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Zusammenfassung

Die Dissertation beschäftigt sich mit Fragen, die einen Bezug zum Konzept
der Partition bzw. der Färbung besitzen. Sie behandelt diese im Kontext der
axiomatischen Mengenlehre nach Zermelo und Fraenkel. Mit Ausnahme von
Kapitel 4 wird auch stets die Gültigkeit des Auswahlaxioms angenommen.

Zum einen werden bestimmte Kardinalzahlcharakteristika des Kontinuums, die
einen solchen Bezug aufweisen, untersucht. Bisherige Analysen selbiger stammen
von Frick, Geschke, Goldstern, Kojman, Kubiś und Schipperus. Im ersten Teil
der Arbeit werden Bezüge zu anderen bekannten Kardinalzahlcharakteristika
hergestellt. So wird beispielsweise r 6 hm3 bewiesen. Darüber hinaus werden, unter
Benutzung der von Zapletal entwickelten Theorie des idealisierten Erzwingens,
Eigenschaften der Struktur möglicher Beweise der relativen Widerspruchsfreiheit
von hmmin < r abgeleitet.

Der Rest der Dissertation handelt von Aussagen im Partitionskalkül nach
Erdős und Rado. Dieser Rest zerfällt wiederum in einen ersten Teil, in dem
lineare Ordnungen untersucht werden, und einen zweiten, in dem das Interesse
Ordinalzahlen gilt.

Bezüglich linearer Ordnungen wird in Kapitel 5 gezeigt, dass für jede zer-
streute lineare Ordnung τ und jede natürliche Zahl n eine zerstreute lineare
Ordnung ϕ mit der Eigenschaft ϕ → (τ, n)2 existiert. Dies ergänzt bekannte
Resultate von Erdős, Hajnal, Larson und Milner. Des weiteren werden in Kapitel 4
eine Reihe von Resultaten für Färbungen von Paaren, Tripeln und Quadrupeln
lexikographisch geordneter Folgen von Nullen und Einsen ohne Verwendung des
Auswahlaxioms bewiesen. Diese Aussagen sind in Modellen, in denen das Axiom
der Determiniertheit gilt, besonders interessant. Für diesen Kontext werden drei
Vermutungen motiviert und formuliert. Diese Resultate können als Analoga zu
ähnlichen Resultaten von Erdős, Milner und Rado unter Annahme des Auswahl-
axioms angesehen werden. Der Exponent der Partitionsrelation ist dann jedoch
typischerweise um eins niedriger.

Die Analyse von Ordinalzahlen in den Kapiteln 6 und 7 kombiniert bekannte
Methoden aus der endlichen und unendlichen Kombinatorik, um eine Reihe neuer
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Zusammenfassung (German Summary)

Resultate zu beweisen und bekannte zu verallgemeinern. Gewisse Resultate gelten
nur unter der Annahme von Martins Axiom. Kapitel 6 konzentriert sich auf
die Zurückführung von Problemen der infinitären Kombinatorik auf solche der
finitären Kombinatorik. Kapitel 7 hingegen beleuchtet dann diese endlichen
Probleme genauer. Im Stile der endlichen Ramseytheorie werden obere Schranken
für die kleinste natürliche Zahl mit der jeweils in Frage stehenden Eigenschaft
gefunden. So wird beispielsweise eine kubische obere Schranke in m für das
kleinste n so dass ω2n→ (ω2m, 3)2 gefunden. Dies ist interessant, da sich für die
analogen Probleme, die sich ergeben, wenn man ω2 jeweils durch ω und 1 ersetzt,
leicht quadratische obere Schranken herleiten lassen.

Kapitel 8 schließlich handelt vom Milner-Prikry-Problem. Es wird nicht gelöst,
jedoch wird im Kontext des Problems eine Aussage bewiesen, die nach Meinung
des Autors einen Hinweis zur Lösung geben könnte.
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Preface

This is a thesis on set theory. The author hopes to attain a doctoral degree
submitting it. Despite this he hopes that it contains some value beyond
that. Set theory is a branch of modern mathematics and—if one believes the
rumours—a somewhat esoteric one. The American Mathematical Society
has introduced a system to classify all kinds of mathematics. It has three
levels. A two-digit number specifies the top level. The second level is given
by a letter and the third, again, by a two-digit number. 83F05, for example,
would specify the field of relativistic cosmology. Set theory is classified as
03E and so it belongs to Mathematical Logic, classified as 03. Considering
this one might get the impression that every mathematical specialisation
can be seen as an esoteric occupation and it surely can. Still, something
seems to be different here as the relationship of the average mathematician
towards mathematical logic tends to remind the author of the outlook the
average person has towards mathematics in general. Clearly, mathematics
as a whole can be look upon as an esoteric pursuit. It is esoteric because
everything takes so much time. It takes time to learn a subject, it takes
time to read an article, it takes even more time to write one. More than in
other fields? Yes, much more, at least if one takes a page in a journal as the
unit of measurement.

So why should the relationship between logicians and other mathem-
aticians be like the one between mathematicians in general and anyone
else? Any mathematician who is not completely incompetent has some
understanding of logic. And everyone in our contemporary society who does
not want to be tricked on a regular basis at least needs a basic understanding
of addition and subtraction of rational numbers. Being constantly exposed
to something will often not encourage a person’s curiosity, neither is it going
to spark imagination. Having spent the day in a dark basement a painter
might actually be more creative in the evening than if he had been, say,
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Preface

parachuting on this day. This might be at the heart of the matter.
According to the American Mathematical Society this thesis deals with

Partition Relations(03E02), Ordinal and Cardinal Numbers(03E10), Car-
dinal Characteristics of the Continuum(03E17), the Axiom of Choice and
Related Propositions(03E25), Consistency and Independence Results(03E35),
the Continuum Hypothesis and Martin’s Axiom(03E50) and Determinacy
Principles(03E60).

That the author ended up writing this thesis on these topics is the result
of both many coincidences and quite a few number of concious decisions not
all of which can or should be made transparent in a preface.

This is not the first thesis in set theory which has been written in Bonn-
Beuel. The author knows of Adrian Richard David Mathias and of Ioanna
Matilde Dimitriou who did the same before.

The author wishes to apologise in advance for anything which might
stand in the way of smooth reading. Perfection can never be reached in this
world.

Bonn Beuel, 6th February 2014, a Thursday
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Introduction

Mathematics may be defined as
the subject in which we never
know what we are talking about,
nor whether what we are saying
is true.

Bertrand Arthur William
Russell, 3rd Earl Russell

With the benefit of hindsight one could say that the story of set theory
began with Cantor’s paper [874Ca] in which he showed that within every
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1. Introduction

interval on the real line there is a transcendental real number. However, at
this point he did not emphasise the fact that this argument shows there to
be many more real numbers than algebraic ones1.

The Continuum Hypothesis

Four years later, in 1878, Cantor published the follow-up paper [878Ca].
While the main point of the paper lies in proving the equinumerosity of
Euclidean spaces of any finite positive dimension, Cantor states for the first
time what is now known as the continuum hypothesis towards its end. The
continuum hypothesis claims the following:

Any infinite set of real numbers is either equinumerous to(CH)

the set of natural numbers or to the set of all real numbers.

The continuum hypothesis rose to prominence at the latest when it was
on the top of David Hilbert’s list of 23 open problems he compiled for the
second International Congress of Mathematicians in 1900 in Paris. Hilbert
presented ten of these problems in his lecture on 8th August at the Sorbonne.

After Cantor achieved partial results by showing that in important point-
classes sets of reals cannot assume an intermediate cardinality a major step
towards understanding CH was taken by Gödel who showed in [940Gö] that
CH is consistent with ZFC. In [963Co] Cohen proved that CH’s negation is
consistent with ZFC as well.

Ramsey Theory

In [930Ra] Ramsey proved what became known as Ramsey’s Theorem. It
states that however one distributes the sets of natural numbers of a given
fixed finite size into finitely many classes, there is always an infinite set of
natural numbers such that all its subsets of this very size are in the same

1It seems to be a common belief that this were also the first proof of the existence of
transcendental numbers. This belief, however, is actually a misconception. The existence
of a transcendental number was first shown by Joseph Liouville in [844Li].
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Ramsey Theory

class. As the title of the paper suggests, its primary topic was mathematical
logic rather than combinatorics. Ramsey’s Theorem was proved with a
specific application in mind but Ramsey Theory soon became interesting
in its own right. It got off the ground some years later when Pál Erdős
developed an interest in it. In [935ES] he and George Szekeres showed that
among any five points in the plane no three of which are collinear there
are always four forming a convex quadrilateral. Many more theorems of
this sort appeared in the following years. The general idea always is that
if a structure is rich enough in a specified sense there is a substructure
which is—again in a specified sense—ordered. Ramsey Theory entered Set
Theory when Pál Erdős and Richard Rado published their seminal paper
[956ER] in which they introduced what is now known as the arrow-notation
or Hungarian notation. Over the years more and more variants of this
notation were introduced.

We are now going to explain the meaning of those variants of the arrow-
notation used in this thesis. Suppose τ is an order-type, κ is a cardinal
larger than 1, X is some set and χ : [X]τ −→ κ is a function. Such functions
are often referred to as colourings . We call an H ⊂ X homogeneous for χ if
χ is constant on [H]τ . By writing

ϕ→ (ψ)τκ

we mean that for any set X of size ϕ and any colouring χ : [X]τ −→ κ there
is an H ∈ [X]ψ which is homogeneous for χ. Speaking about a set’s size in
this context most often simply refers to its cardinality. Sometimes, however,
as in this thesis, we want to speak about its size in a more structural sense.
Then “size” refers to something else as well such as a topology or an ordering.
In this thesis “size” will refer to the order-type throughout. Increasing the
size of any of the parameters on the right side strengthens the relation while
increasing ϕ weakens it.

The second variant of the Hungarian notation we want to mention is the
square-bracket partition relation. By writing

ϕ→ [ψ]τκ

we mean that for any set X of size ϕ and any colouring χ : [X]τ −→ κ there
is an N ∈ [X]ψ such that χ � [N ]τ does not map onto κ, i.e. there is an

3



1. Introduction

α < κ such that χ−1“{α} ⊂ [X]τ \ [N ]τ . Note that if κ > 1 the round-bracket
partition relation implies the square-bracket partition relation. For κ = 2

they are equivalent. This relation behaves similarly to the round-bracket
partition relation under a change of parameters, the sole exception is that
increasing the number of colours κ does not result in a stronger but a weaker
relation. An important result by Stevo Todorcevic on this subject is the
following.

Theorem 1.1 (ZFC, [987To]). ω1 6→ [ω1]2ℵ1 .

Note that this is a very strong result because it claims that for ω1 even
one of the weakest partition relations is false. We mention this since it is a
fact one should keep in mind reading Chapter 4.

Now we are going to introduce the asymmetric partition relation. The
basic idea behind it is that one may search for homogeneous sets of different
sizes—depending on the colour. By writing

ϕ→ (ψ0, ψ1, . . . )
τ
κ

we mean that for any set X of size ϕ and any colouring χ : [X]τ −→ κ there
is an α < κ and an H ∈ [X]ψα such that χ“[H]τ = {α}. An alternative
notation for κ a natural number consists in writing ϕ→ (ψ0, . . . , ψκ−1)τ .

Similarly, by writing

ϕ→ [ψ0, ψ1, . . . ]
τ
κ

we mean that for any set X of size ϕ and any colouring χ : [X]τ −→ κ

there is an α < κ and an N ∈ [X]ψα such that χ“[N ]τ ⊂ κ \ {α}. Again
ϕ→ [ψ0, . . . , ψκ−1]τ is an alternative notation for natural κ. Chapter 8 deals
with such a relation.

One can also consider partition relations with alternatives. So

ϕ→ (ψ0
0 ∨ · · · ∨ ψ0

k0
, ψ1

0 ∨ · · · ∨ ψ1
k1
, . . . )τκ

means that for any set X of size ϕ and any colouring χ : [X]τ −→ κ there is
an α < κ, an ` 6 kα and an H ∈ [X]ψ

α
` such that χ“[H]τ = {α}. For finite κ

another way of expressing this is ϕ→ (ψ0
0∨· · ·∨ψ0

k0
, . . . , ψκ−1

0 ∨· · ·∨ψκ−1
kκ−1

)τ .
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Cardinal Characteristics of the Continuum

Finally, this relation has a square-bracket version as well.

ϕ→ [ψ0
0 ∨ · · · ∨ ψ0

k0
, ψ1

0 ∨ · · · ∨ ψ1
k1
, . . . ]τκ

means that for any set X of size ϕ and any colouring χ : [X]τ −→ κ there is
an α < κ, an ` 6 kα and an N ∈ [X]ψ

α
` such that χ“[N ]τ ⊂ κ\{α}. For finite

κ another way of expressing this is ϕ→ [ψ0
0∨· · ·∨ψ0

k0
, . . . , ψκ−1

0 ∨· · ·∨ψκ−1
kκ−1

]τ .
As “size” usually refers to the cardinality or to the order-type and as

such an ordering is often well-founded there often is no need to consider a
partition relation with alternatives. Chapter 4 is an exception.

Cardinal Characteristics of the Continuum

In mathematics it often happens that the solution of an open problem neither
leads to it being canonized in textbooks and forgotten about regarding
research activities nor to the problem being plainly forgotten about. In many
cases people rather tweak the problem just so much that the solution does
not work any more. This is no completely unsystematic way of generating
new problems and testing the methods employed in the solution of the
original problem.

If we, for the sake of the argument, regard the proof of CH’s independence
from ZFC as a solution then this is precisely what happened to the con-
tinuum problem. It led to the development of the research area of Cardinal
Characteristics of the Continuum. The idea is to consider families of reals
and ask which size they must have in order to satisfy a certain combinatorial
property. Here real refers, as is common in set theory, to some infinite
hereditarily countable object, e.g. an element of the Cantor space ω2 or the
Baire space ωω. Most of the time it is a ZFC-result that countable families
fail to satisfy the property in question. Thus a cardinal characteristic of the
continuum is typically an uncountable cardinal no larger than the continuum.
Of course this means that CH completely trivialises the subject. To give a
paradigmatic example consider the dominating number.

Definition 1.2. The dominating number d is the least size of an F ⊂ ωω

such that for all g ∈ ωω there is an f ∈ F such that for all n < ω we have
g(n) < f(n).

5



1. Introduction

ℵ1 add(N ) add(M) cov(M) non(N )

b d

non(M) cof(M)cov(N ) cof(N ) c

Figure 1.1: Cichoń’s diagram, for details cf. [995BJ].

d is also an example for a certain class of cardinal characteristics, the
covering numbers . For any ideal I on the reals, cov(I) is defined as the least
size of a family of members of the ideal whose union is the set of all reals. d
is simply cov(Kσ) where Kσ is the ideal of countable unions of compact sets
in the Baire space, cf. [010Bl].

A synonym for “cardinal characteristic” is “cardinal invariant”. The latter
name, however, might be seen as slightly misleading as the whole point of
the enterprise is to prove that their values vary throughout what has been
called the generic multiverse, cf. [012Ha].

For any two thus defined cardinal characteristics of the continuum, x and
y, the question arises whether one can prove the inequality x 6 y in ZFC or
whether there is a model of ZFC+“y < x”. Two main strands of cardinal
characteristics of the continuum have been analysed. Those derived from
the ideals of Lebesgue measure zero sets and meagre sets, respectively, on
the one hand and several characteristics associated to the algebra P(ω)/fin
on the other. They are often arranged in two diagrams, called Cichoń’s
diagram and van Douwen’s diagram. Whenever a line connects two cardinal
characteristics x and y where y is above x this says that x 6 y is provable in
ZFC. In the case of Cichoń’s diagram this also holds when y is to the right
of x.

6



Souslin’s Hypothesis

u i

r da

b e g s

h

t

Figure 1.2: van Douwen’s diagram, for details cf. [010Bl].

Souslin’s Hypothesis

After the independence of CH had been established one of the famous
problems in set theory left open was Souslin’s hypothesis.

We say that a linear order has the countable chain condition if every
collection of mutually disjoint non-empty open intervals is countable. A
Souslin line is a complete dense linear order satisfying the countable chain
condition without endpoints which is not isomorphic to the real line.

There are no Souslin lines.(SH)

As it happened again and again in the history of mathematics, the name
is somewhat misleading. Souslin never hypothesised SH and it is argued in
[011Ka] that if one wished to name something “Souslin’s hypothesis”, ¬ SH
might have been a better choice.

Souslin’s hypothesis had an important influence on the development of
set theory as the first proof of its consistency in [971ST] introduced iterated
forcing into set theory. While iterated forcing is not central to this thesis its
development made approaching questions regarding cardinal characteristics

7



1. Introduction

of the continuum possible in a systematic way. Moreover it led to the
formulation of a new axiom called “Martin’s Axiom”.

Other Hypotheses

Early on, CH was used to prove certain statements which do not derive from
the axioms of ZFC alone. Cf. e.g. [954BS]. After the proof of CH’s consistency
this was an straightforward method to prove statements to be consistent
with ZFC without having to deal with the subtleties of Gödel’s constructible
universe L every time. CH’s negation is on average much less suitable than
CH to decide statements about the continuum. Although it might be argued
that the technique of forcing is more accessible than the theory of L it
was clearly desirable to have an axiom describing a somewhat canonical
scenario of ZFC+¬CH. Such an axiom was introduced by Donald Anthony
Martin and Robert Solovay in [970MS]. Subsequently it became known as
Martin’s Axiom. It is a weakening of the continuum hypothesis which is
consistent with the continuum being any regular uncountable cardinal (if ZF
is consistent). We are going to abbreviate it by MA. It is defined as follows:

∀κ < c : MAκ(MA)

We shall not define MAκ. It turns out that MAℵ1 decides many of the
statements CH decides and in fact often differently. We provide some
examples for this phenomenon.

• MAℵ1 ⇒ ∀n < ω : ω1ω → (ω1ω, n)2 while CH⇒ ω1ω 6→ (ω1ω, 3)2.

• MAℵ1 ⇒ ∀n < ω : ω1ω
2 → (ω1ω

2, n)2 while CH⇒ ω1ω
2 6→ (ω1ω

2, 3)2.

• MAℵ1 ⇒ add(N ) > ℵ1 while CH⇒ add(N ) = ℵ1.

• MAℵ1 ⇒ t > ℵ1 while CH⇒ t = ℵ1.

The first two statements were proved by Baumgartner in [989Ba] and Erdős
and Hajnal in [971EH], respectively. The third one was already given in
[970MS]. The last statement is not the whole truth: Over a prolonged period
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Determinacy

it was shown that t > ℵ1 is equivalent to MAℵ1 for σ-centred posets, cf.
[981Be] and [XXXMS]. There are, however, also situations where one has to
do more than considering MAℵ1 and CH:

• ∀α < ω1 : ω1 → (ω1, α)2 is consistent with ZFC while CH ⇒ ω1 6→
(ω1, ω + 2)2.

• MAℵ1 ⇒ SH while SH is independent from CH.

Martin’s Axiom is going to be employed in Chapter 6 to prove The-
orem 6.24.

Later on even more axioms capturing the specifics of models obtained
by iterated forcing were formulated. The Proper Forcing Axiom settling
questions independent from Martin’s Axiom was defined and proved consist-
ent relative to the existence of a supercompact cardinal by Baumgartner,
cf. [984Ba]. In [004CP] Ciesielski and Pawlikowski showed how to capture
an essential part of the combinatorics of the reals in models attained by
the iteration of specific notions of forcing. About the same time Zapletal
started to develop the theory of idealised forcing in [004Za]. This theory
shows that the empirical fact that there often is a natural choice for a notion
of forcing increasing the cardinal characteristic cov(I) for an ideal I on
the reals can be made precise. CPA(I) is an axiom describing properties of
models generated by the forcing notion associated to the ideal I. The theory
of idealised forcing can be employed to show that if a cardinal characteristic
is consistently smaller than cov(I) then in most cases it is implied to be so
by CPA(I). This phrasing is, admittedly, not very precise but the theory
has its subtleties.

CPA(I) is going to be used in Chapter 3. For more details regarding it
and the theory of idealised forcing cf. [004CP], [004Za], [008Za] and [009Sa].

Determinacy

A thread of research in set theory of the reals is the analysis of regularity
properties. The most famous ones are the property of Baire, Lebesgue

9



1. Introduction

measurability and the Ramsey property. In a certain way it would be nice
for all sets to possess these regularity properties.

All sets of reals have the property of Baire.(BP)

All sets of reals are Lebesgue measurable.(LM)

But alas!

Theorem 1.3 (ZFC, [905Vi]). ¬ LM.

The Vitali set from [905Vi] also shows Theorem 1.4.

Theorem 1.4 (ZFC). ¬BP.

Theorem 1.5 (AC, [983Ka]). ω 6→ (ω)ω2 .

Although by the 1960s the Axiom of Choice was widely accepted Jan
Mycielski and Hugo Steinhaus, in [962MS], introduced a statement into set
theory contradicting it. Consider an ordinal α and a set S. Any set G ⊂ αS

defines a game of length α. The idea is that in each step 2β such that
2β < α Player 1 plays an element of S and in each step 2β + 1 Player 2
plays such an element too.

Player 1 and Player 2 jointly generate a sequence ~s ..= 〈sγ | γ < α〉 of
elements of S. Player 1 wins the game if ~s ∈ G, otherwise Player 2 wins.
A strategy for Player i is a function f with ran(f) ⊂ S and dom(f) =⋃

2β+i−1<α
βS. The strategy is winning for Player 1 if all ~s satisfying ∀β <

Ω(2β+1 < α→ s2β+1
..= f(〈s2γ | γ 6 β〉) are elements of G and it is winning

for Player 2 if no ~s satisfying ∀β < Ω(2β < α→ s2β
..= f(〈s2γ+1 | γ < β〉) is

Player 1 s0 s2 s4 s6 s8 s10 . . .
Player 2 s1 s3 s5 s7 s9 s11 . . .

Figure 1.3: A game between Player 1 and Player 2

10



Determinacy

an element of G. Note that at most one player can have a winning strategy.
If exactly one player has a wining strategy we say that G is determined .
John von Neumann proved in [928vN] the Minimax Theorem from which it
can be easily deduced that G is determined if α < ω. In [953GS] Gale and
Stewart, using the Axiom of Choice, showed how to define an undetermined
game of length ω. The Axiom of Determinacy states the following.

Every subset of ω2 is determined.(AD)

A strengthening of AD is the Axiom of Real Determinacy , ADR.

Every subset of ωR is determined.(ADR)

It was known from AD’s beginning that it contradicts the Axiom of Choice.
Stanisław Sławomir Świerczkowski, Dana Scott and Jan Mycielski([964My2])
noted that it implies that every countable family whose union has at most
the size of the continuum has a choice function. Whereas the Axiom of
Choice allows one to prove the existence of nonmeasurable sets or sets not
having the property of Baire AD forestalls this possibility.

Theorem 1.6 (ZF+AD, [964MŚ]). LM.

Theorem 1.7 (ZF+AD, [964My2]). BP.

It could be argued that the Axiom of Choice, Martin’s Axiom and the
Axiom of Determinacy should not be called axioms because they are usually
on opportunistic grounds quite freely assumed or not assumed. This thesis
is no exception in this respect. They could have rather be called hypotheses
or postulates like the Continuum Hypothesis or the Parallel Postulate. This
being said we are going to use the common terminology.

At this point we would like to remind the reader of a classical result2

of Donald Anthony Martin from 1973. Its statement is referred to as the
strong partition property .

Theorem 1.8 (ZF+AD, [981K]). ω1 → (ω1)ω1
R .

2He did not publish it, the date stems from [003Ka].

11



1. Introduction

This result is remarkable. In a choice-context it would be plain nonsense
since there would be an injection ι : ω1 ↪→ R and one could colour any set just
by the image of its least element under ι. Thus in a determinacy-context the
nonexistence of such an injection is just a simple corollary of Theorem 1.8.
Whereas by the Axiom of Choice there cannot be any cardinal number κ
such that κ → (κ)ω2 and we have ω1 6→ [ω1]

2
ω1

both these theorems are
radically contradicted by the conclusion of Theorem 1.8. Another result
worth mentioning is the following.

Theorem 1.9 (ZF+ADR, [976Pr]). ω → (ω)ω2 .

The conclusion of this theorem is sometimes phrased in a different way
by saying that all sets of reals have the property of Ramsey.

On the Structure of This Thesis

Originally, this thesis was intended to mainly deal with Combinatorial
Cardinal Characteristics of the Continuum, to be more precise with the
homogeneity numbers which are going to be defined in Chapter 2.

