
Transistor-Level Layout
of Integrated Circuits

DISSERTATION

ZUR

ERLANGUNG DES DOKTORGRADES (DR. RER. NAT.)

DER

MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTÄT

DER

RHEINISCHEN FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

VORGELEGT VON

JAN SCHNEIDER

AUS

BAD GODESBERG

BONN, MAI 2014

2

Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Stefan Hougardy

2. Gutachter: Prof. Dr. Jens Vygen

Tag der Promotion: 11. Juli 2014

Erscheinungsjahr: 2014

3

4

Contents

Contents 5

1 Introduction 9

2 Preliminaries 15
2.1 Graph Theory . 15
2.2 Chips . 16

2.2.1 Transistors and Integrated Circuits 16
2.2.2 FinFETs . 17
2.2.3 CMOS . 19

2.3 Transistor-Level Layout . 19
2.3.1 Layout of Transistors . 20
2.3.2 Layout of Cells . 23

3 Previous Work 27
3.1 Early Days of CMOS . 27
3.2 Linear Gate Arrays . 28
3.3 Two-Dimensional Gate Matrix 30
3.4 One-Dimensional Layout Style 32

3.4.1 Transistor-Level Netlists as Graphs 32
3.4.2 Algorithmic Approaches 35
3.4.3 Computational Complexity 36

3.5 Extensions of the One-Dimensional Layout Style 37
3.6 Stacked Devices . 39
3.7 Mixed Integer Programming . 42
3.8 Satisfiability . 43
3.9 Free-Form Two-Dimensional Layouts 44
3.10 High Regularity . 46
3.11 Summary . 47

4 Transistor Row Placement 49
4.1 Definitions . 49
4.2 Optimization of the Layout Size 54
4.3 Optimization of the Netlength 56

5

6 CONTENTS

4.4 Algorithms . 59
4.4.1 Lower Bound . 60
4.4.2 Upper Bound . 62
4.4.3 Optimal Solutions . 65
4.4.4 Variants . 65
4.4.5 Enumerating Finger Numbers 67

5 Cell Placement 69
5.1 Definitions . 69

5.1.1 Placements and Layouts 69
5.1.2 Target Function . 71

5.2 Cells with Two FET Rows . 72
5.2.1 Algorithm . 72
5.2.2 Pins . 79
5.2.3 Folding . 80
5.2.4 FET Rows with Mixed Types 81
5.2.5 Very Large Cells . 83

5.3 Cells with More than Two FET Rows 86
5.4 Extensions . 91
5.5 Synopsis of BONNCELL Parameters 95

6 Routing 97
6.1 Overview . 97

6.1.1 Routing Grid . 98
6.1.2 Legality . 98

6.2 Combinatorial Routing . 99
6.3 MIP-Based Routing . 100
6.4 Shape-Based Routing . 104

6.4.1 Coloring . 104
6.4.2 Via Pads . 104
6.4.3 Cut Shapes . 105
6.4.4 Additional Layers . 105

7 Results 107
7.1 Test Beds . 107
7.2 Evaluation of BONNCELL Features 109

7.2.1 Placement with Default Settings 110
7.2.2 Additional Tracks . 110
7.2.3 Restricting Finger Lengths 117
7.2.4 Multi-Row Cells . 119
7.2.5 Mixed FET Rows . 122
7.2.6 Folding of Multiple FETs 124
7.2.7 Large Cell Placement . 126
7.2.8 Routability . 128

CONTENTS 7

7.3 Comparisons with Industry Layouts 130
7.3.1 Simple Library Cells . 131
7.3.2 Complex Memory Elements 131

7.4 Application in the Industry . 134
7.4.1 Array Design . 134
7.4.2 Library Design . 135

8 Conclusions 141
8.1 Summary . 141
8.2 Future Development . 143

Glossary 145

Copyright Permissions 151

Bibliography 153

Chapter 1

Introduction

Integrated circuits will lead to such
wonders as home computers—or at
least terminals connected to a central
computer—automatic controls for
automobiles, and personal portable
communications equipment. The
electronic wristwatch needs only a
display to be feasible today.

Gordon E. Moore, April 1965

Integrated circuits, commonly known as “chips”, have been invented in the
late 1950s. The original prototype with a single transistor on a layer of Ger-
manium, which was developed at Texas Instruments in 1958, is depicted in
Figure 1.1. One year later, Jack Kilby submitted the patent application for
“unique integrated electronic circuits fabricated from semiconductor mate-
rial” [Kil64].
Since then, the complexity of computer chips has seen a steady exponential
growth. Most famously, this behavior has been predicted in an article by
Gordon E. Moore [Moo65], thereby establishing the well-known eponymous
law. The soon-to-be co-founder of Intel observed that the number of compo-
nents per integrated circuit doubled every year since the technology has been
invented, and stated that “there is no reason to believe [the rate of increase]
will not remain nearly constant for at least 10 years.” Although Moore over-
estimated the magnitude of the increase—the number doubled every 2 years
since then—the exponential nature of the curve stayed an immutable fact in
the rapidly changing semiconductor industry.
Figure 1.2 demonstrates the verity of Moore’s law over the course of nearly
60 years. It combines the data points available to Moore in 1965, including
Kilby’s original integrated circuit, and a range of major CPUs manufactured
by IBM and Intel.

9

10 CHAPTER 1. INTRODUCTION

In the meantime, transistors have probably become the human invention that
has been manufactured the most. By the year 2015, the number of transistors
in the world, according to an estimation by Paul Otellini [Jam11], will reach
1.2 · 1021. Nowadays, mass-produced chips are collections of billions of inter-
connected transistors. Examples are IBM’s Power7+ server CPU from 2012
with over 2 billion transistors, shown in Figure 1.3a in its actual size, and
Nvidia’s GK110 graphics processing unit with more than 7 billion transistors,
which remains the highest number ever achieved by a single-die micropro-
cessor since its release in 2013.
Even higher numbers are reached by memory modules: As they only require
very small transistors and allow for arrangements with much regularity, the
first microSD cards with 128 GB memory could be manufactured in 2014,
assembling roughly half a trillion transistors in a volume of 15 mm× 11 mm×
1 mm (cf. Figure 1.3b).

Figure 1.1: Kilby’s original prototype of an integrated circuit with one
transistor on a scale of 4:1. Courtesy of Texas Instruments.

Automation

Along with the growing complexity of computer chips, their layout has been
an increasingly difficult task. While early integrated circuits could essentially
be devised manually, later generations required more and more automation
to handle the exponential increase of components on each chip. At first, al-
gorithms were applied to improve the arrangement of all transistors on an
integrated circuit at once. But soon their number became so large that a hi-
erarchical structure was imposed in order to successfully apply optimization
methods. Recent CPUs consist of cores, each of which consist of units, which
are collections of macros and cells and, on the bottommost level of hierarchy,
the single transistors.

11

1960 1970 1980 1990 2000 2010 2020
100

101

102

103

104

105

106

107

108

109

1010

1011

4004

8008

8080
8085

8086
80286

80386
80486

Power2

Pentium
Pentium Pro

Pentium II

Power3

Pentium III

Pentium 4

Power4

Pentium 4

Power5

Core 2 Duo

Power6

Core i7
Xeon

Power7

Itanium
Xeon

Power8

Tr
an

si
st

or
co

un
t

Original IC [Kil64]
Moore’s data [Moo65]
IBM
Intel

Figure 1.2: Illustration of Moore’s law. The dotted line passes
through Moore’s last data point and doubles every 2 years.

(a) 2.1 billion transistors (b) 550 billion transistors

Figure 1.3: Modern packaging of transistors shown in their actual
sizes: IBM Power7+ CPU and 128 GB microSD card.

In the 1980s, algorithmic approaches to automate the generation of geomet-
ric layouts for small functional groups of transistors became a frequent topic
in industry as well as academia. The problem was formulated in graph-
theoretical terms, algorithms were proposed and improved, and variants
were introduced in alignment with the technology’s progress.

However, increasingly complicated constraints drove the need to employ a
higher level of abstraction. Chip design tools shifted their focus from sin-
gle transistors to functional groups thereof, modeled merely as rectangular
blocks or even larger heterogeneous modules. At the same time, the gene-

12 CHAPTER 1. INTRODUCTION

ration of geometric layouts of transistors and the wires connecting them was
either performed by scripts following a small set of simple rules, which is
viable for very basic circuits with a low structural complexity, or went back
to the hands of human engineers manually drawing shapes into specialized
software products. Although new concepts to automate these tasks were still
introduced in the literature of the 2000s, corresponding programs usually
lacked the ability to exploit the technology’s features and could hardly sur-
pass the quality of manually conceived layouts. Hence, the applicability of
these tools was restricted to a relatively small set of use cases.
Consequently, most non-trivial transistor-level layouts today are devised by
hand, and hundreds of geometric rules have to be obeyed in the process. This
work is difficult and time-consuming: For circuits with only a dozen transis-
tors it can take days until a good solution is found. Moreover, depending
on the engineer’s experience and the time spent on this task, the resulting
layouts may vary in their quality.
The importance of good and especially compact solutions is underlined by
Table 1.1, which illustrates the cost of a larger chip area for the original Pen-
tium CPU. Just 1% more chip area would have cost Intel over 63 million dol-
lars per year. Had the Pentium processor had a 15% larger die, the additional
cost would have amounted to nearly a billion dollars annually. Furthermore,
about a third fewer chips would have been produced in the same time.

Table 1.1: Area penalties for the production of the original Pentium
CPU, reprinted from [MH96].

Pentium die +1% die size +15% die size

Die size 160.2 mm2 161.8 mm2 184.2 mm2

Die cost $84.06 +1.5% +22.0%
Additional annual cost +$ 63 500 000 +$ 961 000 000
Chips fabricated per week 498 100 −3.1% −32.2%

Preview

In this dissertation, we present the toolchain BONNCELL and its underlying
algorithms. It has been developed in close cooperation with the IBM Corpo-
ration and automatically generates the geometry for functional groups of 2
to approximately 50 transistors as visualized in Figure 1.4. Its input consists
of a set of transistors, including properties like their sizes and their types, a
specification of their connectivity, and parameters to flexibly control the tech-
nological framework as well as the algorithms’ behavior. Using this data,
the tool computes a detailed geometric realization of the circuit as polygonal
shapes on 16 layers. To this end, a placement routine configures the transis-

13

Figure 1.4: Example for a circuit layout generated by BONNCELL.

tors and arranges them in the plane, which is the main subject of this thesis.
Subsequently, a routing engine determines wires connecting the transistors
to ensure the circuit’s desired functionality.
BONNCELL produces on most real-world instances provably optimal solu-
tions in terms of a multi-criteria target function that primarily favors the most
compact realizations possible within the capabilities of the given technology.
The purpose of the secondary criteria is to generate routable solutions, i.e.
layouts in which the transistors can be connected as needed.
For 90% of the instances in a representative test bed with a large structural
variety, fully functional layouts can be generated by BONNCELL. Aside from
such isolated test instances, our tool is actively used at IBM for the produc-
tion of new chips. It could, for example, help to finish the initial layout phase
of a large memory block in half of the designated timeframe, and it also aided
in central decisions during the very early stages of a new technology.
In Chapter 2, we start our discussion by introducing technological concepts,
including the basic blueprint of a transistor-level circuit, and a number of
notions used to describe their building blocks. Before our own work is pre-
sented, a thorough classification of previous work on variants of the transis-
tor-level layout problem is given in Chapter 3, ranging from very early ef-
forts shortly after the invention of integrated circuits to recent publications
concerned with modern technologies.
Thereafter, Chapters 4 and 5 contain the description and analysis of our al-
gorithms for the computation of circuit layouts. The former is focused on the
arrangement of 1-dimensional rows of transistors, provides formulations in
graph-theoretical terms and states implications on the hardness of such prob-

14 CHAPTER 1. INTRODUCTION

lems. The latter is focused on the practical implementation and the combi-
nation of the presented algorithms to a flow that handles 2-dimensional lay-
outs rather than single rows of transistors. The chapter also documents many
variations of the methods suited for a wide range of use cases.
In Chapter 6, we briefly discuss the routing algorithms of BONNCELL, giv-
ing an overview on how interconnections of transistors are realized. The
method combines 3 separate techniques, one of which combinatorially seeks
a packing of Steiner trees, one of which uses a mixed integer linear program
to model technology constraints, and one of which directly operates on the
wires’ rectilinear shapes to improve the solution quality.
Finally, a detailed analysis of the results is given in Chapter 7. This encom-
passes a thorough evaluation of the tool’s major features based on over 300
real-world test instances, a comparison of BONNCELL output with actual lay-
outs used in the industry, and the documentation of two different yet suc-
cessful cases in which our toolset has been applied at IBM to great avail.
Chapter 8 concludes with some closing remarks and an outlook to future de-
velopments.

Acknowledgments

This dissertation would not have been possible without the support of many
individuals. First and foremost, I want to express my gratitude to Prof. Dr.
Stefan Hougardy for the exceptional supervision of my doctoral studies and
the BONNCELL project. I learned a lot from his invaluable feedback and our
close cooperation. I also wish to thank Prof. Dr. Bernhard Korte and Prof. Dr.
Jens Vygen for providing excellent work conditions at the Research Institute
for Discrete Mathematics without which the project’s success would not have
been possible.
Furthermore, I’d like to emphasize the importance of the extremely good
atmosphere in the institute, which is filled with great colleagues and good
friends. This is true for the BONNCELL group, especially Dr. Tim Nieberg,
Jannik Silvanus, as well as former students Katrin Kölker and Thomas Weyd,
all of which participated in the development of an excellent routing engine.
But it is equally true for my former team, Dr. Ulrich Brenner and Dr. Markus
Struzyna, which was joined by Philipp Ochsendorf, and the rest of the insti-
tute, especially Christoph Bartoschek, Dr. Jens Maßberg and Ulrike Schorr.
BONNCELL is also the product of a close and fruitful cooperation with IBM.
In particular, I am grateful to Tobias Werner, who initiated, advertized and
integrated the tool inside IBM since its early days. I also thank IBM’s Karsten
Muuss and Raphael Polig, who contributed to the integration of the soft-
ware’s original version.
Last but certainly not least, I wholeheartedly thank my family for the ongo-
ing support during the past 32 years and Maike, who patiently endured my
absence during the recent months.

Chapter 2

Preliminaries

Any sufficiently advanced technology
is indistinguishable from magic.

Arthur C. Clarke, Hazards of Prophecy:
The Failure of Imagination

In the following, we present the basic concepts upon which the subsequent
discussion of transistor-level circuit layout is based. Most importantly, we
establish terms and concepts connected to field-effect transistors and their
operation in integrated circuits. Moreover, a widespread scheme for the geo-
metric layout of functional units on a chip is described that will be followed
by the algorithms in BONNCELL.

2.1 Graph Theory

The notions related to graph theory and combinatorial optimization used in
this thesis are based on the book Combinatorial Optimization by Korte and
Vygen [KV13]. In this section, we briefly provide some definitions that are
essential for the subsequent discussions.
The central concepts employed in the following chapters will be walks. Given
a graph G = (V, E), a walk W is a sequence (v0, e0, v1, . . . , vk−1, ek−1, vk), walk
where v0, . . . , vk ∈ V and e0, . . . , ek−1 ∈ E, such that ei = {vi, vi+1} holds
for 0 ≤ i < k and ei 6= ej for i 6= j. If G is directed, then ei = (vi, vi+1) is
required. We use V(W) and E(W) do denote the vertices and edges covered
by W, i.e. V(W) := {v0, . . . , vk} and E(W) := {e0, . . . , ek−1}, and say that W
has a length of k. A walk is called closed if v0 = vk. closed walk

A Eulerian walk in a graph G = (V, E), also called Eulerian trail in the liter- Eulerian walk
ature, is a walk W with E(W) = E. The graph is called semi-Eulerian if it (semi-)Eulerian
possesses a Eulerian walk and Eulerian if it possesses a closed Eulerian walk.

15

16 CHAPTER 2. PRELIMINARIES

Figure 2.1: Dual NOR3 integrated circuit from the Apollo Guidance
Computer of 1966, one of the first computers using integrated circuits.

2.2 Chips

We now turn towards the technological principles of chips, most notably the
geometry and electrical properties of transistors and how appropriately in-
terconnected groups of transistor can be used to realize electrical circuits.

2.2.1 Transistors and Integrated Circuits

Transistors are the basic building blocks of every electronic device. They servetransistor
as switches devoid of movable parts and have three external connections
called source, drain, and gate. By applying a voltage at the gate one can con-source, drain,

gate trol if the connection between the two other contacts is conducting, that is a
current can flow between source and drain, or insulating.
There is a multitude of different technical implementations of a transistor
with variations in the used materials, the size, the geometry, electrical prop-
erties, and so on. Although these variations are not subject to this work, it
is important to note that there are two fundamentally different, complemen-
tary types of transistors: n-type and p-type. An n-type device will transfern-type, p-type
electrons from source to drain (“switched on”) if a voltage is applied to the
gate and it will fail to do so otherwise (“switched off”). A p-type device acts
exactly conversely.
The transistors subject to discussion in this work are field-effect transistors
(FETs), and the two types are called n-FETs and p-FETs accordingly. The nameFET, n-FET,

p-FET refers to the eponymous physical law that is employed to implement the de-
vice’s functionality. They constitute the active part of an integrated circuit (IC),
also called “chip”. An IC is a complex electronic circuit that is built from aintegrated circuit

2.2. CHIPS 17

single piece of semiconductor material. It is doped at appropriate locations to
form the switching elements, namely the FETs, and amended by several lay-
ers of metal connections that join the transistors, thereby realizing a desired
logic function, a memory element, or other features. A very simple example
is shown in Figure 2.1.
A property that does not affect the geometry of a FET but is important for
the later discussion is the Vt level, or Voltage threshold. This property refers Vt level
to the degree to which the substrate at the base of the transistor is doped.
A FET can usually be manufactured with one of several Vt levels: A lower
level corresponds a higher power demand and faster operation, and a higher
level on the other hand leads to less power demand at the cost of a slower
operation.
Figure 2.2 depicts several representations of a FET: The isometric illustration
in Figure 2.2a outlines its 3-dimensional geometric structure. The blue cuboid
in the middle is the gate and the two darker gray cuboids are the source and
drain contacts. If the voltage applied to the gate is appropriate, current can
flow through the light gray area below the three contacts, otherwise this area
functions as an insulator.
Figure 2.2b depicts the same FET in a simplified 2-dimensional top-down
view that will be used to illustrate the algorithms presented in the upcoming
chapters. Figure 2.2c depicts an actual electron-microscopic photography of
several transistor in Intel’s 32 nm technology. The symbols in Figure 2.2d are
used in circuit diagrams to indicate n-type and p-type transistors.

2.2.2 FinFETs

In recent years a new type of FET has been developed to drive the ongoing
reduction of feature sizes on chips. So-called FinFETs work by the same prin- FinFET
ciples but have a different geometry. Instead of a flat diffusion area embed-
ded into the planar substrate below the contacts, the channel between source
and drain is formed in erect fins that raise above the substrate. The gate
envelops those fins so that the relevant contact area between gate and diffu-
sion material consists of the vertical side portions of the fins and their top
rather than just the plane 2-dimensional footprint of the polysilicon cuboid
that forms the gate. As a consequence, apparently shorter gates, in the sense
of the 2-dimensional footprint, have a larger active area through their use of
the vertical dimension. FinFETs are also named 3D or Tri-gate transistors.
Figure 2.3 illustrates the 3-dimensional structure of such devices.
The aspect of FinFETs that is relevant for the design of algorithms is the dis-
cretization of the gate size. While this parameter was previously given as a
length, for example in nanometers, now the number of fin/gate intersections
is the pertinent value. This value is always a small integer, often smaller than
10, which has consequences for algorithms especially related to the folding
technique explained in Section 2.3.1.

18 CHAPTER 2. PRELIMINARIES

(a) 3-dimensional geometry (b) Top-down view

(c) Electron-microscopic photography

n-type

p-type

(d) Symbols

Figure 2.2: Several representations of a classic planar field-effect tran-
sistor. The photography actually shows multiple FETs.

(a) 3-dimensional geometry (b) Electron-microscopic photography

Figure 2.3: Geometry of modern FinFETs.

2.3. TRANSISTOR-LEVEL LAYOUT 19

2.2.3 CMOS

Having established the possibility to implement switches on an integrated
circuit, the question arises how to assemble them to realize the desired com-
plex functionality of a chip like the evaluation of a logic function or the stor-
age of a bit. The prevalent principle employed on modern chips to achieve
this goal is the CMOS technology (complementary metal-oxide-semiconduc- CMOS
tor) invented by Wanlass [Wan67]. The idea is to use two electric potentials,
or power levels, to represent the logic 0 and the logic 1. The output of a circuit
is connected to exactly one of those power levels—depending on the power
levels of the input signals. This is done through an appropriately connected
network of transistors which is typically gated by either the power levels at
the inputs or by intermediate results computed within such an elementary
circuit. Although several different notations are used depending on context
and technology, we denote the two power levels by GND (ground, the logic
0) and VDD (logic 1).
Take for example the easiest possible CMOS circuit, the inverter, as depicted
in Figure 2.4a. Assume that the input signal xin is connected to the VDD po-
tential. Then in the bottom half of the diagram an n-FET opens a conducting
channel, thereby creating a connection between the output signal xout and
GND. At the same time, the p-FET in the upper half is switched off such
that a short between the two different power supplies is avoided. If on the
other hand xin is connected to GND, then the upper FET is conducting and
the bottom FET is insulating. To sum up, the setup realizes the logic function
xout ← ¬xin.
Figure 2.4b shows a more complex example that realizes the logic function
xout ← ¬(x1 ∨ (x2 ∧ x3) ∨ (x4 ∧ x5)). As before, all the transistors in the
bottom half of the diagram are n-type devices and all transistors in the top
half are p-type. Note that these two networks act “dual” in the sense that
one creates a conducting channel if and only if the other does not. This very
simple dual structure may be violated in more complicated CMOS circuits,
for example if several interconnected CMOS circuits are combined or other
related schemes like dynamic CMOS or Domino logic, which are also sub-
sumed under the CMOS paradigm, are used. A comprehensive discussion of
the CMOS technology, including these aspects, can be found in [Bak11].

2.3 Transistor-Level Layout

Informally speaking, transistor-level layout is the problem of generating a
geometric realization of a given CMOS circuit topology. Such a functional
implementation of an electric circuit is also denoted cell. Being leaves in the (leaf) cell
tree that describes the hierarchy on a chip, transistor-level cells are some-
times called leaf cells. As their 3-dimensional structure is highly complex, it is
neither clear how to arrange transistors and their interconnections within a

20 CHAPTER 2. PRELIMINARIES

chip so that “good” layouts are generated nor what metric is used to measure
the quality of a layout. Moreover, the physics involved in the manufacturing
of integrated circuits imposes a wide variety of restrictions on the feasible
layout patterns. For these reasons, a large number of different schemes, and
thus algorithms, have been proposed and implemented during the last 40
years. Chapter 3 contains an overview of existing approaches.
In this section, we give a description of the cell model that serves as a basis
for this work, i.e. a blueprint of the CMOS cells generated with our algo-
rithms, including degrees of freedom and restrictions. Formal definitions of
subproblems are provided where these problems are discussed in detail. We
start with the means by which single transistors can be laid out.

2.3.1 Layout of Transistors

A single transistor, even though it is the atomic unit of an integrated circuit,
can be laid out in multiple ways. In this Section, we discuss the relevant
aspects of the FETs’ geometry.

Swapping

As apparent from the workings of a transistor, the source and drain contacts
are interchangeable. It is not important in which direction the electrons move

xin xout

(a) CMOS inverter

x1
x2

x3

x4

x5

x4 x5

x2 x3

x1

xout

(b) Function ¬(x1 ∨ (x2 ∧ x3)∨ (x4 ∧ x5))

Figure 2.4: Examples for CMOS cells.

2.3. TRANSISTOR-LEVEL LAYOUT 21

through the conducting channel. Hence, it is possible to exchange the connec-
tions of the source contact and the drain contact without modifying anything
else, resulting in an unswapped and a swapped status for every FET. (un)swapped

Diffusion Sharing

The most important technique to save area is diffusion sharing. If two FETs diffusion sharing
are supposed to be placed next to each other, and the source/drain contacts
facing the neighboring FET must be electrically connected, then the diffusion
areas can be merged, forming a single source/drain contact in the middle
of the construct with two, possibly different, gates to its sides. Figure 2.5
illustrates the concept.
As a generalization, more complex rules for the minimum distances between
FETs might hold, for example the following:
• FETs may overlap (i.e. diffusion sharing is possible) if the opposing

contacts must be electrically connected and their gates have the same
length.

• FETs may abut as in the left section of Figure 2.5 if the opposing contacts
must be electrically connected but their gates do not have the same
length (i.e. the right configuration in the figure would be illegal).

• Otherwise a small gap must be introduced between the FETs if their
types match and an even larger gap must be used if their types do not
match.

Usually the simpler first concept with the only alternatives being “sharing”
and “no sharing” has been discussed in the literature. The algorithms pre-
sented in this work are able to handle distance functions of arbitrary com-
plexity.

N1 N2

N3

N2 N3 N1 N2 N3

Figure 2.5: Two FETs sharing diffusion area. Net N2 connects the
right contact of the left FET and the left contact of the right FET, so
the contact may be shared by both transistors.

Folding of Single FETs

A major aspect of the layout of single transistors is folding: A large FET that folding
is supposed to cover many fins, which would normally implicate a geometry

22 CHAPTER 2. PRELIMINARIES

with a high aspect ratio, is split into several smaller devices that are con-
nected in parallel. Because those smaller devices all have the same source
and drain contacts, they can share their diffusion areas and form a row of
overlapping transistors. Figure 2.6 illustrates the geometry of a large FET
that is split into two or three smaller FETs. In the process, the long gate is
divided into two respective three segments, called fingers. The picture showsfinger
how the aspect ratio of the FET’s footprint changes with the number of fin-
gers.
The other contacts of the folded device alternately belong to the source and
the drain contact. All pieces of metal that constitute the drain contact must
be connected electrically for the layout to work correctly. The same is true for
the parts of the source contact and the fingers, which are all part of the gate.
Swapping such a construct means to change the contacts from the pattern
source/drain/source/. . . to the pattern drain/source/drain/. . .
It is worth to note that the area covered by a FET with a single finger is 2wL,
where w is the distance between two neighboring gates and L the length of
the gate, and decreases as the number of fingers increases. For 2 fingers the
area is 3w L

2 , for 3 fingers 4w L
3 , and so on. The area converges to wL, which is

half of the classic single finger realization.

(a) 1 finger (b) 2 fingers (c) 3 fingers

Figure 2.6: The same FET with 1, 2, and 3 fingers.

Folding of Multiple FETs

The concept of folding can be extended to multiple FETs at once. If, say, one
FET F1 is split into F′1 and F′′1 , and another FET F2 is split into F′2 and F′′2 , then
it may be possible to lay out an overlapping row of the transistors F′1F′2F′′2 F′′1 .
In other words, the fragments of the original FETs are placed in an inter-
leaving pattern. The scheme is neither limited to just two large FETs nor to
just two fragments per large FET. Even though the connections between the
gates become longer compared to the variant F′1F′′1 F′′2 F′2, the resulting inter-
leaving placement may have favorable properties in some sense. An example
is shown in Figure 2.7.

2.3. TRANSISTOR-LEVEL LAYOUT 23

N1 N2

N3

N1

N3

N1 N4

N5

N1

N5

N1 N2

N3

N2 N1

N3

N1 N4

N5

N4 N1

N5

N2 N1

N3

N4

N5

N1

N5

N2

N3

Figure 2.7: Two FETs are folded into an interleaving pattern.

In principle the fragments of a large FET could even be placed completely in-
dependent of each other when just viewed as a set of ordinary smaller FETs.
However, for electrical reasons this is usually not allowed in real-world tech-
nologies and can thus be deactivated.

2.3.2 Layout of Cells

Having finished the discussion of single transistors, we will now describe
the basic geometry of cell layouts, i.e. collections of interconnected FETs that
implement a more complex functionality.

Layer Stack

The 3-dimensional structure of an integrated circuit is modeled sufficiently
well with rectilinear shapes on a certain set of layers. Every component is
specified by a 2-dimensional rectilinear polygon and a layer that corresponds
to an interval in z direction. Our illustrations usually depict their projection
to the x-y-plane and use colors to indicate the layer.
The set of layers together with information regarding their parameters and
connectivity is called layer stack . Unless otherwise specified, we use the layer layer stack
stack given in Table 2.1, which is a simplification of the actual layer stack from
the examined real-world 14 nm technology.
PC, which stands for polysilicon, is the bottommost wiring layer and holds
the FET gates. Wiring is only allowed in the vertical direction such that the
routing on this layer is essentially limited to prolonging the gates beyond the
boundary of the FETs. M0 is the layer which mostly holds the source and
drain contacts of the FETs but may also contain interconnections in both di-
rections. M0 physically resides on the same level as PC, which means that
in regions where their 2-dimensional projections intersect the two wires are

24 CHAPTER 2. PRELIMINARIES

Table 2.1: Layer stack used in this work.

Name FET parts Properties

PC Gate Polysilicon, only vertical
M0 Source / Drain Horizontal and vertical, connects PC
V0 Vias between M0 and M1
M1 Horizontal and vertical
V1 Vias between M1 and M2
M2 Only horizontal

also electrically connected. M1 and M2 are two metal layers that are com-
pletely reserved for routing and do not contain any parts of the transistors.
Wires can only lie horizontally on M2, whereas both directions are possible
on M1. Connections between these layers are called vias. They occupy thevia
layers V0 (which links M0 to M1) and V1 (which links M1 to M2) and must
have a square footprint.

Power Structure

Due to the ubiquity of both power potentials in the CMOS technology it is
essential to construct circuits in a way that VDD and GND can be accessed
as easily as possible. This important constraint led to the scheme of circuit
rows: The chip area, or large parts thereof, are divided into horizontal rowscircuit row
of the same height. Between these rows an easily accessible horizontal power
rail is added to all metal layers—M0, M1, and M2. The electric potentials of
these wires alternate between VDD and GND every second row. The concept
is illustrated in Figure 2.8.
Most basic CMOS cells fit in exactly one of the circuit rows, so their height
is prescribed by the technology and optimizing for their area corresponds to
minimizing their width. Wires between neighboring rows are usually routed

Standard cell

Multi-row

cell

GND

VDD

GND

VDD

GND

Figure 2.8: Power structure on a chip with two cell outlines.

2.3. TRANSISTOR-LEVEL LAYOUT 25

Table 2.2: Properties of the cell model used in this work.

1. CMOS circuits with arbitrary topology (multiple outputs, non-uniform FET
sizes, non-uniform Vt levels, non-dual structure, user-defined constraints).
In particular, no natural pairing of n/p-FETs is given.

2. FETs may be reordered, swapped, and folded (single or multiple FETs).
3. Within a circuit row, transistors lie in two rows: n-FETs tend to be in the

bottom row, p-FETs in the top row. This is not enforced.
4. All gates lie on a regular track grid.
5. In multi-row cells, the structure of every second row is vertically mirrored.
6. A GND power rail bounds the cell from below, a VDD power rail from above.
7. Intra-cell routing is on PC (only connections between horizontally aligned

gates) and three metal layers (cf. Table 2.1).
8. Connections between power and source/drain contacts lie on M0.
9. Routing between different circuit rows is on M1 in multi-row cells.
10. Routing is performed on a 3-dimensional virtual routing grid.

on a higher level of hierarchy in layers above M2 that are not considered
in our model of transistor-level CMOS cells. However, we will also discuss
multi-row cells that cover more than one circuit row. In this case parts of the
power rails on M1 may be omitted to create space for intra-cell routing.
Within a circuit row, n-FETs are usually arranged in a row near the GND
power rail, which may lie on the bottom or the top edge of the cell depending
on the parity of the row index, and p-FETs are analogously placed near the
VDD power rail. The reason for this is that in CMOS cells n-FETs and p-
FETs, if connected to the power at all, are mostly connected to the according
potentials. This scheme has been employed by many authors during the last
decades and is, mostly, followed in our presentation, too.
This finishes the discussion of the basic concepts of transistor-level layout as
it appears today. Before theoretical aspects as well as the implementation of
the new toolset BONNCELL are presented, we revisit the existing literature
regarding the topic. Although many of the aforementioned features already
emerge in these works, the rapid progress of technology since the invention
of integrated circuits and CMOS spawned a large number of different cell
models, and motivated a likewise number of approaches to automate the
task of generating their geometry.
Table 2.2 summarizes several important properties of our cell model in a
semi-standardized format that has been used by several authors in the past,
e.g. [MH91, GTH96, GH98, IIA04a]. Figure 2.9 depicts a full cell layout, in-
cluding the power strips on the boundary, of a transistor-level netlists. The
three variants belong to the same layout: The first two are 2-dimensional pro-
jections where shapes are colored by metal layer and electrical connectivity,
respectively, and the third illustration shows its 3-dimensional structure.

26 CHAPTER 2. PRELIMINARIES

Figure 2.9: Example for a 2-dimensional standard cell layout using
two FET rows within a single circuit row.

Chapter 3

Previous Work

The road to wisdom? – Well, it’s plain
and simple to express:

Err
and err
and err again
but less
and less
and less.

Piet Hein, 1905–1996

As for many decades every new technology generation has been significantly
more complex than the preceding one, the automatic layout of such units has
become—and remained thenceforth—the topic of academic research. In this
chapter, we follow the development of the literature discussing transistor-
level layout, with a focus on static CMOS cells, in a roughly chronological
order. We thereby group papers by their predominant features, like the fold-
ing of transistors as in Section 3.6, or by their algorithmic approach, e.g. the
use of Satisfiability-based methods in Section 3.8.

3.1 Early Days of CMOS

In the years following the invention of the integrated circuit [Kil64], and sub-
sequently the CMOS technology [Wan67], the number of transistors per chip
and the importance of area was still small enough that layouts could be de-
vised manually. The need for miniaturization and, consequently, automation
did not pick up pace until ICs were used as switching elements in computers
several years later.
The early attempts to automate the physical layout of integrated circuits are
hard to classify using today’s distinction between transistor-level layout and
the global placement of precomposed standard circuits. These layers of hier-

27

28 CHAPTER 3. PREVIOUS WORK

archy were not yet established and overall layout schemes were almost as nu-
merous as authors publishing articles on their optimization. The only com-
monality of these works was the need of some layer of abstraction between
the data structures handled by the algorithms and the geometric shapes of
the final IC layout.
Feller [Fel76] presents a picture of “one of the earliest (1968–1969) LSI chips
to be completely laid out using automatic placement and routing programs”.
The approach relied on a handcrafted standard cell library with circuits rang-
ing from inverters and NORs to flip-flops and multiplexers. A tool called PRF
(for “Placement, Routing, Folding”) included a heuristic algorithm that ar-
ranges all required standard cells in a 1-dimensional row and adds the wires
needed to connect the cells next to it. Then the row is wrapped around sev-
eral times to achieve a roughly quadratic layout, leaving enough space be-
tween the segments of the row to hold the wrapped routing. Feller also men-
tions two subsequent improvements of the algorithms that directly arranged
the standard cells in the 2-dimensional plane. However, as custom standard
cells are used and important techniques like diffusion sharing are not em-
ployed, this approach cannot yet be considered as a transistor-level layout
tool.
It was apparent that a layer of abstraction is needed between the geomet-
ric shapes of the final IC layout and, depending on the application, the data
structures handled by algorithms or the human layouter who needs to con-
ceptualize a cell layout. Gibson and Nance [GN76] suggested a notation that
helps to generate good cell designs by hand. Although no automation was in-
volved in this paper, their notation—or variants thereof—was also employed
to develop layout software.
The usage of graph-theoretical terminology in the description of a placement
and routing algorithm was introduced by Rose and Oldfield [RO71] in 1971.
They used a computer to find an (almost) planar embedding of a graph that
models a netlist and then to generate a geometric realization of the solution.
Although some of the placement objects were transistors, abstracted as axis-
parallel rectangles, the article referred to printed circuit boards. The system
relied on human interaction to improve the otherwise unusable automatic
result. Similar yet more elaborate techniques were applied in [EMP73] to
integrated circuits.

