(sk) ln(ε−1), (3.4)

where C > 0 is a universal constant. Then with probability at least 1 − ε, (L1) recovers x from

y = APx.

If the subspaces are not equi-dimensional, one can replace the quantity sk in Condition (3.4)

by
∑
i∈S kj , where dim(Wj) = kj . We also give an alternative result for nonuniform recovery with

Bernoulli matrices. This result involves the parameter λ instead of the matrix Λ.

Theorem 3.2. Let x ∈ H be s-sparse. Let A ∈ Rm×N be a Bernoulli matrix and (Wj)
N
j=1 be

given with parameter λ ∈ [0, 1]. Assume that

m ≥ C(1 + λs) ln(Nsk) ln(ε−1), (3.5)
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where C > 0 is a universal constant. Then with probability at least 1 − ε, (L1) recovers x from

y = APx.

The proof of this theorem is similar to the one of Theorem 3.1 with slight modifications.

Remark. Theorem 3.2 improves Theorem 3.1 in terms of the log-factors as log(sk) does not

appear in Condition (3.5). Since ‖ΛS‖∞ ≤ λs, Condition (3.4) is slightly better than (3.5) in

terms of the incoherence parameter, at least if there is a true gap between ‖Λ‖∞ and λs, which

happens if the quantities ‖PiPj‖ are not all close to their maximal value. The equality ‖ΛS‖∞ = λs

is achieved when the subspaces are equi-angular. In the case that they are not equi-angular, even

if only two subspaces align, then λ = 1. In this case, (3.5) suggests that we should not expect

any improvement in the recovery performance with respect to the standard block sparse case.

However, intuitively the orientation of the other subspaces might still be effective in the recovery

process. A more average measure of the incoherence of the subspaces is captured by ‖Λ‖∞ in (3.4),

so that Theorem 3.1 improves for general orientations of the subspaces up to a slight drawback

in the log-factors. The numerical experiments which we present in Section 3.2.6 also support this

result.

• The Gaussian case

We state a similar result for Gaussian random matrices. These matrices have independent entries

from a standard normal distribution, i.e., Aij = gij ∼ N (0, 1).

Theorem 3.3. Let x ∈ H be s-sparse. Let A ∈ Rm×N be a Gaussian matrix and (Wj)
N
j=1 be

given with parameter λ ∈ [0, 1] and dim(Wj) = kj for all j. Assume that

m ≥ C̃(1 + λs) ln2

6N

N∑
j=1

kj

 ln2(ε−1), (3.6)

where C̃ > 0 is a universal constant. Then with probability at least 1 − ε, (L1) recovers x from

y = APx.

Presently our nonuniform result for Gaussian matrices involves the parameter λ. However it

does not seem possible to derive a similar result to Theorem 3.1 which involves Λ with our proof

methods used for Theorem 3.3.

• Stable and robust recovery

In this section we show that the nonuniform sparse recovery for fusion frames is stable and ro-

bust under presence of noise. In other words we allow our signal x to be approximately sparse

(compressible) and the measurements y to be noisy. Our measurement model then becomes

y = APx + e with ‖e‖2 ≤ η
√
m (3.7)

for some η ≥ 0. For the reconstruction we employ

(L1)η x̂ = argminx∈H‖x‖2,1 s.t. ‖APx− y‖2 ≤ η
√
m.

The condition ‖e‖2 ≤ η
√
m in (3.7) is natural for a vector e = (ej)

m
j=1. For instance, it is implied

by the bound ‖ej‖2 ≤ η for all j ∈ [m]. We define the best s-term approximation of a vector x as

σs(x)1 := inf
‖z‖0≤s

‖x− z‖2,1.
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Compressible vectors are the ones with small σs(x)1. For a vector x = (xi)
N
i=1, let S be the index

set of s largest `2-normed entries ‖xi‖2. Then it is evident that σs(x)1 = ‖xS‖2,1. Next we state

a stable version of Theorem 3.1.

Theorem 3.4. Let x ∈ H and S ⊂ [N ] with |S| = s be chosen as explained above. Let A ∈ Rm×N

be a Bernoulli matrix and (Wj)
N
j=1 be given with parameter λ ∈ [0, 1] and dim(Wj) = k for all j.

Assume the measurement model in (3.7) and let x̂ be a solution to (L1)η. Provided

m ≥ C(1 + ‖ΛS‖∞) ln(N) ln(sk) ln(ε−1), (3.8)

then with probability at least 1− ε,

‖x− x̂‖2 ≤ C1σs(x)1 + C2

√
sη. (3.9)

The constants C,C1, C2 > 0 are universal.

We prove this theorem in Section 3.3.7. We note that the stability estimate (3.9) falls short

by a factor of
√
s of the one achievable with the RIP, which is shown later in Section 3.2.7. As in

the noiseless case, we can improve Theorem 3.4 with respect to one of the log-factors while using

λ instead of the incoherence matrix Λ.

Theorem 3.5. Let x ∈ H. Let A ∈ Rm×N be a Bernoulli matrix and (Wj)
N
j=1 be given with

parameter λ ∈ [0, 1] and dim(Wj) = k for all j. Assume the measurement model in (3.7) and let

x̂ be a solution to (L1)η. If

m ≥ C(1 + λs) ln(Nsk) ln(ε−1),

then with probability at least 1− ε,

‖x− x̂‖2 ≤ C1σs(x)1 + C2

√
sη.

The constants C,C1, C2 > 0 are universal.

The proof of this result is the same as the proof of Theorem 3.4, therefore we omit it. In par-

ticular one follows similar arguments as in Section 3.3.7 combined with the proof of Theorem 3.2.

This is also the case for the following result which gives stability and robustness for the Gaussian

case.

Theorem 3.6. Let x ∈ H. Let A ∈ Rm×N be a Gaussian matrix and (Wj)
N
j=1 be given with

parameter λ ∈ [0, 1] and dim(Wj) = k for all j. Assume the measurement model in (3.7) and let

x̂ be a solution to (L1)η. If

m ≥ C̃(1 + λs) ln2(6Nk) ln2(ε−1),

then with probability at least 1− ε,

‖x− x̂‖2 ≤ C1σs(x)1 + C2

√
sη.

The constants C̃, C1, C2 > 0 are universal.

3.2.2. Uniform recovery results

So far, we have studied the nonuniform recovery for fusion frames, in which we consider a fixed

sparse or compressible vector to be recovered from its random measurements with high probability.
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We have shown that as the incoherence of the subspaces, where the signals lie in, increases,

less measurements are required for the recovery. In this section, we search for uniform recovery

conditions for fusion frames with random matrices. Those type of results assert that once the

random matrix is chosen, then with high probability all sparse signals can be recovered using the

same matrix.

We will present two uniform results. First of these results uses an extension of RIP to the

fusion frame case and the second uses a version of the null space property (NSP) for fusion frames.

In Section 1.2, we noted that these are two common ways to obtain uniform results.

• Recovery with subgaussian matrices

We defined a subgaussian random variable in Section 2.1.3 satisfying Condition (2.5). For our

purposes in this section, we call a random variable ξ as c-subgaussian if E[exp(tξ)] ≤ ect
2

. An

m×N subgaussian matrix A takes the form

A = ξjk, j ∈ [m], k ∈ [N ],

where the ξjk are independent, mean-zero, variance one, c-subgaussian random variables. Note

that standard Gaussian and Bernoulli random variables are subgaussian with c = 1/2. As before

we let the fusion frame (Wj)
N
j=1 be given with the incoherence parameter λ and, for simplicity,

assume that the dimensions of the frame subspaces Wj are the same, say kj = k for all j.

Theorem 3.7. Let A ∈ Rm×N be a subgaussian matrix and (Wj)
N
j=1 be given with parameter

λ ∈ [0, 1]. Assume that

m ≥ C(λs+
√
s) ln(Nd) ln2(sk)

(
ln(N) + k ln

(
s
√
k
))

, (3.10)

m ≥ C ′ ln(2ε−1) (3.11)

where C,C ′ > 0 depend only on the subgaussian parameter c. Then with probability at least 1− ε,
(L1) recovers all s-sparse x from y = APx. Moreover, with probability at least 1− ε, every vector

x ∈ H is approximated by a minimizer x̂ of (L1)η with y = APx + e and ‖e‖2 ≤ η in the sense

that

‖x− x̂‖2 ≤ C1
σs(x)1√

s
+ C2η, (3.12)

and

‖x− x̂‖2,1 ≤ C1σs(x)1 + C2

√
sη,

where the constants C1, C2 > 0 are universal.

Remark. Presently, the estimate (3.10) on the number of required samples behaves slightly worse

than the nonuniform one (3.5) for small λ and suffers from additional log-terms. We believe the

linear factor k in (3.10) can be removed. As it is now, for the range k . ln(N)/ ln(s
√
k), this

factor can be ignored. The logarithmic factor ln(s
√
k) in k is not worse than the other logarithmic

terms, unless k is exponential in N . We can discard this case since it is not practically plausible.

We also note that in the special case of classical frames k = 1, so that the factor of k in the number

of measurements vanishes.
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Even though the uniform result is slightly weaker in terms of the order of sparsity and log-

factors it provides stronger stability results than the nonuniform case. In the latter, the recon-

struction error (3.9) obeys

‖x− x̂‖2 ≤ C1σs(x)1 + C2

√
sη

which is weaker than (3.12) by a factor of
√
s. As we will see in Section 3.2.7 that this is a

consequence of the RIP.

• Recovery with Gaussian matrices

Our second uniform result is achieved by establishing null space properties for the fusion frames.

We introduce extensions of null space properties for fusion frames and show that they guarantee

uniform recovery in Section 3.2.8. As in the previous section, two type of results concerning

exact and stable recovery are presented. However, the results in this section are restricted to only

Gaussian matrices, since the main ingredient of the proof, namely Gordon’s lemma [62] heavily

relies on the rotational invariance of the Gaussian vectors.

Theorem 3.8. (Stable and robust recovery) Let A ∈ Rm×N be a Gaussian matrix and (Wj)
N
j=1

in Rd be given with parameter λ ∈ [0, 1]. Let 0 < ρ < 1 and τ > 0. Assume that

m√
m+ 1

≥ (1 + ρ−1)
√
c(1 + λs) d ln(N) +

√
d
[
c̃+ 1/τ +

√
2 ln(ε−1)

]
, (3.13)

where c, c̃ > 0 are universal constants. Then with probability at least 1− ε, every vector x ∈ H is

approximated by a minimizer x̂ of (L1)η with y = APx + e and ‖e‖2 ≤ η in the sense that

‖x− x̂‖2 ≤
C√
s
σs(x)1 +Dη, (3.14)

for some constants C,D > 0 depending on only ρ and τ .

Remark. Roughly speaking, that is, ignoring terms of lower order, all nearly s-sparse vectors are

stably recovered with high probability from

m ≥ c(1 + λs)d ln(N) (3.15)

noisy Gaussian measurements. We note that the dependence in d in (3.15) is suboptimal when

compared to other recovery results presented earlier, which is probably an artifact of the proof.

Theorem 3.8 also implies the recovery of exact sparse signals in the presence of no noise. The

explicit constants in (3.14) are C = (2ρ+1)(1+ρ)
1−ρ and D = 4+2ρ

1−ρ τ . In the exact sparse and noiseless

case, σs(x)1 = η = 0, this yields perfect reconstruction since ρ < 1. In order to make Condition

(3.13) as tight as possible, one can choose ρ very close to 1 and τ a very large number. We have

the following corollary.

Corollary 3.9. (Exact recovery) Let A ∈ Rm×N be a Gaussian matrix and (Wj)
N
j=1 in Rd be

given with parameter λ ∈ [0, 1]. Assume that

m ≥ c(1 + λs)d
(
ln(N) + ln(ε−1)

)
,

for an absolute constant c > 0. Then with probability at least 1 − ε, any s-sparse x ∈ H is a

solution of (L1) with y = APx.
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3.2.3. Necessary conditions for sparse recovery

In this section, we investigate the minimal number of measurements required for sparse recovery

with fusion frames via `2,1-minimization. In the classical CS setup, there is a close relation

between Gelfand widths and the worst case reconstruction error of CS methods [54, Section 10].

Particularly, establishing lower bounds for the Gelfand widths of `1-balls leads to the fact that the

minimal number of measurements required for stable recovery via any method is m ≥ Cs ln(eN/s).

If we consider only (L1) as the reconstruction method and restrict ourselves to the exactly sparse

case, one can estimate the necessary number of measurements with a key result from [53,54]. We

now provide an extension of such a result for the case of `2,1-minimization in the fusion frame

setup.

Theorem 3.10. Given a matrix A ∈ Rm×N and a fusion frame (Wj)
N
j=1 in Rd with dim(Wj) = k,

if every 4s-sparse vector x ∈ H is a minimizer of ‖z‖2,1 subject to APz = APx, then

m ≥ c1
s

d
ln

(
N

c2s

)
+ c3

ks

d
(3.16)

where c1 ≈ 0.46, c2 = 32 and c3 ≈ 0.18.

At first sight, it is not clear how this result can be compared to the sufficient conditions

provided in Theorem 3.2 and Theorem 3.7 earlier since (3.16) does not involve the incoherence

parameter λ. However, in Section 3.2.4 we give theoretical lower bounds on λ which, in turn,

allows us in Section 3.2.5 to compare the two type of results and show that they do not fall too

far from each other.

3.2.4. Packing of subspaces

This section proposes lower bounds on the incoherence parameter λ appearing in the uniform

recovery conditions, thus it will allow us to compare our sufficient conditions given in Sections 3.2.1

and 3.2.2 with the necessary condition derived in the previous section. We are interested in the

question that given a number N of subspaces each of dimension k in the space Rd, what is the

smallest value that

λ := max
i 6=j
‖PiPj‖ for i, j ∈ [N ]

can attain? For instance, if k = 1 and N ≤ d, then we can choose the subspaces (i.e., lines through

the origin) all orthogonal to each other, which yields λ = 0. When N > d/k, it is not anymore

possible to choose the subspaces orthogonally, so that λ > 0. Next, we introduce two different

metrics on Grassmannian subspaces and present packing bounds with respect to these metrics.

Principal angles: If Wi and Wj are two different subspaces each of dimension k, then we have

k principal angles between them. We label those angles θ
(1)
ij ≤ θ

(2)
ij ≤ . . . ≤ θ

(k)
ij in nondecreasing

order. The cosines of the principal angles coincide with the singular values of PiPj , so that

λ = max
i 6=j

cos θ
(1)
ij . (3.17)

Metrics on Grassmannian manifolds: The collection of all k dimensional subspaces of Rd is

called the real ‘Grassmannian manifold’ G(k,Rd). On this space we define two metrics.
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(1) The chordal distance between two subspaces Wi and Wj is given by

dc(Wi,Wj) :=

(
k∑
`=1

sin2 θ
(`)
ij

)1/2

.

(2) The spectral distance between Wi and Wj is given by

ds(Wi,Wj) := min
`

sin θ
(`)
ij = sin θ

(1)
ij .

Optimal packing bounds have been derived with respect to the chordal distance dc in [30]. It also

proves to be the right metric for some practical problems like robustness with respect to subspace

erasures in the fusion frames [76]. The spectral distance ds is directly related to the parameter λ

in our work, see (3.17), as

λ2 = max
i6=j

max
`

(
cos θ

(`)
ij

)2

= max
i 6=j

(
1−min

`

(
sin θ

(`)
ij

)2
)

= 1−min
i 6=j

d2
s(Wi,Wj). (3.18)

Packing problem: Let the space G(k,Rd) be endowed with a distance function d which is either

dc or ds. Then the packing diameter of a finite subset X ⊂ G(k,Rd) is the minimum distance

between a pair of distinct subspaces drawn from X . That is,

packd(X ) := min
i 6=j

d(Wi,Wj).

An optimal packing of N subspaces in X is an ensemble that solves the mathematical program

max
|X |=N

packd(X ) =: packd.

This program is guaranteed to have a solution but it is very hard to find the optimal solution. It

is even hard to find a set X of N subspaces which satisfies packd(X ) ≥ ρ for a given ρ. There

have been many studies that focus on designing algorithms to come up with subspaces which yield

good packings. Our focus here is on the theoretical upper bounds for optimal packing diameters

which will consequently allow us to acquire a lower bound on λ.

Bounds on the packing diameter: A standard reference about optimal packing bounds is

the paper [30] by Conway and Sloane, which provides an upper bound for the optimal packing

diameter with respect to the chordal distance.

Theorem 3.11. The packing diameter of N subspaces in the Grassmannian manifold G(k,Rd)
equipped with the chordal distance is bounded above as

pack2
dc(X ) ≤ k(d− k)

d

N

N − 1
.

If the bound is met, all pairs of subspaces are equidistant. The bound is attainable only if N ≤
1
2d(d+ 1).

The upper bound is referred as the simplex bound. It is worth to note that, in general, it is

not known whether optimal packings exist for given parameters N, d, k. As mentioned earlier, our

results in this thesis do not exploit the fusion frame property (3.1). However, we would like to

note an interesting connection between tight fusion frames with equi-dimensional subspaces and

optimal packings. The following result is from [76].
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Theorem 3.12. Let (Wi)
N
i=1 be a fusion frame of equi-dimensional subspaces with equal pairwise

chordal distance dc. Then, the fusion frame is tight if and only if d2
c equals the simplex bound.

In essence, this theorem says that equi-distant tight fusion frames are optimal Grassmannian

packings. Next we move on to packings with respect to the spectral distance ds. A subspace

packing is said to be equi-isoclinic if all the principal angles between all pairs of subspaces are

identical [79]. The following theorem appears in [36].

Theorem 3.13. The packing diameter of N subspaces in the Grassmannian manifold G(k,Rd)
equipped with spectral distance is bounded above as

pack2
ds(X ) ≤ (d− k)

d

N

N − 1
. (3.19)

If the bound is met, the packing is equi-isoclinic.

The proof of this result relies on the simple observation that for any two subspaces Wi,Wj it

holds

min
`

sin θ
(`)
ij ≤

[
k−1

k∑
`=1

sin2 θ`

]1/2

.

In other words, kd2
s(Wi,Wj) ≤ d2

c(Wi,Wj). It is shown in [79] that the maximum number of

equi-isoclinic k-dimensional subspaces in Rd cannot be greater than

1

2
d(d+ 1)− 1

2
k(k + 1) + 1.

We finally derive a bound on the incoherence parameter. By (3.18) we have λ2 = 1 − pack2
ds so

that (3.19) implies

λ2 ≥ 1− (d− k)

d

N

N − 1
=
kN − d
dN − d

. (3.20)

When k = 1, this bound gives a lower bound on the coherence of `2-normalized N vectors in Rd,
which is known as the Welch bound.

3.2.5. Comparison of results

In this section we provide a comparison of the sufficient recovery conditions given in our nonuniform

and uniform results and the necessary condition in Theorem 3.10 in the light of the results in

Section 3.2.4.

Our first observation is the absence of the incoherence parameter λ in the necessary condition

(3.16) in contrast to the recovery conditions (3.5) and (3.10). A comparison of those conditions

becomes possible under a condition on λ, i.e., on the orientation of the subspaces. Since we have a

lower bound (3.20) on λ, we might consider the case when equality holds in (3.20). Let us assume

that λ achieves its theoretical lower bound, i.e.,

λ2 =
kN − d
dN − d

≤ k

d
.

Then for nonuniform recovery

m &

√
k

d
s ln(N) (3.21)

38



CHAPTER 3. 3.2. MAIN RESULTS

becomes a sufficient condition. There is a slight gap between (3.21) and the necessary condition

(3.16), which is

m &
s

d
ln(N/s) +

ks

d
. (3.22)

It is not clear to us from which direction this gap may be closed.

Finally we would like to compare our two uniform results. Recall that Condition (3.10) of

Theorem 3.7 implies that

m ≥ C(λs+
√
s) ln(Nd) ln2(sk)

(
ln(N) + k ln

(
s
√
k
))

(3.23)

many subgaussian measurements are sufficient for uniform recovery of sparse fusion frame vectors.

Here k is the dimension of the subspaces. We briefly note that if λ attains its theoretical lower

bound, then (3.23) scales roughly like

m &

(√
k

d
s+
√
s

)
lnα(Nd),

which is further from the necessary condition (3.22) than (3.21) is. Condition (3.23) gives an order

of
√
s in the limiting case λ = 0. On the other hand, Theorem 3.8 gives the condition

m ≥ c(1 + λs)d ln(N) (3.24)

which improves (3.23) in terms of log-factors and to the order of (1 + λs). However we would like

to note that the ambient dimension d appears as a linear factor in (3.24), which is suboptimal.

The latter result applies only to Gaussian matrices unlike the former one which also applies to

subgaussian matrices.

3.2.6. Numerical experiments

In this section, we present numerical experiments in order to highlight important aspects of the

sparse reconstruction in the fusion frame (FF) setup. The experiments illustrate our theoretical

results and show that when the subspaces are known, one can significantly improve the recovery

of sparse vectors with respect to the standard block sparse recovery. In all of our experiments, we

use SPGL1 [107,108] to solve the `2,1-minimization problems.

General setup: We generate subspaces randomly, which allows us to generate fusion frames with

different values of λ and Λ. Particularly, for N subspaces in Rd each with dimension k, we generate

N · k random vectors from N (0, Id) and group them to form the bases for the subspaces. Every

realization of random subspaces in this way yields a certain value for the parameter λ. In order to

obtain different values of λ, it is enough to vary d or k. When N is fixed, λ increases with increasing

k and decreasing d. This relation can be explained with an analogy: imagine we are given the

task of placing N items of equal size k (i.e., subspaces) in a room of size d (i.e., the ambient space

Rd) as further away as possible from each other. If N and d are fixed, increasing the item size

k leads to shorter distances between the items (i.e., larger λ) and vice versa. Similarly, if N and

k are fixed, increasing the room size d allows us to place the items further away from each other

(i.e., with smaller λ) and vice versa. A quantitative analysis of the packing of random subspaces

was recently done in [7]. One drawback of our method of generating subspaces is that one cannot

vary all parameters independently in this way. While our main goal is to control the parameter

39



3.2. MAIN RESULTS CHAPTER 3.

5 10 15 20 25 30 35
10

20

30

40

50

60

70

80

90

100

110

SPARSITY

#
 
o

f
 
M

E
A

S
U

R
E

M
E

N
T

S
 
N

E
E

D
E

D

BLOCK SPARSITY vs. FUSION FRAME

 

 

BLOCK SPARSITY

FUSION FRAME

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NUMBER OF MEASUREMENTS

P
R

O
B

A
B

I
L

I
T

Y
 
O

F
 
R

E
C

O
V

E
R

Y

BLOCK SPARSITY vs. FUSION FRAME

 

 

FUSION FRAME

BLOCK SPARSITY

(b)

Figure 1. Comparison between ‘block’ vs. ‘fusion frame’ sparsity. (a) Sparsity
level vs. the number of necessary measurements for successful recovery (N = 200,
success rate= 96%). (b) Sparsity is fixed and the number of measurements is
plotted against the success rate (N = 200, s = 20).

λ so that we can observe its effect on the relation between the number of measurements m and

the sparsity s, we have to also change d or k during this process. According to our nonuniform

results, the role of the dimensional factors (d or k) is at most logarithmic, therefore it can be

neglected for our purposes in this section. Another way to build fusion frames is deterministic

constructions, e.g., Gabor and harmonic frames, however one typically needs to vary N largely in

order to yield different values of λ. This is not desirable since we wish to keep N fixed and also it

is computationally hard to work with very large values of N .

For the measurement matrices, we generate the normalized matrix Ã = 1√
m
A where A ∈

Rm×N is a Gaussian matrix. For a sparsity level s, sparse vectors are generated in the following

way: we choose the support set S uniformly at random, then we sample a Gaussian vector in each

subspace in this support set. The number N is kept fixed throughout the experiment at hand.

In our experiments we work with the parameter ‖ΛS‖∞ introduced in Section 3.1.5. Since the

random subspaces are not equiangular, this parameter reflects the linear relation between m and
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Figure 2. Exact signal recovery with fusion frames. For a fixed sparsity, the
relation between the number of measurements m vs. the incoherence parameter
λeff (3.25) is depicted (N = 180, s = 25, success rate= 96%).

s better than λ, see also Theorem 3.1. We work with the normalized parameter

λeff =
‖ΛS‖∞

s
. (3.25)

Exact sparse case: In Fig. 1, we show that the knowledge of the subspaces improves the recovery.

To that end, we fix a fusion frame with N = 200 subspaces in Rd with λeff ≈ 0.6. Then we vary

the sparsity level s from 5 to 35, and generate an s-sparse vector x in the fusion frame. For each

s, we vary the number of measurements m and compute empirical recovery rates via the programs

(FF) x̂ = argminx∈H‖x‖2,1 s.t. APx = y, (3.26)

(block) x̂ = argminx‖x‖2,1 s.t. AIx = y. (3.27)

For each sparsity level s, we leave the vector to be recovered fixed. Repeating this test 100 times

with different random A for each choice of parameters (s,m,N) provides an empirical estimate of

the success probability. In Fig. 1(a), we plot m which yields at least 96% success rate for each s.

The difference in two plots is due to the incoherence of the subspaces. Fig. 1(b) (d = 3, k = 1)

shows the transition from the unsuccessful regime to the successful regime for the sparsity level

s = 20 for both cases (FF and block sparsity). The transition for the FF case occurs at a smaller

value m which reflects Fig. 1(a) in a different way. As a consequence, the assumption x ∈ H
in (3.26) allows us to to recover x with far less measurements compared to (3.27) where such a

constraint is not used.

Theorem 3.1 suggests that there is a linear relation between the number of measurements m

and the parameter λeff . The experiment depicted in Fig. 2 is designed to reflect this relation. We

generate fusion frames with N = 180 subspaces with various λeff which is managed by changing d

and keeping k = 3 fixed. Then in each fusion frame, a vector x with sparsity s = 25 is generated

and the number of measurements m that suffices for recovery is determined. The plot yields an

almost linear relation in parallel to Theorem 3.1.

41



3.2. MAIN RESULTS CHAPTER 3.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

NUMBER OF MEASUREMENTS

R
E

C
O

N
S

T
R

U
C

T
I
O

N
 
E

R
R

O
R

RECONSTRUCTION OF COMPRESSIBLE SIGNALS with DIFFERENT  λ
eff

 

 

λ
eff

 = 0.68

λ
eff

=0.55

λ
eff

=0.4

block sparsity

(a)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

NUMBER OF MEASUREMENTS

R
E

C
O

N
S

T
R

U
C

T
IO

N
 E

R
R

O
R

NOISY MEASUREMENTS with DIFFERENT  λ
eff

 

 

λ
eff

=0.8

λ
eff

=0.45

λ
eff

=0.24

block sparsity

(b)

Figure 3. Stable and robust signal recovery with fixed noise and compressibility
levels. (a) Recovery of compressible signals from fusion frames with different
values of λeff . Reconstruction error vs. the number of measurements is plotted
(N = 180, s = 20, θ = 0.12). (b) Noisy measurements. Reconstruction error vs.
the number of measurements is plotted for different values of λeff (N = 200, s =
20, σ = 0.06).

Stable case: In this part, we generate scenarios that allude to the conclusions of Theorems 3.4

and 3.6. In a fusion frame of N = 200 subspaces, we generate a signal x composed of xS ,

supported on an index set S, and a signal zS supported on S. We then normalize xS and zS
so that ‖xS‖2,1 = ‖zS‖2,1 = 1 and produce x = xS + θzS where θ ∈ [0, 1]. Then x is our

compressible vector where compressibility is controlled with θ. For measurement, we choose the

normalized Gaussian matrix A ∈ Rm×N . We measure y = APx and then run the program (L1)

and measure the reconstruction error ‖x − x̂‖2. We repeat this test 20 times for a fixed x with

θ = 0.12 in order to obtain an average recovery error for different values of m. Fig. 3(a) reports

the results of this experiment performed for different fusion frames with various values of λeff

and also for the block sparsity case. The decrease in the reconstruction error with increasing m

is natural even though it is not suggested directly by the theoretical results. Indeed, one would
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Figure 4. Stable and robust signal recovery with varying noise and compress-
ibility levels (N = 200,m = 50, d = 35). (a) Noise level σ vs. reconstruction error
for different values of λeff (s = 30). (b) Compressibility q vs. reconstruction error.

expect that increasing the number of measurements would enhance the recovery conditions and

yield an improved reconstruction.