Chapter 3 contains results from this area of research.
During his doctoral studies and somewhat motivated by a talk by Rene

Schipperus in the Bonn Logic Group’s Oberseminar the author developed
an interest in Ramsey Theory. The author believes in the value of problem-
driven research in mathematics which is not to say that he disregards
approaches with a different emphasis. The Chapters 6 and 7 grew out of this
interest at a time when progress on other questions was unsatisfactory. These
chapters deal with partition relations of the form α→ (β, n)2 for ordinals α, β
of a certain structure and a natural number n. They continue investigations
on ordinal partition relations from [974Ba], [989Ba] and [997LM].

In Chapter 5 the author proves a theorem about partitions of pairs
of countable scattered linear orders he originally expected to find in the
literature.

Chapter 8 contains the result of the author’s interest in the Milner-
Prikry-Problem. He did not spend much time on it since it was neither the

12



On the Structure of This Thesis

supposed primary topic of his thesis nor were there hopes to believe in the
existence of an easily discoverable proof.

Finally, Chapter 4 contains the results of intensively contemplating
the splitting-types—which are defined in Chapter 2—while having been
working in the area of partition relations. It contains one positive result
about the existence of a partition relation and many counterexamples.
Within this chapter the author likes most the conjectures 4.16, 4.17 and
4.18 since they connect two hitherto scarcely interacting strings of set-
theoretical research, one rooted in mathematical logic and concerned with
deriving strong partition properties for ordinal numbers from the Axiom of
Determinacy and one in the tradition of infinite combinatorics focusing on
the aforementioned problem-driven research. Also, the author considers the
interplay between a preformal intuition about a structureless continuum and
the almost unavoidable presence of structure in any sharply defined linearly
ordered set in a formal framework being an old theme in set theory. It might
be argued that the interplays both between arithmetic and geometry as well
as between intuition and formalism have inspired work of mathematicians—
which is now seen as central—in the past as for example in the cases of the
arithmetisation of geometry by Descartes or the reduction of the continuum
to set theory by Dedekind, [960De]. In the author’s opinion this makes the
aforementioned conjectures all the more interesting.

In the above the chapters are listed in the order their results had been
proved with the exception of Chapters 2 and 3 which had developed slowly
over the whole time. Yet the arrangement of the thesis follows topical
considerations. The chapters dealing with Cardinal Characteristics of the
Continuum precede the chapters about partition relations for linear orders
which fail to be well-orders (or anti-well-orders) which in turn precede the
chapters focusing on partition relations for ordinal numbers.

In general, the theorems of this thesis are proved in ZFC, that is axiomatic
set theory following Zermelo and Fraenkel together with the Axiom of Choice,
AC. The sole exception is Chapter 4 where several theorems are proved
which would be simple corollaries of known theorems in a choice-context.
The point there is that they are provable in ZF alone, without recurring to
the Axiom of Choice. One theorem, numbered 4.12, is proved using BP. So

13



1. Introduction

in Chapter 4 just as in this introduction the theory used is mentioned after
the number of the statement in question. For lack of necessity this is done
in no other chapters.

Chapters 6 and 7 were accepted for publication in the paper [014We]
by Combinatorica. Chapters 5 and 8 have been compiled into the paper
[XXXWe] and submitted to a mathematical journal. It is planned to do the
same with the contents of Chapter 4.

For details regarding the notation not mentioned in this introduction we
refer the reader to the Notation section on page 119.
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2

The Sequence of Homogeneity
Numbers

Now this is not the end. It is
not even the beginning of the
end. But it is, perhaps, the end
of the beginning.

Sir Winston Leonard
Spencer-Churchill

We shall now introduce the sequence of cardinal characteristics around
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2. The Sequence of Homogeneity Numbers

which the author’s research mainly revolved in the past years.

Preliminaries

Consider the ordering of <ω+12 given by end-extension. For x, y ∈ ω2 let
glb(x, y) ∈ <ω+12 be the greatest lower bound of x and y. For s ∈ <ω2 let
lt(s) be the length of the sequence s. Let ∆(x, y) ..= (lt ◦ glb)(x, y). Let n
be a natural number, let π be a permutation of n and let {x0, . . . , xn}< =

X ∈ [ω2]n+1.

Definition 2.1. We say that X is of splitting type π if and only if

〈∆(xπ(m), xπ(m)+1) | m < n〉

is strictly descending.

We let st(X) denote the splitting type of X. Let Πn denote the set of
all permutations of n. Note that the function τ : [ω2]n+1 −→ Πn assigning
its type to every unordered (n+ 1)-tuple is not total. There is no need for
concern though since no generality is lost by focusing our attention on sets
X ⊂ ω2 with the property that τ is total on [X]n+1.

Consider a colouring χ : [ω2]n −→ 2. We call a set X ⊂ ω2 weakly
homogeneous with respect to χ if and only if there is a function f : Πn −→ 2

such that χ = f ◦ τ , i.e. the colour, assigned by χ, of an (n + 1)-element
subset of X only depends on its type. This is depicted in the following
commutative diagram.

16



The Theorem of Mycielski and Taylor

ω2 2

Πn

χ

τ
f

Figure 2.1: Blass’s Theorem as a commutative diagram

We are now able to quote an intriguing classical result of Blass.

Theorem 2.2 ([981Bl]). Let n be a natural number and let χ : [ω2]n −→ 2

be continuous. Then there exists a perfect set which is weakly homogeneous
with respect to χ.

The Theorem of Mycielski and Taylor

For this thesis it is important to note that Theorem 2.2 actually holds in a
much stronger version because the property of continuity requested from
the colouring χ can be relaxed. That one can do this is due to a folklore
variation of a theorem by Mycielski and Taylor, cf. [964My], [973GP], [978Ta]
and [013D].

Theorem 2.3 (Folklore). Let n ∈ ω\2 and let χ : [ω2]n −→ 2 be a colouring
with the property of Baire. Then there exists a perfect set P ⊂ ω2 such that
χ is continuous on P .

Proof. Let n and χ be as in the theorem. Let b : ω ←→ <ω2 be nowhere
order-reversing, i.e. ∀m < ω∀` < m : b(m) 6@ b(`). Let U0

〈〉
..= ω2. Suppose

that in step m < ω we have defined Um
b(0), . . . , U

m
b(m). Choose disjoint basic

open sets

Um,0
b(m+1)_〈0〉, U

m,0
b(m+1)_〈1〉 ⊂ Um

b(m+1) \
⋃

〈j,k,`〉∈(m+2−n)×(m+2−n)×(m−1
n−2)

N j,`
k

17



2. The Sequence of Homogeneity Numbers

and let Um,0
b(`)

..= Um
b(`) for all ` ∈ {k | k 6 m ∧ b(k) 6@ b(m + 1) ∧ @j ∈

m + 1 \ (k + 1): b(k) @ b(j)}. If m + 1 < n then set Um+1
b(m+1)_〈i〉

..=

Um,0
b(m+1)_〈i〉 for both i < 2. If, however, n < m + 2 let Sm ..= {b(`) _
〈i〉 | ` 6 m ∧ i < 2 ∧ @k ∈ n + 1 \ (` + 1): b(`) @ b(k) ∧ @i < 2: b(`) _

〈i〉 = b(m+ 1)} and let 〈{s`0, . . . , s`n−2}<lex | ` <
(
m−1
n−2

)
〉 be an enumeration

of all [Sm]n−1. Now in substep ` <
(
m−1
n−2

)
, since χ has the property of

Baire, there is an im+2−n
` < 2 and basic open sets Um,`+1

s`k
⊂ Um,`

s`k
for

k+1 < n as well as Um,`+1
b(m+1)_〈i〉 ⊂ Um,`

b(m+1)_〈i〉 for i < 2 such thatMm+2−n
`

..=

χ−1“{im+2−n
` }\ (Um,`+1

b(m+1)_〈0〉×U
m,`+1
b(m+1)_〈1〉×U

m,`+1

s`0
×· · ·×Um,`+1

s`n−2
) is meagre.

Let Fm+2−n
`

..= {Nm+2−n,`
k | k < ω} be a family of nowhere dense sets

such that
⋃
Fm+2−n
` = Mm+2−n

` . After these finitely many substeps set

Um+1
b(m+1)_〈i〉

..= U
m,(m−1

n−2)
b(m+1)_〈i〉 for i < 2 and Um+1

s
..= U

m,(m−1
n−2)

s for all s ∈ Sm.
After ending the whole construction, let

µ : ω2 −→ ω2

ξ 7−→
⋃⋂

`<ω

⋂
m<ω

Um
ξ�`.

µ is a monomorphism and P ..= ran(µ) is perfect. Note that for each
s ∈ <ω2 there is an ` < ω such that for all m ∈ ω \ ` we have U `

s = Um
s .

For any Ξ ..= {ξ0, . . . , ξn−1}<lex ∈ [P ]n there is a maximal m < ω such
that 1 < Ξ ∩ Um

b(m+1). Let ` <
(
m−1
n−2

)
be such that ξk ∈ Um,`+1

s`k
for all

k < n− 1. But then by construction χ(Ξ) = im+2−n
` . Since we threw out all

the exceptional nowhere dense sets one after the other, the same colour is
given to any tuple in P ∩ (Um,`+1

b(m+1)_〈0〉×U
m,`+1
b(m+1)_〈1〉×U

m,`+1

s`0
×· · ·×Um,`+1

s`n−2
)

and thus we know that χ is continuous on P .

Note that Theorem 2.3 allows us to generalise Theorem 2.2.

Corollary 2.4. Let n ∈ ω \ 2 and let χ : [ω2]n −→ 2 have the property of
Baire. Then there exists a perfect set which is weakly homogeneous with
respect to χ.

Note that by Theorem 1.7, under AD Theorem 2.2 would hold for all
colourings χ.
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The Theorem of Mycielski and Taylor

Now we may define the sequence mentioned in the introduction.

Definition 2.5. Let n be a natural number and let χ : [ω2]n −→ 2 be a
continuous colouring. Let

hm(χ) ..= min({F |
⋃

F = ω2 ∧ ∀X ∈ F : X is

weakly homogeneous with respect to χ})

and let hmn
..= sup{hm(χ) | χ is a continuous n-colouring}.

Twelve years ago, Geschke proved the following.

Theorem 2.6 ([002G]). After a countable support iteration of length ω2 of
notions of Sacks forcing over a model of ZFC+CH we have hm2 = ℵ1 < c

holding in the final model.

Another interesting theorem regarding hm2 was proved in [004G].

Theorem 2.7. There are two continuous pair-colourings, cmin and cmax such
that:

1. For every Polish space X and every continuous pair-colouring c :

[X]2 −→ 2 with hm(c) > ℵ0,

hm(c) = hm(cmin) or hm(c) = hm(cmax)

2. There is a model of set theory in which hm(cmin) = ℵ1 and hm(cmax) =

ℵ2.

The colouring cmin is defined as follows:

Definition 2.8.

cmin : ω2 −→ 2

{x, y}< 7−→ ∆(x, y)(2)

This means that hm2 = hm(cmax). From now on we are going to abbrevi-
ate hm(cmin) as hmmin.

hmmin has a funny property. Although it is a nontrivial cardinal char-
acteristic in the sense that it can be uncountable and smaller than the
continuum the following theorem by Geschke holds true.
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2. The Sequence of Homogeneity Numbers

Theorem 2.9 ([002G]). hm+
min > c.

hmmin actually turns out to be quite big in yet another sense.

Theorem 2.10 ([006Ge]). cof(N ) 6 hmmin.

So hmmin is at least as large as each nontrivial characteristic in Cichoń’s
diagram.
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3

Relations to Other Cardinal
Characteristics

It is a very sad thing that
nowadays there is so little
useless information.

Oscar Fingel
O’Flahertie Wills Wilde

The last chapter ended with the last word on hmmin’s position within
Cichoń’s diagram. So it is natural to take a look at van Douwen’s diagram.
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3. Relations to Other Cardinal Characteristics

hmmin and the Reaping Number

For any x, y ⊂ ω we say that x splits y if both y ∩ x and y \ x are infinite.
A family F ⊂ [ω]ω is called splittable if there is an s ⊂ ω which splits all
x ∈ F . A family F ⊂ [ω]ω which is not splittable is called unsplittable.

Definition 3.1. The reaping number r is the minimal size of an unsplittable
family.

Problem 3.2. Is r 6 hmmin?

A natural approach to get a consistency result is to start with a model
of Zermelo-Fraenkel Set Theory where the continuum hypothesis holds true
and to add splitting reals with an iteration of length ω2 with countable
support. However, no notion of forcing which the author considered for the
single step was mild enough not to also add a real which is not an element of
any of the homogeneous sets coded in the ground model. A natural notion
of forcing to consider is the one where conditions are splitting trees which
are ordered by inclusion. These were defined by Otmar Spinas in [004Sp].
An equivalent notion of forcing was defined before by Saharon Shelah in
[992Sh].

Definition 3.3. A perfect tree T ⊂ <ω2 is splitting if and only if there is an
f ∈ ωω such that for all i < 2, all m < ω, all s ∈ T (m) and all n ∈ ω \ f(m)

there is a t ∈ T (n) such that t >T s and t(lt(t)) = i.

This notion of forcing is, in a sense, the most natural one since if a new
real were a branch of a perfect tree in the ground model which is not splitting,
then it could not be a splitting real. Very often, taking as conditions the
smallest sets of reals possible with respect to a certain goal is the correct
approach. Even if it does not work, it often shows a precise reason why
this is so. In this sense, it is sometimes possible to extract a proof in ZFC.
Theorem 3.9 below, proved by Zapletal, shows that this can even be made
precise. To state it we first have to quote some definitions due to him as
well.
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hmmin and the Reaping Number

Definition 3.4 ([008Za], 6.1.9, also cf. [004Za], B.2.3). Let X be a Polish
space. A cardinal characteristic x is very tame if it is defined as the minimum
size of a set A with properties ψ(A) and ∀x ∈ R∃y ∈ A : ϑ(x, y) where
ψ(A) = ∀x0, x1, · · · ∈ A ∃y0, y1, · · · ∈ A : τ(~x, ~y) for some arithmetic formula
τ , ϑ is an analytic formula, and ZFC proves that for every countable set
a ⊂ R with ψ(a) there is a set A ⊃ a such that A = x and A is a witness for
x.

Definition 3.5 ([008Za], 2.1.16). A σ-ideal I on a Polish space X is ZFC-
correct if it is defined by a formula ψ with a possible real parameter r
(so that I = {A ⊂ X | ψ(A, r)}) and every transitive model M of a large
fragment of ZFC containing r is correct about I on its analytic sets (so that
if s ∈M is a code for an analytic set As then ψ(As, r)↔M |= ψ(As, r)).

Definition 3.6 ([008Za], 3.9.21). A σ-ideal I on a Polish space X satisfies
the third dichotomy if every I-positive analytic set contains a Borel I-positive
subset.

Definition 3.7 ([008Za], 5.1.3). A σ-ideal I on a Polish space X is iterable
if

1. the ideal is ZFC-correct;

2. it satisfies the third dichotomy 3.6;

3. for every transitive countable model M of set theory and every condi-
tion B ∈ PI ∩M the set {x ∈ B | x is M -generic for PI} is I-positive.

Definition 3.8 ([008Za], 2.1.21, also cf. [004Za], C.0.7). A σ-ideal I on a
Polish space X is Π1

1 on Σ1
1 if for every analytic set A ⊂ ω2 × X the set

{y ∈ ω2 | Ay ∈ I} is coanalytic.

Theorem 3.9 ([004Za], 5.1.7, also cf. [008Za], 6.1.16). Suppose that I is
an iterable homogeneous Π1

1 on Σ1
1 σ-ideal. Suppose that x is a very tame

cardinal characteristic. If x < cov(I) holds in some inner model of ZFC
containing all ordinals or its generic extension, then ℵ1 = x < cov(I) holds in
every generic extension of every inner model of ZFC containing all ordinals
whenever this extension satisfies CPA(I).
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3. Relations to Other Cardinal Characteristics

Definition 3.10 ([008Za], 3.2.1). Suppose that I, J are σ-ideals on the
respective underlying Polish spaces X, Y . I, J are perpendicular (I⊥Y ) if
there are a Borel I-positive set B ⊂ X, a Borel J-positive set C ⊂ Y and a
Borel set D ⊂ B×C such that the vertical sections of the set D are J-small
and the horizontal sections of its complement are I-small.

Proposition 3.11 (LC, [008Za], 3.2.2). Suppose that PI is a proper forcing
and J is generated by a universally Baire collection of Borel sets. Then I⊥J
if and only if some condition in the poset PI forces Ċ ∩ V ∈ J for some
J-positive Borel set C. If the ideal J is ZFC-correct then the large cardinal
assumption is not necessary.

Theorem 3.12 ([994So], Theorem 1). If I is an ideal on a Polish space, I
is σ-generated by closed sets and A ∈ P(X) \ I is analytic then there is a a
B ⊂ A such that B /∈ I and B is Gδ.

Proposition 3.13 ([008Za], 2.1.22). If a σ-ideal I on a Polish space X is
provably Π1

1 on Σ1
1 then it has a ZFC-correct definition.

Theorem 3.14 ([008Za], Theorem 4.1.2 ). Suppose that I is a σ-ideal on
a Polish space X generated by closed sets. The forcing PI is proper. The
forcing PI preserves the Baire category and has the continuous reading of
names.

Lemma 3.15 ([004Za], Lemma C.0.9). Suppose that P is a Σ1
1 family of

compact subsets of ωω ordered by inclusion, and as a poset it is proper with
continuous reading of names. Then the ideal I generated by analytic sets
without a subset in P is Π1

1 on Σ1
1.

The proof of the following lemma is extracted from the proofs of Propos-
ition 2.1.2 and Theorem 4.1.2 in [008Za].

Lemma 3.16. Suppose I is an ideal σ-generated by a family of closed sets,
M is a transitive countable model of set theory and b ∈ PI ∩M . Then
{x ∈ B | x is M -generic for PI} /∈ I.

Proof. Let O be a countable basis for the topology of X. Suppose towards
a contradiction that C ..= {x ∈ B | x is M -generic for PI} ∈ I. This
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hmmin and the Reaping Number

means that there is a collection {Fn | n < ω} of closed sets in I such that
C =

⋃
n<ω Fn. Let 〈Di | i < ω〉 be an enumeration of the open dense sets in

PI ∩M . We are inductively defining a sequence 〈Bi | i < ω〉 such that both
Bi+1 ∈ Di ∩M an Bi+1 ∩ Fi = ∅ for all i < ω. In order to do this suppose
that in step i < ω we have defined Bi. Since we have

Bi ⊂ Fi ∪
⋃

O∈O∧Fi⊂X\O

Bi ∩O

and O is countable there must be an O ∈ O such that Bi∩O ∈ P(X \Fn)\I.
Because Di+1 is dense and M elementary we may choose a Bi+1 ∈ Di+1

such that Bi+1 ⊂ Bi ∩O. Now {B ∈ PI | ∃i < ω : Bi ⊂ B} defines a generic
filter over M . Setting x ..=

⋃⋂
G we have found a generic point x outside

of C, a contradiction!

Now let us consider Theorem 3.9 in the context of Problem 3.2. It is easy
to write r as a covering number. We have r = cov(J) where J is the ideal
σ-generated by the family {{x ∈ ω2 | ∀n ∈ a : x(n) = i} | a ∈ [ω]ω}. This is
also mentioned in [008Za], section 4.1.7. Note that this family consists of
closed sets.

We are going to show that J is both iterable and Π1
1 on Σ1

1. Secondly we
are going to demonstrate—which is not difficult—that hmmin is very tame.
Finally, we are going to use this to argue that r 6 hmmin if J is homogeneous.
This falls short of both solving Problem 3.2 as well as solving the following
problem.

Problem 3.17 ([008Za], 7.1.3). Prove that some of the forcings presented
in [008Za] are not homogeneous.

It should be remarked that there have been signs already that J might
be inhomogeneous:

Proposition 3.18 ([008Za], 4.1.29). J⊥N .

By Proposition 3.11 this implies that some condition in PI collapses the
outer Lebesgue measure. In particular, forcing with the countable support
iteration of PI of length ω2 increases non(N ) to ℵ2. Zapletal comments
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3. Relations to Other Cardinal Characteristics

on Proposition 3.18 by saying that he is unaware of whether some other
condition in PJ , i.e. splitting tree forcing, preserves outer Lebesgue measure.

We are going to need the following theorem by Spinas.

Theorem 3.19 ([004Sp], Theorem 1.2). Let A ⊂ ω2 be analytic and a ∈ [ω]ω.
Then A is countably splitting on a if and only if there exists a splitting tree
p for a such that [p] ⊂ A.

Lemma 3.20. J is Π1
1 on Σ1

1.

Proof. It is easy to see that ω2 \ J consists of the sets which are countably
splitting on ω. By Theorem 3.14 PJ has the continuous reading of names
and is proper. Now observe that by Theorem 3.19 PJ can be viewed as
the collection of sets of branches of splitting trees. This is an analytic
collection of compact sets. Now by Lemma 3.15 the ideal J ′ generated by
an analytic sets without a subset in PJ is Π1

1 on Σ1
1. By Theorem 3.19 we

have J ′ = J .

Lemma 3.21. J is iterable.

Proof. We need to show the three conditions defining iterability to apply to
J .

1. J is provably Π1
1 on Σ1

1 by the proof of Lemma 3.20. Therefore it is
ZFC-correct by Proposition 3.13.

2. J satisfies the third dichotomy 3.6 thanks to Theorem 3.12.

3. The third condition applies by Lemma 3.16.

Remark 3.22.

hmmin = min{A | ∀x ∈ ω2∃y ∈ A : ϑ(x, y)}

Here ϑ(x, y) shall denote the statement “x is a branch of a cmin-homogeneous
tree coded by y”. Formally this may be achieved by setting

ϑ(x, y) ..=ϑ0(x, y) ∨ ϑ1(x, y) where

ϑi(x, y) ..=∀n < ω : x(2n+ i) = y
(
2n − 1 +

∑
k<n+i

2k · x(2k + 1− i)
)
.
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hmmin and the Reaping Number

Note that ϑ is analytic and hence hmmin is very tame.

We are now going to consider the splitting tree forcing Psplitting defined
in and before Definition 3.3. Forcingwise PJ and Psplitting are isomorphic but
combinatorially we are now going to argue with Psplitting.

Lemma 3.23. Let Xcmin the set of trees branching only at even or only
at odd levels. There is a name for a real ḟ such that 11 Psplitting “@T ∈
Xcmin ∩M : ḟ ∈ [T ]”, i.e. there is a (new) real which is not in any cmin-
homogeneous set of the ground model.

Proof. Let g denote the canonical generic real, i.e.
⋃⋂

p∈G[p] where G is
the Psplitting-generic filter. We are not going to define the name explicitly.
Instead we are going to show the following which immediately yields the
statement above:

There is a maximal antichain A ⊂ Psplitting and for every a ∈ A a
strictly increasing sequence 〈nai | i < ω〉 of natural numbers such that for ḟa
being a name for the function f : ω −→ ω defined by m 7→ g(nai ) we have
∀a ∈ A : a Psplitting “@T ∈ Xcmin ∩M : ḟa ∈ [T ]”.

We are going to construct a dense set D instead of a maximal antichain.
The maximal antichain A then can be easily found as a subset of D. So
let p be any splitting tree and let us define d ∈ D such that d 6 p and
〈ndi | i < ω〉 inductively.
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3. Relations to Other Cardinal Characteristics

d will be the fusion of an inductively defined sequence 〈di | i < ω〉 of
splitting trees.

(Induction Hypothesis) Let d0
..= p and m0

..= 0.

(Induction Step) We are now going to describe how to obtain di+1 from
di. At first we define a sequence 〈kij | j < 2T (mi)+2 + 2〉 of levels and
then a set of nodes Si on level ni+1

..= ki
2T (ni)+2+1

of the tree di+1. The

tree di+1 will then consist of all nodes in di compatible with a node in
Si. The sequence 〈kij | j < 2T (ni)+2 +2〉 is given inductively by ki0 ..= ni
and kij+1

..= max{K(t) | t ∈ di ∧ l(t) = kij}. Let ei : Ni ←→ T (ni) be
an enumeration of level ni where Ni is the appropriate natural number.
For each node t above or on level ki1 we say that t is of type 〈i, 0, j〉 if
and only if ei(j) 6T t and t(ki1 − 1) = 0. Correspondingly we define t
to be of type 〈i, 1, j〉 if and only if ei(j) 6T t and t(ni − 1) = 1.

Now a node t in di on level ni+1 shall belong to Si if and only if the
following holds true:

If t is of type 〈i, b, j0〉, f(j0, j1) = b and j1 > 0 then t(ki2j1) = 0. Here
f is given by

f : ω × ω −→ 2,

(j0, j1) 7−→ the jth
0 bit in the binary expansion of j1,

that is bj1 · 2−j0c − 2b2−1bj1 · 2−j0cc.

