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Summary

In this thesis we prove generalized lower Ricci curvature bounds in the sense of optimal
transport for warped products and cones over metric measure spaces, and we prove
a general maximal diameter theorem in this context.

In the first part we focus on the case when the underlying spaces are complete
Riemann-Finsler manifolds equipped with a smooth reference measure. The proof is
based on calculations for the N -Ricci tensor and on the study of optimal transport
of absolutely continuous probability measures in warped products. On the one hand,
this result covers a theorem of Bacher and Sturm in [11] concerning Euclidean and
spherical N -cones. On the other hand, it can be seen in analogy to a result of Bishop
and Alexander in the setting of Alexandrov spaces with curvature bounded from below
[2]. Because the warped product metric can degenerate we regard a warped product
as a singular metric measure space that is in general neither a Finsler manifold nor
an Alexandrov space again but a space satisfying a curvature-dimension condition in
the sense of Lott, Sturm and Villani. This result is published in [50].

In the second part we treat the case of general metric measure spaces. The main
result states that the (K,N)-cone over any metric measure space satisfies the reduced
Riemannian curvature-dimension condition RCD∗(KN,N + 1) if and only if the
underlying space satisfies RCD∗(N − 1, N). The proof uses a characterization of
reduced Riemannian curvature-dimension bounds by Bochner’s inequality

∆|∇u|2 ≥ 〈∇u,∇∆u〉+ (N − 1)|∇u|2 +
1

N
(∆u)2

that was first established for general metric measure spaces by Erbar, Kuwada and
Sturm in [34] and announced independently by Ambrosio, Mondino and Savaré [8]. By
application of this result and the Gigli-Cheeger-Gromoll splitting theorem [37] we also
prove a maximal diameter theorem for metric measure spaces that satisfy the reduced
Riemannian curvature-dimension condition RCD∗(N − 1, N). This generalizes the
classical maximal diameter theorem for Riemannian manifolds which was proven by
Cheng in [28]. These results are contained in the preprint [49].
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1 Introduction

Optimal transport has become a powerful tool for the study of metric measure spaces.
In particular, synthetic lower Ricci curvature bounds for singular spaces introduced
by Lott-Villani [56] and Sturm [78, 79] in terms of optimal transport give a complete
new picture on the geometric meaning of Ricci curvature itself. The approach has
been extremely successful and a huge number of results and many applications have
been obtained in recent years. Still, the field is in rapid progress and pushed further by
many mathematicians deepening the understanding of the geometry even for smooth
spaces.

Particular objects of interest in connection with these developments are warped
products and cones over metric measure spaces. These are construction principles for
metric spaces that are known to behave nicely with respect to curvature bounds in
the context of Alexandrov spaces.

In this thesis we will show that warped products and cones also preserve Ricci
curvature bounds in the sense of the synthetic definition of Lott, Sturm and Villani
in precisely the same way as in the case of sectional curvature. In particular, we
obtain a result for cones over general metric measure spaces whose consequence is a
maximal diameter theorem.

Outline of the chapter. In the introduction we will briefly survey the steps that
lead to the current state of the art in the field of metric measure spaces with synthetic
Ricci curvature bounds, and we present the main results of the thesis.

We begin in Section 1.1 with the definition of Ricci curvature in a smooth context.
We explain how Gromov initiated the problem of defining synthetic Ricci curvature
bounds by his pre-compactness theorem for Riemannian manifolds with a uniform
lower Ricci curvature bound. After an excursion on metric spaces with curvature
bounded from below in the sense of Alexandrov, we recall the theory on Ricci limit
spaces that was developed by Cheeger and Colding. In Section 1.2 we describe how
optimal transport solves the problem of defining Ricci curvature bounds in a singular
framework. In Section 1.3 we explain the relevance of warped products and cones for
curvature bounds and we state the main results of the thesis, namely Theorem A,
Theorem B and Theorem C. Finally, in Section 1.4 we recall the maximal diameter
theorem from smooth Riemannian geometry and its version for Ricci limit spaces.
Moreover, we state a general maximal diameter theorem for metric measure spaces
that contains the previous ones as special cases.
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1.1 Ricci curvature in Riemannian geometry

1.1 Ricci curvature in Riemannian geometry

In Riemannian geometry Ricci curvature means the information that is encoded by
the so-called Ricci tensor (named after the Italian mathematician Gregorio Ricci-
Curbastro). That is a symmetric 2-tensor field that arises as trace of the Riemannian
curvature tensor of a Riemannian manifold M . More precisely, the Ricci curvature
in direction of a tangent vector is the mean of the Gauß curvature of all planes in
the tangent space, which are perpendicular to each other and intersect at this vector.
Lower bounds for the Ricci tensor play a crucial role in numerous classical and modern
theorems of Riemannian differential geometry. Let us mention a few results focusing
on geometric aspects where M is a d-dimensional Riemannian manifold. They will
be motivation and background for the thesis.

- The Bonnet-Myers diameter estimate.

ricM ≥ d− 1 =⇒ diamM ≤ π.

- The Cheeger-Gromoll splitting principle [27]. If ricM ≥ 0 and M contains
an infinite geodesic line, then it is isometric to a Cartesian product of the
form R ×M ′ where M ′ is another Riemannian manifold of non-negative Ricci
curvature.

- The Bishop-Gromov volume growth estimate [42, Lemma 5.3.bis].

ricM ≥ K(d− 1) =⇒ volM(BR(x))

volSdK
(BR(o))

≤ volM(Br(x))

volSdK
(Br(o))

for 0 < r < R

where SdK is the model space of constant curvature K.

The Bishop-Gromov comparison was actually established by M. Gromov based on
a previous volume growth result by R. Bishop (see Section III.3 in [21]). Its conse-
quences are far-reaching. Indeed, Gromov’s original intention was not the inequality
itself but he wanted to apply a pre-compactness result that was proved earlier by him-
self for families of metric measure spaces [42, Proposition 5.2]. More precisely, the
Bishop-Gromov comparison implies that a family of Riemannian manifolds, which
admit a uniform lower bound for the Ricci curvature, a uniform upper bound for
the diameter and a uniform upper bound for the dimension, is a uniformly totally
bounded class of metric spaces and therefore pre-compact with respect to Gromov-
Hausdorff convergence (see Theorem 7.4.15 in [18]).

Now, the following questions seem natural. If we consider a Cauchy sequence in
this context, what is the limit space and which properties does it have? The Gromov-
Hausdorff distance is a complete metric on the space of compact metric spaces. Hence,
within this class we will find a limit. But one will realize immediately that limits of
Riemannian manifolds in Gromov-Hausdorff sense will not be manifolds anymore but
rather singular length metric spaces.
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1 Introduction

The program of understanding the Ricci limit spaces has been performed by J.
Cheeger and T. Colding in a series of articles [23, 24, 25, 26]. They were able to es-
tablish many fine and global properties for Ricci limit spaces, e.g. almost everywhere
existence of unique tangent cones, a splitting theorem and estimates on the Hausdorff
dimension of singularities. The techniques they use are very sophisticated and based
on a deep understanding of the Riemannian geometry of the converging sequence.
For example, the splitting theorem in this context has to be stated as an almost split-
ting theorem, which is a quantitative version of the original result by Cheeger and
Gromoll. In this way, they were able to deduce a complete picture of the geometry
of Ricci limit spaces that has been further accomplished by recent contributions of
T. Colding, A. Naber and S. Honda [29, 30, 46].

So why bothering about these limits? From the viewpoint of Riemannian geometry
the main motivation is the following. Sequences of Riemannian manifolds and their
limits arise quite often in proofs. Hence, if we have a priori information on limit
spaces, we can exclude certain events and accomplish the proof by a contradiction
argument. A good example for this type of technique and the use of the work of
Cheeger and Colding is the proof of the generalized Margulis Lemma by V. Kapovitch
and B. Wilking [48]. Nevertheless, Cheeger and Colding’s approach cannot explain
in which sense the limit space itself has bounded Ricci curvature. Since limits are
usually singular, there is no chance to establish a curvature tensor in the sense of a
smooth Riemannian manifold. This viewpoint is even more interesting in light of the
previous motivation. We would like to study limit spaces as objects on their own and
not by their approximation.

On the other hand, giving an intrinsic notion of Ricci curvature bounds becomes
even more compulsive if we consider the precompactness result as generalization of
the following phenomena. Imagine a smooth function f : [a, b] → R. Convexity of f
can be expressed either as non-negativity of its second derivative, or by saying that a
line that connects two points on its graph always lies above the graph. It is clear that
the former only makes sense for smooth functions while the latter is stable under uni-
form convergence whose limits are in general not smooth. This type of stability also
appears in the context of lower bounded sectional curvature. The definition of sec-
tional curvature involves derivatives of the Riemannian metric up to second order. It
is more restrictive than Ricci curvature but a generalization to a metric space frame-
work is provided by A. D. Alexandrov’s comparison principle. Roughly speaking, the
idea goes as follows. By Topogonov’s theorem lower (and upper) bounded sectional
curvature for a smooth Riemannian manifold is equivalent to the metric statement
that triangles are thicker (respectively thinner) than appropriate comparison trian-
gles in a model space of constant curvature. Now, this property makes no use of the
differential structure and can be generalized to any length space. Even more, it turns
out that this definition is again stable under Gromov-Hausdorff convergence [19, 18]
that is a kind of C0-convergence in the space of metric spaces. Finite dimensional
Alexandrov spaces admit very nice local and global properties and in some sense they
are almost Riemannian.

3



1.2 Synthetic Ricci curvature bounds by optimal transport

Hence, the question is wether there is a synthetic notion of generalized lower Ricci
curvature that is stable under Gromov-Hausdorff convergence. It was finally answered
by optimal transportation theory.

1.2 Synthetic Ricci curvature bounds by optimal
transport

The origin of optimal transportation is a problem that was posed by G. Monge in
1781. Imagine a certain good that has to be transported from one location to another
one given a cost function that measures the transportation cost per unit from one
point in the origin to another point in the destination. What is the optimal strategy
that minimizes the total transportation cost? A rigorous mathematical formulation
would be as follows. Given two probability measures µ and ν on measurable spaces
X and Y respectively and a measurable cost function c : X × Y → R one is looking
for a measurable map T : X → Y such that T∗µ = ν and the total cost∫

X
c(x, T (x))dµ(x)

is minimized with respect to any map that pushes µ to ν. Although easy to formulate,
this problem turned out to be rather tough. In particular, one should not expect to
find a map as one can see from the most simple configuration µ = δx and ν = 1

2(δy+δz)
for any triple of points y 6= z. The problem was unsolved until L. Kantorovitch gave
a reasonable reformulation in terms of couplings in the 40s of the last century [47].
Instead of looking for an optimal map one allows the measure µ to split. Then, the
problem’s reformulation is: Find a probability measure π on X × Y with marginals
µ and ν such that ∫

X×Y
c(x, y)dπ(x, y)

is minimized with respect to any coupling between µ and ν. Under lower semi conti-
nuity of the cost function c the so-called Monge-Kantorovitch problem can be solved
by an application of Prohorov’s theorem.

Starting from Kantorovitch’s work optimal transport turned out to be a very pow-
erful machinery spreading out in many fields of modern mathematics. From a ge-
ometer’s point of view the most striking contributions were made by Y. Brenier and
R. McCann. Let us consider a Riemannian manifold M and the Monge-Kantorovitch
problem where we set X = Y = M and c = 1

2 d2
M . McCann proved in [59] - based

on earlier work of Rachev-Rüschendorf [69], and Brenier [17] who treated the Eu-
clidean situation - that for pairs of absolutely continuous probability measures on M
one actually can find an optimal map that solves the Monge-Kantorovitch problem.
Moreover, any optimal map comes from the gradient of a c-concave function ϕ and
takes the form

p 7−→ T (p) = expp(−∇ϕp).
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1 Introduction

The notion of c-concavity is a special form of concavity particular adapted to the
cost function c (see Section 3.2). From this representation one also gets a dynamical
picture of optimal transport on Riemannian manifolds.

t 7→ (Tt)∗µ = exp(−t∇ϕ)∗µ,

describes a geodesic of probability measures with respect to the L2-Wasserstein dis-
tance dW . For any metric space (X,dX) this is a metric on the space of proba-
bility measures with finite second moment P2(X) and was already introduced by
Kantorovitch himself. It is defined by the square root of the minimal optimal cost
between probability measures with respect to d2

X . The representation of geodesics of
this metric by gradients of c-concave functions opened the door to a fully new view
on the geometry of Riemannian manifolds. One began to study its geometry in terms
of the L2-Wasserstein space (P2(X),dW ).

McCann’s second major contribution was the idea to study convexity properties
of functionals on the L2-Wasserstein space [58]. McCann called this displacement
convexity to emphasize that this is not convexity in the sense of functionals on the
linear vector space of probability measures. Later, Cordero-Erausquin, McCann and
Schmuckenschläger [31] proved that a Ricci curvature bound for M directly affects
the convexity of the Shannon entropy that is defined by

Ent(µ) =

∫
M

log ρ dµ if µ = ρ d volM

and +∞ otherwise. This connection was already suggested by Otto and Villani in [65].
Let us briefly describe the idea. Since a c-concave function ϕ is also semi-concave
in the classical sense, the optimal map between absolutely continuous probability
measures µ and ν is differentiable almost everywhere by results of Victor Bangert
[13], and a transformation formula holds: g(x) = detDT (x)f(T (x)) where g and f
are the densities with respect to volM of µ and ν, respectively. Jacobi field calculus
and the Ricci curvature bound for M yield an ordinary differential inequality for the
functional determinant detDTt(x) = yx(t)

log y′′x ≤ −
1

N
(log y′x)2 − κθ2 ≤ −κθ2. (1.2.1)

where N ≥ dimM , θ = dM(x, Tt(x)) and κ is the lower Ricci curvature bound for
M . From these two ingredients one can prove that the Shannon entropy is κ-convex.

This observation was very motivating. Shortly after the work of McCann and his
collaborators, Sturm and von Renesse were also able to prove the backward direction
in [82]. That is, κ-convexity of the Shannon entropy implies that the Ricci tensor
is bounded from below by κ. This characterization was used by Sturm in [78] and
independently by Lott and Villani in [56] to gave a purely synthetic notion of lower
Ricci curvature bounds for a metric measure space (X,dX ,mX). They define lower
bounded Ricci curvature by κ-convexity of the entropy on the L2-Wasserstein. We

5



1.2 Synthetic Ricci curvature bounds by optimal transport

can see that a reference measure is necessary to make sense of absolutely continuous
probability measures. Their approach turned out to be very successful. Not only sta-
bility under measured Gromov-Hausdorff convergence holds but also a tensorization
property, a globalization result and numerous functional inequalities.

Results on Ricci curvature bounds in Riemannian geometry typically involve the
dimension of the underlying space. But convexity of the Shannon entropy also allows
examples of infinite dimensional type like the real line equipped with the Gauß mea-
sure or the abstract Wiener space. For this reason Sturm suggested in [79] to use the
full information of inequality (1.2.1) reformulated as

(y
1
N
x )′′ ≤ − κ

N
θ2y

1
N
x (1.2.2)

for the definition of a curvature-dimension condition. One uses the concavity de-
scribed by (1.2.2) in its integrated form and the Rény entropy SN(µ) = −

∫
X ρ
− 1
N dµ

(if dµ = ρdmX +µS) to include also a dimension parameter N in the definition. The
rigorous formulation of the curvature-dimension condition CD(κ, N) and its reduced
cousin CD∗(κ, N) is given in Section 2.1 and we omit it at this point. Using the
curvature-dimension condition Sturm was able to deduce many geometric proper-
ties for the metric measure space in question. For example, a sharp Bonnet-Myers
estimate holds for CD(N − 1, N)-spaces [79].

However, Ricci curvature bounds in the sense of optimal transport cannot dis-
tinguish between Riemannian and non-Riemannian type spaces, e.g. any finite di-
mensional Banach space equipped with the standard Lebesgue measure satisfies a
curvature-dimension condition. In this context non-Riemannian means that the in-
duced Laplace-type operator is not linear. Hence, a splitting principle in the sense
of Cheeger and Gromoll cannot be true. This was unsatisfactory since the splitting
theorem is the model case for rigidity of Riemannian manifolds under lower Ricci
curvature bounds. Hence, for the purpose of being able to prove Riemannian-type
rigidity results a more restrictive condition was needed. This was done by Ambrosio,
Gigli and Savaré in [6]. Their approach makes the linearity of the Laplacian part of
the definition where they had to give a rigorous meaning to the objects in question in
the context of metric measure spaces. Their approach was inspired by previous work
of Cheeger [22]. Surprisingly, the Riemannian Ricci curvature bound RCD(κ,∞) is
again equivalent to another unified property, the so-called evolution variational in-
equality. Earlier, Ambrosio-Gigli-Savaré started a program where they identify the
evolution of the heat semigroup Pt associated to the Laplacian of a metric measure
space as gradient flow w.r.t. the Shannon entropy [4]. The EVI is formulated in
terms of this gradient flow

1

2

d

dt
d2
W (µ, Ptψ) +

κ
2

d2
W (µ, Ptψ) ≤ Ent(µ)− Ent(Ptψ) (1.2.3)

for any absolutely continuous probability measure ψdmX ∈ P2(X) and any probabil-
ity measure µ ∈ P2(X). Equation (1.2.3) gives also an alternative characterization of
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1 Introduction

gradient flows in a metric space framework and the really astonishing fact is that it
rules out any non-Riemannian space. Again, the EVI cannot capture the dimension
of the space but Erbar, Kuwada and Sturm gave a modified formulation of EVI in
[34] for curvature and dimension. One impressive implication of this approach is that
a Cheeger-Gromoll splitting principle holds recently proven by N. Gigli [37].

Another aspect of the EVI was that it provides a connection to curvature-dimension
bounds in the sense of Bakry and Emery. This is a synthetic formulation of Ricci
curvature in the setting of diffusion semigroups and Dirichlet forms. The starting
point is the Bochner formula

∆|∇u|2 ≥ 〈∇u,∇∆u〉+ κ|∇u|2 +
1

N
(∆u)2

that can be interpreted as a purely algebraic condition. This approach was introduced
by D. Bakry and M. Emery in the 80s of the last century and was also very successful
where one of the main contributors was M. Ledoux [53]. However, one depends on
a algebraic framework that is usually not available for metric measure spaces. By
the work of Erbar, Kuwada and Sturm [34] an equivalence between Ricci bounds
in the sense of optimal transport and a modified Bakry-Emery condition has been
established (the result has been announced independently by Ambrosio, Mondino and
Savaré). The former is also known as the Lagrangian picture of Ricci curvature that
focuses on the quantitative behavior of geodesics. The latter is the Eulerian picture
where one studies functions and their gradient vector fields. For a more detailed
explanation of these notions we refer to Chapter 14 of [80].

1.3 Cones and warped products over metric measure
spaces

The concept of warped product between metric spaces B and F is a generalization
of the well-known Cartesian product. The second factor F is perturbed by a non-
negative Lipschitz function f on the first factor B. This construction is quite standard
in Riemannian and metric geometry where warped products play the role of model
spaces that show up in numerous situations. The most prominent example is the
Euclidean cone with first factor [0,∞) and warping function f(r) = r. In this case
the metric is induced by the following semi-metric.

dConK ((s, x), (t, y)) =
√
s2 + t2 − 2st cos dF (x, y).

A special feature of warped products and Euclidean cones is that they behave quite
nicely under curvature bounds. In the setting of Alexandrov spaces it is standard
(e.g. [18]) that the Euclidean cone has curvature bounded from below (CBB) by 0 if
and only if the underlying metric space has CBB by 1. For general warped products
a similar result was proven by Alexander and Bishop in [2].

7



1.3 Cones and warped products over metric measure spaces

In this thesis we will establish analogous results for metric measure spaces with
Ricci curvature bounded from below in the sense of Lott, Sturm and Villani. In the
first part we will focus on the situation where the underlying spaces are smooth. More
precisely, we deduce a curvature-dimension bound for the warped product between
B, F and f where B is a Riemannian manifold, F is a weighted Riemann-Finsler
manifold and f a smooth function provided suitable conditions for the spaces and
the warping function f hold. This result is interesting because examples that mainly
inspired the definition of curvature-dimension in the sense of Lott, Sturm and Villani
come from Gromov- Hausdorff limits of Riemannian manifolds with a uniform lower
bound on the Ricci tensor. Hence, we obtain a new class of examples of metric
measure spaces with synthetic Ricci curvature bounds underlining the relevance of
the new approach. The main theorem that we will prove in Chapter 3 is

Theorem A. Let B be a complete, d-dimensional space with CBB by K such that
B\∂B is a Riemannian manifold. Let f : B → R≥0 be FK-concave and smooth
on B\∂B. Assume ∂B ⊆ f−1({0}). Let (F,mF ) be a weighted, complete Finsler
manifold. Let N ≥ 1 and KF ∈ R. If N = 1 and KF > 0, we assume that diamF ≤
π/
√
KF . In any case F satisfies CD((N − 1)KF , N) such that

1. If ∂B = ∅, suppose KF ≥ Kf2.

2. If ∂B 6= ∅, suppose KF ≥ 0 and |∇f |p ≤
√
KF for all p ∈ ∂B.

Then the N -warped product B ×Nf F satisfies CD((N + d− 1)K,N + d).

The N -warped product is a generalization of the corresponding concept for metric
spaces that also involves a suitable reference measure. The precise definition is given
in Section 2.2.

In the second part of this thesis, which begins with Chapter 4 we will consider
warped products over metric measure spaces. The general framework requires differ-
ent techniques. The solution is to apply the characterization result of Erbar, Kuwada
and Sturm but the prize we pay is that we can prove results only in the framework
of Riemannian Ricci curvature bounds. The main results only deal with so-called
(K,N)-cones but we conjecture that Theorem A is also true in this context. In the
second part we prove the following two theorems.

Theorem B. Let (F,dF ,mF ) be a metric measure space that satisfies RCD∗(N −
1, N) for N ≥ 1 and diamF ≤ π. Let K ≥ 0. Then the (K,N)-cone ConN,K(F )
satisfies RCD∗(KN,N + 1).

Theorem C. Let (F,dF ,mF ) be a metric measure space. Suppose the (K,N)-cone
ConN,K(F ) over F satisfies RCD∗(KN,N + 1) for K ∈ R and N ≥ 0. Then

(1) if N ≥ 1, F satisfies RCD∗(N − 1, N) and diamF ≤ π,

(2) if N ∈ [0, 1), F is a point, or N = 0 and F consists of exactly two points with
distance π.

8



1 Introduction

1.4 The maximal diameter theorem

The most basic geometric property of metric measure spaces satisfying positive Ricci
curvature bounds is the Bonnet-Myers estimate. If the space satisfies RCD∗(N −
1, N), the diameter is bounded by π. But what happens when the bound is attained?
What are the extremal spaces in the Bonnet-Myers estimate?

In the context of Riemannian manifolds such a maximal diameter theorem was
proven by Cheng in [28] and it provides a rather strong rigidity result. It states that
an n-dimensional Riemannian manifold, that has Ricci curvature bounded from below
by n− 1 and attains the maximal diameter π, is the standard sphere Sn. However, a
result of Anderson [9] shows that already small perturbations of the diameter destroy
this rigidity. Namely, for any even dimension n ≥ 4 and any ε > 0 one can find a
Riemannian manifold Mε that satisfies a Ricci bound of n − 1 and contains points
x, y ∈ Mε with dMε(x, y) = π − ε = diamMε but Mε is not even homeomorph to a
sphere for any ε > 0. This is in contrast to the situation of Riemannian manifolds
with sectional curvature bounded from below by 1 where Cheng’s rigidity result holds
as well but perturbations of the metric do not affect the homeomorphism class of the
space as long as diamM > π

2 by a result of Grove and Shiohama [43].
Later, Cheeger and Colding studied this behavior in more detail and gave a refined

version of Anderson’s result in [23]. They prove that any n-dimensional Riemannian
manifold with lower Ricci curvature bound n − 1 and almost maximal diameter is
close in the Gromov-Hausdorff distance to a spherical suspension [0, π] ×sin Y over
some geodesic metric space Y . Especially, Cheeger and Colding obtain the following
maximal diameter theorem for Ricci limit spaces.

Theorem. Let (X,dX) be a Ricci limit space of a sequence of n-dimensional Rie-
mannian manifolds Mi with ricMi ≥ n − 1 and there are points x, y ∈ X such that
dX(x, y) = π, then there exists a length space (Y,dY ) with diamY ≤ π such that
[0, π]×sin Y = X.

Hence, in the case of positively curved Ricci limit spaces with maximal diameter one
does not get a sphere in general but a spherical suspension. One of the main results
of this thesis - obtained as a corollary of Theorem B, Theorem C and the recently
established Gigli-Cheeger-Gromoll splitting theorem in the context of RCD(0, N)-
spaces [37] - is a maximal diameter theorem for RCD∗-spaces.

Theorem D. Let (F,dF ,mF ) be a metric measure space such that RCD∗(N,N + 1)
holds for N ≥ 0. If N = 0, we assume that diamF ≤ π. Let x, y be points in F such
that dF (x, y) = π. Then, there exists a metric measure space (F ′,dF ′ ,mF ′) such that
(F,dF ,mF ) is isomorphic to [0, π]×Nsin F ′ and

(1) if N ≥ 1, (F ′, dF ′ ,mF ′) satisfies RCD∗(N − 1, N) and diamF ′ ≤ π,

(2) if N ∈ [0, 1), F ′ is a point, or N = 0 and F ′ consists of exactly two points with
distance π.

9



1.5 Outline of the thesis

In particular, our theorem includes the result of Cheeger and Colding and it also
provides a new proof of the maximal diameter theorem of Cheng since a spherical
n-cone, that is a (n+ 1)-dimensional Riemannian manifold, has necessarily to be the
standard sphere Sn+1.

1.5 Outline of the thesis

This thesis is divided into two parts. Chapter 2 and 3 constitute the first part,
and its main results have been published in [50]. In Chapter 2 we provide prelim-
inary material that is used in the thesis. For example, the Wasserstein space, the
curvature-dimension condition, the definition of warped products and an introduction
to Riemann-Finsler manifolds are presented. In Chapter 3 we prove Theorem A and
give some applications.

The second part of the thesis is Chapter 4 and 5. The results of this part are
submitted for publication and available in a different form in [49]. In Chapter 4 we
provide further preliminary material concerning first order calculus for metric measure
spaces. In particular, we present Dirichlet forms, Riemannian Ricci curvature bounds
and skew products. Finally, in Chapter 5 we prove Theorem B, Theorem C and the
maximal diameter theorem.

10



2 Preliminaries, part 1

Outline of the chapter. This Chapter provides definitions and results that will
be constantly used in this thesis.

In Section 2.1 we introduce elementary notions from the theory of metric measure
spaces and Wasserstein geometry, which become the framework for the definition
of synthetic Ricci curvature bounds in the sense of Lott, Sturm and Villani. In
Section 2.2 we give the definition of warped products between metric measure spaces
and as a special case we introduce so-called (K,N)-cones. We give an overview on
results established by Bishop and Alexander in the context of Alexandrov spaces.
Finally, in Section 2.3 we focus on the smooth situation. We briefly repeat the
definition of weighted Riemann-Finsler manifolds, their elementary properties and
the warped product construction in this setting. We also give the definition of the
N -Ricci tensor. The content of Section 2.3 will only be used in Chapter 3.

2.1 Ricci curvature bounds in the sense of optimal
transport

Starting point of the thesis is the following definition of metric measure spaces.

Definition 2.1.1 (Metric measure space). Let (X,dX) be a complete and separable
metric space, and let mX be a locally finite Borel measure on (X,OX) with full sup-
port. That is, for all x ∈ X and all sufficiently small r > 0 the volume mX(Br(x)) of
balls centered at x is positive and finite. A triple (X,dX ,mX) will be called metric
measure space.

OX denotes the topology of open sets with respect to dX . OX generates the corre-
sponding Borel σ-algebra.

Length spaces. The length of a continuous curve γ : [a, b] ⊂ R→ X is defined as

L(γ) := sup
T

n−1∑
i=0

dX(γ(ti), γ(ti+1)).

The supremum is taken with respect to {(ti)ni=0} =: T ⊂ [a, b] with a = t0 < · · · <
tn = b. A curve γ is said to be rectifiable if L(γ) <∞ and the length of a rectifiable
curve is independent of reparametrizations. Any rectifiable curve admits a natural
parametrization. More precisely, there is a monotone continuous map ϕ that maps

11



2.1 Ricci curvature bounds in the sense of optimal transport

[a, b] onto [0,L(γ)] such that γ = γ̃◦ϕ where γ̃ : [0,L(γ)]→ X satisfies L(γ̃|[s,t]) = t−s
[18, Proposition 2.5.9]. The metric speed of a curve γ is defined as

|γ̇(t)| = lim
h→0

dX(γ(t), γ(t+ h))

h

if the limit exists. If γ is absolutely continuous, then one can prove [18, Theorem
2.7.6] that its metric speed exists almost everywhere and

L(γ) =

∫ b

a
|γ̇(t)|dt. (2.1.1)

The statement of Theorem 2.7.6 in [18] is for Lipschitz curves, but one can see that
the proof also works if the curve is just absolutely continuous. For a complete picture
on this subject we refer to [18].

(X,dX) is called length space if dX(x, y) = inf L(γ) for all x, y ∈ X, where the infimum
runs over all absolutely continuous curves γ in X connecting x and y. (X,dX) is
called geodesic space if every two points x, y ∈ X are connected by a curve γ such that
dX(x, y) = L(γ). Distance minimizing curves of constant speed are called geodesics. A
length space, which is complete and locally compact, is a geodesic space ([18, Theorem
2.5.23 ]). (X,dX) is called non-branching if for every quadruple (z, x0, x1, x2) of points
in X for which z is a midpoint of x0 and x1 as well as of x0 and x2, it follows that
x1 = x2.

Wasserstein geometry. P2(X,dX) = P2(X) denotes the L2-Wasserstein space of
probability measures µ on (X,OX) with finite second moments, which means that∫
X d2

X(x0, x)dµ(x) < ∞ for some (hence all) x0 ∈ X. The L2-Wasserstein distance
dW (µ0, µ1) between two probability measures µ0, µ1 ∈ P2(X,dX) is defined as

dW (µ0, µ1) =

√
inf
π

∫
X×X

d2
X(x, y) dπ(x, y). (2.1.2)

Here the infimum ranges over all couplings of µ0 and µ1, i.e. over all probability
measures onX×X with marginals µ0 and µ1. (P2(X,dX), dW ) is a complete separable
metric space. The subspace of mX-absolutely continuous measures is denoted by
P2(X,dX ,mX).

A minimizer of (2.1.2) always exists and is called optimal coupling between µ0 and
µ1. A subset Γ ⊂ X×X is called d2

X-cyclically monotone if and only if for any k ∈ N
and for any family (x1, y1), . . . , (xk, yk) of points in Γ the inequality

k∑
i=1

d2
X(xi, yi) ≤

k∑
i=1

d2
X(xi, yi+1)

holds with the convention yk+1 = y1. Given probability measures µ0, µ1 on X, there
exists a d2

X-cyclically monotone subset Γ ⊂ X ×X that contains the support of any

12



2 Preliminaries, part 1

optimal coupling.

A probability measure Π on Γ(X) - the set of geodesics in X - is called dynamical
optimal transference plan if and only if the probability measure (e0, e1)∗Π on X ×X
is an optimal coupling of the probability measures (e0)∗Π and (e1)∗Π on X. Here
and in the sequel et : Γ(X) → X for t ∈ [0, 1] denotes the evaluation map γ 7→ γt.
An absolutely continuous curve µt in P2(X,dX ,mX) is a geodesic if and only if there
is a dynamical optimal transference plan Π such that (et)∗Π = µt.

Definition 2.1.2 (Reduced curvature-dimension condition, [10]). Let (X,dX ,mX)
be a metric measure space. It satisfies the condition CD∗(κ, N) for κ ∈ R and
N ∈ [1,∞) if for each pair µ0, µ1 ∈ P2(X,dX ,mX) there exists an optimal coupling
q of µ0 = ρ0 mX and µ1 = ρ1 mX and a geodesic µt = ρt mX in P2(X,dX ,mX)
connecting them such that∫

X
ρ
−1/N ′

t ρtdmX ≥
∫
X×X

[
σ

(1−t)
κ,N ′ (dX)ρ

−1/N ′

0 (x0) + σ
(t)
κ,N ′(dX)ρ

−1/N ′

1 (x1)
]
dq(x0, x1)

(2.1.3)
for all t ∈ (0, 1) and all N ′ ≥ N where dX := dX(x0, x1). In the case κ > 0, the

volume distortion coefficients σ
(t)
κ,N (·) for t ∈ (0, 1) are defined by

σ
(t)
κ,N (θ) =

sin
(√

κ/Nθt
)

sin
(√

κ/Nθ
)

if 0 ≤ θ <
√
N
κ π and by σ

(t)
κ,N (θ) =∞ if κθ2 ≥ Nπ2. If κθ2 = 0, one sets σ

(t)
0,N (θ) = t,

and in the case κ < 0 one has to replace sin(
√ κ

N
−) by sinh

(√
−κ
N
−
)
. In particular,

the space is connected.