For the noisy case, we similarly generate noisy observations APxS + σe, of a sparse signal xS

where ‖xS‖2 = ‖e‖2 = 1 and σ = 0.06. Here, all entries of the noise vector e are chosen i.i.d from

a N (0, σ2) distribution. We then run the robust (L1)η program and measure the reconstruction

error ‖x− x̂‖2. We plot the average of this error vs. the number of measurements in Fig 3(b) for

different values of λeff .

Fig. 4(a) depicts the relation between the reconstruction error and the noise level σ for different

values of λeff . In this setup, N = 200, s = 30 and m = 50 are fixed, and a sparse vector x in

the fusion frame with specific value of λeff is generated. For each value of σ we plot the average

reconstruction error. Results manifest the linear relation between σ and ‖x− x̂‖2 given in (3.9).

Again, we obtain a better reconstruction quality when λeff is smaller.
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Finally, we examine the relation between compressibility and the reconstruction error using a

different model than described earlier. In Fig.4(b), we plot the results of an experiment in which we

generate signals x in a fusion frame with N = 200, with sorted values of ‖xj‖2 that decay according

to some power law. In particular, for various values of 0 < q < 1, we set ‖xj‖2 = cj−1/q such that

‖x‖2 = 1. We then measure x with Gaussian matrices A and compute the average reconstruction

errors via the program (L1). Note that the higher the value of q, the less compressible the signal

is. The results indicate that the reconstruction error decreases when the compressibility of the

signal increases as declared in (3.9). We can also see the improvement in the reconstruction when

the subspaces are more incoherent, i.e., their parameter λeff is smaller.

3.2.7. RIP for fusion frames

The following definition of the restricted isometry property for fusion frames was given in [9].

Definition. Let A ∈ Rm×N and (Wj)
N
j=1 be a fusion frame for Rd. The fusion restricted isometry

constant δs is the smallest constant such that

(1− δs)‖x‖22 ≤ ‖APx‖22 ≤ (1 + δs)‖x‖22 (3.28)

for all x ∈ H, of sparsity ‖x‖0 ≤ s.

Informally, we say (A, (Wj)
N
j=1) satisfies the fusion restricted isometry property (FRIP) if δs

is small for reasonably large s. The following result was also shown in [9].

Theorem 3.14. Let (A, (Wj)
N
j=1) with FRIP constant δ2s < 1/3. Then (L1) recovers all s-sparse

x from y = APx.

Boufounos, Kutyniok and Rauhut [9] have also stated -without a proof- an extension of The-

orem 3.14 to the case where measurements are noisy and signals are well approximated by sparse

fusion frame representation. Let us define the best s-term approximation of a vector x as follows

σs(x)1 := inf
‖z‖0≤s

‖x− z‖2,1.

This quantity measures the compressibility of the vector, in other words, how close it is to being

s-sparse. We call vectors with small σs(x)1 ‘approximately sparse’ or ‘compressible’. The following

stable version of FRIP condition is an analogous result to [17, Theorem 1.2].

Theorem 3.15. Assume that the FRIP constant δ2s of (A, (Wj)
N
j=1) satisfies

δ2s <
√

2− 1 ≈ 0.41.

For x ∈ H, let noisy measurements y = APx + e be given with ‖e‖2 ≤ η. Let x̂ be the solution of

the convex optimization problem

min
z∈H
‖z‖2,1 s.t. ‖APz− y‖2 ≤ η.

Then

‖x− x̂‖2 ≤ C1
σs(x)1√

s
+ C2η, (3.29)

and

‖x− x̂‖2,1 ≤ C1σs(x)1 + C2

√
sη, (3.30)
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where the constants C1, C2 > 0 only depend on δ2s.

We remark that this result implies Theorem 3.14 and improves it in terms of the FRIP

constant by choosing x to be exactly s-sparse and η = 0. For the sake of completeness, the proof

of Theorem 3.15 is presented at the end of this section. In Section 1.2.1, it was noted that for the

classical RIP constant the optimal condition is δ̃2s < 1/
√

2 ≈ 0.7071 for both exact and stable

recovery. We think that the condition for FRIP constants in Theorems 3.14 and 3.15 can also be

improved to δ2s < 1/
√

2 by a similar proof to that in [16]. The results above show that given a

fusion frame (Wj)
N
j=1 and matrix A, for uniform recovery it is enough to check whether the block

matrix AP satisfies the FRIP. The following result is from [9].

Proposition 3.16. Let A ∈ Rm×N satisfy classical RIP (1.4). Then for an arbitrary fusion frame

(Wj)
N
j=1 for Rd, the associated matrix AP satisfies FRIP.

Recall from Theorem 3.14 that satisfying FRIP is enough for uniform recovery. This immediately

suggests that m & s ln(N/s) is sufficient for sparse recovery with many random measurement

ensembles (up to some log-factors) as shown in Chapter 2. However we would like to improve this

result by making use of the incoherence parameter λ.

For the proof of Theorem 3.7 we seek conditions on m which guarantees δs to be small with

high probability for a subgaussian matrix A. The definition (3.28) is equivalent to∣∣‖APx‖22 − ‖x‖22
∣∣ ≤ δs‖x‖22 for all S ⊂ [N ], |S| ≤ s, for all x ∈ H, supp(x) ⊂ S.

In the term on the left hand side, taking the supremum over all x ∈ H with supp(x) ⊂ S, |S| ≤ s
and unit norm ‖x‖2 = 1 yields

δs = sup
x∈Ds,N

∣∣‖APx‖22 − ‖x‖22
∣∣ , (3.31)

where Ds,N := {x ∈ H : xi ∈ Wi, ‖x‖2 ≤ 1, ‖x‖0 ≤ s}. The characterization (3.31) of the FRIP

constant δs will be used in the proof of Theorem 3.7 in Section 3.4.1.

• Proof of Theorem 3.15

We mainly follow [17] for the proof. Some of the steps below are also parallel to the proof of

Lemma 2.10. Set h = x̂− x. Similarly to (2.32), we observe that

‖APh‖2 ≤ ‖APx̂− y‖2 + ‖y −APx‖2 ≤ 2η. (3.32)

We partition [N ] into sets S0, S1, . . . each of size s (except possibly the last set) such that S0

contains the s largest components ‖hi‖2, S1 has the second s largest components and so on. We

first focus on bounding the size of h on the set S0 ∪S1. In an analogous fashion to the scalar case

(2.37) (see also [17, Eq.(10)]), we can deduce∑
j≥2

‖hSj‖2 ≤ s−1/2‖hS0
‖2,1. (3.33)

In particular, it holds

‖hS0∪S1
‖2 = ‖

∑
j≥2

hSj‖2 ≤
∑
j≥2

‖hSj‖2 ≤ s−1/2‖hS0
‖2,1. (3.34)
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The next step is to show that ‖hS0
‖2,1 cannot be very large since ‖x̂‖2,1 is a minimum point.

Indeed,

‖x‖2,1 ≥ ‖x + h‖2,1 = ‖(x + h)S0‖2,1 + ‖(x + h)S0
‖2,1

≥ ‖xS0‖2,1 − ‖hS0‖2,1 + ‖hS0
‖2,1 − ‖xS0

‖2,1,

where we used the triangle inequality. Rearranging terms yields

‖hS0
‖2,1 ≤ ‖hS0

‖2,1 + 2‖xS0
‖2,1 ≤

√
s‖hS0

‖2 + 2σs(x)1, (3.35)

by the Cauchy-Schwarz inequality. Combining (3.35) and (3.34) gives

‖hS0∪S1
‖2 ≤ ‖hS0

‖2 + 2s−1/2σs(x)1. (3.36)

The next goal is to bound ‖hS0∪S1
‖2. To do this, observe that APhS0∪S1

= APh−
∑
j≥2 APhSj ,

and therefore

‖APhS0∪S1
‖22 = 〈APhS0∪S1

,APh〉 − 〈APhS0∪S1
,
∑
j≥2

APhSj 〉.

The first term on the right hand side is estimated by using the FRIP along with (3.32)

|〈APhS0∪S1 ,APh〉| ≤ ‖APhS0∪S1‖2‖APh‖2 ≤ 2η
√

1 + δ2s‖hS0∪S1
‖2.

Moreover, following an analogous result for the scalar case, Lemma 2.9, we have for j ≥ 2

|〈APhS0
,APhSj 〉| ≤ δ2s‖hS0

‖2‖hSj‖2,

and likewise for S1 in place of S0. This implies that

〈APhS0∪S1
,
∑
j≥2

APhSj 〉 ≤ δ2s(‖hS0
‖2 + ‖hS1

‖2)
∑
j≥2

‖hSj‖2 ≤
√

2δ2s‖hS0∪S1
‖2
∑
j≥2

‖hSj‖2.

Then by the FRIP again we obtain

(1− δ2s)‖hS0∪S1
‖22 ≤ ‖APhS0∪S1

‖22 ≤ ‖hS0∪S1
‖2

2η
√

1 + δ2s +
√

2δ2s
∑
j≥2

‖hSj‖2

 .

It follows from (3.33) that

‖hS0∪S1‖2 ≤ αη + βs−1/2‖hS0
‖2,1,

where α = 2
√

1+δ2s
1−δ2s and β =

√
2δ2s

1−δ2s . We now conclude by using (3.35) along with the previous

inequality that

‖hS0∪S1
‖2 ≤ αη + β‖hS0∪S1

‖2 + 2βs−1/2σs(x)1.

Rearranging terms yields

‖hS0∪S1‖2 ≤ (1− β)−1(αη + 2βs−1/2σs(x)1). (3.37)

Observe that β < 1 due to the assumption δ2s <
√

2− 1. Finally using (3.36), we obtain

‖h‖2 ≤ ‖hS0∪S1‖2 + ‖hS0∪S1
‖2 ≤ 2‖hS0∪S1‖2 + 2s−1/2σs(x)1

≤ 2(1− β)−1(αη + (1 + β)s−1/2σs(x)1),
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which proves (3.29). In order to show (3.30), we use the first inequality in (3.35) to obtain that

‖h‖2,1 = ‖hS0‖2,1 + ‖hS0
‖2,1 ≤ 2‖hS0‖2,1 + 2σs(x)1. (3.38)

Moreover, it follows from (3.37) and the Cauchy-Schwarz inequality that

‖hS0
‖2,1 ≤

√
s‖hS0

‖2 ≤
√
s‖hS0∪S1

‖2 ≤
√
s(1− β)−1(αη + 2βs−1/2σs(x)1.

Plugging this into (3.38) yields the desired estimate (3.30). �

3.2.8. Null space properties for fusion frames

In this section we give notions of exact, stable and robust null space properties (NSP) for fusion

frames and show in turn that they provide sufficient conditions for sparse recovery. We would like

to note that Theorems 3.17 and 3.18 can be improved to stronger ‘if and only if’ statements, but

we skip these parts here.

Definition. (NSP of order s) Let A ∈ Rm×N and (Wj)
N
j=1 be a fusion frame. Then the associated

matrix AP ∈ Rmd×Nd is said to satisfy the null space property of order s if for all S ⊂ [N ], |S| = s,

‖vS‖2,1 < ‖vS‖2,1 for all v ∈ ker AP|H \ {0}.

Here, AP|H is the restriction of AP to H. We now show that the null space property implies

exact recovery of sparse vectors from a fusion frame via (L1).

Theorem 3.17. Suppose AP satisfies the null space property of order s. Then any s-sparse x ∈ H
is a solution of (L1) with y = APx.

One can use this result in order to prove Corollary 3.9 by establishing the null space property

of order s. However, as we have remarked earlier, this is not necessary since choosing ρ and η in

Theorem 3.8 appropriately does the job. Nevertheless, we prove Theorem 3.17 here for the sake

of completeness. The following proof is analogous to [54, Theorem 4.4].

Proof. Assume that the null space property of order s holds. Given an s-sparse vector x ∈ H
and a vector z 6= x such that APz = APx, we consider v = x− z ∈ ker AP|H \ {0}. Then by the

null space property, we have

‖x‖2,1 ≤ ‖x− zS‖2,1 + ‖zS‖2,1 = ‖vS‖2,1 + ‖zS‖2,1

< ‖vS‖2,1 + ‖zS‖2,1 = ‖ − zS‖2,1 + ‖zS‖2,1 = ‖z‖2,1.

This establishes the minimality of ‖x‖2,1. �

Stability and robustness. Theorem 3.17 is about the idealized situation when the signal is

exactly sparse. In practice, one often faces signals with sparsity defects. Above we defined the

best s-term approximation error σs(x)1 for a vector x which is not exacty s-sparse. Another

non-ideal situation is that often the measurement vector y is corrupted with some noise vector e

which is bounded in `2-norm. The following definition gives a variant of the null space property

adapted to these two scenarios.

Definition. (Stable and robust NSP of order s) Let A ∈ Rm×N and (Wj)
N
j=1 be a fusion frame.

Then the associated matrix AP ∈ Rmd×Nd is said to satisfy the stable and robust null space
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property of order s with constants 0 < ρ < 1 and τ > 0, if for all S ⊂ [N ], |S| = s, it holds

‖vS‖2,1 ≤ ρ‖vS‖2,1 + τ‖APv‖2 for all v ∈ H.

Theorem 3.18. Suppose AP satisfies the stable null space property of order s with constants

0 < ρ < 1 and τ > 0. Then for any x ∈ H, a solution x̂ of (L1)η with y = APx+e with ‖e‖2 ≤ η
satisfies

‖x− x̂‖2,1 ≤
2(1 + ρ)

1− ρ
σs(x)1 +

4τ

1− ρ
η.

Proof. Denote by S ⊂ [N ] an index set of s largest norms ‖xi‖2 in x, so that ‖xS‖2,1 = σs(x)1.

The inequalities below follow from the triangle inequality

‖x‖2,1 = ‖xS‖2,1 + ‖xS‖2,1 ≤ ‖xS‖2,1 + ‖x̂S‖2,1 + ‖(x− x̂)S‖2,1

‖(x− x̂)S‖2,1 ≤ ‖xS‖2,1 + ‖x̂S‖2,1.

Adding these two inequalities and using that ‖x̂‖2,1 ≤ ‖x‖2,1 (since x̂ is a minimizer of (L1)η)

yields

‖x‖2,1 + ‖(x− x̂)S‖2,1 ≤ 2‖xS‖2,1 + ‖x̂S‖2,1 + ‖x̂S‖2,1 + ‖(x− x̂)S‖2,1

= 2‖xS‖2,1 + ‖x̂‖2,1 + ‖(x− x̂)S‖2,1

≤ 2‖xS‖2,1 + ‖x‖2,1 + ‖(x− x̂)S‖2,1.

Simplifying above and setting v := x̂− x gives

‖vS‖2,1 ≤ ‖vS‖2,1 + 2‖xS‖2,1 ≤ ρ‖vS‖2,1 + τ‖APv‖2 + 2‖xS‖2,1,

where we used the stable and robust null space property in the last inequality. After rearranging

the terms, we obtain

‖vS‖2,1 ≤
2

1− ρ
‖xS‖2,1 +

τ

1− ρ
‖APv‖2. (3.39)

Observe that it holds

‖APv‖2 ≤ ‖APx− y‖2 + ‖y −APx̂‖2 ≤ 2η (3.40)

by the triangle inequality. Lastly, combining (3.39) and (3.40) yields

‖v‖2,1 ≤ ‖vS‖2,1 + ‖vS‖2,1 ≤ (1 + ρ)‖vS‖2,1 + τ‖APv‖2

≤ 2(1 + ρ)

1− ρ
σs(x)1 +

4τ

1− ρ
η,

which is the desired result. �

Next we generalize the previous theorem by replacing the `2,1-error estimate by an `2-estimate.

For this we need to strengthen the null space property.

Definition. (`2-stable and robust NSP of order s) Let A ∈ Rm×N and (Wj)
N
j=1 be a fusion frame.

Then the associated matrix AP ∈ Rmd×Nd is said to satisfy the `2-stable and robust null space

property of order s with constants 0 < ρ < 1 and τ > 0, if for all S ⊂ [N ], |S| = s, it holds

‖vS‖2 ≤
ρ√
s
‖vS‖2,1 + τ‖APv‖2 for all v ∈ H.
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Theorem 3.19. Suppose AP satisfies the `2-stable and robust null space property of order s with

constants 0 < ρ < 1 and τ > 0. Then for any x ∈ H, a solution x̂ of (L1)η with y = APx + e

with ‖e‖2 ≤ η satisfies

‖x− x̂‖2 ≤
C√
s
σs(x)1 +Dη,

for some constants C,D > 0 depending on only ρ and τ .

Proof. The `2-stable and robust null space property immediately implies that

‖vS‖2,1 ≤ ρ‖vS‖2,1 + τ
√
s‖APv‖2 for all v ∈ H.

This, along with Theorem 3.18, gives

‖x− x̂‖2,1 ≤
2(1 + ρ)

1− ρ
σs(x)1 +

4τ
√
s

1− ρ
η. (3.41)

We briefly note here that, for a block vector z = (z1, . . . , zN ) ∈ RN ·d with block size d, if S is an

index set of s largest `2-normed blocks in z, then it holds that ‖zS‖2 ≤
1

2
√
s
‖z‖2,1. This follows

from an analogous result for the scalar case [54, Theorem 2.5]. Then, choosing S as an index set

of s largest `2-normed blocks in x− x̂, this result and the `2-stable and robust null space property

yields

‖x− x̂‖2 ≤ ‖(x− x̂)S‖2 + ‖(x− x̂)S‖2

≤ ρ√
s
‖(x− x̂)S‖2 + τ‖AP(x− x̂)‖2 +

1

2
√
s
‖x− x̂‖2,1

≤ 2ρ+ 1

2
√
s
‖x− x̂‖2,1 + 2τη.

Finally plugging (3.41) in the right hand side gives the desired inequality with C = (2ρ+1)(1+ρ)
1−ρ

and D = 4+2ρ
1−ρ τ . �

3.3. Proofs of nonuniform results

3.3.1. Preliminaries

In this section, we introduce some useful norms for random variables that will appear in our proofs.

The following definition is taken from [109].

Definition. (Orlicz norm) Let ψ be a nondecreasing convex function with ψ(0) = 0 and X be a

random variable. The Orlicz norm of X is defined as

‖X‖ψ = inf

{
C > 0 : Eψ

(
|X|
C

)
≤ 1

}
.

The random variable X is called a ψ-variable if ‖X‖ψ is finite. The best-known examples of Orlicz

norms are those corresponding to the functions x 7→ xp for p ≥ 1; then the Orlicz norm is simply

the Lp-norm

‖X‖p = (E|X|p)1/p.

Other interesting Orlicz norms are induced by the functions ψα(x) = ex
α − 1, α ≥ 1. Particularly

ψ2 is related to subgaussian tails of X and ψ1 is related to subexponential tails.
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Remark. In [111], for a random variable X, the following alternative definitions are given

‖X‖′ψ1
= sup

p≥1
p−1(E|X|p)1/p, (3.42)

‖X‖′ψ2
= sup

p≥1
p−1/2(E|X|p)1/p. (3.43)

Recall that subgaussian random variables were introduced in Section 2.1.3. Indeed, it is shown

in [111] that the norm in (3.43) is finite if and only if X is subgaussian. Particularly, a subgaussian

random variable satisfies the tail bound

P(|X| ≥ t) ≤ exp

(
1− ct2

(‖X‖′ψ2
)2

)
,

for all t > 0 and an absolute constant c > 0. Similarly if (3.42) is finite, then X is called

subexponential. We refer to the ‖ · ‖′ψ1
and ‖ · ‖′ψ2

-norms as subexponential and subgaussian norms

respectively. Moreover it is shown in [111, Lemma 5.5 and Section 5.2.4] that these norms are

equivalent to Orlicz norms ‖ · ‖ψ1
and ‖ · ‖ψ2

respectively up to absolute constants.

The following lemma from [111] gives us a useful comparison of subexponential and subgaus-

sian norms.

Lemma 3.20. A random variable X is subgaussian if and only if X2 is subexponential. Moreover,

(‖X‖′ψ2
)2 ≤ ‖X2‖′ψ1

≤ 2(‖X‖′ψ2
)2.

Another result about Orlicz norms considers the ψ-norm of a maximum of finitely many random

variables. The following lemma is due to [109, Lemma 2.2.2].

Lemma 3.21. Let ψα for 0 < α ≤ 2 be given as before. Then, for any random variables

X1, . . . , Xm, ∥∥ max
1≤i≤m

Xi

∥∥
ψα
≤ K(ψα)−1(m) max

1≤i≤m

∥∥Xi

∥∥
ψα
,

for a constant K depending only on ψα. Here (ψα)−1 denotes the inverse function of ψα.

In particular for α = 1, (ψ1)−1(m) = ln(1 + m). A similar inequality is also valid for ψ(x) = xp,

which induces the Lp-norm of a random variable. Using the fact that maxi |Xi|p ≤
∑
i |Xi|p, one

obtains ∥∥ max
1≤i≤m

Xi

∥∥
p

=

(
E max

1≤i≤m
|Xi|p

)1/p

≤ m1/p max
1≤i≤m

‖Xi‖p, (3.44)

see [109] for a reference.

3.3.2. Inexact dual certificate

This section gives a sufficient condition for recovery of fixed sparse vectors based on an “inexact

dual vector”. Sufficient conditions involving an exact dual vector were given in [55, 103]. The

modified inexact version is due to Gross [65]. Below, A|H is the restriction of A to H.

Lemma 3.22. Let A ∈ Rm×N , (Wj)
N
j=1 be a fusion frame for Rd and x ∈ H with support S.

Assume that

‖[(AP)∗S(AP)S ]−1
|H ‖ ≤ 2 and max

`∈S
‖(AP)∗S(AP)`‖ ≤ 1. (3.45)
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Suppose there exists a block vector u ∈ RNd of the form u = AP
∗h with block vector h ∈ Rmd

such that

‖uS − sgn(xS)‖2 ≤ 1/4 and max
i∈S
‖ui‖2 ≤ 1/4. (3.46)

Then x is the unique minimizer of ‖z‖2,1 subject to APz = APx.

Proof. The proof follows [54, Theorem 4.32] and generalizes it to the block vector case. For

convenience we give the details here. Let x̂ be a minimizer of ‖z‖2,1 subject to APz = APx.

Then v = x̂− x ∈ H satisfies APv = 0. We need to show that v = 0. First we observe that

‖x̂‖2,1 = ‖xS + vS‖2,1 + ‖vS‖2,1 = 〈sgn(xS + vS), (xS + vS)〉+ ‖vS‖2,1

≥ 〈sgn(xS), (xS + vS)〉+ ‖vS‖2,1

= ‖xS‖2,1 + 〈sgn(xS),vS〉+ ‖vS‖2,1. (3.47)

For u = AP
∗h it holds

〈uS ,vS〉 = 〈u,v〉 − 〈uS ,vS〉 = 〈h,APv〉 − 〈uS ,vS〉 = −〈uS ,vS〉.

Hence,

〈sgn(xS),vS〉 = 〈sgn(xS)− uS ,vS〉+ 〈uS ,vS〉

= 〈sgn(xS)− uS ,vS〉 − 〈uS ,vS〉.

The Cauchy-Schwarz inequality together with (3.46) yields

|〈sgn(xS),vS〉| ≤ ‖sgn(xS)− uS‖2‖vS‖2 + max
i∈S
‖ui‖2‖vS‖2,1 ≤

1

4
‖vS‖2 +

1

4
‖vS‖2,1.

Together with (3.47) this yields

‖x̂‖2,1 ≥ ‖xS‖2,1 −
1

4
‖vS‖2 +

3

4
‖vS‖2,1.

We now bound ‖vS‖2. Since APv = 0, we have (AP)SvS = −(AP)SvS and

‖vS‖2 = ‖[(AP)∗S(AP)S ]−1
|H (AP)∗S(AP)SvS‖2 = ‖ − [(AP)∗S(AP)S ]−1

|H (AP)∗S(AP)SvS‖2

≤ ‖[(AP)∗S(AP)S ]−1
|H ‖‖(AP)∗S(AP)SvS‖2 ≤ 2

∥∥∥∥∥∥(AP)∗S
∑
i∈S

(AP)ivi

∥∥∥∥∥∥
2

≤ 2
∑
i∈S

‖(AP)∗S(AP)i‖‖vi‖2 ≤ 2‖vS‖2,1. (3.48)

Hereby, we used the second condition in (3.45). Then we have

‖x̂‖2,1 ≥ ‖x‖2,1 +
1

4
‖vS‖2,1.

Since x̂ is an `2,1-minimizer it follows that vS = 0. Therefore (AP)SvS = −(AP)SvS = 0. Since

(AP)S is injective, it follows that vS = 0, so that v = 0. �

The next statement makes Lemma 3.22 robust under noise and stable under passing from

sparse to compressible vectors. It is an extension of [54, Theorem 4.33] and its proof is entirely

analogous to the one in there.
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Lemma 3.23. Let A ∈ Rm×N , (Wj)
N
j=1 be a fusion frame for Rd and x ∈ H. Let S ⊂ [N ]

be the index set of the s largest `2-normed vectors xi of x. Assume that, for positive constants

δ, β, γ, θ ∈ (0, 1) with b := θ + βγ/(1− δ) < 1 and

‖(AP)∗SAPS −PS‖ ≤ δ, (3.49)

max
`∈S
‖(AP)∗S(AP)`‖ ≤ β. (3.50)

Suppose there exists a block vector u ∈ RNd of the form u = AP
∗h with block vector h ∈ Rmd

such that

‖uS − sgn(xS)‖2 ≤ γ, (3.51)

max
i∈S
‖ui‖2 ≤ θ, (3.52)

‖h‖2 ≤ τ
√
s. (3.53)

Let noisy measurements y = APx + e be given with ‖e‖2 ≤ η. Then the minimizer x̂ of

min
z∈H
‖z‖2,1 s.t. ‖APz− y‖2 ≤ η (3.54)

satisfies

‖x− x̂‖2 ≤ C1σs(x)1 + (C2 + C3

√
s)η,

where

C1 =

(
1 +

β

1− δ

)
2

1− b
, C2 = 2

√
1 + δ

1− δ
+

(
1 +

β

1− δ

)
2γ
√

1 + δ

(1− δ)(1− b)

C3 =

(
1 +

β

1− δ

)
2τ

1− b
.

Proof. Let x̂ be minimizer of the optimization program (3.54) and say x̂ = x + v. Our goal is

to bound ‖v‖2,1. We have ‖x‖2,1 ≥ ‖x̂‖2,1 by minimality. Then

‖x‖2,1 ≥ ‖x + v‖2,1 = ‖(x + v)S‖2,1 + ‖(x + v)S‖2,1

≥ 〈(x + v)S , sgn(xS)〉+ ‖vS‖2,1 − ‖xS‖2,1

= ‖xS‖2,1 + 〈vS , sgn(xS)〉+ ‖vS‖2,1 − ‖xS‖2,1.

Rearranging and using that ‖x‖2,1 = ‖xS‖2,1 + ‖xS‖2,1 yields

‖vS‖2,1 ≤ |〈vS , sgn(xS)〉|+ 2‖xS‖2,1. (3.55)

We further estimate

|〈vS , sgn(xS)〉| ≤ |〈vS , sgn(xS)− uS〉|+ |〈vS ,uS〉|

≤ γ‖vS‖2 + |〈v,u〉|+ |〈vS ,uS〉| (3.56)

where we used the triangle inequality and the Cauchy-Schwarz inequality together with (3.51).

