
Fast Repeater Tree Construction

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Vorgelegt von

Christoph Bartoschek
aus

Peiskretscham, Polen

Bonn, Mai 2014

Angefertigt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Professor Dr. Jens Vygen
2. Gutachter: Professor Dr. Stephan Held
Tag der Promotion: 11. Juli 2014
Erscheinungsjahr: 2014

Danksagung/Acknowledgments

At this point, I would like to express my gratitude to my supervisors Professor Dr.
Jens Vygen and Professor Dr. Stephan Held. This work would not be possible
without their extensive support, inspiration, and extraordinary patience.

A very special thanks goes to Professor Dr. Dr. h.c. Bernhard Korte for his
encouraging support and for creating such an excellent working environment at the
Research Institute for Discrete Mathematics at the University of Bonn.

I would further like to thank my past and present colleagues at the institute
working with me on timing optimization, especially Dr. Jens Maßberg, Professor Dr.
Dieter Rautenbach, Daniel Rotter, Dr. Christian Szegedy and Dr. Jürgen Werber.
Their support and ideas proved to be invaluable.

Special thanks go to all the students for their collaboration, especially Laura
Geisen, Nicolas Kämmerling and Philipp Ochsendorf.

I also thank all other colleagues at the institute for inspiring discussions, in
particular Dr. Ulrich Brenner, Christian Panten, Jan Schneider and Dr. Markus
Struzyna.

I am grateful that I have been able to work with all the people from IBM who
shared their knowledge and hardest chip designs with us, especially Karsten Muuss,
Dr. Matthias Ringe, and Alexander J. Suess.

But my biggest thanks go to my wife Kerstin and my little daughters Johanna and
Barbara. Without their support and endless patience, I would have never finished
this thesis.

Contents

1 Introduction 9

2 Timing Optimization – Basic Concepts 13
2.1 Basic Notation . 13
2.2 Integrated Circuit Design . 13
2.3 Static Timing Analysis . 14
2.4 Repeater . 15
2.5 Wire Extraction . 18

2.5.1 Elmore Delay . 18
2.5.2 Higher Order Delay Models 19

2.6 Slew Limit Propagation . 20
2.7 Required Arrival Time Functions . 20

2.7.1 Propagation of Required Arrival Times 21

3 Repeater Tree Problem 23
3.1 Repeater Tree Instances . 23
3.2 The Repeater Tree Problem . 25

3.2.1 Repeater Tree Timing . 25
3.2.2 Feasible solutions . 27
3.2.3 Objectives . 27

3.3 Our Repeater Tree Algorithm . 28

4 Instance Preprocessing 29
4.1 Analysis of Library and Wires . 29

4.1.1 Estimating two-pin connections 29
4.1.2 Parameter dwire . 34
4.1.3 Buffering Modes . 34
4.1.4 Slew Parameters . 36
4.1.5 Sinkdelay . 37
4.1.6 Further Preprocessing . 38

4.2 Blockage Map and Congestion Map 39
4.2.1 Grid . 39
4.2.2 Blockage Map . 40
4.2.3 Blockage Grid . 40
4.2.4 Congestion Map . 42

5

Contents

5 Topology Generation 43
5.1 A Simple Delay Model . 44

5.1.1 Time Tree . 47
5.2 Repeater Tree Topology Problem . 48

5.2.1 Topology Algorithm Overview 49
5.3 Restricted Repeater Tree Problem 49
5.4 Sink Criticality . 49
5.5 A Simple Topology Generation Algorithm 50

5.5.1 Topology Generation Algorithm 50
5.5.2 Theoretical Properties . 52

5.6 Topology Generation Algorithm . 56
5.6.1 Handling High Fanout Trees 58

5.7 Blockages . 59
5.8 Plane Assignment . 60
5.9 Global Wires as Topologies . 60

6 Repeater Insertion 63
6.1 Computing Required Arrival Time Targets 64

6.1.1 Linear Time-cost Tradeoff . 66
6.1.2 Effort Assignment Algorithm 68

6.2 Repeater Insertion Algorithm . 69
6.2.1 Cluster . 69
6.2.2 Initialization . 70
6.2.3 Timing Model during Repeater Insertion 70
6.2.4 Finding a new Repeater . 73
6.2.5 Buffering Algorithm . 75
6.2.6 Merging operation . 75
6.2.7 Moving operation . 77
6.2.8 Arriving at the root . 79
6.2.9 Running Time . 80
6.2.10 Repeater Insertion - Summary 81

6.3 Dynamic Programming . 82
6.3.1 Basic Dynamic Programming Approach 83
6.3.2 Buffering Positions . 84
6.3.3 Extensions to Dynamic Programming 84

7 BonnRepeaterTree 89
7.1 Repeater Library . 89

7.1.1 Repeater and Wire Analysis 90
7.1.2 RAT and Slew Backwards Propagation 90

7.2 Blockages and Congestion Map . 91
7.3 Processing Repeater Tree Instances 92

7.3.1 Identifying Repeater Tree Instances 92
7.3.2 Constructing Repeater Trees 98

6

Contents

7.3.3 Replacing Repeater Tree Instances 99
7.4 Implementation Overview . 100

7.4.1 Repeater Tree Construction Framework 100
7.4.2 Repeater Tree API . 100
7.4.3 Parallelization . 101

7.5 BonnRepeaterTree in Global Timing Optimization 101
7.6 BonnRepeaterTree Utilities . 102

7.6.1 Removing Existing Repeaters 102
7.6.2 Postprocessing Repeater Chains 103

8 Experimental Results 109
8.1 Comparison to an Industrial Tool . 110
8.2 Comparison to Bounds . 111

8.2.1 Running Time . 113
8.2.2 Wirelength . 114
8.2.3 Number of Inserted Inverters 114
8.2.4 Timing . 115

8.3 Fast Buffering vs. Dynamic Programming 116
8.4 Varying η . 118
8.5 Varying dnode . 119
8.6 Disabling Effort Assignment . 119
8.7 Disabling Parallel Mode . 121
8.8 Choosing Tradeoff Parameters . 121

A Detailed Comparison Tables 125

B Bibliography 141

7

1 Introduction

We live in a world where computer chips can be found in nearly every device we
come into contact with. On the one hand, there is a huge demand for powerful but
not power-consuming chips that can be added to our wearables, houses or household
items. On the other hand, there is still a huge demand for fast processors that are
able to crunch the enormous amounts of data we produce daily.
Chip designers create the small miracles driving all of this in a process called

physical design. It is an area where one of our most advanced technologies meets
mathematics and computer science.
Physical design contains a lot of fascinating problems that can be tackled with

methods from combinatorial optimization. This thesis focuses on one of the problems
that arise during the optimization of the timing behaviour of a chip, the optimization
of interconnections or repeater trees. Interconnections distribute signals from a
source to one or several sinks. Figure 1.1 shows the interconnection between a source
(blue) and four sinks (red). If interconnections get too long, the speed of signals
degrades and electrical constraints get violated. To improve speed and to avoid
electrical violations, repeaters can be inserted into a chip.

Figure 1.1: Example of an interconnection. A signal has to be distributed from a root (blue)
to sinks (red).

There are two flavours of repeaters: buffers and inverters. Buffers are used to
refresh a signal. Inverters have, in addition, the property that they change the
polarity of a signal. A signal switching from a logical 0 to a 1 becomes a signal
switching from 1 to 0 and vice-versa. The logical symbols of both repeater types
and the schematic of an inverter are shown in Figure 1.2.
An interconnection distributes the signals in a tree-like fashion from a source to

9

1 Introduction

A ZInverter

Vdd

GND

A Z

BufferA Z

Figure 1.2: The symbols of inverters and buffers and a schematic of a simple inverter. It
consists of two transistors with converse switching behaviour. GND (logical 0)
and Vdd (logical 1) are power supplies. Both repeaters have a single input A
and an output Z. If a 0 arrives, then only the gate to Vdd opens and vice-versa.
A buffer is usually constructed by two inverters in series.

the sinks via wires. A Repeater is added into the interconnection by subdividing a
wire segment and connecting the ends to the repeater’s input and output. We call
an interconnection that potentially has repeaters in between a repeater tree.

In the early years of physical design, interconnection optimization between gates
was a minor task. Repeaters were only necessary for very long distances or very high
fanouts. However, with the downscaling of technology, resulting in smaller gates and
thinner wires, the ability of gates to drive long wires deteriorated and more repeaters
became necessary to meet timing requirements. Saxena et al. (2003) predicted that
for the 45 nm and 32 nm technology nodes 35% and 70% of all circuits on typical
designs will be repeaters. In the meantime, the technology nodes have arrived and
we see that the numbers are slightly better than predicted. We see that on 45 nm
designs 25–40%, on 32 nm designs 30–45%, and on 22 nm designs 35–50% of all
circuits are repeaters.

Nevertheless, if 30% of all gates are repeaters, repeater tree construction becomes
an important task. It affects all aspects of physical design in addition to timing
and electrical correctness. For example, repeaters represent a significant number of
circuits that have to be placed and later connected by routing. A significant part
of the power consumption can be attributed to repeaters. Modern designs have
a wide range of instances with up to hundred thousands of sinks. We have seen
designs with millions of instances. For large instances, running time becomes a
crucial feature of a repeater tree construction algorithm.
The algorithms we present fit into all stages of physical design. A very fast

algorithm that we call Fast Buffering can be used for rebuilding all instances globally
in early and middle design stages. We can optimize around 5.7 million instances
per hour on a single core and a couple of minutes in parallel. For later stages of
physical design, a more accurate version of our algorithm can be enabled that is
able to squeeze out the last tenth of a picosecond.

The structure of this thesis is as outlined in the following paragraphs. The basic
concepts from timing optimization in chip design that we use are explained in

10

Chapter 2. We then define the Repeater Tree Problem in Chapter 3. Our
problem formulation encapsulates most of the constraints that have been studied so
far. To the best of our knowledge, we also consider several aspects for the first time,
for example, slew dependent required arrival times at repeater tree sinks. These
make our formulation more adequate to the challenges of real-world repeater tree
construction.
For creating good repeater trees, one has to take the overall design environment

into account. The employed technology, the properties of available repeaters and
metal wires, the shape of the chip, the temperature, the voltages, and many other
factors highly influence the results of repeater tree construction. To take all this
into account, we first preprocess the environment to extract parameters for our
algorithms. These parameters allow us to quickly and yet quite accurately estimate
the timing of a tree before it has even been buffered. Chapter 4 shows how we
extract them from the timing environment.
The next two chapters explain our algorithm to solve the Repeater Tree

Problem. Chapter 5 shows how we construct an underlying Steiner tree for our
solution. We prove that our algorithm is able to create timing-efficient as well as
cost-efficient trees.
Chapter 6 deals with the problem of adding buffers to a given Steiner tree. The

predominantly used algorithms to solve this problem use dynamic programming.
However, they have several drawbacks. Firstly, potential repeater positions along
the Steiner tree have to be chosen upfront. Secondly, the algorithms strictly
follow the given Steiner tree and miss optimization opportunities. Finally, dynamic
programming causes high running times. We present our new buffer insertion
algorithm that overcomes these limitations. It is able to produce results with similar
quality to a dynamic programming approach but a much better running time. In
addition, we also present our improvements to the dynamic programming approach
that allow us to push the quality at the expense of a high running time.
As part of this thesis, we implemented the discussed algorithms as a module

within the BonnTools optimization suite which is developed at the Research Institute
for Discrete Mathematics at the University of Bonn in an industrial cooperation
with IBM. BonnTools are used by chip designers worldwide within IBM. Some
implementation details will be described in Chapter 7. Our algorithms are used and
help engineers dealing with some of the most complex chips in the world. In the
same chapter, we also shortly describe the framework we have written that makes it
easy to implement new repeater tree construction algorithms. As an example, we
will show how routing congestion on a chip can be reduced by rerouting repeater
chains.

Our cooperation partner IBM provided us with a large number of real world chip
designs. For this thesis we have chosen a set of twelve challenging chips with a total
number of more than 3.3 million different repeater tree instances. In Chapter 8, we
present experimental results that show the quality and speed of our algorithms.

11

2 Timing Optimization – Basic Concepts

2.1 Basic Notation
We use the same notation for graphs as Korte and Vygen (2012).

For an arborescence (i.e. a directed tree where each node except for the root has
exactly one entering edge) T = (V,E) with nodes v, w ∈ V we denote the edges on
the path from v to w by E[v,w]. The parent of node v ∈ V is called parent(v).
For a set X ⊂ Rn, we define the componentwise maximum

max
x∈X

x :=
(

max
x∈X

x1, max
x∈X

x2, . . . , max
x∈X

xn

)
and the componentwise minimum

min
x∈X

x :=
(

min
x∈X

x1, min
x∈X

x2, . . . , min
x∈X

xn

)
.

As current technologies prefer to route wires only in horizontal and vertical
direction, we almost exclusively use the `1-norm:

‖a‖ := ‖a‖1

2.2 Integrated Circuit Design
The netlist of a chip design consists of primary pins (input or output), gates and
nets. Gates are circuits computing small Boolean functions, for example, NOT,
AND, or macros encapsulating larger functionality. Gates have pins, input pins or
output pins, as external connection points. Pins, primary pins and gate pins, are
connected by nets. Typically a net has a single source (gate output pin or primary
input pin) and a set of sinks (gate input pin or primary output pin). If a gate’s
output pin is the source of a net, then we say that the gate is the driver of the
net. Physical design is the phase in the process of creating a chip where a netlist
that has just been compiled from a hardware description language is mapped to a
chip image, typically a rectangular area with free space for gates. During physical
design, gates get placed on the chip image. Then, optimizations are performed
without changing the logical function of the design to improve the timing behaviour.
One such operation is rebuilding repeater trees. Finally, the pins of each net get
connected with wires by a routing tool. Modern chip designs and technologies are so
challenging that placement, timing optimization, and routing have to be considered
together most of the time. An introduction into the optimization steps of modern
physical design is given by Held (2008).

13

2 Timing Optimization – Basic Concepts

2.3 Static Timing Analysis
We use the concepts of static timing analysis (Hitchcock et al., 1982) that is based
on the critical path method (Kelley and Walker, 1959). A thorough introduction
to timing analysis is given by Sapatnekar (2004). In this thesis only the following
concepts are important.
The voltage at a given point of a chip compared to ground defines the logical

state. The voltage Vdd represents a logical 1 and GND (ground) represents a 0.
A signal is defined as the change of the voltage over time. A rising signal describes

a change from GND to Vdd. On the other hand, a falling signal describes the change
from Vdd to GND. We call the direction the signal’s edge. The possible edges are r
(rise) and f (fall). We define the inversion of an edge as

f−1 := r, r−1 := f.

In static timing analysis signals are measured at certain points of the design that
are also called timing points. For most of this discussion, it is sufficient to restrict
ourselves to gate pins and primary pins as timing points. In addition, some gates
have internal timing points. We only have to consider them when we work with real
chip designs (Chapter 7). A signal is estimated by a piecewise linear function that
is given by the arrival time and slew of the signal. Usually, the arrival time of a
rising or falling signal is given as the time when the voltage change reaches 50 %.
Similarly, the slew is given as the time between 10 % and 90 % of the voltage change.
Static timing analysis makes worst case assumptions and computes at each

measurement point an early and a late signal. A real signal will arrive after the
early signal and before the late signal.
At certain timing points the arrival times of signals are compared to the arrival

times of other signals or design-specific constants. This imposes constraints on the
signals. For example, signals are not allowed to be too fast (their early arrival time
has to be high enough) or too slow (the late arrival time has to be small enough)
when they arrive at registers1 compared to clock signals. Repeaters are used to slow
down signals that are too fast and they are also used to speed up signals. In this
thesis, we only consider the problem of speeding up signals to meet requirements on
the late arrival time. As we are not interested in the early arrival times of signals,
we will ignore them for the remainder of this thesis and only work with late signals.

Transistors show different characteristics for rising and falling signals depending
on their size or the technology. Gates show asymmetric behaviour depending on the
edge of the incoming signal. Therefore, timing analysis computes the arrival times
and slews for both signals separately and stores them in time pairs, one value for
each signal edge.

Definition 1. A time pair is a tuple (rise, fall) ∈ R2 of time values. For a given
time pair t = (rise, fall) we define tr := rise and tf := fall.

1Registers are gates that store information between clock cycles.

14

2.4 Repeater

At each timing point, a signal is given by an arrival time time pair (we often write
arrival time pair) and a slew time pair (we often write slew pair):

(atr, atf), (slewr, slewf).

The measurement points are connected by directed propagation arcs. Timing
nodes and propagation arcs form the timing graph. For a net, there is a propagation
arc for each sink pin p connecting the source of the net to p. For gates, there are
technology dependent rules specifying which internal timing points and arcs are
added to the timing graph. Propagation arcs are also called propagation segments.
Repeaters normally have a single propagation arc from their input pin to their
output pin. The propagation arc within an inverter is an inverting propagation arc;
a rising (falling) signal edge at the input becomes a falling (rising) signal edge at
the output. Buffers have, similar to nets, a non-inverting propagation arc; a rising
(falling) signal edge at the input becomes a rising (falling) signal edge at the output.

The difference between the arrival time of a signal at the head of a propagation
arc and the arrival time at the tail is called delay.
The computer program that computes arrival times and slews for all signals on

all timing nodes is called timing engine.

2.4 Repeater

A repeater t is characterized by
• its logical function (buffers implement the identity function, inverters imple-

ment the negation),
• an input pin ta and an output pin tz with pin capacitances capin(t) and
capout(t),

• its delay function delayt,
• its slew function slewt, and
• its leakage power consumption pwr(t).
The logical function determines whether a signal propagating through a repeater

is inverted or not. Inverters change, according to their propagation arcs, a rising
signal into a falling signal and vice-versa. Buffers do not change the edge of a signal.
Given a signal edge ∗ ∈ {r, f}, we define

t(∗) :=
{
∗−1 if t is an inverter
∗ if t is a buffer.

Each repeater is driver of the net connected to its output pin. The sum of pin
and wire capacitances visible from the output pin, including capout(t), is called load
capacitance or load.
The functions delayt and slewt are called timing functions. The delay function

computes the delay over the internal propagation arc of a repeater. It depends on

15

2 Timing Optimization – Basic Concepts

the load at the output pin and the slew pair at the input pin. The function is given
by

delayt : [0, loadlim(t)]× [0, slewlim(t)]2 → R2

delayt(l, s) :=
(
delayrt (l, sr), delay

f
t (l, sf

)
where, for each signal edge ∗ ∈ {r, f}, there is a function

delay∗t : [0, loadlim(t)]× [0, slewlim(t)]→ R.

As inverters change the signal edge, we have to distinguish between inverters and
buffers when we want to add delays to a given arrival time pair. For time pair a,
load l and slew pair s, we use the function

updatet : R2 × [0, loadlim(t)]× [0, slewlim(t)]2 → R2

updatet(a, l, s) :=

(
af + delayft (l, sf), ar + delayrt (l, sr)

)
if t is an inverter(

ar + delayrt (l, sr), af + delayft (l, sf)
)

if t is a buffer.

Similarly, the slew function determines the slew at the output pin of the repeater
depending on the slew pair at the slew pin and the load at the output pin. It is
given by

slewt : [0, loadlim(t)]× [0, slewlim(t)]2 → R2
≥0

slewt(l, s) =

(
slewft (l, sf), slewrt (l, sr)

)
if t is an inverter(

slewrt (l, sr), slew
f
t (l, sf)

)
if t is a buffer,

and, for each input signal edge ∗ ∈ {r, f}, there is the function

slew∗t : [0, loadlim(t)]× [0, slewlim(t)]→ R≥0

computing the slew for the output signal edge t(∗).
Each repeater has a pair slewlim(t) of limits on the maximum rising respectively

falling slew associated with the input pin and a maximum output load limit loadlim(t)
associated with the output pin. Both define the domain of the timing functions.
There are also tiny lower limits on the possible load and slews to the delay and slew
functions. However, they are not relevant in practice. The minimum load limit can
only be violated by unconnected pins and the lower slew limits are so steep that it
is not possible to reach them within the corresponding technology. We therefore
ignore them and use 0 for lower limits. The delay and slew functions as well as the
pin capacitances and limits are called timing rules.

Especially in the early design stages, it is often not possible to keep the slews and
loads within the domain of the load and slew functions. Such a condition is called

16

2.4 Repeater

electrical violation. The timing engine extrapolates the timing functions in such a
case to work with somehow reasonable values.

Generally, we do not make many restricting assumptions on the timing functions
of a repeater. There might be small deviations from the following, but we can
assume that both functions are strictly monotonically increasing for each input. For
example, if for a fixed load the input slews are increased, then the delays and output
slews also increase.

400 fF

100 ps

Load

O
ut
pu

t
Sl
ew

(a)

200 ps

100 ps

Input Slew
O
ut
pu

t
Sl
ew

(b)

400 fF

100 ps

Load

D
el
ay

(c)

200 ps

100 ps

Input Slew

D
el
ay

(d)

Figure 2.1: Delays and slews of an example repeater depending on the input slew and load.
Figures (a) and (c) show the results of slewr

t and delayr
t for fixed input slew

and different load capacitances. Figures (b) and (d) show the results of slewr
t

and delayr
t for fixed load capacitance but different input slews. In all cases the

rise-fall transition of an inverter is shown.

We use the leakage power consumption of repeaters as costs. Repeaters also
cause dynamic power consumption that depends on the switching behaviour of the
circuit. Circuits that switch often consume more power than circuits that keep their
state. The power consumption also depends on the capacitance of the capacitors
that change voltage. The dynamic power consumption is roughly linear to the total

17

2 Timing Optimization – Basic Concepts

capacitance of a circuit. As all circuits in a repeater tree show the same switching
patterns, we can basically expect that shorter trees use less dynamic power.

2.5 Wire Extraction

Given a net, we are interested in the delay between the source of the net and each
sink. The process of computing the delays and slew changes is called wire extraction.
There are several different approaches to model the timing behaviour of nets. The
most dominant one is shown in the next section.

2.5.1 Elmore Delay

The most commonly used delay model for nets in works on interconnection opti-
mization is the Elmore delay because it is easy to calculate and gives good results
compared to earlier approaches2.
Elmore (1948) proposed to estimate the delay of a monotonic step response of a

circuit by using the mean of the impulse response. It can be shown that the Elmore
delay is an upper bound on the actual 50 % delay to a sink. Rubinstein et al. (1983)
showed how to compute the Elmore delay on an RC-tree in linear time. An RC-tree
describes the physical properties of the wires of a net. A wire segment e is modeled
using the π-model, that is, a resistance segment re between two capacitors ce/2. Here,
re is the resistance of the wiring segment and ce is its capacitance.
At the first design stages there are often no wires that can be used for RC-tree

generation. To estimate the delay over a net, it is common to compute a Steiner
tree S and use it as the RC-tree with default resistances and capacitances for the
edges of the Steiner tree.

We assume that the tree is oriented away from the input pin of the net, that each
vertex is assigned a position in the plane, and that the edges are embedded at the
shortest paths between their nodes. On a path E(S)[a,b] from vertex a to vertex b,
the Elmore delay rc is calculated by:

rcs =
∑

e∈E(S)[a,b]

re

(
ce
2 + downcap(e)

)
.

The downward capacitance downcap(e) is the sum of all wiring and pin capaci-
tances reachable from e in the oriented tree.

Both re and ce are proportional to the length of edge e. The resulting rc value is
therefore quadratic in the length.
The Elmore delay approximates the response of a net to a step excitation. It

is used as a raw value, often called RC-delay, that is merged with environmental
variables into a delay function and a slew function that compute the response of

2See Pileggi (1995) for a description of some earlier models.

18

2.5 Wire Extraction

the net to a skewed input signal. We assume that the timing engine provides a
wiredelay function

wiredelay : R× R≥0 → R

and a wireslew function

wireslew : R× R≥0 → R≥0.

Given a wire segment with Elmore delay rc and a slew sin at the segment’s start,
wiredelay(rc, sin) computes the delay over the wire and wireslew(rc, sin) computes
the slew at the end. Both functions are sometimes linear, but often they cannot be
calculated by a simple expression. The functions are independent from the signal
edge. To simplify the calculation of delays and slews for time pairs, we define the
combinations wiredelay and wireslew:

wiredelay : R× R2
≥0 → R2

wiredelay(rc, (slewr, slewf)) = (wiredelay(rc, slewr), wiredelay(rc, slewf))
wireslew : R× R2

≥0 → R2

wireslew(rc, (slewr, slewf)) = (wireslew(rc, slewr), wireslew(rc, slewf)).

The Elmore delay has the property that splitting up arbitrary nodes in the tree
does not change the result. For example, if we have an edge (a, b) and split it with
node c then

rc(a,b) = rc(a,c) + rc(c,b).

However, we do not assume that the same holds for wiredelay or wireslew. The
following equations are not necessarily true for an input slew sin:

wiredelay(rc(a,b), sin) = wiredelay(rc(a,c), sin)
+ wiredelay(rc(c,b), wireslew(rc(a,c), sin)))

wireslew(rc(a,b), sin) = wireslew(rc(c,b), wireslew(rc(a,c), sin)).

This means that in general we cannot compute delays and slews segment by segment
and just stitch them together. Instead, we have to calculate the Elmore delay for
the whole net first before we ask for the total delays and output slews by using the
black-box functions wiredelay and wireslew.

2.5.2 Higher Order Delay Models
The Elmore delay is popular for timing optimization because of its simplicity.
However, it is too pessimistic for some applications. Timing engines typically
support more accurate delay models in addition to Elmore delay.
While we focus on the Elmore delay in our discussion, the operations where we

extract a net and compute the delay and slew degradation are independent from
the delay model. With small modifications and by using black-box functions that

19

2 Timing Optimization – Basic Concepts

return delays and slews for a given net, it would be possible to create versions of our
algorithm that work on more accurate delay models. Until now, we refrained from
doing so because we expect only a small improvement in quality to our solutions
that would be paid by a drastically increased running time.

A description of higher order delay models can be found in Sapatnekar (2004) or
Alpert et al. (2008), p. 546ff.

2.6 Slew Limit Propagation
In the context of repeater trees, only input pins of gates have slew limits. However,
if one has to choose a gate that drives a net, one often wants to know the maximum
slew that may arrive at the source of the net such that the limit is not violated for
each sink of the net. We assume that there exists a function

slewinv : R× R2
≥0 → R2

≥0

that computes the maximum slew limit at net sources. For a sink s with a slew
limit pair slewlim(s) and RC-delay rcs the pair of maximum slews that are al-
lowed at the source of the net such that the sink’s limits are not violated is
slewinv(rcs, slewlim(s)). Sometimes it is not possible to obey a sink’s slew limit
because it is too tight or the net is too long. In such cases, we assume that slewinv
returns 0 for the corresponding signal edge.
For a net with sink set S, the maximum allowable slews at the source are the

componentwise minimum values over all slew limits:

slewlim := min
s∈S
{slewinv(rcs, slewlim(s))}.

We ask the same question for each repeater: What is the highest slew that may
arrive at the input pin such that the output slew is below a certain limit for a given
load capacitance? We assume that for each repeater t a function

slewinvt : R≥0 × R2
≥0 → R2

≥0

is given. For a slew limit pair slewlim at the output pin and a load capacitance
load, the pair of highest allowable slews at the input pin is slewinvt(load, slewlim).

2.7 Required Arrival Time Functions
As indicated above, there are constraints on the arrival times. If a signal is not
allowed to arrive too late at a timing point, then the latest feasible arrival time is
called required arrival time (RAT). We define required arrival times for all timing
nodes even if they have no direct arrival time constraints. For a timing point v,
the required arrival time for a signal is the latest arrival time such that for all
timing nodes reachable from v the arrival time constraints are met. As the delays

20

2.7 Required Arrival Time Functions

of subsequent propagation segments depend on the slew at v, the required arrival
time is a function of slews.
For each timing point, there is a RAT function

rat : R2
≥0 → R2

rat(slew) =
(
ratr(slewr), ratf (slewf)

)
with ratr, ratf being edge-specific RAT functions. For a signal edge ∗ ∈ {r, f}, we
have

rat∗ : R≥0 → R.

Given arrival time a∗ and slew s∗ for signal edge ∗ ∈ {r, f}, the required arrival
time constraint at a point is feasible if

a∗ ≤ rat∗(s∗).

The slack at the point is defined as

σ∗ := rat∗(s∗)− a∗.

The timing of a netlist is clean if the slacks are non-negative for all constraints on
timing points.

2.7.1 Propagation of Required Arrival Times
Given a net, the RAT function at its source r depends on the net topology and the
RAT functions at the sinks. Given a sink s with RAT function rats, we can ask for
a function ratr such that arrival times and slews are feasible at s if they are feasible
at r. Delay and slew over a wire segment only depend on the Elmore delay and the
input slew. We therefore assume there is function

ratinv : R× (RR≥0 × RR≥0)→ RR≥0 × RR≥0

ratinv
(
rc, (ratr, ratf)

)
=
(
ratinvr(rc, ratr), ratinvf (rc, ratf)

)
and for each edge ∗ ∈ {r, f} a function

ratinv∗ : R× RR≥0 → RR≥0

such that, for every slew slew and Elmore delay rcs,

ratinv∗(rcs, rat∗s)(slew∗) = rat∗s(wireslew(rcs, slew∗))−wiredelay(rcs, slew∗).

At the source of multi-pin nets, we have to take the minimum over all RAT functions
coming from the sinks to be sure that arrival times are feasible at all sinks. The
minimum is the function

ratr := min
s∈S

ratinv(rcs, rats)

21

2 Timing Optimization – Basic Concepts

such that for each edge ∗ ∈ {r, f} and all slews slew ∈ R≥0

rat∗r(slew) = min
s∈S

ratinv∗(rcs, rats)(slew).

If we have to compute the minimum over a set of RAT functions, the result is the
lower contour of input RAT functions. In practice, however, we always approximate
the lower contour by a linear function.

Similarly, we assume that for each repeater t there is a function ratinvt giving us
the RAT function at the input pin for a RAT function at the output pin. Assume
that t drives a net with load capacitance load and that the RAT function at the
output pin is rat. We then have a function

ratinvt : R≥0 × (RR≥0 × RR≥0)→ RR≥0 × RR≥0

ratinvt
(
load, (ratr, ratf)

)
=
(
ratinvrt (load, ratt(r)), ratinv

f
t (load, ratt(f))

)
and for each edge ∗ ∈ {r, f} a function

ratinv∗t : R× RR≥0 → RR≥0

such that, for every slew pair slew and load capacitance load,

ratinv∗t (load, rat∗s)(slew∗) = ratt(∗)s (slew∗t (load, slew∗))− delay∗t (load, slew∗).

Note that for inverters the rise RAT function at the input pin is determined by the
fall RAT function at the output pin and vice-versa.

22

3 Repeater Tree Problem

3.1 Repeater Tree Instances
An instance of the Repeater Tree Problem consists of

• a root r, its location in the plane Pl(r) ∈ R2, a root arrival time function
atr : R+ → R2, a root slew function slewr : R+ → R2, a pin capacitance
capout, and a capacitance limit loadlim(r),

• a set S of sinks, and for each sink s ∈ S its parity par(s) ∈ {+,−}, its location
in the plane Pl(s) ∈ R2, input capacitance capin(s), a RAT function rats, and
a pair of slew limits slewlim(s),

• a set L of repeaters with timing rules delayt, slewt, loadlim(t), slewlim(t),
capin(t) and capout(t) for each repeater t ∈ L,

• a set A of rectangles defining blocked areas,

• a global routing graph,

• a set W of wiring modes, and

• timing functions wiredelay and wireslew.

Root

The root r is typically an output pin of a circuit or a primary input pin of the
netlist. The root arrival time (resp. slew) function computes a time pair of arrival
times (resp. slews) at the root pin for a given load capacitance.

Sinks

Sinks are usually primary outputs or input pins of circuits that are not repeaters.
The parity determines how many inverting repeaters are required on root-sink paths.
The number of inversions on the path from the root to the sink must be even (odd)
if the sink has parity + (−). We say a sink is positive (negative) if it has parity +
(−).

Most formulations of the Repeater Tree Problem assume fixed required
arrival times at the sinks. In practice, required arrival times depend on the slews
that arrive at the pins1. Higher slews cause higher delays in following stages and

1See Section 2.7.

23

3 Repeater Tree Problem

reduce the required arrival times. The first propagation segment after a sink has
the highest impact on the delays introduced by higher slews. If the sink is a circuit,
its delay function often shows nearly linear behaviour that can be captured by a
linear function. Effects on subsequent propagation segments are much smaller and
can be neglected.
For sinks that are primary outputs or other nodes where required arrival times

are created, the RAT function is often constant.
The slew limit is determined by the timing rules of the sink and global parameters.

Blockages and Congestion

Information about areas of the design that are blocked for repeater insertion is given
in a blockage map. Basically, the blockage map is a set of rectangles.
Similarly, congestion on the wiring layers is passed to the repeater tree routine

via a global routing graph. Both data structures are described in Section 4.2.

Wiring Modes

We assume to have a fixed number of wiring modes, each of which corresponds to a
type of wire we can route on a plane. A wiring mode w is a 4-tuple (p, width(w),
wirecap(w), wireres(w)) consisting of

• a routing plane p,

• routing space consumption width(w),

• capacitance per unit length wirecap(w), and

• resistance per unit length wireres(w).

The routing space consumption depends on the wire width and the necessary
spacing to neighboring wires and is used to update the congestion map. Usually,
there is one wiring mode per usable plane of a design.
Given a wire segment ws with mode w, the total capacitance and resistance of

the wire are linear in its length l(ws):

cap(ws) := wirecap(w) · l(ws)
res(ws) := wireres(w) · l(ws).

There are two default wiring modes, one on a horizontal layer w∗h and one on a
vertical layer w∗v, that are used for the bulk of the wires in the design. Typically,
they are the least expensive wiring modes in terms of routing space consumption
and most expensive in terms of delay. As routers are free to choose higher planes
than the plane of the assigned wiring mode and as higher planes typically mean
better timing, the assignment of the default wiring modes is a pessimistic choice.

24

3.2 The Repeater Tree Problem

Timing Rules

For each repeater t, the functions delayt and slewt are given with the according
electrical limits loadlim(t) and slewlim(t). The capacitance of its input pin is
capin(t) and it is capout(t) for its output pin.
For nets, wiredelay is the timing rule that computes the delay of the timing

engine for a given RC-delay and input slew. Similarly, wireslew computes the slew
for a given RC-delay and input slew.

3.2 The Repeater Tree Problem
The Repeater Tree Problem is the task of computing a repeater tree for a given
repeater tree instance. We first define what a repeater tree is:

Definition 2. A repeater tree R for a Repeater Tree Problem instance is a
tuple (T, P l,Rt, RW). It consists of

• an arborescence T = (V (T), E(T)) with V (T) = {r} ∪̇ S ∪̇ Ir ∪̇ Is rooted at
r, leaves S, and inner nodes Ir ∪ Is (nodes corresponding to repeaters and
steiner nodes),

• an embedding of the nodes into the plane Pl : V (T)→ R2,

• a repeater assignment function Rt : V (T)→ L∪ {∅} with Rt(v) ∈ L iff v ∈ Ir,
and

• a wiring mode assignment function RW : E(T)→W .

The root and leaves of a repeater tree are the root and sinks of the corresponding
repeater tree instance. When a repeater tree is inserted into a chip design, for each
node v ∈ Ir, a new repeater gate with type Rt(v) is created and placed at Pl(v).
Root, sinks, and new repeaters are connected with nets that consist of the edges
between the corresponding nodes. The nodes Is and their incident edges determine
the topology of the nets. There is exactly one net for each node in {r} ∪ Ir.

3.2.1 Repeater Tree Timing
Given a repeater tree R = (T, P l,Rt, RW) for a repeater tree instance, we have to
compute the arrival times and slews at the sinks to compare them with required
arrival times. To achieve this, we have to extract the nets between the involved pins
and compute delays over repeaters and nets.

For each node v ∈ V (T), let Tv be the maximal subtree rooted at v such that all
its inner nodes are in Is. We say Tv is a net iff v ∈ {r} ∪ Ir. The sinks of the net
are the leaves of Tv.
Given a sink a ∈ V (Tv) for a net rooted at v, let p(a) := v be the root node of

the net. On the one hand, each repeater node v ∈ Ir is root of the net Tv, and on
the other hand, it is a sink in the net Tp(v).

25

3 Repeater Tree Problem

We first compute the Elmore delay to each net’s sink. Given an edge (v, w), its
capacitance and resistance are

cap((v, w)) := wirecap(RW ((v, w)))||Pl(v)− Pl(w)||
res((v, w)) := wireres(RW ((v, w)))||Pl(v)− Pl(w)||.

Given an edge (w, y) ∈ E(Tv), the capacitance visible downwards is the sum of
all edge capacitances in the subtree rooted at y and the input pin capacitances of
reachable sinks:

downcap((w, y)) :=
∑

(a,b)∈E(Ty)
cap((a, b)) +

∑
a∈V (Ty)
δ+(a)=0

capin(R(a)).

For the root node and the internal repeaters, the load capacitance is the sum of
visible capacitances:

load : Ir ∪ {r} → R

load(x) = capout(x) +
∑

e∈δ+(x)
downcap(e).

Now we can compute the Elmore delay rc for each sink:

rc : Ir ∪ S → R

rc(x) =
∑

e∈E(Tp(x))[p(x),x]

res(e)
(
cap(e)

2 + downcap(e)
)
.

The next step is to propagate the slews and the arrival times from the root to the
instance sinks. We define the slew recursively distinguishing between the input slew,
slewi, for input pins and output slew, slewo, for output pins:

slewo : Ir ∪ {r} → R2

slewo(v) =
{
slewr(load(v)) v = r

slewR(v)(load(v), slewi(v)) v 6= r

slewi : Ir ∪ S → R2

slewi(v) = wireslew(rc(v), slewo(p(v))).

