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Abstract

Accurate prediction of rapid granular flow behavior is essential to optimize pro-
tection measures from hazardous natural granular flows like snow avalanches and
landslides and to design efficient production facilities for granulate processing in-
dustries.

So far, most successful models for rapid granular flow descriptions employ depth-
averaging, assuming an essentially constant velocity over depth. This assumption
greatly reduces calculation power but can lead to incorrect predictions in regions
of strong velocity shearing in the flow depth direction, e.g., during the impact on
an obstacle. To overcome these limitations, this study introduces a novel type of
non-depth-averaged fluid dynamics simulations for rapid granular flows of cohesion-
less material. A series of small scale experiments with industrial (polyvinyl chloride
(PVC)) and natural (sand) granular material was performed (i) to select and refine the
appropriate rheological model, (ii) to yield a better insight into velocity profiles and
(iii) to obtain parameters for comparison with numerical simulations. Based on these
experiments, Coulomb-type friction was selected as rheological model. A Poly(methyl
methacrylate) channel set-up with variable inclination angle in combination with
high-speed image recording and an open source particle image velocimetry (PIV)
software developed in this study allowed detailed observation of velocity profiles
during flow inception, undisturbed flows, flows encountering obstacles, and shock
scenarios. The PIV measurements revealed considerable changes in velocity between
layers of the granular flow and thus underpin the necessity to perform non-depth-
averaged simulations in order to accurately describe the flow behavior in all aspects.
Comparison of the depth-averaged simulation model of the Savage-Hutter type and
the non-depth-averaged simulation method introduced here with the experiments re-
vealed that certain quantities, like the flow height and shape could only be accurately
predicted using the non-depth-averaged simulations. Furthermore, the non-depth-
averaged simulations were well capable of predicting the observed velocity profiles
and produce accurate predictions of associated quantities like strain rates and slip
velocities for both materials in most experiments. Nevertheless, this study also re-
vealed cases where both depth-averaged and non-depth-averaged methods generate
similar predictions, e.g., the height of an undisturbed flow and deposition shapes. A
detailed summary of parameters and dynamic variables in different experiments, and
their predictability by both methods is provided. This serves as a guideline to decide
when to employ the reduced but faster depth-averaged methods and when more cal-
culation power intensive, but more accurate, non-depth-averaged methods must be
employed.

The non-depth-averaged method developed in this study was further validated
to measure its predictive power in three dimensional experiments with obstacles.
Also here, accurate predictions were observed. Furthermore, a method for the in-
troduction of complex topographies into the simulation process was developed, al-
lowing the direct integration of real mountain topographies. As pilot tests, simula-
tions of granular flows on a complex experimental topography and a real case snow
avalanche described in the literature were performed. The results demonstrated that
the new method can be transferred to complex topographies and yields good predic-
tions. These findings can serve as a basis for further refinement of the model and its
expansions to describe more complex events, e.g., the entrainment of snow mass.

Taken together, the novel, non-depth-averaged model and simulation technique
build in this study based on the experimental observation are a suitable tool to predict
important flow dynamical quantities in non-cohesive granular flows of both natural
and industrial origins. Furthermore, it can serve as a basis for the development of a
non-depth-averaged predictive model for real scale hazardous granular flows and is
thus an important step towards the correct prediction of granular flow behavior for
risk assessment in endangered regions.





Zusammenfassung

Exakte Vorhersagen des Fließverhaltens von granularen Materialien sind essenti-
ell für die Optimierung von Schutzmaßnahmen gegen natürlich vorkommende, ge-
fährliche granulare Flüsse wie Schneelawinen und Erdrutsche und für die Entwick-
lung effektiver Produktionsprozesse in der granulatverarbeitenden Industrie.

Die meisten bisher eingesetzten Modelle zur Beschreibung granularer Flüsse sind
tiefenintergriert und nehmen daher eine imWesentlichen konstante Geschwindigkeit
über die Flusstiefe an. Diese Annahme verringert die benötigte Rechenleistung erheb-
lich, kann jedoch auch zu ungenauen Vorhersagen in Bereichenmit starken Scherkräf-
ten und schnellen Geschwindigkeitsänderungen, wie beim Auftreffen auf ein Hinder-
nis, führen. Um diese Einschränkungen zu überwinden, wird in dieser Arbeit eine
neue Art von nicht tiefenintegrierten Fluid Dynamik Simulationen für schnelle gra-
nulare Flüsse aus nicht kohäsiven Materialien eingeführt. Es wurde eine Serie von
kleinmaßstäblichen Experimenten mit industriellem (Polyvinyl Chlorid (PVC)) und
natürlichem Granulat (Sand) durchgeführt um ein geeignetes rheologisches Modell
auszuwählen, bessere Einsicht in Geschwindigkeitsprofile zu erlangen und Parame-
ter für einen Vergleich mit nummerischen Simulationen zu ermöglichen. Auf der Ba-
sis der Experimente wurde Coulomb-artige Reibung als rheologisches Modell ausge-
wählt. Ein experimenteller Aufbau bestehend aus einem Acrylglaskannal mit varia-
bler Steigung und einer Hochgeschwindigkeitskamera gekoppelt an eine frei verfüg-
bare, in dieser Arbeit implementierte Software zur Bestimmung von Geschwindig-
keitsfeldern (Particle Image Velocimetry (PIV)) erlaubte eine detaillierte Betrachtung
von Geschwindigkeitsprofilen zu Beginn von granularen Flüsse, in ungestörten Flüs-
sen, beim Auftreffen eines Flusses auf ein Hindernis und in Schockszenarien. Die PIV
Messungen zeigten erhebliche Geschwindingkeitsunterschiede zwischen den einzel-
nen Lagen eines granularen Flusses und bekräftigten damit die Notwendigkeit von
nicht tiefenintegrierten Simulation zur akkuraten Beschreibung aller Aspekte eines
granularen Flusses. Vergleiche des tiefenintegrierten Simulationsmodells der Savage-
Hutter Art und der hier eingeführten, nicht tiefenintegrierten Simulationsmethode
mit den Experimenten zeigten, dass Größen wie die Flußhöhe und die Form des
Flusses nur von den nicht tiefenintegrierten Simulation akkurat vorhergesagt wer-
den. Außerdem zeigte sich, dass die nicht tiefenintergrierten Simulationsmethode die
beobachteten Geschwindigkeitprofile gut vorhersagen kann und, damit zusammen-
hängend, in den meisten Experimenten und für beide betrachteten Materialien gute
Vorhersagen für die Deformationsgeschwindigkeit und Rutschgeschwindigkeiten lie-
fert. Die Arbeit zeigt jedoch auch Fälle auf in denen beide Simulationsmethoden ver-
gleichbar gute Ergebnisse liefern, z.B. für die Höhe der ungestörten Flusses und die
Form von Ablagerungen. Daher wurde eine detaillierte Zusammenfassung der Vor-
hersagbarkeit der beobachteten Parameter durch die beiden Methoden erstellt, wel-
che als Orientierungshilfe bei der Frage verwendet werden kann, wann die schnel-
leren, tiefenintegrierten Methoden verwendet werden können und wann die rechen-
leistungsintensiveren, jedoch genaueren, nicht tiefenintegrierten Simulationen einzu-
setzen sind.

Weitergehend wurde die in dieser Arbeit entwickelte, nicht tiefenintegrierte Si-
mulationsmethode auf ihre Vorhersagekraft in dreidimensionalen Experimenten mit
Hindernissen getested. Auch hier wurden akkurate Vorhersagen erzielt.

Außerdem wurde eine Methode zur Einbringung komplexer Topographien in den
Simulationsprozess entwickelt, die ein direktes Einlesen der Topographien echter
Fallbeispiele ermöglicht. Als erste Tests für diese Methode wurden Simulationen zu
einer in der Literatur beschriebenen, komplexen experimentellen Topographie und
einer in der Literatur dokumentierten echten Schneelawine durchgeführt. Die Ergeb-
nisse zeigen, dass die hier eingeführte Simulationsmethode auf komplexe Topogra-
phien übertragbar ist und auch dort gute Vorhersagen liefert. Diese Resultate können



iv

nun als Grundlage für weitere Verfeinerungen und Erweiterungen (z.B. Aufnahme
von Material während des Flusses) des hier vorgeschlagenen Modells dienen.

Zusammenfassend sind das neuartige, nicht tiefenintegrierte Modell und die Si-
mulationsmethodik, die in dieser Arbeit basierend auf den experimentellen Ergeb-
nissen entwickelt wurden, ein geeignetes Werkzeug um wichtige Größen von granu-
laren Flüssen, sowohl natürlichen als auch industriellen Ursprungs, vorherzusagen.
Darüber hinaus kann das Modell als Grundlage für ein nicht tiefenintergriertes Vor-
hersagemodell für gefährliche granulare Flüsse in realem Maßstab dienen und stellt
damit einen wichtige Schritt hin zur korrekten Vorhersage vom Verhalten granularer
Flüsse zur Risikoabschätzung in gefährdeten Regionen dar.
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1 Introduction 1

1.1 Granular material

The term “granulate” originates from the Latin word “granulum” (small grain). Accord-

ing to the encyclopedia Brockhaus [1999], a granulate is a pourable, fine grain mixture

with uniform grain size and shape. Scientifically, the term is used in a wider context, re-

ferring to a conglomerate of discrete, solid macroscopic particles which dissipate energy

at each interaction. The particles need to be of a size where Brownian motion is deniable.

Therefore, the lower cutoff for a granulates diameter is in range of 1 µm (Jaeger et al.,

1996; Duran, 2000; Mitarai and Nakanishi, 2012). There is no upper diameter limit as

for example the rings of Saturn and the particles of rock avalanches with their particle

diameters of several meters can be described as granular materials (Cuzzi et al., 2009;

Hermanns and Strecker, 1999).

1.1.1 Characteristics of granular materials

Although a granular material is composed of solid particles, it also displays character-

istics of fluids and gases (Jaeger et al., 1996). The characteristics depend on the kinetic

energy of the material, which in turn is influenced by the density and structure of the

material. A resting granular material, like a pile of sand, can be fluidized by addition of

kinetic energy (e.g., from the boundary by agitation or by release of potential energy like

during the draining of a silo). Since the added energy dissipates during particle interac-

tions (through collisions and friction), the material quickly comes to rest again (Mitarai

and Nakanishi, 2012). Therefore, in contrast to a drained fluid, the material does not

uniformly spread on a surface when drained. It rather forms a hill with a characteristic

slope, the angle of repose of the respective material. By addition of higher amounts of

energy, granular matter can also reach a gas-like state (Goldhirsch et al., 2005; Krengel

et al., 2013).

Due to the high impact of the kinetic energy on the behavior of a granular material,

the understanding of dynamic processes is of special importance for the understanding

of granular materials.

The following paragraphs summarize the most important phenomena resulting from

granulate specific characteristics. Detailed reviews on characteristic properties of gran-

ular materials can be found in Jaeger et al. (1996), Duran (2000), Pudasaini and Hutter

(2007).
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1.1.1.1 Dilatancy

Dilatancy, due to its first mention by Reynolds in 1885 (Reynolds, 1885) also termed

Reynold’s dilatancy, refers to the increase in volume of a granular material upon shear-

ing. Reynolds explained this phenomenon by kinematic restriction: prior to stress appli-

cation the densely packed particles fill the spaces between them in the best way possible.

Application of stress causes the particles to move relatively to each other, resulting in

a less optimal packing. As a consequence, the volume increases and leads to uptake of

surrounding gas or fluid (Pudasaini and Hutter, 2007).

1.1.1.2 Cohesion

Granular materials can be distinguished as cohesive and non-cohesive according to the

forces applied between particles. Cohesive materials can be stressed by tension, which

does not only influence the particles to which the tension is applied but also adjacent lay-

ers (Pudasaini and Hutter, 2007). An example for a cohesive material is wet sand: when

picking up a hand full of wet sand, not only the directly touched particles are lifted but

also several layers of the neighboring material. Cohesiveness can either be caused by in-

teractions between the particles (e.g., electrostatic forces) or by the surrounding material

(e.g., water). In contrast to that, no tension can be applied to non-cohesive materials.

When lifting a fraction of dry sand, only the directly touched particles will be lifted,

while the surrounding particles remain unaffected.

1.1.1.3 Segregation

Mixtures of granular materials with differences in particle diameter and density display

some intuitively unexpected effects: shaking of the mixture results rather in a segregation

of the particle types than mingling (Ottino and Khakhar, 2000). A famous example is the

so-called Brazil nut effect, which occurs when a package of cereals is oscillated vertically.

Larger and less dense particles like nuts segregate to the surface of the mixture and are

found at the top of the package (Rosato et al., 1987).

1.1.2 Applications of granular flow dynamics

Granular dynamics have an impact on many areas of daily life in private households as

well as industries. Many food components like cereals, coffee, flour, sugar and clean-

ing agent are granular materials. A wide application field for granular flow dynamics

are industrial production processes. Many basic components are supplied as granulates

and need to be transported. Here, fluidization is widely applied to transport material

(e.g., when discharging a shipload or transporting plastic granulate by vibration convey-
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ors). Although these applications appear to be easy and self-evident, they are subject to

complex physical phenomena. One example is the effect that the direction of transport

of a vibration conveyor belt might be reversed upon changes in the vibration frequency

(Grochowski et al., 2004).

Beside this, many geological processes are influenced by granular dynamics. The most

abundant granular material in nature is sand, which is responsible for formation of land-

scape in many areas like deserts and coasts. The multiple shapes of sand dunes are one

example where slow granular morpho-dynamics strongly influences landscape forma-

tion.

Apart from these rather slow structure formation processes, some of the most danger-

ous natural hazards, landslides and avalanches, are composed of granular materials and

thus are rapid granular flows.

1.2 Hazardous rapid granular movements in nature

Hazardous rapid granular movements in nature can be subdivided according to their ma-

terial composition and their origin into landslides, volcanic flows and snow avalanches.

1.2.1 Zones of a granular flow in nature

In general, hazardous granular movements in nature can be divided into three zones: a

starting zone, the track and a deposition or run-out zone (Pudasaini and Hutter, 2007).

The starting zone contains the granular material which is subsequently mobilized and en-

ters the track. Mobilization can be triggered by various events like heavy snow or rainfall

and temperature differences (in the case of snow avalanches and landslides) or seismic

activity (volcanoes and earthquakes). From the starting zone, the granular material en-

ters the track zone. Since mountains usually become less steep towards the bottom, the

flow is gradually slowed down. Small flows with a small inertia might stop in this region,

creating a deposit on the slope. In contrast, large flows only stop when they have trav-

eled a considerable distance in the valley or encounter obstacles. Such avalanches create

long shallow run-out zones and can super-elevate in the opposite mountain sites (Puda-

saini and Hutter, 2007; Molina et al., 2004; Pudasaini and Miller, 2013). Especially in the

case of landslides, the track is also often called failure, while the initiation and run-out

situation are called pre- and post-failure, respectively.

1.2.2 Landslides

The term “Landslides” refers to all movements of soil and rocks with variable water con-

tent and grain size. A first classification was proposed by Varnes (1978) according to the
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Figure 1.1 – Sketches of the different types of landslides (Highland and Bobrowsky (2008)).
For details see text.

type of movement. Varnes distinguishes slides, flows, falls, topples and lateral spreads

(Fig. 1.1). Of these five, falls and topples are non granular movements where either one

piece of rock (fall) or a hole mountain site (topples) falls down, whereas lateral spreads

(e.g., induced by an earthquake) are granular flows but non rapid ones. In this work, only

the rapid granular types of landslides, slides and flows, are considered. Depending on

the type of movement and the involved material (rock or soil), these types can further be

subdivided and classified in more detail as summarized in the following paragraphs (for

a detailed description of all landslides types see Varnes (1978), Highland and Bobrowsky

(2008)).

1.2.2.1 Slides

Slides are movements along only one sliding surface, meaning that the material slides

down as a block. Because of this cohesive behavior, the internal parameters of the mate-
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rial can be neglected and the sliding friction between the material and the ground dom-

inates the movement (Highland and Bobrowsky, 2008). The movement performed by

the block of material can be either a rotational or a translational one. Rotational slides

with several parallel curved planes of movement are also termed slumps, while transla-

tional movements are classified as slides (Highland and Bobrowsky, 2008). Despite the

block-like sliding behavior, there can be huge differences in the damages caused by the

slide depending on the material density, slide depth and velocity. Therefore, slumps and

slides can be further subdivided in soil (earth (predominantly fine) or debris (predomi-

nantly coarse)) slumps/slides and rock slumps/slides (Varnes, 1978).

1.2.2.2 Flows

Flows are rapid granular movements where the granular material is fluidized. In this

case, the material characteristics are of critical importance for the description of the

movement. Like slides, flows can be subdivided according to the involved material into

rock and soil flows (Varnes, 1978).

Rock flow

Rock flows are composed of fragmented rock of any kind. Very rapid rock flows (0.05 m/s

or faster) are also termed “rock avalanches”. Rock avalanches are defined as very rapid

rock flows that involve the breakdown of the rock particles (Hungr et al., 2001).

Soil flows

Because of the importance of the material parameters, flows of soil-like material can be

further subdivided according to the degree of cohesion between the particles, their exact

material composition including water content and the velocity of the flow. These factors,

together with the multitude of possible granular soil components results in a complex

classification of soil type flows suggested by Hungr et al. (2001) which is shortly resumed

in the following paragraph:

Non-cohesive flows

Debris: The term debris flow refers to rather coarse (< 80% sand and finer, (Varnes,

1978)) unsorted material, often a mixture of stones and organic material (Highland

and Bobrowsky, 2008). According to Hungr et al. (2001) and Highland and Bo-

browsky (2008), debris flows are rapid (5 · 10−4 m/s and faster) to extremely rapid

(up to 100 m/s) flows and can be classified according to their water content and the

way they take down the slope: debris flows are saturated with water and rapidly

flow down a pre-established channel over a large part of the path, while debris
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avalanches are extremely rapid, not necessarily saturated with water and usually

occur in the absence of established flow channels (Hungr et al., 2001; Highland and

Bobrowsky, 2008). Established channels are often associated with free running wa-

ter, wherefore the water content of a debris flow increases during the flow by water

uptake. Additionally, the established channel prevents spreading of the flow, which

results in increased flow heights compared to debris avalanches (Hungr et al., 2001).

A special case is a debris flood, which occurs when free water is present between the

debris particles (Hungr et al., 2001).

Sorted Material: Other non-cohesive flows can be composed of rather uniform material

with small variations in particle size like sand, silt or gravel (Hungr et al., 2001).

These sorted material flows can reach from completely dry to water saturated flows.

Saturated flows are similar to debris flows and as those extremely rapid and dan-

gerous, while dry sand slides can for example also be slow like flows occurring on

sand dunes (Hungr et al., 2001).

Cohesive flows

Clay, mud and material mixtures with > 80% sand and finer usually are cohesive soils.

Depending on their water content and degree of cohesion, the flow behavior can either

be plastic, meaning that deformation without breakage is possible but no liquid behavior

occurs (water content > plastic limit and < liquid limit) or liquid (water content > liquid

limit) (Hungr et al., 2001).

Earth flows: Rather moderate to slow (below 5 · 10−4 m/s), plastic movements of clay or

fine soil are termed earth flows. These slow flows consist of dry or wet material

below the liquid limit (Hungr et al., 2001).

Mud flows: Extremely rapid flows of clay and soil (5 m/s and above) occur when surface

water is mixed into the soil matrix so that the liquid limit is reached (Hungr et al.,

2001). Because of their rapid behavior, mud flows are sometimes considered as

cohesive debris flows (Scott et al., 1992).

1.2.3 Volcanic flows

The eruption of a volcano and the associated seismic activity can trigger various haz-

ardous rapid granular movements. One the one hand, landslides of the above mentioned

kinds can be induced when the edifice of the volcano becomes unstable and parts of it

collapse and form for example a debris avalanche (McGuire, 1996). One the other hand,

there are also volcano specific flows, pyroclastic flows and lahars, which are among the
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most hazardous granular flows in nature and can cause more damage than the actual lava

eruption.

1.2.3.1 Pyroclastic flows

Recent experiences with volcanoes in Iceland that cause flights to be stopped all over

Europe impressively demonstrated once again that the danger of a volcano is not only its

eruption of lava but can also be caused by clouds of ashes, stones and gases erupted from

it (Schumann et al., 2011). When these clouds become to heavy to keep rising into the

air, they sink to the ground and flow down the flank of the volcano. Such flows are called

pyroclastic flows and can reach extreme velocities of 200 m/s and can reach for distances

up to 200 km from the erupting volcano. Additionally they are, as their name indicates,

usually very hot, up to around 1000◦ C, which causes organic material like trees or bushes

but also houses to burn immediately when hit by a pyroclastic flow (Bryant, 1991; Francis,

1993; Pudasaini and Hutter, 2007).

1.2.3.2 Lahars

When a pyroclastic flow is entrained with water, a so-called lahar is formed, a mudflow of

volcanic origin. Sources of water to produce a lahar can be steam from the eruption pro-

duced from snow or ice covering the volcano or from rivers the pyroclastic flow overruns

on its way. Another possibility to create a lahar is the eruption of a crater lake (Bryant,

1991; Janda et al., 1996).

1.2.4 Snow avalanches

It has become a convention to classify avalanches first according to the material density

and air content into powder snow avalanches and dense flow avalanches. Dynamics of

powder snow avalanches mostly depend on the movement of the air phase between the

particles, the entrainment of snow particles into the air and the mixing of the two phases.

In contrast, the dynamics of dense flow avalanches is dominated by the solid particles.

1.2.4.1 Powder snow avalanches

Powder snow avalanches consist of clouds of snow, which rapidly flow down a mountain

site. Due to their airborne character, the major part of these avalanches does not follow

ground structures but take the steepest possible pass down the mountain slope. These

avalanches can reach great flow heights of up to 100 m (Hopfinger, 1983) and velocities

of 50-100 m/s (Ancey, 2001b), which indicates their huge impact force and destructive

power. The avalanche usually behaves like a turbulent two-phase flow, which causes

further uptake of material from the snow cover during the flowing process and results in



8 1 Introduction

sometimes hazardous winds (Pudasaini and Hutter, 2007). Powder snow avalanches can

only form from dry snow, where no cohesion is present and are therefore typical for dry

climates. Usually large clouds of snow are also caused by the traveling of dry dense snow

avalanches through air entrainment (Turnbull and McElwaine, 2007). In these cases,

the powder snow can often travel faster and thus overtake the dense snow avalanche,

resulting in a cloud traveling ahead of the dense snow (Hopfinger, 1983; Pudasaini and

Hutter, 2007).

1.2.4.2 Dense flow avalanches

In contrast to the turbulent powder avalanches, dense flow avalanches are laminar flows

following a track guided by the topography. As a consequence, dense flow avalanches

can be channelized just as debris flows, depending on the topography of the mountain.

Free running dense snow avalanches usually develop a wedge-like shape and the greatest

height (up to a few meters) is observed at the front of the avalanche (Hopfinger, 1983).

A very intuitive way of classifying snow is its humidity: wet snow is cohesive and can

be easily formed to balls, whereas dry snow is a non-cohesive granular material. Thus

wet and dry snow avalanches can be distinguished. The cohesive wet snow avalanches

are two-phase flows as the dry snow avalanches and display similar behavior as debris

flows, while dry dense snow avalanches form cohesionless one-phase flows (Hopfinger,

1983; Iverson and Denlinger, 2001). The cohesion influences the initiation mechanisms

(see below) as well as the flow behavior: due to the cohesive forces between the parti-

cles of a wet snow avalanche (usually snowballs of up to several dm in diameter or ice

particles in water) that have to be overcome to move the avalanche forward, some of the

avalanche’s energy is consumed. This results in a lower average velocity for wet snow

avalanches (10-30 m/s) compared to the more mobile, cohesionless dry snow avalanches

(30-60 m/s) (Issler, 2003). Additionally, wet snow avalanches are more dense then dry

snow avalanches (300-400 kg/m3 compared to 50-300 kg/m3) (Hopfinger, 1983). As a

consequence, they cannot override the snow cover as easily as dry snow avalanches do

and sometimes even plow down through it into the ground. These so-called ground

avalanches are often observed in spring time, when the snow cover is wet throughout

all layers as a result of higher temperatures, solar irradiation and rainfall (Hopfinger,

1983; Pudasaini and Hutter, 2007). When huge amounts of snow are warmed up they

can also transform into small ice particles, especially when night temperatures are still

freezing. When warmed up again, such ice particles can built an ice-water slurry that lit-

erally flows down the slope and behaves more like a viscous fluid than a granular material

(Hopfinger, 1983; Pudasaini and Hutter, 2007).
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Release mechanisms

Dense flow avalanches can also be classified according to their rupture mechanism. An

avalanche can either be initiated by a point failure or by a line fracture. Point failures

are loose snow phenomena and can start with little material at one point of the slope.

They can entrain further snow on their way but mostly result in rather small avalanches,

which usually occur on slopes steeper than 45◦ (Hopfinger, 1983) and often stop before

they reach the end of the slope. The deposit of such avalanches is often tongue-shaped.

Often the snow cover is not loose but gained some cohesion due to slight transformation

induced either by the weight of heavy snow fall or by temperature differences. These

conditions lead to the formation of layers in the snow cover. If so-called weak layers

(planes where the layers do not stick together very well) are formed and new snow load,

storms or artificial triggers like skiers cause the snow cover to break vertically, the upper

layers start sliding down the slope over the lower layers (Schweizer et al., 2003). During

the first meters of the track, the whole snow mass moves as an elastic block, which sub-

sequently breaks apart, forming the granular matrix of the avalanche (Hopfinger, 1983).

Such avalanches are termed slab avalanches (German:“Schneebrettlawine”) and usually

result in larger masses of snow being mobilized than in the case of point failures. They

mostly occur in slopes between 30◦ and 45◦ (Margreth, 2007). The initial cohesion inside

the sliding block should not be confused with the cohesion between the avalanche parti-

cles. Depending on the water content of the initial slab, dry and wet slab avalanches can

occur. Especially dry snow is very prone of forming large slab avalanches. In this case,

the resulting fragments of the slab form a cohesionless granular matrix, which can also

develop a powder component (Pudasaini and Hutter, 2007).

1.2.5 Damages

Hazardous granular flows cause plenty of damages and loss of lives each year all over the

world. Especially in mountainous countries such as Switzerland and Austria, hazardous

granular movements are among the most common and dangerous natural hazards. In

both countries, seven of the ten worst events in terms of fatal accidents caused by natural

hazards from 1900 to 2012 were caused by landslides and avalanches (source: EM-DAT:

The OFDA/CRED International Disaster Database www.emdat.be Université Catholique

de Louvain Brussels Belgium). Since the occurrence of landslides and volcanic flows does

not necessary follow a seasonal pattern, the destructive forces of these events are illus-

trated in the following paragraphs by single events and their consequences. In the case

of avalanches, which occur each year in alpine regions, also yearly statistics are provided.
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1.2.5.1 Landslides

Landslides are not as limited in terms of amount of material that can be mobilized as

avalanches. The amount of snow in combination with the topography provides a natu-

ral upper limit to the volume an avalanche flow can acquire. In the case of landslides,

whole mountain sides can be mobilized. Examples for such extreme landslides are sev-

eral earthquake induced landslides in loess material in China in 1920. All together these

hazardous events killed about 180,000 people. One of the blocks that were mobilized

had dimensions of about 520 m to 2000 m and traveled for more than 3 km, together

with another block of similar size it had a volume of 1.5 ·107m3 (Zhang andWang, 2007).

Beyond the fatal accidents, landslides also cause enormous economic damage due to de-

molition of homes and infrastructure. The worst landslide in terms of economic loss was

a landslide in Peru in 1983, which caused damage of nearly one Billion US $ (source:

EM-DAT: The OFDA/CRED International Disaster Database www.emdat.be Université

Catholique de Louvain Brussels Belgium). Landslide may reach volumes up to 1012m3,

which results in extreme mobility due to a correlation between mobility and flow volume

(Legros, 2002; Pudasaini and Miller, 2013)

1.2.5.2 Volcanic flows

The special danger of volcanic flows lies on the one hand in their height temperature

but also in their long range. One of the deadliest lahar events in history, caused by the

eruption of the ice-capped Nevado del Ruiz in Peru, impressively demonstrates these

characteristics: the event killed about 23,000 people, of which many were living in vil-

lages more than 70 km away from the volcano. The lahar traveled 104 km in total and

destroyed more than 5000 homes (Pierson et al., 1990; Legros, 2002; De Blasio, 2011).

1.2.5.3 Snow avalanches

Snow avalanches are frequent, seasonally reoccurring hazard in mountainous regions. In

Europe, up to 300 people have been killed by avalanches in a single winter season (Ancey,

2001b). In addition to this, the economic loss due to avalanche damages is enormous.

Most victims of huge, often unexpected wide ranging avalanches are caught inside of

houses. The force of an avalanche can cut buildings in two, transport complete house

away from their foundation and uproot complete forest areas (Voellmy, 1955; Bebi et al.,

2009).

Although avalanches occur each year, there is great variation in the intensity and num-

ber of events. Unfavorable weather conditions like unusually strong precipitation, cold

temperatures and strongwinds can lead to accumulation of unusual amounts of snow and

can trigger so-called avalanche winters (German: “Lawinenwinter”) and events that are
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observed in this intensity only once in a century (German: “Jahrhundertlawine”, mean-

ing avalanche of the century) (Wilhelm et al., 2001). Such conditions were present in

the February 1999, when two of the deadliest avalanches in the century happened within

three days in Evoléne (Switzerland) and Galtür (Austria) and killed 12 and 31 people,

respectively (Wilhelm et al., 2001; Barbolini et al., 2004; Schweizer and Seiler, 2007).

Both avalanches were initially dry dense flow slab avalanches which developed a powder

component and in the case of Evolène also involved wet snow in the lower slope parts

(Barbolini et al., 2004; Schweizer and Seiler, 2007). Beyond these fatal accidents, the

avalanche winter of 1999 caused an economic loss of more than 300 million SFR due to

direct damage on houses and infrastructure (Nöthiger et al., 2002).

But the year 1999 also demonstrated that so far employed avalanche protection means

were greatly successful: in the only winter with similar snow amounts in the 20th century,

1951, 98 people where killed by avalanches in Switzerland, while 17 were killed in 1999,

despite the ever-growing alpine population and exploitation for winter sports (Wilhelm

et al., 2001).

1.2.6 Protection against hazardous granular flows

There are various possibilities to prevent fatal incidents and infrastructure damage by

hazardous granular flows. The simplest method is to avoid civil constructions and hu-

man activities in regions which are prone to such events. This is of course only possible

for newly build houses and infrastructure. However, due to the wide spread occurrence of

hazardous granular flows, avoidance is impossible in most cases. Nevertheless, it is prob-

ably the only method to protect human lives from volcanic lava and pyroclastic flows.

Due to their enormous heat, no defense structures can be built against such flows. On the

other hand, these events are the hazardous granular flows which are best predictable be-

cause of the seismic and volcanic activity associated with them. Therefore, evacuation is

often possible. Landslides and snow avalanches often do not provide such warnings but

can be to some extent predicted by empirical means when considering the snow/rainfall,

temperature and soil/snow conditions. However, landslides can sometimes be predicted

because of some slow creeping of the soil before the slide and by associated cracks in

the soil. Although extremely important for evacuation and protection of human live, a

warning can only help to protect mobile goods. Infrastructure can not be protected this

way. The next intuitive way of protection would be to prevent the granular flow itself.

Roads are for example protected from landslides by large nets spanned over the adjacent

slopes. The nets aim to keep the rock/soil structure intact and prevent it from sliding

onto the road. The flow of snow cannot be completely prevented, but many defense

structures in alpine regions aim to prevent their acceleration and thus the formation of

avalanches. Such defense structures are often found in alpine regions as protections from
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snow avalanches, although some are also used for prevention of rock slides (Pudasaini

and Hutter, 2007). They consists of snow fences, grids or nets arranged approximately

normal to the slope and are placed in areas where avalanches may initiate. Thus, they are

intended to anchor the snow in its place and prevent the formation of large avalanches

by stopping creeping snow early on the track. The creeping snow forms a deposit in front

of the defense structure, which leads to decrease of the flow velocity before reaching the

structure (Margreth, 2007).

Two other ways of protection are widely employed for landslide and avalanche protec-

tion so far: the establishment of defense structures that either slow down, stop or redirect

the granular flow and the controlled, intended release of a granular flow before a haz-

ardous flow can be built. The second mostly applies to snow avalanches which are often

triggered by explosions initiated from helicopters or special pipes installed on mountain

tops. The avalanches are released before huge amounts of snow can accumulate and form

hazardous avalanches and at times of day when skiing areas are closed.

The flow of a fully developed large avalanche can only be stopped by solid structures

like walls. One example for such a wall are protection structure built to protect the village

of Neskaupstaður (Iceland): here, two rows of so-called breaking mounds of 10 m height

were built to first slow down avalanches and behind them a 17 m catching dam was built

to finally stop the movement (Jóhannesson and Hákonardóttir, 2003). A natural defense

structure to slow down or stop the movement of avalanches are forests, which should for

that reason be especially conserved or re-planted in avalanche prone areas (Bebi et al.,

2009).

The most common structure to redirect the flow are so-called galleries built over

roadways (Pudasaini and Hutter, 2007). Instead of entering a road or railway passage,

avalanches or landslides are caused to flow over the gallery and continue to flow downs-

lope afterwards. The advantage of such structures is that they do not need to stop the

complete flow, which would require great pressure resistance almost impossible to built,

but only slightly redirect the flow without loosing much of its kinetic energy.

Another way to redirect the flow is to cause it to split into two parts with slightly

different direction. This can be done by solid structures of a triangular/pyramidal shape

with one edge facing the expected direction of the flow (Tai et al., 1999b; Pudasaini and

Hutter, 2007). One example for such a defense structure are the dams built to protect

the coastal village of Flateyri, Iceland. The village encountered a devastating avalanches

in 1996 and afterwards three dams where built in a triangular, A-like shape, with two of

them meeting at the point where further impacts where expected. In subsequent years,

indeed avalanches were observed and were caught and channelized away from the village

into the sea (Jóhannesson, 2001). Smaller examples are stones piled up as a pyramid at

the slope facing side of houses that are found in Switzerland (thomasmayerarchive.de/

thomasmayerarchive.de/details.php?image_id=89108&l=english
thomasmayerarchive.de/details.php?image_id=89108&l=english
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details.php?image_id=89108&l=english, 20.05.2013) and V-shaped wall built in front

of houses in Austria (mearsandwilbur.com/structural_defenses.html, 20.05.2013).

A recently developed and more and more popular personal protection system is the

so-called Avalanche Airbag System, a backpack that is inflated upon impact (abs-airbag.de,

03.06.2012). It lowers the density and increases the volume of a person and thus prevents

the person from being buried in the avalanche because of the phenomenon of segregation

(see section 1.1.1.3).

A maximum of protection can be achieved by combining several or all methods de-

scribed above. To properly understand and to optimize such a combination, it is nec-

essary to know and predict the behavior of the granular flow during initiation, flow in

track and run-out phase as well as the exact time of flow occurrence. For these purposes,

empirical observations over many years and simulations of granular flows are combined.

1.3 Predictions and modeling on granular flows

Empirical predictions and model-based simulation of granular flows are employed to an-

swer various questions for protective purposes. The most important questions are: when

will a hazardous event take place, where exactly will it take place, howmuchmaterial will

be involved, how far will the flow move into the valley and what velocities and heights

will it reach. From the answers to these questions, it will be possible to create evacuation

plans as well as to calculate the forces resulting from the flow onto infrastructure and

defense structures. Predictions and simulations of granular flow are therefore divided in

approaches dealing with the initiation of the hazardous event and approaches describing

the actual flow of the granular material.

1.3.1 Initiation of a hazardous granular flow

There are two main components associated with the prediction of granular flow events:

the time and the place. In most cases it is extremely hard to predict the exact time point of

a landslide or avalanche in order to evacuate endangered areas, although some advances

are made in this field recently (Sornette et al., 2004). In the case of landslides, this is even

more difficult, since landslides can occur basically everywhere, while snow avalanches

are at least restricted to snow covered mountains with a certain inclination. It is there-

fore easier to monitor avalanche endangered regions and predict avalanche events. Snow

avalanche recording, prediction and warning has a long history and is therefore well

developed, especially in the field of statistical risk predictions derived from empirical

data. In the alpine regions of Europe, snow avalanche events have been reported since

the middle ages and organized avalanche research has been started in the 19th century

thomasmayerarchive.de/details.php?image_id=89108&l=english
thomasmayerarchive.de/details.php?image_id=89108&l=english
mearsandwilbur.com/structural_defenses.html
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(Pudasaini and Hutter, 2007). For this reason, the methods of snow avalanche prediction

are presented as an example in the following paragraphs.

1.3.1.1 Permanent risk maps

Many avalanche prone regions are comprised in risk maps, which do at least display the

probability of an avalanche event. To obtain risk maps for the safety oriented building

of new infrastructure, it is necessary to predict the occurrence of hazardous granular

flows in the region of interest for the next decades. Such risk maps are usually based

on empirical data (for an example see www.planat.ch/en/authorities/hazard-maps,

20.05.2013), statistical models based on observed events (Eckert et al., 2008) or on combi-

nations of empirical data with either analytically or numerically solved model equations

and simulations (Jamieson et al., 2008). For single spots, for instance in the case of a house

that is built inside an endangered area, simulations can be employed to design defense

structures and to calculate the necessary strength of the walls (http://www.slf.ch/

forschung_entwicklung/lawinen/lawinenschutz/index_EN, 20.05.2013). Such simu-

lations rely more on the flow behavior than on the initiation and are described in detail

in section 1.3.5.

1.3.1.2 Avalanche warning stages

During the winter season, avalanche research centers in alpine countries provide the

inhabitants with daily (or even more frequently) updated avalanche risk assessments.

These assessments are comprised in frequently updated hazard maps. For this purpose,

the region of interest is divided in danger levels and these levels are indicated to moun-

taineers in the form of flags of different color and pattern. Hazard maps are for example

provided by the Institute for Snow and Avalanche Research (SLF) (for Swiss) and me-

teo france (France). It is extremely hard to exactly predict time and place of avalanche

formation, especially for hazardous deep slab avalanches (Jamieson et al., 2001), even

if the snow cover height and snow quality is know at a given time point. Therefore,

current avalanche risk maps and danger levels usually rely on empirical observations

from former years. For this purpose, meteorologic observations like temperature, snow-

fall, humidity, solar radiation and wind as well as snow cover information like snow

heights, snow quality, layer formation and water content are correlated with terrain in-

formation and risks are calculated according to empirical knowledge on the influence of

the above mentioned factors (http://www.slf.ch/lawineninfo/zusatzinfos/howto/

entstehung_bulletin_gross_d.jpg; 20.05.2013).

www.planat.ch/en/authorities/hazard-maps
http://www.slf.ch/forschung_entwicklung/lawinen/lawinenschutz/index_EN
http://www.slf.ch/forschung_entwicklung/lawinen/lawinenschutz/index_EN
http://www.slf.ch/lawineninfo/zusatzinfos/howto/entstehung_bulletin_gross_d.jpg
http://www.slf.ch/lawineninfo/zusatzinfos/howto/entstehung_bulletin_gross_d.jpg
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1.3.2 On-track behavior and run-out events in granular flows

To built defense structures of the right strength and dimensions, it is not only necessary

to know where granular flows as avalanches are likely to occur but also to know which

forces will affect the structures. A central parameter in designing defense structures is

the so-called impact pressure, meaning the pressure that is applied on the structure when

it is hit by the flow. This pressure has to be measured inside the flow and cannot, as the

events themselves or the dimensions of the run-out zone and deposition, be observed and

recorded from previous events. It can to some extent be estimated from the observed de-

position and track, but such estimates are usually inaccurate since the actual flow height

and involved mass of an avalanche is rarely recorded in detail. In addition to that, events

like the European avalanche winter of 1999 demonstrate that empirical data are not suf-

ficient to provide a realistic risk calculation. It is well possible, that extreme events not

taken into account in the empirical risk assessment can occur also in future and this pos-

sibility needs to be taken into account for safety assessments (Ancey, 2012). For these

reasons, modeling and simulations of granular flow dynamics are of extreme importance

for the prediction of parameters like the impact pressure, flow heights and possible run-

out distances. Thus, model-based predictions are an important mean for the construction

of effective defense structures and the generation of hazard and risk maps.