Next we will estimate three terms on the right hand side of the inequality above. It follows from

the assumption on the noise vector e and the constraint in the optimization problem (3.54) that

‖APv‖2 = ‖AP(x̂− x)‖2 ≤ ‖APx̂− y‖2 + ‖y −APx‖2 ≤ 2η.
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The well-conditionedness assumption (3.49) implies that ‖(AP)S‖ ≤
√

1 + δ and ‖[(AP)∗S(AP)S ]−1
|H ‖ ≤

(1− δ)−1. Then the first term in (3.56) can be estimated as follows

‖vS‖2 = ‖[(AP)∗S(AP)S ]−1
|H (AP)∗S(AP)SvS‖2 ≤

1

1− δ
‖(AP)∗S(AP)SvS‖2

≤ 1

1− δ
‖(AP)∗SAPv‖2 +

1

1− δ
‖(AP)∗S(AP)SvS‖2

≤ 2

√
1 + δ

1− δ
η +

β

1− δ
‖vS‖2,1, (3.57)

where the last step follows from (3.50) in the same way as in (3.48). For the second term we use

Condition (3.53) to derive

|〈v,u〉| = |〈v,AP
∗h〉| = |〈APv,h〉| ≤ ‖APv‖2‖h‖2 ≤ 2τη

√
s.

Finally Hölder’s inequality with (3.52) yields

|〈vS ,uS〉| ≤ θ‖vS‖2,1.

Plugging these estimates into (3.55), we obtain

‖vS‖2,1 ≤
(

2γ

√
1 + δ

1− δ
+ 2τ

√
s

)
η +

(
θ +

βγ

1− δ

)
‖vS‖2,1 + 2‖xS‖2,1.

Since θ + βγ/(1− δ) = b < 1 and ‖xS‖2,1 = σs(x)1 a rearrangement yields

‖vS‖2,1 ≤
2γ
√

1+δ
1−δ + 2τ

√
s

1− b
η +

2

1− b
σs(x)1.

Finally, this inequality together with (3.57) yields

‖v‖2 ≤ ‖vS‖2 + ‖vS‖2 ≤ ‖vS‖2 + ‖vS‖2,1

≤ 2

√
1 + δ

1− δ
η +

(
1 +

β

1− δ

)
‖vS‖2,1

≤ 2

√
1 + δ

1− δ
η +

(
1 +

β

1− δ

)(
2γ
√

1+δ
1−δ + 2τ

√
s

1− b
η +

2

1− b
σs(x)1

)
= C1σs(x)1 + (C2 + C3

√
s)η

with the claimed values of the constants. �

3.3.3. Proof of Theorem 3.1

We introduce the rescaled matrix ÃP = 1√
m

AP. The term ‖[(ÃP)∗S(ÃP)S ]−1
|H ‖ in (3.45) will be

treated with Theorem 3.24 by noticing that ‖(ÃP)∗S(ÃP)S−PS‖ ≤ δ implies ‖[(ÃP)∗S(ÃP)S ]−1
|H ‖ ≤

(1 − δ)−1. The other terms in Lemma 3.22 will be estimated by the lemmas in the next section.

Throughout the proof, we use the notation Ejj(A) to denote the s× s block diagonal matrix with

the matrix A ∈ Rd×d in its j-th diagonal entry and 0 elsewhere.

• Auxiliary results

We use the matrix Bernstein inequality in Theorem A.3 due to [106] in order to bound ‖(ÃP)∗S(ÃP)S−
PS‖. Recall the definition (3.2) of the incoherence matrix Λ from Section 3.1.5.

53



3.3. PROOFS OF NONUNIFORM RESULTS CHAPTER 3.

Theorem 3.24. Let A ∈ Rm×N be a measurement matrix whose entries are i.i.d. Bernoulli

random variables and (Wj)
N
j=1 be a fusion frame with the associated matrix Λ and dim(Wj) = k.

Then, for δ ∈ (0, 1), the block matrix ÃP satisfies

‖(ÃP)∗S(ÃP)S −PS‖ ≤ δ

with probability at least 1− ε provided

m ≥ δ−2

(
2‖ΛS‖22,∞ +

2

3
max{‖ΛS‖, 1}

)
ln(2sk/ε).

We note that the relation ‖ΛS‖2,∞ ≤ ‖ΛS‖ holds by definition of the norms, see Section 3.1.5.

Proof. Denote Y` = (ε`jPj)j∈S for ` ∈ [m] as the `-th block column vector of (ÃP)∗S . Observing

that E(Y`Y
∗
` )j,k = E(ε`jPjε`kPk) = δjkPjPk, where δjk = 1 for j = k and 0 otherwise, we have

EY`Y
∗
` = PS . Therefore, we can write

(ÃP)∗S(ÃP)S −PS =
1

m

m∑
`=1

(Y`Y
∗
` − EY`Y

∗
` ).

This is a sum of independent self-adjoint random matrices. We define the block matrices X` :=
1
m (Y`Y

∗
` − EY`Y

∗
` ) which have mean zero. Moreover,

‖X`‖ =
1

m
max

‖x‖2=1,x∈H
|〈Y`Y

∗
`x,x〉 − 〈PSx,x〉| = 1

m
max

‖x‖2=1,x∈H

∣∣‖Y∗`x‖22 − ‖x‖22∣∣
≤ 1

m
max

{
max

‖x‖2=1,x∈H
‖Y∗`x‖22 − 1, 1

}
=

1

m
max

{
‖Y`‖2 − 1, 1

}
.

We further bound the spectral norm of the block matrix Y∗` . We separate a vector x ∈ RS·d into

s blocks of length d and denote x = (xi)i∈S . Defining the vector β ∈ RS with βi = ‖xi‖2 we have

‖Y∗` ‖2 = max
‖x‖2=1

∥∥∥∥∥∑
i∈S

εiPixi

∥∥∥∥∥
2

= max
‖x‖2=1

∑
i,j∈S

εiεj〈Pixi, Pjxj〉

≤ max
‖x‖2=1

∑
i,j∈S

|〈PiPjxj , xi〉| ≤ max
‖x‖2=1

∑
i,j∈S

‖PiPj‖‖xi‖2‖xj‖2

≤ max
‖x‖2=1

∑
j∈S
‖xj‖22 + max

‖β‖2=1

∑
i6=j

‖PiPj‖βiβj

≤ 1 + max
‖β‖2=1

〈β,Λβ〉 ≤ 1 + ‖ΛS‖. (3.58)

This implies the estimate

‖X`‖ ≤
max{‖ΛS‖, 1}

m
.

Furthermore,

EX2
` =

1

m2
E (Y`Y

∗
`Y`Y

∗
` + PS −Y`Y

∗
`PS −PSY`Y

∗
` )

= E
1

m2
Y`

∑
j∈S

Pj

Y∗` +
1

m2
PS −

1

m2
E(Y`Y

∗
` )PS −

1

m2
PSE(Y`Y

∗
` )

=
1

m2

∑
i∈S

Eii

Pi
∑
j∈S

Pj

Pi

− 1

m2
PS .
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In the first equality above, we used the independence of ε`j for j ∈ S and the fact that ε2`j = 1.

The last inequality follows from the relation Eε`jε`k = 0 for j 6= k, which yields the block diagonal

matrix in the last line. Next, we estimate the variance parameter appearing in the noncommutative

Bernstein inequality as

σ2 :=

∥∥∥∥∥
m∑
`=1

E(X2
`)

∥∥∥∥∥ =
1

m

∥∥∥∥∥∥
∑
i∈S

Eii

Pi
∑
j∈S

Pj

Pi

−PS

∥∥∥∥∥∥
=

1

m

∥∥∥∥∥∥
∑
i∈S

Eii

Pi
 ∑
j∈S,j 6=i

Pj

Pi

∥∥∥∥∥∥ =
1

m
max
i∈S

∥∥∥∥∥∥Pi
 ∑
j∈S,j 6=i

Pj

Pi

∥∥∥∥∥∥ .
We further estimate,

max
i∈S

∥∥∥∥∥∥Pi
 ∑
j∈S,j 6=i

Pj

Pi

∥∥∥∥∥∥ = max
i∈S

∥∥∥∥∥∥
∑

j∈S,j 6=i

PiPjPi

∥∥∥∥∥∥ ≤ max
i∈S

∑
j∈S
j 6=i

‖PiPj‖‖PjPi‖ = max
i∈S

∑
j∈S
j 6=i

‖PiPj‖2.

Finally we arrive at

σ2 ≤
‖ΛS‖22,∞

m
.

We are now in the position of applying Theorem A.3. This gives

P
(
‖(ÃP)∗S(ÃP)S −PS‖ > δ

)
= P

(
‖
m∑
`=1

X`‖ > δ

)

≤ 2sk exp

(
− δ2m/2

‖ΛS‖22,∞ + max{‖ΛS‖, 1}δ/3

)
≤ 2sk exp

(
− δ2m

2‖ΛS‖22,∞ + 2
3 max{‖ΛS‖, 1}

)
,

(3.59)

where we used that δ ∈ (0, 1). The careful reader may have noticed that 2sk appears in front

of the exponential instead of the dimension of X` ∈ Rsd×sd as asked by Theorem A.3. In fact,

Theorem A.3 gives a better estimate if the matrices EX2
` are not full rank, see (A.2) and the remark

after Theorem A.3. Indeed, in our case since rank(Pj) = dim(Wj) = k, we have rank(EX2
`) = sk

which appears in (3.59). Bounding the right hand side of (3.59) by ε completes the proof. �

We now provide modified versions of the auxiliary lemmas in [54, Section 12.4].

Lemma 3.25. Let S be a subset of [N ] with cardinality s and v ∈ RS×d be a block vector of size

s with vj ∈Wj for j ∈ S. Assume that m ≥ ‖ΛS‖22,∞ and maxi∈S ‖vi‖2 ≤ κ ≤ 1. Then, for t > 0,

P
(

max
`∈S
‖(ÃP)∗` (ÃP)Sv‖2 ≥

κ‖ΛS‖2,∞√
m

+ t

)
≤ N exp

(
− t2m

2κ2‖ΛS‖22,∞ + 4κ2‖ΛS‖∞ + tκ‖ΛS‖∞

)
.

Proof. Fix ` ∈ S. Observe that for i ∈ [m], εi` are independent from εij for j ∈ S. For simplicity

we denote the corresponding matrices as B = (ÃP)∗` and C = (ÃP)S . The i-th block column and

i-th block row are denoted as Bi and Bi respectively. Note that

(ÃP)∗` (ÃP)Sv =

m∑
i=1

BiC
iv =

m∑
i=1

∑
j∈S

1

m
εi`εijP`Pjvj (3.60)
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for ` ∈ S. For convenience we introduce

BiC
i =

1

m

(
εi`εi1P`P1 εi`εi2P`P2 · · · εi`εisP`Ps

)
,

where we assumed S = [s] for simplifying the notation. The sum of independent vectors in (3.60)

will be bounded in `2-norm using the vector valued Bernstein inequality Lemma A.5. Observe

that the vectors BiC
iv have mean zero. Furthermore,

mE‖BiC
iv‖22 =

1

m
E
∑
j,k∈S

ε2i`εijεik〈P`Pjvj , P`Pkvk〉

=
1

m

∑
j∈S
‖P`Pjvj‖22 ≤

1

m

∑
j∈S
‖P`Pj‖2‖vj‖22 ≤

κ2

m
‖ΛS‖22,∞

where we used ‖vj‖2 ≤ κ. We bound σ2 appearing in Lemma A.5 simply due to (A.5) by

mσ2 ≤ mE‖BiC
iv‖22 ≤

κ2

m
‖ΛS‖22,∞.

For the uniform bound, observe that

‖BiC
iv‖2 =

1

m

∥∥∥∥∥∥
∑
j∈S

εi`εijP`Pjvj

∥∥∥∥∥∥
2

≤ 1

m

∑
j∈S
‖P`Pj‖‖vj‖2 ≤

κ

m
‖ΛS‖∞.

Then the vector valued Bernstein inequality (A.4) yields

P
(
‖(ÃP)∗` (ÃP)Sv‖2 ≥

κ‖ΛS‖2,∞√
m

+ t

)
≤ exp

− t2/2
κ2‖ΛS‖22,∞

m + 2κ‖ΛS‖∞
m

κ‖ΛS‖2,∞√
m

+ t
3
κ‖ΛS‖∞

m

 .

Taking the union bound over ` ∈ S ⊂ [N ] and using that
‖ΛS‖2,∞√

m
≤ 1 yields

P
(

max
`∈S
‖(ÃP)∗` (ÃP)Sv‖2 ≥

κ‖ΛS‖2,∞√
m

+ t

)
≤ N exp

(
− t2m

2κ2‖ΛS‖22,∞ + 4κ2‖ΛS‖∞ + tκ‖ΛS‖∞

)
.

This completes the proof. �

Next, we prove a similar auxiliary result.

Lemma 3.26. Let S be subset of [N ] with cardinality s and v ∈ RS×d be a block vector of size s

with vj ∈Wj for j ∈ S. Assume that m ≥ ‖ΛS‖22,∞. Then, for t > 0,

P
(
‖[(ÃP)∗S(ÃP)S −PS ]v‖2 ≥

(
‖ΛS‖2,∞√

m
+ t

)
‖v‖2

)
≤ exp

(
− mt2

8 + 4‖ΛS‖∞ + 2‖ΛS‖22,∞ + t( 4
3 + 2

3‖ΛS‖∞)

)
.

Proof. As in the proof of Theorem 3.24, we rewrite the term that we need to bound as

[(ÃP)∗S(ÃP)S −PS ]v =
1

m

m∑
`=1

(Y`Y
∗
` −PS)v (3.61)

where Y` = (ε`iPi)i∈S is the `-th block row of (ÃP)S . We use the vector valued Bernstein

inequality, Lemma A.5 once again, in order to estimate the `2-norm of this sum. Observe that
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E(Y`Y
∗
` −PS)v = 0 as in the proof of Theorem 3.24. Furthermore, denoting

Z =

∥∥∥∥∥ 1

m

m∑
`=1

(Y`Y
∗
` −PS)v

∥∥∥∥∥
2

,

we have

EZ2 = mE
∥∥∥∥ 1

m
(Y1Y

∗
1 −PS)v

∥∥∥∥2

2

=
1

m
E〈(Y1Y

∗
1 −PS)v, (Y1Y

∗
1 −PS)v〉

=
1

m
E(〈Y1Y

∗
1v,Y1Y

∗
1v〉 − 2〈Y1Y

∗
1v,v〉+ 〈v,v〉)

=
1

m
E(〈Y1Y

∗
1Y1Y

∗
1v,v〉 − 2‖Y∗1v‖22 + 1).

We now estimate the first two terms in the last line above. First observe that due to Y∗1Y1 =∑
i∈S Pi, it holds

E〈Y1Y
∗
1Y1Y

∗
1v,v〉 = 〈E(Y1

∑
i∈S

PiY
∗
1)v,v〉 = 〈

∑
j∈S

Ejj(Pj
∑
i∈S

PiPj)v,v〉

=
∑
j∈S
〈Pj

∑
i∈S

PiPjvj , vj〉 =
∑
i,j∈S

〈PjPiPjvj , vj〉

≤
∑
i,j,i 6=j

‖PiPj‖2‖vj‖22 +
∑
j∈S
‖vj‖22 ≤

∑
j∈S
‖vj‖22

∑
i 6=j

‖PiPj‖2
+ 1

≤ 1 +

max
j∈S

∑
i 6=j

‖PiPj‖2
∑
j∈S
‖vj‖22 ≤ 1 + ‖ΛS‖22,∞,

where we used that ΛS is symmetric and ‖v‖2 = 1. Secondly, since

E‖Y∗1v‖22 = E‖
∑
i∈S

εiPivi‖22 = E
∑
i,j∈S

εiεj〈vi, vj〉 =
∑
i∈S
‖vi‖22 = 1,

we obtain

EZ2 ≤
‖ΛS‖22,∞

m
.

For the uniform bound, we have

1

m
‖(Y`Y

∗
` −PS)v‖2 ≤

1

m
‖Y`Y

∗
` ‖‖v‖2 +

1

m
‖v‖2

=
1

m
‖Y`‖2 +

1

m
≤ 2 + ‖ΛS‖∞

m
.

The last inequality follows from (3.58) and ‖ΛS‖ ≤ ‖ΛS‖∞, see [54, Lemma A.8] for a reference.

Finally we estimate the weak variance simply by the strong variance

mσ2 ≤ EZ2 ≤
‖ΛS‖22,∞

m
.

Then the `2-valued Bernstein inequality (A.4) yields

P
(
‖[(ÃP)∗S(ÃP)S −PS ]v‖2 ≥

(
‖ΛS‖2,∞√

m
+ t

)
‖v‖2

)
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≤ exp

− t2/2
‖ΛS‖22,∞

m + (4+2‖ΛS‖∞)
m

‖ΛS‖2,∞√
m

+ t(2+‖ΛS‖∞)
3m

 .

Using that
‖ΛS‖2,∞√

m
≤ 1, we obtain

P
(
‖[(ÃP)∗S(ÃP)S −PS ]v‖2 ≥

(
‖ΛS‖2,∞√

m
+ t

)
‖v‖2

)
≤ exp

(
− mt2

8 + 4‖ΛS‖∞ + 2‖ΛS‖22,∞ + t( 4
3 + 2

3‖ΛS‖∞)

)
.

This completes the proof. �

Lemma 3.26 shows that the multiplication with (ÃP)∗S(ÃP)S −PS decreases the `2-norm of

the vectors with high probability. The next lemma shows that this is true for the `2,∞-norm as

well.

Lemma 3.27. Assume the conditions of Lemma 3.26. Then, for t > 0,

P
(
‖[(ÃP)∗S(ÃP)S −PS ]v‖2,∞ ≥

(
‖ΛS‖2,∞√

m
+ t

)
‖v‖2,∞

)
≤ s · exp

(
− mt2

4‖ΛS‖∞ + 2‖ΛS‖22,∞ + 2
3 t‖ΛS‖∞

)
.

Proof. We assume that ‖v‖2,∞ = maxi∈S ‖vi‖2 = 1 by normalizing v by ‖v‖2,∞. As in (3.61),

we write

Z := [(ÃP)∗S(ÃP)S −PS ]v =
1

m

m∑
`=1

(Y`Y
∗
` −PS)v,

where Y` = (ε`iPi)i∈S is the `-th row of (ÃP)S . We can further write for i ∈ S

Zi =

m∑
`=1

1

m

∑
j∈S
j 6=i

ε`iε`jPiPjvj =:
∑
`

X`.

The vectors X` are independent, thus we use Lemma A.5 in order to bound ‖Zi‖2. Since we have

done similar estimations in the previous proofs, we skip some steps and obtain

E‖Zi‖22 = mE‖X`‖22 ≤
1

m

∑
j∈S
j 6=i

‖PiPj‖2‖vj‖22 ≤
1

m
‖ΛS‖22,∞,

where we used that ‖vj‖2 ≤ 1. Furthermore, mσ2 ≤ 1
m‖Λ

S‖22,∞. For any ` ∈ [m] we have the

uniform bound

‖X`‖2 =
1

m

∥∥∥∥∥∥
∑

j∈S,j 6=i

ε`iε`jPiPjvj

∥∥∥∥∥∥
2

≤ 1

m

∑
j∈S,j 6=i

‖PiPj‖‖vj‖2 ≤
1

m
‖ΛS‖∞.

Combining these with Lemma A.5 and taking the union bound yield

P
(

max
i∈S
‖Zi‖2 ≥

‖ΛS‖2,∞√
m

+ t

)
≤ s · exp

(
− mt2

4‖ΛS‖∞ + 2‖ΛS‖22,∞ + 2
3 t‖ΛS‖∞

)
.

�
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Lastly we present the following lemma before the proof of our main result.

Lemma 3.28. For t ∈ (0, 3
2 ),

P(max
i∈S
‖(ÃP)∗S(ÃP)i‖ ≥ t) ≤ 2(s+ 1)Nk exp

(
− t2m

3‖ΛS‖22,∞

)
.

Proof. Fix i ∈ S. Similarly as before, we write (ÃP)∗S(ÃP)i as a sum of independent matrices,

(ÃP)∗S(ÃP)i =
1

m

m∑
`=1


ε`1ε`iP1Pi

ε`2ε`iP2Pi
...

ε`sε`iPsPi

 =:
1

m

m∑
`=1

Y`, (3.62)

where we assumed S = [s] for simplifying the notation. Above we introduced the block column

vectors Y` ∈ Rsd×d which are independent and identically distributed rectangular matrices. Ob-

serve also that EY` = 0. In order to estimate the norm of the sum in (3.62) we will employ

Theorem A.4 [106] which is a version of the noncommutative Bernstein inequality for rectangular

matrices. We first bound the variance parameter

σ2 = max

{
‖
m∑
`=1

1

m2
E[Y`Y

∗
` ]‖, ‖

m∑
`=1

1

m2
E[Y∗`Y`]‖

}
. (3.63)

We write E[Y`Y
∗
` ] =

∑
j∈S Ejj(PjPiPj). The first term on the right hand side of (3.63) is esti-

mated as

‖ 1

m2

m∑
`=1

E[Y`Y
∗
` ]‖ =

1

m
max
j∈S
‖PjPiPj‖ ≤

1

m
max
j∈S
‖PjPi‖‖PiPj‖ ≤

λ2

m
. (3.64)

We used that P 2
i = Pi and i 6∈ S. Furthermore, E[Y∗`Y`] =

∑
j∈S PiPjPi and

1

m2
‖
m∑
`=1

E[Y∗`Y`]‖ =
1

m
‖
∑
j∈S

PiPjPi‖ ≤
1

m

∑
j∈S
‖PiPj‖‖PjPi‖ ≤

‖ΛS‖22,∞
m

. (3.65)

Since (3.65) dominates (3.64), we have

σ2 ≤
‖ΛS‖22,∞

m
.

For the uniform bound we obtain

‖Y`‖2 = sup
‖x‖2≤1

x∈Rd

‖Y`x‖22 = sup
‖x‖2≤1

x∈Rd

∑
j∈S
‖PjPix‖22

≤ sup
‖x‖2≤1

x∈Rd

∑
j∈S
‖PjPi‖2‖x‖22 ≤ ‖ΛS‖22,∞.

We conclude that 1
m‖Y`‖ ≤ ‖ΛS‖2,∞m . Combining these estimates, Theorem A.4 yields

P(‖(ÃP)∗S(ÃP)i‖ ≥ t) ≤ 2(s+ 1)k exp

− t2/2
‖ΛS‖22,∞

m + t
3
‖ΛS‖2,∞

m

 .
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Taking the union bound over i ∈ S ⊂ [N ] and using that t ∈ (0, 3
2 ) yields

P(max
i∈S
‖(ÃP)∗S(ÃP)i‖ ≥ t) ≤ 2(s+ 1)Nk exp

(
− t2m

3‖ΛS‖22,∞

)
.

Above, the dimension of the subspaces k appears instead the ambient dimension d for the same

reasons explained in the proof of Theorem 3.24. This completes the proof. �

• Proof of Theorem 3.1 continued

Essentially we follow the arguments in [54, Section 12.4]. We will construct an inexact dual vector

as in Lemma 3.22 satisfying the conditions there. To this end, we will use the so-called golfing

scheme due to Gross [65]. We partition the m independent (block) rows of AP into L disjoint

blocks of sizes m1, . . . ,mL and L to be specified later with m =
∑L
j=1mj . These blocks correspond

to row submatrices of AP which are denoted by AP
(1) ∈ Rm1d×Nd, . . . ,AP

(L) ∈ RmLd×Nd, i.e.,

AP =


AP

(1)

AP
(2)

...

AP
(L)


}m1

}m2

...

}mL

Set S = supp(x). The golfing scheme starts with u(0) = 0 and then inductively defines

u(n) =
1

mn
(AP

(n))∗(AP
(n))S(sgn(xS)− u

(n−1)
S ) + u(n−1),

for n = 1, . . . , L. The vector u = u(L) will serve as a candidate for the inxeact dual vector in

Lemma 3.22. Thus, we need to check if it satisfies the two conditions in (3.46). By construction

u is in the row space of AP, i.e., u = AP
∗h for some vector h as required in Lemma 3.22. To

simplify the notation we introduce w(n) = sgn(xS)− u
(n)
S . Observe that

u
(n)
S − u

(n−1)
S =

1

mn
(AP

(n))∗S(AP
(n))S(sgn(xS)− u

(n−1)
S )

w(n−1) −w(n) =
1

mn
(AP

(n))∗S(AP
(n))Sw(n−1)

w(n) =

[
PS −

1

mn
(AP

(n))∗S(AP
(n))S

]
w(n−1). (3.66)

Above we used that PSw(n) = w(n). Furthermore we have

u(n) − u(n−1) =
1

mn
(AP

(n))∗(AP
(n))Sw(n−1)

u = u(L) =

L∑
n=1

1

mn
(AP

(n))∗(AP
(n))Sw(n−1), (3.67)

where the last line follows by a telescopic sum. We will later show that the matrices

PS −
1

mk
(AP

(k))∗S(AP
(k))S

are contractions and the norm of the residual vector w(n) decreases geometrically fast, thus u(n)

becomes close to sgn(xS) on its support set S. Particularly, we will prove that ‖w(L)‖2 ≤ 1/4 for

a suitable choice of L. In addition we also need that the off-support part of u remains small as

well, satisfying the condition maxi∈S ‖ui‖2 ≤ 1/4.

60



CHAPTER 3. 3.3. PROOFS OF NONUNIFORM RESULTS

For these tasks, we will use the lemmas proven above. For the moment, we assume that the

following holds for each n with high probability

‖w(n)‖2,∞ ≤
(
‖ΛS‖2,∞√

m
+ qn

)
‖w(n−1)‖2,∞, n ∈ [L]. (3.68)

Let q′n :=
‖ΛS‖2,∞√

m
+ qn. Since ‖w(0)‖2,∞ = ‖sgn(xS)‖2,∞ = 1, we have

‖w(n)‖2,∞ ≤
n∏
j=1

q′j =: hn.

Further assume that the following inequalities hold for each n with high probability,

‖w(n)‖2 ≤
(
‖ΛS‖2,∞√

m
+ rn

)
‖w(n−1)‖2, n ∈ [L], (3.69)

max
i∈S

∥∥∥∥ 1

mn
(AP

(n))∗i (AP
(n))Sw(n−1)

∥∥∥∥
2

≤ hn‖ΛS‖2,∞√
m

+ tn, n ∈ [L]. (3.70)

The parameters qn, rn, tn will be specified later. Now let r′n :=
‖ΛS‖2,∞√

m
+rn and t′n :=

hn‖ΛS‖2,∞√
m

+

tn. Then the relations in (3.66) and (3.69) yield

‖sgn(xS)− uS‖2 = ‖w(L)‖2 ≤ ‖sgn(xS)‖2
L∏
n=1

r′n ≤
√
s

L∏
n=1

r′n.

Furthermore, (3.67) and (3.70) give

max
i∈S
‖ui‖2 = max

i∈S

∥∥∥∥∥
L∑
n=1

1

mn
(AP

(n))∗i (AP
(n))Sw(n−1)

∥∥∥∥∥
2

≤
L∑
n=1

max
i∈S

∥∥∥∥ 1

mn
(AP

(n))∗i (AP
(n))Sw(n−1)

∥∥∥∥
2

≤
L∑
n=1

t′n.

Next we define the probabilities p0(n), p1(n) and p2(n) that (3.68), (3.69) and (3.70) do not hold

respectively. Then by Lemma 3.27 and independence of the blocks,

p0(n) ≤ ε,

provided

mn ≥

(
4‖ΛS‖∞ + 2‖ΛS‖22,∞

q2
n

+
2‖ΛS‖∞

3qn

)
ln(s/ε). (3.71)

Also by Lemma 3.26 and independence of the blocks,

p1(n) ≤ ε

provided

mn ≥

(
8 + 4‖ΛS‖∞ + 2‖ΛS‖22,∞

r2
n

+
4/3 + (2/3)‖ΛS‖∞

rn

)
ln(ε−1). (3.72)
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Similarly, due to Lemma 3.25 and independence of the blocks,

p2(n) ≤ ε,

provided

mn ≥

(
2h2

n‖ΛS‖22,∞ + 4h2
n‖ΛS‖∞

t2n
+
hn‖ΛS‖∞

tn

)
ln(N/ε). (3.73)

We now set the parameters L,mn, tn, rn, qn for n ∈ [L] such that ‖sgn(xS) − uS‖2 ≤ 1/4 and

maxi∈S ‖ui‖2 ≤ 1/4 as required in the Lemma 3.22. We choose

L = dln(s)/ ln ln(N)e+ 3,

mn ≥ c(1 + ‖ΛS‖∞) ln(N) ln(2Lε−1),

rn =
1

4
√

ln(N)
,

tn =
1

2n+3
,

qn =
1

8
.

