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1 Introduction

The Porous Medium Equation

The density of gas in a porous medium can be modelled by the so-called porous medium equation
(PME). The following definition gives a meaning to this notion in mathematical terms.

1.1 Definition Consider an open set ω ⊂ R×Rn.
A function u is said to be a solution of the PME on ω if and only if for m > 1 we have u ∈ Lm

loc(ω), u ≥ 0
and

∂tu− ∆xum = 0 in D′(ω).

From the theoretical point of view we deal with a quasilinear and strongly parabolic equation.
However, the parabolicity is not necessarily uniform on all of ω, but degenerates on subsets where
u is not bounded away from 0. This becomes evident by considering the equation in divergence
form, namely ∂tu−∇x · (m um−1∇xu) = 0, where the diffusion coefficient um−1 – the pressure of
the gas, in physical terms – vanishes as the density u approaches zero. This is why the PME is also
called slow diffusion equation. In contrast to that, the case 0 < m < 1 – with a suitable adjustment
of the concept of solution – is referred to as the fast diffusion equation. For m = 1, the same
definition as above yields a well-known linear and uniformly strongly parabolic equation on ω,
termed heat equation. The PME is therefore also sometimes labelled non-linear heat equation.
More general non-linearities can of course be considered with the appropriate adjustments in the
definition, and equations associated with them are also known as diffusion or filtration equations.
Other generalisations include the treatment of different coefficients and additional drift terms.
Also higher order equations in divergence form can have the same appearance. An example is
provided by the thin film equation. For any of these equations one could additionally consider
solutions that do not have to be positive, also called signed solutions.
In the literature, often a combination of several of those features is discussed and a vast amount
of research papers on any of those topics is available. One can gain a good overview from
[Fri82], [Váz07] and [DK07]. There is also an interpretation as a gradient flow in terms of the
Wasserstein metric due to [Ott01]. We will concentrate on the PME as presented in Definition
1.1. A derivation of the equation from physical grounds as well as an overview of some of its
mathematical properties and their development can be found in the surveys [Pel81], [Aro86],
[Váz92] and the references therein. In the following we give a brief recapitulation of results that
are important from our perspective.
In Definition 1.1 we have adopted a purely local point of view. This is already enough to obtain at
least weak regularity of solutions.

1.2 Theorem Let ω ⊂ R×Rn be open.
If u is a solution of the PME on ω, then u is Hölder continuous on ω.

That continuous solutions are Hölder continuous was proven by [DF85]. Almost a decade
later [DK93] succeeded in removing the continuity assumption by means of potential theory in
conjunction with a-priori estimates for the PME from [DK84] and [Sac83] that only require general
regularity theory.
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1 Introduction

The Cauchy Problem

Henceforth we concentrate on domains without spatial boundary and consider cylinders ω =

I × Rn for an open time interval I = (t1, t2) with finite left end point t1 > −∞. There is a
self-similar solution to the PME on I ×Rn that displays some characteristic features of the PME
and often plays the role of a benchmark. It was first described by the Soviet researchers Zeldovich,
Kompaneets and Barenblatt in the 1950s, thus often bearing their name as ZKB-solution. The first
reference not written in Russian seems to be [Pat59], hence also Barenblatt-Pattle-solution is a
commonly used denomination. We call it source-type-solution, given by

ust(t, x) := (t− t1)
− n

2+n(m−1)

(
C1 − C2 |x|2 (t− t1)

− 2
2+n(m−1)

) 1
m−1

+

with specific constants C1, C2 that depend only on n and m. The nomenclature can be explained
by the behaviour of ust for small times: It tends to a multiple of the Dirac delta in the sense of
distributions as t approaches t1 from above, therefore representing a solution that evolves from a
point source.
Also in general it is a natural question to ask what happens to a solution when approaching
the initial time. It was proven in [Pie82] that not only ust, but any solution satisfying some
additional conditions has a Borel measure as initial value. That this is indeed typical without
further restrictions was shown in [AC83].

1.3 Theorem Let t1 > −∞ and I = (t1, t2) ⊂ R be an open interval.
If u is a solution of the PME on I ×Rn, then there exists exactly one Borel measure g on Rn with

u(t, ·)→ g (t→ t1) in D′(Rn).

The proof has several important ingredients that are interesting results in their own right. One of
them is a weak Harnack-type inequality that bounds the mass of gas contained in a ball by its
radius and the density of the gas at its centre at a later time. Another one is a comparison principle
for solutions of the PME that follows from the approximation of the original problem by suitable
boundary-value-problems on bounded domains. Their theory, in turn, is developed in one spatial
dimension by [ACP82], and contains an a-priori comparison principle that is proven in multiple
space dimensions by [DK84]. Also a geometrical assertion taken from [CF80] is generalised and
applied here.
Actually, the paper provides even more information: Any Borel measure that is an initial value
possesses a property that limits the amount of mass it can place far outside in space in the sense
of the following definition.

1.4 Definition A Borel measure µ on Rn is said to be essentially mass bounded if and only if

sup
r>1

r−n− 2
m−1 µ(Br(0)) < ∞.

It turns out that this growth condition is not only necessary, but also sufficient for solving the
initial value problem. This is the main result of [BCP84]. They make use of the existence of
solutions for integrable and bounded initial data that is known by [BC81] and show a pointwise
estimate with respect to the spatial variable for such solutions, using the additional properties that
solutions to such initial data enjoy. The theory of non-linear semigroups and an approximation
process then deliver the following existence result.
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1.5 Theorem Let t1 > −∞ and g be an essentially mass bounded Borel measure on Rn.
Then there exists t2 = t2(g) with t1 < t2 ≤ ∞, and a solution u of the PME on (t1, t2)×Rn with

u(t, ·)→ g (t→ t1) in D′(Rn).

A lower bound for the maximal existence time t2 can be calculated explicitly. If g ∈ L1(Rn) and
g ≥ 0, one gets t2(g) = ∞ and therefore global time solvability. This was already known from
previous works as for example [BC79].
There remains the rather subtle question of uniqueness. In [Sab61] it was shown that bounded
and square integrable initial data determine solutions uniquely. Then [BC79] produced the same
statement for integrable initial data. The first result for possibly unbounded initial data followed
in [BCP84], but excluded the case of Borel measures. In [Pie82], in turn, Borel measures are
considered, imposing the constrained of them being finite. Moreover, all these uniqueness results
were obtained within different classes of solutions and made use of the additional properties given
in these classes. It was finally [DK84] who settled the issue in full generality. Their work relies
heavily on all the previous papers mentioned above. Notably, the approximation by boundary-
value-problems as in the proof of Theorem 1.3 is used again to show a similar pointwise bound as
the one used in the proof of Theorem 1.5, but for general solutions.

1.6 Theorem Let t1 > −∞ and I = (t1, t2) ⊂ R be an open interval.
If u is a solution of the PME on I ×Rn, then it is determined uniquely by its initial value.

Theorems 1.3, 1.5 and 1.6 provide us with a beautifully closed theory that characterises solutions
of the Cauchy problem for the PME in analogy to the so called Widder theory for the heat equation
([Wid75]).

1.7 Remark Thanks to the very general uniqueness result 1.6, any additional properties that were gained
in existence proofs for several subclasses of initial data carry over to the general situation. For example, for
a solution u to an integrable initial datum g ∈ L1(Rn), g ≥ 0, we know that

u ∈ C([t1, ∞); L1(Rn)) ∩ L∞((t1 + a, ∞)×Rn) for any a > 0

according to [BC79], while for integrable and bounded g ∈ L1(Rn) ∩ L∞(Rn), g ≥ 0, we even have

u ∈ C([t1, ∞); L1(Rn)) ∩ L∞((t1, ∞)×Rn)

by [BC81]. In any of the two cases the initial datum is taken in the continuous sense and we can write
u(t1, ·) = g almost everywhere on Rn.

There is one time-local theorem that plays a major role in the proofs of any of the theorems just
presented. It asserts the existence of a lower bound for the Laplacian of the pressure and is
originally due to [AB79], there proven for solutions with additional regularity assumptions. In
any step of the process of generalising the solutions, hereby weakening the conditions they satisfy,
its validity was proven again, until finally once more [DK84] verified that it holds for any solution
without constraints.

1.8 Theorem Let t1 > −∞ and I = (t1, t2) ⊂ R be an open interval.
If u is a solution of the PME on I ×Rn, then

∆x(um−1) ≥ − n(m− 1)
nm(m− 1) + 2m

t−1 in D′(I ×Rn).
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Equality is attained by the source type solution, implying that the constant is optimal.
An immediate consequence of 1.8 is a lower bound also for the temporal derivative of a solution
u, namely

∂tu ≥ −
n

2 + (m− 1)n
t−1 u in D′(I ×Rn).

A direct proof of this statement with a slightly weaker constant is contained in [CF79].
Theorem 1.8 highlights the spatial non-local character of the PME, since it only holds on the whole
space Rn. A weaker local version of this estimate was established rather recently in [LNVV09].

Finite Propagation, Interface and Regularity

As opposed to the situation for uniformely strongly parabolic equations, the degeneracy of the
PME implies that any solution whose initial positivity set does not cover the whole space retains
this property for any finite time. The source-type solution provides an explicit example for this
feature, and drawing on the Harnack inequality from [AC83] on the one hand and results of [Ali85]
based on [BCP84] on the other hand, it can be seen to hold in general ([CVW87]). In physical
terms this means that the diffusing gas does not get to every point of space instantaneously,
but that disturbances are rather propagated with finite speed. Not only does this paint a more
realistic picture of the real world in terms of modelling diffusion processes, but it does also
give rise to an interesting mathematical phenomenon: The time-space positivity set P(u) of
solutions on I ×Rn, open because of their continuity, has a non-empty boundary ∂P(u) that
separates it from the time-space-region where u vanishes, thus constituting a sharply defined
interface G(u) := ∂P(u)∩ (I ×Rn). We denote the spatial part of the positivity set by P(u(t)) :=
{x ∈ Rn | u(t, x) > 0} and the spatial interface by G(u(t)) := ∂P(u(t)) for any fixed time t ∈ I,
as well as the set of immediate positivity by

P(u(t1)) :=
⋂
t∈I
P(u(t)).

Note that for a solution u with initial value g, the initial positivity set P(g) does in general not
coincide with the set of immediate positivity P(u(t1)), but is merely contained in it.
A direct consequence of the lower bound for the temporal derivative above is that the spatial
positivity set does not shrink with time, that is we have P(u(t)) ⊂ P(u(t)) for any t ≤ t ∈ I.
At this point it is not clear if the monotonicity is strict, since there may be a time span in the
beginning, called waiting time, during which the spatial positivity set does not change. However,
once it has actually started to spread out near a point in space it does not stop anymore, as was
shown by [CF80]. Furthermore, symmetrisation techniques allowed [Váz82] to deduce bounds
from below for the rate of growth of the interface, so it will eventually reach any point in space
and can not remain motionless all the time.
The regularity of the interface and the regularity of solutions are closely connected. This becomes
plausible by the physical interpretation of the equation that suggests to view the derivative of the
pressure as the velocity of the extension of gas and hence the speed of the interface. Note that
parabolic regularity theory ([LUS75]) immediately implies the smoothness of solutions on P(u),
so regularity is only an issue near G(u). In one space dimension the picture is fairly complete.
There the interface is always Lipschitz regular as was shown in [Aro70]. This is optimal since
according to [ACV85], when starting to move after a waiting time the interface may have a corner.
After the waiting time, however, it is in any case not only smooth ([AV87]), but even real analytic
([Ang88]). Furthermore, the pressure is Lipschitz continuous everywhere in time and space as
was shown in [Bén83] and [Aro69].
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In the general case of arbitrary dimension some irregularities can appear. In [CVW87] it was
shown that um−1 is a Lipschitz function in time and space for sufficiently large times and on all of
Rn, that is especially across the interface. As seen above, the temporal constraint solely applies
for dimensions n > 1 and is important in case the positivity set of the initial datum contains
one or more holes. Any hole is filled in finite time, but advancing interfaces may hit each other
and the velocity of the interface can become unbounded at the focussing time, see [AG93]. So in
general, for regularity of the pressure one has to wait until the focussing time has passed, any
possible holes are filled and the positivity set of u(t, ·) overflows the smallest ball in which the
initial positivity set was contained ([CVW87]). That the positivity set of u gets round fast and
that G(u) can be described as a Lipschitz continuous surface for sufficiently large times then
follows from the Lipschitz property of um−1. The latter also implies that the Hölder continuity
of solutions u on all of Rn that is given by Theorem 1.2 can be recovered at least for large times.
Note that the example of the source-type solution again shows that in general one cannot expect
more regularity than that, even though the interface is a smooth surface.
We now introduce a non-degeneracy condition on initial data that particularly ensures that the
spatial interface starts to move at all points right in the beginning, thus generating solutions
without waiting time ([Ves89]).

1.9 Definition A function g : Rn → R, g ≥ 0, with bounded positivity set P(g) is said to be a
non-degenerate initial datum if and only if

gm−1 ∈ C1(P(g)),

gm−1 + |∇x(gm−1)| ≥ c > 0 on P(g)

and

∆x(gm−1) ≥ −C in D′(P(g))

for constants c, C > 0.

Note that by definition G(u) contains the graph of the function

t = S(x) := inf {τ ∈ I | u(τ, x) > 0}

that sends points x 6∈ P(g) to the time when they are first reached by the gas. It was proved in
[CF80] that the interface of solutions without waiting time, ensured by a slightly different concept
of non-degeneracy, is in fact given as above with Hölder continuous S. For initial data that satisfy
Definition 1.9, it is proven in [CVW87] that S is Lipschitz and the velocity is bounded from below
for large times. Given this situation, [CW90] showed that the interface is indeed C1,α for large
times, although it was not clear from their work that the pressure enjoys the same regularity. This
was improved by [Koc99] to reach large time smoothness of both the pressure and the interface.

1.10 Theorem Let t1 > −∞ and g be a non-degenerate initial datum.
If u is a solution of the PME on (t1, ∞)×Rn with u(t1) = g, then both S and um−1 are smooth for any
sufficiently large t.

In the course of the argument for the proof of Theorem 1.10, a transformation of the equation
on P(u) onto a fixed domain via a local coordinate change and a transfer of the problem into a
perturbational setting is accomplished.
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1 Introduction

Short time smoothness of solutions before a possible blow-up time has been established in [DH98]
for non-degenerate initial data, with a slightly different understanding of non-degeneracy that
substitutes the lower bound for the Laplacian of the initial pressure for a Hölder condition for the
second order derivatives with respect to an intrinsically arising singular distance function. That it
is enough to impose this Hölder condition onto the first order derivatives was shown in [Koc99].
The need for the use of the special metric is a manifestation of the degeneracy of the equation. It
also plays a role in the derivation of large time smoothness.
Finally, [DHL01] found that non-degenerate initial data in the sense of Definition 1.9 which in
addition possess a weakly concave square root function of the pressure generate solutions u with
convex positivity set for all times and hence smoothness of the pressure on the whole space for
any time follows. As a consequence, G(u) is also smooth.

Transforms and Perturbations

Assume now that u is a solution of the PME on I × Rn with positivity set P(u) ( I × Rn.
Abbreviating the rescaled pressure by v := m

m−1 um−1, a direct calculation reveals that v satisfies
the pressure equation

∂tv− (m− 1) v ∆xv− |∇xv|2 = 0 on P(u)

pointwise in the classical sense. An interchange of dependent and independent variables on
the positivity set then transforms this problem onto a fixed domain. Fixing a point (t0, x0, z0)

in the graph of v|P(u), we assume that |∂xn v(t0, x0)| 6= 0. The implicit function theorem then
allows us to solve the defining equation of the graph, that is v(t, x′, xn) = z, locally near (t0, x0, z0)

for xn. We therefore obtain a function w(t, x′, z) = xn such that v(t, x′, w(t, x′, z)) = z with
∇t,x′w = −(∂xn v)−1∇t,x′v, ∂zw = (∂xn v)−1. Thus the graph of the pressure v can be described
locally near (t0, x0, z0) by {

(t, x′, xn, z) | w(t, x′, z) = xn
}
= graph w.

This suggests a change of coordinates (t, x) 7→ ((m − 1)t, x′, v(t, x)) =: (s, y), adding also a
rescaling of time. Under this transformation, any subset of the spatial positivity set becomes
a subset of the open upper half plane H := {x ∈ Rn | xn > 0}. Furthermore, w satisfies the
transformed pressure equation

∂sw− yn ∆′yw + yn ∂yn

1 + |∇′y w|2

∂yn w
+ (1 + σ)

1 + |∇′y w|2

∂yn w
= 0

on ω ⊂ (s1, s2)× H with a suitable interval (s1, s2), where σ := −m−2
m−1 > −1. The choice of the

n-th coordinate as the one being interchanged is of course not essential.
In this work, we mainly consider a special class of solutions of the transformed pressure equation,
namely perturbed travelling wave solutions. In general, a travelling wave is a function with a
profile that propagates along a fixed direction with constant speed without changing its shape. To
make our setting definite we will assume the speed to be normed and the direction to be the n-th
coordinate direction in accordance with the choice in the above transformation. Henceforth, for
the transformed pressure equation on an arbitrary ω ⊂ (s1, s2)× H we thus call

wtw(s, y) := yn − (1 + σ) (s− s1)
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the travelling wave solution. We are now interested in the perturbed travelling wave wtw + ũ,
where ũ denotes the perturbation. It is itself a solution of the transformed pressure equation on ω

again if and only if ũ satisfies the perturbation equation

∂sũ− Lσũ = f [ũ]

on ω with linear spatial part

yn ∆yũ + (1 + σ) ∂yn ũ =: Lσũ

and non-linearity

−(1 + σ)
|∇yũ|2

∂yn ũ + 1
− yn ∂yn

|∇yũ|2

∂yn ũ + 1
=: f [ũ].

This is the equation we are mainly dealing with in the present work.
Note that we can express both the spatial part of the operator and the non-linearity in divergence
form as

Lσũ = y−σ
n ∇y · (y1+σ

n ∇yũ)

and

f [ũ] = −y−σ
n ∂yn(y

1+σ
n

|∇yũ|2

1 + ∂yn ũ
),

since ω ⊂ {(s, y) | yn > 0}. Furthermore, ũ satisfies the linearised perturbation equation

∂sũ− Lσũ = f on ω

in the sense of distributions if and only if it satisfies

yσ
n ∂sũ− yσ

n Lσũ = yσ
n f on ω.

A regular distributional solution ũ on ω is thus characterised by the integral identity

−
∫
ω

ũ ∂s ϕ yσ
n dLn+1 +

∫
ω

∇yũ · ∇y ϕ y1+σ
n dLn+1 =

∫
ω

f ϕ yσ
n dL

for any test function ϕ ∈ C∞
c (ω) and a suitable inhomogeneity f .

Flat Fronts and Stability

The last identity will serve as a model for our definition of solutions of the linear perturbation
equation. In view of its appearance, the use of weighted measures is natural. Moreover, our
particular interest in the behaviour of solutions towards {yn = 0}motivates to carry our consid-
erations to the boundary of H by applying a wider class of test functions that can attain non-zero
values there. The mainly technical results necessary for doing so are presented in Chapter 2.
In Chapter 3 we define a suitable and rather weak notion of energy solution for the linearised
perturbation equation with and without initial data on time-space cylinders in I × H. Existence
follows with a Galerkin approximation, and on the whole space H uniqueness of solutions is

7
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shown by means of the energy identity 3.5.
Energy methods are used in Chapter 4 to obtain additional regularity of solutions on I × H.
Propositions 4.1 and 4.3 are energy estimates that hold globally in space. The statement alongside
with a formal proof is already contained in [Koc99].
Chapter 5 deals with the intrinsic metric of the problem that turns our weighted measure space
into a space of homogeneous type. An equivalent characterisation in terms of an explicit expres-
sion is given in Theorem 5.6.
A localisation of the global energy estimates with respect to this metric is carried out in Chapter 6,
culminating in the pointwise derivative estimate from Theorem 6.10 that also shows the smooth-
ness of local solutions on a subset of their definition set. In [Koc99] a slightly weaker theorem of
the same kind was proven in a less direct way.
The local pointwise estimate opens the way for the treatment of initial value problems on the
whole space in Chapter 7. Here Proposition 7.5 is crucial, estimating the derivatives at a certain
time pointwise by an exponentially weighted L2

σ-norm at an earlier time. On the one hand this
provides the pointwise estimates against rough norms of initial data in Theorem 7.6.
On the other hand, it is possible to consider the Green function of our problem as it is done
in Chapter 8. Theorem 8.3 contains a pointwise exponential decay estimate of any derivative
of the Green function with an upper bound that resembles the Gaussian function in terms of
the intrinsically given metric and measure. Such an estimate is called Gaussian estimate or
Aronson-type estimate after one of the first authors exploring this type of inequalities ([Aro67]).
For general uniformely strongly parabolic equations their proof was originally given by means
of the Harnack inequality contained in [Mos64] and [Mos67]. This order was reversed by [FS86]
and Gaussian estimates were shown directly. This idea was extended by [Koc99] to cover the
degenerate parabolic case with measurable coefficients. Our proof simplifies this approach in a
special case of constant coefficients and at the same time adds control over the derivatives of the
Green function. Compare also Remark 8.4.
The Gaussian estimate enables us to consider initial value problems with rough initial data
and more general inhomogeneities as well as to gain both on-diagonal and off-diagonal kernel
estimates. Their consequences are studied in Chapter 9, where the global pointwise estimate in
Theorem 9.9 is derived. Furthermore, we apply the theory of singular integrals and Calderón-
Zygmund operators in spaces of homogeneous type to find localised Lp-estimates against the
inhomogeneity for the linear equation as in Theorem 9.10.
We can then finally turn to the non-linear equation in Chapter 10 and use the linear estimates
we obtained to construct function spaces consisting of the intersection of local Lp-spaces and the
global homogeneous Lipschitz space in time and space. The special shape of our non-linearity
helps us to operate an analytic fixed point argument in the spirit of [KL12] in this function
spaces to gain Theorem 10.3, providing existence as well as temporal and tangential analyticity
of perturbations with small initial Lipschitz norm. Thanks to [Koc99], the smoothness of the
perturbation follows from the resulting bound on the global Lipschitz norm that is implied by our
special choice of spaces. This perturbation result is new, and a reformulation provides stability of
solutions of the transformed pressure equation that are initially close to the travelling wave wtw in
the sense of homogeneous Lipschitz spaces. Moreover, there are precise estimates of derivatives.
Note that wtw is continuous down to the initial time s1 and we have wtw(s1, y) = yn and thus
∇ywtw(s1, ·) = ~en.

1.11 Theorem Let σ > −1, s1 > −∞ and I = (s1, s2) ⊂ R be an open interval.
Then there exists an ε > 0 such that for any g : H → R satisfying

∥∥∇yg−~en
∥∥

L∞(H)
< ε we can

find a solution w∗ to the transformed pressure equation on I × H with initial value g for which we have
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w∗ ∈ C∞(I × H) and

sup
(s,y)∈I×H

|∇yw∗(s, y)−~en| ≤ c ε

for a constant c = c(n, σ) > 0. Furthermore, w∗ is analytic in the temporal and tangential directions on
I × H with an R > 0 and a C = C(n) > 0 such that

sup
(s,y)∈I×H

(s− s1)
k+|α′ | |∂k

s ∂α′
y′∇yw∗(s, y)| ≤ C R−k−|α′ | k! α′! ε

for any k ∈N0 and α′ ∈Nn−1
0 with k + |α′| > 0.

We now set

T : I × H 3 (s, y) 7→ (s, y′, w∗(s, y)) =: (t, x),

interchanging dependent and independent variables. Choosing ε even smaller so that c ε < 1,
from the global bound on the gradient of w∗ it follows immediately that

(1− c ε)|(s, y)− (s, y)| < |T(s, y)− T(s, y)| < (1− c ε)−1|(s, y)− (s, y)|

for any (s, y), (s, y) ∈ (I × H). This means that T is injective and a quasi-isometry, thus allowing
us to reparametrise the graph of w∗ globally via T, reversing the local process that was applied
above to motivate the consideration of the transformed pressure equation in the first place. The
smooth function whose graph is given in terms of t and x is called v∗, and we get T(I × H) =

P(v∗). Next we perform the rescaling of time that inverts the one given above without renaming
the time variable t, doublebinding the notation here also with respect to the transformed and
rescaled time interval that we name (t1, t2) =: I again. The same calculations as above then show
that v∗ is a classical solution of the pressure equation pointwise on P(v∗) up to and including the
boundary. Since the level set of v∗ at height z is given by{

(s, y) | yn = w∗(s, y′, z)
}

,

the temporal and tangential analyticity translates into analyticity of the level sets of v∗. Note that
for these transformations to hold it is necessary that the perturbation has small homogeneous
Lipschitz norm. Thus in this sense the smallness condition on the initial perturbation is optimal.
The repetition of this process with wtw instead of w∗ generates the travelling wave solution

vtw(t, x) = (xn + (t− t1))

of the pressure equation on P(vtw).

Finally, consider u∗(t, x) :=
(

m−1
m v∗(t, x)

) 1
m−1 for any (t, x) ∈ P(v∗) with u∗(t, x) := 0 whenever

(t, x) ∈ P(v∗)c to generate a classical solution of the PME on P(u∗) = P(v∗) that is a weak
solution of the PME on I ×Rn in the sense of Definition 1.1. To see the latter we simply compute∫

I×Rn

u∗∂t ϕ dLn+1 +
∫

I×Rn

um
∗ ∆x ϕ dLn+1 = −

∫
P(u∗)

∂tu∗ϕ dLn+1 +
∫
P(u∗)

∆xum
∗ ϕ dLn+1 = 0

9
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for any ϕ ∈ C∞
c (I ×Rn), where the boundary terms of the integrations by parts vanish since u∗

vanishes at the boundary of its positivity set and we have

∇xum
∗ =

(
m− 1

m

) m
m−1
∇xv

m
m−1
∗ = u∗∇xv∗.

In conjunction with the existence and uniqueness results 1.3, 1.5 and 1.6, this shows the stability
of solutions of the PME whose pressure is initially close to a flat front as well as regularity for the
solution and its interface, thus establishing the main result of the present work.

1.12 Theorem Let I = (t1, t2) ⊂ R be open with −∞ < t1 < t2 ≤ ∞ and g : Rn −→ R be such that∥∥ m
m−1 ∇xgm−1 −~en

∥∥
L∞(P(g)) < ε for an ε > 0 that is sufficiently small.

If u is the solution of the PME on I ×Rn with initial value g, then we have um−1 ∈ C∞(P(u)),

sup
(t,x)∈P(u)

| m
m− 1

∇xum−1(t, x)−~en| < c ε

with a constant c = c(n, m), and all the level sets of u are analytic.

The level set of level 0 is nothing but G(u). The proof of the conjecture formulated in Remark 10.4,
drawing also on the analyticity result from [Koc99], would ensure that not only the interface of u,
but indeed its pressure um−1 is analytic.

There are at least two questions that are interesting to pursue from this point onwards. On the
one hand it should be possible to gain a local existence result as in [Koc99, Theorem 5.5.1.] with
less restrictive assumptions on the initial data. This would improve short time regularity by
weakening the prerequisits for the initial datum g ≥ 0 with bounded positivity set to be only
gm−1 ∈ C1(P(g)) with gm−1 + |∇x(gm−1)| ≥ c > 0 on P(g).
On the other hand, it is known from other equations that flatness implies regularity. The most
prominent example is possibly the so-called Stefan problem ([Mei92]) that has had a development
somewhat parallel to the PME. There are several possibilities to make the intuitive notion of
flatness mathematically concrete. In the literature there exist measure theoretic approaches as in
[Caf88] or differently in [Caf77]. With the definition from [Caf89], it was shown in [ACS98] that
flat weak solutions of the Stefan problem are classical and hence smooth ([Koc98]). Inspired by
this result, for the PME we would propose to define flatness of a solution by trapping its pressure
between two travelling wave solutions of the pressure equation. The Lipschitz framework of
our Theorem 1.12 should then make it possible to show that flatness also implies smoothness of
the solutions of the PME at least locally. This requires to generalise the proof of the pointwise
estimate in Theorem 6.10 to the case of measurable coefficients and therefrom derive both an
upper and a lower Gaussian estimate in this context. These Gaussian statements are already
contained in [Koc99]. However, for the PME it is known that any solution to initial data with
bounded positivity set will indeed always get caught between two flat fronts eventually, therefore
becoming flat. This would then prove large time regularity for any solution of the PME that
evolves from an initial datum with bounded positivity set.

10



2 Preliminaries

In this chapter we fix the notation and present some results needed later in places scattered all
over this work. Some general background information can be found in the appendix.

Basic Notations and Conventions

Constants are denoted by c and C, and we write for example c = c(a, b) if and only if the constant
c depends only on the parameters a and b. In chains of inequalities, the value of c can differ in
every step without a change in the notation. To avoid confusion, we therefore mostly use the
notation x .a,b y instead, meaning that there is a constant depending only on a and b – for now
called c(a, b), but usually not naming it explicitely – such that the inequality x ≤ c(a, b) y holds.
The mere symbol . itself ensures that the constant does not contain any parameters. In every
step of a chain of inequalities, exactly the parameters entering in each step are indicated by this
notation, while the conclusion contains all dependencies. In an example once more we could
perhaps have that x .a y .b z, implying x .a,b z. The reverted symbol is &a,b, and x .a y .b x is
abbreviated to x ha,b y.
We say that a quantity x is positive if and only if x ≥ 0. For x > 0 the terminus strictly positive is
reserved. The same remark applies to negative and strictly negative terms as well as to monotone
functions: A function f is monotonically increasing (decreasing) if and only if f (x1) ≤ f (x2)

( f (x1) ≥ f (x2)) for any x1 < x2, and strictly monotonically increasing (decreasing) if and only if
this inequality is strict.
The Kronecker symbol is always written as δij.
Throughout this work, n ∈N denotes the (spatial) dimension and we set R1 = R. We consider
subsets ω of time-space R × Rn. Mostly ω is of a product structure itself, that is we have
ω = I ×Ω for a time interval I ⊂ R and a connected subset Ω of space Rn. The underlying
topology is always taken to be the usual one, alongside with the standard notations I and Ω for
the closures of I and Ω in R or in Rn, and I̊ and Ω̊ for the interiors of I and Ω. On subsets, the
induced topology is considered and a subset of a subspace that is open or closed with respect
to the induced topology will also be called relatively open or relatively closed, respectively. The
compact subsets of Ω ⊂ Rn with respect to the induced topology on Ω are given exactly by the
compact subsets of Rn that are contained in Ω. Thus compact subsets of an open set Ω have a
positive distance to ∂Ω, whereas compact subsets of Ω can touch the boundary.
Intervals are given by their end points t1 ≤ t2, where ±∞ is admissible for both end points.
We denote (t1, t2) := {t ∈ R | t1 < t < t2} and [t1, t2] := {t ∈ R | t1 ≤ t ≤ t2}, with the obvious
alterations in the definitions of [t1, t2) and (t1, t2]. It is clear that (t1, t2) is an open set and [t1, t2]

a closed one with (t1, t2) = [t1, t2]. Moreover, we introduce the notation I and I to mean the
closure of an interval I only at its left or right end point, respectively. We always exclude±∞ from
being an element of the (time) interval and therefore set by convention [−∞, t2] := (−∞, t2], and
likewise for the other possible cases. Therefore t ∈ I is always a finite point of time, regardless of
the interval I being bounded or not. On the other hand, the interval I = R = R is included in
and consistent with this notation, since it does not contain an infinite time and is both closed and
open.
Another conventional setting we use is ∞± h = ∞ and −∞± h = −∞ for any h ∈ R. For an
arbitrary open interval I = (t1, t2) and h > 0 we denote Ih := (t1, t2 − h) and I−h := (t1 + h, t2).

11
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By the convention we then have I−h = I if t1 = −∞ and Ih = I if t2 = ∞. For arbitrary h ∈ R it is
obvious that Ih + h = I−h.
We define the euclidean open ball with radius r > 0 centred at x0 ∈ Rn as

Beu
r (x0) := {x ∈ Rn | deu(x, x0) < r} ,

where deu indicates the euclidean metric on Rn. The closure of the ball is then given by

Beu
r (x0) := {x ∈ Rn | deu(x, x0) ≤ r} .

We denote the cube centred at x0 ∈ Rn with side length 2 r by

Cr(x0) :=
{

x ∈ Rn | max
j=1,...,n

|x0,j − xj| < r
}

,

which can also be written as the cartesian product of the intervals (x0,j − r, x0,j + r) ranging over
j = 1, . . . , n. Obviously we have

C r√
n
(x0) ⊂ Beu

r (x0) ⊂ Cr(x0).

Other special subsets of Rn we consider include the open xn-strip

Hb
a := {x ∈ Rn | a < xn < b}

and its closure

Hb
a = {a ≤ xn ≤ b}

for some numbers a ≤ b. Here the same conventions as for time intervals prevent the inclusion of
infinity into the set. For a = 0 and b = ∞ we drop the sub- and superscripts and obtain the upper
half plane H, an open and unbounded subset of Rn. Its boundary is the same as that of its closure
H, namely

∂H = ∂H = {x ∈ Rn | xn = 0} =: {xn = 0} .

As a finite dimensional vector spaces we always equip Rn with the canonical basis {~e1, . . . ,~en}.
Any x ∈ Rn is then given as x = (x1, . . . , xn). When considering a particular direction of Rn

seperately, say the j-th direction for a j ∈ {1, . . . , n}, we sometimes abbreviate the remaining
n− 1 coordinates as x′ := (x1, . . . , xj−1, xj+1, . . . , xn) and write x = (x′, xj) regardless of the exact
position of xj. The inner product in Rn of two elements x, y ∈ Rn is denoted by

x · y :=
n

∑
j=1

xjyj.

We also introduce the function ( · )l
n : H 3 x 7→ xl

n ∈ R for l ≥ 0.

The canonical measure on Rn is the Lebesgue measure Ln, and we drop the exponent 1 to write L
on R. We also drop the Lebesgue measure itself in the notation of the Lebesgue spaces and set
Lp(Ω,Ln) =: Lp(Ω) and Lp

loc(Ω,Ln) =: Lp
loc(Ω) for any 1 ≤ p ≤ ∞.
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For a function u ∈ L1
loc(Ω), we regard the vanishing set V(u) as the union of all relatively open

subsets of Ω on which u = 0 holds Ln-almost everywhere. The support of u is then defined
as supp u := Ω r V(u), a relatively closed subset of Ω. If u is continuous, the support can be
characterised as

supp u = {x ∈ Ω | u(x) 6= 0} ∩Ω.

This is of course again a relatively closed subset of Ω.
If u ≥ 0 we also consider the positivity set P(u) := {x ∈ Ω | u(x) > 0}. For continuous u it is an
open set, and we have supp u = P(u) ∩Ω.
Functions u on time-space sets that are evaluated at a time t remain functions on the spatial part
of the underlying set, but we often supress this in the notation and write only u(t, ·) = u(t).
The partial derivative of a function u in the xj-direction is denoted by ∂xj u, and in general we use
the notation

∂α
xu = ∂α1

x1 ∂α2
x2 . . . ∂αn

xn u

with a multi-index α ∈ Nn
0 . The length of such α is given by |α| =

n
∑

j=1
αj. The collection of all

derivatives of order m is Dm
x u := {∂α

xu | |α| = m}. Especially for m = 1, we often view this set as
an ordered n-tuple or vector and write ∇xu = (∂x1 u, . . . , ∂xn u). By an abuse of notation, we often
ignore the set character of Dm

x u and use this symbol to express a fact for every single element of it,
as for example in Dm

x u ∈ Lp(Ω), meaning that ∂α
xu ∈ Lp(Ω) for any multi-index α of length m.

For the converse case of singleing out arbitrary elements of derivatives of a certain order withouth
specifying excatly which, we introduce the symbolic notation Dm1

x u ? Dm2
x u to denote any linear

combination of products of derivatives of orders m1 and m2. For example, we have

∂xn u ∆xu = ∇xu ? D2
xu

as well as

∂2
xn u

n

∑
j=1

∂xj u = ∇xu ? D2
xu.

We use 1 ? Dm
x u to mean a linear combination of derivatives of order m only, that is for instance

∂xn u = 1 ?∇xu

and

n

∑
j=1

∂xj u = 1 ?∇xu,

and in the same spirit allow terms like v ? Dm
x u for another function v. The iterated application of

? onto the same order of derivatives, as in Dm
x u ? . . . ? Dm

x u – j times – is abbreviated by (Dm
x u)j?

with the usual conventions (Dm
x u)1? = 1 ? Dm

x u and (Dm
x u)0? = 1.

Furthermore, we set

|Dm
x u| :=

√
∑
|α|=m

|∂α
xu|2 hn ∑

|α|=m
|∂α

xu|.
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For m = 1 the notation of the inner product in Rn can be applied to give |D1
xu|2 = |∇xu|2 =

∇xu · ∇xu.
We also use the common abbreviation

∇x · ~u :=
n

∑
j=1

∂xj uj

for an Rn-valued function ~u = (u1, . . . , un), and especially

∆xu := ∇x · ∇xu =
n

∑
j=1

∂2
xj

u.

Weighted Measures and Lebesgue Spaces

The weight function x 7→ |xn|σ is in L1
loc(R

n) if and only if σ > −1. For any such σ we can
therefore define the weighted Lebesgue measure µσ(x) := |xn|σ dLn(x) on Rn, that is µσ is given
by

µσ(Ω) =
∫
Ω

|xn|σ dLn(x) for any Ln −measurable Ω ⊂ Rn.

By definition the µσ-measurable sets contain the Ln-measurable ones, and especially all Borel sets.
Of course the special case σ = 0 gives us back the Lebesgue measure Ln = µ0. Instead of µσ(Ω)

we mostly write |Ω|σ, dropping the index for σ = 0. Note that any Ln-nullset is also a µσ-nullset.
The converse is also true, as one can see by a short computation. As a consequence we do not
have to distinguish between Ln-nullsets and µσ-nullsets, or the phrases Ln-always everywhere
and µσ-always everywhere, and the likes. Thus we merely write nullset, always everywhere, and
so on.
It is well-known that |Beu

r (x0)| hn rn. As a first proposition we calculate the µσ-measure of a cube
and a euclidean ball.

2.1 Proposition Let σ > −1, x0 ∈ Rn and r > 0.

(i) If |x0,n| ≥ r, then |Cr(x0)|σ hn,σ rn−1 ((|x0,n|+ r)1+σ − (|x0,n| − r)1+σ
)
.

(ii) If |x0,n| < r, then |Cr(x0)|σ hn,σ rn−1 (|x0,n|+ r)1+σ.

(iii) |Beu
r (x0)|σ hn,σ rn (|x0,n|+ r)σ.

Proof: By definition we have

|Cr(x0)|σ = 2n−1 rn−1
∫

(x0,n−r,x0,n+r)

|xn|σ dL(xn).

For x0,n ≥ r > 0 the fundamental theorem of calculus then shows that

|Cr(x0)|σ =
2n−1

1 + σ
rn−1

(
(x0,n + r)1+σ − (x0,n − r)1+σ

)
hn,σ rn−1

(
(|x0,n|+ r)1+σ − (|x0,n| − r)1+σ

)
.
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This calculation is possible since σ > −1, and likewise we get for x0,n ≤ −r < 0 that

|Cr(x0)|σ = − 2n−1

1 + σ
rn−1

(
(−x0,n − r)1+σ − (−x0,n + r)1+σ

)
hn,σ rn−1

(
(|x0,n|+ r)1+σ − (|x0,n| − r)1+σ

)
.

We now consider −r < x0,n < r. The same direct calculation as above leads to

|Cr(x0)|σ hn,σ rn−1
(
(−x0,n + r)1+σ + (x0,n + r)1+σ

)
.

If x0,n ≥ 0, the second term is bigger and we get

|Cr(x0)|σ .n,σ rn−1(x0,n + r)1+σ = rn−1(|x0,n|+ r)1+σ.

A similar calculation is valid for x0,n < 0, where the first term is bigger, and the last inequality
therefore holds in the case −r < x0,n < r.
For the opposite inequality in this case we note that for x0,n ≥ 0 we also have

|Cr(x0)|σ &n rn−1
∫

(0,x0,n+r)

xσ
n dL(xn) hσ rn−1(x0,n + r)1+σ

and the same inequality holds for x0,n < 0 with −x0,n instead of x0,n on the right hand side. This
finishes the proof for the measure of the cube.
We turn to the ball and first consider the case r < 1

2 |x0,n|. For any x ∈ Beu
r (x0) we then see that

1
2 |x0,n| < |xn| < 3

2 |x0,n| and can conclude that

|Beu
r (x0)|σ hσ |x0,n|σ |Beu

r (x0)| hn |x0,n|σ rn.

For σ ≥ 0 we have |x0,n|σ < (|x0,n|+ r)σ and, now using that we are in the case r < 1
2 |x0,n|, also

|x0,n|σ = (
1
2
|x0,n|+

1
2
|x0,n|)σ &σ (|x0,n|+ r)σ.

Reiterating the computation for −1 < σ < 0 also generates |x0,n|σ hσ (|x0,n| + r)σ and thus
|Beu

r (x0)|σ hn,σ rn (|x0,n|+ r)σ if r < 1
2 |x0,n|.

On the other hand it is immediate that r ≥ 1
2 |x0,n| implies

|Beu
r (x0)|σ ≤ |Cr(x0)|σ .n,σ rn (|x0,n|+ r)σ

by an application of the results for the cube. To show the corresponding estimate from below we
divide the case into two subcases. If r >

√
n |x0,n| we can use the second formula for the measure

of the cube with radius r√
n and obtain

|Beu
r (x0)|σ ≥ |C r√

n
(x0)|σ hn,σ rn−1 (|x0,n|+ r)1+σ.

The trivial inequality (|x0,n|+ r) > r finishes this case. Finally, if 1
2 |x0,n| ≤ r ≤

√
n |x0,n|, the first
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formula for the measure of the cube with radius r√
n is applicable and reveals that

|Beu
r (x0)|σ ≥ |C r√

n
(x0)|σ hn,σ rn−1

(
(|x0,n|+

r√
n
)1+σ − (|x0,n| −

r√
n
)1+σ

)
≥ rn−1 |x0,n|1+σ

(
(1 +

1
2
√

n
)1+σ − (1− 1

2
√

n
)1+σ

)
hn,σ rn−1 |x0,n|1+σ,

where we used the left hand side bound for r that is available in this special subcase in both
summands. The right hand side inequality for r then yields the lower bound rn |x0,n|σ with an
additional dependence on n in the constant. If σ ≥ 0 we use once more that

|x0,n| =
1
2
|x0,n|+

1
2
|x0,n| ≥

1
2
|x0,n|+

1
2
√

n
r,

while for −1 < σ < 0 the trivial inequality allows us to add a positive term to |x0,n|σ without
making it bigger.

From a theoretical point of view, Proposition 2.1 also shows that µσ is not only a Borel measure,
but also a Radon measure (see definition A.10). Furthermore, µσ has the very useful property of
being countably finite on Rn as defined in Definition A.2.

As an abbreviation for the Lebesgue spaces with respect to µσ we set Lp(Ω, µσ) =: Lp
σ(Ω) for

1 ≤ p ≤ ∞. Since µσ is a Borel measure, also the local Lebesgue spaces Lp
loc(Ω, µσ) are defined for

any 1 ≤ p ≤ ∞. By definition we have Lp
σ(Ω) ⊂ Lp

loc(Ω, µσ) for any 1 ≤ p ≤ ∞. Moreover, the
fact that µσ is also Radon ensures that Lp

loc(Ω, µσ) ⊂ L1
loc(Ω, µσ) for any 1 ≤ p ≤ ∞. Note also

that for arbitrary Ω we have Ω̊ ⊂ Ω and therefore the collection of compact subsets of Ω contains
at least all sets that are compact subsets of Ω̊. Consequently we get Lp

loc(Ω, µσ) ⊂ Lp
loc(Ω̊, µσ) for

any 1 ≤ p ≤ ∞.
For a set Ω that is open or closed we know that the boundary is a nullset. It is therefore clear that
Lp

σ(Ω̊) = Lp
σ(Ω) for such Ω.

Now consider an arbitrary set Ω ⊂ H. Since any compact set contained in the open upper
half plain stays away from {xn = 0} it follows that on any compact M ⊂ Ω we know that both
sup
x∈M

x−σ
n and sup

x∈M
xσ

n are finite constants. This shows that for Ω contained in the upper half plane

we have Lp
loc(Ω, µσ) = Lp

loc(Ω) for any 1 ≤ p ≤ ∞. In conjunction with the inclusions above this
means that on an open set Ω that is contained in H we have

Lp
σ(Ω) ⊂ Lp

loc(Ω, µσ) ⊂ Lp
loc(Ω, µσ) ⊂ L1

loc(Ω, µσ) ⊂ L1
loc(Ω)

for any 1 ≤ p ≤ ∞.
The countable finiteness of µσ ensures that L∞(Ω) is the dual space to L1

σ(Ω) on any Ω ⊂ Rn. As
always in the context of dual Lebesgue spaces we use the conventions 1

0 = ∞ and 1
∞ = 0 when

these cases arise.
On time-space-sets I ×Ω we denote the product measure by L× µσ. With Lq(I; Lp

σ(Ω)) we mean
the space of Lp

σ(Ω)-valued functions whose q-th power is L-integrable on I in the sense of Bochner
([Yos68]). It is obvious that Lp(I; Lp

σ(Ω)) = Lp(I ×Ω,L× µσ) with a suitable identification of the
objects involved.
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Spaces of Continuous Functions

As usual we denote

C(Ω) := {u : Ω −→ R | u continuous}

and

Cc(Ω) := {u ∈ C(Ω) | supp u is compact subset of Ω} .

Instead of adopting the intrinsic point of view one could also stress the subset nature of Ω by
considering

C̆(Ω) := {u : Ω −→ R | u has extension ŭ ∈ C(Rn)} ⊂ C(Ω).

For compactly supported continuous functions on a subset this approach yields the characterisa-
tion

Cc(Ω) =
{

u ∈ C̆(Ω) | supp u is compact subset of Ω
}

proven for example by means of Tietze’s extension theorem ([Mun00]). The extension ŭ of
u ∈ Cc(Ω) can indeed be chosen to have compact support again, so we have

Cc(Ω) = {u : Ω −→ R | supp u is compact subset of Ω and u has extension ŭ ∈ Cc(R
n)} .

By considering the extensions we may regard Cc(Ω) as a subspace of Cc(Rn) that increases with
the underlying set.
Reversing the order of these operations on the function space C(Ω), we could also consider the
space

C̆c(Ω) := {u : Ω −→ R | u has extension ŭ ∈ Cc(R
n)} ⊂ C(Ω).