1.3.3 The concept of modeling

Predictions of complex events like granular flows require simplification of the process in

the form of physical and mathematical models. Models are simplified, abstract mirrors of

reality, which allow to draw conclusions about the real world but may at the same time be

handled by human measures or machines. Models can either be small scale experiments

with controlled conditions or systems of equations which describe a certain situation.

Often a combination of both is used in an iterative process, where experiments are used

to establish simulation models, which in turn are tested with experiments and optimized

to describe the observed phenomena. Usually, new models are combinations of already

existing models, which were built during the history of physics over the last thousands

of years. The challenge in building a new model is to decide which of the existing models

and natural laws can be employed to describe the matter of interest in the most precise,

effective and applicable way.

1.3.4 General models for down slope mass movement

To describe the movement of a granular mass down a slope, the most important feature to

understand is the dissipation of energy. The material starts at an elevated location with
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a certain potential energy that needs to be completely dissipated during the movement

in order to make the mass stop again. Energy can be dissipated through interaction with

the ground on which the material is sliding (the bottom friction) or through shearing

resulting from the bottom friction, which causes interactions inside the material (internal

friction). The flow behavior and the processes inside a flowing material are considered in

rheological science. Therefore, an appropriate rheological model needs to be chosen or

developed to describe the granular flow. The following paragraphs introduce the bottom

sliding friction and the rheological models that have been employed to model granular

flows so far.

1.3.4.1 Bottom friction models

Coulomb friction

When two solid bodies in contact move relative to each other, the Coulomb-type friction

is the rate independent force effective in the opposite direction of the movement. The

friction is only proportional to the normal force N acting on the sliding surface with

a constant µb = tanδ, where δ is the bottom friction angle between the two materials.

The bottom friction angle is defined as the inclination angle at which a body resting on

an inclined plane starts to slide down (Coulomb, 1773; Jaeger et al., 1989; Hutter and

Koch, 1991; Savage and Hutter, 1991). The Coulomb friction force can be written as

FC = − u|u| tanδN , where u is the velocity of the flow.

Turbulent boundary layer

Some avalanchemodels consider (see section 1.3.5) the granularmaterial as a fluid stream-

ing over the ground and developing a turbulent boundary layer when high velocities are

reached. The transition from laminar to turbulent flow can be estimated by the Reynolds

number (Re) of a fluid in a given topography (Reynolds, 1883). Above a critical Reynolds

number (Recrit), the flow will display a turbulent behavior. The Reynolds number of a

fluid depends on the density ρ , the viscosity η and the velocity u of the fluid as well as

on the typical traveling length of the considered flow l and is defined as: Re = ρ·u·l
η .

For a turbulent flow, the force causing energy dissipation due to friction is termed the

friction loss Ff , which is the analog to the Coulomb-friction force in a fluid. It is propor-

tional to the square mean of the flow velocity (Ludwieg and Tillmann, 1950; Landau and

Lifšic, 1975).

1.3.4.2 Rheological models

The retraction of the granular material, which is caused by the bottom friction, may lead

to shearing and thus additional stress generation inside the material. The employed rhe-
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ological model should describe how the material reacts to the applied stress and which

forces are active inside the material. This characteristic can be described by the shear-

stress τ , which represents the force being effective on a plane in the material. As men-

tioned in section 1.1.1), a granular material can, depending on the applied kinetic energy,

display characteristics of both a solid body and a fluid. Therefore, the models employed

to describe the shear-stress of a granular material describe elastic behavior, which is ap-

plicable for a rigid body that can be deformed but returns to its original state upon stress

removal, plastic behavior, which describes a rigid body that remains permanently de-

formed after stress removal and fluids, which display viscous behavior. Often these con-

cepts are combined in models describing flow behavior of granular materials.

Coulomb-type intergranular interaction

Like the interaction with the ground, also the interaction between particles in a non-

cohesive material can be described by Coulomb-type friction. The Coulomb friction

is in this case proportional to the internal friction angle φ (constant of proportionality

µ = tanφ). The Coulomb friction force can then be written as FC = − u
|u| tanφN . From this

force, τ can be calculated for any given plane, given the normal force and the internal

friction angle are known.

Newtonian fluid

As a granular material in motion displays many characteristics of a fluid, several early

models employed fluid mechanics to describe granular flows. The basic model of a fluid

is a so-called Newtonian fluid, in which τ is linear proportional to the velocity gradient

in the fluid, the shear-rate (γ̇). The proportional constant is the viscosity η of the fluid:

τ = ηγ̇ .

Non-Newtonian fluid

In a Non-Newtonian fluid, the viscosity is not constant but depends on other variable

sizes like the shear-rate, the shear-rate history or time (a detailed review onNon-Newtonian

fluids can be found in Nguyen and Nguyen (2012)). For the time-independent cases, the

resulting viscosity is termed effective viscosity ηE .

Power law dependent viscosity

In power law dependent fluids, ηE depends on the shear-rate: ηE = kγ̇n−1. τ is therefore

proportional to γ̇n: τ = (kγ̇n−1)γ̇ , where n denotes a number different from 1 for Non-

Newtonian fluids and k is the flow consistency index. The flow consistency index ensures

that the term kγ̇n−1 has the unit of a viscosity, therefore the unit of k is Pa · sn. In the case
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of n = 1, k is equal to η and the fluid would display Newtonian behavior. For n < 1, the ef-

fective viscosity decreases with the shear-rate. Thus, the fluid flows faster upon shearing,

the fluid appears to be “thinner”. Such fluids are therefore termed shear-thinning fluids.

Pseudo-plasticity is a synonym for shear thinning, as the the fluid behaves almost plastic

at low shear rates. For n > 1, the effective viscosity increases with the shear-rate. Thus,

the fluid appears to be“thicker” and is termed a shear-thickening fluid.

The Bingham model

A special case of a Non-Newtonian fluid is a Bingham plastic. Bingham performed exper-

iments with suspensions of fine material (clay) in water at various concentrations (Bing-

ham, 1917). Below a certain concentration of clay, the suspension behaves like a Newto-

nian fluid. Above a critical concentration, the clay behaves like a rigid body when low

stress is applied. In contrast to that, it can regain a certain fluidity, when shear-stresses

higher than a critical shear-stress τ0, also termed yield stress, are applied. For τ > τ0, τ is

proportional to γ̇ with an effective viscosity ηE = η + τ0
|γ̇ | . At shear-stresses slightly above

τ0, a Bingham material displays pseudo-plastic behavior. This is caused by very low val-

ues of γ̇ and a resulting high effective viscosity. Upon increasing shear-rate, the effective
viscosity becomes lower and approximates η, resulting in viscosity dominated behavior.

A Binghammaterial thus displays viscoplastic behavior above τ0 with elastic parts below

τ0 and is an example of a shear thinning Non-Newtonian fluid.

The Herschel-Bulkley relationship

Non-Newtonian fluids with a critical shear-stress τ0 and a higher order relationship be-

tween γ̇ and the viscosity can be described by the Herschel-Bulkley relationship (Her-

schel and Bulkley, 1926): τ = τ0 + kγ̇n. In this case, ηE = kγ̇n−1 + τ0
|γ̇ | . The Herschel-

Bulkley relationship can also be interpreted as a general description of Newtonian and

Non-Newtonian fluids, as for n = 1 and τ0 = 0 it describes a Newtonian fluid, while devi-

ating values of n describe the Non-Newtonian behavior mentioned above. In the special

case of n = 1 and τ0 , 0 it describes a Bingham material.

Time-dependent rheology

Certain materials are capable of memorizing their previous state when stress is applied.

These materials will allow deformation upon stress exposure but will return to their pre-

vious shape after the stress has been released. In the case of fluids, which seem to flow

during the application of stress (viscous behavior) but afterwards return to their previ-

ous form the term viscoelastic fluid is used. Examples for viscoelastic fluid models are
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Oldroyd-B, Maxwell-A/B and UCM (upper connective Maxwell), for a detailed descrip-

tion see Bird et al. (1987), Fang et al. (2008).

The Bagnold model

A first granulate specific model for the shear behavior of granular material was estab-

lished by Bagnold (1954): He performed experiments in which he exposed mixtures of

spherical wax particles in viscous fluids with varying volume fractions of the solid par-

ticles to controlled shear stress. The particle diameter was constant and the density was

chosen to equal the density of the surrounding fluid (water and a more viscous glycerol-

water-alcohol mixture) in order to achieve neutral buoyancy. Bagnold characterized the

relationship between τ and γ̇ for this material in a drum with rotating side-walls. He

found two different orders in the relationship, depending on the speed of the side wall:

At low speed, τ is proportional to γ̇2. He called this situation a grain-inertia regime.

This is analogous to a shear-thickening Non-Newtonian fluid.

Above a certain speed, the material can be considered as a macro-viscous fluid. In

this case τ is proportional to γ̇ and the proportional constant is the viscosity η as for

Newtonian fluids.

1.3.4.3 Continuummechanics models

Once a bottom friction model and a rheology have been chosen, the next step is to cal-

culate how the forces influence the movement of the granular material. To calculate the

velocity field of a continuous and deformable mass, continuum mechanics models are

employed. The continuum mechanics model for momentum is the Cauchy momentum

equation, which describes the conservation of momentum at a given point inside the con-

tinuous material:

ρ
Du
Dt

= ∇ ·σ + f (1.1)

In this equation, ρ is the bulk density of the material, σ denotes the Cauchy stress

tensor, which includes the pressure inside the material and the shear-stress, and f de-

notes the body forces (in the case of a granular material sliding down a slope this is only

gravity). The solution of this equation yields the velocity field of the material. The spe-

cialization of the Cauchy momentum equation for Newtonian fluids is described in the

Navier-Stokes equations. In this case, for σ the shear-stress of a Newtonian fluid is chosen

(Hutter and Jöhnk, 2004).

A simplification of the Navier-Stokes equations can be achieved by depth-integration.

Depth-integration means, that the velocity profile through the depth of a flow is ne-
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glected, the velocity (u) of the flow at a given point is averaged over the whole depth

of the flow (ū). This simplification can be made if the flow height (h) is very small com-

pared to the flow length (s). Since it was first introduced in hydrodynamics for water

models, the resulting equations for a gravity (g) flow are termed Shallow-Water equa-

tions (de Saint-Venant, 1871; Stoker, 1948):

∂h
∂t

+
∂
∂s

(ūh) = 0 (1.2)

∂hū
∂t

+
∂(hū2)
∂s

= − ∂
∂s

(1
2
gh2

)
(1.3)

However, in these equations, viscous stresses are neglected and the flow is only driven

by a pressure gradient.

1.3.5 Models for granular flows

This section provides a short overview on some models that have been employed to de-

scribe hazardous rapid granular flows in the past. Since the first models were devel-

oped for snow avalanche dynamics, we will focus mainly on this field. Another spe-

cialty to snow avalanches is that several test sides were established in alpine regions to

measure important parameters like impact pressure, run-out distance and overall flow

movements on real scale avalanches. For this purpose, pressure and velocity sensors

as well as laser-scanning devices were installed at selected places which are prone for

avalanches. Avalanches observed at these sites can then either be of natural origin or

artificially triggered by explosions. Such experimental sites are for example found in the

Swiss “Vallée de la Sionne”, at the French “Col du Lautaret”, at Ryggfonn, Norway and

at “Seehore” in the Aosta Valley, Italy (Barbolini and Issler, 2006; Maggioni et al., 2012).

Results from these natural test sites are employed on the one hand to test existing models

and on the other hand to continuously improve them (Sovilla and Bartelt, 2002; Meunier

et al., 2004). Nevertheless, the model developed for snow avalanches can also be ap-

plied to rockslides and other hazardous granular flows e.g. pyroclastic flows and debris

avalanches (Körner, 1976; Crosta et al., 2004; Pudasaini and Hutter, 2007; Christen et al.,

2012; Deubelbeiss and Graf, 2013). The different models differ in the rheological model

and in the amount of empiric data or physical deduction used to built the model.

1.3.5.1 Voellmy model

After several strong winters in the early 1950s, in which avalanches reached onto places

where no avalanches had been observed since the beginning of recording at the begin-

ning of the 20th century, the need for predictions and physical descriptions of avalanches
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became obvious. One of the first scientist replying to this need was Voellmy (Voellmy,

1955), who collected data about the damages caused by several of the most destructive

avalanches in Switzerland at this time and used this data to estimate the velocities and

forces that were effective during the avalanche flow. He then made use of this data to es-

tablish the first mathematical model to describe the movement of an avalanche as a flow

and thus according to hydrodynamics.

From his observations, Voellmy came to the following conclusions: at the beginning

of the flow, the complete slab is moving in a slow laminar way. With increasing velocities,

the flow becomes turbulent. In the case of a slab avalanche Voellmy considers the point

when the slab is breaking up into several granular particles as the transition point from

laminar to turbulent flow. The flow of the avalanche over most parts of the track is thus

characterized by turbulent flow according to Voellmy. He therefore suggested a combined

turbulent and Coulomb friction force Fr affecting a particle in a flow with the height h on

a slope with an inclination angle ζ which can be described as:

Fr = −ρ · g · h · cosζ ·µ−
ρ

ξ
·u2 (1.4)

Voellmy used the model of turbulent flow to explain the appearance of a term pro-

portional to the square of the flow velocity (u). In this model he introduced the two fit

parameters µ (proportional constant of the Coulomb friction, see above) and the slid-

ing coefficient ξ, which have to be estimated from observed avalanches. Since Voellmy

treated the granular material at the initial phase as a rigid block, µ was not calculated

from the internal friction angle but estimated from observations and ξ was estimated

from values observed in hydraulics.

By using estimates of these two parameters, Voellmy was able to calculate the esti-

mated maximal velocity and pressure effective in an avalanche at one point. Further

investigations were later on performed to yield better estimates from large avalanche

events (Buser and Frutiger, 1980).

1.3.5.2 Extensions to the Voellmy model

The first attempt to describe the movement of avalanches as a granular material was

introduced by Salm (1966). He considered the material of the avalanche as a cohesion-

less granular material with internal friction andmodified Voellmys model (Voellmy-Salm

(VS) model).

One crucial difference between a fluid and a granular material is the pressure distri-

bution inside the material. Inside a fluid, the pressure is constant at a given height inside

the fluid and independent of direction. The same pressure effecting the bottom of a fluid

cell also effects the walls. This is not the case for a granular material. Due to interac-
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tions between the particles, the pressure can be distributed over long distances and in an

asymmetric way. This fact is long known for soil mechanics, where the pressure caused

by a soil that is held back by a wall is of great importance. The theory describing such

phenomena is termed earth-pressure theory. Three different kinds of earth-pressures are
considered: the earth-pressure at rest, the active earth-pressure (the minimum pressure

a wall needs to withstand to prevent adjacent soil from failure) and the passive earth-

pressure (the maximum pressure that can be applied to a soil before a failure occurs).

According to Rankine (1857), the earth-pressure depends on the internal friction angle

(φ) and is defined as

kact/pass = tan2
(
45◦ ±

φ

2

)
, (1.5)

where +,- indicated passive and active earth pressure, respectively. Salm implemented

this term in Voellmy’s model and received the following equations for the conservation

of mass and momentum to describe the full evolution of the avalanche movement:

∂h
∂t

+
∂(uh)
∂s

= 0 (1.6)

∂u
∂t

+u
∂(u)
∂s

= g sinζ −µg cosζ −
gu2

hξ
− ∂
∂s

[
kact/passg cosζ

h2

2

]
(1.7)

where s is the coordinate along the slope, g is the gravity constant and all other pa-

rameters are employed as described above (Salm et al., 1990; Salm, 2004).

These model equations and numerical simulations based on them have been used for

many years to predict avalanche flows for the construction and improvement of risk maps

in Switzerland (Sovilla and Bartelt, 2002). Further improvement of the numerical simu-

lations and generation of detailed tables for µ and ξ at different elevations, topographies
and return periods have led to the development of the software packages AVAL-1D and

RAMMS, which are currently in used for hazard map generation and flow simulations

(Christen et al., 2002; Jamieson et al., 2008; Christen et al., 2010a). Current research

focuses on improvements of the Voellmy-Salm model implemented in RAMMS for appli-

cation to complicated topographies and on improvement of the physical significance by

reducing the parts which require fit parameters (Fischer et al., 2012).

North American hazard maps are often based on another modification of Voellmy’s

model, the Perla, Cheng and McClung (PCM) model (Perla et al., 1980; Jamieson et al.,

2008). The PCMmodel is, as the VS model based on Coulomb friction, but the fit param-

eters µ and ξ are replaced by the mass-to-drag ratioM/D. M/D has to be calibrated from

previous events and is thus a fit parameter as well (Jamieson et al., 2008).
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Figure 1.2 – Example of a Mohr-circle spanned by the two maximal and minimal stresses that
are effective in the two perpendicular planes in which no shearing stress is effective (σ1 and
σ2). All possible combinations of τ and σ that can be observed in the considered object have
to be on this circle.

Nevertheless, all these models still contain the fit parameters µ and ξ (VS) or M/D

(PCM) which cannot be determined exactly for a given event but are usually fitted ac-

cording to previously observed events.

1.3.5.3 Savage-Hutter

In 1989, Savage and Hutter suggested a model in which the earth pressure was deter-

mined by a so-called Mohr-Coulomb criterion (Savage and Hutter, 1989). For this crite-

rion, Coulomb’s friction law is combined with a Mohr circle (Jung, 1947). A Mohr circle

is a graphical way of displaying all combinations of shear and normal stresses (τ and σ )

associated with different cutting planes of a body. In a diagram where the y-axis denotes

the shear stress and the x-axis denotes the normal stress, the circle is spanned by the two

maximal and minimal stresses that are effective in the two perpendicular planes in which

no shearing stress is effective (σ1 and σ2, where σ1 > σ2) (Fig. 1.2).

For their avalanchemodel, Savage andHutter considered a square element of granular

material sliding down an inclined plane. As described above, Coulomb’s law applied

to a granular material yields two minimum forces, above which movements will occur.

These are associated with the bottom friction and the internal friction. According to the

relations described in section 1.3.4, the block will start to slide down the plane when

forces higher than FC = − u
|u| tanδN are applied, while the block will shear internally due

to the overcome of internal friction, when higher forces than FC = − u
|u| tanφN are applied.

These two yield criteria can be displayed in the Mohr circle by two lines with the slope

µb = tanδ and tanφ respectively (Fig. 3.2). Savage and Hutter assumed that the normal

pressure that is effective on a plane at the bottom of the square (that is not a plane parallel

to the inclined plane) is given by the hydrostatic pressure σ = ρ · g · hcosζ. The stress

combination, at which sliding starts is thus the point on the tanδ line at which this value
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of sigma is reached. This point characterizes one point that has to be on theMohr cycle for

the considered block. If now additionally also the yield criterion for an internal failure

should be reached, the respective cycle needs to be drawn in a way that the tanφ line

is a tangent. There are exactly two cycles possible that will fulfill this criterion (Fig.

3.2). From this construct, the active and passive earth pressure (kact/pass) effective in the

granular material can be determined in a geometric way as functions of φ and δ. With

this assumption, Savage and Hutter formulated the following set of partial differential
equations for conservation of mass and momentum:

∂h
∂t

+
∂
∂s

(uh) = 0 (1.8)

∂u
∂t

+u
∂(u)
∂s

=
(
sinζ −µb

u
|u|

cosζ
)
− β∂h

∂s
(1.9)

The earth pressure (see section 3.36) is integrated into the model via β as follows:

β = εkact/pass cosζ (1.10)

Here, the aspect ratio ε is defined by a typical span or spread of the slight (L) and a

typical depth (H): ε = H
L .

Note that here, in contrast to Salm’s model, the bottom friction angle δ in µb is used

to describe the Coulomb part of the movement and not the internal friction. Due to the

determination of the earth pressure by using bothφ and δ, the Savage-Hutter model is the

first to include both characteristic friction angles of a granular material in an avalanche

model. In this model, the flow is determined when these two material parameters are

known. Since φ and δ can be determined in experiments, the model offers a complete

physical description of a granular flow without any fit parameters.

In the following years, the Savage-Hutter (SH) model was extended to more compli-

cated flow situations, by both the establishment of new mathematical model components

and laboratory experiments employed to achieve a realistic description of a granular flow.

This process is described in detail in section 3.2.

1.3.5.4 Other models

A Norwegian model, suggested by Norem, Irgens and Schieldrop (NIS-model), describes

the flow of an avalanche by a Criminale-Ericksen-Filbey-rheology, assuming that the

mass does not slight down as a block but generates a velocity profile in depth (Bartelt

et al., 1999). For this purpose, a shear viscosity and viscoelastic elements are included in

the model (Norem et al., 1987). This model was shown to yield good results in predicting
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entrainment of snow during avalanche flow Sovilla and Bartelt (2002).

Another suggestion for the simulation of snow entrainment during avalanche motion

was made by Bovet et al. (2010): they employ a non-Newtonian fluid model with shear

thinning as suggested by Bingham. The model is an example of a non-depth-integrated

model and thus has a potential to be extended three dimensions. However, the authors

state that the model requires long calculation time and can therefore not directly be con-

veniently employed for hazard map generation.

The Austrian avalanche dynamics software SAMOS-AT employes an extended, depth-

averaged Voellmy model in combination with a mixture model describing the behavior

of ice and air fractions to model dense flow avalanches with powder components (Sauer-

moser, 2006; Sampl, 2007). A previous version (SAMOS99) employed a SH-type descrip-

tion for the dense flow part, but was revised in the SAMOS-AT version since the SAMOS99

software overestimated the lateral and longitudinal spread of the avalanche (Granig and

Oberndorfer, 2008).

1.3.5.5 Common features, differences and limitations of currently available models

Since the beginning of avalanche modeling in the 1950’s, more than 30 models for the

description of avalanche flows have been developed (Harbitz, 1998). Detailed reviews

on existing models for avalanche dynamics can be found in Harbitz (1998), Jamieson

et al. (2008). Although different rheologies are employed in these models, a clear dom-

inance of Coulomb-type friction descriptions is visible in the field, especially since all

models employed for hazard mapping are based on Coulomb-type friction assumptions.

As described above, huge differences are found in the required input parameters. Com-

monly used and well established simulationmethods like RAMMS require fit parameters,

while the Savage-Hutter model for example only requires the material parameters φ and

δ, which enables the model to be transferred to other materials like debris (Pudasaini,

2012). One common feature of all models employed for hazard assessment of dense flow

avalanches so far is their depth-averaged character, meaning that velocity profiles in the

flow depth are neglected, although they have been demonstrated to exist at least in ex-

periments (Kern et al., 2004; Barbolini et al., 2005). Thus, no true three-dimensional

simulations are possible (Jamieson et al., 2008) and important parameters like the impact

pressure can only be estimated from the averaged velocities in the depth. So far de-

veloped non-depth-averaged models were mostly tested on laboratory experiments and

their applicability to real three-dimensional topographies remains to be demonstrated

(e.g. Jop et al. (2006) and Ancey et al. (2012)). However, a great advantage of the depth-

averaged simulations is their limited requirement for calculation power compared non-

depth-averaged simulations.
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1.3.6 Nummerical methods to solve model equations

The final goal of modeling the flow of a granular material is to describe the complete

flow for given initial and boundary conditions. The partial differential model equations

mentioned above describe the continuous flow of a granular material in time and space.

In contrast to Voellmy’s considerations for one point (the moment and space where the

maximum velocity is reached), equations (1.6) to (1.9) cannot be solved in an analytic

way. A way to nevertheless solve the problem is a numerical solution. For this purpose,

time, space and equations are discretized and the flow evolution is calculated step by

step using algebraic equations which approximate the partial differential model equa-

tions. Several methods for the discretization were established so far and employed to

solve flow behavior problems. The most important among those are the finite differences
method (FDM), the finite element method (FEM) and the finite volume method (FVM).

A common feature of all methods is the discretization of space and time in a grid. In

the following paragraph, first the possible grids are described and then the different dis-
cretization methods are shortly introduced and their advantages and disadvantages for

the modeling of granular flows are discussed. In principle, all methods should result in

the same solution for very fine grids, but such a fine grid can usually not be achieved due

to limits in calculation power. Therefore, the most suitable discretization method for the

problem of interest has to be selected (Ferziger and Peri, 1999).

1.3.6.1 Grid

Structured (regular) grid

A structured regular grid would be a Cartesian grid, where all axis of a Cartesian coor-

dinate system are divided into discrete parts by drawing orthogonal lines. These lines

do not necessarily have the same distance from each other but are all parallel. In such a

grid, every cell has a defined number of neighboring cells (four in 2D and six in 3D). By

giving indexes to the cells, the next and second next neighbor of each cell in one direction

is defined as the index plus one or two respectively. Thus, the grid has a neighbor con-

nectivity, which is important for some numerical processes. A structured grid can be also

skewed in a way that the angles are no longer 90◦ but the neighbor connectivity has to be

conserved. The cell in such grids always have the shape of tetragons or cuboids. These

properties make it hard and complicated to model for example obstacles, since they re-

quire a fine grid structure. Because of the structure restrictions, a finer grid at the place

of an obstacle would also cause all other parts of the grid to became finer and thus elevate

the calculation power required (Ferziger and Peri, 1999).
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Unstructured grid

In an unstructured grid, the cells can be of any shape and the shape does not have to be

the same for all cells. This allows subdivision of cells in the place of an obstacle and mod-

eling of complex geometries as for example needed for the simulation of an avalanche

encountering a defense structure. On the other hand, the neighbor connectivity does no

longer exist in this type of grid, since one cell can have several neighbors in one direction

if the neighboring cell was split (Ferziger and Peri, 1999).

1.3.6.2 Discretization methods

FDM

The FDM makes use of the Taylor approximation of the partial derivatives in the con-

servation equation to obtain algebraic equations. Thus, the single partial derivatives are

displayed as local differences between neighboring cells, making the method very simple

and intuitive. On the other hand, all partial derivatives (for example the velocity down

slope and perpendicular to the slope) are considered separately and thus the method is

not conservative per se. Additionally, because of this consideration of neighboring cells,

the FDM has so far only been used for structured grids and thus has a limitation for com-

plex flows (Ferziger and Peri, 1999). However, older types of avalanche simulations often

employ this method because of its simplicity (Norem et al., 1987; Christen et al., 2002;

Jamieson et al., 2008).

FVM

This method considers volumes instead of the single points in the grid considered in the

FDMmethod. The variables are calculated for the center of the volume and the conserva-

tion equations are used to calculate integrals that denote the flow through the boundary

planes of the volumes. For this purpose, the velocities at the boundaries need to be inter-

polation from the centers of the volume. In contrast to the FDM, the FVM can be applied

to complex geometries described by unstructured grids and is conservative, since the flow

through all boundary planes is considered at the same time. A disadvantage of the FVM is

that higher order terms are hard to cope with, since they would require information about

the second or higher next neighbor for the interpolation and as mentioned above, these

neighbors are not uniquely defined in complex grids (Ferziger and Peri, 1999). FVM is

for example employed in the RAMMS software and thus widely used for hazard mapping

purposes (Christen et al., 2010a).
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FEM

The FEM is very similar to the FVM but additionally makes use of weighting base func-

tions inside the cell, which allows to account for the distribution of parameters in the cell

by weighting of the equations before the integration. This allows the method to be ap-

plied to more complex geometries, since the interpolation is no longer necessary (Ferziger

and Peri, 1999).

The two methods employed in this work (FDM and FVM) are described in detail in

chapter 4.
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The ultimate goal of granular flow dynamics simulations is to accurately predict the flow

shape and velocities at any given point during the motion. Furthermore, these simula-

tions should ideally yield exact information about the spatial and temporal pressure and

velocity distribution in the granular flow. These parameters are of special importance for

the calculation of the impact pressure, which is directly related to the hazardous power

of a natural granular flow. Ideally, the simulations should require a minimum of input

parameters and those parameters should be easy to determine for a given material.

To contribute to this goal, the present study aims to address the following tasks:

1. Design of a small scale experimental model for a rapid granular flow

The designed small scale experiments should, on the one hand, help to gain more

insight into the actual velocity profiles occurring during a granular flow, and, on

the other hand serve as a validating experiments for existing and developed simu-

lations. The design of the experiments has to allow measurements of the flow shape

and velocities. For this purpose, a goal of this study is to introduce experimental

set-ups which allow capturing of the flow with a high-speed camera system. This

image recording system is coupled to a particle image velocimetry image analysis

software established in this study. The resulting information is used to select the

underlying rheological model for simulations of the experimental flows.

2. Simulation of the performed experiments with existing depth-averaged models
for granular flows

To test the predictive power of state-of-the-art granular dynamics numerical simu-

lations and to elucidate their range of applicability and limitations, the widely used

depth-averaged Savage-Hutter model is employed to simulated the experimentally

observed flows.

3. Developing a novel, non-depth-averaged type of simulations for granular flows

Taking together the information obtained from the two first tasks, the third part

aims to develop a new kind of numerical simulation for rapid granular flows. The

rheological information obtained from the experiments is implemented in a simu-

lation software usually used for fluid dynamics. This should enable more precise

and complete prediction of the granular flow in situations where classical depth-

averaged simulations fail to predict the flow behavior. Especially, the spatial veloc-

ity distribution in the flow depth direction should be predictable with these simu-

lations.
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In this work, two types of numerical simulations are employed to simulate rapid granu-

lar flows. As a state-of-the-art model for depth-averaged simulations, the Savage-Hutter

model was chosen. This model has been widely used for the simulation of laboratory

experiments on rapid granular flows with good agreements (e.g. in Koch et al. (1994),

Greve et al. (1994), Pudasaini and Kröner (2008), Cui and Gray (2013)). Implied by the

depth integration, the Savage-Hutter type simulations are always limited to two dimen-

sions, even when three-dimensional topographies are considered. Thus, shearing inside

the material and velocity profiles in depth are neglected, which results in a less accurate

description of the flow. This can lead to inaccurate predictions of the flow behavior espe-

cially in situations with strong internal shearing as it is the case when the flow encounters

an obstacle or when deposition occurs (Pudasaini et al. (2007) and this work, chapter 6).

For these reasons, the accurate description and prediction of such events requires a non-

depth-averaged description. This is realized in this work by employing a simple Coulomb

friction assumption in a hydrodynamic approach. This chapter first describes the basic

conservation equations for continuum mechanics used in both the depth-averaged and

the non-depth-averaged approach, then presents the essential model equations for the

non-depth-averaged approach (section 3.1.2) and finally describes the deduction of the

essential model equations of the Savage-Hutter model as well as experiments which were

performed to further develop the model (section 3.2). Additionally, previous consider-

ations for the generation of a non-depth-averaged description for granular flows, which

have influenced this work, are mentioned in section 3.3.

3.1 Governing equations of continuummechanics

An ideal continuum is a material, whose infinitesimal small parts would still display the

same behavior as the complete material. Although all materials are discontinuous dis-

tributions at a certain scale (e.g. a mass of particles with air filling the space in-between

them or atoms with empty space between them), they often display continuous behavior

at macroscopic scales, as if their whole space of occupancy was completely filled with

the material. A fluid (or granular material) can be considered as continuum when the

observed length-scales are significantly larger than the scale of the material components

(the molecules of the fluid or the individual particles). Additionally, the intensive (scale

invariant) quantities density, pressure and velocity field have to be differentiable. If these
criteria are met, the motion of the material can be described by continuum mechanics.

There are two general ways of observing the motion of a fluid: an external and an
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internal observation. From an external observer position, a certain position in space is

observed and the evolution of the fields of interest is observed for this position. In the

case of an internal observation, a certain volume of the fluid is observed and the evolution

of the fields in this volume is considered. The derivative of a field is termed Eulerian

derivative in the case of an external observation and convective, Lagrangian or material

derivative in the case of internal observation.

3.1.1 Basic conservation equations

Given an Eulerian derivative ∂
∂t (?) of a quantity (?), the material derivative is defined as

the operator:
D
Dt

(?) :=
∂
∂t

(?) +u · ∇(?), (3.1)

where the second term on the right represents changes of the quantity with respect to

position, while the quantity moves with the velocity u of the fluid.

According to Reynolds’ transport theorem (Reynolds, 1903), the change of an inten-

sive quantityΦ in a continuumwith a density of ρ integrated over a control volume V has

to equal the amount transported (in and out) through boundaries of the control volume

plus the amount created or consumed by sources or sinks (Q) (Aris, 1989; Hutter and

Jöhnk, 2004; Jasak, 1996):

d
dt

∫
V
ρΦ(x, t)dV =

∂
∂t

∫
V
ρΦdV +

∮
∂V
dS · (ρΦu) =

∫
V
QV (Φ)dV +

∮
∂V
dS ·QS(Φ), (3.2)

where QS and QV are the surface and volume sources, respectively.

This fact can be also denoted in differential form:

∂ρΦ

∂t
+∇ · (ρΦu) =QV (Φ) +∇ ·QS(Φ). (3.3)

The governing equations of continuum mechanics can be written in the form of (3.3)

(Aris, 1989; Jasak, 1996), where the conservation of linear momentum equates the Cauchy

momentum equation (see section 1.3.4.3):

• Conservation of mass (Φ = 1, no internal sources or sinks of mass)

∂ρ

∂t
+∇ · (ρu) = 0 (3.4)
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• Conservation of linear momentum (Φ = u, QV (Φ) = ρg and QS(Φ) = σ )

∂ρu
∂t

+∇ · (ρuu) = ρg+∇ ·σ (3.5)

• Conservation of angular momentum1 (Φ = x × u, QV (Φ) = ρ(x × g) and ∇ ·QS(Φ) =

x× (∇ ·σ ))
∂ρ(x×u)

∂t
+∇ · (ρu(x×u)) = ρ(x× g) + x× (∇ ·σ ) (3.6)

with the position vector x.
These conservative laws are valid for any continuum but the number of unknown

quantities is larger than the number of equations. The next paragraphs will explain how

σ can be expressed, leaving an equal number of equations and unknown quantities. To

achieve a lower number of unknown quantities than equations, the pressure field has to

be determined, which will be described in chapter 4.

3.1.2 Newtonian fluids

As described in paragraph 1.3.4, the stress tensor σ of a fluid can be determined using

rheological models. For Newtonian fluids with the generalized form of the Newton’s law

of viscosity σ is defined as:

σ = −
(
p+

2
3
µ∇ ·u

)
I+µ

[
∇u+ (∇u)T

]
. (3.7)

Introducing this σ (3.7) into the above mentioned system of equations yields the

Navier-Stokes equations (see also section 1.3.4.3):

∂ρ

∂t
+∇ · (ρu) = 0 (3.8)

∂ρu
∂t

+∇ · (ρuu) = ρg−∇
(
p+

2
3
η∇ ·u

)
+∇ ·

[
η
(
∇u+ (∇u)T

)]
. (3.9)

The system can be further simplified by assuming incompressible fluids (ρ = const.):

∇ · (u) = 0 (3.10)

∂u
∂t

+∇ · (uu) = g−∇pkin +∇ · (ν∇u) (3.11)

with a kinetic viscosity ν = η
ρ and a kinematic pressure of pkin =

p
ρ .

1Combining (3.5) and (3.6) states that σ is a symmetric tensor: σ = σT
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In these equations, different rheological models can be employed for ν and η.

3.2 Savage-Hutter Model

In this section, the derivation of the Savage-Hutter (SH)-equations denoted in section

1.3.5.3 is described for slopes with low variance in inclination angle following Savage

and Hutter (1989).

3.2.1 Governing equations

The Savage Hutter Model assumes an incompressible nonviscous solid with the negative

Cauchy stress tensor σ = −p.

Therefore, (3.4) and (3.5) can be written as:

∇u = 0 (3.12)

∂u
∂t

+∇ · (uu) = −1
ρ
∇ ·p+ g. (3.13)

In these equations, u denotes the velocity vector, ρ the constant density, p the pressure

tensor and g the vector of gravitational acceleration.

To specify the equations for the considered problem, boundary conditions are needed.

Describing the free surface by the function FS(x, t) = 0 firstly facilitates defining the kine-

matic statement that the free surface is material and secondly expresses the stress-free

conditions:

∂FS
∂t +∇FS ·u = 0

p ·n = 0

 at FS(x, t) = 0 (3.14)

Analogously, the bottom surface can be described as FB(x) = 0. With a solid friction

law, the local friction angle δ, the shear traction S and the normal stress N can be ex-

pressed by S = n ·p−n(n ·p ·n) andN = n ·p ·n. With these assumptions, the two boundary

conditions of the bottom surface can be written as:

u ·n = 0

n ·p−n(n ·p ·n) = −
(
us
|us |

)
(n ·p ·n) tanδ

 at FB(x) = 0 (3.15)

Savage and Hutter chose a plane Cartesian coordinate system (Fig. 3.1).
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Figure 3.1 – Sketch of the geometry assumed by Savage and Hutter (1989). Picture taken from
Savage and Hutter (1989).

Equations (3.12)-(3.13) in this frame of reference are

∂u
∂x

+
∂v
∂y

= 0, (3.16)

ρ

{
∂u
∂t

+u
∂u
∂x

+ v
∂u
∂y

}
= ρg sinζ −

∂pxx
∂x
−
∂pxy
∂y

, (3.17)

ρ

{
∂v
∂t

+u
∂v
∂x

+ v
∂v
∂y

}
= −ρg cosζ −

∂pxy
∂x
−
∂pyy
∂y

. (3.18)

The mean inclination angle ζ is constant.

The equations can be non-dimensionalized by scaling variables accordingly (Savage

and Hutter, 1989):

(x,y) = ([L]x∗, [H]y∗), (3.19)

(u,v, t) =

[(gL) 12 ]u∗,[HL (gL)
1
2

]
v∗,

(Lg
) 1
2
 t∗

 , (3.20)

(pxx,pyy ,pxy) = [ρg cosζH](p∗xx,p
∗
yy , tanζp

∗
xy). (3.21)

where the aspect ratio or shallowness parameter ε = H
L is small.
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With this the equations (3.16)-(3.18) become

∂u
∂x

+
∂v
∂y

= 0 (3.22)

∂u
∂t

+u
∂u
∂x

+ v
∂u
∂y

= sinζ
(
1−

∂pxy
∂y

)
− εcosζ

∂pxx
∂x

(3.23)

ε

{
∂v
∂t

+u
∂v
∂x

+ v
∂v
∂y

}
= −cosζ

(
1+

∂pyy
∂y

)
− ε sinζ

∂pxy
∂x

(3.24)

in which for brevity asterisks have been omitted, and will be omitted from here on.

The limit of (3.24) for ε → 0 reduces it to the hydrostatic equilibrium. Integration

yields

pyy(x,y, t) = h(x, t)− y (3.25)

when taking into account the zero pressure condition at the free surface (h(x, t)). To

describe slight changes in the bottom topography, deviations form the slope line defined

by ζ are included employing the base parameter b(x).

Depth-integration of (3.23) results in

∂
∂t

∫ h

b
udy +

∂
∂x

∫ h

b
u2dy −

[
u

(
∂h
∂t

+u
∂h
∂x
− v

)]
free surface

+
[
u

(
u
db
dx
− v

)]
base

=

sinζ
[
(h− b)− pxy(h) + pxy(b))

]
− εcosζ

[
∂
∂x

∫ h

b
pxxdy − pxx(h)

∂h
∂x

+ pxx(b)
db
dx

]
. (3.26)

Several terms in this expression vanish in view of the boundary conditions which are

imposed at the free surface and the bed. The kinematic conditions can be expressed as:

∂h
∂t +u

∂h
∂x − v = 0 at y = h(x, t),

u ∂b∂x − v = 0 at y = b(x).

 (3.27)

The stress condition at the free surface in dimensionless coordinates reads as follows:

−εcosζpxx
∂h
∂x

+ sinζpxy = 0, −ε sinζpxy
∂h
∂x

+ cosζpyy = 0 at y = h(x, t). (3.28)

Considering pxx = kact/passpyy and the constitutive relationship for the pressure tensor

as described below ((3.34) and (3.35)), equation (3.28) implies

pxy = pyy = 0⇒ pxx = 0 at y = h(x, t) (3.29)

and (3.26) becomes
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∂
∂t

∫ h

b
udy +

∂
∂x

∫ h

b
u2dy = sinζ(h− b) + sinζpxy

∣∣∣
base

− εcosζ
[
∂
∂x

∫ h

b
pxxdy + pxx(b)

db
dx

]
. (3.30)

By defining the following transversal averages

uĥ =
∫ h

b
udy,pxxĥ =

∫ h

b
pxxdy,pyy ĥ =

∫ h

b
pyydy, (3.31)

u2ĥ =
∫ h

b
u2dy = χu2ĥ, (3.32)

with ĥ = h − b and χ being a parameter describing the velocity profile. At this point,

Savage and Hutter introduce the simplification χ = 1, which corresponds to a sliding

block without internal deformation neglecting the putative existence of a velocity profile.