We can estimate each of ‖ΛS‖22,∞, ‖ΛS‖22,∞, ‖ΛS‖∞ by ‖ΛS‖∞ from above, due to the relation

(3.3) in Section 3.1.5. Then by definitions of r′n, t
′
n, hn, q

′
n, we have r′n ≤ 1

2
√

lnN
, q′n ≤ 1

2 , hn ≤ 1
2n

and t′n ≤ 1
2n+2 for n = 1, . . . , L. Furthermore,

‖sgn(xS)− uS‖2 ≤
√
s

L∏
n=1

r′n ≤
1

4
, (3.74)

and

max
i∈S
‖ui‖2 ≤

L∑
n=1

t′n ≤
1

4
. (3.75)

Next we bound the failure probabilities according to our choices of parameters above. Considering

also the conditions (3.71), (3.72) and (3.73), we have p0(n), p1(n), p2(n) ≤ ε/L. These yield

L∑
n=1

p0(n) + p1(n) + p2(n) ≤ 3ε.

The overall number of samples obey

m =

L∑
n=1

mn ≥ 2c(1 + ‖ΛS‖∞)L ln(N) ln(L/ε). (3.76)

This is already very close to the proposed condition in the statement of our theorem. We will

strengthen this condition later. Next we look into the first part of Condition (3.45) of Lemma 3.22.

By Theorem 3.24 ‖(ÃP)∗S(ÃP)S −PS‖ ≤ 1/2 with probability at least 1− ε provided

m ≥
(

8‖ΛS‖22,∞ +
8

3
max{‖ΛS‖, 1}

)
ln(2sk/ε). (3.77)
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This implies that ‖[(ÃP)∗S(ÃP)S ]−1
|H ‖ ≤ 2. For the second part of Condition (3.45) we use

Lemma 3.28. It says that

P(max
i∈S
‖(ÃP)∗S(ÃP)i‖ ≥ t) ≤ 2(s+ 1)Nk exp

(
− t2m

3‖ΛS‖22,∞

)
.

Taking t = 1 implies that

max
i∈S
‖(ÃP)∗S(ÃP)i‖ ≤ 1

with probability at least 1− ε provided

m ≥ 6‖ΛS‖22,∞ ln(N(s+ 1)k/ε). (3.78)

Altogether we have shown that Conditions (3.45) and (3.46) of Lemma 3.22 hold simultaneously

with probability at least 1 − 5ε provided Conditions (3.76), (3.77) and (3.78) hold. Replacing ε

by ε/5, the main condition of Theorem 3.1

m ≥ C(1 + ‖ΛS‖∞) ln(N) ln(sk) ln(ε−1)

implies all three conditions above with an appropriate constant C since ‖ΛS‖ ≤ ‖ΛS‖∞ ≤ ‖ΛS‖∞
since Λ is symmetric. This ends the proof of our theorem. �

Remark. The inexact dual method yields a relatively long and technical proof for sparse recovery

and involves several auxiliary results. Other methods used in the CS literature prove to be hard to

apply for our particular case where we work with the block matrix AP which is more structured

than a purely random Gaussian matrix. The main difficulty is to obtain the parameter λ appearing

in the recovery condition. Here we name a few of other methods that fail to do so. The first one

is the exact dual approach developed by J.-J. Fuchs [55] that is used in Chapter 2 for subgaussian

matrices. In particular, the exact dual approach involves taking the pseudo-inverse of AP in order

to obtain the dual certificate (see Section 2.2.1) which loses the structure given by projection

matrices Pi. This structure is crucial because it allows us to prove our results involving the

incoherence parameter λ. As we will see in the next section, in the inexact dual approach, the

candidate for the dual vector is defined via an iterative process involving the row submatrices of

AP rather than inversing it.

Another approach to prove nonuniform recovery is using convex geometry [28] which is briefly

reviewed in Section 2.4. This method gives a rather general result with respect to an ‘atomic

norm’ approach which covers many different problems other than sparse recovery. In particular,

it uses Gordon’s lemma [62] and is restricted to only Gaussian matrices. After adapting Gordon’s

lemma to our particular case with the block matrix AP, even though one could obtain the optimal

scaling λs in the number of measurements m, the ambient dimension d appears as a linear factor

in m, which is suboptimal. A similar approach is used for the uniform recovery for fusion frames

to obtain the result in Theorem 3.8, see Section 3.2.2.

3.3.4. Proof of Theorem 3.2

• Auxiliary results

We recall the rescaled matrix ÃP = 1√
m

AP. The following result follows as a corollary of Theo-

rem 3.24 by observing that ‖ΛS‖22,∞ ≤ λ2s and ‖ΛS‖ ≤ λs with λ ∈ [0, 1].
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Corollary 3.29. Let A ∈ Rm×N be a measurement matrix whose entries are i.i.d. Bernoulli

random variables and (Wj)
N
j=1 be a fusion frame with dim(Wj) = k. Then, for δ ∈ (0, 1), the block

matrix ÃP defined above satisfies

‖(ÃP)∗S(ÃP)S −PS‖ ≤ δ

with probability at least 1− ε provided

m ≥ 8

3
δ−2(1 + λs) ln(2sk/ε).

Lemma 3.30. Let S be subset of [N ] with cardinality s and v ∈ RS×d be a block vector of size s

with vj ∈Wj for j ∈ S. Assume that m ≥ λs. Then, for t > 0,

P
(

max
`∈S
‖(ÃP)∗` (ÃP)Sv‖2 ≥

(
λ√
m

+ t

)
‖v‖2

)
≤ N exp

(
− t2m

6λ+ tλ
√
s

)
.

Proof. Fix ` ∈ S. We may assume without loss of generality that ‖v‖2 = 1. We see the block

matrices multiplied in the following matrix diagram.

(ÃP)∗` (ÃP)S =
1

m

(
ε̃1P` ε̃2P` · · · ε̃mP`

)

ε11P1 ε12P2 . . . ε1sPs

ε21P1 ε22P2 . . .

. . .

εm1P1 εm2P2 . . . εmsPs


where we assumed S = [s] for simplifying the notation. Here ε̃ denotes (εi`)

m
i=1. Observe that ε̃i

for i ∈ [m] are independent from εij . For simplicity we label those matrices as B = (ÃP)∗` and

C = (ÃP)S . We also denote the `-th block column and `-th block row as Bi and Bi respectively.

Note that

(ÃP)∗` (ÃP)Sv =

m∑
i=1

BiC
iv =

m∑
i=1

∑
j∈S

1

m
ε̃iεijP`Pjvj (3.79)

for ` ∈ S. For convenience we give the following

BiC
i =

1

m

(
ε̃iεi1P`P1 ε̃iεi2P`P2 · · · ε̃iεisP`Ps

)
.

The sum of independent vectors in (3.79) will be bounded in `2-norm by the vector valued Bernstein

inequality Lemma A.5. Observe that the vectors BiC
iv have mean zero. Furthermore,

mE‖BiC
iv‖22 =

1

m
E

s∑
j,k=1

ε̃2i εijεik〈P`Pjvj , P`Pkvk〉

=
1

m

∑
j∈S
‖P`Pjvj‖22 ≤

1

m

∑
j∈S
‖P`Pj‖2‖vj‖22 ≤

λ2

m
.

Here we used the assumption that ‖P`Pj‖ ≤ λ for j ∈ S and ` ∈ S. We bound σ2 appearing in

Lemma A.5 simply due to (A.5),

mσ2 ≤ mE‖BiC
iv‖22 ≤

λ2

m
.
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For the uniform bound, observe that

‖BiC
iv‖2 =

1

m

∥∥∥∥∥∥
∑
j∈S

ε̃iεijP`Pjvj

∥∥∥∥∥∥
2

≤ 1

m

∑
j∈S
‖P`Pj‖‖vj‖2 ≤

λ
√
s

m
.

The last inequality follows from the fact that ‖v‖2,1 ≤
√
s‖v‖2. Then the vector valued Bernstein

inequality (A.4) yields

P
(
‖(ÃP)∗` (ÃP)Sv‖2 ≥

(
λ√
m

+ t

)
‖v‖2

)
≤ exp

− t2/2
λ2

m + 2λ
√
s

m
λ√
m

+ t
3
λ
√
s

m

 .

Taking the union bound over ` ∈ S ⊂ [N ] and using that
√
λs√
m
≤ 1 and λ ∈ [0, 1] yields

P
(

max
`∈S
‖(ÃP)∗` (ÃP)Sv‖2 ≥

(
λ√
m

+ t

)
‖v‖2

)
≤ N exp

(
− t2m

6λ+ tλ
√
s

)
.

This completes the proof. �

The next lemma is a corollary of Lemma 3.26.

Lemma 3.31. Assume the conditions of Lemma 3.30. Then for t > 0

P
(
‖[(ÃP)∗S(ÃP)S −PS ]v‖2 ≥

(
λ
√
s√
m

+ t

)
‖v‖2

)
≤ exp

(
− mt2

8 + 6λs+ t( 4
3 + λs)

)
.

We now state another corollary, which follows from Lemma 3.28.

Lemma 3.32. For t ∈ (0, 3
2 ),

P(max
i∈S
‖(ÃP)∗S(ÃP)i‖ ≥ t) ≤ 2(s+ 1)Nk exp

(
− t

2m

3λs

)
.

• Proof of Theorem 3.2 continued

We follow very similar steps and notation as in the proof of Theorem 3.1. We define the vectors

u and w as before and recall that

u(n) =
1

mn
(AP

(n))∗(AP
(n))S(sgn(xS)− u

(n−1)
S ) + u(n−1), (3.80)

w(n) =

[
PS −

1

mn
(AP

(n))∗S(AP
(n))S

]
w(n−1), (3.81)

for n = 1, . . . , L, and

u = u(L) =

L∑
n=1

1

mn
(AP

(n))∗(AP
(n))Sw(n−1). (3.82)

According to Lemma 3.22, we have the tasks of showing that ‖w(L)‖2 ≤ 1/4 and maxi∈S ‖ui‖2 ≤
1/4. For the moment, we assume that the following inequalities hold for each n with high proba-

bility,

‖w(n)‖2 ≤
(
λ
√
s√
m

+ rn

)
‖w(n−1)‖2, n ∈ [L], (3.83)

max
i∈S

∥∥∥∥ 1

mn
(AP

(n))∗i (AP
(n))Sw(n−1)

∥∥∥∥
2

≤
(

λ√
m

+ tn

)
‖w(n−1)‖2, n ∈ [L], (3.84)
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where the parameters rn, tn will be specified later. Now let r′n := λ
√
s√
m

+ rn and t′n := λ√
m

+ tn.

Then the relations in (3.81) and (3.83) yield

‖sgn(xS)− uS‖2 = ‖w(L)‖2 ≤ ‖sgn(xS)‖2
L∏
n=1

r′n ≤
√
s

L∏
n=1

r′n. (3.85)

Furthermore, (3.82),(3.84) and (3.85) give

max
i∈S
‖ui‖2 = max

i∈S

∥∥∥∥∥
L∑
n=1

1

mn
(AP

(n))∗i (AP
(n))Sw(n−1)

∥∥∥∥∥
2

≤
L∑
n=1

max
i∈S

∥∥∥∥ 1

mn
(AP

(n))∗i (AP
(n))Sw(n−1)

∥∥∥∥
2

≤
L∑
n=1

t′n‖w(n−1)‖2 ≤
√
s

L∑
n=1

t′n

n−1∏
j=1

r′j

with the understanding that
∏n−1
j=1 r

′
j = 1 if n = 1. Next we define the probabilities that (3.83)

and (3.84) do not hold as p1(n) and p2(n) respectively. Then by Lemma 3.31 and independence

of the blocks,

p1(n) ≤ ε

provided

mn ≥
(

8 + 6λs

r2
n

+
4/3 + λs

rn

)
ln(ε−1). (3.86)

Similarly, due to Lemma 3.30 and independence of the blocks,

p2(n) ≤ ε

provided

mn ≥
(

6λ

t2n
+
λ
√
s

tn

)
ln(N/ε). (3.87)

We now set the parameters L,mn, tn, rn for n ∈ [L] such that ‖sgn(xS) − uS‖2 ≤ 1/4 and

maxi∈S ‖ui‖2 ≤ 1/4 as required in the Lemma 3.22. We choose

L = dln(s)/2e+ 2,

m1,m2 ≥ c(1 + λs) ln(N) ln(2ε−1), and mn ≥ c(1 + λs) ln(2Lε−1),

r1 = r2 =
1

4
√

ln(N)
and rn =

1

4
,

t1 = t2 =
1

16
√
s
, and tn =

ln(N)

16
√
s
, n = 3, . . . , L,

where c = 1536. Then safely assuming that λs ln(N)
mn

≤ 1
256 and by definitions of r′n, t

′
n, we have

r′1, r
′
2 ≤

1

2
√

ln(N)
and r′n ≤ 1/2,

and

t′1, t
′
2 ≤

1

8
√
s

and t′n ≤
ln(N)

8
√
s
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for n = 3, . . . , L. Furthermore,

‖sgn(xS)− uS‖2 ≤
√
s

L∏
n=1

r′n ≤
√
s

4
2− ln(s)/2 ≤ 1

4
,

and

max
i∈S
‖ui‖2 ≤

√
s

L∑
n=1

t′n

n−1∏
j=1

r′j ≤
1

8

L−1∑
k=0

1

2k
≤ 1

4
.

Next we bound the failure probabilities according to our choices of parameters above. Considering

also the conditions (3.86) and (3.87), p1(1), p1(2), p2(1), p2(2) ≤ ε/2 and p1(n), p2(n) ≤ ε/(2L).

These yield
L∑
n=1

p1(n) ≤ 2ε and

L∑
n=1

p2(n) ≤ 2ε.

The overall number of samples obey

m =

L∑
n=1

mn = m1 +m2 +

L∑
n=3

mn

≥ 2c(1 + λs) ln(N) ln(2ε−1) + c(1 + λs)dln(s)/2e ln(2dln(s)/2eε−1). (3.88)

This is already very close to the proposed condition in the statement of our theorem. We will

strengthen this condition later. Next we look into first part of Condition (3.45) of Lemma 3.22.

By Corollary 3.29 ‖(ÃP)∗S(ÃP)S −PS‖ ≤ 1/2 with probability at least 1− ε provided

m ≥ 32

3
(1 + λs) ln(2sk/ε). (3.89)

This implies that ‖[(ÃP)∗S(ÃP)S ]−1
|H ‖ ≤ 2.

For the second part of Condition (3.45) we use Lemma 3.32. It says that

P(max
i∈S
‖(ÃP)∗S(ÃP)i‖ ≥ t) ≤ 2(s+ 1)Nk exp

(
− t

2m

3λs

)
.

Taking t = 1 implies that

max
i∈S
‖(ÃP)∗S(ÃP)i‖ ≤ 1

with probability at least 1− ε provided

m ≥ 6λs ln(N(s+ 1)k/ε). (3.90)

Altogether we have shown that Conditions (3.45) and (3.46) of Lemma 3.22 hold simultaneously

with probability at least 1 − 6ε provided Conditions (3.88), (3.89) and (3.90) hold. Replacing ε

by ε/6, we notice that if

ln(s) ln(ln(s)) ≤ c′ ln(N), (3.91)

the main condition of Theorem 3.2

m ≥ C(1 + λs) ln(Nsk) ln(ε−1)

implies all three conditions above with an appropriate constant C. We are almost done with the

proof of our theorem.
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Finally, we use a nice trick due to Gross [65] in order to remove the mild condition (3.91).

We assume the basic structure of our proof. The idea is to sample slightly more row blocks AP
(n)

of the matrix AP than in the previous argument. Then we use only the part which obey the

conditions (3.83) and (3.84). The probability of that is higher than the probability that these

conditions hold simultaneously for all sampled blocks. This process of sampling more rows does

not increase the total number of measurements m, on the contrary, it decreases since each block

size mn can be chosen smaller.

More precisely, we choose a number of row submatrices L′ > L to be determined later.

As before, we set u(0) = 0 and define recursively u(1) and u(2) (for n = 1, 2 we do not allow

replacements) via (3.80). Next we define u(n) recursively but at each step we check if w(n) =

sgn(xS) − uS satisfies (3.83) and (3.84). If not, we discard this particular n and replace AP
(n)

with AP
(n+1) (and also all subsequent AP

(`) by AP
(`+1), ` > n). Then we redefine u(n) and w(n)

by using the modified AP
(n). We continue this way and discard all n when conditions (3.83) and

(3.84) are not satisfied and until n = L. We will estimate the probability that this actually happens

below. Since the AP
(n) are independent, all such events for different n are also independent.

With respect to the previous part, we use a slightly different definition of mn, n ≥ 3,

mn ≥ c(1 + λs) ln(2ρ−1),

for some ρ ∈ (0, 1) to be defined later. The remaining quantities L,m1,m2, rn, tn are defined in

the same way as before. We still have p1(1), p1(2), p2(1), p2(2) ≤ ε/2. We need to determine the

probability that (3.83) and (3.84) hold for at least L− 2 choices of n ∈ {3, 4, . . . , L′}. Due to the

relations (3.86) and (3.87) together with the modified definition of mn, we have p1(n), p2(n) ≤ ρ/2,

n ≥ 3. We define the probability that both events (3.83) and (3.84) hold as En. Then P(En) ≤ 1−ρ
for n ≥ 3. The event that En occurs for at least L− 2 choices of n has probability larger than the

event that
L′∑
n=3

Xn ≥ L− 2,

where the Xn are independent random variables that take the value 1 with probability 1− ρ and

the value 0 with probability ρ. This sum is also called a binomial random variable. We estimate

the probability of this last event via Hoeffding’s inequality. Clearly EXn = 1−ρ and X−EXn ≤ 1

for all n. Set J := L′ − 2. Then

P

 L′∑
n=3

(Xn − EXn) < −
√
Jt

 = P

 L′∑
n=3

Xn < (1− ρ)J −
√
Jt

 ≤ e−t2/2.
Setting L = (1− ρ)J −

√
Jt and solving for t yields

P

 L′∑
n=3

Xn < L

 ≤ exp

(
− ((1− ρ)J − L)2

2J

)
.

This probability is bounded by ε̃ if

J =

⌈
2

1− ρ
L+

2

(1− ρ)2
ln(ε̃−1)

⌉
.
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This implies that the event En occurs at least L times (we actually only need L − 2 times) with

probability at least 1− ε̃. The overall number of samples satisfies

m = m1 +m2 +

L′∑
n=3

mn

≥ 2c(1 + λs) ln(N) ln(2ε−1) + Jc(1 + λs) ln(2ρ−1)

= 2c(1 + λs) ln(N) ln(2ε−1) +

⌈
2

1− ρ
L+

2

(1− ρ)2
ln(ε̃−1)

⌉
c(1 + λs) ln(2ρ−1)

= 2c(1 + λs) ln(N) ln(2ε−1) +

⌈
2

1− ρ
(dln(s)/2e+ 2) +

2

(1− ρ)2
ln(ε̃−1)

⌉
c(1 + λs) ln(2ρ−1).

Choosing ρ = 1/2 and ε̃ = ε, this condition is implied by

m ≥ 2c(1 + λs) ln(N) ln(2ε−1) + ln(4)c(1 + λs)[2 ln(s) + 8 ln(ε−1) + 16]. (3.92)

We have finally proved that (L1) recovers x with probability at least 1− 5ε. Replacing ε by ε/5,

we observe that our assumption (3.5) on m implies (3.89) and (3.90) as discussed before as well

as (3.92) by an appropriate choice of C. This concludes the proof. �

3.3.5. Proof of Theorem 3.3

We recall the rescaled matrix ÃP = 1√
m

AP. Throughout the proof, we use the notation Eij(A)

to denote a block matrix with blocks each of size d × d where A ∈ Rd×d is at the intersection of

i-th block row and j-th block column, and is 0 elsewhere. The number of blocks depends on the

context and is not specified unless there is a chance of confusion. In addition the Kronecker delta

δij =

{
1 : i = j,

0 : i 6= j,

is used at various instances.

• Auxiliary results

We will mainly use Lemma A.8, in order to bound ‖(ÃP)∗S(ÃP)S −PS‖.

Theorem 3.33. Let A ∈ Rm×N be a measurement matrix whose entries are i.i.d. Gaussian

random variables and (Wj)
N
j=1 be a fusion frame given with parameter λ ∈ [0, 1] and dim(Wj) = kj.

Then, for δ > 0, the block matrix ÃP satisfies

‖(ÃP)∗S(ÃP)S −PS‖ ≤ δ

with probability at least 1− ε, provided that

m ≥ 100e2δ−2(1 +
√
λs/5)2 ln2

6s2ε−1
∑
j∈S

kj

 .

Proof. We first observe that

(ÃP)S =
1√
m

∑
i∈[m],j∈S

gijEij(Pj)

(ÃP)∗S(ÃP)S =
1

m

∑
i∈[m],j∈S

∑
k∈[m],`∈S

gijgk`E
∗
ij(Pj)Ek`(P`)
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=
1

m

∑
(i,j);(k,`)

gijgk`δikEj`(PjP`).

In the third step we used Eij(P )Ek`(Q) = δjkEi`(PQ) and E∗ij(X) = Eji(X
∗). We will use these

relations many times later on. Note that i, k ∈ [m] and j, ` ∈ S in the rest of the proof. Denote

τ := (i, j), ξ := (k, `) and Dτ,ξ := δikEj`(PjP`). We separate (ÃP)∗S(ÃP)S into two parts (i.e.,

diagonal and off-diagonal):

(ÃP)∗S(ÃP)S =
1

m

∑
τ 6=ξ

gτgξDτ,ξ +
1

m

∑
τ=ξ

gτgξDτ,ξ

=
1

m

∑
τ 6=ξ

gτgξDτ,ξ +
1

m

∑
i,j

g2
ijEjj(Pj).

Furthermore we write PS = 1
m

∑
i,j Ejj(Pj) and obtain

(ÃP)∗S(ÃP)S −PS =
1

m

∑
τ 6=ξ

gτgξDτ,ξ +
1

m

∑
i,j

(g2
ij − 1)Ejj(Pj) (3.93)

=: B + C.

It follows from Minkowski’s inequality that(
E‖(ÃP)∗S(ÃP)S −PS‖p

)1/p

≤ (E‖B‖p)1/p
+ (E‖C‖p)1/p

, (3.94)

for an integer p. We first bound the first term on the right hand side of (3.94) by applying

Lemma A.7 and Lemma A.8 and obtain for an integer n

E‖B‖2n ≤ E‖B‖2nS2n
=

1

m2n
E

∥∥∥∥∥∥
∑
τ 6=ξ

gτgξDτ,ξ

∥∥∥∥∥∥
2n

S2n

≤ 42n

m2n
E

∥∥∥∥∥∥
∑
τ 6=ξ

gτg
′
ξDτ,ξ

∥∥∥∥∥∥
2n

S2n

≤ 42n

m2n
× 2C2

n ×max


∥∥∥∥∥∥∥
∑
τ 6=ξ

Dτ,ξD
∗
τ,ξ

1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥
∑
τ 6=ξ

D∗τ,ξDτ,ξ

1/2
∥∥∥∥∥∥∥

2n

S2n

, ‖F‖2nS2n
, ‖F̃‖2nS2n

 ,

(3.95)

where F, F̃ are the block matrices F = (Dτ,ξ)τ,ξ, F̃ = (D∗τ,ξ)τ,ξ with the assumption that Dτ,τ = 0

and Cn = (2n)!
2nn! . The Schatten norm ‖ · ‖S2n

is defined in Appendix A.2. We label the terms in

the maximum above, from (a) to (d). For a matrix A it holds ‖A‖2nS2n
= Tr((AA∗)n), see (A.6).

a) Let us denote H :=
(∑

τ 6=ξDτ,ξD
∗
τ,ξ

)
. Then ‖H1/2‖2nS2n

= Tr((H1/2H1/2)n) = Tr(Hn).

Observe that ∑
τ 6=ξ

Dτ,ξD
∗
τ,ξ =

∑
(i,j)6=(k,`)

δikEj`(PjP`)E`j(P`Pj) = m
∑
j 6=`

Ejj(PjP`Pj).

Next we calculate the trace

Tr(Hn) = mnTr
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

Ej1j1(Pj1P`1Pj1)Ej2j2(Pj2P`2Pj2) . . .Ejnjn(PjnP`nPjn)

70



CHAPTER 3. 3.3. PROOFS OF NONUNIFORM RESULTS

= mnTr
∑

j,`1,...,`n
j 6=`i ∀i

Ejj(PjP`1PjP`2Pj . . . PjP`nPj) = mnTr
∑

j,`1,...,`n
j 6=`i ∀i

PjP`1PjP`2Pj . . . PjP`nPj

≤ mn
∑

j,`1,...,`n
j 6=`i ∀i

Tr(Pj)‖P`1PjP`2Pj . . . PjP`nPj‖ ≤ mn
∑

j,`1,...,`n
j 6=`i ∀i

Tr(Pj)‖P`1Pj‖‖P`2Pj‖ . . . ‖P`nPj‖

≤ mn
∑

j,`1,...,`n
j 6=`i ∀i

kjλ
n ≤ λnsnmn

∑
j

kj .

In the first inequality above, we used |Tr(A∗B)| ≤ ‖A‖S1
‖B‖S∞ , an analogy of Hölder’s inequality,

see [68, page 186].

b) It yields the same result since indices j and ` are symmetric, i.e.,∥∥∥∥∥∥∥
∑
τ 6=ξ

D∗τ,ξDτ,ξ

1/2
∥∥∥∥∥∥∥

2n

S2n

≤ λnsnmn
∑
j

kj .

c) Recall that we need to estimate the Schatten-2n norm of F = (Dτ,ξ)τ,ξ. We have

‖F‖2nS2n
= Tr((FF ∗)n) = Tr

∑
τ1,...,τn
ξ1,...,ξn
τi 6=ξi ∀i

D∗τ1ξ1Dτ1ξ2D
∗
τ2ξ2Dτ2ξ3D

∗
τ3ξ3 . . . D

∗
τnξnDτnξ1

= Tr
∑

i1,...,in
j1,...,jn
k1,...,kn
`1,...,`n
τi 6=ξi ∀i

δi1k1E
∗
j1`1(Pj1P`1)δi1k2Ej1`2(Pj1P`2)δi2k2E

∗
j2`2(Pj2P`2)δi2k3Ej2`3(Pj2P`3) . . .

. . . δinknE∗jn`n(PjnP`n)δink1Ejn`1(PjnP`1)

= mTr
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

E`1j1(P`1Pj1)Ej1`2(Pj1P`2)E`2j2(P`2Pj2)Ej2`3(Pj2P`3) . . .

= mTr
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

E`1`2(P`1Pj1P`2)E`2`3(P`2Pj2P`3) . . .E`n`1(P`nPjnP`1)

= mTr
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

E`1`1(P`1Pj1P`2Pj2 . . . P`nPjnP`1) = mTr
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

P`1Pj1P`2Pj2 . . . P`nPjnP`1

= mTr

∑
j 6=`

PjP`

n

= m

∥∥∥∥∥∥
∑
j 6=`

PjP`

n∥∥∥∥∥∥
S1

.