This space differs from Cc(Ω) by lacking the condition on the support of the restricted function.
Thus the support of functions in C̆c(Ω) is always bounded, but does not have to be compact. We
have Cc(Ω) ⊂ C̆c(Ω) with equality only for closed Ω.
Note that by considering functions in Cc(Rn) whose support is contained in Ω, where Ω is
arbitrary again, we would get yet another space on Ω that in general does not coincide with
any of the other two. Its elements are characterised by their compact support as functions on
Ω and the fact that they can be extended by zero regardless of the topological properties of Ω.
In contrast to that, only if Ω is open with ∂Ω 6= ∅, it is clear that the elements of Cc(Ω) have a
trivial extension to Rn, and even vanish already at a distance from ∂Ω. For general Ω, however,
u ∈ Cc(Ω) can as well have non-zero values near and even at ∂Ω. On the other hand, for any set
Ω with boundary, even if it is open, the functions in C̆c(Ω) do not have to be zero at ∂Ω.
As a reminder we annotate that by means of Lusin’s theorem ([Els07]) one sees that Cc(Ω) is a
dense subset of Lp

σ(Ω) for any Ω ⊂ Rn and any 1 ≤ p < ∞.
The collection of functions on an arbitrary Ω that are continuous and bounded is written as
Cb(Ω). For vector space valued functions u : I −→ Lp

σ(Ω) that are continuous with respect
to the topology induced by the norm on Lp

σ(Ω), the usual notation C(I; Lp
σ(Ω)) is used, and

Cc(I; Lp
σ(Ω)), Cb(I; Lp

σ(Ω)), and so on, have the obvious meaning.

17
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Spaces of Di�erentiable Functions

In contrast to continuity, differentiability of a function can only be defined on open subsets Ω of
Rn. For such an open set and m ∈N we denote

Cm(Ω) := {u : Ω→ R | u is m times differentiable with ∂α
xu ∈ C(Ω) for all |α| ≤ m}

and

Cm
c (Ω) := {u ∈ Cm(Ω) | supp u is compact subset of Ω} .

For general, not necessarily open subsets Ω we consistently define

Cm(Ω) :=
{

u : Ω→ R | u ∈ Cm(Ω̊), ∂α
xu has continuous extension to Ω for any |α| ≤ m

}
.

This is not the same as considering the functions restricted from the whole space as we did above.
In fact, the space

C̆m(Ω) := {u : Ω −→ R | u has extension ŭ ∈ Cm(Rn)}

equals Cm(Ω) if and only of Ω is closed. In view of this and the above characterisation of
continuous functions with compact support we set

Cm
c (Ω) := {u : Ω→ R | supp u is compact subset of Ω, u has extension ŭ ∈ Cm

c (R
n)} .

For open Ω this definition coincides with the one given above.
Additionally we consider the space

C̆m
c (Ω) := {u : Ω→ R | u has extension ŭ ∈ Cm

c (R
n)}

for arbitrary Ω ⊂ Rn. As before we have Cm
c (Ω) = C̆m

c (Ω) for closed Ω and Cm
c (Ω) ( C̆m

c (Ω) for
open Ω ( Rn. Setting C0

c (Ω) := Cc(Ω), with the same definition for the other spaces presented,
is consistent. We have for example Cm

c (Ω) ⊂ Cc(Ω) and all comments for functions in Cc(Ω)

carry over to functions in Cm
c (Ω).

Finally, denote

C∞
c (Ω) :=

⋂
m∈N

Cm
c (Ω),

and likewise C̆∞(Ω), C̆∞
c (Ω), and C∞(Ω).

Let now Ω ⊂ Rn be open. The space C∞
c (Ω) can then be equipped with seminorms to become the

locally convex space D(Ω). The elements of its dual are called distributions, accordingly denoted
by D′(Ω). Any distribution u has a derivative ∂α

xu that is a distribution itself again. Although it is
not clear that the product of two distributions is also a distribution, the product of a distribution
with a smooth function yields a distribution again. For such products, the usual product rule of
derivatives applies.
The Riesz representation theorem ([Wer05]) makes it possible to identify any function u ∈ L1

loc(Ω)

uniquely with a distribution. Conversely, the distributions on Ω that are given by locally Lebesgue
integrable functions are called regular.
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Weighted Sobolev Spaces

Concentrating on open subsets Ω of the upper halfplane H, the existence of a distributional
derivative is guaranteed for any u ∈ Lp

loc(Ω, µσ) and hence for any u ∈ Lp
σ(Ω). This derivative is

uniquely determined in Ω, albeit not on ∂Ω.
It is not clear at all that a distribution that is given by the derivative of a regular distribution is
regular itself. The notion of Sobolev spaces is designed for those that are. Here we allow different
weights for every order of derivatives and define the weighted Sobolev spaces on an open set
Ω ⊂ H as

Wm,p
~σ (Ω) :=

{
u ∈ Lp

σ0(Ω) | ∂α
xu ∈ Lp

σ|α|(Ω) for all |α| ≤ m
}

for m ∈ N and 1 ≤ p < ∞, understanding the weight exponents σ0, . . . , σm > −1 as the vector
(σ0, . . . , σm) = ~σ. If σi = σ + i for a σ > −1 and i = 0, . . . , m, we will also use the abbreviation
Wm,p

σ (Ω). If on the other hand σ0 = . . . = σm = 0, that is all measures considered are the
Lebesgue measure, we drop the~σ entirely from the notation and merely write Wm,p(Ω). We also
set W0,p

~σ (Ω) := Lp
σ(Ω). By an abuse of notation we include functions on time-space sets I ×Ω for

an open interval I ⊂ R and set

Wm,p
~σ (I ×Ω) :=

{
u ∈ Lp(I ×Ω,L× µσ0) | ∂k

t ∂α
xu ∈ Lp(I ×Ω,L× µσ|α|) for all k + |α| ≤ m

}
.

Equipped with the norm

‖u‖Wm,p
~σ

(Ω)
:=

 ∑
|α|≤m

‖∂α
xu‖p

Lp
σ|α| (Ω)

 1
p

,

for 1 ≤ p < ∞ the weighted Sobolev spaces on the upper half plane are complete for any m ∈N0,
as is shown in the following proposition.

2.2 Proposition Let m ∈N0, σ0, . . . , σm > −1, Ω ⊂ H be open and 1 ≤ p < ∞.
Then Wm,p

~σ (Ω) is a Banach space.

Proof: Let (uj)j∈N be a Cauchy sequence in Wm,p
~σ (Ω). Then (∂α

xuj)j∈N is a Cauchy sequence in
Lp

σ|α|(Ω) for any 0 ≤ |α| ≤ m. Since the Lebesgue spaces are complete for any σ > −1 and any

1 ≤ p < ∞, we know of the existence of uα ∈ Lp
σ|α|(Ω) with ∂α

xuj → uα in Lp
σ|α|(Ω) for j→ ∞.

But ∂α
xuj as well as uα can be seen as regular distributions for any j ∈N and 0 ≤ |α| ≤ m. So for a

ϕ ∈ C∞
c (Ω) we have

|∂α
xuj(ϕ)− uα(ϕ)| ≤

∫
Ω

|∂α
xuj(x)− uα(x)| x

−
σ|α|

p
n |ϕ(x)| x

σ|α|
p

n dLn(x)

≤
∥∥∂α

xuj − uα

∥∥
Lp

σ(Ω)

∥∥∥∥∥( · )−
σ|α|

p
n ϕ

∥∥∥∥∥
L

p
p−1 (Ω)

with Hölder’s inequality. Since supp ϕ is compact and stays away from {xn = 0}, the last term is
bounded, while the first converges to 0. Thus ∂α

xuj → uα in D′(Ω) for any 0 ≤ |α| ≤ m. But then
we see, again for ϕ ∈ C∞

c (Ω) and with the notation of distributions, that

uα(ϕ) = lim
j→∞

(−1)|α| uj(∂
α
x ϕ) = (−1)|α| u0(∂

α
x ϕ) = ∂α

xu0(ϕ)
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for any 0 ≤ |α| ≤ m. Hence we have uα = ∂α
xu0 ∈ Lp

σ|α|(Ω) for any 0 ≤ |α| ≤ m and thus uj → u0

in Wm,p
~σ (Ω).

For p = 2 and m ∈N0 the space Wm,2
~σ (Ω) is a Hilbert space with the obvious inner product

( u | v )Wm,p
σ (Ω)

:= ∑
|α|≤m

∫
Ω

∂α
xu ∂α

xv dµσ|α| .

As an abbreviation we also write

(∇xu |∇xv )Wm,p
σ (Ω)

:=
n

∑
j=1

( ∂xj u | ∂xj v )Wm,p
σ (Ω).

A lot of the questions that arise naturally in weighted Sobolev spaces are also treated in [Kuf85].
We now prove that on the closed upper half space the norm of the highest derivative controls the
Sobolev norm at least on a compact set if the weights are given adequately.

2.3 Proposition (Hardy Inequality) Let σ > −1, m ∈N and 1 ≤ p < ∞.
If ∂m

xn u ∈ Lp
mp+σ(H) and u has compact support contained in H, then

‖u‖Lp
σ(H) .σ,m,p

∥∥∂m
xn u
∥∥

Lp
mp+σ(H)

.

Proof: First assume m = 1 and p = 1. The assumptions then assure that for almost any x′ ∈ Rn−1

we have ∂xn u(x′, ·) ∈ L1
loc((0, ∞)), thus u(x′, ·) ∈ L1

loc((0, ∞)) and, moreover, the fundamental
theorem of calculus in xn-direction is applicable. This yields

u(x) = −
∫

(xn ,∞)

∂zn u(x′, zn) dL(zn)

thanks to the compact support of u. With Fubini’s theorem we get

‖u‖L1
σ(H) ≤

∫
(0,∞)

‖∂zn u(·, zn)‖L1(Rn−1)

∫
(0,zn)

xσ
n dL(xn)

 dL(zn) .σ ‖∂xn u‖L1
1+σ(H) .

Now consider 1 ≤ p < ∞. Here the prerequisits show that ∂xn u(x′, ·) ∈ Lp
loc((0, ∞)) and

consequently u(x′, ·) ∈ Lp
loc((0, ∞)). Hölder’s inequality then guarantees that

∂xn(u
p)(x′, ·) = p up−1(x′, ·) ∂xn u(x′, ·) ∈ L1

loc((0, ∞))

and we can therefore apply the above result onto up to get

‖u‖p
Lp

σ(H)
= ‖up‖L1

σ(H) .σ ‖∂xn(u
p)‖L1

1+σ(H) hp

∥∥∥up−1 ∂xn u
∥∥∥

L1
1+σ(H)

=
∫
H

x
σ

p−1
p

n |u|p−1 x
σ
p +1
n |∂xn u| dLn(x) ≤ ‖u‖p−1

Lp
σ(H)

‖∂xn u‖Lp
p+σ(H)

using Hölder’s inequality again.
Finally let m ≥ 1. The inequality for m = 1 then implies that ∂m−1

xn u ∈ Lp
(m−1)p+σ

(H). An iteration
of this argument finishes the proof.
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Di�erence Quotient and Weak Regularisation

For an open (time) interval I let u ∈ L1
loc(I) and h ∈ R, and define the (temporal) difference

quotient by

Dhu(t) :=

{
h−1 (u(t + h)− u(t)) for all t ∈ Ih

0 for all t ∈ I r Ih.

Obviously we, have Dhu ∈ L1
loc(I). Direct calculations show that

Dh(u1 u2)(t) = Dhu1(t) u2(t) + Dhu2(t) u1(t + h)

= Dhu1(t) u2(t) + Dhu2(t) u1(t) + h Dhu1(t)Dhu2(t)

holds, as well as∫
I

u Dh ϕ dL = −
∫
I

D−hu ϕ dL for any ϕ ∈ L1
loc(I) with {ϕ 6= 0} ⊂ Ih ∩ I−h.

Furthermore, we consider

uh(t) :=


h−1

∫
(0,h)

u(t + τ) dL(τ) for all t ∈ Ih

0 for all t ∈ I r Ih.

2.4 Remark A regularising effect of uh is immediate, since clearly uh ∈ C(Ih) and also uh ∈ L1
loc(I).

But moreover, if ∂tu ∈ L1
loc(I) it is also clear that (∂tu)h = Dhu. Note that Fubini’s theorem shows∫

I

uϕh dL =
∫
I

u−h ϕ dL for any ϕ ∈ L1
loc(I) with {ϕ 6= 0} ⊂ Ih ∩ I−h.

By a computation it can now be seen that for any u ∈ L1
loc(I) and h small enough we also have ∂t(uh) =

Dhu ∈ L1
loc(I).

Convolution and Strong Regularisation

We fix J : Rn → R ∈ C∞
c (Rn) with supp J ⊂ Beu

1 (0) and
∫
Rn

J dLn = 1. Such a J exists, as we can

choose for example

J(x) :=

C e
− 1

1−|x|2 for x ∈ Beu
1 (0)

0 else

with a suitable normalisation constant C. For ε > 0, the function Jε(x) := ε−n J(ε−1x) is called a
mollifier. It is clear that

Jε ∈ C∞
c (Rn), supp Jε = Beu

ε (0) and
∫
Rn

Jε dLn = 1.
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We now adjust the usual mollification on H in a way that is modelled to suit our case of weighted
measures. Thus for Ω ⊂ H and u ∈ L1

loc(Ω), in an abuse of notation we define

(Jεxn ∗ u)(x) :=
∫
Rn

Jεxn(x− y)u(y) dLn(y),

where we always extend u by 0 outside of Ω. This is well-defined for any x ∈ H. Note that it is
sufficient to consider the integral on the ball Beu

εxn(x) because of the special shape of supp Jε. It
is clear that Jεxn ∗ u ∈ C∞(Ω) for any ε > 0, that is the adjusted mollification is indeed a strong
regularisation.
A transformation of the integral easily shows that we have the characterisation

(Jεxn ∗ u)(x) =
∫
Rn

Jε(y) u(x− xny) dLn(y) =
∫

Beu
ε (0)

Jε(y) u(x− xny) dLn(y).

If Ω ⊂ H is open and the derivatives of u ∈ L1
loc(Ω) are regular distributions on Ω again, a

calculation shows that for any open and bounded set M ⊂ Ω and any x ∈ M we have

∂α
x(Jεxn ∗ u)(x) =(Jεxn ∗ ∂α

z u)(x)

+
αn

∑
j=1

(−1)j
(

αn

j

)
∑
|β|=l

∫
Beu

ε (0)

Jε(y) ∂
β
z ∂α′

z′ ∂
αn−j
zn u(x− xny) yβ dLn(y)

if εxn is so small that x− xny ∈ Ω for any y ∈ Beu
ε (0) and x ∈ M. The latter is satisfied for ε small

enough if M ⊂ Ω ∪ ∂H, that is if M keeps a distance to the boundary of Ω except at those parts of
∂Ω that are contained in {xn = 0}. Compared to the usual mollification this is a slight gain in the
expansion of M.
If u ∈ C(Ω), the normalised L1-norm of Jε enables us to calculate

|(Jεxn ∗ u)(x)− u(x)| ≤ sup
y∈Beu

ε (0)

|u(x− xny)− u(x)|

which converges to 0 for ε > 0 pointwise and even uniformely on any set that is bounded and on
which u is uniformely continuous.
That this mollification is well-adopted to our weighted measures is established in the following
lemma.

2.5 Lemma Let σ > −1, Ω ⊂ H and 1 ≤ p < ∞.
If u ∈ Lp

σ(Ω), then ‖Jεxn ∗ u‖Lp
σ(Ω) .σ,p ‖u‖Lp

σ(Ω) for any ε small enough.

Proof: For a fixed i ∈ Z consider the strip Hi := H2i+1

2i . We also set uj := u χHj for any j ∈ Z. We
then have

‖Jεxn ∗ u‖p
Lp

σ(Hi)
≤
∫
Hi

 ∫
Beu

εxn (x)

Jεxn(x− y)∑
j∈Z

|uj(y)| dLn(y)


p

dµσ(x).

For any x ∈ Hi and any y ∈ Beu
εxn(x) it is then clear that uj(y) = 0 if |j− i| > 2 and ε < 1

2 . As a
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consequence we get

‖Jεxn ∗ u‖p
Lp

σ(Hi)
.p

i+1

∑
j=i−1

∥∥Jεxn ∗ |uj|
∥∥p

Lp
σ(Hi)

.

Hölder’s inequality now shows that

∥∥Jεxn ∗ |uj|
∥∥p

Lp
σ(Hi)

≤
∫
Hi

∫
Rn

Jεxn(x− y)|uj(y)|p dLn(y)

∫
Rn

Jεxn(x− y) dLn(y)

p−1

dµσ(x).

The latter inner integral is 1 for any x ∈ Rn by the normalisation of Jε. But on any strip Hi we
have xσ

n hσ 2iσ and therefore with Fubini’s theorem get∥∥Jεxn ∗ |uj|
∥∥p

Lp
σ(Hi)

.σ 2iσ
∫
Hj

|uj(y)|p
∫
Hi

Jεxn(x− y) dLn(x) dLn(y)

= 2iσ
∫
Hj

|uj(y)|p
∫
Hi

xn

yn
x−n−1

n yn Jε(x−1
n (x− y)) dLn(x) dLn(y).

For y ∈ Hj and x ∈ Hi the quotient xn
yn

is bounded by 4. On Rn we can then transform the inner

integral with T : x 7→ x−1
n (x − y) =: z. The Jacobi determinant of T is exactly x−n−1

n yn. The
normalisation of Jε therefore also implies that the inner integral is bounded by 1. This adds up to∥∥Jεxn ∗ |uj|

∥∥p
Lp

σ(Hi)
.σ 2iσ ∥∥uj

∥∥p
Lp(Hj)

and thus

i+1

∑
j=i−1

∥∥Jεxn ∗ |uj|
∥∥p

Lp
σ(Hi)

.σ ‖u‖p
Lp

σ(Hi)
.

Then this is also an upper bound for ‖Jεxn ∗ u‖p
Lp

σ(Hi)
if ε is small enough. The statement follows

by summing over i ∈ Z.

2.6 Remark With the usual mollification Jε ∗ u, the ε for which the overlap of Hi and Beu
ε (x) is finite

depends on i: the crucial step in the argument then only works for ε < 2i−1 and the statement of Lemma
2.5 thus only holds for u with support that stays away from {xn = 0}.
On the other hand, Jε ∗ u is pointwise bounded by the euclidean Hardy-Littlewood maximal function.
For a measure µ that is p-Muckenhoupt on the euclidean space, 1 < p < ∞, Lemma 2.5 then follows
immediately on Lp(Ω, µ) for any Ω ⊂ Rn. Details are discussed for example in [Kil94].

The lemma is the key to prove Lp
σ-convergence of Jεxn ∗ u for general u.

2.7 Proposition Let Ω ⊂ H and 1 ≤ p < ∞.

(i) Let in addition σ > −1.
If u ∈ Lp

σ(Ω), then

‖Jεxn ∗ u− u‖Lp
σ(Ω) → 0 (ε→ 0).
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(ii) Let in addition m ∈N and σ0, . . . , σm > −1.
If Ω is open and u ∈Wm,p

~σ (Ω), then

‖Jεxn ∗ u− u‖Wm,p
~σ

(M) → 0 (ε→ 0)

for any open and bounded M ⊂ Ω with M ⊂ Ω ∪ ∂H.

Proof: First observe that for u ∈ Cc(Ω) ⊂ Lp
σ(Ω) the first part follows immediately from the

uniform convergence of Jεxn ∗ u, since µσ is a Radon measure.
Now let u ∈ Lp

σ(Ω), fix a δ > 0 and let ϕ ∈ Cc(Ω) with ‖u− ϕ‖Lp
σ(Ω) < δ. Then

‖u− Jεxn ∗ u‖Lp
σ(Ω) ≤ ‖u− ϕ‖Lp

σ(Ω) + ‖ϕ− Jεxn ∗ ϕ‖Lp
σ(Ω) + ‖Jεxn ∗ ϕ− Jεxn ∗ u‖Lp

σ(Ω)

.σ,p ‖u− ϕ‖Lp
σ(Ω) + ‖ϕ− Jεxn ∗ ϕ‖Lp

σ(Ω)

thanks to Lemma 2.5. The choice of ϕ and the first observation in this proof then proves the first
statement in general.
For the second part note that on M as in the assumptions and for ε small enough we have

|∂α
x(Jεxn ∗ u)(x)− (Jεxn ∗ ∂α

z u)(x)| .α ε ∑
|γ|=|α|

(Jεxn ∗ |∂
γ
z u|)(x)

for any 1 ≤ |α| ≤ m. Another application of Lemma 2.5, this time on Jεxn ∗ |∂
γ
z u|, thus shows that

‖∂α
x(Jεxn ∗ u)− ∂α

xu‖Lp
σ|α| (Ω) .p ‖Jεxn ∗ ∂α

z u− ∂α
xu‖Lp

σ|α| (Ω) + ε ∑
|γ|=|α|

∥∥∂
γ
z u
∥∥

Lp
σ(Ω) .

Since ∂
γ
x u ∈ Lp

σ|α|(Ω) ∩ L1
loc(Ω) by assumption for any |γ| = |α|, including γ = α, the first part

finishes the proof of the proposition.

2.8 Remark As observed in the proof of Proposition 2.7, for u ∈ Cc(Ω) the first part does neither require
the use of Lemma 2.5 nor any additional assumption on the measure other than it being Radon.
Note also that compared to the statement for the usual mollification we slightly relaxed the condition on the
set M for which the second part holds.

Density Propositions

We first use mollification to sharpen the density result for continuous functions with compact
support in Lp

σ.

2.9 Proposition Let σ > −1, Ω ⊂ H and 1 ≤ p < ∞.
Then C∞

c (Ω) is a dense subset of Lp
σ(Ω).

Proof: We know that for any u ∈ Lp
σ(Ω) and any δ > 0 we can find a ϕ ∈ Cc(Ω) such that

‖u− ϕ‖Lp
σ(Ω) < δ.

Then Jεxn ∗ ϕ ∈ C∞
c (Ω) for small ε and we have

‖u− Jεxn ∗ ϕ‖Lp
σ(Ω) ≤ ‖u− ϕ‖Lp

σ(Ω) + ‖ϕ− Jεxn ∗ ϕ‖Lp
σ(Ω) .

The first part of Proposition 2.7 applied to ϕ ∈ Cc(Ω) then implies the proposition.
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Remark 2.8 assures that the last proposition is actually true for any Radon measure µ. Its proof
could be simplified as to using merely Jε ∗ ϕ instead of Jεxn ∗ ϕ, and the restriction onto the upper
half plane is superfluous.

In contrast to the situation for Lebesgue spaces, density statements in general Sobolev spaces
require additional assumptions on the measure which are given by its weight character in our
case.

2.10 Proposition Let m ∈N0, σ0, . . . , σm > −1, Ω ⊂ H and 1 ≤ p < ∞.
Then C∞(Ω) ∩Wm,p

~σ (Ω) is a dense subset of Wm,p
~σ (Ω).

Proof: Let u ∈Wm,p
~σ (Ω) and Ψ ∈ C∞

c (Ω). For any α ∈Nn
0 with |α| ≤ m we then have

‖∂α
x(Ψ u)‖p

Lp
σ|α| (Ω)

.α,p ∑
β≤α

(
sup

x∈supp Ψ
x

σ|α|−σ|β|
n |∂α−β

x Ψ|p
)∥∥∥∂

β
x u
∥∥∥p

Lp
σ|β| (Ω)

.

Since supp Ψ is compact, contained in Ω and hence stays away from {xn = 0}, this shows that
Ψ u ∈Wm,p

~σ (Ω). Moreover, supp(Ψ u) is a compact subset of Ω.
Now the prerequisits of the second part of Proposition 2.7 are satisfied for Ψ u, so we see

‖Jεxn ∗ (Ψ u)−Ψ u‖Wm,p
~σ

(M) → 0 (ε→ 0)

for any open and bounded set M ⊂ Ω that stays away from ∂Ω ∩ (Rn r ∂H).
Next consider open and bounded ΩN ⊂ Rn with ΩN ⊂ ΩN+1 and ΩN ⊂ Ω for any N ∈ N as
well as

⋃
N∈N

ΩN = Ω. Such sets exist, as the example

ΩN := Ω ∩ Beu
N (0) ∩

{
x ∈ Rn | deu(x, ∂Ω) >

1
N

}
shows. We also set Ω0 := ∅, Ω−1 := ∅ and Uj := Ωj+1 r Ωj−1, Mj := Ωj+2 r Ωj−2 for any
j ∈N. Obviously, all these sets are open subsets of Ω and we have U j ⊂ Mj for any j ∈N and
Mj ⊂ (Rn r ΩN) ∩Ω for any j > N + 2 as well as

⋃
j∈N

Uj = Ω =
⋃

j∈N

Mj.

We can then consider a partition of unity subordinate to
{

Uj | j ∈N
}

and get the existence of
Ψj ∈ C∞(Ω) with ∑

j∈N

Ψj = 1 on Ω and supp Ψj ⊂ Uj for any j ∈N. Thus

u(x) =
N+2

∑
j=1

Ψj(x) u(x) for any x ∈ ΩN .

Additionally, we set ϕj(x) := (Jε jxn ∗ (Ψj u)) for ε j > 0 and ϕ(x) := ∑
j∈N

ϕj. If ε j is small enough

we also have supp ϕj ⊂ Mj and therefore

ϕ(x) =
N+2

∑
j=1

ϕj(x) for any x ∈ ΩN .

We now fix δ > 0. Then

‖u− ϕ‖Wm,p
~σ

(ΩN) ≤
N+2

∑
j=1

∥∥Ψj u− ϕj
∥∥

Wm,p
~σ

(Mj)
< δ(1− 2−N−2)

if all ε j are small enough by the first paragraph of this proof. The dominated convergence theorem
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then implies

‖u− ϕ‖Wm,p
~σ

(Ω) ≤ lim
N→∞

δ (1− 2−N−1) = δ

if all ε j are small enough. But on any compact subset of Ω, the function ϕ is a finite sum of smooth
functions. Hence ϕ ∈ C∞(Ω) and the proof is finished.

2.11 Remark Since we have shown in Proposition 2.2 that our weighted Sobolev spaces is a Banach space,
the last proposition in effect establishes that Wm,p

~σ (Ω) equals the space given by the completion of{
ϕ ∈ C∞(Ω) | ‖ϕ‖Wm,p

~σ
(Ω) < ∞

}
in this norm. For unweighted spaces this result of Meyers and Serrin was first shown in their paper
[MS64] with the incomparably short title “H = W”, reflecting the historical naming of the - presumably
- two spaces involved. The new insight here was that the underlying set Ω does not have to satisfy any
smoothness conditions at all. The definition of the sets ΩN and Uj in our proof was taken from the original
paper in the unweighted setting.
For circumstances that do not imply the existence of distributional derivatives for the elements of weighted
Lebesgue spaces, this approach still provides the means to define a Sobolev function and a notion of derivative.
However, additional conditions have to be imposed to ensure that the so defined Sobolev derivative is well
defined and coincides with the classical derivative for elements of C1(Ω), see for example [FKS82]. Even if
the distributional derivative exists, it does not necessarily equal the Sobolev derivative of the same function.
Defining the weighted Sobolev space as we did via distributional derivatives in such a case can result in an
incomplete space. All this is discussed in greater detail in [HKM93].
Finally, note also that in our proof the application of Proposition 2.7 only takes place on a function whose
support stays away from {xn = 0}. In view of Remark 2.6 this means we could have used the usual
mollification here instead. Likewise, Proposition 2.10 also holds for euclidean Muckenhoupt weights.

In order to extend the approximation result 2.10 further and obtain the density of the smaller set
of functions that are smooth and have an extension to a smooth function with compact support
on Rn, already in the unweighted case one has to impose additional geometric conditions on
the underlying set Ω ([Maz85]). In addition to that, one needs the continuity of the translation
operator with respect to the norm on the Lebesgue space over the set in question. In general this
is not true for Lp

σ(Ω) unless σ = 0. Nonetheless, we can prove that a special translation on Ω = H
satisfies the according inequality at least for σ ≥ 0.

2.12 Lemma Let σ ≥ 0 and 1 ≤ p < ∞.
If u ∈ Lp

σ(H), then

‖u(·+ h~en)− u‖Lp
σ(H) → 0 (h↘ 0).

Proof: Fix δ > 0. Then there exists a ϕ ∈ Cc(H) with

‖ϕ− u‖Lp
σ(H) < δ

and we have

‖ϕ(·+ h~en)− ϕ‖Lp
σ(H) < δ
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for h > 0 small enough thanks to to uniform continuity of ϕ on the compact set supp ϕ. But
moreover

‖u(·+ h~en)− ϕ(·+ h~en)‖p
Lp

σ(H)
=

∫
H+h~en

|u(x)− ϕ(x)|p(xn − h)σ dLn(x) ≤ ‖u− ϕ‖p
Lp

σ(H)

holds, since xn − h > 0 on H + h~en ⊂ H and σ ≥ 0.

It is in the following proof that we truely need the special properties of the adjusted mollification.

2.13 Proposition Let m ∈N0, σm ≥ . . . ≥ σ0 > −1 with σi+1 − σi ≤ 1 for i = 0, . . . , m− 1 as well
as σm ≥ 0, and 1 ≤ p < ∞.
Then C̆∞

c (H) is a dense subset of Wm,p
~σ (H).

Proof: Let η ∈ C∞
c (Rn) be a cut-off function with η = 1 on Beu

1 (0), supp η ⊂ Beu
2 (0) and |∂α

xη| ≤ C
on Rn for any 0 ≤ |α| ≤ m with C > 0. For δ > 0 define ηδ(x) := η(δx) for any x ∈ Rn. Then we
have ηδ = 1 on Beu

δ−1(0), supp ηδ ⊂ Beu
2δ−1(0) and |∂α

xηδ| ≤ δ|α| C on Rn.
Fix 1 ≤ p < ∞ and u ∈ Wm,p

~σ (H), and consider ηδ u, extending u by 0 outside of H. Obviously,
we have that supp(ηδ u) ⊂ H ∩ Beu

2δ−1(0) is a compact subset of Rn. Furthermore, for |α| ≤ m we
compute

‖∂α
x(ηδ u)‖p

Lp
σ|α| (H)

.α,p ∑
β≤α

(
sup

x∈supp ηδ∩H
x
−σ|α|+σ|β|
n

) ∥∥∥∂
β
x u
∥∥∥

Lp
σ|β| (H)

δp(|α|−|β|).

By assumption our weights are increasing, with an increase that is at most 1. This ensures that
ηδ u ∈Wm,p

~σ (H) for any δ ≤ 1, or more precisely

‖ηδ u‖Wm,p
~σ

(H) .m,p ‖u‖Wm,p
~σ

(H)

for any δ ≤ 1. By construction we then get

‖ηδ u− u‖Wm,p
~σ

(H) = ‖ηδ u− u‖Wm,p
~σ

(H∩(RnrBeu
δ−1 (0)))

.m,p ‖u‖Wm,p
~σ

(H∩(RnrBeu
δ−1 (0)))

→ 0 (δ→ 0).

For any point z ∈ ∂H let now U(z) and M(z) be open neighbourhoods of z with U(z) ⊂ M(z).
The set

F := supp(ηδ u)r (
⋃

z∈∂H

M(z))

is then a compact subset of H. Consequently, we can find open sets U0 and M0 with F ⊂ U0,
U0 ⊂ M0 and M0 ⊂ H. Then {U(z) | z ∈ ∂H} ∪ {U0} is an open cover of supp(ηδ u) and we can
hence extract a finite subcover renamed to {U0, . . . , UN} with the corresponding bigger cover
{M0, . . . , MN}. We now consider a partition of unity subordinate to

{
Uj | j = 0, . . . , N

}
, that is

we have Ψj ∈ C∞
c (Uj) with

N
∑

j=0
Ψj = 1 on

N⋃
j=1

Uj. Set uj := Ψj ηδ u on Rn. Then supp uj ⊂ H ∩Uj,

and uj ∈ Wm,p
~σ (H ∩Mj) can be seen as before, since the weights are increasing and supp Ψj is

compact.
For j = 0 this means that supp u0 is contained in H. We then define ϕ0,ε0 := Jε0xn ∗ u0 for ε0 > 0
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and get ∥∥ϕ0,ε0 − u0
∥∥

Wm,p
~σ

(H) =
∥∥ϕ0,ε0 − u0

∥∥
Wm,p
~σ

(U0)
→ 0 (ε0 → 0)

by the second part of Proposition 2.7.
For j = 1, . . . , N, on the other hand, the support of uj contains a portion of ∂H. For x ∈ H and
ε j > 0 we consider ϕj,ε j(x) := (Jε jxn ∗ uj)(x), and set it to 0 outside of H. Since we are close to the
boundary of H we can choose ε j so small that supp ϕj,ε j ⊂ H ∩Mj for ε j small. Furthermore we
have ϕj,ε j ∈ C∞(H ∩Mj). Close to the boundary we now take advantage of the special properties
of the adopted mollification and use the second part of Proposition 2.7 on H ∩Uj to get∥∥∥uj − ϕj,ε j

∥∥∥
Wm,p
~σ

(H∩Uj)
→ 0 (ε j → 0).

We now push the regularisation over the boundary of H. To this end, for hj > 0 define ϕj,ε j ,hj
(x) :=

ϕj,ε j(x + hj~en) for any x ∈ Rn. The corresponding support is then partially translated into the
lower half plane. However, for hj small enough it stays in Mj, and so we have supp ϕj,ε j ,hj

⊂
(H − hj~en) ∩ Mj and ϕj,ε j ,hj

is smooth on (H − hj~en) ∩ Mj. Then ϕj,ε j ,hj
− ϕj,ε j ∈ C∞(H) with

supp(ϕj,ε j ,hj
− ϕj,ε j) ⊂ Mj ∩ H and for any i = 0, . . . , m− 1 we can apply Hardy’s inequality 2.3

to get ∥∥∥Di(ϕj,ε j ,hj
− ϕj,ε j)

∥∥∥
Lp

σi
(H)

.σ,m,p

∥∥∥Dm(ϕj,ε j ,hj
− ϕj,ε j)

∥∥∥
Lp
(m−i)p+σi

(H)
.

On H it is enough to consider the bounded set Mj ∩ H since the support of the function is
contained in it. But there we get

∥∥∥Dm(ϕj,ε j ,hj
− ϕj,ε j)

∥∥∥p

Lp
(m−i)p+σi

(H)
≤
(

sup
x∈Mj∩H

x(m−i)p+σi−σm
n

)∥∥∥Dm(ϕj,ε j ,hj
− ϕj,ε j)

∥∥∥p

Lp
σm (H)

and by the moderate increase of the weight exponents we have that (m− i)p + σi − σm is positive
for any i. But σm ≥ 0 by assumption and thus Lemma 2.12 can be applied to see that for any
i = 0, . . . m the upper bound just given approximates 0 if hj vanishes. Hence∥∥∥Dm(ϕj,ε j ,hj

− ϕj,ε j)
∥∥∥

Wm,p
~σ

(H)
→ 0 (hj → 0).

Let us now set ϕ0,ε0,h0
:= ϕ0,ε0 . Then

N
∑

j=0
ϕj,ε j ,hj

is smooth on a neighbourhood of H including

the boundary and has compact support. We can then find a function ϕ ∈ C∞
c (Rn) with ϕ|H =

(
N
∑

j=0
ϕj,ε j ,hj

)|H and the property

‖u− ϕ‖Wm,p
~σ

(H) ≤ ‖u− ηδu‖Wm,p
~σ

(H) +
∥∥u0 − ϕ0,ε0

∥∥
Wm,p
~σ

(H)

+
N

∑
j=1

(∥∥∥uj − ϕj,ε j

∥∥∥
Wm,p
~σ

(H)
+
∥∥∥ϕj,ε j − ϕj,ε j ,hj

∥∥∥
Wm,p
~σ

(H)

)
.

This gets arbitrarily small for δ, ε0, . . . , εN , h1, . . . , hN small enough.

2.14 Remark We would like to point out that we cannot reverse the order of the last two steps in the
proof of Proposition 2.13: If the translation is done first we drop out of H where the adopted mollification is
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not available any more. Conversely, first mollifying and then translating would not work for the usual
mollification. It is precisely in this step that we need not only the convergences of the mollified function in
the weighted Lebesgue spaces and close to ∂H, but also the slight gain in the condition under which the
derivative of the adopted mollification can be computed.

2.15 Remark An immediate consequence of Proposition 2.13 is that also C̆∞
c (H) is dense in Wm,p

~σ (H)

if~σ complies with the hypotheses of Proposition 2.13. This in turn implies that C∞
c (H) is dense in the

Sobolev spaces. Of course it is not true even in the unweighted case that C∞
c (H) is dense in Wm,p(H) for

an open Ω unless Ω equals Rn or is in a suitable sense very close to it and very regular. More on this is
contained in [AF03].

An Interpolation Inequality

We finally would like to derive a weighted version of the Gagliardo-Nirenberg interpolation
inequality. Both Sobolev’s and Morrey’s inequality could be unified into one result that in turn
could be considered to be special cases of a generalised interpolation inequality, as is demonstrated
in [Fri08]. We follow this text also in the proofs we present for the unweighted case and start with
a one-dimensional lemma.

2.16 Lemma Let I ⊂ R be a bounded and open interval and u ∈ C2(I).
Then

‖∂xu‖Lp1 (I) .p1 |I|
−1− 1

p0
+ 1

p1 ‖u‖Lp0 (I) + |I|
1− 1

p2
+ 1

p1

∥∥∥∂2
xu
∥∥∥

Lp2 (I)

for any 1 ≤ p0, p1, p2 ≤ ∞.

Proof: Let I := (a, b) and consider y ∈ (a, a + 1
4 |I|), z ∈ (a + 3

4 |I|, b). By the intermediate value
theorem we then get ξ ∈ (y, z) with

∂xu(ξ) =
u(z)− u(y)

z− y

and hence

|∂xu(x)| ≤ |u(z)|+ |u(y)||z− y| +
∫
(ξ,x)

|∂2
xu| dL

for any x ∈ I by the fundamental theorem of calculus. Because of the above choice of y and z we
know that |z− y| ≥ 1

2 |I|. An integration with respect to (y, z) ∈ (a, a + 1
4 |I|)× (a + 3

4 |I|, b) then
results in

1
16
|I|2 |∂xu(x)| ≤ 1

2

∫
I

|u| dL+
1
16
|I|2

∫
I

|∂2
xu| dL.

Taking the p1-th power on both sides for 1 ≤ p1 < ∞ as well as using Hölder’s inequality for an
arbitrary 1 ≤ p0 ≤ ∞ in the first integral, and for an arbitrary 1 ≤ p2 ≤ ∞ in the second, after
another integration we obtain

‖∂xu‖p1
Lp1 (I) .p1 |I|

−p1−
p1
p0
+1 ‖u‖p1

Lp0 (I) + |I|
p1−

p1
p2
+1
∥∥∥∂2

xu
∥∥∥p1

Lp2 (I)
.
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This implies the statement for 1 ≤ p1 < ∞, where we can also let p1 tend to ∞ to finish the proof.

By means of Lemma 2.16 we can prove the unweighted Gagliardo-Nirenberg inequality.

2.17 Proposition Let m ∈ N, i ∈ N with i < m and 1 ≤ p0, p1, p2 ≤ ∞ with 1
p1

= m−i
mp0

+ i
mp2

.
Further let a ∈ R∪ {−∞}.
If u ∈ C̆m

c (Ha), then ∥∥∥Diu
∥∥∥

Lp1 (Ha)
.n,m,p1 ‖u‖

m−i
m

Lp0 (Ha)
‖Dmu‖

i
m
Lp2 (Ha)

.

Proof: Let first m = 2, i = 1. The dimension be n = 1 and we fix a ∈ R. Of course u ∈
C̆2

c ((a, ∞)) implies u|I ∈ C2(I) and we can apply Lemma 2.16, raised to the power p1 < ∞, on
every subinterval of (a, ∞). We consider a bounded and open interval I = (a, b) ( (a, ∞). On
Ĩ1 := (a, a + j−1|I|) ⊂ I, j ∈ N fixed, we now compare the terms of the right hand side of the
inequality resulting from the application of Lemma 2.16 there. If

| Ĩ1|
−p1−

p1
p0
+1 ‖u‖p1

Lp0 ( Ĩ1)
≤ | Ĩ1|

p1−
p1
p2
+1
∥∥∥∂2

xu
∥∥∥p1

Lp2 ( Ĩ1)

we set I1 := Ĩ1 := (b0, b1) with b0 := a and b1 := b0 + j−1 |I|. Hence on I1 ⊂ I we get

‖∂xu‖p1
Lp1 (I1)

.p1 j−p1+
p1
p2
−1 |I|p1−

p1
p2
+1
∥∥∥∂2

xu
∥∥∥

Lp2 (I)
.

In the opposite case we define b0 := a and b1 > b0 + j−1 |I| in such a way, that on I1 := (b0, b1)

equality of the two terms holds. A b1 like this exists, since due to the exponents of |I|, excluding
p0 = ∞, the term involving the norm of u decreases with increasing length of the interval, while
the other term containing ∂2

xu increases. Moreover, assuming that u ∈ C̆2
c ((a, ∞)) assures that ∂2

xu
is not the constant zero function on all of (a, ∞) unless u = 0. So by construction we get

‖∂xu‖p1
Lp1 (I1)

.p1 |I1|
1− p1

2p0
− p1

2p2 ‖u‖
p1
2

Lp0 (I1)

∥∥∥∂2
xu
∥∥∥ p1

2

Lp2 (I1)

in this case.
We continue this procedure by comparing the terms on Ĩ2 := (b1, min

{
b, b1 + j−1 |I|

}
) and define

I2 accordingly, and so forth, until we stop after after N steps as soon as we have bN ≥ b. Then
N ≤ j and bN−1 < b, and we can take the union of the disjoint intervals I1, . . . , IN to get

‖∂xu‖p1
Lp1 (I) .p1 j−p1+

p1
p2 |I|p1−

p1
p2
+1
∥∥∥∂2

xu
∥∥∥p1

Lp2 (I)
+

N

∑
i=1
|Ii|

1− p1
2p0
− p1

2p2 ‖u‖
p1
2

Lp0 (Ii)

∥∥∥∂2
xu
∥∥∥ p1

2

Lp2 (Ii)
.

Hölder’s inequality for sums in the second summand then reveals the estimate

‖∂xu‖p1
Lp1 (I) .p1 j−p1+

p1
p2 |I|p1−

p1
p2
+1
∥∥∥∂2

xu
∥∥∥p1

Lp2 (I)
+

(bN − a)1− p1
2p0
− p1

2p2 ‖u‖
p1
2

Lp0 ((a,bN))

∥∥∥∂2
xu
∥∥∥ p1

2

Lp2 ((a,bN))
.

For j → ∞, the first summand goes to 0 if p2 > 1. However, in the limit we can not control bN
and thus the second term could be very big. We therefore cause it to vanish by demanding

1− p1

2p0
− p1

2p2
= 0.
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The interval (a, bN) is of course always contained in (a, ∞). The result holds for any b > a, so also
the norm on the left hand side can be taken to be on (a, ∞). But that again is true for any a ∈ R,
making it possible to allow a = −∞. Taking the 1

p1
-th power on both sides yields

‖∂xu‖Lp1 ((a,∞)) .p1 ‖u‖
1
2
Lp0 ((a,∞))

∥∥∥∂2
xu
∥∥∥ 1

2

Lp2 ((a,∞))

for 1 ≤ p0, p1 < ∞, 1 < p2 ≤ ∞ with 1
p1
− 1

2p0
− 1

2p2
= 0, if u ∈ C̆2

c ((a, ∞)). By taking the limit
we also get the cases p0 = ∞, p1 = ∞, p2 = 1.
For higher dimensions we use the one-dimensional version just proven on xj 7→ u(x′, xj) ∈
C̆2

c ((aj, ∞)) with a1 = . . . = an−1 = −∞, an = a, and the notation

H′a := (a1, ∞)× . . .× (aj−1, ∞)× (aj+1, ∞)× . . .× (an, ∞).

In conjunction with Hölder’s inequality and the condition on p0, p1, p2 we then calculate∥∥∥∂xj u
∥∥∥p1

Lp1 (Ha)
≤
∫
H′a

∥∥∥∂xj u(x′, ·)
∥∥∥p1

Lp1 ((aj ,∞))
dLn−1(x′)

.p1

∫
H′a

∥∥u(x′, ·)
∥∥ p1

2
Lp0 ((aj ,∞))

∥∥∥∂2
xj

u(x′, ·)
∥∥∥ p1

2

Lp2 ((aj ,∞))
dLn−1(x′)

≤ ‖u‖
p1
2

Lp0 (Ha)

∥∥∥∂2
xj

u
∥∥∥ p1

2

Lp2 (Ha)
.

The dependency of the constant on n enters when writing |∇xu| instead of ∂xj u on the left hand
side.
Finally, an induction on m finishes the proof.

The weighted Gagliardo-Nirenberg inequality follows from the unweighted one. For weights
similar to ours, the result for differentiable functions can also be found in [Lin86]. For different
and rather general weight functions, [NS96] contains a Gagliardo-Nirenberg inequality that
generalises the assumption to Sobolev spaces, as it is also done in the following proposition.

2.18 Proposition Let σ ≥ 0, m ∈ N and i ∈ N with i < m. Further let 1 ≤ p0 ≤ ∞ and
1 ≤ p1, p2 < ∞ with 1

p1
= m−i

mp0
+ i

mp2
.

If u ∈ Lp0
σ (H) ∩Wm,p2

~σ (H) with σ0 = . . . = σm = σ, then∥∥∥Diu
∥∥∥

L
p1
σ (H)

.n,m,p1 ‖u‖
m−i

m
L

p0
σ (H)

‖Dmu‖
i
m
Lp2

σ (H)
.

Proof: Let σ > 0 and first u ∈ C̆m
c (H). We calculate∫

H

|Diu(x)|p1 dLn(x) ≤ σ
∫

(0,∞)

zσ−1
n

∥∥∥Diu
∥∥∥p1

Lp1 (Hzn )
dL(zn)

with the fundamental theorem of calculus and Fubini’s theorem. The unweighted Gagliardo-
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Nirenberg inequality 2.17 on Hzn then generates the bound

σ
∫

(0,∞)

zσ−1
n

 ∫
Hzn

|u|p0 dLn


m−1

m
p1
p0
 ∫

Hzn

|Dm
x u|p2 dLn


i
m

p1
p2

dL(zn)

≤

 ∫
(0,∞)

zσ−1
n

∫
Hzn

|u|p0 dLn dL(zn)


m−1

m
p1
p0
 ∫

(0,∞)

zσ−1
n

∫
Hzn

|Dm
x u|p2 dLn dL(zn)


i
m

p1
p2

since m−i
m

p1
p0

+ i
m

p1
p2

= 1. The constant here depends on n, m and p1.
Reversing the order of integration and integrating out the zn-integral cancels the factor σ again
and delivers the statement for u ∈ C̆m

c (H).
But the latter is dense in Lp0

σ (H) ∩Wm,p2
~σ (H) for the conditions on σi stated in the prerequisits,

so we can find (ϕj)j∈N ⊂ C̆m
c (H) that converges to u in Lp0

σ (H) ∩Wm,p2
~σ (H). The convergence of

Di
x ϕj to Diu in Lp1

σ (H) follows. This concludes the proof.
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3 Solutions of the Linear Perturbation Equation

We first define a suitable notion of solution of the linear perturbation equation ∂tu− Lσu = f ,
where

Lσu = ( · )n ∆xu + (1 + σ) ∂xn u.

Here we consider both the initial value problem and a setting that is local in time. Since we
are interested in what happens near ∂H, we use test functions that do not always vanish near
the spatial boundary of the underlying set. For a reasonable theory we define solutions in the
energy sense, equipping them with some additional regularity properties that allow for energy
techniques. In this context, however, the requirements we set are the weakest possible.