Definition 2.1.3 (Curvature-dimension condition, [79]). Let (X,dX ,mX) be a metric
measure space. It satisfies the curvature-dimension condition CD(κ, N) for κ ∈ R
and N ∈ [1,∞) if we replace in Definition 2.1.2 the coefficients σ

(t)
κ,N (θ) by

τ
(t)
κ,N (θ) =


∞ if κθ2 > (N − 1)π2,

t1/N · σ(t)
κ,N−1(θ)1−1/N if κθ2 ≤ (N − 1)π2 & N > 1,

t if κθ2 ≤ 0 & N = 1.

By definition a single point satisfies CD(κ, N) for any κ > 0 and N = 1. This is the
original condition that was introduced by Sturm in [79].

Remark 2.1.4. If the metric measure space is a Riemannian manifold, the reduced
and non-reduced condition are equivalent and one conjectures that this should hold
also in a more general framework. It is clear that CD(0, N) = CD∗(0, N) and in any
case, there are the following implications

CD(κ, N) =⇒ CD∗(κ, N) for any κ ∈ R and N ≥ 1,

CD∗(κ, N) ⇐⇒ CDloc(κ, N) for any κ ∈ R and N > 1

13



2.1 Ricci curvature bounds in the sense of optimal transport

(see [10, 32]) where the definition of CDloc(κ, N) can be found for example in [79].
It turns out that the reduced curvature-dimension is more suitable for applications

because of the easier form of the coefficients σ
(t)
κ,N .

We point out the exceptional character of the case N = 1. In particular, there are
no metric measure spaces that satisfy CD(κ, 1) for κ > 0 except points.

Doubling property. A metric measure space (X,dX ,mX) that satisfies CD∗(κ, N)
for some κ ∈ R and N ≥ 1, satisfies a doubling property on each bounded subset
X ′ ⊂ supp m (see [79, 10]). More precisely, there exists a constant C > 0 such that
for each r > 0 and x ∈ X ′ with B2r(x) ⊂ X ′ we have

mX(B2r(x)) ≤ C mX(Br(x)) (2.1.4)

In particular each bounded closed subset is compact and (X,dX ,mX) is locally com-
pact. If κ ≥ 0 or N ≥ 1 the doubling constant can be chosen uniformily for the whole
space and is ≤ 2N . Then, we also say the metric measure space satisfies a doubling
property. The doubling estimate can be refined. That is, there is C > 0 and N ≥ 1
such that

mX(BR(x)) ≤ C
(
R

r

)N
mX(Br(x)) for any r < R and x ∈ X. (2.1.5)

Measure contraction property. If (X,dX ,mX) is non-branching then the re-
duced curvature-dimension condition CD∗(κ, N) implies the measure contraction
property MCP (κ, N) by a result of Cavalletti and Sturm [20] where κ ∈ R if N > 1
and κ = 0 if N = 1. There are two different definitions of the measure contraction
property by Ohta in [61] and by Sturm in [79]. The latter is more restrictive and
implies the former. In a non-branching situation the definitions coincide and it can
be stated as follows:

Definition 2.1.5 (Measure contraction property, [60, 79]). Let (X,dX ,mX) be a non-
branching metric measure space. Then it satisfies the measure contraction property
MCP (κ, N) if for any x ∈ X, for any measurable subset A ⊂ X with mX(A) < ∞
(and A ⊂ Bπ

√
(N−1)/κ(x) if κ > 0) and the unique L2-Wasserstein geodesic Π such

that δx = (e0)∗Π and mX(A)−1 mX = (e1)∗Π we have

dmX ≥ (et)∗

(
τ

(t)
κ,N (L(γ))N mX(A)dΠ(γ)

)
.

Again, by definition a single point satisfies MCP (κ, 1) for any κ > 0, and κ > 0 and
N = 1 can only appear in this case.

A corollary of the measure contraction property Ohta is the Bonnet-Myers Theorem.
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2 Preliminaries, part 1

Theorem 2.1.6 (Generalized Bonnet-Myers Theorem, [60]). Assume that a metric
measure space (X,dX ,mX) satisfies MCP (κ, N) for some κ > 0 and N > 1. Then
the diameter of (X,dX) is bounded by π

√
N−1
κ . Especially, a metric measure space that

is non-branching and satisfies the reduced curvature-dimension condition CD∗(κ, N)
for κ > 0 and N > 1 has bounded diameter by π

√
N−1
κ .

Remark 2.1.7. One can easily see that the generalized Bonnet-Myers Theorem is an
immediate consequence of the condition CD(κ, N) for κ > 0 and N > 1 even without
any non-branching assumption.

2.2 Warped products and cones

Let (B, dB) and (F,dF ) be length spaces that are complete and locally compact. Let
f : B → R≥0 be locally Lipschitz. Let us consider a continuous curve γ = (α, β) :
[a, b]→ B × F . We define the length of γ by

L(γ) := sup
T

n−1∑
i=0

(
dB(α(ti), α(ti+1))2 + f(α(ti+1))2 dF (β(ti), β(ti+1))2

) 1
2

where the supremum is taken with respect to {(ti)ni=0} =: T ⊂ [a, b] with a = t0 <
· · · < tn = b. We call a curve γ = (α, β) in B×F admissible if α and β are rectifiable
in B and F , respectively, and for admissible curves one can see that L(γ) <∞. If α
and β are absolutely continuous, then

L(γ) =

∫ 1

0

√
|α̇(t)|2 + (f ◦ α)2(t)|β̇(t)|2dt.

L is a length-structure on the class of admissible curves. For details see [18] and [1].
We can define a semi-distance between (p, x) and (q, y) by

inf L(γ) =: dC((p, x), (q, y)) ∈ [0,∞)

where the infimum ranges over all admissible curves γ that connect (p, x) and (q, y).

Definition 2.2.1. The warped product of metric spaces (B, dB) and (F,dF ) with
respect to a locally Lipschitz function f : B → R≥0 is given by

(C := B × F/∼,dC) =: B ×f F

where the equivalence relation ∼ is given by

(p, x) ∼ (q, y)⇐⇒ dC ((p, x), (q, y)) = 0

and the metric distance is dC ([(p, x)] , [(q, y)]) := dC ((p, x), (q, y)).
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2.2 Warped products and cones

Remark 2.2.2. One can see that

C = (B̊ ×f̊ F )∪̇f−1({0}) where B\f−1({0}) =: B̊ and f̊ = f |B̊.

We will often make use of the notation C̊ := B̊ ×f̊ F . B ×f F is a length space.
Completness and local compactness follow from the corresponding properties of B
and F . It follows that B×f F is geodesic. Especially for every pair of points we find
a geodesic between them.

The next two theorems by Alexander and Bishop describe the behavior of geodesics
in warped products.

Theorem 2.2.3 ([1, Theorem 3.1]). For a minimizer γ = (α, β) in B ×f F with
f > 0 we have

1. β is pregeodesic in F and has speed proportional to f−2 ◦ α. .

2. α is independent of F , except for the length of β.

3. If β is non-constant, γ has a parametrization proportional to arclength satisfying
the energy equation 1

2v
2 + 1

2f2 = E almost everywhere, where v is the speed of
α and E is constant.

Theorem 2.2.4 ([2, Theorem 7.3]). Let γ = (α, β) be a minimizer in B ×f F that
intersects f−1({0}) =: X.

1. If γ has an endpoint in X, then α is a minimizer in B.

2. β is constant on each determinate subinterval.

3. α is independent of F , except for the distance between the endpoint values of β.
The images of the other determinate subintervals are arbitrary.

Remark 2.2.5. A pregeodesic is a curve, whose length is distance minimizing but not
necessarily of constant speed. A determinate subinterval J of definition for β is an
interval, where f ◦ α does not vanish, e.g. t ∈ J if f ◦ α(t) > 0.

Definition 2.2.6. For a metric space (X,dX), the K-cone ConK(X) is a metric
space defined as follows:

� (IK ×X)/∼ where IK =

{
[0, π/

√
K] if K > 0

[0,∞) if K ≤ 0

and (s, x) ∼ (t, y) ⇔ (s, x) = (t, y) ∨ s = t ∈ ∂IK .

� For (x, s), (x′, t) ∈ (IK ×X)/(X×∂IK)

dConK ((x, s), (x′, t))

:=

{
cos−1

K (cosK(s) cosK(t) +K sinK(s) sinK(t) cos (d(x, x′) ∧ π))) if K 6= 0√
s2 + t2 − 2st cos (d(x, x′) ∧ π) if K = 0.
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2 Preliminaries, part 1

where sinK(t) = 1√
K

sin(
√
Kt) and cosK(t) = cos(

√
Kt) for K > 0 and sinK(t) =

1√
−K sinh(

√
−Kt) and cosK(t) = cosh(

√
−Kt) for K < 0.

The K-cone with respect to (X,dX) is a length (resp. geodesic) metric spaces if and
only if (X,dX) is a length (resp. geodesic) at distances less than π (see [18, Theorem
3.6.17] for K = 0).

Remark 2.2.7. If diamX ≤ π, the K-cone coincides with the warped product IK×sinK

X. This follows easily from Theorem 2.2.3 and from the fact that I̊K×sinK (0, π) equals
the open upper half plane of the 2-dimensional model space of constant curvature K
and we can express distances there in polar coordinates.

We have to introduce a reference measure on C, which reflects the warped product
construction. In general we define

Definition 2.2.8 (N-warped product). Let (B, dB,mB) and (F,dF ,mF ) be length
metric measure spaces. For N ∈ [0,∞), the N-warped product (C,dC ,mC) = B×Nf F
of B, F and f is a metric measure space defined as follows:

� C := B ×f F = (B × F/∼,dC)

� dmC(p, x) :=

{
fN (p)dmB(p)⊗ dmF (x) on C̊

0 on C\C̊.

In the setting of K-cones we can introduce a measure in the same way. We call the
resulting metric measure space a (K,N)-cone.

FK-concavity. f : B → R≥0 is said to be FK-concave if its restriction to every
unit-speed geodesic γ satisfies

f ◦ γ(t) ≥ σ(1−t)f ◦ γ(0) + σ(t)f ◦ γ(θ) for all t ∈ [0, θ]

where θ = L(γ). For the definition of σ(t) = σ
(t)
1,1(θ) see the remark directly after

Definition 2.1.3. This is equivalent to that f ◦ γ is a sub-solution of

u′′ = −Ku on (0, θ)

u(0) = f ◦ γ(0), u(θ) = f ◦ γ(θ).

Alexandrov spaces. We briefly present well-known results in the setting of Alexan-
drov spaces with curvature bounded from below (CBB). A nice introduction to
Alexandrov spaces can be found in [18]. Let B and F be finite-dimensional Alexan-
drov spaces with CBB by K and KF respectively. We assume that f is FK-concave
and

KF ≥ Kf2(p) and Dfp ≤
√
KF −Kf2(p) ∀p ∈ B. (2.2.1)
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2.2 Warped products and cones

Dfp is the modulus of the gradient of f at p in the sense of Alexandrov geometry
(see for example [68]). For FK-concave functions on finite dimensional Alexandrov
spaces Dfp is always well-defined and, if B is a Riemannian manifold, this notion
coincides with the usual one where Dfp can always be replaced by |∇fp|.

In [2] Alexander and Bishop prove the following result.

Proposition 2.2.9 ([2, Proposition 3.1]). For an FK-concave function f : B →
[0,∞) on some Alexandrov space B with CBB by K, the condition (2.2.1) is equivalent
to

1. If (f |∂B)−1(0) = ∅, suppose KF ≥ Kf2.

2. If (f |∂B)−1(0) 6= ∅, suppose KF ≥ 0 and Dfp ≤
√
KF for all p ∈ X.

Remark 2.2.10. In the proof of the previous proposition Alexander and Bishop es-
pecially deduce the following result. Let f be FK-concave and assume it is not
identical 0. Let B be as in Proposition 2.2.9. Then f is positive on non-boundary
points: f−1 ({0}) ⊂ ∂B. Especially (f |∂B)−1(0) = f−1(0).

Proposition 2.2.11 ([2, Proposition 7.2]). Let f : B → R≥0 and B as in the previous
proposition. Suppose X = f−1({0}) 6= ∅ and KF ≥ 0 and Dfp ≤

√
KF for all p ∈ X.

Then we have: Any minimizer in B×fF joining two points not in X, and intersecting
X, consists of two horizontal segments whose projections to F are π/

√
KF apart,

joined by a point in X.

The main theorem of Alexander and Bishop concerning warped products is:

Theorem 2.2.12 ([2, Theorem 1.2]). Let B and F be complete, finite-dimensional
spaces with CBB by K and KF respectively. Let f : B → R≥0 be an FK-concave,
locally Lipschitz function satisfying the boundary condition (†). Set X = f−1({0}) ⊂
∂B.

1. If X = ∅, suppose KF ≥ Kf2.

2. If X 6= ∅, suppose KF ≥ 0 and Dfp ≤
√
KF for all p ∈ X.

Then the warped product B ×f F has CBB by K.

(†) If B† is the result of gluing two copies of B on the closure of the set of boundary
points where f is nonvanishing, and f † : B† → R≥0 is the tautological extension of
f , then B† has CBB by K and f † is FK-concave.

If we assume that ∂B ⊂ f−1({0}), then (f |∂B)−1(0) = f−1({0}) = ∂B and the
boundary condition (†) does not play a role.
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2 Preliminaries, part 1

2.3 Riemann-Finsler Manifolds

In this section we investigate smooth metric measure spaces in more detail. More
precisely, this is the class of Riemann-Finsler manifolds equipped with a smooth
reference measure. We recall the definition.

Definition 2.3.1 (Riemann-Finsler manifolds). A Finsler structure on a C∞-manifold
M is a function FM : TM → [0,∞) satisfying the following conditions:

(1) (Regularity) FM is C∞ on TM\0M , where 0M : M → TM with 0M |p = 0 ∈
TMp denotes the zero section of TM .

(2) (Positive homogeneity) For any v ∈ TM and positive number λ > 0 we have
FM(λv) = λFM(v).

(3) (Strong convexity) Given local coordinates (xi, vi)ni=1 on π−1(U) ⊂ TM for
U ⊂M , then

(gi,j(v)) :=

(
1

2

∂2(F2
M)

∂vi∂vj
(v)

)
(2.3.1)

is positive-definite at every v ∈ π−1(U)\0.

We call (gi,j)1≤i,j≤n fundamental tensor and (M,FM) a Riemann-Finsler manifold.
(gi,j)i,j can be interpreted as Riemannian metric on the vector bundle⋃

v∈TM\0M

TMπ(v) → TM

that associates to every vp ∈ TMp again a copy of TMp itself. An important property
of the fundamental tensor for us is its invariance under vertical rescaling:

gi,j(v) = gi,j(λv) for every λ > 0.

The Finsler structure induces a distance that makes the Riemann-Finsler manifold
a metric space except for the symmetry of the distance. Because we only consider
symmetric metrics, we additionally assume

(4) (Symmetry) FM(v) = FM(−v).

The definition of Riemann-Finsler manifolds includes the class of Riemannian mani-
folds. If (M,FM) is purely Riemannian, we will write FM = gM .

Remark 2.3.2. Although we assume the Finsler structure FM to be C∞-smooth (what
we will call just smooth) outside the zero section, the lack of regularity at 0M is worse
than one would expect. Namely F2

M is C2 on TM if and only if FM is Riemannian.
Otherwise we only get a regularity of order C1+α for some 0 < α < 1. (For the
statement that we have C2 if and only if we are in a smooth Riemannian setting,
see Proposition 11.3.3 in [73].) This fact has important consequences for warped
products in the setting of Riemann-Finsler manifolds.
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A weighted Riemann-Finsler manifold is a triple (M,FM ,mM) where (M,FM) is a
Riemann-Finsler manifold and mM is a positive Radon measure. In this context
the measure mM is assumed to be smooth. That means, if we consider M in local
coordinates, the measure mM is absolutely continuous with respect to Ln and the
density is a smooth and positive function. We remark that there is no canonical
volume for Riemann-Finsler manifolds like in the purely Riemannian case. In the
Riemannian case we are always able to write dmM = e−Ψ(x)d volM(x) for some smooth
function Ψ : M → R. We also use the notation (M,mM) = (M,Ψ).

Definition 2.3.3 (N -Ricci curvature). Given a complete n-dimensional Riemannian
manifold M equipped with its Riemannian distance dM and weighted with a smooth
measure dmM (x) = e−Ψ(x)d volM (x) for some smooth function Ψ : M → R. Then
for each real number N > n the N -Ricci tensor is defined as

ricN,mM (v) := ricN,Ψ(v) := ric(v) +∇2Ψ(v)− 1

N − n
∇Ψ⊗∇Ψ(v)

= ric(v)− (N − n)
∇2e−Ψ

1
N−n

(v)

e−Ψ
1

N−n (p)

where v ∈ TMp. For N = n we define

ricN,Ψ(v) :=

{
ric(v) +∇2Ψ(v) ∇Ψ(v) = 0

−∞ else.

For 1 ≤ N < n we define ricN,Ψ(v) := −∞ for all v 6= 0 and 0 otherwise.

We switch again to the setting of weighted Riemann-Finsler manifolds (M,FM ,mM ).
Ohta introduced in [62] the N -Ricci tensor for a weighted Riemann-Finsler manifold
that we define now. For v ∈ TMp choose a vector field V on a neighborhood U 3 p
such that v = Vp and every integral curve of V is a geodesic. That is always possible
and we call such a vector field a geodesic vector field. Because of the strong convexity
property of FM the vector field V induces a Riemannian structure on U by

gVp :=
n∑

i,j=1

(gi,j)(Vp)dx
i
p ⊗ dxjp for all p ∈ U.

and we have the following representation dmM = e−ΨV d volgV on U for some smooth
function ΨV . Then for N ≥ 1 the N -Ricci tensor at v is defined as

ricN,mM (v) := ricN,ΨV (v).

The benefit of this definition is the following result.

Theorem 2.3.4 ([79], [62]). A weighted complete Riemann-Finsler manifold without
boundary (M,FM ,mM) satisfies the condition CD(κ, N) if and only if

ricN,mM (v, v) ≥ κF2
M(v) for all v ∈ TM .
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2 Preliminaries, part 1

Warped products over Riemann-Finsler manifolds. Let B and F metric mea-
sure spaces and let f be a locally Lipschitz function. We assume that B̊ and F are
Riemannian manifolds with dimension d and n respectively and f̊ = f |B̊ is smooth.
The Riemannian warped product with respect to f̊ is defined in the following way:

C̊ := B̊ ×f̊ F := (B̊ × F, g)

where the Riemannian metric g is given by

g := (πB)∗gB + (f ◦ πB)2(πF )∗gF .

gB and gF are the Riemannian metrics of B̊ and F respectively. The length of a
Lipschitz-continuous curve γ = (α, β) in C̊ with respect to the metric g is given by

L(γ) =

∫ 1

0

√
gB(α̇(t), α̇(t)) + f2 ◦ α(t)gF (β̇(t), β̇(t))dt

So the Riemannian distance on C̊ is defined by |(p, x), (q, y)| = inf L(γ) where the
infimum is with respect to all Lipschitz curves that are joining (p, x) and (q, y) in C̊.
It is easy to see that the Riemannian warped product C̊ as metric space embeds in
the metric space warped product C and the metrics coincide on C\f−1({0}).
Now we define warped products between Riemann-Finsler manifolds (B,FB) and
(F,FF ) with respect to a smooth function f : B → [0,∞) and exactly like in the
Riemannian case we can define a warped product Finsler structure explicitly on B̊×F
by

FB×fF :=
√
F2
B̊
◦ (πB)∗ + (f ◦ πB)2F2

F ◦ (πF )∗.

The notion of warped product for Riemann-Finsler manifolds is already known and
studied by several authors (for example see [52]). By Remark 2.3.2 it is clear that
FB×fF is no Finsler structure on B̊ × F in the sense of our definition. It cannot be

smooth on TB̊ × 0F unless F is Riemannian and analogously it cannot be smooth
on 0B × TF unless B is Riemannian. Especially it is only possible to define the
fundamental tensor where FB×fF is smooth. We can also consider the warped prod-
uct between Riemann-Finsler manifolds as metric spaces that we introduced before.
Again the two definitions provide the same notion of length and therefore they pro-
duce the same complete metric space, that we call again B ×f F = C.

To obtain a metric measure space we introduce again a suitable measure that is pre-
cisely the one of Definition 2.2.8. In the purely Riemannian setting this yields the
following simplifications. We have dmB = e−Ψ1d volB and dmB = e−Ψ2d volB . The
Riemannian volume of C̊ is

d volC̊ = fnd volB̊ d volF

For N ∈ [1,∞) we have

dmC̊ = fNe−(Ψ1+Ψ2)d volB̊ d volF = fN−ne−(Ψ1+Ψ2)d volC̊ .
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2.3 Riemann-Finsler Manifolds

We define a function Φ on B̊ as follows

e−Φ(p) = fN−n(p) =⇒ Φ(p) = −(N − n) log f(p).

So the measure mC̊ has the density e−(Φ+Ψ1+Ψ2) with respect to d volC .

Remark 2.3.5. It will turn out that curvature bounds for B in the sense of Alexan-
drov are essential in our proof of Theorem A where we show a curvature-dimension
condition for B ×Nf F . But a non-Riemannian Riemann-Finsler manifold will not
satisfy such a bound. So it is convenient to assume that at least (B,FB) is purely
Riemannian with F2

B = gB. In this case the fundamental tensor at v(p,x) where FB×fF
is smooth becomes

gi,j(v(p,x)) =


(gB)i,j(p) if 1 ≤ i, j ≤ d
1
2
f2(p)

∂2(F2
F )

∂vi−d∂vj−d
((πF )∗v(p,x)) if d+ 1 ≤ i, j ≤ d+ n

0 otherwise.
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3 Ricci curvature bounds for warped
products

Introduction. This chapter is devoted to the proof of the following theorem for
warped products over smooth metric measure spaces.

Theorem A. Let B be a complete, d-dimensional space with CBB by K such that
B\∂B is a Riemannian manifold. Let f : B → R≥0 be FK-concave and smooth
on B\∂B. Assume ∂B ⊆ f−1({0}). Let (F,mF ) be a weighted, complete Finsler
manifold. Let N ≥ 1 and KF ∈ R. If N = 1 and KF > 0, we assume that diamF ≤
π/
√
KF . In any case F satisfies CD((N − 1)KF , N) such that

1. If ∂B = ∅, suppose KF ≥ Kf2.

2. If ∂B 6= ∅, suppose KF ≥ 0 and |∇f |p ≤
√
KF for all p ∈ ∂B.

Then the N -warped product B ×Nf F satisfies CD((N + d− 1)K,N + d).

Why can we expect such a result? In the case of warped products between Riemannian
manifolds it is possible to calculate the Ricci tensor of B̊ ×f̊ F explicitly. Consider
ξ + v ∈ TC̊(p,x) = TBp ⊕ TFx. Then the formula is

ricC̊(ξ + v) = ricB(ξ)− n∇
2fp(ξ)

f(p)

+ ricF (v)−

(
∆f(p)

f(p)
+ (n− 1)

|∇f |2p
f2(p)

)
gC(v, v) (3.0.1)

and can be found in [64, chapter 7, 43 corollary]. We remark that gC(v, v) =
f2(p)gF (v, v). ∇2f denotes the Hessian of f , which can be defined as follows. For
v, w ∈ TMp we choose vector fields X and Y such that Xp = v and Yp = w. Then

∇2f(v, w) = XpY f − (∇XY )pf (3.0.2)

where ∇ denotes the Levi-Civita-connection of g. We set ∇2f(v) = ∇2f(v, v). Be-
cause of (3.0.2) we will always choose vector fields in the way we did above to do
calculation. The results will be independent of this choice. In the smooth setting
FK-concavity for a smooth f becomes ∇2f(v) ≤ −fK|v|2 for any v ∈ TB. Then, if
ricB ≥ (d− 1)K, f is FK-concave, and |∇f |2 +Kf2 ≤ KF everywhere in B, we get

ricF (v) ≥ (n− 1)KF |v|2 =⇒ ricB×fF (ξ + v) ≥ (n+ d− 1)K|ξ + v|2 (3.0.3)
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3.1 Ricci tensor of warped products over Riemann-Finsler manifolds

for every v ∈ TF and for every ξ + v ∈ TB ×f F = TB ⊕ TF , respectively.

But even in the smooth setting one problem still occurs. When we allow the func-
tion f to vanish - that will happen in most of the interesting cases - the metric tensor
degenerates and the warped product under consideration is no longer a manifold.
Especially, there is no notion for the Ricci tensor at singular points. One strategy
to solve this problem could be to cut the singularities and consider only what is left.
But in general that space neither will be complete nor strictly intrinsic.

But the warped product together with its distance function and its volume mea-
sure is still a complete length metric measure space where the curvature-dimension
condition in the sense of Lott, Sturm and Villani can be defined without problem.
Hence, we state our result in terms of that condition and use tools from optimal
transportation theory to circumvent the problem that comes from the singularities.
A first step in this direction was done by Bacher and Sturm in [11] where they show
that the Euclidean cone over some Riemannian manifold satisfies CD(0, N) if and
only if the underlying space satisfies CD(N − 1, N). Our main theorem is an analog
of this in the setting of warped products and Finsler manifolds.

One can see that the curvature bound that holds by (3.0.3) on the regular part
passes to the whole space provided the given assumptions are fulfilled. In general that
will not be true. For example consider N = 1 and the Euclidean cone over F = R.
Then (3.0.1) is still true where f does not degenerate, but the cone does not satisfy
any curvature-dimension condition (see [11]). The main part of the proof is to show
that the set of singularity points does not affect the optimal transportation of mass
and therefore, does not affect any type of convexity of any entropy functional on the
L2-Wasserstein space.

Outline of the chapter. In Section 3.1 we prove the formula for the N -Ricci
tensor of warped products. We generalize formula 3.0.1 to weighted Riemann-Finsler
manifolds. In Section 3.2 we give a detailed analysis of optimal transport in warped
products where the first part also holds in a non-smooth framework. Finally, in
Section 3.3 we prove Theorem A and give some immediate corollaries and applications.

3.1 Ricci tensor of warped products over
Riemann-Finsler manifolds

Ricci tensor for Riemannian warped products. Proposition 3.1.1 is a gen-
eralization of formula (3.0.1) for N -warped products for all N ∈ [1,∞), where
B̊ = B\f−1(0) is Riemannian and (F,Ψ) is a weighted Riemannian manifold. We will
use the calculus for horizontal and vertical vector fields from [64]. For some vector
field X on B there is a unique horizontal lift Ṽ that is a vector field on C̊ such that
(πB)∗ Ṽ = V ◦π. Similar, there is unique vertical lift Ṽ for some vector field V on F .
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3 Ricci curvature bounds for warped products

We remind the reader on the following relations that come from straightforward
calculations or can be found in [64]. Consider vector fields X,Y on B̊ and V,W

on F and their horizontal and vertical lifts X̃, Ỹ , Ṽ , W̃ , respectively. ∇̃ denotes the
Levi-Civita-connection of B̊ ×f̊ F .

(1) ∇̃
X̃
Ỹ = ∇̃B̊XY ,

(2) ∇̃
X̃
Ṽ = ∇̃

Ṽ
X̃ = Xf

f ◦ πBṼ ,

(3) ∇̃
Ṽ
W̃ = −〈Ṽ ,W̃〉f ◦ πB∇̃f + ∇̃FVW .

Proposition 3.1.1. Let B̊ be a Riemannian manifold and (F,Ψ) be a weighted Rie-
mannian manifold. Let N ≥ 1 and f̊ : B̊ → (0,∞) is smooth. B̊ ×f F = C̊ is the as-

sociated N -warped product of B̊, (F,Ψ) and f̊ . Consider ξ+v ∈ TC̊(p,x) = TBp⊕TFx
and vector fields X and V with Xp = ξ and Vx = v and their horizontal and vertical

lifts X̃ and Ṽ on C̊. Then we have

ricN+d,Φ+Ψ
C̊

(ξ + v) = ricB̊(ξ)−N∇
2f(ξ)

f(p)

+ ricN,ΨF (v)−
(

∆f(p)

f(p)
+ (N − 1)

(∇fp)2

f2(p)

)
|Ṽ(p,x)|2.

Φ is given by e−Φ = fN−n. If the reference measure on F is the Riemannian volume
and if we identify ricN,1F with ricF , the previous formula reduces to

ricN+d,Φ+1
C̊

(ξ + v) = ricB̊(ξ)−N∇
2f(ξ)

f(p)

+ ricF (v)−
(

∆f(p)

f(p)
+ (N − 1)

(∇fp)2

f2(p)

)
|Ṽ(p,x)|2.

We recall that |Ṽ(p,x)|2 = f(p)|Vx|2.

Proof. First we assume N > n where n is the dimension of F . We can calculate
the (N + d)-Ricci tensor of the warped product explicitly by using formula (3.0.1).
Let us first prove the second formula in the proposition. That means the reference
measure on F is simply the Riemannian volume. We have to find espressions for the
first and second derivative of Φ : C̊ → R. We remind the reader of formula (3.0.2).
Set W̄ = X̃ + Ṽ .

∇2Φ(W̄ ) = ∇2Φ(X̃) +∇2Φ(Ṽ ) + 2∇2Φ(X̃, Ṽ )︸ ︷︷ ︸
=0

,
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3.1 Ricci tensor of warped products over Riemann-Finsler manifolds

where X̃ and Ṽ are lifts of vector fields X and V . We have

∇2Φ(X̃) = X̃X̃Φ− (∇
X̃
X̃)Φ = XXΦ− (∇XX)Φ = ∇2Φ(X)

= −(N − n)

(
X
(Xf
f

)
− ∇XXf

f

)
= −(N − n)

((
XXf · f −Xf ·Xf

) 1

f2
− ∇XXf

f

)

∇2Φ(Ṽ ) = Ṽ Ṽ Φ− (∇
Ṽ
Ṽ )Φ = −(N − n)

|∇f |2

f2
|Ṽ |2

1

N − n
(∇Φ⊗∇Φ)(W̄ ) =

1

N − n
(∇Φ⊗∇Φ)(X) = (N − n)

1

f2
(Xf ·Xf)

So the (N + d)-Ricci curvature becomes

ricN+d,Φ
C̊

(W̄ ) = ricC̊(W̄ )− (N − n)
1

f2
(Xf ·Xf)

− (N − n)

(
1

f2

(
XXf · f −Xf ·Xf

)
− ∇XXf

f
+
|∇f |2

f2
|Ṽ |2

)
= ricC̊(W̄ )− (N − n)

(
1

f2
XXf · f − ∇XXf

f
+
|∇f |2

f2
|Ṽ |2

)
= ricB̊(X)−N∇

2f(X)

f
+ ricF (V )−

(
∆f

f
+ (N − 1)

|∇f |2

f2

)
|Ṽ |2

Now we change the measure on F . There is a reference measure e−Ψd volF on F for
a function Ψ : F → R.

∇2Ψ(W̄ ) =∇2Ψ(X̃)︸ ︷︷ ︸
=0

+∇2Ψ(Ṽ ) + 2∇2Ψ(X̃, Ṽ )

∇2Ψ(Ṽ ) =Ṽ ṼΨ− (∇
Ṽ
Ṽ )Ψ

=V VΨ− (∇V V )Ψ + 〈∇f,∇Ψ〉 1
f
|V |2

=∇2Ψ(V, V ) + 〈∇f,∇Ψ〉 1
f
|V |2 = ∇2Ψ(V, V )

∇2Ψ(Ṽ , X̃) =Ṽ X̃Ψ− (∇
Ṽ
X̃)Ψ = − 1

f
X̃f · ṼΨ
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3 Ricci curvature bounds for warped products

(∇(Ψ + Φ))⊗ (∇(Ψ + Φ))(W̄ ) =(∇Ψ⊗∇Ψ)(Ṽ ) + (∇Φ⊗∇Φ)(W̄ )

− 2
N − n
f

X̃f · ṼΨ

The (N + d)−Ricci curvature becomes

ricN+d,Φ+Ψ
C̊

(W̄ ) = ricC̊(W̄ ) +∇2(Φ + Ψ)(W̄ )− 1

N − n
(
∇(Φ + Ψ)⊗∇(Φ + Ψ)(W̄ )

)
= ricC̊(W̄ ) +∇2Φ(W̄ )− 1

N − n
(∇Φ⊗∇Φ)(W̄ )

+∇2Ψ(W̄ )− 1

N − n

(
(∇Ψ⊗∇Ψ)(Ṽ )− 2

N − n
f

X̃f · ṼΨ

)
= ricN+d,Φ

C̊
(W̄ ) +∇2Ψ(W̄ )− 1

N − n
(∇Ψ⊗∇Ψ)(Ṽ ) + 2

1

f
X̃f · ṼΨ

= ricB̊(X)−N∇
2f(X)

f
+ ricF (V )−

(
∆f

f
+ (N − 1)

|∇f |2

f2

)
|Ṽ |2

+∇2Ψ(V, V )− 2
1

f
X̃f · ṼΨ

− 1

N − n
(∇Ψ⊗∇Ψ)(V ) + 2

1

f
X̃f · ṼΨ

= ricB̊(X)−N∇
2f(X)

f
+ ricN,ΨF (V )−

(
∆f

f
+ (N − 1)

|∇f |2

f2

)
|Ṽ |2

Now we consider the case N = n. ∇(Ψ + Φ)(ξ + v) 6= 0 for ξ + v ∈ TC(p,x), where
ξ ∈ TBp and v ∈ TFx, is equivalent to ∇Ψ(v) 6= 0 or ∇Φ(ξ) 6= 0. So by definition
the left hand side of our formula evaluated at (ξ, v) is = −∞ if and only if the right
hand side is = −∞.