With the shallowness assumption the non-dimensional form of the Coulomb sliding

law (3.15) becomes

pxy = −sgn(u)pyy cotζ tanδ+O(ε2) at y = b(x). (3.33)

As mentioned above, a constitutive relationship for the pressure tensor is needed.

Using a cohesionless Mohr-Coulomb type material (see section 1.3.5.3) with a constant

internal friction angle φ, yielding will occur if

|S | =N tanφ, (3.34)

where S and N are the shear and the normal stress acting on a considered element.

There are two possible yielding Mohr-Coulomb circles crossing the critical bottom

yielding (pyy , τ)bed , these two possible circles correspond to an active and passive stress

state. Therefore, the pressure pxx can be expressed as proportional to pyy using the earth

pressure coefficient:

pxx = kact/passpyy . (3.35)

The value of kact/pass can therefore be directly obtained from the Mohr-Coulomb dia-
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Figure 3.2 – Example of the two possible yielding Mohr-Coulomb circles crossing the critical
bottom yielding (pyy , τ)bed . The smaller circle corresponds to the active stress state, while the
larger circle corresponds to the passive stress state.

gram (Fig. 3.2) (Savage and Hutter, 1989):

kact

kpass

 = 2
[
1∓ (1− (1 + tan2δ)cos2φ)

1
2
]
/ cos2φ− 1 for

∂u
∂x

≷ 0. (3.36)

Using these findings (3.31)-(3.35) in (3.30) yields

∂
∂t

(ĥu) +
∂
∂x

(χĥu2) =sinζĥ− εcosζkactpass
[
∂
∂x

(ĥpyy) + pyy(x,b)
db
dx

]
− cosζ sgn(upyy(x,b) tanδ. (3.37)

With the overburden pressure

pyy(x,b) = h(x, t)− b(x) = ĥ(x, t), (3.38)

ĥpyy(x, t) =
1
2
(h(x, t)− b(x))2 = 1

2
ĥ2(x, t), (3.39)

(3.37) becomes

∂
∂t

(ĥu) +
∂
∂x

(χĥu2) = sinζĥ− cosζ sgn(u) tanδĥ− εcosζkact/pass
[
∂
∂x

(
ĥ2

2

)
+ ĥ

db
dx

]
. (3.40)

Integrating the continuity equation (3.16) over the depth and using the kinematic

boundary condition (3.27) yields

∂ĥ
∂t

+
∂
∂x

(ĥu) = 0. (3.41)
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This simplifies the momentum equation (3.40) to

∂u
∂t

+u
∂u
∂x

= sinζ − εcosζkact/pass
[
∂ĥ
∂x

+
db
dx

]
− sgn(u)cosζ tanδ. (3.42)

For simple channel flows b(x) = 0, the system of equations can be finally written as

introduced in section 1.3.5.3, equations (1.8) and (1.9)

∂h
∂t

+
∂
∂x

(hu) = 0, (3.43)

∂u
∂t

+u
∂u
∂x

= (sinζ − tanδ sgn(u)cosζ)− β∂h
∂x

(3.44)

with β = εkact/pass cosζ. From here on overbars are omitted for simplicity following

the notation convention of Savage and Hutter (1989).

3.2.2 Model extensions

Savage and Hutter (1991) extended the Model to curvilinear coordinates. This extension

creates the possibility to analyze the granular flow from its initialization to the run-out in-

cluding changes in inclination angle. The derivation of the new system of equation is very

similar to the above described one mentioned in Savage and Hutter (1989). Therefore,

only the differences are mentioned here. The previous constant inclination angle is now

a function of arc-length. The coordinate is chosen to follow the bottom boundary profile.

By including a change in the inclination angle a new quantity, the curvature κ(x) is added

and needs to be considered for the dimensional-analysis. The non-dimensionalized cur-

vature is calculated with κ = H
R . The characteristic curvature is also given by λ = L

R , where

R denotes a scale for the radius of the bed profile.

The depth integration results in similar equations as describe above:

(1− εηκh)∂h
∂t

+
∂hu
∂x

= 0, (3.45)(
1−

εηκh

2

)
∂u
∂t

+
(
1+

εηκh

2

)
u
∂u
∂x

=
(
1−

εηκh

2

)
sinζ − εh

2
∂
∂x

(
k(cosζ + ηκu2)

)
− (cosζ + ηκu2)

·
[(
1+

εηκh

2
sgn(u) tanδ+ εkact/pass

∂h
∂x

)]
. (3.46)

These equation deliver different systems if different order of tanδ and λ are chosen.

For example, for tanδ = O(ε) and λ = O(ε) the final system of equations has the same

form as that used by Savage and Hutter (1989) for the flow down rough channels with a

constant inclination angle ζ. But if the order is tanδ = O(ε1/2) and λ = O(ε1/2) the final
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set of equations is

∂h
∂t

+
∂(hu)
∂ξ

= 0, (3.47)

du
dt

=
∂u
∂t

+u
∂u
∂ξ

= sinζ − tanδ sgn(u)(cosζ +λκu2)− εact/pass cosζ
∂h
∂ξ
. (3.48)

(3.48) contains an additional centrifugal force term (λκu2), which enhances the nor-

mal load.

Savage and Hutter (1991) compare their newly developed equations with an experi-

ment consisting of two straight parts joint together with a short curved transition. The

influence of the curved part is small, because the curvature only deviates from zero for

a very short distance. Therefore, Hutter and Koch (1991) constructed a channel with a

changing curvature down the entire track with exponentially decaying inclination. To

analyze an even stronger influence, Greve and Hutter (1993) build a convex and concave

channel and compared it to their model. In this experiment, the curvature even varies in

sign and thus gains a strong influence. All these experiments displayed quite good agree-

ment with the proposed model. An even better agreement was achieved by modifying the

very simple model of Coulomb friction which accounts for the influence of the sidewall

friction and including a velocity dependence on the bottom friction law. Nevertheless,

the results do not change drastically. The overall geometry and the dynamic of the flow

is well captured with the simple approach of a constant rate independent bottom friction

angle.

Because of their wide successful applications and the good agreements with experi-

mental data, (3.47) and (3.48) are used in this work for comparison with experimental

data and simulations.

3.2.3 Extension to 3D, erosion and deposition

In the past two decades, several extensions have been added to the Savage-Hutter model

in order to extend the 2D model to describe three-dimensional granular flows and to

allow the prediction of erosion and deposition behavior. Although not employed in this

work, these extensions are mentioned briefly in the following paragraph to complete the

picture of application possibilities of the Savage-Hutter type models. A detailed review

of the extensions can be found in Pudasaini and Hutter (2007).

The extension to 3D is realized by accommodating the model to the description of

twisted and curved channels. In this set-up, a “master-curve” is introduced for the de-

scription of the channel surface. This curve is not only described by the curvature κ but

also by the torsion τ , which denotes bending away from the plane in which variations
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of κ occur. To adopt such complex topographies to the Savage-Hutter model equations,

a curvilinear coordinate system following the master-curve is employed. This extension

was developed in various steps and arose from the work of Hutter et al. (1993), Hutter

and Greve (1993), Greve et al. (1994), Gray et al. (1999), Pudasaini et al. (2005c,b,c).

Several comparisons with the different evolved models have been performed and a

good agreement could be shown for 3D flow with run-out zone (Koch et al., 1994), 2D

flow with run-out (Hutter et al., 1995), 3D slightly curved and twisted modeled with

b(x,y) (Gray and Hutter, 1998), 3D flow with run-out zone and slightly curved cross sec-

tion (Gray et al., 1999), deflection and shocks of granular flow down planes (Tai et al.,

1999a; Gray et al., 2003; Gray and Cui, 2007), 3D slightly curved and twisted modeled

with b(x,y) (Wieland et al., 1999; Tai et al., 2001), numerical simulation of Savage and

Hutter (1991), Hutter and Koch (1991) and Greve and Hutter (1993), flow height and

velocity measurements as well as comparison of a longitudinal curved, lateral flat 3D

channel (Pudasaini et al., 2005a,c) with twisted and curved channels (Pudasaini et al.,

2008). Nevertheless, it should be noted here that these extensions still rely on depth-

averaging and are thus only quasi-3D descriptions which cannot capture velocity profiles

along the flow depth.

In the original derivation of the Savage-Hutter-Model, the closure for the pressure ten-

sor assumes all material to be in a yielding state, and, therefore, no material is allowed

to settle. In reality, the mobile and resting parts are sharply divided by a solid-liquid in-

terface. The solid-liquid interface is time dependent, and can be modeled by assuming a

time varying bottom profile b(x, t) or by changing the curvilinear coordinate system with

time. The resting material can be mobilized and become a part of the flowing part, this

process is called erosion, or the flowing material can come to rest (deposition). These

processes need to be included in the bottom and free surface boundary condition and,

therefore, will enter not only the continuum equation but will also influence the mo-

mentum equations (Gray, 2001; Pitman and Le, 2005; Lê and Pitman, 2009; Tai and Kuo,

2008; Tai et al., 2012; Bouchut et al., 2008), namely as mass and momentum production

terms.

3.3 Work of other groups relevant to this work

Pouliquen (1999) analyzed granular flows down rough inclined planes. For rough beds,

a steady, uniform flow can develop for a range of inclination angles and flow heights.

For high inclination angles, no steady flow can develop since the gravitational force is

bigger than the friction force and the flow is accelerated down the channel. For small

inclination angles, the friction force dominates the gravitational force and the flow will

deposit. Within the range of possible inclination angles for flow behavior, a steady, uni-
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form flow only occurs if the flow height is above a certain threshold height, hstop(ζ) (Daerr

and Douady, 1999), and below an upper limit, where accelerating flows will be present.

Pouliquen (1999) measured these uniform velocity for several values of ζ and flow heights

h and different wall roughnesses and grain diameters.

Plotting normalized height with respect to hstop(ζ) against the dimensionless velocity
u√
gh
, he found a scaling law with the scale factor Fr, which is the Froude number. With

his measurements he provides an empirical way to predict velocities, with

u√
gh

= c
h

hstop(ζ)
, (3.49)

where c = 0.136 represents a constant, which depends neither on the inclination nor

on the particle size of granular material considered (glass beads in this case) nor on the

roughness of the bed.

These findings were subsequently used to model the friction coefficient µ which now

is a function of velocity and flow height. The friction angle can be expressed as

tanδ = tanζ1 + (tanζ2 − tanζ1)exp
(
−
hstop
Ld

)
. (3.50)

ζ1 corresponds to the lower angle where the function hstop diverges, ζ2 is the upper

angle where hstop(ζ) vanishes. d denotes the particle diameter and L is a characteristic

dimensionless thickness over which ζstop(h) varies.

This modified friction law was compared with experiments (Pouliquen and Forterre

(2002)), where the release of a cup shaped initial mass sliding down an inclined plane

was analyzed. In contrast to Savage and Hutter, they claim the earth pressure coefficient

to be one because of the fluid like behavior of their granular flow.

The simple scaling law for inclined channels and inclined chutes was later extended

to a simple empirical rheological model by Jop et al. (2005), Jop et al. (2006), Pouliquen

et al. (2006), Forterre and Pouliquen (2008) and GDR MIDI (2004). With the observation

of a series of different slow moving granular surface flows they constructed the friction

coefficient µ(I) as a function of the inertia number I = γ̇d/(p/ρs)0.5, where d is the diame-

ter of the grain, ρs is the particle density and p is the pressure. The proposed friction law

is

µ(I) = µs + (µ2 −µs)(I0/I +1), (3.51)

where I0 is a constant, µs is the friction constant at zero shear-rate and µ2 is the limiting

value the friction constant converges to for high I .
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This work employes, on the one hand, classical depth-averaged simulations of the Savage-

Hutter type and, on the other hand, a novel type of non-depth-averaged simulations de-

veloped during this study. As mentioned in section 1.3.6, the model equations described

in the previous chapter can, in general, not be solved in an analytical way, but need to

be implemented in a numerical scheme to describe the flow of a granular material. Here,

OpenFOAM® is employed to implement a FVM numerical scheme for the simulation of

rapid granular flows in a non-depth-averaged manner to facilitate full three-dimensional

simulation of the flow. OpenFOAM® is an open source computational fluid dynamics

(CFD) software package that is widely used to simulate fluid dynamics problems. Open-

FOAM® was initially developed by Weller et al. as later summarized in Weller et al.

(1998) and was brought to its current formate with various adaptation methods by Jasak

(1996). Rusche (2002) further extended the method for two-phase flows. As described

in section 6.1, the rheological model employed for the non-depth-averaged simulations

in this study is a simple Coulomb frictional viscosity model. The resulting viscosity is

introduced into the Navier-Stokes equations to describe the dynamics of the granular

material. This chapter will first describe the theory underlying the discretization of the

basic continuummechanics equations by the FVM as introduced in OpenFOAM® by Jasak

(1996) and Rusche (2002) and afterwards describe the differences between the FVM and

the FDM which is used in the SH-model discretization for comparisons.

4.1 Navier-Stokes equations

4.1.1 Finite volume

The FVM is a widely used discretization method (Ferziger and Peri, 1999; Denlinger and

Iverson, 2001; Huilin et al., 2003; García Nieto et al., 2010) that is especially suitable

for complex flow geometries due to its flexible grid structure (see section 1.3.6.2). The

discretization of time, space and the model equations is performed as described in the

following paragraphs according to Jasak (1996) and Rusche (2002).

4.1.1.1 Discretization of the physical domain

As described in section 1.3.6.1, the space domain is discretized into a grid, while the time

domain is split into steps (∆t). Depending on the observed dynamics (e.g. a changing

flow velocity), the size of ∆t can be varied. The cells of the grid are non-overlapping and

completely fill the space domain. Therefore, a single cell is delimited by a number of
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Figure 4.1 – Parameter notation for the finite volume discretization as utilized in (Nabla Ltd.
(2001), Rusche (2002)) (figure from Nabla Ltd. (2001), Rusche (2002)).

faces, which can be either the faces of neighboring cells (internal faces) or the boundary

of the space domain (boundary faces). This study only considers flat faces, without any

concave or convex bending. The position vector of the center xf of a flat face (f ) is defined
by the following integral: ∫

s

(
x− xf

)
dS = 0. (4.1)

The variables and properties of the flow in a cell P are deposited in the cell center,

whose position vector xP is defined to match∫
VP

(x− xP )dV = 0. (4.2)

Furthermore, a face area vector S normal to the respective face is defined for each

boundary of a cell. S has amagnitude representing the face’s area and a direction pointing

out of the cell into the neighboring cell (N ). Thus, the normal unit vector of the face is

defined as n = S
|S| . Another vector describing the orientation of the cells to one another is

d, which is the vector pointing from the center of P to the center of N : d = xN −xP . In the

case of an orthogonal grid, d would be parallel to S for all faces in the grid. Figure 4.1

depicts two cells with the respective vectors.

4.1.1.2 Storage of the variables in the grid

When using the FVM, the variables for the whole cell have to be stored at one point of

the cell. Two kinds of variables can be distinguished in a numerical scheme: dependent

variables, which are determined in the numerical process by solving the governing equa-

tions for them and independent variables which specify the observed domain, meaning

time and space in our case.
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Two scenarios are possible for the storage: at the center of the cells (“volume field”)

or at the centers of the boundary faces (“face field”). When all variables are stored at the

cell centers, the respective arrangement is termed a “collocated” arrangement, while a

“staggered” arrangement is employed when the velocities are stored in a face field and

the other variables are stored in the centers (Harlow and Welch, 1965; Hirt et al., 1974;

Patankar, 1980).

Especially for non-orthogonal, complex grids as used in this study, the collocated ar-

rangement has been proven to be superior to the staggered arrangement (Peric et al.,

1988). Advantages are the minimized number of coefficients that need to be calculated

(since there are far less centers than faces) and the better suitability for complex boundary

condition (Ferziger and Peri, 1999).

As Rusche (2002) points out, the collocated arrangement remained, despite its many

advantages, hard to implement formany years due to problemswith the pressure-velocity

coupling and oscillations in the pressure field caused by 2nd order terms in the pres-

sure equation. Two different solutions have been suggested for this problem by Chorin

(1968) and Rhie and Chow (1982). The method of Rhie and Chow (1982) is adopted

in OpenFOAM® and thus used in this study. Nevertheless, Rusche (2002) reports some

difficulties with the complete collocated variable arrangement in the solution of the two-

fluid and interface-capturing models where sharp density gradients occur. As a solution

he suggested a procedure which “mimics the operation of a solution procedure devised

for a staggered variable arrangement, but keeping the collocated variable arrangement”

(Rusche, 2002). This procedure was included into OpenFOAM® and is also used in this

study (for details on the procedure see below, paragraph 4.1.1.6).

4.1.1.3 Equation discretization

This paragraph describes, in a generalized form, the transformation of the governing

equations into a system of algebraic equations as included in the numerical scheme of

OpenFOAM® by Rusche (2002). Most dependent variables require a gradient-diffusion
term of the following form −∇ · (Γ∇Φ), where Γ is the diffusivity. This term will therefore

be included in (3.3) for a general tensorial property Φ , yielding a standard transport

equation:

∂ρΦ

∂t︸︷︷︸
time derivative

+ ∇ · (ρuΦ)︸    ︷︷    ︸
convection term

= ∇ · (Γ∇Φ)︸     ︷︷     ︸
diffusion term

+ SΦ(Φ)︸︷︷︸
source term

, (4.3)

where SΦ(Φ) contains all terms that cannot be fitted to the other terms (source term). The

single expressions in (4.3) describe the change over time (time derivative), the efflux by

convection (convection term), the rate of transport caused by diffusion (diffusion term)
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and the rate of generation/destruction (source term) for a given unit volume.

This standard transport equation will be used as an example to describe the discretiza-

tion of governing equations but at some points also other terms, which are important for

the numerical scheme employed here by using OpenFOAM® are described. Discretiza-

tion of (4.3) for finite volumes is achieved by integration over a control volume VP and

time:

∫ t+δt

t

[∫
VP

∂ρΦ

∂t
dV +

∫
VP

∇ · (ρuΦ)dV
]
dt =

∫ t+δt

t

[∫
VP

∇ · Γ∇ΦdV

+
∫
VP

SΦ(Φ)dV
]
dt. (4.4)

According to Gauss’ theorem, spatial derivatives over a volume can be converted to

integrals by integration over the boundary surface of the respective volume (here repre-

sented by the surface area vector S):∫
V
∇⊗Φ dV =

∫
S
dS⊗Φ . (4.5)

Here, ⊗ represents any tensor product (inner, outer or cross) and with this the respec-

tive derivatives are (in case the particular derivative is defined): divergence ∇·Φ , gradient

∇Φ and curl ∇×Φ .

In OpenFOAM®, this generalized form of Gauss’ theorem is employed to transform

most spatial derivative into integrals. Afterwards, the volume and surface integrals are

approximated by appropriate schemes.

Face interpolation

As mentioned above, a collocated arrangement will be employed in this study and the

variables will be stored at the cell centers. Nevertheless, as seen in the last paragraph,

the Gauss integrals require the values of the variables on the cell surface. Therefore, the

cell centered values have to be interpolated to the face centers. Several schemes have

been introduced for this interpolation (reviewed in Patankar (1980), Peric et al. (1988),

Muzaferija (1994), Jasak (1996) and Ferziger and Peri (1999)). Here, first some general

considerations common to all schemes are presented and then the three most frequently

used schemes (central differencing, upwind differencing and blended differencing) are
introduced. These schemes differ in the bounding of the solution (meaning that bounded

solutions only allow physically realistic values for the variables, while unbounded solu-

tions also allow unrealistic ones) and the order of accuracy.

Discretization schemes are employed to interpolate the face value Φf (F,S,γ) from the
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neighboring cells, which can depend on the flux F through the face f and other param-

eters γ . F is defined by the governing equations and the numerical procedure to solve

those. The resolution flux field is a face field and its exact calculation process will be

described below. To describe the interpolation procedure, the mass flow F = S · (ρu)f is

taken as an example.

Central Differencing (CD)

The CD scheme simply calculates the mean values between two cells for the variables:

Φf (CD) = fxΦP + (1− fx)ΦN , (4.6)

where fx ≡
|xf −xN |

|xf −xN |+|xf −xP |
.

An advantage of CD is its second-order accuracy (Ferziger and Peri, 1999), but the

solution can be unbounded (Jasak, 1996; Ferziger and Peri, 1999).

Upwind Differencing (UD)

UD considers the direction of the flow to determine Φf (Courant et al., 1952; Barakat and

Clark, 1966; Gentry et al., 1966):

Φf (F,UD) =

ΦP for F ≥ 0

ΦN for F < 0
(4.7)

In contrast to CD, UD guaranties the solution to be bounded but the accuracy is only

of first order. As a consequence, a diffusive term is contained in the scheme (numerical

diffusion), which can led to distortions in the case of coarse meshes (Ferziger and Peri,

1999).

Blended Differencing (BD)

BD schemes are linear combinations of UD and CD and were designed to enable a weight-

ing between boundedness and accuracy:

Φf (F,BD,γ) = (1−γ)Φf (F,UD) +γΦf (CD). (4.8)

A blending factor γ , which can be varied from 0 to 1, determines the amount of nu-

merical diffusion which will be introduced. γ can be expressed in several ways (reviewed

in Patankar (1980), Peric et al. (1988), Muzaferija (1994) and Ferziger and Peri (1999)).

In this study, all three schemes are employed (see appendix A.1.2).
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Gradient

Several ways exist to evaluate the gradient term ∇Φ of the standard transport equation.

OpenFOAM® offers Gauss integration and a face normal gradient for this purpose.

Gauss integration

Here, Gauss’ theorem is applied as described above to receive the cell centered gradient

of Φ : ∫
V
∇ΦdV =

∫
S
dSΦ ≈

∑
f

SΦf , (4.9)

where Φf can be evaluated by any face interpolating scheme.

Face normal gradient

If gradients at faces are to be considered, the face normal gradient ∇⊥f Φ is employed. It is

given by the inner product of the face gradient ∇fΦ and the normal unit vector n. ∇⊥f Φ
is approximated in OpenFOAM® by:

∇⊥f Φ =
ΦN −ΦP
|d|

. (4.10)

In an orthogonal grid, this approximation is second order accurate, while for non-

orthogonal grids this is not the case but a correction can be employed. This correction

term can be obtained from cell centered gradients received by Gauss integration (Jasak,

1996).

Time derivative

A time derivative ∂ρΦ
∂t can be discretized by integration over a control volume. This study

uses the Euler implicit time differencing scheme in OpenFOAM®. This scheme is uncon-

ditionally stable, meaning that no restriction to the lengths of time steps has to be given.

It is only first order accurate but thus also not prone to oscillations. For a static grid

(as employed in this study) and an assumed linear variation of Φ within a time step the

scheme yields:

∫
V

∂ρΦ

∂t
dV ≈

ρnPΦ
n
P − ρ

0
PΦ

0
P

∆t
VP , (4.11)

where Φn ≡ Φ(t+∆t) denotes the new value at the currently considered time step and

Φ0 ≡ Φ(t) denotes the previous value.
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Convection term

A convection term ∇ · (ρuΦ) can be discretized by integration over a control volume fol-

lowed by application of Gauss’ theorem to yield a surface integral:∫
V
∇ · (ρuΦ)dV =

∫
S
dS · (ρuΦ) ≈

∑
f

S · (ρu)fΦf (F.S) =
∑
f

FΦf (F,S), (4.12)

with F being the mass flux through the face f : F = S · (ρu)f .

Diffusion term

A diffusion term∇·(Γ∇Φ) can be discretized analogous to a convective term by integration

over a control volume followed by application of Gauss’ theorem to yield a surface inte-

gral. In contrast to the convective term, the surface integral here still contains a gradient,

which is then approximated by a face normal gradient:∫
V
∇ · (Γ∇Φ)dV =

∫
S
dS · (γ∇Φ) ≈

∑
f

Γf (S · ∇fΦ). (4.13)

However, this approximation is only valid if Γ is a scalar. As pointed out in para-

graph 4.1.1.3, the face normal gradient approximation is only second order accurate for

orthogonal grids. For non-orthogonal grids, the following correction is introduced:

S · ∇fΦ = |∆|∇⊥f Φ︸  ︷︷  ︸
orthogonal contribution

+ k · (∇Φ)f︸    ︷︷    ︸
non-orthogonal correction

. (4.14)

∆ and k are vectors which are determined by a non-orthogonality treatment. This

study uses the over-relaxed non-orthogonality approach implemented in OpenFOAM®

by Jasak (1996).

Source term

Prior to discretization, a source term SΦ(Φ) has to be linearized, where explicit (SI ) and

implicit (SE) source terms are constructed separately (Patankar, 1980):

SΦ(Φ) = ΦSI + SE . (4.15)

SE and SI can be dependent on Φ . Integration over a control volume then yields∫
V
SΦ(Φ)dV = SIVPΦP + SEVP . (4.16)
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Figure 4.2 – Parameters in finite volume discretization for cells with a boundary face as de-
noted in (Rusche, 2002). Picture taken from Rusche (2002).

4.1.1.4 Boundary conditions

So far only the variables in cell surrounded by other cell in the continuum have been con-

sidered. It is for sure of similar importance to consider the events in cell at the boundary

of a continuum. Since some of the discretization procedures described above approxi-

mate values by summation over faces, also the boundary faces need to carry values for all

dependent variables. These values are specified in so-called boundary conditions. Two

main forms of boundary conditions can be distinguished: “Dirichlet” boundary condi-

tions assign fixed values to the dependent variable on the boundary, while “von Neu-

mann” boundary conditions only prescribe a fixed gradient for the respective variable in

normal direction to the boundary.

To describe the situation at the boundary, additional parameters are introduced into

the numerical scheme (Fig. 4.2): if a cell P is a boundary cell, the boundary face is denoted

by b. Furthermore, a vector d is specified, being the vector between the cell center and

the center of the boundary face, with a boundary normal component dn. OpenFOAM®

assumes that for a given face a boundary condition is constant over the whole face.

Fixed value

In a fixed value scheme, values required for a face are substituted by the fixed boundary

value for boundary faces: Φf = ΦB. When a gradient is required it is calculated between
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the boundary face and the cell center:

S · ∇fΦ = |S|Φb −ΦP
|dn|

. (4.17)

This is only second order accurate if ΦB is constant at the complete face and the grid

is orthogonal. For non-orthogonal grids a correction as described above for the diffusion
term can be employed.

Fixed gradient

In a fixed gradient scheme, the face normal gradient gB = ∇⊥f Φ is predefined at the bound-

ary and gradients required at the boundary are directly substituted with this value. If

values are needed for the boundary face, the value of the cell center is extrapolated to the

boundary:

Φf = ΦP +dn · ∇fΦ = ΦP + |dn|gB. (4.18)

Again, the scheme is second order accurate if gB is constant along one face. In the

case of varying ΦB and non-orthogonal grids it is only first order accurate, but it has been

shown that the error can be neglected as described in Jasak (1996).

Zero gradient

A zero gradient boundary condition is a special case in which gB = 0. The discretization

is performed as above.

4.1.1.5 Temporal discretization

As described above, the integral form of the standard transport equation is denoted as

follows:

t+δt∫
t


∫
VP

∂ρΦ

∂t
dV +

∫
VP

∇ · (ρuΦ)dV

dt =
t+δt∫
t


∫
VP

∇ · Γ∇ΦdV +
∫
VP

SΦ(Φ)dV

dt. (4.4)

With the dircretizations described above in (4.11), (4.12), (4.13) and (4.16), (4.4) can
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be written as:

∫ t+δt

t

ρP Φn −Φ0

∆t
+
∑
f

FΦf (F,S)

dt =
∫ t+δt

t

∑
f

Γf S · ∇fΦ + SIVPΦP + SEVP

dt. (4.19)

Here and throughout this whole work, it is assumed that the control volume does not

change in time.

(4.4) is only discretized in space for a control volume and the time integrals of (4.4)

were not considered so far. Therefore, (4.19) is termed the “semi-discretized” form of the

standard transport equation. Several ways have been proposed to express these integrals

in a discretized form (Jasak, 1996; Ferziger and Peri, 1999; Hirsch, 2007). To solve the

time integral, the temporal variation of ΦP at the cell center, the face values and gradients

need to be expressed. It is a common practice to neglect the temporal variation of these

spatial terms during a time step and assume their changes to happen between time steps

(Patankar, 1980; Rusche, 2002). There are two common ways to evaluate their new and

old values, the explicit and the implicit method:

Explicit

In an explicit method, the value of the present step (Φ) is initially assumed to be equal

to the values at the previous time step Φ0 and the actual value of Φ is calculated the

following way and included in (4.19):

ΦP = Φ0
P , (4.20)

Φf = Φ0
f , (4.21)

S · ∇fΦ = S · ∇fΦ0 = |∆|∇⊥f Φ
0 +k · (∇Φ0)f . (4.22)

This method is only first order accurate in time and might cause instability. The cri-

terion for stability is defined by the Courant number Co:

Co =
uf ·S
d ·S

∆t, (4.23)

here, uf is a characteristic velocity of the considered flow. For stability, Co has to be

smaller than one.
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Euler implicit

The Euler implicit method uses the values of the next time step Φn to calculate the values

for the next time step Φn. Thus the following values are included in (4.19):

ΦP = Φn
P , (4.24)

Φf = Φn
f , (4.25)

S · ∇fΦ = S · ∇fΦn = |∆|∇⊥f Φ
n +k · (∇Φ0)f . (4.26)

With this method, Φn cannot be calculated directly but by solving the standard trans-

port equation (see section 4.1.1.6), which has the following form:

ρP
Φn −Φ0

∆t
VP +

∑
f

FΦn
f (F,S) =

∑
f

Γf S · ∇fΦn + SIVPΦ
n
p + SEVP . (4.27)

The Euler implicit method is also only first order accurate in time but the solution

is bounded and unconditionally stable. However, this is only true for orthogonal grids,

while for non-orthogonal an explicit correction is necessary (see below, section 4.1.1.6).

4.1.1.6 Solution technique for system of linear algebraic equations

Discretization and linearization of the governing equations yields linear algebraic equa-

tions for each control volume (e.g. (4.27). These equations now need to be solved. A more

general expression of such an equation, independent of the discretization, is:

aPΦ
n
P +

∑
N

aNΦ
n
N = RP . (4.28)

In this equation, ΦP is dependent on the values of the neighbor cells. For all cells in the

grid an equation system for each variable is generated that way, which can be expressed

as the following matrix:

[A][Φ] = [R]. (4.29)

[A] in this case is a sparse (i.e., most of the coefficients are zero) square matrix with

coefficients aP on the diagonal and aN off the diagonal, [Φ] is the column vector of the

dependent variable and [R] is the source vector. According to Rusche (2002) it should be

noted here that [Φ] and [R] are not vectors in strict sense but rather a list of values stored

at the centers of the control volumes. Decomposition of the matrix [A] into two matrices
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containing the diagonal [D] and off-diagonal [N ] coefficients yields:

[A] = [D] + [N ]. (4.30)

Each term in a governing equation contributes either to the matrix coefficient [A] or

to the source vector [R] or to both. Implicit treatment results in contribution to [A] and

eventually to [R], while explicit treatment results in sole contribution to [R].

Several different numeric techniques can be employed to solve the linear algebraic

equation system (4.29) and to obtain values for Φ (Theodoropoulos, 1990; Golub and Van

Loan, 1996; Ferziger and Peri, 1999). Two general methods can be distinguished: direct

and iterative ones. Direct methods solve the equations by a limited number of arithmetic

operations while iterative methods guess a first solution and improve it during subse-

quent refinements until a certain quality of the guess is achieved. The number of neces-

sary operations in a direct method is scaled with a cubic function of the number of equa-

tions, thus making them time and cost intensive for large equation systems (Theodor-

opoulos, 1990; Muzaferija, 1994; Ferziger and Peri, 1999; Versteeg and Malalasekera,

2007). Because of this, iterative methods are the more economic way to solve large equa-

tion systems but require certain matrix formates like diagonal dominance (see below).

Another advantage of the iterative method is its preservation of the sparseness of the

matrix, which results in a lower memory requirement. Together with the fact that the

accuracy of an iterative method is usually much larger than the accuracy implied by the

discretization error, these advantages let the founders of OpenFOAM® decided for an it-

erative solver, the Conjugate Gradient (CG) method (Hestenes and Stiefel, 1952). This

method guarantees to reach a solution in a number of iterations smaller than the num-

ber of equations. To achieve an improved convergence rate (which is dependent on the

dispersion of the eigenvalues of the matrix), OpenFOAM® makes use of preconditioned

solver: the Incomplete Cholesky Conjugate Gradient (ICCG) solver for symmetric matri-

ces (Jacobs, 1980) and the Bi-CGSTAB for asymmetric matrices (Van der Vorst, 1992).

As mentioned above, these iterative solvers require the matrix to be diagonally dom-

inant. This is the case when at least one diagonal coefficient |ap| is larger in magnitude

than the sum of the off-diagonal coefficients in the respective row |ap| > ΣN |an|. Analyzing
the structure of the matrix has further advantages: according to Hirsch (2007), diagonally

equal systems of equations with positive coefficients will ensure the boundedness of the

solution. Thus, the diagonal dominance of the matrices can help to evaluate the bound-

edness of the discretization scheme.

Analysis of matrix structure

Jasak (1996) and Rusche (2002) give a detailed view on the contribution of the single
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terms of discretized standard transport equation (4.19) to the matrix and the bounded-

ness of the solution. These contributions are summarized in the following paragraph.

The temporal derivative in (4.11) contributes to the diagonal coefficient and a source

term. It first increases diagonal dominance, while the source term is not taken into ac-

count for the boundedness but its influence should be small due to its inertial nature.

For the convective term in (4.12), the formulation of the boundedness criterion is more

complex. A transport equation without sources and diffusion is considered:

∂ρΦ

∂t
+∇ · (ρuΦ) = 0, (4.31)

which can be rewritten as:

ρ

(
∂Φ
∂t

+ (u · ∇)Φ
)
+Φ

(
∂ρ

∂t
+∇ · (ρu)

)
= 0. (4.32)

Since the first two terms contain the substantive derivative Φ , the solution of the sim-

plified transport equation is bounded when the second part is zero, i.e.,

∂ρ

∂t
+∇ · (ρu) = 0. (4.33)

This is true for example for an incompressible flow (as considered in this study), where

ρ = const. With this, the transport equation can be written as:

∂Φ
∂t

+∇ · (uΦ) = 0. (4.34)

From this equation, a simple criterion for boundedness can be derived:

∇ ·u = 0. (4.35)

To examine the contributions of a diffusion term in (4.13), a transport equation with-

out convection and additional sources is considered:

∂Φ
∂t

= ∇ · (Γ∇Φ). (4.36)

This equation is bounded for positive diffusion coefficients (Γ ), which means that a

solution forward in time is considered. In the case of an orthogonal mesh, the diffusion
term contributes a diagonally equal matrix. As pointed out before, a non-orthogonal

correction term is needed for non-orthogonal grids (4.14). This correction term can, in

contrast to the face normal gradient in OpenFOAM®, not be treated implicitly because

it would create an unbounded solution because of negative coefficients for the second

next neighbors of the cells considered (described in detail in Jasak (1996)). Therefore, the

correction term is treated explicitly in OpenFOAM®.
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The linear part of a source term of a transport equation (4.16) only contributes to the

diagonal coefficients of the matrix. It increases the diagonal dominance if SI < 0 and

decreases diagonal dominance when SI > 0. Thus OpenFOAM® only includes SI into

the diagonal coefficient when it is negative. Positive SI are included into the source and

updated during the solution process as described in Patankar (1980) and Ferziger and

Peri (1999).

Under-relaxation

Under-Relaxation is a method implemented in OpenFOAM® to enhance diagonal dom-

inance in steady-state calculations. It is necessary because the positive contribution of

the temporal derivative to diagonal dominance is omitted in this case and only negative

linear source terms can cause diagonal dominance. Thus, steady-state calculations with

positive SI could not be treated with iterative solvers.

In order to generate diagonal dominance in a generalized transport equation for a

control volume (eq. 4.28), an artificial term is added on both sides:

aPΦ
n
P +

1−ψ
ψ

aPΦ
n
P +

∑
N

aNΦ
n
N = RP +

1−ψ
ψ

aPΦ
0
P . (4.37)

This can be simplified to

aP
ψ
Φn
P +

∑
N

aNΦ
n
N = RP +

1−ψ
ψ

aPΦ
0
P , (4.38)

where Φ0 and Φn are values of the considered variable in two consecutive iterations,

while ψ is a newly introduced under-relaxation factor, which can have positive values up

to 1. As a result, all diagonal coefficients aP are divided by ψ which yields larger values

and thus increases diagonal dominance. The addition on the right part of the equation

causes the source term to increase, which also only contributes to the diagonal part. At

the convergence of the solution, when Φ0 and Φn are equal, the additional terms are

canceled out.

4.1.1.7 Finite volume notation

Weller (2002) introduced an unambiguous notation for the terms described above (Tab.

4.1). Beside the already mentioned terms of the standard transport equation (4.3), gov-

erning equations may contain additional terms. Governing equations containing such

terms are non-standard forms of equations that are used in this study as in Rusche (2002)

for the phase fraction continuity equation in the two-fluid methodology. The fact that

these additional terms are often treated in a different way than the “standard” terms
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let Weller (2002) to his code independent notation. He suggested to describe the dis-

cretized term from an implicit operator (L, a spatial or temporal derivative or a source

term) by JL[Φ]K). The double brackets indicate am implicit treatment, while explicitly

treated terms are denoted without brackets. Such a notation of a linear equation system

(A) resulting from the discretized standard transport equation reads as follows

A :=
s
∂ρ[Φ]
∂t

{
+

r
∇ ·

(
ρu[Φ]f (ρu,S)

)z
= J∇ · (Γ∇[u])K+ JSI [Φ]K+ SE . (4.39)

As described in Rusche (2002), special operators can be employed to extract thematrix

coefficients and the source vector of systems of linear algebraic equations: AA ≡ [A] and

AS ≡ [R]. The diagonal and off-diagonal coefficient matrices are AD ≡ [D] and AN ≡ [N ].

Table 4.1 – Finite volume notation according to Weller (2002).

Term Term in Finite Volume Notation Discretized Term

Time Derivative
r
∂ρ[Φ]
∂t

z
ρnPΦ

n
P −ρ

0
PΦ

0
P

∆t VP

Convection Term
r
∇ ·

(
F[Φ]f (F,S)

)z ∑
f FΦ

n
f(F,S)

Diffusion Term J∇ · (Γ∇[Φ])K
∑
f Γf S · ∇fΦn

Divergence Term ∇ ·Φ
∑
f S ·Φ0

f

Cell Gradient Term ∇Φ
∑
f SΦ

0
f

Curl ∇×Φ 2(skew∇Φ0)

Implicit Source Term JSI [Φ]K SIVPΦ
n

Explicit Source Term SE SEVP

Cell Avarage 〈Φ〉� 1
N

∑
P=�Φ0

P

As further specified in Rusche (2002), in OpenFOAM®, another operatorAH is widely

used, which is defined as

AH ≡ AS −ANΦ , (4.40)

and is termed the “H” operator. It is used in a so-called Jacobi iteration scheme, which
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is employed to obtain a first approximation of Φ :

Φ ≈ A−1D AH =
AH
AD

. (4.41)

The exact usage of this approximation is described in the next section, which will

explain the concrete discretization for the Navier-Stokes equations.

4.1.2 Discretization of the Navier-Stokes equations

In this study, granular flows are simulated as a two-phase flow. One phase contains the

granular material, which is described as a continuum (no difference made between space

occupied by particles and inter-particle air) and the other phase contains the air above

free surfaces. Analogous to Rusche (2002), both fluids are assumed to be immiscible

and incompressible without any mass transfer between them. Rusche (2002) suggested a

model, where both fluids are described by one set of conservation equations. In a math-

ematical representation, the two fluids (1 and 2) are distinguished by a step (Heaviside)

function H(x, t), whose value is 1 for the granular fluid and 0 for the surrounding air.

