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Introduction

The Dedekind eta function is defined by an infinite product:

η(z) := e
πiz
12

∞∏
n=1

(1− e2πinz) (1)

for all z ∈ H, where H is the complex upper half plane, i. e. the set of complex
numbers with positive imaginary parts. The function η has its significance
in Elementary Number Theory, because 1/η is the generating function for the
ordinary partition function p : N → N (see [1] or [2]) and because η leads to
Dedekind sums (via its modular transformation property, see [17] or [15]). The
eta function is also relevant in Algebraic Number Theory, viz. η(z1)/η(z2) is
an algebraic number if z1, z2 ∈ H belong to an imaginary quadratic field (see
[10]), and in Analytic Number Theory, e. g., the Fourier coefficients of η24 define
the Ramanujan τ function (see [7]) and the value of η8h(Q(

√
−D)) at a quadratic

irrationality in H of discriminant −D is related via the Lerch/Chowla-Selberg
formula to the values of the Gamma function with arguments in D−1Z (see [7],
[10], [26], [44]). Also, the eta function has connections with Representation Theory,
viz. holomorphic eta quotients appear in Moonshine of finite groups (see [16])
and explicit Fourier expansions of infinitely many eta quotients follow from the
Macdonald Identities (see [27]). The study of the modular properties of eta was
started 137 years ago by Dedekind (see [12]). But even in the recent past, a lot of
research has been done to unearth many interesting features of eta quotients (for
example, see [5], [9], [11], [19], [25], [28] and [36]).

The function η is a modular form of weight 1/2 with a multiplier system (see
[20]) on SL2(Z). Throughout this thesis, by modular forms, we shall mean modular
forms with multiplier systems. The eta function endow us with a natural supply
of explicit examples of modular forms: The usual ways to construct more modular
forms from the eta function are to rescale it, to take products of its rescalings
or more generally, to consider holomorphic quotients of products of its rescalings



4 Introduction

and to make linear combination of eta quotients of equal weights. For d ∈ N, by
ηd we denote the rescaling of η by d, defined by ηd(z) := η(dz). In general, by
an eta quotient we mean a finite product over d ∈ N of the functions ηXdd , where
Xd ∈ Z. The lcm of the scaling factors d corresponding to nonzero exponents Xd

is called the level of an eta quotient. Eta quotients naturally inherit the modular
transformation property from η: the level of an eta quotient f is the smallest
positive integer N for which f is a weakly holomorphic modular form on Γ0(N).
Since η is non-zero on the upper half plane, the eta quotient f is holomorphic if
and only if it does not have any pole at the cusps of Γ0(N).

Though it is away from the focus of this thesis, nevertheless it is worth
mentioning here that eta quotients satisfy a plethora of linear identities (see
Somos’s list [40]). In particular, Somos singled out the following remarkable three
term identity (see [41]) from his list:

ηη12η15η20 + η3η4η5η60 = η2η6η10η30 (2)

which Rogers and Yuttanan proved in [35] (Of course the proof of any such identity
is trivial if one uses the modularity properties, by checking a finite number of terms
in the Fourier expansions at ∞. The authors here only wished to demonstrate a
classical technique with which it could also be proved). Here we point out a
distinctive attribute of this identity:

We shall see (Corollary 1.42) that an eta quotient on Γ0(N) is uniquely
determined by its orders of vanishing at the cusps {1/t}t|N of Γ0(N). Again
invertiblity of the valuation matrix (see Proposition 1.41(b)) over Q implies that
given a tuple of arbitrary rational orders at the cusps {1/t}t|N of Γ0(N), there
exists a unique eta quotient with rational exponents whose orders at the cusps
{1/t}t|N of Γ0(N) matches with the given tuple (rational powers of eta are well-
defined by (1.64)(see also [18])). So, in particular, given a set of eta quotients
on Γ0(N), we may define their gcd to be the eta quotient on Γ0(N) whose order
at each cusp 1/t, t|N of Γ0(N) is the minimum of the orders of the given eta
quotients at that cusp. The gcd of the eta quotients in (2) is f := a1/3b1/3c1/6,
where a := ηη12η15η20 b := η3η4η5η60 and c := η2η6η10η30. Now, dividing (2) by f ,
we get a new “ABC”-identity:

a

f
+
b

f
=
c

f
, (3)

in which all three terms are of weight 1/3. The reduction of the original weight
of an eta quotient identity to such a small weight is very rare, which distinguishes
this case from the rest. Moreover, numerical calculations by Zagier suggest that—
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as one could perhaps expect from the low weight (< 1/2) of the terms—the n-th
Fourier coefficients of a/f , b/f and c/f go to zero as n→∞. This is a surprising
feature that of course cannot occur for ordinary modular forms or for eta quotients
with integral coefficients, since the Fourier coefficients of such forms are always
integral.

I studied several other properties of additive identities of eta quotients of this
type, but have not included them in this thesis, in which the focus is about
their multiplicative properties instead. In the remainder of this introduction I
will explain the type of questions that will be studied here and try to highlight
some of the main results.

We say that a holomorphic eta quotient f is divisible by a holomorphic eta
quotient g if f/g is holomorphic. If f is divisible by g, we call g a factor of f . A
holomorphic eta quotient f is irreducible if it has only the trivial factors, viz. 1
and f . There is a lot of numerical evidence for the following conjecture:

Conjecture (Irreducibility Conjecture). A rescaling of an irreducible holomorphic
eta quotient is irreducible.

In particular, rescaling of a holomorphic eta quotient is a holomorphic eta
quotient of the same weight and also rescaling is compatible with multiplication
of eta quotients. Another example of a map which sends eta quotients to eta
quotients and also possesses these two properties which we mentioned above is an
Atkin-Lehner involution:

We define � : N× N→ N by

d1 � d2 :=
d1d2

(d1, d2)2
. (4)

For N ∈ N, by DN , we denote the set of divisors of N . For n ∈ N and d ∈ DN , we
say that d exactly divides N and write d‖N if (d,N/d) = 1. We denote the set of
such divisors of N by EN . It follows trivially that (EN ,�) is a boolean group (i. e.,
each element of EN is the inverse of itself) and that EN acts on DN by �.

For N, k ∈ Z, let E!
N,k (resp. EN,k) be the set of eta quotients (resp.

holomorphic eta quotients) of weight k/2 on Γ0(N). For n ∈ EN , we define the
Atkin-Lehner map aln,N : E!

N,k → E!
N,k by

aln,N

( ∏
d∈DN

ηXdd

)
:=

∏
d∈DN

ηXdn�d. (5)

Since EN is a boolean group and since it acts on DN by �, it follows trivially that
the map aln,N : E!

N,k → E!
N,k is an involution. In the Section 1.6, we shall see that
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the definition of Atkin-Lehner involutions of eta quotients which we gave above
matches with the usual definition of Atkin-Lehner involutions of modular forms on
Γ0(N) up to multiplication by a constant. In particular, that implies:

Proposition. Let f be an eta quotient on Γ0(N) and let n ∈ EN . Then f is
holomorphic if and only if so is aln,N(f).

Just like the case of rescaling which we saw above, we also have a lot of
numerical evidence which suggest the truth of the following assertion:

Conjecture (Irreducibility Conjecture, alternative form). The image of
an irreducible holomorphic eta quotient under an Atkin-Lehner involution is
irreducible.

In Section 2.2, we show that the last two conjectures are equivalent.
Next, we note that the definition of reducibility of an eta quotient allows factors

of arbitrary levels. For example, we have

ηη2η6

η3

=
ηη4η

2
6

η2η3η12

× η2
2 η12

η4η6

, (6)

where a reducible holomorphic eta quotient of level 6 is factored into two
holomorphic eta quotients of level 12.

We call a holomorphic eta quotient f of level N strongly reducible if it has
a nontrivial factor g of some level Ng |N . Certainly, every strongly reducible
holomorphic eta quotient is reducible. But it was quite a surprise to find much
numerical evidence for the converse:

Conjecture (Reducibility Conjecture). A holomorphic eta quotient is reducible
only if it is strongly reducible.

For example, the eta quotient of level 6 in (6) has also the following factorization
into holomorphic eta quotients of level 6 and level 2:

ηη2η6

η3

=
η2η6

η2η3

× η2
2

η
(7)

So, the reducible holomorphic eta quotient
ηη2η6

η3

is indeed strongly reducible.

We shall see in Section 2.2 that the Irreducibility Conjecture above follows from
the Reducibility Conjecture. If the Reducibility Conjecture holds for level N , then
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in particular, it gives an algorithm to check the irreducibility of a holomorphic eta
quotient of level N , since strong reducibility is algorithmically verifiable.

Now we give some results towards the Reducibility Conjecture. We shall see
their proofs in Section 2.3. For M,N ∈ N, by M |N∞ we mean that there exists
some n ∈ N such that M |Nn.

Theorem. A holomorphic eta quotient of level N is reducible only if it is reducible
in some level M with M |N∞.

Corollary. For N ∈ N and M‖N , if a holomorphic eta quotient of levelM is
reducible on Γ0(N), then it is strongly reducible.

Corollary. If a holomorphic eta quotient f has a factor of a squarefree level, then
f is strongly reducible.

In Section 2.4, we establish the Reducibility Conjecture for prime power levels:

Theorem. A holomorphic eta quotient of a prime power level is reducible if and
only if it is strongly reducible.

Corollary. The image of an irreducible holomorphic eta quotient of a prime power
level under an Atkin-Lehner involution is irreducible.

Corollary. A rescaling of an irreducible holomorphic eta quotient of a prime power
level is irreducible.

In Section 2.5, we prove the existence of an algorithm to check the irreducibility
of a holomorphic eta quotient in a finite time without assuming the Reducibility
Conjecture, but instead by showing that the level of any factor of a holomorphic
eta quotient f of weight k/2 and level N is bounded w.r.t. k and N :

Theorem. For N, k ∈ N, there exists an effectively computable M = M(N, k) ∈ N
such that M is divisible by the level of any factor of a holomorphic eta quotient of
weight k/2 and level N .

To prove the above theorem, we use a finiteness result of Mersmann:
An eta quotient is called primitive if it is not a rescaling of another eta quotient

of a smaller level. A holomorphic eta quotient which is primitive and not strongly
reducible is called a simple holomorphic eta quotient . Such eta quotients were
first considered by Zagier, who relying on extensive numerical calculations made
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two conjectures, one saying that there are only finitely many simple holomorphic
eta quotients of a given weight and the other giving a complete list for weight
1/2. In a brilliant piece of work, his student Mersmann established both of these
conjectures in 1991 (see [7], [22], [29]). In Chapters 3 and 4 of this thesis, we shall
see respectively simplified and much shorter proofs of Mersmann’s theorems:

Theorem (Mersmann’s First Theorem). There are only finitely many simple
holomorphic eta quotients of any fixed weight.

Theorem (Mersmann’s Second Theorem). The following fourteen are the only
simple holomorphic eta quotients of weight 1

2
: Zagier’s list

η,
η2

η2

,
η2

2

η
,
η3

2

ηη4

,
η5

2

η2η2
4

,
ηη4

η2

,
ηη2

6

η2η3

,
η2η6

η2η3

,
η2

2η3

ηη6

,
η2η

2
3

ηη6

η2
2η3η12

ηη4η6

,
η5

2η3η12

η2η2
4η

2
6

,
ηη4η

2
6

η2η3η12

,
ηη4η

5
6

η2
2η

2
3η

2
12

.

The inclusion of these two chapters in this thesis is inspired by a paragraph on
page 117 of [22], where Köhler discusses the formidabilily of the task of simplifying
Mersmann’s original proofs.

Though Mersmann’s First Theorem is effective and though the algorithm of its
proof produces quite moderate bounds for prime power levels, for a general level
N , the bound gets extremely large as there seems to be no way to combine the
bounds for the prime power divisors of N except taking the product over all of
them.

We also did extensive computations to formulate an analog of Mersmann’s
Second Theorem for weight 1. But the list of simple holomorphic eta quotients of
weight 1 is unexpectedly larger than the similar list given in Mersmann’s Second
Theorem (see Appendix A). For example, for weight 1, there are 496 simple
holomorphic eta quotients of level 48, 478 simple holomorphic eta quotients of
level 60 and 736 simple holomorphic eta quotients of level 144. Also, unlike in the
case of weight 1/2, for weight 1 a simple holomorphic eta quotient could be found
even at much higher levels. For instance,

η η4 η
2
6 η

3
48 η

2
128 η768

η2 η3 η12 η16 η24 η96 η256 η384

is a simple holomorphic eta quotient of weight 1 and level 768 .
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In Chapter 5, we consider the dual perspective of Mersmann’s First Theorem,
i. e., instead of considering eta quotients of a particular weight and arbitrary levels,
we consider holomorphic eta quotients of a particular level and arbitrary weights.
Among other results, here we proved that

Theorem. The weight of any simple holomorphic eta quotient of level N is less
than

1

2
ϕ (rad(N))

∏
p|N

p prime

(
(vp(N)− 1)(p− 1) + 2

)
,

where rad(N) is the product of the primes dividing N , ϕ denotes the Euler totient
function and vp(N) denotes the p-adic valuation of N .

It is easy to show that there exist only finitely many holomorphic eta
quotients of a given level and weight (Corollary 1.50). Thus, from the above
theorem, we conclude that

Corollary. There are only finitely many simple holomorphic eta quotients of a
given level.

In particular, that implies:

Corollary. There are only finitely many irreducible holomorphic eta quotients of
a given level.

In the last chapter, we construct examples of simple holomorphic eta quotients
of various levels. For example, we show that

Theorem. If N ∈ N is cubefree, then there exists an explicitly constructible simple
holomorphic eta quotient of level N . Moreover, if N is a square, then we may
choose this simple holomorphic eta quotient to be irreducible.

In particular, in Chapter 6, we study simple holomorphic eta quotients of prime
power levels intensively. For a prime level p, it is easy to show that the only simple
holomorphic eta quotients of level p are ηp/ηp and ηpp/η. For level p2, we have:

Theorem. Let p be a prime. The only simple holomorphic eta quotients of level
p2 are

ηrηp−rp2

ηp
, 1 ≤ r ≤ p− 1 and

ηsp+1
p

ηsηsp2
, 1 ≤ s ≤ p.
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This implies via the Irreducibility Conjecture for prime power levels (which we
prove in Section 2.4):

Corollary. For any prime p and m ∈ N, the holomorphic eta quotients

ηrmη
p−r
mp2

ηmp
and

ηsp+1
mp

ηsmη
s
mp2

are irreducible for all r, s ∈ N with 1 ≤ r ≤ p− 1 and 1 ≤ s ≤ p.

We checked that for each prime p ∈ {2, . . . , 23}, there does not exist any simple
holomorphic eta quotient of level p3. So, we conjecture that

Conjecture. For a prime p, there does not exist any simple holomorphic eta
quotient of level p3

For n > 3, we have proved that

Theorem. For any integer n > 3 and p prime, the holomorphic eta quotient

fp,n :=



ηpp η
(p−1)2

pn−1

n/2−1∏
s=1

ηp
2−3p+1
p2s−1 ηp

2−2p+2
p2s

(ηηpn)p−1 if n is even.

(ηpηpn−1)p
n−1∏
s=1

ηp
2−3p+2
ps

(ηηpn)p−1 if n is odd and p 6= 2,

(8)

is simple of level pn.

In particular, the above theorem together with the Reducibility Conjecture for
prime power levels (which we prove in Section 2.4) implies:

Corollary. For any integer n > 3, the eta quotient fp,n is irreducible.

The significance of the special simple holomorphic eta quotients fp,n lies in the
following conjecture (supported by a good amount of numerical evidence), with
which we close this introduction:

Conjecture. For any integer n > 3 and for any odd prime p, there are no simple
holomorphic eta quotients of level pn and of weight greater than that of fp,n.
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Part I

Eta Quotients and their
factorization





Chapter 1

Preliminaries

The central characters of this thesis are eta quotients. They are weakly
holomorphic modular forms which are nonzero on complex the upper half plane
and which has uniform orders at certain sets of cusps of a suitable Hecke subgroup
of the full modular group. We give the precise definitions of the relevant terms
later in this chapter. We begin the first section by defining cusps.

In classical texts on automorphic forms (see [30], [38]), cusps of a discrete
subgroup of SL2(R) are defined as the parabolic points of the subgroup. But
usually all we care about are the equivalence classes of the parabolic points of the
pertinent group while studying the singularities of a modular curve. Since the set
of parabolic points of two mutually commensurable discrete subgroups of SL2(R)
are the same, naturally it became a common practice in modern literature instead
(see [8], [13], [42]) to start directly with the set ℘ of the parabolic points of the full
modular group SL2(Z) and to define the cusps of a discrete subgroup G ⊂ SL2(R)
that is commensurable with SL2(Z) by the G-equivalence classes in ℘. We shall
follow the later convention.

1.1 Cusps

In the following, by Γ1 we denote the full modular group SL2(Z). The group Γ1

acts on P1(Q) transitively by Möbius transformations :

γs = [aα + bλ : cα + dλ] (1.1)

for γ =

(
a b
c d

)
∈ Γ1 and s = [α : λ] ∈ P1(Q). The restriction of this group action

to a finite index subgroup Γ ⊂ Γ1 defines an action of Γ on P1(Q). The cusps of Γ
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are the Γ-orbits in P1(Q).
More generally, the group G := R+· GL+

2 (Q) acts on P1(Q) by Möbius trans-
formations. Here by R+ we denote the set of positive real numbers and by GL+

2 (Q)
we denote the group of 2 × 2 rational matrices with positive determinant. Let Γ
and Γ′ be two finite index subgroups of Γ1 such that gΓ′g−1 ⊂ Γ for some g ∈ G.
Then there is a natural map from the set of the cusps of Γ′ onto the set of the
cusps of Γ:

Lemma 1.1. Let Γ and Γ′ be two finite index subgroups of Γ1 and let g ∈ G
such that gΓ′g−1 ⊂ Γ. The endomorphism of P1(Q) that maps s to gs induces a
surjection from the set of the cusps of Γ′ to the set of the cusps of Γ.

Proof. Let us consider the following diagram:

P1(Q) P1(Q)

Γ′\P1(Q) Γ\P1(Q)

s 7→ gs

Let s1, s2 ∈ P1(Q) with s2 = γ′s1 for some γ′ ∈ Γ′. Then we have γgs1 = gs2,
where γ = gγ′g−1 ∈ Γ. In other words, the above diagram commutes. Now
a counterclockwise diagram-chasing shows that each element in Γ\P1(Q) has a
preimage in Γ′\P1(Q). So, the map s 7→ gs on P1(Q) indeed induces a surjection
from the set of the cusps Γ′ to the set of the cusps of Γ.

Corollary 1.2. For two finite index subgroups of Γ1 which are conjugate to each
other by some element of G, there is a natural bijection between their sets of cusps.

Proof. Let Γ and Γ′ be two finite index subgroups of Γ1 and let g ∈ G such that
gΓ′g−1 = Γ. Then from Lemma 1.1, we know that the map s 7→ gs on P1(Q)
induces a map from the set of the cusps Γ′ onto the set of the cusps of Γ. Similarly,
the map s 7→ g−1s on P1(Q) induces a map from the set of the cusps of Γ onto the
set of the cusps of Γ′. Clearly, the later map is the inverse of the former. Thus, we
get a bijection between the sets of the cusps of Γ and Γ′.

We identify P1(Q) with Q ∪ {∞} via the canonical bijection that maps [α : λ]
to α/λ if λ 6= 0 and to ∞ if λ = 0. For a subgroup Γ ⊂ Γ1 and for s ∈ P1(Q), by
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Stabs(Γ) we denote the stabilizer of s in Γ. For example, it follows immediately
from (1.1) that

Stab∞(Γ1) = {±T n
∣∣n ∈ Z}, (1.2)

where T :=

(
1 1
0 1

)
.

Lemma 1.3. For s ∈ P1(Q) and for any subgroup Γ ⊂ Γ1, the map

Γ\Γ1/ Stabs(Γ1)→ Γ\P1(Q)

given by Γ · γ1 · Stabs(Γ1) 7→ Γ · γ1s is a bijection.

Proof. Since Γ1 acts transitively on P1(Q), we can identify Γ1/ Stabs(Γ1) and P1(Q)
via the natural bijection given by γ1 · Stabs(Γ1) 7→ γ1s.

Lemma 1.4. A finite index subgroup of Γ1 has only finitely many cusps.

Proof. Let Γ be a finite index subgroup of Γ1. We consider the following diagram:

Γ1 Γ1/ Stabs(Γ1)

Γ\Γ1 Γ\Γ1/ Stabs(Γ1)

Since group operations are associative, this diagram commutes. Since the set Γ\Γ1

of left cosets of Γ in Γ1 is finite, the set of double cosets Γ\Γ1/ Stabs(Γ1) is also
finite. Hence by Lemma 1.3, the group Γ has only finitely many cusps.

We define the Hecke subgroup Γ0(N) and the principal congruence subgroup
Γ(N) of level N by

Γ0(N) :=
{(a b

c d

)
∈ Γ1

∣∣ c ≡ 0 (mod N)
}

and

Γ(N) :=
{(a b

c d

)
∈ Γ0(N)

∣∣ a ≡ d ≡ 1 (mod N), b ≡ 0 (mod N)
}
.

A subgroup of Γ1 that contains Γ(N) is called a congruence subgroup of level N .
The set of such subgroups of Γ1 is closed under conjugation:
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Lemma 1.5. All the conjugates of a congruence subgroup of level N by the elements
of Γ1 are congruence subgroups.

Proof. Since Γ(N) is the kernel of the canonical homomorphism from Γ1 to
SL2(Z/NZ), Γ(N) is a normal subgroup of Γ1. So, given any congruence subgroup
of level N , Γ(N) sits inside all its conjugates.

Since SL2(Z/NZ) is a finite group, it follows from the proof above that Γ(N)
(and hence any congruence subgroup) has finite index in Γ1. For example, we have
(see [34]) :

[Γ1 : Γ0(N)] = N
∏
p|N

p prime

(
1 +

1

p

)
. (1.3)

So, we obtain the following corollary of Lemma 1.4:

Corollary 1.6. A congruence subgroup of Γ1 has only finitely many cusps.

In particular, the group Γ0(N) has only finitely many cusps. Below we describe
a system of representatives of the cusps of Γ0(N). We denote by DN the set of
divisors of N . For x, y ∈ N, by (x, y) we denote the greatest common divisor of x
and y.

Proposition 1.7. The following set contains a unique representative for each cusp
of Γ0(N): {

[α : λ]
∣∣ λ ∈ DN , α ∈ Z, (α, λ) = 1

}
/ ∼ ,

where [α : λ] ∼ [β : λ] if α ≡ β (mod (λ,N/λ)).

Proof. In the following, we shall use the notation ‘ ∼’ to denote a more general
equivalence relation, viz., if s, s′ ∈ P1(Q) represent the same cusp of Γ0(N), we
shall write s ∼ s′. The proposition in particular claims that the former equivalence
relation mentioned in the statement of the proposition is only a restriction of the
later equivalence relation to the set {[α : λ]

∣∣ λ ∈ DN , α ∈ Z, (α, λ) = 1}. Let
[a : b] ∈ P1(Q) with (a, b) = 1. First we show that [a : b] ∼ [a′ : (N, b)] for some
a′ ∈ Z. For this, it suffices to find integers x, y which satisfy

axN + by = (N, b). (1.4)

such that (xN, y) = 1. Because, then we have a matrix of the form(
∗ ∗
xN y

)
∈ Γ0(N)
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which sends [a : b] to some [a′ : (N, b)] ∈ P1(Q).
If x, y ∈ Z satisfy (1.4), then we have (x, y) = 1. So, it suffices to find integers

x, y which satisfy (1.4) such that (N, y) = 1. Since (a, b) = 1, there indeed exist
x0, y0 ∈ Z such that

ax0N + by0 = (aN, b) = (N, b). (1.5)

So, all integer solutions of (1.4) are given by the pairs x0 +bt/(N, b), y0−Nt/(N, b)
for t ∈ Z. If n ∈ N is coprime to N/(N, b), then the arithmetic progression
{y0 − Nt/(N, b)}t∈Z covers all the residue classes modulo n. In particular, if we
choose n to be the product of all the primes which divide N but do not divide
N/(N, b), then there exists a t0 ∈ Z, such that

y0 −Nt0/(N, b) ≡ 1 (mod n). (1.6)

From (1.5) we have (y0, N/(N, b)) = 1. Hence, y0−Nt0/(N, b) is also not divisible
by any prime dividing N/(N, b). Let y = y0 −Nt0/(N, b) and x = x0 + bt0/(N, b).
Then (N, y) = 1 and x, y satisfy (1.4). (In fact, Dirichlet’s theorem on primes
in arithmetic progression provides a shortcut to the existence of such a solution:
since (y0, N/(N, b)) = 1, one can choose y to be some prime in the arithmetic
progression {y0 −Nt/(N, b)}t∈Z which does not divide N). Thus, we have proved
that [a : b] ∼ [a′ : (N, b)] for some a′ ∈ Z.

Next we show that if [α : λ] and [β : λ] ∈ P1(Q) with λ|N and (α, λ) = (β, λ) =
1, then [α : λ] ∼ [β : λ] if and only if α ≡ β (mod (λ,N/λ)).

First let us suppose, [α : λ] ∼ [β : λ]. Then there exists γ =

(
a b
c d

)
∈ Γ0(N)

such that γ [α : λ] = [β : λ] and hence γ−1[β : λ] = [α : λ]. In other words,

[aα + bλ : cα + dλ] = [β : λ] and [dβ − bλ : −cβ + aλ] = [α : λ]. (1.7)

Since

γ−1

(
aα + bλ
cα + dλ

)
=

(
α
λ

)
and since (α, λ) = 1, we have (aα + bλ, cα + dλ) = 1. Similarly, we have
(dβ − bλ,−cβ + aλ) = 1. Hence, from (1.7) we get

aα + bλ = β (1.8)

cα + dλ = λ (1.9)

dβ − bλ = α (1.10)

−cβ + aλ = λ (1.11)



22 Chapter 1. Preliminaries

From (1.11) we get a = (c/λ)β + 1. Since λ|N and since N |c, indeed we have λ|c.
From (1.8) we get aα ≡ β (mod λ) and therefore,(

(c/λ)β + 1
)
a ≡ β (mod λ). (1.12)

Since N/λ divides c/λ, from (1.12) we get α ≡ β (mod (λ,N/λ)).

Now let us suppose α ≡ β (mod (λ,N/λ)). To show that [α : λ] ∼ [β : λ], we
shall construct a γ ∈ Γ0(N) such that γ [α : λ] = [β : λ].

Since α ≡ β (mod (λ,N/λ)), there exist n0, n1 ∈ Z such that

n0λ+ n1(N/λ) = β − α.

Hence, β − α ≡ n1(N/λ) (mod λ). Since (α, λ) = (β, λ) = 1, αβ is invertible
modulo λ. Let (αβ)−1 ≡ n2 (mod λ) and let m ∈ Z such that m ≡ n1n2 (mod λ).
Then we have

β − α ≡ m(N/λ)αβ (mod λ). (1.13)

Hence,
β − α−m(N/λ)αβ

λ

is an integer. Let

γ :=

mβ(N/λ) + 1
β − α−m(N/λ)αβ

λ

mN −mα(N/λ) + 1

 .

Then we have γ ∈ Γ0(N) and γ [α : λ] = [β : λ].

Corollary 1.8. Let Γ ⊂ Γ1 be a finite index subgroup that is conjugate to Γ0(N)
by some element of G. The total number of cusps of Γ is∏

p|N
p prime

(
pbvp(N)/2c + pdvp(N)/2e−1

)
,

where for each prime p, the integer vp(N) denotes the p-adic valuation of N .
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Proof. From Corollary 1.2 and Proposition 1.7, we know that there are exactly∑
d|N

ϕ((d,N/d)) cusps of Γ, where ϕ denotes the Euler totient function. Since for

a prime p and a positive integer m, we have

m∑
j=0

ϕ
(
pmin{j,m−j}) = pbm/2c + pdm/2e−1 (1.14)

and since the function f : N→ N defined by

f(n) :=
∑
d|n

ϕ((d, n/d)) (1.15)

is multiplicative, we get

f(N) =
∏
p|N

p prime

f
(
pvp(N)

)
=
∏
p|N

p prime

(
pbvp(N)/2c + pdvp(N)/2e−1

)
.

Convention 1.9. Let Γ be a finite index subgroup fo Γ1. Then we would refer
to the cusp of Γ represented by s ∈ P1(Q) as the cusp s (mod Γ). If the group Γ is
clear from the context, then we would simply write the cusp s instead of the cusp
s (mod Γ).

1.2 Modular forms of integral weight

Since the protagonists of our story (viz. holomorphic eta quotients) are modular
forms with multiplier systems, in our definition of modular forms, multiplier
systems would be innate:

A modular form is a complex-valued holomorphic function on H which is
invariant up to multiplication by some complex number of modulus 1 when slashed
with any element of a suitable matrix group and moreover, the function is also
holomorphic at the cusps of the group. We give the necessary definitions below.

The group GL+
2 (R) of 2 × 2 real matrices with positive determinants acts on

the complex upper half plane

H := {z ∈ C
∣∣ Im(z) > 0}
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transitively by Möbius transformations :

γz :=
αz + β

λz + δ
for γ =

(
α β
λ δ

)
∈ GL+

2 (R) and z ∈ H. (1.16)

For k ∈ Z, we define the slash operator |k on the space of complex-valued functions
on H as follows:

Let f be a complex-valued function on H and let γ =

(
α β
λ δ

)
∈ GL+

2 (R). We

define f |kγ : H→ C by

(f |kγ)(z) := det(γ)k/2J(γ, z)−k f(γz), (1.17)

where J(γ, z) := cz+d. In particular, the automorphic factor J : GL+
2 (R)×H→ C

satisfies the cocycle condition:

J(γγ′, z) = J(γ, γ′z)J(γ′, z) (1.18)

for all γ, γ′ ∈ GL+
2 (R) and z ∈ H. For each k ∈ Z, the slash operator |k defines

an action of GL+
2 (R) on the space of complex-valued functions on H :

Lemma 1.10. Let f be a function on H, k ∈ Z and γ, γ′ ∈ GL+
2 (R). Then

f |k(γγ′) = (f |kγ)|kγ′.

Proof. Since det(γ) and det(γ′) are positive real numbers, we have

det(γγ′)τ = det(γ)τ · det(γ′)τ for all τ ∈ C. (1.19)

In particular, (1.19) holds when τ is a half integer. Now, the claim follows imme-
diately from the cocycle condition (1.18).

Let Γ be a finite index subgroup of Γ1. Let k ∈ Z, let f be a meromorphic
function on H and let v = vf be a map from Γ to the circle group T := {z ∈
C
∣∣ |z| = 1} such that

f |k γ = v(γ)f for all γ ∈ Γ. (1.20)

Then we say that f transforms like a modular form of weight k with a multiplier
system v on Γ. From (1.20) and from Lemma 1.10, we have

v(γγ′)f = f |k(γγ′) = (f |kγ)|kγ′ = v(γ)v(γ′)f (1.21)



1.2. Modular forms of integral weight 25

for all γ, γ′ ∈ Γ. So, if we assume that f is not identically zero, then the map
v : Γ→ T is necessarily a homomorphism.

Let Γ ⊂ Γ1 be as before, let γ1 ∈ Γ1, let s = γ1∞ ∈ P1(Q) and let s (mod Γ)
be a cusp of Γ. We have

γ−1
1 Stabs(Γ)γ1 = Stabγ−1

1 s(γ
−1
1 Γγ) = Stab∞(γ−1

1 Γγ1) (1.22)

⊂ Stab∞(Γ1) = {±T n
∣∣n ∈ Z},

where T =

(
1 1
0 1

)
. In particular there is a unique ws ∈ N such that either Tws or

−Tws belongs to the group γ−1
1 Stabs(Γ)γ1. The integer ws is called the width of

the cusp s.
For any subgroup Γ ⊂ Γ1, we define the group Γ as the quotient of the join of

the subgroups Γ and {±I} by the later group:

Γ := (Γ ∨ {±I})/{±I}. (1.23)

Here I is the identity matrix in Γ1. Since both the points on H and the elements
in P1(Q) are invariant under the Möbius transformation by −I, for each subgroup
Γ ⊂ Γ1, there is an action of Γ on H (resp. P1(Q)) induced by the action of Γ on
H (resp. P1(Q)) by Möbius transformations.

Lemma 1.11. Let Γ be a finite index subgroup of Γ1 and let s ∈ P1(Q). The width
of the cusp s of Γ is well-defined.

Proof. Let ws denote the width of the cusp s of Γ. From the definition of width,
it easily follows that

ws = [Stabs(Γ1) : Stabs(Γ)]. (1.24)

In particular, from (1.24), we get that ws neither depends on the choice of the
matrix γ1 ∈ Γ1 such that s = γ1∞ nor does it change if we replace s with some
s′ ∈ P1(Q) which represent the same cusp of Γ. So, the width of a cusp is indeed
well-defined.

Under the natural bijections between the sets of cusps (see Lemma 1.1 and
Corollary 1.2) of a congruence subgroup Γ ⊂ Γ1 and its conjugates by the elements
of Γ1 (see Lemma 1.5), the width of each cusp remains invariant:

Lemma 1.12. Let Γ and Γ′ be two congruence subgroups of Γ1 such that there
exists γ1 ∈ Γ1 with γ−1

1 Γγ1 = Γ′. For s ∈ P1(Q) and s′ := γ−1
1 s, the widths of the

cusps s of Γ and s′ of Γ′ are the same.
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Proof. Let γ ∈ Γ1 be such that s = γ∞. Let γ′ := γ−1
1 γ, so s′ = γ′∞. Then we

have

γ−1 Stabs(Γ)γ = γ−1 Stabs(γ1Γ′γ−1
1 )γ = γ−1γ1 Stabγ−1

1 s(Γ
′)γ−1

1 γ

= γ′−1 Stabs′(Γ
′)γ′.