We now can set di+1
..= {t ∈ di | ∃s ∈ Si : t 6di s ∨ s 6di t} thus

concluding the induction step.

d shall now be the fusion of the di, i.e. d ..=
⋂
i<ω di. d is a splitting tree,

as for example witnessed by

K : d −→ ω

t 7−→ k
min{i<ω|l(t)6ni}
1 .

This is the case because the construction ensures that for every i < ω, for
every node t ∈ T (ni) and for each level ` ∈ ω \ ki2 there is a node t′ > t on

28



hmmin and the Reaping Number

level ` with t′(`− 1) = 0 but also a t′′ > t on level ` with t′′(`− 1) = 1. This
is because t′(ki1 − 1) is either 0 or 1 and by construction for at least one of
the two possibilities one enjoys complete freedom of choice.

Claim 3.24. Now for g defined by m 7→ f(km1 ) we have the following:

d Psplitting “@T ∈ Xcmin ∩M : ġ ∈ [T ]”.(3.1)

Proof of Claim 3.24.Claim The idea here is that we “seal” the splittings
between the levels ni and ki1 in such a way that every attempt to eliminate
all possibilities to choose, for a node t on level ni, a node t′ on level ki1 above
t with prescribed last bit necessarily produces a level on which all remaining
nodes in the tree have only zeros.

In order to see this suppose it would not work and let p witness this. I.e.
let p 6 Psplittingd be a condition satisfying p Psplitting “∃T ∈ Xcmin ∩M : ġ ∈
[T ]”. By the maximal principle we can find a q 6 p and a tree t ∈ Xcmin

satisfying q Psplitting “ġ ∈ T”. Let us suppose that T branches on even
levels. But since q is still a splitting tree it cannot have infinitely many
levels with only zeros. Therefore by construction there have to be levels
with both zeros and ones cofinitely often. So choose i odd and large enough
such that all levels kij are of this kind. Now by construction this means that
for every j1 < 2T (ni)+2 + 2 there is a j0 and a node t on level ni+1 of type
〈i, 1− f(j0, j1), j1〉. By finite combinatorics there have to exist j1 and j′1 for
which this is witnessed by the same j0 but different bs, i.e. there are nodes
t, t′ on level ni+1 such that

• t is of type 〈i, 1− f(j0, j1), j1〉,

• t′ is of type 〈i, 1− f(j0, j
′
1), j′1〉,

• f(j0, j1) + f(j0, j
′
1) = 1.

By cutting back t and t′ to level ki1 we see that there are in fact two nodes
s and s′ in q ending in different bits lying above the same node on level ni.
Let us call this node u. The condition q(u) already determines f on ki−1

1 + 1,
i.e. g on i. Now since q Psplitting “ġ ∈ T” we know that it also determines
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3. Relations to Other Cardinal Characteristics

g at i, i.e. q Psplitting “ġ(i) = b” for a certain bit b. On the other hand we
can choose one of the nodes s, s′ ending in (1 − b), say s, and strengthen
q to q(s). Then we should have q(s) Psplitting “g(i) = 1 − b” which is a
contradiction. c©

So Lemma 3.23 tells us a little bit more about the effect of splitting-
tree-forcing on hmmin as Proposition 3.18 does about its effect on the outer
Lebesgue measure. A consistency proof fails not only below some conditions
but below all of them. Now we are finally able to state a result about r and
hmmin which, unfortunately, is only partial.

Proposition 3.25. If J is homogeneous then r 6 hmmin.

Proof. Suppose towards a contradiction that J is homogeneous and that
hmmin < r is consistent with ZFC. We work within a model M of
ZFC+hmmin < r. By Lemma 3.21 J is iterable. By Lemma 3.20 J is Π1

1 on
Σ1

1 and by Remark 3.22 hmmin is very tame. Let Q be a countable support
iteration of splitting-tree-forcing-notions of length ω2. Let G be Q-generic
overM . Clearly,M [G] |= CPA(J). By Lemma 3.23M [G] |= c = hmmin = ω2.
This contradicts Theorem 3.9.

The author considers it likely that J is not homogeneous. About the
question whether hmmin < r is consistent he wants to hedge his bets. He
had the opportunity to discuss Problem 3.2 with Saharon Shelah at the
conference “Trends in Set Theory” in Warsaw.

hmmin and Doughnuts

Attempting to prove the consistency of hmmin < r, a model worth checking
is the one gained by iterating Silver forcing with countable supports in
length ω2. For the definition of Silver forcing , cf. [971Gr]. One would have
to check that all reals added by this iteration are branches through some
cmin-homogeneous tree in the ground model. However by an easy argument
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hmmin and Doughnuts

of Geschke this already fails for an iteration of length 1. This argument can
be employed to prove another inequality between cardinal characteristics.

Definition 3.26 ([000DH]).

• Let K ∈ [ω]ω and let H ⊂ K be such that K \H ∈ [K]ω. We call the
set (H,K) ..= {X | X ⊂ K ∧H ⊂ X} a doughnut .

• We call a set X ⊂ P(ω) completely doughnut null if for every doughnut
Y there is a doughnut Z ⊂ Y with Z ∩X = ∅.

• The collection of completely doughnut null sets is denoted by v0.

Theorem 3.27. cov(v0) 6 hmmin.

Proof. Consider the following function:

G : P(ω) −→ ω2,

x 7−→ (k 7→ x ∩ {min{` < ω | `+ x ∩ (`+ 1) > k}}).

G takes the indicator function of x and successively replaces every zero by a
zero and every one by two ones.

Let {Hα | α < hmmin} be a family of hmmin cmin-homogeneous sets
covering the Cantor space. Let Ĥα

..= G−1“Hα for α < hmmin. Clearly,
{Ĥα | α < hmmin} covers P(ω) so it remains to be shown that Ĥα ∈ v0 for
every α < hmmin. So let α < hmmin and let (I0, I1) be a doughnut. We have
to find a doughnut (K0, K1) ⊂ (I0, I1) which is disjoint from Ĥα.

So let i < 2, y ∈ ω2 be such that Hα is coded by y, i.e. ∀x ∈ Hα : ϑi(x, y).
Let k ..= min(I1 \ I0) and let ` ..= min(I1 \ (I0 ∪ {k})). Let j ..= `+ ` \ Ii(2)

and define Jj ..= Ij4{k} and J1−j
..= I1−j.

Note that J0 ∩ ` = J1 ∩ ` and J0 ∩ ` + ` has parity i. Now take any
z ∈ (J0, J1) and set

j ..= y
(
2
J0∩`+`−i

2 − 1 +
∑

m <J0∩`+`+i
2

2mG(z)(2m+ 1− i)
)
.
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3. Relations to Other Cardinal Characteristics

Note that j does not depend on the choice of z. Now let Kj
..= Jj4{l}

and K1−j
..= J1−j. Now assume towards a contradiction that there is an

x ∈ (K0, K1) ∩ Ĥα.

• Suppose ` ∈ x. Then j = 0 by definition of (K0, K1). Since x ∈ Ĥα

we have G(x) ∈ Hα and since y codes Hα we get G(x)(K0 ∩ `+ `) = 0.
But on the other hand G(x)(K0 ∩ `+ `) = x ∩ {`} = 1. Contradiction!

• Suppose ` /∈ x. Then j = 1 by definition of (K0, K1). Since x ∈ Ĥα we
have G(x) ∈ Hα and since y codesHα we get G(x)(K0 ∩ `+`) = 1. But
on the other hand G(x)(K0 ∩ `+ `) = x ∩ {`} = 0. Contradiction!

hm3 and the Reaping Number

While the question about the possible relations of r to hmmin remains open
it turns out that it is possible to give an answer about its relation to hm3.

Theorem 3.28. r 6 hm3.

Proof. Suppose towards a contradiction that r > hm3. Let

χ : [ω2]3 −→ 2,

{x, y, z}lex 7−→

{
x(∆(y, z)) if and only if st({x, y, z}) = id),

0 else,

and let F = {Tα | α < hm3} be a family of hm3 weakly χ-homogeneous
perfect trees such that

⋃
T∈F [T ] = ω2. We may assume w.l.o.g. that the

covering is done with perfect sets since every set weakly homogeneous with
respect to a continuous colouring is contained in a weakly homogeneous
perfect set. For any perfect tree T ⊂ <ω2 let ε : <ω2←→ T be the embedding
preserving not only the tree-order but also the lexicographic order and
mapping onto the set of splitting nodes of T . Now for any α < hm3, let
iα < 2 be the colour assigned to triples of branches through T of type id, cf.
Definition 2.1. For any α < hm3 we define a set of ℵ0 infinite sets of natural
numbers {xωα+k | k < ω} as follows. xωα is the set of levels of splitting
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nodes on the rightmost branch, i.e. it is defined as (lt ◦ε)“s where s is the
sequence of ones of order-type ω. Now for any k < ω let sk be the sequence
of k ones and let Xωα+k+1 be the set of levels of splitting nodes in Tα(ε(sk)).

Consider the family X ..= {xα | α < hm3}. Since hm3 < r there is a
y ∈ [ω]ω splitting every element of X. Let fy be the characteristic function
of y. By assumption there is an α < hm3 such that fy ∈ [Tα]. Because y
splits xωα = {`0, `1, . . . } there is a k < ω such that fy(`k) = 0. But y also
splits xωα+k+1 so there is an m ∈ xωα+k+1 such that fy(m) + iα = 1. But
then fy /∈ [Tα], contradiction!

Open Problems

Many more questions may be asked about the relationship between hmmin

and other cardinal characteristics of the continuum. We shall give a quick
overview here to indicate possible directions of future research.

Given that cof(N ) 6 hmmin we know that all cardinal characteristics
from Cichoń’s diagram lie below all the homogeneity numbers. Since the
dominating number d has a place both in Cichoń’s and in van Douwen’s
diagram, the only cardinal characteristics whose relation to the homogeneity
numbers can be of any interest, left in van Douwen’s diagram, are a, i, r and
u. The consistency of hmmin < a, even if true, might be difficult to prove
since even the consistency of d < a had long been an open problem which
was positively settled by Shelah in [004Sh] in an entirely non-trivial way.
This leaves i but there are reasons why one might want to consider other
cardinal characteristics.

One reason only applies to possible relations of cardinal characteristics
to hmmin. It is that even the consistency of hmmin < r is an open problem.
Hypothetically, the consistency of hmmin < i could be easier to prove but r
is a simpler cardinal characteristic. It is simpler in the following sense. Both
r and i are defined as the minimal size of a family with a certain property.
But in the case of r this property is preserved under the action of taking
superfamilies whereas with i this is not the case. Now even for the higher
homogeneity numbers one might prefer to analyse their relation to simpler
cardinal characteristics first. Hence it might be fruitful to look outside the
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3. Relations to Other Cardinal Characteristics

realm of the canonised cardinal characteristics. First, however, we are going
to define a, i and u.

Definition 3.29. We call two sets x and y of natural numbers almost
disjoint if and only if their intersection is finite. A family F of sets of
natural numbers is an almost disjoint family if and only if any two distinct
elements of F are almost disjoint. A maximal almost disjoint family or mad
family for short is an almost disjoint family F such that for all x ∈ [ω]ω \ F
the family F ∪ {x} is not almost disjoint.

Definition 3.30. The almost disjoint number a is the least size of an infinite
mad family.

Definition 3.31. A family F of sets of natural numbers is called independent
if and only if for any X, Y ∈ [F ]<ω the set⋂

z∈X∨ω\z∈Y

z

is infinite. F is maximal if for all x ∈ [ω]ω \ F the family F ∪ {x} fails to
be independent.

Definition 3.32. The independence number i is the least size of a maximal
independent family.

Definition 3.33. A filter F on a set X is a family F ⊂ P(X) which is
closed under intersections and supersets. This means that for any a, b ∈ F
we have a ∩ b ∈ F and for any a ∈ F and b ⊂ X with b ⊃ a we have b ∈ F .

Definition 3.34. An ultrafilter U on a set X is a filter on X which is
maximal. This means that for any filter F on X with F ⊃ U we have
F = U . An ultrafilter is principal if there is an element e ∈ X such that
for all Y ⊂ X we have Y ∈ U if and only if e ∈ Y , otherwise it is called
nonprincipal .

Definition 3.35. A base for a filter F on a set X is a set B such that
F = {a | ∃b ∈ B : b ⊂ a}.
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Definition 3.36. The ultrafilter number u is the minimal size of a base of
a nonprincipal ultrafilter on ω.

Question 3.37. Is hmmin < a consistent with ZFC?

Question 3.38. Is hmmin < i consistent with ZFC?

Question 3.39. Is hmmin < u consistent with ZFC?

In [004B], Balcar, Hernández-Hernández and Hrušák considered cardinal
characteristics derived from the algebra 〈Dense(Q),⊂〉 instead of P(ω)/fin.
They defined analogues to t, h, s, r, and i. Since they proved tQ = t,
hQ 6 add(M), sQ 6 d and iQ = i the only cardinal characteristic from this
list which is worth looking at in addition is rQ.

For any dense x, y ⊂ Q we say that x dense-splits y if both y ∩ x and
y \ x are dense. A family F ⊂ [Q]dense is called dense-splittable if there is
an s ⊂ Q which dense-splits all x ∈ F . A family F ⊂ [Q]dense which is not
dense-splittable is called dense-unsplittable.

Definition 3.40. The dense reaping number rQ is the minimal cardinality
of a dense-unsplittable family.

Question 3.41. Is hmmin < rQ consistent with ZFC?

It is an interesting observation that the proof of Theorem 3.28 does not
straightforwardly generalise from r to rQ. So it seems tempting to ask yet
another question.

Question 3.42. Is hm3 < rQ consistent with ZFC?

In [000C] Cichoń, Krawczyk, Majcher-Iwanow and Węglorz defined dual
versions of the cardinal characteristics in van Douwen’s diagram by con-
sidering partitions of ω instead of subsets. We are employing the notation
introduced by Halbeisen in [998Ha] and referring to them using capital gothic
letters. In [000C] it is proved that A = c and it had already been proved
in [986Ma] that T = ℵ1. It is shown in [000C] that H 6 S and that R 6 r.
Keeping hmmin in mind this leaves S as an interesting open case. In [998Ha]
a variant S′ is defined for which it is obvious that S 6 S′.
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3. Relations to Other Cardinal Characteristics

Definition 3.43. A partition of ω is a family F of pairwise disjoint nonempty
sets of natural numbers such that

⋃
F = ω. If X and Y are partitions

of ω then X is finer than Y or, equivalently, Y is coarser than X, if and
only if for all b ∈ Y there is a Z ⊂ X such that b =

⋃
Z. We also say

that X is a refinement of Y or that Y is a coarsening of X. We say that
partitions X and Y are compatible if and only if there is a joint coarsening
Z which is infinite. They are orthogonal if the only joint coarsening is {ω}.
A partition X splits a partition Y if and only if X and Y are compatible
but there is a coarsening Z of Y such that X and Z are orthogonal. A
partition X is almost coarser than a partition Y if there is a finite set f of
natural numbers such that all joint coarsenings of X and f are coarser than
Y . If {{n} | n < ω} is almost coarser than X we call X trivial . A family
of partitions S is called splitting if and only if for every infinite non-trivial
partition X there is an S ∈ S such that S splits X.

After this preparatory definition we can finally define the dual splitting
number.

Definition 3.44. The dual splitting number S′ is the least size of a splitting
family of infinite partitions having an infinite element.

Question 3.45. Is hmmin < S′ consistent with ZFC?

For more details regarding a, i and u we refer the reader to [010Bl], for
details regarding the dense-subset-variants to [004B] and for details regarding
S′ to [998Ha].

Finally, there are questions regarding solely the homogeneity numbers.

Problem 3.46. Is “∀n < ω : hmn < c” consistent with ZFC?

Problem 3.47. Determine x ⊂ ω \ 2 such that hmn < hmn+1 is consistent
with ZFC if and only if n ∈ x.

By a result of Frick we know that 2 ∈ x, cf. [008Fr].
The final problem one should mention is one which both the author and

his advisor considered to be among the hardest on the topic.

Question 3.48. Is ℵ1 < hmmin < c consistent with ZFC?
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The only class of models in which hm2 < c is presently known to hold is
the class of models attained by an iteration of Sacks or Miller-lite forcing
notions with countable support of length a cardinal of cofinality at least
ω2. For a definition of Miller-lite forcing cf. [006Ge]. Although this leaves
a number of parameters open to variation this does not help much with
the questions concerning us because the supports are going to turn any
cardinal less than the iteration’s length into an ordinal less than ω2 in the
generic extension. Even a product of forcing notions does not work. So it
seems that for answering Question 3.48 in the affirmative one would have
to iterate notions of forcing but neither using finite nor countable supports.
In particular, one could not rely on the well-developed machinery of proper
forcing as for example laid out in [998Sh].

Summarising this chapter we provide a diagram encompassing Cichoń’s
diagram, van Douwen’s diagram, the cardinal characteristics rQ, S′,
Geschke’s result that cof(N ) 6 hmmin and ours that r 6 hm3.
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4

Partition Relations for Linear
Orders in a Non-Choice Context

In mathematics the art of asking
questions is more valuable than
solving problems.

Georg Ferdinand Ludwig
Philipp Cantor

Studying the splitting types of n-tuples of reals necessary to state The-
orem 2.2 one may realise that many arguments about partition relations,
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4. Partition Relations for Linear Orders in a Non-Choice Context

especially for general counterexamples in the presence of the Axiom of
Choice, can be slightly rephrased to yield quite similar counterexamples
in a different context. To be more precise, one can construct, without AC,
analogue results—in which the parameters which are natural numbers are
increased by one or two—for the linear ordering 〈α2, <lex〉 where α is an
ordinal.

From the Point of View of the Axiom of Choice

There is a fact which is only very scarcely stated because it is very easy to
prove. The fact of the matter is the following.

Fact 4.1 (ZFC). There is no order-type ϕ such that

ϕ→ (ω∗, ω)2.

When one considers a well-ordering of ϕ and puts a pair into the first
class if the natural order and the well-order agree on it, and into the second
if they disagree, a homogeneous set would have to have a descending chain
in the well-ordering, which is absurd. One can use similar arguments to
show the following theorems.

Theorem 4.2 (ZFC). There is no order-type ϕ such that

ϕ→ (ω∗ + ω, 4)3.

Theorem 4.3 (ZFC). There is no order-type ϕ such that

ϕ→ (ω + ω∗, 4)3.

These theorems were first proved by Arthur H. Kruse in [965Kr] and
later reproved by Erdős, Milner and Rado in [971E]. In the latter paper the
following theorem was proved as well.

Theorem 4.4 (ZFC). There is no order-type ϕ such that

ϕ→ (ω + ω∗ ∨ ω∗ + ω, 5)3.

In this paper the authors also mentioned that they were unable to decide
the existence of an order-type ϕ such that ϕ→ (ω + ω∗ ∨ ω∗ + ω, 4)3. The
problem of the existence of such a type remains unsolved to this day.
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Plain Vanilla ZF

Plain Vanilla ZF

From this point on any use of the Axiom of Choice is rescinded. The goal
of this section is to prove propositions and theorems analogous to Fact 4.1
and Theorems 4.2, 4.3 and 4.4. We consider partitions of subsets of linear
orders embeddable into some 〈α2, <lex〉 into two parts. We are primarily
interested in the question for which choices of order-types for sought-after
homogeneous sets and which sizes of the subsets partitioned we can have a
positive partition relation at all. That this could be an interesting endeavour
was somewhat suggested by noticing the following proposition to hold true.

Proposition 4.5 (ZF). There is no ordinal number α such that

〈α2, <lex〉 → (ω∗, ω)3.

For the proof of the proposition above and for many of the proofs
following we are referring to the length of the splitting node of the branches
x and y, i.e. the largest node which is an initial segment of both x and y,
by ∆(x, y). Formally,

∆(b, c) ..= min{γ < α | b(γ) 6= c(γ)} for b, c ∈ α2.

Proof. Assume towards a contradiction that there was such an α and let
L ..= 〈α2, <lex〉. Consider the following colouring:

χ : [α2]3 −→ 2,

{b, c, d}<lex 7−→

{
0 if and only if ∆(b, c) < ∆(c, d),

1 else.

Now assume there is a set X ∈ [L]ω
∗ homogeneous for χ in colour 0. Let

〈xi | i < ω〉 a strictly descending enumeration of X. Since X is homogeneous
in colour 0 we have ∆(xi+2, xi+1) < ∆(xi+1, xi) for all i < ω. But ran(∆) = α

and α is well-ordered. Contradiction!
So there is an X ∈ [L]ω homogeneous for χ in colour 1. Note that no

{x, y, z}<lex ∈ [L]3 can satisfy ∆(x, y) = ∆(y, z). So if 〈xi | i < ω〉 is a
strictly ascending enumeration of X then 〈∆(xi, xi+1) | i < ω〉 is a strictly
descending sequence of ordinals—contradiction!
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4. Partition Relations for Linear Orders in a Non-Choice Context

Proposition 4.6 (ZF+DC+BP). 〈ω2, <lex〉 → (〈ω2, <lex〉)2
2.

Proof. Suppose BP holds true and χ : [ω2]2 −→ 2 is any colouring. By
Lemma 2.3 we may assume w.l.o.g. that it is continuous. Then by The-
orem 2.2 we find a homogeneous perfect set, that is, a set order-isomorphic
to ω2.

Proposition 4.7 (ZF+DC+BP). 〈ω2, <lex〉 → (〈ω2, <lex〉, 1 +ω∗ ∨ω+ 1)3
2.

Proof. Suppose BP holds true and χ : [ω2]3 −→ 2 is any colouring. By
Lemma 2.3 we may assume w.l.o.g. that it is continuous. Then by The-
orem 2.2 we may suppose w.l.o.g. that the colour of a triple only depends
on its splitting-type. Now consider the sets

Xi
..= {x ∈ ω2 | {n < ω | x(n) = i} < 2}.

X0 has order type ω + 1 and X1 has order-type 1 + ω∗. For both i the
sets Xi only contain triples of one splitting type. Now if triples of both
splitting types get colour 0 then we have a set of order type 〈ω2, <lex〉 which
is homogeneous in colour 0. If one of the splitting types gets colour 1 then
we have a set homogeneous in colour 1, either of order-type ω + 1 or of
order-type 1 + ω∗.

Theorem 4.8 (ZF). There is no countable ordinal number α such that

〈α2, <lex〉 → (〈ω+12, <lex〉,ℵ0)3.

Proof. Let b : α ↔ ω be a bijection. Let β(x, y) be an abbreviation for
b(∆(x, y)) for x, y ∈ α2. Consider the following hypergraph:

E ..= {{x0, x1, x2}<lex | ∆(x0, x1) < ∆(x1, x2) ∧ β(x1, x2) < β(x0, x1)}.

Suppose that there was an X ∈ [α2]ℵ0 such that [E]3 ⊂ E. If X contains
order-type ω∗ let 〈xn | n < ω〉 be an order-reversing enumeration of a part
of X. Then 〈∆(xn+1, xn) | n < ω〉 is an infinite descending sequence of
ordinals.

If X contains order-type ω let 〈xn | n < ω〉 be an order-preserving
enumeration of a part of X. Then 〈β(xn, xn+1) | n < ω〉 is an infinite
descending enumeration of natural numbers.
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Plain Vanilla ZF

Now suppose that there was an X ∈ [α2]
ω+12 such that [X]3 ⊂ [α2]3 \ E.

Let ι : ω+12←→ X be an order-preserving injection and let

fδ : ω + 1←→ 2

γ 7−→

{
0 if and only if γ = δ,

1 else.

for δ < ω + 2. Let xδ ..= ι(fδ) for δ < ω + 1. We have ∆(xn, xn+1) <

∆(xω, xω+1) for every n < ω. Pick n < ω such that β(xn, xω) > β(xω, xω+1).
Then {xn, xω, xω+1} ∈ E.

Now we are able to prove choiceless analogues to the theorems in [971E].

Theorem 4.9 (ZF). There is no ordinal number α such that

〈α2, <lex〉 → (ω∗ + ω, 5)4.

Proof. Assume towards a contradiction that there were such an ordinal α.
Consider the hypergraph G ..= 〈κ2, E0〉 with hyper-edge-relation

E0
..= {{x0, x1, x2, x3}<lex | ∆(x1, x2) < ∆(x0, x1),∆(x2, x3)}.