3.1 Definition Consider σ > −1, an open interval I = (t1, t2) ⊂ R and a relatively open subset Ω of
H.

• Given f ∈ L1
loc
(

I; L2
σ(Ω)

)
, we say that u is a σ-solution to f on I × Ω, if and only if u ∈

L2
loc
(

I; L2
σ(Ω)

)
, ∇xu ∈ L2(I; L2

1+σ(Ω)
)

and

−
∫
I

( u | ∂t ϕ )L2
σ(Ω) dL+

∫
I

(∇xu |∇x ϕ )L2
1+σ(Ω) dL =

∫
I

( f | ϕ )L2
σ(Ω) dL

for all ϕ ∈ C∞
c (I ×Ω).

• Given t1 > −∞, f ∈ L1
loc
(

I; L2
σ(Ω)

)
and g ∈ L2

σ(Ω), we say that u is a σ-solution to f on I ×Ω
with initial value g, if and only if u ∈ L2

loc
(

I; L2
σ(Ω)

)
, ∇xu ∈ L2(I; L2

1+σ(Ω)
)

and

−
∫
I

( u | ∂t ϕ )L2
σ(Ω) dL+

∫
I

(∇xu |∇x ϕ )L2
1+σ(Ω) dL =

∫
I

( f | ϕ )L2
σ(Ω) dL

+ ( g | ϕ(t1) )L2
σ(Ω)

for all ϕ ∈ C∞
c ( I ×Ω).

Of course any σ-solution to an initial value problem on I ×Ω is also a σ-solution to the time-local
problem on I ×Ω. Moreover, a short calculation shows that a time-local solution on I ×Ω gives
rise to a solution to the initial value problem on [t̃1, t2)×Ω for any point t̃1 ∈ I. This means that
statements on I, proven for an initial value solution on I ×Ω, immediately imply statements on
[t̃1, t2) for the time-local solution on I ×Ω for almost any t̃1 ∈ I. We will make use of this remark
in the sequel without further comment.

3.2 Remark It is worth pointing out at this point that the equation possesses an invariant scaling.
Considering the coordinate transformation

Tλ : (t̂, x̂) 7→ (λ t̂, λ x̂) =: (t, x),

a calculation shows that if u is a σ-solution to f and g on I ×Ω with respect to (t, x), then u ◦ Tλ is
a σ-solution to λ ( f ◦ Tλ) and ĝ on T−1( I ×Ω) with respect to (t̂, x̂), where ĝ(x̂) := g(λ x̂) for any
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x̂ ∈ Ω̂ := λ−1 Ω.
Moreover, translations in any temporal and spatial direction save the xn-direction commute with the
differential operator.

A Galerkin approximation now shows that the above choice of conditions for the solution is
reasonable: under a weak assumption on the inhomogeneity it provides us with a σ-solution to
the initial value problem.

3.3 Proposition Let t1 > −∞, I = (t1, t2) ⊂ R be an open interval and Ω ⊂ H be relatively open.
Then for any f ∈ L1(I; L2

σ(Ω)
)

and any g ∈ L2
σ(Ω) there exists a σ-solution to f on I ×Ω with initial

value g.

Proof: In the following we drop I and Ω from the notation whenever spaces with respect to these
sets are involved and the meaning is clear from the context, and moreover write for example L1L2

σ

instead of L1(I; L2
σ(Ω)

)
.

The Hilbert space W1,2
σ has a Schauder basis {wi : i ∈N}. We define

Am :=
(
( wj | wi )L2

σ

)m

i,j=1
, Bm :=

(
(∇xwj |∇xwi )L2

1+σ

)m

i,j=1
and ~fm(t) :=

(
( f (t) | wi )L2

σ

)m

i=1

for any positive integer m. Using the linear independence of the Schauder basis, one sees that Am
is positive definite and thus invertible for any m ∈N.
Obviously, A−1

m Bm, A−1
m

~fm ∈ L1
loc(I), and thus by standard theory of ordinary differential equa-

tions, for any given t0 ∈ I, especially for t0 = t1, and for any ~c ∈ Rm we can find a unique
~dm ∈W1,1

loc (I) such that ~dm(t1) = ~c exists and

∂t~dm + A−1
m Bm ~dm = A−1

m
~fm almost everywhere on I.

Extending these expressions explicitely shows that we can be sure of the existence of a function

um :=
m

∑
j=1

d(m)
j wj ∈ L1

loc(I; W1,2
σ (Ω))

with

∂tum =
m

∑
j=1

∂td
(m)
j wj ∈ L1

loc(I; W1,2
σ (Ω)),

um(t1) =
m

∑
j=1

cjwj

and

(∗) ( ∂tum(t) | wi )L2
σ
+ (∇xum(t) |∇xwi )L2

1+σ
= ( f (t) | wi )L2

σ

for almost all t ∈ I and for all i = 1, . . . , m.
We multiply these equations by d(m)

i (t) and sum over i. The product rule for bilinear forms
implies that we have ( ∂tum(t) | um )L2

σ
= 1

2 ∂t ‖um(t)‖2
L2

σ
. This means that for any~c ∈ Rm there is

a um as above with

1
2

∂t ‖um(t)‖2
L2

σ
+ ‖∇xum(t)‖2

L2
1+σ

= ( f (t) | um(t) )L2
σ
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for almost all t ∈ I.
For the purpose of integrating in time consider t̃ ∈ I and the bounded interval (t1, t̃) =: Ĩ ⊂ I as
the region of integration. In combination with the fundamental theorem of calculus this shows

1
2

∥∥um(t̃)
∥∥2

L2
σ
− 1

2
‖um(t1)‖2

L2
σ
+
∫
Ĩ

‖∇xum‖2
L2

1+σ
dL =

∫
Ĩ

( f (t) | um(t) )L2
σ

dL

for any t̃ ∈ I.
On the right hand side we can apply Hölder’s inequality first in the spatial integral and then in
the temporal integral to get

1
2

∥∥um(t̃)
∥∥2

L2
σ
− 1

2
‖um(t1)‖2

L2
σ
+
∫
Ĩ

‖∇xum‖2
L2

1+σ
dL ≤

≤ sup
t∈ Ĩ

‖um(t)‖L2
σ

∫
Ĩ

‖ f (t)‖L2
σ

dL ≤

≤ 1
4

sup
t∈I
‖um(t)‖2

L2
σ
+ ‖ f ‖2

L1L2
σ

where we used Young’s inequality and a substitution of Ĩ for the at most bigger interval I in the
last step.
At this point it is possible to take the supremum over t̃ ∈ I on the left hand side. Rearranging
terms then produces

1
4

sup
t∈I
‖um(t)‖2

L2
σ
+
∫
I

‖∇xum‖2
L2

1+σ
dL ≤ ‖ f ‖2

L1L2
σ
+

1
2
‖um(t1)‖2

L2
σ

.

Now set~c := (( g | wj )L2
σ
)m

j=1. Then∥∥∥∥∥ m

∑
j=1

( g | wj )L2
σ

wj

∥∥∥∥∥
L2

σ

≤ ‖g‖L2
σ

and we thus have a um with

um(t1) =
m

∑
j=1

( g | wj )L2
σ

wj

and

1
4

sup
t∈I
‖um(t)‖2

L2
σ
+
∫
I

‖∇xum‖2
L2

1+σ
dL ≤ ‖ f ‖2

L1L2
σ
+

1
2
‖g‖2

L2
σ

.

This implies that (um)m∈N is a bounded sequence in L∞L2
σ, and (∇xum)m∈N is a bounded sequence

in L2L2
1+σ. Hence we can extract subsequences - not relabelled in the following - such that for

m→ ∞ we have

um ⇀∗ u ∈ L∞L2
σ
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and

∇xum ⇀~v ∈ L2L2
1+σ.

Explicitely, this means that there exist u ∈ L∞L2
σ and ~v ∈ L2L2

1+σ with∫
I

( um(t) | ξ(t) )L2
σ

dL →
∫
I

( u(t) | ξ(t) )L2
σ

dL for all ξ ∈ L1L2
σ

and ∫
I

(∇xum(t) |~ζ(t) )L2
1+σ

dL →
∫
I

(~v(t) |~ζ(t) )L2
1+σ

dL for all ~ζ ∈ L2L2
1+σ

as m→ ∞. It follows that indeed ~v = ∇xu.
Let us now turn back to the equations (∗). We choose an arbitrary N ∈ N and let m be big,
precisely m > N. Then for i = 1, . . . , N we multiply the equations by d̃i ∈ C∞

c ( I). Summing up

and denoting ϕ̃ :=
N
∑

i=1
d̃i wi then gives

( ∂tum(t) | ϕ̃(t) )L2
σ
+ (∇xum(t) |∇x ϕ̃(t) )L2

1+σ
= ( f (t) | ϕ̃(t) )L2

σ

for almost all t ∈ I. We can integrate this equation over I and execute a temporal integration by
parts on the first summand. Then um satisfies

−
∫
I

( um | ∂t ϕ̃ )L2
σ

dL+
∫
I

(∇xum |∇x ϕ̃ )L2
1+σ

dL =
∫
I

( f | ϕ̃ )L2
σ

dL+ ( um(t1) | ϕ̃(t1) )L2
σ
.

Now ∂t ϕ̃ can be used as test function ξ in the convergence above, and likewise∇x ϕ̃ as test function
~ζ. Furthermore we have

(
m

∑
j=1

( g | wj )L2
σ

wj | ϕ̃(t1) )L2
σ
→ ( g | ϕ̃(t1) )L2

σ

for m → ∞. Thus for any ϕ̃ of the above form we constructed a u ∈ L∞L2 with ∇xu ∈ L2L2
1+σ

such that

−
∫
I

( u | ∂t ϕ̃ )L2
σ

dL+
∫
I

(∇xu |∇x ϕ̃ )L2
1+σ

dL =
∫
I

( f | ϕ̃ )L2
σ

dL+ ( g | ϕ̃(t1) )L2
σ
.

But since span {wi; i ∈N} is dense in W1,2
σ and we let m tend to ∞, for any fixed t we know

that functions of the form of ϕ̃(t) are dense in W1,2
σ . The equality then certainly holds for all test

functions and so we obtained a σ-solution to f and g on I ×Ω, seeing that L∞(I) ⊂ L2
loc( I).

3.4 Remark The construction especially yields the existence of a σ-solution to the initial value problem
with the additional property u ∈ L∞(I; L2

σ(Ω)). Since we are interested in the weakest possible definition
of solution, we did not add this to the defining properties. However, the next result will show that
boundedness of any σ-solution to an initial value problem for Ω = H follows from the definition. See also
Remark 3.6 later.

Let us now consider Ω = H, the only relatively open subset of H that is closed as a subset
of Rn. Since then C∞

c (H) is dense in W1,2
σ (H) by Remark 2.15, any ϕ ∈ L2(I; L2

σ(H)
)

with
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∇x ϕ ∈ L2(I; L2
1+σ(H)

)
and ∂t ϕ ∈ L2(I; L2

σ(H)
)

that has compact support in time contained in I
(in I) serves as an admissible test function for the time-local equation (the initial value problem).
The compact temporal support together with the temporal square-integrability of both ϕ and
∂t ϕ implies ϕ ∈ L∞(I; L2

σ(H)
)
, so that the defining equation remains reasonable with such test

functions for the class of inhomogeneities considered in the definition.
With this remark, almost all properties of test functions are met by a time-localised σ-solution
on I × H itself. Only regularity of the temporal derivative is missing. In the proof of the energy
identity that follows next, we therefore apply the weak regularisation from Remark 2.4 in the
temporal variable to be able to use a σ-solution as a test function.

3.5 Proposition Let t1 > −∞, I = (t1, t2) ⊂ R be an open interval, f ∈ L1(I; L2
σ(H)

)
and g ∈

L2
σ(H).

If u is a σ-solution to f on I × H with initial value g, then u ∈ C
(

I; L2
σ(H)

)
with u(t1) = g and for any

Ĩ = (t̃1, t̃2) ⊂ I we have the energy identity

1
2

∥∥u(t̃2)
∥∥2

L2
σ(H) +

∫
Ĩ

‖∇xu‖2
L2

1+σ(H) dL =
1
2

∥∥u(t̃1)
∥∥2

L2
σ(H) +

∫
Ĩ

( f | u )L2
σ(H) dL.

Proof: First fix t̃1 ≤ t̃2 ∈ I, so that Ĩ ( I. In a formal calculation with χ Ĩ u as a testing function
the energy identity follows immediatley. However, both χ Ĩ and u are missing the L2-regularity of
the time derivative needed for a justification.
Therefore we regularise in time as in Remark 2.4 to make this approach rigorous. The regularity
of the given σ-solution u carries over to its regularisation uh and we thus have uh ∈ L2

locL2
σ and

∇xuh ∈ L2L2
1+σ. But moreover, for any h > 0 the temporal derivatives satisfies ∂tuh = Dhu ∈

L2
locL2

σ and hence uh has all the regularity we need to use it as a test function. As a consequence, for
any cut-off function η ∈W1,2

loc (I) with supp η ⊂ Ih ∩ I−h we have that (η uh)−h is an admissible
test function in the equation for u on I × H. Note that this is equivalent to the observation that uh

is a σ-solution to f h on (Ih ∩ I−h)× H and testing the equation for uh with η uh.
Taking into account that with a temporal integration by parts we get∫

I

uh ∂t(η uh) dL =
1
2

∫
I

(uh)2 ∂tη dL,

this shows that

−1
2

∫
I

∂tη
∥∥∥uh

∥∥∥2

L2
σ

dL+
∫
I

η
∥∥∥∇xuh

∥∥∥2

L2
1+σ

dL =
∫
I

η ( f h | uh )L2
σ

dL.

For suitably small ε1, ε2 > 0 now define ηε := ηε1 ηε2 with

ηε1(t) :=


0 for all t ∈ (t1, t̃1)
t−t̃1

ε1
for all t ∈ (t̃1, t̃1 + ε1)

1 for all t ∈ (t̃1 + ε1, t̃2)

and

ηε2(t) :=


1 for all t ∈ (t1, t̃2 − ε2)

− t−t̃2
ε2

for all t ∈ (t̃2 − ε2, t̃2)

0 for all t ∈ (t̃2, t2).
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Since Ĩ ⊂ Ih ∩ I−h for h small enough it is clear that supp ηε ⊂ Ih ∩ I−h for ε1, ε2 small enough
and we have ηε → χ Ĩ in L2(I) as well as

∂tηε =


1
ε1

on (t̃1, t̃1 + ε1)

− 1
ε2

on (t̃2 − ε2, t̃2)

0 elsewhere.

This explicit computation enables us to see that∫
I

∂tηε

∥∥∥uh
∥∥∥2

L2
σ

dL =
1
ε1

∫
(t̃1 ,̃t1+ε1)

∥∥∥uh
∥∥∥2

L2
σ

dL− 1
ε2

∫
(t̃2−ε2 ,̃t2)

∥∥∥uh
∥∥∥2

L2
σ

dL

= (
∥∥∥uh(t̃1)

∥∥∥2

L2
σ

)ε1 − (
∥∥∥uh(t̃2)

∥∥∥2

L2
σ

)−ε2 .

Putting this together, we arrive at

−1
2
(
∥∥∥uh(t̃1)

∥∥∥2

L2
σ

)ε1 +
1
2
(
∥∥∥uh(t̃2)

∥∥∥2

L2
σ

)−ε2

= −
∫
I

ηε

∥∥∥∇xuh
∥∥∥2

L2
1+σ

dL+
∫
I

ηε ( f h | uh )L2
σ

dL.

This is a regularised version of the energy identity. Here, in all terms the limit h → 0 poses no
difficulties.
In the next step note that t̃2 7→ (

∥∥u(t̃2)
∥∥2

L2
σ
)−ε2 is a sequence in C((t̃1, t2)). Moreover, for arbitrary

ε2, ε′2 we have

sup
t̃2∈(t̃1,t2)

∣∣∣(∥∥u(t̃2)
∥∥2

L2
σ
)−ε2 − (

∥∥u(t̃2)
∥∥2

L2
σ
)−ε′2

∣∣∣
= 2 sup

t̃2∈(t̃1,t2)

∣∣∣∫
I

ηε1 (ηε2 − ηε′2
) (( f | u )L2

σ
− ‖∇xu‖2

L2
1+σ

) dL
∣∣∣

. sup
t̃2∈(t̃1,t2)

∫
(t̃2−max{ε2,ε′2},̃t2)

|( f | u )L2
σ
|+ ‖∇xu‖2

L2
1+σ

dL.

This implies that (
∥∥u(t̃2)

∥∥2
L2

σ
)−ε2 is a Cauchy sequence in C((t̃1, t2)) and thus has a continuous

limit. But in any Lebesgue point we have that (
∥∥u(t̃2)

∥∥2
L2

σ
)−ε2 →

∥∥u(t̃2)
∥∥2

L2
σ

for ε2 → 0, since

t 7→
∥∥u(t)2

∥∥
L2

σ
∈ L2(I). After the same considerations for t̃1 the continuity on I follows and the

energy identity is immediate.
If we repeate the whole process with the test function ηε ϕ̃ for ϕ̃ ∈ C∞

c (H), it becomes clear that
t 7→ ( u | ϕ̃ )L2

σ
is bounded and continuous on [t̃1, t2) for any t̃1 ∈ I. By density, this is nothing but

weak continuity of t 7→ u(t) ∈ L2
σ. Since L2

σ is a Hilbert space, this amounts to the continuity of
t 7→ u(t) ∈ L2

σ on [t̃1, t2) for any t̃1 ∈ I and thus u ∈ C
(

I; L2
σ(H)

)
. For the inclusion of the initial

value fix a t0 ∈ I and define

ηε :=


1 for all t ∈ (t1, t0)

1− t−t0
ε for all t ∈ (t0, t0 + ε)

0 for all t ∈ (t0 + ε, t2)

for small ε > 0.
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Then ϕ̃ ηε is an admissible test function, and the same calculations as above lead to

(( u(t0) | ϕ̃ )L2
σ
)ε = −

∫
I

ηε (∇xu |∇x ϕ̃ )L2
1+σ

dL+
∫
I

ηε ( f | ϕ̃ )L2
σ

dL+ ( g | ϕ̃ )L2
σ
.

In view of the result from the first part we can now let ε→ 0 and then t0 → t1 to get

lim
t0→t1

( u(t0) | ϕ̃ )L2
σ
= ( g | ϕ̃ )L2

σ
.

This proves that weak continuity can be extended into t1. But on (t1, t2) we know by the first part
that ‖u(t)‖L2

σ
is uniformely bounded. Full continuity in L2

σ down to t1 is therefore proven.

3.6 Remark The energy identity 3.5 also shows that for a σ-solution u to the initial value problem with
f ∈ L1(I; L2

σ(H)
)

and g ∈ L2
σ(H) we have

sup
t∈(t̃1,t2)

‖u(t)‖2
L2

σ
+

∫
(t̃1,t2)

‖∇xu‖2
L2

1+σ(H) dL ≤ 2 ‖g‖2
L2

σ(H) + 4 ‖ f ‖2
L1
(
(t̃1,t2); L2

σ(H)
)

for any t̃1 ∈ I. This implies u ∈ Cb
(

I; L2
σ(H)

)
⊂ L∞(I; L2

σ(H)
)

as “predicted” by the Galerkin
approximation (compare Remark 3.4).
Note also that for time-local solutions we do not necessarily get boundedness near the initial time t1, but an
evaluation at the terminal time t2 is always possible as long as t2 is finite.

An easy consequence of the energy identity 3.5 is the norm-decrease of σ-solutions of the homo-
geneous problem.

3.7 Corollary Let t1 > −∞ and I = (t1, t2) ⊂ R be an open interval. Further let g ∈ L2
σ(H).

If u is a σ-solution to f = 0 on I × H with initial value g, then the function t 7→ ‖u(t)‖L2
σ(H) is

monotonically decreasing on I.

Uniqueness of initial value solutions now follows directly.

3.8 Proposition Let t1 > −∞ and I = (t1, t2) ⊂ R be an open interval. Further let f ∈ L1(I; L2
σ(H)

)
and g ∈ L2

σ(H).
Then there is exactly one σ-solutions to f on I × H with initial value g.

Proof: Given two σ-solutions u1 and u2 to f on I × H with initial value g, the difference u1 − u2
is a σ-solution to 0 with initial value 0. Since the right hand side vanishes, we know with corollary
3.7 that the norm of u is bounded by the the norm of the initial value. But this is also zero, hence
‖u1 − u2‖L2

σ
= 0 and we must have u1 = u2.

We can finally use the continuity from Proposition 3.5 to show existence and uniqueness of
solutions in the only case not covered yet, that is for t1 = −∞.

3.9 Proposition Let I := (−∞, t2) ⊂ R and f ∈ L1(I; L2
σ(H)

)
.

Then there exists exactly one σ-solution to f on I × H with lim
t→−∞
‖u(t)‖L2

σ(H) = 0 and the energy identity

3.5 holds for any Ĩ = (t̃1, t̃2) ⊂ I.
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Proof: Consider a sequence tj ∈ I with tj → −∞ as j → ∞. Then by the existence theorem 3.3
and the energy identity 3.5 there are σ-solutions uj ∈ C([tj, t2); L2

σ(H)) to f with uj(tj) = 0 for
any of these tj. Extending uj by zero onto I therefore delivers a sequence (uj)j∈N ⊂ C(I; L2

σ(H)).
But for indices j, j′, where we assume j < j′ without loss of generality, the difference uj − uj′ is a
σ-solution to χ

(tj′ ,tj)
f on [tj′ , t2) with (uj − uj′)(tj′) = 0. Hence by the energy identity we get

sup
t∈I

∥∥∥uj(t)− uj′(t)
∥∥∥

L2
σ(H)
≤

∫
(tj′ ,tj)

‖ f ‖L2
σ(H) dL,

and by virtue of t 7→ ‖ f (t)‖L2
σ(H) ∈ L1(I) this is a Cauchy sequence. It follows that lim

j→∞
uj =: u

exists in C(I; L2
σ(H)) and is a σ-solution to f on I with∥∥∥u(tj)

∥∥∥
L2

σ(H)
=
∥∥∥u(tj)− uj(tj)

∥∥∥
L2

σ(H)
≤ sup

t∈I

∥∥∥u(t)− uj(t)
∥∥∥

L2
σ(H)
→ 0

for j → ∞. The energy identity is then obvious and uniqueness follows by the decrease of the
norm as before in corollary 3.7.

Henceforth, we will include the case t1 = −∞ into the notation for the initial value problem:
Whenever we speak of a σ-solutions to f on I × H with intial value g for t1 = −∞, we implicitely
set g = 0 and mean the σ-solution to f on (−∞, t2)× H that vanishes at −∞. Uniqueness is then
given for the initial value problem in any case, so we can always refer to “the” σ-solution to
f with initial value g. Note also that for t1 = −∞ and f = 0 we deal with the trivial solution u = 0.

For the homogeneous equation we can use the same method of proof as in the energy identity
with a second σ-solution as test function to get a duality result that will be used later.

3.10 Proposition Let I = (t1, t2) ⊂ R be an open interval and g1, g2 ∈ L2
σ(H).

If u1 is a σ-solutions to f = 0 on I × H with initial value g1, and if u2 is a σ-solutions to f = 0 on I × H
with initial value g2, then for any t̃1 ≤ t̃2 ∈ I we have the duality equality

( u1(t̃1) | u2(t̃2) )L2
σ(H) = ( u1(t̃2) | u2(t̃1) )L2

σ(H).

Proof: Fix t̃1 ≤ t̃2 ∈ I and define

T : I → R, t 7→ t̃1 + t̃2 − t =: s.

Note that if Ĩ := (t̃1, t̃2) then T| Ĩ maps Ĩ bijectively onto Ĩ and we have (u2 ◦ T)(t̃1) = u2(t̃2) as
well as (u2 ◦ T)(t̃2) = u2(t̃1).
Let us now test the equation for u1 formally with χ Ĩ (u2 ◦ T). We obtain

0 = −
∫
I

∂tχ Ĩ

∫
H

u1 (u2 ◦ T) dµσ dL−
∫
I

χ Ĩ

∫
H

u1 ∂t(u2 ◦ T) dµσ dL

+
∫
I

χ Ĩ

∫
H

∇xu1 · ∇x(u2 ◦ T) dµ1+σ dL.

An integration by parts followed by a transformation of the integral, using that χ Ĩ vanishes
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outside Ĩ and that T and T−1 map Ĩ onto itself, yield

−
∫
I

χ Ĩ u1 ∂t(u2 ◦ T) dL = −
∫
I

(∂t(u1 χ Ĩ) ◦ T−1) u2 dL

=
∫
I

∂s((u1 χ Ĩ) ◦ T−1) u2 dL.

Consequently, considering (u1 χ Ĩ) ◦ T−1 as a test function for u2 we see that

−
∫
I

χ Ĩ

∫
H

u1 ∂t(u2 ◦ T) dµσ dL = −
∫
I

∫
H

∇x((χ Ĩ u1) ◦ T−1) · ∇xu2 dµσ dL

and by reversing the transformation and inserting the result above we finally get

0 = −( u1(t̃1) | (u2 ◦ T)(t̃1) )L2
σ(H) + ( u1(t̃2) | (u2 ◦ T)(t̃2) )L2

σ(H).

This can be made rigorous in the same way as the proof of Proposition 3.5.
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We now use similar regularisation techniques as before to show weighted L2-boundedness of
derivatives of σ-solutions. In order to do so, we have to impose extra conditions onto the right
hand side. Furthermore, for reaching the initial point in time we also need additional regularity
conditions for the initial value. Therefore, in favor of a clearer presentation we first consider only
the time-local case.

It turns out that the weak choice of prerequisits with respect to time in the definition of a σ-solution
does not constitute a real restriction if Ω = H.

4.1 Proposition Let I = (t1, t2) ⊂ R be an open interval and f ∈ L2(I; L2
σ(H)).

If u is a σ-solution to f on I × H, then

t 7→ ‖∇xu(t)‖L2
1+σ(H) ∈ C([t̃1, t2))

and we have ∫
(t̃1,t2)

‖∂tu‖2
L2

σ(H) dL ≤
∥∥∇xu(t̃1)

∥∥2
L2

1+σ(H) +
∫

(t̃1,t2)

‖ f ‖2
L2

σ(H) dL

for any t̃1 ∈ I.

Proof: Fix t̃1 ≤ t̃2 ∈ I so that Ĩ ( I. In the formal proof we test the equation with χ Ĩ ∂tu.
To make this rigorous note that for any σ-solution u with the additional property ∂tu ∈ L2

locL2
σ, by

an integration by parts in time and a density argument we equivalently know that∫
I

( ∂tu | ϕ )L2
σ

dL+
∫
I

(∇xu |∇x ϕ )L2
1+σ

dL =
∫
I

( f | ϕ )L2
σ

dL

for all ϕ ∈ L2L2
σ with ∇x ϕ ∈ L2L2

1+σ and compact temporal support. Since uh is such a σ-solution
with regular time derivative - see the proof of Proposition 3.5 - we can use this formulation with
the test function ηε ∂tuh, where ηε = ηε1 ηε2 also as before. Taking into account that∫

I

ηε∇xuh · ∇x∂tuh dL = −1
2

∫
I

∂tηε |∇xuh|2 dL

with an integration by parts in t, it follows that∫
I

ηε

∥∥∥∂tuh
∥∥∥2

L2
σ

dL− 1
2
(
∥∥∥∇xuh(t̃1)

∥∥∥2

L2
1+σ

)ε1 +
1
2
(
∥∥∥∇xuh(t̃2)

∥∥∥2

L2
1+σ

)−ε2 =
∫
I

ηε ( f h | ∂tuh )L2
σ

dL.

Hölder’s inequality combined with Young’s inqeuality then reveals that

1
2

∫
I

ηε

∥∥∥∂tuh
∥∥∥2

L2
σ

dL ≤ 1
2

∫
I

ηε

∥∥∥ f h
∥∥∥2

L2
σ

dL+
1
2
(
∥∥∥∇xuh(t̃1)

∥∥∥2

L2
1+σ

)ε1 .
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At least if t̃1 is a Lebesgue point, the limits can now be taken. Going back to the regularised
equation above, with a Cauchy argument as in the proof of Proposition 3.5 it is then possible
to show the continuity of t 7→ ‖∇xu(t)‖L2(H,µ1+σ)

on [t̃1, t2) as well as the convergence of the
equation itself.

4.2 Remark The weak regularity gain in the temporal derivative enables us to restrict ourselves to elliptic
equations if Ω = H: If u is a σ-solution to f on I × H, then for almost all t ∈ I we have that u(t) satisfies

−Lσu(t) = f (t)− ∂tu(t) =: f̃ (t) on H.

In a slight abuse of notation we will thus supress the time dependence and consider u ∈W1,2
σ (H) with∫

H

∇xu · ∇x ϕ dµ1+σ =
∫
H

f̃ ϕ dµσ,

ϕ ∈ C∞
c (H), as the energy formulation of the elliptic equation. As before, the density statement 2.15

implies that any function in W1,2
σ (H) is an admissible test function.

4.3 Proposition Let I = (t1, t2) ⊂ R be an open interval and f ∈ L2(I; L2
σ(H)).

If u is a σ-solution to f on I × H, then we have∫
(t̃1,t2)

‖∇xu‖2
L2

σ(H) dL+
∫

(t̃1,t2)

∥∥∥D2
xu
∥∥∥2

L2
2+σ(H)

dL .n,σ

∫
(t̃1,t2)

‖ f ‖2
L2

σ(H) dL+
∥∥∇xu(t̃1)

∥∥2
L2

1+σ(H)

for any t̃1 ∈ I.

Proof: Formally, the estimate for both the tangential and vertical derivatives follows by testing
the elliptic equation with ∂xn u, while for the second order derivative we consider xn∆xu as a
test function. Making this rigorous in the same way as above requires an analysis of certain
commutators. We use a transformation onto an ordinary differential equation instead.
So starting with the energy formulation of the elliptic equation

( · )n ∆xu + (1 + σ) ∂xn u = − f̃

on H as in Remark 4.2, we perform a Fourier transformation in the tangential directions with
Fourier variable ξ ′ ∈ Rn−1 and without renaming the functions u and f̃ to get

−( · )n |ξ ′|2 u + ( · )n ∂2
xn u + (1 + σ) ∂xn u = − f̃ .

The transformation z := |ξ ′| xn then yields

( · ) |ξ ′| ∂2
zu + (1 + σ) |ξ ′| ∂zu− ( · ) |ξ ′| u = − f̃

with u = u(ξ ′, z) and f̃ = f̃ (ξ ′, z), where ( · ) : z 7→ z represents the identity operator on R. We
consider ξ ′ as parameters and rename |ξ ′| u(ξ ′, z) to u(z), reaching the equation

(∗) z ∂2
zu + (1 + σ) ∂zu− z u = − f̃

on (0, ∞).
A solution u of the homogeneous version of this equation defines a solution v = z

σ
2 u of the
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modified Bessel equation with parameter σ
2 , that is

z2 ∂2
zv + z ∂zv− z2 v− σ2

4
v = 0,

and vice versa. The modified Bessel functions I σ
2

and K σ
2
, described in detail in [OM10], form a

fundamental system of this ordinary differential equation, hence a fundamental system for the
homogeneous equation (∗) is given by

Ψ1(z) := z−
σ
2 I σ

2

and

Ψ2(z) := z−
σ
2 K σ

2
.

The asymptotics of the modified Bessel functions are known, and up to constants depending on σ,
for σ > 0 we get

Ψ1(z) ∼ 1 (z→ 0), Ψ1(z) ∼ z−
1+σ

2 ez (z→ ∞)

Ψ2(z) ∼ z−σ (z→ 0), Ψ2(z) ∼ z−
1+σ

2 e−z (z→ ∞).

For σ < 0 we have Ψ2(z) ∼ 1 (z → 0), and Ψ2(z) ∼ ln z (z → 0) for σ = 0, while the other
three relations remain as before. The Wronskian of Ψ1 and Ψ2 can be computed to be z−1−σ.
All this leads to the fundamental solution

k(z, y) :=

{
yσ Ψ1(z)Ψ2(y), z < y

yσ Ψ1(y)Ψ2(z), z > y,

with first order derivative having a jump discontinuity of the type y−1 at z = y. Therefore,
solutions u to (∗) are characterised by the representation

zl u(z) = −
∫

(0,∞)

zl k(z, y) f̃ (y) dL(y)

for any l ∈ R.
We rewrite this to get the operator

f̃ 7→ zl u = −
∫

(0,∞)

zl k(z, y) y−σ f̃ (y) dµσ(y).

If both

sup
z∈(0,∞)

∫
(0,∞)

zl |k(z, y)| y−σ dµσ(y) < ∞

and

sup
y∈(0,∞)

∫
(0,∞)

zl |k(z, y)| y−σ dµσ(z) < ∞,
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then Schur’s lemma A.20 ensures that

‖u‖L2
2l+σ((0,∞)) .

∥∥∥ f̃
∥∥∥

L2
σ((0,∞))

.

To see this, fix a small ε > 0 and a large R > 0. We start with the first condition and divide the
range of each supremum into three disjoint pieces. The definition of the fundamental solution
and the asymptotic expansions of Ψ1 and Ψ2 for σ > 0 then show that

sup
z∈(0,ε)

∫
(0,∞)

zl |k(z, y)| y−σ dµσ(y)

= sup
z∈(0,ε)

zl

(
|Ψ2(z)|

∫
(0,z)

yσ |Ψ1(y)| dL(y) + |Ψ1(z)|
∫
(z,ε)

yσ |Ψ2(y)| dL(y)

+ |Ψ1(z)|
∫
(ε,R)

yσ |Ψ2(y)| dL(y) + |Ψ1(z)|
∫

(R,∞)

yσ |Ψ2(y)| dL(y)
)

. sup
z∈(0,ε)

(
zl−σ

∫
(0,z)

yσ dL(y) + zl
∫
(z,ε)

1 dL(y)

+ zl
∫
(ε,R)

yσ |Ψ2(y)| dL(y) + zl
∫

(R,∞)

y
σ−1

2 e−y dL(y)
)

.

The first integral can be computed since σ > −1. We also evaluate the second integral explicitely,
while the third one is surely bounded depending only on ε, R and σ, and the same is true for the
last one with a constant depending on R and σ. We find that

sup
z∈(0,ε)

∫
(0,∞)

zl |k(z, y)| y−σ dµσ(y) .σ,ε,R sup
z∈(0,ε)

(
zl+1 + zl

)

which is bounded for l ≥ 0. The cases σ ≤ 0 follow in the same fashion with an additional
additive term zl+σ+1 for σ < 0, and zl+1 ln z for σ = 0. Also this is bounded near 0 for l ≥ 0 in
both cases.
The interval (ε, R) is treated straightforwardly. Here we get

sup
z∈(ε,R)

zl
∫

(0,∞)

|k(z, y)| dL(y)

= sup
z∈(ε,R)

zl

(
|Ψ2(z)|

∫
(0,ε)

yσ |Ψ1(y)| dL(y) + |Ψ2(z)|
∫
(ε,z)

yσ |Ψ1(y)| dL(y)

+ |Ψ1(z)|
∫

(z,R)

yσ |Ψ2(y)| dL(y) + |Ψ1(z)|
∫

(R,∞)

yσ|Ψ2(y)| dL(y)
)

. sup
z∈(ε,R)

zl

(
|Ψ2(z)|

∫
(0,ε)

yσ dL(y) + |Ψ2(z)|
∫
(ε,z)

yσ |Ψ1(y)| dL(y)

+ |Ψ1(z)|
∫

(z,R)

yσ |Ψ2(y)| dL(y) + |Ψ1(z)|
∫

(R,∞)

y
σ−1

2 e−y dL(y)
)

.
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As before, all the integrals are bounded by a constant depending only on σ, ε and R.
Finally, on (R, ∞) we have

sup
z∈(R,∞)

∫
(0,∞)

zl |k(z, y)| y−σ dµσ(y)

. sup
z∈(R,∞)

(
zl− 1+σ

2 e−z
∫
(0,ε)

yσ dL(y) + zl− 1+σ
2 e−z

∫
(ε,R)

yσ |Ψ1(y)| dL(y)

+ zl− 1+σ
2 e−z

∫
(R,z)

y
σ−1

2 ey dL(y) + zl− 1+σ
2 ez

∫
(z,∞)

y
σ−1

2 e−y dL(y)
)

.

The first two integrals are obviously bounded. But we can also compute

sup
z∈(R,∞)

zl− 1+σ
2 e−z

∫
(R,z)

y
σ−1

2 ey dL(y) = sup
z∈(R,∞)

zl−1− σ−1
2 e−z

∫
(R,z)

y
σ−1

2 ey dL(y) .σ,R sup
z∈(R,∞)

zl−1

and likewise

sup
z∈(R,∞)

zl− 1+σ
2 ez

∫
(z,∞)

y
σ−1

2 e−y dL(y) = sup
z∈(R,∞)

zl−1− σ−1
2 ez

∫
(z,∞)

y
σ−1

2 e−y dL(y) . sup
z∈(R,∞)

zl−1.

This means that we have

sup
z∈(R,∞)

∫
(0,∞)

zl |k(z, y)| y−σ dµσ(y) .σ,ε,R sup
z∈(R,∞)

(
zl− 1+σ

2 e−z + zl−1
)

which is bounded whenever l ≤ 1.
For the verification of the second condition we proceed along the same lines and get

sup
y∈(0,ε)

∫
(0,∞)

zl |k(z, y)| y−σ dµσ(z)

= sup
y∈(0,ε)

(
|Ψ2(y)|

∫
(0,y)

zl+σ |Ψ1(z)| dL(z) + |Ψ1(y)|
∫
(y,ε)

zl+σ |Ψ2(z)| dL(z)

+ |Ψ1(y)|
∫
(ε,R)

zl+σ |Ψ2(z)| dL(z) + |Ψ1(y)|
∫

(R,∞)

zl+σ |Ψ2(z)| dL(z)
)

. sup
y∈(0,ε)

(
y−σ

∫
(0,y)

zl+σ dL(z) +
∫
(y,ε)

zl dL(z)

+
∫
(ε,R)

zl+σ |Ψ2(z)| dL(z) +
∫

(R,∞)

zl+ σ−1
2 e−z dL(z)

)

.σ,ε,R sup
y∈(0,ε)

(
yl+1 + 1

)
for σ ≥ 0. Here, for σ < 0 we get the additional term yl+1+σ, while for σ = 0 and l ∈N0 we have
an extra yl+1 ln y. Any of these summands is bounded on (0, ε) if l ≥ 0.
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Furthermore we have

sup
y∈(R,∞)

∫
(0,∞)

zl |k(z, y)| y−σ dµσ(z)

= sup
y∈(R,∞)

(
|Ψ2(y)|

∫
(0,ε)

zl+σ |Ψ1(z)| dL(z) + |Ψ2(y)|
∫
(ε,R)

zl+σ |Ψ1(z)| dL(z)

+ |Ψ2(y)|
∫

(R,y)

zl+σ |Ψ1(z)| dL(z) + |Ψ1(y)|
∫

(y,∞)

zl+σ |Ψ2(z)| dL(z)
)

. sup
y∈(R,∞)

(
y−

σ+1
2 e−y

∫
(0,ε)

zl+σ dL(z) + y−
σ+1

2 e−y
∫
(ε,R)

zl+σ |Ψ1(z)| dL(z)

+ y−
σ+1

2 e−y
∫

(R,y)

zl+ σ−1
2 ez dL(z) + y−

σ+1
2 ey

∫
(y,∞)

zl+ σ−1
2 e−z dL(z)

)

.σ,ε,R sup
y∈(R,∞)

(
y−

σ+1
2 e−y + yl−1

)
and this is bounded again if l ≤ 1.
It follows that l = 0 and l = 1 are both admissible, so for solutions u of (∗) we get

‖u‖L2
σ((0,∞)) + ‖( · ) u‖L2

σ((0,∞)) .σ

∥∥∥ f̃
∥∥∥

L2
σ((0,∞))

.

But then it makes sense to incorporate ( · ) u onto the right hand side of (∗). This results in a first
order ordinary differential equation for ∂zu =: v, namely

(∗ ∗) ( · ) ∂zv + (1 + σ) v = − f̃ + ( · ) u =: f .

A solution to the homogeneous equation is clearly given by z 7→ z−1−σ, and so for this equation
we get the fundamental solution

k(z, y) := yσ z−1−σ if z > y

and 0 elsewhere. Now we consider the operator

zδ f (z) 7→ zδ v(z) =
∫

(0,∞)

(
z
y

)δ

k(z, y) yδ f (y) dL(y).

For δ = δ1 we have

sup
z∈(0,∞)

∫
(0,∞)

(
z
y

)δ1

|k(z, y)| dL(y) = sup
z∈(0,∞)

zδ1−1−σ
∫
(0,z)

yσ−δ1 dL(y) = 1
1 + σ− δ1

if δ1 < 1 + σ. This shows that∥∥∥( · )δ1 v
∥∥∥

L∞((0,∞))
.σ,δ1

∥∥∥( · )δ1 f
∥∥∥

L∞((0,∞))
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in this case.
Similarly, for a δ = δ2 we see

sup
y∈(0,∞)

∫
(0,∞)

(
z
y

)δ2

|k(z, y)| dL(z) = sup
y∈(0,∞)

yσ+δ2

∫
(y,∞)

zδ2−1−σ dL(z) = − 1
δ2 − σ

if δ2 < σ, thus ∥∥∥( · )δ2 v
∥∥∥

L1((0,∞))
.σ,δ2

∥∥∥( · )δ2 f
∥∥∥

L1((0,∞))
.

An interpolation yields ∥∥∥∥( · ) δ1+δ2
2 v

∥∥∥∥
L2((0,∞))

.σ,δ1,δ2

∥∥∥∥( · ) δ1+δ2
2 f

∥∥∥∥
L2((0,∞))

for δ1 < 1 + σ and δ2 < σ. But we can choose δ1 and δ2 with δ1 + δ2 = σ, if only σ < 1 + 2σ. This
condition, however, is equivalent to σ > −1 and hence we get

‖∂zu‖L2
σ((0,∞)) = ‖v‖L2

σ((0,∞)) .σ

∥∥∥ f
∥∥∥

L2
σ((0,∞))

.σ

∥∥∥ f̃
∥∥∥

L2
σ((0,∞))

with the first result for ( · ) u.
An immediate consequence of (∗ ∗) is then∥∥∥∂2

zu
∥∥∥

L2
2+σ((0,∞))

=
∥∥∥( · ) ∂2

zu
∥∥∥

L2
σ((0,∞))

hσ

∥∥∥ f̃ + ∂zu + ( · ) u
∥∥∥

L2
σ((0,∞))

.
∥∥∥ f̃
∥∥∥

L2
σ((0,∞))

.

Summing up, after reverting the notation back to the starting point we have shown that∥∥|ξ ′| u∥∥L2
σ((0,∞)) +

∥∥|ξ ′| u∥∥L2
2+σ((0,∞)) +

∥∥|ξ ′| ∂zu
∥∥

L2
σ((0,∞)) +

∥∥∥|ξ ′| ∂2
zu
∥∥∥

L2
2+σ((0,∞))

.σ

∥∥∥ f̃
∥∥∥

L2
σ((0,∞))

.

The retransformation from z to xn and an additional integration in the ξ ′ direction reveals that∥∥|ξ ′| u∥∥L2
σ(H) +

∥∥∥|ξ ′|2 u
∥∥∥

L2
2+σ(H)

+ ‖∂xn u‖L2
σ(H) +

∥∥∥∂2
xn u
∥∥∥

L2
2+σ(H)

.n,σ

∥∥∥ f̃
∥∥∥

L2
σ(H)

.

With Plancherel’s theorem in the reverse Fourier transformation we arrive at∥∥∇′xu
∥∥

L2
σ(H) +

∥∥∆′xu
∥∥

L2
2+σ(H) + ‖∂xn u‖L2

σ(H) +
∥∥∥∂2

xn u
∥∥∥

L2
2+σ(H)

.n,σ

∥∥∥ f̃
∥∥∥

L2
σ(H)

.

Finally, the mixed second order derivatives can be gained thanks to the formula∥∥∥D2
xu
∥∥∥2

L2
2+σ(H)

hσ ‖∆xu‖2
L2

2+σ(H) +
∥∥∇′xu

∥∥2
L2

σ(H)

by means of the density of C∞
c (H) from Remark 2.15.

We will now briefly return to the initial value problem and collect the results for this case. To
this end, we consider only the initial datum g = 0. This could be generalised to other initial data
under some regularity conditions on g.
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4.4 Proposition Let I = (t1, t2) ⊂ R be an open interval and f ∈ L2(I; L2
σ(H)

)
.

If u is the σ-solution to f on I × H with initial value g = 0, then

t 7→ ‖∇xu(t)‖L2
1+σ(H) ∈ C(I) with ∇xu(t1) = 0

and ∫
(t̃1,t2)

‖∇t,xu‖2
L2

σ(H) dL+
∫

(t̃1,t2)

∥∥∥D2
xu
∥∥∥2

L2
2+σ(H)

dL .n,σ

∫
(t̃1,t2)

‖ f ‖2
L2

σ(H) dL

for any t̃1 ∈ I.

Proof: For g = 0, the σ-solution u can be extended to a bigger interval by zero. We can then use
the time-local results 4.1, 4.3 and obtain the statement.

4.5 Remark From the last proposition it follows that for l ≥ 0, k ∈N0 and α ∈Nn
0 with

(l, k, |α|) ∈ {(0, 1, 0), (0, 0, 1), (1, 0, 2)} ,

the mappings

f 7→ ( · )l
n ∂k

t ∂α
xu

that send the inhomogeneity to certain derivatives of the σ-solution of the zero initial value problem on
I × H are bounded operators from L2(I; L2

σ(H)) to L2(I; L2
σ(H)).

Elements of the above set of exponents will be referred to as Calderón-Zygmund-exponents in the following.
Note that they are exactly given by those l ≥ 0, k ∈ N0 and α ∈ Nn

0 that satisfy the conditions
l − k− |α| = −1 and 2 l − |α| ≤ 0.

We now prove recursively that also derivatives of σ-solutions solve an adjusted equation in the
energy sense. To this end we need two additional estimates for mixed second order derivatives
that can be gained by similar methods as the energy estimates above. Note that unlike there, the
estimates for the second spatial derivatives do not carry extra weights here. However, we have to
place additional assumptions on the inhomogeneity.

4.6 Lemma Let I = (t1, t2) ⊂ R be an open interval and f ∈ L2(I; L2
σ(H)).

(i) If in addition ∂t f ∈ L2(I; L2
σ(H)) and u is a σ-solution to f on I × H, then

t 7→ ‖∂tu(t)‖L2
σ(H) ∈ C([t̃1, t2))

and we have∫
(t̃1,t2)

‖∇x∂tu‖2
L2

1+σ(H) dL .
∥∥∂tu(t̃1)

∥∥2
L2

σ(H) +
∥∥∇xu(t̃1)

∥∥2
L2

1+σ(H)

+
∫

(t̃1,t2)

‖∂t f ‖2
L2

σ(H) dL+
∫

(t̃1,t2)

‖ f ‖2
L2

σ(H) dL

for any t̃1 ∈ I.
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(ii) If in addition ∂xj f ∈ L2(I; L2
σ(H)) for a j ∈ {1, . . . , n− 1} and u is a σ-solution to f on I × H,

then

t 7→
∥∥∥∂xj u(t)

∥∥∥
L2

σ(H)
∈ C([t̃1, t2))

and we have∫
(t̃1,t2)

∥∥∥∇x∂xj u
∥∥∥2

L2
1+σ(H)

dL .n,σ

∥∥∥∂xj u(t̃1)
∥∥∥2

L2
σ(H)

+
∥∥∇xu(t̃1)

∥∥2
L2

1+σ(H)

+
∫

(t̃1,t2)

∥∥∥∂xj f
∥∥∥2

L2
σ(H)

dL+
∫

(t̃1,t2)

‖ f ‖2
L2

σ(H) dL

for any t̃1 ∈ I.

