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ABSTRACT

Vision-based human action recognition has attracted considerable interest in
recent research for its applications to video surveillance, content-based search,
healthcare, and interactive games. Most existing research deals with build-
ing informative feature descriptors, designing efficient and robust algorithms,
proposing versatile and challenging datasets, and fusing multiple modalities.
Often, these approaches build on certain conventions such as the use of motion
cues to determine video descriptors, application of off-the-shelf classifiers, and
single-factor classification of videos. In this thesis, we deal with important
but overlooked issues such as efficiency, simplicity, and scalability of human
activity recognition in different application scenarios: controlled video environ-
ment (e.g. indoor surveillance), unconstrained videos (e.g. YouTube), depth or
skeletal data (e.g. captured by Kinect), and person images (e.g. Flicker). In
particular, we are interested in answering questions like (a) is it possible to ef-
ficiently recognize human actions in controlled videos without temporal cues?
(b) given that the large-scale unconstrained video data are often of high di-
mension low sample size (HDLSS) nature, how to efficiently recognize human
actions in such data? (c) considering the rich 3D motion information available
from depth or motion capture sensors, is it possible to recognize both the ac-
tions and the actors using only the motion dynamics of underlying activities?
and (d) can motion information from monocular videos be used for automati-
cally determining saliency regions for recognizing actions in still images?

Our research answers these questions by proposing efficient and scalable ap-
proaches. Our methods are distinguished by naive but efficient feature ex-
traction, sparse coding, instance-based learning and latent factor analysis. In
particular, we (a) devise an efficient discriminative key poses approach for ac-
tion recognition in videos that is independent of temporal context (b) present
an efficient and scalable nearest affine hull method to HDLSS activity classifi-
cation based on least squares optimization and QR-factorization (c) present a
hierarchical bilinear factorization approach of style and content separation to
recognize actions and actors in 3D data (depth, motion capture, motion history
volumes) and (d) propose a non-negative matrix factorization based approach
to determine action signatures from videos that are later used as saliency maps
for classification of images. Our experimental results on a number of popular
action datasets show significant achievements in terms of accuracy, scalability
and efficiency.
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Chapter 1

Introduction

1.1 Overview/Motivation

Visual perception is the ability to detect and process visible light to inter-

pret the surrounding environment. Computer vision is the field of science that

aims to duplicate the abilities of the human visual system by electronically

perceiving and understanding real world imagery. It includes methods for ac-

quiring, processing, analyzing, and understanding images, videos, and other

high-dimensional data from the real world in order to produce numerical or

symbolic information. Typical tasks and applications of computer vision in-

clude object or event detection, recognition, segmentation, pose estimation,

face recognition, content-based indexing and retrieval, tracking, scene recogni-

tion and reconstruction, and image restoration.

Among the many aspects of computer vision, the problem of recognizing human

activities in videos and still images has become an increasingly popular due to

its demand and applications in a range of areas. Some of its application areas

are automated surveillance systems, content based indexing and searching on

Web, healthcare monitoring, and human-machine interaction in intelligent en-

vironments. The need for automatic activity recognition in multimedia data is

a natural consequence of the recent developments in technology and consumer

behavior. However, despite significant advancements in the acquisition and

the availability of video data, progress towards automatic activity recognition

is still rather limited.

Consider, for instance, large multimedia portals and social media sites such

as YouTube, Facebook, and Flicker, which have become significantly more

popular in our daily lives. On YouTube alone, over a hundred hours of video is

uploaded every minute1. Flickr hosts over 8 billion images and more than 3.5

1http://www.youtube.com/yt/press/statistics.html accessed on 15/11/2013.
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million images are uploaded daily2. Video or image retrieval in these large-scale

archives is currently possible only at the cost of expensive manual annotation.

CCTV video surveillance is another scenario in which a lot of data is gener-

ated but computer vision research lacks the capability to provide large-scale

recognition. One such case is the CCTV network of London, which has over

one million CCTV cameras; yet, there are hardly any cases of crime preven-

tion or automatic detection of crimes. Often investigators have to record and

analyze the data manually, which is an obvious bottleneck for large-scale event

monitoring.

Furthermore, the advances in sensor technology, such as the invention of Mi-

crosoft Kinect sensors3, has boosted low-cost imagery capture in the form of

different modalities. These systems provide multimodal data (depth, RGB,

sound, skeleton) that offer a rich perception of the environment and human

activities. Such advancements have also inspired researchers to think of out-

of-the-box applications of human activity recognition such as physiotherapy

exercises, interactive gaming, and smart homes.

1.2 Context/Problem Statement

The evolution of data and explosion of applications have motivated researchers

to develop novel techniques to better solve the activity recognition problem.

Surveying the literature on human activity recognition, one notes an intriguing

trend towards developing ever more sophisticated representations and complex

algorithms. Often, basic but important issues such as efficiency, scalability, and

simplicity are overlooked. In this thesis, we address these issues across different

application areas of human activity recognition.

In particular, we consider efficiency and scalability of human activity recogni-

tion in four scenarios of increasing complexity: controlled video scenarios such

as video surveillance, uncontrolled and unconstrained video databases such as

YouTube, multimodal emerging environments such as those captured through

Kinect sensory, and still images. Fig.1.1 shows example images of different

2http://www.theverge.com/2013/3/20/4121574/flickr-chief-markus-spiering-talks-photos-

and-marissa-mayer accessed on 15/11/2013
3http://www.xbox.com/en-US/kinect
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Chapter 1. Introduction

Figure 1.1: Example screen shots and action images from different data
sources: RGB videos in a controlled environment (top) , Kinect depth videos in
an interactive setup (second row), clips from a typical consumer video database
(third row), and still images from a popular action dataset (last row)

actions taken from representative image and video datasets. The frames in

the first row are taken from the Weizmann dataset [Blank et al., 2005] that

contains videos with a rather static background. The gray-scale frames in the

second row are representative of the depth imagery in the Berkeley Multimodal

Human Action Dataset (MHAD) [Ofli et al., 2013] that contains multimodal

RGBD and skeletal data acquired by using Kinect sensor imagery. Frames

from the HMDB database [Kuehne et al., 2011] of unconstrained consumer

and commercial videos are shown in the third row. Finally, images in the

fourth row are taken from the popular PASCAL-VOC2011 and H3D image

databases [Everingham et al., Bourdev and Malik, 2009].

Activity recognition in different setups poses challenges of different natures

and scales. For example, most approaches to activity recognition in controlled

3
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video or 3D data depend on reliable pose estimation. Usually, these approaches

benefit from global representations of human shape or motion in segmented

video data [Bobick and Davis, 2001, Blank et al., 2005, Ni et al., 2011]. In re-

alistic videos, human pose estimation is rather challenging due to factors such

as dynamic background, occlusion, poor illumination conditions, and camera

motion. It is also known that the local representations of the motion compo-

nents and scenery are more beneficial in realistic videos [Laptev et al., 2008,

Kliper-Gross et al., 2012, Wang et al., 2013]. As a result, there is no single so-

lution that works best in all scenarios. Still, our overall scientific investigation

is based on general principles such as simple but efficient feature extraction,

sparse coding, instance-based learning, and latent factor models. For each

scenario, our research takes into account the complexity of action recognition,

provides answers to intuitive questions, and proposes efficient and scalable so-

lutions. Below we briefly describe significant challenges for action recognition

in different environments.

Recognizing human actions in a controlled environment has been extensively

studied for the last decade. Most existing research in this domain has fo-

cused on pose estimation, temporal modeling, and spatio-temporal feature

extraction [Bobick and Davis, 2001, Blank et al., 2005, Cheema et al., 2011].

These approaches apply background subtraction and represent human activity

in the temporal context in terms of global (e.g. spatio-temporal volumes) or

local (e.g. interest-point based representation) features. Large scale activity

recognition in such domains (e.g. surveillance) faces several challenges such

as missing frames, observational latency, and online classification. Therefore,

methods that rely heavily on temporal information may suffer due to these fac-

tors. Interestingly, there is hardly any investigation about the extent to which

the temporal cues are important when using naive features such as silhouettes

or human contours. In fact, there are only a few methods of action recognition

in controlled setups that rely only on human pose and work without exploiting

temporal information.

In the context of unconstrained videos, most research has focused on devel-

oping more informative features to obtain a single representation of a video.

