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1. Introduction 

1.1 Obstructive Airways Diseases 

Bronchial asthma and chronic obstructive pulmonary disease (COPD) are two 

lung diseases that are continuously increasing worldwide and represent major world 

causes of disability and death (Welte and Groneberg  2006). 

 
 

 

Figure  1-1: Representation of airways in the normal lung (left) and in obstructive airways 
disease (right) (Jeffery 2001). 

 
  
Both are chronic inflammatory disorders associated with irreversible structural chan-

ges of lung composition “remodelling” (Fig. 1-1) in which several cells and compo-

nents play a crucial role (Descalzi et al. 2008; Jeffery 2001). 

 

In the following, asthma and COPD, their pathophysiology and airway remodelling 

will be briefly described. 

 

 

Characterization of β-Adrenergic Mechanisms in Human Pulmonary Fibroblasts | Dissertation by Fathi Lamyel 1 
 



1. Introduction 
 

Characterization of β-Adrenergic Mechanisms in Human Pulmonary Fibroblasts | Dissertation by Fathi Lamyel 2 
 

1.1.1 Bronchial Asthma 

Asthma is a common disease that afflicts all ages and can differ greatly in 

severity.  It is an inflammatory disorder condition characterized by reversible airflow 

obstruction, accompanied with lower airway inflammation and remodelling (Holgate 

and Davies 2009; Wilson and Bamford 2001). The chronic inflammation is associated 

with increased airway hyper-responsiveness causing recurrent episodes of wheezing, 

breathlessness, and chest tightness. 

Clinically, asthmatic subjects have difficulty exhaling air because of an increase in 

airway resistance that is a consequence of smooth muscle contraction, inflammation 

and remodelling (Fig. 1-2) (Weiss et al. 2006). 

The severity of asthma is dependent on a combination of symptoms and use of medi-

cations. Currently, asthma cannot be cured but can be controlled. 

 

 

 
 

Figure  1-2: Schematic representation of asthma pathobiology (Weiss et al. 2006). 
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Asthma is caused by environmental and genetic factors (Martinez 2007).  

In asthmatic subjects, the airway inflammation is characterized by an increase in 

eosinophils numbers and CD4+T lymphocytes (Busse and Lemanske 2001). Allergen-

IgE directed processes are predominant features of airway pathology with mast cells, 

Th2 lymphocytes, and eosinophils the predominant histological features in acute inf-

lammatory aspects of asthma (Bousquet et al. 2000). 

The Th2 cytokine profile involved in these processes often includes IL-3, IL-4, IL-5, 

IL-9, and IL-13 (Barnes 2008). Transforming growth factor-β (TGF-β) also may play 

an important role as a fibrogenic and immunomodulatory factor in leading to 

structural changes in asthmatic airways (Duvernelle et al. 2003). 

In asthma, large and small airways are structurally changed but, in the asthmatic non-

smoker, there is no parenchymal destruction. However, the large walls of the airways 

in asthma are thickened by between 50 and 300%, leading to luminal narrowing 

compromised by excessive mucus (Jeffery 2001).  

It has been elucidated in previous reports that lower airway fibroblasts may play a 

critical role in the remodelling process of airway mucosa, as they are involved in 

continuous cycles of collagen synthesis, proliferation, activation and cross-talk with 

inflammatory cells (Descalzi et al. 2008).  

 

 

1.1.2 Chronic Obstructive Pulmonary Disease (COPD) 

According to WHO, chronic obstructive pulmonary disease (COPD) is a lung 

disease characterized by chronic obstruction of lung airflow that interferes with 

normal breathing and is not fully reversible. It is also defined as a multicomponent 

disease characterized by progressive airflow limitation and an inflammatory response 

of the lung (Hanania and Donohue 2007). Principally, COPD is caused by prolonged 

exposure to tobacco smoke (80 to 90% of cases of COPD are due to smoking), fine 

airborne particles, air pollution, genetics (severe hereditary deficiency of alpha1-

antitrypsin) and autoimmune disease (Halbert et al. 2006; Young et al. 2009). 
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In contrast to asthma, the airway limitations are poorly reversible and usually get 

progressively worse over time. COPD is ranked as the sixth leading cause of death in 

1990. It is also expected to be the fourth leading cause of death worldwide by 2030 

due to an increase in smoking rates and demographic changes in many countries. 
 

The most upsetting symptoms for COPD patients are; cough, mucous hyper- 

production, dyspnea (‘Shortness of Breath’), physical disability and limitation of daily 

activities (Hanania and Donohue 2007; Hnizdo et al. 2004; Mathers and Loncar 

2006). COPD develops slowly over many years and is usually diagnosed when the 

disease is already advanced. 

Histologically, biopsy samples of COPD subjects show clear structural changes. For 

example, an increase of smooth muscle mass, sub-epithelial fibrosis, and thickening 

of small airway walls associated with predominant infiltration and accumulation of 

inflammatory cells in airways and lungs, such as CD8+ T lymphocytes, macrophages, 

and neutrophils (Hamid et al. 2004; Hogg 2004; Jeffery 2001). 

 

 

1.1.3 Airway Remodelling 

In chronic inflammatory and obstructive airway diseases, such as bronchial 

asthma and COPD, airway structural changes are a pathological feature that appear to 

be an essential determinant of the long-term outcome of these diseases (Chiappara, et 

al. 2001; Hogg 2004; Holgate 2002; Jeffery 2001; Ward et al. 2002; Wilson and 

Bamford 2001). Fibrotic processes appear to be of significance in airway remodelling 

in both asthma and COPD (Hogg 2004; Jeffery 2004; Molfino and Jeffery 2007). 

 

 

1.1.3.1 Remodelling and Pathophysiology in Asthma 

The term “airway remodelling” is used to refer to the development of specific 

structural changes in the asthmatic airway wall that occur as secondary phenomena 

arising late in the disease process as a result of chronic inflammation of the airway. 

Airway remodelling and structural changes (Fig. 1-3) mainly occur in epithelium, 

lamina propria and the submucosa which include abnormal deposition of collagen, 

http://en.wikipedia.org/wiki/Asthma
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increase in cell number (hyperplasia) and increase of cell size (hypertrophy) of goblet 

cells, submucosal gland cells, smooth muscle cells and blood vessel cells (Fahy et al. 

2000). 

In bronchial asthma, thickening of the reticular basement membrane is observed 

essentially in the large airways (Beasley et al. 1989; Brewster et al. 1990). 
 

 
 
 

Figure  1-3: Model of the airway remodelling with inflammatory cells, epithelial damage, 
goblet cell hyperplasia, sub epithelial fibrosis, mucus hyper secretion and smooth muscle cell 
hypertrophy and hyperplasia (Panettieri et al. 2008). 
 

 

 

Most inflammation that occurs during asthma is a result of interaction between 

epithelial cells and mesenchymal cells, such as fibroblasts and myofibroblasts (Olman 

2003). 

A variety of mediators, cytokines, chemokines and growth factors are released from 

inflammatory cells such as eosinophils, activated T cells, mast cells and macrophages 

(Chung and Barnes 1999). These cytokines and chemokines can results in an acute 

inflammatory response, which is characterized by vascular leakage and mucus hyper-

secretion. At the same time, by release of mediators, cytokines, chemokines and 
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growth factors, these cells cause chronic inflammatory infiltrate and induce structural 

changes in the airway wall (Vignola et al. 2001). 

 Several inflammatory mediators increase airway smooth muscle proliferation, which 

strongly induces the deposition of extracellular matrix (ECM) proteins and growth 

factors in fibroblasts and epithelial cells (Meerschaert et al. 1999). The epithelial cells 

are normally injured in asthmatic airways leading to activation of epithelial-mesen-

chymal trophic unit inducing their proliferation and differentiation. Fibroblasts and 

myofibroblasts are the major mesenchymal cells representing the main target of the 

cytokines and growth factors produced by epithelial cells during the damage-repair 

process, which results in production of collagen, elastic fibers, and proteoglycans by 

fibroblasts. Whereas myofibroblasts are implicated in airway remodelling by produc-

tion of extracellular matrix (ECM) components such as elastin, fibronectin and 

laminin (Leslie et al. 1992; Vignola et al. 2001; Yamauchi and Inoue 2007). 

Furthermore, a variety of cells such as macrophages, lymphocytes, fibroblasts, airway 

epithelial cells, eosinophils, mast cells and T cells release TGF-β, a cytokine that 

increases the synthesis of extracellular matrix (ECM) (Hoshino et al. 1998; Ohno et 

al. 1996; Vignola et al. 1996; Vignola et al. 1997). It is known that only the type2 

pattern of Th2 cells, such as IL-3, IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13, are 

associated with asthma, while the type1 cytokines, such as interferon-γ, tumor nec-

rosis factor-α (TNF-α) and  lymphotoxin oppose type2 cytokines, leading to attenu-

ation of allergic inflammation. Many pathological features in the airway occur during 

injury-repair cycles, including epithelial changes, eosinophilic inflammation, sub-

epithelial changes and mucus abnormality (Fahy et al. 2000). 

 
1.1.3.2 Remodelling and Pathophysiology in COPD 

COPD is characterized by physiological abnormalities including airflow and 

gas exchange limitations, and many clinical symptoms such as increased sputum 

production, expectoration cough, wheezing and dyspnea. COPD include two main 

phenotypes: chronic bronchitis and emphysema. 

Bronchitis is characterized by inflammation of the "bronchial tree", the airways that 

carry airflow from the trachea into the lungs. This results in tissue swelling and 

excessive secretions of mucus into the bronchi, with progressive airflow limitation. 

http://en.wikipedia.org/wiki/Vertebrate_trachea
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Chronic bronchitis is caused by recurring injury or irritation to the respiratory 

epithelium of the bronchi, resulting in chronic inflammation, edema (swelling), and 

increased production of mucus by goblet cells. The inflammatory response associated 

with chronic bronchitis is usually located in the epithelium of the central airways, 

which, larger than 4 mm in internal diameter, extends along the gland ducts into the 

mucus-producing glands (Mullen et al. 1985; Saetta et al. 1997). 

Chronic bronchitis is characterized by two main characteristics, excessive production 

of sputum and chronic inflammatory cell infiltration of the bronchial wall (Yoshida 

and Tuder 2007). Clinically, chronic bronchitis is characterized by wheezing and a 

persistent expectoration cough which is usually associated with airflow limitation. 
 

From a pathological point of view, emphysema has been defined as an irreversible 

destruction of alveolar structures with airspace enlargement, not associated with 

significant amount of fibrosis. In other words, emphysema is characterized by 

destruction of the tissues, loss of lung parenchyma, and over-inflation of the alveoli. 

Much attention is focused on the pathophysiological processes interacting in the peri-

phery of the lung in COPD including oxidative stress, alveolar cell apoptosis, and 

extracellular matrix proteolysis (Yoshida and Tuder 2007). 
 

The bronchial mucosa of large and small airways in patients with chronic obstructive 

pulmonary disease is characterized by squamous-cell metaplasia, goblet-cell hyper-

plasia, mucus gland enlargement, smooth-muscle hypertrophy and infiltration of 

inflammatory cells (Bergeron and Boulet 2006).  A small airway (˂ 2 mm) is believed 

to be the main site of airways obstruction occurring during COPD. Processes 

contributing to small airways obstruction involve; destruction of the epithelial barrier, 

interference with mucociliary clearance leading to accumulation of inflammatory 

mucous, and deposition of connective tissue in the airway wall resulting in lumen 

diameter reduction (Hogg 2004; Skold 2010). Recent insights into the pathophysiolo-

gical processes that contribute to development of emphysema provide at least 

two main mechanisms including protease-antiprotease imbalance and apoptosis of str-

uctural cells (Skold 2010). Interestingly, the fibrosis and stenosis of airway wall was 

observed in small airways, along with loss of the activity of antiprotease enzymes 

such as alpha 1-antitrypsin, allowing protease enzymes to damage the lung and devel-

opment of emphysema (Saetta et al. 1985). In other words, in emphysema, collagen 

http://en.wikipedia.org/wiki/Bronchi
http://en.wikipedia.org/wiki/Inflammation
http://en.wikipedia.org/wiki/Edema
http://en.wikipedia.org/wiki/Goblet_cell
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and elastin per weight unit respectively is increased compared with patients without 

emphysema. This suggests that along with destruction of the lung tissue, fibrotic 

mechanisms may occur in parallel (Skold  2010). 

 

 The COPD inflammatory pattern is characterized by an increase in neutrophils, 

macrophages, CD8+, T-cells, eosinophils and inflammatory mediators such as IL-8, 

TNF-α, leukotriene B4 and TGF-β (Crooks et al. 2000; Keatings et al. 1996; Lane et 

al. 2010; Saetta et al. 1998; Turato et al. 2001; Yamamoto et al. 1997). Figure (1-4). 

 

 
 

 

Figure  1-4: Inflammatory cells involved and stages of pathogenesis of COPD (Lane et al. 
2010). 
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1.1.3.3 Role of Mesenchymal Cells in Airways Remodelling 

The main structural components of mesenchyme are fibroblasts and myo-

fibroblasts. After stimulation these cells have the ability to produce immune-

modulatory cytokines and chemokines. These products can, in turn activate or attract 

inflammatory cells in the lungs, and to mediate the majority of the events contributing 

to the subepithelial fibrosis and remodelling in airways. It is also known that airways 

remodelling is the main result of altered fibroblasts behavior (Baouz et al. 2005). 

A number of previous studies have shown that there is an increase in fibroblasts and 

myofibroblasts in biopsy samples obtained from pulmonary obstructed disease sub-

jects (Benayoun et al. 2003; Brewster et al. 1990; Descalzi et al. 2007; Roche et al. 

1989). Fibroblasts and myofibroblasts play a pivotal role in the exaggerated depo-

sition of collagen and structural changes in airways. Bone marrow-derived fibroblasts 

may also play a role in fibrotic remodelling in airways (Kotton et al. 2001). It has 

been demonstrated that bone marrow-derived fibroblasts play a critical role in 

pulmonary fibrosis in rats treated with bleomycin (Hashimoto et al. 2004). 

The circulating fibrocytes can migrate to injury-repair site to serve as a source for 

fibroblasts and myofibroblasts which usually participate in repair process (Abe et al. 

2001). Allergen exposure induces the accumulation of fibrocyte-like cells in the 

bronchial mucosa, where CD34+, expressed collagen I and α-smooth muscle actin (α-

SMA) are present (Schmidt et al. 2003). 

In simple words, normal homeostasis in human tissues requires complicated balanced 

interactions between cells and the network of secreted proteins known as the 

extracellular matrix. In these cooperative interactions numerous cytokines are 

involved and act via specific receptors located on the cell surface. Any disturbance or 

alterations in the balance between the cells and the extracellular matrix can result in 

human disease. One of these interactions is mediated by TGF-β (Blobe et al. 2000). 

TGF-β is a member of the family of secreted polypeptide and has various functions in 

significant cell cycle processes including; biological activity, regulating cell function, 

cellular proliferation, differentiation, development and other cell functions. TGF-β has 

been implicated as a master switch in many chronic fibrotic conditions such as 

pulmonary and hepatic fibrosis. (Hassoba et al. 2005; Willis and Borok 2007). 
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There are three isoforms of TGF-β (β1, β2, and β3) which are important for normal 

embryonic and fetal development and play a role in normal organ homeostasis and 

function (Bartram and Speer 2004). All isoforms are expressed at high levels during 

normal lung development. In addition, TGF-β has a role in modulating inflammation, 

wound repair, and immune homeostasis and tolerance (Taylor 2009). It plays 

a crucial role in normal pulmonary morphogenesis activity and also in lung patho-

genesis.  

Originally, small amounts of TGF-β are present in adult lung and are involved in 

tissue healing after lung injury. It was demonstrated that, in various forms of 

pulmonary diseases, the expression levels of TGF-β are increased. In other words, 

damage of lung tissue by chemicals, bacteriologic, or immunologic noxious effects 

leads to an induction of TGF-β that limits some of the inflammatory reactions and 

plays an important role in mediating tissue remodelling and repair. In addition, TGF-β 

induces expression of α-SMA, which is a well-accepted marker of myofibroblast 

differentiation, and has been suggested to play a role in the production of contractile 

force during wound healing and fibrocontractive diseases (Baouz et al. 2005; Bartram 

and Speer 2004; Hinz et al. 2001). 

The communication between the epithelium and the underlying mesenchyme (the 

epithelial mesenchymal trophic unit) plays an important role in the structure alte-

rations (Fig. 1-5). TGF-β is released from damaged epithelial cells, fibroblasts, smoo-

th muscle cells and inflammatory cells, and can mediate its effects by interacting with 

TGF-β receptors on fibroblasts.  This interaction can promote the transformation of 

fibroblasts into myofibroblasts (Boxall et al. 2006). The biological action of TGF-β is 

regulated by a selective pathway of TGF-β synthesis and signaling that involves 

activation of latent TGF-β, specific TGF-β receptors, and intracellular signaling by 

Smad molecules (Bartram and Speer 2004).  

Transformed myofibroblasts are more biosynthetic in nature than fibroblasts and can 

synthesise and release an array of growth factors and cytokines, leading to 

remodelling of airways and persistence of the chronic inflammatory events. The 

remodelling process is increased by release of various factors such as: endothelin-1, a 

mitogen for airway smooth muscle cells (Glassberg et al. 1994) and fibroblasts 

(Takuwa et al. 1989) and also stimulates collagen synthesis; eotaxin, a chemoattra-
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ctant for eosinophils; and vascular endothelial growth factor, an angiogenic factor that 

promotes the growth of new blood vessels (Richter et al. 2001; Vignola et al. 2002). 

Moreover, human lung fibroblasts are thought to be directly activated by Th2 

cytokines such as IL-4 and IL-13, which later induce signal pathways resulting in 

production of several pro-inflammatory molecules (Doucet et al. 1998; Richter et al. 

2001). 

 
 

 

 

 

Figure  1-5: Expression and release of TGF-β in asthmatic airways, from the epithelium, 
fibroblasts, smooth muscle cells and inflammatory cells, and its role in the fibrosis associated 
with airway remodelling (Boxall et al. 2006). 

           

Airway remodelling has been documented to be an irreversible process, although 

there is evidence suggesting that early control and treatment of airway obstructive 

disease can delay or even reverse the structural changes (Selroos et al. 1995). 
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1.1.4 Overlapping, Similarities and Differentiation of Asthma and COPD 

As summarized in figure 1-6 recent studies have focused on the overlap 

between asthma and COPD. From a clinical point of view, both diseases are charac-

terized by airflow obstruction and chronic persistent airway inflammation. In addition, 

a number of clinical studies have shown that many patients with asthma have charac-

teristics of COPD, and approximately 10% of patients with COPD also have asthma 

and therefore share pathologic features, namely "wheezy bronchitis".  In other word, 

COPD and asthma are two different forms of chronic pulmonary diseases with consi-

derable overlap in presentation and management. 

Both disorders have different disease mechanisms, however there are structural and 

inflammatory similarities. Most overlap is between severe asthmatics and COPD ind-

ividuals, where Th1 and neutrophilia are common features. The management with 

pharmacologic and non-pharmacologic strategies for the treatment of these diseases is 

similar, focusing on treating bronchoconstriction and airway inflammation (Barnes 

 

2000; Guerra 2005). 

 

Figure  1-6: Overlapping, similarities and differentiation between COPD and asthma. 
m Barnes 2000). (Modified fro
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Airway inflammation in asthma, characterized by an eosinophilic inflammation affec-

ly suppressed by corticosteroids, 

d 
+ +

.2 Obstructive Airways Diseases Therapy 

 symptom-free with as near to normal 

lung

ting all the airways but not lung parenchyma, is linked to airway hyper-responsive-

ness (Barnes 2000). In COPD, there is a predominantly neutrophilic inflammation in 

the airways. Parenchymal destruction is an important irreversible feature and leads to 

airflow obstruction through dynamic compression.  

The eosinophilic inflammation in asthma is marked

but they have no appreciable effect on the inflammation in COPD, consistent with 

failure of long-term corticosteroids to alter the progression of COPD (Barnes 2000). 

Briefly, airway inflammation in asthma is characterized by mast cells, eosinophils an

CD4  T lymphocytes; whereas in COPD, macrophages, neutrophils and CD8  T 

lymphocytes are predominantly involved. Regarding the structural changes, epithelial 

shedding and reticular basement membrane thickening occur only in asthma, incr-

eased smooth muscle occurs in large airways in asthma and in small airways in 

COPD. Additionally, emphysema is a feature only of COPD. 
 

 

1

The purpose of therapy in asthma is to be

 function as possible; while the purpose of COPD therapy is to stop the ultimate 

progression of damage to the lung, reduce exacerbations and help improve quality of 

life. Generally, treatment options depend on general medical condition and severity of 

disease. Bronchodilators are widely used in the treatment of patients with these cond-

itions. The main bronchodilators are β2-adrenoceptors agonists, muscarinic antago-

nists, theophylline and their combinations (Gupta and O'Mahony 2008). In addition, 

inhaled corticosteroids (ICSs) are the most effective anti-inflammatory agents and 

controllers currently available for the long-term treatment of asthma. By contrast, 

ICSs have established to be less effective in patients with severe asthma, smoking 

asthmatics and in patients with COPD; but at high-doses they have been shown to 

decrease the frequency and severity of exacerbations of the disease (Adcock et al. 

2010; Barnes 2010; Paggiaro et al. 1998; Vestbo, et al. 1999). 
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As known, the lungs are innervated by both the sympathetic and parasympathetic 

nervous systems, which lead to activation of β-adrenoceptors and muscarinic recep-

tors respectively. Both β-adrenoceptors and muscarinic receptors are widely expressed 

and distributed in the lungs and the specific receptor profile expression can vary 

significantly between the species. The location and the subtype of receptor expressed 

are important in the regulation of normal lung function. Furthermore, lung function 

and airway tone relies on the communication between parasympathetic and sympa-

thetic nerves which are mediated by negative cross-talk between muscarinic receptors, 

especially M2 and β2-adrenergic receptors. (Proskocil and Fryer 2005). 

A combination of inhaled β2-adrenoceptors agonists and inhaled corticosteroids repre-

sent the cornerstone in treatment of obstructive airways diseases. In combination with 

corticosteroids, β2-adrenoceptors agonists can reduce exacerbation and disease prog-

ression and improve the airway limitations (Cazzola et al. 2003; Hancox and Taylor 

2001; Pauwels et al. 1997). In general, there is no curative treatment for asthma and 

COPD, and no medications have been found to cure the disease or reverse the loss of 

lung function. The treatment of asthma is characterized by suppression and prevention 

of inflammations, while treatment of COPD is characterized by relief of symptoms 

(Donohue 2004). 