Proof: Consider the same temporal cut-off function ηε as in the proof of the energy identity
3.5 and note that the temporal difference quotient Dhu solves the equation for Dh f and has a
well-behaved time derivative on (t̃1, t2) by Proposition 4.1. Testing the equation for Dhu with
ηε Dhu is thus possible and leads to

1
2
(
∥∥∥Dhu(t̃2)

∥∥∥2

L2
σ

)−ε +
∫
I

∥∥∥∇xDhu
∥∥∥2

L2
1+σ

ηε dL =
1
2
(
∥∥∥Dhu(t̃1)

∥∥∥2

L2
σ

)ε +
∫
I

Dh f Dhu ηε dL.

Given that ∂t f ∈ L2L2
σ, this shows that t 7→ ‖∂tu(t)‖L2

σ
is continuous on [t̃1, t2) as well as

2
∫

(t̃1,t2)

‖∇x∂tu‖2
L2

1+σ
dL ≤

∥∥∂tu(t̃1)
∥∥2

L2
σ
+

∫
(t̃1,t2)

‖∂t f ‖2
L2

σ
dL+

∫
(t̃1,t2)

‖∂tu‖2
L2

σ
dL.

We can use Proposition 4.1 again to finish the proof for the temporal derivative.
For the second part consider Dhu as the difference quotient in xj-direction for a j ∈ {1, . . . , n− 1}.
Using Proposition 4.3, the same reasoning as above leads to the continuity of t 7→

∥∥∥∂xj u
∥∥∥

L2
σ

and

the estimate

2
∫

(t̃1,t2)

∥∥∥∇x∂xj u
∥∥∥2

L2
1+σ

dL ≤
∥∥∥∂xj u(t̃1)

∥∥∥2

L2
σ

+
∫

(t̃1,t2)

∥∥∥∂xj f
∥∥∥2

L2
σ

dL+
∫

(t̃1,t2)

∥∥∥∂xj u
∥∥∥2

L2
σ

dL.

For future reference we annotate the following very easy consequence.

4.7 Corollary Let I = (t1, t2) ⊂ R be an open interval and f ∈ L2(I; L2
σ(H)) as well as ∇′x f ∈

L2(I; L2
σ(H)).

If u is a σ-solution to f on I × H, then we have∫
(t̃1,t2)

∥∥∆′xu
∥∥2

L2
1+σ(H) dL .n,σ

∥∥∇′xu(t̃1)
∥∥2

L2
σ(H) +

∥∥∇xu(t̃1)
∥∥2

L2
1+σ(H)

+
∫

(t̃1,t2)

∥∥∇′x f
∥∥2

L2
σ(H) dL+

∫
(t̃1,t2)

‖ f ‖2
L2

σ(H) dL.

for any t̃1 ∈ I.
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4.8 Remark As in Proposition 4.4, the range of points in time for which estimates 4.6 and 4.7 hold can
be extended to include the initial time t1 for solution to the initial value problem with g = 0.

We can now iterate the notion of solution in terms of their derivatives as announced above. We
set ∂αn−1

xn u := 0 if αn = 0.

4.9 Proposition Let I = (t1, t2) ⊂ R be an open interval, f ∈ L1(I; L2
σ(H)

)
and u be a σ-solution to

f on I × H. Further let t̃1 ∈ I, k ∈N0 and α ∈Nn
0 .

If ∂i
t∂

β′+γ′

x′ ∂
γn
xn f ∈ L2(I; L2

γn+σ(H)) for any 0 ≤ i ≤ k, 0 ≤ β′ ≤ α′ and 0 ≤ |γ| ≤ αn, then ∂k
t ∂α

xu is
an (αn + σ)-solution to ∂k

t ∂α
x f + αn ∆′x∂k

t ∂α′
x′∂

αn−1
xn u on [t̃1, t2)× H.

Proof: The temporal and tangential derivatives commute with the differential expression by
Remark 3.2 and hence formally one sees that ∂k

t u is a σ-solution to ∂k
t f and ∂

αj
xj u is a σ-solution

to ∂
αj
xj f . The formal treatment of the normal derivative is not as straight forward as that, but a

calculation shows that ∂t∂xn u− L1+σu = ∂xn f + ∆′xu and thus recursively ∂t∂
αn
xn u− Lαn+σ∂αn

xn u =

∂αn
xn f + αn ∆′x∂αn−1

xn u. We will therefore turn to the verification of the regularity properties needed.
If ∂t f ∈ L2L2

σ, Proposition 4.1 and the temporal part of Lemma 4.6 imply the right regularity
for ∂tu on (t̃1, t2)× H. Since we can always fit yet another open interval in between (t1, t2) and
(t̃1, t2), ∂tu really becomes a σ-solution on [t̃1, t2)× H. An iteration of this argument in the time
direction is obviously possible if we adjust the interval in any step and assume ∂i

t f ∈ L2L2
σ for

any i ≤ k.
The proof in tangential directions works exactly the same way, this time using Proposition 4.3 and
the spatial part of 4.6. As before we can iterate this to see that ∂

αj
xj u is a σ-solution on [t̃1, t2)× H

whenever ∂
β j
xj f ∈ L2L2

σ for any β j ≤ αj.
Let us now consider the xn-direction. By the second derivative estimate from 4.3 we directly see
that ∂xn u already has the right regularity itself. Moreover, with f ∈ L2L2

σ and ∇′x f ∈ L2L2
σ we

have by Corollary 4.7 that

(∗)

∫
(t̃1,t2)

∥∥∂xn f + ∆′xu
∥∥2

L2
1+σ

dL ≤
∫

(t̃1,t2)

‖∂xn f ‖2
L2

1+σ
dL+

∫
(t̃1,t2)

∥∥∆′xu
∥∥2

L2
1+σ

dL

.
∥∥∇′xu(t̃1)

∥∥2
L2

σ
+
∥∥∇xu(t̃1)

∥∥2
L2

1+σ
+ ∑

0≤|γ|≤1

∫
(t̃1,t2)

∥∥∂
γ
x f
∥∥2

L2
γn+σ

dL

This means that if in addition ∂xn f ∈ L2L2
1+σ, then ∂xn f + ∆′xu ∈ L2L2

1+σ with respect to the
smaller time interval, and hence ∂xn u is a (1 + σ)-solution to this right hand side on [t̃1, t2)× H
that satisfies the inequalities 4.1 and 4.3 for the temporal and the tangential derivatives, meaning
that ∫

(t̃1,t2)

‖∇t,x∂xn u‖2
L2

1+σ
dL+

∫
(t̃1,t2)

∥∥∥D2
x∂xn u

∥∥∥2

L2
3+σ

dL

.
∥∥∇x∂xn u(t̃1)

∥∥2
L2

2+σ
+

∫
(t̃1,t2)

∥∥∂xn f + ∆′xu
∥∥2

L2
1+σ

dL

.
∥∥∇′xu(t̃1)

∥∥2
L2

σ
+
∥∥∇xu(t̃1)

∥∥2
L2

1+σ
+
∥∥∇x∂xn u(t̃1)

∥∥2
L2

2+σ
+ ∑

0≤|γ|≤1

∫
(t̃1,t2)

∥∥∂
γ
x f
∥∥2

L2
γn+σ

dL

where in the second inequality we used (∗) again.
But under the assumptions in place, also ∇′xu is a σ-solution to ∇′x f by the first part of this proof,
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so if in addition the condition ∇′x∇′x f ∈ L2L2
σ holds we can apply Corollary 4.7 onto ∇′xu and ∇′x f

and consequently (∗) onto ∂xn∇′x f + ∆′x∇′xu and learn that∫
(t̃1,t2)

∥∥∇′x(∂xn f + ∆′xu)
∥∥2

L2
1+σ

dL

.
∥∥∇′x∇′xu(t̃1)

∥∥2
L2

σ
+
∥∥∇x∇′xu(t̃1)

∥∥2
L2

1+σ
+ ∑

0≤|γ|≤1

∫
(t̃1,t2)

∥∥∂
γ
x∇′x f

∥∥2
L2

γn+σ
dL.

Imposing the requirement ∇′x∂xn f ∈ L2L2
1+σ on top, this shows ∇′x(∂xn f + ∆′xu) ∈ L2L2

1+σ. It is
thus possible to apply Corollary 4.7 on the (1 + σ)-solution ∂xn u to ∂xn f + ∆′xu itself. We gain∫

(t̃1,t2)

∥∥∆′x∂xn u
∥∥2

L2
2+σ

dL .
∥∥∇′x∂xn u(t̃1)

∥∥2
L2

1+σ
+
∥∥∇x∂xn u(t̃1)

∥∥2
L2

2+σ

+
∫

(t̃1,t2)

∥∥∂xn f + ∆′xu
∥∥2

L2
1+σ

dL+
∫

(t̃1,t2)

∥∥∇′x(∂xn f + ∆′xu)
∥∥2

L2
1+σ

dL

. ∑
0≤|γ|≤1

∥∥∇′x∂
γ
x u(t̃1)

∥∥2
L2

γn+σ
+ ∑

0≤|γ|≤1

∥∥∇x∂
γ
x u(t̃1)

∥∥2
L2

γn+1+σ

+ ∑
0≤|γ|≤1

∫
(t̃1,t2)

∥∥∂
γ
x f
∥∥2

L2
γn+σ

dL+ ∑
0≤|γ|≤1

∫
(t̃1,t2)

∥∥∂
γ
x∇′x f

∥∥2
L2

γn+σ
dL

and hence∫
(t̃1,t2)

∥∥∥∂2
xn f + ∆′x∂xn u

∥∥∥2

L2
2+σ

dL . ∑
0≤|γ|≤1

∥∥∇′x∂
γ
x u(t̃1)

∥∥2
L2

γn+σ
+ ∑

0≤|γ|≤1

∥∥∇x∂
γ
x u(t̃1)

∥∥2
L2

γn+1+σ

+ ∑
0≤|γ|≤2

∫
(t̃1,t2)

∥∥∂
γ
x f
∥∥2

L2
γn+σ

dL.

This allows us the performance of an induction on αn ≥ 1 to prove that ∂αn
xn u is an (αn + σ)-solution

to ∂αn
xn f + αn ∆′x∂αn−1

xn u if ∂
γ
x f ∈ L2L2

γn+σ for any 0 ≤ |γ| ≤ αn. Consequently, the estimates 4.1
and 4.3 hold accordingly. By the inductive result of the calculations above these estimates get the
form ∫

(t̃1,t2)

∥∥∇t,x∂αn
xn u
∥∥2

L2
αn+σ(H)

dL+
∫

(t̃1,t2)

∥∥∥D2
x∂αn

xn u
∥∥∥2

L2
2+αn+σ(H)

dL

. ∑
0≤|γ|≤αn

∫
(t̃1,t2)

∥∥∂
γ
x f
∥∥2

L2
γn+σ(H) dL+

∥∥∇x∂αn
xn u(t̃1)

∥∥2
L2

1+αn+σ(H)

+ ∑
0≤|γ|≤αn−1

∥∥∇x∂
γ
x u(t̃1)

∥∥2
L2

1+γn+σ(H) + ∑
0≤|γ|≤αn−1

∥∥∇′x∂
γ
x u(t̃1)

∥∥2
L2

γn+σ(H) .

Applying this vertical result on the σ-solution ∂k
t ∂α′

x′u then yields the complete statement.
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Distance functions that are naturally attached to linear differential expressions have proved to
be extremely useful and powerful. For a self-adjoint second order equation, [FP83] used the
principal symbol to generate balls that govern the behaviour of the solutions. The same definition
was brought forth by [SC84], and applied in the special case of a sum of squares satisfying the
Hörmander condition, which means that the equation is subelliptic, see [Hö67] and [Ego75]. In
this same situation, a suitable metric was constructed by [NSW85] in a different way, but resulting
in the same notion.
And indeed are we given a spatial differential expression

Lσ = ( · )n ∆x + (1 + σ) ∂xn

that is not only self-adjoint, but has also a connection to subelliptic operators: By a coordinate
transformation

xn 7→
√

xn =: x̃n

it is transformed into

( ·̃ )2
n ∆′x̃ +

1
4

∂2
x̃n

+

(
1 + σ

2
− 1

4

)
( ·̃ )−1

n ∂x̃n ,

a subelliptic sum of squares of ( ·̃ )n∂x̃j
, j = 1, . . . , n− 1 and ∂x̃n .

Following [Koc99] from here on, for any x ∈ H we consider the principal symbol p(x, ξ) = xn |ξ|2
that induces the bilinear form

〈 ξ | ζ 〉x = x−1
n (ξ · ζ)

on the tangent space at x. Its scaling behaviour is described by 〈 λ ξ | λ ζ 〉λx = λ 〈 ξ | ζ 〉x.
Obviously, this is not only an inner product on the whole tangent space, but also a Riemannian
metric, giving us the ability to measure the length of curves Γ : R ⊃ [a, b]→ H by

L(Γ) :=
∫
(a,b)

√
〈 ∂ςΓ(ς) | ∂ςΓ(ς) 〉Γ(ς) dL(ς).

Therefore, the Carnot-Caratheodory-metric

d(x, y) = inf {L(Γ) | Γ joins x and y}

turns H into a metric space with a finite intrinsic distance function induced by the spatial part of
our differential expression.
In order to get to know the metric d better, we consider the minimisation problem for the energy

E(Γ) :=
∫
(a,b)

〈 ∂ςΓ(ς) | ∂ςΓ(ς) 〉Γ(ς) dL(ς)
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on an at first arbitrary, but fixed interval (a, b). By the Cauchy-Schwarz inequality it is immediately
clear that L(Γ)2 ≤ 2 (b− a)E(Γ) with equality if and only if 〈 ∂ςΓ(ς) | ∂ςΓ(ς) 〉Γ(ς) = 1 on (a, b).
In this equality case of curves that are parametrised by arc length, or traversed with constant
speed, a curve that minimises E over (a, b) is a curve that minimises L over (a, b) and vice versa.
For fixed x, y ∈ H assume now that Γ : [a, b]→ H is a curve that indeed realises the infimum over
the length of all curves joining x and y – that is a distance minimising curve, also called geodesic –
and is parametrised by arclength. Then Γ(a) = x, Γ(b) = y and over (a, b) the curve satisfies

1 = Γ−1
n (∂ςΓ · ∂ςΓ) = Γ−1

n |∂ςΓ|2

as well as the Euler-Lagrange equations for the energy:

0 = 2 ∂ς(Γ−1
n ∂ςΓj) + Γ−2

n (∂ςΓ · ∂ςΓ) δjn

= 2 ∂ς(Γ−1
n ∂ςΓj) + Γ−1

n δjn for any j = 1, . . . , n.

It follows that Γ−1
n ∂ςΓj is constant for j = 1, . . . , n− 1, a fact that can be used to reduce the unit

speed equation to an equation for Γn only, which in turn makes a simplification of the the n-th
Euler-Lagrange equation possible. After integrating the first n− 1 Euler-Lagrange equations in
time it becomes evident that for all ς ∈ [a, b] the curve Γ satisfies the equations

(∂ςΓn(ς))
2 = Γn(ς)− c2 Γ2

n(ς)

Γj(ς) = xj + cj

∫
(a,ς)

Γn dL for j = 1, . . . , n− 1

∂2
ςΓn(ς) =

1
2
− c2 Γn(ς)

for constants cj ∈ R and with c :=

(
n−1
∑

j=1
c2

j

) 1
2

.

If x and y are vertically aligned, that is for y = (x′, yn), then cj = 0 for any j = 1, . . . n− 1 and
hence c = 0. In this case Γj = xj are constant on [a, b] for j = 1, . . . , n − 1, meaning that the
geodesic is indeed a vertical line. Because of the ordinary differential equations for Γn it is clear
that for any ς ∈ [a, b] we have

Γn(ς) =
1
4
(ς− ϑ)2

for a ϑ ∈ R.
On the other hand, if x and y are not vertically aligned, then at least one cj does not vanish and
thus c > 0. Again solving the ordinary differential equations for Γn and using the result in the
equations for Γj we obtain for any ς ∈ [a, b] that

Γj(ς) = xj +
cj

2c2

(
ς− a +

1
c
(sin (c (a− ϑ))− sin (c (ς− ϑ)))

)
Γn(ς) =

1
2c2 (1− cos (c (ς− ϑ)))

for a ϑ ∈ R. Thus arc-length parametrised geodesics are cycloid curves. Compare also [DH98] for
a treatment of the issue in two dimensions.

Conversely, it is clear that a curve Γ in H given by one of the two mapping prescriptions above is
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parametrised by arc length and satisfies the Euler-Lagrange equations for the energy regardless
of the interval (a, b). Therefore, for fixed a and b it realises the miminal length in going from Γ(a)
to Γ(b) among all curves over (a, b). By a suitable choice of a and b and the parameters ϑ and (if
neccessary) cj, any points x, y ∈ H can be joined by a curve of this kind. Among these choices, the
one that belongs to the setting that minimises the length b− a is then a geodesic between x and y.
But this allows us to expand our definition of the metric onto H. For ϑ = a we have Γn(a) = 0
both if x and y are vertically aligned and if not. On the other hand, if ϑ is chosen so that
Γ(a) = x, it is always possible to find b and cj such that Γ(b) = 0, so y with yn = 0 can also
be reached. If xn and yn vanish, that is if x and y are situated on the boundary of H, then the
points are not vertically aligned unless they coincide. In any case we can then define d(x, y) as
the minimal value of b− a such that Γ : [a, b]→ H is of the type presented above and joins x and y.

A weighted bound of the gradient of a continuously differentiable function now ensures that this
function is Lipschitz with respect to d.

5.1 Proposition Let Ψ : H → R be continuous with Ψ ∈ C1(H) and C > 0.
If
√

xn |∇xΨ(x)| ≤ C for any x ∈ H, then |Ψ(x)−Ψ(y)| ≤ C d(x, y) for all , x, y ∈ H.

Proof: Fix x, y ∈ H and let Γ : [a, b] → H be the arc-length parametrised geodesic connecting
them. Then the chain rule and the fundamental theorem of calculus show that

|Ψ(x)−Ψ(y)| =
∣∣∣ ∫
(a,b)

∇xΨ(Γ(ς)) · ∂ςΓ(ς) dL(ς)
∣∣∣

≤ (b− a) sup
ς∈(a,b)

{
Γ

1
2
n (ς) |∇xΨ(Γ(ς))|

}
sup

ς∈(a,b)

{
|∂ςΓ(ς)|Γ−

1
2

n (ς)

}
.

With the assumption in the first supremum and the unit speed property of Γ in the second one,
we get

|Ψ(x)−Ψ(y)| ≤ C (b− a) = C d(x, y)

and therefore the Lipschitz property on H. By a limiting procedure this can be extended onto H
thanks to the continuity of d(·, y) and Ψ on H.

We now turn to to a precise description of the intrinsic metric. If x and y are vertically aligned, we
can calculate b− a explicitely. In case the points are horizontally aligned, at least an inequality can
be proven, and in the special subcase that both x and y are on the boundary, a precise expression
for d can be obtained again. Here we use the notation deu for the euclidean metric regardless of
the dimension.

5.2 Proposition Let x, y ∈ H.

(i) If y′ = x′ then

d(x, y) = 2 |
√

xn −
√

yn|.

(ii) If yn = xn, then

d(x, y) ≤ x−
1
2

n deu(x, y).
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(iii) If xn = yn = 0 then

d(x, y) = 2
√

π deu(x, y).

Proof: First assume y = (x′, yn) with yn ≤ xn. We then consider Γ : [a, b]→ H given by Γj = xj

for j = 1, . . . , n− 1 and Γn(ς) =
1
4 (ς− ϑ)2, where ϑ = a + 2

√
xn. Then Γ(a) = x is obviously

true, and for Γ(b) = y we only need to have

yn = Γn(b) =
1
4
(b− a− 2

√
xn)

2.

But this is the case if

b = ϑ− 2
√

yn = a + 2
√

xn − 2
√

yn

which is bigger than a since xn ≥ yn, but at the same time the smallest possible b that we can get
within this setting. Thus Γ – together with the interval [a, b] – is a length minimising curve joining
x and y and we have

d(x, y) = b− a = 2
√

xn − 2
√

yn.

For yn ≥ xn we choose ϑ = a− 2
√

xn and then get

b = ϑ + 2
√

yn = a + 2
√

yn − 2
√

xn ≥ a

and hence

d(x, y) = b− a = 2
√

yn − 2
√

xn

as desired.
We turn to the horizontally aligned cases and denote the curve that traverses the line between x
and y parametrised over the interval (0, 1) by Γ. Its length is given by

L(Γ) = x−
1
2

n

∫
(0,1)

√
∂ςΓ · ∂ςΓ dL = x−

1
2

n deu(x, y).

By definition, this is an upper bound of d(x, y).
Let now xn = yn = 0. This time the curve is of the form Γ : [a, b]→ H,

Γj(ς) = xj +
cj

2c2

(
ς− a +

1
c
(sin (c (a− ϑ))− sin (c (ς− ϑ)))

)
Γn(ς) =

1
2c2 (1− cos (c (ς− ϑ)))

with ϑ = a. Then again we have Γ(a) = x. To obtain Γn(b) = 0 we therefore need the smallest
b > a in a way that it satisfies

0 =
1

2c2 (1− cos (c(b− a))) .
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Then obviously b = a + 2π
c is the point we are looking for, so

d(x, y) = b− a =
2π

c
.

To determine the value of c we consider the tangential components

yj = Γj(b) = xj +
cj

2c2

(
b− a +

1
c
(sin (c (a− a))− sin (c (b− a)))

)
= xj +

cj

2c3 (2 π + (sin (0))− sin (2 π)))) = xj +
π cj

c3 .

Thus for the n− 1-dimensional euclidean distance between x′ and y′ we get

deu(x′, y′)2 =
n−1

∑
j=1

(xj − yj)
2 =

π2

c6 c2.

But then it follows that c =
√

π
deu(x′ ,y′) and the statement is proven.

We can make use of the formulas for the special cases from Proposition 5.2 to deduce estimates
that hold on all of H, starting with estimates from above.

5.3 Lemma Let x, y ∈ H. We then have:

(i) d(x, y) ≤ 2
(√

xn +
√

yn +
√

π deu(x′ − y′)
)

.

(ii) d(x, y) ≤ 2|√xn −
√

yn|+ deu(x′ ,y′)
max{√xn ,

√
yn} .

Proof: By the triangle inequality we have

d(x, y) ≤ d(x, (x′, 0)) + d((x′, 0), (y′, 0)) + d((y′, 0), y)

as well as

d(x, y) ≤ d(x, (x′, yn)) + d((x′, yn), y)

and

d(x, y) ≤ d(x, (y′, xn)) + d((y′, xn), y).

The application of the appropriate parts of Proposition 5.2 yields the desired estimates.

For similar estimates from below we have to take the geodesic into consideration again.

5.4 Lemma Let x, y ∈ H, Γ : [a, b] → H be the arc-length parametrised geodesic that joins them and
Γmax

n := max
ς∈[a,b]

Γn(ς). We then have:

(i) d(x, y) ≥ deu(x,y)√
Γmax

n
.

(ii) d(x, y) ≥ 2
(√

Γmax
n −min

{√
xn,
√

yn
})

.
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Proof: By definition it is clear that

d(x, y) ≥ 1√
Γmax

n

∫
(a,b)

√
∂ςΓ · ∂ςΓ dL.

The integral equals the euclidean length of Γ and is therefore not smaller than the euclidean
distance between the points x and y joined by Γ.
Let now z = (z′, Γmax

n ) be the point in the image of Γ where Γmax
n is realised for the first time. We

denote the part of Γ that joins x with z by Γ1 and let Γ be the line connecting x and (x′, Γmax
n ). We

then have

d(x, y) = L(Γ) ≥ L(Γ1) ≥ L(Γ) = d(x, (x′, Γmax
n ))

since the line is indeed the geodesic for vertically aligned points. The same calculation can be
done with (y′, Γmax

n ). Using Proposition 5.2 we thus get

d(x, y) ≥ max
{

2
(√

Γmax
n −

√
xn

)
, 2
(√

Γmax
n −√yn

)}
and the claimed estimate follows.

From the second estimate of Lemma 5.4 we can conclude that the distance of a point from a given
horizontal level set is realised by the vertical projection of this point onto the level set {xn = C}.

5.5 Proposition Let C ≥ 0 and x0 ∈ H.
We have

d(x0, {xn = C}) = d(x0, (x′0, C)) = 2|√x0,n − C|.

Proof: For x0,n = C the claim is obvious, so we consider only x0,n 6= C. Because of Proposition
5.2 we know that

d(x0, {xn = C}) ≤ d(x0, (x′0, C)) = 2|√x0,n −
√

C|.

Now let x0,n > C. For any y ∈ {xn = C} such that the arc-length parametrised geodesic Γ :
[a, b] −→ H connecting y with x0 has maximal xn-value Γmax

n > x0,n, Lemma 5.4 shows that

d(x0, y) ≥ 2
(√

Γmax
n −

√
min {x0,n, yn}

)
> 2

(√
x0,n −

√
C
)

.

Therefore, the distance realising point y∗ can not be among those y, and the arc-length parametrised
geodesic Γ∗ : [a∗, b∗] → H between x0 and y∗ does not go above x0,n in the xn-direction. Since
Γ∗,n(a∗) = x0,n, it follows Γmax

∗,n = x0,n. By Lemma 5.4 again we then see that

d(x0, {xn = C}) ≥ 2
(√

Γmax∗,n −
√

min {x0,n, y∗,n}
)
= 2

(√
x0,n −

√
C
)

,

which is exactly the distance of the vertically projected point in {xn = C} from x0.
If we have x0,n < C for a C > 0, the same argument shows that the minimising point y∗ in this
case can not be element of {y ∈ {xn = C} | Γmax

n < C}. The equality follows as before.

By means of Lemmas 5.3 and 5.4 we obtain an equivalent quasi-metric for d on all of H.
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5.6 Theorem For all x, y ∈ H we have

c−1
d d(x, y) ≤ deu(x, y)

√
xn +

√
yn +

√
deu(x, y)

≤ d(x, y)

with cd := 12.

Proof: Fix arbitrary x, y ∈ H. Because of Lemma 5.3 we have

d(x, y) ≤ 2
(√

xn +
√

yn +
√

π
√

deu(x− y)
)

and

d(x, y) ≤ 2
|xn − yn|+ deu(x′, y′)√

xn +
√

yn
,

where we used deu(x′, y′) ≤ deu(x, y) in the first inequality, and max {a, b} ≥ 1
2 (a + b) in the

second. Still working in the second estimate, we can apply the inequality
√

a +
√

b ≤
√

2
√

a + b
for any positive a and b to get

d(x, y) ≤ 2
√

2
deu(x, y)√
xn +

√
yn

.

Now in case of
√

deu(x, y) ≥ √xn +
√

yn, the first estimate implies

d(x, y) ≤ 2 (1 +
√

π)
√

deu(x, y) = 2 (1 +
√

π)
deu(x, y)√

deu(x, y)
.

In view of the second estimate we adjust the denominator and get

d(x, y) ≤ 4 (1 +
√

π)
deu(x, y)√

deu(x, y) +
√

xn +
√

yn

in this case, while in the opposite case of
√

deu(x, y) <
√

xn +
√

yn the denominator of the other
estimate can be brought into the same shape to yield

d(x, y) ≤ 4
√

2
deu(x, y)

√
xn +

√
yn +

√
deu(x, y)

.

Since

√
2 ≤ 1 +

√
2 ≤ 1 +

√
π ≤ 3

the definition of cd is justified and the left hand part of the statement follows.
Naturally, for the proof of the right hand side of the statement we use the lower estimates of the
metric from Lemma 5.4. In view of these estimates and the result of the first part, we distinguish
the cases

√
Γmax

n ≤ √xn +
√

yn +
√

deu(x, y) and
√

Γmax
n >

√
xn +

√
yn +

√
deu(x, y) where Γmax

n
is again the highest xn-value of the arc-length parametrised geodesic joining x and y. In the first
case, the first part of Lemma 5.4 immediately delivers the statement, whereas in the second case
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we use the second part of Lemma 5.4 and the fact that min {a, b} ≤ a + b to get

d(x, y) ≥ 2
√

Γmax
n − (

√
xn +

√
yn) ≥

√
deu(x, y)

=
deu(x, y)√

deu(x, y)
≥ deu(x, y)√

deu(x, y) +
√

xn +
√

yn

as desired.

5.7 Remark It is sometimes convenient to consider the quasi-metric

d̃(x, y) :=
deu(x, y)

(x2
n + y2

n + deu(x, y)2)
1
4

instead. Then we have

c−1
d d(x, y) ≤ d̃(x, y) ≤ 4 d(x, y)

for any x, y ∈ H.

In the following, all balls Br(x0) are understood with respect to the intrinsic metric d. The relation
between intrinsic and euclidean geometry, represented by the metric balls, is described in the next
result.

5.8 Proposition Let x0 ∈ H and r > 0.
Then we have

H ∩ Beu
c−2

d r(r+√x0,n)
(x0) ⊂ Br(x0) ⊂ Beu

2r(r+2√x0,n)
(x0).

Proof: Let y ∈ Br(x0). Theorem 5.6 implies that

deu(x0, y) ≤ d(x0, y)
(
√

x0,n +
√

yn +
√

deu(x0, y)
)
≤ r (

√
x0,n +

√
yn) +

1
2
(r2 + deu(x, y))

where we also used Young’s inequality. It follows that

1
2

deu(x, y) ≤ r (
√

x0,n +
√

yn) +
1
2

r2.

But for y ∈ Br(x0), thanks to Proposition 5.5 and Proposition 5.2 we furthermore have that

r > d(x0, y) ≥ d(x0, (x′0, yn)) = 2 |√x0,n −
√

yn|.

If yn ≥ x0,n, this means that

√
yn <

√
x0,n +

1
2

r

and this estimate is also trivially true for yn < x0,n. So we have

1
2

deu(x, y) ≤ r (2
√

x0,n +
1
2

r) +
1
2

r2 = r (2
√

x0,n + r)

which proves the right inclusion.
For the left hand side we fix an x ∈ Beu

R (x0) with an arbitrary R > 0. Using Theorem 5.6 again we
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get

d(x0, y) ≤ cd
deu(x0, y)

√x0,n +
√

deu(x0, y)
≤ cd

R
√x0,n +

√
R

since the function a 7→ a√
a+c is monotonically increasing.

Now set R := c−2
d r (r +√x0,n). Then

cd
R

√x0,n +
√

R
< cd

c−2
d r (r +√x0,n)
√x0,n + c−1

d

√
r2

< r

concluding the proof.

Thus the topologies defined by the Carnot-Caratheodory-metric d and the euclidean metric deu

are equivalent. Intrinsic balls with a small ratio
√x0,n

r , indicating that they are situated rather close
to ∂H, behave like euclidean balls with squared radius, while they are similar to euclidean balls
of the same radius if

√x0,n
r is large and the balls therefore further outside in H. In balls that stay

away far enough from ∂H, the vertical component of points is comparable independent of the
radius or any parameters.

5.9 Corollary Let x0 ∈ H and r > 0.
If 5 r ≤ √x0,n, then xn h x0,n for any x ∈ Br(x0).

Proof: By the ball inclusion from Proposition 5.8 it is clear that

Br(x0) ⊂ Beu
22
25 x0,n

(x0).

Therefore, for any x ∈ Br(x0) we get that

|x0,n − xn| ≤ deu(x0, x) ≤ 22
25

x0,n.

If x0,n ≥ xn this means that we also have xn > 3
25 x0,n, whereas for x0,n < xn we additionally get

xn < 47
25 x0,n.

We now turn to the interplay between the intrinsic metric d and the naturally arising measure µσ.

5.10 Proposition Let σ > −1, x0 ∈ H and r > 0.
Then we have

|Br(x0)|σ hn,σ rn(r +
√

x0,n)
n+2σ.

Proof: Note first that by the inclusions from Proposition 5.8 we can easily compute an approxi-
mate value for the case σ = 0, since of course the Lebesgue measure of euclidean balls is known.
Therefore we get

|Br(x0)| hn rn(r +
√

x0,n)
n.

In case the ball in consideration stays far away from the boundary, that is for r < 1
5
√x0,n, this

comment together with Corollary 5.9 implies

|Br(x0)|σ =
∫

Br(x0)

yσ
n dLn(y) h xσ

0,n |Br(x0)| hn
√

x0,n
2σ rn (r +

√
x0,n)

n.
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If σ ≥ 0, then it is always true that
√x0,n

2σ < (
√x0,n + r)2σ, and in the case away from the

boundary we also have
√x0,n

2σ > 2−2σ (
√x0,n + r)2σ.

Conversly, if −1 < σ < 0, then
√x0,n

2σ < 2−2σ (
√x0,n + r)2σ since we are away from the

boundary, and
√x0,n

2σ > (
√x0,n + r)2σ regardless of the position of the ball. For balls far away

from the boundary we therefore get the statement with constants depending on n and σ.
In an abuse of notation denote now the part of the cube centred at x0 with side length 2R that lies
within the upper half plane by

CR(x0) :=
{

y ∈ H | max
j=1,...,n

|x0,j − yj| < R
}

.

Then we have

C R√
n
(x0) ⊂ Beu

R (x0) ⊂ CR(x0),

and thus by the ball inclusions from Proposition 5.8 we get

|C
c−2

d n−
1
2 r(r+√x0,n)

(x0)|σ ≤ |Br(x0)|σ ≤ |C2r(r+2√x0,n)
(x0)|σ.

Similar as in Proposition 2.1 we compute |CR(x0)|σ. If x0,n > R, then

|CR(x0)|σ = (2R)n−1
∫

(x0,n−R,x0,n+R)

xσ
n dL(xn) =

(2R)n−1

1 + σ

(
(x0,n + R)1+σ − (x0,n − R)1+σ

)
,

and if x0,n ≤ R, then

|CR(x0)|σ = (2R)n−1
∫

(0,x0,n+R)

xσ
n dL(xn) =

(2R)n−1

1 + σ
(x0,n + R)1+σ.

Back to the main line of argument, we consider the case where
√x0,n ≤ 5 r. In this case we have

Br(x0) ⊂ C25r2(x0) with 25 r2 ≥ x0,n. Hence the second formula for the measure of the cube can
be applied with R = 25 r2 to arrive at

|Br(x0)|σ .n,σ r2n−2 (x0,n + r2)1+σ ≤ r2n−2 (
√

x0,n + r)2+2σ.

But it is obvious that (r +√x0,n)
2 ≤ 62 r2 in the case we are in, and rn ≤ (r +√x0,n)

n always
holds. For

√x0,n ≤ 5 r we have thus seen that

|Br(x0)|σ .n,σ rn (
√

x0,n + r)n+2σ.

For the estimate from below we divide the remaining case
√x0,n ≤ 5 r into two subcases. Consider

first the situation very close to the boundary, that is suppose
√x0,n ≤ n−

1
4 c−1

d r. It is always true
that

Br(x0) ⊃ C
c−2

d n−
1
2 r2

(x0).

In our case, for half of the side length of this cube we have c−2
d n−

1
2 r2 > x0,n and we can use the

second formula for the measure of the cube again, this time with R = c−2
d n−

1
2 r2. Therefore we
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get

|Br(x0)|σ &n,σ r2n−2 (x0,n + r2)1+σ &σ r2n−2 (
√

x0,n + r)2+2σ ≥ r2n (
√

x0,n + r)2σ.

Using that in the case in consideration we have

rn ≥ 2−n (r + n
1
4 cd
√

x0,n)
n ≥ 2−n (r +

√
x0,n)

n

finishes this part.
It remains to prove the estimate from below in case we have n−

1
4 c−1

d r < √x0,n ≤ 5 r. Independent
of the location of the ball we always have

Br(x0) ⊃ C
c−2

d n−
1
2 r√x0,n

(x0),

and in our case in addition c−2
d n−

1
2 r√x0,n ≤ c−1

d n−
1
4 x0,n by the left hand side bound on

√x0,n.

Since n−
1
4 c−1

d < 1 this means that we can use the first formula for the measure of the cube to see
that

|Br(x0)|σ &n,σ rn−1√x0,n
n−1

(
(x0,n + c−2

d n−
1
2 r
√

x0,n)
1+σ − (x0,n − c−2

d n−
1
2 r
√

x0,n)
1+σ
)

.

By the right hand side bound on
√x0,n given in this case we find r√x0,n ≥

x0,n
5 , and since

1 + σ > 0 we can use this in both summands to get

|Br(x0)|σ &n,σ rn−1√x0,n
n−1 x1+σ

0,n

(
(1 +

1
5c2

d
√

n
)1+σ − (1− 1

5c2
d
√

n
)1+σ

)
.

The term in parenthesis, however, is nothing but a positive constant depending on n and σ and
we are left with

rn−1√x0,n
n+1+2σ &n rn√x0,n

n+2σ &n,σ rn (r +
√

x0,n)
n+2σ

after using the left hand side bound on
√x0,n if n + 2σ ≥ 0 and the right hand side bound on√x0,n if n + 2σ < 0.

5.11 Remark By means of the formula from Proposition 5.10 we can not only expand the region where
the µσ-measure of the ball is approximately given by the Lebesgue measure multiplied by the vertical
component of the centre point – although paying for the improvement by additional dependencies on n and
σ – but also use the same argument to show that far away from ∂H, where x0,n h xn for any x ∈ Br(x0),
the measure of balls is independent of the centre point:

(i) Let δ > 0 (and possibly small). If δ r < √x0,n, then

|Br(x0)|σ hn,σ,δ xσ
0,n |Br(x0)|.

(ii) If 5 r < √x0,n, then

|Br(x0)|σ hn,σ |Br(x)|σ

for any x ∈ Br(x0).
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As a consequence we can quantify the amount the ball measure grows when dilating or shrinking
the radius.

5.12 Proposition Let σ > −1, x0 ∈ H and r > 0.

(i) If n + 2 σ ≥ 0, then

|Bκr(x0)|σ .n,σ

{
κ2n+2σ |Br(x0)|σ for any κ ≥ 1

κn |Br(x0)|σ for any 0 < κ < 1.

(ii) If n + 2 σ < 0, then

|Bκr(x0)|σ .n,σ

{
κn |Br(x0)|σ for any κ ≥ 1

κ2n+2σ |Br(x0)|σ for any 0 < κ < 1.

Proof: Let first n + 2 σ ≥ 0. If κ ≥ 1, Proposition 5.10 extends to

|Bκr(x0)|σ .n,σ (κ r)n κn+2σ (
√

x0,n + r)n+2σ hn,σ κ2n+2σ |Br(x0)|σ.

If κ < 1, on the other hand, we get

|Bκr(x0)|σ .n,σ (κ r)n (
√

x0,n + r)n+2σ hn,σ κn |Br(x0)|σ

as stated.
For n + 2 σ < 0 the same arguments are interchanged, leading to the switch of cases in the
statement.

5.13 Remark Note that the case n + 2 σ < 0 can only occur for n = 1.

In terms of the general theory, in any of the two possible cases the implication of Proposition 5.12
is a reformulation of the doubling condition A.13. It therefore holds whenever σ > −1.
Conversely, for σ ≤ −1 the measure of balls containing 0 is not finite any more, so µσ can not be
locally finite. For reference we formulate these facts in the following corollary.

5.14 Corollary µσ is a locally finite doubling measure with respect to d on H if and only if σ > −1.

Since µσ is even a Radon measure (compare Chapter 2), this means that (H, d, µσ) is a space of
homogeneous type as defined in A.14.
In this general context it also makes sense to ask which weight functions are in the p-Muckenhoupt
class Ap(H, d, µσ) given by Definition A.23.

5.15 Proposition Let σ > −1 and 1 < p < ∞. We then have:

( · )ρ−σ
n ∈ Ap(H, d, µσ) if and only if − 1 < ρ < p (σ + 1)− 1.

Proof: Let ( · )ρ−σ
n ∈ Ap(H, d, µσ). The general theory then asserts that

( · )ρ−σ
n dµσ = ( · )ρ

n dLn
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is doubling on H with respect to d, see Proposition A.25. Corollary 5.14 shows that weighted
measures are locally finite and doubling with respect to d if and only if their exponent is bigger
than −1, so ρ > −1 follows.
Now by Proposition A.26 we know that ( · )ρ−σ

n ∈ Ap(H, d, µσ) is equivalent to

( · )
− ρ−σ

p−1
n ∈ A p

p−1
(H, d, µσ).

The same arguments as before then imply that

( · )
− ρ−σ

p−1
n dµσ = ( · )

− ρ−σ
p−1 +σ

n dLn

is doubling and locally finite, hence equivalently

−ρ− σ

p− 1
+ σ > −1

which in turn is equivalent to

ρ < p (1 + σ)− 1.

Conversely, if the condition on ρ holds both ( · )ρ
n dLn and ( · )

− ρ−σ
p−1 +σ

n dLn are locally finite and
doubling, and especially the measure of any ball is finite. More precisely, with Proposition 5.10
we get for an arbitrary ball Br(x0) that

|Br(x0)|−1
σ

∫
Br(x0)

xρ−σ
n dµσ(x)

|Br(x0)|−1
σ

∫
Br(x0)

x
− ρ−σ

p−1
n dµσ(x)


p−1

= |Br(x0)|−1
σ |Br(x0)|ρ

(
|Br(x0)|−1

σ |Br(x0)|σ− ρ−σ
p−1

)p−1
hn,σ 1

regardless of x0 and r. Therefore the Muckenhoupt condition for ( · )ρ−σ
n is satisfied.

5.16 Remark Up to this point we only dealt with the geometry of −Lσ, the elliptic, second order spatial
part of our linear differential expression. To incorporate the temporal part ∂t on an interval I ⊂ R we
proceed as in [FSC86] and define a metric

D((t, x), (s, y)) :=
√
|t− s|+ d(x, y)2

on I × H. We get that (I × H, D,L× µσ) is a space of homogeneous type and that

( · )ρ−σ
n ∈ Ap(I × H, D,L× µσ) if and only if − 1 < ρ < p(σ + 1)− 1.

For later use we now investigate the behaviour of the measure of a ball when we replace the
centre point. As a direct consequence of Proposition 5.12 it turns out that the exchange causes a
loss that we can describe quite precisely.

67



5 The Intrinsic Metric

5.17 Proposition Let σ > −1, x0, y0 ∈ H and r > 0.

(i) If n + 2 σ ≥ 0, then

|Br(x0)|θσ .n,σ,θ

(
1 +

d(x0, y0)

r

)(2n+2σ)|θ|
|Br(y0)|θσ

for any θ ∈ R.

(ii) If n + 2 σ < 0, then

|Br(x0)|θσ .n,σ,θ

(
1 +

d(x0, y0)

r

)n|θ|
|Br(y0)|θσ

for any θ ∈ R.

Proof: We use the triangle inequality to see that Br(x0) ⊂ Br+d(x0,y0)
(y0). With Proposition 5.12

we then get

|Br(x0)|σ .n,σ

(
1 +

d(x0, y0)

r

)2n+2σ

|Br(y0)|σ

if n + 2σ ≥ 0, and the same expression with exponent n instead of 2 n + 2 σ if n + 2 σ < 0. This
proves the statement for θ ≥ 0.
However, note that the expression is symmetric with respect to x0 and y0. That means that for
θ ≥ 0 we also get

|Br(y0)|θσ .n,σ,θ

(
1 +

d(x0, y0)

r

)(2n+2σ)θ

|Br(x0)|θσ

if n + 2 σ ≥ 0, which in turns can be regrouped to

|Br(x0)|−θ
σ .n,σ,θ

(
1 +

d(x0, y0)

r

)(2n+2σ)θ

|Br(y0)|−θ
σ ,

again with the obvious adjustments for the case n + 2 σ < 0.

5.18 Remark The special form of the formula for the measure of balls from Proposition 5.10 allows us
to use Proposition 5.17 to exchange xn by yn in any expression (r +

√
xn)θ , θ ∈ R at the expense of the

same factor as before. To see this write

(r +
√

xn)
θ = ((r +

√
xn)

n rn)
θ
n r−θ hn |Br(x)|

θ
n r−θ

and use Proposition 5.17 for σ = 0 with θ̃ = θ
n . We then obtain

(r +
√

xn)
θ .n,θ

(
1 +

d(x, y)
r

)2|θ|
(r +
√

yn)
θ

for any θ ∈ R.
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We first aim at a spatial localisation of the energy estimates in terms of the intrinsic metric. At
the same time we also localise in time. Clearly, the metric depends on the relative position of
points with respect to ∂H, and thus there will be different treatments near and far away from the
boundary of H. However, we start with a proposition that does not depend on the point of the
localisation or the metric at all. For a function u given on a subset of R× H, the extension by zero
onto R× H is denoted by the same symbol u.

6.1 Proposition Let σ > −1, I = (t1, t2) ⊂ R be an open interval, Ω ⊂ H relatively open and
f ∈ L2(I; L2

σ(Ω)
)
. Further let η ∈ C∞

c ( I ×Ω).
If u is a σ-solution to f on I ×Ω, then ηu is a σ-solution to η f + ∂tη u− Lση u− 2 ( · )n∇xη · ∇xu on
I × H with initial value g = 0, and on I we have

( η(t) f (t)− Lση(t) u(t)− 2 ( · )n∇xη(t) · ∇xu(t) | η(t) u(t) )L2
σ(H)

. r2 ‖η(t) f (t)‖2
L2

σ(H) + r−2 ‖η(t) u(t)‖2
L2

σ(H) + ‖∇xη(t) u(t)‖2
L2

1+σ(H)

for any r > 0.

Proof: For an arbitrary test function ϕ ∈ C∞
c ( I × H) we compute

−
∫

I×H

η u ∂t ϕ d(L× µσ) +
∫

I×H

∇x(η u) · ∇x ϕ d(L× µ1+σ)

= −
∫

I×H

u ∂t(η ϕ) d(L× µσ) +
∫

I×H

u∇xη · ∇x ϕ d(L× µ1+σ) +
∫

I×H

u ϕ ∂tη d(L× µσ)

−
∫

I×H

ϕ∇xη · ∇xu d(L× µ1+σ) +
∫

I×H

∇xu · ∇x(η ϕ) d(L× µ1+σ).

Using that u is a σ-solution to f with test function η ϕ ∈ C∞
c (I ×Ω) then shows

−
∫

I×H

η u ∂t ϕ d(L× µσ) +
∫

I×H

∇x(η u) · ∇x ϕ d(L× µ1+σ) =

=
∫

I×H

u ϕ ∂tη d(L× µσ) +
∫

I×H

u∇xη · ∇x ϕ d(L× µ1+σ)−
∫

I×H

ϕ∇xη · ∇xu d(L× µ1+σ)

+
∫

I×H

ϕ η f d(L× µσ).