3.2 Linear Gate Arrays

In 1967, Weinberger [Wei67] proposed a layout scheme that was frequently
discussed in the literature. It utilizes the functional completeness of the NOR

function, i.e. the fact that every logical function can be expressed only by
using NOR gates. The scheme arranges a number of NOR gates in a horizontal
1-dimensional array. Each of those takes the form of a vertically elongated n-

3.2. LINEAR GATE ARRAYS 29

g1 g2 g3 g4 g5 g6

s6

s5

s3 s4

s2

s1

(a) Suboptimal ordering

g2 g4 g6 g3 g1 g5

s3 s4

s2s1

s5 s6

(b) Optimal ordering

Figure 3.1: Weinberger-type linear gate array. Vertical rectangles are
NOR gates, horizontal lines are nets. The example was adapted from
[SOH+81].

channel MOS transistor that is gated by an arbitrary number of input signals.
Figure 3.1a shows a schematic representation of such a circuit.
The combinatorial problem that arises is to choose the ordering of the transis-
tors such that the horizontal connections on the metal layer can be performed
with as few vertical tracks as possible. The layout in Figure 3.1b for example
requires only three instead of five wiring tracks. The resulting logic circuit
is bounded by the ground power rail near the bottom border and two other
power rails, VDD and VGG, near the top border.
Weinberger gives several examples of how this “basic pattern” can be im-
proved in specific situations. Although he does not propose a general al-
gorithm for the optimization of such layouts, he does note that “the lack of
standardization may preclude the use of computer aids” as part of the moti-
vation for his layout scheme.
The first algorithms that automate the layout of Weinberger-type circuits
are given in [Lar71]. One program reorders a sequence of custom-defined
Boolean formulas and a second program, taking the reordered sequence as
input, assigns tracks to variables and terms in order to generate an area-
efficient circuit.
A reformulation of the problem in combinatorial terms and a precise defi-
nition of an optimization target that ultimately aims at the minimization of
chip area can be found in [YKK75]. However, only two heuristic methods
based on local improvements are described that do not guarantee to find a
global optimum. In [AT78], the result is improved by describing a branch
and bound method that finds optimum solutions in finite runtime. While
the branching is limited for runtime reasons so that the output may not be
optimal in practice, the methods usually find better solutions and require
significantly less runtime than the heuristic approaches from [YKK75].
Ohtsuki et al. [OMK+79] related the problem to interval graphs and applied
graph-theoretical results to obtain a first hardness result. They represent the
netlist by a graph (V, E) and observe that a Weinberger-type layout corre-

30 CHAPTER 3. PREVIOUS WORK

sponds to an interval graph (V, E ∪ F) such that the number of required
placement tracks is equal to this graph’s clique number. Because finding a
smallest augmentation F that minimizes the clique number is NP-complete,
the problem of finding a track-minimal Weinberger layout for which a min-
imum amount of wiring is required is NP-hard. The authors then present
a polynomial-time algorithm that finds at least an inclusion-wise minimal F
with the required property.
The approach from [SOH+81] is to generate an initial greedy solution and
apply local improvement steps. Although they do not compute optimal so-
lutions, they do include a method that restructures the logic of the netlist in
order to reduce the area. Nevertheless, their layouts—portions of the ran-
dom logic in a calculator—are 10%–40% larger than those laid out manually
by skilled engineers.

3.3 Two-Dimensional Gate Matrix

In 1980, Lopez and Law [LL80] proposed a new layout style for CMOS cir-
cuits that was picked up, modified and optimized by many other authors.
Instead of a 1-dimensional array of transistors they use a 2-dimensional struc-
ture. Vertical columns correspond to polysilicon material serving as gate con-
tacts and their interconnection at the same time. In other words, devices
gated by the same signal are arranged in one column of the matrix that is
associated with this particular signal. Transistors assigned to the same row
are then connected in series with a horizontal connection on the diffusion or
metal layer. The idea is illustrated in Figure 3.2a.
While the authors of this so-called “polysilicon oriented gate matrix” scheme
do not provide algorithms optimizing such layouts, they claim that follow-
ing this pattern greatly eases the design process. At the same time the area
requirement of the results supposedly does not exceed the area of layouts
created with older, more time-consuming methods. To simplify the handling
of gate matrices, a machine-readable symbolic notation system, which is in
part based on the system from [GN76], is introduced.
A similar approach was followed by [AMW82] for decoder-like CMOS cir-
cuits and extended to other logic functions in [PB83]. This “metal-oriented
gate matrix” is based on the intersection of metal tracks with orthogonal dif-
fusion lines. Polysilicon is added in parallel to the metal where transistors
need to be inserted.
In [PZSB84], a workflow was presented that serves as a recipe for circuit de-
signers to transform a set of logic functions into a metal oriented gate matrix.
The method is based on Karnaugh maps ([Kar53]) and does not yield opti-
mal results in any way. Moreover, the implementation of a CAD program
is described that transforms the manually generated symbolic representation
into a geometric drawing of a CMOS circuit. In the process, 11 different “mi-

3.3. TWO-DIMENSIONAL GATE MATRIX 31

x1 x2 x3 x4 x5 x6 x7out

(a) Gate matrix

x1 x2 x3 out2out1

(b) Programmable logic array

Figure 3.2: 2-dimensional matrix-like layout styles, adapted from
[LL80] and [MH92].

crocells”, i.e. possible configurations of a single entry of the gate matrix, are
utilized. The authors report that using this system the efficiency of a designer
increased from 4–6 transistors per day to 19–27 transistors per day.
A formal definition of the OPTIMUM GATE MATRIX LAYOUT PROBLEM and
a multi-stage algorithm solving it was given in [WHW85]. The first phase of
this method employs the equivalence of the 1-dimensional gate array prob-
lem to a minimization of the largest clique in an interval graph as presented
in [OMK+79]. To address the realizability as a gate matrix, a heuristic method
to reorder the columns is used, probably involving the need to increase the
distance between the polysilicon lines. Although the results of the algorithm
are not optimal and several constraints which are important in practice are
not considered, the authors provide the first formal and complete descrip-
tion as well as an implementation of a method that automatically generates
gate matrix layouts from a netlist. An improved version of the method was
later published in [HW89]. Several practical constraints like power routing,
I/O gates, I/O nets and different transistor sizes are incorporated in this en-
hancement.
A further generalization of the formal description from [WHW85] was given
in [WLL88]. The simulated annealing technique, which was introduced in
[KGV83], is used to simultaneously improve the required number of tracks
and the total wire length. Moreover, this approach allowed logically equiv-
alent changes of the netlist topology. The algorithm provided by [SC90] also
allows netlist modifications to achieve more compact gate matrices. A min-
cut based partitioning heuristic is applied that leads to an algorithm with an
overall runtime of O(n log n), where n is the number of equations required
to describe the logic function of the cell.

32 CHAPTER 3. PREVIOUS WORK

Ho and Sastry [HS91a] introduced a variant called “flexible transistor ma-
trix”, which utilizes one additional metal layer. Their algorithm is based on
iterative vertical and horizontal min-cut computations and some local im-
provement steps. In addition, it supports different transistor sizes and is also
able to create cells with a prescribed aspect ratio. Mainly due to the second
metal layer, layouts are smaller than traditional gate matrices by one third.
Another class of regular 2-dimensional layouts which is frequently discussed
in the literature is called programmable logic array (PLA). The typical struc-
ture of a PLA consists of an “AND plane” on the left with n-type transistors,
forming a conjunction of input variables in each row of the matrix, and an
“OR plane” with p-type transistors, connecting arbitrary product terms, i.e.
rows, in a disjunction. Every column in the OR plane then corresponds to one
output of the PLA. Figure 3.2b shows a schematic example of a PLA. While
the structure of a PLA is easy to implement, it only supports sum-of-product-
type circuits and does not use the available die area efficiently.

3.4 One-Dimensional Layout Style

Uehara and vanCleemput [Uv79, Uv81] introduced a new layout scheme,
1-dimensional cells with two transistor rows, and used graph-theoretical no-
tions as an interface between algorithms and the actual metal shapes of a
cell’s physical layout. The authors observe that every logic circuit consisting
only of AND and OR gates can be modeled by a transistor-level netlist in which
the circuit’s output is connected to one potential, the logic 0, through a net-
work of n-FETs and to the other power level, the logic 1, through a network
of p-FETs.

3.4.1 Transistor-Level Netlists as Graphs

These two netlists can be represented by a pair of graphs, one for the n-FET
network and one for the p-FET network. The vertices of the graphs corre-
spond to the nets while each edge corresponds to a FET and connects the
source and drain contacts of that FET. The edges are labeled with the gate
signal of the FET, but other than that the nets connecting the gates are not
represented in the graph model. Due to the way the logic function is trans-
formed into a netlist, the resulting graphs are series-parallel and are in fact
series-parallel duals of each other.
An example is shown in Figure 3.3a: It depicts the logic function ¬(x1 ∨ (x2 ∧
x3)∨ (x4 ∧ x5)) as the circuit diagram of a possible transistor-level netlist and
the corresponding pair of series-parallel graphs. Note that the way in which
the function is modeled as a netlist is not unique. Figure 3.3b shows another
possible realization as well as its graphic representation.
The layout scheme discussed by Uehara and vanCleemput is very simple,
yet much literature uses the same model or more general versions thereof.

3.4. ONE-DIMENSIONAL LAYOUT STYLE 33

x1
x2

x3

x4

x5

x4 x5

x2 x3

x1

out

x5x4

x3x2

x1

GND out

out

VDD

(a) Suboptimal topology

x1
x2

x3

x4

x5

x4 x5

x2 x3

x1

out

x5x4

x1

x3x2

GND out

out

VDD

(b) Optimal topology

Figure 3.3: Two transistor-level netlists, shown as a circuit diagram
and using the graph representation, realizing the function ¬(x1 ∨
(x2 ∧ x3) ∨ (x4 ∧ x5)). Dotted lines model the n-FET network, the
other lines model the p-FET network. The example was adapted from
[Uv81].

34 CHAPTER 3. PREVIOUS WORK

x1 x2 x3 x4 x5

GND

VDD

out

(a) Trivial layout

x1 x2 x3 x4 x5

GDD

VDD

out

(b) Diffusion sharing

x1 x3 x2 x5 x4

GND

VDD

out

(c) Rearranged inputs

x2 x3 x1 x4 x5

GND

VDD

out

(d) Optimal layout

Figure 3.4: Four cell layouts realizing the function from Figure 3.3.
The example was adapted from [Uv81].

Even the standard method to implement most CMOS circuits today can be
seen as a continuation of this layout style. The cells are laid out with one
horizontal row of n-FETs near a GND power strip and another horizontal row
of p-FETs adjacent to a VDD power strip. By construction, every input signal
is connected to a pair of FETs which are located at the same x-coordinate.
In more complex cells it is also possible that input signals are connected to
multiple pairs of gates, in which case the gates are connected with metal
bridges above the VDD power strip. All FETs in this model have the same
size and exactly one finger. A trivial layout of the netlist from Figure 3.3a is
shown in Figure 3.4a.
The key idea to optimize the area occupied by such layouts is to employ dif-
fusion sharing. If two adjacent contacts of neighboring FETs belong to the
same net, the connection can be made by connecting the diffusion areas of
both FETs, eliminating the need to use the metal layer (Figure 3.4b). If this
removes the diffusion gaps on both FET rows for a given x-coordinate, the
cell size can be decreased by reducing the distance between the neighbor-
ing gates. To increase the number of tracks that can be saved, it is allowed
to reorder the gates arbitrarily (Figure 3.4c). Furthermore, it is allowed to

3.4. ONE-DIMENSIONAL LAYOUT STYLE 35

horizontally swap the FET. In the figure, this happens, for example, with the
FETs gated by x3. The topology of the transistor-level netlist also matters: As
shown in Figure 3.4d, the realization in Figure 3.3b can be laid out without
any gaps in the diffusion—this is not possible using the other netlist topol-
ogy.
Uehara and vanCleemput observe that a sequence of transistors that can be
placed without diffusion gaps corresponds to a path in the netlist’s graphic
representation. They conclude: if there is a sequence of the input signals
such that the corresponding edge progression forms a Eulerian walk in both
graphs, then this gate order leads to an optimal layout, i.e. a layout with-
out any gaps in the diffusion area. The sequence (x2, x3, x1, x4, x5) has this
property in the graphs from Figure 3.3b, and no such sequence exists for the
graphs from Figure 3.3a. In general, the cell size can be minimized for a fixed
netlist topology by finding a minimum-size set of sequences of input signals
such that every input signal is contained in exactly one sequence and the
edge sets corresponding to these sequences are walks in both graphs. Such a
solution would be {(x1, x3, x2), (x4, x5)} for the example in Figure 3.3a.

3.4.2 Algorithmic Approaches

Based on these observations, a polynomial-time heuristic algorithm is pro-
posed that does not guarantee to find optimal solutions. Based on the fact
that solutions without gaps can easily be found if the netlist is generated only
by AND and OR gates with an odd number of inputs, the approach first inserts
pseudo-inputs to gates with an even number of inputs, then solves the prob-
lem optimally, and finishes by introducing diffusion gaps when removing
the previously inserted pseudo-inputs.
Nair et al. [NBR85] describe an algorithm that returns a provably optimum
solution taken over all possible netlist topologies. If the optimum solution
happens to be devoid of diffusion gaps, the algorithm even runs in linear
time. In other cases, no polynomial runtime can be guaranteed. The algo-
rithm of Maziasz and Hayes [MH87] finds a solution with the minimum
number of gaps in linear runtime, but it does assume a fixed topology for
the netlist. A parallel version of the algorithm that runs on a linear number
of processors and finishes in logarithmic runtime was presented in [HS91b].
Finally, Nyland and Reif [NR96] found an algorithm that solves the origi-
nal problem, i.e. minimizing the number of gaps over all placements and all
logically equivalent netlist modifications, in linear runtime.
A natural extension is to examine a larger class of graphs. While simple
CMOS cells are indeed representable by a pair of dual series-parallel graphs,
more complex cells do not employ this specific netlist structure. For this pur-
pose two-terminal graphs (TTGs) have been studied in the context of transistor-
level cell layout. A two-terminal graph G = (V, E) is a planar graph with a
fixed embedding and vertices s, t ∈ V on the outer face such that G + {s, t}

36 CHAPTER 3. PREVIOUS WORK

is 2-vertex-connected. The problem formulated by Uehara and vanCleemput
can also be posed for such graphs.
In this case, a proof is given in [UTK88] that it is NP-hard to find a minimum
number of edge sequences that correspond to walks in both the given TTG
and its dual. This is true even for a fixed netlist topology. However, if one
only asks for a single edge sequence that corresponds to a Eulerian walk in
both graphs, the answer can be found in linear time [CCM95]. The result was
later extended [CHH99] by showing how to decide in linear time if a logically
equivalent netlist exists for which such a dual Eulerian walk exists.
For a fixed topology, the problem of finding a minimum number of transis-
tor chains is solved by the exponential-time algorithm given in [HHLH89].
However, the formation of p/n-transistor pairs is done heuristically, so no
optimal solution is found in general.
Müller and Lengauer [ML86, LM88] considered a similar problem for dy-
namic CMOS gates. In this case only a single row of FETs must be ordered,
reducing the problem to single series-parallel graphs. They consider two ap-
proaches to the problem: The first is again the minimization of diffusion gaps,
i.e. finding a topology with a series-parallel graph representation that can be
covered with a minimum number of walks. The other approach is based on
the idea that one can replace a transistor by two identical parallel transis-
tors, both gated by the same input signal. In the graph representation, this
corresponds to the duplication of an edge. Hence, one can also ask for the
netlist topology that minimizes the number of edge duplications required to
make the graph Eulerian. The authors attribute these formulations to an un-
published work of R.H.J.M. Otten related to the Yorktown Silicon Compiler
[BBC+85], a chip design toolset developed by IBM during the 1980s.
Müller and Lengauer devise linear-time algorithms for both problems, i.e.
minimizing the number of paths required to cover the graph as well as min-
imizing the number of input duplications. Furthermore, they provide an
example for a class of series-parallel graphs that can be covered with O(1)
paths but require Ω(n) edge duplications to make them Eulerian, where n
is the number of FETs. As the number of duplications is always an upper
bound for the number of paths, they suggest that minimizing the number
of diffusion gaps is the most useful approach to optimize the size of CMOS
cells.
McMullen and Otten [MO88] found a linear-time algorithm for the case of a
single row of transistors with a series-parallel structure even when logically
equivalent reorderings of the netlist are allowed.

3.4.3 Computational Complexity

While minimizing the number of required gaps was shown to be easy in
many cases, it is in addition desirable to find an optimal solution that min-
imizes the number of required routing tracks among all optimal solutions.

3.5. EXTENSIONS OF THE ONE-DIMENSIONAL LAYOUT STYLE 37

This number is usually defined in the sense of a Weinberger-type transis-
tor chain (Figure 3.1). For this problem, Chakravarty et al. [CHR91] proved
NP-hardness even in the restricted case of a single transistor row with an
underlying series-parallel network structure for which no topology modifi-
cations are allowed. In order to obtain this result, they reformulate the task
as the search for a Eulerian walk in a series-parallel graph that minimizes
the clique number of an associated “track graph” and reduce an NP-hard
restriction of the bin packing problem to it.

3.5 Extensions of the One-Dimensional Layout Style

The cell model proposed by Uehara and vanCleemput could easily be mod-
eled in graph-theoretical terms, yet it was very restricted in respect to the
variety of the cell layouts that could be represented. As the technology con-
tinued to develop, many authors extended the model to adapt to new possi-
bilities as well as requirements arising in the manufacturing of CMOS cells.
The software TOPOLOGIZER presented in [KW85] automatically generates 1-
dimensional cell layouts with two transistor rows in which n-FETs and p-
FETs can be placed jointly in both rows. The placement phase starts with a
random placement and iteratively applies exchange operations that improve
the number of neighboring contacts that connect the same net. Here, “neigh-
boring” does not only mean adjacent transistors on the same row but also
contacts on the same track but different rows. TOPOLOGIZER also provides a
routing module. Similar to the placement, it starts with a very simple routing
before iteratively applying rules that locally improve the layout.
The toolset from Wimer et al. [WPF87] was designed to automatically gen-
erate two-row cell layouts without requiring the netlist structure to be rep-
resentable by a pair of dual series-parallel graphs. In this work, FETs can be
paired if they share a gate, source or drain contact. The method first deter-
mines transistor pairs, finds chains of those pairs, selects a minimum—and,
for a given target function, best—set of chains to realize the cell, and then
enumerates the 2nn! possibilities to place the chains (where n is the number
of chains). If n is too large, a random sample of placements is evaluated. The
algorithm requires an exponential runtime but allows for a flexible multi-
criteria target function rather than just optimizing cell area. Wimer et al. also
describe a heuristic channel routing approach to generate wires.
In [SSK+88] a target function is introduced that primarily optimizes the cell
area, but as secondary criteria considers routability modeled by gate align-
ment and total net length. The algorithm aims to identify known functional
groups in a cell, like an AND construct, and replaces those by predefined opti-
mal arrangements. The authors also describe a channel routing algorithm to
compute the wiring.
Several graph-based techniques like computing Hamiltonian paths, bipar-

38 CHAPTER 3. PREVIOUS WORK

tite matchings, and placements with optimal quadratic wire length are used
by Chen and Chow [CC89] with the goal to compute transistor placements
with a small area and good routability at the same time. No assumptions
regarding the structure of the netlist are made and FETs of varying sizes are
supported. The algorithm does not find optimal solutions, albeit having ex-
ponential runtime, but is still able to generate a cell layout with 192 transis-
tors.
Madsen’s method [Mad89] includes the possibility of prescribed locations
for external connections, giving the user more control over the cell layout
based on other nearby cell. It supports variable and fixed netlist topologies,
but Madsen does neither prove optimality in any sense nor does he show a
polynomial runtime.
Handling routability considerations in a provably optimal fashion was first
done by Bar-Yehuda et al. [BYFPW89]. They define a target function with 3
criteria, namely cell area, gate alignment, and total wire length, and describe
a branch and bound algorithm that finds a lexicographically best placement
for which a simple track-based routing exists. The tool is able to handle arbi-
trary netlist structures.
GENAC [OLL89] also follows a branch and bound approach to find, after
an initial rule-based pairing of n/p-FETs, an area-optimal linear ordering of
the transistor pairs, while at the same time looking for an optimum solution
with low routing density. In addition, the authors mention that the transistor
folding does not happen in a trivial greedy fashion, but as to minimize a cost
function that, although heuristic, is meant to improve the resulting cell area.
Another graph-theoretic approach was employed by GRAPES [HF87, HF92]:
After an initial min-cut based clustering phase that splits large instances into
modules of around 100 transistors, the input ordering is determined by en-
coding the circuit diagram as PQ trees. Because PQ trees represent sets of
permutations, the authors propose a method to merge two such trees, each
corresponding to one of the two transistor rows.
The goal of PARROT PUNCH [LSR06] is to arrange a large number of transis-
tors in 1-dimensional circuit rows such that the resulting layout has favorable
timing properties. The tool takes only a specification of the cell’s logic func-
tionality rather than a full netlist as input. Starting from this specification, it
generates the netlist such that the estimated placement size is minimum, re-
ducing the number of required transistors compared to standard cell schemes
in the process. Timing analysis is performed after the layout generation and
used to resize individual transistors on the critical path through a cell. This
saves area compared to the usual approach which applies timing optimiza-
tion on a gate-level netlist.
From the perspective of modern manufacturability issues, 1-dimensional cell
layout is performed in [WLC+13]. Much like in older works the authors
strive to maximize diffusion sharing while achieving a small number of re-
quired routing tracks, but in addition solutions are preferred which have a

3.6. STACKED DEVICES 39

small number of “stage-like line-end gaps”. These unwanted structures, gaps
in the metal strips on neighboring tracks with a small but positive offset,
proved to be problematic in the manufacturing of the chip.
For the placement algorithm, the authors show that sets of 3 transistors that
can be placed without a gap can be found by applying Ullmann’s subgraph
isomorphism algorithm [Ull76] to a certain graph that models the netlist and
one of six “connection subgraphs” of constant size. To find all placements
with a minimum number of diffusion gaps the algorithm enumerates sets of
such elementary chains that may overlap. Then all possible placements of
minimum size are evaluated in terms of routing density and expected stage-
like line-end gaps and the best one is returned. In the detailed layout gen-
eration after the placement, a maximum independent set is computed to op-
timize the number of tracks required on the second metal layer. Finally, a
branch and bound method finds a routing on this layer that is optimal in
terms of the proposed measure for the manufacturability.

3.6 Stacked Devices

Hill [Hil85] presented the first system, called SC2, that was able to perform
FET folding (cf. Section 2.3.1), also called stacking in the academic literature,
and thereby introduced one of the most important features of today’s CMOS
layout. SC2 also splits large cells into smaller sub-instances, subsequently
processing each of those independently. The placement algorithm first cou-
ples n-FET/p-FET pairs with the same gate net, then rearranges these pairs
using a Kernighan-Lin heuristic, and finally flips single transistors in an ex-
ponential yet practically feasible branch and bound method such that the
number of diffusion gaps is as small as possible. The folding of transistors is
done by simply splitting large FETs into smaller ones and connecting them
in parallel. The author states that a practical upper limit for the number of
FETs is 200–400.
In the development of POLLUX [MD88] not only cell area was targeted, but
the routability was considered as well. The resulting algorithm finds in-
put orderings with a small (yet not necessarily optimal) number of diffusion
gaps. Solutions are preferred if a routing exists that does not require more
than a given number of horizontal tracks. The author’s approach also sup-
ports transistors of non-uniform size, including a greedy a priori folding of
transistors which are too large to fit in a row. Moreover, additional layout
styles using two metal layers and power strips near the cell’s center are pro-
posed.
After folding has been incorporated in very simple ways, if at all, into au-
tomatic layout systems during the 1980s, Gatti et al. [GML89] defined what
they called “full stacked layout”, thereby initiating the systematic research
on transistors with flexible aspect ratios. The authors propose to exploit the

40 CHAPTER 3. PREVIOUS WORK

fact that very long transistors, whose geometric form traditionally needed a
large aspect ratio, can also be realized using more than one gate contact by
connecting the alternating source and drain contacts with comb-like wiring.
With this technique, the geometry of the FETs can be closer to a square, a
property which usually has a good impact on placement tools. In [GH98]
four variants concerning the possible interdependence of folding and place-
ment algorithms were formulated:

• Static placement, static folding: For given orderings of the FET rows, i.e.
a placement, and given finger numbers for each FET, find orientations
for the FETs such that the number of diffusion gaps, i.e. the cell area, is
minimized.

• Static placement, dynamic folding: For a given placement, find finger
numbers and orientations for the FETs such that the cell area is min-
imized.

• Dynamic placement, static folding: For given finger numbers, find a place-
ment, including orientations, such that the cell area is minimized.

• Dynamic placement, dynamic folding: Among all possible folding config-
urations and placements, including orientations, find the solution that
minimizes the cell area.

A notable example for a system with static placement and dynamic folding
is LIB [HHLH91]. The layout generation tool roughly follows the classical
two-row style, but reserves non-rectangular areas between the rows for the
routing. After forming initial FET clusters to reduce the instance sizes to a
manageable magnitude, an optimal transistor chain is formed for each clus-
ter. The placement of the chains is done using a Kernighan-Lin type heuristic
to reduce the routing density as much as possible. After a placement has
been decided upon, a folding module chooses finger numbers and FET ori-
entations.
An exact algorithm for the problem of static placement and dynamic folding
is presented by Her and Wong [HW93]. Among all minimum-width place-
ments the algorithm returns the folded placement which minimizes the cell
height, defined as the maximum of the sum of the n-FET’s height and the
p-FET’s height on a given track. The runtime of the dynamic programming
approach is polynomial in the number of required placement tracks.
An extension of the technique in [WPF87] is presented by Malavasi and Pan-
dini [MP95]. It reduces symmetries and combines the algorithm with a branch
and bound approach, yielding an algorithm that does not only arrange tran-
sistors within the cell but also determines favorable aspect ratios, i.e. folding
styles, for every transistor. The algorithm provably optimizes a complicated
target function that models cell area as well as favorable electrical properties.
XPRESS [GTH96] supports transistor folding in a framework that primarily
tries to minimize the cell width but also targets the total wire length as a

3.6. STACKED DEVICES 41

secondary optimization goal. Although the transistor chain generation is ex-
haustive in nature and thus finds optimal solutions among all possible tran-
sistor foldings, the heuristic parts of the method like the pairing of n- and
p-FETs, which is performed before the placement algorithm starts, prevents
it from finding globally optimal solutions. XPRESS supports arbitrary netlist
structures but does not modify the given topology.
Instead of just the area, the algorithm from [BR96] minimizes a target func-
tion that favors diffusion sharing but also incorporates performance consid-
erations in the form of criticality weights for parts of the cell. In fact, area
minimization is the special case for uniform criticality weights. The method
also addresses specific symmetry constraints appearing in analog circuits. It
finds in linear runtime a global minimum of the target function for a given
folding of the transistors by covering a modified circuit graph with a mini-
mum number of walks.
CELLERITY [GMD+97] supports transistor folding in an exhaustive way: For
every possibility to fold a subset of the transistors, the whole design flow is
executed and the layout with the fewest number of tracks is returned. Instead
of just allowing the classical 1-dimensional cells with two rows, a three-row
image with n-FETs in the center and p-FETs near the top and bottom cell bor-
der as well as a four-row image with up to two vertically neighboring n-FETs
near the bottom and two p-FETs in the top half are supported. The software
is able to place external ports within the cell’s boundary and includes a maze
router that is not limited to a single routing layer.
An algorithm that finds in timeO(n2 log n), where n is the number of transis-
tors, a folding configuration with a provably optimal cell area is presented in
[KK97]. In this work, the width of the 1-dimensional cell is only influenced
by the number of fingers in the two FET rows and the height is only influ-
enced by the highest n-FET and the highest p-FET. Diffusion sharing is not
considered in this model.
Assuming a dual netlist structure in which n-FETs and p-FETs always come
in pairs, [Ber01] describes a dynamic programming approach that optimally
solves the problem of dynamic placement and dynamic folding as an exten-
sion of the branch and bound method introduced in [BYFPW89]. The pri-
mary optimization target is the cell width and the secondary target models
the desire to use for each FET, if possible without increasing the total width,
as few fingers as possible.
Theoretical results concerning the computational complexity of several vari-
ants of the problem to find minimum-width transistor chains have been found
by Weyd [Wey11]. He augmented the linear-time solvable problem as con-
sidered in [ML86] with several aspects employed in transistor-level layout
since then, including folding (with prescribed or variable finger numbers)
and more complex rules regarding the distance between neighboring FETs.
We revisit and extend these results in Section 4.2.

42 CHAPTER 3. PREVIOUS WORK

3.7 Mixed Integer Programming

Integer Programming as a technique to optimize the layout of CMOS cells
was introduced by Gupta and Hayes [GH96]. The authors study a 2-dimen-
sional cell model which encompasses a given number of vertically adjacent 1-
dimensional rows of n-FET/p-FET pairs. The total cell width is given by the
longest of these rows, each of which is influenced by the number of transistor
pairs, the number of required diffusion gaps, and the number of wires that
need to be routed across multiple rows. To minimize the total cell width,
an integer linear program (ILP) is proposed that computes a covering of the
circuit graphs by dual walks as well as an assignment of the walks to the
circuit rows. Linear constraints are presented that yield an optimal solution
in terms of total cell width for a given pairing of n- and p-FETs. The number
of variables depends exponentially on the number of FETs because there is a
set of variables for every possible dual walk in the circuit graphs.
The authors report that layouts with up to 24 transistors could be handled in
practical runtimes of a few minutes. Moreover, the flexibility of the method
was limited to single-finger transistors. For these reasons, Gupta and Hayes
described several extensions of their method. In [GH97a] the ILP-based al-
gorithm was integrated in a hierarchical flow with the goal to handle larger
cells, even if optimality was lost. Using XPRESS [GTH96] as a 1-dimensional
placement tool, all dual walk covers of the circuit graphs are determined that
lead to minimum-size layouts. The resulting set of dual walks is then used
as input for the previously described ILP.
The tool CLIP [GH97b] uses this ILP formulation to determine the minimum
width of a 2-dimensional cell layout and then solves a second ILP to find,
among all 2-dimensional cell layouts of that width, one that minimizes the
cell height by minimizing the required horizontal routing tracks. In addition
to the formulation of the ILP that minimizes the channel routing density, the
authors reformulate the width minimization ILP to only include a polyno-
mial number of variables and constraints. In [GH98], support for transistor
folding is included in the ILP formulation. However, the folding must be
determined in advance because the integer program takes a given folding as
input.
Cortadella [Cor13] discusses folding from another point of view: In the given
technology it is not allowed to share diffusion area between neighboring FETs
if the FETs do not have the same height. The folding is constrained in that an
interval of possible gate lengths is given for each FET. If for example a FET
must have a total gate length in [9, 10], then it can be realized with 1 finger
and a height of 9 units, with 2 fingers and a height of 5 units, and so on.
This is also the first paper that does not require the single fingers of a folded
transistor to be placed directly next to each other and which allows the size
of a diffusion gap to have a parameterized size.
The algorithm takes an arbitrary transistor-level netlist and computes a fol-

3.8. SATISFIABILITY 43

ded netlist in which all transistors have only one finger for which an area-
optimal placement is guaranteed to exist. To do so, a mixed integer linear
program (MIP) is devised with a polynomial size that assigns finger numbers
to all FETs such that the minimum number of diffusion breaks is as small as
possible. The formulation is based on a suitable graph model and Eulerian
paths. Due to a weakness in the model the MIP solver has to be embed-
ded into a flow in which, in principle, exponentially many MIPs must be
computed. The method can be extended to multi-row cells, single FETs that
vertically span a whole row, and wire length estimation.

3.8 Satisfiability

In the 2000s, several aspects of the transistor-level layout problem have been
formulated in terms of the satisfiability (SAT) problem. The task of SAT is
to decide for a given logic formula if values can be assigned to the variables
such that the formula evaluates to true. Although it is well-known to be
NP-complete [Coo71], software solving SAT instances started to be powerful
enough to solve formulations of the addressed layout problems in practically
viable runtime.
Iizuka et al. [IIA04b] were the first to transform the transistor-level placement
problem to SAT. Their formulation uses variables xt,i,b, where t ∈ {N, P}
represents the type, i ∈ {1, . . . , n} is the index of the transistor pair, and
xt,i,k−1xt,i,k−2 . . . xt,i,0 is the binary representation of the index of the track at
which the i-th transistor of type t is placed. Note that if W is the width of the
cell, then k := dlog2 We. Additional variables yt,i encode if the i-th transistor
of type t is flipped or not. With these definitions, the following SAT instance
has exactly the legal 1-dimensional dual placements as feasible solutions:∨

0≤b<k

xt,i,b ⊕ xt,i′,b = 1 for 1 ≤ i < i′ ≤ n and t ∈ {N, P}

∨
0≤b<k

xt,i,b ⊕ uj,b = 1 for W ≤ j < 2k, 1 ≤ i ≤ n and t ∈ {N, P}

∨
i′∈Gi

∨
0≤b<k

xn,i,b ⊕ xp,i′,b = 1 for 1 ≤ i ≤ n

GAP(t, i, i′) ∧

 ∨
0≤j<W−1

C(t, i, j) ∧ C(t, i′, j + 1)

 = 0

for 1 ≤ i < i′ ≤ n and t ∈ {N, P}

Here uj,k−1uj,k−2 . . . uj,0 is a binary representation of the integer j and Gi is
the set of all p-FETs whose gates are connected to the same net as the gate
of the i-th n-FET. The variable GAP(t, i, i′) is supposed to equal 0 if and only
if the i-th and i′-th FET of type t can overlap if the first is placed directly to

44 CHAPTER 3. PREVIOUS WORK

the left of the second. The variable C(t, i, j) is 1 if and only if the i-th FET
of type t is placed on track j. These conditions can be enforced by several
additional clauses that were omitted in the presentation above. To find a
minimum-width layout, W is set to n and then increased until a SAT solver
finds a feasible solution.
With a similar technique, the routing problem is formulated as a SAT in-
stance. The nets are split into groups with specific properties and it is as-
sumed that all nets from one of the groups are routed in a uniform way that
can essentially be parameterized by a single number, namely the index of a
routing track. These numbers are represented by bit vectors and a polyno-
mial number of clauses are formulated that are satisfiable if and only if such
a constrained routing exists. To find a routable placement, solutions from the
placement phase are checked for routability and excluded by a new clause if
they turn out to be unroutable.
In [IIA04a] the same authors also look at the layout generation problem from
the perspective of yield. The target function is the minimization of the fault
probability which correlates to the total critical area, i.e. the area in which
a defect must occur in order to produce a broken cell. The critical area is
minimized by enumerating all minimum-width layouts using the SAT-based
technique and evaluating the fault probability for each of them. The largest
cell that can be handled within an hour has 12 single-finger FETs.
The placement algorithm in [TP07] is an extension of [HHLH89]. The branch
and bound method finds a placement that provably minimizes the cell width,
channel density and estimated wire length in a lexicographic fashion. How-
ever, the routing module also facilitates a transformation to SAT. Unlike
[IIA04b], this formulation associates variables with edges in a grid graph
rather than tracks. Net indices are encoded by splitting a binary represen-
tation of the numbers into individual bits. In order to minimize the wire
length, the authors provide a set of clauses that are only satisfiable if at most
M grid edges are used by wires, subsequently performing a binary search to
find the best possible value for M. The flexibility to encode forbidden pat-
terns in the SAT instance is employed to support a limited set of geometric
ground rules.