In other words, the purposes of asthma treatment are to maintain pulmonary function 

as close as possible to normal, prevent the development of irreversible airflow limi-

tations, and prevent exacerbation. While the purposes of COPD treatment are relief of 

symptoms, prevention and treatment of exacerbations, and prevention of the progr-

ession of lung tissue damage, which helps in slowing the accelerated decline in lung 

function (Buist 2003; Scanlon et al. 2000; Spina and Page 2002). 

Most medications used in the treatment of asthma such as bronchodilators and cortic-

osteroids are used in the treatment of COPD. Whereas some medications, like PDE4 

inhibitors, may be effective in the treatment of asthma and are especially useful in 

COPD (Donohue 2004), some others are used specifically in the treatment of bronch-

ial asthma such as, leukotriene antagonists, immunomodulator, cromolyn and nedo-

cromil. 
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1.2.1 Muscarinic Receptors Antagonists 

There are five subtypes of muscarinic receptors (M1-M5) which have been 

identified by pharmacological experiments and molecular cloning technique. Each is 

the product of a distinct gene and member of the superfamily of G-protein coupled 

receptors that have seven transmembrane domains and are coupled to a guanosine tri-

phosphate (GTP) binding protein (Caulfield and Birdsall 1998). Of these five sub-

types, human lung airways contain a mixed population of M1, M2 and M3 muscarinic 

receptors. The M2 muscarinic receptors preferentially couples to the G-protein belon-

ging to (Gi/o) family and functions to counteract the β-adrenoceptors mediated 

relaxant pathway by inhibiting the production and accumulation of cyclic adenosine 

mono-phosphate (cAMP) (Jones et al. 1987; Kume and Kotlikoff 1991). The M3 

receptor couples preferentially to stimulatory G-protein (Gq) resulting in stimulation 

of phospholipase C and an increase in intracellular calcium which mediates contr-

action of airway smooth muscle (Caulfield and Birdsall 1998). 

As described in previous studies, two types of anticholinergic agents are presently 

used in clinical therapy: short-acting compounds such as ipratropium bromide and 

long-acting drugs such as tiotropium bromide (Matthiesen et al. 2006). At the present, 

numerous new long-acting anticholinergic compounds are under development, such as 

NVA237 (glycopyrronium bromide) and LAS 34273 (aclidinium bromide) (Barnes 

2011; Matthiesen et al. 2006; Zhang et al. 2012).  

 

1.2.2 β-Adrenergic Receptors Agonists 

The human β-adrenoceptors is a member of the metabotropic G-protein-coupled 

receptors (GPCRs) that act as a target of the catecholamines, especially adrenaline 

and noradrenaline. GPCRs represent the largest family of membrane proteins in the 

human genome and are transmembrane proteins that include seven helical transmem-

brane segments (TM helices, TMs). 

Structurally, GPCRs are characterized by an extracellular N-terminus, followed by 

seven transmembrane (7-TM) α-helices connected by three intracellular and three 

extracellular loops and finally an intracellular C-terminus. GPCRs are known and po-

http://en.wikipedia.org/wiki/N-terminus
http://en.wikipedia.org/wiki/Transmembrane_domain
http://en.wikipedia.org/wiki/Alpha_helix
http://en.wikipedia.org/wiki/C-terminus
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pular as drug targets since it has been estimated that more than 400 GPCRs are of 

potential therapeutic interest and more than 800 GPCRs sequences in the human gen-

ome have been identified (Fredriksson et al. 2003). GPCRs indicates that these rece-

ptors communicate with G-proteins, but the main common characteristic of GPCRs 

are seven stretches of about 20-35 sequential amino acid residues, which show a high 

degree of hydrophobicity and represent α-helixes that span the plasma membrane 

(Lagerstrom et al. 2006). 

 

The natural ligands which react with GPCRs are particularly different such as ions, 

amines, peptides, proteins, lipids, and nucleotides. In addition to signaling trans-

duction mediated via heterotrimeric G proteins, it is now known that GPCRs act via 

many other alternative G protein-independent signaling pathways. An increasing 

number of proteins have been identified that bind GPCRs and either couple GPCRs to 

G protein-independent signal transduction pathways or alter G protein specificity and 

agonist selectivity, such as G protein-coupled receptor kinases (GRKs), arrestins, cal-

modulin, calcyon, A kinase-anchoring protein (AKAP) and Angiotensin II Type I 

Receptor-associated Protein (ATRAP) (Ferguson 2001). 

 

β-Adrenoceptors is coded by an intronless gene product of approximately 1200 base 

pairs situated on the long arm of chromosome 5 (Johnson 2006) and has been sub-

divided into three subtypes: β1, β2 and β3. β1-Adrenoceptors are located mainly in the 

heart and in the kidneys. β2-Adrenoceptors are located mainly in the lungs, gastro-

intestinal tract, liver, uterus, vascular smooth muscle, and skeletal muscle. Whereas 

β3-Adrenoceptors located in adipose tissue (Frielle et al. 1988). All three β-adreno-

ceptors subtypes couple to the stimulatory GTP-binding protein (Gs) to activate 

adenylyl cyclase which increases the intracellular 3',5' cyclic adenosine-

monophosphate (cAMP) level resulting in an increase of protein kinase A (PKA) 

activity, which phosphorylates downstream protein modulators (Proskocil and Fryer, 

2005; Tang et al. 1999). 

 

This thesis focuses on β2-adrenoceptors subtype and their role in the treatment of 

airway obstructive diseases and modulation of long term remodelling processes. 
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As described, β2-adrenoceptors agonists are considered as first-line medications in the 

management of asthma and COPD. These medications are used both as disease symp-

toms relievers, and in combination with inhaled corticosteroids as disease controllers. 

However, β2-adrenoceptors agonists are classified depending on their duration of act-

ion, selectivity, potency and efficacy. 

In addition to their bronchodilator effect, it was reported that the long acting β2-

adrenoceptor agonist salmeterol also inhibited inflammatory cells. This effect appears 

to be a β2-adrenoceptors-independent mechanism, and mostly appears to be as a result 

from the stabilization of cell membranes of inflammatory cells, such as mast cells and 

their inhibition of mediators’ release from eosinophils, macrophages, T lymphocytes, 

and neutrophils (Anderson et al. 1996; Hanania and Moore 2004). 

Furthermore, β2-adrenoceptors agonists were elucidated to exert anti-inflammatory 

and inhibitory effects on airway smooth muscle cells and human lung fibroblasts 

(Korn, et al. 2001; Loven et al. 2007; Pang and Knox 2000; Spoelstra et al. 2002). It is 

an emerging question whether the action of these drugs is confined to bronchodilation 

or whether they can exert additional action on inflammatory and/or structural cells, 

which may either contribute to the therapeutic benefit or result in undesired effects. 

However, although β2-adrenoceptors agonists showed anti-inflammatory properties in 

vitro, depending on the changes in the number of activated inflammatory cells, they 

have failed to demonstrate any anti-inflammatory effects during clinical trials 

(Hanania and Moore 2004). 

It was reported in previous studies that chronic use of β2-adrenoceptors agonists alone 

for treatment of obstructive airways diseases treatment could induce receptor tole-

rance and desensitization that limits the efficacy of drugs, leading to disease exacer-

bation and poor disease control (Cheung et al. 1992; Cooper and Panettieri 2008; 

Haney and Hancox 2005). 

As known already, the desensitization phenomenon of receptors is characterized by a 

down-regulation of β2-adrenoceptors in the inflammatory cells with the progression of 

the disease in patients with COPD and the destruction of β-adrenoceptors-GS-

adenylyl cyclase system, or a tolerance to stimulant effects. The mechanisms which 

are applied in β2-adrenoceptors desensitization consist of firstly, uncoupling of the 
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receptors from the adenylyl cyclase which occurs after phosphorylation of the 

receptor by cAMP-independent β-adrenoceptors kinase; and secondly, internalization 

or sequestration of the uncoupled receptors from the cell surface, which is observed 

after more prolonged exposure. Finally, after some hours of exposure a breakdown of 

receptors can occur and they can be replaced by synthesis of new receptors (Zhang et 

al. 2012). 

Inhaled short-acting β2-adrenoceptors agonists (SABA) are the most effective therapy 

for rapid reversal of airflow obstruction and immediate relief of symptoms. They are 

used for symptomatic treatment of bronchospasm, providing quick relief of acute 

bronchoconstriction in patients with mild asthma. Salbutamol and terbutaline are the 

most commonly used and their action occurs maximally in 5 min and lasts 4 to 6 hrs 

(Nelson 1995; Weiss et al. 2006). 

Inhaled selective long-acting β2-adrenoceptors agonists (LABA) including salmeterol 

and formoterol are approved for use in both asthma and COPD. They given by inha-

lation, and the extensive clinical trials data indicated that they both provide signi-

ficant bronchodilation effects lasting for at least 12 hrs (Anderson et al. 1994). Both 

of these drugs have become important therapy in the regular management of asthmatic 

patients, as well as regular use of these compounds in COPD patients can improve 

health status than inhaled short-acting β2-adrenoceptors agonists. They can be used in 

combination with compounds from other bronchodilator classes and ICSs for better 

symptom control, (Donohue 2004). They improve lung function, reduce symptoms, 

and protect against exercise-induced dyspnea in patients with COPD (Johnson and 

Rennard 2001). 

However, in looking at the ability of these medications to effect prompt reversal of 

airflow limitations, some reports have demonstrated that daily regular use of inhaled 

β2-adrenoceptors agonists has resulted in loss of asthma control (Sears et al. 1990; 

Taylor et al. 2000). Most studies commonly explained this adverse effect of chronic 

use of β2-adrenoceptors agonists to desensitization of β2-adrenoceptors (Hanania et al.  

2002; Hancox et al. 1998). The principal action of β2-adrenoceptors agonists is to 

relax airway smooth muscle by stimulating β2-adrenergic receptors, see (1.2.3) 

(Johnson and Rennard 2001; Tashkin and Fabbri 2010). 
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1.2.3 β2-Adrenoceptors Signaling Pathways 

According to classical signaling, agonism of β2-adrenoceptors and activation of 

the signal transduction pathway is mediated by elevation of intracellular cAMP levels 

after stimulation of adenylate cyclase, which catalyzes the conversion of adenosine 

triphosphate (ATP) into cAMP. 

cAMP levels are then regulated through the activity of phosphodiesterase isozymes 

/isoforms, which degrade it to 5’-AMP.  

The airway smooth muscle cell relaxation induced by cAMP is not fully understood, 

but it is accepted that cAMP activates the protein kinase A (PKA) resulting in 

inhibition of phosphoinositol hydrolysis, decreasing intracellular Ca2+ levels; or via 

cAMP-independent mechanisms involving direct activation of large conductance 

potassium channels which are present in the cell membrane, resulting in hyperpola-

rization and thereby airway smooth muscle relaxation and bronchodilation response 

(Johnson 2006; Jones et al. 1990). 

Although most of the β2-adrenergic receptor actions are usually mediated via Gs 

proteins and the cAMP-dependent PKA system, the receptor can also couple to Gi 

proteins leading to stimulation of the extracellular signal-regulated kinase and p38-

mitogen-activated protein kinase (p38MAPK) pathways (Daaka et al. 1997). 

β2-Adrenergic receptor agonists may also reduce cholinergic neurotransmission due to 

stimulation of β2-adrenergic receptors on parasympathetic ganglia (Johnson and 

Rennard 2001; Tashkin and Fabbri 2010). It was also reported that activation of β-

adrenergic receptors localized in the mucosa mediates inhibition of [3H]-acetylcholine 

release from the isolated rat and guinea-pig trachea probably via liberation of 

inhibitory prostaglandins from the airway mucosa (Wessler et al. 1994). 

 

 

1.2.3.1 cAMP 

The discovery of cAMP in 1958 by Earl Wilbur Sutherland marked the birth 

of second messenger theory and the age of signal transduction. 

cAMP is utilized by a large number of hormones and neurotransmitters as an 

intracellular second messenger. 
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 It plays a pivotal role in the various processes of cellular regulation, such as cell 

growth and differentiation, ion channel conductivity, release of neurotransmitters, 

metabolism, and gene transcription (Skalhegg and Tasken 2000). 

 

Upon binding of ligand, the G-protein couple receptors on the cell surface transduce 

the extracellular signal across the cell membrane and mediate stimulatory or inhi-

bitory G-protein that then interacts with adenylyl cyclase (AC). Elevation of cAMP 

via adenylyl cyclase regulates different cell processes that are mediated by two 

downstream signaling pathways effectors: the classic cAMP-dependent protein kinase 

A (PKA) and the recently discovered alternative cAMP effector, exchange protein 

directly activated by cAMP (Epac). 

 

Depending upon their relative abundance, distributions and localization, as well as the 

specific cellular environments, PKA and Epac may act independently, converge syn-

ergistically, or oppose each other in regulating a specific cellular function (Cheng et 

al. 2008). 

 
1.2.3.2 Protein Kinase A (PKA) 

PKA refers to a family of enzymes whose activity is dependent on the level of 

cAMP in the cell. PKA was one of the first protein kinases to be discovered and puri-

fied from rabbit skeletal muscle (Walsh et al. 1968). 

 

As described in Figure 1-7 (Skalhegg and Tasken 1997), PKA composed of two 

separate subunits, the catalytic (C) subunit that is serine/threonine protein kinase and 

regulatory (R) subunit. In the absence of cAMP the catalytic subunit combines with 

the regulatory subunit to form an inactive form of PKA (Holoenzyme) (Uhler et al. 

1986). Upon phosphorylation of the catalytic subunit of PKA at threonine 197 (T197) 

by phosphoinositid dependent protein kinase it becomes fully active (Cauthron et al. 

1998; Cheng et al. 1998). 

As the concentration of cAMP increases it binds to the regulatory subunits leading to 

conformational changes that induce the Holoenzyme dissociation into its constituent 

(C) and (R) subunits (Taylor et al. 1990). When the active (C) subunits become free 
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they can phosphorylate their targets of different cellular processes of cytoplasmic and 

nuclear protein substrates including enzymes and transcriptional factors (Zetterqvist et 

al. 1990).  

PKA was classified into two general classes or two isoforms; PKA type (I) and type 

(II), depending on differences in (R) subunits, RI and RII that interact with an iden-

tical (C) subunit (Taylor et al. 1990). At present four different (R) subunit genes (RIα, 

RIβ, RIIα and RIIβ) and three different (C) subunits (Cα, Cβ, and Cγ) have been 

identified in humans (Scott 1991). However, preferential expression of any of the cat-

alytic subunits with either (RI or RII) has not been found (Beebe et al. 1990).  

Both (RI and RII) contain two in-tandem and highly conserved cAMP binding do-

mains (CBD) at carboxy terminus (Weber et al. 1987). Both (RI and RII) are signify-

cantly different at their amino terminus, especially at a proteolytically sensitive hinge 

region that binds to the peptide recognition site of the (C) subunits. The hinge region 

of (RII) subunits contains a serine at the (P) site that can be auto phosphorylated by 

the (C) subunits (Rosen and Erlichman 1975). But (RI) contains a pseudophospho-

rylation site.  

Furthermore, existence of a family of A-kinase anchoring proteins (AKAPs) which is  

structurally diverse but functionally related proteins that share the capacity to bind 

protein kinase A ( PKA ) (Sarkar et al. 1984; Theurkauf and Vallee 1982). AKAPs 

contain a targeting sequence that serves to tether the (RII) subunits to specific subcell-

ular compartment (Colledge and Scott 1999; Scott and McCartney 1994). The majo-

rity of AKAPs preferentially bind (RII) subunits, however AKAPs specific for both 

(RI and RII) have also been identified (Huang et al. 1997). 

It was demonstrated that AKAPs interact with the (R) subunits dimerization domain 

and only the first 50 N-terminal amino acid residues of the (R) subunits are required 

for binding of AKAPs (Newlon et al. 1999). It is worth noting that large numbers of 

AKAPs have been identified.   

It was found that the ratio of the total (R) subunits/(C) subunits in normal tissue 

remains constant at around 1:1 while the relative amount of (RI) and (RII) varies and 

depends highly on physiological conditions and hormonal status of the tissue 

(Doskeland et al. 1993; Hofmann et al. 1977; Lohmann and Walter 1984). 

The switching of PKA isoforms from (PKA IIβ) to (PKA Iα) demonstrates clearly that 

the (RIα and RIIβ) are functionally different. Although, many of the physiological 
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actions of cAMP are mediated by one or more of the PKA isoforms, some of the 

cAMP-dependent effects cannot be explained based on the functions of PKA. For 

example the induction of insulin secretion from pancreatic beta cells mediated via 

cAMP is not affected after using specific PKA inhibitors (Renstrom et al. 1997). 
 
 

 

 

 

Figure  1-7: Regulation (activation and inactivation) mechanisms of PKA: (C): catalytic 
subunits, (R): a regulatory subunit dimer. (Modified from Skalhegg and Tasken 1997). 
 
 
1.2.3.3 Epac 

Epac are exchange proteins directly activated by cAMP, named also cAMP-

regulated guanine nucleotide exchange factors (cAMP-GEFs) that mediate PKA-

independent signal transduction properties of the second messenger adenosine-3',5'-

cAMP. Epacs are also known as Rap1 guanine-nucleotide-exchange factors directly 

activated by cAMP and represent a family of novel cAMP-binding effector proteins. 

Rap1 and Rap2  proteins are a small Ras-like GTPase activated by specific extracell-

ular stimuli to regulate several cellular processes such as cell proliferation, cell 

differentiation, signaling and survival. Rap1 was previously described as a protein 

that could suppress the oncogenic transformation by Ras (de Rooij et al. 2000; de 

Rooij et al. 1998; Fu et al. 2007; Kawasaki et al. 1998; Kraemer et al. 2001). 

In the past, the description of Epacs and the recent development of pharmacological 

compounds that segregate between cAMP-mediated pathways have been explained as  

unrecognized roles for cAMP that are independent of it is classical target cAMP-

dependent protein kinase A  (Purves et al. 2009). 
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Epacs contain a cAMP binding domain (CBD) that is similar to that of PKA (R) sub-

units. Epac proteins bind to cAMP with high affinity resulting in stimulation of the 

exchange of GTP for GDP on small GTPases of the Rap family (Rap1 and Rap2). 

This nucleotide exchange activates the GTPases and allows Rap proteins to interact 

with and stimulate effector signaling molecules, as shown in figure 1-8, B (Holz et al. 

2008). 

As described in figure 1-8, A and B (Bos 2006), Epac proteins are expressed in 

mammals’ genes in two different variants named as Epac1, Epac2 officially known as 

(RAPGEF3, Rap guanine nucleotide exchange factor 3) and (RAPGEF4, Rap guanine 

nucleotide exchange factor 4) alternatively, both of which are activated in living cells 

by physiological relative concentrations of cAMP, as previously described. 

It was reported that Epac proteins are differentially distributed in the body tissue, 

where Epac1 mRNA is ubiquitously expressed, Epac2 mRNA is predominantly 

expressed in specific tissue (Kawasaki et al. 1998). Both Epac1 and Epac2 share 

common homo-logy domain structures, where both contain a regulatory region (N-

terminal) and a catalytic region (C-terminal). 

The regulatory region (N-terminal) carries one (Epac1) or two (Epac2) CNB (Cyclic 

Nucleotide Binding) domains which contain a (PRAA) motif that binds cAMP with 

high affinity and a DEP (Disheveled, Eg l-10, and Pleckstrin) domain. The CNB do-

mains of Epac2 are designated as “A” or “B”. The “A” CNB domain carries a PRHA 

motif, and it binds cAMP with low affinity. The “B” CNB domain carries a PRAA 

motif also found in Epac1, and it confers high affinity binding of cAMP. 

The catalytic region (C-terminal) of Epac 1 and Epac 2 consists of classic CDC25-

homology domain (CDC25HD), RAS association (RA) domain and a RAS exchange 

motif (REM) domain. Additionally, CNBD of Epac2 contains PRHA motif and binds 

cAMP with low affinity whose role is unknown and does not seem to be essential for 

Epac2 activation by cAMP (de Rooij et al. 2000; Holz et al. 2008). Upon binding of 

cAMP Epac undergoes conformational changes where the regulatory region moves to 

expose the catalytic region. The DEP domain is involved in membrane targeting of 

the active molecule and the REM domain participates in Ras activation when the two 

molecules are closely approximated. 



1. Introduction 
 

Characterization of β-Adrenergic Mechanisms in Human Pulmonary Fibroblasts | Dissertation by Fathi Lamyel 24 
 

A 

B 

The opinion surrounding cAMP and protein kinase A, which suggests that the cAMP-

mediated signaling mechanism is much more complex than previously believed, was 

broken after identification of Epac proteins as novel sensors for cAMP (Cheng et al. 

2008; Metrich et al. 2008).  

Many cAMP-mediated physiological and pathological process that were previously 

thought to be induced via PKA alone may also be transduced by Epac, such as effects 

on cell adhesion (Enserink et al. 2004; Rangarajan et al. 2003) and cell differentia-

tion (Kiermayer et al. 2005), proliferation, gene expression and apoptosis. 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  1-8: The multi domain structure of Epac. Domain structure of Epac1 and Epac2 
(A).The activation of Epac (indicated for Epac2) by cAMP (B). (CDC25HD): Is CDC25-
homology domain; (CNB): Is cyclic nucleotide-binding domain(s) ;(DEP): Is Desheveled-
Egl-10-Pleckstrin domain ;(RA): Is Ras-association domain; (REM): Ras Exchange Motif 
(Bos 2006). 
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1.2.4 Inhaled Corticosteroids (ICSs) 

Corticosteroids (also named glucocorticosteroids or glucocorticoids) are the 

most commonly used effective drugs in many inflammatory and immune diseases. 

 

In 1948 hydrocortisone was the first clinically used glucocorticoid and since that time 

progress has been made in improving glucocorticoid treatment (Ito et al. 2006). 

Inhaled corticosteroids (ICSs) such as budesonide and fluticasone represent the most 

efficacious therapy currently available for asthma treatment and the only controllers 

that can effectively suppress the characteristic inflammation in asthmatic airways, 

even in very low doses at all levels of persistent asthma. This group of drug can 

control symptoms, reduce exacerbation and improve health status in most patients 

irrespective of disease severity (Barnes 2004; Barnes 2006).  

ICSs act primarily as anti-inflammatory agents in asthma and partially reduce the 

associated airway hyper-responsiveness (AHR) in this disease (Giembycz et al. 2008; 

Hirst and Lee 1998). 