In a spatial integration by parts in the second term all the boundary terms vanish: although at
xn = 0 both ϕ and η can have values, x1+σ

n = 0 holds there. We hence have that η u is a σ-solution
on I × H to the inhomogeneity stated and with vanishing initial values.
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Now we use another spatial integration by parts to see that

−2
∫
H

( · )1+σ
n ∇xu(t) · ∇xη(t) η(t) u(t) dLn

= 2
∫
H

Lση(t) η(t) u(t)2 dµσ + 2
∫
H

( · )1+σ
n |∇xη(t)|2 u(t)2 dLn

+ 2
∫
H

( · )1+σ
n ∇xu(t) · ∇xη(t) η(t) u(t) dLn

and therefore

−2( ( · )n∇xη(t) · ∇xu(t) | η(t) u(t) )L2
σ(H)

= ( Lση(t) u(t) | η(t) u(t) )L2
σ(H) + ‖∇xη(t) u(t)‖2

L2
1+σ(H) .

For the estimate stated we use Hölder’s inequality on ( η(t) f (t) | η(t) u(t) )L2
σ(H) and multiply

the result by 1 = r2 r−2 before using Young’s inequality.

We now specify the way in which we localise precisely. Reflecting the behaviour of the metric,
the localisation will be chosen differently in a small spatial ball centred at (0′, 1) =:~1 than in one
centred at 0.
We also shift our paradigm concerning the time interval. Instead of defining it by means of its
two end points, we will rather characterise it by its length r2 and the situation of a special point
s0. We use the abbreviation Ir, ε(s0) := (s0 + ε r2, s0 + r2) for r > 0 and ε ∈ [0, 1), dropping the
second index if ε = 0.

6.2 Lemma Let s0 ∈ R, ε1 ∈ [0, 1) and δ1 ∈ (0, 1].

(i) If r ≤ 1, then for any ε2 ∈ (ε1, 1) and any δ2 ∈ (0, 1
6c2

d
δ1) there exists

η ∈ C∞
c ( I r, ε1(s0)× Bδ1r(~1))

with

η = 1 on Ir, ε2(s0)× Bδ2r(~1)

and

|∂k
t ∂α

xη| .n,k,α,ε1,ε2,δ1,δ2 r−2k−|α| for any k ∈N0 and α ∈Nn
0 .

(ii) For any ε2 ∈ (ε1, 1) and any δ2 ∈ (0, 1√
2cd

δ1) there exists

η ∈ C∞
c ( I 1, ε1(s0)× Bδ1(0))

with

η = 1 on I1, ε2(s0)× Bδ2(0)

and

|∂k
t ∂α

xη| .n,k,α,ε1,ε2,δ1,δ2 1 for any k ∈N0 and α ∈Nn
0 .
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Proof: For ε1 ∈ [0, 1) consider the interval (s0 + ε1 r2, s0 + (1 + ε2) r2) with ε2 ∈ (ε1, 1). It is then
clear that for any such ε2 the set [s0 + ε2 r2, s0 + r2] is contained in this first interval and hence
there exists a cut-off function

ηt ∈ C∞
c ((s0 + ε1 r2, s0 + (1 + ε1) r2))

with

ηt = 1 on Ir, ε2(s0)

and

|∂k
t ηt| .k,ε1,ε2 r−2k for any k ∈N0.

This holds for any r > 0.
In the spatial direction we first look at the case near~1 for r ≤ 1. Given a δ1 ∈ (0, 1], the ball
inclusions from Proposition 5.8 indicate that in this case we have

Bδ1r(~1) ⊃ Beu
c−2

d δ1r
(~1) and Bδ2r(~1) ⊂ Beu

6δ2r(~1) for any δ2 > 0.

Therefore, if δ2 < 1
6c2

d
δ1, we have that Beu

6δ2r(~1) ⊂ Beu
c−2

d δ1r
(~1) and hence get a cut-off function

ηx ∈ C∞
c (Beu

c−2
d δ1r

(~1))

with

ηx = 1 on Beu
6δ2r(~1)

and

|∂α
xηx| .α,δ1,δ2 r−|α| for any α ∈Nn

0 .

Close to 0 the same reasoning applies with r = 1. Here Proposition 5.8 shows that

Bδ1(0) ⊃ Beu
c−2

d δ2
1
(0) ∩ H and Bδ2(0) ⊂ Beu

2δ2
2
(0) for any δ2 > 0,

and we get an ηx with the same properties as above for δ2 < 1√
2cd

δ1.

Both statements now follow if we take

η := ηt| I r, ε1 (s0)
ηx|H

with the appropriate ηx, where the restriction onto H is redundant near~1 and we set r = 1 near
0.

For a σ-solution u that is localised according to Lemma 6.2 with an inhomogeneity given by
Proposition 6.1, we can now apply the global energy estimates to arrive at their local version.
They are only valid on spatial sets that are small enough compared to the set Bδ1r(x) we start
from, where δ1 ∈ (0, 1]. More precisely, we assert that there exists a small δ0 ∈ (0, δ1), such that
for any δ2 ∈ (0, δ0) the estimate holds on Bδ2r(x). We express this by simply saying that it holds
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6 Local Estimates

for any δ2 ∈ (0, δ1) small enough.

6.3 Proposition Let s0 ∈ R, ε1 ∈ [0, 1) and δ1 ∈ (0, 1].

(i) If r ≤ 1, f ∈ L2(Ir, ε1(s0); L2
σ(Bδ1r(~1))

)
and u is a σ-solution to f on Ir, ε1(s0)× Bδ1r(~1), then for

any ε2 ∈ (ε1, 1) and any δ2 ∈ (0, δ1) small enough we have∫
Ir, ε2 (s0)

‖∂tu‖2
L2

σ(Bδ2r(~1))
dL+ r−2

∫
Ir, ε2 (s0)

‖∇xu‖2
L2

σ(Bδ2r(~1))
dL+

∫
Ir, ε2 (s0)

∥∥∥D2
xu
∥∥∥2

L2
2+σ(Bδ2r(~1))

dL

.n,σ,ε1,ε2,δ1,δ2 r−4
∫

Ir, ε1 (s0)

‖u‖2
L2

σ(Bδ1r(~1))
dL+

∫
Ir, ε1 (s0)

‖ f ‖2
L2

σ(Bδ1r(~1))
dL.

(ii) If f ∈ L2(I1, ε1(s0); L2
σ(Bδ1(0))

)
and u is a σ-solution to f on I1, ε1(s0)× Bδ1(0), then for any

ε2 ∈ (ε1, 1) and any δ2 ∈ (0, δ1) small enough we have∫
I1, ε2 (s0)

‖∂tu‖2
L2

σ(Bδ2
(0)) dL+

∫
I1, ε2 (s0)

‖∇xu‖2
L2

σ(Bδ2
(0)) dL+

∫
I1, ε2 (s0)

∥∥∥D2
xu
∥∥∥2

L2
2+σ(Bδ2

(0))
dL

.n,σ,ε1,ε2,δ1,δ2

∫
I1, ε1

(s0)

‖u‖2
L2

σ(Bδ1
(0)) dL+

∫
I1, ε1

(s0)

‖ f ‖2
L2

σ(Bδ1
(0)) dL.

Proof: We first concentrate on the case near~1 and consider r ≤ 1. Let η be a cut-off function as in
Lemma 6.2. Proposition 6.1 then tells us that η u is a σ-solution to η f + ∂tη u− Lση u− 2xn∇xη ·
∇xu on Iε1, r(s0) with initial value 0, where the prerequisits on f and the properties of η ensure
that the inhomogeneity is in

L2(Ir, ε1(s0); L2
σ(Bδ1r(~1))

)
∩ L1(Ir, ε1(s0); L2

σ(Bδ1r(~1))
)
.

We can hence apply the estimate from Remark 3.6, following from the global energy identity, onto
η u. Together with the estimate from Proposition 6.1 this yields∫

Ir, ε1 (s0)

‖∇x(η u)‖2
L2

1+σ(H) dL . r2
∫

Ir, ε1 (s0)

‖η f ‖2
L2

σ(H) dL+ r−2
∫

Ir, ε1 (s0)

‖η u‖2
L2

σ(H) dL

+
∫

Ir, ε1 (s0)

∥∥∥√∂tη η u
∥∥∥2

L2
σ(H)

dL+
∫

Ir, ε1 (s0)

‖∇xη u‖2
L2

1+σ(H) dL.

By construction, η vanishes outside Bδ1r(~1), while we have η = 1 on the smaller set

Ir, ε2(s0)× Bδ2r(~1) ⊂ Ir, ε1(s0)× H

for any ε2 ∈ (ε1, 1) and δ2 ∈ (0, 1
6c2

d
δ1). With the bounds for the derivatives of η from Lemma 6.2

we then deduce∫
Ir, ε2 (s0)

‖∇xu‖2
L2

1+σ(Bδ2r(~1))
dL .n,ε1,ε2,δ1,δ2 r2

∫
Ir, ε1 (s0)

‖ f ‖2
L2

σ(Bδ1r(~1))
dL+ r−2

∫
Ir, ε1 (s0)

‖u‖2
L2

σ(Bδ1r(~1))
dL

+ r−2
∫

Ir, ε1 (s0)

‖u‖2
L2

1+σ(Bδ1r(~1))
dL.
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But locally near~1, lowering the weight exponent of x1+σ
n to xσ

n is possible at the expense of an
upper bound not depending on any parameters, causing the last term to blend in with the second
to last.
Now consider ε̃1 > ε1 and δ̃1 < δ1. Then u is also a σ-solution to f on the smaller set Ir, ε̃1

(s0)×
B

δ̃1r(
~1) and we choose η as in Lemma 6.2 with respect to this other set to get a global solution in

space with zero initial values. This time we apply the global energy estimates from Proposition
4.4 and with the same reasoning as above get∫
Ir, ε̃2

(s0)

‖∂tu‖2
L2

σ(B
δ̃2r(

~1)) dL+
∫

Ir, ε̃2
(s0)

‖∇xu‖2
L2

σ(B
δ̃2r(

~1)) dL+
∫

Ir, ε̃2
(s0)

∥∥∥D2
xu
∥∥∥2

L2
2+σ(B

δ̃2r(
~1))

dL

.n,σ,ε̃1,ε̃2,δ̃1,δ̃2

∫
Ir, ε̃1

(s0)

‖ f ‖2
L2

σ(B
δ̃1r(

~1)) dL+ r−4
∫

Ir, ε̃1
(s0)

‖u‖2
L2

σ(B
δ̃1r(

~1)) dL

+ r−4
∫

Ir, ε̃1
(s0)

‖u‖2
L2

2+σ(B
δ̃1r(

~1)) dL+ r−2
∫

Ir, ε̃1
(s0)

‖u‖2
L2

σ(B
δ̃1r(

~1)) dL+ r−2
∫

Ir, ε̃1
(s0)

‖∇xu‖2
L2

2+σ(B
δ̃1r(

~1)) dL

for any ε̃2 ∈ (ε̃1, 1) and any δ̃2 that is small enough with respect to δ̃1. Now in the fourth
summand of the right hand side we can use that r−2 ≤ r−4 for r ≤ 1, whereas in the third and
in the last summand we lower the weight exponents as before, this time from x2+σ

n to xσ
n and

x1+σ
n , respectively. This version of the last summand can then be estimated with the result of the

first considerations in this proof if only δ̃1 is small enough in relation to δ1. Adjusting the sets
appropriately we then gain the estimate∫

Ir, ε̃2
(s0)

‖∂tu‖2
L2

σ(B
δ̃2r(

~1)) dL+
∫

Ir, ε̃2
(s0)

‖∇xu‖2
L2

σ(B
δ̃2r(

~1)) dL+
∫

Ir, ε̃2
(s0)

∥∥∥D2
xu
∥∥∥2

L2
2+σ(B

δ̃2r(
~1))

dL

.n,σ,ε1,ε̃2,δ1,δ̃2

∫
Ir, ε1 (s0)

‖ f ‖2
L2

σ(Bδ1r(~1))
dL+ r−4

∫
Ir, ε1 (s0)

‖u‖2
L2

σ(Bδ1r(~1))
dL

for any ε̃2 ∈ (ε1, 1) and δ̃2 ∈ (0, δ1) small enough, that is precisely for any δ̃2 ∈ (0, 1
36c4

d
δ1).

But near~1, according to Corollary 5.9 we can not only decrease weights, but also increase them
without loosing more than a constant factor in the estimates. Thus the first result above also
delivers a bound for the time-space L2

σ-norm of∇xu on Ir, ε̃2(s0)× B
δ̃2r(

~1) that is better in terms of

the exponent of r than the one just proven. This shows the full statement near~1.
We now turn to the situation near 0. The very same arguments as before, with the cut-off function
η chosen appropriately according to Lemma 6.2 and with r = 1, result in the estimate∫

I1, ε̃2
(s0)

‖∇xu‖2
L2

1+σ(B
δ̃2
(0)) dL+

∫
I1, ε̃2

(s0)

‖∂tu‖2
L2

σ(B
δ̃2
(0)) dL

+
∫

I1, ε̃2
(s0)

‖∇xu‖2
L2

σ(B
δ̃2
(0)) dL+

∫
I1, ε̃2

(s0)

∥∥∥D2
xu
∥∥∥2

L2
2+σ(B

δ̃2
(0))

dL

.n,σ,ε1,ε̃2,δ1,δ̃2

∫
I1, ε1

(s0)

‖ f ‖2
L2

σ(Bδ1
(0)) dL+

∫
I1, ε1

(s0)

‖u‖2
L2

σ(Bδ1
(0)) dL

for any ε̃2 ∈ (ε1, 1) and δ̃2 ∈ (0, δ1) small enough, where the exact condition on the smallness of δ̃2
is slightly different from the one above. Note carefully that apart from Lemma 6.2 and Proposition
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6.1 only the lowering of the weight exponent plays a role in the argument, and this can be done
also close to the origin. The absence of the different factors involving r in this case then allows
us to use the third summand on the left hand side directly as an upper bound for the first one,
giving the estimate the shape stated.

We also need a local version of an auxiliary energy estimate to obtain a starting point for the
iteration of the local energy estimates in terms of the derivatives. In fact, close to~1 the statement
is redundant, since for any spatial second derivative, Proposition 6.3 delivers a result there that is
much stronger than the following in various respects. However, near 0 the auxiliary result gives
us control on the L2-norm with weight x1+σ

n which otherwise we would not obtain. For a uniform
treatment we include the superfluous case nonetheless.

6.4 Lemma Let s0 ∈ R, ε1 ∈ [0, 1) and δ1 ∈ (0, 1].

(i) If r ≤ 1, f ∈ L2(Ir, ε1(s0); L2
σ(Bδ1r(~1))

)
with ∇′x f ∈ L2(Ir, ε1(s0); L2

σ(Bδ1r(~1))
)
, and if u is a

σ-solution to f on Ir, ε1(s0)× Bδ1r(~1), then for any ε2 ∈ (ε1, 1) and any δ2 ∈ (0, δ1) small enough
we have∫
Ir, ε2 (s0)

∥∥∇x∇′xu
∥∥2

L2
1+σ(Bδ2r(~1))

dL .n,σ,ε1,ε2,δ1,δ2 r−6
∫

Ir, ε1 (s0)

‖u‖2
L2

σ(Bδ1r(~1))
dL

+ r−2
∫

Ir, ε1 (s0)

‖ f ‖2
L2

σ(Bδ1r(~1))
dL+

∫
Ir, ε1 (s0)

∥∥∇′x f
∥∥2

L2
σ(Bδ1r(~1))

dL.

(ii) If f ∈ L2(I1, ε1(s0); L2
σ(Bδ1(0))

)
with ∇′x f ∈ L2(I1, ε1(s0); L2

σ(Bδ1(0))
)
, and if u is a σ-solution

to f on I1, ε1(s0)× Bδ1(0), then for any ε2 ∈ (ε1, 1) and any δ2 ∈ (0, δ1) small enough we have∫
I1, ε2 (s0)

∥∥∇x∇′xu
∥∥2

L2
1+σ(Bδ2

(0)) dL .n,σ,ε1,ε2,δ1,δ2

∫
I1, ε1

(s0)

‖u‖2
L2

σ(Bδ1
(0)) dL

+
∫

I1, ε1
(s0)

‖ f ‖2
L2

σ(Bδ1
(0)) dL+

∫
I1, ε1

(s0)

∥∥∇′x f
∥∥2

L2
σ(Bδ1

(0)) dL.

Proof: In the same setting as in the proof of Proposition 6.3 we apply the spatial part of Lemma
4.6 onto the global solution η u. This requires one tangential derivative of the inhomogeneity
given in Proposition 6.1. As a result, near~1 we get∫
Ir, ε2 (s0)

∥∥∇x∇′xu
∥∥2

L2
1+σ(Bδ2r(~1))

dL .n,σ,ε1,ε2,δ1,δ2 r−6
∫

Ir, ε1 (s0)

‖u‖2
L2

σ(Bδ1r(~1))
dL

+ r−4
∫

Ir, ε1 (s0)

‖∇xu‖2
L2

σ(Bδ1r(~1))
dL+ r−2

∫
Ir, ε1 (s0)

∥∥∥D2
xu
∥∥∥2

L2
2+σ(Bδ1r(~1))

dL

+ r−2
∫

Ir, ε1 (s0)

‖ f ‖2
L2

σ(Bδ1r(~1))
dL+

∫
Ir, ε1 (s0)

∥∥∇′x f
∥∥2

L2
σ(Bδ1r(~1))

dL

where we also lowered the weight exponents again. Thanks to the local energy estimate 6.3 the
result follows after possibly choosing δ2 even smaller.
Close to 0 there is no difference in the argumentation.
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We turn to the iterated local energy estimates. In favor of a clearer presentation we now set f = 0.
Remember also the convention ∂−1

xn u := 0 already used in the global setting.

6.5 Proposition Let s0 ∈ R, ε1 ∈ [0, 1) and δ1 ∈ (0, 1]. Further let k ∈N0 and α ∈Nn
0 ,

(i) If r ≤ 1 and u is a σ-solution to f = 0 on Ir, ε1(s0)× Bδ1r(~1), then for any ε2 ∈ (ε1, 1) as well
as any δ2 ∈ (0, δ1) small enough we have that ∂k

t ∂α
xu is an (αn + σ)-solution to ∆′x∂αn−1

xn u on
Ir, ε2(s0)× Bδ2r(~1) and∫

Ir, ε2 (s0)

∥∥∥∂k
t ∂α

xu
∥∥∥2

L2
σ(Bδ2r(~1))

dL .n,σ,k,α,ε1,ε2,δ1,δ2 r−4k−2|α|
∫

Ir, ε1 (s0)

‖u‖2
L2

σ(Bδ1r(~1))
dL.

(ii) If u is a σ-solution to f = 0 on I1, ε1(s0)× Bδ1(0), then for any ε2 ∈ (ε1, 1) and any δ2 ∈ (0, δ1)

small enough we have that ∂k
t ∂α

xu is an (αn + σ)-solution to ∆′x∂αn−1
xn u on I1, ε2(s0)× Bδ2(0) and∫

I1, ε2 (s0)

∥∥∥∂k
t ∂α

xu
∥∥∥2

L2
σ(Bδ2

(0))
dL .n,σ,k,α,ε1,ε2,δ1,δ2

∫
I1, ε1

(s0)

‖u‖2
L2

σ(Bδ1
(0)) dL.

Proof: As in the global Proposition 4.9 we only have to check the regularity of the derivatives to
ensure that they are solutions to the inhomogeneity stated. The reasoning here is the same at 0
and at~1, so we will not distinguish between the cases and merely write I and B in the notation.
Naturally, the balls and intervals on the left hand side of the estimates are smaller than the ones
on the right hand side in the same fashion as before, and the balls can be centred at~1 or at 0 in the
same way.
We start with the tangential directions. For first order derivatives it is immediately clear by the
local energy estimate 6.3 and the auxiliary estimate 6.4 that the right regularity is given on the
smaller sets for which those estimates hold. Therefore ∇′xu is a σ-solution to f = 0 there, and
both estimates can be applied to ∇′xu. In an induction we make the sets smaller in every step by
choosing δ2 smaller every time. For any given α′ ∈Nn−1

0 we then get that ∂α′
x′u is a σ-solution to 0

and consequently the energy estimate holds, that is we have∫
I

∥∥∥∂t∂
α′
x′u
∥∥∥2

L2
σ(B)

dL+ r−2
∫
I

∥∥∥∇x∂α′
x′u
∥∥∥2

L2
σ(B)

dL+
∫
I

∥∥∥D2
x∂α′

x′u
∥∥∥2

L2
2+σ(B)

dL

.n,σ,α′ ,ε1,ε2,δ1,δ2
r−4−2|α′ |

∫
I

‖u‖2
L2

σ(B) dL.

The vertical direction is trickier. Here for a given αn ∈N as an induction hypothesis we assume
that ∂αn

xn u is an (αn + σ)-solution to ∇′x∂αn
xn u and we have both the estimates

(∗)

∫
I

∥∥∂t∂
αn
xn u
∥∥2

L2
αn+σ(B) dL+ r−2

∫
I

∥∥∇x∂αn
xn u
∥∥2

L2
αn+σ(B) dL+

∫
I

∥∥∥D2
x∂αn

xn u
∥∥∥2

L2
2+αn+σ(B)

dL

.n,σ,αn ,ε1,ε2,δ1,δ2 r−4−2αn

∫
I

‖u‖2
L2

σ(B) dL

and

(∗ ∗)
∫
I

∥∥∇x∇′x∂αn
xn u
∥∥2

L2
1+αn+σ(B) dL .n,σ,αn ,ε1,ε2,δ1,δ2 r−6−2αn

∫
I

‖u‖2
L2

σ(B) dL.
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In case of the base clause αn = 1, by the local energy estimate and a decrease of weight exponents
it is clear that ∂xn u has the regularity required for a (1+ σ)-solution. The auxiliary energy estimate
6.4 ensure that also the inhomogeneity ∆′xu is in the right space and satisfies∫

I

∥∥∆′xu
∥∥2

L2
1+σ(B) dL .n,σ,ε1,ε2,δ1,δ2 r−6

∫
I

‖u‖2
L2

σ(B) dL.

Therefore ∂xn u is a (1 + σ)-solution to ∆′xu. We can thus apply the energy estimate 6.3 onto this
solution, decrease the weight exponents once and use the local energy estimate as well as the
estimate for ∆′xu above to get (∗) for αn = 1. Similarly, for (∗ ∗) we use the auxiliary energy
estimate 6.4 on the newly found solution, lower the weight exponents and use the energy estimate
as well as the knowledge on the Laplacian of a solution, albeit this time for ∇′xu instead of u.
Likewise, in the inductive step αn + 1 the right regularity follows from the energy estimate and
the auxiliary estimate for αn. More precisely, the latter implies that∫

I

∥∥∆′x∂αn
xn u
∥∥2

L2
1+αn+σ(B) dL .n,σ,αn ,ε1,ε2,δ1,δ2 r−6−2αn

∫
I

‖u‖2
L2

σ(B) dL.

Then ∂αn+1
xn u is an (αn + 1 + σ)-solution to ∆′x∂αn

xn u. Applying the local energy estimate 6.3 on this
solution shows that∫

I

∥∥∥∂t∂
αn+1
xn u

∥∥∥2

L2
αn+1+σ(B)

dL+ r−2
∫
I

∥∥∥∇x∂αn+1
xn u

∥∥∥2

L2
αn+1+σ(B)

dL+
∫
I

∥∥∥D2
x∂αn+1

xn u
∥∥∥2

L2
2+αn+1+σ(B)

dL

.n,σ,αn ,ε1,ε2,δ1,δ2 r−4
∫
I

∥∥∥∂αn+1
xn u

∥∥∥2

L2
αn+1+σ(B)

dL+
∫
I

∥∥∥∆′x∂αn+1
xn u

∥∥∥2

L2
αn+1+σ(B)

dL

.n,σ,k,α,ε1,ε2,δ1,δ2 r−4−2(αn+1)
∫
I

‖u‖2
L2

σ(B) dL

where the weight exponents were decreased in the first summand of the right hand side before we
used the energy estimate (∗) from the αn-th step on it, while the bound for the second summand
was already computed above.
The iterated auxiliary estimate also follows as before: first apply the non-iterated auxiliar estimate
6.4 onto the solution, then lower the weight exponents and apply the iterated energy estimate (∗)
from the αn-th step on one summand and the inequality for the Laplacian of the αn-th derivative
once for u itself and once for ∇′xu. This finishes the induction and thus the proof in the vertical
direction.
Finally we can deal with the time direction now. Given both the tangential and the vertical
derivatives, a simple induction as in the tangential case shows that ∂k

t u is a σ-solution to 0 and we
have ∫

I

∥∥∥∂t∂
k
t u
∥∥∥2

L2
σ(B)

dL+ r−2
∫
I

∥∥∥∇x∂k
t u
∥∥∥2

L2
σ(B)

dL+
∫
I

∥∥∥D2
x∂k

t u
∥∥∥2

L2
2+σ(B)

dL

.n,σ,k,ε1,ε2,δ1,δ2 r−4−4k
∫
I

‖u‖2
L2

σ(B) dL.

We can then apply first the xn-directional result, and then the other two estimates succintly on
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∂k
t ∂α

xu and obtain∫
I

∥∥∥∂t∂
k
t ∂α

xu
∥∥∥2

L2
αn+σ(B)

dL+ r−2
∫
I

∥∥∥∇x∂k
t ∂α

xu
∥∥∥2

L2
αn+σ(B)

dL+
∫
I

∥∥∥D2
x∂k

t ∂α
xu
∥∥∥2

L2
2+αn+σ(B)

dL

.n,σ,k,α,ε1,ε2,δ1,δ2 r−4−4k−2|α|
∫
I

‖u‖2
L2

σ(B) dL

Knowing now that ∂k
t ∂α

xu is a solution for any k and α we do not need the gain in derivatives any
more and can thus state the estimate in the more compact form∫

I

∥∥∥∂k
t ∂α

xu
∥∥∥2

L2
αn+σ(B)

dL .n,σ,k,α,ε1,ε2,δ1,δ2 r−4k−2|α|
∫
I

‖u‖2
L2

σ(B) dL.

Then it only remains to treat the weights on the left hand side. It is here that the different cases
enter again. Close to~1 an increase of the weights is possible by Corollary 5.9. Near 0 on the other
hand, we use Hardy’s inequality 2.3 with m = αn for p = 2 onto η ∂k

t ∂α
xu, where η is a cut-off

function near 0 in space only as constructed in Lemma 6.2. After possibly decreasing the domain
of integration once more, this leads to∫

I

∥∥∥∂k
t ∂α

xu
∥∥∥2

L2
σ(B)

dL =
∫
I

∥∥∥η ∂k
t ∂α

xu
∥∥∥2

L2
σ(B)

dL

.n,σ,αn ∑
|β|=αn

∫
I

∥∥∥∂
β
x(η ∂k

t ∂α
xu)
∥∥∥2

L2
2αn+σ(B)

dL

.n,σ,αn ∑
|β|=αn

∑
γ≤β

∫
I

∥∥∥∂
β−γ
x η ∂k

t ∂
α+γ
x u

∥∥∥2

L2
2αn+σ(B)

dL.

According to Lemma 6.2, the derivatives of η are bounded by a constant depending on α and δ1, δ2
only. But we also have αn = |β| ≥ βn ≥ γn and can consequently lower the weight exponent
x2αn+σ

n to xαn+γn+σ
n . An application of the result with additional weights in balls centred at 0

shows that ∫
I

∥∥∥∂k
t ∂

α+γ
x u

∥∥∥2

L2
αn+γn+σ(B)

dL .n,σ,k,α,ε1,ε2,δ1,δ2

∫
I

‖u‖2
L2

σ(B) dL

holds there and the proposition is proven.

We now use the invariance of the equation under the scaling Tλ from Remark 3.2 to gain a local
estimate in any ball Br(x0). The interplay between this coordinate transformation and the intrinsic
metric is described by the following simple lemma that will also be useful later on.

6.6 Lemma Let λ > 0 and Tλ : (t̂, x̂) 7→ (λ t̂, λ x̂) := (t, x). Further let s0, t̂0 ∈ R, x0, x̂0 ∈ H and
r > 0, ε ∈ [0, 1).
Then we have

Tλ(Ir, ε(t̂0)× Br(x̂0)) ⊂ I√λr, ε(λt̂0)× B4c2
d

√
λr(λx̂0),

Tλ(Ir, ε(t̂0)× Br(x̂0)) ⊃ I√λr, ε(λt̂0)× B 1
4c2

d

√
λr(λx̂0),

77



6 Local Estimates

and

T−1
λ (Ir, ε(s0)× Br(x0)) ⊂ I r√

λ
, ε(

s0

λ
)× B4c2

d
r√
λ

(
1
λ

x0),

T−1
λ (Ir, ε(s0)× Br(x0)) ⊃ I r√

λ
, ε(

s0

λ
)× B 1

4c2
d

r√
λ

(
1
λ

x0).

Proof: Due to Proposition 5.8 we know that

1
λ

Br(x0) ⊂ Beu
2 r√

λ
( r√

λ
+2
√

x0,n
λ )

(
1
λ

x0) ⊂ B4c2
d

r√
λ

(
1
λ

x0).

Conversely it is clear that

1
λ

Br(x0) ⊃ Beu
1

c2
d

r√
λ
( r√

λ
+
√

x0,n
λ )

(
1
λ

x0) ⊃ B 1
4c2

d

r√
λ

(
1
λ

x0).

With λ−1 replaced by λ the computation remains the same.

According to the position of a ball Br(x0) relative to ∂H, expressed by the boundedness or
unboundedness of the ratio of r and

√x0,n, we use different choices of λ for the scaling to get a
globally valid local L2

σ-estimate for arbitrary derivatives of a solution. For the sake of simplicity
we set f = 0. This time also the temporal set has to shrink substantially, governed by a parameter
ε. Similar as before we write that the estimate holds for any ε ∈ (0, 1) close enough to 1, meaning
that there exists a ε0 ∈ (0, 1) close to 1 such that it holds for any ε ∈ (ε0, 1).

6.7 Proposition Let s0 ∈ R, x0 ∈ H and r > 0. Further let k ∈N0 and α ∈Nn
0 .

If u is a σ-solution to f = 0 on Ir(s0) × Br(x0), then for any ε ∈ (0, 1) close enough to 1 and any
δ ∈ (0, 1) small enough we have that ∂k

t ∂α
xu is an (αn + σ)-solution to ∆′x∂αn−1

xn u on Ir,ε(s0)× Bδr(x0)

and ∫
Ir,ε(s0)

∥∥∥∂k
t ∂α

xu
∥∥∥2

L2
σ(Bδr(x0))

dL .n,σ,k,α,ε,δ r−4k−2|α|(r +
√

x0,n)
−2|α|

∫
Ir(s0)

‖u‖2
L2

σ(Br(x0))
dL.

Proof: Let x0 = (0, . . . , 0, x0,n) with x0,n ≥ 0 and fix κ > 0. We first consider the case
√x0,n < κ r

and set λ := r2 for the invariant scaling Tλ from Remark 3.2. For δ ∈ (0, 1), the triangle inequality
for the metric d and Proposition 5.2 imply that

Bδr(x0) ⊂ B(δ+2κ)r(0)

and hence with ε ∈ (0, 1) also∫
Ir,ε(s0)

∥∥∥∂k
t ∂α

xu
∥∥∥2

L2
σ(Bδr(x0))

dL(t) ≤ λ−2k−2|α|+n+1+σ
∫

I1,ε(
s0
λ )

∥∥∥∂k
t̂ ∂α

x̂(u ◦ Tλ)
∥∥∥2

L2
σ(B4c2

d(δ+2κ)
(0))

dL(t̂)

due to an application of the integral transformation formula in conjunction with Lemma 6.6 and
our special choice of λ. On the other hand, Lemma 6.6 also shows that under this transformation,
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a σ-solution u on Ir(s0)× Br(x0) becomes a σ-solution on

I1(
s0

r2 )× B 1
4c2

d

(
1
r2 x0).

The case we are considering now ensures that this ball is close enough to ∂H as to contain a ball
centred at zero with radius 1

4c2
d
− 3 κ, if κ was given to be smaller than 1

12c2
d
. In the calculation we

use Proposition 5.2 again. The last ball is a superset of B4c2
d(δ+2κ)(0) if we choose δ ∈ (0, 1) so

small that

δ <
1

16c4
d
−

8c2
d + 3
4c2

d
κ.

Such a δ can be found if from the start we had κ < 1
32c4

d+12c2
d
, so we could have set for example

κ := 1
33c4

d
, remembering that cd = 12. All this allows us to use Proposition 6.5 near the origin after

possibly choosing δ even smaller, and gain the upper bound

λ−2k−2|α|+n+1+σ
∫

I1(
s0
λ )

‖u ◦ Tλ‖2
L2

σ(B 1
4c2

d
−3κ

(0)) dL(t̂) ≤ λ−2k−2|α|
∫

Ir(s0)

‖u‖2
L2

σ(B
(1−12c2

dκ)r(0))
dL(t)

with a constant depending on n, σ, k, α, ε and δ. The last inequality follows from the re-
transformation, annulating the volume factor of the transformation above, and once again Lemma
6.6 and our special choice of λ.
The ball centred at zero on the right hand side of this inequality is contained in the ball Br+2κr−12c2

dκr(x0)

by Proposition 5.8, and the latter is in turn a subset of Br(x0) whenever κ < 1
12c2

d−2
which is obvi-

ously satisfied by κ = 1
33c4

d
. Putting all this together we have shown that if

√x0,n < 1
33c4

d
r and u

is a σ-solution to f = 0 on Ir(s0)× Br(x0), then for all k ∈ N0, α ∈ Nn
0 , for all ε ∈ (0, 1) and all

δ ∈ (0, 1) small enough we have∫
Ir,ε(s0)

∥∥∥∂k
t ∂α

xu
∥∥∥2

L2
σ(Bδr(x0))

dL(t) .n,σ,k,α,ε,δ r−4k−4|α|
∫

Ir(s0)

‖u‖2
L2

σ(Br(x0))
dL(t).

Finally note that the factor in front of the integral can be estimated to become

r−4k−4|α| ≤ r−4k−2|α| 22|α| (r + r)−2|α| .α r−4k−2|α| (
√

x0,n + r)−2|α|

in the case we are considering.
We now turn to the opposite case

√x0,n ≥ 1
33c4

d
r. Here we set λ := x0,n and use κ as an abbreviation

for the same value as above. For ε ∈ (0, 1) and δ ∈ (0, 1), the transformation formula, Lemma 6.6
and the choice of λ in this case imply∫

Ir,ε(s0)

∥∥∥∂k
t ∂α

xu
∥∥∥2

L2
σ(Bδr(x0))

dL(t) ≤ λ−2k−2|α|+n+1+σ
∫

I r√
λ

,ε(
s0
λ )

∥∥∥∂k
t̂ ∂α

x̂(u ◦ Tλ)
∥∥∥2

L2
σ(B4c2

dδ r√
λ

(~1))
dL(t̂).

Also by Lemma 6.6 we know that u ◦ Tλ is a σ-solution on

I r√
λ
(

s0

λ
)× B 1

4c2
d

r√
λ

(~1)
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and thus on

I r√
λ
(

s0

λ
)× B√δr√

λ

(~1)

if
√

δ ≤ 1
4c2

d
. In order to get the same radius in time and in space we also make the interval smaller,

but without changing the right end point. A short computation shows that we are dealing with a
solution on

I√δr√
λ

(
s0

λ
+ (1− δ)

r2

λ
)× B√δr√

λ

(~1).

The interval in the integral above equals

I√δr√
λ

, δ−1+ε
δ

(
s0

λ
+ (1− δ)

r2

λ
)

with the new parameter δ−1+ε
δ ∈ (0, 1) if we started with an ε so close to 1 that ε ∈ (1− δ, 1). We

can now apply Proposition 6.5 near~1 if only δ is so small that 4 c2
d

√
δ is small enough compared

to 1 and that the radius
√

δr√
λ

is bounded by 1. But the first condition for δ can always be fulfilled,

and since λ = x0,n and
√x0,n ≥ κ r, the second one is always satisfied for δ ≤ κ2. For δ small

enough and ε close enough to 1, Proposition 6.5 and the re-transformation with Lemma 6.6 again
then show∫

Ir,ε(s0)

∥∥∥∂k
t ∂α

xu
∥∥∥2

L2
σ(Bδr(x0))

dL(t) .n,σ,k,α,ε,δ r−4k−2|α|√x0,n
−2|α|

∫
Ir(s0)

‖u‖2
L2

σ(Br(x0))
dL(t).

Similar as above we can use the case assumption to see that

r−4k−2|α|√x0,n
−2|α| .α r−4k−2|α| (

√
x0,n + r)−2|α|.

Since the equation is invariant under translation in any tangential direction, this finishes the
proof.

6.8 Remark The factor involving r and x0,n that appears in estimate 6.7 is important. Henceforth we
will abbreviate it by ck,α(r, x0) := r−2k−|α| (r +√x0,n)

−|α|.

We now adapt a time-space Morrey-type inequality to our metric and measure. Once more we
consider the cases near~1 and near 0 seperately first.

6.9 Lemma Let s0 ∈ R, ε ∈ [0, 1) and δ1 ∈ (0, 1]. Further let m1 ∈ N with m1 > n+1
2 , σ > −1 and

m2 ∈N0 with m2 ≥ σ
2 .

(i) If r ≤ 1 and u ∈Wm1,2
~σ (Ir,ε(s0)× Bδ1r(~1)) with σi = σ for i = 0, . . . , m1, then for any δ2 ∈ (0, δ1)

small enough we have

|u(t, x)|2 .n,σ,m1,ε,δ1,δ2 ∑
j+|β|≤m1

r4j+2|β|−n−1
∫

Ir, ε(s0)

∥∥∥∂
j
t∂

β
x u
∥∥∥2

L2
σ(Bδ1r(~1))

dL

for almost any (t, x) ∈ Ir, ε(s0)× Bδ2r(~1).
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(ii) If u ∈Wm1+m2,2
~σ (I1,ε(s0)× Bδ1(0)) with σi = σ for i = 0, . . . , m1 + m2, then for any δ2 ∈ (0, δ1)

small enough we have

|u(t, x)|2 .n,σ,m1,m2,ε,δ1,δ2 ∑
j+|β|≤m1

∑
|γ|≤m2

∫
I1, ε(s0)

∥∥∥∂
j
t∂

β+γ
x u

∥∥∥2

L2
σ(Bδ1

(0))
dL

for almost any (t, x) ∈ I1, ε(s0)× Bδ2(0).

Proof: Since near~1 we can both increase and decrease the weight exponent on expense of an
upper bound depending on the difference between old and new weight exponents, it is clear that∫

Ir,ε(s0)

∥∥∥∂
j
t∂

β
x u
∥∥∥2

L2(Bδ1r(~1))
dL .σ

∫
Ir,ε(s0)

∥∥∥∂
j
t∂

β
x u
∥∥∥2

L2
σ(Bδ1r(~1))

dL.

The right hand side is bounded by the prerequisits for any j + |β| ≤ m1, and the ball Bδ1r(~1)
contains a euclidean ball centred at~1 with radius c−2

d δ1 r by Proposition 5.8. We can then apply
the usual time-space Morrey-type inequality for m1 > n+1

2 on a euclidean time-space cylinder to
obtain the statement. Here δ2 has to be so small that

Bδ2r(~1) ⊂ Beu
c−2

d δ1r
(~1).

Close to 0, the same argumentation applies if σ ≤ 0, since the weight can be lowered again. We
then have ∫

I1,ε(s0)

∥∥∥∂
j
t∂

β
x u
∥∥∥2

L2(Bδ1
(0))

dL .σ

∫
I1,ε(s0)

∥∥∥∂
j
t∂

β
xu
∥∥∥2

L2
σ(Bδ1

(0))
dL,

which is bounded for j + |β| ≤ m1 again.
However, for σ > 0 we have to reason differently since near 0 the weight exponents can not be
increased. We therefore consider δ2 ∈ (0, δ1) small enough and a cut-off function η as in Lemma
6.2, but purely spatial, with η = 1 on Bδ2(0), supp η ⊂ Bδ1(0) and any derivative bounded by a

constant depending on δ1, δ2 only. An application of Hardy’s inequality 2.3 with m2 on η ∂
j
t∂

β
x u is

possible for any j + |β| ≤ m1 by the assumptions, and so we get∥∥∥∂
j
t∂

β
xu
∥∥∥

L2(Bδ2
(0))
≤
∥∥∥η ∂

j
t∂

β
x u
∥∥∥

L2(H)

.n,m2 ∑
|γ̃|=m2

∑
γ≤γ̃

∥∥∥∂
γ̃−γ
x η ∂

j
t∂

β+γ
x u

∥∥∥
L2

2m2
(H)

.n,m2,δ1,δ2 ∑
|γ|≤m2

∥∥∥∂
j
t∂

β+γ
x u

∥∥∥
L2

2m2
(Bδ1

(0))
.

But the prerequisits on m2 assure that 2 m2 ≥ σ, so we can lower the weight exponent again and
get an upper bound for the L2-norm of ∂

j
t∂

β
x u that is finite as before for j + |β| ≤ m1 thanks to the

assumption on u. The time-space Morrey-type inequality in the euclidean setting for m1 > n+1
2

then finishes the proof as above after possibly choosing δ2 smaller.

This enables us to get a pointwise estimate for any derivatives on a smaller time-space set,
showing that local σ-solutions to the homogeneous problem are indeed smooth.
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6.10 Theorem Let s0 ∈ R, x0 ∈ H and r > 0. Further let k ∈N0 and α ∈Nn
0 .

If u is a σ-solution to f = 0 on Ir(s0) × Br(x0), then for any ε ∈ (0, 1) close enough to 1 and any
δ ∈ (0, 1) small enough we have that

|∂k
t ∂α

xu(t, x)|2 .n,σ,k,α,ε,δ ck,α(r, x0)
2 r−2 |Br(x0)|−1

σ

∫
Ir(s0)

‖u‖2
L2

σ(Br(x0))
dL

for any (t, x) ∈ Ir,ε(s0)× Bδr(x0).

Proof: Thanks to translation invariance in any direction save the vertical one, we can again
assume without loss of generality that x0 = (0, . . . , 0, x0,n) with x0,n ≥ 0. We define κ := 1

33c4
d
,

denote the invariant scaling from Remark 3.2 by Tλ and also elsewhere follow closely the proof of
Proposition 6.7. Furthermore, m1 will always denote the first positive integer that is bigger than
n+1

2 , and m2 the first positive integer that is bigger than σ
2 .

Assume first that
√x0,n < κ r and set λ := r2. For any δ2 ∈ (0, 1) small enough we have

Bδ2r(x0) ⊂ B(δ2+2κ)r(0)

due to Proposition 5.2. Given also ε ∈ (0, 1) this means that

(t, x) ∈ Ir,ε(s0)× Bδ2r(x0)

implies

T−1(t, x) =: (t̂, x̂) ∈ I1,ε(t̂0)× B4c2
d(δ2+2κ)(0)

with t̂0 = s0
r2 . If δ2 is so small compared to a δ1 ∈ (0, 1) that 4 c2

d (δ2 + 2κ) is small enough compared
to 4 c2

d (δ1 + 2κ) for Lemma 6.9 to be applied, then for almost any (t, x) ∈ Ir,ε(s0)× Bδ2r(x0) we
see that

|∂k
t ∂α

xu(t, x)|2 = λ−2k−2|α| |∂k
t̂ ∂α

x̂(u ◦ Tλ)(t̂, x̂)|2

.n,σ,ε,δ2 λ−2k−2|α| ∑
j+|β|≤m1

∑
|γ|≤m2

∫
I1,ε(t̂0)

∥∥∥∂
j+k
t̂ ∂

β+γ+α
x̂ (u ◦ Tλ)

∥∥∥2

L2
σ(B4c2

d(δ1+2κ)
(0))

dL.

As before we can now use Proposition 6.5 near the origin if ε is close enough to 1, and δ1 and all
the more δ2 are small enough. With a constant depending on n, σ, k, α, δ1 and ε, this yields the
upper bound

λ−2k−2|α|
∫

I1(t̂0)

‖u ◦ Tλ‖2
L2

σ(B 1
4c2

d
−3κ

(0)) dL ≤ λ−2k−2|α|−1−n−σ
∫

Ir(s0)

‖u‖2
L2

σ(Br(x0))
dL

by the integral transformation formula, adding the volume factor in front of the integral. Since
λ = r2, the whole factor can be estimated to be

r−4k−4|α|−2−2n−2σ .α ck,α(r, x0)
2 r−2 r−n r−n−2σ .n,σ ck,α(r, x0)

2 r−2 r−n (r +
√

x0,n)
−n−2σ

hn,σ ck,α(r, x0)
2 r−2 |Br(x0)|−1

σ

by Proposition 5.10. Note that in the step second to last we distinguish between the case where
n + 2 σ ≥ 0, then using the assumption

√x0,n < κ r, and the case n + 2 σ < 0.
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Assume now
√x0,n ≥ κ r. As before we then set λ := x0,n, and moreover use the abbreviations

r̂ := r√x0,n
and t̂0 := s0

x0,n
. Let δ2 and ε be given. If (t, x) ∈ Ir,ε(s0)× Bδ2r(x0) we have

T−1(t, x) =: (t̂, x̂) ∈ I r̂,ε(t̂0)× B4c2
dδ2 r̂(

~1)

and Lemma 6.9 can be used if δ2 is small enough compared to a δ1 < 1
4c2

d
. This means that for

almost any (t, x) ∈ Ir,ε(s0)× Bδ2r(x0) we get

|∂k
t ∂α

xu(t, x)|2 .n,σ,ε,δ2 λ−2k−2|α| ∑
j+|β|≤m1

r̂4j+2|β|−1−n
∫

Ir̂,ε(t̂0)

∥∥∥∂
j+k
t̂ ∂

β+α
x̂ (u ◦ Tλ)

∥∥∥2

L2
σ(B4c2

dδ1 r̂(
~1))

dL.

An application of Proposition 6.5 as before annulates the factor r̂4j+2|β| and yields in addition
r̂−4k−2|α|. Transformation of the integral furthermore results in a volume factor. Putting this
together then delivers

|∂k
t ∂α

xu(t, x)|2 .n,σ,ε,δ2 λ−2k−2|α|−1−n−σ r̂−4k−2|α|−n−1
∫

Ir(s0)

‖u‖2
L2

σ(Br(x0))
dL.

But we had λ = x0,n and r̂ = r
x0,n

and thus get the factor

r−4k−2|α|−1−n√x0,n
−2|α|−1−n−2σ .α,n,σ ck,α(r, x0)

2 r−1 r−n (
√

x0,n + r)−1−n−2σ

.n,σ ck,α(r, x0)
2 r−2 |Br(x0)|−1

σ

as stated.
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We now consider initial value problems on H again, bearing in mind that any solution to the
time-local problem on (t1, t2) is also a solution to the initial value problem on [t̃1, t2) for any
t̃1 ∈ I.
The first result is a very easy consequence of the pointwise estimate 6.10, stating that the smooth-
ness of σ-solutions to f = 0 carries over from the local situation to the Cauchy problem.

7.1 Proposition Let I = (t1, t2) ⊂ R be an open interval and g ∈ L2
σ(H). Further let k ∈ N0 and

α ∈Nn
0 .

