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Abstract

Whenever a person or an automated system has to reason in uncertain do-
mains, probability theory is necessary. Probabilistic graphical models allow
us to build statistical models that capture complex dependencies between
random variables. Inference in these models, however, can easily become
intractable. Typical ways to address this scaling issue are inference by ap-
proximate message-passing, stochastic gradients, and MapReduce, among
others. Exploiting the symmetries of graphical models, however, has not
yet been considered for scaling statistical machine learning applications.
One instance of graphical models that are inherently symmetric are statis-
tical relational models. These have recently gained attraction within the
machine learning and AI communities and combine probability theory with
first-order logic, thereby allowing for an efficient representation of struc-
tured relational domains. The provided formalisms to compactly represent
complex real-world domains enable us to effectively describe large prob-
lem instances. Inference within and training of graphical models, however,
have not been able to keep pace with the increased representational power.

This thesis tackles two major aspects of graphical models and shows that
both inference and training can indeed benefit from exploiting symmetries.
It first deals with efficient inference exploiting symmetries in graphical
models for various query types. We introduce lifted loopy belief propaga-
tion (lifted LBP), the first lifted parallel inference approach for relational as
well as propositional graphical models. Lifted LBP can effectively speed up
marginal inference, but cannot straightforwardly be applied to other types
of queries. Thus we also demonstrate efficient lifted algorithms for MAP
inference and higher order marginals, as well as the efficient handling of
multiple inference tasks.

Then we turn to the training of graphical models and introduce the first
lifted online training for relational models. Our training procedure and the
MapReduce lifting for loopy belief propagation combine lifting with the tra-
ditional statistical approaches to scaling, thereby bridging the gap between
statistical relational learning and traditional statistical machine learning.
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1
Introduction

1.1 Statistical Relational AI . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and Outline of the Thesis . . . . . . . . . . . . . . . . 5

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Statistical Relational AI
Machine learning thrives on large datasets and models, and one can anticipate substan-
tial growth in the diversity and the scale of impact of machine learning applications
over the coming decade. Such datasets and models originate, for example, from social
networks and media, online books at Google, image collections at Flickr, and robots
entering the real life. As storage capacity, computational power, and communication
bandwidth continue to expand, today’s ”large” is certainly tomorrow’s ”medium” and
next week’s ”small”. This exciting new opportunity, however, also raises many chal-
lenges.

To be able to reason in uncertain domains our models need to deal with probabil-
ities. Probabilistic graphical models, such as Bayesian networks or Markov networks,
provide the tools to model the problems capture the dependencies of the variables in-
volved and reason in that uncertain domain. Scaling inference within and training of
graphical models, however, is a major challenge as the amount of data and the size of
our problems grow. Thus, statistical learning provides a rich toolbox for scaling. Ac-
tually, statistical learning is unthinkable for many practical applications without such
techniques. Exact inference, for example, is not applicable to many large-scale applica-
tions, therefore one often resorts to approximate inference by message-passing, which
in turn can naturally be parallelized in a framework such as MapReduce. Training, i.e.,
learning the parameters of the model, let alone the structure, is even more challenging
as it involves repeatedly carrying out inference. One approach out of the statistical ma-
chine learning toolbox to tackle training in large models is to do stochastic updates for

1



INTRODUCTION

gradient based approaches.
Often, however, we face inference and training problems with symmetries and re-

dundancies in the graph structure. A prominent example are relational models, see [39,
53] for overviews, that tackle a long standing goal of AI, namely unifying first-order
logic — capturing regularities and symmetries — and probability — capturing uncer-
tainty. These models usually draw upon probabilistic graphical models and use a subset
of first-order logic to describe relations within the domain of interest. They often en-
code large, complex models using few weighted rules only and, hence, symmetries and
redundancies abound. One can easily define a model for millions of entities and rela-
tions among them. Since all the relations origin from a few rules with shared parameters
we can expect substantial amounts of symmetry. Thus one major interest of statistical
relational learning has been efficient model representation, inference and learning in the
presence of symmetries (see [50] for an overview).

However, symmetries exist in propositional models as well. Our world is inherently
symmetrical and, unlike humans who naturally make use of that knowledge, automated
systems generally are not able to exploit this. To better understand which symmetries
we refer to, consider the following example of a robot trying to set a table.

Example 1.1.1. A household robot is confronted with the task of setting the table for
a meal. The robot requires a lot of information to be able to autonomously complete
this task. Some of the questions can be

• How many people are going to attend the meal?

• Is it going to be for breakfast, lunch or dinner?

• What is the required setup of the table?

• Which objects are needed?

• What sequence of actions has to be carried out to fulfill the task?

• and many more. . .

Given all information the robot is able to plan and carry out the actions necessary to
reach its goal. If there is information missing, however, it has to infer what it wants
to know from what it knows already. It could infer the type of the meal, i.e. breakfast,
lunch or dinner, from the time of the day. It is unlikely to be dinner in the morning.
In turn, the type of the meal determines the objects that are necessary. A cereal bowl
is only needed for breakfast and not for lunch or dinner.

The robot usually determines its action from some rules that have either been
learned or given by the programmer in advance, in addition to some background
knowledge about the world and measurements about its current state.

A set of rules stating that a cereal bowl is needed in case of a breakfast could
look as follows:

2



1.1. STATISTICAL RELATIONAL AI

breakfast→ NeedCerealBowl

NeedCerealBowl ∧ InCupboard(CerealBowl 1)

→ Put(CerealBowl 1), !NeedCerealBowl

NeedCerealBowl ∧ InCupboard(CerealBowl 2)

→ Put(CerealBowl 2), !NeedCerealBowl

NeedCerealBowl ∧ InCupboard(CerealBowl 3)

→ Put(CerealBowl 3), !NeedCerealBowl

. . .

The rules read as follows: if there is a need for a cereal bowl and cereal bowl num-
ber 1 is in the cupboard, put cereal bowl 1 on the table. Now there is no need for
a cereal bowl anymore (assuming we are setting up for one person). Applying these
rules would be necessary to make sure at least one of the bowls is on the table. One
can see that these rules look very much the same and thus the local structure is sym-
metric. It does not matter whether there is cereal bowl number 1, 2 or 3 on the table.
A relational version could be stated as follows:

NeedCerealBowl ∧ ∃X (CerealBowl(X) ∧ InCupboard(X))

→ Put(X), !NeedCerealBowl

This quantified rule subsumes the above propositional rules and applies to all objects
in the cupboard that are cereal bowls. Also, this rule nicely shows the symmetries
inherent in the task. It only matters whether the objects are cereal bowls and if so,
whether they are in the cupboard or not. Cereal bowls can also be placed in the
dishwasher, for example, in which case they would not be available for the robot.
With this task in mind, however, one does not need to distinguish between five or
ten different bowls, only whether they are in the cupboard or not. In that sense
they are indistinguishable and the model is symmetric. The above description also
shows that the symmetries are not introduced by a relational representation. The
symmetries have already been present in the propositional problem but are now only
made explicit.

Reconsidering the above example, if we have to reason on the propositional level
there are as many rules as there are cereal bowls. In the relational representation, on the
other hand, there is only one rule for all cereal bowls. Ideally, we would like to carry out
the reasoning as efficient as possible, i.e., on the smaller relational representation. The
only distinction we would have to make in this case is between the group of bowls that
are located in the cupboard and those that are not. This process of staying as abstract as
possible, while getting to the propositional level (grounding) as much as necessary, is
called lifting.

Therefore, symmetries have been explored in AI tasks, such as, symmetry-aware ap-
proaches in (mixed–)integer programming [18, 97], linear programming [64], SAT and
CSP [142], and MDPs [44, 131]. Surprisingly, however, symmetries — stemming from

3
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Statistical Learning
single core online MapReduce

Loopy BP
standard x [1] [59]
lifted Ch. 3 Ch. 5 Ch. 8

Training
standard x x [172]
lifted - - -

Loopy BP
standard x [42] [59]
lifted [146], Ch. 3 [116], Ch. 5 Ch. 8

Training
standard x [68] Ch. 7
lifted Ch. 7 Ch. 7 Ch. 7

single core online MapReduce
Statistical Relational Learning

Table 1.1: Machine learning thrives on large-scale datasets and models. Several ap-
proaches have been developed to scale traditional statistical learning such as approx-
imate message passing, stochastic gradients, and MapReduce, among others (denoted
by “x” if it is main stream or by a representative citation). Scaling by lifting, i.e., ex-
ploiting symmetries within the graphical model structure, however, has not received a
lot of attention. In this thesis, we aim at closing this gap (denoted as “Ch.”) in order to
boost cross-fertilization. Please note that the references are naturally not exhaustive but
representatives of the two worlds.

relational models or not — have not been the subject of great interest within statistical
learning and for practical applications for inference.

Tab. 1.1 shows some approaches that have been developed to scale traditional statis-
tical learning and statistical relational learning, respectively. For instance, (loopy) belief
propagation [124] is an efficient approximate inference algorithm that has been proven
successful in many real-world applications where exact inference is intractable. Gon-
zalez et al. [58, 59] have presented parallel versions for large factor graphs in shared
memory as well as the distributed memory setting of computer clusters. Unfortunately,

(Limitation 1) loopy belief propagation does not exploit symmetries.

Indeed, for relational models, lifted loopy belief propagation has been proposed that
exploits symmetries, see e.g. [146]. It often renders large, previously intractable proba-
bilistic inference problems quickly solvable by employing symmetries to handle whole
sets of indistinguishable random variables. However, symmetries are present in abun-
dance even in traditional, non-relational models, as we have seen in Ex. 1.1.1. In Ch. 3
we will introduce lifted LBP that can be applied to relational as well as propositional
models, as is also shown in Tab. 1.1. Moreover, in practical applications one is faced
with a variety of different queries. Loopy belief propagation prescribes a way to com-
pute (max-) marginal probabilities and joint probabilities for neighboring random vari-
ables, however, the range of different types of queries is very limited. Consequently,

(Limitation 2) we can only benefit from lifting for marginal queries,

4
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as it is not directly applicable to other forms. We widen the range and applicability
of lifted inference and introduce lifted approaches for maximum a posteriori (MAP)
queries and joint probabilities of distant nodes, tackled in Ch. 4 and Ch. 5 respectively,
and a novel lifted message-passing technique that exploits symmetries across multiple
evidence cases (Ch. 6). Furthermore, although we have increasing access to computer
clusters due to the availability of affordable commodity hardware and high performance
networking,

(Limitation 3) lifted loopy belief propagation is still carried out on a single
core.

That is, other than the parallel lifting introduced in Sec. 8.2 there are no inference ap-
proaches that exploit both symmetries and MapReduce for scaling. Still, in many if not
most situations, training relational models will not benefit from scalable lifting.

(Limitation 4) Symmetries within models easily break since variables be-
come correlated by virtue of asymmetrically depending on evidence,

so that lifting produces models that are often not far from propositionalized, therefore
canceling the benefits of lifting for training. In relational learning we typically face
a single mega-example [101] only, a single large set of inter-connected facts. Conse-
quently, many if not all standard statistical learning methods do not naturally carry over
to the relational case. Consider, for example, stochastic gradient methods. Similar to
the perceptron method [136], stochastic gradient approaches update the weight vector
in an online setting. We essentially assume that the training examples are given one
at a time. The algorithms examine the current training example and then update the
parameter vector accordingly. Stochastic gradient approaches often scale sub-linearly
with the amount of training data, making them very attractive for large training data as
targeted by statistical relational learning. Empirically, they are even often found to be
more resilient to errors made when approximating the gradient. Unfortunately, stochas-
tic gradient methods do not naturally carry over to the relational cases:

(Limitation 5) Stochastic gradients coincide with batch gradients in the
relational case since there is only a single mega-example.

Consequently, while there are efficient parallelized gradient approaches, such as the one
developed by Zinkevich et al. [172], that impose very little I/O overhead and are well
suited for a MapReduce implementation, these have not been used for lifted training.

In this thesis, we demonstrate how to overcome all five limitations, that is, we fill
in most gaps in Tab. 1.1, and thereby move statistical and statistical relational learning
closer together in order to boost cross-fertilization.

1.2 Contributions and Outline of the Thesis
Message-passing algorithms, such as loopy belief propagation (LBP), can be very ef-
ficient in computing marginal distributions of random variables and joint marginals of

5



INTRODUCTION

neighboring nodes, thus often are the method of choice. However, we frequently en-
counter inference and training problems with symmetries and redundancies in the graph
structure. A prominent example of such graphs are relational models. Exploiting these
symmetries, however, has not been considered for scaling yet. These symmetries and re-
dundancies arise from various sources, for example, from the graphical model structure
or the task at hand and we show how to exploit these for various types of probabilistic
queries. The thesis consists of two parts and makes a number of novel contributions to
efficient inference in probabilistic graphical models for various query types (Part I) and
to the training of relational models (Part II) by showing that both inference and training
can indeed benefit from exploiting symmetries.

Part I
Ch. 3 As a first contribution we show that message-passing algorithms can be lifted.
We introduce lifted loopy belief propagation that exploits symmetries and hence often
scales much better than standard loopy belief propagation. Its underlying idea is rather
simple: group together nodes that are indistinguishable in terms of messages sent and
received given the evidence. The lifted graph is often significantly smaller and can be
used to perform a modified loopy belief propagation yielding the same results as loopy
belief propagation applied to the unlifted graph. This overcomes Limitation 1, and our
experimental results show that considerable efficiency gains are obtainable. This mainly
draws upon work that has previously been published as

K. Kersting, B. Ahmadi, and S. Natarajan. Counting belief propagation. In
Proceedings of the Twenty–Fifth Conference Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI–09), pages 277–284, Montreal, Canada,
2009. AUAI Press.

In many situations, this purely syntactic criterion of lifting, however, may yield lifted
networks that are too pessimistic: lifting cannot make use of the fact that LBP message
errors decay along paths [70] and one does not benefit from lifting in some practical ap-
plications. To overcome this, we propose informed LLBP a novel, easy-to-implement,
informed LLBP approach that interleaves lifting and modified LBP iterations. In turn,
we can efficiently monitor the true BP messages sent and received in each iteration and
group nodes accordingly. This is based on the following work:

K. Kersting, Y. El Massaoudi, B. Ahmadi, and F. Hadiji. Informed lift-
ing for message–passing. In D. Poole M. Fox, editor, Twenty–Fourth AAAI
Conference on Artificial Intelligence (AAAI–10), Atlanta, USA, AAAI Press,
2010.

Furthermore, lifting is not limited to the discrete case. Many application domains
involve continuous random variables and we show how the color-passing procedure for
lifting can be applied to this case as well, that is, we introduce lifted Gaussian belief
propagation, previously published in
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B. Ahmadi, K. Kersting, and S. Sanner. Multi-Evidence Lifted Message
Passing, with Application to PageRank and the Kalman Filter. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI–
2011), pages 11521–158, AAAI Press, 2011.

Ch. 4 The remainder of this part is dedicated to the various query types and how these
can be handled efficiently in a lifted fashion, overcoming Limitation 2. Maximum a
posteriori probability (MAP) queries, i.e., finding the most probable joint configuration
of the random variables, are important in a number of fields and often formulated as
linear programs (LP). We show how the symmetries carry over to the LP-relaxation and
introduce lifted linear programs. The work in this chapter was previously published
as

M. Mladenov, B. Ahmadi, and K. Kersting. Lifted linear programming.
In 15th International Conference on Artificial Intelligence and Statistics
(AISTATS–2012), pages 788–797, La Palma, Canary Islands, Spain, 2012.
Volume 22 of JMLR: W&CP 22.

Ch. 5 Often we are interested in computing higher order marginals, e.g., the joint
distribution of distant nodes. This usually requires repeated inference with a slightly
modified query. Lifting the network every time from scratch is wasteful and we show
how to avoid this to efficiently perform sequential inference tasks to obtain higher-
order marginals. This chapter mainly draws upon the following two works:

B. Ahmadi, K. Kersting, and F. Hadiji. Lifted belief propagation: Pairwise
marginals and beyond. In Proceedings of the 5th European Workshop on
Probabilistic Graphical Models (PGM10), pages 9–16, Helsinki, Finland,
2010.

F. Hadiji, B. Ahmadi, and K. Kersting. Efficient sequential clamping for
lifted message passing. In Proceedings of the 34th Annual German Confer-
ence on Artificial Intelligence (KI–11), Berlin, 2011, Springer.

Ch. 6 Our fifth main contribution is a novel lifted message-passing technique that ex-
ploits symmetries across multiple evidence cases. The benefits of this multi-evidence
lifted inference are shown for several important AI tasks such as computing personal-
ized PageRanks and Kalman filters via multi-evidence lifted Gaussian belief propaga-
tion, previously published as

B. Ahmadi, K. Kersting, and S. Sanner. Multi-Evidence Lifted Message
Passing, with Application to PageRank and the Kalman Filter. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI–
2011), pages 11521–158, AAAI Press, 2011.
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Part II
Ch. 7 Still, in many if not most situations training relational models will not bene-
fit from this (scalable) lifting: symmetries within models easily break since variables
become correlated by virtue of asymmetrically depending on evidence. An appealing
idea for such situations is to train and recombine local models. This breaks long-range
dependencies and allows to exploit lifting within and across the local training tasks.
Thus, in this chapter we develop the first lifted training approach. More specifically,
we shatter a model into local pieces. In each iteration, we then train the pieces indepen-
dently and re-combine the learned parameters from each piece. This breaks long-range
dependencies and allows one to exploit lifting across the local training tasks. Hence, it
overcomes Limitation 4.

Moreover, the shattering naturally paves the way for the first scalable lifted training
approaches based on stochastic gradients. Based on the lifted piece-wise training, we
introduce the first online training approach for relational models that can deal with par-
tially observed training data. The idea is, we treat (mini-batches of) pieces as training
examples and process one piece after the other. This overcomes Limitation 5. Our
experimental results on several datasets demonstrate that the online training converges
to the same quality solution over an order of magnitude faster than batch learning, sim-
ply because it starts optimizing long before having seen the entire mega-example even
once. Indeed, the way we shatter the full model into pieces greatly effects the learning
quality: important influences between variables might get broken. To overcome this, we
randomly grow relational piece patterns that form trees. Our experimental results show
that tree pieces can balance lifting and quality of the online training.

As has been shown before, general stochastic gradient approaches naturally extend
to MapReduced training [172]. Lifted inference, however, has not been possible in a
lifted fashion. We subsequently present the first MapReduce lifted loopy belief propa-
gation approach. More precisely, we establish a link between color-passing, the specific
way of lifting the graph, and radix sort, which is well-known to be MapReduce-able.
Together with Gonzalez et al. [58, 59] MapReduce loopy belief propagation approach,
this overcomes Limitation 3. Our experimental results show that MapReduced lifting
scales much better than single-core lifting.

Moreover, this MapReduce lifting is the missing piece for a fully parallel lifted
approach. We hereby bridge the gap between the two orthogonal approaches for scaling,
namely lifting, i.e., exploiting symmetries in the model, and parallel computations.

The work in Ch. 8.2 is based on the following two papers:

B. Ahmadi, K. Kersting, M. Mladenov, and S. Natarajan. Exploiting sym-
metries for scaling loopy belief propagation and relational training. Ma-
chine Learning Journal, 92(1): 91–132, July 2013.

B. Ahmadi, K. Kersting, and S. Natarajan. Lifted online training of re-
lational models with stochastic gradient methods. In Proceedings of the
European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML–PKDD 2012), Bristol, UK, 2012. Springer.
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Other work that is not covered in these chapters is listed in the references at the end
of the thesis. A concluding chapter summarizes the thesis, discusses its implications
and provides an outlook on future research.

1.3 Related Work
As argued above, in its two parts this thesis aims at developing efficient inference for
probabilistic graphical models and efficient training approaches for relational models by
employing symmetries in combination with MapReduce and stochastic gradients. Thus,
we are getting mainstream statistical and statistical relational learning closer together.
Consequently, there are several related lines of research.

Lifted Probabilistic Inference
In 2003, Poole published his seminal paper on “First-Order Probabilistic Inference” [126].
where he presents an algorithm to reason about multiple individuals where we may
know particular facts about some of them. About others, however, we have no informa-
tion. Thus, they are indistinguishable and we want to make use of this symmetry and
treat them as a group.

This was the starting point of the very active research field trying to employ sym-
metries in graphical models for speeding up probabilistic inference, called lifted prob-
abilistic inference, that has recently received a lot of attention.

Braz et al. [40, 41], Milch et al. [103], Kisynski and Poole [83], and Taghipour
et al. [151] have developed lifted versions of the variable elimination (VE) algorithm.
They typically employ a counting elimination operator that is equivalent to counting
indistinguishable random variables and then summing them out immediately. The dif-
ferent variations of these algorithms improve upon the work of Poole [126] and Braz
et al. [40, 41] by introducing counting formulas [103], aggregation operators [31, 83],
handling arbitrary constraints [151, 152] and joint formulas [7]. Choi et al. [30] devel-
oped a variable elimination algorithm when the underlying distributions are continuous
random variables and lifted variational inference for hybrid models [29]. These exact
inference approaches do not easily scale to realistic domains, and hence have only been
applied to rather small artificial problems.

The closest work to our approach for exploiting symmetries in approximate infer-
ence by message passing is the work by Singla and Domingos [146]. Singla and Domin-
gos’ lifted first-order belief propagation (LFOBP) builds upon the work of Jaimovich et
al. [72] and also groups random variables, i.e., nodes that send and receive identical
messages. Given a Markov logic network LFOBP does so by grouping together nodes
and factors that communicate via the same clauses in the network.

Sen et al. [143] presented another “clustered” inference approach based on bisimu-
lation. Like lifted LBP, introduced later in Sec. 3, which can also be viewed as running
a bisimulation-like algorithm on the factor graph, Sen et al.’s approach does not require
a first-order logical specification. In contrast to lifted LBP, it is guaranteed to converge
but is also much more complex. Its efficiency in dynamic relational domains, in which
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variables easily become correlated over time by virtue of sharing common influences in
the past, is unclear and its evaluation is an interesting future work.

Recently, Van den Broeck et al. [155] proposed a method that relaxes first-order
conditions to perform exact lifted inference on the model and then incrementally im-
prove the approximation by adding more constraints back into the model. This can be
viewed as bridging the lifted VE and the lifted LBP methods presented above. Again,
as for LFOBP, a first-order logical specification of the model is required.

An alternative to LBP and VE is to use search-based methods based on recursive
conditioning. That is, by conditioning on parameterized variables we decompose a
lifted network into smaller networks that can be solved independently. Each of these
subnetworks is then solved recursively using the same method, until we reach a simple
enough network that can be solved [37]. Recently, several lifted search-based methods
have been proposed [56, 57, 127, 157] that assume a relational model given. Gogate and
Domingos [57] reduced the problem of lifted probabilistic inference to weighted model
counting in a lifted graph. Van den Broeck et al. [157] employ circuits in first-order
deterministic decomposable negation normal form to do the same, also for higher order
marginals [156]. Both these approaches were developed in parallel and have promising
potential to lifted inference. These approaches have been followed up by works provid-
ing a more detailed analysis leading to completeness results of the approaches [154] and
the application to a wider range of problem such as maximum weighted utility (MEU)
queries [8].

There are also sampling methods that employ ideas of lifting. Milch and Russell
developed an MCMC approach where states are only partial descriptions of possible
worlds [102]. Zettlemoyer et al. [170] extended particle filters to a logical setting.
Gogate and Domingos introduced a lifted importance sampling [57], and Venugopal
and Gogate introduced a lifted Gibbs sampling procedure [158].

Niepert proposed permutation groups and group theoretical algorithms to represent
and manipulate symmetries in probabilistic models, which can be used for MCMC [119,
120]. And Bui et al. [24] have shown that for MAP inference we can basically divide
the inference task into an evidence free and an evidence prone part, thus exploiting the
symmetries of the model before evidence is incorporated.

It is an interesting question whether one can characterize these symmetries more
precisely. Poon and Domingos identified the partition function as the key limiting fac-
tor for efficient inference and introduced an approach to obtain tractable networks [129].
Work on symmetry in exponential families [25] shows that one can create supernodes
using the automorphism group of the graph, using the notion of orbit partitions. Mlade-
nov and Kersting [106] analyze the space between the lifting obtainable by the different
lifted approaches — exact and approximate — and show that there is a whole hierarchy
of possible liftings.

As of today, none of these approaches have been shown to be MapReduce-able.
Moreover, many of them have exponential costs in the treewidth of the graph, making
them infeasible for most real-world applications, and none of them have been used for
training relational models.
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Symmetries in AI
Symmetries in general have been explored in many AI tasks. For instance, there are
symmetry-aware approaches in (mixed–)integer programming [18, 97], linear program-
ming [64], SAT and CSP [49, 142]. The general view in these domains is that, the
cause of symmetries lies in the problem formulation, which in turn causes an expo-
nential growth of the size of the search space. To cope with symmetrical CSPs, for
example, there are different approaches such as adding global constraints that break
the symmetry, or modifying the search either by pruning symmetric states or by using
symmetry-breaking search heuristics.

Markov Decision Processes (MDPs) and partially observable MDPs (POMDPs) can
easily grow to intractable problem sizes, thus there have been various approaches to
first-order and relational versions that avoid propositionalizing the domain. Dean and
Givan [44] make use of redundancies by grouping states that behave similar in a pre-
processing step and thus reduce the size of the model. This work was later extended by
Ravindran and Barto [131] to additionally include symmetries that would not have been
exploited before. Boutillier et al. [20] introduced symbolic dynamic programming for
first-order MDPs. Their algorithm solves first-order MDPs without explicit state space
or action enumeration. Sanner and Kersting [138] introduced symbolic dynamic pro-
gramming for POMDPs which was later extended to continuous states and observations
by Zamani et al. [169]. Classical algorithms for MDPs have been developed for the
first-order and relational case such as the first-order value iteration (FOVIA) [66] and
the relational Bellman algorithm (ReBel) [79].

Surprisingly, symmetries have for a long time not been the subject of great interest
within statistical learning and for practical applications for inference. As we have seen,
besides exact inference using lifted variable elimination and its extensions, there is a
lot of work on approximate inference which have shown successful in many AI tasks
and applications, and only recently have some of these been applied in a lifted fash-
ion and have shown to often be faster, more compact and provide more structure for
optimization.

These tasks include information retrieval [117], satisfiability [61], Boolean model
counting (Sec. 3.1), particle [145, 170] and Kalman filtering ([32] and Sec. 6.2), Page-
Rank (Sec. 6.2), label propagation [117], citation matching, entity resolution, link pre-
diction in social networks [134], information broadcasting (Sec. 3.2), and various sam-
pling approaches [57, 102, 119, 120, 158], among others.

Local Training
Our lifted training approach is related to local training methods well known for propo-
sitional graphical models. Besag [12] presented a pseudolikelihood (PL) approach for
training an Ising model with a rectangular array of variables. PL, however, tends to
introduce a bias and is not necessarily a good approximation of the true likelihood with
a smaller number of samples. In the limit, however, the maximum pseudolikelihood
coincides with that of the true likelihood [165]. Hence, it is a very popular method
for training models such as conditional random fields (CRF) where the normalization
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can become intractable while PL requires normalizing over only one node. An alter-
native approach is to decompose the factor graph into tractable subgraphs (or pieces)
that are trained independently [149]. This piecewise training can be understood as ap-
proximating the exact likelihood using a propagation algorithm such as LBP. Sutton and
McCallum [149] also combined the two ideas of PL and piecewise training to propose
piecewise pseudolikelihood (PWPL) which, in spite of being a double approximation,
has the benefit of being accurate like piecewise training and also scales well due to the
use of PL. Another intuitive approach is to compute approximate marginal distributions
using a global propagation algorithm like LBP, and simply substitute the resulting be-
liefs into the exact maximum likelihood gradient [94], which will result in approximate
partial derivatives. Similarly, the beliefs can also be used by a sampling method such
as Markov chain Monte-Carlo (MCMC) where the true marginals are approximated by
running an MCMC algorithm for a few iterations. Such an approach is called contrastive
divergence [65] and is popular for training CRFs.

Statistical Relational Learning

All the above training methods were originally developed for propositional data while
real-world data is inherently noisy and relational. Statistical Relational Learning [39,
53] deals with uncertainty and relations among objects. The advantage of relational
models is that they can succinctly represent probabilistic dependencies among the at-
tributes of different related objects leading to a compact representation of learned mod-
els. While relational models are very expressive, learning them is a computationally
intensive task. Recently, there have been some advances in learning SRL models, es-
pecially in the case of Markov Logic Networks [80, 84, 85, 96]. Algorithms based
on functional-gradient boosting [50] have been developed for learning SRL models
such as Relational Dependency Networks [114] and Markov Logic Networks [80].
Piecewise learning has also been pursued already in SRL. For instance, the work by
Richardson and Domingos [134] used pseudolikelihood to approximate the joint distri-
bution of MLNs which is inspired from the local training methods mentioned above.
Although all of these methods exhibit good empirical performance, they apply the
closed-world assumption, i.e., whatever is unobserved in the world is considered to
be false. They cannot easily deal with missing information. To do so, algorithms based
on classical EM [46] have been developed for ProbLog, CP-logic, PRISM, probabilis-
tic relational models, Bayesian logic programs [52, 60, 77, 140, 153], among others,
as well as gradient-based approaches for relational models with complex combining
rules [71, 115]. Poon and Domingos [128] extended the approach of Lowd and Domin-
gos [96] which is using a scaled conjugate gradient with preconditioner to handle miss-
ing data. All these approaches, however, assume a batch learning setting; they do not
update the parameters until the entire data has been scanned. In the presence of large
amounts of data such as relational data, the above methods can be wasteful. Stochastic
gradient methods as considered in the present paper, on the other hand, are online and
scale sub-linearly with the amount of training data, making them very attractive for large
data sets. Only Huynh and Mooney [68] have recently studied online training of MLNs.
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Here, training was posed as an online max margin optimization problem and a gradient
for the dual was derived and solved using incremental-dual-ascent algorithms. Huynh
and Mooney’s approach, however, is orthogonal to our approach in that they do dis-
criminative learning as opposed to generative learning. Also, they do not employ lifted
inference for training and make the closed-world assumption. It would be interesting to
see where the approaches can complement each other, e.g., by employing parallel lifted
max-product belief propagation for the max margin computation.

Distributed Inference and Training
To scale probabilistic inference, Gonzalez et al. [58, 59] present algorithms for parallel
inference on large factor graphs using loopy belief propagation in shared memory as
well as the distributed memory setting of computer clusters. Although, Gonzalez et
al. report on map-reducing lifted inference within MLNs, they actually assume the
lifted network to be given, in which case lifted LBP only consists of the modified LBP
equations. Piatkowski et al. [125] introduced a GPU-parallel loopy belief propagation
approach for conditional random fields. For pairwise factors, the message update of
loopy belief propagation is equivalent to a matrix-vector product. There is a large body
of work for efficient matrix-vector operations (see e.g. [63]), as they are essential in
a lot of applications, one of which we will touch upon later in this thesis, namely the
PageRank.

Another avenue to address the scaling of SRL algorithms is the combination of SRL
with database technology. The relational database research community and the com-
mercial industry have optimized the products and algorithms for decades since it was
first introduced in 1970 by Codd [33]. Recently the need for uncertainty in databases
has emerged to develop the notions of probabilistic databases and how to efficiently
answer queries therein [10, 27, 35, 91, 132, 139].

Niu et al. [121] considered the problem of scaling up ground inference and learning
over factor graphs that are multiple terabytes in size. They achieve this using database
technology with two key observations:

(i) Grounding the entire SRL model into a factor graph is seen as a relational database
management system (RDBMS) join that is realized using a distributed RDBMS.

(ii) They make learning I/O bound by using a storage manager to efficiently run infer-
ence over factor graphs that are larger than main memory.

It remains a very interesting and exciting future work to implement our algorithms using
this database technology.

Beedkar et al. [11] propose an approach for parallel inference in Markov logic net-
works. The authors introduce a parallel grounding scheme for the MLN based on im-
portance sampling and use this partitioning for parallel probabilistic inference.