If ∇(Ψ + Φ)(ξ + v) = 0, then choose again vector fields V and X with Vx = v and
Xp = ξ, repeat the above calculation for N > n and evaluate the formula at (ξ, v).
The terms with 1

N−n disappear. Let N → n and get the desired result.

If N < n then ricN+d,Ψ+Φ

C̃
= −∞ and ricN,ΨF = −∞ by definition.

Finsler Case. Now we treat the case of Finsler manifolds.

Proposition 3.1.2. Let (F,mF ) be a weighted Finsler manifold. N ≥ 1, f : B̊ →
(0,∞) and B̊ are as in the previous proposition. B̊ ×f F = C̊ is the associated
N -warped product. Then we have

ricN+d,mC

C̊
(ξ + v) = ricB̊(ξ)−N∇

2f(ξ)

f(p)

+ ricN,mF
F (v)−

(
∆f(p)

f(p)
+ (N − 1)

(∇fp)2

f2(p)

)
FC̊(v)2
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3.1 Ricci tensor of warped products over Riemann-Finsler manifolds

where ξ+v ∈ TC̊(p,x) with v 6= 0 (Especially the N+d-Ricci tensor of C̊ is well-defined
at ξ + v because FC̊ is smooth in this direction).

Proof. Choose ξ + v ∈ TC̊(p,x) such that FC̊(ξ + v) = 1 and with v 6= 0 and a

unit-speed geodesic γ = (α, β) : [−ε, ε] → C̊ with α̇(0) = ξ and β̇(0) = v. We set
γ(−ε) = (p0, x0) and γ(ε) = (p1, x1). We choose ε small such that L(γ) = 2ε is
sufficiently far away from the cut radius of the endpoints. Up to reparametrization β
is geodesic in F between x0 and x1 by Theorem 2.2.3. Let β̄ : [0,L]→ F be the unit-
speed reparametrization of β. That means there exists an s : [−ε, ε]→ [0, L] such that
β̄ ◦ s = β. L is the length of β. There exists t0 ∈ [0,L] such that β̄(t0) = β(0) = x.
We have

β̇(t) = s′(t) ˙̄β(s(t)) = FF (β̇(t)) ˙̄β(s(t)).

We extend this last observation to the flow of geodesic vector fields V̄ and W̄ .

V̄ = ∇ dF (x0, ·)

is a smooth geodesic vector field on some neighborhood U of x. We choose U small
enough such that x0, x1 /∈ U and it does not intersect with the cut locus of x0. Then,
if we restrict the image of β̄ to U , it is an integral curve of V̄ . We can define a
Riemannian metric gV̄ on U with respect to this geodesic vector field and then we
can represent the measure mF with a positive smooth density ΨV̄ with respect to
d volgV̄ . Additionally, we have

FF (λv) =

√
gV̄ (λv, λv) and ricN,mF (λv) = ricN,ΨV̄ (λv) for all λ > 0 (3.1.1)

Consider the vector field

W̄ = ∇ dC̊((p0, x0), ·)

restricted to (B̊ × U) ∩
{

(p, x) : (πF )∗(W̄(p,x)) 6= 0
}

= Ů , which is open, where πF is

the projection from C̊ to F . Every intergral curve of W̄ coincides in Ů with a unit-
speed geodesic from (p0, x0) to a point (p̄, x̄) ∈ Ů . And especially, as we mentioned
above, the projection to F of each such geodesic is a pre-geodesic that connects x0

and x̄ in F . Thus the vertical projections of integral curves of W̄ are integral curves
of V̄ after reparametrization. For an arbitrary integral curve γ = (α, β) of W̄ we do
the following explicit computation

(πF )∗(W̄γ(t)) = (πF )∗(γ̇(t))

= (πF )∗(α̇(t) + β̇(t)) = β̇(t)

= FF (β̇(t)) ˙̄β(s(t))

= FF (β̇(t))V̄β̄(s(t)) = FF (β̇(t))V̄β(t)

⇒ (πF )∗(W̄(r,p)) = FF ((πF )∗W̄(r,p))V̄p ∀(r, p) ∈ Ů
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3 Ricci curvature bounds for warped products

Thus FF ((πF )∗W̄ )−1W̄ =: W is πF -related to V̄ .

We remember that by definition

F2
C̊

:= F2
B̊
◦ (πB)∗ + (f ◦ π)2F2

F ◦ (πF )∗.

The Finslerian N -Ricci tensor with respect to dmC = dvolB̊ ⊗ fNdmF for vectors of
W̄ is the Riemannian N -Ricci tensor of gW̄ with respect to ΨW̄ . The components of
gW̄ are (gB)i,j(p) if 1 ≤ i, j ≤ d and

gW̄i,j |(p,x) =
1

2

∂2(F2
C̊

)

∂vi∂vj
(W̄(p,x))

=
1

2
f2(p)

∂2(F2
F )

∂vi-d∂vj-d
((πF )∗W̄(p,x))

=
1

2
f2(p)

∂2(F2
F )

∂vi-d∂vj-d
(FF ((πF )∗W̄(p,x))V̄x) = f2(p)gV̄i-d,j-d|x

if d + 1 ≤ i, j ≤ n + d. The last equality holds because the fundamental tensor is
homogenous of degree zero. But then gW̄ |(p,x) = (gB)|p+f2(p)(gV̄ )|x for all (p, x) ∈ Ů
and we can apply the formula (3.0.1), that especially holds at ξ + v. Together with
(3.1.1) this yields the desired formula for ξ + v. If FC̊(ξ + v) 6= 1, consider the
normalized vector, repeat everything and use (3.1.1) to get the same result.

3.2 Optimal Transport in warped products

The next theorem is not tied to the context of Finsler manifolds but a purely metric
space result.

Theorem 3.2.1. Let (B, dB) be a complete Alexandrov space with CBB by K and let
(F,dF ,mF ) be a metric measure space satisfying the ((N −1)KF , N)-MCP for N ≥ 1
and KF > 0 and diam(F ) ≤ π/

√
KF . Let f : B → R≥0 be some FK-concave function

such that X = ∂B = f−1({0}), X 6= ∅ and

Dfp ≤
√
KF for all p ∈ X.

Consider C = B ×f F . Let Π be an optimal dynamical transference plan in C such
that (e0)∗Π is absolutely continuous with respect to mC and sptΠ = Γ. Then the set

ΓX := {γ ∈ sptΠ : ∃t ∈ (0, 1) : γ(t) ∈ X}

has Π-measure 0.

Proof. For the proof we set dF (x, y) = |x, y| and dC((r, x), (s, y)) = |(r, x), (s, y)|. We
can assume that for all γ ∈ Γ there is a t ∈ (0, 1) such that γ(t) ∈ X and without
loss of generality KF = 1. We set µt = (et)∗Π and sptµt = Ωt. π = (e0, e1)∗Π is an
optimal plan between µ0 and µ1. We assume that Ω0 ∩X = ∅. For the proof we use
the following results of Ohta
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3.2 Optimal Transport in warped products

Theorem 3.2.2 ([60]). If a metric measure space (X,dX ,mX) satisfies the (κ, N)-
MCP for some κ > 0 and N > 1, then, for any x ∈ M , there exists at most one
point y ∈M such that dX(x, y) = π

√
(N − 1)/κ.

Lemma 3.2.3 ([61]). Let (X,dX ,mX) be a metric measure space satisfying the (κ, N)-
MCP for some κ > 0 and N > 1. If diamX = dX(p, q) =π

√
N−1
κ , then for every point

z ∈ X, we have dX(p, z) + dX(z, q) = dX(p, q). In particular, there exists a geodesic
from p to q passing through z.

We want to show that µ0 is actually concentrated on the graph of some map ϕ :
p1(Ω0) ⊂ B → F where p1 : B ×Nf F → B is the projection map. Then since the

measure µ0 is absolutely continuous with respect to the product measure fNdHdB ⊗
dmF , its total mass has to be zero by Fubinis’ theorem and the fact that mF contains
no atoms. We define ϕ as follows. Choose (p, x) ∈ Ω0 that is the starting point of
some transport geodesic γ = (α, β). If (p, x̃) ∈ Ω0, we show that x = x̃. So ϕ can be
defined by p 7→ x.

Let γ, γ̃ ∈ Γ be transport geodesics starting in (p, x) and (p, x̃), respectively. For
the moment we are only concerned with γ = (α, β). It connects (p, x) and (q, y), and
since it passes through X, by Proposition 2.2.11 it decomposes into γ|[0,τ) = (α0, x),
γ(τ) = s ∈ X and γ|(τ,1] = (α1, y) where x, y ∈ F such that |x, y| = π. We deduce
an estimate for |(p, x̃), (q, y)|. By Lemma 3.2.3 there exists a geodesic from x to y
passing through x̃. So by Theorem 2.2.3 it is enough to consider B ×f [0, π] instead
of C. We have x = 0 and y = π. (α0, x̃) is a minimizer between (p, x̃) and s and
especially |s, (p, x̃)| = |s, (p, x)|.

We will essentially use a tool introduced in the proof of Proposition 7.1 in [2]. There
the authors define a nonexpanding map Ψ from a section of the constant curvature
space S3

K into B ×f [0, π]. For completeness we repeat its construction: B is an
Alexandrov space, so the following is well-defined. CK(Σs) denotes the K-cone over
Σs where Σs denotes the space of directions of s in B. s is the point where γ intersects
∂B. So we can write down the gradient exponential map in s

exps : CK(Σs)→ B, (t, σ) 7→ cσ(t)

where cσ denotes the quasi-geodesic that corresponds to σ ∈ Σs. The gradient expo-
nential is a generalisation of the well-known exponential map in Riemannian geometry
and it is non-expanding and isometric along cone radii that correspond to minimizers
in B. Quasigeodesic were introduced by Alexandrov and studied in detail by Perel-
man and Petrunin in [67]. B̃ denotes the doubling of B, that is the gluing of two
copies of B along their boundaries. By a theorem of Perelman (see [66]) it is again
an Alexandrov space with the same curvature bound. For s the space of direction Σ̃s

in B̃ is simply the doubling of Σs.

We make the following observations. α0 ? s ? α1 has to be a geodesic in B̃ between
p and q where p and q lie in different copies of B, respectively. Otherwise there would
be a shorter curve α̃0 ? s̃ ? α̃1 that would also give a shorter path between (p, x) and
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3 Ricci curvature bounds for warped products

(q, y) in C. We denote by α+
1 and α−0 the right hand side and the left hand side

tangent vector at s, respectively. By reflection at ∂B we get another curve that is
again a geodesic. This curve results from α0 and α1 that were interpreted as curves
in the other copy of B, respectively. Two cases occur.

If α+
0 (t) 6= α−1 (t) in Σ̃s then we get two pairs of directions with angle π. The case

when α+
0 (t) = α−1 (t) will be discussed at the end. Now, in an analog way as one step

before, we see that Σ̃s is a spherical suspension with respect to each of these pairs
and that all 4 directions we consider lie on a geodesic loop c : [0, 2π]/{0∼2π} → Σ̃s of
length 2π. We set {v1, v2} = Imc ∩ ∂Σs. Because the second curve was obtained by
reflection, clearly we have |α+

0 , v1| = |α−0 , v1| and |α+
0 , v2| = |α−0 , v2| and analogously

for α+
1 and α−1 . So we see that there is an involutive isometry of Imc fixing {v1, v2}.

But then |v1, v2| has to be π. We use a parametrization by arclength such that
c(0) = v1 and c(π) = v2 and consider c|[0,π] = c : [0, π]→ Σs.

Now consider the space S2
K of dimension 2 in R3 and S2

K ∩ (R× R≥0 × R) =: S̊2
K .

We introduce polar coordinates

(
sinK(ϕ) cos(ϑ), sinK(ϕ) sin(ϑ), cosK(ϕ)

)
where ϑ ∈ [0, π] and ϕ ∈ IK :=

{
[0, π/

√
K] if K > 0

[0,∞) if K ≤ 0

and the K-cone map Ψ̃ : S̊2
K, → CK(Σs), Ψ̃(ϕ, ϑ) = (ϕ, c(ϑ)), which is an isometry

onto CK(Imc ∩ Σs).

We consider S̊2
K ×Φ [0, π] =: S̊3

K where Φ(ϕ, ϑ) = sin ◦d∂S̊2
K

(ϕ, ϑ) = sinK ϕ sinϑ

and ∂S̊2
K = {(ϕ, ϑ) : ϑ = 0 or = π} ' 1√

K
S1 and define the following map

Ψ = exps ◦Ψ̃× id[0,π] : S̊2
K ×Φ [0, π] = S̊3

K → B ×f [0, π].

From the proof of Proposition 7.1 in [2] we know that Ψ is still nonexpanding and
an isometry along cone radii that correspond to minimizers in B. The essential
ingredient is sinK(ϕ) ≤ f(α(ϕ)) for any geodesic α in B.

Exactly as in the case of K-cones one can see that the distance of S̊2
K ×Φ [0, π] is

explicetly given by

cosK |(ϕ0, ϑ0, x0), (ϕ1, ϑ1, x1)| = cosK ϕ0 cosK ϕ1

+K sinK ϕ0 cosϑ0 sinK ϕ1 cosϑ1

+K sinK ϕ0 sinϑ0 sinK ϕ1 sinϑ1 cos(x0 − x1).
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3.2 Optimal Transport in warped products

For K > 0 we deduce the desired estimate

cosK |(p, x̃), (q, y)| = cosK |Ψ((ϕ0, ϑ0, x̃)),Ψ((ϕ1, ϑ1, y))|
≥ cosK |(ϕ0, ϑ0, x̃)), (ϕ1, ϑ1, y)|
= cosK ϕ0 cosK ϕ1 +K sinK ϕ0 cosϑ0 sinK ϕ1 cosϑ1

+K sinK ϕ0 sinϑ0 sinK ϕ1 sinϑ1 cos(x̃− y)

≥ cosK ϕ0 cosK ϕ1

+K sinK ϕ0 sinK ϕ1(cosϑ0 cosϑ1 − sinϑ0 sinϑ1)

= cosK ϕ0 cosK ϕ1 +K sinK ϕ0 sinK ϕ1 cos(ϑ0 + ϑ1)

≥ cosK ϕ0 cosK ϕ1 −K sinK ϕ0 sinK ϕ1

= cosK(ϕ0 + ϕ1) = cosK(|s, (p, x̃)|+ |s, (q, y)|)
= cosK(|s, (p, x)|+ |s, (q, y)|) = cosK(|(p, x), (q, y)|) (3.2.1)

=⇒ |(p, x̃), (q, y)| ≤ |(p, x), (q, y)| (3.2.2)

with equality in the second inequality if and only if |y, x̃| = π. The case K ≤ 0
follows in the same way but we have to be aware of reversed inequalities and minus
signs that will appear. We get the same estimate for (p, x) and (q̃, ỹ). By optimality
of the plan we have

|(p, x̃), (q, y)|2 + |(p, x), (q̃, ỹ)|2 ≥ |(p, x), (q, y)|2 + |(p, x̃), (q̃, ỹ)|2 (3.2.3)

and from that we have equality in (3.2.1). So we get |x, ỹ| = π and |y, x̃| = π. But
by Ohta’s theorem antipodes are unique and thus we get y = ỹ and x = x̃.

The case when α+
0 (t) = α−1 (t) works as follows. The last identity implies w.l.o.g.

Imα1 ⊂ Imα0. We define a map from the K-cone into the warped product

Ψ̊ : IK ×sinK [0, π]→ B ×f [0, π] by (ϕ, x) 7→ (α0(ϕ), x).

Again Ψ̊ is nonexpanding. By following the lines of Bacher/Sturm in [11] we get the
same estimate as in (3.2.1).

Existence of optimal maps. We have already mentioned that the Finsler struc-
ture on C̊ is not smooth, or more precisely F2

C is C1 but not C2 at any v ∈ TB̊p⊕OF .
So we cannot apply the classical existence theorem for optimal maps. But the spe-
cial situation of warped products allows to prove the existence of optimal maps by
following the lines given in chapter 10 of [80]. There, the cost function comes from a
Lagrangian living on a Riemannian manifold. It is easy to see that the Riemannian
structure is not so important. Actually, the Lagrangian viewpoint fits perfectly well
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3 Ricci curvature bounds for warped products

to our setting if we consider L : TC̊ → R with L(v) = F2
C(v). The associated action

functional is

A(γ) =

∫ 1

0
F2
C(γ̇(t))dt

where γ : [0, 1] → C̊ is an absolutely continuous curve. Minimizers of this action
functional are just the constant speed geodesics of C̊. We have the following theorem.

Theorem 3.2.4. Given µ, ν ∈ P2(C̊) that are compactly supported and such that µ is
absolutely continuous with respect to mC. Take compact sets Y ⊃ supp ν and X = Ū
such that suppµ ⊂ U . Then there exists a 1

2d
2-concave function ϕ : X → R≥0 relative

to (X,Y ) such that the following holds: π = (IdC̊ , T )∗µ is a unique optimal coupling
of (µ, ν), where T : X → Y is a measurable map and defined µ-almost everywhere by
T ((p, x)) = γ(p,x)(1) where γ(p,x) is a constant-speed geodesic and uniquely determined
by −dϕ(p,x)(γ̇

(p,x)(0)) = F2(γ̇(p,x)(0)).

For completeness we give a self-contained presentation of the proof from [80] where
our discussion closely follows [59] and [62].

Proposition 3.2.5. For any (p, x) ∈ C̊ and any ξ + v ∈ TC̊(p,x) there is a unique
geodesic γ starting in (p, x) with initial tangent vector γ̇(0) = ξ + v.

Proof. If v = 0, γ(t) = (α(t), β(0)) is a geodesic in B and hence uniquely determined
by α̇(0). Otherwise we have F2

F (β̇)f4(α) = const =: c (see Theorem 2.2.3) and α is
determined by

∇α̇α̇ = −∇ c
2f2 |α

and α(0) and α̇(0). Together with the uniqueness property of geodesics in F , the
statement follows.

In this section c stands for the cost function c((p, x), (q, y)) = 1
2 dC((p, x), (q, y))2 =

1
2 inf A(γ) where the infimum is taken with respect to absolutely continuous curves
connecting (p, x) and (q, y). We need some background information on c-concave
functions where we also refer to [59].

Definition 3.2.6. Let X,Y ⊂ C̊ be compact. Given an arbitrary function ϕ : X →
R ∪ {−∞}, its c-transform ϕc : Y → R ∪ {−∞} relative to (X,Y ) is defined by

ϕc((q, y)) := inf
(p,x)∈X

{c((p, x), (q, y))− ϕ((p, x))} .

Similar we define the c-transform of a function ψ : Y → R∪{−∞} relative to (Y,X).
A function ϕ : X → R ∪ {−∞} is said to be c-concave relative to (X,Y ) if it is not
identical −∞ and if there is a function ψ : Y → R ∪ {∞} such that ψc = ϕ.

Lemma 3.2.7. If ϕ is c-concave relative to (X,Y ), then it is Lipschitz continuous
with respect to dC and the Lipschitz constant is bounded above by some constant
depending only on X and Y .
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3.2 Optimal Transport in warped products

Remark 3.2.8. Since a c-concave function is Lipschitz continuous, it is differentiable
almost everywhere. We also have that dϕ : C̊ → T ∗C̊ is measurable (see [59, Lemma
4]).

Definition 3.2.9. Let M be a manifold and f : M → R a function. A co-vector
α ∈ T ∗Mx is called subgradient of f at x if we have

f(σ(1)) ≥ f(σ(0)) + α(σ̇(0)) + o(F(σ̇(0))

for any geodesic σ : [0, 1]→M with σ(0) = x. The set of subgradients at x is denoted
by ∂∗−f(x). Analogously we can define the set ∂∗+f(x) of supergradients at x.

Remark 3.2.10. If f admits a sub- and supergradient at x, it is differentiable at x
and ∂∗−f(x) = ∂∗+f(x) = {dfx} ([80, Proposition 10.7]).

Proposition 3.2.11. Suppose γ : [0, 1] → C̊ is a constant speed geodesic joining
(p, x) and (q, y). Then f(·) = c(·, (q, y)) has supergradient −dvF2

C̊
|γ̇(0) ∈ T ∗C̊γ(0) at

(p, x) where

dvF2
γ̇(0)(w) =

d

dt
F2(γ̇(0) + tw) for w ∈ TC̊|γ(0)

Proof. Let (p̃, x̃) and (q̃, ỹ) are points that are very close to (p, x) and (q, y) such that
there are unique geodesics σ0, σ1 : [0, 1] → C̊ between (p, x) and (p̃, x̃) and between
(q, y) and (q̃, ỹ), respectively. Let γ̃ be an arbitrary curve that connects (p̃, x̃) and
(q̃, ỹ). Then we have by the formula of first variation∫ 1

0
F2
C( ˙̃γ(t))dt =

∫ 1

0
F2
C(γ̇(t))dt

+ dvF2
C |γ̇(1)(σ̇1(0))− dvF2

C |γ̇(0)(σ̇0(0)) + o
(

sup
t∈[0,1]

dC(γ(t), γ̃(t))
)
.

Hence we can proof for some γ̃ with (q̃, ỹ) = (q, y) that

c((p̃, x̃), (q, y)) ≤
∫ 1

0
F2
C( ˙̃γ(t))dt

≤ c((p, x), (q, y))− dvF2
C |γ̇(0)(σ̇0(0)) + o

(
dC((p, x), (p̃, x̃))

)
,

which means that c(·, (q, y)) has supergradient −dvF2
C |γ̇(0). For more details we refer

to [80, Proposition 10.15].

Lemma 3.2.12. Let X,Y ⊂ C̊ be two compact subsets and ϕ : X → R be a c-concave
function. If ϕ is differentiable in (p, x) ∈ X, and

c((p, x), (q, y)) = ϕ((p, x)) + ϕc((q, y)), (3.2.4)

then there is a geodesic γ = γ(p,x) between (p, x) and (q, y) satisfying −dϕ(p,x)(γ̇(0)) =
F2(γ̇(0)). The point (q, y) and the geodesic γ are uniquely determined by (p, x) and
ϕ.
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Proof. By definition of c-concave functions we have ≥ in (3.2.4) for any pair of points.
Now choose (p, x) and (q, y) such that (3.2.4) holds and ϕ is differentiable at (p, x).
Then we have for any (p̃, x̃)

ϕ((p̃, x̃))− ϕ((p, x)) ≤ c((p̃, x̃, (q, y))− c((p, x), (q, y))

Instead of the point (p̃, x̃) we insert a curve σ : (0, ε) → X (parametrized by ar-
clength). Then we deduce

dϕ(p,x)(σ̇) =
d

dε
ϕ ◦ σ|ε=0 ≤ lim inf

ε→0

c(σ(ε), (q, y))− c((p, x), (q, y))

ε

It follows that dϕ(p,x) is a subgradient of c(·, (q, y)) at (p, x). But by the previous
proposition c(·, (q, y)) has also a supergradient at (p, x). Thus it is differentiable at
(p, x) with

−dvF2
C̊
|γ̇(0) = dc(·, (q, y))(p,x) = dϕ(p,x) (3.2.5)

where γ is some geodesic that connects (p, x) and (q, y). Now we know that F2
C is

strictly convex in v and C1. Thus the co-vector dvF2
C̊
|γ̇(0) determines γ̇(0) uniquely

by dvF2
C̊
|γ̇(0)(w) = F2(w) and therefore γ by Proposition 3.2.5. So (3.2.5) and the

strict convexity of F2
C with respect to v determines y uniquely.

Remark 3.2.13. On TB̊ ⊕ TF\0F we have that γ̇(p,x) coincides with the gradient
of −ϕ at (p, x), that can be defined via Legendre transformation, and γ(p,x)(t) =
exp(−t∇ϕ(p,x)). On TB̊ ⊕ 0F it coincides with the gradient that comes from the

Riemannian structure on B. The map (p, x) 7→ γ̇(p,x) is measurable because ϕ is
Lipschitz (see Remark 3.2.8) and the transformation α ∈ T ∗C(x,p) 7→ α∗ ∈ TC(p,x)

is continuous, where α∗ is uniquely determined by α(α∗) = F2(α∗). Now one can
deduce that also (p, x) 7→ γ(p,x)(1) is measurable by considering the “exponential map”
separately on TB̊⊕TF\0F and TB̊⊕ 0F . In [80, Theorem 10.28] measurability of T
is deduced by applying a measurable selection theorem.

Proof of Theorem 3.2.4. Let π be an optimal transference plan. By Kantorovich du-
ality there exists a c-concave function ϕ such that ϕ((p, x))+ϕc((q, y)) ≤ c((p, x), (q, y))
everywhere on suppπ ⊂ X × Y , with equality π-almost surely. Since ϕ is differen-
tiable mC-almost surely and since µ is absolutely continuous with respect to mC , we
can define T by Lemma 3.2.12 mC-almost surely by T ((p, x)) = γ(p,x)(1) where γ(p,x)

is uniquely given by −dϕ(p,x)(γ̇(0)) = F2(γ̇(0)). Thus π is concentrated on the graph
of T , or equivalently π = (IdC̊ , T )∗µ. Now from [62, Lemma 4.9] we know that in our
setting −dϕ is unique among all maximizers (ϕ,ϕc) of Kantorovich duality as long
as the initial measure is absolutely continuous. So also T and π are unique.
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3.3 Proof of the main results and applications

Proof of Theorem A. Let ∂B 6= ∅. For non-constant f we have KF > 0. Otherwise,
the warped product is just the ordinary Euclidean product, K has to be nonpositiv
and the result is the tensorization property of the CD-condition (see [32]). In the case
of N > 1 the curvature-dimension condition for (F,dF ,mF ) implies ((N − 1)KF , N)-
MCP ([70]). If N = 1, then by assumption we have diamF ≤ π/

√
KF . So in any

case Theorem 3.2.1 yields that positive mass will never transported through the set
of singularity points X. So one could think to apply Theorem 2.3.4 to get the result
because on B̊ ×N

f̊
F the N -Ricci tensor is bounded in the correct way by Proposition

3.1.1 and our assumptions.

Two problems occur. First, the warped product without its singularity points is not
geodesically complete. But if we consider some displacement interpolation between
bounded and absolutely continuous measures in B̊ ×N

f̊
F then as we have seen the

transport geodesics do not intersectX. So by truncation we can find an ε-environment
of the singularity set such that the transport takes place in the complement of this
environment and the exceptional mass can be chosen arbitrarily small. Then in the
case where F is Riemannian the calculus that was introduced in [31] is available like
in the complete setting and one gets convexity of the Jacobian of the optimal map
along the transport geodesics, which yields to the curvature-dimension condition (see
also [11]). When ∂B = ∅ this step is redundant because no singularity points appear.

Second, if F is Finslerian, the warped product structure is not smooth on TB̊×OF .
So we cannot follow the lines of [62] as we did with [31] in the Riemannian case. But
we know, if γ = (α, β) is a geodesic in B̊ ×N

f̊
F then by Theorem 2.2.3 β is a pre-

geodesic. So either β is constant and α is a geodesic in B, or there exists a strictly
monotone reparametrization s such that β̄ = β ◦ s is a constant speed geodesic in
F . We use this fact to circumvent the problem that comes from the non-smoothness.
The idea is to split the initial measure of some optimal mass transportation in B̊×N

f̊
F

in two disjoint parts that will follow one of these two kinds of geodesics either. To do
so we need that a point (p, x) ∈ suppµ0 already determines the transport geodesic
that starts in (p, x) uniquely. But this follows from the existence of an optimal map.

So we proceed as follows. Let µ0 and µ1 be absolutely continuous probability mea-
sures in C̊. We assume w.l.o.g. that µ0 and µ1 are compactly supported. Otherwise,
we have to choose compact exhaustions of C̊×C̊ and to consider the restriction of the
plan to these compact sets. For this we also refer to [77, Lemma 3.1]. By Theorem
3.2.4 there is an unique optimal map T : X → Y between µ0 and µ1. So the unique
optimal plan is given by (id, T )∗µ0 = π and the associated optimal dynamical plan
is given by γ∗µ0 = Π where γ : suppµ0 → G(C̊) with (p, x) 7→ γ(p,x). The geodesic in
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P2(C̊) with respect to L2-Wasserstein distance is given by µt = (γ
(p,x)
t )∗µ0. We have

supp Π =
{
γ : γ̇ ∈ TB̊ × 0F

}︸ ︷︷ ︸
=:Γa

∪̇
{
γ : γ̇ ∈ TB̊ × TF\0F

}︸ ︷︷ ︸
=:Γb

.

We set Π(Γa)
−1Π|Γa =: Πa and Π(Γb)

−1Π|Γb = Πb that are again optimal dynamical
plans. The corresponding L2-Wasserstein geodesics are (et)∗Πa = µa,t and (et)∗Πb =
µb,t. They are absolutely continuous with densities ρa,t and ρb,t and have disjoint

support for any t ∈ [0, 1] because of the optimal map and since C̊ is non-branching
(see [10, Lemma 2.6]). We have for any t ∈ [0, 1]

ρtdmC = µt = Π(Γa)µa,t + Π(Γb)µb,t = Π(Γa)ρa,tdmC +Π(Γb)ρb,tdmC .

So the Rényi entropy functional from Definition 2.1.3 splits for any t ∈ [0, 1]∫
M
ρ

1−1/N ′

t dmC = Π(Γa)
1−1/N ′

∫
M
ρ

1−1/N ′

a,t dmC +Π(Γb)
1−1/N ′

∫
M
ρ

1−1/N ′

b,t dmC

for any N ′ ≥ N . So it suffices to show displacement convexity along Πa and Πb

separately.

We begin with Πa. We can approximate Πa in L2-Wasserstein distance arbitrarily
close by

1

n

n∑
i=1

Πi
a,B ⊗ νi

where Πi
a,B are geometric optimal transference plans in (B, dB) and νi are disjoint

absolutely continuous propability measures in F . So it suffices to show displace-
ment convexity along Πi

a,B. But since B has CBB by K and f is FK-concave,
(B, dB, f

Nd volB) satisfies CD((N + d− 1)K,N + d) (see [79, Theorem 1.7]) and the
desired convexity in Πa,B follows at once.

Now consider Πb. We know a priori that the transport geodesics only follow smooth
directions of the Finslerian warped product structure. So we can consider F2

C re-
stricted to TB̊ × TF\0F . We get the exponential map on TB̊ × TF\0F and we also
can define the Legendre transformation, that yields gradient vector fields. Especially,
if we consider an optimal transport that follows only smooth direction, the tech-
niques from [62] can be applied. Thus there exists an optimal map Tb of the form
Tb((p, x)) = exp(−∇ϕ(p,x)) for some c-concave function ϕ. To make this more precise

we can consider the complement of an ε-neighborhood Uε of TB̊× 0F and restrict the
initial measure µb,0 of Πb to the set

Uε =
{

(p, x) ∈ suppµb,0 : γ̇(p,x)(0) /∈ Uε
}
.

Uε is measurable because the mapping (p, x) ∈7→ γ̇(p,x) is measurable. Again the
exceptional mass can be chosen arbitrarily small. The optimal map T , which has been
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derived in Theorem 3.2.4, restricted to Uε has to coincide with Tb because optimality
is stable under restriction and because of uniqueness of optimal maps. Especially we
can deduce µb,t = (Tt)∗µb,0 where Tt((p, x)) = exp(−t∇ϕ(p,x)). Again by results from
[62] we know ϕ is second order differentiable at least on Uε. Hence the Jacobian of Tt
exists and satisfies - because of Proposition 3.1.2 and our assumptions - the correct
convexity condition. Finally one can follow the lines of section 8 in [62].

Corollary 3.3.1. Let B be a complete, d-dimensional space with CBB by K that
is a Riemannian manifold. Let f : B → R≥0 be FK-concave and smooth. Assume
∅ 6= ∂B ⊆ f−1({0}). Let (F,mF ) be a weighted, complete Finsler manifold. Let
N > 1. Then the following statements are equivalent

(i) (F,mF ) satisfies CD((N − 1)KF , N) with KF ≥ 0 and

|∇f |p ≤
√
KF for all p ∈ ∂B.