In the third line above, the implication of i1 = . . . = in = k1 = . . . = kn adds a factor of m. In the

next series of equations we use the fact that, for a matrix A with rank r, it holds ‖A‖Sp ≤ r1/p‖A‖,
see (A.7). Moreover, in the second line below, the relation rank(An) ≤ rank(A), the subadditivity

of the rank function and rank(PjP`) ≤ min{rank(Pj), rank(P`)} are used,

‖F‖2nS2n
= m

∥∥∥∥∥∥
∑
j 6=`

PjP`

n∥∥∥∥∥∥
S1

≤ m rank

∑
j 6=`

PjP`

n∥∥∥∥∥∥
∑
j 6=`

PjP`

n∥∥∥∥∥∥
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≤ m

∑
j 6=`

rank(Pj)

∥∥∥∥∥∥
∑
j 6=`

PjP`

∥∥∥∥∥∥
n

≤ ms

∑
j

kj

∑
j 6=`

‖PjP`‖

n

≤ ms

∑
j

kj

λns2n.

d) We follow similarly for F̃ = (D∗τ,ξ)τ,ξ,

‖F̃‖2nS2n
= Tr

∑
τ1,...,τn
ξ1,...,ξn
τi 6=ξi ∀i

Dτ1ξ1D
∗
τ1ξ2Dτ2ξ2D

∗
τ2ξ3Dτ3ξ3 . . . DτnξnD

∗
τnξ1

= Tr
∑

i1,...,in
j1,...,jn
k1,...,kn
`1,...,`n
τi 6=ξi ∀i

δi1k1Ej1`1(Pj1P`1)δi1k2E`2j1(P`2Pj1)δi2k2Ej2`2(Pj2P`2)δi2k3E`3j2(P`3Pj2) . . .

. . . δinknEjn`n(PjnP`n)δink1E`1jn(P`1Pjn)

= mTr
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

δ`1`2Ej1j1(Pj1P`1P`2Pj1)δ`2`3Ej2j2(Pj2P`2P`3Pj2) . . . δ`n`1Ejnjn(PjnP`nP`1Pjn)

= mTr
∑
j 6=`

Ejj( PjP`︸ ︷︷ ︸
n−times

PjP` . . . PjP`Pj) = m
∑
j 6=`

Tr[(PjP`Pj)
n] = m

∑
j 6=`

Tr[(PjP`P`Pj)
n]

= m
∑
j 6=`

Tr[(PjP`)(PjP`)
∗]n = m

∑
j 6=`

‖PjP`‖2nS2n
.

In the third line above, the matrices are multiplied in consecutive pairs. Below, using ‖A‖2nS2n
≤

rank(A)‖A‖2n and rank(PjP`) ≤ min{rank(Pj), rank(P`)}, we further obtain

‖F̃‖2nS2n
≤ m

∑
j 6=`

rank(PjP`)‖PjP`‖2n ≤ m
∑
j 6=`

rank(PjP`)λ
2n ≤ msλ2n

∑
j

rank(Pj) = msλ2n
∑
j

kj .

Finally we determine the maximum of the terms in (3.95),

a = b ≤ mnsnλn
∑
j∈S

kj , c ≤ msλns2n
∑
j∈S

kj , d ≤ msλ2n
∑
j∈S

kj .

Since s ≤ m it follows that

max{a, b, c, d} ≤ s2mnsnλn
∑
j∈S

kj .

Putting this final estimate into (3.95), we have

E‖B‖2n ≤ 42n

m2n
s2(2C2

n) mnsnλn
∑
j∈S

kj .

We generalize this to any power p by interpolation similarly to [94, page 83]. Stirling’s formula

(A.16) for the factorial yields the estimation

Cn =
(2n)!

2nn!
≤
√

2(2/e)nnn. (3.96)

Let p = 2n+ 2θ = (1− θ)2n+ θ(2n+ 2) with θ ∈ (0, 1). Applying Hölder’s inequality and (3.96),

we obtain

E‖B‖2n+2θ ≤ (E‖B‖2n)1−θ(E‖B‖2n+2)θ
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≤ 4s2

∑
j∈S

kj

 42n+2θ(2/e)2n+2θ (λs)n+θ

mn+θ
[nn(1−θ)(n+ 1)(n+1)θ]2

= 4s2

∑
j∈S

kj

 42n+2θ(2/e)2n+2θ (λs)n+θ

mn+θ
(n1−θ(n+ 1)θ)2n+2θ

(
n+ 1

n

)2θ(1−θ)

≤ 4s2

∑
j∈S

kj

 42n+2θ(2/e)2n+2θ (λs)n+θ

mn+θ
(n+ θ)2n+2θ21/2. (3.97)

In the last line above, we used the inequality of geometric and arithmetic mean and also the

relations (n + 1)/n ≤ 2 and θ(1 − θ) ≤ 1/4. Replacing 2n + 2θ by p and taking the p-th root of

both sides yields

(E‖B‖p)1/p ≤ (4p/e)

25/2s2

∑
j∈S

kj

1/p

(λs/m)1/2. (3.98)

Next we bound the second term on the right hand side of (3.94), i.e., E‖C‖p. Recall that C =
1
m

∑
i,j(g

2
ij − 1)Ejj(Pj). Now define the random variable Φ(m) :=

∑m
i=1(g2

i − 1) where the gi’s are

i.i.d. Gaussian random variables. Then we can estimate the spectral norm∥∥∥∥∥∥ 1

m

∑
i,j

(g2
ij − 1)Ejj(Pj)

∥∥∥∥∥∥ =

∥∥∥∥∥∥ 1

m

∑
j

Φ
(m)
j Ejj(Pj)

∥∥∥∥∥∥ ≤ 1

m
max
j∈S
‖Φ(m)

j Pj‖ =
1

m
max
j∈S
|Φ(m)
j |,

where the Φ
(m)
j are independent. Taking the p-th moment of both sides yields

(ECp)1/p =
1

m
(Emax

j∈S
|Φ(m)
j |p)1/p ≤ 1

m
s1/p max

j∈S
(E|Φ(m)

j |p)1/p =
1

m
s1/p(E|Φ(m)|p)1/p. (3.99)

The inequality above follows from (3.44). Observe that (g2
i − 1) is a centered subexponential

random variable, and

‖g2
i − 1‖′ψ1

≤ 2‖g2
i ‖′ψ1

≤ 4(‖gi‖′ψ2
)2 ≤ 4,

where we used the triangle inequality and Lemma 3.20. Then by Proposition A.2 we can bound

the tail probability of Φ(m), i.e., the sum of m independent subexponential random variables, as

P(|Φ(m)| ≥ t) ≤ 2 exp

(
− t2

4m+ 8t

)
.

Integrating this tail estimate, we obtain the following bound for the p-th moment

(E|Φ(m)|p)1/p ≤ 21/p(2
√
m
√
p+ 8p). (3.100)

Combining this with (3.99) and (3.98) yields

(
E‖(ÃP)∗S(ÃP)S −PS‖p

)1/p

≤ (4p/e)

25/2s2

∑
j∈S

kj

1/p

(λs/m)1/2 + (2s)1/p

(
2
√
p

√
m

+
8p

m

)

≤

25/2s2

∑
j∈S

kj

1/p

10(1 +
√
λs/5)√

m
p.
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Now we use Proposition A.10 in order to have an estimate for the tail probability. Setting γ = 1,

β = 25/2s2
(∑

j∈S kj

)
, α = 10(1+

√
λs/5)√
m

, we have

P

(
‖(ÃP)∗S(ÃP)S −PS‖ ≥

10e(1 +
√
λs/5)√

m
u

)
≤ 25/2s2

∑
j∈S

kj

 e−u.

For δ := 10e(1+
√
λs/5)√

m
u, we have

P(‖(ÃP)∗S(ÃP)S −PS‖ ≥ δ) ≤ 25/2s2

∑
j∈S

kj

 exp

(
− δ

√
m

10e(1 +
√
λs/5)

)
.

This proves our theorem. �

The following result bounds the coherence of (ÃP)S with the off-support columns.

Corollary 3.34. Assume the setting of Theorem 3.33. Then, for δ > 0, the block matrix ÃP

satisfies

max
i∈S
‖(ÃP)∗S(ÃP)i‖ ≤ δ

with probability at least 1− ε, provided that

m ≥ 100e2δ−2(1 +
√
λ(s+ 1)/5)2 ln2

6N(s+ 1)2ε−1
∑
j∈[N ]

kj

 .

Proof. Fix i ∈ S. Then we consider the block matrix (ÃP)S∪{i}. Furthermore we observe that

(ÃP)∗S∪{i}(ÃP)S∪{i} −PS∪{i} includes (ÃP)∗S(ÃP)i as a submatrix. Therefore it holds that

‖(ÃP)∗S(ÃP)i‖ ≤ ‖(ÃP)∗S∪{i}(ÃP)S∪{i} −PS∪{i}‖.

Applying Theorem 3.33 for S ∪ {i}, we bound the failure probability by

P(‖(ÃP)∗S(ÃP)i‖ ≥ δ) ≤ P(‖(ÃP)∗S∪{i}(ÃP)S∪{i} −PS∪{i}‖ ≥ δ)

≤ 25/2(s+ 1)2

 ∑
j∈S∪{i}

kj

 exp

(
− δ

√
m

10e(1 +
√
λ(s+ 1)/5)

)
.

Taking the union bound over i ∈ S gives

P(max
i∈S
‖(ÃP)∗S(ÃP)i‖) ≥ δ) ≤ 25/2(s+ 1)2

∑
i∈S

∑
j∈S∪{i}

kj

 exp

(
− δ

√
m

10e(1 +
√
λ(s+ 1)/5)

)

≤ 25/2N(s+ 1)2

∑
j∈[N ]

kj

 exp

(
− δ

√
m

10e(1 +
√
λ(s+ 1)/5)

)
.

Bounding this probability by ε yields the result of this corollary. �

We continue by deriving the analogue of Lemma 3.25 for Gaussian matrices.

Lemma 3.35. Let S be subset of [N ] with cardinality s and v ∈ RS×d be a block vector of size s

with vj ∈Wj for j ∈ S. Then, for t > 0,

P(max
`∈S
‖(ÃP)∗` (ÃP)Sv‖2 ≥ t‖v‖2) ≤ 2e1/12sN exp

(
− t2m

eλ2 + 2
√
eλt

)
.
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Proof. We fix i ∈ S and assume without loss of generality that ‖v‖2 = 1. We can write as in

(3.60) that

(ÃP)∗` (ÃP)Sv =

m∑
i=1

∑
j∈S

1

m
g̃igijP`Pjvj . (3.101)

Here g̃ denotes (gi`)
m
i=1. We observe that g̃i is independent from gij for i ∈ [m], j ∈ S. Conditioning

on g̃, we have a sum of independent vectors in (3.101). We will treat these vectors as matrices

and bound the `2-norm first by the Schatten norm and then apply Lemma A.6. Denote E :=

‖(ÃP)∗` (ÃP)Sv‖2, H`j := P`Pjvj . and fix n ∈ N. Then we have

E2n ≤ Eg̃Eg‖
m∑
i=1

∑
j∈S

1

m
g̃igijH`j‖2nS2n

≤ Cn
m2n

Eg̃ max


∥∥∥∥∥∥∥
∑

i,j

(g̃i)
2H`jH

∗
`j

1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥
∑

i,j

(g̃i)
2H∗`jH`j

1/2
∥∥∥∥∥∥∥

2n

S2n


=

Cn
m2n

E

(
m∑
i=1

g̃2
i

)n
max


∥∥∥∥∥∥∥
∑
j∈S

H`jH
∗
`j

1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥
∑
j∈S

H∗`jH`j

1/2
∥∥∥∥∥∥∥

2n

S2n

 , (3.102)

where Cn = (2n)!
2nn! . Now we estimate the first term in the maximum argument above,∥∥∥∥∥∥∥

∑
j∈S

H`jH
∗
`j

1/2
∥∥∥∥∥∥∥

2n

S2n

= Tr

∑
j∈S

H`jH
∗
`j

n

=

∥∥∥∥∥∥
∑
j∈S

H`jH
∗
`j

n∥∥∥∥∥∥
S1

≤ rank

∑
j∈S

H`jH
∗
`j

n ∥∥∥∥∥∥
∑
j∈S

H`jH
∗
`j

∥∥∥∥∥∥
n

≤ rank

∑
j∈S

(P`Pjvj)(P`Pjvj)
∗

∑
j∈S
‖(P`Pjvj)(P`Pjvj)∗‖

n

≤ s

∑
j∈S
‖P`Pj‖2‖vj‖2

n

≤ sλ2n.

In the last step we used ‖v‖2 = 1 and j 6= `. Similarly,∥∥∥∥∥∥∥
∑
j∈S

H∗`jH`j

1/2
∥∥∥∥∥∥∥

2n

S2n

=

∥∥∥∥∥∥∥
∑
j∈S
‖P`Pjvj‖22

1/2
∥∥∥∥∥∥∥

2n

S2n

≤

∥∥∥∥∥∥∥
∑
j∈S
‖P`Pj‖2‖vj‖22

1/2
∥∥∥∥∥∥∥

2n

S2n

≤

∥∥∥∥∥∥∥
∑
j∈S

λ2‖vj‖22

1/2
∥∥∥∥∥∥∥

2n

S2n

≤ λ2n.

Next we estimate the expectation in (3.102). The distribution of a sum of the squares of m

independent standard Gaussian random variables, i.e., Q :=
∑m
i=1 g̃

2
i , is called the χ2-distribution

with m degrees of freedom. We need the n-th moment of this random variable which is well studied
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and can be found in [96] for instance. We have

EQn = 2n
Γ(n+m/2)

Γ(m/2)
.

By using the estimations in (A.15) for the Gamma function, it follows that

EQn ≤ 2ne1/12(n+m/2)n.

Plugging our estimates into (3.102), we obtain

E2n ≤ e1/12s
Cn
m2n

2nλ2n(n+m/2)n.

Then by interpolating for a general moment p and following similar steps in (3.97) we obtain

(Ep)1/p ≤ (2e1/12s)1/p(λ/
√
e)

√
p

m

√
p+m

≤ (2e1/12s)1/p(λ/
√
e)

√
p

m
(
√
p+
√
m)

= (2e1/12s)1/p

(
λ√
em

p+
λ√
e
√
m

√
p

)
.

In the second inequality we used
√
a+ b ≤

√
a+
√
b for a, b > 0. Setting β = 2e1/12s, α1 = λ√

em

and α2 = λ√
e
√
m

, we can estimate the tail bound of E by using Proposition A.11 as follows

P(‖(ÃP)∗` (ÃP)Sv‖2 ≥ t) ≤ 2e1/12s exp

(
− t2m

eλ2 + 2
√
eλt

)
.

Finally taking the union bound yields the desired result

P(max
`∈S
‖(ÃP)∗` (ÃP)Sv‖2 ≥ t) ≤ 2e1/12sN exp

(
− t2m

eλ2 + 2
√
eλt

)
.

�

The next lemma yields a similar bound as in Lemma 3.26.

Lemma 3.36. Assume the conditions of Lemma 3.35. Then for e
√

300m(1 +
√
λs) ≥ t ≥

6e
√

300(1 +
√
λs)/
√
m

P(‖((ÃP)∗S(ÃP)S −PS)v‖2 ≥ t‖v‖2) ≤ 6 exp

(
− t

√
m

e
√

300(1 +
√
λs)

)
.

Proof. Assume without loss of generality that ‖v‖2 = 1. We follow the notation in the proof of

Theorem 3.33 and use the relation (3.93) to obtain

((ÃP)∗S(ÃP)S −PS)v =
1

m

∑
(i,j)6=(k,`)

gijgk`δikEj`(PjP`)v +
1

m

∑
i,j

(g2
ij − 1)Ejj(Pj)v,

where i, k ∈ [m] and j, ` ∈ S. Recall that the notation
−→
E j(x) corresponds to the block column

vector of size s with vector x in its j-th entry and 0 elsewhere. Then Ej`(PjP`)v =
−→
E j(PjP`v`).

We introduce the notation τ = (i, j), ξ = (k, `) and Hτ,ξ = δik
−→
E j(PjP`v`). Then we can write

((ÃP)∗S(ÃP)S −PS)v =
1

m

∑
τ 6=ξ

gτgξHτ,ξ +
1

m

∑
i,j

(g2
ij − 1)Ejj(Pj)v

=: B + C. (3.103)
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After following the step (3.94) in the proof of Theorem 3.33, we will use the noncommutative

Khintchine inequality for decoupled Gaussian chaos as in (3.95) in order to bound the moments

of ‖B‖2. Observe that the `2-norm can be treated as spectral norm and therefore the following

bound follows for an integer n

E‖B‖2n2 ≤ E‖B‖2nS2n
=

1

m2n
E

∥∥∥∥∥∥
∑
τ 6=ξ

gτgξHτ,ξ

∥∥∥∥∥∥
2n

S2n

≤ 42n

m2n
E

∥∥∥∥∥∥
∑
τ 6=ξ

gτg
′
ξHτ,ξ

∥∥∥∥∥∥
2n

S2n

≤ 42n

m2n
× 2C2

n ×max


∥∥∥∥∥∥∥
∑
τ 6=ξ

Hτ,ξH
∗
τ,ξ

1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥
∑
τ 6=ξ

H∗τ,ξHτ,ξ

1/2
∥∥∥∥∥∥∥

2n

S2n

, ‖F‖2nS2n
, ‖F̃‖2nS2n

 ,

(3.104)

where F, F̃ are the block matrices F = (Hτ,ξ)τ,ξ, F̃ = (H∗τ,ξ)τ,ξ with the assumption that Hτ,τ = 0

and Cn = (2n)!
2nn! . We denote the terms in the maximum argument above, from (a) to (d).

a) We write the first term as∑
τ 6=ξ

Hτ,ξH
∗
τ,ξ =

∑
(i,j)6=(k,`)

δik
−→
E j(PjP`v`)

−→
E∗j (PjP`v`) = m

∑
j 6=`

Ejj [(PjP`v`)(PjP`v`)
∗].

Then it follows that∥∥∥∥∥∥∥
∑
τ 6=ξ

Hτ,ξH
∗
τ,ξ

1/2
∥∥∥∥∥∥∥

2n

S2n

= Tr

∑
τ 6=ξ

Hτ,ξH
∗
τ,ξ

n

= mnTr
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

Ej1j1 [(Pj1P`1v`1)(Pj1P`1v`1)∗]Ej2j2 [(Pj2P`2v`2)(Pj2P`2v`2)∗] . . .

= mnTr
∑
j

`1,...,`n
j 6=`i ∀i

Ejj [(PjP`1v`1)(PjP`1v`1)∗(PjP`2v`2)(PjP`2v`2)∗ . . .]

= mn
∑
j

Tr

∑
` 6=j

(PjP`v`)(PjP`v`)
∗

n

= mn
∑
j

∥∥∥∥∥∥
∑
` 6=j

(PjP`v`)(PjP`v`)
∗

n∥∥∥∥∥∥
S1

≤ mn
∑
j

rank

∑
` 6=j

(PjP`v`)(PjP`v`)
∗

n ∥∥∥∥∥∥
∑
` 6=j

(PjP`v`)(PjP`v`)
∗

∥∥∥∥∥∥
n

≤ mn
∑
j

∑
` 6=j

rank(PjP`v`)(PjP`v`)
∗

∑
` 6=j

‖PjP`v`‖22

n

≤ mn
∑
j

s

∑
` 6=j

λ2‖v`‖22

n

≤ mn
∑
j

sλ2n = mns2λ2n.

We used the relation ‖A‖S1
≤ rank(A)‖A‖ due to (A.7) in the first inequality and ‖v‖2 = 1 in

the last inequality above.
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b) We follow similar steps as above∑
τ 6=ξ

H∗τ,ξHτ,ξ =
∑

(i,j)6=(k,`)

δik
−→
E∗j (PjP`v`)

−→
E j(PjP`v`)

= m
∑
j 6=`

‖PjP`v`‖22 ≤ m
∑
j

∑
` 6=j

λ2‖v`‖22 ≤ msλ2.

Then we can easily obtain ∥∥∥∥∥∥∥
∑
τ 6=ξ

H∗τ,ξHτ,ξ

1/2
∥∥∥∥∥∥∥

2n

S2n

= mnsnλ2n.

c) We have

‖F‖2nS2n
= Tr(FF ∗)n = Tr

∑
τ1,...,τn
ξ1,...,ξn
τi 6=ξi ∀i

H∗τ1ξ1Hτ1ξ2H
∗
τ2ξ2Hτ2ξ3D

∗
τ3ξ3 . . . H

∗
τnξnHτnξ1

= Tr
∑

i1,...,in
j1,...,jn
k1,...,kn
`1,...,`n

δi1k1
−→
E∗j1(Pj1P`1v`1)δi1k2Ej1(Pj1P`2v`2)δi2k2E

∗
j2(Pj2P`2)δi2k3Ej2(Pj2P`3v`3) . . .

= mTr
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

〈Pj1P`1v`1 , Pj1P`2v`2〉〈Pj2P`2v`2 , Pj2P`3v`3〉 . . . 〈PjnP`nv`n , PjnP`1v`1〉

≤ m
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

‖Pj1P`1‖‖v`1‖2‖Pj1P`2v`2‖2‖Pj2P`2‖‖v`2‖2 . . . ‖PjnP`n‖‖v`n‖2‖PjnP`1v`1‖

≤ m
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

λn‖v`1‖22‖v`2‖22 . . . ‖v`n‖22 ≤ mλ2nsn

(∑
`

‖v`‖22

)n
≤ mλ2nsn.

d) Finally we estimate the last term in the maximum argument in (3.104),

‖F‖2nS2n
= Tr(FF ∗)n

= Tr
∑

i1,...,in
j1,...,jn
k1,...,kn
`1,...,`n

δi1k1
−→
E j1(Pj1P`1v`1)δi1k2E

∗
j1(Pj1P`2v`2)δi2k2Ej2(Pj2P`2)δi2k3E

∗
j2(Pj2P`3v`3) . . .

= mTr
∑

j1,...,jn
`1,...,`n
ji 6=`i ∀i

Ej1j1 [(Pj1P`1v`1)(Pj1P`2v`2)∗]Ej2j2 [(Pj2P`2v`2)(Pj2P`3v`3)∗] . . .

= mTr
∑
j

`1,...,`n
j 6=`i ∀i

(PjP`1v`1)(PjP`2v`2)∗(PjP`2v`2)(PjP`3v`3)∗ . . . (PjP`nv`n)(Pj1P`1v`1)∗

= mTr
∑
j

`1,...,`n
j 6=`i ∀i

(PjP`1v`1)‖PjP`2v`2‖22 . . . ‖PjP`nv`n‖22(PjP`1v`1)∗
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≤ m
∑
j

`1,...,`n
j 6=`i ∀i

λ2n−2rank[(PjP`1v`1)(PjP`1v`1)∗]‖PjP`1v`1‖22‖v`2‖22 . . . ‖v`n‖22

≤ msλ2n

(∑
`

‖v`‖22

)n
≤ msλ2n.

Then we have

max{a, b, c, d} ≤ mnsnλn.

Putting this estimate into (3.104) yields

E‖B‖2n2 ≤
42n

m2n
(2C2

n) mnsnλn.

After an interpolation step similar to (3.97), we have the following result for general power p

(E‖B‖p2)1/p ≤ (4p/e)(25/2)1/p(λs/m)1/2. (3.105)

Next task is to bound the `2-norm of the diagonal term C defined in (3.103). Since

‖C‖22 =

∥∥∥∥∥∥ 1

m

∑
i,j

(g2
ij − 1)Ejj(Pj)v

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥ 1

m

∑
j

Φ
(m)
j

−→
E j(vj)

∥∥∥∥∥∥
2

2

=
1

m2

∑
j

(Φ
(m)
j )2‖vj‖22

where Φ(m) was defined in the proof of Theorem 3.33 and
−→
E j(x) denotes the block column vector

of size s with vector x in its j-th entry and 0 elsewhere. Then we have for p ≥ 2

E‖C‖p2 ≤
1

mp
E

∑
j

(Φ
(m)
j )2‖vj‖22

p/2

,

(E‖C‖p2)
1/p ≤ 1

m

E

∑
j

(Φ
(m)
j )2‖vj‖22

p/2


2
p ·

1
2

.

We use Lemma A.12 due to Lata la with the choice of q = p/2 in order to estimate the p/2-nd

moment above. Then the first term in the maximum argument in (A.8) yields∑
j

E(Φ
(m)
j )2‖vj‖22 = 2m,

where we used ‖v‖2 = 1 and the simple calculation

E(Φ
(m)
j )2 = E

m∑
k,`=1

(g2
k − 1)(g2

` − 1) = E
m∑
k=1

(g2
k − 1)2 = m E(g4

k + 1− 2g2
k) = 2m.

For the second term in (A.8) recall from (3.100) that

E(Φ
(m)
j ‖vj‖2)p ≤ 2‖vj‖p2(2

√
m
√
p+ 8p)p.

Hence, ∑
j

E(Φ
(m)
j ‖vj‖2)p

2/p

= 22/p(2
√
m
√
p+ 8p)2

∑
j

‖vj‖p2

2/p

= 22/p(2
√
m
√
p+ 8p)2‖v‖22,p ≤ 22/p(2

√
m
√
p+ 8p)2.
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The last inequality is due to the ordering of the `2,p-norms, i.e., ‖v‖2,p ≤ ‖v‖2 = 1 for p ≥ 2 .

Therefore Lemma A.12 gives usE

∑
j

(Φ
(m)
j )2‖vj‖22

p/2


2
p

≤ K p/2

ln(p/2)
22/p(2

√
m
√
p+ 8p)2,

where the universal constant K < 6. Simply estimating p/2
ln(p/2) ≤ p/2 for p ≥ 6, we conclude that

for m ≥ p ≥ 6

(E‖C‖p2)
1/p ≤

√
3

m
21/p√p(2

√
m
√
p+ 8p) ≤ 21/p

√
3

2p
√
m+ 8p

√
m

m

= p(10
√

3)21/p(1/
√
m).

Combining this with (3.105) yields

(E‖((ÃP)∗S(ÃP)S −PS)v‖p2)1/p ≤ (4p/e)(25/2)1/p(λs/m)1/2 + p(10
√

3)21/p(1/
√
m)

≤ 61/pp
√

300
1 +
√
λs√

m
.

for m ≥ p ≥ 6. For this range of p, we apply Proposition A.10 in order to have following estimate

for the tail probability

P(‖((ÃP)∗S(ÃP)S −PS)v‖2 ≥ t) ≤ 6exp

(
− t

√
m

e
√

300(1 +
√
λs)

)
,

where t is in the appropriate range as stated in the lemma. This ends the proof. �

• Proof of Theorem 3.3 continued

We mainly follow the ideas presented in the proof of the Bernoulli case in Section 3.3.3. It was

based on using the golfing scheme in order to construct an inexact dual vector satisfying the

conditions of Lemma 3.22 which are sufficient for nonuniform recovery. Recall that we partition

m rows of ÃP into L disjoint of size mj with
∑L
j=1mj = m. Then we recursively define the dual

vector u as

u(n) =
1

mn
(AP

(n))∗(AP
(n))S(sgn(xS)− u

(n−1)
S ) + u(n−1),

where u(0) = 0. We introduce the residual vector w(n) = sgn(xS) − u
(n)
S at every step n. Then

we recall the following relation derived earlier

w(n) =

[
PS −

1

mn
(AP

(n))∗S(AP
(n))S

]
w(n−1).

Now for a moment, we assume that the following inequalities hold for each n with high probability,

‖w(n)‖2 ≤ rn‖w(n−1)‖2, n ∈ [L], (3.106)

max
i∈S

∥∥∥∥ 1

mn
(AP

(n))∗i (AP
(n))Sw(n−1)

∥∥∥∥
2

≤ tn‖w(n−1)‖2, n ∈ [L], (3.107)

with the parameters rn, tn to be specified later. Recall that the followings also hold

‖sgn(xS)− uS‖2 ≤
√
s

L∏
n=1

rn.
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max
i∈S
‖ui‖2 ≤

√
s

L∑
n=1

tn

n−1∏
j=1

rj

with the understanding that
∏n−1
j=1 rj = 1 if n = 1. Define the probabilities that (3.106) and

(3.107) do not hold as p1(n) and p2(n) respectively. Then by Lemma 3.36 and the independence

of the blocks,

p1(n) ≤ ε

provided

mn ≥
300e2

r2
n

(1 +
√
λs)2 ln2(6/ε).

Recall that Lemma 3.36 holds only for an appropriate range of rn, which we choose below. Simi-

larly, due to Lemma 3.35 and the independence of the blocks

p2(n) ≤ ε

provided

mn ≥
(
eλ2

t2n
+

2
√
eλ

tn

)
ln(2e1/12sN/ε).