3.9 Free-Form Two-Dimensional Layouts

Although the 1-dimensional style proposed by Uehara and vanCleemput
[Uv81] and variations thereof has dominated theoretic advances as well as
practical implementation of transistor-level layout tools, some authors have
considered layout styles that extend to the 2-dimensional plane without be-
ing restricted to prescribed rows and without being constrained to a highly
regular structure as employed by gate matrices or PLAs.
An early example describing a method for the automatic layout of NMOS

3.9. FREE-FORM TWO-DIMENSIONAL LAYOUTS 45

cells is due to Luhukay and Kubitz [LK82]. The placement strategy comprises
a set of heuristics that arrange standard cells in a “better than random” way
and applying local optimization steps. However, the geometry generation
phase does not just insert handcrafted layouts from the standard cell library,
but uses algorithmically defined “subcells” to generate the shapes based on
design rules and device sizes. It is also worth mentioning, because uncom-
mon at the time, that one of the possible layout schemes uses two instead of
just one metal layer for the wiring.
The toolset presented in [WNMD83] has several characteristics of more mod-
ern VLSI tools aimed at a higher hierarchy level. It consists of a force-directed
placement routine working directly on transistors, a torque-directed orienta-
tion routine rotating the placement objects, a wiring phase that connects nets
with minimum spanning trees or a track-based method, an assignment of 2-
point connections to the available layers and a routing step that heuristically
realizes 2-point connections with L shapes such that the number of shorts is
as small as possible.
In [NJ85] the netlist is transformed to several auxiliary graphs to which sev-
eral algorithms are applied in order to obtain a realizable embedding of the
netlist into the three available layers, namely diffusion, polysilicon and metal.
The techniques include a partitioning into maximal 2-vertex-connected com-
ponents, a subroutine of the planarity testing algorithm by Hopcroft and
Tarjan [HT74] that generates a hierarchy of paths covering a graph, and a
2-coloring satisfying certain properties.
A 2-dimensional layout scheme which is based on the formation of n-FET/p-
FET pairs is proposed in [MAU86]. The placement algorithm first computes
a heuristic 1-dimensional array of the transistor pairs and then folds this row
in a zig-zag fashion. Later, local improvement steps are applied. The routing
module consists of a modified maze router [Lee61] that works on the single
metal layer which is not used by the transistors themselves.
Poirier [Poi89] describes a system that arranges arbitrary CMOS netlists be-
tween two horizontal power strips. However, the distance of the power
strips is not fixed and the tool is able to place FETs in more than two rows.
The heuristic method groups transistors to clusters and enumerates possible
placements of those clusters, including possibilities to fold single FETs.
In [FSA95] transistors are grouped by simulated annealing into chains which
can be placed without diffusion gaps. The chains are abstracted as rectangles
and placed with a floorplanning technique that involves recursively slicing
the cell area with vertical and horizontal cuts. The transistor chains can be
rotated by multiples of 90 degrees such that layouts are generated that have
gate contacts with non-uniform direction. After the routing step, which is
based on a depth first search on a regular grid graph, a final compaction
method transforms the symbolic layout into geometric shapes.
Rekhi et al. [RTL95] describe what they call 1- 1

2 -dimensional cells. Here a
single row of transistors is, as usual, arranged near each of the two horizon-

46 CHAPTER 3. PREVIOUS WORK

tal power rails bordering the cell outline at the top and the bottom side, but
instead of forcing the n-FETs near the GND potential and the p-FETs near the
VDD potential, n-FETs and p-FETs are allowed to mix in both of the transis-
tor rows. The algorithm uses a heuristic to pair transistors that may be of
the same type, then computes groups of transistor pairs that can be placed
without diffusion gap, and finally places the groups in a branch and bound
method minimizing the number of connections which have to cross a gap.
AKORD, a software by Serdar and Sechen [SS99], combines the free-form 2-
dimensional layout style involving vertical and horizontal gates with tran-
sistor folding. In addition, “black boxes” are supported—already laid out
circuits that can be inserted into a layout and form a new level of hierarchy.
The placement method is based on simulated annealing and primarily targets
the total wire length. In this approach, transistor grouping and folding can
be handled within the placement phase and must not be fixed in advance.
Riepe and Sakallah [RS99, RS03] describe a full 2-dimensional cell layout tool,
TEMPO, that rotates transistors by multiples of 90 degrees. Similar to pre-
vious 2-dimensional approaches, the placement step is based on simulated
annealing. However, it allows more degrees of freedom as it does not rely on
statically formed chains of transistors but reconfigures chains and reassigns
transistors within the placement phase. Other differences to earlier systems
are that TEMPO uses the sequence pair representation of rectangle packings
([MFNK95]) to explore the search space and that it allows for more complex
cases of geometry sharing between three or more transistors.

3.10 High Regularity

In recent years, the continuing miniaturization of geometric structures com-
bined with the non-decreasing wavelength of the lasers that are used to man-
ufacture chips led to an explosion of the number and complexity of shape-
based design rules. For example, the polysilicon strips forming the gate have
a width of approximately 10% of the wavelength used to produce them. In
order to attenuate the burden imposed by this problem, both for tools and en-
gineers, much of the literature discussing transistor-level layout has returned
to highly regular structures like 2-dimensional gate arrays and similar con-
cepts. The ideal geometry of the metal layers, rectangles of the same size
that are arranged in a regular 2-dimensional grid, have been entitled lithog-
rapher’s dream patterns [MLMS07]. Several approaches were proposed to
generate cell layouts that are as close to those patterns as possible.
One such approach is called via-programmable: Fixed blocks of transistors and
wiring are used to fill the chip area, or a part of it. The varying function-
ality of the logic blocks is then added by inserting vias at the appropriate
positions. The task is then to create such predefined blocks which lead to a
minimum number of unused transistors.

3.11. SUMMARY 47

A new type of gate array is introduced by Lin et al. [LMSM10] who use so-
called VeSFETs (Vertical Slit FETs). This type of transistor has a square foot-
print on which two diagonally opposing corners form the gate contact and
the other two corners are the source respective drain contacts. Every metal
layer allows only wires in one direction, but for all multiples of 45 degrees
a layer exists that is reserved for wires in this direction. To compensate the
VeSFETs’ disadvantage that no geometry can be shared between two transis-
tors, the square-shaped transistors of uniform size are packed without any
gaps so that 100% of the chip area is occupied by active diffusion areas.
The placement is performed by simulated annealing in two phases. In the
first phase the aim is to minimize the number Cresource that estimates the rout-
ing difficulty after a set of direct connections have been routed without de-
tours, and in the second phase the ratio Ccut

Cresource
is maximized, where Ccut is

defined as to model the amount of difficult global connections. The routing
method also runs in two phases: In the first one a greedy routing iteratively
applies a path search to compute the unexpectedly unproblematic connec-
tions and in the second phase a SAT formulation is used to find routings for
the remaining nets.
Ryzhenko and Burns [RB11] present an intermediate approach. They modify
placements of custom cells to match a highly regular pattern on all layers.
Only a few routing candidates are considered for every net, each of which
also satisfies certain regularity properties. In a branch and bound algorithm
the wire candidates are enumerated until a combination of candidates has
been found that is void of conflicts. The authors later provided a SAT for-
mulation [RB12], embedded in a multi-stage routing flow, to improve their
approach.

3.11 Summary

Until today a wide range of different methods have been employed to auto-
mate the layout of CMOS cells, including graph-theoretical methods, branch
and bound, (mixed) integer programming, satisfiability models, and so on.
Moreover, many different layout schemes have been proposed that roughly
fall into the categories 1-dimensional (row-based), 2-dimensional, and struc-
tured (e.g. gate matrices)—even though the interpretation of these terms dif-
fers and no distinct boundaries between them were established. The domi-
nating design strategy for contemporary integrated circuits primarily resem-
bles the 1-dimensional style whose investigation originates in Uehara’s and
vanCleemput’s seminal paper from 1981.
The algorithms presented in the following chapters can be classified some-
where in between 1-dimensional and 2-dimensional approaches. While our
cell model, as explained in Section 2.3, also employs a circuit row structure
with intermediate power rails, the placement within the rows has several

48 CHAPTER 3. PREVIOUS WORK

crucial properties that exceed the traditional structure of 1-dimensional cells.
Most notably the transistor rows in a single circuit row cannot be regarded
as two independently arrangeable objects, but must be laid out together as
they compete for a common area that can be covered by at most one of the
rows. Moreover, depending on the parameters, n-FETs and p-FETs may mix
in a single row of transistors.

Chapter 4

Transistor Row Placement

Row, row, row your boat,
Gently down the stream.
Merrily, merrily, merrily, merrily,
Life is but a dream.

Traditional nursery rhyme

This section begins with several definitions to provide a basis for the formal
discussion of the 1-dimensional layout problem: the arrangement of transis-
tors in a single horizontal row. Afterwards, we provide a graph-theoretical
framework, which is related to covering graphs with walks, that eases the
analysis of such layouts. We then establish theoretical properties of the lay-
out problem, including the optimization of layout size and quality (in terms
of netlength), and finally devise a number of different placement algorithms
that will subsequently be used as tools for the construction of transistor-level
layouts with more than one transistor row.

4.1 Definitions

A net N represents an electrical potential in a cell, i.e. a region that must be net
electrically connected by some sort of wiring. Occasionally a weight w(N) ∈ net weight w(N)

N is associated with every net.
A FET or transistor is given as a tuple F = (Ng, Ns, Nd, L, t, Vt), where FET

• Ng, Ns, and Nd are the nets connected to gate, source, and drain, Ng(F), Ns(F),
Nd(F)• L ∈ N is the total length of the gate (associated with the FET’s “area”),
L(F)given as the number of required fin/gate intersections,

• t ∈ {n, p} is the FET’s type, and t(F)

• Vt ∈N is its Vt level. Vt(F)

For a given FET F we denote these parameters by Ng(F), Ns(F), Nd(F), L(F),
t(F), and Vt(F). Additionally, a function LF

f : N → P(N) is associated LF
f (k)

49

50 CHAPTER 4. TRANSISTOR ROW PLACEMENT

with every transistor F. Assuming that F is realized with k fingers, the set
LF

f (k) contains the possible finger lengths. In the following we always require
|LF

f (k)| ≤ 1 for all k ∈ N, so either a given number of fingers cannot be
realized or the finger length is uniquely determined by the number of fingers.
A transistor-level netlist, or simply netlist, is a pair (F ,N) of a set of FETs andnetlist
a set of nets such that N = {N∗(F) | F ∈ F , ∗ ∈ {g, s, d}}. Because the nets
can be inferred from the FETs, a netlist is usually identified with the set of
FETs.

Configurations, Placements, Layouts

A configuration of a FET F is a tuple (n f (F), l f (F), cl(F)) that represents theconfiguration
physical realization of an abstract transistor. It consists of
• n f (F) ∈ N, the number of fingers (associated with the transistor’sn f (F)

“width”),

• l f (F) ∈ LF
f (n f (F)), the length of a finger (the transistor’s “height”),l f (F)

given as the number of fins it intersects, and

• cl(F) ∈ {Ns(F), Nd(F)}, specifying the net connected to the leftmostcl(F)
source/drain contact (equivalent to the transistor’s swap status).

Because |LF
f (k)| ≤ 1 is generally assumed, we henceforth omit l f (F) from

the configuration: If a FET can be configured with k fingers, then l f (F) is
uniquely determined by this number. Ideally, L(F) = n f (F) · l f (F) should
hold, but this is not enforced. A configuration of a set F of transistors is an
assignment of configurations to every F ∈ F . A configuration of a netlist
(F ,N) is a configuration of F . If a configuration has already been fixed, a
FET or a set of FETs is called configured.
For a given configuration of a FET F we also define cr(F) as the net connectedcr(F)
to the rightmost contact, that is

cr(F) :=

cl(F) if n f (F) is even
Ns(F) if n f (F) is odd and cl(F) = Nd(F)
Nd(F) if n f (F) is odd and cl(F) = Ns(F).

Now let nmin
f (F) := min{k | LF

f (k) 6= ∅} be the minimum and nmax
f (F) :=nmin

f (F), nmax
f (F)

max{k | LF
f (k) 6= ∅} the maximum number of fingers a transistor can be con-

figured with. Figure 4.1 illustrates the definitions.
A 1-dimensional placement of a FET F, or just placement if the type is apparentplacement
from the context, is a number x(F) ∈N. It represents the x-coordinate of the
leftmost gate, given as a multiple of the technology-defined track width. A 1-
dimensional layout of a FET, or just layout, is a pair (x(F), C(F)) of a placementlayout
and a configuration of F. By analogy with the definition of a configuration
we extend those definitions to sets of transistors and netlists.

4.1. DEFINITIONS 51

Ns Nd

Ng

Nd Ns

Ng

l f
(F

)

Ns Nd Ns

Ng

Ng Ng

Figure 4.1: The same transistor F with configuration (2, 3, Ns) placed
at x(F) = 0 and with configuration (3, 2, Nd) placed at x(F) = 4. In
both cases cr(F) = Ns holds.

FET Distances, Legality

Not all possible layouts correspond to physical layouts that would function,
let alone be manufacturable. Transistors may not overlap arbitrarily and
must fulfill specific constraints. To handle such constraints, a general dis-
tance function d is employed. Such a function takes two configured FETs and distance
returns the minimum distance between the two FETs if the first one is placed
to the left of the second one. In particular, d(F′, C′, F′′, C′′) = 0 means that if
F′ with configuration C′ is placed to the left of F′′, configured according to
C′′, then both FETs may overlap by 1 track, i.e. diffusion sharing is possible.
If the configuration is unambiguous in the context, we only write d(F′, F′′)
instead of d(F′, C′, F′′, C′′). For d(F′, F′′) = 1 the two FETs’ diffusion areas
may abut but not overlap, i.e. 1 track between the FETs cannot be used for
one of the FETs’ fingers, and for d(F′, F′′) = 2 a free track between the FETs’
diffusion areas must be introduced, meaning that 2 possible finger locations
between the FETs cannot be used. Figure 4.2 illustrates these cases.
While this type of distance function is very general, more specific exam-
ples are discussed in the upcoming sections that model actual constraints
from real-life technology. In particular, we say a distance function is sim-
ple if its value only depends on the differences between the FET heights, simple distance
the FETs’ Vt levels, and their types. In other words, the three properties
|l f (Fl)− l f (Fr)| = |l f (F′l)− l f (F′r)|, (Vt(Fl), Vt(Fr)) = (Vt(F′l), Vt(F′r)), and
(t(Fl), t(Fr)) = (t(F′l), t(F′r)) must imply d(Fl , Fr) = d(F′l , F′r).
A distance function provides a notion of legality. Given a layout (x, C) of a
netlist (F ,N) and a distance function d, we call the layout legal if legal layout

x(F′) ≥ x(F) + n f (F) + d(F, F′)

holds for each two distinct FETs F, F′ ∈ F with x(F) ≤ x(F′).

52 CHAPTER 4. TRANSISTOR ROW PLACEMENT

N1 N2

N3

N2 N1

N3

N2 N3

N4

N1 N4

N2

N2

N4

Figure 4.2: Example layout Λ with W(Λ) = 7 where the FETs are
placed at their minimum distances if d(F1, F2) = 0, d(F2, F3) = 1, and
d(F3, F4) = 2 (if the FETs are numbered from left to right).

Layout Width, Netlength

An important parameter of a layout is its size. In the 1-dimensional context
it is solely determined by the required number of horizontal tracks, so we
define for a layout Λ = (x, C) of a FET set F the layout widthlayout width

W(Λ)

W(Λ) := max
F∈F
{x(F) + n f (F)}.

The optimal width of a netlist is given by

Wopt(F) := min{W(Λ) |Λ is a legal layout of F}.

To estimate the amount of wiring required to electrically connect the nets in
a layout, two different types of netlengths are introduced. They are defined
using the sets Tsd(F, N) that contain all half-tracks, i.e. integer multiples ofTsd(F, N)

half the technology-defined track width, on which F must be connected by
net N, precisely

Tsd(F, N) :=

{2x(F) + 2k | 0 ≤ k ≤ n f (F), k even}
if N ∈ {Ns(F), Nd(F)} and cl(F) = N

{2x(F) + 2k | 0 ≤ k ≤ n f (F), k odd}
if N ∈ {Ns(F), Nd(F)} and cl(F) 6= N

∅ otherwise.

Then Tsd(N) :=
⋃

F∈F Tsd(F, N) is the set of all tracks on which N is con-Tsd(N)

nected to a source or drain contact. The set of all half-tracks on which N is
connected to a gate is given byTg(N)

Tg(N) := {2k + 1 | x(F) ≤ k < x(F) + n f (F)

for some F ∈ F with Ng(F) = N}.

We set T(N) := Tg(N) ∪ Tsd(N). Then the gate netlength NLg(Λ, N) and theT(N)

total netlength NL(Λ, N) of a net are defined bygate / total
netlength

4.1. DEFINITIONS 53

NLg(λ, N) := max Tg(N)−min Tg(N) and
NL(λ, N) := w(N) · (max T(N)−min T(N)) .

If no weights are given in the context, we assume w(N) = 1 for every net N.
Note that the gate netlength is not affected by net weights. Finally, we define
the netlengths of the layout as NLg(Λ) := ∑N∈N NLg(Λ, N) and NL(Λ) :=
∑N∈N NL(Λ, N). An example is given in Table 4.1. NLg(Λ), NL(Λ)

Placement Problem, Configuration Graphs

The central optimization problem associated with 1-dimensional transistor
placements is the minimization of the layout size.

TRANSISTOR ROW PLACEMENT PROBLEM

Instance: A transistor-level netlist (F ,N).

Task: Find a legal layout Λ of (F ,N) that minimizes W(Λ).

In order to examine theoretical properties and algorithms related to this prob-
lem, it is helpful to model a netlist as a graph. Given a netlist (F ,N) to-
gether with a configuration C, we define the configuration graph as the graph configuration

graphGC
F := (VC

F , EC
F), where

VC
F := {vN | N ∈ N} and

EC
F := {{vcl(F), vcr(F)} | F ∈ F}.

The vertices model the nets and the edges model the transistors by linking
the net connected to the leftmost contact to the net connected to the rightmost
contact. If a FET has an odd number of fingers, the according edge connects
source with drain, otherwise the edge is a loop adjacent to either the source
or the drain vertex. Two examples are given in Figure 4.3. The directed con-
figuration graph is the same graph with the only difference that the edges are
directed from the leftmost contact to the rightmost contact.

Table 4.1: Netlengths for the layout in Figure 4.2.

Net Tsd Tg NL NLg

N1 {0, 4, 14} ∅ 14 0
N2 {2, 6, 10} {15} 13 0
N3 {8} {1, 3} 7 2
N4 {16} {7, 9} 7 2

Λ – – 41 4

54 CHAPTER 4. TRANSISTOR ROW PLACEMENT

vN1

vN2

vN3

vN4

vN5

vN6

N1 N2 N2 N3 N4 N5 N5 N6 N2 N5

(a) All FETs configured with 1 finger

vN1

vN2

vN3

vN4

vN5

vN6

N1 N2 N2 N3 N4 N5 N5 N6 N2 N5 N2

(b) One of the FETs configured with 2 fingers

Figure 4.3: Two possible layouts of 5 FETs and the corresponding con-
figuration graphs. The covering number γ(G) decreases from 3 to 2,
the total number of fingers increases by 1.

4.2 Optimization of the Layout Size

For the theoretical exploration of the TRANSISTOR ROW PLACEMENT PROB-
LEM we restrict to one of the most simple distance functions that models dif-
fusion sharing and already captures many properties from real-world tech-
nologies. The function always permits diffusion sharing if the shared contact
is connected by the same net. Otherwise, a gap of 1 track between the diffu-
sion areas is required. Formally, this distance function is given byd0/2(F, F′)

d0/2(F, F′) :=

{
0 if cr(F) = cl(F′)
2 otherwise.

Walk Covers

For a graph G = (V, E), a walk coverW is a set of walks in G such that everywalk cover
e ∈ E is contained in exactly one walk in W . The notion is extended to
directed graphs with directed walks. The covering number γ(G) of a graphcovering number

γ(G) G is defined as the minimum cardinality of a walk cover of G. It can be
determined easily in linear runtime.

Lemma 1. Let G be an undirected graph and G1, . . . , Gk the connected components
of G that have at least one edge. If ni

odd denotes the number of vertices in Gi that have
an odd degree, then

γ(G) =
k

∑
i=1

max{1,
ni

odd
2
}.

4.2. OPTIMIZATION OF THE LAYOUT SIZE 55

Proof. This is a simple consequence from the fact that a connected graph pos-
sesses a Eulerian cycle if and only if all vertices have even degree [HW73]:
Let G be connected and nodd the number of odd-degree vertices in G. Then
one can add nodd

2 edges to obtain a Eulerian graph G′ with a Eulerian cycle C.
When the added edges are removed, C is split into nodd

2 walks. If G is Eulerian
and has at least one edge, then one walk is required to cover G even though

nodd = 0, and hence γ(G) ≤ max{1, ni
odd
2 }. For the other direction, observe

that at least one walk must start or end in every odd-degree vertex. The
lemma is obtained by applying this argument to every connected component
that is not an isolated vertex.

Lemma 2. Let G be a directed graph and G1, . . . , Gk the subgraphs associated with
the connected components of the underlying undirected graph that have at least one
edge. If we denote ∆i := ∑v∈V(Gi) max{0, δ+(v)− δ−(v)}, then

γ(G) =
k

∑
i=1

max{1, ∆i}.

Proof. The lemma is deduced in analogy to Lemma 1, using the fact that a
directed graph G whose underlying undirected graph is connected has a Eu-
lerian cycle if and only if δ+(v) = δ−(v) holds for all v ∈ V(G).

Walk covers were first applied to transistor-level layout problems by Uehara
and vanCleemput [Uv79]. The following lemma, which is an extension of
their observations, connects the covering number to optimal FET layouts.

Lemma 3. For a set F of FETs let

W0/2
opt (F) := min{W(Λ) |Λ is a legal layout of F with respect to d0/2}

denote the width of an optimal layout. Then

W0/2
opt (F) = min{2γ(GC

F)− 2 + ∑
F∈F

n f (F) |

C = (n f , l f , cl) is a configuration of F}.

Proof. The edge sequence of a walk in a configuration graph corresponds to
a sequence of FETs that can be laid out in a consecutive row such that all
adjacent FETs share their diffusion areas. On the other hand, two edges that
do not form a walk of length 2 in GC

F cannot share their diffusion areas by
the definition of d0/2. Consequently, the minimum number of gaps in the
diffusion area equals γ(G) − 1, and each of the gaps must span at least 2
tracks. Since no two fingers can share the same track, at least ∑F∈F n f (F)
tracks are required to hold the fingers of a given configuration. Summing up
gap size and finger numbers yields the value given in the lemma.

Figure 4.4 illustrates the correspondence between a walk cover and a layout.

56 CHAPTER 4. TRANSISTOR ROW PLACEMENT

N1 N2 N5 N2 N3 N4 N5 N6

Figure 4.4: Placement with width W0/2
opt (F) that corresponds to the

walk cover {(vN1 , vN2 , vN2 , vN3), (vN4 , vN5 , vN6)} in Figure 4.3b.

Hardness of the Placement Problem

Several variants of the TRANSISTOR ROW PLACEMENT PROBLEM can there-
fore be solved in linear time, namely:
• If the finger numbers n f are fixed.

• If a placement must be computed in which all n f (F) are required to be
odd.

• If cl is fixed (i.e. swapping is not allowed) and all n f (F) are required to
be even. In this case directed configuration graphs are used to model
the inability to swap FETs.

It is easy to check that in these cases all possible configuration graphs GCF are
identical, so W0/2

opt (F) can be determined by an application of Lemma 3 to a
single configuration graph and choosing the values of n f as small as possible.
An extensive discussion of these results can be found in [Wey11].
If swapping is allowed and all FETs are required to have an even number of
fingers, then the minimization of the placement width is structurally equiv-
alent to the VERTEX COVER problem: The values of cl must be chosen such
that the fewest possible number of vertices in the configuration graph has a
positive degree, i.e. the number of connected components with at least one
edge is minimized. Hence this variant of the placement problem is NP-hard.
A more detailed explanation is provided by Weyd [Wey11].
The complexity of the general version of the problem remains an open ques-
tion: When the finger numbers are neither prescribed nor required to have
the same parity. In this case FETs may be increased in size (from 1 finger to
2 fingers) in order to reduce the number of required diffusion gaps, each of
which saves 2 tracks.

4.3 Optimization of the Netlength

Alongside the optimization of the width of a layout, its routability is also an
important property. A rough yet common measure for this abstract quality is
netlength: If less wiring is needed to connect the contacts in a layout, it seems
likely that the routing problem becomes easier. This is not true in general, but

4.3. OPTIMIZATION OF THE NETLENGTH 57

a close enough approximation to use in contexts where the exact routability,
i.e. the existence of a feasible routing, is too hard to evaluate.

TRANSISTOR ROW NETLENGTH MINIMIZATION PROBLEM

Instance: A transistor-level netlist (F ,N).

Task: Find a legal layout Λ of (F ,N) with W(Λ) = Wopt(F) such that
NLg(Λ) is minimized.

Again we consider the simple distance function d0/2 as defined in Section 4.2.
Weyd [Wey11] provides proofs that the problem is NP-complete if all FETs
are required to have an odd number of fingers and, on the other hand, if all
FETs are required to have an even number of fingers. In the following, we
present a simplified version of these proofs which does not pose restrictions
on the transistor configurations.

Theorem 1. The TRANSISTOR ROW NETLENGTH MINIMIZATION PROBLEM

is NP-hard.

Proof. We show that the associated decision problem, the question if there
exists a legal minimum-width layout Λ with NLg(Λ) ≤ k, is NP-complete.
The membership in NP is obvious.
To show NP-completeness, we describe a polynomial transformation from
the LINEAR ARRANGEMENT problem. For this let G = (V, E) with V =
{1, . . . , n} and E = {e1, . . . , em} be an instance of this problem. To prove the
theorem it suffices to construct a transistor-level netlist FG such that there
exists a permutation π : V → V with ∑{v,w}∈E |π(v)− π(w)| ≤ k if and only
if there exists a minimum-width layout Λ of FG with NLg(Λ) ≤ m2 + (2m +
2)k. We proceed with the definition of such an instance.
The nets inFG are grouped into three setsNV := {Ni

v | v ∈ V, i ∈ {1, . . . , 2m+
1}}, NE := {Ne | e ∈ E}, andN∅, where the first two sets are associated with
vertices and edges of G, respectively. All nets in N∅ are only connected to a
single gate contact and thus do neither contribute to the netlength nor influ-
ence diffusion sharing options.
For every v ∈ V we construct 2m FETs Fv := {F1

v , . . . , F2m
v } with the follow-

ing contacts:

Ns(Fi
v) = Ni

v for 1 ≤ i ≤ 2m

Nd(Fi
v) = Ni+1

v for 1 ≤ i ≤ 2m

Ng(Fi
v) = Ng(F2m+1−i

v) = Nei if v ∈ ei

Ng(Fi
v), Ng(F2m+1−i

v) ∈ N∅ if v /∈ ei

An example is depicted in Figure 4.5. First note that Fi
v and Fj

w have no source
or drain contact in common if v 6= w, so the configuration graph GC

FG
has at

58 CHAPTER 4. TRANSISTOR ROW PLACEMENT

least n connected components with edges for every possible configuration
C. This implies that γ(GC

FG
) ≥ n holds for every configuration C. For a

configuration with n f ≡ 1 we have γ(GC
FG

) = n, because then GC
FG

is the
disjoint union of n paths.

1

2

3

e1 e2

N1
1 N2

1

Ne1

N2
1 N3

1 N3
1 N4

1 N4
1 N5

1

Ne1

N1
2 N2

2

Ne1

N3
2

Ne2

N4
2

Ne2

N5
2

Ne1

Figure 4.5: Example for the construction of Theorem 1: A graph G and
the FET sets F1 (bottom row) and F2 (top row, sharing diffusion).

We can conclude by Lemma 3 that every width-minimal configuration must
satisfy n f ≡ 1, as otherwise ∑F∈FG

n f (F), and consequently W0/2
opt (FG), is

strictly larger. So from now on we may only consider configurations in which
every FET has a single finger.
A group Fv can only be placed in the order F1

v , . . . , F2m
v or exactly vice versa

in width-optimal layouts, as every pair of neighboring FETs must overlap.
However, flipping such a group horizontally does not change the gate net-
length, because the gates in a group are connected symmetrically around the
center of the group. Thus we may assume w.l.o.g. that the instance is placed
with n(F) = 1 and cl(F) = Ns(F) for all F ∈ FG. We call this unique configu-
ration C∗.
It follows that for every permutation π : V → V there exists exactly one
placement xπ such that

• Λπ := (xπ, C∗) is a legal layout

• that is width-optimal, i.e. W(Λπ) = W0/2
opt (FG),

• and for which the FET groups are ordered from left to right according
to π (i.e., π(v) < π(w)→ xπ(Fi

v) < xπ(Fj
w) for all 1 ≤ i, j ≤ 2m).

For an edge ei = {v, w} ∈ E the length of Nei , as illustrated by Figure 4.6, is
comprised of three components, namely

• the part of the net between Fv and Fw, which is 3 + (|π(v)− π(w)| −
1)(2m + 2),

• the part of the net inside Fv, which amounts to 2m− i, and

• the part of the net inside Fw, which is also 2m− i.

4.4. ALGORITHMS 59

Ne1 Ne2 Ne2 Ne1 Ne1 Ne1 Ne2 Ne2

2m− i 3 (|π(2)− π(3)| − 1)(2m + 2) 2m− i

Figure 4.6: Layout Λ(2,1,3) and the components of NLg(Ne2) for the
graph in Figure 4.5.

The gate netlength of such a layout thus amounts to

NLg(Λπ) = ∑
ei={v,w}∈E

3 + (|π(v)− π(w)| − 1)(2m + 2) + 2(2m− i)

= 3m + 4m2 + ∑
ei={v,w}∈E

(|π(v)− π(w)| − 1)(2m + 2)− 2i

= m + 2m2 −
(

2
m

∑
i=1

i

)
+ ∑
{v,w}∈E

(|π(v)− π(w)|)(2m + 2)

= m + 2m2 −m(m + 1) + (2m + 2) · ∑
{v,w}∈E

|π(v)− π(w)|

= m2 + (2m + 2) · ∑
{v,w}∈E

|π(v)− π(w)|.

We can conclude that there exists a layout Λ of FG with NLg(Λ) ≤ m2 +
(2m + 2)k if and only if there exists a permutation π : V → V such that
∑{v,w}∈E |π(v)− π(w)| ≤ k, which is the required property of the transfor-
mation. The polynomiality of the transformation follows directly from its
construction.

Note that the same hardness result is obtained when total netlength rather
than gate netlength is considered: The latter is the special case for which all
source and drain contacts are connected to the same net.

4.4 Algorithms

In practice, several degrees of effort can be made to search for good place-
ments, ranging from fast heuristics to the enumeration of all optimal solu-
tions. Because several variants from this range can be applied in the layout
of full cells with two transistor rows, as described in Chapter 5, we provide
not just one but several algorithms that generate 1-dimensional placements.
In the following, a FET class C denotes a set of FETs such that all F ∈ C FET class
have the same Vt level and the same type. The distinction into classes has
no theoretical significance, but in practice FETs from different classes tend to

60 CHAPTER 4. TRANSISTOR ROW PLACEMENT

have the strictest requirements on their distance, so from an implementation
point of view it is advantageous to make that difference.
The algorithms provided in this section are implemented as part of the BONN-
CELL toolchain, and therefore we do not make any assumptions on the dis-
tance function d. However, we do introduce names for some properties of
the function:d+min, dcl

min, dmax

d+min : minimum value of d that is larger than 0

dcl
min : minimum value of d for FETs in different classes

dmax : maximum value of d taken over all FETs and all configurations

These values can be precomputed in every call of the algorithms. For exam-
ple, if an instance is processed in which all FETs have the same type, which is
a common setup, then dmax can be set to the maximum value of d taken over
all FET pairs that occur in the instance, even though FETs of different types
would have to be spaced even further apart.
For fixed finger numbers n f : F →N we further defineW

n f
opt(F)

W
n f
opt(F) := min{W(Λ) |Λ is a legal layout of F with the given n f }

as the minimal size of a legal layout with the given finger numbers.
The following algorithms employ a dynamic programming scheme that re-
cursively constructs a row by extending a placed subset of the transistors—
initially the empty set—to the right. In every step, an unplaced FET is chosen
and attached to the right of the already placed partial row, preferably but not
necessarily at an x-coordinate that is as small as possible.

4.4.1 Lower Bound

For this general scheme to run efficiently it is important to compute lower
bounds for the width of the finished placement, given that a subset of the
FETs is placed in a specific way. Algorithm 1 provides a general framework
to compute such a lower bound.

Lemma 4. If Algorithm 1 returns WLB, then WLB ≤W(Λ) for every legal layout Λ
of Fl ∪Fu that is configured with the prescribed finger numbers n f and that extends
the layout of Fl . It can be implemented with runtime O(|Fl ∪ Fu|).

C1 C2 C1 C3 C1 C2 C1

Figure 4.7: Illustration of some definitions from the proof: The layout
splits into 3 FET classes C1, C2, and C3. Two classes are placed in more
than one consecutive interval, so l1 = 3, l2 = 2, and l1 = 1.