All these approaches, however, do not make use of symmetries in the graphical
models. The only other approach combining symmetries and parallelism in statistical
relational models is the work by Noessner et al. [122] exploiting symmetries in the
integer linear program formulation for MAP inference.
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2.1 Relational Graphical Models

Logical models and probabilistic models capture important aspects of the real-world.
Each of them, however, are not able to represent complex domains including logic and
uncertainty on their own. Statistical relational models provide powerful formalisms to
compactly represent these complex real-world domains. There exist various different
formalisms that combine logic and probability, sometimes also referred to as the alpha-
bet soup of SRL [53]. These models can be directed or undirected. Some models build
upon probabilistic models and add the logical aspect, others build upon logical models
and add uncertainty. Examples are probabilistic relational models (PRM) [53], Bayesian
logic programs (BLP) [77], relational Bayesian networks (RBN) [71], relational depen-
dency networks (RDN) [118], and many more (see [53] for an overview). They enable
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us to effectively represent and tackle large problem instances for which inference and
training is increasingly challenging.

What they generally have in common is that they employ (a subset of) first-order
logic, introduced in Sec. 2.1.1, to define the factors or potential functions of the graph-
ical models’ (Sec. 2.1.2) probability distribution. One of the most prominent examples
of statistical relational models are Markov logic networks [134]. We will have a closer
look on Markov Logic networks in Sec. 2.1.3, since these are the relational models on
which we will demonstrate the algorithms and techniques throughout this thesis. How-
ever, we would like to note that the algorithms apply to other relational models as well.

2.1.1 First-Order Logic
In the following we introduce a function-free first-order logic. The main building blocks
of first-order logic are constants, logical variables, and predicates.

A constant represents an entity in the domain of interest, e.g., a particular cereal
bowl or the kitchen table in Ex. 1.1.1. A variable is a place holder for objects in the
domain. In this thesis called logical variables to make a distinction to random variables
or simply variables where the context allows. Variables and constants may be typed, in
which case the scope of a variable is limited to constants within the domain that are of
the same type.

Objects within the domain may have relations. The relations are named by pred-
icates. “InCupboard(CerealBowl1)”, for example, is a relation with the predicate “In-
Cupboard”. The arity of this relation is 1, as it involves only one object. In case there are
multiple cupboards a relation with arity of at least 2 is necessary to appropriately repre-
sent this domain. “InCupboard(CerealBowl3,Cupboard1)” would state that cereal bowl
number three is placed in the cupboard number one. Let n be the arity of a predicate. A
predicate represents a mapping from n-tuples of constants to {True, False}.

By applying a predicate to a tuple of terms, i.e., variables or constants, we obtain
an atomic formula or atom. Formulas are recursively composed from atomic formulas
using logical connectives and quantifiers.

• negation: ¬F1 is a formula⇔ F1 is a formula

• disjunction: F1 ∨ F2 is a formula⇔ F1 and F2 are formulas

• conjunction: F1 ∧ F2 is a formula⇔ F1 and F2 are formulas

• existential quantification: ∃xF1 is a formula⇔ x is a variable and F1 is a formula

• universal quantification: ∀xF1 is a formula⇔ x is a variable and F1 is a formula

Formulas and atomic formulas that contain no variables are called ground formulas
and ground atoms respectively.

A theory consists of a finite set of implicitly conjoined formulas. A convenient
form for theories is the conjunctive normal form (CNF). In a CNF each formula is a
disjunction of positive and negative atomic formulas, and all variables are implicitly
universally quantified. Any theory can be transformed into this form.
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Assuming that,

(i) there are no other objects than those represented by the constants (domain closure
assumption) and

(ii) two different constants designate different objects (unique name assumption),

a Herbrand interpretation or possible world is an assignment of a truth value to all
ground atoms.

A substitution Fi[x/t] maps all appearances of the variable x in formula Fi to the
term t, also denoted as Fiθ, where θ = {x → t}. Multiple substitutions can conve-
niently be written as

Fθ1θ2 = F{x1 → t1}{x2 → t2}
= F{x1 → t1, x2 → t2}
= Fθ1,2 .

A substitution is ground when it maps each variable to a constant term. Applying a
ground substitution to a formula is called grounding.

An interpretation satisfies a ground formula if it evaluates to true under the given
assignment. A formula containing variables is satisfied if all of its groundings are satis-
fied.

Given a theory, there are two possible inference tasks: SAT (model generation) and
theorem proving. In SAT one is interested in the question, whether a theory is satisfi-
able, that is, whether there exists an assignment such that the theory evaluates to true.
Theorem proving answers the question whether a formula F holds in all models of a
given theory T which can be reduced to SAT by showing that F ∪ T is unsatisfiable.

A basic SAT solving approach is to employ the resolution rule for inference [135].
Given two clauses, the resolution rule produces a single clause entailed by them. This is
repeated until the resolution rule cannot be applied any more. If the resulting theory is
false, the initial theory is also false, otherwise it is satisfiable. Resolution can be applied
to ground or first-order theories. Let us demonstrate resolution on a small example.

Example 2.1.1. Assume we want to check whether the following theory about the
efficiency and liftability of algorithms is satisfiable:

Efficient(X)

¬Efficient(X) ∨ Liftable(X) .

Lifted resolution allows us to derive a new clause from two clauses with complemen-
tary literals. The above theory thus entails the following formula:

Liftable(X) .
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This clause is not trivially false. Thus the given theory is satisfiable. If we were to
perform ground resolution on the above theory, the resolution rule would have to be
applied to all ground instances of this theory, for example,

Efficient(ve)

¬Efficient(ve) ∨ Liftable(ve)

Efficient(bp)

¬Efficient(bp) ∨ Liftable(bp)

Efficient(lp)

¬Efficient(lp) ∨ Liftable(lp)

Efficient(mdp)

¬Efficient(mdp) ∨ Liftable(mdp)

...

In this sense, a lifted resolution step is equivalent to many ground resolutions. This
example also demonstrates how much more efficient lifted resolution can be com-
pared to ground resolution. Instead of applying the resolution rule for the first-order
clauses once, we would have had to apply it once for every possible grounding.

In this thesis we will show how this can be carried over to inference and training of
graphical models which are introduced in the following.

2.1.2 Probabilistic Graphical Models
LetXi be a discrete-valued random variable and xi represent a possible realization of the
random variable Xi from the set of all possible values called the range of Xi, denoted as
range(Xi). Similarly, we define the range of a set of n discrete-valued random variables

X = (X1, X2, . . . , Xn)

to be
range(X) = range(X1)× range(X2)× . . .× range(Xn)

and let x represent a possible realization of the set of random variables X.
A joint probability distribution P is a function that maps the joint states to a real-

valued positive number and sums up to one, i.e.,

(i) P : range(X)→ R≥0

(ii)
∑

x P (x) = 1.

An important inference task is to compute marginal probabilities, that is, the condi-
tional probability of a set of variables given the values of some others. To do this, we
need to sum out the joint probability distribution with respect to all other variables. We
say that the other random variables are being eliminated.
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Example 2.1.2. Given the joint probability distribution P (A,B,C) we can obtain
the marginal probability of the random variable A by summing out the others. We
thus compute

P (A) =
∑
B

∑
C

P (A,B,C)

where the sum is over all possible states of B and C, respectively.

Graphical models represent the joint probability distribution by an underlying graph
and thus facilitate a clear mathematical formulation as well as the use of graph theoret-
ical concepts for the understanding of the probabilistic methods.

Graphical models can be directed like, e.g., Bayesian networks, or undirected such as
Markov networks or Markov random fields (MRF). The difference between directed and
undirected models generally lies in their parametrization and their Markov properties
like, for example, the conditional independence assumptions.

The notion of conditional independence and the Markov property are fundamental
for graphical models. We denote two random variables X and Y conditionally indepen-
dent given a third variable Z denoted as X ⊥⊥ Y |Z if

P (X, Y |Z) = P (Y |Z) · P (X|Z)

Here the joint probability of X and Y can be written as the product of the two marginal
probabilities, that is, it can be factorized.

In graphical models the Markov property holds: every variable is conditionally in-
dependent of the remaining, given its direct neighbors (the Markov blanket), that is, for
a given variable Xk it holds that,

P (Xk|X\Xk) = P (Xk|MB(Xk)) ,

where MB(Xk) is the Markov blanket of variable Xk.
Both directed and undirected graphical models consist of two components. The

structure of the model is represented by a graph G and a set

F = {fk(Xk)}k=1,...,n

of factor functions which represent the parametrization of the model. Each factor fk is
a non-negative function of a subset of the variables Xk ⊆ X.

Probabilistic graphical models make use of the independencies in the joint distribu-
tion over X and compactly represent it as a product of factors [124], i.e.,

P (X = x) =
1

Z

∏
k
fk(xk) . (2.1)

Here, Z is a normalization constant ensuring that P is a probability distribution∑
x

P (x) = 1 .
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Smoking
Genetic

Precondition

Cancer

Smoking 
yes
no

P(Smoking)
0.3
0.7

Precondition 
risky

normal

P(Precondition)
0.1
0.9

Cancer 
yes
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P(Cancer|Smoker,Precondition)
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no

Figure 2.1: An example for a Bayesian network with associated CPTs.

The factorized representation of a probability distribution is generally much more
efficient. Consider, for instance, a network of n binary variables with a maximum de-
gree of d (maximum number of neighboring variables). A joint probability table would
contain 2n entries (or parameters) whereas the factorized distribution can be specified
with O(d · n · 2d) entries, where usually d� n.

Bayesian networks

Bayesian networks [124] are one of the most popular and most widely used probabilistic
graphical models. A Bayesian network G(V,E) is a directed acyclic graph (DAG)
where each node in V represents a random variable and an edge e ∈ E ⊆ V × V
represents a conditional dependency between two nodes.

The subsets of random variables on which the factors are defined consist of the node
Xi and its set of parents Pa(Xi). This function is defined as the conditional probability
of the nodes given its parents. Thus the joint probability distribution is defined as the
product of the local conditional probabilities, that is,

P (X = x) =
∏

i
P (Xi|Pa(Xi)) . (2.2)

Example 2.1.3. Fig. 2.1 shows an example for a Bayesian network. The Bayesian
network shown on the left has three variables, namely Smoking, whether a certain
genetic precondition is met and a variable Cancer. All three variables are binary and
the CPTs are given on the right. Since Cancer depends on its parents, its CPTs has to
include the two variables Smoking and genetic precondition. The joint distribution
is now computed from the product of all the CPTs, that is,

P (Smoking,G.Precondition, Cancer)

= P (Smoking)P (G.Precondition)P (Cancer|Smoking,G.Precondition) .
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Markov networks

Markov networks or Markov random fields [82, 124] are undirected graphical models.
In a Markov network the structure G(V,E) is an undirected graph where each node
represents a random variable and an edge e ∈ E ⊆ V × V represents a conditional
dependency between two nodes. The functions F are defined over the cliques of the
graph.

P (X = x) =
1

Z

|C|∏
i=1

fi(xi) , (2.3)

where C is the set of cliques associated with the graph and Z is a normalizing constant.
As long as P (X = x) > 0 for all joint configurations x, the distribution can be

equivalently represented as a log-linear model:

P (X = x) =
1

Z
exp

[∑
i

wi · ϕi(x)

]
, (2.4)

where the features ϕi(x) are arbitrary functions of (a subset of) the configuration x.
High-order MRFs can always be reduced to a pairwise one [51]. Without loss of

generality, one often assumes a pairwise Markov random field. In a pairwise MRF
the functions are defined over the edges of the graph, that is, the cliques of size two.
The graphical representation alone, however, can be ambiguous. Assume we have a
fully connected graph of size three, i.e., a Markov network with three nodes. In this
graph the factors can be defined over the edges, three cliques of size two, or the whole
network, i.e., one clique of size three. A factor graph is an equivalent representation of
the Markov network that explicitly shows the factorization structure of the model.

Factor graphs

A factor graph G(VX , Vf , E) is a bipartite graph that expresses the factorization struc-
ture in Eq. (2.1). It explicitly shows the independencies of the set of variables X that lead
to the factorization of the joint probability distribution. It has a variable node vXi ∈ VX
(denoted as a circle) associated with each random variable Xi , i = 1, . . . , n, and a fac-
tor node vfk ∈ Vf (denoted as a square) associated with each factor fk , k = 1, . . . ,m.
An edge eij ∈ E ⊆ VX × Vf connects variable node vXi to factor node vfk if and only
if Xi is an argument of fk. We will consider one factor fi(x) = exp [wi · ϕi(x)] per
feature ϕi(x), i.e., we will not aggregate factors over the same variables into a single
factor.

Example 2.1.4. Fig. 2.2 shows an example for Markov network (left) and its equiva-
lent factor graph representation (center). The factor graph shown has three variable
nodes and two factor nodes, i.e., VX = {vA, vB, vC} and Vf = {vf1 , vf2}. The joint
distribution is factorized into the two factors f1 and f2, that is,

P (A,B,C) = f1(A,B) · f2(B,C)
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A

C

A

f1

A B f1
True True 1.2
True False 1.4
False True 2.0
False False 0.4

C

f2

C B f2
True True 1.2
True False 1.4
False True 2.0
False False 0.4

BB

Figure 2.2: An example for a Markov network (left) and the equivalent factor
graph (center) with associated potentials (right). Circles denote variables (binary in
this case), squares denote factors.

The random variables are binary, thus the joint distribution can be fully specified by
two tables of size four each, shown in Fig. 2.2 (right).

For more details on probabilistic graphical models we refer to [86].

2.1.3 Markov Logic Networks
A Markov logic network (MLN) F is defined by a set of first-order formulas (or clauses)
Fi with associated weights wi, i ∈ {1, . . . ,m}. The formulas are implicitly universally
quantified. Together with a set of constants C = {C1, C2, . . . , Cn} F can be grounded,
i.e., the free variables in the predicates of the formulas Fi are bound to be constants in
C, to define a Markov network. This ground Markov network contains a binary node
for each possible grounding of each predicate, and a feature for each grounding fk of
each formula. The joint probability distribution of an MLN is given by

P (X = x) =
1

Z
exp

 |F |∑
i=1

θini(x)

 (2.5)

where for a given possible world x, i.e., an assignment of all variables X, ni(x) is the
number of times the ith formula is evaluated true and Z is a normalization constant.

Example 2.1.5. An example of a Markov Logic network is depicted in Tab. 2.1 (top).
It consist of two first order clauses, F = {F1, F2} with associated weights. Together
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English First-Order Logic Weight
Smoking causes cancer Smokes(x)⇒ Cancer(x) 1.5
Friends have similar smoking habits Friends(x, y)⇒ (Smokes(x)⇔ Smokes(y)) 2.0

1.5 : Smokes(Anna)⇒ Cancer(Anna)
1.5 : Smokes(Bob)⇒ Cancer(Bob)
2.0 : Friends(Anna,Bob)⇒ (Smokes(Anna)⇔ Smokes(Bob))
2.0 : Friends(Bob,Anna)⇒ (Smokes(Bob)⇔ Smokes(Anna))

English First-Order Logic Weight
Buddies have similar smoking habits Buddies(x, y)⇒ (Smokes(x)⇔ Smokes(y)) 2.0

Table 2.1: (Top) Example of Markov logic network inspired by [146]. Free variables are
implicitly universally quantified. (Center) Grounding of the MLN for constants Anna
and Bob. (Bottom) Additional clause about similar smoking habits of buddies instead
of friends.

with a set of constants, say Anna and Bob, it can be grounded to the ground clauses
depicted in Tab. 2.1 (center). This set of ground clauses now defines a Markov net-
work and in turn a factor graph with binary variables and factors f1 − f4. Each
ground atom, e.g. Smokes(Anna), is represented by a variable node in the factor
graph and each ground clause is represented by a factor node. There is an edge
between a variable and a factor iff the ground atoms appears in the corresponding
ground clause and

fi(x{i}) = ewini(x) ,

where x{i} are the truth values of the variables appearing in fi, wi the weight of the
clause and ni(x) is the truth value of the clause, given the assignment x.
For example, if we know that Anna smokes but does not have cancer, the implication
in f1 evaluates to false, thus

f1(Smokes(Anna) = True, Cancer(Anna) = False) = e1.5∗0 = 1 and
f2(Smokes(Bob) = False, Cancer(Bob) = False) = e1.5∗1 ,

assuming Bob does not smoke nor has cancer and the implication in f2 evaluates to
true. Thus, given the current evidence E we have on Anna and Bob, for F1 we have
that

F1(E) = e1.5∗1 .

Tab. 2.1 and Ex. 2.1.5 illustrate how, given a set of constants which form the do-
main we need to reason about, e.g., the persons in a social network or the words in
a document, the free variables within the first-order rules can be bound to produce a
propositional rule for every instance. These grounded networks are propositional and
all propositional techniques may be applied.

Grounding the Friends-and-Smokers example from Tab. 2.1 (top) with two constants
already produces a propositional factor graph with six variables and four factors (unary
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factors / priors neglected). As this small example already demonstrates, statistical rela-
tional models such as MLNs introduced here make it easy to define large and compli-
cated models. Thus, statistical relational models enable us to tackle a broader class of
applications and larger instances, however, they also pose major challenges for inference
and training.

2.2 Graphical Model Inference and Training

2.2.1 Loopy Belief Propagation
As we have seen in Sec. 2.1.2, we can obtain the marginal probability of a variable by
summing out the joint probability distribution with respect to all remaining variables,
In many problems, however, we are interested in more than one or even all marginal
probabilities. Although we could compute each separately, when we have a closer look
at the computations we notice that in this case a lot of the intermediate results are shared.

Example 2.2.1. Reconsider the example factor graph from 2.2. To obtain the
marginal probabilities of the random variables we have to sum out all the remaining
variables. We thus compute

P (A) =
∑
B

∑
C

P (A,B,C)

=
∑
B

∑
C

f1(A,B)f2(B,C)

=
∑
B

f1(A,B)
∑
C

f2(B,C)

P (B) =
∑
A

f1(A,B)
∑
C

f2(B,C)

P (C) =
∑
B

f1(A,B)
∑
A

f2(B,C)

When computing P(A) and P(B) in Ex. 2.2.1 we have to sum out the variable C
from factor f2 in both cases. The intermediate terms that arise during the computation
can also be viewed as messages sent along the edges of the factor graph. Instead of
viewing the inference process as an elimination process this opens up a message-passing
view to inference. Summing out C from f2 then corresponds to a message sent to A.
The operations for computing the marginals of the variables thus consist of sums and
products of factor functions.

The belief propagation (BP) or sum-product algorithm is an efficient way to solve
this problem. Belief propagation makes local computations only and makes use of the
graphical structure such that the marginals can be computed much more efficiently. One
should note that the problem of computing marginal probability functions is in general
hard (#P-complete).

The computed marginal probability functions will be exact if the factor graph has no
cycles, but the BP algorithm is still well-defined when the factor graph does have cycles.
Although this loopy belief propagation (LBP) has no guarantees of convergence or of
giving the correct result, in practice it often does, and can be much more efficient than
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Algorithm 1: Loopy Belief Propagation (flooding)
Input: A factor graph G = (VX ∪ Vf , E) and a convergence threshold.
Output: A set of approximate marginals b̃Xi , i ∈ 1, . . . , n.

1 q ← 0;
2 foreach edge {i, k} ∈ E do
3 µqfk→Xi(x)← 1;
4 µqXi→fk(x)← 1;
5 repeat
6 q ← q + 1;
7 foreach variable node Xi ∈ VX do
8 foreach factor node fk ∈ nb(Xi) do
9 µqXi→fk(xi)←

∏
fj∈nb(Xi)\{fk}

µq−1
fj→Xi(xi);

10 foreach factor node fk ∈ Vf do
11 foreach variable node Xi ∈ nb(fk) do

12 µqfk→Xi(xi)←
∑

xk\{xi}

f(xk)
∏

Xj∈nb(fk)\{Xi}

µq−1
Xj→fk(xj)

 ;

13 ε← maxµ |µq − µq−1|;
14 until ε ≤ convergence threshold;
15 return b̃Xi(x) =

∏
fk∈nb(Xi)

µqfk→Xi(x) , i ∈ 1, . . . , n;

other methods [112]. We will now describe the LBP algorithm in terms of operations
on a factor graph.

To define the LBP algorithm, we first introduce messages between variable nodes
and their neighboring factor nodes and vice versa. The message from a variable X to a
factor f is

µX→f (x) =
∏

h∈nb(X)\{f}

µh→X(x) (2.6)

where nb(X) is the set of factors X appears in. The message from a factor to a variable
is

µf→X(x) =
∑
¬{X}

f(x)
∏

Y ∈nb(f)\{X}

µY→f (y)

 (2.7)

where nb(f) are the arguments of f , and the sum is over all the values of these except
X , denoted as ¬{X}. The messages are usually initialized to 1.

Now, the unnormalized belief of each variable Xi can be computed from the equa-
tion

bi(xi) =
∏

f∈nb(Xi)

µf→Xi(xi) (2.8)

Evidence is incorporated by setting f(x) = 0 for states x that are incompatible with it.
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Different schedules may be used for message-passing. In the flooding protocol (syn-
chronous) all messages are updated simultaneously, that is, to compute the message for
the current iteration q only the messages from the previous iteration q − 1 are used.
When the messages are updated asynchronously we always use the latest message for
the computation of new messages.

Alg. 1 summarizes the loopy belief propagation algorithm for the flooding schedule.
Given a graph G all messages are initialized to 1 (lines 2-4). Then for each iteration q
we send a message from each variable node to its neighboring factor nodes (lines 7-9)
and into the other direction from the factor nodes to the variable nodes (lines 11-12). At
convergence the belief of variable node Xi is obtained by the product of all incoming
messages into the node (line 15). Convergence is reached if the belief or alternatively
the message changes of two successive iterations falls below a specified threshold (lines
13-14).

Loopy belief propagation is an efficient algorithm for exact inference in trees and
approximate inference for loopy graphs in cases where exact inference is not feasible.
On loopy graphs it is not guaranteed to converge and one may use damping to facilitate
convergence of some instances. In that case, the new message is taken to be a weighted
average between the old message from the previous iteration and the new message ac-
cording to the ordinary LBP update rule and is characterized by the damping parameter
γ ∈ [0, 1].

Loopy belief propagation can be applied to propositional graphical models and sta-
tistical relational models that have been grounded.

2.2.2 Training of Graphical Models

The standard training task, also referred to as parameter learning or parameter esti-
mation, for Markov networks can be formulated as follows. Given a set of training
instances D = {D1, D2, . . . DM} each consisting of an assignment to the variables in
X , the goal is to output a parameter vector θ = (θ1, . . . , θm). To train the model, we
can seek to maximize the log-likelihood function or equivalently minimize the negative
log-likelihood function − logP (D | θ) given by

`(θ,D) = − 1

M

∑
D

logPθ(X = xDi) . (2.9)

The likelihood, however, is computationally hard to obtain. A widely-used alternative
is to maximize the pseudo-log-likelihood instead, i.e.,

logP ∗(X = x | θ) =
∑n

l=1
logPθ(Xl = xl|MBx(Xl)) (2.10)

where MBx(Xl) is the state of the Markov blanket of Xl in the data, i.e., the assign-
ment of all variables neighboring Xl. In this thesis, we minimize the negative log-
likelihood (Eq.(2.9)).

An alternative approach is to decompose the factor graph into tractable subgraphs
(or pieces) that are trained independently [149].
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Example 2.2.2. Consider the following example of a factor graph.

It has four variable nodes with five pairwise factors connecting them. Inference in
the joint models can become too complex and to make training tractable the global
model can be approximated by many smaller local models. Intuitively, this cuts the
dependencies between the factors. On the resulting model we can learn the parame-
ters and apply them for our original model.

We thus decompose a factor graph into tractable but not necessarily disjoint sub-
graphs (or pieces) P = {p1, . . . , pk}. Training these pieces independently is a rea-
sonable idea since in many applications, the local information in each factor alone is
already enough to do well at predicting the outputs. The parameters learned locally are
then used to perform global inference on the whole model.

More formally, at training time, each piece from P = {p1, . . . , pk} has a local like-
lihood as if it were a separate graph, i.e., training example and the global likelihood is
estimated by the sum of its pieces:

ˆ̀(θ,D) =
∑

pi∈P
`(θ|pi , D|pi) . (2.11)

Here θ|pi denotes the parameter vector containing only the parameters appearing in piece
pi and D|pi the evidence for variables appearing in the current piece pi. The standard
piecewise decomposition breaks the model into a separate piece for each factor.

No matter which objective function is used, one typically runs a gradient-descent to
train the model. That is, we start with some initial parameters θ0 — typically initialized
to be zero or at random around zero — and update the parameter vector using

θt+1 = θt − ηt · gt . (2.12)

Here gt denotes the gradient of the likelihood function and is given by:

∂`(θ,D)/∂θk = MEx∼Pθ [nk(x)]− nk(D) (2.13)
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This gradient expression has a particularly intuitive form: the gradient attempts to
make the feature counts in the empirical data equal to their expected counts relative to
the learned model. Note that, to compute the expected feature counts, we must perform
inference relative to the current model. This inference step must be performed at every
step of the gradient process. In the case of partially observed data, we cannot simply
read-off the feature counts in the empirical data and have to perform inference there as
well. Consequently, there is a close interaction between the training approach and the
inference method employed for training such as loopy belief propagation.

2.3 Algebra on Graphs
It is often useful to represent the graphs in terms of vectors and matrices. This enables
us to derive and analyze the symmetries by using linear algebra.

Graphs can be encoded using the notion of an adjacency matrix showing for every
pair of nodes whether they are adjacent, that is, whether they share an edge. More
formally, the adjacency matrix of a graph G = (V,E) with n vertices is an n×n matrix
A(G) whose entries are

A(G)uv =

{
1 if {u, v} ∈ E
0 otherwise.

In this representation we do no make a distinction between the edges and thus we
say that the edges have the same color. If we have additional information for our vertices
and edges, however, we define a coloring (also called labeling) function

color : V (G) ∪ E(G)→ N .

The entry A(G)uv is then defined to be the color of the edge {u, v} and A(G)uu the
color of the vertex u, represented as a natural number.

We consider two graphs G1 = (V1, E1) and G2 = (V2, E2) to be equivalent (isomor-
phic) iff there exists a bijection φ (called an isomorphism) mapping the vertices of G1

to the vertices of G2 such that

{u, v} ∈ E1 ⇔ {φ(u), φ(v)} ∈ E2 .

For colored graphs a further condition must hold, namely edge and vertex colors must
be preserved, that is,

color(u) = color(φ(u)) and color({u, v}) = color({φ(u), φ(v)}) ,

for all vertices u, v. Note that encoding colors as natural numbers is rather arbitrary and
the same properties will hold over any field, thus, we might have chosen arbitrary ratio-
nal or real numbers to represent colors, as we will do for continuous random variables
such as in Sec. 3.3.

The problem of deciding if two graphs are isomorphic has not been shown to be
NP -complete, yet no polynomial algorithm for the task is known [55].

28



2.3. ALGEBRA ON GRAPHS

We say that a graph G is symmetric whenever it is isomorphic to itself. More pre-
cisely, there exists an isomorphism σ : V → V , which we call an automorphism,
different from the identity.

The notion of graph automorphism also carries over to matrices. An n × n matrix
Xσ represents an automorphism σ : V → V iff the following holds:

a-i) Xσ is a permutation matrix (i.e., (Xσ)ij = 1⇔ σ(i) = j, 0 otherwise) and

a-ii) Xσ commutes with A(G): A(G)Xσ = XσA(G).

As discussed in [55], the set of matrices associated with the automorphisms ofG, which
we will call Aut(G), forms a group under matrix multiplication, that is, it satisfies four
algebraic properties:

g-i) Xσ,Xπ ∈ Aut(G)⇒ Xσ ·Xπ ∈ Aut(G).

g-ii) (Xσ ·Xπ) ·Xτ = Xσ · (Xπ ·Xτ ).

g-iii) The identity matrix I belongs to Aut(G) and it holds that for all other elements
X · I = I ·X = X.

g-iv) For every element X of Aut(G), there exists an inverse X−1 such that X ·X−1 =
X−1 ·X = I.

These facts about automorphisms hold regardless of whether we talk about colored or
uncolored graphs.

A division of the set of vertices V into k parts U = {U1, ..., Uk} is called partition-
ing, if

(i)
⋃k
i=1 Ui = V , the vertex set V is the union of the parts, and

(ii) i 6= j ⇒ Ui ∩ Uj = ∅, the sets are distinct.

We say that u is equivalent to v iff u is mapped to v by some automorphism of G.
This equivalence relation induces a partition of V , called the orbit partition of V [90].
The orbit partition of a graph can be encoded by characteristic matrices. Suppose a
partition of a graph with n vertices has k parts. Then the entries of its characteristic
matrix are given by B ∈ {0, 1}n×k

Bij =

{
1 if vertex i belongs to part j
0 otherwise.

Knowing this partition can greatly help to efficiently reason in graphs, for example,
since we know that the properties we might be interested in are identical within the
equivalence classes. Unfortunately, enumerating the orbit partition, often referred to
as graph stabilization, has the same computational complexity as deciding whether two
graphs are isomorphic [98].
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2.4 Linear Programming
As a very important example of how to benefit from indistinguishability, we will con-
sider linear programs (LPs) and their symmetry in Ch. 4. A linear program in pri-
mal (equality-constrained) form LPp = (A,b, c) is a mathematical program that can
be specified in the following way:

miny∈Rn cTy

s.t. Ay = b

y ≥ 0,

where the inequality and equality signs are to be understood as component-wise in-
equalities of real-valued vectors.

In other words, we search for a minimizer in Rn of the linear cost function f(x) =
cTy, such that the system ofm linear equalities over the n variables, given by Ay = b is
satisfied. The feasible set of a linear program is known from geometry as a polyhedron,
or in case it is bounded, a polytope. Without loss of generality, we will assume from
now on that the polyhedron is full-dimensional, i.e., the dimension of its affine hull is n.
It is known that linear programs are solvable in polynomial time [21]. In fact, state-of-
the-art interior point solvers have strong theoretical guarantees, while also showing fast
empirical performance.

Linear programs may also be expressed by means of inequalities. A linear program
in inequality (which we will also call dual form) form LPd = (A′,b′, c′) is formulated
as

maxx∈Rq c′
T
x

s.t. A′x ≤ b′.

These two forms are equivalent, as one may express an equality-constrained in inequality-
constrained form by introducing extra constraints, whereas the reverse can be achieved
by the use of slack variables. There is a special relation between these two forms. Every
primal LP, LP = (A,b, c) has a dual linear program LP = (AT , c,b) where strong
duality holds, namely, if y∗ and x∗ are optima of both LP and LP, cTy∗ = bTx∗.

2.5 MapReduce
The MapReduce [43] programming model allows parallel processing of massive data
sets inspired by the functional programming primitives map and reduce and is basically
divided into these two steps, the Map- and the Reduce-step.

1. In the Map-step the input is taken, divided into smaller sub-problems and then
distributed to all worker nodes. These smaller sub problems are then solved by
the nodes independently in parallel. Alternatively, the sub-problems can be further
distributed to be solved in a hierarchical fashion.
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2. The outputs of the Map phase have to be sorted and grouped before the subprob-
lems can be passed on to the subsequent step.

3. In the Reduce-step all outputs of the sub-problems are collected and combined to
form the output for the original problem.

Let us demonstrate the MapReduce principle on an example.

Example 2.5.1. Assume we are given a weighted graph and would like to count how
many edges have the same weight, that is, how many edges have the weight w1, how
many w2, and so on. The graph is given as a colored adjacency matrix A, where an
edge between nodes ni and nj with the weight w is indicated by the entry aij = w.