In COPD prevention of exacerbation represents one of the main aims in disease 

management (Wedzicha and Seemungal 2007). However, there is evidence that ICSs 

reduce exacerbation in patients with COPD when compared with a placebo, their 

actions on lower airway inflammation in COPD is still doubtful (Adcock and Ito 

2005). Although administration of high-dose inhaled corticosteroids have been demo-

nstrated to decrease the frequency and severity of exacerbation during severe COPD, 

they were ineffective in reducing the progression of the disease and lung function 

decline (Paggiaro et al. 1998; Pauwels et al. 1999; Vestbo et al. 1999).  

 

ICSs are supposed to exert their major effects in pulmonary airways after transfer into 

the respiratory epithelial cells and other cells in the airways through the glucoco-

rticoid receptor (GR) (Ito et al. 2006; Leung and Bloom 2003). Simply, after passage 

the cell membrane corticosteroids bind to glucocorticoids receptor proteins (GR) in 

cytoplasm resulting in formation of steroid-receptor complex. The anti-inflammatory 

effects are mediated by direct moves of this complex into the nucleus where it binds 

to DNA, resulting in production of a glycoprotein called lipocortin. The formed lipo-
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cortin inhibits the activity of phospholipase A2, which releases arachidonic acid, the 

precursor of prostanoids and leukotrienes, from phospholipids, (Kragballe 1989; van 

der Velden 1998). The steroid-receptor complex can regulate gene products in other 

mechanisms. First, by inducing the expression of the nuclear factor-kappa B (NF-kB) 

inhibitor (IKB-α) in certain cell types (Auphan et al. 1995). Second, by direct or indi-

rect binding with other transcription factors, in particular activating protein-1 (AP-1) 

and NF-kB, resulting in inhibition of the pro-inflammatory effects of cytokines. Third, 

by binding to a pro-inflammatory transcription factor which causes blocking of gene 

expression (Adcock 2003). Or by increasing the level of cell ribonucleases and 

mRNA-destabilizing proteins, causing reduction in mRNA levels (Shim and Karin 

2002). 

Inhibition of the inflammatory cells repress release of cytokines from stimulated infla-

mmatory and airway epithelial cells and also repress expression of their receptors. 

The ability of epithelial and smooth muscle cells to release lipids, cytokines, chemo-

kines and pro-fibrotic mediators makes these tissues primary and critical targets for 

the anti-inflammatory actions of ICSs (Barnes 1996; Panettieri 2004; Schwiebert et al. 

1996). 

However, ICSs may have several other actions and cellular targets in the airways that 

contribute to their therapeutic action in asthma management (Hirst and Lee 1998). 

Dexamethasone  and ICSs like budesonide  have been demonstrated to inhibit ICAM-

1 and VCAM-1 expression on stimulated epithelial, endothelial cells (Paolieri et al. 

1997; Wheller and Perretti 1997) and on fibroblasts (Spoelstra et al. 2000). 

Furthermore, they also inhibit GM-CSF and IL-6 production by epithelial cells and 

fibroblasts (Marini et al. 1992; Tobler et al. 1992). 

 

 

 

1.2.5 Combination Therapy for Airway Obstructive Disease 

As reported in many previous studies, it has been suggested and believed for  a 

long time that β2-adrenoceptors agonists used in obstructive airway diseases manage-

ment exert their actions mostly on airway smooth muscle cells, leading to relaxation, 
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whereas glucocorticoids improve the airway function mostly by their effect as anti-

inflammatory drugs. These effects could be explained as a synergistic action occur-

ing at the lung rather than the cellular level. Recently it is becoming clear that both 

drugs can interact at different levels, including an integrated effect on several cell 

types (Schmidt and Michel 2011).  

Combination of inhaled β2-adrenoceptors agonists and inhaled corticosteroids repre-

sent the cornerstone in treatment of obstructive airways diseases. In combination with 

corticosteroids, β2-adrenoceptors agonists can reduce the exacerbation and disease 

progression and improve the airway limitations (Cazzola et al. 2003; Hancox and 

Taylor 2001; Pauwels et al. 1997). 

There is a large and growing body of experimental and clinical evidence supporting 

the use of ICSs and LABA as a combination therapy for long-term treatment of sub-

jects with moderate-to-severe asthma and COPD. Although both ICSs and LABA are 

effective when used separately in improving lung function and reducing exacerbation 

(Sin and Man 2006), the combination therapy results in better outcomes than higher 

doses of corticosteroids in asthma (Pauwels et al. 1997; van Noord, et al. 1999) and 

COPD (Cazzola et al. 2003) with better symptom control and an additive or syner-

gistic reduction of airway inflammation.  

The combination of steroids and a LABA in one inhaler was effective in improving 

symptoms compared with a placebo or with one of the individual components alone 

(Nannini et al. 2004). It was observed that adrenalectomy in experimental animals 

caused general loss of responsiveness to catecholamines (Davies et al. 1981; Davies 

and Lefkowitz 1984). Conversely, in presence of glucocorticoids the physiological 

processes mediated by β2-adrenoceptors such as myocardial contractility, glucose 

metabolism, and bronchial smooth muscle relaxation were enhanced. 

 It has been reported that ICSs may promote the action of β2-adrenoceptors agonists 

by increasing the concentrations of β2-adrenoceptors on smooth muscle cells (Mak et 

al. 1995a) and decreasing airway smooth muscle cell hyperresponsiveness to β2-

adrenoceptors agonists (Moore et al. 1999). 
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The interactions between glucocorticoids and β2-adrenoceptors agonists are different 

and range from synergistic or additional to opposite effects (Adcock et al. 1996 

Adcock et al. 2002). 

In the context of rescue therapy with budesonide/formoterol, this could prevent the 

evolution of an acute exacerbation by suppressing the increase in inflammation, thus 

resulting in marked reduction in the number of mild and severe exacerbations. Thus, 

both budesonide and formoterol have inhibitory effects on the inflammatory process 

during an exacerbation (Barnes 2007).  

Furthermore, there are positive interactions between β2-adrenoceptors agonists and 

corticosteroids. These interactions may contribute to the efficacy of combination 

therapy as a rescue therapy as well as a maintenance treatment (Barnes 2007). 

Treatment with ICSs plus LABA improves lung function, increases the number of 

days and nights without symptoms, decreases the frequency of use of rescue 

medication, and decreases exacerbation at a lower daily dose of ICSs (Sobande and 

Kercsmar 2008). Furthermore, systemic administration of corticosteroids can modu-

late lymphocyte-β2-adrenoceptors function, both preventing and reversing tolerance 

(Grove and Lipworth 1995). 

 

Despite little available evidence about the treatment of obstructive airways diseases 

with a combination of long-acting anticholinergic agent and inhaled corticosteroids, 

recent trials have suggested that this combination could be the most effective treat-

ment for reducing exacerbation in patients with low FEV1 (Aaron et al. 2007; Um et 

al. 2007). 

 

The combination of an anticholinergic and β2-adrenoceptors agonists used in COPD 

treatment has been shown to produce superior bronchodilation compared to its indivi-

dual components without additional side effects and may be helpful in patients for 

whom a single inhaled bronchodilator has failed to provide an adequate response 

(Friedman et al. 1999). 
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1.2.6 Effect of Corticosteroids and β2-Adrenoceptors Agonists on Airway Re-
modelling 

 

 Despite an impressive body of evidence on the effect of inhaled cortico-

steroids on airway inflammation in asthma, data on remodelling are more limited and 

not clear. Yet there is no doubt that early treatment of airway inflammation could 

modify the outcome of asthma by preventing a permanent loss of pulmonary function 

and prevent or delay airway remodelling (Boulet et al. 2000; Selroos et al. 1995).  

 

It has been demonstrated that short-term ICSs treatment showed no significant change 

on the thickness of the reticular basement membrane (Chakir et al. 2003; Jeffery et al. 

1992), whereas long-term therapy mostly resulted in a significant reduction in thick-

ness of the reticular basement membrane, mediated via inhibition of ECM deposition, 

growth factor and collagen deposition (Goulet et al. 2007; Ward et al. 2002). Further-

more ICSs have also been shown to reduce the vascularity (vascular component) in 

airway wall in subjects with mild to moderate asthma (Chetta et al. 2003; Orsida et al. 

1999).  

Although glucocorticoids exert an inhibitory effect on cell proliferation of airway 

smooth muscle culture (ASMC) and primary fibroblast cultures derived from healthy 

subjects (Descalzi et al. 2008; Stewart et al. 1995), it has been shown that the absence 

of CCAAT/enhancer binding protein alpha (C/EBP-α) is responsible for the enhanced 

proliferation of ASMC, lymphocytes and mesenchymal, and that might explain the 

failure of corticosteroids to inhibit their proliferation in vitro (Roth et al. 2004; 

Rudiger et al. 2002). All these structural changes result in an overall airway wall 

thickness that seems to be reduced by treatment of airway obstructive disease with 

inhaled corticosteroids. 

Little is known about the effect of β2-adrenoceptors agonists on airway remodelling. 

Briefly, LABA have been shown to reduce airway vascularity in asthma in vivo 

(Orsida et al. 2001), cell proliferation of ASMC derived from healthy subjects 

(Stewart et al. 1997), and on total ECM, collagen deposition, gene expression, cell 

proliferation, and IL-6, IL-8, and TGF-β levels by primary human lung fibroblasts 

(Goulet et al. 2007). 
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Finally, it has been shown that combination therapy significantly inhibits ASMC and 

primary human lung fibroblasts proliferation and exerts an additive anti-inflamma-

tory effect, rather than each drug alone through synchronized activation of GR and 

C/EBP-α (Descalzi et al. 2008; Roth et al. 2002; Spoelstra et al. 2002). 

 

 

 

1.3 Aim of The Study 

Fibrotic alterations are part of the airway remodelling which is closely associated 

with the severity of airways inflammatory diseases, including asthma and COPD. 

Airways remodelling is a process in response to long-term, unresolved airway infla-

mmation that results in permanent structural changes in the airways walls. Airways 

structural alterations mostly cause irreversible airflow obstruction, and make treat-

ment of COPD and asthma more difficult. 

Sub-epithelial fibrosis as a characteristic of airways remodelling, and the role of pul-

monary fibroblasts in airways remodelling has grown in the last few years and repre-

sent one of the most prolific cell population considered to play a pivotal role in 

airways inflammation and structural changes due to their capacity to produce 

inflammatory mediators, cytokines and extracellular matrix (ECM) perpetuating the 

inflammation in obstructive airways diseases. This suggests that they might represent 

one important target for the major drugs used in treatment and control of these 

diseases. 

Little is known about the effects of β-adrenergic agonists and corticosteroids on pul-

monary fibroblasts. Therefore, this study was designed to elucidate the role of β-

adrenoceptors in mediating inhibitory effects on proliferation and collagen synthesis. 

However, a detailed pharmacological characterization of the receptors involved is 

missing and there is only limited knowledge about possible interactions with cortico-

steroids and the underlying molecular mechanisms. 

 

 Furthermore, there is increasing evidence that in addition to acute bronchodilatory 

effects, classical anti-obstructive drugs such β-adrenoceptors agonists may also modu-
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late long-term remodelling processes. Therefore, this study was aimed to explore and 

analyze β-adrenoceptors subtypes expression, illuminate the transduction pathways 

mediating inhibitory effects of cAMP-elevating agents on α-smooth muscle actin 

expression (a marker of myofibroblast differentiation), and to characterize in detail 

putative β-adrenergic mechanisms and their interaction with corticosteroids in human 

pulmonary fibroblasts used in this study as in vitro model. 



 

 
 
 

2. Materials and Methods 

2.1 Materials 

2.1.1 Chemicals 

A 
Agarose NEEO 

L-Ascorbic acid 

Roth, Karlruhe 

Merck, Darmstadt 

B  
Boric acid 

Bromophenol blue 

BSA (bovines Serum albumin) 

Roth, Karlruhe 

Sigma-Aldrich, München 

Sigma-Aldrich, München 

D 
Dimethyl sulfoxide (DMSO)  

Developing - Stock solution 

Merck, Darmstadt 

Sigma-Aldrich, München 

E 
Ethanol, absolute 

Ethidium bromide 

Ethylenediaminetetraacetate (EDTA), disodium Salt 

Merck, Darmstadt 

Sigma-Aldrich, München 

Sigma-Aldrich, München 

F 
Fetal Calf Serum (FCS) 

Ficoll 400 

Fixing- Stock solution 

Biochrom, Berlin 

Sigma-Aldrich, München 

Sigma-Aldrich, München 

G 
Glycine Roth, Karlruhe 

H 
Hydrochloric acid 32% (conc. HCl) Merck, Darmstadt 

L 
Lowry Kit                                                             

Leupeptin 

Lumasafe plus Scintillation Cocktail 

Bio-Rad, München 

Sigma-Aldrich, München 

Lumac LSC, Groningen 
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M 
β-Mercaptoethanol 

Methanol 

MOPS SDS Running-Buffer (20X) 

Sigma-Aldrich, München 

Roth, Karlruhe 

Invitrogen, Karlsruhe 

N 
Non essential amino acids (100X) 

Nonidet P-40 

Sgima-Aldrich, Munich 

Roche, Mannheim 

P 
Penicillin/Streptomycine solution (10000 U/ml, 10 mg/ml)

Pepstatin A 

Phenylmethylsulfonylfluoride (PMSF) 

Ponceau S 

Potassium chloride (KCl) 

Potassium dihydrogen phosphate (KH2PO4) 

Powdered Milk, Fat free 

Sigma-Aldrich, Munich 

Sigma-Aldrich, Munich 

Sigma-Aldrich, Munich 

Sigma-Aldrich, Munich 

Merck, Darmstadt 

Merck, Darmstadt 

Heirler, Radolfzell 

R 
Roti-Load 1 Optical Density 

S 
Sodium chloride (NaCl) 

Sodium deoxycholate 

Sodium dodecyl sulfate (SDS) 

Di-Sodium hydrogen phosphate (Na2HPO4) 

Sodium hydroxide pellets (NaOH) 

Sodium Pyruvate Solution (SPS) 100 mM 

Roth, Karlsruhe 

Sigma-Aldrich, Munich 

Sigma-Aldrich, Munich 

Merck, Darmstadt 

Merck, Darmstadt 

PAA, Cölbe 

T 
Trichloro-acetic acid (TCA) 

Tris (hydroxymethyl ) aminomethane  

Tris-HCL (hydroxymethyl) aminomethane hydrochloride 

Triton X-100 

Trypan Blue Stain (0.4%) 

10X Trypsine-EDTA solution 

Tween 20  

Merck, Darmstadt 

Roth, Karlruhe 

Boehringer ingelheim,  

Pharmacia, Biotech 

Sigma-Aldrich, Munich 

Sigma-Aldrich, Munich 

Sigma-Aldrich, Munich 
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2.1.2 Culture Medium 

Substance                                                                            Supplier  

Basis medium EARLE`S MEM                                          PAA, Cölbe 

Opti-MEM® I Reduced-Serum Medium (1 x)                   Invitrogen, Karlsruhe 

 
 
2.1.3 Enzymes 

Substance Supplier 

DNase ( RNase free DNase Set )  

 

Omniscript Reverse Transcriptase  

RNase Inhibitor RNasin Plus (40 U/μl) 

 

Taq DNA polymerase 

Qiagen, Hilden &  

PeqLab, Erlangen 

Qiagen, Hilden 

Promega, Madison, USA & 

Fermentas, St. Leon-Rot 

Invitrogen, Karlsruhe 
 

 
2.1.4 Markers and Nucleic Acids 

Substance Supplier 

BLOCK-iTTM Fluorescent Oligo  

DNA Ladder Ready-Load 100bp  

PageRuler™ Prestained Protein Ladder 

dNTP-Mix (je 10 mM pro Nucleotid)  

Oligonucleotide (dT)18  

Invitrogen, Karlsruhe 

Invitrogen, Karlsruhe 

Fermentas, St. Leon-Rot 

Fermentas, St. Leon-Rot 

MWG, Ebersberg 

2.1.5 Kits for Molecular Biology 

Substance Supplier 

BM Chemiluminescence Blotting Substrate (POD)  

Omniscript RT Kit  

QuantiTect® SYBR® Green PCR  

RNeasy Mini Kit  

TaqDNA Polymerase  

Roche, Mannheim 

Qiagen, Hilden 

Qiagen, Hilden 

Qiagen, Hilden 

Invitrogen, Karlsruhe 
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2.1.6 Test Drugs 

 Test Drug     Supplier   Stock Solution Solvent
A 
Actinonomycin-D 

 

Sigma Methanol 

B 
N6- Benzoyladenosine- 3', 5'- cyclic 

monophosphate, acetoxymethyl ester 

(6-Bnz-cAMP)  

 

8-Bromoadenosine 3':5'-cyclic 

monophosphate 

(8-Bromo-cAMP)  

 

Budesonide  

 

Butaprost  

 

 

Biolog 

 

 

 

Sigma 

 

Astra - Zeneca

 

Sigma 

 

 

            H2O 

 

 

 

10 mM  NaOH 

 

Ethanol 

 

           DMSO 

 
C 
1-[2-((3-Carbamoyl-4-hydroxy) phenoxy) 

ethylamino]-3-[4-(1-methyl-4-trifluoro-

methyl-2-imidazolyl) phenoxy]-2-propanol 

dihydrochloride 

(CGP 20712-dihydrochloride)  

 

Cycloheximide  

 

 

 

 

Tocris 

 

Sigma 

 

 

 

 

H2O/ Ethanol 

 

          Ethanol 

 
D 
Dexamethasone  Sigma           Ethanol 

 
F 
Formoterol fumarate dihydrate  

 

Forskolin  

Astra-Zeneca 

 

Hoechst 

       Ethanol 

 

        DMSO 
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I 
 (±)-1-[2,3-(Dihydro-7-methyl-1H-inden-4-yl) 

-oxy]-3-[(1-methylethyl)amino]-2-butanol 

hydrochloride 

(ICI 118.551 HCl)    

 

Indomethacin  

 

Interleukin-4  

 

Interleukin-13 

 

Isoprenaline 

 

 

 

Sigma 

 

Sigma 

 

Sigma 

 

Sigma 

 

Sigma 

 

 

 

Ethanol 

 

Ethanol 

 

0.1% BSA in1X PBS 

 

0.1% BSA in1X PBS 

 

H2O (0.01 mg/mL 

Ascorbic acid) 

P 
2-(2-Amino-3-methoxyphenyl)- 

4H-1-benzopyran-4-one 

(PD 98059) 

 

Protein kinase inhibitor-(14-22)- 

amide, myristoylated 

(PKI 14-22) 

 

 

Sigma 

 

 

 

Sigma 

 

 

DMSO 

 

 

 

H2O 

S 
8-(4-Chlorophenylthio)- 2'- O- 

methyladenosine- 3', 5'- cyclic 

monophosphorothioate, Sp- isomer 

(Sp-8-pCPT-2’-O-Me-cAMPS) 

 

 

 

Biolog 

 

 

 

H2O 

T 
Transforming growth factor 

(TGF-β  Human Recombinant) 

 

6,7-Dimethoxy-2-phenylquinoxaline 

(Tyrphostin AG 1296)  

 
Sigma 

 

 

Sigma 

 
0.1% BSA in 4 mM 

HCl 

 
 

DMSO 
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2.2 Radio Chemicals 

Reagents 

[3H]-Proline (specific activity = 1.813 TBq/mmol) 

[3H]-Thymidine (specific activity = 370 GBq/mmol) 

Supplier 

Perkin Elmer, Boston 

Perkin Elmer, Boston 
 

 
 
 

2.3 Antibody 

2.3.1 Primary Antibody 

Substances 
 
α-smooth-muscle-actin 

β2-AR (H-73) 

β2-AR (H-20) 

Epac2 (A7) 

α-Tubulin 

 Species  
 
Mouse 

Rabbit 

Rabbit 

Mouse 

Mouse 

Dilution   
 
1:1000 

1:200 

1:200 

1:200 

1:1000 

Supplier  
 
Sigma 

Santa Cruz 

Santa Cruz 

Santa Cruz 

Cedarlane 

 Adrenoceptor: AR 

 

 

2.3.2 Secondary Antibody 

Reagents 
 

Anti-Mouse 

Anti-Rabbit 

Species  
 
Goat 

Goat 

Dilution   
 

1:8000 

1:2667 

Supplier  
 

Santa Cruz 

Santa Cruz 
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2.4 Primer 

2.4.1 Primer for Semi-Quantitative PCR 

Primer 
 

Sequence (sense and anti-sense) Length   
(bp) 

A.T 
(°C) 

Cycles 
 

 
α-SMA 
 
 
β-actin  
 
 
β1-AR    
 
 
β2-AR   
 
 
β3-AR   

 
5´-GAC GAAGCA CAG AGC AAA AGAG-3´ 
5´-TGG TGATGA TGC CAT GTT CTA TCG-3´ 
 
5´-CAC TCT TCC AGC CTT  CCT TC-3´ 
5´-CTC GTC ATA CTC CTG CTT GC-3´ 
 
5´-TCG TGT GCA CCG TGT GG G CC-3´ 
5´-AGG AAA CGG CGC TCG CAG CTG TCG-3´  
 
5´-GCC TGC TGA CCA AGA ATA AGG CC-3´ 
5´-CCC ATC CTG CTC CAC CT-3´ 
 
5´-GCT CCG TGG CCT CAC GAG AA-3´ 
5´-CCC AAC GGC CAG TGG CCA GTC AGC G-3´ 

 
141 

 
 

813 
 
 

240 
 
 

260 
 

 
300 
 

 
 58 
 
 
 56 
 
 
 63 
 
 

  59 
 
 

  62 
 

 
 30 

 
 

 23 
 
 

 35 
 
 

  35 
 

 
  35 

Annealing temperature: A.T 

 

2.4.2 Primer for Real-Time Quantitative PCR 

Primer 
 

Sequence (sense and anti-sense) 
 

Length 
(bp) 

A.T 
(°C) 

Cycles 
 

α-SMA 

 
 
β2-AR 
 
 
 
GAPDH 
 

5´-GACAGCTACGTGGGTGACGAAG -3´ 
5´-CAGATCTTTTCCATGTCGTCCC -3´ 

 
 
5´-GAT TTC AGG ATT GCC TTC CAG -3´ 
5´-GTG ATA TCC ACT CTG CTC CCC -3´ 
 
 
5´-CTG CAC CAC CAA CTG CTT AGC -3´ 
5´-GGC ATG GAC TGT GGT CAT GAG -3´ 

  107 
 
 
 
  110 
 
 
 
   87 

58 
 
 
 
59 
 
 
 
55 

35 
 
 
 
40 
 
 
 
50 

Annealing temperature: A.T 
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2.5 Buffers 

2.5.1 Buffers for Cell Culture 

Buffer Components 

 
 10x  PBS, pH 7.4-7.5 

 