First assume that there would be a Z ∈ [α2]ω
∗+ω independent from G,

i.e. [Z]4 ∩ E0 = ∅. Let s ∈ <α2 be the longest common initial segment of
the elements of Z, i.e. ∀z ∈ Z, γ < lt(s) : z(γ) = s(γ). Then for Z0

..= {z ∈
Z | z(lt(s)) = 0} and Z1

..= {z ∈ Z | z(lt(s)) = 1} we have otyp(Z0) = ω∗

and otyp(Z1) = ω. Now for any {x0, y0}<lex ∈ [Z0]
2 and any {x1, y1}<lex ∈

[Z1]
2 we obtain ∆(y0, x1) < ∆(x0, y0),∆(x1, y1). Therefore we have found

{x0, y0, x1, y1}<lex ∈ [Z]4 ∩ E0. Contradiction!
Now assume that there would be a Q ∈ [α2]5 being a complete sub-

hypergraph of G, i.e. [Q]4 ⊂ E0. Suppose Q = {q0, q1, q2, q3, q4}<lex.
Choose i ∈ 3 \ 1 such that ∆(qi, qi+1) is minimal. Suppose i = 1. Then
∆(q2, q3) > ∆(q1, q2) and hence Q \ {q0} /∈ E0. Now suppose i = 2. Then
∆(q1, q2) > ∆(q2, q3) and hence Q \ {q4} /∈ E0. Contradiction!

Theorem 4.10 (ZF). There is no ordinal number α such that

〈α2, <lex〉 → (ω + ω∗, 5)4.
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Figure 4.1: Colouring of the splitting types for the proof of Theorem 4.9

Proof. Assume that there were such an α. Consider the hypergraph G ..=

〈α2, E1〉 with hyper-edge-relation

E1
..= {{x0, x1, x2, x3}<lex | ∆(x0, x1),∆(x2, x3) < ∆(x1, x2)}.

Suppose Y ∈ [α2]ω+ω∗ . Let s ∈ <α2 be the longest common initial segment
of the elements of Y . Then for Y0

..= {y ∈ Y | y(lt(y)) = 0} and Y1
..= {y ∈

Y | y(lt(y)) = 1} we have ω 6 otyp(Y0) or ω∗ 6 otyp(Y1). W.l.o.g. suppose
that ω 6 otyp(Y0). So let 〈yn | n < ω〉 be an ascending sequence of elements
of Y0 and let x3 be some element in Y1. Since κ is well-founded there is
an n < ω such that ∆(yn, yn+1) < ∆(yn+1, yn+2). Set xi ..= yn+i for i < 3.
Then {xi | i < 4}<lex ∈ [Y ]4 ∩ E1.

Now let Q ∈ [α2]5. Suppose Q = {q0, q1, q2, q3, q4}<lex . Choose i < 2 such
that ∆(qi+1, qi+2) is maximal. Then ∆(q2−i, q3−i) < ∆(qi+1, qi+2) and hence
Q \ {q4i} /∈ E1.
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Figure 4.2: Colouring of the splitting types for the proof of Theorem 4.10

Theorem 4.11 (ZF). There is no ordinal number α such that

〈α2, <lex〉 → (ω∗ + ω ∨ ω + ω∗, 7)4.

Proof. Consider the hypergraph G ..= 〈α2, E2〉 with hyper-edge-relation

E2
..=
⋃
i<2

Ei.

It has already been proved above that [Z]4 6⊂ [α2]4\E0 for every Z ∈ [α2]ω
∗+ω

and that [Y ]4 6⊂ [α2]4 \ E1 for every Y ∈ [α2]ω+ω∗ . Thus it only remains to
be shown that [S]4 6⊂ E2 for every S ∈ [α2]7. So let S = {s0, . . . , s6}. Let
n < 6 be such that ∆(sn, sn+1) is minimal. Suppose w.l.o.g. that n < 3. If
∆(s5, s6) < ∆(s4, s5) < ∆(s3, s4) then {s3, . . . , s6} ∈ [α2]4 \ E2. So suppose
that there is an m ∈ 6\3 such that ∆(sm, sm+1) < ∆(sm+1, sm+2). But then
{sn, sm, sm+1, sm+2} ∈ [α2]4 \ E2.

45



4. Partition Relations for Linear Orders in a Non-Choice Context

Figure 4.3: Colouring of the splitting types for the proof of Theorem 4.11

This statement is in fact less artificial than it might seem at first sight
since {ω∗ + ω, ω + ω∗} is a basis for the class of linear orders ϕ such that
neither ϕ nor ϕ∗ is an ordinal.

Theorem 4.12 (ZF+DC+BP).

〈ω2, <lex〉 → (ω + 1 + ω∗ ∨ 1 + ω∗ + ω + 1, 5)4.

Proof. Suppose that there is an E ⊂ [ω2]4 such that no Y ∈ [ω2]ω+ω∗ satisfies
[Y ]4 ⊂ [ω2]4 \E and no Z ∈ [ω2]ω

∗+ω satisfies [Z]4 ⊂ [ω2]4 \E. We will show
that there is a P ∈ [ω2]5 such that [P ]4 ⊂ E.

Recall that by Theorem 2.2 in connection with Lemma 2.3 and The-
orem 1.7 we can suppose w.l.o.g. that whether or not a quadruple be-
longs to E only depends on the splitting-type. So consider quadruples
Q ..= {q0, q1, q2, q3}<lex . If quadruples of type ∆(q0, q1) < ∆(q1, q2) <

∆(q2, q3) are in E then for quintuples P ..= {p0, p1, p2, p3, p4}<lex with
∆(p0, p1) < ∆(p1, p2) < ∆(p2, p3) < ∆(p3, p4) we have [P ]4 ⊂ E. This argu-
ment works analogously for quadruples with ∆(q2, q3) < ∆(q1, q2) < ∆(q0, q1).

46



Plain Vanilla ZF

So suppose w.l.o.g. that if a quadruple Q has one of these types then Q /∈ E.
Consider the following sets.

Y ..={y ∈ ω2 | ∀m < ω(y(m) ≡ m(2)→ ∀n ∈ ω \m : y(n) ≡ m(2))},

Z ..={y ∈ ω2 | {n ∈ ω \ 1 | y(n) 6= y(0)} 6 1}.

Y has order-type ω+ 1 +ω∗ while Z has order-type 1 +ω∗ + ω+ 1. Consider
the following types.

1. ∆(q1, q2) < ∆(q2, q3) < ∆(q0, q1),

2. ∆(q1, q2) < ∆(q0, q1) < ∆(q2, q3),

3. ∆(q0, q1) < ∆(q2, q3) < ∆(q1, q2),

4. ∆(q2, q3) < ∆(q0, q1) < ∆(q1, q2).

Y neither contains the first nor the second type. Z neither contains the
third nor the fourth type. So our last w.l.o.g.-assumption together with our
non-homogeneity-assumption for sets of order-type ω + 1 + ω∗ or ω∗ + ω

implies that for one the first two and for one of last two of the following types
we have Q ∈ E. Depending on the combination for one of the following four
splitting-types of quintuples P = {p0, p1, p2, p3, p4},

∆(p1, p2) < ∆(p3, p4) < ∆(p2, p3) < ∆(p0, p1),

∆(p2, p3) < ∆(p0, p1) < ∆(p1, p2) < ∆(p3, p4),

∆(p2, p3) < ∆(p3, p4) < ∆(p0, p1) < ∆(p1, p2),

∆(p1, p2) < ∆(p0, p1) < ∆(p3, p4) < ∆(p2, p3),

we have [P ]5 ⊂ E.

Now that we have given several negative partition relations for colourings
of quadruples excluding homogeneous quintuples in Theorems 4.9, 4.10, 4.14
and 4.15 and excluding homogeneous septuples in Theorem 4.11 the obvious
question is “What about sextuples?”. In order to give a partial answer to
this we point out that for ordinals α ∈ Ω \ ω2 there are two new possible
splitting pattern for sets in [α2]ω+ω∗ . Considering the proof of Theorem 4.12
these have to be taken into consideration additionally.
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Figure 4.4: Two possible splitting patterns of sets of order-type ω+ω∗ in α2

Theorem 4.13 (ZF). There is no countable ordinal number α such that

〈α2, <lex〉 → (ω∗ + ω ∨ ω + ω∗, 6)4.
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Figure 4.5: Colouring of the splitting types for the proof of Theorem 4.13
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Proof. Let α < ω1. Fix a bijection b : α←→ ω. Let β(x, y) be an abbrevi-
ation for b(∆(x, y)) for x, y ∈ α2. Consider the hypergraph G ..= 〈α2, E3〉
with hyper-edge-relation

E3
..=(E4 ∩ E7) ∪ (E5 ∩ E8) ∪ E6 where

E4
..={{x0, x1, x2, x3}<lex | ∆(x1, x2) < ∆(x0, x1),∆(x2, x3)},

E5
..={{x0, x1, x2, x3}<lex | ∆(x2, x3) < ∆(x0, x1) < ∆(x1, x2)},

E6
..={{x0, x1, x2, x3}<lex | ∆(x0, x1) < ∆(x2, x3) < ∆(x1, x2)},

E7
..={{x0, x1, x2, x3}<lex | β(x1, x2) < β(x0, x1)},

E8
..={{x0, x1, x2, x3}<lex | β(x0, x1) < β(x2, x3)}.

Note that the Ei’s with i ∈ 7 \ 4 are pairwise disjoint.

♦ Let Z ∈ [α2]ω
∗+ω. Suppose towards a contradiction that [Z]4 ⊂ [α2]4 \E3.

Let e : Z ←→ Z be the order-preserving enumeration of Z. Let z ∈ Z
be such that ∆(e(z), e(z + 1)) < ∆(e(y), e(y + 1)) for every y ∈ Z \ {z}.
Then {e(y) | y ∈ Z ∧ y > z} has order-type ω and {e(y) | y ∈ Z ∧ y 6 z}
has order-type ω∗. Let 〈xn|n < ω〉 be an order-preserving enumeration of
{x ∈ Z | y > e(z)} and let 〈yn | n < ω〉 be an order-reversing enumeration
of {y ∈ Z | y 6 e(z)}. Note that ∆(ym, xn) = ∆(y0, x0) for all m,n < ω.
Since β(y0, x0) is natural there exists an n < ω such that β(y0, x0) <

β(yn+1, yn). But then {yn+1, yn, x0, x1} ∈ E4 ∩ E7 ⊂ E3, a contradiction!

♦ Let H ∈ [α2]6. We write H = {h0, . . . , h5}<lex . Suppose towards
a contradiction that [H]4 ⊂ E3. First note that for no quadruple
{q0, q1, q2, q3}<lex = Q ∈ [H]4 we have ∆(q0, q1) < ∆(q1, q2) < ∆(q2, q3)

since we would have Q /∈
⋃
i∈7\4Ei ⊃ E3 then. For the same reason we

have ∆(q2, q3) < ∆(q1, q2) < ∆(q0, q1) for no such quadruple. But then we
know that

∆(h2, h3) < ∆(h0, h1),

∆(h0, h1) < ∆(h1, h2),

∆(h2, h3) < ∆(h4, h5),

∆(h4, h5) < ∆(h3, h4),

∀m < 3, n ∈ 6 \ 3: ∆(hm, hn) = ∆(h2, h3).
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Consider the quadruple Q ..= {h0, h1, h4, h5}. We have Q ∈ E4. From
Q ∈ [H]4 we obtain Q ∈ E3. Together with the aforementioned disjointness,
Q ∈ E7 follows. So β(h1, h4) < β(h0, h1). Now consider the quadruple
T ..= {h0, h1, h2, h5}. It is easy to see that T ∈ E5. Now T ∈ [H]4 implies
T ∈ E3. By disjointness, T ∈ E8. So β(h0, h1) < β(h2, h5). But then

β(h0, h1) < β(h2, h5) = β(h1, h4) < β(h0, h1),

a contradiction!

♦ This is the most difficult case. Let Y ∈ [α2]ω+ω∗ . Suppose towards a
contradiction that [Y ]4 ⊂ [α2]4 \ E3. Note that because of E6 ⊂ E3 no
quadruple {q0, q1, q2, q3}<lex = Q ∈ [Y ]4 can satisfy ∆(q0, q1) < ∆(q2, q3) <

∆(q1, q2). We distinguish some more cases.

• There is a node s ∈ <α2 which is a splitting node of two elements in Y
such that X ..= {x ∈ Y | s _ 〈1〉 @ x} has order-type γ + ω∗ for some
γ < ω + 1. Let 〈xn|n < ω〉 be the order-reversing enumeration of the
right part of X. Then let n < ω be such that ∆(xn+1, xn) is minimal. Let
y ∈ Y be such that s _ 〈0〉 @ y. Then {y, xn+2, xn+1, xn} ∈ E6 ⊂ E3, a
contradiction.

• There is no such node. Let s0 be the first splitting node of elements of
Y . For every n < ω let sn+1 be the first splitting node of elements of Y
extending sn _ 〈0〉. If supn<ω lt(sn) = α then Y would only have had
order-type ω∗ so we may assume that s ..=

⋃
n<ω sn is a node in <α2. We

also know by the assumption defining this subcase that X ..= {y ∈ Y | s @
y} has order-type ω. Let 〈xn | n < ω〉 be an order-preserving enumeration
of X. Let n < ω be such that glb(xn, xn+1) is the lowest splitting-node
above s. Note that for all y 6@ s we have {xn, xn+1, xn+2, y} ∈ E5. Also
note that because of the assumption defining this subcase we can choose
a y ∈ Y with y 6@ s such that β(xn+2, y) > β(xn, xn+1). But then
{xn, xn+1, xn+2, y} ∈ E5 ∩ E8 ⊂ E3, again a contradiction.

Theorem 4.14 (ZF). There is no countable ordinal number α such that

〈α2, <lex〉 → (ω + 2 + ω∗ ∨ ω∗ + ω, 5)4.
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Figure 4.6: Colouring of the splitting types for the proof of Theorem 4.14
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The proof is similar to the proof of Theorem 4.13.

Proof. Suppose there were such an α. We can construct a counterexample
similarly to the one for Theorem 4.13. For this, consider the hypergraph
G ..= 〈α2, E9〉 with

E9
..=(E4 ∩ E7 ∩ E10) ∪ (E5 ∩ E11) ∪ (E6 ∩ E11) where

E10
..={{x0, x1, x2, x3}<lex | β(x1, x2) < β(x2, x3)},

E11
..={{x0, x1, x2, x3}<lex | β(x1, x2) < β(x0, x3)}.

♦ Let Z ∈ [α2]ω
∗+ω. Suppose towards a contradiction that [Z]4 ⊂ [α2]4 \E9.

Let e : Z −→ Z be the order-preserving enumeration of Z. Let z ∈ Z be
such that ∆(e(z), e(z + 1)) < ∆(e(y), e(y + 1)) for any y ∈ Z \ {z}. Let
〈xn | n < ω〉 be an order-preserving enumeration of {y ∈ Z | y > e(z)} and
let 〈yn | n < ω〉 be an order-reversing enumeration of {y ∈ Z |<6 e(z)}.
We have ∆(ym, xn) = ∆(y0, x0) for all m,n < ω. Since β(y0, x0) is natural
there exists an m < ω such that β(y0, x0) < β(ym+1, ym). Similarly, there
is an n < ω such that β(y0, x0) < β(xn, xn+1). Then {yn+1, ym, xn, xn+1) ∈
E4 ∩ E7 ∩ E10, a contradiction!

♦ Now suppose that P ∈ [α2]5. We write P = {p0, . . . , p4}<lex . Sup-
pose towards a contradiction that [P ]4 ⊂ E9. For no quadruple
{q0, . . . , q3}<lex = Q ∈ [P ]4 we have ∆(q0, q1) < ∆(q1, q2) < ∆(q2, q3) or
∆(q2, q3) < ∆(q1, q2) < ∆(q0, q1) since this would imply Q /∈

⋃
i∈7\4Ei ⊃ E9.

Then one of the following two cases applies.

• One possibility is that ∆(p2, p3) < ∆(p0, p1) < ∆(p1, p2) and ∆(p2, p3) <

∆(p3, p4) and ∆(pm, pn) = ∆(p2, p3) for all m < 3 and n ∈ 5 \ 3. Now
consider the quadruple Q ..= {p1, p2, p3, p4}. We have Q ∈ E4. From
Q ∈ [P ]4 we get Q ∈ E9. By disjointness we have Q ∈ E7. So β(p2, p3) <

β(p1, p2). Now consider the quadruple T ..= {p0, p1, p2, p3}. We have
T ∈ E5. Now T ∈ [P ]4 implies T ∈ E9. By disjointness, T ∈ E11. So
β(p1, p2) < β(p0, p3), but then

β(p2, p3) < β(p1, p2) < β(p0, p3) = β(p2, p3),

a contradiction!
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• The other possible constellation is to have ∆(p1, p2) < ∆(p0, p1),
∆(p1, p2) < ∆(p3, p4) < ∆(p2, p3) and ∆(pm, pn) = ∆(p1, p2) for all m < 2

and n ∈ 5 \ 2. Consider the quadruple Q ..= {p0, p1, p2, p3}. We have
Q ∈ E4. From Q ∈ [P ]4 we get Q ∈ E9. By disjointness, Q ∈ E10 so
β(p1, p2) < β(p2, p3). Now consider the quadruple T ..= {p1, p2, p3, p4}.
We have T ∈ E6. T ∈ E9 since T ∈ [P ]4. Now T ∈ E11 by disjointness, so
β(p2, p3) < β(p1, p4). But then

β(p1, p2) < β(p2, p3) < β(p1, p4) = β(p1, p2),

a contradiction!

♦ Let Y ∈ [α2]ω+2+ω∗ . Suppose towards a contradiction that [Y ]4 ⊂ [α2]4\E9.
We distinguish two subcases.

• There is a node s ∈ <α2 which is a splitting node of two elements in
Y such that for Xi

..= {x ∈ Y | s _ 〈i〉} for i < 2, we have that
otyp(X0) > ω and otyp(X1) > ω∗. In this case let 〈xn | n < ω〉 be an
order-preserving enumeration of the left part of X0 and let 〈yn | n < ω〉
be an order-reversing enumeration of the right part of X1. Clearly for any
m,n < ω we have ∆(xm, yn) = ∆(x0, y0). Since β(x0, y0) is natural and
m 7→ β(xm, xm+1) and n 7→ β(yn+1, yn) are injections we find m,n < ω

such that β(xm, xm+1), β(yn+1, yn) ∈ ω \ (β(x0, y0) + 1) which implies
{xm, xm+1, ym+1, ym} ∈ E4 ∩ E7 ∩ E10 ⊂ E9, a contradiction.

• There is no such node. Let y1, y2 ∈ Y be such that otyp({y ∈ Y | y <
y1}) = ω, otyp({y ∈ Y | y2 < y}) = ω∗ and y1 < y2. Let s0 be the lowest
splitting node of elements of Y . For any n < ω let in < 2 be the uniquely
determined i < 2 such that {y ∈ Y | y A sn _ 〈i〉} is infinite. Now
let sn+1 be the first splitting node of elements of Y extending sn _ 〈in〉
and let xn ∈ Y be such that xn A sn _ 〈1 − in〉. There is an n < ω

such that β(y1, y2) < β(y1, xn). Choose y0 ∈ Y \ {y1, y2, xn} such that
y0 A sn _ 〈in〉 and {y0, y1, y2, xn} ∈ E5 ∪ E6. This is possible because
only finitely many elements of Y were branching off below sn by our case
assumption. But β(y1, xn) = β(y0, xn) and hence β(y1, y2) < β(y0, xn). So
{y0, y1, y2, xn} ∈ E11. But then {y0, y1, y2, xn} ∈ E9, a contradiction.
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Theorem 4.15 (ZF). There is no countable ordinal number α such that

〈α2, <lex〉 → (ω + ω∗ ∨ 2 + ω∗ + ω, 5)4.

55



4. Partition Relations for Linear Orders in a Non-Choice Context

b(δ) < b(γ)

γ

δ

b(δ) < b(γ)

γ

δ

b(δ) < max(b(γ), b(ε))

γ

δ

ε

max(b(γ), b(ε)) < b(δ)

γ

δ

ε

b(γ) < b(δ)

γ

δ

b(γ) < b(δ)

γ

δ

Figure 4.7: Colouring of the splitting types for the proof of Theorem 4.15
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Proof. Suppose there were such an α. Again we are using β to construct a
counterexample. So consider the hypergraph G ..= 〈α2, E12〉 with

E12
..=(E13 \ (E7 ∪ E10)) ∪ (E5 \ E10) ∪ (E6 \ E10) where

E13
..={{x0, x1, x2, x3}<lex | ∆(x2, x3) < ∆(x1, x2) < ∆(x0, x1)}.

♦ Let Y ∈ [α2]ω+ω∗ and suppose towards a contradiction that [Y ]4 ⊂
[α2]4 \ E12. As in the proof of Theorem 4.13 we distinguish two subcases.

• If there is a node s ∈ <α2 which is a splitting node of two elements in Y
such that X ..= {y ∈ Y | s _ 〈1〉 @ y} has order-type γ + ω∗ for some
γ < ω+ 1, let 〈xn | n < ω〉 be the order-reversing enumeration of the right
part of X. Let m < ω be such that ∆(xm+1, xm) is minimal and y ∈ Y
such that s _ 〈0〉 @ y . Surely now for any n ∈ ω \ (m + 1) we have
Q ..= {y, xn+1, xn, xm} ∈ E6. Choose n ∈ ω\(m+1) so that β(xn+1, xn) >

β(xn, xm). Then Q /∈ E10 and hence Q ∈ E12, a contradiction.

• If there is no such node we let s0 be the first splitting node of elements
of Y and fix some y ∈ Y with y A s0 _ 〈1〉. For any n < ω we let
sn+1 be the first splitting node of elements of Y extending sn _ 〈0〉. If
supn<ω lt(sn) = α then Y would only have had order-type ω∗ so we may
assume that s ..=

⋃
n<ω sn is a node in

<α2. Of courseX ..= {y ∈ Y | s @ y}
has order-type ω. Let 〈xn | n < ω〉 be an order-preserving enumeration
of X and let m < ω be such that ∆(xm, xm+1) is minimal. Clearly for all
n ∈ ω \ (m+ 1) we have {xm, xn, xn+1, y} ∈ E5. Then let n ∈ ω \ (m+ 1)

be such that β(xn, xn+1) > β(xm, y). But then {xm, xn, xn+1, y} /∈ E10.
So {xm, xn, xn+1, y} ∈ E12.

♦ Now let P ∈ [α2]5 and suppose towards a contradiction that [P ]4 ⊂ E12.
Then the definition of E12 implies that for no quadruple {q0, q1, q2, q3}<lex =

Q ∈ [P ]4 we have ∆(x0, x1) < ∆(x1, x2) < ∆(x2, x3) orQ ∈ E4. This means
that one of the following four cases applies.

• Suppose first that ∆(p3, p4) < ∆(p2, p3) < ∆(p1, p2) < ∆(p0, p1). Let
Qi

..= {p0, . . . , pi+3} for i < 2. Q0 /∈ E10 since Q0 ∈ E12. This means that
β(p1, p2) > β(p2, p3). On the other hand we have Q1 /∈ E7 since Q1 ∈ E12.
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This gives us β(p2, p3) > β(p1, p2). So we have β(p1, p2) = β(p2, p3). But
clearly, ∆(p1, p2) 6= ∆(p2, p3), contradicting b being one-to-one.
• Now suppose that ∆(p3, p4) < ∆(p2, p3) < ∆(p0, p1) < ∆(p1, p2). Consider
the quadruple Q1

..= {p1, p2, p3, p4}. We have Q1 ∈ E13 and since E13 ⊂
[α2]4 \ (E5 ∪ E6) and Q1 ∈ E12 we have Q1 /∈ E7. This means that
β(p2, p3) > β(p1, p2). Now consider the quadruple Q0

..= {p0, p1, p2, p3}.
Clearly, Q0 ∈ E5. Because of Q0 ∈ E12 we also have Q0 /∈ E10 so
β(p1, p2) > β(p2, p3). So together we have β(p1, p2) = β(p2, p3) while
∆(p1, p2) 6= ∆(p2, p3), again contradicting b being one-to-one.
• Another variant is the situation ∆(p0, p1) < ∆(p3, p4) < ∆(p2, p3) <

∆(p1, p2). Consider Q1
..= {p1, p2, p3, p4}. It is easy to see that Q1 ∈ E13.

Since Q1 ∈ E12 we have Q1 /∈ E7 and hence β(p2, p3) > β(p1, p2). Also
consider Q0

..= {p0, p1, p2, p3}. Q0 ∈ E6 and from Q0 ∈ E12 we obtain
Q0 /∈ E10, so β(p1, p2) > β(p2, p3). Together this yields β(p1, p2) =

β(p2, p3). Since b is one-to-one this implies ∆(p1, p2) = ∆(p2, p3) which is
a contradiction.
• Finally, consider the case where ∆(p3, p4) < ∆(p0, p1) < ∆(p2, p3) <

∆(p1, p2). Look at Q1
..= {p1, p2, p3, p4}. Clearly, Q1 ∈ E13. Because of

Q1 ∈ E12 we have Q1 /∈ E7 so, on the one hand, β(p2, p3) > β(p1, p2).
On the other hand we can consider Q0

..= {p0, p1, p2, p3}. Q0 ∈ E6 and
since Q0 ∈ E12 we get Q0 /∈ E10 which means β(p1, p2) > β(p2, p3). So
β(p1, p2) = β(p2, p3) and b being one-to-one yields ∆(p1, p2) = ∆(p2, p3),
a contradiction.