With this, any material property at any place in the two fluids can be described as a com-

bination of the two properties, provided the Heaviside function value is known. With

this, the density can be for example written as:

ρ(x, t) = ρ1H(x, t) + ρ2(1−H(x, t)). (4.42)

In this case, 1 would be the granular fluid and 2 the air. The interface between the two

fluids is characterized as the point of a non-zero gradient of ρ(x, t). To describe interface

phenomena such as surface tension, interface terms can be added to the governing equa-

tions in OpenFOAM®. These terms are represented by a three-dimensional δ function,

which is a repeated multiplication of the one-dimensional δ function Rusche (2002):

δ(x) = δ(x)δ(y)δ(z). (4.43)

As in Rusche (2002), the model to describe the granular flow in this study are the

Navier-Stokes equations for an incompressible fluid. However, in contrast to Rusche

(2002), the rheological model employed for the granular material is a simple Coulomb

frictional viscosity. For a single-field formulations as mentioned above, OpenFOAM® em-

ploys the following mass continuity and momentum equation (Unverdi and Tryggvason,

1992; Tryggvason et al., 1998):
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∇ ·u = 0 (4.44)

∂ρu
∂t

+∇ · (ρuu) = −∇p+∇ · τ + ρf +
∫
S(t)

σSκ
′n′δ(x− x′)dS (4.45)

In this equation, f denotes all body forces, however, gravity is the only considered

body force in the procedure of this study.

The integral on the right hand site of (4.45) represents the momentum contributed by

the surface tension. By integrating over the three-dimensional δ-function, a momentum

only acting on the interface of the two fluids is created, where σS is the surface tension

coefficient, κ′ is the curvature of the surface and n is the normal vector of the interface.

In the case of water, surface tension may not be neglected and the term has to be taken

into consideration. In the case of a granular material, the surface tension is of minor

importance and is therefore neglected in this study. For this purpose σS is set to zero

here.

As mentioned above, the granular material is treated a non-Newtonian fluid with

Coulomb frictional viscosity. The air, however, is treated as Newtonian fluid. The stress

tensor τ of (4.45) is defined as

τ = µ(∇u+∇uT ) (4.46)

in OpenFOAM®, where µ denotes the kinematic viscosity of the respective fluid.

4.1.2.1 VOF method

The representation of the interface between the two fluids by a Heaviside function is a

precise mathematical description for two immiscible fluids, but creates problems for the

numerical solution. In this case, the boundary between the two fluids would be forced

to boundaries between cells. In order to circumvent this problem and still be able to

describe the flow in a single-field formulation, OpenFOAM® makes use of the volume

of fluid method (VOF) (Hirt and Nichols, 1981). In this system, the border between the

two fluids is not considered discontinuous but consists of cells, which contain fractions

of both fluids, thus a mixture of the two. The fraction of the respective fluid in a cell is

given by an indicator function α1:

α1 =


1 for a point inside fluid 1

0 < α1 < 1 for a point in the transitional region

0 for a point inside fluid 2

(4.47)
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α1 is propagated with the respective fluid as a Lagrangian invariant (Hirt and Nichols,

1981) and follows a transport equation of the form:

∂α1
∂t

+ (u · ∇)α1 = 0. (4.48)

With α1, the local viscosity and density in a flow of the fluids 1 and 2 are described by

ρ = α1ρ1 + (1−α1)ρ2, (4.49)

µ = α1µ1 + (1−α1)µ2. (4.50)

These expressions for ρ and µ are now included in (4.45) and (4.46) to describe the

flow behavior of the two phases together.

4.1.2.2 Solution procedure of the Navier-Stokes equations including the interface
terms

In this section, the solution procedure for the governing equations described above un-

derlying the implementation of OpenFOAM® is denoted. This procedure has gradually

evolved during the development of OpenFOAM® and is described in detail in Rusche

(2002). Here, the important steps for this study are summarized.

Bounded compression of the interface

The definition of the boundary by an indicator function contains the potential to create

a confused boundary with a width of several cells. This is undesirable and avoided in

OpenFOAM® by an artificial compression term in the transport equation for α1:

∂α1
∂t

+∇ · (uα1) +∇ · (urα1(1−α1)) = 0. (4.51)

ur denotes a velocity field, which is chosen to compress the interface. The proce-

dure of determining a suitable ur is described below. The artificial term (third term in

(4.51) cancels out in all cells containing exclusively one fluid and thus only influences the

boundary region.

According to Rusche (2002), (4.51) can be discretized as:

s
∂[α1]
∂t

{
+

q
∇ · (Φ[α1]f (Φ ,S)

y
+

r
∇ ·

(
Φrb[α1]f (Φr ,S)

)z
= 0, (4.52)

with Φrb = (1 −α1)f (−Φr,S)Φr and Φ = S · uf , where Φ denotes the volumetric flux. As

will be described below, Φ cannot be calculated from the face-interpolate of u but will be

calculated from the pressure.



4.1 Navier-Stokes equations 61

In OpenFOAM®, the compression velocity ur is calculated from the maximum velocity

magnitude in the transition region. In order to achieve a compression acting perpendicu-

lar to the interface between the two fluids, themaximum velocitymagnitude is multiplied

by the normal vector of the interface:

Φr = Kcn
∗max

|n∗Φ |
|S|2

. (4.53)

Here, Kc is a coefficient determining the strength of the compression. It is set to 1.5

based on empirical optimization (Rusche, 2002).

4.1.2.3 Final momentum equation

To facilitate a more stable numerical solution, two terms of (4.45) need to be reformu-

lated, namely the pressure and the viscous stress. The motion of the flow does not depend

on the absolute values of the pressure but on its gradient. Therefore, it is legitimate to

remove the hydrostatic pressure component at a position x of the flow from the pressure.

This yields a modified pressure p∗:

p∗ = p − ρg · x. (4.54)

To include p∗ in the momentum equation, its gradient is required:

∇p∗ = ∇p −∇(ρg · x)

= ∇p − ρg− g · x∇ρ.
(4.55)

To achieve a more effective numerical treatment of the viscous stress term, it is refor-

mulated as

∇τ = ∇ ·
(
µ
(
∇u+ (∇u)T

))
= ∇ · (µ∇u) +∇ ·

(
µ (∇u)T

)
= ∇ · (µ∇u) + (∇u) · ∇µ+µ∇(∇u)

= ∇ · (µ∇u) + (∇u) · ∇µ.

(4.56)

With this, the momentum equation (4.45) reads as follows:

∂ρu
∂t

+∇ · (ρuu)

= −∇p∗ +∇ · (µ∇u) + (∇u) · ∇µ− g · x∇ρ+ σSκ∇α1.
(4.57)
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4.1.2.4 PISO

The Pressure-Implicit Split-Operator (PISO)method is employed in OpenFOAM® to avoid

the pressure-velocity coupling problems in the collocated arrangement discussed in para-

graph 4.1.1.2 (Issa, 1986). It is one of the great advantages of the OpenFOAM® implemen-

tation by Rusche (2002) that the interface capturing method can be used with a collocated

variable arrangement. In addition to the solution of the pressure-velocity coupling prob-

lems, the case of two fluids also requires the sharpness of the boundary to be preserved.

For the PISO method, corrections of the momentum and the pressure equation are de-

rived from the semi-discretized momentum-equation:

ADu =AH −∇p∗ − f · x∇ρ+ σSκ∇α1. (4.58)

A denotes the equation system resulting from the discretization of the phase momen-

tum equations without surface tension and buoyancy terms:

A :=
s
∂ρ[u]
∂t

{
+

r
∇ ·

(
ρfΦ[u]f (ρf Φ ,S)

)z
=

q
∇ · (µf ∇[u])

y
+ (∇u) · ∇µf . (4.59)

Decomposition of (4.59) into diagonal and “H” parts yields

u =
AH
AD
−
∇p∗

AD
−
f · x∇ρ
AD

+
σSκ∇α1
AD

. (4.60)

In the PISO scheme, the flux is first predicted neglecting the pressure (flux predictor

Φ∗) and then corrected (flux corrector Φ). Φ∗ and Φ are obtained from interpolation of

the momentum correction equation by central differencing:

Φ∗ =
(
AH
AD

)
f

·S−
(
1
AD

)
f

(f · x)f |S|∇⊥f ρ+
(
1
AD

)
f

(σSκ)f |S|∇⊥f α1 (4.61)

Φ = Φ∗ −
(
1
AD

)
f

|S|∇⊥f p
∗ (4.62)

With this, the final continuity equation at the cell faces including the flux corrector

reads:

t

∇ ·
( 1
AD

)
f

∇[p∗]

|

= ∇ ·Φ∗. (4.63)

Solving this equation enables updating of fluxes and velocities with corrected values

to ensure continuity.
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4.1.2.5 Timestep control

To ensure numerical stability, time steps have to be sufficiently small. Thus, OpenFOAM®

adjusts the time step at the beginning of each iteration using a maximum Courant num-

ber (see paragraph 4.1.1.5) as restriction. In general, OpenFOAM® favors a smooth ad-

justment to ensure the stability of the procedure, which is achieved by keeping Co close to
a predefined target value Cot using under-relaxation. Nevertheless, there are moments in

which Co is much smaller than Cot, like during the initialization with a small time step.

Here, the length of the next time step is limited to an appropriate multiple of the first

time step. This limit has to be predefined as well. In the other extreme case, when the

maximum Co is larger than Cot, the length of the time-step is set to the value for Cot. This
is represented by the following constrain:

∆tn =

min(∆t0 +ψt(∆tt −∆t0),2∆t0) for Co0 ≤ KlCot
∆tt for Co0 > KlCot

(4.64)

where ψt is the under-relaxation factor, Kl is the maximum multiple of the next time-

step and Co0 is the maximum Courant number of the last time-step. ∆tt is the time-step

defined by Cot:

∆tt =
Cot
Co0

∆t0. (4.65)

Empirical studies displayed good stability for Courant numbers smaller than 0.5 (Rusche,

2002), wherefore this value is used in this study. The under-relaxation factor ψt is fixed

to 0.1 in OpenFOAM® and Kl is fixed to 1.2 in the OpenFOAM® version employed in this

study.

4.1.3 Sequence of numerical solution procedure

The numerical solution procedure in OpenFOAM® using the PISO scheme is depicted in

Tab. 4.2. The procedure used in this study is adopted from Rusche (2002) but modified

because of the neglect of surface tension and the usage of a non moving reference frame.

First, the time-step is adjusted (steps 1). Then the boundary conditions are updated (step

2) followed by solving and smoothening of the transport equation for the indicator func-

tion (step 3). Afterwards the unit normal vector and the curvature are calculated (step

4) and the discretized momentum equation is constructed (step 5). The pressure-velocity

algorithm is corrected in the PISO correction loop, where after solving the pressure equa-

tion the momentum is corrected based on the change in pressure (step 6).
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Table 4.2 – Numerical solution procedure, modified from Rusche (2002). For detailed expla-
nation see text.

1. Adjust time step (4.64)

2. Adjust boundary conditions

3. Solve the α1-equation (4.52)

4. Calculate curvature

5. Construct A (4.59)

6. PISO-Loop:

(a) Predict fluxes using (4.61)

(b) Construct and solve the pressure equation (4.63)

(c) Correct fluxes (4.62)

(d) Reconstruct velocities

4.2 Numerical solutions for the Savage-Hutter equations

As mentioned in section 3.2.2, the Savage-Hutter model is used in this study for compar-

ison with the numerical simulations obtained by using OpenFOAM®. Comparisons are

only made for simulations of flows in a 10 cm wide Poly(methyl methacrylate) (PMMA)

channel (see section 5.2.2), which represents a quasi two-dimensional set-up. Due to the

depth-averaged character of the Savage-Hutter type simulations, this situation is reduced

to a one-dimensional problem. For this reason, only one dimensional flows down an in-

clined plane are described here. The numerical scheme employed is the one described in

Tai et al. (2001) and Wang et al. (2004), which is a non-oscillatory central (NOC) scheme

using total variation diminishing (TVD) limiters.

In this section, the numerical procedure to solve the Savage-Hutter model equations

using a standard technique for non-linear hyperbolic conservation equations for a one-

dimensional case will be presented analogous to the description for a two-dimensional

case by Wang et al. (2004). A hyperbolic system of partial differential equations can be

written as

∂
∂t

w+
∂
∂x

f(w) = s(w). (4.66)

Introducing the unknown vector w = (h,mx)T with the new variable mx = hu, the
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Savage-Hutter model equations (3.47) and (3.48) become

∂
∂t

 hmx
+ ∂

∂x

 mx
m2
x/h+1/2βh2

 =  0

hsx

 , (4.67)

with parameter β = εkact/pass cosζ and sx = sinζ − tanδ sign(u)cosζ.
For the numerical solution, the physical domain is split into cells, a single cell Ci is

defined as

Ci =
{
(x)

∣∣∣∣∣|x − xi | ≤ ∆x
2

}
. (4.68)

In each cell, the variables are stored as cell averaged values. The local value inside

this cell can be reconstructed assuming a linear interpolation function. To keep the slope

of this interpolation function at moderate values, a TVD slope limiter is introduced. The

piecewise linear reconstruction of w(x, tn) is

w(x, tn) =wn
i + (x − xi)

(
∂w
∂x

)n
i

=wn
i + (x − xi)σx. (4.69)

For a scalar physical variable w, i.e. a component of w, the slope limiter σxi can be

expressed as σxi = φxi (wi+1 −wi)/∆x and φ
x
i is defined as the ratio of consecutive gradients

θxi ,

φxi = φ(θ
x
i ), θ

x
i =

wi −wi−1
wi+1 −wi

. (4.70)

Several slope limiters can be employed in the non-oscillatory TVD scheme to ensure

second-order accurate cell reconstruction. These limiters are introduced as constrains

which must be met by φ(θ).

In this work, only the Minmod limiter (Harten, 1983)

φMinmod(θ) = max(0,min(1,θ)) (4.71)

is used, which is defined by the lower boundary of the second-order TVD region. This

limiter is the most diffusive of all acceptable limiters.

The NOC scheme is a predictor-corrector method, meaning that two calculation steps

are performed to solve the next time step. First, the cell averages are evaluated at the

boundaries between cells. Therefore, the half time-step variables are stored at the old

cell boundaries (staggered grid). The piecewise linear reconstruction (4.70) at time-step

tn is smooth and remains smooth for t < tn+1 if an appropriate time-step is chosen. The

restriction of the time-step will be described below.

The fluxes across boundaries can be evaluated by Taylor extrapolations using differ-
ential equation and standard quadrature rules. The midpoint rule in time is employed to
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archive temporally second-order accuracy.

The staggered averages at time tn+1 is determined by integrating (4.66), this yields

wn+1
i+1/2 =

1
∆x

∫ xi+1

xi

w(x, tn+1)dx (4.72)

=
1
∆x

∫ xi+1

xi

w(x, tn)dx

− 1
∆x

∫ tn+1

tn
(f(xi+1, t)− f(xi , t))dt

+
1
∆x

∫ tn+1

tn

∫ xi+1

xi

s(x, t)dxdt. (4.73)

Each term of (4.73) is now analysed in detail. Starting with the first term, the average

of w(x, tn) can be evaluated by the midpoint rule in each half cell segment

1
∆x

∫ xi+1

xi

w(x, tn)dx =
1
∆x

{∫ xi+1/2

xi

w(x, tn)dx+
∫ xi+1/2

xi

w(x, tn)dx
}

=
1
2

{
wn
i+1/4 +wn

i+3/4

}
. (4.74)

The half way values at i +1/4 and i +3/4 are calculated by (4.70) as

wn
i+1/4 =wn

i +
∆x
4
σxi , (4.75)

wn
i+3/4 =wn

i+1 −
∆x
4
σxi+1. (4.76)

The second term in (4.73),which represents the flux, is approximated by second-order

rectangular rule for the spatial integral and bymidpoint quadrature rule for second-order

accuracy of the temporal integral. Thus,

1
∆x

∫ tn+1

tn
(f(xi+1, t)− f(xi , t))dt

=
∆t
2∆x

{
f(xi+1, t

n+1/2)− f(xi , tn+1/2)
}

=
∆t
2∆x

{
f(wn+1/2

i+1 )− f(wn+1/2
i )

}
. (4.77)

The values for the half time-step tn+1/2 are approximated by first-order Taylor series



4.2 Numerical solutions for the Savage-Hutter equations 67

expansion in time. With (4.66), this yields the predictor step of the NOC-scheme:

wn+1/2
i =wn

i +
∆t
2

(
∂w
∂t

)n
i

=wn
i −

∆t
2

(
∂f(w)
∂t

)n
i

+
∆t
2
s(wn

i )

=wn
i −

∆t
2
σ
f
i +

∆t
2
s(wn

i ), (4.78)

where σ fi is the flux limiter for the flux f . This can be expressed by the corresponding

Jacobian as follows:

σ
f
i =

(
∂f(w)
∂w

)n
i

σxi . (4.79)

To approximate the integral of the last term in (4.73), again the domain is split into

the two cell segments and the midpoint quadrature rule is employed for second-order

accuracy of the temporal integral, resulting in the corrector step of the NOC scheme:

1
∆x

∫ tn+1

tn

∫ x+1

x
s(x, t)dxdt

=
∆t
4

{
s(xi+1/4, t

n+1/2) + s(xi+3/4, t
n+1/2)

}
=
∆t
4

{
s(wn+1/2

i+1/4 ) + s(wn+1/2
i+3/4 )

}
. (4.80)

Values at tn+1/2 and i +1/4 and i +3/4 are determined by space-time Taylor extrapola-

tion:

wn+1/2
i+1/4 =wn+1/2

i +
∆x
4
σxi , (4.81)

wn+1/2
i+3/4 =wn+1/2

i+1 − ∆x
4
σxi+1. (4.82)

Taken together, the NOC-scheme is composed of a predictor step (4.78) and a stag-

gered corrector step (4.73) , which is achieved by substituting (4.74) , (4.77) and (4.80).

With this scheme, the cell average value is determined by

wn+1
i+1/2 =

1
4

{
wn
i+1/4 +wn

i+3/4

}
− ∆t
2∆x

{
f
(
wn+1/2
i+1

)
− f

(
wn+1/2
i

)}
(4.83)

+
∆t
4

{
s
(
wn+1/2
i+1/4

)
+ s

(
wn+1/2
i+3/4

)}
. (4.84)

To ensure stability of the numerical solution and that no material and information can
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proceed further than one cell per time step, the Courant-Friedrichs-Lewy (CFL) condition

(Courant et al., 1928; Jiang and Tadmor, 1998) is employed as described by Wang et al.

(2004). Therefore, the characteristic speeds have to be determined. For this purpose,

(4.66) and (4.67) can be written as

∂w
∂t

+Ax

(
∂w
∂x

)
= s, (4.85)

where Ax is the Jacobian of f:

Ax =
∂f
∂w

=

 0 1

−(mx)2/h2 + βxh 2mx/h

 . (4.86)

With this, the characteristic equation is given by

det(Ax −λI2) = 0. (4.87)

This equation has two solution:

λ1,2 =mx/h±
√
βxh, (4.88)

which are the Eigenvalues specifying the sub-critical and super-critical speed of the sys-

tem. With (4.88), the maximum wave speed can be determined as

cmaxx =max
all i

(
|ui |+

√
(βx)ihi

)
, ui = (mx)i/hi . (4.89)

This maximum speed is then included in the CFL condition to determine the maximal

duration of a time step:

∆t |cmaxx | /∆x <
1
2
. (4.90)

This restriction of the time step length ensures that the solution remains smooth, so that

the Taylor expansions and midpoint quadrature rules are justified.

For brevity, the depth-averaged simulations employing the Savage-Huttermodel equa-

tions and the numerical solution technique described in this section will be called Savage-

Hutter simulations from here on.
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Three experimental set-ups were employed in this study: a rotating box for the obser-

vation of steady-state flows, an inclined translucent channel for two-dimensional flow

observation and a wide inclined channel for three-dimensional observations. As granular

material for the small scale laboratory experiments performed here, sand and polyvinyl

chloride (PVC) pellets were chosen. The motion of the granular flow was captured by

a high speed camera to allow detailed temporal resolution in the flow observation. The

different materials, experimental set-ups and the respective imaging and measurement

techniques are described in this section.

5.1 Granular materials

Three different granular materials where employed:

• PVC pellets:

d = 4mm, φ = 32◦, δ = 20◦, ρ = 1550kg/m−3

• Quartz Sand:

d = 0.71− 1.25mm, φ = 37◦, δ = 18◦, ρ = 2650kg/m−3

• Fine Quartz Sand:

d = 0.1− 0.25mm, φ = 37◦, δ = 18◦, ρ = 2650kg/m−3

The bottom friction angle δ was determined by filling a cylinder (without bottom) with

the respective material, placing it in the channel and measuring the inclination which

is necessary to make this cylinder start to slide down the channel. Similar values were

observed for both channel set-ups employed in this study. The internal friction angle φ

was determined by assuming it to be equal to the angle of repose (Lambe and Whitman,

1969; Kutzbach and Scherer, 1977; Pudasaini et al., 2007). The angle of repose was mea-

sured as the inclination of a pile of the respective material raised to the maximal possible

height.

5.2 Experimental set-ups

5.2.1 Rotating box

A slowly rotating box was used to analyze a quasi steady flow for the determination of

the rheological model to describe the granular flow. The box has a square base of h× b =
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Figure 5.1 – Sketch of rotating box geometry.

20cm× 20cm and a depth of d = 0.5cm (Fig.5.1). Front and back of the box are made of

PMMA, and the other faces are made of wood. The box was filled with fine sand until the

free surface of the sand reached h0 = 11cm. The volume of the bulk sand is 55% of the

whole container. The container can be rotated with a constant rotating speed of a period

of Trot. The actual rotating speed is extracted from the captured images.

5.2.2 Inclined channel

The channel set-up employed in this study is similar to Pudasaini et al. (2007). The chan-

nel consists of a reservoir for granular material and a straight, 2m long channel (Fig.

5.2). The reservoir can take up to 50l of granular material. A movable wall at the in-

terface between the reservoir and the channel defines a constant inflow height h0 which

can be adjusted between 0cm and 30cm. A swinging gate holds back the material in

the reservoir. Both the wall and the gate can be removed, and the gate can be placed on

different positions of the channel to perform studies of collapsing columns of granular

materials. The wall at the end of the channel (depicted in red in Fig. 5.2) can be re-

moved to generate an undisturbed outflow or inserted to perform impingement test with

a perpendicular wall. Additionally, obstacles can be installed inside the channel. The

inclination angle of the channel ζ can be varied from 0◦ to 50◦. All walls of the channel

except for the gate are made of PMMA, allowing observation of the granular flow from all

directions. By capturing the flow behavior from the side of the channel, velocity profiles
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can be recorded.
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Figure 5.2 – Sketch of the channel geometry.

5.2.3 Wide channel

To analyze the flow around obstacles, a wide channel similar to the channel described in

the previous paragraph was build. It has a similar reservoir for up to 7l of granular ma-

terial, a 59cm long slope and a fixed inclination angle of ζ = 45◦ (Fig.5.3). The container

wall facing the channel (depicted in red in Fig.5.3) is rapidly pulled up to a constant

inflow height h0. Different obstacles can be mounted on the lower part of the channel.

Obstacles employed in this study were a tetrahedron with an edge-length of 12cm and a

cylinder with 3.96cm radius and a height of 5cm.

5.3 Image acquisition

The progressive Scan CMOS Highspeed Camera (Optronis CR600x2) used in this study

captures RAW images with a color depth of 10-bits at a size of 1280px × 1024px with
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Figure 5.3 – Sketch of the wide channel geometry.

a framerate of 500fps. Each pixel has a size of 14µm × 14µm. The active area of the

CMOS sensor is 17.92mm × 14.34mm. The framerate can be increased by choosing a

lower resolution. The internal storage of 4 GB can store sequences of up to 6.5 s length

at full resolution and framerate. The RAW images contain the intensity of each pixel

stored as a two dimensional arrays of gray values between 0 and 1024. The conversion

factor between 1px and the physical measured dimensions in m are obtained by taking

an image of a calibration pattern and correlating the known positions of the pattern with

their positions (in px) on the image plane.

5.4 Particle Image Velocimetry (PIV)

PIV is employed in this study to obtain highly resolved temporal and spatial velocity

profiles of the granular flow. For this purpose, a set of custom made c++ programs was

generated. The calculation steps performed by these programs are described here. To an-

alyze the velocities, first the area covered by grains needs to be determined. Afterwards,

the cross-correlation of an image pair is used to determine the velocity (Eckart et al.,

2003).

5.4.1 Identification of Region of Interest (ROI)

To determine the region of interest (ROI), a reference frame I0 of the “empty” experiment

was used. This empty frame was substracted from the actual frame In. The new intensity
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levels were binarized if the difference lay above some predefined threshold T (Fig. 5.4).

Inmask =

0 if |In −I0| > T

−1 else.
(5.1)

This study only intended to observe the bulk fluid and no movements of the gate or

single flying particles. Therefore, the recorded frame Inmask was segmented into different
regions and only the region with the biggest area was taken into consideration by an

algorithm performing the following steps: a counter for the number of segments S with

an initial value of 1 is introduced. The segmentation is done by looping through the

image data until a point is found where the value is 0, the value is set to S and now

starting from this point all adjacent pixels with value 0 are set to S. Afterwards, the

counter of segments is increased by one and the search for values of 0 is continued. The

biggest segment can now be identified from a histogram of pixel values in Inmask. The final
mask is created by setting all values other than those belonging to the chosen segment to

zero and afterwards the value in the chosen segment to 1.

The height profile h(x) was determined by searching from the upper image boundary

for each column for the first occurrence of a value different from zero. The bottom profile

b(x) was created in the same way but starting from the lower boundary of the image.

In I0 Inmask Final Inmask height profile

Figure 5.4 – Determination of the region of interest (ROI) and the resulting height profile.

5.4.2 Cross-correlation

To determine the velocity, two images are needed (In and In+1) which have been acquired

with a delay of ∆t (Fig. 5.5). In the PIV-Method, a small area (2n + 1 × 2m + 1) was cut

out around the coordinate x0 and y0 of In, the so-called interrogation window, and the

most similar image in In+1 was found by shifting the interrogation window over In+1

and calculation of the cross-correlation Kx0,y0(a,b) for each offset (shift in x-direction a,
shift in y-direction b) (Keane and Adrian, 1992; Eckart et al., 2003). The values of a and

b were limited to a specified search area:

Kx0,y0(a,b) =
x0+n∑
i=x0−n

y0+m∑
j=y0−m

(
In(i, j)−In+1(i + a, j + b)

)2
. (5.2)
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The best fitting offset was achieved by searching for the minima of Kx0,y0(a,b). The

actual sub-pixel coordinate was calculated from two parabolic fits in x- and y-direction

around x0, y0.

The offset o = (a,b)
[

px
frame

]
was converted to a velocity by multiplying the scale spx→m

and dividing by ∆t:

u(x0, y0)
[m
s

]
= o(a,b)

[ px
frame

]
·
spx→m

[
m
px

]
∆t

[
s

frame

] . (5.3)

In In+1
Correlation

Figure 5.5 – Cross-correlation in PIV. The red outline marks the interrogation area, while the
pink outline marks the search area in two consecutive images In and In+1. The panel on the
right displays the correlation between the two frames as a heat-map. The arrow points at the
minimum value.

This procedure to find the velocity u(x0, y0) is performed for all points of interest

inside the ROI. To speed up the calculation of the cross-correlation, a 2D Fast-Fourier-

Transformation is employed.

5.4.3 Special considerations for the rotating box

To determine a fixed body reference frame, the actual rotation angle of the box and the

position of the container boundaries need to be determined. To capture these, a Canny

edge detection algorithm was employed followed by a linear Hough transformation.

5.4.3.1 Canny-Edge-Detection

Canny edge detection (Canny, 1986) is a multi-stage algorithm used to detect multiple

edges in an image. The Algorithm uses the following steps:

1. Noise reduction

The algorithm employes gradients between direct neighboring pixels. For this rea-

son, noise might induce very high gradients and needs to be minimized. To do so, a

Gaussian filter of 5x5 is implemented. This smoothing does not relocate the edges

and thus no error is introduced. It rather results in a stronger assessment of the

overall structure compared to the local structure.
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2. Calculate intensity gradient of the images

The intensity gradient is calculated using the Sobel operator (Jähne, 2002). The

Sobel operator consists of two 3x3 kernels which are convolved with the original

image to calculate the horizontal (Gx = Sx · I ) and vertical gradients (Gy = Sy · I ).
The Sobel operators are a convolution of a 1D-central-difference (CD1D = (−1,0,1))
and a 1D-Gaussian-blur (G1D = (1,2,1)T ) filter:

Sx =


−1 0 1

−2 0 2

−1 0 1

 and Sy =


−1 −2 −1
0 0 0

1 2 1

 . (5.4)

The gradient magnitude and direction are then given by:

G =
√
G2
x +G2

y and Θ = arctan
(
Gy

Gx

)
. (5.5)

The edge direction is now rounded to one of four angles representing the direction

to the neighboring image points (0◦, 45◦, 90◦, 135◦).

3. Non-maximum suppression

Themagnitude of each point in the gradient field is now compared to themagnitude

of the two neighboring points on a line spanned by the gradient of the respective

point. Only if the magnitude of a point is higher than the one of both neighbors, the

point is assumed to be on the edge and thus this point is set to 1 in a binary edge

map E.

4. Tracing edges through the image and hysteresis thresholding

The binary edge map contains all detected edges, even very weak ones, but only

strong edges should be considered further. Therefore, a threshold must be applied.

The main problem is that it is in most cases impossible to specify a single threshold

to differentiate between strong and weak edges. If the threshold is very high to

filter out all unwanted edges, many parts of the strong edges are not detected, but a

complete detection of the boundary of a given object is necessary. For this reason, a

second, lower threshold is defined. Points adjacent to already detected edge-points

are now considered to be edge-points if their value is above the second threshold.

This facilitates detection of edges without interruptions.

5.4.3.2 Linear-Hough-Transformation

The Hough Transformation (Hough, 1959; Duda and Hart, 1972) is a “brute force” al-

gorithm to detect parameterized objects. For the linear Hough transformation a line is
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described by:

r(θ) = x · cos(θ) + y · sin(θ) (5.6)

with the angle θ of the vector from the origin to the closest point(θ ∈ [0,π]) and the dis-

tance r between the origin and the line (r ∈ R). The parameter plane (r,θ) is called the

Hough space for straight lines in two dimensions. The Hough space is discretized into

an accumulator and set initially to zero. The algorithm loops over all possible edges (ex-

tracted by the Canny edge detection) and for each possible parameter pair, whose line

will pass through the coordinate (x0, y0), its accumulator increases by one. This corre-

sponds to a sinusoidal curve in the (r,θ) plane. When all edge points have voted, the

parameters with the highest scores are the desired lines.

With this method, the 4 strongest lines which define the boundary of the box are

determined. The corners of the box can be found by analyzing the intercept of these

lines. Afterwards, the ROI inside the box is determined as described above.

5.5 3D reconstruction in wide channel

The wide channel described in section 5.2.3 allows the observation of three dimensional

flows around obstacles. To reconstruct the three-dimensional surface of the flow and the

obstacles, the structured lightmethod (Lanman and Taubin, 2009) was used. This method

allows 3D-reconstruction with only one camera and a projector (M209X, Dell). All steps

of the 3D reconstruction were performed with cvStructuredLight (Lanman and Taubin,

2009) and the openCV library (Bradski, 2000). Here, the cvStructuredLight software

was adapted to work on a Linux operating system. Furthermore, the software, which

is originally intended to work on static scenes recorded by conventional cameras, was

extended to capture the dynamics of a set-up with the high speed camera used in this

study.

The structured light method reconstructs 3D information from the recorded image by

triangulation between the projected pixels and the pixels recorded by the camera. This

requires first an accurate calibration of the camera and projector position relative to the

observed object and second an unique identification of each projected pixel.

5.5.1 Calibration of camera and projector

First, internal camera parameters (the focal length and the radial distortion caused by the

lens) are calibrated by taking a series of pictures from a checkerboard pattern with known

dimensions in different orientations. From these pictures, the openCV software calculates

amatrix which is later used to convert pixel coordinates to real space coordinates. Second,
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the position of the camera relative to the observed area is calibrated by taking a picture

of the checkerboard pattern placed in the area of interest. At the same time, intrinsic and

extrinsic parameters of the projector are calibrated by projecting a checkerboard pattern

of known pixel dimensions on the actual checkerboard pattern.

The calibration was performed by recording a video of a 1.5 x 1.5 cm checkerboard

pattern with the high-speed camera while the projection of the checkerboard pattern

was automatically switched on and off each second. This ensured that the checkerboard

pattern was captured with and without the projection in each orientation.

5.5.2 Identification of projected pixels

The structured light method allows the identification of each projected pixel by a se-

quence of pictures which results in a unique color (or black and white) sequence for each

pixel. In cvStructuredLight (Lanman and Taubin, 2009), this unique identification is per-

formed using black and white patterns for maximal contrast on multicolored surfaces of

the objects to be scanned. The position of each pixel is decoded by a so-called Gray code

(Gray, 1953), which ensures a minimum number of switches from black to white during

the projection of the picture series. To uniquely identify the 1024 x 768 pixel of the pro-

jector, a series of 21 patterns was employed. For enhanced accuracy, the inverse of each

pattern was projected as well, resulting in a series of 42 patterns in total. This resulted in

a data set containing a collection of projector/camera pixel pairs for each time step of 42

projected patterns.

5.5.3 Triangulation

To reconstruct the 3 dimensional surface, cvStructuredLight (Lanman and Taubin, 2009)

correlates the calibration data with the projector/camera pixel pair sets. Through the

calibration it is know in which angle the light of each pixel leaves the projector relative

to a plane between the projector and the camera. The same holds true for the light which

is captured by each pixel of the camera. With these two angles and the information

about the distance between projector and camera (also known through the calibration)

the intersection of two straight lines originating from the middle of the projector/camera

pixel can be determined. This intersection point yield the coordinates of the observed

object in the 3D space at the observed position. Due to the three dimensional character

of this triangulation process, the two lines will not necessarily intersect. In such cases,

the point of closest approximation of the two lines is taken for the 3D reconstruction.
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This chapter describes several experiments which were conducted to yield better insight

into the complex processes occurring during a granular flow. The PIV method employed

in this work (see section 5.4) allows to record velocity distributions during a granular flow

at particle size level and thus enables the recording of velocity profiles with fine temporal

and spatial resolution. The data generated with this method is, on the one hand, used

to draw conclusions about the rheology underlying the granular flow and, on the other

hand, to provide detailed information of the flow parameter evolution. These results are

then compared with numerical simulations to allow a detailed analysis of the precision

provided by the numerical predictions and to improve the simulation process through

observed deviations from the experimental data. For this purpose, first simulations of the

Savage-Hutter type are performed as described in chapter 4 to test and demonstrate the

predictive power of state-of-the-art simulation methods for the performed experiments.

A second set of simulations is performed using the OpenFOAM® software described in

chapter 4 to perform non-depth-averaged simulations and enable predictions of velocity

profiles inside the granular flow.

6.1 Choice of the rheologicalmodel for non-depth-averaged

simulations

In contrast to depth-averaged simulations, where shearing inside the material is ne-

glected, the implementation of a non-depth-averaged simulation requires a model for the

description of the material’s response to shearing. In this work, non-depth-averaged sim-

ulations are performed using a fluid dynamics approach. As described in section 1.3.4,

the choice of the rheological model is the central aspects for description of granular flows

by fluid dynamics simulations. Thus, the rheological model describing the behavior of

the employed material was determined in order to choose a law for the description of the

materials response to stress and shearing in the non-depth-averaged simulations devel-

oped here. The granular material can be either considered as a viscous, a viscoelastic, a

viscoplastic or a visco-elasto-plastic fluid (section 1.3.4).

6.1.1 Experimental findings

To determine to which of the above mentioned categories the granular materials used in

this study belongs, a pilot experiment was performed using the slowly rotating box set-

up described in section 5.2.1 with fine quartz sand filling. The rectangular geometry of
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Figure 6.1 – Rotating rectangular Box: PIV measurements. Overlay of velocity fields mea-
sured by PIV with pictures of the granular flow of sand particles in a clockwise rotating box
during a 90◦ rotation. Displayed are representative pictures for rotation angle steps of 5◦.
Magnitudes of mean velocities in 5 mm x 5 mm patches are represented by a heat map (reach-
ing from blue for the minimal velocity to red for the maximal velocity). Direction of the ve-
locities are depicted by arrows, the length of the arrows corresponds to the magnitude. For
a better overview, only arrows for each third patch in x′-direction and every other patch in
y′-direction are shown. Figure continued on next page.
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Figure 6.1 – Rotating rectangular Box: PIV measurements.(cont.)
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Figure 6.2 – Rotating rectangular box: Temporal evolution of free surface shape. Geometry
of total granular material in the rotating box depicted for rotation angle steps of 5◦. Outlines
show the free surface and the surfaces facing the container walls. The black dot indicates
the center of the container, the dashed square outlines the area considered for calculation
in the following figures. The two red circles represent the minimal (smaller circle, diameter
corresponds to edge length of the box) and maximal (larger circle, diameter corresponds to
diagonal of the box) distance to the center, respectively.

the box allows observations of quasi-steady-state flows with small periodic disturbance

by the boundaries. The resulting movement of the material reveals if elastic properties

of the material cause a delay of response to rotation and if viscous or plastic behavior

dominates the flow. Fig. 6.1 depicts the velocity evolution in the box during a 90◦ ro-

tation in the steady-state flow recorded with the PIV method. It demonstrates that only

a part of the material is fluidized and builds a relatively thin flow layer while the rest

remains solid. From this observation it can be ruled out that the material behaves like a

pure viscous fluid, which would result in a fluidization of the complete material. To ob-

tain comparable parameters for further characterization of the evolution of the fluidized

fraction, the free surface geometry is considered (Fig. 6.2) and analysed in detail in an

area close to the center of the box (the dashed box indicated in Fig. 6.2). As described
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Figure 6.3 – Rotating rectangular box: Evolution of free surface relative to box center.
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Figure 6.5 – Rotating rectangular box: Temporal evolution of velocity profile. Velocity
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Figure 6.6 – Rotating rectangular box: Temporal evolution of strain rate. Strain rate in the
fluidized fraction during rotation steps of 2◦. Strain rate was determined as inclination of a
linear regression line fitted to the velocity profiles of Fig.6.5. Error bars represent errors of
the regression.
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in section 5.4.3, the free surface in this area can be described by a fitted line with the

parameters r (minimum distance between the box center and the line) and θ (angle be-

tween the horizontal and a vector pointing from the box center to closest point on the

line). Both parameters display periodic alterations during the quarter rotation consid-

ered here (Fig. 6.3), with the highest alterations occurring around 0◦ , 45◦ and 90◦. The

system returns to its initial configuration after a 90◦ rotation. Thus, the behavior of the

material directly corresponds to the symmetry of the box, which also reaches the same

configuration after a 90◦ rotation. This indicates a direct response of the material to the

disturbance by the boundaries without a temporal delay, which can be considered as a

hint for a non-elastic behavior. A further parameter to classify the evolution of the flu-

idized fraction is the thickness of the fluidized fraction at the point of lowest distance to

the center. The solid-fluid interface position relative to the box center (hsl) slightly alters

with the same periodicity as the free surface position (hf s), resulting in an approximately

constant flow thickness (hf ) over 45◦ of the rotation (Fig. 6.4). After 45◦ rotation, the

flow thickness suddenly decreases and afterwards remains approximately constant at a

lower level for the remaining 45◦ of the rotation. This change in flow thickness coincides

with the sudden change in the inclination angle of the free surface (Fig. 6.3), further sup-

porting the idea of an instant response of the material and a non-elastic behavior. The

velocities measured in Fig. 6.1 allow to draw a velocity profile in the fluidized fraction

along a line from the box center to the closest point on the free surface for each rotation

step. These velocity profiles are approximately linear (taking into account that a coarse

grid was employed) for all considered rotation steps (Fig. 6.5) and therefore, allow to

calculate a strain rate by a linear regression. The strain rate remains approximately con-

stant within the error range (Fig. 6.6). This observation confirms the initial assumption

of a quasi-steady-state flow during the experiment and thus justifies the consideration of

only one 90◦ rotation. Taken together, the results indicate that the material considered

in this work cannot be treated as a pure viscous fluid. Furthermore, no indications for

elastic behavior were observed in the performed experiments. Thus, further consider-

ations focused on the description of the non-cohesive granular material employed here

by a plastic law. To decide whether some viscous components should be included in the

rheological model, theoretical considerations and pilot simulations were performed.