 

 

 

 1x  PBS, pH 7.4-7.5 

 
27 mM KCl                                                       

15 mM KH2PO4                                                 

1.38 M NaCl                                                     

81 mM Na2HPO4 x H2O Distilled Water 

 

10x PBS, 1:10 dilution with Distilled Water 

 
 
 
 
2.5.2 Buffers for Proliferation Assay 

Buffer Components 
 

 1 M Tris-HCl pH 7.4   

 

 

 

 1x PBS, pH 7.4-7.5 

 
Tris-HCl 1 M  

Distilled Water  

Adjust to pH 7.4 with HCl  

 

10x PBS, 1:10 dilution with Distilled Water 
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2.5.3 Buffers for Protein Determination Using The Lowry Method 

Buffer Components 
 

 RIPA Lysis Buffer  

 

 

 

 

 RIPA Lysis Buffer with Protease 

Inhibitor 

 

 

 

 

 NP-40 Lysis Buffer 

 

 

 
 NP-40 Lysis Buffer with Protease 

Inhibitor   

 

 

 

 

 PBS + Protease Inhibitor (PBS-PI) 

 

 
 
 

 

50 mM Tris-HCl pH 7.5  

150 mM NaCl  

0.5% Sodium deoxycholate  

1% Nonidet P-40 

0.1% SDS  

 

RIPA Lysis Buffer 

2 mM of  0.1 M EDTA, pH 8  

0.7 μg/mL (1 μM) of  125 μg/mL Pepstatin A 

170 μg/mL (1 mM) of 100 mM PMSF            

0.5 μg/mL (1 μM) of 10 μg/mL Leupeptin 

 

100 mM Tris-HCl, pH 7.5  

100 mM NaCl  

10 mM MgCl2 

100% (v/v)  Nonidet P-40  

Distilled water 

 

NP-40 Buffer 

2 mM of 0.1 M EDTA, pH 8 

0.7 μg/mL (1 μM) of  125 μg/mL Pepstatin A 

170 μg/mL (1 mM) of 100 mM PMSF            

0.5 μg/mL (1 μM) of 10 μg/mL Leupeptin 

 

BPS Buffer 

2 mM of 0.1 M EDTA, pH 8 

0.7 μg/mL (1 μM) of  125 μg/mL Pepstatin A 

170 μg/mL (1 mM) of 100 mM PMSF            

0.5 μg/mL (1 μM) of 10 μg/mL Leupeptin  
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2.5.4 Buffers for RT/PCR "Gel Electrophoresis" 

Buffer Components 
 

 5x TBE-Buffer 
 
 

 
 

 0.5x TBE-Buffer 
 
 

 PCR loading Buffer 
 
 

 

 
0.45 M Tris                                                             
0.44 M Boric acid                                                   
0.012 M EDTA                                                      
Distilled Water 
 
5x TBE-Buffer 
1:10 diluted in Distilled Water 
 
15% (w/v) Ficoll 400                                             
0.25% (w/v) 1% Bromophenol blue solution         
0.5x  TBE-Buffer  
Distilled Water  

 
 
2.5.5 Buffers for Protein Gel Electrophoresis and Immunoblot 

Buffer Components 
 

 1x NuPAGE MOPS SDS 
Running Buffer 

 
 

 Transfer Buffer 
 

 
 
 

 Tris Buffered Saline (TBS) 
Buffer, pH 7.5 

 
 
 

 TBST  0.1% (v/v) 
 
 

 TBST  0.05% (v/v) 
 

 
5% (v/v) 20x NuPAGE MOPS SDS Running 
Buffer  
Distilled Water 
 
25 mM Tris    
192 mM Glycine 
20% (v/v) Methanol 
Distilled Water 
 
50 mM Tris 
150 mM NaCl   
HCl 
Distilled Water  
 
1 mL Tween 20 
1000 mL TBS   
 
500 mL TBS 
500 mL TBST  0.1% (v/v) 
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2.6 Solutions 

2.6.1 Solutions for Cell Culture 

Solutions Components 
 

 0.15% (w/v) Trypan blue 

staining dye  

 

 1x Trypsin-EDTA-solution 

 
0.4% Trypan Blue Stain, 3:8 dilution with 

1x  PBS-Buffer 

 

10x Trypsin-EDTA, 1:10 dilution with 1x 

Sterile PBS-Buffer 
 

2.6.2 Solutions for Proliferation Assay 

Solutions Components 
 

 5% Trichloro-acetic acid 

 

 

 0.1 N Sodium hydroxide 

 
5% (w/v) Trichloro-acetic acid crystals in 

Distilled Water 

 

0.1 N Sodium hydroxide pellets  

Distilled Water  

 
2.6.3 Solutions for Proline Assay 

Solutions Components 
 

 20% Trichloro-acetic acid 
 
 

 10% Trichloro-acetic acid 
 

 

 0.2 N HCl 

 

 
 0.2 N Sodium hydroxide 

 
20% (w/v) Trichloro-acetic acid crystals 
in Distilled Water 
 

10% (w/v) Trichloro-acetic acid crystals 
in Distilled Water 
 

0.2 N HCl in Distilled Water 

 

 
0.1N Sodium hydroxide pellets  
Distilled Water  
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2.6.4 Solutions for Protein Determination Using The Lowry Method 

Solutions Components 
 

 BSA-Standard solution 

 

 

 1% Tris/Triton X-100 solution 

 

 

 

 Reagent A 

 

 
4 mg/mL BSA  

0.1% Tris/Triton X-100 solution 

 

100 M of 1M Tris-HCL-solution, pH 7.4 

1% (v/v) Triton X-100 

Distilled Water 

 

1% (v/v) Reagent S   

99% (v/v) Starting Reagent A  

 

 

2.6.5 Solutions for RT/PCR 

Solutions Components 
 

 Agarose Gel 1.2%  

 

 

 

 Ethidium bromide solution 1% 

 

 
1.2% Agarose 

0.5x  TBE-Buffer 

5 µL Ethidium bromide solution (10 mg/mL) 

 

1 mL  Ethidium bromide                                   

100 mL Distilled Water 
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2.6.6 Solutions for Protein Gel Electrophoresis and Immunoblot 

Solutions Components 
 

 Ponceau S solution  

 

 

 
 5% Blocking solution  

 

 
 3% Blocking solution  

 

 
 Chemiluminescence detection 

solution 1% (v/v) 

 
 Developing solution 20% (v/v) 

 

 
 Fixing solution 20% (v/v) 

 
0.2% (w/v) Ponceau S 

3% (w/v) Tris-HCl   

Distilled Water  

 
5 g Dried milk powder 

100 mL Distilled Water 

 
3 g Dried milk powder 

100 mL Distilled Water 

 
30 µL Starting solution 

2970 µL Luminescence solution 

 
60 mL Developing stock solution 

240 mL Distilled Water 

 
60 mL Fixing stock solution 

240 mL Distilled Water 

 

 

2.7 Culture Medium 

2.7.1 Standard Fibroblast Medium 

Culture Medium Components 
 

 Basis medium EARLE`S MEM  

 

 

 

 
0-15 % FCS 

100 U/mL Penicillin, 100μg/mL Streptomycin 

1 mM SPS 

1x  NEAA 
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2.7.2 Culture Medium for Human Fibroblast without FCS 

Culture Medium Components 
 
 Basis medium EARLE`S MEM  

 

 

 
100 U/mL Penicillin, 100 μg/mL Streptomycin 

1 mM SPS 

1x  NEAA 

 
 

2.7.3 Culture Medium for Human Fibroblast With 10% FCS 

Culture Medium Components 
 
 Basis medium EARLE`S MEM  

 

 

 
10% (v/v) FCS 

100 U/mL Penicillin, 100 μg/mL Streptomycin 

1 mM SPS 

1x  NEAA 

 

 

2.8 Equipment 

A 
Analytical Balance BP221 D, 2258 
Autoclave 80230 

Sartorius, Goettingen 
Webeco, Bad Schwartau 

C 
Centrifuges:  
Biofuge Primo 
C 54 115, 5804 R  refrigerated  centrifuge 
Labofuge GL, Biofuge pico 
Mini-Centrifuge MCF 2360 
Sprout® Mini-Centrifuge 

 
Heathrow Scientific; United Kingdom
Eppendorf, Hamburg 
Heraeus, Hanau 
LMS, Tokyo, Japan 
Thermo Electron, Dreieich 

E 
Electrophoresis and Blotting chamber Invitrogen, Karlsruhe 

F 
Forma* 1800 Series Class 100 Clean Benches Thermo Scientific; Braunschweig 
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H 
Heating blocks and thermal cycler: 

 My Cycler 
 PCR Thermal Reactor 

 
Bio-Rad, Munich 
MWG, Ebersberg 

I 
Incubators:  

 HERAcell150 CO2-Incubator 
 Infrared CO2 Incubator 
 Steri-Cycle CO2 Incubator 

 
ThermoElectron, Dreieich 
Forma Scientific, Marietta,USA 
Thermo Electron, Dreieich 

N 
NuPAGE Microscope:   

 Leica DMIL 
 IMT2-RFL 

 
leica-microsystems; Dreieich 
Olympus, Hamburg 

P 
PVDF Blotting Membrane Immobilion P 
pH electrode SenTix 81 
pH meter inoLab 1 
Photo Documentation System Power Shot G5
Photometer:   

 DU-64  
 Gene Quant II  
 SmartSpecTM Plus 

Millipore, Eschborn 
WTW GmbH, Weilheim 

  WTW GmbH, Weilheim 
Canon, Krefeld  

 
Beckman, Munich 
Pharmacia, Freiburg 
BioRad, Munich 

R 
Real-Time PCR, MX3000P 
Rocking Platform:  

 WT.15 
  VWR 

Stratagene, La Jolla,USA 
 
Biometra; Goettingen 
VWR; Langenfeld 

S 
Safety Cabinets LaminAir HB HBB 2436 
Scintillation Counter Tri-Carb 2100TR 

Holten, Alleroed, Denmark 
Packard, Dreieich 

T 
Thermo mixer Compact Eppendorf, Hamburg 

V 
Voltage devices:  

 2297 Macro drive 5 
 Power Pac 300 

 
LKB Bromme, Sweden 
BioRad, , Munich 
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2.9 Culture of Human Lung Fibroblast Cell Line 

  Most of this work was carried out on MRC-5 cell line human lung fibroblasts, 

but also some experiments were carried out on HEL-299 cell line & primary human 

lung fibroblasts (PhLFb). For all cells the minimum essential medium Eagle (MEM 

with Earle’s salts) was supplemented with antibiotic solution, non-essential amino 

acids, sodium Pyruvate, and different concentrations of fetal calf serum (FCS).  

 

► MRC-5 Cell Line 

  The MRC-5 cell line (CCL-171, ATCC, Manassas, VA, USA) is human 

fibroblasts that were isolated from normal lung tissue of a 14-week-old human male, 

Caucasian fetus by J.P. Jacobs in September of 1966. 

 

► HEL- 299 Cell Line 

 The HEL-299 cell line (CCL-137, ATCC, Manassas, VA, USA) is human 

fibroblasts that were derived from normal lung tissue of a human male, black fetus. 

 

2.10 Primary Human Lung Fibroblast (PhLFb) 

  Cell cultures of primary human lung fibroblasts (PhLFb) were established 

from lung tissue obtained from patients undergoing thoracotomy due to lung cancer. 

Lung tissue was taken from histologically normal areas of surgically resected lung, 

either central or peripheral region of the lung, then the tissue was cut into small 

pieces, treated with pronase (1 mg/mL Calbiochem Novabiochem, San Diego, CA, 

USA) at 37°C for 30 minutes, and placed into cell culture plates, incubated in human 

fibroblast medium supplemented with 15% FCS. After fibroblasts had grown out from 

the tissues (2 weeks), the slices were removed and the cells were allowed to reach 

confluence. Confluent fibroblasts were then passaged by trypsinization and used for 

the experiments between passages 3-11. The procedure for generating primary human 

lung cell cultures from tissue obtained during surgery had been approved by the 

ethical committee of the Faculty of Medicine, University of Bonn (Bonn, Germany). 
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2.11 Culture of Human Lung Fibroblast 

  The cryogenically preserved human lung fibroblasts (MRC-5, HEL 299, and 

PhLFb) were thawed at 37°C on a water bath. The cells suspension was then 

transferred to 175 cm2 culture flask containing 10% FCS human Fibroblast medium 

which shortly pre-incubated in a humidified incubator at 37°C and 5% CO2. 

 

After about 24 hrs the medium was changed to a fresh one in order to remove 

remnants of DMSO. The cells were then allowed to grow with medium changed twice 

per week. After reaching confluence cells could be seeded and passaged further. 

 

For cultivation the cells were washed with 10 mL 37°C warm sterile 1x PBS, 

trypsinized with 5-10 mL warm sterile 1x Trypsin/EDTA solution for 10 seconds after 

which the Trypsin was aspirated out. Then the cells were washed with 10% FCS 

medium and centrifuged at 1000 rpm for 5 minutes. The medium was discarded and 

the cells’ pellet again resuspended in a defined amount of 10% FCS medium. 

 

 Cells were stained with 0.15% Trypan blue (20 μL of cell suspension plus 80 μL of 

the stain), counted in a Neubauer-counting chamber under the microscope and 

cultivated as required. 

 

Required number of cells was cultured further in a 175 cm2 culture flask containing 

10% FCS human lung fibroblast medium. For refreezing, the cells were resuspended 

in freezing medium consisting of 9 parts of 10% FCS medium and 1 part of 5% 

DMSO and aliquots were frozen in Cryovial at -80°C for slow cooling and then stored 

in a liquid nitrogen tank. 

 

2.12 RNA Extraction 

Total RNA isolation was carried out by using silica-gel-based membrane, 

either by using an RNeasy tissue kit provided by Qiagen, or peqGOLD total RNA Kit 

provided by peqlab, according to the manufacturer’s instructions.  
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1.5-3x105 Cells were seeded in 35 mm dishes and/or 6 well plats containing 2 mL of 

10% FCS human fibroblast medium. After 24 hrs of starvation time and depending on 

the protocol, cells were allowed to grow in presence or absence of tested substances.  

At the end the medium was sucked out and the cells were lysed by addition of 350 μL 

the lysis buffer containing β-mercaptoethanol. The cells lysate was transferred to a 

shredder column placed in a 2 mL collection tube and homogenized by centrifugation 

for 2 minutes at maximum speed (13000-14000 rpm) at room temperature, followed 

by addition of equal volume of ethanol (70%) to the flow-through lysate and mixed 

thoroughly by pipette to provide appropriate binding conditions. The lysate was then 

transferred to an RNeasy spin column placed in a 2 mL collection tube and centrif-

uged at 10000 rpm for 15 seconds. The flow-through was poured-off. Afterward 700 

μL of the wash buffer RW1 (RNeasy tissue kit) or 600 μL of the wash buffer I 

(peqGOLD total RNA Kit) was added on the spin column and centrifuged for 15 

seconds at 10000 rpm. The flow-through and collection tube were discarded and the 

spin column was placed on a new collection tube. The β-adrenoceptor genes are 

intronless and contamination of RNA preparation by genomic DNA would cause 

robust false-positive PCR results, hence the remaining traces of DNA were digested 

by addition of 75-80 μL RNase-free DNase according to the manufacturer’s instru-

ctions on the spin column and incubated at room temperature for 15 minutes. The first 

washing step was repeated and the flow-through was discarded. 

 

500 μL of the RPE (RNeasy tissue kit) or of wash buffer II (peqGOLD total RNA Kit) 

was added on the spin column and centrifuged for 15 seconds at 10000 rpm. The 

buffer wash step was repeated with an extended centrifugation time for 2 minutes. 

The filtrate was discarded and the spin column was dried by centrifugation at 10000 

rpm for 15 seconds. The spin column was placed on fresh 1.5 mL tube and the elution 

was done using 30-40 μL of RNase free water at 10000 rpm for 1 minute. Sometimes 

a second elution was necessary to increase the total RNA yield. 
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2.13 DNA Isolation 

Genomic DNA was isolated from human lung fibroblasts cell line, either MRC-5 

or HEL-299 cell line and used as a reference control for the effectiveness of primer 

pairs by using a semi-quantitative PCR.  

Fibroblasts were cultured in a 175 cm2 tissue culture flask to confluence, then washed 

with 1x PBS and trypsinized with 1x Trypsin/EDTA solution for 8-10 seconds. 

Subsequently the cells were washed out by using culture medium and centrifuged at 

1000-2000 rpm for 5 minutes. The supernatant was discarded and the pellet was 

resuspended in 200 µL 1x PBS and 40 µL RNase A [10 mg/mL] and incubated for      

2 minutes at room temperature. 

Afterward 20 µL proteinase K and 200 µL buffer AL was added to the reaction tube, 

mixed by using vortex mixer and incubated at 70 oC for 10 minutes. The sample was 

homogenized by addition of 200 µL (96%) ethanol and mixed again. The probe was 

transferred into the DNeasy spin column fixed in a 2 mL collection tube and centri-

fuged at 8000 rpm for one minute, the collection tube was discarded and spin column 

fixed on a new 2 mL collection tube. 500 µL buffer AW1 was added and the tube 

centrifuged at 8000 rpm for 1 minute. The collection tube was discarded and the spin 

column fixed on another new 2 mL collection tube and washed by addition of 500 µL 

of buffer AW2 and centrifuged at maximum speed (14000 rpm) for 3 minutes to dry 

the DNeasy membrane. Thereafter the spin column was placed on a clean fresh 1.5 

mL Eppendorf tube followed by addition of 100 µL water and incubation of the probe 

was carried out for 1 minute at room temperature, and then centrifuged at 8000 rpm 

for 1 minute. 

The eluted DNA was then placed in a pipette again on the spine column with 100 µL 

water and incubated for 1 minute at room temperature, and centrifuged again at 8000 

rpm for 1 minute for final DNA elution. The concentration of the product was 

measured by using a photometer at 260 nm.   
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2.14 Determination of RNA Concentration by Spectrophotometric Estimation 

The concentration of RNA in the collected sample was measured photometri-

cally at a wavelength of 260 nm (OD260) and 280 nm (OD280). The ratio between the 

absorbance values gives an estimate of the purity of RNA. In a 1:20 or 1:40 dilution 

with either RNase free water or DEPC-water, the measurement of the concentration 

was carried out either with the Gene Quant II photometer (Pharmacia) or by Smart-

SpecTMPlus (Bio-Rad). Lower ratios indicate the presence of contaminants such as 

proteins. The sample preparations were stored at -80o C.   

The RNA content was calculated as follows: OD260 x dilution x 40 = RNA content 

(μg/mL). 

 

2.15 Reverse Transcription 

The transcription reaction was carried out using an Omniscript RT Kit provided 

by Qiagen, and a PCR Thermal Reactor according to the manufacturer’s instructions. 

To start the reaction, 1 μg of RNA was used as a starting template (x μL), the volume 

completed to 12.5 μL with RNase free water (12.5 μL - x μL). 

The RT-Master mix containing Oligo dT primer in a reverse transcriptase buffer was 

added to this probe in a 0.5 mL reaction tube making up the volume to 20 μL/probe. 

The probes were incubated at 37oC for 1 h. Subsequently the reaction was blocked by 

incubation at 93oC for 5 minutes. Afterward the probes were cooled-down on ice, 

centrifuged and followed by addition of 80 μL of sterile water per probe. The cDNA 

probes were stored at -20oC and 5 μL of this cDNA was used as a template for further 

PCR reactions. 

 

 

2.15.1 Semi Quantitative Polymerase Chain Reaction (PCR) 

All reactions were carried out in a thermal cycler (MyCyclerR) provided by 

BioRad in total volume of 50 µL, where 5 µL of cDNA was used as a template and 

mixed with 45 µL PCR-Master mix. consisting of: 
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 Reagents 
 
Water                                                        

10x PCR Reaction Buffer   

50 mM MgCl2    

10 mM Desoxynucleotide-Mix  

10 µM Sense-Primer                                 

10 µM Antisense-Primer                          

  5 U/µl TaqDNA Polymerase

Total volume 

Volume per Probe 
 
  32.5 µL 

  5 µL 

  1.5 µL 

  1 µL 

  2.5 µL 

  2.5 µL 

  0.5 µL 

  45 µL 

 

Finally, the reaction runs according to the following specifications: 

Step Temperature  Time 
 
Initial Denaturation  

Denaturation  

Annealing  

Elongation  

Final Elongation           

 
 94° C 

 94° C 

 53° C to 63° C 

72° C 

72° C   

 
3 min 

45 s 

30 s 

1 min 

10 mins 

 

  
 
 
2.15.2 Quantitative Real Time Polymerase Chain Reaction (qPCR) 

qPCR was performed by monitoring the fluorescence of SYBR Green dye on a 

Stratagene Mx3000P real time PCR system, and Glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH) was used as internal standard for normalization. 

cDNA was diluted 1:3 with RNase free water, where 5 µL of cDNA was used as a 

template and mixed with 10 µL PCR-Master mix. consisting of:  

 
 
 
 

23-35 Cycles  
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Reagents Volume per Probe 
 
Master Mix SYBR® Green 

Primer Sense  

Primer Antisense 

Distal Water 

Total volume   

 
  7.5 µL 

  0.45 µL 

  0.45 µL 

  1.6 µL 

  10 µL 

 

Where the cycling conditions were: 

 

Step Temperature  Time 
 
Initial activation of Hot Star-Taq 
®DNA Polymerase  

Denaturation  

Annealing  

Elongation 

 
95° C 

 

95° C 

55° C to 59° C 

72° C 

 
3 mins 

 

30 s 

30 s 

30 s 

 

 

Subsequently the results were exported to the Excel program for further analysis. 

Fluorescence data from each sample were analysed with the 2-[∆∆Ct] method: fold 

induction = 2-[∆∆Ct], where ∆∆Ct = [Ct GI (unknown sample) - Ct GAPDH (unknown 

sample)] - [Ct GI (calibrator sample) - Ct GAPDH (calibrator sample)], GI is the gene 

of interest. 

 

 

2.16 Agarose Gel Electrophoresis 

PCR amplification products were separated through agarose gel matrix in respo-

nse to an electric current. 

 

35-45 Cycles  
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For agarose gel electrophoresis a 1.2% agarose gel was prepared in 150 mL of 0.5x 

TBE buffer and 0.5 µg/mL ethidium bromide was added. The prepared gel was trans-

ferred to a running chamber containing 0.5x TBE buffer solutions. 