4.4. ALGORITHMS 61

Algorithm 1: LowerBound
Data: FETs Fl with a legal layout Λl , unplaced FETs Fu, and n f (F) for

all F ∈ Fu
Output: An integer WLB

1 Fprev← Rightmost FET in Fl
2 num classes← Different FET classes in Fu ∪ {Fprev}
3 num class gaps← 0
4 forall the FET class C in Fu ∪ {Fprev} do
5 Codd ← FETs in C with an odd number of fingers
6 G ← configuration graph of (Fu ∪ {Fprev}) ∩ Codd

num class gaps← num class gaps + max{0, γ(G)− 1}
7 return W(Λl) + ∑F∈Fu

n f (F)
8 +(num classes− 1) · dcl

min + num class gaps · d+min

Proof. Let Λ be a legal layout of Fl ∪ Fu that extends the given layout of
Fl . Then W(Λ) is comprised of the number of tracks occupied by the given
layout of Fl , which is W(Λl), the fingers used by FETs in Fu, which can
be computed from the input as ∑F∈Fu

n f (F), and possible gaps between the
FETs that have yet to be placed.
Now assume that Fu ∪ {Fprev} partitions into the FET classes C1, . . . , Ck, and
that Ci is split into li groups of FETs, each of which is placed consecutively (c.f.
Figure 4.7). Then in total (∑k

i=1 li)− 1 gaps between two FETs from different
classes are required. Additionally, gaps within a class may be necessary if
the number of walks required to cover the configuration graph exceeds li. In
particular, if Gi denotes the configuration graph of the FETs in Ci that have an
odd number of fingers, then at least max{0, γ(Gi)− li} gaps between FETs in
the class Ci must be introduced. Summing up, the total size of those gaps is((

k

∑
i=1

li

)
− 1

)
· dcl

min +

(
k

∑
i=1

max{0, γ(Gi)− li}
)
· d+min. (1)

Because of dcl
min ≥ d+min, which holds by definition, this term is minimized

when setting li := 1 for 1 ≤ i ≤ k. In this case (1) equals the value computed
in line 8 of the algorithm.
The configuration graphs in line 6 can be computed even though no swap
status is yet assigned to the FETs in Fu. This is possible because only FETs
with an odd number of fingers are considered, and swapping such transistors
does not change the graph. It remains to show that it is allowed to omit FETs
with an even number here. To see this, observe that γ(G) never decreases
when adding loops to G (the parity of all vertex degrees stays the same and
the number of connected components with edges does not decrease). Thus
(1) is a lower bound for the total gap size even though FETs with an even
number of fingers are not considered.

62 CHAPTER 4. TRANSISTOR ROW PLACEMENT

Algorithm 2: UpperBoundFixedFingers
Data: A netlist F and n f (F) for all F ∈ F
Output: A layout Λbest

1 Wbest ← ∞
2 forall the F ∈ F do
3 for cl(F) ∈ {Ns(F), Nd(F)} do
4 x(F)← 0
5 ContinuePlacementUB({F},F \ {F})

6 return Λbest

For the runtime note that the FETs can be sorted by their class in linear time
using bucket sort. Moreover, the covering number of a class can be computed
in a time linear in the size of the class due to Lemma 1.

4.4.2 Upper Bound

In some cases, one is interested in good solutions that provide an upper
bound for W

n f
opt(F) and can be computed efficiently. In particular, we pro-

pose Algorithm 2 to compute such an upper bound.

Lemma 5. If Algorithm 2 returns Λbest, then Λbest is a legal layout with W(Λbest) ≥
W

n f
opt(F).

Proof. It suffices to show that Λbest is a legal layout. In fact, we claim that in
every execution of line 4 in Algorithm 3 a legal layout is stored, and that the
line is executed at least once. For the legality observe that the recursive calls
guarantee that F = Fl ∪ Fu always holds, and that x and cl are set in a way
that Fl is laid out legally every time Algorithm 3 is entered.
To see that Λbest is updated at least once, which is necessary for the resulting
layout to be legal, consider the point where the execution of Algorithm 3
ends. This can only happen when Fu = ∅ (in this case Λbest was updated)
or after a recursive call of Algorithm 3 with a strictly smaller Fu. The return
statement in line 2 cannot be reached as long as Wbest has not been set to a
finite value. In other words, backtracking does not happen before line 4 was
reached for the first time.

Note that even though no optimal placement is found by this upper bound
computation, it may require an exponential runtime.

Lemma 6. There exist instances with n transistors for which Algorithm 2 requires
Ω(2n) steps.

Proof. Let F = {F1, . . . , Fn} and N = {N0, . . . , Nn+2}. We set n f (F) = 2 for
all F ∈ F . The source and drain contacts are Ns(Fi) = N0 and Nd(Fi) = Ni

4.4. ALGORITHMS 63

Algorithm 3: ContinuePlacementUB
Data: FETs Fl with a legal layout Λl , unplaced FETs Fu, and n f (F) for

all F ∈ Fu
1 if LowerBound(Fl ,Fu) ≥Wbest then
2 return

3 if Fu = ∅ then
4 Λbest ← Λl , Wbest ←W(Λl)
5 else
6 Fprev← Rightmost FET in Fl
7 forall the F ∈ Fu do
8 if F can legally overlap the right contact of Fprev then
9 x(F)← x(Fprev) + n f (Fprev)

10 Set cl(F) such that Fl ∪ {F} is placed legally
11 ContinuePlacementUB(Fl ∪ {F},Fu \ {F})

12 if Fprev can be swapped without losing legality then
13 Swap Fprev and repeat steps 7–11

14 if line 11 was not yet reached then
15 Let F ∈ Fu such that F can be legally placed with the smallest

possible x-coordinate and set x(F) accordingly
16 Set cl(F) such that Fl ∪ {F} is placed legally
17 ContinuePlacementUB(Fl ∪ {F},Fu \ {F})

for 1 ≤ i < n and finally Ns(Fn) = Nn+1 and Nd(Fn) = Nn+2. When no FET
is swapped, the configuration graph consists of n − 1 loops attached to vN0

and one loop attached to vNn+2 .
We can assume that the loop in line 7 iterates over the transistors from F1 to Fn
in the order of the indices. Then the algorithm will recurse in line 11 until Fn
is reached, subsequently placing Fn with a gap to the mutually overlapping
chain formed by the first n− 1 FETs. Afterwards, Wbest is set to 2n + 2.
As long as Fn ∈ Fu, the result of the lower bound computation in line 1 is
always 2n, because FETs with an even number of fingers cannot be used by
Algorithm 1 for the prediction of gaps. Consequently, the bounding in line 2
is only reached when Fu = ∅.
This means that all permutations of the n− 1 first unswapped FETs are gen-
erated by the algorithm, which only backtracks when the last remaining FET
is placed. This implies a runtime of Ω((n− 1)!), which exceeds Ω(2n).

Although upper bounds could also be determined in polynomial or even lin-
ear time, the following reasons support the method proposed in this section:
• The approach does not make any assumptions on the distance function.

For specific examples of distance functions, for example d0/2, even the

64 CHAPTER 4. TRANSISTOR ROW PLACEMENT

Table 4.2: Evaluation of upper bounds computed for 191 FET rows.

Number of FET rows for which the
... upper bound is already optimal 134
... upper bound is 1 track larger than optimum 26
... upper bound is 2 tracks larger than optimum 27
... upper bound is > 2 tracks larger than optimum 4

Sum of runtimes for
... all 191 experiments (sec.) 0.159
... the 187 fastest experiments (sec.) 0.029

size of an optimal placement could be computed efficiently. However,
an implementation for a general distance function is able to flexibly
react to rule changes as the technology evolves.

• Experiments show that the performance of this method is good and fast
enough: In many cases its results are already optimal and they rarely
exceed the optimum by more than 2 tracks. The runtime of the method
is mostly in the region of milliseconds, including all initialization steps.
Table 4.2 summarizes the results on 191 FET rows extracted from the
CLC test bed (cf. Section 7.1).

• The bounding that is performed in line 2 of Algorithm 3 can be ex-
tended to cover more complicated design rules coming from the tech-
nology. If a new rule is introduced that excludes specific configurations,
the bounding function can be amended by a check of such a forbidden
situation. If it is detected, LowerBound returns ∞, therefore preventing
a further branching. All layouts that are saved to Λbest in Algorithm 3
are guaranteed to be legal by that extended definition. Considering the
implementation, this is even more convenient because later algorithms
will employ the same bounding function and consequently satisfy the
same constraints. With this technique, we gain a significant amount of
flexibility that outweighs the slow runtime compared to a faster, more
specialized upper bound routine.

In a setting like Algorithm 3, where a lower bound computation is performed
in every node of a branch and bound tree, this computation can even be im-
plemented to run in constant time.

Lemma 7. Algorithm 1 can be implemented with runtime O(1) within the setting
of Algorithm 3.

Proof. W(Fl) and ∑F∈Fu
n f (F) can easily be updated with a single addition

respective subtraction before every call of Algorithm 3. Using an array that
maps every FET class to the number of FETs in Fu ∪ {Fprev} that belong to
this class, it is also easy to update num classes in constant runtime. Finally,

4.4. ALGORITHMS 65

Algorithm 4: ContinuePlacement
Data: FETs Fl with a legal layout Λl , unplaced FETs Fu, and n f (F) for

all F ∈ Fu
1 if LowerBound(Fl ,Fu) ≥Wbest then
2 return

3 if Fu = ∅ then
4 Λbest ← Λl , Wbest ←W(Λl)
5 else
6 forall the F ∈ Fu do
7 for cl(F) ∈ {Ns(F), Nd(F)} do
8 Set x(F) to the smallest legal value
9 ContinuePlacement(Fl ∪ {F},Fu \ {F})

the classes’ configuration graphs and the numbers of odd vertices in those
graphs also change in a constant number of places in every step. Therefore,
all expressions in the return statement can be updated in constant time with
every recursive call and need not be recomputed every time.

4.4.3 Optimal Solutions

Let OptPlacementFixedFingers be the algorithm that results from Upper-

BoundFixedFingers by replacing all calls of Algorithm 3 by calls of Algo-
rithm 4. In other words, the branching in the upper bound computation is
replaced by another branching method. This variant now computes exact
solutions rather than solutions that serve as upper bounds.

Lemma 8. If OptPlacementFixedFingers returns Λbest, then Λbest is a legal lay-
out with W(Λbest) = W

n f
opt(F).

Proof. Without lines 1–2 the algorithm would perform a complete enumer-
ation of all compressed layouts, where compressed means that the distance
between two neighboring FETs F and F′ is exactly d(F, F′).
Lines 1–2 prevent a partial layout to be completed if and only if all layouts
that extend the partial layout of Fl are at least as large as the best known
complete layout Λbest. Thus in the last execution of line 4 a layout of width
W

n f
opt(F) is assigned to Λbest.

4.4.4 Variants

The previous algorithms form a flexible framework that can easily be ex-
tended. The following variants will be useful tools in the generation of cell
layouts that contain more than a single transistor row.

66 CHAPTER 4. TRANSISTOR ROW PLACEMENT

Optimal Canonical Solutions

When looking for a single minimum-width solution with no particular prop-
erties, it is not necessary to use OptPlacementFixedFingers as presented
above: Assume that the algorithm finds a smallest layout in which k− 1 gaps
of size dmax occur, thereby forming k groups of FETs. Then there are a total
of k! · 2k layouts having the same width that can be obtained from this lay-
out by reordering and swapping the groups. By the definition of dmax this is
possible without losing the legality.
We can therefore restrict the search space so that only one “canonical” ele-
ment from this set of k! · 2k legal layouts can actually be reached by the algo-
rithm. This motivates the following definition. Let Λ be a legal layout of F
and let F1, . . . ,Fk be the FET groups, numbered from left to right, such that
all gaps between these groups have size at least dmax and all gaps within the
groups are strictly smaller. Furthermore, we denote by Fl

i the leftmost and
by Fr

i the rightmost FET in Fi. Then we call Λ a canonical layout if it has thecanonical
following properties:
• If |Fi| > 1, then the index of Fl

i in the array of FETs is smaller than the
index of Fr

i .

• If |Fi| = 1, then cl(Fl
i) = Ns(Fl

i).

• If i < j, then W(Fi) ≤W(Fj).

• If i < j and W(Fi) = W(Fj), then the index of Fl
i in the array of FETs is

smaller than the index of Fl
j .

While the first two properties prescribe swap statuses of the FETs, the re-
maining two properties prescribe the order of the groups.
It is now possible to modify the placement method to only look for optimal
canonical layouts instead of any optimal layout. This can be achieved with a
modification of the LowerBound function: It additionally checks if Fl can be
extended to a canonical layout and if this is not the case, the function returns
∞, thereby enforcing a subsequent bounding. The search space is reduced
drastically with this improvement and the search of a single optimal solution
speeds up significantly in practice.

All Optimal Solutions

Algorithm 4 can easily be modified to enumerate all legal layouts of width
W

n f
opt(F) instead of finding just a single smallest layout. This can be achieved

by replacing “≥” in line 1 by “>”. Now as soon as the first optimal solution
is found, all other solutions of the same width are also found because bound-
ing only takes place if the lower bound is strictly larger than the optimal
solutions.
However, when the first optimal layout is found, the algorithm does not de-
tect this optimality. Only when the algorithm finishes the value of W

n f
opt(F) is

4.4. ALGORITHMS 67

Algorithm 5: ContinuePlacement
Data: FETs Fl with a legal layout Λl , unplaced FETs Fu, n f (F) for all

F ∈ Fu, and a number Wmax

1 if LowerBound(Fl ,Fu) > Wmax then
2 return

3 if Fu = ∅ then
4 Λbest ← Λl , Wbest ←W(Λl)
5 else
6 forall the F ∈ Fu do
7 for cl(F) ∈ {Ns(F), Nd(F)} do
8 Set x(F) to the smallest legal value
9 while LowerBound(Fl ∪ {F},Fu \ {F}) ≤Wmax do

10 ContinuePlacement(Fl ∪ {F},Fu \ {F})
11 Increase x(F)

known. To avoid this problem, one can first look for a single optimal canoni-
cal layout of F to determine W

n f
opt(F). Then, in a second step, this knowledge

is provided to the enumeration of all optimal solutions so that as soon as the
first optimal solution is found the algorithm can act accordingly.

All Solutions with a Given Width

There are also cases in which not just smallest layouts need to be enumer-
ated but all legal layouts whose width does not exceed a prescribed value,
say Wmax. This behavior can be achieved when the branching function is re-
placed by Algorithm 5. There are two differences compared to the branching
function used to enumerate all optimal layouts:

• The lower bound is compared to Wmax instead of Wbest.

• x(F) is not set to the smallest possible value. Instead, it is initialized
with the smallest possible value and subsequently increased until the
lower bound of the resulting placement exceeds Wmax.

Algorithm 2 must be modified similarly to increase the value of x(F) instead
of just setting it to 0. The correctness follows from the previous discussions.

4.4.5 Enumerating Finger Numbers

Until now, the number of fingers for all FETs was assumed to be part of the
input. Algorithm 6 demonstrates how BONNCELL computes a globally opti-
mal solution that does not assume fixed finger numbers.

68 CHAPTER 4. TRANSISTOR ROW PLACEMENT

Algorithm 6: OptPlacement
Data: A netlist F
Output: A layout Λbest

1 Wbest ← ∞, k← 0
2 max additional fingers← ∞
3 while k ≤ max additional fingers do
4 forall the n f : F →N with ∑F∈F n f (F) = k + ∑F∈F nmin

f (F) do
5 if LF

f (n f (F)) 6= ∅ for all F ∈ F then
6 Λ← OptPlacementFixedFingers(F , n f)

7 if W(Λ) < Wbest then
8 Λbest ← Λ, Wbest ←W(Λ)

9 k← k + 1
10 max additional fingers←Wbest −∑F∈F nmin

f (F)

11 return Λbest

Lemma 9. If Algorithm 6 returns Λbest, then Λbest is a legal minimum-width layout,
i.e. W(Λbest) = Wopt(F).

Proof. If line 10 was omitted, the algorithm would enumerate all functions
n f that correspond to possible configurations of F . By Lemma 8 the func-
tion OptPlacementFixedFingers computes smallest layouts for each of these
functions, so eventually a global optimum will be found.
It remains to show that line 10 does not prevent an optimum placement to be
found. So let Λ be some legal layout of F and k > W(Λ) − ∑F∈F nmin

f (F).
Then let n f : F →N be finger numbers with ∑F∈F n f (F) = k+∑F∈F nmin

f (F)
as generated in line 4 of the algorithm. It follows that

∑
F∈F

n f (F) = k + ∑
F∈F

nmin
f (F) > W(Λ) ≥Wopt(F).

Thus every layout with the finger numbers n f would be strictly larger than an
optimal layout. Consequently, bounding the value of k from above in line 10
does not change the set of optimum solutions found by Algorithm 6.

Of course, the 1-dimensional placement variants mentioned above can be
applied in this framework by changing line 6 accordingly. It is therefore pos-
sible to enumerate all optimal layouts, all layouts of a given size, or just to
find a single canonical layout of minimum width.

Chapter 5

Cell Placement

Das Leben kommt auf alle Fälle
aus einer Zelle,

doch manchmal endets auch –
bei Strolchen –
in einer solchen.

Heinz Erhardt, Die Zelle

Having established a toolset that can be employed to arrange 1-dimensional
rows of transistors in the previous chapter, we can now turn towards the
more complex task of complete cell layouts. After the definition of some
terms that are unique to the 2-dimensional nature of the problem, we pro-
pose a layout flow for the most basic format of a modern CMOS cell, the ar-
rangement of two 1-dimensional FET rows between a GND and a VDD strip
(cf. Section 2.3.2). Thereafter, an extended flow for the generation of multi-
row layouts is presented. The chapter concludes with a discussion of several
enhancements available in BONNCELL as well as an overview of the tool’s
parameters and how they influence the behavior of the algorithms.

5.1 Definitions

In the layout of transistor-level cells, the vertical positions of FETs are crucial,
so we need to extend several definitions from Chapter 4 to incorporate the
second dimension.

5.1.1 Placements and Layouts

We define a 2-dimensional placement of a FET F as a pair (x(F), y(F)) ∈ N2 of 2D placement,
y(F)a 1-dimensional placement and a number that encodes the vertical location

of the FET. Assuming that the fins are numbered with increasing integers
from bottom to top, y(F) is the index of the bottommost fin intersected by

69

70 CHAPTER 5. CELL PLACEMENT

F

ymax = 13

ymin = 2

y(F) = 8

x(F) = 13

Figure 5.1: Example for a 2-dimensional standard cell layout using
two FET rows within a single circuit row.

the fingers of F. A 2-dimensional layout (x(F), y(F), C(F)) is a 2-dimensional2D layout
placement together with a configuration. Again we extend these notions to
sets of FETs and netlists and use the short forms placement and layout if their
type can be deduced from the context.
Usually not every fin can be occupied by a transistor, as the power structure
near the cell borders prevents nearby fins to be used otherwise. We have thus
given numbers ymin and ymax that denote the indices of the bottommost andymin, ymax

topmost usable fins. Formally, we require ymin ≤ y(F) ≤ ymax− l f (F) + 1 for
every FET F. Figure 5.1 illustrates these definitions.
Layout widths and netlengths are defined exactly as in the 1-dimensionalwidth, netlength
context, the only difference being that, in the case of vertically neighboring
transistors, multiple nets can be connected to a single x-coordinate.
In many cases a layout of a subset of F is given and one asks if a com-
plete layout exists in which the subset is arranged accordingly. Given a (1-
dimensional or 2-dimensional) layout Λ′ of some transistors F ′ ⊆ F , we say
that Λ′ can be extended to a full layout if a legal 2-dimensional layout Λ of Flayout extension
exists such that Λ′ and Λ are equal on the domain of Λ′.
Observe that we also need to augment the notion of legality. However, the
criteria for a legal layout of FETs that can be arranged freely in the plane is
highly technology-dependent. In addition, the rules are very complex for any
recent technology. We will therefore content with the ability to check whether
a given layout is legal. From now on, we assume that an oracle is providedlegality oracle
that decides for a layout of F ′ ⊆ F if it can be extended to a legal layout
of F . Applied to a layout of F the oracle thus decides if it is legal or not.
The precise implementation of the oracle within BONNCELL is not subject of
this work due to its dependency on the specific technology node for which
layouts are to be generated.

5.1. DEFINITIONS 71

5.1.2 Target Function

Until now the only measures for the quality of 1-dimensional cell layouts
have been their widths and netlengths. But these properties do not serve as
good indicators for the routability of a placement, which would ideally be de-
fined as the netlength of a shortest feasible routing (and would further take
into account timing and electromigration issues, which is even more compli-
cated). To compute good layouts, an intermediate measure is required—one
that can be evaluated efficiently and is at the same time a better indication of
the routability than just the netlength.
Such a compromise is meant to be provided by the following definition: For
a layout Λ = (x, y, (n f , l f , cl)) of F we denote by

Q(Λ) :=

(
W(Λ), NLg(Λ), NL(Λ), ∑

F∈F
n f (F)l f (F)

)

the quality of the layout. A layout Λ is preferred over another layout Λ′, layout quality
which we denote by Λ < Λ′, if its quality is lexicographically smaller.
The primary criterion is the layout width, which reflects the desire to cre-
ate small layouts in order to have low area requirements and short wiring,
thereby targeting a low power consumption and good timing properties.
However, it should be noted that the probability that no feasible routing ex-
ists for a placement increases when it is generated as compact as possible. We
will therefore introduce a relaxation in Section 5.4 that allows the algorithm
to use a larger-than-necessary area in favor of routability.
The other criteria directly target the estimated amount of metal in the fi-
nal result. The most important aspect after layout width is considered to
be the gate netlength—a consequence of the technology’s layer stack. Con-
necting opposing gates with a straight vertical wire on the PC layer uses up
much less routing space than every other possible construction, so maximiz-
ing the number of such connections has very favorable consequences for the
routability. The gate netlength turns out to be a close enough approximation
to this preference in practice and is thus the second most important optimiza-
tion goal after the layout width.
The less important criteria, the total netlength and the number of fin/gate in-
tersections, model the total amount of wiring and the free space that is avail-
able for its routing. These numbers serve as tiebreakers for layouts that have,
among all minimum-width layouts, the smallest possible gate netlength.
This lexicographically sorted multi-criteria measure of the layout quality has,
although devised independently, a large resemblance of the measure em-
ployed 25 years ago by Bar-Yehuda et al. [BYFPW89]. No connection between
it and the actual routability can be proven formally, yet we stress that in its
practical application within the BONNCELL workflow it appears to be a good
tradeoff between speed and accuracy.

72 CHAPTER 5. CELL PLACEMENT

5.2 Cells with Two FET Rows

We proceed with the discussion of full standard cell layouts that follow the
cell model introduced in Section 2.3.2. Extensions like multi-row cells and
ways to modify the tool’s behavior will be discussed thereafter.

5.2.1 Algorithm

Algorithm 7 gives a high-level view on the layout flow used within BONN-
CELL to generate placements for cells with two transistor rows.
In the very first step, the FETs are partitioned into the groups Fb—the FETs
that are placed near the GND power rail at the bottom border of the cell—and
Ft—the FETs constituting the top transistor row near the VDD power rail. By
default, those groups are chosen as Fb := {F ∈ F | t(F) = n} and Ft := {F ∈
F | t(F) = p}. In real-world instances, most of the cells have a comparable
amount of n- and p-FETs, and n-FETs tend to be connected to GND while
p-FETs tend to be connected to VDD, which makes this a reasonable strategy.
Section 5.2.4 describes how this default behavior can be varied in BONNCELL.

Phase 0

The zeroth phase of the layout flow is designed to yield legal 2-dimensional
layouts on almost all instances within a short amount of time. Although the
result may be of low quality, it provides a fallback solution in the case that
the subsequent phases do not find legal layouts within the runtime limit. For
cells that are hard to lay out in this sense, BONNCELL thus outputs a legal
result rather than nothing at all.
In line 2 the finger lengths are bounded from above, in addition to a possible
user-defined or technology-defined restriction, such that the instance has the
following properties: Given legal 1-dimensional layouts (xb, Cb) of Fb and
(xt, Ct) of Ft, their union can be extended to a legal 2-dimensional layout.
Consequently, both FET rows can be processed independent of each other
without any consideration of the opposing FET row.
The required property is enforced by defining vertical intervals [ymin

b , ymax
b]

and [ymin
t , ymax

t] which are reserved for the placements of both rows, that is,
ymin
∗ ≤ y(F) ≤ ymax

∗ − l f (F) + 1 must hold for F ∈ F∗ and ∗ ∈ {b, t}. The
intervals are chosen sufficiently pessimistic so that no design rule can be vi-
olated when the FETs are placed accordingly.
By construction, every optimal canonical layout that is generated for both
rows separately (line 3) can therefore be extended to a legal 2-dimensional
cell layout. For both rows Algorithm 2 is used to quickly compute an up-
per bound for the width of an optimal legal layout. Then, as discussed in
Section 4.4.4, an optimal canonical legal layout is determined, and Wbest is
initialized with the previously found upper bound.

5.2. CELLS WITH TWO FET ROWS 73

Figure 5.2: Layouts of the same netlist at the end of phase 0 (the red
region is reserved for wiring), phase 1 (with a maximum finger length
of 5), and phase 2 of Algorithm 7.

74 CHAPTER 5. CELL PLACEMENT

Algorithm 7: CellPlacement
Data: A netlist F
Output: A 2-dimensional layout Λbest

1 Compute partial netlists F = Fb∪̇Ft
2 (Phase 0) Bound finger lengths for independent row placement
3 Compute optimal canonical legal layouts of Fb and Ft
4 Extend the layouts to a legal 2-dimensional layout Λbest
5 Qbest ← Q(Λbest)
6 (Phase 1) Bound finger lengths to lmax

f

7 Compute optimal canonical legal layouts Λb of Fb and Λt of Ft
8 Let (Λbig,Fbig) be the larger row and (Λsmall,Fsmall) the smaller row
9 WLB ←W(Λbig)

10 while no legal 2-dimensional layout has been found in phase 1 do
11 for all legal 1-dimensional layouts Λbig of Fbig with W(Λbig) = WLB do
12 Find a legal 1-dimensional layout Λsmall of Fsmall with

W(Λsmall) ≤WLB such that (Λb, Λt) can be extended to a legal
2-dimensional layout Λ of F and the quality of Λ is optimal

13 if Q(Λ) < Qbest then
14 Λbest ← Λ, Qbest ← Q(Λbest)

15 WLB ←WLB + 1

16 (Phase 2) Remove restrictions on finger lengths and repeat steps 7–15
17 return Λbest

Phase 1

Although the rigid constraints on the length of the fingers are relaxed in
phase 1, the FET dimensions are again constrained for this part of the flow.
Here the purpose of that restriction is not to be able to handle both FET rows
independently, but to find globally optimal, or at least nearly optimal, solu-
tions while at the same time the search space is reduced as much as possible.
The motivation for this approach lies in the observation that in globally op-
timal 2-dimensional cell layouts very long fingers occur rarely. The value
lmax

f , i.e. the maximum length of a finger during this phase of the flow, was
decided upon based on the actual distribution of finger lengths in optimal
layouts. For cells that have the most common size, the data given in Fig-
ure 5.3 lead to the choice of lmax

f = 5. For smaller and larger cell outlines, the
value scales proportionally. In comparison, phase 0 has to run with lmax

f = 3
in order to avoid errors near the center of the cell.
After constraining the finger lengths, BONNCELL generates optimal canoni-
cal layouts for both FET rows (line 7). Similar to the preceding phase those
layouts are computed independent of each other, so this time these layouts

5.2. CELLS WITH TWO FET ROWS 75

50

100

150

200

235

2

201

3

113

4

123

5

22

6

16

7
2
8

6

9
0
10

Figure 5.3: Number of FETs with k fins per finger in 63 globally op-
timal layouts from the CLC test bed (cf. Section 7.1). The maximum
possible finger length was set to 10.

cannot, in general, be extended to a legal 2-dimensional layout. They serve
two other purposes: First, the layouts indicate what the larger transistor row
is, which is renamed Fbig. Second, the width of the larger row serves as a
lower bound for the width of a legal 2-dimensional layout. This lower bound,
WLB, is then used to check if a legal 2-dimensional layout of that width exists.
As long as this is not the case, the lower bound is increased by 1 (line 15). The
process stops when the first feasible solution has been found, i.e. when WLB
is set to the smallest width for which a legal 2-dimensional layout exists.
The loop in line 11 is implemented by the enumeration technique described
in Section 4.4.4. Each time the branching method encounters the case Fu =
∅, i.e. all FETs in the large row have been placed without exceeding the pre-
scribed width WLB, another routine is called that lays out Fsmall.
Because the program flow leaves the top-level while loop as soon as the first
legal layout has been found, it is known in every iteration that no smaller
layouts exist.

Lemma 10. When line 11 is executed in Algorithm 7, then no legal 2-dimensional
layout Λ with W(Λ) < WLB exists.

Due to the fact that within this flow the quality of the layout is optimized
rather than its width, an extended bounding possibility is gained: If for the
already laid out left part of the FET row the gate netlength exceeds the gate
netlength of the best known solution, which by the previous lemma cannot
be more compact, then the branch and bound tree can be pruned. To achieve
this, LowerBound returns ∞ if NLg(Λpart) > NLg(Λbest), where Λpart is the
partial layout that has been fixed in the current step of the algorithm.

Phase 1: Small Row Pruning

When Fbig has been fully laid out, including the FET’s y-coordinates, the
algorithm must decide ifFsmall can also be laid out legally. Before this is done
by a fully featured exact layout algorithm, a pruning method is applied that

76 CHAPTER 5. CELL PLACEMENT

Figure 5.4: Only the fin/gate intersections in the green region can
be covered by gates in the top FET row. During small row pruning,
BONNCELL tries to prove that the area does not suffice without call-
ing an exact layout algorithm.

detects in many—but not all—cases when the unused part of the cell does
not suffice to place the remaining FETs. The additional amount of runtime
spent in this estimation is very small compared to the runtime that would be
wasted in failed attempts to lay out small rows exactly.
The idea of the small row pruning is to focus on the gates or, more precisely,
on all the possible fin/gate intersections (which can be identified with the
elements of Γ := {0, . . . , WLB− 1}× {ymin, . . . , ymax}). On every x-coordinate
in this discrete grid a set of y-coordinates is unavailable for the placement of
Fsmall. These blocked sets contain
• the indices of fins that are used by the layout of Fbig,

• fins that must be reserved for the wire access of Fbig,

• or fins lying between Fbig and the adjacent power strip.
The usable points in Γ form a shape that must suffice for the layout of Fsmall.
Figure 5.4 illustrates the idea. Note that the exact definition of the usable
fin/gate intersections depends on a large number of design rules affecting
various layers of metal. The focus on the gates makes the swap status of FETs
irrelevant, so it is not considered. Every laid out FET can be seen as a rect-
angle in Γ, and therefore we only need to consider, for a fixed finger length
k, the realization with the fewest number of fingers that results in fingers of
length k. For example, if a FET must have fingers of length 3 if configured
with 4 to 6 fingers, then only the rectangular representation with width 4 and
height 3 must be considered.
Similar to the 1-dimensional layout algorithm, a branch and bound method is
employed that recursively generates an arrangement of the aforementioned

5.2. CELLS WITH TWO FET ROWS 77

simpler FET model from left to right. For a given initial sequence of these
FETs, all possible rectangular shapes of all unplaced FETs are placed at the
smallest possible x-coordinate, thereby extending the initial sequence by one
element. The smallest possible x-coordinate is affected by two factors:
• If there are no common source/drain nets with the previous FET in

the row, then diffusion sharing is impossible and a gap of size d+min is
introduced.

• Several design rules regarding two opposing gates on the same x-co-
ordinate can be checked, and if a rule is violated the corresponding
placement of the FET can be forbidden.

If the layout of a subset of the FETs requires at least dmax tracks more space
than another layout of the same subset, then no further branching must be
performed on this sub-layout because the more compact solution, together
with a gap of size dmax, can be substituted for it in every final solution. If no
solution is found with this method, then this serves as a proof that no legal
2-dimensional layout of Fsmall can be found that extends the layout of Fbig.
As a consequence, this layout can be pruned and no exact algorithm for the
second transistor row must be called.
It should be noted that the small stack pruning itself is an exponential-time
algorithm. Its implementation within BONNCELL ensures that no significant
amount of runtime is spent in this method by limiting its available runtime.
Moreover, the algorithm does not start if |Fsmall| is too large or if the number
of fin/gate intersections covered by Fsmall is less than half of the available
number of fin/gate intersections in Γ.

Phase 1: Small Row Placement

When the small row pruning method could not prove that the small row has
no chance to be laid out within the remaining free space, an exact placement
algorithm is called in line 12. This algorithm seeks a layout Λsmall of Fsmall
with the following properties:
• W(Λsmall) ≤WLB

• (Λsmall, Λbig) can be extended to a legal 2-dimensional layout Λ of F
• Q(Λ) < Qbest

The implementation of the method is again derived from the method pro-
posed in Section 4.4.4 to enumerate layouts whose width does not exceed
WLB, which ensures the first item on the list. The second item is satisfied by
a modification of the LowerBound function. Although many complicated de-
sign rules have an influence on the realizability as a 2-dimensional layout,
the rules can be checked locally by a call to the legality oracle. The oracle
only has to examine the direct neighborhood of a FET F, including the FETs
in Fsmall that were placed immediately to the left of F and the FETs in Fbig

78 CHAPTER 5. CELL PLACEMENT

in the vertical proximity of F. If a non-legalizable situation is detected in
LowerBound, it returns ∞, thereby forcing subsequent backtracking.
To aid the detection of such situations efficiently, several data structures are
initialized when the layout of Fbig is fixed. Among them are arrays that con-
tain, for every x-coordinate of a gate, the information how much fins are
available on that coordinate, what net must be connected to the gate from
the larger FET row, and which Vt level appears in the opposing row. An-
other important part of the legalizability detection is a function that, given
two gate contacts with the same x-coordinate, returns the minimum number
of fins between the gates that must not be covered by one of the FETs, i.e. the
minimum vertical distance. This is crucial because if two different nets must
be connected to two such gates, then a large amount of free space between
the gates needs to be reserved for wires. If, on the other hand, the same net is
accessed, the routing can just insert a vertical wire on the PC layer and only
a small amount of free space must be left between the transistors. The exact
rules affecting this function heavily depend on the technology and are not
discussed in detail here.
The third item in the list above provides even more bounding opportunities
than in the layout ofFbig. By Lemma 10, the width of the layout is again irrel-
evant for the target function. But the netlength can be estimated much better
because one half of the cell is fixed in this situation. The idea is to maintain
lower bounds NLLB

g and NLLB of the gate netlength and total netlength ofNLLB
g , NLLB

legal layouts that extend the current partial layout within the algorithm. We
describe how this is achieved for the gate netlength, the total netlength is
handled analogously.
When the layout of Fbig is fixed, numbers b−N and b+N are computed for ev-
ery net that store the leftmost and rightmost coordinate of an already placedb−N , b+N
contact that accesses N, i.e. b−N := min Tg(N) and b+N := max Tg(N). If a net
does not appear in the larger row, the values are initialized with b−N := ∞ and
b+N := −∞. During the layout of Fsmall, the numbers are updated as FETs are
placed and unplaced. Then ∑N∈N max{0, b+N − b−N} remains a lower bound
for the total netlength.
But this bound can be improved: Assume that when LowerBound is called
there are still k fingers of FETs in Fu, the unplaced FETs, which need to be
connected to N. Then it can be anticipated that after all FETs have been laid
out, b+N is at least 2(W(Fl) + k − 1), where the factor 2 is required because
the unit of netlength is half-track. Hence, if kN denotes the number of fingers
connected to N in Fu (or equals −∞ if no such fingers exist), then we can set

NLLB
g := ∑

N∈N
max{0, max{b+N , 2(W(Fl) + kN − 1)} − b−N}.