Hence, the width of the cusp s of Γ is equal to the width of the cusp s′ of Γ′.

Lemma 1.13. Let s = [α : λ] ∈ P1(Q) with (α, λ) = 1. The width of the cusp s of
Γ0(N) is

N

(λ2, N)
.

Proof. Since (α, λ) = 1, there exists β, δ ∈ Z such that γ1 =

(
α β
λ δ

)
∈ Γ1.

Let ws be the width of s. Since, −I ∈ Γ0(N), we have Tws =

(
1 ws
0 1

)
∈

γ−1
1 Stabs(Γ0(N))γ1, i.e.

γ1

(
1 ws
0 1

)
γ−1

1 ∈ Stabs(Γ0(N)) ⊂ Γ0(N). (1.25)

Multiplying the matrices, we see that (1.25) holds if and only if

λ2ws ≡ 0 (mod N). (1.26)

Since ws is the smallest positive integer satisfying (1.26), it follows that

ws =
N

(λ2, N)
.

Let Γ be a finite index subgroup of Γ1, let γ1 ∈ Γ1, let s = γ1∞ and let ws be
the width of the cusp s of Γ. If Tws ∈ γ−1

1 Stabs(Γ)γ1, we call s a regular cusp of
Γ. Otherwise, we call it an irregular cusp. We define the irregularity indicator χs
by

χs :=

{
1 if s is an irregular cusp of Γ.

0 otherwise.
(1.27)

In particular, for the cusp s = γ1∞ of Γ, we have eπiχs Tws ∈ γ−1
1 Stabs(Γ)γ1.

Let f be a meromorphic function on H that transforms like a modular form of
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weight k ∈ Z with a multiplier system v on Γ. We define the cusp-parameter
κs = κs(v) ∈ [0, 1) by

κs :=
1

2πi
Log v(γ1e

πiχs Twsγ−1
1 ), (1.28)

where Log denotes the principal branch of complex logarithm. Define fγ1 : H→ C
by

fγ1(z) := e−πi(kχs+2κs)z/ws(f |kγ1)(z) (1.29)

Then we have

fγ1(z + ws) = e−πi(kχs+2κs)z/wse−2πiκs
(
(f |k(γ1e

πiχs Twsγ−1
1 ))|kγ1

)
(z) = fγ1(z).

(1.30)

So, fγ1 has a Fourier expansion: fγ1(z) =
∑
n∈Z

ane
2πinz/ws , from which we get

(f |kγ1)(z) =
∑
n∈Z

ane
2πi(n+kχs/2 +κs)z/ws . (1.31)

q

Convention 1.14. For all r ∈ C we define the function qr : C→ C by

qr(z) := e2πirz. (1.32)

Henceforth, we adopt a common abuse of notation by writing qr instead of qr(z).

Definition 1.15. Let Γ be a finite index subgroup of Γ1, let f be a holomorphic
function on H, let k ∈ Z and let v : Γ→ T be a homomorphism such that

f |kγ = v(γ)f for all γ ∈ Γ. (1.33)

Moreover, we presume that f is meromorphic at the cusps, i. e, for each γ1 ∈ Γ1,
we assume that there exists an ms ∈ Z, where s = γ1∞ such that f |kγ1 has a series
expansion of the form

(f |kγ1)(z) =
∞∑

n=ms

anq
(n+kχs/2 +κs)/ws , (1.34)

where χs is the irregularity indicator, ws is the width and κs is the cusp-parameter
of the cusp s of Γ. Then we call f a weakly holomorphic modular form of weight
k with a multiplier system v on Γ. We define the order of f at the cusp s of Γ by

ords(f ; Γ) := ms + kχs/2 + κs. (1.35)
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We call f holomorphic at the cusp s if ords(f ; Γ) ≥ 0. If f is holomorphic at all
the cusps of Γ, we call f a modular form of weight k with a multiplier system v
on Γ.

Lemma 1.16. Let Γ be a finite index subgroup of Γ1, let s ∈ P1(Q) and let f be
a weakly holomorphic modular form of integral weight k with a multiplier system
v on Γ. The cusp-parameter w.r.t. v at the cusp s of Γ and the order of f at the
cusp s are well-defined.

Proof. Let χs be the irregularity indicator and let ws be the width of the cusp s of Γ.
Let γ1, γ

′
1 ∈ Γ1 with s = γ1∞ = γ′1∞. Then γ−1

1 γ′1 ∈ Stab∞(Γ1) = {±T n
∣∣n ∈ Z}.

Let n0 ∈ Z be such that γ′1 = ±γ1T
n0 . Then we have γ′1e

πiχsTwsγ′1
−1 =

γ1e
πiχsTwsγ−1

1 . So, from (1.28) it follows that the cusp-parameter κs is indeed
well-defined.

Let m ∈ Z be such that f |kγ1 has a series expansion of the form

(f |kγ1)(z) =
∞∑
n=m

anq
(n+kχs/2 +κs)/ws , (1.36)

Then we have

(f |kγ′1)(z) = (±1)k(f |kγ1)(z + n0) =
∞∑
n=m

bnq
(n+kχs/2 +κs)/ws ,

where bn = (±1)kane
2πin0(n+kχs/2 +κs)/ws . So, ords(f ; Γ) is indeed well-defined.

Convention 1.17. In order to lighten the notation, we shall write ords(f) instead
of ords(f ; Γ) whenever the group Γ is clear from the context.

Lemma 1.18. Let f1 and f2 be weakly holomorphic modular forms on a finite
index subgroup Γ of Γ1. Then at each cusp s of Γ, we have

ords(f1f2) = ords(f1) + ords(f2).

Proof. Let f = f1f2 and let k = k1k2, where k1 and k2 are respectively the weights
of f1 and f2. Let γ1 ∈ Γ1 such that s = γ1∞. Now, the claim follows trivially from
(1.34) and (1.35), since we have

f |kγ1 = (f1|k1γ1) · (f2|k2γ1).
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Now we prove a theorem that will be quite useful later. To state the theorem,
we recall that by the notation G, we denote the group R+·GL+

2 (Q).

Theorem 1.19. Let Γ and Γ′ be two finite index subgroups of Γ1 and let g ∈ G
such that gΓ′g−1 ⊂ Γ. Let f be a weakly holomorphic modular form of integral
weight k with a multiplier system v on Γ. Then

(a) f |k g is a weakly holomorphic modular form of weight k on Γ′ with the
multiplier system v g defined by

v g(γ
′) := v(gγ′g−1) for all γ′ ∈ Γ′. (1.37)

(b) The orders of f and f |k g at the cusps of Γ and Γ′ are related by

ords(f |k g ; Γ′) =
δ2ws

det(g∗)w gs

ordgs(f ; Γ) for s ∈ P1(Q), (1.38)

where ws is the width of the cusp s of Γ′, w gs is the width of the cusp gs

of Γ, g∗ =

(
a b
c d

)
is an arbitrary integer matrix that is equal to g up to

multiplication by a positive real number and δ = (aα + bλ, cα + dλ), where
α, λ ∈ Z with (α, λ) = 1 such that s = [α : λ].

Proof. (a) For γ′ ∈ Γ′, we have

(f |k g)|kγ′ = (f |k gγ′g−1)|k g = v g(γ
′)f |k g. (1.39)

So, f |k g transforms like a modular form of weight k with the multiplier system v g

on Γ′. Clearly, the orders of vanishing of f and f |k g at the points on H are related
by

ordP (f |k g) = ordgP (f) for P ∈ H. (1.40)

Therefore, f |k g is holomorphic on H if and only if so is f . Now from part (b)
of the theorem and from Lemma 1.1, it follows that f |k g is meromorphic at the
cusps of Γ′ if and only if f is meromorphic at the cusps of Γ. Since f is a weakly
holomorphic modular form on Γ, we conclude that f |k g is a weakly holomorphic
modular form on Γ′.

(b) Let r be a positive real number and g∗ =

(
a b
c d

)
be an integer matrix such
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that g = rg∗. Let γ =

(
α β
λ ν

)
∈ Γ1 and let s = γ∞ be a cusp of Γ′. Let

a1, b1, c1, d1 ∈ Z be such that g∗γ =

(
a1 b1

c1 d1

)
. Let δ = (a1, c1), let a′1 = a1/δ

and let c′1 = c1/δ. Then there exist x, y ∈ Z such that a′1x + c′1y = 1. In other

words, γ1 :=

(
a′1 −y
c′1 x

)
∈ Γ1. Since a1d1 − b1c1 = det(g∗γ) = det(g∗) and since

δ = (a1, c1), we have u :=
det(g∗)

δ
∈ Z. Let γ2 := r

(
δ b1x+ d1y
0 u

)
. Since

gγ = γ1γ2, we have

((f |kg)|kγ)(z) = ((f |kγ1)|kγ2)(z) =
δk

det(g∗)k/2
(f |kγ1)(γ2(z)). (1.41)

Since gs = γ1∞, from (1.34) we get

(f |kγ1)(z) =
∞∑
n=mgs

anq
(n+kχgs/2 +κgs)/wgs (1.42)

where χgs is the irregularity indicator, wgs is the width and κgs is the cusp-
parameter of the cusp gs of Γ. We have

γ2(z) =
δ2z

det(g∗)
+ ρgs, (1.43)

where ρgs = ρgs(b1, d1) ∈ C can be chosen from a certain arithmetic progression.
So, from (1.41), (1.42) and (1.43), we get that

((f |kg)|kγ)(z) =
δk

det(g∗)k/2

∞∑
n=mgs

ane
2πiγ2(z) (n+kχgs/2 +κgs)

wgs

=
∞∑
n=mgs

bnq
δ2 (n+kχgs/2 +κgs)

det(g∗)wgs , (1.44)

where bn :=
anδ

ke2πiρgs(n+kχgs/2 +κgs)/wgs

det(g∗)k/2
. It follows from (1.35) and (1.44) that

ords(f |k g ; Γ′) =
δ2ws

det(g∗)w gs

ordgs(f ; Γ), (1.45)



1.3. Modular forms of rational weight 31

where ws is the width of the cusp s of Γ′ and w gs is the width of the cusp gs of Γ.

From (1.40) and (1.38), it follows that the map f 7→ f |kg sends a holomorphic
modular form to a holomorphic modular form. We call such a map a holomorphy-
preserving map. In particular, we have:

Corollary 1.20. Let Γ and Γ′ be two finite index subgroups of Γ1 and let g ∈ G
such that gΓ′g−1 ⊂ Γ. Let f be a modular form of integral weight k with a multiplier
system v on Γ. Then f |k g is a modular form of weight k on Γ′ with the multiplier
system v g defined by (1.37).

Corollary 1.21. For two finite index subgroups of Γ1 which are conjugate to each
other by some element of G, there is a natural holomorphy-preserving isomorphism
between the spaces of weakly holomorphic modular forms of integral weight k on
them.

Corollary 1.22. Let Γ be a finite index subgroup of Γ and let k ∈ Z. For each
g belonging to the normalizer of Γ in G, the map f 7→ f |k g is a holomorphy-
preserving automorphism of the space of weakly holomorphic modular forms of
weight k on Γ.

Convention 1.23. Henceforth, by a modular form we shall mean a modular form
with a multiplier system.

1.3 Modular forms of rational weight

We have seen in (1.21) that the multiplier system of modular forms of integral
weight is necessarily a homomorphism from the relevant matrix group to the circle
group. But if we define the automorphic factor for a non-integral weight modular
form via the choice of a particular branch of the complex logarithm, then the
multiplier system remains no longer a homomorphism in general (see [18], [22],
[20]). However, we can get around this problem by extending the relevant matrix
group in a suitable way.

We shall define rational weight modular forms in such a way that the well-
developed notion of half-integral weight modular forms fits into it. Usually, the
automorphic factor of a half-integral weight modular form is defined via the
automorphic factor of the Jacobi theta series θ(z) =

∑
n∈Z e

2πin2z (see [39]). But
it could have been defined via the automorphic factor of some other modular form
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of weight half as well. So, rather than defining the automorphic factor as the one
associated with a particular modular form, we replace the relevant matrix group
with its central extension by a group of roots of unity and work with the canonical
automorphic factor. In particular, for the weight half case, instead of taking a
suitable embedding of the relevant matrix group into its central extension by µ4,
we replace our matrix group with its central extension by µ2, where µn denotes
the group of complex n-th roots of unity. All the apparent discrepancies with the
usual notion of half-integral weight modular forms those may seem to arise due
to these changes of convention, would be taken care of by the introduction of the
multiplier system.

Let G := GL+
2 (R) and for n ∈ N, let G̃n be the central extension of G by the

group µn given by

G̃n :=

(γ, α)

∣∣∣∣∣∣∣∣
γ =

(
a b
c d

)
∈ G and α : H→ C holomorphic with

α(z)n =
cz + d√
det(γ)

 . (1.46)

The law of composition in G̃n is defined by

(γ, α) · (γ′, β) = (γγ′, λ), where λ(z) = α(γ′z)β(z) for all z ∈ H. (1.47)

For any subgroup H ⊂ G, we define the group H̃n ⊂ G̃n by replacing G with H in
(1.46).

For r ∈ Q, we define the slash operator |r on the space of complex-valued
functions on H as follows:

Let ` be the smallest positive integer such that `r ∈ Z and let k = `r. Given a
complex-valued function f on H and γ̃ = (γ, α) ∈ G̃`, we define f |r γ̃ : H→ C by

(f |r γ̃)(z) := det(γ)k/2J( γ̃, z)−k f(γz), (1.48)

where J( γ̃, z) := α(z). From the law of composition in G̃`, it follows that the

automorphic factor J : G̃` × H→ C again satisfies the cocycle condition:

J( γ̃γ̃′, z) = J( γ̃, γ̃′z)J( γ̃′, z) (1.49)

for all γ̃, γ̃′ ∈ G̃` and z ∈ H. For r and ` as above, the slash operator |r defines

an action of G̃` on the set of complex-valued functions on H :
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Lemma 1.24. Let f be a function on H, let r ∈ Q and let ` be the smallest positive
integer such that `r ∈ Z. Then for γ̃, γ̃′ ∈ G̃`, we have

f |r( γ̃γ̃′) = (f |rγ̃)|rγ̃′.

Proof. Similar to the integral weight case, follows immediately from the cocycle
condition (1.49).

Let Γ be a finite index subgroup of Γ1, let r ∈ Q and let ` be the smallest
positive integer such that `r ∈ Z. Let f be a meromorphic function on H and let
v = vf be a map from Γ̃` to the circle group T := {z ∈ C

∣∣ |z| = 1} such that

f |r γ̃ = v(γ̃)f for all γ̃ ∈ Γ̃`. (1.50)

Then we say that f transforms like a modular form of weight r with a multiplier
system v on Γ. From (1.50) and from Lemma 1.24, we have

v(γ̃γ̃′)f = f |r(γ̃γ̃′) = (f |rγ̃)|rγ̃′ = v(γ̃)v(γ̃′)f (1.51)

for all γ̃, γ̃′ ∈ Γ̃`. So, if we assume that f is not identically zero, then the map
v : Γ̃` → T is necessarily a homomorphism.

Definition 1.25. Let Γ be a finite index subgroup of Γ1. Let f be a meromorphic
function on H that transforms like a modular form of weight r ∈ Q with a multiplier
system v on Γ and let ` ∈ N be such that `r ∈ Z. Let k = `r. Then we call f a
weakly holomorphic modular form (resp. a modular form) of weight r on Γ if f ` is
a weakly holomorphic modular form (resp. a modular form) of weight k on Γ. The
order of f at a cusp s of Γ is naturally defined by

ords(f) :=
1

`
ords(f

`).

In particular, f is meromorphic (resp. holomorphic) at the cusp s if and only if f `

is meromorphic (resp. holomorphic) at s.

A generalization of Theorem 1.19 follows readily: Theorem 1.15′

Theorem 1.19′. Let Γ and Γ′ be two finite index subgroups of Γ1 and let g ∈ G
such that gΓ′g−1 ⊂ Γ. Let f be a weakly holomorphic modular form of weight r ∈ Q
with a multiplier system v on Γ and let ` be the smallest positive number such that
`r ∈ Z. Then for g̃ = (g, α) ∈ G̃`, we have
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(a) f |r g̃ is a weakly holomorphic modular form of weight r on Γ′ with the
multiplier system v g̃ defined by

v g̃(γ̃
′) := v(g̃ γ̃′ g̃−1) for all γ̃′ ∈ Γ̃′`. (1.52)

(b) The orders of f and f |r g̃ at the cusps of Γ and Γ′ are related by

ords(f |k g ; Γ′) =
δ2ws

det(g∗)w gs

ordgs(f ; Γ) for s ∈ P1(Q), (1.53)

where ws is the width of the cusp s of Γ′, w gs is the width of the cusp gs

of Γ, g∗ =

(
a b
c d

)
is an arbitrary integer matrix that is equal to g up to

multiplication by a positive real number and δ = (aα + bλ, cα + dλ), where
α, λ ∈ Z with (α, λ) = 1 such that s = [α : λ].

Proof. (a) Similar to the integral weight case, follows from Lemma 1.24, part (b)
and the fact that the orders of f and f |r g̃ at the points of H are related by

ordP (f |r g̃) = ordgP (f) for P ∈ H. (1.54)

(b) Follows from the fact that (f |r g̃)` = f `|k g and from Theorem 1.19(b).

Corollary 1.20′. Let Γ and Γ′ be two finite index subgroups of Γ1 and let g ∈ G
such that gΓ′g−1 ⊂ Γ. Let f be a modular form of rational weight r with a multiplier
system v on Γ and let ` be the smallest positive number such that `r ∈ Z. Then
for g̃ = (g, α) ∈ G̃`, f |r g̃ is a modular form of weight r on Γ′ with the multiplier
system v g̃ defined by (1.52).Corollary 1.20′Corollary 1.21′

Corollary 1.21′. For two finite index subgroups of Γ1 which are conjugate to each
other by some element of G, there is a natural holomorphy-preserving isomorphism
between the spaces of weakly holomorphic modular forms of rational weight r on
them.

Corollary 1.22′. Corollary 1.22′Let Γ be a finite index subgroup of Γ, let r ∈ Q and let ` be the
smallest positive integer such that `r ∈ N. For each g̃ = (g, α) ∈ G̃` with g in the
normalizer of Γ in G, the map f 7→ f |r g̃ is a holomorphy-preserving automorphism
of the space of weakly holomorphic modular forms of weight r on Γ.
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We can extend our definition of modular forms to generalized modular forms
of rational weight by defining generalized multiplier systems which take arbitrary
nonzero complex values instead of taking values only in T. The Valence Formula
for integral weight modular forms with trivial multiplier systems on Γ1 also holds
for generalized modular forms of arbitrary rational weights:

Theorem 1.26 (Valence Formula). Let r ∈ Q and let f : H→ C be a meromorphic
function that transforms like a generalized modular form of weight r on Γ1 and
which is meromorphic at ∞. Then we have

ord∞(f) +
∑

P∈Γ1\H

1

nP
ordP (f) =

r

12
,

where nP is the number of elements in the stabilizer of P in the group Γ1/{±I}.
Here I is the identity matrix in Γ1.

The above theorem will follow from the usual Valence Formula for modular
forms with integral weights. But before proceeding further, we make a general
observation:

Let Γ be a finite index subgroup of Γ1, and let f be a meromorphic function
on H that transforms like a generalized modular form of rational weight r with a
generalized multiplier system v on Γ. If f is not identically zero, then similarly as
in (1.51), we get that the map v : Γ̃` → C∗ is necessarily a homomorphism, where
` is the smallest positive integer such that `r ∈ Z. In particular, if Γ = Γ1, then
we have:

Lemma 1.27. Let r ∈ Q and let f : H → C be a meromorphic function that
transforms like a generalized modular form of weight r on Γ1. Then the multiplier
system v of f is a homomorphism from (Γ̃1)` to µ12`, where ` is the least positive
integer such that `r ∈ Z and µ12` is the group of complex 12`-th roots of unity.

Proof. Since the map v : (Γ̃1)` → C∗ is a homomorphism, so is the map
v` : Γ1 → C∗. Also, we have (see [43])

Γ1 ' µ4 ∗µ2 µ6, (1.55)

i. e. the group Γ1 is isomorphic to the amalgameted free product of µ4 ' 〈S〉 and
µ6 ' 〈U〉, amalgameted along µ2 ' 〈−I〉, where

S :=

(
0 −1
1 0

)
, U := TS =

(
1 −1
1 0

)
and I is the identity matrix in Γ1.
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Hence in particular, we have

Γab1 ' µ4 ∨µ2 µ6 = µ12, (1.56)

i. e. the abelianization of Γ1 is isomorphic to µ12 since the later group is the
join of its subgroups µ4 and µ6 along µ2. Since C∗ is abelian, the homomorphism
v` : Γ1 → C∗ factors through Γab1 :

Γ1 C∗

Γab1 µ12

v`

ab

ṽ`

i

where ab : Γ1 → Γab1 is the abelianization map and i : µ12 → C∗ is the inclusion.

So, we have v`(Γ1) = i ◦ ṽ` (Γab1 ) ⊆ µ12 and therefore, v12` ≡ 1. Thus, we conclude

that v is in fact, a homomorphism from (Γ̃1)` to µ12`.

Example 1.28. The homomorphism from Γ1 to µ12 that maps S to −i and U to
1−i
√

3
2

is the multiplier system of the modular form η2 of weight 1, where η is the
Dedekind eta function which we shall see in the next section.

Corollary 1.29. Let f be a generalized modular form of rational weight r on Γ1

and let ` be the least positive integer such that `r ∈ Z. Then f 12` is a modular
form of integral weight with the trivial multiplier system on Γ1.

From the usual Valence Formula for the integral weight modular forms with
trivial multiplier systems (see [21], [46]) and from Corollary 1.29, now Theorem
1.26 follows immediately.

1.4 The Dedekind eta function and eta quotients

The Dedekind eta function is defined by an infinite product:

η(z) := q
1
24

∞∏
n=1

(1− qn), (1.57)

where qr = qr(z) is defined by (1.32). Since the double series

S(z) :=
∑
n∈N

log(1− qn) = −
∑
n∈N

∑
m∈N

qmn

m
(1.58)
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converges absolutely and uniformly on compact subsets of H, the function η = eL

is holomorphic on H, where L : H→ C∗ is defined by

L(z) :=
πiz

12
+ S(z). (1.59)

The function L transforms as follows (see [15] and [33]) under the action of Γ1 on
its argument by Möbius transformation:

L(γz) = L(z)+


πibd

12
if c = 0,

1

2
log(cz + d) +

πi

12
· a+ d− 2D(d, | c |)

c
− πi sgn(c)

4
otherwise,

(1.60)

for γ =

(
a b
c d

)
∈ Γ1, where log(cz + d) is defined by the principal branch of

complex logarithm. Here, for α ∈ Z, β ∈ N with (α, β) = 1, the Dedekind symbol
D(α, β) is defined (See [17]) by D(α, β) := 6βs(α, β), where s(α, β) is the Dedekind
sum

s(α, β) :=

β∑
m=1

((m
β

))((mα
β

))
, (1.61)

and (( )) : Q→ Q is defined by

((x)) =


x− bxc − 1

2
if x is not an integer,

0 otherwise.

(1.62)

From (1.60), it follows that η = eL is a modular form of weight 1/2 on Γ1 and the
multiplier system of η is given by

vη(γ, ±
√
cz + d) =

{
±eπibd/12 if c = 0,
±eπi(a+d−2D(d,|c|)−3|c|)/(12c) otherwise,

(1.63)

for all γ =

(
a b
c d

)
∈ Γ1, where

√
cz + d is defined via the principal branch of

complex logarithm. For r ∈ C, we define

ηr := erL. (1.64)
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In particular, for r ∈ Q, (1.64) provides us with examples of modular forms of
arbitrary rational weights.

Since η is a modular form of weight 1/2 on Γ1, from Lemma 1.27, it follows that

the multiplier system of η is a homomorphism from (Γ̃1)2 to µ24. So in particular,
from (1.63) we get that (a+ d− 2D(d, | c |))/c is an integer. Another proof of the
integrality of (a + d − 2D(d, | c |))/c could also be given by using the reciprocity
law of Dedekind sums along with the theorem that says that the denominator of
the Dedekind sum s(α, β) is a divisor of 2β(3, β) (so, in particular the Dedekind
symbol D(α, β) is always an integer) (See [17], [15] or [33]).

Since the multiplier system of η is given by a 24-th root of unity, using
congruences modulo 24, (1.63) could be simplified to the following (See [17], [33],
[20] or [32]):

vη(γ, ±
√
cz + d) :=

{
±
(
d
|c|

)
ζγ if c is odd,

±(−1)(sgn(c)−1)(sgn(d)−1)/4− (c−1)(d−1)/4
(
c
|d|

)
ζγ if d is odd

(1.65)

for all γ =

(
a b
c d

)
∈ Γ1, where

( )
denotes the Jacobi symbol and ζγ is the 24-th

root of unity defined by

ζγ := eπi((a+d)c+bd(1−c2)−3c)/12. (1.66)

Before defining eta quotients, we recall some general facts about rescalings of
modular forms. Let f be a weakly holomorphic modular form on a finite index
subgroup of Γ1. For d ∈ N, we define fd, the rescaling of f with d by fd(z) := f(dz).
For N ∈ N, by DN we denote the set of divisors of N .

Proposition 1.30. Let r ∈ Q, M ∈ N and let f be a weakly holomorphic modular
form of weight r on Γ0(M). Then for N ∈ N and d ∈ DN ,

(a) fd is a weakly holomorphic modular form of weight r on Γ0(MN).

(b) Let s = [α : λ] ∈ P1(Q) with (α, λ) = 1 and let ds := [dα : λ]. Then we have

ords(fd; Γ0(MN)) =
N(d, λ)2(λ2,M)

d(λ2,MN)
ordds(f ; Γ0(M)). (1.67)

Proof. (a) Let gd :=

(
d 0
0 1

)
∈ G. Let ` be the smallest positive integer such

that `r ∈ Z and let g̃d := (gd, 1) ∈ G̃`. Since gdΓ0(MN)g−1
d ⊂ Γ0(N) and since

f |r g̃d = fd, the claim follows from Theorem 1.15′(a).
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(b) Since gdΓ0(MN)g−1
d ⊂ Γ0(N), from Lemma 1.1, it follows that the endo-

morphism of P1(Q) that maps s to gds = ds induces a surjection from the set
of cusps of Γ0(MN) to the set of cusps of Γ0(N). Now, the claim follows from
Theorem 1.15′(b) and Lemma 1.13.

Corollary 1.31. Let f , M , N , d, s and λ be as above. If d|λ and if (MN)|λ2,
then we have

ords(fd; Γ0(MN)) = d · ordds(f ; Γ0(M)).

Corollary 1.32. Let f , M , N , d, s and λ be as in Proposition 1.30. Then

ords(fd; Γ0(MN)) ∈ ordds(f ; Γ0(M)) · N.

Proof. By (1.67), we only require to show that

h(M,N, λ, d) :=
N(d, λ)2(λ2,M)

d(λ2,MN)
(1.68)

is an integer for d ∈ DN . Since h : N4 → N is multiplicative in all its arguments,
it is enough to show the integrality of h(M,N, λ, d) by assuming that M , N and
λ are powers of the same prime and d ∈ DN , in which case the proof is quite
straightforward.

Corollary 1.33. Let f be a weakly holomorphic modular form on Γ1, let N ∈ N,
let d ∈ DN and let s = [α : λ] ∈ P1(Q) with (α, λ) = 1 be a cusp of Γ0(N). Then
we have

ords(fd) =
N(d, λ)2

d(λ2, N)
ord∞(f) ∈ ord∞(f) · N. (1.69)

Apparently, it may seem that in (1.69), there is some room for confusion since
f is a modular form on both Γ1 and Γ0(N) and ∞ represents a cusp of either of
the groups. However, since the the cusps ∞ (mod Γ1) and ∞ (mod Γ0(N)) have
the same width, we have ord∞(f ; Γ1) = ord∞(f ; Γ0(N)). In other words, (1.69)
makes perfect sense either way.

In particular, for N, d, s and λ as above, from Corollary 1.33, we have

ords(ηd) =
N(d, λ)2

24d(λ2, N)
∈ 1

24
N, (1.70)

since ord∞(η) = 1/24.
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Corollary 1.34. Let f be a weakly holomorphic modular form on Γ1 and let
N ∈ N. If s = [α : λ] ∈ P1(Q) and s′ = [β : λ] ∈ P1(Q) with (α, λ) = (β, λ) = 1
are two cusps of Γ0(N), then for all d ∈ DN , we have

ords(fd) = ords′(fd). (1.71)

Corollary 1.35. Let f be a weakly holomorphic modular form on Γ1 and let
N ∈ N. For each cusp s of Γ0(N), there exists a divisor d of N such that

ords(fd) = ord∞(f).

Proof. By Corollary 1.33, the claim is equivalent to show that given λ ∈ N, there
exists d ∈ DN such that h(1, N, λ, d) = 1 holds, where h : N4 → N is defined in
(1.68). Since h is multiplicative in all its arguments, we may assume that both
N and λ are powers of the same prime p. Then for λ2 ≥ N , let dλ = 1 and for
λ2 < N , let dλ = N . Now it is easy to check that h(1, N, λ, dλ) = 1.

The converse of Corollary 1.35 does not hold in general, i. e. unless either N is
squarefree or ord∞(f) = 0, there are always d ∈ DN for which there are no cusps
of Γ0(N) such that ords(fd) = ord∞(f) holds. For example, for a modular form f
on Γ1 with ord∞(f) 6= 0, we have ords(f2) 6= ord∞(f) for all cusps s of Γ0(4).

Also, unless M = 1, for a given λ the quantity h(M,N, λ, d) may never be 1
for d ∈ DN . For example h(2, 2, 2, d) 6= 1 for all d ∈ D2.

Corollary 1.36. Let f be a weakly holomorphic modular form on Γ1. Let d ∈ N
and let λ,N,N ′ ∈ dN be such that both N and N ′ divide λ2. Then for α, β ∈ Z
with (α, λ) = (β, λ) = 1 and for s := [α : λ], s′ := [β : λ], we have

ords(fd ; Γ0(N)) = ords′(fd ; Γ0(N ′)).

Proof. By Corollary 1.31, both sides of the above equation are equal to d ·ord∞(f).

Now we introduce a law of composition on � on the set of positive integers,
which we shall also encounter later in this chapter. We define � : N× N→ N by

d1 � d2 :=
d1d2

(d1, d2)2
. (1.72)
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Under this law of composition, N assumes an unital∗ commutative algebraic
structure of exponent† 2. But it is not a group, because the operation � is not
associative in general. For example, 2 � (2 � 4) 6= (2 � 2) � 4. Since for every
a, b ∈ N we have a � ab = b, N nearly satisfies the axiom of a quasi-group‡ (see
[45]). However, N is not even a quasi-group as there may be more than one solution
to the equation a� x = b for a, b ∈ N. For example, we have 2� 1 = 2� 4.

For N ∈ N, though the restriction of � from N to DN endows DN also with
an unital commutative algebraic structure of exponent 2, but in general, DN is
even further away from being a quasi-group. For example, there is no d ∈ D4 with
2 � d = 4. However, for all N ∈ N, there is a nontrivial subset of DN which is
an abelian group under �. We shall see such groups in the last section of this
chapter. For now, we return to the rescalings of modular forms and draw yet
another conclusion out of Corollary 1.33:

Corollary 1.37. Let f be a weakly holomorphic modular form on Γ1 and let
N ∈ N. If s = [α : λ] ∈ P1(Q) and s′ = [β : λ′] ∈ P1(Q) with (α, λ) = (β, λ′) = 1
are two cusps of Γ0(N) such that λ′ = N/λ, then for all d ∈ DN , we have

ords(fd) = ords′(fN
d

). (1.73)

Proof. From (1.72), we get that

N

d1

� N

d2

= d1 � d2 (1.74)

for all d1, d2 ∈ DN . So, from Corollary 1.33, we obtain

ords(fd) =
N

d� λ
· 1

(λ,N/λ)
· ord∞(f) =

N
N
d
� λ′

· 1

(λ′, N/λ′)
· ord∞(f) = ords′(fN

d
).

Next, we define eta quotients. For N ∈ N, and for an additive subgroup G
of C, by GDN we denote the set of all maps from the set DN to G and we define
σ : GDN → G by

σ(X) :=
∑
d∈DN

Xd, (1.75)

∗An unital algebraic structure is an algebraic structure that has an identity element.exponent
†We say an unital algebraic structure A has exponent n if the orders of each of its elements

divide n, i. e. if for each element α ∈A , n compositions of α with itself yields the identity.
‡A quasi-group is a set with a binary operation in which each of the equations ax = b and

ya = b has a unique solution, for any two elements a and b in the set.
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where Xd ∈ G denotes the image of d ∈ DN under the map X ∈ GDN .

Definition 1.38. For N ∈ N and for X ∈ ZDN , we define the eta quotient ηX by
level

ηX :=
∏
d|N

ηXdd . (1.76)

We call gcd{d ∈ DN |Xd 6= 0} the level of ηX . In general, for all X ∈ ZDN , we call
ηX an eta quotient on Γ0(N).

It follows that if f is an eta quotient on Γ0(N), then the level of f is a divisor
of N . The following proposition gives a clarification to the above terminology:

Proposition 1.39. For X ∈ ZDN , an eta quotient ηX is a weakly holomorphic
modular form of weight σ(X)/2 on Γ0(N).

Proof. Since η is a modular form of weight 1/2 on Γ1, from Proposition 1.30, we
know that for each divisor d of N , ηd is a modular form of weight 1/2 on Γ0(N).
So, the claim follows by summing up the weights of ηXdd for all d|N .