In a similar way, the arrival times at inputs (ati) and output pin (ato) are defined as

ato : Ir ∪ {r} → R2

ato(v) =
{
atr(load(v)) v = r

updateR(v)(ati(v), load(v), slewi(v)) v 6= r

ati : Ir ∪ S → R2

ati(v) = ato(p(v)) + wiredelay(rc(v), slewo(p(v))).

26

3.2 The Repeater Tree Problem

The slack of the repeater tree is now

slack(T) := min
s∈S

min{ratrs(slewri (s))− atri (s), ratfs (slewfi (s))− atfi (s)}.

We also define the static power consumption of the tree

power(T) :=
∑
v∈Ir

pwr(R(v))

and its length
length(T) :=

∑
(v,w)∈E(T)

||Pl(v)− Pl(w)||.

The length roughly correlates with the dynamic power consumption of a repeater
tree.

3.2.2 Feasible solutions

A repeater tree is feasible if internal nodes Ir are legally placed and connected in
such a way that the signals arrive at each sink with the correct parity. Repeaters
are placed legally if their position is not marked as blocked in the blockage map:

Pl(v) /∈ A ∀v ∈ Ir.

Note that we ignore overlaps between repeaters and other gates.
Furthermore, we have to obey capacitance and slew limits everywhere:

load(r) ≤ loadlim(r)
load(v) ≤ loadlim(R(v)) ∀v ∈ Ir
slewi(v) ≤ slewlim(R(v)) ∀v ∈ Ir
slewi(s) ≤ slewlim(s) ∀s ∈ S.

The timing of the repeater tree is feasible if slack(T) ≥ 0.

3.2.3 Objectives

Among the repeater trees satisfying the above conditions, one typically searches a
tree with the smallest power consumption.
In practice, however, it is often not possible to achieve a positive slack. It might

also not be possible to get a solution that has no electrical violations. In such
cases, our first objective is to minimize the sum of electrical violations. The second
objective is to maximize min{0, slack} followed by minimizing power. In addition,
we seek solutions minimizing the use of wiring resources.

It is often desirable to balance between the two main objectives, timing and
wirelength. To this end, we introduce a parameter ξ ∈ [0, 1], indicating how timing-
critical a given instance is. For ξ = 1, we primarily optimize the worst slack, and we

27

3 Repeater Tree Problem

optimize wirelength for ξ = 0. We consider the other objective only in case of ties.
In practice, however, we mainly use values of ξ that are strictly between 0 and 1.
The Repeater Tree Problem is NP-hard because it contains the Steiner

Minimum Tree Problem if one just wants to minimize `1-netlength (see Garey
and Johnson (1977)). In addition, delay and slew functions are non-linear leading
to further difficulties.

A good overview of existing approaches to solve the Repeater Tree Problem
can be found in Alpert et al. (2008), Chapter 24–28. For an older discussion see
Cong et al. (1996).

3.3 Our Repeater Tree Algorithm
We present our algorithm for the Repeater Tree Problem, that we call Fast
Buffering, in the next chapters. Most repeater tree instances are build in the same
environment with the same repeater library, blockages, global routing, wiring modes,
and timing functions. We therefore spend some time to preprocess the environment
and to compute parameters that allow us to perform further steps efficiently. The
preprocessing step is explained in Chapter 4.
A common approach to the Repeater Tree Problem is to divide it into two

steps, Steiner tree generation (also called topology generation) and repeater insertion
(also called buffering). Our algorithm takes the same route. A main reason is that
a) for some applications the topology is fixed and we only have to do repeater
insertion, and b) other applications only need a timing-aware topology. Thus, our
topology generation algorithm can be used for different applications, for example, the
optimization of symmetric fan-in trees2. Similarly, our buffering algorithm can work
on topologies from other sources (e.g. routing). The division allows us to exchange
one algorithm without touching the other. The algorithms are independent from
each other, but, on the one hand, we already consider expected results from repeater
insertion during topology creation by using a delay model for estimation that tightly
matches buffering results3, and, on the other hand, we allow our buffering algorithm
to modify the input topology if it is suitable.
Chapter 5 explains how we create topologies, and in Chapter 6 we show how we

buffer them.

2Symmetric fan-in trees compute symmetrical functions with n inputs. They are reverse to
repeater trees. Signals from n sources are merged into a single output.

3See Figure 5.3 and the surrounding discussion.

28

4 Instance Preprocessing

4.1 Analysis of Library and Wires

We compute some auxiliary data and parameters in advance, which are then used for
all instances of a design. It is possible to precompute parameters for a single global
optimization run because the environment does not change and because technology,
library, and wire types are the same for a lot of instances.
On the other hand, it is not possible to precompute useful data between several

runs because the environment changes too often. Due to different timing rules,
voltages, and temperatures between different optimization runs, it is necessary to
recompute the parameters even if the basic technology or library did not change.

The main goal is to identify some parameters that allow us to estimate the timing
of a repeater tree based on the Steiner tree. In addition, we compute some values
that guide us in the buffering step of a particular instance.

4.1.1 Estimating two-pin connections

Figure 4.1 shows the delay over a two-pin connection depending on its length
after buffering it in an approximatively delay-minimal way (see Section 6.3). The
experiment was done with a 22 nm chip design using default planes and wire widths.
We see how repeater insertion linearizes the delay that would be quadratic

otherwise. The red line in the figure shows a linear approximation of the delay
function between the two inverters. The slope of the approximation is dwire. Given
this approximation, we can predict the delay for two-pin nets after buffering:

delay = dwire ∗ length. (4.1)

While there are closed-form solutions for buffering two-pin nets1, we do not use
them for approximating dwire because they rely on simplifications like Elmore delay
and do not capture all environmental parameters. Instead, we search for the best
way of buffering long two-pin nets by implementing it in the design and using the
timing engine to calculate delays and slews. This way, we capture all effects that
affect timing.
We now show how we compute the constant dwire. To bridge large distances

of wire in wiring mode w using repeater t, we partition the wire equidistantly by
adding a repeater after l units of wire.

1See for example Alpert et al. (2008), p. 536f

29

4 Instance Preprocessing

250 µm 500 µm 750 µm
Distance (ns)

D
el
ay

Figure 4.1: Two medium-sized inverters are placed at a given distance. The net between
them is then buffered with the highest effort. The graph shows the resulting delay
depending on the distance (black). The red line shows the linear approximation
that we compute for the delay function.

To measure the delay over the line, we add two repeaters of type t into the design
and connect them by a net such that the length of the net is l. We modify the pin
capacitance at the end of the line to be c. At the input of the first repeater, the slew
pair sin is asserted. The whole setup guarantees that most global timing parameters
are considered. Local timing parameters (e.g. coupling capacitance) are ignored.
Let d(t, sin, l, w, c), sout(t, sin, l, w, c) and p(t, sin, l, w, c) be the total delays over

the stage (through repeater and wire), the slews at the other end of the wire, and
the power consumption, respectively. We assume that all values are infinite if a load
limit or a slew limit is violated.

Let now s0 be a reasonable slew pair (we just use the minimum allowed slews for
t). We define

si+1 := sout(t, si, l, w, c) (i ≥ 0). (4.2)

The sequence (si)i=1,2,3,... typically converges very fast to a fixpoint or quickly
becomes ∞ due to an electrical violation. We call s∞(t, l, w, c) := limi→∞ si the
stationary slews of (t, l, w, c). In practice, we iterate over si until we reach a fixpoint
due to the limited precision of the floating-point numbers used to represent slews.
Typically, the fixpoint is reached within ten iterations. We then use the computed
value as an approximation of s∞(t, l, w, c). There is only a single fixpoint because
the slew function is typically contractive over a whole stage. Thus, the choice of
the initial slews does not matter as long as it is within the domain of the slew and
delay functions.

One might think that inverters need special treatment, because the rising (falling)
output slew does not depend on the rising (falling) input slew. Instead, the signal is

30

4.1 Analysis of Library and Wires

inverted internally. The stationary slews might only be achieved after propagating
over two stages in the inverter chain. There might also be different stationary slews
for odd and even numbers of stages respectively. Fortunately, one can easily show
that one has only to deal with a single stationary slew pair.

.

sri

sfi

sri+1

sfi+1

sri+2

sfi+2

sri+3

sfi+3

Figure 4.2: An endless chain of equidistantly distributed inverters. The slews alternate
between rise and fall. Although a given rise value is not used in the computation
of the following one, like, for example, sr

i and sr
i+1, consecutive rise values

converge to a fixpoint.

Figure 4.2 shows an infinite line of equidistantly distributed inverters and the slews
at the input pins. The lines below show how slews are propagated. For example,
the rising slew sr1 is propagated to the falling slew sf2 . Let rf be the rise-fall slew
function for a whole stage2 of the chain and fr the fall-rise slew function. As both
functions are contractive, their compositions are also contractive.
Within the chain of inverters the even and odd slews form separate sequences

with
si+2 =

(
fr(rf(sri)), rf(fr(sfi))

)
.

The blue and red lines indicate both sequences in the figure. The sequences only
differ by the starting point as the even sequence starts with minimum allowed slews
and the odd sequence starts with s1. Because contractive functions only have a single
fixpoint, both sequences converge to it. However, this means that the combined
sequence also converges to the fixpoint. Therefore, it suffices to consider a single
stage, not only for buffers but also for inverters.
Due to the asymmetric nature of the delay and slew functions for the rising and

falling slews, we take the average for further processing and abbreviate:

d(t,l,w,c) := 1
2
[
d(t,s∞(t,l,w,c),l,w,c)r + d(t,s∞(t,l,w,c),l,w,c)f

]
s(t,l,w,c) := 1

2
[
s∞(t,l,w,c)r + s∞(t,l,w,c)f

]
p(t,l,w,c) := p(t,s∞(t,l,w,c),l,w,c).

For a given wiring mode, a repeater, and a length, we can now compute the delay

2The slew function for a whole stage combines the slew calculation from the input of a repeater
through the repeater and the following net up to the input of the next repeater.

31

4 Instance Preprocessing

per unit distance and power consumption per unit distance

d̄(t, l, w) := d(t, l, w, capin(t))
l

p̄(t, l, w) := p(t, l, w, capin(t))
l

and the according stationary slews

s̄(t, l, w) := s∞(t, l, w, capin(t)).

Figure 4.3 shows how the delay per unit distance typically behaves depending
on the length between two consecutive repeaters. The delay is dominated by the
repeater delay for small distances. The overall delay decreases until a delay-optimal
distance is reached. For larger distances the wire delay begins to dominate. The
curve ends as soon as the slews or loads create electrical violations. It is not shown
in the figure, but stationary slews increase monotonically with the length.

Repeater Spacing

D
el
ay
/U

ni
t
D
ist

an
ce

Figure 4.3: A typical curve showing d̄(t,l,w) for a given repeater t and wiring mode w over
the range of valid lengths l. The curve shown is from a medium-sized inverter
from a 22 nm design on the third metal layer using the smallest wiring mode.

Using the same repeater and wiring mode as in the previous figure, we can see in
Figure 4.4 how power per unit distance and delay per unit distance relate to each
other. For small distances (upper right endpoint of the curve) the power consumption
is high due to the high amount of repeaters needed. Power consumption and delay
decrease with larger distances until we reach the optimal distance. Further power
reductions cause higher delays. The red points show possible stage lengths that

32

4.1 Analysis of Library and Wires

Delay/Unit Distance

Po
we

r/
U
ni
t
D
ist

an
ce

Minimum Repeater Spacing

Maximum Feasible Spacing

Fastest Spacing

Figure 4.4: A typical curve showing (d̄(t,l,w), p̄(t,l,w)) for a given repeater t and wiring
mode w parametrized over the range of valid lengths l. The curve is generated
for the same repeater as in Figure 4.3.

33

4 Instance Preprocessing

are not dominated by distances that result in cheaper configurations with the same
delay or faster configurations with the same power consumption.

We choose for each wiring mode w a repeater t∗w ∈ L and a length l∗w ∈ R>0 which
minimize the linear combination

ξd̄(t∗w, l∗w, w) + (1− ξ)p̄(t∗w, l∗w, w). (4.3)

If two different choices for t∗w and l∗w minimize the equation, then we choose the
fastest one. We call the parameter ξ power-time-tradeoff. For library analysis, we
choose ξ = 1 to calculate a lower bound on the achievable wire delay. The minima
can then be found by binary search over all lengths for each repeater type. The
functions we have to minimize are similar to the one shown in Figure 4.3.

4.1.2 Parameter dwire
For delay estimation in topology generation, we do not want to distinguish between
horizontal and vertical wire segments, because we often do not want to fix the exact
embedding of path segments. Therefore, we use the default wiring modes w∗h and
w∗v to build an average delay value. Typically, both wiring modes have similar
electrical properties such that the resulting value is not far away from both. We
choose optimal repeater t∗ and length l∗ such that

ξ
(
d̄(t∗,l∗,w∗h) + d̄(t∗,l∗,w∗v)

)
+ (1− ξ)(p̄(t∗,l∗,w∗h) + p̄(t∗,l∗,w∗v))

is minimized. The resulting delay per unit distance

dwire := d̄(t∗,l∗,w∗h) + d̄(t∗,l∗,w∗v)
2 (4.4)

is the parameter we searched for. It will be used for delay estimation during topology
generation (see Equation 4.1).
We call the stationary slew corresponding to the repeater and length choice

optslew:
optslew := s̄(t∗,l∗,w∗h) + s̄(t∗,l∗,w∗h)

2 .

The average capacitance over a stage is called maxcap:

maxcap := wirecap(w∗h) + wirecap(w∗v)
2 l∗ + capin(t∗).

4.1.3 Buffering Modes
As indicated in the previous section, we allow diagonal segments in our Steiner trees
such that it is not clear where we will eventually use horizontal or vertical wiring
segments. Thus, we assign a buffering mode that approximates the properties of
a horizontal and a vertical wiring mode to each segment. Buffering modes also
represent the effort we want to put into buffering of a segment.
A buffering mode m is a 3-tuple (mh,mv,mξ) that consists of

34

4.1 Analysis of Library and Wires

• a horizontal wiring mode mh ∈W ,

• a vertical wiring mode mv ∈W , and

• a power-time tradeoff mξ.

During buffering of a wire segment, we will try to replicate long-distance chains.
The distance between repeaters in a chain buffered with a given mode is determined
by the target repeater and the slew targets. The stationary slews of the chain will
be slew targets.

We have to determine the set of buffering modes that we want to work with. We
assume that there is a set Wp ⊆W ×W of wiring mode pairs. Each pair consists of
a horizontal wiring mode and a vertical wiring mode. We also restrict ourselves to a
set Ξ of power-time-tradeoffs between 0.0 and 1.0.
Given a wiring mode pair (wh, wv) with horizontal wiring mode wh ∈ W and

vertical wiring mode wv ∈W and a power-time-tradeoff ξ ∈ Ξ, we define a buffering
mode (wh, wv, ξ).

For each buffering mode, we find the optimal repeater t ∈ L and distance l ∈ R>0
minimizing

ξ
(
d̄(t,l,wh) + d̄(t,l,wv)

)
+ (1− ξ) (p̄(t,l, wh) + p̄(t,l,wv)) .

The optimal repeater for buffering mode m is called mt. The according slew targets
are

ms := s̄(t, l, wh) + s̄(t, l, wv)
2

The delay of a buffering mode m is defined as

md := d̄(t, l, wh) + d̄(t, l, wv)
2 .

The power consumption per length unit is

mp := p̄(t, l, wh) + p̄(t, l, wv)
2 .

The capacitance of a stage is

mcap := wirecap(wh) + wirecap(wv)
2 l + capin(t).

The average capacitance per unit length wire is

mwirecap := wirecap(wh) + wirecap(wv)
2 .

We use dm and pm to estimate the delay of an edge that is buffered using mode
m.

35

4 Instance Preprocessing

In practice, the user creates the setWp of reasonable wiring mode pairs. Typically,
the horizontal and vertical wiring mode have similar widths and spacings and lie
on neighboring planes for each wiring mode pair in Wp. In such a case, the delay,
power, and slew values do not differ significantly between the wiring modes of a
pair such that using the averages is not too far off. The set Ξ is also defined by the
user, but, in practice, we only use two tradeoffs: 0 and ξ. The default wiring modes
are always in Wp. Thus, there is always a buffering mode available with delay dwire
(compare to Section 4.1.2):

m∗ := (w∗h, w∗w, ξ)

Finally, given Wp, we can determine the set M of buffering modes that we will
use for buffering:

M := {(wh, wv, ξ) | (wh, wv) ∈Wp, ξ ∈ Ξ}.

For each buffering mode m, there is a set of alternative buffering modes Mm

containing all buffering modes with the same horizontal and vertical wiring modes
as m including m itself. The alternative buffering modes only differ by the ξ value.
We assume that Mm only contains non-dominated buffering modes. A buffering
mode dominates another one if it is at the same time not slower and not more
expensive than the other one.

4.1.4 Slew Parameters
As described in Section 3.1, different slews at the input pins of repeater tree subtrees
have different effects to the downstream delays. To account for this where we do
not have an explicit RAT function, we introduce a parameter ν that translates slew
differences to delay differences (see also Vygen (2006)).
Let t∗ ∈ L and l∗ ∈ R>0 be the repeater and length that minimize Equation 4.4.

We define the slew pair of this optimal chain using only one of the default wiring
modes

sopt := s̄(t∗, l∗, w∗h).

We now compute

d1 :=
N∑
i=0

d(t∗, si, l∗, w∗h, capin(t∗))

using the following slews:

s0 := sopt

si := sout(t∗, si−1, l
∗, w∗h, cap

in(t∗))

In a second step, we compute d2 in an analog way to d1 by starting with s0 := 2 ·sopt.
In practice, using 2 · sopt will not lead to a violation. We set the desired parameter
to

ν := d2 − d1
sopt

.

36

4.1 Analysis of Library and Wires

The number N is chosen such that the stationary slew is reached for both computa-
tions. The parameter depends on the timing environment and technology. Typically,
it lies between 0.10 and 0.25. We use it to define

slewdelay(s) := ν · (s− starget)

for a given target slew starget The function slewdelay is used for two similar tasks:

1. As discussed earlier, required arrival times are associated with individual slew
requirements at sinks. To better compare RATs, we normalize them to a target
slew. For example, if a sink has the slew requirement s, then we translate the
RAT to starget by adding slewdelay(s) to it.

2. If a signal with slew s arrives at a sink with a slew target s, then we add
slewdelay(s) to the arrival time before we compute the slack of the signal.

Both happens only in our buffering algorithm based on dynamic programming (See
Section 6.3).

4.1.5 Sinkdelay
Consider two inverters connected by a net and placed far apart (as described in
Section 4.1.1). We now add repeaters to the line such that the delay between the
inputs of the inverters is minimized.

250 µm 500 µm 750 µm
Distance

D
el
ay

Figure 4.5: Two inverters are placed at a given distance. The net between them is buffered
with the highest effort. The graph shows the resulting delays for the same source
but three different sink capacitances at the end of the net: a small inverter
(green), a medium sized inverter (red), and a huge inverter (black).

Figure 4.5 shows the resulting delays for different distances between the boundary
inverters and for different capacitances at the end of the chain due to the different

37

4 Instance Preprocessing

inverter sizes. The difference between the delays remains nearly constant for longer
distances. We choose a distance where the delay differences are significant enough
and compute for different sink pin capacitances the resulting delay. Let d0 be the
delay of the chain if the capacitance at the sink is the input pin capacitance of t∗,
the optimal repeater minimizing Equation 4.4. For a given capacitance c at the end
of the chain and the resulting delay dc, we define

sinkdelay(c) := dc − d0

This function is used to estimate the delay difference on repeater chains due to
different sink capacitance compared to the optimal repeater.

250 µm 500 µm 750 µm
Distance

D
el
ay

Figure 4.6: Two inverters are placed at a given distance. The net between them is buffered
with the highest effort. The graph shows the resulting delays for the same sink
capacitance but three different sources: a small inverter (green), a medium sized
inverter (red), and a huge inverter (black).

Figure 4.6 shows the effects of changing the first gate instead of the last one in
our setup. Stronger (weaker) gates result in smaller (larger) delays on the chain.
The delay differences are also nearly constant at larger distances. In contrast to
delays introduced by sink capacitances, we do not introduce a function to estimate
the delays. Instead, we evaluate the root arrival time for the capacitance of the
optimal chain.

4.1.6 Further Preprocessing

Next, we compute a parameter dnode that is used during topology generation to
model the extra delay to be expected along a path due to additional capacitances
induced by a side branch. We determine it by adding a small repeater to the repeater
chain and measuring the additional delay.

38

4.2 Blockage Map and Congestion Map

Let inv(c, s) denote the inverter with the smallest power consumption that still
achieves a slew of at most s at its output pin if its input slew is sopt and the load is
c.
Let t1 := inv(maxcap, sopt), and let t2 := inv(capin(t1), sopt). We compute d1 as

in Section 4.1.4. Now we modify the repeater chain by adding a capacitance load of
capin(t1) in the middle of the first segment and consider it during the delay and slew
computation of the first stage. We then get the new delay d2 and set our branch
penalty to

dnode := d2 − d1

4.2 Blockage Map and Congestion Map

Placement blockages and wiring congestion information is given to the repeater
tree routine via a blockage map and a congestion map, respectively. The blockage
map is used to check whether a given point is blocked. The congestion map holds
the global routing information showing on which parts of the chip routing space is
sparse.

4.2.1 Grid

Both the blockage map and the congestion map share the same grid. The grid
partitions the chip area into tiles. The tiles are nodes of a grid graph.
The bounding box ca of the design area is given by

[caminx, camaxx]× [caminy, camaxy].

Definition 3 (Grid). A grid is a pair (xlines, ylines) of cutlines xlines = {x0, x1,
. . . , xm} and ylines = {y0, y1, . . . , yn} with x0 < x1 < . . . < xm and y0 < x1 <
. . . < xm and m > 1 and n > 1. We call a grid feasible for a chip area ca if
x0 ≤ caminx, camaxx < xm, y0 ≤ caminy, and camaxy < ym.

Most of the time, we use a grid with equidistant cutlines. An equidistant grid is
accurate enough in the context of repeater tree insertion if it is not spaced too wide.
Sometimes, however, one wants to use a Hanan grid given by the coordinates of all
edges of significantly large blockages such that their positions are exactly captured
in the blockage map.

Definition 4 (Tile). Given a grid (xlines, ylines) with xlines = {x0, x1, . . . , xm}
and ylines = {y0, y1, . . . , yn}, we call the rectangle [xi, xi+1)× [yj , yj+1) for 0 ≤ i <
m and 0 ≤ j < n the tile(i, j) of the grid.

For a given point of the chip area, there is exactly one tile in a feasible grid that
contains the point.

39

4 Instance Preprocessing

4.2.2 Blockage Map

The set of blocked regions for a repeater tree instance is stored in a data structure
that we call blockage map.

The most important operation that is performed on the blockage map is searching
for the nearest free location. Given a point in the plane, the blockage map is able
to give us the nearest free location in a given direction rectilinear to the grid or
the nearest free location in the whole plane with respect to `1-metric. Points on
blockage boundaries that are next to free points are considered as free.

4.2.3 Blockage Grid

For an existing blockage map and a grid, we also construct a blockage grid. The
blockage grid stores information whether a grid tile is blocked or not:

Definition 5 (Blockage Grid). Given a grid (xlines, ylines) with

xlines = {x0, x1, . . . , xm} and ylines = {y0, y1, . . . , yn}

and a blockage map, a blockage grid is a function

bg : {0, . . . ,m− 1} × {0, . . . , n− 1} → {0, 1}

where bg(x, y) = 1 iff tile(x, y) is completely blocked by the blockages of the map.

Shortest Path Searches

Typically, blockages do not block all wiring layers in a design. It is possible to
cross them on higher layers. Repeater trees are also allowed to jump over blockages.
However, the possible distance is limited by the slew and capacitance limits as it is
not possible to place repeaters on blockages. Larger distances between repeaters
caused by jumping over blockages also cost additional delay compared to an optimally
spaced repeater chain.
At one step in our topology generation algorithm, we search for delay minimal

paths between points in the design. We use a modified version of Dijkstra’s shortest
path algorithm on the blockage grid for this task.
Given two points, we first identify the tiles they belong to in the blockage grid

and then compute a shortest path between both tiles. The costs of an edge between
two neighboring tiles depends on whether the tiles are blocked or not. Crossing
unblocked space costs proportional to dwire. Costs over blocked area increase first
linearly and after a threshold quadratically with the distance the path already went
over blockages.

40

4.2 Blockage Map and Congestion Map

Figure 4.7: Blockage map (red) and grid (blue) on the design Julius.

41

4 Instance Preprocessing

4.2.4 Congestion Map
We implemented a rough global routing engine as congestion map. In contrast to a
full-fledged global router, the congestion map does not try to find a congestion free
global routing solution by all means. Instead, we embed a short `1-tree allowing
only small detours. We also limit the number of iterations spent for improving the
routing. The advantage is that we still see congestion that we then can try to avoid
during repeater tree generation. As can be seen in Table 7.2, using a full global
router would increase the running time of our algorithm significantly. Our algorithm
has recently been integrated into BonnRouteGlobal as a fast mode.

42

5 Topology Generation

The first step in our repeater tree algorithm is the construction of a repeater topology.
A repeater topology specifies the abstract geometric structure of the repeater tree.
Given an instance of the Repeater Tree Problem with root r and sink set S,
we can define:

Definition 6. A topology T = (V (T), E(T)) with V (T) = {r} ∪̇ S ∪̇ I is an
arborescence rooted at r with an embedding Pl : V (T) → R2 of the nodes into
the plane such that r has exactly one child, the internal nodes I have one or two
children each, and the sinks S are the leaves.

r

a b

−

+

+

Figure 5.1: A topology for one root and three sinks. Steiner points like a and b are used to
route the topology around obstacles. Although we do not use directed edges in
our figures, the edges in a topology are always directed away from the root.

We often call the set I of internal points Steiner points. Internal points with only
a single child are used to force the topology to pass a certain point in the plane.
Figure 5.1 shows an example topology. We should clearly note that the internal
nodes do not represent repeaters and that the topology does not specify details
about the exact placement, routing, and types of repeaters used in the final tree.
The length of a topology is ∑

(v,w)∈E(T)
||Pl(v)− Pl(w)||.

We have seen that after repeater insertion delays in a repeater tree are roughly
linear in the length of the segments. Connecting a sink to the root via a long
path results in a higher delay to a sink. The required arrival times at a sink then
decide whether a path is fine or too long. Consider the example in Figure 5.2. Both
topologies have the same length, but, for example, the distance to the root is 8
for the upper right sink in the first case and 2 in the second one. This example

43

5 Topology Generation

r +

+++

+

+ + +

r +

+++

+

+ + +

Figure 5.2: Two topologies with the same shortest possible length but different timing
behaviour. While all sinks are reached within 4 segments on the right side, it
takes up to 8 segments to the furthest sink on the left side.

illustrates that topologies have a high influence on the timing of a repeater tree. It
is therefore crucial to build timing-aware repeater trees.
Topologies for a root and a set of sinks that consider timing information do not

only have an application in repeater tree construction. They can also prove to be
useful in global routing. A global router internally often has to compute Steiner
trees for the nets of a design. The routing result can be better with regard to timing
if the Steiner trees are timing-aware topologies.
In this chapter, we first develop a way to estimate the timing of a topology and

then state the Repeater Tree Topology Problem. We show how our algorithm
solves the problem and prove some theoretical properties for restricted versions of
our algorithm.
The results in this chapter are joint work with Stephan Held, Jens Maßberg,

Dieter Rautenbach and Jens Vygen (Bartoschek et al., 2007a, 2010).

5.1 A Simple Delay Model
Since we want to evaluate the properties of our topologies with respect to timing, we
somehow have to compute a slack at root and sinks. It would be prohibitively slow
to insert repeaters into each topology we want to evaluate. Therefore, we propose a
simple delay model that estimates the timing from the geometric structure of the
topology. The delay model will compute arrival times and required arrival times for
all nodes of a topology giving us a slack that can be used to evaluate the topology.
The delay model mainly consists of two components: delay over wire segments and
delay due to bifurcations.
We have seen in Section 4.1 how buffering a long net linearizes the delay. Given

a buffering mode m, the estimated delay for a net between two points x and v is
given by

delay := md||x− v||. (5.1)

Every internal node of a topology with outdegree two is a bifurcation and thus an
additional capacitance load for the circuit driving both of the two outgoing branches
(compared to alternative direct connections). The real delay caused by bifurcations
is hard to estimate beforehand. It will depend on the strength of the driver, the
additional capacitance, and the position of the driver compared to the sinks. In

44

5.1 A Simple Delay Model

Section 4.1.6 we computed the parameter dnode estimating the average effect of a
bifurcation. It is a very rough estimation, but we will show in Section 8.5 that the
used value serves us well. To evaluate the delay through a topology, we will add the
additional delay to each outgoing edge of a node with two children.

It is reasonable to assume that the additional load capacitance will be smaller for
the less critical branch. Uncritical side path are more likely to be buffered by a small
repeater with nearly neglectable capacitance. We therefore allow the distribution of
dnode between both involved edges. We denote by dnode(e) the amount assigned to
edge e. We introduce a new parameter η controlling how uneven the distribution
of dnode can be. If e is an outgoing edge of a node with outdegree 1, then we
require dnode(e) = 0. Otherwise, we require that dnode(e) ≥ ηdnode. For two edges
e, e′ leaving the same internal node we require dnode(e) + dnode(e′) = dnode. The
parameter η has to be between 0 and 1/2 to be able to fulfill the requirements.

Next, we have to determine the arrival time at the root node. If the edge leaving
the root has buffering mode m assigned, then we assume that the root will have to
drive capacitance mcap

1. We set the arrival time at the root to

atT (r) := max
{
atrr(mcap), atfr (mcap)

}
.

Note that for maximizing the worst slack, an accurate arrival time at the root is
not important because each change affects the slack at all sinks in the same way.

Finally, we have to determine the required arrival time for each sink. In our simple
delay model, we only want to handle a single RAT value and not a pair of functions.
Therefore, we evaluate the RAT function at the slew target of the incoming edge.
As shown in Section 4.1.5, the capacitance of a sink has to be taken into account
when the delay is estimated. This is done by subtracting the appropriate sinkdelay
from the resulting RAT.
Given a sink with required arrival time function rat, pin capacitance cap, and

buffering mode m at the sink’s incident edge, we define the RAT used in the delay
model as

sinkrat(rat, cap,m) := min
{
ratr(mr

s), ratf (mf
s)
}
− sinkdelay(cap). (5.2)

Given a topology and a buffering mode assignment F : E(T)→M , we can now
estimate the slack at sink s to be

σs := sinkrat(rats, capin(s),ms)−
∑

e=(v,w)∈E(T)[r,s])

(dnode(e) + F (e)d||Pl(v)− Pl(w)||)− atT (r)

with m being the buffering mode of the arc entering s and ms the according slew
target.

Figure 5.3 shows how our delay model correlates with the slacks that are achieved
after buffering. For each instance of a 22 nm design we depict the difference between

1See Section 4.1.3.

45

5 Topology Generation

Figure 5.3: Correlation between estimated slacks and exact slacks. For each instance
(slightly more than 300 000) of a middle-sized 22 nm design the difference (y-
axis) between the slack in our delay model and the final slack after buffering is
shown. The instances are sorted by the distance (x-axis) of the most critical
sink to the root.

46

5.1 A Simple Delay Model

the slack of the topology used for repeater insertion and the slack of the final result.
Although there are some outliers where we overestimate the strength of the root
and are about 50 picoseconds too optimistic, the vast majority of instances are
estimated up to 20 picoseconds correctly.

5.1.1 Time Tree

Algorithm 1 TimeTree
Input: A topology T , an embedding Pl, a buffering mode assignment F : E(T)→

M , and parameters dnode, η
Output: Arrival time function atT , RAT function ratT and a dnode assignment

1: for v ∈ V (T) traversed in postorder do
2: if v is a leaf then
3: Let e be the incoming edge to v if v 6= r
4: ratT (v) := sinkrat(ratv, capin(v), F (e))
5: else
6: if |δ+(v)| = 1 then . v is root or Steiner point along a path
7: Let a = δ+(v)
8: ratT (v) := ratT (a)− F ((v, a))d||Pl(v)− Pl(a)||
9: dnode((v, a)) := 0

10: else
11: Let {a, b} = δ+(v) with ratT (a) ≤ ratT (b)
12: α := rat(a)− F ((v, a))d||Pl(v)− Pl(a)||
13: β := rat(b)− F ((v, b))d||Pl(v)− Pl(b)||
14: ratT (v) := maxηdnode≤d≤(1−η)dnode min{α− d, β − (dnode − d)}
15: dnode((v, a)) := ratT (a)− ratT (v)
16: dnode((v, b)) := dnode − dnode((v, a))
17: end if
18: end if
19: end for

20: Let e be the outgoing edge of r
21: atT (r) := max

{
atrr(F (e)cap), atfr (F (e)cap)

}
22: for v ∈ V (T) \ r traversed in preorder do
23: Let w be the parent of v
24: atT (v) := atT (w) + dnode((w,v)) + F ((w, v))d||Pl(w)− Pl(v)||
25: end for

During topology construction, we will only maintain the required arrival times
and update them incrementally. Arrival times will not be explicitly calculated.
However, it is often desirable to compute the delay model of a given topology. This
can be done with Algorithm 1 (TimeTree). It first traverses the topology bottom

47

5 Topology Generation

up, computes required arrival times, and distributes dnode. Then, arrival times are
computed in a second top-down traversal. Both traversals have a running time that
is linear in the size of the topology as each update step can be done in constant
time.

5.2 Repeater Tree Topology Problem
The Repeater Tree Topology Problem is the task of finding a topology for an
instance of the Repeater Tree Problem, an embedding, and a buffering mode
assignment. As for the Repeater Tree Problem, we allow several objectives like
minimizing netlength or maximizing the delay model slack with minimal costs.
Minimizing the `1-length is an objective for topology generation that appears in

early design stages or for timing-uncritical instances. This corresponds to computing
shortest rectilinear Steiner trees. Garey and Johnson (1977) showed that already
this problem is NP-hard.

Previous Work on Topology Generation

Alpert et al. (2008), Chapter 24–28, give a good overview of existing topology
generation algorithms beginning with different flavours of Steiner trees and finishing
with algorithms specific for repeater tree optimization.

Okamoto and Cong (1996) proposed a repeater tree procedure using a bottom-up
clustering of the sinks and a top-down buffering of the obtained topology. Similarly,
Lillis et al. (1996b) also integrated buffer insertion and topology generation. They
introduced the P-tree algorithm, which takes the locality of sinks into account, and
explored a large solution space via dynamic programming. Hrkić and Lillis (2002)
considered the S-tree algorithm which makes better use of timing information, and
integrated timing and placement information using so-called SP-trees (Hrkić and
Lillis, 2003). In these approaches the sinks are typically partitioned according to
criticality, and the initially given topology (e.g. a shortest Steiner tree) can be
changed by partially separating critical and noncritical sinks. Whereas the results
obtained by these procedures can be good, the running times tend to be prohibitive
for realistic designs in which millions of instances have to be solved.
Alpert et al. (2002) create topologies in a two step approach. First, sinks are

clustered based on parity and criticality. Second, clusters are merged by a Prim-
Dijkstra heuristic that scales between shortest path trees and minimum spanning
trees.
Further approaches for the generation or appropriate modification of topologies

and their buffering were considered in Cong and Yuan (2000); Alpert et al. (2001b,
2004a); Müller-Hannemann and Zimmermann (2003); Dechu et al. (2005); Hentschke
et al. (2007); Pan et al. (2007).

Repeater topology generation loosely overlaps with the design of delay constraint
multicast networks where network traffic has to be distributed to clients. A survey
can be found in Oliveira and Pardalos (2005).

48

5.3 Restricted Repeater Tree Problem

5.2.1 Topology Algorithm Overview
We solve the Repeater Tree Topology Problem by splitting it into three steps.
In the first step, we restrict ourselves to the default buffering mode m∗ and compute
an initial topology ignoring blockages. During the second step, we navigate around
blockages if blocked segments in the initial topology get too long. In the final step,
buffering modes from higher layers are assigned to topology edges if their slack is
infeasible.
We start our explanation by describing a simplified version of the Repeater

Tree Topology Problem.

5.3 Restricted Repeater Tree Problem
The first step of our topology generation algorithm uses the default buffering mode
m∗. This is the fastest mode using the default wiring modes. To simplify notation
we set d := m∗d and c := dnode/2. The bifurcation delay assigned to edge e is c(e).

We evaluate topologies with our delay model that does not distinguish between
signal edges and does not know RAT functions. We adapt the Repeater Tree
Topology Problem to this simplification. We set for each sink s ∈ S the required
arrival time to

as := sinkrat(rats, capin(s),m∗)−max
{
atr(m∗cap), atf (m∗cap)

}
.

Given a topology T , the slack for sink s ∈ S becomes

σs := as −
∑

(v,w)∈E(T)[r,s]

(d||Pl(v)− Pl(w)|| − c((v, w))).

The slack of the whole topology is

σ(T) := min
s∈S

σs.

We call the simplified version of the topology problem Restricted Repeater
Tree Topology Problem. It is shown in Figure 5.4.

5.4 Sink Criticality
Our topology generation algorithm will insert sinks into the topology one by one,
and the resulting structure depends on the order in which the sinks are considered.
Sinks that are inserted first are favored because they will potentially be connected
shorter to the root. We thus want to prefer sinks that are more timing-critical. In
order to quantify correctly how critical a sink s is, it is crucial to take its reqiured
arrival time as as well as its location Pl(s) into account. A sink that is further away
from the root will, other things being equal, result in worse slack because the signal
has to traverse the distance which costs delay. Similarly, if two sinks have the same

49

5 Topology Generation

Instance: An instance consists of

• a root r and its location Pl(r),

• a set S of sinks and for each sink s ∈ S its location Pl(s) and a required
arrival time as,

• a value c = dnode/2 ∈ R≥0, and

• a value d = dwire ∈ R≥0.