6.1.2 Theoretical considerations andfirst pilot simulations for the choice

of a rheological model

Several approaches have been discussed in the literature to implement a plastic law for

numerical simulations in fluid dynamics (section 1.3.4.2). Among those, a simple model

introducing plastic behavior for a viscous fluid is the Binghammodel assuming a constant
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shear stress τ0 to be added to the viscous parts of the shear stress. A Bingham behavior

would imply that the material can resist a certain amount of stress (lower than τ0) before

it reacts and starts to flow. This would cause themotion of thematerial to start at the walls

of the container, where highest stress is applied. Pilot simulations assuming a Bingham

model displayed exactly this behavior: a rigid block of material is formed in the middle of

the container and rolls over a thick flowing layer at the walls (data not shown). The failure

of the Bingham model can be explained by the negligence of a pressure component since

the pressure gradient might be responsible for the solid state of the lower layers observed

in the experiment. Thus, a model considering the pressure inside the material would be

suited best to simulate the material used in this work.

A model taking pressure components into account to simulate plastic fluid dynamics

has been proposed by Jop et al. (2006) (section 3.3). An implementation of this model for

the problems considered here would require the determination of five material param-

eter: the density of the material, the particle diameter, the Savage number, the internal

friction angle and the floating angle. Several of these parameters are hard to determine

for a heterogeneous mixture like sand with varying particle diameter. As a simplifica-

tion of the model of Jop et al. (2006), a simple Coulomb law can be employed. For this

purpose, the Coulomb friction coefficient is considered constant. This results in a model

depending only on the internal friction angle (φ) as a material parameter and the density

of the material:

To implement a simple Coulomb model for numerical simulations, the OpenFOAM®

software described in chapter 4 is employed in this study. For this purpose, classes were

added to OpenFOAM® allowing the calculation of the Coulomb friction related parame-

ters viscosity and bottom friction angle (parameters for simulations of each experiment

and excerpts of major functions employed can be found in appendix A and B). For brevity,

the non-depth-averaged simulations with a simple Coulomb rheology performed with

OpenFOAM® will be called OpenFOAM® simulations from here on.

6.1.3 Pilot simulations using a simple Coulomb law

As mentioned above, the only input parameter for the OpenFOAM® simulations in this

study are the internal friction angle and the density of the material. In normal conditions,

the internal friction angle closely corresponds to the angle of repose and can thus be eas-

ily determined for a given material (Lambe and Whitman, 1969; Kutzbach and Scherer,

1977; Iversen and Rasmussen, 1994; Hutter and Koch, 1991; Pudasaini et al., 2007). Sim-

ulations of the rotating box experiment with this angle resulted in too low inclination of

the free surface and an intermittent flow was observed in contrast to the observed steady-

state flow (data not shown). An explanation for this observation might be that in the

rotating box experiment, the side walls provide a strong pressure and thus cause the an-
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Figure 6.7 – OpenFOAM® simulations of rotating rectangular box: Overview on velocity
fields. Overlay of simulated velocity fields with simulated shape during a 90◦ clockwise turn
of the rotating box. Displayed are representative pictures for rotation angle steps of 5◦. Ve-
locities in single patches corresponding to the numerical grid are represented by a heat map
(reaching from blue for the minimal velocity to red for the maximal velocity). Direction of
the velocities are depicted by arrows, the length of the arrows corresponds to the magnitude.
For a better overview, only arrows for each third patch in x′-direction and every other patch
in y′-direction are shown. Figure continued on next page.
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Figure 6.8 – OpenFOAM® simulations of rotating rectangular box: Temporal evolution
of free surface shape. Simulated geometry of total granular material in the rotating box
depicted for rotation angle steps of 5◦. Outlines show the free surface. The black dot indicates
the center of the container, the dashed square outlines the area considered for calculation in
the following figures. The two red circles represent the minimal (smaller circle, diameter
corresponds to edge length of the box) and maximal (larger circle, diameter corresponds to
diagonal of the box) distance to the center, respectively.

gle of repose to raise above the normal value for the employed material (Jop et al., 2005;

Hutter et al., 1995; Savage, 1979). Thus, to estimate the internal friction angle for sand

in the rotating box set-up, the inclination of the free surface observed in the experiment

was taken into account. Therefore, an internal friction angle of φ = 55◦ was used in the

simulations.

As described in chapter 4, the non-depth-averaged fluid dynamics simulations by

OpenFOAM® employ the VOF method in which a single mass and momentum equation

is solved for both the air and the material. This method yields the following parameters

for each cell during each time step of the simulation: the velocity field, the pressure, the

filling parameter α1 and the effective viscosity. Plotting of the velocity field and the filling

parameter for different rotation angles of the box allows comparison to the PIV images
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Figure 6.9 – OpenFOAM® simulations of rotating rectangular box: Evolution of free sur-
face relative to box center. Simulated evolution of the free surface relative to the box center
expressed by the parameter describing a fitted line to the measured free surfaces in the square
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the box center to closest point on the line. Error bars represent errors of the linear regression.
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Figure 6.10 – OpenFOAM® simulations of rotating rectangular box: Temporal evolution
of flow thickness. Temporal evolution of the fluid-solid interface (hsl) and free surface (hf s)
distance to the center and the resulting height of the fluidized layer (hf ) during rotation steps
of 2◦. All values are determined on a straight line perpendicular to the regression line of the
respective point described in Fig. 6.9.
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(Fig. 6.7). These images reveal that the OpenFOAM® simulations are capable of quali-

tatively predicting the flow geometry in the rotating box: a thin flowing layer is formed,

while the majority of the material underneath remains in a solid state. Quantitatively,

the observed velocities are underestimated by the simulation, which might be caused by

the size of the grid cells, which were chosen to be relatively large for this pilot simula-

tion. The qualitative agreement of the simulated flow geometry with the experiment is

also reflected in the free surface shape (Fig. 6.8). Especially in the central area, the simu-

lated free surface display a linear shape as the experimentally observed free surfaces. For

both simulated and experimentally observed free surfaces, the slope in the central area

becomes gradually steeper during the first 40 seconds of the rotation and then flattens

again. Some deviations from the observed free surface shape occur at the edges of the

box, since here some cells are considered to be filled with air. This is caused by the fact

that the two components air and granular material are considered immiscible and thus

entrained air cannot exhaust. Therefore, only the free surface is considered here. The

periodic evolution of the distance to the center and the angle θ are also qualitatively well

captured by the simulation (Fig. 6.9). Deviations in the absolute values of the parameters

might be explained by a still underestimated value of φ due to strong effects of the side

walls. The large error bars can be explained by the low number of data points in the simu-

lation (order of centimeters, caused by the large cell size) compared to the fine resolution

of the experiment (order of millimeters, pixel size of the camera). As a consequence of

this inaccuracy and due to the low number of observed points, a strong dispersion of the

values of hsl , hf s and hf and deviations compared to the experiment are observed (Fig.

6.10). Nevertheless, the predicted values are in the same order of magnitude as the exper-

imental value. Due to the coarse grid, no velocity profiles and the resulting strain rates

were calculated for this pilot experiment, which was only employed to validate the choice

of the rheological model.

As a conclusion, the simple Coulomb model suggested here can be used to describe

the fluid behavior of a granular material in the time and size scales considered in this

study. To fine tune and validate this model to describe experimental findings in different
situations without a strong influence of the side walls, a larger experimental set-up with a

thicker particle layer of 10 cm in an inclined channel was employed using PVC and sand

particles.

6.2 Initialization of a granular flow - granular collapse

To investigate the course of an undisturbed granular flow in non-steady-state conditions,

dam break experiments inside the 10 cm wide inclined channel (see section 5.2.2) are

considered. Dam break experiments are widely employed experiments mimicking the
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situation of a sudden break of a dam or other retention structure, which was retaining

material raised above its angle of repose. Experiments found in literature differ in the

size of the performed experiment, the material employed, the inclination of the channel,

the roughness of the sliding surface (channel bottom), the number of dimensions con-

sidered (2D vs. 3D) and in the precision of the recording system (Artoni et al., 2013;

Thompson and Huppert, 2007; Rondon et al., 2011; Mériaux, 2006; de Vet et al., 2010;

Chen et al., 2011; Roche et al., 2011; Maeno et al., 2013; Trepanier and Franklin, 2010;

Lube et al., 2004; Lajeunesse et al., 2004; Mériaux and Triantafillou, 2008; Ancey and

Cochard, 2009; Ancey, 2012). Dam break scenarios are also often used for the valida-

tion of new models and simulations on granular flows (Lagrée et al., 2011; Staron and

Hinch, 2007; Larrieu et al., 2006; Lacaze and Kerswell, 2009; Kerswell, 2005; Josserand

et al., 2009; Hogg and Pritchard, 2004; Ertaş and Halsey, 2002; Doyle et al., 2007). The

experiments performed in this work should facilitate a deeper insight into velocity pro-

files of the flow and the validation of non-depth-averaged simulations of non-cohesive

granular flows. Thus, non-cohesive materials with particle sizes optimal for detailed PIV

measurements in combination with the employed camera were chosen. A two dimen-

sional set-up was employed to allow recording of velocity profile through the translucent

PMMA walls of the channel. The inclination angle was chosen to be variable to evaluate

its influence on the flow in experiments and simulations. Although such experiments

have been performed and described in the literature before (Zenit, 2005; Siavoshi and

Kudrolli, 2005; Lube et al., 2005, 2007, 2011; Lajeunesse et al., 2005; Lacaze et al., 2008;

Hogg, 2007; Balmforth and Kerswell, 2005), there is only a limited amount of the original

data available and not all parameters of interest for this study have been recorded (e.g.

the influence of the channel inclination, especially for high inclination angles). For this

reason and to obtain comparable data for all situations considered here (initialization of

a flow, undisturbed granular flow, encountering of an obstacle and granular shock), the

dam break experiments described in the following sections were performed and recorded

with the detailed PIV measurements system described in section 5.4.

6.2.1 Experimental findings

The collapse of a granular column is investigated. Two experiments were performed, first

for smaller inclination angles the rectangular container filled with grains is opened on the

downslope face. Second, for a high inclination (ζ > φ) a small triangular initial deposit

was filled inside the channel and the collapse was observed. Because of the larger ob-

served area compared to the previous experiment, mostly the larger PVC particles were

used for the following experiments to assure the PIV measurements are working pre-

cisely. To investigate the influence of the material, the dam break with triangular initial

deposit was also performed with sand.
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6.2.1.1 Rectangular container

The collapse of the rectangular column was performed for inclination angles of 0◦, 10◦,

20◦ and 30◦ with PVC particles.

General considerations and influence of the inclination angle

The PIV measurements (Fig. 6.11 and 6.12) reveal a clear difference between 0◦, 10◦

and 20◦ compared to 30◦: for smaller slopes, only a fraction of the granular material is

mobilized and forms a thin surface flow. In contrast to this, for 30◦, all particles are mo-

bilized and the complete material slides down the channel in a thin layer. The measured

velocities indicated a gradient of the velocity distribution in the flow depth dimension

(y-direction) with faster flowing particles at the surface of the flow. Considering the

course of the mobilized and total volume over time, three phases can be distinguished

(Fig. 6.13): an initial short phase of rapid mobilization in which the mobilized frac-

tion increases (I), followed by a longer phase of motion of a constant volume fraction

(II) and a deposition phase during which the fluidized fraction slowly decreases again

(III). This evolution of the fluid volume is observed for all lower slopes but over different
time scales. For 30◦, the initial fast mobilization of a fraction of the granular material is

followed by a steady increase of the flowing fraction until the complete material is flu-

idized. To further classify the flow for comparison with simulated flows, the initial area

of motion, the shape of the final deposit and the maximal flow height are compared for

the different slopes. Due to the complete fluidization of the material, the 30◦ measure-

ment is only included for the maximum flow height. The initial area of motion for the

lower slopes increases with the slope and is shaped like a triangle including the upper

corner facing the gate (Fig. 6.14). This results in a final deposit shaped as a halved trape-

zoid, with an decreasing acute angle for increasing slopes (Fig. 6.15). The evolution of

the maximal flow height is characterized by a sudden increase during the mobilization

phase, followed by an exponential decay with decreasing decay constants for increasing

slopes (Fig. 6.16).

Introduction of a curvilinear coordinate system using the example of 0◦ inclination

Determining flow heights as in Fig. 6.16 requires the localization of the free surface and

the solid-fluid interface in the recorded pictures. As a showcase and for illustration of

the analysis methods employed to describe this interface, the shape evolution during the

dam break with no inclination (Fig. 6.17) is analyzed in detail. In this work, flow height

is defined as the height of the fluidized granular fraction perpendicular to the solid-fluid

interface. A curvilinear coordinate system is used to describe this interface (Fig. 6.18)

and analysis of the height profile (Fig. 6.19) is performed in this coordinate system.
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Figure 6.11 –Draining of a rectangular container: PIVmeasurements for small inclination
angles. Overlay of velocity fields measured by PIV with pictures of the granular flow of
PVC particles during the draining of a rectangular container at 0◦, 10◦ and 20◦ inclination
angle. Magnitudes of mean velocities in 5mm x 5mm patches are represented by a heat map
(reaching from blue for the minimal velocity to red for the maximal velocity). Direction of
the velocities are depicted by arrows, the length of the arrows corresponds to the magnitude.
For a better overview, only arrows for each sixth patch in x-direction and every other patch in
y-direction are shown.
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Figure 6.12 – Draining of a rectangular container: PIV measurements for 30◦ inclination
angle. Overlay of velocity fields measured by PIV with pictures of the granular flow of PVC
particles during the draining of a rectangular container at 30◦ inclination angle. Magnitudes
of mean velocities in 5mm x 5mm patches are represented by a heat map (reaching from
blue for the minimal velocity to red for the maximal velocity). Direction of the velocities
are depicted by arrows, the length of the arrows corresponds to the magnitude. For a better
overview, only arrows for each sixth patch in x-direction and every other patch in y-direction
are shown.

It becomes clear that after the mobilization of the initial triangular fraction the flu-

idized fraction spreads into the channel and is simultaneously flattened (Fig. 6.19). De-

position starts at the most distant point from the initial abruption edge (the lowest point

on the solid-fluid interface) and continues in opposite direction of the flow (Fig. 6.18).

In accordance with these observations, the front of the motion first spreads into the

channel during the flow phase and is than retracted to the starting point and even beyond

it during the deposition (Fig. 6.20). The rear position of the motion area is abruptly

shifted backwards during the initiation of the triangular mobile zone and then remains

constant during the whole flow. Therefore, the time when the rear motion line reaches it

minimum value can be utilized for a precise determination of the transition point form

the initialization to the sliding phase (Fig. 6.20).
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Figure 6.13 – Draining of a rectangular container: Temporal evolution of flowing volume.
Temporal evolution of the flowing volume fraction (VF) and the total volume (VT ) within the
observed area during the draining of a rectangular container filled with PVC particles at 0◦,
10◦, 20◦ and 30◦ inclination angles. Vertical dashed lines mark (from left to right) the initial
fluidization phase, the constant outflow phase and the phase in which the mass comes to rest
again (0◦, 10◦ and 20◦).
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Figure 6.14 – Draining of a rectangular container: Initial area of motion. Outline of the
initial mobilized fraction of PVC particles for 0◦, 10◦ and 20◦ inclination angle. The vertical
dashed line marks the position of the gate.
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Figure 6.15 – Draining of a rectangular container: Final deposit. Shape of the final deposit
in the starting zone of PVC flow for 0◦, 10◦ and 20◦ inclination angle (black lines). Red doted
lines depict a second order polynomial fit to the deposit surface, the respective equations are
displayed for each graph. The vertical dashed black lines mark the position of the gate.
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Figure 6.16 – Draining of a rectangular container: Maximal flow height in the observed
area. Temporal evolution of the maximal flow height of PVC particles perpendicular to the
solid-fluid interface for 0◦, 10◦, 20◦ and 30◦ inclination angle.
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Figure 6.17 –Draining of a rectangular container: Temporal evolution of free surface shape
at 0◦ inclination angle. Outline of the free surface during the granular flow of PVC particles
at 0◦ inclination angle depicted for time steps of 0.04s.
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Figure 6.18 –Draining of a rectangular container: Shape of fluidized area for 0◦ inclination
angle. The fluidized area of the PVC flow (where PIV velocities > 0 are observed) is outlined
in gray. The solid-fluid interface (red line) is obtained by smoothing of the measured interface
with a running average. Flow heights (black lines) are determined as lines perpendicular to
local linear fits to the solid-fluid interface.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.00
0.02
0.04
0.06
0.08

Position x [m]

Po
si
ti
on
y
[m

]

0.00
0.16
0.32
0.48

T
im

e
t[
s]

Figure 6.19 –Draining of a rectangular container: Temporal evolution of flow height. Tem-
poral evolution of PVC flow height at 0◦ inclination angle perpendicular to the solid-fluid
interface.
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Figure 6.20 – Draining of a rectangular container: Flow front and rear position. Temporal
evolution of PVC flow front and rear position for 0◦ inclination angle. Vertical dashed lines
mark (from left to right) the initial fluidization phase, the constant outflow phase and the
phase in which the mass comes to rest again.

6.2.1.2 Triangular initial deposit

At inclination angles above φ, the material can not be filled as a rectangular shape any-

more. But nevertheless, it is important to consider higher inclination angles, since natural

avalanches and rock slides usually occur at steep mountain sides. Therefore, PVC par-

ticles and sand were backfilled behind the gate to a maximum possible angle (the angle

of repose with respect to a horizontal line) (Fig. 6.21). This results in the triangular

shaped filling with the longest possible edge of the triangle. Both experiments were con-

ducted with high inclination angles of 50◦. The different materials were employed to al-

low variation in parameters such as density, friction angle and angle of repose and to test

the ability of the numerical model to predict flows of different materials after optimiz-

ing the simulations with only one material. In contrast to the draining of a rectangular

container, a smaller amount of material was used, resulting in a fast fluidization of the

complete mass. Similar to the rectangular dam break, first a triangular shaped fraction

is mobilized. The particles in this fraction are strongly accelerated creating a steep ve-

locity gradient and strong shearing in y-direction. This results in a collapse of the initial

form to a hill like structure sliding and flowing down the slope with again the highest

velocities being observed at the surface of the flow (Fig. 6.21).

Considering the course of the flowing volume over time (Fig. 6.22), the fast fluidiza-

tion of the complete material becomes obvious (0.07s for PVC and 0.09s for sand in con-

trast to 1.8s for 30◦, PVC rectangular). This fluidization phase is followed by an increase
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Figure 6.21 – Triangular initial deposit experiment: PIVmeasurements. Overlay of velocity
fields measured by PIV with pictures of the granular flow of PVC (left panel) and sand (right
panel) particles during the triangular initial deposit experiment experiment at 50◦ inclination
angle. Magnitudes of mean velocities in 5mm x 5mm patches are represented by a heat map
(reaching from blue for the minimal velocity to red for the maximal velocity). Direction of
the velocities are depicted by arrows, the length of the arrows corresponds to the magnitude.
For a better overview, only arrows for each tenth patch in x-direction and every fourth patch
in y-direction are shown.
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Figure 6.22 – Triangular initial deposit experiment: Temporal evolution of flowing vol-
ume. Temporal evolution of the flowing volume fraction (VF) and the total volume (VT ) dur-
ing the triangular initial deposit experiment of PVC and sand particles at 50◦ inclination
angle. Vertical dashed lines mark (from left to right) the initial fluidization phase, the con-
stant outflow phase and the phase in which the mass leaves the observed area. The indicated
outflow rate is calculated by a linear fit to the curve in the constant outflow phase.
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Figure 6.23 –Triangular initial deposit experiment: Flow front and rear position. Temporal
evolution of PVC and sand flow front and rear position for 50◦ inclination angle.
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Figure 6.24 – Triangular initial deposit experiment: Temporal evolution of free surface
shape. Outline of the free surface during the granular flow of PVC and sand particles at 50◦

inclination angle depicted for time steps of 0.04s.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0.0

0.5

1.0

1.5

Position y [m]

V
el
oc
it
y
u
[m
/s
]

0.00

0.16

0.32

0.48

Time t [s]

0.0 0.3 0.6
0.0
0.1
0.2

t [s]

h
[m

]

0 0.2 0.4 0.6
0
5

10
15
20

Time t [s]

γ̇
[m

]

0 0.2 0.4 0.6
0

0.5

1

Time t [s]

u
sl
ip
[m
/s
]

Figure 6.25 – Triangular initial deposit experiment: Velocity profiles at gate position (x =
0) for PVC. Upper panel: y-direction dependent velocity profiles during the triangular initial
deposit experiment experiment with PVC at the position of the gate (x = 0). Time steps are
color coded as in Fig. 6.24. The included panel in the upper left corner depicts the height
evolution of the flow at the gate position. Lower left panel: Strain rate γ̇ calculated from
linear regression fitted to the velocity profiles. Lower right panel: Slip velocity uslip calculated
from linear regression fitted to the velocity profiles.
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Figure 6.26 – Triangular initial deposit experiment: Velocity profiles at gate position (x =
0) for sand. Upper panel: y-direction dependent velocity profiles during the triangular initial
deposit experiment experiment with sand at the position of the gate (x = 0). Time steps are
color coded as in Fig. 6.24. The included panel in the upper left corner depicts the height
evolution of the flow at the gate position. Lower left panel: Strain rate γ̇ calculated from
linear regression fitted to the velocity profiles. Lower right panel: Slip velocity uslip calculated
from linear regression fitted to the velocity profiles.

in volume of around 20% due to dilatancy for both materials until a phase of constant

outflow from the observed area is reached (at 0.24s for PVC and 0.3s for sand). The flow

rate remains constant at 7.30 l
s (PVC) and 6.27 l

s (sand) over a remarkable long time and

only decreases towards the end of the experiment. The faster mobilization of the PVC

material can be explained by its lower internal friction angle in comparison to sand. As

for the rectangular dam break at 0◦, the front position of the moving fraction remains

almost unchanged during the initiation of the triangular shape and afterwards moves

down the channel with an increasing velocity (Fig. 6.23). The rear position of the mo-

tion area is, like in the rectangular case, abruptly shifted backwards during the initiation

of the triangular zone, but afterwards moves forward following the front position at an

increasing distance due to a slower acceleration of the the rear position. While the front

positions for both materials moves with the same speed, the rear position of sand moves

faster compared to the one of PVC.

The floating behavior during the two experiments of triangular initial deposits is re-

flected in the evolution of the free surface shape over time (Fig. 6.24). The initial shape is

at least partially preserved for 0.12s for both materials (Fig. 6.24), although the complete

mass is fluidized earlier (0.07s for PVC and 0.09s for sand, Fig. 6.22). This indicates

that the material slides down the slope as a block with little deformation during these
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Figure 6.27 – Triangular initial deposit experiment: Temporal evolution of spatial velocity
profiles(PVC). Mean velocities over the complete observed area during the triangular ini-
tial deposit experiment experiment with PVC are depicted by the black lines. The gray area
displayes the variance of the mean for the single measurements.

first 0.12s. Afterwards, massive deformations occur and the initial shape is dissolved

(Fig. 6.24). The initially mobilized triangular fraction is accelerated stronger than the

rest of the material, forming a projection preceding the remaining material (Fig. 6.24).

As indicated by the increasing distance of the front and rear line (Fig. 6.23), the mass

is afterwards stretched out and therefore flattened (Fig. 6.24). During the phase of con-

stant outflow (starting at 0.3s for sand and 0.25s for PVC, Fig. 6.22), the height of the

flow remains almost constant at the exit point of the observed area (Fig. 6.24), suggesting

a constant overall velocity at this point as well. This shape evolution is observed for PVC

and sand with only very small differences (Fig. 6.24).

Due to the fast complete fluidization, flow heights and velocities can be determined

quickly without a curvilinear coordinate system here: Local velocities as a function of

height inside the moving granular material are first analyzed at the initial position of the
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Figure 6.28 – Triangular initial deposit experiment: Temporal evolution of spatial velocity
profiles(sand). Mean velocities over the complete observed area during the triangular initial
deposit experiment experiment with sand are depicted by the black lines. The gray area
displayes the variance of the mean for the single measurements.

gate for the different time steps (Figs. 6.25 and 6.26). By fitting a linear regression to the

curves of each time point, the slope of each regression line represents the relative velocity

between particles (the strain rate), while the y-axis intercept represents the velocity at the

bottom of the channel (the slip velocity). During the initial mobilization of the triangu-

lar fraction characterized by low deformation, the velocity over height is nearly constant,

resulting in a low strain rate. The calculated slip velocity increases rapidly during this

phase, indicating block like sliding with little deformation. After the complete mobi-

lization, the strain rate increases as the deformation increases. During this phase, the

slip velocity decreases as the pressure caused by the particles behind is decreasing and

friction terms become more important. Afterwards, a linear flow profile with a constant

slope emerges, and the strain rate remains constant at around 14 1
s with some variation.

The slip velocity increases as expected for a mass under gravity influence once static fric-
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tion is overcome. Again, both materials behave similar.

To get an overview of the spatial velocity profile over the complete observed area,

mean downstream velocities were calculated (Figs. 6.27 and 6.28). The variance of the

respective values can be considered as an indication of the strain rate at this point. The

velocity increases both spatially and temporally, indicating an accelerated flow. As sug-

gested by the constant volume outflow (Fig. 6.22) and flow height (Fig. 6.24), the velocity

remains constant at the exit point of the observed area (Figs. 6.27 and 6.28). The rather

large variance of the velocity indicates a high strain rate throughout the experiment. In

the range of the variance, PVC and sand display again similar behavior, except for a

higher variance in the sand experiment. This variance is caused by the low contrast in

between the small, rather dark sand particles.

6.2.2 Nummerical simulations with the Savage-Hutter model

The output of the depth-averaged Savage-Hutter type of simulations (section 3.2) yield

the mean velocity and the height of a granular flow. The following sections describe the

comparisons to the dam break experiments which are possible using these two parame-

ters.

6.2.2.1 Rectangular container
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Figure 6.29 – Savage-Hutter simulations of draining of a rectangular container: Temporal
evolution of free surface shape at 0◦ inclination angle. Simulated outline of the free surface
during the granular flow of PVC particles at 0◦ inclination angle depicted for time steps of
0.04s. The light gray lines are the experimentally observed shapes.

Comparing experimental and numerical results of the shape evolution during the dam

break with no inclination (Fig. 6.29) reveals that the simulation fails to predict the ini-

tial formation of a triangular shaped moving area but provides good results for the flow

shape once the flow has flattened. To allow a comparison of the mean velocity evolution
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Figure 6.30 – Savage-Hutter simulations of draining of a rectangular container: Temporal
evolution of mean velocities at 0◦ inclination angle. Simulated distribution of mean veloc-
ities over the observed are during the granular flow of PVC particles at 0◦ inclination angle
depicted for time steps of 0.04s.
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Figure 6.31 – Savage-Hutter simulations of draining of a rectangular container: Final de-
posit. Simulated shape of the final deposition in the starting zone of PVC flow for 0◦, 10◦ and
20◦ inclination angle (black line). Gray lines represent the measured deposits. The vertical
dashed black lines mark the position of the gate.
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Figure 6.32 – Savage-Hutter simulations of draining of a rectangular container: Temporal
evolution of flowing volume. Simulated temporal evolution of the flowing volume fraction
(VF) and the total volume (VT ) during the draining of a rectangular container filled with PVC
particles at 0◦, 10◦, 20◦ and 30◦ inclination angle. Vertical dashed lines mark (from left to
right) the initial fluidization phase, the constant outflow phase and the phase in which the
mass comes to rest again (0◦, 10◦ and 20◦) or leaves the observed area (30◦). The light red and
gray lines represent the experimentally measured volume evolution.
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Figure 6.33 – Savage-Hutter simulations of draining of a rectangular container: Flow front
and rear position. Simulated temporal evolution of PVC flow front and rear position for 0◦

inclination angle. Vertical dashed lines mark (from left to right) the initial fluidization phase,
the constant outflow phase and the phase in which the mass comes to rest again during the
experiment. Experimental data is depicted in light red and gray.

predicted by the simulations to the experimental values, combined mean velocities of the

moving and resting fractions are calculated (Fig. 6.30). This is necessary because of the

depth-averaging over the complete granular material in the Savage-Hutter simulations.

A comparison of these combined mean velocities with the experimental PIV measure-

ments reveals that although no resolution through the flow depth can be obtained, the

simulation is capable of predicting the existence of a small fast moving fraction in the

beginning of the flow which then develops into a larger fraction with lower velocities as

observed during the PIV measurements (Fig. 6.11).

As suggested by the good agreement between the simulated and observed flow geom-

etry in the later stages of the ζ = 0◦ experiment, also the final deposition is well predicted

by the simulations (Fig. 6.31). This is also true for inclination angles of 10◦ and 20◦, indi-

cation a good prediction of the later phases of the flow geometry at these inclination an-

gles as well. Nevertheless, comparison of the simulation with the measured flow volume

evolution over time (Fig. 6.32) reveals that the time scales of these simulations strongly

differ from the experimentally observed ones. The simulated flow takes place in about

half the time of the experimentally observed flow. Additionally, the depth-averaged sim-

ulations are per definition unable to distinguish between fluidized and resting fractions

and thus predicts the complete volume of the parts where flow occurs (u > 0.01ms−1) to

be mobilized although only a thin layer is mobilized (Fig. 6.11). The deviation of the

time frame in the simulations compared to the experiment also becomes obvious when
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the simulated flow front and rear positions are compared to the experiment (Fig. 6.33):

the front position moves too quickly and even leaves the considered area (an area cor-

responding to the observed area in the experiment). The rear position does not remain

constant behind the gate position as observed for the experiment but also leaves the ob-

served area. This indicates that the deposition is simulated to start from the rear of the

flow and not from the front as observed.

6.2.2.2 Triangular initial deposit
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Figure 6.34 – Savage-Hutter simulations of the triangular initial deposit experiment: Tem-
poral evolution of free surface shape(PVC). Outline of the free surface during the granular
flow of PVC particles at 50◦ inclination angle depicted for time steps of 0.04s. Experimentally
observed shapes are depicted in gray.
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Figure 6.35 – Savage-Hutter simulations of the triangular initial deposit experiment: Tem-
poral evolution of free surface shape(sand). Outline of the free surface during the granular
flow of sand particles at 50◦ inclination angle depicted for time steps of 0.04s. Experimentally
observed shapes are depicted in gray.

As in the rectangular case, the simulations are capable of describing the later stages

of the granular flow geometry for both PVC and sand but fail to predict the initialization

as the simulated flow spreads to fast (Figs. 6.34 and 6.35). The similarity between the

free surface shape evolutions simulated for PVC and sand, indicated that the simulation
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Figure 6.36 – Savage-Hutter simulations of the triangular initial deposit experiment: Tem-
poral evolution of spatial mean velocity distribution(PVC). Simulated mean velocities over
the complete observed area during the triangular initial deposit experiment experiment with
PVC are displayed by a red line. Mean velocities of the experiment are depicted by the black
lines, the gray area displayes the variance of the mean for the single measurements.

are almost independent of the material. Comparison of the simulated mean velocity evo-

lution with measured velocities (Figs. 6.36 and 6.37) reveals a good agreement during

the first time steps for both PVC and sand. Thereafter, the simulated velocities are too

high, especially for PVC. Additionally, the front positions are moving much faster in the

downstream position as expected. This can be explained by the fast spreading of the sim-

ulated flow into the channel. Nevertheless, the velocity gradient over the channel length

is approximated well by the simulations. Especially for sand, the simulated velocity is in

relatively good agreement with the upper boundary of the variance range. The measured

velocity profiles indicate the highest velocity at the free surface of the flow (Figs. 6.25

and 6.26). Thus, it seems that the high mean velocity in the depth-averaged simulations

represents rather the free surface velocity than the mean velocity. This is in contrast to
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Figure 6.37 – Savage-Hutter simulations of the triangular initial deposit experiment: Tem-
poral evolution of spatial mean velocity distribution(sand). Simulated mean velocities over
the complete observed area during the triangular initial deposit experiment experiment with
sand are displayed by a red line. Mean velocities of the experiment are depicted by the black
lines, the gray area displayes the variance of the mean for the single measurements.

the essence of the depth-averaged models, which assume the whole material to slide with

the same, basal velocity. However, velocity tendencies and orders of magnitude are well

captured in both cases.

The overestimated velocity of the simulated flow is reflected in the evolution of the

resting and fluidized volume fractions: for both PVC and sand higher rates of outflow are

observed, resulting in a shorter flow time than observed in the experiment (Fig. 6.38). In

contrast to that, the fluidization occurs slower in the simulations. This can be explained

by the depth-averaged and pressure driven nature of the simulation: upon opening of

the gate, a high pressure gradient exists, which causes the first columns of the material

to collapse and then results in a rarefied wave being transported through the material

until the end of the initial deposit is reached and finally fluidized. In the experimentally
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Figure 6.38 – Savage-Hutter simulations of the triangular initial deposit experiment: Tem-
poral evolution of flowing volume. Simulated temporal evolution of the flowing volume
fraction (VF) and the total volume (VT ) during the triangular initial deposit experiment of
PVC and sand particles at 50◦ inclination angle in comparison to the measured volume (de-
picted in light red and gray). Vertical dashed lines mark (from left to right) the initial fluidiza-
tion phase, the constant outflow phase and the phase in which the mass leaves the observed
area during the experiment. The outflow rate is calculated by a linear fit (black dotted line) to
the curve in the constant outflow phase. The respective outflow rates for the simulated curves
are given in the graphs.
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Figure 6.39 – Savage-Hutter simulations of the triangular initial deposit experiment: Flow
front and rear position. Simulated temporal evolution of PVC and sand flow front and rear
position for 50◦ inclination angle in comparison to the measured positions (depicted in light
red and gray).
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observed, gravity driven flow, the fluidization at the gate is accompanied by a slipping of

the complete block (Fig. 6.21). In correlation with this observation, the simulated rear of

the flow is first lagging the experimental one, but then moves faster than observed in the

experiment towards the end of the experiment and thus reaches the end of the observed

area earlier. The simulated front position of the flow moves faster than the experimental

one throughout the experiment (Fig. 6.39). This observation is true for PVC and sand.

Nevertheless, the qualitative differences between the two materials are well captured by

the simulations.

Taken together, the simulations are well suited to predict the geometry of flows after

the initiation phase and yield reasonable predictions for final depositions in case they

occur. Additionally, they are capable of discriminating behavior of PVC and sand just by

taking the internal and bottom sliding friction angle into account. On the other hand,

the simulations fail to predict the dynamics occurring during the initiation of the flow

and the time scales in which the experiment evolved and mean velocities are constantly

overestimated.

6.2.3 Non-depth-averaged numerical simulations

The non-depth-averaged character of the simulations developed in this study using the

OpenFOAM® software enables the simulation of all parameters described in the experi-

mental section. As mentioned above, simple Coulomb-type friction was chosen as rhe-

ological model. For the bottom friction, preliminary simulations (data not shown) sug-

gested that best agreements with observed velocity profiles were achieved when the bot-

tom friction angle was assumed to be equal to the internal friction angle of the material.

This condition is implemented in the simulation by setting the velocity to u = 0 at the

bottom of the channel (stick condition).

6.2.3.1 Rectangular container

Due to the non-depth-averaged character of the simulations, the velocity profile and fill-

ing parameters of the simulated flow (Fig. 6.40) can be compared to the PIV results of

the experiments (Fig. 6.11). The shape of the fluidized fraction and the time-scales are

well captured for all three lower inclination angles (0◦, 10◦ and 20◦). Also the velocity

profile is qualitatively well predicted but the simulated velocities are slightly lower than

the observed ones. The influence of the inclination angle on the flow behavior is well cap-

tured by the simulation: the fluidized fraction as well as the velocities increase for higher

inclination angles. For the highest inclination angle (30◦), which causes the material to

be completely fluidized during the experiment, the complete fluidization is not predicted

by the simulation due to the assumed stick condition (Fig. 6.41).
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Figure 6.40 – OpenFOAM® simulations of draining of a rectangular container: Overview
on velocity fields for small inclination angles. Overlay of simulated velocity fields with
simulated shape of the granular flow of PVC particles during the draining of a rectangular
container at 0◦, 10◦ and 20◦ inclination angle. Velocities in single patches corresponding to
the numerical grid are represented by a heat map (reaching from blue for the minimal velocity
to red for the maximal velocity). Direction of the velocities are depicted by arrows, the length
of the arrows corresponds to the magnitude. For a better overview, only arrows for each tenth
patch in x-direction and every fourth patch in y-direction are shown.
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Figure 6.41 – OpenFOAM® simulations of draining of a rectangular container: Overview
on velocity fields for 30◦ inclination angle. Overlay of simulated velocity fields with sim-
ulated shape of the granular flow of PVC particles during the draining of a rectangular con-
tainer at 30◦ inclination angle. Velocities in single patches corresponding to the numerical
grid are represented by a heat map (reaching from blue for the minimal velocity to red for
the maximal velocity). Direction of the velocities are depicted by arrows, the length of the
arrows corresponds to the magnitude. For a better overview, only arrows for each tenth patch
in x-direction and every fourth patch in y-direction are shown.

Apart from this, especially the simulated initialization phase is in good agreement

with the experimental data concerning both the shape of the fluidized fraction and the

velocity profile. The temporal volume evolution during the initialization is best predicted

for 20◦ and 30◦ inclination (Fig. 6.42). Here, the simulation predicts the observed flow

both qualitatively and quantitatively. For 0◦ and 10◦, the simulation slightly underesti-

mates the volume as well as the total flow time and fails to predict the phase of constant

flow volume. Despite these slight deviations from the measured events, the simulations

presented here are clearly superior to the depth-averaged simulations, which are inca-

pable of distinguishing between moving and resting phase and fail in the prediction of

time-scales for this experiment. Additionally, in contrast to the depth-averaged model,

the simulations with OpenFOAM® are well capable of predicting the initial area of mo-
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Figure 6.42 – OpenFOAM® simulations of draining of a rectangular container: Temporal
evolution of flowing volume. Simulated temporal evolution of the flowing volume fraction
(VF) and the total volume (VT ) during the draining of a rectangular container filled with
PVC particles at 0◦, 10◦, 20◦ and 30◦ inclination angle. Vertical dashed lines mark (from left
to right) the initial fluidization phase, the constant outflow phase and the phase in which
the mass comes to rest again (0◦, 10◦ and 20◦). The light red and gray lines represent the
measured volume evolution.
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Figure 6.43 – OpenFOAM® simulations of draining of a rectangular container: Initial area
of motion. Simulated outline of the initial mobilized fraction of PVC particles for 0◦ (blue),
10◦ (green) and 20◦ (red) inclination angle.
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Figure 6.44 – OpenFOAM® simulations of draining of a rectangular container: Final de-
posit. Simulated shape of the final deposit in the starting zone of PVC flow for 0◦, 10◦ and
20◦ inclination angle (black lines). Gray lines represent the measured outline. The vertical
dashed black lines mark the position of the gate.
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Figure 6.45 – OpenFOAM® simulations of draining of a rectangular container: Maximal
flow height in the observed area. Simulated temporal evolution of the maximal flow height
of PVC particles perpendicular to the solid-fluid interface for 0◦, 10◦, 20◦ and 30◦ inclination
angle. Gray lines represent experimentally observed maximal flow heights.
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Figure 6.46 – OpenFOAM® simulations of draining of a rectangular container: Temporal
evolution of free surface shape at 0◦ inclination angle. Simulated outline of the free surface
during the granular flow of PVC particles at 0◦ inclination angle depicted for time steps of
0.04s. The light gray lines represent the experimentally observed shapes.
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Figure 6.47 – OpenFOAM® simulations of draining of a rectangular container: Shape of
fluidized area for 0◦ inclination angle. The fluidized area of the PVC flow (defined as α1 >
0.5 and |u| > 0.01m/s) is outlined in gray. The solid-fluid interface (red line) is obtained by
smoothing of the calculated interface with a running average. Flow heights (black lines) are
determined as lines perpendicular to local linear fits to the solid-fluid interface.
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Figure 6.48 – OpenFOAM® simulations of draining of a rectangular container: Temporal
evolution of flow height. Simulated temporal evolution of PVC flow height at 0◦ inclination
angle perpendicular to the soilid-fluid interface.
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Figure 6.49 – OpenFOAM® simulations of draining of a rectangular container: Flow front
and rear position. Simulated temporal evolution of PVC flow front and rear position for 0◦

inclination angle. Vertical dashed lines mark (from left to right) the initial fluidization phase,
the constant outflow phase and the phase in which the mass comes to rest again during the
experiment. Experimental data is depicted in light red and gray.

tion (Fig. 6.43). The triangular shape as well as the size increase of this area for higher

inclination angles are in good agreement with the experimental observations. Quanti-

tatively, the size of the mobilized fraction is well predicted for 10◦ and slightly over-

estimated or underestimated for 20◦ and 0◦, respectively. The shape of the final depo-

sition is well predicted for all inclination angles (Fig. 6.44) as it was already observed

for the depth-averaged simulations (Fig. 6.31). Due to the possibility of distinguishing

between fluidized and solid phase, the evolution of the maximum flow height can be de-

picted for the OpenFOAM® simulations (Fig. 6.45). Qualitatively, the evolution of this

fluidized fraction is well predicted: the simulations display an exponentially decreasing

maximal flow height. Quantitatively the flow height is underestimated by the simula-

tions.