The most common approach is to extract local features around sparse space-

time interest points or dense trajectories [Laptev et al., 2008, Kliper-Gross

4
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et al., 2012, Wang et al., 2013]. After extracting local features around those

key points, a bag-of-words (BoW) approach is adopted. The BoW approach

employs (a) a clustering algorithm to determine a code book of representative

words (centroids) in the data and (b) the quantization of the video features

according to the code book. Other approaches, such as [Sadanand and Corso,

2012], use a large number of templates to spot certain types of motions. In

either case, the resulting feature descriptors are (a) high dimensional because

of a large number of code words, (b) sparse due to a high degree of variation

within classes, and (c) scarce due to a large number of classes. For example,

the action-bank features [Sadanand and Corso, 2012] proposed for large-scale

activity recognition in unconstrained videos, such as HMDB, are nearly 15,000

dimensional; where HMDB contains nearly 100 labeled samples for each of the

51 action categories. Such High Dimension Low Sample Size (HDLSS) data

is prone to neighborliness – the lack of neighborhood among the instances in

a very high dimensional space [Donoho and Tanner, 2005, Ahn et al., 2007].

Asymptotic studies reveal a tendency for HDLSS data to lie at the vertices of a

regular simplex [Hall et al., 2005, Donoho and Tanner, 2005]. Existing methods

of human activity recognition in the wild, however, overlook the underlying

distribution of the data and employ off-the-shelf classifiers such as Support

Vector Machines (SVM) and Nearest Neighbor (NN) algorithms. Such naive

application may cause over-fitting, e.g. in the case of SVMs that are observed

to use nearly all the training data as support of the decision function; or it

may result in under-fitting, e.g. in the case of NNs that assume that nearby

points have the same label (high inductive bias).

We also deal with human activity recognition in (controlled) 3D environments

where data is acquired using depth or motion capture. Since the introduction

of the Kinect sensor, there have been numerous applications for such envi-

ronments, including online exercises, multi-player games, and smart homes.

Recent research on human action recognition in such scenarios has shown

promising results [Wang et al., 2012, Ofli et al., 2013] – thanks to the rich

pose and motion information provided by these sensors. In this context, we

extend the problem of human action recognition by proposing an approach

that allows identification of both an action and the performing actor solely

using the dynamics of the activity.
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Throughout this thesis, we evaluate our algorithms using a number of public

datasets. These datasets vary with respect to such factors as size, modality

(video, silhouette, RGB, motion capture, depth), number of persons involved

(individuals or groups), number of view points or cameras, and type of environ-

ment (controlled, uncontrolled). The availability of public datasets serves two

purposes. Firstly, it enables researcher to focus on algorithms and test their

ideas on existing data. Secondly, it provides benchmarks for a fair comparison

of the merits and demerits of different methods.

1.3 Contributions

Our research investigates several issues related to scalable action recognition,

purposes new algorithms, and provides extensive empirical evaluation – often

outperforming state-of-the-art techniques. Below we give an overview of our

contributions.

1.3.1 Efficient Action Recognition in Controlled Environment by

Learning Discriminative Key Poses

For action recognition in a constrained or surveillance environment, most ex-

isting techniques model human activities using motion cues such as motion

energy images [Bobick and Davis, 2001], space-time volumes [Blank et al.,

2005], and motion history volumes [Weinland et al., 2006]. A natural question

to ask is is it possible to recognize human actions by only looking at a few key

frames? or in other words is it possible to recognize human actions in videos

without explicit modeling of temporal cues? Such a system would be robust

with regard to missing data and observational latency and may prove more

efficient than methods based on temporal cues.

We propose a novel instance-based approach that learns non-temporal discrim-

inative key poses for actions in videos. Given a set of training videos, we first

extract a scale-invariant contour-based pose feature from silhouettes of each

video. Then, we cluster the features in order to build a set of prototypical

key poses. Based on their relative discriminative power for action recogni-

tion, we learn weights (latent components) that favor distinctive key poses.
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Finally, classification of a novel action sequence is based on a simple and ef-

ficient weighted voting scheme that augments results with a confidence value

which indicates recognition uncertainty. The proposed approach is efficient

and delivers real-time performance. In experimental evaluations for single-

and multi-view action datasets, it shows high recognition accuracy. The same

contour-based feature and a similar non-temporal approach achieves state-of-

the-art recognition rate when applied to large scale multi-view gait recognition

problem.

1.3.2 Efficient Instance-based Classification of Large Scale Uncon-

strained Image and Video Data

With the advancement of Web and social media, recognizing activities in con-

sumer videos has become a vital area of research in the past few years. Emerg-

ing large-scale unconstrained video datasets such as HMDB [Kuehne et al.,

2011] and UCF50 [Reddy and Shah, 2013] are rather challenging as compared

to classical clean and controlled datasets such as KTH [Laptev and Lindeberg,

2003], IXMAS [Weinland et al., 2006], and CASIA [Yu et al., 20006]. The di-

mensionality of spatio-temporal features for unconstrained videos often ranges

into the tens of thousands whereas the number of classes and the number of

labeled instances per class usually ranges from ten to a hundred. The result-

ing High Dimension Low Sample Size (HDLSS) data often suffers from lack

of neighborhood due to the curse of dimensionality [Hall et al., 2005, Donoho

and Tanner, 2005]. Existing approaches to human activity recognition in the

wild often use off-the-shelf techniques such as Nearest Neighbor classifiers or

Support Vector Machines without paying attention to the geometry of the un-

derlying feature or instance space. It becomes important to investigate and

determine suitable classifiers that could efficiently recognize human actions in

such data.

In this thesis, we first investigate the performance of different classifiers to

HDLSS action videos and, through extensive empirical evaluation, affirm the

lack of proper neighborhood in such data. As the lack of neighborhood under-

mines the proximity-based methods (e.g. kNN) and may cause over-fitting for

discriminant methods (e.g. SVM), we propose a novel least square- and QR

factorization-based approach to Nearest Affine Hull (NAH) classification which
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remedies the HDLSS dilemma and noticeably reduces the time and memory

requirements of existing methods. We show that the resulting non-parametric

models provide smooth decision surfaces and yield efficient and accurate so-

lutions in multi-class HDLSS scenarios. On several action recognition bench-

marks, the proposed NAH classifier outperforms other instance-based methods

and shows competitive or superior performance compared to SVMs. In addi-

tion, for online settings, the proposed NAH method is faster than online SVMs.

1.3.3 Simultaneous Recognition of Style and Contents in 3D Videos

using Bilinear Tensor Factorization

The introduction of low-cost image capturing e.g. Kinect has led a paradigm

shift from action recognition in 2D to rich action recognition in a 3D environ-

ment. A lot of research efforts are now devoted to recognizing human actions

in such skeletal or depth data. Most successful approaches in this domain

build on principles of existing 2D pose- or part-based methods [Wang et al.,

2012, Ofli et al., 2013] and achieve high action recognition performance. Low-

cost access to such 3D data and annotated poses has motivated researchers to

think of new applications such as healthcare, multi-player virtual games, and

advanced home security. Autonomous recognition of people based on their

individual ways of performing different actions can be of great importance in

these scenarios. At first, it may look too optimistic but there are psychophysics

studies that suggest that human have different styles to perform different ac-

tions [Cutting and Kozlowski, 1977, Thoroughhman and Shadmehr, 1999]. In

this line, we exploit the rich information content from depth/skeletal imagery

and latent bilinear tensor factorization to empirically validate these studies.

Specifically, we investigate a novel question: Is it possible to recognize both the

actions and the actors in surveillance videos using only motion dynamics of

underlying activities?

To this end, we present a hierarchical approach that is based on conventional

action recognition and asymmetrical bilinear modeling. In particular, we em-

ploy bilinear factorization on the tensorial representation of action videos to

characterize styles of performing different actions. The proposed approach is

solely based on the dynamics of the underlying activity. The model is eval-

uated on the IXMAS [Weinland et al., 2006] and the Berkeley-MHAD [Ofli
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et al., 2013] datasets using different modalities based on optical motion cap-

ture, Kinect depth videos, and 3D motion history volumes. In each case, high

recognition accuracy is achieved in comparison to a too strict symmetric bilin-

ear modeling and a too loose Nearest Neighbor classification. Consequently,

our approach extends motion-based person identification to multiple common

actions and shows that the identification is not limited to walking or running

actions.

1.3.4 Determining Salient Regions for Action Recognition in Still

Images using Videos

Recognizing human actions in still images is a challenging problem due to

challenges such as occlusion, texture, and lack of any motion information.