Now LowerBound is modified to return ∞ if NLLB
g is strictly larger than the

gate netlength of the best known solution. If equality holds, then NLLB,

5.2. CELLS WITH TWO FET ROWS 79

which is maintained analogously, is compared to the total netlength of the
best known solution.

Phase 2

Phase 2 is identical to phase 1 with the only difference that the constraints on
the finger lengths are lifted and only the technology-defined (or user-defined,
cf. Section 5.4) limits are imposed. The consequence is that the algorithm has
much more freedom to choose the sizes of transistors, and thus requires much
more runtime in many cases. However, as a good or even optimal solution
has already been found in the previous phase, this solution can be returned
in case of a timeout. Figure 5.3 serves as evidence that in many cases no
solutions will be found in phase 2 that have not been found in phase 1. More
substantial evidence will be presented in Section 7.2.1.

Finger Enumeration

The enumeration of the finger numbers, which is part of Algorithm 6, can
be improved in the context of quality optimization. Assume that for some
F ∈ F we have LF

f (k) = LF
f (k + 2) = {l}. In other words, increasing the

number of fingers by 2 does not change their lengths. For a simple distance
function that essentially depends on the finger lengths, which we consider
in the implementation of BONNCELL, this implies that the distance require-
ments between F and neighboring FETs do not change.
It is easy to see that no component of the quality measure can improve, and
that ∑F∈F n f (F)l f (F) strictly degrades, when such a FET enlargement is per-
formed. We can thus forbid such operations by setting LF

f (k + 2) := ∅ when-
ever LF

f (k + 2) = LF
f (k) holds.

Following the arguments above, we can conclude that the flow generates
provably optimal layouts among all layouts with one row of n-FETs and one
row of p-FETs.

Lemma 11. When Algorithm 7 finishes, Λbest is a legal 2-dimensional layout of F
such that Λbest ≤ Λ for every legal 2-dimensional layout Λ of F with Fb := {F ∈
F | t(F) = n} and Ft := {F ∈ F | t(F) = p}.

5.2.2 Pins

An important technological aspect that has been neglected so far are the ex-
ternal connections of a cell, the so-called pins. In a completely laid out cell pins
those pins are regions on the wiring that are marked as access points to be
used on a higher hierarchy level. On this level of the VLSI design hierarchy,
cells are rectangular black boxes, devoid of internal structure, for which only
the locations are specified at which the wires that have to be connected to the
cell must touch their rectangular outlines.

80 CHAPTER 5. CELL PLACEMENT

In the domain of transistor-level layout, this imposes additional structure on
both the input and output of a layout tool: For every net N the user may
specify four values pN

x,abs, pN
y,abs, pN

x,rel, and pN
y,rel. If N must be connected topN

x,abs, pN
y,abs,

pN
x,rel, pN

y,rel, pN
layer the outside of the cell, a layer pN

layer ∈ {M1, M2}must also be specified.

The values of pN
x,abs and pN

y,abs are absolute pin locations. If pN
x,abs is given,

then a piece of metal that belongs to N must access, on the layer pN
layer, some

point at the x-coordinate pN
x,abs. If both absolute coordinates are provided by

the user, they encode a single point on the layer pN
layer that must be covered

by the metal associated with N.
pN

x,rel and pN
y,rel are in a sense softer constraints. They provide relative coordi-

nates in the range [0, 1]. If pN
x,rel = 0, then N should connect a pin near the

left border of the cell, pN
x,rel = 1 encodes the right border of the cell. However,

it is not enforced that the exact coordinates are connected. Rather a routing
is computed without any knowledge of the pin and then the pin is assigned
to the net’s piece of metal that happens to be closest to the location given
by pN

x,rel and pN
y,rel. BONNCELL must only ensure that the net possesses any

metal on pN
layer. If both relative and absolute coordinates are prescribed, the

absolute values take precedence.
During the transistor placement, the vertical pin locations, both absolute and
relative, are ignored. There is nearly no freedom in that direction considering
the FET placement. The horizontal pin locations, however, are taken into
account. In all computations of the total netlength, the pin coordinates are
considered as one of the tracks that have to be connected to the net.
While this is a simple modification for absolute pin locations, issues arise if
pN

x,rel is defined. In many versions of the placement algorithm the layout’s
width is not given a priori, so the actual x-coordinate of a pin with a rel-
ative x-coordinate is unknown. The issue is solved with the introduction
of some fuzziness in the pin coordinate. Lower bound computations work
with a sufficiently optimistic estimate of the final location and upper bound
computations use a pessimistic estimate. The impact of this fuzziness on the
runtime is negligible because only the ternary optimization goal is affected
by pin locations.

5.2.3 Folding

The folding of multiple FETs, i.e. interleaving the fingers of more than a single
transistor, was introduced in Section 2.3. BONNCELL supports the folding of
exactly two FETs. The feature is implemented as follows: Before a layout
algorithm is executed, folding candidates are searched among all pairs of
FETs. Such pairs (F, F′) must satisfy strict constraints. Both transistors F and
F′must have a source/drain contact in common and their sizes, Vt levels, and
types must be identical. Under these tight restrictions, the set of candidates

5.2. CELLS WITH TWO FET ROWS 81

contains only a small number of FET pairs in practical instances rather than
the theoretically possible quadratic number.
Afterwards, a layout is generated for each subset of the candidate pairs for
which no FET participates in more than one pair. For that purpose the FETs
that occur in these pairs are split into multiple single-finger FETs according
to a number of rules defined by the technology. The best of those layouts,
according to a modified quality measure, is then returned.
For reasons rooted in the technology constraints, BONNCELL enforces the se-
lected FET pairs to be arranged in a folded fashion. It is not allowed for “frag-
ments” of one of the original FETs to be placed arbitrarily. As a result, the
complexity of the cell layout problem is reduced although the number of ob-
jects that are to be laid out increases. The enforcement of the folding scheme
is implemented within the universally employed lower bound computation:
If FETs have been placed contrary to the required pattern, LowerBound re-
turns ∞.
If the generated layouts would be evaluated by the quality measure Q, then
the default layout without any multi-FET folding would be favored. Be-
cause folding is performed to simplify the distribution of source/drain con-
tacts and improve electrical properties of the cell at the cost of a higher gate
netlength, the technique’s advantages are not captured by the definition of
Q(Λ). At the same time, its disadvantages have a strong negative effect.
When layouts are evaluated, we therefore compensate for this bias by count-
ing the gate netlength of folded FET groups as if the corresponding transis-
tors were not folded.
In case the BONNCELL user wants, for some reason, to enforce the folding
of specific FETs, he may specify folding groups. Folding groups are transistor folding group
pairs that are arranged in a folded fashion despite any negative effect this
might have. Providing this type of guidance to the tool reduces the problem
complexity and increases the processing speed.

5.2.4 FET Rows with Mixed Types

In line 1 of the layout generation flow, n-FETs are assigned to the bottom
transistor row and p-FETs to the top transistor row. This simple rule is a
very reasonable choice in the majority of cases. On the one hand, n-FETs are
usually not connected to VDD in CMOS cells and p-FETs are not connected
to GND (although there are exceptions). On the other hand, mixing n-FETs
and p-FETs within a single row of transistors creates the necessity of addi-
tional diffusion gaps. Since FETs of different types must fulfill the strictest
requirements regarding their distance, it is unlikely that rows with FETs of
both types lead to more compact solutions than default rows.
However, there are a few such cases. BONNCELL provides a parameter that,
if switched on, enables a limited support for mixed rows. In this mode,

82 CHAPTER 5. CELL PLACEMENT

n-FETsp-FETs
n-FETs

p-FETs

Figure 5.5: The same netlist laid out with the default row assignment
and with a mixed row. In BONNCELL mixed layouts have one homo-
geneous FET row and one FET row with at most two type changes.

layouts with two transistor rows are generated subject to the following con-
straints:
• One of the two rows contains only n-FETs or only p-FETs.

• In the other row, the n-FETs or the p-FETs (or both groups) are placed
in a consecutive sub-row.

An example is shown in Figure 5.5. The first condition is reasonable because
the feature is most useful for cells which have a gravely uneven amount of n-
and p-FETs so that some transistors from the larger group ought to be moved
to the other group. Both constraints also ensure that the total number of
diffusion gaps between FETs of different types is very small for mixed rows
(at most 2).
To compute mixed-row layouts, we first determine if n-FETs from Fn should
be transferred to the group Fp of p-FETs or vice versa. Optimal canonical
layouts are computed independently for both rows, say Λn and Λp, and the
larger group is chosen as the one to donate FETs to the other group. This
step is only provided with a relatively small amount of runtime—if a timeout
occurs, the row is selected based on the best solution found up to that point.
We will henceforth assume w.l.o.g. that the larger FET group isFn and that its
FETs are numbered F1, . . . , Fk from left to right in the initial canonical layout.
The next step is to identify a subset Fswitch ⊆ Fn that is transferred to Fp.
As not all subsets can be checked in detail, we identify several candidates for
Fswitch. These are determined as follows: For every i ∈ {1, . . . , k} we set

ji := arg min
i≤j≤k

|W(Λn)− 2W(Λ{i,...,j}n)−W(Λp)− dmax|,

where ΛI
n is the part of Λ that encompasses the FETs {Fi | i ∈ I}. Then

Fi := {Fi, . . . , Fji} is considered to be one candidate for Fswitch. Observe that

5.2. CELLS WITH TWO FET ROWS 83

the indices are selected such that the difference between the transistor rows
becomes as small as possible if the FETs in Fi move to the opposite row. The
occurrence of dmax in the formula above comes from the fact that the mini-
mum distance between FETs of different types is equal to that number for all
distance functions of real-world technologies.
This method yields a total of k candidate sets. For each of these sets, optimal
2-row layouts are computed with Fn \ Fswitch in the bottom row and Fp ∪
Fswitch in the top row. The bounding is modified so that at least one FET type
in the inhomogeneous row forms a consecutive interval. At the end, the best
of the k layouts, according to the quality measure Q, is returned.

5.2.5 Very Large Cells

The algorithms involved in the layout of transistor-level netlists are expo-
nential and thus, beyond a certain complexity, do not yield results in an ac-
ceptable time frame. Especially when timeouts occur in the first two phases
of Algorithm 7, the returned solutions are often very bad. Restricting finger
lengths may ease the problem, but some cells are even too large for the easiest
parameter configurations.
For this reason, BONNCELL includes a mode designed to handle very large
cells. In this mode, optimality is sacrificed in favor of a fast computation of
heuristic arrangements. A top-level description is given in Algorithm 8. The
idea is to split the complex netlist into several less complex netlists, process
each of them individually, and finally concatenate the computed layouts. The
flow is visualized in Figure 5.6.

Number of Subcells

One input parameter of the algorithm is the number of subcells into which
the large instance should be split. This number k is determined automatically
based on various measurements of the exact algorithm’s performance. In
the current implementation, the number k is chosen such that the average
number of FETs per subcell is at most 10 and the average sum of gate lengths
is at most 80 per subcell.

Target Function

Previously, the gate netlength has been a much more important value than
the total netlength. This decision was motivated by the desire to realize con-
nections between the gates on the PC and M0 layers as compact as possible.
However, other challenges become prevalent on very large cells.
One can observe that most of such cells contain so many long horizontal con-
nections that, using the normal placement engine, some x-coordinates have
to be passed by too many different nets for the cell to be routable. Hence, it
is more important to reduce the horizontal cut, i.e. the largest number of nets

84 CHAPTER 5. CELL PLACEMENT

Algorithm 8: BigCellPlacement
Data: A netlist F , a number k
Output: A 2-dimensional layout Λ

1 if pins are defined near the left and right cell borders then
2 Place FETs with such pins near the cell’s border
3 Compute positions for other FETs by an iterative mean heuristic

4 else
5 Compute rough placement using a linear arrangement heuristic

6 Split netlist into k smaller instances based on rough placement
7 Apply CellPlacement to every sub-instance
8 return Concatenation of the k layouts

that have to cross any given x-coordinate, as much as possible. On complex
cells, we therefore do not give the gate netlength any priority as we did in
the definition of the layout quality Q.

Rough Placement

In order to find a reasonable cut at which the netlist is split, a rough place-
ment is determined in lines 1 to 5, using one of two methods. These methods
neither produce legal layouts nor determine swap statuses or finger num-
bers, their purpose is merely to generate horizontal locations for each FET.
If the instance contains for both the left and the right cell border at least one
net with a pin defined near that border, then a heuristic is applied that takes
advantage of those pins. This is the case for most of the cells in practice, as
input pins are usually assigned to the left cell border and output pins to the
right cell border. The first step is to place the FETs that are connected to such
nets very far apart. For FETs with a connection to the left border, x(F) is set
to 0, for FETs connected to the right cell border, it is set to 100k. All remaining
FETs are initially placed at the coordinate 50k.
Thereafter, all locations are updated in 10 iterations. In each iteration, the
new x-coordinate for a FET F is determined as the weighted average of the
FETs connected to F through at least one net. Net weights are used as weights
in the computation. Gate connections are not prioritized over source or drain
connections for the reason given above. After new coordinates have been
assigned to all FETs, the arrangement is stretched to the interval [0, 100k] in
order to prevent all FETs from collapsing to a single point. In particular,
xmin := minF∈F x(F) and xmax := maxF∈F x(F) are computed and then

x(F)← x(F)− xmin

xmax − xmin
· 100k

is applied to each FET.

5.2. CELLS WITH TWO FET ROWS 85

Subcell 1 Subcell 2 Subcell 3

(a) Rough placement heuristic and induced assignment of FETs to subcells

(b) Optimal layout for every subcell

(c) Resulting large cell layout

Figure 5.6: Illustration of Algorithm 8.

If the pin definitions do not induce a reasonable initial assignment of vary-
ing x-coordinates, a heuristic developed to solve the MINIMUM LINEAR AR-
RANGEMENT problem is applied instead. In this case, we define a graph
G = (F ∪ {vl , vr}, E) in which two FETs are adjacent if a net exists that con-
nects these two FETs. The two special vertices vl and vr represent the left and
right cell borders and are adjacent to all FETs which are connected to a net on
which a corresponding pin is defined. Note that the method is only applied
when vl or vr is an isolated vertex.
After the graph has been constructed, the method proposed by Pantrigo et
al. [PDCM11] is applied, which is an extension of the earlier heuristic by
McAllister [McA99]. Algorithm C3 from [PDCM11] is used as a subroutine
with β set to 0.5. The method is modified such that vl is the first vertex to be
labeled and vr is the last vertex labeled during the algorithm. When a label
l(F) has been assigned to all FETs, those values are taken as x-coordinates of
the rough placement in line 5 of Algorithm 8.

Splitting the Netlist

The x-coordinates of the rough placement induce a total order≤ on the set of
FETs. If two FETs F1 and F2 have the same location in the rough placement,
then F1 ≤ F2 holds if and only if g1 ≤ g2, where gi is the index of the net

86 CHAPTER 5. CELL PLACEMENT

connected to the gate of Fi. This tie-breaking criterion favors assignments in
which FETs with the same gate net are contained within the same subcell. We
number the FETs F1, . . . , Fn such that F1 ≤ . . . ≤ Fn.
Then indices n1, . . . , nk−1 are chosen and the sets Fi := {Fni−1+1, . . . , Fni},
where n0 := 0 and nk := n, are defined as the transistor sets for the sub-
cells. The numbers are chosen such that

k

∑
i=1

∣∣∣∣∣∑F∈F L(F)
k
− ∑

F∈Fi

L(F)

∣∣∣∣∣
is minimized, i.e. the sum of deviations from the average FET area. The in-
stances are small enough so that n1, . . . , nk−1 can be determined by enumer-
ating all O(nk−1) possibilities.
Finally, the nets in subcell i are exactly the nets connected to FETs inFi. How-
ever, if a net N in subcell i is connected to some FET in F1 ∪ . . .∪Fi−1, then a
pin is defined on the left border of the subcell, i.e. pN

x,rel = 0, to model the con-
nection to the left. Analogously, a pin on the right subcell border is defined
if a net is connected to another subcell further to the right.

Placing the Subcells

When the subcells have been constructed, Algorithm 7 is invoked on each of
them individually. As the reduced instances are relatively small, this usually
results in optimal layouts in a short runtime. These layouts are concatenated
with sufficiently large spacing between them so that no design rules are vio-
lated. Figure 5.6 illustrates this method.

5.3 Cells with More than Two FET Rows

Albeit very large cells can successfully be constructed using the technique
discussed above, such cells have rather long and thin outlines as long as their
layout is constricted to the space between a GND and a VDD power strip.
These layouts have several unfavorable properties: They probably have very
long connections within their interior, which negatively affects their electrical
attributes, and they are more difficult to handle by higher-level VLSI tools.
The natural strategy to circumvent very long and thin cell outlines is to lay
out the transistors in a group of neighboring circuit rows. In BONNCELL,
the user gains control over the number of rows available for the cell by the
parameter numCktRows (which defaults to 1). From an algorithmic point of
view, several problems have to be overcome:
• A decision has to be made for every FET in which of the rows it is sup-

posed to be placed. Within a circuit row, the default behavior to place
n-FETs near GND and p-FETs near VDD then dictates which transistor
row the FET must be assigned to.

5.3. CELLS WITH MORE THAN TWO FET ROWS 87

p-FETs

6th

4th

2nd

1st

3rd

5th

Figure 5.7: A layout with two circuit rows and the order by which the
rows are processed in a cell with six circuit rows.

• A subset of the wires has to connect contacts in different circuit rows.
These nets have to be routed across one or more power strips, inducing
the demand of some kind of free routing space near the power supply.

Before we discuss how these issues are coped with in BONNCELL, it should
be noted that the measure Q(Λ) is insufficient to realistically assess multi-
row layouts. The reason is that a large fraction of the metalized area is caused
by vertical connections, and these connections are heavily influenced by the
decision which FETs are put into which circuit row. Because of that we define
the vertical netlength NLy(N) of a net and the vertical netlength NLy(Λ) of a NLy(N), NLy(Λ)

layout in analog to the (horizontal) netlengths NL(N) and NL(Λ), replacing
the horizontal track indices by the indices of the covered fins.
Another important criterion is the cut across the row boundaries: A 2-dimen-
sional layout is considered to be better the fewer nets need to be routed from
one side of a power strip to the other side. Formally, we set C(Λ, i), for 1 ≤
i < numCktRows, to the number of nets that must cross the boundary between
the i-th and (i + 1)-th circuit row. The worst cut C(Λ) of a layout is then given worst cut C(Λ)

as C(Λ) := max1≤i<numCktRows C(Λ, i).
The quality measure Qmult(Λ) of a 2-dimensional multi-row placement is, quality Qmult(Λ)

other than in the single-row case, an integer rather than a tuple of numbers:

Qmult(Λ) := γ1W(Λ) + γ2C(Λ) + NL(Λ) + NLy(Λ)

88 CHAPTER 5. CELL PLACEMENT

Algorithm 9: MultiRowPlacement
Data: A netlist F
Output: A 2-dimensional layout Λ in numCktRows circuit rows

1 Set initial ρbest : F → {1, . . . , numCktRows} by fast greedy heuristic
2 Qbest ← Qmult(Λ), where Λ contains an UpperBound for each row
3 forall the functions ρ : F → {1, . . . , numCktRows} without split gates do
4 Λ← UpperBound layout for each row
5 If Qmult(Λ) < Qbest, then update Qbest and ρbest

6 forall the functions ρ : F → {1, . . . , numCktRows} do
7 Λ← UpperBound layout for each row
8 If Qmult(Λ) < Qbest, then update Qbest and ρbest

9 Fix row assignment ρbest
10 Add dummy FETs for routing between rows
11 Find optimal single-row layout for bnumCktRows/2c-th row
12 Find modified optimal single-row layout for remaining rows
13 return Λ

The values γ1 and γ2 can be changed to influence the relative importance of
the layout width and the worst cut compared to the netlength. A weighted
sum is preferred over a lexicographically ordered measure because in this
setting there is no single most important criterion, single second important
criterion, and so on. Instead, it is essential to be able, for example, to spend
an additional horizontal track if in turn the worst cut or netlength can be
improved greatly.

Assigning FETs to Rows

Algorithm 9 provides a high-level description of BONNCELL’s method to find
multi-row layouts. In the first phase, it decides upon an assignment ρ : F →
{1, . . . , numCktRows}. The first step of this phase, in line 1, is to compute an
initial assignment with a fast greedy method: The FETs are sorted by their
size, say L(F1) ≥ . . . ≥ L(Fn), and then iteratively added to the initially
empty cell. In the i-th step, all possible values for ρ(Fi) are checked. For each
of the values, a quick UpperBound layout Λ is computed in every row (where
only the FETs {F1, . . . , Fi} are placed). Then the value of ρ(Fi) is fixed for
which Qmult(Λ) is minimum. After n steps, and thus n · numCktRows upper
bound computations, a complete row assignment ρbest has been found.
The loop starting on line 3 basically enumerates all possible functions ρ :
F → {1, . . . , numCktRows} that do not split gate connections across multiple
rows, i.e. ρ(F) = ρ(F′) holds if Ng(F) = Ng(F′). The algorithm would also
work if this loop was omitted, but solutions without such gate splits are con-
sidered favorable in practice and the addition of lines 3–5 ensures that this

5.3. CELLS WITH MORE THAN TWO FET ROWS 89

preferred part of the search space is traversed first. Hence in case of a time-
out the probability is higher that good solutions have already been found.
The next loop, which starts on line 6, then enumerates all possible functions
ρ. To be precise, the enumeration is again implemented as a branch and
bound with frequent lower bound computations. Similar to the methods that
compute single-row layouts, large parts of the branch and bound tree can be
pruned with this technique. After that loop has finished, the “best” encoun-
tered row assignment is explored further. There are two details to note here:
• The assignment ρbest does not necessarily belong to a 2-dimensional

multi-row layout that globally optimizes Qmult. Hence, the algorithm
does not compute an optimal solution—it can only be seen as a heuristic
that generates good layouts in practice.
• To compensate for this drawback, the algorithm does not only store the

best candidate for a row assignment, as in the presentation above, but
actually keeps track of the 10 best assignments that have been found.
The following steps are then applied to all 10 candidates and the best
of the 10 resulting layouts is returned by the algorithm. We omit this
detail in favor of the presentation’s clarity.

Users may prescribe row indices for an arbitrary subset of the transistors. If
they do, only row assignments are enumerated that comply with this speci-
fication.

Multi-Row Layout for Fixed Row Assignment

After an assignment of FETs to rows has been fixed, dummy FETs are inserted dummy FET
into the instance to account for wires that need to cross a transistor row but
are not represented in that transistor row. In particular, a new FET Fi

N is
inserted into the i-th transistor row if
• N is connected to a transistor row with index j < i,
• N is connected to a transistor row with index j > i, and
• N is not connected to a source/drain contact in the i-th transistor row.

In this case the wiring of N has to pass the i-th FET row, but all the source and
drain contacts within the row are accessed from the M1 layer by other nets.
Hence the probability is high that other nets block the way for the wiring of
N. The purpose of the dummy FETs is to occupy one or more tracks, thereby
leaving some space in which the wire may pass the transistor row. Those
newly introduced FETs have the following properties:
• If gaps that are reserved for the wiring of row-crossing nets must have

a width of dummySize (default: 1), then the dummy FETs are configured
with dummySize− 1 fingers. Note that the FET model allows the defini-
tion of FETs with 0 fingers, although such transistors do not have any
electrical meaning. In this case the “transistor” consists only of a single
source or drain contact without an active gate.

90 CHAPTER 5. CELL PLACEMENT

Figure 5.8: Layout with two rows and five 0-finger dummy FETs (red).

• The finger number cannot be changed, and swapping is not allowed.

• Ns(Fi
N) = Nd(Fi

N) = N.

• Ng(Fi
N) is set to a newly inserted net that does not connect anything

else, so that dummy FETs are not subject to gate netlength optimization.

• d(Fi
N , F) = d(F, Fi

N) = 1 for all F ∈ F and all configurations of F,
i.e. dummy FETs can abut diffusion areas with all other FETs, but they
cannot share diffusion.

• The type, Vt level, and length of Fi
N are irrelevant because d does not

depend on these values and because the dummy FETs are removed af-
ter the layout is finished.

If sufficiently many diffusion gaps would occur without the dummy FETs,
the special transistors could fill these gaps without changing the solution in
any way. Otherwise, the dummy FETs enforce gaps in their row that can
be used for the wiring. Moreover, they are involved in the computation of
NL(N) but do not affect NLg(N). An example of dummy FETs as part of a
multi-row layout is shown in Figure 5.8.
After the dummy FETs have been inserted into the instance, optimal single-
row placements are generated for each row individually. This is done using a
variant of the methods described in Chapter 4. The first row that is processed
is chosen to be near the vertical center of the available multi-row region. A
default run of Algorithm 6 is applied to this sub-instance.

5.4. EXTENSIONS 91

The remaining rows are processed with a variant of Algorithm 6 that takes
the already finished rows into account. Laid out FETs are incorporated into
all total netlength computations that occur (gate netlength is only measured
per row because gate connections across multiple rows have to be wired on
the M1 layer). The order by which the rows are laid out is chosen such that
the distance from the vertical center of the multi-row region increases, i.e.
the bottom and top rows are the last ones to be processed. With this strat-
egy, there is always a neighboring row that is already laid out. Figure 5.7
illustrates the order by which the circuit rows are processed.
When placing single rows within the multi-row framework, the layout width
is not necessarily minimized. This is only done for the first row near the
center of the cell. All other circuit rows are provided with the number of
tracks required by the widest row that has been processed thus far. If this
width does not suffice to place the FETs assigned to a row, then a minimum-
width layout is computed.

5.4 Extensions

This finishes the discussion of the default layout flows for single-row and
multi-row cells. Beyond these defaults, BONNCELL incorporates many ex-
tensions and provides many parameters with which the user can influence
various aspects of the design flow.

Runtime Limit

A runtime limit can be specified by the parameter maxRuntime. All compu-
tations of single transistor rows first check if the runtime limit is exceeded
in every node of the branch and bound tree. If this is the case, backtrack-
ing is triggered and the best solution that has been found up to that point is
returned by the algorithm.
In the basic layout flow of standard cells every step is provided with the
part of the runtime that has not been used by the previous steps. For exam-
ple, if the user-defined runtime limit is exceeded in phase 1, the last phase
is skipped. However, in flows where equally ranked computations are per-
formed, the available runtime is distributed evenly among the tasks. For
example in a multi-row cell with k subcells, the layout of the i-th subcell will
be provided with a runtime limit of R

k−i+1 , where R denotes the runtime that
remains after the computation of the (i− 1)-th subcell.
Users can setup BONNCELL in faster modes that return, in general, sub-
optimal solutions, but require a shorter runtime. Using the parameter last-
Phase, it is possible to specify the last phase (0, 1, or 2) that is executed in Al-
gorithm 7. If set to a value smaller than 2, the remaining phases are skipped.

92 CHAPTER 5. CELL PLACEMENT

Table 5.1: Values of lF
f (k) for a transistor with L(F) = 9 and minimum

finger length 2 dependent on the value of the parameter fLenMode.

k L(F)/k lF
f (k)

int r-up r-down

1 9.00 9 9 9
2 4.50 – 5 4
3 3.00 3 3 3
4 2.25 – 2 2
5 1.80 – 2 2
6 1.50 – 2 –

Finger Lengths

The gate contacts of transistors cannot be arbitrarily long. In addition to the
natural restriction induced by the usable fins in a cell, the technology spec-
ification provides parameters fLenMin and fLenMax that encode lower and
upper bounds for l f (F) for every FET. In principle, these values could be
set individually for each transistor, but the implementation of BONNCELL

requires the same bound for all n-FETs and the same bound for all p-FETs.
Until now we have only assumed |LF

f (k)| ≤ 1 but did not give a specification
of that function. Because L(F) is supposed to denote the number of fin/gate
intersections, the ideal definition would be LF

f (k) = {L(F)/k}. However,
this might not be an integer, thereby contradicting the discrete nature of the
length of a finger. The behavior of BONNCELL in this situation can be con-
trolled by the parameter fLenMode, which has the three possible values int,
r-up, and r-down. If it is set to int, then the exact L(F) = n f (F) · l f (F) is
enforced, meaning that

LF
f (k) :=

{
{L(F)/k} if L(F)/k is integral
∅ otherwise.

In the other two cases, the only element of LF
f (k) is the closest integer to

L(F)/k, as long as it is within the interval [fLenMin, fLenMax]. If L(F)/k is an
odd multiple of 0.5, then in one of the modes the value is rounded up (r-up)
and in the other mode the value is rounded down (r-down). An example of
the parameter’s effect is shown in Table 5.1.

Additional Tracks

The definition of the quality measure Q(Λ) favors layouts that use the min-
imum number of tracks over every strictly larger layout. The total width
as the primary optimization target is often a good choice in practice, but

5.4. EXTENSIONS 93

sometimes the restriction to minimum-width layouts produces bad results.
In these cases, providing 1 or 2 additional tracks beyond those that are re-
quired leads to layouts that need slightly more space yet much less wiring.
In BONNCELL, the issue can be addressed by the integer parameter max-

AddlTracks (default: 0). It modifies the quality measure such that all lay-
outs Λ with Wopt(F) ≤ W(Λ) ≤ Wopt(Λ) + maxAddlTracks are treated as if
their width was Wopt(F), i.e. only the secondary entries of Q(Λ) influence
how different layouts compare to each other. Only when the width exceeds
Wopt(Λ) + maxAddlTracks, layouts are considered strictly worse than all lay-
outs that are “small enough”.
The algorithms can easily be adapted to this rule. For example, the loop in
line 10 of Algorithm 7 does not stop as soon as a solution has been found, but
it continues for maxAddlTracks iterations after that point. Moreover, lower
bounds are not compared to the best known solution, but to a number which
is the given number of tracks larger than that.

Boundary Condition

When several cells are placed next to each other within a circuit row, it is im-
portant that all design rules are satisfied near the gap between them. Because
those rules are affected by shapes in different cells, they cannot be captured
directly by the layout within a single cell. One way to solve the problem
would be to always introduce k unused tracks between neighboring cells,
where k is chosen pessimistic enough so that the free tracks suffice to make
rule violations in such gaps impossible.
But this strategy would waste much space and a more precise technique is
supported in BONNCELL. For every technology, a set of boundary conditions boundary

conditionis defined that impose additional constraints near the left and right border
of a cell. They are designed such that neighboring cells, both of which sat-
isfy these constraints, do not violate any design rules. Examples for com-
mon boundary conditions are the requirement that source/drain contacts on
the leftmost and rightmost track must be connected to the nearby power
potential, or that fingers on the leftmost and rightmost tracks must not be
longer than some technology-dependent value. The boundary condition can
be switched on and off by the user parameter boundaryCondition.
The feature is implemented mainly by causing backtracking as soon as a vi-
olation is detected. But it is equally important to adjust the definition of the
layout width W(Λ), which, until now, was determined merely by the gate
locations of laid out transistors. The intention of this definition is to denote
the width of the smallest cell outline that can contain a given layout. With the
addition of a boundary condition we thus need to augment the definition by
adding a sufficiently large amount of tracks such that in a cell of width W(Λ)
the boundary condition near its right border is satisfied (the left border is
already covered by the enhanced bounding).

94 CHAPTER 5. CELL PLACEMENT

As the extended definition of layout width does not decrease the value of
W(Λ), the lower bounds computed by the algorithms above are still lower
bounds. Depending on the technology and its concrete boundary conditions,
LowerBound can be improved to anticipate the increased value of W(Λ) in
specific situations.

Fixations

In particular cases, a user might want to prescribe a given property that
should not be changed by the tool. Several options are provided for that.
A trivial option is to fix the number of fingers for a given FET. In this case
LF

f (k) is simply set to ∅ for all other finger numbers.
A more sophisticated possibility is to set boundary fixations. For every FETboundary

fixation it is possible to enforce its placement adjacent to the left respective right cell
border, with a source or the drain contact facing outwards. With such a con-
straint, it is important to see that layouts now cease to have the property that
motivated the definition of canonical layouts: It is not possible anymore to
arbitrarily swap and exchange FET groups which are separated by a gap of
size dmax. We thus have to modify the definition of canonical placements to
exclude the outermost FET groups if they contain a FET that has a boundary
fixation and adjust the specialized bounding procedure.
Aside from this, the boundary fixations are implemented in terms of addi-
tional bounding as soon as violations are detected.

Flexible Power Strips and Odd Rows

To simplify the presentation, we have always assumed that the bottom bor-
der of a single-row cell is covered by a GND power strip and the top border
by a VDD power strip. This is not necessarily the case and BONNCELL pro-
vides facilities to change this default power structure.
First, it is possible to define an arbitrary number of power strips with arbi-
trary y-coordinates. It is only required that they are disjoint. Power strips
can be configured to only have metal on M2 or to be accessible from both M1
and M2. In cells with more than one circuit row, every second row has the
same power structure as the bottommost row and all other have a structure
which is flipped on the x-axis.
The definition of the power strips, however, does not affect the default be-
havior that n-FETs (on multi-row cells: in the bottommost row) are placed
near the bottom cell border and p-FETs near the top border (on multi-row
cells: the top border of the bottommost row). This scheme can be changed
by setting the parameter oddRow. In this case, the cell layout is flipped ver-
tically in every circuit row, i.e. n-FETs are assigned to the top and p-FETs to
the bottom FET row. Figure 5.9 illustrates the difference.

5.5. SYNOPSIS OF BONNCELL PARAMETERS 95

n-FETs

p-FETs

p-FETs

n-FETs

p-FETs

n-FETs

n-FETs

p-FETs

Figure 5.9: Default row assignment if oddRow is set to false (left) and
if it is set to true (right).

10 nm Cells

The initial version of BONNCELL has been developed for the 22 nm tech-
nology node and was subsequently adapted for 14 nm cells—a major step
due to the large differences in the design rules. For example, the layer stack
has seen substantial changes and features like double patterning were in-
troduced, which embeds a graph coloring problem into the layout task (cf.
Chapter 7). 14 nm cells are, as of now, the primary use case of the toolset.
In addition, BONNCELL incorporates a basic support for 10 nm cells, the next
major technology node after 14 nm. The number of changes introduced with
this step is much smaller than the modifications required for the previous
step. The changes that have been incorporated into the tool include the modi-
fication of feature sizes, gridding, and associated input/output requirements.
Because design rules are still changing rapidly in the current stage, no rules
specific to 10 nm cells have yet been implemented.