Feasible Solution: A feasible solution is a topology over root r and sinks S.

Figure 5.4: Restricted Repeater Tree Topology Problem

distance to the root, then both will pay approximately the same delay to reach the
root but the sink with lower required arrival time will be more critical.
A good measure for the criticality of a sink s is the slack that would result from

connecting s optimally to r and disregarding all other sinks. We can estimate the
optimal connection using our delay model. The resulting slack equals:

σs = as − d||Pl(r)− Pl(s)||. (5.3)

The smaller this number is, the more critical we will consider the sink to be.

5.5 A Simple Topology Generation Algorithm
Before we explain the topology generation algorithm that we use to solve the
Restricted Repeater Tree Topology Problem in Section 5.6, we first look
at an algorithm that has the basic structure of our final algorithm. We show the
algorithm in the next section before we discuss some of its theoretical properties.

Our first algorithm creates topologies where each internal vertex is a bifurcation.
We use η = 1/2 in addition such that each arc but the one leaving the root have a
node delay of c.
The slack of a topology T is then given by

σ(T) := min
s∈S

as − c(|E(T)[r,s]| − 1
)
−
∑

(v,w)∈E(T)[r,s]

d||Pl(v)− Pl(w)||

.
The properties we show for the simple topology generation algorithm were first

published in Bartoschek et al. (2010).

5.5.1 Topology Generation Algorithm
Algorithm 2 inserts sinks into a topology one by one according to some order
s1,s2, . . . ,sn starting with a tree containing only the root r and the first sink s1.

50

5.5 A Simple Topology Generation Algorithm

Algorithm 2 Simple Topology Generation Algorithm
1: Choose a sink s1 ∈ S
2: V (T1)← {r,s1}
3: E(T1)← {(r,s1)}
4: T1 ← (V (T1),E(T1))
5: n← |S|
6: for i = 2, . . . , n do
7: Choose a sink si ∈ S \ {s1,s2, . . . ,si−1},
8: an edge ei = (u,v) ∈ E(Ti−1),
9: and an internal vertex xi with Pl(xi) ∈ R2.

10: V (Ti)← V (Ti−1)
.
∪ {xi}

.
∪ {si}

11: E(Ti)← (E(Ti−1) \ {(u,v)}) ∪ {(u,xi),(xi,v),(xi,si)}
12: Ti ← (V (Ti),E(Ti))
13: end for

The sinks si for i ≥ 2 are inserted by subdividing an edge ei with a new internal
vertex xi located at Pl(xi) and connecting xi to si. The behaviour of the procedure
clearly depends on the choice of the order, the choice of the edge ei, and the choice
of the placement Pl(xi) ∈ R2.

In view of the large number of instances which have to be solved in an acceptable
time, the simplicity of the above procedure is an important advantage for its practical
application. Furthermore, implementing suitable rules for the choice of si, ei, and
xi allows to pursue and balance various practical optimization goals.

We look at two variants (P1) and (P2) of the procedure corresponding to optimizing
the worst slack (P1) or minimizing the length of the topology (P2), respectively.

(P1) The sinks are inserted in an order of non-increasing criticality, where the
criticality of a sink s ∈ S is quantified by −σs as shown above.
During the i-th execution of the for-loop, the new internal vertex xi is always
chosen at the same position as r, and the edge ei is chosen such that σ(Ti) is
maximized.
(Note that placing internal vertices at the same position means placing bifur-
cations at the same position. It does not mean placing several repeaters at
the same position during repeater insertion.)

(P2) The sink s1 is chosen such that ||Pl(r)−Pl(s1)|| = min{||Pl(r)−Pl(s)|| | s ∈
S} and during the i-th execution of the for-loop, si, ei = (u,v), and Pl(xi)
are chosen such that

l(Ti) = l(Ti−1) + ||Pl(u)− Pl(xi)||+ ||Pl(xi)− Pl(v)||+ ||Pl(xi)− Pl(si)||
− ||Pl(u)− Pl(v)||

is minimized.

51

5 Topology Generation

5.5.2 Theoretical Properties

Theorem 1. Given an instance of the Restricted Repeater Tree Topology
Problem with η = 1/2, the largest achievable worst slack σopt equals

σ∗(S) := max
{
σ ∈ R

∣∣∣∣∣ ∑
s∈S

2−b
1
c

(as−d||r−s||−σ)c ≤ 1
}
,

and (P1) generates a repeater tree topology T(P1) with σ
(
T(P1)

)
= σopt.

Proof: Let a′s = as − d||r − s|| for s ∈ S. Let T be an arbitrary repeater tree
topology. By the definition of σ(T) and the triangle-inequality for || · ||, we obtain

|E[r,s]| − 1 ≤

1
c

as −∑
(u,v)∈E[r,s]

d||u− v|| − σ(T)

 ≤ ⌊1
c

(
a′s − σ(T)

)⌋

for every s ∈ S. Since the unique child of the root r is itself the root of a binary
subtree of T in which each sink s ∈ S has depth exactly |E[r,s]|−1, Kraft’s inequality
(Kraft, 1949) implies ∑

s∈S
2−b

1
c

(a′s−σ(T))c ≤
∑
s∈S

2−|E[r,s]|+1 ≤ 1.

By the definition of σ∗(S), this implies σ(T) ≤ σ∗(S). Since T was arbitrary, we
obtain σopt ≤ σ∗(S).

It remains to prove that σ
(
T(P1)

)
= σopt = σ∗(S), which we will do by induction

on n = |S|. For n = 1, the statement is trivial. Now let n ≥ 2. Let sn be the last
sink inserted by (P1), which means that a′sn = max{a′s | s ∈ S}. Let S′ = S \ {sn}.

Claim
frac

(
σ∗(S)
c

)
∈
{

frac
(
a′s
c

) ∣∣∣ s ∈ S′} (5.4)

where frac(x) := x− bxc denotes the fractional part of x ∈ R.

Proof of the claim: If 1
c (a′s − σ∗(S)) /∈ Z for every s ∈ S, then there is some

ε > 0 such that
⌊

1
c (a′s − σ∗(S))

⌋
=
⌊

1
c (a′s − (σ∗(S) + ε))

⌋
for every s ∈ S, which

immediately implies a contradiction to the definition of σ∗(S) as in the statement
of the theorem. Therefore, 1

c (a′s − σ∗(S)) is an integer for at least one s ∈ S. If
1
c (a′s − σ∗(S)) is an integer for some s ∈ S′, then (5.4) holds. Hence, if the claim
is false, then 1

c

(
a′sn − σ

∗(S)
)
∈ Z and 1

c (a′s − σ∗(S)) /∈ Z for every s ∈ S′. Since
a′sn − σ

∗(S) ≥ a′s − σ∗(S) for every s ∈ S′, this implies⌊
1
c

(
a′sn − σ

∗(S)
)⌋
> max

{⌊
1
c

(
a′s − σ∗(S)

)⌋ ∣∣∣ s ∈ S′} . (5.5)

52

5.5 A Simple Topology Generation Algorithm

By the definition of σ∗(S), we have

Σ :=
∑
s∈S

2−b
1
c

(a′s−σ∗(S))c ≤ 1.

Considering the least significant non-zero bit in the binary representation of Σ, the
strict inequality (5.5) implies that this bit corresponds to 2−b

1
c (a′sn−σ∗(S))c. This

implies that ∑
s∈S

2−b
1
c

(a′s−σ∗(S))c ≤ 1− 2−b
1
c (a′sn−σ∗(S))c.

Now, for some sufficiently small ε > 0, we obtain∑
s∈S

2−b
1
c

(a′s−(σ∗(S)+ε))c = 2−b
1
c (a′sn−σ∗(S))c+1 +

∑
s∈S′

2−b
1
c

(a′s−σ∗(S))c ≤ 1

which contradicts the definition of σ∗(S) and completes the proof of the claim. �

Let T ′(P1) denote the tree produced by (P1) just before the insertion of the last
sink sn. By induction, σ

(
T ′(P1)

)
= σ∗(S′).

First, we assume that there is some sink s′ ∈ S′ such that within T ′(P1)

|E[r,s′]| − 1 <
⌊

1
c

(
a′s′ − σ∗(S′)

)⌋
.

Choosing en as the edge of T ′(P1) leading to s′, results in a tree T such that

σ∗(S) ≥ σopt ≥ σ
(
T(P1)

)
≥ σ(T) = σ∗(S′) ≥ σ∗(S),

which implies σ
(
T(P1)

)
= σopt = σ∗(S).

Next, we assume that within T ′(P1)

|E[r,s]| − 1 =
⌊

1
c

(
a′s − σ∗(S′)

)⌋
for every s ∈ S′. This implies∑

s∈S
2−b

1
c

(a′s−σ∗(S′))c >
∑
s∈S′

2−b
1
c

(a′s−σ∗(S′))c = 1

and hence σ∗(S) < σ∗(S′). By (5.4), we obtain

σ∗(S) ≤ max
{
σ
∣∣∣ σ < σ∗(S′), frac

(
σ
c

)
∈
{

frac
(
a′s
c

) ∣∣∣ s ∈ S′}}
= max

{
σ
∣∣∣ σ < σ∗(S′), frac

(
σ−σ∗(S′)

c

)
∈
{

frac
(
a′s−σ∗(S′)

c

) ∣∣∣ s ∈ S′}}
= cmax

{
x
∣∣∣ x < σ∗(S′)

c , frac
(
x− σ∗(S′)

c

)
∈
{

frac
(
a′s−σ∗(S′)

c

) ∣∣∣ s ∈ S′}}
= c

(
σ∗(S′)
c − 1 + max

{
frac

(
a′s−σ∗(S′)

c

) ∣∣∣ s ∈ S′})
= σ∗(S′)− c(1− δ)

53

5 Topology Generation

for
δ = max

{
frac

(
a′s−σ∗(S′)

c

) ∣∣∣ s ∈ S′} .
If s′ ∈ S′ is such that

δ = frac
(
a′
s′−σ

∗(S′)
c

)
,

then choosing en as the edge of T ′(P1) leading to s′, results in a tree T such that

σ∗(S) ≥ σopt ≥ σ
(
T(P1)

)
≥ σ(T) = σ∗(S′)− c(1− δ) ≥ σ∗(S),

which implies σ
(
T(P1)

)
= σopt = σ∗(S) and completes the proof. �

Theorem 2. (P2) generates a repeater tree topology T for which l(T) is at most
the total length of a minimum spanning tree on {r} ∪ S with respect to || · ||.

Proof: Let n = |S| and for i = 0, 1, . . . , n, let T i denote the forest which is the
union of the tree produced by (P2) after the insertion of the first i sinks and the
remaining n− i sinks as isolated vertices. Note that T 0 has vertex set {r} ∪ S and
no edge, while for 1 ≤ i ≤ n, T i has vertex set {r} ∪ S ∪ {xj | 2 ≤ j ≤ i} and 2i− 1
edges.
Let F0 = (V (F0), E(F0)) be a spanning tree on V (F0) = {r} ∪ S such that

l(F0) =
∑

(u,v)∈E(F0)
||u− v||

is minimum. For i = 1, 2, . . . , n, let Fi = (V (Fi), E(Fi)) arise from(
V
(
T i
)
, E(Fi−1) ∪ E

(
T i
))

by deleting an edge e ∈ E(Fi−1)∩E(F0) which has exactly one end vertex in V (Ti−1)
such that Fi is a tree. (Note that this uniquely determines Fi.)

Since (P2) has the freedom to use the edges of F0, the specification of the insertion
order and the locations of the internal vertices in (P2) imply that

l(F0) ≥ l(F1) ≥ l(F2) ≥ . . . ≥ l(Fn).

Since Fn = Tn the proof is complete. �

For the `1-norm, the well-known result of Hwang (1976) together with Theorem 2
imply that (P2) is an approximation algorithm for the `1-minimum Steiner tree on
the set {r} ∪ S with approximation guarantee 3/2.
We have seen in Theorem 1 and Theorem 2 that different insertion orders are

favourable for different optimization scenarios such as optimizing for worst slack or
minimum netlength.
Alon and Azar (1993) gave an example showing that for the online rectilinear

Steiner tree problem the best achievable approximation ratio is Θ(logn/ log logn),

54

5.5 A Simple Topology Generation Algorithm

where n is the number of terminals. Hence, inserting the sinks in an order disre-
garding the locations, like in (P1), can lead to long Steiner trees, no matter how we
decide where to insert the sinks.
The next example shows that inserting the sinks in an order different from the

one considered in (P1) but still choosing the edge ei as in (P1) results in a repeater
tree topology whose worst slack can be much smaller than the largest achievable
worst slack.

Example 1. Let c = 1, d = 0 and a ∈ N. We consider the following sequences of
−a’s and 0’s

A(1) = (−a, 0),
A(2) = (A(1),−a, 0),
A(3) = (A(2),−a, 0, , 0︸ ︷︷ ︸

1+(21−1)(a+2)

),

A(4) = (A(3),−a, 0, , 0︸ ︷︷ ︸
1+(22−1)(a+2)

), . . . ,

i.e. for l ≥ 2, the sequence A(l) is the concatenation of A(l − 1), one −a, and a
sequence of 0’s of length 1 +

(
2l−2 − 1

)
(a+ 2).

If the entries of A(l) are considered as the required arrival times of an instance of
the Restricted Repeater Tree Topology Problem, then Theorem 1 together
with the choice of c and d imply that the largest achievable worst slack for this
instance equals⌊

− log2

(
l2a +

(
1 +

l∑
i=2

(
1 + (2i−2 − 1)(a+ 2)

))
20
)⌋

.

For l = a+ 1 this is at least −2− a− log2(a+ 2).
If we insert the sinks in the order as specified by the sequences A(l), and always

choose the edge into which we insert the next internal vertex such that the worst
slack is maximized, then the following sequence of topologies can arise: T (1) is the
topology with exactly two sinks at depth 2. The worst slack of T (1) is −(a + 1).
For l ≥ 2, T (l) arises from T (l − 1) by (a) subdividing the edge of T (l − 1) incident
with the root with a new vertex x, (b) appending an edge (x,y) to x, (c) attaching
to y a complete binary tree B of depth l − 2, (d) attaching to one leaf of B two
new leaves corresponding to sinks with required arrival times −a and 0, and (e)
attaching to each of the remaining 2l−2 − 1 many leaves of B a binary tree ∆ which
has a+ 2 leaves, all corresponding to sinks of arrival times 0, whose depths in ∆ are
1, 2, 3, . . . , a− 1, a, a+ 1, a+ 1. Note that this uniquely determines T (l).

Clearly, the worst slack in T (l) equals −a − l. Hence for l = a + 1, the worst
slack equals −2a− 1, which differs approximately by a factor of 2 from the largest
achievable worst slack as calculated above.

55

5 Topology Generation

This example, however, does not show that there is no online algorithm for
approximately maximizing the worst slack, say up to an additive constant of c.

Recently, Held and Rotter (2013) presented an O(n logn) algorithm that given ε >
0 and an initial topology T0 solves the Restricted Repeater Tree Topology
Problem for η = 1/2 such that if the worst slack of the instance is non-negative

σ(T) ≥ −dnode − εmax
s∈S
{as}

l(T) <
(
1 + 2

ε

)
l(T0) + 2n · dnode

ε

with n := |S|. The length of a topology l(T) is the sum of edge lengths in T . Here,
T0 can be derived from any Steiner tree, for instance a minimum Steiner tree or an
approximation of it.

5.6 Topology Generation Algorithm
We now extend our topology generation from Algorithm 2. The basic structure
remains the same. However, we now allow the distribution of node delays using η
between 0 and 1/2.

Algorithm 3 shows the version of the topology generation that we use to construct
repeater trees. We use the delay model but only required arrival times are updated
during the process. In terms of Algorithm 2 the choice of si, Pl(xi), and ei is as
follows:

• Similar to (P1), the sinks are ordered by non-increasing criticality.

• Pl(xi) is chosen such that the netlength increase of the topology is minimized.
In general, the new nodes do not lie on top of the root node as in (P1).

• The edge ei is chosen such that the weighted sum of resulting topology slack
and netlength increase is minimized.

We hope to reduce netlength by connecting the sinks as short as possible to the
chosen candidate edge. However, by doing so, the slack is no longer guaranteed to
be optimal as shown in Theorem 1 for (P1).
The algorithm first sorts the sinks according to criticality. Then, it connects the

most critical sink directly to the root and initializes the topology and rat function
accordingly (lines 1–4). The next step is to iterate over all sinks and to add them
into the topology one after another. To determine ei, we compute for each existing
edge (v, w) the required arrival time at the root that we would get if we choose the
edge (lines 9–26). The Steiner point is always in the bounding box between v and
w due to the `1-norm used. The netlength increase is therefore ||z − Pl(si)||. Given
the resulting RAT rat at the root, we choose the edge that maximizes

ξ(min{rat, 0})− (1− ξ)||z − Pl(si)||.

56

5.6 Topology Generation Algorithm

Algorithm 3 Topology Generation Algorithm
Input: An instance of the Restricted Repeater Tree Topology Problem
Output: A topology consisting of tree T = (V,E) and embedding Pl

1: For each sink s ∈ S, compute the criticality σs
2: Sort S such that σs1 ≤ σs2 ≤ · · · ≤ σs|S|
3: V := {r, s1} E := {(r, s1)}
4: ratT (si) := asi for 1 ≤ i ≤ |S|
5: for i := 2, . . . , |S| do
6: ei := ∅
7: bval := −∞
8: bdist :=∞
9: for all (v, w) ∈ E do . Search for the best edge to connect si to

10: Choose z ∈ R2 minimizing ||z − Pl(v)||+ ||z − Pl(w)||+ ||z − Pl(si)||
11: α1 := ratsi − dwire||z − Pl(si)||
12: α2 := ratw − dwire||z − Pl(w)||
13: rat := maxηdnode≤b≤(1−η)dnode min{α1 − b, α2 − (dnode − b)}
14: for (x, y) ∈ E[δ+(r),w] traversed bottom-up do
15: Let u be the sibling of y
16: α1 := ratu − dwire||Pl(x)− Pl(u)||
17: α2 := rat− dwire||Pl(x)− Pl(y)||
18: rat := maxηdnode≤b≤(1−η)dnode min{α1 − b, α2 − (dnode − b)}
19: end for
20: val := ξmin{rat− dwire||Pl(r)− Pl(δ+(r))||, 0} − (1− ξ)||z − Pl(si)||
21: if val > bval or val = bval ∧ ||z − Pl(si)|| < bdist then
22: bval := val
23: bdist := ||z − Pl(si)||
24: ei := (v, w)
25: end if
26: end for

27: Create a new Steiner node xi
28: V := V ∪ {si, xi}
29: E := E \ {(v∗, w∗)} ∪ {(v∗, x), (x,w∗), (x, si)} with ei = (v∗, w∗)
30: Pl(x) := z ∈ R2 minimizing ||z − Pl(v∗)||+ ||z − Pl(w∗)||+ ||z − Pl(si)||
31: for (v, w) ∈ E[δ+(r),si] traversed bottom-up do
32: Let y be the sibling of w
33: α1 := raty − dwire||Pl(v)− Pl(y)||
34: α2 := ratw − dwire||Pl(v)− Pl(w)||
35: ratT (x) := maxηdnode≤b≤(1−η)dnode min{α1 − b, α2 − (dnode − b)}
36: end for
37: end for

57

5 Topology Generation

If two solutions have the same value, we choose the shorter connection. The
parameter ξ allows us to scale between topologies that optimize the worst slack and
short topologies depending on the objective of the Repeater Tree Problem.

After choosing ei, we add the new sink to the tree splitting ei and update rat on
all affected edges (lines 27–37).

Given an internal node v with children u1 and u2, let αi := ratT (ui)− d||Pl(ui)−
Pl(v)|| for i ∈ {1, 2}. By setting

ratT (v) := max
ηdnode≤b≤(1−η)dnode

min{α1 − b, α2 − (dnode − b)}

we implicitly maintain the node delay for each edge. If without loss of generality
α1 < α2, then ratT (v) can be computed in constant time by

ratT (v) := α1 − ηdnode − 1
2 max{(1− 2η)dnode − (α2 − α1), 0}.

The additional delays of the outgoing edges,

dnode((v, u1)) = α1 − ratT (v)
dnode((v, u2)) = dnode − dnode((v, u2)) ≤ α2 − ratT (v),

satisfy our requirements on the node delay.

Theorem 3. The worst case running time of the algorithm is O(n3) if n = |S| and
the best case running time is Ω(n2).

Proof. There are n − 1 iterations of the outer loop of the algorithm (lines 5–37).
Each iteration removes one edge from the tree and adds three new. When ei is
searched, there are 1 + 2(i − 2) = 2i − 3 edges in the tree. The loop searching
for ei (lines 9–26) is called

∑n
i=2(2i− 3) ∈ Θ(n2) times. The loop computing the

RAT at the root (lines 14–19) and the loop updating the RATs after sink insertion
(lines 31-36) can be stopped if the RAT does not change at a node. In such a case,
no updates will be done on the path to the root. In the best case, both loops only
perform a constant number of updates resulting in an overall best case running time
of Ω(n2). In the worst case, the inner loop (lines 14–19) iterates linearly in the size
of the graph resulting in an overall worst case running time of O(n3).

5.6.1 Handling High Fanout Trees

As we will show in our experimental results, the running time of our algorithm
is extremely small for instances up to 1 000 sinks. Nevertheless, our topology
generation, as described above, has a cubic running time. There are instances with
several hundred thousand sinks on actual designs, for which this would lead to
intolerable running times.
One way to reduce the running time would be to consider only the nearest k

edges while inserting a sink, where k is some positive integer. This would require to

58

5.7 Blockages

store the edges as rectangles in a suitable geometric data structure (e.g. a k-d-tree).
However, we chose a different approach.
For instances with more than 1 000 sinks, we first apply a clustering algorithm

to all sinks, except for the 100 most critical ones if ξ > 0. More precisely, we
find a partition S′ = S1

.
∪ · · ·

.
∪ Sk of the set S′ of less critical sinks, and Steiner

trees Ti for Si (i = 1, . . . , k), such that the total capacitance of Ti plus the input
capacitances of Si is at most maxcap (see Section 4.1.6). Among such solutions we
try to minimize the total wire capacitance plus k times the input capacitance of the
repeater t∗.

For this facility location problem, we use an approximation algorithm by Maßberg
and Vygen (2008), which generates very good solutions in O(|S| log |S|) time. We
introduce an appropriate repeater for each component; its input pin constitutes a
new sink. This typically reduces the number of sinks by at least a factor of 10. If
the number of sinks is still greater than 1 000, we iterate the clustering step. Finally,
we run our topology generation algorithm as described above.

5.7 Blockages

The topology generation so far did not consider blockages or congestion. Nothing
prevents Steiner points from being located on blockages or topology segments from
having long intersections over them.

For the vast majority of instances, blockages do not play a role because there are
none in the bounding box of the involved points. However, some instances can only
be constructed properly if one navigates around blockages or considers congestion.
We handle blockages in the second step of our topology generation algorithm.

First, we iterate over the topology bottom-up and move each Steiner point s to a
free location. Our algorithm searches for the nearest free location in each direction
that minimizes the sum of `1-distances between s and its neighbours. Then, we
search a buffer-aware shortest path (see Section 4.2.3) within the blockage grid for
each topology edge that crosses a blockage. A similar approach is shown by Zhang
et al. (2012) and improved in Zhang and Pan (2014). They take an input topology
and calculate slew degradations over blockages. In case of violations, they formulate
an ILP and solve it to find a good replacement topology. Huang and Young (2012)
propose a similar solution. Held and Spirkl (2014) propose a fast 2-approximation
algorithm to create rectilinear Steiner trees that can cross obstacles for a limited
distance.

After performing the shortest path search, some edges might still cross blockages
that are small enough to pass over. These edges are splitted on blockage boundaries
such that each topology segment is either completely blocked or free. Neighbouring
blocked edges on a chain are merged into a single one.

59

5 Topology Generation

5.8 Plane Assignment

So far, we only used one buffering mode and its choice is often appropriate for shorter
connections. For bridging large connections, it might be better to use buffering
modes on higher planes than the default ones. Such buffering modes are often faster
and use less placement space due to larger repeater spacing.
The third and final step of our topology generation is plane assignment. We use

a simple greedy routine to assign buffering modes to a computed topology. They
are then used by our repeater insertion routine. We restrict ourselves to the fastest
buffering mode for each wire mode. For each buffering mode, we know the repeater
spacing.

The algorithm processes the nodes of the topology in a BFS traversal starting at
the root. If the slack of the node is negative and if it is not too congested according
to the congestion map, then we consider the edge between the node and its parent.
The edge gets the fastest buffering mode assigned for which repeater spacing is
smaller than half the length of the edge. After changing an assignment, the slack
values are updated.

The algorithm runs in time O(m log b) where m is the number of edges in the
topology and b is the number of buffering modes we might assign. The buffering
modes can be sorted by the repeater spacing. If there is a buffering mode with
higher spacing and worse timing than another one, then it can be removed because
it will never be inserted. The resulting list is sorted increasingly by spacing and
decreasingly by delay per length. Thus, for an edge, the best buffering mode can be
found by binary search in O(log b) time. It is not necessary to recompute the whole
timing after each assigment. It is sufficient to propagate an arrival time delta to the
children of the node such that the timing updates are constant for each node.

The greedy routine is suitable at design stages where the placement of the circuits
and the timing are premature. In later design stages, it is desirable to consider
congestion better and to optimize plane assignment for best slack. We will present
an extension to the dynamic program used for repeater insertion that maximizes
slack and takes advantage of higher planes.

5.9 Global Wires as Topologies

As already mentioned, routing congestion is one of the biggest problems for opti-
mizing current chip designs. The approach described in Section 5.7 works locally
without considering the big picture. A global router (see for example Müller (2009)),
on the other hand, optimizes the distribution of nets over the whole routing space.
A recent trend in the industry is to use the result of global routing for repeater tree
topologies.
The advantage of using global wires is a reduced expected congestion. However,

global routing has to be adapted to yield results suitable for repeater insertion. One
has to consider timing, placement space, blockages and instance sizes.

60

5.9 Global Wires as Topologies

A global routing that will later be buffered should not use wires that cross
blockages for too long because they cannot be processed in repeater insertion
without electrical and timing violations. The available placement space has also to
be considered. The number of necessary repeaters can be estimated using suitable
buffering modes for the wires.
The global router should also consider the timing criticality of nets and sinks

when it creates routes. Otherwise, uncritical nets might get short routes at the cost
of detours in critical nets. One approach might be to use the topology algorithm
presented here as a subroutine within the global router when it has to calculate
Steiner trees for nets.
The input presented to the global router is often stripped from all buffers and

unnecessary inverters. However, it is often not possible to remove some inverters if
one wants to preserve logical correctness of the design. The global router will then
use the placement of the inverter as a constraint to the routing. It will consider
two nets for a single instance and connect the sink of the first net with the current
inverter and the source of the second net. It is better to consider the inverter and
both nets as a single net. This is also the case if existing repeaters are not stripped
from the design2.

2see also Section 7.6.1.

61

6 Repeater Insertion

Finding a topology for a repeater tree instance is the first step in our approach
to solve the Repeater Tree Problem. The second step is to insert repeaters
along the topology to create a feasible solution. For this we consider the Repeater
Insertion Problem and describe how our algorithm solves it.

Instance: An instance (I, T,Bl,M, F) consists of
• an instance I of the Repeater Tree Problem,
• a topology T with embedding Pl connecting the root and sinks of I,
• a set Bl ∈ E(T) of edges that are blocked,
• a set of buffering modes M , and
• buffering mode assignments F : E(T)→M .

Task: Find a feasible solution of the Repeater Tree Problem for I minimiz-
ing costs such that each repeater lies on a shortest path between the endpoints
of a topology edge and all sinks reachable from the repeater in the final tree are
also reachable from the edge in the topology.

Figure 6.1: Repeater Insertion Problem

The dominant approach to solve the Repeater Insertion Problem is dynamic
programming. An extensive survey of the dynamic programming approach can be
found in Alpert et al. (2008), Sections 26.4 – 26.6. We give a short summary of
existing work in Section 6.3.
Our main contribution is the repeater insertion of our Fast Buffering algorithm

presented in Section 6.2 that, in practice, is considerably faster than the standard
dynamic program. Our routine can be characterized as a version of the dynamic
program that keeps only one solution at a time. Several heuristics are used to choose
a solution that will lead to an overall good solution.
A substantial difference to the dynamic programming approach is that our algo-

rithm is able to change the topology in order to reduce the number of repeaters
inserted for preserving parity constraints. Figure 6.2 shows an extreme example
where different topologies for the same sink set result in a huge difference in the
minimum number of repeaters necessary to realise each of them. Given topology a),
our algorithm will often create a solution that lies between both extremes depending
on the criticality of the instance. However, our solution will still fulfill the constraints
from the Repeater Insertion Problem.
Finally, the dynamic program depends on precomputed repeater positions. In

63

6 Repeater Insertion

r

+ + + +

− − − − −

a)

r

+ + + +

− − − − −

b)

Figure 6.2: While topology b) requires only one inverter to realise the indicated sink parities,
topology a) would require five.

contrast, our algorithm is free to choose any position along an unblocked edge of
the input topology.
Our repeater insertion algorithm consists of two parts. In a first step, we assign

delay efforts to the edges of the topology by solving a Deadline Problem. This
allows us to buffer parts of the topology with less effort and leads to lower resource
usage. In a second step, we replace the topology by a repeater tree in a bottom-up
fashion.
We present in Section 6.3 how we use the standard dynamic programming tech-

nique to improve the solution found by the Fast Buffering algorithm.
The buffering algorithm we present here is an extension to joint work with Stephan

Held, Dieter Rautenbach and Jens Vygen (Bartoschek et al., 2009, 2007b).

6.1 Computing Required Arrival Time Targets

As shown in Section 4.1.1, it is possible to buffer a long line with different delay
and power consumption characteristics. For topology generation, we assumed that
each edge is buffered such that the fastest delay using the default wire modes can
be achieved.
After computing arrival times and required arrival times for all nodes of the

topology using our delay model, there are sinks that have non-positive slack even
if the fastest buffering mode is used on the path from the root. It is obvious that
we want to buffer the paths as fast as possible to keep timing constraint violations
small. However, other sinks and subtrees respectively might have positive slack
using the fastest buffering mode. Each edge of such a subtree can potentially be
slowed down to reduce the overall power consumption of the resulting repeater tree.
As input to the Repeater Insertion Problem each edge has a buffering mode m
assigned. We have the possibility to choose another buffering mode. At this point
in time, we do not want to change the layer assignment of the edges. Therefore, we
restrict ourselves to the alternative buffering modes in Mm (see Section 4.1.3).

64

6.1 Computing Required Arrival Time Targets

Instance: An instance consists of
• an instance I of the Repeater Tree Problem,
• a topology T for I,
• a set of buffering modes M ,
• buffering mode assignment for each edge F : E(T)→M , and
• a maximal subtree Tz of T rooted at z ∈ V (T) such that using our delay

model ratT (z)− atT (z) > 0
.
Task: Let E′ be the set of edges reachable from z (E(Tz)) including the edge
leading to z if z 6= r.
Find an assignment F ′ : E(T) → M with F ′(e) = F (e) if e /∈ E′ and F ′(e) ∈
MF (e) and for all sinks reachable from z ratT (s) − atT (s) ≥ 0 such that the
total cost ∑

e=(v,w)∈E′
F ′(e)p||Pl(v)− Pl(w)||

is minimized.

Figure 6.3: Buffering Mode Assignment Problem

We call the problem of assigning buffering modes to a subtree Buffering Mode
Assignment Problem. It is shown in Figure 6.3. If the slack at the root of our
topology is positive, then the whole tree is an instance to buffering mode assignment.
Otherwise, each maximal subtree with positive slack is considered separately. The
initial assignment for such a subtree is a feasible assignment but probably not the
cheapest one. We find cheaper solutions, but we do not let the slack at the root
become negative. Thus, the result of buffering mode assignment does not change
RATs outside of the considered subtree. The problem can be solved independently
for each subtree.

The Buffering Mode Assignment Problem is very similar to the Discrete
Deadline Problem (see for example Skutella (1998)) as a special case of the
Time-Cost Tradeoff Problem (Kelley, 1961; Fulkerson, 1961). Figure 6.4 shows
the Discrete Deadline Problem. The graph P in an instance of the problem
is called project graph. Each edge e corresponds to a task that has to be executed
and Xe is the set of possible alternatives to finish the task with different execution
times and costs.

An instance to the Buffering Mode Assignment Problem can be transformed
to an instance of the Discrete Deadline Problem. We show how to transform a
subtree rooted at z with parent parent(z). The transformation is done by (a) using
the subtree induced by E′ as a project graph, (b) adding a new node s and an edge
(s, parent(z)) with the single execution time atT (parent(z)) and costs 0, (c) adding
a new node t and edges (si, t) for all sinks si reachable from z with single execution
time −ratsi and costs 0, (d) setting execution times according to valid buffering
modes for all topology edges, and (e) setting the deadline to 0. Each topology edge

65

6 Repeater Insertion

Instance: An instance consists of

• a directed graph P = (V,E) with two nodes s, t ∈ V such that each node
is reachable from s and t is reachable from each node,

• for each edge e ∈ E a set Xe of execution times xe with costs ce(xe), and

• a deadline D.

Task: For each edge e ∈ E find an execution time x∗e and an assignment of
arrival times a : V → R such that

a(s) ≥ 0
a(t) ≤ D

a(v) + c(v,w)(x∗(v,w)) ≤ a(w) ∀(v, w) ∈ E

and ∑
e∈E

c(x∗e) is minimized.

Figure 6.4: Discrete Deadline Problem

(v, w) has the initial buffering mode F ((v, w)) assigned. We set

X(v,w) :=
{
xm

∣∣∣ m ∈MF ((v,w))
}

with
xm := md||Pl(v)− Pl(w)||

c(v,w)(xm) := mp||Pl(v)− Pl(w)||.

If z is the root of the whole topology, then we just connect s to z during project
graph construction. As mentioned earlier, each of our instances to the Buffering
Mode Assignment Problem has a feasible solution. It follows that using the
arrival times of the delay model as arrival times a in the Discrete Deadline
Problem is a feasible solution. On the other hand, any feasible solution to the
Discrete Deadline Problem results in a feasible buffering mode assignment if
we choose for each the buffering mode m if the edge has execution time xm.

The Discrete Deadline Problem is NP-hard, but Halman et al. (2008) have
shown that there exists a FPTAS on series-parallel networks like repeater tree
topologies.

6.1.1 Linear Time-cost Tradeoff
As our delay model is only a rough approximation of the reality after buffering,
it makes no sense to spend too much effort into solving the Buffering Mode
Assignment Problem exactly. Furthermore, it turns out that for our purpose, it
is sufficient to solve a linear relaxation of the problem.

66

6.1 Computing Required Arrival Time Targets

Delay

Power
m1

m2
m3

m4

xm1 xm2 xm3 xm4

c(xm1)

c(xm2)
c(xm3)
c(xm4)

Figure 6.5: Piecewise-linear Relaxation of Buffering Modes. The buffering mode m3 is
dominated by a linear combination of m2 and m3 and can be cancelled.

If there is an edge e = (v, w) with execution time x∗e between execution times xa
and xb for buffering modes a, b such that

x∗e = αxa + (1− α)xb,

then e can be divided into two edges such that the first edge has length α||Pl(v)−
Pl(w)|| and buffering mode a and the second edge has length (1−α)||Pl(v)−Pl(w)||
with buffering mode b.

The linear relaxation of the problem uses piecewise linear time-cost functions
for each edge. For example, Figure 6.5 shows how delays and costs are relaxed for
an edge with four alternative buffering modes {m1,m2,m3,m4} that are sorted by
increasing delay. After removing buffering modes (m3 in the example) that are
dominated by linear combinations of others, the result is a convex piecewise-linear
time-cost function. It approximates the non-dominated part of the delay-power
tradeoff curve of a wire mode. One example is the red part of the curve shown in
Figure 4.4.

Now the Time-Cost Tradeoff Problem can be solved efficiently by solving a
Minimum-Cost Flow Problem (MCF). The construction is described in Fulkerson
(1961) or Lawler (2001). Algorithms to solve the MCF problems can be found
in Korte and Vygen (2012) Chapter 9. The input to the MCF algorithm is the
project graph where each edge is replaced by a chain of at most |M |, the number
of buffering modes and the maximum number of sampling points for a time-cost
function, edges. Then, each edge in the chain is doubled. After solving the MCF,
we get a node potential that corresponds to an arrival time assignment a.

Theorem 4. The effort assignment adds at most |S| new vertices and edges into
the topology.

Proof. The tree T in the spanning tree structure of any basic spanning tree solution
of the MCF spans all vertices in our original topology. For any r-s-path with s ∈ S,

67

6 Repeater Insertion

it omits at most one edge. By complementary slackness, all edges in T define
integral buffering modes. Therefore there are at most |S| fractional edges which are
divided.

Note that the Network Simplex Algorithm always maintains basic solutions.
Furthermore, one can transform non-basic optimum solutions into basic ones in at
most |E| pivots.

6.1.2 Effort Assignment Algorithm

The algorithm we use to solve the Buffering Mode Assignment Problem is
outlined in Algorithm 4 and called AssignEffort. The input is a topology and
allowed buffering modes for every edge.