♦ Finally suppose that there is a Z ∈ [α2]2+ω∗+ω such that [Z]4 ⊂ [α2]4 \E12.
We have to distinguish two cases.

• First, suppose that there is a node s ∈ <α2 which is a splitting node of
elements in Z such that with X ..= {z ∈ Z | z A s _ 〈1〉}) we have
otyp(X) > ω∗. W.l.o.g. we may suppose that otyp(X) = ω∗. Now let
z0 ∈ Z such that z0 A s _ 〈0〉 and let z3 ∈ X be such that for its
immediate predecessor z′, ∆(z′, z3) is minimal. Let 〈xn | n < ω〉 be a
descending sequence of elements of X. There has to be an n < ω such
that β(xn+1, xn) > max(β(z0, xn+1), β(xn, z3)). Then {z0, xn+1, xn, z3} ∈
E6 \ E10 ⊂ E12, a contradiction.
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• Now suppose that there is no such node. Let s0 be the lowest splitting
node of elements of Z. For any n < ω let sn+1 be the least splitting
node of elements of Z which lies above sn _ 〈0〉. Let s ..= supn<ω sn.
Since for no n < ω we have otyp({z ∈ Z | z A sn _ 〈1〉}) > ω∗ and
otyp(Z) = 2 +ω∗+ω we know that there are two elements z0, z1 ∈ Z such
that z0, z1 A s. Let z3 be the rightmost element of Z. For any n < ω and
any z′ ∈ Z such that z′ A sn _ 〈1〉 we have {z0, z1, z

′, z3} ∈ E13. Now
we can choose an n < ω such that (b ◦ lt)(sn) > max(β(z0, z1), (b ◦ lt)(s0))

and a z2 ∈ Z such that z2 A sn _ 〈1〉. Then {z0, z1, z2, z3} /∈ E7 ∪ E10

and hence {z0, z1, z2, z3} ∈ E12 which is a contradiction.

It should be noted that all the partition results above involving 〈ω2, <lex〉
could be stated again for λ, the order-type of the real number continuum,
in place of 〈ω2, <lex〉 since both orderings are bi-embeddable.

Three Conjectures

In light of the Theorems 4.13, 4.14, 4.15, 1.8 and 1.9 the author dares to
state the following three conjectures.

Conjecture 4.16 (ZF+DC+ADR). 〈ω12, <lex〉 → (ω∗ + ω ∨ ω + ω∗, 6)4.

Conjecture 4.17 (ZF+DC+ADR). 〈ω12, <lex〉 → (ω∗ + ω∨ω+2+ω∗, 5)4.

Conjecture 4.18 (ZF+DC+ADR). 〈ω12, <lex〉 → (2+ω∗ + ω∨ω+ω∗, 5)4.

The rationale of this is roughly as follows. A partition relation is usually
shown to be false by straightforwardly defining a partition witnessing its
falsity. This is usually done exploiting some structure. Often but not always
the existence of this structure is only known by virtue of the Axiom of
Choice.

It very much seems that without the Axiom of Choice there is not enough
structure of the appropriate kind left in 〈ω12, <lex〉 to falsify the statements of
Conjectures 4.16, 4.17 and 4.18. Originally, the author believed that a proof
might be possible by using the methods developed in this chapter together
with the strong partition properties for ω and ω1. This idea, however, might
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have been too optimistic. A combination of the methods of this chapter
with those employed to prove the strong partition properties for ω and ω1

could quite likely be enough to show the three conjectures above to hold.

Rephrasings

Finally it should be noted that Theorems 4.11, 4.12 and 4.13 as well as
Conjecture 4.16 allow for alternative formulations. These are equivalent with
the sole exception of Theorem 4.20 which is in fact stronger than Theorem
4.12 yet yielded by the proof of Theorem 4.12.

Theorem 4.19 (ZF). There is no ordinal number α such that

〈α2, <lex〉 → (neither well-ordered nor anti-well-ordered, 7)4.

Theorem 4.20 (ZF+DC+BP).

〈ω2, <lex〉 → (closed but neither well-ordered nor anti-well-ordered, 5)4.

Theorem 4.21 (ZF). There is no countable ordinal number α such that

〈α2, <lex〉 → (neither well-ordered nor anti-well-ordered, 6)4.

Conjecture 4.22 (ZF+DC+ADR).

〈ω12, <lex〉 → (neither well-ordered nor anti-well-ordered, 6)4.
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5

A Theorem for Scattered Linear
Orders

If people did not sometimes do
silly things, nothing intelligent
would ever get done.

Ludwig Wittgenstein

Recall that an order-type ϕ is called scattered if and only if η 66 ϕ, that
is, if it is impossible to embed the rational numbers order-preservingly into
it. Scattered orders have been analysed before. In [908Ha] Hausdorff proved
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that the class of countable scattered order-types is identical to the smallest
class of order-types containing the singleton which is closed under taking
unions of length ω and ω∗. In [971La] Laver proved Fraïsse’s Conjecture by
showing the class of countable scattered orderings to be better-quasi-ordered
by the embeddability relation.

A quite comprehensive account of results, not all of them combinatorial,
about linear orderings was given in [982Ro]. Considering partition relations
and excluding the results of well-orders the landscape of theorems looks
as follows. Erdős and Rado proved in [956ER] that η → (η,ℵ0)2.Erdős and
Hajnal proved in [963EH] that for any countable scattered linear order τ
we have that τ → (ϕ,ℵ0)

2 implies ϕ ∈ {n, n + ω∗, ω + n | n < ω}. Larson
proved in [974La] that (ω∗ω)ω → ((ω∗ω)ω, n)2 for all natural numbers n.
There she also showed that (ω∗ω)nk → ((ω∗ω)n, k)2 for all natural numbers
k and n. The following result enriches the picture. It is heavily inspired by
the proof of the theorem in [972EM].1

Theorem 5.1. For every countable scattered linear order τ and every
natural number n there is a countable scattered linear order ϕ such that
ϕ→ (τ, n)2.

Proof. First note that by induction on n < ω we get the following partition
relation for any linear order τ :

τn → (τ)1
n.(5.1)

Now suppose that for some n ∈ ω \ 2 and two countable linear orders τ
and ϕ we have τ → (ϕ, n)2. We are going to construct a countable linear
order ψ such that ψ → (ϕ, n+ 1)2 with the property that ψ is scattered if
and only if τ is. Note that since ϕ→ (ϕ, 2)2 holds this is going to prove the
theorem. Let b : ϕ←→ ω. We define

ψ ..=
∑
ν<ϕ

τ b(ν).

So let c : [ψ]2 −→ 2 be any colouring. Suppose that no X ∈ [ψ]n+1 is
homogeneous in colour 1. We are now inductively going to construct a set of

1The author was somewhat surprised not to find Theorem 5.1 in the literature.
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order type ϕ which is homogeneous in colour 0. Suppose that in step m of
the induction we have constructed a set Xm = {x0, . . . , xm−1} of order type
m which is homogeneous in colour 0. Now consider the following colouring:

d : τm −→ m+ 1,

ξ 7−→ min({m} ∪ {k | k < m ∧ c({xk, 〈b−1(m), ξ〉}) = 1}).

We distinguish two cases.

1. ran(d) ⊂ m. Then by (5.1) there are X ∈ [τm]τ and k < m such that
c({xk, 〈b−1(m), ξ〉}) = 1 for all ξ ∈ X. If there were an H ∈ [X]n

homogeneous in colour 1 thenH∪{xk} would be homogeneous in colour
1 and of size n+1 which is a contradiction. Since τ → (ϕ, n)2 it follows
that within X there is a set of order type τ which is homogeneous in
colour 0.

2. ∃x ∈ τm : d(x) = m. By definition of d this means that Xm ∪ {xm} is
homogeneous in colour 0. So we set xm ..= x and Xm+1

..= Xn ∪ {xm}
and continue with our construction.

If this construction never stops with case 1 then after ω steps we let Z ..=⋃
m<ωXm = {xm | m < ω}. Z has order-type ϕ and is homogeneous of

colour 0.

Corollary 5.2. For any countable scattered linear order τ there is a count-
able scattered linear order ϕ such that for all natural numbers n we have
ϕ→ (τ, n)2.

To see this one simply has to glue together the orders ψn witnessing
the theorem for a natural number n. To be more precise, if for all natural
numbers n we have ψn → (τ, n)2 then we have ϕ → (τ, n)2 for all natural
numbers n where

ϕ ..=
∑
n<ω

ψn.

Conjecture 5.3. For any countable scattered linear order τ there exists a
countable scattered linear order ϕ > τ such that for all natural numbers n
we have ϕ→ (τ, n)2.
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Trying to prove the analogue theorem for orders of cardinality ℵ1 in the
same fashion one would need a scattered order ϕτ such that ϕτ → (τ)1

ω for
any given scattered order τ . However, lemma 1 in [003KS] shows that this
is not possible.

We dare to state the following conjecture.

Conjecture 5.4. Whether for any scattered linear order ϕ of size at most
ℵ1 and any natural number n there is a scattered linear order ψ of size ℵ1

such that ψ → (ϕ, n)2, is independent from ZFC.

Recall that an order-type is called σ-scattered if it can be presented as a
countable union of scattered order-types.

It is natural to conjecture that a generalisation of Theorem 5.1 is possible
by replacing “scattered” by “σ-scattered”. So we state another conjecture.

Conjecture 5.5. For any σ-scattered linear order τ of cardinality at most ℵ1

and any natural number n there is a σ-scattered linear order ϕ of cardinality
at most ℵ1 such that ϕ→ (τ, n)2.
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6

Partition Relations for Ordinals
of Simple Structure

If people do not believe that
mathematics is simple, it is only
because they do not realise how
complicated life is.

John von Neumann

The partition calculus as introduced by Erdős and Rado in [956ER] is of
interest both to set theorists and combinatorialists. While the former are
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usually more interested in statements with consistency strength which are
hence independent over ZFC the latter are normally interested in finitary
problems. In between falls a class of problems the æsthetic appeal of which is
in the author’s opinion usually underestimated—partition relations between
countable ordinals.

People working in this area seem to have been mainly interested in
evaluating partition relations of the form α → (α, n) for countable α and
natural n. A good example is [999Sc], the doctoral thesis of Rene Schipperus
which won him the Sacks prize. There are three cases in which partition
relations of the form α → (β, n) for β < α both countable and n natural
have been analysed in some generality. This was the case for both α and β
being either finite powers of ω, finite multiples of ω or natural numbers—the
last case of course being by far the most popular. In this last case people
went to great lengths to calculate the r(m,n)’s, see for example [995MR].
There are a few results which do not fall into one of these categories, for
example in [969Mi], [969HS3], [969HS] and [969HS2].

In the following, we are going to be concerned with arc-coloured digraphs,
i.e. directed graphs with coloured arcs.

Definition 6.1. A coloured digraph is a triple 〈V,A, c〉 such that V is a set
(of vertices), A is a binary irreflexive asymmetric relation on V—a set of
arcs—and c : A −→ ran(c) is a colouring of A.

We will be especially interested in three-coloured digraphs, i.e. in the
case where ran(c) = 3. Remember that a complete digraph is called a
tournament . In the interest of brevity we will speak of triples instead of
three-person-trichromatic-tournaments from now on.

In [956ER] Erdős and Rado prove the following theorem1.

Theorem 6.2. Let m,n ∈ ω \ 2 and denote by `0 = `0(m,n) the least finite
number ` possessing the following property.

Property Pmn. Whenever ρ(λ, µ) < 2 for {λ, µ} ∈ [`]2, then there is
either {λ0, . . . , λm−1} ∈ [`]m such that ρ(λα, λβ) = 0 for α < β < m or there
is {λ0, . . . , λn−1} ∈ [`]n such that ρ(λα, λβ) = 1 for {α, β} ∈ [n]2.

1The author changed the notation partially to his own.
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Then ω`0 → (m,ωn)2 but γ 6→ (m,ωn)2 for γ < ω`. Moreover, if
`1 → (m,m, n)2, then `0 6 `1.

Note that a possible alternative formulation of all but the last sentence
of this theorem would nowadays be the following.

Theorem 6.3. The partition relation ω`→ (ωm, n) holds true if and only
if for every digraph C on ` vertices, C contains an independent set of size
m or there is a subtournament S of C induced by a set of n vertices such
that all triples in S are transitive.

Theorems 6.2 and 6.3 are equivalent by a well-known fact:

Fact 6.4. If a tournament has a cycle then it has one of length 3.

Theorem 6.2 was later generalised by Baumgartner, cf. [974Ba], in the
following way:

Theorem 6.5. Let κ be any infinite cardinal. The partition relation κ`→
(κm, n) holds true if and only if for every digraph C on ` vertices, C contains
an independent set of size m or there is a subtournament S of C induced by
a set of n vertices such that all triples in S are transitive.

Following [997LM] we are writing Im for an independent set of size m,
Ln to denote a transitive tournament of size n and r(Im, Ln) for the least
number of vertices such that any digraph with so many of them either has
to contain an independent set of size m or an Ln as an induced subgraph.
This allows us to phrase Theorem 6.5 by simply writing

r(κm, n) = κr(Im, Ln)

for any infinite cardinal κ.

Added in Proof

The author believed for quite some time that he was the first to discover
that r(ω22, 3) = ω210. Only later he learned that this fact already appeared
in [969HS2]. Neither a proof was given nor was there a formulation of a
finitary problem equivalent to the calculation of the r(Im, An)’s or an upper
bound for the r(Im, A3)’s provided.
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6. Partition Relations for Ordinals of Simple Structure

Figure 6.1: The agreeable triples

Determining a Ramsey Number

In this section we mainly build on work of Pál Erdős and Richard Rado in
the aforementioned [956ER] and Ernst Specker in [957Sp]. The following
eclectic definition is justified by Theorem 6.11 the proof of which explains
the background of it.

Definition 6.6. We identify 0 with blue, 1 with red and 2 with green arrows.
A triple is called agreeable if and only if it is one of those shown in Figure 6.1.

If a triple is not agreeable we call it disagreeable. Note that all agreeable
triples are transitive rather than cyclic, i.e. there is both a vertex emitting
two arrows and a vertex absorbing two arrows.

Fact 6.7. A triple is disagreeable if and only if it is either cyclic, regardless
of the colouring or one of the transitive triples not listed in Figure 6.1. This
is depicted in Figure 6.2.

We remind the reader of the definition of weakly compacts.

Definition 6.8. κ ∈ Ω \ 3 is called weakly compact if and only if κ→ (κ)2
ω.
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Determining a Ramsey Number

Figure 6.2: The disagreeable triples

Fact 6.9. For all κ ∈ Ω we have κ→ (κ)2
2 if and only if κ ∈ {0, 1, 2, ω} or

κ is weakly compact.

Fact 6.10. κ→ (κ)2
2 if and only if ∀n < ω ∀α < κ : κ→ (κ)nα.

Both facts are corollaries of Theorem 7.6 of [003Ka] which can be found
on page 76.

Theorem 6.11. Let κ ∈ Ω \ 3 satisfy κ→ (κ)2
2.

The partition relation κ2` → (κ2m,n) holds true if and only if every
coloured digraph C = 〈`, A, c〉 with ran(c) = 3 contains an independent set
of size m or there is a subtournament S of C induced by a set of n vertices
such that all triples in S are agreeable.

Proof. ♦ Let us first assume that the finite combinatorial characterisation
above holds true. Given any colouring χ : [κ2`]2 −→ 2 we define a new
colouring χ′ as follows:

χ′ : [κ]4 −→ 24`2

{h, j, i, k}< 7−→
∑
f,g<`

(
χ({κ2f + κh+ j, κ2g + κi+ k})24(`f+g)

+χ({κ2f + κh+ i, κ2g + κj + k})24(`f+g)+1

+χ({κ2f + κh+ k, κ2g + κj + i})24(`f+g)+2

+χ({κ2f + κh+ j, κ2g + κh+ i})24(`f+g)+3
)
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6. Partition Relations for Ordinals of Simple Structure

Now we use Fact 6.10 in the form κ→ (κ)4
24`2

thereby finding an X ∈ [κ]κ

homogeneous for χ′.

Now fix a surjection b : X →−→ {〈ν, γ〉 | ν < ` ∧ γ < κ+ 1} and monotonic
enumeration functions eν : κ←→ b−1“({〈ν, κ〉}) such that

• ∀ν < `∀γ < κ+ 1: b−1“({〈ν, γ〉}) = κ,

• ∀ν < `∀γ < κ∀δ ∈ b−1“({〈ν, γ〉}) : eν(γ) < δ.

Now let Y ..= {κ2f +κh+ j | f < `∧h ∈ b−1(〈f, κ〉)∧ j ∈ b−1(〈f, e−1
f (h)〉)}.

In prose what’s happening is this: We distribute the elements of X to
signify multiples of 1 or κ in the ` blocks of size κ2. No two ordinals may
appear in two roles and within one κ2-block the 1-coordinate is always
larger than the κ-coordinate. Note that Y ∈ [κ2`]κ

2`.

Observe that the colour of an element {κ2f +κh+ j, κ2g+κi+ k} ∈ [Y ]2—
where we suppose that h < i—is completely determined by f , g and whether
h < j < i < k, h < i < j < k, h < i < k < j or h = i < j < k.

Now we define a coloured digraph C = 〈`, A, c〉 as follows. If for {f, g} ∈ [`]2

we have

• ∀{κ2f + κh+ j, κ2g+ κi+ k} ∈ [Y ]2 : χ({κ2f + κh+ j, κ2g+ κi+ k}) = 0

then there is no arc between f and g in C.

• ∃{κ2f + κh+ j, κ2g+ κi+ k} ∈ [Y ]2 : χ({κ2f + κh+ j, κ2g+ κi+ k}) = 1

where we again assume that h < i and

� h < i < k < j then we let f 7→bg.
� h < i < j < k then we let f 7→rg.
� h < j < i < k then we let f 7→gg.

In this case there may very well be more than one way to put an arc
between f and g and to colour it—clearly there could be six possible ways
to do this yet it suffices to do it in one way only.

Our remark above shows us that this is well-defined. Since ` is natural we
do not even have to use the Axiom of Choice.
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Now we may use our combinatorial statement. If I ∈ [`]m is independent
in C then obviously

Z ..= {{κ2f + κh+ j, κ2g + κi+ k} ∈ [Y ]2 | {f, g} ⊂ I ∧ h, i, j, k < κ}

is a homogeneous set of size κ2m in colour 0. Thus let us assume that there
is a subtournament S of C of size n such that all triples in S are agreeable.

Let 〈m0,m2, . . . ,mn−1〉 be the sequence of natural numbers defined by the
following backwards recursion:

• mn
..= 0,

• mi−1
..= 3mi + 2.

We have mi
..= 3n−i − 1. Let furthermore 〈v0, v1, . . . , vn−1〉 be a sequence

of vertices such that S ..= {vi | i < n}.

Now we are going to inductively construct the 1-homogeneous set {κai+bi |
i < n} where ai and bi are ordinals less than κ for i < n.

Let us first inductively define a sequence 〈si | i < m0〉 of ordinals less than κ.
Let s0

..= 0. Given 〈sj | j 6 i〉 choose αi < κ such that evj(αi) > si for all
j < n and then choose si+1 < ω such that ∀j < n∀k 6 i : b−1“{〈vj, αk〉} ∩
si+1 \ si ) ∅.

In step i < n suppose we have already defined a 1-homogeneous set of size
i.

The following will be the induction hypothesis.

1. min{j ∈ ω \ 1 | ∃k < ω : {ah, bh | h < i} ∩ sj+k+1 \ sj+k ) ∅ ∧ {ah, bh |
h < i} ∩ sk+1 \ sk ) ∅} > mi+1,

2. ∀j, k < i : vj 7→bvk ↔ aj < ak < bk < bj,

3. ∀j, k < i : vj 7→rvk ↔ aj < ak < bj < bk,

4. ∀j, k < i : vj 7→gvk ↔ aj < bj < ak < bk.

This is done as follows, let Lκ ..= max({ah | h < i ∧ vh 7→ vi} ∪ {bh |
h < i ∧ vh 7→gvi}) and Uκ ..= min({ah | h < i ∧ vi 7→ vh} ∪ {bh | h <

i ∧ vh 7→bvi} ∪ {bh | h < i ∧ vh 7→rvi}).
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Claim 6.12. Lκ < Uκ.

Proof of Claim 6.12.

Suppose not. The claim could fail in the following ways:

• max{ah | h < i ∧ vh 7→ vi} > min{aj | j < i ∧ vi 7→ vj}. Fix h and j

witnessing this. The induction hypothesis implies that vj 7→ vh. But then
vh, vi and vj form a cyclic and thus disagreeable triple. Contradiction!

• max{ah | h < i ∧ vh 7→ vi} > min{bj | j < i ∧ vj 7→bvi}. As before fix
witnesses h and j. By induction hypothesis we have vj 7→gvh and Fact 6.7
implies that {vh, vi, vj} is disagreeable. Contradiction!
• max{ah | h < i ∧ vh 7→ vi} > min{bj | j < i ∧ vj 7→rvi}. Fix h and j

witnessing this. The induction hypothesis implies that vj 7→gvh. A look
at Fact 6.7 shows that {vh, vi, vj} is disagreeable. Contradiction!
• max{bh | h < i∧vh 7→bvi} > min{aj | j < i∧vi 7→ vj}. Fix h, j witnessing
this. By induction hypothesis we now either have vj 7→ vh, vh 7→bvj or
vh 7→rvj. In every case {vh, vi, vj} is disagreeable. Contradiction!
• max{bh | h < i ∧ vh 7→gvi} > min{bj | h < i ∧ vj 7→bvi}. Let h, j wit-

ness this. As before the induction hypothesis implies that either vh 7→bvj,
vj 7→rvh or vj 7→gvh. Again by Fact 6.7 {vh, vi, vj} is disagreeable. Con-
tradiction!

• max{bh | h < i ∧ vh 7→gvi} > min{bj | h < i ∧ vj 7→rvi}. Fix witnesses h
and j to this fact. By induction hypothesis we now either have vh 7→bvj,
vj 7→rvh or vj 7→gvh. Fact 6.7, again, proves {vh, vi, vj} to be disagreeable.
Contradiction! c©

Let h < m0 be minimal such that Lκ < sh. Then take

ai ∈ evi“(κ) ∩ sh+mi+1 \ sh+mi .

Now we are going to define bi. Let L1
..= max({ai}∪{ah | h < i∧vi 7→rvh}∪

{bh | h < i ∧ vi 7→bvh} ∪ {bh | h < i ∧ vh 7→rvi}) and U1
..= min({ah | h <

i ∧ vi 7→gvh} ∪ {bh | h < i ∧ vh 7→bvi} ∪ {bh | h < i ∧ vi 7→rvh}).
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Claim 6.13. L1 < U1.

Proof of Claim 6.13. As above we distinguish cases and reach contradictions.

• Suppose ai > min{ah | h < i ∧ vi 7→gvh}. Since {ah | h < i ∧ vi 7→gvh} ⊂
{ah | h < i∧ vi 7→ vh} we have min{ah | h < i∧ vi 7→gvh} > min{ah | h <
i ∧ vi 7→ vh} and since min{ah | h < i ∧ vi 7→ vh} > Uκ it follows that
ai > Uκ. Contradiction!

• If ai > min{bh | h < i ∧ vh 7→bvi} then analogously we get min{bi | h <
i ∧ vh 7→bvi} > Uκ implying ai > Uκ. Contradiction!

• Suppose ai > min{bh | h < i ∧ vi 7→rvh}. Similarly, we have min{bh | h <
i ∧ vh 7→rvi} > Uκ and therefore ai > Uκ. Contradiction!

• Suppose max{ah | h < i ∧ vi 7→rvh} > min{aj | j < i ∧ vi 7→gvj}. Fix
witnesses h and j to this fact. The induction hypothesis implies vj 7→ vh.
Fact 6.7 shows that in all three cases {vh, vi, vj} is disagreeable.
• Suppose max{ah | h < i∧vi 7→rvh} > min{bj | j < i∧vj 7→bvi}. Once more
fix witnesses h, j. Again the induction hypothesis implies that vj 7→gvh.
Fact 6.7 implies that {vh, vi, vj} is a disagreeable triple. Contradiction!