5.5 Synopsis of BONNCELL Parameters

bigCellMode: Activates the mode for very large cells (Section 5.2.5).

boundaryCondition: If set to true, additional constraints near the left and
right cell border are applied (Section 5.4).

dummySize: Specifies the number of tracks reserved for wiring between cir-
cuit rows (Section 5.3).

fLenMode: Mode that determines how to compute the finger length from the
FET size and the number of fingers (Section 5.4).

fLenMin, fLenMax: Minimum and maximum length of a finger (Section 5.4),
can be specified independently for n-FETs and p-FETs.

96 CHAPTER 5. CELL PLACEMENT

γ1, γ2: Control the quality measure in multi-row cells (Section 5.3).

lastPhase: Specifies the last phase executed in the layout flow for cells with
two FET rows (Section 5.4).

maxAddlTracks: Number of tracks exceeding the minimum number that do
not affect the quality measure (Section 5.4).

maxRuntime: Maximum total runtime that may be used by the placement al-
gorithms.

maxRuntimeRouting: Maximum total runtime that may be used by the rout-
ing algorithms.

mixTypes: Specifies if FETs of different types may be assigned to the same
FET row (Section 5.2.4).

oddRow: If set to true, the mirroring of circuit rows changes parity, i.e. the
bottommost circuit row acts as if it was the second circuit row in a
multi-row layout (Section 5.4).

pN
x,abs, pN

y,abs, pN
x,rel, pN

y,rel, pN
layer: Specification of pin locations (Section 5.2.2).

numCktRows: Number of available circuit rows (Section 5.3).

tech: One of the values 22nm, 14nm, or 10nm. Specifies the technology node
(Section 5.4).

Chapter 6

Routing

Im Gebirge ist der nächste Weg von
Gipfel zu Gipfel: aber dazu musst du
lange Beine haben.

Friedrich Nietzsche, Also sprach
Zarathustra

After a layout of the transistors in a CMOS cell has been found, the second
major task in physical design is routing: All FET contacts that belong to the
same net must be electrically connected by a contiguous 3-dimensional struc-
ture within the layer stack given in Table 2.1. This completes the layout of
CMOS cells in the sense that it yields functional circuits to be used in a larger
context.
The original version of BONNCELL’s routing algorithm targeted the 22 nm
technology and was implemented by Nieberg and Kölker [Köl12], an over-
view was published in [HNS13]. The current implementation for the 14 nm
version is due to Weyd [Wey13] and Silvanus [Sil13]. In this chapter, we
summarize these works and amend them by several further aspects related
to the practical implementation.

6.1 Overview

Rather informally, the routing problem can be stated as follows.

CELL ROUTING PROBLEM

Instance: A netlist (F ,N), a legal 2-dimensional layout for F , and
technology-defined design rules R.

Task: Find disjoint legal wires for each N ∈ N satisfying R such that the
sum of the wires’ lengths is minimum.

97

98 CHAPTER 6. ROUTING

In BONNCELL, there are two models by which the desired metalized areas,
called wires, are described. The exact model describes wires as a set of 2-wire
dimensional rectilinear polygons, each of which is associated with one of the
metal layers. While from the tool’s point of view this shape-based description
is more complex to handle algorithmically, real-life design rules, and thus the
notion of legality, is defined according to these polygonal wire outlines.

6.1.1 Routing Grid

A simpler, yet less exact model considers the “centerlines” of the wires as
collections of 1-dimensional horizontal or vertical line segments in the 2-
dimensional plane, again assigned to one of the metal layers. The exact
shapes of the wires can then be deduced as the Minkowski sum of these
centerlines and, in the simplest case, a rectangle encoding the “width” and
“height” of the wires. The centerlines that constitute the wires form sub-
graphs of a certain technology-defined grid graph, thereby providing a com-
binatorial structure as a basis on which algorithms can operate more effi-
ciently than on free-form polygonal shapes.
Henceforth, we call this grid graph the cell’s virtual routing grid and denoterouting grid Ξ
it by Ξ = (V, E), where implicit embeddings of the edges are given as axis-
parallel straight line segments. We further denote n := |V| and m := |E|,
a visualization is shown in Figure 6.1. The routing grid consists of a 2-
dimensional (possibly irregular) grid graph for every metal layer as well as
vertical edges, called vias, at locations where neighboring layers may be elec-via
trically connected.

6.1.2 Legality

The legality of a routing is determined by a large number of shape-based
rules that are specified separately for each technology. In the 14 nm node,
about 700 rules affect the layers generated within BONNCELL. These range
from general grid-related constraints over simple distance or area require-
ments (e.g. shapes on layer x must have a minimum area of a) to very com-
plex specifications involving more than two polygons on different layers
that meet several conditions. In addition, “special constructs” are defined—
specific multi-layer configurations of metalized and unmetalized area that
are feasible even though they would violate one or more of the aforemen-
tioned 700 geometric rules.
In view of the large number and complexity of these constraints, it is beyond
the scope of BONNCELL to generate completely legal solutions. Rather, a
large fraction of the constraints is satisfied by construction, while some of
them are only addressed in a later stage of the algorithm. Very few rules are
not implemented at all. The goal is to generate as few violations as possible,
as those have to be fixed manually by human layouters.

6.2. COMBINATORIAL ROUTING 99

Figure 6.1: Virtual routing grid between two power strips.

Algorithms

The routing implementation in BONNCELL runs in three phases:

• Combinatorial routing: Starting with an empty cell, vertex-disjoint Stei-
ner trees are computed in Ξ that satisfy a reduced set of constraints.

• MIP routing: Taking the Steiner trees from the first phase as an initial
solution, subgraphs of Ξ are rerouted by a mixed integer programming
(MIP) formulation with an extended set of design rules.

• Shape-based post-optimization: Finally, various shape-based post-optimi-
zation steps are applied to the polygonal wire shapes.

The first two modules operate on the virtual routing grid, while only the last
module modifies the actual wire shapes. In the following, we will give an
overview of the methods used by these three phases.

6.2 Combinatorial Routing

The combinatorial router employs a dynamic programming scheme to effi-
ciently generate Steiner trees in the routing grid. It takes the routing task as
a Steiner tree packing problem, i.e. the problem of computing vertex-disjoint
Steiner trees, subject to several additional constraints that relate to the design
rules, such that the sum of their lengths is minimized. Even highly restricted

100 CHAPTER 6. ROUTING

versions of this problem are NP-hard. For example, it is NP-complete to de-
cide for k pairs of vertices (s1, t1), . . . , (sk, tk) if there are vertex-disjoint short-
est si-ti-paths even if the graph is planar and all edge lengths are 1 [ET98].

To solve the problem in practice, BONNCELL implements a rip-up-and-re-
route approach roughly structured as follows: In each iteration, an unrouted
net is chosen and a shortest Steiner tree is generated for this net such that
no conflicts with already routed nets are introduced. Moreover, the trees are
constructed subject to several additional constraints that are deduced from
particular design rules. However, in order to be able to incorporate these
constraints into the Steiner tree generation algorithm, only a subset of the
design rules are considered in the combinatorial router. Many rules are left
to later stages of the layout flow.

The method used to compute exact shortest Steiner trees is an improvent of
the Dijkstra-Steiner approach and is presented by Hougardy et al. in [HSV].
For the computation of a Steiner tree with terminals T ⊂ V it requires a
theoretical running time of O(3kn + 2k(n log n + m)), where k := |T|. Its
idea is to choose some t ∈ T and compute labels l(v, I) for v ∈ V and I ⊆
T \ {t} that encode the length of a shortest subgraph of Ξ connecting v with
all elements of I. Similar to Dijkstra’s approach to the shortest path problem,
the algorithm traverses the graph, thereby merging and generating labels
appropriately, until l(t, T \ {t}) is determined.

In addition to its efficient implementation, the Steiner tree generation proce-
dure employed by BONNCELL computes effective lower bounds for the costs
required to complete a partial tree. Both the improved Dijkstra-Steiner algo-
rithm as well as its embedding into BONNCELL’s routing flow is described
in great detail by Silvanus [Sil13]. The second part of Figure 6.2 provides an
example of the initial routing of a CMOS cell found by this method.

6.3 MIP-Based Routing

Because many design rules cannot be supported efficiently by the combinato-
rial router, its output usually contains many violations. The aim of the second
phase, the MIP-based router, is to locally modify the combinatorial router’s
Steiner tree packing, thereby fixing as many rule violations as possible. The
fundamental tool used to achieve this goal is the formulation of the Steiner
tree packing problem as a MIP as proposed by Grötschel et al. [GMW97]. For
each e ∈ E and each N ∈ N a binary variable xN

e is introduced that encodes
if the given edge is occupied by net N, and additional variables xe, e ∈ E,
represent the usage of e independent of a specific net. If TN ⊆ V denotes the
terminals of N ∈ N , then the solutions of

6.3. MIP-BASED ROUTING 101

Figure 6.2: Placement, combinatorial routing, and MIP routing.

102 CHAPTER 6. ROUTING

min ∑
e∈E

cexe

s.t. xe − ∑
N∈N

xN
e ≤ 1 for all e ∈ E

xe ≤ 1 for all e ∈ E

∑
e∈δ(W)

xN
e ≥ 1 for all N ∈ N and all W ⊆ V

with W ∩ TN 6= ∅ and (V \W) ∩ TN 6= ∅
xN

e ∈ {0, 1} for all N ∈ N and all e ∈ E

are exactly the edge-disjoint Steiner tree packings of Ξ (vertex-disjointness
can be achieved with further constraints). Unfortunately, the third set of
constraints, which ensures the connectivity of the terminal-connecting sub-
graphs, is exponentially large. Hence, we instead use flow-based constraints
to obtain this property, an idea initially proposed by Beasley [Bea84]. Essen-
tially, new variables model a flow that is sent from one terminal of a net to the
net’s other terminals, where edges may only carry flow if they are occupied
by a net.
This very general framework lays the foundation for a highly flexible router.
The following list names several examples for types of constraints that are
captured by the BONNCELL MIP:

• Nearly all of the geometric design rules can be converted to linear in-
equalities in the MIP, sometimes with the aid of additional variables.
This includes, but is not limited to constraints on the distance between
shapes, their minimum area, their edge lengths, and so on, often in-
volving shapes on different metal layers.

• In the 14 nm technology, a graph coloring problem became part of
the physical layout: The structures on some layers are too small to be
manufacturable by traditional means. To manufacture these structures
nevertheless, multiple masks are produced, each of which contains a
subset of the shapes on the given layer. Then both masks, as illustrated
in Figure 6.3, are superimposed to create the desired patterns. For the
routing problem, this means that each part of a wire that forms a con-
nected component on one of the layers must be assigned one of two
“colors” (representing the mask to which the shape is assigned), and
that wires with the same color must satisfy stricter constraints.
In the MIP, these rules can be addressed by splitting the variables for
each edge into two variables. One of these encodes if the edge is used
by a piece of metal with color 1, the other encodes the same for color
2. All design rules involving shapes of different or identical colors then
incorporate the new variables accordingly.

6.3. MIP-BASED ROUTING 103

(a) Mask 1 (b) Mask 2 (c) Metalized area

Figure 6.3: Coloring problem as part of the physical design. All
shapes in (a) and (b) have a sufficiently large distance to be manu-
facturable on the same mask.

• It is possible to process only a part of the cell by adding equalities to
the MIP that fix the value of an arbitrary set of variables. For example,
BONNCELL respects pre-wiring, user-defined metalized areas that may
be incorporated into any (or any given) net. Moreover, rather than al-
lowing the MIP router to change all nets arbitrarily, only parts of the
full cell are usually processed at once. In these cases, all variables out-
side the considered part of the cell are fixed, which is much easier to
implement than generating only the part of the graph within that re-
gion.

• Secondary optimization targets can be worked into the target func-
tion. For example, as long as it is possible without sacrificing netlength,
bends in the wires should be avoided. This can be modeled by counting
the number of 90 degree corners in the wires using additional variables
and penalizing these variables with a properly weighted term in the
target function.

It is worth to note that in this phase the generated subgraphs are not nec-
essarily trees. In some situations, optimal solutions do contain cycles in the
wires to avoid rule violations.
When all features of the tool are incorporated into the MIP, its size is ex-
tremely large. The cell in Figure 6.2 for instance would require a MIP with
1 842 011 variables and 4 957 847 constraints. In the default flow, the MIP is
thus not solved in one step. Rather, several strategies are applied to find fea-
sible solutions for parts of the chip: Routing single nets, sometimes restricted
to a tunnel of increasing radius around the combinatorial router’s solution,
routing multiple nets within small boxes, and so on. The previous solutions
are given to the MIP solver as a starting solution. Then, parts thereof are
updated every time a feasible solution is found for one of the processed sub-
instances. The commercial tool CPLEX 12.6 is used to solve the MIPs.
BONNCELL’s MIP-based router was implemented and described by Weyd
[Wey13]. Figure 6.2 illustrates typical changes applied by the algorithm to
wires generated in the first routing phase.

104 CHAPTER 6. ROUTING

6.4 Shape-Based Routing

Until this point in the flow, metal has only been represented by edges in
the virtual routing grid. However, some geometric design rules cannot be
modeled like this without decreasing the edge lengths to single nanometers,
which would drastically inflate the size of the grid. In addition, several lay-
ers of metal, which are not directly part of the wires, are not considered at all
by the previous steps. Hence, a final shape-based routing post-optimization
prepares the cell’s layout for the output and subsequent injection into the
higher-level VLSI toolset.
The first step in this phase is to generate the actual metal shapes from the
previously computed subgraphs of the routing grid. Those are obtained by
expanding the 1-dimensional embeddings of the grid’s edges in all directions
according to the assigned layer’s parameters. Thereafter, the following post-
optimization steps are applied to the metalized polygons.

6.4.1 Coloring

The MIP-based router implicitly computes a coloring of the wires, but its pur-
pose is merely to guarantee the existence of a feasible coloring. In the post-
optimization, a new coloring is determined that additionally aims at several
soft constraints. For that purpose, BONNCELL generates an auxiliary graph
with one vertex for each connected metalized region and edges between ver-
tices if the corresponding pieces must not have the same color. Subsequently,
all possible 2-colorings of the graph are evaluated for their conformance with
the soft constraints, for example:
• The number of coloring rule violations should be as small as possible

(such violations may occur if the previous routing algorithms didn’t
find a colorable solution).

• The color of a wiring layer should match the color of connected vias on
the adjacent layers.

• Both colors should be assigned to roughly the same amount of metal.
BONNCELL also supports the fixation of colors in the pre-wiring: Especially
the power rails usually have a user-defined color that must not be changed.

6.4.2 Via Pads

Metal on the wiring layers must overlap connected vias by some amount
according to several design rules that depend on the involved layers. To
avoid violations, metal is added in the post-optimization to satisfy these rules
such that the number of distance violations introduced by this modification
does not exceed the number of violations resolved by it. If the algorithm can
choose between several variants of these “via pads”, it prefers the variant
that adds the fewest amount of metal.

6.4. SHAPE-BASED ROUTING 105

6.4.3 Cut Shapes

In the 14 nm technology, the PC layer constitutes a special case. While so
far the polysilicon has been treated as an ordinary wiring layer on which the
FET gates are located, it is, in the data model, completely covered by vertical
PC wires. In places where these must be interrupted, cut shapes have to be
defined on a separate layer. These shapes must follow unique design rules
by themselves. Using the parameter ctMode, BONNCELL gives the user the
ability to choose between several strategies:
• Small rectangular: The cut shapes consist of a set of disjoint rectangles

that are generated as small as possible, and as close to the cell’s vertical
center as possible. The restriction to rectangles is useful because inner
corners of cut shapes need to comply with complicated rules that are
not encoded in BONNCELL.
• Large rectangular: The cut shapes consist of a set of disjoint rectangles

that are generated as large as possible.
• Non-rectangular: The cut shapes may be arbitrary rectilinear polygons.

The shapes are determined by selecting for every vertical PC wire the maxi-
mum interval which can be covered by cut shapes without violating design
rules. Then, depending on the value of ctMode, the resulting polygons are
modified according to the selected strategy. In the current implementation,
the placement algorithms, which assume one of the first two modes, do not
change their behavior in dependence on the parameter. Hence, the place-
ment implementation overlooks layouts that are only possible by exploiting
the specific non-rectangular cut shape rules. As the mode is rarely used in
practice, the restriction is usually without consequences for the optimality.

6.4.4 Additional Layers

The post-optimization also generates several layers of metal indicating par-
ticularly processed regions of the underlying substrate. Those are associated
with the types of the transistors or their Vt levels. Although they are not part
of the wires, they must comply with a number of design rules. The majority
of these rules can be satisfied by simple operations on sets of rectangles with-
out any influence on the placement or routing. Some, however, do forbid
specific FET arrangements. These are avoided within the BONNCELL flow
by incorporating them into the legality oracle employed by the placement
algorithms.
All in all, BONNCELL outputs rectilinear polygons on 16 layers of metal,
polysilicon, and other materials in the form of an XML file. The VLSI tool-
chain calling and providing the input for BONNCELL then reads this XML
for further processing. This usually includes some manual work to remove
remaining errors and finally the usage of the generated layouts in a higher
level of hierarchy.

Chapter 7

Results

To know but not to do is not to know.

Chinese proverb

In this chapter, we describe the experiments that have been conducted to
evaluate BONNCELL. We characterize a large set of CMOS cells on which
the tool is tested, examine the influence of several parameter settings on the
results, compare our layouts—wherever possible—with their industry coun-
terparts, and finally document two scenarios in which BONNCELL has been
used by the industry with great benefit.

7.1 Test Beds

BONNCELL was tested on several hundred real-life 14 nm CMOS cells pro-
vided by IBM. The entirety of these cells was divided into 3 test beds with
varying characteristics and applications. Before the results are presented, we
elaborate on the properties of these groups. Table 7.1 summarizes the cells’
key data.

CLC: Custom Leaf Cells

The first test bed, henceforth abbreviated CLC, consists of custom leaf cells
that have been flagged by our industry partner IBM as appropriate test cases
for BONNCELL. Most of these cells have in fact been subject to at least some
kind of optimization with the help of our toolchain, ranging from placement
runs used to obtain quick estimates on the total size of the final layout up to
complete layout generation. This set of cells offers a very large diversity: It
contains a small buffer with 4 transistors and some very complex cells having
a width of almost 80 tracks.

107

108 CHAPTER 7. RESULTS

Table 7.1: Characteristics of the test beds.

CLC LIB LAT

Number of cells 102 198 36
Total number of FETs 1 621 1 284 1 276
|F | (min/median/max) 4/12/51 2/6/11 16/36/48
Total number of nets 1 630 1 732 948
|N | (min/median/max) 6/13/46 5/9/11 14/27/36
Sum of optimum widths1 2 898 3 543 1 172
Wopt(F) (min/median/max)1 4/23/79 2/13/77 12/31/75
Sum of FET sizes L(F) 15 140 29 328 4 710
Avg. FET size (min/median/max) 2.1/8/62.7 2/12/200 2.3/2.4/10.7

LIB: Standard Library

The test bed LIB represents the majority of a 14 nm standard library that is
in use in server processors at IBM. A standard library is a collection of basic
logic functions like AND or NOR circuits or just inverters. They are used as basic
building blocks to compose the logic functionality of a processor and make
up the largest part of the total chip area.
For the test bed, we selected only the subset of the library consisting of the
“regular” Vt level cells, because the cells associated with other Vt levels are
identical copies from the physical layout’s perspective (the only difference
concerns layers that are not subject to our presentation). Thus, unlike the
other test beds, all cells in LIB contain only FETs of a single Vt level.
In general, this test bed is the easiest to lay out because the sizes of the netlists
are comparatively small. Although the layout of standard cells is not the
prime application BONNCELL was designed for—such cells can also be gen-
erated by less complex systems due to their simple structure—there are, as
discussed in Section 7.4.2, means by which our tool can be used to great avail
in the generation of a standard library. Table 7.2 contains a detailed overview
of the cell types occurring in LIB. Cells of the same type match in their FET
and net numbers. However, the sizes of transistors, and thus of the layouts,
vary broadly.

LAT: Latches

Finally, the third test bed LAT is situated at the upper end of the difficulty
range. It is a collection of latches and related cells, circuits storing informa-
tion, and strictly speaking part of the same standard library that constitutes
the second test bed. But in contrast to the basic logic functions, these memory
elements are highly complex in their structure and, on average, significantly

1 The smallest known width is used where the optimum is not known.

7.2. EVALUATION OF BONNCELL FEATURES 109

Table 7.2: Number of occurrences and characteristics of all cell types
in the LIB test bed.

Cell type Count |F | |N | Wopt(F)
Inverter 19 2 5 2 to 38
2-input AND 3 6 8 4 to 6
2-input OR 3 6 8 4 to 6
2-input NAND 19 4 7 3 to 68
3-input NAND 13 6 9 4 to 46
4-input NAND 7 8 11 5 to 31
2-input NOR 16 4 7 3 to 68
3-input NOR 10 6 9 4 to 42
2-1 AND-OR-Invert 17 6 9 4 to 58
2-2 AND-OR-Invert 17 8 11 5 to 77
2-1 OR-AND-Invert 17 6 9 4 to 58
2-2 OR-AND-Invert 17 8 11 5 to 77
2-input XNOR 10 9 9 6 to 24
2-input XNOR + buffer 10 11 10 7 to 29
2-input XOR 10 9 9 6 to 24
2-input XOR + buffer 10 11 10 7 to 29

harder to lay out than the set of custom leaf cells. To account for this differ-
ence, the standard library was split into LIB and LAT.
As Table 7.1 shows, transistors in this test bed are usually small yet numer-
ous, leading to a large number of possible permutations and swap configura-
tions. In addition, the netlists are larger (with more than 35 FETs on average)
and have more complex nets (with over 4 FETs, on average, connected by
each net).

General Test Setup

Unless otherwise noted, all of the following experiments have been con-
ducted on a an Intel E5-2667 CPU at 3.3 GHz. Moreover, BONNCELL was
set up with default parameters (cf. Chapter 5) and runtime limits of 2 hours
for placement and 6 hours for routing.

7.2 Evaluation of BONNCELL Features

We begin the discussion of the results by stating several properties of the
placement algorithms and analyzing the effect of a number of parameters.

110 CHAPTER 7. RESULTS

7.2.1 Placement with Default Settings

Figure 7.1a shows the runtime of the cell placement (Algorithm 7) required
for the CLC cells sorted by total runtime. The colors indicate the time spent in
the three phases of the algorithm. A timeout occurs for 13 cells in phase 2, for
18 cells in phase 1 and for 8 cells already in phase 0. Global optima are found
for the remaining 63 cells. It may have happened that global optima were
also found in some timed out runs, but the optimality could not be proven in
these cases.
The chart shows that, in some cases, a phase can run even faster than the pre-
ceding phase, although the phases were designed to have an increasing com-
plexity. This behavior can be observed when the additional restrictions im-
posed during earlier phases enforce a layout to have more diffusion gaps—
and thus allows more permutations of the FETs—while the later phase al-
lows very compact placements for which good or even exact upper bounds
are discovered early.
The widths of the generated layouts are illustrated in Figure 7.1b. The col-
umns of the chart correspond to the columns of the chart above. Colors again
correspond to the three phases of the algorithm: The blue bar shows the re-
sult of phase 2, i.e. Wopt(F). The red bar shows the width at the end of phase
1 and the beige bar the width after the initial phase in which both stacks
are placed independently. Only 13 of the 63 cells without a timeout can be
placed into fewer tracks after phase 2 than after phase 1, suggesting that in
most cases results of phase 1 are already global optima.
Figures 7.2 and 7.3 depict the same data for the test beds LIB and LAT. In
both of these groups, pairs of instances are noticeable that display a very
similar behavior both in runtime and layout width. These pairs consist of
very similar but not identical netlists, e.g. a 2-input NAND and a 2-input NOR
with FETs of the same size.

7.2.2 Additional Tracks

The parameter maxAddlTracks, as outlined in Section 5.4, allows the layout to
span additional tracks beyond those that would be required for a minimum-
width solution. The motivation for this feature is the idea that such non-
minimal layouts occupy a slightly larger area, but are in turn “more routable”
in the sense that placements are possible with a shorter netlength. These
would require less metal for the necessary interconnections and can even
cause otherwise unroutable placements to become routable, either due to the
reduced netlength or due to the larger amount of available routing tracks.
To evaluate the parameter, BONNCELL was run with maxAddlTracks set to
0, 1, 2, and 3 on all CLC cells. The routability is estimated by applying the
combinatorial router to the generated placements. Although the success of
the routing algorithm neither implies nor is implied by the existence of a

7.2. EVALUATION OF BONNCELL FEATURES 111

10−4

10−3

10−2

10−1

100

101

102

103

104

R
un

ti
m

e
(s

ec
.)

Phase 0
Phase 1
Phase 2

(a) Runtime spent for each phase of the placement.

0

10

20

30

40

50

60

70

80

W
(Λ

)

Phase 0
Phase 1
Phase 2

(b) Layout widths after each of the 3 phases. The chart only shows bars for
phases without a timeout. The ordering is the same as in (a).

Figure 7.1: Placement results on the 102 CLC instances with default
parameters and a runtime limit of 2 hours.

112 CHAPTER 7. RESULTS

10−4

10−3

10−2

10−1

100

101

102

103

104

R
un

ti
m

e
(s

ec
.)

Phase 0
Phase 1
Phase 2

(a) Runtime spent for each phase of the placement.

0

20

40

60

80

100

120

W
(Λ

)

Phase 0
Phase 1
Phase 2

(b) Layout widths after each of the 3 phases. The chart only shows bars for
phases without a timeout. The ordering is the same as in (a).

Figure 7.2: Placement results on the 198 LIB instances with default
parameters and a runtime limit of 2 hours.

7.2. EVALUATION OF BONNCELL FEATURES 113

10−4

10−3

10−2

10−1

100

101

102

103

104

R
un

ti
m

e
(s

ec
.)

Phase 0
Phase 1
Phase 2

(a) Runtime spent for each phase of the placement.

0

5

10

15

20

25

30

35

40

W
(Λ

)

Phase 0
Phase 1
Phase 2

(b) Layout widths after each of the 3 phases. The chart only shows bars for
phases without a timeout. The ordering is the same as in (a).

Figure 7.3: Placement results on the 36 LAT instances with default
parameters and a runtime limit of 2 hours.

114 CHAPTER 7. RESULTS

Table 7.3: Influence of maxAddlTracks parameter on layout runtime
and quality. The numbers refer to the 50 CLC cells for which globally
optimal solutions were found in all cases.

maxAddlTracks

0 1 2 3

Sum of placement runtimes (sec.) 736 1 970 7 433 24 109
Average slowdown factor — 4.7 30.4 195.9
Sum of gate netlengths (half-tracks) 1 070 962 916 890
Sum of total netlengths (half-tracks) 6 157 5 782 6 072 6 194
Number of routings found 47 47 46 46
Number of M2 tracks used by wires2 43 35 32 30
Sum of routing runtimes2 (sec.) 38 295 32 976 27 947 32 259

routing that satisfies all design rules, it is the closest approximation available
to us (and, as our experience suggests, a good approximation).
For 50 of the 102 cells, globally optimal layouts were found in all four experi-
ments. Table 7.3 summarizes the results on these 50 cells. The placement run-
time increases, as expected, significantly for larger values of maxAddlTracks.
The behavior is caused by the new degrees of freedom that emerge when
the placement becomes less tight. New opportunities of flipping, shifting,
or even permuting the transistors are gained, thereby making the problem
more complex. In most cases, increasing the number of available tracks by 1
increases the placement runtime by a factor of 2 to 10. The exact numbers for
all 50 cells are illustrated in Figure 7.4a. The second row of Table 7.3 gives the
average value of the slowdown factor, which is defined as the ratio betweenslowdown factor
the runtime with the according number of additional tracks and the runtime
when no additional tracks may be used.
The next two rows show how the netlengths develop. The gate netlength is
the secondary optimization target and thus cannot get larger when additional
tracks may be used at no cost. The total netlength, however, can change in
both directions because a better gate netlength may come at the cost of an
increased total netlength. The table confirms that by allowing larger-than-
necessary layouts, the gate netlength can be improved significantly. This is
also illustrated in Figure 7.4b in greater detail. The total netlength changes in
both directions, with a tendency towards decreasing, but the effect is smaller
than for the gates.
The question if a design can be routed at all is hardly affected: While rout-
ings are found for 70 layouts with default settings, the number changes to
69 for all tested values of maxAddlTracks. Among the 50 cells examined

2 The numbers only refer to the 45 cells for which routings were successfully found in all
four settings.

7.2. EVALUATION OF BONNCELL FEATURES 115

10−3

10−2

10−1

100

101

102

103

104

10−2

100

102

R
un

ti
m

e
(s

ec
.)

maxAddlTracks = 0

maxAddlTracks = 1

maxAddlTracks = 2

maxAddlTracks = 3

(a) Placement runtime for several values of maxAddlTracks.

0

20

40

60

10

30

50

N
L g
(Λ

)

maxAddlTracks = 3

maxAddlTracks = 2

maxAddlTracks = 1

maxAddlTracks = 0

(b) Gate netlength depending on the available number of additional tracks.

Figure 7.4: Influence of maxAddlTracks parameter on runtime and
gate netlength. The bars represent the cells summarized in Table 7.3.

above, 47 are routable when maxAddlTracks is at most 1, and one fewer
routing is found for larger values. In fact, two cells become unroutable at
that point while one further cell that could not be routed for small values of
maxAddlTracks becomes routable for larger values.
The last two rows in the table support the claim that the routing becomes
easier in some sense when more area is available: On the one hand, less tracks
on M2 are needed as the cell area increases. This is important because those
tracks can also be used by wires on a higher hierarchy level, hence blocking
them within the cells is disadvantageous. On the other hand, the total routing
runtime tends to decrease, although that number is only loosely related to the
“hardness” of the routing problem.

116 CHAPTER 7. RESULTS

Figure 7.5: Layouts of the same cell with maxAddlTracks set to 0, 1, 2,
and 4. Thicker outlines indicate M2 metal, shapes are colored by net.

7.2. EVALUATION OF BONNCELL FEATURES 117

Table 7.4: Comparison of a default run of all CLC cells with layouts
where all finger lengths are restricted to 3.

maxFingerLength

∞ 3

Sum of placement runtimes (sec.) 297 670 151 605
... for cells w/o timeout in both runs 16 870 1 606

Placement timeouts in phase 0/1/2 8/18/13 8/10/2
Sum of layout widths 2 885 3 376
Sum of gate netlengths 12 232 10 732

... for cells w/o timeout in both runs 1 538 2 376
Successful routings 70 76

We can conclude that the parameter maxAddlTracks can be used to simplify
the routing by reducing the netlength and the probability that an M2 track
needs to be used at the cost of a significant runtime increase. But taking
the routability as a binary yes/no property, no large effect can be demon-
strated by these experiments. To cancel the negative effect of the runtime
increase, BONNCELL is configured to run in a loop with an increasing value
of maxAddlTracks. If the user sets the parameter to k, then at first a placement
is generated for the value 0, then for 1, and so on until k is reached. Finally,
the result from the last iteration without a timeout is returned.
An example of how a concrete cell layout is affected by changing the number
of available tracks can be seen in Figure 7.5. It depicts four layouts of the
same instance, the only difference being the value of maxAddlTracks.

7.2.3 Restricting Finger Lengths

BONNCELL provides control over the maximum number of fins a single fin-
ger may overlap, i.e. the maximum finger lengths. This reduces the number
of ways by which each FET can be configured, may thus greatly improve the
runtime, but also leads to larger layouts. The feature was tested by compar-
ing all CLC layouts with default parameters to corresponding layouts where
all finger lengths were restricted to 3.
Table 7.4 contains a summary of the results. The total runtime roughly halves,
which is due to 8 fewer timeouts and many other cells that can be laid out
much faster. Figure 7.6a, which compares the runtimes of the two experi-
ments, allows a more detailed view on that aspect. The improvements are
much more numerous and also larger in their magnitude than the degrada-
tions. However, some cells also need more time in the restricted version be-
cause less diffusion sharing is possible. The color of the dots indicate the av-
erage FET size on the associated cell, suggesting that bounded finger lengths

118 CHAPTER 7. RESULTS

10−3 10−2 10−1 100 101 102 103 104

10−3

10−2

10−1

100

101

102

103

104

Default runtime (sec.)

Sh
or

tfi
ng

er
ru

nt
im

e
(s

ec
.)

0

10

20

30

40

50

(a) Placement runtime with default settings vs. placement runtime if finger
lengths are restricted to 3. The colors indicate the average value of L(F) on
the corresponding cell.

0

20

40

60

80

100

W
(Λ

)

Default
Short fingers

(b) Layout widths with default parameters and with a maximum finger length
of 3.

Figure 7.6: Effect of enforced short finger lengths for all CLC cells.

7.2. EVALUATION OF BONNCELL FEATURES 119

are especially effective in speeding the algorithm up on cells with many large
transistors.
The sum of the layout widths increases by about 17%. Figure 7.6b shows, for
all 102 cells, the width of the default layout and the width of the restricted
layout (which is never smaller). The gate netlengths, however, improve espe-
cially when the algorithm with default settings hits the runtime limit. More-
over, some layouts become routable by restricting the finger length. Again
this tends to happen when the default run timed out and a better placement
can be found by truncating the search space.

7.2.4 Multi-Row Cells

In Section 5.3, we describe BONNCELL’s method to generate transistor-level
layouts spanning several circuit rows. In practice, this feature is most often
activated by the user when the surroundings of the cell dictate another form
factor. However, it can also be used to handle very large cells and, in general,
produces variants of the default layouts, thereby increasing the chance to find
feasible routings. To evaluate the feature, we configured each of the 102 CLC

cells to be laid out within 1, 2, and 3 circuit rows.
The Tables 7.5 and 7.6 show the results of these experiments. The first table
summarizes the results of the 63 cells on which no timeout occurred in the
single-row case, i.e. provably optimal layouts are known for this case. As it
turns out, the multi-row runs did not end with a timeout either on these 63
cells. The second table provides the same statistics for the 39 remaining cells
with a timeout. Using 2 rows, only 11 of those encountered a timeout, and
with 3 rows only a single cell did not finish within the time limit of 2 hours.
The first table suggests that it rarely pays off to generate multi-row layouts
when an optimal single-row version is available. The area covered by the
cell’s rectangular outline increases, on average, by 29% for 2 rows and by
56% for 3 rows. Not a single multi-row cell is smaller than the minimum-
width solution in a single row. In principle this would be possible, because
arranging the layouts of the individual rows side by side might require ad-
ditional empty tracks between those blocks due to minimum distance rules.
However, considering those 63 CLC cells, the single-row variants are always
the most compact ones. When the single-row placement fails, this behavior
changes. Table 7.6 shows that in some cases the cell area decreases. If for
every cell the smallest variant is chosen, netlists can be laid out with 10% less
area on average.
The netlength values in the tables are, in this case, the sum of vertical and
horizontal total netlengths. In contrast to the single-row problem, where the
vertical netlength is largely fixed and not subject to optimization, we now
have a 2-dimensional problem in which both dimensions of the netlengths
are relevant. Comparing against non-optimal single-row placements, the
multi-row counterparts, which are also non-optimal, can have a significantly

120 CHAPTER 7. RESULTS

Table 7.5: Multi-row results on the 63 CLC cells that were successfully
placed within one circuit row without a timeout. The last column
shows the results obtained by taking for each cell the number of rows
that produces the best value for the given measure.