(ii) The N -warped product B ×Nf F satisfies CD((N + d− 1)K,N + d)

Proof. Only one direction is left. Assume the N -warped product B ×Nf F satisfies
CD((N + d− 1)K,N + d). Proposition 3.1.2 yields that

(N + d− 1)KF2
B̊×f̊F

(Ṽ ) ≤ ricN,mF
F (V )−

(
∆f(p)
f(p) + (N − 1)

|∇f |2p
f2(p)

)
F2
B̊×f̊F

(Ṽ )

(3.3.1)

where V ∈ TFx is arbitrary and Ṽ ∈ TC̊(p,x) such that (πF )∗Ṽ = V . The last
inequality is equivalent to

(N + d− 1)Kf2(p)F2
F (V ) ≤ ricN,mF

F (V )−
(
∆f(p)f(p) + (N − 1)|∇f |2p

)
F2
F (V ).

(3.3.2)

Now we can choose p ∈ B independent from V and thus, we let p tend to the non-
empty boundary of B. Then ∆f(p)f(p) tends to 0 because ∆f is smooth on B
(included the boundary) and we get

(N − 1)|∇f |2pF2
F (V ) ≤ ricN,mF

F (V ) (3.3.3)

for all p ∈ ∂B and all V ∈ TF . This inequality implies that (N − 1)|∇f |2 is bounded
from above on ∂B by F2

F (V )−1 ricN,mF
F (V ) for arbitrary V ∈ TF . So we can set

supp∈∂B |∇f |2p = KF < ∞. For any ε > 0 we find p ∈ ∂B such that (N − 1)|∇f |2p >
(N − 1)KF − ε. Then we get from (3.3.3)

((N − 1)KF − ε)F2
F (V ) ≤ ricN,mF

F (V )

and since ε > 0 is arbitrary we get the desired curvature bound.
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3 Ricci curvature bounds for warped products

Corollary 3.3.2. Let B be a complete, d-dimensional space with CBB by K such
that B\∂B is a Riemannian manifold. Let f : B → R≥0 a function such that it is
smooth and satisfies ∇2f = −Kf on B\∂B. Assume ∂B ⊆ f−1({0}). Let (F,mF )
be a weighted, complete Finsler manifold. Let N > 1. Then the following statements
are equivalent

(i) (F,mF ) satisfies CD((N − 1)KF , N) with KF ∈ R such that

1. If ∂B = ∅, suppose KF ≥ Kf2.

2. If ∂B 6= ∅, suppose KF ≥ 0 and |∇f |p ≤
√
KF for all p ∈ ∂B.

(ii) The N -warped product B ×Nf F satisfies CD((N + d− 1)K,N + d)

Proof. Assume the N -warped product B×Nf F satisfies CD((N+d−1)K,N+d). Like
in the proof of previous corollary we can deduce (3.3.1). Now we have ∆f = −dKf
on B\∂B and we can deduce

ricN,mF
F (V ) ≥ (N − 1)

(
Kf2(p) + |∇f |2p

)
F2
F (V )

for all p ∈ B\∂B and all V ∈ TF . Like in the proof of the previous corollary
this inequality implies that |∇f |2 + Kf2 is bounded on B\∂B. So we can set
supp∈B\∂B |∇f |2p+Kf2(p) =: KF . (Since f is FK-concave, |∇f |2p+Kf2(p) is actually
constant on B (see for example [2]).) This yields

KF ≥ Kf2(p) ∀p ∈ B.

Then by Proposition 2.2.9 this is equivalent to the conditions 1. and 2. in the theorem
and as in Corollary 3.3.1 the N -Ricci tensor of F is bounded by KF (N − 1).

Remark 3.3.3. If B = [0, π/
√
K] and f = sinK (with appropriate interpretation if

K ≤ 0) and if diamF ≤ π, the associated warped products are K-cones. If F is a
Riemannian manifold in this setting we get the theorem of Bacher and Sturm from
[11]. However, if F is Finslerian, the result is new.

Corollary 3.3.4. For any real number N > 1, CD(N − 1, N) for a weighted Finsler
manifold is equivalent to CD(K ·N,N + 1) for the associated (K,N)-cone.

Remark 3.3.5. Like in the theorem of Alexander and Bishop our result can be ex-
tended to the case where B satisfies a suitable boundary condition (†).
(†): If B† is the result of gluing two copies of B on the closure of the set of boundary
points where f does not vanishing, and f † : B† → R≥0 is the tautological extension
of f , then B† has CBB by K and f † is FK-concave.

The proof of the main theorem in this situation is exactly the same since (†) implies
that the warped product C\∂C is geodesic. We do not go into details and refer to
[2].

39



3.3 Proof of the main results and applications

Remark 3.3.6. Theorem 3.2.1 is true when B is an Alexandrov space and F some
general metric measure space. So it is reasonable to assume that our main result also
could hold in a non-smooth context and we conjecture the following

Conjecture 3.3.7. Let (B, dB) be a complete Alexandrov space with dimB = d and
let (F,dF ,mF ) be a metric measure space. Let f : B → R≥0 be some continuous
function such that ∂B ⊂ f−1({0}). Assume that (F,mF ) satisfies CD((N−1)KF , N)
and f is FK-concave such that

1. If ∂B = ∅, suppose KF ≥ Kf2.

2. If ∂B 6= ∅, suppose KF ≥ 0 and Dfp ≤
√
KF for all p ∈ X.

Then the N -warped product B ×Nf F satisfies CD((N + d− 1)K,N + d)

Remark 3.3.8. In [11] there is an example where the Euclidean cone over some Rie-
mannian manifold with CD(N − 1, N) produces a metric measure space satisfying
CD(0, N + 1) but that is not an Alexandrov space with curvature bounded from
below. They consider F = 1√

3
S2× 1√

3
S2, which satisfies CD(3, 4) but has sectional cur-

vature 0 for planes spanned by vectors that lie in different spheres. Then the sectional
curvature bound for the cone explodes when one gets nearer and nearer to the apex.
For general warped products the same phenomenon occurs what can be seen at once
from the formula of sectional curvature for warped products. Choose any closed
n-dimensional Riemannian manifold with Ricci curvature bounded from below by
(n− 1)KF and with sectional curvature KF (Vx,Wx) = 0 for some vectors Vx and Wx

in TF |x (for example choose λSm × λSm where m+m = n and λ is an appropriate
scaling factor, that produces the Ricci curvature bound (n− 1)KF ). Let B be a Rie-
mannian manifold with boundary and sectional curvature bigger than K ∈ R and f
is FK-concave and satisfies the assumption of the theorem. (for example choose B as
the upper hemisphere of Sd and f as the first nontrivial eigenfunction of the Laplacian
of this sphere. Especially f vanishes at the boundary of B and |∇f |∂B = 1. See [21]).
The sectional curvature of the plane Π(p,x) spanned by vectors (Xp, Vx), (Yp,Wx) in
T (B ×f F )(p,x) is

K(Π(p,x)) = KB(Xp, Yp)|Xp|2|Yp|2 − f(p)
[
|Wx|2∇2f(Xp, Xp) + |Vx|2∇2f(Yp, Yp)

]
+

1

f2(p)

[
KF (Vx,Wx)− |∇fp|2

]
|Ṽx|2|W̃x|2

= KB(Xp, Yp)|Xp|2|Yp|2 − f(p)
[
|Wx|2∇2f(Xp, Xp) + |Vx|2∇2f(Yp, Yp)

]
− 1

f2(p)
|∇fp|2|Ṽx|2|W̃x|2.

Hence the sectional curvature of planes Π(pn,x) ⊂ T (B̊ ×N
f̊
F )(pn,x) as above explodes

to −∞ if we choose a sequences (Xpn) and (Ypn) such that pn tends to vanishing
points of f . On the other hand the Ricci curvature is still bounded by 0 by formula
(3.0.1). Especially there is also no upper bound for the sectional curvature.
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3 Ricci curvature bounds for warped products

Another application of Theorem 3.2.1 is the following corollary, which modifies a
theorem by Lott that was proven in [55].

Corollary 3.3.9. Let (B, g) be a compact, n-dimensional Riemannian manifold with
distance function dB and with CBB by K. Let f : B → R≥0 be a smooth and FK-
concave function. Let N ∈ N such that N ≥ n and set q = N − n. Assume

|∇f |2p ≤ KF ∀p ∈ ∂ supp f. (3.3.4)

Then (supp f,dB, f
qd volB) is the measured Gromov-Hausdorff limit of a sequence

of compact geodesic spaces (Mi,di) of Hausdorff dimension N satisfying CD((N −
1)K,N).

Proof. Consider the q-warped product Mi = B ×gi i√
KF

Sq where gi = 1
i f . The

assumption implies

|∇gi|2p ≤
KF

i2
∀p ∈ ∂ supp f.

Then by our main theorem Mi satisfies CD((N − 1)K,N) for any i and (Mi)i con-
verges to (supp f, dB, f

qd volB) in measured Gromov-Hausdorff sense for i→ 0.

We have the Conjecture 3.3.7 but at the moment we are not able to prove it. But
one could ask if it is true when F is a warped product itself and satisfies a curvature-
dimension bound in the sense of our main theorem. In this situation F would not be a
manifold and singularities would occur. However the proof of the following corollary
shows that an iterated warped product is essentially again a simple warped product.

Corollary 3.3.10. Let B2 be complete, d2-dimensional space with CBB by K2 such
that B2\∂B2 is a Riemannian manifold and let f2 : B2 → R≥0 be FK2-concave
and smooth on B2\∂B2. Assume ∅ 6= ∂B2 ⊆ f−1

2 ({0}). Let B1 be complete, d1-
dimensional Riemannian manifold with CBB by K1 where K1 ≥ 0 such that

|∇f2|p ≤
√
K1 for all p ∈ ∂B2.

Let f1 : B1 → R≥0 be a smooth and FK1-concave. Assume ∅ 6= ∂B1 ⊆ f−1
1 ({0}).

Let (F,mF ) be a weighted, complete Finsler manifold. Let N ≥ 1 and KF ∈ R. If
N = 1 and KF > 0, we assume that diamF ≤ π/

√
KF . In any case F satisfies

CD((N − 1)KF , N) where KF ≥ 0 such that

|∇f1|p ≤
√
KF for all p ∈ ∂B1.

Then the N + d1-warped product B2 ×N+d1
f2

(
B1 ×Nf1

F
)

satisfies CD((N + d1 + d2 −
1)K2, N + d1 + d2).

Proof. First we see that

B2 ×N+d1
f2

(
B1 ×Nf1

F
)

=
(
B2 ×d1

f2
B1

)
×Nf2f1

F.
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3.3 Proof of the main results and applications

as metric measure spaces. This comes from the fact that the warped product measure
in both cases is

fN+d1
2 d volB2 ⊗

(
fN1 d volB1 ⊗dmF

)
= (f1f2)N

(
fd1

2 d volB2 ⊗d volB1

)
⊗ dmF

and the warped product metrics coincide because in both cases the length structure
is given by

L(γ) =

∫ 1

0

√
|α̇2(t)|2 + f2

2 ◦ α2(t)|α̇(t)1|2 + f2
2 ◦ α2(t)f2

1 ◦ α1(t)F2
F (β̇(t))dt.

Hence it is enough to check that (B2×d1
f2
B1)×Nf2f1

F satisfies the required curvature-
dimension bound.

We know by Theorem 2.2.12 that B2 ×f2 B1 =: B is a space with CBB by K2. It
is easy to see that its boundary is B2 ×f2 ∂B1 = ∂B and that the singularity points
∂B2 are a subset of ∂B. It follows that B\∂B is a Riemannian manifold. Then we
know that if (p2, p1) ∈ ∂B, we have f2(p2)f1(p1) = 0 and so ∂B ⊂ f−1({0}) where
f = f2f1. Then we can calculate that f is FK2-concave and that it satisfies

|∇f |(p2,p1) ≤
√
KF for all (p2, p1) ∈ ∂B,

where the modulus of the gradient is taken with respect to the warped product
metric of B2×d1

f2
B1. Thus the assumptions of Theorem A are fulfilled and the result

follows.
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4 Preliminaries, part 2

Outline of the chapter. This chapter is the beginning of the second part of the
thesis where we leave the smooth framework. It provides necessary definitions and
results from metric measure space calculus and Dirichlet form theory.

In Section 4.1 we repeat the definition of upper gradients and related results. Then,
we introduce the Cheeger energy and the minimal weak upper gradient as established
by Ambrosio, Gigli and Savaré. In Section 4.2 we switch to the field of symmetric
Dirichlet forms. After elementary properties have been presented, we give the def-
inition of the so-called Bakry-Emery curvature-dimension condition for symmetric
Diffusion operators that was used by Bakry, Emery and Ledoux. We first present the
classical approach that assumes the existence of a nice functional algebra, followed
by a reformulation by Ambrosio, Gigli and Savaré that is also applicable to more
general situations. Then, we also present a smooth example that will be important
for the warped product construction. In Section 4.3 we introduce Riemannian Ricci
curvature bounds and present the fundamental connections between the Eulerian and
the Lagrangian picture of Ricci curvature proved by Erbar, Kuwada and Sturm. At
the end of this chapter, in Section 4.4 we give the definition of skew products between
Dirichlet forms that was introduced by Fukushima and Oshima.

4.1 Differential calculus for metric measure spaces

Let (X,dX ,mX) be a metric measure space. We denote by Lp(X,mX) =: Lp(mX) for
p ∈ [0,∞] the Lebesgue spaces with respect mX .

Poincaré inequalities. A Borel function g : X → [0,∞] is an upper gradient of a
continuous function u : X → R if for any rectifiable curve γ : [0, 1]→ X

|u(γ0)− u(γ1)| ≤
∫ 1

0
g(γ(t))|γ̇(t)|dt. (4.1.1)

If the metric speed does not exist, the right hand side is infinity. We say that a
metric measure space (X,dX ,mX) supports a weak local (q, p)-Poincaré inequality
with 1 ≤ p ≤ q < ∞ if there exist constants C > 0 and λ ≥ 1 such that for all
continuous u, any upper gradient g of u and any point x ∈ X and r > 0(∫

Br(x)
|u− uBr(x)|qdmX

) 1
q

≤ Cr
(∫

Bλr(x)
gpdmX

) 1
p

. (4.1.2)
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4.1 Differential calculus for metric measure spaces

If λ = 1, we say X supports a strong (q, p)-Poincaré inequality. Some authors also
use the term Poincaré-Sobolev inequality for the case q > 1 and (1, p)-Poincaré in-
equalities are just called p-Poincaré inequality (see for example [45]). In the following
we say that X supports a (local) Poincaré inequality if it supports a weak local
(1, 1)-Poincaré inequality.

Remark 4.1.1. (i) Under a doubling property for (X,dX ,mX) weak local Poincaré
inequalities imply strong ones.

(ii) By Hölder’s inequality, a weak local (1, p)-Poincaré inequality implies a weak
local (1, p′)-Poincaré inequality for p′ ≥ p.

Definition 4.1.2. Let u : X → R be a continuous function. The local slope (or local
Lipschitz constant or pointwise Lipschitz constant) is the Borel function Lip given by

Lipu(x) = lim sup
y→x

|u(y)− u(x)|
dX(x, y)

.

Lipu is an upper gradient for u [22, proposition 1.11].

Remark 4.1.3. If a metric measure space satisfies a doubling property, Hajlasz and
Koskela proved in [45, Theorem 5.1, 1.] that a weak local (1, p)-Poincaré inequality
also implies a (q, p)-Poincaré inequality for q < pN

N−p if the doubling constant satisfies
C ≤ 2N and p < N . This is the case if the space satisfies the condition CD(0, N). In
particular, (X,dX ,mX) supports a weak local (2, 2)-Poincaré inequality.

Von Renesse proved the following result.

Theorem 4.1.4 ([81]). Suppose that the metric measure space (X,dX ,mX) satisfies
MCP (κ, N) in the sense of Sturm and for m2

X-a.e. pair (x, y) ∈ X2 there is a unique
geodesic. Then (X,dX ,mX) supports a weak local (1, 1)-Poincaré inequality.

Remark 4.1.5. If the metric measure space is assumed to be non-branching, the
unique-geodesic-property is implied and it actually does not matter if we consider
the MCP in the sense of Ohta or in the sense of Sturm. There is also an extension of
this result by Rajala, who proved a Poincaré inequality in the setting of CD(κ, N)-
spaces for any N ∈ [1,∞] without non-branching assumptions.

Cheeger energy and Sobolev spaces. We want to define Sobolev spaces and
a notion of modulus of gradient on a suitable class of functions. There are several
authors that gave different definitions (see [22, 72, 44]). Here, we follow the approach
of Ambrosio, Gigli and Savaré. Their main result from [5] (see also [4]) states that for
metric measure spaces in the sense of Definition 2.1.1 most of the different approaches
coincide and give the same notion of Sobolev space and modulus of a gradient. The
key is a non-trivial approximation by Lipschitz functions that we will use as starting

44



4 Preliminaries, part 2

point for our presentation. For any Borel function u : X → R in L2(mX) the Cheeger
energy ChX(u) is defined by

ChX(u) =
1

2
inf

{
lim inf
h→∞

∫
X

(Lipuh)2 dmX : uh Lipschitz, ‖uh − u‖L2(mX) → 0

}
.

(4.1.3)

Then the L2-Sobolev space is given by D(ChX) =
{
u ∈ L2(mX) : ChX(u) <∞

}
. The

associated norm is ‖u‖2D(ChX) = ‖u‖2L2 + 2 ChX(u). An important fact is that Ch is
not a quadratic form in general.

Definition 4.1.6. Let (X,dX ,mX) be a metric measure space. If the Cheeger energy
ChX is a quadratic form, we call (X,dX ,mX) infinitesimal Hilbertian.

Another result from [5] is that ChX can be represented by

ChX(u) =
1

2

∫
X

|∇u|2wdmX if u ∈ D(Ch) (4.1.4)

and +∞ otherwise where |∇u|w : X → [0,∞] is Borel measurable and called the
minimal weak upper gradient of u. The notion of minimal weak upper gradient is
motivated by the next definition that we take from [6].

Let γ : J → X be an absolutely continuous curve, that is, there exists g ∈ L1(J, dt)
such that

dX(γ(s), γ(t)) ≤
∫ t

s
g(τ)dτ for s, t ∈ J , s < t. (4.1.5)

In particular, γ is rectifiable. Then, γ has a well-defined metric speed |γ̇(·)| ∈ L1(J, dt)
that satisfies (4.1.5) and the length is given by (2.1.1). We denote with ACp(J,X)
the subset of AC1(J,X) such that the metric speed is in Lp(J, dt).

We say that u : X → R ∪ {∞} is “Sobolev along 2-almost every curve” if u ◦ γ
coincides a.e. in [0, 1] and in {0, 1} with an absolutely continuous map uγ : [0, 1]→ R
for 2-almost every curve γ ∈ C([0, 1], X). A subset A ⊂ C([0, 1], X) is 2-negligible in
this sense if Π(A) = 0 for any 2-test plan Π. A probability measure Π on C([0, 1], X)
is called 2-test plan if it is concentrated on AC2([0, 1], X),

∫ ∫ 1
0 |γ̇(t)|2dtdΠ(γ) < ∞

and (et)∗Π ≤ C(Π) mX for some constant C(Π) > 0. This notion was introduced in
[6]. Hence, if we want to check a property for 2-almost every curve, it is sufficient to
consider γ ∈ AC2([0, 1], X).

Definition 4.1.7. For u that is Sobolev along almost every curve, an mX-measurable
function G : X → [0,∞] is a weak upper gradient of u if

|u(γ0)− u(γ1)| ≤
∫ 1

0
G(γ(t))|γ̇(t)|dt for 2-almost every curve γ.

Any function u ∈ D(Ch) is Sobolev along 2-almost every curve and |∇u|w is a minimal
weak upper gradient in the following sense: If G is a weak upper gradient of u, then
|∇u|w ≤ G mX-a.e. .
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4.2 Preliminaries on Dirichlet forms

Remark 4.1.8. An upper gradient g for some continuous u is also a weak upper
gradient in the sense of the previous definition. The converse is in general not true.
We have |∇u|w ≤ Lipu a.e. , but no equality in general. If we assume a doubling
property and a local Poincaré inequality, there is the following result of Cheeger.

Theorem 4.1.9 ([22]). If (X,dX ,mX) is a complete and intrinsic metric measure
space that provides a doubling property and supports a local Poincaré inequality, then
for any function u : X → R that is locally Lipschitz, we have Lipu = |∇u|w mX-a.e..

The minimal weak upper gradient admits a stability property.

Theorem 4.1.10 (Stability theorem, [5]). Let (X,dX ,mX) be a complete and sepa-
rable metric measure space. Let un ∈ D(ChX) such that un → u ∈ L2(mX) pointwise
mX-a.e. and assume |∇un|w ∈ L2(mX) converges weakly to g ∈ L2(mX). Then
u ∈ D(ChX) and g = |∇u|w mX-a.e. .

Remark 4.1.11. In the introduction of [5] the authors remark that a complete and
separable metric measure space (X,dX ,mX) whose balls have finite measure (hence,
it fits in our Definition 2.1.1), supports a weak local (1, 1)-Poincaré inequality with
constants C > 0 and λ ≥ 1 if and only if it holds for any Lipschitz function u and
upper gradient Lipu. More precisely, supporting a Poincaré inequality is equivalent
to that for any Lipschitz function u on X, for any x ∈ X and r > 0 such that
mX(Br(x)) > 0, it holds∫

Br(x)
|u− ūBr(x)|dmX ≤ Cr

∫
Bλr(x)

LipudmX . (4.1.6)

Remark 4.1.12. If we assume that (X,dX ,mX) is locally compact and that the Cheeger
energy ChX of (X,dX ,mX) is a quadratic form, ChX yields also a strongly local Dirich-
let form (ChX , D(ChX)) on L2(mX). Lipschitz functions are dense in D(ChX) with
respect to the Energy norm (see Proposition 4.10 in [6]). Additionally, if we assume
that the space X is compact, Lipschitz function are dense in C0(X) with respect to
uniform convergence by application of the Stone-Weierstraß Theorem. Hence, ChX

is a regular Dirichlet form and Lipschitz functions are a core in the sense of Dirichlet
forms.

4.2 Preliminaries on Dirichlet forms

At the end of the last section we saw that the Cheeger energy is a strongly local
Dirichlet form provided the underlying space is infinitesimal Hilbertian. Dirichlet
forms are well-studied objects in the field of stochastic processes. In the following we
will give a brief introduction to it and also to the Bakry-Emery curvature-dimension
condition that was also used to define Ricci curvature in an abstract framework.
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4 Preliminaries, part 2

4.2.1 Dirichlet forms and their Γ-operator

We consider a locally compact and separable Hausdorff space (X,OX) and a positive
and σ-finite Radon measure mX on X such that supp [mX ] = X. Let (EX , D(EX)) be
a symmetric Dirichlet form on L2(mX) where D(EX) is a dense subset of L2(mX). A
symmetric Dirichlet form is an L2(mX)-lower semi-continuous, quadratic form that
satisfies the Markov property. Dirichlet forms are closed, that is, the domain D(EX)
is a Hilbert space with respect to the energy norm that comes from the inner product

(u, u)D(EX) = (u, u)L2(mX) + EX(u, u).

There is a self-adjoint, negative-definite operator (LX , D2(LX)) on L2(mX). Its do-
main is

D2(LX) =
{
u ∈ D(EX) : ∃v ∈ L2(mX) : −(v, w)L2(mX) = EX(u,w) ∀w ∈ D(EX)

}
.

We set v =: LXu. D2(LX) is dense in L2(mX) and equipped with the topology given
by the graph norm. LX induces a strongly continuous Markov semi-group (PX

t )t≥0

on L2(X,mX). The relation between form, operator and semi-group is standard (see
[36]).

A Dirichlet form is called regular if EX possesses a core. A core of EX is by definition
a subset CX of D(EX) ∩ C0(X) such that CX is dense in D(EX) with respect to the
energy norm and dense in C0(X) with respect to uniform convergence where C0(X) is
the set of continuous functions with compact support in X. We say that a symmetric
form is strongly local if EX(u, v) = 0 whenever u, v ∈ D(EX) and (u + a)v = 0
mX-almost surely in X for some a ∈ R.

Definition 4.2.1 (Γ-operator for Dirichlet forms). Set D∞(EX) = D(EX)∩L∞(mX).
Then D∞(EX) is an algebra (see [16]) and for u, ϕ ∈ D∞(EX) the following operator
is well-defined

ΓX(u;ϕ) := EX(u, uϕ)− 1

2
EX(u2, ϕ).

It can be extended by continuity to any u ∈ D(EX). We call G the set of functions u ∈
D(EX) such that the linear form ϕ 7→ ΓX(u;ϕ) can be represented by an absolutely
continuous measure w.r.t mX with density ΓX(u) ∈ L1

+(mX). If EX is symmetric, we
get the following representation

EX(u, u) =

∫
X

ΓX(u)dmX & ΓX(u;ϕ) =

∫
X

ΓX(u, u)ϕdmX (4.2.1)

for any u ∈ G and ϕ ∈ D∞(EX). By polarization we can extend the Γ-operator as
trilinear form as follows

ΓX(u, v;ϕ) =
1

2
(ΓX(u;ϕ) + ΓX(v;ϕ)− ΓX(u− v;ϕ)) , u, v ∈ D(EX), ϕ ∈ D∞(EX)

If G = D(EX), we say EX admits a “carré du champ” or Γ-operator. Fundamental
properties of ΓX : D(EX) × D(EX) → L1(mX) are positivity, symmetry, bilinearity
and continuity (see [16, Proposition 4.1.3]).
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Leibniz rule. Strong locality of EX implies strong locality of ΓX : 1U ·ΓX(u, v) = 0
for all u, v ∈ G and for all open sets U on which u is constant(see [74, Appendix])
and the Leibniz rule: For all u, v, w ∈ G such that v, w ∈ L∞(mX) it holds v · w ∈ G
and

ΓX(u, v · w) = ΓX(u, v) · w + v · ΓX(u,w) (4.2.2)

(see [74, Appendix]). One can prove the following

Lemma 4.2.2. Assume G = D(EX) and mX(X) <∞. (4.2.2) also holds for u, v, w ∈
D(EX) with v,ΓX(v) ∈ L∞(mX).

Proof. Consider wn = (w ∧ −n) ∨ n ∈ D(EX) ∩ L∞(mX) for n ∈ N. wn is bounded
and by Theorem 1.4.2 (iii) in [36] (wn)n converges to w in D(EX). We can apply
(4.2.2) for v, wn − wm ∈ D(EX) ∩ L∞:

EX(v(wn − wm)) =

∫
X

[
ΓX(wn − wm)v2

+ 2v(wn − wm)ΓX(v, wn − wm) + (wn − wm)2ΓX(v)
]
dmX

Since v,ΓX(v) ∈ L∞(mX), the right hand side converges to 0 if n,m → ∞, hence,
v ·wn is a Cauchy sequence in D(EX) that converges to g = v ·w. Thus, v ·w ∈ D(EX)
and similar one can show the formula (4.2.2).

Chain rule. We say EX is of diffusion type if LX satisfies the following chain rule.
Let η be in C2(R) with η(0) = 0. If u ∈ D2(LX) with Γ(u) ∈ L2(X,mX) and
η(u) ∈ D(LX), then

LXη(u) = η′(u)LXu+ η′′(u)ΓX(u). (4.2.3)

This is the case when G = D(EX) (see [16, Corollary 6.1.4]).

Intrinsic distance. If EX is strongly local and admits a “carré du champ” operator,
we can define Dloc(EX) as follows. u ∈ Dloc(EX) if u ∈ L2

loc(mX) and for any compact
set K there exists v ∈ D(EX) such that v = u mX-a.e. on K. Hence, for any
u ∈ Dloc(EX) there exists ΓX(u) ∈ L1

loc(mX). The intrinsic distance of EX is defined
by

dEX (x, y) = sup {u(x)− (y) : u ∈ Dloc(EX) ∩ C(X), ΓX(u) ≤ 1 m -a.e.} .

The intrinsic distance is not a metric in general but a pseudo-metric since there can
be points x 6= y with dEX (x, y) = 0,∞. For the rest of this article we always assume
that EX is a strongly local and regular Dirichlet form with G = D(EX). Then we will
call EX also admissible. We say the Dirichlet form EX is strongly regular if dEX is a
metric and the topology of dEX coincides with the original one.
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4 Preliminaries, part 2

We say that EX supports a weak local (q, p)-Poincaré inequality with 1 ≤ p ≤ q <∞
if for any u ∈ D(EX) (4.1.2) holds where we replace g by

√
ΓX(u).

Remark 4.2.3. Let EX a strongly local and strongly regular Dirichlet form and let
dEX be its intrinsic distance. Assume that closed balls B̄r(x) are compact for any
r > 0 and x ∈ X. Assume a doubling property holds and EX supports a weak local
(2, 2)-Poincaré inequality. Then

(1) PX
t admits an α-Hölder-continuous kernel and is a Feller semi-group.

(2) PX
t is L2 → L∞-ultracontractiv: ‖PX

t ‖L2→L∞ ≤ 1.

(3) If mX(X) <∞, harmonic functions are constant, and X is connected.

L2 → L∞-ultracontractivity actually comes from an upper bound for the heat kernel
(see [40, Chapter 14.1] and [76, Theorem 4.1]).

4.2.2 The Bakry-Emery curvature-dimension condition

In this section we introduce the curvature-dimension condition for Dirichlet forms
in the sense of Bakry, Emery and Ledoux. The specific feature of this approach is
the existence of an algebra AX of bounded measurable functions on X that is dense
in D2(LX) and in all Lp-spaces, stable by LX and stable by composition with C∞-
functions of several variables that vanish at 0. We call such an algebra admissible.
The algebra allows to introduce notions of curvature and dimension on a purely
algebraic level and provides a calculus that simplifies proofs significantly.

A consequence of the existence of an admissible algebra is that the “carré du
champ”-operator for elements in AX is obtained by the following rule

ΓX(u) =
1

2
LX(u2)− uLXu for all u ∈ AX .

Provided D(EX) = G, this rule is consistent with Definition 4.2.1 (see [16], section
I.4). Replacing LX by ΓX in the definition of the carré du champ we can define the
so-called iterated carré du champ or Γ2-operator

2ΓX2 (u, v) = LXΓX(u, v)− ΓX(u, LXv)− ΓX(v, LXu) for all u, v ∈ AX .

We write ΓX(u) for ΓX(u, u) and similarly for ΓX2 .

Definition 4.2.4 (Classical Bakry-Emery curvature-dimension condition). Assume
there is an admissible algebra AX for EX . Then EX satisfies the “classical” Bakry-
Emery curvature-dimension condition BE(κ, N) of curvature κ ∈ R and dimension
1 ≤ N <∞ if

ΓX2 (u) ≥ κΓX(u) +
1

N

(
LXu

)2
for all u ∈ AX . (4.2.4)

The inequality is understood to hold mX-almost everywhere in X. Similar, the con-
dition BE(κ,∞) holds if ΓX2 (u) ≥ κΓX(u) mX -a.e. for all u ∈ AX and BE(κ, N)
implies BE(κ,∞).
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4.2 Preliminaries on Dirichlet forms

In many situations an algebra AX is not available. To overcome this problem, in
[3] the Definition 4.2.4 was reformulated in an “intrinsic” way that also makes sense
without the admissible algebra. For the rest of this section we will briefly present
this approach. A more detailed description can be found in [3]. We still consider
a regular and strongly local Dirichlet form EX on some admissible space X like in
Section 4.2.1. The Γ2-operator can be defined in a weak sense by

2ΓX2 (u, v;ϕ) = ΓX(u, v;LXϕ)− ΓX(u, LXv;ϕ)− ΓX(v, LXu;ϕ)

for u, v ∈ D(Γ2) and ϕ ∈ Db,2
+ (LX) where D(ΓX2 ) := {u ∈ D2(LX) : LXu ∈ D(EX)}

and the set of test functions is denoted by

Db,2
+ (LX) :=

{
ϕ ∈ D2(LX) : ϕ,LXϕ ∈ L∞(X,mX), ϕ ≥ 0

}
.

We set ΓX2 (u, u;ϕ) = ΓX2 (u;ϕ). Now we can state the curvature-dimension condition
in a weak sense.

Definition 4.2.5 (Bakry-Emery curvature-dimension condition). Let κ ∈ R and
N ≥ 1. We say that EX satisfies the intrinsic Bakry-Emery curvature-dimension
condition (or just Bakry-Emery condition) BE(κ, N) if for every u ∈ D(ΓX2 ) and ϕ ∈
Db,2

+ (LX), we have

ΓX2 (u;ϕ) ≥ κΓX(u;ϕ) +
1

N

∫
X

(LXu)2ϕdmX . (4.2.5)

In this case we have that G = D(EX) (see [3, Corollary 2.3]). Hence, EX is of diffusion-
type. As before we can also define BE(κ,∞) and the implications BE(κ, N) ⇒
BE(κ, N ′)⇒ BE(κ,∞) for N ′ ≥ N hold as well.

Remark 4.2.6. If we assume there is an admissible algebra, then the Bakry-Emery
condition BE(κ, N) is always understood in the sene of Definition 4.2.4 without
further comment.