Algorithm 4 Buffering Mode Assignment Problem
1: procedure AssignEffort(T)
2: Compute timing using the fastest buffering mode.
3: for all n ∈ |V (T)| with slack(n) > 0 and slack(parent(n)) ≤ 0 do
4: Create MCF instance I for subtree rooted at n
5: Solve I
6: Assign buffering modes according to node potentials in I
7: end for
8: end procedure

First, we assign the fastest buffering mode to each edge of the topology and
recompute the timing using Algorithm 1 (TimeTree). For all sinks with slack
smaller or equal to 0 the fastest buffering mode is kept.
Then, we identify instances to the Buffering Mode Assignment Problem

using a DFS search and process each subtree separately1 as a Deadline Problem.
We solve the min-cost-flow formulation and compute node potentials. After having

filtered out the sinks with non-positive slacks, we know that the problem is feasible
and that the potentials are feasible.

Given potentials π : V (Tn)→ R, the delay we want to assign to an edge (v, w) is
π(v) − π(w). For non-fractional edges the according buffering mode is used. For
fractional edges we do not subdivide the edge as outlined in the previous section.
Instead, we just round to the cheapest buffering mode faster than the fractional
solution.
After rounding, the delays on all edges correspond to a buffering mode. We

update for each edge e ∈ E(Tn) the buffering mode assignment F accordingly.

1Note that it is possible to merge all deadline problems in a single one because they correspond to
disjunct subtrees of the topology.

68

6.2 Repeater Insertion Algorithm

6.2 Repeater Insertion Algorithm
We now describe the main part of our repeater insertion algorithm. The input is an
instance of the Repeater Insertion Problem (I, T in, Bl,M,F), for example, as
it has been computed by our topology generation algorithm. The result will be a
repeater tree R = (T, P l,Rt, RW)2.
We first update the buffering assignment F of the input topology T in using

AssignEffort. Then, the algorithm traverses the topology in post-order fashion.
We create a pair of so-called clusters at each node of the input topology. During
topology traversal, leaf nodes are moved with their clusters towards their parents
(Move operation). Eventually, the clusters are merged with the clusters at the
parent of their node (Merge operation). The node and the clusters get removed
from the topology. At the same time we insert repeaters (mostly inverters) and
build up T . Thus, the topology is successively replaced by the final repeater tree.

First, we will explain clusters. Then, we explain the timing model that we use in
our algorithm. Finally, we describe the main parts of the algorithm.

6.2.1 Cluster
A cluster C is a triple (S(C),M(C), P (C)) which is assigned to a node V (C) in the
topology and consists of

• a set of sinks S(C) containing pins corresponding to sinks of the original
repeater tree instance as well as input pins of repeaters that have already been
inserted earlier,

• a buffering mode M(C) ∈M or the empty set, and

• a so-called merge point P (C) ∈ R2.

By an empty cluster we mean (∅, ∅, (0, 0)). The position of a cluster is always the
same as the position of the node to which it is assigned Pl(C) = Pl(V (C)).

Definition 7. We say that a pair of clusters (C+, C−) at a node is in parallel mode
if the sink sets S(C+) and S(C−) are both non-empty.

For a cluster pair (C+, C−) in parallel mode, the merge points P (C+) and P (C−)
are both defined. They store the last location of a cluster where the sink set was
changed. It is the location where the cluster pair entered parallel mode if the sink
set did not change since then.
Figure 6.6 shows a cluster pair in parallel mode and the merge points for both

parities. We depict cluster pairs as two stacked rectangles, a green (above) for
positive sinks and a red (below) for negative sinks in all pictures showing clusters.
As both clusters are always assigned to a node at the same position, we do not show
the node explicitly.

2See Section 3.2

69

6 Repeater Insertion

z
−

a

−

b
−

d

+

c

x y

Figure 6.6: Example for a cluster pair (C+,C−) in parallel mode. Their current position is
Pl(C+) = Pl(C−) = z. We have S(C+) = {c}, S(C−) = {a,b,d}, P (C+) = x
and P (C−) = y. Parallel mode was entered at point x; the last negative sink
entered at point y.

By moving a cluster and adding repeaters, we want to realize a repeater chain
that corresponds to the buffering mode m := M(C) of the cluster. We say a cluster
has target slews ms and a target repeater mt

3. The resulting wires either use mh or
mw as wiring mode depending on the direction.

6.2.2 Initialization

We want to move the nodes of input topology T in but keep the instance sinks at
their place. Therefore, we start initialization by replacing each sink s ∈ S in T in
by a new node vs at the same place. Then, we assign a pair of empty clusters, one
for each parity, to each node in the modified topology. Finally, each sink is added
to the sink set of the cluster at node vs with the same parity resulting in cluster
({s}, F (e), (0, 0)) with e being the edge incident to vs.

We initialize the resulting tree by T := (S, ∅).

6.2.3 Timing Model during Repeater Insertion

Our algorithm depends on the timing model during repeater insertion to guide the
decisions. In the process of the algorithm, there are three different structures we
maintain:

• At the top, there are the remaining parts of the initial topology T in with
cluster pairs at all nodes.

• The bottom T is a set of subtrees that will be part of the final repeater tree.
At the beginning, the bottom consists of the instance sinks. Each inserted
repeater extends T possibly merging subtrees and the result is a tree rooted
at the new repeater which is then part of T .

• Clusters connect the topology with the final tree. While each cluster is
associated with a node in the topology, its sink set consists of roots in T .

3See Section 4.1.3

70

6.2 Repeater Insertion Algorithm

For the resulting repeater tree we also maintain the node placement Pl, the repeater
assignment Rt and the wiring mode assignment Rw.

r

+

+

+

+

−

−

+

−

n

a

Figure 6.7: Topology, clusters, and resulting tree during repeater insertion. So far, the final
tree forest consists of all sinks in clusters and the net n with three sinks and a
driving inverter.

Figure 6.7 shows a possible intermediate state of our buffering algorithm. At the
top, we have the remaining parts of the topology (blue edges) with cluster pairs at
all nodes. The cluster pair at the root is not shown. Dashed black lines show for
each cluster a Steiner tree between the cluster and its sinks. Solid lines show the
final repeater tree. In this example, the set of final trees consists of net n with its
driving repeater and all sinks.
We maintain additional information during the course of the algorithm:

• For each cluster sink s, we know a pair of slew limits Sl(s), a required arrival
time function rat(s), and the pin capacitance capin(s).

• For each cluster C, we maintain a pair of slew limits Sl(C), a pair of slew
targets St(C), the load capacitance cap(C), and a required arrival time function
rat(C).

• For each node v in the topology, we have an arrival time atT in(v) and a
required arrival time value ratT in(v) coming from our delay model.

71

6 Repeater Insertion

Note that during buffering rat is a function that, given a cluster sink or a cluster,
returns us a required arrival time function which has to be evaluated for a slew. We
now explain the data structures in more detail:

Cluster Sinks

Cluster sinks are either instance sinks or input pins of inserted repeaters. For
instance sinks, the required arrival time function and slew limit pair are given with
the input.
Each inserted repeater (see below) drives a set of cluster sinks. A Steiner tree is

created between the repeater and the sinks forming a new net. The new net is then
extracted as described in Section 3.2.1 using a minimum Steiner tree.
Given the Elmore delay for each sink, the required arrival times and slew limits

can be propagated backwards to the source of the net (see also Section 2.6f) where
they are merged. The results can then be propagated to the repeater’s input pin.
The input pin is then treated as a new cluster sink with slew limits and required
arrival times.

Clusters

Each time a cluster is modified, for example, the cluster is moved or a sink is added,
we recompute the timing of the cluster.

The cluster and its sinks are treated as a net. A Steiner tree connecting all
pins is computed and extracted using the wiring modes of the cluster’s buffering
mode. Then, similar to the previous section, the rat functions and slew limits are
propagated backwards to the root of the Steiner tree.

In addition, the slew target of the cluster’s buffering mode is treated as a separate
slew limit for each cluster sink and propagated backwards resulting in St(C). The
capacitance of a cluster cap(C) is the sum of sink pin capacitances and the wire
capacitances of the segments in the Steiner tree.

Topology

Delays in the unbuffered topology are estimated using the delay model introduced
in Section 5.1 with parameters dnode and η. For each edge e, we have a wiring delay
F (e)d as it is given by the edges buffering mode F (e).

The timing of the topology is calculated by treating each non-empty cluster as a
virtual node of the topology connected to its associated node via a zero-length edge.
For a cluster C at node v the RAT in the topology ratT in is given by

ratT in(C) := min{ratr(C)(F (e)rs), ratf (C)(F (e)fs)} (6.1)

with e being the edge pointing to v. We assume that the topology will try to reach
the cluster with the edge’s target slew F (e)s.
For a node with two non-empty clusters (e.g. node a in Figure 6.7), we assume

that there is an additional virtual node with both virtual cluster nodes as children.

72

6.2 Repeater Insertion Algorithm

(C+, C−)

?P (C+)

−

−

−

− +

+

+

Figure 6.8: An inverter is searched for the positive cluster of pair (C+, C−). Its input pin
will become a sink in S(C−). The position of the inverter is M(C+).

The virtual node is then connected via a zero-length edge to the original node. In
the resulting virtual tree, each node has at most two outgoing edges. The required
arrival time can then be computed for each node discarding values for virtual nodes.

6.2.4 Finding a new Repeater

At certain stages of the buffering algorithm, we insert a repeater that drives the sinks
of a cluster or test the effect of such an insertion. We describe this operation for a
cluster C+, which is part of a cluster pair (C+, C−). The operation is completely
analogous (exchanging + and −) for cluster C−. It will be applied only to non-empty
clusters.

After inserting a new repeater for C+, its input pin is a new sink that is inserted
into an existing cluster C ′. This cluster can be

1. C+ itself (if we insert a buffer along a path),

2. C− (if we insert an inverter along a path), or

3. a cluster from a different cluster pair (during a Merge operation).

The new repeater is going to drive all sinks in S(C+). The location of the new
repeater depends on the mode of the cluster pair (C+, C−). If the cluster pair is in
parallel mode, we insert a repeater at position P (C+). If the cluster pair is not in
parallel mode, the location of the new repeater is the current position of the cluster
Pl(C+).

The operation is called InsertRepeater. It takes three parameters: the cluster
for which a repeater is searched, the cluster to which the new sink should be added,
and the type of repeater we want to insert (buffer or inverter).

73

6 Repeater Insertion

Figure 6.8 shows the situation when an inverter is searched for positive cluster
C+ in parallel mode. The new inverter should be inserted into the negative cluster
C ′ = C− of the cluster pair.
The routine first computes a Steiner tree for cluster C ′ containing the new sink

position. Then, for a repeater t of the requested type, the required arrival time
function and slew limits are computed at the input pin using the load is has to drive

rat(t) := ratinvt(cap(C+), rat(C))
Sl(t) := slewinvt(cap(C+), Sl(C)).

A Steiner tree is extracted using the wiring modes from buffering mode M(C ′) such
that we have an Elmore delay rci for each sink i ∈ S(C ′) ∪ {t}. Finally, the RAT
function at C ′ is computed

rat := min
i∈S(C′)∪{t}

ratinv(rci, rat(i)).

Using the resulting capacitance cap(C ′) of cluster C ′, we can compute a new
required arrival time for C ′ (see Equation 5.2) and propagate it towards the root
(we have to rebalance dnode with side branches) where we can calculate a slack σt.
The weighted slack using the power-time tradeoff ξ is

σ∗t := ξmin{σt, 0} − (1− ξ)pwr(t).

Finally, we assume that the resulting cluster C ′ is driven by repeater M(C ′)t with
input slewsM(C ′)s. For each sink i ∈ S(C ′)∪{t}, e propagate the slews through the
Steiner tree resulting in slew pair si. We then compute the sum of slew violations:

sviot := min
i∈S(C′)∪{t}

max{si − Sl(i), 0}.

We also add possible load violations at both repeaters:

lviot := max{cap′ − loadlim(M(C ′)t), 0}+ max{cap(C+)− loadlim(t), 0}.

After processing all repeaters, we have for each of them an estimated weighted
slack σ∗t , its power consumption pwr(t), the load violation cviot , and the slew violation
sviot . We choose the repeater that lexicographically minimizes(

cviot , sviot ,−σ∗t , pwr(t)
)
.

After having chosen a repeater, we update the resulting tree. The Steiner tree
behind the new repeater and the repeater are merged into T and Pl, the function
Rt is updated to reflect the chosen repeater, and RW is updated to use the wiring
modes from M(C+) for the new edges.

74

6.2 Repeater Insertion Algorithm

Algorithm 5 Buffering Algorithm
1: procedure Buffering(T in)
2: AssignEffort(T in)
3: Initialize the topology for buffering T in. . See Section 6.2.2
4: Initialize result (T, P l, Rt, RW).
5: while |V (T)| > 0 do
6: Choose leaf v ∈ V (T in)
7: if Pl(v) 6= Pl(parent(v)) then
8: Move(v)
9: else

10: Merge(v) . Results in the removal of v
11: end if
12: end while
13: ConnectRoot
14: end procedure

6.2.5 Buffering Algorithm

The overall structure of the Buffering algorithm is described in Algorithm 5.
Input to the algorithm is a topology. After having assigned new buffering modes to
the topology, the data structures are initialized as described above. The topology
is then successively modified to create a repeater tree. Leaves are moved towards
their parent nodes and merged with them until only the root node is left. In a final
step, the last remaining sinks are connected to the root.
In the next section, we describe the Merge operation because it is also used in

the Move operation which we explain later.

6.2.6 Merging operation

When some node l and its cluster pair has been moved to the position of another
cluster pair, they will be merged. Let (C+

l ,C
−
l) be the cluster pair that arrives along

arc e at the cluster pair (C+
r ,C

−
r) which is at the tail of arc e. We compute the

merged cluster pair (C+, C−) using the Merge operation.
If |S(C+

l)| · |S(C+
r)| = 0 and |S(C−l)| · |S(C−r)| = 0, the merging operation is

straightforward. We set C+ := C+
l if |S(C+

l)| = 0 and C+ := C+
r otherwise. The

same is done for C−. If the resulting cluster is not in parallel mode, the merge point
is not updated. Otherwise, the merge point is set to the current cluster position for
both parities.

In other cases, we give us five options: inserting an inverter driving one of the four
clusters C+

l , C
−
l , C+

r , C−r , or merging clusters of the same parity without inserting
any inverter. Note that this does not exclude the possibility of inserting an inverter
later, as merge points are (re)defined if there are sinks of both parities after merging.
Therefore, we do not evaluate possibilities that can be realised by resolving parallel

75

6 Repeater Insertion

1) 2) 3)

5)4) 6)

7) 8) 9)

10) 11) 12)

13) 14) 15)

Figure 6.9: The possible merge configurations that are tested during a Merge operation. In
each case, the clusters (C+

l , C
−
l) arrive from the left and the clusters (C+

r , C
−
r)

arrive from the right side of the resulting cluster pair.

mode later. We evaluate the remaining fifteen possibilities of inserting inverters in
front of one or more clusters as shown in Figure 6.9.
For example, in Case 12 we would first put an inverter in front of C+

l and put
its input pin as sink into C−l . Then, we would add another inverter in front of C−l .
The result would be C+. We would also put an inverter in front of C+

r and add its
input as sink into C−r resulting in C−.
Possibilities are only evaluated if we do not have to insert a repeater in front of

an empty cluster. Table 6.1 shows which of the fifteen cases are evaluated if a set of
clusters is empty. For example, if C+

l and C+
r are empty (first row in the table),

then only cases 1, 3, 5, 9, 11, 13, 15 are evaluated. In all other cases, we would try
to insert one or two repeaters either in front of C+

l or C+
r .

C+
l C−l C+

r C−r Cases
∅ ∅ 1, 3, 5, 9, 11, 13, 15

∅ ∅ 1, 2, 4, 8, 10, 12, 14
∅ 1, 3, 4, 5, 7, 9, 10, 11, 13, 15

∅ 1, 2, 4, 5, 6, 8, 10, 11, 12, 14
∅ 1, 2, 3, 5, 6, 8, 9, 11, 13, 15

∅ 1, 2, 3, 4, 7, 8, 9, 10, 12, 14
all

Table 6.1: Possible cases which of the four clusters are empty. The table shows which of
the fifteen cases of Figure 6.9 are considered.

76

6.2 Repeater Insertion Algorithm

To evaluate a case, repeaters are tentatively inserted using the InsertRepeater
function. Inverters are used if they are available. In case that we would be adding
two inverters in front of an input cluster without additional side sinks, we add a
single buffer instead. For example, this can happen if in Case 12 as explained above
cluster C−l is empty at the beginning. Then only a single buffer is added to drive
C+
l resulting in C+.
Similarly to the InsertRepeater function, the resulting cluster pair has required

arrival time functions at the current position and load capacitances. We use them to
compute a slack in our delay model. We evaluate power consumption, slew violations,
and load violations for both clusters in the same way as in InsertRepeater and
add the values up as well as the values for each InsertRepeater invocation.

As a result, we get for each case a slack σ, a sum of slew violations svio, a sum of
load violations svio, and a sum of power consumption. We compute the weighted
slack using the power-time tradeoff ξ

σ∗ := ξmin{σ, 0} − (1− ξ)pwr.

Among all cases, we choose the solution that lexicographically minimizes(
cvio, svio,−σ∗, pwr

)
.

We realize the chosen case and update our data structures accordingly. At the
end, we replace (C+

r ,C
−
r) by (C+, C−) and remove node l together with its clusters

and incoming edge from the topology.

Handling Different Buffering Modes

During the Merge operation, it can happen that we have to merge clusters with
different buffering modes. We treat both clusters as if they have the wiring mode
with the better wire delay in such a case. This prevents us from arbitrarily worsening
the delay to the sinks that are currently in the cluster with the better wire delay.
For example, we would not set a cluster that drives a long distance on higher planes
to the default planes.

6.2.7 Moving operation

We now describe how to move cluster pairs within the topology towards the root. A
leaf node of the current topology is moved together with its associated cluster pair
(C+, C−) along the incoming edge. Algorithm 6 shows the Move operation.

First, we have to decide how far both clusters can be moved. Procedure Remain-
ingDistance computes the maximum moving distance for a given cluster C. If the
sink set S(C) is empty, we return infinite distance. Otherwise, we assume that the
repeater M(C)t that is optimal for the cluster’s buffering mode M(C) drives a wire
segment and the cluster’s sinks. We maximize the length of the wire segment such
that slew targets and limits are not violated.

77

6 Repeater Insertion

Algorithm 6 Move Procedure
1: Let p = parent(v)
2: l+ := RemainingDistance(C+(v))
3: l− := RemainingDistance(C−(v))
4: l := min{l+, l−}
5: if l ≥ ||Pl(v)− Pl(p)|| then
6: Pl(v) := Pl(p)
7: else
8: if S(C+(v)) > 0 and S(C−(v)) > 0 then
9: ResolveParallel(v)

10: else
11: if Bl((p, v)) = 1 then
12: InsertRepeater(v)
13: Pl(v) := Pl(p)
14: else
15: Choose z with ||Pl(v)− z|| = l minimizing ||z − Pl(p)||
16: Pl(v) := z
17: InsertRepeater(v)
18: end if
19: end if
20: end if

+

+

+

Ca x

Figure 6.10: The maximum distance x is searched by which cluster C can be moved such
that, given slew targets at the input a of an optimal repeater, slew limits and
slew targets at C are not violated.

78

6.2 Repeater Insertion Algorithm

Figure 6.10 shows the situation for positive cluster C. A wire segment with length
x is added in front of the cluster. Let m := M(C) be the buffering mode stored at
cluster C. Repeater mt drives the resulting wire and we assume slew pair ms at
input pin a. Let rc be the Elmore delay of the wire segment. We can now compute
the slew pair arriving at C:

sout = wireslew(rc, slewmt(xmwirecap + cap(C),ms)).

We then search the maximum x such that sout ≤ Sl(C) and sout ≤ St(C) using
binary search.
After computing the remaining distance for both clusters, we take the minimum

for l. If a node and both clusters can be moved to the parent’s place, the move is
performed and both clusters are updated.

Otherwise, we have to insert a repeater. In the non-parallel mode one of the two
clusters, say C−, is empty and we insert a repeater for C+ using InsertRepeater.
We use a buffer if mt is a buffer and we use an inverter otherwise.

The position of the new repeater depends on whether the edge is blocked or not.
For a blocked edge, the repeater is added at the head of the edge. The resulting
cluster is moved to the parent node, and the cluster timing is updated. For an
unblocked edge we search a point along the path to the parent node such that the
distance to the current position is l and the distance to the parent is minimized.
The cluster is then moved and the solution from InsertRepeater is realised.

Resolving Parallel Mode

Both clusters are non-empty in parallel mode, and merge points are defined for both.
We resolve such a situation by treating the cluster pair (C+, C−) as two cluster
pairs, (C+, C ′) and (C ′′, C−), with empty dummy clusters C ′, C ′′ and using the
Merge operation. However, we restrict the procedure to choose from Case 2 and
Case 5 in Figure 6.9, the two valid operations that directly resolve parallel mode.

Running time

We stop the binary search as soon as the difference between the upper and lower
bound gets smaller then the width of the smallest repeater ltmin . The running time
of a single invocation of RemainingDistance is in O(log(lmaxltmin

)) with lmax being
the length of the longest edge in the topology.

6.2.8 Arriving at the root

When the last leaf node arrives at the root, we have to connect the remaining cluster
pair to the root pin. As we get the load dependent arrival times from the root, we
no longer depend on the topology delay model. Instead, we enumerate all possible
solutions for connecting the root via a sequence of zero, one, or two repeaters.

79

6 Repeater Insertion

In non-parallel mode all possible sequences that result in a correct parity are
connected to the cluster with non-empty sink set. If the clusters are in parallel
mode, we have to resolve it. In contrast to resolving a parallel mode in the Move
operation, we search for an inverter for the positive cluster and an inverter for the
negative cluster using InsertRepeater.

If the clusters are not in parallel mode, only one cluster has a non-empty sink set.
We then create a chain of zero, one or two repeaters at the root for all combinations
of repeaters that have the correct parity. The chain connects the root to the cluster
sinks. Arrival times and slews are propagated from the root to the cluster.
For each combination that we evaluate, we get an estimated slack σ, the sum of

slew violations svio, the sum of load violations cvio, and the total power consumption
pwr. Similar to the InsertRepeater and Move operations, we compute the
weighted slack

σ∗ = ξmin{σ, 0} − (1− ξ)pwr

and lexicographically minimize(
cvio, svio,−σ∗, pwr

)
.

If the clusters are in parallel mode, then we search for an inverter for both
clusters respectively and then try all combinations in the same way as we do in the
non-parallel case. The overall best solution is then chosen using the same criteria as
above and all data structures are updated accordingly creating the final repeater
tree.

6.2.9 Running Time
It is possible that the buffering algorithm that we presented does not terminate if it
gets stuck by making no progress in the Move operation. This could happen, for
example, if the cluster is not allowed to move but inserting any repeater in front of
the cluster creates the same cluster or one with worse constraints. To prevent this
problem, we move at least the width of the smallest repeater before we insert a new
one. This is no limitation because after legalization of the repeaters’ placement no
two repeaters are allowed to overlap.
We also limit the number of sinks allowed in a cluster by a constant as this

is often done in practice by designers. This allows us to also bound the running
time necessary to evaluate a possibility in InsertRepeater, Merge or for root
connection by a constant as Steiner trees are computed over a bounded set of
terminals.

In practice, we run the Network Simplex Algorithm to solve the Buffering
Mode Assignment Problem. However, it is not a polynomial-time algorithm.
For running time considerations, we use Orlin’s algorithm (Orlin, 1993) which solves
the Minimum Cost Flow Problem in O(m logm(m+ n logn)) with m being the
number of edges and n the number of nodes. As we work on a series-parallel graph
with roughly twice as many edges as nodes, the running time becomes O(m2(logm)2).

80

6.2 Repeater Insertion Algorithm

Converting a solution into a basic tree solution takes at most m iterations with
linear running time. Finding the AssignEffort solution therefore has a worst case
running time of O(m2(logm)2).

Theorem 5. Given an instance of the Repeater Insertion Problem with input
topology T in, set M of buffering modes, and repeater library L, the worst case
running time of the algorithm is

O(Cm2|L|+ (r +m)(log(lmax
ltmin

) + Cm|L|) + C|L|2 + (|M |m)2(log(|M |m))2)

with m = E(T in) and r being the number of inserted repeaters in the output. The
computation of each Steiner tree during the algorithm is bounded by C.

Proof. To solve the Minimum Cost Flow Problem an input graph is constructed
with at most 2|M |m edges. The assignment itself runs in linear time. In total,
AssignEffort runs in O((|M |m)2(log(|M |m))2).

A single invocation of InsertRepeater runs in O(C|L|) time in the best case
and O(Cm|L|) in the worst case. The worst case arises, if, for calculating a slack
for a solution, we have to traverse a significant number of edges of the topology.
A call to Merge makes a bounded number of calls to InsertRepeater and is

therefore also in O(Cm|L|). There are O(m) calls to Merge resulting in a total
worst case running time of O(Cm2|L|).

Move executes the binary search in a worst case running time of O(log(lmaxltmin
)),

where lmax is the longest topology edge and ltmin is the smallest repeater width.
The binary search is followed by at most one call to Merge or InsertRepeater.
The number of calls to Move is bounded by r +m. The total worst case running
time is in O((r +m)(log(lmaxltmin

) + Cm|L|)).
Connecting to the root is in O(C|L|2) as at most two repeaters are tried and each

combination can be evaluated in constant time because there is only one edge left
to the root. Putting everything together, we get the claimed running time.

6.2.10 Repeater Insertion - Summary
As we show in the experimental results, our repeater insertion algorithm produces
good results very quickly. For repeater libraries as they appear in practice, it
generally finds a solution without capacitance violations if such a solution exists.
Slew violations are also avoided most of the time but they appear slightly more
often than capacitance violation. This is mainly due to tighter slew limits and the
fact that the Steiner trees used for net extraction can change their topology if a sink
or the driver is slightly moved.

Strictly Following the Topology

The repeater insertion algorithm presented here does not create repeater trees that
follow the input topology strictly. This is one of its main features. Instead, some

81

6 Repeater Insertion

r

−

−

r

−

−

Figure 6.11: A topology (left) and the resulting repeater tree (right). Topology detours are
removed by recomputing Steiner trees.

parts of the topology are used twice while moving clusters in parallel. Other parts
are discarded due to recomputed Steiner trees. Figure 6.11 shows an example of
how a detour is discarded during repeater insertion.

r−

− +

−

r−

− +

−

Figure 6.12: A topology (left) and the resulting repeater tree (right). By using a Steiner
tree instead of following the topology, a detour for the sink with positive parity
is avoided (orange dashed line).

In practice, recomputing Steiner trees gives better results than keeping the input
topology because delay calculations are more close to the final (pre-routing) timing.
Figure 6.12 shows how detours are avoided that would be induced by following
topologies in parallel.
There are cases where it is desirable to strictly follow a topology, for example,

if an existing routing should be buffered such that the result can use the same
routes. This can be done by changing clusters to also store a subtree of the topology
connecting the cluster to its sinks. Delay calculations are then performed on the
stored tree.

6.3 Dynamic Programming
In his groundbreaking paper van Ginneken (1990) proposed a dynamic programming
algorithm for buffering of repeater tree topologies maximizing the slack at the root.
The algorithm worked only for a single buffer type and a single wiring mode. In
addition to the input of the Repeater Insertion Problem, the algorithm needs
buffering positions along the topology. The canonical approach is to add repeater
positions equidistantly along the topology. However, it makes sense to choose buffer
positions based on library and input characteristics as shown by Alpert et al. (2004b).
The running time of which was O(n2) where n is the number of buffer positions.

Later, Lillis et al. (1996a) extended the approach to handle a library consisting of
b buffers or inverters with a running time of O(n2b2). They also proposed a way to

82

6.3 Dynamic Programming

handle power consumption. However, the algorithm is not polynomial.
The running time of the algorithm was later improved (Shi and Li, 2005; Li

and Shi, 2006; Li et al., 2012) by using clever data structures and better pruning
techniques than in the previous papers. For instances with only a single sink, they
achieve a running time of O(b2n). For nets with m sinks, the running time becomes
O(b2n+ bmn).
There are a lot of extensions to the basic version of Lillis et al. (1996a). There

are works considering higher-order delay models (Alpert et al., 1999; Chen and
Menezes, 1999), simultaneous buffer insertion and tree construction (Okamoto and
Cong, 1996; Hrkić and Lillis, 2002, 2003; Hu et al., 2003), segmenting wires (Alpert
and Devgan, 1997), or minimum buffer insertion under slew constraints (Hu et al.,
2007).
For an instance of the Repeater Insertion Problem with given repeater

positions, the task of finding a repeater tree with maximum slack can be solved
efficiently as we have just seen. If one wants to get the cheapest solution that satisfies
the slack targets, then the problem becomes NP-complete even if one ignores load
limits at the source and repeaters as shown by Shi et al. (2004). An FPTAS for the
problem was presented by Hu et al. (2009).

6.3.1 Basic Dynamic Programming Approach

We have implemented a version of the dynamic program as introduced by Lillis et
al. and added some improvements. We did not use the running time improvements
by Li, Zhou and Shi for several reasons that we give below.

The dynamic program algorithm works with sets of candidates that are character-
ized by a required arrival time, a downstream capacitance, and a solution subtree.
Candidates are propagated bottom up by adding wire segments and adding repeaters
at buffering positions. A new candidate for each repeater type is created at each
buffering position as long as capacitance limits are not violated. At inner nodes of
the topology, the candidates of the left and right branch are merged together by
adding all combinations to the candidate list.
An explosion of candidates is prevented by only keeping candidates that are not

dominated (i.e. there is no other candidate with better or equal RAT and lower
or equal capacitance). At each node, we have two candidate lists for subtrees that
need a positive or negative signal to preserve parity.
Candidates are created at sinks. As the dynamic program algorithm does not

work with RAT functions, we collapse the RAT to a single value and evaluate the
functions for optslew.

We compare the quality of the Fast Buffering algorithm with the dynamic program
algorithm in Section 8.3.

83

6 Repeater Insertion

6.3.2 Buffering Positions

The running time and quality of a van Ginneken style algorithm highly depends
on the choice of repeater positions. The result of our repeater insertion algorithm
(Algorithm 5) is a complete repeater tree. Repeater nodes and Steiner nodes are
used as buffering positions. If there is a node v such that

• v is a sink and has outdegree higher than 0,
• v is a root and has outdegree higher than 1, or
• v is an inner node and has outdegree higher than 2,

then we add additional nodes at the same positions and reconnect children to them
until no node satisfies any of above conditions. We create at each sink an additional
buffering position.
Optionally, we also split long edges in the resulting tree such that there is a

potential buffer position at most after a given length. As the result of Fast Buffering
already has quite optimal distances between consecutive repeaters on long lines, it
does not make much sense to split the edges further.
The repeater tree from Fast Buffering already navigates around big blockages.

Thus, it is not necessary to worry much about them. However, the nodes of the
created Steiner trees can lie above blockages. Thus, we add repeater positions at
edges that cross a blockage boundary. Finally, all nodes in the interior of blockages
are marked as blocked. They are not used as repeater positions.

6.3.3 Extensions to Dynamic Programming

We describe in this section our changes to the basic dynamic program algorithm.
Our changes are motivated by timing properties as observed in practice. By using
some more accurate calculations the algorithm achieves better slacks than the basic
version by Lillis et al. (1996a). This makes the algorithm suitable as postprocessing
to Fast Buffering.

Black Box Timing Rules

As we have already discussed in Section 2.5.1, we do not exploit some properties
of the Elmore delay and work with black box wiredelay and wireslew functions.
This prevents us from using most of the techniques suggested by Shi, Li, and others
to speed up the dynamic program. Each candidate knows the position of the last
inserted repeater or the last merge of several topology branches. We call the position
the sink of a candidate. For the sink, we always keep the required arrival time and
the capacitance up-to-date. Instead of updating the sink when wire segments are
added, we just accumulate the RC-delay and compute the required arrival time
on demand. This makes the algorithm slower than assuming pure Elmore delays
but improves the result quality, because we are nearer to the final timing over wire
segments. Because of running time reasons, we only want to have one sink for each
candidate. Thus, we update the sink on merge points.

84

6.3 Dynamic Programming

Slew Effects

While computing the required arrival time for a candidate after adding wire or a
repeater, we do not know the slew that will arrive at the candidate. This makes
the calculations inaccurate and can lead to pruning of otherwise optimal candidates.
One solution to mitigate the problem is the use of buckets of discrete slew values
as for example proposed by Hu et al. (2007). For minimizing power consumption,
this is a viable solution. However, for optimizing slack, this leads to an explosion of
candidates. The resulting running times make such a solution impractical if one
wants to handle millions of instances.

While we still assume a prototype slew at the inputs of our candidates, we see
the resulting slew at the sink of each candidate. We use the difference between
the slew that we assumed for the required arrival time calculation at the sink and
the arriving slew to estimate the real required arrival time. Given a RAT at a
candidate’s sink and slew s, we can compute the required arrival time that we use
for further calculations:

rat = RAT − slewdelay(s).

See Section 4.1.4 for the slewdelay function.

Wiring Mode Assignment

An important extension to the dynamic program is the handling of different wiring
modes. For this, each candidate has a buffering mode assigned of which only
the horizontal and vertical wiring modes are used. All candidates with the same
buffering mode and parity are kept in a candidate list. Only candidates with the
same buffering mode are merged during the merging step.
When we realise the net behind a candidate, all horizontal (vertical) wiring

segments of the net will get the same horizontal (vertical) wiring mode. We use the
wiring modes stored in the buffering mode of the candidate. Physically, multiple
wiring modes per net would be possible, but most industrial routers tolerate only
a single wiring mode per net and dimension. After a repeater has been inserted
into a candidate, a buffering mode change can occur. Thus, the resulting candidate
is copied into the lists of all modes. Such an extension was first proposed by
Alpert et al. (2001a). They also showed that wire tapering, that is, the continuous
assignment of widths to wire segments, only has marginal advantages compared
to assigning a single wiring mode for each dimension to the whole net if there are
enough modes available. Following this, we disabled changing of buffering modes at
repeater positions if no repeater was inserted. With this, the number of buffering
modes changes the overall running time only linearly.

Our layer assignment routine will not use the same set of buffering modes uniformly.
Instead, each edge of the input topology gets a set of possible buffering modes.
Candidates that arrive at an edge with a not assigned buffering mode are just
discarded. To decide which buffering modes are available at an edge the blockage

85

6 Repeater Insertion

and congestion maps are used. We remove modes that would cause too high
congestion or are blocked. It can happen that the incident edges of a buffering
position that lies on top of a blockage have an empty set respectively. As we cannot
add a repeater and are not allowed to switch the buffering mode within a net, this
would lead to empty candidate sets on all layers. We ignore the congestion map in
such cases and allow the lowest buffering mode on all edges incident to the repeater
position.

Distinguishing Rise/Fall

A typical instance to the Repeater Insertion Problem has different required
arrival times for rise and fall as well as different arrival times at the root. Most
implementations of the dynamic program do not distinguish between both values.
Instead, they settle to a single value like the average or the worst value of both. To
compute the delay over a repeater, also a single value is used. We have seen that
several instances can be build better if one considers both values separately.

The candidates in our algorithm have a time pair as required arrival time. When
a wire is added or a buffer is inserted, the values can be updated separately by
calculating the according delays. This causes twice the effort of only propagating a
single number.
The pruning step uses only the worse value of both required arrival times when

comparing candidates to prevent an explosion of candidates that we have to handle.
Our experiments showed that the benefit of only pruning candidates that are
dominated in both required arrival times was small but it was paid with high
running times.

Slew Limits

In addition to the required arrival times, we also propagate a slew limit backwards.
The slew limit of a candidate is the maximum slew that can arrive at the current
node such that the slew limits are not violated in the whole subtree of the candidate.
Candidates are pruned as soon as their slew limit is not reachable unless all candidates
have to be pruned.

Candidate Selection

As soon as we arrive at the root, we have to choose the best candidate to return
a solution. Instead of relying on the required arrival times of the candidates, we
recompute the whole timing of each candidate propagating the slew accurately from
root to sinks. The sinks are then also evaluated using their required arrival time
functions instead of constant values.

86

6.3 Dynamic Programming

Power-aware Dynamic Programming

Lillis et al. (1996a) showed how to extend the dynamic program to find the cheapest
solution satisfying the required arrival time constraints. For their FPTAS for
the Repeater Insertion Problem with buffering positions, Hu et al. (2009)
discretized the power consumption values of repeaters into cost buckets. We have
also extended our implementation to work with cost bins. Basically, each candidate
is now characterized by three values: cost, cap, and rat. Every time a buffer is
added or candidates get merged, the result has to be inserted into the correct bucket.
There is a limited number of buckets. All candidates using more power than the
highest-valued bucket will be merged together. Unfortunately, the running time of
this version is prohibitive high when using a number of buckets that is sufficient for
good results. In comparison to the Fast Buffering solution, the timing results are
very good and the power consumption is smaller than for the basic dynamic program
version (see Table 8.4). However, the running time prevents that this version will
be used extensively in production.
We have taken random instances of different characteristics from a 22 nm design

and compared the results of the power-aware version of the dynamic program to the
basic one. The values are in Table 6.2. All runs of the power-aware version use 40
buckets between 0 and the power consumption of the Fast Buffering solution. We
see that that the sum of negative slacks and the worst slack are similar for both
runs. The basic version uses a lot of area for bigger instances while the running
time of the power-aware version explodes. See Chapter 8 for details of the hardware
setup and the instances. A comparison between Fast Buffering and the power-aware
dynamic program on the same instance set can be found in Section 8.1.