Number of rows

1 row 2 rows 3 rows Best

Change in cell area (avg) — +29% +56% +0%
Change in total netlength (avg) — +17% +33% -2%
Sum of total netlengths 15 280 16 900 19 088 —
NLg(Λ) (min/median/max) 0/20/82 0/18/76 0/16/64 —
Sum of gate netlengths 1 538 1 422 1 298 1 188
Sum of placement runtimes 16 870 147 2 335 112
Number of timeouts 0 0 0 0
Successful routings 89% 81% 62% 90%

Table 7.6: Same as Table 7.5, but for the 39 CLC cells for which a
timeout occurred in the single-row placement.

Number of rows

1 row 2 rows 3 rows Best

Change in cell area (avg) — -2% +19% -10%
Change in total netlength (avg) — -28% -22% -28%
Sum of total netlengths 37 973 24 458 26 889 —
NLg(Λ) (min/median/max) 24/190/938 18/70/262 18/66/152 —
Sum of gate netlengths 10 694 3 686 2 674 2 536
Sum of placement runtimes 280 800 168 774 60 006 54 536
Number of timeouts 39 11 1 1
Successful routings 36% 49% 46% 64%

better netlength. Increasing the number of rows also tends to improve the
gate netlength, which is clear because now more FETs may share the same
x-coordinate (however, the transistors are usually assigned so that all FETs
sharing a gate contact lie within the same circuit row).
As the multi-row placement does not perform an exhaustive search over all
possible assignments of FETs to circuit rows, it does not guarantee to find a
global optimum. Only after such an assignment has been fixed, optimal lay-
outs are computed within the individual circuit rows. These can be found
much faster than in the single-row case because much fewer FETs are con-
tained in each given row. For this reason, multi-row placements are usually
finished much faster, which also reflects in the tables. Using two rows, all
instances in the first group can be laid out in a total runtime of 147 seconds.

7.2. EVALUATION OF BONNCELL FEATURES 121

Figure 7.7: The same netlist laid out in 1, 2, and 3 circuit rows.

In addition to the placement’s behavior, we evaluated the routability of the
layouts. The experiments confirm the trend that with an increasing number
of rows the probability to find a routing decreases, which is explained by
the added difficulty to route nets through the border regions between circuit
rows. When no optimal single-row placement could be found, the multi-row
variants—especially those without a timeout—have a higher probability to
be routable. For 25 out of the 39 cells in this group one of the three variants
was successfully routed. In total, 82 out of all 102 CLC cells were routable in
at least one of the variants.

122 CHAPTER 7. RESULTS

Table 7.7: Placement runtime, layout width, gate netlength, total
netlength, and routability with default settings and with mixed FET
rows activated. The last column group shows the differences to the
default results. If no runtime is given, a timeout occurred.

FET Areas Default layout Mixed FET rows

Cell n p Runt. W NLg NL Rtb.3 Runt. W NLg NL Rtb.3

clc26 11 34 0.0 13 6 51 yes 0.1 -2 +14 -2 yes
clc46 28 10 0.0 14 34 114 no 1.5 -1 -6 -14 no
clc59 288 112 — 79 530 1 774 no — 0 0 0 no
clc62 94 34 — 26 50 242 yes — +3 +74 +84 yes
clc64 120 41 — 40 158 541 yes — 0 0 0 yes
clc65 26 9 0.0 9 10 51 yes 0.0 0 0 0 yes
clc80 12 5 0.0 7 0 52 yes 0.0 0 0 0 yes
clc85 180 60 2.4 27 42 301 no — 0 0 0 no
clc89 6 22 0.0 8 6 29 yes 0.1 0 0 0 yes
clc94 219 9 — 54 74 1 048 yes — +24 +52 +577 yes

7.2.5 Mixed FET Rows

The strategy to arrange transistors in one row of n-FETs and one row of p-
FETs is usually reasonable, but especially netlists with a very unbalanced
ratio between n-FETs and p-FETs—more precisely: an unbalanced area cov-
ered by these groups—are better placed with mixed rows as described in
Section 5.2.4. Figure 7.8 illustrates the ratio between the size of the n-FETs
and the size ∑F∈F L(F) of all FETs for each of the CLC instances. While most
of the cells have a comparable amount of n-FETs and p-FETs, some are ex-
tremely unbalanced. The instances in LIB and LAT are essentially balanced
and not relevant for the evaluation of this feature.
To test the effect of mixed circuit rows, BONNCELL’s placement algorithm
was applied, with mixTypes set to true, to the 10 most unbalanced cells in
CLC. Detailed results on these cells are given in Table 7.7. Only 2 of these 10
cells were placed with mixed circuit rows. For the other 8 cells two reasons
prevented mixed rows from being laid out:

• In some cases the best layouts have very high p-FETs where every fin-
ger covers many fins and comparatively flat n-FETs (or vice versa). This
scheme is often better than mixed rows to handle unbalanced netlists.

• When timeouts occur in the phase where the assignment of FETs to
FET rows should be determined, which happens on the large cells, the
trivial assignment separating n-FETs from p-FETs is chosen as the one
for which the final layout is computed.

3 Indicates if the combinatorial router found a routing within 6 hours.

7.2. EVALUATION OF BONNCELL FEATURES 123

0

0.2

0.4

0.6

0.8

1

0.5

W
(Λ

)

Figure 7.8: Ratio between the area covered by n-FETs (i.e. the number
of fin/gate intersections) and the total area covered by FETs.

(a) Only placement and some gate connections

(b) Full layouts with routing

Figure 7.9: Default layout (left) and layout with a mixed circuit row.
The gray regions indicate the p-FETs. The empty track on the right
side of the default layout is due to the boundary condition.

124 CHAPTER 7. RESULTS

Figure 7.10: Placement of the same instance without and with multi-
FET folding. By interleaving the two large transistors near the middle
the amount of diffusion sharing can be increased, saving 2 tracks.
Corresponding FETs in the two figures have the same color.

The two instances that do not encounter a timeout and, at the same time, are
laid out with a mixed FET row do improve the target function. One can be
placed with 1 fewer track, the other one even saves 2 tracks. The latter is
depicted in Figure 7.9.

7.2.6 Folding of Multiple FETs

Another feature supported by BONNCELL is the folding of multiple FETs, i.e.
splitting pairs of large transistors with more than 1 finger into smaller single-
finger transistors and arranging them in an interleaving fashion. The method
is presented in detail in Section 5.2.3. To test this technique, all CLC cells were
processed with default parameters and subsequently with multi-FET folding
activated. Out of all 102 instances, BONNCELL chose to apply folding on 20
cells. The effect on those 20 cells is documented in detail in Table 7.8.
The columns associated with the experiments where multi-FET folding was
activated show the differences relative to the default run, and #F stands for
the number of FET pairs that BONNCELL split in order to arrange them in an
interleaving pattern. In most cases, 1 pair of FETs was folded.

7.2. EVALUATION OF BONNCELL FEATURES 125

Table 7.8: Placement runtime, layout width, gate netlength, total
netlength, and routability with default settings and with activated
multi-FET folding. The results for the folding experiments show the
differences to the default results, the column #F contains the number
of FET pairs to which folding was applied. If no runtime is given, a
timeout occurred.

Default layout Multi-FET folding

Cell Runt. W NLg NL Rtb.4 #F Runt. W NLg NL Rtb.4

clc02 12.7 15 14 119 yes 3 — -2 14 -26 yes
clc15 — 33 308 557 no 2 — -4 -260 -351 no
clc31 3.0 19 54 200 yes 1 — 0 0 +17 yes
clc40 441.1 18 30 131 yes 2 2 492.9 -2 +22 -5 yes
clc41 0.0 12 16 68 yes 1 2.4 0 0 0 yes
clc49 0.0 9 6 55 yes 1 1.6 -1 +6 -6 yes
clc54 0.1 14 22 87 yes 1 211.1 0 0 0 yes
clc55 18.0 18 18 113 yes 2 — 0 0 +110 yes
clc58 0.1 13 16 73 yes 1 31.9 -1 +4 -6 yes
clc69 0.1 13 16 73 yes 1 29.7 -1 +4 -6 yes
clc70 0.1 14 22 111 yes 2 70.9 -1 +16 +3 no
clc71 0.0 9 8 65 yes 1 0.4 0 0 +10 yes
clc72 0.0 9 6 55 yes 1 1.3 -1 +6 -6 yes
clc87 0.0 13 14 73 yes 1 104.7 0 0 0 yes
clc90 0.0 12 14 60 yes 1 10.9 0 0 +4 yes
clc91 0.0 13 30 106 yes 1 2.6 0 0 0 yes
clc92 0.6 13 18 114 yes 1 35.9 0 0 0 yes
clc93 0.0 12 12 82 yes 1 6.6 0 0 0 yes
clc95 88.6 18 12 113 yes 1 382.4 0 0 0 yes
clc99 1.1 17 20 210 yes 1 6 109.3 0 +4 0 yes

The algorithm’s target function, which essentially is a lexicographically or-
dered tuple of the layout width (W), the gate netlength (NLg), and the total
netlength (NL), changed on 13 out of 20 cells. From these 13 cells, 8 improved
and 5 degraded. These degradations of the target functions can be explained
by a timeout (as for clc15) or by the fact that the target function is modified in
the multi-FET folding mode to favor the variants where folding is performed.
This behavior was implemented because one assumes that when the user ac-
tivates this mode interleaving patterns are desired for electrical reasons that
are not captured by the standard measure.
The improvements of the target function are usually much more substantial
than the degradations. All of the 8 improved cells could be laid out with a

4 Indicates if the combinatorial router found a routing within 6 hours.

126 CHAPTER 7. RESULTS

smaller number of tracks, while the degraded instances are mostly affected
in the less relevant total netlength measure.
As most of the 20 instances represented in the table are routable with default
settings and stay routable when activating the folding feature, the routability
does not appear to be affected significantly. This is expected because the
complexity of the netlist structure roughly stays the same. The drastic effect
on the runtime can be attributed to the still experimental implementation of
the feature that did not undergo optimization so far.
An example for the effect of multi-FET folding is depicted in Figure 7.10.
Effects on the standard library will be discussed in Section 7.4.2. In the LAT

test bed, almost all FETs are too small to be candidates for this technique,
hence such tests are expendable.

7.2.7 Large Cell Placement

After a timeout, especially in the first two phases, the generated layouts are
often too bad to be routable. The mode introduced in Section 5.2.5 to handle
very large cells promises to alleviate this problem by several means. Table 7.9
lists results of experiments conducted with the CLC test bed.
On the one hand, the reduction of total netlength is targeted rather than gate
netlength, thereby reducing the amount of wiring that has to be packed into
the cell outline. Table 7.9 shows that on CLC cells running into a timeout
when using default settings, the total netlengh decreases by almost 12%. On
the other hand, the sum of cell areas increases by about 8% on the same set of
cells. Thus, by moving the focus away from the overall layout compactness,
more routing area is available for less wiring. Consequently, out of the 26
cells with a timeout in the first two phases, 20 can be routed successfully after
generating a layout with the alternative flow. With default settings, only 4 of
these cells would be routable.
Although the greatly improved routability comes at the cost of larger cell
outlines, the layouts are generated in a vastly reduced runtime. Only a single
subcell out of 206 that were generated during the large cell heuristic encoun-
ters a timeout. All other BONNCELL runs finish much quicker than the max-
imum of 2 hours. To be precise, the 101 other cells produce a result after 81
seconds on average. The parameters involved in splitting the large instance
into smaller instances are chosen sufficiently small so that almost all of the
smaller instances can be processed in less than a second.
The same data for the LAT test bed is shown in Table 7.10. However, on these
cells the heuristic for large cells was comparably unsuccessful as the default
run. Even on cells which encounter an early timeout when run with default
parameters, the netlengths increased and still none of these examples can be
routed after bigCellMode is activated.

7.2. EVALUATION OF BONNCELL FEATURES 127

(a
)D

ef
au

lt
se

tt
in

gs
:U

nr
ou

ta
bl

e
la

yo
ut

w
it

h
W
(Λ

)
=

56
,N

L(
Λ
)
=

1
26

2,
an

d
a

pl
ac

em
en

tt
im

eo
ut

af
te

r
2

ho
ur

s.

(b
)T

w
o

ci
rc

ui
tr

ow
s:

U
nr

ou
ta

bl
e

la
yo

ut
w

it
h

W
(Λ

)
=

22
an

d
a

pl
ac

em
en

tt
im

eo
ut

af
te

r
2

ho
ur

s.

(c
)L

ar
ge

ce
ll

m
od

e:
R

ou
ta

bl
e

la
yo

ut
w

it
h

W
(Λ

)
=

65
,N

L(
Λ
)
=

78
6,

an
d

a
pl

ac
em

en
tr

un
ti

m
e

of
0.

2
se

co
nd

s.

Fi
gu

re
7.

11
:T

hr
ee

va
ri

an
ts

of
a

ve
ry

co
m

pl
ex

ce
ll

.R
ou

ta
bi

li
ty

co
ul

d
on

ly
be

ac
hi

ev
ed

w
it

h
b
i
g
C
e
l
l
M
o
d
e

ac
ti

va
te

d.

128 CHAPTER 7. RESULTS

Table 7.9: Results for the CLC test bed when activating bigCellMode.

Default Large cells Diff.

Total number of subcells — 206 —
Number of subcell timeouts — 1 —
Sum of placement runtimes (sec.) 299 561 15 423 -95%
Sum of layout widths 2 885 3 309 +15%

... for cells with phase 0/1 timeout 1 344 1 456 +8%
Sum of total netlengths 38 444 40 133 +4%

... for cells with phase 0/1 timeout 25 032 22 081 -12%
Successful routings 70 72 +3%

... for cells with phase 0/1 timeout 4 20 +400%

Table 7.10: Results for the LAT test bed when activating bigCellMode.

Default Large cells Diff.

Total number of subcells — 144 —
Number of subcell timeouts — 2 —
Sum of placement runtimes (sec.) 113 557 7 236 -94%
Sum of layout widths 1 210 1 826 +51%

... for cells with phase 0/1 timeout 706 949 +34%
Sum of total netlengths 15 750 28 013 +78%

... for cells with phase 0/1 timeout 11 468 16 266 +42%
Successful routings 6 4 -33%

... for cells with phase 0/1 timeout 0 0 +0%

7.2.8 Routability

An essential aspect of the generated layouts is their routability. Arranging
transistors as compact as possible is futile if their arrangement cannot be aug-
mented by a feasible routing. Since it is not viable to actually conceive wires
satisfying all design rules (about 700) for all generated cells, the term routable
indicates, for the purpose of this chapter, if the combinatorial BONNCELL

router finds an electrically correct wiring of all contacts in the design.
Table 7.11 condenses the routability results of all experiments presented in
this chapter. It shows that while 70 out of 102 CLC cells can be routed using
default settings, 22 additional cells have known feasible routings in at least
one of the experiments. The ratio of successful routings is even larger for the
simple library cells, yet rather low for the complicated LAT test bed. For all
198 LIB instances at least one routing was found.
The last two rows of the table show the number of cells which were routable

7.2. EVALUATION OF BONNCELL FEATURES 129

Table 7.11: Routable number of layouts for each of the presented
experiments. “Total” counts the cells that were routable in at least
one experiment, “proposed flow” summarizes the 4 experiments with
maxAddlTracks set to 2, short fingers, 2 circuit rows, and bigCellMode.

CLC LIB LAT

Default settings 70 182 6
Short fingers 76 190 7
1 additional track 69 193 7
2 additional track 69 196 6
3 additional track 69 196 6
2 circuit rows 70 178 5
3 circuit rows 57 135 5
Multi-FET folding 59 157 6
Large cell heuristic 72 194 4

Total 92 198 9
Total (relative) 90% 100% 25%

Proposed flow 90 198 8
Proposed flow (relative) 88% 100% 22%

in one of four variants, namely the ones where 2 additional tracks were al-
lowed, with restricted finger lengths, with 2 circuit rows, and with activated
large cell heuristic. The numbers demonstrate that these four variants suf-
fice to find routable layouts for almost all cells for which the placement was
routable in the remaining tests. We therefore propose to use BONNCELL in
a flow where these four settings are executed in parallel before returning,
among the routed layouts, the most compact one. According to the table,
this flow would be able to generate layouts for nearly 90% of all runs.
When solutions are not routable, in many cases the reason seems to be that
too much metal has to be routed across too few tracks. To support this claim,
we define the average cut as follows: For a layout Λ let NL∗(Λ), the horizontal
metal length, the same as NL(Λ) except that pins are ignored and net weights horizontal metal

lengthare considered to be 1. Then the average cut is defined as Cavg(Λ) := NL∗(Λ)
2W(Λ)

.
This number can be seen as a lower bound for the average number of hori- average cut

Cavg(Λ)zontal wires that have to cross every x-coordinate within the cell.
Figure 7.12 illustrates the average cut and the routability of every CLC layout
that was generated with default settings. The figure shows that most solu-
tions below a certain threshold of around 3.5 are routable, while most layouts
exceeding this average cut cannot be routed. Hence, a strong correlation be-
tween these two properties appears to exist. For LAT instances, Figure 7.13
indicates the same behavior, just that the threshold seems to be smaller. In
Section 7.3.2, we elaborate on the additional difficulties in this test bed.

130 CHAPTER 7. RESULTS

2

4

6

8

10

12

14
A

ve
ra

ge
cu

t

Routable
Not routable

Figure 7.12: Average cut value Cavg(Λ) for all CLC layouts generated
with default parameters. Green bars represent routable layouts.

2

4

6

8

A
ve

ra
ge

cu
t

Routable
Not routable

Figure 7.13: Average cut value Cavg(Λ) for all LAT layouts generated
with default parameters. Green bars represent routable layouts.

7.3 Comparisons with Industry Layouts

Since there are, to the best of our knowledge, no other tools that are compa-
rable to BONNCELL in their specification and generality, it is impossible to
directly compare BONNCELL with other automatic layout generation pro-
grams. Moreover, there is neither a standardized data format for CMOS
schematics nor publicly available test instances. It would in principle be
possible to reproduce some isolated instances specified in the academic lit-
erature, but due to the strongly varying design rules it would not be possible
to draw meaningful conclusions from such experiments.
The only direct comparison we can make is thus with the actual implemen-
tation of the cells that are currently in use at IBM. Those layouts have either

7.3. COMPARISONS WITH INDUSTRY LAYOUTS 131

been generated by scripts, which is the case for the simply structured stan-
dard cells in LIB, or were manually drawn by skilled designers, which is true
for the complex memory elements in LAT. No finished layouts are available
for CLC cells to compare against: On the one hand, the technology is still in
the process of being conceived, so that finished layouts may not yet be avail-
able. On the other hand, BONNCELL is actively used in many cases, so purely
manual constructed versions will never exist.

7.3.1 Simple Library Cells

Table 7.12 presents the widths of layouts generated by BONNCELL and the
corresponding cells in the actual IBM library. For each functional group the
table lists the sum of the original layouts’ widths as well as the area gain
in percent. In most cases the automatic layouts are more compact yet still
routable. Experiments concerning the routability of the placements follow
in Section 7.4.2. In the last row the sums are only taken over the “routable”
solutions, i.e. layouts that could be successfully routed by the combinatorial
router. Even for the XOR and XNOR circuits, which are the most complex in-
stances in LIB and which could be realized with about a quarter fewer tracks,
26 out of 40 cells were routable despite their compactness. Counting only
cells for which routings were found, the total area of the full library could be
decreased by about 5%.
A total of 29 cells are slightly larger (each by 2 tracks) in the BONNCELL re-
sult than in the original IBM layout. The positive percentages in the column
BC, which corresponds to a run with default parameters, are caused by these
cells. The effect seems to contradict the claimed optimality of the tool. How-
ever, these 29 IBM circuits employ the folding of multiple transistors, which
is not performed by default in BONNCELL. The column BC+F lists the results
of runs where multi-FET folding was activated and the last column always
counts the better of the two variants generated by BONNCELL. While some
functional groups are not affected at all by the folding technique, like invert-
ers, AND, and OR circuits, others benefit from it at the cost of increased runtime.
An example is presented in Figure 7.14. The total runtime to process all 198
cells increased from ca. 21 hours to 188 hours, which includes many timeouts
after 2 hours. As mentioned in Section 7.2.6, the feature’s implementation is
experimental and not optimized for runtime.

7.3.2 Complex Memory Elements

For the LAT circuits, finished layouts are available as well. In the experiments
visualized in Figure 7.3, 23 out of 36 cells could be placed optimally or, in 2
cases, such that the algorithm successfully reached phase 2. The BONNCELL

layouts of these cells amount to a total of 535 tracks, which is 13.1% less than
the handcrafted IBM layouts (616 tracks). However, the caveat is that the

132 CHAPTER 7. RESULTS

Table 7.12: Comparison of W(Λ) between actual 14 nm library lay-
outs and BONNCELL layouts for LIB test bed, without and with fold-
ing of multiple FETs. The last column takes the better of the two
layouts. The last row only counts cells for which a routing was found
in the layout without multi-FET folding.

Cell type IBM BC BC+F Best

Inverter 213 -4.7% -4.7% -4.7%
2-input AND 15 -0.0% -0.0% -0.0%
2-input OR 15 -0.0% -0.0% -0.0%
2-input NAND 397 -6.8% -6.8% -6.8%
3-input NAND 238 -1.3% -2.5% -2.5%
4-input NAND 127 -3.9% -1.6% -4.7%
2-input NOR 382 -7.1% -7.1% -7.1%
3-input NOR 217 -12.0% -12.4% -12.4%
2-1 AND-OR-Invert 314 +1.6% -0.3% -0.3%
2-2 AND-OR-Invert 413 +0.5% -1.0% -1.0%
2-1 OR-AND-Invert 314 +1.6% -0.3% -0.3%
2-2 OR-AND-Invert 413 +0.5% -1.0% -1.0%
2-input XNOR 160 -23.8% -27.5% -27.5%
2-input XNOR + buffer 200 -25.0% -26.5% -27.0 %
2-input XOR 160 -23.8% -26.3% -26.3%
2-input XOR + buffer 200 -25.0% -27.5% -28.0%

Sum 3 778 -6.9% -8.0% -8.2%
Sum (only routed) 3 596 -5.1% -6.3% -6.4%

very compact automatic layouts appear to be either very hard to route or
completely unroutable: For just 6 of the 23 aforementioned cells a routing
could be found by the combinatorial router. The question arises why these
netlists seem to be much harder to route. Several reasons can be given:

• Nets in LAT instances connect an average number of 4.04 different FETs,
much more than in the other test beds (2.98 for CLC and 2.22 for LIB).
Consequently, the wires tend to form complicated tree-like structures
rather than paths between two FETs.

• On average, the FETs are much smaller in the LAT test bed than in the
other test beds (cf. Table 7.1). About 82% of all FETs in the memory
elements have a total length of 4 or less, 64% even have the smallest
possible length of 2. Hence, the cell area is fragmented by many small
FETs rather than large multi-finger blocks with the same gate contact
and alternating source/drain contacts. Taking the sum of layout widths
given in Table 7.1, the number of layout tracks per transistor is only
0.92, whereas the ratio is 1.79 for CLC and 2.76 for LIB. This high FET

7.3. COMPARISONS WITH INDUSTRY LAYOUTS 133

Figure 7.14: Optimal layouts with default parameters (left) and with
folding of multiple FETs activated: Wopt(F) decreases from 8 to 6.
Corresponding nets in the two pictures are shown in the same color.
Note that after the folding the blue contacts need not be connected.

density suggests that minimizing the cell width generates overly com-
pact solutions and large values of maxAddlTracks would be required to
generate routable versions.

• The average cut, as defined above, is very high on most LAT layouts.
With default settings, most designs have an average cut significantly
higher than 3.5, as shown in Figure 7.13.

• The IBM layouts of the LAT cells follow a fundamentally different strat-
egy for the vertical FET positions y(F). While BONNCELL places FET
groups connected to the neighboring power strip as close to the power
strip as possible and all other FET groups sufficiently close to the power
such that the gate contacts can still be accessed from the cell center, the
IBM placements arrange almost all FETs as close to the cell center as
possible, meaning that gates, in many cases, have to be accessed from
the other side. The two different placement strategies are illustrated in
Figure 7.15.
At the same time, the horizontal placement of the two transistor rows
aims to horizontally align PC and M0 contacts of the same net alike,
while our tool strongly prioritizes the PC contacts. Although both ap-
proaches have advantages, the BONNCELL routing method makes sev-
eral assumptions related to the vertical placement and thus may fail if
those assumptions are false.

• Finally, one has to keep in mind that the existence of a routing without
design rule violations cannot be disproven by a failing combinatorial
router. Even on the original IBM placements, for which such routings

134 CHAPTER 7. RESULTS

Figure 7.15: Different strategies for the vertical placement of IBM
layout (top) and BONNCELL result (bottom).

demonstrably exist, BONNCELL routing fails on 10 out of 36 instances.
Some of these failed attempts might be due to a timeout after 6 hours,
but some detect unroutability—in the sense of the tool—after only a
few seconds. In these cases, BONNCELL overconstrains the problem
to reduce the search space (e.g. by regarding only a subgrid of the ac-
tual technology’s grid), hoping that these additional constraints do not
make routable layouts unroutable. Unfortunately, this apparently hap-
pens.

7.4 Application in the Industry

Thanks to our close cooperation with IBM during the development of BONN-
CELL, the toolchain has not just been used to process isolated test cases, but
has been frequently applied during major VLSI projects in the industry. In
this section, we elaborate on two different applications for which it was em-
ployed in practice.

7.4.1 Array Design

The first larger unit for which BONNCELL has been used extensively was an
SRAM block—a 2-dimensional arrangement of memory elements together
with a set of control logic—that was used several times in each core of a
major server processor. The design work on the unit encompassed many
different steps, one of them being the layout of transistor-level netlists. In
some cases, only size estimations were obtained by a placement run so that
the floorplanning on a higher level could proceed, in other cases full routings
were generated.

7.4. APPLICATION IN THE INDUSTRY 135

Based on the experience with earlier comparable projects, it was estimated
that after 3 months the first important milestone would be reached. At this
point, the unit’s timing properties can be determined for the first time on the
basis of individual FETs. Instead of 3 months, the milestone was reached
after only 7 weeks, mainly due to the automation of transistor-level layout:

“Usually [such units] are completed relatively late. We finished
[this unit] so quickly because we never had to wait for transistor-
level layouts. Whether routed or just placed, we received imme-
diate results with which we could continue work.”

Raphael Polig, IBM [Pol12]

7.4.2 Library Design

For basic logic functions in the standard library, including the ones listed in
Table 7.2, scripts are available to generate, depending on parameters like FET
sizes, full layouts of the corresponding netlists. This is possible because the
complexity of these layouts is low and good solutions can be obtained by
following a relatively small number of rules.
However, BONNCELL can still be applied profitably during the concept phase
of a new standard cell library. Although the tool does not compute immedi-
ately manufacturable layouts, it does provide a fast way to evaluate proper-
ties of the technology in an early stage of development when some aspects
of the cell image have not yet been decided upon. In this section, we outline
one scenario that has been practically implemented during the development
of the 14 nm technology at IBM.
This scenario is concerned with the height of the cells: In general, it is de-
sirable to have a library of cells which all have the same vertical extension.
By this method, all cells can be arranged in a uniform circuit row structure
without losses between cells of different heights. Hence, a decision has to
be made early in the process on the number of horizontal tracks contained
in each cell. It is easy to see that a narrow cell outline with few tracks is fa-
vorable for netlists with small FETs (otherwise only a small fraction of the
chip area could be covered with transistors), while big FETs tend to fit better
into images with a large number of tracks. But the complete library contains
extremes on both ends of that spectrum, so the choice of the common cell
height is not a trivial one.
As manual experiments, which basically involve drawing rectilinear shapes
into a specialized CAD software, are time-consuming, an automatic solution
helps to generate evidence in favor of one choice or the other. Table 7.13
illustrates the results on three experiments, each involving all 198 cells from
the LIB test bed. For these experiments, each cell has been configured with a
height of 10, 14, and 18 horizontal tracks.

136 CHAPTER 7. RESULTS

Table 7.13: Evaluation of all 198 LIB cells for vertical cell sizes of 10
tracks, 14 tracks, and 18 tracks.

Height of circuit row

10 tracks 14 tracks 18 tracks

Number of optimal placements 192 198 198
Placement timeouts in phase 0/1/2 0/0/6 0/0/0 0/0/0
Sum of placement runtimes (sec.) 73 881 445 1
Sum of cell areas (normalized) 100.0% 100.3% 115.4%
Successful routings 182 191 194
Sum of routing runtimes (sec.)5 257 782 52 456 49 185
Total number of used M2 tracks6 11 9 0

The results are very helpful for the decision on the future cell image. On the
one hand, they show that with increasing circuit row height the netlists be-
come “easier” to lay out: The 10 track image requires by far the longest run-
time both for placement and routing, and the only timeouts occur in these ex-
periments. In fact, by using 14 and 18 tracks all cells can be placed optimally
and the combinatorial router is successful on more than 96% of the cells. With
the largest image, all 198 cells can even be placed optimally in a total runtime
of 1.4 seconds. The reason is that in this case almost all FETs can be config-
ured with their minimum finger numbers and hardly any gaps occur in the
final layouts, so that very good lower bounds can be computed during the
algorithms. All experiments—nearly 600 full layouts—can be computed in
about 5 hours on a computer with 24 cores.
The data also shows that M2, which should be employed as sparingly as
possible, is not used at all in cells with 18 tracks. On the downside, these
cells require about 15% more area than the other variants. The conclusions
that can be drawn from these facts depend on the the priorities of the given
VLSI project, other experiments, and further technological constraints. But
still the availability of an automatic layout tool like BONNCELL can—and
did—provide valuable, profound data aiding in central decisions during the
early conceptual phase of a new technology.

5 Only combinatorial router.
6 Only the 173 layouts are considered for which routings were successfully found in all

three experiments.

7.4. APPLICATION IN THE INDUSTRY 137

Figure 7.16: Two-input NOR laid out with 18, 14, and 10 vertical tracks.

138 CHAPTER 7. RESULTS

Figure 7.17: 3-dimensional illustrations of a small, medium, and large
BONNCELL layout.

7.4. APPLICATION IN THE INDUSTRY 139

Figure 7.18: Example of the shapes in a BONNCELL layout. We gener-
ate shapes on a total of 16 layers, 3 of which are not used here.

Chapter 8

Conclusions

We’re all stories, in the end. Just make
it a good one, eh?

The Doctor, Doctor Who

In this dissertation, we have presented and analyzed algorithms to automat-
ically generate transistor-level layouts as well as the associated software sys-
tem BONNCELL. To conclude, we summarize our results and provide an
outlook on the future development.

8.1 Summary

Our main contribution is the development of an algorithmic framework and
an associated software system, BONNCELL, that manages to successfully lay
out a wide range of real-life transistor-level netlists. Out of all 336 cells that
were provided by our industry partner IBM, all of which are in use in the
current 14 nm technology node, 276 can be placed such that the target func-
tion is provably minimized. For a total of 299 cells, layouts could be found
that were routable by the tool’s own routing engine.
While a large number of tools have been presented in academic and techni-
cal literature, BONNCELL surpasses all published systems in the number of
supported features. Features implemented in our system include:

• Generation of layouts with two transistor rows where FETs may be con-
figured with multiple fingers, swapped, and reordered.

• No restrictions are imposed on the netlist structure.

• Provably optimal solutions with dynamic placement and dynamic fold-
ing in the terminology of [GH98].

• Support for complex rules affecting the spatial relations of different
FETs based on type, Vt levels, FET configuration and connected nets.

141

142 CHAPTER 8. CONCLUSIONS

• Pairs of FETs can be folded and arranged in an interleaving pattern.

• n-FETs and p-FETs may mix in a single FET row.

• Cells can be generated that span multiple circuit rows.

• Complex cells can be processed with a heuristic approach that splits
instances into smaller sub-instances, thereby generating less compact
layouts with an improved routability.

• Cell layouts can be flexibly prescribed with a large number of input pa-
rameters. For example, all aspects of the power supply can be defined
arbitrarily.

• Support for 22 nm (old version), 14 nm, and 10 nm (initial implementa-
tion) cells.

• Complete workflow with placement, routing and post-optimization.

• The algorithm’s behavior can be controlled with many user-definable
parameters.

An integration of BONNCELL into the chip design software in use at IBM,
including data conversion and an easy-to-use GUI, was contributed by our
cooperation partners at IBM. Thanks to the simple availability and high flex-
ibility of the tool, BONNCELL is in wide use within the company’s groups
that are concerned with transistor-level layout.
Beyond the processing of isolated test cases, two large-scale examples for
applications of BONNCELL in the industry have been presented in Section 7.4:
On the one hand the initial design phase of a large SRAM unit required only
half of the expected 3 month period due to the frequent use of our tool, on the
other hand BONNCELL could provide valuable input aiding central decisions
in the early concept phase of a new technology generation.
The algorithms underlying the layout program have been presented and an-
alyzed in Chapters 4 and 5. This includes the generalization of previous
graph-theoretic approaches to formulate the transistor row placement prob-
lem, which implies polynomial algorithms and hardness results of several
problem variants, and a discussion of the NP-hardness of the corresponding
netlength optimization problem.
The presented algorithms, building upon a simple branch and bound core,
constitute a flexible framework for the computation of cell layouts. Even
though many of them display an exponential runtime behavior, powerful
bounding techniques as well as suitable combination and nesting of the indi-
vidual methods result in a viable toolset. Moreover, due to the highly flexible
concept, technological changes or new rules can be incorporated easily into
the existing framework.

8.2. FUTURE DEVELOPMENT 143

8.2 Future Development

In the future, more work on the subject can be done both in terms of theoret-
ical exploration as well as practical improvements of BONNCELL. Regarding
the theoretical aspects, the most notable open question remains the hardness
of the TRANSISTOR ROW PLACEMENT PROBLEM for the distance function
d0/2. This distance function is close to the actual technology’s behavior and,
at the same time, lies between functions for which the problem is easily solv-
able and functions for which it becomes NP-hard.
Further room for improvement lies in the consideration of other target func-
tions than the netlength. Most notably, electrical requirements make it nec-
essary to use thicker wires for certain segments of particular nets. The old
22 nm version of BONNCELL included a post-optimization method that in-
creased the thickness of such segments, but the recent implementation for
current technologies does not yet have this capability. It is also desirable to
directly address this issue during the routing phase rather than as a post-
optimization.
As for some cells, especially from the LAT group, BONNCELL could not gen-
erate routable layouts, this remains an aspect that can be improved. One
way to address the topic is to change the vertical arrangement of transistors.
While the horizontal locations are subject to most of the optimization steps,
the y-coordinates are determined by a heuristic based on few simple rules.
However, some experiments, mostly the observations related to the LAT in-
stances, point to other, more successful strategies at least on appropriately
structured cells.
The technique for the placement of very large cells also bears much potential.
The already successful method presented in Section 5.2.5 has not yet been
tuned a lot, although many parameters like the size of the subcells or various
aspects of the rough placement heuristics are involved. Moreover, it may
prove worthwhile to reduce the maximum cut rather than the average cut or
to modify the target function. It is also possible to improve the way by which
finished subcells are combined, e.g. by swapping or rearranging subcells as
clusters of FETs.
Until now, all of the presented methods are implemented to run in a single
thread. While a parallelization of the algorithm can only achieve speedup
factors linear in the number of processor cores, which hardly compensates for
the exponential runtime, this scheme may be used to improve the routability:
If several layout variants are generated and routed in parallel, the probability
that one of the variants leads to a success is larger (cf. Section 7.2.8).