• In case max{ah | h < i ∧ vi 7→rvh} > min{bj | j < i ∧ vi 7→rvj} we can
again fix h and j witnessing this and use the induction hypothesis to see
that vj 7→gvh. Checking Fact 6.7 assures us of the disagreeableness of
{vh, vi, vj}. Contradiction!
• In case max{bh | h < i ∧ vi 7→bvh} > min{aj | j < i∧ vi 7→gvj} let us once

more fix witnesses h and j to this fact and use the induction hypothesis.
We must either have vj 7→ vh or vh 7→bvj or vh 7→rvj. Fact 6.7 shows that
in all five cases {vh, vi, vj} is disagreeable. Contradiction!
• Suppose that max{bh | h < i ∧ vi 7→bvh} > min{bj | j < i ∧ vj 7→bvi}. Fix
witnesses h and j and use the induction hypothesis in order to see that
we either have vh 7→bvj and hence a cyclic triple {vh, vi, vj} or we have
either vj 7→rvh or vj 7→gvh. In both of the last two cases {vh, vi, vj} is
disagreeable by Fact 6.7. Contradiction!

• If max{bh | h < i ∧ vi 7→bvh} > min{bj | j < i ∧ vi 7→rvj} we fix witnesses
h and j again. By induction hypothesis we have vh 7→bvj or vj 7→rvh or
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vj 7→gvh. Fact 6.7 assures us once again of {vh, vi, vj}’s disagreeability in
any case. Contradiction!

• Suppose max{bh | h < i ∧ vh 7→rvi} > min{bj | j < i ∧ vj 7→bvi}. Let h
and j be witnesses to this fact. The induction hypothesis implies that
either vh 7→bvj or vj 7→rvh or vj 7→gvh. By Fact 6.7 in any case {vh, vi, vj}
is disagreeable. Contradiction!

• If max{bh | h < i ∧ vh 7→rvi} > min{bj | j < i ∧ vi 7→rvj} we fix witnesses
h and j. By induction hypothesis we either have vh 7→bvj or vj 7→rvh
or vj 7→gvh. By Fact 6.7 {vh, vi, vj} would be disagreeable in each case.
Contradiction!

• If max{bh | h < i ∧ vh 7→rvi} > min{aj | j < i ∧ vi 7→gvj} we can again
fix witnesses h, j to this fact. By induction hypothesis we can conclude
that either vj 7→ vh in which case {vh, vi, vj} is cyclic and in particular
disagreeable or that either vh 7→bvj or vh 7→rvj . Fact 6.7, however, tells us
that {vh, vi, vj} is disagreeable in these cases too. Contradiction! c©2

Now let h < m0 be minimal such that L1 < sh. Take

bi ∈ b−1“({〈vi, e−1(ai)〉}) ∩ sh+2mi+1 \ sh+2mi .

By Claims 6.12 and 6.13 and condition 1. of the inductive hypothesis we
have chosen ai and bi such that ai < Uκ and bi < U1. So by definition of
the bounds Lκ, Uκ, L1 and U1 conditions 2. through 4. of our inductive
hypothesis are fulfilled. We also made sure that 1. holds true for the next
step.

But then, after n steps, by the definition of our coloured digraph C, we see
that {κai + bi | i < n} is homogeneous of colour 1.

2There are basically two ideas behind this abundance of case distinctions. First one
can conceive of a completeness theorem for linear orders. Unless one cannot derive a
contradiction there has to be a model. The other is the fact that if a tournament has a
cycle it has one of length 3. Here it only gets a little bit more involved since one has to
simultaneously consider the ω-coordinates and the 1-coordinates.
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♦ Now suppose towards a contradiction that there is a a 3-coloured digraph
D = 〈l, A, c〉 of size l such that both all its independent sets have size less
than m and every subtournament S of D of size n contains a disagreeable
triple.

Now we define a colouring χ as follows:

χ : [ω2`]2 −→ 2

{ω2e+ ωg + i, ω2f + ωh+ j} 7−→



1 if g < h < j < i and e 7→bf,

1 if g < h < i < j and e 7→rf,

1 if g < i < h < j and e 7→gf,

0 if e and f are unconnected,

0 if {g, h, i, j} < 4,

0 if e = f or i < g or j < h.

In the naming of the pair of ordinals we can of course assume without loss
of generality that g 6 h.

Now if there were a set H ∈ [κ2`]κ
2m which is 0-homogeneous for χ there

would be a set S ∈ [`]m such that for all s ∈ S we have otyp({κ2s + α ∈
H | α < κ2}) = κ2. Since all independent sets in D have size less
than m it follows that we have e 7→ f for e, f ∈ S. Now if e 7→gf ,
choose first g ∈ {k | k < κ ∧ {k′ | k′ < κ ∧ κ2e+ κk + k′ ∈ H} = κ},
then i ∈ {k | k ∈ κ \ (g + 1) ∧ κ2e + κg + k ∈ H}, then h ∈ {k |
k ∈ κ \ (i + 1) ∧ {k′ | k′ < κ ∧ κ2f + κk + k′ ∈ H} = κ} and finally j ∈
{k | k ∈ κ \ (h + 1) ∧ κ2f + κh + k ∈ H}. But now we have found
κ2e+κg+ i, κ2f +κh+ j ∈ H such that χ({κ2e+κg+ i, κ2f +κh+ j}) = 1

which contradicts the assumption that H was 0-homogeneous. If instead
of e 7→gf we have e 7→rf or e 7→bf we can argue similarly, we only have to
change the sequence of choices.

Assume that there is a setH ∈ [ω2`]n which is 1-homogeneous for χ. Consid-
ering the last clause in the definition of χ we conclude that no κ2-block can
contain more than one element of H, i.e. we have H ∩ κ2(k + 1) \ κ2k < 2
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for every k < `. So S ..= {s | s < ` ∧H ∩ κ2(s + 1) \ κ2s ) ∅} has size n.
Moreover, the fourth clause in the definition of χ implies that every two
elements of S are connected by an arrow. So S spans a subtournament of D.
Hence S has to contain a disagreeable triple T = {t0, t1, t2} ∈ [S]3. Take
κ2t0 + κu0 + v0, κ

2t1 + κu1 + v1, κ
2t2 + κu2 + v2 ∈ H. Now we distinguish

four cases

• T is cyclic. Suppose we have t0 7→ t1 7→ t2 7→ t0. Considering the first
three clauses of the definition of χ we may conclude that for the elements
chosen above we have u0 < u1 < u2 < u0. Contradiction!

• Suppose t0 7→rt1 or t0 7→gt1, that t2 7→bt1 or t1 7→rt2 or t1 7→gt2 and that
t0 7→bt2. Then, using the definition of χ once again, we arrive at v0 < v1 <

v2 < v0. Contradiction!

• Suppose that t0 7→gt1, that t1 7→ t2 and that t0 7→bt2 or t0 7→rt2. Then
v0 < u1 < u2 < v0 follows. Contradiction!

• Suppose that t0 7→gt1, that t2 7→bt1 or t2 7→rt1 and that either t0 7→bt2 or
t2 7→rt0 or t2 7→gt0. Then v0 < u1 < v2 < v0. Contradiction!

Note that modulo a renaming of t0, t1 and t2 the above clauses cover all
disagreeable triples. So this concludes the second part of the proof.

The author wants to point out that if you believe in enough reflection you
might believe something like “There are stationarily many weakly compact
cardinals in the universe.” so Theorem 6.11 really says something about
many ordinals.

We can now also state—not in complete earnest—a joint generalisation
of Theorems 6.3 and 6.11. In this artificial sense being agreeable is a
generalisation of being transitive.

Theorem 6.14. For i ∈ 3\1 and κ ∈ Ω\3 such that κ→ (κ)2
2 the partition

relation κil → (κim,n) holds true if and only if every coloured digraph
C = 〈l, A, c〉 with ran(c) = 2i− 1 contains an independent set of size m or
there is a subtournament S of C induced by a set of n vertices such that all
triples in S are agreeable.
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The special case the author was actually most interested in, however, is
this one:

Corollary 6.15. The partition relation ω2l → (ω2m,n) holds true if and
only if every coloured digraph C = 〈l, A, c〉 with ran(c) = 3 contains an
independent set of size m or there is a subtournament S of C induced by a
set of n vertices such that all triples in S are agreeable.

Henceforth, An is a graph on n vertices such that all its induced subgraphs
on three vertices are agreeable. This allows us to define the Ramsey number
r(Im, An) to be the smallest natural number such that any digraph on
r(Im, An) vertices either contains an independent set of size m or an induced
subgraph on n vertices all triples of which are agreeable. Since An does not
denote a single graph but a class of graphs this might be seen as a slight
abuse of notation, or at least a shorthand. Hence the equivalence between
the infinitary partition problems and finite digraph combinatorics above can
be also condensed into the following formula:

r(κ2m,n) = κ2r(Im, An) for κ = ω or κ weakly compact.

Theorem 6.16. r(I2, A3) > 9.

Proof. The statement above holds because there is the trichromatic nine-
person tournament shown in Figure 6.3. Algebraically, this can be seen
as the tournament on Z9 where from every i ∈ Z9 there is a green arrow
pointing at i + 1, red arrows pointing both at i + 2 and i + 3 and a blue
arrow pointing at i+ 4.

A close observation reveals that every triple in this tournament is dis-
agreeable thereby showing ω29 6→ (ω22, 3).

There even is a dichromatic counterexample which is shown in Figure 6.4.
This is algebraically interpretable as the tournament on Z3 × Z3 where
from every 〈i, j〉 there is a green arrow pointing at 〈i+ 1, j〉 and red arrows
pointing at 〈i, j + 1〉 and 〈i+ 1, j + 1〉 and 〈i+ 2, j + 1〉.

Showing this to be a counterexample is easy: Either a triple is one of
three completely coloured in green—these are disagreeable—or it shares
exactly one point with each of these triples—then it forms a disagreeable
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Figure 6.3: An edge-coloured tournament showing r(I2, A3) > 9
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Figure 6.4: Another edge-coloured tournament showing r(I2, A3) > 9
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triple completely coloured in red—or it shares two points with one and one
with another—then it is either one of two green/red-coloured disagreeable
triples.

These counterexamples were not found in a very systematic way so there
might or might not be others.

Some easy observations quickly yield upper bounds for r(I2, A3), for
example by ordering the vertices and then colouring a pair of them in one of
six colours depending on both whether the direction of the arc agrees with the
ordering or not and the original colour of the arc. Since all monochromatic
transitive triples are agreeable this yields r(I2, A3) 6 r(3, 3, 3, 3, 3, 3). Using
r(3, 3, 3) = 17 from [955GG] together with the recursive formula, we obtain
r(I2, A3) 6 1898.

A much better bound is found by observing that every four-person-
tournament contains a transitive triple. So clearly, r(I2, A3) 6 r(4, 4, 4). The
recursive formula together with the result that r(3, 3, 4) 6 31 from [998PR]
yields r(4, 4, 4) 6 236 so r(I2, A3) 6 236 follows. Finally by observing
that every six-person-tournament coloured in either blue or red contains
an agreeable triple we get r(I2, A3) 6 r(4, 6). In [997MR] it is shown that
r(4, 6) 6 41 so we have r(I2, A3) 6 41.

In fact far better results are possible.

Fact 6.17. In a tournament on ten vertices containing no agreeable triple
there can be at most ten green arrows, thirty red arrows and ten blue arrows.
So there are at least five green, twenty-five red and five blue arrows.

Proof. Take any tournament on ten vertices not containing any agreeable
triple.

Suppose that there are eleven green arrows. By the pigeonhole principle
there has to be a vertex where two green arrows leave. But then this vertex
together with the targets of the two green arrows forms an agreeable triple.

Suppose that there are eleven blue arrows. Again by the pigeonhole
principle there has to be a vertex where two blue arrows leave. Analogously,
this vertex together with the targets of the two blue arrows forms an
agreeable triple.
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Suppose that there are thirty-one red arrows. By the pigeonhole principle
there has to be a vertex where four red arrows leave. Then all of the targets
of these arrows have to be connected by green arrows to one another. Fix
one of these target-vertices v. Since it is adjacent to at least three green
arrows at least two green arrows are leaving from there or two green arrows
are arriving there. Suppose two green arrows are leaving. Then v together
with the targets of these arrows forms an agreeable triple. If on the other
hand two green arrows are arriving then again v, together with the sources
of these arrows forms an agreeable triple.

The second statement follows immediately after one observes that a
tournament on ten vertices has

(
10
2

)
, i.e. 45 arrows.

Lemma 6.18. Any tournament T on ten vertices containing no agree-
able triple contains three green triples, i.e. we have v0, . . . , v9 ∈ VT with
v1 7→gv2 7→gv3 7→gv1 and v4 7→gv5 7→gv6 7→gv4 and v7 7→gv8 7→gv9 7→gv7.

Proof. First observe that any such tournament has to contain two such green
triples. This is because by Fact 6.17 there have to be at least twenty-five
red arrows and hence five vertices where three red arrows leave. Since the
targets of the three red arrows leaving such a vertex have to form a green
triple and since any vertex in such a green triple may be the target of at
most three red arrows the pigeonhole principle implies that there have to be
at least two green triples.

Now suppose towards a contradiction that there are exactly two such
green triples {v0, v1, v2} and {v3, v4, v5} and that there are six vertices where
three red arrows leave. Again the targets of these red arrows have to form
green triples. Since two green triples cannot overlap without producing an
agreeable triple we can apply the pigeonhole principle and conclude that
each vertex in each of both triples has to receive three red arrows. Now
since three red arrows each are hitting v0, v1 and v2 the sources of them also
form a green triple. Since there are only two of them and v0, v1 and v2 are
connected to each other by green arrows we know that the sources of them
can only be v3, v4 and v5. So we have vi 7→rvj for every i ∈ 6 \ 3 and j ∈ 3.
But since v3 is also hit by three red arrows and is already connected in the
opposite direction with v0, v1 and v2 there has to be a third green triple.
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An analogous argument works for the case that there are six vertices
where three red arrows leave.

So there are at most five vertices where three red arrows leave and
at most five vertices where three red arrows arrive. So there are at most
twenty-five red arrows. By Fact 6.17 we may restrict our attention to the
case of ten green, twenty-five red and ten blue arrows. Since no vertex is
either target or source of more than one green arrow the remaining four
green arrows have to form a cycle. So without loss of generality we have
v6 7→gv7 7→gv8 7→gv9 7→gv6.

Now we argue as before. Consider again the five vertices where three
red arrows are leaving. The targets of the three red arrows leaving such a
vertex must form a green triple. By the pigeonhole principle every vertex
in one of the two green triples has to receive three red arrows each. But
then again their sources form a green triple. This shows that without loss
of generality we have vi 7→rvj for every i ∈ 6 \ 3 and j ∈ 3.

In total there are five vertices with three red arrows leaving and there
are five vertices with three red arrows arriving. Both the targets of the
former and the sources of the latter have to form green triples. Since every
vertex may emit or absorb at most three red arrows it follows that there are
two-element-sets {w0, w1} and {w2, w3} with w0 7→gw1 and w2 7→gw3 such
that vi 7→rwj for every i ∈ 3 and j ∈ 2 and wi 7→rvj for every i ∈ 4 \ 2 and
j ∈ 6 \ 3.

Now we are going to distinguish some—not altogether different—cases.
Note that since there are ten blue arrows and a vertex can emit at most one,
every vertex has to emit exactly one.

♦ {w0, w1, w2, w3} = 2. Since there are only two possible targets—the
elements of the set {v6, . . . , v9} \ {w0, w1}—for the blue arrows emitted by
the vertices v0, . . . , v5, w0, w1 one of them has to be target of at least four
blue arrows which contradicts Fact 6.17.

♦ {w0, w1, w2, w3} = 3. Let X ..= {w0, w1} ∩ {w2, w3}. Clearly, X = 1.
Let w ..=

⋃
X. The only possible target for the blue arrow leaving w is

v ..=
⋃

({v6, . . . , v9} \ {w0, w1, w2, w3}) since for each i ∈ 4 we either have
w = wi or w 7→gwi or wi 7→gw and for all i ∈ 6 we either have w 7→rvi or
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vi 7→rw. Now since the vertices v0, . . . , v5 all also have to emit a blue arrow
and the sources of blue arrows pointing at the same vertex have to be
connected by green arrows, lest there be an agreeable triple, we know that
none of these blue arrows can point at v. None can point at w either since
w was already shown to be connected differently to every other vertex. So
let x ..=

⋃
({w0, w1} \ {v, w}) and y ..=

⋃
({w2, w3} \ {v, w}). Since vi 7→rx

for any i ∈ 3 it follows that vi 7→by for any i ∈ 3 Similarly y 7→rvi for any
i ∈ 6 \ 3 implies vi 7→bx for any i ∈ 6 \ 3. But now we see that x and y
cannot both emit a blue arrow hence we have a contradiction.

♦ {w0, w1, w2, w3} = 4. Remember that v6, . . . , v9 form a green four-cycle.
Since {v6, . . . , v9} = {w0, . . . , w3} and w0 7→bw1 and w2 7→gw3 we can con-
clude w0 7→gw1 7→gw2 7→gw3 7→gw0. Now recall that we focused on the case
where there are five vertices emitting three red arrows. In total there are
twenty-five red arrows so every arrow has to emit at least two red arrows.
Now consider the vertex w0. Because it can only send one red arrow to w2

and none to v0, v1, v2, w1 or w3 it has to send one to v3, v4 or v5. But then
w0 and w2 would have to be connected by a green arrow making either
{w0, w1, w2} or {w2, w3, w0} an agreeable triple. We have a contradiction
again.

Theorem 6.19. r(I2, A3) 6 10.

Proof. Suppose towards a contradiction that there is a trichromatic tour-
nament on ten vertices v0, . . . , v9 not containing any agreeable triple. By
Lemma 6.18 we know that there are three green triples {v1, v2, v3}, {v4, v5, v6}
and {v7, v8, v9}. Since no vertex can emit more than one green arrow and no
vertex can absorb more than one green arrow either, we know that v0 has to
be connected to v1, . . . , v9 purely by blue and red arrows. In the situation
in which no triple is agreeable we know that the targets of three red arrows
starting at v0 have to form a green triple. The same holds for the sources of
three red arrows ending at v0 and the sources of three blue arrows ending
at v0. Moreover we know that v0 may emit at most one blue arrow. So we
may distinguish three cases up to isomorphism:
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♦ v1, v2, v3 7→bv0,
v4, v5, v6 7→rv0

v0 7→rv7, v8 and v0 7→bv9.
In this case {v0, v7, v9} is agreeable.

♦ v1, v2, v3 7→bv0,
v0 7→rv4, v5, v6

v7, v8 7→rv0 and v0 7→bv9.
Here {v0, v8, v9} is agreeable.

♦ v1, v2, v3 7→rv0,
v0 7→rv4, v5, v6,
v7, v8 7→bv0 (and either v9 7→bv0 or v0 7→bv9).

We shall now prove two claims:

Claim 6.20. The green triple {v7, v8, v9} is connected purely by red arrows
to one of the other two green triples.

Proof of Claim 6.20. First note that no red arrow can point from a vi with
i ∈ 4 \ 1 to a vj with j ∈ 10 \ 7, otherwise {v0, vi, vj} would be agreeable.
Similarly, no red arrow may point from a vi with i ∈ 10 \ 7 to a vj with
j ∈ 7 \ 4, otherwise {v0, vi, vj} would be agreeable. Since at least two blue
arrows are leaving the set {v7, v8, v9} heading towards v0 and there can be
at most one blue arrow leaving a vertex, we conclude that there can be
at most one blue arrow leaving {v7, v8, v9} in the direction of any vertex
vi with i ∈ 10 \ 1. So we have either that all arrows between {v7, v8, v9}
and {v4, v5, v6} are either incoming red or incoming blue or that all arrows
between {v7, v8, v9} and {v1, v2, v3} are either outgoing red or incoming
blue.

Suppose the latter happens. Assume towards a contradiction that vi 7→bvj
for i ∈ 4\1 and j ∈ 10\7. Since at most one blue arrow may leave a vertex
we know that vk 7→rvi for both k ∈ 10\(7∪{j}). Now choose k ∈ 10\(7∪{j})
such that vk 7→gvj. Then {vi, vj, vk} is agreeable, contradiction!

So assume now that the former happens, i.e. that all arrows between
{v7, v8, v9} and {v4, v5, v6} are either incoming red or incoming blue. As-
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sume towards a contradiction that for some i ∈ 7 \ 4 and some j ∈ 10 \ 7

we have vi 7→bvj. Since at most one blue arrow may leave any vertex it
follows that vi 7→rvk for k ∈ 10 \ (7 ∪ {j}). Choose k ∈ 10 \ (7 ∪ {j}) such
that vj 7→gvk. Then {vi, vj, vk} is agreeable, contradiction! c©

Claim 6.21. In both green triples {v1, v2, v3} and {v4, v5, v6} there are at
least two vertices connected by a red arrow to a vertex in the other green
triple.

Proof of Claim 6.21. Suppose this would fail for {v1, v2, v3}. Then two
vertices, vi and vj with {i, j} ∈ [4 \ 1]2 were connected to {v4, v5, v6} purely
by blue arrows. But there are six such connections to be made and since at
most one blue arrow may leave a vertex only the usage of five blue arrows is
allowed here—contradiction. The proof for the other case works completely
analogously. c©

Now we are moving ever closer to a contradiction. By Claim 6.20 we know
that the green triple {v7, v8, v9} is connected purely by red arrows to one
of the other two green triples. Suppose {v1, v2, v3} is this triple. Since at
most one blue arrow may leave the green triple {v7, v8, v9} in the direction
of any vertex vi with i ∈ 10 \ 1 and not more than one blue arrow can leave
each vertex vi with i ∈ 7 \ 4 we know that five arrows between {v4, v5, v6}
and {v7, v8, v9} have to be red. So in particular at least two vertices in
{v4, v5, v6} need to have red connections to vertices in the green triple
{v7, v8, v9}. Using Claim 6.21 and a variant of the pigeonhole principle we
may choose a vertex vi with i ∈ 7 \ 4 which has a red connection both to
a vertex vj with j ∈ 4 \ 1 and to a vertex vk with k ∈ 10 \ 7. Since we
supposed the truth of Claim 6.20 to be witnessed by {v1, v2, v3} we know
that also vj and vk are connected by red arrows. If we now recall that all
red arrows between {v1, v2, v3} and {v7, v8, v9} have to point from the latter
to the former, we know that in order for {vi, vj, vk} to be disagreeable the
only possibility left is vi 7→rvk 7→rvj 7→rvi. But then we have vj 7→rv0 7→rvi
and vj 7→rvi, hence {v0, vi, vj} is agreeable—contradiction. If the truth
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Figure 6.5: The strongly agreeable triples

of Claim 6.20 is witnessed by {v4, v5, v6} instead, the proof works totally
analogously. This proves the theorem.

Strong Agreeability

Definition 6.22. A triple is called strongly agreeable if and only if it is
agreeable and does not contain any green arrow. In other words, it is strongly
agreeable precisely if it is among those shown in Figure 6.5.

Theorem 6.23. Let κ be weakly compact and λ ∈ κ \ ω be a cardinal.
The partition relation κλ`→ (κλm, n) holds true if and only if every edge-
coloured digraph C = 〈`, A, c〉 with ran(c) = 2 contains an independent set
of size m or there is a subtournament S of C induced by a set of n vertices
such that all triples in S are strongly agreeable.

The following proof of Theorem 6.23 is heavily inspired by [974Ba].

Proof. ♦ Towards a contradiction let us assume that the finite combinatorial
characterisation above holds true yet there is neither a 0-homogeneous set of
size κλm nor a 1-homogeneous n-tuple. Let furthermore χ : [κλ`]2 −→ 2 be
any colouring. W.l.o.g. we may assume that χ“(κ(λk+α+1)\κ(λk+α)) = 1

for any α < λ and k < `. We define a new colouring ξ as follows:

ξ : [κ]2 −→ [λ`]24

{α, β}< 7−→ 〈{γ, δ}<, 2χ({κγ + α, κδ + β}) + χ({κγ + β, κδ + α})〉
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Now we use Fact 6.10 in the form κ→ (κ)2
2λ

thereby finding an X ∈ [κ]κ

homogeneous for ξ. Set ψ ..=
⋃
ξ“X. We have ψ : [λ`]2 −→ 4.

Let 〈〈bj, cj〉 | j < 2`(`− 1)〉 be an enumeration of `2 \∆.