Corollary 1.34 implies that for an eta quotient f on Γ0(N) and for two cusps s
and s′ of Γ0(N), we have

ords(f) = ords′(f) (1.77)

whenever there exist [α : λ], [β : λ] ∈ P1(Q) with (α, λ) = (β, λ) = 1 such that
s = [α : λ] and s′ = [β : λ].

Conversely, under a pair of necessary assumptions, Condition (1.77) determines
whether a generalized modular form is some power of an eta quotient or not:

In [23], Kohnen and Mason showed that if the poles and zeros of a generalized
modular form f are supported at the cusps of Γ0(N) and if it has a Fourier
expansion at ∞ with rational Fourier coefficients which are p-integral for all but a
finite number of primes p, then f satisfies (1.77) if and only if some integral power
of f is an eta quotient up to multiplication by some constant.

In particular, it is easy to show that if f belongs to a subspace of generalized
modular forms which has an integral basis, i. e. each element in the basis has a
Fourier expansion at ∞ with integral Fourier coefficients (for example, the space
of modular forms of a certain weight with the trivial multiplier system on Γ0(N),
(see [38])) and if moreover, every element in this subspace is determined up to a
constant by the set of its zeros and poles, then only the assumption that the poles
and zeros of f are supported at the cusps of Γ0(N) is enough to ensure the fact
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that f satisfies (1.77) if and only if f is an eta quotient up to multiplication by
some constant.

Corollary 1.36 implies that for an eta quotient f of level M , for N, λ ∈ MN
with N |λ2, for α, β ∈ Z with (α, λ) = (β, λ) = 1 and for s := [α : λ], s′ := [β : λ],
we have

ords(f ; Γ0(N)) = ords′(f ; Γ0(M)). (1.78)

1.5 The valuation map

The valuation map is a linear map from the lattice of exponents of the eta
quotients on Γ0(N) to the lattice of their orders at different cusps. We elaborate
this in the following:

The lattice of exponents of the eta quotients on Γ0(N) is ZDN . From
Proposition 1.7, from (1.70) and from (1.77), it follows that the lattice of orders
at different cusps of Γ0(N) of the eta quotients on Γ0(N) is a sublattice ON of

LN := 1
24
ZDN . More precisely, (1.70) implies that ON is the image of the valuation

map VN : ZDN → LN given by

(VN(X))t :=
1

24

∑
d∈DN

N(d, t)2

d(t2, N)
Xd for X ∈ ZDN and t ∈ DN . (1.79)

In particular, for X ∈ ZDN and for any cusp s of Γ0(N), we have

ords(η
X) = (VN(X))(N,λ), (1.80)

where s = [α : λ] ∈ P1(Q) with (α, λ) = 1.
Clearly, ZDN is a free Z-module with basis B := {δ(d)}d∈DN , where δ(d) ∈ ZDN

are defined by valuation matrix

δ
(d)
t :=

{
1 if t = d,
0 otherwise.

The valuation matrix AN ∈ ZDN×DN of level N is the matrix of the valuation map
VN w.r.t the basis B of ZDN and the basis B′ := {δd/24

∣∣ δd ∈ B} of LN . So, for
t, d ∈ DN , the (t, d)-th entry of AN is given by

N(d, t)2

d(t2, N)
. (1.81)
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In particular, we have

ON =
1

24
AN ZDN . (1.82)

Corollary 1.35 says that each row of AN has some entry equal to 1 and Corolla-
ry 1.37 says that for all t, d ∈ DN , the (t, d)-th entry and the (N/t,N/d)-th entry
of AN are equal. For example, for a prime power pn, we have

Apn =



pn pn−1 pn−2 · · · p 1

pn−2 pn−1 pn−2 · · · p 1

pn−4 pn−3 pn−2 · · · p 1

...
...

... · · · ...
...

1 p p2 · · · pn−1 pn−2

1 p p2 · · · pn−1 pn


. (1.83)

Since for X ∈ ZDN , we have

(ANX)t = 24(VN(X))t for all t ∈ DN , (1.84)

from (1.80), it follows that

Lemma 1.40. For X ∈ ZDN , the eta quotient ηX is holomorphic if and only if
ANX ≥ 0, i. e. the entries of ANX are nonnegative.

In the next proposition, we derive some properties of AN . For A ∈ RDN×DN and
d ∈ DN , we denote by A(d, ) (resp. A( , d)) the row (resp. column) of A which
is indexed by d and by |A| ∈ RDN×DN we denote the matrix whose entries are the
absolute values of the corresponding entries of A. As in the previous lemma, for
Y ∈ RDN , if all the entries of Y are positive, we write Y > 0.

Proposition 1.41. Let AN ∈ ZDN×DN be the valuation matrix of level N .

(a) We have

AN =
⊗
pn‖N
p prime

Apn , (1.85)

where by ⊗, we denote the Kronecker product of matrices.∗

∗Kronecker product of matrices is not commutative. However, since any given ordering of
the primes dividing N induces a lexicographic ordering on DN with which the entries of AN are
indexed, Equation (1.85) makes sense for all possible orderings of the primes dividing N .
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(b) AN is invertible over Q.

(c) Let ϕ and ψ : N → N denote the Euler ϕ function and the Dedekind ψ
function defined by

ϕ(N) := N
∏
p|N

p prime

(
1− 1

p

)
and ψ(N) := N

∏
p|N

p prime

(
1 +

1

p

)
. (1.86)

We define 1N , pαN and lβ.. N ∈ QDN by

1N(t) := 1 for all t ∈ DN , (1.87)

pαN := (A−1
N )T1N and lβ.. N := |A−1

N |
T1N . (1.88)

Then we have

pαN(t) =
ϕ(t′)

ψ(N)
and lβ.. N(t) =

ψ(t′)

ϕ(N)
for all t ∈ DN , (1.89)

where t′ = (t, N/t).

Proof. (a) Follows by induction on the number of prime divisors of N .
(b) It is easy to verify that for a prime power pn, the matrix Apn is invertible with
the tridiagonal inverse:

A−1
pn =

1

pn−1(p2 − 1)



p −p

−1 p2 + 1 −p2 0
−p p(p2 + 1) −p3

. . . . . . . . .

0 −p2 p2 + 1 −1

−p p


, (1.90)

where for each positive integer j < n, the column A−1
pn ( , pj) is just a cyclic

permutation of A−1
pn ( , p) multiplied with pmin{j−1,n−j−1}. More precisely,

pn−1(p2− 1) ·A−1
pn (pi, pj) =


p if i = j = 0 or i = j = n,
−pmin{j,n−j} if |i− j| = 1,
pmin{j−1,n−j−1}(p2 + 1) if 0 < i = j < n,
0 otherwise.

(1.91)
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The general case now follows by (a).
(c) If N is a prime power, the claim follows from (1.90). The general case again
follows by multiplicativity.

Corollary 1.42. Any eta quotient on Γ0(N) is uniquely determined by its orders
at the set of the cusps {1/t}t∈DN of Γ0(N) as follows: if f = ηX for some X ∈ ZDN ,
then

Xd = 24
∑
t∈DN

A−1
N (d, t) ord1/t(f) for d ∈ DN ,

where A−1
N (d, t) denotes the (d, t)-th entry of A−1

N .

Proof. Follows immediately from (1.80), (1.84) and Proposition 1.41.

Corollary 1.43. If X,X ′ ∈ ZDN with X 6= X ′, then ηX 6= ηX
′
.Valence formula

Corollary 1.44 (Valence Formula for eta quotients). Let k ∈ Z and let f = ηX

be an eta quotient of weight k/2 on Γ0(N). Then we have∑
t∈DN

pαN(t) · ord1/t(f) =
k

24
, (1.92)

where pαN : DN → Q is as in (1.89).

Proof. From Proposition 1.39, we know that f is of weight σ(X)/2. So, we get

k = σ(X) =
∑
d∈DN

Xd = 24
∑
d∈DN

∑
t∈DN

A−1
N (d, t) ord1/t(f) = 24

∑
t∈DN

pαN(t) · ord1/t(f),

where the third equality follows from Corollary 1.42 and the fourth equality follows
from Proposition 1.41(c).

Conversely, in [36] Rouse and Webb showed that under a certain condition on
N , each nonnegative integral solution in {xt}t∈DN of the linear equation∑

t∈DN

pαN(t) · xt =
k

24
, (1.93)

implies that there is a holomorphic eta quotient f of weight k/2 on Γ0(N) whose
order at the cusp 1/t of Γ0(N) is equal to xt.
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Corollary 1.45. Let k ∈ Z and let f = ηX be an eta quotient of weight k/2 on
Γ0(N) and let SN denote the set of cusps of Γ0(N). Then we have

∑
s∈SN

ords(f) =
k [Γ1 : Γ0(N)]

24
. (1.94)

Proof. From Proposition 1.7, we know that for t ∈ DN , there are exactly ϕ(t, N/t)
inequivalent cusps with representatives of the form α/t ∈ Q with (α, t) = 1. Now,
(1.77) implies that the order of f at all these cusps are equal to ord1/t(f). So the
sum of the orders of f at all such cusps is equal to ϕ(t, N/t) · ord1/t(f). Since
we have [Γ1 : Γ0(N)] = ψ(N) (see (1.3)), the claim now readily follows from
Corollary 1.44 and (1.89).

We could have also obtained the last three corollaries from the Valence Formula
for modular forms on Γ0(N):

Let r ∈ Q and let f : H→ C be a meromorphic function that transforms like a
modular form of weight r on Γ0(N) and which is also meromorphic at each element
of SN , where SN denotes the set of the cusps of Γ0(N). Then the Valence Formula
for Γ0(N) (see [6] or [34]) states∗:

∑
s∈SN

ords(f) +
∑

P∈Γ0(N)\H

1

nP
ordP (f) =

r [Γ1 : Γ0(N)]

12
, (1.95)

where nP is the number of elements in the stabilizer of P in the group Γ0(N) which
is defined by (1.23).

Convention 1.46. Henceforth by Valence Formula, we mean the Valence Formula
for eta quotients (see Corollary 1.44).

Below we draw a few corollaries to the Valence formula:

Corollary 1.47. Let f be an eta quotient of weight k/2. If f is holomorphic and
if f 6= 1, then k ∈ N.

Proof. Follows from Corollary 1.45, Proposition 1.39 and (1.70).

∗In both of the books cited, the statement of the Valence Formula also encompasses the real
weight case. However, we restrict (1.95) only to the case of rational weights, since we have only
defined modular forms with such weights and since that is all we require here.
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Corollary 1.48. For a set {ut ∈ R|t ∈ DN}, there are only finitely many weakly
holomorphic eta quotients f of a fixed weight on Γ0(N) such that ord1/t(f) ≤ ut
for all t ∈ DN .

Proof. By Corollary 1.44, it is enough to show that the equation (1.93) has only
a finite number of integral solutions in {xt}t∈DN if xt ≤ ut for all t ∈ DN . This is
equivalent to say that the equation∑

t∈DN

pαN(t) · x′t = K (1.96)

has only finitely many solutions in nonnegative integers {x′t}t∈DN , where

K :=
∑
t∈DN

pαN(t) · ut −
k

24
.

Since pαN(t) > 0 for all t ∈ DN , equation (1.96) has no solutions if K < 0. If
K ≥ 0, then for a solution {xt}t∈DN of equation (1.96) in nonnegative integers, we
have x′t ∈ Z∩ [0, K/ pαN(t)] for all t ∈ DN . So, the number of solutions of equation
(1.96) in nonnegative integers is less than∏

t∈DN

( K

pαN(t)
+ 1
)
. (1.97)

Hence, the number of the eta quotients f of weight k on Γ0(N) with ord1/t(f) ≤ ut
is also less than the näıve bound provided in (1.97).

Corollary 1.49. For a set {lt ∈ R|t ∈ DN}, there are only finitely many weakly
holomorphic eta quotients f of a fixed weight on Γ0(N) such that ord1/t(f) ≥ lt for
all t ∈ DN .

Proof. Proceeding similarly as in the proof of the previous corollary, we get that
the number of the eta quotients f of weight k on Γ0(N) with ord1/t(f) ≥ lt is less
than ∏

t∈DN

( K ′

pαN(t)
+ 1
)
, (1.98)

where K ′ =
k

24
−
∑
t∈DN

pαN(t) · lt .
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Corollary 1.50. There are only finitely many holomorphic eta quotients of a fixed
weight and level.

More precisely, the number of holomorphic eta quotients of weight k and level
N is less than (kψ(N)

24
+ 1
)n
, (1.99)

where n is the number of divisors of N .

Proof. From the proof of Corollary 1.49. it follows that the number of holomorphic
eta quotients of weight k and level N is less than∏

t∈DN

(kψ(N)

24ϕ(t′)
+ 1
)
<
(kψ(N)

24
+ 1
)n
,

where ϕ and ψ : N→ N are as defined in (1.86), t′ = (t, N/t) and n is the number
of divisors of N .

A radical improvement to the näıve bound given in (1.99) is implied by
Mersmann’s Lemma which we shall see in Chapter 3.

1.6 Atkin-Lehner involutions

We have defined a non-associative law of composition on N in (1.72). Since �
is multiplicative in both of its arguments, the roots of the obstacle to associativity
of this law of composition on N could certainly be traced back to the restriction of
� to the set of powers of any prime p. For two nonnegative integers a and b, from
(1.72) we have pa�pb = p|a−b|. Hence, for any suitable choice of three nonnegative
integers a, b and c (for example, a = 1, b = 2, c = 3) we have

p|a−|b−c|| = pa � (pb � pc) 6= (pa � pb)� pc = p||a−b|−c|. (1.100)

To surmount the obstacle to the associativity of � posed by (1.100), we must limit
our choice of prime powers in a sensible way. One way of doing so is to impose the
condition that the nonnegative integers a, b and c be chosen so that either their
maximum is attained by at least two of them or one of them is zero. It is easy to
check that for such choices of a, b and c we always have:

pa � (pb � pc) = (pa � pb)� pc. (1.101)
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Thus, we obtain some subsets of N which are abelian groups under the law of
composition � :

For n ∈ N and d ∈ DN , we say that d exactly divides N and write d‖N if
(d,N/d) = 1. We denote the set of such divisors of N by EN . Now, from (1.101)
and from the multiplicativity of � in both of its arguments, it follows that:

Lemma 1.51. For N ∈ N, (EN ,�) is a boolean group (i. e. each element of EN
is the inverse of itself). The group EN acts on DN by �.

Since the action of any element of a group acting on a set induces an injection
of the set to itself and since DN is finite, we get:

Corollary 1.52. For N ∈ N, the action of each element of EN on DN induces an
automorphism of DN .

For n ∈ EN , the set

Wn :=
1√
n

(
nZ Z
NZ nZ

)
∩ SL2(R)

is a coset of Γ0(N) in its normalizer in SL2(R). It is also easy to show that
the product of two arbitrary matrices fromWm andWn is a matrix inWm�n. In
particular, since EN is a group of exponent 2, the product of any two matrices of
Wn is a matrix inW1 = Γ0(N). Hence, each matrix W ∈Wn induces an involution
on Γ0(N)\H via Möbius transformation on H. These are called the Atkin-Lehner
involutions. Any such involution on Γ0(N)\H in turn induces an involution on
the space of weakly holomorphic modular forms of any fixed weight on Γ0(N) (see
Lemma 1.53 and Corollary 1.54 below). These later involutions are also called
Atkin-Lehner involutions.

Lemma 1.53. Let γ be a 2 × 2 integer matrix with positive determinant such
that γ′ := 1√

det(γ)
γ is an element in the normalizer of Γ0(N) in SL2(R) and

γ′2 ∈ Γ0(N). Let r ∈ Q and let ` be the smallest positive number such that

`r ∈ Z. Let γ̃′ = (γ′, α) ∈ G̃`. Then the map

f 7→ vf (γ̃
′2)−1/2f |rγ̃′ (1.102)

is a holomorphy-preserving involution on the space of weakly holomorphic modular
forms of weight r on Γ0(N), where we define v

−1/2
f via the principal branch of

complex logarithm.∗

∗The same proof also works if we define v
−1/2
f via some other branch of complex logarithm.
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Proof. From Corollary 1.22′, we know that f |rγ̃′ is a weakly holomorphic modular
form of weight r on Γ0(N). Also, we have

v
(
γ̃′2)−1/2(v(γ̃′2)−1/2f |rγ̃′

)
|rγ̃′ = v(γ̃′2)−1f |kγ̃′2 = f. (1.103)

Hence, the map (1.102) is indeed an involution. Furthermore, Corollary 1.22′

implies that this involution preserves holomorphy both at the points on H and at
the cusps of Γ0(N).

Corollary 1.54. For N ∈ N and n ∈ EN , each W ∈Wn induces a holomorphy-
preserving involution on the space of weakly holomorphic modular forms of any
fixed weight on Γ0(N).

The following proposition shows that under Atkin-Lehner involutions, the
image of a rescaling of a modular form f on Γ1 is just another rescaling of f ,
up to multiplication by some constant:

Proposition 1.55. Let r ∈ Q and let ` be the smallest positive number such that
`r ∈ Z. Let N ∈ N, n ∈ EN , W ∈Wn and let W̃ = (W,α) ∈ G̃`. Let f be a weakly
holomorphic modular form of weight r on Γ1 and let v be the multiplier system of
f . Then for d ∈ DN we have

fd |rW̃ =
ξnr/2

(n, d)r
fn�d ,

where ξ = ξ(n, d, v, W̃ ) is a 12`-th root of unity.

Proof. Let W =
1√
n

(
nµ ν
Nλ nδ

)
∈Wn . Then nµδ −Nλν/n = 1. So,

γ1 :=

(
µ(n, d) νd/(n, d)

Nλ(n, d)/(nd) nδ/(n, d)

)
∈ Γ1.

Let γ̃′1 = (γ1, β) ∈ (Γ̃1)` and let k = `r. Let

γ2 :=
1√
n

(
nd/(n, d) 0

0 (n, d)

)
and gd :=

(
d 0
0 1

)
.

Since gdW = γ1γ2, we have

(fd |rW̃ )(z) =
1

α(z)k
f(gdWz) =

1

α(z)k
f(γ1γ2z) = v(γ̃′1)−1ρ(z)kf(γ2z)

= v(γ̃′1)−1ρ(z)kfn�δ(z), (1.104)
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where v is the multiplier system of f and ρ(z) := β(γ2z)/α(z). We have

ρ(z)` =
β(γ2z)`

α(z)`
=
(Nλ(n, d)

nd
γ2z +

nδ

(n, d)

)/(Nλ√
n
z +
√
nδ
)

=

√
n

(n, d)
. (1.105)

Since α and β are holomorphic functions on H which do not have any zeros on H
(see (1.46)), the function ρ : H → C is holomorphic. So, (1.105) implies that ρ is
a constant function:

ρ ≡ ζn1/(2`)

(n, d)1/`
,

where ζ is an `-th root of unity. Also, from Lemma 1.27, it follows that v(γ̃′1) is a
12`-th root of unity. Let ξ := v(γ̃′1)−1ζk. Then the claim follows from (1.104).

Definition 1.56. For N, k ∈ Z, let E!
N,k (resp. EN,k) be the set of eta quotients

(resp. holomorphic eta quotients) of weight k/2 on Γ0(N). For n ∈ EN , we define
the endomorphism aln,N : E!

N,k → E!
N,k by

aln,N

( ∏
d∈DN

ηXdd

)
:=

∏
d∈DN

ηXdn�d. (1.106)

Now, from Lemma 1.53 and Proposition 1.55, we get

Corollary 1.57. For N, k ∈ N and n ∈ EN the map aln,N : E!
N,k → E!

N,k is a
holomorphy-preserving involution. Atkin-Lehner involution

Convention 1.58. We adopt the abuse of terminology of calling the involution
(1.106) an Atkin-Lehner involution (of level N).

The condition n ∈ EN is essential in Corollary 1.57. In other words, for
n ∈ DN r EN , the map ∏

d∈DN

ηXdd 7→
∏
d∈DN

ηXdn�d (1.107)

in general, is neither an involution nor does it preserve holomorphy. For example,

h :=
η3

2

ηη4

is a modular form of weight 1/2 on Γ0(4). Now, for N = 4 and for

n = 2 ∈ D4 r E4, the map (1.107) sends h to h1 :=
η3

η2
2

which is not holomorphic

at ∞. Also, the map (1.107) sends h1 to
η3

2

η2
6= h.

We end this chapter with the following lemmas on Atkin-Lehner involutions of
eta quotients:
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Lemma 1.59. Let N ∈ N and let n ∈ EN . Let f, g and h be eta quotients on
Γ0(N) such that f = gh. Then we have

aln,N(f) = aln,N(g) · aln,N(h). (1.108)

Proof. Follows trivially from (1.106).

Lemma 1.60. Let f be an eta quotient on Γ0(N) and let M ∈ N be a multiple of
N . Let m ∈ EM . Then we have

alm,M(f) = (aln,N(f))ν , (1.109)

where n = (m,N), ν = m/n and (aln,N(f))ν denotes the rescaling of the eta quoti-
ent aln,N(f) by ν.

Proof. Since m‖M , and N |M , we have n = (m,N)‖N . So aln,N is indeed defined
by (1.106). Now, the claim follows from the fact that m � d = ν (n � d) for all
d ∈ DN .

Lemma 1.61. Let f be an eta quotient on Γ0(N) and let M ∈ N be a multiple of
N . Let n ∈ EN , let m ∈ EM ∩ nZ and let ν := m/n. Then we have

alm,M(fν) = aln,N(f). (1.110)

Proof. Follows from the fact that (νn)� (νd) = n� d for all d ∈ DN ..

Corollary 1.62. Let f be an eta quotient on Γ0(N) and let fν be the rescaling of
f by ν ∈ N. Then we have

alνN,νN(fν) = alN,N(f). (1.111)
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Chapter 2

Factorization of holomorphic eta
quotients

We say that a holomorphic eta quotient f is divisible by a holomorphic eta
quotient g if f/g is holomorphic. If f is divisible by g, we call g a factor of f . A
holomorphic eta quotient f is irreducible if it has only the trivial factors, viz. 1 and
f . By a descent argument on weights of holomorphic eta quotient (see Corollary
1.47), it follows that:

Lemma 2.1. Each holomorphic eta quotient is a product of irreducible holomor-
phic eta quotients, though such a factorization may not be unique.

In particular, the definition of reducibility of an eta quotient allows factors of
arbitrary levels. For example, we have

ηη2η6

η3

=
ηη4η

2
6

η2η3η12

× η2
2 η12

η4η6

, (2.1)

where a reducible holomorphic eta quotient of level 6 is factored into two
holomorphic eta quotients of level 12.

2.1 A conjecture on reducibility

Let f be a holomorphic eta quotient on Γ0(M) (i. e. the level of f divides M).
If there is a holomorphic eta quotient g on Γ0(M) which is a nontrivial factor of f ,
we say that f is reducible on Γ0(M). In particular, if f is reducible on Γ0(N), where
N is the level of f , we say that f is strongly reducible. Certainly, every strongly
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reducible holomorphic eta quotient is reducible. But it was quite a surprise to find
much numerical evidence for the converse:Reducibility Conjecture

Conjecture 2.2 (Reducibility Conjecture). A holomorphic eta quotient is
reducible only if it is strongly reducible.

For example, the eta quotient of level 6 in (2.1) has also the following factorisa-
tion into holomorphic eta quotients of level 6 and level 2:

ηη2η6

η3

=
η2η6

η2η3

× η2
2

η
. (2.2)

So, the eta quotient
ηη2η6

η3

is indeed strongly reducible. Below we give an example

of an eta quotient, which is not strongly reducible:

Lemma 2.3. For any prime p, the eta quotient
ηp

ηp
is not strongly reducible.

Proof. From (1.57), we see that the Fourier expansions of ηp and ηp are

ηp(z) = q
p
24 +O(q

p
24

+1) and ηp(z) = q
p
24 +O(q

25p
24 ).

So, ord∞(ηp/ηp) = 0. Let f := ηp/ηp and suppose, f is reducible on Γ0(p) by a
factor g. Since ord∞(f) = 0, we have

ord∞(g) = − ord∞(f/g).

But as both g and f/g are holomorphic, from the above equality, we get that

ord∞(g) = ord∞(f/g) = 0. (2.3)

Also, since ord∞(f) = 0, from (1.77) and from the Valence formula, we get that
ord0(f) = (p2 − 1)/24. Again, from (1.77) and from Corollary 1.42, it follows that
if the orders of two eta quotients on Γ0(p) match at the cusps 0 and ∞ ,then the
eta quotients are identical. Since 1 6= g 6= f , we get

0 < ord0(g) <
p2 − 1

24
. (2.4)

Let X ∈ ZDp be such that g = ηX . Then from Corollary 1.42, (2.3), (2.4) and
(1.91), we get that −1 < Xp < 0. Thus, we get a contradiction! So, the eta
quotient ηp/ηp is not strongly reducible.



2.2. Some consequences of the conjecture 57

From Corollary 1.57 and Lemma 1.59, it follows that

Lemma 2.4. Let f be a holomorphic eta quotient on Γ0(N) and let n‖N . Then f
is reducible on Γ0(N) if and only if so is aln,N(f).

Corollary 2.5. For any prime p, the eta quotient
ηpp
η

is not strongly reducible.

Proof. Follows from Lemma 2.3 and Lemma 2.4, since alp,p(η
p/ηp) = ηpp/η.

2.2 Some consequences of the conjecture

In this section, we shall see some implications of the Reducibility Conjecture:
For example, a good lot of numerical evidence suggest the truth of the following
assertions: Irreducibility Conjecture

Conjecture 2.6 (Irreducibility Conjecture). The image of an irreducible holo-
morphic eta quotient under an Atkin-Lehner involution is irreducible.

Conjecture 2.7 (Irreducibility Conjecture, alternative form). A rescaling of an
irreducible holomorphic eta quotient is irreducible.

Lemma 2.8. Conjecture 2.6 and Conjecture 2.7 are equivalent.

Proof. From Corollary 1.62, we see that Conjecture 2.7 is implied by Conjec-
ture 2.6. Conversely, from Lemma 1.61 and Lemma 2.4, it follows that Conjec-
ture 2.7 implies Corollary 1.62.

The lemma below shows that Conjecture 2.6 holds assuming the truth of the
Reducibility Conjecture:

Lemma 2.9. The image of an irreducible holomorphic eta quotient under an Atkin-
Lehner involution is not strongly reducible.

Proof. Let f be an irreducible holomorphic eta quotient of level M and let

g := aln,N(f)

for some N ∈ MN and for some n‖N . Suppose, g is strongly reducible. Then,
since the level of g divides N , g is reducible on Γ0(N). So, by Lemma 2.4, f
must be reducible on Γ0(N). Thus, we get a contradiction! So, g is not strongly
reducible.
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In particular, Corollary 1.62 and Lemma 2.9 together imply:

Corollary 2.10. A rescaling of an irreducible holomorphic eta quotient is not
strongly reducible.

In the next section, we shall show that if for some n ∈ N, the Reducibility
Conjecture holds for the holomorphic eta quotients whose levels have at most n
distinct prime divisors, then Conjecture 2.6 and hence, Conjecture 2.7 also hold if
the initial eta quotients under consideration in these later conjectures are of such
levels. Furthermore, in a later section, we shall show that the Reducibility conjec-
ture holds for eta quotients of prime power levels.

If the Reducibility Conjecture holds for level N , then in particular, it gives an
algorithm to check the irreducibility of a holomorphic eta quotient of level N :

Let f be a holomorphic eta quotient of level N . The Reducibility Conjecture
implies that if f is reducible, then there exists a holomorphic eta quotient g /∈ {1, f}
on Γ0(N), such that

ords(g) ≤ ords(f) (2.5)

at all cusps s of Γ0(N). Now, (1.70) and (2.5) together implies that ords(g) belongs
to the finite set [0, ords(f)] ∩ 1

24
Z for each cusp s of Γ0(N). Since Γ0(N) has only

finitely many cusps, it follows that the search for such a g halts after a finite
amount of time.

Some improvements of the above algorithm are immediate:
(a) The Reducibility Conjecture implies Conjecture 2.7 and the contrapositive of
the later is:

If a rescaling of a holomorphic eta quotient g is reducible, then so is g.

On the other hand, it is trivial that if an eta quotient is reducible, then so is any
rescaling of it. Therefore, as the above algorithm assumes the Reducibility conjec-
ture, to check the irreducibility of a holomorphic eta quotient f = ηX of level N
by the above algorithm is the same as to check whether the primitive holomorphic
eta quotient

f0 :=
∏
d∈DN

ηXdd/α

of level N/α (of which, f is a rescaling by α), is strongly reducible or not, where α
is the greatest common divisor of the elements of the set {d ∈ DN |Xd 6= 0}. Here,
by a primitive eta quotient, we mean an eta quotient that is not the rescaling of
some other eta quotient.

(b) Let f , f0 and α be as above. Then from (1.77), it follows that f0 is strongly
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reducible if and only if there exists a holomorphic eta quotient g on Γ0(N/α) such
that Condition (2.5) with f replaced by f0 is satisfied at each cusp in the subset
{1/t}t| (N/α) of cusps of Γ0(N/α). Now, from Corollary 1.42, it follows that to see
whether f0 is strongly reducible we only require to check if all the entries of

v′ := 24A−1
N/αv

are integers, where v ∈ 1
24
ZDN/α (see (1.70)) with vt ∈ [0, ord1/t(f0)] for all t ∈ DN/α

and AN/α is the valuation matrix (see 1.81). The algorithm halts either if we find
an integral v′ as above, in which case f0 is strongly reducible by ηv

′
or if none of

the finitely may possibilities for v leads to any v′ with integer entries as above, in
which case f0 is not strongly reducible.

(c) In (b), in order to search for a v′ with integer entries, we do not need to go
through the complete set of possibilities for v. Rather by unimodular Gaussian
elimination, we may reduce A−1

N/α to a triangular matrix which would allow us to

search for an integral v′ through a tree, determining one entry of v′ at a time and
consequently reducing the time complexity of the algorithm (see Chapter 4 in [22]).

2.3 Level reduction of the factors

In this section, we prove a partial result towards the Reducibility Conjecture.
For N ∈ N and M ∈ DN , we define the linear map PM,N : ZDN → ZDM by
pn,N : E!

N → E!
n

(PM,N(X))d :=
∑
t∈DN/M

Xdt for X ∈ ZDN and d ∈ DM . (2.6)

Let E!
N :=

⋃
k∈Z

E!
N,k (resp. EN :=

⋃
k∈Z

EN,k) be the group (resp. monoid) of eta

quotients (resp. holomorphic eta quotients) on Γ0(N). Then for M ∈ DN , the
map PM,N induces the homomorphism pM,N : E!

N → E!
M given by

pM,N(ηX) := ηPM,N (X). (2.7)

It follows trivially from the above definition that for m ∈ N, with (m,N) = 1,
rescaling by m is a section of the map pN,mN : E!

mN → E!
N . In other words, the

following holds:
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Lemma 2.11. Let f be an eta quotient on Γ0(N) and let m ∈ N with (m,N) = 1.
Then we have

pN,mN(fm) = f.

This leads to the following:

Lemma 2.12. Let f be an eta quotient on Γ0(N) and let M ∈ N be a multiple of
N . Let m ∈ EM be such that (m/(m,N), N) = 1. Then we have

pN,νN ◦ alm,M(f) = aln,N(f), (2.8)

where n = (m,N) and ν = m/n.

Proof. Let g := aln,N(f) and let ν = m/n. Then from Lemma 1.60, we have
alm,M(f) = gν . Since g is of level N and since (ν,N) = 1, from Lemma 2.11, we
get pN,νN(gν) = g.

We could have also obtained the last lemma as an implication of Lemma 2.13(c),
Lemma 2.15 and Corollary 2.17 below.

In (2.7), if M is an exact divisor of N , then the homomorphism pM,N possess
some useful properties which we describe below. If X ∈ ZDN has no negative
entries, then we write X ≥ 0.

Lemma 2.13. For N ∈ N and M ∈ DN , let pM,N : E!
N → E!

M be the
homomorphism defined above. If M‖N , then the following statements hold:

(a) The homomorphism pM,N preserves weight.

(b) Also, pM,N is a holomorphy-preserving homomorphism.

(c) If n ∈ DM and if f is an eta quotient of level n, then pM,N(f) = f .

Proof. (a) By Proposition 1.39, it suffices to show that σ(PM,N(X)) = σ(X). This
follows from the following: ∑

d∈DM

∑
t∈DN/M

Xdt =
∑
d∈DN

Xd,

where the equality holds because (M,N/M) = 1.

(b) We require to show that VM(PM,N(X)) ≥ 0 if VN(X) ≥ 0 (see (1.80)).
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By PM,N ∈ ZDM × ZDN , we denote the matrix of the linear map PM,N with
respect to the canonical bases of ZDM and ZDN :

PM,N(d, t) =

{
1 if t/d ∈ DN/M ,
0 otherwise,

(2.9)

where PM,N(d, t) denotes the (d, t)-th entry of PM,N . From (1.84) and from
Proposition 1.41, we get

VM(PM,N(X)) = AMPM,NA
−1
N VN(X).

Hence, it suffices to show that none of the entries of the matrix AMPM,NA
−1
N are

negative. Since (M,N/M) = 1, from Proposition 1.41 we have

A−1
N = A−1

M ⊗ A
−1
N/M . (2.10)

Also, from (2.9), it is easy to check that

PM,N = IM ⊗ 1T

N/M , (2.11)

where IM ∈ ZDM×DM is the identity matrix and 1N/M ∈ ZDN/M is defined similarly
as in Proposition 1.41(c). So, from (2.10) and (2.11), we get

AMPM,NA
−1
N = IM ⊗ (1T

N/M A−1
N/M) = IM ⊗ pαT

N/M ≥ 0, (2.12)

where the second equality and the last inequality follows from Proposition 1.41(c).

