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“What is 'real'? How do you define 'real'? If you're talking about what you can feel, what  

you can smell, what you can taste and see, then 'real' is simply electrical signals  

interpreted by your brain.” 

Morpheus in “The Matrix” (1999)
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Introduction 

 

1 Introduction 

Our understanding of the role of glial cells in the central nervous system (CNS) has drastically 

changed in the past decades. The term glia was introduced in 1856 by the famous 

neuropathologist Rudolf Virchow. Glia is the Greek expression for ‘glue’ which illustrates the 

initial function assigned to these cells: structural and trophic support of neurons. As a 

consequence, research largely concentrated on the role and function of neurons which 

facilitate the fast signal processing in the brain. Nowadays we know that glial cells are not 

merely passive elements supporting neurons. Instead, they actively participate in signal 

processing and higher brain functions (Perea and Araque, 2010). 

The present study focusses on NG2 cells which are today considered as an own class of glial 

cells that display some remarkable properties distinct from other cell types (Bergles et al., 

2010). The following introduction will give an overview on the current scientific knowledge 

relevant for the present study. 

1.1 The hippocampus 

The hippocampus is located in the medial temporal lobe of the cerebrum and belongs to the 

limbic system. Especially in rodents, it occupies a substantial portion of the forebrain (Fig. 

1.1A) (Amaral D.G. and Witter M.P., 1995). The hippocampus is made up of three main 

structures: the dentate gyrus, the Ammon’s horn (Cornu Ammonis, CA) and the subiculum. 

In the dentate gyrus, three different layers are distinguished. The stratum granulare contains 

densely packed granule cells that project their dendrites in the above lying stratum 

moleculare and their axons via the hilus which comprises a polymorphic layer to the 

Ammon’s horn. The Ammon’s horn is subdivided into the three regions CA1, CA2 and CA3, 

each of which consists of the four layers stratum oriens, stratum pyramidale, stratum 

radiatum and stratum lacunosum moleculare (Fig. 1.1B). The principle cells of the CA regions 

are the excitatory pyramidal neurons whose cell bodies lie densely packed in the stratum 

pyramidale. The other strata mainly contain inhibitory interneurons that participate in the 

local signal processing and different types of glial cells (Amaral D.G. and Witter M.P., 1995). 
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The main communication partner of the hippocampus is the entorhinal cortex. Neurons from 

layer II of the entorhinal cortex send their projections via the perforant path to granule cells 

of the dentate gyrus. The granule cells convey the information via the mossy fiber tract to 

the pyramidal cells of the CA3 region. From here axons project through the Schaffer 

collaterals to the dendrites of CA1 pyramidal cells that themselves send the information via 

the subiculum back to deeper layers of the entorhinal cortex before they finally reach the 

neocortex (Fig. 1.1C) (Deng et al., 2010). 

Therefore, information flow in the hippocampus principally follows a unidirectional 

excitatory trisynaptic loop. However, certain regions also receive direct inputs from the 

entorhinal cortex. The CA3 region is targeted by some axons of the perforant path without 

any processing by the dentate gyrus. Similarly, the CA1 region receives direct inputs from 

layer III neurons of the entorhinal cortex via the temporoammonic pathway (Fig. 1.1C). In 

addition, each subregion of the hippocampus contains intrinsic circuits of inhibitory and 

excitatory cells that process the information before forwarding them (Amaral D.G. and 

Witter M.P., 1995; Deng et al., 2010). 

Together with the entorhinal cortex, the hippocampus has an essential role in transferring 

information from the short-term memory to the long-term memory. This was impressively 

proven by a human patient that was subjected to a bilateral medial temporal lobe resection 

which resulted in an anterograde amnesia. This patient known as H.M. was unable to form 

any new declarative memory. However, his memory of events that happened in the past was 

almost unaffected (Scoville and Milner, 1957). In this context, Bliss and Lomo (1973) 

discovered that certain activity-patterns in the hippocampus may increase the synaptic 

transmission. This phenomenon, known as long-term potentiation (LTP) is today regarded as 

the cellular counterpart of learning and memory. Besides this crucial function in memory 

consolidation, the hippocampus was also shown to be involved in spatial navigation. In mice, 

special place cells were described that increase their activity when the animal resides in a 

certain location (O'Keefe and Dostrovsky, 1971).  
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Fig. 1.1 Anatomy and synaptic connections of the rodent hippocampus. (A) Drawing of a rat brain 
illustrating the anatomical location of the hippocampus (H) (Amaral D.G. and Witter M.P., 1995). 
(B) Nissle-staining of a mouse brain section labeling cell nuclei in blue. The dentate gyrus (DG) is 
composed of the three layers stratum moleculare (Mol), stratum granulosum (Gr) and hilus (Hi). The 
Ammon’s horn (Cornu Ammonis, CA) is divided into CA1, CA2 and CA3 region each composed of the 
four layers stratum oriens (Or), stratum pyramidale (Py), stratum radiatum (Rad) and stratum 
lacunosum moleculare (LMol). The subiculum (Sb) lies between the CA regions and the entorhinal 
cortex (not shown) (modified from Paxinos and Franklin, 2001). (C) Schematic of the synaptic circuitry 
in the hippocampus. Signals from the entorhinal cortex (EC) enter the hippocampus via the lateral 
and medial perforant path (LPP and MPP, respectively) projecting to the dentate gyrus. Information 
is then relayed via the mossy fibers to the CA3 region which sends axon fibers (Schaffer collaterals) to 
the CA1 area. The processed information finally leaves the hippocampus via back-projections to the 
EC. Besides this trisynaptic circuit, CA3 also receives direct information from the EC via the LPP and 
MPP and the CA1 receives direct information via the temporoammonic pathway (Deng et al., 2010). 

Because of its fundamental role in learning and memory as well as its highly organized 

structure and clear synaptic connections, the hippocampus is commonly used to study 

synaptic transmission (Malenka and Nicoll, 1999). 
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1.2 The barrel cortex 

In 1970, Woolsey and Van der Loos discovered that the whiskers of rodents are represented 

by well-defined barrel-like structures in layer IV of the somatosensory cortex. Intriguingly, 

the pattern of barrels almost exactly replicates the arrangement of whiskers on the 

contralateral face of the animal. Each barrel corresponds to one particular whisker and 

receives and processes tactile information only from this whisker (Fig. 1.2A, B). This highly 

defined relationship of a sensory input and a specific representation in the brain makes the 

barrel cortex an ideal model system to study development and plasticity in the brain in 

response to sensory experience (Petersen, 2007; Fox, 2008).   

 

 

Fig. 1.2 Synaptic pathways in the rodent barrel cortex. (A) Scheme of the trisynaptic excitatory 
pathway from whiskers to barrel cortex. Sensory neurons detect mechanical stimulation and send 
the information to the brain stem (1). Neurons of the brain stem project to the thalamus (2) from 
where the signals are delivered to the corresponding barrel in the somatosensory cortex (3). 
(B) Representation of the whisker field in the barrel cortex (top view). (A) and (B) from Petersen 
(2007). (C) The barrel cortex consists of six layers (lateral view). Thalamic afferents mainly terminate 
in the barrels located in layer IV. Modified from Aronoff and Petersen (2008). 

The cortex is a six-layered structure with the barrels located in layer IV (Fig. 1.2C). An 

excitatory trisynaptic pathway connects the whiskers with the barrels. Deflection of a 

specific whisker opens mechano-gated ion channels in nerve endings of sensory neurons. 

These neurons send the information to the trigeminal nuclei of the brain stem. From there 

the signals are conveyed to the ventral posterior medial nucleus of the thalamus. Thalamic 

neurons project directly to the corresponding barrel in layer IV of the somatosensory barrel 

cortex (Fig. 1.2A, C) (Petersen, 2007). 
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The barrels can easily be visualized even in unstained living brain slices owing to their 

specific structure. In general, thalamic afferents innervate layer IV of the primary 

somatosensory cortex with a relatively homogeneous distribution. In the barrel cortex, 

however, these afferents display a much more defined localization. Axons representing a 

specific barrel form discrete batches that are clearly separated on all sides by so called septa. 

These septa constitute cell-rich borders between the barrels that surround the cell-sparse 

core filled with thalamic afferents. Neurons located in the septa send their dendrites into the 

core of the barrel where they receive the information conveyed by the thalamic afferents. A 

certain neuron always belongs to a certain barrel, therefore receiving information from one 

whisker only (Petersen, 2007; Fox, 2008). 

1.3 Glial cells in the CNS 

Glial cells constitute the majority of cells in the CNS. The seminal work of Ramón y Cajal and 

Pío del Río-Hortega introduced the classical view, that glial cells are subdivided into 

astrocytes, oligodendrocytes and microglia with the latter being the only group derived from 

the mesoderm while all others being of ectodermal origin (Somjen, 1988). However, in the 

past decades another cell type emerged as an own class of glial cells, namely NG2 cells, 

which are in focus of the present study (Bergles et al., 2010; Trotter et al., 2010).  

This section will give an overview of the properties and functions of glial cells in the CNS with 

main emphasis on NG2 cells. 

1.3.1 Astrocytes 

Astrocytes are morphological and functionally divers depending on the demands of their 

local environment. Based on their morphology, protoplasmic astrocytes of gray matter 

regions that extent radial processes are differentiated from fibrous astrocytes in white 

matter regions that display rather longitudinal orientated processes (Reichenbach and 

Wolburg, 2013). Apart from these regional differences, virtually all astrocytes exhibit highly 

ramified processes that make contact with blood vessels via specialized protrusions called 

endfeet. These endfeet contain a high density of glucose transporters, water-selective 

aquaporin channels and inwardly-rectifying K+ (Kir) channels. Astrocytes thereby take up 
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glucose from the blood and provide it to neurons. Furthermore, they contribute to ion 

homeostasis and osmoregulation of the brain (Abbott et al., 2006). 

Another common feature of astrocytes is the presence of gap junction channels. These are 

specialized intercellular connections that enable the exchange of ions and molecules < 1 kDa. 

In this way, astrocytes form extensive networks via which they distribute and share the 

nutrients taken up from the blood (Ransom and Giaume, 2013). Moreover, gap junctions are 

important for the spatial buffering of extracellular K+ released during neuronal activity 

(Wallraff et al., 2006).  

The fine processes of astrocytes were also shown to ensheath the majority of synapses in 

the brain. These processes contain a high density of neurotransmitter transporters, which 

facilitate the fast removal of neurotransmitters from the synaptic cleft during neuronal 

activity. Especially the glutamate uptake was extensively studied. It was shown that 

astrocytes convert glutamate to glutamine and release it. The glutamine is taken up by 

nearby neurons and converted back to glutamate to refill the vesicles (Schousboe et al., 

2013). Moreover, by taking up the neurotransmitters from the synaptic cleft, astrocytes 

control extracellular levels of neurotransmitters and are able to shape the postsynaptic 

receptor currents (section 1.4.2) (Jonas, 2000). Thereby astrocytes actively modulate 

synaptic communication, a view that was further supported by studies demonstrating that 

they are even able to release so called “gliotransmitters” like glutamate, adenosine 

triphosphate (ATP) and D-serine (Volterra, 2013). Intriguingly, the astrocytic release of         

D-serine was recently shown to be essential for hippocampal LTP which is considered to be 

the cellular correlate of learning and memory (Henneberger et al., 2010). The tight 

connection of astrocytic processes with synapses and the fact that astrocytes directly modify 

synaptic transmission led to the concept of the tripartite synapse, considering astrocytes as 

elementary synaptic elements (Perea et al., 2009). 

Despite these interactions, astrocytes are considered to be electrically non-excitable. The 

electrophysiological current pattern in response to voltage steps is referred to as “passive” 

as it is dominated by time- and voltage-independent K+ conductances (Steinhäuser et al., 

2013). However, astrocytes display extensive Ca2+ signaling via which they mediate several of 

their remarkable properties (Volterra, 2013). 
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1.3.2 Oligodendrocytes 

Oligodendrocytes form myelin sheaths around axons of the CNS which increase the 

propagation speed of action potentials. Myelin sheaths are multilayered and compact cell 

protrusions that are mainly composed of lipids. These sheaths are interrupted by the nodes 

of Ranvier which are small unmyelinated regions with a high density of voltage-gated Na+ 

channels (Butt, 2013). Due to the strong electrical insulation by the myelin sheaths, action 

potentials are propagated from node to node, a process known as saltatory conduction. This 

does not only lead to a drastic increase in conduction velocity but also saves energy since the 

area of depolarization is confined to the nodes of Ranvier and energy consuming restoration 

of the resting potential is therefore locally restricted (Nave, 2010). Besides acting as an 

insulator, myelin sheaths also have neuroprotective and neurotrophic functions, as it was 

shown that oligodendrocytes supply axons directly with energy, proteins and RNA (White 

and Krämer-Albers, 2014). 

Based on the axon diameter and the number of axons they myelinate, two groups of 

oligodendrocytes are distinguished. These are named type I/II and type III/IV referring to the 

original classification by Pío del Río-Hortega. Type I/II oligodendrocytes comprise the larger 

group frequently present in gray and white matter. They exhibit small somata and myelinate 

10-30 small axons with a diameter of less than 2 µm. Type III/IV oligodendrocytes have 

larger cell bodies and myelinate only 1-5 axons with large diameters (Butt, 2013). 

1.3.3 Microglia 

Microglial cells are abundantly distributed in the entire brain and constitute the immune 

system of the CNS. Under physiological conditions they exhibit a small cell soma with highly 

ramified processes (Kirchhoff, 2013). These processes are very motile and equipped with a 

variety of neurotransmitter and cytokine receptors enabling microglia to survey their local 

environment (Noda and Verkhratsky, 2013). Whenever a pathogenic condition is detected, 

microglia get activated. In this state, their morphology gets hypertrophic with thicker 

processes. Furthermore, they proliferate to increase their number, migrate to the origin of 

interference, produce and release cytokines and phagocytize foreign bodies to act as 

antigen-presenting cells for invading T-cells (Miller et al., 2013; Owens, 2013). However, 
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microglial cells also serve important functions in the healthy brain where they remove 

cellular debris and regulate synapse formation and synaptic efficacy (Kirchhoff, 2013). 

1.3.4 NG2 cells 

In the past decades, NG2 cells emerged as a fourth type of glial cells. Initially, NG2 cells were 

discovered in cell culture experiments as a group of cells that displayed neuronal (N) and 

glial (G) properties as they exhibited voltage-gated ion channels but were unable to fire 

action potentials. As these NG cells were specifically detected by the NG-antiserum number 

2, they were referred to as NG2 cells (Wilson et al., 1981; Stallcup, 1981). The target of this 

antiserum was later found to be the NG2 protein, a cell-surface proteoglycan (detailed 

information about the NG2 protein in section 1.7) (Nishiyama et al., 1991). Today it is known 

that the NG2 protein is also expressed by vascular pericytes in the CNS and by different 

immature mesenchymal stem cells of other organs (Nishiyama et al., 2009). However, in the 

brain NG2 cells may easily be distinguished from pericytes by their location close to blood 

vessels and their different morphology. 

NG2 cells are abundantly distributed in white and gray matter areas of the developing and 

adult CNS. They constitute 8-9% of cells in white matter and 2-3% in gray matter regions 

(Dawson et al., 2003). Their morphology resembles in many ways that of microglia. In gray 

matter, they typically display a small and round soma with a diameter of about 10 µm with 

several radial processes that were shown to be highly dynamic (Haberlandt et al., 2011; 

Hughes et al., 2013). In white matter areas, NG2 cell somata are more elongated and their 

processes orientate along axonal projections. The morphology of a gray matter NG2 cell as 

compared to an astrocyte is depicted in Fig. 3.1 (section 3.1.1). 

During development, NG2 cells populate the entire forebrain in three waves where they 

migrate over considerable distances from different growing zones. Intriguingly, if one of 

these populations is ablated, the remaining cells increase proliferation and finally reach a 

density comparable to controls (Kessaris et al., 2006). This illustrates one of the remarkable 

features of NG2 cells. Throughout life, they keep the ability to proliferate and differentiate. 

As a consequence, NG2 cells are frequently referred to as oligodendrocyte precursor cells 

(OPCs), since numerous studies demonstrated their potential to generate oligodendrocytes 

during postnatal myelination and in response to demyelinating diseases (Kang et al., 2010; 
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Zhu et al., 2011). Other studies even showed that NG2 cells are able to generate astrocytes 

or neurons under certain circumstances (Zhu et al., 2008; Rivers et al., 2008; Dimou et al., 

2008). Due to this fact, they were initially considered to be solely progenitor cells. However, 

the density of NG2 cells stays constant throughout life and they retain the ability to 

proliferate and differentiate even after myelination is complete. Thus, NG2 cells comprise by 

far the biggest population of proliferating cells outside the neurogenic niches in the adult 

CNS (Dawson et al., 2003). This supports the notion that NG2 cells display an own class of 

glial cells with a yet unknown function in the healthy adult brain. 

The electrophysiological properties of NG2 cells were studied by several groups in detail. It 

was shown that NG2 cells express different types of voltage-gated K+ and Na+ channels albeit 

at lower densities compared to neurons (Kressin et al., 1995; De Biase et al., 2010; 

Maldonado et al., 2013). This set of ion channels accounts for the characteristic complex 

current pattern of NG2 cells (Steinhäuser et al., 1994a; Steinhäuser et al., 1994b). During 

development, an increase in the expression of Kir channels was observed (Kressin et al., 

1995; Bordey and Sontheimer, 1997; Maldonado et al., 2013). Due to this comparably high 

K+ conductance, the resting potential of NG2 cell is hyperpolarized compared to neurons 

(around -80 mV). Although it was suggested that there is a class of spiking NG2 cells that are 

able to fire action potentials (Karadottir et al., 2008), this property was never observed by 

plenty of other studies and is therefore not recognized as a common feature of NG2 cells (De 

Biase et al., 2010). Beyond K+ and Na+ channels, NG2 cells also express voltage-gated Ca2+ 

channels, which constitute one of their various Ca2+ signaling pathways (Akopian et al., 1996; 

Haberlandt et al., 2011). Moreover, NG2 cells express ionotropic receptors for the major 

neurotransmitters of the CNS, glutamate and GABA (Bergles et al., 2010). 

The most fascinating property of NG2 cells, however, is that they receive direct synaptic 

input from glutamatergic and GABAergic neurons (Bergles et al., 2000; Lin and Bergles, 2004; 

Jabs et al., 2005). Moreover, this finding is not limited to a subpopulation of NG2 cells or a 

specific brain region. Instead, it is a common feature of NG2 cells throughout the CNS (De 

Biase et al., 2010). Even in white matter regions that are mainly composed of axonal tracts 

and free of classical synapses, a new mode of vesicular release from unmyelinated axons 

onto NG2 cells was discovered (Ziskin et al., 2007; Kukley et al., 2007). These results 

challenged the long accepted concept of synaptic transmission being an exclusively neuronal 
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feature. However, the function of this synaptic input is largely unknown so far. What is 

known is that these synapses are transferred to daughter cells when NG2 cells proliferate 

(Kukley et al., 2008; Ge et al., 2009) and are disassembled as soon as the cells start to 

differentiate (Kukley et al., 2010; De Biase et al., 2010). Furthermore, glutamatergic as well 

as GABAergic innervation is excitatory in NG2 cells (Lin and Bergles, 2004; Tong et al., 2009). 

This is in contrast to neurons, where a switch from an excitatory to an inhibitory action of 

GABA was shown during development due to a change in the intracellular Cl- concentration 

([Cl-]i) (Cherubini et al., 1991). Generally, synaptic currents or potentials are small and occur 

at a low frequency compared to neurons (Bergles et al., 2010). A few studies tackled the 

question of the role of neurotransmitter receptors and synaptic innervation in NG2 cells. In 

earlier studies it was shown that glutamate increases migration speed but inhibits 

proliferation and differentiation of NG2 cells to oligodendrocytes (Gallo et al., 1996; Yuan et 

al., 1998; Gudz et al., 2006). A recent study uncovered that decreased glutamatergic synaptic 

innervation increased the proliferation of NG2 cells in the barrel cortex (Mangin et al., 2012). 

Although the final proof is still missing, these data strongly suggest that glutamatergic 

signaling influences NG2 cell proliferation and differentiation in an activity-dependent 

manner. Furthermore, GABA-induced chemotactic migration was observed in hippocampal 

NG2 cells (Tong et al., 2009), suggesting a role for GABAA receptor activation in migration of 

these cells. 

Despite all these promising indications, the function of synaptic transmission onto NG2 cells 

is still enigmatic. Even the very existence of NG2 cells in the adult brain is obscure. A recent 

study showed in vivo that NG2 cells maintain unique territories by self-avoidance causing an 

even distribution throughout the brain. As soon as an NG2 cell is lost due to differentiation 

or ablation, it is immediately replaced by proliferation of a nearby cell (Hughes et al., 2013). 

There must be a good reason for such an effort to maintain a stable and uniform distribution 

of these cells throughout the CNS that we yet do not understand. 

Due to the intermediate phenotype of NG2 cells with neuronal and glial properties, their 

differentiation potential and their electrophysiological properties, different names occurred 

for NG2 cells in the literature of the past decades such as complex cells, synantocytes, 

polydendrocytes or OPCs (Bergles et al., 2010). Most of the recent studies including the 
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present one consistently use the term NG2 cells as nowadays the NG2 cell population is 

more clearly defined. 

1.4 Principles of synaptic transmission 

Chemical synapses are functional connections between cells where an electrical signal is 

passed from a presynaptic to a postsynaptic cell by transient conversion to a chemical signal. 

The synapse is an asymmetric structure as the information is passed unidirectionally from 

the presynaptic to the postsynaptic side. The presynaptic terminal of an axon, also called 

bouton, contains a highly specialized release machinery for neurotransmitter-filled vesicles. 

The postsynaptic side of a dendrite, also called spine, is characterized by a postsynaptic 

density which contains besides neurotransmitter receptors several modulatory and 

scaffolding proteins important for the dense clustering and function of the receptors. Pre- 

and postsynaptic side are separated by a 20-40 nm wide gap, the synaptic cleft. In a 

simplistic view, synaptic transmission at a chemical synapse includes the following steps. An 

action potential depolarizes the presynaptic terminal inducing the opening of voltage-gated 

Ca2+ channels. Invading Ca2+ causes the release of neurotransmitter-filled vesicles into the 

synaptic cleft. Upon binding of the agonist, postsynaptic neurotransmitter receptors open 

thereby facilitating the influx of cations in the postsynaptic compartment. The hereby 

evoked depolarizations from many synapses are integrated at the soma where they 

potentially generate a new action potential if the threshold is reached (Kandel et al., 2013).  

1.4.1 Properties of presynaptic vesicle release 

The vesicles on the presynaptic side can be assigned to one of three vesicle pools, namely 

the readily releasable pool, the recycling pool and the reserve pool. Vesicles of the readily 

releasable pool are docked to the membrane at the active zone of the presynaptic terminal 

where the release takes place. They are primed for release waiting for an increase in Ca2+ 

concentration to induce vesicle fusion. The vesicles of the recycling pool are meant to refill 

the readily releasable pool and are therefore important to maintain neurotransmitter 

release in response to continuous activity. This pool is constantly recycling by delivering 

vesicles to the active zone while getting refilled by recycling vesicles. However, the majority 
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of vesicles are located in the reserve pool, a rather immobile fraction of vesicles bound to 

scaffolding proteins. Under experimental conditions these vesicles are only mobilized in 

response to enduring high frequency stimulation when the other two pools are completely 

depleted. The exact role and dynamics of the reserve pool under physiological conditions in 

vivo remain uncertain so far. However, recent studies suggest that a frequent exchange 

between the recycling and reserve pool exists (Rizzoli and Betz, 2005; Denker and Rizzoli, 

2010).  

The presynaptic site is the origin of a certain form of synaptic plasticity, namely short-term 

synaptic plasticity or paired-pulse plasticity. It describes the phenomenon that the amount 

of released transmitter may vary in response to two closely spaced stimuli. In this respect, 

the paired-pulse facilitation where more neurotransmitters are released on the second 

stimulus is distinguished from the paired-pulse depression showing reduced neuro-

transmitter release on the second stimulus. Whether a synapse displays facilitation or 

depression is mainly determined by the release probability of the presynaptic bouton. This 

release probability is defined by the chance that a readily releasable vesicle will fuse upon an 

initial stimulus which is mainly determined by presynaptic Ca2+ dynamics and properties of 

the vesicle pools (Regehr, 2012).  

In case the release probability is low, only a minority of readily releasable vesicles will fuse 

upon an initial stimulus. An immediate second stimulation leads to an additional increase of 

the presynaptic Ca2+ concentration as it is not yet back to baseline from the first stimulus. 

Due to the higher Ca2+ concentration and the fact that the majority of readily releasable 

vesicles is still available, more vesicles fuse and therefore more neurotransmitter is released 

into the synaptic cleft in response to the second stimulus. The resulting larger postsynaptic 

current (PSC) on the second compared to the first pulse is referred to as paired-pulse 

facilitation. 

In case the release probability is high, the majority of vesicles will fuse on the first stimulus. 

Although the Ca2+ concentration is again increased on an immediate second stimulus, only a 

minority of readily releasable vesicles is left. Consequently, their fusion evokes a smaller 

amplitude on the second stimulus which is termed paired-pulse depression (Regehr, 2012).  
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Short-term synaptic plasticity was considered to be an entirely presynaptic feature due to its 

dependence on the release probability. However, postsynaptic properties such as receptor 

saturation and desensitization may alter the degree of facilitation or depression measured 

(Regehr, 2012). Furthermore, it was demonstrated that even postsynaptic proteins like the 

synaptic cell adhesion proteins neuroligins may influence presynaptic transmitter release 

(Futai et al., 2007). 

Interestingly, vesicle fusion also occurs in the absence of action potential-driven Ca2+ 

elevations due to spontaneous fusion at the active zone. These currents are considered to be 

quantal, meaning that they arise from the fusion of a single vesicle. Assuming that in average 

the neurotransmitter content of a vesicle is constant, the amplitude of the corresponding 

PSC provides information about the receptor density in the postsynaptic membrane as the 

current amplitude largely depends on the amount of neurotransmitter available, at least at 

sub-saturating concentrations. These currents are referred to as miniature PSCs (mPSCs) and 

may be measured in the presence of tetrodotoxin (TTX), a well-characterized blocker of 

voltage-gated Na+ channels that effectively prevents action potential generation (Vautrin 

and Barker, 2003). 

1.4.2 Properties of PSCs 

Neurotransmitter released from the presynaptic terminal diffuse through the synaptic cleft 

to activate postsynaptic receptors. The kinetic properties of the PSCs are influenced by a 

variety of factors. A typical PSC is commonly characterized by two kinetic components, the 

rise time and the decay time. Neurotransmitter receptors are clustered at a high density in 

the postsynaptic membrane. Upon transmitter release, these receptors bind the ligand 

almost synchronously leading to a steep rising phase of the PSC which is referred to as the 

rise time. Regarding the closure or inactivation of the receptors, two receptor properties 

may be distinguished. Deactivation is the process of channel closure after removal of the 

agonist (Fig. 1.4A). Desensitization in contrast describes the channel closure in the 

maintained presence of the agonist (Fig. 1.4B). For most synapses an intermediate state 

between deactivation and desensitization applies which is considered as the decay time 

(Guzman and Jonas, 2010).  
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The relationship between deactivation and desensitization implies that the decay time 

critically depends on the time-course of neurotransmitter concentration in the synaptic cleft. 

This in turn depends on diffusion parameters, the microanatomical structure and the 

removal of neurotransmitter from the synaptic cleft (Jonas, 2000). The latter is also 

mediated by neurotransmitter transporters on astrocytic processes that tightly wrap the 

synapse. Astrocytes are thus able to actively modify the PSC response (Volterra, 2013). 

Kinetic properties of PSCs also depend on the receptors themselves which are introduced in 

the following section. Detailed information about the experimental characterization of PSCs 

is given in section 4.1.9.  

1.5 Neurotransmitter receptors 

Two classes of neurotransmitter receptors are distinguished. Ionotropic receptors are ligand-

gated ion channels that open a pore in the cell membrane permeable for certain ions in 

response to binding of the corresponding ligand. Metabotropic receptors in contrast are 

G protein-coupled receptors that activate intracellular signaling cascades upon binding of 

the specific ligand. Neurons as well as glial cells are equipped with a variety of 

neurotransmitter receptors (Kandel et al., 2013).  

In the present study, ionotropic AMPA and GABAA receptors were investigated in NG2 cells 

and will be introduced in this section. 

1.5.1 AMPA receptors 

The endogenous agonist of AMPA receptors is glutamate, the most frequent 

neurotransmitter in the CNS. Glutamate primarily acts as an excitatory neurotransmitter, 

although it may also mediate inhibition depending on the type of receptor. AMPA receptors 

are composed of the four subunits GluA1-4 that assemble in different combinations to form 

a tetrameric receptor (Fig. 1.3). The four subunits display the same general structure 

including an extracellular N-terminal domain that modulates receptor assembly, one ligand-

binding site, three transmembrane domains and a reentrant loop that lines the pore and a 

cytoplasmic C-terminal domain (Fig. 1.3A). The C-terminus of each subunit interacts with 

specific proteins that influence the trafficking and anchoring of the receptor in the 
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postsynaptic density. The subunits GluA2/3 for example specifically bind to the glutamate 

receptor-interacting protein (GRIP) which is important for the stabilization of the receptor in 

the postsynaptic density (Palmer et al., 2005; Traynelis et al., 2010).  

 

 

Fig. 1.3 Molecular structure of AMPA receptors. (A) Schematic of the general structure of an AMPA 
receptor subunit including extracellular N-terminal domain, glutamate (Glu) binding site, three 
transmembrane domains and a reentrant loop lining the pore, cytoplasmic C-terminal domain, 
flip/flop site of alternative splicing and Q/R and R/G site which are targets for RNA editing (Guzman 
and Jonas, 2010). (B) Crystal structure of a homomeric GluA2 AMPA receptor. The large amino-
terminal domain (ATD) which is important for receptor assembly, the ligand-binding domain (LBD) 
and the transmembrane domain (TMD) are displayed. Each subunit is in different color (Sobolevsky 
et al., 2009). 

All subunits are subject to intensive posttranscriptional modifications that influence the 

receptor assembly as well as the properties of the functional receptor. As a result of 

alternative splicing all subunits occur in a so called ‘flip’ or ‘flop’ form which display 

differences in receptor kinetics and trafficking (Fig. 1.3A). ‘Flop’ versions were shown to 

deactivate and desensitize more rapidly compared to the ‘flip’ versions (Fig. 1.4). Another 

important modification occurring mainly at the GluA2-subunit of AMPA receptors is the RNA 

editing. A single nucleotide exchange at the so called Q/R site located in the pore region of 

the GluA2-subunit causes the substitution of the uncharged amino acid glutamine (Q) to the 

positively-charged arginine (R) (Fig. 1.3A). Due to the change in charge and size, GluA2-

containing AMPA receptors are impermeable for Ca2+ (Palmer et al., 2005; Traynelis et al., 

25 
 



Introduction 

 
2010). Presence of the GluA2 subunit has therefore significant functional consequences 

since Ca2+ is an important signaling molecule implicated in synaptic plasticity (Derkach et al., 

2007). Another target for RNA editing is the R/G site located in an extracellular loop (Fig. 