Theorem 4.2.7 (Bakry-Ledoux gradient estimate). Let EX be an admissible Dirichlet
form. The estimate (4.2.5) for κ ∈ R, N ≥ 1 and any (u, ϕ) ∈ D(ΓX2 ) with ϕ ≥ 0 is
equivalent to the following gradient estimate. For any u ∈ G and t > 0, PX

t u belongs
to G and we have

ΓX(PX
t u) +

1− e−2κt

Nκ
(LXPX

t u)2 ≤ e−2κtPX
t ΓX(u) mX -a.e. in X. (4.2.6)

Proof. → The proof of the theorem in this form can be found in [3] (see also [12, 34]).

Remark 4.2.8. If there is an admissible algebra that is stable with respect to PX
t , the

definitions 4.2.4 and 4.2.5 are consistent. On the one hand, Defintion 4.2.5 and the
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existence of an admissible algebra AX imply that for any test function ϕ ∈ Db,2
+ (LX)

and any u ∈ AX ∫
X

ΓX2 (u)ϕdmX ≥ κΓ(u;ϕ) +
1

N

∫
X

(LXu)2ϕdmX .

Then we can replace ϕ ∈ Db,2
+ (LX) by any bounded and measurable function ϕ ≥ 0

by using the mollifying property of PX
t , exactly like in [3] and [34]. This implies

the classical Bakry-Emery condition in the sense of Definition 4.2.4 for u ∈ AX . On
the other hand, if we assume the Bakry-Emery condition in the sense of Definition
4.2.4 for some admissible algebra AX that is also stable under PX

t , we can apply the
following lemma.

Lemma 4.2.9. Assume there is a subset Ξ ⊂ D2(LX) that is dense with respect to
the graph norm and stable under the Markovian semi-group PX

t , and assume we have

ΓX2 (u;ϕ) ≥ κΓX(u;ϕ) +
1

N

∫
X

(LXu)2ϕdmX if u ∈ D(ΓX2 ) ∩ Ξ and ϕ ∈ Db,2
+ (LX).

Then EX satisfies BE(κ, N).

Proof. We have to show (4.2.5) for any u ∈ D(ΓX2 ) and any ϕ ∈ Db,2
+ (LX). We choose

a sequence un ∈ Ξ such that un → u in D2(LX). Then we have also convergence in
‖·‖

D(E)
since for vn = un − u

E(vn) = −(vn, L
X(vn))L2(mX) ≤

1

2
‖vn‖2L2(mX) +

1

2
‖LXvn‖2L2(mX) .

ΓX(·, ·) is continuous bilinear form form D(EX)×D(EX) to L1(X,mX). Hence∫
X

ΓX(un, un)LXϕdmX →
∫
X

ΓX(u, u)LXϕdmX∫
X

ΓX(un, un)ϕdmX →
∫
X

ΓX(un, un)ϕdmX∫
X

(LXun)2ϕdmX →
∫
X

(LXu)2ϕdmX . (4.2.7)

We also see that PX
t un, P

X
t u ∈ D2(LX) for all t > 0 and that PX

t un → PX
t u with

respect to the graph and the energy norm since PX
t : L2(mX)→ L2(mX) is a bounded

operator and LXPX
t u = PX

t L
Xu for any u ∈ D2(LX). Consequently, the convergence

statements in (4.2.7) hold also for PX
t un, P

X
t u instead of un, u. Now, we use Lemma

1.3.3 from [36] that states that PX
t L

2(mX) ⊂ D(EX) and

EX(PX
t u, P

X
t u) ≤ 1

2t
((u, u)L2 − (PX

t u, P
X
t u)) ≤ E(u, u) for u ∈ D(EX). (4.2.8)
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Hence, PX
t L

Xun = LXPX
t un, P

X
t L

Xu = LXPX
t u ∈ D(EX) and PX

t L
Xun → PX

t L
Xu in

energy norm. By continuity of ΓX : D(EX)2 → L1(mX) it follows∫
X

ΓX(PX
t un, L

XPX
t un)ϕdmX →

∫
X

ΓX(PX
t u, L

XPX
t u)ϕdmX .

Since we assume that Ξ is stable with respect to PX
t , the Γ2-estimate holds for PX

t un
for any t > 0 and any n, and because of the previous observation it also holds for PX

t u.

Now we can follow the same strategy like in the proof of theorem 4.6 in [38]. Since
ϕ and LXϕ belong to L∞(mX) and since LXPX

t u = PX
t L

Xu for any u ∈ D2(LX) it
suffices to show that

lim
t→0

ΓX(PX
t u, P

X
t ũ) = ΓX(u, ũ) weakly in L1(mX)

for any u, ũ ∈ D(EX). But this follows from (4.2.8) and Schwartz’ inequality.

4.2.3 Some examples of Dirichlet forms

In this section we consider some examples in more detail. They will play an important
role later in this thesis.

Assumption 4.2.10. Let (B, g) be a smooth, d-dimensional Riemannian manifold
with or without boundary and ricB ≥ K(d− 1). We set B̊ = B\∂B and assume that
(B̊, dB) is geodesically convex. The latter will actually not be used explicitely, but, in
particular, it means that B is a geodesic space. In Chapter 2 and 3 we also assumed
that B̊ has CBB by K but in the following this will not be needed.

We consider the standard Dirichlet form with Dirichlet boundary conditions. More
precisely, this is the form closure of

EB(u) =

∫
B
|∇u|2gd volB where u ∈ C∞0 (B̊).

Its domain is D(EB) = W 1,2
0 (B̊, d volB). The associated self-adjoint operator LB is

the Dirichlet Laplace operator ∆B with domain D2(LB) = W 2,2
0 (B̊, volB). In this

context, we have ΓB(u) = |∇u|2g. Any smooth function u ∈ C∞(B̊) satisfies the
Bochner-Weitzenböck inequality

ΓB2 (u) =
1

2
∆B|∇u|2g − 〈∇u,∇∆Bu〉 = ricB(∇u) + ‖∇2u‖2HS . (4.2.9)

Assumption 4.2.11. We also consider a smooth f : B → R≥0 in D2(LB) such
that f |∂B = 0, f is positive in B̊ and f is FK-concave in the sense that ∇2f(v) ≤
−Kf |v|2g for any v ∈ TB, where ∇2f denotes the Hessian of f with respect to g.
Since B is geodesic, this equivalent to the definition of FK-concavity from Section
2.2.
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Example 4.2.12 (1-dimensional model space). Let B be of the form IK = [0, π/
√
K]

for K > 0 and [0,∞) for K ≤ 0. The corresponding operator is LIK = d2/dx2 and
its domain is W 2,2

0 (IK , dx). Consider f : IK → R≥0 in D2(LIK ) that is given by

f(t) = sinK(t) :=


1√
K

sin(
√
Kt) for K > 0

t for K = 0
1√
|K|

sinh(
√
|K|t) for K < 0.

Consider (B, g, fNd volB). We can define a symmetric form EB,fN on L2(B, fNd volB)
by

EB,fN (u) =

∫
B
|∇u|2gfNd volB for u ∈ C∞0 (B̊). (4.2.10)

Then EB,fN is closable on C∞0 (B̊) (see [36, Theorem 6.3.1], [57]), and it becomes a
strongly local and regular Dirichlet form. ΓB,f

N
(u) = ΓB(u) = |∇u|2g for any u ∈

C∞0 (B̊). LB,f
N

denotes the corresponding self adjoint operator.

Remark 4.2.13. If we replace in (4.2.10) C∞0 (B̊) by C∞0 (B), we obtain the Dirichlet
form with Neumann boundary conditions. When the boundary of B is empty, then
the form coincides with the form with Dirichlet boundary conditions. In general, this
is not the case. But if the boundary ∂B is a polar set in the sense of Grigor’yan
and Masamune (see [41]), it is also true. In the weighted situation that we are
considering the boundary is a polar set in this sense. In particular, it follows that
C∞0 (B) ⊂ D(EB,sinNK ). This is actually equivalent to Markov uniquness of the diffusion
operator LB,f

N
on C∞0 (B)). We refer to [33, Chapter 3] for a complete presentation

of this terminology.

Proposition 4.2.14. For u ∈ C∞(B̊) ∩ D2(LB,f
N

) there is an explicit formula for
the generator of EB,fN given by(

LB,f
N
u
)
(p) =

(
∆Bu

)
(p) +

N

f(p)
〈∇f,∇u〉 |p for any p ∈ B̊. (4.2.11)

Proposition 4.2.15. Let (B, g, fN volB) be as above. Then for any u ∈ C∞(B̊) the
following Γ2-estimate holds pointwise everywhere in B̊:

ΓB,f
N

2 (u) ≥ (d+N − 1)K|∇u|2g + 1
d+N

(
LB,f

N
u
)2
. (4.2.12)

Proof. Since there is the classical Bochner-Weitzenböck identity and since f is FK-
concave, we get pointwise for any u ∈ C∞(B̊)

ΓB,f
N

2 (u) = ricB(∇u) + ‖∇2u‖2HS −
N

f
∇2f(∇u) +

N

f2

〈
∇f,∇u

〉〈
∇u,∇f

〉
≥ (d− 1)K|∇u|2g +

1

d
(∆Bu)2 +NK|∇u|2g +

1

N

(N
f

〈
∇f,∇u

〉)2
(4.2.13)

≥ (d+N − 1)KΓB(u) +
1

d+N

(
LB,f

N
u
)2
.
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Details can be found in chapter 14 of [80].

4.3 Riemannian Ricci curvature bounds for metric
measure spaces

In this section we give the definition of the Riemannian curvature-dimension condition
that was first introduced by Ambrosio, Gigli and Savaré in [6] and generalized to finite
dimensions by Erbar, Kuwada and Sturm in [34].

Definition 4.3.1 ([34], Riemannian curvature-dimension condition). A metric mea-
sure space (X,dX ,mX) satisfies the (reduced) Riemannian curvature-dimension con-
dition RCD∗(κ, N) if

(i) (X,dX ,mX) is infinitesimal Hilbertian and

(ii) (X,dX ,mX) satisfies the condition CD∗(κ, N).

Similar, we can define the condition RCD(κ, N) and RCD(0, N) = RCD∗(0, N).

Proposition 4.3.2 ([6]). Assume (X,dX ,mX) satisfies RCD∗(κ, N) for κ ∈ R and
N ≥ 1. Then ChX is an admissible Dirichlet form in the sense of section 4.2 and the
intrinsic distance dChX coincides with dX.

Remark 4.3.3 ([39]). An important property of metric measure measure spaces that
satisfy the condition RCD∗(κ, N) is that for any optimal transport between measures
µ0, µ1 ∈ P2(X) where µ0 << mX there is a unique optimal coupling that is induced
by a map and the corresponding dynamical optimal transference plan is concentrated
on a set of non-branching geodesics [39, Theorem 1.1]. Let us mention two corollaries
of this property.

Corollary 4.3.4 ([39]). Let (X,dX ,mX) be a metric measure space that satisfies
RCD∗(κ, N) for κ ∈ R and N ≥ 1. Then, for every x ∈ suppX and for mX-a.e.
y ∈ suppX there is unique geodesic that connects x and y.

Theorem 4.3.5. Let (X,dX ,mX) satisfy RCD∗(κ, N) where κ ∈ R if N > 1 and
κ = 0 if N = 1. Then it satisfies the measure contraction property MCP (κ, N).

Proof. → The theorem is a corollary of several results by Cavalletti, Gigli, Sturm and
Rajala and can be found in this form in [39]. The difference between this theorem and
the result of Chapter 2 is that the non-branching assumption is not needed anymore,
and it does not matter if we consider the MCP in the sense of Ohta or in the sense
of Sturm.

Remark 4.3.6. Under the condition RCD∗(κ, N) the Markov semi-group Pt admits
important regularity properties [6]. If u ∈ D(EX) and Γ(u) ∈ L∞, Ptu has a Lipschitz
representative, denoted by P̃tu ([6, Theorem 6.1, Theorem 6.2]). Especially, any u ∈
D(EX) with Γ(u) ∈ L∞ hat a Lipschitz representative ũ such that |∇ũ| ≤ ‖|∇u|w‖L∞ .
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Under stronger conditions, namely L2 → L∞-ultracontractivity, we even have that
P̃tu is Lipschitz for any f ∈ L2 ([6, Remark 6.4]). Especially, this is the case when
the space satisfies RCD∗(κ, N).

Assumption 4.3.7. (X = supp mX ,dX ,mX) is a geodesic metric measure space.
Every u ∈ D(ChX) with |∇u|w ≤ 1 a.e. admits a 1-Lipschitz representative.

The main result of Erbar, Kuwada and Sturm in [34] is

Theorem 4.3.8. Let (X,dX ,mX) be a metric measure space that satisfies the condi-
tion RCD∗(κ, N). Then

(1) BE(κ, N) holds for (ChX , D(ChX)).

Moreover, if (X,dX ,mX) is a metric measure space that is infinitesimal Hilbertian,
satisfies the Assumption 4.3.7 and (ChX , D(ChX)) satisfies the condition BE(κ, N),
then

(2) (X,dX ,mX) satisfies CD∗(κ, N), i.e. the condition RCD∗(κ, N).

Proof. → [34, Theorem 7, Theorem 4.1, Theorem 4.3, Theorem 4.8, Proposition 4.9].

Corollary 4.3.9. Let K > 0 and N ≥ 1. EIK ,sinNK satisfies BE(NK,N + 1).

Proof. EIK ,sinNK coincides with the Cheeger energy of (IK , sin
N
K rdr) and (IK , sin

N
K rdr)

satisfies the condition CD(KN,N + 1) (see [79]). Hence, the result follows.

Theorem 4.3.10. Let (X,dX ,mX) be a metric measure space that satisfies
RCD∗(κ, N) for κ > 0 and N > 1. Then the spectrum of the associated Laplace
operator LX is discrete and the first non-zero eigenvalue is ≥ κ N

N−1 .

Proof. First, we verify the following, slightly more general result.

Proposition 4.3.11. Let (X,dX ,mX) be a metric measure space that is infinitesimal
Hilbertian and mX(X) < ∞. Assume it satisfies a volume doubling property with
doubling constant C ≤ 2N for 2 < N and admits a (1, 2)-Poincaré inequality. Then
the spectrum of the corresponding self-adjoint operator LX is discrete.

Proof of the Proposition. By Remark 4.1.3 the metric measure space X admits a
(2, 2)-Poincaré inequality that implies a (2∗, 2)-Sobolev inequality of the form(∫

Bx(R)
u2∗dmX

) 2
2∗

≤ A
∫
Bx(R)

u2dmX +B

∫
Bx(R)

(Lipu)2dmX , (4.3.1)

for any u ∈ D(ChX) ∩ C0(X) where 2∗ = 2N
N−2 . This was proven for example in [76,

Theorem 2.6] in the context of strongly local and regular Dirichlet forms. Then, a
Rellich-Kondrachov compactness Theorem holds by results of Hailasz and Koskela
[45, Theorem 8.1]. Finally, we can procede by induction exactly as for Riemannian
manifolds (e.g. [14, Chapter III, Theorem 18]).
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For the proof of the theorem we note that the condition RCD(κ, N) implies that
the space admits a (1, 2)-Poincaré inequality, the right volume doubling property
holds and mX(X) < ∞. Hence, we can apply the previous proposition. The second
statement directly follows from the Bakry-Emery characterization of the Riemannian
curvature-dimension condition. Choose any eigenfunction u with eigenvalue λ. Since
X is compact, an admissible test function is ϕ = 1. Then the condition BE(κ, N)
implies

0 ≥
∫
X

ΓX(u, LXu)dmX +κ
∫
X

ΓX(u)dmX +
1

N

∫
X

(LXu)2 dmX

= −λ
∫
X

ΓX(u, u)dmX +λκ
∫
X

udmX +
λ2

N

∫
X

u2dmX

=

∫
X

u2dmX

(
−λ2 + λκ + λ2

N

)
from which follows λ ≥ κ N

N−1 .

Remark 4.3.12. The conclusion of the previous theorem is also true if κ = 0 and
N = 1. Then λ1 ≥ 1. It follows since in this case F ' λS1 or F ' λ[0, π] for some
0 < λ ≤ 1. The diameter bound implies that F is compact and there are points
x, y ∈ F such that diamF = dF (x, y) and there is at least one geodesic between x
and y. Hence, the Hausdorff dimension has to be 1 and F consists of finitely many
geodesic segments that connect x and y since the measure is assumed to be locally
finite. But the curvature-dimension condition implies that there can be at most two
geodesics.

Another striking consequence of Riemannian Ricci curvature bounds is the splitting
theorem. For Riemannian manifolds with non-negative Ricci curvature bounds, this
was proven by Cheeger and Gromoll [27]. N. Gigli proved the result for general
RCD(0, N) spaces:

Theorem 4.3.13 (N. Gigli, [37]). Let (X,dX ,mX) be a metric measure space that
satisfies RCD(0, N + 1) for N ≥ 0 and contains a geodesic line. Then (X,dX ,mX)
is isomorphic to the Cartesian product of (R,dEucl,L1) and another metric measure
space (X ′,dX′ ,mX′) such that

(1) (X ′, dX′ ,mX′) is RCD(0, N) if N ≥ 1,

(2) X ′ is just a point if N ∈ [0, 1).

Here ”isomorphic” means that there is a measure preserving isometry.

4.4 Skew products between Dirichlet forms

In this section we define skew and N -skew products for Dirichlet forms. The notion
of skew product is well-known and has been introduced by Fukushima and Oshima
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in [35]. A N -skew product is a slight modification of that where we also change the
topology of the underlying space.

We briefly describe our framework. Let B and f ∈ D2(LB) ∩ C∞(B) be as in
Assumption 4.2.10 and 4.2.11 of Section 4.2.3. Let EF be a regular and strongly
local Dirichlet form on some admissible space F . Consider (B × F,OB ⊗ OF ) with
mC = fNd volB ⊗dmF and the tensor product C∞0 (B) ⊗ D(EF ). OB ⊗ OF is the
product topology.

The elements of C∞0 (B) ⊗ D(EF ) are functions of the form
∑k

i=1 u
i
1u
i
2 for some

finite k ∈ N and ui1 ∈ C∞0 (B) and ui2 ∈ D(EF ). We will follow this convention in the
rest of the thesis. In the literature the tensor product between infinite dimensional
Hilbert spaces Hi for i = 1, 2 means that one also takes the closure with respect to
the induced inner product. Later, this construction will also appear and we use the
notation H1 ⊗H2.

Definition 4.4.1 (Skew product). Consider the closure of the following densely de-
fined symmetric form on L2(B × F, fNd volB ⊗dmF ):

EC(u) =

∫
F
EB,fN (ux)dmF (x) +

∫
B
EF (up)fN−2(p)d volB(p) <∞ (4.4.1)

for u ∈ C∞0 (B̊) ⊗ D(EF ) where ux = u(·, x) and up = u(p, ·) are the horizontal
respectively vertical sections of u. (B × F,OB ⊗ OF , EC) is called skew product
between B, f and EF .

Remark 4.4.2. A general skew product is defined in the following way. Consider two
regular Dirichlet forms E1 and E2 on L2(X1,m1) and L2(X2,m2) respectively and a
smooth Radon measure µ on X1 (Here, smooth is meant in the sense of [36]). Another
Dirichlet form Eµ is given by

Eµ(u) = E1(u) + ‖u‖2µ on D(Eµ) =
{
u ∈ D(E1) : ‖u‖µ <∞

}
.

If Cµ and C2 are cores for Eµ and E2 respectively then the skew product is the well-
defined form closure of

E(u) =

∫
X2

E1(ux)dm2(x) +

∫
X1

E2(up)dµ(p)

where u ∈ Cµ ⊗ C2. The reader can easily convince himself that this coincides with
Definition 4.4.1 if we set E1 = EB,fN , E2 = EF and µ = fN−2d volB. By results
of Fukushima, Oshima and Okura (see [35, 63]) the skew product is a well-defined,
closed, regular and strongly local Dirichlet form and Cµ ⊗ C2 is a core. Therefore, in
our situation EC is also regular and strongly local, and C∞0 (B̊)⊗ CF is a core for EC
if CF is a core for EF .

The next proposition is a Fubini-type result and was proven by Okura.
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Proposition 4.4.3 ([63]). Let EC be a skew product like in Definition 4.4.1. Consider
u ∈ D(EC). Then ux ∈ D(EB,fN ) for mF -almost every x ∈ F and up ∈ D(EF ) for
volB-almost every p ∈ B and we have

EC(u) =

∫
F
EB,fN (ux)dmF (x) +

∫
B
EF (up)fN−2(p)d volB(p), (4.4.2)

Especially EC admits a Γ-operator if and only if EF does so, and in this case we have
for u ∈ D(EC)

ΓC(u)(p, x) = ΓB(ux)(p) + 1
f2(p)

ΓF (up)(x) mC-a.e. .

Corollary 4.4.4. Let EC be skew product like in Definition 4.4.5. Then C∞0 (B̊) ⊗
D2(LF ) ⊂ D2(LC) and

(LCu) (p, x) =
(
LB,f

N
ux
)
(p) + 1

f2(p)
(LFup) (x) for mC -a.e. (p, x) ∈ B × F.

(4.4.3)

Proof. We consider u ∈ C∞0 (B̊) ⊗ D2(LF ) and v ∈ D(EC). Then ux ∈ C∞0 (B̊) for
every x and up ∈ D2(LF ) for every p, and vx ∈ D(EB,fN) for mF -almost every x and
vp ∈ D(EF ) for volB-almost every p. Hence

EB,fN (ux, vx) =
(
LB,f

N
ux, vx

)
L2(fNd volB)

and EF (up, vp) =
(
LFup, vp

)
L2(mF )

for mF -almost every x and for volB-almost every p. This and Proposition 4.4.3 implies

EC(u, v) =

∫
F
EB,fN (ux, vx)dmF (x) +

∫
B

1
f2(p)
EF (up, vp)fN(p)d volB(p)

=−
∫
F

(
LB,f

N
ux, vx

)
L2(fN volB)

dmF (x)

−
∫
B

1
f2(p)

(
LFup, vp

)
L2(mF )

fN(p)d volB(p)

=−
∫
C

[
LB,f

N
ux(p) + 1

f2(p)
LFup(x)

]
v(p, x)dmC(p, x).

Then we also see that LB,f
N
ux(p) + f−2(p)LFup(x) is L2-integrable with respect to

mC . First, we consider u = u1⊗u2 ∈ C∞0 (B̊)⊗D2(LF ). Then u is L2-integrable with
respect to mC since

2
∥∥LB,fNu+ 1

f2L
Fu
∥∥2

L2(mC)
≤
∥∥LB,fNu1

∥∥2

L2(fNd volB)

∥∥u2

∥∥2

L2(mF )

+
∥∥u1
f

∥∥2

L2(fNd volB)

∥∥LFu2

∥∥2

L2(mF )
<∞.

In particular, we used that u1 is smooth with compact support in B̊. Hence, u1⊗u2 ∈
D2(LC) and (4.4.3) holds. In general, any u ∈ C∞0 (B̊)⊗D2(LF ) has the form

u =
k∑
i=1

ui1 ⊗ ui2 =
k∑
i=1

ui
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where LCui is L2-integrable. Then, by linearity of LB,f
N

+ 1
f2L

F and by triangle

inequality also LB,f
N
ux + 1

f2L
Fup is L2-integrable and (4.4.3) holds.

N-skew products. We will introduce a slight modification of Definition 4.4.1. The
underlying space of EC is B × F equipped with the product topology but in general
the intrinsic distance dEC induces a different topology that we will describe in more
detail. Let us define an equivalence relation on B × F as follows:

(p, x) ∼ (q, y)⇐⇒
(
p = q ∈ ∂B

)
or
(
p = q ∈ B and x = y ∈ F

)
.

Then we can consider the quotient space B × F/∼ = C and the corresponding pro-
jection map π : B × F → C. Obviously, we have the following decomposition

C = ∂B ∪̇ B̊ × F.

A subset V ⊂ C is open if and only if π−1(V ) ⊂ B × F is open. We denote the
corresponding topology by OC . This is precisely the topology of the metric warped
product as in Definition 2.2.1. If u is continuous with respect to OC then u ◦ π = ũ
is continuous with respect to OB ⊗ OF . By abuse of notation we will also write
u = ũ when the meaning is clear. If EF is strongly regular, one can define a family
of “open balls” that generates the quotient topology, i.e. any open set is a union of
elements from this family. First, we pick (p, x) = [p, x] ∈ B̊ × F and we consider
ε̄[p,x] = infq∈∂B dEB (p, q). Then, admissible ε-balls around [p, x] are

BC
ε ([p, x]) := {[q, y] ∈ C : dEB (q, p) + dEF (x, y) < ε} ⊂ B̊ × F ⊂ C

for 0 < ε < ε̄[p,x]. For p = [p, x] ∈ ∂B ⊂ C the corresponding ε-balls are

BC
ε ([p, x]) = {[q, y] ∈ C : dEB (q, p) < ε} ⊂ C

for 0 < ε < ε̄[p,x] =∞. The family of all admissible balls is denoted by

B =
{
BC
ε ([p, x]) : [p, x] ∈ C, 0 < ε < ε̄[p,x]

}
.

It is not hard to check that elements from B are open with respect to OC and that
B is a generator for OC . We can pushforward the measure mC to C and denote it
also by mC . ∂B ⊂ C is a set of measure zero. Hence, C keeps its product structure
mC-almost everywhere.

Definition 4.4.5 (N -skew product). Assume EF is a strongly local, regular and
strongly regular Dirichlet form and B and f as in Definition 4.4.1. Consider (C,OC) =
C and the measure mC . We can define a Dirichlet form EC on L2(mC) as in Definition
4.4.1. We call (C,mC , EC) the N -skew product between B, f and EF and we will write
EC = EB ×Nf EF = B ×Nf EF . B ×Nf EF is strongly local and regular.

Consider the intrinsic distance dEC of EC = B ×Nf EF on C. The topology that
is induced by dEC is denoted by Od.
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Lemma 4.4.6. If EF is strongly regular, then B×Nf EF is strongly regular, i.e. Od =
OC. Closed ε-balls with respect to dEC are compact if this holds for dEF .

Proof. Consider u ∈ Dloc(EC) ∩ C0(C) with ΓC(u) ≤ 1 mC-almost everywhere. Since
EC is strongly local, we assume that u ∈ D(EC). It follows that ũx ∈ C0(B) and
ũp ∈ C0(F ) for every x ∈ F and every p ∈ B. From Proposition 4.4.3 we also have
that ũx ∈ D(EB,fN ) for mF -a.e. x ∈ F and ũp ∈ D(EF ) for dr-a.e. p ∈ B and
ΓF (up) ≤ 1 mF -a.e. and ΓB(ux) ≤ 1 dr-a.e. . Hence, for mC-a.e. (p, x), (q, y) ∈ B×F

ũ(p, x)− ũ(q, y) = ũ(p, x)− ũ(q, x) + ũ(q, x)− ũ(q, y)

≤ dEB (p, q) + dEF (x, y).

Then by continuity of ũ and dEB + dEF with respect to OB ⊗OF the estimate holds
for all p, q ∈ B and x, y ∈ F . Since u was arbitrary, we obtain

dEC ([p, x], [q, y]) ≤ dEB (p, q) + dEF (x, y)

for all [p, x], [q, y] ∈ C. This says that balls in B of admissible radius ε are contained
in balls of radius ε with respect to dEC . Since EF and EB are strongly regular this
implies dEC <∞ and OC ⊆ Od.

On the other hand, Dloc(EB,f
N

) ⊗ Dloc(EF ) ⊂ Dloc(EC) and C0(B̊) ⊗ C0(F ) ⊂
C0(C/∼) implies

dEB (p, q) + dEF (x, y) ≤M dEC ((p, x), (q, y))

for some constant M > 0 and for any p, q ∈ B̊ and and for any x, y ∈ F . The constant
M depends on the minimum of f on some closed neighborhood of p, q in B̊. If we
consider u = u1 ⊗ 1, we also obtain that

dEB (p, q) ≤ dEC ([p, x], [q, y])

for p ∈ ∂B, q ∈ B and x, y ∈ F . It follows that ε-balls with respect to dEC
are contained in ε-balls from B for ε sufficiently small. Hence, Od ⊆ OC and
dEC ([p, x], [q, y]) > 0 if [p, x] 6= [q, y].

The second statement follows since π−1
(
Bε([p, x])

)
is compact for any [p, x].
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5 Riemannian Ricci curvature bounds
for cones

Introduction. In this chapter we will prove the following two theorems on synthetic
Ricci curvature bounds for cones over metric measure spaces.

Theorem B. Let (F,dF ,mF ) be a metric measure space that satisfies RCD∗(N −
1, N) for N ≥ 1 and diamF ≤ π. Let K ≥ 0. Then the (K,N)-cone ConN,K(F )
satisfies RCD∗(KN,N + 1).

Theorem C. Let (F,dF ,mF ) be a metric measure space. Suppose the (K,N)-cone
ConN,K(F ) over F satisfies RCD∗(KN,N + 1) for K ∈ R and N ≥ 0. Then

(1) if N ≥ 1, F satisfies RCD∗(N − 1, N) and diamF ≤ π,

(2) if N ∈ [0, 1), F ′ is a point, or N = 0 and F consists of exactly two points with
distance π.

By application of Theorem B, Theorem C and the Gigli-Cheeger-Gromoll splitting
theorem we prove a maximal diameter theorem for RCD∗-spaces.

Theorem D. Consider a metric measure space (F,dF ,mF ) that satisfies
RCD∗(N,N + 1) for N ≥ 0. If N = 0, we assume that diamF ≤ π. Let x, y
be points in F such that dF (x, y) = π. Then, there exists a metric measure space
(F ′,dF ′ ,mF ′) such that (F,dF ,mF ) is isomorphic to IK ×NsinK F

′ and

(1) (F ′,dF ′ ,mF ′) satisfies RCD∗(N − 1, N) and diamF ′ ≤ π if N ≥ 1,

(2) if N ∈ [0, 1), F ′ is a point, or N = 0 and F ′ consists of exactly two points with
distance π.

We briefly sketch the main ideas for the proof of Theorem B. One would like to
adopt the proof of Theorem A in Chapter 3. It follows the Lagrangian interpretation
of curvature-dimension bounds that comes from optimal transport. One deduces
the convexity of the entropy functional along Wasserstein geodesics directly from
bounds for the Ricci tensor. The main difficulty is to deal with singularity points
where the underlying space differs from an Euclidean product. It turns out that the
curvature-dimension bound for F guarantees that the optimal transport of absolutely
continuous measures does not see these singularities and consequently, singularities
do not affect the convexity of the entropy. Now, one is tempted to prove the theorem
for general metric measure spaces along the same strategy by deducing the convexity
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of the entropy directly from the convexity of the entropy of the underlying space F .
The statement that singularities can be neglected also holds in the general framework
by Theorem 3.2.1. However, as simple the definition of the cone metric might be,
the relation of optimal transport in the cone and optimal transport in the underlying
space is rather complicated as can be seen from easy examples. Hence, we need to
follow a different strategy.

The Bakry-Emery condition captures the Eulerian picture of curvature-dimension
bounds. This viewpoint has already been used by Bakry, Emery and Ledoux to deduce
many results from Riemannian geometry in the setting of diffusion semigroups and
Dirichlet forms only relying on the existence of a nice algebra of functions. Now, we
would like to follow their strategy using the result of Erbar, Kuwada and Sturm on the
characterization of Riemannian curvature-dimension bounds to prove our theorem.
We remind the reader to the situation of smooth Riemannian manifolds. For some
warped product B ×f F between Riemannian manifolds the Ricci tensor can be
calculated explicitly at any point and is given by formula (3.0.1).

Now, we switch to the setting of strongly local and regular Dirichlet forms that
satisfy a Bakry-Emery curvature-dimension condition. That is, we replace the metric
measure space F by a Dirichlet form EF that admits an admissible algebra AF .
From Section 4.4 we know that B ×Nf EF is a Dirichlet form. C∞0 (B̊) ⊗ AF is an
algebra, though it is not necessarily admissible. But it is enough to compute the
corresponding Γ2-operator. Then, one could hope to establish a similar formula as
(3.0.1). And indeed, in Section 5.2, we obtain the following inequality that holds
pointwise mC-almost everywhere

Γ
B×Nf F

2 (u)(p, x) ≥ ΓB2 (ux)(p) + 1
f2(p)

∆Fup
〈∇f,∇ux〉p

f(p)

+ 1
f4(p)

ΓF2 (up)(x)−
(

∆Bf(p)
f(p) + (N − 1)

|∇fp|2
f2(p)

)
1

f2(p)
|∇upx|2 (5.0.1)

for any u ∈ C∞0 (B̊)⊗AF . If we use the same curvature and concavity conditions on
B and f as in Theorem A and the Bakry-Emery condition BE(KF (N − 1), N) for
EF , we obtain a sharp ΓC2 -estimate for u ∈ C∞0 (B̊)⊗AF .