A common approach to human action recognition from still images consists

in computing local descriptors for classification [Bay et al., 2008, Harris and

Stephens, 1988, Jhuang et al., 2007]. Typically, these descriptors are computed

in the vicinity of key points which either result from running an appearance-

based key point detector or from dense random sampling of pixel coordinates.

Such key points are not a-priori related to human activities and thus might

not be very informative with regard to action recognition. Other saliency-

based approaches determine regions of interest by tracking human visual at-

tention [Vig et al., 2012, Mathe and Sminchisescu, 2012]. Alternatively, many

recent approaches are based on detecting poslets [Bourdev and Malik, 2009]

(manually labeled image patches). Determining attention-based saliency re-

gions and constructing poselets both involve significant manual effort in the

training phase. On the other hand, appearance-based approaches to determine

key points suffer severely from background and texture factors.

Since an action is often described in terms of articulations of different body

parts, we address the issue: can motion information from simple videos be

used for determining saliency regions or important body parts for recognizing

actions in still images? If so, efficient and large-scale image classification

can be obtained by focusing on feature extraction from salient regions. This

is in contrast to sparse or dense sampling of image patches, as they do not

regard task specific objectives in key point localization and typically assume

key points to be independent and therefore fail to explain characteristic spatial
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and temporal layouts.

In this line, we investigate the possibility and applicability of identifying action-

specific points or regions of interest in still images based on information ex-

tracted from controlled video data. We propose a novel method for extracting

spatial interest regions or action signatures where we apply Non-negative Ma-

trix Factorization (NMF) to optical flow fields extracted from videos in person

bounding boxes. The resulting basis flows are found to indicate image regions

that are specific to certain actions and therefore allow for an informed sam-

pling of key points for feature extraction. We thus present a generative model

for action recognition in still images that allows for characterizing joint distri-

butions of regions of interest, local image features (visual words), and human

actions. Experimental evaluation shows that our approach is able to extract

interest regions that are highly correlated to those body parts most relevant to

different actions. As a result, it achieves higher action recognition accuracies

than recent baseline methods.

1.4 Thesis Organization

Chapter 2 provides an overview of related research on activity recognition in

videos. Most approaches with relevance to ours are discussed in appropriate

detail in subsequent chapters as well. In Chapter 3, we describe an efficient

approach of action recognition in controlled videos by learning discriminative

key poses. Application of key pose based classification is further extended to

gait recognition in Chapter 4. The issue of classification of HDLSS data is

discussed in Chapter 5, where we investigate different instance-based methods

and propose an efficient affine hull based method. Chapter 6 lays out a novel

approach to simultaneously recognize actions and actors in depth and skeletal

data. Chapter 7 sets forth our approach to obtain action signatures from action

videos in order to use them for action classification in still images. Finally,

Chapter 8 concludes findings of this research and discusses some possible future

directions.
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1.5 Related Publications

The list of accepted and submitted articles and their contribution to this thesis

is given below.

[1] Cheema, M.S., Eweiwi A., Thurau C., and Bauckhage C., Action Recognition

by Learning Discriminative Key Poses, PERHAPS workshop at 13th IEEE Interna-

tional Conference on Computer Vision (ICCV), Spain, 2011

[2] Eweiwi A., Cheema, M.S., Thurau C., and Bauckhage C., Temporal Key Poses

for Human Action Recognition, PERHAPS workshop at 13th IEEE International

Conference on Computer Vision (ICCV), Spain, 2011

[3] Cheema, M.S., Eweiwi A., and Bauckhage C., Gait Recognition by Learning

Distributed Key Poses, 19th IEEE International Conference on Image Processing

(ICIP), Florida, October 2012

[4] Cheema, M.S., Eweiwi A., and Bauckhage C., Who is Doing What? Simultaneous

Recognition of Actions and Actors, 19th IEEE International Conference on Image

Processing (ICIP), Florida, October 2012

[5] Cheema, M.S., Eweiwi A., and Bauckhage C., Human Activity Recognition by

Separating Style and Content, Pattern Recognition Letters Journal, 2013 (In press),

DOI http://dx.doi.org/10.1016/j.patrec.2013.09.024

[6] Cheema, M.S., Eweiwi A., and Bauckhage C., High Dimensional Low Sample

Size Activity Recognition Using Geometric Classifiers, under review at Digital Signal

Processing, 2014

[7] Eweiwi A., Cheema, M.S., and Bauckhage C., Action Recognition in Still Im-

ages by Learning Spatial Interest Regions from Videos, Pattern Recognition Letters

(Accepted), 2014

[8] Eweiwi A., Cheema, M.S., and Bauckhage C., Discriminative Joint Non-negative

Matrix Factorization for Human Action Classification, German Conference on Pat-

tern Recognition (GCPR/DAGM), 2013

[9] Cheema, M.S., Eweiwi A., and Bauckhage C., A Stochastic Late Fusion Ap-

proach to Human Action Recognition, submitted to German Conference on Pattern

Recognition (GCPR/DAGM), 2014

[1] and [2] respectively present novel template- and pose-based methods for

action recognition in controlled video environments. Chapter 3 explains our

methodology used in [1] in detail. [3] is partially included in Chapter 4. Chap-

ter 6 is based on [4] and [5] that present our bilinear modeling approach to
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multi-factor action recognition. [6] is based on Chapter 5 that proposes an

efficient classifier suitable to large-scale unconstrained videos and images. [7]

is based on Chapter 7 where author’s major contribution is determining the

salient regions in videos using NMF and designing a generative framework to

classify images. [8] proposes a joint NMF approach for action recognition in

still images using multiple features. In [9], a principled late fusion approach is

presented that also utilizes multiple features to enhance action recognition in

videos and still images.
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Chapter 2

A Review of Vision-based Action

Recognition in Videos

The demand of automatic activity recognition in different scenarios has led

to significant research efforts. Given the diversity of these areas, researchers

have worked on different aspects of the problem. Accordingly, the followed

approaches vary significantly. A number of review and survey papers have

been published in the last decade [Turaga et al., 2008, Aggarwal and Ryoo,

2011, Poppe, 2010, Ke et al., 2013, Chaquet et al., 2013, Jiang et al., 2013]. In

this chapter, we provide a review of most relevant literature on human action

recognition in videos.

Typical components of an action recognition system include: the target domain

and environment, modality and representation of the data, and the classifica-

tion approach. Figure 2.1 shows a general block diagram. In this chapter,

we discuss these components in an incremental and inclusive manner. First,

we give an overview of the context of the action recognition problem and the

relevant datasets in Section 2.1. Popular feature representations and their

characteristics are discussed in Section 2.2. Finally, different classification ap-

proaches to action recognition, in accordance with the context and feature

representations, are described in Section 2.3.

2.1 The Context and The Data

Understanding target application and characteristics of the input data is most

critical to envisioning the subsequent scientific challenges. There are various

environmental factors that affect the complexity of automatic activity recogni-

tion. Some of those are: complexity of motion dynamics, number of individuals

and objects in the scene, type of environment, type of interactions among ob-
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Figure 2.1: Block diagram of a typical action recognition system

jects, quality of videos or other input sources, and number of viewpoints or

cameras. For instance, based on the complexity of motion dynamics, human

activities can be broadly categorized into three classes: gestures (atomic poses

or short sequences, e.g. raising an arm), actions (single-person activities that

may be composed of different gestures in a sequence, e.g. running), and ac-

tivities (complex actions or interactions involving two or more persons and/or

objects, such as hand-shaking or riding bicycle). Throughout this thesis, we

will refer to the terms gesture, action and activity in an inclusive manner, i.e.

ultimately any sequence is considered an activity. Often, we will use the words

action and activity interchangeably. Considering the complexity of activities,

scenes, and other factors, we categorize the available video datasets into three

broad classes: controlled (e.g. monocular video clips recorded under controlled
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Figure 2.2: KTH action dataset [Schueldt et al., 2004]

conditions), unconstrained (e.g. Youtube or movie clips), and multimodal (e.g.

recorded through multiple cameras or multiple sensors such as Kinect). Below

we discuss each of these classes with example datasets. For a detailed survey

on video datasets for human action recognition, see [Chaquet et al., 2013].