1.3A). Substitution of the arginine (R) to glycine (G) at this position also influences receptor 

current kinetics. Moreover, AMPA receptor subunits are subject to posttranslational 

modifications such as phosphorylation, glycosylation or palmitoylation that alter the channel 

current kinetics as well as trafficking of the receptors (Palmer et al., 2005; Traynelis et al., 

2010). 

In addition to the various posttranscriptional modification mechanisms, the properties of 

AMPA receptors are also influenced by auxiliary AMPA receptor subunits. Different families 

of these proteins were identified to date, namely transmembrane AMPA receptor regulatory 

proteins (TARPs), cornichon related proteins (CNIH) and cysteine-knot AMPA receptor 

modulating protein 44 (CKAMP44). These proteins have profound effects on gating kinetics, 

surface expression and pharmacology of AMPA receptors (Guzman and Jonas, 2010). The 

majority of auxiliary AMPA receptor subunits causes prolonged deactivation as well as 

desensitization times (Fig. 1.4). Interestingly, TARPs are also expressed by NG2 cells where 

they similarly modify the functional properties of glial AMPA receptors (Zonouzi et al., 2011). 

 

 

Fig. 1.4 Impact of alternative splicing and auxiliary subunits on AMPA receptor gating. 
(A) Deactivation was investigated using 1 ms glutamate pulses. Flip forms of AMPA receptor subunits 
as well as auxiliary AMPA receptor subunits prolong the deactivation time. (B) Desensitization was 
investigated using 100 ms glutamate pulses. Flip forms of AMPA receptor subunits as well as auxiliary 
AMPA receptor subunits except CKAMP44 prolong the desensitization time. Modified from Guzman 
and Jonas (2010). 
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The expression of AMPA receptor subunits varies depending on cell type and brain region. In 

the adult hippocampus, the majority of neuronal AMPA receptors are composed of the 

subunit combination GluA1/2 and to a lower extent of GluA2/3, thus displaying rather low 

Ca2+ permeability under baseline conditions (Lu et al., 2009). AMPA receptors are also 

expressed by all major classes of glial cells. Especially NG2 cells that are innervated by 

glutamatergic neurons display extensive AMPA receptor signaling (Bergles et al., 2010). For 

juvenile hippocampal NG2 cells an intermediate Ca2+ permeability of AMPA receptors was 

demonstrated while cells from older animals were more uniform with lower Ca2+ 

permeability. In the same study, single-cell RT-PCR expression analysis revealed that the 

majority of NG2 cells expressed the subunits GluA1, 2 and 4 during postnatal development 

(Seifert et al., 2003). Ca2+-permeable AMPA receptors were also observed in NG2 cells of the 

cerebellum and corpus callosum (Lin et al., 2005; Ziskin et al., 2007). With respect to their 

function in NG2 cells, Ca2+-permeable AMPA receptors were shown to mediate long-term 

potentiation of hippocampal neuron-NG2 cell synapses (Ge et al., 2006b).  

During differentiation of NG2 cells to oligodendrocytes, glutamatergic synapses are 

disassembled. However, oligodendrocytes still express functional AMPA receptors albeit at 

lower levels (De Biase et al., 2010; Kukley et al., 2010). Furthermore, AMPA receptor-

mediated currents were measured in astrocytes of various brain regions (Kettenmann and 

Zorec, 2013). Surprisingly, classical astrocytes of the hippocampus completely lack AMPA 

receptors (Matthias et al., 2003). The rich repertoire of neurotransmitter receptors 

expressed by microglia also includes AMPA receptors. All four subunits were detected in 

microglia in vitro (Noda and Verkhratsky, 2013).  

1.5.2 GABAA receptors 

GABAA receptors are ligand-gated ion channels mainly permeable for Cl- ions when activated 

by their endogenous ligand GABA. Sixteen subunits have been identified in the mammalian 

CNS, namely α1-6, β1-3, γ1-3, δ, ε, θ and π, which assemble in different combinations to 

form a pentameric receptor. Another three subunits of ionotropic GABA receptors were 

identified (ρ1-3) that are sometimes referred to as GABAC receptors, as they do not co-

assemble with the other GABAA receptor subunits. A more recent nomenclature, however, 

recommends designating them ‘GABAA-ρ receptors’. However, they are mainly expressed in 
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the retina and not in focus of the present study (Olsen and Sieghart, 2009). All subunits 

share a common structure including an extracellular N-terminal domain, four 

transmembrane domains with a large intracellular loop between transmembrane domain 

three and four and a short extracellular C-terminal domain (Fig. 1.5A) (Hevers and Luddens, 

1998; Jacob et al., 2008). 

The minimum requirement for a functional GABAA receptor is the presence of α- and β-

subunits that form the binding site for GABA. Further studies revealed that native GABAA 

receptors largely display the following stoichiometry of subunits: 2α, 2β and 1γ or 1δ (Olsen 

and Sieghart, 2009). As a consequence, each GABAA receptor contains two GABA binding 

sites, each located at the interface of α- and β-subunit. Beyond that, several allosteric 

binding sites for different modulators and blockers were identified on GABAA receptors 

which include but are not limited to benzodiazepines, barbiturates and Zn2+ (Fig. 1.5B). The 

occurrence of these binding sites and the degree of modulation by a certain substance 

critically depend on the subunit composition of the particular GABAA receptor. 

Pharmacological modulation with specific compounds therefore allows the functional 

identification of the GABAA receptor subunit composition. The best studied allosteric 

interaction site is the benzodiazepine binding site located at the interface of α- and γ-

subunit. Several modulators have been characterized that specifically bind to this site 

including the benzodiazepine diazepam, the non-benzodiazepine zolpidem or the β-

carboline methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM). They display 

differential modulatory effects depending on the particular α- and γ-subunits. The β-

subunits contain the barbiturate binding site which is among others a target of the 

barbiturate pentobarbital. Another modulator acting on β-subunits is loreclezole although 

binding to another site as pentobarbital (Hevers and Luddens, 1998; Mehta and Ticku, 1999). 

Zn2+ is an endogenous inhibitor of GABAA receptors that recognizes three different binding 

sites. One of them is located in the receptor pore while the two others are at the interface 

between α- and β-subunit. The modulatory effect of Zn2+, however, depends on the 

presence of a γ-subunit since this incorporation disrupts two of the binding sites (Hosie et 

al., 2003). More detailed information about the modulatory action of the various modulators 

is given in the corresponding results and discussion sections (section 5.1 and 6.1). 

28 
 



Introduction 

 
The most abundant GABAA receptor expressed in the mammalian CNS displays the subunit 

composition α1β2γ2 (Pirker et al., 2000; Olsen and Sieghart, 2009). However, the subunit 

composition varies between different brain regions, types of neurons and individual cells 

and was shown to effect the subcellular localization of GABAA receptors. They may either be 

targeted to postsynaptic densities to mediate phasic currents or to extrasynaptic regions to 

mediate tonic currents (Farrant and Nusser, 2005). In this respect the γ2-subunit is of 

particular interest as it was shown to be crucial for clustering and anchoring of GABAA 

receptors in the postsynaptic density (Essrich et al., 1998; Schweizer et al., 2003). 

Consequently, the γ2-subunit is a common part of synaptic GABAA receptors while being less 

frequent in extrasynaptic ones. 

 

 

Fig. 1.5 Molecular structure and modulatory binding sites of GABAA receptors. (A) Schematic of the 
general structure of a GABAA receptor subunit including extracellular N-terminal domain, four 
transmembrane domains (TM) with a large intracellular loop between TM3 and 4 and a short 
extracellular C-terminal domain. TM2 of each subunit lines the ion pore (Jacob et al., 2008). 
(B) Structure of a pentameric GABAA receptor displaying the frequent subunit combination: 2α-, 2β- 
and 1γ-subunit. The GABA-binding sites are located at the interface of α- and β-subunits, the 
benzodiazepine (BZ)-binding site at the interface of α- and γ-subunit and the barbiturate (BT)-binding 
site on the β-subunits. Loreclezole binds to β-subunits, Zn2+ inside the pore and at the interface of α- 
and β-subunits. Modified from Belelli and Lambert (2005). 

Apart from neurons, functional GABAA receptors were also identified in glial cells. Several 

studies demonstrated GABA-evoked currents in NG2 cells of different brain regions (von 

Blankenfeld et al., 1991; Steinhäuser et al., 1994a; Williamson et al., 1998). Since the 
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discovery of GABAergic innervation of NG2 cells it is known that GABAA receptors are also 

located in synaptic clusters in these cells (Lin and Bergles, 2004; Jabs et al., 2005; Velez-Fort 

et al., 2010). After maturation of NG2 cells to oligodendrocytes, GABAA receptor currents are 

still detectable although to a lower extent (Gallo and Mangin, 2013). Astrocytes of different 

brain regions were also shown to express functional GABAA receptors (Kettenmann and 

Zorec, 2013), which is in contrast to microglia where GABAA receptor-mediated currents 

have never been detected (Noda and Verkhratsky, 2013).  

GABA is commonly considered to be the most frequent inhibitory neurotransmitter in the 

CNS. Although this is not entirely wrong, it is misleading in a way as it critically depends on 

the [Cl-]i. In fact, several studies demonstrated that GABA is excitatory in developing neurons 

(Cherubini et al., 1991). The switch from an excitatory/depolarizing to an inhibitory/ 

hyperpolarizing action during the first two postnatal weeks is due to a change in [Cl-]i. The 

upregulation of the K+-Cl- cotransporter 2 (KCC2) that transports Cl- out of the cell and the 

downregulation of the Na+-K+-Cl- cotransporter 1 (NKCC1) that transports Cl- into the cell 

causes a reduction in [Cl-]i and thereby changes the driving force of Cl- (Rivera et al., 1999; 

Stein et al., 2004; Yamada et al., 2004; Khirug et al., 2008).  

A depolarizing action of GABA also applies to NG2 cells. Furthermore, unlike neurons, GABA 

remains excitatory in NG2 cells during development (Lin and Bergles, 2004; Tong et al., 2009; 

Tanaka et al., 2009).  

1.6 Synaptic cell adhesion molecules – the neuroligin-neurexin 

complex 

The coordinated assembly and maintenance of the synaptic microarchitecture is critical for 

efficient synaptic transmission. Synaptic cell adhesion molecules are transmembrane 

proteins in pre- and postsynaptic specializations. They directly interact with each other 

thereby bridging the synaptic cleft. However, this connection is far more than a mechanical 

link. Synaptic cell adhesion molecules were shown to modulate formation, maturation, 

specificity, function and plasticity of synapses, making them important components of the 

highly specialized synaptic junction. Several different synaptic cell adhesion molecules were 

identified such as neurexins and neuroligins, ephrin-B receptors and ephrin-Bs, synaptic cell 
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adhesion molecule (SynCAM), neural cell adhesion molecule (NCAM) and cadherins (Dalva et 

al., 2007; Missler et al., 2012). This section will introduce properties and functions of 

neurexins and neuroligins. 

 

Presynaptic neurexins and their postsynaptic binding partners neuroligins display the best 

characterized group of synaptic cell adhesion molecules. Although only three neurexin genes 

exist in mammals they display an incredible diversity. All three genes exhibit two promotors 

each giving rise to a long form called α-neurexin and a short form named β-neurexin. 

Alternative splicing at five sites as well as N- and O-glycosylation additionally increase the 

diversity. Similarly, neuroligins are transcribed from five different genes and are equally 

subject to alternative splicing and posttranslational modifications. Both, neurexins and 

neuroligins, are characterized by a large extracellular N-terminal domain important for the 

interaction with one another, a single transmembrane region and a relatively short 

cytoplasmic C-terminus that terminates in postsynaptic density 95/discs large/zonula-

occludens-1 (PDZ) domain-binding sites that mediate the interaction with a variety of 

intracellular communication partners. α-Neurexins contain extracellularly six laminin 

G/neurexin/sex hormone binding globulin (LNS) domains which are common protein 

interaction domains that mediate the transsynaptic binding of neurexins to neuroligins and 

other binding partners (Fig. 1.6A, B) (Craig and Kang, 2007; Missler et al., 2012). 

Several studies suggest that neuroligins as well as neurexins are critical determinants of 

synaptogenesis as both are able to induce synapse formation when expressed in non-

neuronal cells (Scheiffele et al., 2000; Graf et al., 2004; Nam and Chen, 2005). Also, 

overexpression of neuroligins in cultured neurons increased the number of functional 

synapses, an effect that was blocked when soluble neurexin was added to the culture 

(Prange et al., 2004; Levinson et al., 2005). Surprisingly, studies investigating knockout 

animals of all neuroligins or neurexins, respectively, revealed that synapse number was 

unchanged but synaptic transmission was disturbed due to a dysfunction of presynaptic Ca2+ 

channels causing early postnatal lethality (Missler et al., 2003; Varoqueaux et al., 2006). 

These results suggest that the neuroligin-neurexin complex is necessary for normal synapse 

function but not for the formation of synapses. However, this idea was reconsidered by a 

recent quite elegant study. By selectively reducing or increasing the expression of neuroligin-

31 
 



Introduction 

 
1 in single cells in vivo, the authors were able to show that neuroligin-1 does influence the 

number of synapses. However, this was not dependent on the absolute but instead on the 

relative expression level of neuroligin-1 compared to neighboring cells revealing a 

transcellular competitive mechanism of synapse formation for neuroligin-1 (Kwon et al., 

2012). Other studies demonstrated that neuroligins are involved in synapse specificity. 

Neuroligin-1 is almost exclusively present in glutamatergic synapses (Song et al., 1999), 

neuroligin-2 is mainly located in GABAergic synapses (Fig. 1.6B) (Varoqueaux et al., 2004), 

while neuroligin-3 was found to be present in both, glutamatergic and GABAergic synapses 

(Budreck and Scheiffele, 2007). Neuroligin-4 is considered to be specific for glycinergic 

synapses throughout the brain (Hoon et al., 2011). Besides contributing to the specificity of 

synapses, neuroligins were also implicated in the maturation of these synapses (Varoqueaux 

et al., 2006; Wittenmayer et al., 2009). Furthermore, it was shown that presynaptic 

neurexins are able to regulate the postsynaptic AMPA receptor density (Aoto et al., 2013), 

while postsynaptic neuroligins may regulate the presynaptic release probability (Futai et al., 

2007). This demonstrates that pre- and postsynapse are functionally connected via the 

neuroligin-neurexin complex which allows transsynaptic bidirectional communication.  

1.7 The NG2 protein 

The initial description of the molecular structure of the NG2 protein revealed that it belongs 

to the group of chondroitin sulfate proteoglycans (CSPGs) (Nishiyama et al., 1991). 

Proteoglycans are generally characterized by a core protein that is heavily glycosylated via 

the attachment of glycosaminoglycans (GAGs). In case these GAGs are sulfated, the 

corresponding proteins are referred to as CSPGs. After its initial discovery in rats, NG2 

homologs were detected among others in mice (AN2) (Niehaus et al., 1999; Schneider et al., 

2001) and in humans (melanoma chondroitin sulfate proteoglycan, MCSP) (Pluschke et al., 

1996). The mammalian NG2 protein is encoded by a single gene (CSPG-4). The resulting 330 

kDa protein consists of 2327 amino acids. Due to the lack of alternative splicing, the NG2 

protein presumable occurs in one isoform only (Trotter et al., 2010).  

Structurally, the NG2 protein is composed of a large extracellular N-terminal domain, a single 

transmembrane region and a short C-terminal cytoplasmic tail (Fig. 1.6C). Several structural 
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characteristics of these domains were predicted based on the amino acid sequence. The 

extreme N-terminal region is stabilized by intramolecular disulfide bridges. More importantly 

this region contains two LNS domains which represent common protein interaction domains. 

However, explicit binding partners for this domain in NG2 cells have not been determined so 

far. The central part of the NG2 protein contains a collagen binding domain as well as the 

single chondroitin sulfate chain. The lower third of the extracellular domain contains N-

linked oligosaccharides as well as sites for proteolysis of the ectodomain. The regulation and 

role of this proteolysis is unknown so far but might exhibit some important physiological or 

pathophysiological function. It also causes the deposition of NG2 on other cell types which 

might have led to false identification of NG2-positive cells in earlier studies. The cytoplasmic 

C-terminal region contains two functionally relevant structures, a PDZ-binding motif and 

several phosphorylation sites. The PDZ domain of the NG2 protein was shown to be 

recognized by the scaffolding proteins MUPP1, syntenin-1 and GRIP. The phosphorylation 

sites are targeted by protein kinase C α and extracellular-signal-regulated kinase that were 

both shown to influence the physiology of NG2 cells (Fig. 1.6C) (Makagiansar et al., 2007; 

Stallcup and Huang, 2008). 

The NG2 protein was initially discovered on the surface of cells with neuronal (N) and glial 

(G) properties, cells today known as NG2 cells (section 1.3.4) (Wilson et al., 1981; Stallcup, 

1981). Further studies revealed that the NG2 protein is frequently expressed by different 

types of immature cells throughout the body, including chondrocytes, osteoblasts, 

myoblasts and epidermal stem cells. In the brain, the NG2 protein is expressed by NG2 cells 

and vascular pericytes (Nishiyama et al., 2009). However, under pathological conditions a 

massive upregulation of NG2 expression was observed, e.g. in many gliomas, suggesting a 

role for NG2 in glioma progression (Stallcup and Huang, 2008). 
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Fig. 1.6 Structure and function of neurexins, neuroligins and the NG2 protein. (A) Structure of         
α-neurexin-1 (αNRX-1, top) showing the large extracellular N-terminal domain containing six LNS 
domains and several sites of alternative splicing (arrows). The single transmembrane domain (TMD) 
is followed by the cytoplasmic C-terminal region containing a PDZ-binding motif. Bottom panel 
depicts structure of neuroligin-1 (NLG-1) including the two splice regions A and B. E, epidermal 
growth factor-like sequence; S, carbohydrate attachment site. (B) Localization of neuroligins (NLG) 
and neurexins (NRX) at excitatory (left) and inhibitory (right) synapses. (A) and (B) modified from 
Dalva et al. (2007). (C) Structure of the NG2 protein. The extracellular N-terminal domain exhibits 
two LNS domains, a central collagen-binding domain, a single chondroitin sulfate chain and 
proteolytic cleavage sites. The intracellular C-terminal domain contains several phosphorylation sites 
(P) and a single PDZ-binding motif. Modified from Stallcup and Huang (2008). 

Several functions have been assigned to the NG2 protein. Due to its binding to components 

of the extracellular matrix (Burg et al., 1996; Tillet et al., 2002) and its intracellular 

interaction via scaffolding proteins with the cytoskeleton, many studies were able to 

demonstrate a role for NG2 in cytoskeletal reorganization, polarization and directional 

migration (Niehaus et al., 1999; Fang et al., 1999; Makagiansar et al., 2004; Biname et al., 
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2013). Furthermore, it was shown that the NG2 protein is necessary for the correct function 

of the platelet-derived growth factor (PDGF) α receptor making it an important regulator of 

differentiation and proliferation of NG2 cells (Nishiyama et al., 1996; Goretzki et al., 1999; 

Fruttiger et al., 1999; Makagiansar et al., 2007). However, the intriguing finding that the NG2 

protein interacts intracellularly with GRIP which is a known binding partner of AMPA 

receptors attracted much less attention so far (Stegmüller et al., 2003). This observation in 

the context of the synaptic innervation of NG2 cells by neurons gave rise to the hypothesis 

that the NG2 protein might be important for the clustering of glial AMPA receptors in the 

postsynaptic density. Furthermore, the extracellular LNS domains of the NG2 protein are 

equally present in the synaptic cell adhesion proteins neurexins where they mediate the 

transsynaptic binding to presynaptic neuroligins (Fig. 1.6A, C) (section 1.6). Likewise, the 

NG2 protein might serve as a synaptic cell adhesion protein in NG2 cells by binding to a yet 

unknown neuronal binding partner (Trotter et al., 2010). The investigation of this hypothesis 

was a central part of the present study (section 5.3 and 6.2). 
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2 Aim of the study 

NG2 cells are equipped with a variety of ion channels and receptors (Bergles, 2013). 

Intriguingly, these cells receive direct synaptic input from glutamatergic and GABAergic 

neurons. However, in contrast to neuron-neuron synapses, our knowledge of the properties 

and physiological relevance of this unique type of neuron-glia communication is basal at best 

(Bergles et al., 2010). The present study aimed at acquiring a more detailed insight into 

elementary principles of glial neurotransmitter receptor and synapse physiology. Three main 

aspects ought to be investigated in detail. 

(i) Functional characterization of synaptic and extrasynaptic GABAA receptors in NG2 cells. 

In contrast to AMPA receptors and the glutamatergic innervation, much less in known 

about GABAA receptors and the GABAergic innervation (Bergles et al., 2010). The subunit 

composition of GABAA receptors determines critical aspects of their physiology. 

Therefore, the first part of the study aimed at identifying the subunit composition of 

GABAA receptors functionally expressed by hippocampal NG2 cells. From neurons it is 

known that GABAA receptors may mediate phasic synaptic currents as well as tonic 

extrasynaptic currents (Farrant and Nusser, 2005). Whether a similar differential 

subcellular distribution of GABAA receptors occurs in NG2 cells and how these receptors 

might vary in subunit composition was another target of this part of the study. Answers 

to these questions would provide an important basis to understand the function that 

these receptors serve in NG2 cells. 

 

(ii) Analysis of the GABAA receptor subunit expression pattern during postnatal development. 

In neocortical NG2 cells synaptic GABAergic innervation is replaced by a form of 

extrasynaptic GABAergic signaling during postnatal development (Velez-Fort et al., 

2010). Since the molecular basis of this transition is unclear, the second part of the 

present study aimed at investigating the GABAA receptor subunit expression pattern 

during postnatal development. Potential alterations that accompany the loss of direct 

synaptic innervation would provide important information about the characteristics of 

GABAergic synapses in NG2 cells.   
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(iii) Is the NG2 protein a critical component of neuron-NG2 cell synapses? 

Several critical aspects of synaptic transmission such as synapse formation, function and 

plasticity are mediated by transsynaptic cell adhesion proteins at neuron-neuron 

synapses (Dalva et al., 2007; Missler et al., 2012). How these fundamental processes are 

regulated at neuron-NG2 cell synapses is completely unknown. The NG2 protein itself 

was identified as a potential synaptic cell adhesion protein at glutamatergic neuron-NG2 

cell synapses as it  

(a) displays structural similarities to the synaptic cell adhesion proteins neurexins 

(section 1.6 and 1.7) (Trotter et al., 2010; Missler et al., 2012) 

(b) was shown to form a complex with AMPA receptors via the synaptic protein GRIP 

(Stegmüller et al., 2003). 

Based on these findings the hypothesis was raised that the NG2 protein might be an 

important regulator of neuron-NG2 cell synapse formation and clustering of AMPA 

receptors in the glial postsynaptic density (Trotter et al., 2010). This hypothesis ought to 

be tested in the third part of the present study by investigating glutamatergic synaptic 

transmission between neurons and NG2 cells in NG2 knockout compared to control 

mice.  
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3 Mouse models and materials 

3.1 Mouse models 

Within the framework of the present study three different transgenic mouse lines were 

used. Maintenance and handling of animals was according to European and local 

government regulations. Animals were kept and bred in-house at the “Haus für 

experimentelle Therapie” of the university hospital Bonn. All measures were taken to 

minimize the number of animals used. 

3.1.1 hGFAP-EGFP mice 

In this transgenic mouse line, the coding region of the enhanced green fluorescent protein 

(EGFP) is under control of a 2.2 kb fragment of the human glial fibrillary acidic protein 

(hGFAP) promotor (Nolte et al., 2001). Mice were generated from oocytes with the genetic 

FVB/N background. Expression of EGFP exhibits an overlap with GFAP immunoreactivity in 

the majority of cells while no colocalization with neuronal or oligodendroglial markers is 

detectable. However, the density of EGFP-positive cells varies drastically with only a subset 

of astrocytes being labeled in adult animals and different brain regions (Nolte et al., 2001).  

Initially, this mouse line was generated to specifically visualize astrocytes in living brain 

slices. Detailed analysis, however, revealed that two separate populations of glial cells are 

labeled by EGFP fluorescence in these animals. Cells with intense EGFP fluorescence display 

irregularly shaped cell bodies with highly branched processes, exhibit a passive current 

pattern with time- and voltage-independent conductances and express glutamate 

transporters but no receptors (Fig. 3.1A2). Accordingly, these cells have been named GluT 

cells. Another population of cells expresses lower levels of EGFP, features round cell bodies 

with fewer processes and displays a complex current pattern with time- and voltage-

dependent Na+ and K+ conductances (Fig. 3.1A1). As this population expresses glutamate 

receptors but no transporters, they have been termed GluR cells (Matthias et al., 2003). 

Another study demonstrated that GluT cells exhibit gap junctional coupling characteristic for 

astrocytes while GluR cells completely lack these intracellular connections (Wallraff et al., 

2004). Furthermore, it has been shown that GluR cells express the NG2 protein but not the 
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GFAP protein as opposed to GluT cells that are GFAP-positive but NG2 negative (Fig. 3.1) 

(Matthias et al., 2003; Jabs et al., 2005). These findings suggest that GluT cells represent 

classical astrocytes while GluR cells may be considered as NG2 cells. This assumption is 

further strengthened by the observation that GluR cells are innervated by glutamatergic and 

GABAergic neurons, which is unique for NG2 cells among all glial cell types (Jabs et al., 2005).  

 

 

Fig. 3.1 EGFP fluorescence labels two distinct populations of glial cells in hGFAP-EGFP mice. 
A weakly EGFP-positive GluR cell/NG2 cell with round cell body and few thin processes (A1) and a 
strongly EGFP-positive GluT cell/astrocyte with highly branched fine processes (A2) were filled with 
Texas Red-dextran during a whole-cell recording. The GluR cell/NG2 cell displayed a complex current 
pattern while the GluT cell/astrocyte exhibited a passive current pattern in response to de- and 
hyperpolarizing voltage steps between +20 and -160 mV (holding potential -80 mV) (A1 and A2 
middle panel, respectively). GluR cells/NG2 cells show immunoreactivity for NG2 (A1 middle and 
right panel) while GluT cells/astrocytes are NG2 negative (A2 middle and right panel). (r) NG2 signal 
in red, (g) Texas Red-dextran signal in green and (b) EGFP signal in blue (Jabs et al., 2005). 

hGFAP-EGFP mice were used for all experiments of section 6.1. In these cases, NG2 cells 

were unambiguously identified by morphology, low EGFP-expression and characteristic 

complex whole-cell current pattern. Homozygous mice were used for all experiments. 
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3.1.2 NG2-DsRed mice 

In this transgenic mouse line, the red fluorescent protein DsRed T1 is expressed under 

control of the NG2 promotor (Zhu et al., 2008). To achieve NG2 cell-specific expression 

without disrupting the endogenous NG2 gene, the bacterial artificial chromosome (BAC) 

modification technique was employed. BACs are DNA vectors that may carry large inserts 

including all regulatory elements necessary for cell type-specific expression. For the 

generation of the NG2-DsRed mouse line, a BAC containing the entire NG2 gene flanked by 

additional sequences on both sides of the gene was used. The DsRed T1 coding sequence 

was inserted into the first exon of the NG2 gene by homologous recombination in bacteria. 

The correctly modified BAC was then injected into oocytes with C57BL/6 genetic background 

that were subsequently transferred into pseudopregnant foster mothers. Analysis of 

transgenic NG2-DsRed mice revealed colocalization of DsRed and NG2 throughout the CNS, 

while no overlap with markers for other cell types was observed. However, as expected NG2-

expressing pericytes were also DsRed-positive, but were easily distinguishable from NG2 

cells by their close association to blood vessels and different morphology (Zhu et al., 2008).  

This mouse line therefore facilitates the faithful identification of NG2 cells without 

interfering with the endogenous expression of the NG2 protein. Heterozygous and 

homozygous mice were used in the present study (section 5.2). NG2 cells were identified by 

DsRed fluorescence and characteristic complex whole-cell current pattern. 

3.1.3 NG2-EYFP mice 

In order to obtain faithful fluorescent labeling of NG2 cells in mice, Karram et al. (2008) 

generated the NG2-EYFP knockin mouse line. They inserted the coding region of the 

enhanced yellow fluorescent protein (EYFP) into exon 1 of the NG2 gene by homologous 

recombination in mouse embryonic stem cells. Correctly modified embryonic stem cells 

were injected into blastocysts with C57BL/6 genetic background which were then 

transferred into pseudopregnant foster mothers. By inserting the EYFP sequence into exon 1 

of the NG2 gene, EYFP is under control of all regulatory elements facilitating highly specific 

expression of the fluorescent protein in NG2-expressing cells. However, at the same time 

expression of NG2 itself from the corresponding allele is disrupted. A heterozygous NG2-
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EYFP knockin therefore corresponds to a heterozygous NG2 knockout while a homozygous 

NG2-EYFP knockin results in a complete loss of NG2-expression. 

In heterozygous NG2-EYFP mice, all fluorescently labeled cells expressed the NG2 

proteoglycan as determined by immunostaining. These mice also showed reduced levels of 

NG2 protein in western blots of whole brain lysates. Homozygous NG2-EYFP mice obviously 

displayed a complete lack of NG2 protein in western blot and immunostaining. Colocalization 

of EYFP-positive cells with neuronal, astrocytic or microglial markers has never been 

observed. Electrophysiological whole-cell recordings also revealed that fluorescent cells 

displayed the characteristic complex current pattern of NG2 cells. Nevertheless, as described 

for the NG2-DsRed mouse, pericytes were also EYFP-positive but clearly distinguishable from 

NG2 cells by their close association to blood vessels and different morphology (Karram et al., 

2008). 