Let the graph be given by A =

0 0 3
1 0 2
3 0 0


Now each row of the matrix A is an input for one mapper. All mappers can run

in parallel. They process the input and output key-value pairs.

map([0 0 3]) = 3→ 1
map([1 0 2]) = 1→ 1, 2→ 1
map([3 0 0]) = 3→ 1

Here the first entry (the key) is the weight of the edge and the second entry (the
value) is simply a 1. Before the key-value pairs are sent to the reducers, we group
them by their keys:

1→ 1
2→ 1
3→ 1 1

Now, each of the lines is passed to one of the reducers. The grouping (or sorting)
was necessary to ensure that the pairs with the same keys are processed by the same
reducer. The reducers typically perform some aggregation operation on the list of
values, in this case the sum of the values. The result after reduction is:

1→ 1
2→ 1
3→ 2

So there is one edge with the weight of 1, one has the weight of 2 and the weight
of 3 appears twice in the graph.
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Symmetries in Belief Propagation
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In this part we will show how symmetries within graphical models can be
used to speed up inference using loopy belief propagation (LBP). Given
a probability distribution P (X) defined by a graphical model there are
numerous different practically relevant queries we might have to answer.
Loopy belief propagation as a very efficient inference technique is well
suited for inference in graphical models but it is not naı̈vely applicable
to answer all different kinds of queries. Each query has specific challenges
inherent in the inference problem it poses. Our focus in the subsequent
chapters will be on efficiently solving the following inference tasks:

1. Computing the marginal distributions P (Xi|E) for a subset of nodes
Xi ∈ XA, XA ⊆ X provided some evidence E (Ch. 3).

2. Finding a MAP assignment to a probability distribution P , i.e., com-
puting argmaxX P (X|E) (Ch. 4).

3. Computing the joint marginal distribution P (XA|E) of a subset XA ⊆
X of nodes provided some evidence E (Ch. 5).

4. Efficiently solving multiple inference tasks, i.e., computing the marginal
distribution P (Xi|Ej) for a subset of nodes Xi ∈ XA, XA ⊆ X and
multiple evidence cases Ej , j = 1, . . . ,m (Ch. 6).

In each chapter we will name the specific challenges and address each of
these in turn.
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In this chapter we will tackle the task of marginal inference. More specifically, we

compute the marginal distributions P (Xi|E) for a subset of nodes Xi ∈
XA, XA ⊆ X provided some evidence E.

LBP, as introduced in Sec. 2.2.1, quite efficiently approximates the marginals in
general loopy graphs. Exploiting the symmetries, however, has so far been neglected as
a dimension of scaling in the statistical machine learning approaches.

As the large body of work we have reviewed in Sec. 1.3 for lifted inference shows,
this is very promising avenue for efficient probabilistic inference and has been mostly
tackled for exact inference in relational models.

Exact inference approaches, however, do not scale to real-world problems and, more
importantly, symmetries exist in abundance in propositional models as well. In the
following we show how lifting can be achieved for approximate inference by message-
passing. In particular, we show how to exploit symmetries for scaling inference in
relational and propositional discrete models using lifted LBP (LLBP) (Sec. 3.1) and
informed LLBP (iLLBP) (Sec. 3.2), and extend these results to inference in Gaussian
models (Sec. 3.3).
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3.1 Lifted Loopy Belief Propagation
Although already quite efficient, many graphical models produce inference problems
with a lot of additional regularities in the graphical structure that are not exploited by
LBP. Probabilistic graphical models such as MLNs are prominent examples. As an
illustrative example, reconsider the factor graph in Fig. 2.2. The associated potentials
are identical. In other words, although the factors involved are different on the surface,
they actually share quite a lot of information. Standard LBP cannot make use of this
information. In contrast, lifted LBP – which we will introduce in the following – can
make use of it and can speed up inference by orders of magnitude.

The closest work to our approach for exploiting symmetries within message pass-
ing is the work by Singla and Domingos [146]. Singla and Domingos’ lifted first-order
belief propagation (LFOBP) builds upon the work of Jaimovich et al. [72] and also
groups random variables, i.e., nodes that send and receive identical messages. Lifted
LBP differs from LFOBP in that it does not require the specification of the probabilistic
model in first-order logical format as input. For LFOBP only nodes over the same pred-
icate can be grouped together to form so-called supernodes and it thus coincides with
standard LBP for general factor graphs and propositional MLNs, i.e., MLNs involving
propositional variables only. The reason is that propositions are predicates with arity
0 so that the supernodes are singletons. Hence, no nodes and no features are grouped
together. In contrast, our lifting can directly be applied to any factor graph over finite
random variables. In contrast to LFOBP that essentially groups together nodes that
communicate via the same clauses, LLBP groups together nodes that communicate via
identical potentials. In turn, LLBP can still yield significant efficiency gains when ap-
plied to Markov networks. In this sense, lifted LBP is a generalization of LFOBP, as
will also be discussed shortly later.

Lifted LBP performs two steps: Given a factor graph G, it first computes a com-
pressed factor graph G and then runs a modified LBP on G. We will now discuss each
step in turn using fraktur letters such as G, X, and f to denote compressed graphs, nodes,
and factors.

Step 1 – Compressing the Factor Graph:
To be able to compress the factor graph into a smaller network we need to determine the
equivalent nodes and factors in the original graph. Thus, we essentially simulate LBP
keeping track of which nodes and factors send the same messages, and group nodes and
factors together correspondingly.

Let G be a given factor graph with Boolean variable and factor nodes. Initially, all
variable nodes fall into three groups (one or two of these may be empty), namely known
true, known false, and unknown. For ease of explanation, we will represent the groups
by colored circles, say, magenta, green, and red. All factor nodes with the same asso-
ciated potentials also fall into one group represented by colored squares. For the factor
graph in Fig. 2.2 the situation is depicted in Fig. 3.1. As shown on the left-hand side, as-
suming no evidence, all variable nodes are unknown, i.e., red. Now, each variable node
sends a message to its neighboring factor nodes saying “I am of color red”. A factor

38



3.1. LIFTED LOOPY BELIEF PROPAGATION

A

B

C

f1

f2

A

B

C

f1

f2

A

B

C

f1

f2

A

B

C

f1

f2

A

B

C

f1

f2

A,C

B

f1,f2

Figure 3.1: From left to right, the steps of CFG compressing the factor graph in Fig. 2.2
assuming no evidence. The shaded small circles and squares denote the groups and
signatures produced running CFG. On the right-hand side, the resulting compressed
factor graph is shown.

node sorts the incoming colors into a vector according to the order the variables appear
in its arguments. The last entry of the vector is the factor node’s own color, represented
as light blue square in Fig. 3.1. This color signature is sent back to the neighboring
variables nodes, essentially saying “I have communicated with these nodes”. The vari-
able nodes stack the incoming signatures together and, hence, form unique signatures
of their one-step message history. Variable nodes with the same stacked signatures, i.e.,
message history can be grouped together. To indicate this, we assign a new color to
each group. In our running example, only variable node B changes its color from red to
yellow. The factors are grouped in a similar fashion based on the incoming color signa-
tures of neighboring nodes. Finally, we iterate the process. As the effect of the evidence
propagates through the factor graph, more groups are created. The process stops when
no new colors are created anymore.

The final compressed factor graph G is constructed by grouping all nodes with the
same color into so-called supernodes and all factors with the same color signatures
into so-called superfactors. In our case, variable nodes A, C and factor nodes f1, f2 are
grouped together, see the right hand side of Fig. 3.1. Supernodes (resp. superfactors)
are sets of nodes (resp. factors) that send and receive the same messages at each step of
carrying out LBP on G. It is clear that they form a partition of the nodes in G.

Note that, we have to keep track of the position a variable appeared in a factor. Since
factors in general are not commutative, it matters where the node appeared in the factor.
Reconsider our example from Fig. 2.2, where

f1(A = True,B = False) 6= f1(A = False, B = True)

However, in cases where the position of the variables within the factor does not matter,
one can gain additional lifting by sorting the colors within the factors’ signatures. The
ordering of the factors in the node signatures, on the other hand, should always be
neglected, thus we perform a sort of the node color signatures.

Alg. 2 summarizes our approach for computing the compressed factor graph G from
a propositional factor graph G and given evidence E as input. Initially, the nodes have
to be colored based on the evidence we have (line 1) and the factors based on their
potentials (line 2). Since nodes as well as factors have to be colored, their coloring
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Algorithm 2: CFG – CompressFactorGraph
Data: A factor Graph G with variable nodes X and factors f , Evidence E
Result: Compressed Graph G with supervariable nodes X and superfactor nodes f

1 Compute initial clusters of the Xis w.r.t. E;
2 Compute initial clusters of the fks w.r.t. their potential;
3 repeat

// Form color signature for each factor
4 foreach factor fk do
5 signaturefk = [ ];
6 foreach node Xi ∈ nb(fk) do in order of appearance in fk
7 signaturefk .append(Xi.color);
8 signaturefk .append(fk.color);
9 Group together all fks having the same signature;

10 Assign each such cluster a unique color;
11 Set fk.color correspondingly for all fks;

// Form color signature for each variable
12 foreach node Xi ∈ X, i = 1, . . . , n do
13 signatureXi = [ ];
14 foreach factor fk ∈ nb(Xi) do
15 signatureXi .append(fk.color);
16 sort signatureXi according to ordering given by color;
17 signatureXi .append(Xi.color);
18 Group together all Xis having the same signature;
19 Assign each such cluster a unique color;
20 Set Xi.color correspondingly for all Xis;
21 until grouping does not change;

has to be carried out alternatingly until convergence. For each factor (lines 4-11) we
first collect the colors of their neighboring nodes (lines 6-7) and form a signature by
appending the factors own color (line 8). All factors are now grouped based on the
signatures (line 9) and assigned a new unique color (line 10-11). The nodes are colored
analogously (lines 12-20). The only difference is that in the case of the nodes there is an
additional sorting step (line 16) since the factors’ position in the node signatures can be
neglected. The coloring process is stopped when the grouping does not change (line 21).

The clustering we do here, groups together nodes and factors that are indistinguish-
able given the loopy belief propagation computations. To better understand the color-
passing and the resulting grouping of the nodes, it is useful to think of LBP and its
operations in terms of its computation tree (CT), see e.g. [70]. The CT is the unrolling
of the (loopy) graph structure where each level i corresponds to the i-th iteration of
message passing. Similarly we can view the color-passing step (CP) within the lifting
procedure as building a colored computation tree (CCT). More precisely, one considers
for every node X the computation tree rooted in X but now each node in the tree is col-
ored according to the nodes’ initial colors, cf. Fig. 3.2(left). For simplicity edge colors

40



3.1. LIFTED LOOPY BELIEF PROPAGATION

X5 X6

X2X1

X1 X2

X6X5
X3

X4

X1

X3

X2

X6X5

X1

X2

X6X5

X4

X3

X4

X3

X4

Figure 3.2: Original factor graph with colored nodes (left) and the corresponding col-
ored computation trees for nodes X1 to X4 (right). As one can see, nodes X1 and
X2, respectively X3 and X4, have the same colored computation tree, thus are grouped
together during color-passing.

are omitted and we assume that the potentials are the same on all edges. Each CCT
encodes the root nodes’ local communication patterns that show all the colored paths
along which node X communicates in the network. Consequently, CP groups nodes with
respect to their CCTs: nodes having the same set of rooted paths of colors (node and
factor names neglected) are clustered together. For instance, Fig. 3.2(right) shows the
CCTs for the nodes X1 to X4. Because their set of paths are the same, X1 and X2 are
grouped into one supernode, X3 and X4 into another (together with X5 and X6 which
are omitted here).1

Now we can run LBP with minor modifications on the compressed factor graph G.

Step 2 – LBP on the Compressed Factor Graph:
Recall that the basic idea is to simulate LBP carried out on G on G. An edge from
a superfactor f to a supernode X in G essentially represents multiple edges in G. Let
c(f,X, p) be the number of identical messages that would be sent from the factors in the
superfactor f to each node in the supernode X that appears at position p in f if LBP was
carried out on G. The message from a supervariable X to a superfactor f at position p is

µX→f,p(x) = µf,p→X(x)c(f,X,p)−1
∏

h∈nb(X)

∏
q∈P (h,X)

(h,q)6=(f,p)

µh,q→X(x)c(h,X,q) , (3.1)

where nb(X) now denotes the neighbor relation in the compressed factor graph G
and P (h,X) denotes the positions nodes from X appear in f. The c(f,X, p)−1 exponent
reflects the fact that a supervariable’s message to a superfactor excludes the correspond-
ing factor’s message to the variable if LBP was carried out on G. The message from the
factors to neighboring variables essentially remains unchanged. The difference is that
we now only send one message per supernode and position, given by

µf,p→X(x) =
∑
¬{X}

f(x)
∏

Y∈nb(f)

∏
q∈P (f,Y)

µY→f,q(y)c(f,Y,q)−δXYδpq

 , (3.2)

1The partitioning of the nodes obtained by color-passing corresponds to the so-called coars-
est equitable partition of the graph. We will briefly come back to this issue in Ch. 4.
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where δXY and δpq are one iff X = Y and p = q respectively. The unnormalized
belief of Xi, i.e., of any node X in Xi can be computed from the equation

bi(xi) =
∏

f∈nb(Xi)

∏
p∈P (f,Xi)

µf,p→Xi(xi)
c(f,X,p) . (3.3)

Evidence is incorporated either on the ground level by setting f(x) = 0 or on the
lifted level by setting f(x) = 0 for states x that are incompatible with it. 1 Again, dif-
ferent schedules may be used for message-passing. If there is no compression possible
in the factor graph, i.e., there are no symmetries to exploit, there will be only a single
position for a variable X in factor f and the counts c(f,X, 1) will be 1. In this case the
equations simplify to Eqs.(2.6)-(2.8).

To conclude the section, the following theorem states the correctness of lifted LBP.

Theorem 3.1.1. Given a factor graph G, there exists a unique minimal compressed
factor graph G, and algorithm CFG(G) returns it. Running LLBP on G using Eqs. (3.1)
and (3.3) produces the same results as LBP applied to G.

The theorem generalizes the theorem of Singla and Domingos [146] but can essen-
tially be proven along the same line. Although very similar in spirit, lifted LBP has one
important advantage: not only can it be applied to first-order and relational probabilis-
tic models, but also directly to traditional, i.e., propositional models such as Markov
networks.

Proof. We prove the uniqueness of G by contradiction. Suppose there are two minimal
lifted networks G1 and G2. Then there exists a variable node X that is in supernode
X1 in G1 and in supernode X2 in G2, X1 6= X2; or similarly for some superfactor
f. Since all nodes in X1, and X2 respectively, send and receive the same messages
X1 = X2. Following the definition of supernodes, any pair of nodes X and Y in G send
and receive different messages, therefore no further grouping is possible. Hence, G is a
unique minimal compressed network.

Now we show that algorithm CFG(G) returns this minimal compressed network.
The following arguments are made for the variable nodes in the graph, but can analog-
ously be applied to factor nodes. Reconsider the colored computation trees (CCT) which
resemble the paths along which each node communicates in the network. Variable nodes
are being grouped if they send and receive the same messages. Thus nodes X1 and X2

are in they same supernode iff they have the same colored computation tree. Unfolding
the computation tree to depth k gives the exact messages that the root node receives
after k LBP iterations. CFG(G) finds exactly the similar CCTs. Initially all nodes are
colored by the evidence we have, thus for iteration k = 0 we group all nodes that are
similarly colored at the level k in the CCT. The signatures at iteration k + 1 consist of
the signatures at depth k (the nodes own color in the previous iteration) and the colors
of all direct neighbors. That is, at iteration k + 1 all nodes that have a similar CCT

1Note that, the variables have been grouped according to evidence and their local structure.
Thus all factors within a superfactor are indistinguishable and we can set the states of the whole
superfactor f at once.
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up to the (k + 1)-th level are grouped. CFG(G) is iterated until the grouping does not
change. The number of iterations is bounded by the longest path connecting two nodes
in the graph. The proof that modified LBP applied to G gives the same results as LBP
applied to G also follows from CCTs, Eq.(3.1) and Eq.(3.2), and the count resembling
the number of identical messages sent from the nodes in G.

In contrast to the color-passing procedure, Singla and Domingos [146] work on
the relational representation and lift the Markov logic network in a top-down fashion.
Color-passing on the other hand starts from the ground network and groups together
nodes and factor bottom-up. While a top-down construction of the lifted network has
the advantage of being more efficient for liftable relational models since the model does
not need to be grounded, a bottom-up construction has the advantage that we do not rely
on a relational model such as Markov logic networks. Color-passing can group ground
instances of similar clauses and atoms even if they are named differently. Reconsider the
two clause example from Tab.2.1(top). Now, we add the clause from Tab.2.1(bottom)
which has the same weight as the second clause and is similar in the structure, i.e., it has
the same neighbors. Starting top-down, these two clauses would never be grouped by
Singla and Domingos [146] whereas color-passing would initially give these clauses the
same color. More importantly, as long as we can initially color the nodes and factors,
based on the evidence and the potentials respectively, color-passing is applicable to all
inference tasks for loopy belief propagation, for relational as well as propositional data
such as Boolean formulae shown in the following.

Evaluation
Our intention here is to investigate the following questions:

(Q3.1) Can we scale inference in graphical models by exploiting symmetries?

(Q3.2) Can lifted inference help in propositional models at all?

To this aim, we implemented lifted loopy belief propagation (LLBP)in C++ based on
libDAI1 with bindings to Python. We will evaluate the gain for inference by presenting
significant showcases for the application of lifted LBP, namely approximate inference
for dynamic relational models and model counting of Boolean formulae.

Showing highly impressive lifting ratios for inference is commonly done by restrict-
ing to the classical symmetrical relational models without evidence. The two show-
cases for which we demonstrate lifted inference in the following, on the other hand,
are particularly suited to not only show the benefits but also the shortcomings of lifted
inference. Our first showcase, dynamic relational domains consists of long chains that
destroy the indistinguishability of variables which might exist in a single time-step. Due
to long chains, within and across time-steps, variables become correlated by virtue of
sharing some common influence. The second showcase, the problem of model count-
ing of Boolean formulae, as we will see later, is an iterative procedure that repeatedly

1http://cs.ru.nl/ jorism/libDAI/
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English First-Order Logic Weight
Most people do not smoke ¬Smokes(x) 1.4
Most people do not have cancer ¬Cancer(x) 2.3
Most people are not friends ¬Friends(x, y) 4.6
Smoking causes cancer Smokes(x)⇒ Cancer(x) 2.0
Friends have similar smoking habits Friends(x, y)⇒ (Smokes(x) <=> Smokes(y)) 2.0
Apriori most people do not smoke ¬Smokes(x, 0) 1.4
Apriori most people do not have cancer ¬Cancer(x, 0) 2.3
Apriori most people are not friends ¬Friends(x, y, 0) 4.6
Smoking causes cancer Smokes(x, t)⇒ Cancer(x, t) 2.0
Friends have similar smoking habits Friends(x, y, t)⇒ (Smokes(x, t) <=> Smokes(y, t)) 2.0
Most friends stay friends Friends(x, y, t)⇔ Friends(x, y, succ(t)) 5.0
Most smokers stay smokers Smokes(x, t)⇔ Smokes(x, succ(t)) 5.0

Table 3.1: (Top) Example of a social network Markov logic network inspired by [146].
Free variables are implicitly universally quantified. (Bottom) Dynamic extension of the
static social network model.

runs inference. In each iteration new asymmetrical evidence is introduced and lifted
inference is run on the modified model. Both are very challenging tasks for inference
and in particular for lifting. Thus, in this section, we already address random evidence
and randomness in the graphical structure that are major issues for lifted inference and
training, as we will learn in the following chapters.

Lifted Inference in Dynamic Relational Domains

Stochastic processes evolving over time are widespread. The truth values of relations
depend on the time step t. For instance, a smoker may quit smoking tomorrow. There-
fore, we extend MLNs by allowing the modeling of time. The resulting framework is
called dynamic MLNs (DMLNs). Specifically, we introduce fluents, a special form of
predicates whose last argument is time.

Here, we focus on discrete time processes, i.e., the time argument is non-negative in-
teger valued. Furthermore, we assume a successor function succ(t), which maps the in-
teger t to t + 1. There are two kinds of formulas: intra-time and inter-time ones. Intra-
time formulas specify dependencies within a time slice and, hence, do not involve the
succ function. To enforce the Markov assumption, each term in the formula is restricted
to at most one application of the succ function, i.e., terms such as succ(succ(t)) are
disallowed. A dynamic MLN is now a set of weighted intra- and inter-time formu-
las. Given the domain constants, in particular the time range 0, . . . , Tmax of interest, a
DMLN induces an MLN and in turn a Markov network over time.

As an example consider the social network DMLN shown in Tab. 3.1 (Bottom). The
first three clauses encode the initial distribution at t = 0. The next two clauses are intra-
time clauses that talk about the relationships that exist within a single time-step. They
say that smoking causes cancer and that friends have similar smoking habits. Of course,
these are not hard clauses as with the case of first-order logic. The weights presented in
the right column serve as soft-constraints for the clauses. The last two clauses are the
inter-time clauses and talk about friends and smoking habits persisting over time.
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Figure 3.3: (Left) Ratios (LFOFF / FF) of number of edges and messages computed.
The lower the value, the greater the speed-up when using LFOFF in place of FF. (Right)
Ratios (Forwards-Backwards / Flooding protocol) of number of messages computed.
The lower the value, the greater the speed-up when using the FB protocol in place of
the FL protocol. (Bottom) Probability estimates for cancer(A, t) over time.

Assume that there are two constants Anna and Bob. Let us say that Bob smokes
at time 0 and he is friends with Anna. Then the ground Markov network will have
a clique corresponding to the first two clauses for every time-step starting from 0.
There will also be edges between Smokes(Bob) (correspondingly Anna) an between
the Friends(Bob, Anna) for consecutive time-steps.

To perform inference, we could employ any known MLN inference algorithm. Un-
like the case for static MLNs, however, we need approximation even for sparse models:
Random variables easily become correlated over time by virtue of sharing common in-
fluences in the past.

Classical approaches to perform approximate inference in dynamic Bayesian net-
works (DBN) are the Boyen-Koller (BK) algorithm [22] and Murphy and Weiss’s fac-
tored frontier (FF) algorithm [111]. Both approaches have been shown to be equivalent
to one iteration of LBP but on different graphs [111]. BK, however, involves exact infer-
ence, which for probabilistic logic models is extremely complex, so far does not scale to
realistic domains, and hence has only been applied to rather small artificial problems. In
contrast, FF is a more aggressive approximation. It is equivalent to LBP on the regular
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factor graph with a forwards-backwards message protocol: each node first sends mes-
sage from “left” to “right” and then sends messages from ”right” to ”left”. Therefore a
frontier set is maintained. Starting from time-step t = 0 we first send local messages
then messages to the next time-step. A node is included in the frontier set iff all of its
parents, that is, all neighbors from time-step t−1, and its neighbors from the same time-
step are included. Only then it receives a message from its neighbors. The basic idea of
lifted first-order factored frontier (LFOFF) is to plug in lifted LBP in place of LBP in FF.
The local structure is replicated for each time-step in the dynamic network. Thus, the
initial coloring of the nodes is the same for all time-steps. However, the communication
patterns of the instantiation from different time-steps are different. Therefore, when we
compress such a dynamic network nodes and factors from different time-steps end up
being in different supernodes and superfactors respectively. To see this, suppose we
have network consisting of a single node over three time-steps X t, t ∈ {0, 1, 2} , i.e.,
a chain of length three. Initially all nodes get the same color. However, the signatures
are different. Node X0 only has a right neighbor, node X1 has two neighbors (left and
right) and node X2 has a right neighbor. The frontier set for the lifted network is still
well defined and we can run the lifted factored frontier algorithm.

We used the social network DMLN in Tab. 3.1 (Bottom). There were 20 people in
the domain. For fractions r ∈ {0.0, 0.25, 0.5, 0.75, 1.0} of people we randomly choose
whether they smoke or not and who 5 of their friends are, and randomly assigned a time
step to the information. Other friendship relations are still assumed to be unknown.
Cancer(x, t) is unknown for all persons x and all time steps. The ”observed” people
were randomly chosen. The query predicate was Cancer.

In the first experiment, we investigated the compression ratio between standard FF
and LFOFF for 10 time steps as shown in Fig. 3.3 (Left). As one can see, the size of
the factor graph as well as the number of messages sent is much smaller for LFOFF.
When there is no evidence, i.e., the ratio of observed people is 0.0, all the people are
indistinguishable and we can achieve a great amount of lifting. Furthermore, the more
evidence we have the smaller the amount of lifting. However, we can still almost half
the number of edges and in turn the number of messages sent.

In the second experiment, we compared the “forwards-backwards” message proto-
col with the “flooding” protocol, the most widely used and generally best-performing
method for static networks. Here, messages are passed from each variable to each corre-
sponding factor and back at each step. Again, we considered 10 time steps. The results
shown in Fig. 3.3 (Right) clearly favor the FB protocol.

For a qualitative comparison, we finally computed the probability estimates for
cancer(A, t) using LFOFF and MC-SAT, the default inference of the ALCHEMY sys-
tem1. For MC-SAT, we used default parameters. There were four persons (A, B, C,
and D) and we observed that A smokes at time step 2. All other relations where unob-
served for all time steps. We expect that the probability of A having cancer has a peak
at t = 2 smoothly fading out over time. Fig. 3.3 (Bottom) shows the results. In con-
trast to LFOFF, MC-SAT does not show the expected behavior. The probabilities drop
irrespective of the distance to the observation.

1http://alchemy.cs.washington.edu/
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So far Q1 is affirmatively answered. The results clearly show that by lifting we can
exploit symmetries for inference in the graphical model. A large amount of compres-
sion and thereby a speed-up, however, is not guaranteed, especially in the presence of
evidence. Another challenge for lifting is randomness in the graph structure as we will
see in the following experiments.

Model Counting using Lifted Loopy Belief Propagation
Model counting is the classical problem of computing the number of solutions of a given
propositional formula. It vastly generalizes the NP-complete problem of propositional
satisfiability, and hence is both highly useful and extremely expensive to solve in prac-
tice. Interesting applications include multi-agent reasoning, adversarial reasoning, and
graph coloring, among others.

Our approach, called LIFTED BPCOUNT, is based on BPCOUNT for computing
a probabilistic lower bound on the model count of a Boolean formula F , which was
introduced by Kroc et al. [89]. The basic idea is to efficiently obtain a rough estimate of
the “marginals” of propositional variables using loopy belief propagation with damping.
The marginal of variable u in a set of satisfying assignments of a formula is the fraction
of such assignments with u = true and u = false respectively. If this information is
computed accurately enough, it is sufficient to recursively count the number of solutions
of only one of “F with u = true” and “F with u = false”, and scale the count up
accordingly. Kroc et al. have empirically shown that BPCOUNT can provide good
quality bounds in a fraction of the time compared to previous, sample-based methods.

The basic idea of LIFTED BPCOUNT now is to plug in lifted LBP in place of LBP.
However, we have to be a little bit more cautious: propositional variables can appear
at any position in the clauses. This makes high compression rates unlikely because, for
each supernode (set of propositional variables) and superfeature (set of clauses) com-
bination, we carry a count for each position the supernode appears in the superfeature.
Fortunately, however, we deal with disjunctions only (assuming the formula f is in
CNF). Propositional variables may appear negated or unnegated in the clauses which
is the only distinction we have to make. Therefore, we can safely assume two posi-
tions (negated, unnegated) and besides sorting the node color signatures we can now
also sort the factor color signatures by position. Reconsider the example from Fig. 3.1
and assume that the potentials associated with f1, f2 encode disjunctions. Indeed, the
order of the arguments of f1, for instance, does not change the semantics of f1. As
our experimental results will show this can result in huge compression rates and large
efficiency gains.

We have implemented (LIFTED) BPCOUNT based on SAMPLECOUNT 1 using our
(L)LBP implementation. We ran BPCOUNT and LIFTED BPCOUNT on the circuit syn-
thesis problem 2bitmax 6 with damping factor 0.5 and convergence threshold 10−8.
The formula has 192 variables, 766 clauses and a true count of 2.1 × 1029. The re-
sulting factor graph has 192 variable nodes, 766 factor nodes, and 1800 edges. The
statistics of running (lifted) BPCount are shown in Fig. 3.4 (Left). It shows the ratio

1www.cs.cornell.edu/˜sabhar/#software/
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Figure 3.4: Ratios LIFTED BPCOUNT/BPCOUNT between 0.0 and 1.0 of the cumu-
lative sum of edges computed respectively messages sent. A ratio of 1.0 means that
LIFTED LBP sends exactly as many messages as LBP; a ratio of 0.5 that it sends half as
many messages. (Left) 2bitmax 6: Using LIFTED LBP saved 88.7% of the messages
LBP sent in the first iteration of BPCOUNT; in total, it saved 70.2% of the messages.
(Right) Random 3-CNF wff-3-100-150: No efficiency gain. The small difference
in number of edges is due to a differently selected proposition due to tie breaking. (Bot-
tom) ls8-norm: In the first iteration of LIFTED BPCOUNT, using LIFTED LBP saved
99.4% of the messages LBP sent. In total, this value dropped to 44.6%.

(LLBP/LBP) of messages sent (color messages included) and the number of edges. As
one can see, a significant improvement in efficiency is achieved when the marginal es-
timates are computed using LIFTED LBP instead of LBP: LIFTED LBP reduces the
messages sent by 88.7% when identifying the first, most balanced variable; in total, it
reduces the number of messages sent by 70.2%. Both approaches yield the same lower
bound of 5.8 × 1028, which is in the same range as Kroc et al. report. Getting exactly
the same lower bound was not possible because of the randomization inherent to BP-
COUNT. Constructing the compressed graph took 9% of the total time of LIFTED LBP.
Overall, LIFTED BPCOUNT was about twice as fast as BPCOUNT, although our LIFTED

LBP implementation was not optimized.
Unfortunately, such a significant efficiency gain is not always obtainable. We ran

BPCOUNT and LBPCOUNT on the random 3-CNF wff-3-100-150. The formula
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has 100 variables, 150 clauses and a true count of 1.8 × 1021. Both approaches yield
again the same lower bound, which is in the same range as Kroc et al. report. The
statistics of running (lifted) BPCount are shown in Fig. 3.4 (Right). LIFTED LBP is
not able to compress the factor graph at all. If there are no symmetries – such as in this
random 3-CNF – lifted LBP essentially coincides with LBP. In turn, it does not gain any
efficiency but actually produces a small overhead due to trying to compress the factor
graph and by computing the counts.

In real-world domains, however, there is often a lot of redundancy. As a final ex-
periment, we ran BPCOUNT and LIFTED BPCOUNT on the Latin square construction
problem ls8-norm. The formula has 301 variables, 1601 clauses and a true count of
5.4 × 1011. Again, we got similar estimates as Kroc et al.. The statistics of running
(lifted) BPCount are shown in Fig. 3.4 (Bottom). In the first iteration, Lifted LBP sent
only 0.6% of the number of messages LBP sent. This corresponds to 162 times less
many messages sent than LBP.

The results on model counting and lifted inference in dynamic relational domains
clearly affirm (Q3.1) and show that lifted loopy belief propagation can exploit symme-
tries and thus scale inference in relational as well as propositional domains (Q3.2).
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3.2 Informed Lifting for Loopy Belief Propagation
YouTube like media portals have changed the way users access media content in the In-
ternet. Every day, millions of people visit social media sites such as Flickr and YouTube,
among others, to share their photos and videos, while others enjoy themselves by search-
ing, watching, commenting, and rating the photos and videos; what your friends like will
bear great significance for you. The vision of social search underlies the great success of
all the recent social platforms. However, while many of these services are centralized,
i.e., rely on server replication, the full flexibility of social information-sharing can often
be better realized through direct sharing between peers.

Let’s consider the problem of distributing data to a large network more closely. A
naı̈ve solution to this problem involves unicasting the data to individual nodes from the
source node. This approach, however, does not scale well as packages are sent again
and again. Another simple solution is server replication, a solution that might not be
cost effective for all users. In contrast, peer-to-peer solutions divide the file into parts
and the nodes exchange these parts until they re-assemble back to the complete file.

Recently, Bickson et al. [14] have shown how to use LBP to solve this problem
efficiently at realistic scale. More precisely, they have shown how to formalize the
next-step problem — compute the next action that each peer in the content distribution
network should take, where an action is the transfer of one file part from a neighboring
node — as an undirected graphical model and ran LBP on this model in order to find
the next best action. So, the question naturally arises: ”Does Bickson et al.’s graphical
model for solving the next-step problem also produce inference problems with sym-
metries in the graphical structure that are not being exploitet?” An investigation of this
question was the seed that grew into our main contribution of this section: informed
lifted LBP (iLLBP).