2.1.1 Controlled Video Datasets

The earliest challenge to vision-based human action recognition was to recog-

nize a single action of a single human in a video from a single viewpoint. To

this end, early datasets like KTH [Schueldt et al., 2004] and Weizmann [Blank

et al., 2005] are most popular. These datasets contain clips where a single

person is performing a single action in a controlled indoor or outdoor envi-

ronment with a static background. In such cases, background subtraction and

human localization are reasonably reliable. Most approaches developed around

these datasets focus on pose estimation, holistic feature representations, and

state-space modeling (e.g. HMM, CRF).

The Weizmann collection [Blank et al., 2005], recorded in 2005, is one of

the earliest and most popular controlled datasets. Most state-of-the-art ap-

proaches at that time were based on feature tracking, which could not properly

deal with self-occlusions. Moreover, they could only recognize periodic actions

such as walking and running. The dataset was constructed to encourage new
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approaches based on considering actions as space-time shapes (volumes). It

contains video samples for 10 different actions performed by 9 actors. These

actions are: walking, running, jumping, galloping sideways, bending, one-hand

waving, two-hands waving, jumping in place, jumping jack, and skipping. The

background is relatively simple, the view is static, and only one person is act-

ing in each video. The KTH human action dataset [Schueldt et al., 2004] is

another controlled dataset. It contains six types of actions (boxing, hand clap-

ping, hand waving, jogging, running, and walking) performed several times by

25 subjects in four different scenarios (indoors, outdoors, outdoor with scale

variation, outdoors with different clothes). There are a total of 25×6×4 = 600

videos for each combination of 6 actions, 4 scenarios, and 25 individuals. Ex-

ample frames of this dataset are shown in Fig. 2.2. It was the first dataset for

which features were extracted using space-time interest points.

2.1.2 Large-scale Unconstrained Video Datasets

Access to the internet and the popularity of social media portals such as Face-

book and YouTube have revolutionized our daily lives over the last decade.

Efficient utilization of massive amounts of multimedia activity data, which is

often noisy and unconstrained, requires robust algorithms that can organize,

store, analyze, and retrieve this data. This development has posed several

challenges to the conventional action recognition approaches that were de-

signed to work in controlled environments. To aid research in this domain,

a number of challenging datasets have been proposed so far, and the trend

is going on [Laptev et al., 2008, Kuehne et al., 2011, Reddy and Shah, 2013,

Soomro et al., 2012]. The realistic videos in these databases pose a number of

challenges due to camera motion, different viewpoints, cluttered background,

poor illumination conditions, large inter-class variations, occlusions, and poor

quality of the medium. These challenges cause most approaches designed for

controlled environments to fail. While the problem is largely unsolved, ap-

proaches that are based on extracting spatio-temporal features around interest

points or motion trajectories have shown promising results [Laptev et al., 2008,

Wang et al., 2011, Reddy and Shah, 2013, Kliper-Gross et al., 2012]. Figure 2.3

shows screen shots of different action videos in the two largest datasets.

UCF50 [Reddy and Shah, 2013] is one of the largest activity recognition
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UCF50 [Reddy and Shah, 2013]

HMDB [Kuehne et al., 2011]

Figure 2.3: Screen shots of different sample videos from two large uncon-
strained action datasets

datasets, containing 6,618 videos of 50 activity classes. Most activities contain

multiple persons, object interactions, dynamic backgrounds and a high degree

of variation. For each activity, there are at least 100 videos split into 25 or

more groups. Each group contains clips cropped from the same video, i.e.

videos in a group share the same scene context. This grouping allows leave-

one-group-out and leave-k-groups-out cross validation so that training and test

data do not share videos that are very similar. HMDB51 [Kuehne et al., 2011],

or HMDB in short, is another large-scale activity recognition dataset that con-

tains unconstrained videos collected from a variety of sources, ranging from

commercial movies to YouTube videos. It contains 6,766 videos belonging to

51 activity classes. The range of activities include: general facial gestures such

as smiling, chewing, and laughing; facial actions with object manipulation such

as eating, drinking, and smoking; general body movements such as hand clap-

ping, climbing, and diving; body movements with object interaction such as

hair brushing, sword drawing, and bike riding; body movements for human ac-
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tions such as fencing, hugging and hand shaking. A protocol containing three

train-test splits is provided in [Kuehne et al., 2011]. For every class and split,

there are 70 videos for training and 30 for testing.

While controlled datasets such as KTH and Weizmann are criticized for the

lack of dynamic environments, the unconstrained datasets are criticized for

the lack of sufficient labeled data to model human activities in context. In the

latter case, the videos (and images) usually have to be manually segmented,

labeled and preprocessed to obtain the ground truth. Recently, Torralba and

Efros analyzed several popular ”‘object recognition in the wild”’ datasets and

concluded that such collections can lead to biased results [Torralba and Efros,

2011]. This bias can limit the progress of algorithms developed and evaluated

against such datasets. This has been lately realized by the action recognition

community and some recent work has focused on providing annotations or

bounding boxes. For example, Jhuang et al. [2013] presents the labeled joints

database JHMDB for a subset of videos from HMDB. The homepage4 of re-

cently proposed UCF101 action dataset also provides person bounding boxes

for 24 actions.

2.1.3 Multimodal Datasets

The advances in low-cost imagery devices has created new domains of re-

search. For example, there is increasing interest in utilizing multiple cameras

and other sensors for monitoring large public spaces such as train stations,

shopping malls, and airports. Also, recent inventions in active depth sensing,

e.g. launch of the Microsoft Kinect, has caused a revival of interest in 3D

human motion tracking, pose estimation and action recognition in RGB+D

data. These devices are more suitable for indoor environments where they

offer many opportunities for automatic visual perception. The available multi-

modal data offer a rich presentation of the underlying motions due to multiple

input sources (multiple views, RGB, depth, and skeleton). In this line, different

multi-view datasets, including IXMAS [Weinland et al., 2006], MuHAVi [Singh

et al., 2010] and the CASIA gait dataset [Yu et al., 20006], have emerged in

the last decade. Datasets that are captured using depth or motion capture

sensors include: MHAD [Ofli et al., 2013], MSR-DailyActivity3D [Wang et al.,

4http://crcv.ucf.edu/data/UCF101.php
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Figure 2.4: IXMAS actions and motion history volumes [Weinland et al., 2006]

2012], and TUM-Kitchen [Tenorth et al., 2009].

The importance of multimodal data in unconstrained environment has recently

been adhered by many researchers [Hadfield and Bowden, 2013, Jhuang et al.,

2013]. Jhuang et al. [2013] present the JHMDB dataset, which contains RGB

videos and labeled skeletons of humans in a subset of HMDB. Hadfield and

Bowden [2013] provided the Hollywood3D dataset, which includes both RGB

and depth information for commercial 3D movies (by Sony Pictures). In this

thesis, however, we will restrict our experiments to multimodal data in con-

trolled 3D environments.

The Inria Xmas Motion Acquisition Sequences (IXMAS) [Weinland et al.,

2006] is a multi-view action recognition dataset. The dataset was designed

to investigate how to build spatio-temporal models of human actions that

could support recognition of simple actions, independent of viewpoint and

body shapes. It contains videos of 11 actions, each performed 3 times by

10 actors (See Fig. 2.4). The data were acquired in a lab using 5 standard

Firewire cameras. Actors were given no instructions on how to perform an

action, and they were free to choose their orientation and position. As ground

truth, silhouettes (extracted by a background subtraction algorithm) and re-

constructed volumes in MATLAB format are provided by the authors. The
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Figure 2.5: Berkeley-MHAD action dataset Ofli et al. [2013]

Multi-camera Human Action Video dataset (MuHavi) Singh et al. [2010] is

another large collection of multi-view human action videos recorded through

8 non-synchronized CCTV cameras. There are 17 actions performed by 14 ac-

tors. The dataset is proposed to evaluate the robustness of pose-based methods

with respect to change in viewpoint. Silhouettes of 14 primitive actions per-

formed by 2 actors, captured from 2 different views, were manually annotated

and made publicly available.

Berkeley-MHAD [Ofli et al., 2013] is a multimodal dataset consisting of se-

quences of 11 actions performed 5 times by each of 12 different subjects for

a total of 660 action sequences. These activities are captured by 5 different

sensory systems: an optical motion capture system, 2 Microsoft Kinect cam-

eras, 4 multi-view stereo vision camera arrays, 6 wireless accelerometers and 4

microphones. The dataset provides opportunities to (a) evaluate action recog-

nition algorithms for different modalities and (b) to develop fusion algorithms

for multimodal action recognition (See Fig. 2.1.3 for examples).