 

In the present study, mice were usually bred in heterozygous matings. The genotype was 

determined by genotyping PCR of tailtip biopsies as described in Karram et al. (2008) 

(performed by Gerald Seifert and staff members). NG2-EYFP mice of the three possible 

genotypes were investigated: wild type NG2 on both alleles (wt), heterozygous NG2 

knockout (+/-) and homozygous NG2 knockout (-/-) (section 5.3). In electrophysiological 

recordings, NG2 cells were unambiguously identified by their expression of EYFP and by the 

characteristic complex whole-cell current pattern in +/- and -/- mice. In wt mice, NG2 cells 

were initially selected by morphology as they typically display a relatively small and round 

cell soma. After establishing the whole-cell configuration, the characteristic complex current 

pattern was elicited to confirm cell identity. Additionally, the cytoplasm was harvested after 

the recording and a post-hoc single-cell RT-PCR for expression of the PDGFα receptor was 

performed as described in section 4.2. 
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3.2 Devices and software 

3.2.1 Devices 

A/D converter ITC-16 
(HEKA Elektronik, Lambrecht/Pfalz, Germany) 

Bath chamber/shifting table Base plate 500B, shifting table V240, bridge 500 
with control units SM-5 and -6 
(Luigs & Neumann, Ratingen, Germany) 

CCD camera VX45 
(Optronis, Kehl, Germany) 

Differential amplifier DPA-2FS 
(npi electronic, Tamm, Germany) 

Fluorescence system Polychrome II, 75W xenon lamp 
(Till Photonics, Martinsried, Germany) 

Glass pipettes Borosilicate glass GB150F-10 
(Science Products, Hofheim, Germany) 

Micromanipulators Micromanipulator 6540 R094 
with control unit 5171 
(Eppendorf, Hamburg, Germany) 
LN mini 25 
(Luigs & Neumann, Ratingen, Germany) 

Micropipette Puller P-87 
(Sutter Instrument, Novato, USA) 

Microscope  Axioskop FS2 
(Zeiss, Oberkochen, Germany) 

Objectives CP-Achromat (5x; NA: 0.12) 
(Zeiss, Oberkochen, Germany) 
LUMPlan FI/IR (60x; NA: 0.90) 
(Olympus, Tokio, Japan) 

Oscilloscope HM 507 
(Hameg, Mainhausen, Germany) 

Patch-clamp amplifier EPC-7 and -800  
(HEKA Elektronik, Lambrecht/Pfalz, Germany) 

PCR-Cycler PTC-200 
(Biozym, Hessisch Oldendorf, Germany) 

Pressure application system Octaflow 
(ALA Scientific Instruments, Farmingdale, USA) 
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Pulse stimulator Isolated Pulse Stimulator Model 2100 

(A-M Systems, Carlsborg, USA) 

Tubing pump ISM 930C 
(Ismatec/Idex, Wertheim, Germany)  

Vibration isolation platform Vision Isostation VIS-3036 
(Newport, Irvine, USA) 

Vibratome VT1000 S 
(Leica Microsystems, Wetzlar, Germany) 

3.2.2 Software 

IGOR Pro 6 
-> data analysis, figures 

WaveMetrics, Lake Oswego, USA 

Office 2010 
-> data analysis, figures 

Microsoft, Redmond, USA 

Origin Pro 9 
-> statistical analysis 

OriginLab, Northampton, USA 

pClamp 10 
-> mPSC detection 

Molecular Devices, Union City, USA 

TIDA 5 
-> electrophysiological 
recordings 

HEKA Elektronik, Lambrecht/Pfalz, Germany 

3.3 Chemicals 

Standard chemicals were purchased from AppliChem (Darmstadt, Germany), Roth 

(Karlsruhe, Germany) und Sigma-Aldrich (St. Louis, USA).  
 

Other chemicals and materials 
 

4-AP 
-> a-type K+ channel blocker 

Sigma Aldrich, St. Louis, USA 

BanI 
-> restriction endonuclease 

New England BioLabs, Ipswich, USA 

Bicuculline 
-> GABAA receptor antagonist 

Ascent (now: Abcam), Cambridge, UK 

CGP 55845 
-> GABAB receptor antagonist 

Tocris Bioscience, Bristol, UK 
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CNQX 
-> AMPA/kainate receptor antagonist 

Ascent (now: Abcam), Cambridge, UK 

Diazepam 
-> GABAA receptor modulator 

Sigma Aldrich, St. Louis, USA 

DMCM 
-> GABAA receptor modulator 

Sigma Aldrich, St. Louis, USA 

dNTPs 
-> for RT-PCR 

Applied Biosystems, Darmstadt, 
Germany 

DTT 
-> for RT-PCR 

Life Technologies, Karlsbad, USA 

First-Strand Buffer 
-> reaction buffer for RT 

Life Technologies, Karlsbad, USA 

GABA 
-> GABA receptor agonist 

Ascent (now: Abcam), Cambridge, UK 

Gabazine (SR-95531) 
-> GABAA receptor antagonist 

Ascent (now: Abcam), Cambridge, UK 

Gramicidin-A 
-> antibiotic for perforated patch recordings 

Sigma Aldrich, St. Louis, USA 

Ionomycin 
-> Ca2+ ionophore 

Ascent (now: Abcam), Cambridge, UK 

Loreclezole 
-> GABAA receptor modulator 

Sigma Aldrich, St. Louis, USA 

Low Molecular Weight DNA Ladder  
-> size marker for gel-electrophoresis 

New England BioLabs, Ipswich, USA 

MinElute PCR Purification Kit 
-> purification of PCR products 

Qiagen, Hilden, Germany 

Muscimol 
-> GABAA receptor agonist 

Ascent (now: Abcam), Cambridge, UK 

NBQX 
-> AMPA/kainite receptor antagonist 

Tocris Bioscience, Bristol, UK 

Nipecotic acid 
-> GABA transporter inhibitor 

Sigma Aldrich, St. Louis, USA 

PCR Buffer 
-> reaction buffer for PCR 

Life Technologies, Karlsbad, USA 

Pentobarbital 
-> GABAA receptor modulator 

Sigma Aldrich, St. Louis, USA 
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Phaclofen 
-> GABAB receptor antagonist 

Sigma Aldrich, St. Louis, USA 

фX174 HincII digest  
-> size marker for gel-electrophoresis 

Eurogentec, Liège, Belgium 

Picrotoxin 
-> GABAA receptor blocker 

Ascent (now: Abcam), Cambridge, UK 

Platinum® Taq Polymerase 
-> for RT-PCR 

Life Technologies, Karlsbad, USA 

PstI 
-> restriction endonuclease 

New England BioLabs, Ipswich, USA 

Random Hexamer Primer 
-> for RT-PCR 

Roche Applied Science, Mannheim, 
Germany 

RNasin® RNase Inhibitor 
-> for RT-PCR 

Promega, Madison, USA 

Superscript® III Reverse Transcriptase 
-> for RT-PCR 

Life Technologies, Karlsbad, USA 

Taq DNA Polymerase 
-> for RT-PCR 

Life Technologies, Karlsbad, USA 

TTX 
-> Na+ channel blocker 

Ascent (now: Abcam), Cambridge, UK 

Zolpidem 
-> GABAA receptor modulator 

Sigma Aldrich, St. Louis, USA 

3.4 Solutions 

3.4.1 Preparation solutions 

Preparation solution 1 
(hippocampus) 

NaCl  
KCl  
NaH2PO4  
MgCl2  
CaCl2  
NaHCO3  
Glucose  
Sucrose  

87 mM 
2.5 mM 
1.25 mM 
7 mM 
0.5 mM 
25 mM 
25 mM 
75 mM 

pH 7.0 at 5°C and 7.6 at 35°C with 5% CO2/95% O2 
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Preparation solution 2 
(barrel cortex) 

KCl  
NaH2PO4  
MgCl2  
CaCl2  
NaHCO3  
Glucose  
Sucrose 
Pyruvate 

2.5 mM 
1.25 mM 
7 mM 
1 mM 
26 mM 
20 mM 
215 mM 
5 mM 

pH 7.0 at 5°C and 7.6 at 35°C with 5% CO2/95% O2 

3.4.2 Extracellular solutions 

Artificial cerebrospinal fluid  
(ACSF) 

NaCl 
KCl 
NaH2PO4 
MgSO4 
CaCl2 
NaHCO3 
Glucose 

126 mM 
3 mM 
1.25 mM 
2 mM 
2 mM 
26 mM 
10 mM 

pH 7.38 at 25°C with 5% CO2/95% O2 

 

HEPES solution NaCl 
KCl 
MgSO4 
CaCl2 
HEPES 
Glucose 

150 mM 
5 mM 
2 mM 
2 mM 
10 mM 
10 mM 

pH 7.38 at 25°C with HCl/NaOH 

 

Blocking solution NaCl  
KCl  
MgSO4 
CaCl2  
HEPES 
Glucose  
BaCl2  
4-AP 
CdCl2  
TTX  

135 mM  
5 mM 
2 mM 
2 mM 
10 mM 
10 mM 
10 mM 
4 mM 
30 μM 
1 μM 

pH 7.38 at 25°C with HCl/NaOH 
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3.4.3 Intracellular solutions 

Pipette solution 1 
 

KCl  
MgCl2  
CaCl2  
BAPTA  
HEPES  
Na2-ATP  

130 mM 
2 mM 
0.5 mM 
5 mM 
10 mM 
3 mM 

pH 7.28 at 25°C with HCl/KOH 

 

Pipette solution 2 
 

K-gluconate  
KCl  
MgCl2  
NaCl  
EGTA  
HEPES  
Na2-ATP  

125 mM 
20 mM 
2 mM 
3 mM 
0.5 mM 
10 mM 
2 mM 

pH 7.28 at 25°C with HCl/KOH 

 

Pipette solution 3 
 

CsCl  
MgCl2  
CaCl2  
BAPTA  
HEPES  
Na2-ATP 

130 mM 
2 mM 
0.5 mM 
5 mM 
10 mM 
3 mM 

pH 7.28 at 25°C with HCl/CsOH 

 

Pipette solution 4 
 

K-gluconate  
KCl  
MgCl2  
NaCl  
EGTA  
HEPES  

125 mM 
20 mM 
2 mM 
3 mM 
0.5 mM 
10 mM 

pH 7.28 at 25°C with HCl/KOH 

47 
 



Methods and statistics 

 

4 Methods and statistics 

4.1 Electrophysiology 

4.1.1 Preparation of acute brain slices 

For the preparation of acute brain slices, mice were anaesthetized by a gas mixture of 50% 

CO2 and 50% O2 and killed by decapitation. The brain was rapidly removed and transferred 

to ice-cold preparation solution. Depending on the respective experiment, 200 or 300 µm 

sections were cut in different orientations as indicated in Tab. 4.1. 

Frontal/coronal sections (hippocampus): The cerebellum and the frontal third of the brain 

were cut off. The brain was then glued frontally onto a specimen holder. Preparation 

solution 1 was used. 

Horizontal sections (hippocampus): The cerebellum and small part of the dorsal brain were 

cut off. The brain was then glued dorsally onto a specimen holder. Preparation solution 1 

was used. 

Parasagittal sections (barrel cortex): The cerebellum was cut off and the hemispheres were 

separated. Each half was glued with the medial cutting edge on a specimen holder equipped 

with a plastic block with an angle of 10°. Preparation solution 2 was used. 

In each case, the holder was fixed in the buffer tray of the vibratome containing ice-cold 

preparation solution constantly gassed with 5% CO2/95% O2. After cutting, slices were 

incubated for 15-20 min in preparation solution at 35°C. The slices were then transferred to 

gassed (5% CO2/95% O2) ACSF (preheated to 35°C) cooled down to and stored at room 

temperature until further use. 

Tab. 4.1 Types of brain sections used in the present study.  

brain region orientation thickness used in section 

hippocampus frontal/coronal 200 µm 5.1 (except ePSCs) 

hippocampus horizontal 200 µm 5.3 (mPSCs) 

hippocampus horizontal 300 µm 5.1, 5.3 (ePSCs) 

barrel cortex parasagittal 200 µm 5.2 
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4.1.2 Electrophysiological setup and recording conditions 

The electrophysiological setup used in the present study was composed of the following 

components. The microscope was mounted on a vibration isolation platform in a Faraday 

cage to reduce movements and electrical noise. A recording chamber was fixed under the 

objectives of the microscope. The microscope was equipped with a motorized focus and 

positioned on an electrical shifting table enabling its movement without touching the setup. 

Two separate electrically-driven micromanipulators were available to move the recording 

pipette and, if necessary, to position a stimulation electrode. Glass pipettes for patch-clamp 

recordings were pulled with a horizontal puller and had resistances of 3-6 MΩ when filled 

with pipette solution. The microscope was further equipped with differential interference 

contrast (DIC) optics to enhance the contrast and improve the recognition of cellular 

structures in the brain slice. To visualize fluorescent proteins expressed by living cells of 

transgenic mice, the setup exhibited a fluorescence system. The optical signals were 

detected by a CCD-camera and displayed on a monitor. Electrical signals were recorded by a 

Teflon-coated silver electrode with a chlorinated tip connected via the preamplifier (head 

stage) to the patch-clamp amplifier. The reference electrode in the recording chamber 

similarly consisted of a silver/silver chloride pellet.  

The patch-clamp amplifier may operate in two different modes, the voltage-clamp mode and 

the current-clamp mode. In the voltage-clamp mode, the amplifier compares the resting 

potential of a patched cell with the selected holding potential. Whenever a difference 

occurs, current is injected via the pipette electrode to compensate for this difference and to 

keep the cell at the desired holding potential. Consequently, this current represents the 

current flowing over the membrane of the cell and is recorded by the amplifier. In the 

current-clamp mode, the patched cell is at its physiological resting potential and no current 

is injected. Therefore, in this mode physiological activity patterns may be recorded as 

changes in the resting potential.  

Signals were filtered at 1, 3 or 10 kHz and sampled at 6 or 20 kHz. The exact technical 

devices and software used in the present study are listed in section 3.1.3. 
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4.1.3 Patch-clamp technique 

Electrophysiological measurements were obtained by applying the patch-clamp technique 

developed by Erwin Neher and Bert Sackmann (Neher and Sakmann, 1976). Experiments 

were performed in the conventional whole-cell configuration (Edwards et al., 1989) if not 

stated otherwise. 

To do so, a brain section was transferred to the recording chamber of the electro-

physiological setup and fixed in place with a u-shaped platinum wire stringed with nylon 

threads. The chamber was constantly perfused (1-2 ml/min) with gassed extracellular 

solution at room temperature. The recording pipette was filled with pipette solution and a 

constant overpressure was applied via a tubing system. This caused a permanent outflow of 

pipette solution that prevented plugging of the pipette tip by tissue fragments. In the 

voltage-clamp mode, a depolarizing 10 mV step was applied via the pipette electrode to 

monitor changes in resistance. The pipette was then moved under optical control close to 

the cell membrane. Subsequently, the overpressure was released and mild negative pressure 

applied. This resulted in the formation of the cell-attached configuration characterized by a 

tight connection between cell membrane and pipette tip causing a strong increase in 

resistance ideally reaching more than 1 GΩ. During this process the cell was clamped to the 

holding potential of -80 mV (ACSF) or -70 mV (HEPES solution) if not stated otherwise. 

Capacitive artifacts caused by the glass pipette were compensated at this point. By applying 

brief pulses of negative pressure the small membrane patch under the pipette tip was 

ruptured resulting in a sudden drop in resistance. In this so called whole-cell configuration, 

currents over the entire cell membrane were measured in the voltage-clamp mode. By 

switching to the current-clamp mode, the resting potential was determined. Whole-cell 

current patterns in response to de- and hyperpolarizing voltage steps were offline 

compensated for capacitive artefacts by using IGOR Pro macros custom-written by Ronald 

Jabs. 
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4.1.4 Calculation of passive membrane properties 

When performing electrophysiological recordings in the whole-cell configuration, the 

electrical properties of the cell may be calculated by considering the following assumptions. 

The cell membrane consists of a lipid bilayer with embedded proteins which separates 

extracellular and intracellular solutions containing different ion concentrations. Therefore, 

the cell membrane constitutes a capacitor that stores charge. As the cell membrane also 

contains ion channels which facilitate the transfer of charged ions over the membrane, it 

also possesses properties of a resistor. Consequently, the cell represents an electrical circuit 

where a capacitor (with the membrane capacitance Cm) is connected in parallel with a 

resistor (with the membrane resistance Rm). In the voltage-clamp whole-cell configuration, 

this electrical circuit is in series with the pipette electrode via which the cell is clamped to a 

certain holding potential. In this case further resistances occur at the transition between 

pipette tip and cell interior that depend on the access to the cell interior, differences in 

composition of pipette solution and cytoplasm and diffusion parameters. These resistances 

are summarized as the series resistance (Rs), as they are in series with the electrical circuit of 

the cell (Pusch and Neher, 1988). Thus, a whole-cell patch-clamp recording is equivalent to 

an electrical circuit as depicted in Fig. 4.1.  

 

 

Fig. 4.1 Electrical circuit representing the whole-cell configuration. The Rs occurs at the transition 
between pipette and cell and is in series with Cm and Rm of the cell. Vhold = holding potential. 

The amount of charge (Q) stored by a capacitor increases with its size. Accordingly, Cm is 

proportional to the membrane surface area and may be considered as an indirect measure 

of cell size. The Rm is also characteristic for a cell as it directly depends on the type and 

amount of open ion channels present in the cell membrane at rest. The fact that the Rs is in 

series with Rm and Cm implicates that Rs induces voltage errors as part of the voltage drops at 
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this resistance. Therefore, the Rs was constantly monitored and cells were discarded when Rs 

exceeded 40 MΩ. 

To calculate the Rs and the passive membrane properties (Rm, Cm) of a patched cell, the 

following procedure was performed. In the voltage-clamp whole-cell configuration, 10 de-

polarizing steps of 10 mV each were elicited (ΔV = 10 mV) for 50 ms and averaged (Fig. 4.2). 

Neglecting the very first rising phase of the current that mainly depends on the sampling 

rate, at the onset of ΔV at t0, the measured current (It0) is only limited by Rs since Cm short-

circuited Rm. Accordingly, Rs may be calculated by Ohm’s law (equation 1) (Fig. 4.2). 

 

𝑅𝑠 =  
ΔV 
𝐼𝑡0

 (1) 

 

Each change in voltage (ΔV) causes a recharging of the capacitor. During this recharging the 

current It0 decreases and finally reaches a steady state It1. At this time point, the capacitor is 

fully recharged and has an infinite ohmic resistance. Therefore, the remaining current It1 only 

depends on Rs + Rm. By using the Rs determined by equation 1, the Rm may be calculated 

(equation 2) (Fig. 4.2). 

 

𝑅𝑚 =  
ΔV 
𝐼𝑡1

− 𝑅𝑠 (2) 

 

The current response to ΔV between t0 and t1 may be described by the function I(t) given in 

equation 3. As mentioned before, this current response is composed of the capacitive 

current due to the recharging of the capacitor and the steady-state ionic current determined 

by Rs + Rm (It1). The area under the function I(t) between t0 and t1, subtracted by the area 

It1 * dt represents the change of charge (ΔQ, gray area in Fig. 4.2) of the capacitor in 

response to ΔV. As ΔQ is directly proportional to ΔV, Cm is defined by equation 4. Considering 

these assumptions, ΔQ was determined by calculating the integral of I(t) minus the integral 

of It1 * dt between t0 and t1 according to equation 5 (gray area in Fig. 4.2). ΔQ was then 

entered in equation 4 to determine Cm. 
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𝐼(𝑡) = 𝐼 ∗ 𝑒−𝑡
𝜏 + 𝐼𝑡1 (3) 

 

𝐶𝑚 =  
Δ𝑄
ΔV

 (4) 

 

Δ𝑄 =  � 𝐼(𝑡)𝑑𝑡 −  � 𝐼𝑡1𝑑𝑡
𝑡1

𝑡0

𝑡1

𝑡0
 (5) 

 

The protocol applied to calculate the passive membrane properties (10 x ΔV(10 mV) for 

50 ms each) was recorded in the cell-attached and the whole-cell configuration. The 

capacitive transients measured in the cell-attached configuration almost exclusively arise 

from properties of the pipette. To exclude these during the calculation, the protocol 

measured in cell-attached configuration was subtracted from the one measured in whole-

cell configuration. The resulting trace was used for the above mentioned analysis (Fig. 4.2). 

All calculations were performed by using IGOR Pro macros custom-written by Ronald Jabs. 

 

 

Fig. 4.2 Determination of Rs and passive membrane properties. Example current response of an NG2 
cell to a depolarizing voltage step (ΔV = 10 mV, holding potential = -80 mV). Average of 10 successive 
steps in the whole-cell configuration is shown. The same protocol in cell-attached configuration was 
subtracted to exclude capacitive currents arising from the pipette. Rs is determined from the current 
at t0 (It0; equation 1). Rm is determined from the current at t1 (It1; equation 2). Cm is determined by 
calculating ΔQ, the integral of the capacitive current (gray area; equation 3, 4). For the present 
example the following values were calculated: Rs = 18.2 MΩ, Rm = 166 MΩ, Cm = 36.3 pF. 
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4.1.5 Liquid junction potential 

A liquid junction potential occurs at the interface of two solutions with different ion 

concentrations. In electrophysiological experiments the extracellular bath solution and the 

intracellular pipette solution usually differ in their ingredients. This results in a liquid junction 

potential at the pipette tip when the pipette is lowered into the bath solution. Before 

establishing the cell-attached configuration, any potential occurring between the electrodes 

including the liquid junction potential is compensated for. However, in the whole-cell 

configuration the pipette content diffuses into the cell and the liquid junction potential 

disappears as no direct interface between the two solutions exists anymore. The voltage, 

however, is still compensated for the liquid junction potential resulting in a shift of the 

holding potential by the value of the liquid junction potential which needs to be adequately 

corrected. 

The magnitude of the liquid junction potential is determined by the mobility of the different 

ions which depends on their weight and charge. In the present study the liquid junction 

potential for the various solutions was calculated by using the liquid junction potential 

calculator in the Patcher’s Power Tools of IGOR Pro. 

A considerable liquid junction potential occurred in experiments using ACSF with pipette 

solution 2 (6 mV; section 5.3.1, 5.3.4, 5.3.5, 5.3.6) and in experiments using blocking solution 

and pipette solution 4 (13 mV; section 5.1.4). The liquid junction potential was offline 

compensated for.  

4.1.6 Perforated patch configuration 

In the whole-cell configuration the direct connection between pipette and cytoplasm results 

in an exchange of the cell interior with the pipette solution. Therefore, no information about 

the intrinsic ion concentration is available in this patch-clamp configuration. To circumvent 

this problem, the perforated patch configuration is utilized. In this case, a substance is added 

to the pipette solution that forms pores in the cell membrane that are selectively permeable 

only for certain ions besides the one of interest. In this way currents may be measured in the 

cell-attached configuration without interfering with the intracellular ion concentration. In 

the present study, the intrinsic Cl- concentration of NG2 cells was investigated (section 

5.1.4). Therefore, the antibiotic gramicidin-A was added to the pipette solution which has 
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been shown to form pores selectively permeable for cations only, leaving the intrinsic Cl- 

concentration intact (Kyrozis and Reichling, 1995).  

To enable formation of a high resistance cell-attached configuration, the pipette tip was 

filled with gramicidin-A-free pipette solution 4. It was then filled up with pipette solution 4 

containing 50 µg/ml gramicidin-A yielding a final gramicidin-A concentration of 20-40 µg/ml. 

Gramicidin-A containing pipette solution was freshly prepared on the day of 

experimentation. 

 

The cell-attached configuration was established as described for the whole-cell configuration 

(section 4.1.3). The incorporation of gramicidin-A is a slow process that may be monitored 

by a decrease of the series resistance (Fig. 4.3). To do so, depolarizing 10 mV steps were 

elicited and the series resistance was calculated as described in section 4.1.4. The data were 

imported to the program IGOR Pro and automatically analyzed with custom-written macros 

by Ronald Jabs. When the series resistance reached a stable plateau around 100 MΩ, the 

experiment was started (Fig. 4.3). 

 

 

Fig. 4.3 Monitoring of the series resistance while establishing the perforated patch configuration. 
After formation of the cell-attached configuration, depolarizing 10 mV steps were elicited to 
calculate the series resistance (Rs). The experiment was started when the series resistance reached 
stable values around 100 MΩ (inset). 
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4.1.7 Application techniques 

In the present study two different application techniques were used. These differ particularly 

in speed of application which is a critical parameter especially when studying receptor 

currents.  

4.1.7.1 Bath application 

In case speed of application is negligible, substances were added to the extracellular solution 

and applied via the bath perfusion system. This allows a uniform distribution of a defined 

concentration of the desired substance throughout the brain slice. However, spreading of 

the substance is a variable process especially depending on the flowing properties inside the 

recording chamber that may vary between recordings. Therefore, bath application is not 

suitable to compare receptor properties in response to a defined agonist concentration. For 

this purpose a faster application technique was used. 

4.1.7.2 Focal pressure application 

To facilitate a fast and local application of substances, the OctaFlow pressure application 

system was used. This system is composed of 8-12 pressure controlled application channels 

that lead via a Teflon tubing system to a combined small reservoir with a fine quartz pipette 

output (diameter 100 µm). The reservoir is further connected to a gravitational-driven flush 

channel that constantly rinses extracellular solution into the reservoir. In this way leaking of 

substances from the application channels is prevented. Whenever application from a certain 

channel is induced, the flush channel is stopped enabling the fast and local application of a 

defined concentration of the desired substance. Different application protocols as well as 

the application pressure can be adjusted via the OctaFlow Software. Application protocols 

were controlled by a trigger set by the electrophysiology recording software thus enabling 

time correlated recordings of substance application and cellular response. To keep the pH in 

the application channels constant, a 5% CO2/95% O2 gas mixture was used as a pressure 

source for experiments using ACSF-based extracellular solution. In case HEPES-based 

solutions were used, pure oxygen was employed. 

After selecting a cell for the recording, the OctaFlow application pipette was positioned close 

to the cell immediately above the slice. Before applying a certain substance, normal bath 
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solution was applied from another channel using the same pressure settings to test for 

potential pressure artifacts. 

4.1.8 Extracellular stimulation of presynaptic neurons 

In order to record evoked PSCs (ePSCs) in NG2 cells, extracellular stimulation of 

glutamatergic neuronal fiber tracts (Schaffer collaterals) (section 5.3.2, 5.3.3) or GABAergic 

local interneurons (section 5.1.3) was performed. A chlorinated silver electrode in a glass 

pipette filled with ACSF served as a monopolar stimulation electrode. Pipettes used for 

stimulation generally had resistances below 1 MΩ. Biphasic stimulation pulses with a 

duration of 100-150 µs were generated by an isolated pulse stimulator in the constant 

voltage mode. 

Experiments were performed as follows. An NG2 cell of the hippocampal CA1 region 

(stratum radiatum) was held in the voltage-clamp whole-cell configuration and the current 

was monitored. The stimulation pipette was moved under optical control while test pulses 

were applied. When an innervating fiber was detected the stimulation intensity was 

adjusted to obtain monosynaptic minimal stimulation characterized by ePSCs with a short 

delay (few ms) after stimulation as well as so called ‘failures’ where stimulation did not elicit 

transmitter release. Single stimulation pulses were applied with an inter-stimulus interval of 

15 s.  

In some experiments investigating short-term synaptic plasticity, paired-pulse stimulation 

was employed. In this case two immediate pulses with an inter-stimulus interval of 20 ms 

were applied every 15 s and the PSC responses were recorded. 

4.1.9 Analysis of PSCs 

4.1.9.1 GABAergic PSCs 

For the analysis of GABAergic ePSCs in hippocampal NG2 cells (section 5.1.3), near-field 

stimulation of local interneurons was performed as described in section 4.1.8. Experiments 

were conducted in ACSF containing the AMPA/kainate receptor antagonist NBQX (5 µM) to 

isolate GABAA receptor-mediated PSCs. To investigate the effect of modulatory substances 

on ePSC amplitudes, the modulators were locally applied via focal pressure application 
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(section 4.1.7.2) after recording control responses in the absence of the modulator. Each 

stimulation pulse was visually inspected and classified as failure or ePSC. All ePSCs were then 

averaged and the amplitude (Iamp) was determined as depicted in Fig. 4.4. Modulatory 

effects of the different substances on ePSCs were normalized to the control amplitude 

before applying the modulator.  

Electrophysiological data was imported to and analyzed with IGOR Pro software. 

4.1.9.2 Glutamatergic PSCs 

For the analysis of glutamatergic ePSCs in hippocampal NG2 cells (section 5.3.2, 5.3.3), 

stimulation of Schaffer collaterals was performed as described in section 4.1.8. Moreover, 

miniature PSCs (mPSCs) were analyzed in the presence of TTX (1 µM) to block action 

potential-driven transmitter release. To increase the presynaptic transmitter release, the 

Ca2+ ionophore ionomycin (3 µM) was locally applied by focal pressure application (section 

4.1.7.2) in some experiments. Ionomycin has been shown to increase the mPSC frequency 

without affecting the amplitude (Capogna et al., 1996). All experiments were performed in 

ACSF containing the GABAA receptor blocker picrotoxin (150 µM) to isolate AMPA receptor-

mediated PSCs. 

For the analysis of ePSCs, each stimulation pulse was visually inspected and classified as 

failure or ePSC. Kinetic properties were calculated for each single event and averaged per 

cell. mPSCs were identified by using the template search of pClamp 10. After transferring the 

data to IGOR Pro, each detected event was visually inspected and discarded in case of any 

doubt. Furthermore, all events with an amplitude < 5 pA were rejected. All mPSCs were 

averaged per cell to determine kinetic properties and average amplitudes. Amplitudes of all 

events per cell were used for cumulative probability distributions. All single distributions per 

genotype were averaged and used for comparison between genotypes. 

The amplitude (Iamp) was calculated as the difference between the maximal peak of the PSC 

and the average baseline current directly preceding the PSC (Fig. 4.4). To compare the 

kinetic properties of PSCs, rise time and decay time were determined. For the rise time the 

20-to-80% value was analyzed, which corresponds to the time between 20 and 80% of the 

maximal amplitude of the PSC. The 20-to-80% rise time was used to exclude the non-linear 
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rising phases at the beginning and at the maximum amplitude of the PSC. The decay time is 

given as the decay time constant (τ) of a monoexponential fit of the PSC decay (Fig. 4.4). 

 

 

Fig. 4.4 Analysis of the amplitude and kinetic properties of PSCs. An exemplary averaged 
glutamatergic PSC is shown. The amplitude (Iamp) is given as the maximal peak of the PSC. The rise 
time was defined as the time between 20% and 80% of Iamp of the PSC. The decay time is given as the 
time constant (τ) of a monoexponential fit of the PSC decay (red). For this example the following 
values were calculated: rise time = 0.55 ms, decay time = 1.33 ms.  

In experiments investigating short-term synaptic plasticity, paired-pulse stimulation was 

performed as described in section 4.1.8. All pairs of pulses including failures were averaged 

and the paired-pulse ratio (PPR) was calculated by dividing the average amplitude on the 

second pulse (Iamp2) by the one on the first pulse (Iamp1) (equation 6). 

 

𝑃𝑃𝑅 =
𝐼𝑎𝑚𝑝2

𝐼𝑎𝑚𝑝1
 (6) 

 

A PPR > 1 indicates paired-pulse facilitation while a PPR < 1 is considered as paired-pulse 

depression. 

Analysis of amplitudes, kinetic properties and PPRs of PSCs was carried out with IGOR Pro 

macros custom-written by Annika Wefers and Ronald Jabs. 
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4.2 Single-cell RT-PCR 

4.2.1 Cell harvesting 

Single cells were electrophysiologically characterized in the whole-cell configuration (section 

4.1.3). Subsequently, the cell was carefully lifted above the slice and soaked into the pipette. 