In fact, simply applying LLBP to Bickson et al.’s graphical model did not succeed.
The reason is rather simple. Although there are symmetries exploitable for lifting, stan-
dard LBP runs simply too quickly: it often converges within few iterations. In contrast,
LLBP’s preprocessing that lifts the network in a first step takes more iterations, does
not produce any belief estimates, and may yield lifted networks that are too pessimistic.
The situation is depicted in Fig. 3.5. It shows the error curves of running (L)LBP on a
local snapshot of a real-world file sharing network. As one can see, LBP only takes 5
iterations, whereas lifted LBP first takes 7 iterations of a color-message passing scheme
to compute the lifted network and only then runs 5 highly efficient iterations simulating
LBP on the lifted network. This is slower than LBP because:

• Computing the color-messages often takes essentially as much time as computing
the LBP messages, in particular for discrete nodes with few states and low degree.

• The lifting step is purely syntactic. Colors only denote the nodes and factors
producing LBP messages. Neither LBP messages nor any belief estimates are
actually computed.

• In turn, LLBP cannot make use of the fact that LBP message errors decay along
paths [70] already at lifting time. It may spuriously assume some nodes send and
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lLLBP converged

Lifting
converged

Modified LBP
converged

Figure 3.5: Max-norm of belief estimates vs. number of iterations of (L)LBP on a
factor graph representing the collaboration graph of a local snapshot of the Gnutella
network (1374 nodes, 4546 edges). LBP converges within 5 iterations. LLBP first lifts
the network using color-passing (7 iterations) without estimating any beliefs at all; then
it runs the highly efficient modified LBP on the lifted network. (Best viewed in color)

receive different messages and, hence, produce pessimistic lifted network.

Consequently it runs two additional rounds of color-message passing. Intuitively, for
a long chain graph with identical, weak edge potentials, distant nodes will send and
receive identical messages yet their computation trees are very different.

Informed lifted LBP (iLLBP) overcomes these problems. It is a novel, easy-to-
implement, lifted LBP approach that tightly interleaves lifting and modified LBP itera-
tions. This allows one to efficiently monitor the true LBP messages sent and received
in each iteration and to group nodes accordingly. As our experiments show, significant
efficiency gains are obtainable: iLLBP can yield lifted networks significantly faster.
These networks are “lifted more”, i.e. they have more compression than LBP, while
not degrading in performance. Above all, we show that iLLBP is faster than LBP when
solving the problem of distributing data to a large network of fixed, known topology, an
important real-world application where LBP is faster than (uninformed) LLBP.

Let us first illustrate the pessimistic nature of the (uninformed) LLBP. To do so,
we analyze how LLBP behaves on the chain model assuming weak (but still identical)
edge potentials. The lifted graph produced by LLBP is shown in Fig. 3.6 (top). Due to
the purely syntactic ”lifting” criterion used by CP — group nodes according to identical
(colored) computation trees, the tree-structured unrolling of the underlying graph rooted
at the nodes — nodes with the same distance to one of the ends of the chain are grouped
together. Consequently, n/2 + 1 many supernodes are produced. Can we do any better?

It was shown by Ihler et al. [70] that message errors decay along paths. Intuitively,
for long chain graphs — they are also a subproblem in both acyclic and cyclic graphical
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… … Xn Xn+1X1 X2 X3 Xn-1Xn-2X4 Xn/2-1

Figure 3.6: Supernodes — indicated by the colors of the original nodes — produced
by uninformed (top) and informed (bottom) lifting on a chain graph model with n + 1
nodes and identical, weak edge potentials. Factors have been omitted. Uninformed
lifting produces n/2− 1 many supernodes whereas informed lifting takes advantage of
decaying message errors and produces only 2 supernodes: one for the end nodes of the
chain and one for the other nodes.

models — with weak edge potentials, distant nodes are approximately independent. In
general, when running LBP on arbitrary models, one often sees that some parts of the
model form stable message clusters very quickly, whereas others take much longer time.
So, the question naturally arises: ”How can we make use of decaying errors with the
goal to produce higher lifted graphs?”

Intuitively, making use of it would be easy, if we knew the true LBP messages sent
and received in each iteration of LBP. We run one iteration of LBP, color nodes and
factors according to the true LBP messages they sent and received, and iterate until the
colors are not changing anymore. Because CP takes only finitely many iterations as
proven in [146] and in Sec. 3.1, it follows that this informed coloring indeed converges
after a finite number of iterations. The question is when? In the worst case, we may
run LBP until convergence on the original graph before switching to the highly efficient
modified LBP on the lifted graph. Hence, this naı̈ve solution cancels the benefits of
lifted inference

Consequently, we propose an adaptive approach, called informed LLBP, that in-
terleaves CP and modified LBP iterations as summarized in Algorithm 3. First, we
simulate LBP’s first iteration (lines 1-4). We cluster the nodes with respect to the ev-
idence and run one iteration of CP. On the resulting lifted factor graph G, we run one
iteration of modified LBP. This is simulating the initial LBP iteration on the original
factor graph G. Hence, we can make use of LBP’s 1-iteration messages mi(xi) and
belief estimates bi(xi). Consequently, we can safely group together nodes according to
the LBP messages (line 5). In the while-loop (line 6), we repeat this process until the
belief estimates converge. That is, we compute the (possibly refined) lifted network and
run another CP-iteration (line 7). By induction, running modified LBP on the result-
ing lifted graph G′ (line 9) simulates the second LBP iteration on the original graph G.
Hence, we can re-colorize nodes according to the true LBP messages (lines 10-12), and
so on. It follows that iLLBP produces the same results as LBP. As we have stated in
Sec. 2.3, encoding colors as natural numbers is rather arbitrary. Here we are using the
real-valued messages to represent the colors and iLLBP produces the same results as
running LLBP and in turn, it produces the same results as running LBP.

Note that, to reduce theO(n2) effort for naı̈vely re-coloring in each iteration, line 10
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Algorithm 3: iLLBP – informed Lifted LBP. We use bi(xi) resp. mi(xi) to denote
the unnormalized beliefs resp. messages of both variable node Xi and variable
nodes covered by supernodes Xi.

Data: A factor graph G with variable nodes X and factors f , Evidence E
Result: Unnormalized marginals bi(xi) for all supernodes and, hence, for all

variable nodes
1 Colorize X and f w.r.t. E;
2 G← one iteration CP;
3 Initialize messages for G;
4 (bi(xi),mi(xi))← one iteration modified LBP on G;
5 Colorize all Xis according to mi(xi);
6 while bi(xi)s have not converged do
7 G′← one iteration CP (based on new colors);
8 Initialize novel supernodes using current coloring based on bi(xi) and mi(xi);
9 (bi(xi),m(xi))← one iteration of modified LBP on G′;

10 foreach supernode X in G do
11 if the m(xi)s of the Xis in X differ then
12 Colorize all Xi in X according to m(xi)

13 Return bi(xi) for all supernodes

iterates over all supernodes and checks whether any re-colorizing is required at all. This
takes O(n) time. If a change has been detected, only the variable nodes corresponding
to the supernode at hand are re-colorized. We also note that in models over discrete
variables with few states and low degree as often produced by Markov logic networks,
iLLBP is very efficient: computing color messages is essentially as expensive as com-
puting LBP messages.

The lifted graph produced by informed LLBP on the chain model example we started
from is shown in Fig. 3.6 (bottom). Independently of the domain size n + 1, only 2
supernodes are produced, an order of magnitude less than LLBP produces.

Evaluation
Our intention here is to investigate the following questions:

(Q3.1) Can iLLBP be faster than LLBP, also in cases where LBP is faster than LLBP?

(Q3.2) Can it yield more compressed lifted networks than LLBP?

To this aim, we implemented ((i)L)LBP in Python using the LIBDAI library [109]
and evaluated their performances on the dynamic ”Friends & Smokers” Markov logic
network (MLN) as well as for solving the content distribution problem on snapshots of
real-world file-sharing networks. To assess performance, we report the number of nodes
and respectively supernodes, as well as the number of edges of the original and the lifted
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Figure 3.7: Number of super(nodes) (in log-scale) vs. iterations (including CP iterations
for LLBP) averaged over 5 reruns for the social network, dynamic MLN. The number
of (super)nodes roughly corresponds to the efficiency, i.e., the number of messages sent.
As one can see, LLBP’s performance degrades with more evidence. In contrast, iLLBP
remains unaffected. In particular, iLLBP produces less many supernodes.

factor graphs. Running time is measured by the number of messages sent. For the typ-
ical message sizes, e.g., for binary random variables with low degree, computing color
messages is at most as expensive as computing the actual LBP messages. Therefore,
we view the running time of LLBP in terms of the number of both color and (modified)
LBP messages computed, treating individual message updates as atomic unit time oper-
ations. In all experiments, we used the “flooding” message protocol. Here, messages are
passed from each variable to each corresponding factor and back at each step. Messages
were not damped, and the convergence threshold was 10−8.

Social Networks

In our first experiment, we considered the dynamic ”Friends & Smokers” MLN as in-
troduced in Sec. 3.1 for 20 people and 10 time steps. This created a ground factor graph
consisting of 4400 nodes and 8420 factors. For 5 randomly selected people, we ran-
domly choose whether they smoke or not and who 0, 5 resp. 10 of their friends are, and
randomly assigned a time step to the information. Other friendship relations are still
assumed to be unknown. Whether a person has cancer or not is unknown for all persons
and all time points.

The goal is to see whether iLLBP can produce more lifted networks than LBP.
The number of (super)nodes vs iterations (averaged over 5 reruns) are summarized in
Fig. 3.7. As one case see, iLLBP can indeed produce less many supernodes and, hence,
be faster than LLBP. As more and more evidence is introduced, LLBP can not handle
the additional evidence and the size of its compressed networks is closer to the size of
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the propositional network indicated by the horizontal line. Informed LLBP, on the other
hand, is rather unaffected. The max-norm of iLLBP was always below 10−8, the same
threshold to determine whether loopy belief propagation is converged or not.

Content Distribution Problem (CDP)
Finally, we investigated the CDP. Bickson et al. assume that at the beginning of the
download there is a source peer that contains all the file parts and that the other peers
have no parts of the file. Starting from an initial graphical model, they run a decimation
approach for solving the CDP:

1. Solve the next step problem running the LBP max-product inference algorithm.

2. Use the MAP assignment result as the solution.

3. Simplify the graphical model according to it.

4. Repeat.

Here, we use ((i)L)LBP in step (1).
Bickson et al. construct the graphical model essentially as follows (for more details,

we refer to [14]). The peers participating in the download form the nodes of the un-
derlying graphical model. Each peer/node has only local knowledge: the parts, which
it presently holds, the list of its direct neighbors and the parts they hold. From this,
all actions a peer can take follow such as ”download part i from neighbor j”. The ini-
tial probability of taking an action is encoded in the node potentials. There are several
heuristics for initializing them. Here, we focused on the uniform policy that assigns
equal probability to all parts. Similar results have been achieved using the rarest part
first policy that assigns the highest probability to the part that has the lowest frequency
in the network. Additionally, there is an edge potential between two peers/nodes that
can take a part from a common neighbor. The edge potentials coordinate the actions
among the peers. That is, we assign a very small value to pairs of actions that involves
taking a part from the same third node: at any time, only one peer can download a part
from another peer. The other values are set according to the node potentials. More
details can be found in [14].

We simulated to distribute a single file(part) through a snapshot of the Gnutella
network1. The max number of ((i)L)LBP iterations per decimation round was set to 40.
The results are summarized in Fig. 3.8. As one can see, iLLBP can indeed be faster than
LBP in cases where LLBP is slower than LBP. In total, LBP sent 5.761.952 messages,
iLLBP only 4.272.164 messages, and LLBP 6.381.516 messages (including color mes-
sages). On a similar run on a different Gnutella network2 consisting of 6.301 nodes and
20.777 the approaches behaved similar. In total, LBP sent 5.761.952 messages iLLBP
only 1.972.662 messages, and LLBP 2.962.311 messages (including color messages).

1http://snap.stanford.edu/data/p2p-Gnutella04.html
2http://snap.stanford.edu/data/p2p-Gnutella08.html
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Figure 3.8: Total sum of messages (in log-scale) vs. content distribution decimation it-
erations on a Gnutella snapshot (10.876 nodes, 39.994 edges). The number of messages
essentially corresponds to the efficiency. As one can see iLLBP is the most efficient
one.

Again, the max-norm of iLLBP was always below 10−8. Finally, quantitatively similar
results have been achieved when distributing multiple file parts.

As the experimental results suggest, iLLBP produces highly lifted graphs extremely
quickly. Moreover, in contrast to LLBP, belief estimates are computed (i) from the very
first iteration on (ii) using modified LBP, i.e., really lifted inference.

Thus, to summarize, our questions can be answered affirmatively: iLLBP can pro-
duce much higher lifted networks in less time than LLBP while not degrading in ac-
curacy. Beliefs are already estimated at lifting time and they converge to the same
estimates as those produced by (L)LBP.
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3.3 Lifted Gaussian Belief Propagation
Many real world applications such as environmental sensor networks, information dif-
fusion in social networks, and localization in robotics involve systems of continuous
variables. All previous LLBP approaches, however, have been developed for discrete
domains only. While in principle they can be applied to continuous domains through
discretization, Choi and Amir [30] have noted the precision of discretization deteriorates
exponentially in the number of random variables. Thus, discretization and application
of LLBP would be highly imprecise for large networks.

In this section, we present Gaussian belief propagation (GaBP) and show how the
lifting that we have shown earlier (Sec. 3.1) can be applied to the Gaussian case leading
to lifted GaBP (LGaBP). We develop LGaBP in the context of solving linear systems
that are key to our lifted PageRank and Kalman filtering applications presented later in
Ch. 6.

Gaussian Belief Propagation
One of the most fundamental problems encountered in real world applications is solving
linear systems of the form

Ax = b ,

where A ∈ Rn×n is a real-valued square matrix, and b ∈ Rn is real-valued column
vector, and we seek the column vector x such that equality holds. As a running example,
consider b = (0 0 1)t (where t denotes transpose) and

A =

10 4 3
4 10 3
5 5 11

 . (3.4)

We could, of course, do that using traditional methods like Gaussian elimination or
the Cholesky decomposition, however, we are going to take a rather different route,
following Shental et al. [144]. The authors have shown how this problem can be cast
into a probabilistic inference problem, i.e., to solve a linear system of equations of size
n we compute the marginals of the Gaussian variables x1, . . . , xn in an appropriately
defined graphical model.

Consider the quadratic form

Q(x) =
1

2
xTAx− bTx .

Since∇xQ(x) = Ax− b, andQ(x) is convex (A is positive definite), there is a unique
minimizer x∗ of Q which satisfies ∇xQ(x∗) = 0. However, ∇xQ(x∗) = 0 implies that
Ax∗ − b = 0, i.e., x∗ is a solution of the original problem. Using Q(x) we can define
the Gaussian distribution

p(x) =
1

Z
exp(−Q(x)) =

1

Z
exp

(
−1

2
xTAx + bTx

)
.
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As p(x) is monotonically decreasing with Q(x), the maximum of p corresponds to the
minimum of Q. We can now define µ = A−1b and rewrite p(x) as

p(x) = Z−1 exp
(
µTAµ/2

)
(3.5)

× exp
(
−xTAx/2 + µTAx− µTAµ/2

)
(3.6)

= ζ−1 exp
(
−(X− µ)TA(x− µ)/2

)
(3.7)

= N(µ,A−1), (3.8)

where ζ = Z exp
(
−µTAµ/2

)
is the new normalization factor. The sought after maxi-

mizer x∗ = A−1b is now identical to the mean vector µ of the distribution p. If we now
compute the marginal distributions pxi , which are also Gaussian

pxi ∼ N(µi =
(
A−1b)i, P

−1
i = (A−1)ii

)
,

we can read off the means µi which correspond to individual components of the solution
x∗.

So, if we could obtain the marginals of p by means other than explicitly computing
A−1b, we would have an x∗ without resorting to traditional linear equation solvers.
This is where the graphical model view comes into play. As shown in [13, 144], p can
be factorized according to the graph consisting of edge potentials ψij and self potentials
φi as follows:

p(x) ∝
∏n

i=1
φi(xi)

∏
i,j
ψij(xi, xj) , (3.9)

where the potentials are

ψij(xi, xj) := exp(−1

2
xiAijxj)

φi(xi) := exp(−1

2
Aiix

2
i + bixi).

The edge potentials ψij are defined for all (i, j) s.t. Aij > 0.
To solve the inference task, Shental et al. proposed to use Weiss et al.’s [162]

Gaussian BP (GaBP) which is a special case of continuous LBP, where the underlying
distribution is Gaussian. LBP in Gaussian models sends real-valued messages along the
edges of the graph and gives simpler update formulas than the general continuous case
and the message updates can directly be written in terms of the mean and precision.
Since p(x) is jointly Gaussian, the messages are proportional to Gaussian distributions
N(µij, P

−1
ij ) with precision and mean defined as follows:

Pij = −A2
ijP
−1
i\j

µij = −P−1
ij Aijµi\j

where

Pi\j = P̃ii +
∑

k∈N(i)\j
Pki

µi\j = P−1
i\j
(
P̃iiµ̃ii +

∑
k∈N(i)\j

Pkiµki
)
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for i 6= j and P̃ii = Aii and µ̃ii = bi/Aii. Here, N(i) denotes the set of all the nodes
neighboring the ith node and N(i) \ j excludes the node j from N(i). All messages
parameters Pij and µij are initially set to zero. The marginals are Gaussian probability
density functions N(µi, P

−1
i ) with precision and mean

Pi = P̃ii +
∑

k∈N(i)
Pki

µi = P−1
i\j
(
P̃iiµ̃ii +

∑
k∈N(i)

Pkiµki
)
.

If the spectral radius of the matrix A is smaller than 1 then GaBP converges to the true
marginal means (x = µ). We refer to [144] for details.

Lifting by Color Passing
As we have seen in Sec. 3.1, LLBP can exploit the graphical structure by automatically
grouping nodes (potentials) of the graphical model G into supernodes (superpotentials)
if they have identical computation trees. This compressed graph G is computed by
passing around color signatures in the graph that encode the message history of each
node. The signatures in the discrete case that we have been looking at are initialized
with the evidence we have on the corresponding nodes. The key point to observe is that
this very same process also applies to GaBP (viewing “identical” for potentials only up
to a finite precision), thus leading to a novel LGaBP algorithm. The initial colors of
the signatures with the evidence is equivalent to initializing with the color of the self
potentials, i.e.,

cs0
i = φi

As in the discrete case the color signature of a node i in the pairwise Gaussian model is
then iteratively updated by

cski = {csk−1
i } ∪ {[ψij, cs(ψk−1

j )]| j ∈ N(i)}.

Example 3.3.1.

A =

10 4 3
4 10 3
5 5 11

 , b = (0 0 1)t

To continue our running example, let us examine computing the inverse of matrix
A in using LGaBP. We note that A−1 can be computed by solving n systems of linear
equations one for each basis vector ei, i.e., we compute

A−1 = [x1, . . . ,xn]

Axi = ei , i = 1 . . . n

I = [e1, . . . , en]

for the n × n identity matrix I. In our running example, this solution of Axi = ei
for i = e1, . . . , en yields the respective lifted networks in Figs. 3.9(a–c). As one can
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Figure 3.9: Lifted graphical models produced when inverting A in Eq. (3.4) using
LGaBP. An edge from i to j encodes potential ψij . The φ potentials are associated
with the nodes. (a) Colored network when computing Ax1 = e1. All nodes get dif-
ferent colors; no compression and lifted inference is essentially ground. (b) Colored
network for Ax2 = e2. Again no compression. (c) Colored network for Ax3 = e3.
Nodes x1 and x2 get the same color and are grouped together in the lifted network (d).

see, for the evidence cases e1 and e2 there is no compression and lifted inference is
essentially ground. All nodes get different colors for these cases (Figs. 3.9(a) and
(b)). For the evidence case e3, however, variables x1 and x2 are assigned the same
color by LGaBP (Fig. 3.9(c)). The final lifted graph G is constructed by grouping all
nodes (potentials) with the same color (signatures) into supernodes (superpotentials),
which are sets of nodes (potentials) that behave identical at each step of carrying out
GaBP on G (Fig. 3.9(d)).

On the lifted graph G, LGaBP then runs a modified GaBP. The modified messages
simulate running GaBP on the original graph G. Following LLBP, we have to pay spe-
cial attention to the self-loops introduced by lifting that correspond to messages between
different nodes of the same supernode. As shown in Fig. 3.9(d), there is a self-loop for
the supernode {x1, x2}. In general, there might be several of them for each supernode
and we assume that they are indexed by k. To account for the self-loops and in contrast
to GaBP, we introduce “self-messages” P k

ii = −A2
ii(P

k
i\i)
−1 and µkii = −P−1

ij Aiiµ
k
i\i
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with

P k
i\i = P̃ii +

( ∑
l∈S(i)\k

]liiP
l
ii

)
+
( ∑
l∈N(i)\i

]liPli
)

µki\i = P−1
i\j

[
P̃iiµ̃ii +

∑
l∈S(i)\k

]liiP
l
iiµ

l
ii +

∑
l∈N(i)\i

]liPliµli
]
.

As i is now a neighbor of itself, the term N(i) \ i is required. Furthermore, ]lij — also
given in Fig. 3.9(d) — are counts that encode how often the message (potential) would
have been used by GaBP on the original network G. Using these counts we can exactly
simulate the messages that would have been sent in the ground network. Messages
between supernode i and j, i 6= j, are modified correspondingly:

Pi\j = P̃ii +
∑
k∈S(i)

]kiiP
k
ii +

( ∑
k∈N(i)\i,j

]kiPki
)

µi\j = P−1
i\j

[
P̃iiµ̃ii +

∑
k∈S(i)

]kiiP
k
iiµ

k
ii +

∑
k∈N(i)\i,j

]kiPkiµki
]

where N(i) \ i, j denotes all neighbors of node i without i and j.
Adapting the arguments for Th. 3.1.1, the following LGaBP correctness theorem on

the correctness of LGaBP can be proven:

Theorem 3.3.2. Given a Gaussian model G, LGaBP computes the minimal compressed
lifted model, and running modified GaBP on G produces the same marginals as GaBP
on G.
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In this chapter we investigate the question of how to

find a maximum a posteriori (MAP) probability estimate or a mode of the
posterior distribution P , i.e., computing argmaxX P (X|E).

After reviewing MAP inference in Sec. 4.1, we show how we can answer a MAP
inference problem by relaxing it into a linear program. In Sec. 4.2 we illustrate the
symmetries that can arise in LPs and how we can employ lifted Gaussian belief prop-
agation to solve the systems of linear equations arising when running an interior-point
method to solve the LP (Sec. 4.3). However, this naı̈ve solution cannot make use of
standard solvers for linear equations and is doomed to construct lifted networks in each
iteration of the interior-point method again which itself can be quite costly. To address
both issues, we then show in Sec. 4.4 how to read off an equivalent lifted LP from the
lifted GaBP computations that can be solved using any off-the-shelf LP solver.

The lifted linear programs introduced here lay the ground for lifted message-passing
approaches to MAP inference. MPLP introduced by Globerson and Jaakola [54], for
example, is a convergent message-passing algorithm for MAP inference and can be
shown to be liftable using the results of the current chapter.

4.1 Maximum a posteriori (MAP) Estimation
The second type of query we investigate in the current chapter is the maximum a pos-
teriori (MAP) query. This query is quite different to the marginal probability query we
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have looked at in Ch. 3. Here we ask for the most probable joint assignment to all vari-
ables given some evidence, instead of the individual states with maximum probability.
These two can in fact be quite different.

Example 4.1.1. Consider we have a small undirected model with two binary vari-
ables A and B and two factors f1 and f2, defined as follows:

f1

A=0 0.8
A=1 0.2

f2 B=0 B=1
A=0 1 1
A=1 1 5

Recall that, unlike Bayesian models, the factors do not necessarily have to represent
probabilities, and f2 is a function of both random variables and not a conditional
probability P (B|A). Computing the marginal probabilities one obtains P (A = 0) >
P (A = 1), whereas the state with the largest joint probability is P (A = 1, B = 1) =
0.64.

We can compute the max-marginals, i.e., the MAP probabilities, exactly by using a
variable elimination algorithm for MAP. Since we are looking for the joint configuration
with a maximum joint probability, the sums in the equations are replaced by max. As in
the case for marginal probabilities variable elimination for MAP makes use of the fact
that we can sometimes change the order of product- and max-computations an push in
an operation if the scope of the variables admit that.

Example 4.1.2. Now suppose we want to compute the max-marginals from Ex. 4.1.1.
As already mentioned we need to maximize over all variables of interest. Thus we
need to compute the maximum over all states a and b of variables A and B, respec-
tively:

max
a,b

f1(a) · f2(a, b) = max
a

max
b
f1(a) · f2(a, b)

= max
a
f1(a) max

b
f2(a, b)

Since B is not in the scope of f1 we can push in the maximization and compute the
max-marginals more efficiently. In analogy we can sometimes change the order of
summation and max-computations.

The final assignment is then obtained by traversing the variables in the reverse order
and choosing the variables so as to maximize the corresponding factors corresponding to
the previous choices (Traceback). All complexity results for variable elimination apply
to variable elimination for MAP as well. Thus, in many cases an exact solution to the
MAP problem via a variable elimination procedure is intractable. Note that, although
MAP might seem easier than computing the marginal beliefs, it is NP-complete [86]. In
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this case we have to resort to approximate techniques such as message-passing proce-
dures to compute approximate max-marginals. These can then be used for selecting an
assignment.

The max-product algorithm computes the max marginals more efficiently. When
each max-marginal is uniquely achieved, that is, x∗i ∈ argmaxxi µi(xi) is unique for
all variables Xi ∈ X, then x∗ = (x∗1, . . . , x

∗
n) is the global MAP configuration. When

there is a tie, however, we have to keep track of the maximizing values of the neighbors
to recover a global MAP configuration. The max-product algorithm is similar to the
sum-product belief propagation algorithm with one exception: In Alg. 1 (line 13), the
sum is replaced by a max, that is,

µqfk→Xi(xi)← max
xk\{xi}

f(xk)
∏

Xj∈nb(fk)\{Xi}

µq−1
Xj→fk(xj)

 . (4.1)

Lifted loopy belief propagation clusters the nodes and factors with a purely syntactic
criterion. Thus, the lifting naturally also applies to the max-product case and we can
compute maximum joint assignments using lifted max-product belief propagation.

Max-product belief propagation often converges in practice. It is, however, not guar-
anteed to do so in loopy graphs. The global MAP optimization problem of finding a
single joint assignment is essentially converted into an optimization problem in which
the cliques are locally consistent. Furthermore, we can not give any optimality guar-
antees or tightly bound the error of the obtained solution. Despite the simplicity of the
max-product belief propagation algorithm we thus seek for alternatives. The problem
of solving the MAP can be expressed as an instance of many well-studied optimization
problems such as linear programs, graph cuts or even re-factorization in the style of
LBP [86]. For the purposes of this argument, we take special interest in the linear pro-
gramming approach which has numerous advantages over the max-product approach:

(i) Linear optimization problems are widespread and we can rely on the huge body of
work for solving linear programs.

(ii) LPs can easily be extended with additional constraints in case this should be neces-
sary for a particular inference task.

(iii) The main advantage of using LPs is that optimality certificates for the obtained
solutions can be given.

The linear programming view is developed as follows. Recall that a Markov random
field or Markov network is a joint distribution over n random variables. Assume –
without loss of generality – we have a binary pairwise MRF. The joint distribution is
defined as follows:

P (X = x) =
1

Z

n∏
i=1

φi(xi)
∏
{i,j}

ψij(xi, xj), (4.2)
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where the φi denote the unary factors and ψij the pairwise factors. Assuming no configu-
ration of x has probability zero, we may consider the logarithm of p since the maximum
is preserved due to monotonicity. (4.2) then, log p denoted as the energy, becomes

logP (X = x) =
n∑
i=1

log φi(xi)︸ ︷︷ ︸
θi(xi)

+
∑
{i,j}

logψij(xi, xj)︸ ︷︷ ︸
θij(xi,xj)

+θconst, (4.3)

with θconst being a constant that can be discarded in the optimization. A common way to
phrase the problem of maximizing the energy is via the following linear programming
formulation [54]:

µL∗ = argmax
µ∈ML(G)

n∑
i=1

θi(xi)µi(xi) +
∑
{i,j}

θij(xi, xj)µij(xi, xj) , (4.4)

where the set ML(G) is the local polytope,

ML(G) =

µ ≥ 0

∣∣∣∣∣∣∣∣∣∣

∀{xi, xj} ∈ dom(ψij) :∑
x̂i
µij(x̂i, xj) = µj(xj)∑

x̂j
µij(xi, x̂j) = µi(xi)

∀xi ∈ x :∑
xi
µi(xi) = 1

 . (4.5)

The local polytope as introduced above consists of two kinds of constraints [54]:

• Normalization constraints δi defined as
∑

xi
µi(xi) = 1 and

• Marginalization constraints λij(xi) defined as
∑

x̂j
µij(xi, x̂j) = µi(xi).

Note that, as mentioned before, solving the MAP problem exactly, that is, the integer
linear program that computes an integral solution to the vector µ is known to be an NP-
complete problem. Thus, we relax the problem by allowing the µ’s to be real numbers.
We will call this particular linear relaxation over the local polytope MAP-LP.

Triggered by the success lifted LBP, it is reasonable to ask whether linear program-
ming, another important AI technique, is liftable too. Indeed, at the propositional level,
considerable attention has been already paid to the link between LBP and linear pro-
gramming. This relation is natural since the MAP inference problem can be relaxed
into linear programming, see e.g. [166].

At the lifted level, however, the link has not been established nor explored yet. Do-
ing so significantly extends the scope of lifted inference since it paves the way to lifted
solvers for linear assignment, allocation and flow problems as well as novel lifted (re-
laxed) solvers for SAT problems, Markov decision processes and maximum aposteri-
ori (MAP) inference within probabilistic models, among others.

4.2 Symmetries in Linear Programming
To illustrate the symmetries that may arise in linear programs, consider an extension of
the friends-and-smokers MLN [134] to targeted advertisement [28].
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Example 4.2.1. Suppose we want to serve smoking-related advertisements selec-
tively to the smoking users of a website and advertisements not related to smoking,
e.g., sport ads, to the non-smoking users, as to maximize the expected number of ad-
vertisements that will be clicked on. Companies make considerable revenue through
advertising, and consequently attracting advertisers has become an important and
competitive endeavor. Assume that a particular delivery schedule for advertisements
is defined by the matrix show(AType, U) ≥ 0 denoting the number of times that ad-
vertisement of type AType is to be shown on a web site to a particular user U, who
may be a smoker with a certain probability, in a given period of time (e.g. a day).
Assume further that we know the probability click(AType, UType) that advertise-
ment of AType will be clicked on if shown to a person type UType ∈ {Sm, NonSm}.
We model the overall probability of an advertisement of certain type to be clicked on
by a given user, as the expectation

click(AType, U) :=
∑

UType
click(AType, UType) · prob(UType, U) ,

where prob(UType, U) is the probability that a user is a smoker obtained by run-
ning inference in the friends-and-smokers MLN. We can express the expected number
of clicks for any schedule X as

∑
AType

∑
U
prob(AType, U) · show(AType, U).

Our goal now is to find the schedule that maximizes this expectation. However, com-
panies typically enter into contracts with advertisers and promise to deliver a certain
number quota(AType) of advertisements of any type,

∑
U
show(AType, U) ≥ quota(AType).

Moreover, if a certain user visits the site only visits(U) times per day, our daily
delivery schedule should not expect to serve more than visits(U) advertisements to
them, ∑

AType
show(AType, U) ≤ visits(U).

Thus, we would like to find the schedule that maximizes the expected number of clicks
with respect to these constraints. This is a linear program and, since we can exploit
symmetries within the friends-smokers MLN, it is intuitive to expect that we can also
do so for solving this linear program. As a sneak preview, we illustrate that this is
indeed the case. Instantiating the problem for two people Alice and Bob, for example,
gives us the following LP:
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maxx

∑
U∈{a,b}

prob(Sm, U) · click(SmAd, U)

+ prob(NonSm, U) · click(SpAd, U) (4.6)
s.t. show(SmAd, a) + show(SmAd, b) ≥ q(SmAd),

show(SpAd, a) + show(SpAd, b) ≥ q(SpAd),

show(SmAd, a) + show(SpAd, a) ≤ visits(a),

show(SmAd, b) + show(SpAd, b) ≤ visits(b).