(c) Since n|M and since (M,N/M) = 1, we have (n,M/N) = 1. Let X ∈ DN be
such that f = ηX . Since f is of level n, we have

Xd = 0 for all d 6 | n. (2.13)

So, for d ∈ DN , we have

(PM,N(X))d =
∑
t∈DN/M

Xdt =

{
Xd 1f d|n,
0 otherwise,

(2.14)

where the last equality follows from (2.13) and the fact that (n,N/M) = 1. Thus,
we obtain that pM,N(f) = f .
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For M ∈ DN which is not an exact divisor of N , the map pM,N : E!
N → E!

M in
general, does not have any of the three properties described in Lemma 2.13. For
example, we have 2 ∈ D4r E4. Since p2,4(η2) = ηη2, this map has neither property
(a) nor property (c) of Lemma 2.13. In fact, the map p2,4 does not have property
(b) either, since we have p2,4(η2/η2) = η/η2, where η2/η2 is a holomorphic modular
form on Γ0(4) but η/η2 is not holomorphic at ∞.

Corollary 2.14. Let f be a holomorphic eta quotient of level N . If there exists
an M‖N such that pM,N(f) is irreducible, then f is also irreducible.

For example, h :=
η2

2 η
2
3 η

5
5 η

2
12η

5
20η

25
30

ηη4η5
6 η

10
10 η

10
15 η

10
60

is a holomorphic eta quotient of level 60

and we have

p5,60(h) =
η5

5

η
.

From Corollary 2.5, we know that η5
5/η is not strongly reducible. Hence, by

Theorem 2.36 below, it follows that η5
5/η is irreducible. So, by Corollary 2.14,

we get that h is irreducible.
For M‖N , the following lemma lets us interchange the order of the operation

of pM,N with that of the Atkin-Lehner involutions on E!
N :

Lemma 2.15. For N ∈ N and n,M ∈ EN , we have

pM,N ◦ aln,N = al(n,M),M ◦ pM,N .

Proof. Follows easily from Lemma 1.51 and Corollary 1.52.

Lemma 2.16. Let N ∈ N, N ′ ∈ DN , M ∈ EN , M ′ := (M,N ′), ν := N/N ′ and let
µ := (M, ν). Let f be an eta quotient on Γ0(N ′). Then we have

pM,N(fν) = (pM′,N′(f))µ.

Proof. Let fν = ηX for some X ∈ ZDN . Since M‖N , each element of DN is
uniquely represented as a product dt, where d ∈ DM and t ∈ DN/M . Since f is of
level N ′, for d ∈ DM and t ∈ DN/M , we have Xdt = 0 unless d = µd′ and t = ν ′t′

for some d′|M ′ and t′|(N ′/M ′), where ν ′ := ν/µ. Now, the claim follows trivially
from (2.6) and (2.7). next section

Corollary 2.17. Let N ∈ N, N ′ ∈ DN , M ∈ EN and let M ′ := (M,N ′). Let f be
an eta quotient on Γ0(N ′). Then we have

pM,N(f) = pM′,N′(f).
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Corollary 2.18. Let N ∈ N, N ′ ∈ DN , M ∈ EN , M ′ := (M,N ′), ν := N/N ′ and
let µ := (M, ν). Let f be an eta quotient on Γ0(N ′). Then we have

pM,N(fν) = (pM,N(f))µ.

Proposition 2.19. For n ∈ N, if the Reducibility Conjecture holds for the holo-
morphic eta quotients whose levels have at most n distinct prime divisors, then the
image of an irreducible holomorphic eta quotient of such a level under an Atkin-
Lehner involution is irreducible.

Proof. Let f be an irreducible holomorphic eta quotient of some level N that has
at most n distinct prime divisors and suppose that there exists a multiple M of N
in N and m ∈ EM such that alm,M(f) is reducible. Then there exists an N ∈ MN
such that alm,M(f) is reducible on Γ0(N). Let N ′‖N be such that N ′ is divisible
only by all the primes which divide N and let M ′ := (N ′,M). It follows that N
divides M ′. Let m′ := (m,M ′). Then we have

pN′,N ◦ alm,M(f) = pM′,M ◦ alm,M(f) = alm′,M′ ◦ pM′,M(f) = alm′,M′(f), (2.15)

where the first equality holds by Corollary 2.17, the second by Lemma 2.15 and
the third by Lemma 2.13(c). Since alm,M(f) is reducible on Γ0(N), from (2.15)
and from Lemma 2.13, it follows that alm′,M′(f) is reducible on Γ0(N). Again,
since M ′ has at most n distinct prime divisors, according to our assumption, the
Reducibility Conjecture holds for eta quotients of level M ′. Therefore, alm′,M′(f)
is reducible on Γ0(M ′). Hence, Lemma 2.4 implies that f is reducible. Thus, we
get a contradiction!

Similarly as we saw in the last section, the last proposition and Corollary 1.62
together imply:

Corollary 2.20. For n ∈ N, if the Reducibility Conjecture holds for the holomor-
phic eta quotients whose levels have at most n distinct prime divisors, then a
rescaling of an irreducible holomorphic eta quotient of such a level is irreducible.rad

For m ∈ N, by rad(m), we denote the radical of m, i. e. the product of distinct
prime divisors of m. The following lemma helps us to trim the levels of the factors
of a reducible holomorphic eta quotient: Level Lowering Lemma

Lemma 2.21 (Level Lowering Lemma). Let f be a holomorphic eta quotient on
of level M which is reducible on Γ0(N) for some N ∈ MN. Let N = mn with
rad(m)|M and (n,M) = 1. Let g be a factor of f on Γ0(N). Then we have

f = pm,N(g)× pm,N(f/g).
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Proof. Since M |N = mn and since (n,M) = 1, we have M |m. Again Since
(n,M) = 1 and since rad(m)|M , we get that m‖N . So, Lemma 2.13 implies that
the map pm,N : E!

N ′ → E!
m preserves weight and is also a holomorphy-preserving

homomorphism. Since the level of f divides m, from Lemma 2.13(c), we have

f = pm,N ′(f) = pm,N ′(g)× pm,N ′(h).

For example, the eta quotient
η5

2 η3η12

η2η2
4 η

2
6

of level 12 is a factor of the eta quotient

η8
2

η2η2
4

of level 4. So by Lemma 2.21, the later is strongly reducible:

η8
2

η2η2
4

=
η5

2 η3η12

η2η2
4 η

2
6

× η3
2 η

2
6

η3η12

= p4,12

(η5
2 η3η12

η2η2
4 η

2
6

)
× p4,12

( η3
2 η

2
6

η3η12

)
=

η3
2

ηη4

× η5
2

ηη4

.

In particular, from Lemma 2.21, we get:

Theorem 2.22. A holomorphic eta quotient of level N is reducible only if it is
reducible on some Γ0(m) with rad(m)|N .

Corollary 2.23. For N ∈ N and M‖N , if a holomorphic eta quotient of levelM
is reducible on Γ0(N), then it is strongly reducible.

Corollary 2.24. If a holomorphic eta quotient f has a factor of a squarefree level,
then f is strongly reducible.

2.4 Two results on reducibility

In this section, we shall prove the Reducibility Conjecture for eta quotients of
prime power levels. By Theorem 2.22, it is enough to show that if an eta quotient
of a prime power level pn is reducible on Γ0(pm) for some m > n, then it is strongly
reducible. This will follow from a corollary of Theorem 2.31 which we prove below.

For X ∈ ZDN , we define |X| ∈ ZDN by |X|d := |Xd|. For two eta quotients
f = ηX and g = ηY respectively on Γ0(M) and Γ0(N) with mutually coprime M
and N , we define the eta quotient f ⊗ g on Γ0(MN) by

f ⊗ g := ηX⊗Y =
∏
d∈DN

∏
δ∈DM

ηXdYδdδ . (2.16)
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Then by definition, we have:

f ⊗ g = g ⊗ f. (2.17)

Contrary to the fact that Kronecker product of matrices is not commutative,
(2.17) holds since in (2.16), with changing the order of the eta quotients f and
g, we also change the order of the indexing set, viz. DMN ' DM ×DN .

The lemmas below also follow trivially from the above definition:

Lemma 2.25. Let f1, f2 and g be eta quotients such that each of the levels of f1

and f2 is coprime to the level of g. Let f := f1f2. Then we have

f ⊗ g = (f1 ⊗ g) · (f2 ⊗ g).

Corollary 2.26. Let f and g be holomorphic eta quotients with mutually coprime
levels. If either f or g is reducible (resp. strongly reducible), then so is f ⊗ g.

Lemma 2.27. Let f and g be holomorphic eta quotients with mutually coprime
levels and let n ∈ N. Then

fn ⊗ g = f ⊗ gn.

Lemma 2.28. Let f be an eta quotient of level N . Then for m ∈ N with
(m,N) = 1, we have

fm = f ⊗ ηm,

where fm (resp. ηm) denotes the rescaling of f (resp. η) by m.

Lemma 2.29. Let f and g be two eta quotients respectively on Γ0(M) and Γ0(N)
with mutually coprime M and N . Let the respective weights of f and g be k/2 and
`/2. Then we have

pM,MN(f ⊗ g) = f ` and pN,MN(f ⊗ g) = gk.

To prove the next theorem, we require a relation between the orders of the eta
quotients related by ⊗, at different cusps of the relevant groups:

Lemma 2.30. Let f1 and f2 be two eta quotients respectively on Γ0(N) and Γ0(N ′)
with (N,N ′) = 1. Let f = f1 ⊗ f2. Let t1 ∈ DN and t2 ∈ DN ′ Let 1/t1, 1/t2 and
1/(t1t2) be cusps of Γ0(N), Γ0(N ′) and Γ0(NN ′) respectively. Then we have

ord 1
t1t2

(f) = 24 · ord 1
t1

(f1) · ord 1
t2

(f2). (2.18)
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Proof. By (1.80), it suffices to show that

VNN ′(X ⊗X ′) = 24VN(X)⊗ VN ′(X ′). (2.19)

Since (N,N ′) = 1, from Proposition 1.41(a) we have

ANN ′ = AN ⊗ AN ′ .

So, we get
ANN ′(X ⊗X ′) = (ANX)⊗ (AN ′X

′).

Hence, the claim follows by (1.84).

Theorem 2.31. Let p be a prime and let n,N ∈ N be such that N = pnM , where
(M, p) = 1. Let f be a holomorphic eta quotient on Γ0(N) which has a factor
f1 = ηX of level Np` for some ` ∈ N. Let X ′ ∈ ZDM be such that X ′d = Xdpn+` for
all d ∈ DM and let f ′1 := ηX

′
. Let g be a holomorphic eta quotient on Γ0(M) such

that
ord1/t(g) ≤ | ord1/t(f

′
1)| (2.20)

for all t ∈ DM . Then

g ⊗
( ηppn

ηpn−1

)p`−1

.

is a factor of f .

Proof. We shall proceed by induction on `. So, first we consider the case where
` = 1:

Since f1 ∈ ENp a factor of f , so is also f2 := f/f1 ∈ ENp. For all r ∈ DNp, we

define a, b ∈ 1

24
ZDNp by ar := ord1/r(f1) and br := ord1/r(f2). Since f1 and f2 are

holomorphic, we have
ar, br ≥ 0 for all r ∈ DNp. (2.21)

Since f1 = ηX , from Corollary 1.42 we get

X = 24A−1
Npa = 24(A−1

M ⊗ A
−1
pn+1)a, (2.22)

where the second equality follows from Proposition 1.41(a). Since X ′d = Xdpn+1 for
all d ∈ DM , from (2.22) we obtain

X ′ = 24(A−1
M ⊗ A

−1
pn+1(p

n+1, ))a

=
24

pn−1(p2 − 1)
A−1
M (a′ − a′′), (2.23)
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where a′, a′′ ∈ ZDM are defined by a′t := atpn+1 and a′′t := atpn for all t ∈ DM .
Above, (2.23) holds since we have

A−1
pn+1(p

n+1, pn) = − 1

pn−1(p2 − 1)
, A−1

pn+1(p
n+1, pn+1) =

1

pn−1(p2 − 1)

and all other entries of A−1
pn+1(p

n+1, ) are zeros (see (1.90) or (1.91)).

Now, from (2.23) and (1.84), we get:

a′t − a′′t = pn−1(p2 − 1)VM(X ′)t.

Since both a′t and a′′t are nonnegative (see (2.21)), it follows that

max{a′t, a′′t } ≥ pn−1(p2 − 1) |VM(X ′)t| for all t ∈ DM . (2.24)

Let Y ∈ ZDNp such that f2 = ηY . We define Y ′ ∈ ZDM by Y ′d := Ydpn+1 for all
d ∈ DM . Let (X + Y )′ := X ′ + Y ′. Then similarly as we deduced (2.23), we get

Y ′ =
24

pn−1(p2 − 1)
A−1
M (b′ − b′′), (2.25)

where b′, b′′ ∈ ZDM are defined by b′t := btpn+1 and b′′t := btpn for all t ∈ DM . Since f1

and f2 are of level Np, both X ′ and Y ′ are nonzero. Again, since f = f1f2 = ηX+Y

is of level N , we have
X ′ + Y ′ = (X + Y )′ = 0. (2.26)

Thus, we obtain

a′ + b′ = a′′ + b′′ ≥ pn−1(p2 − 1) · |VM(X ′)| (2.27)

where the equality follows from (2.23), (2.25) and (2.26), whereas the inequality
follows from (2.24).

From (1.70), we get that the orders of ηppn/ηpn−1 at the cusps {1/p`} 0≤`≤n+1 of
Γ0(pn+1) are as follows:

ord 1

p`

( ηppn

ηpn−1

)
=

{
0 if 0 ≤ ` < n,
pn−1(p2 − 1)/24 otherwise.

(2.28)

Let h := g ⊗ (ηppn/ηpn−1). Then from Lemma 2.30 and (2.28), we get that

ord 1

tp`
(h) =

{
0 if 0 ≤ ` < n,
pn−1(p2 − 1) · ord 1

t
(g) otherwise,

(2.29)
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for all t ∈ DM . Also, for all t ∈ DM , we have

ord 1
tpn+1

(f) = a′t + b′t, ord 1
tpn

(f) = a′′t + b′′t and VN(X ′)t = ord 1
t
(f ′1) (2.30)

where the last equality follows from (1.80).

Since f is holomorphic and since ord1/t(g) ≤ | ord1/t(f
′
1)| for all t ∈ DM , from

(2.27), (2.29), (2.30) and from (1.77), we get that

ords(f) ≥ ords(h)

at each cusp s of Γ0(Np). Hence, h is indeed a factor of f .

Now, let us assume that the claim holds for `0 for some `0 ∈ N. Below, we
show that then it holds also for ` = `0 + 1:

Let N ′ := Mpm, where m = n + `0. For the sake of clarity, we redefine the
notations which we have also used in the previous case, as follows:

Let f be a holomorphic eta quotient on Γ0(N) which has a factor f1 = ηX of
level Np` = N ′p. Let X ′ ∈ ZDM be such that X ′d = Xdpn+` = Xdpm+1 for all d ∈ DM
and let f ′1 := ηX

′
. Let Y ∈ ZDM be such that the eta quotient g := ηY on Γ0(M)

satisfies
ord1/t(g) ≤ | ord1/t(f

′
1)|

for all t ∈ DM . Then from the previous case, it follows that the holomorphic eta
quotient h1 := g ⊗ (ηppm/ηpm−1) of level N ′ = Np`0 is a factor of f . Let Z ∈ ZDN′
be such that h1 = ηZ and let Z ′ ∈ ZDM be such that Z ′d = Zdpn+`0 for all d ∈ DM .
Since

ηZ = h1 = g ⊗ (ηppm/ηpm−1) = ηY ⊗ (ηppm/ηpm−1),

we have Z ′d = Zdpm = pYd for all d ∈ DM . So, h′1 := ηZ
′

= gp is a holomorphic eta
quotient on Γ0(M). Now, by the induction hypothesis, it follows that

h1 ⊗
( ηppn

ηpn−1

)p`0−1

= gp ⊗
( ηppn

ηpn−1

)p`0−1

= g ⊗
( ηppn

ηpn−1

)p`−1

is a factor of f , where the last equality holds by Lemma 2.27.

Corollary 2.32. Let p be a prime and let M ∈ N be such that (M, p) = 1. Let
a holomorphic eta quotient f of level N = Mpn have a factor f1 of level Np` for
some integer ` > 1. If there exists a holomorphic eta quotient g 6= 1 on Γ0(M)
which satisfies Condition (2.20), where f ′1 is the same as defined in Theorem 2.31,
then f is strongly reducible.
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Proof. Since g 6= 1, from Theorem 2.31 and Lemma 2.25, it follows that g⊗
ηppn

ηpn−1

is a nontrivial factor of f .

The above corollary does not hold for ` = 1, since in that case f itself could be
equal to g ⊗ (ηppn/ηpn−1). But certainly, if g is strongly reducible, then so is f (see
Lemma 2.25).

Corollary 2.33. For a prime p, if a holomorphic eta quotient f of level pn has a
factor of level pm for some m > n, then( ηppn

ηppn−1

)pm−n−1

is a factor of f .

Proof. Let f1 be a factor of level pm of f and let X ∈ Dpn+1 be such that f1 = ηX .
In particular, since f1 is of level pm, we have Xpm 6= 0. Let f ′1 = ηXpm . Then, g = η
satisfies Condition (2.20). So, Theorem 2.31 implies that

η ⊗
( ηppn

ηpn−1

)pm−n−1

=
( ηppn

ηpn−1

)pm−n−1

is a factor of f .

Corollary 2.34. Let p be a prime. If a holomorphic eta quotient f of level pn has
a factor of level pm for some m > n+ 1, then f is strongly reducible by the factor

ηppn

ηpn−1

.

To extend the above corollary to the case m = n+1, the following lemma would
be very useful. For proving this lemma, we would require a special case (i. e. the
case where M = 1) of some statements which we have seen during the proof of
Theorem 2.31. Instead of repeating the same arguments, we shall recall them from
the proof of the theorem as needed.

Lemma 2.35. For a prime p, if a holomorphic eta quotient f of level pn has a
factor of level pn+1, then

f 6=
ηppn

ηpn−1

.
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Proof. Let f1 be a factor of f of level pn+1. Then also f2 := f/f1 is such a factor
of f . Let X, Y ∈ ZDpn+1 be such that f1 = ηX and f2 = ηY . Then for M = 1, from
(2.23) and (2.25), we get

Xpn+1 =
24(a′ − a′′)
pn−1(p2 − 1)

and Ypn+1 =
24(b′ − b′′)
pn−1(p2 − 1)

, (2.31)

where a′ := ord1/pn+1(f1), a′′ := ord1/pn(f1), b′ := ord1/pn+1(f2) and b′′ :=
ord1/pn(f2). In particular, since f1 and f2 are holomorphic, we have

a′, a′′, b′, b′′ ≥ 0. (2.32)

Since f1 and f2 are of level pn+1, neither Xpn+1 nor Ypn+1 is zero but we have

Xpn+1 + Ypn+1 = 0, (2.33)

because f = f1f2 is of level pn. So, without loss of generality, we may assume that
Xpn+1 > 0. Then (2.31), (2.32) and (2.33) together imply that

a′ + b′ = a′′ + b′′ ≥ b′′ = b′ +
pn−1(p2 − 1)

24
Xpn+1 ≥ pn−1(p2 − 1)

24
. (2.34)

Suppose, if possible f = ηppn/ηpn−1 . Since f = f1f2, the sum of the orders of f1 and
f2 at the cusps {1/pj}0≤j≤n+1 of Γ0(pn+1) is then given by (2.28). Since both f1

and f2 are holomorphic, they have nonnegative orders at all the cusps. So, from
(2.28), it follows that for 0 ≤ j < n, we have

ord1/pj(f1) = ord1/pj(f2) = ord1/pj(η
p
pn/ηpn−1) = 0. (2.35)

Since f = f1f2, we also have

ord1/pn(f) = ord1/pn(f1) + ord1/pn(f2) = a′′ + b′′

and
ord1/pn+1(f) = ord1/pn+1(f1) + ord1/pn+1(f2) = a′ + b′.

Also, since f = ηppn/ηpn−1 , (2.28) implies that all the equalities in (2.34) hold. In
particular, we have a′′ = b′ = 0 and a′ = b′′ = pn−1(p2 − 1)/24, i. e.

ord1/pn(f1) = ord1/pn+1(f2) = 0 (2.36)

and

ord1/pn+1(f1) = ord1/pn(f2) =
pn−1(p2 − 1)

24
. (2.37)
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Now, from Corollary 1.42, (2.35), (2.36), (2.37) and (1.91) it follows that

Xpn = 24 · Apn+1(pn, pn+1) · ord1/pn+1(f1) = −1/p /∈ Z.

Thus, we get a contradiction! Therefore, we conclude that f 6= ηppn/ηpn−1 .

So, we can extend Corollary 2.34 to the following: Corollary 2.34′

Corollary 2.34′. Let p be a prime. If a holomorphic eta quotient f of level pn has
a factor of level pm for some m > n, then f is strongly reducible by the factor

ηppn

ηpn−1

.

Now, Corollary 2.22 and Corollary 2.34′ together imply that:later section

Theorem 2.36. A holomorphic eta quotient of a prime power level is reducible if
and only if it is strongly reducible.later

The last theorem and Proposition 2.19 together imply:

Corollary 2.37. The image of an irreducible holomorphic eta quotient of a prime
power level under an Atkin-Lehner involution is irreducible.

Also, from Theorem 2.36 and Corollary 2.20, we obtain:

Corollary 2.38. A rescaling of an irreducible holomorphic eta quotient of a prime
power level is irreducible.

In particular, from Lemma 2.3, Corollary 2.5, Theorem 2.36 and Corollary 2.38,
we get:

Corollary 2.39. For a prime p and m ∈ N, the holomorphic eta quotients

ηpmp
ηm

and
ηpm
ηmp

are irreducible.

We shall also see examples of some special families of irreducible holomorphic
eta quotients in a later chapter.
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2.5 Checking irreducibility

In Section 2.2, we have seen that the Reducibility Conjecture implies an
algorithm to check the irreducibility of a holomorphic eta quotient in a finite time.
We prove the existence of such an algorithm without assuming the conjecture, by
showing that the level of any factor of a holomorphic eta quotient f of level N
and weight k is bounded w.r.t. N and k (this suffices, since Corollary 1.50 implies
that there are only finitely many holomorphic eta quotients if a pair of bounds
on their weights and levels are given and the proof of Corollary 1.49 gives a näıve
algorithm to list all such eta quotients (for a more efficient algorithm for producing
a complete list of holomorphic eta quotients for any given pair of weight and level,
see Chapter 4 in [22] and also consult [36] in this regard)). We shall use a finiteness
result of Mersmann on simple holomorphic eta quotients:

A holomorphic eta quotient is called simple if it is primitive and not strongly
reducible. In 1991, in his excellent thesis, Mersmann proved the following conjec-
ture of Zagier (see [7], [29]): Mersmann’s First Theorem

Theorem 2.40 (Mersmann’s First Theorem). There are only finitely many simple
holomorphic eta quotients of any particular weight.

The above theorem could be made effective (see Chapter 3), i. e. we could re-
state it as follows:

Theorem 2.40′. For each k ∈ N, there exists an effectively computable Mk ∈ N
such that if there exists any simple holomorphic eta quotient of weight less than or
equal to k/2 and level N , then N |Mk.

For k ∈ N, we call the smallest possible value for Mk (as defined above) the
Mersmann bound for weight k/2.

Convention 2.41. Henceforth, by Mk, we shall denote the Mersmann bound for
weight k/2.

For example, we have M1 = 12 (see Theorem 4.1).

Theorem 2.42. The level of any factor of a holomorphic eta quotient of level M
and weight k is a divisor of N (M,k)2, where N (M,k) is the least common multiple
of Mk and the following number: ∏

p prime
p<2k or p |M

pb‖M, pa≤2kψ(pb)<pa+1

pa+1, (2.38)
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where ψ : N→ N is defined by (1.86).

Proof. Let f be a holomorphic eta quotient of level M and weight k and let g be
a factor of f . Since the claim holds trivially for the trivial factors of f , we may
assume that g /∈ {1, f}. Also, without loss of generality, we may assume that g
is irreducible of weight less than or equal to k/2. Let N be the level of g and
suppose, N 6 | M ′2, where M ′ := N (M,k). By Theorem 2.40′, there exists ν ∈ N
such that g = hν for a holomorphic eta quotient h of some level N ′ |Mk |M ′. Since
νN ′ = N 6 | M ′2, it follows that ν 6 | M ′. So, there exists a prime p|ν such that

vp(ν) ≥ vp(M
′), (2.39)

where vp denotes the p-adic valuation. Since both M and N ′ divide M ′ and since
N = νN ′, the above inequality implies:

vp(ν) ≥ vp(M) and 2vp(ν) ≥ vp(N). (2.40)

Let m := pvp(M), n := pvp(N), n′ := pvp(N ′), µ := pvp(ν) and let f ′, g′ and h′ be the
respective images of f , g and h under the homomorphism pn,N : E!

N → E!
n. From

(2.6) and (2.7), it follows that the levels of f ′, g′ and h′ are m, n and n′, respectively.
Since n‖N , from Lemma 2.13, it follows that f ′, g′ and h′ are holomorphic eta
quotients . Since g is a factor of f and since pn,N is a homomorphism, g′ is a factor
of f ′. Since g = hν , from Corollary 2.18, we get g′ = h′µ. Since g 6= 1, from
Lemma 2.13, it follows that g′ 6= 1. Since h′µ = g′, we get h′ 6= 1. Since h′ is
holomorphic and h′ 6= 1, there exists s ∈ P1(Q) such that ords(h

′; Γ0(n′)) > 0. So,
from (1.70), we get that

ords(h
′; Γ0(n′)) ≥ 1

24
. (2.41)

In particular, by (1.77), we may choose s to be of the form [1 : λ] for some
λ ∈ N ∪ {0}. Let s′ := [1 : µλ] ∈ P1(Q). Since g′ = h′µ and since by (2.40), we
have n|µ2, from (2.41) and from Corollary 1.31, we get

ords′(g
′; Γ0(n)) ≥ µ

24
. (2.42)

Again, by (2.40), we have m|µ. So, from the proof of Proposition 1.7, we get that
s′ and [1 : m] represent the same cusp of Γ0(m). Now, from (1.78), it follows that

ords′(f
′; Γ0(n)) = ord1/m(f ′; Γ0(m)) ≤ kψ(m)

12
, (2.43)
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where the last inequality holds by the Valence formula (see Corollary 1.44), since
from Lemma 2.13(a), it follows that the weight f ′ is k. Since m = pvp(M)‖M ,
from (2.39) and from the definition of M ′ = N (M,k) (see in particular, (2.38)), a
strengthening of the first inequality in (2.40) follows:

µ > 2kψ(m). (2.44)

Now, the above inequality together with (2.42) and (2.43) implies that

ords′(g
′; Γ0(n)) > ords′(f

′; Γ0(n)). (2.45)

So, g′ can not be a factor of f ′. Thus we get a contradiction! Hence, we must have

N < N (M,k)2.

We recall from Theorem 2.22 that an eta quotient of level N is reducible only if
it is reducible on some Γ0(M) with rad(M)|N . Now, we define the restricted
Mersmann bound for level N and weight k/2 to be the least positive integer
MN,k such that if there exists any simple holomorphic eta quotient of weight less
than or equal to k/2 and level M with rad(M)|N , then M |MN,k. In particular,
Mersmann’s First Theorem implies that the set {MN,k | N ∈ N} is finite. So, Mk

is the least common multiple of the elements in this set. Certainly, we can also
write:

Mk = sup
N∈N

MN,k. (2.46)

On the other hand, from Level Lowering Lemma (see Lemma 2.21), it follows
that MN,k is the largest divisor of Mk whose radical divides N . In particular, the
effective computability of Mk guarantees the effective computability of MN,k.

Corollary 2.43. Any reducible holomorphic eta quotient of level M and weight
k has a factor of some level dividing N0(M,k)2 where N0(M,k) ∈ N is the least
common multiple of MN,k and the following number:∏

p prime
pb‖M, ,b>0

pa≤2kψ(pb)<pa+1

pa+1. (2.47)



2.5. Checking irreducibility 75

Proof. Follows from Theorem 2.22 and Theorem 2.42.

Theorem 2.42 or Corollary 2.43 shows that checking irreducibility of a
holomorphic eta quotient is possible without resort to the Reducibility Conjecture.
However, the Mersmann bounds Mk are not explicitly known for any k > 1 due
to the immense computational complexity of the presently known algorithm for
determining them (see Chapter 3) and also, the present upper bounds for them are
too large for all practical purposes.





Part II

Holomorphic eta quotients of a
particular weight





Chapter 3

Simple holomorphic eta quotients

About 25 years ago, based on extensive numerical calculations, Zagier formulat-
ed two conjectures on simple holomorphic eta quotients , one asserting the finiteness
of the set of such eta quotients of any particular weight and the other giving a
complete list of such eta quotients of weight 1/2. Both of these conjectures were
subsequently established by his student Mersmann in a brilliant thesis.

In this chapter and the next, we give respectively simplified and shorter proofs
of Mersmann’s theorems (see Theorem 2.40 and Theorem 4.1). The inclusion of
these two chapters in this thesis is inspired by a paragraph on page 117 of [22],
where Köhler discusses the formidabilily of the task of simplifying Mersmann’s
original proofs. For the convenience of the reader, here we restate Mersmann’s
First Theorem:

Theorem (Mersmann’s First Theorem). There are only finitely many simple
holomorphic eta quotients of any particular weight.

A basic step towards establishing the above theorem is to prove the following
lemma:
Mersmann’s Lemma

Lemma (Mersmann’s Lemma). Let f = ηX is a holomorphic eta quotient of weight
k/2 on Γ0(N). Then

‖X‖ ≤ k ·
∏

p prime
p|N

(p+ 1

p− 1

)min{2, vp(N)}
, (3.1)
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where vp(N) denotes the p-adic valuation of N and ‖X‖ := σ(|X|). Here
|X| ∈ ZDN (resp. σ : ZDN → Z) is as defined in the beginning of Section 2.4
(resp. in (1.75)).

The last inequality gives a bound on the number of holomorphic eta quotients
of weight k and level N . Comparing it with the dimension (see [13] or [42]) of the
space of modular forms of weight k and level N , we see that for any k ∈ N, there
are infinitely many N ∈ N such that the space of modular forms of weight k and
level N does not have enough eta quotients to make up for a basis. This gives a
partial answer to a question asked by Ono in [31] about classification of the spaces
of modular forms which are spanned by eta quotients.

Actually, Mersmann proved a variant of the above lemma in [29]. In the next
section, we prove a more general result for weakly holomorphic eta quotients which
would be quite useful later and in particular, from which Mersmann’s Lemma
would follow (see Corollary 3.2). Independently of this work, in [36], Rouse
and Webb have also established the inequality (3.1) and have drawn a similar
conclusion as in the above paragraph about the spaces of modular forms which are
not generated by eta quotients.

3.1 A generalization of Mersmann’s Lemma

In order to formulate and prove our next result, we require the folowing nota-
tions:

v+ ∈ RDN : the positive component of v ∈ RDN, v+ = 1
2
(v + |v|).

v− ∈ RDN : the negative component of v ∈ RDN, v− = 1
2
(v − |v|).

‖v‖± ∈ R : the sum of the entries of |v±|, ‖v‖± = ‖v±‖ = ±σ(v±).

Lemma 3.1 (Generalized Mersmann’s Lemma). Let f = ηX be an eta quotient of
weight k/2 on Γ0(N). Then we have

‖X‖ ≤ k · F (N) +G(N) · ‖ÂNX‖−, (3.2)

where

F (N) :=
ψ(N)

ϕ(N)
·
∏

p prime
p2 |N

p+ 1

p− 1
, G(N) :=

(
1

ψ(N)
+

1

ϕ(N)

)
·
∏

p prime
p2 |N

(
1 +

1

p

)
, (3.3)
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ψ, ϕ : N → N are as defined in (1.86) and ÂN ∈ ZDN×DN is the symmetrized
valuation matrix of level N , defined by

ÂN(t, ) = (t, N/t) · AN(t, ) for all t ∈ DN , (3.4)

where AN is the valuation matrix of level N .

Corollary 3.2 (Mersmann’s Lemma). Let f = ηX be a holomorphic eta quotient
of weight k/2 on Γ0(N). Then we have

‖X‖ ≤ kF (N). (3.5)

Corollary 3.3. Let f = ηX be a weakly holomorphic eta quotient of weight k/2
on Γ0(N) with ‖X‖ ≥ kF (N) + ε. Then we have

‖ÂNX‖− ≥ ε/G(N) . (3.6)

Corollary 3.4. Let f = ηX 6= 1 be a weakly holomorphic eta quotient of weight
k/2 on Γ0(N), where k ≤ 0. Then we have

‖ÂNX‖− ≥
{

2/G(N) if k = 0,
|k| · (F (N) + 1)/G(N) otherwise.

(3.7)

Proof. If σ(X) = k = 0 (see Proposition 1.39) but X 6= 0, then X ∈ ZDN has at
least two nonzero entries. Hence, ‖X‖ ≥ 2 and so, the claim for the case k = 0
follows from (3.2).

For the case k < 0, from (3.2), we have G(N) · ‖ÂNX‖− ≥ ‖X‖ + |k| · F (N).
Since we have ‖X‖ ≥ |k|, the claim follows.

Proof of Lemma 3.1. Let ÂN be the symmetrized valuation matrix (see (3.4) of

level N (see Section 1.5) and let Y := ÂNX. Then we have

‖X‖ = ‖Â−1
N Y ‖ ≤ ‖Â−1

N Y+‖+ ‖Â−1
N Y−‖. (3.8)

To not leave room for any possible confusion, we mention here that by Â−1
N , we

denote (ÂN)−1. Let QN ⊂ DN be such that d ∈ QN only if d2|N . Then for all
t ∈ DN , we have (t, N/t) ∈ QN and for all d ∈ QN , we have (d,N/d) = d. For
d ∈ QN , let

yd :=
∑
t∈DN
Yt<0

(t,N/t)=d

|Yt|. (3.9)
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Then from Proposition 1.41(c) and from (3.4), we get

1T

N Â
−1
N Y− = −

∑
d∈QN

yd
ϕ(d)

dψ(N)
and ‖Â−1

N Y−‖ ≤ 1T

N |Â−1
N | |Y−| =

∑
d∈QN

yd
ψ(d)

dϕ(N)
.