At this point, we have the right Γ2-estimate for N -skew products. But we do
not know yet if it yields the full Bakry-Emery curvature-dimension condition. More
precisely, we do not know if C∞0 (B̊)⊗AF is a dense subset of D2(LC) with respect to
the graph norm, and indeed, it might be false that EC satisfies a curvature-dimension
condition even when a Γ2-estimate holds on a large class of functions. For example,
consider the metric N -cone over F = S1

2π that is a 1-dimensional sphere of diameter
2π. In [11] Bacher and Sturm prove that it cannot satisfy a curvature-dimension
condition in the sense of Lott-Sturm-Villani. This can be seen from the behavior of
optimal transport since the cone in the case of a big circle is a kind of covering and
if mass is transported from on sheet to another, the cheapest way to do it is to go
through the origin and this destroys any convexity of the entropy. This situation
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5 Riemannian Ricci curvature bounds for cones

can be avoided if and only if the diameter of the underlying space is smaller than
π. On the other hand, consider the N -skew product [0,∞)×Nr ChS1

2π where ChS1
2π is

the Cheeger energy of S1
2π. From our result one sees that the Γ2 estimate holds even

when the diameter is bigger than π. Hence, provided [0,∞)×Nr ChS1
2π is the Cheeger

energy of the metric cone, C∞0 ((0,∞))⊗ C∞0 (S1
2π) cannot be dense in the domain of

the self-adjoint operator.

Another observation is related to this problem. We remind the reader of the fol-
lowing fact. It is known (see [71, Appendix to Section X.I, Example 4]) that the
Laplace operator that acts on smooth functions with compact support in RN+1\ {0}
is essentially self-adjoint if and only if N ≥ 3 where N ∈ N. But this situation ex-
actly corresponds to the case of an Euclidean cone over SN with admissible algebra
AF = C∞(SN ). So in this case in general the operator LC restricted to C∞0 ((0,∞))⊗
C∞(SN ) will provide more than one self-adjoint extension and the Friedrich’s exten-
sion does not need to coincide with the closure of C∞0 ((0,∞))⊗C∞(SN ) with respect
to the graph norm. So, we cannot hope that C∞0 (B̊)⊗AF will be dense in the domain
of LC in general.

But we will see that in the Eulerian picture that is described by the Γ2-estimate,
the crucial quantity is not the diameter but the first positive eigenvalue of LF . For
metric measure spaces that satisfy RCD∗(N − 1, N) there is a spectral gap λ1 ≥ N .
It allows to prove the density of an admissible class of function in the domain of
LC in the case of cones. Additionally, we obtain a complete picture about how the
spectral gap of LF enters the proof, and this should be seen in comparison to the
Lagrangian viewpoint of Bacher and Sturm. Hence, we can establish a Bakry-Emery
condition for cones in the sense of Dirichlet forms, and finally, we can use again the
equivalence with the RCD∗-condition to prove Theorem 4.3.8. The technical problem
that remains is to prove that the intrinsic distance of cones in the sense of Dirichlet
forms is the corresponding cone metric over the metric space.

Outline of the chapter. In section 5.1, we establish a fundamental connection
between N -warped products over metric measure spaces and N -skew products over
Dirichlet forms. More precisely, we focus on the most simple construction, namely
B = IK and f = sinK for K ≥ 0. In Section 5.2 we prove Γ2-estimates for general
N -skew products with respect to the classical approach of Bakry and Emery. In
Section 5.3 we prove that the self-adjoint operator that belongs to the cone over some
Dirichlet form is essentially self-adjoint if restricted to a nice subset of its domain
provided the spectrum of the underlining Dirichlet form is discrete and satisfies a
spectral gap estimate. In Section 5.4 we prove the full Bakry-Emery curvature-
dimension condition for spherical cones over Dirichlet forms that satisfy the Bakry-
Emery condition itself. Finally, in Section 5.5 we combine all the previous results to
prove Theorem B and Theorem C by using the equivalence between the Lagrangian
and the Eulerian viewpoint of Ricci curvature. As corollary of these results and the
Gigli-Cheeger-Gromoll splitting theorem we obtain the maximal diameter theorem.
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5.1 Warped product versus skew product

Assumptions. Throughout this chapter we assume the following.

(i) In Section 5.2 we consider a Riemannian manifold B and a smooth function
f like in Assumption 4.2.10 and 4.2.11 of Section 4.2.3. Let EB,fN the corre-
sponding Dirichlet form with drift like in Section 4.2.3. In Section 5.1, 5.3, 5.4
and 5.5 we assume B = IK and f = sinK for K ≥ 0. In Section 5.3 and 5.4 we
assume K > 0.

(ii) (F,dF ,mF ) is a metric measure space as in Definition 2.1.1. We always assume
that F is compact. It follows that mF (F ) <∞. If F is infinitesimal Hilbertian,
the Cheeger energy ChF is a regular and strongly local Dirichlet form on L2(mF ).

(iii) On the other hand, in Section 5.2, 5.3 and 5.4 we consider an arbitrary Dirich-
let form EF on L2(mF ) that is regular, strongly regular and strongly local.
We assume that it admits a volume doubling property and supports a (2, 2)-
Poincaré inequality. Since we assume that the space is compact, closed balls
are compact and we can apply the results of Remark 4.2.3. If the metric mea-
sure space (F,dF ,mF ) satisfies a Riemannian curvature-dimension condition,
its Cheeger energy ChF clearly fits into this framework by (2.1.4), Remark
4.1.3 and Proposition 4.3.2, and ChF satisfies the corresponding Bakry-Emery
condition by Theorem 4.3.8.

5.1 Warped product versus skew product

The case when F satisfies RCD∗(N − 1, N). We want to analyze the intrinsic
distance of the N -skew product EC = IK ×NsinK ChF in more detail where F is a
metric measure space that is infinitesimal Hilbertian. The main result will be that the
intrinsic distance of IK ×NsinK ChF coincides with dConK if F satisfies the Riemannian
curvature-dimension condition RCD∗(N−1, N). The key is the following proposition.
ΓC denotes the Γ-operator of EC .

Proposition 5.1.1. Let (F,dF ,mF ) be a length metric measure space that satisfies
a volume doubling property, supports a local Poincaré inequality and is infinitesi-
mal Hilbertian. Assume diamF ≤ π and let K ≥ 0. Then D(IK ×NsinK ChF ) ⊂
D(ChConN,K (F )) and for any u ∈ D(IK ×NsinK ChF ) we have

|∇u|2w (r, x) ≤ ΓIK ,sin
N
K (ux)(r) + 1

sin2
K
|∇ur|w(p) mC -a.e. (5.1.1)

where ux(r) = u(r, x) and ur(x) = u(r, x) and ΓIK ,sin
N
K (u) = ΓIK (u) = u′.

Especially, the result holds if (F,dF ,mF ) satisfies the condition RCD∗(N − 1, N).

Proof. We follow the proof of Lemma 6.12 in [6] and use the following elementary
lemma from [7]:
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Lemma 5.1.2. Let d(s, t) : (0, 1)2 → R be a map that satisfies

|d(s, t)− d(s′, t)| ≤ |v(s)− v(s′)|, |d(s, t)− d(s, t′)| ≤ |v(t)− v(t′)|

for any s, t, s′, t′ ∈ (0, 1), for some locally absolutely continuous map v : (0, 1) → R
and let δ(t) := d(t, t). Then δ is locally absolutely continuous in (0, 1) and

d

dt
δ|t ≤ lim sup

h→0

d(t, t)− d(t− h, t)
h

+ lim sup
h→0

d(t, t+ h)− d(t, t)

h
dt-a.e. in (0, 1).

Proof. →[7, Lemma 4.3.4]

1. We recall that diamF ≤ π implies ConN,K(F ) = IK ×NsinK F . Consider u ∈
C∞0 (I̊K) ⊗ Lip(F ). u is Lipschitz with respect to dConK . Let γ = (α, β) : [0, 1] →
(∂IK)cε×F be a curve in AC2(ConK,N(F )) where (∂IK)cε = IK\(∂IK)ε. Then, one can

check that α ∈ AC2(I̊K) and β ∈ AC2(F,dF ) and there is g ∈ L2((0, 1), dt) such that

dF (βs, βt) ≤
∫ t

s
g(τ)dτ and |αt − αs| ≤

∫ t

s
g(τ)dτ for s < t ∈ [0, 1].

For K > 0 we have the following estimates (and similar for K = 0).

dConK ((r, y), (r, x)) = cos−1
K (cos2 r + sin2 r cos dF (x, y))

= cos−1
K (1− sin2 r(1− cos dF (x, y))) ≤ cos−1

K (1− 1
2 sin2 r d2

F (x, y))
(5.1.2)

cos−1
K (1− 1

2x
2) = x+ o(x2) for x→ 0 (5.1.3)

Then we can see that for s < s′ and t < t′

|u(αs, βt)− u(αs, βt′)| ≤ LdConK ((αs, βt), (αs, βt′))

≤ L cos−1
K (1− 1

2 sin2 αs d2
F (βt, βt′))

≤ M̃ dF (βt, βt′) ≤M
∫ t′

t
g(τ)dτ

|u(αs, βt)− u(αs′ , βt)| ≤ LdConK ((αs, βt), (αs′ , βt)) ≤ L|αs − αs′ | ≤M
∫ s′

s
g(τ)dτ

where L is a Lipschitz constant of u and M,M̃ > 0 are constants. Hence, we can
apply Lemma 5.1.2 and we obtain∣∣∣∣ ddt(u ◦ γ)(t)

∣∣∣∣ ≤ lim sup
h→0

|u(αt−h, βt)− u(αt, βt)|
h

+ lim sup
h→0

|u(αt, βt+h)− u(αt, βt)|
h
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for a.e. t ∈ [0, 1]. By definition of the local Lipschitz constant Lip and by the
elementary estimate 2ab ≤ a2 + b2 for any a, b ∈ R, it follows that∣∣∣∣ ddt(u ◦ γ)(t)

∣∣∣∣ ≤ Lipuβt(αt)|α̇(t)|+ Lipuαt(βt)|β̇(t)|

≤
√

(Lipuβt)2(αt) + 1
sin2

K(αt)
(Lipuαt)2(βt)

√
|α̇(t)|2 + sin2

K(αt)|β̇t|2

=: G(γ(t))|γ̇(t)|

for a.e. t ∈ [0, 1]. If we want to check that G is a weak upper gradient of u, we only
need consider curves in (∂IK)cε×F since u has compact support in I̊K×NsinK F . Hence,
integration with respect to t on both sides shows that G is a weak upper gradient of
u. It follows

|∇u|w (r, x) ≤ G(r, x) mC -a.e. . (5.1.4)

Since (F,dF ,mF ) satisfies a volume doubling property and supports a local Poincaré
inequality, Cheeger’s theorem (Theorem 4.1.9) states that Lipur = |∇ur|w mF -a.e. .
Then the square of the right hand side of (5.1.4) equals

G(r, x)2 = ((ux)′(r))2 + 1
sin2

K r
|∇ur|2w(x) mC -a.e. .

2. By the definition of skew products C∞0 (I̊K)⊗D(ChF ) is dense in D(IK×NsinKChF ).

Hence, for any u ∈ D(IK ×NsinK ChF ) there is a sequence un ∈ C∞0 (I̊K)⊗D(ChF ) that
converges to u with respect to the energy norm of IK ×NsinK ChF , and we will find a
subsequence such that

ΓIK ,sin
N
K (uxni) + 1

sin2
K
|∇urni |

2
w −→ ΓC(u) = ΓIK ,sin

N
K (ux) + 1

sin2
K
|∇ur|2w mC -a.e. .

The left hand side of (5.1.4) converges weakly in L2(mC) (after taking another subse-
quence) and the limit is the minimal weak upper gradient of u. This follows from the
stability theorem for minimal weak upper gradients in [5] (see Theorem 4.1.10). More
precisely, we can argue as follows. Since |∇un|w ∈ L2(mC) is a bounded sequence, we
find a subsequence uni such that |∇uni |w converges weakly to g = |∇u|w ∈ L2(mC)
by the stability theorem. Especially, we have∫

C
|∇uni |wϕdmC →

∫
C
|∇u|wϕdmC

for any non-negative test function ϕ ∈ L2(mC). Hence, inequality (5.1.4) is preserved
in the limit mC-a.e. and we have

|∇u|2w (r, x) ≤ ΓIK ,sin
N
K (ux)(r) + 1

sin2
K
|∇ur|2w(x) mC -a.e. (5.1.5)

and in particular, u ∈ D(IK ×NsinK ChF ) implies u ∈ D(ChConN,K(F )).
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Lemma 5.1.3. Let (F,dF ,mF ) satisfy RCD∗(N − 1, N) for N ≥ 1 and diamF ≤
π. Let ConN,K(F ) be the corresponding (K,N)-cone for K ≥ 0. Then ConN,K(F )
satisfies a volume doubling property and supports a local Poincaré inequality.

Proof. We assume N > 1 since the case N = 1 is already clear by Remark 4.3.12 and
Theorem A. We will use the following theorem of Ohta from [61].

Theorem 5.1.4. If the metric measure space (F,dF ,mF ) satisfies MCP (N − 1, N)
in the sense of Ohta and if diamF ≤ π then the associated (0, N)-cone satisfies
MCP (0, N + 1) in the sense of Ohta.

Hence, in the caseK = 0 we proceed as follows. When (F,dF ,mF ) satisfiesRCD∗(N−
1, N), Theorem 4.3.5 implies MCP (N − 1, N) that implies a measure contraction
property MCP (0, N+1) for ConN,0(F ) in the sense of Ohta. In particular, ConN,K(F )
satisfies a volume doubling property by results of Ohta in [60] and supports a lo-
cal Poincaré inequality by Theorem 4.1.4. The latter follows since the condition
RCD∗(N − 1, N) implies that for every x ∈ F and mX-a.e. y ∈ F there is a unique
geodesic by Corollary 4.3.4. This property is inherited by the cone because of The-
orem 2.2.3 and since diamF ≤ π. Hence, MCP à la Ohta is the same as MCP à la
Sturm and we can apply Theorem 4.1.4 by von Renesse.

The case K > 0 can be covered in the same way. Assume without loss of generality
that K = 1. By following straightforwardly Ohta’s proof of Theorem 5.1.4 in [61] we
can prove the analogous result for (1, N)-cones where one should use the following for-
mula for the projection of a geodesic γ = (α, β) : [0, 1]→ ConN,1(F )\ {singularities}
to [0, π].

cosα(t) = σ
(1−t)
1,1 (L(γ))α(0) + σ

(t)
1,1(L(γ))α(1).

Alternatively, one can use Theorem 5.1.4 directly and compare the metric and the
measure of the spherical cone around the origin with the metric of the Euclidean cone
around the origin. More precisely, one can find constants m,M > 0 such that

1

M
dConK ≤ dCon0 ≤

1

m
dConK and

1

M
sinNK r ≤ rN ≤

1

m
sinNK r.

From this estimates one can easily deduce the doubling property and the Poincaré
inequality in a neighborhood of the origin from the corresponding results for the 0-
cone. Away from the singularities the same argument works by comparison with the
direct product (IK × F,dEukl×dF ,L1 ⊗mF ).

Theorem 5.1.5. Let (F,dF ,mF ) be a metric measure space satisfying RCD∗(N −
1, N) for N ≥ 1 and diamF ≤ π. Then the intrinsic distance dEC of EC = IK ×NsinK
ChF coincides with dConK .

Proof. By remark 5.1.8 we know that in any case diamF ≤ π, and IK ×NsinK F =
ConN,K(F ) by Remark 2.2.7. We only check the case K > 0.
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1. We know from Proposition 5.1.1 that D(IK ×NsinK ChF ) ⊂ D(ChConN,K (F )) and for
any u ∈ D(IK ×NsinK ChF )

|∇u|2w ≤ ΓIK ,sin
N
K (ux) + 1

sin2
K
|∇ur|w mC -a.e. (5.1.6)

where ux(r) = u(r, x) and ur(x) = u(r, x). For the intrinsic distance of EC we need
to consider u ∈ LC,loc = C(IK × F/∼,OC) ∩ Lloc where

Lloc :=
{
ψ ∈ Dloc(IK ×NsinK ChF ) :

√
ΓC(ψ) ≤ 1 mC -a.e. in IK × F/∼

}
.

One has to prove that u is 1-Lipschitz with respect to dConK . We will follow an
argument that was suggested to the author by Tapio Rajala.

First, ΓC(u) ≤ 1 mC-a.e. implies |∇u|w ≤ 1 mC-a.e. by (5.1.6). |∇u|w is
a weak upper gradient and ConN,K(F ) satisfies the measure contraction property
MCP (N,N + 1) by the proof of the previous lemma. Consider two points p, q ∈
ConN,K(F ), Bε(q) ⊂ ConN,K(F ), µ0 = mC(Bε(q))

−1 mC |Bε(q) and the unique optimal
displacement interpolation µt between µ0 = µ and µ1 = δp. Let Π be the corre-
sponding dynamical transference plan. Because of the measure contraction property
(µt)t∈[0,t0] is a 2-test plan for any t0 < 1. Hence∫

|u(γ1)− u(γ0)|dΠ(γ) ≤
∫ ∫ 1

0
|∇u|w(γ(t))L(γ)dtdΠ(γ) ≤ dW (δp, µ1).

where dW is the L2-Wasserstein metric of ConN,K(F ). In the last inequality we use
that µt ≤ C(t) mC for some C(t) > 0 and any t < 1 and |∇u|w ≤ 1 mC-a.e. . If ε→ 0,
we obtain

|u(p)− u(q)| ≤ dW (δp, δq) = dConK (p, q).

This yields

dEC ((s, y), (r, x)) = sup {u(s, y)− u(r, x) : u ∈ LC,loc} ≤ dConK ((r, x), (s, y)) (5.1.7)

for all (r, x), (s, y) ∈ ConN,K(F ).

2. On the other hand, we define g((p, x)) = dConK ((p, x), (q, y)) for some (q, y) ∈
IK ×sinK F where

dConK ((p, x), (q, y)) = cos−1
K (cosK(p) cosK(q) +K sinK(p) sinK(q) cos dF (x, y))︸ ︷︷ ︸

=:h(p,x)

.

h ∈ Dloc(EIK ,sin
N
K ) ⊗ D(ChF ) since cosK , sinK ∈ Dloc(EIK ,sin

N
K ) and cos dF (·, q), 1 ∈

D(ChF ). We can calculate ΓC(g) explicitly. We get

ΓC(g) =
((

cos−1
K

)′
(h(p, x))

)2
ΓC(h)(p, x) =

1

1− h2(p, x)
ΓC(h)(p, x)
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Then, a straightforward calculation using the chain rule and ΓF (dF (·, y)) ≤ 1 yields

ΓC(h)(p, x) =ΓIK (cosK p cosK q) + 2ΓIK (cosK p cosK q, sinK p sinK q) cos dF (x, y)

+ ΓIK (sinK p sinK q) cos2 dF (x, y) +
sin2

K q sin2
K p

sin2
K p

ΓF (cos dF (x, y))

≤1− h2(p, x)

Hence ΓC(g) ≤ 1, g ∈ LC,loc and

g((p, x))− g((q, y)) = g((p, x)) = dConK ((p, x), (q, y)) ≤ dEC ((p, x), (q, y))

by definition of dEC . Hence, we obtain that dEC = dConK .

Corollary 5.1.6. Let (F,dF ,mF ) be a metric measure space satisfying RCD∗(N −
1, N) for N ≥ 1 and diamF ≤ π. Then IK ×NsinK ChF = ChConN,K (F ).

Proof. We will use the following theorem of Koskela and Zhou in [51].

Theorem 5.1.7. Let EX be a regular, strongly local and strongly regular Dirich-
let form on L2(X,mX). Suppose (X,dEX ,mX) satisfies a doubling property. Then
Lip(X) ⊂ Dloc(E), ΓX(u) exists for any u ∈ Lip(X) and ΓX(u) ≤ Lip(u)2 mX -a.e. .

dConK = dEC by Theorem 5.1.5 and dConK induces the topology of the underlying
space IK×F/ ∼. Theorem 5.1.3 implies the doubling property for ConN,K(F ). Then,
by Theorem 5.1.7 and Proposition 5.1.1 we get that any Lipschitz function u with
respect to dConK is in Dloc(IK ×NsinK ChF ) and

ΓC(u) = Lip(u) = |∇u|2w mC -a.e. . (5.1.8)

By the definition of the Cheeger energy this implies the result.

The case when ConN,K(F ) satisfies RCD∗(KN,N + 1). The main results of
this paragraph will be that the metric measure space (F,dF ,mF ) is infinitesimal
Hilbertian, dChF = dF , d

Ch
ConN,K (F ) = dConK and ChConN,K (F ) = IK×NsinKChF provided

that ConN,K(F ) satisfies RCD(KN,N + 1). In particular, ChF is strongly regular.

Remark 5.1.8. We remind the reader on a result by Bacher and Sturm from [11].
They show the following. If the (K, 1)-cone over some 1-dimensional space satisfies
CD(0, 2) then the diameter of the underlying space is bounded by π. It is easy to see
that their proof can be extended to any (K,N)-cone of any dimension bound N and
any parameter K. Thus, if ConN,K(F ) satisfies RCD∗(KN,N+1), then diamF ≤ π,
and consequently, ConN,K(F ) = IK ×NsinK F by Remark 2.2.7.

Lemma 5.1.9. Let (F,dF ,mF ) be a metric measure space. Assume the (K,N)-cone
ConN,K(F ) satisfies RCD∗(KN,N + 1) for N ≥ 1 and K ≥ 0. Then (F,dF ,mF ) sat-
isfies a volume doubling property, supports a local Poincaré inequality and (F,dF ,mF )
is infinitesimal Hilbertian.
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5.1 Warped product versus skew product

Proof. We prove the result for K > 0. The general case follows in the same way.
Consider

x ∈ F 7→ (1, x) ∈ {1} × F ⊂ ConN,K(F ).

We can find constants M > m > 0 such that

1

M
dConK ≤ max {| · − · |,dF} ≤

1

m
dConK &

1

M
sinNK ≤ 1 ≤ 1

m
sinNK

in an ε-neighborhood of {1} × F ⊂ ConN,K(F ). On the one hand, from this we can
easily deduce the volume doubling property for F . Pick a point x ∈ F and let r > 0.
Then

4rmF (B2r(x)) ≤ 1

m
sinNK rdr ⊗mF ([−2r + 1, 2r + 1]×B2r(x))

≤ 1

m
mC(B2Mr(1, x))

≤ 1

m
C

(
2M

m

)N
mC(Bmr(1, x))

≤ 1

m
C

(
2M

m

)N
mC([−r + 1, r + 1]×Br(x))

≤ 2NC

(
M

m

)N+1

2rmF (B2r(x)).

We used the volume doubling property of ConN,K(F ) in the third inequality. On the
other hand, we also obtain that the space F supports a weak local Poincaré inequality
because of the bi-Lipschitz invariance of this property. For example, we can follow
the method that is provided in Section 4.3 of [15].

Now, we will check that F is infinitesimal Hilbertian. For any Lipschitz function u
on ConN,K(F ) we see

(Lipu)(r, x) = lim sup
(s,y)→(r,x)

|u(s, y)− u(r, x)|
dConK ((s, y), (r, x))

≥ lim sup
(s,y)→(r,x),r=s

|u(r, y)− u(r, x)|
dConK ((r, y), (r, x))

≥ lim sup
y→x

|ur(y)− ur(x)|
sinK(r)|x, y|

=
1

sinK(r)
Lipur(x). (5.1.9)

The second last inequality comes from (5.1.2) and (5.1.3). Following the steps in para-
graph 1 of the proof of Proposition 5.1.1 we can see that (5.1.4) holds for C∞K (I̊K)⊗u
where u ∈ Lip(F ). There, we did not use that F is infinitesimal Hilbertian. By
locality of the minimal weak upper gradient (5.1.4) also holds for 1⊗u. Then (5.1.4)
and (5.1.9) imply

Lip(1⊗ u)(r, x) = 1
sinK r Lipu(x) for a.e. r ∈ [0, π/

√
K] and mF -a.e. x ∈ F.
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Then,
∫
F LipudmF has to be a quadratic form on Lip(F ) and its form closure is by

definition the Cheeger energy ChF .

Lemma 5.1.10. Let (F,dF ,mF ) be a metric measure space and assume ConN,K(F )
satisfies RCD∗(KN,N + 1) for K ≥ 0 and N ≥ 1. Then dChF = dF . In particular,
ChF is strongly regular in the sense of Dirichlet forms.

Proof. We assume K > 0. The case K = 0 follows in the same way. Consider
u(·) = dF (x, ·) ∈ D(ChF ). u satisfies |∇u|w ≤ 1. Hence, dChF ≥ dF . The converse
inequality is obtained as follows. Consider u ∈ Dloc(ChF ) ∩ C(F ) with |∇u|w ≤ 1.
Let ε > 0. We choose δ > 0 such that 1

sinK r
≤1+ε if r ∈ B2δ(π/2). Let u1 ∈ C∞0 (I̊K)

such that u1 ≤ 1 and u1|Bδ(π/2) = 1. u1 ⊗ u ∈ Dloc(EC) and

|∇(u1 ⊗ u)|2 = (u′1)2u2 +
u2

1

sin2
K
|∇u|2w ∈ L∞(mC)

In particular, it follows that |∇(u1 ⊗ u)| = 1
sinK
|∇u|w ≤ 1 + ε on Bδ(π/2) × F .

Since ConN,K(F ) satisfies RCD∗(KN,N + 1), this implies that u1 ⊗ u admits a
Lipschitz representative and the Lipschitz constant is locally less than 1 + ε on some
neighborhood of π/2×F . This can be seen from standard arguments like in paragraph
1 of the proof of Proposition 5.1.5. Hence, for any x, y ∈ F such that dF (x, y) is small,
we have

|u(x)− u(y)| ≤ (1 + ε) dConK ((π/2, x), (π/2, y)) ≤ (1 + ε) dF (x, y).

It follows that dChF ≤ (1 + ε) dF locally. Now, dF is geodesic by the remark directly
after Definition 2.2.6. We can conclude that dChF ≤ (1 + ε) dF globally, and since
ε > 0 was arbitrary, we have dChF ≤ dF .

Lemma 5.1.11. Let (F,dF ,mF ) be a metric measure space that satisfies a volume
doubling property and supports a Poincaré inequality. Assume ConN,K(F ) satisfies
RCD∗(KN,N + 1) for K ≥ 0 and N ≥ 1. Then the intrinsic distance dEC of
EC = IK ×NsinK ChF coincides with dConK .

Proof. Since F satisfies a volume doubling property, supports a local Poincaré in-
equality and is infinitesimal Hilbertian, we can apply Proposition 5.1.1. Then, we
have for any u ∈ D(IK ×NsinK ChF )

|∇u|2w ≤ ΓC(u) mC -a.e. . (5.1.10)

ConN,K(F ) satisfies a Riemannian curvature-dimension condition. Hence, |∇u|w ≤
ΓC(u) ≤ 1 implies u is 1-Lipschitz and (5.1.7) holds. On the other hand, we can
proceed as in the proof of Theorem 5.1.5 and obtain that dEC = dConK .

Corollary 5.1.12. Let (F,dF ,mF ) be a metric measure space that satisfies a volume
doubling property and supports a Poincaré inequality. Assume ConN,K(F ) satisfies
RCD∗(KN,N + 1) for K ≥ 0 and N ≥ 1. Then IK ×NsinK ChF = ChConN,K (F ).

71
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Proof. We can follow the proof of Corollary 5.1.6.

We summarize the results of this section in the following corollary.

Corollary 5.1.13. Let (F,dF ,mF ) be a metric measure space and K ≥ 0. Assume

1. (F,dF ,mF ) satisfies RCD∗(N − 1, N) for N ≥ 1 and diamF ≤ π, or

2. ConN,K(F ) satisfies RCD∗(KN,N + 1) for N ≥ 1.

Then ChConN,K (F ) = IK ×NsinK ChF , dChF = dF and d
Ch

ConN,K (F ) = dConN,K(F ).

Remark 5.1.14. In particular, F is infinitesimal Hilbertian if ConN,K(F ) satisfies
RCD∗(KN,N+1), and ConN,K(F ) is infinitesimal Hilbertian if F satisfiesRCD∗(N−
1, N).

5.2 Proof of classical estimates for skew products

In this section and in the next two sections we consider a Dirichlet form EF on L2(mF )
like in the general assumption in the beginning of this chapter. We assume there is
an admissible algebra AF for EF . This enables us to do calculations classically. Let B
be a Riemannian manifold like in Assumpition 4.2.10 and let f ∈ D2(LB) be smooth
and FK-concave like in Assumpition 4.2.11.

Theorem 5.2.1. EF satisfies BE((N − 1)KF , N) for N ≥ 1 and KF ∈ R such that

ΓB(f) +Kf2 ≤ KF on B.

Set AC = C∞0 (B̊)⊗AF . Then the N -skew product EC = B ×Nf EF satisfies

ΓC2 (u) ≥ (N + d− 1)KΓC(u) +
1

N + d
(LCu)2 (5.2.1)

pointwise mC-almost everywhere and for any u ∈ AC.

Remark 5.2.2. In particular, we can apply the theorem if B = IK , f = sinK and
KF = 1. In section 5.4, we will prove analogous results for Dirichlet forms that
satisfy the intrinsic Bakry-Emery curvature-dimension condition. The advantages of
the classical approach are that calculations really can be done pointwise and that the
structure of formulas and inequalities becomes more clear.

Proof. Every element of AC is of the form
∑k

i=1 u
i
1u
i
2 for k ∈ N, but we will check

(5.2.1) only for elements of the form u+ v = u1⊗ u2 + v1⊗ v2 where u1, v1 ∈ C∞0 (B̊)
and u2, v2 ∈ AF . The case of arbitrary finite sum follows in the same way. We
compute ΓC2 (u), ΓC2 (v) and ΓC2 (u, v) explicitly mC-a.e. . A straightforward calculation
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yields (see also the first paragraph of the proof of Theorem 5.4.4 where the calculation
is peformed in more detail):

2ΓC2 (u, v) = 2ΓB2 (u1, v1)v2u2 + u1v1
f4 2ΓF2 (u2, v2)

+ ΓB(u1, v2) 1
f2L

F (u2v2)− ΓB
(
u1
f2 , v1

)
LF (u2)v2 − ΓB

(
u1,

v1
f2

)
u2L

F (v2)

+
(
LB,f(u1v1

f2 )− LB,f(u1)v1
1
f2 − u1L

B,f(v1) 1
f2

)
ΓF (u2, v2) (5.2.2)

We set

2ΓC2 (u, v)−
(
2ΓB2 (u1, v1)v2u2 + u1v1

f4 2ΓF2 (u2, v2)
)

=: (J )

The chain rule for ΓB and LB yields:

ΓB
(
u1
f2 , v1

)
= 1

f2 ΓB(u1, v1)− 2u1
f3 ΓB(f, v1)

LB,f(u1v1
f2 ) = v1

f2L
B,f(u1) + u1

f2L
B,f(v1)− 2u1v1

f3 LB,f(f)

− 4v1
f3 ΓB(u1, f)− 4u1

f3 ΓB(v1, f) + 6u1v1
f4 ΓB(f) + 2

f2 ΓB(u1, v1)

N
f ΓB(f, u1v1

f2 ) = Nv1
f3 ΓB(f, u1) + Nu1

f3 ΓB(f, v1)− 2Nu1v1
f4 ΓB(f).

We glue this back into (J ) and another straightforward calculation yields.

(J ) = 2u1
f3 ΓB(f, v1)LF (u2)v2 + 2v1

f3 ΓB(f, u1)LF (v2)u2

− 2u1v1
f3

(
LB(f) + N−1

f ΓB(f)
)
ΓF (u2, v2)

+
(
− 4v1

f3 ΓB(u1, f)− 4u1
f3 ΓB(v1, f) + 4u1v1

f4 ΓB(f) + 4
f2 ΓB(u1, v1)

)︸ ︷︷ ︸
=:(I)(u1,v1)

ΓF (u2, v2)

In the case u = v we obtain the following simplification

(J ) = 4u1
f3 ΓB(f, u1)LF (u2)u2 −

2u2
1

f3

(
LB(f) + N−1

f ΓB(f)
)
ΓF (u2) + (I)(u1)ΓF (u2).

(5.2.3)

Now, we can compute the Γ2-operator for elements of the form u1 ⊗ u2 + v1 ⊗ v2 =
u+ v ∈ C∞0 (B̊)⊗AF for mC-a.e. point (p, x) ∈ C̊:

2ΓC2 (u+ v)(p, x) = 2ΓB2 (ux)(p) + 1
f4(p)

2ΓF2 (up)(x)

+ 4
f3(p)

ΓB(f, ux)(p)LF (up)(x)− 2
f3(p)

(
LB(f)(p) + N−1

f(p) ΓB(f)(p)
)
ΓF (up)(x)

+ 2(I)(u1, v1)(p)ΓF (u2, v2)(x) + (I)(u1)(p)ΓF (u2)(x) + (I)(v1)(p)ΓF (v2)(x)

We denote the last line in the previous equation with (II)(p, x). First, assume
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u1(p)v1(p) 6= 0. Then, it can be rewritten in the following form

(II) = 2u1v1
f2

(
− 4ΓB(ln |u1|, ln f)− 4ΓB(ln |v1|, ln f)

+ 4ΓB(ln f) + 4ΓB(ln |u1|, ln |v1|)
)
ΓF (u2, v2)

+
u2

1
f2

(
− 8ΓB(ln |u1|, ln f) + 4ΓB(ln f)

+ 4ΓB(ln |u1|)
)
ΓF (u2) +

v2
1
f2

(
− 8ΓB(ln |v1|, ln f) + ...