87

6 Repeater Insertion

Dynamic Program Dyn. Program + Buckets
Sinks SNS Slack Area Time SNS Slack Area Time

I01 1 −378 −378 154 11 −377 −377 160 374
I02 1 −91 −91 12 2 −91 −91 14 56
I03 2 −414 −207 138 13 −413 −206 150 446
I04 2 −161 −81 6 4 −161 −81 6 128
I05 3 −161 −61 16 5 −143 −61 11 214
I06 3 −177 −68 42 9 −162 −68 35 370
I07 4 −22 −11 25 8 −22 −11 25 351
I08 4 −137 −36 24 9 −133 −36 8 371
I09 5 −371 −111 48 10 −351 −113 40 487
I10 8 −112 −18 48 16 −117 −20 34 829
I11 10 −444 −69 51 20 −387 −68 22 886
I12 15 −694 −59 187 55 −698 −59 116 2820
I13 24 −71 −15 89 57 −60 −8 38 3660
I14 33 −3317 −188 309 70 −3167 −189 144 3711
I15 47 −2563 −105 310 96 −2922 −109 101 5372
I16 65 −1523 −96 310 181 −3852 −96 48 13125
I17 73 −3762 −75 355 144 −3424 −78 132 10078
I18 120 −10275 −104 510 345 −10701 −107 333 22624
I19 322 0 25 1427 777 0 25 851 46548

Table 6.2: Results of optimizing for slack and power on several instances from a 22 nm
design using the basic version and the power-aware version of the dynamic
program. All times are given in ps. SNS is the sum of negative slacks for all
sinks. Slack is the worst slack of the instance. Area is the space consumed by
the internal repeaters measured in placement grid steps. Time gives the running
time of the dynamic program excluding other parts in milliseconds.

88

7 BonnRepeaterTree

The repeater tree algorithm that we described in Chapter 5 and Chapter 6 has been
implemented together with a small framework for repeater tree optimization as part
of the BonnTools (Korte et al., 2007; Held et al., 2011) suite of physical design
optimization tools developed at the Research Institute for Discrete Mathematics,
University of Bonn in an industrial cooperation with IBM. The main algorithm
together with some utility tools and its APIs is called BonnRepeaterTree.
BonnTools are now part of the IBM electronic design automation tools. They

have to work with the requirements of industrial physical design. Thus, a huge
amount of development work is spent to cope with real-world designs.

This chapter describes the aspects one has to consider if one wants to implement
our algorithms for an existing physical optimization environment. We start with
details that are valid for a whole range of repeater tree instances, like the repeater
library or blockage map. We then show how a single instance is processed. We
take a brief look at the BonnRepeaterTree software architecture and finish with a
description of two tools that use our framework.

7.1 Repeater Library

A typical standard gate library has a lot of different repeaters. There are repeaters
for special purposes like repeaters for clock trees or repeaters that should just
add delays to the signals. Then there are standard repeaters that are used within
repeater trees. They are sorted into families of similar properties.
First, there are repeaters from different Vt-levels. The voltage threshold (Vt) is

the voltage where the gate starts to switch. Gates with a lower Vt-level are faster
because they switch earlier but their power consumption is much higher due to
higher leakage power. The optimization flow or the designer set the currently active
Vt-level. BonnRepeaterTree prefers repeaters from the active Vt-level.

Second, repeaters are distinguished by their beta ratio (i.e. the difference between
the fall and rise delays). Repeaters can be build such that for similar inputs the rise
and fall delays are either balanced or asymmetrical. Chains consisting of balanced
repeaters are usually slower than chains with unbalanced ones. We perform long-
distance calculations for each repeater (see Section 4.1.1) and then choose the family
with the fastest repeaters.

There are repeaters of different sizes or BHCs (Block Hardware Codes) within
each family. Smaller repeaters consume less leakage power. They have lower load
limits and are very sensitive to the load. In general, they are also slower than larger

89

7 BonnRepeaterTree

repeaters that can drive higher load capacitances. The largest repeater is often the
gate type that can drive the highest capacitance over all gates in the whole library.
For a given Vt-level and beta ratio, we often use the whole family of BHCs and only
hide the smallest repeaters because they are too sensitive, so that small changes in
routing can result in huge timing differences.
As the running time of all repeater tree algorithms depends on the size of the

library, one might choose to work with a subset of a family. For example, Alpert
et al. (2000) proposed an algorithm to select a proper set of repeaters such that
the results do not deteriorate too much. While such an approach would certainly
improve the running time of our algorithms, the times we see in practice are fast
enough to keep all repeater sizes (except the smallest ones as described above).

The sizes of some example libraries are shown in Table 8.3. Typically, the library
has between 15–25 inverters and buffers. There are libraries that consist only of
buffers and libraries that consist only of inverters.
In practice, we distinguish between the repeaters that can be removed from the

design and the repeaters that can be inserted. While we limit the number of buffers
and inverters that are used for construction, we want to be able to remove as much
of the existing repeater trees as possible.

7.1.1 Repeater and Wire Analysis

During repeater tree construction, the timing rules are called millions of times to
evaluate intermediate solutions. Unfortunately, evaluating timing rules is quite slow.
It is prohibitive for running time reasons to call the timing rules each time one
wants to calculate delays or slews. To speed up the calculations, we approximate the
timing rules of all repeaters. To this end, we sample the domain of both functions
equidistantly and use bilinear approximation between the sampling points, which
can be evaluated very quickly.

Using 64 sampling points in both dimensions of the rules (input slew and output
load), limits the error to about 2 picoseconds for the technologies in our testbed.
Similarly, we approximate the delay rules over net segments. Given an input

slew and an Elmore delay, the timing rules compute an output slew and a delay.
For some technologies, the timing rule is just a linear scaling. Other technologies,
however, use more complicated functions. As we want to work with all inputs, we
sample the timing rules for nets with 256 sampling points in both directions and
also use bilinear approximation.

7.1.2 RAT and Slew Backwards Propagation

We use bilinear approximations for all flavours of the slewinv function. During
approximation a binary search is performed to find the highest slew that achieves a
given output slew and Elmore delay for nets or output slew and load capacitance
for repeaters.

90

7.2 Blockages and Congestion Map

We approximate required arrival times by linear functions. During repeater
insertion we are usually interested in the required arrival time for a given target slew
st. Thus, we approximate the tangent of the RAT function at st. To compute the
RAT function at the source of a net for a given sink and signal edge with Elmore
delay rc and sink RAT function rat, we compute the required arrival time for slews
st and st + ε for an appropriate small ε:

ratst := rat(wireslew(rc, st))− wiredelay(rc, st)
ratst+ε := rat(wireslew(rc, st + ε))− wiredelay(rc, st + ε).

The resulting required arrival time at the source is then the linear function going
through ratst and ratst+ε. To merge required arrival time from several sinks, we do
not compute the lower contour. Instead, we evaluate all required arrival times for
slew st and only keep one RAT function that attains the minimum.
Required arrival times are propagated backwards over repeaters in an analogue

way. Additionally, we have to take care about signal edge inversions through
inverters.

7.2 Blockages and Congestion Map

The blockage map contains the regions of the design that are blocked for repeater
insertion. The bounding box of the chip area is an enclosing rectangle of all free
space in the design. Everything outside is considered blocked. In addition, we also
consider as blocked

• regions that belong to the bounding box of the chip area but not to the chip
area itself,

• regions that are not free for gate placement within the design,

• regions that are blocked by the user,

• gates that are fixed in their location, and

• large gates that are usually difficult to legalize.

Given all blockages, we first block all free regions that are too small for placing
a repeater within. In a second step, an overlap-free set of rectangles covering the
blocked areas is computed. The rectangles are then stored in a quadtree that
supports fast nearest free location searches.

Using the blockages, an equidistant blockage grid is created. The blockage map and
blockage grid are then used to initialize free routing capacities between neighbouring
tiles for a congestion map. Finally, all nets are added into the congestion map.

91

7 BonnRepeaterTree

7.3 Processing Repeater Tree Instances

The basic steps of optimizing a single instance are extracting the input data from
the netlist, building a new repeater tree, and replacing the original netlist with the
new one. We describe the steps in the following sections.

As our algorithms are either heuristics to the problem or simplify it, it is possible
that the new solution we computed is worse than the original one. To prevent
degradation of the design, we evaluate the original and new solutions and compute
some metrics like slack, length and number of electrical violations. If the new
solution is better, then it will be inserted into the design. Otherwise, it will be
discarded.

7.3.1 Identifying Repeater Tree Instances

The BonnRepeaterTree tool is designed to optimize all repeater tree instances of a
design. However, the runtime environment does not give us all instances and the
corresponding information directly. Instead, the tool has to find instances in the
netlist.
After identifying instances, we have to extract all data relevant to the instance.

We can assume that basic data like the repeater library, the wiring modes, the
blockage map, and potentially a congestion map are already given. It remains to
extract

• all nets and pins belonging to the instance and their placement,

• the arrival time functions of the rules and the the timing rules necessary to
compute them,

• required arrival time functions at the sinks, and

• if wiring already exists and it is requested, the existing wiring topology.

The following sections describe the steps mentioned in the list.

Identifying Roots and Inner Circuits

Generally, all nets of a design are part of repeater trees. Nets incident to repeaters
belong to the same repeater tree. However, some nets are not part of any repeater
tree because they are protected from optimization by the designer. There are several
sources of such hides:

• Nets are hidden if they are already optimized and if the designer does not
want a tool to mess up with the current result.

• Nets are hidden by other tools because they depend on the current solution.

92

7.3 Processing Repeater Tree Instances

• Nets that carry clock signals have to be buffered but there are special require-
ments, for example, the signal should arrive at the same time at all sinks, such
that special clock tree tools buffer them.

• Nets with analog signals should not be buffered.

• Nets can have multiple inputs. In such cases, special care has to be taken that
no short-circuit is created.

It can easily be queried from the runtime environment whether a net is hidden.
BonnRepeaterTree works on a set of nets from a design. To identify the instances
corresponding to a set of nets, the following steps are performed:

1. Nets that are hidden are filtered out. The remaining nets, either a root net or
a net at a deeper level, are part of a repeater tree.

2. For each net’s source we identify its root pin and collect it. The source pin
of a net is a repeater tree root if it has no gate or its gate is not a repeater
or if it is not possible to remove the repeater and its incident nets without
violating a hide or similar restriction. If a source pin is not a root, then it is
an output pin of a repeater that is part of the tree. We recursively continue
the search with the net connected to its input pin.

3. For each collected root, we start a forward search to include all repeaters and
sinks that belong to the instance. A sink pin is reached if it does not belong
to a gate or if its gate is not a repeater that can be removed.

After running the routine we have a set of instances. Each instance consists of a
root pin, a set of inner repeaters, a set of sink pins, and a set of connections between
them that are stored in a tree data structure.

Arrival Time Functions

After we have identified the root pin of an instance, we have to extract some
characteristics of the root. We are interested in

• the arrival time functions for all signals at the root and

• the output load limit that the root can drive.

It is possible that different signals are going through a repeater tree instance.
The timing engine creates so-called phases for different signal sources. Phases are
propagated separately such that there are several independent arrival times and
slews as well as required arrival times at the timing nodes. Slew limits are also
phase-specific.

The output load limit is used in ConnectRoot to check for electrical feasibility
of the solutions. For each phase of the instance, there is a pair of arrival time

93

7 BonnRepeaterTree

functions, one for each transition respectively. Given the load at the root pin, we
can compute the arrival time we are interested in.
There are several types of roots. For each type, we extract the arrival time

functions in a different manner. Within the BonnRepeater framework, we might see
root pins that are

• output pins of circuits,
• primary inputs of the netlist,
• pins on hierarchy boundaries, or
• output pins of circuits that are fed by transparent segments.

We describe each type of roots in the following sections.

a

b

zp1

p2

Figure 7.1: A repeater tree root z at the output pin of a standard AND-gate with two input
pins. The arrival times and slews at the root are computed using arrival times
and slews at the input pins a, b and the propagation segments p1, p2.

Outputs of Circuits The most prominent type of root is an output pin of a standard
circuit or a macro. There are propagation segments heading towards the output pin
within the circuit coming from its inputs or internal timing points. To estimate the
timing at the root, we have to extract the timing rules of the propagation segments
together with the arrival times and slews at their tails. The load limit of the root is
given by the timing rule of the circuit’s pin.

r

Figure 7.2: A repeater tree root at a primary input of the design. Arrival times and slews
are constant.

Primary Inputs Primary input pins are starting points for signals coming from
outside of the design. We distinguish two different types designs and on each type
primary inputs are treated differently. Some designs are macros that are later
included into larger designs forming a hierarchy of designs. The primary inputs
and outputs of macro designs communicate with gates at higher hierarchy levels.
Incident nets can be optimized by the repeater tree routine.
Top-level designs are the second type. They communicate with components

outside of the chip image. Here, it is often not possible to optimize nets incident to
primary inputs because they need special treatment due to electrical constraints. In

94

7.3 Processing Repeater Tree Instances

both cases, information about timing coming from the outside is given in form of
arrival time and slew assertions. Normally, the values are constant, independent
from the load at the pins. In addition, there is a load limit asserted to the pin.

Lower Hierarchy Level Upper Hierarchy Level

r

z
a

b

i

y

Figure 7.3: A repeater tree root (r) at a hierarchy boundary. It is in the middle of a
net crossing the boundary. To compute arrival times and slews one has to
fetch them at the driving gate’s inputs and propagate over the gate and net.
Changing the load at pin r has effects on the timing at side pins i and z.

Pins on Hierarchy Boundaries It is possible to load hierarchical designs such that
the contents of all hierarchy levels are visible to optimization tools. Nets crossing
hierarchy boundaries could be optimized in a single step. However, tools are often
only allowed to work at a single level at a time. Thus, instances stop at hierarchy
boundaries and it is possible to get roots at virtual pins that mark the hierarchy
boundaries.
For roots at hierarchy boundaries, it is possible to take information about the

previous level into account. If one changes the load capacitance at such a root this
has an impact on the driver in the preceding net and the net itself. To calculate the
timing at the root one has to extract the driver’s timing as described in the previous
case and also the timing behaviour of the net between the driver and the root.

In our tool, we first extract the driver’s timing rules and then calculate a Steiner
tree for the preceding net. When we want to get the timing at the root, we first
calculate the final load at the driver and then compute the timing at the drivers
output pin. In a second step, we recompute the Elmore delay for the root and
propagate the timing over the net.

The load capacitance limit of the boundary pin is the highest capacitance we can
connect to the pin without violating the capacitance limit of the preceding driver.

Changing a repeater tree at a boundary hierarchy also changes the timing on all
pins that are siblings to the root in the preceding net. Figure 7.3 shows the situation
with sibling sinks i and z. The slack can turn negative or electrical violations can
appear. However, we ignore the timing at sibling pins because we did not see any
problems in the past. If it turns out to be a problem in the future, the timing of
sibling pins can be considered by limiting the capacitance load limit of the root such

95

7 BonnRepeaterTree

that the sibling’s timing remains feasible even in the worst case.
A different problem with siblings in the preceding net appears if they are hierarchy

boundary pins (pin z in Figure 7.3). Working on one of the pins can significantly
change the timing behaviour of the others. This can be a problem when we optimize
both instances in parallel where we first extract the timing constraints and then
optimize. Here, we do not see the changes we do during optimization of the first
root when we start to work on a subsequent root. A better solution would recognize
that all siblings belong together and optimize them in a single repeater tree instance.
However, the problem appears rarely in practice and did not impose a problem.
Thus, we ignore the situation so far.

r

z

b

a

p2

p1

tr

tz

Figure 7.4: A root at a macro boundary with transparent segments. The load capacitance
at r is visible over transparent segment tr to propagation segments p1 and p2.
Arrival times and slews are calculated by propagating them first over p1 and p2
and then over tr. Timing at sibling pin z depends on the load capacitance at r
and vice-versa.

Transparent Segments There is a fourth type of roots similar to roots at hierarchy
boundaries that one can find at the output pins of macros. Macros that were
processed as a separate hierarchy level are later finalized and treated as a single
block. The timing of the whole block is catched in macro-specific timing rules.
The behaviour at hierarchy boundaries is modelled using transparent segments.
Transparent segments mimic preceding nets in this situation.

Normally, propagation segments within gates shield the load capacitance at their
head such that it is not visible at preceding segments. In contrast, the capacitance
at the head of transparent segments is visible at the tail and therefore influences
previous propagation segments. This is analogue to a net where the load at the sink
is visible at the source.
Transparent segments are preceded by propagation segments that correspond

to the driving circuit in the hierarchy boundary case. To fully catch the timing
behaviour, one has to extract the timing at the tails of the segments heading to a
transparent segment and the timing rules of all involved segments.
The timing rules of the macro give us the load capacitance limit of the root.
Transparent segments have similar problems as pins on hierarchy boundaries. It

is possible that there are sibling segments heading to other outgoing pins of the
macro. Here, both instances should be considered at once, too. However, we have

96

7.3 Processing Repeater Tree Instances

not seen such a problem in practice yet.

RAT Functions at Sinks

For each phase that arrives at a sink, we approximate the rise and fall RAT functions
by linear functions. This is a rough estimate compared to the effort we spend on
accurately estimating arrival times at the root. In practice, adding more effort into
getting better RAT functions improves the results only by a small margin. The
influence of the root is much higher.

We know the current slews and required arrival times at the sinks from the timing
engine. We then set the RAT functions for sinks at primary outputs, where required
arrival times are asserted, to constant functions. For pins that are gate inputs, we
set the RAT functions to the tangent around the current slews by evaluating the
outgoing propagation segments.

Phase shifts

Ideally, different phases are handled separately during repeater tree construction
because different sinks can be critical for different phases. Due to different slews
as well as slew limits, propagating only a single phase can be too pessimistic.
Because of running time reasons, we only handle a single phase during repeater tree
construction. The different phases have to be merged into a single one. This is done
by normalizing arrival times and RATs.
First, we assume that the root has a load capacitance of 0 and compute arrival

times. Using our delay model, we determine the criticality for each phase and signal
edge separately. The most critical phase and signal edge is used as reference. Then,
all other signals are shifted by a constant such that their arrival times match the
reference arrival time. The shift is also performed for the RAT functions at all sinks.

The arrival times and RATs used during repeater tree construction are the worst
ones after shifting. We also use the tightest limits over all phases. When it comes
to evaluate a solution, we propagate each phase independently again to avoid
pessimism.

Unplaced Pins

Especially in early design stages, it is possible that sink pins or the root have no
proper placement. A reason might be that the corresponding gate is not yet placed
or the gate’s design is not yet finished such that the pin’s position within the gate
is unclear. If there is at least one placed pin in an instance, then the unplaced pins
are positioned at the center of gravity of the placed ones. If all pins are unplaced,
we treat them as if they all lie at the origin of the coordinate system.

97

7 BonnRepeaterTree

Identifying Existing Wiring

As mentioned in Section 5.9, existing wiring can be used as a topology for the
buffering algorithm. Because wires are stored as a list of segments between two
coordinates in our optimization environment, we first have to reconstruct a graph
out of the segments. It can happen that the existing wiring is not connected or it
does not cover all pins. In such a case, we just discard the whole graph and use our
topology algorithm.

Slew Limits

In addition to the slew limits at input pins imposed by the timing rules, there might
be additional design specific slew limits. First, there is a global slew limit that
should not be violated at any pin. Second, there are phase-specific slew limits that
are only valid for arrival times belonging to the according phase.

Given an instance, we know which slew limits apply. We then modify the instance
such that the slew limits of the sinks and all repeaters in the library are not higher
than the instance-specific limits. In case of phase-specific slew limits, this means
that we choose the minimum over all slew limits for construction. This can be
too pessimistic. For example, we sometimes compare slews from uncritical phases
having higher slew limits with smaller slew limits from critical phases.
Lowering the slew limits at insertable repeaters can make some buffering modes

invalid if their slew target is above the limit. We just remove invalid buffering modes
before an instance is processed.

Capacitance Limits

Similar to phase-specific slew limits, we also see capacitance limits at output pins
that depend on the phases propagating to gates. They are imposed to lessen the
effects of electromigration. Electromigration is the movement of material in a
conductor caused by current. It decreases the reliability of integrated circuits over
time. One strategy used to cope with this is reducing the capacitance that gates are
allowed to drive. As the strength of the effect depends on several factors including
the frequency of the signals, the countermeasures also depend on the signals.

For a given instance, the load limits of all repeaters that can possibly be inserted
have to be lowered according to the signals going through the instance. This can
make some buffering modes invalid that depend on higher loads. They are just
removed for the instance.

7.3.2 Constructing Repeater Trees

For repeater tree construction, we always first construct a topology and then add
repeaters using our algorithm. The result can optionally be post-processed by the
dynamic programming repeater insertion that treats the result of Fast Buffering as

98

7.3 Processing Repeater Tree Instances

an input topology. The initial topology can be constructed using existing wiring or
by our topology algorithm.

Parameter ξ

The algorithms are controlled by the preprocessing that we presented in Chapter 4
and the ξ parameter. For our implementation, we have split the parameter into
three different ones: ξm for buffering mode creation, ξt for topology generation,
and ξr for the repeater insertion step. The parameters can be controlled by the
user independently. In Section 8.8, we give hints which values work best for the
parameters.
Currently, we only work with two buffering modes for each wire mode. The first

buffering mode is extracted using ξ = 0.0 and for the second one we use ξr. The
faster buffering mode is then used for topology generation and AssignEffort
chooses between both. As described earlier, lowering slew or capacitance limits can
render buffering modes invalid. This can only happen for the slower buffering mode
as it has higher limits. In such a case, we increase ξ until all limits are met. Thus,
we always have a choice between a slower and a faster buffering mode.

The parameter ξt is used within topology generation when we have to decide at
which edge we want to connect a sink.

Finally, ξr is used during repeater insertion when we have to decide which solution
to choose in InsertRepeater, Merge, and ConnectRoot.

7.3.3 Replacing Repeater Tree Instances

After a repeater tree has been constructed, we have to evaluate it. Our algorithm is
only a heuristic that cannot guarantee a good solution. We therefore compare our
solution to the existing repeater tree that was identified during instance collection.
For this, we have the choice to

• evaluate the result using our approximations of the timing rules or
• to use the timing engine for evaluation.
Evaluation using the approximations has the disadvantage that it is slightly

inaccurate and can miss effects influencing timing. However, it is much faster
than the timing engine and it can run on different instances at the same time (see
Section 7.4.3). If the new solution is not good enough to be kept, it is possible to
discard it without modifying the netlist. If we want to evaluate using the timing
engine, then we have to insert the result into the netlist first. Currently, the quick
evaluation mode is used most of the time. Only if we want to be 100% accurate,
the timing engine is used.

The criteria used to evaluate a solution are ordered from the most important ones
to the least important: electrical violations, slack, power consumption, and length.

99

7 BonnRepeaterTree

7.4 Implementation Overview

BonnRepeaterTree is a module in the BonnTools suite. It has been implemented
using the C++ programming language. The module consists of

• a repeater tree API,

• a framework that can be used to implement repeater tree construction algo-
rithms,

• implementations of our repeater tree construction algorithms, and

• a layer translating between the framework and the IBM physical design tools.

All our algorithms have been implemented using the framework. To migrate them
to a different physical design tool suite one only has to reimplement the translation
layer. It will not be necessary to touch the algorithms.

7.4.1 Repeater Tree Construction Framework

Our framework provides an algorithm with all information that belongs to an
instance as described in Chapter 3. In addition, the existing implementation of an
instance is available. For example, this is used to do post optimization of instances
or to compare new solutions with older ones.
To build a new tree, an algorithm only has to create a tree data structure that

consists of nodes for roots, sinks, repeaters, and the connections between them.
Evaluation and implementation into the design is done by the framework.

7.4.2 Repeater Tree API

The BonnRepeaterTrees are not only used as a standalone utility but also as a
subroutine for other tools, for example, BonnLogic (Werber, 2007; Werber et al.,
2007), a tool to restructure logic on the critical path.

There are also programs that need information about repeater tree instances. For
example, determining whether a pin is part of a repeater tree at all is a functionality
that is not provided by the timing engine.

We provide a small API to work on repeater trees using our algorithms consisting
of

• utility functions to determine whether a pin is in a repeater tree, whether a
pin is a root, and for a pin in a repeater tree the corresponding root,

• a function returning a whole repeater tree instance, and

• a function to construct a repeater tree using one of the algorithms.

100

7.5 BonnRepeaterTree in Global Timing Optimization

Instances expose the original repeater tree. The user has direct access to root and
sinks and can traverse the tree to get inner repeaters and nets.
For example, the RerouteChains tool uses the interface to fetch all repeater

trees and traverses the original tree to identify chains. Most tools, however, have a
set of pins and want to optimize the pins’ repeater trees. Such tools just iterate
over all pins, fetch an instance, and construct it.

7.4.3 Parallelization

About ten years ago the increase of CPU speed with each new generation slowed
down significantly. Instead, multi-core CPUs appeared with the number of cores
increasing with each generation. To fully utilize the power of modern CPUs, it is
necessary to distribute work on the cores.
It rarely happens that repeater tree optimization is started on a single instance.

Typically, hundreds or thousands of instances should be calculated at the same time.
Because of this and the small running time of optimizing a single instance, it makes
little sense to parallelize parts of our algorithm. Instead, we choose the simpler
approach of parallelizing the computation of different instances.

The optimization environment does not allow to modify or even query the netlist
or timing engine at the same time from different threads because this would lead
to race-conditions. Therefore, we choose to protect all calls to the environment by
a single mutex. To reduce congestion on the mutex the framework first fetches all
information necessary to compute a repeater tree while the mutex is held. Then,
during the whole computation, the mutex is never acquired. Only after the decision
to insert a repeater tree has been made, the mutex is locked again to modify the
netlist.

Testing Multithreading Running Times

We have tested the parallel execution on our testbed of chip designs using an Intel
Xeon machine with 4 processors having 8 cores each. Table 7.1 shows the running
times with different numbers of parallel threads. We achieve a speedup around 4
using 8 cores which is our default when we optimize all instances of a design. The
speedup is limited by the serial parts, instance identification and instance insertion.

7.5 BonnRepeaterTree in Global Timing Optimization

Our algorithm is able to process millions of instances in reasonable time. It is
therefore suitable to be used in global timing optimization where all instances are
processed. BonnRepeaterTree offers two parameter sets by default that have proven
useful for global optimization (see Held (2008)).

101

7 BonnRepeaterTree

Design 1 2 4 8 Factor 12 16 24 32
Baldassare 20 s 11 s 7 s 6 s 3.34× 6 s 6 s 6 s 6 s
Beate 35 s 18 s 11 s 8 s 4.09× 8 s 8 s 8 s 8 s
Gerben 40 s 21 s 12 s 9 s 4.46× 9 s 8 s 8 s 10 s
Wolfram 45 s 23 s 14 s 11 s 4.08× 10 s 10 s 10 s 11 s
Luciano 102 s 55 s 35 s 29 s 3.48× 28 s 27 s 28 s 28 s
Benedikt 250 s 130 s 78 s 63 s 3.95× 59 s 58 s 59 s 59 s
Renaud 259 s 140 s 89 s 74 s 3.52× 69 s 69 s 69 s 70 s
Julius 309 s 158 s 92 s 72 s 4.38× 69 s 66 s 69 s 68 s
Franziska 358 s 188 s 113 s 89 s 4.02× 84 s 82 s 84 s 85 s
Meinolf 449 s 235 s 138 s 108 s 4.16× 103 s 101 s 101 s 102 s
Iris 501 s 269 s 170 s 142 s 3.53× 135 s 135 s 136 s 138 s
Gautier 1420 s 765 s 473 s 383 s 3.70× 372 s 363 s 378 s 390 s

Table 7.1: Running times with different numbers of used threads. As the running time
gains from going further than 8 threads are rather small we use 8 threads by
default. The speedup factor is then around 4.

Power Trees

The first parameter set aims to build all instances with minimal power consumption
while electrical violations are avoided. We achieve this by relaxing all required
arrival time constraints to infinity. We assume that the root gate is replaced by the
strongest version from its BHC family. We mainly build short topologies, but to
prevent too long daisy-chains, the parameter ξt is slightly above 0.0.

Slack Trees

The second parameter sets tries to improve the slack above the slack target for each
instance. The ξ parameters are set around 0.8 to prevent a too high resource usage.
Uncritical instance parts are built with parameters similar to the power tree ones
due to the AssignEffort subroutine.

7.6 BonnRepeaterTree Utilities
Besides optimization, there are other tasks that are related to repeater trees. The
most common tasks are implemented as separate tools that can be called directly by
the user. The two existing tools are a rip out routine and repeater chain optimization.

7.6.1 Removing Existing Repeaters
It is desirable to remove all existing repeater trees to get into a clean initial state
for optimization. Our RipOut routine removes all inverters and buffers from a
design or specified instances such that at most one parity preserving inverter is left.

102

7.6 BonnRepeaterTree Utilities

r+

−

+

−

Figure 7.5: The netlength of this instance can nearly be halved by adding a second inverter
and placing one of both at each negative sink.

The inverter is placed within the bounding box of all negative sinks such that it is
nearest to the root.
Figure 7.5 shows how removing as many repeaters as possible increases the

netlength of the design. This has to be considered if one uses a physical design
flow where all repeater trees are built along topologies coming from a global router.
Typical global routers are not capable of inserting inverters on their own. The
topologies that they can generate are limited by the input, and the example above
shows that removing as many repeaters as possible is no satisfactory solution because
it can lead to unnecessary high netlength.
We offer a mode in our RipOut routine that tries to circumvent the problem.

In this mode the routine will not insert the inverting repeater but modify logic by
connecting all sinks directly to the root. The original parity is stored for each sink
pin. As soon as the instance is touched again by one of our tools, the sink parities
are restored. The routine is dangerous because the whole design might get broken
if another tool changes the logic between rip out and restore. For global routers,
however, each repeater tree instance is presented as a single net.

7.6.2 Postprocessing Repeater Chains

Larger distances are often covered by chains of repeaters. A chain is a set of
subsequent nets with fanout one. For larger distances, it is more probable that it
is better to use higher layers with wider wires for the nets than the default layers.
It is often not possible to reach the slack targets without using wider wires and
a lot of short nets on lower layers increase placement congestion due to a lot of
additional repeaters. On the other hand, it makes no sense to assign high fanout
nets to higher layers. High fanout nets often connect a lot of sinks locally due to
the pin capacitance. The benefits of wider wires are not high in such a situation.
Thus, we restrict ourselves to repeater chains.

We offer two routines for improving the placement and layer assignment of repeater
chains.

Postprocessing

The first routine tries to improve the layer assignment of repeater tree chains by
ripping them out and rebuilding them on higher layers. The routine iterates over
all repeater chains and then builds a new solution using each configured layer
assignment with the Fast Buffering routine. The best solution according to our

103

7 BonnRepeaterTree

Figure 7.6: All repeater chains longer than 4mm on a large design. Distributing the chains
more evenly can give us less congestion while preserving the timing.

criteria, electrical violations, slack, power consumption, and length is kept. The
routine either uses a shortest path computation in the blockage grid or uses the
path search of the congestion map if available. In the later case, assignments are
only performed if they do not violate congestion targets on the probed layers.

Congestion-aware Rerouting

The second routine, RerouteChains, does not try to improve the layer assignment
of repeater tree chains. Instead, it tries to improve congestion by moving the
repeaters into less congested areas. Figure 7.6 shows all repeater chains longer than
4mm on a design that has a lot of congestion. By distributing the chains evenly and
by avoiding congested areas, it is possible to reduce overall congestion. We have a
simple ripup-and-reroute heuristic that reroutes the chains.

This routine only works in presence of a congestion map. In several iterations all
chains are collected that use an edge in the map above a certain congestion level.
Then, for each chain, the following steps are performed:

1. Collect the nets of the chain and the costs of their routing in the congestion
map.

2. Search for a new path from the start point to the end point of the chain in
the congestion map.

3. Distribute the internal repeaters of the chain along the new path such that
relative distances are preserved. The repeaters are then placed legally at the
free position next to their target position.

4. New routes for all incident nets are computed.

104

7.6 BonnRepeaterTree Utilities

5. If the costs of the new nets are smaller than the old costs, then the new
solution is kept. Otherwise, it is reverted.

The search for the new path does not take existing layer assignments into account
because it is not supported by the congestion map. The assignments are only used
when new routes for the nets are recomputed. Similarly, the path search ignores
timing. We restrict the congestion map to the bounding box between the start and
end of the path plus some tiles for detour. Thus, we expect that the routes do not
get too long and timing is not degraded too much. Instead, the number of nets with
long detours generated by the global router should become smaller.
The routine also does not consider placement congestion directly apart from

searching for free positions. In practice, placing gates densely such that no gaps occur
results in unroutable designs. Thus, if we have a design that is considered routable
by the global router, we expect that placing the circuits legally in the corresponding
global routing tiles should be feasible without much placement distortion. This
cannot be guaranteed but the experiments did not show problems with placement
legalization. If we skip placing the repeaters legally after movement, then the results
are similar to runs where the circuits are legalized.

A potentially better solution to the problem has been proposed by Janzen (2012).
He integrates the placement of repeater chains into the global router. Whole chains
are considered as a single net by the global router, and, during path search, timing
as well as placement area are considered. Compared to the method presented here,
the running time of the global router increased significantly due to the additional
work during path search. This approach is not suitable for application in practice
so far.

Experimental Results

We test the RerouteChains routine on our testbed of chip designs (see Section 8).
The test cases are output of a standard BonnTools optimization flow (see Section 7.5).
We compare the effects of our routine on routability and timing.

Table 7.2 and Table 7.3 summarize the experiments. BonnRouteGlobal1 is used
to measure routability. We have one run of the global router before and one run
after RerouteChains. The global router and the congestion map have nearly the
same number of global routing tiles in both dimensions.

Table 7.2 first shows the number of repeater chains considered on the test instances.
Our tool runs in five iterations over all chains and tries to reroute a chain if it uses an
edge in the congestion map with more than 85% utilization. If a cheaper solution is
found, then it is kept. The second column shows the number of improvements found
over all five iterations. The following columns show the running times of both global
router runs (1st GR, 2nd GR), congestion map creation (CM), and RerouteChains
(RC). The congestion map proves to be very fast. The RerouteChains running

1see (Gester et al., 2011; Müller et al., 2011; Müller, 2009)

105

7 BonnRepeaterTree

Running Times
Design Chains Reroutes 1st GR CM RC 2nd GR
Baldassare 7613 381 9 s 2 s 3 s 10 s
Beate 5043 251 14 s 2 s 5 s 14 s
Wolfram 3842 1473 18 s 2 s 6 s 19 s
Gerben 3493 10 14 s 1 s 5 s 15 s
Luciano 27922 4200 46 s 5 s 20 s 50 s
Benedikt 37893 3209 106 s 14 s 38 s 111 s
Renaud 14908 12379 295 s 13 s 33 s 289 s
Julius 41677 7315 178 s 24 s 185 s 150 s
Franziska 56697 3108 151 s 22 s 65 s 160 s
Meinolf 128023 68221 165 s 23 s 103 s 170 s
Iris 76153 141865 750 s 30 s 193 s 797 s
Gautier 165491 214135 6454 s 205 s 1344 s 5247 s

Table 7.2: Testbed for the RerouteChains tool. The running times are given for the
global routing (GR), congestion map creation (CM), and RerouteChains (RC).

times also contain the legalization of moved repeaters. Overall, the running times
are acceptable.

Table 7.3 first shows the total overflow over all global routing edges as reported by
BonnRouteGlobal. Then, the number of nets is reported with length longer than two
times the length of a Steiner minimum tree and the highest relative detour. Finally,
timing quality is measured with the sum of negative slacks (SNS). Most instances are
uncritical and the tool has little effect. On Benedikt and Franziska the routability
decreases slightly due to differences in the free edge capacities seen between the global
router and the congestion map. On designs Gautier and Renaud the congestion was
reduced significantly resulting in less detours. Due to the reduction of detours, also
the sum of negative slacks was improved on these instances. In summary, there are
instances where running the tool improves routability, while on uncritical instances
no harm is done.

Figure 7.7 and Figure 7.8 show congestion maps as reported by BonnRouteGlobal
for designs Julius and Gautier. The colors show the maximum relative edge utilization
over all layers. Especially on Gautier, we see the huge reduction of overflow by a
factor more than 100×.

106

7.6 BonnRepeaterTree Utilities

Design Step Overflow Nets > 100 % Max detour SNS
Baldassare before 0 0 8% −140049 ps

after 0 0 8% −140039 ps
Beate before 0 0 78% −151997 ps

after 0 0 78% −151990 ps
Wolfram before 0 0 25% −75187 ps

after 0 0 25% −75210 ps
Gerben before 0 0 30% −109589 ps

after 0 0 30% −109626 ps
Luciano before 0 52 524% −464277 ps

after 0 24 342% −481492 ps
Benedikt before 1446 0 72% −207397 ps

after 2906 0 103% −210871 ps
Renaud before 4140245 913 747% −6557941 ps

after 3444979 825 513% −5822497 ps
Julius before 0 0 99% −18787024 ps

after 0 0 89% −18766033 ps
Franziska before 1307 0 78% −1694730 ps

after 10982 0 78% −1694434 ps
Meinolf before 0 0 98% −4622849 ps

after 0 0 89% −4715832 ps
Iris before 2843214 4057 1662% −19704061 ps

after 1891486 3032 1662% −15602736 ps
Gautier before 12682825 4609 306% −9647137 ps

after 123511 111 131% −7058513 ps

Table 7.3: Difference in routability and timing before and after RerouteChains.

107

7 BonnRepeaterTree

30 %

50 %

60 %

70 %

76 %

82 %

87 %
91 %
95 %

10the0 %

110 %

120 %

Figure 7.7: Congestion on design Julius before (left) and after (right) RerouteChains.