Glossary

3D transistor → FinFET

Average cut Measure for the amount of metal that has to pass every x-coordinate
on average. → p. 129

Buffer Electronic circuit realizing the identity xout ← xin.

Canonical layout Legal layout with a set of additional properties. → p. 66

Cell Functional implementation of a transistor-level electronic circuit, in our
context using the CMOS scheme. → p. 19

Chip → Integrated circuit

Circuit row Region between two neighboring power rails that usually pre-
scribes the height of the generated cell layouts. → p. 24

Closed walk Walk in a graph that starts and ends in the same vertex. → p.
15

CMOS (Complementary Metal-oxide-semiconductor) Implementation pa-
radigm for integrated circuits using n-FETs and p-FETs, which are often
arranged in pairs with the same gate connection. → p. 19

Compaction → Layout compaction

Configuration (of a FET) Tuple specifying how a transistor is implemented.
Contains the number of fingers, the length of the fingers, and the swap
status. → p. 50

Configuration graph Graph modeling the the connectivity of a set of FETs
and their configurations. → p. 53

Covering number Minimum size of a walk cover. → p. 54

Delayed Binding Algorithmic technique that does not assume the topology
of the netlist to be fixed [Mad89].

Diffusion sharing Technique that allows neighboring FETs to overlap in the
sense that one source or drain contact is used jointly by both transistors.
→ p. 21

Distance function A specification of the required distance between pairs of
FETs. → p. 51

145

146 CHAPTER 8. CONCLUSIONS

Drain contact One of the contacts of a transistor. → p. 16

Dual netlist A netlist topology is considered dual if the configuration graph
of the n-FETs is the series-parallel dual of the configuration graph of
the p-FETs (when all finger numbers are considered to be 1).

Eulerian graph Graph that possesses a closed Eulerian walk. → p. 15

Eulerian walk Walk in a graph that covers all of its edges. → p. 15

FET (Field effect transistor) Concrete technical realization of a transistor on
an integrated circuit. Most transistors on modern chips are implemen-
ted as FETs. → pp. 16, 49

FET class Set of FETs for which all elements have the same Vt level and the
same type. → p. 59

FinFET Implementation of a FET that uses the third dimension to reduce the
FET’s area requirement. → p. 17

Finger One of the gate contacts of a folded transistor. All fingers of a FET
have to be connected electrically. → p. 22

Folding When a large transistor is folded it is replaced by several smaller
transistors which are connected in parallel. This technique allows to
control the aspect ratio of otherwise elongated transistors. → p. 21

Gate contact The switching contact of a transistor. → p. 16

Gate netlength Restricted netlength definition that only considers gate con-
tacts. → p. 53

GND One of the power potentials on a chip (ground), represents the logic 0
in our context. → p. 24

Half-track Unit in which the netlengths are measured: Half of the distance
between two neighboring gate centers.

IC → Integrated circuit

Integrated circuit An electronic circuit that is realized by employing a layer
of semiconducting material. Integrated circuits are commonly known
as chips. → p. 16

Inverter Electronic circuit realizing the negation xout ← ¬xin. → p. 20

ILP (Integer linear program) Optimization problem in which a target func-
tion has to be optimized in a solution space specified by a set of linear
inequalities. → [KV13]

Latch Electronic circuit that stores information.

Layer stack Specification of the layers of metal (and other materials) on which
shapes can be manufactured for a given VLSI technology. → p. 23

Layout (of a FET) A pair that contains the configuration and the placement
of a FET.→ pp. 50, 70

8.2. FUTURE DEVELOPMENT 147

Layout compaction The process that transforms a symbolic layout and tech-
nology-dependent rules into a set of geometric shapes that require the
least amount of area.

Layout extension The process of completing a partial layout to a complete
2-dimensional layout. → p. 70

Layout quality → Quality

Layout width →Width

Leaf cell → Cell

Leg Sometimes used in the literature to denote the fingers of a folded FET.

Legal layout A layout of a FET or a set of FETs that does not violate any
design rules. → p. 51

Legality oracle Algorithm that decides for a given partial layout if it can be
extended to a legal layout. → p. 70

Length (of a FET) The required length of the FET’s gate contact. In the 14 nm
technology, the parameter is given as the number of fin/gate intersec-
tions a transistor must have. → p. 49

MIP (Mixed integer linear program) Optimization problem in which a tar-
get function has to be optimized in a solution space specified by a set
of linear inequalities. → [KV13]

MOS (Metal-oxide-semiconductor) One possible technological realization
of an integrated circuit, usually involving a layer of SiO2 above a sil-
icon substrate.

MOSFET (Metal-oxide-semiconductor FET) →MOS, FET

Multi-FET folding Technique in which multiple FETs are split into smaller
FETs and arranged with an interleaving pattern. → p. 22

n-FET N-doted FET, forms a conducting channel if the VDD power level is
applied to the gate. → p. 16

Net Refers either to a set of contacts in the netlist that have to be connected,
or to the metalized region in the layout that realizes such a connection.
→ p. 49

Net weight Factor for the contribution of a net to the netlength. Can be used
to put a larger emphasis on the length of particular nets. → p. 49

Netlength Lower bound for the horizontal length of the metalized area that
realizes a net. → pp. 53, 70

Netlist Specification of a cell’s topology, including the FETs and the nets.
→ p. 50

p-FET P-doted FET, forms a conducting channel if the GND power level is
applied to the gate. → p. 16

148 CHAPTER 8. CONCLUSIONS

Pin Distinguished point on a wire on which the net is accessed from outside
the cell. → p. 79

Placement (of a FET) The location of a transistor given as an x- and a y-
coordinate. → pp. 50, 69

Quality A multi-dimensional measure for the expected quality of a layout.
→ p. 71

Routing Collection of all wires that realize a given net, or all nets respec-
tively.

Routing grid 3-dimensional grid graph on which most of the routing algo-
rithms operate→ p. 98

Semiconductor A material that can act both as a conducting material as well
as an insulator.

Semi-Eulerian graph Graph that possesses a Eulerian walk. → p. 15

Series-parallel dual The planar dual of an embedding of G + {s, t}, where
G is a series parallel graph and s, t ∈ V(G) its distinguished vertices.

Series-parallel graph A graph that can be constructed from a single edge by
iteratively duplicating and subdividing edges. → [KV13]

Simple distance function A class of distance functions that obey several re-
stricting conditions. → p. 51

Slowdown factor Ratio between the runtime of a particular experiment and
the runtime when using default settings. → p. 114

Source contact One of the contacts of a transistor. → p. 16

Stacked device → Folding

Steiner tree Connected acyclic subgraph of a graph that contains a given set
of vertices (the “terminals”). → [KV13]

Swapped FET When FETs are swapped, their source and drain contacts ex-
change their places. → p. 21

Symbolic layout A technology-independent geometric representation of a
cell that prescribes spatial relations of transistors and wires but no exact
coordinates. The latter are often determined in a layout compaction
step.

Symmetric netlist A netlist topology is considered symmetric if there is a
bijection between the inputs of the n-FETs and the p-FETs. This prop-
erty is frequently exploited in literature in order to determine pairs of
n-FETs and p-FETs in algorithms that arrange arrays of such pairs.

Total netlength → Netlength

Track Denotes either the grid lines on which the gate contacts are routed
or, in the context of M1/M2 metal, the grid lines on which horizontal
M1/M2 wires can be routed.

8.2. FUTURE DEVELOPMENT 149

Transistor An electronic switch without mechanical parts with essentially
three contacts: source, drain, and gate. The voltage applied to the gate
contact controls if a current can flow from the source to the drain con-
tact. → p. 16

Transistor Row Netlength Minimization Problem Formal definition of the
problem to arrange a set of transistors such that the netlength is mini-
mized among all minimum-width layouts. → p. 56

Transistor Row Placement Problem Formal definition of the problem to ar-
range a set of transistors in a compact 1-dimensional row. → p. 53

Tri-gate transistor → FinFET

VDD One of the power potentials on a chip, represents the logic 1 in our
context. → p. 24

VeSFETs (Vertical Slit FETs) Alternative geometry for a FET.→ p. 46

Via Vertical connection between wires on two adjacent metal layers. → pp.
24, 98

Virtual routing grid → Routing grid

VLSI (Very-large-scale Integration) Laying out a “very large” number of
transistors as an integrated circuit. The term is in use since the 1970s
when several thousand transistors had to be handled.

Vt level (Voltage threshold) A property of FETs that influences their power
demand as well as their performance. → p. 17

Walk Edge progression in a graph without duplicate edges. → p. 15

Walk cover Set of edge-disjoint walks covering a graph. → p. 54

Width (of a layout) Horizontal space occupied by a given layout. → pp. 52,
70

Wire Geometric implementation of a net within a cell. → p. 98

Worst cut Largest number of nets that have to cross the boundary between
two neighboring circuit rows. → p. 87

Copyright Permissions

Figure 1.3a: New POWER7+ microprocessor by ibmphoto24 is licensed under
CC BY-NC-ND 2.0 (https://creativecommons.org/licenses/by-nc-
nd/2.0), reproduced without changes.

Figure 1.3b: SecureDigital Micro memory card drawing by Alban75 is licensed
under CC BY-SA 3.0 (https://creativecommons.org/licenses/by-
sa/3.0), reproduced without changes.

Figure 1.1: Courtesy of Texas Instruments. Reprinted in compliance with the
“additional permission” granted on http://www.ti.com/corp/docs/

kilbyctr/downloadphotos.shtml.

Figure 2.1: Photo released to the public domain by NASA.

Figure 2.2: From Intel Announces New 22nm 3D Tri-gate Transistors, 2011, c© In-
tel Corporation. Reprinted by permission of Intel Copyright Permis-
sion Department.

Figure 2.3: From Intel Announces New 22nm 3D Tri-gate Transistors, 2011, c© In-
tel Corporation. Reprinted by permission of Intel Copyright Permis-
sion Department.

IBM and CPLEX are trademarks of IBM Corporation.

151

Bibliography

[AMW82] D. Aubert, J. J. Monbaron, and J. P. Wattenhofer. Computer
Aided Layout of Distributed CMOS Static Decoders. In 8th Euro-
pean Solid-State Circuits Conference, ESSCIRC 1982, pages 90–93.
IEEE, September 1982.

[AT78] Tetsuo Asano and Kokichi Tanaka. A Gate Placement Algorithm
for One-Dimensional Arrays. Journal of Information Processing,
1(1):47–52, April 1978.

[Bak11] R. Jacob Baker. CMOS: Circuit Design, Layout, and Simulation.
IEEE Series on Microelectronic Systems. Wiley, 2011.

[BBC+85] R. K. Brayton, N. L. Brenner, C. L. Chen, G. DeMicheli, Mc-
Mullen C. T., and R. H. J. M. Otten. The YORKTOWN Silicon
Compiler. In Proceedings of the 34th IEEE International Symposium
on Circuits and Systems, ISCAS 1985, pages 391–394. IEEE Press,
1985.

[Bea84] John E. Beasley. An Algorithm for the Steiner Problem in
Graphs. Networks, 14(1):147–159, 1984.

[Ber01] Krzysztof S. Berezowski. Transistor Chaining with Integrated
Dynamic Folding for 1-D Leaf Cell Synthesis. In Proceedings of
the 2001 Euromicro Symposium on Digital Systems Design, pages
422–429. IEEE, 2001.

[BR96] Bulent Basaran and Rob A. Rutenbar. An O(N) Algorithm for
Transistor Stacking with Performance Constraints. In Proceed-
ings of the 33rd Design Automation Conference, DAC 1996, pages
221–226. ACM, 1996.

[BYFPW89] R. Bar-Yehuda, J.A. Feldman, Ron Y. Pinter, and S. Wimer.
Depth-first-search and Dynamic Programming Algorithms for
Efficient CMOS Cell Generation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 8(7):737–743, July
1989.

153

154 BIBLIOGRAPHY

[CC89] C. C. Chen and S.-L. Chow. The Layout Synthesizer: An Auto-
matic Netlist-to-Layout System. In Proceedings of the 26th Design
Automation Conference, DAC 1989, pages 232–238. ACM, 1989.

[CCM95] Bradley S. Carlson, C. Y. Roger Chen, and Dikran S. Meliksetian.
Dual Eulerian Properties of Plane Multigraphs. SIAM Journal on
Discrete Mathematics, 8(1):33–50, February 1995.

[CHH99] Zhi-Zhong Chen, Xin He, and Chun-Hsi Huang. Finding Dou-
ble Euler Trails of Planar Graphs in Linear Time. In 40th An-
nual Symposium on Foundations of Computer Science, pages 319–
329, 1999.

[CHR91] Sreejit Chakravarty, Xin He, and SS Ravi. Minimum Area Layout
of Series-parallel Transistor Networks is NP-hard. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
10(7):943–949, 1991.

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Proce-
dures. In Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing, STOC 1971, pages 151–158. ACM, 1971.

[Cor13] Jordi Cortadella. Area-Optimal Transistor Folding for 1-D Grid-
ded Cell Design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 32(11):1708–1721, November
2013.

[EMP73] W. L. Engl, D. A. Mlynski, and P. Pernards. Computer-Aided
Topological Design for Integrated Circuits. IEEE Transactions on
Circuit Theory, 20(6):717–725, 1973.

[ET98] Tali Eilam-Tzoreff. The Disjoint Shortest Paths Problem. Discrete
Applied Mathematics, 85(2):113–138, 1998.

[Fel76] A. Feller. Automatic layout of low-cost quick-turnaround
random-logic custom LSI devices. In Proceedings of the 13th De-
sign Automation Conference, DAC 1976, pages 79–85. ACM, 1976.

[FSA95] Masahiro Fukui, Noriko Shinomiya, and Toshiro Akino. A New
Layout Synthesis for Leaf Cell Design. In Proceedings of the 10th
Asia and South Pacific Design Automation Conference, ASP-DAC
1995. ACM, 1995.

[GH96] Avaneendra Gupta and John P. Hayes. Width Minimization
of Two-dimensional CMOS Cells Using Integer Programming.
In Proceedings of the 1996 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 1996, pages 660–667. IEEE Com-
puter Society, 1996.

BIBLIOGRAPHY 155

[GH97a] Avaneendra Gupta and John P. Hayes. A Hierarchical Technique
for Minimum-Width Layout of Two-Dimensional CMOS Cells.
In Proceedings of the 10th International Conference on VLSI Design:
VLSI in Multimedia Applications, VLSID 1997, pages 15–20. IEEE
Computer Society, 1997.

[GH97b] Avaneendra Gupta and John P. Hayes. CLIP: An Optimizing
Layout Generator for Two-dimensional CMOS Cells. In Proceed-
ings of the 34th Design Automation Conference, DAC 1997, pages
452–455. ACM, 1997.

[GH98] Avaneendra Gupta and John P. Hayes. Optimal 2-D Cell Layout
with Integrated Transistor Folding. In IEEE/ACM International
Conference on Computer-Aided Design. Digest of Technical Papers,
ICCAD 1988, pages 128–135. ACM, 1998.

[GMD+97] Mohan Guruswamy, Robert L. Maziasz, Daniel Dulitz, Srilata
Raman, Venkat Chiluvuri, Andrea Fernandez, and Larry G.
Jones. CELLERITY: A Fully Automatic Layout Synthesis Sys-
tem for Standard Cell Libraries. In Proceedings of the 34th Design
Automation Conference, DAC 1997, pages 327–332. ACM, 1997.

[GML89] U. Gatti, F. Maloberti, and V. Liberali. Full Stacked Layout of
Analogue Cells. In Proceedings of the 38th IEEE International Sym-
posium on Circuits and Systems, ISCAS 1989, pages 1123–1126,
1989.

[GMW97] Martin Grötschel, Alexander Martin, and Robert Weismantel.
The Steiner Tree Packing Problem in VLSI Design. Mathemati-
cal Programming, 78(2):265–281, 1997.

[GN76] Dave Gibson and Scott Nance. SLIC – Symbolic Layout of In-
tegrated Circuits. In Proceedings of the 13th Design Automation
Conference, DAC 1976, pages 434–440. ACM, 1976.

[GTH96] Avaneendra Gupta, Siang-Chun The, and John P. Hayes.
XPRESS: A Cell Layout Generator with Integrated Transistor
Folding. In Proceedings of the European Design and Test Conference
(ED&TC), pages 393–400. IEEE Press, March 1996.

[HF87] Hansruedi Heeb and Wolfgang Fichtner. GRAPES: A Module
Generator Based on Graph Planarity. In Proceedings of the IEEE
International Conference on Computer-Aided Design, ICCAD 1987,
pages 428–431. IEEE, 1987.

[HF92] Hansruedi Heeb and Wolfgang Fichtner. A Module Generator
Based on the PQ-tree Algorithm. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 11(7):876–884,
1992.

156 BIBLIOGRAPHY

[HHLH89] Chi-Yi Hwang, Yung-Ching Hsieh, Youn-Long Lin, and Yu-Chin
Hsu. An Optimal Transistor-chaining Algorithm for CMOS
Cell Layout. In IEEE International Conference on Computer-Aided
Design. Digest of Technical Papers, ICCAD 1989, pages 344–347.
IEEE, 1989.

[HHLH91] Yung-Ching Hsieh, Chi-Yi Hwang, Youn-Long Lin, and Yu-Chin
Hsu. LiB: a CMOS cell compiler. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 10(8):994–1005,
August 1991.

[Hil85] Dwight D. Hill. Sc2: A Hybrid Automatic Layout System. In
IEEE International Conference on Computer-Aided Design. Digest of
Technical Papers, ICCAD 1985, pages 172–174. IEEE, 1985.

[HNS13] Stefan Hougardy, Tim Nieberg, and Jan Schneider. BCell: Au-
tomatic Layout of Leaf Cells. In Proceedings of the 18th Asia
and South Pacific Design Automation Conference, ASP-DAC 2013,
pages 453–460. IEEE, 2013.

[HS91a] King C. Ho and Sarma Sastry. Flexible Transistor Matrix (FTM).
In Proceedings of the 28th Design Automation Conference, DAC
1991, pages 475–480. ACM, 1991.

[HS91b] Ying-Min Huang and M. Sarrafzadeh. A Parallel Algorithm for
Minimum Dual-Cover with Application to CMOS Layout. Jour-
nal of Circuits, Systems, and Computers, 1(2):177–204, 1991.

[HSV] Stefan Hougardy, Jannik Silvanus, and Jens Vygen. Dijk-
stra Meets Steiner: Fast Algorithm for Optimum Steiner Trees.
Reasearch Institute for Discrete Mathematics, University of
Bonn, March 2014.

[HT74] John Hopcroft and Robert Tarjan. Efficient Planarity Testing.
Journal of the ACM, 21(4):549–568, October 1974.

[HW73] Carl Hierholzer and Chr. Wiener. Über die Möglichkeit, einen
Linienzug ohne Wiederholung und ohne Unterbrechung zu um-
fahren. Mathematische Annalen, 6(1):30–32, 1873.

[HW89] S. Huang and O. Wing. Improved Gate Matrix Layout. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 8(8):875–889, 1989.

[HW93] T. W. Her and D. F. Wong. Cell Area Minimization by Transistor
Folding. In Proceedings of the European Design Automation Con-
ference, with EURO-VHDL ’93, EURO-DAC 1993, pages 172–177.
IEEE, 1993.

BIBLIOGRAPHY 157

[IIA04a] Tetsuya Iizuka, Makoto Ikeda, and Kunihiro Asada. Exact
Wiring Fault Minimization via Comprehensive Layout Synthe-
sis for CMOS Logic Cells. In Proceedings of the 5th International
Symposium on Quality Electronic Design, ISQED 2004, pages 377–
380. IEEE Computer Society, 2004.

[IIA04b] Tetsuya Iizuka, Makoto Ikeda, and Kunihiro Asada. High Speed
Layout Synthesis for Minimum-width CMOS Logic Cells via
Boolean Satisfiability. In Proceedings of the 19th Asia and South
Pacific Design Automation Conference, ASP-DAC 2004, pages 149–
154. IEEE Press, 2004.

[Jam11] Dave James. Intel predicts 1,200 quintillion transistors in
the world by 2015. http://www.techradar.com/news/

computing-components/processors/intel-predicts-1-200-

quintillion-transistors-in-the-world-by-2015-1025851,
September 13, 2011.

[Kar53] Maurice Karnaugh. The Map Method for Synthesis of Combina-
tional Logic Circuits. Transactions of the American Institute of Elec-
trical Engineers, Part I: Communication and Electronics, 72(5):593–
599, November 1953.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598):671–680, 1983.

[Kil64] Jack S. Kilby. Miniaturized electronic circuits, 1964. U.S. Patent
3,138,743, issued June 23, 1964.

[KK97] Jaewon Kim and S.-M. Kang. An Efficient Transistor Folding
Algorithm For Row-based Cmos Layout Design. In Proceedings
of the 34th Design Automation Conference, DAC 1997, pages 456–
459. ACM, June 1997.

[Köl12] Katrin Kölker. Leaf Cell Routing im VLSI-Design. Diploma the-
sis, University of Bonn, Germany, July 2012.

[KV13] Bernhard Korte and Jens Vygen. Combinatorial Optimization: The-
ory and Algorithms. Algorithms and Combinatorics. Springer, 5th
edition, 2013.

[KW85] P. W. Kollaritsch and N. H. E. Weste. TOPOLOGIZER: An Expert
System Translator of Transistor Connectivity to Symbolic Cell
Layout. IEEE Journal of Solid-State Circuits, 20(3):799–804, June
1985.

[Lar71] Robert P. Larsen. Computer-Aided Preliminary Layout Design
of Customized MOS Arrays. IEEE Transactions on Computers, C-
20(5):512–523, May 1971.

158 BIBLIOGRAPHY

[Lee61] Chin Yang Lee. An Algorithm for Path Connections and its
Applications. IRE Transactions on Electronic Computers, EC-
10(3):346–365, 1961.

[LK82] J. Luhukay and W. J. Kubitz. A Layout Synthesis System for
NMOS Gate-Cells. In Proceedings of the 19th Design Automation
Conference, DAC 1982, pages 307–314. IEEE Press, June 1982.

[LL80] Alexander D. Lopez and Hung-Fai S. Law. A Dense Gate Ma-
trix Layout Method for MOS VLSI. IEEE Transactions on Electron
Devices, 27(8):1671–1675, 1980.

[LM88] Thomas Lengauer and Rolf Müller. Linear Algorithms for Op-
timizing the Layout of Dynamic CMOS Cells. IEEE Transactions
on Circuits and Systems, 35(3):279–285, March 1988.

[LMSM10] Yi-Wei Lin, Malgorzata Marek-Sadowska, and Wojciech P. Maly.
Layout Generator for Transistor-Level High-Density Regular
Circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 29(2):197–210, February 2010.

[LSR06] C. Lazzari, C. Santos, and R. Reis. A New Transistor-Level Lay-
out Generation Strategy for Static CMOS Circuits. In Proceedings
of the 13th IEEE International Conference on Electronics, Circuits and
Systems, ICECS 2006, pages 660–663, December 2006.

[Mad89] Jan Madsen. A New Approach to Optimal Cell Synthesis. In
IEEE International Conference on Computer-Aided Design. Digest of
Technical Papers, ICCAD 1989, pages 336–339. IEEE, 1989.

[MAU86] Hiroshi Miyashita, Tohru Adachi, and Kazuhiro Ueda. An Auto-
matic Cell Pattern Generation System for CMOS Transistor-pair
Array LSI. Integration, the VLSI Journal, 4(2):115–133, 1986.

[McA99] A. J. McAllister. A New Heuristic Algorithm for the Lin-
ear Arrangement Problem. Technical Report Technical Report
TR-99-126a, Faculty of Computer Science, University of New
Brunswick, 1999.

[MD88] Frédéric Mailhot and Giovanni DeMicheli. Automatic layout
and optimization of static CMOS cells. In Proceedings of the IEEE
International Conference on Computer Design: VLSI in Computers
and Processors, ICCD 1988, pages 180–185. IEEE, 1988.

[MFNK95] Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and
Yoji Kajitani. Rectangle-packing-based Module Placement. In
Proceedings of the 1995 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 1995, pages 472–479. IEEE Com-
puter Society, 1995.

BIBLIOGRAPHY 159

[MH87] Robert L. Maziasz and John P. Hayes. Layout Optimization of
CMOS Functional Cells. In Proceedings of the 24th Design Automa-
tion Conference, DAC 1987, pages 544–551, June 1987.

[MH91] Robert L. Maziasz and John P. Hayes. Exact Width and Height
Minimization of CMOS Cells. In Proceedings of the 28th Design
Automation Conference, DAC 1991, pages 487–493. ACM, 1991.

[MH92] Robert L. Maziasz and John P. Hayes. Layout Mini-
mization of CMOS Cells. VLSI, Computer Architecture
and Digital Signal Processing. Kluwer Academic Publishers,
Boston/Dodrecht/London, 1992.

[MH96] Brian T. Murray and John P. Hayes. Testing ICs: Getting to the
Core of the Problem. Computer, 29(11):32–38, November 1996.

[ML86] Rolf Müller and Thomas Lengauer. Linear Algorithms for Two
CMOS Layout Problems. In Filia Makedon, Kurt Mehlhorn,
T. Papatheodorou, and P. Spirakis, editors, VLSI Algorithms and
Architectures, volume 227 of Lecture Notes in Computer Science,
pages 121–132. Springer, 1986.

[MLMS07] Wojciech P. Maly, Yi-Wei Lin, and Malgorzata Marek-Sadowska.
OPC-free and Minimally Irregular IC Design Style. In Proceed-
ings of the 44th Design Automation Conference, DAC 2007, pages
954–957. ACM, 2007.

[MO88] C. T. McMullen and R. H. J. M. Otten. Minimum Length Linear
Transistor Arrays in MOS. In Proceedings of the 37th IEEE Inter-
national Symposium on Circuits and Systems, ISCAS 1988, pages
1783–1786. IEEE, June 1988.

[Moo65] Gordon E. Moore. Cramming More Components onto Inte-
grated Circuits. Electronics, 38(8):4ff, April 1965.

[MP95] Enrico Malavasi and Davide Pandini. Optimum CMOS
Stack Generation with Analog Constraints. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
14(1):107–122, 1995.

[NBR85] Ravi Nair, Anni Bruss, and John Reif. Linear time algorithms
for optimal CMOS layout. In P. Bertolazzi and F. Luccio, editors,
VLSI: Algorithms and Architectures: Proceedings of the International
Workshop on Parallel Computing and VLSI, pages 327–338. Elsevier
Science Publishers, North, 1985.

[NJ85] Tak-Kwong Ng and S. Lennart Johnson. Generation of Layouts
from MOS Circuit Schematics: A Graph Theoretic Approach. In
Proceedings of the 22nd Design Automation Conference, DAC 1985,
pages 39–45. IEEE Press, 1985.

160 BIBLIOGRAPHY

[NR96] L. S. Nyland and J. H. Reif. An Algebraic Technique for Gen-
erating Optimal CMOS Circuitry in Linear Time. Computers &
Mathematics with Applications, 31(1):85–108, 1996.

[OLL89] Chong-Leong Ong, Jeong-Tyng Li, and Chi-Yuan Lo. GENAC:
An Automatic Cell Synthesis Tool. In Proceedings of the 26th
ACM/IEEE Design Automation Conference, DAC 1989, pages 239–
244. ACM, 1989.

[OMK+79] T. Ohtsuki, H. Mori, E.S. Kuh, T. Kashiwabara, and T. Fujisawa.
One-Dimensional Logic Gate Assignment and Interval Graphs.
IEEE Transactions on Circuits and Systems, 26(9):675–684, Septem-
ber 1979.

[PB83] C. Piguet and M. Bertarionne. Automatic Generation of Metal
Oriented Layout for CMOS Logic. In 9th European Solid-State Cir-
cuits Conference, ESSCIRC 1983, pages 167–170. IEEE, September
1983.

[PDCM11] Juan-José Pantrigo, Abraham Duarte, Vincente Campos, and
Rafael Martı́. Heuristics for the Minimum Linear Arrangement
Problem. 2011.

[Poi89] Charles J. Poirier. Excellerator: Custom CMOS Leaf Cell Layout
Generator. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 8(7):744–755, July 1989.

[Pol12] Raphael Polig. Personal communication, February 2012.

[PZSB84] C. Piguet, J. Zahnd, A. Stauffer, and M. Bertarionne. A Metal-
oriented Layout Structure for CMOS Logic. IEEE Journal of Solid-
State Circuits, 19(3):425–436, June 1984.

[RB11] Nikolai Ryzhenko and Steven Burns. Physical Synthesis onto a
Layout Fabric with Regular Diffusion and Polysilicon Geome-
tries. In Proceedings of the 48th ACM/EDAC/IEEE Design Automa-
tion Conference, DAC 2011, pages 83–88, June 2011.

[RB12] Nikolai Ryzhenko and Steven Burns. Standard Cell Routing via
Boolean Satisfiability. In Proceedings of the 49th Design Automation
Conference, DAC 2012, pages 603–612. ACM, 2012.

[RO71] N. A. Rose and J. V. Oldfield. Printed-wiring-board layout by
computer. Electronics and Power, 17(10):376–379, 1971.

[RS99] Michael A. Riepe and Karem A. Sakallah. Transistor Level
Micro-placement and Routing for Two-dimensional Digital
VLSI Cell Synthesis. In Proceedings of the 1999 International Sym-
posium on Physical Design, ISPD 1999, pages 74–81. ACM, 1999.

BIBLIOGRAPHY 161

[RS03] Michael A. Riepe and Karem A. Sakallah. Transistor Placement
for Noncomplementary Digital VLSI Cell Synthesis. ACM Trans-
actions on Design Automation of Electronic Systems, 8(1):81–107,
January 2003.

[RTL95] Sanjay Rekhi, J. Donald Trotter, and Daniel H. Linder. Automatic
Layout Synthesis of Leaf Cells. In Proceedings of the 32nd Design
Automation Conference, DAC 1995, pages 267–272, 1995.

[SC90] Uminder Singh and C. Y. Roger Chen. A Transistor Reorder-
ing Technique for Gate Matrix Layout. In Proceedings of the 27th
Design Automation Conference, DAC 1990, pages 462–467. ACM,
1990.

[Sil13] Jannik Silvanus. Fast Exact Steiner Tree Generation Using Dy-
namic Programming. Master’s thesis, University of Bonn, Ger-
many, October 2013.

[SOH+81] I. Shirakawa, N. Okuda, T. Harada, S. Tani, and H. Ozaki. A
Layout System for the Random Logic Portion of an MOS LSI
Chip. IEEE Transactions on Computers, C-30(8):572–581, August
1981.

[SS99] Tatjana Serdar and Carl Sechen. AKORD: Transistor Level and
Mixed Transistor/Gate Level Placement Tool for Digital Data
Paths. In IEEE/ACM International Conference on Computer-Aided
Design. Digest of Technical Papers, ICCAD 1999, pages 91–97.
IEEE, November 1999.

[SSK+88] Yoichi Shiraishi, Jun’ya Sakemi, Makoto Kutsuwada, Akira
Tsukizoe, and Takashi Satoh. A High Packing Density Mod-
ule Generator for CMOS Logic Cells. In Proceedings of the 25th
Design Automation Conference, DAC 1988, pages 439–444. IEEE
Computer Society Press, 1988.

[TP07] Brian Taylor and Larry Pileggi. Exact Combinatorial Optimiza-
tion Methods for Physical Design of Regular Logic Bricks. In
Proceedings of the 44th Design Automation Conference, DAC 2007,
pages 344–349. ACM, 2007.

[Ull76] Julian R. Ullmann. An Algorithm for Subgraph Isomorphism.
Journal of the ACM, 23(1):31–42, 1976.

[UTK88] S. Ueno, K. Tsuji, and Y. Kajitani. On Dual Eulerian Paths and
Circuits in Plane Graphs. In Proceedings of the 37th IEEE Inter-
national Symposium on Circuits and Systems, ISCAS 1988, pages
1835–1838, June 1988.

162 BIBLIOGRAPHY

[Uv79] Takao Uehara and William M. vanCleemput. Optimal Layout of
CMOS Functional Arrays. In Proceedings of the 16th Design Au-
tomation Conference, DAC 1979, pages 287–289. IEEE Press, June
1979.

[Uv81] Takao Uehara and William M. vanCleemput. Optimal Layout
of CMOS Functional Arrays. IEEE Transactions on Computers, C-
30(5):305–312, May 1981.

[Wan67] Frank M. Wanlass. Low stand-by power complementary field
effect circuitry, 1967. U.S. Patent 3,356,858, issued December 5,
1967.

[Wei67] Arnold Weinberger. Large Scale Integration of MOS Complex
Logic: A Layout Method. IEEE Journal of Solid-State Circuits,
2(4):182–190, 1967.

[Wey11] Thomas Weyd. Leaf Cell Layout. Bachelor’s thesis, University
of Bonn, Germany, August 2011.

[Wey13] Thomas Weyd. Mixed Integer Programming Approach for Leaf
Cell Routing. Master’s thesis, University of Bonn, Germany,
September 2013.

[WHW85] O. Wing, Shuo Huang, and Rui Wang. Gate Matrix Layout. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 4(3):220–231, July 1985.

[WLC+13] Po-Hsun Wu, M. P. Lin, Tung-Chieh Chen, Tsung-Yi Ho, Yu-
Chuan Chen, Shun-Ren Siao, and Shu-Hung Lin. 1-D Cell
Generation With Printability Enhancement. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
32(3):419–432, March 2013.

[WLL88] D. F. Wong, H. W. Leong, and C. L. Liu. Simulated Annealing for
VLSI Design. Kluwer Academic Publishers, 1988.

[WNMD83] Wayne Wolf, John Newkirk, Robert Mathews, and Robert Dut-
ton. Dumbo, A Schematic-to-Layout Compiler. In Randal
Bryant, editor, 3rd Caltech Conference on Very Large Scale Integra-
tion, pages 379–393. Springer Berlin Heidelberg, 1983.

[WPF87] Shmuel Wimer, Ron Y. Pinter, and Jack A. Feldman. Optimal
Chaining of CMOS Transistors in a Functional Cell. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 6(5):795–801, September 1987.

[YKK75] H. Yoshizawa, H. Kawanishi, and K. Kani. A Heuristic Proce-
dure for Ordering MOS Arrays. In Proceedings of the 12th Design
Automation Conference, DAC 1975, pages 384–393. IEEE, 1975.