)
ΓF (v2)

= 8
f2

〈
∇ ln( f

|u1|),∇ ln( f
|v1|)

〉
|pΓF (up, vp)(x)

+ 4
f2

∣∣∣∇ ln( f
|u1|)

∣∣∣2
p

ΓF (up)(x) + 4
f2

∣∣∣∇ ln( f
|v1|)

∣∣∣2
p

ΓF (vp)(x)

We choose an orthonormal basis (ei)1,...,d with respect to the Riemannian metric at
TBp and write

∇ ln( f
|u1|)|p =

∑d
i=1 a

iei and ∇ ln( f
|v1|)|p =

∑d
i=1 c

iei.

Then we obtain

f2(p)
4 (II) =

d∑
i

2aiciΓF (up, vp)(x) +
d∑
i

(ai)2ΓF (up)(x) +
d∑
i

(ci)2ΓF (vp)(x)

=
d∑
i

ΓF (aiup + civp)(x) ≥ 0 for mC-almost every (p, x) (5.2.4)

since ΓF ≥ 0 mF -a.e. In the case where v1(p) = 0 and u1(p) 6= 0, we get

(II) = 4
f2 〈∇ ln(f/|u1|),∇v1〉 |pΓF (up, v2)(x)

+ 4
f2 |∇ ln(f/|u1|)|2p ΓF (up)(x) + 4

f2 |∇v1|2p ΓF (v2)(x)

and when we set ∇v1|p =
∑d

i α
iei, similar as before we obtain that

f2(p)
4 (II) =

d∑
i

ΓF (aiup + αiv2)(x) ≥ 0. (5.2.5)

In the same way we can deal with the other cases. If we would consider an arbitrary

u ∈ C∞0 (B̊) ⊗ AF of the form
∑k

j u1,j ⊗ u2,j =
∑k

j uj ,
f2

4 (II) would take the form∑d
i ΓF (

∑k
j a

i
ju
p
j ) ≥ 0 and all the other calculations are the same.

It follows in any case that

2Γ2(u)(p, x) ≥ 2ΓB2 (ux)(p) + 1
f4(p)

2ΓF2 (up)(x)

+ 4
f3(p)

ΓB(f, ux)LF (up)

− 2
f3(p)

(
LBf(p) + N−1

f(p) ΓB(f)(p)
)

ΓF (up)(x) mC -a.e.
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for any u ∈ C∞0 (B̊) ⊗ AF . This estimate becomes an equality if u = f ⊗ u2. From
(4.2.13) we have

ΓB,f
N

2 (u) ≥ (d+N − 1)KΓB(u) +
1

d
(LBu)2 +

1

N

(
N
f ΓB(f, u)

)2
(5.2.6)

for any function u ∈ C∞0 (B̊). Now we apply the curvature-dimension conditions for
EF and EB,fN , inequality (5.2.6), and the assumptions on f . First, we see that

LBf +
N − 1

f
ΓB(f) ≤ −dKf +

N − 1

f

(
KF −Kf2

)
everywhere in B.

Then it follows that

2ΓC2 (u) ≥ 2(d+N − 1)KΓB(ux) + 2
1

d
(LBux)2 + 2

1

N

(
N
f ΓB(f, ux)

)2
+ 2

f4

(
(N − 1)KFΓF (up) + 1

N

(
LFup

)2)
+ 2

f3 ΓB(f, ux)2LF (up) + 2
f3

(
dKf − N−1

f

(
KF −Kf2

) )
ΓF (up)

= 2
(

(d+N − 1)KΓB(u1) +
1

d
(LBux)2 +

1

N

(
N
f ΓB(f, ux)

)2)
+ 2

f2 (N + d− 1)KΓF (up)

+ 1
N

2
f4

(
LFup

)2
+ 1

N
2N
f3 ΓB(f, ux)2LF (up)

= 2
(
(d+N − 1)KΓB(ux) +

1

d
(LBux)2 )+ 2

f2 (N + d− 1)KΓF (up)

+
1

N

(
2
(
N
f ΓB(f, ux)

)2
+ 2

f4 (LFup)2 + 2N
f3 ΓB(f, ux)2LF (up)

)
= 2
(

(N + d− 1)KΓB(ux) +
1

d
(LBux)2

)
+ 2

f2 (N + d− 1)KΓF (up) + 2
N

(
N
f ΓB(f, ux) + 1

f2L
Fup
)2

mC -a.e. .

We apply the following elementary equality

1
da

2 + 1
N b

2 = 1
N+d (a+ b)2 + d

(N+d)N (b− N
d a)2 (5.2.7)

for all d,N ≥ 1 and for all a, b ∈ R. Hence

ΓC2 (u) ≥ (N + d− 1)KΓB(ux) + 1
f2 (N + d− 1)KΓF (up)

+
1

d
(LBux)2 +

1

N

(
N
f ΓB(f, ux) + 1

f2L
Fup
)2

≥ (N + d− 1)KΓC(u) + 1
N+d

(
LBux + N

f ΓB(f, ux) + 1
f2L

Fup
)2

mC -a.e. .

This is the right Γ2-estimate since LCu = LBux + N
f ΓB(f, ux) + 1

f2L
Fup for any

u ∈ C∞0 (B̊)⊗AF because of Corollary 4.4.4.
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5.2 Proof of classical estimates for skew products

Theorem 5.2.3. Let AF be an admissible algebra for EF . EC = IK ×NsinK E
F satisfies

the Γ2-estimate (5.2.1) of curvature NK and dimension N + 1 for K ≥ 0 and N ≥ 1
on C∞0 (I̊K)⊗AF if and only if EF satisfies BE(N − 1, N).

Proof. We just need to prove the “only if” direction. We assume a Γ2-estimate
for (LC ,AC) and deduce the curvature-dimension condition for (LF ,AF ). We have
to show that the Γ2-estimate holds pointwise a.e. in F for any u2 ∈ AF . From
calculations in the previous proof we have the identity (5.2.3) for ΓC2 in the following
form

ΓC2 (u1 ⊗ u2) = Γ
IK ,sin

N
K

2 (u1)u2
2 +

u2
1

sin4
K

ΓF2 (u2)

+
u1

sin3
K

cosK u′12LF (u2)u2 −
u2

1

sin3
K

(
−K sinK +N−1

sinK
cos2

K

)
ΓF (u2)

+
( 2

sin2
K

(u′1)2 − 4u1

sin3
K

cosK u′1 +
2u2

1

sin4
K

cos2
K

)
ΓF (u2). (5.2.8)

for any u1 ∈ C∞0 (B̊) and any u2 ∈ AF mC-a.e. in IK ×F . We consider some open set
U ⊂ I̊K and we choose u1 ∈ C∞0 (I̊K) such that u1 = sinK on U . By the special choice
of u1 (5.2.8) reduces to

ΓC2 (u1 ⊗ u2) = Γ
IK ,sin

N
K

2 (u1)u2
2 +

u2
1

sin4
K r

ΓF2 (u2)

+
u1

sin3
K

cosK ·u′1 · 2LF (u2)u2 −
u2

1

sin3
K

(
−K sinK + N−1

sinK
cos2

K

)
ΓF (u2)

for mC-almost every (r, x) in U × F . In the case of (IK , sin
N
K) the identity (4.2.13) in

the proof of Proposition 4.2.15 implies

Γ
IK ,sin

N
K

2 (u1) = (u′′1)2 + N
sinK

K sinK ·(u′1)2 + N
sin2

K
(cosK · u′1)2

everywhere in I̊K for u1 ∈ C∞0 (I̊K). Hence, we obtain

u2
1

sin4
K

ΓF2 (u2) = ΓC2 (u1 ⊗ u2)− Γ
IK ,sin

N
K

2 (u1)u2
2

− u1

sin3
K

cosK ·u′1 · 2LF (u2)u2 +
u2

1

sin3
K

(
−K sinK + N−1

sinK
cos2

K

)
ΓF (u2)

= ΓC2 (u1 ⊗ u2)− (u′′1)2u2
2 − N

sinK
K sinK ·(u′1)2u2

2 − N ′

sin2
K

(cosK · u′1)2 u2
2

− u1

sin3
K

cosK ·u′1 · 2LF (u2)u2 +
u2

1

sin3
K

(
−K sinK + N−1

sinK
cos2

K

)
ΓF (u2).

76



5 Riemannian Ricci curvature bounds for cones

mC-a.e. in U×F . On the other side the Γ2-estimate for EC gives for any u1 ∈ C∞0 (B̊)
and any u2 ∈ AF

ΓC2 (u1u2) ≥ NK
(
(u′1)2u2

2 +
u2

1

sin2
K

ΓF (u2)
)

+
1

N + 1

(
LIKu1u2 + N

sinK
ΓIK (sinK , u1)u2 + u1

sin2
K
LFu2

)2
mC -a.e. .

Since u1(r) = sinK r and u′1(r) = cosK r, we get after some cancelations at (r, x)

1

sin2
K

ΓF2 (u2) ≥ (N − 1)(cos2
K +K sin2

K)
1

sin2
K

ΓF (u2)− cos2
K

sin2
K

2LF (u2)u2

− (−K sinK)2 u2
2 −

N

sin2
K

(cosK · cosK)2 u2
2

+
1

N + 1

(
−K sinK u2 +

N

sinK
cos2

K u2 +
1

sinK
LFu2

)2

(5.2.9)

mC-a.e. in U × F . We consider the last term on right side in (5.2.9) in more detail.
From the identity (5.2.7) we deduce

1

N + 1

(
−K sinK u2 +

N

sinK
cos2

K u2 +
1

sinK
LFu2

)2

= (−K sinK u2)2 +
1

N

(
N

sinK
cos2

K u2

)2

+
1

N

(
1

sinK
LFu2

)2

+
2

sin2
K

cos2
K u2L

Fu2

− 1

(N + 1)N

(
N

sinK
cos2

K u2 +
1

sinK
LFu2 +NK sinK u2

)2

︸ ︷︷ ︸
= 1

sin2
K

(LFu2+Nu2)2

It follows

ΓF2 (u2) ≥ (N − 1)ΓF (u2) +
1

N
(LFu2)2 − 1

(N + 1)N
(LFu2 +Nu2)2 (5.2.10)

at x for mC-almost every tuple (r, x) ∈ U × F . But since (5.2.10) does not depend
on r ∈ U anymore, we can conclude (5.2.10) holds for mF -a.e. x ∈ F .

We fix x where (5.2.10) holds. EF is strongly local. So we can add functions that
are locally constant in a neighborhood of x without affecting the value of LFu2(x),
ΓF (u2)(x) and ΓF2 (u2)(x). Thus we replace u2 by ũ2 such that ũ2 = u2+C locally at x
where C = −u2(x)− 1

NL
Fu2(x). Then (LFu2)(x) = (LF ũ2)(x), Γ(u2)(x) = Γ(ũ2)(x)

and ΓF2 (u2)(x) = Γ(ũ2)(x) and (LF ũ2 +Nũ2)2 vanishes at x. Hence, we obtain the
desired estimate for u2 at mF -almost every x and we obtain the conditionBE(N−1, N)
for F .
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5.3 Essentially selfadjoint operators

5.3 Essentially selfadjoint operators

We briefly recall some basic notations. Suppose (Hi, ‖·‖Hi)i∈N is a sequence of Hilbert
spaces. Its direct sum is a Hilbert space that is given by

H =
∞⊕
i=1

Hi =

{
v := (vi)i∈N : vi ∈ Hi such that ‖v‖2H :=

∞∑
i=1

‖vi‖2Hi <∞

}

where the inner product is
∑∞

i=1(vi, ui)Hi = (v, u)H. Additionally, we introduce

∞∑
i=1

Hi =
{
v := (vi)i∈N : vi ∈ Hi and vi = 0 except for finitely many i ∈ N

}
.

We still consider a Dirichlet form EF like in the previous section. We assume the
spectrum of −LF is discrete and there is a spectral gap for the first positive eigenvalue
λ1 ≥ N . Then, there is a spectral decomposition of L2(mF ) with respect to the
eigenvalues of −LF .

L2(mF ) =

∞⊕
i=0

Ei = E0 ⊕
(
L2(mF )/E0

)︸ ︷︷ ︸
=:E⊥

where Ei ⊂ D2(LF ) is the eigenspace to the ith eigenvalue λi. In particular, E0 is
the space of harmonic functions. We recall the properties of Remark 4.2.3.

(1) P F
t admits an α-Hölder-continuous kernel and is a Feller semi-group.

(2) P F
t is L2 → L∞-ultracontractiv: ‖P F

t ‖L2→L∞ ≤ 1.

(3) If mF (F ) <∞, harmonic functions are constant, and F is connected.

Theorem 5.3.1. Assume λ1 ≥ N ≥ 1. Let LC be the self-adjoint operator of the
N -skew product EC = IK ×NsinK E

F for K ≥ 0 and N ≥ 1. Let A be dense in the

domain of LIK ,sin
N
K . Then

Ξ = [A⊗ E0]⊕
∞∑
i=1

C∞0 (I̊K)⊗ Ei

is dense in the domain of LC with respect to the graph norm.

Proof. 1. We denote the restriction of EF and (·, ·)L2(mF ) to E⊥ by EF⊥ = EF |E⊥×E⊥
and (·, ·)E⊥ respectively. There is a self-adjoint, densely defined operator LF⊥ on E⊥
that corresponds to EF⊥. It is easy to see that D2(LF⊥) = D2(LF )∩E⊥, LF⊥u⊥ = LFu⊥
and specLF⊥ = specLF\ {λ0}.
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Consequently, also L2(mC) = L2(IK , sin
N
K dr)⊗ L2(mF ) can be decomposed orthog-

onally into
L2(mC) = U0 ⊕ U⊥

where U⊥ =
⊕∞

i=1 Ui and Ui = L2(IK , sin
N
K dr) ⊗ Ei . For u = u1 ⊗ u2 ∈ U0 and

v = v1 ⊗ v2 ∈ U⊥ with u1, v1 ∈ L2(IK , sin
N
K dr), u2 ∈ E0 and v2 ∈ E⊥ we have

EC(u, v) = EIK ,fN (u1, u2) (u2, v2)L2(mF )︸ ︷︷ ︸
=0

+ (u1, u2)L2(fN−2dmF ) E
F (u2, v2)︸ ︷︷ ︸

=0

= 0

since EF (u2, v2) = −(LFu2, v2)L2(mF ) = 0 and E0 ⊥ E⊥ in L2(mF ). Thus we can
decompose EC orthogonally as follows

EC = EC |U0×U0 ⊕ EC |U⊥×U⊥ =: EC0 ⊕ EC⊥.

One can easily check that u = u0 ⊕ u⊥ ∈ D(EC) if and only if u0 ∈ D(EC0 ) and
u⊥ ∈ D(EC⊥) and that u = u0 ⊕ u⊥ ∈ D2(LC) if and only if u0 ∈ D2(LC0 ) and
u⊥ ∈ D2(LC⊥) and we have LC = LC0 + LC⊥. In the following we will consider LC0 and
LC⊥ separately.

2. LC⊥ is a densely defined operator on U⊥ with

D2(LC⊥) = D2(LC) ∩ U⊥ = D2(LC) ∩ L2(IK , sin
N
K dr)⊗ E⊥.

C∞0 (I̊K) ⊗ D2(LF ) is a subset of D2(LC), hence, C∞0 (I̊K) ⊗ D2(LF⊥) is a subset of

D2(LC⊥). For u1 ∈ C∞0 (I̊K) and u2 ∈ D2(LF⊥) we have

LC⊥(u1 ⊗ u2) = LIK ,sin
N
Ku1 ⊗ u2 +

u1

sin2
K

⊗ LF⊥u2.

For all i ∈ N\ {0} we set Ũi = Ui ∩
[
C∞0 (I̊K)⊗D2(LF⊥)

]
= C∞0 (I̊K)⊗Ei and consider

the restriction of LC⊥ to Ũi

LC⊥|Ũi = LC |C∞0 (I̊K)⊗Ei =
(
LIK ,sin

N
K + −λi

sin2
K

)
|C∞0 (I̊K) ⊗ idEi

=
(
LIK + N

sinK
ΓIK (sinK , ·)− λi

sin2
K

)
|C∞0 (I̊K) ⊗ idEi =: LC⊥,i

We define
∞∑
i=1

LC⊥,i = LC⊥|∑∞
i=1 C

∞
0 (I̊K)⊗Ei =: L̃C⊥.

We will show that L̃C⊥ is essentially self-adjoint. Then, the unique self adjoint ex-

tension of L̃C⊥ has to coincide with LC⊥. In particular,
∑∞

i=1C
∞
0 (I̊K)⊗ Ei is dense in

D2(LC⊥) with respect to the graph norm. It is sufficient to show that the operator
(LIK + N

sinK
Γ(sinK , ·)− 1

sin2
K
λi)|C∞0 (I̊K) is essentially self-adjoint for every λi ∈ specLF
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(see [71, ch X, problem 1.a]).

We follow the proof of Theorem X.11 in [71]. Consider the unitary transformation

U : L2(IK , sin
N
K dr)→ L2(IK , dr), ϕ(r) 7→

√
sinNKϕ(r).

C∞0 (I̊K) is invariant under U and LIK ,sin
N
K − λi

sin2
K

takes the form

U

(
d2

dr2
+

N

sinK r

d sinK r

dr

d

dr
− λi

sin2
K r

)
U−1 =

d2

dr2
−
(
N2

4
cos2 r − N

2
− λi

)
1

sin2
K r︸ ︷︷ ︸

V (r)

.

We get a Schrödinger-type operator defined on C∞0 (I̊K). The question, whether such
an operator is essentially self-adjoint, is a classical problem from quantum mechanics.
It was answered by Herman Weyl, who analyzed the solutions of the following ordinary
differential equation −ϕ′′ + V ϕ = λϕ. One says that V (r) is in the limit circle case
at r ∈ ∂IK (we assume that ∂IK = {0,∞} for K ≤ 0) if for some λ, all solutions ϕ
are locally square integrable around r. Otherwise we say V is in the limit point case
at r.

Theorem 5.3.2 (Weyl’s limit point-limit circle criterion). Let V be a continuous
real-valued function on I̊K. Then, the operator H = −d2/dr2 + V is essentially self-
adjoint on C∞0 (I̊K) if and only if V is in the limit point case at any r ∈ ∂IK.

For the particular case that we consider, the limit point case at ∞ for K ≤ 0 is easy
to check (see Theorem X.8 in [71] and the next corollary). The case r = 0 for K ≤ 0
and r = 0 and r = π/

√
K for K > 0 follows from the next theorem.

Theorem 5.3.3. Let V be continuous and positive near zero. If V (r) ≥ 3
4

1
(r−r0)2 for

r → r0 ∈ ∂IK\ {∞} then H = −d2/dr2 + V (r) is in the limit point case at r0. If for
some ε > 0, V (r) ≤ (3

4 − ε)
1

(r−r0)2 near r0, then H is in the limit circle case.

Proof. → Theorem X.10 in [71].

So far we did not use the spectral gap of −LF . We have λi ≥ N for any positive
λi ∈ spec−LF . But then, the operator − d2

dr2 − N cos
sinK

d
dr + λi

sin2
K

is essentially self-adjoint

on C∞0 ((0,∞)) since for r → 0(
N2

4
cos2 r − N

2
− λi

)
1

sin2
K r
∼
(
N(N − 2)

4
+ λi

)
1

r2

≥
(
N(N − 2)

4
+N

)
1

r2
≥
(
N(N + 2)

4

)
1

r2
≥ 3

4r2

where the last inequality holds if N ≥ 1. Analogously for r → π.
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For EC0 we cannot follow this strategy (see the next Remark). But since A is assumed

to be dense in the domain of LIK ,sin
N
K , we obtain that

Ξ = [A⊗ E0]⊕
∞∑
i=1

C∞0 (I̊K)⊗ Ei ⊂ D2(LC>)⊕D2(LC⊥) = D2(LC)

is dense in D2(LC).

Remark 5.3.4. For u1 ⊗ c ∈ C∞0 (I̊K)⊗ R we have that LC0 (u1 ⊗ c) = LIK ,sin
N
Ku1 ⊗ c.

But in general, LIK ,sin
N
K |C∞0 (I̊K) is not essentially self-adjoint. More precisely, under

the transformation U it becomes

L̊ = LIK ,sin
N
K |C∞0 (I̊K) =

d2

dr2
−
(
N2

4
cos2 r − N

2

)
1

sin2
K r

We see that (
N2

4
cos2−N

2

)
1

sin2
K

∼ N(N − 2)

4

1

r2
≥ 3

4r2
if N ≥ 3

for r → 0 and(
N2

4
cos2−N

2

)
1

sin2
K

≤ 3

4r2
− ε for some ε > 0 if N < 3

for r → 0. Analogously for r → π. Hence, in the case N ≥ 3 we can choose C∞0 (I̊K)

as dense subset A in D2(LIK ,sin
N
K ) since the closure of C∞0 (I̊K) is the only self-adjoint

extension. On the other hand, in the case 1 ≤ N < 3 the operator L̊ is not essentially
self-adjoint. Then there are more than one self-adjoint extensions Aα of L̊ and

D2(CL(L̊)) ( D(Aα) ⊂ D((L̊)∗)

where CL(L̊) denotes the closure with respect the graph norm and (L̊)∗ is the adjoint

operator. Hence C∞0 (I̊K) cannot be dense in the domain D2(LIK ,sin
N
K ) if 1 ≤ N < 3.

But we can choose

A0 :=
⋃
t>0

P
IK ,sin

N
K

t

[
C∞(I̊K) ∩ L2(sinNK rdr)

]
⊂ D(Γ

IK ,sin
N
K

2 ) ∩ C∞(I̊K).

This is a dense subset in the domain of LIK ,sin
N
K since it is stable with respect to

the semigroup, and it consists of functions that are smooth in I̊K since they solve a
parabolic PDE with smooth coefficients in I̊K .

Remark 5.3.5. In the following the set Ξ will play an important role. Therefore, we
will consider the cases λ1 ≥ 3 and λ1 ∈ [1, 3), that appear in the previous theorem,
separately. In the first case we choose A = C∞0 (I̊K), in the second case we choose
A = A0.
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Lemma 5.3.6. Consider EF and IK ×NsinK E
F as before. Assume LC has a discrete

spectrum and let Ei be the eigenspace for the i-th eigenvalue. Consider u =
∑k

i=1 u
i
1⊗

ui2 ∈ Ξ. Then

PC
t u =

k∑
i=0

P
IK ,sin

N
K ,λi

t ui1 ⊗ ui2 for any t > 0. (5.3.1)

where P
IK ,sin

N
K ,λi

t is the semi-group that is generated by LIK ,sin
N
K ,λi.

Proof. −→ [63, proof of Lemma 3.3]

Remark 5.3.7. In any case λ1 ≥ 1 we also define

Ξ′ :=
⋃
t>0

PC
t Ξ =

[
A0 ⊗ E0

]
⊕

[ ∞∑
i=1

P
IK ,sin

N
K ,λi

t C∞0 (I̊K)⊗ Eλi

]
.

Ξ′ is dense in D2(LC) and stable with respect to PCt . Ξ′ will provide a suitable class
of test function.

Lemma 5.3.8. Consider IK ×NsinK E
F , the corresponding operator LC and u ∈ Ξ′ of

the form

u = u1 ⊗ u2 = PC
t (ũ1 ⊗ u2) = P

IK ,sin
N
K ,λ

t ũ1 ⊗ u2 ∈ D2(LC)

where u2 is an eigenfunction for the eigenvalue λ ∈ {0}∪ [N,∞) of −LF with N ≥ 1,
and ũ1 ∈ C∞0 (I̊K) if λ > 0 and ũ1 ∈ A0 if λ = 0. Then

LCu = LIK ,sin
N
K ,λu1 ⊗ u2.

Proof. We choose v = v1 ⊗ v2 where v1 ∈ C∞0 (I̊K) ⊂ D(EIK ,sinNK ,λ) and v2 ∈ D(EF ).
Then

−(LCu, v)L2(mC) =

∫
F
EIK ,sinNK (ux, vx)dmF (x) +

∫
IK

1
f2(p)
EF (ur, vr) sinNK rdr

=

∫
F

[
EIK ,sinNK (u1, v1) +

∫
IK

λu1v1

sin2
K

sinNK rdr
]
u2v2dmF

= EIK ,sinNK ,λ(u1, v1)

∫
F
u2v2dmF = −(LIK ,sin

N
K ,λu1 ⊗ u2, v)L2(mC)

Since C∞0 (I̊K)⊗D(EF ) is dense in L2(mC), the last identity holds for any v ∈ L2(mC)
and the statement follows.
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5.4 Bakry-Emery condition for skew products

5.4.1 Regularity estimates

The last lemma of the previous section provides a representation formula for the
semigroup of the N -skew product IK ×NsinK E

F . Now, we want to understand the
regularity of the semigroup

P
IK ,sin

N
K ,λ

t u

for λ ≥ N ≥ 1, K > 0 and u ∈ C∞0 (I̊K). This might be done by studying the
corresponding Sturm-Liouville operator

LIK ,sin
N
K ,λi |C∞0 (I̊K) =

d2

dr2
+N

cosK
sinK

d

dr
− λi

sinK

and its eigenfunctions (e.g. [54, Chapter 5, §5]). We will go another way and use
the result by Bacher and Sturm from [11] that states that Theorem B already holds
if the underlying space is a weighted Riemannian manifold (see Theorem A). Then,
we also use Theorem 4.3.8, which connects the Bakry-Emery condition for Dirichlet
forms with the Riemannian curvature-dimension condition to deduce L∞-bounds for
the gradient of P

IK ,sin
N
K ,λ

t u.

Proposition 5.4.1. Let λ ≥ N ≥ 1 and K > 0. Consider the essentially self-adjoint

operator LIK ,sin
N
K ,λ|C∞0 (I̊K) and the corresponding semi-group P

IK ,sin
N
K ,λ

t . Then

ΓIK (P
IK ,sin

N
K ,λ

t u) =
(

(P
IK ,sin

N
K ,λ

t u)′
)2

∈ L∞(IK , sin
N
K rdr).

for u ∈ C∞0 (I̊K).

Proof. Let us assume that K = 1 and we consider the metric measure space

F = (IK̄ , sin
N−1

K̄
dr) for K̄ ≥ 1 such that K̄N = λ.

F satisfies the condition RCD∗(K̄(N − 1), N). We have the Dirichlet form

EIK̄ ,sin
N−1
K̄ = ChF on L2(sinN−1

K̄
dr).

By Theorem 4.3.9 it satisfies the Bakry-Emery condition BE(K̄(N − 1), N).

The first non-negative eigenvalue of the corresponding self-adjoint operator equals
K̄N = λ. An eigenfunction is given by cosK̄ what easily can be checked. Since
1 ≤ K̄, F also satisfies RCD∗(N − 1, N) and we can consider the metric (1, N)-cone
[0, π]×Nsin F . By the result of Bacher and Sturm from [11] it satisfies CD∗(N,N + 1)
but also RCD∗(N,N+1) because of Corollary 5.1.13. By Theorem 4.3.8 the Cheeger
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energy ChConN,K (F ) of [0, π]×Nsin F satisfies BE(N,N + 1). It implies a Bakry-Emery
gradient estimate

|∇PC
t u|2w ≤ e−2NtPC

t |∇u|2w (5.4.1)

for u ∈ D(ChConN,K (F )). By the main results from Section 5.1 the Cheeger energy
of the metric cone coincides with the N -skew product I1 ×Nsin ChF in the sense of
Dirichlet forms and we have

|∇u|2w = ((ux)′)2 + 1
sin2 ((ur)′)2 = Γ[0,π](ux) + 1

sin2 ΓIK̄ (ur).

In particular, the curvature-dimension condition implies that the metric (1, N)-cone
satisfies volume doubling and supports a Poincaré inequality. Hence, PC

t is L2 → L∞-
ultracontractive by Remark 4.2.3.

We choose u = u1 ⊗ u2 where u1 ∈ C∞0 ((0, π)) and u2 ∈ E1. E1 denotes the

eigenspace of λ. Lemma 5.3.6 implies that PCu = P [0,π],sinN ,λu1 ⊗ u2 and (5.4.1)
becomes

Γ[0,π](P
[0,π],sinN ,λ
t u1)u2

2 +
1

sin2 (P
[0,π],sinN ,λ
t u1)2ΓIK̄ (u2) ≤ e−2NtPC

t ΓC(u) ∈ L∞(mC).

This implies that

Γ[0,π](P
[0,π],sinN ,λ
t u1) =

(
(P

[0,π],sinN ,λ
t u1)′

)2 ∈ L∞(sinN rdr)

that is the statement in the case K = 1.

Remark 5.4.2. At this point we can make an important remark on the regularity of
test functions u ∈ Ξ′. Consider a strongly local, regular and strongly regular Dirichlet
form EF that satisfies BE(N − 1, N) and a volume doubling property and supports a
local Poincaré inequality. Assume that closed balls are compact. Then remark 4.2.3
implies L2 → L∞-ultracontractivity for P F

t and it follows that

P F
t ΓF (u) ∈ L∞(mF )

for any u ∈ D(EF ). Hence, if we consider eigenfunctions of LF , the Bakry-Ledoux
gradient estimate implies

ΓF (P F
t u) = e−λtΓF (u) ≤ P F

t ΓF (u) ∈ L∞(mF )

and especially u,ΓF (u) ∈ L∞(mF ). Then, the previous proposition implies for

u = u1 ⊗ u2 ∈ PC
t

[
C∞0 (I̊K)⊗ Eλ

]
= P IK ,sin

N ,λ
t C∞0 (I̊K)⊗ Eλ and λ ≥ 1

that u, ΓC(u), LCu ∈ L∞(mC). The same conclusion holds for u = u1⊗u2 ∈ A0⊗E0

because (IK , sin
N
K rdr) satisfies RCD∗(N,N + 1). Hence, for any u ∈ Ξ′ we have

u, ΓC(u), LCu ∈ L∞(mC).
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5 Riemannian Ricci curvature bounds for cones

Remark 5.4.3. Consider u ∈ P IK ,sin
N
K ,λ

t C∞0 (I̊K) for λ ≥ 1. We know that ΓIK (u) ∈
L∞. Especially, we have∫

IK

ΓIK (u, ϕ) sinNK rdr ≤ ‖u‖L∞(sinNK rdr) <∞

for any ϕ ∈ C∞0 (I̊K) with ‖
√

ΓIK (ϕ)‖L∞ ≤ 1. Hence, there exists a Radon measure
−∆u on IK such that∫

IK

ϕd(−∆u) =

∫
IK

ΓIK (u, ϕ) sinNK rdr =

∫
IK

LIK ,sin
N
Kϕu sinNK rdr.

LIK ,sin
N
K ,λu ∈ L2(sinNK rdr) and for ϕ ∈ C∞0 (I̊K) we obtain

−
∫
IK

LIK ,sin
N
K ,λuϕ sinNK rdr = EIK ,sinNK ,λ(u, ϕ)

=

∫
IK

ΓIK (u, ϕ) sinNK rdr +

∫
IK

λ

sin2
K

uϕ sinNK rdr

=

∫
IK

ϕd(−∆u) +

∫
IK

λ

sin2
K

uϕ sinNK rdr.

In the case u ∈ A0 and λ = λ0 = 0 these identities are already true where d∆u =
LIK ,sin

N
Ku sinNK rdr.

5.4.2 Proof of the Bakry-Emery condition for (K,N)-cones

We recall that EF is assumed to be strongly regular, and closed balls are compact
since F is compact. This implies that the same properties also hold for IK ×NsinK E

F

by Lemma 4.4.6. Additionally, we assume that besides EF also IK ×NsinK E
F satisfies

a volume doubling property and supports a local (2, 2)-Poincaré inequality. Hence,
we can use the results of Remark 4.2.3 also on the level of IK ×NsinK E

F . We assume
K > 0.

Theorem 5.4.4. Let EF satisfy BE(N−1, N). Assume the spectrum of LF is discrete
and the first positive eigenvalue of −LF satisfies λ1 ≥ N . Let K > 0. Assume also
that EC = IK×NsinK E

F satisfies a volume doubling property and supports a local (2, 2)-
Poincaré inequality. Then IK ×NsinK E

F satisfies BE(KN,N + 1).