It was then transferred to an eppendorf tube filled with 3 µl diethyl pyrocarbonate (DEPC)-

treated water and rapidly frozen in liquid nitrogen. The samples were then stored at -20°C or 

-80°C until further use. 

4.2.2 RT-PCR 

RT-PCR was performed by Gerald Seifert and staff members. 

As a first step, the reverse transcription (RT) was conducted. The eppendorf tube containing 

3 µl DEPC-treated water and ~1.5 µl pipette solution including the harvested cell was thawed 

on ice. The RT reaction mixture (Tab. 4.2) was added to the sample and RT was executed for 

1 h at 37°C. As a positive control, the same reaction was performed with 2 ng RNA isolated 

from whole mouse brain. Omission of the RT enzyme and substitution of template by bath 

solution served as negative controls. 

Tab. 4.2 Reaction mixture for RT. 

quantity substance final concentration 
~4.5 µl DEPC water + cytoplasm  
2 µl 5 x First-Strand Buffer 50 mM Tris-Cl, 75 mM KCl, 3 mM MgCl2 
1 µl DTT 10 mM 
1 µl dNTPs 4 x 250 µM 
0.5 µl Random Hexamer Primer 50 µM 
0.5 µl RNasin® RNase Inhibitor 20 U 

0.5 µl Superscript® III Reverse 
Transcriptase 100 U 

 

Following RT, a multiplex two-round PCR was performed. In the first round, primers were 

used that recognize all subunits of the respective GABAA receptor family (α, β, γ, and δ; 

section 5.1.1.1 and 5.2) or primers specific for the different neuroligins (1-3; section 5.3.7), 

respectively. In addition, primers for the NG2 cell-specific PDGFα receptor mRNA were 

60 
 



Methods and statistics 

 
added to the reaction. They served as a positive control for successful cell harvesting and as 

a cell type-specific marker. All primer sequences are given in Tab. 4.7.  

The total RT reaction (Tab. 4.2) served as a template for the first PCR. The exact composition 

of the reaction mixture for the first PCR is given in Tab. 4.3, the PCR program is given in      

Tab. 4.4. 

Tab. 4.3 Reaction mixture for first PCR. 

quantity substance final concentration 
10 µl RT reaction (Tab. 4.2)  
5 µl PCR-Buffer 20 mM Tris-Cl, 50 mM KCl 
2.5 µl MgCl2 2.5 mM 
1 µl sense (se) Primer 200 nmol 
1 µl antisense (as) Primer 200 nmol 
0.5 µl se PDGFα receptor Primer 100 nmol 
0.5 µl as PDGFα receptor Primer 100 nmol 
0.75 µl Taq DNA Polymerase 3.5 U 
Add 40 µl dH2O  

 

Tab. 4.4 PCR program for first PCR. 

cycles temperature time 
1 94°C 4 min 

5 
94°C 25 s 
49°C 2 min 
72°C 25 s 

40 
94°C 25 s 
49°C 45 s 
72°C 25 s 

1 72°C 7 min 
 

In the second round, nested primers specific for the different GABAA receptor subunits of 

each family or for the different neuroligins were employed, respectively. 2 µl of the first PCR 

reaction served as a template for the second reaction. The exact composition of the reaction 

mixture for the second PCR is given in Tab. 4.5, the PCR program is given in Tab. 4.6. 
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Tab. 4.5 Reaction mixture for second PCR. 

quantity substance final concentration 
2 µl first PCR reaction (Tab. 4.3)  
5 µl PCR-Buffer 20 mM Tris-Cl, 50 mM KCl 
2.5 µl MgCl2 2.5 mM 
1 µl dNTPs 4 x 50 µM 
1 µl se primer (nested) 200 nmol 
1 µl as primer (nested) 200 nmol 
0.5 µl Platinum® Taq DNA Polymerase 2.5 U 
Add 40 µl dH2O  

 

Tab. 4.6 PCR program for second PCR. 

cycles temperature time 
1 94°C 4 min 

5 
94°C 25 s 
54°C 2 min 
72°C 25 s 

30 
94°C 25 s 
54°C 45 s 
72°C 25 s 

1 72°C 7 min 
 

The GABAA receptor subunits β2 and β3 display a high degree of sequence identity and may 

not be distinguished by specific primers. Therefore, the corresponding PCR product from the 

second PCR using the nested primer β2/3 was purified and an endonuclease restriction 

analysis was performed to unambiguously identify the subunits β2 and β3. The purified PCR 

product was digested with the restriction endonuclease PstI which cuts the subunit β2 in a 

202 bp and a 105 bp fragment and with BanI which cuts the β3 subunit in a 169 bp and a 

138 bp fragment. The reaction mixture contained 7 µl of the purified PCR product and 10 U 

of the respective enzyme (final volume: 15 µl). Reaction was carried out for 6 h at 37°C. 

PCR products and digested PCR products (for subunits β2/3) were analyzed by agarose gel-

electrophoresis. 10 µl from each reaction were mixed with 2 µl loading buffer and loaded 

onto a 1.5% agarose gel containing 0.013% ethidium bromide. фX174 HincII digest or Low 

Molecular Weight DNA Ladder served as size markers. 
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The primers for each transcript are located on different exons and span introns to prevent 

amplification of genomic DNA. To test for specificity of the primers and to optimize the 

reaction conditions, a two-round RT-PCR was performed with each primer set with 2 ng of 

whole mouse brain RNA as a template.  

Tab. 4.7 Primers for single-cell RT-PCR. The sequence, position and product size of each primer pair 
is indicated. Position 1 was defined as the first nucleotide of the translation initiation codon for each 
transcript. The primer pairs for alpha, beta and gamma recognize all subunits of the respective 
GABAA receptor family. For the subunits α2, α3 and α4 a common ‘as’ primer was used, for γ2 and γ3 
a common ‘se’ primer was used. Neuroligin-1 primer flanked splice site A resulting in two discrete 
PCR-products. 

gene primer sequence position product 
size 

Alpha 
(Berger et 
al., 1998) 

se 5‘-TGGACTCCTGATACNTTYTT 
as 5’-GCHATRAACCARTCCATGGC 

361, 364, 439, 382, 385 
931, 934, 1009, 952, 955 590 bp 

Alpha se 5'-AACATGACMAYGCCMAAYAAGCT 
as 5'-GCATARCAGACAGCWATRAACCA 

409, 412, 487, 430, 433 
940, 943, 1018, 961, 964 554 bp 

a1 (nested) 
se 5‘-CCAGCCCGTTCAGTGGTTGTA 
as 5’-GCACGGCAGATATGTTTGAAT 

601 
760 180 bp 

a2 (nested) 
se 5‘-TTACAATGCTTCTGACTCCGTTCA 
as 5’-CGRGCACTGATRCRWARGGT 

597 
883 306 bp 

a3 (nested) se 5’-CTTGGGAAGAACAAATCTGTGGA 
as 5’-CGRGCACTGATRCRWARGGT 

673 
958 305 bp 

a4 (nested) 
se 5’-ACCAAAGGCCCTGAGAAGTCA 
as 5’-CGRGCACTGATRCRWARGGT 

613 
901 308 bp 

a5 (nested) se 5’-GCTGGAGGATGATGGCACACTTCT 
as 5’-GTTGAGCCTGGAGCCATCTTCTG 

462 
647 208 bp 

Beta 
(Berger et 
al., 1998) 

se 5’-CTGGATGARCAAAACTGYAC 
as 5’-ACAAAGACAAARCAWCCCAT 

508, 505, 508 
931, 928, 931 443 bp 

b1 (nested) se 5’-ATGGAGGAGAGGGAGCAGTAACT 
as 5’-CAGCCCATGAGATAGATGTCAATC 

581 
915 358 bp 

b2/3 
(nested) 

se 5’-GGCGYGGCGRTGACAAKGC 
as 5’-TCCCGRAGGTGRGTGTTGAT 

575, 578 
862, 865 307 bp 
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Gamma 
(Berger et 
al., 1998) 

se 5’-TAGACAGCAAYATGGTGGG 
as 5’-TTGATCCAAAADGACACCCAGG 

404, 407, 353 
863, 866, 812 481 bp 

Gamma se 5'-ATTTGGATTCCAGACACYWTCTT 
as 5'-AAGTAGCCCATTCTTCKRCTCAG 

427, 430, 376 
796, 799, 745 392 bp 

g1 (nested) 
se 5’-CGCCTGCTGCGGATTTG 
as 5’-CACAGAGGGCTTTTTCCACTTGT 

496 
653 180 bp 

g2 (nested) se 5’-AAAAMRGCTGAGGCTCACTGGAT 
as 5’-AACTGCGCTTCCATTGATAAACA 

463 
651 211 bp 

g3 (nested) 
se 5’-AAAAMRGCTGAGGCTCACTGGAT 
as 5’-CTGAGGCCCATGAAGTCAAACTGA 

409 
657 272 bp 

Delta se 5′-ATGGCGCCAGGGCAATGAATG 
as 5′-GTGGAGGTGATGCGGATGCTGTAT 

59 
459 424 bp 

δ (nested) se 5′-TATGCCCGAAACTTCCGACCAG 
as 5′-AAAATCACCCCATCAGGCTGTAGG 

151 
435 308 bp 

Neuroligin-1 se 5'-GACATCCGGAACGCCACTCA 
as 5'-TTGCCAAGACACTCCCATCATACA 

316 
632, 572 

340 bp 
280 bp 

Neuroligin-1 
(nested) 

se 5‘-CAGAATATCATTGATGGCAGATTG 
as 5’-ACTCCCATCATACAGATTTCCAGT 

355 
622, 562 

291 bp 
231 bp 

Neuroligin-2 se 5‘-ACCGCCAAGCTGCATGCCGACTAC 
as 5’-GCACGCGTGGTTTCAAGCCTATGT 

1399 
1745 370 bp 

Neuroligin-2 
(nested) 

se 5’-GCAGAGGGCCGGCCAGAGTG 
as 5’-AGCGGTTGGGCTTGGTGTGGAT 

1465 
1672 229 bp 

Neuroligin-3 se 5’-AAGATGGATCCGGCGCTAAGAAAC 
as 5’-CCGATGCCAGAGCCAAAGACAGTA 

443 
777 358 bp 

Neuroligin-3 
(nested) 

se 5’-AATGACGGGGATGAAGATGAAGAC 
as 5’-GCGAAGGGCCTGGATTTGA 

487 
711 243 bp 

PDGFa 
receptor 
 

se 5’-TCAAAGGGAGGACGTTCAAGACC 
as 5’-GACGGGCAGCACATTCATACTC 

578 
859 303 bp 

PDGFa 
receptor 
(nested) 

se 5’-TGTGTATAAGGCAGGAGAAACGAT 
as 5’-TGGGGACGGTCAAAGTGTA 

669 
817 167 bp 
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4.3 Statistics 

In section 5.1, differences between data sets were tested for significance by using the 

Student’s t-test or the paired Student’s t-test. The Pearson’s χ2-test was used to test for 

correlation between data sets (section 5.1.2). Data in bar graphs are represented as 

mean ± SD except for PCR results where the relative frequency is given.  

In section 5.3, the following statistical analysis was performed. Each data set was tested for 

normal (Gaussian) distribution by using the Shapiro-Wilk-test. For clarity, Gaussian 

distributed data in this section is depicted as bar graphs and non-Gaussian distributed data 

as box plots. In case of Gaussian distribution, any data point outside two times the SD was 

excluded. Gaussian distributed data were tested for equal variances by applying the Levene-

test that was followed by ANOVA and post-hoc Tukey-test without (test #1) or with Welch-

correction (test #2) for equal or diverse variances, respectively. Non-Gaussian distributed 

data were tested either with Kruskal-Wallis-ANOVA with sequential Bonferroni’s correction 

for more than two groups (test #3), or with the Mann-Whitney-U-test in case of two groups 

(test #4). Cumulative probability density functions were tested with the Kolmogorov-

Smirnov-test (test #5). The Pearson’s χ2-test was used to compare relative frequencies 

(test #6). Data in bar graphs are represented as mean ± SD except for PCR results where the 

relative frequency is given. Box plots indicate median with lower quartile (25) and upper 

quartile (75), whiskers denote quartile 5 and 95. The number of the test applied is given in 

the respective figure legends. 

The significance level was always set to p < 0.05. Statistical analysis was carried out with 

IGOR Pro, Origin Pro and Excel 2010. 
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5 Results 

5.1 Functional characterization of GABAA receptors in hippocampal 

NG2 cells 

NG2 cells express functional AMPA and GABAA receptors and receive direct synaptic input 

from neurons in different brain regions. While most studies focused on the investigation of 

AMPA receptors, much less is known about the physiology of GABAA receptors in NG2 cells 

(Bergles et al., 2010). 

In this part of present study, molecular and functional techniques were combined to 

elucidate the subunit composition and functional properties of GABAA receptors in NG2 cells. 

For all experiments NG2 cells of the hippocampal CA1 region from juvenile (p8-12) 

transgenic hGFAP-EGFP mice (Nolte et al., 2001) were analyzed. In this mouse line, NG2 cells 

are labeled by weak fluorescence as distinct from the brightly fluorescent astrocytes (section 

3.1.1) (Matthias et al., 2003).  

5.1.1 Molecular and functional analysis of the GABAA receptor subunit 

composition in NG2 cells 

The subunit composition of GABAA receptors in NG2 cells was investigated by two 

independent approaches. Initially, the expression was analyzed at the mRNA level using 

single-cell RT-PCR. This data was then complemented by pharmacological modulation of 

functional GABAA receptors in situ. The experiments focused on the identification of the 

main GABAA receptor subunits expressed in the hippocampus at the age of p8-12, i.e. α1-5, 

β1-3 and γ1-3 (Laurie et al., 1992). 
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5.1.1.1 Molecular analysis of GABAA receptor subunit expression by single-cell RT-PCR 

In order to identify the GABAA receptor subunits expressed by individual NG2 cells, single-

cell RT-PCR was performed. To do so, whole-cell patch-clamp recordings of weakly EGFP-

positive presumable NG2 cells were conducted (Matthias et al., 2003). Membrane currents 

in response to de- and hyperpolarizing voltage steps were elicited to confirm cell identity 

(Fig. 5.1), as NG2 cells display the characteristic complex current pattern clearly distinct from 

the passive current pattern of astrocytes (section 3.1.1) (Steinhäuser et al., 1994a; 

Steinhäuser et al., 1994b; Matthias et al., 2003). Subsequently, the cytoplasm was harvested 

and a two-round RT-PCR was performed. In the first round, primer sets were used that 

recognize all subunits of the respective GABAA receptor family (α, β, and γ) together with 

PDGFα receptor primers. Subunit-specific nested primers utilized in the second round 

allowed precise determination of the subunits expressed. To distinguish β2- from β3-

transcripts, restriction analysis of purified PCR-products was performed. PDGFα receptor 

expression served as a positive control and cell type-specific marker. Cells negative for 

PDGFα receptor mRNA were excluded (detailed procedure in section 4.2). 

Analysis of the α-subunits revealed that α1 and α2 were most abundant (70 and 78%, 

respectively; Fig. 5.1A, C), while α3, α4 and α5 were less frequent (30, 35 and 15%, 

respectively, n = 46; Fig. 5.1A, C). Among the β-subunits, β3 was expressed by virtually all 

NG2 cells (95%), while β1 and β2 were found in 50 and 64%, respectively (n = 26; Fig. 5.1C). 

All three β-subunits were expressed by 32% of all cells (n = 26). Regarding γ-subunits, γ1 and 

γ2 were frequently expressed (77 and 64%, respectively, n = 47; Fig. 5.1B, C). γ3 mRNA was 

detected in 53% of all NG2 cells tested (n = 47; Fig. 5.1B, C). Coexpression of γ1 and γ2 was 

found in 45% of cells while 28% expressed all three γ-subunits (n = 47).  
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Fig. 5.1 Expression analysis of GABAA receptor subunits in NG2 cells by single-cell RT-PCR. 
(A, B) Agarose gels of α- and γ-subunit PCR-products of individual NG2 cells together with their 
respective current responses to de- and hyperpolarization between -160 and +20 mV (holding 
potential -80 mV). Expression of PDGFα receptor (PDGFαR) mRNA served as a positive control and 
cell type-specific marker. фX174 HincII digest served as size marker. Recordings were performed 
using extracellular HEPES solution (section 3.4.2) and pipette solution 1 (section 3.4.3). (C) Summary 
bar graph of the relative frequency of GABAA receptor subunit expression of all NG2 cells tested. Cell 
numbers are given in parentheses. See also Passlick et al. (2013). 

During early development NG2 cells display increased proliferation and differentiation 

compared to later developmental stages (Kang et al., 2010). As GFP is a stable protein with a 

half-life of approximately 26 hours (Corish and Tyler-Smith, 1999), GFP fluorescence might 

still be present when NG2 cells already initiated differentiation. As a consequence, the 

variability in expression of GABAA receptor subunits found in this study might reflect NG2 

cells at different stages of differentiation. It is known that during differentiation to 

oligodendrocytes, NG2 cells considerably change their membrane properties, such as 

membrane resistance and membrane capacitance (De Biase et al., 2010). To ensure that the 

results were not influenced by differentiation, subunit expression was compared with the 

membrane properties of the corresponding cells. Membrane resistance and membrane 
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capacitance were indistinguishable between subunit-expressing and -non-expressing cells 

indicating no contamination of the results by different stages of differentiation of the cells 

investigated (Tab. 5.1). 

Tab. 5.1 Correlation between GABAA receptor subunit expression and membrane properties. No 
differences between subunit-expressing and -non-expressing cells regarding membrane resistance 
(Rm) or membrane capacitance (Cm) were detected. Data is expressed as mean +/- SD. 

subunit expression Rm (MΩ) Cm (pF) 

α1 
+ 271.3 ± 313.1 27.7 ± 7.3 

- 215.5 ± 138 29.1 ± 7.8 

α2 
+ 277.9 ± 329.9 29.8 ± 8 

- 229.1 ± 196.4 27.6 ± 7.2 

γ2 
+ 197.8 ± 120.4 28.8 ± 8.3 

- 231.5 ± 251.3 29.7 ± 7.3 
 

Taken together, the molecular analysis suggested that juvenile hippocampal NG2 cells 

predominantly express the GABAA receptor subunits α1, α2, β2, β3, γ1 and γ2. However, a 

considerable heterogeneity was detected among the juvenile NG2 cell population. 

5.1.1.2 Functional analysis of GABAA receptor subunit composition by pharmacological 

modulation 

Besides the two active binding sites for its endogenous ligand GABA, GABAA receptors 

contain several allosteric binding sites for different modulators and blockers, e.g. 

benzodiazepines, barbiturates and Zn2+. As their occurrence depends on the subunit 

composition of the prevailing GABAA receptor, pharmacological modulation allows the 

functional identification of the GABAA receptor subunits expressed by individual cells 

(overview in section 1.5.2) (Hevers and Luddens, 1998; Mehta and Ticku, 1999).  

In this study, focal pressure application of GABA with different modulators was used to 

investigate the subunit composition of functional GABAA receptors in hippocampal NG2 cells. 

The experiments were performed in a solution containing blockers for Na+ and K+ channels 

(blocking solution, section 3.4.2) to minimize secondary effects by the activation of other 

conductances that might influence the GABA-evoked responses. To estimate the modulatory 

effect of a certain compound, the following protocol was employed. Initially, 50 µM GABA 
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were applied for 2 s successively until a stable current response was reached. Next, the 

respective modulator was pre-applied for 30 s alone before coapplication of GABA with the 

modulator (2 s). Subsequently, GABA was applied without the modulator again to check for 

reversibility of the modulatory effect. 

 

The barbiturate pentobarbital is a well characterized modulator of GABAA receptors that 

facilitates stronger binding of GABA to the receptor thereby causing longer opening of the 

receptor pore (Twyman et al., 1989; Hevers and Luddens, 1998). It binds to the β-subunit of 

GABAA receptors and potentiates currents of receptors containing any of the three existing 

β-subunits with the same efficiency (Hadingham et al., 1993). As the β-subunit is present in 

all functional GABAA receptors (Mehta and Ticku, 1999), modulation was expected in all cells 

tested. Indeed, application of 50 µM GABA with 50 µM pentobarbital reversibly enhanced 

the control GABA response in all cells tested (179 ± 46%, n = 9; Fig. 5.2), confirming 

ubiquitous expression of β-subunit-containing GABAA receptors in NG2 cells. It was shown 

that besides a modulatory action, pentobarbital might also act as an agonist at GABAA 

receptors and induce currents in the absence of GABA when applied at high concentrations 

(Muroi et al., 2009). However, pre-application of 50 µM pentobarbital alone never induced a 

current in NG2 cells (data not shown). 

The binding site for benzodiazepines is located at the interface of α- and γ-subunits. Several 

modulators have been characterized that specifically bind to this site and modulate the 

receptor response depending on the respective α- and γ-subunits (Hevers and Luddens, 

1998). The benzodiazepine diazepam positively modulates GABAA receptors containing the 

α-subunits 1-3 and 5 and the γ-subunits 1-3 (Olsen and Sieghart, 2009). In the present study 

coapplication of GABA (50 µM) with diazepam (20 µM) potentiated the GABA response to 

156 ± 35% (n = 12; Fig. 5.2) indicating frequent expression of the GABAA receptor subunits 

α1-3 and 5 and γ1-3. This effect was completely reversible. 

Another modulator acting at the benzodiazepine binding site is the non-benzodiazepine 

zolpidem whose binding increases the receptor affinity for GABA (Biggio et al., 1989). 

Zolpidem displays a higher specificity for α- and γ-subunits compared to diazepam, as it only 

potentiates GABAA receptors containing the subunits α1-3 and γ2 (Pritchett and Seeburg, 

1990; McKernan et al., 1991; Puia et al., 1991; Sanna et al., 2002). Especially regarding the   
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γ-subunits, zolpidem is highly specific for γ2 as γ1- and γ3-containing receptors were entirely 

insensitive (Wingrove et al., 1997). Coapplication of 50 µM GABA with 10 µM zolpidem 

increased the GABA response to 167 ± 49% (n = 10; Fig. 5.2). It was shown that reducing the 

concentration of zolpidem increases the specificity for the α1-subunit compared to α2 and 

α3 (Pritchett and Seeburg, 1990; McKernan et al., 1991). To test whether lower 

concentrations of zolpidem were still sufficient to modulate NG2 cell GABAA receptors, 

50 µM GABA were coapplied with 1 µM zolpidem. At this concentration the GABA response 

was still potentiated to 145 ± 35% in 8/11 cells (Fig. 5.2) indicating expression of α1- and γ2-

containing GABAA receptors in the majority of hippocampal NG2 cells. 

The benzodiazepine binding site is also a target of the β-carboline DMCM. DMCM is an 

inverse agonist whose modulatory effect may be positive or negative depending on the 

subunit composition (Hevers and Luddens, 1998). GABA-evoked currents have been shown 

to increase when γ1- and/or β2/3-subunits are present, for all other combinations DMCM is 

inhibitory (Puia et al., 1991; Wafford et al., 1993; Stevenson et al., 1995). NG2 cells displayed 

a variable effect in response to coapplication of GABA (50 µM) with DMCM (10 µM). While in 

7/14 cells an inhibition of the GABA-induced current to 81 ± 6% was observed (Fig. 5.2), 4/14 

cells showed a potentiation to 113 ± 8% (Fig. 5.2). The remaining three cells were not 

influenced by DMCM. In contrast to the other modulators, the effect of DMCM was 

irreversible in the majority of cells tested. These data indicate that the expression of 

functional GABAA receptors containing γ1- and/or β2/3-subunits is variable among 

hippocampal NG2 cells. 

In order to verify functional expression of specific β-subunits, the allosteric modulator 

loreclezole was applied. Loreclezole has been shown to specifically enhance GABAA receptor-

mediated currents if the subunits β2/3 are present (Wafford et al., 1994; Wingrove et al., 

1994). Coapplication of GABA (50 µM) with loreclezole (10 µM) increased the control GABA 

(50 µM)-evoked current in all cells tested to 145 ± 13% (n = 8; Fig. 5.2), indicating frequent 

expression of β2/3-subunit-containing GABAA receptors. 

21 of the total 64 measurements included in this part of the study were measured by 

M. Grauer (Passlick et al., 2013). 
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Fig. 5.2 Pharmacological modulation of GABAA receptor-mediated currents in NG2 cells. (A) Pre-
application of receptor modulators (30 s) was followed by coapplication of GABA (50 µM) with the 
modulator (2 s). Gray traces represent responses upon coapplication, black traces give GABA 
responses before and after application of the modulator. The following concentrations were used: 
pentobarbital (PBT; 50 µM), zolpidem (ZPD; 1 µM), diazepam (DZ; 20 µM), loreclezole (LOR; 10 µM), 
DMCM (10 µM). Traces showing PBT, ZPD, DZ and LOR, DMCM (bottom center) were obtained from 
the same cell, respectively. Recordings were performed using extracellular blocking solution (section 
3.4.2) and pipette solution 1 (section 3.4.3) (B) Summary bar graph of the modulatory effect of all 
modulators applied. Data were normalized to the GABA control response before application of the 
modulator. All modulators significantly affected the GABA responses. Cell numbers are indicated at 
the base of each bar. See also Passlick et al. (2013). 
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It was shown that metabotropic GABAB receptors may activate K+ conductances (Sodickson 

and Bean, 1996). Furthermore, a recent study revealed that GABAB receptors are able to 

influence GABAA receptor-mediated currents in neurons in some brain regions (Tao et al., 

2013). To ensure that the GABA-evoked currents and modulatory effects measured in this 

study are exclusively mediated by GABAA receptors, it was tested whether coapplication of 

GABAB receptor antagonists influences GABA-evoked currents in NG2 cells. Neither 

CGP 55845 (10 µM, n = 10) nor phaclofen (200 µM, n = 7) affected the current amplitude 

activated by GABA alone (to 94 ± 17% and 101 ± 10%, respectively; Fig. 5.3), indicating that 

GABA-evoked currents are probably not influenced by GABAB receptors in NG2 cells. 

Experiments were performed in HEPES solution (section 3.4.2) containing TTX (1 µM) to 

inhibit synaptic activity. 

 

 

Fig. 5.3 GABA-evoked currents are not influenced by GABAB receptor activation. (A, B) Pre-
application (30 s) of the GABAB receptor antagonists CGP 55845 (10 µM, A) or phaclofen (200 µM, B) 
was followed by coapplication of GABA (50 µM) with the antagonist (2 s). Gray traces represent 
responses upon coapplication, black traces depict GABA responses before application of the 
modulator. Recordings were performed using extracellular HEPES solution (section 3.4.2) containing 
1 µM TTX and pipette solution 1 (section 3.4.3). 

The pharmacological analysis revealed that the majority of juvenile hippocampal NG2 cells 

exhibit functional GABAA receptors containing the subunits α1, β2, β3 and γ2. 

73 
 



Results 

 
5.1.2 Correlation of GABAA receptor Zn2+ sensitivity and subunit expression in 

NG2 cells 

To further characterize the subunit composition of GABAA receptors in NG2 cells, the 

influence of the endogenous GABAA receptor inhibitor Zn2+ was directly correlated with 

subunit expression of individual cells. It has been shown that the inhibitory action of Zn2+ 

strongly depends on the particular α- and γ-subunits of the GABAA receptor. Especially the 

subunit combination α1/γ2 was found to be much less Zn2+-sensitive compared to GABAA 

receptors lacking these subunits (Draguhn et al., 1990; Smart et al., 1991; White and Gurley, 

1995; Hosie et al., 2003). 

To directly correlate Zn2+ sensitivity with subunit expression in individual NG2 cells, the 

following experiment was conducted. Initially, 50 µM GABA (2 s) were applied until a stable 

current response was reached. Next, 50 µM Zn2+ were pre-applied for 30 s alone before 

coapplication of GABA with Zn2+ (2 s). Subsequently, the cytoplasm of the analyzed cell was 

harvested and RT-PCR for GABAA receptor subunits α1-5 and γ1-3 was performed as 

described before (section 4.2 and 5.1.1.1). Experiments were performed in a solution 

containing blockers for Na+ and K+ channels (blocking solution, section 3.4.2). Furthermore, 

the AMPA receptor antagonist CNQX (25 µM) was added, as it was shown that Zn2+ might 

influence AMPA receptors (Paoletti et al., 2009). 

The electrophysiological data revealed a large heterogeneity regarding Zn2+ sensitivity of 

NG2 cell GABAA receptors with values ranging from strong inhibition (to 23%) to weak 

inhibition (to 90%) of the GABA-evoked current. Correlation of Zn2+ sensitivity of individual 

NG2 cells with their respective subunit expression pattern showed that cells lacking the γ2-

subunit displayed strong inhibition by Zn2+ (to 58.6 ± 18.8%, n = 14; Fig. 5.4A, C). 

Interestingly, cells expressing γ2 were less sensitive to Zn2+ (to 72.5 ± 10.6%, n = 8; Fig. 

5.4B, C). Moreover, in NG2 cells negative for γ2, the subunits α1 and α5 were also less 

prevalent (21 and 43%, respectively, n = 14) as compared to cells expressing γ2 (75 and 88%, 

respectively, n = 8; Fig. 5.4D). The α-subunits 2, 3 and 4 did not show a correlation with γ2-

expression (γ2-expressing cells: 88, 50 and 38%, respectively, n = 8; γ2-lacking cells: 57, 21 

and 29 %, respectively, n = 14; Fig. 5.4D). Similar results were obtained for the remaining γ-

subunits 1 and 3, that were not preferentially coexpressed with γ2 (γ2-expressing cells: 75 

and 63%, respectively, n = 8; γ2-lacking cells: 64 and 50%, respectively, n = 14; Fig. 5.4D). 
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Fig. 5.4 Zn2+ sensitivity of GABAA receptors correlates with γ2-subunit expression in NG2 cells. 
(A1, B1) Pre-application of Zn2+ (50 µM, 30 s) was followed by coapplication of Zn2+ with GABA 
(50 µM, 2s). Gray traces represent responses upon coapplication, black traces show GABA responses 
before coapplication with Zn2+. The GABA-induced current was substantially reduced in one NG2 cell 
(A1) while another cell was much less sensitive to Zn2+ (B1). (A2, B2) Agarose gels showing the α- and 
γ-subunit composition of the cells in A1 and B1, respectively. Low Molecular Weight DNA Ladder 
served as size marker. Recordings were performed using extracellular blocking solution (section 
3.4.2) containing CNQX (25 µM) and pipette solution 1 (section 3.4.3). (C) Summary bar graph of Zn2+-
induced inhibition of GABA-evoked currents as a function of γ2-subunit expression (white bars: cells 
lacking γ2; black bars: cells expressing γ2). (D) Comparison of α- and γ-subunit expression of cells 
lacking γ2 (white bars) and those expressing γ2 (black bars). Asterisks indicate statistically significant 
differences. Cell numbers are given in parentheses (C, D). See also Passlick et al. (2013). 