Concerning the shape evolution of the free surface for the 0◦ case, the simulation

yields a good prediction of the first time-steps and is, as suggested by the good predic-

tion of the initial area of motion, able to predict the shape conservation in the beginning.

Nevertheless, the spreading of the flow occurs slightly in advance in the simulation (Fig.

6.46). In accordance with this observation, also the shape evolution of the fluidized frac-

tion is well predicted by the simulation, although the height of the flowing fraction is

slightly underestimated as described before (Figs. 6.47 and 6.48). Especially the shape

and position of the solid-fluid interface are in good agreement with the experiment (Fig.

6.18).

Qualitatively, the spreading of the flow front position into the channel and its sub-

sequent retraction are well predicted by the simulations (Fig. 6.49). Nevertheless, here
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again a slight deviation in time scales is observed. As suggested by the good prediction

of the solid- fluid interface, the rear position of the flow is exactly predicted by the simu-

lation.

Taken together, the non-depth-averaged simulations with OpenFOAM® are clearly su-

perior to the depth-averaged simulations because they are able to predict velocity profiles

and thus right fluidized volumes and the initial area. Additionally, time-scales are better

captured.

6.2.3.2 Triangular initial deposit

At the high inclination angle of 50◦ employed for the dam break with triangular initial

deposit , the OpenFOAM® simulations correctly predict the fluidization of the complete

material (Fig. 6.50). The velocity profile is also well predicted: the highest velocities are

observed at the flow front and at the surface of the flow. A slight difference to the ex-

periment is observed in the shape evolution of the material, which is simulated to spread

out stronger than observed in the experiment. This is again a consequence of the stick

condition.

The flowing volume evolution over time is qualitatively well described by the simu-

lations but is slightly underestimated (Fig. 6.51). This is a consequence of the incom-

pressibility assumption of the simulation, which does not allow volume increase due to

dilatancy. Thus, also the outflow rates for both PVC and sand are underestimated by

the simulation. Nevertheless, the tendency of a higher outflow rate for PVC is predicted

correctly. Compared to the depth-averaged Savage-Hutter simulations, the initial flu-

idization is better described by the non-depth-averaged OpenFOAM® simulations. Non

of the simulations correctly predicts the outflow rate in the range of the errors. The over-

estimation of the Savage-Hutter simulations (1.85ls−1 for PVC and 0.77ls−1 for sand) and

the underestimation of the OpenFOAM® simulations (0.62ls−1 for PVC and 1.43ls−1 for

sand) are in the same range, thus non of the simulations proves to be superior for this

parameter.

As suggested by the velocity fields, the OpenFOAM® simulations yield a good predic-

tion of the flow front position (Fig. 6.52), which is not the case for the depth-averaged

simulations. The rear of the simulated flow lags behind the experimentally observed rear,

again due to the stick condition. Again, it becomes clear that the tendency of a higher out-

flow rate for PVC is predicted correctly.

The simulated evolution of the free surface shape reveals a good agreement with the

experimental data (Fig. 6.53): the shape preservation and the flow height are well pre-

dicted. In this, the OpenFOAM® simulations are superior to the depth-averaged simu-

lations. However, they also fail to simulate the projection of material observed in the

experiment.



126 6 Comparison between numerical simulations and experiments

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

Po
si
ti
on
y
[m

]

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

Position x [m]
0

0.1

Position x [m]

0 0.5 1 1.5 2 2.5

Velocity Magnitude |u|
[
ms−1

]
t = 0.00s

t = 0.04s

t = 0.08s

t = 0.12s

t = 0.16s

t = 0.20s

t = 0.40s

t = 0.60s

t = 0.80s

t = 0.00s

t = 0.04s

t = 0.08s

t = 0.12s

t = 0.16s

t = 0.20s

t = 0.40s

t = 0.60s

t = 0.80s

sandPVC

Figure 6.50 – OpenFOAM® simulations of the triangular initial deposit experiment:
Overview on velocity fields. Overlay of simulated velocity fields with simulated shape of
the granular flow of PVC (left panel) and sand (right panel) particles during the triangular
initial deposit experiment at 50◦ inclination angle. Velocities in single patches correspond-
ing to the numerical grid are represented by a heat map (reaching from blue for the minimal
velocity to red for the maximal velocity). Direction of the velocities are depicted by arrows,
the length of the arrows corresponds to the magnitude. For a better overview, only arrows for
each tenth patch in x-direction and every fourth patch in y-direction are shown.
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Figure 6.51 – OpenFOAM® simulations of the triangular initial deposit experiment: Tem-
poral evolution of flowing volume. Simulated temporal evolution of the flowing volume
fraction (VF) and the total volume (VT ) during the triangular initial deposit experiment of
PVC and sand particles at 50◦ inclination angle in comparison to the measured volume (de-
picted in light red and gray). Vertical dashed lines mark (from left to right) the initial fluidiza-
tion phase, the constant outflow phase and the phase in which the mass leaves the observed
area during the experiment. The outflow rate is calculated by a linear fit (black dotted line) to
the curve in the constant outflow phase. The respective outflow rates for the simulated curves
are given in the graphs.
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Figure 6.52 – OpenFOAM® simulations of the triangular initial deposit experiment: Flow
front and rear position. Simulated temporal evolution of PVC and sand flow front and rear
position for 50◦ inclination angle in comparison to the measured positions (depicted in light
red and gray).
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Figure 6.53 – OpenFOAM® simulations of the triangular initial deposit experiment: Tem-
poral evolution of free surface shape. Outline of the free surface during the granular flow of
PVC and sand particles at 50◦ inclination angle depicted for time steps of 0.04s. Experimen-
tally observed shapes are depicted in gray.

With the non-depth-averaged simulation, it is possible to predict velocity profiles with

the OpenFOAM® simulations. The simulated profiles for both PVC and sand at the gate

display a striking similarity to the measured profiles (Figs. 6.54 and 6.55). This is also

reflected in a very accurate prediction of the strain rate and slip velocity evolution over

time. The non-depth-averaged simulations further allow to compare simulated spatial

velocity profiles over the complete observed area to the measured profiles (Figs. 6.56 and

6.57). As for the velocity profile at the gate position, a very good agreement between

simulations and experiments are observed for PVC and sand. Both the mean velocities

and the strain rates depicted by the variance are in good agreement between experiment

and simulation.

In summary, the OpenFOAM® simulations are well capable of predicting the velocity

profiles for the triangular initial deposit experiment. Strong deviations from the observed

behavior are only observed in the flow volume due to the incompressibility assumption

in the simulations.
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Figure 6.54 –OpenFOAM® simulations of the triangular initial deposit experiment: Veloc-
ity profiles at gate position (x = 0). Upper panel: Simulated y-direction dependent velocity
profiles for the triangular initial deposit experiment experiment with PVC at the position of
the gate (x = 0). Time steps are color coded as in Fig. 6.53. The included panel in the upper
left corner depicts the height evolution of the simulated flow at the gate position. Lower left
panel: Strain rate γ̇ calculated from linear regression fitted to the velocity profiles. Lower
right panel: Slip velocity uslip calculated from linear regression fitted to the velocity profiles.



130 6 Comparison between numerical simulations and experiments

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0.0

0.5

1.0

1.5

Position y [m]

V
el
oc
it
y
u
[m
/s
]

0.00

0.16

0.32

0.48

Time t [s]

0.0 0.3 0.6
0.0
0.1
0.2

t [s]

h
[m

]

0 0.2 0.4 0.6
0
5

10
15
20

Time t [s]

γ̇
[m

]

0 0.2 0.4 0.6
0

0.5

1

Time t [s]

u
sl
ip
[m
/s
]

Figure 6.55 –OpenFOAM® simulations of the triangular initial deposit experiment: Veloc-
ity profiles at gate position (x = 0). Upper panel: Simulated y-direction dependent velocity
profiles for the triangular initial deposit experiment experiment with sand at the position of
the gate (x = 0). Time steps are color coded as in Fig. 6.53. The included panel in the upper
left corner depicts the height evolution of the simulated flow at the gate position. Lower left
panel: Strain rate γ̇ calculated from linear regression fitted to the velocity profiles. Lower
right panel: Slip velocity uslip calculated from linear regression fitted to the velocity profiles.
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Figure 6.56 – OpenFOAM® simulations of the triangular initial deposit experiment: Tem-
poral evolution of spatial velocity profiles for PVC. Simulated mean velocities over the com-
plete observed area during the triangular initial deposit experiment with PVC are depicted by
the red lines, light red lines indicate the variance. Experimentally measured mean velocities
are depicted in black with gray variance lines.
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Figure 6.57 – OpenFOAM® simulations of the triangular initial deposit experiment: Tem-
poral evolution of spatial velocity profiles for sand. Simulated mean velocities over the
complete observed area during the triangular initial deposit experiment with sand are de-
picted by the red lines, light red lines indicate the variance. Experimentally measured mean
velocities are depicted in black with gray variance lines.
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6.3 Undisturbed bottom sliding and velocity profiles

To mimic events taking place during the undisturbed flow of a granular material down a

slope, an undisturbed flow of a large volume of material down the channel is considered.

6.3.1 Experimental description

To consider steady-state conditions of an undisturbed flow, the draining of a reservoir

filled with 30l of granular material (PVC and sand) at an inclination of ζ = 50◦ was

recorded (Fig. 6.58). The orifice of the channel had a height of 0.15m. Here, a clear differ-
ence for the two materials is visible: the flow height for sand is lower than for PVC. This

observation can be explained by the higher internal friction of sand: it causes stronger

energy dissipation through friction between particles during the silo draining and thus a

slower emptying of the silo.

First, a sector in 0.55m to 1.55m distance to the gate is observed. In Figure 6.59, the

height profile and the mean velocities for this area are displayed. The height monoton-

ically decreases from h(x = 0.6m) = 3.1cm to h(x = 1.5m) = 2.1cm for PVC and from

h(x = 0.6m) = 2.4cm to h(x = 1.5m) = 1.6cm for sand. Thus, although the sand par-

ticles form a thinner steady-state flow, the rate of height decrease is similar for both

materials. While the flow height decreases, the mean velocity increases from um(x =

0.6m) = 2.2ms−1 to um(x = 1.5m) = 3.5ms−1 for PVC and um(x = 0.6m) = 1.9ms−1 to

a maximum value of um(x = 1.5m) = 2.4ms−1 for sand. Despite these small differences
in the mean values of the velocities for PVC and sand, their values are largely the same

in the range of errors. The relatively large observed errors in the height profile can be

explained by the diameter of the particles d = 4mm in the case of PVC: depending on

the position of the particle at the moment of observation variations of about the radius

length are observed. For the sand particles, the PIV recording is less smooth although

the particles are smaller d = 0.71 − 1.25mm. This can be explained by first the low con-

trast between the sand and the dark background compared to the high contrast between

the background and the white PVC particles. Second, the height profile displays in-

deed stronger variation in the case of sand, as demonstrated by the detailed recordings

of channel sections: due to the resolution limitation of the camera at an observed range

of (sm→px = 1m/1280px = 7.8125 · 10−4m/px), no further detailed resolution of the height

profile and velocity field are possible. Especially at x = 1.5m, the flow height of 2.1cm

is only displayed by 27 Pixels. Therefore, smaller ranges of the channel at (x1 = 0.5m,

x2 = 1.0m, x3 = 1.5m) were recorded to enable the necessary high resolution to capture

a detailed height and velocity profile of the steady-state flow. As mentioned above, sand

displays much stronger variation in the height profile compared to PVC (Fig. 6.59). Apart
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Figure 6.58 – Undisturbed flow: PIV measurements. Overlay of velocity fields measured
by PIV with pictures of the granular flow of PVC and sand particles during an unditurbed
flow at 50◦ inclination angle. The two upper panels display an overview on the observed
area (1.0 m, starting at 0.5 m distance from the gate) for the two materials. The lower panels
represent close up views at 0.5 m, 1m and 1.5 m distance from the gate. Magnitudes of
mean velocities in 5mm x 5mm patches (upper two panels) and 2mm x 2mm patches (lower
panels) are represented by a heat map (reaching from blue for the minimal velocity to red for
the maximal velocity). Direction of the velocities are depicted by arrows, the length of the
arrows corresponds to the magnitude. For a better overview, only arrows for each third patch
in x-direction and every other patch in y-direction are shown.
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Figure 6.59 – Undisturbed flow: Height and velocity profiles. (a) and (b): Flow height
distribution over the observed area for PVC (a) and sand (b). Depicted flow height represents
the mean of 500 pictures (one second), error bands represent standard deviation from the
mean. (c) and (d): Spatial mean velocity distribution over the observed area for PVC (c) and
sand (d) in x-direction (u, parallel to channel). Depicted velocities are mean values of the
mean velocities in 500 pictures (one second), error bands represent standard deviation from
the mean.

from these variations, the detailed height profiles remain constant over the observed time

at all three recorded locations, indicating that indeed a steady-state is observed (Fig. 6.60

(a)). At all three points in the channel a linear velocity profile, which is slightly increasing

towards the top of the flow, is observed (Fig. 6.60). It becomes obvious that not only the

mean velocities (Fig. 6.59) but also the spatial velocity profiles in y-direction for sand and

PVC are the same in the range of the errors. The most important component determining

the flow of the whole granular mass is the bottom sliding velocity, which increases from

1.5ms−1 at 0.5m to 3.3ms−1 at 1.5m (Fig. 6.60 (b)).

For that reason, the next experiment focuses on the slip velocity at the bottom of

the channel. The same experiment as described before was recorded from the bottom

of the channel at a range form x = 0m to x = 1m and the velocity was determined at
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Figure 6.60 – Undisturbed flow: Temporal height evolution and velocity profiles. (a) Tem-
poral flow height evolution at 0.5 m, 1 m and 1.5 m distance from the gate for PVC and
sand. (b) Velocity profiles in y-direction (perpendicular to channel bottom) at 0.5 m, 1 m and
1.5 m distance from the gate for PVC and sand. Mean velocities recorded in 500 pictures (one
second) are depicted with standard deviations. Straight lines represent a linear fit for each
profile.
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Figure 6.61 – Undisturbed flow: Bottom sliding velocity. The bottom sliding velocity of
PVC particles was captured by recording a picture series from below the channel in the same
set up as in Fig. 6.58 to 6.60 and applying the PIV method to the pictures. The respective
calculated velocities at the middle of the channel bottom are depicted for positions from 0 to
1 m from the gate.

the middle of the channel (Fig. 6.61). This revealed an increasing bottom slip velocity

over the observed area, while the acceleration is decreasing over this range, resulting in a

square-root function shape of the velocity profile.

6.3.2 Analytical predictions using the Savage-Hutter model

For the simple case of an undisturbed steady-state flow, the Savage-Hutter type model

equations can be solved analytically. For this purpose, exact analytical solution of the

equations presented by Pudasaini (2011) are employed to compare the resulting calcu-

lated flow heights and velocities to the experiments. The equations require the flow

height (h0) and the flow velocity (u0) at a certain channel position to predict the flow

further down an inclined plane:

u = 2

√
1
3
(2sx − 2sx0 +u20 +2βh0)cos


arccos

{
−βh0u0

(
3

(2sx−2sx0+u20+2βh0)

) 3
2
}

3

 (6.1)
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Figure 6.62 – Predictions for spatial undisturbed flow height evolution by analytic solu-
tions of the Savage-Hutter model at distinct points of the undisturbed flow. Spatial height
distributions over the area from 0.5 m to 1.5 m distance from the orifice for PVC and sand
were calculated employing the measured flow velocities and heights (for detailed procedure
see text). The measured flow heights are depicted in blue. Calculations were done for all three
experimentally observed points (0.5 m (continuous lines), 1 m (dashed lines) and 1.5 m (dot-
ted lines) distance from the orifice). Velocities employed for the calculation were the mean
velocity (umean), the velocity at the free surface (uf reesurf ace) and the velocity at the bottom of
the flow (ubottom) at the respective point.
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Figure 6.63 – Analytical predictions for spatial undisturbed flow height and velocity evo-
lution by the Savage-Hutter model over 1.5 m undisturbed flow. (a) and (b): Calculated
flow height distribution over the observed area for PVC (a) and sand (b) (red line). Experi-
mental data from Fig. 6.59 is included for comparison (black line and gray error bands). (c)
and (d): Calculated mean velocity distribution over the observed area for PVC (c) and sand
(d) in x-direction (u, parallel to channel) (red line). Experimental data from Fig. 6.59 (black
line and gray error bands) and the experimentally observed free surface velocity (green line)
are included for comparison .

where u is the depth-averaged down-slope velocity. The material parameters φ and δ and

the inclination angle ζ are included in this solution via the variable s:

s = (sinζ − tanδcosζ) (6.2)

and the so-called pressure parameter β, which depends on gravity and the earth pres-

sure coefficient kact/pass = kact/pas(φ,δ):

β = gK cosζ. (6.3)

The comparison of the Savage-Hutter simulations for the dam break scenarios at
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ζ = 50◦ inclination angle with the experimental findings suggests that the simulated

mean velocities rather agree with the free surface velocities than with the basal velocities

(see section 6.2.2.2). For this reason, not only the experimentally observed bottom sliding

velocity but also the free surface and mean velocities were considered for the analytical

description of the undisturbed flow. By inserting the measured velocities and height val-

ues at one point of the channel in the equations presented above, the height evolution

over the complete observed area can be determined (h = u0h0/u). A separate height evo-

lution is calculated for each of the three considered points in the detailed measurements

(at distances 0.5, 1 and 1.5 m from the gate) (Fig. 6.62). These height evolutions can now

be evaluated according to their precision in predicting the correct flow height at the other

two points. As suggested by the results of the dam break experiments, the free surface

velocity at one point is suited best to predict the flow height at the other two points for

both sand and PVC. In the case of PVC, the values calculated using the first two points

precisely predict the respective other points, while a slight deviation is observed for the

third point. For sand, the values of the first point allow a prediction of both other points

in the range of the errors.

To evaluate the predictive power of the calculations over the complete observed area,

height and velocity evolution for PVC and sand is concerned using the measured height

and free surface velocity at 1 m distance as h0 and u0 (Fig. 6.63). Except for the first 20

cm, the calculations fits to the measured flow height in the whole observed area within

the error range for both PVC and sand. A similar observation is made for the velocities: in

the first 20 cm the calculated velocities rather represent the mean velocities, while they

yield a good prediction for the free surface velocity in the other parts of the observed

area.

Taken together, the results demonstrate that the height and velocity evolution of a

simple, undisturbed steady-state flow can be described analytical solution for the Savage-

Hutter type model. Nevertheless, precise predictions are only possible when taking the

free surface velocity as input for the calculations.

6.3.3 Non-depth-averaged simulations

The non-depth-averaged simulations with OpenFOAM® allow to predict velocity profiles

for the undisturbed flow in y-direction. For this purpose, the measured velocity profiles

at 0.5 m distance from the gate where used as starting conditions to predict the profiles

at 1 m and 1.5 m distance from the gate (Fig. 6.64). Here, it has to be noted that the

simulated velocities are zero at the bottom due to employed stick condition. Apart from

this difference to the experiment, the linear character of the velocity profiles is well pre-

dicted from a height of 0.7 cm on. Regarding the slope of the velocity profile, a very

good agreement is observed between the experiment and the simulations at 1 m distance
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Figure 6.64 – OpenFOAM® simulations of undisturbed flow: Velocity profiles in
y-direction. Simulated velocity profiles in y-direction (perpendicular to channel bottom) at
0.5 m, 1 m and 1.5 m distance from the gate for PVC and sand. For comparison the experi-
mentally observed velocity profiles are included (light green and light red).

from the gate for both PVC and sand. At 1.5 m distance, the simulated profile displays a

lower slope compared to the experiment. Concerning the amplitude of the velocity, the

simulations for PVC at both positions are in good agreement with the measured profiles,

while the velocity of sand is underestimated by the simulation. Thus, the simulation is

not able to predict the material independent flow behavior observed for this experiment.

This is likely caused by the stick condition, which assumes the bottom friction angle to

be equal to the internal friction angle. The higher internal friction angle of sand thus has

a stronger influence and decelerated the simulated flow to strong.

When concerning the broader view on the channel over one meter flow, the simulation

well predicts both the flow height and the mean velocity for PVC and sand (Fig. 6.65).

The velocity is slightly underestimated but within the variation band the measurements

and simulations agree well. Differences in the broadness of the variation band can be

either explained by the higher density of concerned points in the simulation or by the

strong variation in the simulated velocity profiles caused by the stick condition.

Taken together, the simulation are able to predict velocity profiles in an undisturbed

flow but with some inaccuracy due to the employed stick condition.
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Figure 6.65 – OpenFOAM® simulations of undisturbed flow: Height and velocity profiles.
(a) and (b): Simulated flow height distribution over the observed area for PVC (a) and sand (b)
(red line). Experimental data from Fig. 6.59 is included for comparison (black line and gray
error bands). (c) and (d): Simulated mean velocity distribution over the observed area for PVC
and sand in x-direction (u, parallel to channel) (red line, light red lines represent standard
deviation from the mean. Experimental data from Fig. 6.59 is included for comparison (black
line and gray error bands).

6.4 Obstacle inside channel

As a first case of an obstacle encountered by the granular flow in the channel, an obstacle

which can be completely overcome by the material is considered. Therefore, a flow at ζ =

50◦ as described in section 6.3 is slowed down by an obstacle decreasing the inclination

to 5◦ on a section of 17 cm at a position of 76 cm down the channel (Fig. 6.66). With

this experimental set-up, the granular flow is disturbed but not stopped, similar to the

situation found when an avalanche flows over a protection construct built over a road

along a mountain side.
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Figure 6.66 – Encountering of an obstacle: PIV measurements. Overlay of velocity fields
measured by PIV with pictures of the granular flow of PVC and sand particles for a flow
encountering an obstacle at 50◦ inclination angle. The obstacle surface (dashed white line)
decreases the inclination to 5◦ for a path lenght of 17cm starting at 76cm distance from the
orifice. Magnitudes of mean velocities in 5mm x 5mm patches are represented by a heat map
(reaching from blue for the minimal velocity to red for the maximal velocity). Direction of
the velocities are depicted by arrows, the length of the arrows corresponds to the magnitude.
For a better overview, only arrows for each third patch in x-direction and every other patch
in y-direction are shown. Note that in this section x-coordinates are 0 at the starting point of
the obstacle.
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Figure 6.67 – Encountering of an obstacle: Velocity profiles for PVC. Spatial mean velocity
distribution in y′-direction in front of the obstacle (black line, x′ = −8.2cm) and on the ob-
stacle (red line, x′ = 8.2cm), where the x′-coordinate follows the bottom profile including the
obstacle and y′ is perpendicular to this profile. Depicted velocities are mean velocities in 630
pictures (one second), error bars represent standard deviation from the mean. Dashed and
dotted lines and respective equations represent a linear fit to the measured values.
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Figure 6.68 – Encountering of an obstacle: Temporal evolution of sand height profiles
in front of the obstacle. Temporal height evolution of total material (black line), flowing
fraction (red line) and deposited fraction (green line) at position x′ = −5cm.
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Figure 6.69 – Encountering of an obstacle: Temporal evolution of sand volumes. Tempo-
ral volume evolution of total material (black line), flowing fraction (red line) and deposited
fraction (green line) in an area reaching from x′ = −16.5cm to the end of the obstacle.
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Figure 6.70 – Encountering of an obstacle: Temporal evolution of PVC volumes. Tempo-
ral volume evolution of total material (black line), flowing fraction (red line) and deposited
fraction (green line) in an area reaching from x′ = −16.5cm to the end of the obstacle.
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Figure 6.71 – Encountering of an obstacle: Temporal evolution of flow shape. Temporal
evolution of the flow outline for PVC and sand during the first seconds of the experiment.

6.4.1 Experimental findings

Here, two clear differences between the behavior of PVC and sand are observed. First,

the PVC flow is distracted stronger and returns to the channel bottom further down the

channel compared to the sand flow. Second, while the PVC stays completely fluidized, a

deposit is formed in front of the obstacle in the case of sand (Fig. 6.66). Due to this fact,

different parameters have to be considered for the two cases.

For PVC, the velocity profile before the impact and during the flow over the obsta-

cle can be considered (Fig. 6.67). As displayed in the PIV images (Fig. 6.66), the flow

is slowed down when hitting the obstacle and thus the height increases. The spatial

profile remains unchanged in linear form but with a higher strain rate on the obstacle

((18.2 ± 0.4)s−1 before the obstacle and (26.4 ± 0.6)s−1 on the obstacle). To describe the

formation of the deposition in the case of sand, the height profile over time and its fluid

and solid fraction at a position 5 cm in front of the obstacle (x = −5cm) are considered

(Fig. 6.68). Deposition of material occurs suddenly after about 1.5 s and remains almost

constant for the rest of the considered time. For about 1.5 s a steady-state flow is es-
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Figure 6.72 – Encountering of an obstacle: Flow geometry during steady state flow of PVC.
Flow geometry in the observed area at several time points during the steady state flow phase of
quasi constant flow height. The yellow and green boxes mark the areas which are considered
in detail in Fig. 6.74.

tablished in which a constant height of the fluidized material is observed. To illustrate

the evolution of the deposition, the evolution of the total volume and its fluid and solid

fractions are considered for both PVC and sand (Figs. 6.69 and 6.70). For sand similar

results as for the height evolution at one position are obtained. After 1.3 s the deposition

is formed and remains constant over the steady-state flow phase. Towards the end of the

experiment the deposited volume increases. This can be explained by the decrease in

material flowing down the channel towards the end of the experiment, which leads to a

decrease in pressure. The PVC graphic illustrates that a final deposition at the end of the

experiment is formed suddenly after about 3 s and then remains constant after about 4 s,

similar to the formation of the sand deposition during the flow.

Next, the geometry of the flow is further investigated. To analyze the events during

the first time-steps after encountering the obstacle before the steady-state flow is reached,

the flow geometry evolution over the entire observed area is considered for both PVC and

sand (Fig. 6.71). In the first time steps, the flow is much thinner than in the steady-state

period, resulting in a lower pressure at the bottom of the flow. This results in a reduced

bottom friction and thus in stronger distraction of the material by the obstacle. This

observation underpins the importance to consider initial processes in addition to steady-

state flows, since the three dimensional space affected by the flow is larger during the

first time-steps (the material “jumps” higher during the initial phase).
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Figure 6.73 – Encountering of an obstacle: Flow geometry during steady state flow of sand.
Flow geometry in the observed area at several time points during the steady state flow phase of
quasi constant flow height. The yellow and green boxes mark the areas which are considered
in detail in Fig. 6.75. The hatched area marks the deposit of sand in front of and on the
obstacle.

The flow geometry during the steady-state flow (Figs. 6.72 and 6.73) reveals that no

sharp shock front is formed. Considering the height profile of PVC measured perpendic-

ular to the channel bottom (Fig. 6.74), a smooth increase in height towards the obstacle

is observed. The increase starts 6 cm in front of the obstacle, marking the position at

which the influence of the obstacle on the flow becomes evident. In contrast to that, the

height profile perpendicular to the obstacle surface is almost constant over the complete

surface.

Because of the deposition during the sand experiment, again the complete material

and its solid and fluid fraction are considered for the height profiles perpendicular to the

channel bottom and the obstacle surface (Fig. 6.75). Here, the flow thickness begins to

increase at 12 cm upstream from the obstacle, indicating that the obstacle effects the sand
flow much earlier in the channel than the PVC flow. Deposit formation starts at -9 cm

and again a smooth increase in height both for the complete material and the deposit are

observed. The height of the fluid fraction remains constant over the complete length of

the obstacle, while the height of the deposition smoothly decreases starting at position

x′ = 6 cm (Fig. 6.75).

Calculation of the strain rate and slip velocity for PVC in the two areas (Fig.6.76)
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Figure 6.74 – Encountering of an obstacle: Flow height during steady state flow for PVC
in areas I and II. Detailed view on the flow height profile in the two boxes indicated in Fig.
6.72. Upper panel depicts the height profile in front of the obstacle (yellow box in Fig. 6.72),
lower panel corresponds to the green box. Depicted heights are mean values of 630 pictures
(one second), error bands represent standard deviation from the mean.
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Figure 6.75 – Encountering of an obstacle: Flow height during steady state flow for sand
in areas I and II.Detailed view on the flow height, deposit height and total material height in
front of the obstacle (left panel, corresponding to yellow box in Fig. 6.73) and on the obsta-
cle (right panel, corresponding to green box in Fig. 6.73) for the sand experiment. Depicted
heights are mean values of 630 pictures (one second), error bands represent standard devia-
tion from the mean.

reveals that although the height increases just from -6 cm on (Fig. 6.74), the decrease

in slip velocity is already observed at -13 cm. As a consequence of the deceleration an

increase in strain rate is visible at -13 cm as well. This suggests effects of the obstacle

starting at about -13 cm. At -6 cm the decreasing velocity is no longer compensated

by a higher strain rate but by the increase in flow height and the strain rate begins to

decrease again. On the obstacle, the flow is slowly accelerated until it reaches velocity

values as observed before influenced by the obstacle. The strain rate decreases steadily

on the obstacle and reaches its initial value towards the end of the obstacle. Due to the

deposit formation in the sand case, calculations of strain rates and slip velocities do not

make sense here for sand.

6.4.2 Savage-Hutter simulations

For Savage-Hutter type models, curvature radii have to be higher than the flow height.

With this restriction, a simulation of the abrupt change in inclination caused by the obsta-

cle in the experiment is not possible. Therefore, simulations are performed using the FB
function described in section 3.2 and adding up the height of the obstacle to the bottom

surface of the channel. Resulting flow heights and velocities predicted by this method

are depicted in Figure 6.77. It becomes obvious, that the results are largely independent

of the material and accordingly of the internal friction angle. Both height and velocity

evolution differ only in their initial values, but stay the same relative to each other during
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Figure 6.76 – Encountering of an obstacle: Strain rates and slip velocities for PVC in areas
I and II. Strain rates and slip velocities in front of the obstacle (upper panel) and on the
obstacle (lower panel). Strain rates and slip velocities are calculated from linear regression
over the velocity profile at each position averaged over one second (630 frames). Error bars
represent the standard deviation of the regression coefficients.
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Figure 6.77 – Savage-Hutter simulations of obstacle inside channel: Flow heights and ve-
locities. Savage-Hutter simulations were performed with the obstacle included in the height
function of the bottom surface. Depicted are flow heights (upper panel) and flow velocities
(lower panel) over the complete observed area.

the flow. This is in sharp contrast to the experimentally observed height and velocity evo-

lutions, which strongly differed between sand and PVC due to the deposition of material

in the case of sand. Additionally, the flow height is reduced when the simulated flow

hits the obstacle, whereas the opposite effect is observed in the experiment. The initial

velocity included in the simulations is again the free surface velocity. Thus, comparisons

with the measured slip velocity might not be adequate. Nevertheless, both the measured

slip velocity and the PIV measurements demonstrate that the flow is decelerated when

approaching the obstacle, while the simulations predict an acceleration. Also the values

of the velocity are about 10-fold overestimated by the simulation.

Taken together, the Savage-Hutter simulations are incapable of simulating the flow

behavior over an obstacle of the shape employed here.
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6.4.3 Non-depth-averaged simulations

Non-depth-averaged simulations for the interaction of the granular flow with an obstacle

were performed in an area starting 20 cm before the obstacle and ending at the highest

point of the obstacle. The area after the obstacle was excluded from the simulation due to

the enormous change in density of the granular material. To simulate such situations, a

variable density has to be included in the simulation, which is not topic to this work. The

simulated velocity field and filling parameters (Fig. 6.78) reveal that the OpenFOAM®

simulations are well capable to qualitatively predict the velocity fields for both sand and

PVC observed in Figure 6.66. The deceleration of the flow in front of the obstacle and the

resulting increase in flow height on the obstacle are well captured. Additionally, the sim-

ulations correctly predict the formation of a deposition on the obstacle for sand but not

for PVC. Velocity fields in front and on the obstacle are qualitatively well captured: low-

est velocities are observed at the bottom of the channel or the obstacle (deposition) and

increase towards the surface. The simulation also correctly predicts that higher surface

velocities are reached for PVC. Comparison of detailed velocity profiles in y-direction for

PVC in front of and on the obstacle reveal that the shape of the velocity profile is well pre-

dicted in front of the obstacle, while the actual velocities area constantly underestimated

by around 0.25ms−1 (Fig. 6.79). The velocity profile on the obstacle is predicted to be

more fluctuating than the actual observed profile but the simulated values vary around

the actual values: they slightly underestimate the observed values close to the bottom of

the channel and overestimate in higher layers (Fig. 6.79).

Figure 6.78 shows that the formation of a deposition in front of and on the obstacle

for the sand flow is predicted correctly. Detailed considerations on the total, flowing

fraction and deposition height over time reveal that the height of the flowing fraction is

well predicted throughout the steady-state phase (Fig. 6.80). In contrast, the deposition

formation and thus the total material height only reach the measured values at the end

of the steady-state phase due to a failure of the simulation to predict sudden changes

in flow height. Thus, the simulated formation of the deposition takes longer than the

observed deposit formation but the resulting flow and material heights after 3 seconds

of flow are correctly predicted, except for the height of the deposition, which is slightly

underestimated. The same hold true for the respective volumes (Fig. 6.81).

The Volume evolution of the PVC experiment is well captured by the simulations, both

quantitatively and qualitatively (Fig. 6.82). After one second, a steady-state is reached

and the simulations were stopped at this point. The formation of a steady state flow can

be visualized by the flow geometry evolution over time in the first part of the simulations

(Fig. 6.83): after about 0.8 seconds the geometry of the PVC flow remains practically con-

stant in shape. In contrast, the sand geometry only reaches a steady-state at 2.4 seconds.
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Therefore, the simulations in this case were carried out for 3 seconds. The flow thickness

and shape of PVC is very accurately predicted in front of the obstacle and on the first

half of the obstacle. On the second half of the obstacle it is slightly underestimated (Figs.

6.84 and 6.85). The detailed view on the flow thickness demonstrates that especially the

increase in flow height in front of the obstacle is well predicted.

In the case of sand, the deviations from the measured flow geometry deviates slightly

more from the measured geometry (Fig. 6.86). As suggested by the height evolution at

one position (Fig.6.80), the overall flow height is quite accurately predicted. Strong de-

viations from the measured flow height occur only at the position immediately in front

of the obstacle, where the simulation is incapable of predicting the sudden increase in

flow height and reaches the constant flow height on the obstacle earlier than the actually

observed (Fig. 6.87), resulting also in an overestimation of the total flow height at this

position. The formation of the deposition is well predicted in front of the obstacle. Cor-

related with the underestimated volume of the deposition (Fig. 6.81), the height of the

deposition and thus the total flow height is underestimated on the obstacle (Fig. 6.87).

As a consequence, the simulated deposition is thinner towards the end of the obstacle.

As suggested by the good prediction of the slope of the velocity profile in front of the

obstacle for PVC (Fig. 6.79), the strain rate is accurately predicted in front of the obstacle

until about x = −8cm in (Fig. 6.88 upper panel) and afterwards overestimated. The

slip velocity is accurately predicted to decrease towards the obstacle, but is constantly

underestimated as suggested by the velocity profile in Fig. 6.79. This underestimation of

the slip velocity continues until x = 11cm (Fig. 6.88 lower panel).
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Figure 6.78 – OpenFOAM® simulations of obstacle inside channel: Overview on velocity
fields. Overlay of simulated velocity fields with simulated shape during the flow encounter-
ing an obstacle inside the channel in a setup as described in Fig. 6.66. Velocities in single
patches corresponding to the numerical grid are represented by a heat map (reaching from
blue for the minimal velocity to red for the maximal velocity). Direction of the velocities
are depicted by arrows, the length of the arrows corresponds to the magnitude. For a better
overview, only arrows for each tenth patch in x-direction and every third patch in y-direction
are shown. Gray areas represent deposited material.
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Figure 6.79 – OpenFOAM® simulations of obstacle inside channel: Velocity profiles in
y′-direction for PVC. Simulated spatial mean velocity distribution in y′-direction in front of
the obstacle (black line, x′ = −8.2cm) and on the obstacle (red line, x′ = 8.2cm). For compari-
son, experimental results from Fig. 6.67 are included in light red and gray.
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Figure 6.80 – OpenFOAM® simulations of obstacle inside channel: Temporal evolution of
sand height profiles in front of the obstacle. Simulated temporal height evolution of total
material (black line), flowing fraction (red line) and deposited fraction (green line) at position
x′ = −5cm. For comparison, experimental results from Fig. 6.68 are included in light colors.
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Figure 6.81 – OpenFOAM® simulations of obstacle inside channel: Temporal evolution of
sand volumes. Simulated temporal volume evolution of total material (black line), flowing
fraction (red line) and deposited fraction (green line) in an area reaching from x′ = −16.5cm
to the end of the obstacle. For comparison, experimental results from Fig. 6.69 are included
in light colors.
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Figure 6.82 – OpenFOAM® simulations of obstacle inside channel: Temporal evolution of
PVC volumes. Simulated temporal volume evolution of total material (black line), flowing
fraction (red line) and deposited fraction (green line) in an area reaching from x′ = −16.5cm
to the end of the obstacle. For comparison, experimental results from Fig. 6.70 are included
in light colors.
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Figure 6.83 – OpenFOAM® simulations of obstacle inside channel: Temporal evolution of
flow shape. Simulated temporal evolution of the flow outline for PVC and sand during the
first seconds of the experiment.
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Figure 6.84 – OpenFOAM® simulations of obstacle inside channel: Flow geometry during
steady state flow of PVC. Simulated flow geometry in the observed area after one second of
simulation when a the steady state flow phase is reached (red line). The yellow and green
boxes mark the areas which are considered in detail Fig. 6.85. For better comparison, experi-
mental results from Fig. 6.72 are included in gray.
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Figure 6.85 – OpenFOAM® simulations of obstacle inside channel: Flow height during
steady state flow for PVC in areas I and II.Detailed view on the simulated flow height profile
(red line) in the two boxes indicated in Fig, 6.84. Upper panel depicts the height profile in
front of the obstacle (yellow box in Fig. 6.84), lower panel corresponds to the green box. For
better comparison experimental results from Fig. 6.74 are included (black lines and gray error
bands).
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Figure 6.86 – OpenFOAM® simulations of obstacle inside channel: Flow geometry during
steady state flow of sand. Simulated flow geometry in the observed area after three seconds
of simulation when a the steady state flow phase is reached (red line). The hatched area marks
the deposit of sand in front of and on the obstacle. For better comparison experimental results
from Fig. 6.73 are included in gray.
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Figure 6.87 – OpenFOAM® simulations of obstacle inside channel: Flow height during
steady state flow for sand in areas I and II. Detailed view on simulated flow height, deposit
height and total material height in front of the obstacle (left panel, corresponding to yellow
box in Fig. 6.86) and on the obstacle (right panel, corresponding to green box in Fig. 6.86)
for the sand case. For better comparison, experimental results from Fig. 6.75 are included in
light colors.
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Figure 6.88 – OpenFOAM® simulations of obstacle inside channel: Strain rates and slip
velocities for PVC. Strain rates and slip velocities in front of the obstacle (upper panel) and
on the obstacle (lower panel) calculated by regression analysis from the simulated velocity
profiles measured after one second. Error bars represent the standard deviation of the regres-
sion coefficients. For better comparison experimental results from Fig 6.76 are included in
light colors.
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6.5 Shock Formation at the end of a closed channel

Beside the observation of a granular material overflowing an obstacle, it is also important

to be able to predict the behavior of the material when being completely stopped by an

obstacle. This can be the case when an avalanche hits a defense structure, which are usu-

ally built perpendicular to the mountain slope, or the wall of a building. To mimic this

situation, the channel can be closed by a perpendicular wall at the end. Such experiments

have been performed before (Gray et al., 2003) and were also combined with PIV mea-

surements and depth-averaged simulations (Pudasaini et al., 2007; Pudasaini and Kröner,

2008), but the spatial and temporal resolution of the PIV was relatively low. Therefore,

in order to observe detailed flow evolutions and velocity fields with high temporal res-

olution during a shock formation for comparison with depth-averaged and non-depth-

averaged simulations, such experiments were included in this work.