(3.10)
Again by Proposition 1.41(c), by (3.4) and by (3.10), it follows that

1

ψ(N)

(
min
d∈QN

ϕ(d)

d

)
1T

NY+ ≤ 1T

N Â
−1
N Y+ = k − 1T

N Â
−1
N Y− = k +

∑
d∈QN

yd
ϕ(d)

dψ(N)
.

(3.11)
So, we obtain

‖Â−1
N Y+‖ ≤ 1T

N |Â−1
N |Y+ ≤

1

ϕ(N)

(
max
d∈QN

ψ(d)

d

)
1T

NY+

≤ ψ(N)

ϕ(N)

(
max
d∈QN

ψ(d)

ϕ(d)

)(
k +

∑
d∈QN

yd
ϕ(d)

dψ(N)

)
(3.12)

where the first inequality is trivial, the second holds by Proposition 1.41(c) and by
(3.4), whereas and the third inequality holds by (3.11) and by the fact that ψ(d)/d
and ϕ(d)/d attain respectively the maximum and minimum for the same values of
d in QN .

Now, from (3.8), (3.10) and (3.12), we get

‖X‖ ≤ k ·
∏

p prime
p|N

(p+ 1

p− 1

)min{2, vp(N)}
+
(

max
d∈QN

ψ(d)

d

)( 1

ϕ(N)
+

1

ψ(N)

)
· ‖ÂNX‖−

(3.13)

≤ k · F (N) +G(N) · ‖ÂNX‖− .

3.2 A simplified proof of the finiteness

To briefly describe the strategy of proving Mersmann’s First Theorem (see
Theorem 2.40), first we need some notations and background:

We denote by N the set of positive integers. For N ∈ N, by DN we denote the
set of its divisors. For any two real matrices B and C of equal size, B ≥ C means
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that Bi,j ≥ Ci,j for all i, j. For X ∈ ZDN , the valuation∗ of the eta quotient

ηX :=
∏
d|N

η(dz)Xd

at the cusps of the relevant congruence subgroup is given by a linear map LN :
ZDN → ZDN . Thus, holomorphy of ηX is equivalent to the condition LN(X) ≥ 0
and irreducibility of ηX is equivalent to saying that in each decomposition of the
form X = X ′ +X ′′, either LN(X ′) or LN(X ′′) has a negative entry.

Now, Mersmann’s strategy was to find a decompostion X = X ′+X ′′ using the
simplicity of ηX such that if its level N is sufficiently big w.r.t. its weight, then all
the negative entries in LN(X ′) can not be subdued by the corresponding positive
entries of LN(X ′′), which contradicts with the holomorphy of ηX .

With the same basic strategy as above, we provide a short proof of Mersmann’s
First Theorem Let us fix the following notations :

N = P e1
1 P e2

2 · · ·P em
m , where P1 < P2 < · · · < Pm are primes.

For any d‖N , there exists a canonical bijection between ZDN and ZD(N
d

)×D(d). If
d = P ei

i , then we denote the image of X ∈ ZDN by X(i) under this bijection. i. e.,
if we set Ni := N

P
ei
i

then

X
(i)

ν,P ji
= XνP ji

, ν|Ni and 0 ≤ j ≤ ei . (3.14)

For any nonnegative integer j ≤ ei, we call X
(i)
j := {Xν,P ji

}ν∈D(Ni) the j-th column

of X(i).

Let ηX be a simple holomorphic eta quotient of weight k
2

and level N . From
(3.1), we get

‖X‖ ≤ kF (N). (3.15)

Mersmann’s First Theorem will follow from (3.15) if we can show thatN is bounded
above by some function of k. Let

δi := 1 + the highest number of consecutive zero columns inX(i) .

Fm := F (p1p2 · · · pm), where p1 = 2, p2 = 3, . . . pm are the first m primes.

It is easy to note that F (N) ≤ Fm and that Fm = O(log2m) as m→∞. Later in
this section, we shall show that there exists a constant Ck such that for all Pi we
have

P δi
i < CkF (N)5 . (3.16)

∗By valuation, here we mean a suitably normalized valuation.
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Hence in particular, for i = m we get Pm = Ok(log10m). Since Pm ≥ pm ∼ m logm,
this bounds m and all primes Pi|N . ∗

For each i, X(i) has ei + 1 columns. Since ηX is primitive, the first column of
X(i) is nonzero (see Proposition 6.6.(iii)). Again, from the definition of level (see
Introduction), it follows that the last column of X(i) is nonzero. Therefore, the
number of nonzero columns in X(i) is at most ei

δi
+ 1. Hence, from (3.15) we get

ei
δi

+ 1 < kF (N). (3.17)

Since (3.16) and (3.17) together bound ei, we have only finitely many possibilities
for N if k is given.

Now, we construct a decreasing function g : Z → (0, 2] such that if ηX is a
simple holomorphic eta quotient of weight k

2
and level N , then for any prime Pi|N ,

(3.16) is satisfied if we put

Ck =
k

2g(k − 1)
. (3.18)

For all n ≤ 0, we set g(n) = 2. For n > 0, we define g(n) inductively as follows :
Let

g0(n) := G(Mn), (3.19)

where Mn is the least positive integer M such that

G(M) < g(n− 1) . (3.20)

Let M ′
n be the least upper bound of the set of integers M ∈ N such that for each

prime power pep‖M ,

F (M)5

2prp,n(M) (1 + 1
p
)

(
n+

g0(n)

F (M)2 + 1

)
≥ g(n− 1)− g0(n) , (3.21)

where rp,n(M) ∈ Z such that

rp,n(M)− 1 <
ep + 1

nF (M) + g0(n)
≤ rp,n(M) (3.22)

∗ In fact, this näıve bound may be very large. For example, we have C1 = 1
4 . The order of

magnitude of the largest prime pm for which the inequation pm < Fm/4 holds is 1014. Whereas
actually, the greatest prime divisor of the level of a simple holomorphic eta quotient of weight 1

2
can be at most 3, as we shall see in the 5th section.
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Then

g(n) :=

{
g0(n) if Mn = M ′

n,
min

Mn≤M≤M ′n
G(M) otherwise. (3.23)

In order to prove (3.16), we need the following lemmas. Given a matrix T and
a real interval I, we denote by TI the submatrix of T consisting of its successive
columns with indices in I.

For any N ′|N , let sN ′ : ZD(N ′) → ZDN be a section of the projection
πN ′ : ZDN → ZD(N ′) such that for all Z ∈ ZD(N ′) and d|N , we have

sN ′(Z)d =

{
Zd if d|N ′
0 otherwise.

We define s̃N ′ := sN ′ ◦ πN ′ .

Lemma 3.5. For any X ∈ ZDN , we have (ÂNX)(i) = ÂNiX
(i)ÂP eii .

∗

Lemma 3.6. Let a, b ∈ Z with 0 ≤ a < b ≤ ei such that X
(i)
(a,b) = 0 and let

Na = P a
i Ni. Then

‖ÂNX‖− > P ei−a
i

∥∥∥ÂNa πNa(X)
∥∥∥
−
− Nψ(N)

P b−a
i (1 + 1

Pi
)ϕ(N)

‖X − s̃Na(X)‖ .

Lemma 3.7. If ÂNX � 0, then

‖ÂNX‖− ≥ g(σ(X))
ϕ(N)2

ψ(N) + ϕ(N)
.

Considering eta quotients of the form
∏n
i=1 η(biz)

η(z)
with b1 > 1 and bi :=∏i−1

j=1 bj + 1 ∀ i ∈ Z>1 and using Lemma 3.7, it can be shown that g(n) decays at
least double exponentially as n grows.

We shall prove these lemmas in the next section.

Proof of (3.16). Let a, b ∈ Z with 0 ≤ a < b ≤ ei such that X
(i)
(a,b) = 0 and

∗ In fact, for any d‖N , if we denote by X [d] the image of X ∈ ZDN in ZD(Nd)×D(d), where Nd

denotes the greatest divisor of N that is coprime to d, then we have (ÂNX)[d] = ÂNd
X [d]Âd.
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a− b = δi. For ease of notation, we write p = Pi, Na = paNi and e = ei. From the
primitivity of ηX and from the definition of level it follows that both s̃Na(X) and
(X − s̃Na(X)) are nonzero. Let k1 := σ(s̃Na(X)) and
k2 := σ(X− s̃Na(X)). So, k1 +k2 = k. Now, if k1 or k2 ≤ 0, then by (3.7), we have

respectively ÂN s̃Na(X) � 0 or ÂN(X − s̃Na(X)) � 0. Otherwise, 0 < k1, k2 < k.

Since ηX is irreducible, we still have either ÂN s̃Na(X) � 0 or ÂN(X− s̃Na(X)) � 0.

Therefore if necessary, replacing X by X̃ where ηX̃ = aln,N(ηX) for some n ∈ EN
with p|n (hence, replacing a by e− b and b by e− a), we may assume that k1 < k
and

ÂN s̃Na(X) � 0 . (3.24)

We have

s̃Na(X)(i)Âpe =
(
πNa(X)(i)

∣∣0)( pe−aÂpa B
0 0

)
where the j-th column of B = pe−a−j( the last column of Âpa), for all j ≤ e − a.
Hence from (3.24), via Lemma 3.5 we get

ÂNaπNa(X) � 0 . (3.25)

Since

‖X − s̃Na(ÂNX)‖ ≤ ‖X+‖ =
1

2
(‖X‖+ k) , (3.26)

from Lemma 3.6, we have

‖ÂNX‖− > pe−a‖ANaπNa(X)‖− −
Nψ(N)

2pb−a(1 + 1
p
)ϕ(N)

(‖X‖+ k) . (3.27)

Since ‖ÂNX‖− = 0, from (3.27), (3.25), Lemma 3.7 and (3.15) , we get

kNψ(N)

2pb−a(1 + 1
p
)ϕ(N)

(ψ(N)2

ϕ(N)2
+ 1
)
> pe−ag(k1)

ϕ(Na)
2

ψ(Na) + ϕ(Na)
. (3.28)

By definition, g is a decreasing function and it can be verified easily by cross
multiplication that

pe−a
ϕ(Na)

2

ψ(Na) + ϕ(Na)
≥ ϕ(N)2

ψ(N) + ϕ(N)
. (3.29)

Hence, we can replace the right hand side of the inequality (3.28) by

g(k − 1)
ϕ(N)2

ψ(N) + ϕ(N)

to obtain (3.16) by (20).
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3.3 Proof of the lemmas

Proof of Lemma 3.5. Follows from the facts that ÂN = ÂP eii ⊗ ÂNi and these
matrices are symmetric.∗

Proof of Lemma 3.6. To lighten the notation, we write p = Pi and e = ei. From
Lemma 3.5, we have

(ÂNX)(i) = ÂNi s̃Na(X)(i)Âpe + ÂNi
(
X(i) − s̃Na(X)(i)

)
Âpe . (3.30)

Therefore, s̃Na(ÂNX)(i) =
(
πNa(ÂNX)(i)

∣∣0) =
(

(ÂNX)
(i)
[0,a]

∣∣0) =

ÂNi

(
πNa(X)(i)

∣∣0)( pe−aÂpa 0
0 0

)
+ ÂNi

(
X(i)− s̃Na(X)(i)

) 0 0
p
e−|j−k|

b≤j≤e
0≤k≤a

0

 ,

(3.31)
where the first two equalities are trivial and the third holds by (3.30). By Lemma
3.5, the absolute value of the sum of the negative entries in the 1st term of (3.31)

is pe−a‖ÂNaπNa(X)‖− . The sum of positive entries in the 2nd term of (3.31) is less

than or equal to

1tNiÂNi
∣∣X(i) − s̃Na(X)(i)

∣∣
 0 0

p
e−|j−k|

b≤j≤e
0≤k≤a

0

1pe .

Now, replacing N by Ni in (1.89), after left-multiplication with ÂNi and using
(3.4), we get†

1tNiÂNi ≤
Niψ(Ni)

ϕ(Ni)
1tNi . (3.32)

Since  0 0
p
e−|j−k|

b≤j≤e
0≤k≤a

0

1pe ≤
pe−(b−a)

1− 1
p

1pe , (3.33)

∗ See Lemma 4.3.1 in [3].
† Since ÂNi

> 0, left-multiplication by ÂNi
does not alter the direction of the inequality.
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the sum of the positive entries in the second term of (3.31) is less than or equal to

pe−(b−a)Niψ(Ni)

(1− 1
p
)ϕ(Ni)

1tNi

∣∣X(i) − s̃Na(X)(i)
∣∣1pe =

Nψ(N)

pb−a(1 + 1
p
)ϕ(N)

‖X − s̃Na(X)‖ .

Thus, we have

‖ÂNX‖− ≥ ‖ s̃Na(ÂNX)‖− ≥ pe−a‖ÂNaπNa(X)‖−−
Nψ(N)

pb−a(1 + 1
p
)ϕ(N)

‖X−s̃Na(ÂNX)‖ .

�

Proof of Lemma 3.7. The lemma holds trivially for N = 1. We proceed by
induction on N . Let M > 1 be an integer and let us assume that the lemma holds
for all N < M . Let X ∈ ZD(M) such that AMX � 0. Let n := 1tMX. If n ≤ 0,
then the lemma holds by (3.7). So, let us assume n > 0. By the definition of g,
the lemma holds trivially for M if M ≤ Nn. So, we may assume that

M > Nn . (3.34)

Since g0(n) ≥ g(n), ∗ if ‖X‖ ≥ nψ(M)2

ϕ(M)2
+ g0(n), the claim holds by (3.6). So, we

may also assume that

‖X‖ < n
ψ(M)2

ϕ(M)2
+ g0(n) . (3.35)

Since M > M ′
n, there exists a prime p = Pi dividing M such that †

F (M)

2prp,n(M) (1 + 1
p
)

(
n+ g0(n)

ϕ(M)2

ψ(M)2 + ϕ(M)2

)
< g(n− 1)− g0(n) , (3.36)

Let pe‖M . Since AMX � 0, X is nonzero. Hence, X(i) has at least one nonzero
column.

If X
(i)
a is the only nonzero column of X(i), then if necessary, replacing X by X̃,

where ηX̃ = alm,M(ηX) for some m ∈ EM with p|m (thereby replacing a by e− a),
we may assume that a < e. Let Ma := M

pe−a
. By the same argument as in the proof

of (3.16),‡ we see that AMaπMa(X) � 0. So, we have

‖AMX‖− ≥ ‖ s̃Ma(AMX)‖− = pe−a‖AMa πMa(X)‖− , (3.37)

∗ See (3.19) and (3.23).
† See (3.21).
‡ See (3.25).
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where the inequality is trivial and the last equality holds as we have X(i) =
s̃Ma(X)(i), since X

(i)
a is the only nonzero column of X(i). ∗ Again,

pe−a‖AMa πMa(X)‖− ≥ g(σ(πMa(X)))
pe−aϕ(Ma)

2

ψ(Ma) + ϕ(Ma)
≥ g(n)

ϕ(M)2

ψ(M) + ϕ(M)
,

(3.38)
where the first inequality holds by the induction hypothesis and the second by the
fact that σ(πMa(X)) = σ(X) = n. † Thus, from (3.37) and (3.38) the claim follows
in this case.

Otherwise, X(i) has at least two nonzero columns X
(i)
a and X

(i)
b such that

X
(i)
(a,b) = 0. We choose a and b such that b − a = 1 + the highest number of

consecutive zero columns in X(i). Since X(i) has e + 1 columns, the number of
nonzero columns of X(i) is greater than or equal to e+1

b−a . Hence, from (3.35) we get

e+ 1

b− a
< n

ψ(M)2

ϕ(M)2
+ g0(n) . (3.39)

Let Ma := M
pe−a

and ma := σ(πMa(X)). Since AM s̃Ma(X) +AM(X − s̃Ma(X)) � 0,

either AM s̃Ma(X) � 0 or AM(X − s̃Ma(X)) � 0. Hence by the same argument as
in the proof of (3.16),‡ we may assume that ma < n, AMa πMa(X) � 0 and

‖AMX‖− > pe−a‖AMa πMa(X)‖− −
Mψ(M)

2pb−a(1 + 1
p
)ϕ(M)

(‖X‖+ n) . (3.40)

From (3.35), (3.40) and the induction hypothesis, we get

‖AMX‖− > pe−ag(ma)
ϕ(Ma)

2

ψ(Ma) + ϕ(Ma)
− Mψ(M)

2pb−a(1 + 1
p
)ϕ(M)

(
n
(ψ(M)2

ϕ(M)2
+ 1
)

+ g0(n)

)
.

(3.41)
Again, by the same reasoning as in (3.29), we can replace the first term on the

right hand side of the inequality (3.41) by g(n− 1) ϕ(M)2

ψ(M)+ϕ(M)
to obtain

‖AMX‖− >
ϕ(M)2

ψ(M) + ϕ(M)

(
g(n−1)− F (M)

2pb−a (1 + 1
p
)

(
n+g0(n)

ϕ(M)2

ψ(M)2 + ϕ(M)2

))
(3.42)

∗ See (3.31).
† See (3.29).
‡ See (3.25) and (3.27).
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Since (3.39) implies that b− a ≥ rp,n(M), ∗ from (3.36) we get

g(n− 1)− F (M)

2pb−a (1 + 1
p
)

(
n+ g0(n)

ϕ(M)2

ψ(M)2 + ϕ(M)2

)
> g0(n) ≥ g(n) . (3.43)

From (3.42) and (3.43), the claim follows. �

∗ See (3.22).



Chapter 4

Holomorphic eta quotients of
weight 1/2

4.1 Zagier’s list

Around 1988, from his extensive numerical calculations Zagier obtained a list
of 14 primitive∗ holomorphic eta quotients of weight 1/2 and he conjectured that
these are the only primitive holomorphic eta quotients weight 1/2. Within the next
few years, his student Mersmann also established this conjecture. In this chapter
we shall see a short proof of it. Precisely, Zagier’s conjecture, i. e. Mersmann’s
Second Theorem states:

Theorem 4.1 (Mersmann’s Second Theorem). The following fourteen are the only
simple holomorphic eta quotients of weight 1

2
: Zagier’s list

η,
η2

η2

,
η2

2

η
,
η3

2

ηη4

,
η5

2

η2η2
4

,
ηη4

η2

,
ηη2

6

η2η3

,
η2η6

η2η3

,
η2

2η3

ηη6

,
η2η

2
3

ηη6

η2
2η3η12

ηη4η6

,
η5

2η3η12

η2η2
4η

2
6

,
ηη4η

2
6

η2η3η12

,
ηη4η

5
6

η2
2η

2
3η

2
12

.

∗ Since any holomorphic eta quotient of weight 1/2 is irreducible, here primitivity and
simplicity are synonymous.
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4.2 A short proof of exhaustiveness of the list

The näıve upper bounds those are obtained from the results given in the previous
sections for the highest levels of the primitive and irreducible holomorphic eta
quotients of even very small weights are extremely large. Nevertheless, in the
following we will see that the highest level for primitive holomorphic eta quotients
of weight 1

2
is only 12. Note that any eta quotient of weight 1

2
is irreducible.

Lemma 4.2. Let N ∈ Z>0, X ∈ ZDN \ {0} and p be a prime dividing N . Write

N = peN ′ with p - N ′ and let Zp := X(p)1pe. If ÂNX ≥ 0, then

ÂN ′(Zp + `X
(p)
j ) ≥ 0 and Zp + `X

(p)
j 6= 0.

for all ` ∈ Z[0,p−2] and j ∈ Z[0,e].

Proof. Let ηj denote a vector of size e+ 1 whose (j+ 1)-th entry is 1 and all other
entries are 0. It can be easily checked that A−1

pe (upe + `ηj) > 0 for all ` ∈ Z[0,p−2]

and for all j ∈ Z[0,e] By Lemma 3.5, we get

ÂN ′(Zp + `X
(p)
j ) = ÂN ′X

(p)(upe + `ηj) = Y (p)Â−1
pe (upe + `ηj) ≥ 0

for all ` ∈ Z[0,p−2] and for all j ∈ Z[0,e]. Since Y 6= 0 and Â−1
pe (upe + `ηj) > 0, we

have ÂN ′(Zp + `X
(p)
j ) 6= 0.

Corollary 4.3. With the same assumptions as in Lemma 4.2, if p ≥ 3 and
1tNX = 1, then

1tN ′X
(p)
j ≥ 0 for all j ∈ Z[0,e].

Lemma 4.4. Let N = 2e for some e ∈ Z>2. If Y := ÂNX ≥ 0, then
|X1| + |XN | ≤ 2 · 1tNX and if the equality holds, then both of X1 and XN are
even.

Proof. Let ηj denote a vector of size e + 1 whose (j + 1)-th entry is 1 and all

other entries are 0. Let w := (sgn(X1)ηt0 + sgn(XN)ηte − 2 · 1tN)Â−1
N . Then

|X1|+ |XN |−2 ·1tNX = wY . It can be easily checked that exactly two entries of w
(say, wi1 and wi2) are 0 and the rest of its entries are negative (see Remark 1.90).
Hence,

|X1|+ |XN | ≤ 2 · 1tNX. (4.1)
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If the equality holds in (4.1), then all the entries of Y except Yi1 and Yi2 must be
0. So,

X = Yi1(The i1-th column of Â−1
N ) + Yi2(The i2-th column of Â−1

N ).

We have, X ∈ Z(e+1), e ≥ 3 and Â−1
N tridiagonal. Hence by Remark 1.90, Yi (The

i-th column of Â−1
N ) ∈ Z(e+1) for all i ∈ {i1, i2}. And since N = 2e, both of X1 and

XN must be even.

Remark 4.5. By a straightforward computation using Lemma 3.1, it can
be checked that if N |144, then all possible solutions for X such that
ηX is a primitive eta quotient of weight 1

2
and level N , are as follows :

N = 1 : X = 1

N = 2 : X =

(
2
−1

)
,

(
−1

2

)

N = 4 : X =

 1
−1

1

 ,

−1
3
−1

 ,

−2
5
−2



N = 6 : X =


2
−1
−1

1

 ,


1
−1
−1

2

 ,


−1

2
1
−1

 ,


−1

1
2
−1



N = 12 : X =


−2

5
−2

1
−2

1

 ,


1
−2

1
−2

5
−2

 ,


1
−1

1
−1

2
−1

 ,


−1

2
−1

1
−1

1

 .

Lemma 4.6. Let a, b ∈ Z>0 and let N = 2a3b. If there exists a primitive eta
quotient of weight 1

2
and level N , then a ≤ 4 and b ≤ 2.
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Proof. Let ηX denote a primitive eta quotient of weight 1
2

and level N and let for

all primes p|N , Zp be as in Lemma 4.2. We have, Â3bZ2 ≥ 0 , Â2aZ3 ≥ 0 (see
Lemma 4.2) and 1t

3b
Z2 = 1t2aZ3 = 1NX = 1 (see Remark 1).

If b ≥ 3, then there exists j0 ∈ {0, b} and i0 ∈ {j0 − 1, j0 + 1} such that 1t2aX
(3)
i0

=

the (i0+1)-th entry of Z2 = 1t2aX
(3)
j0

= the (j0+1)-th entry of Z2 = 0 (see Corollary

4.3). Therefore, 1t2a(Z3+X
(3)
i0

) = 1t2a(Z3+X
(3)
i0

+4X
(3)
j0

) = 1 and Â2a(Z3+X
(3)
i0

) ≥ 0
(see Lemma 4.2). Also, proceeding similarly as in the proof of Lemma 4.2, we

get Â2a(Z3 + X
(3)
i0

+ 4X
(3)
j0

) ≥ 0. Since ηX is a primitive eta quotient of level N ,

X
(3)
j0
6= 0. So, the pair {Z3+X

(3)
i0

, Z3+X
(3)
i0

+4X
(3)
j0
} gives two distinct holomorphic

eta quotients of weight 1
2

such that their corresponding exponents are congruent
modulo 4 and their levels divide 2a. But such a pair does not exist (see Lemma
4.4 and Remark 4.5). Thus we get a contradiction!

If a ≥ 5, since Â2aZ3 ≥ 0, Â2a(Z3 +X
(3)
0 ) ≥ 0 and Â2a(Z3 +X

(3)
b ) ≥ 0 (see Lemma

4.2), we see that each of Z3, Z3 +X
(3)
0 and Z3 +X

(3)
b has 0 as either its first or its

last entry (see Lemma 4.4).

Therefore, if both of the first and the last entries of Z3 are 0, then each of X
(3)
0 and

X
(3)
b has 0 at its one end. If both of them has 0 at the same end (which it have to

be if b = 1), then the column at that end of X(2) is entirely 0, which contradicts
with either the primitivity or the level of ηX .
Otherwise, X

(3)
0 and X

(3)
b has their respective nonzero entries at different ends.

Now, proceeding as before, we see that Â2a(Z3 + X
(3)
1 + 4X

(3)
0 ) ≥ 0. But both

of the first and the last entries of Z3 + X
(3)
1 + 4X

(3)
0 must be odd, sum of their

absolute values being 2 · 1t2a(Z3 + X
(3)
1 + 4X

(3)
0 ) (see Lemma 4.4). Thus we get

a contradiction! Hence, there exists a unique j0 ∈ {0, a} such that 13bX
(2)
j0

= the

(j0 + 1)-th entry of Z3 = 0. Let ı and  denote the indices of the columns of X(2),

which are respectively adjacent to X
(2)
j0

and X
(2)
a−j0 . Since ηX is a primitive eta

quotient of level N , X
(2)
j0
6= 0. Now, considering all twelve possibilities for Z3 and

hence all possibilities for 1t
3b
X

(2)
j ∀ j ∈ Z[0,a] (see Lemma 4.4 and Remark 4.5) and

proceeding as before, we see that the pair

{
αZ2 − sgn

(
1t

3b
X

(2)
β

)
X

(2)
β +X(2)

ı +X
(2)
j0

, αZ2 − sgn
(
1t

3b
X

(2)
β

)
X

(2)
β +X(2)

ı + 3X
(2)
j0

}
,
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where α =

{
3 if 1t

3b
X

(2)
a−j0 = −2

2 otherwise
and β =

{
a− j0 if 1t

3b
X

(2)
a−j0 6= 2

 if 1t
3b
X

(2)
 = −1

gives two distinct eta quotients of weight 1
2

such that their corresponding
exponents are congruent modulo 2 and their levels divide 3b. But such a pair
does not exist (see Corollary 4.3). Thus we get a contradiction!

Proposition 4.7. Any holomorphic eta quotient of weight 1
2

is the rescaling of
some eta quotient whose level divides 12.

Proof. Let us consider holomorphic eta quotients of weight 1
2

and level N ∈ Z>1.
Let p(N ) denote the largest prime divisor of N . For p(N ) ≤ 3, the proposition
holds (see Corollary 4.3, Lemma 4.4, Lemma 4.6 and Remark 4.5). We proceed
by induction on p(N ). Let us assume that the proposition holds for all N with
p(N ) < p for some prime p ∈ Z>3.

Now, let p(N ) = p , e := vp(N) and N ′ := N
pe

. Let ηX be a primitive eta quotient of

weight 1
2

and level N and let Zp be as in Lemma 4.2. Then ÂN ′Zp ≥ 0 (see Lemma
4.2). Since p > 3 and since ηX is a primitive eta quotient of level N , there exists

j0 ∈ {0, e} such that X
(p)
j0
6= 0 and 1tN ′X

(p)
j0

= 0 (see Corollary 4.3). Therefore,

1tN ′(Zp + 3X
(p)
j0

) = 1tN ′Zp = 1 and ÂN ′(Zp + 3X
(p)
j0

) ≥ 0 (see Lemma 4.2).
From the induction hypothesis and Remark 4.5, we see that for the pair {Zp, Zp +

3X
(p)
j0
}, there are only the follwoing two possibilities:

(i)





0
...
0
2
−1

0
...
0


,



0
...
0
−1

2
0
...
0




and (ii)





0
...
0
1
−1

1
0
...
0


,



0
...
0
−2

5
−2

0
...
0




Considering either possibility, we see that ÂN ′(Zp + X

(p)
j1

) � 0, where j1 ∈ Z[0,e]

is the unique index (see Corollary 4.3) such that 1tN ′X
(p)
j1

= 1. Thus we get a
contradiction! (see Lemma 4.2)
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Proposition 3 along with Remark 6 completes the proof of Theorem 2.

Remark 4.8. The translation z 7→ z + 1
2

or equivalently the sign transformation
q 7→ −q gives an involution of Zagier’s list of eta quotients (see Theorem 2) by
interchanging respectively the first seven eta quotients with the last seven, up to
multiplication by a 48-th root of unity. Hence, one can restate the Mersmann’s
Second Theorem as:

There exist only three holomorphic eta quotients of weight 1
2

up to the sign
transformation, Atkin-Lehner involutions and rescaling. e.g.,

η(z) ,
η(z)2

η(2z)
,

η(z)η(6z)2

η(2z)η(3z)
.

Remark 4.9. From [47] and [48], one notes that all the eta quotients in Zagier’s
list (see Theorem 2) are obtained from specializations of the Jacobi triple product
identity :

∞∏
n=1

(1− x2n)(1 + x2n−1y)(1 + x2n−1y−1) =
∞∑

n=−∞

xn
2

yn, where |x| < 1 and y 6= 0 .

(4.2)
i. e. every eta quotient in the list can be obtained by substituting x = ξeπiaz and

y = ζξeπibz in the left hand side of (2) and multiplying it with Ce
πib2z
4a for some

ξ ∈ U4, ζ ∈ U6, C ∈ U6 ∪ {1
2
} and a, b ∈ Z[1,6], where Un denotes the group of

complex n-th roots of unity. From the corresponding changes on the right hand
side of (4.2), we see that every eta quotient in the list has a series expansion like

C

∞∑
n=−∞

(±1)
n(n+1)

2 ζne
πi(2an+b)2z

4a . (4.3)

Expressing all eta quotients in Zagier’s list in the above form and simplifying, we
see that each of them is a linear combination (with coefficients in Z[−2,2] ∪ {1

2
}) of

theta series

θn0,
1
t

:=
∑

n≡n0 (mod 24)
n∈Z

e
2πin2z

t (4.4)
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for some n0 ∈ Z and t|24 (see Section 2.1 in [37]). Simplifying further, we see
that each eta quotient in the list can also be expressed as

∞∑
n=0

ε(n)e
2πin2z

t (4.5)

for some t|24, where depending on the eta quotient under consideration, ε : Z≥0 →
Z[−2,2] may or may not be a character (see Table 1 in [48] or Chapter 8 in [22]).

From Theorem 2, it follows that all holomorphic eta quotients of weight 1
2

are
obtained from specializations of the Jacobi triple product and up to rescaling,
they can be expressed in the forms (8), (10) and as linear combinations of theta
series of the form (9).
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Part III

Holomorphic eta quotients of a
particular level





Chapter 5

Irreducible holomorphic eta
quotients

We recall that a holomorphic eta quotient is called irreducible if it is not a
product of holomorphic eta quotients of smaller weights and that any eta quotient
of weight 1/2 is irreducible, since 1/2 is the smallest possible weight for an
eta quotient. So, in particular, ηp is irreducible for any prime p Also, from
Corollary 2.39, we know that the eta quotients ηp/ηp and ηpp/η are irreducible.
It is easy to show that the above three are the only irreducible holomorphic eta
quotients of the prime level p. In this chapter, we shall show that finiteness of
irreducible holomorphic eta quotients of a given level also holds in general.

5.1 The finiteness

For N ∈ N, we call an eta quotient f irreducible on Γ0(N) if the level of f
divides N and if f is not reducible on Γ0(N). We shall show that

Theorem 5.1. For N ∈ N, there are only finitely many holomorphic eta quotients
which are irreducible on Γ0(N).

In particular, the above theorem implies that

Corollary 5.2. There are only finitely many irreducible holomorphic eta quotients
of any particular level.

We recall (see Section 1.5) that holomorphic eta quotients on Γ0(N) has a
natural bijection with the lattice points in a cone KN of dimension equal to the
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number of divisors of N . Under this bijection, the holomorphic eta quotients which
are irreducible on Γ0(N), correspond to the lattice points in KN which can not be
written as the sum of any two nonzero lattice points in KN . We show that all such
lattice points should be contained in a bounded polytope in KN , which gives off
the finiteness, thus proving the theorem that we stated above:

Proof of Theorem 5.1. We show that there are only finitely many irreducible
holomorphic eta quotients on Γ0(N). Let

ηX :=
∏
d|N

η(dz)Xd

be an eta quotient on Γ0(N). Then ηX is holomorphic if and only if ANX ≥ 0,
whereAN is the valuation matrix of levelN (see Section 1.5). SinceAN is invertible,
the cone

KN := {X ∈ RDN |ANX ≥ 0} (5.1)

is generated by nonnegative linear combinations of the columns of A−1
N , i. e.

KN =
{∑

d|N

Cdud

∣∣∣Cd ∈ R≥0 for all d|N
}
,

where ud is the column of A−1
N indexed by d ∈ DN . As ud has rational entries,

for each d|N , there exists a smallest positive integer md such that vd := mdud has
integer entries. Also, we have

KN =
{∑

d|N

Cdvd

∣∣∣Cd ∈ R≥0 for all d|N
}
.