These results indicate heterogeneous expression of α1- and γ2-containing GABAA receptors 

in hippocampal NG2 cells and demonstrate a direct correlation between expression of the 

γ2-subunit and Zn2+ sensitivity in these cells. 
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5.1.3 Modulation of phasic and tonic GABAA receptor currents in NG2 cells 

GABA released from presynaptic terminals activates postsynaptic GABAA receptors that 

mediate the so called phasic GABAA receptor currents. Furthermore, extrasynaptically 

located GABAA receptors may be activated by ambient GABA mediating the tonic GABAA 

receptor currents as shown for neurons in different brain regions (Farrant and Nusser, 2005).  

In this context, the γ2-subunit of GABAA receptors has a special role as it is important for 

clustering of synaptic GABAA receptors while being less relevant for extrasynaptic ones 

(Essrich et al., 1998; Lüscher and Keller, 2004). Synaptic innervation of NG2 cells by 

GABAergic neurons has been demonstrated in different brain regions by several groups (Lin 

and Bergles, 2004; Jabs et al., 2005; Velez-Fort et al., 2010). However, the presence of tonic 

currents in NG2 cells is controversial so far. While a study by Tong et al. (2009) suggested the 

presence of a tonic GABAA receptor current in hippocampal NG2 cells, others did not detect 

a tonic current in hippocampal (Lin and Bergles, 2004; Mangin et al., 2008) or neocortical 

NG2 cells (Velez-Fort et al., 2010).  

The aim of this part of the present study was to investigate whether hippocampal NG2 cells 

are able to sense ambient GABA via extrasynaptic GABAA receptors and, if so, to determine 

whether the γ2-subunit is preferentially present in synaptic compared to extrasynaptic 

GABAA receptors as shown for neurons.  
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To test for the presence of a tonic GABAA receptor current in NG2 cells the GABAA receptor 

antagonist bicuculline was applied via the bath solution and the effect on the holding current 

was analyzed. A Cs+-based pipette solution was used for these experiments to decrease K+ 

currents (pipette solution 3, section 3.4.3). In all cells tested application of bicuculline 

(10 µM) induced a small positive shift in holding current by 5.3 ± 3.3 pA (n = 7; Fig. 5.5). 

Surprisingly, when repeating this experiment using the GABAA receptor antagonist gabazine 

(10 µM), only 4/6 NG2 cells displayed a positive shift in holding current that was smaller 

(2.5 ± 1.1 pA; Fig. 5.5) compared to the bicuculline-sensitive current. 

 

 

Fig. 5.5 Tonic GABAA receptor currents in NG2 cells. (A) Application of bicuculline (10 µM; top) or 
gabazine (10 µM; bottom) unmasked a tonic GABAA receptor current in two NG2 cells. Recordings 
were performed using extracellular ACSF solution (section 3.4.2) and pipette solution 3 (section 
3.4.3). (B) Summary bar graph of tonic currents uncovered by bicuculline (BIC) and gabazine (GBZ). 
Cell numbers are indicated at the base of each bar. See also Passlick et al. (2013). 

Next, pharmacological modulation of synaptic vs. extrasynaptic GABAA receptors was 

performed to investigate the subcellular localization of γ2-containing receptors. 

To record ePSCs in hippocampal NG2 cells near-field stimulation was performed while 

holding the cell in the voltage-clamp configuration. The AMPA/kainate receptor antagonist 

NBQX (5 µM) was added to the bath solution to block AMPA receptor currents. Initially, the 

effect of the benzodiazepine diazepam on NG2 cell ePSCs was tested. Diazepam positively 

modulates GABAA receptors containing the α-subunits 1-3 and 5 and the γ-subunits 1-3 

(Olsen and Sieghart, 2009).  
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In the presence of diazepam (10 µM) averaged control ePSCs were potentiated to 126 ± 9% 

in 5/8 cells, while three other cells exhibited no modulation (Fig. 5.6). To specifically verify 

presence of the γ2-subunit, the modulatory effect of zolpidem on ePSCs was tested, as 

zolpidem particularly modulates α1-/γ2-containing GABAA receptors at low concentrations 

(Pritchett and Seeburg, 1990; McKernan et al., 1991; Wingrove et al., 1997). In 6/9 cells 

zolpidem (1 µM) potentiated the control current to 128 ± 5% while three cells exhibited no 

modulation (Fig. 5.6).  

 

 

Fig. 5.6 Pharmacological modulation of synaptic GABAA receptor currents in NG2 cells. (A) Example 
responses of four NG2 cells to near-field stimulation in the presence (gray traces) and absence (black 
traces) of diazepam (10 µM, left) and zolpidem (1 µM, right). Sensitive (top) and insensitive (bottom) 
examples are shown. Stimulus artifacts were blanked for visibility. Black arrowheads indicate time of 
stimulation. Recordings were performed using extracellular ACSF solution (section 3.4.2) containing 
5 µM NBQX and pipette solution 1 (section 3.4.3). (B) Summary bar graph of the modulatory effect of 
diazepam (DZ; 10 µM) and zolpidem (ZPD; 1 µM) on ePSCs. Data were normalized to the response 
before application of the modulator. Cell numbers are indicated at the base of each bar. See also 
Passlick et al. (2013). 

These results indicate that the majority of NG2 cells contain postsynaptic GABAA receptors 

carrying the subunits α1 and γ2. 
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To facilitate a detailed analysis of the pharmacological properties of tonic currents in NG2 

cells, the ambient GABA concentration was enhanced by wash-in of nipecotic acid (1 mM), 

an inhibitor of the mouse GABA transporter mGAT-1 and mGAT-4. In the presence of 

nipecotic acid, tonic currents increased to 18.7 ± 7.2 pA (n = 6). Coapplication of nipecotic 

acid (1 mM) with diazepam (10 µM) potentiated the tonic current to 140 ± 32% in 4/6 NG2 

cells tested, while two other cells remained unaffected (Fig. 5.7). Interestingly, zolpidem 

(1 µM) has never modulated tonic currents of NG2 cells in the presence of nipecotic acid (to 

103 ± 2.9%, n = 5; Fig. 5.7). These data imply that extrasynaptic GABAA receptors of NG2 cells 

are composed of other α- and γ-subunits than α1 and γ2. 

 

 

Fig. 5.7 Pharmacological modulation of tonic GABAA receptor currents in NG2 cells. (A) The 
bicuculline (20 µM)-sensitive tonic GABAA receptor current was potentiated by diazepam (10 µM) in 
an NG2 cell (top). In contrast, application of zolpidem (1 µM) did not modulate the bicuculline-
sensitive current in another NG2 cell (bottom). Recordings were performed using extracellular ACSF 
solution (section 3.4.2) and pipette solution 3 (section 3.4.3). 1 mM nipecotic acid was washed in to 
increase the ambient GABA concentration. (B) Summary bar graph of the modulatory effect of 
diazepam (DZ; 10 µM) and zolpidem (ZPD; 1 µM) on tonic GABAA receptor currents. Data were 
normalized to the tonic current before application of the modulator. Cell numbers are indicated at 
the base of each bar. See also Passlick et al. (2013). 

Taken together, these results suggest that the γ2-subunit is preferentially localized in 

synaptic GABAA receptors in the majority of NG2 cells while being absent in extrasynaptic 

ones mediating tonic currents in these cells. 
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5.1.4 Reversal potential analysis of GABAA receptors in NG2 cells 

The [Cl-]i determines whether the activation of GABAA receptors causes depolarization or 

hyperpolarization of the membrane potential of a cell. In neurons, a developmental change 

in [Cl-]i due to upregulation of KCC2 and downregulation of NKCC1 leads to a switch from a 

depolarizing to a hyperpolarizing action of GABA (Cherubini et al., 1991; Rivera et al., 1999; 

Stein et al., 2004; Yamada et al., 2004; Khirug et al., 2008). 

In NG2 cells, GABA was shown to be depolarizing throughout development as revealed by 

voltage-clamp-based reversal potential analysis (Lin and Bergles, 2004; Tanaka et al., 2009; 

Tong et al., 2009). However, in a similar experiment an increasing negative shift in the 

reversal potential during application of GABA was observed when holding the cell in the 

voltage-clamp configuration (Passlick et al., 2013). These results indicated a depletion of [Cl-]i 

as previously reported for neurons (DeFazio and Hablitz, 2001; Karlsson et al., 2011). To 

circumvent this effect, a modified approach was employed in the present study. 

To determine the reversal potential of GABAA receptors in NG2 cells perforated patch 

recordings were performed. To do so, the antibiotic gramicidin-A was included in the pipette 

solution (pipette solution 4, section 3.4.3) that forms cation-selective pores in the cell 

membrane leaving the [Cl-]i unaffected (Kyrozis and Reichling, 1995). The incorporation of 

gramicidin-A is a slow process that was monitored by a decrease in series resistance while 

holding the cell in the cell-attached configuration. Reversal potential analysis was started 

when series resistance reached ~100 MΩ (detailed procedure in section 4.1.6). Experiments 

were performed in a solution containing blockers for Na+ and K+ channels to inhibit other 

conductances that might influence the Cl- reversal potential (blocking solution, section 

3.4.2). 

To reduce potential redistribution of Cl- to a minimum the following experiment was 

conducted. Brief pulses of the GABAA receptor agonist muscimol (400 µM, 2 s) were focally 

applied. Immediately before application, the cell was clamped in 10 mV steps to a certain 

membrane potential (between -70 and +20 mV) and reset to the holding potential of -70 mV 

shortly after the application pulse. After each application the cell was held at -70 mV for 15 s 

to re-equilibrate the [Cl-]i.  
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Using this approach an average reversal potential of -56.42 ± 7.6 mV was measured (n = 9; 

Fig. 5.8A, C). As a control, the experiment was repeated in the whole-cell configuration using 

the same pipette and bath solutions. In this case, muscimol-evoked currents reversed close 

to the calculated reversal potential for Cl- of -43 mV (-43.4 ± 0.7 mV, n = 6; Fig. 5.8B, C). 

Potentials were corrected for a liquid junction potential of 13 mV. 

 

 

Fig. 5.8 Reversal potential analysis of NG2 cell GABAA receptors. (A) Muscimol (400 µM)-evoked 
responses of an NG2 cell in the perforated patch configuration (pressure application, 2 s). The cell 
was clamped between -70 mV and +20 mV (here only -60 mV to -10 mV are shown). Between each 
muscimol application the cell was held at -70 mV for 15 s. Recordings were performed using 
extracellular blocking solution (section 3.4.2) and pipette solution 4 containing 20-40 µg gramicidin-A 
(section 3.4.3 and 4.1.6). Recordings were offline compensated for liquid junction potential (13 mV). 
(B) In the whole-cell configuration using the same solutions and protocols as in (A), currents reversed 
close to the calculated reversal potential for Cl- of -43 mV in an NG2 cell. (C) Average I/V curves of the 
muscimol-evoked responses at different voltages in perforated patch (black circles, n = 9) and whole-
cell (white circles, n = 6) configuration. Data were normalized to the muscimol response at -83 mV.  

The reversal potential measured in the present study is close to the earlier mentioned 

shifted one, indicating that a similar Cl- redistribution occurred. Therefore, current-clamp-

based reversal potential experiments reducing the risk of Cl- redistribution probably provide 

more reliable information about the [Cl-]i of hippocampal NG2 cells (Passlick et al., 2013). 
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5.2 Molecular analysis of GABAA receptor subunit expression in 

neocortical NG2 cells during development 

For neocortical NG2 cells, a developmental switch from synaptic to extrasynaptic GABAergic 

transmission was demonstrated. In this process, the synaptic communication between 

interneurons and NG2 cells in juvenile mice is replaced by a form of GABA spillover activating 

extrasynaptic GABAA receptors in adult NG2 cells (Velez-Fort et al., 2010). Data from the 

present study revealed that synaptic and extrasynaptic GABAA receptors of hippocampal 

NG2 cells differ in expression of the γ2-subunit (section 5.1.3), which is essential for 

clustering of postsynaptic GABAA receptors in immature and mature neurons (Essrich et al., 

1998; Schweizer et al., 2003). Therefore, it was tested whether the developmental transition 

from synaptic to extrasynaptic communication in neocortical NG2 cells is accompanied by 

alterations of the GABAA receptor subunit expression. 

 

To investigate the GABAA receptor subunit composition of neocortical NG2 cells during 

postnatal development, single-cell RT-PCR experiments were performed. For this part of the 

study transgenic NG2-DsRed mice of the two age groups p7-11 and p21-29 were used, since 

these are the time periods where the switch from synaptic to extrasynaptic transmission was 

observed (Velez-Fort et al., 2010). Fluorescent NG2 cells of layer V of the barrel cortex were 

analyzed in the whole-cell configuration. Membrane currents in response to de- and 

hyperpolarizing voltage steps were elicited to unambiguously identify the cell. In both age 

groups, NG2 cells displayed the characteristic complex current-voltage relationship 

exhibiting time- and voltage-dependent conductances (Steinhäuser et al., 1994a; 

Steinhäuser et al., 1994b). Furthermore, neocortical NG2 cells displayed the known 

developmental increase of Kir conductances (Fig. 5.9A, B) that was also observed for 

hippocampal NG2 cells in the present study (section 5.3.1) (Kressin et al., 1995; Bordey and 

Sontheimer, 1997; Maldonado et al., 2013). Subsequent to functional characterization, the 

cytoplasm was harvested for transcript analysis. NG2 cells were tested for presence of the 

subunits α1-5, β1-3, γ1-3 and δ, which are the main GABAA receptor subunits expressed in 

the neocortex (Laurie et al., 1992; Golshani et al., 1997). A two-round RT-PCR was performed 

as described before (section 4.2 and 5.1.1.1). 
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At p7-11, the subunits α1, α2 and α5 were most frequently expressed (62, 56 and 44%, 

respectively, n = 16) while α3 and α4 were less often detected (25 and 19%, respectively, 

n = 16; Fig. 5.9A, C). An age-dependent decrease in expression frequency was observed for 

α2 (37%) and α5 (16%, n = 19). In contrast, α3 and α4 expression was increased (52 and 47%, 

respectively) while α1 expression was similar (53%, n = 19) at p21-29 (Fig. 5.9A, C). Regarding 

β-subunits, β2 and β3 were most abundant in both age groups (79 and 63% at p7-11, n = 19; 

71 and 57% at p21-29, respectively, n = 14; Fig. 5.9D). β1-subunit expression showed a slight 

decline from p7-11 (21%, n = 19) to p21-29 (7%, n = 14; Fig. 5.9D). Analysis of the γ-subunits 

revealed no age-dependency of γ3 (67% at p7-11, n = 21, and 75% at p21-29, n = 20) and γ1 

(48% at p7-11, n = 21, and 55% at p21-29, n = 20; Fig. 5.9B, E). Interestingly, γ2 displayed a 

strong age-dependent drop in expression frequency from 43% at p7-11 (n = 21) to 5% at 

p21-29 (n = 20; Fig. 5.9). The δ-subunit which is a major component of extrasynaptic GABAA 

receptors in neurons (Farrant and Nusser, 2005), was completely absent at p7-11 (n = 19) 

and rarely detected at p21-29 (18%, n = 11; Fig. 5.9E). 

 

These data indicate that neocortical NG2 cells experience a complex developmental 

regulation of their GABAA receptor subunit expression. Interestingly, the developmental 

switch from synaptic to extrasynaptic transmission is accompanied by a decline in the 

expression frequency of γ2, an important subunit of synaptic GABAA receptors. 
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Fig. 5.9 Expression analysis of GABAA receptor subunits in juvenile and adult neocortical NG2 cells 
by single-cell RT-PCR. (A, B) Agarose gels of α- and γ-subunit PCR-products of individual NG2 cells at 
p8 and p26 together with their respective current responses to de- and hyperpolarization 
between -160 and +20 mV (holding potential -80 mV). Expression of PDGFα receptor (PDGFαR) 
mRNA was used as a positive control and cell type-specific marker. Low Molecular Weight DNA 
Ladder served as size marker. Recordings were performed using extracellular ACSF solution (section 
3.4.2) and pipette solution 1 (section 3.4.3). (C-E) Summary bar graphs of the relative frequency of   
α-, β-, γ- and δ-subunit expression of all NG2 cells tested at p7-11 and p21-29. The number of tested 
cells is 16, 19, 21 and 19 for α-, β-, γ- and δ-subunits at p7-11, respectively, and 19, 14, 20 and 11 for 
α-, β-, γ- and δ-subunits at p21-29, respectively. See also Balia et al. (2013). 
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5.3 Role of the NG2 protein in neuron-NG2 cell glutamatergic 

synaptic signaling 

NG2 cells are the only non-neuronal cells in the CNS that receive synaptic input from 

neurons. The cellular mechanisms underlying formation and maintenance of these neuron-

glia synapses and their functional impact are still unclear (Bergles et al., 2010). Several 

studies have suggested that the NG2 protein itself is involved in neuron-NG2 cell synaptic 

transmission, as it was shown that 

(i) NG2 contains two extracellular LNS domains that are important for transsynaptic 

binding of the neuroligin-neurexin complex in neurons (section 1.6 and 1.7) 

(Trotter et al., 2010; Missler et al., 2012) 

(ii) NG2 is complexed via GRIP with GluA2/3-subunit containing AMPA receptors, 

thereby possibly mediating receptor clustering in the glial postsynaptic density 

(Stegmüller et al., 2003). 

However, this hypothesis has never been tested. To elucidate a potential contribution of 

NG2 in this process, neuron-NG2 cell glutamatergic synaptic transmission was investigated in 

NG2-EYFP knockin mice of the three different genotypes: wild type NG2 (wt), heterozygous 

NG2 knockout with reduced NG2 expression (+/-) and homozygous NG2 knockout (-/-) 

(section 3.1.3) (Karram et al., 2008). To consider besides genotype- also age-dependent 

effects, experiments were performed in juvenile (p8-12) and aged (> 9 months) animals. For 

this study, the hippocampal CA1 region was chosen as a well characterized system of 

synaptic transmission (section 1.1) (Malenka and Nicoll, 1999). All recordings of this section 

were performed using extracellular ACSF solution (section 3.4.2) containing 150 µM of the 

GABAA receptor blocker picrotoxin and pipette solution 1 (section 3.4.3) if not stated 

otherwise. 
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5.3.1 Influence of NG2 on passive membrane properties of NG2 cells 

In the first set of experiments, passive membrane properties of NG2 cells were compared. 

NG2 cells of juvenile and aged NG2-EYFP mice of all genotypes displayed the characteristic 

complex current pattern with time- and voltage-dependent currents in response to de- and 

hyperpolarizing voltage steps (Fig. 5.10) (Steinhäuser et al., 1994a; Steinhäuser et al., 

1994b). As reported previously, the current patterns of juvenile NG2 cells were more 

variable with respect to the expression of Kir conductances (Fig. 5.10A), while those of aged 

NG2 cells were more uniform with clear upregulation of Kir channel expression (Fig. 5.10B) 

(Kressin et al., 1995; Bordey and Sontheimer, 1997; Maldonado et al., 2013). Similar results 

were also observed for neocortical NG2 cells in the present study (section 5.2). 

 

 

Fig. 5.10 NG2 cells upregulate Kir conductances during development. (A) Current responses of two 
juvenile NG2 cells (A1: p9, A2: p11) to de- and hyperpolarization between -160 and +20 mV (holding 
potential -80 mV). Juvenile NG2 cells exhibited variable degrees of Kir conductances. (B) Current 
responses of two aged NG2 cells (B1: p337, B2: p350) to de- and hyperpolarization between -160 and 
+20 mV (holding potential -80 mV). Aged NG2 cells consistently displayed increased Kir conductances. 
Scale bar in A1 applies to A and B. 
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The observed increase in Kir conductances from juvenile to aged NG2 cells was also reflected 

by the membrane resistance. Aged NG2 cells of all genotypes showed a decrease in 

membrane resistance compared to juvenile cells (Tab. 5.2, Fig. 5.11A). Moreover, the 

observed variability regarding the amount of Kir conductances in juvenile NG2 cells was 

mirrored by a larger interquartile range of the membrane resistance compared to aged NG2 

cells (Tab. 5.2, Fig. 5.11A). Interestingly, aged NG2 cells with reduced levels of NG2 

expression (+/- and -/-) showed an increase in membrane resistance compared to wt cells. 

The resting potential of NG2 cells was not influenced by NG2 expression (Tab. 5.2, Fig. 

5.11B). However, a small decrease in resting potential was observed between juvenile and 

aged wt animals. 

Analysis of the membrane capacitance of NG2 cells revealed genotype- and age-dependent 

changes (Tab. 5.2, Fig. 5.11C). Juvenile NG2 cells displayed larger membrane capacitances 

when NG2 expression was reduced or lacking. Conversely, this effect was absent in aged 

NG2 cells. During development no alterations of membrane capacitance were observed for 

wt cells. However, due to the increased membrane capacitances in juvenile +/- and -/- cells, 

a decrease from juvenile to aged in +/- and -/- animals was observed. 

Passive membrane properties were determined as described in section 4.1.4. 

Tab. 5.2 Passive membrane properties of NG2 cells. Gaussian data are given as mean ± SD, non-
Gaussian data as median and interquartile range (quartile 25 – quartile 75). Cell numbers are given in 
square brackets. Rm = membrane resistance, Vrest = resting potential, Cm = membrane capacitance. 

 juvenile aged 
 wt +/- -/- wt +/- -/- 

Rm (MΩ) 
396.0 

(198-620) 
[19] 

196.5 
(117-455) 

[40] 

274.9 
(136-715) 

[25] 

28 
(21-30) 

[11] 

34.8 
(29-44) 

[20] 

40.2 
(27-58) 

[31] 

Vrest (mV) 
-91 

(-93 - -88) 
[19] 

-90 
(-91 - -88) 

[40] 

-89 
(-91 - -86) 

[25] 

-87 
(-89 - -86) 

[11] 

-89 
(-90 - -88) 

[20] 

-89 
(-90 - -87) 

[31] 

Cm (pF) 27.3 ± 4.9 
[18] 

32 ± 6.8 
[38] 

35.5 ± 6.3 
[23] 

28.3 ± 3.5 
[11] 

27.2 ± 4.7 
[19] 

24.9 ± 5.1 
[29] 
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Fig. 5.11 Membrane resistance and membrane capacitance are influenced by NG2. (A-C) Membrane 
resistance (Rm), resting potential (Vrest) and membrane capacitance (Cm) of NG2 cells in juvenile and 
aged wt, +/- and -/- mice. (A) The membrane resistance decreased from juvenile to aged NG2 cells in 
all genotypes (test #4). Furthermore, aged NG2 cells exhibited an NG2-dependent increase in 
membrane resistance (test #3). (B) Resting potential was slightly depolarized in aged compared to 
juvenile wt cells (test #4), but showed no NG2-dependent changes. (C) Membrane capacitance was 
increased in +/- and -/- cells compared to wt cells in juvenile animals (test #1) while this effect was 
absent in aged NG2 cells. In addition, membrane capacitance decreased in +/- and -/- cells during 
development (test #1) while being stable in wt cells. Asterisks indicate statistically significant 
differences. Cell numbers for each group indicated at the base of each bar. 

Taken together, these results indicate that NG2 expression may have an impact on 

membrane resistance and membrane capacitance of NG2 cells. Moreover, the current 

patterns of NG2 cells change during development, including a pronounced increase in Kir 

channel expression. 
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5.3.2 Influence of NG2 on kinetic properties of ePSCs in NG2 cells 

To investigate the role of the NG2 protein in synaptic transmission, Schaffer collaterals were 

stimulated to record ePSCs in NG2 cells of the hippocampal CA1 region. In the presence of 

the GABAA receptor blocker picrotoxin (150 µM), stimulation elicited glutamatergic ePSCs in 

NG2 cells of all genotypes and age groups tested (Fig. 5.12A). These currents were 

completely abolished by bath application of the AMPA/kainate receptor antagonist NBQX 

(10 µM) indicating that they are exclusively mediated by AMPA receptors (Fig. 5.12B). 

The kinetic properties of synaptic AMPA receptor-mediated currents vary depending on 

subunit composition of the receptor, association with auxiliary subunits and time course of 

glutamate concentration in the synaptic cleft (section 1.4.2) (Jonas, 2000; Cathala et al., 

2005; Jackson and Nicoll, 2011). As NG2 has been found in a complex with GluA2/3 

containing AMPA receptors (Stegmüller et al., 2003), it might influence the subunit 

composition of AMPA receptors in the postsynaptic density. Furthermore, assuming NG2 

binds to a presynaptic protein via its LNS domains, it might affect synaptic structure and 

thereby the time course of glutamate concentrations in the synaptic cleft. To test this, 

kinetic properties of ePSCs were compared between the genotypes and age groups 

investigated (detailed procedure in section 4.1.9.2). 

Rise times and decay times of ePSCs were indistinguishable between genotypes within each 

age group (Tab. 5.3, Fig. 5.12C). Nevertheless, an acceleration of rise times and decay times 

in +/- and -/- NG2 cells became evident when comparing the age groups. 

Tab. 5.3 Kinetic properties of ePSCs in NG2 cells. Data are given as mean ± SD. Cell numbers are 
given in square brackets. 

 juvenile aged 
 wt +/- -/- wt +/- -/- 

rise time (ms) 0.52 ± 0.1 
[7] 

0.55 ± 0.2 
[15] 

0.53 ± 0.1 
[10] 

0.43 ± 0.1 
[6] 

0.37 ± 0.03 
[8] 

0.4 ± 0.04 
[8] 

decay time (ms) 1.36 ± 0.49 
[7] 

1.38 ± 0.46 
[14] 

1.5 ± 0.49 
[11] 

1.0 ± 0.31 
[6] 

0.7 ± 0.14 
[8] 

0.89 ± 0.19 
[8] 
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Fig. 5.12 NG2 cells form functional glutamatergic synapses exhibiting unchanged AMPA receptor 
current kinetics in the absence of NG2. (A) Representative responses of four NG2 cells to Schaffer 
collateral stimulation in juvenile (p9, both) and aged (top: p301, bottom: p300) wt and -/- mice. 
Single traces (gray) and average of ePSCs (black) are shown. (B) ePSCs were completely blocked by 
wash-in of NBQX (10 µM) in a juvenile (p9) +/- NG2 cell. (C) Summary bar graphs of ePSC rise times 
and decay times of juvenile and aged wt, +/- and -/- NG2 cells. No differences were detected among 
genotypes within each age group. However, rise times and decay times decreased from juvenile to 
aged in +/- and -/- cells (test #2). Asterisks indicate statistically significant differences. Cell numbers 
for each group indicated at the base of each bar. 

These findings indicate that functional neuron-NG2 cell synapses form in the absence of the 

NG2 protein. Furthermore, these synapses exhibit AMPA receptors displaying current 

kinetics indistinguishable from controls. 
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5.3.3 Influence of NG2 on short-term synaptic plasticity in NG2 cells 

Short-term synaptic plasticity describes a temporary change in synaptic efficacy that mainly 

depends on the presynaptic release probability (section 1.4.1). Although it is considered to 

be a primarily presynaptic feature, a study by Futai et al. (2007) showed that retrograde 

signaling from the postsynaptic cell via neurexin-neuroligin interaction can also regulate the 

presynaptic release probability and thereby short-term synaptic plasticity. Furthermore, 

triple-knockout studies of all α-neurexins revealed dysfunction of presynaptic transmitter 

release due to non-functional Ca2+ channels (Missler et al., 2003). Assuming that NG2 binds 

to a presynaptic protein via its LNS domains, it might also regulate these features at neuron-

NG2 cell synapses. To test this, paired-pulse stimulation experiments with an interstimulus 

interval of 20 ms were performed. NG2 cells of all genotypes and age groups displayed 

strong paired-pulse facilitation as indicated by the PPR (Tab. 5.4, Fig. 5.13) (detailed 

procedure in section 4.1.8 and 4.1.9.2). Comparison of the different genotypes revealed no 

NG2-dependent alteration in PPR. A decrease was only observed between juvenile and aged 

wt cells (Fig. 5.13).  

 

 

Fig. 5.13 Expression of NG2 does not influence short-term synaptic plasticity of neuron-NG2 cell 
synapses. (A) Paired-pulse stimulation (interstimulus interval 20 ms) of Schaffer collaterals revealed 
facilitation in a juvenile (p9) -/- NG2 cell. Average of single traces (gray) is given in black. (B) Summary 
bar graph of the PPR of juvenile and aged wt, +/- and -/- NG2 cells. PPR was unchanged between the 
genotypes and age groups except for wt juvenile vs. aged (test #2). Asterisks indicate statistically 
significant differences. Cell numbers for each group indicated at the base of each bar. 
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Tab. 5.4 PPR of ePSCs in NG2 cells. Data are given as mean ± SD. Cell numbers are given in square 
brackets. 

 juvenile Aged 
 wt +/- -/- wt +/- -/- 

PPR 3.7 ± 0.4 
[6] 

3.4 ± 1.7 
[8] 

2.8 ± 1 
[8] 

2.4 ± 0.3 
[6] 

2.6 ± 0.9 
[8] 

3.3 ± 0.9 
[8] 

 

These data suggest that presynaptic release probability and short-term synaptic plasticity are 

not influenced by NG2 expression. 

5.3.4 Influence of NG2 on synaptic connectivity of NG2 cells 

Contradictory studies involve the NG2 protein in neurite outgrowth. While some studies 

indicate that NG2 is inhibiting neurite outgrowth (Ughrin et al., 2003; Tan et al., 2005; Tan et 

al., 2006), others suggest that it constitutes a permissive substrate for neurites (Jones et al., 

2003; de Castro et al., 2005). Furthermore, it was shown that axons actively contact NG2 

cells but avoid oligodendrocytes (Yang et al., 2006). Assuming that NG2 has either a 

permissive or inhibiting effect on neuronal processes and considering that it may bind to a 

presynaptic partner via its LNS domains, reduced levels of NG2 may influence the number of 

functional synapses. To estimate whether NG2 has an influence on synaptic connectivity, the 

frequency of AMPA receptor-mediated mPSCs was measured in the presence of 150 µM 

picrotoxin and 1 µM TTX in juvenile and aged wt, +/- and -/- mice (detailed procedure in 

section 4.1.9.2).  