6.5.1 Experimental findings

Seven experiments were recorded under the following set-ups: PVC flows at 40◦ and 50◦

inclination angle and inflow heights of 5, 10 and 15cm and an experiment with sand

at 50◦ and 10cm inflow height. Image sequences of the last 50cm of the channel were

recorded for each experiment and the volume of the granular material VT and the volume

of the fluidized fraction VF was extracted from these images. The PIV measurements il-

lustrate the abrupt deceleration of the flow (Fig. 6.89), resulting in the following shock

formation and propagation in the upstream direction: first the material flows up the per-

pendicular wall until a maximum height is reached, then deposition starts at the lowest

corner and the flow continues to overflow the deposit while constantly more material is

deposited. This results in an S-shaped flowing fraction and causes the shock front to

move in the upstream direction. Finally, a parabolic shaped deposition is formed. This

shock formation is observed for all experiments.

In order to analyze and compare the flow behavior during these different experiments

in more detail, graphics are scaled according to the volume influx. The temporal volume

evolution is shown in Figs. 6.90 and 6.91. All experiments display a very similar volume

evolution regardless of the inclination angle, inflow hight and material. Differences be-
tween the experiments are observed in the time scales: as expected, both an increase in

inflow height and inclination angle cause the shock process to happen faster (Fig.6.90).

Five phases of different flow behavior can be characterized: The first phase (I) is defined

as the time between the opening of the silo gate and time t = 0s when the front of the

granular flow impacts the wall. In the following phase (II) the granular flow is redirected

andmoving up the perpendicular wall. No deposition occurs in this phase. The transition
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Figure 6.89 – Shock formation: PIV measurements. Overlay of velocity fields measured
by PIV with pictures of the granular flow of PVC particles for a shock formation at the end
of a closed channel at 50◦ inclination angle and 10cm inflow height. Magnitudes of mean
velocities in 5mm x 5mm patches are represented by a heat map (reaching from blue for the
minimal velocity to red for the maximal velocity). Direction of the velocities are depicted by
arrows, the length of the arrows corresponds to the magnitude. For a better overview, only
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Note that in this section x coordinates are 0 at the wall at the end of the channel. Figure
continued on next page.
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Figure 6.90 – Shock formation: Temporal volume evolution of PVC. Temporal evolution of
total PVC volume (VT ) and flowing PVC volume (VF) in the observed area (50cm, starting at
position x = −50cm, corresponding to the area shown in Fig. 6.89) during the PVC flow for
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Figure 6.94 – Shock formation: Temporal evolution of flow geometry. Evolution of free
surface geometry during the shock formation for different inclination angles (40◦ and 50◦

PVC, 50◦ sand) at a fixed inflow height of 10cm. Differences in the volume of the final deposit
for sand and PVC at 50◦ inclination angle and 10cm inflow height can be explained by a
slightly lower starting volume employed in the sand case.
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Figure 6.95 – Shock formation: Temporal and spatial evolution of flow thickness for PVC.
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time-points during the shock formation for 50◦ inclination angle and 10cm inflow height.
Flow thickness is determined in a curvilinear coordinate system following the solid-fluid in-
terface. Colored lines represent the shock front (red), the maximal flow height and the shock
back (green).

to phase III is characterized by a stagnation of the flowing volume evolution, indicating

that the first grains are deposited. Throughout phase III the volume of the fluidized frac-

tion stays almost constant while the total volume increases linearly. Phase IV defines the

time in which the fluidized fraction starts to decrease until the entire material is at rest.

It should be noted here that the final volume is reached earlier than the end of phase IV

and that the remaining fluidized fraction consists of local rearrangements until all grains

are deposited at the beginning of phase V.

Another characteristic describing the flows is the temporal evolution of the shock po-

sition (Fig. 6.92). All shocks display a constant velocity, which decreases with increasing

inflow heights and is more or less independent of the inclination angle and the mate-

rial. Comparison of the temporal evolution of the deposit and height of the fluidized

fraction for PVC and sand at a fixed position (Fig. 6.93) reveals that in accordance with

the similar velocities, the shock reaches the position at a similar time for both materials

and a sudden increase in flow height occurs, followed by a slower but constant increase

for more than one second. The main differences between the two materials concern the
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solid-fluid interface: it is formed earlier in the PVC experiment, meaning that deposition

occurs earlier, resulting in a thinner fluidized layer for this material.

The shock can be further characterized by the geometry evolution of the deposit over

time (Fig. 6.94). Comparing 40◦ and 50◦ inclination angle, an obvious difference in the

shape of the steep shock front is observed: while for 50◦ inclination, angles of 90◦ and

above between the channel floor and the shock front are observed for all time points,

such steep slopes only occur during the very first time points for 40◦ inclination angle.

Comparing the geometry of the sand experiment to the other two, it seems to take an

intermediate position between the former shapes: the slope of the S-shape is steeper than

for 40◦ PVC but not as steep as for the corresponding 50◦.

To provide an accurate overview over the temporal and spatial evolution of the flow

thickness, again the curvilinear coordinate system is employed (Fig. 6.95). With this,

the way length the material passes over the deposit becomes directly visible (between the

shock front (red line) and the shock back (green line)). The way length becomes longer

during the first second of the flow and decreases again afterwards. The distance between

the shock front and the point of highest flow thickness (red and blue lines) remains con-

stant during the first second of the flow and then slowly decreases. This way of displaying

also clearly indicates that after 0.5 seconds the flow no longer reaches the wall at the end

of the channel but stops on the deposit.

6.5.2 Savage-Hutter simulations

As already observed previously (Pudasaini et al., 2007; Pudasaini and Kröner, 2008), the

geometry evolution of the deposit over time for PVC and sand can be qualitatively well

predicted by Savage-Hutter type simulations (Fig. 6.96): the height at the wall is correctly

estimated for all three cases (40◦ PVC and 50◦ PVC and sand). The same holds true for the

inclination of the deposit surface during all time-steps. This indicates that the simulation

is capable of correctly predicting parameter dependent properties of the shock formation.

Nevertheless, some characteristics are very similar between the three simulations whereas

they differ in the experiment: the length of the deposit is well predicted for PVC and but

overestimated for the sand experiment while the simulated inclination of the deposit at

the shock front rather resembles the sand situation and is not as steep as the observed

shape for PVC. The similar distances of the single curves of the deposit shape in the

simulations andmeasurements suggest a good prediction of the shock front velocity. This

observation is confirmed by the simulated position evolution of the shock front over time

(Fig. 6.97). The simulated inclinations (the velocities) are very similar to the measured

ones. The observed offset is caused by difficulties in accurately determining the zero time

point for the shock in the experiment.

Taken together, the Savage-Hutter type simulations are, on the one hand, well suited
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Figure 6.96 – Savage-Hutter simulations of shock formation: Temporal evolution of flow
geometry. Simulated evolution of free surface geometry during the shock formation for dif-
ferent inclination angles (40◦ and 50◦ PVC, 50◦ sand) at a fixed inflow height of 10cm. For
comparison, experimental results are included in gray.
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Figure 6.97 – Savage-Hutter simulations of shock formation: Temporal evolution of shock
front position. Time-depended movement of the simulated shock front (interface between
deposited material and flowing material) for PVC and sand at different inclination angles and
inflow heights. For comparison, experimental data is included (continuous lines, same color
code as for simulation).

for prediction of the shock front velocity and the impact height on the vertical wall. On

the other hand, the simulations display some difficulties to precisely simulate differences
in materials. All other variables considered in the experimental section can not be deter-

mined due to the depth-averaged character of the simulations.

6.5.3 Non-depth-averaged simulations

The velocity field and filling parameter of the OpenFOAM® simulations for the PVC

shock set-up at 10cm inflow height and 50◦ inclination angle (Fig. 6.98) reveals that

the simulations are well capable to predict the flow behavior during shock formation:

initially, the material is abruptly decelerated at the wall and is piled up at the wall with

a much lower velocity until a height of above 20 cm. The formation of the deposition in

the lowest corner is also correctly predicted. In the following time steps, the formation of

the S-shaped flowing fraction which becomes broader with time is well captured by the

simulation, however, the depth of the flowing fraction is underestimated in some time

steps and overestimated in others. This fluctuation is explained later in the context of the

flowing volume evolution. Towards the end of the flow, the simulation well predicts the
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Figure 6.98 – OpenFOAM® simulations of shock formation: Overview on velocity fields.
Overlay of simulated velocity fields with simulated shape during a shock formation at the
end of a closed channel at 50◦ inclination angle and 10cm inflow height. Velocities in single
patches corresponding to the numerical grid are represented by a heat map (reaching from
blue for the minimal velocity to red for the maximal velocity). Gray patches represent the de-
posit. Direction of the velocities are depicted by arrows, the length of the arrows corresponds
to the magnitude. For a better overview, only arrows for each third patch in x-direction and
every other patch in y-direction are shown. Figure continued on next page.
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fields.(cont.)
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Figure 6.99 –OpenFOAM® simulations of shock formation: Temporal volume evolution of
PVC. Simulated temporal evolution of total PVC volume (VT ) and flowing PVC volume (VF)
in the observed area (50cm, starting at position x = −50cm) during the PVC flow for different
inclination angles and inflow heights. For better comparison experimental results from Fig
6.90 are included (gray and light red lines). The inflow volume in the simulation was set to
be equal to the inflow volume observed in the experiments.
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Figure 6.100 –OpenFOAM® simulations of shock formation: Comparison of temporal vol-
ume evolution of sand and PVC. Simulated temporal volume (total and flowing volume)
evolution of PVC (upper panel) and sand (lower panel) at 50◦ inclination angle and 10cm
inflow height. For better comparison experimental results from Fig 6.91 are included (gray
and light red lines).
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Figure 6.101 – OpenFOAM® simulations of shock formation: Temporal evolution of shock
front position. Time-depended movement of the simulated shock front (interface between
deposited material and flowing material) for PVC and sand at different inclination angles
and inflow heights. For better comparison experimental results from Fig 6.92 are included
(continuous lines, same color code as for simulation).

observed thinning of the flowing fraction and the formation of the parabolic shaped final

deposition.

Analysis of the simulated flowing and total volume fraction for the different inflow
height and inclination angles reveal that the simulation is overall well capable to predict

the fraction of fluidized material for a given inflow volume (Fig. 6.99). However, the

flowing volume in the case of 5 cm inflow height is underestimated for both inclination

angles. The detailed evolutions of the flowing volumes for 10 and 15 cm inflow height

show that the simulated flows are fluctuating. Compared to the experimentally observed

volume evolution the simulated evolution displays a stronger variance and does not reach

a continuous phase as seen in the experiment. These fluctuations can be explained by

the way of determining volumes from the simulation results employed here: a cutoff in

velocities needs to be specified during the evaluation of the simulation to describe the

stop condition. Thus, the material seems to be deposited faster in the beginning (prior to

the start of phase III in the experiment) but the estimated deposition becomes unstable

afterwards and thus a larger fraction than in the experiment is considered to be fluidized

towards the end of phase III. Nevertheless, the order of magnitude of the flowing fraction

and the overall volume is well predicted for 10 and 15 cm inflow height. Especially in the
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Figure 6.102 – OpenFOAM® simulations of shock formation: Temporal height evolution
at a fixed position. Simulated temporal evolution of flow position in y-direction at a fixed
position in the channel (x = −5cm) at 50◦ inclination angle and 10cm inflow height. The
strong colored lines represent the solid-fluid and the fluid-air interface for the respective
material, the lighter colored surface in between indicates the complete flowing layer. For
better comparison experimental results from Fig 6.93 are included (semi-transparent).

case of 40◦ inclination angle and 15 cm inflow height, the predicted flow volume is very

well predicted throughout the observed time.

Comparison of the simulations with sand and PVC at 10cm inflow height and 50◦

inclination angle reveal that the simulation is well capable of capturing differences be-
tween the two materials: the simulated flowing volume for sand is smaller than that of

PVC throughout the observed time as in the experiment (Fig. 6.100). In general, the evo-

lution of the flowing volume for sand is reasonably well predicted but underestimated.

The evolution of the flow front position (Fig. 6.101) is on average equally well pre-

dicted as in the case of the Savage-Hutter simulations (Fig. 6.97). In the two cases with

5 cm inflow height, the velocity of the flow front is underestimated by the simulation,

which is in agreement with the underestimation of the flowing fraction in those cases. In

the case of 10cm inflow height and 40◦ inclination angle the shock velocity (the inclina-

tion of the curve) is well predicted but a small offset in the beginning of the simulation

causes some deviation from the observed curve. This can be explained by some arti-

facts occurring in the beginning of the simulation due to the VOF method. All other

simulations show an accurate prediction of the experimentally observed flow front posi-

tions. Also the increase in slope for increasing inflow heights and the independence of

the slopes towards inclination angles and material are correctly predicted.

Concerning the temporal evolution of the deposit and height of the fluidized fraction
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Figure 6.103 – OpenFOAM® simulations of shock formation: Temporal evolution of flow
geometry. Simulated evolution of free surface geometry during the shock formation for dif-
ferent inclination angles (40◦ and 50◦ PVC, 50◦ sand) at a fixed inflow height of 10cm. For
better comparison experimental results from Fig 6.94 are included (gray lines).
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for PVC and sand at a fixed position (Fig. 6.102), the simulation is well capable of pre-

dicting the steep increase of the inflow height and the width of the flowing fraction in the

moment when the shock front passes the observed point. Afterwards, the discontinuity

of the flowing fraction determined from the simulation becomes obvious again. The flow

stops for about 0.2 to 0.4 seconds and is re-initiated later. The height of the flow is under-

estimated for both material. Nevertheless, the simulation correctly predicts the thinner

fluidized layer for PVC in comparison to sand.

The geometry evolution of the deposit over time for 10cm inflow height and 50◦ incli-

nation angle with PVC material is very accurately predicted by the simulation, except for

a slight deviation in the shape of the final deposit (Fig. 6.103). Especially the inclination

of the deposit at the shock front is well predicted, the angles higher than 90◦ in the first

time steps and the 90◦ turn of the flow in the later time steps is accurately captured (Fig

6.103). The deposit geometry of 10cm inflow height and 40◦ inclination angle illustrates

the problems caused by the VOF method during the first steps of the simulation: due to

the lower inflow rate at 40◦ and the resulting thinner flow, the density values decrease

below the threshold for cells to be assigned as granular material containing cells. This

results in the formation of air bubbles and thus to a breaking wave formed at the shock

front. The air inclusion also causes a decrease in material density and thus leads to for-

mation of a higher and shorter deposit than experimentally observed. Nevertheless, the

inclination of the shock front is well captured in the simulation indication that apart from

the numerical artifacts caused during the initialization the simulation is well capable of

predicting changes in flow geometry due to changes in inclination angle. In the case of

sand at 10cm inflow height and 50◦ inclination angle the final shape is globally well pre-

dicted, only the length of the deposit is slightly overestimated while the height close to

the wall is underestimated. The inclination of the shock front is less steep than for the

PVC simulation, which is in agreement with the observed slopes. However, the simulated

decrease in shock front inclination from PVC to sand is stronger than the actual one.

Taken together, the OpenFOAM® simulations are capable of simulating a shock for-

mation with a sudden deceleration of the flow velocity as the flow impacts a wall. Differ-
ences in material, inclination angle and inflow height are well captured. However, some

numerical problems lead to quantitative inaccuracy in the prediction.

6.6 Wide channel

The experiments performed in the inclined PMMA channel and the respective simula-

tions demonstrated that the OpenFOAM® simulations introduced in this study are well

capable to predict important flow parameters such as the flow geometry and the velocity

field inside the flow for all considered problems except for the shock set-up. Neverthe-
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less, these considerations were restricted to two dimensions. The flow behavior along the

channel width was assumed to be constant due to the narrow channel character of the

chute and could be neglected. To predict natural hazardous granular flows, it is how-

ever also important to predict the spreading and behavior of the flow in this direction.

To perform three-dimensional experiments for the validation of the OpenFOAM® predic-

tions, a wider chute with variable obstacles was used (section 5.2.3). Similar experiments

were already performed for the validation of Savage-Hutter type simulations in a three-

dimensional set-up (e.g. in Gray et al. (2003), Chiou et al. (2005) and Tai et al. (1999a)).

Therefore, no Savage-Hutter type simulations were performed for this experiment.

6.6.1 Experimental findings

The experimental set-up allows the observation of granular flow around obstacles in three

dimensions. The recording of such tree-dimensional experiments requires an image cap-

turing set-up that strongly differs from the set-up for the two-dimensional measurements

(see section 5.5). The set-up employed in this study allows 3D reconstruction of the flow

surface with only one camera. However, velocity fields can not be recorded with this sys-

tem. Three experiments were performed monitoring the flow behavior of sand during a

steady flow phase around obstacles (Fig. 6.104). First, a tetrahedron was placed in the

flow with one edge facing the upstream direction. This set-up mimics structures which

redirect hazardous granular flows as the dams protecting the village Flateyri, Iceland

(section 1.2.6). The measured height profile (Fig. 6.104 (a)) displays the expected behav-

ior: the flow is redirected to both sides of the tetrahedron, resulting in a large sheltered

area behind the obstacle similar to the behavior of avalanches in Flateyri (Jóhannesson,

2001). At both sides of the tetrahedron and especially in the redirected flow behind the

obstacle, the flow height increases up to 4-fold as compared to the undisturbed flow in

front of the obstacle and a sharp edge between the flow and the sheltered area is formed.

In contrast, the flow remains almost unchanged in front of the obstacle and no deposi-

tion is formed. It has to noted here that the flow height also increases on the sides of

the tetrahedron, but this steep inclination could not be captured with the experimental

set-up. The second obstacle considered was a cylinder (Fig. 6.104 (b)): it also redirects

the flow, but the observed sheltered area behind the obstacle is much smaller than in the

case of a tetrahedron. The redirected flow reaches heights similar to the tetrahedron case

but the flow height continuously decreases towards the sheltered area and no sharp edge

is formed. Additionally, the cylinder also disturbed the flow in front of it, resulting in an

increased flow height in front of the cylinder. As a third experiment, the tetrahedron was

placed inside the chute with one face directed to the upstream direction (Fig. 6.104 (c)).

Compared to the other tetrahedron experiment, the sheltered area is much smaller. The

flow height strongly increases in front of the obstacle and two large areas of increased
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flow height are formed on the sides of the tetrahedron. As in the case of the cylinder, the

flow height continuously decreases towards the sheltered area. This tetrahedron experi-

ment mimics one part of a deflecting structure which is intended to catch the flow rather

than to gently redirect it. Due to the large deceleration of the flow and due to the strong

geometrical support of the obstacle, a deposit is formed in this experiment (Fig. 6.104

(d)).

6.6.2 Non-depth-averaged simulations

In the case of the tetrahedron with the edge facing the upstream direction, a very good

agreement with the experimental findings is observed. The flow height is qualitatively

well predicted (Fig. 6.105 (a)). There is almost no congestion in front of the obstacle and

the flow is redirected to the sides resulting in a sheltered area as observed in the experi-

ment. Also the sharp edge between the flow and the sheltered area is well predicted. Only

a slight underestimation of the spreading of the flow occurs, leading to an overestima-

tion of the flow height behind the obstacle. Similar results are obtained for the cylinder:

the flow height distribution and the formation of the sheltered area are qualitatively well

predicted (Fig.6.105 (b)). Quantitatively, the initial catching of the material in front of the

obstacle is predicted to be too localized and too strong and is thus not redirected wide

enough to the sides of the obstacle. Nevertheless, the sheltered area is predicted quite

well. The angle of redirection for the second tetrahedron experiment is clearly underesti-

mated as well as the surface of the congestion. Thus, the flow height behind the obstacle

is strongly overestimated in a small area facing the sheltered area and underestimated at

the sides if the tetrahedron (Fig. 6.105 (c)). This is similar to the problem observed for the

two-dimensional shock experiment: the flow is suddenly decelerated and the high pres-

sure gradients cause instabilities. Despite of this, also here the sheltered are is predicted

correctly. Also the tendencies of the flow behavior compared to the first tetrahedron ex-

periment are predicted well: the sheltered area is reduced compared to the tetrahedron

with an edge the upstream direction and the formation of a final deposition is correctly

predicted as well, although the height of the deposit is slightly overestimated (Fig. 6.105

(d)).

Taken together, these results demonstrate that the simulation method using Open-

FOAM® with simple Coulomb sliding is well capable of predicting basic features of three-

dimensional granular flow behavior, even with strong flow structure interactions and

redirection of the flow by obstacles. Especially the sheltered areas, which are of great im-

portance for risk assessment, are well captured. Concerning the quantitative differences
it should be noted that the assumed initial velocities in the simulations are only roughly

estimated from the experiments. Shock formation and sudden deceleration of the flow

also cause some qualitative deviations from the observed flow behavior but sheltered ar-
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eas can still be very accurately predicted for differently shaped obstacles.
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Figure 6.104 – Wide Channel: Experimental measurements. Flow thickness of a steady
flows around obstacles (a-c). (d) depicts the final deposit of case (c), while no deposit is formed
for cases (a) and (b). The flow thickness and deposit height on the obstacles is measured from
the surface of the obstacle, not from the ground below the obstacle. Presence of material
inside the obstacle in case (b) is due to the hollow character of the obstacles.
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Figure 6.105 –WideChannel: Numerical simulationswithOpenFOAM® . Flow thickness of
a steady flows around obstacles (a-c). (d) depicts the final deposit of case (c). Inflow boundary
conditions: 1.5cm inflow height at 1m/s.
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The previous chapter demonstrated that the non-depth-averaged simulations developed

in this study are well capable of predicting the behavior of a granular flow in various lab-

oratory experiments. Transferring the developed model and employed simulation tech-

nique to prediction of real case hazardous granular flows requires the following further

pre-processing tools, tests and data: 1. the generation of a grid reflecting the topogra-

phy of the considered site, which is at the same time suitable for the numerical scheme

employed, 2. test simulations to demonstrate that the employedmodel can simulate gran-

ular flows on a complex topography and 3. detailed empirical data of hazardous granular

flows for providing the initial and boundary conditions for the simulation (e.g., location,

geometry and amount of the initial material) and information about the observed flow

behavior, including the track taken by the flow, the run-out distance and deposition for-

mation.

In this chapter, first a work flow to generate a grid suitable for the above described

OpenFOAM® simulations from a real case topography is introduced. As a first validation

of the mesh generation method in combination with non-depth-averaged OpenFOAM®

simulations with the simple Coulomb model as introduced in the previous chapters,

the procedure is then applied to simulate an experimentally observed three-dimensional

channelized flow as described in Wieland et al. (1999). Then, a real case non-depth-

averaged simulation using OpenFOAM® is analyzed in order to test the adaptability of

the simulations to complex real topographies. The results of the simulation are further-

more compared to the available observed flow behavior.

As a real case hazardous granular flow to be simulated, an avalanche observed in the

Swiss valley “In den Arelen” near Davos in 1968 was chosen (Christen et al., 2010b). The

avalanche was a combined flow of snow mass from three release areas, which were chan-

nelized in a narrow valley and subsequently formed a three-armed deposit in a shallow

run-out zone. As mentioned in Christen et al. (2010b), this event is well documented

since it occurred in the vicinity of the SLF avalanche research station at Weissfluhjoch.

From observed snow fall heights and weather conditions the initially involved snow

mass could be extrapolated and the run-out zone as well as the damages caused by the

avalanche were recorded in detail (Christen et al., 2010b). The avalanche is an example of

dense dry snow avalanche without a powder or wet snow component and thus exactly the

type of avalanche which can be described by the cohesionless granular flow simulation

introduced in this study. Furthermore, the strong channelization resulted in large flow

heights which require consideration of at least two dimensional events (Christen et al.,

2010b). Additionally, large flow heights suggest strong influence of internal friction and
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thus formation of a velocity profile through the flow depth which could not be captured

by the so far employed state-of-the-art depth-averaged simulations and would be better

characterized by non-depth-averaged three-dimensional simulations as suggested in this

work.

7.1 Mesh generation and initialization

©2007 swisstopo CH-3084 Wabern
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Figure 7.1 – Simulations of “In den Arelen” avalanche: Area of interest and initial fill-
ing. Overlay of topological map with area of interest employed for generation of topolog-
ical mesh (pink area) and area of initial filling used in the simulations (yellow area). Map
source: swisstopo, copyright: Bundesbehörden der Schweizerischen Eidgenossenschaft, 2007.
http://www.disclaimer.admin.ch

Topological information for the area of interest was obtain from www.viewfinder-

panoramas.org. This website offers surface height data of the Alps at 1 arc second resolu-

tion (digital elevation model (DEM)), which corresponds to a data point every 30 meters.

The information is extracted by combination of satellite pictures and topological maps.

More detailed terrain information is not freely available and can be purchased for single

cases, which was not done for the test simulations performed here.

http://www.disclaimer.admin.ch
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Figure 7.2 – Simulations of “In den Arelen” avalanche: DEM data. Representation of “In
den Arelen” area topography in the boundary box of the area of interest extracted from DEM
data with a resolution of 30 m. Colors correspond to elevation, reaching from blue for the
lowest points in the area to red for the highest points.

From this website, tiles of 1◦ width covering the area of interest were obtained. To

generate the three-dimensional contours of the area to be simulated, several steps and

refinements are necessary: first, the area of interest (in this case the whole flank of the

mountain) was sketched on a topological map as a polygon, pink area (Fig. 7.1). Via a

series of custom scripts a rectangular boundary box was calculated from the coordinates

of the area of interest and all DEM data points containing this area were extracted from

the tiles and combined in one file (Fig. 7.2). The world geodetic coordinates (wgs) used

in the databases are not handy to work with and where thus transformed into universal

transverse Mercator coordinates (utm). To obtain smaller numbers for subsequent calcu-

lations, the origin of the utm coordinates was shifted to the middle of the area of interest.

A three dimensional grid was generated from the DEM data by construction of paral-

lelepipeds with a height of 50 m on top of each group of four points. This grid was then

processed by the OpenFOAM® component BlockMeshDict for refinement of the grid cells

(2 times in x/y-direction and 20 times in z-direction) and determination of the boundary

surfaces of the previously created three-dimensional mesh. To save calculation time, this

grid was trimmed to the area of interest in its original form (the polygon in Fig. 7.1) by

deforming all cells overlapping with the boundary to this boundary: via a custom script,

a series of triangles assembling in a 4 km high extruded polygon was generated on the
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area of interest in the grid coordinates. These triangles and the grid were further pro-

cessed using the OpenFOAM® component SnappyHexMesh to cut out the area of interest

from the grid generated in the previous step (which contained the contours of the ground

and the surface of the grid). By triangulation, the surfaces of all 6 boundaries (ground,

top-surface and the four geographic directions) of the resulting grid were determined and

kept for further processing.

To generate the final grid for the simulation, the same components and scripts as

above were employed: first, a three-dimensional boundary box around the area of interest

was created. This box was filled with a 10 m x 10 m x 10 m grid by BlockMeshDict. By

combining this grid and the triangulated volume of interest in SnappyHexMesh, the cells

overlapping with the boundary could be identified. These cell were then further refined

depending on their position (up to 8 times at the bottom and 2 to 3 times at the sides

and the surface). This refined grid was cut at the boundaries of the volume of interest

and the cells overlapping with the boundary were deformed to match the boundary. This

boundary cells were then further refined to introduce a boundary layer of small cells.

Using the resulting grid, the non-depth-averaged OpenFOAM® simulation introduced in

the previous chapters can be transferred to complex topographies.

7.1.1 Experimental verification of the proposed method

To validate the mesh generation method described in the previous section and to test the

ability of the non-depth-averaged simulations with OpenFOAM® in combination with a

complex grid, simulations for experiments described in Wieland et al. (1999) were per-

formed. They introduced a channelized inclined chute which after 175 cm of constant in-

clination (40◦) smoothly transits into a shallow run-out zone ending in a horizontal plane.

The material used in the experiments was composed of rounded plastic beads (Vestolen)

with a mean diameter of d = 2 − 3.5mm, an internal friction angle of φ = 33◦ and a bot-

tom friction angle of δ = 27◦. In agreement with the notation of Wieland et al. (1999) the

experiment is hereafter referred to as V05. To initiate a flow, they placed a parabolic cap

filled with the material inside the channel and released the material quickly by removing

the cap. The resulting flow behavior was captured with a high speed camera and selected

pictures showing the evolution of the flow at each quarter of a second are available in the

publication. From these pictures, the outline of the flow during the different time steps

is known and can be employed for comparisons with simulations. Additionally, Wieland

et al. (1999) present a detailed height profile of the final deposit, which can be used for

comparisons as well.

To include the channel topography of Wieland et al. (1999) into OpenFOAM®, artifi-

cial DEM data with a resolution of 1cm x 1cm was calculated from the provided curvi-
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linear coordinates. The reference surface is described by:

ζ =


ζ0 for x < xa

ζ0(xb − x)/(xb − xa) for xa ≤ x ≤ xb
0 for xb < x

(7.1)

with ζ0 = 40◦, xa = 175cm and xb = 215cm. The superimposed bottom topography is

defined by:

b =


y2

2R for x < xa
y2

2R

{
3
(
xb−x
xb−xa

)2
− 2

(
xb−x
xb−xa

)3}
for xa ≤ x ≤ xb

0 for xb < x

(7.2)

with R = 110cm.

The initial free surface (the shape of the material in the cap) can be described by

s(x,y,0) = (r2 − x2 − y2)1/2 − (r − hc) (7.3)

with hc = 22cm and r = 32cm.

This data was then used to perform non-depth-averaged simulations with OpenFOAM®

using the provided parameters for internal and bottom friction angle. The resulting pre-

diction for the flow shape and height evolution over time is depicted in Figure 7.3. A good

qualitative agreement with the experimental data is observed: first, the material stretches

(mainly in the downslope direction) during the flow down the inclined part resulting in

an “elliptic shape”. When the material flows over the transition zone and enters the run-

out zone, the flow front widens in transversal direction and a narrow languet is formed

on the slope. Finally, all material enters the run-out zone and forms a “round deposit”.

Quantitative deviations from the experimental data are observed mainly at the flow front

margin, mainly during the flow transition into the run-out zone. As a consequence, the

frontal reach of the final deposit is not predicted to reach as far as the observed longitudi-

nal run-out. However, the rear margin and the lateral extends of the flow and depositions

are quite well simulated. Moreover, the final deposit height structure is well predicted by

the simulations (Fig. 7.4): as observed in the experiment, the highest point is predicted to

be closer to the chute side of the deposit, the simulated inclination of the deposit is sim-

ilar to the observed inclination and steeper at the site facing the inclined channel. Also

quantitatively a good agreement is observed with only a slight deviation from the highest

observed value. Taken together, the results demonstrate the ability of the OpenFOAM®

simulations introduced in this study to simulate flow behavior on topography included

with the mesh generation method described in the previous section. This can be taken as

a first hint that the OpenFOAM® simulations can be transferred to complex real topogra-
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phies. This will be further examined in the next section for the real case avalanche “In

den Arelen”.
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Figure 7.3 – Simulations of experiment V05 of Wieland et al. (1999): Temporal evolution
of flow height. Simulated flow height for the experiment V05 of Wieland et al. (1999) as
predicted by OpenFOAM®. Depicted are time steps as published by Wieland et al. (1999),
the simulated flow height is represented by a heat map reaching from dark blue (lowest flow
height) to dark red (highest flow height). Black lines represent the experimentally observed
flow boundaries (Wieland et al. (1999)). Gray contour lines depict the channel topography.

7.2 Real mountain avalanche simulation: “In den Arelen”

To include the initial filling of material into the grid generated in section 7.1, a second

polygon was selected in the area of interest (Fig. 7.1). The shape of this polygon was

estimated from the initial area suggested in Christen et al. (2010b) considering the slope

of the mountain side and including areas of 30◦ to 50◦ inclination. A custom script was

employed to extract the coordinates of this polygon and to transform them into the grid
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Figure 7.4 – Simulations of experiment V05 ofWieland et al. (1999): Final deposit. Outline
and height of the final deposit predicted by OpenFOAM® for experiment V05 ofWieland et al.
(1999). The height is represented by a heat map reaching from dark blue (low) to dark red
(high). The contour lines of the experimental deposit are extracted fromWieland et al. (1999)
and colored accordingly from dark blue (0 cm) to dark red (9 cm).

coordinates. The filling was performed by a custom program, which reads in the polygon

coordinates. Afterwards, the closest point on the ground of the mesh is determined for

each cell. Only cells for which the closest point was inside the polygon and which dis-

played a distance to the ground smaller or equal to the desired filling height (1.5 m in

this case) the filling parameter α1 was set to 1. In all other cases α1 was set to 0. From

this condition, an OpenFOAM® simulation was started using an internal friction angle of

φ = 20◦ and a bottom friction angle of δ = 15◦. These values are rough estimates from the

friction coefficients used in Christen et al. (2010b). Only the north western event of the

avalanches was simulated.

The resulting simulations clearly demonstrate that the generated complex topography

grid can be combined with the simple Coulomb simulation implemented in OpenFOAM®

in this study (Fig. 7.5). No information about the exact track of the avalanche is avail-

able, but the simulated flow follows the expected track suggested by the topography. By

considering the flow height over time (Fig. 7.5), the channelization of the avalanche is

observed: the flow is strongly narrowed when it enters the gully-type valley (starting at

t = 8s), leading to a rapidly increased flow height in the channelized part. Upon exiting

the narrow valley and entering the more shallow run-out zone, the avalanche spreads out

again and the flow height decreases (starting at t = 32s). A two armed final deposition is

formed, where the norther arm reaches further downstream than the southern arm (Fig.

7.6). No data describing the on-track behavior of the avalanche is available, but the shape

of the flow and the qualitative flow height distribution predicted in this work are in good

agreement with a simulated prediction of the flow in Christen et al. (2010b). Concern-

ing the recorded actual extent of the avalanche (Fig. 7.6, red line), most of the material

is finally predicted to be deposited in this area and only a slight deviation occurs at the
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Figure 7.5 – Simulations of “In den Arelen” avalanche: Temporal evolution of flow height.
Simulated flow height for the northern arm of the “In den Arelen” avalanche as predicted by
OpenFOAM®. Depicted are time steps of 8 seconds, the flow height is represented by a heat
map reaching from dark blue (lowest flow height) to dark red (highest flow height).
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Figure 7.6 – Simulations of “In den Arelen” avalanche: Final deposit. Outline and height
of the final deposit predicted by OpenFOAM® for the northern arm of the “In den Arelen”
avalanche. The height is represented by a heat map reaching from dark blue (low) to dark
red (high). The actually recorded outline of the avalanche extent (inundation) as described in
Christen et al. (2010b) is depicted in red.

northern side. The extent of the run-out distance is underestimated by the simulation,

probably due to deviations by the rough estimation of several parameters like the initial

area, snow cover and the friction angles. The simulations performed here yield the full

velocity profile during the complete flow of the avalanche. To illustrate the possibilities

offered by this data, the surface velocity during the avalanche flow is depicted in Fig-

ure 7.7 as an example. No data was recorded for the velocities of the “In den Arelen”

avalanche and no simulated data was published so far. Therefore, the result can only be

evaluated based on expectations and on the physical correctness of the simulated flow

behavior. As expected for a gravity driven flow, the surface velocity increases during the

passage down the steep channel. When the avalanche enters the wide, open and more

shallow run-out zone, the velocity decreases gradually until the deposition is formed.

During the passage through the steep channel, predicted velocities are higher towards

the middle of the flow, which could be explained by the friction encountered at the sides.

Thus, the simulations yield physically reasonable predictions.

Taken together, the results demonstrate that the non-depth-averaged simulations em-

ployed in this study can be transferred to complex topographies of real case avalanches.

Detailed evaluation of the predictive power will require further recording of real case

avalanche data.
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Figure 7.7 – Simulations of “In den Arelen” avalanche: Temporal evolution of surface ve-
locity. Simulated surface velocity for the northern arm of the “In den Arelen” avalanche
as predicted by OpenFOAM®. Depicted are time steps of 8 seconds, the surface velocity is
represented by a heat map reaching from dark blue (resting fractions) to dark red (highest
velocity).
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8.1 Choice of the experiments

The experiments in this study were designed to, on the one hand, serve as models for

various situations occurring during natural hazardous granular flows and should, on the

other hand, yield experimentally observed flow variables and parameters for the com-

parison with numerical simulations. For this reason, they should allow observations

of dynamic variables like velocity fields, flow height and parameters including volumes

and solid-fluid interfaces. These are important quantities to understand the dynamics of

granular flows and to later on calculate their destructive power by estimating the impact

pressure on obstacles. To gain a better understanding of the behavior of granular flows,

small scale experiments have been employed since the middle of the last century. Such

experiments are still necessary for several reasons. First, in order to evaluate mutual de-

pendencies of parameters, which can be varied separately in experiments while all other

variables can be kept constant in controlled conditions. Second, because natural granular

flows are hard to predict and thus often only their inundation area and final deposits are

recorded, mapped or estimated but not the dynamics during the flow. Third, due to their

dangerous character and their often huge dimensions, the above mentioned parameters

are hard to determine for actual hazardous granular flows in nature.

8.1.1 Design of the channel and imaging system

As formulated in the aim of this study, the experimental set-up should be able to capture

detailed velocity profiles in the flow direction and in the flow depth occurring during a

granular flow. Transparent PMMA channels as employed in this study are widely used

in the field of granular flow dynamics as they allow capturing of images which mimic a

cross-section of a granular flow (Faug et al., 2002). In combination with the customized

granular PIV software created in this study, detailed velocity profiles can be captured. In

this context, it has to be noted that this PIV software will be made publicly available after

the completion of this study. Thus, it could reduce the cost of the experimental set-up by

thousands of Euro, which are usually required for an equivalent PIV system. The design

of the channel was chosen in a way that allows recording over the complete time of most

experiments with a typical high-speed camera available at that moment. For this reason,

the length of the channel and the size of the silo were designed to perform experiments

with a duration of around 4 seconds. At 4 seconds duration, the employed camera allows

capturing images with a rate of 500 pictures per second. This speed was necessary for the
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PIV technology for rapid granular flows. Thus, the experiment was designed to facilitate

maximal recording of information concerning both temporal and spatial resolution and

duration of the experiments.

Nevertheless, the analysis of the recorded experiments and the comparison with the

simulation data also revealed some limitations of the experimental set-up, which should

be taken into account for further designs. One problem caused by limited volume of the

silo is that the amount of material which could be discharged in this time span was not

high enough to allow completely constant discharge rates when the orifice was higher

than 10 cm. Thus, the inflow of the material was slightly variable in these cases (for

example in Fig. 6.90 where the volume increase is lowering towards the end of the ex-

periment). Such small deviations from a constant flow rate could be avoided by a longer

recording time and a larger silo of the channel. On the other hand, this would cause the

cost for a high-speed camera to increase immensely and might not be necessary since the

experiments in this work show that a steady-state flow is establish also with the silo size

employed here. One point to consider is the adjustment of the camera and the channel.

In order to only record the first layer of the flow and no fractions of the flow surface, the

camera has to be very accurately adjusted. The present set-up did not allow a precise

adjustment of the camera to the optimal height and angle for image capturing. The ad-

justment was performed manually and resulted in some errors in the estimation of the

flow height when the material/air boarder was automatically captured. These errors had

to be manually corrected in this work.

Another often observed source of differences between data and simulations is the in-

fluence of the side walls in channel experiments. Substantial influence of the side walls

can lead to elevated angles of repose as seen for the rotating box experiment in this work

(section 6.1.3). However, good agreements between experimental data and simulations

was observed for both Savage-Hutter and OpenFOAM® simulations when the actual in-

clination angles were employed. Thus, the effects of the side walls seem to be negligible

in the set-up employed here. Even more important than the effect of the side walls is the

effect of the channel bottom. Two scenarios are possible here: the bottom can either be of

the same smooth material as the channel walls or can be coated with the particles used

in the experiments or other rough materials (Lube et al., 2011). In this work, the first

possibility was chosen to allow capturing of the flow velocity from beneath the channel

as presented in Figure 6.61. This procedure could be criticized because natural granular

flowsmay occur on a groundwhich is similar to or composed of the granular material, e.g.

mud flows sliding over ground made of the same soil or snow avalanches which sliding

over a similar snow cover. However, also scenarios with a more smooth sliding surface

occur frequently. One example are slab avalanches formed by the abrupt breaking of a

weak layer. Such weak layers can be formed when fresh snow deposed on smooth, dense,
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maybe partially molten and re-frozen smooth layers of old snow (Schweizer et al., 2003).