Let

ZN :=
{∑

d|N

Cdvd

∣∣∣Cd ∈ [0, 1] for all d|N
}
. (5.2)

Since ZN is compact, there are only finitely many lattice points in it. So, Theo-
rem 5.1 follows from the lemma below:

Lemma 5.3. If ηX is a holomorphic eta quotient which is irreducible on Γ0(N),
then X ∈ ZN ∩ ZDN .
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Proof . We show that each lattice point in KN can be written as a nonnegative
integral linear combination of lattice points in ZN . Let a =

∑
d|N advd be a lattice

point in KN , where ad ∈ R≥0 for all d|N . Let a′ =
∑

d|Nbadcvd. As vd for each
d ∈ DN and a have integer entries, both a′ and a− a′ are lattice points. Moreover,
we have a−a′ ∈ ZN . So, a =

∑
d|Nbadcvd+(a−a′) is a nonnegative integral linear

combination of lattice points in ZN .

As holomorphic eta quotients on Γ0(N) correspond to lattice points in the cone
KN , each eta quotient of on Γ0(N) can be written as a product of holomorphic eta
quotients corresponding to lattice points in ZN . In other words, the holomorphic
eta quotients which are irreducible on Γ0(N), can only correspond to the lattice
points in ZN .

5.2 An upper bound on weight

In particular, the proof of Theorem 5.1 leads to a way for the estimation of an
upper bound of the maximum possible weight of an irreducible holomorphic eta
quotient of level N . Let κ : N→ N be the function defined by

κ(N) = ϕ (rad(N))
∏

p prime
pb‖N, b>0

(
(b− 1)(p− 1) + 2

)
, (5.3)

where rad(N) denotes the product of the distinct prime divisors of N . We shall
show that

Theorem 5.4. The weight of any holomorphic eta quotient which is irreducible
on Γ0(N) is less than 1

2
κ(N).

From the above theorem, we get

Corollary 5.5. The weight of any irreducible holomorphic eta quotient of level N
is less than 1

2
κ(N).

Proof of Theorem 5.4. Let p be a prime. We know that each holomorphic eta
quotient which is irreducible on Γ0(N) corresponds to some lattice point in the
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polytope Zpn . From (1.90), we recall that

A−1
pn =

1

pn−1(p2 − 1)



p −p

−1 p2 + 1 −p2 0
−p p(p2 + 1) −p3

. . . . . . . . .

0 −p2 p2 + 1 −1

−p p


, (5.4)

So, from the proof of Theorem 5.1 and (5.4), we get

Zpn =
{ n∑

i=0

Civp,i

∣∣∣C0, . . . , Cn ∈ [0, 1]
}
,

where vp,i ∈ ZDpn is the column of A−1
pn indexed by pi, multiplied with the least

positive integer such that the resulting vector has integer entries, i. e.

vp,0 =



p
−1
0
0
0
...
0


, vp,1 =



−p
p2 + 1
−p
0
0
...
0


, vp,2 =



0
−p

p2 + 1
−p
0
...
0


, . . . , vp,n =



0
0
0
...
0
−1
p


. (5.5)

Summing up the entries of each of the above vectors, we get

σ(vp,i) =

{
p− 1 if i = 0 or i = n,

(p− 1)2 if 1 ≤ i ≤ n− 1.
(5.6)

For N ∈ N, we define the normalized valuation matrix ÃN ∈ ZDN×DN by

ÃN(t, ) :=
N(t, N/t)

ϕ(N)ψ(N) rad (N)
AN(t, ) for all t ∈ DN . (5.7)

Now, let N =
∏m

j=1 p
nj
j , where pj is prime for all j ∈ {1, . . . ,m}. Then

by multiplicativity of the multiplier of the columns of AN in (5.7) and from
Proposition 1.41, we have

ÃN = Ãpn11
⊗ · · · ⊗ Ãpnmm . (5.8)
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Also, (5.4) and (5.7) together imply that for a prime p and n ∈ N, we have

Ã−1
pn ( , pj) = vp,j, (5.9)

where vp,j for 0 ≤ j ≤ n are as in (5.5). Since each column of Ã−1
N is the Kronecker

product of some columns of Ã−1
p
n1
1
, . . . , Ã−1

pnmm
, from the definition of ZN , it follows

immediately that

ZN =

{∑
i∈I

C(i) vp1,i1 ⊗ · · · ⊗ vpm,im
∣∣∣∣C(i) ∈ [0, 1] for all i ∈ I

}
, (5.10)

where i = (i1, . . . , im) and I = {0, 1, . . . , n1} × · · · × {0, 1, . . . , nm}.∗ For
z =

∑
iC(i) vp1,i1 ⊗ · · · ⊗ vpm,im ∈ ZN , we have

σ(z) =
∑
i∈I

C(i) · σ(vp1,i1) · · ·σ(vpm,im).

From (5.6), we know σ(vpj ,ij) > 0 for all prime pj and for all ij ∈ {0, 1, . . . , nj}.
Hence,

max
z∈ZN

σ(z) = max
∑
i∈I

C(i)∈[0,1]

C(i)
m∏
j=1

σ(vpj ,ij) =
∑
i∈I

m∏
j=1

σ(vpj ,ij) =
m∏
j=1

nj∑
ij=0

σ(vpj ,ij).

(5.11)
Therefore, it follows from (5.6) that

max
z∈ZN

σ(z) =
m∏
j=1

(
(nj − 1)(pj − 1)2 + 2(pj − 1)

)
= κ(N) . (5.12)

In particular, for w ∈ ZN , we have

σ(w) = κ(N) if and only if w =
∑
i∈I

vp1,i1 ⊗ · · · ⊗ vpm,im , (5.13)

i. e. σ(w) = κ(N) if and only if w is the sum of |I | lattice points, viz.
vp1,i1 ⊗ · · · ⊗ vpm,im in ZN , which in particular implies that the eta quotient
corresponding to w is reducible on Γ0(N).

∗The bijection between I and DN is given by i 7→ pi11 · · · pimm .
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Corollary 5.6. For N ∈ N, there are at most ϕ(N)ψ(N) rad (N)/N holomorphic
eta quotient which are irreducible on Γ0(N).

Proof. In the proof of Theorem 5.4, we saw that the holomorphic eta quotients
which are irreducible on Γ0(N), correspond to a set of integer points in the

fundamental parallelepiped of the lattice generated by the columns of Ã−1
N , where

ÃN is the normalized valuation matrix (see (5.7)). So, the volume of this

fundamental parallelepiped i. e. the determinant of Ã−1
N is an upper bound for

the number of holomorphic eta quotients which are irreducible on Γ0(N). By

multiplicativity (see (5.8)), it suffices to show that the determinant of Ã−1
pn is

pn−1(p2 − 1), which follows easily by induction on n.

5.3 A consequence of the Irreducibility

Conjecture

Let AN denote the valuation matrix of level N . We conjecture that:

Conjecture 5.7. For d|N , let vd = mdud, where ud = A−1
N ( , d) and md is the

smallest positive integer such that mdud ∈ ZDN . Then ηvd is irreducible for all
d ∈ DN .

We show that unless N is squarefree, there exists at least one d ∈ DN such that
ηvd is an irreducible holomorphic eta quotient:

Theorem 5.8. For d|N , let vd = mdud, where ud = A−1
N ( , d) and md is the

smallest positive integer such that mdud ∈ ZDN .

(a) The holomorphic eta quotient ηvd is not reducible on Γ0(N).

(b) If d ∈ DN/rad(N), then ηvd is irreducible.

Proof. (a) For t ∈ DN , we have

(ANvd)t =

{
md if t = d,
0 otherwise.

Suppose, ηvd is reducible on Γ0(N). Then there exists v′, v′′ ∈ ZDN r {0} with
vd = v′ + v′′ such that ANv

′ ≥ 0 and ANv
′′ ≥ 0. Hence, there exist m′d, m

′′
d > 0

with md = m′d +m′′d such that

(ANv
′)t =

{
m′d if t = d,
0 otherwise

and (ANv
′′)t =

{
m′′d if t = d,
0 otherwise.
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In other words, we have v′ = m′d · ud and v′′ = m′′d · ud. Since m′d,m
′′
d < md and

since md is the smallest positive integer such that mdud ∈ ZDN , we conclude that
v′ /∈ ZDN and v′′ /∈ ZDN . Thus we get a contradiction! Hence, ηvd not reducible on
Γ0(N).

(b) Suppose, for some d ∈ DN/rad(N) and some multiple M of N , the holomorphic
eta quotient ηvd is reducible on Γ0(M). Then by Theorem 2.22, we may assume

that rad(M) = rad(N). We have, vd = Ã−1
N ( , d), where ÃN is as defined in

(5.7). Since N |M , since rad(M) = rad(N) and since d ∈ DN/rad(N), we have

d ∈ DM/rad(M). Now, it follows from (5.8), (5.9) and (5.5) that Ã−1
M ( , d) is the

same as Ã−1
N ( , d) augmented with a suitable number of zeros. In other words, we

have ηv
′
d = ηvd , where v′d := Ã−1

M ( , d). Now, from part (a), it follows that ηv
′
d is

not reducible on Γ0(M). Thus we get a contradiction! Hence, for d ∈ DN/rad(N),
ηvd is irreducible.

Next, we show that the Irreducibility Conjecture implies the conjecture above:

Lemma 5.9. Conjecture 2.6 implies Conjecture 5.7.

Proof. For N ∈ N, by Theorem 5.8, the claim for irreducibility in Conjecture 5.7
holds for all of d ∈ DN/rad(N). So, we may assume that d ∈ DN rDN/rad(N). Let n
be the largest divisor of d such that n‖N and let d′ := n�d, where � is as defined
in (1.72). Then we have d′ ∈ DN/rad(N) and it is easy to show that ηvd = aln,N(ηv

′
d).

Since, by Theorem 5.8, ηv
′
d is irreducible, Conjecture 2.6 implies that so is ηvd .

5.4 The common multiple with the least weight

In Section 5.2, we saw that no holomorphic eta quotient which is irreducible
on Γ0(N) can have an weight greater than or equal to κ(N)/2. In this section,
we show that κ(N)/2 is the smallest possible weight for an eta quotient f such
that for each holomorphic eta quotient g which is irreducible on Γ0(N), f/g is
holomorphic:

Theorem 5.10. There exists a holomorphic eta quotient FN of weight 1
2
κ(N) on

Γ0(N) such that FN is a factor of a holomorphic eta quotient h on Γ0(N) if and
only if h is divisible by each holomorphic eta quotient which is irreducible on Γ0(N).
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Proof. From Lemma 5.3, we know that if ηX is a holomorphic eta quotient which
is irreducible on Γ0(N), then X ∈ ZN ∩ ZN , where

ZN =
{∑

d|N

Cdvd

∣∣∣Cd ∈ [0, 1] for all d|N
}

and for d ∈ DN , vd = mdud, where ud = A−1
N ( , d) and md is the smallest positive

integer such that mdud ∈ ZDN .
Let Z =

∑
d|N Cdvd ∈ ZN and let α

λ
∈ Q with λ|N and (α, λ) = 1 be an

arbitrary cusp of Γ0(N). Then from (1.80) and (1.84), we get

ordα
λ
(ηZ) =

1

24
(ANZ)λ =

mλ

24
Cλ. (5.14)

Let Y =
∑

d|N vd ∈ ZN and let FN = ηY . Then FN is a holomorphic eta

quotient on Γ0(N) and it follows from (5.13) that FN has weight 1
2
κ(N). Let α

λ
∈ Q

with λ|N and (α, λ) = 1 be an arbitrary cusp of Γ0(N) (See Proposition 1.7). From
(5.14), we get

max
Z∈ZN

ordα
λ
(ηZ) = max

Cλ∈[0,1]

mλ

24
Cλ =

mλ

24
= ordα

λ
(ηvλ) = ordα

λ
(FN). (5.15)

Let h be a holomorphic eta quotient on Γ0(N) such that FN |h. Then h/FN is a
holomorphic eta quotient on Γ0(N), which is true if and only if ords(h) ≥ ords(FN)
at each cusp s of Γ0(N). Therefore from (5.15), it follows that ords(h) ≥ ords(η

Z)
for all Z ∈ ZN at each cusp s of Γ0(N). In particular, for any holomorphic eta
quotient g which is irreducible on Γ0(N) and for any cusp s of Γ0(N), we have
ords(h) ≥ ords(g), which is equivalent to say that g |h.

Conversely, let h, a holomorphic eta quotient on Γ0(N) be divisible by each
holomorphic eta quotient g which is irreducible on Γ0(N). That holds if and only
if for any holomorphic eta quotient g which is irreducible on Γ0(N) and for any
cusp s of Γ0(N), we have ords(h) ≥ ords(g). Since any cusp s of Γ0(N) could
be represented by some α

λ
∈ Q (see Proposition 1.7), where λ|N and (α, λ) = 1,

taking g = ηvλ , we have ordα
λ
(h) ≥ ordα

λ
(ηvλ) = ordα

λ
(FN), where the last equality

holds by (5.15). In other words, the order of h at each cusp is greater than or equal
to the order of FN at that cusp, which is equivalent to say that FN |h.

Remark 5.11. Let N and FN be as in the proof of the last theorem. Then,
given any holomorphic eta quotient g on Γ0(N), the eta quotient FN/g on Γ0(N)
is holomorphic if and only if g corresponds to some point in ZN ∩ ZDN .
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5.5 Comparison of weights

In the tables below, we compare kmax(N) with κ(N), where kmax(N)/2 is the
maximum weight of a holomorphic eta quotient which is irreducible on Γ0(N) and
κ(N)/2 (see (5.3)) is the weight of FN , where FN is as defined in Theorem 5.10.
In the first table, we list only prime power levels, whereas the levels listed in the
second are products of small primes or products of small powers of such primes.

N kmax(N) κ(N)
4 1 3
8 1 4
9 4 8
16 2 5
25 16 24
27 4 12
32 2 6
49 36 48
64 3 7
81 9 16
121 100 120
125 16 40
128 3 8
169 144 168
243 10 20
256 4 9
289 256 288
343 36 84
361 324 360
512 5 10
529 484 528
625 41 56
841 784 840
1024 6 11
1331 100 220

N kmax(N) κ(N)
6 2 8
10 4 16
12 3 12
14 6 24
15 8 32
18 5 16
20 5 24
21 12 48
22 10 40
26 12 48
34 16 64
35 24 96
38 18 72
39 24 96
46 44 176
51 32 128
55 40 160
69 44 176
77 60 240
85 64 256
87 56 224
91 72 288
95 72 288
115 88 352
119 96 384

In particular, we note that in the last table, whenever N is a product of two
primes, kmax(N) equals κ(N)/4. Again, for a prime p, we have κ(p) = 2(p−1) (see
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(5.3)) and from the discussion preceding Section 5.1, we know that kmax(p) = p−1.
So, we end this chapter with the following conjecture:

Conjecture 5.12. For all squarefree values of N , the following equality holds:

kmax(N) =
κ(N)

2n
,

where n is the number of distinct prime divisors of N .



Chapter 6

The levels of simple holomorphic
eta quotients

We recall that a simple holomorphic eta quotient is a holomorphic eta quotient
that is both primitive and irreducible. For example, η2/η2 is a simple holomorphic
eta quotient of level 2, η5

2/(η
2η2

4) is a simple holomorphic eta quotient of level 4
but there are no simple holomorphic eta quotients of level 8, i. e. any irreducible
holomorphic eta quotient of level 8 is a rescaling of some eta quotient of levels 1, 2
or 4. Given a positive integer N , can one decide a priori whether or not a simple
holomorphic eta quotient of level N exist? The general question reamins open.
However, in this chapter we shall see examples of families of simple holomorphic
eta quotients of various levels.

6.1 Extension of levels

Given a simple holomorphic eta quotients of a suitable level, we can construct
up to thirteen new simple holomorphic eta quotients of the same weight but of
higher levels from it:

Proposition 6.1. Let there be a simple holomorphic eta quotient of an odd level N .

(a) Then there are at least two simple holomorphic eta quotients of level 2N and
and at least three simple holomorphic eta quotients of level 4N . Moreover, if
3 6
∣∣ N , then there are also four simple holomorphic eta quotients of levels 6N

and four simple holomorphic eta quotients of 12N .
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(b) In particular, if there exists a simple holomorphic eta quotient of an odd
level N that is also irreducible, then there exists at least as many simple
holomorphic eta quotients of the respective levels as mentioned in (a), all of
which are irreducible.

Proof. Let f be a simple holomorphic eta quotient of level N . Let g be a simple
holomorphic eta quotient of weight 1/2 from Zagier’s list (see Section 4.1) such
that N is coprime to the level of g. Since both f and g are primitive, so is f ⊗ g.
Again, since g is of weight 1/2 from Lemma 2.29 and from Corollary 2.14, it follows
that f ⊗ g is strongly reducible (resp. reducible) if and only if so is f .

6.2 Cubefree levels

In this section, we show that if N is cubefree, then there is a simple holomorphic
eta quotient of level N :

Theorem 6.2. If N ∈ N is cubefree, then there is a simple holomorphic eta
quotient of level N and weight κ1(N)/2, where

κ1(N) := ϕ (rad(N)) · ϕ
(

N

rad(N)

)
. (6.1)

In fact, for a cubefree N , the following is a simple holomorphic eta quotient of
level N and weight 1

2
κ1(N): ∏

d|N

η(dz)(−1)ν(N,d)Ψ(N,d), (6.2)

where ν(N, d) := ω(N) − ω(d) + ω(d/ rad (d)) and Ψ(N, d) := N · rad(N) ·
σ2((d,N/d))/ (d · rad(N/d)2) . Here for a positive integer n, by ω(n) and σ2(n) we
denote respectively the number of prime divisors of n and the sum of squares of
the divisors of n.

Proof. For d|N , let vd ∈ ZDN is the column of A−1
N indexed by d, multiplied with

the least positive integer such that the resulting vector has integer entries. Then
from Theorem 5.8, we know that the holomorphic eta quotient ηvd is not reducible
on Γ0(N). In particular, ηvrad(N) is irreducible on Γ0(N). Let N =

∏m
j=1 p

ej
j , where
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pj is prime for all j ∈ {1, . . . ,m}. Since N is cubefree, ej ≤ 2 for all j. From
Proposition 1.41, we have

A−1
N = A−1

p
e1
1
⊗ · · · ⊗ A−1

pemm
.

Hence, it follows that for d =
∏m

j=1 p
ij
j ∈ DN , we have vd = vp1,i1 ⊗ · · · ⊗ vpm,im ,

where vpj ,ij ∈ ZD(pej ) is the column of A−1

p
ej
j

indexed by p
ij
j , multiplied with the least

positive integer such that the resulting vector has integer entries. In particular,

vrad(N) = vp1,1 ⊗ · · · ⊗ vpm,1, where vpj ,1 =



(
−1
pj

)
if ej = 1,

 −pjp2
j + 1
−pj

 if ej = 2.

(6.3)

It follows that σ(vpj ,1) = (pj − 1)ej for all j ∈ {1, . . . ,m}. Therefore, the weight of
ηvrad(N) is

σ
(
vrad(N)

)
2

=
σ(vp1,1) · · ·σ(vpm,1)

2
=

1

2

m∏
j=1

(pj − 1)ej =
1

2
ϕ (rad(N)) · ϕ

( N

rad(N)

)
.

(6.4)
Since for all j ∈ {1, . . . ,m}, none of the entries of vpj ,1 are zero, vrad(N) has no zero
entries. So, the level of ηvrad(N) , i. e. the l.c.m. of the scaling factors corresponding
to its nonzero exponents is the l.c.m. of all the divisors of N and hence is equal
to N . Similarly, the g.c.d. of the scaling factors corresponding to the nonzero
exponents of ηvrad(N) is the g.c.d. of all the divisors of N and hence is equal to 1.
Therefore, ηvrad(N) is not a rescaling of another eta quotient. In other words, the
holomorphic eta quotient ηvrad(N) is primitive and not reducible over Γ0(N), hence
it is a simple holomorphic eta quotient of level N and weight 1

2
κ1(N). Using (6.3),

it is quite straightforward to check that ηvrad(N) is the eta quotient in (6.2).

Corollary 6.3. If N ∈ N is a perfect square, then there is a simple holomorphic
eta quotient f of level N and weight ϕ(rad(N))2 such that f is irreducible.

Proof. Follows from Theorem 6.2 and Theorem 5.8.
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6.3 Level pn for n ≤ 3

We recall that by Theorem 2.36, any simple holomorphic eta quotient of a prime
power level is irreducible. Also, from Corollary 2.39, it follows that for a prime p,
the holomorphic eta quotients ηpp/η and ηp/ηp are simple and it is easy to check
that these two are the only simple holomorphic eta quotients of level p. In the
next section, we shall show that there are exactly 2p − 1 simple holomorphic eta
quotients of level p2:

Theorem 6.4. Let p be a prime. The only simple holomorphic eta quotients of
level p2 are

ηrηp−rp2

ηp
, 1 ≤ r ≤ p− 1 and

ηsp+1
p

ηsηsp2
, 1 ≤ s ≤ p.

Corollary 6.5. For any prime p and m ∈ N, the holomorphic eta quotients

ηrmη
p−r
mp2

ηmp
and

ηsp+1
mp

ηsmη
s
mp2

are irreducible for all r, s ∈ N with 1 ≤ r ≤ p− 1 and 1 ≤ s ≤ p.

Proof. Follows from Theorem 6.4, Theorem 2.36 and Corollary 2.38.

Unlike the cases of p and p2 and also unlike the cases of the higher powers
of p (see Section 6.4) , a strange thing occurs in the case of the holomorphic
eta quotients of level p3: A great many numerical evidences suggest that all
the holomorphic eta quotients of level p3 are either rescalings or products of
holomorphic eta quotients of levels 1, p or p2:

Conjecture 6.6. For any prime p, there does not exist a simple holomorphic eta
quotient of level p3.

Proof of Theorem 6.4. Let ηX := η(z)X1η(pz)X2η(p2z)X3 be a simple
holomorphic eta quotients of level p2. As ηX is holomorphic, from Proposition 1.41
and from (5.9) we get

X1 +
1

p
X2 +

1

p2
X3 ≥ 0,

1

p
X1 +X2 +

1

p
X3 ≥ 0,

1

p2
X1 +

1

p
X2 +X3 ≥ 0.
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Upto Fricke involution, we have only the following four cases to consider:

Case 1. (X1 < 0, X2 ≥ 0, X3 > 0)

Let X1 = −a, X2 = b and X3 = c, where a, b, c are nonnegative integers. As

−a+
1

p
b+

1

p2
c ≥ 0,

we have b = ap− c
p

+ ε for some ε≥ 0 such that − c
p

+ ε ∈ Z. Let

X ′ =

−aap
0

 and X ′′ =

 0
− c
p

+ ε

c

 .

Then X = X ′ + X ′′. Since both ηX
′

and ηX
′′

are holomorphic, ηX = ηX
′ · ηX′′

is reducible. So, there does not exist any simple holomorphic eta quotient of this
form.

Case 2. (X1 < 0, X2 < 0, X3 > 0)

Let X1 = −a, X2 = −b and X3 = c, where a, b, c are positive integers. As

−a− 1

p
b+

1

p2
c ≥ 0,

we have c = ap2 + bp+ ε for some ε ≥ 0. Let

X ′ =

−a0
ap2

 and X ′′ =

 0
−b

bp+ ε

 .

Then X = X ′ + X ′′. Since both ηX
′

and ηX
′′

are holomorphic, ηX = ηX
′ · ηX′′

is reducible. So, there does not exist any simple holomorphic eta quotient of this
form.

Case 3. (X1 ≤ X3 < 0, X2 ≥ 0)

Let X1 = −a, X2 = b and X3 = −c, where a, b, c are nonnegative integers such
that a ≥ c. As

−a+
1

p
b− 1

p2
c ≥ 0,
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we have b = ap+ c
p

+ ε for some ε≥ 0 such that c
p

+ ε ∈ Z. Let

X ′ =

−(a− c)
(a− c)p

0

 and X ′′ =

 −c
cp+ c

p
+ ε

−c

 .

Then X = X ′ +X ′′. Since both ηX
′

and ηX
′′

are holomorphic and ηX
′ · ηX′′ = ηX

is irreducible, we must have X ′ = 0, i. e. a = c.
Suppose if possible, a > p. Then there exists an integer a′ > 0 such that

a = p+ a′. Let

X ′ =

 −p
p2 + 1
−p

 and X ′′ =

 −a′
a′p+ a′

p
+ ε

−a′

 .

Then X = X ′ + X ′′. Since both ηX
′

and ηX
′′

are holomorphic, ηX = ηX
′ · ηX′′ is

reducible. Thus we get a contradiction! So, we must have a ≤ p.
It follows that

η(pz)sp+1

η(z)sη(p2z)s
, 1 ≤ s ≤ p

are the only simple holomorphic eta quotients in this case.

Case 4. (X1 > 0, X2 < 0, X3 > 0)

Let X1 = a, X2 = −b and X3 = c, where a, b, c are nonnegative integers. If
a ≥ bp, then both of η(z)aη(pz)−b and η(p2z)c are holomorphic, which contradicts
the fact that ηx = η(z)aη(pz)−bη(p2z)c is irreducible. So, we must have a < bp.
Let da

p
e = b0. Then there exists an integer r ≥ 0 such that b = b0 + r.

As
1

p
a− b+

1

p
c ≥ 0,

c = bp− a+ ε for some ε ≥ 0. Let

X ′ =

 a
−b0

b0p− a+ ε

 and X ′′ =

 0
−r
rp

 .

Then X = X ′ +X ′′. Since both ηX
′

and ηX
′′

are holomorphic and ηX
′ · ηX′′ = ηX

is irreducible, we must have X ′′ = 0, i. e. r = 0. So, we get b = b0.
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Suppose if possible, a ≥ p. Then there exists an integer a′ ≥ 0 such that
a = p+ a′. Let da′

p
e = b′ and let

X ′ =

 p
−1
0

 and X ′′ =

 a′

−b′
b′p− a′ + ε

 .

Then X = X ′+X ′′. Since both ηX
′
and ηX

′′
are holomorphic, either ηX = ηX

′ ·ηX′′

is reducible or

X ′′ = 0 and so, X3 = 0. But we have have started with the assumption that
X3 > 0, (since otherwise ηX is not an eta quotient of level p2). Thus we get a
contradiction! Hence, we must have a < p and therefore, b = da

p
e = 1. It follows

that
η(z)rη(p2z)p−r

η(pz)
, 1 ≤ r ≤ p− 1

are the only simple holomorphic eta quotients in this case.

6.4 Level pn for n > 3

For a prime p and an integer n > 3, we define the eta quotient fp,n by

fp,n :=



ηpp η
(p−1)2

pn−1

n/2−1∏
s=1

ηp
2−3p+1
p2s−1 ηp

2−2p+2
p2s

(ηηpn)p−1 if n is even.

(ηpηpn−1)p
n−1∏
s=1

ηp
2−3p+2
ps

(ηηpn)p−1 if n is odd and p 6= 2,

(6.5)

Clearly, fp,n is invariant under the Fricke involution Wpn . We shall show that:

Theorem 6.7. For any integer n > 3, fp,n is a simple holomorphic eta quotient
of level pn.

In particular, the above theorem together with Theorem 2.36 implies:

Corollary 6.8. For any integer n > 3, the eta quotient fp,n is irreducible.
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With a good amount of numerical evidence, we conjecture that

Conjecture 6.9. For any integer n > 3 and for any odd prime p, there are no
simple holomorphic eta quotients of level pn and of weight greater that of fp,n.

Proof of Theorem 6.7. We shall only prove the theorem for the case where n is even.
The proof for the case where n is odd is similar. Let ÃN denote the normalized
valuation matrix of level N (see (5.7)) and let BN ∈ ZDN×DN be defined by

BN := Ã−1
N =

⊗
pn‖N

Ã−1
pn =

⊗
pn‖N



p −p

−1 p2 + 1 −p 0
−p p2 + 1 −p

. . . . . . . . .

0 −p p2 + 1 −1

−p p


(6.6)

In Lemma 5.3, we saw that if ηX is an irreducible holomorphic eta quotient on
Γ0(N), then X ∈ ZN ∩ ZDN , where

ZN =

{∑
d|N

Cdvd

∣∣∣∣Cd ∈ [0, 1] for all d|N
}

(6.7)

and for all d ∈ DN , vd = mdud, where ud is the column of BN indexed by d and
md is the smallest positive integer such that vd ∈ ZDN . Let v :=

∑
d|N vd and let

FN = ηv. Remark 5.11 says that given a holomorphic eta quotient g on Γ0(N), the
eta quotient FN/g on Γ0(N) is holomorphic if and only if g corresponds to some
point in ZN ∩ ZDN .

In particular, for N = p2m, the eta quotient Fp2m = ηv is given by

Fp2m(z) =


η(pz)p

2−1 if m = 1,

(η(pz)η(p2m−1z))p(p−1)
∏2m−2

r=2 η(prz)(p−1)2 if m > 1.

(6.8)

Let fp,2m be the eta quotient defined in (6.5). Then we have

Fp2m(z)

fp,2m(z)
=


η(z)p−1η(pz)p−2η(p2z)p−1 if m = 1,

η(z)p−1η(pz)p−2η(p2mz)p−1
∏m−1

r=1
η(p2r−1z)η(p2r+1z)p−1

η(p2rz)
if m > 1.

(6.9)
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Since η(z)η(p2z)p−1

η(pz)
is a holomorphic eta quotient of level p2, it follows that

Fp2m (z)

fp,2m(z)

is a holomorphic eta quotient of level p2m for all m ∈ N. Let X ∈ ZDN be such
that fp,2m = ηX . From Remark 5.11 and from (6.9), we conclude that X ∈ ZN .

In other words, Y := ÃNX has all its entries in the interval [0, 1]. From (6.5), it
easily follows that ord∞(f2m,p) = 1/24. Since f2m,p is invariant under the Fricke
involution on Γ0(p2m), we also have ord0(f2m,p) = 1/24, since the Fricke involution
interchanges the cusps 0 and ∞ of Γ0(p2m). Since 0 and 1 (resp. ∞ and 1/p2m)
represent the same cusp of Γ0(p2m), from (1.80), (1.84) and (5.7), we get that both
the first and the last entries of Y are equal to 1

p2m−1(p2−1)
.

There exists UN , VN ∈ GLσ0(N)(Z) and a diagonal matrix DN such that
DN = UN × BN × VN . We shall see in the next section that if N = pn for
some prime p and some integer n > 2, then

DN = diag(1, 1, . . . , 1, pn−1, pn−1(p2 − 1)) (6.10)

and the last two columns of VN are respectively

Cn,1 :=


(1, 0)t if n = 1,

(−1, 0, 1)t if n = 2,

(1, 1, p, p2, . . . , pn−3, pn−2, 0)t if n > 2

(6.11)

and

Cn,2 :=


(p, 1)t if n = 1,

(p2, 1, 1)t if n = 2,

(pn, pn−2, pn−3 . . . , p, 1, 1)t if n > 2.

(6.12)

Next we briefly recall an useful tool from Linear Algebra:
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By elementary row and column operations [3], one can reduce any matrix
B ∈ GLn(Z) to a diagonal matrix D. In other words, there exists U, V ∈
GLn(Z) and D = diag(d1, d2, . . . , dn) ∈ GLn(Z) such that D = U ·B ·V . Since
U, V ∈ GLn(Z), we have U−1 · Zn = Zn and V · Zn = Zn. Therefore,

Zn/(B·Zn) = U−1·Zn/(B·V ·Zn) ' Zn/(U ·B·V ·Zn) = Zn/(D·Zn) =
n⊕
i=1

Zn/diZn.

The above isomorphism maps the element ` := (`1 . . . `n)t of
⊕n

i=1 Zn/diZn to
the element

U−1 · ` (mod B · Zn)

of Zn/(B · Zn). Since B is invertible, there is a bijection between Zn/(B · Zn)
and [0, 1)n ∩B−1 · Zn, given by

X (mod B · Zn) 7→ B−1 ·X (mod Zn).

Composing this bijection with the isomorphism above, we get a bijection
between

⊕n
i=1 Zn/diZn and [0, 1)n ∩B−1 · Zn, given by

` 7→ B−1 · U−1 · ` (mod Zn) = V ·D−1 · ` (mod Zn).

Now multiplication by B maps [0, 1)n ∩B−1 ·Zn bijectively to B · [0, 1)n ∩Zn.

Let N = p2m and suppose, ηX = f2m,p is reducible. Let Y = ANX. Since ηX

is reducible there exists Y ′, Y ′′ ∈ ZDN r {0} with Y ′ ≥ 0 and Y ′′ ≥ 0 such that
Y = Y ′+Y ′′ and both BNY

′ and BNY
′′ have integer entries. Since BN is an integer

matrix with determinant dN := p2m−1(p2 − 1), we see that 1
dN

is the least possible

entry for Y ′ and Y ′′. Since Y ′ + Y ′′ = Y has 1
dN

as its first entry, either the first
entry of Y ′ or that of Y ′′ is zero. Similarly, either the last entry of Y ′ or that of Y ′′

is zero. But it is easy to show∗ that if both the first and the last entries of Y ′ (resp.
Y ′′) is zero, then Y ′ (resp. Y ′′) is entirely zero. So, without loss of generality, we
may assume that the first entry of Y ′ is 1

dN
and the last entry of Y ′ is 0. From the

previous section and from the entries of the diagonal matrix DN , we know that
there exists `1 ∈ {0, 1, . . . , p2m−1 − 1} and `2 ∈ {0, 1, . . . , p2m−1(p2 − 1) − 1} such

∗From the congruence relation (6.13) (resp. replacing Y ′ with Y ′′ in (6.13)).
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that
`1

p2m−1
· C2m,1 +

`2

p2m−1(p2 − 1)
· C2m,2 ≡ Y ′ (mod Zn). (6.13)

Case 1. (m = 1)
Equating only the first and the last entries from both sides of (6.13), we obtain

`1

p
+

p`2

p2 − 1
≡ 1

dN
(mod Z) and

`1

p
+

`2

p(p2 − 1)
≡ 0 (mod Z),

which together implies that

`1

p
≡ 1

dN
(mod Z).