5 µL of a PCR buffer (Marker dye) was added to each PCR probe, subsequently 7.5 

µL of 100 bp DNA ladder stained with PCR buffer was loaded onto the first gel lane 

and 25-30 µL of each stained probe were loaded onto the other gel slots. The gel was 

allowed to run at a constant current of 75 mA for 60-75 minutes. The gel was placed 

on the UV light and the DNA bands were documented. 

 

Finally, optical density of bands was determined by RFLPscan 2.01 software (MWG, 

Ebersberg, Germany), and corrected over β-actin bands. 

 

2.17 Western Blot Assay 

2.17.1 Protein Extraction 

2*105 - 3.5*105 cells/dish MRC-5 human lung fibroblasts were seeded respect-

tively in 35 or 55 mm culture dishes containing 2 mL of human lung fibroblast 

medium supplemented with 10% FCS and allowed to grow in humidified conditions 

with 5% CO2 for 24 hrs. Cells were grown in a serum-deprived medium for a further       

24 hrs. Subsequently the cells were incubated with or without tested substance for 24-

48 hrs depending on the protocol. The cells were then washed twice with ice cold 1x 

PBS, and the cellular proteins were extracted in 200-300 µL RIPA buffer or NP-40 

buffer containing the protease inhibitors. 

 

 

2.17.2 Total Protein Extraction 

         Cells were lysed and cellular proteins were extracted in RIPA buffer (50 mM 

Tris-HCl, pH 7.5, 150 mM NaCl, 0.5% sodiumdeoxycholat, 1% Nonidet P-40, 0.1% 

(w/v) SDS, 2 mM EDTA, pH 8.0) containing the protease inhibitors phenylmethan-

sulfonylfluorid (PMSF, 1 mM), pepstatin A (0.7 µg/mL) and leupeptin (0.5 µg/mL). 

The lysed cells were transferred to a 1.5 mL tube and centrifuged for 15 minutes at 
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13000 rpm and 4oC where the supernatant used for protein estimation and the rests 

were stored at -20oC for long-term storage. 

 

 

2.17.3 Membrane Protein Preparation 

         This extraction protocol was used for β2-adrenoceptors protein analysis. Here 

the cells were lysed and the proteins were extracted in NP-40 lysis buffer (100 mM 

Tris-HCl, pH 7.5,100 mM NaCl,10 mM MgCl2, 100% (v/v) Nonidet P-40) containing  

the protease inhibitors phenylmethansulfonylfluorid (PMSF, 1 mM), pepstatin A (0.7 

µg/mL) and leupeptin (0.5 µg/mL). The cells lysate was transferred to 1.5 mL Eppen-

dorf tubes and centrifuged for 10 minutes at 6000 rpm and 4oC, the supernatant was 

transferred to a fresh 1.5 mL tube and centrifuged for 15 minutes at 13000 rpm and 4o 

C. The supernatants containing cytosolic protein fraction was measured and used as 

control. The pellet was washed in 100 µL PBS containing the protease inhibitors and 

centrifuged at 13000 rpm at 4oC for 15 minutes. Supernatant was discarded and the 

pellet was resuspended in 30 µL of NP-40 + PI where 10 µL used for protein 

determination and the rest 20 µL proteins were used for β2-adrenoceptors protein 

estimation. 

 

 

2.17.4 Protein Determination 

Protein determination was carried out using a Bio-Rad DC protein assay kit which is a 

colorimetric assay and used according to the manufacturer’s instructions. 

 

 

2.18 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

For protein analysis 20-50 μg proteins equivalents for β2-adrenoceptors expre-

ssion analysis or 1.5-2.5 μg proteins equivalents to α-SMA regulations analysis were 

mixed with the reducing loading buffer Roti®-Load (4:1) and denaturated at 70oC for 

10 minutes.   

 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide_gel
http://en.wikipedia.org/wiki/Electrophoresis


2. Materials and Methods 
 

Characterization of β-Adrenergic Mechanisms in Human Pulmonary Fibroblasts | Dissertation by Fathi Lamyel 56 
 

Gel running was performed by using XCell II™ Mini-Cells apparatus from Invitro-

gen. The normalized proteins and 5 µL of kaleidoscope marker were loaded on the gel 

with clamps in the running chamber containing running buffer (1x MOPS). The gel 

run was carried out by being attached to a power supply at 200 V constant at 60 mA 

current for 80-90 minutes.  

 

Analysis of β2-adrenoceptors expression was carried out by separation of the samples 

on 10% (NuPAGE®Novex®Bis-Tris Gel) using the 1x MOPS-SDS running buffer 

system. Whereas, a 4-12% NuPAGE Bis-Tris Gel using the 1x MOPS-SDS running 

buffer system was utilized for α-SMA analysis. 

 

2.19 Protein Blotting 

In order to make the separated proteins susceptible to detection by specific 

antibody, they were transferred onto a membrane made of polyvinylidene difluoride 

(PVDF). For this purpose, the membrane was equilibrated by soaking in methanol for 

1-3 seconds and thereafter washed in distilled water followed by 20 minutes 

equilibration in a transfer buffer. In the meantime, filter paper and blotting sponge 

pads were preincubated in transfer buffer before being used in order to remove any air 

bubbles. 

At the end of the gel running process, the gel was removed from the gel cassette and 

washed to remove the adhering salts and detergents for 5 minutes in transfer buffer. 

At the end of washing and equilibration process a transfer sandwich assembly of the 

membrane, gel, filter paper and blotting sponge pads were built and transferred to the 

XCell II™ Mini-Cells apparatus for electro blotting and moving of proteins from gel 

to PVDF membrane. The chambers were then filled with 4oC cold transfer buffer.  

The blotting process was carried out at a constant current of 250 mA and 100V for 90 

minutes. At the end of the blotting step the PVDF membrane was transferred onto a 

tray on a shaker platform followed by staining using Ponceau S (0.2% w/v) in order to 

ensure and control the blotting quality and efficacy.  
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The marked lanes were decolorized by washing twice with distilled water followed by 

washing with TBS solution for 3 minutes. Afterwards, the membrane was blocked by 

using 8-10 mL of 5% blocking solution overnight at 4oC to saturate and block non-

specific protein binding sites. 

2.20 Immuno-detection 

The blocking solution was discarded and the membrane was incubated in 8 mL of 

the primary antibody prepared in 3% blocking solution in appropriate dilution for 90 

minutes at room temperature on the shaker platform. Thereafter the membrane was 

washed twice with 0.3% TBST solution for 10 minutes and blocked again twice with 

3% blocking solution for 10 minutes each. 

This was followed by incubation of the membrane with secondary antibody, linked 

with a reporter enzyme (horseradish peroxidase), and diluted to appropriate dilution 

for 45 minutes on a shaker platform. After the end of the incubation period with the 

secondary antibody the membrane was washed four times with 0.1% TBST solution 

for 15 minutes each. 

Chemiluminescence detection technique was performed by incubation of the mem-

brane with Chemiluminescence solution which was prepared during the last washing 

step according to the manufacturer’s manual and kept at room temperature. 

For the detection process the washing buffer was discarded and the membrane 

transferred to a plastic sleeve and incubated with 2-3 mL of Chemiluminescence 

detection solution for one minute, then wrapped in a plastic sleeve where the air 

bubbles were removed from the membrane wrap sandwich. Thereafter the membrane 

wrap sandwich was fixed in a film cassette and exposed to an X-ray film for 5 

seconds to 5 minutes depending on the intensity of the signal. After exposing the film 

for the appropriate time the signals were developed by exposing the film to the 

developing solution for 3-5 minutes, washed in water for 3 minutes and finally fixed 

for 5 minutes in fixing solution. Depending on the intensity of the signal a second film 

was exposed and developed to optimal exposure time. 

After drying, the films were then scanned. The optical density of protein bands was 

measured densitometrically by using of RFLP scan software. 
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2.21 Radioactive Assays 

2.21.1 [3H]-Thymidine Incorporation Assay 

For this assay human lung fibroblasts cells were trypsinized, harvested and 

seeded into 12-well plates at a density of 4*104 cells per well. Different protocols 

were tested in order to find conditions under which adrenergic effects might be 

particularly prominent. Cells were first cultured for 24 hrs in the presence of 10% 

FCS, followed by 16-18 hrs under FCS-free conditions. Thereafter, test drugs were 

added and present for 26-30 hrs in most experiments under FCS-free conditions. [3H]-

Thymidine (37 kBq) was present during the last 24 hrs in most experiments.  At the 

end of incubation cells were washed in ice-cold PBS and denatured in TCA (5%) for 

10 minutes, followed by washing in ice-cold PBS and DNA was extracted during 

incubation for 1 h in 0.1 mol/l NaOH at 37°C or by incubation with 0.1 mol/l NaOH 

at 4°C overnight. Samples of the supernatant solution (300 μL portions) were 

neutralized with 200 μL of Tris HCl (pH 7.4) combined with the scintillation cocktail 

and the radioactivity was measured by liquid scintillation spectrometry in a Packard 

2100 liquid scintillation analyzer. External standardization was used to correct for 

counting efficiency. [3H]-Thymidine incorporation was expressed either in absolute 

terms (d.p.m) or as a percentage of the mean of the control group of each cell prepa-

ration. 

 

 

2.21.2 [3H]-Proline Incorporation Assay 

Collagen synthesis and deposition into the extracellular matrix were assessed by 

[3H]-proline incorporation assay, originally developed by Peterkofsky and Diegel-

mann (1997) and subsequently established also in our laboratory. Cells were trypsini-

zed, harvested and seeded into 12-well dishes at a density of 105 cells per well. (Haag 

et al. 2008a).  

Cells were first cultured for 24 hrs in presence of 10% FCS, followed by an 

additional 18-24 hrs under FCS-free conditions. Thereafter, [3H]-proline (37 kBq) was 

added alone or in combination with test drugs and cells were cultured for a further 24 

hrs. At the end, culture medium was removed and cells were washed twice with 4°C 
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cold PBS followed by 1-2 hrs incubation in 1 mL 20% trichloroacetic acid (TCA) at 

4°C. Denatured cells were scraped off, transferred into a reaction tube and centrifuged 

at 13000 rpm for 10 minutes. The pellet was washed with 1 mL 10% TCA, and 

centrifuged again at 13000 rpm for 5 minutes and dissolved in 300 µL, 0.2 M NaOH 

followed by neutralization with 300 µL 0.2 M HCl. 300 µL portions were combined 

with scintillation cocktail and radioactivity was determined as described in 2.21.1. 

In previous experiments it was confirmed by collagenase digestion that total 

radioactivity incorporated into proteins largely reflects de novo synthesis of collagen. 

 
 
2.21.3 Calculations and Statistical Analysis 

Graph Pad InStat program (GraphPad software, San Diego, CA, USA) was used 

to calculate statistical significance of differences using ANOVA, followed by 

Dunnet’s or Bonferroni’s test. All values are mean ± SEM of n experiments. When 

normal distribution could not be confirmed (i.e. in all experimental series in which 

one treatment group had less than eight observations), significance of differences was 

evaluated by the kruskal-wallis one way test followed by Dunn's test. 

P value of < 0.05 was accepted as significant. IC50 values were calculated by the use 

of computer programs (GraphPad Prism, GraphPad Software, San Diego, CA, USA). 

Antagonism was quantified by calculation of –log KB (apparent pA2) values 

according to Eq.4 given by Furchgott (1972). All graphical representations were 

generated using the GraphPad Prism software. 



 

 
 
 
 

3. Results 

3.1 β-Adrenoceptors Expression in Human Lung Fibroblasts 

Semi-quantitative RT-PCR’s were performed to determine the expression 

pattern of the mRNA encoding for different β-adrenoceptors subtypes in MRC-5 and 

HEL-299 human lung fibroblast cell line as well as primary human lung fibroblasts. 

Total RNA was isolated as described in 2.12 and first strand cDNA was synthesized 

using reverse transcriptase.  

In addition, genomic DNA (gDNA) isolated from MRC-5 was used as a positive 

control to confirm the effectiveness of all primer pairs. One negative control was 

regularly performed with each PCR assay by using a lacking template DNA sample. 

As shown in figure 3-1, A-C, the MRC-5 and HEL-299 human lung fibroblasts cell 

lines, as well as primary cells show clear expression of mRNA encoding β2-adreno-

ceptors, whereas no transcripts for β1 and β3-adrenoceptors could be detected in those 

cells. The expression pattern was found to be constant under different culture 

conditions, as a similar expression pattern was found in cells of different passages.  

MRC-5 cells were then chosen for further studies and the expression of β2-adreno-

ceptors in these cells was confirmed at protein level by Western blot analysis using a 

specific commercially available polyclonal antibody for β2-adrenoceptors. As expec-

ted, most of the receptor protein was expressed in the membrane fraction (Fig. 3-1, E). 
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Figure  3-1: β-Adrenoceptors expression in human lung fibroblasts: Samples of RT-PCRs of 
human β-adrenoceptors (β1-β3) on RNA isolated from MRC-5 (A), HEL-299 (B), and primary 
human lung fibroblasts (C). Cells were grown in presence of 10% FCS in 35 mm culture 
dishes to confluency, total RNA was extracted, treated with DNase and used for RT-PCR 
with primers specific for β-actin (23 PCR cycles) or human β-adrenoceptors (35 PCR cycles). 
Genomic DNA (gDNA) isolated from MRC-5 cells was used as positive control (+Ctr.). One 
PCR lacking template DNA was regularly performed to exclude any contamination (-Ctr.). 
PCR products were separated on a 1.2% agarose gel. (D):  Densitometrical evaluation of a 
series of experiments. Given are mean values + SEM of n=4-12. Values were normalized over 
β-actin to correct for quality of the cDNA preparation. (E): Samples of immunoblots for 
human β2-adrenoceptors with protein extracts from MRC-5 human lung fibroblasts, grown in 
presence of 10% FCS in 55 mm culture dishes to confluency. Cytosolic and membrane 
proteins were extracted differentially and used for Western blot analysis using a primary 
antibody directed against human β2-adrenoceptors. 
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3. Results 

3.2  Functional Role of β2-Adrenoceptors in Human Lung Fibroblasts 

3.2.1 Effects on Proliferation 

Proliferation was measured by determination of [3H]-thymidine incorporation in 

cell culture.  

The first sets of experiments had suggested that β2-adrenoceptors desensitisation 

might affect the response levels of the tested β-adrenoceptors agonists. Therefore, in 

order to examine whether supposed β-adrenoceptors mediated effects on fibroblast 

proliferation depending on culture conditions and exposure time, the effect of 

different exposure times was examined. As described in figure 3-2, A and B, tested β-

adrenoceptors agonists demonstrated an inhibitory effect on [3H]-thymidine incor-

poration in MRC-5 cells under all the time schedules tested. Nonetheless, the 

nethermost variability of the inhibitory effect was detected, when the agonists were 

added 6 hrs prior to [3H]-thymidine, and lasted together for 24 hrs. Therefore, these 

culture conditions were used in all following experiments. In several series of experi-

ments the maximum inhibition caused by isoprenaline or formoterol was between 

about 30% and 40%. Although, the effectiveness of these two agonists was similar, 

formoterol proved to be markedly more potent (IC50 0.06 nM) than isoprenaline (IC50 

of 3 nM).  
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Figure  3-2: Concentration and time dependent effects of isoprenaline (Iso) (A), formoterol 
(Formo) (B), on [3H]-thymidine incorporation in MRC-5 human lung fibroblasts. 4*104 cells 
were seeded in 12-well dishes in presence of 10% FCS. After a 24 hrs FCS-free period test 
drugs were added as indicated for 14 (2+12 hrs), 18 (6+12 hrs), 26 (2+24 hrs) or 30 (6+24 
hrs). [3H]-Thymidine (37 kBq) was present for the last 12 or 24 hrs (i.e. it was added 2 or 6 
hrs after addition of test drugs). Cellular radioactivity is expressed as % of the mean value of 
the controls of each cell preparation. Given are means + SEM of n=6-12. Significance of 
differences:*P<0.05, **P<0.01, ***P<0.001 vs control (Ctr.). 
 

In order to elucidate whether the concentration dependent effect of the β-

adrenoceptors agonist formoterol was mediated via β2-adrenoceptors, interaction exp-

eriments with the selective β2-adrenoceptors antagonist ICI 118,551 and the selective 

β1-adrenoceptors antagonist CGP 20712 were performed. 

As summarized in figure 3-3, A, the concentration response curve of formoterol was 

markedly shifted to the right in a concentration-dependent manner by the β2-adreno-

ceptors selective antagonist ICI 118,551 (mean apparent pA2 value: 9.6), but not 

affected by the β1-adrenoceptors selective antagonist CGP 2071 (present in the 

relatively high concentration of 3 µM). Neither ICI 118,551 (0.3 and 3 µM) nor CGP 

20712 (3 µM) alone showed any significant effect on [3H]-thymidine incorporation 

(Fig. 3-3, B).            
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Figure  3-3:  Concentration-dependent effects of formoterol in absence or presence of the β2-
adrenoceptors selective antagonist ICI 118,551 (ICI, 0.3 and 3 µM) or the β1-adrenoceptors 
selective antagonist CGP 20712 (CGP, 3 µM) (A) and the effect of β-adrenoceptors 
antagonists (β1 and β2) (B) on [3H]-thymidine incorporation in MRC-5 human lung 
fibroblasts. 4*104 cells were seeded in 12-well dishes in presence of 10% FCS. After a 24 hrs 
FCS-free period test drugs were added as indicated for 30 hrs where antagonist was added 30 
minutes prior agonist. [3H]-Thymidine (37 kBq) was present for the last 24 hrs (i.e. it was 
added 6 hrs after addition of test drugs). Cellular radioactivity is expressed as % of the mean 
value of the controls of each cell preparation. Given are means ± SEM of n=6-9. Significance 
of differences: vs. respective controls (Ctr.); **P<0.01, ***P<0.001; vs. respective value in 
absence of antagonist, ++P<0.01. 
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As shown in figure 3-4, direct stimulation of adenylyl cyclase by 30 µM 

forskolin caused an inhibition of [3H]-thymidine incorporation by about 70%. It had 

previously been shown that EP2 receptors, like β-adrenoceptors, mediate stimulation 

of adenylyl cyclase and exert a marker anti-proliferative effect in human lung fibro-

blasts (Haag et al. 2008b), and this was also confirmed in the present study. 100 nM 

Butaprost caused a reduction of [3H]-thymidine incorporation by about 60%. To 

elucidate whether prostaglandins released from lung fibroblasts during the experi-

ments interfere with the β-adrenergic mediated inhibition of cells proliferation, an 

additional set of experiments were performed in which cyclooxygenase was inhibited 

by addition of 3 µM indomethacin. 

 As shown in figure 3-5, A and B, indomethacin on its own neither affected the pro-

liferation rate of the cells nor significantly affected the inhibitory effect of isopre-

naline. Thus, at least under the present standard culture conditions, any interference 

with endogenously released prostaglandins can be excluded. 
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Figure  3-4: Effects of butaprost and forskolin, on [3H]-thymidine incorporation in MRC-5 
human lung fibroblasts. 4*104 cells were seeded in 12-well dishes in presence of 10% FCS. 
After a 24 hrs FCS-free period test drugs were added as indicated for 24 hrs [3H]-thymidine 
(37 kBq) was present for the last 24 hrs (i.e. it was added 6 hrs after addition of test drugs).  
Cellular radioactivity is expressed as % of the mean value of the controls of each cell prepara-
tion. Given are means + SEM of n=17-20. Significance of differences: **P<0.01, ***P<0.001 
vs control (Ctr.). 
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Figure  3-5: Effects of isoprenaline (Iso) (A) in absence or presence of indomethacin (Indo) 
and indomethacin alone (B) on [3H]-thymidine incorporation in MRC-5 human lung 
fibroblasts. 4*104 cells were seeded in 12-well dishes in presence of 10% FCS. After a 24 hrs 
FCS-free period test drugs were added as indicated for 30 hrs. [3H]-Thymidine (37 kBq) was 
present for the last 24 hrs (i.e. it was added 6 hrs after addition of test drugs). Cellular 
radioactivity is expressed as % of the mean value of the controls of each cell preparation. 
Given are means ± SEM of n=6-17. Significance of differences: *P<0.05, **P<0.01 vs 
control (Ctr.); ns = not significant. 
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Since transforming growth factor (TGF-β) has been widely identified as a key 

pro-fibrogenic cytokine (see 1.1.3.3) in inflammatory conditions, the effects of TGF-β 

on cell proliferation and potential interaction with corticosteroids were studied.      

[3H]-Thymidine incorporation was not significantly affected by 5 ng/mL of TGF-β or 

100 nM of budesonide alone or by combined presence of these test substances          

(Fig. 3-6). 
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Figure  3-6: Effects of TGF-β (5 ng/mL) and/or budesonide (Bude 100 nM) in absence or 
presence of indomethacin (Indo 3 µM) on [3H]-thymidine incorporation in MRC-5 human 
lung fibroblasts. 4*104 cells were seeded in 12-well dishes in presence of 10% FCS. After a 
24 hrs FCS-free period test drugs were added as indicated for 30 hrs. [3H]-Thymidine (37 
kBq) was present for the last 24 hrs (i.e. it was added 6 hrs after addition of test drugs). 
Cellular radioactivity is expressed as % of the mean value of the controls of each cell 
preparation. Given are means + SEM of n=18-36. Significance of differences: vs control 
(Ctr.); ns = not significant. 
 
 

The effect of TGF-β on [3H]-thymidine incorporation inhibitory effect med-

iated by β2-adrenoceptors was also investigated in MRC-5 human lung fibroblasts. 