Now consider the following variant introducing symmetries by adding one more
person into the domain:

maxx

∑
U∈{a,b,c}

prob(Sm, U) · click(SmAd, U)

+ prob(NonSm, U) · click(SpAd, U) (4.7)

s.t.
∑

p∈{a,b,c}
show(SmAd, p) ≥ q(SmAd),∑

p∈{a,b,c}
show(SpAd, p) ≥ q(SpAd),

show(SmAd, a) + show(SpAd, a) ≤ visits(a),

show(SmAd, b) + show(SpAd, b) ≤ visits(b),

show(SmAd, c) + show(SpAd, c) ≤ visits(c).

Suppose we know as in the previous example that Alice is a smoker. For the
others, however, we have no evidence. Thus they have identical cost in the objective
and, due to the symmetric constraints, they are equal at the optimum. This is exactly
what can be exploited by LGaBP.

Fig.4.1 shows the compression and efficiency gains that are achieved when pro-
cessing the linear program with our method.
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Figure 4.1: Computing an advertisement delivery schedule: Number of variables in
the lifted and ground LPs (left) and measured time for solving the ground LP versus
time for lifting and solving (right).
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PROPAGATION

To show why and how this can be done is exactly the focus of the present chapter.
Specifically, our contribution is the first application of lifted inference techniques to
linear programming.

To start, we note that the core computation of Bickson et al.’s [16] interior-point
solver for LPs, namely solving systems of linear equations using Gaussian belief prop-
agation (GaBP), can be naı̈vely lifted: replacing GaBP by lifted GaBP (Sec. 3.3). In
fact, this naı̈ve approach may already results in considerable efficiency gains. However,
we can do considerably better. The naı̈ve solution cannot make use of standard solvers
for linear equations and is doomed to construct lifted networks in each iteration of the
interior-point method again, an operation that can itself be quite costly. To address both
issues, we show how to read off an equivalent LP from the lifted GaBP computations.
This LP can be solved using any off-the-shelf LP solver. We prove the correctness
of this compilation approach, including a lifted duality theorem, and experimentally
demonstrate that it can greatly reduce the cost of inference.

4.3 Solving Linear Programs by Lifted Gaussian Belief
Propagation

To recap, a primal linear program LP is a mathematical program of the following form:

maxx cTx

s.t. Ax = b, x ≥ 0 ,

where x ∈ Rn, c ∈ Rn,b ∈ Rm and A ∈ Rm×n, m ≤ n. We will also denote a LP in
primal form as the tuple LP = (A, b, c). Every primal LP has a dual linear program LP
of the form

miny bTy s.t. ATy ≤ c ,

where strong duality holds, namely, if x∗ and y∗ are optima of both LP and LP , cTx∗ =
bTy∗. A well-known approach for solving equality-constrained LPs, i.e., LPs in primal
form is the primal barrier method, see e.g. [130], that is sketched in Alg. 4. It employs
the Newton method to solve the following approximation to the original LP:

maxx,µ cTx− µ
∑n

k=1
log xk

s.t. Ax = b .

At the heart of the Newton method lies the problem of finding an optimal search direc-
tion. This direction is the solution of the following set of linear equations:[

−µX−2 AT

A 0

]
︸ ︷︷ ︸

=:N

[
∆x

λ+

]
︸ ︷︷ ︸

=:d

=

[
c + µX−1e

0

]
︸ ︷︷ ︸

=:f

, (4.8)

69



MAP INFERENCE

Algorithm 4: Primal Barrier Algorithm
Input: A, b, c, x0, µ0, γ, stopping criterion
Output: x∗ = arg max{x|Ax=b,x≥0} c

Tx
1 k ← 0;
2 while stopping criterion not fulfilled do
3 Compute Newton direction ∆x by solving (4.8);
4 Set step size t by backtracking line search;
5 Update xk+1 = xk + t ·∆x;
6 Choose µk+1 ∈ (0, µk);
7 k ← k + 1

8 return xk;

where ∆x is the Newton search direction, X is the diagonal matrix diag(x) and λ+ is a
vector of Lagrangian multipliers that are discarded after solving the system.

Recently, Bickson et al. [16] have identified an important connection between barrier
methods and probabilistic inference: solving the system of linear equations (4.8) can be
seen as MAP inference within a pairwise Markov random field (MRF) over Gaussians,
solved efficiently using Gaussian Belief Propagation (GaBP). Specifically, suppose we
want to solve a linear system of the form Nd = f where we seek the column vector d
such that the equality holds. As we have seen in Sec. 3.3, this problem can be translated
into a probabilistic inference problem. Given the matrix N and the observation matrix
f , the Gaussian density function

p(d) ∼ exp(−1

2
dtNd + f td)

can be factorized according to the graph consisting of edge potentials ψij and self po-
tentials φi as follows:

p(d) ∝
∏n

i=1
φi(di)

∏
i,j
ψij(di, dj) , (4.9)

where the potentials are

ψij(di, dj) := exp(−1

2
diNijdj) (4.10)

φi(di) := exp(−1

2
Niid

2
i + bidi) . (4.11)

Computing the marginals for di using lifted GaBP (Sec. 3.3) gives us the solution of
Nd = f .

Fig. 4.2 shows two ways to compute the solution of (4.8) in a single step of the
log barrier method for the linear program given above. The first way (shown with dot-
ted lines) constitutes of converting the matrix N and the vector f of our linear system
(shown upper-left) into the corresponding MRF (shown below it). This MRF is lifted by
color passing and by computing the marginals using LGaBP we obtain the solution of
the linear system. From the picture it can be seen that lifting would group together the
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Figure 4.2: Lifted solving of the targeted advertisement LP with three persons. The
dotted lines trace the LGaBP solution, whereas the solid lines compile the LP into a
smaller set of lifted linear equations.

nodes corresponding to those who are indistinguishable in the MLN. The second way,
outlined with solid lines, and its benefits are explained in the following.

4.4 Lifted Linear Programs
First, we show that we can read off an equivalent system of linear equations, called lifted
linear equations, from the computations of lifted GaBP, thus avoiding to run a modified
(Ga)BP. Then, we show that this result can be extended to reading off a single LP only,
the lifted LP, thus avoiding the time-consuming re-lifting in each iteration.

Lifted Linear Equations
Recall that the modified GaBP sends messages involving counts. This suggests that we
are actually running inference on a misspecified probabilistic model. We now argue that
this is actually the case. Specifically, we show that the lifted problem can be compiled
into an equivalent propositional problem of the same size. The resulting set of lifted
linear equations can be solved using any standard solver, including GaBP. To see this,
we start by noting that LGaBP computes a lifted, i.e., compiled version r ∈ Rk of
the solution vector x with k ≤ n. The ground solution can be recovered as x = Br
where B encodes the partition induced by the ∼ relation due to the color passing. It

71



MAP INFERENCE

can be read off from the lifted graph G as follows: Bij = 1 if xi belongs to the j-th
supernode of G, and Bij = 0 otherwise. The matrix B has full column rank. Thus,
when solving Ax = b using LGaBP, we find r such that ABr = b . Multiplying by
the left pseudoinverse of B, i.e., (BTB)−1BT on both sides, one obtains

(BTB)−1BTABr = (BTB)−1BTb . (4.12)

The matrix Q := (BTB)−1BTAB is the well-known quotient matrix [67] of the parti-
tion B of A. Interestingly, a similar idea has been used to optimize Pagerank computa-
tions [9]. For the case of GaBP models, the partitioning of the nodes by color-passing
corresponds to the so-called coarsest equitable partition of the graph. A defining char-
acteristic of equitable partitions is that the following holds [62]:

AB = BQ . (4.13)

Thus, Q is invertible if A is invertible. To see this, let u be an eigenvector of Q, i.e.,
Qu = λu. Multiplying from the left by B gives BQu = λBu. Plugging in (4.13),
this can be rewritten to ABu = λBu . Now, if A is invertible, all its eigenvalues are
non-zero. By the above the eigenvalues λ of Q are also non-zero; Q is invertible.

Since we only deal with invertible matrices, both Ax = b and (4.12) have a unique
solution, and when solving (4.12) to obtain r, then x = Br is the solution of Ax = b.
Since Q ∈ Rk×k, one obtains a problem of size equal to the size of the lifted LGaBP
graph. Finally we note that BTB is a diagonal matrix where each entry on the diag-
onal is the (strictly positive) count of the respective supernode. Thus, we can directly
compute (BTB)−1 and may also solve

BTABr = BTb. (4.14)

instead of solving (4.12). In other words, instead of lifting a solver for sets of linear
equations, we lift the equations themselves and employ any standard solver.

Reconsider the targeted advertisement of the previous section and the solution of the
linear system using LGaBP. Applying (4.14) to the problem of computing the Newton
step for this program yields the second path of Fig. 4.2, lifting the linear equations, thus
avoiding to run a modified (Ga)BP.

Lifted Linear Programs

However, we have to compute a set of lifted equations in each iteration of the barrier
method. Can we avoid this and instead automatically compile the original LP into an
equivalent LP that can be significantly smaller? That is, are there also lifted linear
programs?

In the following, we show that this is the case. For instance, (4.7) can automatically
be compiled into (4.6).

Consider the linear system
A0v = c0 (4.15)
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with A0 =

[
In AT

A Im

]
and c0 =

[
c

b

]
, where In and Im are identity matrices of size n

and m. We call this system the skeleton of the Newton search direction equation (4.8).
The following Lemma says that the ∼ relation induced on v when solving the skeleton
using LGaBP, denoted as ∼s, is valid for solving (4.8) in all iterations of the barrier
method applied: if vi ∼s vj then xki = xkj for k = 0, 1, 2, 3, . . . .

Lemma 4.4.1. Let x0 be an interior point of a linear program LP such that x0
i = x0

j if
vi ∼s vj . Then for all iterations k of the barrier method it holds that xki = xkj .

Proof. We are proving this in two steps. First, we prove that if i ∼s j for two variables
i and j then i ∼b j for any ∼ relation produced by running the barrier method using
LGaBP. Assume we are running the barrier method solving (4.8) using LGaBP. The
MRFs constructed for all iterations k differ only in the self potentials φ, which in turn
are completely specified by the X = diag(x) =: n and c + µX−1e =: m vectors. The
edge potentials are not changing over the iterations of the barrier method. Consequently,
the vectors n and m also determine the lifting produced in each iteration k since they
encode the color signatures of the nodes after one iteration of the color passing. So, as
long as ni = nj respectively mi = mj for all i and j with i ∼b j, color-passing will
result in a ∼ relation that respects i ∼b j, i.e., if i ∼ j then i ∼b j. By design, however,
this holds for the ∼s.

Now, in the second part, we prove that using ∼s produces the same solution vector.
We prove this by induction on k. For k = 0, this holds by choice of the initial feasible
point. For k 7→ k + 1, consider two nodes i and j with i ∼s j. First, ci = cj by
construction of the skeleton. Second, xki = xkj is true due to the induction hypothesis.
Thus, ĉi = ci +µ 1

xki
= cj +µ 1

xkj
= ĉj . This proves the induction step for the c+µX−1e

values. In a similar way we can prove this for the −µX−2 values. Thus, the search
direction vector ∆x respects the partition induced by ∼s.

Due to the lemma, we have identified a partitioning that is loop invariant of Alg. 4.
We now show that a subset of it can be directly applied to the matrix A and the vector
b of a primal LP.

We have already established that instead of running LGaB we may also solve (4.14)
using any standard solver for systems of linear equations. When doing so, the solution
of the original problem is given as x = Br. We now have to impose the following
restriction: when building the lifted graph of LGaBP, we leave the first n variables
ungrouped, even if the lifting tells us some of them should be grouped together. Clearly,
this might result in loss of efficiency, although it does not affect the correctness of the
LGaBP result. However, as we show below, it helps to derive a “relaxed” version of
(4.14), which is of particular interest to us since it reveals how a lifted linear program
can be constructed. The restriction can be translated to the equations by writing the
block matrix B as

B =

[
I 0

0 BM

]
, (4.16)

73



MAP INFERENCE
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LP LP∗

Theorem 4.4.2
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Theorem 4.4.3

Figure 4.3: Links between LPs and lifted LPs.

so that the result of the LGaBP computation is expressed as[
∆x

λ+

]
=

[
I 0

0 BM

]
r. (4.17)

Now we argue in a similar way as in the previous section: if r is the lifted solution to
(4.8), then BTNBr = BT f , or(

BT

[
−µX−2 AT

A 0

]
B

)
r = BT

[
c + µX−1e

0

]
.

With (4.16) we can compute this system explicitly as[
−µX−2 ATBM

BT
MA 0

]
r =

[
c + µX−1e

0

]
. (4.18)

Note that BTNB is invertible since A has full row-rank and the rows of BT
MA are sums

of disjoint sets of the columns of A, thus BM
TA also has full row rank. This means that

the unique solution of (4.18) is a solution of (4.8), even though B does not necessarily
correspond to an equitable partition of N.

Now, consider the LP ∗ = (BT
MA, c,BT

Mb) (note, the fact that we compile the b-
vector reveals why it is present in the skeleton equation). We prove the following lifting
theorem for primal LPs.

Theorem 4.4.2. For every linear program LP = (A,b, c), there exists a linear pro-
gram LP ∗ = (BT

MA,BT
Mb, c) of smaller or equal size such that (1) the feasible region

of LP ∗ is a superset of the feasible region of LP , (2) LP ∗ has at least one solution in
common with LP , and (3) a common optimum to both will be found by Alg. 4 given a
suitable initial point.

Proof. Let x0 be a feasible solution of LP , i.e., Ax0 = b. Multiplying BT
M on both

sides preserves equality. Thus, BT
MAx0 = BT

Mb. Therefore x0 is feasible for LP ∗.
This proves (1). Now, given an initial interior point that preserves the lifting of the
skeleton, Eq. (4.8) for LP ∗ is equivalent to (4.18) for LP in every step of the primal
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barrier method due to Lemma 4.4.1. That is, solving one step for LP ∗ is equivalent
to solving one step of LP using LGaBP since it obtains the same search direction ∆x
(Eq. (4.17)). This proves (2). Equality of both objective values also holds since the
objective functions of the two LPs are the same. This proves (3).

However, we have to be a little bit more careful. So far, we have assumed the
existence of an initial points that preserves symmetries, i.e., the ∼ relation. We now
justify this assumption.

Following Dantzig [36], we can always construct a modified version of LP , called
by LPa, by adding an extra variable xa associated with a very high cost R:

maxx,xa cTx−Rxa
s.t. Ax + (b−Ax+)xa = b,

x ≥ 0, xa ≥ 0,

where x+ is any vector with positive components. This LP has the following properties,
see also [36]:

(i) if R is sufficiently high, then the set of optimal solutions of LPa is the same as for
LP

(ii) x = x+, xa = 1 is a valid feasible solution.

Thus, one can choose x+ = 1 which respects the symmetries of (4.15) for the original
LP . Moreover, it can be shown that (4.15) for LPa has the same symmetries as for LP
except that the extra variable xa will not be grouped with any other variable.

Theorem 4.4.2 shows that for every linear program, we can construct a possibly
smaller linear program which has the property that when solved by the primal barrier
method, or for that matter any other that maintains symmetries of this kind, will “sim-
ulate”, at least partially, the use of lifted inference for the linear system solution step,
so that relifting in every iteration can be avoided. The drawback of this method is that
since the feasible region of the new LP may be larger than that of the original, it cannot
be guaranteed that if a solution is found under different conditions (e.g., different solver
or a non-symmetric interior point), it will still be valid for the original. As we show
now, this situation is remedied when working with inequality constrained LPs. So, how
do the lifted versions of LPs with inequality constraints look like? An elegant way to
see this is to consider the dual linear program LP ∗ of the lifted program LP ∗:

minw (BT
Mb)Tw s.t. (BT

MA)Tw ≤ c .

We show now that LP ∗ is the lifted version of LP and if w is a solution of LP ∗ then
y = BMw is a solution to LP . In other words, we show a lifting theorem of duality:

Theorem 4.4.3 (Lifted Duality). For every dual linear program LP = (AT , c,b) there
exists an equivalent dual linear program LP ∗ = (ATBM , c,B

T
Mb) of smaller or equal

size, whose feasible region and optima can be mapped to the feasible region and optima
of LP .
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Algorithm 5: Lifted Linear Programming
Input: An inequality-constrained LP (A, b, c)
Output: x∗ = argmin{x|Ax≤b} c

Tx

1 Construct the equality-constrained LP (AT , c,b);
2 Lift the corresponding skeleton equation (4.15) using color-passing;
3 Read off the block matrix BM ;
4 Obtain the solution r of the LP (ABM ,b,B

Tc) using any standard LP solver;
5 return x∗ = Br;

Proof. If w is a feasible solution of LP ∗ then c ≥ (BT
MA)Tw = AT (BMw) = ATy.

Thus, y = BMw is a feasible solution of LP . Moreover, any optimum of LP ∗ is an
optimum of LP . To see this, let x,x∗,y,w be any optima of LP,LP ∗, LP and LP ∗
respectively. By strong duality it holds that cTx = bTy and cTx∗ = (BT

Mb)Tw. By
Theorem 4.4.2 we have cTx = cTx∗. Therefore, bTy = (BT

Mb)Tw.

Thus, if we want to lift an inequality constrained linear program, we can simply
view it as the dual of some primal program and apply Theorem 4.4.3. More importantly,
however, the theorem tells us that the feasible region of the lifted dual is a subset of the
feasible region of the dual such that it contains at least one optimum of the original
problem. Thus, inequality-constrained LPs can be solved by any LP solver as we do not
have to worry about initial points. This is summarized in Alg. 5, which we call lifted
linear programming since using Theorems 4.4.2 and 4.4.3 the algorithm can be applied
to any form of LPs, cf. Fig. 4.3.

Evaluation
Our intention here is to investigate the following questions:

(Q4.1) Are there LPs that can be solved more efficiently by lifting?

(Q4.2) How much can we gain, given that we sacrifice the coarsest lifting for the con-
struction of the lifted program.

(Q4.3) How does lifting relate to the sparse vs. dense paradigm. Is it only making use
of the sparsity in the LPs?

To this aim, we implemented lifted linear programming within Python1 calling CVX-
OPT2 as LP solver. All experiments were conducted on a standard Linux desktop com-
puter.

1The implementation can be found at [104].
2http://abel.ee.ucla.edu/cvxopt/
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Figure 4.4: Experimental results for MAP inference on grids (best viewed in color).

Lifted MAP inference

As shown in previous chapters, inference in graphical models can be dramatically sped-
up using lifted inference. Furthermore, a relaxed version of MAP inference can be
solved by linear programs using the well-known LP relaxation, see e.g. [54] for details.

maxµ
∑

ij∈E

∑
xi,xj

θi,j(xi, xj)µij(xi, xj)

+
∑

i

∑
xi
µi(xi)θi(xi)

s.t.
∑

xj
µij(xi, xj) = µj(xi),

∑
xi
µi(xi) = 1.

Thus, it is natural to expect that the symmetries in graphical models which can be ex-
ploited by standard lifted inference techniques will also be reflected in the corresponding
linear program. To verify whether this is indeed the case we constructed pairwise MRFs
of varying size. We scaled the number of random variables from 25 to 625 arranged in
a grid with pairwise and singleton factors with identical potentials.

The results of the experiments can be seen in Figs. 4.4(a) and (b). As Fig. 4.4(a)
shows, the number of LP variables is significantly reduced. The lifted linear programs
are superior for all problem instances and show in all cases a reduction of the problem
size to about ten percent compared to the ground version.

Furthermore, not only is the linear program reduced, but due to the fact that the
lifting is carried out only once, we also measure a considerable decrease in running
time as depicted in Fig. 4.4(b). Note that the time for the lifted experiment includes the
time needed to compile the LP.

This experiment affirmatively answers (Q4.1) and shows that LPs can indeed be
solved more efficiently by lifting.
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Figure 4.5: Gridworld with 1 respectively 4 goal states.

Lifted MDPs
Another application of linear programs that we considered is the computation of the
value function in a Markov decision process (MDP). MDPs are useful when an agent
needs to reason about an ongoing process, for example, to plan its actions. Formally, an
MDP is a discrete time stochastic control process here defined as a 5-tuple (S,A, P, C, γ).
At each time step t, the process is in some state from the set of all possible states st ∈ S,
and the agent may choose any action at ∈ A that is available in state st. At the next
time step the system moves into a new state st+1 with a probability given by the state
transition function, defined as

pkij = P (st+1 = j|st = i, at = k) (4.19)

The cost of taking the action k in state i is given by cki . A policy π is a mapping from
states to actions, an optimal policy is one that maximizes the expected rewards. We can
compute the value function using an LP formulation of this task as follows [95]:

maxv 1Tv, s.t. vi ≤ cki + γ
∑

j∈S
pkijvj,

where vi is the value of state i, cki is the reward that the agent receives when carrying
out action k and pkij is the probability of transferring from state i to state j by the action
k. Later rewards are discounted by the factor γ.

The MDP instance that we used is the well-known Gridworld (see e.g. [150]). The
gridworld problem consists of an agent navigating within a grid of n × n states. Every
state has an associated reward. Typically there is one or several states with high rewards,
considered the goals, whereas the other states have zero or negative associated rewards.
Further details on MDPs can be found in [74, 150].
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Figure 4.6: Experimental results for the gridworld MDP.

At first we considered an instance of gridworld with a single goal state in the upper-
right corner with a reward of 100. Fig. 4.5 (a) shows the grid for the smallest instance
of 5× 5. The reward of all other states was set to −1. As can be seen in Fig. 4.6(a), this
example can be compiled to about half the original size. Fig. 4.6(b) shows that already
this compression leads to improved running time. We now introduce additional symme-
tries by putting a goal in every corner of the grid, as seen in the example in Fig. 4.5 (b).
As one might expect this additional symmetry gives more room for compression which
further improves efficiency as reflected in Figs. 4.6(c) and 4.6(d).

The two experiments presented so far affirmatively answer question (Q4.1). How-
ever, the examples that we have considered so far are quite sparse in their structure.
Thus, one might wonder whether the demonstrated benefit is achieved only because we
are solving sparse problem in dense form. To address this we convert the MDP problem
to a sparse representation for our further experiments. We scaled the number of states up
to 1600 and as one can see in Fig. 4.7(a) and (b) lifting still results in an improvement of
size as well as running time. Therefore, we can conclude that lifting an LP is beneficial
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Figure 4.7: Experimental results gridworld sparse form

regardless of whether the problem is sparse or dense, thus one might view symmetry
as a dimension orthogonal to sparsity which answers question (Q4.3). Furthermore,
in Fig. 4.7(b) we break down the measured total time for solving the LP into the time
spent on lifting and solving respectively. This presentation exposes the fact that the time
for lifting dominates the overall computation time. Clearly, if lifting was carried out in
every iteration (CVXOPT took on average around 10 iterations on these problems) the
approach would not have been competitive to simply solving on the ground level.

This justifies that the loss of potential lifting we had to accept in order to not carry
out the lifting in every iteration indeed pays off (Q4.2). Remarkably, these results fol-
low closely what has been achieved with MDP-specific symmetry-finding and model
minimization approaches [44, 113, 131].
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In Ch. 3 we have shown that lifted message passing approaches can be extremely fast
at computing approximate marginal probability distributions over single variables and
neighboring ones in the underlying graphical model. They do, however, not prescribe a
way to solve more complex inference tasks such as the one we will investigate in this
chapter, namely

computing the joint marginal distribution P (XA|E) of a subset XA ≤ X
of nodes provided some evidence E.

In the case of single nodes and neighboring random variables the marginals can be
computed by the product of all incoming messages into the node (or factor respectively)
after (lifted) loopy belief propagation has converged. For joint distributions over pairs,
triples or k-tuples of distant random variables, however, this is not possible and lifted
message passing approaches leave space for improvement.

BP-guided decimation for satisfiability and sampling [99, 108], for instance, are
two tasks that are crucial to AI and have important applications. For example, sampling
is often used in parameter learning and the idea of ”reduction to SAT” is a powerful
paradigm for solving problems in different areas. In these tasks one is essentially in-
terested in probabilities of the same network but with changing evidence. A popular
solution in these cases is the idea of turning the complex inference task into a sequence
of simpler ones as shown in Sec. 5.1. This can be done efficiently in a lifted fash-
ion (Sec. 5.2). However, naı̈vely applying lifting to the conditioning relifts the network
from scratch in every iteration. By reusing the previously lifted models we can avoid
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Figure 5.1: A factor graph — a chain graph model with n+ 1 nodes — with associated
potentials. Circles denote variables, squares denote factors.

this relifting as we show in Sec. 5.3. Finally we briefly touch upon the conditioning or-
der in Sec. 5.4 which, unlike the ground case, is crucial in the lifted case as it determines
how much lifting is possible,

5.1 Joint Marginals by Conditioning

We decompose the complex inference task of computing arbitrary joint marginals into
a series of inference tasks for single node marginals on the same graphical model,
each time with changing evidence by selecting and clamping variables one at a time.
Naı̈vely running lifted message passing again after each selection, however, recomputes
the lifted network in each step from scratch, therefore often canceling the benefits of
lifted inference. To avoid this, we need to find a way to efficiently compute the lifted
network for each conditioning directly from the one already known for the single node
marginals.

Example 5.1.1. Let us illustrate the problem on a small example. Consider we want
to compute joint marginals for the network in Fig. 5.1. It shows a factor graph which
is a chain graph model with n+1 nodes. Computing the joint probability distribution
for neighboring nodes given some evidence E, e.g. P (X1, X2|E), can efficiently be
done by one inference task using lifted loopy belief propagation, as we have shown
in Ch. 3. The joint probability distribution for distant nodes such as P (X1, Xn+1|E),
however, decomposes into the following steps:

• Compute P (X1|E) as in Ch. 3

• Condition the network on X1

• Compute P (Xn+1|E ∪ {X1}) as in Ch. 3

• Compute P (X1, Xn+1|E) = P (Xn+1|E ∪X1)P (X1|E)
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Essentially, we need to select variables one at a time for conditioning and run infer-
ence after each selection.

Naı̈vely applying lifted loopy belief propagation is wasteful as it recomputes the
lifted network in each step from scratch. Recall that the lifting procedure is initialized
with the evidence on the random variables. In our example we thus first have to lift the
network for evidence E and then E ∪ {X1}.

Our goal is to avoid this by efficiently computing the lifted network for each condi-
tioning directly from the one already known for the single node marginals.

There has been some prior work for related problems. Delcher et al. [45] propose a
data structure that allows efficient queries when new evidence is incorporated in singly
connected Bayesian networks and Acar et al. [1] present an algorithm to adapt the model
to structural changes using an extension of Rake-and-Compress Trees. Van den Broeck
and Davis [156] tackle the problem of conditioning in the context of first-order compi-
lation for exact lifted probabilistic inference and show how it can efficiently be done for
propositions and unary relations. The only other lifted message-passing approach we
are aware of is the work by Nath and Domingos [116]. The authors essentially memorize
the intermediate results of previous liftings. For new evidence they make a warm start
from the first valid intermediate lifting. The algorithm of Nath and Domingos is only
defined for Markov Logic Networks, whereas our approach does not rely on a relational
representation and applies to any factor graph. Conditioned LLBP (CLLBP) is applica-
ble for propositional models as well, thereby opening up a wide range of applications
like satisfiability of boolean formulae and sampling among others. Furthermore, the
approach presented in this chapter uses a clear characterization of the core information
required for sequential clamping for lifted message passing: the shortest-paths connect-
ing the variables in the network. We also consider the problem of determining the best
variable to condition on in each iteration to stay maximally lifted over all iterations and
propose a simple heuristic.

These contributions are significant in the lifted inference domain as they have appli-
cations to computing MAP assignments, sequential forward sampling, sensitivity anal-
ysis, among other tasks. For example, consider approximately solving the problem of
maximum a posteriori (MAP) hypothesis: find the most probable instantiation e of some
variables E. One class of approximate methods for MAP, cf. [123] and references in
there, starts with some instantiation e and then tries to improve on it using local search,
by examining all instantiations that result from changing the value of a single variable in
e (called the neighbors of e). CLLBP provides an efficient mean to score the neighbors
of e during local search: we first compute the lifted network given no evidence; now
we can efficiently compute any lifted network during local search. As another applica-
tion consider solving the SAT problem. It consists of a formula F representing a set of
constraints over n Boolean variables, which must be set so as to satisfy all constraints.
Survey propagation [100] solves the SAT problem using the decimation process, which
is again essentially conditioning: assign a truth value to one variable (or a few variables)
of F and simplify F , obtaining a smaller formula on n−1 variables. Now, survey prop-
agation repeatedly decimates the formula in this manner, until a simplified instance is
obtained that is easily solved , e.g., by existing SAT solvers.
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CLLBP may also have future applications in more advanced relational learning tasks
such as active learning. Clearly, information about dependencies between random vari-
ables such as mutual information is relevant for learning the structure of probabilistic
relational models. Ground atoms which have a big impact on the system are good can-
didates.

In the following we will introduce CLLBP, then prove its soundness, and touch upon
the problem of determining the best variable to condition on at each level of recursion.

5.2 Lifted Conditioning
When we are faced with the problem of repeatedly answering slightly modified queries
on the same network, e.g., computing a joint distribution P (X1, X2, . . . , Xk) using
LLBP, we use the conditioning procedure that we call conditioned LLBP (CLLBP). Let
π define a conditioning order on the nodes, i.e., a permutation on the set {1, 2, . . . , k}
and its i-th element be denoted as π(i). The simplest permutation is π(i) = i, i ∈
{1, 2, . . . , k}. Now, we select variables one at a time for conditioning, running LLBP
after each selection, and combine the resulting marginals. More precisely,

1. Run LLBP to compute the prior distribution P (Xπ(1)|E).

2. Clamp Xπ(1) to a specific state xπ(1). Run LLBP to compute the conditional dis-
tribution P (Xπ(2)|E, xπ(1)).

3. Do this for all states ofXπ(1) to obtain the conditional distribution P (Xπ(2)|E,Xπ(1)).
The joint distribution is now computed as

P (Xπ(2), Xπ(1)) = P (Xπ(2)|Xπ(1)) · P (Xπ(1)) .

By iterating steps 2) and 3) and employing the chain rule we have

P (X1, . . . , Xk) = P (Xπ(1), . . . , Xπ(k)) =
∏k

i=1
P (Xπ(i)|

k−1⋂
j=1

Xπ(j)) .

CLLBP is simple and even exact for tree-structured models. Although in graphs with
cycles the beliefs will in general not equal the true marginals, they often provide good
approximations in practice. Welling and Teh [163] report that conditioning performs
surprisingly well in terms of accuracy for estimating the covariance1.

Because LLBP generally lacks the opportunity of adaptively changing the lifted
graph and using the updated lifted graph for efficient inference, it is doomed to lift the
original model in each iteration again from scratch. But how can we protect LLBP from
performing poorly in terms of running time as we are repeatedly answering slightly
modified queries on the same graph.

1The symmetrized estimate of the covariance matrix is typically not positive semi-definite
and marginals computed from the joint distributions are often inconsistent with each other.
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Figure 5.2: Colored chain graph model: Supernodes, indicated by the shades of the
original nodes. The chain graph model with n + 1 nodes in the top shows the lifting
without evidence, similar to 3.6, the other networks are produced by repeatedly clamp-
ing nodes, indicated by ”c”. Factors have been omitted. The conditioning order is
π = {2, 1, 3, 4, . . . , n − 2, n − 1, n + 1, n}. After clamping X2 all subsequent LLBP
runs work on the fully grounded network.

Each CP run scales O(l · (m + n log n)) where n is the number of nodes, m is the
number of edges, and l is the length of the longest path without loop. Hence, CLLBP
essentially spends O(k · l · (m + n log n)) time just on lifting, when computing a joint
distribution of k random variables. Moreover, in contrast to the propositional case,
the conditioning order has an effect on the sizes of the lifted networks produced and,
hence, the running time of LLBP. It may even cancel out the benefit of lifted inference.
Reconsider our chain example1 from Fig. 5.1. Fig. 5.2 sketches the lifted networks
produced over time when using the conditioning order π = (2, 1, 3, 4, . . . , n − 2, n −
1, n + 1, n). That is, the lifting without any evidence is shown in the top, similar to
the one shown in 3.6 in Sec. 3.2. First we clamp X2, then all other nodes but Xn in
ascending order. As one can see, clamping X2 dooms all subsequent iterations to run
modified LBP on the fully grounded network, canceling the benefits of lifted inference.
In contrast, the order π = (1, n+1, 2, n, . . . , n/2−1) produces lifted and fully grounded
networks alternatingly, the best we can achieve for chain models.