If u is a σ-solution to f = 0 on I × H with initial value g, then

|∂k
t ∂α

xu(t0, x0)| .n,σ,k,α
ck,α(
√

t0 − s0, x0)

|B√t0−s0
(x0)|

1
2
σ

‖u(s0)‖L2
σ(H)

for any x0 ∈ H and any s0 < t0 ∈ I.

Proof: A σ-solution u to f = 0 on I×H with initial value g is also one to f = 0 on [s0, t0)× Br(x0)

with initial value u(s0) for any pair of points s0 < t0 ∈ I, any point x0 ∈ H and any radius r. For
r :=
√

t0 − s0 it is therefore possible to use the pointwise estimate 6.10 in the temporal end point
t0 and the spatial centre point x0 and get

|∂k
t ∂α

xu(t0, x0)| .n,σ,k,α ck,α(r, x0) r−1 |Br(x0)|
− 1

2
σ r sup

t∈(s0,t0)
‖u(t)‖L2

σ(Br(x0))

for any s0 < t0 ∈ I and x0 ∈ H. Passing from Br(x0) to the whole space H in the L2
σ-norm, we

know from Corollary 3.7 that the latter decreases in time not only on (s0, t0), but also on [s0, t0)

thanks to there being a solution to the inital-value-problem.

The decrease of the L2
σ-norm on whole space was crucial in this proof. We can now extend the

norm-decrease 3.7 of solutions by an exponential factor depending on the equivalent quasi-metric
d̃ defined in Remark 5.7. To this end we consider the function

Ψ(x; cΨ, εΨ, y0) := cΨ
d̃(x, y0)

2√
εΨ + d̃(x, y0)2

for any x ∈ H,

where cΨ ∈ R, εΨ > 0 are constants and y0 ∈ H is arbitrary, but fixed.

7.2 Lemma Ψ(·; cΨ, εΨ, y0) ∈ C1(H) and

√
xn |∇xΨ(x; cΨ, εΨ, y0)| ≤ cL |cΨ| for any x ∈ H with cL := 26.

Proof: Direct calculations show that for any x ∈ H we have xn |∇x d̃(x, y0)|2 ≤ 27 and thus

|∇xΨ(x; cΨ, εΨ, y0)|2 ≤ c2
Ψ 25|∇x d̃(x, y0)| ≤ 212 c2

Ψ x−1
n

as stated.
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7.3 Proposition Let I = (t1, t2) ⊂ R be an open interval, g ∈ L2
σ(H) and y0 ∈ H.

If u is a σ-solution to f = 0 on I × H with initial value g, then we have∥∥∥eΨ(·;cΨ ,εΨ ,y0) u(t)
∥∥∥

L2
σ(H)
≤ ec2

Lc2
Ψ(t−t1)

∥∥∥eΨ(·;cΨ ,εΨ ,y0) g
∥∥∥

L2
σ(H)

for any t ∈ I.

Proof: For t ∈ I we define

F(t) := e−2c2
Lc2

Ψ(t−t1)
∥∥∥eΨ(·;cΨ ,εΨ ,y0) u(t)

∥∥∥2

L2
σ

+ 2
∫

(t1,t)

e−2c2
Lc2

Ψ(τ−t1)
∥∥∥∇x(eΨ(·;cΨ ,εΨ ,y0) u(τ))

∥∥∥2

L2
1+σ

dL(τ).

Then obviously we have

∂tF(t) = e−2c2
Lc2

Ψ(t−t1) ∂t(
∥∥∥eΨ(·;cΨ ,εΨ ,y0) u(t)

∥∥∥2

L2
σ

)− 2 c2
L c2

Ψ e−2c2
Lc2

Ψ(t−t1)
∥∥∥eΨ(·;cΨ ,εΨ ,y0) u(t)

∥∥∥2

L2
σ

+ 2 e−2c2
Lc2

Ψ(t−t1)
∥∥∥∇x(eΨ(·;cΨ ,εΨ ,y0) u(t))

∥∥∥2

L2
1+σ

for all t ∈ I.
So consider

∂t(
∥∥∥eΨ(·;cΨ ,εΨ ,y0) u(t)

∥∥∥2

L2
σ

) = 2
∫
H

e2Ψ(·;cΨ ,εΨ ,y0) u(t) ∂tu(t) dµσ.

The differentiation under the integral is justified by the product rule for bilinear forms. Abbreviat-
ing Ψ(·; cΨ, εΨ, y0) =: Ψ henceforth, we use e2Ψ u(t) formally as a test function for the σ-solution
u in the equivalent formulation for solutions with regular temporal derivative – compare the
proof and the statement of Proposition 4.1 and Remark 4.2 – and find that for almost any t ∈ I we
have

∂t(
∥∥∥eΨu(t)

∥∥∥2

L2
σ

) = −2
∫
H

(∇x(eΨ u(t)) + eΨ u(t)∇xΨ) · ∇xu(t) eΨ dµ1+σ

by virtue of the chain rule. With eΨ∇xu(t) = ∇x(eΨ u(t))− eΨ u(t)∇xΨ this yields

∂t(
∥∥∥eΨ u(t)

∥∥∥2

L2
σ

) = −2
∥∥∥∇x(eΨ u(t))

∥∥∥2

L2
1+σ

+ 2
∥∥∥eΨ u(t)∇xΨ

∥∥∥2

L2
1+σ

≤ −2
∥∥∥∇x(eΨ u(t))

∥∥∥2

L2
1+σ

+ 2 c2
L c2

Ψ

∥∥∥eΨ u(t)
∥∥∥2

L2
σ

,

where the use of Lemma 7.2 in the last step is crucial to reduce the (1 + σ)-norm in the last
summand to a σ-norm.
But this shows that ∂tF(t) ≤ 0 on I. Thus F is monotonically decreasing and we have

F(t) ≤ F(t1) =
∥∥∥eΨu(t1)

∥∥∥2

L2
σ

for all t ∈ I.

To justify the formal calculation we have to use a bounded approximation of Ψ that does not
change the estimate for |∇xΨ| in the limit.
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7.4 Remark Although we will not use it in the sequel, we would like to note that the proof showed more
than we stated, namely also the estimate

2
∫

(t1,t)

e−2c2
Lc2

Ψ(τ−t1)
∥∥∥∇x(eΨ(·;cΨ ,εΨ ,y0) u(τ))

∥∥∥
L2

1+σ(H)
dL(τ) ≤

∥∥∥eΨ(·;cΨ ,εΨ ,y0) g
∥∥∥2

L2
σ(H)

for all t ∈ I.

The decrease of the exponential L2
σ-norm enables us now to get an exponential version of 7.1.

7.5 Proposition Let I = (t1, t2) ⊂ R be an open interval, g ∈ L2
σ(H) and y0 ∈ H.

If u is a σ-solution to f = 0 on I × H with initial value g, then

|∂k
t ∂α

xu(t0, x0)| .n,σ,k,α
ck,α(
√

t0 − s0, x0)

|B√t0−s0
(x0)|

1
2
σ

e2c2
Lc2

Ψ(t0−s0)−Ψ(x0;cΨ ,εΨ ,y0)
∥∥∥eΨ(·;cΨ ,εΨ ,y0) u(s0)

∥∥∥
L2

σ(H)

for any x0 ∈ H and any s0 < t0 ∈ I.

Proof: Let again r :=
√

t0 − s0. As in the proof of Proposition 7.1, but with an additional factor
1 = eΨ(·;cΨ ,εΨ ,y0) e−Ψ(·;cΨ ,εΨ ,y0) in the norm on the right hand side, it is clear that

|∂k
t ∂α

xu(t0, x0)|

.n,σ,k,α ck,α(r, x0) r−1 |Br(x0)|
− 1

2
σ sup

x∈Br(x0)
e−Ψ(x;cΨ ,εΨ ,y0) r sup

t∈(s0,t0)

∥∥∥eΨ(·;cΨ ,εΨ ,y0) u(t)
∥∥∥

L2
σ(Br(x0))

.

On the whole space, however, Proposition 7.3 ensures that the L2
σ-norm of eΨ(·;cΨ ,εΨ ,y0) u(t) on

(s0, t0) is bounded by ec2
Lc2

Ψr2
∥∥∥eΨ(·;cΨ ,εΨ ,y0) u(s0)

∥∥∥
L2

σ(H)
, since we consider an initial value problem

on [s0, t0). If we multiply the resulting inequality by eΨ(x0;cΨ ,εΨ ,y0) on both sides and use that by
Lemma 7.2 and Proposition 5.1 we have Ψ(x0; cΨ, εΨ, y0)−Ψ(x; cΨ, εΨ, y0) ≤ cL |cΨ| d(x, x0), then
we arrive at

|∂k
t ∂α

xu(t0, x0)| .n,σ,k,α ck,α(r, x0) |Br(x0)|
− 1

2
σ ec2

Lc2
Ψr2+cL |cΨ |r−Ψ(x0;cΨ ,εΨ ,y0)

∥∥∥eΨ(·;cΨ ,εΨ ,y0) u(s0)
∥∥∥

L2
σ(H)

.

We can compute ec2
Lc2

Ψr2+cL |cΨ |r ≤ e2c2
Lc2

Ψr2
if cL|cΨ|r > 1 and ec2

Lc2
Ψr2+cL |cΨ |r ≤ e ec2

Lc2
Ψr2 ≤ e e2c2

Lc2
Ψr2

if
cL|cΨ|r < 1. This finishes the proof.

Of course Proposition 7.1 is contained in Proposition 7.5 with cΨ = 0. The exponential factor,
however, allows us to obtain an estimate for rather rough norms of the initial value.

7.6 Theorem Let I = (t1, t2) ⊂ R be an open interval, g ∈ L2
σ(H) and u be a σ-solution to f = 0 on

I × H with initial value g.

(i) If k ∈N0 and α ∈Nn
0 , then

|∂k
t ∂α

xu(t0, x0)| .n,σ,k,α ck,α(
√

t0 − s0, x0) ‖u(s0)‖L∞(H)

for any x0 ∈ H and any s0 < t0 ∈ I.

(ii) If k ∈N0 and α ∈Nn
0 with k + |α| > 0, then

|∂k
t ∂α

xu(t0, x0)| .n,σ,k,α ck,α(
√

t0 − s0, x0)
√

t0 − s0 (
√

t0 − s0 +
√

x0,n) ‖∇xu(s0)‖L∞(H)

for any x0 ∈ H and any s0 < t0 ∈ I.
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Proof: Fix s0 < t0 ∈ I and x0 ∈ H. For a radius r > 0 we can view H as a disjoint union
of annular rings Bjr(x0)r B(j−1)r(x0) =: Rrj(x0) for j ∈ N. We now specify Ψ(·; cΨ, εΨ, y0) by
setting cΨ := − 1

r , choosing εΨ such that εΨ < r2 and letting x0 play the role of the parameter
point. For x ∈ Rrj(x0) we then have

Ψ(x; cΨ, εΨ, x0) ≤ −
1
r

d̃(x, x0)
2√

r2 + d̃(x, x0)2
≤ −j + 3

4c2
d

thanks to an application of the equivalence estimate 5.7. This shows that

∫
Rrj (x0)

e2Ψ(·;cΨ ,εΨ ,x0) u(s0)
2 dµσ . e

− 1
2c2

d
j
|Bjr(x0)|σ ‖u(s0)‖2

L∞(H)

.n,σ j2n+2σ e
− 1

2c2
d

j
|Br(x0)|σ ‖u(s0)‖2

L∞(H)

by Proposition 5.12 in case n + 2 σ ≥ 0, and with jn instead of j2n+2σ if n + 2 σ < 0.
Summing this over j gives the bound∥∥∥eΨ(·;cΨ ,εΨ ,x0) u(s0)

∥∥∥2

L2
σ(H)

.n,σ |Br(x0)|σ ‖u(s0)‖2
L∞(H) ,

where the convergent series

∑
j∈N

j2n+2σ e
− 1

2c2
d

j

is subsumed into the constant.
Proposition 7.5 thus shows that

|∂k
t ∂α

xu(t0, x0)| .n,σ,k,α
ck,α(
√

t0 − s0, x0)

|B√t0−s0
(x0)|

1
2
σ

e2c2
L

t0−s0
r2 |Br(x0)|

1
2
σ ‖u(s0)‖L∞(H)

since Ψ(x0; cΨ, εΨ, x0) = 0. Setting r =
√

t0 − s0 then finishes the proof of the first part.
For the treatment of the second part we consider the same specification of Ψ as above and let
C ∈ R be an arbitrary constant. Then u− C is also a σ-solution on I × H, and Proposition 7.5
amounts to

|∂k
t ∂α

x(u(t, x)− C)|t=t0,x=x0 |

.n,σ,k,α
ck,α(
√

t0 − s0, x0)

|B√t0−s0
(x0)|

1
2
σ

ec2
Lc2

Ψ(t0−s0)
∥∥∥eΨ(·;cΨ ,εΨ ,x0) (u(s0)− C)

∥∥∥
L2

σ(H)
.

For C := u(s0, x0) we have

|u(s0, x)− C| ≤ |x− x0| ‖∇xu(s0)‖L∞(H) ,

so we get∥∥∥eΨ(·;cΨ ,εΨ ,x0) (u(s0)− C)
∥∥∥2

L2
σ(H)
≤ ‖∇xu(s0)‖2

L∞(H)

∫
H

e2Ψ(x;cΨ ,εΨ ,x0)|x− x0|2 dµσ(x).
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The integral is treated as above, where for the additional factor we have

|x− x0| . j2 r (r +
√

x0,n) on Bjr(x0)

by Proposition 5.8. The series in consideration still converges, and in the end we now get

|∂k
t ∂α

x(u(t, x)− u(s0, x0))|t=t0,x=x0 |

.n,σ,k,α
ck,α(
√

t0 − s0, x0)

|B√t0−s0
(x0)|

1
2
σ

ec2
L

t0−s0
r2 ‖∇xu(s0)‖L∞(H) r (r +

√
x0,n) |Br(x0)|

1
2
σ

Since for k + |α| > 0 a derivative falls onto the constant on the left hand side and causes it to
vanish, we get the statement with choosing r =

√
t0 − s0.

7.7 Remark We also get an estimate involving ‖∇u(s0)‖L∞(H) for k = |α| = 0: Using the triangle
inequality from below in the last step of the proof above immediately delivers

|u(t0, x0)| .n,σ,k,α
√

t0 − s0 (
√

t0 − s0 +
√

x0,n) ‖∇xu(s0)‖L∞(H) + ‖u(s0)‖L∞(H) .

7.8 Remark We would like to point out that we can bound both u and the gradient of u in all of I × H,
so that for s0 = t1 the map g 7→ u becomes a continuous curve in the solution space: The special cases
α = k = 0 and |α| = 1, k = 0 in the last proposition read

‖u‖L∞(I×H) .n,σ,k,α ‖g‖L∞(H)

and

‖∇xu‖L∞(I×H) .n,σ,k,α ‖∇xg‖L∞(H) .

Local Lp-estimates in time and space are an immediate consequence of this, as long as we stay
away from the time s0. As a notational shortcut we define cylinders

Qr(s0, x0) := Ir, 1
2
(s0)× Br(x0)

for s0 ∈ [t1, t2), x0 ∈ H and 0 < r ≤
√

t2 − s0, where we always – especially for t2 = ∞ – assume
that r < ∞. Note that we still consider balls with respect to the metric d, and will stick to that,
whereas the Lp-spaces will be understood with respect to the usual and unweighted Lebesgue
measure in the sequel.

7.9 Corollary Let I = (t1, t2) ⊂ R be an open interval, g ∈ L2
σ(H) and u be a σ-solution to f = 0 and

g on I × H.

(i) If l ≥ 0, k ∈N0 and α ∈Nn
0 , then

r2k+|α| (r +
√

x0,n)
−2l+|α| |Qr(s0, x0)|−

1
p
∥∥∥( · )l

n ∂k
t ∂α

xu
∥∥∥

Lp(Qr(s0,x0))

.n,σ,k,α ‖u(s0)‖L∞(H)

for any 1 ≤ p < ∞ as well as any s0 ∈ I, x0 ∈ H and 0 < r ≤
√

t2 − s0.
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(ii) If l ≥ 0, k ∈N0 and α ∈Nn
0 with k + |α| > 0, then

r2k+|α|−1 (r +
√

x0,n)
−2l+|α|−1 |Qr(s0, x0)|−

1
p
∥∥∥( · )l

n ∂k
t ∂α

xu
∥∥∥

Lp(Qr(s0,x0))

.n,σ,k,α ‖∇xu(s0)‖L∞(H)

for any 1 ≤ p < ∞ as well as any s0 ∈ I, x0 ∈ H and 0 < r ≤
√

t2 − s0.

Proof: Fix p ≥ 1, s0 ∈ I, x0 ∈ H and 0 < r ≤
√

t2 − s0. Obviously we have∥∥∥( · )l
n ∂k

t ∂α
xu
∥∥∥

Lp(Qr(s0,x0))
≤ |Qr(s0, x0)|

1
p sup

(t,x)∈Qr(s0,x0)
|xl

n ∂k
t ∂α

xu(t, x)|

so we can apply Theorem 7.6 after multiplying both sides by xl
n. It is clear that

xl
n ≤ (

√
xn +

√
t− s0)

2l

since both l and
√

t− s0 for t > s0 are positive. We then get

xl
n |∂k

t ∂α
xu(t, x)| .n,σ,k,α

√
t− s0

−2k−|α|
(
√

t− s0 +
√

xn)
−|α|+2l ‖u(s0)‖L∞(H)

and

xl
n |∂k

t ∂α
xu(t, x)| .n,σ,k,α

√
t− s0

−2k−|α|+1
(
√

t− s0 +
√

xn)
−|α|+1+2l ‖∇xu(s0)‖L∞(H) .

For (t, x) ∈ Qr(s0, x0) we have
√

t− s0 h r since the cylinders are bounded away from time s0
and we only have to deal with an upper bound for

√
xn here. Thanks to Proposition 5.8 we see

that for any x ∈ Br(x0) we have r +
√

xn h r +√x0,n. Collecting the constants then proves the
corollary.
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8 Gaussian Estimate and Consequences

A Green function is understood to be a function that represents solutions to the initial value
problem for the homogeneous equation as an integral with respect to the Lebesgue measure.
If existence and uniqueness of solutions is known, this equivalently means that any function
given as such an integral is a solution. For arbitrary equations it is not clear a priori that a Green
function exists. However, the bounds we obtained so far guarantee that our linear perturbation
equation does indeed possess one.

8.1 Proposition Let σ > −1 and I = (t1, t2) ⊂ R be an open interval.
Then the Green function on I × H exists, that is Gσ : I × H × I × H −→ R with Gσ(t, x, s, y) = 0
whenever t < s ∈ I, and

∂k
t ∂α

xu(t, x) =
∫
H

∂k
t ∂α

xGσ(t, x, s, y) u(s, y) dL(y)

for any t > s ∈ I, x ∈ H, any k ∈ N0, α ∈ Nn
0 , and any σ-solution u to f = 0 on I × H with initial

value u(t1) = g ∈ L2
σ(H).

Proof: Let u be the σ-solution to f = 0 on I × H with initial value g ∈ L2
σ(H). Existence and

uniqueness is ensured by Propositions 3.3, 3.8 and 3.9. Now fix t > s ∈ I as well as x ∈ H and
k ∈N0, α ∈Nn

0 .
Proposition 7.1 shows that the linear functional

L2
σ(H) 3 u(s) 7→ ∂k

t ∂α
xu(t, x) ∈ R

is in fact continuous. By the Riesz representation theorem we can therefore find a Kk,α
t,x,s ∈ L2

σ(H)

with

∂k
t ∂α

xu(t, x) =
∫
H

Kk,α
t,x,s(y) u(s, y) dµσ(y).

This proves the existence of Gσ(t, x, s, y) := yσ
n K0,0

t,x,s(y) for any t > s ∈ I and almost all x, y ∈ H
that represents a solution as desired. Moreover, since

∂k
t ∂α

xu(t, x) = ∂k
t ∂α

x

∫
H

Gσ(t, x, s, y) u(s, y) dLn(y) =
∫
H

∂k
t ∂α

xGσ(t, x, s, y) u(s, y) dLn(y)

by Lebesgue’s theorem we have ∂k
t ∂α

xGσ(t, x, s, y) = yσ
n Kk,α

t,x,s(y).

For a given interval I we henceforth always denote the Green function on I × H by Gσ without
mentioning the interval in the notation.

8.2 Remark A calculation shows that y−σ
n Gσ(·, ·, s, y) is a time-local σ-solution to f = 0 on I × H for

almost any (s, y) ∈ I × H.
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But because of the duality identity 3.10 we also have that

Gσ(t, x, s, y) =
(

yn

xn

)σ

Gσ(s, y, t, x)

for almost all (t, x, s, y) ∈ I×H× I×H. Therefore, ( · )−σ
n Gσ(t, x, ·, ·) and consequently ( · )−σ

n ∂k
t ∂α

xGσ(t, x, ·, ·)
is a σ-solution to f = 0 on I × H for almost any (t, x) ∈ I × H.

Now the exponential estimates we proved before put us into the position to show that Gσ is not
only in L∞, but decays exponentially with a bound in the shape of the Gaussian function with
respect to d and µσ.

8.3 Theorem (Gaussian Estimate) Let σ > −1 and I = (t1, t2) ⊂ R be an open interval. Further let
k ∈N0 and α ∈Nn

0 .
Then we have

|∂k
t ∂α

xGσ(t, x, s, y)| .n,σ,k,α ck,α(
√

t− s, x) |B√t−s(x)|−
1
2

σ |B√t−s(y)|
− 1

2
σ yσ

n e
− d(x,y)2

32c2
dc2

L(t−s)

for all x 6= y ∈ H and all t > s ∈ I.

Proof: Fix t > s ∈ I as well as y0 ∈ H, and denote r :=
√

t− s. Since L∞ is the dual space to L1
σ

we have for any x ∈ H that∥∥∥∥eΨ(·;cΨ ,εΨ ,y0) |Br(·)|
1
2
σ ( · )−σ

n ∂k
t ∂α

xGσ(t, x, s, ·)
∥∥∥∥

L∞(H)

= sup
‖ζ‖

L1
σ(H)

≤1

∣∣∣∣∣∣
∫
H

eΨ(·;cΨ ,εΨ ,y0) |Br(·)|
1
2
σ ( · )−σ

n ∂k
t ∂α

xGσ(t, x, s, ·) ζ dµσ

∣∣∣∣∣∣
= sup

{
|∂k

t ∂α
xv(t, x)| | v is σ-solution, v(s) = eΨ(·;cΨ ,εΨ ,y0)|Br(·)|

1
2
σ ζ and ‖ζ‖L1

σ(H) ≤ 1
}

thanks to the representing property of the Green function.
Applying estimate 7.5 onto such v in the points s < t+s

2 for α = 0 and k = 0 shows that

eΨ(x;cΨ ,εΨ ,y0) |Br(x)|
1
2
σ |v(

t + s
2

, x)| .n,σ ec2
Lc2

Ψr2
∥∥∥eΨ(·;cΨ ,εΨ ,y0) v(s)

∥∥∥2

L2
σ(H)

for any x ∈ H. We now denote the multiplication operator on L2
σ(H) with respect to the function

x 7→ |Br(x)|
1
2
σ by M. For any σ-solutions to the linear perturbation equation we furthermore

define a modified solution operator Ss(
t+s

2 ) on L2
σ(H), incorporating the exponential function by

assigning eΨ(·;cΨ ,εΨ ,y0) v(s) to later time evaluations eΨ(·;cΨ ,εΨ ,y0) v( t+s
2 ). In terms of the operators

the last estimate means that∥∥∥∥(MSs(
t + s

2
))eΨ(·;cΨ ,εΨ ,y0)v(s)

∥∥∥∥
L∞(H)

.n,σ ec2
Lc2

Ψr2
∥∥∥eΨ(·;cΨ ,εΨ ,y0)v(s)

∥∥∥
L2

σ(H)

and therefore MSs(
t+s

2 ) is an operator not only from L2
σ(H) to L2

σ(H), but in fact maps into L∞(H)

and has operator norm bounded by C ec2
Lc2

Ψr2
for a constant C = C(n, σ) > 0. Consequently, since
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the dual operator has the same norm, for any ξ ∈ L1
σ(H) we have∥∥∥∥(MSs(

t + s
2

)

)∗
ξ

∥∥∥∥
L2

σ(H)
.n,σ ec2

Lc2
Ψr2 ‖ξ‖L1

σ(H) .

Now the multiplication operator is self-adjoint, and so is the solution operator by the duality
equation 3.10. We then find that for the dual of Ss we have

Ss(
t + s

2
)∗ : e−Ψ(·;cΨ ,εΨ ,y0) v(s) 7→ e−Ψ(·;cΨ ,εΨ ,y0) v(

t + s
2

).

Choosing

ξ = |Br(·)|
− 1

2
σ e−Ψ(·;cΨ ,εΨ ,y0) v(s) = ζ

we see that ∥∥∥∥e−Ψ(·;cΨ ,εΨ ,y0) v(
t + s

2
)

∥∥∥∥
L2

σ(H)
.n,σ ec2

Lc2
Ψr2 ‖ζ‖L1

σ(H) ≤ ec2
Lc2

Ψr2
.

But estimate 7.5 can as well be applied to v in the points t+s
2 < t and with the function

Ψ(·;−cΨ, εΨ, y0) = −Ψ(·; cΨ, εΨ, y0) instead of Ψ(·; cΨ, εΨ, y0) to give

|∂k
t ∂α

xv(t, x)| .n,σ,k,α ck,α(r, x) |Br(x)|−
1
2

σ ec2
Lc2

Ψr2+Ψ(x;cΨ ,εΨ ,y0)

∥∥∥∥e−Ψ(·;cΨ ,εΨ ,y0) v(
t + s

2
)

∥∥∥∥
L2

σ(H)

for any x ∈ H. The combination of the two estimates for v then yields

|∂k
t ∂α

xv(t, x)| .n,σ,k,α ck,α(r, x) |Br(x)|−
1
2

σ e2c2
Lc2

Ψr2+Ψ(x;cΨ ,εΨ ,y0).

This means that we have shown∥∥∥∥eΨ |Br(·)|
1
2
σ ( · )−σ

n ∂k
t ∂α

xGσ(t, x, s, ·)
∥∥∥∥

L∞(H)
.n,σ,k,α ck,α(r, x) |Br(x)|−

1
2

σ e2c2
Lc2

Ψr2+Ψ(x;cΨ ,εΨ ,y0)

for any x ∈ H.
Consequently we get

|y−σ
n ∂k

t ∂α
xGσ(t, x, s, y)| .n,σ,k,α ck,α(r, x) |Br(y)|

− 1
2

σ |Br(x)|−
1
2

σ e−Ψ(y;cΨ ,εΨ ,y0) e2c2
Lc2

Ψr+Ψ(x;cΨ ,εΨ ,y0)

for almost all y ∈ H. Now fix y = y0 as well as x 6= y0, and specify Ψ(·; cΨ, εΨ, y0) by setting
εΨ := 3 d̃(x, y) > 0 and cΨ := −c for a positive, but apart from that arbitrary c > 0. In conjunction
with Theorem 5.6 we have then shown that

|y−σ
n ∂k

t ∂α
xGσ(t, x, s, y)| .n,σ,k,α ck,α(r, x) |Br(y)|

− 1
2

σ |Br(x)|−
1
2

σ e2c2
Lc2r2− c

2cd
d(x,y).

Finally, we optimise over the constant c. Straightforward calculation shows that

c 7→ 2 c2
L c2 r2 − c

2cd
d(x, y)

93



8 Gaussian Estimate and Consequences

has a minimum for

c∗ =
d(x, y)
8c2

Lcdr2
.

Inserting this value into the inequality then gives the exponential decay estimate stated.

8.4 Remark We want to emphasise that Proposition 7.5, derived from Proposition 7.3, was crucial in
the proof of the Gaussian estimate. For α = k = 0, we could have proven the same estimate also using
Proposition 7.3 alongside with Remark 7.4, but by means of a Moser iteration instead of the pointwise
estimate. This also works for the more general spatial part Lσu = ( · )−σ

n ∇x · (( · )1+σ
n A∇xu) with a

time-space coefficient matrix A that is uniformely strongly parabolic, measurable and bounded. See [Koc99]
for a proof. Apart from loosing the direct control on the derivatives, another drawback of the Moser approach
is that it cannot be generalised to higher order equations.

8.5 Remark The Gaussian estimate makes it possible to solve the initial value problem also for more
general data not contained in L2

σ(H). Truncating those initial data to reach the L2
σ-setting and gain

solutions through the representation by the Green function, the exponential decay ensures in many cases -
as for example for initial data in L1

σ, L∞ and the homogeneous Lipschitz space - that the truncated solutions
converge. It thus makes sense to speak of a solution with such initial values. See also Theorem 7.6.

We can replace the measure of the ball centred at y or the one centred at x by the mutually other
one with Proposition 5.17, paying for it by an additional factor (1 + d(x,y)√

t−s
)n+σ. The exponential

decay in d(x, y) now makes the loss in this exchange controllable. In fact, for any a ≥ 0 we have
that e−a2

.m (1 + a)−m for any m ≥ 0. We state the application of this trivial fact in our situation
as a lemma.

8.6 Lemma Let c > 0 be an arbitrary constant and t > s.
We have both

e−c d(x,y)2
t−s .m,c

(
1 +

d(x, y)√
t− s

)−m
e−

c
2

d(x,y)2
t−s for any m ≥ 0

and

e−c 1
t−s .m,c

√
t− s

m
e−

c
2

1
t−s for any m ≥ 0.

8.7 Remark The first part of Lemma 8.6 in conjunction with Proposition 5.17 now yields

|B√t−s(y)|
− 1

2
σ e

− d(x,y)2

32c2
dc2

L(t−s) .n,σ,m

(
1 +

d(x, y)√
t− s

)n+σ

|B√t−s(x)|−
1
2

σ

(
1 +

d(x, y)√
t− s

)−m
e
− d(x,y)2

64c2
dc2

L(t−s)

for n + 2 σ ≥ 0, and similarly for n + 2 σ < 0 with exponent n
2 instead of n + σ. Since σ > −1 and hence

n + σ > 0, we can set m = n + σ, or m = n
2 > 0 in the opposite case, and the additional factor disappears.

We could of course have exchanged balls the other way around, that is we could have substituted the ball
centred at x by the one centred at y. Furthermore, the same argument works for ck,α(

√
t− s, x) by Remark

5.18. Here we get

ck,α(
√

t− s, x) e
− d(x,y)2

32c2
dc2

L(t−s) .n,α,m

(
1 +

d(x, y)√
t− s

)2|α|
ck,α(
√

t− s, y)
(

1 +
d(x, y)√

t− s

)−m
e
− d(x,y)2

64c2
dc2

L(t−s)
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and can chose m = 2 |α|.
Calculations in this fashion will be made frequently in the following. From now on we do not specify the
constant in the exponent any more, but merely write C even if it changes in the course of the argument.

8.8 Remark Note also that thanks to proposition 5.10 we know

|B√t−s(y)|
−1
σ yσ

n hn,σ |B√t−s(y)|
−1

( √
yn

√
yn +

√
t− s

)2σ

and can thus simplify the appereance of the Gaussian estimate if σ ≥ 0: then we have( √
yn

√
yn +

√
t− s

)2σ

≤ 1.

We can now make use of the pointwise estimate 6.10 once more. In conjunction with Remark 8.2
this allows us to gain the following generalised version of the Gaussian estimate.

8.9 Proposition Let σ > −1 and I = (t1, t2) ⊂ R be an open interval. Further let k ∈N0 and j ∈N0
as well as α ∈Nn

0 and β ∈Nn
0 .

Then we have

∣∣∣∂j
s∂

β
y

(
y−σ

n ∂k
t ∂α

xGσ(t, x, s, y)
)∣∣∣ .n,σ,k,α,j,β cj+k,β+α(

√
t− s, x) |B√t−s(y)|

−1
σ e−

d(x,y)2

C(t−s)

for all x 6= y ∈ H and all s < t ∈ I, and with any possible combination of the points x and y in the factors
cj+k,β+α(

√
t− s, x) |B√t−s(y)|−1

σ .

Proof: Fix s < t ∈ I. Then there exists a constant c > 0 with c2 < s−t1
t−s . We set r := c

√
t− s and

s0 := (1 + c2) s− c2 t > t1, thus obtaining Ir(s0) = (s0, s) ⊂ I. Note that for any τ ∈ Ir(s0) we
have r < t− τ < (1 + c2) r and hence t− τ h r.
Now fix also x, y ∈ H. Because of Remark 8.2 and the considerations on the time interval we
know that ( · )−σ

n ∂k
t ∂α

xGσ(t, x, ·, ·) is a σ-solution on Ir(s0)× Br(y). We can thus apply the local
pointwise estimate 6.10 in the temporal end point s and the spatial centre point y and get∣∣∣∂j

s∂
β
y

(
y−σ

n ∂k
t ∂α

xGσ(t, x, s, y)
)∣∣∣

.n,σ,j,β cj,β(r, y) r−1 |Br(y)|
− 1

2
σ

 ∫
Ir(s0)

∥∥∥( · )−σ
n ∂k

t ∂α
xGσ(t, x, τ, ·)

∥∥∥2

L2
σ(Br(y))

dL(τ)


1
2

. cj,β(
√

t− s, y) sup
τ∈Ir(s0)

∥∥∥( · )−σ
n ∂k

t ∂α
xGσ(t, x, τ, ·)

∥∥∥
L∞(Br(y))

.

But by the Gaussian estimate 8.3, taking Remark 8.7 into account, we find that

sup
τ∈Ir(s0)

∥∥∥( · )−σ
n ∂k

t ∂α
xGσ(t, x, τ, ·)

∥∥∥
L∞(Br(y))

.n,σ,k,α sup
τ∈Ir(s0)

ck,α(
√

t− τ, x) |B√t−τ(x)|−1
σ

∥∥∥∥∥e−
d2(x,·)
C(t−τ)

∥∥∥∥∥
L∞(Br(y))

. ck,α(
√

t− s, x) |B√t−s(x)|−1
σ e−

d2(x,y)
C(t−s)

∥∥∥∥∥e
d2(y,·)
C(t−s)

∥∥∥∥∥
L∞(Br(y))
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since on Ir(s0) we have t− τ h r h
√

t− s, and because of the triangle inequality for d coupled
with Young’s inequality. It is clear that∥∥∥∥∥e

d2(y,·)
C(t−s)

∥∥∥∥∥
L∞(Br(y))

≤ e
c2
C

and the statement follows after possibly exchanging x by y and vice versa.

The Gaussian estimate has numerous useful consequences. We start with an estimate of the
Lq-norm with respect to x as well as y.

8.10 Proposition Let σ > −1 and I = (t1, t2) ⊂ R be an open interval. Further let l ≥ 0, k ∈N0 and
α ∈Nn

0 .

(i) We have ∥∥∥xl
n ∂k

t ∂α
xGσ(t, x, s, ·)

∥∥∥
Lq(H)

.n,σ,k,α,q (
√

t− s +
√

xn)
2l ck,α(

√
t− s, x) |B√t−s(x)|

1
q−1

for all t > s ∈ I and almost all x ∈ H, and for any q with σ q > −1.

(ii) We have∥∥∥( · )l
n ∂k

t ∂α
xGσ(t, ·, s, y)

∥∥∥
Lq(H)

.n,σ,l,k,α,q (
√

t− s +
√

yn)
2l ck,α(

√
t− s, y) |B√t−s(y)|

1
q−1

( √
yn√

t− s +
√

yn

)2σ

for all t > s ∈ I and almost all y ∈ H, and for any q ≥ 1.

Proof: Fix (t, x) ∈ I × H and q ≥ 1. For any t1 ≤ s < t, the Gaussian estimate 8.3 with Remark
8.7, where both the derivative constant and the ball are taken with respect to x, then implies that

∫
H

|∂k
t ∂α

xGσ(t, x, s, y)|q dLn(y) .n,σ,k,α ck,α(
√

t− s, x)q |B√t−s(x)|−q
σ

∫
H

yσq
n e−q d(x,y)2

C(t−s) dLn(y).

We consider the right hand side integral seperately, fix r > 0 and cover H with annular rings

Bjr(x)r B(j−1)r(x)

for j ∈N. Using the obvious estimate

e−q d(x,y)2

C(t−s) ≤ e−q (j−1)2r2

C(t−s)

on any of these rings we get

∫
H

yσq
n e−q d(x,y)2

C(t−s) dLn(y) ≤ ∑
j∈N

e−q (j−1)2r2

C(t−s)

∫
Bjr(x)

yσq
n dL(y).
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At this point we have to assume σq > −1 to be sure that the integral exists. Then

∑
j∈N

e−q (j−1)2r2

C(t−s) |Bjr(x)|σq .n,σ |Br(x)|σq ∑
j∈N

e−q (j−1)2r2

C(t−s) j2n+2σq

where we used Proposition 5.12 for n + 2 σ q ≥ 0. In case we have n + 2 σ q < 0 the exponent of j
becomes merely n. Now choose r =

√
t− s to get a convergent series in any of the two cases. We

have then shown that∫
H

|∂k
t ∂α

xGσ(t, x, s, y)|q dLn(y) .n,σ,k,α,q ck,α(
√

t− s, x)q |B√t−s(x)|−q
σ |B√t−s(x)|σq.

But Proposition 5.10 implies that

|B√t−s(x)|−q
σ |B√t−s(x)|σq hn,σ,q |B√t−s(x)|1−q.

Multiplying the equation with weights xl
n ≤ (

√
t− s +

√
xn)2l proves the first statement.

For the other integration we fix (s, y) ∈ I × H and first incorporate the weight xl
n. This time the

Gaussian estimate is used with y instead of x wherever it is possible, then yielding∫
H

( · )l
n |∂k

t ∂α
xGσ(t, x, s, y)|q dLn(x)

.n,σ,k,α ck,α(
√

t− s, y)q |B√t−s(y)|
−q
σ yσq

n

∫
H

(
√

t− s +
√

xn)
2l e−q d(x,y)2

C(t−s) dLn(x).

Thanks to Remark 5.18 and the first part of Lemma 8.6, under the integral we can make the xn
into a yn on expense of a portion of the exponential decay and the dependency of the constant on
l. Proceeding as before with annular rings we see that

∫
H

e−q d(x,y)2

C(t−s) dLn(x) .n |B√t−s(y)|

without any restriction on q, where C is double the size as before. The stated estimate follows.

The exponential decay has another technical consequence contained in the following lemma.

8.11 Lemma Let 0 < δ ≤ ρ
2 < ∞.

If θ ≥ 0 and 0 ≤ c ≤ 1, then

√
t− s

−θ
e−c d(x,y)2

t−s .c,θ,δ,ρ e−
c
2 d(x,y)

for all t ∈ [2 δ, ρ], almost all x ∈ H and almost all (s, y) ∈
(
[0, t)× H

)
r
(
(δ, t)× Bρ(x)

)
.

Proof: We fix δ and ρ as in the prerequisit. For t > δ we can consider the set

M :=
(
[0, t)× H

)
r
(
(δ, t)× Bρ(x)

)
.

If (s, y) ∈ M, then

(t− s, y) ∈
(
[t− δ, t]× Bρ(x)

)
∪
(
[t− δ, t]× Bρ(x)c) ∪ ((0, t− δ)× Bρ(x)c) ,
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where the unions are disjoint, and we will distinguish these three cases in the following.
Given (t− s, y) ∈ [t− δ, t]× Bρ(x), we get

√
t− s

−θ
e−c d(x,y)2

t−s ≤
√

t− δ
−θ ≤

√
δ
−θ

eρ e−d(x,y)

if t ≥ 2 δ, since we also know ρ− d(x, y) ≥ 0.
In the second case we have (t− s, y) ∈ [t− δ, t]× Bρ(x)c and therefore d(x,y)

t−s ≥ 1, given that t ≤ ρ.
It follows that

√
t− s

−θ
e−c d(x,y)2

(t−s) ≤
√

δ
−θ

e−cd(x,y),

where we need t ≥ 2 δ once more.
Finally, for (t− s) ∈ (0, t− δ)× Bρ(x)c, we have again that d(x,y)

t−s ≥ 1 if t ≤ ρ. This leads to

√
t− s

−θ
e−c d(x,y)2

t−s ≤
√

t− s
−θ

e−
cρ2

2
1

t−s e−
c
2 d(x,y)

The second part of Lemma 8.6 gives the upper bound C e−
c
2 d(x,y) with a constant C = C(c, θ, ρ).

If we restrict the time interval to (0, 1), the appearance of the Gaussian estimate can be consider-
ably simplified. We first state this as a lemma before using it in different contexts together with
the results already obtained above. From here on we often distinguish cases z & 1 and z . 1,
meaning that we fix a constant c > 0 and then have z ≥ c bounded away from zero and the
complementary case z ≤ c, without specifying the exact size of c.

8.12 Lemma Let I := (0, 1), t > s ∈ I and x, y ∈ H.

(i) If θ ≥ 0, then ( √
t− s√

t− s +
√

xn

)θ

≤ (1 +
√

xn)
−θ

and the same holds true for
√

yn instead of
√

xn.

(ii) If σ > −1, then ( √
yn√

t− s +
√

yn

)2σ

. (yσ
n)

χ{σ<0}χ{√yn.1} .

(iii) If x 6= y as well as l ≥ 0, k ∈N0 and α ∈Nn
0 with 2 l − |α| ≤ 0, then

xl
n |∂k

t ∂α
xGσ(t, x, s, y)|

.n,σ,k,α
√

t− s
2(l−k−|α|−n)

(1 +
√

xn)
2l−|α| |B1(y)|−1 (yσ

n)
χ{σ<0}χ{yn.1} e−

d(x,y)2

C(t−s)

and the same statement holds with any possible combination of the points x and y in the factors
(1 +

√
xn)2l−|α| |B1(y)|−1.

Proof: For any t > s ∈ I = [0, 1) we also have
√

t− s ≤ 1. In conjunction with the monotonicity
of the function a 7→ a

a+c for any positive value c this proves the first part.
For the second part remember that we have already seen in Remark 8.8 that the term in consid-
eration disappears regardless of the interval I if only σ ≥ 0. On I = (0, 1), we can also treat the
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opposite case of −1 < σ < 0, since then we get( √
yn

√
yn +

√
t− s

)2σ

≤
( √

yn√
yn + 1

)2σ

.

If in addition we have that
√

yn & 1, this term is bounded by a constant again. If on the other
hand we have

√
yn . 1, we obtain yσ

n as an upper bound.
Now, reformulating the Gaussian estimate 8.3 with the derivative constant taken with respect to
x and the ball centred at y according to Remark 8.7, with additional weights on the left hand side
and with the abbreviation r =

√
t− s, we get

xl
n |∂k

t ∂α
xGσ(t, x, s, y)|

.n,σ,k,α r2(l−k−|α|−n) e−
d(x,y)2

Cr2

(
r

r +
√

xn

)−2l+|α| ( r
r +
√

yn

)n ( √
yn

r +
√

yn

)2σ

.

By the first parts of this lemma, using also(
1

1 +
√

yn

)n
hn |B1(y)|−1

from Proposition 5.10, the statement follows with the better exponential decay.
In order to obtain the other combinations of x and y we have to apply Lemma 8.6 and Proposition
5.17 with Remark 8.7 at most twice (possibly in a different choice of x and y in the Gaussian
estimate), each time giving away a portion of the decay.

The last two lemmas now immediately amount to a pointwise estimate of Green’s function on
(0, 1)× H on a rather complicated range of values.

8.13 Proposition Let σ > −1 and I := (0, 1). Futher let 0 < δ ≤ 1
2 and 1 ≤ ρ < ∞.

If l ≥ 0, k ∈N0 and α ∈Nn
0 with 2 l − |α| ≤ 0, then

xl
n |∂k

t ∂α
xGσ(t, x, s, y)| .n,σ,l,k,α,δ,ρ (1 +

√
xn)

2l−|α| |B1(y)|−1 (yσ
n)

χ{σ<0}χ{yn.1} e−
d(x,y)

C

for all t ∈ [2 δ, 1], almost all x ∈ H and almost all (s, y) ∈
(
[0, t)× H

)
r
(
(δ, t)× Bρ(x)

)
, and the same

statement holds with any possible combination of x and y in the factors (1 +
√

xn)2l−|α| |B1(y)|−1.

Proof: Use Lemma 8.11 with θ = −2 (l − k− |α| − n) on the right hand side of the third part of
Lemma 8.12, where the condition 2 l − |α| ≤ 0 coming from the latter ensures that the exponent is
positiv. For δ ≤ 1

2 and 1 ≤ ρ < ∞ we furthermore have both the condition 0 < δ ≤ ρ
2 < ∞ from

Lemma 8.11 satisfied and know that [2 δ, ρ] ⊃ [2 δ, 1], so the statement is also valid on the smaller
interval that is usable in the situation I = (0, 1).

On I = (0, 1) we can also derive a time-space-version of the Lq-boundedness from Proposition
8.10.

8.14 Proposition Let σ > −1 and I := (0, 1). Further let l ≥ 0 and α ∈ Nn
0 such that 2 l − |α| ≤ 0

and l − |α| > −1.

(i) We have ∥∥∥xl
n ∂α

xGσ(t, x, ·, ·)
∥∥∥

Lq((0,t)×H)
.n,σ,k,α,q (1 +

√
xn)

2l−|α| |B1(x)|
1
q−1
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for all t ∈ I and almost all x ∈ H, and for any q with 1 ≤ q < n+1
n+|α|−l and σ q > −1.

(ii) We have∥∥∥( · )l
n ∂α

xGσ(·, ·, s, y)
∥∥∥

Lq((s,1)×H)
.n,σ,l,k,α,q (1 +

√
yn)

2l−|α| |B1(y)|
1
q−1

(yσ
n)

χ{σ<0}χ{yn.1}

for all s ∈ I and almost all y ∈ H, and for any q with 1 ≤ q < n+1
n+|α|−l .

Proof: By Proposition 8.10 it is immediately clear that∥∥∥xl
n ∂k

t ∂α
xGσ(t, x, ·, ·)

∥∥∥q

Lq((0,t)×H)

.n,σ,k,α,q

∫
(0,t)

(
√

t− s +
√

xn)
2ql ck,α(

√
t− s, x)q |B√t−s(x)|1−q dL(s)

for all t ∈ (0, 1] and almost all x ∈ H, and for any q with σ q > −1.
Explicitely spelling out the factors using the formula 5.10 for the measure of intrinsic balls, we
therefore look at the integrand

√
t− s

2q(l−k−|α|−n)+2n
( √

t− s√
t− s +

√
xn

)−q(2l−|α|) ( √
t− s√

t− s +
√

xn

)−n(1−q)

.

Since I = (0, 1) and q ≥ 1, we can use the first part of Lemma 8.12 if 2 l − |α| ≤ 0. In conjunction
with Proposition 5.10 and a substitution in the integration variable we thus get∥∥∥xl

n ∂k
t ∂α

xGσ(t, x, ·, ·)
∥∥∥q

Lq((0,t)×H)

.n,σ,k,α,q (1 +
√

xn)
(2l−|α|)q |B1(x)|1−q

∫
(0,t)

s(l−k−|α|−n)q+n dL(s).