2.2 Feature Representations

The most fundamental task in developing a human action recognition system

is the extraction and representation of feature descriptors. An ideal feature

representation is mainly characterized by its (a) robustness against (moder-

ate) variations in background, viewpoint, and execution style of actions (b)

richness and sufficiency towards classification of actions and (c) efficient ex-
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traction. While some representations explicitly take into account the temporal

dimension, others extract features from each frame independently. In the latter

case, the temporal context is embedded in the classifier itself, e.g. the Hidden

Markov Models (HMM).

Existing feature descriptors used for human action recognition can be broadly

divided into three categories: global, local, and part-based representations. A

global representation describes the underlying motion as a whole. A global de-

scriptor is obtained in a top-down fashion. First, a person is localized through

background subtraction. Then global features around the regions of inter-

est (ROI) are extracted. The global representations are not generalizable to

unconstrained scenarios as they are more sensitive to viewpoint, noise, oc-

clusion and background clutter. In recent years, local representations that

describe visual observation as a collection of independent patches have gained

popularity. Determining local representations is a bottom-up process that

finds spatio-spatial interest points in a volume, determines some spatial or

spatio-temporal features around those points, and then combines all the local

features to form the final representation. While local representations are rea-

sonably robust against small variations in viewpoint, position of people, noise,

and partial occlusion, they depend on the informedness of the interest points.

Many depth-map-based action representations are semi-local, since they need

effective localization or sampling within large volumes. So their classification

as global or local representations may seem arbitrary (See [Ye et al., 2013] for

a survey on depth-based motion analysis). Finally, part-based representations

are distinguished by their dependency on direct or indirect modeling of dif-

ferent body parts. In the following subsections, we give a brief review and

examples of the different representations.

2.2.1 Global Representations

Most earlier techniques of action recognition, aimed at controlled scenarios,

used global human representations since background subtraction and segmen-

tation is relatively straightforward in such cases. In fact, global representations

perform well in those situations. Below, we categorize them further and give

some details.
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Silhouettes and Silhouettes based Features

Many global representations extract silhouette of a person as a region of in-

terest and subsequently construct features using the silhouettes. Bobick and

Davis [2001] extracted silhouettes for each frame in a video and determined

differences between consecutive frames. These difference images were exag-

gerated to form a single binary motion energy image (MEI) which indicated

where motion occurred. They also proposed the motion history image (MHI),

which is a real-valued image where intensity is a function of the recency of mo-

tion. Efros et al. [2003] construct a motion descriptor by separating the x and

y components of optical flow vectors between consecutive frames. Wang et al.

[2007] employed the radon transform (R transform) to extract silhouettes to

achieve low computational complexity and geometrical invariance (translation

and scale). Souvenir and Babbs [2008] incorporated time domain in this repre-

sentation in order to determine the so-called R-surfaces. [Weinland and Boyer,

2008] presented an exemplar-based embedding approach where the template

key frames are represented by person silhouettes.

Other variants consider silhouette’s contour as a compact representation of

the human pose [Cheema et al., 2011, 2012a, Chen et al., 2006, Baysal et al.,

2010, Dedeoglu et al., 2006]. Cheema et al. [2011] and Dedeoglu et al. [2006]

used features derived form the distance of points on a contour to its centroid.

Baysal et al. [2010] considered manually marked line-pair edge segments on

the smoothed contour as object representation. Chen et al. [2006] proposed

the star-skeleton approach that connects gross extremities of a human contour

to its centroid.

As a natural extension of the binary silhouette, Munoz-Salinas et al. [2008]

proposed depth silhouettes in order to incorporate depth information for ges-

ture recognition. Jalal et al. [2011] used R transform of depth silhouettes for

action recognition in indoor environments. Ni et al. [2011] proposed 3DMHI,

an extension of the motion history image to incorporate depth information.

Some approaches, such as [Escalante et al., 2013, Cheema et al., 2013, Ofli

et al., 2013], project the Kinect depth data to obtain gray-scale frames and

employ methods based on motion energy image. A recent survey on human

motion analysis using depth data is given in [Ye et al., 2013].
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Space Time Volumes

The global video descriptors discussed above represent a sequence either as a

single 2D vector (e.g. MHI and MEI) or as a collection of feature vectors based

on features from each frame (e.g. [Dedeoglu et al., 2006, Cheema et al., 2011]).

Another popular method is to build 3D spatio-temporal volumes (STV) over

the action sequence [Blank et al., 2005, Yilmaz and Shah, 2005, Ke. et al.,

2005]. Yilmaz and Shah [2005] treated a sequence of 2D contours as an STV

object in (x, y, t) space. The action descriptors, called action sketches, were

then computed by analyzing the differential geometric properties, such as max-

ima and minima, of STVs. Blank et al. [2005] first formed an STV by stacking

silhouettes of a given sequenceand then extracted local space-time saliency

and orientation features. Jiang and Martin [2008] proposed a global descriptor

called shape flow that represents both the shape and movement of an object

in a parsimonious manner. A shape flow is a 3D assembly of flow lines of ob-

ject contours. Space-time volumes are also common in multi-camera imagery

and depth analysis. Weinland et al. [2006] combined silhouettes from multiple

view-points to form 3D hulls of humans. Then they generated motion history

volumes (MHV) from the sequence of those 3D voxels, followed by the Fourier

transform of cylindrical coordinates. Although these features are invariant to

location, scale, and rotation, determining MHV requires camera calibration.

Grid-based and Template-based Global Representations

Some global representations apply spatial and/or temporal griding to achieve

robustness against noise and partial occlusion. These approaches divide ROI

into cells, extract local features in those cells, and combine them to form a

global representation. For example, Thurau and Hlavac [2008] proposed a rep-

resentation, called pose primitives, that is based on Histogram of Oriented

Gradients (HOG) to better cope with articulated poses and cluttered back-

grounds. They decoupled the background appearance from the foreground by

means of non-negative matrix factorization. The local temporal context was

incorporated by means of n-gram expressions. Ragheb et al. [2008] divided

each space-time volume into sub-volumes (STSV) and computed their corre-

sponding Fourier mean-power spectra as the feature vectors. Cheema et al.

[2013] used motion histograms in a spatio-temporal grid.
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2.2.2 Local Representations

Reliable localization of human and background subtraction is a challenging

problem in unconstrained environments. Therefore, local representations that

describe the visual observation as a collection of independent patches have

become popular in this domain. Compared to global representations, local

representations are fairly invariant to changes in viewpoint, appearance of

people and partial occlusion. Most local features are computed in three steps:

detecting space-time interest points, determining descriptors around those in-

terest points, and Bag-of-Words clustering and quantization. In the following,

we give an overview of these processes.

A. Space-Time Interest Points (STIP) Detection

Space-time interest points (STIP) refer to those locations in a volume where

sudden changes in movement and appearance occur. A number of STIP de-

tectors have been proposed in last few years [Harris and Stephens, 1988,

Laptev and Lindeberg, 2003, Dollar et al., 2005, Willems et al., 2008]. These

detectors differ in the way they employ saliency functions. The Harris3D

detector [Laptev and Lindeberg, 2003] is an extension of the Harris corner de-

tector [Harris and Stephens, 1988] to 3D. It computes a second-moment matrix

at each spatio-temporal point in the video using independent spatial and tem-

poral scales. The final interest points are the local maxima of an adaptation

of the Harris 2D operator to 3D. Dollar et al. [2005] addressed the issue of the

rarity of stable interest points found by the Harris3D detector and proposed

the Cuboid detector, which employ the 2D spatial Gaussian smoothing kernel

and a quadrature pair of 1-D Gabor filters along the time axis. Willems et al.

[2008] showed that features can be localized both in the spatio-temporal do-

main and over both scales simultaneously when using the determinant of the

Hessian as a saliency measure. Consequently they proposed the Hessian de-

tector that efficiently determines dense scale-invariant spatio-temporal interest

points. This efficiency is achieved by using an integral video structure. Wang

et al. [2009] conclude that regular dense sampling of spatio-temporal interest

points outperforms Harris3D, Cuboid, and Hessian detectors for recognizing

human actions in realistic settings.