30 %

50 %

60 %

70 %

76 %

82the%

87 %
91 %
95 %

100 %

110 %

120 %

Figure 7.8: Congestion on design Gautier before (left) and after (right) RerouteChains.

108

8 Experimental Results

As part of the IBM optimization tool suite, the BonnRepeaterTree tool is in daily
use to optimize the physical design of current chip designs. It proved to be useful for
current ASIC (application-specific integrated circuit) designs as well as for bleeding-
edge processor units. Designers choose it as part of the BonnTools optimization
tools to achieve timing-closure.

In this chapter, we want to show performance metrics of our tool. We compare it
to another tool used by IBM for repeater tree optimization. We also compare against
lower bounds for slack, netlength and repeater counts. We then show how parallel
walk and effort assignment affect the results and give hints on proper selection of
parameters ξ, η, and dnode.

Design Technology Instances Max. Sinks
Baldassare 22 nm 20552 152
Beate 22 nm 34382 166
Wolfram 32 nm 44413 274
Gerben 32 nm 44677 194
Luciano 22 nm 101625 263
Benedikt 22 nm 241465 12061
Renaud 45 nm 268775 389
Julius 22 nm 284934 1589
Franziska 22 nm 328600 740
Meinolf 22 nm 364969 1539
Iris 22 nm 393457 3264
Gautier 45 nm 1275731 6859

Table 8.1: Designs used for experimental results. For each design, all repeater tree instances
were build.

We have chosen twelve current chip designs from our industrial partner IBM for
our experiments. For each design, we build all repeater tree instances regardless of
difficulty. In total, we have more than 3.3 million instances of varying sizes with up
to 12061 sinks. Table 8.1 shows the designs we used, their codename, technology,
the number of instances, and the number of sinks in the biggest instance.
The distribution of instance sizes is very uneven as shown by Table 8.2, which

shows it subdivided into the different technologies. The designs are dominated by
single sink instances. Instances with up to four sinks already make up for more
than 90% of all instances. It is important to produce good repeater trees for

109

8 Experimental Results

Sinks 45 nm 32 nm 22 nm Total
1 958307 58920 1307808 2325035 68.39%
2 191709 11422 179836 382967 11.26%
3 144054 9077 96330 249461 7.34%
4 115818 2219 42237 160274 4.71%
5 27687 2384 24882 54953 1.62%
6 25420 968 20435 46823 1.38%
7 16523 652 19334 36509 1.07%
8 11518 521 18883 30922 0.91%

9–20 27348 2336 44070 73754 2.17%
21–50 14842 759 12434 28035 0.82%
51–100 1667 239 5192 7098 0.21%
101–250 775 46 2311 3132 0.09%
251–500 233 1 269 503 0.01%
501–1000 75 0 30 105 0.00%
> 1000 110 0 28 138 0.00%
Total 1536086 89544 1774079 3399709 100.00%

Table 8.2: Test instances grouped by number of sinks and technologies.

small instances to get overall acceptable results. However, it is also important to
optimize instances with more sinks well because, in practice, they are often among
the timing-critical instances.

Table 8.3 shows the size of the repeater families used as libraries. The designs from
32 nm and 22 nm technologies do not have any buffers. Instead, two consecutive
inverters are used if necessary.

We have performed all of our experiments on a machine with two Intel Xeon X5690
processors with 6 cores each. The machine runs with a base clock speed of 3.46 GHz.
The Intel® Turbo Boost Technology is enabled with a maximum clock speed of
3.73 GHz. Hyperthreading was disabled. All experiments were run single-threaded,
but up to 12 experiments were run in parallel if not noted otherwise. The running
times reported might be higher than necessary because the machine was fully loaded
with experiments. However, in practice, designers often have to share computing
resources with others, too. The machine has 192 GiB of main memory.

The code was compiled with GCC version 4.1.2 under Red Hat Enterprise Linux
Server 5.6 at optimization level O2.

8.1 Comparison to an Industrial Tool
As a first experiment, we compare our algorithm to a repeater tree construction tool
that is used by IBM for most repeater trees. It uses a van Ginneken-style approach
with the running time improvements by Li et al. (2012). It is the default tool in

110

8.2 Comparison to Bounds

45 nm 32 nm 22 nm
Inverter 18 20 22
Buffer 18 0 0

Table 8.3: Repeater Library Sizes

the IBM optimization suite due to its good results and tight integration with the
placement tool of the suite.
The integration makes it hard to compare both tools on all instances, because it

is not possible to run the industrial tool on a single repeater tree instance without
huge overhead. We have chosen a random sample of 19 instances from the Franziska
design with different characteristics. Instances have different numbers of sinks and
diameters. While it took seconds to run both tools on all instances, testing took
one hour due to the overhead.

Table 8.4 shows the results of running the industrial tool, our BonnRepeaterTree
Fast Buffering routine, and our BonnRepeaterTree routine with dynamic program-
ming using 40 power buckets. All tools are configured to maximize slack. We have,
however, reduced ξ to 0.8 for our repeater insertion. The reason is that higher
values would not improve the slack anymore but cause higher area consumption.
In practice, we also seldomly use higher ξ values. Both tools are configured to
obey blockages and they are only allowed to use the default wiring modes. The
instances are already optimized to give all tools reasonable arrival times at the root
and required arrival times at the sinks. In practice, the IBM tool would prune the
size of the repeater library to improve running time. We configured the tool to use
the whole library because this leads to significantly better slacks. Our tool does not
prune the library so far.
The overall result is that our dynamic program produces the best slack followed

by Fast Buffering even though we reduced the ξ parameter. Better slack, on the
other hand, costs more area. In general, we see that the industrial tool uses less area.
While the Fast Buffering algorithm finds solutions without any electrical violation,
both other tools create violations.
The experiment was performed on an otherwise empty machine to make the

running times comparable. The running time of our Fast Buffering version is
1.26 seconds. The IBM tool uses 1.78 seconds. The dynamic program needs
113.8 seconds with 40 buckets and 3.2 seconds without buckets. The results of the
version without buckets using the same setup are shown in Table 6.2. All running
times include identifying and replacing instances and not only the core algorithm.

8.2 Comparison to Bounds

It is hard to show the quality of our algorithm for the Repeater Tree Problem
because optimal solutions are not known. Despite that, for some aspects of the

111

8
Ex

pe
rim

en
ta
lR

es
ul
ts

Industrial Tool BonnRepeaterTrees BonnRepeaterTrees + DP
Sinks SNS Slack Area Vio SNS Slack Area Vio SNS Slack Area Vio

I01 1 −400 −400 106 0/0 −379 −379 160 0/0 −377 −377 160 0/0
I02 1 −91 −91 12 0/0 −91 −91 10 0/0 −91 −91 14 0/0
I03 2 −475 −243 112 0/0 −417 −213 144 0/0 −413 −206 150 0/0
I04 2 −156 −82 6 0/0 −153 −85 8 0/0 −161 −81 6 0/0
I05 3 −157 −66 3 0/0 −140 −63 11 0/0 −143 −61 11 0/0
I06 3 −167 −71 25 0/0 −183 −71 43 0/0 −162 −68 35 0/0
I07 4 −25 −16 13 0/0 −26 −14 20 0/0 −22 −11 25 0/0
I08 4 −141 −40 6 0/0 −136 −40 8 0/0 −133 −36 8 0/0
I09 5 −368 −118 23 0/0 −349 −116 38 0/0 −351 −113 40 0/0
I10 8 −190 −30 14 0/0 −127 −20 28 0/0 −117 −20 34 0/0
I11 10 −368 −74 25 0/0 −428 −68 20 0/0 −387 −68 22 0/0
I12 15 −761 −72 68 0/0 −690 −62 107 0/0 −698 −59 116 0/2
I13 24 −74 −16 31 0/0 −79 −16 23 0/0 −60 −8 38 0/0
I14 33 −3799 −238 123 0/1 −3327 −197 228 0/0 −3167 −189 144 0/0
I15 47 −2998 −140 69 0/0 −2833 −108 113 0/0 −2922 −109 101 0/0
I16 65 −3354 −99 40 0/0 −2784 −96 127 0/0 −3852 −96 48 0/0
I17 73 −3208 −102 86 0/0 −4358 −86 165 0/0 −3424 −78 132 0/0
I18 120 −10988 −147 162 0/0 −9431 −107 256 0/0 −10701 −107 333 0/0
I19 322 −273 −29 145 0/25 −6 −3 342 0/0 0 25 851 0/0

Table 8.4: Results of optimizing for slack on several instances from a 22 nm design for the industrial tool, our Fast Buffering routine and
our dynamic program implementation that considers power consumption. All times are given in ps. SNS is the sum of negative
slacks for all sinks. Slack is the worst slack of the instance. Area is the space consumed by the internal repeaters measured in
placement grid steps. Vio gives us the number of load and slew violations in the result.

11
2

8.2 Comparison to Bounds

solutions like netlength, number of inserted repeaters, and slack, we can compare
the results to their respective bounds.

Length Slack Dev.
ξ Power Inversions Avg. Max. Avg. Max. Wall Time
0.0 739.174 1504726 2.0% 837.7% 12.07 ps 1419.46 ps 2301 s
0.1 797.945 1587022 1.8% 833.1% 9.23 ps 1037.46 ps 2347 s
0.2 882.063 1746005 1.8% 832.0% 7.48 ps 781.36 ps 2302 s
0.3 967.900 1920838 1.8% 841.3% 6.15 ps 666.23 ps 2291 s
0.4 1069.397 2076479 1.8% 852.5% 5.16 ps 534.88 ps 2280 s
0.5 1177.334 2265218 1.8% 874.0% 4.36 ps 376.63 ps 2257 s
0.6 1274.543 2547997 1.8% 896.3% 3.52 ps 352.00 ps 2213 s
0.7 1479.679 2914892 1.9% 877.7% 2.79 ps 250.13 ps 2194 s
0.8 1689.111 3412856 2.3% 904.3% 2.16 ps 212.43 ps 2156 s
0.9 2027.596 4163780 3.6% 926.3% 1.60 ps 174.89 ps 2116 s
1.0 2970.202 6254108 14.1% 3321.0% 1.14 ps 178.36 ps 2119 s

Table 8.5: Results of our repeater tree algorithm for different ξ values.

We ran our algorithm on all instances for ξ values ranging from 0.0 to 1.0. The
results are shown in Table 8.5. In general we see that power consumption and
netlength increase with higher ξ values. The slack deviation (see below) gets better
and even the running time reduces.

Table 8.5 is a summary of all runs over all technologies and all numbers of sinks.
We have added detailed tables in Appendix A where the data is separated by
technology and number of sinks.

8.2.1 Running Time

We did not focus on running time during testing. The results show that the
algorithm runs very fast. The average running time for a single instance is about 0.6
milliseconds, which means that we can solve about 5.7 million instances per hour.
The wall time reported in Table 8.5 only contains the time used to build topologies
and to insert repeaters. Overhead like identifying instances and adding the result
into the design is not reported. Depending on the design, the overhead is between
100% and 150% of the running time used to solve the Repeater Tree Problem.

The running time decreases slightly with higher ξ values. The more we try to
optimize slack the earlier repeaters are inserted to shield uncritical side paths from
the critical ones. In addition more repeaters are added along paths due to timing
reasons. The result is that the algorithm works with nets that have a smaller number
of sinks. Due to the smaller instances the, subroutine that computes Steiner trees
runs significantly faster.

113

8 Experimental Results

8.2.2 Wirelength
A lower bound on the total wire length of a repeater tree instance is the length of
a Steiner minimum tree spanning the root and all sinks. We computed one for all
instances with less than 36 sinks. For bigger instances we used the minimum of a
Steiner tree heuristic guaranteeing a 3/2-approximation and the result of our routine
over all test runs.
Table 8.5 shows how many percent we are away from the optimal repeater tree

length. The optimal length can be 0 if the root is a primary input pin and a single
sink is directly below it. Let I be the set of instances with non-zero optimal length.
Given for each i ∈ I the length of our tree length(i) and the optimal length opt(i),
Table 8.5 shows the result of the following equation:

1
|I|
∑
i∈I

length(i)− opt(i)
opt(i) .

The average length increase compared to an optimal Steiner tree is quite low.
However, there are some instances with huge wirelength increases. The detailed
tables in Appendix A show that this only happens on instances that use the clustering
preprocessing or with high ξ values where we accept detours to keep bifurcations
from the critical path.
Due to parallel walk and instances with sinks of different parities, a deviation of

almost 100% can be optimal. Consider an instance with one negative sink close
to the root and two other sinks, one negative and one positive, at some distance.
One inverter is necessary to negate the inversions, but we have the choice between
bridging the distance twice or adding an additional inverter at the negative sink
away from the root.

8.2.3 Number of Inserted Inverters
1To obtain a lower bound on the number of inverters needed to legally buffer a
repeater tree instance let Capextra arise from the sum of the wire capacitance of a
minimum Steiner tree and the input capacitances of all sinks by subtracting the
maximum capacitance that can be driven by the root with the given input slew,
such that the output slew is at most optslew. Every inserted repeater of type t can
drive a certain amount loadlim(t) of this capacitance but also contributes its own
input capacitance capin(t). Let value MaxCap(t) be the biggest load the repeater
can drive with an input slew of optslew such that the output slew is smaller or equal
to optslew.

We may assume MaxCap(t) > capin(t). Therefore, if there is a legal inverter tree
using xt inverters of type t, then

Capextra +
∑
t∈L

capin(t)xt ≤
∑
t∈L

MaxCap(t)xt (8.1)

1Part of this section is from Bartoschek et al. (2007b).

114

8.2 Comparison to Bounds

has to be satisfied.
Depending on whether we are interested in the number of inserted inverters, in

their total area, or in power consumption, we can assign a cost ct ≥ 0 to each
inverter type t ∈ L. We ask how well our algorithm minimizes this cost.

To obtain a lower bound on the cost that any inverter tree must have, we consider
the problem of minimizing the total cost∑

t∈L
ctxt

subject to (8.1) and xt ≥ 0 for all t ∈ L. This is a very simple linear program (LP).
The dual LP is

maximize Capextray
subject to (MaxCap(t)− capin(t))y ≤ ct for all t ∈ L

y ≥ 0

If Capextra ≤ 0, then y∗ = 0 is the optimum solution of this LP. If Capextra > 0,
then

y∗ = min
{

ct
MaxCap(t)− capin(t)

∣∣∣∣ t ∈ L}
is optimum. By the LP duality theorem, the optimum value of the original (primal)
LP is ∑

t

ctx
∗
t = min

{
ctCapextra

MaxCap(t)− capin(t)

∣∣∣∣ t ∈ L} .
Of course, if we consider the number of inverters (i.e. ct = 1 for all t), we can round
up this lower bound to the next integer.
Three further modifications are possible to improve this bound in some cases:

First, if the lower bound is 0 but there is a sink of negative parity, we clearly need
at least one inverter. Moreover, if our lower bound is 1 but all sinks have positive
parity, we need at least two inverters. Finally, if there is only one sink, we can round
up the lower bound to the next even or odd integer, depending on the sink’s parity,
+ or −.

The resulting minimum number of inverters that have to be inserted over all of
our instances is 1150712. Table 8.5 shows the number of inversions we have added
for different ξ values. Each buffer added on the 45 nm instances is counted as two
inversions. With ξ = 0, we are only 31% above the bound that does not take slew
propagation over wire segments into account. Getting better timing results increases
the number of used inversions significantly such that for ξ = 1.0 we are 540% over
the bound.

8.2.4 Timing
It is hard to obtain an upper bound on the slack that one can achieve for a single
repeater tree instance. We have chosen the following approach.

115

8 Experimental Results

r −

Figure 8.1: Test setup used for computing slack upper bounds.

For instances with a single sink, we build repeater trees with the highest effort
and different parameter sets. We use our algorithm and also the dynamic program
algorithm for post optimization. We choose the maximum slack we get over all
different runs on the same instance as an upper bound. Obviously, it is not proven
that the bound is indeed an upper bound. However, we are confident that the real
upper bound is not far away. Any provable upper bound we can conceive is too far
away from the actual achievable results because it has to be based on too optimistic
assumptions.
For instances with two or more sinks, we construct a test instance for each

sink. Each test instance consists of the original sink and an additional sink that
corresponds to the input pin of the repeater with the smallest input capacitance.
The additional sink is located at the root pin and has infinite required arrival time.
The setup models the smallest impact that shielding off all other sinks can have on
a critical sink. Figure 8.1 shows the setup.
Similar to instances with a single sink, we then build the best possible repeater

tree we can achieve for each test instance. The maximum slack achievable over all
runs is used as the upper bound for the according sink.

The minimum slack bound over all sinks is then used as the upper bound for the
achievable slack of the repeater tree instance. As in the single sink case, it is not
guaranteed that we get a real upper bound. However, it is not possible to achieve
the best possible slack at all sinks simultaneously. The more sinks with similar
criticality an instance has the worse the achievable slack is compared to the upper
bound.
Table 8.5 shows the effect of ξ on the resulting slack deviation from the upper

bound. While going to the extreme might be undesirable due to the high increase
in netlength and power consumption, using a ξ of up to 0.9 can be justified by the
slack improvements.

8.3 Fast Buffering vs. Dynamic Programming
We use our version of the dynamic program algorithm as a post optimization step
for the most critical instances. Table 8.6 shows how the Fast Buffering algorithm
compares to the dynamic program. The Fast Buffering algorithm is run with ξ = 1.0.
The table summarizes the results on our testbed for all technologies but separated
by number of sinks.
Slack deviation and length deviation are computed in the same way as in Sec-

tion 8.2. The power columns sum up the power consumption and number of

116

8.
3

Fa
st

B
uff

er
in
g
vs
.
D
yn

am
ic

Pr
og

ra
m
m
in
g Slack Deviation Power Length Running Time

Sinks No DP DP No DP DP No DP DP No DP DP

1 Avg. 0.32 0.16 Pwr. 500.412 545.606 Avg. 0.0 0.0 Top. 48.28 52.36
Max. 34.23 43.72 Rpt. 1318262 1472938 Max. 0.0 0.0 Buf. 420.46 9870.21

2 Avg. 1.55 1.08 Pwr. 136.984 148.558 Avg. 0.0 0.0 Top. 11.12 11.91
Max. 31.78 31.27 Rpt. 507048 625075 Max. 0.0 0.0 Buf. 115.85 2805.00

3 Avg. 2.50 1.69 Pwr. 128.043 145.060 Avg. 14.2 14.2 Top. 8.99 9.66
Max. 37.42 36.92 Rpt. 462522 580626 Max. 99.3 99.3 Buf. 102.82 2393.74

4 Avg. 2.98 2.14 Pwr. 100.239 124.410 Avg. 22.8 22.8 Top. 6.96 7.36
Max. 35.41 32.18 Rpt. 303944 410043 Max. 183.5 183.5 Buf. 83.89 1864.14

5 Avg. 3.71 2.55 Pwr. 53.277 62.546 Avg. 23.4 23.3 Top. 4.04 4.26
Max. 41.38 36.78 Rpt. 190835 266861 Max. 176.7 176.7 Buf. 51.98 1031.52

6 Avg. 4.14 2.73 Pwr. 71.950 82.125 Avg. 12.6 12.6 Top. 3.56 3.79
Max. 57.69 57.49 Rpt. 189147 268407 Max. 192.0 192.0 Buf. 48.01 1328.70

7 Avg. 4.98 3.34 Pwr. 95.207 106.697 Avg. 32.8 32.7 Top. 3.56 3.75
Max. 92.07 84.38 Rpt. 194208 284789 Max. 314.4 296.6 Buf. 51.15 1623.05

8 Avg. 7.42 4.82 Pwr. 152.175 167.032 Avg. 31.8 31.8 Top. 4.17 4.34
Max. 101.25 83.78 Rpt. 268542 369478 Max. 255.8 255.8 Buf. 59.68 2496.50

9–20 Avg. 7.74 5.25 Pwr. 118.038 131.693 Avg. 30.7 30.6 Top. 16.74 17.24
Max. 73.60 61.00 Rpt. 739550 1055801 Max. 585.8 585.8 Buf. 225.67 3419.13

21–50 Avg. 13.92 9.32 Pwr. 143.395 156.515 Avg. 51.1 50.8 Top. 18.61 19.04
Max. 92.16 71.64 Rpt. 560739 776370 Max. 1352.1 1337.8 Buf. 192.43 3187.63

51–100 Avg. 20.55 13.62 Pwr. 36.407 36.224 Avg. 75.4 74.6 Top. 18.43 19.00
Max. 109.36 82.43 Rpt. 363539 518275 Max. 1755.5 1747.7 Buf. 133.07 1542.92

101–250 Avg. 21.22 14.07 Pwr. 25.143 24.841 Avg. 75.7 74.8 Top. 27.78 28.51
Max. 86.98 80.86 Rpt. 326046 474345 Max. 2110.0 2042.0 Buf. 117.25 1256.83

251–500 Avg. 25.57 18.49 Pwr. 10.403 11.826 Avg. 82.9 81.5 Top. 20.37 20.79
Max. 148.72 109.02 Rpt. 78538 116911 Max. 926.1 915.7 Buf. 36.41 394.31

501–1000 Avg. 51.36 35.06 Pwr. 14.425 15.619 Avg. 221.6 219.6 Top. 18.83 19.35
Max. 178.36 132.57 Rpt. 28869 44360 Max. 1643.9 1637.6 Buf. 13.99 285.59

> 1000 Avg. 56.81 30.47 Pwr. 18.945 98.136 Avg. 387.0 376.9 Top. 5.22 5.41
Max. 163.90 99.67 Rpt. 50864 273687 Max. 1066.1 1065.5 Buf. 7.55 1315.06

Total Avg. 1.25 0.81 Pwr. 1605.045 1856.887 Avg. 16.4 16.3 Top. 216.65 226.75
Max. 178.36 132.57 Rpt. 5582653 7537966 Max. 2110.0 2042.0 Buf. 1660.21 34814.33

Total >2 Avg. 4.87 3.30 Pwr. 967.648 1162.723 Avg. 33.4 33.2 Top. 157.26 162.49
Max. 178.36 132.57 Rpt. 3757343 5439953 Max. 2110.0 2042.0 Buf. 1123.89 22139.11

Table 8.6: Comparison between Fast Buffering and our dynamic program.

11
7

8 Experimental Results

repeaters inserted. Buffers are not counted twice here. The running times are given
for topology generation and buffering separately.
As expected, the average slack deviation of the dynamic program is smaller. It

should be used to get the last tenth of a picosecond from most critical instances. In
general, the running time is more than 10× compared to Fast Buffering. In addition,
the power consumption increases significantly. However, the additional power might
be necessary to get better slacks. Netlengths are very similar for both algorithms.

8.4 Varying η

Length Slack Dev.
η Power Repeaters Avg. Max. Avg. Max.

0.00 1835.132 7415542 16.0% 2042.0% 0.81 ps 132.57 ps
0.05 1611.987 5700476 15.0% 1301.6% 1.24 ps 148.93 ps
0.10 1598.349 5644917 15.4% 1491.2% 1.23 ps 224.05 ps
0.15 1596.091 5596761 15.7% 1688.2% 1.24 ps 201.43 ps
0.20 1595.128 5555896 16.0% 1759.2% 1.24 ps 216.41 ps
0.25 1592.330 5519986 16.1% 2110.0% 1.25 ps 178.36 ps
0.30 1593.975 5505832 16.4% 2367.6% 1.26 ps 221.72 ps
0.35 1592.487 5499882 16.4% 2481.0% 1.26 ps 195.71 ps
0.40 1591.764 5497906 16.4% 2534.0% 1.26 ps 204.04 ps
0.45 1590.603 5492262 16.4% 2246.3% 1.26 ps 203.28 ps
0.50 1589.791 5487923 16.3% 2117.9% 1.26 ps 196.78 ps

Table 8.7: Results of our repeater tree algorithm for different η values.

The next set of experiments compares the results of our algorithm optimizing for
slack (ξ = 1.0) but with different η parameters. Table 8.7 shows the resulting power
consumption, number of repeaters, length deviation and slack deviation.
In general, higher values of η consume less power but have higher netlength and

higher slack deviation. Our preferred value of 0.25 seems to be a reasonable choice.
Smaller values like 0.15 and 0.20 are also good candidates.

A choice of η = 0.0 is a special case. It allows to assign the whole dnode to a branch.
Thus, all sinks whose criticality is better than dnode compared to the most critical
sink can be connected to the critical sink without degrading the required arrival
time. This leads to the degenerated case that it is favourable to add bifurcations to
the most critical sink. During buffering a lot of repeaters are added to reduce the
impact of the additional bifurcations. This explains the high power consumption of
this run. Somewhat surprisingly, the average slack deviation is best with η = 0.0.

118

8.5 Varying dnode

8.5 Varying dnode

Length Slack Dev.
dnode-factor Power Repeaters Avg. Max. Avg. Max.

0.0 147.096 2412342 11.7% 225.7% 6.41 ps 97.72 ps
0.5 136.963 2296316 25.5% 1181.6% 4.71 ps 78.19 ps
1.0 135.092 2264650 32.9% 2110.0% 4.52 ps 84.31 ps
1.5 138.993 2321192 40.8% 2154.6% 4.52 ps 115.26 ps
2.0 144.373 2406360 48.9% 2486.2% 4.63 ps 112.52 ps
2.5 149.157 2489224 56.0% 2560.3% 4.73 ps 127.15 ps

Table 8.8: Results of our repeater tree algorithm for different dnode scaling factor values.
We only consider instances with more than two sinks.

In Chapter 5 we claimed that it is necessary to add a bifurcation delay in our delay
model to take additional capacitance on side paths into account. Table 8.8 shows
the results of scaling the precomputed dnode value by certain factors optimizing
our instances with ξ = 1.0. We only consider instances with more than two sinks,
because dnode has little effect for two-sink instances and no effect on single-sink
instances. Disabling dnode altogether has good effects on the repeater tree length
because no detours are added to avoid additional delay on paths to critical sinks.
On the other hand, the average slack deviation goes up significantly, and a lot of
repeaters are added to shield off critical repeaters.
If dnode gets too big, the algorithm tends to build more balanced topologies.

Detours are accepted to decrease the number of bifurcations on root-sink paths.
The result is high netlength and a high repeater count.

Altogether, our current choice of dnode with factor 1.0 has the lowest repeater
count and slack deviation. The additional netlength is acceptable because it leads
to less repeaters.

8.6 Disabling Effort Assignment

All experiments so far used the assign effort step (see Section 6.1) to reduce the
power consumption in tree parts that are above the slack target. To evaluate the
effects of this step, we compared it to runs where the step was skipped using ξ = 1.0.
Table 8.9 shows how power consumption can be saved due to AssignEffort.

We see that for some instances the power savings are significant. The potential
depends on how critical the timing of the design is. The table shows that for some
instances the power gets worse. This is due to the inexact repeater insertion. Most
instances, however, are completely below the slack threshold and AssignEffort
does not apply.

119

8 Experimental Results

Repeaters pwr(A) - pwr(N)
Design Assign No Assign pwr(A)/pwr(N) < 0 = 0 > 0
Baldassare 28151 30687 88.87% 1849 18108 668
Beate 53198 55264 95.16% 1588 31938 1104
Wolfram 40469 45411 89.68% 2694 40816 1247
Gerben 44680 45852 98.47% 1192 42300 1295
Luciano 165743 179219 89.38% 8619 89374 3802
Benedikt 183350 289006 60.38% 32021 201440 6887
Renaud 155931 152752 90.73% 7492 256103 5080
Julius 604506 666291 89.18% 25790 250624 9164
Franziska 631607 667934 92.86% 14515 306362 9182
Meinolf 588236 614779 93.55% 18623 335051 12974
Iris 963296 1026381 92.85% 18016 365939 9861
Gautier 641085 1179108 49.22% 186116 1079702 1593

Table 8.9: Repeaters used and power consumption in runs with and without AssignEf-
fort. pwr(A) (pwr(N)) is the power consumption of the run with (without)
AssignEffort. The last three columns show on how many instances the
power has improved (< 0), stayed the same (= 0), or degraded (> 0) due to
AssignEffort.

Slack Degradation slk(A)− slk(N)
Design Assign No Assign < 0 = 0 > 0
Baldassare 0.54 0.53 594 19678 353
Beate 1.27 1.28 818 33189 623
Wolfram 0.43 0.46 717 43166 874
Gerben 1.79 1.79 832 42300 676
Luciano 0.56 0.56 2539 97663 1593
Benedikt 0.08 0.08 1041 238633 674
Renaud 0.20 0.18 1533 266437 705
Julius 0.77 0.76 7049 273785 4744
Franziska 0.98 0.97 6219 320887 3553
Meinolf 0.60 0.56 8225 355124 3299
Iris 0.51 0.49 5435 385838 2543
Gautier 0.02 0.00 989 1266301 121

Table 8.10: Slack degradation in runs with and without AssignEffort. The last three
columns show for how many instances the slack below the slack target got
worse, stayed the same, or got better due to AssignEffort.

120

8.7 Disabling Parallel Mode

Table 8.10 shows how the slack is affected by AssignEffort. The slack degrada-
tion is measured in the same way as in Section 8.2. The overall average degradation
is shown. The effect of AssignEffort is that for a lot of instances the slack gets
closer to the slack target. Due to the heuristic nature of our buffer insertion, more
slacks can get worse than the slack target. This is also the reason for improvements
on some nets. A different repeater insertion on an uncritical sidepath can acciden-
tally lead to better buffering on the critical path. Overall, the vast majority of
instances does not get worse.

8.7 Disabling Parallel Mode
A large part of the complexity of our repeater insertion routine lies in handling
clusters in parallel mode. Buffering algorithms that use a variant of van Ginneken’s
algorithm, on the other hand, do not change the topology during processing and
produce good results. We have to ask, whether using parallel clusters is worth the
effort.

We processed the test instances with a variant of our algorithm that is not allowed
to enter parallel mode. Merge solutions that would enter parallel mode are disabled.
Table 8.11 shows the result of the comparison summed up for all technologies. The
table compares the slack deviation from our upper bound, the power consumption
and number of inserted inverter stages, and the deviation from the Minimum Steiner
Tree for both runs. In general, the slack gets better if we are allowed to walk in
parallel. The static power consumption is reduced by about 20%. The average
increase in netlength that corresponds to increase in dynamic power consumption is
quite small. It is expected that netlength increases if we are allowed to go in parallel
due to segments that are used twice. As we have disabled merge cases that result in
parallel walk, the work done during merging decreases. Accordingly, the running
time is smaller. Given the big improvements in slack and static power consumption,
we accept the small degradations in netlength and running time.

8.8 Choosing Tradeoff Parameters
So far, we used our power-slack parameter ξ uniformly for all parts of the algorithm.
However, as explained in Section 7.3.2 it is possible to use a different parameter for
topology generation (ξt), repeater insertion (ξr), or buffering mode selection (ξm).
We have varied all three parameters independently from 0.0 to 1.0 in 0.1 steps and
optimized each design for each combination. The input netlists were placed, repeater
trees were optimized for power, and gate sizing was performed. For each of the
resulting 11×11×11 runs we measured the resulting sum of negative endpoint slacks
(SNS), area consumption (which correlates with power consumption), netlength,
and worst slack. The measurements are not restricted to repeater trees. Instead,
SNS is read at timing points where tests are performed. All nets are counted for
netlength. Area consumption counts all gates in the design.

121

8
Ex

pe
rim

en
ta
lR

es
ul
ts

Slack Deviation Power Length Running Time

Sinks Parallel No Parallel Parallel No Parallel Parallel No Parallel Parallel No Parallel

1 Avg. 0.28 0.28 Pwr. 738.292 738.291 Avg. 0.0 0.0 Top. 58.77 60.57
Max. 36.20 36.20 Rpt. 1545171 1545171 Max. 0.0 0.0 Buf. 513.68 521.59

2 Avg. 1.53 2.43 Pwr. 476.554 513.288 Avg. 0.0 0.0 Top. 16.21 16.21
Max. 41.61 43.85 Rpt. 814674 852053 Max. 0.0 0.0 Buf. 176.20 167.21

3 Avg. 1.83 3.20 Pwr. 310.435 339.320 Avg. 14.7 14.7 Top. 14.50 14.34
Max. 37.42 43.55 Rpt. 717013 764715 Max. 99.8 99.8 Buf. 166.36 154.34

4 Avg. 2.99 5.72 Pwr. 271.303 362.414 Avg. 15.9 15.8 Top. 12.06 11.78
Max. 60.79 60.79 Rpt. 528539 574810 Max. 183.5 183.5 Buf. 150.73 133.12

5 Avg. 3.40 5.80 Pwr. 115.726 137.936 Avg. 30.1 29.8 Top. 5.14 5.06
Max. 72.62 81.64 Rpt. 250945 277530 Max. 196.6 196.6 Buf. 66.42 57.58

6 Avg. 4.00 7.03 Pwr. 293.898 337.360 Avg. 39.2 39.0 Top. 5.21 5.16
Max. 62.55 62.55 Rpt. 350513 381772 Max. 198.4 198.4 Buf. 71.96 62.54

7 Avg. 6.27 9.49 Pwr. 220.964 259.513 Avg. 31.8 31.4 Top. 4.81 4.78
Max. 92.07 93.68 Rpt. 294115 329636 Max. 314.4 314.4 Buf. 68.37 56.56

8 Avg. 7.32 9.62 Pwr. 199.535 224.720 Avg. 27.4 27.0 Top. 4.75 4.71
Max. 101.25 88.82 Rpt. 306462 329179 Max. 255.8 307.3 Buf. 67.55 58.32

9–20 Avg. 7.24 10.13 Pwr. 179.345 225.163 Avg. 25.6 24.0 Top. 19.69 19.78
Max. 73.60 76.63 Rpt. 810857 912467 Max. 585.8 585.8 Buf. 263.99 218.87

21–50 Avg. 12.24 15.50 Pwr. 187.628 219.563 Avg. 44.5 41.7 Top. 23.55 23.39
Max. 92.16 112.70 Rpt. 612392 682592 Max. 1352.1 1347.0 Buf. 246.82 204.03

51–100 Avg. 18.17 24.55 Pwr. 54.287 71.303 Avg. 65.5 60.4 Top. 20.62 20.93
Max. 109.36 110.56 Rpt. 392700 469790 Max. 1755.5 1755.6 Buf. 150.97 118.91

101–250 Avg. 19.50 28.24 Pwr. 40.271 53.588 Avg. 70.2 63.8 Top. 34.20 34.46
Max. 105.18 114.12 Rpt. 338506 420841 Max. 2110.0 2041.7 Buf. 146.51 114.15

251–500 Avg. 26.48 38.84 Pwr. 20.481 25.198 Avg. 110.3 99.5 Top. 26.52 26.31
Max. 154.40 148.21 Rpt. 84870 112493 Max. 3321.0 3196.4 Buf. 51.69 38.03

501–1000 Avg. 73.19 89.59 Pwr. 32.716 38.808 Avg. 229.1 220.9 Top. 40.53 39.83
Max. 232.30 198.38 Rpt. 39868 49175 Max. 1643.9 1636.7 Buf. 25.18 18.70

> 1000 Avg. 59.89 74.60 Pwr. 21.881 27.224 Avg. 380.9 372.2 Top. 5.34 5.37
Max. 163.90 177.99 Rpt. 53972 60018 Max. 1096.2 1086.4 Buf. 8.04 6.05

Total Avg. 1.21 1.79 Pwr. 3163.316 3573.690 Avg. 16.2 15.7 Top. 291.89 292.70
Max. 232.30 198.38 Rpt. 7140597 7762242 Max. 3321.0 3196.4 Buf. 2174.45 1929.99

Total >2 Avg. 4.14 6.50 Pwr. 1948.470 2322.111 Avg. 31.5 30.6 Top. 216.92 215.92
Max. 232.30 198.38 Rpt. 4780752 5365018 Max. 3321.0 3196.4 Buf. 1484.57 1241.19

Table 8.11: Testing the effects of parallel mode.

12
2

8.8 Choosing Tradeoff Parameters

SNS Worst Slack Area Netlength ξt ξr ξm

-2460784 ps -360.960 ps 4264514 11421392775 nm 1.0 0.7 1.0
-2503732 ps -371.797 ps 4161722 11396585038 nm 1.0 0.6 1.0
-2526592 ps -368.434 ps 4139336 11384182618 nm 1.0 0.7 0.9
-2529250 ps -361.152 ps 4039524 11357719162 nm 1.0 0.6 0.9
-2581487 ps -400.693 ps 4003001 10823042062 nm 0.9 0.6 0.9
-2587899 ps -351.772 ps 3977094 11315124985 nm 1.0 0.6 0.8
-2598980 ps -345.037 ps 3940266 11287051361 nm 1.0 0.6 0.7
-2661338 ps -357.609 ps 3909961 11255902718 nm 1.0 0.6 0.6
-2692252 ps -381.317 ps 3882043 11247554519 nm 1.0 0.5 0.7
-2721807 ps -380.967 ps 3856202 11222038997 nm 1.0 0.5 0.6
-2774560 ps -381.654 ps 3841977 11215744785 nm 1.0 0.4 0.7
-2812004 ps -378.829 ps 3816806 11186602609 nm 1.0 0.4 0.6
-2909451 ps -402.322 ps 3815549 10683834075 nm 0.7 0.5 0.5
-2912460 ps -402.322 ps 3814486 10667397255 nm 0.6 0.5 0.5
-2914087 ps -408.144 ps 3802287 10777654190 nm 0.9 0.4 0.6
-2933527 ps -422.991 ps 3797866 11155820658 nm 1.0 0.4 0.5
-2963781 ps -397.433 ps 3795544 11146478260 nm 1.0 0.3 0.6
-2975351 ps -415.343 ps 3792524 11131954147 nm 1.0 0.4 0.4
-2985396 ps -403.745 ps 3785308 10769355282 nm 0.9 0.4 0.5
-3006647 ps -387.869 ps 3784393 10702389423 nm 0.8 0.4 0.5
-3022317 ps -381.193 ps 3780095 10764354020 nm 0.9 0.4 0.4
-3052016 ps -420.933 ps 3779169 11128458742 nm 1.0 0.3 0.5
-3055216 ps -414.426 ps 3774567 11104510839 nm 1.0 0.3 0.4
-3096810 ps -387.917 ps 3769622 10762057030 nm 0.9 0.3 0.5
-3136457 ps -434.217 ps 3765553 10756910041 nm 0.9 0.3 0.4
-3154245 ps -407.107 ps 3765336 10696614904 nm 0.8 0.3 0.4
-3157275 ps -455.027 ps 3763362 11074617288 nm 1.0 0.3 0.0
-3200980 ps -411.824 ps 3759277 10753998314 nm 0.9 0.3 0.3
-3273230 ps -433.453 ps 3759111 10697382852 nm 0.8 0.3 0.3
-3282542 ps -427.694 ps 3756085 10748223421 nm 0.9 0.3 0.0
-3419364 ps -431.093 ps 3754110 10734650521 nm 0.9 0.2 0.0

Table 8.12: Non-dominated parameter sets on the Franziska design.