Cells were incubated with 10 nM formoterol and for comparison reasons with 100 nM 

of EP2 receptor agonist butaprost in absence or presence of 5 ng/ml TGF-β for 6 hrs 

followed by 24 hrs in additional presence of [3H]-thymidine. As summarized in figure 

3-7, A and B, incubation of cells with TGF-β induced a loss of the inhibitory effect of 

formoterol, and the effect was not opposed by additional presence of 100 nM bude-

sonide. Furthermore, the strong inhibitory effect caused by butaprost was also largely 
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reduced but not completely prevented. These effects of TGF-β were not affected by 

additional presence of budesonide (Fig. 3-7 B). 
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Figure  3-7: Effects of formoterol (Formo 10 nM) and butaprost (Buta 100 nM) in absence or 
presence of TGF-β 5 ng/mL alone (A) or in combination with 100 nM of budesonide (B) on 
[3H]-thymidine incorporation in MRC-5 human lung fibroblasts. 4*104 cells were seeded in 
12-well dishes in presence of 10% FCS. After a 24 hrs FCS-free period formoterol or 
butaprost were added in absence or in the presence of TGF-β (5 ng/mL) alone or in 
combination with budesonide (100 nM) as indicated for 30 hrs. [3H]-Thymidine (37 kBq) was 
present for the last 24 hrs (i.e. it was added 6 hrs after addition of test drugs). Cellular 
radioactivity is expressed as % of the mean value of the controls of each cell preparation. 
Given are means + SEM of the number of experiments indicated. Significance of differences: 
vs control (Ctr.); ***P<0.001; ns = not significant. 
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As summarized in figure 3-8, since Th2 cytokines play a crucial role in the 

pathogenesis of bronchial asthma, it was tested whether IL-4 or IL-13 might affect 

proliferation of MRC-5 cells or β-adrenoceptors mediated modulation. Neither IL-4 

nor IL-13 significantly affects the basal proliferation of MRC-5 cells and the inhi-

bitory effect of formoterol. 
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Figure  3-8: Effects of formoterol (Formo 10 nM), and/or IL-4 (10 ng/mL) or IL-13 (10 
ng/mL) on [3H]-thymidine incorporation in MRC-5 human lung fibroblasts. 4*104 cells were 
seeded in 12-well dishes in presence of 10% FCS. After a 24 hrs serum deprived period test 
drugs were added for 30 hrs. [3H]-Thymidine (37 kBq) was present for the last 24 hrs (i.e. it 
was added 6 hrs after addition of test drugs). Cellular radioactivity is expressed as % of the 
mean value of the controls of each cell preparation. Given are means + SEM of n=6-17. 
Significance of differences: **P<0.01, ***P<0.001 vs control (Ctr.); +P<0.05 vs IL-4; 
++P<0.01 vs IL-13; ns = not significant 
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3.2.2 Effects on Collagen Synthesis 

Collagen synthesis was measured by determination of [3H]-proline incorpor-

ated in protein during cell culture. Cells were trypsinized, harvested and seeded into 

12-well dishes at a density of 105 cells per well, cultured for 24 hrs in presence of 

10% FCS and allowed to attach, followed by an additional 18-20 hrs under serum 

deprived conditions. Thereafter, [3H]-proline (37 kBq) was added alone or in 

combination with different concentration of β-adrenoceptors agonists (isoprenaline 

and formoterol) as indicated, and incubated for additional 24 hrs. At the end of the 

experiment the radioactivity incorporated was determined as described previously. As 

shown in figure 3-9, A and B, [3H]-proline incorporation in MRC-5 and PhLFb was 

inhibited by both the non-selective β-adrenoceptors agonist isoprenaline and the β2-

adrenoceptors selective agonist formoterol in a concentration-dependent manner. 

Similar to the observations on [3H]-thymidine incorporation described above, both 

agonists showed similar effectiveness, but formoterol was substantially more potent 

(IC50 0.09 nM) than isoprenaline (IC50 of 1.3 nM). Additionally, the inhibitory effect 

of 10 nM formoterol was blocked by the β2-selective antagonist ICI 118,551(0.3 µM) 

but was not affected by the β1-adrenoceptors selective antagonist CGP 20712 (3 µM). 

In line with the result seen on [3H]-thymidine incorporation neither 0.3 µM ICI 

118,551 nor 3 µM CGP 20712 showed significant effects on basal [3H]-proline incor-

poration (data not shown, each n=6) (Fig. 3-9, C). 
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Figure  3-9: Concentration-dependent effects of isoprenaline (Iso 10-100 nM &1 µM) and 
formoterol (0.1-10 nM) on [3H]-proline incorporation in MRC-5 cell line (A) and PhLFb (B). 
And effect of formoterol (Formo 10 nM) in absence and presence of β2-adrenoceptors 
selective antagonist, ICI 118,551 (0.3 µM) or β1-adrenoceptors selective antagonist, CGP 
20712 (3 µM) on [3H]-proline incorporation in MRC-5 human lung fibroblasts (C). 105 cells 
were seeded and cultured in 12-well dishes for 24 hrs in presence of 10% FCS. After a 24 hrs 
serum deprived period [3H]-proline (37 kBq) was added alone or in combination with test 
drugs and cells were cultured for further 24 hrs. Radioactivity incorporated in cellular and 
extracellular protein was determined and expressed as % of   the mean value of the controls of 
each cell preparation. Given are means + SEM of n=9-18. Significance of differences: vs. 
control (Ctr.), *P<0.05; **P<0.01; ***P<0.001. 
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3. Results 

Again, in line with previous observations on proliferation the maximum inhi-

bition of collagen synthesis caused by β-adrenoceptors agonist was significant but 

smaller than that caused by 30 µM of forskolin, or 100 nM of butaprost (Fig. 3-10). 
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Figure  3-10: Comparison between the effects of formoterol (Formo 1 nM), butaprost (Buta 
100 nM), and forskolin (Forsk 30 µM) on [3H]-proline incorporation in MRC-5 cell line. 105 
Cells were seeded and cultured in 12-well dishes for 24 hrs in presence of 10% FCS, after a 
24 hrs serum deprived period [3H]-proline (37 kBq) was added alone or in combination with 
test drugs and cells were cultured for further 24 hrs. Radioactivity incorporated in cellular and 
extracellular protein was determined and expressed as % of the mean value of the controls of 
each cell preparation. Given are means + SEM of the number of experiments indicated. 
Significance of differences: vs. control (Ctr.), **P<0.01; ***P<0.001. 
 

 

 

Finally, possible interactions of TGF-β with corticosteroids were studied.      

As described in figure 3-11, A-D in contrast to the lack of effect of TGF-β on cells 

proliferation, it caused a marked increase in [3H]-proline incorporation in human lung 

fibroblasts. Budesonide and dexamethasone, which alone had no significant effect, 

augment the stimulatory effect of TGF-β on [3H]-proline incorporation (Fig. 3-11, B 

and C). The strong stimulatory effect of TGF-β in combination with budesonide was 

preserved in presence of indomethacin (Fig. 3-11, D). 
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Figure  3-11: Effects of TGF-β (5 ng/mL), dexamethasone (Dexa 1µM), Budesonide (Bude 
100 nM) and indomethacin (Indo 3 µM) alone or in combination on [3H] proline incorpora-
tion in MRC-5 human lung fibroblasts. 105 cells were seeded and cultured in 12-well dishes 
for 24 hrs in presence of 10% FCS. After a 24 hrs serum deprived period [3H]-proline (37 
kBq) was added alone or in combination with test drugs and cells were cultured for further 24 
hrs. Radioactivity incorporated in cellular and extracellular protein was determined and 
expressed as % of   the mean value of the controls of each cell preparation. Given are means + 
SEM of the number of experiments indicated. Significance of differences: **P<0.01; 
***P<0.001 vs control (Ctr.); + P< 0.01 vs TGF-β; #P<0.001 vs Indo; ns = not significant vs 
control (Ctr.). 
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The inhibitory effect of β-adrenoceptors agonists on proline incorporation in 

pulmonary fibroblasts was abolished in presence of TGF-β. As shown in figure 3-12, 

A and B, treatment of cells with TGF-β caused an increase of collagen synthesis 

which was not significantly affected by addition of different concentrations of β-

adrenoceptor agonists. Furthermore, the effect of TGF-β was examined in presence of 

a formoterol and budesonide combination. Likewise, the stimulatory effect of TGF-β 

was not affected by additional presence of the combination (Fig. 3-12, C). 
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Figure  3-12: Effects of formoterol (Formo 0.1-10 nM), isoprenalin (Iso 10-100 nM &1 µM), 
TGF-β (5 ng/mL) and budesonide (Bude 100 nM), alone or in combination (as indicated) on 
[3H]-proline incorporation in MRC-5 human lung fibroblasts. 105 cells were seeded and 
cultured in 12-well dishes for 24 hrs in presence of 10% FCS. After a 24 hrs serum deprived 
period [3H]-proline (37 kBq) was added alone or in combination with test drugs and cells 
were cultured for further 24 hrs. Radioactivity incorporated in cellular and extracellular 
protein was determined and expressed as % of the mean value of the controls of each cell 
preparation. Given are means + SEM of the number of experiments indicated. Significance of 
differences: ***P<0.001 vs control (Ctr.); + P< 0.01 vs TGF-β; ns = not significant vs control 
(Ctr.). 

 
 

 

The effect of the Th2 cytokines IL-4 and IL-13 were also tested on proline 

incorporation and its modulation by β-adrenoceptors agonists. As summarized in 

figure 3-13, both IL-4 and IL-13 exerted slight inhibitory effects on basal collagen 

synthesis of MRC-5. Interestingly, additional presence of formoterol with IL-4 caused 

further reduction in collagen synthesis, and the effect of IL-4 and formoterol appear to 

be completely additive. Whereas the inhibitory effect of formoterol and IL-13 were 

not additive, and resulted in an inhibition of proline incorporation by about 25%, an 

effect similar to that seen in presence of formoterol alone. 
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Figure  3-13: Effects of formoterol (Formo 10 nM) and/or IL-4 (10 ng/mL) or IL-13 (10 
ng/mL) as indicated on [3H]-proline incorporation in MRC-5 human lung fibroblasts. 105 cells 
were seeded and cultured in 12-well dishes for 24 hrs in presence of 10% FCS, After a 24 hrs 
serum deprived period [3H]-proline (37 kBq) was added alone or in combination with test 
drugs and cells were cultured for further 24 hrs. Radioactivity incorporated in cellular and 
extracellular protein was determined and expressed as % of the mean value of the controls of 
each cell preparation. Given are means + SEM of n=9-18. Significance of differences:  
*P<0.05, **P<0.001, ***P<0.001 vs control (Ctr); +P< 0.001 vs IL-4; #P<0.05 vs. IL-13. 
 

 

 

 

3.2.3 Effects on α-Smooth Muscle Actin (α-SMA) Expression 

It is already known that α-smooth muscle actin (α-SMA) is a marker of myo-

fibroblast differentiation. Therefore the expression of α-SMA in MRC-5 human lung 

fibroblasts was studied at mRNA level and protein level. 
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3.2.3.1 Effect on mRNA 

As shown in figure 3-14 a clear basal expression of α-SMA at mRNA was detec-
ted. 
 
 
 
 
 
 
 

 

Figure  3-14: Basal expression of α-SMA mRNA in MRC-5 human lung fibroblasts. Cells 
were grown in presence of 10% FCS in 35 mm culture dishes to confluency, total RNA was 
extracted, treated with DNase and used for RT-PCR with primers specific for β-actin (23 PCR 
cycles) or α-SMA (30 PCR cycles). PCR products were separated on a 1.2% agarose gel. 
 

    To investigate the effect of formoterol on α-SMA mRNA expression level, 

MRC-5 were treated with 1 and 10 nM formoterol for 24 and 48 hrs. Real time (qPCR) 

measurements showed that formoterol induced down-regulation of α-SMA mRNA 

expression level in a non-concentration or time dependent manner (Fig. 3-15, A).  

In order to investigate the effect of TGF-β on α-SMA mRNA expression level, cells 

were stimulated with various concentrations of TGF-β (0.1, 0.3, and 1 ng/mL) for 48 

hrs. TGF-β (1 ng/mL) induced a marked up-regulation of α-SMA mRNA expression 

level by about 3000-4000% (Fig. 3-15, B).  In presence of TGF-β, the inhibitory 

effect of formoterol (1 nM, a maximum effective concentration) on α-SMA mRNA 

expression was abolished (Fig. 3-15, C). 
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Figure  3-15:  Effects of formoterol (Formo 1 nM) (A), TGF-β (0.1, 0.3 & 1ng/ml) (B) and 
their combinations (C) on α-SMA expression in MRC-5 human lung fibroblasts. 3.5*105 cells 
were seeded in 35 mm dishes and cultured for 24 hrs in presence of 10% FCS. After a 24 hrs 
serum deprived period, cells were cultured for additional 24-48 hrs in serum deprived medium 
in absence or presence of test substances. RNA was extracted, DNase-treated and used for 
RT-qPCR. α-SMA mRNA normalized over GAPDH in each individual sample and then 
expressed as % of the controls of the individual cell preparation (2- (ΔΔCT)*100). Given are 
means + SEM of n=3-9, significance of differences: *P<0.05, **P<0.001, ***P<0.001 vs 
control (Ctr); +P< 0.001 vs Formo; ns = not significant. 
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To elucidate whether corticosteroids affect the marked TGF-β induced up-

regulation of α-SMA mRNA, cells were stimulated with various concentrations of 

TGF-β in absence or presence of 100 nM of budesonide or 1µM of dexamethasone for 

48 hrs. Both budesonide and dexamethasone induced up-regulation of α-smooth 

muscle actin mRNA expression level by about 33% and 86% respectively, whereas 

the marked up-regulation induced by TGF-β was not significantly affected in presence 

of budesonide or dexamethasone (Fig. 3-16 A-C). 
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Figure  3-16: Effects of TGF-β (0.1-1 ng/mL) in absence and presence of dexamethasone 
(Dexa 1µM) and Budesonide (Bude 100 nM) on α-SMA mRNA expression levels in MRC-5 
human lung fibroblasts. 3.5*105 cells were seeded in 35 mm dishes and cultured for 24 hrs in 
presence of 10% FCS. After a 24 hrs FCS-free period, cells were cultured for additional 24-48 
hrs in serum-deprived medium in absence or presence of test substances. RNA was extracted, 
DNase-treated and used for RT-qPCR. α-SMA mRNA was normalized over GAPDH in each 
individual sample and then expressed as % of the controls of the individual cell preparation 
(2-(ΔΔCT)*100). Given are means + SEM of n=3-6, significance of differences:*P<0.05, 
**P<0.001, ***P<0.001 vs control (Ctr); +P< 0.001 vs Bude and Dexa; ns = not significant. 
 
 
 
3.2.3.2 Effects on Protein 

Western blot analysis was carried out to investigate and confirm the effect of 

formoterol on α-SMA protein expression level, either alone or in combination with 

TGF-β. Incubation of cells with various concentration of formoterol (1-100 nM) 

induced a reduction in α-SMA protein expression level in non-stimulated cells (under 

control culture conditions) by about 50% (Fig. 3-17, A-D). For comparison 10 µM of 

the direct activator of AC forskolin, or 100 nM of the EP2 receptor agonist butaprost 

caused a reduction by about 60% and 70% respectively (Fig. 3-17, A and C). 

However, the TGF-β induced increase of α-SMA protein expression was not pre-

vented or opposed by formoterol (1-10 nM). Similarly, the strong inhibitory effects of 

forskolin and butaprost were also abolished in cells treated with TGF-β (Fig. 17, A-

C). 

Characterization of β-Adrenergic Mechanisms in Human Pulmonary Fibroblasts | Dissertation by Fathi Lamyel 81 
 



3. Results 

 
 

 
 

 
 

Characterization of β-Adrenergic Mechanisms in Human Pulmonary Fibroblasts | Dissertation by Fathi Lamyel 82 
 



3. Results 

Ctr.  1  10  100 
0

50

100

* * *

MRC-5

D

nM Formo

α
-S

m
oo

th
 m

us
cl

e 
ac

tin
 [%

 o
f c

on
tr

ol
s]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure  3-17: Effects of formoterol (Formo 1-100 nM), butaprost (Buta 100 nM) forskolin 
(Forsk 10 µM) and TGF-β (0.1-5 ng/mL) alone or in the given combinations on α-smooth 
muscle actin (α-SMA) expression in MRC-5 human lung fibroblasts. 2*105 cells were seeded 
in 12-well dishes and cultured for 24 hrs in presence of 10% FCS. After a 24 hrs serum 
deprived medium period, cells were cultured for additional 24 hrs in serum deprived medium 
in absence or presence of test drugs (at the concentrations indicated). Cellular proteins were 
extracted and Western blot analysis for α-SMA and α-tubulin (α-Tub) was performed. (A-C): 
Samples of original Western blots. (D): Densitometric analysis of a series of Western blots, 
ratio α-SMA/α-Tub, expressed as % of controls, means + SEM of n=4. Significance of 
differences: vs controls (Ctr.), *P<0.05. 

 
 

Pulmonary fibrosis is a disease characterized by the formation of aggregates of 

myofibroblasts, which play an important role in tissue remodelling occurring in lung 

fibrosis. In order to investigate the effect of budesonide as an anti-inflammatory 

substance on TGF-β induced increase of α-SMA protein expression, western blot 

analysis was carried out. As showed in figure 3-18, A, incubation of cells with formo-

terol (10 nM) or/and budesonide (100 nM) shows inhibition of protein expression 

level, Western blot analysis showed that both budesonide and formoterol, either alone 

or in combination, induced a decrease in α-SMA protein expression by about 30-50%. 

However, neither budesonide nor their combinations with formoterol were able to 

oppose the TGF-β induced increase in α-SMA protein expression (Fig. 3-18, A-B). 
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Figure  3-18: Effects of formoterol (Formo 1-10 nM), budesonide (Bude 100 nM) and TGF-β 
(5 ng/mL) alone or in the given combinations on α-SMA expression in MRC-5 human lung 
fibroblasts. 2-3.5*105 cells were seeded in 6-well dishes and cultured for 24 hrs in presence of 
10% FCS. After a 24 hrs serum deprived medium period, cells were cultured for additional 24 
hrs in serum deprived medium in absence or presence of test drugs. Cellular proteins were 
extracted and Western blot analysis for α-SMA and α-tubulin was performed (A): Samples of 
original Western blots. (B): Densitometric analysis of a series of Western blots, ratio α-
SMA/α-Tub, expressed as % of controls, means + SEM of n=3.  
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3.2.4 Effects of Selective Epac Agonist, PKA Agonist and their Combination on 
α-Smooth Muscle Actin (α-SMA) Expression 

 

3.2.4.1 Effects on mRNA 

To investigate the effect of cAMP effectors, Epac and PKA agonists, each 

alone or in combination, cells in serum-deprived medium were treated with 300 µM 

of the selective Epac (8-CPT-2’-O-Me-cAMP) and 500 µM selective PKA (6-Bnz-

cAMP), either alone or in combination for 24 hrs. RT-qPCR measurements indicated 

that both Epac and PKA agonists caused significant reduction of α-SMA mRNA 

expression level in MRC-5 human lung fibroblasts by about 35% and 50% 

respectively, whereas the combination of both drugs tended to be stronger and caused 

a reduction of expression by about 59% (Fig. 3-19). 
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Figure  3-19: Effects of the selective PKA (6-Bnz-cAMP, 500 µM) and/or Epac (8-CPT-2’-O-
Me-cAMP, 300 µM) agonist (ago) on α-SMA expression in MRC-5 human lung fibroblasts. 
3*105 cells were seeded in 35 mm dishes and cultured for 24 hrs in presence of 10% FCS. 
After a 24 hrs FCS-free period, cells were cultured for additional 24 hrs in FCS-free medium 
in absence or presence of test substances. RNA was extracted, DNase-treated and used for 
RT-qPCR. α-SMA mRNA was normalized over GAPDH in each individual sample and then 
expressed as % of the controls of the individual cell preparation (2-(ΔΔCT)*100). Given are 
means + SEM of n=3-9. Significance of differences vs. control: ***p<0.001. 
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3.2.4.2 Effects on Protein 

 
Moreover, the effect of selective activators of cAMP effectors, Epac and PKA 

agonists and their combination on α-SMA protein expression was also studied. 

Interestingly, similar to the effect observed at the mRNA level, analysis of protein by 

Western blot showed a reduction in expression of protein level of α-SMA induced by 

Epac and PKA by about 22% and 40% respectively, while the combination of both 

leaned towa-rds stronger reduction effect by about 55% (Fig. 3-20, A and B). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure  3-20: Effects of the selective PKA (6-Bnz-cAMP, 500 µM) and/or Epac (8-CPT-2’-O-
Me-cAMP, 300 µM) agonist (ago) on α-SMA expression in MRC-5 human lung fibroblasts. 
2.5*105 cells were seeded in 6- well plates and cultured for 24 hrs in presence of 10% FCS. 
After a 24 hrs serum deprived period, cells were cultured for additional 24 hrs in serum 
deprived medium in absence or presence of test substances. Cellular proteins were extracted 
and Western blot analysis for α-SMA and α-tubulin was performed (A): Samples of original 
Western blots. (B): Densitometric analysis of a series of Western blots, ratio α-SMA/α-
tubulin, expressed as % of controls. Given are means + SEM of n=3-7. Significance of 
differences vs. control:  **p<0.01; ***p<0.001; ns = not significant. 
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3. Results 

3.3 Regulation of β2-Adrenoceptors Expression in MRC-5 Human Lung Fibro-
blast Cells 

 
 
3.3.1 Stability of β2-Adrenoceptors mRNA in MRC-5 Human Lung Fibroblasts 

To find out the stability (half-life) of transcribed β2-adrenoceptors mRNA, cells 

were exposed to actinomycin D (30 µM) for the indicated time. As described in figure 

3-21, A, after inhibition of de-novo RNA synthesis by actinomycin D, β2-adreno-

ceptors mRNA showed a rapid decline, with a half-life of about 25 minutes. 

The effect of inhibition of protein synthesis was also studied to explore whether the 

up-regulation of β2-adrenoceptors mRNA involves new protein synthesis. As des-

cribed in figure 3-21, B, inhibition of protein synthesis by cycloheximide (30 µM) 

resulted in a rapid, marked increase in β2-adrenoceptors mRNA level by about 5 fold 

within 1.5 hrs and only slightly higher after 4 and 6 hrs. 

The effect of cycloheximide is largely attenuated after inhibition of de novo RNA 

synthesis. The reduced β2-adrenoceptors mRNA levels caused by actinomycin D were 

only slightly increased (42 ± 21%, n=3) (data not shown) by cycloheximide after 1.5 

hrs, indicating that the large increase of β2-adrenoceptors mRNA caused by cyclo-

heximide is mainly the result of an increased transcription rather than increased stabi-

lity of mRNA. 
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Figure  3-21: Time-dependent effects of actinomycin D (30 µM) (A) and cycloheximide (30 
µM) (B) on β2-adrenoceptors mRNA expression in MRC-5 human lung fibroblasts. 3*105 
cells were seeded in 35 mm dishes and cultured for 24 hrs in presence of 10% FCS. After 24 
hrs FCS-free period, cells were cultured for additional 24 hrs in FCS-free medium. 
Subsequently, the tested substances were added according to the described time. RNA was 
extracted, DNase-treated and used for RT-qPCR.β2-adrenoceptors mRNA normalized over 
GAPDH in each individual sample and then expressed as % of the controls of the individual 
cell preparation (2-(ΔΔCT)*100). Given are means + SEM of n = 4-6. Significance of differences 
vs. control: **p<0.01. 

 
 
 

3.3.2 Effects of β-Adrenoceptors Agonists and their Interaction with β-Adreno-
ceptors Antagonists 

 

The effect of β-adrenoceptors agonists on β2-adrenoceptors mRNA was studied. 