The analysis revealed a relatively low mPSC frequency in juvenile NG2 cells that decreased 

even further during development (Tab. 5.5, Fig. 5.14). Importantly, no NG2-dependent 

alterations were detected in both age groups, while the developmental decrease in mPSC 

frequency was evident in all genotypes tested. 
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Fig. 5.14 Synaptic connectivity is preserved in absence of NG2. (A) Example traces of mPSC 
recordings from juvenile (top: p8, bottom: p11) and aged (top: p407, bottom: p372) wt and -/- NG2 
cells. Recordings were performed in the presence of 150 µM picrotoxin and 1 µM TTX using pipette 
solution 2 (section 3.4.3). Diamonds indicate regions shown at an expanded timescale (right). 
(B) Summary box plot of mPSC frequency in juvenile and aged wt, +/- and -/- NG2 cells. Different 
levels of NG2 expression did not influence mPSC frequency. A decrease from juvenile to aged animals 
was detected in all genotypes tested (test #4). Asterisks indicate statistically significant differences. 
Cell numbers for each group indicated at the base of each bar. 
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Tab. 5.5 Frequency of mPSCs in NG2 cells. Data are given as median and interquartile range 
(quartile 25 – quartile 75). Cell numbers are given in square brackets. 

 juvenile aged 
 wt +/- -/- wt +/- -/- 

frequency 
(Hz) 

0.05 
(0.04-0.09) 

[14] 

0.045 
(0.02-0.11) 

[31] 

0.043 
(0.02-0.17) 

[19] 

0.013 
(0.006-0.022) 

[9] 

0.005 
(0-0.009) 

[17] 

0.003 
(0.002-0.011) 

[18] 

 

These findings suggest that the synaptic connectivity of NG2 cells is preserved and 

unchanged in the absence of NG2. 

5.3.5 Influence of NG2 on postsynaptic AMPA receptor density in NG2 cells 

The NG2 protein is complexed with GRIP and GluA2/3 containing AMPA receptors 

(Stegmüller et al., 2003). It may thus be important for AMPA receptor trafficking into the 

synapse and clustering of AMPA receptors in the glial postsynaptic density. To assess 

whether NG2-lacking cells exhibit changes in postsynaptic AMPA receptor density, mPSC 

amplitudes were compared among the genotypes and age groups tested (detailed procedure 

in section 4.1.9.2). Since the frequency of mPSCs was too low for a quantitative analysis 

(section 5.3.4), the presynaptic transmitter release was increased by locally applying 3 µM 

ionomycin, a Ca2+ ionophore that has been shown to increase mPSC frequency without 

affecting the amplitude (Capogna et al., 1996). In the presence of 150 µM picrotoxin and 

1 µM TTX, ionomycin considerably increased the mPSC frequency in NG2 cells of all 

genotypes and age groups (Fig. 5.15A, compared to the baseline frequency in Fig. 5.14A). No 

mPSCs were recorded in the presence of 10 µM NBQX (Fig. 5.15B). Comparison of mean and 

cumulative probability distributions of mPSC amplitudes revealed no differences between 

the genotypes and age groups tested (Tab. 5.6, Fig. 5.15C). 

 

94 
 



Results 

 

 

Fig. 5.15 Postsynaptic AMPA receptor density is unaffected by NG2 ablation. (A) Representative 
mPSC recordings from juvenile (p8, both) and aged (top: p447, bottom: p372) wt and -/- NG2 cells 
after application of 3 µM ionomycin to increase presynaptic vesicle fusion. Recordings were 
performed in the presence of 150 µM picrotoxin and 1 µM TTX using pipette solution 2 (section 
3.4.3). Diamonds indicate regions shown at an expanded timescale (middle). Average of all mPSCs of 
the corresponding cell is given on the right. (B) In the presence of 10 µM NBQX no mPSCs were 
recorded upon ionomycin application in a juvenile (p10) -/- NG2 cell. (C) Summary bar graph of mean 
mPSC amplitudes (left) and cumulative probability distribution of mPSC amplitudes (right) in juvenile 
and aged wt, +/- and -/- NG2 cells. Differences between genotypes and age groups did not reach 
statistical significance. Cell numbers for each group indicated at the base of each bar (C, left also 
apply to C, right). 
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Tab. 5.6 Amplitudes of mPSCs in NG2 cells. Data are given as mean ± SD. Cell numbers are given in 
square brackets. 

 juvenile aged 
 wt +/- -/- wt +/- -/- 

amplitude (pA) -9.49 ± 1.9 
[13] 

-8.36 ± 1.7 
[15] 

-9.11 ± 1.7 
[18] 

-8.06 ± 1.1 
[9] 

-9.04 ± 1.6 
[9] 

-9.04 ± 1.3 
[12] 

 

These data indicate that the postsynaptic AMPA receptor density is unaffected by NG2 

ablation. 

5.3.6 Influence of NG2 on kinetic properties of mPSCs in NG2 cells 

As described in section 5.3.2, kinetic properties of postsynaptic AMPA receptor currents may 

vary depending on the presence of NG2. To investigate this, kinetic properties of averaged 

mPSCs measured after application of ionomycin were compared (detailed procedure in 

section 4.1.9.2). In agreement with the results gained for ePSCs (section 5.3.2), rise times 

and decay times of mPSCs were indistinguishable between the genotypes tested in both age 

groups (Tab. 5.7, Fig. 5.16). Furthermore, all genotypes displayed a developmental 

acceleration of rise times and decay times of mPSCs in NG2 cells as observed for ePSCs 

(section 5.3.2). 

 

 

Fig. 5.16 Kinetic properties of mPSCs display no NG2-dependent alterations but experience 
developmental acceleration. Summary bar graphs of mPSC rise time (left) and decay time (right) of 
juvenile and aged wt, +/- and -/- NG2 cells. As for ePSCs, no differences were detected among the 
genotypes tested in both age groups. However, comparison of juvenile with aged mPSC kinetics 
revealed a developmental acceleration in all genotypes (test #1). Asterisks indicate statistically 
significant differences. Cell numbers for each group indicated at the base of each bar. 
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Tab. 5.7 Kinetic properties of mPSCs in NG2 cells. Data are given as mean ± SD. Cell numbers are 
given in square brackets. 

 juvenile aged 
 wt +/- -/- wt +/- -/- 

rise time (ms) 0.4 ± 0.05 
[14] 

0.4 ± 0.05 
[16] 

0.44 ± 0.05 
[17] 

0.34 ± 0.03 
[8] 

0.35 ± 0.04 
[9] 

0.37 ± 0.04 
[12] 

decay time (ms) 1.5 ± 0.3 
[14] 

1.51 ± 0.28 
[16] 

1.67 ± 0.25 
[17] 

1.19 ± 0.08 
[8] 

1.2 ± 0.25 
[9] 

1.25 ± 0.18 
[12] 

 

These findings confirm the results obtained from ePSCs suggesting that NG2 does not 

influence kinetic properties of postsynaptic AMPA receptor currents. However, an NG2-

independent acceleration of these current kinetics during development was observed. 

5.3.7 Expression analysis of neuroligins by NG2 cells 

So far, little is known about the molecular structure of the postsynaptic compartment in NG2 

cells (Bergles et al., 2010). Although the NG2 protein constituted a promising candidate to 

mediate synaptic cell adhesion to presynaptic neurons (Trotter et al., 2010), the preceding 

results did not support a critical role for NG2 in glutamatergic synaptic transmission at 

neuron-NG2 cell synapses.  

In neurons, the binding of presynaptic neurexins to postsynaptic neuroligins was shown to 

be involved in the regulation of synapse number, synapse specificity and synaptic strength 

(section 1.6) (Missler et al., 2012). To test whether synaptic cell adhesion between neurons 

and NG2 cells might similarly be mediated by the neuroligin-neurexin complex, expression of 

postsynaptic neuroligins by NG2 cells was investigated by performing single-cell RT-PCR. 

Expression was compared between juvenile and aged +/- and -/- animals to test for potential 

developmental or NG2-dependent alterations in the expression pattern. Experiments 

concentrated on the identification of neuroligin-1-3, as neuroligin-4 is only found at 

glycinergic synapses (Hoon et al., 2011) that were so far not demonstrated for hippocampal 

NG2 cells. 
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Fluorescent NG2 cells of juvenile and aged +/- and -/- mice were analyzed in the whole-cell 

configuration. Subsequently, the cytoplasm was harvested and a two-round RT-PCR was 

performed with primers specific for neuroligin-1-3. PDGFα receptor expression served as a 

positive control and cell type-specific marker. Cells negative for PDGFα receptor mRNA were 

excluded (detailed procedure in section 4.2). 

Neuroligin-1-3 were expressed by the majority of juvenile and aged NG2 cells in +/- and -/- 

mice (Tab. 5.8, Fig. 5.17). An NG2-dependent effect was only observed in aged NG2 cells 

where neuroligin-3 was less often detected in the absence of NG2 (Fig. 5.17). Expression 

frequencies were similar between age groups indicating no developmental changes. 

Neuroligin-1 and -2 were coexpressed by 81% of all NG2 cells tested in juvenile and 59% in 

aged mice (+/- and -/- cells pooled; aged n = 21, juvenile n = 22). All cells positive for 

neuroligin-1 expressed the short splice variant lacking the insert at splice site A (Fig. 1.6) 

except for three juvenile NG2 cells expressing both, the long and short variant, and two aged 

NG2 cells expressing only the long variant. 

Tab. 5.8 Expression of neuroligin-1-3 in juvenile and aged NG2 cells. Data are given as relative 
frequencies. Cell numbers are given in square brackets. 

 juvenile aged 
 +/- -/- +/- -/- 

neuroligin-1 (%) 90 
[10] 

73 
[11] 

91 
[11] 

73 
[11] 

neuroligin-2 (%) 100 
[10] 

91 
[11] 

82 
[11] 

73 
[11] 

neuroligin-3 (%) 90 
[10] 

82 
[11] 

82 
[11] 

36 
[11] 

 

These data demonstrate that juvenile and aged hippocampal NG2 cells frequently express 

the synaptic cell adhesion proteins neuroligin-1-3. 
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Fig. 5.17 Expression analysis of neuroligin-1-3 in NG2 cells by single-cell RT-PCR. (A, B) Agarose gels 
of neuroligin (NLG)-1-3 PCR-products of individual juvenile (A; left: p10, right: p9) and aged (B; left: 
p382, right: p372) +/- and -/- NG2 cells together with their respective current responses to de- and 
hyperpolarization between -160 and +20 mV (holding potential -80 mV). Expression of PDGFα 
receptor (PDGFαR) mRNA served as a positive control and cell type-specific marker. Low Molecular 
Weight DNA ladder served as size marker. (C) Summary bar graph of the relative frequency of      
NLG-1-3 expression of all NG2 cells tested. NLG-3 was less frequently detected in aged -/- NG2 cells 
(test #6). Asterisks indicate statistically significant differences. Cell numbers for each age group 
indicated at the base of bars. 
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6 Discussion 

6.1 Functional properties of GABAA receptors in hippocampal NG2 

cells 

Research of the past decades has provided abundant evidence that glial cells are equally 

endowed with neurotransmitter receptors as neurons (Verkhratsky and Steinhäuser, 2000). 

However, their properties and physiological functions are still much less understood. Early 

studies identified GABAA receptors in oligodendrocytes and their precursors (putative NG2 

cells) in culture (von Blankenfeld et al., 1991). These findings were later confirmed and 

complemented by in situ studies identifying GABAA receptor-mediated currents in complex 

cells (putative NG2 cells) in acute hippocampal slices (Steinhäuser et al., 1994a). Intriguingly, 

several groups even demonstrated that NG2 cells receive GABAergic synaptic input from 

interneurons in different brain regions (Lin and Bergles, 2004; Jabs et al., 2005; Velez-Fort et 

al., 2010). However, a detailed analysis of the physiological properties of NG2 cell GABAA 

receptors remained to be done (Bergles et al., 2010). 

In the present study, molecular single-cell expression analysis combined with 

pharmacological modulation revealed that GABAA receptors of hippocampal NG2 cells 

resemble many properties of neuronal GABAA receptors in this brain region. Further 

experiments highlighted the selective presence of the γ2-subunit in synaptic GABAA 

receptors while being absent in extrasynaptic ones. For neocortical NG2 cells it could be 

demonstrated that the developmental switch from synaptic to extrasynaptic GABAergic 

transmission is accompanied by downregulation of γ2-subunit expression. 

These results emphasize the significant role of the γ2-subunit in GABAergic synaptic signaling 

between neurons and NG2 cells and provide an important basis for future studies.  

6.1.1 Hippocampal NG2 cells express a similar set of GABAA receptor subunits as 

neurons 

The subunit composition of a given GABAA receptor determines its susceptibility to different 

modulators. Analysis of the modulatory action of a certain compound on GABAA receptor-

mediated currents therefore allows the evaluation of the cell type-specific subunit 
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composition (overview in section 1.5.2) (Hevers and Luddens, 1998; Mehta and Ticku, 1999). 

By performing single-cell transcript analysis and pharmacological modulation in situ, the 

repertoire of GABAA receptor subunits expressed by hippocampal NG2 cells was 

investigated. 

The barbiturate pentobarbital binds to the β-subunits that are present in all naturally 

occurring GABAA receptors described so far (Hadingham et al., 1993; Mehta and Ticku, 

1999). As expected, pentobarbital enhanced the GABA-evoked response in all NG2 cells 

tested, demonstrating ubiquitous expression of functional β-subunit-containing GABAA 

receptors in hippocampal NG2 cells (Fig. 5.2). This is in line with a previous study showing 

potentiation of synaptic GABAA receptor currents by pentobarbital in hippocampal NG2 cells 

(Lin and Bergles, 2004). 

Several modulators act via the benzodiazepine binding site located at the interface of α- and 

γ-subunits of GABAA receptors. As they usually prefer certain subunit combinations, they are 

frequently used to identify specific α- and γ-subunits. The benzodiazepine diazepam 

increased the GABA-evoked responses in all NG2 cells tested (Fig. 5.2) indicating frequent 

expression of the subunits α1-3 and 5 and γ1-3 and low expression of α-subunits 4 and 6 

(Olsen and Sieghart, 2009). This is in line with the molecular expression analysis where the 

subunits α1 and 2 and γ1-3 were detected in the majority of cells while α4 was much less 

prevalent (Fig. 5.1). So far there are conflicting results in the literature concerning the 

modulation of NG2 cell GABAA receptors by benzodiazepines. While von Blankenfeld et al. 

(1991) demonstrated clear potentiation by diazepam, Williamson and colleagues (1998) 

claimed complete absence of benzodiazepine sensitivity of GABAA receptors in cultured 

oligodendrocyte precursor cells (putative NG2 cells). However, these studies were 

performed on different species (mice vs. rats) at different developmental time-points 

(embryo vs. neonatal) with different application techniques (fast vs. slow application), which 

might explain this discrepancy. Furthermore, both studies were performed in culture, while 

the present study investigated NG2 cells in situ. It is well known that different culture 

conditions may influence gene expression, which was demonstrated among others for 

neuronal GABAA receptors (Ives et al., 2002). 

The non-benzodiazepine zolpidem particularly modulates GABAA receptors containing the 

subunits α1-3 and γ2 (Pritchett and Seeburg, 1990; Puia et al., 1991; McKernan et al., 1991; 
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Sanna et al., 2002) while being completely insensitive at γ1- and γ3-containing receptors 

(Wingrove et al., 1997). At high concentrations, zolpidem potentiated the GABA-evoked 

response in all NG2 cells tested. Application of a lower concentration which enhances the 

specificity for the α1-subunit (Pritchett and Seeburg, 1990; McKernan et al., 1991) still 

increased the response in the majority of NG2 cells (Fig. 5.2). These data indicate frequent 

expression of the subunits α1 and γ2 in hippocampal NG2 cells. However, the finding that 

high concentrations of zolpidem potentiated the currents in all cells, while lower 

concentrations also identified zolpidem-insensitive cells suggests that some NG2 cells 

express α2 and/or α3 at higher levels than α1 and γ1 and/or γ3 rather than γ2. This is 

supported by the RT-PCR data, showing high incidence of α1, α2 and γ1-3 expression (Fig. 

5.1). These results are partly in conflict with data by Lin and Bergles (2004) who described 

diazepam-sensitive but zolpidem-insensitive GABAA receptors in hippocampal NG2 cells. This 

is characteristic for α5-containing receptors (Burgard et al., 1996). However, α5-transcripts 

were rarely detected in the present RT-PCR analysis (Fig. 5.1). It is worth noting, though, that 

Lin and Bergles (2004) worked with rats and used slightly older animals which might explain 

the diverging findings. Indeed, a developmental switch in zolpidem-sensitivity and subunit 

expression of GABAA receptors was recently shown for neocortical NG2 cells (Balia et al., 

2013) and was partly investigated in the present study (section 5.2).  

The inverse agonist DMCM usually decreases GABAA receptor currents, except at receptors 

containing the γ1- and/or β2/3-subunits where positive modulatory effects have been 

observed (Puia et al., 1991; Wafford et al., 1993; Stevenson et al., 1995). The effect of 

DMCM was variable in NG2 cells displaying potentiation, inhibition or no change in GABA-

evoked currents (Fig. 5.2). This implies that receptors containing different β- and γ-subunits 

are coexpressed by individual NG2 cells at different levels. Positive and negative modulatory 

effects might then add up and possibly cancel each other out, as indicated by some cells 

showing no modulation by DMCM. This assumption is in line with the RT-PCR analysis where 

several cells coexpressed different β- and γ-subunits (section 5.1.1.1, Fig. 5.1). However, 

these results are in part contrary to earlier studies in cultured oligodendrocyte precursor 

cells (putative NG2 cells) that either showed inhibition in the majority of cells (von 

Blankenfeld et al., 1991) or no modulation at all in response to DMCM (Williamson et al., 

1998). As mentioned before, these differences probably arise from the use of different 

102 
 



Discussion 

 
species (mice vs. rats), age groups (embryo/neonatal/postnatal) and experimental systems 

(culture vs. in situ). However, abundant presence of functional GABAA receptors containing 

the subunits β2/3 was further confirmed by the β2/3-subunit-specific modulator loreclezole 

(Wafford et al., 1994; Wingrove et al., 1994) which potentiated GABAA receptor currents in 

all NG2 cells tested (Fig. 5.2).  

 

The endogenous GABAA receptor inhibitor Zn2+ is vesicularly released from a subset of 

glutamatergic terminals but was also found in GABA-containing vesicles of mossy fiber 

synapses (Ruiz et al., 2010; Toth, 2011). The inhibitory effect of Zn2+ on GABAA receptor 

currents is determined by the respective α- and γ-subunits of the receptor (Hevers and 

Luddens, 1998). Several studies using ectopic expression systems demonstrated that 

particularly γ2-subunit-containing GABAA receptors are much less inhibited by Zn2+ (Draguhn 

et al., 1990; Smart et al., 1991; Hosie et al., 2003). To test for a similar correlation of Zn2+ 

sensitivity with GABAA receptor subunit composition in NG2 cells, single-cell RT-PCR was 

performed subsequent to pharmacological modulation in situ. The results showed that 

hippocampal NG2 cells were heterogeneous with respect to their Zn2+ sensitivity. Despite 

some variability, NG2 cells lacking γ2 displayed a higher Zn2+ sensitivity compared to those 

expressing γ2 (Fig. 5.4) which is in line with the ectopic expression analysis mentioned 

before (Draguhn et al., 1990; Smart et al., 1991; Hosie et al., 2003). Similar results were 

obtained for cerebellar granule cells and cortical interneurons where pharmacological 

modulation combined with single-cell RT-PCR revealed that γ2-expressing cells were less 

Zn2+-sensitive (Alsbo et al., 2001). The molecular analysis of the present study further 

showed that the subunits α1 and α5 were less abundant in the γ2-lacking Zn2+-sensitive NG2 

cells. This is consistent with a report demonstrating that α1/γ2-containing GABAA receptors 

are even less Zn2+-sensitive compared to other α-subunits coexpressed with γ2 (White and 

Gurley, 1995).  

However, the data collected here are in conflict with an earlier study investigating Zn2+ 

sensitivity in cultured oligodendrocyte precursor cells (putative NG2 cells) that reported a 

strong inhibition by Zn2+ in all cells tested. In the same study the authors performed RT-PCR 

of whole cultures showing expression of γ2 and a complete lack of α1 expression 

(Williamson et al., 1998). However, it has to be considered that they used purified cells from 
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neonatal rats (p1-2) and cultured these for 7 days prior to investigation. As discussed before, 

culture conditions (Ives et al., 2002) and species-dependent differences may account for the 

observed deviations. Moreover, it is particularly important to consider the difference in age 

since the present study demonstrated considerable developmental changes in GABAA 

receptor subunit expression of neocortical NG2 cells (section 5.2) that might as well occur in 

the hippocampus. A developmental decrease in Zn2+ sensitivity was also observed in 

hippocampal neurons (Martina et al., 1996) presumably due to increasing expression of the 

subunits α1/γ2 (Laurie et al., 1992; Brooks-Kayal et al., 1998).  

In general, for the interpretation of these kind of experiments it has to be considered that 

the half-life of GABAA receptor subunit mRNA is substantially shorter than degradation of the 

corresponding protein (Lyons et al., 2000). This might have contributed to the variability in 

Zn2+ sensitivity among the γ2 mRNA-lacking cells. In this regard, one also has to keep in mind 

that a single transcript is theoretically sufficient to give a positive signal in RT-PCR, while the 

corresponding subunit might only be part of a minority of functional receptors.  

 

Taken together, the results obtained from pharmacological modulation and molecular RT-

PCR analysis suggest that juvenile hippocampal NG2 cells predominantly express the 

subunits α1, α2, β2, β3, γ1 and γ2. However, due to the observed heterogeneity of mRNA 

expression and pharmacological responses it is likely that transcellular differences in subunit 

expression among the juvenile NG2 cell population occur.  

Among neurons, GABAA receptor subunit compositions vary substantially between different 

brain regions, types of neurons and individual cells. Even in the same cell GABAA receptors 

with different subunit compositions are coexpressed and are subject to differential 

subcellular localization (Farrant and Nusser, 2005). Immunohistochemical as well as electron 

microscopical studies support the notion that GABAA receptors of the subunit combination 

α1β2γ2 are the most abundant in the mammalian brain (Pirker et al., 2000; Olsen and 

Sieghart, 2009). In the hippocampus, developing neurons primarily express the subunits α1, 

α2, α5, β1 and γ2 (Brooks-Kayal et al., 1998). Similar results were obtained in the present 

study for juvenile hippocampal NG2 cells, as the subunits α1, α2, β1, β2 and γ2 were 

frequently expressed. The α5-subunit which is important for tonic currents in hippocampal 

neurons (Glykys et al., 2008) seems to be less relevant in NG2 cell, as it was rarely detected 
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by single-cell RT-PCR (Fig. 5.1). Nevertheless, GABAA receptors of hippocampal NG2 cells 

resemble many properties of neuronal receptors in this brain region. A detailed discussion 

on expression and pharmacological properties of synaptic vs. extrasynaptic receptors in NG2 

cells vs. neurons is given in section 6.1.2. 

 

GABAA receptors are also expressed by other glial cell types throughout the brain. Despite 

some similarities there are distinct differences in the GABAA receptor subunit expression 

pattern compared to NG2 cells.  

Oligodendrocytes express functional GABAA receptors at lower levels as their precursors, 

NG2 cells (von Blankenfeld et al., 1991; Berger et al., 1992; Pastor et al., 1995). Experiments 

comparing pharmacological properties of oligodendrocytes and NG2 cells suggest that 

subunit composition is not markedly changed after maturation of NG2 cells to 

oligodendrocytes. GABAA receptor currents were still potentiated by pentobarbital and 

benzodiazepines and showed inhibition by DMCM in the majority of oligodendrocytes (von 

Blankenfeld et al., 1991). However, a more detailed analysis of the GABAA receptor subunit 

composition and function in oligodendrocytes is lacking so far. 

In cultured astrocytes, GABAA receptor-mediated currents are potentiated by pentobarbital, 

diazepam and zolpidem (Bormann and Kettenmann, 1988; Bovolin et al., 1992; Rosewater 

and Sontheimer, 1994; Fraser et al., 1995). However, the modulatory action of DMCM was 

diverging in these studies. While Bormann and Kettenmann (1988) and Bovolin and 

colleagues (1992) demonstrated potentiation of GABAA receptor-mediated currents in 

cultured astrocytes, Rosewater and Sontheimer (1994) as well as Fraser and colleagues 

(1995) both showed differential effects with potentiation or inhibition by DMCM. These 

results indicate that astrocytes are heterogeneous with respect to the expression of 

different γ-subunits similar to NG2 cells as demonstrated in the present study. The subunits 

α1 and β1 were immunohistochemically detected on a subset of astrocytic processes (Fraser 

et al., 1995). Furthermore, primary astrocyte cultures were shown to express mRNA for the 

subunits α1, α2, β1, β3, and γ1 while lacking the subunit γ2 (Bovolin et al., 1992). This is in 

line with the idea that the γ2-subunit is mainly part of synaptic GABAA receptors (Lüscher 

and Keller, 2004) that are absent in astrocytes in contrast to NG2 cells (section 6.1.2) 

(Bergles et al., 2010). Bergmann glia, a type of astrocytes in the cerebellum, differ from 
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cerebral astrocytes and NG2 cells in GABAA receptor subunit composition as they were 

insensitive to diazepam indicating complete lack of γ-subunits in these cells (Müller et al., 

1994). However, other groups demonstrated the presence of α2 and γ1 mRNA and protein 

on Bergmann glia cells (Wisden et al., 1989; Laurie et al., 1992; Riquelme et al., 2002). For 

glial Müller cells of the human and skate retina, GABAA receptor currents sensitive to 

pentobarbital and diazepam were shown (Qian et al., 1996; Biedermann et al., 2004). 

Intriguingly, in both studies these receptors were positively modulated by Zn2+ coapplication. 

A potentiation by Zn2+ is only known for AMPA receptors, while GABA, NMDA and kainate 

receptors are usually inhibited by Zn2+ (Toth, 2011). However, GABAA receptor expression in 

Müller cells seems to vary drastically between species as in other animals no GABAA receptor 

currents were detected in Müller cells at all (Biedermann et al., 2004). 

The expression of GABAA receptors by microglia is still under debate. They do react to GABA 

or the specific GABAA receptor antagonist bicuculline by changes in their process motility. 

However, this is probably an indirect effect in response to GABA-evoked ATP-release from 

surrounding cells as microglia did not show direct membrane currents in response to GABA 

(Fontainhas et al., 2011). Only one report claimed the expression of GABAA receptor subunits 

α1, α3 and β1 in cultured human microglia (Lee et al., 2011). Nevertheless, no GABAA 

receptor-mediated currents were demonstrated in microglial cells so far doubting their 

functional expression. 

 

It is worth mentioning that oligodendrocyte progenitors (putative NG2 cells) might also 

express functional GABAB receptors (Luyt et al., 2007). For neurons, it was demonstrated 

that GABAB receptors may activate K+ conductances (Sodickson and Bean, 1996) and even 

modulate GABAA receptor-mediated currents in some brain regions (Tao et al., 2013). 

However, in hippocampal complex cells (putative NG2 cells) the GABAB receptor agonist 

baclofen did not elicit currents (Bekar et al., 1999). Furthermore, the present study revealed 

that coapplication of GABAB receptor antagonists did not affect GABA-evoked currents in 

hippocampal NG2 cells (Fig. 5.3). Thus, it is unlikely that GABAB receptors, if expressed by 

NG2 cells, modulate GABAA receptor-mediated currents in these cells. 
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In conclusion, GABAA receptors of hippocampal NG2 cells share many properties with 

neuronal GABAA receptors including prominent expression of the γ2-subunit. As opposed to 

this, other glial cell types largely lack this subunit. This is reasonable considering that the γ2-

subunit is important for postsynaptic clustering of GABAA receptors and NG2 cells are the 

only glial cells that possess postsynaptic densities. 

6.1.2 The γ2-subunit is selectively located in synaptic GABAA receptors 

In neurons, GABAA receptors may localize to postsynaptic densities to mediate phasic 

synaptic currents or to extrasynaptic compartments to mediate tonic currents (Farrant and 

Nusser, 2005). While the presence of phasic GABAA receptor currents in NG2 cells was 

unambiguously demonstrated by several groups (Lin and Bergles, 2004; Jabs et al., 2005; 

Velez-Fort et al., 2010), the presence of tonic GABAA receptor currents is still under debate. 

Tong and colleagues (2009) showed prominent tonic GABAA receptor currents in juvenile 

hippocampal NG2 cells, which was not detected by Lin and Bergles (2004) and Mangin et al. 

(2008) in hippocampal or by Velez-Fort et al. (2010) in neocortical NG2 cells. In the present 

study, small but distinct tonic currents were observed in juvenile hippocampal NG2 cells. 

Intriguingly, application of the GABAA receptor antagonists bicuculline or gabazine 

differentially affected the tonic current amplitude. While bicuculline uncovered a tonic 

current in all cells tested, gabazine induced only a slight positive shift of the holding current 

in 4/6 NG2 cells (Fig. 5.5). Interestingly, the other study that detected tonic GABAA receptor 

currents in NG2 cells used bicuculline (Tong et al., 2009) while the studies that found no 

tonic GABAA receptor currents used gabazine (Lin and Bergles, 2004; Mangin et al., 2008; 

Velez-Fort et al., 2010). What could be the reason for the discrepancy between the two 

antagonists and the diverging results of the mentioned publications? 

Several studies indicate that bicuculline and gabazine differentially influence GABAA 

receptor-mediated tonic currents. In summary, these reports demonstrate that in addition 

to ambient GABA, part of the tonic current is mediated by spontaneous channel opening. As 

bicuculline was able to block the GABA-induced as well as the spontaneous component of 

the tonic current, it was suggested that bicuculline acts as an inverse agonist being able to 

inhibit channel opening even in the absence of GABA. In contrast, gabazine only blocked the 

GABA-induced component indicating that it acts as a competitive antagonist with negligible 
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negative efficacy (Bai et al., 2001; Yeung et al., 2003; McCartney et al., 2007; Wlodarczyk et 

al., 2013). On the basis of these findings, the results of the present study suggest that the 

small positive shift induced by gabazine might represent the tonic current evoked by 

extracellular GABA, while the bicuculline-sensitive tonic current might additionally include 

the component mediated by spontaneous channel opening. However, to clarify this issue 

additional experiments are required. Interestingly, although denying the presence of a tonic 

current in neocortical NG2 cells, Velez-Fort and colleagues (2010) did detect a small positive 

shift by gabazine which is similar to the value of the present study (here: 2.5 ± 1.1 pA in 4/6 

cells tested, section 5.1.3, Fig. 5.7; Velez-Fort et al. (2010): 2.5 ± 9.8 pA, n = 4). Furthermore, 

their value displays a considerable standard error of the mean indicating that some cells did 

exhibit a distinct tonic current. Furthermore, Balia and colleagues (2013) demonstrated a 

gabazine-sensitive tonic current in juvenile neocortical NG2 cells in the presence of 5 µM 

GABA in the extracellular solution. This further supports the idea that NG2 cells are able to 

sense ambient GABA via extracellular GABAA receptors. Nevertheless, the presence and role 

of tonic GABAA receptor currents in the CNS is still controversially debated and the results 

between studies vary drastically depending on cell type, brain region and experimental 

approach (Farrant and Nusser, 2005). The present study, however, revealed that NG2 cells 

are able to sense elevations of the ambient GABA concentration which might influence their 

physiology under normal and pathological conditions. 