We now choose the parameters L,mn, tn, rn for n ∈ [L] as follows

L = dln(s)/2e+ 2,

m1,m2 ≥ c(1 +
√
λs)2 max

{
ln(s) ln2(6/ε), ln(6sN/ε)

}
,

mn ≥ c(1 +
√
λs)2 max

{
ln2(6L/ε),

ln(6sNL/ε)

ln2(s)

}
r1 = r2 =

1

2
√

ln(s)
and rn =

1

2
,

t1 = t2 =
1

8
√
s
, and tn =

ln(s)

8
√
s
, n = 3, . . . , L,

where c is an absolute constant. First observe that the choices of rn and mn obey the condition

stated in Lemma 3.36. Then as shown in (3.74) and (3.75), we have ‖sgn(xS)− uS‖2 ≤ 1/4 and

maxi∈S ‖ui‖2 ≤ 1/4 as required by Lemma 3.22. Furthermore, by our choices of parameters above,

we have, p1(1), p1(2), p2(1), p2(2) ≤ ε/2 and p1(n), p2(n) ≤ ε/(2L). Then

L∑
n=1

p1(n) ≤ 2ε and

L∑
n=1

p2(n) ≤ 2ε.

The overall number of samples obey

m =

L∑
n=1

mn = m1 +m2 +

L∑
n=3

mn

≥ 2c(1 +
√
λs)2 max

{
ln(s) ln2(6/ε), ln(6sN/ε)

}
+ c(1 +

√
λs)2 max

{
dln(s)/2e ln2(6dln(s)/2e/ε), ln(6sNdln(s)/2e/ε)

}
.

We can further improve this condition with the refined trick presented at the end of Section 3.3.3.

The trick was having more than L submatrices of AP and then only using the ones which satisfies
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desired properties. Necessary calculations yield that

m ≥ c̃(1 +
√
λs)2 ln(sN) ln(ε−1) (3.108)

measurements are enough to satisfy Condition (3.46) of Lemma 3.22 with failure probability ε.

Finally we deal with Condition (3.45). For the first part, Theorem 3.33 with parameter δ = 1/2

implies that ‖[(ÃP)∗S(ÃP)S ]−1
|H ‖ ≤ 2 with probability at least ε provided

m ≥ C(1 +
√
λs)2 ln2

6s2
∑
j∈S

kj(ε
−1)

 , (3.109)

where C is an absolute constant. The second part of Condition (3.45) follows from Corollary 3.34

with δ = 1. Thus, maxi∈S ‖(ÃP)∗S(ÃP)i‖ ≤ 1 with probability at least ε provided

m ≥ C(1 +
√
λ(s+ 1))2 ln2

6N(s+ 1)2
∑
j∈N

kj(ε
−1)

 . (3.110)

We have so far shown that the conditions of Lemma 3.22 hold with probability at least 1 − 3ε

provided (3.108), (3.109) and (3.110) hold. Using s < N and replacing ε by ε/3, we can see that

Condition (3.6)

m ≥ C̃(1 + λs) ln2

6N

N∑
j=1

kj

 ln2(ε−1)

implies all three conditions with an appropriate absolute constant C̃. This ends our proof. �

3.3.6. Alternative approach to the proof of Theorem 3.3

The main tools for the probabilistic estimates in Section 3.3.5 are the noncommutative Khintchine

inequalities. These methods give estimates for the moments of matrix valued Gaussian sums and

then allow us to yield tail bounds we need in order to prove our result. However, the proofs become

quite long and technical due to the involved calculations of the Schatten norms. In this section

we present a noncommutative Bernstein type inequality due to Koltchinskii [73] for the sum of

matrices which are not uniformly bounded. In addition, using this result we provide another

proof of Theorem 3.33 which is crucial towards the proof of our following alternative result to

Theorem 3.3.

Theorem 3.37. Let x ∈ H be s-sparse. Let A ∈ Rm×N be a Gaussian matrix and (Wj)
N
j=1 in Rd

be given with parameter λ ∈ [0, 1]. Assume that

m ≥ C(ln(s) + λs) ln (ln(s) + λs) ln(2Nsd/ε), (3.111)

where C > 0 is a universal constant. Then with probability at least 1 − ε, (L1) recovers x from

y = APx.

We do not give a complete proof of Theorem 3.37, and we believe that Theorem 3.39 below,

which is the alternative to Theorem 3.33, gives a clear idea how to pursue the rest of the proof. Note

that in (3.111) we obtain slightly worse log-factors in the number of required measurements than

in Theorem 3.3, but with a significantly shorter and less technical proof. The following proposition

is a modified version of [73, Proposition 2] where we optimize some parameters appearing in the

original proof.
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Proposition 3.38. Assume X,X1, . . . , Xn are i.i.d. random self-adjoint d × d matrices with

EX = 0, σ2
x := ‖EX2‖ and Ux :=

∥∥‖X‖∥∥
ψ1

. Then, for all t > 0,

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≥ t
)
≤ 2d exp

(
−C t2

nσ2
x + Uxt+ Ux

2 ln
(

2Uxn
t

)
t

)
, (3.112)

for an absolute constant C > 0.

Note that this tail estimate is in essence similar to the noncommutative matrix Bernstein

inequality, Theorem A.3, with the uniform bound on ‖Xi‖ replaced by the weaker ψ1-norm. In

the original result [73, Proposition 2], the variance term σ2
x appears as a denominator in the tail

bound which is not desirable in our situation since in the proof of Theorem 3.39, a trivial lower

bound for σ2
x causes the number of measurements m to grow unboundedly. A generalized version

of Proposition 3.38 for the sum of independent but not identically distributed matrices can be

found in [74] and for rectangular random matrices in [72].

Proof. Let Yn = X1 + . . . + Xn. For a self adjoint matrix A, denote by λ+(A), λ−(A) the

largest and the smallest eigenvalue. Since Yn is self-adjoint, ‖Yn‖ ≥ t if and only if λ+(Yn) ≥ t or

λ−(Yn) ≤ −t, implying that

P(‖Yn‖ ≥ t) ≤ P(λ+(Yn) ≥ t) + P(λ−(Yn) ≤ −t).

It is enough to control one of the probabilities on the right hand side since the other follows

similarly from replacing Yn by −Yn. For all λ > 0, we have

P(λ+(Yn) ≥ t) ≤ P(Tr(eλYn) ≥ eλt) ≤ e−λtETr(eλYn). (3.113)

By the well-known Golden-Thompson inequality [4] which states that Tr(eA+B) ≤ Tr(eAeB) for

self-adjoint matrices A and B, one has

ETr(eλYn) = ETr(eλYn−1+λXn) ≤ ETr(eλYn−1eλXn) = TrE(eλYn−1eλXn)

= Tr(EeλYn−1EeλXn) ≤ ETr(eλYn−1)
∥∥EeλXn∥∥ .

By induction, we conclude that

ETr(eλYn) ≤ ETr(eλX1)

n∏
i=2

∥∥EeλXi∥∥ .
Since ETr(eλX1) = Tr(EeλX1) ≤ d

∥∥EeλX∥∥, we obtain

ETr(eλYn) ≤ d
∥∥EeλX∥∥n . (3.114)

Koltchinskii [73, Proposition 2] uses the Taylor expansion for eλX and the condition EX = 0 to

obtain

EeλX = Id + E
[
λ2X2

(
1

2!
+
λX

3!
+
λ2X2

4!
+ · · ·

)]
≤ Id + λ2E

[
X2

(
1

2!
+
λ‖X‖

3!
+
λ2‖X‖2

4!
+ · · ·

)]
= Id + λ2E

[
X2

(
eλ‖X‖ − 1− λ‖X‖

λ2‖X‖2

)]
.
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We denote the function φ(u) := eu−1−u
u2 . Therefore, for all τ > 0,∥∥EeλX∥∥ ≤ 1 + λ2
∥∥E[X2φ(λ‖X‖)]

∥∥
≤ 1 + λ2

∥∥EX2
∥∥φ(λτ) + λ2E

[
‖X‖2φ(λ‖X‖)1(‖X‖≥τ)

]
, (3.115)

where 1 denotes the characteristic function and we used the Jensen’s inequality. Let M := 2Ux

and assume that λ ≤ 1/M . Then

E
[
‖X‖2φ(λ‖X‖)1(‖X‖≥τ)

]
≤ E

[
‖X‖2φ

(
‖X‖
M

)
1(‖X‖≥τ)

]
≤M2E

[
e‖X‖/M1(‖X‖≥τ)

]
≤M2E1/2(e2‖X‖/M )P1/2(‖X‖ ≥ τ),

where we used the monotonicity of φ in the first inequality and the Hölder’s inequality in the last

inequality. By the definition of the Orlicz norm Ux =
∥∥‖X`‖

∥∥
ψ1

, we have Ee2‖X‖/M ≤ 2 and also

P(‖X‖ ≥ τ) ≤ exp

(
−2τ

M

)
.

Putting these estimates in (3.115), we obtain∥∥EeλX∥∥ ≤ 1 + λ2σ2
xφ(λτ) + λ2M2

√
2 exp

(
− τ

M

)
. (3.116)

Now observe that φ(u) ≥ 1/2 for u ≥ 0. Then we can reformulate (3.116) as∥∥EeλX∥∥ ≤ 1 +
(
λ2σ2

x + 3λ2M2 exp
(
− τ

M

))
φ(λτ).

Now further assume that

λ ≤ 1

τ
≤ 1

M
. (3.117)

Then λτ ≤ 1 which implies φ(λτ) ≤ 1. Therefore,∥∥EeλX∥∥ ≤ 1 +
(
λ2σ2

x + 3λ2M2 exp
(
− τ

M

))
≤ exp

(
λ2σ2

x + 3λ2M2 exp
(
− τ

M

))
.

Combining this with (3.113) and (3.114), we arrive at

P(‖Yn‖ ≥ t) ≤ 2d exp
(
−λt+ nλ2σ2

x + 3nλ2M2 exp
(
− τ

M

))
.

Next we minimize the convex function of λ in the exponential under the constraint 1
τ ≥ λ > 0. A

bit of analysis yields

P(‖Yn‖ ≥ t) ≤ 2d exp

(
− t2

4n
(
σ2
x + 3M2 exp

(
− τ
M

))
+ 2τt

)
.

Next we optimize the denominator in the exponential above with respect to τ ≥ M (recall the

assumption (3.117)). It is a convex function of τ which takes the minimum at τ0 = M ln
(

6nM
t

)
which is greater than M as required. We plug this choice in

P(‖Yn‖ ≥ t) ≤ 2d exp

(
− t2

4nσ2
x + 2Mt+ 2M ln

(
6nM
t

)
t

)
.

This gives the desired result. �

• Conditioning of the submatrix (AP)S

We recall the rescaled matrix ÃP = 1√
m

AP. The following result is an alternative to Theorem 3.33.
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Theorem 3.39. Let A ∈ Rm×N be a measurement matrix whose entries are i.i.d. Gaussian

random variables and (Wj)
N
j=1 be a fusion frame in Rd given with parameter λ ∈ [0, 1]. Then, the

block matrix ÃP satisfies

‖(ÃP)∗S(ÃP)S −PS‖ ≤ δ

for 0 < δ ≤ 1 with probability at least 1− ε, provided

m ≥ Cδ−2(ln(s) + λs) ln

(
ln(s) + λs

δ

)
ln(2sd/ε),

where C > 0 is an absolute constant.

Proof. As in the proof of Theorem 3.24, denote Y` = (g`jPj)j∈S for ` ∈ [m] as the `-th block

column vector of (ÃP)∗S . We introduce the block matrices X` := 1
m (Y`Y

∗
` −EY`Y

∗
` ) which have

mean zero. Then we write

(ÃP)∗S(ÃP)S −PS =

m∑
`=1

X`.

We use Proposition 3.38 in order to estimate the tail of ‖
∑m
`=1 X`‖. The variance term was

estimated before for the Bernoulli case by

σ2
x ≤

λ2s

m2
.

This also holds for the Gaussian case since Eg2
i = 1 and Egigj = 0, i 6= j. It remains to estimate

the Orlicz norm Ux =
∥∥‖X`‖

∥∥
ψ1

. We have∥∥‖X`‖
∥∥
ψ1

=
1

m

∥∥‖Y`Y
∗
` − EY`Y

∗
` ‖
∥∥
ψ1
≤ 1

m

(∥∥‖Y`Y
∗
` ‖
∥∥
ψ1

+
∥∥‖EY`Y

∗
` ‖
∥∥
ψ1

)
≤ 1

m

(∥∥‖Y`Y
∗
` ‖
∥∥
ψ1

+ E
∥∥‖Y`Y

∗
` ‖
∥∥
ψ1

)
≤ 2

m

∥∥‖Y`Y
∗
` ‖
∥∥
ψ1

=
2

m

∥∥‖Y∗` ‖2∥∥ψ1
.

The second inequality above is due to the Jensen’s inequality [54, Theorem 7.10], since every norm

is convex. We continue estimating

‖Y∗` ‖2 = max
‖x‖2=1

x∈RS·d

∥∥∥∥∥∥
∑
j∈S

g`jPjxj

∥∥∥∥∥∥
2

2

= max
‖x‖2=1

∑
j,k

g`jg`k〈Pjxj , Pkxk〉

≤ max
‖x‖2=1

∑
j∈S

g2
`j‖xj‖22 + max

‖x‖2=1

∑
j 6=k

|g`jg`k|‖PjPk‖‖xj‖2‖xk‖2

≤ max
‖y‖1=1

y∈RS

∑
j∈S

g2
`j · yj + λ max

‖x‖2=1

∑
j∈S
|g`j |‖xj‖2

2

= max
j∈S
|g`j |2 + λ

 max
‖y‖2=1

y∈RS

∑
j∈S
|g`j |yj


2

= max
j∈S
|g`j |2 + λ

∑
j∈S

g2
`j .

The last line above follows from duals of the `2 and `∞-norms. Moreover,∥∥‖X`‖
∥∥
ψ1
≤ 2

m

∥∥‖Y∗` ‖2∥∥ψ1
≤ 2

m

∥∥max
j∈S
|g`j |2

∥∥
ψ1

+
2λ

m

∥∥∑
j∈S

g2
`j

∥∥
ψ1

.
2

m
ln(s) max

j∈S

∥∥g2
`j

∥∥
ψ1

+
2λ

m

∑
j∈S

∥∥g2
`j

∥∥
ψ1

(3.118)
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.
4 ln(s)

m

∥∥|g|∥∥2

ψ2
+

4λs

m

∥∥|g|∥∥2

ψ2
, (3.119)

where the g is a standard Gaussian random variable. Above, (3.118) follows from Lemma 3.21

and the triangle inequality; (3.119) is due to Lemma 3.20 and the equivalence of the ‖ · ‖ψα and

‖ · ‖′ψα -norms. It is clear that
∥∥|g|∥∥

ψ2
≤ c for some c > 0. Therefore

Ux =
∥∥‖X`‖

∥∥
ψ1
≤ C ln(s) + λs

m
.

for some C. Plugging the estimates for Ux and σ2
x into (3.112) in Proposition 3.38 we obtain

P(‖(ÃP)∗S(ÃP)S −PS‖ ≥ δ) ≤ 2sd exp

−C δ2m

λ2s+ (ln(s) + λs)δ + (ln(s) + λs) ln
(

ln(s)+λs
δ

)
δ

 .

Bounding this by ε yields the desired result. �

3.3.7. Proof of Theorem 3.4

The proof is analogous to the one of [54, Theorem 12.22]. It invokes Lemma 3.23 which gives

sufficient conditions on the measurement matrices for robust and stable nonuniform recovery. Since

Condition (3.49) requires normalization of the matrix, we will work with the matrix ÃP = 1√
m

AP.

Then observe that the optimization problem (L1)η is equivalent to

min
z∈H
‖z‖2,1 s.t.

∥∥∥∥ÃPz− 1√
m

y

∥∥∥∥
2

≤ η.

We follow the golfing scheme as in the proof of Theorem 3.1, see Section 3.3.3. In particular, we

make the same choices of the parameters L, rn, tn, qn,mn as before. We choose mn as follows

m1 ≥ c(1 + ‖ΛS‖∞) ln(N)L ln(2Lε−1),

mn ≥ c(1 + ‖ΛS‖∞) ln(N) ln(2Lε−1), n ≥ 2.

These choices change the number of overall samples m only up to a constant with respect to

the choices in the proof of Theorem 3.1. Then Conditions (3.49), (3.50), (3.51), (3.52) are all

satisfied for the normalized matrix ÃP with probability at least 1− ε with appropriate choices of

the variables δ, β, γ, θ. It remains to verify that the vector h ∈ Rmd constructed in Section 3.3.3

satisfying u = Ã∗Ph satisfies Condition (3.53). For simplicity, assume without loss of generality

that the first L values of n are used in the construction of the dual vector in (3.67). Then recall

that

u =

L∑
n=1

1

mn
(AP

(n))∗(AP
(n))Sw(n−1) =

L∑
n=1

m

mn
(Ã

(n)
P )∗(Ã

(n)
P )Sw(n−1).

Hence, u = Ã∗Ph with h∗ = ((h(1))∗, . . . , (h(L))∗, 0, . . . , 0) where

h(n) =
m

mn
(Ã

(n)
P )Sw(n−1) ∈ Rmnd, n = 1, . . . , L′.

Then we have

‖h‖22 =

L∑
n=1

‖h(n)‖22 =

L∑
n=1

m

mn

∥∥∥∥√ m

mn
(Ã

(n)
P )Sw(n−1)

∥∥∥∥2

2

L∑
n=1

m

mn

∥∥∥∥√ 1

mn
(AP

(n))Sw(n−1)

∥∥∥∥2

2

.
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We also recall the relation (3.66) of the vectors w(n). This gives, for n ≥ 1,∥∥∥∥√ 1

mn
(AP

(n))Sw(n−1)

∥∥∥∥2

2

=

〈
1

mn
(AP

(n))∗S(AP
(n))Sw(n−1),w(n−1)

〉
=

〈(
1

mn
(AP

(n))∗S(AP
(n))S −PS

)
w(n−1),w(n−1)

〉
+ ‖w(n−1)‖22

= 〈w(n),w(n−1)〉+ ‖w(n−1)‖22 ≤ ‖w(n)‖22‖w(n−1)‖22 + ‖w(n−1)‖22.

Recall from the assumption (3.69) that ‖w(n)‖22 ≤ r′n‖w(n−1)‖22 ≤ ‖w(n−1)‖22. Then we obtain∥∥∥∥√ 1

mn
(AP

(n))Sw(n−1)

∥∥∥∥2

2

≤ 2‖w(n−1)‖22 ≤ ‖w(0)‖22
n−1∏
j=1

(r′j)
2

= 2‖sgn(x)S‖22
n−1∏
j=1

(r′j)
2 = 2s

n−1∏
j=1

(r′j)
2.

Assume that m ≤ C(1 + λs) ln(N) ln(sk) ln(2ε−1) so that m is just large enough to satisfy (3.8).

Recall the definition of L = dln(s)/ ln ln(N)e + 3. Then by our choices of mn, we have m
mn
≤ L

for n ≥ 2 and m
m1
≤ c for some c > 0. (If m is much larger, one can rescale mn proportionally to

achieve the same ratio.) This yields

‖h‖22 ≤ 2s

L∑
n=1

m

mn

n−1∏
j=1

(r′j)
2 ≤ 2s

 c

2 ln(N)
+

L∑
n=2

L

n−1∏
j=1

1

2 lnN


≤ 2C ′s

(
1 +

L

2 ln(N)

1

[1− 1/(2 ln(N))]

)
≤ C ′′s,

where we used the convention
∏0
j=1(r′j)

2 = 1. Therefore, all conditions of Lemma 3.23 are satisfied

for x and ÃP with probability at least 1− ε. This completes the proof. �

3.4. Proofs of uniform results

3.4.1. Proof of Theorem 3.7

We know from Theorems 3.14 and 3.15 that if the FRIP constant δs of the matrix AP is small

enough then we have exact and robust uniform recovery via (L1) and (L1)η programs respectively.

Therefore our goal is to derive an estimate for the FRIP constant δs of the normalized matrix

ÃP = 1√
m

AP. The main tool we use for this estimate is provided by Krahmer, Mendelson and

Rauhut in [75]. They derive a tail bound for a random variable X of the form

X = sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22
∣∣ ,

where A is a set of matrices and ξ is a subgaussian vector, i.e., has independent, mean-zero,

variance 1, c-subgaussian entries. We will later see that the FRIP constant of a subgaussian

matrix can be written as such a random variable. The tail bound for X is in terms of two types

of complexity parameters of the set of matrices A. The first one denoted by dF (A) and d2→2(A),

are the radius of A in the Frobenius norm and the operator norm respectively. In other words,

dF (A) = sup
A∈A
‖A‖F and d2→2(A) = sup

A∈A
‖A‖.
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The second one is Talagrand’s γ2(A, ‖ · ‖2→2) functional, see [100] for a precise definition. With

these notations, the result from [75] reads as follows.

Theorem 3.40. Let A ⊂ Cm×n be a set of symmetric matrices, A = −A. Let ξ be a subgaussian

vector of length n with parameter c. Set

E = dF (A)γ2(A, ‖ · ‖) + γ2(A, ‖ · ‖)2, (3.120)

V = d2→2(A)[γ2(A, ‖ · ‖) + dF (A)] and U = d2
2→2(A).

Then, for t > 0,

P
(

sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22
∣∣ ≥ C1E + t

)
≤ 2 exp

(
−C2 min

{
t2

V 2
,
t

U

})
. (3.121)

The constants C1, C2 > 0 depend only on c.

A similar result can also be found in [37] with a slight improvement of the parameter V . We

recall that for a metric space (T, d) and u > 0 the covering number N (T, d, u) is defined as the

smallest number of open balls of radius u in (T, d) needed to cover T . The well-known Dudley

integral (see, e.g., [100]) relates the γa-functionals to such covering numbers. Specifically, the

γ2-functional of a set of matrices A equipped with the operator norm can be bounded as

γ2(A, ‖ · ‖) ≤ c
∫ d2→2(A)

0

√
lnN (A, ‖ · ‖, u)du. (3.122)

Now we can pass to the proof of our result. The strategy is similar to the partial random Fourier

case [95] by combining results from [75]. Recall from (3.31) that

δs = sup
x∈Ds,N

∣∣∣‖ÃPx‖22 − ‖x‖22
∣∣∣ = sup

x∈Ds,N

∣∣∣‖ÃPx‖22 − E‖ÃPx‖22
∣∣∣ ,

and that Ds,N = {x ∈ H : xi ∈ Wi, ‖x‖2 ≤ 1, ‖x‖0 ≤ s}. The relation E‖ÃPx‖22 = ‖x‖22 follows

easily by noticing that each entry of A is an independent random variable with mean-zero and

variance 1. Now observe that

ÃP =
1√
m

∑
i∈[m],j∈[N ]

ξijQij ,

where Qij := Eij(Pj) and Eij(A) denotes the block matrix with m×N blocks each of size d× d
where A ∈ Rd×d is at the intersection of i-th block row and j-th block column, and everywhere

else is 0. Moreover,

ÃPx =
1√
m

∑
i∈[m],j∈[N ]

ξijQijx.

Here, for x ∈ Ds,N , we can see that if j ∈ supp(x), the block column vector Qijx ∈ Rm·d consists

of the vector xj in its i-th entry and 0 everywhere else. If j 6∈ supp(x), then Qijx = 0. We define

the matrix Vx whose columns are 1√
m

Qijx for i ∈ [m], j ∈ [N ], i.e.,

Vx =
1√
m

(Q11x|Q12x| . . . |QmNx).
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Then ÃPx = Vxξ where ξ is a subgaussian vector of length mN . Denoting the set A = {Vx : x ∈
Ds,N}, we can write

δs = sup
A∈A

∣∣‖Aξ‖22 − E‖Aξ‖22
∣∣ = sup

x∈Ds,N

∣∣‖Vxξ‖22 − ‖x‖22∣∣ .
Since x ∈ Ds,N implies −x ∈ Ds,N , the set A is symmetric. Therefore we can use Theorem 3.40

in order to derive a tail estimate of the FRIP constant. The next lemma gives an estimate for the

variable E defined in (3.120),

E = dF (A)γ2(A, ‖ · ‖) + γ2(A, ‖ · ‖)2.

Lemma 3.41. Assume for some δ ∈ (0, 1)

m ≥ C̃δ−2(λs+
√
s) ln(Nd) ln2(sk)

(
ln(N) + k ln

(
s
√
k
))

, (3.123)

where C̃ > 0 is a universal constant. Then E ≤ δ.

Proof. For any x ∈ Ds,N it is easy to see that ‖Vx‖F = 1. This gives dF (A) = 1. Next, to

estimate the γ2-functional in (3.120), recall from (3.122) that

γ2(A, ‖ · ‖) .
∫ d2→2(A)

0

√
lnN (A, ‖ · ‖, u)du.

For a given x ∈ Ds,N , let x̂ = (x1|x2| . . . |xN ) be the matrix with columns xi. Then the diameter

of A can be bounded by

d2→2(A) = sup
x∈Ds,N

‖Vx‖ =
1√
m

sup
x∈Ds,N

‖x̂‖ ≤ 1√
m

sup
x∈Ds,N

‖x̂‖F =
1√
m
. (3.124)

The covering number will be estimated separately for small and large value of u. One estimate is

good for small values of u. First we introduce the set B2
S := {x : supp(x) ⊂ S ⊂ [N ], ‖x‖2 ≤ 1}.

Furthermore define the norm ‖|x‖| := ‖Vx‖. The Vx is linear in x so that ‖|x − y‖| = ‖Vx − Vy‖.
Also, observe that

‖|x‖| = ‖Vx‖ =
1√
m
‖x̂‖ ≤ 1√

m
‖x‖2. (3.125)

Then using subadditivity of covering numbers and a standard volumetric argument (see, e.g., [94,

Chapter 8.4])

N (A, ‖ · ‖, u) = N (Ds,N , ‖| · ‖|, u) =
∑

S⊂[N ],|S|=s

N
(
B2
S , ‖| · ‖|, u

)
≤

∑
S⊂[N ],|S|=s

N
(
B2
S ,
‖ · ‖2√
m
,u

)
=

∑
S⊂[N ],|S|=s

N
(
B2
S , ‖ · ‖2, u

√
m
)

≤
(
N

s

)(
1 +

2

u
√
m

)sk
≤
(
eN

s

)s(
1 +

2

u
√
m

)sk
.

Then for u > 0, we obtain

lnN (A, ‖ · ‖, u) ≤ s ln(eN/s) + sk ln

(
1 +

2

u
√
m

)
. (3.126)

We also used that dim(B2
S) = sk. For large values of u, we first define the set

B2,1 :=

{
x ∈ H : ‖x‖2,1 ≤ 1, ‖x‖2 ≤

1√
s

}
.
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Then it is evident that Ds,N ⊂
√
sB2,1. Therefore,

N (A, ‖ · ‖, u) = N (Ds,N , ‖| · ‖|, u) ≤ N (
√
sB2,1, ‖| · ‖|, u) = N

(
B2,1, ‖| · ‖|,

u√
s

)
.

The next lemma provides an estimate of N (B2,1, ‖| · ‖|, u).

Lemma 3.42. For u > 0,√
lnN (B2,1, ‖| · ‖|, u) ≤

√(
8λ+ 16/

√
s

mu2
+

6√
mu

)√
ln(md+mN)

[
ln(N) + k ln

(
1 +

4

u
√
m

)]
.

Proof. Fix u > 0 and x ∈ B2,1. The idea is to approximate x by a finite set of very sparse

vectors of `2-norm 1. To this end, we discretize the unit sphere of each fusion frame subspace Wj .

Denote Sj = {y ∈ H : ‖yj‖2 = 1; yi = 0, i 6= j}. A standard volumetric argument implies that

N (Sj , ‖ · ‖2, ε̃) ≤
(

1 +
2

ε̃

)k
for ε̃ to be specified later. For each j, let Tj ⊂ Sj be the covering set of Sj with this cardinality.