Proof. Consider

Ξ = [A⊗ E0]⊕
[ ∞∑
i=1

C∞0 (I̊K)⊗ Ei
]
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from Theorem 5.3.1. In the case N ≥ 3 we set A = C∞0 (I̊K), and in the case

N < 3 we set A := A0 ⊂ D(Γ
IK ,sin

N
K

2 ) ∩ C∞(I̊K) like in Remark 5.3.4. Consider

u =
∑k

i=0 u
i
1 ⊗ ui2 ∈ Ξ. We have

LCu = LB,sin
N
Kux + 1

sin2
K
LFup

=
k∑
i=0

(
LB,sin

N
Kui1u

i
2 +

ui1
sin2

K
LFui2

)
=
∑k

i=0

(
LB,sin

N
Kui1 + λi

sin2
K
ui1
)
ui2

∈ [LIK ,sin
N
KA⊗ E0]⊕

∞∑
i=1

C∞0 (I̊K)⊗ Ei ⊂ D(EC).

In particular, Ξ ⊂ D(ΓC2 ). We remind on the regularity properties of eigenfunctions of
LF and of test function ϕ ∈ Ξ′ (see Remark 5.4.2). Hence, ΓC2 (u, v;ϕ) is well-defined
for any u, v ∈ Ξ and any test function ϕ ∈ Ξ′.

1. We compute Γ2(u, v;ϕ) like in the proof of Theorem 5.2.1. First, we consider the
case N ≥ 3. Let u = u1 ⊗ u2 ∈ C∞0 (I̊K) ⊗ Ei and v = v1 ⊗ v2 ∈ C∞0 (I̊K) ⊗ Ej for
i, j > 0. We take a test function ϕ ∈ Ξ′ of the form

ϕ = ϕ1 ⊗ ϕ2 ∈ P
IK ,sin

N
K ,λ

t C∞0 (I̊K)⊗ Eλ ⊂ Ξ′ if λ > 0

or ϕ ∈ A0 ⊗ E0 if λ = 0 (see the definition of Ξ′). In any case ϕ, ΓC(ϕ), LCϕ ∈
L∞(mC) by Remark 5.4.2. By definition we have

2ΓC2 (u, v;ϕ) =

∫
C

ΓC(u, v)LCϕdmC −
∫
C

ΓC(u, LCv)ϕdmC −
∫
C

ΓC(v, LCu)ϕdmC

We set∫
C

ΓC(u, v)LCϕdmC =

∫
C

(
ΓIK (u1, v1)u2v2 + u1v2

sin2
K

ΓF (u2, v1)
)
LCϕdmC=: (I)∫

C
ΓC(u, LCv)ϕdmC =

∫
C

ΓC(u, LIK ,sin
N
Kv1v2 + v1

sin2
K
LFv2)ϕdmC=: (II)

We consider (I):

(I) :=

∫
F

∫
IK

ΓIK (u1, v1)u2v2L
Cϕ sinNK rdrdmF︸ ︷︷ ︸

=:(I)1

+

∫
F

∫
IK

u1v1

sin2
K

ΓF (u2, v2)LCϕ sinNK rdrdmF︸ ︷︷ ︸
=:(I)2
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One can easily check that all integrals are well-defined. For example, we see that
(I)1 < ∞ since ΓIK (u1, v1)LIK ,sin

N
K ,λλ1 ∈ C∞0 (I̊K) and u2v2 ∈ L1(mF ). We can

calculate (I)1 because of Proposition 4.4.3 and Remark 5.4.3:

(I)1 =

∫
IK

ΓIK (u1, v1)︸ ︷︷ ︸
∈C∞0 (I̊K)

LIK ,sin
N
K ,λϕ1 sinNK rdr

∫
F

u2v2ϕ2dmF

=

[ ∫
IK

ΓIK (u1, v1)d∆ϕ1 −
∫
IK

ΓIK (u1, v1) ϕ1λ
sin2

K
sinNK rdr

] ∫
F

u2v2ϕ2dmF

=

[ ∫
IK

LIK ,sin
N
K
(
ΓIK (u1, v1)

)
ϕ1 sinNK rdr

−
∫
IK

ΓIK (u1, v1) ϕ1λ
sin2

K
sinNK rdr

] ∫
F

u2v2ϕ2dmF

=

∫
C
LIK ,sin

N
K
(
ΓIK (u1, v1)

)
u2v2ϕdmC +

∫
C

ΓIK (u1, v1) 1
sin2

K
u2v2ϕ1L

Fϕ2dmC

=

∫
C
LIK ,sin

N
K
(
ΓIK (u1, v1)

)
u2v2ϕdmC +

∫
C

ΓIK (u1, v1) 1
sin2

K
LF (u2v2)ϕ1ϕ2dmC

We remark that u2v2 ∈ D(LF1 ) for any u2, v2 ∈ D2(LF ) (for example see [16, Section
I.4, Theorem 4.2.2]) and we have

LF1 (u2v2) = LFu2v2 + u2L
Fv2 + ΓF (u2, v2) &

∫
F
ϕLF1udmF =

∫
F
uLFϕdmF

(5.4.2)

if u ∈ D(LF1 ) and ϕ ∈ D2(LF ) ∩ L∞(mF ). The operator LF1 with domain D(LF1 ) ⊂
L1(mF ) is the smallest closed extension of LF to L1(mF ) and there is an associated
semi group P F

t,1 : L1(mF )→ L1(mF ). The second equation in (5.4.2) comes from∫
F
P F
t,1u · ϕdmF =

∫
F
u · P F

t ϕdmF for any u ∈ L1(mF ) and ϕ ∈ L∞(mF )

that follows for instance from the existence of a bounded, continuous heat kernel (see
Remark 4.2.3) and Fubini’s theorem. Next, we consider (I)2. Similar as before we
obtain

(I)2 =

∫
IK

u1v1

sin2
K︸ ︷︷ ︸

∈C∞0 (I̊K)

LIK ,sin
N
K ,λϕ1 sinNK rdr

∫
F

ΓF (u2, v2)ϕ2dmF

=

[ ∫
IK

LIK ,sin
N
K

(
u1v1

sin2
K

)
ϕ1 sinNK rdr

−
∫
IK

u1v1

sin2
K
λϕ1 sinNK rdr

] ∫
F
ϕ2ΓF (u2, v2)dmF

=

∫
C
LIK ,sin

N
K

(
u1v1

sin2
K

)
ΓF (u2, v2)ϕdmC +

∫
C

u1v1

sin2
K
ϕ1ΓF (u2, v2)LFϕ2dmC
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Then, we consider (II)

(II) =

∫
F

∫
IK

ΓC(u, LIK ,sin
N
Kv1v2)ϕ sinNK rdrdmF︸ ︷︷ ︸

=:(II)1

+

∫
F

∫
IK

ΓC(u, v1

sin2
K
LFv2)ϕ sinNK rdrdmF︸ ︷︷ ︸

=:(II)2

.

We can also calculate (II)1 and (II)2:

(II)1 =

∫
C

ΓIK (u1, L
IK ,sin

N
Kv1)u2v2ϕdmC

+

∫
F

∫
IK

u1L
IK,sin

N
K v1

sin2
K

ΓF (u2, v2)ϕ sinNK rdrdmF

(II)2 =

∫
F

∫
IK

ΓIK (u1,
v1

sin2
K

)u2L
Fv2ϕ sinNK rdrdmF

+

∫
F

∫
IK

v1u1

sin4
K

ΓF (u2, L
Fv2)ϕ sinNK rdrdmF

Finally, we add everything up and obtain

2ΓC2 (u, v, ϕ)

=

∫
C

2Γ
IK ,sin

N
K

2 (u1, v1)u2v2ϕdmC +

∫
IK

2u1v1

sin2
K

ΓF2 (u2, v2;ϕ2)ϕ1 sinNK rdr

+

∫
C

[
ΓIK (u1, v1) 1

sin2
K
LF (u2v2)− ΓIK (u1,

v1

sin2
K

)u2L
Fv2 − ΓIK (v1,

u1

sin2
K

)v2L
Fu2

−
(
u1L

IK,sin
N
K v1

sin2
K

+ v1L
IK,sin

N
Ku1

sin2
K

− LIK ,sinNK
(
u1v1

sin2
K

))
ΓF (u2, v2)

]
ϕdmC (5.4.3)

We remark that we cannot replace∫
IK

Γ
IK ,sin

N
K

2 (u1, v1)ϕ1 sinNK rdr by Γ
IK ,sin

N
K

2 (u1, v1;ϕ1)

since ϕ1 is not necessarily in D2(LIK ,sin
N
K ) if λi > 0. ΓC2 (u, v;ϕ) and also the right

hand side in the last equation is linear in ϕ. Hence, the last equation also holds
for any ϕ =

∑k
i=1 ϕ

i
1 ⊗ ϕi2 ∈ Ξ′. Hence 2ΓC2 (u, v;ϕ) looks exactly like the weak

version of equation (5.2.2) in the proof of Theorem 5.2.1 where we have proven the
corresponding classical Γ2-estimate. Now, if we choose test functions ϕ ∈ Ξ′ with
ϕ ≥ 0, we can proceed exactly like in the proof of Theorem 5.2.1 where one should
use (5.4.2) to compute LF (u2v2). Finally, we obtain the sharp Γ2-estimate in a weak
form for u ∈ Ξ and ϕ ∈ Ξ′ with ϕ ≥ 0.
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2. Now, we deal with the case 1 ≤ N < 3. We compute ΓC2 (u, v;ϕ) exactly like
in the case N ≥ 3 but we have to consider the case when u1 ⊗ u2 ∈ A0 ⊗ E0 and
v1⊗ v2 ∈ C∞0 (I̊K)⊗Ei for i > 0 separately. Any other case is already covered by the
previous paragraph. We recall that u2 = const = m ∈ R because of Remark 4.2.3.
We can compute ΓC2 (u, v;ϕ) for ϕ ∈ Ξ′ exactly like in the previous paragraph since

terms of the form u1v1, ΓIK (u1, v1) and LIK ,sin
N
K (u1v1) are in C∞0 (I̊K). We obtain

again formula (5.4.3).

The only case that we still have to check is u = v ∈ A0 ⊗ E0. It is not covered,

yet, since u2
1 /∈ C∞0 (I̊K). First, let ϕ = ϕ1 ⊗ ϕ2 ∈ P

IK ,sin
N
K ,λ

t ⊗ Ei. We know that

u = u1 ⊗m ∈ D(EC), u1 ∈ A0 ⊂ D(Γ
IK ,sin

N
K

2 ) and ΓC(u) = ΓIK (u1)m2. Hence,

ΓC2 (u;ϕ) =

∫
C

1
2L

CϕΓC(u)dmC −
∫
C

ΓC(u, LCu)ϕdmC

=

∫
C

1
2L

IK ,sin
N
K ,λiϕ1ϕ2ΓIK (u1)m2 sinNK rdrdmF

−
∫
C

ΓIK (u1, L
IK ,sin

N
Ku1)m2ϕ1ϕ2 sinNK rdrdmF

=

∫
F
m2ϕ2dmF

∫
IK

[
1
2ΓIK (u1)LIK ,sin

N
K ,λiϕ1 − ΓIK (u1, L

IK ,sin
N
Ku1)ϕ1

]
sinNK rdr

Since ϕ2 is an eigenfunction of LF , the right hand side is 0 unless λi = 0 and ϕ2 6= 0.
We conclude that ΓC2 (u;ϕ) 6= 0 for ϕ ∈ Ξ′ only if ϕ2 = const 6= 0. In any case:

ΓC2 (u;ϕ) =

∫
F
m2ϕ2dmF Γ

IK ,sin
N
K

2 (u1;ϕ1). (5.4.4)

This is just (5.4.3) where we replace Γ
IK ,sin

N
K

2 (u1)ϕ1 by Γ
IK ,sin

N
K

2 (u1;ϕ1). But we

can proceed like at the end of the previous paragraph. Because EIK ,sinNK satisfies
BE(KN,N + 1) we can bound (5.4.4) by

ΓC2 (u;ϕ) ≥ m2

∫
F

∫
IK

[
KNϕΓIK ,sin

N
K (u1) +

1

N + 1
(LIK ,sin

N
Ku1)2ϕ

]
sinNK rdrdmF

if ϕ ≥ 0. Hence, for u ∈ Ξ and ϕ ∈ Ξ′ with ϕ ≥ 0 we have the desired Γ2-estimate.

3. We extend this estimate to any function u ∈ D(ΓC2 ) (and test functions ϕ ∈ Ξ′

with ϕ ≥ 0). We choose a sequence un ∈ Ξ that converges to u ∈ D(Γ2) in D2(LC).
First, we obtain that∫

C
ΓC(un, un)LCϕdmC →

∫
C

ΓC(u, u)LCϕdmC ,∫
C

ΓC(un, un)ϕdmC →
∫
C

ΓC(u, u)ϕdmC ,∫
C

(LCun)2ϕdmC →
∫
C

(LCu)2ϕdmC . (5.4.5)
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We still need to show convergence of
∫
C ΓC(un, L

Cun)ϕdmC . Since un, L
Cun, ϕ ∈

D(EC) and ϕ,Γ(ϕ) ∈ L∞(mC), we can apply the Leibniz rule (4.2.2) for ΓC . We
obtain∫

C
Γ(un, L

Cun)ϕdmC =

∫
C

Γ(un, L
Cunϕ)dmC −

∫
C

ΓC(un, ϕ)LCundmC

= −
∫
C

(LCun)2ϕdmC︸ ︷︷ ︸
−→

∫
C(LCu)2ϕdmC

−
∫
C

ΓC(un, ϕ)LCundmC .

Consider the second term on the right hand side.∣∣∣∣∫
C

ΓC(un, ϕ)LCundmC −
∫
C

ΓC(u, ϕ)LCudmC

∣∣∣∣
≤
∫
C
|ΓC(un, ϕ)LC(un − u)|+ |ΓC(un − u, ϕ)LCu| dmC

≤ ‖ΓC(ϕ)‖L∞
[ ∫

C
ΓC(un)dmC︸ ︷︷ ︸

→
∫
C ΓC(u)dmC

∫
C

(LC(un − u))2dmC︸ ︷︷ ︸
→0

+

∫
C

ΓC(un − u)dmC︸ ︷︷ ︸
→0

∫
C

(LCu)2dmC

]

Since ϕ ∈ Ξ′, we have that ‖ΓC(ϕ)‖L∞ <∞. It follows that∫
C

ΓC(un, ϕ)LCundmC →
∫
C

ΓC(u, ϕ)LCudmC for un → u in D2(LC)

and consequently∫
C

ΓC(un, L
Cun)ϕdmC →

∫
C

ΓC(u, LCu)ϕdmC for un → u in D2(LC)

for any u ∈ D(ΓC2 ) and for any test function ϕ ∈ Ξ′ with ϕ ≥ 0.

4. Finally, we show that the Γ2-estimate holds for any admissible test function
ϕ ∈ Db,2

+ (LC). Since we assume K > 0, the measure mC is finite and we can assume
that ϕ ≥M > 0 for some positive constant M ∈ D2(LC). Consider a sequence ϕn ∈ Ξ
that converges to ϕ in D2(LC). Then, we also have PC

t ϕ ≥ M and PC
t ϕn → PC

t ϕ in
D2(LC) for all t > 0. Since we assume that EC satisfies volume doubling and supports
a Poincaré inequality, is strongly regular and admits that closed balls are compact
(see Lemma 4.4.6) there is an upper bound for the heat kernel (see [76, Corollary 4.2],
Remark 4.2.3) that is equivalent to L2 → L∞-ultracontractivity of the semigroup PC

t

(see [40, Chapter 14.1] and Remark 4.2.3). Hence, PC
t ϕn → PC

t ϕ and LCPC
t ϕn →
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LCPC
t ϕ in L∞(mC). Since PC

t ϕ ≥M > 0, we deduce that PC
t ϕn ∈ D

b,2
+ (LC) ∩ Ξ′ for

n sufficiently big. Then, the results from the previous paragraphs state that∫
C

(
1
2ΓC(u)LCPC

t ϕn − ΓC(u, LCu)PC
t ϕn

)
dmC ≥

∫
C

(
KNΓC(u) + 1

N+1(LCu)2
)
PC
t ϕn mC .

Hence, if n→∞∫
C

(
1
2ΓC(u)LCPC

t ϕ− ΓC(u, LCu)PC
t ϕ
)
dmC ≥

∫
C

(
KNΓC(u)PC

t ϕ+ 1
N+1(LCu)2PC

t ϕ
)

mC

for u ∈ D(Γ2) and ϕ ∈ Db,2
+ with ϕ ≥ M > 0 because of the L∞-convergence of

PC
t ϕn and PC

t L
Cϕn. Then we also let M → 0 and the inequality holds for any test

function of the form PC
t ϕ where ϕ ∈ Db,2

+ . Finally, by application of Lebesgue’s
dominated convergence theorem one can check that PC

t ϕ and PC
t L

Cϕ converges to ϕ
and LCϕ, respectively, w.r.t. weak-∗ convergence if ϕ ∈ Db,2

+ (LC), and we obtain the

Γ2-estimate for any u ∈ D(ΓC2 ) and for any ϕ ∈ Db,2
+ (LC).

5.5 Proof of the main results

Proof of Theorem B. First, let K > 0. The Cheeger energy ChF of (F,dF ,mF ) is a
strongly local, regular and strongly regular Dirichlet form that satisfies BE(N−1, N)
by Theorem 4.3.8. By Theorem 4.3.10 and the following remark the spectrum of the
associated Laplace operator LF is discrete and the first positive eigenvalue of −LF
satisfies λ1 ≥ N . By Theorem 5.1.5 and Corollary 5.1.6 we know that IK×NsinK ChF =
ChConN,K (F ) and dConK = d

Ch
ConN,K (F ) . Lemma 5.1.3 states that ConN,K(F ) satisfies

a volume doubling property and supports a local Poincaré inequality. Especially,
ChConN,K (F ) supports a (2, 2)-Poincaré inequality by Remark 4.1.3. ChConN,K (F ) is also
strongly regular and ConN,K(F ) is compact since (F,dF ,mF ) is compact, K > 0
and its Cheeger energy ChF is strongly regular (Lemma 4.4.6). Hence, we can apply
Theorem 5.4.4 and IK ×NsinK ChF satisfies BE(KN,N + 1).

Finally, we want to apply the backward direction of Theorem 4.3.8. Results of
Sturm from [75] (see Remark 4.2.3 and Remark 4.1.3) state a Feller property for
the corresponding semigroup PC

t of ConK,N (F ) . Thus, we can apply Theorem 3.15
from [3] that states that in this case any u ∈ D(EC) with

√
ΓC(u) ∈ L∞(mC) has a

continuous representative. Consequently, any such u ∈ D(EC) is Lipschitz continuous
with respect to the intrinsic distance of IK×NsinK ChF that again coincides with dConK

by Corollary 5.1.13. Thus, the regularity Assumption 4.3.7 is satisfied and Theorem
4.3.8 yields the condition RCD∗(NK,N + 1) if K > 0.

The case K = 0 follows from the case K > 0. The rescaled space ConN,K/n2(F ) con-
verges with respect to pointed measured Gromov-Hausdorff convergence to ConN,0(F )
if n → ∞. To see this, for instance, we can adopt the proof of Theorem 10.9.3 in
[18] to prove Gromov-Hausdorff convergence. We also obtain a family of ε-isometries
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between r-balls around 0 in ConN,K/n2(F ) and r-balls around 0 in ConN,0(F ) for
1
n2 ≤ ε and n big enough. Then, the pushfowards of sinN

K/n2 dr ⊗ dmF w.r.t to

these ε-isometries converge weakly to rNdr ⊗ dmF |Br(0) as ε → 0. Hence, we
obtain pointed measured Gromov-Hausdorff convergence. Especially, this is mea-
sured Gromov-Hausdorff convergence of r-balls around 0. Hence, ConN,0(F ) satisfies
RCD∗(0, N + 1) = RCD(0, N + 1) by the usual stability property of the condition
CD under measured Gromov-Hausdorff convergence (see for examples [79]).

Proof of Theorem C. First, let us consider the case N ≥ 1. Remark 5.1.8 states that
diamF ≤ π and ConN,K(F ) = IK ×NsinK F in any case when N ≥ 1. We need to
check the condition RCD∗(N − 1, N) for (F,dF ,m). Corollary 5.1.13 implies that
(F,dF ,mF ) is infinitesimal Hilbertian. By Proposition 5.1.11 and Corollary 5.1.12 the
intrinsic distance of EC = IK×NsinK ChF is the K-cone distance dConK and the Cheeger
energy of the (K,N)-cone coincides with EC . Theorem 4.3.8 implies the condition
BE(KN,N + 1) for IK ×NsinK E

F .

One can check that C∞0 (I̊K) ⊗ D(ΓF2 ) ⊂ D(ΓC2 ) and 1 ⊗ Db,2
+ (LF ) ⊂ Db,2

+ (LC).
Hence, we can again derive formula (5.4.3) in precisely the same way as in the proof

of Theorem 5.4.4 for u1 ⊗ u2 ∈ C∞0 (I̊K) ⊗D(ΓF2 ) and 1 ⊗ ϕ2 ∈ 1 ⊗Db,2
+ (LF ). Now,

we can follow the proof of Theorem 5.2.1 and we obtain∫
F
LFϕΓF (u)dmF −

∫
F

ΓF (u, LFu)ϕdmF

≥ (N − 1)

∫
F

ΓF (u)ϕdmF +
1

N

∫
F

(LFu2)2 ϕdmF

− 1

(N + 1)N

∫
F

(LFu2 +NKFu2)2 ϕdmF (5.5.1)

for any u ∈ D(ΓF2 ) and any ϕ ∈ Db,2
+ (LF ). We want to deduce RCD∗(N − 1, N)

for F . However, we cannot apply the argument of Theorem 5.2.3 directly since
pointwise estimates for the Bochner inequality do not make sense. But like in the
proof of Theorem 4.3.8 (more precisely, see Proposition 4.7 in [34]), we get a gradient
estimate of the following type:

|∇P F
t u2|2 +

c(t)

N

(
|LFP F

t u2|2 − 1
(N+1)P

F
t (LFu2 +NKFu2)2

)
≤ e−2KtP F

t |∇u2|2

(5.5.2)

mF -a.e. in F for any u2 ∈ D2(LF ). We sketch the argument briefly. Consider

h(s) := e−2(N−1)s

∫
F
P F
s ϕ|∇P F

t−su2|2dmF .
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One estimates the derivative of h as:

h′(s) = 2e−2(N−1)s

∫
F

(
− (N − 1)Psϕ|∇P F

t−su2|2 + 1
2L

FPsϕ|∇Pt−su2|2

− PsϕΓF (Pt−su2, L
FPt−su2)

)
dmF

≥ 2e−2(N−1)s

∫
F
Psϕ

(
1
N (LFPt−su2)2 − 1

(N+1)N (LFPt−su2 +NKFPt−su2)2
)
dmF

≥ 2e−2(N−1)s

∫
F
ϕ
(

1
N (LFPtu2)2 − 1

(N+1)NPt (LFu2 +NKFu2)2
)
dmF

where we used (5.5.1) in the first and Jensen’s inequality in the second inequality.
Finally, we integrate h′ from 0 to t and the rest of the proof is exactly the same as
in Proposition 4.9 in [34].

We remark that F satisfies a doubling property and supports a local Poincaré
inequality and by Lemma 5.1.10 we have that dChF = dF , which implies that ChF is
strongly local. Thus, by the results of Sturm (Remark 4.2.3) the associated semigroup
is Feller and has a continuous kernel. Then we proceed as follows.

For u2 ∈ D2(LF ) we consider P F
s (LFu2 +NKFu2) = LFP F

s u2 + NKFP
F
s u2 =: v2

and for x ∈ F we define v2,x = v2 − v2(x). v2,x is continuous on F and v2,x(x) = 0.
We consider P F

t (v2
2,x) that is jointly continuous in z ∈ F and t ≥ 0. For instance,

this follows since v2
2,x ∈ C(F ) ∩ L∞(mF ) and since we have a nice upper bound for

the heat kernel associated to ChF because of results of Sturm in [75]. Then, to prove
that P F

t (v2
2,x) is jointly continuous, we can copy the proof of the corresponding result

in Rn. It holds that P F
0 (v2

2,x)(x) = v2,x(x) = 0. Hence, for any ε > 0 and any x ∈ F
there is δx > 0 and τx > 0 such that |P F

t (v2
2,x)(y)| < ε for any y ∈ Bδx(x) and

0 < t < τx. Since F is compact, there is a finite collection (xi)
k
i=1 of points such that

Bδxi (xi)i=1,...,k is a covering of F . We set τ = mini=1,...,k τi.
Now we choose xi ∈ F with Bδi(xi) and we set δi = δxi . Consider

P F
s u2 −NKFP

F
s u2(xi)− LFP F

s u2(xi) =: v̄2,xi ∈ D2(LF )

and insert it in (5.5.2) for t < τ .

|∇P F
t v̄2,xi |

2 + c(t)
1

N
(LFP F

t v̄2,xi)
2

− c(t)

N(N + 1)
P F
t (LF v̄2,xi +NKF v̄2,xi)

2︸ ︷︷ ︸
(∗)

≤ e−2KtP F
t |∇v̄2,xi |

2 .

We can see that

(∗) = P F
t (LFP F

s u2 +NKFP
F
s u2 −NKFP

F
s u2(xi)− LFP F

s u2(xi))
2

= P F
t (v2 − v2(xi))

2︸ ︷︷ ︸
(v2,xi

)2
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For any y ∈ Bδi(xi) we get |(∗)(y)| = |P F
t

(
ṽ2

2,xi

)
(y)| < ε. From that and since

v̄2,xi differs form P F
s u2 only by a constant, we get for any 0 < t < τ and mF -a.e.

y ∈ Bδi(xi)

|∇P F
t P

F
s u2|2 (y) +

c(t)

N

(
|LFP F

t P
F
s u2|2 (y)− 1

N + 1
ε

)
≤ e−2KtP F

t |∇P F
s u2|2 (y).

The last inequality does not depend on xi anymore and since ε > 0 is arbitrary, we
obtain

|∇P F
t P

F
s u2|2 +

c(t)

N
|LFP F

t P
F
s u2|2 ≤ e−2KtP F

t |∇P F
s u2|2

for 0 < t < τ and mF -a.e. for u2 ∈ D2(LF ). Then we can also let s go to 0

|∇P F
t u2|2 +

c(t)

N
|LFP F

t u2|2 ≤ e−2KtP F
t |∇u2|2 for 0 < t < τ

and finally, we can follow the proof of Theorem 4.8 in [34] to obtain the condition
BE(N − 1, N). Now, similar like in the previous theorem, this implies RCD∗(N −
1, N) for (F,dF ,mF ). We only need to check the Assumption 4.3.7. The condition
RCD∗(KN,N + 1) for ConN,K(F ) implies that every u ∈ D(ChConN,K (F )) such that
ΓC(u) ∈ L∞(mC) admits a Lipschitz representative and Theorem 5.1.6 states that
IK ×NsinK ChF = ChConN,K (F ). This easily implies that also u ∈ D(ChF ) such that
ΓF (u) ∈ L∞(mF ) admits a Lipschitz representative with respect to dF .

For the case N ∈ [0, 1) we argue by contradiction. First, we see that F has to be
discrete. Otherwise, we would find a geodesic γ in F (see the remark directly after
Definition 2.2.6), and consequently the cone over Imγ would be a 2-dimensional subset
in ConN,K(F ). This contradicts the condition RCD∗(KN,N +1) for ConN,K(F ) that
implies that the Hausdorff dimension of ConN,K(F ) cannot be bigger than N +1 < 2.
Then, assume there are two points x, y in F with dF (x, y) < π. Hence, by the defini-
tion of the cone metric there is no continuous curve between (1, x) and (1, y) whose
length is ε-close to dConK ((1, x), (1, y)). The only continuous curve that connects (1, x)
and (1, y) consists of the segments that connect each of this points with the nearest
origin and its length is dConK (o, (1, x)) + dConK (o, (1, y)) > dConK ((1, x), (1, y)). But
since ConN,K(F ) satisfies a curvature-dimension condition, it has to be an intrinsic
metric space what contradicts the previous observation. Thus, there can only be
points in F that have distance π. F can only have at most two points since oth-
erwise we will find an optimal transport between absolutely continuous measures in
ConN,K(F ) that is essentially branching, and this contradicts the RCD∗-condition.
For example, assume there are three points. The geodesics between (s, x), (t, y)
and (r, z) for s, t, r ≤ 1 consist exactly of segments that connect the origin. Hence,
one can consider an absolutely continuous measure that is concentrated on one seg-
ment and the transport to an absolutely continuous measure that is concentrated
equally on the two other segments. In the case where F is just one point we see that
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IK ×NsinK F = (IK , sin
N
K ). Otherwise, if F has two points with distance π, N has to

be 0 and we see that Con0,K(F ) = 1√
K
S1.

Proof of Theorem D. (F,dF ,mF ) is compact with diamF ≤ π. Hence, in any case
ConN+1

0 (F ) = [0,∞) ×N+1
r F and by Theorem B ConN+1

0 (F ) is a metric measure
space that satisfies RCD∗(0, N + 2). Since dF (x, y) = π, there is a geodesic line in
ConN+1

0 (F ). Thus, by the first part of the splitting Theorem 4.3.13, ConN+2,0(F ) =:
X splits into X = R×X ′ where X ′ = (X ′,dX′ ,mX′) denotes a metric measure space
that satisfies RCD∗(0, N + 1). One can easily see that X ′ is a metric cone over
F ′ = F ∩X ′, that F ′ is a geodesic space and that F ′ embeds geodesically in F .

Consider (1, f), (1, g) in {1} × F . We find r, s > 0, i, j ∈ [−1, 1] and f ′, g′ ∈ F ′ such
that

dX((1, f), (1, g))2 = 2− 2 cos dF (f, g) = r2 + s2 − 2rs cos dF ′(f
′, g′) + |i− j|2.

Because the metric on X is precisely given by the metric product of | · − · |2 and dX′ ,
the Pythagorean theorem holds. Hence i2 + r2 = 1. It follows that

cos dF (f, g) = ij + (1− i2)
1
2 (1− j2)

1
2 cos dF ′(f

′, g′).

There are unique numbers θ, ϕ ∈ [0, π] such that i = cos θ and j = cosϕ. Thus,
there is an isometry between (F,dF ) and the metric 1-cone with respect to F ′. In
particular, F is a topological suspension in the sense of Ohta’s topological splitting
result in [61] and the measure has the form dmF = sinN dmF ′ for some Borel measure
mF ′ on F ′. Hence, F is a (K,N)-cone over (F ′, dF ′ ,mF ′). Finally, Theorem C yields
the result.

Corollary 5.5.1. Let (F,dF ,mF ) be a metric measure space that satisfies RCD∗(N−
1, N) for N ≥ 0. Assume there are points xi, yi ∈ F for i = 1, . . . , n with n > N such
that dF (xi, yi) = π for any i and dF (xi, xj) = π

2 for i 6= j. Then N = n− 1 ∈ N and
(F,dF ,mF ) = SN .

Proof. First, we consider x0, y0 ∈ F with dF (x0, y0) = π. The maximal diameter
theorem implies that F is a spherical suspension with respect to some metric measure
spaces F ′0 that satisfies RCD(N − 2, N − 1) where the pair (x0, y0) corresponds to
the two origins of IK×NsinK F

′. If we consider another pair (x1, y1), we obtain another
suspension structure. Hence, we find a loop s : [0, 2π]/{0∼2π} → S in F that is
geodesic for small distances and intersects with F ′ at x1 since dF (x0, x1) = π

2 . But
this also implies that dF (y0, y1) = π

2 and y1 ∈ F ′. Since F ′ embeds geodesically into
F , we have dF ′(x1, y1) = π

Then, we also obtain for any other pair xi, yi ∈ F for i ≥ 1 that xi, yi ∈ F ′,
dF ′(xi, yi) = π and dF ′(xi, xj) = π

2 for i 6= j. Hence, we can proceed by induction
and the second part of the maximal diameter theorem tells us that that after finitely
many steps no further decomposition is possible and F = Sk for some k ∈ N. But
then, n− 1 = N = k.
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[81] Max-K. von Renesse. On local Poincaré via transportation. Math. Z., 259(1):21–31,
2008.

[82] Max-K. von Renesse and Karl-Theodor Sturm. Transport inequalities, gradient esti-
mates, entropy, and Ricci curvature. Comm. Pure Appl. Math., 58(7):923–940, 2005.

100


	Preface
	Summary
	Introduction
	Ricci curvature in Riemannian geometry
	Synthetic Ricci curvature bounds by optimal transport
	Cones and warped products over metric measure spaces
	The maximal diameter theorem
	Outline of the thesis

	Preliminaries, part 1
	Ricci curvature bounds in the sense of optimal transport
	Warped products and cones
	Riemann-Finsler Manifolds

	Ricci curvature bounds for warped products
	Ricci tensor of warped products over Riemann-Finsler manifolds
	Optimal Transport in warped products
	Proof of the main results and applications

	Preliminaries, part 2
	Differential calculus for metric measure spaces
	Preliminaries on Dirichlet forms
	Riemannian Ricci curvature bounds for metric measure spaces
	Skew products between Dirichlet forms

	Riemannian Ricci curvature bounds for cones
	Warped product versus skew product
	Proof of classical estimates for skew products
	Essentially selfadjoint operators
	Bakry-Emery condition for skew products
	Proof of the main results

	Bibliography