SNS Worst Slack Area Netlength ξt ξr ξm

-5196277 ps -631.933 ps 4527479 8925535585 nm 0.9 0.8 0.9
-5257051 ps -635.508 ps 4509205 8819283865 nm 0.8 0.8 0.9
-5269220 ps -635.053 ps 4472708 8785736183 nm 0.8 0.7 1.0
-5365769 ps -635.359 ps 4348123 8906582047 nm 0.9 0.7 0.9
-5383743 ps -638.916 ps 4336342 8801360797 nm 0.8 0.7 0.9
-5449405 ps -636.583 ps 4247059 8816022521 nm 0.8 0.7 0.8
-5503767 ps -653.201 ps 4197911 8928168330 nm 0.9 0.7 0.7
-5546630 ps -635.822 ps 4157311 8907015090 nm 0.9 0.6 0.8
-5621983 ps -637.161 ps 4143570 8775993529 nm 0.7 0.6 0.8
-5653641 ps -666.391 ps 4136134 8934564389 nm 0.9 0.7 0.5
-5666127 ps -649.055 ps 4090594 8907969542 nm 0.9 0.6 0.7
-5725306 ps -649.055 ps 4082070 8817992649 nm 0.8 0.6 0.7
-5780351 ps -642.621 ps 4079167 8786841694 nm 0.7 0.6 0.7
-5807757 ps -658.837 ps 4039493 8825447381 nm 0.8 0.6 0.6
-5860053 ps -663.175 ps 4035272 8794310975 nm 0.7 0.6 0.6
-5919674 ps -657.425 ps 4031406 8777209504 nm 0.6 0.6 0.6
-6007460 ps -661.243 ps 4004925 8906715403 nm 0.9 0.5 0.7
-6071154 ps -666.057 ps 3964178 8904311050 nm 0.9 0.5 0.6
-6130646 ps -677.938 ps 3953669 9410850288 nm 1.0 0.5 0.5
-6189021 ps -666.374 ps 3948620 8776106642 nm 0.6 0.5 0.6
-6306196 ps -660.793 ps 3919318 9393366028 nm 1.0 0.5 0.4
-6434807 ps -682.030 ps 3896112 8898249360 nm 0.9 0.5 0.4
-6512938 ps -695.812 ps 3874760 8893895626 nm 0.9 0.5 0.3
-6635688 ps -662.423 ps 3872070 9372604172 nm 1.0 0.4 0.4
-6639647 ps -759.335 ps 3859165 9345686625 nm 1.0 0.5 0.0
-6656564 ps -673.105 ps 3851146 9357824853 nm 1.0 0.4 0.3
-6674811 ps -725.778 ps 3847456 8897120664 nm 0.9 0.5 0.1
-6694420 ps -766.073 ps 3838560 8897072449 nm 0.9 0.5 0.0
-6745947 ps -718.396 ps 3833113 8893540101 nm 0.9 0.4 0.3
-6836574 ps -728.312 ps 3827277 8829467006 nm 0.8 0.4 0.3
-6864691 ps -737.688 ps 3819098 8895643021 nm 0.9 0.4 0.2
-7008116 ps -738.604 ps 3807331 8893223837 nm 0.9 0.4 0.1
-7052258 ps -732.529 ps 3803516 8831553876 nm 0.8 0.4 0.1
-7104017 ps -762.535 ps 3798011 8887622641 nm 0.9 0.4 0.0
-7165642 ps -741.704 ps 3781045 9280930291 nm 1.0 0.3 0.0
-7306835 ps -778.668 ps 3769847 8875640716 nm 0.9 0.3 0.0
-7430083 ps -778.668 ps 3769836 8825179592 nm 0.8 0.3 0.0
-7819054 ps -844.052 ps 3765793 8852407160 nm 0.9 0.2 0.1
-8071842 ps -797.117 ps 3759992 8848223450 nm 0.9 0.2 0.0

Table 8.13: Non-dominated parameter sets on the Iris design.

123

8 Experimental Results

Table 8.12 and Table 8.13 show non-dominated parameter sets (ξt, ξr, ξm) for two
example designs. A set is not dominated if there is no other set with better or equal
SNS and better or equal area. Area consumption is measured in units internal to
the placement engine. It can only be compared relatively.
The tables indicate that choosing ξt above 0.7 is preferred, even if one does not

care for timing. On the other hand, ξm and ξr scale nicely between power-aware
and slack optimizing repeater trees.

124

A Detailed Comparison Tables

125

A
D
et
ai
le
d
C
om

pa
ris

on
Ta

bl
es

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Avg. 10.64 9.44 7.48 5.87 4.62 3.70 2.87 2.00 1.39 0.80 0.38 0.07
Max. 247.71 213.35 190.29 167.15 148.34 132.12 126.82 88.91 66.38 40.60 23.81 43.72

2 Avg. 25.26 21.34 16.90 13.42 11.13 9.27 7.87 6.39 5.03 3.44 1.59 0.94
Max. 256.22 193.40 155.58 137.14 124.63 106.57 90.57 68.01 53.13 30.26 31.78 31.27

3 Avg. 36.01 29.37 22.61 18.34 15.12 12.47 10.35 8.31 6.28 4.17 2.31 1.41
Max. 220.36 171.63 141.15 131.27 125.30 93.83 78.46 63.28 46.90 31.32 32.90 36.92

4 Avg. 28.06 23.00 18.09 14.76 12.14 10.16 8.70 7.36 5.83 3.96 2.45 1.72
Max. 235.76 165.66 131.52 112.36 103.72 97.22 67.57 48.54 52.09 35.72 35.41 32.18

5 Avg. 45.04 34.24 25.04 19.89 16.29 13.27 11.10 8.99 6.68 4.40 3.01 2.03
Max. 320.20 292.29 253.06 160.18 124.47 92.84 77.20 70.00 55.70 46.37 41.38 27.92

6 Avg. 71.94 56.64 44.09 34.07 27.78 23.49 20.16 15.98 11.39 6.96 4.36 2.27
Max. 269.21 184.60 168.54 149.68 134.47 121.58 103.94 83.45 64.64 49.41 57.69 57.49

7 Avg. 94.60 63.26 47.82 38.31 31.67 26.16 22.10 17.23 12.88 8.81 6.25 3.70
Max. 374.31 262.16 214.23 230.03 156.98 146.81 138.78 112.25 104.10 104.44 92.07 84.38

8 Avg. 109.82 72.70 55.14 45.16 37.91 31.37 26.51 20.84 15.41 10.23 7.12 4.13
Max. 584.53 584.53 273.53 273.53 185.21 180.72 149.05 120.49 108.67 93.22 101.25 83.78

9–20 Avg. 88.28 58.02 41.49 33.78 28.45 23.99 19.91 15.05 11.12 8.10 6.60 4.79
Max. 557.50 557.50 227.28 227.28 188.57 159.22 107.55 82.63 71.42 50.14 73.60 61.00

21–50 Avg. 127.30 93.22 74.47 62.32 52.33 43.39 35.49 27.87 21.64 16.89 15.01 9.95
Max. 480.46 266.21 237.06 203.11 167.58 147.85 136.01 105.62 77.62 71.61 92.16 71.64

51–100 Avg. 203.58 132.33 97.18 79.59 64.40 52.39 40.45 29.60 22.61 17.49 15.56 11.18
Max. 693.86 350.25 339.29 284.41 266.51 208.37 182.17 153.52 135.76 120.09 109.36 77.88

101–250 Avg. 275.94 155.55 111.38 92.02 72.73 60.87 46.41 33.80 25.04 19.19 17.13 12.27
Max. 569.89 363.89 259.88 222.04 201.31 188.48 135.90 122.70 87.87 87.92 81.82 69.03

251–500 Avg. 312.17 171.85 120.24 93.99 71.59 51.82 36.83 27.54 21.10 16.18 16.39 12.46
Max. 701.41 414.25 266.72 273.57 229.18 186.29 131.03 116.98 106.49 113.01 148.72 95.53

501–1000 Avg. 670.98 357.14 271.76 216.80 181.17 147.32 120.71 97.80 83.03 69.00 65.18 46.11
Max. 1329.86 696.60 567.61 511.95 418.86 355.99 352.00 236.72 207.64 174.89 178.36 132.57

> 1000 Avg. 367.51 271.57 219.91 204.83 166.20 146.71 133.56 111.10 100.55 81.25 66.35 36.37
Max. 1082.28 849.02 736.17 666.23 364.46 300.75 294.24 232.69 212.43 141.56 117.80 83.70

Total Avg. 21.01 16.91 13.16 10.51 8.54 7.00 5.71 4.37 3.23 2.11 1.28 0.70
Max. 1329.86 849.02 736.17 666.23 418.86 355.99 352.00 236.72 212.43 174.89 178.36 132.57

Total >2 Avg. 53.64 39.88 30.45 24.70 20.46 17.01 14.24 11.37 8.61 5.93 4.12 2.69
Max. 1329.86 849.02 736.17 666.23 418.86 355.99 352.00 236.72 212.43 174.89 178.36 132.57

Table A.1: Worst Slack Deviation on 45 nm Instances

12
6

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 Avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 Avg. 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.5 1.5 4.8 16.9 16.9
Max. 89.5 92.1 92.1 92.1 92.1 92.1 92.1 92.1 92.1 96.2 99.3 99.3

4 Avg. 0.4 0.4 0.5 0.5 0.6 0.7 0.8 1.2 2.9 8.7 27.2 27.2
Max. 94.9 96.1 96.1 96.1 96.1 96.1 94.1 87.3 94.1 109.3 167.2 167.2

5 Avg. 2.5 2.6 2.5 2.4 2.5 2.5 2.4 2.8 4.5 8.0 26.9 26.9
Max. 96.2 97.1 97.1 96.8 96.8 96.8 96.8 96.8 96.8 118.4 125.8 125.8

6 Avg. 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.2 2.4 4.3 11.3 11.3
Max. 97.6 97.6 97.6 97.6 97.6 97.6 93.9 106.6 125.3 128.2 151.0 151.0

7 Avg. 3.7 2.2 2.2 2.0 1.9 1.8 1.7 1.8 2.3 3.8 34.2 34.2
Max. 97.6 98.5 98.5 98.5 96.0 98.9 98.9 128.1 134.7 160.4 221.4 221.4

8 Avg. 4.1 3.1 2.9 2.7 2.6 2.5 2.4 2.4 2.8 4.3 34.4 34.4
Max. 99.4 96.7 96.7 94.9 94.5 94.3 93.9 112.9 137.0 112.9 247.7 247.7

9–20 Avg. 7.7 6.1 5.9 5.9 6.0 6.0 5.9 5.9 8.0 12.0 34.6 34.6
Max. 97.9 97.9 96.1 95.8 95.8 94.9 93.2 107.1 112.3 123.2 319.4 319.4

21–50 Avg. 8.9 8.5 8.7 8.9 9.1 9.6 9.6 10.0 12.4 17.5 51.9 51.7
Max. 86.2 86.2 86.2 86.2 86.2 89.4 89.4 81.4 78.3 102.0 1352.1 1337.8

51–100 Avg. 20.3 19.6 19.6 19.4 19.4 19.5 18.1 15.7 15.8 19.0 52.1 51.9
Max. 84.9 83.0 83.0 83.0 86.5 78.5 84.3 62.1 58.8 61.7 313.1 310.7

101–250 Avg. 32.5 31.9 31.6 30.9 31.8 32.4 29.4 25.2 24.5 26.9 58.1 57.8
Max. 92.1 92.1 85.2 85.2 85.2 86.6 76.2 64.5 56.7 64.5 638.6 638.0

251–500 Avg. 18.7 21.7 22.8 24.7 24.0 25.6 26.2 23.5 24.6 27.4 58.2 57.9
Max. 49.5 54.8 51.7 51.5 49.0 49.0 54.9 36.7 34.4 38.2 609.6 609.6

501–1000 Avg. 24.0 26.8 27.8 28.6 28.4 27.6 26.5 27.0 28.7 34.8 286.7 284.3
Max. 58.5 60.5 57.6 57.5 57.4 52.9 42.9 37.1 40.6 43.3 1026.0 1019.6

> 1000 Avg. 373.5 381.5 380.5 384.1 385.6 388.1 387.0 391.9 396.0 399.8 440.4 432.2
Max. 837.7 833.1 832.0 841.3 852.5 874.0 896.3 877.7 904.3 926.3 947.4 950.2

Total Avg. 2.0 1.8 1.7 1.7 1.8 1.8 1.8 1.8 2.4 4.0 14.8 14.8
Max. 837.7 833.1 832.0 841.3 852.5 874.0 896.3 877.7 904.3 926.3 1352.1 1337.8

Total >2 Avg. 4.3 3.7 3.6 3.6 3.7 3.7 3.6 3.8 5.0 8.2 30.8 30.7
Max. 837.7 833.1 832.0 841.3 852.5 874.0 896.3 877.7 904.3 926.3 1352.1 1337.8

Table A.2: Length Deviation on 45 nm Instances

12
7

A
D
et
ai
le
d
C
om

pa
ris

on
Ta

bl
es

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Pwr. 141.378 147.234 162.069 179.284 200.144 223.675 238.193 287.045 321.524 371.676 450.346 494.524
Rpt. 80207 90849 111514 138754 165707 194912 231389 281488 322208 371683 437870 472559

2 Pwr. 35.435 37.535 41.529 46.462 51.158 56.820 59.704 70.059 78.370 90.067 115.505 126.756
Rpt. 26199 28785 35294 42839 48828 54944 61542 69676 79428 92518 131093 151748

3 Pwr. 25.558 26.851 30.084 33.203 37.621 42.734 47.177 54.582 63.747 77.255 108.964 126.653
Rpt. 28425 30466 36236 42246 47224 53043 59630 67186 78419 95953 138495 170192

4 Pwr. 12.538 13.908 16.832 19.660 23.012 26.202 29.267 33.483 40.067 52.097 89.763 113.599
Rpt. 18647 20776 26546 31550 35162 39926 44840 50020 60109 78893 131243 172242

5 Pwr. 8.873 9.619 11.013 12.198 13.658 15.302 16.729 18.940 21.934 26.998 45.021 53.831
Rpt. 11293 12938 15787 17741 19586 21759 24364 27716 33213 41799 66649 85141

6 Pwr. 21.505 22.933 24.317 25.338 26.962 29.007 29.875 34.028 38.036 45.235 63.878 73.540
Rpt. 14298 15964 17974 19963 21838 24019 26542 29856 35317 43514 64404 85815

7 Pwr. 25.252 27.492 29.111 29.750 31.153 32.811 33.499 38.156 42.116 48.643 78.558 88.351
Rpt. 15677 17828 20178 21990 23623 25673 28088 31656 36564 43244 65219 87882

8 Pwr. 41.883 44.377 45.992 46.531 49.262 51.807 52.388 59.482 65.767 75.756 121.124 134.596
Rpt. 23675 26320 29053 31618 34004 37235 40672 45849 52848 62585 94480 126580

9–20 Pwr. 15.400 17.629 19.565 20.870 22.722 24.571 26.477 30.710 35.626 44.132 74.457 88.898
Rpt. 19572 22702 26283 29546 33796 37720 43845 52812 65158 83375 145130 209131

21–50 Pwr. 13.661 16.881 19.065 21.014 23.858 26.962 30.415 35.743 43.316 57.159 112.488 128.392
Rpt. 15082 17837 20688 23561 27241 31799 38133 45762 57477 77829 157571 234372

51–100 Pwr. 1.605 2.035 2.269 2.498 2.819 3.221 3.669 4.381 5.188 6.605 12.945 15.368
Rpt. 1987 2289 2661 3078 3738 4451 5835 7906 10107 13217 26476 40344

101–250 Pwr. 0.362 0.507 0.601 0.718 0.854 1.037 1.262 1.530 1.862 2.450 5.080 6.056
Rpt. 663 776 946 1100 1444 1786 2514 3341 4359 5773 11548 18294

251–500 Pwr. 0.314 0.408 0.476 0.540 0.647 0.765 0.897 1.021 1.268 1.644 3.796 4.628
Rpt. 332 379 461 550 713 893 1106 1341 1840 2674 7010 10606

501–1000 Pwr. 0.454 0.616 0.714 0.797 0.952 1.103 1.334 1.516 1.914 2.532 7.938 8.589
Rpt. 414 486 551 632 770 951 1264 1384 1783 2565 6913 10743

> 1000 Pwr. 1.042 1.154 1.235 1.315 1.450 1.585 1.706 1.984 2.287 2.836 4.362 23.114
Rpt. 1515 1625 1727 1839 1997 2182 2405 2676 3013 3680 4633 40911

Total Pwr. 345.260 369.176 404.873 440.179 486.271 537.601 572.593 672.660 763.023 905.085 1294.228 1486.895
Rpt. 257986 290020 345899 407007 465671 531293 612169 718669 841843 1019302 1488734 1916560

Total >2 Pwr. 168.447 184.407 201.275 214.433 234.969 257.106 274.695 315.556 363.129 443.342 728.377 865.615
Rpt. 151580 170386 199091 225414 251136 281437 319238 367505 440207 555101 919771 1292253

Table A.3: Power Consumption on 45 nm Instances

12
8

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Top. 12.72 12.91 12.46 12.84 13.01 12.81 12.21 12.43 12.53 12.37 12.07 13.36
Buf. 107.79 109.17 104.63 109.14 110.92 108.70 103.09 108.09 109.71 109.07 107.74 6697.77

2 Top. 2.63 2.69 2.62 2.67 2.69 2.66 2.56 2.61 2.59 2.58 2.55 2.79
Buf. 27.56 27.77 26.86 27.60 28.30 27.98 26.81 28.01 28.14 28.12 28.41 1755.45

3 Top. 2.48 2.55 2.49 2.53 2.56 2.53 2.45 2.48 2.47 2.47 2.44 2.63
Buf. 29.40 29.63 28.52 29.15 29.82 29.60 28.20 28.64 28.25 28.23 28.76 1502.51

4 Top. 3.35 3.47 3.41 3.45 3.49 3.44 3.35 3.41 3.38 3.38 3.37 3.54
Buf. 40.78 40.92 39.58 40.16 41.15 40.66 38.76 39.70 38.83 38.91 39.49 1353.03

5 Top. 1.31 1.37 1.35 1.36 1.37 1.36 1.33 1.34 1.33 1.34 1.33 1.40
Buf. 18.13 18.21 17.60 17.88 18.19 18.02 16.93 16.80 16.36 16.23 16.42 640.97

6 Top. 1.01 1.07 1.06 1.06 1.07 1.06 1.04 1.05 1.04 1.05 1.04 1.10
Buf. 14.98 14.95 14.44 14.61 14.98 14.86 14.08 14.03 13.60 13.54 13.73 957.22

7 Top. 0.74 0.80 0.79 0.79 0.80 0.80 0.78 0.79 0.78 0.78 0.78 0.82
Buf. 11.69 11.70 11.37 11.53 11.70 11.64 11.03 10.71 10.35 10.35 10.68 1116.63

8 Top. 0.94 1.02 1.01 1.01 1.02 1.01 0.99 1.00 0.99 1.00 0.99 1.03
Buf. 14.92 14.94 14.37 14.55 14.80 14.72 14.08 13.72 13.33 13.33 13.92 1726.36

9–20 Top. 3.39 3.96 3.91 3.92 3.95 3.96 3.85 3.89 3.85 3.87 3.82 3.87
Buf. 59.87 59.32 57.80 58.00 58.17 57.92 55.40 50.04 47.85 46.59 45.98 1473.50

21–50 Top. 4.65 7.01 6.92 6.89 6.97 6.88 6.77 6.89 6.82 6.93 6.96 7.08
Buf. 91.65 89.61 85.31 84.44 84.77 82.62 76.58 73.25 69.14 67.16 66.16 1782.41

51–100 Top. 0.78 1.61 1.59 1.58 1.58 1.58 1.56 1.57 1.57 1.59 1.62 1.64
Buf. 20.29 19.91 18.93 18.42 17.76 17.11 15.53 13.25 12.14 11.40 10.91 260.35

101–250 Top. 0.42 1.32 1.28 1.27 1.27 1.26 1.24 1.25 1.24 1.26 1.32 1.34
Buf. 9.61 9.89 9.35 8.91 8.63 8.31 7.32 6.43 5.75 5.38 5.08 108.55

251–500 Top. 0.45 3.02 2.87 2.85 2.81 2.75 2.68 2.73 2.68 2.70 2.75 2.80
Buf. 6.22 6.76 6.45 6.38 6.12 5.84 5.41 4.90 4.42 4.16 3.85 71.73

501–1000 Top. 0.75 9.19 8.49 8.07 7.95 7.71 7.38 7.45 7.15 7.09 6.88 6.97
Buf. 6.09 6.92 6.56 6.16 5.98 5.73 5.17 5.11 4.65 4.40 4.09 123.00

> 1000 Top. 0.03 0.05 0.05 0.06 0.07 0.07 0.08 0.09 0.11 0.12 0.15 0.15
Buf. 0.40 0.44 0.45 0.48 0.52 0.54 0.52 0.58 0.60 0.64 0.69 320.03

Total Top. 35.65 52.06 50.32 50.37 50.61 49.87 48.28 48.98 48.54 48.53 48.07 50.54
Buf. 459.36 460.13 442.22 447.42 451.82 444.24 418.92 413.26 403.11 397.52 395.91 19889.51

Total >2 Top. 20.29 36.46 35.24 34.86 34.91 34.40 33.51 33.94 33.41 33.59 33.45 34.39
Buf. 324.02 323.19 310.73 310.67 312.59 307.56 289.02 277.16 265.26 260.33 259.77 11436.29

Table A.4: Runtime on 45 nm Instances

12
9

A
D
et
ai
le
d
C
om

pa
ris

on
Ta

bl
es

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Avg. 0.61 0.18 0.18 0.17 0.15 0.14 0.12 0.10 0.07 0.06 0.13 0.05
Max. 39.71 23.20 23.20 23.20 18.58 17.88 15.05 15.05 12.54 13.63 13.08 8.30

2 Avg. 4.44 3.35 3.34 3.27 3.13 2.98 2.83 2.73 2.65 2.53 2.25 1.77
Max. 48.59 27.91 27.91 27.86 27.86 27.86 27.42 25.50 22.24 20.65 20.74 12.24

3 Avg. 8.40 7.01 6.83 6.49 6.23 5.82 5.52 5.28 5.11 4.85 4.55 3.43
Max. 56.10 51.36 44.24 34.05 34.05 29.56 30.43 28.03 23.87 24.41 24.95 16.16

4 Avg. 11.41 9.57 9.42 8.93 8.38 7.92 7.53 7.14 6.69 5.91 5.61 4.02
Max. 56.79 49.70 44.27 37.90 37.35 35.36 34.83 29.98 29.73 23.55 25.17 16.62

5 Avg. 14.06 11.40 11.11 10.59 10.05 9.60 9.26 8.95 8.71 8.44 9.53 6.40
Max. 57.25 46.03 39.79 34.71 33.58 32.77 32.19 31.28 27.07 29.04 25.12 17.77

6 Avg. 15.70 13.48 13.21 12.02 10.92 10.16 9.36 8.82 8.03 6.86 6.98 4.63
Max. 61.04 49.21 43.81 42.60 38.29 36.41 30.95 28.05 27.34 26.51 27.99 20.68

7 Avg. 17.08 14.62 14.39 12.92 11.89 10.92 10.04 9.31 8.07 6.68 6.85 4.31
Max. 77.36 51.35 55.33 52.03 43.64 39.74 35.92 35.31 29.52 28.52 28.21 18.41

8 Avg. 23.26 19.91 19.24 16.71 14.77 13.39 12.39 11.43 10.10 9.30 9.73 6.43
Max. 68.80 59.97 59.97 59.97 47.92 47.92 33.65 36.05 30.46 31.80 27.91 19.22

9–20 Avg. 35.80 31.12 29.26 26.42 23.18 20.41 18.26 16.04 13.90 11.89 12.05 7.77
Max. 189.57 137.19 154.90 120.08 81.90 69.51 62.30 52.06 48.98 40.42 39.42 29.89

21–50 Avg. 60.57 50.96 44.91 39.92 33.74 29.95 25.94 22.79 19.47 17.13 17.53 11.02
Max. 178.05 154.09 134.17 102.68 88.17 79.84 65.38 62.68 53.27 45.74 47.44 36.56

51–100 Avg. 94.56 77.28 66.69 60.80 52.95 46.68 41.26 35.77 33.00 30.30 30.53 20.56
Max. 206.96 174.81 122.20 108.30 99.33 85.80 85.84 64.86 65.40 52.01 55.24 43.72

101–250 Avg. 220.78 159.80 109.71 104.54 89.92 68.87 60.84 58.81 45.66 39.90 42.28 28.54
Max. 281.01 181.01 151.52 146.40 124.77 90.89 87.55 77.68 67.84 57.93 54.29 41.42

251–500 Avg. – – – – – – – – – – – –
Max. – – – – – – – – – – – –

501–1000 Avg. – – – – – – – – – – – –
Max. – – – – – – – – – – – –

> 1000 Avg. – – – – – – – – – – – –
Max. – – – – – – – – – – – –

Total Avg. 4.13 3.21 3.09 2.88 2.65 2.45 2.27 2.12 1.96 1.79 1.80 1.25
Max. 281.01 181.01 154.90 146.40 124.77 90.89 87.55 77.68 67.84 57.93 55.24 43.72

Total >2 Avg. 15.31 12.92 12.33 11.39 10.43 9.57 8.87 8.24 7.61 6.93 6.94 4.81
Max. 281.01 181.01 154.90 146.40 124.77 90.89 87.55 77.68 67.84 57.93 55.24 43.72

Table A.5: Worst Slack Deviation on 32 nm Instances

13
0

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 Avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 Avg. 0.8 0.8 0.8 0.9 0.9 1.0 1.1 1.4 1.8 2.7 4.9 4.8
Max. 82.8 82.8 82.8 82.8 82.8 69.5 72.6 76.9 83.2 87.4 87.4 87.4

4 Avg. 4.2 3.8 3.4 2.9 2.7 2.6 2.8 2.9 4.0 6.4 11.7 11.6
Max. 77.8 77.8 77.8 74.6 74.6 74.6 74.1 74.1 72.8 74.3 129.0 129.0

5 Avg. 3.1 2.7 2.7 2.6 2.7 2.6 2.8 3.0 4.0 6.1 11.1 10.5
Max. 90.8 90.8 90.8 90.8 90.8 90.8 90.8 90.8 90.8 129.0 145.1 145.1

6 Avg. 6.8 6.4 6.2 5.6 5.5 5.6 5.7 6.2 7.5 10.0 15.3 14.9
Max. 80.4 80.4 80.4 80.4 80.4 80.4 80.4 80.4 86.6 93.4 162.8 162.8

7 Avg. 7.4 6.9 6.7 6.7 6.4 6.3 6.9 8.2 9.5 12.9 20.7 20.2
Max. 63.8 63.8 63.8 63.8 71.6 71.6 71.6 84.1 100.9 97.0 131.5 129.2

8 Avg. 11.6 10.4 9.3 8.8 9.1 9.1 9.3 10.1 11.7 14.5 22.3 21.4
Max. 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 147.3 127.8 127.8

9–20 Avg. 19.4 18.9 18.3 17.7 18.1 17.8 18.3 18.8 19.2 20.7 36.4 35.5
Max. 90.0 90.0 90.0 90.0 89.0 89.0 89.0 115.9 143.0 163.1 278.1 277.9

21–50 Avg. 23.3 21.6 21.0 20.3 20.3 20.4 21.2 22.3 22.1 25.0 58.4 57.3
Max. 87.3 86.0 85.7 87.4 115.6 115.1 100.5 102.8 106.6 129.9 476.2 415.9

51–100 Avg. 37.4 33.3 31.5 31.9 31.5 30.7 32.3 33.9 36.3 38.2 112.4 109.6
Max. 71.0 67.4 69.1 71.4 64.5 70.3 78.4 81.9 94.9 121.6 566.9 564.0

101–250 Avg. 71.7 71.8 65.5 68.2 74.7 72.7 72.4 70.8 73.6 68.9 214.8 207.8
Max. 97.4 101.2 90.0 91.5 94.3 94.3 92.5 85.4 86.2 93.1 538.3 520.8

251–500 Avg. – – – – – – – – – – – –
Max. – – – – – – – – – – – –

501–1000 Avg. – – – – – – – – – – – –
Max. – – – – – – – – – – – –

> 1000 Avg. – – – – – – – – – – – –
Max. – – – – – – – – – – – –

Total Avg. 5.5 5.1 5.0 4.8 4.9 4.8 5.0 5.3 5.6 6.5 12.9 12.6
Max. 97.4 101.2 90.8 91.5 115.6 115.1 100.5 115.9 143.0 163.1 566.9 564.0

Total >2 Avg. 11.1 10.5 10.1 9.8 9.9 9.8 10.2 10.7 11.4 13.3 26.4 25.7
Max. 97.4 101.2 90.8 91.5 115.6 115.1 100.5 115.9 143.0 163.1 566.9 564.0

Table A.6: Length Deviation on 32 nm Instances

13
1

A
D
et
ai
le
d
C
om

pa
ris

on
Ta

bl
es

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Pwr. 0.397 0.397 0.397 0.397 0.401 0.404 0.411 0.423 0.470 0.637 1.005 0.939
Rpt. 6557 6557 6557 6557 6557 6557 6557 6557 7055 9091 13057 12995

2 Pwr. 0.251 0.249 0.250 0.252 0.259 0.271 0.290 0.310 0.345 0.439 0.973 0.822
Rpt. 4471 4420 4420 4441 4507 4655 4900 5110 5447 6425 12185 13818

3 Pwr. 0.355 0.348 0.343 0.351 0.371 0.391 0.424 0.468 0.559 0.735 1.438 1.175
Rpt. 6272 6083 5928 5888 6146 6337 6637 7002 7629 9076 15642 19003

4 Pwr. 0.122 0.120 0.122 0.126 0.131 0.138 0.148 0.162 0.191 0.273 0.533 0.438
Rpt. 2081 2050 2059 2093 2130 2203 2286 2423 2687 3513 5945 7366

5 Pwr. 0.139 0.127 0.129 0.133 0.139 0.148 0.158 0.173 0.215 0.315 0.680 0.459
Rpt. 2127 1857 1851 1881 1937 2000 2072 2166 2489 3330 6327 7323

6 Pwr. 0.065 0.064 0.065 0.070 0.075 0.081 0.090 0.100 0.122 0.186 0.356 0.293
Rpt. 1107 1087 1089 1121 1159 1203 1283 1357 1563 2178 3692 4972

7 Pwr. 0.050 0.049 0.050 0.053 0.057 0.062 0.067 0.076 0.099 0.150 0.290 0.247
Rpt. 877 856 848 868 891 924 963 1024 1251 1754 2983 4279

8 Pwr. 0.049 0.049 0.051 0.055 0.059 0.063 0.071 0.082 0.106 0.153 0.279 0.209
Rpt. 820 796 792 803 819 841 906 967 1174 1600 2728 3495

9–20 Pwr. 0.324 0.327 0.340 0.361 0.394 0.433 0.493 0.596 0.799 1.172 2.181 1.730
Rpt. 5004 4792 4691 4752 4942 5153 5528 6133 7809 11391 20121 28034

21–50 Pwr. 0.154 0.158 0.166 0.176 0.190 0.204 0.234 0.284 0.364 0.517 1.037 0.776
Rpt. 2159 2046 2031 2066 2118 2195 2362 2581 3209 4609 9111 11943

51–100 Pwr. 0.047 0.048 0.051 0.053 0.058 0.063 0.077 0.093 0.128 0.181 0.376 0.275
Rpt. 703 670 654 639 651 668 734 790 959 1358 2793 3834

101–250 Pwr. 0.006 0.007 0.007 0.007 0.008 0.009 0.011 0.014 0.018 0.026 0.065 0.045
Rpt. 97 97 92 80 91 90 101 107 126 199 486 626

251–500 Pwr. – – – – – – – – – – – –
Rpt. – – – – – – – – – – – –

501–1000 Pwr. – – – – – – – – – – – –
Rpt. – – – – – – – – – – – –

> 1000 Pwr. – – – – – – – – – – – –
Rpt. – – – – – – – – – – – –

Total Pwr. 1.958 1.943 1.970 2.034 2.142 2.267 2.474 2.780 3.417 4.784 9.214 7.407
Rpt. 32275 31311 31012 31189 31948 32826 34329 36217 41398 54524 95070 117688

Total >2 Pwr. 1.310 1.297 1.324 1.385 1.482 1.592 1.772 2.048 2.602 3.708 7.237 5.647
Rpt. 21247 20334 20035 20191 20884 21614 22872 24550 28896 39008 69828 90875

Table A.7: Power Consumption on 32 nm Instances

13
2

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Top. 1.61 1.57 1.52 1.57 1.54 1.56 1.53 1.55 1.51 1.55 1.53 1.59
Buf. 11.55 11.42 11.35 11.43 11.35 11.39 11.38 11.37 11.37 11.40 11.35 88.99

2 Top. 0.50 0.49 0.48 0.49 0.48 0.49 0.48 0.49 0.48 0.49 0.48 0.50
Buf. 4.65 4.57 4.53 4.58 4.54 4.54 4.54 4.54 4.53 4.56 4.59 43.07

3 Top. 0.54 0.54 0.53 0.54 0.53 0.54 0.53 0.53 0.52 0.54 0.53 0.55
Buf. 6.08 5.96 5.90 5.95 5.90 5.89 5.90 5.90 5.83 5.70 5.70 57.93

4 Top. 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17
Buf. 2.10 2.06 2.04 2.06 2.04 2.04 2.04 2.05 2.00 1.90 1.87 18.94

5 Top. 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.22 0.22 0.22
Buf. 2.98 2.91 2.88 2.91 2.88 2.87 2.88 2.88 2.82 2.73 2.66 30.43

6 Top. 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.11
Buf. 1.60 1.58 1.55 1.57 1.56 1.57 1.57 1.57 1.51 1.41 1.37 13.17

7 Top. 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Buf. 1.34 1.30 1.29 1.30 1.30 1.31 1.31 1.31 1.26 1.17 1.12 10.21

8 Top. 0.07 0.08 0.07 0.08 0.08 0.08 0.08 0.07 0.07 0.08 0.08 0.08
Buf. 1.27 1.24 1.21 1.22 1.22 1.22 1.22 1.21 1.15 1.05 1.01 9.93

9–20 Top. 0.51 0.58 0.57 0.58 0.57 0.57 0.56 0.56 0.56 0.57 0.57 0.56
Buf. 10.21 9.98 9.92 9.94 9.85 9.82 9.80 9.76 9.18 8.30 7.69 70.72

21–50 Top. 0.21 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.29
Buf. 4.62 4.52 4.46 4.44 4.41 4.38 4.37 4.30 4.08 3.67 3.33 31.75

51–100 Top. 0.10 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.19 0.20 0.20 0.20
Buf. 1.94 1.84 1.82 1.80 1.77 1.73 1.72 1.72 1.68 1.57 1.45 14.21

101–250 Top. 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Buf. 0.35 0.34 0.35 0.35 0.35 0.34 0.34 0.34 0.33 0.29 0.22 2.28

251–500 Top. – – – – – – – – – – – –
Buf. – – – – – – – – – – – –

501–1000 Top. – – – – – – – – – – – –
Buf. – – – – – – – – – – – –

> 1000 Top. – – – – – – – – – – – –
Buf. – – – – – – – – – – – –

Total Top. 4.13 4.38 4.27 4.38 4.30 4.34 4.28 4.30 4.23 4.32 4.28 4.39
Buf. 48.69 47.73 47.31 47.54 47.17 47.09 47.06 46.95 45.73 43.76 42.36 391.63

Total >2 Top. 2.02 2.32 2.27 2.32 2.28 2.29 2.26 2.27 2.24 2.29 2.27 2.31
Buf. 32.49 31.74 31.43 31.52 31.28 31.16 31.15 31.04 29.83 27.80 26.42 259.57

Table A.8: Runtime on 32 nm Instances

13
3

A
D
et
ai
le
d
C
om

pa
ris

on
Ta

bl
es

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Avg. 2.48 0.91 0.87 0.82 0.76 0.65 0.50 0.34 0.23 0.21 0.31 0.20
Max. 211.39 166.31 150.18 126.60 107.42 78.56 60.72 42.44 26.54 25.79 34.23 13.58

2 Avg. 6.66 4.10 3.99 3.77 3.47 3.11 2.73 2.36 2.05 1.85 1.49 1.08
Max. 164.17 140.04 140.04 121.44 111.86 80.66 60.00 43.06 33.47 28.82 30.01 21.82