If the exponent of the integrand is greater than −1, that is for any q < 1+n
−l+k+|α| , this integral

converges to

c(n, α, k, l, q) t(l−k−|α|−n)q+n+1

which in turns is bounded for t ∈ (0, 1]. It is obvious that the convergence condition can only be
satisfied for a q ≥ 1 if −l + k + |α| < 1. In conjunction with the condition 2 l − |α| ≤ 0 that arouse
from the calculations above, it becomes clear that only k = 0 is admissible and we therefore need
to have −l + |α| < 1.
The second part of the statment is proven identically, with the additional factor coming from
Proposition 8.10 estimated by the second part of Lemma 8.12 and without the additional constraint
on q, but an additional dependency of the constant on l as before.

8.15 Remark We already noted in the proof that no temporal derivative can be treated in that way and
thus k = 0 is the only possible case that can appear. It is worth pointing out that we can not achieve a
bound for the gradient of Gσ in Lq without extra weights to compensate for the spatial derivative either. In
fact, the condition on the exponents l and α are satisfied if and only if either l = 0 and α = 0 or l ∈ (0, 1

2 ]

and |α| = 1. We will call such exponents (l, k, α) Green-exponents.
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9 Estimates Against the Inhomogeneity

We now abandon the situation where f = 0 and gain estimates against the inhomogeneity.

9.1 Remark To see that solutions with inhomogeneity can be expressed in terms of Gσ, we invoke
Duhamel’s principle:
Let σ > −1, I = (t1, t2) ⊂ R be an open interval and f ∈ L2(I; L2

σ(H)).
Any σ-solution u to f and g = 0 on I × H is given by

u(t, x) =
∫

(t1,t)×H

Gσ(t, x, s, y) f (s, y) dLn+1(s, y)

for all t ∈ I and almost all x ∈ H.
Similar as for initial values in Remark 8.5, we can make sense of the term σ-solution for inhomogeneities in
other spaces than L2(I; L2

σ(H)) by means of this formula as long as the integral converges. Thus, we will
not specify conditions on f any more in the sequel.

Duhamel’s principle also enables us to view the operator that maps inhomogeneities to solutions
as integral kernel operators. Now Remark 5.16 ensures that (I × H,L × µσ, D) is a space of
homogenous type, and thus the theory of Calderón-Zygmund can be applied in this non-euclidean
setting. Therefore, the solution operators belonging to Calderón-Zygmund-exponents as defined
in Remark 4.5 are of Calderón-Zygmund-type.

9.2 Proposition Let σ > −1 and I = (t1, t2) ⊂ R be an open interval. Further let u be a σ-solution to
f on I × H with initial value g = 0.
If l ≥ 0, k ∈N0 and α ∈Nn

0 are Calderón-Zygmund-exponents, then∫
I

∥∥∥( · )l
n ∂k

t ∂α
xu
∥∥∥p

Lp
σ(H)

dL .n,σ,l,k,α,p

∫
I

‖ f ‖p
Lp

σ(H)
dL

for any 1 < p < ∞.

Proof: For fixed l ≥ 0, k ∈N0 and α ∈Nn
0 consider the operator

L2(I × H,L× µσ) 3 f 7→ ( · )l
n ∂k

t ∂α
xu ∈ L2(I × H,L× µσ).

Duhamel’s principle 9.1 allows us to view them as kernel operators with kernels

K(t, x, s, y) = y−σ
n xl

n ∂k
t ∂α

xGσ(t, x, s, y)

that are continuous where (t, x) 6= (s, y). Here we suppress the parameters l, k, α in the notation
of the kernels.
We want to show that the Calderón-Zygmund cancellation conditions A.34 hold. To this end
define

V := |BD
D((t,x),(s,y))(t, x)|0×σ + |BD

D((t,x),(s,y))(s, y)|0×σ
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where the balls BD are understood with respect to the time-space-metric D and

| · |0×σ := (L× µσ)( · ).

Note that then

D((t, x), (s, y))−2
(
|BD((t,x),(s,y))(x)|σ + |BD((t,x),(s,y))(y)|σ

)−1
. V−1.

Therefore, for the first cancellation condition to hold it is enough to show that

|K(t, x, s, y)| . D((t, x), (s, y))−2
(
|BD((t,x),(s,y))(x)|σ + |BD((t,x),(s,y))(y)|σ

)−1

for any s < t ∈ I and almost any x 6= y ∈ H. The Gaussian estimate 8.9 reveals that

|K(t, x, s, y)| .n,σ,k,α xl
n ck,α(

√
t− s, x) |B√t−s(x)|−1

σ e−
d(x,y)2

C(t−s) .

By an exchange of the ball centre as before we see that

|B√t−s(x)|−1
σ e−

d(x,y)2

C(t−s) .n,σ

(
|B√t−s(x)|σ + |B√t−s(y)|σ

)−1
e−

d(x,y)2

C(t−s)

where we needed that n + σ > 0 and doubled the constant C.
The doubling condition in Proposition 5.12 together with the exponential decay then enables us
to change also the radius of the balls, that is we get

(
|B√t−s(x)|σ + |B√t−s(y)|σ

)−1
e−

d(x,y)2

C(t−s)

.n,σ

(
|B√

(t−s)+d(x,y)2(x)|σ + |B√(t−s)+d(x,y)2(y)|σ
)−1

e−
d(x,y)2

C(t−s)

where again the C on the right hand side is twice the one on the left hand side.
On the other hand we have that

xl
n ck,α(

√
t− s, x) .

√
t− s

2l−2k−2|α|

if 2 l − |α| ≤ 0. Thanks to the exponential decay we can modify this to obtain

√
t− s

2l−2k−2|α|
e−

d(x,y)2

C(t−s) .n,σ,l,k,α

√
(t− s) + d(x, y)2

2(l−k−|α|)
.

For l − k− |α| = −1, these estimates exactly imply the condition we wanted to show.
For the second cancellation condition we consider (t, x), (s, y), (t, x), (s, y) that satisfy the condi-
tion

(∗) D((t, x), (t, x)) + D((s, y), (s, y))
D((t, x), (s, y)) + D((t, x), (s, y))

≤ ε

for an ε ∈ (0, 1). For those points, the triangle inequality then ensures that

1− ε

1 + ε
D((t, x), (s, y)) ≤ D((t, x), (s, y)) ≤ 1 + ε

1− ε
D((t, x), (s, y))
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and hence both

D((t, x), (t, x)) + D((s, y), (s, y)) ≤ 2ε

1− ε
D((t, x), (s, y))

and

D((t, x), (t, x)) + D((s, y), (s, y)) ≤ 2ε

1− ε
D((t, x), (s, y))

if ε < 1
3 . From these inequalities it follows among others that

1− 3ε

1− ε
D((t, x), (s, y)) ≤ D((t, x), (s, y)) ≤ 1 + ε

1− ε
D((t, x), (s, y))

1− 3ε

1− ε
D((t, x), (s, y)) ≤ D((t, x), (s, y)) ≤ 1 + ε

1− ε
D((t, x), (s, y))

1− 3ε

1− ε
D((t, x), (s, y)) ≤ D((t, x), (s, y)) ≤ 1 + ε

1− ε
D((t, x), (s, y))

1− 3ε

1− ε
D((t, x), (s, y)) ≤ D((t, x), (s, y)) ≤ 1 + 3ε

1− ε
D((t, x), (s, y)).

We now fix ε = 1
6 and estimate

|K(t, x, s, y)−K(t, x, s, y)|
≤ |K(t, x, s, y)− K(t, x, s, y)|+ |K(t, x, s, y)− K(t, x, s, y)|
+ |K(t, x, s, y)− K(t, x, s, y)|+ |K(t, x, s, y)− K(t, x, s, y)|
=: (I) + (I I) + (I I I) + (IV).

For t < s and t < s, the left hand side is zero and we have nothing to show. Similarly, the cases
t < s and t < s can be excluded in the consideration of (I). There it remains to find a cancellation
bound if either s is between t and t or smaller than both t and t. The fundamental theorem of
calculus infers that

(I) ≤ |t− t| sup
τ

|∂τK(τ, x, s, y)|

where the supremum is taken over all τ between t and t. If s is between t and t, it can happen that
τ < s. In this case K(τ, x, s, y) = 0. So in any case the Gaussian estimate 8.9 shows that

(I) .n,σ,k,α |t− t| sup
τ

xl
n ck+1,α(

√
|τ − s|, x) |B√|τ−s|(x)|−1

σ e−
d(x,y)2

C|τ−s| .

As above the exponential decay enables us to add a ball centred at y, increase the radius of the
balls and manipulate the appearance of the preceding factors if 2 l − |α| ≤ 1 to get

(I) .n,σ,l,k,α |t− t| sup
τ

D((τ, x), (s, y))2l−2k−2−2|α|
(
|BD((τ,x),(s,y))(x)|σ + |BD((τ,x),(s,y))(y)|σ

)−1

with the supremum again ranging over any τ between t and t. Depending on the relation of t
and t, an upper bound of this is given either by replacing any τ by t or t. In the latter case the
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condition (∗) makes it possible to exchange t by t again. All together we then find

(I) .n,σ,l,k,α |t− t|D((t, x), (s, y))2l−2k−2−2|α|
(
|BD((t,x),(s,y))(x)|σ + |BD((t,x),(s,y))(y)|σ

)−1

.

√
|t− t|

D((t, x), (s, y)) + D((t, x), (s, y))

√
|t− t|

D((t, x), (s, y))
D((t, x), (s, y))2l−2k+2−2|α| V−1

.

√
|t− t|

D((t, x), (s, y)) + D((t, x), (s, y))
D((t, x), (s, y))2l−2k+2−2|α| V−1

by virtue of the above consequences of (∗).
For (I I) let Γ : [a, b]→ H be the arc-length parametrised geodesic that connects x and x. Then the
chain rule and the fundamental theorem of calculus show that

(I I) =
∣∣ ∫
(a,b)

∇Γ(τ)K(t, Γ(τ), s, y) · ∂τΓ(τ) dL(τ)
∣∣ ≤ d(x, x) sup

z∈Bd(x,x)(x)
z

1
2
n |∇zK(t, z, s, y)|

with z = Γ(τ) thanks to the unit speed property of Γ and the geodesic character of d, compare
Chapter 5. The Gaussian estimate 8.9 then implies that

(I I) .n,σ,k,α d(x, x) sup
z∈Bd(x,x)(x)

(
zl+ 1

2
n ck,α+1(

√
t− s, z) + zl− 1

2
n ck,α(

√
t− s, z)

)
|B√t−s(y)|

−1
σ e

− d(z,y)2

C(t−s)

with the obvious meaning of the symbolic notation ck,α+1 and for l > 0 as well as t > s, the left
hand side being 0 for t < s. If we have l = 0 the second summand on the right hand side does not
turn up and the following calculations simplify accordingly. Given l > 0, we need indeed l ≥ 1

2
and 2 l − |α| ≤ 0 to reach

(I I) .n,σ,l,k,α d(x, x) sup
z∈Bd(x,x)(x)

√
t− s

2l−2k−2|α|−1
|B√t−s(y)|

−1
σ e
− d(z,y)2

C(t−s) .

Now for any z ∈ Bd(x,x)(x) we have

d(x, y) ≤ d(x, x) + d(z, y) ≤ D((t, x), (t, x)) + d(z, y)

≤ 2ε

1− ε
D((t, x), (s, y)) + d(z, y) ≤ 2ε

1− 3ε
D((t, x), (s, y)) + d(z, y)

≤ 2ε

1− 3ε
(
√

t− s + d(x, y)) + d(z, y)

by condition (∗) and hence

−d(z, y)2 . −d(x, y)2 + (t− s)

for any z ∈ Bd(x,x)(x) if (∗) is satisfied for an ε < 1
5 . This is obviously the case for our choice of

ε = 1
6 . As a consequence we can gain an exponential factor e

− d(x,y)2

C(t−s) in the above estimate and
perform the same operation as above to reach

(I I) .n,σ,l,k,α d(x, x) D(t, x, s, y)2l−2k−2|α|−1
(
|BD((t,x),(s,y))(x)|σ + |BD((t,x),(s,y))(y)|σ

)−1

.
d(x, x)

D(t, x, s, y) + D(t, x, s, y)
D(t, x, s, y)2l−2k−2|α|+2 V−1
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after using the consequences of (∗) again.
As for (I), for the next term we get

(I I I) . |s− s| sup
τ

√
|t− τ|

2l−2k−2−2|α|
|B√|t−τ|(y)|

−1
σ e

− d(x,y)2

C|t−τ|

where the supremum is taken over all τ between s and s. Condition (∗) implies both

d(x, y) ≤ 1− ε

1− 3ε
D((t, x), (s, y))

and

d(x, y) ≤ 1 + ε

1− 3ε
D((t, x), (s, y)).

As a consequence, for any τ between s and s we obtain

−d(x, y)2 . |t− τ| − d(x, y)2.

It follows that

(I I I) .n,σ,l,k,α

√
|s− s|

D(t, x, s, y) + D(t, x, s, y)
D(t, x, s, y)2l−2k−2|α|+2 V−1.

Finally, with M(y, y) := Bd(y,y)(y) ∩ Bd(y,y)(y) we find

(IV) .n,σ,l,k,α d(y, y) sup
z∈M(y,y)

xl
n ck,α(

√
t− s, x) z

1
2
n c0,1(

√
t− s, z) |B√t−s(z)|

−1
σ e

− d(x,z)2

C(t−s)

≤ d(y, y) sup
z∈M(y,y)

√
t− s

2l−2k−2|α|−1
|B√t−s(z)|

−1
σ e

− d(x,z)2

C(t−s) .

By condition (∗), for all z ∈ Bd(y,y)(y) we have

−d(x, z)2 . (t− s)− d(x, z)2

which makes it possible to get a ball centred at x in the inequality. Once again (∗) also ensures that

−d(x, z)2 . (t− s)− d(x, y)2

for any z ∈ Bd(y,y)(y). This leads to

(IV) .n,σ,l,k,α d(y, y) D((t, x), (s, y))2l−2k−2|α|−1
(
|BD((t,x),(s,y))(x)|σ + |BD((t,x),(s,y))(y)|σ

)−1

.
d(y, y)

D((t, x), (s, y)) + D((t, x), (s, y))
D((t, x), (s, y)2l−2k−2|α|+2 V−1

by virtue of yet another application of the consequences from (∗).
The kernels in consideration have therefore been proven to satisfy the Calderón-Zygmund
cancellation conditions on (I × H, D,L × µσ) if and only if l − k− |α| = −1 and 2 l − |α| ≤ 0,
that is if (l, k, α) are Calderón-Zygmund-exponents in the sense of Remark 4.5. As noted there,
these are exactly the exponents for which the operators are bounded on L2(I × H,L × µσ). It
follows that those operators are of Calderón-Zygmund type according to Definition A.34 and
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hence extend to bounded operators on Lp(I × H,L × µσ) for any 1 < p < ∞ by Proposition
A.36.

The theory of Muckenhoupt weights allows us to formulate the Lp-result in unweighted spaces.
Once we get rid of the weights, we can also take derivatives into consideration.

9.3 Corollary Let σ > −1 and I = (t1, t2) ⊂ R be an open interval. Further let u be a σ-solution to f
on I × H with initial value g = 0.
If l ≥ 0, k ∈N0 and γ ≤ α ∈Nn

0 are such that l, k and α− γ are Calderón-Zygmund-exponents, then∥∥∥( · )l
n ∂k

t ∂α
xu
∥∥∥

Lp(I×H)
.n,σ,l,k,α,γ,p

∥∥∥D|γ|x f
∥∥∥

Lp(I×H)

for any max
{

1, 1
1+σ

}
< p < ∞.

Proof: We know that xρ−σ
n is a p-Muckenhoupt weight with respect to µσ if and only if

−1 < ρ < p (σ + 1)− 1

by Proposition 5.15. By Proposition A.37, any Calderón-Zygmund-operator with respect to µσ

also extends to all spaces Lp(xρ−σ
n dµσ) = Lp(µρ), and the same is true for the corresponding

time-space setting by Remark 5.16. The statement for γ = 0 follows with ρ = 0, which is always
admissible if σ ≥ 0, whereas for negative σ we need the extra condition p > 1

1+σ . Note that this
does not constitute a restriction for p in case σ ≥ 0.
Given this and using that ∇′xu is a σ-solution to ∇′x f , we have also shown that∫

I

∥∥∥( · )l
n ∂k

t ∂α
x∇′xu

∥∥∥p

Lp(H)
dL .n,σ,l,k,α

∫
I

∥∥∇′x f
∥∥p

Lp(H)
dL

for any exponents l, k and α that are of Calderón-Zygmund-type, that is especially for l = 0, k = 0
and |α| = 1. This yields the estimate∫

I

∥∥∇x∇′xu
∥∥p

Lp(H)
dL .n,σ,l,k,α

∫
I

∥∥∇′x f
∥∥p

Lp(H)
dL.

For the vertical direction, however, we can use that ∂xn u is a (1 + σ)-solution to

∂xn f + (1 + σ)∆′xu

by Proposition 4.9. The first part of the proof then shows that∫
I

∥∥∥( · )l
n ∂k

t ∂α
x∂xn u

∥∥∥p

Lp(H)
dL .n,σ,l,k,α

∫
I

‖∂xn f ‖p
Lp(H)

dL+
∫
I

∥∥∆′xu
∥∥p

Lp(H)
dL

which is bounded by
∫
I
‖∇x f ‖p

Lp(H)
dL because of the previous considerations. An induction

yields the statement.

At least on the time interval (0, 1), thanks to Proposition 8.14 we can gain similar estimates for
a different set of exponents, namely Green-exponents as defined in Remark 8.15. Note that we
need σ ≥ 0 in the proof of the following result and also use the unweighted Calderón-Zygmund-
estimate 9.3.
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9.4 Proposition Let σ ≥ 0 and I := (0, 1). Further let u be a σ-solution to f on I × H with initial
value g = 0.
If l ≥ 0 and γ ≤ α ∈Nn

0 are such that l and α− γ are Green-exponents, then∥∥∥( · )l
n ∂α

xu
∥∥∥

Lp(I×H)
.n,σ,l,k,α,γ,p

∥∥∥D|γ|x f
∥∥∥

Lp(I×H)

for any 1 ≤ p ≤ ∞.

Proof: By Duhamel’s principle 9.1 we can consider the kernels K(t, x, s, y) = xl
n ∂k

t ∂α
xGσ(t, x, s, y)

for the unweighted L2-operators that send f to derivatives of σ-solutions xl
n ∂k

t ∂α
xu to f . Since

σ ≥ 0, the L1-norms of these kernels taken with respect to (t, x) as well as the ones taken with
respect to (s, y) are bounded whenever k = 0 and l, α are Green-exponents in the sense of Remark
8.15, as an application of Proposition 8.14 for q = 1 shows. Thus Schur’s lemma A.20 can be used
to conclude that ∥∥∥( · )l

n ∂α
xu
∥∥∥

Lp(I×H)
.n,σ,l,k,α ‖ f ‖Lp(I×H)

for any 1 ≤ p ≤ ∞ and any Green-exponents l and α.
Now for j = 1, . . . , n− 1 also ∂xj u is a σ-solution to ∂xj f and the result just obtained can be applied
to get ∥∥∥( · )l

n ∂α
x∂xj u

∥∥∥
Lp(I×H)

.n,σ,l,k,α

∥∥∥∂xj f
∥∥∥

Lp(I×H)

for any Green-exponents l and α.
As before, for the vertical direction we use that ∂xn u is a (1 + σ)-solution to ∂xn f + (1 + σ)∆′xu.
Thus ∥∥∥( · )l

n ∂α
x∂xn u

∥∥∥
Lp(I×H)

.n,σ,l,k,α ‖∂xn f ‖Lp(I×H) +
∥∥∆′xu

∥∥
Lp(I×H) ,

and the last summand is bounded by ‖∇x f ‖Lp(I×H) thanks to the unweighted Calderón-Zygmund-
estimate from Corollary 9.3. We have therefore shown for Green-exponents l and α and for any
1 ≤ p ≤ ∞ that ∥∥∥( · )l

n ∂α
x∂

γ
x u
∥∥∥

Lp(I×H)
.n,σ,l,k,α,p

∥∥∥D|γ|x f
∥∥∥

Lp(I×H)

with |γ| = 1. The statement now follows by induction.

In passing we note that Proposition 8.14 also implies the following pointwise estimate, this time
with the restriction of positive σ removed again.

9.5 Proposition Let σ > −1 and I := (0, 1). Further let u be a σ-solution to f on I × H with initial
value g = 0.
If l ≥ 0 and γ ≤ α ∈ Nn

0 are such that l and α− γ are Green-exponents, then for almost all x ∈ H we
have

xl
n |∂α

xu(1, x)| .n,σ,l,k,α,γ,p (1 +
√

xn)
2l−|α| |B1(x)|−

1
p
∥∥∥D|γ|x f

∥∥∥
Lp(I×H)

for any max
{

n+1
l−|α|+|γ|+1 , 1, 1

1+σ

}
< p < ∞.

107



9 Estimates Against the Inhomogeneity

Proof: We use Duhamel’s principle to get

xl
n |∂k

t ∂α
xu(1, x)| ≤

∫
(0,1)×H

xl
n |∂t∂

α
xGσ(1, x, s, y)| | f (s, y)| dLn+1(s, y)

≤
∥∥∥xl

n∂k
t ∂α

xG(1, x, ·, ·)
∥∥∥

L
p

p−1 ((0,1)×H)
‖ f ‖Lp((0,1)×H)

with Hölder’s inequality for any 1 ≤ p ≤ ∞. But for k = 0 and Green-exponents l and α, the first
factor can be treated with Proposition 8.14. This immediately yields the statement for γ = 0 if
both 1 ≤ p

p−1 < n+1
n−l+|α| and σ

p
p−1 > −1, and these conditions on p are equivalent to

max
{

n + 1
l − |α|+ 1

, 1,
1

1 + σ

}
< p < ∞.

As before we now use that ∂xj u is a σ-solution to ∂xj f for j = 1, . . . , n− 1 to get

xl
n |∂α

x∂xj u(1, x)| .n,σ,l,k,α,p (1 +
√

xn)
2l−|α| |B1(x)|−

1
p
∥∥∥∂xj f

∥∥∥
Lp(I×H)

,

and that ∂xn u is a (1 + σ)-solution to ∂xn f + (1 + σ)∆′xu to get

xl
n |∂α

x∂xn u(1, x)| .n,σ,l,k,α,p (1 +
√

xn)
2l−|α| |B1(x)|−

1
p
(
‖∂xn f ‖Lp(I×H) +

∥∥∆′xu
∥∥

Lp(I×H)

)
.

Again we can apply the unweighted Calderón-Zygmund-estimate from Corollary 9.3 to bound
the norm of the Laplacian. This proves that for Green-exponents l and α and for

max
{

n + 1
l − |α|+ |γ|+ 1

, 1,
1

1 + σ

}
< p < ∞

we have

xl
n |∂α

x∂
γ
x u(1, x)| .n,σ,l,k,α,p |B1(x)|−

1
p
∥∥∥D|γ|x f

∥∥∥
Lp(I×H)

if |γ| = 1. The statement for all γ follows by induction.

In the next step we would like to localise the Calderón-Zygmund-estimate onto time-space-
cylinders bounded away from the initial time as before in the context of Lp-estimates against
initial data, compare Chapter 7. To this end we first consider only inhomogeneities f that are
supported on cylinders and therefore in fact look at points on the diagonal of (I × H)× (I × H).
There we get a local version of the Lp-estimate of Corollary 9.3 that can be improved by virtue of
Proposition 9.4.
We use the abbreviation

Qr(x0) := Qr(0, x0)

for time-space-cylinders bounded away from t = 0 and denote increased cylinders by

Q̃r(x0) := (
r2

4
, r2)× B2r(x0).
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9.6 Proposition Let σ > −1, I := (0, 1), x0 ∈ H and f : I × H −→ R with supp f ⊂ Q̃1(x0).
Further let u be a σ-solution to f on I × H with initial value g = 0.
If l ≥ 0, k ∈N0 and γ ≤ α ∈Nn

0 are such that l, k and α− γ are Calderón-Zygmund-exponents, then

(1 +
√

x0,n)
−2l+|α|−|γ| |Q1(x0)|−

1
p
∥∥∥( · )l

n ∂k
t ∂α

xu
∥∥∥

Lp(Q1(x0))

.n,σ,l,k,α,γ,p,θ sup
0<R≤1

z∈H

Rθ |QR(z)|
− 1

p
∥∥∥D|γ|x f

∥∥∥
Lp(QR(z))

for any θ ∈ R and any max
{

1, 1
1+σ

}
< p < ∞.

Proof: The Calderón-Zygmund-estimate 9.3 immediately yields∥∥∥( · )l
n ∂k

t ∂α
xu
∥∥∥

Lp(Q1(x0))
≤
∥∥∥( · )l

n ∂k
t ∂α

xu
∥∥∥

Lp(I×H)
.n,σ,l,k,α,γ,p

∥∥∥D|γ|x f
∥∥∥

Lp(I×H)
=
∥∥∥D|γ|x f

∥∥∥
Lp(Q̃1(x0))

for Calderón-Zygmund-exponents l, k and α− γ and any max
{

1, 1
1+σ

}
< p < ∞.

Consider now radii R1 := 1√
2
, R2 := 1 and R3 :=

√
3

2 . Independent of the location of x0 in H we

can find N1 points
{

zj1
}

, N2 points
{

zj2
}

and N3 points
{

zj3
}

, all of them contained in Q̃1(x0) and
with Ni only depending on n for i = 1, 2, 3, such that the collection

{
QRi (zji ) | ji = 1, . . . , Ni, i = 1, 2 , 3

}
covers Q̃1(x0). It follows that for max

{
1, 1

1+σ

}
< p < ∞ we have

∥∥∥( · )l
n ∂k

t ∂α
xu
∥∥∥

Lp(Q1(x0))
.n,σ,l,k,α,p

3

∑
i=1

Ni

∑
ji=1

∥∥∥D|γ|x f
∥∥∥

Lp(QRi
(zji

))

.θ

3

∑
i=1

Ni

∑
ji=1
|QRi (zji )|

1
p Rθ

i |QRi (zji )|
− 1

p
∥∥∥D|γ|x f

∥∥∥
Lp(QRi

(zji
))

.n,p |Q1(x0)|
1
p sup

0<R≤1
z∈H

Rθ |QR(z)|
− 1

p
∥∥∥D|γ|x f

∥∥∥
Lp(QR(z))

,

where we first used the doubling property from Proposition 5.10 to shrink balls into Q1(x0)

and then took the supremum in any summand in the last step. This is the localisation of the
Calderón-Zygmund-estimate.
Now recall that for any Calderón-Zygmund-exponents (l, k, α−γ) we have that−2 l + |α| − |γ| ≥
0. If we consider an x0 with

√x0,n . 1, this means that

1 ≤ (1 +
√

x0,n)
−2l+|α|−|γ| .l,α,γ 1

and the inequlity we showed is equivalent to the statement of this proposition. Note that the only
Calderón-Zygmund-exponents for which −2 l + |α| − |γ| is non-zero are the ones that satisfy
l = 0 and |α| − |γ| = 1.
For the converse case of

√x0,n & 1 we first consider σ ≥ 0 only. If l and α−γ are Green-exponents,
then the global estimate from Proposition 9.4 can be localised with the same arguments as above
to show for the same range of p that∥∥∥( · )l

n ∂α
xu
∥∥∥

Lp(Q1(x0))
.n,σ,l,k,α,γ,p,θ |Q1(x0)|

1
p sup

0<R≤1
z∈H

Rθ |QR(z)|
− 1

p
∥∥∥D|γ|x f

∥∥∥
Lp(QR(z))

.

However, for any x ∈ B1(x0) we have that xn h x0,n if
√x0,n & 1 as in our present case. Together
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with l = 1
2 , any α and γ such that |α| − |γ| = 1 are admissible Green-exponents, and so we have

√
x0,n ‖∂α

xu‖Lp(Q1(x0))
.n,σ,l,k,α,γ,p,θ |Q1(x0)|

1
p sup

0<R≤1
z∈H

Rθ |QR(z)|
− 1

p
∥∥∥D|γ|x f

∥∥∥
Lp(QR(z))

if |α| − |γ| = 1 and
√x0,n & 1 for max

{
1, 1

1+σ

}
< p < ∞.

On the other hand, l = 0, k = 0 and α, γ with |α| − |γ| = 1 are Calderón-Zygmund-exponents
and we have therefore shown above – regardless of the position of x0 – that for |α| − |γ| = 1 we
also have

‖∂α
xu‖Lp(Q1(x0))

.n,σ,l,k,α,γ,p,θ |Q1(x0)|
1
p sup

0<R2≤1
z∈H

Rθ |QR(z)|
− 1

p
∥∥∥D|γ|x f

∥∥∥
Lp(QR(z))

.

This implies

(1 +
√

x0,n)
−2l+|α|−|γ|

∥∥∥( · )l
n ∂k

t ∂α
xu
∥∥∥

Lp(Q1(x0))

.n,σ,l,k,α,γ,p,θ |Q1(x0)|
1
p sup

0<R2≤1
z∈H

Rθ |QR(z)|
− 1

p
∥∥∥D|γ|x f

∥∥∥
Lp(QR(z))

for l = k = 0 and |α| − |γ| = 1 also in case of
√x0,n & 1. Since for any other possible Calderón-

Zygmund-exponent (l, k, α) we have that −2 l + |α| − |γ| = 0 this proves the statement for σ ≥ 0.
We now consider −1 < σ < 0 and

√x0,n & 1, the last remaining case. Let first γ = 0. As in the
first step of the proof of Proposition 9.4 we consider the L2-operators that send f to derivatives
of σ-solutions xl

n ∂k
t ∂α

xu to f , this time with kernels K(t, x, s, y) = xl
n ∂k

t ∂α
xGσ(t, x, s, y) χsupp f (s, y).

Since
√x0,n & 1 we have supp f ⊂ {y | yn & 1} and thus Proposition 8.14 shows also in this case

where σ is not in the good range that the L1-norms of the kernels are bounded and therefore
Schur’s lemma A.20 is applicable for any set of Green-exponents l and α. Consequently, we get∥∥∥( · )l

n ∂α
xu
∥∥∥

Lp(I×H)
.n,σ,l,k,α ‖ f ‖Lp(I×H)

for −1 < σ < 0, if l and α are Green-exponents and supp f ⊂ Q̃1(x0) for x0 with
√x0,n & 1.

For any tangential derivative these prerequisits are satisfied and we can iterate the argument as
before. For a similar treatment of the vertical derivative, however, we lack the guarantee that the
corresponding inhomogeneity ∂xn f + (1 + σ)∆′xu has support in the right region. But ∂xn u is a
(1 + σ)-solution to this right hand side, and since (1 + σ) ≥ 0 we apply Proposition 9.4 on this
solution as above. We can therefore use an induction to show that∥∥∥( · )l

n ∂α
xu
∥∥∥

Lp(I×H)
.n,σ,l,k,α,γ

∥∥∥D|γ|x f
∥∥∥

Lp(I×H)

for −1 < σ < 0, if l and α are Green-exponents and supp f ⊂ Q̃1(x0) for x0 with
√x0,n & 1. We

can procede by localising and applying this result in the same fashion as before to finish the
proof.

For inhomogeneities that are supported away from the diagonal we can achieve a pointwise
estimate against a similar expression as before, albeit with the additional condition that the range
of the parameter that was called θ above is not entirely arbitrary any more.
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9.7 Proposition Let σ > −1 and I := (0, 1). Fix x ∈ H as well as 0 < δ ≤ 1
2 and let f : I × H −→ R

with supp f ⊂
(
[0, 1]× H

)
r ((δ, 1)× B1(x)). Further let u be a σ-solution to f on I × H with initial

value g = 0.
If l ≥ 0, k ∈N0 and α ∈Nn

0 with 2 l − |α| ≤ 0, then for all t ∈ [2 δ, 1] we have

(1 +
√

xn)
−2l+|α|−ε1 xl

n |∂k
t ∂α

xu(t, x)|

.n,σ,l,k,α,p,δ,ε2 sup
0<R≤1

z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(z)|

− 1
p ‖ f ‖Lp(QR(z))

for any ε1 ≥ 0, ε2 > 0 and any 1
1+σ < p < ∞.

Proof: We first consider the case σ ≥ 0.
Let M :=

(
(0, t)× H

)
r ((δ, t)× B1(x)). By Duhamel’s principle 9.1 and the prerequisit on the

support of f we get

xl
n |∂k

t ∂α
xu(t, x)| ≤

∫
M

xl
n |∂t∂

α
xGσ(t, x, s, y)| | f (s, y)| dLn+1(s, y)

where Gσ is the Green function on (0, 1)× H. This is only possible for δ ≤ t ≤ 1. For 2 δ ≤ t ≤ 1,
the application of Proposition 8.13 under the integral is then justified if 2 l − |α| ≤ 0, and gives us
the upper bound

(1 +
√

xn)
2l−|α|+ε1

∫
(0,1)×H

(1 +
√

yn)
−ε1 |B1(y)|−1 e−

d(x,y)
C | f (s, y)| dLn+1(s, y)

for an arbitrary ε1 ≥ 0 and with a constant that depends on n, σ, l, k, α and δ. Note that we
have here exchanged xn by yn in a portion of the factor (1 +

√
xn)2l−α as we can do thanks to the

exponential decay.
For the computation of the integral we first cover H with a countable number of balls B1(y0).
Together with the triangle inequality we then get∫

(0,1)×H

(1 +
√

yn)
−ε1 |B1(y)|−1 e−

d(x,y)
C | f (s, y)| dLn+1(s, y)

≤∑
y0

∫
(0,1)×B1(y0)

(1 +
√

yn)
−ε1 |B1(y)|−1 e−

d(x,y)
C | f (s, y)| dLn+1(s, y)

≤ sup
y0

∫
(0,1)×B1(y0)

(1 +
√

yn)
−ε1 |B1(y)|−1 | f (s, y)| dLn+1(s, y)∑

y0

e−
d(x,y0)

C

and the series in the back converges uniformely in x.
We now cover the temporal interval (0, 1) by ( 1

2 R2
m, R2

m), m ∈ N0, where Rm := 2−
m
2 . Furthermore,

for any m ∈N0 and any y0 we cover B1(y0) with N(m) balls BRm(zi), zi ∈ B1(y0). This is possible
by Vitali’s covering lemma ([Koc04]), which also ensures that

N(m)

∑
i=1
|BRm(zi)|σ .n,σ |B1(y0)|σ

independent of m. Note that (2−m−1, 2−m)× BRm(zi) = QRm(zi) and we therefore now look at
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the expression

sup
y0

∑
m∈N0

N(m)

∑
i=1

∫
QRm (zi)

(1 +
√

yn)
−ε1 |B1(y)|−1 | f (s, y)| dLn+1(s, y).

Consider the cases y0,n . 1, that is the situation close to the boundary of H, and y0,n & 1 separately,
starting with the latter one away from the boundary.
If the distance of y0 to the boundary is sufficiently big, we know that |B1(y)| hn |B1(y0)| for any
y ∈ B1(y0) from Remark 5.11 and thus also (1 +

√
yn)−ε1 hn (Rm +

√zi,n)
−ε1 for any y ∈ BRm(zi)

with zi ∈ B1(y0). An application of Hölder’s inequality then shows that

sup
y0,n&1

|B1(y0)|−1 ∑
m∈N0

N(m)

∑
i=1

(Rm +
√

zi,n)
−ε1

∫
QRm (zi)

| f (s, y)| dLn+1(s, y)

≤ sup
y0,n&1

|B1(y0)|−1 ∑
m∈N0

Rε2
m

N(m)

∑
i=1

(Rm +
√

zi,n)
−ε1 |BRm(zi)| R2−ε2

m |QRm(zi)|
− 1

p ‖ f ‖Lp(QRm (zi))
.

Taking the supremum over 0 < R ≤ 1 and z ∈ H then leads to the upper bound

sup
y0,n&1

|B1(y0)|−1 ∑
m∈N0

Rε2
m

N(m)

∑
i=1
|BRm(zi)| sup

0<R≤1
z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(z)|

− 1
p ‖ f ‖Lp(QR(z))

≤ sup
0<R≤1

z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(z)|

− 1
p ‖ f ‖Lp(QR(z)) ∑

m∈N0

Rε2
m

by virtue of the Vitali-property discussed above. For any ε2 > 0 also this series converges and can
therefore be subsumed into the constant.
In the case that y0 is close to the boundary we vary the arguments slightly. First we use the rather
rough estimate (1 +

√
yn)−ε1 |B1(y)|−1 ≤ 1. The same reasoning as above then asserts that

sup
y0,n.1

∑
m∈N0

N(m)

∑
i=1

∫
QRm (zi)

| f (s, y)| dLn+1(s, y)

≤ sup
y0,n.1

|B1(y0)| sup
0<R≤1

z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(z)|

− 1
p ‖ f ‖Lp(QR(z)) ∑

m∈N0

Rε2
m

where we used that ε1 ≥ 0 and

Rm +
√

zi,n ≤ 1 +
√

zi,n .n (1 + d(zi, y0))
2 (1 +

√
y0,n) .n 1

thanks to Remark 5.18 and the fact that zi ∈ B1(y0) for
√y0,n . 1.

But for any y0,n . 1 it is also clear that |B1(y0)| .n 1 and thus the same upper bound as above
follows for any ε2 > 0.
It remains to consider the case −1 < σ < 0 that generates an additional factor (yσ

n)
χ{yn.1} .

Whenever yn . 1 – a possibility that only realises itself if y0,n . 1 – we therefore have to deal with
an additional yσ

n under the integral. The application of Hölder’s inequality then results in

sup
y0,n.1

∑
m∈N0

Rε2
m

N(m)

∑
i=1

(Rm +
√

zi,n)
−ε1 R

2(1− 1
p )−ε2

m |BRm(zi)|
1− 1

p

σ
p

p−1
‖ f ‖Lp(QRm (zi))
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if σ (1− 1
p ) > −1. The last condition is equivalent to p > 1

1+σ for −1 < σ < 0, and does not pose
a restriction on p if σ ≥ 0. Now Proposition 5.10 asserts that

|BRm(zi)|
1− 1

p

σ
p

p−1
hn,σ |BRm(zi)|

1− 1
p (Rm +

√
zi, n)2σ hn,σ |BRm(zi)|σ |BRm(zi)|

− 1
p

and a reiteration of the steps above, this time using Vitali’s lemma for the measure µσ with σ not
neccessarily 0, implies the upper bound

sup
y0,n.1

|B1(y0)|σ sup
0<R≤1

z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(z)|

− 1
p ‖ f ‖Lp(QR(z)) ∑

m∈N0

Rε2
m .

Similar as before we can conclude that |B1(y0)|σ .n,σ 1 if y0,n . 1.

Together with Proposition 9.5 this yields a pointwise estimate for any inhomogeneity on I = (0, 1)
that can be rescaled onto arbitrary intervals I = (t1, t2) by the invariant scaling Tλ of the equation,
see Remark 3.2. We first formulate the scaling of the right hand side in a separate lemma.

9.8 Lemma Let λ > 0 , s1 ∈ R and Tλ : (ŝ, ŷ) 7→ (s1 + λ ŝ, λ ŷ) := (s, y). Further let γ ∈Nn
0 .

We then have

sup
0<R≤1

z∈H

(R +
√

zn)
−ε Rθ |QR(z)|

− 1
p
∥∥∥D|γ|ŷ ( f ◦ Tλ)

∥∥∥
Lp(QR(z))

.n,p

λ|γ|+
ε
2−

θ
2 sup

0<R2≤λ
z∈H

(R +
√

zn)
−ε Rθ |QR(s1, z)|−

1
p
∥∥∥D|γ|y f

∥∥∥
Lp(QR(s1,z))

for any ε ≥ 0, θ ∈ R and any 1 ≤ p ≤ ∞.

Proof: The transformation rule for integrals and the chain rule assert that∥∥∥D|γ|ŷ ( f ◦ Tλ)
∥∥∥

Lp(QR(z))
= λ

− n+1
p +|γ|

∥∥∥D|γ|y f
∥∥∥

Lp(Tλ(QR(z)))
.

According to Lemma 6.6 we have

Tλ(QR(z)) ⊂
(

s1 +
(
√

λR)2

2
, s1 + (

√
λR)2

)
× B4c2

d

√
λR(λz).

We can now find N points λ zi ∈ B4c2
d

√
λR(λz) such that

N⋃
i=1

B√λR(λzi) cover B4c2
d

√
λR(λz). Note

that N only dependes on the dimension n. Hence we get

Tλ(QR(z)) ⊂
N⋃

i=1

Q√λR(s1, λzi)

and therefore

∥∥∥D|γ|ŷ ( f ◦ Tλ)
∥∥∥

Lp(QR(z))
.p λ

− n+1
p +|γ|

N

∑
i=1

∥∥∥D|γ|y f
∥∥∥

Lp(Q√
λR(s1,λzi))

for λ zi ∈ B4c2
d

√
λR(λz).
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Considering that

|Q√λR(s1, λz)| hn λ1+n |QR(z)|

by Proposition 5.10, the last line leads to

sup
0<R≤1

z∈H

(R +
√

zn)
−ε Rθ |QR(z)|

− 1
p
∥∥∥D|γ|ŷ ( f ◦ Tλ)

∥∥∥
Lp(QR(z))

.n,p

λ
− n+1

p +|γ|+ ε
2−

θ
2+

n+1
p

N

∑
i=1

sup
0<R≤1

z∈H

(
√

λR +
√

λzn)
−ε (
√

λR)θ |Q√λR(s1, λz)|−
1
p
∥∥∥D|γ|y f

∥∥∥
Lp(Q√

λR(s1,λzi))
.

However, due to the triangle inequality for d and the doubling property of this distance function
we get

|B√λR(λz)|−
1
p .n,p |B√λR(λzi)|

− 1
p

for any λ zi ∈ B4c2
d

√
λR(λz). But since we are taking the supremum over all z ∈ H, each summand

can be considered independently and the statement follows with an additional dependency on N
or rather n.

In the following we still allow t2 = ∞ and use the convention that r2 ≤ t2 − t1 means r2 < ∞ in
this case.

9.9 Theorem Let σ > −1, t1 > −∞ and I = (t1, t2) ⊂ R be an open interval. Further let u be a
σ-solution to f on I × H with initial value g = 0.
If l ≥ 0 and γ ≤ α ∈Nn

0 are such that l and α− γ are Green-exponents, then

sup
(t,x)∈I×H

√
t− t1

|α|+ε1−2|γ|−2+θ
(
√

t− t1 +
√

xn)
−2l+|α|−ε1 xl

n |∂α
xu(t, x)|

.n,σ,l,k,α,p,p0,θ,γ,ε1 sup
0<R2≤t2−t1

z∈H

(R +
√

zn)
−ε1 Rθ−2|γ|+ε1 |QR(t1, z)|−

1
p ‖ f ‖Lp(QR(t1,z))

+ sup
0<R2≤t2−t1

z∈H

Rθ |QR(t1, z)|−
1

p0

∥∥∥D|γ|x f
∥∥∥

Lp0 (QR(t1,z))

for any ε1 ≥ 0, θ < 2 + 2 |γ| − ε1 and max
{

1, 1
1+σ

}
< p < ∞, max

{
n+1

l−|α|+|γ|+1 , 1, 1
1+σ

}
< p0 <

∞.

Proof: Let first t1 = 0 and t2 = 1 so that u is a σ-solution to f on [0, 1)× H with initial value
0. Fix an arbitrary x ∈ H and set f1 := χQ1(x) f , f2 := (1− χQ1(x)) f . Then supp f1 ⊂ Q1(x),
supp f2 ⊂

(
[0, 1]× H

)
r Q1(x), and denoting the σ-solutions to f1 and f2 on [0, 1) × H with

vanishing initial value by u1 and u2, respectively, we also get u = u1 + u2. With Proposition 9.5
and Proposition 9.7, the latter for δ = 1

2 , we then find

xl
n |∂α

xu(1, x)| ≤ xl
n |∂α

xu1(1, x)|+ xl
n |∂α

xu2(1, x)|

.n,σ,l,k,α,γ,p0,p,ε2 (1 +
√

xn)
2l−|α| |B1(x)|−

1
p0

∥∥∥D|γ|x f1

∥∥∥
Lp0 ((0,1)×H)

+ (1 +
√

xn)
2l−|α|+ε1 sup

0<R≤1
z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(z)|

− 1
p ‖ f2‖Lp(QR(z))
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for any ε1 ≥ 0, ε2 > 0 and any max
{

1, 1
1+σ

}
< p < ∞, max

{
n+1

l−|α|+|γ|+1 , 1, 1
1+σ

}
< p0 < ∞, if

l and α− γ are Green-exponents. We use that supp f1 ⊂ Q1(x) and multiply the first summand
with 1 = 1θ before taking the supremum over 0 < R ≤ 1 and z ∈ H to see that

(1 +
√

xn)
−2l+|α|−ε1 xl

n |∂α
xu(1, x)|

.n,σ,l,k,α,p0,p,ε2 sup
0<R≤1

z∈H

Rθ |QR(z)|
− 1

p0

∥∥∥D|γ|x f
∥∥∥

Lp0 (QR(z))

+ sup
0<R≤1

z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(z)|

− 1
p ‖ f ‖Lp(QR(z))

for any ε1 ≥ 0, ε2 > 0, θ ∈ R and max
{

1, 1
1+σ

}
< p < ∞, max

{
n+1

l−|α|+|γ|+1 , 1, 1
1+σ

}
< p0 < ∞.

Turning to the rescalation of this estimate, we let now u be a σ-solution to f on (t1, t2) × H
for arbitrary t1 < t2 with initial value 0. Then u is also a σ-solution to f on (t1, t) × H for
any t ∈ (t1, t2] with vanishing initial value. Denoting the time-shifted scaling function by
Tλ : (t̂, x̂) 7→ (t1 + λ t̂, λ x̂) = (t, x) as above, for any (t, x) ∈ (t1, t2)× H we get(√

t− t1 +
√

xn
)−2l+|α|−ε1 xl

n |∂α
xu(t, x)|

= λ−
|α|
2 −

ε1
2

(√
t− t1

λ
+

√
xn

λ

)−2l+|α|−ε1 ( xn

λ

)l ∣∣∣∂α
x̂(u ◦ Tλ)(

t− t1

λ
,

1
λ

x)
∣∣∣.

Now fix a t ∈ (t1, t2) and choose λ = t− t1. The time-shifted scaling in consideration is invariant
for our equation, that is we have that u ◦ Tt−t1 is a σ-solution to (t− t1) ( f ◦ Tt−t1) on (0, 1)× H
with initial value 0 (see Remark 3.2), and we can then apply the above estimate on it to get the
inequalities(√

t− t1 +
√

xn
)−2l+|α|−ε1 xl

n |∂α
xu(t, x)|

.n,σ,l,k,α,γ,p0,p,ε2 (t− t1)
− |α|2 −

ε1
2 +1

(
sup

0<R≤1
z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(z)|

− 1
p ‖ f ◦ Tt−t1‖Lp(QR(z))

+ sup
0<R≤1

z∈H

Rθ |QR(z)|
− 1

p0

∥∥∥D|γ|x̂ ( f ◦ Tt−t1)
∥∥∥

Lp0 (QR(z))

)
.n,p,p0 (t− t1)

− |α|2 −
ε1
2 +1

(
(t− t1)

ε1
2 −1+ ε2

2 sup
0<R2≤t−t1

z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(t1, z)|−

1
p ‖ f ‖Lp(QR(t1,z))

+ (t− t1)
|γ|− θ

2 sup
0<R2≤t−t1

z∈H

Rθ |QR(t1, z)|−
1

p0

∥∥∥D|γ|x f
∥∥∥

Lp0 (QR(t1,z))

)

with Lemma 9.8. We then set ε2 := −ε1 − θ + 2 + 2 |γ|, hereby restricting ourselves to

θ < 2 + 2 |γ| − ε1.
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We have now finally reached the localised Lp-estimate we started out for earlier.