We will address both issues in turn, namely efficient adaptation of the lifted network
and finding an efficient conditioning order.

5.3 Shortest-Path Sequence Lifting
Consider the situation depicted in Fig. 5.3. Given the network in (A) and the prior lifted
network, i.e., the lifted network when no evidence has been set (B), we want to com-
pute P (Xi|x3) as shown in (C). To do so, recall the colored computation trees we have
introduced in Sec. 3.1, where one considers for every node Xj the computation tree

1When the graph is a chain or a tree there is a single chain connecting any two nodes and
LBP together with dynamic programming can be used to efficiently integrate out the internal
variables. When cycles exist, however, it is unclear what approximate procedure is appropriate.
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X1 X2 X3 X4 X6 X6

X1 0 2 1 2 3 3
X2 2 0 1 2 3 3
X3 1 1 0 1 2 2
X4 2 2 1 0 1 1
X5 3 3 2 1 0 1
X6 3 3 2 1 1 0

X5
X6

X2X1

Figure 5.3: (A): Original factor graph. (B): Prior lifted network, i.e., lifted factor graph
with no evidence. (C): Lifted factor graph when X3 is set to some evidence. Fac-
tor graphs are shown (top) with corresponding colored computation trees (bottom).
For the sake of simplicity, we assume identical factors that have been omitted here.
Ovals denote variables/nodes. The shades in (B) and (C) encode the supernodes. (D):
Shortest-path distances of the nodes. The i-th row will be denoted di.

rooted in Xj and each node in the tree is colored according to the nodes’ initial colors,
cf. Fig. 5.3(bottom). Each CCT encodes the root nodes’ local communication patterns
that show all the colored paths along which node X communicates in the network. Con-
sequently, CP groups nodes with respect to their CCTs: nodes having the same set of
rooted paths of colors (node and factor names neglected) are clustered together. For
instance, Fig. 5.3(A) shows the CCTs for X3 and X5. Because their set of paths are
different, X3 and X5 are clustered into different supernodes as shown in Fig. 5.3(B).
The prior lifted network can be encoded as the vector l = (0, 0, 1, 1, 0, 0) of node col-
ors. Now, when we clamp a node, say X3, to a value x3, we change the communication
pattern of every node having a path to X3. Specifically, we change X3’s (and only X3’s)
color in all CCTs X3 is involved. This is illustrated in Fig. 5.3(B). For the prior lifted
network, the dark and light nodes in Fig. 5.3(B) exhibit the same communication pat-
tern in the network and were consequently grouped together. Consequently, X3 appears
at the same positions in all corresponding CCTs. When we now incorporate evidence
on node X3, we change its color in all CCTs as indicated by the ”c” in Figs. 5.3(B)
and (C). This affects nodes X1 and X2 differently than X4 respectively X5 and X6 for
two reasons:

(a) they have different communication patterns as they belong to different supernodes
in the prior network; more importantly,

(b) they have different paths connecting them to X3 in their CCTs.

Here we refer to the shortest-paths as the set of shortest sequences of factor colors
connecting two nodes. Since we are not interested in the paths but whether the paths
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are identical or not, these sets might as well be represented as colors. Note that, in
Fig. 5.3 we assume identical factors for simplicity. Thus in this case the sets of path
colors reduce to distances. In the general case, however, we compare the full paths,
i.e., the sequence of factor colors. We now have to consider the vector d3 of shortest-
paths distances to X3, cf. Fig. 5.3(D), and refine the initial supernodes correspondingly.
Recall that the prior lifted network can be encoded as the vector l = (0, 0, 1, 1, 0, 0) of
node colors. Now we refine the nodes by

(1) l ⊕ d3, the element-wise concatenation of two vectors, and

(2) viewing each resulting number as a new color:

(0, 0, 1, 1, 0, 0)⊕ (1, 1, 0, 1, 2, 2)

=(1) (01, 01, 10, 11, 02, 02)

=(2) (0, 0, 1, 2, 3, 3)

This results in the lifted network for P (X|x3) as shown in Fig. 5.3(C). Thus, we can
directly update the prior lifted network in linear time without taking the detour through
running CP on the ground network. Given the pairwise shortest-path distances of all
nodes, we group the nodes based on their shortest-path distance to the new evidence
node. The supernodes split up and form new supernodes where each node has the same
shortest-distance to the evidence node.

Now, let us compute the lifted network for P (X|x4, x3). Essentially, we proceed as
before: compute l ⊕ (d3 ⊕ d4). However, the resulting network might be suboptimal. It
assumes x3 6= x4 and, hence, X3 and X4 cannot be in the same supernode. For x4 = x3,
they could be placed in the same supernode, if they are in the same supernode in the
prior network. This can be checked by d3� d4, the element-wise sort of two vectors. In
our case, this yields

l ⊕ (d3 � d4) = l ⊕ l = l .

Conditioning on x3, respectively x4, is asymmetric. When the evidence is put on both
together, however, we obtain the prior lifted network which is maximally compressed.
In general, we compute

l ⊕ (
⊕
s

(
⊕
v

ds,v)) ,

where
ds,v =

⊙
i∈s:xi=v

di ,

s and v are the supernodes and the truth value respectively. For an arbitrary network,
however, the shortest-paths might be identical although the nodes have to be split, i.e.,
they differ in a longer path, or in other words, the shortest-paths of other nodes to the
evidence node are different. Consequently, we iteratively apply the shortest-path se-
quence lifting. Let SNS denote the supernodes given the set S as evidence. By applying
the shortest-path procedure we compute SN{X1} from SN∅. This step might cause initial
supernodes to be split into newly formed supernodes. To incorporate these changes in
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Algorithm 6: Shorted-Path Sequence Lifting
Input: Set of supernodes S, shortest-path sequences D
Output: Adapted set of supernodes S ′

1 S ′ = ∅;
2 for Si ∈ S do
3 for X ∈ Si do
4 if not exists Si,D(X,Z) then
5 Si,D(X,Z) = {};
6 Add X to Si,D(X,Z);
7 return S ′

the network structure the shortest-path sequence lifting procedure has to be iteratively
applied. Thus in the next step we compute SN{X1}∪ΓX1

from SN{X1}, where ΓX1 denotes
the changed supernodes of the previous step. This procedure is iteratively applied un-
til no new supernodes are created. This essentially sketches the proof of the following
theorem.

Theorem 5.3.1. Given the shortest-path colors among all nodes and the prior lifted
network, computing the lifted network for P (X|Xi, . . . , X1), i > 0, takes O(n · s),
where n is the number of nodes and s is the number of supernodes. Running modified
BP produces the same results as running LBP on the original model.

Proof. For a Graph G = (V,E), when we set new evidence for a node X ∈ V then for
all nodes within the network the color of node X in the CCTs is changed. If two nodes
Y1, Y2 ∈ V were initially clustered together (denoted as sn0(Y1) = sn0(Y2)), i.e., they
belong to the same supernode, they have to be split if the CCTs differ. Now we have
to consider two cases: If the difference in the CCTs is in the shortest path connecting
X with Y1 and Y2, respectively, then shortest-path sequnece lifting directly provides the
new clustering. If the coloring along the shortest paths is identical the nodes’ CCTs
might change in a longer path. Since sn0(Y1) = sn0(Y2) there exists a mapping between
the paths of the respective CCTs. In particular ∃Z1, Z2, s.t. sn0(Z1) = sn0(Z2) from a
different supernode, i.e.,

sn0(Zi) 6= sn0(Yj) i, j ∈ {1, 2}

and
Y1, . . . , Z1, . . . , X︸ ︷︷ ︸

∆1

∈ CCT (Y1) ,

Y2, . . . , Z2, . . . , X︸ ︷︷ ︸
∆2

∈ CCT (Y2)

∆1 ∈ CCT (Z1) 6= ∆2 ∈ CCT (Z2) are the respective shortest paths for Z1 and Z2.
Thus, by iteratively applying shortest-path sequence lifting as explained above, the evi-
dence propagates through and we obtain the new clustering.

88



5.4. ON FINDING A CONDITIONING ORDER

Algorithm 7: Lifted Conditioning
input: A factor graph G, list of query variables L
output: List of clamped variables and values

1 Compress G to obtain G;
2 Calculate distances D in G;
3 Initialize variable list V = ∅;
4 while L 6= ∅ do
5 Run lifted inference on G to obtain marginals;
6 Pick next variable Xi and value xi to clamp;
7 Clamp Xi to xi;
8 Adapt the lifting of G using Shorted-Path Sequence Lifting;
9 Add Xi and xi to V ;

10 remove Xi from L;
11 return V

Furthermore, because shortest-path lifting is linear in the number of nodes, as shown
in Alg. 6, and computing the shortest-path distances takesO(n·l), the following theorem
holds.

Theorem 5.3.2. The complexity of computing all lifted networks for conditioning using
shortest-path lifting is O(k · n · (l+ s)), where n is the number of nodes, where n is the
number of supernodes, and l is the length of the longest path without loop.

This can be quite fast. In worst case there is not a big difference to naı̈vely relifting
in each iteration, in practice, however, the runtime reduces significantly, as our experi-
mental evaluation will show. If, however, lifting does not pay off at all, computing the
pairwise distances in the very first iteration may produce an overhead.

Alg. 7 summarizes the conditioning procedure employing the shortest-path lifting.
For a given list of query variable L in the graph G the algorithm first lifts the graph
G (line 1) and distances D (line 2). Now all variables in L have to be processed one by
one. For every variable Xi we perform inference on the current model (line 5), read the
desired marginals (line 6) and clamp the variable to the desired state (line 7). Now the
lifting has to be adapted to the new evidenceXi = xi using shortest-path lifting (line 8).
This is repeated until all query variables are processed.

5.4 On Finding a Conditioning Order
Clearly, CLLBP will be most efficient for estimating the probability of a joint state
when it produces the smallest lifted networks. This calls for the task of finding the
most efficient conditioning order. This question is different from the more common
question of finding highly accurate orders. The latter question is an active research area
already for the ground case, see e.g. [47], and is also related to the difficult question of
convergent LBP variants ([110]).
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Here, we provide a generically applicable strategy based on the nodes’ shortest-path
colors to all other nodes. So, in addition to the hardness of inference, which we solve
only approximately runnning LLBP, there is the hardness of finding the best condition-
ing order. Consequently, we propose a greedy heuristic to select it. The heuristic is
based on the nodes’ shortest-path sequences to all other nodes. That is, we start from an
empty conditioning set. Then, we heuristically add nodes that have the smallest number
of unique paths to all other nodes. We keep adding nodes until all nodes have been
selected.

That is, in each conditioning iteration, we add the node that has the smallest number
of unique paths to all other nodes and, if possible, is a member of a supernode of one of
the already clamped nodes. Intuitively, we select nodes that are expected to create the
smallest number of splits of existing supernodes in each iteration. Therefore, we call
it min-split. It somehow resembles the min-fill heuristic, see e.g. [17] and references in
there.

Example 5.4.1. Suppose we would like to find the right node to condition on for our
previous example shown in Fig. 5.3. To determine the best node to condition on we
need the graph with its initial coloring and the shortest-path distances, as shown
below.
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X1 X2 X3 X4 X6 X6

X1 0 2 1 2 3 3
X2 2 0 1 2 3 3
X3 1 1 0 1 2 2
X4 2 2 1 0 1 1
X5 3 3 2 1 0 1
X6 3 3 2 1 1 0

X5
X6

X2X1Looking at the matrix of pairwise distances we see that X1, X2, X5, and X6 have
four distinct values of distances to other variable nodes, whereas X1 and X2 only
have two. Thus, one the two variables would be the choice to condition on, as they
are expected to produce the smallest number of splits.

Although this increases the running time — each conditioning iteration now has an
additional O(n2) step — our experiments show that there are important cases such as
computing pairwise joint marginals where the efficiency gains achievable due to a better
lifting can compensate this overhead.
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Figure 5.4: Pairwise Probability Estimates: (Left) Comparison of the total number of
messages sent for LBP, Lifted LBP and ”min-split” order CLLBP for ”Friends-and-
Smokers” MLNs (including clustering messages for LLBP and CLLBP). (Right) The
Standard Deviation of the error compared to the exact solution computed using the
Junction Tree Algorithm.

Evaluation
Our intention here is to answer the following questions:

(Q5.1) Can CLLBP improve the performance compared to naı̈vely running LLBP and
LBP?

(Q5.2) Can we reduce the size of lifted networks produced by using the min-split
heuristic?

We implemented CLLBP and its variants in Python and using LIBDAI library [109]
and evaluated the algorithms on a number of Markov logic networks.

Joint Marginals
In our first experiment, we compared CLLBP to naı̈vely running LLBP, i.e., lifting the
network each time from scratch, and LBP for computing pairwise probabilities. We
generated the ”Friends-and-Smokers” Markov logic network [146] with 2, 5, 10, 15, 20,
and 25 people, resulting in networks ranging from 8 to 675 nodes. Fig. 5.4 (left) shows
the results for varying network sizes for LBP, lifted LBP (LLBP) and conditioned LLBP
(CLLBP). As one can see, lifting already shows an improvement compared to LBP and
additionally the shortest-path lifting clearly pays out in terms of the total messages sent
(including CP and shortest-path messages).

Moreover, the accuracy estimates are surprisingly good and confirm Welling and
Teh [163]; Fig. 5.4 (right) shows the Standard Deviation of the difference compared to
the exact solution computed using the Junction Tree (JT). The maximal error we got was
below 10−4. Note, however, that running JT with more than 20 persons was impossible
due to memory restrictions.
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In our second experiment we investigated CLLBP for computing joint marginals.
For the ”Friends-and-Smokers” MLN with 20 people we randomly chose 1, 2, . . ., 10
”cancer” and ”friends” nodes as query nodes. The joint state was randomly chosen.
The results are averaged over 10 runs. Fig. 5.5 shows the cumulative number of mes-
sages (including CP messages) for LBP and CLLBP using the min-split heuristic and a
random conditioning order. As one can see, min-split is indeed better. By choosing the
order following our heuristic the cumulative number of supernodes and in turn messages
is reduced compared to a random elimination order.

Finally, we learned the parameters for the ”Friends-and-Smokers” MLN with 10
people, maximizing the conditional marginal log-likelihood (CMLL). To do so, we sam-
pled 5 data cases from the joint distribution. We compared conjugate gradient (CG)
optimization using Polak-Ribiere with Newton conjugate gradient (NCG) optimization
using the covariance matrix of MLN clauses computed using CLLBP. The gradient was
computed as described in Sec. 2.2.2 but normalized by the number of groundings of each
clause. The results summarized in Fig. 5.6 confirm that information about dependencies
among clauses is indeed useful: the second order method exhibits faster convergence.

Lifted Sampling

Here we investigated LBP, LLBP and CLLBP using the shortest path sequences for
sampling a joint configuration over a set of of variables sequentially, i.e., a sequence
of one-variable samples conditioned on a subset as shown in Alg.7. We drew samples
from the ”Friends-and-Smokers” dynamic MLN with 10 people over 10 time steps as
shown in Sec. 21.

In our first experiment, we randomly chose 1, 5, 10, 20, 30, . . ., 100 “cancer” nodes
over all time steps and drew samples from the joint distribution. As one can see in
Fig. 5.7(a), LLBP already provides significant improvements compared to LBP, how-
ever, as the sample size increases, the speed-up decreases. The more evidence we have
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in the network, the less lifting is possible. CLLBP lifting with using the shortest path
sequences (SPS) has the additional gain in runtime as we do not need to perform the
lifting in each step from scratch.

In our second experiment we fixed the sample size to 100, i.e., we sampled from
the joint distribution of all cancer(X, t) for all persons X in the domain and all time
steps t. We drew 1, 5, 10 and 15 samples and the timings are averaged over 5 runs.
The results are shown in Fig. 5.7(a). We see that LLBP is only slightly advantageous
compared to LBP, as the sample size is 100, especially in the later iterations we have lots
of evidence and long chains to propagate the evidence. Repeatedly running CP almost
cancels the benefits. CLLBP on the other hand, shows significant speed-ups compared
to both LBP and LLBP. We see that shortest path sequences lead to faster inference in
terms of messages sent and in total CPU time.

To evaluate the quality of the samples, we drew 100 samples of the joint distri-
bution of all variables using the LBP-guided approach and Gibbs sampling respec-
tively. We learned the parameters of the model maximizing the conditional marginal
log-likelihood (CMLL) using scaled conjugate gradient (SCG). Fig. 5.8 shows the ab-
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solute difference of the learned weights from the model the datacases were drawn. As
one can see parameter learning with LBP-guided samples performs as good as with
samples drawn by Gibbs sampling. The root-mean-square error (RMSE) for the LBP
parameters was 0.31 and for Gibbs parameters 0.3.

All experiments together clearly answer (Q5.1) and (Q5.2) affirmatively.
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So far we have shown the improvements that can be made to LBP and GaBP, when
applied to inference in graphical models containing structural symmetries.

In this chapter, we investigate the question whether we can exploit symmetries
across multiple evidence cases not only for lifting but also in the inference stage, thus
efficiently solving multiple inference tasks, i.e.,

compute the marginal distribution P (Xi|Ej) for a subset of nodes Xi ∈
XA, XA ⊆ X and multiple evidence cases Ej ∈ E.

Message-passing algorithms have proven empirically effective for solving hard and
computationally intensive problems in a range of important and real-world AI tasks.
This opens up a wide range of applications for message-passing algorithms, and is
beneficial for several important AI tasks such as the ones we have introduced earlier,
namely, SAT, model counting, and linear programming. Further important tasks are
Kalman filters, the workhorse of robotics, and the well-known problem of web page
ranking. Viewing the web as a graph where nodes are web pages and directed edges are
hyperlinks between web pages, a highly successful web page ranking metric computed
from this graph is the PageRank [23].

The algorithm can be described as the following random walk on the graph: the
walker starts at a uniformly chosen random vertex of the graph, then with probability
1−α it follows a uniformly selected, random out-leading edge from the vertex, and with
probability α it teleports to a uniformly selected, random vertex of the graph, where
0 < α < 1. Converting this graph to an ergodic Markov chain, the PageRank of a web
page node v is the (limit) stationary probability that a random walker is at v. Recently,
Bickson et al. have shown how to compute the PageRank distributively and efficiently
using Gaussian belief propagation (GaBP) [15]. As for the discrete case, however,
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there are many improvements that can be made to (Ga)BP, especially when applied to
graphical models containing structural symmetries.

The core matrix inversion computation in both PageRank and Kalman filtering can
be naı̈vely solved by combining [144] GaBP approach to solving linear systems with
our color passing approach for LBP, yielding Lifted GaBP (Ch. 3.3). In fact, this novel
LGaBP approach — as we will show — already results in considerable efficiency gains.
However, we can do considerably better. Essentially, the computations in personalized
PageRanks and Kalman filters require the LGaBP solution of several linear systems with
only small changes to the evidence. In turn repeatedly constructing the lifted network
for each new inference can be extremely wasteful, because the evidence changes little
from one inference to the next. Hence, a less naı̈ve solution exploits recent efficient
approaches for updating the structure of an existing lifted network with small changes
to the evidence, as we have shown in Ch. 5.

While conditioned lifted LBP is efficient for updating the structure of an existing
lifted network with incremental changes to the evidence, it still needs to construct a
separate lifted network in the inference stage for each evidence case and run a modified
message passing algorithm on each lifted network separately. Consequently, symmetries
across the inference tasks are not exploited for inference.

An investigation of the question of whether we can achieve additional efficiency
gains by exploiting symmetries across the inference tasks leads to our main contribution
of this chapter: multi-evidence lifting.

In multi-evidence lifting, we first construct the ground networks for all inference
tasks. We then run color passing on the union of these networks to compute the joint
lifted network that automatically exploits symmetries across inference tasks. Finally,
we run a modified message passing algorithm on the joint lifted network that simulates
message passing on each ground network in parallel. Intuitively, this sacrifices space
complexity for a lower time complexity, and the naı̈ve approach of lifting the joint net-
work will not scale well to large problem sizes. Consequently, we develop an efficient
sequential lifting variant that computes the joint lifted network by considering evidence
sequentially rather than jointly.

As our experiments show, multi-evidence LGaBP1 and its sequential variant can
yield significantly faster inference than naı̈ve LGaBP and GaBP on synthetic problems
and the real-world problems of PageRank and Kalman filter computation.

6.1 Multi-Evidence Lifting
Both applications considered here — lifted PageRank and Kalman filtering — require
the inversion of very large, structured real-valued matrices. As shown previously, this
task can be reduced to the problem of solving several linear systems with GaBP — more
precisely, calling GaBP multiple times, each time with a different evidence case.

Returning to our running example, inverting A from Eq. (3.4) using GaBP results in

1We focus here on matrix inversion, but multi-evidence lifting is generally applicable, also
to discrete domains.
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Figure 6.1: Lifted graphical models produced when inverting A in Eq. (3.4) using
LGaBP. An edge from i to j encodes potential ψij . The φ potentials are associated
with the nodes. (a) Colored network when computing Ax1 = e1. All nodes get dif-
ferent colors; no compression and lifted inference is essentially ground. (b) Colored
network for Ax2 = e2. Again no compression. Note, however, the symmetries between
(a) and (b). (c) Colored network for Ax3 = e3. Nodes x1 and x2 get the same color and
are grouped together in the lifted network (d).

three graphical models, each of size 3/9 (nodes/potentials). Given the recent success of
LLBP approaches, we ask “can we do better?” A first attempt to affirmatively answer the
question is to simply replace GaBP with LGaBP for each evidence case ei as illustrated
in the three lifted graphical models of Figs. 6.1(a–d). In general, this single-evidence
lifting approach is illustrated in Fig. 6.2(a). Due to lifting, we can hope to greatly reduce
the cost of inference in each iteration.

For our running example, this results in two ground networks both of size 3/9 and
one lifted network of size 2/5 shown respectively in Figs. 6.1(a,b) and (d). Thus, the
total size (sum of individual sizes) drops to 8/23 compared to the GaBP case. This
LGaBP approach — as we will show in our experiments — can already result in con-
siderable efficiency gains. However, we can do even better. Repeatedly constructing the
lifted network for each new evidence case can be wasteful when symmetries across mul-
tiple evidence cases are not exploited (e.g., the common 0’s amongst all ei). Compare,
for example, the graphs depicted in Fig. 6.1(a) and (b). These two networks are basi-
cally symmetric which is not exploited in the single-evidence case.They stay essentially
ground if they are processed separately. To overcome this, we propose multi-evidence
lifting (as illustrated in Fig. 6.2(b) for inverting a matrix):
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Figure 6.2: Inverting a matrix A using multi-evidence lifting. (a) Single-evidence lifting runs LGaBP solving Axi = ei for each i = 1, 2, . . . , n separately; ei
denotes the ith basis vector; thus LGaBP computes each column vector of A−1 separately. (b) Multi-evidence lifting runs LGaBP on the joint graphical model of
Axi = ei for i = 1, 2, . . . , n; thus LGaBP computes A−1 for all ei at once. (c) Sequential multi-evidence lifting directly builds the lifted joint graphical model in a
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6.2. SEQUENTIAL MULTI-EVIDENCE LIFTING

compute the graphical models of each evidence case, form their union, and
run LGaBP on the resulting joint graphical model.

This automatically employs the symmetries within and across the evidence cases due
to Theorem 3.3.2. In our running example, we get a single lifted graph of size 5/14.
Intuitively, multi-evidence lifting only produces (in this example) one of the two ground
networks and hence consists of the union of the networks shown in Figs. 6.1(a) and (d).
This is clearly a reduction compared to LGaBP’s size of 8/23.

However, there is no free lunch. Multi-evidence lifting sacrifices space complexity
for a lower time complexity. Inverting a n × n matrix may result in a joint ground
graphical model with n2 nodes (n nodes for each of the n systems of linear equations)
and O(n3) edges (O(n2) edges for each of the n systems of linear equations; edges are
omitted if Aij = 0). This makes multi-evidence essentially intractable for large n. For
instance, already for n > 100 we have to deal with millions of edges, easily canceling
the benefits of lifted inference. We develop an efficient sequential multi-evidence lifting
approach that computes the joint lifted network by considering one evidence case after
the other (Fig. 6.2(c)).

Indeed, one is tempted to employ conditioned LLBP, as just introduced in Ch. 5,
for updating the structure of an existing lifted network with incremental changes to
the evidence to solve the problem. While employing the symmetries in the graphical
model across multiple evidence cases for the lifting, in the inference stage they need to
construct a separate lifted network for each evidence case and run a modified message
passing algorithm on each lifted network separately. Thus, symmetries across evidence
cases are missed.

6.2 Sequential Multi-Evidence Lifting
We seek a way to efficiently construct the joint lifted network while still being able
to lift across multiple evidence cases. To do this, we can modify sequential single-
evidence lifting to the multi-evidence case. Ch. 5 gives a clear characterization of the
core information required for sequential clamping for lifted message passing, namely
the shortest-paths connecting the variables in the network which resemble the computa-
tion paths along which the nodes communicate in the network.

Recall that to be able to adapt the lifted network for incoming evidence in the single-
evidence case, we compute in a first step the set of shortest paths connecting any two
nodes in the graph. Now, when there is new evidence for a node, the adapted lifted
network is computed as a combination of the nodes’ initial coloring, i.e., the lifting
without evidence, and the set of shortest paths to the nodes in our evidence.

Algorithm 8 describes how we can adapt this to the multi-evidence case. Intuitively,
we would like to view each Axi = ei (i = 1, 2, . . . , n) as conditioning an initial network
on node i and efficiently compute its contribution to the resulting lifted joint network
directly from the initial one. But what should be the initial network? It is not provided
by the task itself. Thus, to be able to efficiently find the lifted network structure, we
propose to introduce an additional system of linear equations, namely the one with no
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Algorithm 8: Sequential Multi-Evidence Lifted GaBP
Input: Matrix A

1 Construct network G0 for Ax = 0;
2 Compute path color matrix PC on G0;
3 Lift G0 to obtain lifted network H0;
4 foreach unit vector ei do
5 colors(Hi) = colors(H0);
6 evidence = {i:Aii};
7 repeat
8 colors(Hi) = newColor (H0, PC, evidence);
9 Add nodes that have changed color to evidence;

10 until colors(Hi) does not change;
11 if Hi is previously unseen then
12 Add Hi to joint lifted network H{1,..,i−1}
13 else
14 Bookmark the corresponding index j
15 Run modified GaBP on joint lifted network H{1,..,n};
16 return X = (x1, x2, . . . , xn), the inverse of A;

evidence: Ax = 0 (Alg. 8, line 1). Indeed, it is not needed in the inversion task per se
but it allows us to significantly speed up the multi-evidence lifting process. Each ei only
differs from 0 in exactly one element so it serves as the basis for lifting all subsequent
networks. To do this, we compute the path colors for all pairs of nodes (line 2) to know
how it affects the other nodes when conditioning on a variable i and the initial lifting
without evidence (line 3). The lifted graph Hi for the ith system of linear equations
Axi = ei can now be adaptively computed by combining the initial lifting and the path
colors to node i (line 8). The combination is essentially an element-wise concatenation
of the two respective vectors.

Example 6.2.1. Consider computing the lifted network for Ax3 = e3 for our running
example. When we have no evidence the nodes x1 and x2 are clustered together, and
x3 is in a separate cluster. Thus, we obtain an initial color vectorC = (0, 0, 1). Since
we want to compute the network conditioned on x3 we have to combine this initial
clustering C with the path colors with respect to x3,

PCx3 = ({3, 5}, {3, 5}, ∅) = (0, 0, 1) .

To obtain the lifted network conditioned on x3 we have to (1) do an element-wise
concatenation (in the following depicted by ⊕) of the two vectors and (2) interpret
the result as a new color vector:

H3 = (0, 0, 1)⊕ (0, 0, 1) =(1) (00, 00, 11) =(2) (2, 2, 3) .

Since only the shortest paths are computed, adapting the colors has to be performed
iteratively to let the evidence propagate as in Ch. 5.
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Moreover, we can implement a type of memoization when we perform the lifting
in this fashion. Because we know each resulting lifted network Hi in advance, we can
check whether an equivalent lifted network was already constructed: if the same color
pattern exists already, we simply do not add Hi and instead only bookmark the corre-
spondence of nodes (line 11-14) 1. This does not affect the counts at all and, hence, still
constructs the correct joint lifted network. This argument together with the correctness
of the sequential single-evidence lifting and multi-evidence lifting effectively proves the
correctness of sequential multi-evidence lifting:

Theorem 6.2.2. Sequential multi-evidence lifting computes the same joint lifted model
as in the batch case. Hence, running the modified GaBP on it produces the same
marginals.

Proof. In the following let Gi denote a factor graph, Gi its corresponding lifting and Hi

the shortest-paths lifting. Sequential multi-evidence lifting first lifts the model without
evidence to obtain H0 = G0, then adapts this lifting to all the evidence cases we have,
i.e., to lifted networks H1, . . . , Hn. There are two differences to the case of jointly
lifting the whole model, namely (i) each lifted network Hi, i = 1, . . . , n, is obtained
from H0 using the shortest-paths and the new evidence and (ii) the joint lifted network
is built sequentially.

Th. 5.3.1 proves the first part, that is, lifting the networks using shortest-paths lifting
and adapting the lifted networks Hi from H0 we obtain the same results as lifting from
scratch, that is, Hi = Gi, i = 1, . . . , n.

We prove the second part, G = H , by contradiction. Suppose the two lifted net-
works G and H are different. Then there exists a variable node X that is in supernode
X1 in G and in supernode X2 in H , X1 6= X2; or similarly for some superfactor f.

Thus, there has to be a difference in the shortest paths of X . In the respective
CCTs there has to be a path in CCTH that does not exist in CCTG, or vice versa.
However, since EG ⊇ EGi , every path from Gi is necessarily included in G and in
turn CCTG ⊇ CCTH . So is there a path that exists in G but not in H? Since the joint
networkG is the union of theGi and in particular the set of edgesE =

⋃
i∈1,...,nEi, there

are no edges connecting nodes from different subnetworks and CCTG ⊆ CCTH .

Evaluation
Our intention here is to investigate the following questions:

(Q6.1) Can LGaBP be faster than GaBP?

(Q6.2) Can multi-evidence lifting produce smaller inference problems than single-evidence
lifting?

1This is not as hard as solving (sub)graph-isomorphisms. We only have to check whether
two networks have the same colorings. If the color pattern of Hi was previously seen, the result
has already been memoized.
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Figure 6.3: Experimental results on random matrices showing the total number of po-
tentials, the number of messages and the CPU-time respectively. One can see, SME-
LGaBP < ME-LGaBP < LGaBP < GaBP for all cases (best viewed in color)

(Q6.2) Does sequential multi-evidence lifting scale better than just multi-evidence lift-
ing.

We implemented all variants in Python using the LIBDAI library1 and evaluated their
performances on (a) random matrices, (b) PageRank computations of graphs induced by
a Markov logic network (MLN), and (c) Kalman filtering problems. The GaBP variants
ran using parallel message updates, no damping and convergence threshold ε = 10−8.
They all converged within ε of the correct solution.

Inverting Random Matrices
We generated a random matrix R ∈ R20×20 with Rij ∈ [0, 1] and added 10 to the
diagonal to ensure non-singularity. Using R, we constructed a diagonal matrix with

1http://www.libdai.org/
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1, 2, 4 and 8 blocks. On each of the matrices we run all four algorithms measuring the
number of potentials created and total messages sent (including coloring messages),
and the CPU time. Figs. 6.3(a)-(c) show the results averaged over 10 random reruns.
As one can see, SME-LGaBP < ME-LGaBP < LGaBP < GaBP in terms of the size of
the networks measured by the number of potentials (a). In turn, the two multi-evidence
approaches are also more efficient as shown by the number of messages sent (b) and
the CPU-time in seconds in (c). Furthermore, note that sequential ME-LGaBP and ME-
LGaBP create — as expected — the same number of potentials and significantly less
than the other two GaBP and LGaBP(b).