 

It is known that the synaptic vs. extrasynaptic targeting of GABAA receptors is influenced by 

the specific subunit composition of the receptor. Synaptic GABAA receptors of neurons in 

different brain regions are primarily composed of α1-3, β2/3 and γ2, while α4-6 and δ are 

considered to be mainly extrasynaptic (Lüscher and Keller, 2004; Farrant and Nusser, 2005). 

Especially the γ2-subunit was subject to intensive investigation since it was identified as an 

important interacting partner of the synaptic scaffolding protein gephyrin. γ2-knockout 

animals displayed severe deficits in GABAergic synaptic signaling due to a dysfunction of 

postsynaptic GABAA receptor clustering (Essrich et al., 1998; Schweizer et al., 2003). 

However, the γ2-subunit is not necessary for the assembly of functional GABAA receptors 

and extrasynaptic expression of other GABAA receptor subunits was largely unaltered in γ2-

knockout cells (Günther et al., 1995). 
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In the present study, pharmacological modulation of synaptic vs. extrasynaptic GABAA 

receptor currents with diazepam and zolpidem was performed to investigate whether a 

preferential occurrence of the γ2-subunit in synaptic GABAA receptors similarly applies to 

NG2 cells. As discussed in the preceding section, modulation by diazepam is rather 

independent of the particular α- and γ-subunits while zolpidem at low concentrations is 

highly specific for α1/γ2-containing receptors and thus suited to detect presence of the γ2-

subunit (Olsen and Sieghart, 2009). To facilitate a better resolution of potential modulatory 

effects on the tonic current, the extracellular GABA concentration was enhanced by blocking 

GABA transporters. This resulted in a considerable increase in the bicuculline-sensitive 

current (section 5.1.3) further corroborating the finding that NG2 cells are able to sense 

ambient GABA via extrasynaptic GABAA receptors.  

The pharmacological modulation revealed that the majority of NG2 cells possess synaptic 

GABAA receptors that are sensitive to diazepam and zolpidem. In contrast, extrasynaptic 

GABAA receptor currents were potentiated by diazepam but not by zolpidem (section 5.1.3, 

Fig. 5.6 and Fig. 5.7). Hence, these data suggest that NG2 cells exhibit synaptic GABAA 

receptors that mostly contain the subunits α1 and γ2 while extrasynaptic receptors lack 

these subunits. The finding that diazepam modulated tonic GABAA receptor currents shows 

that extrasynaptic receptors contain γ-subunits as they are necessary for occurrence of the 

benzodiazepine binding site. Therefore, it is likely that γ1- and γ3-containing receptors are 

present in extracellular GABAA receptors in hippocampal NG2 cells. Similar results were 

obtained from studies comparing the differential subcellular localization of GABAA receptor 

subunits in neurons, although cell type-specific differences occurred. Potentiation of 

synaptic GABAA receptor currents by diazepam (or midazolam, a similar benzodiazepine) and 

zolpidem was shown by several studies on neurons of different brain regions (Bai et al., 

2001; Hamann et al., 2002; Nusser and Mody, 2002; Caraiscos et al., 2004). This is expected 

since the γ2-subunit is essential for clustering of synaptic GABAA receptors (Essrich et al., 

1998; Schweizer et al., 2003). The effect of these drugs on tonic currents, however, is 

variable. Some studies found no effect of diazepam and zolpidem on tonic currents (Hamann 

et al., 2002; Nusser and Mody, 2002; Caraiscos et al., 2004; Mangan et al., 2005). This might 

be explained by the fact that in some cell types and brain regions the γ-subunit is replaced 

by the δ-subunit in extrasynaptic receptors removing the benzodiazepine-binding site 
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(Farrant and Nusser, 2005). In the juvenile hippocampus the δ-subunit is rarely expressed 

suggesting that extrasynaptic GABAA receptors contain γ-subunits at this developmental 

time point (Laurie et al., 1992). Accordingly, Bai and colleagues (2001) as well as Yeung and 

colleagues (2003) demonstrated midazolam-sensitive tonic currents in hippocampal neurons 

indicating the presence of extrasynaptic GABAA receptors containing γ-subunits. Another 

study even demonstrated the presence of zolpidem-sensitive tonic currents in hippocampal 

interneurons, while CA1 pyramidal neurons lacked this sensitivity. Additionally, in both cell 

types zolpidem modulated synaptic GABAA receptor currents. These results indicate 

presence of the γ2-subunit in synaptic and extrasynaptic GABAA receptors of hippocampal 

interneurons while CA1 pyramidal neurons contain this subunit solely in synaptic receptors 

(Semyanov et al., 2003). 

Only a few studies investigated the subunit composition of synaptic GABAA receptors in NG2 

cells and no information about extrasynaptic receptors is available so far. In agreement with 

the present study, Balia and colleagues (2013) demonstrated diazepam- and zolpidem-

sensitive synaptic GABAA receptors in juvenile neocortical NG2 cells, indicating presence of 

the subunits α1 and γ2. However, another study showed diazepam-sensitive but zolpidem-

insensitive synaptic GABAA receptors in hippocampal NG2 cells. Based on this pharmacology, 

the authors suggested presence of the α5-subunit in these receptors (Lin and Bergles, 2004). 

α5-subunit-containing synaptic GABAA receptors were also demonstrated for the majority of 

neocortical NG2 cells (Balia et al., 2013). The molecular analysis of the present study did not 

support prominent expression of the α5-subunit in juvenile hippocampal NG2 cells (Fig. 5.1). 

However, the experiments combining Zn2+ sensitivity and single-cell RT-PCR revealed 

frequent coexpression of γ2 with α1 and α5 in a subset of NG2 cells (Fig. 5.4). Considering 

that α5 expression was variable in neocortical NG2 cells as well (Balia et al., 2013), these 

data might indicate that the α5-subunit is expressed by a subpopulation of juvenile NG2 cells 

in different brain regions. In this respect, it is interesting that a study by Ali and Thomson 

(2008) revealed that α1- and α5-containing GABAA receptors are located in different 

synapses in neocortical pyramidal cells. Intriguingly, they further demonstrated that these 

postsynaptic sites are targeted by different types of interneurons. A similar mechanism 

might also be valid for NG2 cells as they potentially possess α1- as well as α5-subunit-
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containing synaptic GABAA receptors in the hippocampus and neocortex (Lin and Bergles, 

2004; Passlick et al., 2013; Balia et al., 2013). 

 

The data from the present study demonstrate that synaptic GABAA receptors in juvenile 

hippocampal NG2 cells contain the subunits α1 and γ2. Furthermore, NG2 cells are able to 

sense ambient GABA with extrasynaptic receptors lacking these subunits. 

6.1.3 GABA causes depolarization in NG2 cells 

GABA may act as an inhibitory/hyperpolarizing or excitatory/depolarizing neurotransmitter, 

depending on [Cl-]i. In neurons, a developmental switch from a depolarizing to a 

hyperpolarizing action of GABA was demonstrated during the first two postnatal weeks 

(Cherubini et al., 1991). The underlying change in [Cl-]i is due to the upregulation of KCC2 

that transports Cl- out of the cell and the downregulation of NKCC1 that transports Cl- into 

the cell (Rivera et al., 1999; Stein et al., 2004; Yamada et al., 2004; Khirug et al., 2008). The 

expression of KCC2 was also demonstrated for oligodendrocytes of the optic nerve (Malek et 

al., 2003), while any evidence for expression by NG2 cells is lacking so far. In contrast, it was 

shown that juvenile and adult NG2 cells express NKCC1 indicative of a high [Cl-]i (Price et al., 

2006; Tong et al., 2009). A few studies tried to estimate the [Cl-]i of NG2 cells by performing 

voltage-clamp-based reversal potential analysis of GABAA receptors. Although all studies 

demonstrated that GABAA receptor activation causes depolarization in NG2 cells, the 

measured reversal potentials and thus the calculated [Cl-]i were inconsistent (Lin and 

Bergles, 2004; Tong et al., 2009; Tanaka et al., 2009). Furthermore, an increasing negative 

shift of the reversal potential during GABA application indicative of a change in [Cl-]i was 

observed in the voltage-clamp configuration (Passlick et al., 2013). In neurons it was shown 

that GABAA receptor activation is sufficient to induce persistent changes in [Cl-]i (DeFazio and 

Hablitz, 2001; Karlsson et al., 2011). Thus, depletion of intracellular Cl-, due to the 

permanent GABAA receptor activation while clamping the cell to the holding potential, might 

account for this shift (Passlick et al., 2013). In the present study, brief pulses of the specific 

GABAA receptor agonist muscimol were applied while clamping the cell to different 

potentials. Between each voltage step, the cell was kept at -70 mV for 15 s to reequilibrate 

the [Cl-]i. However, the value gained by this approach was even more negative compared to 
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the shifted one (-56 and -45 mV, respectively) (Passlick et al., 2013). This indicates that 

depletion of Cl- could probably not be circumvented by the modified experimental 

conditions. By using a similar approach Lin and Bergles (2004) measured a reversal potential 

of -44 mV, corresponding to a [Cl-]i of ~21 mM for juvenile hippocampal NG2 cells which is 

close to the shifted value of -45 mV (Passlick et al., 2013). The risk of depletion of 

intracellular Cl- may be reduced by employing a current-clamp-based approach to estimate 

the reversal potential. A similar experiment resulted in a reversal potential of -27 mV 

corresponding to a [Cl-]i of ~50 mM in juvenile hippocampal NG2 cells, which considerably 

deviates from the voltage-clamp-based experiments (Passlick et al., 2013).  

Another study analyzing the [Cl-]i of juvenile hippocampal NG2 cells reported a reversal 

potential of -34 mV with a corresponding [Cl-]i of ~35 mM (Tong et al., 2009). The authors 

also demonstrated that blocking NKCC1 shifted the reversal potential to more negative 

values suggesting that NKCC1 is responsible for the high [Cl-]i, similar to immature neurons 

(Yamada et al., 2004). Tanaka and colleagues (2009) investigated adult cortical NG2 cells and 

demonstrated a reversal potential of -31 mV corresponding to a [Cl-]i of ~45 mM, which is 

close to the value measured in the current-clamp mode for juvenile hippocampal NG2 cells 

(Passlick et al., 2013), although they employed a voltage-clamp-based experiment. 

The variability of the [Cl-]i values in the different studies illustrates the difficulty in 

determining the correct reversal potential/[Cl-]i. Besides the already mentioned 

phenomenon of depletion or accumulation of Cl-, other issues have to be considered. 

Naturally, these experiments have to be performed in the perforated patch configuration 

leaving the [Cl-]i intact. To ensure this, the experiment should be repeated with the same 

pipette and bath solution in the whole-cell configuration. In this case, internal and external 

Cl- concentrations are known and the exact reversal potential can be calculated. The 

measured reversal potential should then be close to the calculated one but different to the 

one measured in perforated patch configuration, thereby suggesting that [Cl-]i was not 

disturbed. Furthermore, this control experiment provides information whether the 

membrane potential was accurately corrected for liquid junction potential. Incorrect 

adjustment of the membrane potential leads to completely different and false reversal 

potentials and thereby [Cl-]i. Consequently, with this control experiment two big pitfalls 

associated with the correct determination of the reversal potential/[Cl-]i can be avoided and 
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should be performed in every study. In the present study, this control experiment yielded 

the calculated reversal potential suggesting that perforated patch recordings and correction 

of liquid junction potential were adequately performed (Fig. 5.8).  

 

The comparison of voltage-clamp- with current-clamp-based reversal potential analysis 

revealed that the [Cl-]i of juvenile hippocampal NG2 cells is presumably higher than 

previously thought (Passlick et al., 2013). Furthermore, perforated patch experiments by 

Tanaka et al. (2009) as well as Tong et al. (2009) demonstrated that GABA activity remains 

excitatory during development in different brain regions. This is in contrast to neurons, 

which show a switch from an excitatory to an inhibitory action of GABA during postnatal 

development (Cherubini et al., 1991) and might have important consequences for NG2 cell 

physiology (discussed in section 6.1.5). 

6.1.4 GABAA receptor subunit expression is developmentally regulated in 

neocortical NG2 cells 

Vélez-Fort and colleagues (2010) recently demonstrated that NG2 cells in the somatosensory 

neocortex experience a switch from a synaptic to an extrasynaptic mode of GABAergic 

transmission during postnatal development. The authors showed that GABAergic synaptic 

activity decreases during the second postnatal week and completely disappears at later 

developmental stages. This decline in synaptic connectivity is accompanied by the 

emergence of a type of extrasynaptic communication that is mediated by GABA spillover. 

Whether this functional switch is accompanied by molecular changes was unknown so far 

and investigated in the present study. 

Synaptic and extrasynaptic GABAA receptors are assembled from different subunits, thus 

varying in their pharmacological and biophysical properties. Although no exclusively synaptic 

or extrasynaptic subunits were identified so far, most reports suggest that the subunits α1-3, 

β2/3 and γ2 are mainly synaptic, while α4-6 and δ are primarily located at extrasynaptic sites 

(Lüscher and Keller, 2004; Farrant and Nusser, 2005). The γ2-subunit is particularly 

important for synaptic GABAA receptors as it interacts with the synaptic scaffolding protein 

gephyrin and is essential for clustering of synaptic GABAA receptors (Essrich et al., 1998; 

Schweizer et al., 2003). In line with this, the present study revealed a distinct subcellular 
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localization pattern of γ2-containing GABAA receptors in juvenile hippocampal NG2 cells. 

While synaptic GABAA receptors largely contain the γ2-subunit, it is virtually absent in 

extrasynaptic ones (section 5.1.3). Assuming that γ2-containing GABAA receptors of 

neocortical NG2 cells exhibit a similar localization pattern, then γ2-expression should be 

dispensable and thus downregulated during development when synaptic GABAergic activity 

decreases (Velez-Fort et al., 2010).  

So far no data on the subunit composition of neocortical NG2 cells during development are 

available. Therefore, in this study single-cell RT-PCR was employed to compare the GABAA 

receptor subunit expression of neocortical NG2 cells in the second and fourth postnatal 

week. The transcript analysis revealed a certain degree of heterogeneity among the NG2 cell 

population in both age groups. However, distinct developmental changes in subunit 

expression were identified. In juvenile NG2 cells the subunits α1, α2, α5, β2, β3, γ1, γ2 and 

γ3 were most frequently detected, which is similar to juvenile hippocampal NG2 cells 

(section 5.1.1). In the fourth postnatal week α2 and α5 transcripts were less often detected 

while the expression of α3 and α4 increased compared to the second postnatal week. 

Importantly, the analysis revealed a pronounced decrease of γ2-subunit expression (Fig. 5.9). 

These changes on the transcript level were also reflected by the properties of functional 

GABAA receptors during postnatal development as shown by Balia and colleagues (2013). 

Indeed, the authors demonstrated that the subunits α5 and γ2 were frequently present in 

synaptic GABAA receptors of neocortical NG2 cells during the second postnatal week as 

ePSCs were sensitive to the α5-specific modulator α5IA and the α1/γ2-specific modulator 

zolpidem. During the fourth postnatal week the same modulators were ineffective, 

indicating that GABAA receptors lacked α5 and γ2 at this later stage. The upregulation of the 

α4-subunit could not be verified by pharmacology as the specific modulator furosemide had 

no effect on evoked GABAergic currents in the second and fourth postnatal week. However, 

the effect of furosemide on α4-containing GABAA receptors was investigated on α4γ2- and 

α4δ-containing receptors (Wafford et al., 1996). The present RT-PCR analysis suggested 

frequent expression of γ1 and γ3 while γ2 and δ were virtually absent in older NG2 cells. 

Therefore, the pharmacology determined by Wafford and colleagues (1996) might not be 

valid for α4γ1- or α4γ3-containing receptors as they probably occur in adult neocortical NG2 

cells.  
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In general, the developmental changes in expression profile of GABAA receptor subunits by 

NG2 cells are similar to the overall changes in the neocortex during this period (Laurie et al., 

1992; Golshani et al., 1997). Over the first two postnatal weeks transcripts for α1, α2, α5, β1, 

β2, β3, and γ1 are most abundant in the neocortex. Afterwards, α2, α5, and β1 expression 

decreases, while α1, β2, β3, and γ1 levels remain constant in adult animals. Expression of the 

δ-subunit, present in extrasynaptic GABAA receptors in some neurons, is low in the juvenile 

neocortex but increases at later developmental stages (Laurie et al., 1992). This expression 

pattern is similar to what was found in the present study for neocortical NG2 cells, however, 

the subunits α3, α4, γ2 and γ3 exhibit a cell type-specific developmental regulation differing 

from the overall neocortex. While α3 and α4 were rarely detected during the second 

postnatal week in NG2 cells, their expression increased during the fourth postnatal week. In 

the neocortex α3 and α4 expression peaks during the first two postnatal weeks and declines 

thereafter. γ3 expression was constant in NG2 cells, while it is low in the adult neocortex 

(Laurie et al., 1992). As the γ2-subunit is important for clustering of postsynaptic GABAA 

receptors (Essrich et al., 1998; Schweizer et al., 2003) its expression stays high throughout 

development in the neocortex (Laurie et al., 1992) which is in contrast to NG2 cells exhibiting 

a strong decrease in γ2 expression.  

As discussed earlier (section 6.1.1), data on expression of the γ2-subunit by NG2 cells is 

controversial in the literature so far. Experiments by von Blankenfeld and colleagues (1991) 

suggested the presences of the γ2-subunit in GABAA receptors of NG2 cells, whereas results 

by Williamson et al. (1998) claimed its absence. The present study, however, revealed 

heterogeneity of γ2 expression in juvenile hippocampal and neocortical NG2 cells. 

Furthermore, a developmental downregulation of the γ2-subunit in neocortical NG2 cells 

was shown. This heterogeneity and age-dependence probably contributed to the 

inconsistency in the literature. 

 

In summary, these data demonstrate that the switch from synaptic to extrasynaptic 

GABAergic transmission in neocortical NG2 cells is accompanied by the downregulation of 

the γ2-subunit, a major component of synaptic GABAA receptors. Furthermore, neocortical 

NG2 cells exhibit a specific subunit expression profile differing from other cells in this brain 

region. These findings widen and complement other data of the present study on the 
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specific localization of the γ2-subunit in synaptic GABAA receptors of hippocampal NG2 cells. 

Consequently, expression of the γ2-subunit may be considered as a molecular marker of 

direct synaptic GABAergic transmission onto NG2 cells and provides an interesting target for 

future studies investigating the role of GABAergic signaling in NG2 cells. The developmental 

changes also indicate that GABAergic transmission has a distinct function in juvenile vs. adult 

neocortical NG2 cells. 

6.1.5 Possible roles of GABAA receptor signaling in NG2 cells 

While the role of GABAergic signaling is quite established in neuronal networks, its function 

in NG2 cell physiology remains largely unknown. Similar to immature neurons, GABAA 

receptor activation causes depolarization in NG2 cells (section 6.1.3) (Lin and Bergles, 2004; 

Tanaka et al., 2009; Tong et al., 2009; Passlick et al., 2013). This depolarization was shown to 

elicit Ca2+ transients in NG2 cells, although the cellular mechanism of this Ca2+ elevation is 

still under debate. Several groups demonstrated that depolarization by focal application of 

GABA activates voltage-gated Ca2+ channels in NG2 cells (Kirchhoff and Kettenmann, 1992; 

Tanaka et al., 2009; Haberlandt et al., 2011). In contrast, Tong and colleagues (2009) recently 

suggested that GABA evokes a persistent Na+ current which induces Ca2+ influx through the 

reversed activity of the Na+/Ca2+ exchanger (NCX). This discrepancy is even intensified by the 

fact that Haberlandt et al. (2011) demonstrated that blocking NCX has no effect on 

depolarization-induced Ca2+ currents while Tong et al. (2009) and Ge et al. (2006b) claimed 

that NG2 cells lack voltage-gated Ca2+ channels. Although it is difficult to estimate whether 

these mechanisms functionally exist in vivo, the primary finding that GABA-evoked 

depolarizations induce Ca2+ elevations in NG2 cell is generally accepted as also shown by 

further studies (Bernstein et al., 1996; Velez-Fort et al., 2010).  

For immature neurons where GABA is depolarizing, it was shown that GABA-induced Ca2+ 

signaling facilitates diverse crucial functions. In premature and adult neuronal progenitors 

excitation by GABA was reported to regulate neurogenesis and neural differentiation 

(Nguyen et al., 2003; Tozuka et al., 2005; Ge et al., 2006a; Young et al., 2012). Another study 

even demonstrated that depolarization of neuronal progenitors by GABA directly modified 

DNA synthesis indicating an influence on the cell cycle of developing neurons (LoTurco et al., 

1995). Similarly, GABA might regulate proliferation and differentiation of NG2 cells. This idea 
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is supported by the observation that GABAergic innervation of neocortical NG2 cells is higher 

during the second postnatal week when oligodendrogenesis peaks as compared to later 

developmental stages (Velez-Fort et al., 2010). However, GABAergic signaling in NG2 cells 

mainly occurs in gray matter areas where oligodendrogenesis is less prominent suggesting 

that GABA rather inhibits differentiation. This is consistent with the observation that NG2 

cells maintain GABAergic innervation during cytokinesis and that synapses are equally 

allocated to the daughter cells (Kukley et al., 2008; Ge et al., 2009). In contrast, studies by 

Gallo and colleagues (1996) and Yuan and colleagues (1998) argue against a role of GABAA 

receptor activation in proliferation and differentiation as incubation of cultured NG2 cells or 

cerebellar slices with GABA or GABAA receptor antagonists did not influence these processes 

in NG2 cells. 

Besides proliferation and differentiation, other studies demonstrated a role for GABAA 

receptor-mediated excitation in migration of neuronal progenitors (Fueshko et al., 1998; 

Bolteus and Bordey, 2004; Wang and Kriegstein, 2009). During development and in response 

to injury NG2 cells migrate over considerable distances (Sugimoto et al., 2001; Aguirre and 

Gallo, 2004; Aguirre et al., 2007). The guiding cues, however, are largely unknown. Tong and 

colleagues (2009) suggested a role for GABAA receptor activation in NG2 cell migration, 

although the cellular mechanism that was proposed is controversial, as discussed before 

(Haberlandt et al., 2011). However, it is well known that GABA is one of the most abundant 

neurotransmitters in the developing CNS (Nguyen et al., 2001). Apart from the concrete 

intracellular signaling cascade, it might well be that GABA gradients influence the migration 

and physiology of NG2 cells. 

In immature neurons, GABA exerts many of its effects via depolarization-induced activation 

of voltage-gated Ca2+ channels (Ben-Ari et al., 2007). It is, however, uncertain how NG2 cells 

in vivo may sufficiently be depolarized to activate voltage-gated Ca2+ channels. Due to the 

very negative resting potential and the small GABAergic synaptic depolarizations received at 

low frequency, it seems unlikely that synaptic innervation under normal conditions is 

sufficient to reach the threshold for the activation of voltage-gated Ca2+ channels. This 

notion is supported by the finding that physiological stimulation is insufficient to elicit Ca2+ 

signals at the soma of NG2 cells (Velez-Fort et al., 2010; Haberlandt et al., 2011). However, in 

the thin processes of these cells the depolarization might be high enough to activate local 

117 
 



Discussion 

 
Ca2+ microdomains. This process might even be amplified by Ca2+-induced Ca2+-release from 

local endoplasmatic reticulum stores (Haberlandt et al., 2011). Such local Ca2+ elevations 

could for example regulate cytoskeletal dynamics of the highly motile NG2 cell processes 

(Haberlandt et al., 2011; Hughes et al., 2013). Similar mechanisms are known from immature 

neurons where GABAA receptor activation leads to local Ca2+ elevations from endoplasmatic 

reticulum stores that regulate the motility of dendritic filopodia (Lohmann et al., 2005). This 

is further supported by another study which demonstrated that preventing the depolarizing 

effect of tonic and phasic GABAA receptor activation on immature neurons leads to impaired 

morphological maturation of these cells (Cancedda et al., 2007). Therefore, it is quite 

reasonable that GABAA receptor activation elicits local Ca2+ transients that mediate the 

activity-dependent movement of NG2 cell processes. 

Activation of voltage-gated Ca2+ channels due to GABA-evoked depolarization was also 

shown to increase the expression of the transcription factor NeuroD, a positive modulator of 

neuronal differentiation in immature neurons (Tozuka et al., 2005). Similarly, another study 

observed for NG2 cells that GABA-evoked Ca2+ transients induced the production of the 

brain-derived neurotrophic factor (BDNF), a molecule known to promote axonal growth and 

guidance (Tanaka et al., 2009). Furthermore, NG2 cells express several proteins of the 

vesicular release machinery (Haberlandt et al., 2011). Local Ca2+ elevations induced by GABA 

depolarization might therefore not only induce the production but also the release of 

neuroactive substances. This would provide a bidirectional communication pathway 

between neurons and NG2 cells where GABAergic synaptic innervation induces the 

production and/or release of neuroactive substances to the innervating neuron.  

Studies investigating immature neurons also suggested that GABAergic synaptic innervation 

which precedes glutamatergic synaptic innervation during development is important for 

normal formation of excitatory synapses (Ben-Ari, 2002; Wang and Kriegstein, 2008). Similar 

mechanisms are also conceivable for NG2 cells although a systematic analysis of the time 

course of GABAergic vs. glutamatergic innervation has not been performed so far.  

Beyond these physiological functions, GABAergic signaling might also enable NG2 cells to 

sense pathophysiological activity patterns in the CNS. As discussed so far, it is unclear which 

conditions could sufficiently depolarize NG2 cells to reach the threshold for voltage-gated 

Ca2+ channel activation in vivo. One possibility is that the depolarization by GABAA receptor 
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activation might be enhanced by the extracellular accumulation of K+ after strong neuronal 

activity. This is supported by the observation that high frequency stimulation of neuronal 

fibers was sufficient to increase the intracellular Ca2+ concentration in NG2 cell somata while 

physiological stimulation failed to do so (Haberlandt et al., 2011). In this respect it is 

interesting that during normal gamma oscillations NG2 cells experienced an increase in 

synaptic activity without considerable summation of these currents. In contrast, during 

epileptic-like discharges NG2 cells received transient bursts of synaptic events with 

significant summation (Mangin et al., 2008). These might be sufficient to induce larger Ca2+ 

increases compared to normal activity, enabling NG2 cells to perceive pathological activity in 

the CNS. Indeed, Wennström and colleagues (2003) reported increased proliferation of NG2 

cells after electroconvulsive seizures indicating a functional response of NG2 cells to 

abnormal neuronal activity.  

Other studies showed that activation of NG2 cell GABAA receptors induced a long-lasting 

inhibition of resting K+ conductances concomitant to the GABAA receptor-mediated Cl- 

current (Pastor et al., 1995; Bekar et al., 1999). A decrease in K+ conductance apparently 

increases the membrane resistance. As a result, subsequent activation of GABAA receptors 

might produce larger depolarizations possibly reaching the threshold to activate voltage-

gated Ca2+ channels.  

Furthermore, Lin and Bergles (2004) reported that activation of GABAA receptors led to a 

decrease in membrane conductance and an enduring change in [Cl-]i. This concomitantly 

decreased the size of AMPA receptor-mediated currents, similar to the known phenomenon 

of shunting inhibition in neurons. GABAA receptor signaling might thereby contribute to the 

signal integration of different synaptic inputs in NG2 cells. 

 

Despite all these reasonable hints about the function of GABAA receptors in NG2 cells, we do 

not yet understand what physiological role they serve. The data from the present study, 

however, provide a promising framework for future studies aiming at elucidating the 

function of GABAergic signaling in NG2 cells. 
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6.2 Role of the NG2 protein in glutamatergic neuron-NG2 cell 

synaptic signaling 

Glutamatergic synaptic innervation is unique to glial NG2 cells and displays one of their key 

features throughout the brain (De Biase et al., 2010). In neurons it has been shown that 

transsynaptic cell adhesion proteins are crucial for proper synapse formation, maturation 

and plasticity (Dalva et al., 2007; Missler et al., 2012). However, for neuron-NG2 cell 

synapses the cellular basis of these fundamental processes is completely unknown (Bergles 

et al., 2010). The structural similarities of the NG2 protein to the synaptic cell adhesion 

protein neurexin and the finding that it binds via GRIP to AMPA receptors suggested a critical 

role for the NG2 protein in neuron-NG2 cell synaptic physiology (Stegmüller et al., 2003; 

Trotter et al., 2010). Surprisingly, the present results demonstrate that functional 

glutamatergic neuron-NG2 cell synapses form in the absence of NG2 and display properties 

indistinguishable from control cells in juvenile and aged mice. However, the shown 

expression of neuroligins suggests that synaptic cell adhesion at neuron-NG2 cell synapses is 

similarly regulated as known from synapses between neurons. 

6.2.1 NG2 is not necessary for glutamatergic neuron-NG2 cell synaptic signaling 

Functional glutamatergic neuron-NG2 cell synapses form in the absence of NG2 

Sequence-analysis of the NG2 protein revealed structural similarities to the synaptic cell 

adhesion protein neurexin, including extracellular LNS domains and an intracellular PDZ-

binding motif (Nishiyama et al., 1991; Missler and Südhof, 1998). The LNS domains of 

neurexins are important for transsynaptic binding to neuroligins (Missler et al., 2012). This 

neuroligin-neurexin complex was found to be an important regulator of synapse number, 

synapse specificity and synaptic strength in neurons (Missler et al., 2012). Intriguingly, in 

vitro it was shown that expression of neuroligins in non-neuronal cells is sufficient to induce 

presynaptic differentiation in co-cultured neurons (Scheiffele et al., 2000; Graf et al., 2004). 

Vice versa, the expression of neurexins led to the assembly of postsynaptic specializations in 

neurons (Nam and Chen, 2005). Moreover, triple-knockout of either the α-neurexin or the 

neuroligin-1, -2 and -3 genes both led to early postnatal lethality due to respiratory failure 

caused by impaired synaptic transmission. However, for both proteins single or double 
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knockout animals displayed milder phenotypes revealing at least in part functional 

redundancy among the different isoforms (Missler et al., 2003; Varoqueaux et al., 2006). 

With respect to the NG2 protein, several lines of NG2 knockout mice have been generated 

and in all studies, NG2-lacking animals were viable and showed no obvious phenotype 

(Grako et al., 1999; Karram et al., 2008; Hill et al., 2011). This indicates that NG2 is either not 

essential for survival or other proteins are able to replace its function. 

Although neurexins are located presynaptically while NG2 is a postsynaptic protein, NG2 

might still bind to a yet unknown presynaptic binding partner via its LNS domains and 

regulate synaptogenesis (Trotter et al., 2010). Intriguingly, it was recently shown that even 

one membrane-tethered LNS domain is sufficient to trigger synapse formation (Gokce and 

Südhof, 2013), emphasizing its intrinsic synaptogenic capability. Other studies investigating 

differentiation of NG2 cells to oligodendrocytes showed that neuron-NG2 cell synapses are 

disassembled as soon as differentiation is initiated. Strikingly, this disassembly coincides with 

the downregulation of NG2 expression (De Biase et al., 2010; Kukley et al., 2010). 