But this modular equation has no solution in `1 ∈ {0, 1, . . . , p − 1}. Thus we get
a contradiction!

Case 2. (m > 1)
Since the last entries of Y ′ and C2m,1 are 0, whereas the last entry of C2m,2 is 1,

it follows that `2 = 0. Since the first entry of C2m,1 is 1, we get

`1

p2m−1
≡ 1

dN
(mod Z)

as in the previous case. Since as before, this has no solution in `1 ∈
{0, 1, . . . , p2m−1 − 1}, we get a contradiction.

Hence, f2m,p = ηX is irreducible.

6.5 The matrix identities

We continue to prove that the matrix identities B = UDV , UU ′ = 1 and
V V ′ = 1 with B = Bpn as defined in (6.6) and D = Dpn as defined in (6.10) holds
if we define U = Upn , V = Vpn , U ′ = U ′pn and V ′ = V ′pn as follows for n = 1, 2, 3 or
n ≥ 4:

For n = 1, we define

U :=

(
0 −1
1 p

)
, V :=

(
1 p
0 1

)
, U ′ :=

(
p 1
−1 0

)
and V ′ :=

(
1 −p
0 1

)
.
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For n = 2, we define

U :=

0 1 0
0 p 1
1 p 1

 , V :=

 0 −1 p2

0 0 1
−1 1 1

 , U ′ =

 0 −1 1
1 0 0
−p 1 0

 and

V ′ =

−1 p2 + 1 −1
−1 p2 0
0 1 0

 .

For n = 3, we define

U :=


0 −1 −p −p2

0 0 −1 −p
0 0 −p −(p2 + 1)
1 p p2 p3

 , V :=


1 0 1 p3

0 0 1 p
0 −1 p 1
0 0 0 1

 ,

U ′ :=


p 0 0 1
−1 p 0 0
0 −(p2 + 1) p 0
0 p −1 0

 and V ′ :=


1 −1 0 −p(p2 − 1)
0 p −1 −(p2 − 1)
0 1 0 −p
0 0 0 1

 .

For n > 3:

We define U = (Ui,j) 0≤i,j≤n by

j = 0 j > 0

i < n− 1 0

{
−pj−i−1 if j > i,

0 otherwise.

i = n− 1 0 −pn−j · p2(j−1)−1
p2−1

i = n 1 pj

. (6.14)

We define V = (Vi,j) 0≤i,j≤n by

j = 0 0 < j < n− 1 j = n− 1 j = n
i = 0 1 0 1 pn

0 < i < n 0

{
−pi−j−1 if i > j,

0 otherwise.
pi−1 pn−i−1

i = n 0 0 0 1

. (6.15)



6.5. The matrix identities 123

We define U ′ = (U ′i,j) 0≤i,j≤n by

j = 0 0 < j < n− 2 j = n− 2 j = n− 1 j = n
i = 0 p 0 0 0 1

0 < i < n− 1

−1
0
...
0


p if i = j,
−1 if i = j + 1,

0 otherwise.

0
...
0
p

0 0

i = n− 1 0 −pn−j −(p2 + 1) p 0
i = n 0 pn−j−1 p −1 0

.

(6.16)

We define V ′ = (V ′i,j) 0≤i,j≤n by

j = 0 0 < j < n j = n
i = 0 1 −1 0 · · · 0 −pn−2(p2 − 1)

0 < i < n− 1 0


p if i = j,
−1 if i = j − 1,

0 otherwise.
−pn−i−2(p2 − 1)

i = n− 1 0 1 0 · · · 0 −pn−2

i = n 0 0 1

. (6.17)

Proposition 6.10. Given n ∈ N, let U, V, U ′ and V ′ be the matrices as defined
above. For N = pn, we set the matrices B = BN and D = DN as in equations
equations (6.6) and (6.10). Then we have

UU ′ = I, V V ′ = I, and D = UBV.

Proof. If n ≤ 3, these identities hold trivially. If n > 3, the proofs of the equalities
of the corresponding matrix entries in each of these matrix relations involve (at
most) summation of some geometric series. For example, consider the identity
D = UBV . It is equivalent to DV ′ = UB, assuming V V ′ = I. Now from (6.10)
and (6.17), we see that for i, j ∈ {0, . . . , n}, the (i, j)-th entry of DV ′ is given by

j = 0 0 < j < n j = n
i = 0 1 −1 0 . . . 0 −pn−2(p2 − 1)

0 < i < n− 1 0


p if i = j,
−1 if i = j − 1,

0 otherwise.
−pn−i−2(p2 − 1)

i = n− 1 0 pn−1 0 . . . 0 −p2n−3

i = n 0 0 pn−1(p2 − 1)

. (6.18)
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If we consider the case 0 < i < n− 1 and 0 < j < n, then from (6.14) and (6.6) it
follows that the product of the i-th row of U and the j-th column of B is

−
n∑

k=i+1

pk−i−1Bk,j =
n∑

k=i+1

pk−i−1(pδ|k−j| ,1 − (p2 + 1)δk,j)

=

j+1∑
k=max{i+1, j−1}

pk−i−1(pδ|k−j| ,1 − (p2 + 1)δk,j)

=


0 if j < i,
p if j = i,
−1 if j = i+ 1,

0 if j > i+ 1,

where δ is the usual Kronecker delta function. So, the claim holds in this case.
Again, if we consider the case i = n − 1 and 0 < j < n, then the product of

the i-th row of U and the j-th column of B is

−
n∑
k=1

pn−k
(
p2(k−1) − 1

)
Bk,j =

n∑
k=2

pn−k
(
p2(k−1) − 1

) (
pδ|k−j| ,1 − (p2 + 1)δk,j

)
=

j+1∑
k=max{2, j−1}

pn−k
(
p2(k−1) − 1

) (
pδ|k−j| ,1 − (p2 + 1)δk,j

)
=

{
pn−1 if j = 1,
0 otherwise,

where the first equality holds since p2(k−1) = 1 for k = 1. Thus, the claim also
holds in this case. The rest of the proof is quite similar and only requires some
more straightforward checks as above.
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Appendix A

Table of simple holomorphic eta
quotients of weight 1

In the following table, we give examples of simple holomorphic eta quotients
weight 1 and of various levels. For each level N that appears in the tables below,
there are three entries on the left column: the first one being N , the second one (in
round brackets) being the number of simple holomorphic eta quotients of level N
modulo Atkin-Lehner involutions of level N and the third one [in square brackets]
being the total number of distinct simple holomorphic eta quotients of level N .

Also, for level N , each formal expressions of the type
∏
d|N

dXd on the right column

denotes a simple holomorphic eta quotient:
∏
d|N

ηXdd of level N and weight 1. This

table is complete up to Atkin-Lehner involutions for the levels N < 24 and for N =
30, 32, 42, 45, 50, 54, 56, 63, 64, 70, 84, 88, 90, 100, 112, 126, 140, 150, 168, 176.
Also, in this table, the list of levels below 260 is complete, i.e., if a level N < 260
does not appear in the table, then this is because there are no simple holomorphic
eta quotients of weight 1 and level N .



128Appendix A. Table of simple holomorphic eta quotients of weight 1

Simple holomorphic eta quotients

3
(1) 1−1 · 33
[2]
6

(1) 1−2 · 21 · 36 · 6−3

[4]
9

(2) 1−1 · 34 · 9−1

[3] 11 · 3−1 · 92
10
(2) 1−1 · 21 · 53 · 10−1

[8] 1−1 · 21 · 54 · 10−2

14 · 2−2 · 3−2 · 63 · 12−1T

1−1 · 2−1 · 33 · 43 · 6−1 · 12−1

1−1 · 31 · 43 · 12−1

1−1 · 33 · 41 · 6−1

1−1 · 33 · 41 · 6−2 · 121

1−1 · 34 · 41 · 6−2

1−1 · 21 · 3−1 · 42 · 63 · 12−2

12 1−1 · 21 · 33 · 4−1 · 6−3 · 123

(17) 1−1 · 23 · 4−2 · 6−1 · 123

[60] 1−1 · 23 · 31 · 4−2 · 6−3 · 124

1−2 · 27 · 32 · 4−3 · 6−3 · 121

1−3 · 28 · 31 · 4−3 · 6−3 · 122

1−3 · 28 · 31 · 4−4 · 6−4 · 124

1−3 · 29 · 31 · 4−3 · 6−3 · 121

1−3 · 29 · 31 · 4−4 · 6−3 · 122

1−4 · 210 · 31 · 4−4 · 6−3 · 122

1−6 · 215 · 32 · 4−6 · 6−5 · 122

15
(1) 1−1 · 32 · 52 · 15−1

[2]

1−1 · 21 · 42 · 81 · 16−1T

1−1 · 21 · 43 · 8−2 · 161

16 1−1 · 23 · 4−2 · 81 · 161

(7) 1−1 · 23 · 4−3 · 84 · 16−1

[12] 1−1 · 24 · 4−2 · 161

11 · 2−2 · 44 · 8−2 · 161

11 · 4−1 · 81 · 161T
1−2 · 21 · 37 · 6−4 · 9−3 · 183

T

1−1 · 33 · 61 · 9−1

1−1 · 21 · 32 · 9−1 · 181

1−1 · 21 · 33 · 6−1 · 9−1 · 181

1−1 · 21 · 33 · 6−2 · 9−2 · 183

1−1 · 21 · 33 · 6−2 · 181

1−1 · 21 · 35 · 6−3 · 9−2 · 182

18 1−1 · 22 · 3−1 · 94 · 18−2

(17) 1−1 · 22 · 6−1 · 91 · 181

[52] 1−1 · 22 · 31 · 6−2 · 9−2 · 184

1−1 · 23 · 6−1 · 91
1−2 · 21 · 36 · 6−2 · 9−2 · 181

1−2 · 21 · 37 · 6−3 · 9−2 · 181

1−2 · 21 · 38 · 6−4 · 9−2 · 181

1−2 · 22 · 35 · 6−3 · 9−2 · 182

21 · 3−1 · 61 · 91
21 · 31 · 6−1 · 181

1−2 · 24 · 4−1 · 52 · 10−2 · 201

1−1 · 21 · 41 · 51 · 101 · 20−1

1−1 · 21 · 41 · 52 · 10−1

20 1−1 · 22 · 4−1 · 51 · 201

(9) 1−1 · 22 · 4−1 · 52 · 10−2 · 202

[26] 1−1 · 24 · 4−2 · 10−1 · 202

1−2 · 25 · 4−2 · 51 · 10−2 · 202

1−3 · 28 · 4−3 · 51 · 10−2 · 201

1−4 · 210 · 4−4 · 51 · 10−2 · 201

Simple holomorphic eta quotients

12 · 2−1 · 3−2 · 64 · 12−2 · 241

12 · 2−2 · 3−1 · 41 · 61 · 81 · 121 · 24−1

12 · 2−2 · 3−1 · 42 · 61 · 8−1 · 241

24 12 · 2−2 · 3−1 · 42 · 62 · 8−1 · 12−2 · 242

(81) 12 · 2−3 · 3−1 · 44 · 62 · 8−1 · 12−1

[312] 12 · 2−3 · 3−1 · 44 · 62 · 8−1 · 12−2 · 241

13 · 2−1 · 3−1 · 4−1 · 81 · 121

11 · 2−2 · 3−2 · 5−2 · 64 · 104 · 151 · 30−2

1−1 · 21 · 31 · 51 · 15−1 · 301

1−1 · 21 · 31 · 51
30 1−1 · 21 · 31 · 52 · 10−1 · 15−1 · 301

(8) 1−1 · 21 · 31 · 52 · 10−1

[44] 1−1 · 21 · 31 · 53 · 6−1 · 10−2 · 15−2 · 303

1−1 · 21 · 33 · 51 · 6−2 · 10−1 · 15−2 · 303

1−2 · 22 · 33 · 53 · 6−2 · 10−2 · 15−2 · 302

1−1 · 22 · 41 · 8−2 · 163 · 32−1

32 1−1 · 22 · 41 · 8−1 · 321

(4) 1−1 · 23 · 4−2 · 82 · 16−1 · 321

[8] 11 · 2−1 · 42 · 8−1 · 321

1−2 · 25 · 4−2 · 6−1 · 92 · 18−2 · 362

1−2 · 25 · 4−2 · 6−2 · 92 · 122 · 18−1

36 1−2 · 25 · 4−2 · 6−1 · 91 · 121 · 18−1 · 361

(178) 1−2 · 25 · 31 · 4−2 · 6−3 · 9−1 · 121 · 184 · 36−1

[529] 1−4 · 210 · 32 · 4−4 · 6−5 · 9−2 · 122 · 185 · 36−2

1−2 · 25 · 31 · 4−2 · 6−3 · 9−1 · 122 · 182

1−3 · 25 · 34 · 4−1 · 6−3 · 9−1 · 361

1−1 · 21 · 42 · 51 · 8−1

1−1 · 21 · 42 · 52 · 8−1 · 10−1

40 1−1 · 22 · 4−1 · 51 · 81 · 10−1 · 201

(23) 1−1 · 22 · 4−1 · 51 · 81 · 10−2 · 203 · 40−1

[88] 1−1 · 22 · 4−1 · 52 · 81 · 10−1

1−1 · 22 · 51 · 10−2 · 203 · 40−1

2−1 · 42 · 51 · 20−1 · 401

42
(2) 1−1 · 21 · 31 · 72 · 14−1 · 21−1 · 421

[16] 1−1 · 21 · 31 · 72 · 14−1

45
(1) 11 · 3−1 · 5−1 · 91 · 153 · 45−1

[2]
12 · 2−1 · 3−1 · 62 · 12−1 · 481

12 · 2−1 · 3−1 · 62 · 12−2 · 243 · 48−1

48 12 · 2−2 · 3−1 · 63 · 82 · 12−1 · 16−1 · 24−1 · 481

(135) 12 · 2−2 · 3−1 · 41 · 63 · 8−1 · 12−2 · 161 · 242 · 48−1

[496] 12 · 3−1 · 4−1 · 61 · 82 · 16−1 · 24−1 · 481

12 · 3−1 · 61 · 8−1 · 12−1 · 161 · 242 · 48−1

13 · 2−1 · 3−1 · 8−1 · 161 · 242 · 48−1

50 1−1 · 21 · 54 · 10−2 · 25−1 · 501

(3) 1−1 · 22 · 51 · 10−1 · 25−1 · 502

[8] 1−1 · 22 · 51 · 10−1 · 501

1−1 · 22 · 3−1 · 61 · 93 · 18−2 · 27−1 · 541

1−1 · 21 · 33 · 6−2 · 9−2 · 182 · 272 · 54−1

54 1−1 · 21 · 33 · 6−2 · 9−2 · 183 · 271 · 54−1

(6) 1−1 · 22 · 91 · 18−1 · 541

[20] 1−1 · 22 · 31 · 6−1 · 9−1 · 181 · 271

21 · 31 · 6−1 · 9−1 · 181 · 271

1−1 · 21 · 42 · 71 · 8−1 · 28−1 · 561

1−1 · 21 · 42 · 71 · 8−1

1−1 · 21 · 42 · 72 · 8−1 · 14−1

1−1 · 22 · 4−1 · 71 · 81 · 14−1 · 282 · 56−1

56 1−1 · 22 · 4−1 · 71 · 81
(11) 1−1 · 22 · 4−1 · 72 · 81 · 14−1

[40] 1−1 · 23 · 4−1 · 71 · 14−1 · 561

1−1 · 23 · 4−1 · 71 · 14−2 · 283 · 56−1

1−1 · 23 · 4−2 · 81 · 14−2 · 285 · 56−2

1−1 · 23 · 4−2 · 71 · 81 · 14−2 · 283 · 56−1

1−2 · 25 · 4−2 · 71 · 14−1 · 561
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Simple holomorphic eta quotients

1−1 · 22 · 4−1 · 61 · 101 · 30−1 · 601

1−1 · 22 · 4−1 · 62 · 10−1 · 12−1 · 202

60 1−2 · 23 · 32 · 4−1 · 52 · 6−1 · 10−1 · 15−1 · 601

(75) 1−4 · 210 · 32 · 4−4 · 52 · 6−5 · 10−5 · 122 · 15−4 · 202 · 3010 · 60−4

[478] 1−2 · 24 · 32 · 4−2 · 52 · 6−3 · 10−3 · 122 · 15−2 · 202 · 304 · 60−2

1−2 · 24 · 31 · 4−1 · 5−1 · 6−1 · 104 · 20−2 · 30−1 · 601

1−2 · 25 · 4−2 · 10−1 · 151 · 201 · 30−1 · 601

63
(1) 1−1 · 33 · 71 · 9−1 · 21−1 · 631

[2]
1−1 · 22 · 41 · 8−1 · 16−1 · 323 · 64−1

1−1 · 22 · 41 · 8−1 · 641

64 1−1 · 23 · 4−1 · 8−1 · 162 · 32−1 · 641

(7) 1−1 · 23 · 4−2 · 82 · 16−1 · 641

[12] 1−1 · 23 · 4−2 · 82 · 16−2 · 323 · 64−1

11 · 2−1 · 42 · 8−1 · 641

11 · 4−1 · 82 · 16−1 · 641

70
(2) 12 · 2−1 · 7−1 · 141 · 352 · 70−1

[12] 1−1 · 21 · 52 · 72 · 10−1 · 14−1 · 35−1 · 701

1−1 · 22 · 4−1 · 61 · 81 · 12−1 · 362 · 72−1

1−1 · 21 · 43 · 8−2 · 91 · 12−2 · 18−1 · 242 · 361

1−1 · 21 · 31 · 43 · 6−2 · 8−2 · 9−2 · 12−1 · 185 · 242 · 36−2

72 1−2 · 25 · 31 · 4−2 · 6−4 · 9−1 · 125 · 183 · 24−2 · 36−3 · 722

(205) 1−1 · 22 · 4−1 · 61 · 81 · 24−1 · 36−1 · 722

[708] 1−1 · 22 · 6−2 · 91 · 124 · 24−2 · 36−2 · 722

1−1 · 22 · 91 · 12−2 · 18−2 · 242 · 364 · 72−2

1−1 · 22 · 4−1 · 51 · 161

2−2 · 45 · 51 · 8−2 · 20−1 · 801

5−1 · 8−1 · 103 · 162 · 20−2 · 402 · 80−1

80 1−1 · 22 · 4−1 · 51 · 81 · 10−1 · 201 · 40−1 · 801

(23) 1−1 · 22 · 4−1 · 51 · 82 · 10−1 · 16−1 · 201 · 40−1 · 801

[76] 1−1 · 22 · 51 · 8−1 · 10−1 · 161 · 402 · 80−1

1−1 · 23 · 4−2 · 10−2 · 161 · 205 · 40−2

1−1 · 22 · 4−2 · 51 · 83 · 16−1

12 · 2−1 · 7−1 · 142 · 28−1 · 841

1−1 · 21 · 31 · 41 · 6−1 · 71 · 14−1 · 21−1 · 423 · 84−1

1−1 · 21 · 32 · 6−1 · 7−1 · 143 · 28−1 · 42−1 · 841

1−1 · 21 · 32 · 6−1 · 21−1 · 281 · 422 · 84−1

1−1 · 22 · 4−1 · 72 · 121 · 14−2 · 21−1 · 281 · 422 · 84−1

84 1−1 · 22 · 4−1 · 61 · 71 · 14−1 · 21−1 · 281 · 422 · 84−1

(13) 1−1 · 22 · 4−1 · 61 · 71 · 14−1 · 281

[88] 1−1 · 23 · 4−1 · 6−1 · 121 · 212 · 42−1

1−1 · 23 · 31 · 4−1 · 6−2 · 121 · 21−2 · 425 · 84−2

1−1 · 23 · 31 · 4−1 · 6−2 · 71 · 121 · 14−2 · 21−2 · 281 · 425 · 84−2

1−1 · 24 · 4−2 · 6−1 · 121 · 14−1 · 211 · 281

1−2 · 25 · 4−2 · 14−1 · 211 · 281

1−2 · 25 · 31 · 4−2 · 6−2 · 121 · 14−1 · 211 · 281

1−1 · 21 · 42 · 8−1 · 112 · 22−1

88 1−1 · 22 · 4−1 · 81 · 112 · 22−1

(4) 1−1 · 23 · 4−2 · 81 · 22−2 · 445 · 88−2

[16] 1−2 · 25 · 4−2 · 111 · 22−1 · 881

11 · 2−2 · 3−3 · 5−1 · 66 · 91 · 102 · 151 · 18−2 · 30−2 · 45−1 · 902

1−1 · 21 · 31 · 52 · 6−1 · 10−1 · 181

1−1 · 21 · 32 · 6−1 · 9−1 · 151 · 181

1−1 · 21 · 32 · 6−1 · 9−1 · 152 · 181 · 30−1

90 1−1 · 21 · 32 · 51 · 6−1 · 9−1 · 10−1 · 15−1 · 181 · 302 · 451 · 90−1

(10) 1−1 · 21 · 32 · 51 · 6−1 · 9−1 · 10−1 · 15−2 · 181 · 303 · 451 · 90−1

[44] 1−1 · 21 · 32 · 51 · 6−1 · 10−1 · 15−2 · 303 · 451 · 90−1

1−1 · 21 · 33 · 6−2 · 9−1 · 15−1 · 181 · 302

1−1 · 21 · 33 · 6−2 · 9−1 · 181 · 301

1−1 · 21 · 33 · 51 · 6−2 · 9−1 · 10−1 · 15−2 · 181 · 303 · 451 · 90−1
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Simple holomorphic eta quotients

1−1 · 22 · 31 · 4−1 · 6−1 · 242 · 321 · 48−1

1−1 · 22 · 31 · 4−1 · 6−1 · 161 · 241 · 48−1 · 961

96 1−1 · 22 · 31 · 4−1 · 6−1 · 162 · 241 · 32−1 · 48−1 · 961

(80) 1−1 · 22 · 31 · 4−1 · 6−1 · 81 · 121 · 16−2 · 24−2 · 322 · 484 · 96−2

[304] 1−1 · 22 · 31 · 4−1 · 6−1 · 81 · 16−1 · 241 · 321

1−1 · 22 · 31 · 4−1 · 6−1 · 81 · 241 · 48−1 · 961

1−1 · 22 · 31 · 4−1 · 6−1 · 82 · 16−1 · 961

1−2 · 25 · 4−2 · 10−1 · 201 · 252 · 50−1

1−1 · 22 · 4−1 · 52 · 10−2 · 202 · 25−1 · 502 · 100−1

1−1 · 23 · 4−1 · 10−1 · 201 · 251

1−1 · 23 · 4−1 · 51 · 10−2 · 201 · 25−2 · 505 · 100−2

100 1−2 · 25 · 4−2 · 51 · 10−2 · 201 · 25−2 · 505 · 100−2

(10) 2−1 · 42 · 5−1 · 102 · 20−1 · 252 · 50−1

[20] 41 · 5−1 · 102 · 20−1 · 251

21 · 5−1 · 102 · 20−1 · 251 · 50−1 · 1001

11 · 2−1 · 41 · 5−1 · 102 · 20−1 · 251 · 50−1 · 1001

11 · 2−2 · 41 · 5−4 · 1010 · 20−4 · 251 · 50−2 · 1001

1−1 · 22 · 31 · 6−1 · 9−1 · 182 · 36−1 · 1081

108 1−1 · 22 · 31 · 6−1 · 18−1 · 27−1 · 361 · 543 · 108−1

(34) 1−1 · 22 · 32 · 4−1 · 6−3 · 9−1 · 122 · 182 · 27−2 · 36−1 · 545 · 108−2

[104] 1−1 · 22 · 32 · 4−1 · 6−3 · 9−1 · 122 · 184 · 36−2 · 54−1 · 1081

1−1 · 23 · 4−1 · 6−1 · 121 · 272 · 54−1

1−2 · 25 · 4−2 · 18−1 · 271 · 361

1−1 · 22 · 4−2 · 72 · 83 · 14−1 · 16−1

1−1 · 22 · 4−1 · 71 · 82 · 14−1 · 16−1 · 281 · 56−1 · 1121

112 1−1 · 22 · 4−1 · 72 · 14−1 · 161

(6) 1−1 · 22 · 71 · 8−1 · 14−1 · 161 · 562 · 112−1

[20] 1−1 · 23 · 4−1 · 8−1 · 161 · 28−2 · 565 · 112−2

1−2 · 25 · 4−2 · 71 · 14−1 · 1121

1−1 · 22 · 4−1 · 51 · 81 · 10−1 · 602 · 120−1

1−1 · 22 · 4−1 · 51 · 61 · 10−2 · 12−1 · 203 · 241 · 40−1

120 1−1 · 22 · 4−1 · 52 · 6−1 · 10−2 · 123 · 15−1 · 201 · 24−1 · 302 · 60−1

(49) 1−1 · 22 · 10−1 · 151 · 202 · 40−1 · 60−1 · 1201

[384] 1−1 · 22 · 31 · 4−1 · 5−1 · 6−1 · 103 · 121 · 20−2 · 30−1 · 401 · 602 · 120−1

1−1 · 22 · 31 · 4−1 · 6−1 · 10−1 · 203 · 241 · 301 · 40−1 · 60−1

1−1 · 22 · 31 · 4−1 · 6−1 · 201 · 241

1−2 · 21 · 36 · 6−3 · 72 · 9−2 · 14−1 · 181 · 21−2 · 421 · 632 · 126−1

1−1 · 21 · 32 · 6−1 · 9−1 · 181 · 212 · 42−1

126 1−1 · 21 · 32 · 6−1 · 71 · 9−1 · 14−1 · 181 · 21−1 · 422 · 631 · 126−1

(7) 1−1 · 21 · 32 · 6−1 · 71 · 9−1 · 14−1 · 181 · 21−2 · 423 · 631 · 126−1

[28] 1−1 · 21 · 32 · 6−1 · 71 · 14−1 · 21−2 · 423 · 631 · 126−1

1−1 · 21 · 33 · 6−2 · 9−1 · 181 · 21−1 · 422

1−1 · 21 · 33 · 6−2 · 71 · 9−1 · 14−1 · 181 · 21−2 · 423 · 631 · 126−1

11 · 2−1 · 41 · 7−1 · 142 · 28−1 · 351 · 70−1 · 1401

140 1−1 · 22 · 4−1 · 51 · 71 · 10−1 · 14−1 · 201 · 281 · 35−1 · 702 · 140−1

(4) 1−2 · 25 · 4−2 · 71 · 14−2 · 281 · 35−2 · 705 · 140−2

[12] 1−2 · 25 · 4−2 · 51 · 71 · 10−2 · 14−2 · 201 · 281 · 35−2 · 705 · 140−2

1−1 · 22 · 31 · 4−2 · 6−1 · 83 · 16−1 · 361

144 1−1 · 22 · 31 · 4−2 · 6−1 · 83 · 121 · 16−1 · 24−1 · 1441

(217) 1−1 · 22 · 31 · 4−2 · 6−1 · 83 · 121 · 16−1 · 24−2 · 36−2 · 481 · 725 · 144−2

[736] 1−1 · 22 · 31 · 6−1 · 8−1 · 12−1 · 161 · 242 · 361 · 48−1

1−1 · 22 · 31 · 4−2 · 6−1 · 83 · 16−1 · 362 · 72−1

150
(2) 1−1 · 21 · 31 · 53 · 6−1 · 10−2 · 15−2 · 25−1 · 303 · 501 · 751 · 150−1

[6] 1−1 · 21 · 32 · 51 · 6−1 · 10−1 · 15−1 · 25−1 · 301 · 502 · 751 · 150−1

11 · 2−1 · 42 · 71 · 8−1 · 12−1 · 14−1 · 21−1 · 241 · 422

1−1 · 21 · 31 · 42 · 6−1 · 8−1 · 14−1 · 282 · 421 · 56−1 · 84−1 · 1681

1−1 · 21 · 31 · 42 · 6−1 · 8−1 · 421 · 84−1 · 1681

1−1 · 21 · 31 · 42 · 6−1 · 71 · 8−1 · 14−1 · 21−1 · 422 · 84−1 · 1681

168 1−1 · 22 · 14−1 · 211 · 282 · 56−1 · 84−1 · 1681

(10) 1−1 · 22 · 211 · 28−1 · 42−1 · 561 · 842 · 168−1

[80] 1−1 · 22 · 31 · 4−1 · 6−1 · 7−1 · 121 · 143 · 28−2 · 42−1 · 561 · 842 · 168−1

1−1 · 22 · 31 · 4−1 · 6−1 · 241 · 282 · 56−1 · 84−1 · 1681

1−1 · 22 · 31 · 4−1 · 6−1 · 71 · 14−2 · 21−1 · 241 · 283 · 422 · 56−1 · 84−1

1−1 · 22 · 31 · 4−1 · 6−2 · 123 · 141 · 24−1 · 28−1 · 561
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Simple holomorphic eta quotients

176
(2) 1−1 · 22 · 4−1 · 82 · 111 · 16−1 · 22−1 · 441 · 88−1 · 1761

[4] 1−1 · 22 · 8−1 · 111 · 161 · 22−1 · 882 · 176−1

1−1 · 22 · 31 · 4−1 · 6−1 · 9−1 · 121 · 182 · 301 · 36−1

1−1 · 22 · 31 · 4−1 · 6−1 · 9−1 · 121 · 151 · 182 · 30−1 · 36−1 · 601

180 1−1 · 22 · 31 · 4−1 · 51 · 6−2 · 9−1 · 10−1 · 121 · 183 · 201 · 36−1

(42) 1−1 · 22 · 31 · 4−1 · 51 · 6−2 · 9−1 · 10−1 · 122 · 15−1 · 182 · 302 · 36−1 · 451 · 90−1

[166] 1−1 · 22 · 32 · 4−1 · 6−3 · 9−1 · 10−1 · 122 · 182 · 201 · 303 · 36−1 · 60−2 · 90−1 · 1801

1−1 · 22 · 32 · 4−1 · 6−3 · 9−1 · 122 · 15−2 · 182 · 305 · 36−1 · 60−2

1−1 · 22 · 31 · 6−1 · 8−1 · 162 · 32−1 · 1921

1−1 · 22 · 241 · 32−1 · 48−1 · 641 · 962 · 192−1

192 1−1 · 22 · 31 · 4−1 · 6−1 · 161 · 241 · 48−1 · 1921

(62) 1−1 · 22 · 31 · 4−1 · 6−1 · 81 · 16−1 · 322 · 481 · 64−1 · 96−1 · 1921

[228] 1−1 · 22 · 31 · 4−1 · 6−1 · 81 · 481 · 96−1 · 1921

1−1 · 22 · 31 · 4−1 · 322 · 64−1 · 96−1 · 1921

1−1 · 21 · 31 · 42 · 6−1 · 8−1 · 541 · 108−1 · 2161

216 1−1 · 22 · 18−1 · 271 · 362 · 72−1 · 108−1 · 2161

(20) 1−1 · 22 · 31 · 4−1 · 6−1 · 81 · 18−1 · 27−1 · 362 · 543 · 72−1 · 108−2 · 2161

[72] 1−1 · 22 · 31 · 4−1 · 6−1 · 81 · 361 · 72−1 · 108−1 · 2162

1−1 · 23 · 4−2 · 6−1 · 81 · 122 · 24−1 · 271 · 54−1 · 1081

12 · 2−1 · 5−1 · 101 · 151 · 20−1 · 402 · 80−1 · 120−1 · 2401

240 12 · 2−1 · 3−1 · 5−1 · 61 · 101 · 151 · 40−1 · 60−1 · 801 · 1202 · 240−1

(≥ 26) 3−2 · 51 · 65 · 12−2 · 20−1 · 30−1 · 402 · 601 · 80−1 · 120−1 · 2401

[≥ 200] 12 · 2−1 · 5−1 · 101 · 151 · 40−1 · 60−1 · 801 · 1202 · 240−1

12 · 2−1 · 10−1 · 15−1 · 303 · 402 · 60−1 · 80−1 · 120−1 · 2401

252 1−1 · 33 · 41 · 6−1 · 71 · 9−1 · 12−1 · 21−1 · 28−1 · 361 · 42−1 · 631 · 843 · 252−1

(≥ 9) 1−1 · 22 · 31 · 4−1 · 6−1 · 9−1 · 121 · 182 · 211 · 36−1 · 42−1 · 841

[≥ 20] 3−2 · 65 · 7−1 · 12−2 · 142 · 212 · 28−1 · 42−3 · 63−1 · 842 · 1262 · 252−1

...
288

(≥ 1) 1−1 · 22 · 8−1 · 162 · 181 · 32−1 · 36−1 · 48−1 · 721 · 961

[≥ 4]

...
11 · 2−1 · 3−1 · 62 · 81 · 12−1 · 16−1 · 481 · 642 · 128−1 · 192−1 · 3841

11 · 2−1 · 3−1 · 62 · 81 · 12−1 · 16−1 · 321 · 481 · 64−1 · 96−1 · 1281 · 1922 · 384−1

384 11 · 2−1 · 3−1 · 62 · 81 · 12−1 · 32−1 · 481 · 642 · 128−1 · 192−1 · 3841

(≥ 14) 11 · 2−1 · 3−1 · 62 · 81 · 16−1 · 24−1 · 481 · 642 · 128−1 · 192−1 · 3841

[≥ 48] 11 · 2−1 · 3−1 · 62 · 81 · 16−1 · 24−1 · 321 · 481 · 64−1 · 96−1 · 1281 · 1922 · 384−1

11 · 2−1 · 3−1 · 62 · 81 · 24−1 · 481 · 64−1 · 96−1 · 1281 · 1922 · 384−1

11 · 2−1 · 3−1 · 41 · 62 · 8−1 · 12−1 · 161 · 241 · 32−1 · 48−1 · 642 · 961 · 128−1 · 192−1 · 3841

...
1−1 · 22 · 24−1 · 271 · 36−1 · 481 · 54−1 · 722 · 1081 · 144−1

432 3−1 · 41 · 62 · 8−1 · 91 · 12−1 · 161 · 18−1 · 721 · 144−1 · 216−1 · 4322

(≥ 10) 1−1 · 22 · 91 · 18−2 · 24−1 · 27−2 · 481 · 545 · 722 · 108−2 · 144−1

[≥ 40] 3−1 · 62 · 8−1 · 91 · 12−1 · 162 · 18−1 · 241 · 48−1 · 1081 · 216−1 · 4321

...
1−1 · 22 · 31 · 4−1 · 6−1 · 161 · 361 · 48−1 · 962 · 192−1 · 288−1 · 5761

576 1−1 · 22 · 31 · 4−1 · 6−1 · 81 · 32−1 · 361 · 48−1 · 641 · 72−1 · 962 · 1441 · 192−1

(≥ 16) 1−1 · 22 · 31 · 6−1 · 8−2 · 12−2 · 161 · 246 · 361 · 48−2 · 72−2 · 96−1 · 1921 · 2882 · 576−1

[≥ 44] 3−1 · 4−1 · 62 · 83 · 91 · 16−1 · 18−1 · 24−2 · 32−1 · 36−1 · 641 · 723 · 962 · 144−1 · 192−1

3−1 · 4−2 · 62 · 85 · 91 · 16−2 · 18−1 · 24−2 · 721 · 962 · 192−1 · 288−1 · 5761

...
768

(≥ 1) 11 · 2−1 · 3−1 · 41 · 62 · 12−1 · 16−1 · 24−1 · 483 · 96−1 · 1282 · 256−1 · 384−1 · 7681

[≥ 4]
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The level of a simple holomorphic eta quotient of weight 1 may go up much higher
than 768. However, numerically we have also found that there exist no simple
holomorphic eta quotients of weight 1 and of the levels 324, 375, 648, 864, 875,
896, 972, 1000, 1152, 1280, 1458, 1536 and 3072.