3 Avg. 10.98 6.96 6.71 6.17 5.57 4.96 4.40 3.89 3.43 3.01 2.39 1.66
Max. 150.56 104.37 102.73 89.30 85.36 65.23 46.51 39.75 29.92 26.58 37.42 33.51

4 Avg. 12.46 8.79 8.46 7.87 7.25 6.62 5.94 5.22 4.51 3.81 3.42 2.52
Max. 163.12 143.07 153.33 131.16 111.72 77.49 69.20 40.53 28.76 26.50 27.58 18.57

5 Avg. 14.06 10.74 10.38 9.63 8.76 7.87 6.96 5.86 4.84 4.03 3.56 2.50
Max. 242.04 216.13 212.15 173.94 131.61 73.93 64.67 36.06 31.04 23.75 34.98 36.78

6 Avg. 18.55 14.61 14.00 12.87 11.32 9.77 8.53 7.28 5.77 4.31 3.87 2.86
Max. 160.01 137.93 110.00 96.55 88.34 69.72 55.09 39.48 45.83 38.46 51.63 43.68

7 Avg. 19.10 15.51 15.02 14.06 12.80 11.33 9.77 8.31 6.75 4.93 4.43 3.18
Max. 139.31 114.57 112.40 104.51 84.36 72.94 55.28 41.17 43.51 39.65 30.13 35.33

8 Avg. 27.90 20.73 19.75 18.26 16.31 14.42 12.71 10.92 9.06 7.50 7.35 5.02
Max. 458.97 397.18 142.55 131.07 101.33 97.74 72.13 46.03 40.07 33.98 35.73 23.72

9–20 Avg. 36.80 27.60 25.65 22.62 19.74 16.93 14.47 11.91 9.45 7.81 7.85 5.27
Max. 439.75 415.04 258.53 205.46 199.67 113.66 91.00 60.73 58.98 54.70 61.07 33.85

21–50 Avg. 63.71 49.90 45.36 38.42 31.76 26.84 22.50 18.59 14.85 12.75 13.08 8.82
Max. 520.35 536.68 289.64 268.05 255.08 135.69 92.44 87.36 72.50 45.16 49.16 40.44

51–100 Avg. 103.29 80.71 70.05 57.46 46.73 38.75 31.97 26.04 20.97 18.19 19.16 12.61
Max. 489.63 456.71 301.81 238.01 213.71 144.11 117.23 89.07 62.21 54.04 92.22 82.43

101–250 Avg. 159.81 122.84 97.75 74.09 57.90 46.89 36.64 28.72 21.85 18.21 18.52 11.65
Max. 902.37 1037.46 346.02 216.88 188.42 142.03 127.45 102.30 79.88 74.20 86.98 80.86

251–500 Avg. 225.13 173.18 124.88 90.81 72.34 64.59 54.30 42.48 27.99 18.98 17.78 11.09
Max. 642.05 543.15 416.40 239.67 222.11 204.07 181.67 159.31 94.92 55.61 52.01 32.02

501–1000 Avg. 58.25 70.75 36.96 16.57 19.44 10.15 8.96 5.70 5.04 5.26 6.31 3.80
Max. 174.76 212.25 110.89 49.72 58.33 30.46 26.89 17.11 15.13 15.78 18.93 11.41

> 1000 Avg. 396.87 291.70 226.88 172.13 149.11 118.42 101.17 82.19 55.10 40.24 34.87 17.11
Max. 658.76 523.64 406.77 314.23 219.34 191.18 151.56 134.10 117.96 70.47 69.79 40.18

Total Avg. 5.74 3.46 3.28 3.00 2.68 2.34 1.98 1.63 1.32 1.12 1.10 0.76
Max. 902.37 1037.46 416.40 314.23 255.08 204.07 181.67 159.31 117.96 74.20 92.22 82.43

Total >2 Avg. 20.69 15.23 14.30 12.83 11.31 9.88 8.58 7.29 6.01 4.99 4.62 3.20
Max. 902.37 1037.46 416.40 314.23 255.08 204.07 181.67 159.31 117.96 74.20 92.22 82.43

Table A.9: Worst Slack Deviation on 22 nm Instances

13
4

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 Avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 Avg. 2.2 2.1 2.0 1.7 1.7 1.7 1.6 1.7 2.0 3.2 9.1 9.1
Max. 96.8 96.8 96.8 96.8 96.8 96.8 96.8 96.8 96.8 95.9 96.9 96.9

4 Avg. 2.8 2.7 2.6 2.3 2.2 2.2 2.2 2.4 2.9 4.6 9.7 9.6
Max. 96.1 96.1 96.1 96.1 96.1 96.1 96.1 96.1 107.9 173.7 183.5 183.5

5 Avg. 5.0 4.8 4.6 4.3 4.2 4.1 4.2 4.7 5.8 8.4 16.2 16.1
Max. 97.3 97.3 97.3 97.3 97.3 97.3 97.3 100.8 123.2 156.2 176.7 176.7

6 Avg. 7.7 7.5 7.3 6.7 6.5 6.1 5.9 6.2 7.2 10.7 17.3 17.2
Max. 91.9 91.9 91.9 91.9 91.9 91.9 93.3 101.7 139.3 138.0 192.0 192.0

7 Avg. 12.9 12.7 12.4 11.8 11.5 11.3 11.4 11.7 12.6 15.1 22.8 22.5
Max. 98.4 98.4 95.6 95.6 94.5 100.0 103.8 122.8 122.8 140.6 314.4 296.6

8 Avg. 5.4 5.0 4.9 4.5 4.5 4.3 4.3 4.5 5.6 8.8 18.6 18.5
Max. 95.0 95.0 101.6 95.0 95.0 95.0 95.0 98.8 117.8 150.9 255.8 255.8

9–20 Avg. 10.5 9.8 9.4 8.9 9.0 8.6 8.5 8.7 9.5 11.9 27.5 27.3
Max. 97.1 97.1 97.1 97.1 97.1 97.1 104.4 128.5 166.8 200.7 491.0 469.6

21–50 Avg. 19.2 17.5 16.6 15.6 15.8 15.5 15.3 15.7 16.2 19.2 49.4 48.9
Max. 108.7 108.7 108.7 108.7 111.4 111.4 111.4 119.7 159.7 170.2 946.9 920.3

51–100 Avg. 31.9 29.1 28.1 27.4 28.0 27.3 27.2 28.1 28.9 31.8 79.4 78.4
Max. 105.3 103.2 100.1 98.1 104.5 112.2 117.4 125.3 161.2 207.4 893.4 882.4

101–250 Avg. 35.2 33.1 32.4 32.1 32.7 32.1 32.3 33.0 32.9 33.2 70.1 69.4
Max. 122.6 108.9 106.1 102.7 108.7 104.1 127.9 161.8 226.1 377.3 2110.0 2042.0

251–500 Avg. 35.9 35.6 35.5 35.5 35.6 34.8 35.1 34.6 35.7 35.5 40.6 39.7
Max. 96.8 93.1 92.6 93.1 92.9 91.7 94.1 94.1 91.2 87.8 138.2 133.8

501–1000 Avg. 37.4 37.2 36.7 37.1 36.9 36.7 36.6 36.5 36.6 35.5 35.2 35.2
Max. 52.6 50.2 45.5 49.7 46.9 45.4 43.8 43.7 44.5 39.5 39.5 39.5

> 1000 Avg. 285.4 283.4 283.6 283.8 284.9 285.0 285.0 285.8 284.9 276.5 283.2 268.5
Max. 500.0 509.4 501.8 512.8 497.6 509.1 510.3 507.9 516.4 488.0 523.3 499.6

Total Avg. 4.2 3.9 3.7 3.6 3.6 3.5 3.4 3.5 3.8 4.8 10.5 10.4
Max. 500.0 509.4 501.8 512.8 497.6 509.1 510.3 507.9 516.4 488.0 2110.0 2042.0

Total >2 Avg. 10.0 9.3 9.0 8.5 8.5 8.3 8.2 8.5 9.2 11.5 25.3 25.1
Max. 500.0 509.4 501.8 512.8 497.6 509.1 510.3 507.9 516.4 488.0 2110.0 2042.0

Table A.10: Length Deviation on 22 nm Instances

13
5

A
D
et
ai
le
d
C
om

pa
ris

on
Ta

bl
es

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Pwr. 15.622 15.987 16.408 17.187 18.243 19.218 21.515 24.661 29.614 36.243 46.240 47.151
Rpt. 317791 322463 328275 337855 351949 373721 413117 479471 573663 694817 860511 980717

2 Pwr. 6.226 6.298 6.422 6.679 7.044 7.358 8.081 8.980 10.458 12.541 19.214 19.646
Rpt. 132993 133800 135656 139332 145101 152932 165521 183836 209308 243218 360371 455857

3 Pwr. 4.014 4.070 4.177 4.402 4.731 5.172 5.652 6.363 7.574 9.443 15.889 15.333
Rpt. 98442 98936 100650 104543 110353 117789 127204 139980 160179 191201 302582 384809

4 Pwr. 2.264 2.286 2.339 2.456 2.623 2.800 3.123 3.543 4.338 5.557 8.928 9.200
Rpt. 51317 51579 52433 54125 56579 59789 65062 72539 86223 107224 161459 224340

5 Pwr. 1.414 1.439 1.467 1.549 1.666 1.794 2.027 2.322 2.834 3.684 6.146 6.624
Rpt. 32732 32984 33463 34701 36503 38912 42621 48331 57699 72600 113683 169283

6 Pwr. 1.215 1.234 1.277 1.376 1.514 1.650 1.868 2.141 2.682 3.606 6.191 6.549
Rpt. 28368 28574 29257 30795 33019 35800 39391 44305 54614 72070 116926 172306

7 Pwr. 1.090 1.110 1.140 1.214 1.327 1.457 1.667 1.942 2.458 3.392 6.055 6.657
Rpt. 26470 26629 27097 28246 30026 32460 36117 40996 50332 68619 115520 179128

8 Pwr. 1.905 1.955 2.030 2.176 2.405 2.602 2.979 3.413 4.206 5.565 9.164 8.788
Rpt. 36573 36686 37547 39411 42543 45937 50818 57934 70653 90564 142253 204131

9–20 Pwr. 5.073 5.304 5.593 6.131 6.826 7.615 8.719 10.128 12.695 16.867 29.752 28.784
Rpt. 108515 109091 113001 121988 131892 144057 160540 184148 227408 293898 505200 728076

21–50 Pwr. 1.978 2.098 2.274 2.542 2.924 3.286 3.864 4.627 6.007 8.283 16.388 14.304
Rpt. 44819 44270 45914 49839 55030 60388 68617 79827 101952 136184 266374 364601

51–100 Pwr. 0.776 0.848 0.936 1.059 1.245 1.431 1.717 2.109 2.778 3.975 8.491 7.711
Rpt. 19848 19477 20297 22264 24538 27257 31329 36767 46927 64787 138493 205950

101–250 Pwr. 0.300 0.318 0.359 0.414 0.491 0.569 0.692 0.853 1.145 1.676 3.637 3.739
Rpt. 8232 8146 8591 9426 10350 11537 13187 15429 20089 28618 63291 104768

251–500 Pwr. 0.024 0.025 0.027 0.030 0.035 0.037 0.045 0.053 0.072 0.103 0.202 0.316
Rpt. 733 723 731 771 825 857 933 1049 1255 1694 3696 8785

501–1000 Pwr. 0.010 0.010 0.011 0.011 0.011 0.011 0.012 0.013 0.014 0.017 0.029 0.096
Rpt. 275 275 280 285 289 297 305 322 347 405 717 2133

> 1000 Pwr. 0.095 0.104 0.112 0.124 0.137 0.153 0.175 0.201 0.245 0.324 0.532 1.179
Rpt. 3156 3364 3607 3947 4244 4669 5211 5837 6801 8564 12547 36717

Total Pwr. 42.006 43.085 44.571 47.350 51.225 55.155 62.136 71.350 87.118 111.274 176.859 176.076
Rpt. 910264 916997 936799 977528 1033241 1106402 1219973 1390771 1667450 2074463 3163623 4221601

Total >2 Pwr. 20.159 20.800 21.741 23.483 25.938 28.579 32.540 37.708 47.046 62.489 111.404 109.278
Rpt. 459480 460734 472868 500341 536191 579749 641335 727464 884479 1136428 1942741 2785027

Table A.11: Power Consumption on 22 nm Instances

13
6

Sinks ξ = 0.0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9 ξ = 1.0 DP

1 Top. 35.99 36.02 35.84 35.87 35.26 35.29 35.13 34.94 34.82 34.73 34.61 37.34
Buf. 303.59 303.84 303.41 303.18 299.56 299.58 300.78 297.72 299.42 298.40 300.83 3035.93

2 Top. 8.20 8.25 8.22 8.20 8.17 8.14 8.12 8.10 8.06 8.06 8.06 8.58
Buf. 80.87 80.78 80.76 80.66 80.30 80.20 80.54 80.16 80.42 80.65 82.51 985.77

3 Top. 6.02 6.12 6.10 6.09 6.06 6.04 6.02 6.01 5.97 5.97 5.97 6.42
Buf. 70.55 70.32 70.26 70.15 69.64 69.29 69.29 68.91 67.41 66.47 67.69 803.75

4 Top. 3.34 3.43 3.42 3.42 3.41 3.40 3.39 3.39 3.37 3.37 3.37 3.59
Buf. 45.26 45.04 44.97 44.77 44.56 44.43 44.51 44.29 42.90 41.77 41.84 473.42

5 Top. 2.38 2.48 2.47 2.47 2.46 2.46 2.45 2.46 2.43 2.44 2.45 2.58
Buf. 35.47 35.27 35.21 34.99 34.86 34.84 34.95 34.85 33.56 32.53 32.32 336.41

6 Top. 2.33 2.44 2.44 2.44 2.42 2.39 2.39 2.39 2.37 2.37 2.37 2.53
Buf. 37.12 36.84 36.80 36.65 36.17 35.87 36.00 35.82 34.54 32.73 32.22 331.57

7 Top. 2.50 2.65 2.66 2.66 2.64 2.63 2.63 2.63 2.60 2.61 2.62 2.76
Buf. 44.34 43.97 43.91 43.50 43.22 43.00 43.11 42.90 41.64 39.68 38.10 351.92

8 Top. 2.70 2.91 2.90 2.90 2.89 2.89 2.88 2.89 2.87 2.87 2.87 3.00
Buf. 45.05 44.57 44.33 44.01 43.76 43.72 43.75 43.37 42.21 41.18 41.30 445.96

9–20 Top. 10.07 11.54 11.50 11.51 11.38 11.34 11.33 11.33 11.23 11.19 11.26 11.69
Buf. 188.46 185.45 184.04 181.94 179.29 177.56 176.85 173.80 166.23 159.22 157.32 1602.61

21–50 Top. 5.74 8.23 8.18 8.18 8.06 8.00 8.00 7.96 7.94 7.93 7.98 8.26
Buf. 122.82 119.84 117.10 114.28 110.98 107.92 106.13 103.14 97.09 91.37 88.10 935.38

51–100 Top. 3.70 7.67 7.59 7.54 7.34 7.22 7.21 7.13 7.09 7.06 7.14 7.47
Buf. 81.48 79.23 77.52 75.72 72.56 69.99 68.84 67.14 63.91 60.00 56.21 556.79

101–250 Top. 2.16 6.79 6.66 6.57 6.39 6.26 6.23 6.12 6.08 6.06 6.18 6.50
Buf. 46.44 45.71 44.83 43.68 41.95 40.38 39.48 38.25 36.07 33.49 30.77 280.95

251–500 Top. 0.23 1.17 1.10 1.08 1.04 1.00 0.98 0.96 0.95 0.93 0.95 1.00
Buf. 3.98 3.97 3.92 3.86 3.71 3.56 3.50 3.41 3.34 3.16 2.84 22.89

501–1000 Top. 0.10 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.32 0.31 0.32 0.32
Buf. 0.97 0.96 0.95 0.95 0.93 0.89 0.89 0.88 0.87 0.85 0.80 6.21

> 1000 Top. 0.08 0.40 0.47 0.53 0.58 0.68 0.83 0.96 1.13 1.43 1.84 1.93
Buf. 1.22 1.23 1.30 1.39 1.44 1.47 1.58 1.70 1.83 1.84 1.94 72.20

Total Top. 85.54 100.41 99.89 99.77 98.42 98.05 97.91 97.57 97.25 97.32 97.99 103.96
Buf. 1107.61 1097.04 1089.31 1079.73 1062.92 1052.70 1050.21 1036.34 1011.44 983.35 974.79 10241.77

Total >2 Top. 41.35 56.14 55.83 55.70 55.00 54.62 54.66 54.54 54.36 54.54 55.32 58.04
Buf. 723.15 712.41 705.14 695.89 683.06 672.93 668.89 658.46 631.59 604.30 591.46 6220.07

Table A.12: Runtime on 22 nm Instances

13
7

Summary

Repeaters, inverters and buffers, are the logical gates that dominate modern chip
designs. We see designs where up to 50% of all gates are repeaters.
Repeaters are used during physical design of chips to improve the electrical and

timing properties of interconnections. They are added along Steiner trees that
connect root gates to sinks, creating repeater trees. Their construction became a
crucial part of chip design. It has great impact on all other parts, for example,
placement and routing.
We first present an extensive version of the Repeater Tree Problem. Our

problem formulation encapsulates most of the constraints that have been studied so
far. We also consider several aspects for the first time, for example, slew dependent
required arrival times at repeater tree sinks. These make our formulation more
adequate to the challenges of real-world repeater tree construction.
For creating good repeater trees, one has to take the overall design environment

into account. The employed technology, the properties of available repeaters and
metal wires, the shape of the chip, the temperature, the voltages, and many other
factors highly influence the results of repeater tree construction. To take all this into
account, we extensively preprocess the environment to extract parameters for our
algorithms. These parameters allow us to quickly and yet quite accurately estimate
the timing of a tree before it has even been buffered.

We present an algorithm for Steiner tree creation and prove that our algorithm is
able to create timing-efficient as well as cost-efficient trees. Our algorithm is based
on a delay model that accurately describes the timing that one can achieve after
repeater insertion. This makes our algorithm suitable for creating good Steiner
trees, the input for subsequent repeater insertion algorithms.
Next, we deal with the problem of adding repeaters to a given Steiner tree. The

predominantly used algorithms to solve this problem use dynamic programming.
However, they have several drawbacks. Firstly, potential repeater positions along
the Steiner tree have to be chosen upfront. Secondly, the algorithms strictly
follow the given Steiner tree and miss optimization opportunities. Finally, dynamic
programming causes high running times. We present our new buffer insertion
algorithm, Fast Buffering, that overcomes these limitations. It is able to produce
results with similar quality to a dynamic programming approach but a much
better running time. In addition, we also present improvements to the dynamic
programming approach that allows us to push the quality at the expense of a high
running time.
We have implemented our algorithms as part of the BonnTools physical design

optimization suite developed at the Research Institute for Discrete Mathematics in

139

A Detailed Comparison Tables

cooperation with IBM. Our algorithms are used and help engineers dealing with
some of the most complex chips in the world. When we released the first version
of our global optimization tools, for the first time it became possible to optimize
chips with several million gates within reasonable running times. At the same time,
designers were able to achieve compelling results. Our tools are not only used for
global optimization in early design stages. For later stages of physical design, a
more accurate version of our algorithm can be enabled that is able to squeeze out
the last tenth of a picosecond.
Our implementation deals with all tedious details of a grown real-world chip

optimization environment. At the same time, we offer a clean framework abstracting
away the details such that new repeater tree construction algorithms can easily be
implemented.
As a side project, we implemented a blockage map that helps managing the

free/blocked information not only for our algorithms but also other optimization
tools within BonnTools. Recently, the congestion map that we implemented has
been added as a fast mode to BonnRouteGlobal, the global routing engine used
throughout the whole IBM physical design.

We have created extensive experimental results on challenging real-world test cases
provided by our cooperation partner. The testbed consists of more than 3.3 million
different repeater tree instances. The average running time for a single instance is
about 0.6 milliseconds, which means that we can solve about 5.7 million instances
per hour. We also compare our implementation to an state-of-the-art industrial tool
and show that our algorithm produces better results with less electrical violations.

140

B Bibliography

Noga Alon and Yossi Azar. On-Line Steiner Trees in the Euclidean Plane. Discrete
& Computational Geometry, 10:113–121, 1993. doi: 10.1007/BF02573969.

Charles J. Alpert and Anirudh Devgan. Wire Segmenting for Improved Buffer
Insertion. In Proceedings of the 34th Annual Design Automation Conference, DAC
’97, pages 588–593, New York, NY, USA, 1997. ACM. doi: 10.1145/266021.266291.

Charles J. Alpert, Anirudh Devgan, and Stephen T. Quay. Buffer insertion with
accurate gate and interconnect delay computation. In Proceedings of the 36th
Annual ACM/IEEE Design Automation Conference, DAC ’99, pages 479–484,
1999. doi: 10.1145/309847.309983.

Charles J. Alpert, R. Gopal Gandham, Jose L. Neves, and Stephen T. Quay. Buffer
Library Selection. In Proceedings of the International Conference on Computer
Design, pages 221–226, Los Alamitos, CA, USA, 2000. IEEE Computer Society.
doi: 10.1109/ICCD.2000.878289.

Charles J. Alpert, Anirudh Devgan, John P. Fishburn, and Stephen T. Quay.
Interconnect Synthesis Without Wire Tapering. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 20(1):90–104, 2001a. doi:
10.1109/43.905678.

Charles J. Alpert, Gopal Gandham, Jiang Hu, Jose L. Neves, Stephen T. Quay,
and Sachin S. Sapatnekar. Steiner Tree Optimization for Buffers, Blockages, and
Bays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 20(4):556–562, 2001b. doi: 10.1109/43.918213.

Charles J. Alpert, Gopal Gandham, Miloš Hrkić, Jiang Hu, Andrew B. Kahng,
John Lillis, Bao Liu, Stephen T. Quay, Sachin S. Sapatnekar, and A. J. Sul-
livan. Buffered Steiner Trees for Difficult Instances. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 21(1):3–14, 2002. doi:
10.1109/TCAD.2005.858348.

Charles J. Alpert, Gopal Gandham, Miloš Hrkić, Jiang Hu, Stephen T. Quay, and
C. N. Sze. Porosity-Aware Buffered Steiner Tree Construction. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 23(4):517–526,
2004a. doi: 10.1109/TCAD.2004.825864.

Charles J. Alpert, Miloš Hrkić, and Stephen T. Quay. A Fast Algorithm for
Identifying Good Buffer Insertion Candidate Locations. In Proceedings of the

141

B Bibliography

2004 International Symposium on Physical design, ISPD ’04, pages 47–52, New
York, NY, USA, 2004b. ACM. doi: 10.1145/981066.981076.

Charles J. Alpert, Dinesh P. Mehta, and Sachin S. Sapatnekar, editors. Handbook
of Algorithms for Physical Design Automation. Auerbach Publications, Boston,
MA, USA, 1st edition, 2008. ISBN 9780849372421.

Christoph Bartoschek, Stephan Held, Dieter Rautenbach, and Jens Vygen. Efficient
Generation of Short and Fast Repeater Tree Topologies. In Proceedings of the
2006 International Symposium on Physical Design, ISPD ’06, pages 120–127, New
York, NY, USA, 2006. ACM. doi: 10.1145/1123008.1123032.

Christoph Bartoschek, Stephan Held, Dieter Rautenbach, and Jens Vygen. Efficient
algorithms for short and fast repeater trees. I. Topology generation. Technical
Report No. 07977, Research Institute for Discrete Mathematics, University of
Bonn, 2007a.

Christoph Bartoschek, Stephan Held, Dieter Rautenbach, and Jens Vygen. Efficient
algorithms for short and fast repeater trees. II. Buffering. Technical Report
No. 07978, Research Institute for Discrete Mathematics, University of Bonn,
2007b.

Christoph Bartoschek, Stephan Held, Dieter Rautenbach, and Jens Vygen. Fast
Buffering for Optimizing Worst Slack and Resource Consumption in Re-
peater Trees. In Proceedings of the 2009 International Symposium on Phys-
ical Design, ISPD ’09, pages 43–50, New York, NY, USA, 2009. ACM. doi:
10.1145/1514932.1514942.

Christoph Bartoschek, Stephan Held, Jens Maßberg, Dieter Rautenbach, and Jens
Vygen. The repeater tree construction problem. Information Processing Letters,
110(24):1079–1083, 2010. doi: 10.1016/j.ipl.2010.08.016.

Chung-Ping Chen and Noel Menezes. Noise-aware Repeater Isertion and Wire Sizing
for On-chip Interconnect Using Hierarchical Moment-Matching. In Proceedings
of the 36th Annual ACM/IEEE Design Automation Conference, DAC ’99, pages
502–506, 1999. doi: 10.1145/309847.309987.

Jason Cong and Xin Yuan. Routing Tee Construction Under Fixed Buffer Locations.
In Proceedings of the 37th Annual Design Automation Conference, DAC ’00, pages
379–384, New York, NY, USA, 2000. ACM. doi: 10.1145/337292.337502.

Jason Cong, Lei He, Cheng-Kok Koh, and Patrick H. Madden. Performance
Optimization of Vlsi Interconnect Layout. Integration, the VLSI Journal, 21:1–94,
1996. doi: 10.1016/S0167-9260(96)00008-9.

Sampath Dechu, Cien Shen, and Chris Chu. An Efficient Routing Tree Construction
Algorithm With Buffer Insertion, Wire Sizing, and Obstacle Considerations. IEEE

142

B Bibliography

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24
(4):600–608, 2005. doi: 10.1109/TCAD.2005.844107.

William C. Elmore. The Transient Response of Damped Linear Networks with
Particular Regard to Wideband Amplifiers. Journal of Applied Physics, 19(1):
55–63, 1948. doi: 10.1063/1.1697872.

Delbert R. Fulkerson. A Network Flow Computation for Project Cost Curves.
Management Science, 7(2):167–178, 1961.

Michael R. Garey and David S. Johnson. The Rectilinear Steiner Tree Problem is
NP-Complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977. doi:
10.1137/0132071.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979. ISBN 0716710447.

Michael Gester, Dirk Müller, Tim Nieberg, Christian Panten, Christian Schulte,
and Jens Vygen. BonnRoute: Algorithms and data structures for fast and good
VLSI routing. Technical Report No. 111039, Research Institute for Discrete
Mathematics, University of Bonn, 2011.

Nir Halman, Chung-Lun Li, and David Simchi-Levi. Fully polynomial time ap-
proximation schemes for time-cost tradeoff problems in series-parallel project
networks. In Proceedings of the 11th international workshop, APPROX 2008, and
12th international workshop, RANDOM 2008 on Approximation, Randomization
and Combinatorial Optimization: Algorithms and Techniques, APPROX ’08 /
RANDOM ’08, pages 91–103, Berlin, Heidelberg, 2008. Springer-Verlag. doi:
10.1007/978-3-540-85363-3_8.

Stephan Held. Timing Closure in Chip Design. PhD thesis, University of Bonn,
2008.

Stephan Held and Daniel Rotter. Shallow-Light Steiner Arborescences with Vertex
Delays. In IPCO, pages 229–241, 2013. doi: 10.1007/978-3-642-36694-9_20.

Stephan Held and Sophie Theresa Spirkl. A Fast Algorithm for Rectilinear Steiner
Trees with Length Restrictions on Obstacles. In Proceedings of the 2014 Inter-
national Symposium on Physical Design, ISPD ’14, pages 37–44, New York, NY,
USA, 2014. ACM. doi: 10.1145/2560519.2560529.

Stephan Held, Bernhard Korte, Dieter Rautenbach, and Jens Vygen. Combinatorial
Optimization in VLSI Design. In Vasek Chvátal, editor, Combinatorial Opti-
mization: Methods and Applications, volume 31 of NATO Science for Peace and
Security Series - D: Information and Communication Security, pages 33–96. IOS
Press, 2011. doi: 10.3233/978-1-60750-718-5-33.

143

B Bibliography

Renato F. Hentschke, Jagannathan Narasimham, Marcelo O. Johann, and Ricardo L.
Reis. Maze Routing Steiner Trees with Effective Critical Sink Optimization. In
Proceedings of the 2007 International Symposium on Physical Design, ISPD ’07,
pages 135–142, New York, NY, USA, 2007. ACM. doi: 10.1145/1231996.1232024.

Robert B. Hitchcock, Gordon L. Smith, and David D. Cheng. Timing Analysis of
Computer Hardware. IBM Journal of Research and Development, 26(1):100–105,
1982. doi: 10.1147/rd.261.0100.

Miloš Hrkić and John Lillis. S-Tree: A Technique for Buffered Routing Tree
Synthesis. In Proceedings of the 36th ACM/IEEE Annual Design Automation
Conference, pages 578–583, 2002. doi: 10.1145/513918.514066.

Miloš Hrkić and John Lillis. Buffer Tree Synthesis With Consideration of Temporal
Locality, Sink Polarity Requirements, Solution Cost, Congestion, and Blockages.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22(4):481–491, 2003. doi: 10.1109/TCAD.2003.809648.

Jiang Hu, Charles J. Alpert, Stephen T. Quay, and Gopal Gandham. Buffer
Insertion With Adaptive Blockage Avoidance. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 22(4):492–498, 2003. doi:
10.1109/TCAD.2003.809647.

Shiyan Hu, Charles J. Alpert, Jiang Hu, S.K. Karandikar, Zhuo Li, Weiping Shi,
and C.N. Sze. Fast Algorithms for Slew-Constrained Minimum Cost Buffering.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(11):2009–2022, 2007. doi: 10.1109/TCAD.2007.906477.

Shiyan Hu, Zhuo Li, and Charles J. Alpert. A fully polynomial time approximation
scheme for timing driven minimum cost buffer insertion. In Proceedings of the
46th Annual Design Automation Conference, DAC ’09, pages 424–429, New York,
NY, USA, 2009. ACM. doi: 10.1145/1629911.1630026.

Tao Huang and Evangeline F. Y. Young. Construction of rectilinear steiner minimum
trees with slew constraints over obstacles. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design 2012, ICCAD ’12, pages
144–151, New York, NY, USA, 2012. ACM. doi: 10.1145/2429384.2429411.

Frank Hwang. On steiner minimal trees with rectilinear distance. SIAM Journal on
Applied Mathematics, 30(1):104–114, 1976. doi: 10.1137/0130013.

Maxim Janzen. Buffer Aware Global Routing im Chip Design. Diplomarbeit,
University of Bonn, 2012.

James E. Kelley, Jr. Critical Path Planning and Scheduling: Mathematical Basis.
Operations Research, 9:296–320, 1961.

144

B Bibliography

James E. Kelley, Jr and Morgan R. Walker. Critical-path planning and scheduling.
In Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM
computer conference, IRE-AIEE-ACM ’59 (Eastern), pages 160–173, New York,
NY, USA, 1959. ACM. doi: 10.1145/1460299.1460318.

Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Springer Publishing Company, Incorporated, 5th edition, 2012. ISBN
9783642244872.

Bernhard Korte, Dieter Rautenbach, and Jens Vygen. Bonntools: Mathematical
Innovation for Layout and Timing Closure of Systems on a Chip. Proceedings of
the IEEE, 95(3):555–572, 2007. doi: 10.1109/JPROC.2006.889373.

Leon G. Kraft, Jr. A Device for Quantizing, Grouping, and Coding Amplitude-
Modulated Pulses. Master’s thesis, Dept. of Electrical Engineering, M.I.T.,
Cambridge, Massachusets, 1949.

Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids. Dover
Books on Mathematics Series. Dover Publications, 2001. ISBN 9780486414539.

Zhuo Li and Weiping Shi. An O(bn2) Time Algorithm for Optimal Buffer Insertion
With b Buffer Types. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 25(3):484–489, 2006. doi: 10.1109/TCAD.2005.854631.

Zhuo Li, Ying Zhou, and Weiping Shi. o(mn) Time Algorithm for Optimal
Buffer Insertion of Nets With m Sinks. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 31(3):437–441, 2012. doi:
10.1109/TCAD.2011.2174639.

John Lillis, Chung-Kuan Cheng, and Ting-Ting Y. Lin. Optimal Wire Sizing and
Buffer Insertion for Low Power and a Generalized Delay Model. IEEE Journal of
Solid-State Circuits, 31(3):437–447, 1996a. doi: 10.1109/4.494206.

John Lillis, Chung-Kuan Cheng, Ting-Ting Y. Lin, and Ching-Yen Ho. New
Performance Driven Routing Techniques With Explicit Area/Delay Tradeoff and
Simultaneous Wire Sizing. In Proceedings of the 33rd Annual Design Automation
Conference, DAC ’96, pages 395–400, New York, NY, USA, 1996b. ACM. doi:
10.1145/240518.240594.

Jens Maßberg and Jens Vygen. Approximation algorithms for a facility location
problem with service capacities. ACM Transactions on Algorithms, 4(4):50:1–50:15,
2008. doi: 10.1145/1383369.1383381.

Dirk Müller. Fast Resource Sharing in VLSI Routing. PhD thesis, University of
Bonn, 2009.

Dirk Müller, Klaus Radke, and Jens Vygen. Faster min-max resource sharing in
theory and practice. Mathematical Programming Computation, 3:1–35, 2011. doi:
10.1007/s12532-011-0023-y.

145

B Bibliography

Matthias Müller-Hannemann and Ute Zimmermann. Slack Optimization of Timing-
Critical Nets. In Algorithms - ESA 2003, volume 2832 of Lecture Notes in Com-
puter Science, pages 727–739. Springer Berlin Heidelberg, 2003. doi: 10.1007/978-
3-540-39658-1_65.

Takumi Okamoto and Jason Cong. Buffered Steiner Tree Construction with Wire Siz-
ing for Interconnect Layout Optimization. In Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’96, pages 44–
49, Washington, DC, USA, 1996. IEEE Computer Society. doi: 10.1109/IC-
CAD.1996.568938.

Carlos A. S. Oliveira and Panos M. Pardalos. A Survey of Combinatorial Optimiza-
tion Problems in Multicast Routing. Computers & Operations Research, 32(8):
1953–1981, 2005. doi: 10.1016/j.cor.2003.12.007.

James B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm.
Operations Research, 41(2):338–350, 1993. doi: 10.1287/opre.41.2.338.

Min Pan, Chris Chu, and Priyadarshan Patra. A novel performance-driven topology
design algorithm. In Proceedings of the 2007 Asia and South Pacific Design
Automation Conference, ASP-DAC ’07, pages 244–249, Washington, DC, USA,
2007. IEEE Computer Society. doi: 10.1109/ASPDAC.2007.357993.

Lawrence Pileggi. Coping with RC(L) Interconnect Design Headaches. In Proceedings
of the 1995 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’95, pages 246–253, Washington, DC, USA, 1995. IEEE Computer Society.
doi: 10.1109/ICCAD.1995.480019.

Jorge Rubinstein, Jr. Paul Penfield, and Mark A. Horowitz. Signal Delay in rc Tree
Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2(3):202–211, 1983. doi: 10.1109/TCAD.1983.1270037.

Sachin S. Sapatnekar. Timing. Kluwer, 2004. ISBN 9781402076718.

Prashant Saxena, Noel Menezes, Pasquale Cocchini, and Desmond A. Kirkpatrick.
The Scaling Challenge: Can Correct-by-Construction Design Help? In Proceedings
of the 2003 International Symposium on Physical Design, ISPD ’03, pages 51–58,
New York, NY, USA, 2003. ACM. doi: 10.1145/640000.640014.

Weiping Shi and Zhuo Li. A Fast Algorithm for Optimal Buffer Insertion. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24
(6):879–891, 2005. doi: 10.1109/TCAD.2005.847942.

Weiping Shi, Zhuo Li, and Charles J. Alpert. Complexity Analysis and Speedup
Techniques for Optimal Buffer Insertion with Minimum Cost. In Proceedings of
the 2004 Asia and South Pacific Design Automation Conference, ASP-DAC ’04,
pages 609–614, 2004. doi: 10.1109/ASPDAC.2004.1337664.

146

B Bibliography

Martin Skutella. Approximation Algorithms for the Discrete Time-Cost Tradeoff
Problem. Mathematics of Operations Research, 23:909—-929, 1998.

Lukas P.P.P. van Ginneken. Buffer Placement in Distributed RC-Tree Networks for
Minimal Elmore Delay. In Proceedings of the 1990 IEEE International Symposium
on Circuits and Systems, volume 2, pages 865–868, 1990. doi: 10.1109/IS-
CAS.1990.112223.

Jens Vygen. Slack in Static Timing Analysis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25(9):1876–1885, 2006. doi:
10.1109/TCAD.2005.858348.

Jürgen Werber. Logic Restructuring for Timing Optimization in VLSI Design. PhD
thesis, University of Bonn, 2007.

Jürgen Werber, Dieter Rautenbach, and Christian Szegedy. Timing Optimization by
Restructuring Long Combinatorial Paths. In Proceedings of the 2007 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’07, pages 536–543,
Piscataway, NJ, USA, 2007. IEEE Press. doi: 10.1109/ICCAD.2007.4397320.

Yilin Zhang and David Z. Pan. Timing-driven, over-the-block rectilinear steiner
tree construction with pre-buffering and slew constraints. In Proceedings of the
2014 International Symposium on Physical Design, ISPD ’14, pages 29–36, New
York, NY, USA, 2014. ACM. doi: 10.1145/2560519.2560533.

Yilin Zhang, Ashutosh Chakraborty, Salim Chowdhury, and David Z. Pan. Re-
claiming Over-the-IP-Block Routing Resources With Buffering-Aware Rectilinear
Steiner Minimum Tree Construction. In Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design 2012, ICCAD ’12, pages 137–143,
New York, NY, USA, 2012. ACM. doi: 10.1145/2429384.2429410.

147