However, the results of the present study show that neuron-NG2 cell synapses readily form 

in the absence of NG2 as AMPA receptor-mediated ePSCs and mPSCs were measured from 

hippocampal NG2 cells of juvenile and aged -/- mice (Fig. 5.12 and Fig. 5.15). These findings 

demonstrate that the NG2 protein is not necessary for the formation of functional 

glutamatergic synapses between neurons and NG2 cells. 

 

Kinetic properties of synaptic AMPA receptor-mediated currents are unaffected by NG2 

It has been shown that synaptic cell adhesion molecules are among others involved in 

synapse maturation and synapse morphology (Dalva et al., 2007; Wittenmayer et al., 2009). 

This might change the time course of glutamate concentration in the synaptic cleft which in 

turn influences the kinetic properties of AMPA receptor-mediated currents as shown for 

neuron-neuron synapses (Jonas, 2000; Cathala et al., 2005; Takahashi, 2005). Furthermore, 

AMPA receptor current kinetics also depend on subunit composition of the receptor and 

their association with auxiliary subunits (Jonas, 2000; Lu et al., 2009; Jackson and Nicoll, 

2011). As it was shown that NG2 is in a complex with GluA2/3 containing AMPA receptors 

(Stegmüller et al., 2003), it might also influence subunit composition of synaptic AMPA 

receptors. To test for possible alterations of one of these parameters by NG2, the kinetic 
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properties of synaptic AMPA receptor-mediated currents were compared. However, no 

differences were observed for rise times and decay times of ePSCs and mPSCs between -/- 

and control animals in both age groups (Fig. 5.12 and Fig. 5.16). These results suggest that 

ablation of NG2 does not lead to severe changes in synapse morphology, AMPA receptor 

subunit composition or association with auxiliary AMPA receptor subunits. 

However, when comparing kinetic properties between the two age groups investigated, a 

developmental acceleration of AMPA receptor-mediated ePSC and mPSC rise times and 

decay times was detected (Fig. 5.12 and Fig. 5.16). This observation is in line with a previous 

study investigating NG2 cells of the dentate gyrus, showing an acceleration of AMPA 

receptor current kinetics during the first three postnatal weeks (Mangin et al., 2008). In this 

regard, other studies suggested that this acceleration might be caused by a switch in subunit 

composition as reported for NG2 cells during postnatal development in different brain 

regions (Seifert et al., 1997; Seifert et al., 2003; Ge et al., 2006b; Ziskin et al., 2007). 

Furthermore, a maturation effect of synaptic structure that influences the time course of 

glutamate concentration in the synaptic cleft as shown for developing neuron-neuron 

synapses might be valid for neuron-NG2 cell synapses, too (Takahashi, 2005; Cathala et al., 

2005). Results from our laboratory (Passlick, S. and Seifert, G., unpublished observations) as 

well as a study by Zonouzi et al. (2011) showed that NG2 cells express AMPA receptor 

auxiliary subunits that influence glial AMPA receptor current kinetics. Developmental 

changes of their expression pattern might also be responsible for the acceleration. However, 

besides AMPA receptor kinetics, several other properties have been shown to change in NG2 

cells during development, such as expression of GABAA receptor subunits (section 5.2) (Balia 

et al., 2013), passive membrane properties and Kir channel expression (section 5.3.1) (Kressin 

et al., 1995; Bordey and Sontheimer, 1997; Maldonado et al., 2013). These profound 

changes in NG2 cell physiology might indicate that juvenile and adult NG2 cells serve distinct 

functions during development. 

 

Short-term synaptic plasticity is preserved in NG2 lacking cells 

As discussed before, it was shown that the triple-knockout of all α-neurexins led to early 

postnatal lethality due to respiratory failure. Surprisingly, the authors found that not the 

initial formation of synapses was disturbed but that the Ca2+-triggered neurotransmitter 

122 
 



Discussion 

 
release was impaired due to reduced synaptic Ca2+ channel function. These data suggest that 

α-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the 

presynaptic machinery (Missler et al., 2003). Another study found that even postsynaptic 

neuroligins are able to regulate presynaptic release probability by retrograde signaling to the 

presynaptic side (Futai et al., 2007). Thereby, the neuroligin-neurexin complex is able to 

modulate short-term synaptic plasticity. 

The results of the present study show that hippocampal neuron-NG2 cell synapses display 

paired-pulse facilitation similar to excitatory neuronal CA3-CA1 synapses. These data confirm 

earlier studies investigating neuron-NG2 cell synapses in the hippocampus (Bergles et al., 

2000; Ge et al., 2006b). More importantly, short-term synaptic plasticity was not influenced 

by NG2 as animals of the different genotypes showed similar PPR values (Fig. 5.13). 

Therefore, it can be concluded that NG2 is probably not involved in retrograde modulation 

of presynaptic release probability and short-term synaptic plasticity. 

 

NG2 does not influence synaptic connectivity 

Several studies investigated the effect of NG2 on neurite outgrowth. The results, however, 

are conflicting, describing NG2 either as being inhibitory or permissive for neurite outgrowth 

(Jones et al., 2003; Ughrin et al., 2003; Tan et al., 2005; de Castro et al., 2005; Tan et al., 

2006). Furthermore, it was shown that NG2 cells are actively contacted by neurons while 

oligodendrocytes are not (Yang et al., 2006). This indicates that NG2 cells exhibit properties 

making them more attractive for neuronal contacts than oligodendrocytes.  

As discussed before, the NG2 protein possesses structural similarities to neurexins. For 

neurexins and their binding partner neuroligins it was shown that they are able to influence 

the number of functional synapses in vitro (Prange et al., 2004; Levinson et al., 2005). 

Overexpression of neuroligins in cultured neurons led to more functional synapses as 

measured by an increase in mPSC frequency (Prange et al., 2004). Strikingly, this effect was 

inhibited when soluble neurexin was applied to the culture demonstrating that the 

neuroligin-neurexin binding is responsible for the increase in synapse number (Levinson et 

al., 2005). In vivo knockout studies of all neurexins or neuroligins initially supported the in 

vitro findings as mPSC frequency was reduced in both cases, indicating a reduction in 

synaptic innervation. However, detailed analysis showed that not the number of synapses 
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was altered, but that a failure in synaptic maturation led to impaired Ca2+-triggered 

neurotransmitter release (Missler et al., 2003; Varoqueaux et al., 2006). As discussed in the 

preceding section, this is clearly not the case for NG2, as presynaptic release properties were 

unaffected by NG2 ablation (Fig. 5.13). Therefore, in this study the frequency of mPSCs could 

be regarded as an indirect measure of synaptic connectivity. 

Considering the effect of NG2 on neurite outgrowth and its similarities to neurexins, NG2 

might influence synapse number of NG2 cells. However, comparison of mPSC frequency 

between the genotypes and age groups tested revealed no NG2-dependent alterations, 

indicating that synaptic connectivity is preserved and unchanged in the absence of NG2 (Fig. 

5.14).  

A recent study by Kwon and colleagues (2012) established an interesting new model for the 

regulation of synapse number by neuroligin-1 in vivo. They demonstrated that not the 

absolute neuroligin-1 level is relevant but that synapse number depends on transcellular 

differences in the relative amount of neuroligin-1. In other words, those cells expressing 

higher levels of neuroligin-1, catch more synapses compared to a neighboring cell expressing 

lower levels of neuroligin-1. This also explains the finding that the number of functional 

synapses is unaltered in neuroligin-1 knockout mice as obviously no transcellular differences 

occur. Certainly, a similar mechanism cannot be excluded for the NG2 protein, however, 

recently it was shown that NG2 cells achieve their even distribution by self-avoidance with 

non-overlapping territories (Hughes et al., 2013), making it rather unlikely that they compete 

for synapses. 

Even though synaptic connectivity was not influenced by NG2, a drastic decrease in mPSC 

frequency during development was observed (Fig. 5.14). These findings are in line with 

previous results, showing a relatively low mPSC frequency in juvenile mice (Jabs et al., 2005; 

Kukley et al., 2010) that further decreased in young adult mice (De Biase et al., 2011). 

However, the present study extends this work by demonstrating that even aged NG2 cells 

(> 9 months) still receive synaptic input, albeit to a much lower extent than juvenile ones. 

This supports the notion that synaptic innervation is a hallmark of NG2 cells throughout life 

and must serve some important yet unknown function (De Biase et al., 2010). 
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Synaptic AMPA receptor density is unaffected by NG2 

The NG2 protein was found to be in a complex with GRIP and GluA2/3 containing AMPA 

receptors (Stegmüller et al., 2003). In neurons it was shown that the interaction of GRIP with 

GluA2-containing AMPA receptors is important for synaptic accumulation of AMPA receptors 

(Osten et al., 2000). Furthermore, synaptic neuroligin-neurexin contacts specifically recruit 

GluA2-containing AMPA receptors (Heine et al., 2008) and are able to capture surface 

diffusing AMPA receptors into synapses (Mondin et al., 2011). A recent study by Aoto and 

colleagues (2013) discovered that different splice variants of presynaptic neurexins 

transsynaptically control postsynaptic AMPA receptor density.  

To test for a potential effect of NG2 ablation on synaptic AMPA receptor density, mPSC 

amplitudes were compared between juvenile and aged -/- and control mice. The analysis 

revealed no NG2-dependent alterations of mPSC amplitudes (Fig. 5.15), indicating that 

AMPA receptors are trafficked into postsynaptic densities of NG2 cells with the same efficacy 

when NG2 is lacking. 

mPSC amplitudes did not change from juvenile to adult NG2 cells suggesting that 

postsynaptic AMPA receptor density stays constant throughout development (Fig. 5.15). This 

is in line with and complements other reports investigating mPSC amplitudes in NG2 cells at 

different developmental time points (Bergles et al., 2000; De Biase et al., 2010; De Biase et 

al., 2011). 

6.2.2 NG2 cells express neuroligins 

Given that synaptic transmission was unaltered in the absence of the NG2 protein other 

factors must mediate and regulate the physiology of neuron-NG2 cell synapses. As discussed 

before, the neuroligin-neurexin complex was identified as a crucial mediator of several key 

features of synaptic transmission in neurons including the regulation of synapse number, 

synapse specificity and synaptic strength (Missler et al., 2012). Single-cell transcript analysis 

of the present study revealed that NG2 cells similarly express the postsynaptic cell adhesion 

proteins neuroligin-1, -2 and -3 (Fig. 5.17). These data suggest that the neuroligin-neurexin 

complex operates for neuron-NG2 cell synapses analog to neuron-neuron synapses. 

NG2 cells are innervated by glutamatergic and GABAergic neurons (Bergles et al., 2010). For 

the different neuroligins, it was shown that neuroligin-1 is preferentially found at 
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glutamatergic synapses (Song et al., 1999), while neuroligin-2 is mainly present at GABAergic 

synapses (Varoqueaux et al., 2004). Neuroglin-3 by contrast shows no preference (Budreck 

and Scheiffele, 2007). Consequently, it is likely that neuroligin-1 and -2 are similarly located 

at glutamatergic and GABAergic postsynaptic sites in NG2 cells, respectively. However, this 

selective localization also depends on alternative splicing (Dalva et al., 2007). The present 

study revealed that the majority of NG2 cells express the short form of neuroligin-1 lacking 

the insertion at splice site A. This is in contrast to the overall expression in the mouse brain 

showing similar levels of neuroligin-1 lacking or exhibiting the insertion at splice site A. 

Presence of the A-insert was shown to shift the preference from glutamatergic to GABAergic 

terminals. However, critical for the final localization seems to be splice site B, as neuroligin-1 

exhibiting both inserts displays a strong preference for glutamatergic terminals (Chih et al., 

2006). Since primers used in the present study did not flank the B-insert, no information 

about its presence in NG2 cells is available so far. 

Especially the function and properties of neuroligin-1 were intensively investigated. 

Although it was suggested that neuroligins are not essential for the initial formation of 

synapses but rather control synaptic function (Südhof, 2008), a recent study demonstrated 

that neuroligin-1 is a pivotal determinant of the number of functional synapses (Kwon et al., 

2012). The authors showed that transcellular differences in the expression level of 

neuroligin-1 determine the number of functional excitatory synapses revealing a novel 

competitive mechanism of synapse formation between neighboring neurons. Considering 

now the findings from the present study demonstrating abundant expression of neuroligins 

by NG2 cells, these data might indicate that neurons not only compete with each other for 

synapses but possibly also with NG2 cells evenly distributed throughout the CNS. In this 

respect it is interesting that NG2 cells actively survey their microenvironment with highly 

motile processes (Haberlandt et al., 2011; Hughes et al., 2013). By binding and releasing 

neurexins on presynaptic boutons, neuroligins on NG2 cells might influence the number of 

boutons available for neurons and thereby affect synapse number. Furthermore, expression 

of neuroligins in cultured non-neuronal cells was sufficient to induce the assembly of 

presynaptic specializations in co-cultured neurons (Scheiffele et al., 2000), suggesting that 

neuroligins expressed on the surface of NG2 cells might be able to do so as well. However, 

the synaptic connectivity of NG2 cells is several magnitudes lower as compared to neurons. 
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A potential competitive effect between neurons and NG2 cells is therefore likely to be rather 

small. 

Interestingly, the present study revealed an NG2-dependent decrease in the expression 

frequency of neuroligin-3 in aged NG2 cells. Neuroligin-3 knockout mice were recently 

shown to exhibit impaired mGluR-dependent synaptic plasticity (Baudouin et al., 2012) and 

dysfunctional tonic endocannabinoid signaling (Földy et al., 2013). Furthermore, specific 

mutations in the neuroligin-3 gene were implicated in the pathogenesis of autism (Tabuchi 

et al., 2007). Whether NG2 cells or the NG2 protein itself contribute to this phenotype needs 

to be clarified.  

By demonstrating that NG2 cells express neuroligins similar to neurons, the present study 

provides promising targets for interfering with neuron-NG2 cell synaptic transmission to 

unravel the function of this unique type of neuron-glia communication.  

6.2.3 Passive membrane properties are influenced by NG2 – a hint to other roles? 

Results from several studies supported the hypothesis that the NG2 protein might play a role 

in synaptic transmission between neurons and NG2 cells (Trotter et al., 2010). However, data 

from the present study revealed that NG2 is not necessary in this context. But what is the 

function of the NG2 protein? Why is it expressed by NG2 cells but downregulated in 

oligodendrocytes? 

 

The comparison of passive membrane properties of -/- NG2 cells with control cells in juvenile 

and aged mice revealed besides the known age-dependent changes (Kressin et al., 1995; 

Maldonado et al., 2013) also NG2-dependent changes. The membrane resistance was 

increased when NG2 levels were reduced in aged animals, indicating changes in expression 

or function of K+ channels (Fig. 5.11). Furthermore, an increase in membrane capacitance of 

juvenile -/- cells was detected, suggesting an influence of NG2 on cell size (Fig. 5.11).  

In this context, it is interesting that NG2 cells migrate over considerable distances during 

development and in response to injury in adult animals (Sugimoto et al., 2001; Aguirre and 

Gallo, 2004; Kessaris et al., 2006; Aguirre et al., 2007). Furthermore, NG2 cells were shown 

to maintain their density by self-avoidance and that loss of NG2 cells leads to rapid 

proliferation and migration of adjacent NG2 cells to restore their density (Hughes et al., 
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2013). Besides migration, recent studies also revealed that even in a resting state NG2 cells 

displayed highly motile processes with which they surveyed their local environment 

(Haberlandt et al., 2011; Hughes et al., 2013). Migration as well as process motility rely on 

reorganization of the cytoskeleton and lead to changes in cell morphology and thereby cell 

size (Bacon et al., 2007; Biname et al., 2010). Interestingly, several publications 

demonstrated that the NG2 protein is involved in cytoskeletal reorganization and directional 

migration of NG2 cells (Niehaus et al., 1999; Fang et al., 1999; Makagiansar et al., 2004; 

Makagiansar et al., 2007; Biname et al., 2013). Furthermore, it was shown that the 

ectodomain of NG2 binds to components of the extracellular matrix. Especially the binding 

to collagen VI leads to changes in the actin cytoskeleton and cell spreading (Burg et al., 1996; 

Tillet et al., 2002). The findings that NG2 affects cytoskeletal dynamics and that polarization 

of NG2 cells is disturbed in NG2 knockout mice (Biname et al., 2013), might explain the NG2-

dependent changes in cell size found in the present study (Fig. 5.11). Furthermore, AMPA 

receptor activation was implicated in NG2 cell migration mediated by a complex consisting 

of AMPA receptors, myelin proteolipid proteins and av integrins (Gudz et al., 2006). Since it 

was shown that NG2 cell AMPA receptors are associated with the NG2 protein (Stegmüller et 

al., 2003), NG2 might well be implicated in this mechanism. In that case, ablation of NG2 

could complicate the formation of this functional complex and thereby migration. This idea 

would also provide a reason for NG2 being in a complex with AMPA receptors.  

Other studies implicated the NG2 protein in proliferation and differentiation. The PDGFα 

receptor, a growth factor receptor known to regulate cell proliferation and differentiation, is 

exclusively expressed by NG2 cells in the CNS (Noble et al., 1988; Nishiyama et al., 2009). It 

was shown that NG2 interacts with the PDGFα receptor and that this interaction is necessary 

for the correct response of the receptor to its ligand PDGF-AA (Nishiyama et al., 1996; 

Goretzki et al., 1999). Independent groups demonstrated that PDGFα receptor or PDGF-AA 

knockout animals display reduced numbers of NG2 cells and oligodendrocytes (Fruttiger et 

al., 1999; Murtie et al., 2005). Intriguingly, Kucharova and Stallcup (2010) showed a very 

similar phenotype in NG2 knockout mice, as the density of NG2 cells as well as 

oligodendrocytes was reduced during development. Moreover, when NG2 cells differentiate 

to oligodendrocytes, expression of NG2 and PDGFα receptor is downregulated at the same 

time (Kukley et al., 2010). These data strongly suggest that NG2 and PDGFα receptor form a 
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functional complex important for proliferation and differentiation of NG2 cells. Importantly, 

this is not limited to the CNS as NG2, being expressed by multiple progenitor cells in 

different tissues, has been shown to mediate PDGFα receptor function also in smooth 

muscle cells (Grako et al., 1999). This indicates a general role for NG2 in proliferation and 

differentiation of progenitor cells in all types of tissue it is expressed. 

Another study even revealed a dual role for NG2 in proliferation and motility/migration 

(Makagiansar et al., 2007). They showed that differential phosphorylation of the NG2 protein 

affects its cell surface localization thus balancing proliferation and migration of NG2 cells 

(Makagiansar et al., 2007). Moreover, Sugiarto and coworkers (2011) demonstrated that 

polarized localization of the NG2 protein during mitosis is required for proper asymmetric 

cell division of NG2 cells and that decreased NG2 asymmetry might have tumor-initiating 

potential. Thus, NG2 might be an important regulator to adjust proliferation and 

motility/migration of progenitor cells by various interactions with intra- and extracellular 

communication partners. 

It should be noted though that this study investigated NG2 cells of the gray matter where 

differentiation to oligodendrocytes is much less relevant compared to the highly myelinated 

white matter regions (Dimou et al., 2008). Regarding this, it was shown that NG2 cells of 

white matter but not gray matter proliferate in response to PDGF (Hill et al., 2013). 

Furthermore, it was demonstrated that although NG2 cells from both regions share a set of 

core properties (De Biase et al., 2010), they also exhibit region-dependent variations, e.g. in 

Kir channel density (Chittajallu et al., 2004). In this respect it is interesting that the level of Kir 

conductances might be implicated in proliferation and differentiation of NG2 cells to 

oligodendrocytes (Sontheimer et al., 1989; Neusch et al., 2001; Djukic et al., 2007). Thus, it 

might be worth investigating whether the NG2-dependent changes in passive membrane 

properties of NG2 cells found in the present study likewise occur in white matter regions 

and, if so, whether these changes contribute to alterations in proliferation and 

differentiation of NG2 cells. 
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In the light of the results from the present study it is rather unlikely that NG2 plays a vital 

role in glutamatergic synaptic transmission between neurons and NG2 cells. Instead, the 

identification of neuroligins in NG2 cells suggests that synaptic cell adhesion of neuron-NG2 

cell synapses is similarly regulated as in neurons. Furthermore, published data on the 

function of the NG2 protein rather point towards a role in motility, migration and 

proliferation. However, the fact that ablation of NG2 only leads to a mild phenotype might 

also indicate compensatory mechanisms by redundancy of function of other proteins. 
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7 Summary 

NG2 cells are nowadays considered as a fourth class of glial cells in the CNS. They express 

various types of voltage-gated ion channels and neurotransmitter receptors and exhibit the 

capability to proliferate and differentiate. Intriguingly, NG2 cells receive direct synaptic input 

from glutamatergic and GABAergic neurons throughout the CNS. However, the role of this 

synaptic innervation remains largely unknown. 

Within the framework of the present study three main aspects of the synaptic transmission 

between neurons and NG2 cells were investigated. 

(i) Functional characterization of GABAA receptors in hippocampal NG2 cells. 

The fact that NG2 cells express functional GABAA receptors has been known for a long 

time. However, the subunit composition and functional properties were less evident. 

The present study revealed that NG2 cells are endowed with a similar set of GABAA 

receptor subunits as hippocampal neurons. Detailed analysis showed that in addition to 

synaptic GABAA receptor currents, NG2 cells are able to sense ambient GABA via 

extrasynaptic receptors. In this context, it could be demonstrated that the γ2-subunit is 

selectively located in synaptic GABAA receptors while being absent in extrasynaptic 

ones. Since the γ2-subunit is crucial for clustering of synaptic GABAA receptors in 

neurons, it probably serves a similar role in NG2 cells. 

 

(ii) Analysis of the GABAA receptor subunit expression pattern of neocortical NG2 cells 

during postnatal development.  

Neocortical NG2 cells experience a switch from synaptic to extrasynaptic GABAergic 

transmission during postnatal development. The present study revealed that this switch 

is accompanied by the downregulation of the γ2-subunit of GABAA receptors. Together 

with the data summarized in (i), these findings suggest that the γ2-subunit is a pivotal 

component of synaptic GABAA receptors in NG2 cells of different brain regions. 
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(iii) Role of the NG2 protein in neuron-NG2 cell synaptic signaling. 

The NG2 protein exhibits structural similarities to the synaptic cell adhesion proteins 

neurexins. Furthermore, it is complexed with AMPA receptors via the synaptic protein 

GRIP. These findings suggested that the NG2 protein might serve as a synaptic cell 

adhesion protein at neuron-NG2 cells synapses and possibly influence AMPA receptor 

clustering in the glial postsynaptic density. To test this, synaptic transmission between 

hippocampal neurons and NG2 cells was investigated in juvenile and aged NG2 knockout 

animals. The findings revealed that AMPA receptor current kinetics and amplitudes as 

well as synaptic connectivity and short-term synaptic plasticity were unaltered in the 

absence of the NG2 protein. Based on these results it can be concluded that the NG2 

protein is not necessary for synaptic communication between neurons and NG2 cells. 

However, further single-cell expression analysis demonstrated frequent expression of 

the postsynaptic cell adhesion proteins neuroligins in juvenile and aged NG2 cells. This 

finding indicates similar mechanisms of synaptic cell adhesion at neuron-NG2 cell 

synapses as known from neuron-neuron synapses. 

The results of the present study provide important new insights into the physiology of 

neuron-NG2 cell synapses. They may thus serve as a valuable basis for future studies aiming 

at elucidating the function of this unique type of neuron-glia communication.  
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8 Perspective 

Although various studies investigated the physiology and function of NG2 cells, their role in 

the adult CNS is still enigmatic. The most remarkable but likewise obscure feature of NG2 

cells is their synaptic innervation by neurons. As it is a common characteristic of these cells 

in different brain regions, it might represent an elementary and possibly essential feature of 

NG2 cells to accomplish their function. Unraveling the role of synaptic transmission between 

neurons and NG2 cells should therefore constitute a central objective of future research. For 

this purpose, the present study provides important information about the physiology of 

neuron-NG2 cell synapses. 

 

In the first part of this study it could be demonstrated that the γ2-subunit is selectively 

located in synaptic GABAA receptors in NG2 cells. Furthermore, the second part revealed 

that the γ2-subunit is downregulated when direct synaptic innervation diminishes. Due to its 

essential function in clustering of synaptic GABAA receptors in neurons, the γ2-subunit might 

play a similar role in NG2 cells. To tackle this question, NG2 cell-specific γ2-knockout mice 

should be investigated. Assuming that the γ2-subunit is indeed crucial for synaptic GABAA 

receptor clustering in NG2 cells, this approach would provide further information about the 

general role of GABAergic synaptic innervation in NG2 cells. Since GABAA receptors assemble 

from a variety of subunits, the generation of NG2 cell-specific total GABAA receptor knockout 

mice would be a daunting task. However, targeting the putatively essential γ2-subunit 

constitutes an easier to realize strategy to investigate the role of the GABAergic synaptic 

innervation of NG2 cells. 

 

The third part of the study revealed that despite promising assumptions, the NG2 protein is 

not necessary for synaptic transmission between neurons and NG2 cells. Instead, it could be 

shown that NG2 cells express the synaptic cell adhesion proteins neuroligins. For these 

proteins an intriguing new mechanism for the regulation of synapse number was recently 

proposed. Up- and downregulation of neuroligin-1 expression in single neurons in vivo 

demonstrated that transcellular differences in the relative expression of neuroligin-1 

determine synapse number (Kwon et al., 2012). The new data from the present study 
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indicate that neurons probably also compete with neighboring NG2 cells for synapses 

depending on the relative expression of neuroligins. Similar experiments including 

overexpression or downregulation of neuroligins in single NG2 cells would therefore provide 

important information about synapse formation in these cells. Furthermore, this might 

uncover mechanisms how neurons and NG2 cells interact or compete with each other when 

it comes to synapse formation. 

 

A more global but straight forward approach to investigate the function of neuron-NG2 cell 

synapses would be the knockout of AMPA receptors in NG2 cells. However, since they 

presumably express all four GluA subunits, the generation of such knockout mice would 

expend a large effort. Nevertheless, synaptic signaling in NG2 cells might be the key to 

uncover their function and thus justify such an elaborate experiment.  
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9 Zusammenfassung 

NG2 Zellen werden heutzutage als vierter Glia-Zelltyp im ZNS angesehen. Sie exprimieren 

verschiedene spannungsgesteuerte Ionenkanäle und Neurotransmitter-Rezeptoren und 

besitzen die Fähigkeit zu proliferieren und differenzieren. Interessanterweise erhalten NG2 

Zellen direkten synaptischen Input von glutamatergen und GABAergen Neuronen im 

gesamten ZNS. Die Rolle dieser synaptischen Innervation ist jedoch weitestgehend 

unbekannt. Im Rahmen der vorliegenden Studie wurden drei Hauptaspekte der synaptischen 

Transmission zwischen Neuronen und NG2 Zellen untersucht. 

(i) Funktionelle Charakterisierung von GABAA-Rezeptoren in hippokampalen NG2 Zellen. 

Die Tatsache, dass NG2 Zellen funktionelle GABAA-Rezeptoren exprimieren, ist seit 

langer Zeit bekannt. Die genaue Untereinheiten-Zusammensetzung und die 

funktionellen Eigenschaften wurden jedoch noch nicht bestimmt. Die vorliegende Arbeit 

konnte zeigen, dass NG2 Zellen eine ähnliche Ausstattung an GABAA-Rezeptor 

Untereinheiten aufweisen wie hippokampale Neurone. Im Rahmen weitergehender 

Analysen stellte sich heraus, dass NG2 Zellen neben synaptischen GABAA-

Rezeptorströmen auch umgebendes GABA über extrasynaptische GABAA-Rezeptoren 

wahrnehmen können. In diesem Zusammenhang konnte nachgewiesen werden, dass die 

γ2-Untereinheit bevorzugt in synaptischen GABAA-Rezeptoren vorhanden ist, während 

sie in extrasynaptischen fehlt. In Neuronen ist die γ2-Untereinheit eine Voraussetzung 

für den dichten Zusammenhalt synaptischer GABAA-Rezeptoren. Es ist daher 

anzunehmen, dass die γ2-Untereinheit diese Funktion auch in NG2 Zellen wahrnimmt. 

 

(ii) Analyse der GABAA-Rezeptor Untereinheiten Expression von neokortikalen NG2 Zellen 

während der postnatalen Entwicklung. 

In neokortikalen NG2 Zellen findet während der postnatalen Entwicklung eine 

Umstellung von synaptischer auf extrasynaptische Transmission statt. Die vorliegende 

Studie konnte zeigen, dass diese Umstellung mit der Runterregulierung der γ2-

Untereinheit einhergeht. Im Zusammenhang mit den unter Punkt (i) zusammen-

gefassten Daten, deutet dies darauf hin, dass die γ2-Untereinheit eine entscheidende 
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Komponente von synaptischen GABAA-Rezeptoren in NG2 Zellen in verschiedenen 

Hirnregionen ist. 

 

(iii) Rolle des NG2 Proteins bei der synaptischen Signalübertragung zwischen Neuronen und 

NG2 Zellen. 

Das NG2 Protein besitzt strukturelle Ähnlichkeit zu den synaptischen Zelladhäsions-

proteinen Neurexinen. Außerdem ist es durch Interaktion mit dem synaptischen Protein 

GRIP in einem Komplex mit AMPA-Rezeptoren zu finden. Diese Ergebnisse deuteten 

darauf hin, dass das NG2 Protein als synaptisches Zelladhäsionsprotein an Neuron-NG2 

Zell Synapsen fungiert und möglicherweise die enge Zusammenlagerung von AMPA-

Rezeptoren in der glialen postsynaptischen Membranregion beeinflusst. Um dies zu 

überprüfen, wurde die synaptische Transmission zwischen hippokampalen Neuronen 

und NG2 Zellen in jungen und gealterten NG2-Knockout Mäusen untersucht. Die 

Ergebnisse zeigten, dass AMPA-Rezeptor Kinetiken und Amplituden sowie synaptische 

Konnektivität und Kurzzeit-Plastizität in der Abwesenheit von NG2 unverändert sind. 

Diese Daten deuten darauf hin, dass das NG2 Protein für die synaptische 

Kommunikation zwischen Neuronen und NG2 Zellen nicht notwendig ist. 

Weiterführende Einzelzell-Expressionsanalysen zeigten hingegen die häufige 

Anwesenheit der postsynaptischen Zelladhäsionsproteine Neuroligine in jungen und 

gealterten NG2 Zellen. Dies könnte bedeuten, dass die synaptische Zelladhäsion an 

Neuron-NG2 Zell Synapsen ähnlich wie bei Neuron-Neuron Synapsen reguliert ist. 

Die Daten der vorliegenden Studie liefern neue Erkenntnisse über die Physiologie von 

Neuron-NG2 Zell-Synapsen. Sie stellen daher eine wertvolle Basis für zukünftige Studien dar, 

die die Funktion dieser besonderen Neuron-Glia Kommunikation aufdecken wollen. 
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