In particular, considering the highest powers of different primes which divide
the levels of the eta quotients appearing in the above list, we get:

Corollary A.1. Let M2 be defined as in Theorem 2.40′. Then M2 is divisible by

28 · 33 · 52 · 7 · 11.



Appendix B

Table of holomorphic eta
quotients of weight 3/2

In the following table, we give examples of simple holomorphic eta quotients
weight 3/2 and of various levels. As before, for each level N that appears
in the tables below, there are three entries on the left column: the first
one being N , the second one (in round brackets) being the number of simple
holomorphic eta quotients of level N modulo Atkin-Lehner involutions of
level N and the third one [in square brackets] being the total number of
distinct simple holomorphic eta quotients of level N . Also, for level N , each

formal expressions of the type
∏
d|N

dXd on the right column denotes a simple

holomorphic eta quotient:
∏
d|N

ηXdd of level N and weight 1. This table is

complete up to Atkin-Lehner involutions for the levels N < 24 and for N =
44, 45, 50, 45, 50, 66, 75, 81, 98, 102, 105, 114, 130, 135, 138, 182., 189. Also, in
this table, the list of levels below 132 is complete, i.e., if a level N < 132 does
not appear in the table, then this is because there are no simple holomorphic eta
quotients of weight 3/2 and level N .
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Simple holomorphic eta quotients

9
(1) 1−2 · 37 · 9−2

[1]
12 13 · 23 · 3−1 · 4−2 · 6−1 · 121

(3) 1−1 · 22 · 32 · 4−2 · 6−3 · 125

[12] 1−3 · 212 · 31 · 4−5 · 6−4 · 122

14 1−1 · 21 · 74 · 14−1

(3) 1−1 · 21 · 75 · 14−2

[12] 1−1 · 21 · 76 · 14−3

1−4 · 22 · 313 · 6−6 · 9−4 · 182

1−1 · 2−1 · 33 · 64 · 9−1 · 18−1

1−1 · 32 · 61 · 93 · 18−2

1−1 · 34 · 6−1 · 9−2 · 183

1−1 · 34 · 6−1 · 9−3 · 184

1−1 · 21 · 31 · 6−1 · 94 · 18−1

1−1 · 21 · 32 · 6−2 · 91 · 182

1−1 · 21 · 33 · 6−3 · 9−2 · 185

18 1−1 · 23 · 31 · 6−2 · 9−1 · 183

(18) 1−1 · 23 · 33 · 6−3 · 9−2 · 183

[58] 1−2 · 22 · 39 · 6−5 · 9−3 · 182

1−2 · 23 · 32 · 6−2 · 92
1−2 · 25 · 31 · 6−2 · 181

1−3 · 21 · 310 · 6−3 · 9−3 · 181

1−3 · 22 · 310 · 6−5 · 9−3 · 182

1−3 · 22 · 39 · 6−4 · 9−3 · 182

1−3 · 25 · 33 · 6−3 · 181

1−4 · 22 · 314 · 6−7 · 9−4 · 182

1−6 · 215 · 4−6 · 51 · 10−3 · 202

1−1 · 41 · 54 · 20−1

1−1 · 41 · 55 · 10−2

1−1 · 41 · 55 · 10−3 · 201

1−1 · 41 · 56 · 10−3

1−1 · 42 · 53 · 20−1

1−1 · 44 · 5−1 · 103 · 20−2

20 1−1 · 23 · 4−2 · 10−2 · 205

(18) 1−1 · 23 · 4−2 · 10−3 · 206

[72] 1−1 · 23 · 4−2 · 51 · 10−3 · 205

1−1 · 26 · 4−3 · 10−2 · 203

1−2 · 23 · 41 · 53 · 10−2

1−2 · 26 · 4−3 · 51 · 10−3 · 204

1−3 · 27 · 4−3 · 52 · 10−3 · 203

1−3 · 29 · 4−4 · 51 · 10−3 · 203

1−4 · 212 · 4−5 · 51 · 10−3 · 202

1−4 · 212 · 4−5 · 52 · 10−3 · 201

1−5 · 213 · 4−5 · 51 · 10−3 · 202

21
(1) 1−1 · 32 · 73 · 21−1

[4]
15 · 2−2 · 3−2 · 61 · 122 · 24−1

1−1 · 2−1 · 3−1 · 48 · 64 · 8−3 · 12−4 · 241

24 1−1 · 22 · 32 · 4−4 · 6−3 · 85 · 125 · 24−3

(196) 1−1 · 22 · 32 · 42 · 6−1 · 8−2 · 12−2 · 243

[784] 1−1 · 22 · 33 · 4−2 · 6−4 · 81 · 127 · 24−3

1−5 · 212 · 32 · 4−5 · 6−4 · 81 · 122

1−5 · 212 · 33 · 4−5 · 6−5 · 122 · 241

1−5 · 213 · 32 · 4−5 · 6−4 · 121 · 241

1−1 · 24 · 4−2 · 282

1−1 · 44 · 141 · 28−1

1−1 · 24 · 4−2 · 14−1 · 283

1−1 · 21 · 75 · 14−3 · 281

28 1−2 · 24 · 4−1 · 71 · 142 · 28−1

(33) 1−1 · 24 · 4−2 · 14−2 · 284

[120] 1−1 · 24 · 4−2 · 71 · 14−1 · 282

1−1 · 24 · 4−2 · 71 · 14−2 · 283

1−1 · 27 · 4−3 · 14−1 · 281

1−2 · 24 · 41 · 71 · 14−1



135

Simple holomorphic eta quotients

1−2 · 21 · 35 · 51 · 6−2

1−1 · 55 · 61 · 10−1 · 15−1

1−1 · 21 · 52 · 10−1 · 154 · 30−2

30 1−1 · 21 · 52 · 61 · 10−1 · 301

(90) 1−1 · 21 · 52 · 61 · 10−1 · 151

[720] 11 · 2−2 · 3−1 · 5−4 · 62 · 108 · 151 · 30−2

1−1 · 21 · 52 · 61 · 10−1 · 152 · 30−1

1−1 · 21 · 52 · 61 · 15−1 · 301

1−2 · 22 · 35 · 6−3 · 301

1−1 · 21 · 52 · 61
1−2 · 37 · 41 · 9−2 · 12−2 · 361

1−2 · 21 · 35 · 12−1 · 18−1 · 361

1−2 · 37 · 42 · 6−3 · 9−2 · 12−1 · 362

1−2 · 37 · 42 · 6−4 · 9−4 · 186 · 36−2

36 1−2 · 21 · 34 · 41 · 61 · 12−2 · 18−1 · 361

(1096) 11 · 2−1 · 3−2 · 41 · 64 · 92 · 12−2 · 18−3 · 363

[4013] 21 · 3−3 · 66 · 93 · 12−3 · 18−4 · 363

11 · 3−1 · 41 · 61 · 91 · 12−1 · 361

11 · 2−1 · 42 · 91 · 12−1 · 361

1−1 · 21 · 52 · 81
1−1 · 21 · 43 · 8−2 · 402

1−1 · 21 · 46 · 8−3 · 20−1 · 401

1−1 · 22 · 4−1 · 53 · 10−2 · 201 · 401

40 1−1 · 22 · 4−1 · 53 · 10−3 · 204 · 40−1

(144) 1−1 · 22 · 4−2 · 51 · 82 · 10−1 · 204 · 40−2

[576] 1−1 · 22 · 4−2 · 51 · 82 · 202 · 40−1

1−1 · 22 · 5−1 · 81 · 104 · 20−2

1−1 · 22 · 81 · 10−1 · 204 · 40−2

1−2 · 24 · 4−2 · 52 · 81
1−1 · 21 · 61 · 73 · 14−1

1−1 · 33 · 71 · 21−1 · 421

42 1−1 · 21 · 61 · 74 · 14−2 · 21−2 · 422

(40) 1−1 · 21 · 31 · 6−1 · 74 · 14−2 · 21−3 · 424

[320] 1−1 · 21 · 31 · 6−1 · 74 · 14−3 · 21−3 · 425

1−1 · 21 · 31 · 142 · 211 · 42−1

1−1 · 21 · 61 · 74 · 14−2

1−1 · 21 · 31 · 71 · 421

44 1−2 · 24 · 4−1 · 114 · 22−2

(3) 1−1 · 21 · 41 · 114 · 22−2

[12] 1−4 · 210 · 4−4 · 111 · 22−2 · 442

45
(2) 11 · 3−1 · 91 · 152

[4] 1−1 · 33 · 9−1 · 152

1−2 · 23 · 32 · 8−1 · 161

1−2 · 23 · 32 · 6−2 · 122 · 161 · 24−1

1−2 · 23 · 31 · 42 · 8−2 · 12−2 · 242 · 481

48 1−2 · 23 · 32 · 41 · 6−2 · 8−2 · 161 · 244 · 48−2

(2132) 1−2 · 23 · 32 · 41 · 6−1 · 8−3 · 12−2 · 161 · 247 · 48−3

[8448] 1−2 · 23 · 32 · 42 · 6−1 · 8−2 · 12−1 · 161 · 481

1−2 · 23 · 32 · 42 · 6−2 · 8−2 · 161 · 481

1−2 · 23 · 33 · 4−1 · 6−2 · 81 · 161

1−2 · 23 · 33 · 4−1 · 12−1 · 481

1−2 · 26 · 31 · 4−1 · 6−2 · 481

50
(2) 1−1 · 21 · 55 · 10−3 · 25−2 · 503

[8] 21 · 5−1 · 101 · 252

1−1 · 21 · 33 · 9−1 · 541

1−1 · 21 · 33 · 9−1 · 271

1−1 · 21 · 34 · 6−2 · 9−1 · 542

54 1−1 · 21 · 34 · 6−2 · 9−1 · 27−1 · 543

(124) 1−1 · 21 · 35 · 6−2 · 9−2 · 181 · 272 · 54−1

[496] 1−1 · 21 · 36 · 6−3 · 9−2 · 181 · 541

1−1 · 22 · 3−1 · 62 · 18−1 · 272

1−1 · 22 · 6−1 · 182 · 273 · 54−2

1−2 · 24 · 91 · 18−1 · 271
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Simple holomorphic eta quotients

1−1 · 21 · 41 · 72 · 28−1 · 561

23 · 4−2 · 71 · 81 · 14−1 · 561

56 1−2 · 26 · 4−3 · 71 · 81 · 14−2 · 282

(36) 1−1 · 23 · 4−3 · 83 · 14−1 · 284 · 56−2

[144] 1−3 · 27 · 4−3 · 72 · 81 · 14−2 · 281

1−1 · 24 · 4−2 · 14−1 · 282 · 561

22 · 4−1 · 71 · 81 · 14−1 · 561

1−5 · 212 · 32 · 4−5 · 51 · 6−4 · 10−2 · 122 · 201 · 301

60 1−5 · 212 · 32 · 4−5 · 52 · 6−4 · 10−4 · 122 · 15−2 · 202 · 304 · 60−1

(≥ 24) 1−8 · 220 · 32 · 4−8 · 52 · 6−5 · 10−5 · 122 · 15−2 · 202 · 305 · 60−2

[≥ 172] 1−5 · 212 · 31 · 4−4 · 51 · 6−3 · 10−3 · 121 · 151 · 202 · 301 · 60−1

1−5 · 212 · 31 · 4−5 · 52 · 6−3 · 10−2 · 122 · 201

1−5 · 212 · 32 · 4−5 · 6−3 · 10−1 · 121 · 202

1−1 · 23 · 8−1 · 321 · 641

1−1 · 24 · 4−1 · 8−1 · 161 · 641

64 1−1 · 23 · 4−3 · 83 · 162 · 32−2 · 641

(29) 1−1 · 23 · 8−1 · 16−1 · 324 · 64−1

[52] 11 · 2−2 · 43 · 8−1 · 163 · 32−2 · 641

11 · 2−2 · 44 · 8−2 · 321 · 641

11 · 41 · 8−1 · 321 · 641

1−1 · 21 · 31 · 113 · 22−2 · 33−2 · 663

1−1 · 33 · 111 · 33−1 · 661

1−1 · 21 · 61 · 116 · 22−3 · 33−2 · 661

1−1 · 21 · 31 · 112 · 22−1 · 331·
1−1 · 21 · 31 · 112 · 22−1 · 332 · 66−1

1−1 · 21 · 31 · 112 · 33−1 · 661

66 1−1 · 21 · 31 · 112·
(15) 1−1 · 21 · 31 · 113 · 22−1 · 33−1 · 661

[120] 1−1 · 21 · 31 · 113 · 22−1·
1−1 · 21 · 31 · 113 · 22−2 · 33−1 · 662

1−1 · 21 · 31 · 114 · 22−2 · 33−1 · 661

1−1 · 21 · 31 · 114 · 22−2 · 33−2 · 662

1−1 · 21 · 31 · 114 · 22−2·
1−1 · 21 · 31 · 116 · 22−3 · 33−2 · 661

1−1 · 21 · 33 · 6−2 · 111 · 22−2 · 33−3 · 666

14 · 2−2 · 7−1 · 141 · 351·
22 · 51 · 10−1 · 701

70 11 · 2−1 · 7−1 · 101 · 143 · 351 · 70−1

(≥ 7) 11 · 2−1 · 51 · 7−2 · 144·
[≥ 56] 11 · 2−1 · 51 · 7−2 · 144 · 351 · 70−1

11 · 5−1 · 7−1 · 101 · 141 · 354 · 70−2

11 · 5−1 · 101 · 353 · 70−1

1−4 · 210 · 31 · 4−4 · 6−4 · 124 · 24−1 · 362 · 72−1

1−4 · 210 · 31 · 4−4 · 6−4 · 125 · 24−2 · 36−1 · 722

1−4 · 210 · 31 · 4−4 · 6−6 · 129 · 182 · 24−3 · 36−3 · 721

72 1−4 · 28 · 31 · 4−1 · 61 · 8−1 · 12−1 · 18−1 · 721

(≥ 20) 1−4 · 28 · 31 · 41 · 6−2 · 8−2 · 12−1 · 241 · 362 · 72−1

[≥ 80] 1−4 · 28 · 31 · 41 · 6−2 · 8−2 · 36−1 · 722

1−4 · 29 · 4−2 · 61 · 8−1 · 91 · 12−2 · 18−2 · 242 · 362 · 72−1

1−4 · 29 · 31 · 4−1 · 6−2 · 8−2 · 12−2 · 18−1 · 244 · 363 · 72−2

75 1−1 · 31 · 54 · 15−1 · 25−1 · 751

(3) 1−1 · 33 · 51 · 15−1 · 751

[8] 31 · 52 · 15−1 · 751

1−1 · 21 · 31 · 133 · 26−1 · 39−1 · 781

1−1 · 33 · 131 · 39−1 · 781

78 1−1 · 21 · 31 · 133 · 26−1·
(≥ 7) 1−1 · 21 · 31 · 134 · 26−2 · 39−1 · 781

[≥ 56] 1−1 · 21 · 31 · 134 · 26−2 · 39−2 · 782

1−1 · 21 · 31 · 134 · 26−2·
1−1 · 21 · 31 · 136 · 26−3 · 39−2 · 781

1−1 · 22 · 5−1 · 8−1 · 103 · 161 · 20−1 · 801

1−1 · 22 · 5−1 · 8−1 · 103 · 161 · 20−2 · 403 · 80−1

80 1−1 · 22 · 5−1 · 8−2 · 103 · 163 · 20−1 · 401 · 80−1

(≥ 19) 1−2 · 24 · 4−1 · 52 · 8−1 · 10−1 · 161 · 20−1 · 403 · 80−1

[≥ 72] 1−2 · 24 · 4−1 · 52 · 8−1 · 10−2 · 161 · 202 · 401 · 80−1

1−2 · 24 · 4−2 · 52 · 82 · 10−1 · 16−1 · 801

1−2 · 24 · 4−2 · 52 · 82 · 10−2 · 16−1 · 203 · 40−2 · 801

81
(1) 11 · 3−1 · 93 · 27−1 · 811

[1]
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Simple holomorphic eta quotients

16 · 2−3 · 3−2 · 61 · 7−1 · 141 · 841

16 · 2−3 · 3−2 · 61 · 7−1 · 141 · 422 · 84−1

84 16 · 2−3 · 3−2 · 61 · 7−1 · 141 · 211 · 28−1 · 42−2 · 843

(≥ 20) 16 · 2−3 · 3−2 · 61 · 7−1 · 141 · 211 · 42−1 · 841

[≥ 160] 16 · 2−3 · 3−2 · 61 · 7−2 · 143 · 28−1 · 422 · 84−1

16 · 2−3 · 3−2 · 61 · 7−2 · 143 · 211 · 28−1 · 42−1 · 841

16 · 2−3 · 3−2 · 61 · 7−2 · 143 · 211 · 28−1·
1−1 · 21 · 42 · 8−1 · 111 · 442 · 88−1

1−1 · 21 · 42 · 8−1 · 111 · 221 · 44−1 · 881

1−1 · 21 · 43 · 8−1 · 11−1 · 223 · 44−2 · 881

88 1−1 · 21 · 43 · 8−1 · 111 · 44−1 · 881

(≥ 8) 1−1 · 22 · 4−1 · 81 · 111 · 442 · 88−1

[≥ 32] 1−1 · 22 · 4−1 · 81 · 111 · 221 · 44−1 · 881

1−1 · 23 · 4−2 · 81 · 111 · 22−2 · 444 · 88−1

1−1 · 24 · 4−2 · 81 · 111 · 22−1 · 881

1−2 · 21 · 36 · 6−3 · 9−1 · 151 · 181 · 45−1 · 901

90 1−2 · 21 · 36 · 51 · 6−3 · 9−2 · 15−1 · 181 · 451 · 901

(≥ 20) 1−2 · 21 · 36 · 51 · 6−3 · 9−2 · 15−2 · 181 · 301 · 454 · 90−2

[≥ 136] 1−2 · 21 · 37 · 6−4 · 9−2 · 15−2 · 181 · 304·
2−1 · 3−1 · 64 · 92 · 151 · 18−2 · 45−1 · 901

14 · 2−1 · 3−1 · 16−1 · 321 · 482 · 96−1

14 · 2−1 · 3−1 · 121 · 16−1 · 24−1 · 321 · 482 · 96−1

96 14 · 2−1 · 3−2 · 62 · 8−1 · 12−1 · 162 · 241 · 32−1 · 48−1 · 961

(≥ 20) 14 · 2−1 · 3−2 · 62 · 8−1 · 162 · 32−1 · 48−1 · 961

[≥ 80] 14 · 2−1 · 3−2 · 62 · 12−1 · 16−1 · 321 · 482 · 96−1

14 · 2−1 · 3−2 · 62 · 16−1 · 24−1 · 321 · 482 · 96−1

15 · 2−3 · 3−2 · 62 · 162 · 32−1 · 48−1 · 961

1−1 · 21 · 75 · 14−2 · 49−1 · 981

1−1 · 21 · 76 · 14−3 · 49−1 · 981

1−1 · 22 · 71 · 14−1 · 49−1 · 983

98 1−1 · 22 · 71 · 14−1 · 49−2 · 984

(8) 1−1 · 22 · 71 · 14−1 · 982

[28] 1−1 · 23 · 71 · 14−1 · 981

1−2 · 24 · 71 · 14−1 · 981

1−2 · 24 · 71 · 14−1 · 491·
1−1 · 22 · 41 · 101 · 20−1 · 251 · 50−1 · 1001

1−1 · 23 · 4−1 · 5−1 · 102 · 20−1 · 251 · 50−1 · 1002

100 1−1 · 23 · 4−2 · 10−2 · 205 · 25−1 · 503 · 100−2

(199) 1−1 · 23 · 5−1 · 102 · 20−1 · 252 · 50−1·
[734] 1−1 · 23 · 10−1 · 201 · 252 · 50−1·

1−1 · 22 · 51 · 101 · 20−1 · 1001

1−1 · 22 · 51 · 103 · 20−2 · 50−1 · 1001

102 1−1 · 21 · 31 · 174 · 34−2 · 51−1 · 1021

(3) 1−1 · 21 · 31 · 174 · 34−2·
[24] 1−1 · 21 · 31 · 176 · 34−3 · 51−2 · 1021

1−1 · 22 · 4−1 · 81 · 132·
1−1 · 21 · 42 · 8−1 · 132·

104 1−1 · 22 · 4−1 · 81 · 131 · 262 · 52−1·
(≥ 19) 1−1 · 22 · 4−1 · 81 · 132 · 26−1 · 1041

[≥ 76] 1−1 · 22 · 4−1 · 81 · 132 · 26−1 · 522 · 104−1

1−1 · 22 · 4−1 · 81 · 132 · 52−1 · 1041

105
(2) 13 · 3−1 · 5−1 · 151 · 351·
[16] 1−1 · 32 · 51 · 71·

1−4 · 210 · 31 · 4−4 · 6−2 · 9−1 · 271 · 363 · 108−1

108 1−4 · 210 · 32 · 4−4 · 6−5 · 9−4 · 122 · 1810 · 271 · 36−4 · 54−3 · 1082

(≥ 20) 1−4 · 210 · 31 · 4−4 · 6−2 · 18−2 · 27−1 · 364 · 543 · 108−2

[≥ 80] 1−4 · 28 · 33 · 4−3 · 6−1 · 9−1 · 271 · 54−1 · 1081

1−4 · 210 · 4−4 · 6−2 · 93 · 121 · 18−1 · 27−1 · 1081

1−1 · 22 · 8−1 · 161 · 281 · 562 · 112−1

1−1 · 22 · 4−1 · 71 · 141 · 161 · 28−1 · 1121

112 1−1 · 22 · 4−1 · 71 · 141 · 161 · 28−2 · 563 · 112−1

(≥ 20) 1−1 · 22 · 4−2 · 84 · 141 · 16−1 · 56−1 · 1121

[≥ 80] 1−1 · 22 · 4−2 · 71 · 83 · 141 · 16−1 · 28−1 · 1121

1−1 · 22 · 4−3 · 87 · 141 · 16−3 · 56−1 · 1121

114
(1) 11 · 2−2 · 3−3 · 66 · 381 · 571 · 114−1

[8]
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Simple holomorphic eta quotients

16 · 2−3 · 3−2 · 5−1 · 61 · 101 · 20−1 · 401 · 601·
16 · 2−3 · 3−2 · 5−1 · 61 · 101 · 602 · 120−1

120 16 · 2−3 · 3−2 · 5−1 · 61 · 101 · 301 · 60−1 · 1201

(≥ 20) 16 · 2−3 · 3−2 · 5−2 · 61 · 102 · 152 · 20−1 · 30−1 · 401·
[≥ 160] 16 · 2−3 · 3−2 · 5−2 · 61 · 103 · 20−1 · 602 · 120−1

16 · 2−3 · 3−2 · 5−1 · 61 · 151 · 202 · 30−1 · 40−1 · 601·
1−1 · 21 · 32 · 6−1 · 9−1 · 181 · 211 · 1261

1−1 · 21 · 32 · 6−1 · 71 · 9−1 · 14−1 · 181 · 21−2 · 422 · 632·
126 1−1 · 21 · 32 · 6−1 · 71 · 9−1 · 14−1 · 181 · 21−3 · 423 · 635 · 126−3

(≥ 24) 1−1 · 21 · 32 · 6−2 · 71 · 14−1 · 182 · 21−2 · 423 · 631 · 126−1

[≥ 176] 1−1 · 21 · 32 · 6−1 · 71 · 9−1 · 14−1 · 181 · 21−1 · 421 · 63−1 · 1263

1−2 · 21 · 35 · 6−2 · 72 · 14−1 · 21−1 · 63−1 · 1262

2−1 · 3−1 · 65 · 91 · 18−2 · 63−1 · 1262

1−1 · 21 · 43 · 8−3 · 163 · 64−1 · 1281

1−1 · 22 · 4−1 · 83 · 16−2 · 643 · 128−1

128 1−1 · 22 · 4−1 · 83 · 16−3 · 324 · 64−2 · 1281

(≥ 23) 1−1 · 22 · 4−1 · 84 · 16−2 · 32−1 · 643 · 128−1

[≥ 46] 1−1 · 22 · 4−1 · 84 · 16−2 · 1281

1−1 · 22 · 81 · 16−1 · 32−1 · 644 · 128−1

1−1 · 22 · 81 · 16−1 · 641 · 1281

130 5−2 · 104 · 13−1 · 262 · 651 · 130−1

(3) 1−1 · 21 · 52 · 10−1 · 134 · 26−2 · 65−1 · 1301

[24] 1−1 · 21 · 52 · 132 · 26−1·
...

135 11 · 5−1 · 153 · 45−1 · 1351

(3) 1−1 · 34 · 51 · 9−1 · 15−1 · 1351

[12] 31 · 51 · 9−1 · 15−1 · 271 · 452·
1−1 · 22 · 4−1 · 81 · 173 · 34−1·

1−1 · 22 · 4−1 · 81 · 173 · 34−2 · 681·
136 1−1 · 22 · 4−1 · 81 · 174 · 34−2·

(≥ 14) 1−1 · 23 · 4−2 · 81 · 34−3 · 687 · 136−2

[≥ 56] 1−1 · 23 · 4−2 · 81 · 34−4 · 6810 · 136−4

1−3 · 27 · 4−2 · 171 · 34−1 · 1361

138
(1) 1−1 · 21 · 31 · 236 · 46−3 · 69−2 · 1381

[8]
140

(≥ 1) 14 · 2−2 · 7−1 · 142 · 28−1 · 70−1 · 1402

[≥ 1]

...
154

(≥ 1) 7−1 · 11−2 · 142 · 224 · 771 · 154−1

[≥ 1]

...
162

(≥ 1) 2−1 · 3−1 · 65 · 91 · 18−2 · 27−1 · 541 · 812 · 162−1

[≥ 1]

...
182
(2) 14 · 2−2 · 7−1 · 141 · 912 · 182−1

[16] 1−1 · 21 · 74 · 131 · 14−2·
184

(≥ 1) 1−1 · 21 · 42 · 8−1 · 234 · 46−2·
[≥ 1]
189
(1) 1−1 · 33 · 71 · 9−1 · 271

[4]
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Simple holomorphic eta quotients

14 · 2−2 · 3−1 · 122 · 24−1 · 1921

14 · 2−2 · 3−1 · 4−1 · 61 · 83 · 16−2 · 24−1 · 322 · 481 · 64−1 · 96−1 · 1921

192 14 · 2−2 · 3−1 · 122 · 24−1 · 48−1 · 963 · 192−1

(≥ 25) 14 · 2−2 · 3−1 · 81 · 121 · 16−1 · 322 · 64−1 · 96−1 · 1921

[≥ 100] 14 · 2−2 · 3−1 · 41 · 61 · 12−1 · 16−1 · 241 · 322 · 64−1 · 96−1 · 1921

14 · 2−2 · 3−1 · 81 · 121 · 32−1 · 48−1 · 641 · 962 · 192−1

14 · 2−2 · 3−1 · 61 · 12−1 · 242 · 48−1 · 1921

...
1−1 · 22 · 141 · 28−1 · 98−2 · 1964

1−1 · 21 · 74 · 28−1 · 49−1 · 981·
196 1−1 · 22 · 71 · 14−2 · 281 · 49−4 · 9810 · 196−4

(≥ 21) 1−2 · 25 · 4−2 · 14−1 · 281 · 492 · 98−1 · 1961

[≥ 75] 1−2 · 25 · 4−2 · 14−1 · 281 · 492·
1−2 · 25 · 4−2 · 14−1 · 281 · 492 · 981 · 196−1

1−2 · 25 · 4−2 · 14−1 · 281 · 493 · 98−1·
...

1−1 · 22 · 4−1 · 81 · 101 · 201 · 25−1 · 40−1 · 502·
1−1 · 22 · 4−1 · 81 · 101 · 201 · 40−1 · 50−1 · 1002·

200 1−1 · 22 · 5−1 · 101 · 203 · 40−2 · 100−1 · 2002

(≥ 24) 1−1 · 22 · 5−1 · 103 · 20−3 · 402 · 50−2 · 1005 · 200−2

[≥ 96] 1−1 · 22 · 5−2 · 105 · 20−3 · 251 · 401 · 50−2 · 1003 · 200−1

1−1 · 22 · 10−1 · 202 · 25−1 · 40−1 · 504 · 100−2 · 2001

1−1 · 22 · 20−1 · 25−1 · 401 · 503 · 1001 · 200−1

Though the above list ends at level 200, but there are levels higher than 200 for
which simple holomorphic eta quotients of weight 3/2 exist.

In particular, considering the highest powers of different primes which divide
the levels of the eta quotients appearing in the above list, we get:

Corollary B.1. Let M3 be defined as in Theorem 2.40′. Then M3 is divisible by

27 · 34 · 52 · 72 · 11 · 13 · 17 · 19 · 23.
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[39] ——, “On modular forms of half integral weight,” Ann. of Math. (2), vol. 97,
pp. 440–481, 1973.

[40] M. Somos, “Dedekind eta function product identities,” available at: http:
//eta.math.georgetown.edu.

[41] ——, “A remarkable eta-product identity,” Preprint, 2008.

[42] W. Stein, Modular Forms, a Computational Approach, ser. Graduate Studies
in Mathematics. Providence, RI: American Mathematical Society, 2007,
vol. 79, with an appendix by Paul E. Gunnells.

[43] B. Sury, The Congruence Subgroup Problem, ser. Texts and Readings in
Mathematics. New Delhi: Hindustan Book Agency, 2003, vol. 24.

[44] A. van der Poorten and W. K. S., “Values of Dedeking eta functions at
quadratic irrationalities,” Canad. J. Math., vol. 51, no. 1, pp. 176–224, 1999.

[45] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed.
Cambridge University Press, 2001.

[46] D. Zagier, “Introduction to modular forms,” in From Number theory to Physics
(Les Houches, 1989). Berlin: Springer, 1992, pp. 238–291.

[47] I. J. Zucker, “A systematic way of converting infinite series into infinite
products,” J. Phys. A: Math. Gen., vol. 20, pp. 13–17, 1987.

[48] ——, “Further relations among infinite series and products:II. the evaluation
of three dimensional lattice sums,” J. Phys. A: Math. Gen., vol. 23, pp. 117–
132, 1990.

http://eta.math.georgetown.edu
http://eta.math.georgetown.edu


Summary

This thesis is about factorization and irreducibility of holomorphic eta quotients.
We observe that whenever an eta quotient of level N is reducible, it has a special
type of factor, viz. a factor whose level is a divisor of N . We call this observation
the Reducibility Conjecture. We prove this conjecture for prime power levels.
As a corollary to it, we obtain that rescalings and Atkin-Lehner involutions of
irreducible holomorphic eta quotients of prime power levels are irreducible. We
show that if the Reducibility Conjecture holds, then similar consequences regarding
rescalings and Atkin-Lehner involutions of irreducible holomorphic eta quotients
of arbitrary levels should also hold. We prove two partial results towards the
Reducibility conjecture, one of which can always be used to trim the levels of the
factors of a reducible holomorphic eta quotient off the divisors those are prime
to N and the other one is a generalization of the method with which we prove
the theorem for prime power levels. In particular, the Reducibility Conjecture
implies an irreducibility-checking algorithm. We show that even without assuming
the Reducibility Conjecture, irreducibility of a holomorphic eta quotient can be
checked – as we show using Mersmann’s finiteness theorem on simple holomorphic
eta quotients that the level of any factor of a holomorphic eta quotient f can be
bounded w. r. t. the weight and the level of f . Then we give respectively simplified
and short proofs of the Mersmann’s finiteness theorem on simple holomorphic eta
quotients of a fixed weight and Mersmann’s Second Theorem which asserts that
Zagier’s list of simple holomorphic eta quotients of weight 1/2 is exhaustive. We
also prove that there exists only finitely many simple holomorphic eta quotients of
a fixed level and we give an explicit bound on the weights of such eta quotients.
Next we classify all simple holomorphic eta quotients of prime square levels and
conjecture that there are no simple holomorphic eta quotient of any prime cube
level. Finally, we construct examples of infinite families of simple holomorphic eta
quotients of cubefree levels and of higher prime power levels.
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