Lifted Personalized PageRank
Recall the problem of ranking web pages already touched upon which among other
important AI tasks, motivated our multi-evidence lifting approach.

In a nutshell, a Markov chain transition matrix M is constructed out of a given
graph G. Let A be the n× n adjacency matrix of G, that is, Aij = 1 if there is an edge
from vertex j to vertex i and zero otherwise. PageRank now constructs the probability
transition matrix M by adding 1/n to all entries of A and renormalizes each row of A
to sum to 1.

The random walk now defines a Markov chain on the vertices, with transition matrix
α·U+(1−α)M where U is the transition matrix of uniform transition probabilities, i.e.,
Uij = 1/n for all i, j, and α is the so called teleportation probability that the random
walk follows this uniform distribution; Google usually takes p = 0.85. The vector of
PageRank scores p for all vertices v is then defined to be the stationary distribution of
this Markov chain: (

α ·U + (1− α)M
)
· p = p (6.1)

Because elements of α · U + (1 − α)M are all strictly between zero and one and
its row sums are all equal to one, the Perron-Frobenius Theorem applies to it and con-
cludes that a nonzero solution of the equations exists and is unique to within a scaling
factor. Recently, Bickson et al. have shown how to compute the personalized PageRank
distributively and efficiently using GaBP [15]. Hence, we can also plug in LGaBP in
place of GaBP to compute the PageRank in a lifted fashion.

In several PageRank applications, however, one needs to know, in addition to the
rank of a given page, which pages or sets of pages contribute most to its rank. These
PageRank contributions have been used for link spam detection and in the classification
of web pages. The contribution that a vertex v makes to the PageRank of a vertex u is
defined rigorously in terms of personalized PageRank for all vertices, i.e., for vi = ei,
i = 1, 2, . . . , n. So, we are interested in PRMα — the matrix whose u-th row is
the personalized PageRank vector of u. The PageRank contribution of u to v is then
the entry (u, v) of this matrix. This, personalized PageRank can then be computed by
solving the following system of linear equations

(I− αM)x = v (6.2)
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Figure 6.4: Experimental results on PageRank computations. showing the total number
of potentials, the number of messages and the CPU-time respectively. One can see,
SME-LGaBP < ME-LGaBP < LGaBP < GaBP for all cases (best viewed in color)

where α trades off speed of convergence with the accuracy of the solution and I is
the identity matrix.

We can now make use of multi-evidence lifting to compute the inverse of (I−αM).

We computed PRM0.9 for the ground network induced by the Friends & Smokers
Markov logic network [134]. We varied the number of people in the domain, namely
3, 5, 10. Figs. 6.4 (a)–(c) show the results. The total number of (lifted) potentials (a),
total numbers of messages sent (b) and the total CPU times in seconds (c) per PRM0.9

computation averaged over 10 runs are shown. Again one can see, SME-LGaBP < ME-
LGaBP < LGaBP < GaBP. In particular, we see the benefit of multi-evidence lifting.
The number of generated potentials saturates for more than 3 people whereas single-
evidence lifting generates more and more potentials. Furthermore, we can again see
the additional benefit we gain by sequentially lifting the models. Although ME-LGaBP
achieves additional benefits from lifting the whole model and thereby exploiting sym-
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metries across evidence cases, it may suffer from having to handle significantly larger
networks at once. SME-LGaBP on the other hand combines lifting across evidence
cases with an efficient per evidence case lifting.

Lifted Kalman Filter
Kalman Filtering is a computational tool with widespread application in robotics, finan-
cial and weather forecasting, and environmental engineering. Given observation and
state transition models, the Kalman Filter (KF) recursively estimates the state x ∈ Rn

of a discrete-time controlled process that is governed by the linear stochastic difference
equation

xk = Axk−1 + Buk−1 + wk−1 (6.3)

with a measurement z ∈ Rm, that is,

zk = Hxk + vk . (6.4)

Here, wk and vk represent the process and measurement noise (respectively) and are
assumed to be independent (of each other), white, and with normal density, i.e., p(w) ∼
N(0,Q) and p(v) ∼ N(0,R). The matrix A relates consecutive states xk−1 and xk.
The matrix B relates the optional control input u to the state, and H relates the state to
the measurement z. In practice, the matrices A,B,H,Q and R might change with each
time step or measurement, however, here we assume they are constant.

Now, each step of the KF consists of two updates: compute a time and a measure-
ment update. To compute the time update:

x̂−k = Ax̂k−1 + Buk−1 (6.5)
P−k = APk−1A

t + Q (6.6)

Then, in the measurement updates

Kk = P−kH
t
(
HP−kH

t + R
)−1 (6.7)

x̂k = x̂−k + Kk

(
zk −Hx̂−k

)
(6.8)

Pk = (I−KkH)P−k (6.9)
P−k = APk−1A

t + Q (6.10)

where Kk is often called the Kalman gain. Thus, the Kalman filter requires to invert a
matrix at every time step allowing us to apply multi-evidence lifting.

One of the challenges of tracking multiple objects is how to correctly assign the ob-
servations to the respective object of the Kalman filters. This is difficult as there may
be temporary occlusions, for example, or very close measurements that makes it hard
to match the new observations to the previous iteration. We formulate the association
task as a linear assignment problem which identifies the desired association as the one
that minimizes a summed assignment cost of pairings between blob observations and
Kalman filters. Once this is accomplished multiple object tracking is a matter of updat-
ing each Kalman filter with its associated observation.
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Figure 6.5: Experimental results for Kalman filtering with varying degree of motion
symmetries. For motion symmetries ratio of 0 single-evidence lifting is faster. With
higher amount of symmetries multi-evidence lifting significantly outperforms single-
evidence lifting. (best viewed in color)

The task is to ensure that the overall assignment is the most likely one, given a cost
function, while respecting matching constraints (see e.g. [73]). In this work we do not
solve the problem and work with a simplified version.

In our experiments, we tracked 10 people randomly spread among k groups. Each
group had its own (local) motion model (mm). We varied the number of groups: 1 (all
people have the same mm), 5 (two people have the same mm), and 10 (everybody has its
own mm). Figs. 6.5 shows (a) the total number of (lifted) potentials, (b) the total number
of messages sent and (c) the CPU times in seconds averaged over all matrix inversion
tasks in a Kalman filtering over 10 steps (GaBP is omitted). It clearly shows: the larger
the number of groups, the lower the gain of (sequential) multi-evidence lifting. For
10 groups, when there are no mm symmetries — motion symmetries ratio 0 — across

106



EVALUATION

people, single-evidence lifting is faster. However, when we have symmetries across
evidence cases — 5 and 1 groups, i.e., ratios of 0.5 and 1.0 — ME lifting significantly
outperforms single-evidence lifting.

All experimental results together clearly answer questions (Q6.1)-(Q6.3) affirma-
tively.
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So far and yet to come

In the first part we tackled the problem of efficient inference in graphical
models and have shown how to employ symmetries to speed up inference by
loopy belief propagation.

We focused on a number of different queries for graphical models and im-
portant AI tasks such as Boolean satisfiability and model counting, content
distribution, linear programming, Markov decision processes, and Kalman
filters, and showed that by compressing the graph lifted LBP can compute
marginal probabilities very efficiently.

There are a number of approaches to speed up training in probabilistic
graphical models in general. These approaches include parallelization,
approximation of the marginals or the objective, or local training among
others. Now that we have reached efficient inference by exploiting sym-
metries in the model, so why not just making use of the same techniques
to improve training of relational models – which are a prominent example
where symmetries abound?

Indeed, multi-evidence lifting, for example, as we introduced in the previous
chapter in the context of GaBP, is also applicable in discrete cases, and we
can use it to perform training of graphical models.

We performed parameter estimation – another natural case for multi-evidence
lifting – in discrete domains. For the Friends & Smokers MLN with ten peo-
ple. we maximized the conditional marginal log-likelihood (CMLL) using
scaled conjugate gradient (SCG) for 10 data cases sampled from the joint
distribution. Our results in Table 6.1 show that we can perform lifted LBP
which took 0.089 seconds for a single iteration — already a reduction com-
pared to LBP’s 0.1 sec. — but ME-LLBP exploits the additional symmetries
across the data cases resulting in smaller networks and more efficient infer-
ence and in turn took only 0.049 sec.

#Potentials #Messages Time (sec.)
LBP 4600 38700 0.101
LLBP 1547 23817 0.089
ME-LLBP 322 19235 0.049

Table 6.1: Results for parameter estimation in discrete domains. MEL-GaBP
results in a smaller overall network size (number of variables and potentials)
and thus a smaller number of messages and faster inference (CPU-time).

While this is a very promising initial attempt for a lifted training approach,
the results only tell half of the story. As we have learned in Sec. 2.2.2,
each iteration of parameter estimation typically involves inference over two
instances of the model: one without any evidence and one with evidence
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which is provided by the data we train the model on. The previous chap-
ters have shown that evidence causes harm to lifted approaches in that it
may render them useless. This is exactly what happens here. The lifting
only happens in the evidence free part and the data case mostly remains
grounded. Unfortunately, it is not easy to exploit the symmetries in the data
part and thus lifting has not been used for training yet, let alone combining
symmetry exploiting approaches with traditional scaling techniques.

In the second part we will show how to overcome the limitations that pre-
vented the use of lifting in training and we will show how the symmetries
can be used to efficiently train relational graphical models.

After introducing lifted online training of relational models in Ch. 7, we will
show how to further scale up the lifted training with a fully parallel lifted
inference approach. Therefore we introduce MapReduce lifting for loopy
belief propagation in Ch. 8.
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Symmetries in Training
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7
Lifted Online Training of Relational Graphical

Models

7.1 Relational Tree Shattering . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Lifted Online Training via Stochastic Meta-Descent . . . . . . . . . 119

When training a relational model for a given set of observations the presence of evidence
on the variables mostly destroys the symmetries. This makes lifted approaches virtually
of no use if the evidence is asymmetric. In the fully observed case, this may not be
a major obstacle since we can simply count how often a clause is true. In relational
learning, however, we typically face a single large set of inter-connected facts – the
mega-example – which unfortunately is incomplete in many real-world domains, i.e.,
the truth values of some ground atoms may not be observed. For instance, in medical
domains, a patient rarely gets all of the possible tests. In case of missing data, however,
the maximum likelihood estimate typically cannot be written in closed form. It is a
numerical optimization problem, and typically involves nonlinear, iterative optimization
and multiple calls to a relational inference engine as subroutine.

Since efficient lifted inference is troublesome in the presence of partial evidence
and most lifted approaches easily fall back to the ground case, we need to seek a way
to make the learning task tractable. As we have seen in Sec. 2.2.2 one way to cope with
large complex network is to decompose a factor graph into tractable pieces and to train
these pieces independently and to thus exploit symmetries across multiple pieces for
lifting.

Intuitively, however, this discards dependencies of the model parameters when we
decompose the mega-example into pieces. Although the piecewise model helps to sig-
nificantly reduce the cost of training, the way we shatter the full model into pieces
greatly effects the learning and lifting quality. Strong influences between variables
might get broken. Consequently, in Sec. 7.1 we propose a shattering approach that aims
at keeping strong influence but still features lifting. The lifted online training approach
introduced in Sec. 7.2 can greatly benefit from these tree-pieces.
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(a) Orig. model (b) Depth d = 0 (c) Depth d = 1 for f1 and f3 (d) Trees d = 1

Figure 7.1: Schematic factor-graph depiction of the difference between likelihood (a),
standard piecewise (b,c) and treewise training (d). Likelihood training considers the
whole mega-example, i.e., it performs inference on the complete factor graph induced
over the mega-example. Piecewise training normalizes over one factor at a time (b) or
higher-order, complete neighborhoods of a factor (c) taking longer dependencies into
account, here shown factors f1 and f3. Treewise training (d) explores the spectrum
between (b) and (c) in that it also takes longer dependencies into account but does not
consider complete higher neighborhoods; shown for tree features for factors f1 and f3.
In doing so it balances complexity and accuracy of inference.

7.1 Relational Tree Shattering

Assume that the mega-example has been turned into a single factor graph for performing
inference, cf. Fig. 7.1(a). Now, starting from each factor, we extract networks of depth
d rooted in this factor. A local network of depth d = 0 thus corresponds to the standard
piecewise model as shown in Fig. 7.1(b), i.e., each factor is isolated in a separate piece.
Networks of depth d = 1 contain the factor in which it is rooted and all of its direct
neighbors, Fig. 7.1(c). Thus when we perform inference in such local models using say
loopy belief propagation the messages in the root factor of such a network resemble the
LBP messages in the global model up to the d-th iteration. Longer range dependencies
are neglected. A small value for d keeps the pieces small and makes inference and
hence training more efficient, while a large d is more accurate. However, it has a major
weakness since pieces of densely connected networks may contain considerably large
subnetworks, rendering the standard piecewise learning procedure useless. To overcome
this, we now present a shattering approach that randomly grows piece patterns forming
trees.

Formally, a tree is defined as a set of factors such that for any two factors f1 and fn
in the set, there exists one and only one ordering of (a subset of) factors in the set f1,
f2 , . . . fn such that fi and fi+1 share at least one variable, i.e., there are no loops. A
tree of factors can then be generalized into a tree pattern, i.e., conjunctions of relational
”clauses” by variablizing their arguments. For every clause of the MLN we thus form
a tree by performing a random walk rooted in one ground instance of that clause. This
process can be viewed as a form of relational pathfinding [133].

Note that, the term shattering has previously been defined in a slightly different way.
In the context of lifted inference, a set of first-order factors or clauses are often called
shattered, if the following two conditions hold (see e.g. [40]):
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Algorithm 9: RELTREEFINDING: Relational Treefinding
Input: Set of clauses F, a mega example E, depth d, and discount t ∈ [0, 1]
Output: Set of tree pieces T
// Tree-Pattern Finding

1 Initialize the dictionary of tree patterns to be empty, i.e., P = ∅ ;
2 for each clause Fi ∈ F do
3 Select a random ground instance fj of Fi;
4 Initialize tree pattern for Fi, i.e., Pi = {fj} ;

// perform random walk in a breadth-first manner
starting in fj

5 for fk = BFS.next() do
6 if current depth > d then break;
7 sample p uniformly from [0, 1] ;
8 if p > t|Pi| or fkwould induce a cycle then
9 skip branch rooted in fk in BFS ;

10 else
11 add fk to Pi;
12 Variabilize Pi and add it to dictionary P ;
// Construct tree-based pieces using the relational

tree patterns
13 for each fj ∈ E do
14 Find Pk ∈ P matching fj , i.e., the tree pattern rooted in the clause Fk

corresponding to factor fj;
15 Unify Pk with fj to obtain piece Tj if possible and add Tj to T ;
16 return T ;

(i) For any pair the set of groundings are either equal or disjoint, that is, they do not
overlap.

(ii) For every clause, the random variables contained are either the same or can not
be grounded to the same ground variable.

Example 7.1.1. The set

{Friends(Anna, y), F riends(x, y)} , x, y ∈ Anna,Bob

violates condition (i) since both can be grounded to Friends(Anna, Bob) but only the
second clause can be grounded to Friends(Bob, Anna). The clause

Friends(x,Anna)↔ Friends(Bob, y)

violates condition (ii) since both variables can be grounded to Friends(Bob,Anna).
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English First-Order Logic Weight
Only one person can be promoted Promotion(x)⇔!Promotion(y) 2.0
A promotion comes with an increased income Promotion(x)⇒ HighIncome(x) 1.5

Promotion(x)⇒!HighIncome(y) 1.1

Table 7.1: Example of a Markov Logic network about promotions and a resulting raise
in income. Grounding this example leads to the ground model in Fig. 7.2

In our shattering, however, the trees (sets of factors) may overlap. Since we do not
allow partial groundings and constrained quantifiers the second condition holds.

The relational treefinding is summarized in Alg. 9. For a given set of Clauses F
and a mega example E the algorithm starts off by constructing a tree pattern for each
clause Fi (lines 1-12). Therefore, it first selects a random ground instance fj (line 3)
from where it grows the tree. Then it performs a breadth-first traversal of the factor’s
neighborhood and samples uniformly whether they are added to the tree or not (line
7). If the sample p is larger than t|Pi|, where t ∈ [0, 1] is a discount threshold and |Pi|
the size of the current tree, or the factor would induce a cycle, the factor and its whole
branch are discarded and skipped in the breadth-first traversal, otherwise it is added to
the current tree (lines 8-11). A small t basically keeps the size of the tree small while
larger values for t allow for more factors being included in the tree. The procedure
is carried out to a depth of at most d, and then stops growing the tree. This is then
generalized into a piece-pattern by variablizing its arguments (line 12). All pieces are
now constructed based on these piece patterns. For fj we apply the pattern Pk of clause
Fk which generated the factor (lines 13-15).

These tree-based pieces can balance efficiency and quality of the parameter estima-
tion well. To see this, let us have a look at the following example.

Example 7.1.2. Tab. 7.1 shows an example MLN. It has three rules stat-
ing that there is only one position available and if a person gets a promo-
tion the income will be high. Grounding this example for a domain with
two constants Anna and Bob leads to the ground model in Fig. 7.2 (left).
In fact, grounding the MLN would lead to more factors however for il-
lustration purposes we assume, e.g., “Promotion(Anna)⇔!Promotion(Bob)”
and “Promotion(Bob)⇔!Promotion(Anna)” are simplified to a single factor.
Fig. 7.2(center) shows the set of clauses that corresponds to the tree rooted in the
factor f3 where green colors show that the factors have been included in the piece
while all red factors have been discarded. The neighborhood of the factor f3 which
corresponds to the ground clause

Promotion(Anna)⇔!Promotion(Bob)

is traversed in a breadth-first manner, i.e., first its direct neighbors in random order.
Assume we have first reached the factor f4 =

Promotion(Bob)⇒ HighIncome(Bob) .
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Promotion(Anna)

Promotion(Bob)HighIncome(Anna)

HighIncome(Bob)

Promotion(Anna) <=> !Promotion(Bob)

Promotion(Anna) => !HighIncome(Bob)

Promotion(Anna) => HighIncome(Anna)

Promotion(Bob) => HighIncome(Bob)

Promotion(Bob) => !HighIncome(Anna)

root clause

neighboring clauses

Promotion(Anna) <=> !Promotion(Bob)

Promotion(Bob) => HighIncome(Bob)

Promotion(Bob) => !HighIncome(Anna)

Tree (set of clauses)

Promotion(X) <=> !Promotion(Y)

Promotion(Y) => HighIncome(Y)

Promotion(Y) => !HighIncome(X)

Variabilized tree

Figure 7.2: Illustration of tree shattering for a factor graph (top row) and for the corre-
sponding Markov logic network from Tab. 7.1 for a domain with two persons (bottom
row): from the original model (left) we compute a tree piece (center). Starting from
factor f3 (the root clause), we randomly follow the tree-structured “unrolling” of the
graphical model rooted at f3. Green shows that the factor has been included in the ran-
dom walk while all red factors have been discarded. This results in the tree pattern for
f3 shown on the right hand side. A similar random walk generated the other shown tree
pattern for f1 (top right). The resulting tree is variablized (bottom right) to be applied
to other instantiations of the MLN clause.

The two ground clauses share the ground atom Promotion(Bob). We uniformly sam-
ple p ∈ [0, 1]. It was small enough, say p = 0.3 < (0.9)1, so f4 is added to the tree.
For the ground clause f2 =

Promotion(Anna)⇒ HighIncome(Anna)

we sample p = 0.85 > (0.9)2 so f2 and all of its branches are discarded. Continuing,
for the next ground clause f1 =

Promotion(Anna)⇒ HighIncome(Bob)

we sample p = 0.5 < (0.9)2 so f1 could be added. If we added f1, however, it would
together with f3 and f4 form a cycle, so its branch is discarded. For f5 =

Promotion(Bob)⇒ HighIncome(Anna)

we sample p = 0.4 < (0.9)2 so it is added to the tree. Note that now we cannot
add any more edges without including cycles. The set of clauses is then variablized,
as shown in Fig. 7.2(right), to obtain the tree pattern Pk that can be applied to all
groundings of the clause the root originated from.

Promotion(Anna)⇔ !Promotion(Bob)
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was the root clause of the tree pattern. Thus if we encounter another ground instance
of the same clause, in this case

Promotion(Bob)⇔!Promotion(Anna) ,

we find the substitution to apply this pattern, e.g.,

Pk{X 7→ Bob, Y 7→ Anna} .

If the substitution is not unique, for example, when we have more than two co-workers
seeking for a promotion, we choose a variable at random.

In case a pattern is not applicable we apply it to the root clause, which is always
possible, and as far down the tree as we can, sacrificing lifting potential for that par-
ticular piece. The connectivity of a piece and thereby its size can be controlled via the
discount t. In this way, we include longer range dependencies in our pieces without sac-
rificing efficiency. And more importantly, by forming tree patterns and applying them
to all factors we ensure that we have a potentially high amount of lifting: Since we have
decomposed the model into smaller pieces, the influence of the evidence is limited to a
shorter range and hence allows lifting the local models.

Maximum-likelihood learning can be phrased in terms of maximizing the log-partition
functionA(θ) of a graphical model, and we can actually use a network decomposed into
trees to minimize an upper bound onA(θ), i.e., we introduce a piecewise approximation
of maximum likelihood training of relational models.

This follows from the convexity of A(θ). To see why this is the case, we first write
the original parameter vector θ as a mixture of parameter vectors θTt induced by the
non-overlapping tractable subgraphs.1 For each edge in our mega-example E, we add a
tree Tt which contains all the original vertices but only the edges present in t. With each
tree Tt we associate an exponential parameter vector θTt . Let µ be a strictly positive
probability distribution over the non-overlapping tractable subgraphs of each clause,
such that the original parameter vector θ can be written as a combination of per-tree
clause parameter vectors

θ =
∑
F

∑
t∈F

µt,F θTt ,

where we have expressed parameter sharing among the ground instance of the clauses.
Now using Jensen’s inequality, we can state the following upper bound to the log parti-
tion function:

A(θ) = A(
∑
F

∑
t∈F

µt,F θTt) = A(
∑
t

µtθTt) ≤
∑
t

µtA(θTt) (7.1)

with µt =
∑

F µt,F . Since the µt,F are convex, the µt are convex, too, and applying
Jensen’s inequality is safe. So we can follow Sutton and McCallumn’s [149] arguments.

1The subgraphs produced by Alg. 9 may overlap. We will show how to account for this in
Sec. 7.2
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Namely, for tractable subgraphs and a tractable number of models the right-hand side
of Eq. (7.1) can be computed efficiently. Generally, it forms an optimization problem,
which according to [160] can be interpreted as free energy and depends on a set of
marginals and edge appearance probabilities, in our case the probability that an edge
appears in a tree, i.e., is visited in the random walk. Also, it is easy to show that standard
pieces, i.e., one factor per piece, are an upper bound to this bound since, we can apply
Jensen’s inequality again when breaking the trees into independent paths from the root
to the leaves.

Now, we show how to turn this upper bound into a lifted online training for relational
models.

7.2 Lifted Online Training via Stochastic Meta-Descent
Stochastic gradient descent algorithms update the weight vector in an online setting. We
essentially assume that the pieces are given one at a time. The algorithms examine the
current piece and then update the parameter vector accordingly. They often scale sub-
linearly with the amount of training data, making them very attractive for large training
data as targeted by statistical relational learning. To reduce variance, we may form
mini-batches consisting of several pieces on which we learn the parameters locally. In
contrast to the propositional case, however, mini-batches have another important advan-
tage: we can now make use of the symmetries within and across pieces for lifting.

The bound of Eq.(7.1) holds for tree pieces that partition the graph into disjoint
sets of factors. The relational tree shattering finds a pattern for each clause and applies
it to all the ground instances. To cope for the multiplicity introduced we normalize the
gradient by the number of appearances of a clause. More formally, the gradient in (2.13)
is approximated by ∑

i
#−1
i ·

∂`(θ,Di)

∂θk
, (7.2)

where the mega-example D is broken up into pieces respectively mini-batches of pieces
Di. Here the vector #i denotes a per-clause normalization that counts how often each
clause appears in mini-batch Di and · is the component-wise multiplication. This is
a major difference to the propositional case and avoids “double counting” parameters
which otherwise would be the case when training from the tree pieces due to potential
multiplicity of factors. Recall that we build a piece from every grounding of each clause.
During the random walk ground clauses can be visited repeatedly such that they appear
in multiple different pieces. The normalization by #i accounts for this fact. Let gi be
a gradient over the the mini-batch Di. For a single piece we count how often a ground
instance of each clause appears in the piece Di. If Di consists of more than one piece
we add the count vector of all pieces together. For example, if for a model with 4
clauses the single piece mini-batch Di has counts (1, 3, 0, 2) the gradient is normalized
by the respective counts. If the mini-batch, however, has an additional piece with counts
(0, 2, 1, 0) we normalize by the sum, i.e. by (1, 5, 1, 2).

Since the gradient involves inference per batch only, inference is again feasible and
more importantly liftable. Consequently, we can scale to problem instances traditional
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Algorithm 10: Lifted Online Training of Relational Models
Input: Markov Logic Network M , mega-example E, decay factors t, γ, and λ
Output: Parameter vector θ
// Generate mini-batches

1 Generate set of tree pieces T using RELTREEFINDING;
2 Randomly form mini-batches B = {B1, . . . , Bm} each consisting of l pieces;
// Perform lifted stochastic meta-descent

3 Initialize θ and v0 with zeros and the covariance matrix C to the zero matrix;
4 while not converged do
5 Shuffle mini-batches B randomly;
6 for i = 1, 2, . . . ,m do
7 Compute gradient g for Bi using lifted loopy belief propagation;
8 Update covariance matrix C using (7.3) or some low-rank variant;
9 Update parameter vector θ using (7.4) and the involved equations;

10 return θ;

relational methods can not easily handle. However, the asymptotic convergence of first-
order stochastic gradients to the optimum can often be painfully slow if , e.g., the step-
size is too small. One is tempted to just employ standard advanced gradient techniques
such as L-BFGS. As the gradient is stochastically approximated by random subsamples,
the measurements are inherently noisy. This confuses the line searches of conjugate
gradient and quasi-Newton methods as conjugacy of the search direction over multiple
iterations can not be maintained [141]. Gain adaptation methods like Stochastic Meta-
Descent (SMD) overcome these limitations by using second-order information to adapt
a per-parameter step size [159]. However, while SMD is very efficient in Euclidean
spaces, Amari [6] showed that the parameter space is actually a Riemannian space of
the metric C, the covariance of the gradients. Consequently, the ordinary gradient does
not give the steepest direction of the target function which is instead given by the natural
gradient, that is, byC−1g. Intuitively, the natural gradient is more conservative and does
not allow large variances. If the gradients highly disagree in one direction, one should
not take the step. Thus, whenever we have computed a new gradient gt we integrate its
information and update the covariance at time step t by the following expression:

Ct = γCt−1 + gtg
T
t (7.3)

where C0 = 0, and γ is a parameter that controls how much older gradients are dis-
counted. Now, let each parameter θk have its own step size ηk. We update the parameter
by

θt+1 = θt − ηt · gt , (7.4)

where · denotes component-wise multiplication. The gain vector ηt thus serves as a
diagonal conditioner. The vector η containing the individual per-parameter step sizes is
adapted with the meta-gain µ:

ηt+1 = ηt · exp(−µgt+1 · vt+1) ≈ ηt ·max(
1

2
, 1− µgt+1 · vt+1) (7.5)
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where v ∈ Θ characterizes the long-term dependence of the system parameters on gain
history. The time scale is determined by the decay factor 0 ≤ λ ≤ 1. The vector v is
iteratively updated by

vt+1 = λvt − η · (gt + λC−1vt) . (7.6)

To ensure a low computational complexity and a good stability of the computations,
one can maintain a low rank approximation of C, see [93] for more details. Using
per-parameter step-sizes considerably accelerates the convergence of stochastic natural
gradient descent.

Putting everything together, we arrive at the lifted online learning for relational mod-
els as summarized in Alg. 10. We form mini-batches of tree pieces (lines 1-2). After
initialization (lines 3), we then perform lifted stochastic meta-descent (lines 4-9). That
is, we randomly select a mini-batch, compute its gradient using lifted inference, and
update the parameter vector. Note that pieces and mini-batches can also be computed
on the fly and thus their construction be interweaved with the parameter update. We
iterate these steps until convergence, e.g., by considering the change of the parameter
vector in the last l steps. If the change is small enough, we consider it as evidence of
convergence. To simplify things, we may also simply fix the number of times we cycle
through all mini-batches. This also allows to compare different methods.

Now, we have everything together to investigate scalable lifted inference and train-
ing.

Evaluation
Our intention here is to investigate the following questions:

(Q7.1) Does piecewise lifted inference help in non-symmetric cases?

(Q7.2) Can we efficiently train relational models using stochastic gradients?

(Q7.3) Are there symmetries within mini-batches that result in lifting?

(Q7.4) Can relational treefinding produce pieces that balance accuracy and lifting well?

(Q7.5) Is it even possible to achieve one-pass relational training?

To this aim, we implemented lifted online learning for relational models in Python
and C++. As a batch learning reference, we used scaled conjugate gradient (SCG) [107].
SCG chooses the search direction and the step size by using information from the sec-
ond order approximation. Inference as a subroutine for the training methods was also
carried out by LLBP.

For the evaluation of the training approaches, we computed the conditional margi-
nal log-likelihood (CMLL) [94]. Instead of the global log-partition function CMLL
is defined in terms of the marginal probabilities and measures the ability to predict
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Figure 7.3: Lifting Ratio for CORA entity resolution MLN with varying amount of
evidence. Although there is some lifting initially for LLBP, with a certain amount of
evidence lifted loopy belief propagation is basically ground. Piecewise lifted inference,
on the other hand, achieves networks that are orders of magnitude smaller than standard
lifting. The trees keep some dependencies compared to the standard pieces and still
manage to achieve compression for LLBP.

each variable separately. More precisely, we first divide the variables into two groups:
Xhidden and Xobserved. Then, we compute

CMLL =
∑

X∈Xhidden
logP (X|Xobserved) (7.7)

for the given mega-example. To stabilize the metric, we divided the variables into four
groups and calculated the average CMLL when observing only one group and hiding
the rest. All experiments were conducted on a single machine with 2.4 GHz and 64 GB
of RAM.

Lifted Piecewise Inference
The experiments in the previous sections have shown that we can considerably speed up
inference by lifting. However, in cases where there are no symmetries or symmetries
are broken by asymmetric evidence we do not gain and lifted loopy belief propagation
basically falls back to the propositional case. This is the case when naı̈vely applying
lifted inference to the training of relational models.

As we have argued above, the influence is limited when we break the model into
pieces and we can gain significant lifting of the model by running inference locally.
Fig. 7.3 shows the results for the Cora entity resolution MLN, which we will also train
later. We sampled 10 bibliographies and extracted all facts corresponding to these bib-
liography entries. Then we varied the amount of evidence on the facts. One can see
that lifted LBP achieves some compression at the beginning. However, with a certain
amount of evidence lifted loopy belief propagation is basically ground and achieves very
little compression. Piecewise lifted inference, on the other hand, achieves networks that
are orders of magnitude smaller compared to standard lifting. However, by shattering
the model into pieces all dependencies are broken. Tree-pieces balance this trade-off.
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Figure 7.4: ”Passes over mega-example” vs. Test-CMLL for the Friends-and-Smokers
(left) (the higher the better). lifted online learning has already learned before seeing the
mega example even once (black vertical line). (right) Benefit of local training for lifting.
Lifting ratio for varying mini-batch size versus the full batch model on the Friends-and-
Smokers MLN. Clearly for a batch size of 1 there is no lifting but with larger mini-batch
sizes there is more potential to lift the pieces within each batch; the size can be an order
of magnitude smaller. (Best viewed in color)

The trees keep some dependencies and still manage to achieve compression for LLBP.
As we will see in the following training experiments these additional dependencies will
help to train the model faster. Lifted Piecewise inference clearly enables lifting in non-
symmetric cases where standard lifting fails (Q7.1).