We are going to inductively construct for every i < ` a sequence of sets
〈Y j

i | j 6 2`(`− 1)〉 by letting Y 0
i

..= λ(i+ 1) \ λi and for any j < `(`− 1)

letting Y 2j+1
bj

..= B and Y 2j+1
cj

..= C if there are sets B ∈ [Y 2j
bj

]λ, C ∈
[Y 2j
cj

]λ with {y ∈ C | ψ({x, y}) ≡ 1(2)} < λ for all x ∈ B. If there are
no such sets, let Y 2j+1

bj
..= Y 2j

bj
and Y 2j+1

cj
..= Y 2j

cj
. Similarly, let Y 2j+2

bj
..=

B and Y 2j+2
cj

..= C if there are sets B ∈ [Y 2j+1
bj

]λ, C ∈ [Y 2j+1
cj

]λ with
{y ∈ C | ψ({x, y}) ∈ 4 \ 2} < λ for all x ∈ B. If there are no such sets,
let Y 2j+2

bj
..= Y 2j+1

bj
and Y 2j+2

cj
..= Y 2j+1

cj
. Generally, let Y 2j+2

i
..= Y 2j

i for
j < `(`− 1) and i ∈ l \ {bj, cj}. Finally, we let Zi ..= Y

2`(`−1)
i for all i < `.

Now we define a digraph D = 〈`, A, c〉 by setting for i, j < `:

i 7→bj =⇒∃α ∈ Zi : {β ∈ Zj | ψ({α, β}) ≡ 1(2)} = λ,

(6.1)

⇐⇒∀C ∈ [Zj]
λ : {η ∈ Zi | {ν ∈ C | ψ({η, ν}) ≡ 1(2)} < λ} < λ,(6.2)

i 7→rj =⇒∃α ∈ Zi : {β ∈ Zj | ψ({α, β}) ∈ 4 \ 2} = λ,

(6.3)

⇐⇒∀C ∈ [Zj]
λ{η ∈ Zi | {ν ∈ C | ψ({η, ν}) ∈ 4 \ 2} < λ} < λ.(6.4)

We have⇒ instead of⇔ here for a reason. This definition neither necessarily
tells us the direction of an arrow—since i and j could change roles—nor
does it determine its colour uniquely—as we have 3 ∈ {n ∈ 4\2 | n ≡ 1(2)}.
We only need to follow the principle that whenever these conditions allow
us to set an arrow we do so. The equivalences hold because of the definition
of the Zi’s. We will use the negations of (6.1) and (6.3) in the case where
we define the 0-homogeneous set and (6.2) and (6.4) in the case in which
we define the 1-homogeneous set.

After having thus defined the digraph we may employ our finitary hypothesis
and distinguish two cases:
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6. Partition Relations for Ordinals of Simple Structure

• There is N ∈ [`]n such that all elements of [N ]3 are strongly agreeable.
We are going to inductively construct a 1-homogeneous set H. Since
no strongly agreeable triple is cyclic we may choose an enumeration
e : n ←→ N in such a way that i < j if and only if e(i) 7→ e(j). We
proceed by induction. Using (6.2) and (6.4) we may choose an αi ∈ Ze(i)
such that

� ∀j < i(e(i) 7→be(j)→ ψ({αj, αi) ≡ 1(2)),
� ∀j < i(e(i) 7→re(j)→ ψ({αj, αi) ∈ 4 \ 2),
� ∀j ∈ n \ (i+ 1)(e(i) 7→be(j)→ {β ∈ Ze(j) | ψ({α0, β}) ≡ 1(2)} = λ),
� ∀j ∈ n \ (i+ 1)(e(i) 7→re(j)→ {β ∈ Ze(j) | ψ({α0, β}) ∈ 4 \ 2} = λ).

Now choose this and let S ∈ [κ]2
n be such that ∀η ∈ S ∀ν ∈ η ∩ S ∃ζ ∈

X ∩ η \ ν. Let 〈sη | η < 2n〉 be the increasing enumeration of S and let
e : n ←→ N . Now let k−2

..= 0, k−1
..= 2n and k0

..= 2n−1. By induction
we choose γi ∈ X ∩ ski \ ski−1 and ki+1 such that the following conditions
are met.

� If e(j) 7→be(i+ 1) then ki+1 < kj.
� If e(j) 7→re(i+ 1) then ki+1 > kj.
� |ki+1 − kj| > 2n−i−1 for every j 6 i.

This we do for every i < n. Note that we are always able to choose the
parameters in this way because all elements of [N ]3 are strongly agreeable.
Finally, we may define H ..= {καi + γi | i < n}. H is 1-homogeneous.

• There is an independent M ∈ [`]m. There are again two cases to distin-
guish:

� λ is regular. This case is easy. Let Y0
..= ∅ and for limit ordinals ν let

Yν ..=
⋃
η<ν Xη. For any η < λ, i ∈M and an enumeration f : m←→M

let

Ymη+i+1
..= Ymη+i ∪ {min({ν ∈ Zf(i) | ∀ζ ∈ Ymη+i : ψ({ν, ζ}) = 0})}.

(6.5)

At the end, let Y ..= Yλ. M is independent so the formulas on the right
sides of (6.1) and (6.3) are jointly negated.
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Strong Agreeability

The regularity of λ now ensures that the minimum referred to in (6.5)
always exists.

� λ is singular. Here we have to be a bit more careful. We have to ensure
that we do not spoil our chances of defining a homogeneous set before
our inductive construction is finished. So we thin out the Zi’s further as
follows:
For each i ∈ M let ηi ∈ λcf. (λ) + 1 \ λ be the least ordinal such that
there exists an enumeration ei : ηi ←→ Zi such that

ν 7−→ max({{ζ ∈ Zj | ψ({ei(ν), ζ}) > 0} | j ∈M \ {i}})

is nondecreasing. Fix such ηi and ei. Similar to the case before we set
Y0

..= ∅, for limit ordinals ν we let Yν ..=
⋃
ζ<ν Xζ and for ν < λ, i ∈M

and an enumeration f : m←→M , we define

Ymν+i+1
..= Ymν+i ∪ {ef(i)(min({ζ < λ | ∀ρ ∈ Ymν+i : ψ({ef(i)(ζ), ρ}) = 0}))}.

(6.6)

Once more, set Y ..= Yλ. Again, the independence of M implies that the
right sides of (6.1) and (6.3) are jointly negated. By rearranging the Zi’s
using the ei’s we ensured that the minimum in (6.6) always exists.

Let 〈Xη | η < λ`〉 be a partition of X into λ sets of size κ. We set
H ..= {κα + γ | α ∈ Y ∧ γ ∈ Xα}. A little contemplation shows that H is
0-homogeneous for χ.

♦ Suppose that the finite combinatorial characterisation above fails, i.e.
there is an edge-2-coloured digraph D = 〈`, A, c〉 neither containing an
independent set of sizem nor a set of size n only inducing strongly agreeable
triples. We define a colouring χ : [κλ`]2 −→ 2 as follows.
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6. Partition Relations for Ordinals of Simple Structure

χ : [κλ`]2 −→ 2,

{κ(λj + α) + γ, κ(λk + β) + δ}< 7−→



1 if j 7→bk ∧ α < β ∧ δ < γ,

1 if k 7→bj ∧ β < α ∧ γ < δ,

1 if j 7→rk ∧ α < β ∧ γ < δ,

1 if k 7→bj ∧ β < α ∧ δ < γ,

0 else.

• Suppose that χ would admit a 0-homogeneous set X ∈ [κλ`]κλm. Then
there would have to be a set Y ∈ [`]m such that otyp(X ∩ κλ(k + 1) \
κλk) = κλ for any k ∈ Y . Since D contains no independent set of size
m we may choose {j, k} ∈ [Y ]2 with j 7→ k. Let α ..= min{η < λ |
otyp(X ∩κ(λj+η+1)\κ(λj+η)) = κ} and let β ..= min{η ∈ λ\ (α+1) |
otyp(X ∩ κ(λk + η + 1) \ κ(λk + η) = κ}.
We distinguish two cases:

� c({j, k}) = 0. Let γ ..= min{η < κ | κ(λk + β) + η ∈ X} and let
δ ..= min{η ∈ κ \ (γ + 1) | κ(λj + α) + η ∈ X}. Obviously, χ({κ(λj +

α) + δ, κ(λk + β) + γ}) = 1 contradicting the 0-homogeneity of X.
� c({j, k}) = 1. Let γ ..= min{η < κ | κ(λj + α) + η ∈ X} and let
δ ..= min{η ∈ κ \ (γ + 1) | κ(λk + β) + η ∈ X}. Obviously, χ({κ(λj +

α) + γ, κ(λk + β) + δ}) = 1 contradicting the 0-homogeneity of X.

• Now suppose that χ would admit a 1-homogeneous n-tuple X ∈ [κλ`]n.
By definition of χ we have that {κ(λj + α) + γ, κ(λk + β) + δ} ∈ [X]2

for j, k < `; α, β < λ and γ, δ < κ implies j 6= k; α 6= β and γ 6= δ.
Consider Y ..= {k < ` | ∃η < κλ : κλ + η ∈ X}. We have Y ∈ [`]n and
in fact Y induces a subdigraph S of D. W.l.o.g. we may assume that
S is a tournament because if {j, k} ∈ [Y ]2 is independent we have that
X ∩ ((κλ(j + 1) \ κλj) ∪ (κλ(k + 1) \ κλk) ⊂ X is 0-homogeneous.
So Y is a tournament and contains a triple {i, j, k} ∈ [Y ]3 which is not
strongly agreeable. By definition of Y we may conclude that there are
α, β, γ < λ and δ, η, ζ < κ such that κ(λi+ α) + δ, κ(λj + β) + η, κ(λk +

γ) + ζ ∈ X. We may distinguish three cases:
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Strong Agreeability

� It is a 3-cycle. Assume i 7→ j 7→ k 7→ i. Since X is 1-homogeneous
we may, by definition of χ, conclude that α < β, β < γ and γ < α.
Contradiction!
� We have i 7→bj, j 7→bk and i 7→rk. By 1-homogeneity of X and per
definitionem of χ we may conclude that δ > η, η > ζ and δ < ζ.
Contradiction!
� We have i 7→rj, j 7→rk and i 7→bk. Again we may use the 1-homogeneity
of X and the definition of χ to conclude that δ < η, η < ζ and δ > ζ.
Contradiction!

Note that modulo a renaming of i, j and k these three cases exhaust all
possibilities.

This concludes the second part of the proof.

By Sn we denote the class of graphs G on n vertices such that all triples
in G are strongly agreeable and by r(Im, Sn) the smallest natural number
` such that all digraphs on ` vertices either contain an independent set of
size m or an induced subgraph on n vertices all triples of which are strongly
agreeable. As before, we may use this notation to condense the equivalences
proved above into a single formula:

r(κλm, n) = κλr(Im, Sn) for κ weakly compact and any cardinal λ ∈ κ \ ω.

Analogously to [989Ba], we can prove another pretty theorem.

Theorem 6.24 (MAℵ1). r(ω1ωm, n) = ω1ωr(Im, Sn).

Let χ : [ω1ω`]
2 −→ 2 be any colouring. We define E ..= {P ∈ [ω1ω`]

2 |
χ(P ) = 1}.

Let Z ..=
⋃
α<Ω[ω1(α + 1) \ ω1α]ℵ1 .

For X ∈ Z let αX < Ω be such that X ∈ [ω1(αX + 1) \ ω1αX ]ℵ1 . Let
AX ..= {ξ < ω1 | ω1αX + ξ ∈ X}. We say that the pair 〈X, Y 〉 is

♦ in constellation blue if and only if X, Y ∈ Z and

∀B ∈ [X]ℵ1 , C ∈ [Y ]ℵ1∃γ ∈ AC , β ∈ AB\(γ+1): {ω1αX+β, ω1αY +γ} ∈ E.
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6. Partition Relations for Ordinals of Simple Structure

♦ in constellation red if and only if X, Y ∈ Z and

∀B ∈ [X]ℵ1 , C ∈ [Y ]ℵ1∃β ∈ AB, γ ∈ AC\(β+1): {ω1αX+β, ω1αY +γ} ∈ E.

♦ free if and only if ∀B ∈ [X]ℵ1 , C ∈ [Y ]ℵ1∃D ∈ [B]ℵ1 , F ∈ [C]ℵ1∀δ ∈ D, η ∈
F : {δ, η} /∈ E.

Let us call a set S ⊂ Ω weakly independent if for all α, β < Ω with
X = S ∩ ω1(α+ 1) \ ω1α and Y = S ∩ ω1(β + 1) \ ω1β and X = Y = ℵ1 the
pair 〈X, Y 〉 is free.

For the proof we are going to use Theorem 3.1 from [989Ba]. By limiting
its scope to the case α = ω we get the following theorem.

Theorem 6.25. Assume MAℵ1 . Let E ⊂ [ω1ω]2 be a graph and let W ∈
[ω1ω]ω1ω be weakly independent. Then there exists H ∈ [W ]ω1ω which is
independent such that ∀n < ω : H ∩ ω1(n+ 1) \ ω1n ∈ {0,ℵ1} and H ∩
ω1(n+ 1) \ ω1n ) ∅ implies W ∩ ω1(n+ 1) \ ω1n 6 ℵ0 for all natural n.

Proof of Theorem 6.24. Even without MAℵ1 it is easy to see that
r(ω1ωm, n) > ω1ωr(Im, Sn). Let D be a 2-coloured digraph showing
` < r(Im, Sn). Now consider the following colouring:

χ : [ω1ω`]
2 −→ 2,

{ω1ωh+ ω1j + α, ω1ωi+ ω1k + β}< 7−→



1 if h 7→bi ∧ j < k ∧ α < β,

1 if i 7→bh ∧ k < j ∧ β < α,

1 if h 7→ri ∧ j < k ∧ β < α,

1 if i 7→rh ∧ k < j ∧ α < β,

0 else.

Analogously to the proof of Theorem 6.23 this now shows ω1ω` 6→
(ω1ωm, n).

Now assume MAℵ1 . Let ` ..= r(Im, Sn). We are going to show ω1ω` →
(ω1ωm, n) by adapting the method of [989Ba] for our purposes.
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Note that if a pair 〈X, Y 〉 is not free there are X ′ ∈ [X]ℵ1 and Y ′ ∈ [Y ]ℵ1

such that 〈X ′, Y ′〉 is in one of the two other constellations. If at least one
of these three properties applies to a pair then we call it decided .

We are choosing `-tuples 〈XF
0 , . . . , X

F
`−1〉 with F ∈ [ω]<ω by recursion

on max(F ).

♦ If F = 1 and i < ` let XF
i ∈ [ω1(ωi +

⋃
F + 1) \ ω1(ωi +

⋃
F )]ℵ1 such

that for all G ∈ [
⋃
F ]<ω and j ∈ ` \ {i} either 〈XG

j , X
F
i 〉 is free or there is

an X ∈ [XG
j ]ℵ1 such that 〈X,XF

i 〉 is in one of the other two constellations
above. This can be achieved by thinning out repeatedly.

♦ If F ∈ ω \ 2 let µ ..= max(F ) and G ..= F \ {µ}. Again by thinning out
repeatedly for all i < ` choose XF

i ⊂ XG
i such that for all j ∈ ` \ {i} we

have that 〈XF
i , X

{µ}
j 〉 is decided.

Claim 6.26. For every natural number f there is an F ∈ [ω]f and an
H ∈ [ω]ω such that for all g, h < ` the facts, both whether or not for
x, y ∈ [H]i with i ∈ F and max(x) < min(y) we have that 〈Xx

g , X
y
h〉 is free

or not free and what the constellation of a pair 〈Xx
g , X

y
h〉 with min(y) ∈ x

and x, y ∈ [H]i is, only depend on g and h.

Proof of Claim 6.26. Using Ramsey’s Theorem, we thin ω to some H0 ∈ [ω]ω

on which the freeness of some such 〈Xx
g , Y

y
h 〉 for x, y ∈ [H0]1 only depends

on {g, h} and whether max(x) < min(y) or max(y) < min(x).
Because of the nature of our recursive construction the constellation of

a pair 〈Xx
g , X

y
h〉 with min(y) ∈ x is determined by the constellation of the

pair 〈Xx∩(min(y)+1)
g , X

{min(y)}
h 〉. The constellation of this pair, however, can

be made canonical as well using Ramsey’s Theorem. So inductively do this
for x ∩ min(y) = i to arrive at some H ′i for i < ω and after that find an
Hi+1 ∈ [H ′i]

ω on which the freeness/non-freeness for x, y ∈ [Hi+1]
i+1 with

max(x) < min(y) is canonical, i.e. only depends on g and h. This yields a
sequence H0 ⊃ H ′0 ⊃ H1 ⊃ H ′1 ⊃ . . .

Since there are only finitely many possible patterns of both freeness/non-
freeness and constellations we may find an F ∈ [ω]f and anH in the sequence
which is sufficiently thin such that these patterns are the same for all i ∈ F .
c©
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6. Partition Relations for Ordinals of Simple Structure

Use the claim to find F of a sufficiently (for what follows) large finite
size 2L, say 2n+1 − 2.

Now we define a digraph by letting there be arrows as follows:

g 7→bh implies that 〈Xx
g , X

{max(x)}
h 〉 generally is in constellation blue,

g 7→rh implies that 〈Xx
g , X

{max(x)}
h 〉 generally is in constellation red.

Moreover, whenever one of these conditions applies an arrow is set.
Now first suppose there were an independent set I ∈ [`]m.
Let 〈hi | i < ω〉 be the ascending enumeration of H and pick some

f ∈ F . Let Z ..= {{hfi, . . . , hf(i+1)−1} | i < ω}. Then the union of all the
Xx
g ’s for g ∈ I and x ∈ Z is a weakly independent set of size ω1ωm. This

is because by our recursive construction and by definition of our digraph
〈Xx\{max(x)}

g , Xy
h〉 is free whenever max(x) ∈ y and there is no arrow between

g and h . We now may use Theorem 6.25 to thin this out to some truly
independent set of the same order-type, i.e. some set of order-type ω1ωm

which is homogeneous for χ in colour 0.
Now suppose that our digraph contains no independent set of size m.

Since we chose ` to be r(Im, Sn) we know that there is a strongly agreeable
set S ∈ [`]n.

Let 〈fi | i < L〉 be an ascending enumeration of F . Define
ai ..= {hfi , . . . , hfL} and let Aig ..= Xai

g .

Claim 6.27. Let g, h ∈ S, {i, j} ∈ [L]2 and i < j. Now if g 7→bh then
〈Aig, A

j
h〉 is in constellation blue and if g 7→rh then it is in constellation red.

Proof of Claim 6.27. Consider x ..= {hfi , . . . , hfj−1
} and y ..=

{hfj , . . . , hf2j−i−1
}.

We know that 〈Xx
g , X

y
h〉 is not free. Because of Xy

g ⊂ X
{hfj }
h the

pair 〈Xx
g , X

{hfj }〉 is not free. By our recursive construction we get that

〈X
x∪{hfj }
g , X

{hfj }
h 〉 is decided. The colour of the arrow between g and h in S

tells us how. Since Aih ⊂ X
x∪{hfj }
h and Ajg ⊂ X

{hfj }
g the claim follows. c©

Now we are going to construct the complete graph G ∈ [ω1ω`]
n with

[G]2 ⊂ E. To this end let 〈si | i < n〉 be an enumeration of S such that
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si 7→rsj or sj 7→bsi for all i < j < n. This is possible since all triples in
S are strongly agreeable. To start the construction, i.e. in step 0, choose
the middle element j0 of L. This divides L into two intervals of size, say,
2n−1 − 1. Let us call {−1, L} the border.

Inductively, in step i < n we haven chosen jk’s with k < i such that the
minimal distance between either of them and between one of them and the
border is 2n−i − 1. Now we choose an ji+1 such that the minimal distance
between two of the jk+1’s for k 6 i and between of them and the border
is 2n−i−1 − 1 and such that ji+1 > jk if and only if sk 7→ si for all k 6 i.
Again, strong agreeability allows us to do this.

Finally, we choose an ordinal α0 ∈ Aj0s0 in step 0 such that for all i ∈ n \ 1

we have {α ∈ Ajisi | {α0, α} ∈ E} = ℵ1. Such an ordinal exists for otherwise
there would be an i < n and uncountably many α ∈ Aj0s0 which are only
connected to countably many things in Ajisi by E. Because of the way in
which we sorted the elements of S this would contradict the constellation of
〈Aj0s0 , A

ji
si
〉. Now thin out the Ajisi for i ∈ n \ 1 to those uncountable subsets

of ordinals the unordered pairs with α0 of which are in E. Generally, in
step i < n choose an ordinal αi ∈ Ajisi such that {αk, αi} ∈ E for all k < i

and thin out the Ajksk ’s for k ∈ n \ (i+ 1). In this way we may construct our
complete graph of size n, i.e. our set homogeneous for χ in colour 1.

Now we may take a look at the easiest examples.
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Theorem 6.28. r(I2, S3) = 6.

Figure 6.6: An edge-coloured
tournament showing r(I2, S3) > 5

Proof. The lower bound is provided
by the counterexample in Figure 6.6, for
the upper bound one can argue as fol-
lows:

Consider any vertex v in a six-element
tournament—if the digraph is not a
tournament we are finished immediately.
Now N−B (v)+N+

B (v)+N−R (v)+N+
R (v) >

5 so we may conclude, using the pigeon-
hole principle, that one of these four
neighbourhoods contains at least two ele-
ments. Then v together with this neigh-
bourhood is strongly agreeable. �

Theorem 6.29. r(I3, S3) = 15.

Proof.
The lower bound is given by the counterexample in Figure 6.7. It can

be viewed as a digraph on Z14 where v 7→bv + 1, v 7→rv + 2, v 7→rv − 3 and
v 7→bv − 4 for all v ∈ Z14.

The upper bound is established by Theorem 7.2 below.

Corollary 6.30.
Let κ be the least weakly compact cardinal. Then r(κℵεω7+93, 3) = κℵεω7+915.
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Figure 6.7: An edge-coloured digraph showing r(I3, S3) > 14
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7

General Bounds

. . . it is true that a
mathematician who is not
somewhat of a poet, will never
be a perfect mathematician.

Karl Theodor Wilhelm
Weierstraß
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7. General Bounds

Upper Bounds for Independent versus
Strongly Agreeable Sets

We now are going to provide several general upper bounds for various Ramsey
numbers. We start with something easy—an upper bound for the Ramsey
numbers r(Im, S3).

Lemma 7.1. r(Im+1, S3) 6 r(Im, S3) + 4m+ 1 for all m ∈ ω \ 2.

Proof. Let D be any edge-dichromatic digraph on r(Im, S3)+4m+1 vertices.
Fix any vertex v. Since N+

B (v)+N−B (v)+N+
R (v)+N−R (v)+I(v) = r(Im, S3)+

4m it follows that one of the following cases has to obtain:

♦ N+
B (v) > m+ 1.

♦ N−B (v) > m+ 1.

♦ N+
R (v) > m+ 1.

♦ N−R (v) > m+ 1.

♦ I(v) > r(Im, S3).

In the first four cases either the respective neighbourhood is independent
or two vertices in it are connected by an arrow in which case they form an
S3 together with v. In the last case the neighbourhood either contains an
S3 or an independent set of size m which together with v would form an
independent set of size m+ 1.

Theorem 7.2. For all m ∈ ω \ 2 we have r(Im, S3) 6 m(2m− 1).

Proof. The proof proceeds by induction. The base case is established by
Theorem 6.28. For the inductive step by Lemma 7.1 we only have to check
that

(m+ 1)(2(m+ 1)− 1) = m(2m− 1) + 4m+ 1,

which is true.
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Upper Bounds for Independent versus Strongly Agreeable Sets

We continue now by providing an upper bound for r(I2, Sn).

Lemma 7.3. For all n ∈ ω \ 3 we have r(I2, Sn+1) 6 4r(I2, Sn)− 2.

Proof. Let T = 〈V,A, c〉 be a bicoloured tournament on 4r(I2, Sn) − 2

vertices. Fix any vertex v ∈ V . Since N−B (v) +N+
B (v) +N−R (v) +N+

R (v) =

4r(I2, Sn)−3 one of these neighbourhoods N has cardinality at least r(I2, Sn)

by the pigeonhole principle. Hence there is an S ∈ [N ]n in which all triples
are strongly agreeable. So if we set X ..= S ∪ {v}, then X ∈ [V ]n+1 and all
triples in X are strongly agreeable.

Theorem 7.4. For any n ∈ ω \ 3 we have

r(I2, Sn) 6
4n−1 + 2

3
.

Proof. By induction. The base case is given by Theorem 6.28. The induction
step also works:

4 · 4n−1 + 2

3
− 2 =

4n−1+1 + 4 · 2− 2 · 3
3

=
4n+1−1 + 2(4− 3)

3
.

Again, note that if n is an integer, 4n−1+2
3

is an whole number as well.
It is easy to see by induction that 4n−1 ≡ 1(3) for any n ∈ ω \ 1. Hence
4n−1 + 2 ≡ 0(3) for any n ∈ ω \ 1.

Now we want to give a general upper bound for r(Im, Sn).