Some recent approaches track the interest points through several frames within
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a video sequence [Wang et al., 2011, Jiang et al., 2012]. The dense trajec-

tories approach [Wang et al., 2011] is the most prominent method. This ap-

proach densely samples points from each frame and tracks them (up to a fixed

number of frames) based on readily computed dense optical flow fields. Robust-

ness to fast irregular motions as well as shot boundaries is achieved by global

smoothness constraints. Wang et al. [2013] computed different features along

dense trajectories and showed state-of-the-art performance on action recogni-

tion in the wild. Hadfield and Bowden [2013] considered interest point detec-

tion in realistic RGBD commercial videos. They proposed 4D (x,y,t,depth)

extensions to Harris3D, Hessian3D, and other detectors. Ofli et al. [2013] con-

sidered depth-layered multi-channel(DLMC) videos. The represented depth

videos as sequences of gray scale frames and employed the Harris3D detector

to localize interest points.

B. Local Descriptors

Local descriptors are used to encode actual spatial and motion information

within the sub-volume centered on interest points. Similar to detectors, most

local descriptors for videos are extensions of image descriptors. Laptev et al.

[2008] used histograms of oriented gradient (HOG) and histograms of oriented

flow (HOF) descriptors. Willems et al. [2008] computed eSURF, an extended

version of the SURF descriptor [Bay et al., 2008], where each cell in the sub-

volume is characterized by the weighted sums of Haar wavelets along three

axes. Scovanner et al. [2007] proposed an extension of the SIFT [Lowe, 2004]

image descriptor to 3D. In this approach, spatio-temporal gradients are com-

puted for each pixel in the cuboid. Kläser et al. [2008] computed HOG3D

for a given 3D patch using integral videos. Their approach is very similar to

3D SIFT except that HOG3D bins the 3D gradients into regular polyhedrons.

The evaluation of different local descriptors in [Wang et al., 2009] shows that

HOG/HOF – a combination of image gradient and flow information – outper-

formed HOG3D, HOG, HOF, eSURF, and Cuboid features.

The descriptors that encode optical flow in unconstrained videos are prone

to different artifacts, such as camera motion and background noise. Recent

methods attempt to overcome this deficiency in order to exploit the discrimi-

native information in the motion [Dalal et al., 2006, Kliper-Gross et al., 2012,
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Wang et al., 2011]. Kliper-Gross et al. [2012] presented Motion Interchange

Patterns, an encoding that captures at every time point and at every image

location both the preceding motion flow and the next motion element. They

also used a suppression mechanism to decouple the shape from the motion,

and to compensate for camera motion in a manner tailored for the encoding

scheme. They employed the standard Bag-of-Words approach to achieve high

recognition on HMDB and UCF50 data. Dalal et al. [2006] proposed motion

boundary histogram (MBH) descriptors for human detection that are based

on the gradients of the optical flow field. Spatial derivatives are computed for

horizontal and vertical components of optical flow and, similar to HOG, the

orientation information is quantized into histograms. MBH along dense tra-

jectories has shown excellent results for action recognition [Wang et al., 2011,

2013].

Most depth-based features are determined in local patches. Li et al. [2010]

proposed an action representation based on bag-of-3D-points from depth maps.

The sparse points are selected through a simple, yet effective projection-based

sampling scheme that relies on binary silhouettes and contours across different

directions. [Vieira et al., 2012] represented a depth sequence in a 4D space-

time grid. They used a saturation scheme to enhance the roles of the sparse

cells that typically consist of points on the silhouettes or moving parts of the

body. Some approaches, such as [Escalante et al., 2013, Cheema et al., 2013,

Ofli et al., 2013], project the Kinect depth data to obtain 2D gray scale frames

and employ feature extraction methods based on motion energy images.

C. Bag-of-Features (BoF) Representation Scheme

The bag-of-features method, motivated by the Bag-of-Words (BoW) approach

in document classification, represents an image or a video as an orderless col-

lection of features. Given a collection of features collected from the training

data, the approach employs the following steps:

• Building a Vocabulary: Given a (large) set of N features from the

training data, a clustering algorithm, e.g. k-means, k-mediods or the

Gaussian mixture model is applied to extract k number of words (the

cluster centroids). This set of words is referred to as vocabulary or the

code book.

26



Chapter 2. A Review of Vision-based Action Recognition in Videos

• Quantization of Descriptors to Code Book: For each data sample,

a K-bin histogram is maintained where each bin corresponds to a unique

word in the code book. In the hard quantization approach, the count of

the most similar word is incremented for every individual (local) feature.

The soft quantization approach considers the distance to all centroids

and assigns relative weights to the corresponding bins.

• Normalizing the Histograms: Finally, the histograms are normalized

e.g. using L1 or L2 norms.

The BoF thus transforms samples of different dimensions (number of frames,

resolution) to a normalized vector of length K. Note that the BoF quantiza-

tion is orderless and discards spatio-temporal localization information about

local features. This orderless nature provides a great flexibility and robustness

with respect to noise, drift, and partial occlusions. While the BoF (or any

sparse coding scheme) is inevitable for local representations, it can also be

used for global ones. For example, Chaaraoui et al. [2012] and Cheema et al.

[2011] proposed approaches based on the bag-of-keyposes. In order to retain

some spatio-temporal information in feature descriptors, most local features

based approaches divide videos into spatio-temporal grids at different scales

and apply BoF on each grid. The final representation is either based on con-

catenation of individual BoF vectors (e.g. [Cheema et al., 2013]) or aggregating

the kernel matrices (e.g. [Wang et al., 2013]).

2.2.3 Part-based Representations

Part-based features rely on direct or indirect modeling of different body parts.

Such representations have shown significant success in human action recogni-

tion in still images [Felzenszwalb et al., 2008, Bourdev and Malik, 2009, Yang

et al., 2010]. In the presence of 3D depth and skeleton data for videos, action

recognition by modeling the motion of different joints and body parts is intu-

itive. In fact, most prominent approaches to 3D action recognition are based on

part-based modeling. For example, Wang et al. [2012] modeled depth appear-

ance in proximity of 3D joints as local occupancy patterns (LOP). Different

subsets of joints were combined to form the so-called actionlets descriptors.

Several researchers have recently shown the effectiveness of pose-based meth-
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ods in human action recognition in simple RGB videos [Singh and Nevatia,

2011, Tran et al., 2011]. Tran et al. [2011] proposed an action representation

described by a combination of human body-part movements corresponding to

a particular action. They also proposed a computationally efficient algorithm

capable of discriminating the key differences in movement of each body-part

pertaining to a particular action. Yao et al. [2012] presented a system for cou-

pling the closely related tasks of action recognition and pose estimation. Eval-

uation of their approach on TUM multi-view kitchen dataset [Tenorth et al.,

2009] indicates the mutual gain by such coupling. However, Rohrbach et al.

[2012] argues that current pose estimation approaches are not good enough

to classify fine grained activities due to low inter-class variations. Recently,

Jhuang et al. [2013] used bounding boxes and manually labeling of joints to

action recognition in the wild. They advocated the idea that action recognition

can be improved by focusing on person-specific areas (e.g. extracting MBHs

only around person’s contours). They also show that current pose estimation

algorithms are not reliable for unconstrained videos. Sadanand and Corso

[2012] proposed the use of action bank templates to determine video features.

Their feature extraction is based on spotting different motion templates in

the multiple-scale spatio-temporal cuboids. Action bank features outperform

HOG/HOF around Harris 3D corner points for several realistic datasets.

2.3 Classification of Human Activities

After feature representation, the next step in human activity recognition is

building a classification model to classify unlabeled query instances. Given

the labeled training data {Xtrain,ytrain} and the query instance xq, a classi-

fier is invoked to determine the most suitable label y, i.e. which maximizes

P (y|xq,Xtrain,ytrain). Various classification approaches handle this problem

differently. We differentiate these approaches according to classical machine

learning aspects in: instance based classification (e.g. kNN), discriminative

methods (e.g. SVM), and generative methods (e.g. HMM) and and list them

in the following subsections.
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2.3.1 Instance-based Classification

Instance-based classification methods classify a given instance based on its

similarity (in feature space) to other labeled instances. Often they do not build

an explicit model during training and instead exploit geometrical properties of

the data at classification time. Instance-based methods differ from each other

with respect to how they represent neighborhood surfaces for classification.