Training of Friends-and-Smokers MLN

In our first training experiment we learned the parameters for the “Friends-and-Smokers”
MLN [146], which basically defines rules about the smoking behavior of people, how
the friendship of two people influences whether a person smokes or not, and that a
person is more likely to get cancer if he smokes. The “Friends-and-Smokers” MLN,
however, is an oversimplification of the effects and rich interactions in social networks.
Thus we enriched the network by adding two clauses: if someone is stressed he is more
likely to smoke and people having cancer should get medical treatment. For a given
set of parameters we sampled 5 datasets from the joint distribution of the MLN with
10 persons. For each dataset we learned the parameters on this dataset and evaluated
on the other four. The ground network of this MLN contains 380 factors and 140 vari-
ables. The batch size was 10 and we used a stepsize of 0.2. Other parameters for SMD
were chosen to be λ = .99, µ = 0.1, and γ the discount for older gradients as 0.9.
Fig. 7.4(left) shows the CMLL averaged over all of the 5 folds.

As one can see, the lifted SMD has a steep learning curve and has already learned
the parameters before seeing the mega example even once (indicated by the black ver-
tical line. Note that we learned the models without stopping criterion and for a fixed
number of passes over the data thus the CMLL on the test data can decrease. SCG
on the other hand requires four passes over the entire training data to have a similar
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Figure 7.5: Experimental results. (left) Lifting ratio for standard pieces vs. tree pieces
on the Voting MLN. Due to rejoining of pieces, additional symmetries are broken and
the lifting potential is smaller. However, the sizes of the models per mini-batch still
gradually decrease with larger mini-batch sizes. (right) ”passes over mega-example”
vs. Test-CMLL for the CORA MLN (the higher the better). (Best viewed in color)

result in terms of CMLL. Thus (Q7.2) can be answered affirmatively. Moreover, as
Fig. 7.4(right) shows, piecewise learning greatly increases the lifting compared to batch
learning, which essentially does not feature lifting at all. Thus, (Q7.3) can be answered
affirmatively.

Voting MLN

To investigate whether tree pieces although more complex can still yield lifting, we
considered the Voting MLN from the Alchemy repository. The network contains 3230
factors and 3230 variables. Note that it is a propositional Naive Bayes (NB) model.
Hence, depth 0 pieces will yield greater lifting but hamper information flow among
attributes if the class variable is unobserved. Tree pieces intuitively couple depth 0 hence
will indeed yield lower lifting ratios. However, with larger mini-batches they should still
yield higher lifting than the batch case. This is confirmed by the experimental results
summarized in Fig. 7.5(right) that shows the lifting ratio for standard pieces vs. tree
pieces with depth d = 1 with a threshold of t = 0.9. Thus, (Q7.4) can be answered
affirmatively.

Training of CORA Entity Resolution MLN

Here we learned the parameters for the Cora entity resolution MLN, one of the standard
datasets for relational learning. In this thesis, however, it is used in a non-standard,
more challenging setting. For a set of bibliography entries (papers) the Cora MLN
has facts, e.g., about word appearances in the titles and in author names, the venue a
paper appeared in, its title, etc. The task is now to infer whether two entries in the
bibliography denote the same paper (predicate samePaper), two venues are the same
(sameVenue), two titles are the same (sameTitle), and whether two authors are the same
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(sameAuthor). We sampled 20 bibliography entries and extracted all facts corresponding
to these bibliography entries. We constructed five folds then trained on four folds and
tested on the fifth. Each fold can be seen as a training data set and thus the mega-
example E is composed of the four folds we train on. We employed a transductive
learning setting for this task. The MLN was parsed with all facts for the bibliography
entries from the five folds, i.e., the queries were hidden for the test fold. The query
consisted of all four predicates (sameAuthor, samePaper, sameBib, sameVenue). The
resulting ground network consisted of 36, 390 factors and 11, 181 variables. We learned
the parameters using SCG, lifted stochastic meta-descent with standard pieces as well
as pieces using relational treefinding with a depth d of 1 and a threshold t of 0.9. The
trees consisted of around ten factors on average. So we updated with a batch size of 100
for the trees and 1000 for standard pieces with a stepsize of 0.05. Furthermore, other
parameters were chosen to be λ = .99, µ = 0.9, and γ = 0.9. Fig. 7.5(right) shows the
averaged learning results for this entity resolution task. Again, online training does not
need to see the whole mega-example; it has learned long before finishing one pass over
the entire data. Thus, (Q7.4) can be answered affirmatively.

Moreover, Fig. 7.5(right) also shows that by building tree pieces one can consider-
ably speed-up the learning process. They convey a lot of additional information such
that one obtains a better solution with a smaller amount of data. This is due to the
fact that the Cora dataset contains a lot of strong dependencies which are all broken
if we form one piece per factor. The trees on the other hand preserve parts of the lo-
cal structure which significantly helps during learning. Thus, (Q7.5) can be answered
affirmatively.

Lifted Imitation Learning in the Wumpus Domain
To further investigate (Q7.4) and (Q7.5), we considered imitation learning in a relational
domain for a Partially Observed Markov Decision Process (POMDP). We created a
version of the Wumpus task (see e.g. [137]) where the location of Wumpus is partially
observed. In the Wumpus world the agent is placed in a cave with connected rooms and
there is a Wumpus that eats everyone it encounters. It can be shot by the agent but the
agent only has one arrow. The Wumpus is surrounded by stench and that is how the
agent might recognize its position. The agent performs different actions in every round
such as move and shoot.

We used a 5×5 grid with a Wumpus placed in a random location in every training
trajectory. The Wumpus is always surrounded by stench on all four sides. We do not
have any pits or breezes in our task. The agent can perform eight possible actions: she
can move or shoot in any direction (left, right, up, down). The agent’s task is to move
to a cell so that she can fire an arrow to kill the Wumpus. The Wumpus is not observed
in all the trajectories although the stench is always observed. Trajectories were created
by real human users who play the game.

The cells of the 5×5 grid were numbered and we use predicates such as

cellAtRow(cell,row) and cellAbove(cell,cell)
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Figure 7.6: Experimental results for the Wumpus MLN. (left) ”number of batches”
vs. Test-CMLL (the higher the better). (right) Runtime vs. CMLL. As one can see,
lifted online learning has already converged before seeing the mega example even once
(black vertical line). For the Wumpus MLN, SCG did not converge within 72 hours.
(Best viewed in color)

to define the structure of the grid and were the cell is located. These facts were always
given. Other predicates were

wumpus(cell), stench(cell), agent(t,cell)

and actions move and shoot for all directions, e.g., shootUp(t). The rules we learn the
weights for describe the state or whether an action should be performed. Two examples
of such rules are:

w1 : stench(scell) ∧ cellAbove(scell,wcell) => wumpus(wcell)
w2 : wumpus(wcell) ∧ agent(acell, t) ∧ cellCol(acell,acol) ∧ cellCol(wcell,wcol)
∧ less(acol,wcol) => shootRight(t)

The resulting network contains 182400 factors and 4469 variables. We updated with
a batch size of 200 for the trees (depth d = 0, threshold t = 0.9) and 2000 for standard
pieces with a stepsize of 0.05. As for the Cora dataset used λ = .99, µ = 0.9, and
γ = 0.9. Figure 7.6 shows the result on this dataset for lifted SMD with standard pieces
as well as pieces using relational treefinding with a threshold t of 0.9. For this task,
SCG did not converge within 72 hours. Note that this particular network has a complex
structure with lots of edges and large clauses. This makes inference on the global model
intractable. Fig. 7.6 (left) shows the learning curve for the total number of batches seen
as well as the runtime for one pass over the data (right). As one can see, tree pieces
actually yield faster convergence, again long before having seen the dataset even once.
Thus, (Q7.4) and (Q7.5) can be answered affirmatively.

Taking all experimental results together, all questions (Q7.1)-(Q7.5) can be clearly
answered affirmatively.
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So far, we have shown how the model can be shattered into smaller pieces to effi-
ciently learn the parameters. This shattering makes training large models tractable and
improves on the speed of convergence, as we have shown in the previous chapter. Even
more importantly, as each lifted piece is processed one after the other it naturally paves
the way for a MapReduce approach. The gradients of the shattered pieces can be com-
puted locally in a distributed fashion which in turn allows a MapReduce friendly paral-
lel approach without bandwidth constrains and considerable latency, see e.g. [92, 172].
Lifted inference as a subroutine, however, is still carried out on a single core.

After briefly covering distributed inference approaches in Sec. 8.1 We will show
how to lift the model in a distributed fashion (Sec. 8.2), the missing piece to prove the
following theorem:

Theorem 8.0.1. Lifted approximate training of relational models is MapReduce-able.
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8.1 Distributed Inference

With the ubiquitous sensor technology, data services, and mobility of people, among
other sources, the amount of available data and the need to make sense of it and find
interesting information is rapidly increasing. Therefore we need intelligent and effi-
cient machine learning and AI algorithms. The scale of these algorithms, however,
will be limited due to physical limitations that exist for the computer hardware. The
sheer computing power can not keep pace with the overwhelming exponential growth
of the amount of data. With the availability of affordable commodity hardware and high
performance networking, however, we have increasing access to computer clusters pro-
viding an additional dimension to scale all our algorithms, in particular lifted inference.
This is appealing since in addition to other dimensions of scaling, such as symmetries
and approximations, among others, parallel machine learning and AI algorithms can
benefit from the number of processors and get an additional speed-up in the number of
cores. The parallelism can be realized at different levels and with various architectures.
Central processing units (CPUs) of modern computers already have multiple cores that
can be utilized in parallel, graphics processing units (GPUs) of modern graphics card
offer hundreds and thousands of parallel cores, and clusters of many interconnected
computers and clouds offer new opportunities for computing. Loopy belief propagation
is naturally parallelizable on a graph level as all computations are only local.

As already mentioned in Sec. 1.3 there exist a lot of approaches to scaling proba-
bilistic inference and training, for different settings and technologies. Some of which
have grown into powerful frameworks.

Two notable examples are Felix1 and GraphLab2. Felix is a relational optimizer
for statistical inference using the Tuffy MLN inference engine written in Java and us-
ing an SQL Database. Making use of relational database technologies, for example,
for more efficient grounding, this can speed up relational inference. GraphLab is an
open-source software platform for machine learning on graphs that also includes paral-
lel inference using loopy belief propagation. Although Gonzalez et al. [58, 59] report
on map-reducing lifted inference within MLNs, they actually assume the lifted network
to be given.

Unfortunately, the lifting is not directly able to efficiently utilize cluster resources
as they are specialized to particular models or settings. In the following section we will
show that this is indeed possible, that is, we can distribute the color-passing procedure
for lifting message-passing using the MapReduce framework [43]. We hereby demon-
strate for the first time that lifting per se is MapReduce-able, thus putting scaling lifted
SRL to “Big Data” within reach.

As our experimental results will illustrate, by combining the two orthogonal scaling
approaches we can achieve orders of magnitude improvement over existing methods.

1http://hazy.cs.wisc.edu/hazy/felix/
2http://graphlab.org
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Algorithm 11: MR-CP: MapReduce Color-passing
1 repeat

// Color-passing for the factor nodes
2 forall the f ∈ G do in parallel
3 s(f) = (s(X1), s(X2), . . . , s(Xdf )) , where Xi ∈ nb(f), i = 1, . . . , df
4 Sort all of the signatures s(f) in parallel using MapReduce;
5 Map each signature s(f) to a new color, s.t. col(s(fi)) = col(s(fj)) iff

s(fi) = s(fj)
// Color-passing for the variable nodes

6 forall the X ∈ G do in parallel
7 s(X) = (s(f1), s(f2), . . . , s(fdX )) , where fi ∈ nb(X), i = 1, . . . , dX
8 Sort all of the signatures s(X) in parallel using MapReduce;
9 Map each signature s(X) to a new color, s.t. col(s(Xi)) = col(s(Xj)) iff

s(Xi) = s(Xj)
10 until grouping does not change;

8.2 MapReduce Lifting
If one takes a closer look at color-passing one notices that each iteration of color-passing
basically consists of three steps, namely

1. Form the colorsignatures

2. Group similar colorsignatures

3. Assign a new color to each group

for the variables and the factors, respectively. We now show how each step can be
carried out within the MapReduce framework.

The resulting MapReduce color-passing is summarized in Alg. 11 and has to be re-
peated in each iteration for the factors and the nodes respectively. Specifically, recall
that color-passing is an iterative procedure so that we only need to take care of the direct
neighbors in every iteration, i.e., building the colorsignatures for the variables (factors)
requires the variables’ (factors’) own color and the color of the neighboring factors (vari-
ables). Step-1 can thus be distributed by splitting the network into k parts and forming
the colorsignatures within each part independently in parallel. However, care has to be
taken at the borders of the splits. Fig. 8.1 shows the factor graph from Fig. 2.2 and how
it can be split into parts for forming the colorsignatures for the variables (Fig. 8.1 (left))
and the factors (Fig. 8.1 (right)). We see that to be able to correctly pass the colors in
this step we have to introduce copynodes at the borders of the parts.1 In the case of the
node signatures, for example (Fig. 8.1 (left)), both f1 and f2 have to be duplicated to be
present in all signatures of the variables. The structure of the network does not change

1 Note that in the shared memory setting this is not necessary. Here we use the MapReduce
framework, thus we have to introduce copynodes.

129



DISTRIBUTED LIFTED TRAINING

A

B

C

f1

f2

A

B

C

f1

f2

B

f1

f2 ,

,

, -

-

,

,

Figure 8.1: The partitions when passing colors to build the signatures for the variables
(left) and factors (right) and the corresponding colorsignatures that have to be sorted.
Copynodes (-factors) have to be introduced at the borders to form the correct neighbor-
hood.

during color-passing, only the colors may change in two subsequent iterations and have
to be communicated. To reduce communication cost we thus split the network into parts
before we start the CP-procedure and use this partitioning in all iterations. 1

The next step that has to be carried out is the sorting of the signatures of the vari-
ables (factors) within the network (Step-2). These signatures consist of the node’s own
color and the colors of the respective neighbors. Fig. 8.1 also shows the resulting col-
orsignatures after color-passing in the partitions of the example from Fig. 2.2. For each
node (Fig. 8.1 (left)) and factor (Fig. 8.1 (right)) we obtain the colorsignatures given
the current coloring of the network. These colorsignatures have to be compared and
grouped to find nodes (factors) that have the same one-step communication pattern.
Finding similar signatures by sorting them can be efficiently carried out by using radix
sort [34] which has been shown to be MapReduce-able [171]. Radix sort is linear in the
number of elements to sort if the length of the keys is fixed and known. It basically is a
non-comparative sorting algorithm that sorts data with grouping keys by the individual
digits which share the same significant position and value. The signatures of our nodes
and factors can be seen as the keys we need to sort and each color in the signatures can
be seen as a digit in our sorting algorithm. Radix sort’s efficiency is O(kn) for n keys
which have k or fewer digits. The close connection of color-passing to radix sort paves
the way for an efficient MapReduce implementation of the lifting procedure.

Indeed, although radix sort is very efficient — the sorting efficiency is in the order
of edges in the ground network — one may wonder whether it is actually well suited for
an efficient implementation of lifting within a concrete MapReduce framework such as
Hadoop. The Hadoop framework performs a sorting between the Map- and the Reduce-

1The way we partition the model greatly affects the efficiency of the lifting. Finding an
optimal partitioning that balances communication cost and CPU-load, however, is out of the
scope of this work. In general, the partitioning problem for parallelism is well-studied [26], there
are efficient tools, e.g., http://glaros.dtc.umn.edu/gkhome/metis/parmetis/.
We show that CP is MapReduce-able and dramatically improves scalability even with a naı̈ve
partitioning.
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Algorithm 12: Map Function for Hadoop Sorting
Input: Split S of the network
Output: Signatures of nodes Xi ∈ S as key value pairs (s(Xi), Xi)

1 forall the Xi ∈ S do in parallel
2 s(Xi) = (s(f1), s(f2), . . . , s(fdX )) , where fj ∈ nb(Xi), j = 1, . . . , dXi
3 return key-value pairs (s(Xi), Xi)

Algorithm 13: Reduce Function for Hadoop Sorting
Input: Key-value pairs (s(Xi), Xi)
Output: Signatures with corresponding list of nodes

1 Form list L of nodes Xi having same signature
2 return key-value pair (s(L), L)

step. The key-value pair that is returned by the mappers has to be grouped and is then
sent to the respective reducers to be processed further. This sorting is realized within
Hadoop using an instance of quick sort with an efficiency O(n log n). If we have a
bounded degree of the nodes in the graph as in our case, however, this limits the length
of the signatures and radix sort is still the algorithm of choice.

Moreover, our main goal is to illustrate that — in contrast to many other lifting
approaches — color-passing is naturally MapReduce-able. Consequently, for the sake
of simplicity, we stick to the Hadoop internal sorting to group our signatures and leave
a highly efficient MapReduce realization for future work. Alg. 12 and Alg. 13 show
the map and the reduce function respectively. In the map phase we form the signatures
of all nodes (factors) in a split of the graph and reduce a key-value pair of (s(Xi), Xi)
which are the signature and the id of the node (factor). These are then grouped by
the reduce function and a pair (s(L), L) for all nodes having the same signature, i.e.,
s(L) = s(Xi) for all Xi ∈ L. In practice one could gain additional speed-up the if
the sorting of Hadoop is avoided, for example, by realizing a Map-only task using a
distributed ordered database like HBase 1. The signatures that are formed in Step-1
would be written directly into the database as (s(Xi) Xi, Xi), i.e., for each node an
entry with a key that is composed of the signature and the node’s id is inserted and the
groupings could be read out sequentially for the next step.

The Map-phase of (Step-2) could also be integrated into the parallel build of the
signatures (Step-1), such that we have one single Map-step for building and sorting the
signatures.

Finally, reassigning a new color (Step-3) is an additional linear time operation that
does one pass over the nodes (factors) and assigns a new color to each of the different
groups. That is, we first have to build the color signatures. The splits of the network
are the input and are distributed to the mappers. In the example shown in Fig. 8.2
there is one line for every node and its local neighborhood, i.e., ids of the factors it
is connected to. The mappers take this input and form the signatures of the current

1http://hbase.apache.org/
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Figure 8.2: MapReduce jobs for Step-1 (yellow) and Step-2 (green) of color-passing.
For building the signatures the local parts are distributed to the mappers that form the
signature based on the colorings of the current iteration. The output is sorted and for
each signature a list of nodes with the same signature is returned.

iteration independently in parallel. These signatures are then passed on to MapReduce
sort. Fig. 8.2 shows the sorting procedure for the signatures. The mappers in the sorting
step, output a tuple of key-value pairs consisting of the the signature and the id of the
respective node (Alg. 12).1 These are then grouped by the reduce operation, such that
all nodes having the same signatures are returned in a list (Alg. 13). The internal sorting
of the Hadoop framework takes place between the map- and the reduce-phase, such that
the key-value pairs can be sent to the right reducers.

Taking the MapReduce arguments for (Step-1) to (Step-3) together this proves that
color-passing itself is MapReduce-able. Together with the MapReduce-able results of
Gonzalez et al. [58, 59] for the modified loopy belief propagation, this proves the fol-
lowing Theorem.

Theorem 8.2.1. Lifted loopy belief propagation is MapReduce-able.

Moreover, we have the following time complexity, which essentially results from
running radix sort h times.

Theorem 8.2.2. The runtime complexity of the color-passing algorithm with h iterations
is O(hm), where m is the number of edges in the graph.

Proof. Assume that every graph has n nodes (ground atoms) andm edges (ground atom
appearances in ground clauses). Defining the signatures in (Step-1) for all nodes is
an O(m) operation. The elements of a signature of a factor are of s(f) = (s(X1),
s(X2), . . . , s(Xdf )), where Xi ∈ nb(f), i = 1, . . . , df . Now there are two sorts that
have to be carried out. The first sort is within the signatures. We have to sort the colors
within a node’s signatures and in the case where the position in the factor does not
matter, we can safely sort the colors within the factor signatures while compressing the
factor graph. Sorting the signatures is an O(m) operation for all nodes. This efficiency
can be achieved by using counting sort, which is an instance of bucket sort, due to

1Since this is a essentially the output of the previous step that is passed through the two steps
can easily be integrated. We keep them separate for illustration purposes of the two distinct steps
of color-passing.
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Figure 8.3: (left) The ratio of the runtime for single-core color-passing and MapReduce
color-passing (MP-CP) on grids of varying size. The ratio is 1 at the black horizontal
line which indicates that at this point both methods are equal. We see that due to the
overhead of MapReduce for smaller networks the single-core method is faster, MR-CP
is advantageous for larger networks. (right) Runtimes for color-passing and MR-CP.
One can clearly see that MR-CP scales lifting to much larger instances.

the limited range of the elements of the signatures. The cardinality of this signature
is upper-bounded by n, which means that we can sort all signatures in O(m) by the
following procedure. We assign the elements of all signatures to their corresponding
buckets, recording which signature they came from. By reading through all buckets in
ascending order, we can then extract the sorted signatures for all nodes in a graph. The
runtime is O(m) as there are O(m) elements in the signatures of a graph in iteration i.
The second sorting is that of the resulting signatures to group similar nodes and factors.
This sorting is of time complexity O(m) via radix sort. The label compression requires
one pass over all signatures and their positions, that is, O(m). Hence all these steps
result in a total runtime of O(hm) for h iterations.

Evaluation
We have just shown for the first time that lifting per se can be carried out in parallel.
Thus, we can now combine the gains we get from the two orthogonal approaches to
scaling inference, putting scaling lifted SRL to Big Data within reach. That is, we
investigate the question:

(Q8.1) Does the MapReduce lifting additionally improve scalability.

We compare the color-passing procedure with a single-core Python/C++ implementa-
tion and a parallel implementation using MRJob1 and Hadoop 2. We partitioned the
network per node (factor) and introduced copynodes (copyfactors) at the borders. The
grouping of the signatures was found by a MapReduce implementation of Alg. 12 and

1https://github.com/Yelp/mrjob
2http://hadoop.apache.org/
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Alg. 13. Note that for this experiment the amount of lifting is not important. Here,
we compare how the lifting methods scale. Whether we achieve lifting or not does not
change the runtime of the lifting computations. As Theorem 8.2.2 shows, the runtime of
color-passing depends on the number of edges present in the graph. Thus, we show the
time needed for lifting on synthetic grids of varying size to be able to precisely control
their size and the number of edges in the network.

Fig. 8.3 shows the results on grids of varying size. We scaled the grids from 5 × 5
to 500 × 500, resulting in networks with 25 to 250.000 variables. The ratio is 1 at
the black horizontal line which indicates that at this point both methods are equal.
Fig. 8.3 (left) shows the ratio of the runtime for single-core color-passing and MapRe-
duce color-passing (MR-CP). We see that due to the overhead of MapReduce the single-
core method is faster for smaller networks. However, as the number of variables grows,
this changes rapidly and MR-CP scales to much larger instances. Fig. 8.3 (right) shows
the running time of single-core color-passing and MapReduce color-passing. One can
see that MR-CPs scales orders of magnitude better than single-core color-passing. The
results clearly favor MR-CP for larger networks and affirmatively answer (Q8.1)
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Conclusion

Symmetries can be found almost everywhere, in arabesques and French gardens, in
the rose windows and vaults in Gothic cathedrals, in the meter, rhythm, and melody
of music, in the metrical and rhyme schemes of poetry as well as in the patterns of
steps when dancing. Symmetric faces are even said to be more beautiful to humans.
Actually, symmetry is both a conceptual and a perceptual notion often associated with
beauty-related judgments [168]. Or, to quote Hermann Weyl ”Beauty is bound up with
symmetry” [164]. This link between symmetry and beauty is often made by scientists.
In physics, for instance, symmetry is linked to beauty in that symmetry describes the
invariants of nature, which, if discerned, could reveal the fundamental, true physical
reality [168]. In mathematics, as Herr and Bödi note, ”we expect objects with many
symmetries to be uniform and regular, thus not too complicated” [64].

Summary

In the first part we have shown how to use symmetries within graphical models to speed
up inference using loopy belief propagation (LBP) by focusing on a number of differ-
ent queries or inference task. We have introduced lifted LBP, that exploits symmetries
by grouping together random variables and factors that send and receive the same mes-
sages. By compressing the graph we can compute marginal probabilities very efficiently
using slightly modified LBP equations, and we have shown that the very same process
is applicable to both discrete and continuous models, as we have shown for GaBP.

In some applications, however, the lifting criterion is too strict as it does not make
use of the fact that messages decay along paths. Informed lifted LBP is generally appli-
cable and interleaves lifting and modified LBP iterations, thus can group together nodes,
respectively factors, if their actual LBP messages are identical. Intuitively, it adaptively
explores the subgraph around each node, respectively factor, and groups them on an
as-needed basis making use of decaying error messages.
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To be able to efficiently answer MAP queries, we presented the first application of
lifted inference techniques to linear programming. The resulting lifted linear program-
ming approach compiles a given LP into an equivalent but potentially much smaller
LP by grouping variables, respectively constraints, that are indistinguishable given the
objective function and apply a standard LP solver to this lifted LP.

Indeed, the link established here is related to symmetry-aware approaches in (mixed–)
integer programming [97]. However, they are vastly different to LPs in nature. Sym-
metries in ILP are used for pruning the symmetric branches of search trees, thus the
dominant paradigm is to add symmetry breaking inequalities, similarly to what has been
done for SAT and CSP [142]. In contrast, lifted linear programming achieves speed-up
by reducing the problem size. Furthermore, state-of-the-art symmetry detection for ILPs
computes the so-called orbit partition of the graph whose colored adjacency matrix is
the skeleton equation. This is a ”graph isomorphism”-complete problem, whereas our
approach detects symmetries in time O(l · (m + n log n) [19]. Moreover, the orbit par-
tition of a graph is a refinement of the coarsest equitable partition, thus our approach
results in more compression. Regarding LPs, the work by Boedi et al. is probably the
closest in spirit [18]. They showed that the set of combinatorial symmetries of the poly-
tope that respect the objective can be used for compression. However, no polynomial
algorithm for finding those symmetries was presented; instead they fell back to orbit
partition-based methods in their experiments.

We then presented conditioned lifted LBP for computing arbitrary joint marginals
using lifted LBP. It relates conditioning to computing shortest-paths. By combining
lifted LBP and variable conditioning, it can readily be applied to models of realistic
domain size. These contributions significantly advance our understanding of lifted in-
ference and are relevant for several important AI tasks such as finding the MAP as-
signment, sequential forward sampling, cutset conditioning algorithms, and structure
learning. Furthermore, multi-evidence lifting for loopy belief propagation exploits sym-
metries within and across different evidence cases and is applicable to a wide range of
problems as shown on two novel tasks for lifted inference, namely computing PageRank
contributions and the Kalman filter.

In the second part we have shown that scaling relational training of graphical mod-
els can actually greatly benefit from symmetries. However, already in 1848, Louis
Pasteur recognized ”Life as manifested to us is a function of the asymmetry of the uni-
verse”. This remark characterizes somehow one of the main challenges we are facing:
Not only are almost all large graphs asymmetric [48], but even if there are symmetries
within a model, they easily break when it comes to inference and training since variables
become correlated by virtue of depending asymmetrically on evidence. This, however,
does not mean that lifted training is hopeless. We have demonstrated that breaking long-
term dependencies via piece-wise inference and training naturally breaks asymmetries
and paves the way to lifted online respectively MapReduced relational training.
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FUTURE WORK

Lessons learned
I would like to share a snippet of a conversation I once overheard. Two people at an
undisclosed workshop I attended who were not familiar with lifted inference:

Person 1: “What is this whole lifted inference about?”

Person 2: “I don’t know really. I think it is something about not making the same
computations multiple times.”

Person 1: “Hmm, to me it sounds more like common sense.”

What sounds dismissive at first, actually is a very strong argument for lifting and sym-
metry aware approaches in general. Why would we dismiss something that is “common
sense”? Humans make use of all kinds of symmetries in everyday activities. Such sym-
metries may exist in the task at hand, the shape of objects, or their exchangeability.
When a human wants to pick up a ball, it is symmetric in two aspects. The shape of the
ball is symmetric and by experience we know that it does not make a difference where
we grab the ball. All of its reachable spots are equally good and thus exchangeable. A
less obvious symmetry lies in the task of picking up the ball. Since we have learned
how to pick up ball shaped objects, the cognitive work is minimal and we can simply
apply our learned knowledge to this particular case. Unfortunately, automated systems
do not make use of these symmetries while performing their tasks. The majority of
our algorithms is not able to find and exploit these unless the symmetries are explicitly
encoded.

Symmetries are not the single ingredient that make the algorithms efficient. How-
ever, lifting is more than just a grain of salt. It should rather be understood as one
ingredient of a culinary composition. A meal is generally perceived as delicious if it has
the right mixture of different flavors, that is, sweet, bitter, umami, salty and sour.

In the case of efficient algorithms the ingredients can be, for example, symmetries,
parallelization, and approximation among others. These can be combined such that we
obtain more efficient algorithms for more and more complex tasks we have to solve, as
we have also seen in this thesis.

In this sense, I am more than ever convinced of the need for symmetry aware ap-
proaches, not only for lifted inference and training for graphical models, but for a
“lifted” machine learning in general. In recent years lifting has been put on the map
and I hope this thesis and its resulting publications have helped to do so.

It is important, however, to widen the scope and to reach out to other communi-
ties that have also seen the need for such approaches, although it is not always called
lifting. A common ground is a precise mathematical formulation of the symmetries.
Automorphisms have a long history in mathematics and graph theory, and this could be
the starting point if the research of this thesis was going to be conducted again. In the
case of graphical models, for example, the symmetries intuitively correspond to auto-
morphisms of subnetworks. What kind of symmetries can we exploit in the different
tasks? What do the other communities look at? What is their common mathematical
basis? What can we learn from the research about automorphisms in graph theory?
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Future work
The symmetry-aware framework for inference and learning outlined in the present thesis
puts many interesting research goals into reach.

Besides lifted versions for loopy belief propagation and Gaussian belief propagation
that we have introduced, other message passing approaches such as warning propaga-
tion and survey propagation [61] have been shown to be liftable too. Other algorithms
are, for example, non-parametric BP [148] and particle BP [69]. These approaches can
handle non-Gaussian continuous distributions where in general there is no closed form
representation. Combining ideas from particle filters and loopy belief propagation, the
propagated messages consist of particles obtained by a Gibbs sampling procedure. Al-
though LBP has empirically shown to be a good choice in many areas, it is not exact on
loopy graphs and does not necessarily converge. Generalized BP [167] is a BP variant
that can improve on the approximation and the convergence properties of BP, like other
convergent BP variants such as tree-reweighted BP (TRW-BP) [161] which performs
reparameterizations of the original parameter vector. It remains to be shown that these
other message-passing algorithms can exploit symmetries as well.

Furthermore, the definition of an abstract lifted message passing framework that
unifies all these lifted message-passing algorithms remains to be done and is very inter-
esting future work.

Another promising avenue for future work is to establish a similar strong link be-
tween MAP inference and LPs at the lifted level as it is known for the ground level [54,
87, 88, 147, 166] and to employ the link within complex problems such as protein-
design, stereo-vision and image segmentation.

In this thesis we have also seen that random variables easily become correlated
within complex applications by virtue of sharing propagated evidence. One way to
cope with this issue is iLLBP, as we have introduced in this thesis. One should further
develop approximate lifted approaches that can still gain compression.

One should also tackle one-pass relational learning by investigating different ways
of gain adaption and scheduling of pieces for updates. Since piecewise training is a
simple form of dual decomposition, further exploration of dual decomposition methods
is an attractive future direction. One should also investigate budget constraints on both
the number of examples and the computation time per iteration.

Another interesting avenue for future work is to use sequences of increasingly finer
approximations to control the trade-off between lifting and accuracy [81].

Exploring the close connection to symmetry breaking in ILPs, CSPs, and MDPs and
how the ideas carry over to lifted LPs is a promising future direction. Finally, symme-
tries are not exclusively inherent in probabilistic inference as we have seen through out
this thesis and one should start investigating symmetries in general machine learning
approaches such as support-vector machines and Gaussian processes.

While there have been considerable advances, there are more than enough problems,
in particular asymmetric ones, to go around to really establish symmetry-aware machine
learning.
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