9.10 Theorem Let σ > −1, t1 > −∞ and I = (t1, t2) ⊂ R be an open interval. Further let u be a
σ-solution to f on I × H with initial value g = 0.
If l ≥ 0, k ∈ N0 and γ ≤ α ∈Nn

0 are such that l, k and α− γ are Calderón-Zygmund-exponents, then

sup
0<R2≤t2−t1

z∈H

R2k+|α|−|γ|−2+θ (R +
√

zn)
−2l+|α|−|γ| |QR(t1, z)|−

1
p0

∥∥∥( · )l
n ∂k

t ∂α
xu
∥∥∥

Lp0 (QR(t1,z))

.n,σ,l,k,α,γ,p,p0,θ sup
0<R2≤t2−t1

z∈H

(R +
√

zn)
−|γ| Rθ−|γ| |QR(t1, z)|−

1
p ‖ f ‖Lp(QR(t1,z))

+ sup
0<R2≤t2−t1

z∈H

Rθ |QR(t1, z)|−
1

p0

∥∥∥D|γ|x f
∥∥∥

Lp0 (QR(t1,z))

for any θ < 2 + |γ| and any max
{

1, 1
1+σ

}
< p, p0 < ∞.

Proof: Let first be I = (0, 1) and fix an arbitrary x0 ∈ H. We consider

f = f χQ̃1(x0)
+ f (1− χQ̃1(x0)

) =: f1 + f2.

Note that then

supp f1 ⊂ Q̃1(x0) and supp f2 ⊂
(
[0, 1]× H

)
r
(
(

1
4

, 1)× B2(x0)

)
.

This splits u into a sum of u1 and u2, σ-solution to f1 and f2, respectively.
For the on-diagonal part we use Proposition 9.6 and immediately get for almost any x0 ∈ H that

(1 +
√

x0,n)
−2l+|α|−|γ| |Q1(x0)|

− 1
p0

∥∥∥( · )l
n ∂k

t ∂α
xu1

∥∥∥
Lp0 (Q1(x0))

.n,σ,l,k,α,γ,p0,θ sup
0<R≤1

z∈H

Rθ |QR(z)|
− 1

p 0

∥∥∥D|γ|x f1

∥∥∥
Lp0 (QR(z))

for any θ ∈ R and any max
{

1, 1
1+σ

}
< p0 < ∞, if (l, k, α−γ) are Calderón-Zygmund-exponents.

Off-diagonal, on the other hand, we first note that by the triangle inequality we have B1(x) ⊂
B2(x0) for any x ∈ B1(x0). For any such x and any t ∈ [ 1

2 , 1], that is for (t, x) ∈ Q1(x0) it is
therefore clear that

supp f2 ⊂
(
[0, 1]× H

)
r
(
(

1
4

, 1)× B1(x)
)

and thus for 2 l − |α| ≤ 0 the requirements needed for 9.7 are met with δ = 1
4 . Adding the

calculation

(1 +
√

xn)
2l−|α|+ε1 .l,α,ε1 (1 +

√
x0,n)

2l−|α|+ε1

that is made possible by Remark 5.18 in these circumstances, for almost any x0 ∈ H an integration
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yields

(1 +
√

x0,n)
−2l+|α|−ε1 |Q1(x0)|

− 1
p0

∥∥∥( · )l
n ∂k

t ∂α
xu2

∥∥∥
Lp0 (Q1(x0))

.n,σ,l,k,α,p,ε1,ε2 sup
0<R≤1

z∈H

(R +
√

zn)
−ε1 R2−ε2 |QR(z)|

− 1
p ‖ f2‖Lp(QR(z))

for any ε1 ≥ 0, ε2 > 0 and any max
{

1, 1
1+σ

}
< p < ∞, 1 ≤ p0 < ∞, if 2 l − |α| ≤ 0. Together

with the on-diagonal estimates this gives the statement on (0, 1)× H if we set ε1 = |γ|.
For the rescaled version we let u now be a σ-solution to f on [t1, t2)× H with initial value g = 0.
Then u is also a σ-solution to f on [t1, t1 + r2)× H for any 0 < r2 ≤ t2 − t1 with initial value
g = 0. For the scaling

Tλ : (t̂, x̂) 7→ (t1 + λ t̂, λ x̂) =: (t, x)

we then have∥∥∥( · )l
n ∂k

t ∂α
xu
∥∥∥

Lp0 (Qr(t1,x0))
= λ

n+1
p0

+l−k−|α|
∥∥∥( ·̂ ) ∂k

t̂ ∂α
x̂(u ◦ Tλ)

∥∥∥
Lp0 (T−1

λ (Qr(t1,x0)))
.

As in the proof of Lemma 9.8 we can see that

T−1
λ (Qr(t1, x0)) ⊂

N⋃
i=1

Q r√
λ
(λ−1xi) for λ−1xi ∈ B4c2

d
r√
λ

(λ−1x0)

and a number N only depending on the dimension n. With λ = r2 and the invariance of the
time-shifted scaling that makes u ◦ Tr2 a σ-solution to r2 ( f ◦ Tr2) on (0, 1)× H, we can apply the
statement proven above in every summand to get∥∥∥( · )l

n∂k
t ∂α

xu
∥∥∥

Lp0 (Qr(t1,x0))

.n,σ,l,k,α,γ,p,p0,ε2,θ r
2n+2

p0
+2l−2k−2|α|+2

N

∑
i=1

(
1 +

√
xi,n

r2

)2l−|α|+|γ|
|Q1(r−2xi)|

1
p0

sup
0<R≤1

z∈H

(
Rθ |QR(z)|

− 1
p0

∥∥∥D|γ|x̂ ( f ◦ Tr2)
∥∥∥

Lp0 (QR(z))

+ (R +
√

zn)
−|γ| R2−ε2 |QR(z)|

− 1
p ‖ f ◦ Tr2‖Lp(QR(z))

)
.

Using the same calculations as in the proof of Theorem 9.9 for the measure of the cylinder and the
rescalation of the right hand side from Lemma 9.8 as well as ε2 := −θ + |γ|+ 2 for θ < 2 + |γ|,
we arrive at the upper bound

sup
0<R≤r

z∈H

(
Rθ |QR(t1, z)|−

1
p0

∥∥∥D|γ|x f
∥∥∥

Lp0 (QR(t1,z))
+(R +

√
zn)
−|γ| Rθ−|γ| |QR(t1, z)|−

1
p ‖ f ‖Lp(QR(t1,z))

)

r−2k−|α|+|γ|+2−θ
N

∑
i=1

(r +
√

xi,n)
2l−|α|+|γ| |Qr(xi)|

1
p0
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for xi ∈ B16c4
dr(x0). As before we use doubling and triangle inequality to see that

|Br(xi)|
1

p0 .n |Br(x0)|
1

p0

and do the same trick on

(r +
√

xi,n)
2l−|α|−|γ| hn |Br(xi)|

2l−|α|+|γ|
n r−2l+|α|−|γ|

in reversed order, since here the exponents on the ball measure are negative. This finishes the
proof.
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10 The Non-Linear Equation

We finally turn to the non-linear perturbation equation we first started out with. Following
[KL12] we would like to use a fixed point argument in special function spaces to get existence
and uniqueness for the non-linear problem. In [KT01], the choice of these function spaces was
motivated by the square function characterisation of BMO.
As noted before, the best initial values we can hope for in the transformation are contained
in a homogeneous Lipschitz space. Now we need to choose our function spaces such that the
inhomogeneity bounds the same left hand side as the Lipschitz initial values do. In light of the
estimate from Remark 7.8 we therefore have to use the pointwise bound 9.9 for l = 0 and |α| = 1.
Since there we need l and α− γ to be Green-exponents, we have to have |γ| = 1. Accordingly, to
achieve the same factors as in the bound for the initial values, we set ε1 = 1 and θ = 2. Note that
for these values of l, |α| and |γ| the condition on p0 reduces to max

{
n + 1, 1

1+σ

}
< p0 < ∞.

Now, fortunately, this very choice of the parameters |γ| and θ in the localised Lp-bound for
Calderón-Zygmund exponents by the inhomogeneity from Theorem 9.10 leads to the same
combination of factors as the ones that can be bounded by the initial values by Corollary 7.9.
Spelling out the possible combination of Calderón-Zygmund-exponents naturally suggests the
following definitions:
For an interval I = (t1, t2) ⊂ R and 1 ≤ q, p, p0 ≤ ∞ let the function spaces X := X(I, q) and
Y := Y(I, p, p0) be given by

‖u‖X(I,q) = ‖∇xu‖L∞(I×H)

+ sup
0<R2≤t2−t1

z∈H

R2 |QR(t1, z)|−
1
q ‖∇x∂tu‖Lq(QR(t1,z))

+ sup
0<R2≤t2−t1

z∈H

R (R +
√

zn) |QR(t1, z)|−
1
q
∥∥∥D2

xu
∥∥∥

Lq(QR(t1,z))

+ sup
0<R2≤t2−t1

z∈H

R2 |QR(t1, z)|−
1
q
∥∥∥( · )n D3

xu
∥∥∥

Lq(QR(t1,z))

and

‖ f ‖Y(I,p,p0)
:= sup

0<R2≤t2−t1
z∈H

R (R +
√

zn)
−1 |QR(t1, z)|−

1
p ‖ f ‖Lp(QR(t1,z))

+ sup
0<R2≤t2−t1

z∈H

R2 |QR(t1, z)|−
1

p0 ‖∇x f ‖Lp0 (QR(t1,z)) .

This defines norms modulo constants. As an intersection of complete spaces, the spaces X(I, q)
and Y(I, p, p0) are also complete.
We furthermore denote the homogeneous Lipschitz space by

Ċ0,1(H) :=
{

g : H → R : ‖∇xg‖L∞(H) < ∞
}

.
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For functions depending on time and space whose spatial gradient is bounded we will alter this
notation to Ċ0,1

x (I × H). The space X(I, q) is obviously contained in this space for any 1 ≤ q ≤ ∞.

10.1 Remark Rephrasing Remark 7.8, Corollary 7.9 and Theorems 9.9 and 9.10 in terms of these
definitions yields the following statement:
Let σ > −1, t1 > −∞, I = (t1, t2) ⊂ R be an open interval, max

{
n + 1, 1

1+σ

}
< p0 < ∞ and

max
{

1, 1
1+σ

}
< p < ∞. Further let f ∈ Y(I, p), g ∈ Ċ0,1(H) and u be a σ-solution to f on I × H

with initial value g.
Then we have

‖u‖X(I,p0)
.n,σ,p,p0 ‖g‖Ċ0,1(H) + ‖ f ‖Y(I,p,p0)

.

Now consider the non-linearity more closely and remember that we have

f [u] = −(1 + σ)
|∇xu|2

∂xn u + 1
− ( · )n ∂xn

|∇xu|2
∂xn u + 1

= −(1 + σ)
|∇xu|2

∂xn u + 1
− 2 ( · )n

∇x∂xn u · ∇xu
∂xn u + 1

+ ( · )n
|∇xu|2 ∂2

xn u
(∂xn u + 1)2 .

Thanks to the special structure of this non-linearity we can establish mapping properties of
u 7→ f [u] in the spaces defined above.
For a function space Z we denote closed balls centred at zero by BZ

ρ := {u ∈ Z | ‖u‖Z ≤ ρ}.

10.2 Proposition Let t1 > −∞, I = (t1, t2) ⊂ R, 1 ≤ p ≤ ∞ and 0 < ρ < 1.

Then the mapping BX(I,p)
ρ 3 u 7→ f [u] ∈ Y(I, p, p) is analytic and we have

‖ f [u]‖Y(I,p,p) .n,p
1

(1− ρ)3 ‖u‖
2
X(I,p) for all u ∈ BX(I,p)

ρ

as well as

‖ f [u1]− f [u2]‖Y(I,p,p) .n,p
ρ

(1− ρ)6 ‖u1 − u2‖X(I,p) for all u1, u2 ∈ BX(I,p)
ρ .

Proof: A direct calculation shows that

f [u] = f1[u] ?∇xu ?∇xu + f2[u] ?∇xu ? ( · )nD2
xu

and, for j = 1, . . . , n,

∂xj f [u] = f2[u] ?∇xu ? D2
xu + f2[u] ?∇xu ? ( · )nD3

xu + f3[u] ? D2
xu ? ( · )nD2

xu

with

fi[u] :=
i

∑
k=1

(∂xn u + 1)−k ? (∇xu)(k−1)?, i = 1, 2, 3.

Fix arbitrary 1 ≤ p, p0 ≤ ∞. The analyticity is a consequence of the fact that polynomials are ana-
lytic and the fi[u], as functions of ∇xu, can be extended into power series. In any neighbourhood

in BĊ0,1
x (I×H)

ρ this yields a power series expansion that converges in Y(I, p, p0).
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We now consider the parts of ‖ f [u]‖Y(I,p,p0)
term by term. We will drop the initial time t1 from the

notation of the cylinders as well as the set in the notation of the L∞-norm on the whole space I×H.

R (R +
√

zn)
−1 |QR(z)|

− 1
p0 ‖ f1[u] ?∇xu ?∇xu‖Lp0 (QR(z))

≤ ‖ f1[u]‖L∞ ‖∇xu‖2
L∞ ,

since ‖∇xu‖Lp0 (QR(z)) ≤ ‖∇xu‖L∞ |QR(z)|
1

p0 and (R +
√

zn)−1 ≤ R.

R (R +
√

zn)
−1 |QR(z)|

− 1
p0

∥∥∥ f2[u] ?∇xu ? ( · )nD2
xu
∥∥∥

Lp0 (QR(z))

. ‖ f2[u]‖L∞ ‖∇xu‖L∞ R (R +
√

zn) |QR(z)|
− 1

p0

∥∥∥D2
xu
∥∥∥

Lp0 (QR(z0))
,

this time since
√

xn . R +
√

zn for any x ∈ BR(z).

R2 |QR(z)|
− 1

p
∥∥∥ f2[u] ?∇xu ? D2

xu
∥∥∥

Lp(QR(z))

≤ ‖ f2[u]‖L∞ ‖∇xu‖L∞ R (R +
√

zn) |QR(z)|
− 1

p
∥∥∥D2

xu
∥∥∥

Lp(QR(z0))
,

again with R ≤ R +
√

zn.

R2 |QR(z)|
− 1

p
∥∥∥ f2[u] ?∇xu ? ( · )nD3

xu
∥∥∥

Lp(QR(z))

≤ ‖ f2[u]‖L∞ ‖∇xu‖L∞ R2 |QR(z)|
− 1

p
∥∥∥D2

xu
∥∥∥

Lp(QR(z0))

straightforward.

R2 |QR(z)|
− 1

p
∥∥∥ f3[u] ? D2

xu ? ( · )nD2
xu
∥∥∥

Lp(QR(z))

≤ ‖ f3[u]‖L∞ R2 |QR(z)|
− 1

p
∥∥∥( · )n |D2

xu|2
∥∥∥

Lp(QR(z))

.n,p ‖ f3[u]‖L∞ ‖∇xu‖L∞ R2 |QR(z)|
− 1

p
∥∥∥( · )nD3

xu
∥∥∥

Lp(QR(z))

thanks to the identity

∥∥∥( · )n |D2
xu|2

∥∥∥
Lp(QR(z))

=

∥∥∥∥( · ) 1
2
n D2

xu
∥∥∥∥2

L2p(QR(z))

and the weighted Gagliardo-Nirenberg interpolation inequality from Proposition 2.18 in its local
form.
Setting p = q = p0 we thus see that by the definition of X(I, q) we have

‖ f [u]‖Y(I,p,p) .n,p (‖ f1[u]‖L∞ + ‖ f2[u]‖L∞ + ‖ f3[u]‖L∞) ‖u‖2
X(I,p) .
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10 The Non-Linear Equation

We therefore only need to consider ‖ fi‖L∞ for i = 1, 2, 3. By assumption we have u ∈ BĊ0,1(H)
ρ

with ρ < 1 and hence both

‖∇xu‖L∞ ≤ ρ and ‖∂xn u + 1‖−k
L∞ ≤ (1− ρ)−k.

It follows that

‖ fi[u]‖L∞ ≤
i

∑
k=1

ρk−1

(1− ρ)k

which implies

‖ f [u]‖Y(I,p,p) .n,p

3

∑
k=1

ρk−1

(1− ρ)k ‖u‖
2
X(I,p)

and thus the first inequality.
We turn to the second inequality and note that for the first term we have

f1[u1] ?∇xu1 ?∇xu1 − f1[u2] ?∇xu2 ?∇xu2 =( f1[u1]− f1[u2]) ?∇xu1 ?∇xu1

+ f1[u2] ?∇x(u1 − u2) ?∇xu1

+ f1[u2] ?∇xu2 ?∇x(u1 − u2)

and likewise for the other terms. In the resulting summands we can proceed exactly as before
and get an estimate

‖ f [u1]− f [u2]‖Y(I,p,p)

.n,p

3

∑
i=1

(
‖ fi[u1]− fi[u2]‖L∞ ‖u1‖2

X(I,p) + ‖ fi[u2]‖L∞ (‖u1‖X(I,p) + ‖u2‖X(I,p)) ‖u1 − u2‖X(I,p)

)
.

Note that in the part involving f3[u] we use Hölder’s inequality to obtain∥∥∥( · )n D2
xu1 D2

x(u1 − u2)
∥∥∥

Lp(QR(z))

≤
∥∥∥∥( · ) 1

2
n D2

xu1

∥∥∥∥
L2p(QR(z0))

∥∥∥∥( · ) 1
2
n D2

x(u1 − u2)

∥∥∥∥
L2p(QR(z0))

.n,p ‖u1‖
1
2
L∞

∥∥∥( · )n D3
xu1

∥∥∥ 1
2

Lp(QR(z))
‖u1 − u2‖

1
2
L∞

∥∥∥( · )n D3
x(u1 − u2)

∥∥∥ 1
2

Lp(QR(z))

with the interpolation inequality applied onto both factors.
In view of the first part it remains to estimate the terms

fi[u1]− fi[u2] =
i

∑
k=1

((
(∂xn u1 + 1)−k − (∂xn u2 + 1)−k

)
? (∇xu1)

(k−1)?

+ (∂xn u2 + 1)−k ?∇x(u1 − u2) ?
k−1

∑
l=1

(∇xu1)
(l−1)?(∇xu2)

(k−1−l)?

)
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for i = 1, 2, 3. But it is clear that

(∂xn u1 + 1)−k − (∂xn u2 + 1)−k

= (∂xn u2 − ∂xn u1) (∂xn u1 + 1)−k (∂xn u2 + 1)−k
k

∑
l=1

l−1

∑
m=0

(
k
l

)
(−1)k−l ∂xn um

2 ∂xn ul−1−m
1

and thus, because of u1, u2 ∈ BX
ρ and ρ < 1, we get

∥∥∥(∂xn u1 + 1)−k − (∂xn u2 + 1)−k
∥∥∥

L∞
. ‖∂xn(u1 − u2)‖L∞ (1− ρ)−2k

k

∑
l=1

ρl−1

and consequently

‖ fi[u1]− fi[u2]‖L∞ . ‖u1 − u2‖X(I,p)

i

∑
k=1

(
ρk−1

(1− ρ)2k +
ρk−2

(1− ρ)k

)
.

Using

‖u1‖2
X(I,p) ≤ ρ (‖u1‖X(I,p) + ‖u2‖X(I,p)),

all this amounts to

‖ f [u1]− f [u2]‖Y(I,p,p) .n,p

3

∑
k=1

ρk−1

(1− ρ)2k (‖u1‖X(I,p) + ‖u2‖X(I,p)) ‖u1 − u2‖X(I,p) ,

finishing the proof.

This allows us to close the argument for the non-linear equation by means of a fixed point theorem
in a way that closely follows [KL12]. With an idea developped in [Ang90] that was pushed further
also by [KL12], we additionally get analyticity in the temporal and tangential directions of the
solution we will construct as a consequence.

10.3 Theorem Let σ > −1, t1 > −∞ and I = (t1, t2) ⊂ R be an open interval. Further let
max

{
n + 1, 1

1+σ

}
< p < ∞.

Then there exists an ε > 0 and a C(n, σ) > 1 such that for any g ∈ BĊ0,1(H)
ε we can find a σ-solution

u∗ ∈ X(I, p) for the non-linear perturbation equation on I × H with initial value g and satisfying
‖u∗‖X(I,p) .n,σ,p ‖g‖Ċ0,1(H) that is unique within BX(I,p)

Cε .
Moreover, u∗ depends analytically on the data g, we have u∗ ∈ C∞(I × H), and u∗ is analytic in the
temporal and tangential directions on I × H with an r > 0 such that

sup
(t,x)∈I×H

(t− t1)
k+|α′ | |∂k

t ∂α′
x′∇xu∗(t, x)| .n r−k−|α′ | k! α′! ‖g‖Ċ0,1(H)

for any k ∈N0 and α′ ∈Nn−1
0 with k + |α′| > 0.

Proof: In this proof the same arguments as in [KL12, Theorem 3.1.] apply. So define the function

F : Ċ0,1(H)× X(I, p)→ X(I, p)

by assigning (g, u) ∈ Ċ0,1(H)× X(I, p) to the σ-solution to f [u] on I × H with initial value g. By
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10 The Non-Linear Equation

Remark 10.1 and Proposition 10.2 we can find a ρ1 > 0 and an ε1 > 0 such that for any g ∈ BĊ0,1(H)
ε1

the map F(g, ·) is a contraction within BX(I,p)
ρ1

. Hence the contraction mapping principle provides

us with a unique fixed point u∗ ∈ BX(I,p)
ρ1

that depends on g in a Lipschitz continuous way. Thus
u∗ is the unique global σ-solution for the non-linear equation with initial value g. The bound on
‖u∗‖X(I,p) especially implies that u∗ is Lipschitz in time and space. By [Koc99, Theorem 5.6.1.]
the smoothness of u∗ follows.
But moreover, F and therefore also

G : Ċ0,1(H)× X(I, p)→ X(I, p), G(g, u) := u− F(g, u)

are analytic on Ċ0,1(H)× BX(I,p)
ρ1

. Since G(0, 0) = 0 and DuG(0, 0) = id, the analytic implicit
function theorem on Banach spaces is applicable ([Dei85]) and yields the existence of balls

BĊ0,1(H)
ε2

⊂ Ċ0,1(H) and BX(I,p)
ρ2

⊂ BX(I,p)
ρ1

alongside with an analytic function

A : BĊ0,1(H)
ε2 → BX(I,p)

ρ2

that satisfies A(0) = 0 and F(g, u) = u for any g ∈ BĊ0,1(H)
ε2 and u ∈ BX(I,p)

ρ2 if and only if

u = A(g). By the uniqueness of the fixed point in BX(I,p)
ρ1

⊃ BX(I,p)
ρ2 above we conclude that A

sends g ∈ BĊ0,1(I)
ε3 to u∗ analytically, where ε3 := min {ε1, ε2}.

We now consider (τ, ξ ′) ∈ BR
κ1
(1)× BRn−1

δ1
and define

fτ,ξ ′ [u] := τ f [u]− (1− τ) Lσu− ξ ′ · ∇′xu.

Note that then f1,0[u] = f [u]. Similar as above we define

F̃ : BR
κ1
(1)× BRn−1

δ1
× Ċ0,1(H)× BX(I,p)

ρ2 → X(I, p)

that maps (τ, ξ ′, g, u) to the σ-solution to g and fτ,ξ ′ [u] on I × H. A straightforward calculation as
in the proof of Proposition 10.2 shows that we have∥∥∥F̃(τ, ξ ′, g, u)

∥∥∥
X(I,p)

.n,σ,p ‖g‖Ċ0,1 + τ ‖u‖2
X(I,p) + (|1− τ|+ |ξ ′|) ‖u‖X(I,p) .

Hence we can conclude that Du F̃|(1,0,0,0) vanishes. Applying the analytic implicit function theorem
once more, this time on

G̃ := idX(I,p)−F̃

at the point (τ, ξ ′, g, u) = (1, 0, 0, 0) we then obtain the existence of κ2 < κ1, δ2 < δ1, ρ3 < ρ2 and
ε4 as well as a unique analytic function

Ã : BR
κ2
(1)× BRn−1

δ2
× BĊ0,1(H)

ε4 → BX(I,p)
ρ3
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such that

G̃(τ, ξ ′, g, Ã(τ, ξ ′, g)) = 0.

For (τ, ξ ′) ∈ BR
κ2
(1)× BRn−1

δ2
and (t, x) ∈ I × H let us now consider the transformation

T : (τ, ξ ′, t, x) 7→ (τ(t− t1) + t1, x′ − ξ ′(t− t1), xn).

A simple calculation shows that u ◦ T(τ, ξ ′, ·, ·) is a σ-solution to fτ,ξ ′ [u] on [t1, τ(t2− t1)+ t1)×H
with initial value g if u is a σ-solution to f [u] on I × H with initial value g. Therefore we have that

G̃(τ, ξ ′, A(g) ◦ T(τ, ξ ′, ·, ·)) = 0.

It is also clear that

A(g) ◦ T(τ, ξ ′, t1, ·) = g = Ã(τ, ξ ′, g)(t1, ·)

and thus the above uniqueness results for ε := min {ε3, ε4} and ρ3 imply that A(·) ◦ T = Ã.

Especially, u∗ ◦ T(·, ·, t, x) is analytic as a function of τ and ξ ′ into X(I, p) near τ = 1 and ξ ′ = 0
for any (t, x) ∈ I × H. For finite t we have that∣∣∇x∂τ(u∗ ◦ T(τ, ξ ′, t, x))|(τ,ξ ′)=(1,0)

∣∣ = ∣∣∇x(t− t1) ∂tu∗(t, x)
∣∣,∣∣∇x∂ξ j(u∗ ◦ T(τ, ξ ′, t, x))|(τ,ξ ′)=(1,0)

∣∣ = ∣∣−∇x(t− t1) ∂xj u∗(t, x)
∣∣ for j = 1, . . . , n− 1

with similar formulas for higher order and mixed derivatives. This implies the analyticity of u∗
on I ×Rn in t and x′ as well as the formula given in the statement.

10.4 Remark It is shown in [Koc99, Proposition 6.3.1.] that our solution u∗ and all its temporal
derivatives are also analytic on I × H in any spatial direction including the vertical one. We conjecture
that u∗ is indeed analytic on I × H in time and space.
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A Singular Integrals in Spaces of Homogeneous

Type

Measure Theory

We introduce some notions and notations of measure theory on arbitrary sets as well as topological
spaces. For a deeper treatment consult [Els07], [EG92] or [Fed69]. The power set of a set X is
denoted by P(X).

A.1 Definition Consider an arbitrary set X.
We say that µ : P(X) −→ [0, ∞) ∪ {∞} is a measure on X if and only if

• µ(∅) = 0,

• µ(A1) ≤ µ(A2) for all A1 ⊂ A2 ⊂ X (monotonicity),

• µ(
⋃

j∈N

Aj) ≤ ∑
j∈N

µ(Aj) for all (Aj)j∈N ⊂ P(X) (countable sub-additivity).

What we call measure here is often referred to as outer measure in the literature. A set endowed
with a measure is also called measure space.
Remark that µ ≥ 0 actually follows from the conditions in the definition and thus would not have
to be assumed. On the other hand, it is not excluded by definiton that a measure takes on infinite
values. A measure that decomposes its underlying set into subsets with finite measure is easier to
handle.

A.2 Definition Consider an arbitrary set X and a measure µ on X.
We say that µ is countably finite if and only if there exist (Aj)j∈N ⊂ P(X) such that µ(Aj) < ∞ for any
j ∈N and

X =
⋃

j∈N

Aj.

By our definition, a measure assigns a number to any subset of X, thus measuring it. Nonetheless,
for a subset to be called measurable we require an additional property.

A.3 Definition Consider an arbitrary set X and a measure µ on X.
We say that A ⊂ X is measurable if and only if

µ(C ∩ A) + µ(C ∩ Ac) ≤ µ(C) for all C ⊂ X.

The collection of all measurable subsets of X is denoted by Aµ(X).

Because of the monotonicity this means that a subset is measurable if and only if it divides all
other subsets in a measure-theoretically correct way. It is easy to see that any nullset is measurable,
as are X itself and ∅, and that Aµ(X) is closed with respect to complement and countable union.
Moreover, µ is countably additive on its measurable sets.
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A.4 Proposition Let X be an arbitrary set and µ be a measure on X.
Then

µ(
⋃

j∈N

Aj) = ∑
j∈N

µ(Aj) for all disjoint Aj ∈ Aµ(X).

On a topological space X, the family of sets that is generated by the open subsets through
complement and countable union are denoted by B(X). The elements of B(X) are called Borel
sets.

A.5 Definition Consider a topological space X and a measure µ on X.
We say that µ is a Borel measure if and only if B(X) ⊂ Aµ(X).

A Borel measure is therefore a measure for which at least the Borel sets are measurable, including
all open and all closed subsets of X. Caratheodory proved that on metrisable topological spaces
with metric dX there is another characterisation of Borel measures.

A.6 Proposition Let X be a metrisable topological space and µ be a measure on X. We then have:
µ is a Borel measure if and only if

µ(A1 ∪ A2) = µ(A1) + µ(A2) for all A1, A2 ⊂ X with dX(A1, A2) > 0.

A proof can for example be found in [Fal85].
Still, of course, not all subsets are necessarily measurable. Measures that can compensate this
deficit are called regular.

A.7 Definition Consider an arbitrary set X and a measure µ on X.
We say that µ is regular if and only if for all A ⊂ X there exists a measurable set C ∈ Aµ(X) such that
C ⊃ A and µ(C) = µ(A).

The following definition sharpens the notion of a regular Borel measure a little, but decisive bit
further.

A.8 Definition Consider a topological space X and a Borel measure µ on X.
We say that µ is Borel regular if and only if for all A ⊂ X there exists a Borel set B ∈ B(X) such that
B ⊃ A and µ(B) = µ(A).

Instead of a Borel regular Borel measure we will merely speak of a Borel regular measure.
On certain topological spaces we can make sense of a local form of finiteness. Remember that in a
Hausdorff space any compact set is closed.

A.9 Definition Consider a locally compact Hausdorff space X and a measure µ on X.
We say that µ is locally finite if and only if we have µ(K) < ∞ for any compact K ⊂ X.

Local compactness is often included in the definition of local finiteness, demanding that for any
x ∈ X there exists a compact neighbourhood with finite measure. However, a clearer separation
of topological and measure theoretical properties is achieved by means of our definitions.
Locally finite Borel regular measures get a name in their own right.

A.10 Definition Consider a locally compact Hausdorff space X and a measure µ on X.
We say that µ is a Radon measure if and only if µ is a locally finite and Borel regular measure.
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Radon measures possess another regularity property that is important.

A.11 Definition Consider a Hausdorff space X and a measure µ on X.
We say that µ is tight if and only if

µ(B) = sup {µ(K) | K compact and K ⊂ B} .

A.12 Proposition Let X be a locally compact Hausdorff space and µ be a measure on X.
If µ is a Radon measure, then µ is tight.

This is proven for example in [EG92].
We recall now that metrisable topological spaces are Hausdorff. Balls with radius r centred at
x ∈ X taken with respect to the metric dX on X are denoted by BX

r (x).

A.13 Definition Consider a metrisable topological space X and a measure µ on X.
µ is called doubling if and only if

µ(BX
2r(x)) . µ(BX

r (x)) for any r > 0 and x ∈ X.

We do not include the doubling constant explicitely into the definition, but would like to point
out that it is not allowed to depend on any parameter at all. By monotonicity it is also obvious
that the converse inequality holds without a constant.
Metric spaces that are endowed with a measure that is compatible with the metric as well as
regular are important. They are close enough to the euclidean space, equipped with the Lebesgue
measure, as to gain a lot of the results that hold in this model case.

A.14 Definition We say that a metrisable locally compact topological space with a non-trivial doubling
Radon measure is a space of homogeneous type.

It is also possible to give a general definition that requires a quasi-metric on the measure space.
However, we consent ourselves to the framework presented here.

Lebesgue Spaces

We study real-valued functions on measure spaces.

A.15 Definition Consider an arbitrary set X, a measure µ on X and a function u : X −→ R.
We say that u is measurable if and only if u−1(B) ∈ Aµ(X) for any B ∈ B(R).

For measurable functions u on X, the construction of the integral over a measurable set A ⊂ Aµ(X)

with respect to µ, denoted by ∫
A

u dµ,

can be done via positive simple functions and indicator functions in the usual way. Note that the
measurability of u implies that |u| is also measurable.
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A.16 Definition Consider an arbitrary set X, a measure µ on X and a measurable set A ∈ Aµ(X), as
well as a measurable function u : X −→ R and 1 ≤ p < ∞.
We say that u is p-integrable on A if and only if∫

A

|u|p dµ < ∞.

For p = 1 we simply say integrable instead of 1-integrable.
There is a similar notion for p = ∞. By the essential supremum of a function u on a measurable
set A we mean

ess sup
A

u := inf {c ∈ R : µ(x ∈ A : f (x) > c) = 0} .

A.17 Definition Consider an arbitrary set X, a measure µ on X, and a measurable set A ∈ Aµ(X), as
well as a measurable function u : X −→ R and 1 ≤ p < ∞.
We say that u is essentially bounded or ∞-integrable on A if and only if

ess sup
A
|u| < ∞.

We can now define the Lebesgue spaces.

A.18 Definition Consider an arbitrary set X, a measure µ on X and a measurable set A ∈ Aµ(X), as
well as 1 ≤ p ≤ ∞.
The p-Lebesgue space on A is defined as

Lp(A, µ) := {u : X −→ R | u is p-integrable on A} .

After identifying functions that coincide almost everywhere, these spaces become Banach spaces
with the norms

‖u‖Lp(A,µ) :=

∫
A

|u|p dµ

 1
p

, 1 ≤ p < ∞

and

‖u‖L∞(A,µ) := ess sup
A
|u|.

Regarding the dual spaces of the Lebesgue spaces up to isometric isomorphisms, the following is
known.

A.19 Proposition Let X be an arbitrary set, µ be a measure on X and A ∈ Aµ(X).

(i) If 1 < p < ∞, then Lp(A, µ)′ = L
p

p−1 (A, µ).

(ii) If µ is countably finite, then L1(A, µ)′ = L∞(A, µ).

Briefly, we now consider operators between Lebesgue spaces that are given by a kernel. In this
context the following result, called Schur’s lemma, is important. A proof is contained in [Fol84].
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A.20 Proposition Let X and Y be arbitrary sets, µ be a measure on X and ν be a measure on Y,
A ∈ Aµ(X) and C ∈ Aν(Y). Furthermore, let k : A× C −→ R be µ× ν-measurable.
If ∫

A

|k(x, y)| dµ(x) < ∞ for ν− almost every y ∈ C

and ∫
C

|k(x, y)| dν(y) < ∞ for µ− almost every x ∈ A,

then

T : f 7→
∫
C

k(·, y) f (y) dν(y)

maps Lp(A, µ) into Lp(C, ν) continuously and we have

‖T f ‖Lp(C,ν) . ‖ f ‖Lp(A,µ)

for any 1 ≤ p ≤ ∞.

On topological spaces with Borel measures, there is a local version of the Lebesgue spaces as well.

A.21 Definition Consider a topological space X, a Borel measure µ on X and a measurable set A ∈
Aµ(X), as well as 1 ≤ p ≤ ∞.
The local p-Lebesgue space on A is defined as

Lp
loc(A, µ) := {u : X −→ R | u is p-integrable on K for any compact K ⊂ A} .

Any Lebesgue space is clearly contained in its corresponding local Lebesgue space. Local finiteness
also guarantees a relation among local Lebesgue spaces.

A.22 Proposition Let X be locally compact Hausdorff space, µ be a measure on X and A ∈ Aµ(X).
If µ is a locally finite Borel measure, then

Lp
loc(A, µ) ⊂ Lp

loc(A, µ) for any 1 ≤ p ≤ p ≤ ∞.

Muckenhoupt Weights

We are now concerned with weighted measures in spaces of homogeneous type. The proofs of
the following statements can be found in [Koc04].

A.23 Definition Consider a space of homogeneous type (X, d, µ) as well as a µ-measurable function
ν : X −→ [0, ∞) and 1 < p < ∞.
We say that ν is a p-Muckenhoupt weight on (X, d, µ) if and only if

sup
B ball

µ(B)−1
∫
B

ν dµ

µ(B)−1
∫
B

ν
− 1

p−1 dµ

p−1

. 1.

131



A Singular Integrals in Spaces of Homogeneous Type

The class of p-Muckenhoupt weights on (X, d, µ) is denoted by Ap(X, d, µ).

In the sequel we often identify the Muckenhoupt weight ν with the measure ν dµ.

There is a characterisation of the p-Muckenhoupt weights in terms of the locally integrable
functions on (X, d, µ).

A.24 Proposition Let (X, d, µ) be a space of homogeneous type, 1 < p < ∞ and ν ≥ 0 a µ-measurable
function on X. We then have:
ν is a p-Muckenhoupt weight if and only if∣∣∣∣∣∣µ(B)−1

∫
B

u dµ

∣∣∣∣∣∣
p

. ν(B)−1
∫
B

|u|p dν

for any ball B and any u ∈ L1
loc(X, µ).

The doubling property is inherited by Muckenhoupt weights.

A.25 Proposition Let (X, d, µ) be a space of homogeneous type and 1 < p < ∞.
If ν ∈ Ap(X, d, µ), then ν is a doubling measure on X with respect to d.

Finally, we state a duality property of Muckenhoupt classes.

A.26 Proposition Let (X, d, µ) be a space of homogeneous type and 1 < p < ∞. We then have:

ν ∈ Ap(X, d, µ) if and only if ν
− 1

p−1 ∈ A p
p−1

(X, d, µ).

Maximal Functions

We discuss three different maximal functions in the general setting of a space of homogeneous
type (X, d, µ) and study their relationship. The basic reference for this material is [Ste93]. It was
noted by [CW77] that the arguments do not depend on the euclidean structure of the underlying
space. We orientate ourselves at [Koc04] and [Koc08], where also the proofs we omit can be found.

For the definition of the maximal function, for any fixed ball Br(x0) we introduce a class of
functions

L(Br(x0)) :=

{
ϕ ∈ C(X) | |ϕ(x)| ≤ µ(Br(x0))

−1
max {r− d(x, x0), 0}

r
for any x ∈ Br(x0),

|ϕ(x)− ϕ(y)| ≤ µ(Br(x0))
−1 d(x, y)

r
for any x, y ∈ Br(x0)

}
.

Obviously, we have ‖ϕ‖L∞(X,µ) ≤ |Br(x0)|−1 and supp ϕ ⊂ Br(x0) as well as −ϕ ∈ L(Br(x0)) for
any ϕ ∈ L(Br(x0)).

A.27 Definition Consider f ∈ L1
loc(X, µ).

• The maximal function of f is given by

M f (x) := sup
B ball
B3x

sup
ϕ∈L(B)

∫
X

f ϕ dµ for any x ∈ X.
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• The Hardy-Littlewood maximal function of f is given by

MHL f (x) := sup
B ball
B3x

µ(B)−1
∫
B

| f | dµ for any x ∈ X.

• The maximal oscillation function of f is given by

f #(x) := sup
B ball
B3x

µ(B)−1
∫
B

∣∣∣ f − µ(B)−1
∫
B

f dµ
∣∣∣ dµ.

M f , MHL f and f # are all µ-measurable by their definitions. Furthermore, it is immediately clear
that

0 ≤ M f (x) ≤ MHL f (x) for any x ∈ X

holds as well as

f #(x) . MHL f (x) for any x ∈ X.

The first result is a weak-type L1-estimate for MHL whose proof requires the use of the Vitali
covering theorem ([Koc04]).

A.28 Proposition Let f ∈ L1(X, µ).
Then

µ({x ∈ X | MHL f (x) > λ}) . 1
λ
‖ f ‖L1(X,µ) .

From there we get Lp-boundedness of the Hardy-Littlewood maximal operator if 1 < p < ∞.

A.29 Proposition Let 1 < p < ∞ and f ∈ Lp(X, µ).
Then

‖MHL f ‖Lp(X,µ) .p ‖ f ‖Lp(X,µ) .

Immediate consequences are the bounds

(∗) ‖M f ‖Lp(X,µ) .p ‖ f ‖Lp(X,µ)

and

(∗ ∗)
∥∥∥ f #
∥∥∥

Lp(X,µ)
.p ‖ f ‖Lp(X,µ)

for any 1 < p < ∞.

It turns out that any weight function for which MHL is bounded on Lp(X, ν) is a p-Muckenhoupt
weight. Moreover, the class Ap(x, d, µ) is indeed characterised by the behaviour of the Hardy-
Littlewood maximal function. The proof of this requires a reverse Hölder inequality which in
turn depends on an adjusted Whitney-type theorem ([Koc04]).
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A.30 Proposition Let 1 < p < ∞ and ν ∈ L1
loc(X, µ) with ν ≥ 0. We then have:

MHL is a bounded operator on Lp(X, ν) if and only if ν ∈ Ap(X, d, µ).

The maximal function and the maximal oscillation function are dual objects in a certain sense.
This is a famous result due to Fefferman in the euclidean setting. For the proof in spaces of
homogeneous type we need a decomposition of L1(X, µ)-functions into a sum of so-called atoms,
characterised by their bounded support, mean zero and controlled size in terms of their maximal
function, and a bounded function. The duality statement then reads as follows.

A.31 Proposition Let 1 < p < ∞, f1 ∈ Lp(X, µ) and f2 ∈ L
p

p−1 (X, µ).
Then ∫

X

f1 f2 dµ .
∫
X

M f1 f #
2 dµ.

This implies that also the converse of the above inequality (∗ ∗) involving the maximal oscillation
function holds. The proof also uses (∗).

A.32 Corollary Let 1 < p < ∞ and f ∈ Lp(X, µ).
Then

‖ f ‖Lp(X,µ) .p

∥∥∥ f #
∥∥∥

Lp(X,µ)
.

Actually, the same inequality holds for any p-Muckenhoupt weight ν.

A.33 Remark With the maximal function and the maximal oscillation function it is possible to define
the Hardy space H1(X, d, µ) and the space of functions of bounded mean oscillation BMO(X, d, µ),
respectively. Proposition A.31 then ensures the duality of these spaces.

Singular Integrals of Calderón-Zygmund-Type

We return to integral kernel operators now, this time explicitely considering singular kernels that
satisfy certain cancellation conditions.

A.34 Definition Consider 1 < q < ∞ and a bounded linear operator T from Lq(X, µ) into itself that is
given by a µ× µ measurable kernel k : X× X −→ R such that

y 7→ k(x, y) ∈ L1
loc(X r {x} , µ),

x 7→ k(x, y) ∈ L1
loc(X r {y} , µ),

and for any compactly supported f ∈ L∞(X, µ) ∩ Lq(X, µ) we have

T f (x) =
∫
X

k(x, y) f (y) dµ(y) for all x ∈ (supp f )c.

We say that T is a Calderón-Zygmund operator on Lq(X, µ) if in addition the kernel k satisfies the
Calderón-Zygmund cancellation conditions

|k(x, y)| .
(

µ(Bd(x,y)(x)) + µ(Bd(x,y)(y))
)−1

for any x 6= y ∈ X,
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and

|k(x, y)− k(x, y)| .
(

µ(Bd(x,y)(x)) + µ(Bd(x,y)(y))
)−1

(
d(x, x) + d(y, y)
d(x, y) + d(x, y)

)δ

for any x 6= y ∈ X and x 6= y ∈ X with

d(x, x) + d(y, y)
d(x, y) + d(x, y)

≤ ε

for some ε ∈ (0, 1) and some δ ∈ (0, 1].

Decomposing the function f at a given point into one function supported close to x and one
supported away from x, the cancellation conditions ensure the following pointwise estimate for
Calderón-Zygmund operators.

A.35 Proposition Let 1 < q < ∞, T be a Calderón-Zygmund operator on Lq(X, µ) and f ∈ Lq(X, µ).
Then

(T f )#(x) .q (M(| f |q)(x))
1
q for almost all x ∈ X.

Together with corollary A.32 and (∗), the last proposition enables us to show the crucial Calderón-
Zygmund bound in spaces of homogeneous type.

A.36 Proposition Let 1 < q < ∞.
If T is a Calderón-Zygmund operator on Lq(X, µ), then for any 1 < p < ∞ we have that T is an operator
on Lp(X, µ) with

‖T f ‖Lp(X,µ) .p ‖ f ‖Lp(X,µ) .

Finally, this continues to hold for Muckenhoupt weights thanks to the extension of Corollary A.32
for this case.

A.37 Proposition Let 1 < q < ∞.
If T is a Calderón-Zygmund operator on Lq(X, µ), then for 1 < p < ∞ and ν ∈ Ap(X, d, µ) we have that
T is an operator on Lp(X, ν) with

‖T f ‖Lp(X,ν) .p ‖ f ‖Lp(X,ν) .
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SUMMARY

We are concerned with the Cauchy problem for the porous medium equation and prove stability
and regularity of the pressure of solutions close to flat fronts under conditions on the initial data
that are optimal for the methods we use.
To this end we consider a perturbed travelling wave solution of the transformed porous medium
pressure equation on the closed upper half space and obtain stability in the homogeneous
Lipschitz sense, temporal and tangential analyticity and precise estimates of derivatives. This
type of stability is the least possible one enabling us to perform a change of dependent and
independent variables that allows to transfer the results to the positivity set of the porous medium
equation.
The major part of the argument concentrates on the linear perturbation equation on the closed
upper half space. In a first step we define a weak notion of energy solution and show that
such solutions satisfy an energy identity and energy estimates. A localisation of these results in
terms of an intrinsic metric induced by the spatial part of the linear differential operator is then
extended to a pointwise estimate, and thus smoothness for local solutions follows. For solutions
to the initial value problem on the closed half space, an exponential factor can be included in
the arguments to give estimates against rough norms of initial data. But moreover, we also get
a pointwise exponential decay estimate of any derivative of the Green function with an upper
bound resembling the Gaussian function with respect to the intrinsic metric and a naturally arising
weighted measure. Consequences of the Gaussian estimate are on-diagonal and off-diagonal
kernel estimates that imply a global pointwise estimate against the inhomogeneity. Furthermore,
the theory of singular integrals and Calderón-Zygmund operators in spaces of homogeneous
type can be applied to find a globally valid localised Lp-estimates against the inhomogeneity.
From there we turn to the nonlinear equation. The linear results suggest to construct certain
function spaces in which the special shape of the nonlinearity leads to the possibility of operating
a fixed point argument to get existence and uniqueness of solutions as well as Lipschitz continuity
and thus smoothness. As a byproduct, varying the argument slightly provides us with the means
to get analyticity in any direction save the vertical one, alongside with a precise estimate for the
perturbation.
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