8.1.2 Choice of material

The two materials employed in the study represent the two fields which are mainly inter-

ested in rapid granular flow behavior: industrial processes (PVC) and hazardous granular

flows like landslides (sand). Furthermore, the two materials differ in important charac-

teristics like grain size and internal friction angle. A potential limitation of PVC particles

is the presence of electrostatic forces inside the material during the flow. However, elec-

trostatic forces can be assumed to be much smaller in sand. The fact that differences
between the two material can be simulated by only considering their respective density

and angle of repose rules out the possibility that electrostatic forces dominate the PVC

flows. Thus, once a simulation has proven to be able to simulate the flow of both materi-

als, it is very likely to be suited for other cohesionless materials as well. Such materials

could be other plastics granulates, grains or pills in industrial processes and dry rock-soil

mixtures often found in landslides. Many simulations, including the Savage-Hutter and

Pudasaini-Hutter type of simulations focus on the simulation of snow avalanches, which

cause huge damage in central Europe each year (see section 1.2.5.3). Especially, the highly

destructive dry dense flow avalanches can be considered as cohesionless granular flows

as described by the models employed in this study.

8.1.3 Experimental design

The high flexibility of the channel (large silo, adjustable outflow height, inclusion of ob-

stacles, removable wall at the end) allow to perform experiments resembling all tree steps

of an avalanche flow (initiation, steady-state flow and deposition) as well as the interac-

tion with obstacles.

The performed dam break experiments allowed a detailed observation of the incep-

tion of a granular flow. In combination with the PIV measurements, it was possible to

reconstruct the temporal succession of the fluidization events in the granular material.

The dam break experiments with rectangular initial deposit were designed as such to

function as models for the cases of mobilization and fluidization possible in nature: ei-

ther a complete mobilization and fluidization and sliding of the complete mass down the

slope (at 30◦ inclination and higher), or a partial mobilization and fluidization with a

fraction of the material sliding down the slope (20◦) or fluidization of a fraction which

quickly comes to rest again close to the area of initialization and thus only causes local

rearrangements (0◦ and 10◦ inclination). The triangular initial deposit experiment is an

example for a fast mobilization and fluidization of a complete mass of granular material

measured at higher slopes where, for example, snow avalanches often occur. Thus, in
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combination, the performed inception experiments can serve as a model for a wide range

of inception processes which can occur in hazardous granular flows in nature and are

thus a good model to test simulation of these events for there predictive power. Here, it

has to be noted that although the dam break experiments mimic the inception of a gran-

ular flow, these experiments do not focus on how and when a granular flow is initiated.

The experiments are always designed in a way that requires them to initiate a granular

flow as soon as the gate is opened since the free surface was raised above the critical an-

gle of repose. Experiments on the criteria for initiation of granular flows require different
experimental designs and were not the topic of this work.

The observations on the undisturbed flow were designed to mimic a steady state gran-

ular flow. For this experiment the size of the silo was crucial, as it allowed an almost con-

stant inflow into the channel for several seconds. The experiment allowed to gain insight

into velocity profiles both in flow direction and through the depth of the flow. This also

allowed to test the predictive power of simulations on the height and velocity evolution

of a granular flow at different locations on the slope. Furthermore, the experiment de-

scribes the ground state of the flow, which was then disturbed by the introduction of the

obstacle. The obstacle is a model for a structure which suddenly disturbs, decelerates

and redirects a granular flow. Especially for hazardous granular flows in nature it is im-

portant to predict the behavior of the flow in such cases. Such obstacles can be defense

structured build for protection against granular flows like galleries over roads or trees,

houses and other infrastructure components which are exposed to the flow. To calculate

the risk of destruction and to built effective defense structures, the forces affecting the

structures should be predicted. Therefore, the obstacle experiment can serve as a model

to test the predictive power of simulations in such situations. In this special case, the

two dimensional character of the channel is on the one hand limiting the information

which can be obtained. Only the influence on the flow before and on the obstacle can be

observed. No horizontal redirection of the flow can be observed. However, on the other

hand, the observed experiment can be considered as a section through the events hap-

pening when an avalanche hits a long defense structure like a gallery build over a road.

Usually, such structures are designed to span the complete risk area. Thus, the obstacle

experiment is a very effective model for such cases.

Due to time limitations, it was not analyzed how the flow would reconstitute after

the obstacle. Such experiments would be very useful to predict the efficiency of defense

structures and are thus one potential further application for the experimental set-up in-

troduced here.

The experiment on a shock formation at the end of the closed channel is in many ways

similar to the obstacle experiment but still mimics a different situation: here, the obstacle
in the way of the granular flow cannot be overcome by the flow, which causes the flow
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to stop completely and form a shock front. This causes the formation of a large deposit

and thus models one possible case of complete deposition of a granular flow. Again, the

effective forces are of special interest here, since such situations occur during the impact

of hazardous granular flows on infra structure elements.

Taken together, the performed experiments can serve as models for several aspects

and stages of granular flow behavior and are thus well suited to test simulations for pre-

dictions of granular flow dynamics. The only exception not considered here are run-out

zones in which the granular flow comes to rest without encountering an obstacle. This

behavior is only mimicked in a minimal way in the dam break experiments with local

rearrangement. Experiments with run-out zones after a rapid granular flow down the

complete slope of the channel would require additional components for the experimen-

tal set-up and were not performed due to time limitations. Such experiments were for

example described with low time resolution by Pudasaini et al. (2005a). Run-out experi-

ments with the high resolution PIV set-up of this study are subject to further research.

8.1.4 Consequences of experimental results for further experiments

and simulations of granular flows

The PIV measurements employed in this study revealed that the assumption of the gran-

ular material sliding down a slope as a block is not correct for the materials used in

this study. The assumption of a block-like sliding behavior is a central aspect of depth-

averaged simulations and models. The experiments reveal that a more detailed, non-

depth-averaged description is needed to predict the actual velocity profile. The shape of

the velocity profile measured in this study for the undisturbed flow is a linear one as it

was described for similar experimental set-ups before (Ancey, 2001a). Thus, the experi-

ments confirm the necessity of non-depth-averagedmodels for precise velocity prediction

inside a granular flow.

The detailed PIV measurements and resulting strain rates and slip velocities for PVC

during the obstacle experiment (Fig. 6.76) revealed that although a height increase of the

flow just becomes obvious at -6 cm, a beginning increase in strain rate is already visible at

-14 cm. This emphasizes the importance of strain rate observations and thus the necessity

to record velocity profiles as facilitated by the PIV measurement technique established

in this work. The flow geometry during the initiation of the obstacle experiment demon-

strates the necessity to observe also pre-steady state events: the room occupied by the

granular material (and thus the area affected by the flow) is larger during this initiation

phase (Fig. 6.71). The obstacle experiment revealed also the necessity to employ different
materials in such model experiments. While the PVC material could almost completely

overcome the obstacle, a large deposition was formed by the sand. Additionally, the sand
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flow is not distracted as far as the PVC flow. This demonstrates that also small differences
in material parameters like density and internal friction angle of a granular material can

cause dramatic differences when encountering an obstacle or defense structures. The

differences also underpin the importance of correct capturing of material differences by
simulations for risk assessment.

8.1.5 Three-dimensional experiments

The three-dimensional experiments in the wide channel allow tomimic the lateral spread-

ing of a granular flow and thus complement the channel experiments which could not de-

scribe this part of a granular flow. Due to the employed set-up and the three-dimensional

character of the experiments, velocity profiles inside the material could not be deter-

mined. Thus, only the flow height was measured for comparison with simulations. The

main purpose of these experiments was to validate the simulations in three-dimensional

cases, assuming that if the simulations predicted correct velocity profiles in the narrow

channel and predict correct flow height in the wide channel one could infer that also here

the velocity profiles would be predicted reasonably well. As mentioned in section 6.6.1,

the experiments mimic situations which also occur during the impact of rapid granular

flows on defense structures. The small scale experiment displayed the same behavior for

the granular material as observed for snow avalanches when encountering huge defense

structures of similar shape (Fig. 6.104 and Jóhannesson (2001)).

8.2 Achievements and limitations of the Savage-Hutter sim-

ulations

In terms of calculation power and time, depth-averaged simulations like the ones of the

Savage-Hutter model are greatly advantageous compared to non-depth-averaged simula-

tions as introduced here. Depth-averaged simulations can be run in a fraction of the time

needed for non-depth-averaged simulations and do not require parallelization. They ac-

tually have minimal hardware requirements. Nevertheless, these simulations fail to pre-

cisely simulate important aspects of granular flows like velocity profiles along the flow

depth and some interactions with obstacles as demonstrated in this work. In order to

optimize predictive accuracy and computational resources, it is therefore necessary to

evaluate which problems can be simulated with depth-averaged models and which ones

require non-depth-averaged simulations. The results of this study regarding this ques-

tion are summarized in Table 8.1. The Savage-Hutter simulations proved again, as shown

by various publications (e.g., Hutter et al. (1995), for a review see Hutter et al. (2005))

well capable of predicting free surface shape evolutions and final deposits. Especially for
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the undisturbed steady-state flow very good results are obtained. Here, a simple analyt-

ical solution (Pudasaini, 2011) was employed, highlighting the predictive power of the

Savage-Hutter model even without the necessity of simulations for such simple cases.

8.3 Achivements, improvements to establishedmodels and

limitations of OpenFOAM® simulations

As mentioned above, classical depth-averaged models do not predict velocity fields along

the flow depth and cannot predict geometries involving a solid-liquid interface. The non-

depth-averaged simulations employed in this study are able to overcome these limitations

and yield highly resolved velocity fields and are able to predict solid-fluid interfaces for

the channel experiments. The simulations also yield good predictions of the flow height

in the three-dimensional experiments in the wider channel, for the flow shape and de-

position height in the three dimensional channelized flow described by Wieland et al.

(1999) and physically reasonable results in the real case avalanche simulation. In combi-

nation these results suggest that the OpenFOAM® simulations using a simple Coulomb

model are capable of simulating real case hazardous granular flows in nature and will

thus allow the prediction of velocity fields in such cases. Knowledge on velocity fields is

very important for the estimation of the impact pressure and thus for the forces which

are applied to infrastructure elements, buildings and defense structures.

Beside these obvious advantages over the depth-averaged models, the simulations in

this work also revealed some cases where the OpenFOAM® simulations outperformed the

classical depth-averaged simulations in predicting parameters which could be simulated

by the Savage-Hutter model in theory (Tab. 8.1). The most obvious example is the obsta-

cle experiment in the channel: the Savage-Hutter simulations completely fail to simulate

Table 8.1 (facing page) – Summary of simulation capabilities. Summary of simulation ca-
pabilities of the depth-averaged Savage-Hutter type simulations and the non-depth-averaged
simulations with a simple Coulombmodel implemented into OpenFOAM® in this study. Each
row represents a variables tested in one of the comparisons between experimental data ob-
tained from the PMMA channel experiment and simulations in this study. The capability
of the simulations to predict the experimentally observed results is judged according to the
qualitative and quantitative agreement. Additionally, the ability of the simulations to cor-
rectly predict the material influence, i.e. the differences observed between PVC and sand, and
the influence of variations in the channel inclination is displayed. The capability is depicted
by a color code, where green indicates good agreement between experiment and simulation,
yellow indicates good agreement only in some cases which are specified in the respective cell
of the table. Light red indicates low or no agreement with the experiment and red marks vari-
ables which cannot be determined due to the depth-averaged character of the Savage-Hutter
type simulations. Gray marks not tested variables and white fields indicate not applicable.
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this situation, although they were shown to be capable of simulating encountering of

obstacles in real three-dimensional cases ((Pudasaini and Hutter, 2007; Cui and Gray,

2013)). Furthermore, resulting from the simplified treatment of the hydrostatic pressure,

the Savage-Hutter model overestimates velocities in pressure dominated situations. This

leads to a failure of the model to accurately predict the temporal evolution of flow behav-

ior in such cases (e.g., temporal volume evolution and flow front and rear position in the

case of the triangular initial deposit experiment).

8.3.1 Choice of rheological model and associated experiments

The rotating box set-up in combination with the PIV measurements in a rotating system

introduced in this study allows determination of the best suited rheological model for

the description of a material with a simple and easy to handle set-up. The square shape

of the box causes a quasi-steady state flow with periodic disturbance and thus allows the

observation of the materials response to such disturbances. This experiment allowed to

characterize the employed granular material as plastic material. In combination with pi-

lot simulations, it was further clarified that a pressure component is needed to describe

the behavior of the material. As mentioned above, previously used models for the de-

scription of pressure influenced plastic flow behavior require hard to determine material

parameters (section 6.1.2). For this reason, these models are not easy to transfer to other

materials. Therefore, this study tested a simple Coulomb model which only requires

the internal friction angle and the density of the material as input, which is a great ad-

vantage. These parameters are easy to determine for each given material. Thus, once a

simulation has proven to correctly predict the material influence, the results can be easily

transferred to other materials by adjusting the density and internal friction angle. The

pilot simulation with the simple Coulomb model revealed that the model is indeed well

suited to predict the flow behavior but only when higher internal friction angles than

the measured ones are used. As suggested in section 6.1.3, this might be caused by the

influence of the side walls (Savage, 1979; Hutter et al., 1995; Jop et al., 2005), which are

probably very strong due to the thin layer of particles considered. The simulations of

the experiment in the 10 cm wide channel and in the wide channel revealed that here

the actual internal friction angles yield more accurate results. Furthermore, it could be

shown that the influence of the material on the outcome of experiments could (with few

exceptions) be well captured by the OpenFOAM® simulations with the simple Coulomb

model. This suggest that the behavior of a granular material can be well predicted using

a simple Coulomb model with only the internal friction angle and the material density

as input parameters and will likely be transferable to other cohesionless materials. The

good agreement between the OpenFOAM® simulations and the channelized flow exper-

iment with Vestolen particles performed by Wieland et al. (1999) and the qualitatively
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well predicted real case avalanche simulation in comparison to other simulations (Chris-

ten et al., 2010b) and the physically reasonable results for the velocity profiles seem to

confirm this observation.

8.3.2 Limitations

The OpenFOAM® simulations with a simple Coulomb model introduced in this study

yield a good agreement for most of the experimental set-ups tested, especially when qual-

itative agreement is considered (Tab. 8.1). Nevertheless, when quantitatively compared

to the experiments, some deviations in the predictions occur. These deviations can be

explained by several limitations of the OpenFOAM® simulations as well as of the experi-

mental procedure. One limitation introduced by the experimental procedure is that the

inflow could not be accurately determined in all cases due to the limited observed area

and the slight fluctuations in the inflow rate. Also the initial flow height was difficult

to determine due to the adjustment of the camera (see above). The inflow rate and the

flow height were necessary parameters which had to be set in the case of the obstacle and

shock experiments and small variations in the parameters used to the actual parameters

might cause some of the deviation of the simulations from the experimental observation.

8.3.2.1 Problems caused by employed model

Beside the rheological model, also the model for the bottom friction has to be chosen for

a fluid dynamics simulation as employed here. The bottom friction in the OpenFOAM®

simulations was described as Coulomb-type friction as well in this study. This requires

a bottom sliding angle to be set. As mentioned in section 6.2.3, the bottom sliding angle

was set to be equal to the internal friction angle in this study by applying a stick con-

dition. Nevertheless, the measured bottom sliding angle for sand and PVC on PMMA is

lower than their internal friction angles (around 22◦ compared to 32◦ and 37◦ internal

friction for PVC and sand, respectively). However, the results of the simulations yield the

better predictions for the behavior of sand and PVC with the stick condition than with

the actual measured bottom friction angle (data not shown). This indicates a stronger

effective bottom friction in the PMMA channel experiments than measured. Bottom fric-

tion angles in this study were determined by filling a cylinder (without bottom) with

the respective material, placing it in the channel and measuring the inclination which

is necessary to make this cylinder start to slide down the channel. In this set-up, no re-

arrangements between the particles occur. The stronger effective bottom sliding friction

and thus the higher bottom sliding angles suggested by the simulations might be caused

by the high velocities of the particles and their strong shearing during the actual exper-

iment. This might lead to some turbulent effects in the lowest layer, to canting between
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the particles or to electrostatic forces between the particles. Another possible explana-

tion would be the influence of the side walls. Further experiments have to clarify the

exact cause for this observation. The hypothesis that the higher effective bottom friction

is caused by the effects of the high velocities is enhanced by the observations during the

dam break experiments. For high inclination angles, which cause high sliding velocities,

the stick condition yields good predictions, whereas for medium inclination angles like

(30◦) the effective bottom sliding angles is below the internal friction angle. Therefore,

the material is completely fluidized in the experiment but does not completely leave the

channel in the simulations, as expected for inclinations below the assumed bottom slid-

ing angle.

8.3.2.2 Problems caused by the simulation method

Some deviations between the experiments and the simulations can be explained by the

VOF method. This method can cause artifacts observed at the fluid-air interface. At the

interface, the filling parameter α1 is employed to describe the composition of air and

granular material in the interface cells. In these cells, the parameters of both materials

are combined according to their abundance. This can cause the granular material to

be less viscous in these boundary cells. In most of the cases, the fluid-air interface is

only composed of one layer of cells and thus no strong influence on the flow behavior

is observed. However, in cases of rapid filling changes (at the side walls of the rotating

box (Fig. 6.7)) or when very thin layers of granular flow are observed (shortly before the

impact in the shock experiments), artifacts like inclusion of air patches or breaking waves

can occur.

Additionally, no sudden changes in pressure and flow height (for example at obstacle

deposit formation) can be simulated. This problem has already been described by Jop

et al. (2006). Since the model employed here can be understood as a simplification of the

model introduced by Jop et al. (2006), it is not surprising to observe similar limitations.

Addressing these problems will be subject to future research.

8.3.3 Application to complex topographies

As described in the previous sections, the OpenFOAM® simulations with simple Coulomb

model introduced in this study are well suitable for non-depth-averaged simulations of

rapid granular flows but require some improvements to reach the accuracy desired for

predictions of real granular flows in hazard prevention. Nevertheless, prior to further in-

vestigations and research, it had to be ensured that the non-depth-averaged simulations

introduced in this study are transferable to real case hazardous granular flows and that

they can be performed on complex topographies. For this reason, the pilot simulations on
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the channelized three dimensional flow experiments described by Wieland et al. (1999)

and on the real case dry dense snow slab avalanche “In den Arelen” were performed (see

chapter 7). In this chapter, a combination of programs and tools developed in this study

with existing tools of OpenFOAM® was introduced to apply non-depth-averaged simula-

tions using simple Coulomb friction to complex topographies. This technique allows

inclusion of the actual, three-dimensional mountain topographies into the numerical

simulations, which can be employed at any resolution provided a accurate map source

is available. The simulations for the channelized three-dimensional flow experiments

described by Wieland et al. (1999) demonstrated that the computational tools are well

suitable for the introduction of three dimensional topographies into OpenFOAM® sim-

ulations. In this first pilot simulations, good agreements with experimentally observed

results were obtained. The observable quantitative deviations might be explained by the

preliminary character of the simulations like the coarse grid. The stick condition was not

employed here since no influence of the side wall is expected.

Despite the fact that this pilot simulations demonstrated the transferability of the

OpenFOAM® simulations to three dimensional topographies, it also demonstrates that

the OpenFOAM® simulations are likely to yield good predictions for run-out zone, which

is not tested in the channel experiments in this study.

Also the simulations performed on the complex real topography of the “In den Are-

len” avalanche were only a rough estimate, since several parameters could not be deter-

mined exactly (like the initial area and mass and the bottom and internal friction angles

of the material) and the mesh employed was coarse due to the 30 m resolution limit for

public available data for the concerned area. Because of time limitations, the simulations

were only performed once with one combination of φ and δ estimated from the friction

coefficients used in Christen et al. (2010b). Despite these limitations, the qualitative flow

behavior could be well captured and channelization of the flow and spreading of the

material in the run-out zone was well predicted. Additionally, the simulated velocities

yielded physically reasonable data. Together, these results demonstrate that the non-

depth-averaged OpenFOAM® simulations with a simple Coulomb rheology performed in

this study can be transferred to complex topographies. These simulations enable captur-

ing of the full three-dimensional behavior of a hazardous granular flow including velocity

and pressure fields. Especially when the refinements of the simulations described in the

previous section will be included, further real case simulations can be performed and

compared to actually observed flow behaviors. Validation of these simulations and par-

ticularly of the velocity fields and pressures will require further investigations on real

case hazardous granular flows as suggested in the next chapter.
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In this study, a series of experiments was performed to study the behavior of granular

material sliding down inclined channels. Experiments were designed to serve as models

for various situations occurring during hazardous granular flows in nature. In combi-

nation with the PIV system develop in this study, the experiments allow a detailed view

on the velocity fields during a granular flow of PVC and sand particles. These observa-

tions revealed strong shearing results inside the granular material leading to steep veloc-

ity gradients inside the material especially during encountering of obstacles and shock

formation. Thus, the experiments emphasized the necessity of non-depth-averaged sim-

ulations to correctly predict the events during a granular flow. A novel type of non-

depth-averaged simulations employing simple Coulomb sliding as rheological model in

fluid dynamics continuum mechanics numerical simulations was introduced and could

be shown to be well suitable to predict the observed experimental events. In its pre-

dictive power, the model proved clearly superior to classical depth-averaged simulations

with regards to the parameters which can be simulated and to the quantitative and qual-

itative agreement with the experiments. Nevertheless, the depth-averaged simulations

performed in this study for comparison with the new model displayed a good agreement

with the experiments concerning final deposits, free surface shape evolutions and undis-

turbed steady-state flows. Therefore, the results of this study can on the one hand serve

as a guide when to employ the less resource intensive depth-averaged simulations and

on the other hand supplies a non-depth-averaged model to be used in situations and for

parameters where depth-averaged models fail. The type of non-depth-averaged simu-

lations introduced in this study can be further extended in future to yield even more

precise predictions. One possible extension would be the introduction of a variable den-

sity. This would enable the simulation of air uptake by the granular material and thus the

prediction of volume increase as observed after the obstacle experiment in this study. In

this case, the obstacle causes the material to spread and results in a decrease in density.

Such situation would be important to simulate as the space occupied and thus the space

effected by a hazardous granular flow increases upon volume increase. Another possible

extension would be to allow the formation of shear bands in the granular material. This

would enable the prediction of sudden deceleration of several layers of material and thus

enhance the ability of the simulation to accurately predict fast deposition processes as

observed during the shock formation or the obstacle inside the channel for sand.

Furthermore, additional experiments could be performed to test the predictive power

of the non-depth-averaged model in run-out zones and to monitor the influence of obsta-

cle inclinations on the granular flow. These experiments can be performed in the channel
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designed for this study and are planned for the future.

Apart from this, the channel designed in this experiment and the PIV system can

also be used to analyze the behavior of other granular flows like cohesive flows (e.g. wet

granular material) and colloidal mixtures (e.g. mud/water mixtures). These experiments

would mimic hazardous granular flows of the mud flow type.

An extension for both the experiment and the simulations would be the analysis of

erosion and deposition at the channel bottom, thus monitoring if the granular flow can

take up or loose material during the flow. This could be tested by introducing a second

granular material with a higher internal and bottom friction angle. The channel could be

filled with this material and the granular flow would be triggered to flow on top of this

material. The PIV system developed in this work would then allow to observe erosion

and deposition of the material. A simple way to perform such an experiment would be to

include a compacted layer of slightly wet sand in the channel and let dry sand slip over

this layer. This experiment would mimic for example the flow of a large dry dense slab

avalanche triggered due to breaking of a weak layer. In such cases, the avalanche travels

over a more compact older snow layer and can take up parts of this layer during the flow.

The OpenFOAM® software used in this study would allow to include a third material (in

addition to air and the first material) into the filling parameter α1 Rusche (2002). Thus,

erosion and deposition could be easily included in the model employed in this study.

Erosion and thus entrainment of the granular flow with more snow mass might be one

of the phenomena which would yield better results for the run-out behavior of real case

avalanches, as the results of chapter 7 revealed an underestimation of the final deposit

predicted by the OpenFOAM® simulations. Another application for mixtures of materials

would be to monitor segregation events. They could be investigated in the channel by

using mixtures of granular material varying in size and density. Such events can for

example be important when large rocks, pieces of buildings or trees are transported by a

hazardous granular flow.

Also the wide channel experiment introduced in this study could be employed for fur-

ther investigations. One possibility would be the combination of various obstacle which

can be freely placed in the channel. Another option would be the introduction of de-

formable obstacles or obstacles which can be removed by the granular flow and are trans-

ported along with the flow like trees in real case scenarios. OpenFOAM® offers various
options for simulations of flows modifying the grid structure during the flow or to incor-

porate obstacles Rusche (2002). Thus, also deformation and displacement events could

be included in the model introduced in this study. To obtain velocity information from

the wide channel experiment, a PIV system using a second high speed camera and tracer

particles could be included.

One great advantage of the simulations introduced in this study is that the velocity
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and pressure field is predicted for every point of the granular flow. This allows the cal-

culation of the impact pressure, which is of great importance for the destructive power

of a granular flow in nature. However, only the velocities were measured in this study

and the correctness of the calculated impact pressures could not be validated. Therefore,

this parameter was not included in the simulation results. Future experiments should

therefore include means for the measurement of the impact pressure. Possible solutions

which could be included in the existing experimental set up are a scale instead of the wall

at the end of the channel to measure the global impact pressure as introduced in (Faug

et al., 2011; Moriguchi et al., 2009) or the usage of tracer particles measuring the a spatial

pressure field as employed in large scale snow experiments.

The results in chapter 7 demonstrate that the model can be transferred to real scale

hazardous natural granular flows and yields good qualitative predictions. Nevertheless,

validation and further refinement of the model for snow avalanches and other natural

granular flows would require more empirical data on the events taking place during

the granular flow. So far, most reports only describe the final deposit of an avalanche

and estimate the starting zone and material involved from the final situation. To over-

come this problem, several research groups in alpine regions established observation ar-

eas in avalanche prone regions and install sensors for determination of velocities at places

where avalanches are likely to pass by (e.g. in “Vallée de la Sionne”, http://www.slf.ch/

ueber/organisation/warnung_praevention/projekte/vallee_de_la_sionne/index_

EN, 15.03.2013). However, these measurements are usually limited to single places inside

the avalanches and broad spatial information is still lacking. It will be a challenging task

in future research to install measurement instruments for monitoring of velocity fields

inside real avalanches with fine spatial resolution. Additionally, detailed investigation

on the internal and bottom sliding angles of different snow types (or soil types in the case

of landslides) on different grounds would be necessary.

Taken together, the novel non-depth-averaged model build in this study by observ-

ing the performed experiments will serve as a basis for the development of a prediction

model for real scale hazardous granular flows and is thus an important step towards the

correct prediction of granular flow behavior for risk assessment in endangered regions.

http://www.slf.ch/ueber/organisation/warnung_praevention/projekte/vallee_de_la_sionne/index_EN
http://www.slf.ch/ueber/organisation/warnung_praevention/projekte/vallee_de_la_sionne/index_EN
http://www.slf.ch/ueber/organisation/warnung_praevention/projekte/vallee_de_la_sionne/index_EN
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A.1 Common parameters

A.1.1 Physical parameters and transport properties

Air phase:
Transport model: Newtonian

Viscosity: ν = 1.48 · 10−5m2s−1

Density: ρ = 1kgm−3

PVC phase:
Transport model: Coulomb

Viscosity: µ = tan(32◦)

Density: ρ = 936.17kgm−3

sand phase:
Transport model: Coulomb

Viscosity: µ = tan(37◦)

Density: ρ = 1626.67kgm−3

Magnitude of gravitation: g = 9.81ms−2

A.1.2 Numerical parameters employed in OpenFOAM® simulations

A.1.2.1 Numerical schemes

ddtSchemes: Euler

gradSchemes: Gauss linear

divSchemes: div(rho*phi,U): Gauss limitedLinearV 1

div(phi,alpha): Gauss vanLeer

div(phirb,alpha): Gauss interfaceCompression

div(phi,p_rgh): Gauss upwind

laplacianSchemes: gauss linear corrected

interpolationSchemes: linear

snGradSchemes: corrected

fluxRequired: p||p_rgh,pcorr,alpha1

A.1.2.2 Finite volume solution: fvSolution
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Listing A.1 – fvSolution

1 so lve r s

2 {

3 pcorr

4 {

5 so lve r PCG;

6 precondi t ioner DIC ;

7 to l e rance 1e−15;
8 re lTo l 0 ;

9 }

10

11 " ( p_rgh |p ) "

12 {

13 so lve r PCG;

14 precondi t ioner DIC ;

15 to l e rance 1e−15;
16 re lTo l 1e−7;
17 }

18

19 pFinal

20 {

21 so lve r PCG;

22 precondi t ioner DIC ;

23 to l e rance 1e−15;
24 re lTo l 0 ;

25 }

26

27 U

28 {

29 so lve r PBiCG ;

30 precondi t ioner DILU ;

31 to l e rance 1e−15;
32 re lTo l 0 ;

33 }

34 }

35

36 PISO

37 {

38 momentumPredictor no ;
39 nCorrectors 9 ;

40 nNonOrthogonalCorrectors 3 ;

41 nAlphaCorr 1 ;

42 nAlphaSubCycles 2 ;

43 cAlpha 1 ;

44 }

A.1.2.3 Control parameters: controlDict

Listing A.2 – controlDict

1 maxCo 0 .05 ;

2 maxAlphaCo 0 .05 ;

3 maxDeltaT 1 ;

A.1.2.4 Numerical limits for calculated effective viscosity

nuMin 1 · 10−15Pas
nuMax 1 · 102Pas

A.1.2.5 Boundary conditions

Wall
U: fixedValue(0 0 0)

p_rgh: buoyantPressure

alpha1: zeroGradient

Atmosphere
U: pressureInletOutletVelocity

p_rgh: totalPressure
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alpha1: zeroGradient

Inflow
U: fixedValue

p_rgh: fixedFluxPressure

alpha1: fixedValue

Outflow
U: zeroGradient

p_rgh: zeroGradient

alpha1: zeroGradient

Wall with Coulomb friction
U: coulombSlip

p_rgh: buoyantPressure

alpha1: zeroGradient

A.2 Special parameters for Rotating Box

A.2.1 Mesh

Mesh bounding box in m: (0, 0) (0.2, 0.2)

Cell size in mm: 4 x 4

Number of cells: 50x50=2500

A.2.2 Initial and boundary conditions

A.2.2.1 Boundary conditions:

Wall: (0, 0) (0.2,0) (0.2,0.2) (0,0.2) (0,0)

A.2.2.2 Initial filling:

α11( (0,0)x(0.2,0.11) ) = 1

A.2.3 Physical parameters

Rotating periode: T = 6.9274369s

Transport properties:
Transport model: Coulomb

Viscosity: µ = tan(54◦)

Density: ρ = 1855kgm−3
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A.3 Special parameters for dam breaks

A.3.1 Mesh

0◦ rectangular:
Mesh bounding box: (-0.3,0) (0.2,0.15)

Cell size in mm: 2.5 x 2.5

Number of cells: 200x60=12000

10◦ rectangular:
Mesh bounding box in m: (-0.3102186311787072,0) (0.39545627376425850,0.17)

Cell size in mm:
Region I: (-0.3102186311787072,0) (0,0.17)

Cell size in mm: 2.58515525982256 x 2.833333333333334

Region II: (0,0) (0.39545627376425850,0.17)

Cell size in mm: 3.295468948035488 x 2.833333333333334

Number of cells: 2 · (120x60) = 14400

20◦ rectangular:
Mesh bounding box: (-0.3107547169811321,0) (0.41549056603773590,0.17)

Cell size in mm:
Region I: (-0.3107547169811321,0)(0,0.17)

Cell size in mm: 2.589622641509434 x 2.833333333333334

Region II: (0,0) (0.4154905660377359,0.17)

Cell size in mm: 2.596816037735849 x 2.833333333333334

Number of cells 120x60 + 160x60 = 16800

30◦ rectangular:
Mesh bounding box: (-0.3044256120527307,0) (0.4210263653483993,0.17)

Cell size in mm:
Region I: (-0.3044256120527307,0)x(0,0.17)

Cell size in mm: 2.536880100439423 x 2.83333333

Region II: (0,0) (0.4210263653483993,0.17)

Cell size in mm: 2.631414783427496 x 2.83333333

Number of cells: 120x60+160x60=16800

50◦ triangular:
Mesh bounding box: (-0.4,0) (0.4,0.19)

Cell size in mm:
variable: 200 x 75 cells, y-simple grading 1.25

Number of cells: 200x75=15000
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A.3.2 Initial and boundary conditions

A.3.2.1 Boundary conditions:

Wall rectangular: (0,ymax) (xmin,ymax) (xmin,ymin) (xmax,ymin)

Wall triangular: (xmin,ymin) (xmax,ymin)

Atmosphere patches rectangular: (0,ymax) (xmax,ymax) (xmax,ymin)

Atmosphere patches triangular: (xmin,ymin) (xmin,ymax) (xmax,ymax) (xmax,ymin)

A.3.2.2 Initial filling:

Using polyFillAlpha extracted from experimental images (to many points to list here).

A.3.3 Physical parameters

Material rectangular: PVC

Material triangular: PVC and sand

Gravity
0◦: g = (g · sin(0◦),−g · cos(0◦))
10◦: g = (g · sin(10◦),−g · cos(10◦))
20◦: g = (g · sin(20◦),−g · cos(20◦))
30◦: g = (g · sin(30◦),−g · cos(30◦))
50◦: g = (g · sin(50◦),−g · cos(50◦))

A.4 Special parameters for undisturbed flow

A.4.1 Mesh

Mesh bounding box: (0.5,0) (2.25,0.1)

Cell size in mm:
Region I: (0.5,0) (2,0.1)

Cell size in mm: 5 x 1.666666666666667

Region II: (2,0)(2.25,0.1)

Cell size in mm: 5 x 1.666666666666667

Number of cells: 300x60+50x60=21000

A.4.2 Initial and boundary conditions

A.4.2.1 Boundary conditions:

Wall: (0.5,0) (2,0)



232 A Details for numerical simulations

Atmosphere patches: (0.5,0.1) (2.25,0.1)

Outflow patches: (2,0) (2.25,0) (2.25,0.1)

Inlet patches: (0.5,0) (0.5,0.1)

Inlet velocity: if(y<0.0296m) (1.455838m/s+34.030481/s·y,0), else (0,0)
Inlet α1: if(y<0.0296m) 1, else 0

A.4.3 Physical parameters

Material: sand or PVC

Gravity: g = (g · sin(50◦),−g · cos(50◦))

A.5 Special parameters for obstacle inside channel

A.5.1 Mesh and boundary conditions

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

5 · 10−2

0.1

0.15

0.2

0.25

Position x [m]

Po
si
ti
on
y
[m

]

Number of cells: 20250 (20242 hexahedra and 8 polyhedra)

Overall domain bounding box: (0.490904 0) (0.971269 0.25)

Obstacle geometry: (0.755721 0) (0.871269 0.112615) (0.871269 0)

A.5.2 Physical parameters

Material: sand or PVC

Gravity: g = (g · sin(50◦),−g · cos(50◦))
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A.6 Special parameters for shock formation

A.6.1 Mesh

Overall domain bounding box: (-2 0) (0 0.5)

Cell size mm:
Region 0: (-2,0.1) (-0.5,0.5): 10 x 10

Region 1: (-2,0.05) (-0.5,0.1) and (-0.5,0.05) (0,0.5): 5 x 5

Region 2: (-2,0) (0,0.05) : 2.5 x 2.5

Cells: 29200 (28571 hexahedra and 629 polyhedra)

A.6.2 Initial and Boundary Conditions

Wall: (-2,0) (0,0) (0,0.5)

Athmosphere: (-2,0.5) (0,0.5)

Inflow: (-2,0) (-2,0.5)

A.6.3 Physical Parameters

Material: sand or pvc

Gravity:
40◦: g40 = (g · sin(40◦),−g · cos(40◦))
50◦: g50 = (g · sin(50◦),−g · cos(50◦))

A.7 Special parameters for wide channel

A.7.1 Mesh

Overall domain bounding box: (0 -0.1475 0) (0.59 0.1475 0.12)

Initial cell size mm: 2.5 x 2.5 x 2.5

Cells (cylinder): 1317600 (1315776 hexahedra and 1824 prism)

Cells (prism): 1362707 (1356273 hexahedra, 979 prisms, 37 tet wedges and 5418 poly-

hedra)

Cells (rotated prism): 1362370 (1356342 hexahedra, 581 prisms, 33 tet wedges and 5414

polyhedra)

A.7.2 Physical parameters

Material: PVC

Gravity: g = (g · sin(45◦),−g · cos(45◦))
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Listing B.1 – Calculation of effective viscosity: calcNu

1 Foam : : tmp<Foam : : vo lSca la rF ie ld >

2 Foam : : v i scos i tyModels : : Coulomb : : calcNu ( ) const
3 {

4 dimensionedScalar tone ( " tone " , dimTime , 1 . 0 ) ;

5 dimensionedScalar rtone ( " rtone " , dimless /dimTime , 1 . 0 ) ;

6 tmp<volSca la rF i e ld > sr ( s t ra inRate ( ) ) ;

7

8 const vo lSca l a rF i e ld& pp=U_ . db ( ) . lookupObject<vo lSca la rF ie ld >( "p" ) ;

9

10 vo lSca l a rF i e ld nu__=muS_/(max( s r ( ) , dimensionedScalar ( "VSMALL" ,

11 dimless /dimTime , VSMALL) ) ) *pp/rhoS_ ;

12

13 Info << "Nu: " <<min ( nu__ ) . value ( )<<" �−>� "<<max( nu__ ) . value ( )<<endl ;

14 Info << "p : " <<min (pp ) . value ( )<<" �−>� "<<max(pp ) . value ( )<<endl ;

15 Info << " sr : " <<min ( s r ( ) ) . value ( )<<" �−>� "<<max( sr ( ) ) . value ( )<<endl ;

16

17 return
18 (

19 min

20 (

21 max( nu__ , nuMin_ ) ,nuMax_

22 )

23 ) ;

24 }

Listing B.2 – Calculation of bottom sliding velocity: coulombSlip

1 template<c lass Type>

2 void coulombSlipNewFvPatchField<Type > : : evaluate ( const Pstream : : commsTypes )

3 {

4 i f ( ! this −>updated ( ) )

5 {

6 this −>updateCoeffs ( ) ;

7 }

8

9 vec to rF i e ld nHat = this −>patch ( ) . nf ( ) ;

10

11 s c a l a r F i e l d de l taCoef f s_ = this −>patch ( ) . de l taCoef f s ( ) ;

12 const volVectorF ie ld& U =

13 this −>db ( ) . ob j e c tReg i s t r y : : lookupObject<volVectorFie ld >( "U" ) ;

14 const vo lSca l a rF i e ld& alpha1 =
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15 this −>db ( ) . ob j e c tReg i s t r y : : lookupObject<vo lSca la rF ie ld >( " alpha1 " ) ;

16 const vo lSca l a rF i e ld& mu =

17 this −>db ( ) . ob j e c tReg i s t r y : : lookupObject<vo lSca la rF ie ld >( "mu" ) ;

18 const vo lSca l a rF i e ld& p =

19 this −>db ( ) . ob j e c tReg i s t r y : : lookupObject<vo lSca la rF ie ld >( "p" ) ;

20 l abe l patchi=this −>patch ( ) . index ( ) ;

21

22 f o rAl l ( this −>patch ( ) , f a c e i )

23 {

24 l abe l c e l l i = this −>patch ( ) . f a c eCe l l s ( ) [ f a c e i ] ;

25 i f ( alpha1 . boundaryField ( ) [ patchi ] [ f a c e i ] >=0.5) {

26 valueFract ion_ [ f a c e i ]=

27 min(1 ,

28 max(0 ,

29 tanDe_ [ f a c e i ] / de l taCoef f s_ [ f a c e i ]

30 *p . boundaryField ( ) [ patchi ] [ f a c e i ]

31 /max(VSMALL,

32 mu. boundaryField ( ) [ patchi ] [ f a c e i ]

33 *mag(−nHat [ f a c e i ]^ ( nHat [ f a c e i ]^U.

i n t e rna lF i e ld ( ) [ c e l l i ] ) )

34 )

35 )

36 ) ;

37 }

38 else {

39 valueFract ion_ [ f a c e i ]=1 . 0 ;

40 }

41 }

42 / / I n f o << va lueFrac t i on_ <<endl ;
43 Field<Type > : : operator=
44 (

45 (1.0 − valueFract ion_ ) * transform ( I − sqr ( nHat ) ,

46 this −>patchIn te rna lF i e ld ( ) )

47 ) ;

48

49 transformFvPatchField<Type > : : evaluate ( ) ;

50 }
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