Incubation of MRC-5 human lung fibroblasts with β-adrenoceptors agonists showed 

time-dependent dual effects on β2-adrenoceptors mRNA expression. As summarized 

in figure 3-22, A, formoterol (1 nM) resulted in a significant rapid sharp increase in 

β2-adrenoceptors mRNA already after 20 minutes, and a maximal increase by about 

130% was observed within 1 h. This effect disappeared gradually within 2 hrs and an 

inhibition of about 55% was seen after 4 hrs, but also this effect was lost over time 

and an increase in expression was again seen after prolongation of exposure time to 

48 hrs.  
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The stimulatory effects of β-adrenoceptors agonists were also mimicked by direct 

activation of adenylyl cyclase by exposure to forskolin (10 µM) for 1 h (Fig. 3-22, B). 
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Figure  3-22: Time-dependent effects of formoterol (Formo 100 nM) (A) and comparison of 
the effects of formoterol (Formo 100 nM) and forskolin (Forsk 10 µM) (B) on β2-
adrenoceptor mRNA expression in MRC-5 human lung fibroblasts. 3*105 cells were seeded 
in 35 mm dishes and cultured for 24 hrs in presence of 10% FCS. After a 24 hrs FCS-free 
period, cells were cultured for additional 24 hrs in FCS-free medium. Subsequently, the tested 
substances were added according to the described time. RNA was extracted, DNase-treated 
and used for RT-qPCR. β2-Adrenoceptors mRNA normalized over GAPDH in each individual 
sample and then expressed as % of the controls of the individual cell preparation 
(2-(ΔΔCT)*100). Given are means + SEM of n=4-6. Significance of differences vs. control:  
**p<0.01. 
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In order to investigate whether the rapid up-regulation of β2-adrenoceptors 

mRNA levels are mediated through β2-adrenoceptors, a selective β2-adrenoceptors 

antagonist ICI 118,551 (3µM) was added 30 minutes prior to 20 and 60 minutes 

exposure to 100 nM formoterol. As described in figure 3-23, A and B the rapid up-

regulation of β2-adrenoceptors mRNA was prevented in presence of β2-adrenoceptors 

selective antagonist ICI 118, 551. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure  3-23: Effect of formoterol (100 nM) and/or ICI 118,551 (3 µM) on β2-adrenoceptors 
mRNA. 3.5*105 cells were cultured and grown in presence of 10% FCS for 24 hrs (to nearly 
confluence) followed by 24 hrs under serum deprived conditions. Cells were pre-incubated 
for 30 minutes with 3 µM of ICI 118,551 before treating with 100 nM of formoterol for 20 
minutes (A), and 60 minutes (B). Thereafter, RNA was isolated, DNase-treated and analysed 
by real time PCR. β2-Adrenoceptors mRNA was normalized over GAPDH in each individual 
sample and then expressed as % of the controls of the individual cell preparation 
(2-(ΔΔCT)*100). Given are means + SEM of n=3-6. Significance of differences vs. control: 
**p<0.001, ***p<0.0001; ns = not significant  
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3. Results 

Furthermore, the effect of inhibition of de novo RNA and protein synthesis on the 

stimulatory effect of β2-adrenoceptors agonists was also studied. The stimulatory 

effect of formoterol was abolished after inhibition of de novo RNA synthesis (Fig. 3-

24, A-B). However, the stimulatory effect of formoterol on β2-adrenoceptors mRNA 

was synergistically increased in presence of cycloheximide, which on its own 

markedly increased the β2-adrenoceptors mRNA levels by about more than 5 fold 

within 1.5 hrs (Fig. 3-24, C) 
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Figure  3-24: Effect of formoterol (Form 100 nM) and/or actinomycin D (30 µM) (A and B) 
or cycloheximide (CHX, 30 µM) (C) on β2-adrenoceptors mRNA expression in MRC-5 
human lung fibroblasts. 3*105 cells were seeded in 35 mm dishes and cultured for 24 hrs in 
presence of 10% FCS followed by 24 hrs FCS-free period. Subsequently, cells were 
additionally cultured in absence or presence of test substances as described. Actinomycin D 
being present 15 minutes before formoterol and cycloheximide 30 minutes before formoterol. 
Thereafter total RNA was extracted, DNase-treated and used for RT-qPCR.β2-adrenoceptors 
mRNA was normalized over GAPDH in each individual sample and then expressed as % of 
the controls of the individual cell preparation (2-(ΔΔCT)*100). Given are means + SEM of n=4-
6, significance of differences vs. control: *p<0.05, **p<0.01; ***p<0.001; vs. CHX: +P< 
0.001  
 
 
 

3.4 Effects of Selective cAMP Analogue on β2-Adrenoceptors mRNA Expre-
ssion Levels in MRC-5 Human Lung Fibroblast Cell Line 

 

To elucidate whether cAMP-regulated effectors, protein kinase A (PKA) and 

exchange protein activated by cAMP (Epac) participate in β2-adrenoceptors trans-

duction pathway mediating β2-adrenoceptors regulation in human lung fibroblast, the 

effect of cAMP analogue was studied. As described in figure 3-25, A, exposure to the 

selective PKA agonist (6-Bnz-cAMP 500 µM) or/and to the selective Epac agonist (8-

CPT-2’-O-Me-cAMP 300 µM) for 1 and 4 hrs did not significantly affect the β2-

adrenoceptors mRNA levels, but it was reduced by about 40 % after exposure to their 

combination. However, in the presence of cycloheximide, 6-Bnz-cAMP8, but not 



3. Results 

8-CPT-2’-O-Me-cAMP, it caused a significant further increase in β2-adrenoceptors 

mRNA levels (Fig. 3-25 B). 
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Figure  3-25: Effects of the selective PKA (6-Bnz-cAMP, 500 µM) and/or Epac (8-CPT-2’-O-
Me-cAMP, 300 µM) agonist (ago) (A) or cycloheximide (CHX, 30 µM) alone and in 
combination with the Epac or PKA agonist (B) on β2-adrenoceptors mRNA expression in 
MRC-5 human lung fibroblasts. 3.5*105 cells were seeded in 6-well plates and cultured for 24 
hrs in presence of 10% FCS. Followed by 24 hrs FCS-free period. Subsequently, the tested 
substances were added. Thereafter total RNA was extracted, DNase-treated and used for RT-
qPCR. β2-Adrenoceptors mRNA normalized over GAPDH in each individual sample and then 
expressed as % of the controls of the individual cell preparation (2-(ΔΔCT)*100). Given are 
means + SEM of n=3-7. Significance of differences vs. control: *p<0.05, **p<0.01 ns = not 
significant  
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3.5 Effects of Corticosteroids and their Combinations on β2-Adrenoceptors 
mRNA Expression Levels in MRC-5 Human Lung Fibroblast Cell Line 

 
 

The effect of corticosteroids on β2-adrenoceptors mRNA was also studied. As 

shown in figure 3-26, exposure of MRC-5 cells to dexamethasone (1 µM) and bude-

sonide (100 nM) induced a sharp increase and clear up-regulation in the β2-adreno-

ceptors mRNA level expression after 8, 24, 48, and 72 hrs. 
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Figure  3-26: Time-dependent effects of dexamethasone (Dexa.1µM), budesonide (Bude 100 
nM), on expression of β2-adrenoceptors mRNA in MRC-5 cells. 3.5*105 cells were seeded in 
6-well dishes and cultured in presence of 10% FCS for 24 hrs (to nearly confluence) followed 
by 24 hrs FCS-free period. Cells were stimulated with corticosteroids for 8, 24, 48 and 72 hrs. 
Total RNA was extracted, treated with DNase, and used for real time PCR with primers 
specific for the human β2-adrenoceptors or GAPDH. β2-Adrenoceptors mRNA was 
normalized over GAPDH in each individual sample and then expressed as % of the controls 
of the individual cell preparation (2-(ΔΔCT)*100). Given are mean + SEM of n=4-6. 
Significance of differences: *P<0.05, **P<0.05, ***P<0.01 vs. controls (Ctr.). 
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mRNA expression levels of β2-adrenoceptors were not significantly affected after 

exposure to 100 nM of non-selective β-adrenoceptors agonist isoprenaline for 8 or 24 

hrs, but was up-regulated by about 64% after 48 hrs of exposure. The expression 

levels were reduced by 20%, 26% and 11% after exposure to 100 nM of selective β2-

adrenoceptors agonist formoterol for 8, 24, and 48 hrs respectively. 

Furthermore, the dexamethasone-induced up-regulation of β2-adrenoceptors was not 

affected in presence of 100 nM isoprenaline, whereas 100 nM formoterol resulted in a 

down-regulation of β2-adrenoceptors also in the presence of 100 nM budesonide. 

In other words dexamethasone-induced up-regulation of β2-adrenoceptors was not 

changed either in presence or absence of non-selective β-adrenoceptors agonist iso-

prenaline, whereas the down-regulation caused by 100 nM formoterol was not frus-

trated by 100 nM budesonide after 8, or 24 hrs but it was partially counteracted after 

48 hrs (data not shown). 

Moreover, in order to ensure the stability and efficiency of test substances, and to 

determine optimal conditions for the effect of β-adrenoceptors agonists and cortico-

steroids on expression of β2-adrenoceptors during the long incubation period protocols 

(48 hrs), FCS free medium and test substances were changed once at 24 hrs. These 

alterations showed again clear up-regulation in the β2-adrenoceptors mRNA level 

expression after exposure to 1 µM dexamethasone or 100 nM budesonide. Further-

more, exposure to 100 nM of non-selective β-adrenoceptors agonist isopre-naline 

induced the β2-adrenoceptors mRNA level expression as previously seen.  But 

exposure to 100 nM of selective β2-adrenoceptors agonist formoterol did not signify-

cantly affect the receptor expression level. Additionally, under these culture 

conditions, incubation of a combination of corticosteroids and β-adrenoceptors ago-

nists showed an additive up-regulation effect of β2-adrenoceptor mRNA level 

expression by about 116% for dexamethasone-isoprenaline combination and 83% for 

budesonide-formoterol combination (data not shown). 

Furthermore, the effect of actinomycin D on the stimulatory effect of dexa-

methasone was also tested. After addition of dexamethasone (1 µM) 15 minutes prior 

to actinomycin D, the short half-life of β2-adrenoceptors mRNA was not affected (Fig. 

3-27). 
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Figure  3-27: Effect of dexamethasone (1 µM) and/or actinomycin D (30 µM) on β2-
adrenoceptors mRNA expression in MRC-5 human lung fibroblasts. 3*105 cells were seeded 
in 35 mm dishes and cultured for 24 hrs in presence of 10% FCS followed by 24 hrs FCS-free 
period, cells were cultured for additional 1 hr in absence or presence of test substances. 
Actinomycin D being present 15 minutes before dexamethasone. Thereafter total RNA was 
extracted, DNase-treated and used for RT-qPCR. β2-Adrenoceptors mRNA normalized over 
GAPDH in each individual sample and then expressed as % of the controls of the individual 
cell preparation (2-(ΔΔCT)*100).  Given are means + SEM of n=4-6, significance of differences 
vs. control: *p<0.05, **p<0.01; ***p<0.001.  
  
 
 

3.6 Effects of Cytokines on β2-Adrenoceptors mRNA Expression Level  

In light of the central role that TGF-β plays in mediating the pathogenesis of 

lung fibrosis, the effect of TGF-β on the expression of β2-adrenoceptors mRNA was 

studied. 

 The expression levels of β2-adrenoceptors mRNA after exposure to TGF-β (0.1, 0.3, 

1, 5 ng/ml) were markedly reduced in a time and concentration-dependent manner. As 

shown in figure 3-28, A and B, the results of real time (qPCR) analysis demonstrated 

a progressive time and concentration reduction in the levels of β2-adrenoceptors 

mRNA expression by TGF-β with a maximum of more than 86% inhibition after 48 

hrs. 
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3. Results 

The maximum reduction effect was reached after exposure either to 1 or 5 ng/mL 

TGF-β for the same time. In other words the expression level of β2-adrenoceptors 

mRNA was reduced nearly to the same level when 1 and 5 ng/mL were used.  For this 

reason and for confirmation of these observations the effect of 1 ng/ml TGF-β for 

various periods was studied. The results again demonstrated TGF-β down-regulated 

β2-adrenoceptors mRNA expression levels in a time-dependent manner; whereas, a 

similar effect was observed after an extension of time for 6 - 48 hrs (Fig. 3-28, C). 
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Figure  3-28: Effect of TGF-β on β2-adrenoceptors mRNA expression in MRC-5 fibro-
blasts.3.5*105 cells were cultured and grown in the presence of 10% FCS for 24 hrs (to nearly 
confluence) followed by 24 hrs under serum-deprived conditions, and stimulated with 
different concentration of TGF-β for 24 hrs (A), 48 hrs (B) or different time schedule (C). 
Thereafter total RNA was extracted, DNase-treated and used for RT-qPCR. β2-Adrenoceptors 
mRNA was normalized over GAPDH in each individual sample and then expressed as % of 
the controls of the individual cell preparation (2-(ΔΔCT)*100).  Given are means + SEM of n=3-
6, significance of differences vs. control: **p<0.001, ***p<0.0001 

 

Previous experiments had elucidated the marked reduction in β2-adrenoceptors 

mRNA expression levels caused after stimulation of MRC-5 human lung fibroblast 

cell line by TGF-β. The effect of corticosteroids in presence of TGF-β was also 

studied. As described in figure 3-29, A, dexamethasone partially opposes TGF-β 

induced down-regulation of β2-adrenoceptors mRNA level. As shown in figure 3-29, 

B, the real time PCRs analysis elucidates again that both dexamethasone and 

budesonide significantly reversed partially TGF-β induced reduction of β2-

adrenoceptors mRNA levels.  

Although corticosteroids were added 48 hrs prior to TGF-β addition, they were not 

able to protect their stimulatory effects on β2-adrenoceptors mRNA but could still 

partially reverse the TGF-β mediated down-regulation of β2-adrenoceptors mRNA 

(Fig.3-29, C). 
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Figure  3-29: Time and concentration-dependent effect of TGF-β in absence and presence of 
dexamethasone (Dexa 1 µM) and budesonide (Bude 100 nM) on β2-adrenoceptors mRNA 
expression in MRC-5 fibroblasts. 3.5*105 cells were cultured and grown in presence of 10% 
FCS for 24 hrs (to nearly confluence) followed by 24 hrs under serum-deprived conditions, 
followed by (A),  addition of 1 µM dexamethasone and 5 ng/mL TGF-β at the same time for 
24 hrs, (B), addition of 1 µM dexamethasone, 100 nM budesonide and different concentration 
of TGF-β (0.1, 0.3, 1 and 5 ng/mL) for 48 hrs, (C), 1 µM dexamethasone or 100 nM 
budesonide were present 48 hrs prior to 5 ng/mL TGF-β which was  present in the last 24 hrs 
(C). Cells were harvested, RNA was extracted, DNase-treated and relative expression 
analysed by real time RT-PCR. Given are means + SEM of n=3-6, significance of differences 
vs. control: **p<0.001, ***p<0.0001; vs. TGF-β: +P< 0.001 
 

Many reports have shown that β2-adrenoceptors agonists may have pharma-

cological properties useful for controlling inflammation. Exposure to β2-adreno-

ceptors agonist formoterol (1 nM) induced a small down-regulation of β2-adreno-

ceptors mRNA expression, whereas TGF-β induced strong down-regulation of β2-

adrenoceptors mRNA expression, which was not significantly affected and appeared 

to be slightly increased in presence of 1 nM formoterol (Fig. 3-30). 

 

 

 

 

Characterization of β-Adrenergic Mechanisms in Human Pulmonary Fibroblasts | Dissertation by Fathi Lamyel 100 
 



3. Results 

 

 

 

0

50

100

150

0                    0.1              0.3                1

----------------- Formo 1 nM----------------

*

***

***

*
***

***

***

48 hrs

[ng/mL TGF-β ]

β
2-

ad
re

no
ce

pt
or

s 
m

R
N

A
(%

 o
f c

on
tr

ol
s)

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure  3-30: Concentration dependent effect of TGF-β in absence and presence of formoterol 
(Formo 1 nM) on β2-adrenoceptors mRNA expression in MRC-5 fibroblasts. 3.5*105 cells 
were cultured and grown in presence of 10% FCS for 24 hrs (to nearly confluence) followed 
by 24 hrs under serum-deprived conditions, followed by addition of formoterol (Formo 1 nM) 
and stimulated with different concentration of TGF-β in the same time for 48 hrs. Total RNA 
was extracted, DNase-treated and used for RT-qPCR. β2-Adrenoceptors mRNA was 
normalized over GAPDH in each individual sample and then expressed as % of the controls 
of the individual cell preparation (2-(ΔΔCT)*100). Given are means + SEM of n=7, significance 
of differences: vs. controls, *P<0.05, ***p<0.0001 
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The sharp stimulatory effect of CHX resulted after 6.5 hrs was significantly 

counteracted when the cells were stimulated with 1 ng/ml TGF-β after 30 minutes of 

CHX addition and incubated for further 6 hrs (Fig. 3-31). 
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Figure  3-31: Effect of cycloheximide (CHX 30 µM) on β2-adrenoceptors mRNA expression 
in MRC-5 human lung fibroblasts, in absence and presence of 1 ng/mL TGF-β. 3.5*105 cells 
were seeded in 6-well plates and cultured for 24 hrs in presence of 10% FCS. Followed by 24 
hrs FCS-free period, cells were cultured for additional 24 hrs in serum-deprived medium in 
absence or presence of test substances. Cycloheximide being present 30 minutes before TGF-
β. Total RNA was extracted, DNase-treated and used for RT-qPCR. β2-Adrenoceptors mRNA 
was normalized over GAPDH in each individual sample and then expressed as % of the 
controls of the individual cell preparation (2-(ΔΔCT)*100). Given are means + SEM of n=3-7, 
significance of differences: vs. controls, **p< 0.05, ***p<0.001 
 
 
 

 

On the basis of hypothesis that the Th2 cytokines plays a pivotal role in the 

pathogenesis of lung diseases, the effect of IL-13 on the β2-adrenoceptors mRNA 

expression was also tested. Exposure to IL-13 (10 ng/mL) did not affect the expre-

ssion level of β2-adrenoceptors mRNA (data not shown). 
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4. Discussion 

4.1   β-Adrenoceptors Expression in Human Lung Fibroblasts 

As outlined in the introduction, there is some support that the action of β-adreno-

ceptors agonists in treatment of asthma and/or COPD is not confined to bron-

chodilation. Thus, β-adrenoceptors agonists have been shown to exert various inhi-

bitory effects on pro-fibrotic features in pulmonary fibroblasts. However, until now, 

the expression pattern of β-adrenoceptors subtypes in human lung fibroblasts has not 

been characterized and the pharmacological characterization of their functions was 

missing. 

For this purpose semi-quantitative reverse transcriptase polymerase chain reactions 

(RT-PCR’s) were used for determination of expression pattern of β-adrenoceptors in 

MRC-5, HEL-299 cell line as well as in primary human lung fibroblasts. 

The current study clearly demonstrated stable and similar expression of mRNA 

encoding β2-adrenoceptors in human lung fibroblasts, but no transcripts for β1- or β3-

adrenoceptors were detected.  

The expression profile of β2-adrenoceptors was found to be constant under different 

culture conditions.  Moreover, the expression of β2-adrenoceptors was confirmed at 

protein level using Western blot analysis.  

Various studies have reported that the β2-adrenoceptors expression and its functional 

coupling to adenylyl cyclase (AC) was very high in the human airways cells (Barnes 

1995; Johnson 1998; Nijkamp et al. 1992), suggesting that the cell line MRC-5 

represents a suitable model to study the regulation and functional characteristics of the 

β2-adreno-ceptors signaling in the respiratory system. 
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4.2 Functional Characteristics of β2-Adrenoceptors Expression in Human Lung 
Fibroblasts 

 
 

In agreement with the expression pattern of β-adrenoceptors, it is demonstrated in 

this study that the β2-adrenoceptors mediates inhibitory effects on proliferation and 

collagen synthesis. 

 

The observations in this study have showed the anti-proliferative and inhibition of 

collagen synthesis of long-acting selective β2-adrenoceptors agonist formoterol and 

non-selective β-adrenoceptors agonist isoprenaline on MRC-5 cell line and primary 

human lung fibroblasts.  

 

The magnitude of inhibition exerted by the long-acting selective β2-adrenoceptors 

agonists formoterol and olodaterol (Bouyssou et al. 2010) was similar to that caused 

by the non-selective agonist isoprenaline. 

 

Isoprenaline and formoterol inhibited [3H]-thymidine incorporation in a concentration-

dependent manner with an IC50 of about 2 and 0.06 nM, respectively. Furthermore, 

both isoprenaline and formoterol inhibited [3H]-proline incorporation in a concentra-

tion-dependent manner with an IC50 of 2 and 0.1 nM, respectively. 

 

In contrast, it has been demonstrated earlier that the short-acting β-adrenoceptors 

agonist salbutamol, as well as the long-acting β-adrenoceptors agonist formoterol, by 

themselves did not show any significant anti-proliferative action on different cultures 

of primary human lung fibroblasts proliferation (Descalzi et al. 2008). 

 

 The inhibitory effects of formoterol on human lung fibroblasts proliferation and 

collagen synthesis were mimicked by a direct activator of adenylyl cyclase forskolin 

and the prostanoid EP2 receptor agonist butaprost, and were potently antagonized by 

the β2-adrenoceptors selective antagonist ICI 118,551; whereas no effect was exerted 

by the β1-adrenoceptors selective antagonists CGP 20712. These data suggest the 

competitive interaction between agonist and antagonist. The apparent pA2 value of ICI 

118,551 determined in the present experiments (9.6) agrees well with its affinity 
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values determined in binding studies on human β2-adrenoceptors log kD, -9.26, ki, 1.8 

nM, (Baker 2005; Smith and Teiler 1999). However ICI 118,551 has inverse agonist 

properties (Bond et al. 1995), but did not exert effects on its own. Therefore, 

significant constitutive activity of the β2-adrenoceptors in human lung fibroblasts may 

be excluded. It has been reported in previous study in our laboratory that prosta-

glandins can exert strong inhibitory effects on pulmonary fibroblasts proliferation 

mediated by EP2 receptors, which are like β-adrenoceptors-coupled to adenylyl 

cyclase (Haag et al. 2008b). 

 

This study showed that indomethacin on its own had no effect on proliferation nor 

significantly affected the inhibitory effect of isoprenaline. Thus, at least under the 

standard culture conditions, any interference with endogenously released prostaglan-

dins might be excluded. Although using different model and varying species, in 

contrast to several reports (Descalzi et al. 2008; Lindemann and Racke 2003; 

Spoelstra et al. 2002), the observations in this study showed that budesonide and dex-

amethasone did not affect human lung fibroblasts proliferation and collagen synthesis.  