Nearest Neighbors (NN) classification is a simple instance based approach

that assigns a query instance the label of the instance that is most similar to

it. Often L1 or L2 norms are used to measure the similarity. kNN considers

k nearest neighbors and uses a majority or weighted voting scheme to assign

final class labels. Other methods such as Nearest Affine Hull (NAH), Nearest

Convex Hull (NCH) and Nearest Hyperdisk (NHD) determine the label of

a sample based on its distance to the geometrical surfaces spanned by each

category. These approaches may be of great importance for large-scale online

classification of human activities. We will give more details of these methods in

Chapter 5 and point out their significance for large-scale activity recognition.

NN classification can be performed at frame level or at the video level. In [Efros

et al., 2003], a nearest neighbor approach was employed on optical flow frames.

Blank et al. [2005] also classified videos with silhouette-based global spatio-

temporal volumes through NN. Weinland et al. [2006] used PCA to reduce the

dimensionality of motion history volumes. They considered NN with the Ma-

halanobis distance between query instances and classes to take into the account

the variance of each dimension. Bobick and Davis [2001] also used Mahalanobis

distance for action recognition using MHI and MEI. Nearest Neighbor classi-

fication is also common among approaches that represent actions by a set of

keyposes or templates. Carlsson and Sullivan [2001] recognized forehand and

backhand tennis strokes in videos by computing an edge-based distance met-

ric between candidate frames and manually chosen key frames. Thurau and

Hlavac [2008] represented a video sequence as a normalized histogram of pose

primitives. They used Kullback-Leiber(KL) divergence for histogram similar-

ity and 1NN for action classification. Cheema et al. [2011] used 1NN at frame

level and employed a discriminative weighted voting using a bag-of-keyposes

approach. Cheema et al. [2012b] demonstrated state-of-the-art performance on

gait recognition data by using NN classification for set key poses that represent

29



Efficient Human Activity Recognition in Large Image and Video Databases

a person’ gait.

2.3.2 Generative Models

Generative models build a joint probability distribution P (X,Y) on the train-

ing data and determine P (y|xq) by using Bayes’rule. Typical generative mod-

els are Naive Bayes and Hidden Markov Model (HMM). HMMs are popular

state-space models which assume that (i) a transition to a hidden state is

only possible from its previous state and (ii) an observation is only depen-

dent on the current state. HMMs have been of great significance in classical

literature on action recognition (mostly in controlled environments). Yamato

et al. [1992], in one of the earliest work on action recognition, trained HMMs

to model time-sequential images of different tennis strokes. Each action cat-

egory is represented by an HMM and classification of a query sequence is

made simply by determining the best matching HMM. Although the standard

HMMs have been successfully employed for simple action recognition tasks

(e.g. [Ivanov and Bobick, 2000, Yamato et al., 1992], they are not suitable for

modeling complex activities that have large state- and observation-spaces. To

this end, many variations of HMMs have been proposed. For example, Oliver

et al. [2002] proposed layered hidden Markov models (LHMMs), where the bot-

tom layer HMMs recognize atomic actions and the upper layer HMMs treat

these atomic actions as observed states. Another example is [Ikizler-Cinbis

and Forsyth, 2008] where authors constructed individual HMMs for 3D tra-

jectories of different body parts such as legs and arms. Then the single action

HMMs are joined together to form activity HMMs by linking the states that

have similar emission probabilities.

While HMM and its variants are restricted by their model structure, a Dynamic

Bayesian Network (DBN) – as an alternative for HMM – provides a more flex-

ible structure by representing the hidden (and observed) states in terms of

state variables, which may have complex inter-dependencies. Du et al. [2007]

proposed Coupled Hierarchical Duration-State DBN (CHDS-DBN) which rep-

resents human motions in videos at two scales: the global activity state scale

and the local activity state scale. Despite their success in tracking and classi-

fying human actions in controlled scenarios, only a few generative models have

been proposed for action recognition in the wild. Todorovic [2012] modeled
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complex activities by a generative model-graph, where nodes correspond to

the primitives, and the graph’s adjacency matrix encodes their affinities for

probabilistic grouping into observable video features.

Generative models are very expressive as they maintain a joint probability dis-

tribution over the (X,Y) space, thus providing better models for the missing

data or holes in the input space. Therefore, they are widely used in certain

problems such as tracking. However for classification problems, such as human

action recognition in segmented unconstrained videos, discriminative models

(discussed in the next sub-section) are preferred for their simplicity and com-

paratively less parametrization.

2.3.3 Discriminative Classifiers

Discriminative classifiers focus on developing a modelM for separating two or

more classes. Unlike generative classifiers, they do not build a joint probability

distribution of input and output. Instead, they classify an unlabeled instance

xq directly by using P (y|xq,M). Unlike instance-based classifiers, they do not

rely on explicit utilization of the labeled data (or class models) at classification

time. Among the most popular discriminative methods are Support Vector

Machines (SVM), Linear Discriminant Analysis(LDA), Conditional Random

Fields(CRF), Random Forests(RF), and Artificial Neural Networks(ANN).

A Support Vector Machine (SVM) [Cortes and Vapnik, 1995] builds a sep-

arating hyperplane between two classes that has the largest distance to the

nearest training data point of any class. Boser et al. [1992] suggested the ker-

nel trick, a way to create nonlinear classifiers by replacing every dot product

with a nonlinear kernel function. The kernel trick allows algorithms to fit

models in (possibly high dimensional) transformed feature space. SVMs with

different kernels are the most popular choice for human action recognition in

complex scenarios [Sadanand and Corso, 2012, Wang et al., 2013]. Most of

these methods extract local features, adopt bag-of-features representation and

then apply SVM with a suitable kernel. For example, Kuehne et al. [2011]

extracted HOG/HOF features around Harris corner points, represented them

through BoF approach with 4,000 visual words, and used SVM with Gaussian

kernels to give a baseline performance on HMDB dataset. Sadanand and

Corso [2012] extracted action bank template features with dimensionality of
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nearly 15,000 and applied linear SVM to show improved results on HMDB

and UCF50 datasets. Kliper-Gross et al. [2012] further improved these results

by using dense low-level Motion Interchange Pattern features with BoF and

Linear-SVM. Wang et al. [2013] extracted 5 different types of features (HOG,

HOF, MBH along horizontal and vertical axis, and path) around dense motion

trajectories on 6 different spatio-temporal divisions (grid schemes) – ending in

120 channels of features. Along each channel, they applied a BoF quantiza-

tion with 4,000 words and used a multichannel SVM with χ2 kernel. This

representation and its extensions have shown state-of-the-art performance on

large-scale unconstrained video datasets 5.

Conditional Random Fields (CRF) are discriminative state-space models that,

unlike their generative counterpart HMMs, do not assume independence among

observations in time. Instead, CRF models can take into account multiple over-

lapping observations on different time scales and model conditional probability

of labels on the sequences of observations. Sminchisescu et al. [2006] presented

an approach to recognize human motion in monocular video sequences, based

on discriminative conditional random fields (CRFs) and maximum entropy

Markov models (MEMMs). Their approach outperforms HMM. Natarajan

and Nevatia [2008] proposed Shape, Flow, Duration-Conditional Random Field

(SFD-CRF), which computes its observations potentials using shape similarity,

and transition potentials using optical flow. Deep neural network based mod-

els such as convolutional neural networks (CNN) are also used for automatic

feature construction for human actions. Unlike handcrafted (handpicked) fea-

tures, these models can directly act on raw data and determine discriminative

features which are then used in BoF scheme. For example, Le et al. [2011]

learned hierarchical features from unconstrained videos using independent sub-

space analysis and convolutional networks. In [Shuiwang et al., 2013], a 3D

CNN model is developed for feature construction in real world surveillance. It

extracts features from both spatial and temporal dimensions by performing 3D

convolutions, thereby capturing the motion information encoded in multiple

adjacent frames. BoF and SVM are then applied for classification.

Ensembles or Boosting of different classifiers is also a popular approach for

discriminative classification. An ensemble classifier builds on a set of indi-

5http://crcv.ucf.edu/ICCV13-Action-Workshop/results.html
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vidual diverse hypotheses (classifiers) where diversity is achieved by acting

upon different data, applying different algorithms, or choosing different (hyper-

)parameters. Popular ensemble classifiers are are Random Forests [Breiman,

2001] and Adaboost. Gall et al. [2011] proposed Hough forests for object de-

tection, tracking, and action recognition. A Hough forest consists of a set of

random trees that are trained to learn a mapping from labeled local cuboid

features to their corresponding votes in a Hough space where the the Hough

space encodes the hypotheses for action in scale(time)-space and class. The

local voting mechanism leads to robustness towards occlusion and noise. How-

ever, most Hough based approaches require sufficient training data (labeled

patches) to enable discriminative voting. Yu et al. [2012] proposed propagative

Hough voting where the feature voting is performed using random projection

trees (RPT), which leverages the low-dimension manifold structure to match

feature points in the high-dimensional feature space. Wang et al. [2012] rep-

resented a 3D action as an actionlet ensemble which is a linear combination of

the actionlet features. The discriminative weights of actionlets are learned via

a multiple-kernel learning method.