Lemma 7.5. For all m ∈ ω \ 2 and all n ∈ ω \ 3:

r(Im+1, Sn+1) 6 r(Im, Sn+1) + 4r(Im+1, Sn)− 3

Proof. Suppose that there is a digraph D on r(Im, Sn+1) + 4r(Im+1, Sn)− 3

vertices neither containing an Im+1 nor an Sn+1. Fix any vertex v ∈ D.
Then N−B (v) > r(Im+1, Sn), N+

B (v) > r(Im+1, Sn), N−R (v) > r(Im+1, Sn),
N+
R (v) > r(Im+1, Sn) or I(v) > r(Im, Sn+1). In the first four cases, the

neighbourhood in question contains itself an Im+1 or an Sn which forms an
Sn+1 together with v. In the last case, either I(v) contains itself an Sn+1 or
an Im which forms an Im+1 together with v.

101



7. General Bounds

Theorem 7.6. For allm ∈ ω\2 and all n ∈ ω\3 we have r(Im, Sn) 6 u(m,n)

where

u(m,n) ..=
1

4

(
3 +

n−1∑
i=0

(
i+m− 2

i

)
4i
)
.(7.1)

Proof. By induction. First, we verify that u(2, 3) = 6. Recall that we have
r(I2, S3) = 6 by Theorem 6.28. Next we check that u(2, n) agrees with the
formula from Theorem 7.4. We have

u(2, n) =
1

4

(
3 +

n−1∑
i=0

4i
)
.

Consider v(n) ..= u(2, n + 1)− u(2, n). Clearly, v(n) = 4n−1. It is also
easy to see that

4n + 2

3
− 4n−1 + 2

3
= 4n−1.

Induction on n provides the desired result.

It is even easier to see, using well-known properties of the binomial
coefficients, that u(m, 3) = m(2m− 1).

Now we can check that in fact

u(m+ 1, n+ 1) = u(m,n+ 1) + 4u(m+ 1, n)− 3.(7.2)

Then with Lemma 7.5 the theorem will follow. The following calculation
proves (7.2):
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u(m,n+ 1) + 4u(m+ 1, n)− 3

=
1

4

(
3 +

n∑
i=0

(
i+m− 2

i

)
4i + 4

n−1∑
i=0

(
i+m− 1

i

)
4i
)

=
1

4

(
3 +

n∑
i=0

(
i+m− 2

i

)
4i +

n∑
i=1

(
i+m− 2

i− 1

)
4i
)

=
1

4

(
4 +

n∑
i=1

((i+m− 2

i

)
+

(
i+m− 2

i− 1

))
4i
)

=
1

4

(
4 +

n∑
i=1

(
i+m− 1

i

)
4i
)

=
1

4

(
3 +

n∑
i=0

(
i+m− 1

i

)
4i
)

= u(m+ 1, n+ 1).

Upper Bounds for Independent versus
Agreeable Sets

We are now going to provide an upper bound for the Ramsey numbers
r(In, A3).

Lemma 7.7. r(In+1, A3) 6 r(In, A3)+2r(In+1, L3)+4n−1 for all n ∈ ω \2.

Proof. Let there be an edge-trichromatic digraph 〈V,A〉 with
r(In, A3) + 2r(In+1, L3) + 4n − 1 vertices. Pick any vertex v such that
N+
B (v) is maximal. Note that V \ {v} = r(In, A3) + 2r(In+1, L3) + 4n− 2.

Now we may distinguish several cases. Note that necessarily at least one of
them must hold!

♦ N−B (v) > n+ 1. Since we chose v to have maximum blue out-degree we
might immediately proceed with the next case.
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♦ N+
B (v) > n + 1. In this case there are either two vertices w, x ∈ N+

B (v)

which are connected by an arrow—in which case {v, w, x} is an agreeable
triple—or N+

B (v) forms an independent set of size n+ 1. In both cases we
have found a set homogeneous in the sought-after-sense.

♦ N−R (v) > r(In+1, L3). If there are w, x ∈ N−R (v) which are connected by
either a blue or a red arrow then {v, w, x} is an agreeable triple. So let us
assume that all pairs of vertices in N−R (v) are either connected by green
arrows or not connected at all. Our case condition implies that we either
have an independent set of size n+ 1 or a transitive green triple—which is
agreeable.

♦ N+
R (v) > r(In+1, L3). Works exactly like the case before.

♦ N−G (v) > n+ 1. This and the next case work like the second. There are
either two vertices w, x ∈ N−G (v) which are connected by an arrow—then
{v, w, x} is agreeable—or N−G (v) is an independent set of size n+ 1.

♦ N+
G (v) > n+ 1. Again, either there are two vertices which are connected

thus forming an agreeable triple together with v or N+
G (v) is independent.

♦ I(v) > r(In, A3). Now, in the last case I(v) either contains an agreeable
triple or is itself independent of size n. In the first case we are finished
immediately and in the second I(v) ∪ {v} is an independent set of size
n+ 1.

Corollary 7.8. r(ω2(m+1), 3) 6 r(ω2m, 3)+ωr(ω(m+1), 3)2+ω2(4m−1)

for all m ∈ ω \ 2.

This is easy to see using Theorem 6.5, Theorem 6.11 and Lemma 7.7.

Theorem 7.9. For all m ∈ ω \ 2 we have

r(Im, A3) 6
(2m+ 1)(m2 + 4m− 6)

3
.(7.3)
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Proof. By induction. The base case is m = 2 where Formula (7.3) is verified
by Theorem 6.19. Let us assume that the formula holds up to somem ∈ ω\2.
Using Lemma 7.7 we get

r(Im+1, A3) 6 r(Im, A3) + 2r(Im+1, L3) + 4m− 1.(7.4)

Larson and Mitchell—see Lemma 4.1 of [997LM]—showed that r(Im, L3) 6 n2,
so the right side of (7.4) is bounded from above as follows:

6
(2m+ 1)(m2 + 4m− 6)

3
+ 2(m+ 1)2 + 4m− 1

=
(2(m+ 1) + 1)((m+ 1)2 + 4(m+ 1)− 6)

3
.

Note that the fraction in Formula (7.3) is a whole number if m is an
integer. If m ≡ 1(3) then 2m + 1 ≡ 0(3) and we are fine. If, however,
m ≡ 0(3) then m2 + 4m−6 ≡ 0(3) and if m ≡ 2(3) then m2 + 4m−6 ≡ 0(3)

too.
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Figure 7.1: The graph of the upper bound (7.3)



A Lower Bound

A Lower Bound

Theorem 7.10. r(Imn+1, A3) > (r(Im+1, L3)− 1)(r(In+1, L3)− 1).

Proof. Let D0 = 〈V0, A0〉 be a digraph on r(Im, L3) − 1 vertices neither
containing a transitive triple nor an independent set of size m+ 1 and let
D1 = 〈V1, A1〉 be a digraph on r(In, L3) − 1 vertices neither containing a
transitive triple nor an independent set of size n + 1. Then consider the
coloured digraph D0 ∗D1

..= 〈V0 × V1, A2, c〉 where

A3 ={〈〈v0, v1〉, 〈v2, v1〉〉 | v0, v2 ∈ V0 ∧ v1 ∈ V1 ∧ 〈v0, v2〉 ∈ A0},
A4 ={〈〈v0, v1〉, 〈v2, v3〉〉 | v0, v2 ∈ V0 ∧ v1, v3 ∈ V1 ∧ 〈v1, v3〉 ∈ A1},
A2 =A3 ∪ A4, c“A3 = {0} and c“A4 = {1}.

Clearly the independent sets in D0 ∗D1 have size at most mn and the only
transitive triples in D0 ∗D1 contain two red arrows which either originate
from the same vertex or point at the same. Both types of triples are
disagreeable.

Some Tables

At the end we take the liberty of supplying a table of some Ramsey numbers
r(α, n) known today for countable ordinals α and natural numbers n. Follow-
ing the example of Radziszowski in [994Ra] we also supply a complementary
table containing references. If a reference is given above another, then the
upper one gives the upper bound and the lower one gives the lower bound.
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3 4 5 6 7 8 9 m

3 6 9 14 18 23 28 36
4 9 18 25
ω ω ω ω ω ω ω ω ω

ω + 1 ω2 + 1 ω3 + 1 ω4 + 1 ω5 + 1 ω6 + 1 ω7 + 1 ω8 + 1 ω(m− 1) + 1

ω + 2 ω2 + 4 ω3 + 7 ω4 + 11 ω5 + 16 ω6 + 22 ω7 + 29 ω8 + 37 ω(m− 1) + m(m−1)
2

+ 1
ω + 3 ω2 + 8 ω3 + 16
ω + n ω2 + r(n, 3) + n− 1
λ2 λ4 λ8 λ14 λ28
λ3 λ9
ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2

ω2 + 1 ω22 + 1 ω23 + 1 ω24 + 1 ω25 + 1 ω26 + 1 ω27 + 1 ω28 + 1 ω2(m− 1) + 1

ω2 + 2 ω22 + 4 ω23 + 7 ω24 + 11 ω25 + 16 ω26 + 22 ω27 + 29 ω28 + 37 ω2(m− 1) + m(m−1)
2

+ 1
ω2 + 3 ω22 + 8 ω23 + 16
ω2 + n ω22 + r(n, 3) + n− 1
ω2 + ω ω24 + ω
ω22 ω210

ω3 ω4 ω4 ω5 ω5 ω5 ω5 ω6 ω2+dld(m)e

ω3 + n ω4 + r(n, 3) ω4 + ω3 + r(n, 4) + n− 1
ω4 ω7 ω7 ω10 ω10 ω10 ω10

ω5+n ω9+2n ω9+2n ω13+3n ω13+3n ω13+3n ω13+3n ω17+4n ω1+(4+n)dld(m)e

ωω ωω ωω ωω ωω ωω ωω ωω ωω

ωω
2

ωω
2

ωω
2

κλ2 κλ6
κλ3 κλ15

Table 7.1: Finite and transfinite Ramsey numbers



3 4 5 6 7 8 9 m
[968GY] [992MM] [982GR]3 [955GG] [955GG] [964Ké]
[966Ka] [982GR] [966Ka]

[995MR]4 [955GG] [955GG]
[965Ka]

ω [930Ra] [930Ra] [930Ra] [930Ra] [930Ra] [930Ra] [930Ra] [930Ra]
ω + 1 [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3]
ω + 2 [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3]
ω + 3 [969HS3] [969HS3]
ω + n [969HS3]
λ2 [956ER]/[974Ba] [964EM]/[974Ba] [970RP]/[974Ba] [970RP]/[974Ba]
λ3 [974Be]/[974Ba]
ω2 [957Sp] [957Sp] [957Sp] [957Sp] [957Sp] [957Sp] [957Sp] [957Sp]

ω2 + 1 [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3]
ω2 + 2 [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3] [969HS3]
ω2 + 3 [969HS3] [969HS3]
ω2 + n [969HS3]
ω2 + ω [969HS2]
ω22 [969HS]
ω3 [957Sp] [969HS2] [974No] [974No] [974No] [974No] [974No] [974No]

ω3 + n [969Mi] [969HS2]
ω4 [975No] [975No] [010HL] [010HL] [010HL] [010HL]
ω5+n [979No] [979No] [979No] [979No] [979No] [979No] [979No] [979No]
ωω [974La] [974La] [974La] [974La] [974La] [974La] [974La] [974La]
ωω

2 [XXXDL] [XXXDL]
κλ2 This thesis!
κλ3 This thesis!

Table 7.2: References to upper and lower bounds for finite and transfinite Ramsey numbers



7. General Bounds

Combinations of the methods used to find the numbers above would
probably generalise some results.

Problems, Questions & Conjectures

To the author the most interesting open question in the topic of this chapter
now is the following:

Question 7.11. What is the order of growth of the functionm 7→ r(Im, A3)?

Only having obtained a cubic upper bound for m 7→ r(Im, A3) so far we
state the following modest conjecture:

Conjecture 7.12. There exists an ε > 0 such that εn2+ε < r(In, A3) for
all natural n.

The author was considerably surprised by the counterexample in Fig-
ure 6.4 providing the lower bound for Theorem 6.19 since there is no blue
arrow in it. Hence the following seems to be a natural question:

Question 7.13. Are sharp lower bounds for r(Im, An), for m and n natural
numbers, always attainable by counterexamples using only red and green
arrows?

The author conjectures that the answer to this question is “No”.
The author was not able to come up with a formula for the upper

bounds given by the recurrence relations for r(Im, An). Perhaps an expert
on recurrence relations can find one.

Problem 7.14. Find a formula similar to the one in Theorem 7.6 for a
general upper bound for r(Im, An).

It is fairly obvious that the methods presented in this chapter could
be extended to determine Ramsey numbers for even more decomposable
ordinals. The related finite combinatorics might turn out to be extremely
difficult, though. We mention just one example as an open problem.

Problem 7.15. Determine r(κλω2, 3) for κ > λ both weakly compact!
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Problems, Questions & Conjectures

This research was mainly motivated by an interest in countable ordinals.
Although we have not discussed Ramsey numbers involving ordinals in
ω1 \ ω3 here at all there are many open problems there. As a teaser we
mention the following:

Problem 7.16. Determine r(ωω2, 3).

Ordinals α satisfying α → (α, n)2 for all n < ω are called partition
ordinals . The author in vain tried to strengthen Theorem 6.24 by replacing
MAℵ1 by “ω1ω is a partition ordinal”. So we leave this as an open question.

Question 7.17. Does r(ω1ωm, n) = ω1ωr(Im, Sn) whenever ω1ω is a parti-
tion ordinal?

A variant of this problem is the following:

Question 7.18. Does r(ω1ωm, n) = ω1ωr(Im, Sn) whenever ω1ω
2 is a par-

tition ordinal?

At the end we want to mention that there are problems in Ramsey
theory which—presumably—could have been attacked algorithmically but
were not. The author conjectures that r(I4, L3) and r(I3, L4) could easily
be algorithmically determined. The same should hold true for r(I2, S4).
Meanwhile the author is rather sceptical about the possibilities to determine
r(I3, A3) or r(I2, A4) without considerable further mathematical insight.
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8

A Thought on the
Milner-Prikry-Problem

We must know, we will know.

David Hilbert

Whereas many results in the Ramsey Theory for pair colourings are
known the general situation, and even the one for triple colourings, is less
well understood. In the finite case only one nontrivial Ramsey number for
triple colourings is known. It was shown in [991MR] that 13→ (4)3

2 while it
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was known by [969Is] that 12 6→ (4)3
2. The result in [991MR] was a computer

proof or, rather, a computation.
Long before that Erdős and Rado had shown in [956ER] that ω1 6→

(ω1, 4)3, that ω1 6→ (ω + 2, ω)3 and that for any uncountable type τ such
that neither τ > ω1 nor τ > ω∗1 and any k < ω one has τ → (ω + k, 4)3.

Galvin showed τ → (ω + 1)rs for r, s < ω and τ → (ω)1
ω in [970Ga] thus

generalising a result of Erdős and Rado from [956ER] who had shown this
for τ = ω1. In [986MP] Milner and Prikry proved that ω1 → (ω + k, 4)3 for
any k < ω and later improved their result in [991MP] to ω1 → (ω2 + 1, 4)3.
In the latter paper they emphasise that their method of proof does not allow
for a straightforward generalisation consisting in the replacement of ω1 by
any τ satisfying τ → (ω)1

ω.
In [986MP] Milner and Prikry wrote that it would be natural to conjecture

the following:

τ → (ω)1
ω =⇒ ∀α < ω1∀n < ω : τ → (α, n)3.

This statement can be seen as a conjecture since they refer back to it as
such in [991MP].

In [000Jo] Jones showed that for any infinite cardinal κ and any
order-type τ the relation τ 6→ (ω)1

2κ implies τ 6→ (κ + 2, ω)3. Later—
in [007Jo]—he strengthened Milner’s and Prikry’s result by showing that
τ → (ω)1

ω implies τ → (ω + k, l)3 for any k, l < ω. Finally, in [008Jo] he
proved τ → (ω2 + 1, 4)3 for all τ satisfying τ → (ω)1

ω.
The author considers Milner’s and Prikry’s conjecture to be a beauti-

ful problem because it connects the finite, the countably infinite and the
uncountable. He wants to hedge his bets but is of the opinion that if a
counterexample to this conjecture exists, it is not all too surprising that it
has not been found yet. Furthermore, the author considers it possible that
the natural way to look at this question would be to allow for more than
two colours. The following theorem is not very deep but it might hint at two
states of affairs. Firstly, that considering more colours might shed more light
on the situation and secondly, that in the context of this problem, ordinals
like 5 or ω2 are perhaps less random points below ω1 than one might guess
at first glance.
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Theorem 8.1. Suppose τ is an order-type such that τ 6→ (ω)1
ω. Then

τ 6→ [ω2, ω2, ω2, ω + 1, 5]3.

Proof. Let f : τ −→ ω witness that τ 6→ (ω)1
ω. Note that f assumes infinitely

many values on every set in [τ ]ω. We define

g : [τ ]3 −→ 5

{α, β, γ}< 7−→



0 if and only if f(α) 6 f(γ) < f(β),

1 if and only if f(β) < f(α) < f(γ),

2 if and only if f(β) < f(γ) 6 f(α),

3 if and only if f(γ) < f(α) < f(β),

4 if and only if f(α) 6 f(β) 6 f(γ) or f(γ) 6 f(β) 6 f(α).

(ω2) Let X ∈ [τ ]ω2. Let 〈ζν | ν < ω2〉 be the order-preserving enumeration
of X. We have to show that 3 ⊂ g“[X]3.

To show that there is a triple {α, β, γ}< ∈ [X]3 such that g({α, β, γ}) =

0 set α ..= ζ0, let m < ω be such that f(ζω+m) > f(α) and set
γ ..= ζω+m. Finally let n < ω be such that f(ζn) > f(γ) and set
β ..= ζn.

For g({α, β, γ}) = 1 set β ..= ζω, let m < ω be such that f(ζm) > f(β)

and set α ..= ζm. Then let n < ω be such that f(ζω+n) > f(α) and set
γ ..= ζω+n.

For g({α, β, γ}) = 2 set β ..= ζω, let m < ω be such that f(ζω+m) >

f(β) and set γ ..= ζω+m. Finally, let n < ω be such that f(ζn) > f(γ)

and set α ..= ζn.

(ω + 1) Let X ∈ [τ ]ω+1 and let 〈ζν | ν < ω + 1〉 be the order-preserving
enumeration. Set γ ..= ζω, let m < ω be such that f(ζm) > f(γ)

and set α ..= ζm. Then let n < ω be such that f(ζn) > f(α) and set
β ..= ζn.

(5) Let {α0, . . . , α4}< ∈ [τ ]5 be given. Assume that {g({α0, αi, α4}) | i ∈
4 \ 1} ⊂ 4. For every i ∈ 4 \ 1 we either have f(αi) < f(α0), f(α4)
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or f(αi) > f(α0), f(α4). By the pigeonhole principle this implies
that there is a pair {i, j}< ∈ [4 \ 1]2 such that either f(αi), f(αj) <

f(α0), f(α4) or f(αi), f(αj) > f(α0), f(α4).

If f(αi), f(αj) < f(α0), f(α4) while f(αi) 6 f(αj) or f(αi), f(αj) >

f(α0), f(α4) while f(αi) > f(αj) then g({αi, αj, α4}) = 4.

Otherwise, i.e. if f(αi), f(αj) < f(α0), f(α4) while f(αi) > f(αj) or
f(αi), f(αj) > f(α0), f(α4) while f(αi) < f(αj) then g({α0, αi, αj}) =

4.
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Epilogue

I think I’ll stop here.

Sir Andrew John Wiles

The author decided to speak in the first person at at least one point in
this thesis. I want to express my gratitude. The following account is not
comprehensive, there are more people whom I am indebted to.

One can achieve so much more if one has help from other people. I
received plenty of help. I got funding from the DFG for the project “Continu-
ous Ramsey theory in higher dimension” which would not have happened if
it had not been for my advisor, Stefan Geschke, to apply for it. Despite this
I am thankful that he always had time and energy to discuss mathematics.
Above all I am thankful for being able to expand the topic of my thesis
beyond the originally planned one. Speaking of this, I also wish to thank
Rene Schipperus for getting me interested in the subject of partition relations
by giving a talk in the Oberseminar in Bonn. Furthermore, I would like to
thank Jean Larson with whom I enjoyed discussing mathematics and who
crucially pointed out to me the papers [974Ba] and [989Ba]. Thanks also
belong to Lionel Ngyuen Van Thé who sent copies of the papers [969HS3],
[969HS] and [969HS2] and my former office mate Benjamin Seyfferth who
provided a crash course in French.

I had the privilege to share offices with many nice people, Merlin Carl,
Ioanna Dimitriou, Anne Fernengel, Ingrid Irmer and Benjamin Seyfferth.
It was always refreshing and often enlightening to discuss the meta-level
of mathematics with Merlin, calling the topic “philosophy of mathematics”
might be etymologically correct but, at the same time, runs the risk of giving
an impression of too narrow a topic. I wish to thank Ingrid for providing
glimpses into another subject of mathematics and, moreover, for inviting
me to an unforgettable party in 2010.
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Without further mentioning any details I wish to thank Uri Avraham,
Dana Bartošová, Andrés Caicedo, Raphaël Carroy, Sam Coskey, Philipp Dö-
bler, Mirna Džamonja, Fred Galvin, Martin Goldstern, Dina Hess, Bernhard
Irrgang, Peter Koepke, Menachem Kojman, Peter Komjath, Yurii Khomskii,
Robert Kucharczyk, Benedikt Löwe, Philipp Lücke, Menachem Magidor,
Adrian Mathias, Gregory McKay, Yann Pequignot, Philipp Schlicht, David
Schrittesser, Omar Selim, Saharon Shelah, Katie Thompson, Stevo Todor-
cevic, Ian Walsh, Marek Wyszkowski and Jindra Zapletal.

Near the end, I would like to thank Wolfgang Wohofsky for his reliable
enthusiasm to discuss mathematics, often in a Viennese Kaffeehaus. The
Viennese Kaffeehaus is, although possibly past its heyday, still a great place
for intellectual endeavours.

I am also grateful to Bianca Bernt for being the best pen-pal one could
wish to have.

Finally, I thank my mother, who was always willing to help where help
was needed.

Bonn Beuel, 7th February 2014, a Friday
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Notation

In this thesis we use the terminology which is nowadays fairly common.
Ordinals are von-Neumann-ordinals, in particular an ordinal is identical to
the set of its ordinal predecessors. Therefore α \ β denotes the half-open
interval from β to α containing the former but not the latter. Ω denotes the
class of all ordinals and [α]β denotes the set of subsets of α of size β where
“size” can refer either to a cardinal or an order type. For a function f we
denote its domain by dom(f) and its range by ran(f). f“X for X ⊂ dom(f)

is defined to be {y ∈ ran(f) | ∃x ∈ X : f(x) = y}, i.e. the pointwise image of
X under the function f . AB denotes the set of all functions from A to B. If A
is a well-order and B is a linear order, then we can consider the lexicographic
order-relation on AB, we denote it by <lex. X denotes the cardinality of
a set X and otyp(X) denotes its order-type. For two order-types τ and
ϕ, τ 6 ϕ means that every set of order-type τ can be embedded into any
set of order-type ϕ order-preservingly. The reverse of any order-type τ is
denoted by τ ∗. The order-type of the rational numbers, the unique countable
dense linear order without end-points, is, following [897Ca], denoted by η.
〈s0, . . . , sk〉 denotes an ordered k + 1-tuple. Correspondingly, 〈sα | α < β〉
denotes a sequence of length β. By writing {k0, . . . , k`}< we denote the set
{k0, . . . , k`} and give the additional information that km < km+1 for any
m < `.

Moreover, we employ the common notation for finite Ramsey numbers
also in the more general case of ordinals. So r(β, n) = α means that α is
the least ordinal such that α→ (β, n)2 holds true.

When v, w are vertices of a directed graph, v 7→bw means that there is a
blue arrow from v to w while v 7→rw says that there is a red arrow from v

to w; v 7→gw claims the existence of a green arrow from v to w and finally
v 7→ w means that there is an arrow of some kind from v to w. Sometimes
we want to talk about there being an arrow of a certain colour between
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v and w without claiming anything about its direction. For this we write
v−bw—there is a blue arrow between v and w, v−rw—there is a red arrow
between v and w, or v−gw—there is a green arrow between v and w. The
blue in-neighborhoods of a vertex v will be denoted by N−B (v) and the blue
out-neighborhoods by N+

B (v). N−R (v), N+
R (v), N−G (v) and N+

G (v) have their
expected denotations. The set of vertices independent from v is denoted by
I(v).

In this thesis, a digraph has at most one arrow between any two vertices
and never any from a vertex to itself.

For the graph-theoretic terminology we follow [009BG]. Some of the
notation was inspired by [009GS].
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