 

4.2.1 Cytokines Control of Proliferation and Collagen Synthesis in MRC-5 
 

The cells were stimulated with TGF-β, an important pro-inflammatory cyto-

kine, whose levels are increased during airways diseases (Chung and Barnes 1999) 

resulting in an increase in ECM deposition (Romberger et al. 1992). The present study 

showed that TGF-β alone exerted only a very weak stimulatory effect on proliferation 

which was not further enhanced by the additional presence of budesonide or/and 

indomethacin. TGF-β had been reported to induce the proliferation of many different 

cell types (Ghayor et al. 2005; Khalil et al. 2005; Martinez-Salgado et al. 2006). The 

explanations for this large species and used model differences have to be illuminated 

in future studies. In consonance with the marked down-regulation effect of TGF-β on 

the expression of β2-adrenoceptors showed in this study, TGF-β resulted in a loss of 

the inhibitory effect of formoterol, an effect not counteracted in presence of 

budesonide. Furthermore, the strong inhibitory effect of the EP2 receptor agonist 

butaprost was also markedly attenuated in presence of TGF-β alone or in combination 

with budesonide. 
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 On the other hand, TGF-β markedly stimulated collagen synthesis which was augm-

ented in presence of dexamethasone and budesonide. Furthermore, this strong 

stimulatory effect of TGF-β in combination with budesonide was not significantly 

affected by the additional presence of indomethacin, excluding significant inter-

ference with endogenously released prostanoids.   

However, previous studies have documented that Th2 cytokines are potent inducers of 

collagen production in vivo in the lung (Lee et al. 2001), in vitro in skin and keloid 

fibroblasts (Oriente et al. 2000), stimulated fibroblast proliferation (Saito et al. 2003), 

and in contrast to previous observations from our laboratory in rat fibroblasts 

(Lindemann and Racke 2003).  Unexpectedly, neither IL-4 nor IL-13 showed any 

stimulatory effects on proliferation or collagen synthesis of human lung fibroblasts. 

Furthermore, neither IL-4 nor IL-13 affected the inhibitory effect of formoterol on 

proliferation. Moreover, both IL-4 and IL-13 slightly reduced collagen synthesis in 

MRC-5 cells and the effect was even greater in presence of formoterol. 

 

4.2.2 Regulation of α-Smooth Muscle Actin  
 

Under standard culture conditions, MRC-5 human lung fibroblasts express 

significant levels of α-smooth muscle actin (α-SMA), the most important marker of 

fibroblast differentiation into significantly larger contractile myofibroblast, which 

may reflect some kind of fibroblast activation, probably caused by serum constituents 

of culture medium. 

 Formoterol, the EP2 receptor agonist butaprost, and the direct activator of adenylyl 

cyclase forskolin, caused a reduction in the expression of α-SMA protein by about 

50%-70% after 24 hrs of exposures. A similar reduction by formoterol was seen at 

mRNA level, suggesting that transcriptional effects might be responsible for the β2-

adreno-ceptors mediated down-regulation of α-SMA. Since these effects of formo-

terol persisted after 48 hrs, it suggests that the β2-adrenoceptors in human lung 

fibroblasts do not undergo rapid desensitization during prolonged agonist exposure. 

As observed previously (Baouz et al. 2005), the findings in this study confirmed that 

the β2-adrenoceptors agonist formoterol inhibited α-SMA expression, suggesting that 
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it could have a role in inhibition of formation of myofibroblasts, the inducer of remo-

delling and consequently the sub-epithelial fibrosis. 

Since myofibroblasts are key players in the airway remodelling process associated 

with chronic obstructive and inflammatory airways diseases (Davies et al. 2003; 

Westergren-Thorsson et al. 2010), a sustained suppressive action of long-acting β2-

adrenoceptors agonists on myofibroblast differentiation could be of particular thera-

peutic value. 

In agreement with others, the present study demonstrates that prolonged exposure to 

TGF-β induces marked increase in α-SMA mRNA and protein expression in human 

lung fibroblasts. It is well known that exposure of fibroblasts to TGF-β stimulates the 

differentiation of fibroblasts into myofibroblasts with expression of α-SMA (Kuang  

et al. 2006; Phan 2002; Vaughan et al. 2000). It is also known that Smad signal 

transduction pathways plays a crucial role in mediating several TGF-β actions in 

fibroblasts, but other signaling pathways may potentially contribute in  α-SMA expre-

ssion (Gu et al. 2007). However, the inhibitory effect of formoterol and the strong 

inhibitory effect of butaprost and forskolin vanished in the presence of TGF-β, this 

indicates that the pathways mediating the stimulatory effect of TGF-β are not affected 

by these compounds. 

Many studies have documented that glucocorticoids may affect diverse functions of 

airway smooth muscle (Hirst and Lee 1998; Panettieri 2004) among them the 

enhancement of β2-adrenoreceptors number and function. In line with recently repor-

ted data, the present study reports that exposure to glucocorticoids caused significant 

reduction in α-SMA protein under basal culture conditions, but not when α-SMA 

protein was increased by exposure to TGF-β (Goldsmith, et al.  2007). 

In contrast to other studies (Tsai et al. 2003), glucocorticoids induced significant 

increase in α-SMA mRNA in this study. These observations may confirm the same 

observations which were seen after treatment of airway smooth muscle cells with glu-

cocorticoids, suggesting that this treatment inhibits protein expression at least in part 

by reducing the translation of mRNA (Goldsmith et al. 2007). 

Generally, β-adrenoceptors by coupling to Gs mediate activation of adenylyl cyclase 

leading to an increase in cellular cAMP. As previously outlined, there is substantial 
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evidence that lung fibroblasts proliferation and collagen synthesis are inhibited after 

elevation of cAMP as a result of AC activation. This study shows that the activation 

of adenylyl cyclase by forskolin causes, like activation of β2-adrenoceptors, down-

regulation of α-SMA expression. 

As outlined in the introduction, beside protein kinase A (PKA), the classic effector of 

cAMP (Skalhegg and Tasken 2000), alternative cAMP effectors have also been 

identified, among them Epac (exchange protein activated by cAMP) of which two 

variants [Epac1 and Epac2, new nomenclature RapGEF3 (Rap guanine nucleotide 

exchange factor 3) and RapGEF4 (Rap guanine nucleotide exchange factor 4), 

respectively] have been identified (de Rooij et al. 1998; Kawasaki et al. 1998). Recent 

studies, including our laboratory observations, documented that the inhibitory effects 

of cAMP on proliferation and collagen synthesis in human lung fibroblasts are 

mediated via different signaling pathways. PKA pathway mediates inhibition of colla-

gen synthesis, whereas Epac signaling mediates inhibition of proliferation (Haag et al. 

2008b; Huang et al. 2007). In the present study, both the selective PKA agonist 6-

Bnz-cAMP as well as the selective Epac agonist 8-CPT-2’-O-Me-cAMP (Bos 2006; 

Holz et al. 2008) caused a reduction of α-SMA expression, both at protein and mRNA 

levels in MRC-5 human lung fibroblasts. In previous experiments, using the same 

cells and the same concentration of 6-Bnz-cAMP and lower concentration of 8-CPT-

2’-O-Me-cAMP as used in the present study, it was observed that 6-Bnz-cAMP and 8-

CPT-2’-O-Me-cAMP caused a marked and selective inhibition of either the collagen 

synthesis or proliferation, respectively (Haag et al. 2008b). These observations argue 

in favour of the selectivity of these tools and therefore support the conclusion that 

both PKA and Epac can mediate inhibitory effects on α-SMA expression. 

The observation that the greatest reduction in α-SMA expression occurred when the 

cells were exposed to a combination of both agonists, suggests some degree of additi-

vity of both cAMP signaling pathways. 

In agreement with the effect of the up-stream acting β-adrenoceptors agonist, the 

selective PKA and Epac agonists caused comparable reduction of α-SMA mRNA and 

protein, indicating that both signal pathways may act via transcriptional effects. It is 

noteworthy that a dual cAMP signaling with PKA and Epac acting in the same dire-
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ction has recently also been reported for the regulation of airway smooth muscle 

phenotype (Roscioni et al. 2011a,b). 

It is worth attention here that the definite role of PKA and/or Epac in mediating the 

various inhibitory effects of β-adrenoceptors in human lung fibroblasts must be illu-

minated in future studies with selective knockdown of these signaling pathways. 

 

4.3 Regulation of β2-Adrenoceptors mRNA Expression in Human Lung 
Fibroblasts 

As outlined in the introduction, due to their bronchodilatory action, β-adreno-

ceptors agonists are an essential element in the control of chronic obstructive airways 

diseases. Since β-adrenoceptors agonists and glucocorticoids represent the corner 

stone in long-term treatment of chronic obstructive airways disease, the changes in 

expression of β2-adrenoceptors caused by exposition to various substances was 

investigated further. 

Signal transduction is a basic process in cell communication within a single cell or 

tissue. In the airways β2-adrenoceptors mediate physiological, pathological and 

pharmacological effects by activation of their intracellular second messenger system 

adenylyl cyclase. Interestingly, the expression of β2-adrenoceptors in human lung 

fibroblasts appears to be highly regulated at mRNA level. 

For this purpose RT-qPCR technique was performed to investigate the regulation of 

β2-adrenoceptors mRNA expression. In previous reports, regulation of β2-adreno-

ceptors has been investigated in human lymphocyte (Brodde et al. 1987) as well as in 

cell-line such as DDT1 MF-2 hamster vas deferens cells and H9c2 rat heart cell-line 

(Dangel et al. 1996; Hadcock and Malbon 1988a; Hadcock and Malbon 1988b; Mak 

et al. 1995b). In full agreement with previous reports the data in this study showed 

that the half-life of β2-adrenoceptors mRNA is within 25 minutes relatively short. 

Considering that the inhibition of RNA synthesis may occur with a certain delay after 

addition of actinomycin D to the culture medium, the half-life of β-adrenoceptors 

mRNA may even be shorter. Therefore, β2-adrenoceptors mRNA levels are expected 

to reflect immediate changes in receptor gene transcription. 

Accordingly, significant changes of β2-adrenoceptors mRNA levels were observed 

within 20 minutes after test substances exposure. It is interesting to consider that 
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stimulation of MRC-5 human lung fibroblasts by long acting β2-adrenoceptors agonist 

formoterol induced dual mode of action: a marked up-regulation of β2-adrenoceptors 

mRNA expression which was very rapid in onset but transient, and a time-dependent 

substantial down-regulation over time as described previously in other reports by the 

use of other techniques (Nishikawa et al. 1996) reversed again after prolongation of 

the agonist exposure time to 48 hrs.  

Furthermore, several previous radioligand-binding studies on polymorphonuclear leu-

kocytes and lymphocytes obtained from normal and asthmatic humans, have eluci-

dated down-regulation of β2-adrenoceptors after in vitro and in vivo treatment with β2-

adrenoceptors agonists (Aarons et al. 1983; Brodde et al. 1985; Galant et al. 1978; 

Hataoka et al 1993). In contrast, (Hauck et al. 1990), there was a failure to demo-

nstrate the down-regulation of pulmonary β2-adrenoceptors in lung obtained from 

patients treated with terbutaline before undergoing lobectomy for lung carcinoma. 

 

Generally, the β2-adrenoceptors is a prototypical G-protein-coupled receptors that 

interacts with the stimulatory G-protein of adenylyl cyclase, (Gs) to increase cellular 

cAMP (Gilman 1987; Kobilka 1992). Worth mentioning is that the stimulatory effect 

of β-adrenoceptors’ agonists on β2-adrenoceptors mRNA could be fully mimicked by 

forskolin as a direct adenylyl cyclase catalyst activator, indicating that an increase of 

cAMP is the crucial transduction signalling pathway in this effect. In agreement with 

our observations, transient β2-adrenoceptors-cAMP-mediated up-regulation of β2-

adrenoceptors gene expression, which has also been previously described in DDT1-

MF-2 hamster smooth muscle cells (Collins et al. 1988), and evidence for a cAMP 

responsive element in the β2-adrenoceptors gene was presented (Collins et al. 1990). 

Furthermore, a cAMP-mediated reduction in β2-adrenoceptors mRNA was also 

observed in transfected Chinese hamster fibroblasts expressing human β2-adreno-

ceptors (Bouvier et al. 1989). 

 

The rapid formoterol-induced up-regulation of β2-adrenoceptors mRNA was 

competitively blocked by the β2-adrenoceptors antagonist ICI 118,551. Although, 

formoterol evoked dual mode of action, only the stimulatory effect appears to be the 

result of a direct cAMP-mediated regulation of β2-adrenoceptors gene, as the 
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inhibitory effect was not only blocked by CHX, but also converted to marked stimu-

latory effect, as well as the formoterol stimulatory effect was blocked by actinomycin 

D. This suggests that this effect was caused by an increase in transcription rate and 

was independent of protein synthesis, as an up-regulation was also seen after exposure 

to protein synthesis inhibitor CHX.  

Interestingly, CHX on its own caused a rapid and sharp increase in β2-adrenoceptors 

mRNA expression level, suggesting that basal β2-adrenoceptors gene expression in 

human lung fibroblasts may be under the inhibitory control of short-living suppressor 

proteins. 

Furthermore, the up-regulation after short exposure as well as the down-regulation 

effect seen after 4 hrs of formoterol appears to be markedly increased after exposure 

of cells to a combination of formoterol and CHX. This effect of cycloheximide on β2-

adrenoceptors mRNA suggests that the initial direct stimulatory signal was still 

operating after 4 hrs, but mainly obstructed by newly synthesized inhibitory factors 

presumably induced following β2-adrenoceptors activation by adenylyl cyclase-cAMP 

signaling pathway. 

At present it is still unknown whether the β2-adrenoceptors-cAMP signaling pathway 

system enhances the action of these suppressor proteins or induces biosynthesis of 

additional inhibitory regulators. Therefore, this hypothesis will be a challenge for 

future studies to elucidate and identify these regulators which could be potential 

targets for drugs aiming to improve and maintain β2-adrenoceptors function during 

prolonged agonist asthma and COPD treatment. 

As outlined in the introduction, cellular cAMP signaling transduction can be trans-

mitted either by the classic effector (PKA) (Skalhegg and Tasken 2000) or alternative 

cAMP effector Epac of which two variants, Epac1 and Epac2, have been identified 

(de Rooij et al. 1998; Kawasaki et al. 1998). Our observations showed that the 

inhibitory effect of the β2-adrenoceptors agonist formoterol could be effectively 

mimicked after exposure to selective PKA agonist 6-Bnz-cAMP within 1, 2 and 24 

hrs, whereas the selective Epac agonist  8-CPT-2’-O-Me-cAMP (Bos 2006; Holz et 

al. 2008) failed to exert any effect on β2-adrenoceptors mRNA, but the combination of 



4. Discussion 
 

Characterization of β-Adrenergic Mechanisms in Human Pulmonary Fibroblasts | Dissertation by Fathi Lamyel 112 
 

both appears to additively exert an inhibitory effect on β2-adrenoceptors mRNA after 

the same exposure time. 

On the other hand, the effects seen after PKA and Epac agonists exposure were not 

only prevented by cycloheximide, but also converted into sharp up-regulation. 

 Worth mentioning is that previous observations after using the same cell line and 

concentrations of PKA agonist 6-Bnz-cAMP and Epac agonist CPT-2’-O-Me-cAMP 

elucidated and confirmed that these agonists mediated a marked and selective inhi-

bition of collagen synthesis and proliferation, respectively (Haag et al. 2008b). This 

suggests that both PKA and Epac may participate in the cellular transmission of β2-

adrenoceptors-cAMP-mediated regulation of β2-adrenoceptors expression, but PKA 

appears to play the major part. 

 

4.3.1 Glucocorticoids Control of β2-Adrenoceptors Expression 

It has been reported that glucocorticoids have the ability to increase the number 

of β2-adrenoceptors in human lung measured by radioligand-binding study, and 

dexamethasone also was found to enhance the β2-adrenoceptors transcription rate via 

a GRE in 5'-flanking region of the gene (Davies and Lefkowitz, 1984; Malbon and 

Hadcock, 1988), and a similar effect of dexamethasone on β2-adrenoceptors expre-

ssion in cultured cell lines has been confirmed in other reports (Hadcock and Malbon   

1988b). 

In the present study, the effect of treatment of MRC-5 cell line with glucocorticoids 

and β-adrenoceptors agonists alone or in combination on mRNA expression level of 

β2-adrenoceptors by using of real-time PCR’s technique was investigated. As 

observed previously, (Mak et al. 1995b; Mano et al. 1979) the observations in the 

present study also provide evidence that an increase in β2-adrenoceptors mRNA 

expression levels after exposure to glucocorticoids such as dexamethasone and 

budesonide could be detected. This confirms earlier reports that glucocorticoids can 

induce up-regulation of β-adrenoceptors in different cell lines in culture (Collins et al. 

1988; Feve et al. 1990; Hadcock and Malbon 1988b). 
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As outlined previously in this study, the β2-adrenoceptors mRNA half-life and sta-

bility is relatively short, and in agreement with earlier reports (Mak et al. 1995a) the 

present study showed that dexamethasone has not been found to alter the half-life of  

β2-adrenoceptors mRNA in MRC-5 human lung fibroblasts cell culture. 

It is known that glucocorticoids enhance and modulate the efficiency of coupling 

between the β2-adrenoceptors and Gs protein resulting in adenylyl cyclase activation 

and cAMP accumulation (Dooley et al. 1986). Down-regulation of β2-adrenoceptors 

in the lung after chronic use of β2-adrenoceptors agonist in vivo has been detected but 

was reversed after treatment with glucocorticoids (Davies and Lefkowitz 1984; 

Nishikawa et al. 1993). Such an effect may have a clinical role in preventing the 

development of tolerance to β2-adrenoceptors agonists in asthmatic patients treated 

with these compounds. 



 

 
5. Conclusion 
 
 

In conclusion, human lung fibroblasts express β2-adrenoceptors which mediate 

inhibitory effects on different pro-fibrotic features. The expression of β2-adreno-

ceptors in human lung fibroblasts appear to be highly regulated at transcriptional 

level, suggesting that β2-adrenoceptors expression may rapidly respond to physio-

logical or pathological changes, as well as pharmacological interventions. The effect 

of cycloheximide suggests that the β2-adrenoceptors gene is under strong inhibitory 

control from short-living but as yet unidentified suppressor proteins. The time-

dependent regulation of β2-adrenoceptors gene expression (up and down-regulation) 

following β2-adrenoceptors activation appears to be mediated via activation of adeny-

lyl cyclase-cAMP signaling. However, only stimulatory effects appear to be caused 

by direct stimulation of the β2-adrenoceptors gene expression. 
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6. Summary 
 

Background: Both asthma and COPD are chronic lung diseases characterized by 

airway remodelling in which fibrotic alterations represents major part. This study 

focuses on the role of classical anti-obstructive drugs in the modulation of long-term 

remodelling processes in asthma and COPD, in an attempt to explore β-adrenergic 

mechanisms in lung fibroblasts. 

Methods: Cell proliferation and collagen synthesis were analyzed by measuring 

incorporation of [3H]-thymidine and [3H]-proline, respectively. Expression of β-

adrenoceptors and α-smooth muscle actin (α-SMA) a marker of myofibroblast diff-

erentiation, was measured at the level of mRNA by semi-quantitative and real time 

RT-PCR and at the protein level by western blot analysis. 

Results: In human lung fibroblasts (primary cells as well as MRC-5 cell line) stable 

expression of mRNA encoding β2-adrenoceptors, but no transcripts for β1- and β3-

adrenoceptors could be demonstrated.  

β-Adrenoceptors agonists inhibited cell proliferation and collagen synthesis both in 

MRC-5 cells and PhLFb maximally by about 30-40 % and a detailed pharmacological 

characterization demonstrated that both effects were mediated via β2-adrenoceptors. 

MRC-5 cells showed basal expression of α-SMA which was inhibited both at mRNA 

and protein level by about 50% by the β2-adrenoceptors selective agonist formoterol. 

Both, PKA and Epac selective agonist mimicked the effect of β-adrenoceptors ago-

nists on α-SMA mRNA and protein expression with some tendency for additive 

effects, whereas previous studies had shown that PKA and Epac agonists inhibited 

selectively either collagen synthesis or proliferation, respectively. 

The effects of β-adrenoceptors agonists on proliferation, collagen synthesis and α-

SMA expression were lost after exposure to transforming growth factor-β1 (TGF-β) 

which alone had no effect on proliferation, but caused a marked increase in collagen 

synthesis and a marked up-regulation of α-SMA expression. 

After inhibition of mRNA synthesis by actinomycin D (30 µM), β2-adrenoceptors 

mRNA decreased with a half-life of 25 min, whereas inhibition of protein synthesis 

by cycloheximide (CHX), (30 µM) resulted in a rapid increase of β2-adrenoceptors 
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mRNA (about 3- and 6- fold within 1.5 and 6.5 hrs, respectively). Indicating that β2-

adrenoceptors expression is highly regulated at mRNA level. 

TGF-β induced a marked and long lasting down-regulation of β2-adrenoceptors 

mRNA (about 90 % within 6 hrs). Also corticosteroids (dexamethasone and bude-

sonide) alone caused a marked and long lasting up-regulation of β2-adrenoceptors 

mRNA, but they were not able to prevent or oppose the TGF-β induced down-

regulation. 

Exposure to β-adrenoceptors agonists resulted in a rapid (maximum effect within 1 h), 

but transient up-regulation of β2-adrenoceptors mRNA level. This effect was mimi-

cked by forskolin, a direct activator of adenylyl cyclase. Furthermore, as β-adreno-

ceptors agonists-induced up-regulation of β2-adrenoceptors mRNA also in presence of 

CHX, but not in presence of actinomycin D, it can be concluded that a cAMP direct 

stimulation of the expression of the β2-adrenoceptors gene may be involved. 

In conclusion: Human lung fibroblasts exclusively express β2-adrenoceptors which 

mediate inhibition of various aspects of pro-fibrotic processes. The β2-adrenoceptors 

are highly regulated at mRNA level, and the up-regulation after β-adrenoceptors 

agonists-induced up-regulation of β2-adrenoceptors gene may be a mechanism to 

oppose agonist-induced receptor desensitization which may contribute to the 

maintenance of β2-adrenoceptors function during long term agonist exposure. Under 

clinical conditions, anti-fibrotic effects may associate the therapeutic effect of β2-

adrenoceptors agonists treatment of asthma and COPD. 
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