We use 1-sparse elements from the set T =
⋃
j∈[N ] Tj in order to find a vector z that is close to

x. The so-called empirical method of Maurey will be employed for that. To this end, we define a

random vector Z̃ as follows

P
(

Z̃ =
−→
E j

(
xj
‖xj‖2

))
= ‖xj‖2

for j such that ‖xj‖2 6= 0 and Z̃ = 0 with probability 1−‖x‖2,1. Here
−→
E j(x) ∈ RNd corresponds to

the block column vector of size N with vector x in its j-th block and 0 elsewhere. Since ‖x‖2,1 ≤ 1,

this is a valid probability distribution. Observe that EZ̃ = x. For a number M to be determined

later, let Z̃1, . . . , Z̃M be independent copies of Z̃, and put

z̃ =
1

M

M∑
`=1

Z̃`.

We now denote Z` ∈ T as the closest vector to Z̃` in the set T for all `. Then we have ‖Z̃`−Z`‖2 ≤
ε̃. The M -sparse vector

z =
1

M

M∑
`=1

Z`

is our candidate to approximate x. We estimate the distance of z to x in ‖| · ‖| by first using the

triangle inequality,

‖|z− x‖| ≤ ‖|z− z̃‖|+ ‖|z̃− x‖| ≤ ‖| 1

M

M∑
`=1

(Z` − Z̃`)‖|+ ‖|z̃− x‖|

≤ 1

M
√
m

M∑
`=1

‖Z̃` − Z`‖2 + ‖|z̃− x‖| ≤ ε̃√
m

+ ‖|z̃− x‖| = u/2 + ‖|z̃− x‖|, (3.127)

where we have chosen ε̃ = u
√
m

2 . The second inequality above follows from (3.125). Next we show

that ‖|z̃− x‖| ≤ u/2 with nonzero probability for large enough M . Observe that

‖|z̃− x‖| = ‖Vz̃ − Vx‖ =

∥∥∥∥∥ 1

M

M∑
`=1

(VZ̃` − Vx)

∥∥∥∥∥ .
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Since this is a sum of centered random matrices, in order to estimate the tail probability of its

norm, we employ Theorem A.4. Denote B` := 1
M (VZ̃` − Vx). We first need to bound the variance

term

σ2 = max

{∥∥∥∥∥
M∑
`=1

E(B`B
∗
` )

∥∥∥∥∥ ,
∥∥∥∥∥
M∑
`=1

E(B∗`B`)

∥∥∥∥∥
}
. (3.128)

For the first part,

E(B`B
∗
` ) =

1

M2
E(VZ̃` − Vx)(VZ̃` − Vx)∗

=
1

M2
[E(VZ̃`V

∗
Z̃`

)− E(VZ̃`)V
∗
x − VxE(V ∗

Z̃`
) + VxV

∗
x ]

=
1

M2
[E(VZ̃`V

∗
Z̃`

)− VxV ∗x ]

where we used E(VZ̃`) = Vx. Furthermore, by the triangle inequality,∥∥∥∥∥
M∑
`=1

E(B`B
∗
` )

∥∥∥∥∥ =
1

M
‖E(VZ̃V

∗
Z̃

)− VxV ∗x ‖ ≤
1

M
(‖E(VZ̃V

∗
Z̃

)‖+ ‖VxV ∗x ‖).

The expectation of the discrete distribution can be written as follows

E(VZ̃V
∗
Z̃

) =

N∑
i=1

‖xi‖2V−→E i(xi/‖xi‖2)
V ∗−→
E i(xi/‖xi‖2)

=
1

m

N∑
i=1

‖xi‖2
m∑
j=1

Ejj

(
xix
∗
i

‖xi‖22

)

=
1

m

m∑
j=1

Ejj

(
N∑
i=1

xix
∗
i

‖xi‖2

)
. (3.129)

Above Ejj(A) denotes the m × m diagonal block matrix with the matrix A ∈ Rd×d in its j-th

diagonal entry and 0 elsewhere. Here, we introduce the function

fn(x) :=

∥∥∥∥∥∥
∑

i1 6=i2 6=···6=in

xi1x
∗
i1
xi2x

∗
i2
· · ·xinx∗in

‖xi1‖2‖xi2‖2 · · · ‖xin‖2

∥∥∥∥∥∥ ,
for all x ∈ B2,1 and n ≥ 2, n ∈ N. Then we have the following result.

Lemma 3.43. For all x ∈ B2,1, it holds

fn(x)2 ≤ λ2n−2

s
+ f2n(x).

Proof. We have

fn(x)2 =

∥∥∥∥∥∥
∑

i1 6=···6=in

xi1x
∗
i1
· · ·xinx∗in

‖xi1‖2 · · · ‖xin‖2

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
∑

i1 6=···6=in
j1 6=···6=jn

xi1x
∗
i1
· · ·xinx∗inxj1x

∗
j1
· · ·xjnx∗jn

‖xi1‖2 · · · ‖xin‖2‖xj1‖2 · · · ‖xjn‖2

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥
∑

i1 6=···6=in=j1
6=j2 6=···6=jn

xi1x
∗
i1
· · ·xin‖xin‖22x∗inxj2x

∗
j2
· · ·xjnx∗jn

‖xi1‖2 · · · ‖xin‖22‖xj2‖2 · · · ‖xjn‖2

∥∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥∥
∑

i1 6=···6=in 6=j1
6=j2 6=···6=jn

xi1x
∗
i1
· · ·xinx∗inxj1x

∗
j1
· · ·xjnx∗jn

‖xi1‖2 · · · ‖xin‖2‖xj1‖2 · · · ‖xjn‖2

∥∥∥∥∥∥∥∥
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≤
∑

i1 6=···6=in
6=j2 6=···6=jn

∥∥∥∥ xi1x
∗
i1
· · ·xinx∗inxj2x

∗
j2
· · ·xjnx∗jn

‖xi1‖2 · · · ‖xin−1‖2‖xj2‖2 · · · ‖xjn‖2

∥∥∥∥+ f2n(x)

≤
∑

i1 6=···6=in
6=j2 6=···6=jn

(
λ‖xi1‖2‖xi2‖2 · · ·λ‖xin‖2‖xj2‖2 · · ·λ‖xjn−1

‖2‖xjn‖2‖xi1x∗jn‖
‖xi1‖2 · · · ‖xin−1‖2‖xj2‖2 · · · ‖xjn‖2

)
+ f2n(x)

≤ λ2n−2
∑

i1,··· ,in,
j2,··· ,jn

(
‖xi1‖2 · · · ‖xin−1

‖2‖xin‖22‖xj2‖2 · · · ‖xjn‖2
)

+ f2n(x)

≤ λ2n−2
∑
in

‖xin‖22

∑
j

‖xj‖2

2n−2

+ f2n(x) ≤ λ2n−2

s
+ f2n(x),

where we used the Cauchy-Schwarz inequality, the triangle inequality and x ∈ B2,1. �

Proof of Lemma 3.42 continued. We estimate (3.129) by using Lemma 3.43 as follows

‖E(VZ̃V
∗
Z̃

)‖ =
1

m

∥∥∥∥∥
N∑
i=1

xix
∗
i

‖xi‖2

∥∥∥∥∥ =
1

m

∥∥∥∥∥∥
N∑

i,j=1

xix
∗
i xjx

∗
j

‖xi‖2‖xj‖2

∥∥∥∥∥∥
1/2

≤ 1

m

(∥∥∥∥∥
N∑
i=1

‖xi‖22xix∗i
‖xi‖22

∥∥∥∥∥+ f2(x)

)1/2

≤ 1

m

(
N∑
i=1

‖xix∗i ‖+

(
λ2

s
+ f4(x)

)1/2
)1/2

≤ 1

m

 N∑
i=1

‖xi‖22 +

(
λ2

s
+

(
λ6

s
+ f8(x)

)1/2
)1/2

1/2

.

Observe that the exponents of λ grow like 2n − 2. Iterating this process infinitely many times, we

obtain

‖E(VZ̃V
∗
Z̃

)‖ ≤ 1

m

√√√√1

s
+

√
λ2

s
+

√
λ6

s
+ · · · = 1

m

√√√√1

s
+ λ

√
1

s
+ λ

√
1

s
+ · · · =:

1

m
A.

One can see the relation

√
1

s
+ λA = A. Solving this quadratic equation yields A ≤ λ+

√
λ2+4/s

2 ≤

λ+ 1/
√
s. Therefore

‖E(VZ̃V
∗
Z̃

)‖ ≤ λ+ 1/
√
s

m
.

Also by (3.125), we have

‖V ∗x Vx‖ = ‖VxV ∗x ‖ ≤ ‖Vx‖2 ≤
1

m
‖x‖22 ≤

1

ms
. (3.130)

We conclude that ∥∥∥∥∥
M∑
`=1

E(B`B
∗
` )

∥∥∥∥∥ ≤ 1/s+ λ+ 1/
√
s

Mm
≤ λ+ 2/

√
s

Mm
. (3.131)

We proceed by estimating the second part of the variance term (3.128). Similarly as above we

have ∥∥∥∥∥
M∑
`=1

E(B∗`B`)

∥∥∥∥∥ =
1

M
‖E(V ∗

Z̃
VZ̃)− V ∗x Vx‖ ≤

1

M
(‖E(V ∗

Z̃
VZ̃)‖+ ‖V ∗x Vx‖). (3.132)
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We now denote Hii(a) as the N ×N diagonal matrix with the scalar a in its i-th diagonal entry

and 0 elsewhere and Ejj(A) denotes the m×m diagonal block matrix with the matrix A ∈ RN×N

in its j-th diagonal entry and 0 elsewhere. It follows that

‖E(V ∗
Z̃
VZ̃)‖ =

∥∥∥∥∥
N∑
i=1

‖xi‖2V ∗−→E i(xi/‖xi‖2)
V−→
E i(xi/‖xi‖2)

∥∥∥∥∥
=

1

m

∥∥∥∥∥∥
N∑
i=1

‖xi‖2
m∑
j=1

Ejj

[
Hii

(
x∗i xi
‖xi‖22

)]∥∥∥∥∥∥
=

1

m

∥∥∥∥∥∥
m∑
j=1

Ejj

(
N∑
i=1

Hii(‖xi‖2)

)∥∥∥∥∥∥ =
1

m

∥∥∥∥∥
N∑
i=1

Hii(‖xi‖2)

∥∥∥∥∥
=

1

m
max
i∈[N ]

‖xi‖2 ≤
1

m
√
s
.

Combining this with (3.130) and (3.132), we obtain∥∥∥∥∥
M∑
`=1

E(B∗`B`)

∥∥∥∥∥ ≤ 2

Mm
√
s
.

Then (3.131) dominates the right hand side of (3.128), which yields

σ2 ≤ λ+ 2/
√
s

Mm
. (3.133)

Finally we estimate ‖B`‖ uniformly for all `.

‖B`‖ ≤
1

M
(‖VZ̃`‖+ ‖Vx‖) ≤

1

M

(
1√
m

+
1√
ms

)
≤ 2

M
√
m
. (3.134)

Plugging the estimates (3.133) and (3.134) into Theorem A.4 gives

P(‖|z̃− x‖| ≥ u/2) ≤ (md+mN) exp

− u2/8
λ+2/

√
s

Mm + u
3M
√
m

 .

Denote D := md+mN . A sufficient condition for P(‖|z̃− x‖| ≤ u/2) > 0 to hold is

exp

 u2

8λ+16/
√
s

Mm + 8u
3M
√
m

 > D.

Taking the logarithm of both sides and rearranging the terms yield the condition

M > ln(D)

(
8λ+ 16/

√
s

mu2
+

8

3
√
mu

)
. (3.135)

Under this condition, there exists a realization of the vector z̃ for which ‖|z̃ − x‖| ≤ u/2. This

implies with (3.127) that there exists a vector of the form z = 1
M

∑M
`=1 Z` with

‖|z− x‖| ≤ u.

Note that z is at most M sparse and Z` ∈ T . Since each Z` takes

|T | =

∣∣∣∣∣∣
⋃
j∈[N ]

Tj

∣∣∣∣∣∣ ≤ N
(

1 +
4

u
√
m

)k
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values so that z can take at most NM
(

1 + 4
u
√
m

)kM
values. The choice

M =

⌊
ln(D)

(
8λ+ 16/

√
s

mu2
+

6√
mu

)⌋
satisfies (3.135). Therefore we deduce that the covering numbers can be estimated by√

lnN (B2,1, ‖| · ‖|, u) ≤

√√√√ln

[
NM

(
1 +

4

u
√
m

)kM]

≤

√(
8λ+ 16/

√
s

mu2
+

6√
mu

)√
ln(D)

[
ln(N) + k ln

(
1 +

4

u
√
m

)]
.

This completes the proof of Lemma 3.42. �

Proof of Lemma 3.41 continued. Noting that Ds,N ⊂
√
sB2,1, we have the two following bounds

due to (3.126) and Lemma 3.42√
lnN (A, ‖ · ‖, u) ≤

√
s ln(eN/s) +

√
sk ln

(
1 +

2

u
√
m

)
(3.136)

√
lnN (A, ‖ · ‖, u) =

√
lnN

(
B2,1, ‖| · ‖|,

u√
s

)

≤

√(
8λs+ 16

√
s

mu2
+

6
√
s√

mu

)√
ln(D)

[
ln(N) + k ln

(
1 +

4
√
s

u
√
m

)]
, (3.137)

for u > 0. Next we combine these inequalities to estimate the Dudley integral in (3.122). We

integrate (3.136) from 0 to some κ ∈ (0, 1/
√
m) and (3.137) from κ to 1/

√
m.

I1 :=

∫ κ

0

(√
s ln(eN/s) +

√
sk ln

(
1 +

2

u
√
m

))
du

≤ κ
√
s ln(eN/s) + κ

√
sk

√
ln

(
1 +

2

κ
√
m

)
.

Hereby, we applied [94, Lemma 10.3]. The choice κ =
√

1+λs√
sk
√
m

yields

I1 ≤
√

1 + λs
√

ln(eN/s)√
k
√
m

+

√
1 + λs√
m

√√√√ln

(
1 +

√
sk√

1 + λs

)
.

Furthermore,

I2 :=

∫ 1/
√
m

κ

√(
8λs+ 16

√
s

mu2
+

6
√
s√

mu

)√
ln(D)

[
ln(N) + k ln

(
1 +

4
√
s

u
√
m

)]
du

≤

√√√√ln(D)

[
ln(N) + k ln

(
1 +

4s
√
k√

1 + λs

)]∫ 1/
√
m

κ

(√
8λs+ 16

√
s

mu2
+

√
6
√
s√

mu

)
du

≤

√√√√ln(D)

[
ln(N) + k ln

(
1 +

4s
√
k√

1 + λs

)](√
8λs+ 16

√
s

m

∫ 1/
√
m

κ

u−1du+

√
6
√
s√
m

∫ 1/
√
m

κ

u−1/2du

)

≤

√√√√ln(D)

[
ln(N) + k ln

(
1 +

4s
√
k√

1 + λs

)](√
8λs+ 16

√
s

m
ln

( √
sk√

1 + λs

)
+

√
6
√
s√
m

(m−1/4 −
√
κ)

)
.
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In the first inequality above, we used u ≥ κ and the triangle inequality. The term
√
κ in the last

line can be ignored. Then using the estimates we derived and (3.122), we arrive at

γ2(A, ‖ · ‖) ≤ c
∫ d2→2(A)

0

√
lnN (A, ‖ · ‖, u)du ≤ I1 + I2 ≤ δ/2,

provided Condition (3.123) is satisfied with an appropriate absolute constant C̃. Then it follows

from (3.120) that

E = γ2(A, ‖ · ‖) + γ2(A, ‖ · ‖)2 ≤ δ.

This ends the proof of Lemma 3.41. �

Proof of Theorem 3.7 continued. So far, we have estimated E in (3.120). It remains to estimate

the tail probability (3.121) given in Theorem 3.40. We choose the constant C in (3.10) sufficiently

larger than C̃ in (3.123) so that

C1E ≤ δ/2,

where C1 is the constant in (3.121). Next we bound the terms V and U in (3.121). We have

V = d2→2(A)[γ2(A, ‖ · ‖) + dF (A)]

≤ 1√
m

(γ2(A, ‖ · ‖) + 1) ≤ 2/
√
m,

since γ2(A, ‖ · ‖) ≤ 1 by (3.123). Also we have

U = d2
2→2(A) = 1/m

by (3.124). Plugging these estimates into (3.121) and choosing t = δ/2, we obtain

P(δs ≥ δ) ≤ P(δs ≥ C1E + δ/2) ≤ 2 exp

(
−C2

δ2m

16

)
≤ ε

provided Condition (3.11) is satisfied with C ′ = 16/C2. This finally completes the proof of

Theorem 3.7. �

3.4.2. Proof of Theorem 3.8

Gaussian width. Let g ∈ Rm be a standard Gaussian random vector. Then for

Em := E‖g‖2 =
√

2
Γ((m+ 1)/2)

Γ(m/2)

we have

m√
m+ 1

≤ Em ≤
√
m, (3.138)

see [54,62]. We introduce the Gaussian width of a set T ⊂ RN by

`(T ) := E sup
x∈T
〈g, x〉.

The following version of Gordon’s escape through the mesh lemma [62] appears in [54, Theo-

rem 9.21].

Lemma 3.44. Let A ∈ Rm×N be a Gaussian random matrix and T be a subset of the unit sphere

SN−1 = {x ∈ RN , ‖x‖2 = 1}. Then

E inf
x∈T
‖Ax‖2 ≥ Em − `(T ).
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Our strategy is to establish the `2-stable and robust null space property of order s for a

Gaussian matrix A. Then Theorem 3.19 automatically gives us the desired result. Thus, we need

to show that

‖xS‖2 ≤
ρ√
s
‖xS‖2,1 + τ‖APx‖2 (3.139)

for all x ∈ H and S ⊂ [N ], |S| = s. For ρ ∈ (0, 1], we introduce the set

Tρ,s :=

{
z ∈ H : ‖zS‖2 ≥

ρ√
s
‖zS‖2,1 for some S ⊂ [N ], |S| = s

}
,

and the sphere SH = {y ∈ H : ‖y‖2 = 1}. We will first show that with high probability

min{‖APz‖2 : z ∈ Tρ,s ∩ SH} > 0, (3.140)

and this will be a step towards showing (3.139). We define the set B2,1 := {x ∈ H : ‖x‖2,1 ≤√
s, ‖x‖2 ≤ 1}.

Lemma 3.45. It holds

Tρ,s ∩ SH ⊂ (1 + ρ−1)B2,1.

Proof. Take an arbitrary x ∈ Tρ,s such that ‖x‖2 = 1. Then there is an S ⊂ [N ], |S| = s, such

that ‖xS‖2 ≥ ρ√
s
‖xS‖2,1. Using this relation, it follows that

‖x‖2,1 = ‖xS‖2,1 + ‖xS‖2,1 ≤
√
s‖xS‖2 +

√
s

ρ
‖xS‖2 ≤

√
s(1 + ρ−1),

where we used that ‖x‖2 = 1 and the Cauchy-Schwarz inequality. This proves our claim that

x ∈ (1 + ρ−1)B2,1. �

Our goal is to show that (3.140) holds with high probability when the matrix A is Gaussian.

We denote T := Tρ,s ∩ SH for simplicity of notation. We notice that F(A) := infx∈T ‖APx‖2
defines a Lipschitz function with Lipschitz constant L = 1 with respect to the Frobenius norm

(which corresponds to the `2-norm by identifying Rm×N with RmN ). Indeed, for two matrices

A,B ∈ Rm×N ,

inf
x∈T
‖APx‖2 ≤ inf

x∈T
(‖BPx‖2 + ‖(AP −BP)x‖2) ≤ inf

x∈T
(‖BPx‖2 + ‖(AP −BP)‖)

≤ inf
x∈T
‖BPx‖2 + ‖A−B‖ ≤ inf

x∈T
‖BPx‖2 + ‖A−B‖F .

The second inequality follows from T ⊂ SH. Interchanging the roles of A and B yields

|F(A)−F(B)| ≤ ‖A−B‖F .

Then the concentration of measure (A.11) yields

P
(

inf
x∈T
‖APx‖2 ≤ E inf

x∈T
‖APx‖2 − t

)
≤ e−t

2/2. (3.141)

Our next goal is to derive a lower bound on E infx∈T ‖APx‖2. Actually a stronger concentration

inequality holds for X := infx∈T ‖APx‖2 according to (A.12), which satisfies the hypothesis of

Lemma A.15 for t ≥ 1 with constants c = 2, σ2
1 = σ2

2 = 2. Therefore we have
√
EX2 ≤ EX + C, for some C > 0. (3.142)
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Before obtaining a lower bound for EX2, we introduce some notation. For a block vector x ∈ T
with blocks x1, . . . , xN , let Dx ∈ RN×d be the matrix with rows xi. We define the sets

U = {Dx : x ∈ T},

V = {v ∈ RN : v = Ui for some U ∈ U and i ∈ [d]},

Ṽ = {v/‖v‖2 : v ∈ V and ‖v‖2 ≥ 1/
√
d}.

Recall that Ui denotes the i-th column of U . Then we have

X2 = inf
x∈T
‖APx‖22 = inf

x∈T
‖AIx‖22 = inf

U∈U

d∑
i=1

‖AUi‖22

= inf
c∈Rd
‖c‖2=1

inf
U∈U

‖Ui‖2=|ci|

d∑
i=1

‖AUi‖22 ≥ inf
v∈V

‖v‖2≥ 1√
d

‖Av‖22 ≥
1

d
inf
v∈V

‖v‖2≥ 1√
d

‖A(v/‖v‖2)‖22. (3.143)

Above we used that ‖U‖F = 1 for any U ∈ U . The first inequality uses the observation that for

a vector a ∈ Sd−1 there exist an index i ∈ [d] such that |ai| ≥ 1/
√
d. Taking the expectation in

(3.143) yields

EX2 ≥ 1

d
E inf
v∈Ṽ
‖Av‖22 ≥

1

d

(
E inf
v∈Ṽ
‖Av‖2

)2

≥ 1

d

(
Em − E sup

v∈Ṽ
〈g, v〉

)2

, (3.144)

where g ∈ RN is a standard Gaussian vector and Ṽ ⊂ SN−1. Above, the Jensen’s inequality

and Lemma 3.44 are invoked in the second and the last inequalities respectively. This leads to

bounding the Gaussian width of Ṽ as follows

E sup
v∈Ṽ
〈g, v〉 ≤

√
d E sup

v∈V
‖v‖2≥ 1√

d

|〈g, v〉| ≤
√
d E sup

v∈V
|〈g, v〉| =

√
d E sup

U∈U
‖U∗g‖∞

=
√
d E sup

x∈T
‖D∗xg‖∞ ≤

√
d E sup

x∈T
‖D∗xg‖2 ≤

√
d
√
E sup

x∈(1+ρ−1)B2,1

‖D∗xg‖22,

(3.145)

where we used the Jensen’s inequality once again and Lemma 3.45. We continue estimating

E sup
x∈(1+ρ−1)B2,1

‖D∗xg‖22 = E sup
x∈(1+ρ−1)B2,1

 N∑
i=1

g2
i ‖xi‖22 +

∑
i 6=j

gigj〈xi, xj〉


≤ E

(
max
i∈[N ]

g2
i

)
sup

x∈(1+ρ−1)B2,1

(
N∑
i=1

‖xi‖22

)
+ E sup

x∈(1+ρ−1)B2,1

∑
i6=j

|gi||gj |‖PiPj‖‖xi‖2‖xj‖2

≤ E
(

max
i∈[N ]

g2
i

)
(1 + ρ−1)2 + E sup

x∈(1+ρ−1)B2,1

λ

(
N∑
i=1

|gi|‖xi‖2

)2

≤ E
(

max
i∈[N ]

g2
i

)
(1 + ρ−1)2 + λ E

(
max
i∈[N ]

|gi|
)2

(1 + ρ−1)2s ≤ c(1 + ρ−1)2(1 + λs) ln(N),

for some constant c > 0. The last inequality above uses Lemma A.9. Plugging this estimate into

(3.145) and then into (3.144) yields

EX2 ≥ 1

d
(Em −R)2,
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where R := (1+ρ−1)
√
c(1 + λs) d ln(N). Then using the lower bound (3.138) for Em and (3.142)

implies that

EX ≥
√
EX2 − C ≥ 1√

d

(
m√
m+ 1

−R
)
− C.

Combining this with (3.141) gives

P
(

inf
x∈T
‖APx‖2 >

1√
d

(
m√
m+ 1

−R
)
− C − t

)
≥ 1− e−t

2/2.

Setting t =
√

2 ln(ε−1) yields that

P( inf
x∈T
‖APx‖2 > 1/τ) ≥ 1− ε,

provided
1√
d

(
m√
m+ 1

−R
)
− C −

√
2 ln(ε−1) >

1

τ
.

This means that under Condition (3.13), for any x ∈ H such that ‖APx‖2 ≤ 1
τ ‖x‖2 and for any

set S ⊂ [N ], |S| = s, it holds with probability at least 1− ε that

‖xS‖2 ≤
ρ√
s
‖xS‖2,1.

For all other x ∈ H, clearly ‖x‖2 ≤ τ‖APx‖2 which shows that for all x ∈ H, (3.139) holds. This

ends the proof. �

3.5. Proof of the necessary condition

3.5.1. Covering numbers and coding theory

Let T be a subset of a metric space (X, d). For t > 0, the covering number N (T, d, t) is defined

as the smallest integer N such that T can be covered with balls B(x`, t) = {x ∈ X, d(x, x`) ≤
t}, x` ∈ T, ` ∈ [N ], i.e.,

T ⊂
N⋃
`=1

B(x`, t).

The packing number P(T, d, t) is defined, for t > 0, as the maximal integer P such that there are

points x` ∈ T , ` ∈ [P], which are t-separated, i.e., d(x`, xk) > t for all k, ` ∈ [P], k 6= `. If X = Rn

is a normed vector space and the metric d is induced by the norm via d(u, v) = ‖u− v‖, we also

write N (T, ‖ · ‖, t) and P(T, ‖ · ‖, t).

Proposition 3.46. Let ‖ · ‖ be some norm on Rn and let U = {x ∈ Rn : 1
2 ≤ ‖x‖ ≤ 2} be a

spherical shell. Then the packing and covering numbers satisfy, for t > 0,(
2

t

)n
−
(

1

2t

)n
≤ N (U, ‖ · ‖, t) ≤ P(U, ‖ · ‖, t).

Proof. For the first inequality, let {x1, . . . , xN } ⊂ U be the minimal set covering U . This implies

that

Nvol(tB) ≥ vol

( N⋃
`=1

B(x`, t)

)
≥ vol(U) = vol(2B)− vol(B/2).

On Rn the volume satisfies the homogeneity relation vol(tB) = tnvol(B). Hence we haveN tnvol(B) ≥
2nvol(B)− (1/2)nvol(B) which yields N ≥ (2/t)n − (1/2t)n as desired. �

Here is another similar result on packing numbers, for a reference see [54].
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Proposition 3.47. Let ‖ · ‖ be some norm on Rn and let U be a subset of the unit ball B = {x ∈
Rn : ‖x‖ ≤ 1}. Then the packing number satisfies, for t > 0,

N (U, ‖ · ‖, t) ≤ P(U, ‖ · ‖, t) ≤
(

1 +
2

t

)n
.

Next we present a lemma from coding theory which will be useful in our proof of Theorem 3.10.

Let us first start with some notation from the literature. Let A be a finite set of q letters, also

called alphabet. A code C is any nonempty subset of the set An of n-tuples of elements from A.

The number n is the length of the code, and the set An is the codespace. The number of members

in C is the size and is denoted |C|. The members of the codespace are referred as words, those

belonging to C being codewords. We define the Hamming distance between any two words x, y of

same length as

dH(x, y) = {i : xi 6= yi}.

The minimum distance of a code C in An is defined as

dmin(C) = min
x,y∈C
x 6=y

dH(x, y).

In this context, the maximum possible size of a code C of length n with a fixed dmin(C) is of

particular interest to us. Such a bound can be seen as a packing problem with respect to Hamming

distance and available in the literature as the Gilbert-Varshamov bound [58,110].

Lemma 3.48. (Gilbert-Varshamov bound) Let A be a finite alphabet of q elements. There exists

a code C ⊂ An of length n with dmin(C) ≥ e such that

|C| ≥ qn∑e−1
i=0

(
n
i

)
(q − 1)i

.

3.5.2. Proof of Theorem 3.10

The proof is based on the following combinatorial lemma [14, 53, 63, 83, 87] and the results in

Section 3.5.1 .

Lemma 3.49. Given integers s < N , there exist

n ≥
(
N

8s

)s
(3.146)

subsets I1, . . . , In of [N ] such that each Ii has cardinality 2s and

card(Ii ∩ I`) < s whenever i 6= `.

First recall that we restrict our attention to the set

H = {(xi)Ni=1 : xi ∈Wi, ∀i ∈ [N ]} ⊂ Rd×N .

Let us consider the quotient space

X := H / ker AP|H = {[x] := x + ker AP|H,x ∈ H},

which is equipped with the quotient norm

‖[x]‖ := inf
v∈ker AP|H

‖x− v‖2,1, x ∈ H.
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Above AP|H is the restriction of AP to H. Let BX be the unit ball of X with respect to this

norm. Given a 4s-sparse vector x ∈ H, we notice that every vector z = x− v with v ∈ ker AP|H

satisfies APz = APx. Thus, the assumption of the theorem gives ‖[x]‖ = ‖x‖2,1. Next we pack

the spherical shells Si = {y ∈ Wi : 1
2s ≤ ‖y‖2 ≤

2
s} of the subspaces Wi. Proposition 3.46 yields

that we can find such a packing with packing distance of 1/s where

P(Si, ‖ · ‖2, 1/s) ≥ 2k − (1/2)k =: q,

Recall dim(Wi) = k. For each i, let Ti ⊂ Si be the packing set of Si with this cardinality. Now

let I1, . . . , In be the sets introduced in Lemma 3.49, and for each j ∈ [n] let us define the set of

2s-sparse vectors with support set from Ij

T (Ij) := {x ∈ H : supp(x) = Ij , xi ∈ Ti for i ∈ Ij}.

It is clear that for each j, the total number of vectors in T (Ij) is at least q2s. We wish to find

a large enough subset of each T (Ij), say T̂ (Ij), such that any two distinct vectors x,y ∈ T̂ (Ij)

satisfy card{i : xi 6= yi} ≥ s. This problem is exactly the same as the one in Lemma 3.48. We can

think of q as the size of our alphabet and we have words of length 2s from this alphabet. Then

we search for a lower bound on the number of words possible which are mutually distant to each

other with at least a Hamming distance of s. Lemma 3.48 says that there exist such a subset

T̂ (Ij) satisfying

|T̂ (Ij)| ≥
q2s∑s−1

i=0

(
2s
i

)
(q − 1)i

≥ q2s

22sqs
≥ (q/4)s.

Let us define the set

V =

n⋃
j=1

T̂ (Ij).

We claim that the set {[x] : x ∈ V} is a 1-separating subset of the scaled unit ball 4BX . Observe

that every x ∈ V has a support set Ij for some j ∈ [n] which has cardinality 2s. Therefore, it

holds that

‖[x]‖ = ‖x‖2,1 =
∑
i∈Ij

‖xi‖2 ≤ 2s · 2

s
= 4,

since xi ∈ Si. Next we see that any two elements from the set V are at least 1-separated. We

consider two cases in order to prove this argument. First assume that x,y ∈ V both belong to the

same set T̂ (Ij) for some j. Then we know that card{i : xi 6= yi} ≥ s holds. Whenever xi 6= yi, we

have ‖xi − yi‖2 ≥ 1/s since xi, yi ∈ Ti. Hence

‖[x]− [y]‖ = ‖[x− y]‖ = ‖x− y‖2,1 =
∑

i:xi 6=yi

‖xi − yi‖2 ≥ s ·
1

s
= 1.

The second equality holds since x − y is 2s-sparse. For the case that x ∈ T̂ (Ij) and y ∈ T̂ (I`)

with j 6= `, observe that x−y is 4s-sparse and the symmetric difference of the support sets satisfy

card(Ij 4 I`) ≥ 2s. Then it follows that

‖[x]− [y]‖ = ‖[x− y]‖ = ‖x− y‖2,1 ≥
∑

i:Ij4I`

(‖xi‖2 + ‖yi‖2) ≥ 2s · 1

2s
= 1,

since xi, yi ∈ Si. This proves our claim that V separates 4BX by 1 and |V| ≥ n(q/4)s. The

ball 4BX has dimension r := rank(AP) ≤ md. According to Proposition 3.47, this implies that
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n(q/4)s ≤ 9r ≤ 9md. In view of (3.146), we obtain for k ≥ 1

9md ≥
(
N

8s

)s(
2k − (1/2)k

4

)s
≥
(
N

32s

)s(
3

2

)ks
,

since 2k − (1/2)k ≥ (3/2)k for k ≥ 1. Taking the logarithm on both sides gives the desired

result. �

3.6. Discussion

The fusion frame setup can be considered as a special case of the block sparsity setup where

an additional subspace structure is assumed. In our work we have shown that if it is known a

priori that the subspaces, where the signals lie in, are closer to being orthogonal, less random

measurements become sufficient for successfully recovering those vectors. In order to achieve this,

we use convex programming as our reconstruction method. The crucial difference of our setup

to the usual block sparsity problems is using the information that x ∈ H within our program,

which in turn allows us to derive our novel results. As we noted earlier, it was shown in [9] that

m & s ln(N/s) is sufficient for uniform recovery with many random measurement ensembles. In

the nonuniform setting, we improve this result since the number of measurements decreases with

increasing incoherence of the subspaces. In the uniform setting, our result is an improvement when

λ becomes small enough. To the best of our knowledge, these results are the first in the literature

that study the effect of the incoherence of the subspaces on the sparse recovery of deterministic

vectors. Indeed, [9] also contains results with this flavor but they are in terms of the coherence and

formulated in an ‘average case scenario’. The authors [9] study the recovery of random vectors

chosen from a fusion frame according to a Gaussian distribution on the subspaces and study the

effect of the dimension of the subspaces on recoverability. Their result shows that under the

condition

‖A†SA`‖2 ≤ α < 1 for all ` /∈ S, (3.147)

where A is the measurement matrix, a vector x supported on S with |S| = s can be recovered by

(L1) if

k & ‖ΛS‖∞max{ln(N − s), ln(s)}, (3.148)

where k is the subspace dimension. We note that an additional condition on m is needed for

‘suitable’ measurement matrices in order to ensure that (3.147) holds. Interestingly, this result

involves the incoherence matrix Λ from Section 3.1.5 similarly to our nonuniform result Theo-

rem 3.1, but unlike our result, (3.148) improves with increasing k. In a preceding paper [50],

Eldar and Rauhut consider a similar average case analysis for the joint sparsity case. They use

the same probabilistic model for the sparse signal to be recovered and provide mild conditions

that imply (3.147). Moreover, their results show that adding more channels to the joint sparsity

problem, which can be interpreted as adding dimensions in the block sparsity problem, improves

the recoverability of jointly sparse vectors.

Before comparing our results with the related literature, we give a brief account of some

challenges we have faced towards proving our uniform results. In general, proving uniform recovery

results tends to be harder than proving nonuniform recovery ones. In the scalar case, a uniform

recovery result for Gaussian matrices based on the concentration of measure of Lipschitz functions
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was given by one of the seminal papers by Candès and Tao [20]. However, in the fusion frame

case, this approach does not work since the parameter λ does not appear as a factor in the

number of measurements. Another approach is to bound the FRIP constant δs of the matrix

AP. The techniques developed by Rudelson and Vershynin [95], where they invoke Dudley’s

inequality directly to bound the expectation of δs, also fail to yield λ. In order to achieve our

results presented in this thesis, we employ a recent method to bound suprema of chaos processes by

Krahmer, Mendelson and Rauhut [75]. Consequently, λ appears as a linear factor in the number

of measurements, however not in the optimal order, see Theorem 3.7.

In the literature, there are other works where the recovery of block sparse vectors is considered.

As mentioned earlier, those results do not assume any structure of the subspaces underlying the

signals of interest. Our work as well as [9] also provides comparison with the case of the block

sparsity problem. In the minimization program (L1), if we omit the assumption x ∈ H and replace

AP with AI, the problem reduces to the block sparsity setup. This is equivalent to assuming

Wj = Rd which implies λ = 1. Then our nonuniform result implies that a block s-sparse vector x

can be recovered from its m random measurements with high probability via `1/`2 minimization

provided m & s ln(N). However, since each of our measurements, yi ∈ Rd, is itself a vector, the

number of measurements we are taking is actually md.

Eldar and Bölcskei in [49,51] consider the recovery of block sparse vectors via an extension of

orthogonal matching pursuit for the block sparse case (BOMP) and provide a sufficient condition in

terms of the sparsity level and ‘block coherence’ of the matrices which they define in their papers.

Their condition is a deterministic one for the measurement matrices which gives nonuniform results

and it is not answered whether certain type of random matrices satisfy this condition.

In [23], Candès and Recht provide a nonuniform result with Gaussian measurement matrices

and the same recovery method (L1) under the condition

md & s(
√
d+

√
2 ln(N))2 + sd. (3.149)

Their method uses the duality based recovery results due to Fuchs [55]. Their measurement

matrix A ∈ Rmd×Nd has all of its entries from the standard Gaussian distribution, unlike our

measurement matrix AP. When we do not assume any structure as in the block sparsity setup,

(3.149) provides a slightly better condition than our nonuniform one, md & sd ln(N). However,

when λ becomes smaller, our result scales better. Candès and Recht also provide an extension of

their result to the subgaussian matrices with minor modifications. In [91], Rao et. al. provide an

identical result to (3.149) by using convex geometry. This approach provides recovery from noisy

measurements as well, however is restricted to only Gaussian matrices.

In earlier works [97, 99], the authors look at the null space of the measurement matrix A ∈
Rmd×Nd rather than the RIP by using Gaussian widths. They provide uniform results in the

asymptotic regime N, d → ∞, in a similar spirit to the results discussed in Section 2.4. They

consider the case that

m = αN, s ≤ βN,

where α, β are some fixed values. They show that if A is a Gaussian matrix, then with high

probability `1/`2 minimization recovers all block s-sparse vectors, provided α ≥ 4β(1 − β). This

gives roughly the condition m ≥ Cs, however is valid in the asymptotic regime. Another result
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from [89] also uses Gaussian widths and provide the nonasymptotic condition m & s(d+ ln(N/s))

for nonuniform recovery which is similar to (3.149) in essence.
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CHAPTER 4

Conclusion

Chapter 2 was devoted to obtaining optimal constants for nonuniform sparse recovery with sub-

gaussian matrices via `1-minimization. In particular, we provide roughly m ≥ 2s ln(N) as a

condition for exact recovery with Gaussian and Bernoulli matrices, which contains the optimal

constant 2 and a near-optimal log-factor. Since the earliest papers in CS, the same order in the

number of measurements has been shown in many different works, but the constants are generally

worse than what we present. Our results also apply to the complex vectors and hold with high

probability in finite dimensions, in contrast to some of the previous results operating in the as-

ymptotic regime. We provide short and simple proofs based on elementary probabilistic tools. In

addition to exact recovery, we show that nearly sparse signals could be accurately recovered from

a small number of noisy measurements. Our stable results also give the optimal constant 2.

In Chapter 3, we studied the sparse recovery problem in fusion frames. In particular, we

improved the familiar bound m & s ln(N) on the necessary number of measurement by exploiting

an incoherence property of the fusion frame subspaces. As in Chapter 2 we deduced our results

by using subgaussian random matrices, including Gaussian and Bernoulli matrices as examples.

We presented three different type of results regarding the sparse recovery with fusion frames:

nonuniform guarantees, uniform guarantees and necessary conditions. In essence, nonuniform and

uniform results state that as the fusion frame subspaces become closer to being orthogonal, less

number of measurements suffice for successful recovery. We presented two uniform results namely

Theorems 3.7 and 3.8 following different approaches, one of which, we think, is suboptimal in terms

of the sparsity s and the other is suboptimal in terms of the ambient dimension d. An important

open problem is to improve those results and possibly obtain the same order as the nonuniform

condition (3.5). Our necessary condition (3.16) provides the minimal number of measurements

required for sparse recovery and we show that it is quite close to the sufficient conditions. We

also showed that the nonuniform and uniform results are stable and robust under noise and we

presented numerical experiments in order to support our results. In the absence of the incoherence

property, our results also compare to the block sparsity setup which is well studied in the literature

and essentially gives similar results.

The use of ‘completely’ random matrices, where all entries are independent, is limited in

some applications as noted earlier. Therefore, it is of interest to also consider structured random

matrices such as randomly sampled bounded orthonormal systems, for sparse recovery problem in

the fusion frames and obtain similar theoretical guarantees as in Chapter 3.

The incoherence parameter λ in Chapter 3 takes only the least principal angles between

subspaces into account. This is somewhat pessimistic since the existence of any two subspaces

within the fusion frame of co-dimension 1 is enough to yield λ = 1. One can also investigate the
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possibility to generalize our results when other distance measures are considered, e.g., the chordal

distance [76] which takes all principal angles into account.

As a final note, the necessary condition for sparse recovery with fusion frames in Theorem 3.10

currently applies only when the (L1) program is used as the reconstruction method and we restrict

ourselves to the exactly sparse case. We believe it is possible to extend this result to all types of

reconstruction methods and to the stable and robust case by using Gelfand widths of `1/`2 balls

associated with the fusion frame similarly to [53].

106



APPENDIX A

A.1. Bernstein inequalities

The following estimate for sums of subgaussian random variables appears for instance in [111].

Lemma A.1. Let X1, . . . , XM be a sequence of independent mean-zero subgaussian random

variables with the same parameter c as in (2.5). Let a ∈ RM be some vector. Then Z :=
∑M
j=1 ajXj

is subgaussian, that is, for t > 0,

P(|
M∑
j=1

ajXj | ≥ t) ≤ 2exp(−t2/(4c‖a‖22)).

Proof. By independence we have

Eexp(θ

M∑
j=1

ajXj) = E
M∏
i=1

exp(θajXj) =

M∏
i=1

Eexp(θajXj) ≤
M∏
i=1

exp(θajXj)

= exp(c‖a‖22θ2).

This shows that Z subgaussian with parameter c‖a‖22 in (2.5). We apply Markov’s inequality to

obtain

P(Z ≥ t) = P(exp(θZ) ≥ exp(θt)) ≤ E[exp(θZ)]e−θt ≤ ec‖a‖
2
2θ

2−θt.

The optimal choice θ = t/(2c‖a‖22) yields

P(Z ≥ t) ≤ e−t
2/(4c‖a‖22).

Repeating the above computation with −Z instead of Z shows that

P(−Z ≥ t) ≤ e−t
2/(4c‖a‖22),

and the union bound yields the desired estimate P(|Z| ≥ t) ≤ 2e−t
2/(4c‖a‖22). �

The following result from [111] is the Bernstein inequality for subexponential random vari-

ables.

Proposition A.2. Let X1, . . . , XN be independent centered subexponential random variables, and

K = maxi ‖Xi‖′ψ1
. Then for every a = (a1, . . . , aN ) ∈ RN and every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−c t2

K2‖a‖22 +K‖a‖∞t

)
,

where c > 0 is an absolute constant.

The following theorem is the noncommutative Bernstein inequality due to Tropp, [106, The-

orem 1.4].
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Theorem A.3. (Matrix Bernstein inequality) Let {X`}M`=1 ∈ Rd×d be a sequence of independent

random self-adjoint matrices. Suppose that EX` = 0 and ‖X`‖ ≤ K a.s. and put

σ2 :=

∥∥∥∥∥
M∑
`=1

EX2
`

∥∥∥∥∥ .
Then for all t ≥ 0,

P

(∥∥∥∥∥
M∑
`=1

X`

∥∥∥∥∥ ≥ t
)
≤ 2d exp

(
−t2/2

σ2 +Kt/3

)
. (A.1)

Remark. One can improve the tail bound (A.1) provided the {X`} are identically distributed

and the EX2
` are not full rank, say rank(EX2

` ) = r < d. Then (A.1) can be replaced by

P

(∥∥∥∥∥
M∑
`=1

X`

∥∥∥∥∥ ≥ t
)
≤ 2r exp

(
−t2/2

σ2 +Kt/3

)
. (A.2)

Sketch of the proof. We mainly improve [106, Corollary 3.7] under the assumptions above on X`.

By [106, Theorem 3.6], for each θ > 0, it holds that

P

(
λmax

(
M∑
`=1

X`

)
≥ t

)
≤ e−θt Tr exp

(
M∑
`=1

ln
(
EeθX`

))
,

where λmax denotes the largest eigenvalue. Moreover, [106, Lemma 6.7] states that, for θ > 0,

EeθX 4 exp
(
g(θ)EX2

)
for a self-adjoint, centered random matrix X, where g(θ) = eθ− θ− 1. Using this result we obtain

P

(
λmax

(
M∑
`=1

X`

)
≥ t

)
≤ e−θt Tr exp

(
g(θ)

M∑
`=1

EX2
`

)
= e−θt Tr exp

(
g(θ)MEX2

1

)
≤ e−θtr λmax

[
exp

(
g(θ)MEX2

1

)]
= e−θtr exp

(
g(θ)λmax(MEX2

1 )
)
.

The first equality above uses that X` are identically distributed. The second inequality is valid

because, for a positive definite matrix B with rank r, we have TrB ≤ rλmax(B) and rank(c EX2
` ) =

rank
(
exp(c EX2

` )
)

= r, for some c > 0. The rest of the proof proceeds in the same way as the

proof of [106, Theorem 1.4].

We also give a rectangular version of the matrix Bernstein inequality as it appears in [106,

Theorem 1.6].

Theorem A.4. (Matrix Bernstein:rectangular) Let {Z`}M`=1 ∈ Rd1×d2 be a sequence of indepen-

dent random matrices. Suppose that EZ` = 0 and ‖Z`‖ ≤ K a.s. and put

σ2 := max

{∥∥∥∥∥
M∑
`=1

E(Z`Z
∗
` )

∥∥∥∥∥ ,
∥∥∥∥∥
M∑
`=1

E(Z∗`Z`)

∥∥∥∥∥
}
.

Then for all t ≥ 0,

P

(∥∥∥∥∥
M∑
`=1

Z`

∥∥∥∥∥ ≥ t
)
≤ (d1 + d2) exp

(
−t2/2

σ2 +Kt/3

)
.
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The next lemma is a deviation inequality for sums of independent random vectors which is

a corollary of Bernstein inequalities for suprema of empirical processes [54, Corollary 8.45]. A

similar result can be also found in [65, Theorem 12].

Lemma A.5. (Vector Bernstein inequality) Let Y1,Y2, . . . ,YM be independent copies of a ran-

dom vector Y on Rn satisfying EY = 0. Assume ‖Y‖2 ≤ K. Let

Z =

∥∥∥∥∥
M∑
`=1

Y`

∥∥∥∥∥
2

, EZ2 = ME‖Y‖22,

and

σ2 = sup
‖x‖2≤1

E|〈x,Y〉|2. (A.3)

Then, for t > 0,

P(Z ≥
√
EZ2 + t) ≤ exp

(
− t2/2

Mσ2 + 2K
√
EZ2 + tK/3

)
. (A.4)

Remark. The so-called weak variance σ2 in (A.3) can be estimated by

σ2 = sup
‖x‖2≤1

E|〈x,Y〉|2 ≤ E sup
‖x‖2≤1

|〈x,Y〉|2 = E‖Y‖22. (A.5)

A.2. Noncommutative Khintchine inequalities

For a matrix A, we define its Schatten p-norm as

‖A‖Sp := ‖σ(A)‖p, 1 ≤ p ≤ ∞,

where σ(A) = (σ1(A), . . . , σn(A)) denotes the sequence of singular values of A. In particular, the

following relations hold for Schatten norms, see [94] for a reference,

‖A‖2nS2n
= Tr((AA∗)n), (A.6)

and, if A has rank r,

‖A‖Sp ≤ r1/p‖A‖. (A.7)

Next, we state the noncommutative Khintchine inequality for matrix valued Gaussian sums as it

appears in [94]. The same result holds for Bernoulli random variables which was first formulated

by F. Lust-Piquard [80]. The optimal constants were provided by A. Buchholz in [12,13].

Lemma A.6. Let g = (g1, . . . , gM ) be a Gaussian sequence, and let Bj, j = 1, . . . ,M be complex

matrices of the same dimension. Choose n ∈ N. Then

E‖
M∑
j=1

gjBj‖2nS2n
≤ Cn max


∥∥∥∥∥∥∥
 M∑
j=1

BjB
∗
j

1/2
∥∥∥∥∥∥∥

2n

S2n

,

∥∥∥∥∥∥∥
 M∑
j=1

B∗jBj

1/2
∥∥∥∥∥∥∥

2n

S2n

 ,

where Cn = (2n)!
2nn! .

The following lemma is taken from [10] and provides an example of “decoupling” the sums of

chaos variables. Decoupling is a technique that reduces stochastic dependencies in certain sums of
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random variables. A typical example of such a sum is
∑
j 6=k εjεkxjk where xjk are some vectors

and (εj) is a Bernoulli series. Many other results about decoupling can be found in [35].

Lemma A.7. Let ξ = (ξ1, . . . , ξM ) be a sequence of independent random variables with Eξj = 0

for all j ∈ [M ]. Let Bj,k, j, k ∈ [M ] be a double sequence of elements in a vector space with norm

‖ · ‖. Then for 1 ≤ p ≤ ∞

E

∥∥∥∥∥∥
M∑
j 6=k

ξjξkBj,k

∥∥∥∥∥∥
p

≤ 4pE

∥∥∥∥∥∥
M∑
j 6=k

ξjξ
′
kBj,k

∥∥∥∥∥∥
p

,

where ξ′ denotes an independent copy of ξ.

The following result is the noncommutative Khintchine inequality for decoupled Gaussian

chaos and the proof is same for Rademacher chaos which is given in [93]. A slightly general

version without explicit constants appears in [90].

Lemma A.8. Let Bj,k ∈ Cr×t, j, k = 1, . . . ,M , be complex matrices of the same dimension. Let

g,g′ be independent Gaussian sequences. Then, for n ∈ N,E
∥∥∥∥∥∥

M∑
j,k=1

gjg
′
kBj,k

∥∥∥∥∥∥
2n

S2n


1/(2n)

≤ 21/(2n)

(
(2n)!

2nn!

)

× max


∥∥∥∥∥∥∥
 M∑
j,k=1

Bj,kB
∗
j,k

1/2
∥∥∥∥∥∥∥
S2n

,

∥∥∥∥∥∥∥
 M∑
j,k=1

B∗j,kBj,k

1/2
∥∥∥∥∥∥∥
S2n

, ‖F‖S2n
, ‖F̃‖S2n

 ,

where F, F̃ are the block matrices F = (Bj,k)Mj,k=1 and F̃ = (B∗j,k)Mj,k=1.

A.3. Moments and tails

The following lemma is a special case of [54, Proposition 8.2].

Lemma A.9. Let g1, g2, . . . , gN ∈ R be a sequence of (not necessarily independent) standard

Gaussian random variables. Then,

E max
i∈[N ]

|gi|2 ≤ c ln(N)

for some c > 0.

The next result [94,105] provides a relation between moments and tails of random variables.

Proposition A.10. Suppose Z is a random variable satisfying

(E|Z|p)1/p ≤ αβ1/pp1/γ for all p0 ≤ p ≤ p1

for some constants α, β, γ, p1 > p0 > 0. Then

P(|Z| ≥ e1/γαu) ≤ βe−u
γ/γ

for all u ∈ [p
1/γ
0 , p

1/γ
1 ].

Now we present a slight variation on the previous result.
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Proposition A.11. Suppose Z is a random variable satisfying

(E|Z|p)1/p ≤ β1/p(α1p+ α2
√
p) for all p ≥ p0.

Then, for t ≥ eα1p0 + eα2
√
p0,

P(|Z| ≥ t) ≤ β exp

(
− t2

e2α2
2 + 2eα1t

)
.

Proof. By Markov’s inequality, we obtain

P(|Z| ≥ e(α1u+ α2

√
u)) ≤ E|Z|p

(e(α1u+ α2
√
u))p

≤ β
(

α1p+ α2
√
p

e(α1u+ α2
√
u)

)p
.

Choosing p = u yields P(|Z| ≥ e(α1u + α2
√
u)) ≤ βe−u for u ≥ p0. Taking the inverse of the

function of u in the probability expression, we can equivalently write for t ≥ eα1p0 + eα2
√
p0

P(|Z| ≥ t) ≤ β exp

(
− v

c2
h1

(
ct

v

))
where we set the function h1(x) = 1 + x −

√
1 + 2x and the variables v =

e2α2
2

2 and c = eα1. It

follows from the elementary inequality h1(x) ≥ x2

2(1+x) that

P(|Z| ≥ t) ≤ β exp

(
− t2

2(v + ct)

)
.

Plugging v and c finishes the proof. �

The next lemma is due to Lata la, [77, Corollary 3] and gives an estimate for the moments of

sums of independent random variables.

Lemma A.12. There exists a universal constant K < 6 such that if Xj are independent nonneg-

ative random variables and q ≥ 1, thenE

∑
j

Xj

q1/q

≤ K q

ln(q)
max


∑
j

EXj ,

∑
j

EXq
j

1/q
 . (A.8)

A.4. Concentration inequalities

The following lemma from [32] provides elegant estimates for the extremal singular values of a

Gaussian matrix, see also [54, Chapter 9]. Its proof relies on the Slepian-Gordon Lemma [60,61]

and the concentration of measure for Lipschitz functions [78].

Lemma A.13. Let A be an m × s Gaussian matrix with m > s and let σmin and σmax be the

smallest and largest singular values of the normalized matrix 1√
m
A. Then for r > 0,

P(σmin ≤ 1−
√
s/m− r) ≤ e−mr

2/2, (A.9)

P(σmax ≥ 1 +
√
s/m+ r) ≤ e−mr

2/2. (A.10)

The following result is the concentration of measure inequality for Lipschitz functions. The

proofs and more details can be found in many references, for instance [8,78,101].

Lemma A.14. (Concentration of measure) Let f : Rn → R be an L-Lipschitz function:

|f(x)− f(y)| ≤ L‖x− y‖2, for all x, y ∈ Rn.
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Let g = (g1, . . . , gn) be a vector of independent standard normal random variables. Then, for all

t > 0,

P(E[f(g)]− f(g) ≥ t) ≤ e−
t2

2L2 , (A.11)

and consequently

P(|f(g)− E[f(g)]| ≥ t) ≤ 2e−
t2

2L2 . (A.12)

The following result appears in [2].

Lemma A.15. Assume X is a random variable such that for all t ≥ 0,

P(|X − EX| > t) ≤ c exp(−min{t2/σ2
1 , t/σ2}),

for some c, σ1, σ2 ≥ 0. Then ∣∣∣(EX2)1/2 − |EX|
∣∣∣ ≤ C√σ2

1 + σ2
2 ,

for some constant C that depends only on c.

A.5. Stirling’s formula

The Gamma function is defined for x > 0 via

Γ(x) =

∫ ∞
0

tx−1e−tdt,

see [54] for a reference. For integer values n, it coincides with the factorial function, i.e.,

Γ(n) = (n− 1)!. (A.13)

Stirling’s formula states that, for x > 0,

Γ(x) =
√

2π xx−
1
2 e−x exp

(
θ(x)

12x

)
(A.14)

with 0 ≤ θ(x) ≤ 1. It simply follows that

√
2π xx−

1
2 e−x ≤ Γ(x) ≤

√
2π xx−

1
2 e−xe

1
12x . (A.15)

Using (A.13) and (A.14) yields

n! =
√

2πn nne−neRn , (A.16)

with 0 ≤ Rn ≤ 1/(12n).
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