Summary

We have discussed vision-based action recognition approaches and provided a

brief overview of the domain. We explained different application areas and

some related benchmark video datasets. Then we described well-known fea-

ture representations and their capacity to capture the dynamics of data of

different natures. In particular, we see that the global features that take a

top-down approach to model a frame or sequence are suitable to scenarios

where person localization is simple and the amount of background noise is

minimal. Whereas local representations, which are based on local features in

salient spatio-temporal locations, are a natural choice for unconstrained sce-

nario due to their robustness towards occlusion, scale, and noise. Finally, we

discussed different classification methods in the context of action recognition.

This chapter, thus, provided the big picture and an overview of action recog-

nition in videos. For comprehensive surveys on different aspects, readers can

look into recently published reviews and surveys [Aggarwal and Ryoo, 2011,

Poppe, 2010, Ke et al., 2013, Chaquet et al., 2013, Jiang et al., 2013].
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Chapter 3

Efficient Action Recognition by

Learning Discriminative Key Poses

Recognizing human actions in a controlled environment has received signif-

icant attention by researchers in the last decade. Most early work focused

on modeling human motion through global or local features. Recently, there

has been growing interest in exploiting the pose information for action recog-

nition as pose-based methods offer robustness against missing-frames, low-

observational latency, and online classification [Weinland and Boyer, 2008,

Thurau and Hlavac, 2008, Baysal et al., 2010]. In this chapter, we present an

efficient approach to pose-based human action recognition in a controlled envi-

ronment. Given a set of training videos, we first extract the contour distance

signal (CDS), a scale invariant pose-based feature, from silhouettes. Then, we

cluster the features in order to build a class-specific set of prototypical key

poses. Based on their relative discriminative power for action recognition on

the training data, we learn the weights that favor distinctive key poses. Fi-

nally, the classification of a query sequence is based on a simple and efficient

weighted voting scheme that augments results with a confidence value which

indicates recognition uncertainty. Our approach does not require temporal in-

formation and is applicable to action recognition from videos or still images.

It is efficient and delivers real-time performance. In experimental evaluations,

our approach shows high recognition accuracy for the single-view Weizmann

dataset [Blank et al., 2005] as well as the multi-view MuHAVi dataset [Singh

et al., 2010]. Consequently, a number of recent approaches have adopted or

extended the ideas of CDS and discriminative weighting of key poses to action

recognition in 3D data as well as in unconstrained videos [Chaaraoui et al.,

2012, Liu et al., 2013, Climent-Prez et al., 2013, Zanfir et al., 2013].
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3.1 Introduction

In Chapter 2, we categorized human activities, based on the complexity of

motion dynamics, into three broad classes: gestures such as “smiling” or “ro-

tating head”, (primitive) actions such as “walking” or “turning back”, and

(complex) activities such as “cooking” or “playing cricket”. In this chapter,

we focus on primitive actions that, when properly combined or sequenced (or

put into context), could be used to explain more complex activities. In partic-

ular, we aim at recognizing actions that can be discriminated based on their

pose. Most existing research on action recognition relies on temporal cues.

Many methods directly use motion cues [Fathi and Mori, 2008, Cutler and

Davis, 2000] or spatio-temporal features [Bobick and Davis, 2001, Blank et al.,

2005, Roth et al., 2009, Ke. et al., 2005]. Other methods track interest points

or local patches [Laptev and Lindeberg, 2003, Niebles et al., 2006] or use prob-

abilistic models (e.g. n-grams or HMMs) to implicitly represent temporal

contexts [Thurau and Hlavac, 2008, Martnez-Contreras et al., 2009, Wang and

Suter, 2007].

Although motion information obviously plays an important role in action

recognition, many human activities, such as “standing”, “running”, “read-

ing a book”, or “playing football”, can be recognized from a single image

or snapshot, assuming that the given pose is sufficiently distinctive or that

enough context information is made available. Furthermore, in monocular

videos where human localization and background removal can be efficiently

achieved, pose information can be of great importance in building robust ac-

tion recognition systems. Interestingly, only a few pose-based methods have

been introduced so far that work equally well for action recognition from videos

and still images. A common idea of these approaches is to represent and clas-

sify human poses for each image or frame in a sequence [Dedeoglu et al., 2006,

Weinland and Boyer, 2008, Baysal et al., 2010, Thurau and Hlavac, 2008]. Ex-

amples of common pose representations include raw silhouettes [Weinland and

Boyer, 2008], line pairs [Baysal et al., 2010], histogram of oriented gradient

(HOG) descriptors [Thurau, 2007], and contour-HOG descriptors [Dedeoglu

et al., 2006]. An action class is then normally represented as a histogram over

a set of key poses, i.e. a representative pose of a complex action, or simply as

a concatenation of pose representations.
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We presented a novel, non-temporal, pose-based method for action recognition

from videos and still images. In contrast to previous work, we apply a scale-

invariant contour feature CDS for pose representation that can be efficiently

computed from a silhouette image. For the representation of action classes,

we employ the idea of key poses. However, in addition to previous work, we

rate the class-specific key poses according to their discriminative power. For

instance, key poses involved in a “turn back” action will include poses rep-

resenting states of “walking”, “standing”, and “turning-head”, among others.

Since key poses such as “standing” may be shared among different actions

(e.g. “walk” and “guard”), we apply statistical learning to determine the rel-

ative importance of key poses. Furthermore, the relative importance weights

allow us to assign confidence values to classification results. As the proposed

approach does not use any temporal information, it is suitable both for video

and image-based action recognition. By benchmarking on single- as well as

multi-view action datasets, we demonstrate that our approach favorably deals

with variations in view or distance.

The technical contribution of our work is twofold: (i) a novel combination of

a contour-based pose representation and non-temporal key pose based classifi-

cation, and (ii) a novel weighting scheme for rating the relative importance of

key poses. Also, unlike various other approaches [Weinland and Boyer, 2008,

Ali et al., 2007], our approach does not require any subsampling, upsampling

or trimming during training. Furthermore, we have no limitations with respect

to the length of the considered video sequence, and the approach performs in

real-time on any standard desktop computer or smartphone. This real-time

capability is of crucial importance in intended applications which aim at pose-

based recognition of actions in interactive environments.

The rest of this chapter is organized as follows: Section 3.2 reviews related

work. Section 3.3 provides details on the underlying contour-based feature.

Details on the leading of discriminative key poses are given in Section 3.4.

Section 3.5 reports on our benchmark data, experiments, and results. Finally,

Section 3.6 concludes the chapter and discusses the future applications.

37



Efficient Human Activity Recognition in Large Image and Video Databases

3.2 Related Work

The idea of using key poses for action recognition has been applied success-

fully in previous work. In an early work, Carlsson and Sullivan [2001] used

key-frame templates for action recognition. They recognized forehand and

backhand tennis strokes in videos by computing an edge-based distance metric

between candidate frames and manually chosen key frames. Recently, Kil-

ner et al. [2009] used key poses to analyze 3D data in a multi-camera sports

environment. However, their approach is not applicable if only one view is

considered at a time. Thurau and Hlavac [2008] proposed a mutual informa-

tion (MI) based weighting scheme for histograms of key poses. In contrast to

their work, we directly adapt the weighting of each key pose and use a different

weighting scheme. In [Weinland and Boyer, 2008], an exemplar-based embed-

ding approach was presented which does not use any motion information and

the key frames are determined by forward feature selection. The training data

is then mapped to a distance space based on key frames. However, this process

is computationally demanding, especially when applied without subsampling

on large, multi-view and multi-actor datasets. Our approach differs in two

ways. Firstly, we use cluster centroids as the representative key poses for each

action class. Secondly, we model the inter-class and intra-class variations by

efficiently learning weights for key poses.

Our approach is most similar to [Baysal et al., 2010] that determines discrim-

inative key poses using k-mediods and a ranking scheme over their potential

score towards discriminating actions. We, instead, propose the use of an in-

tuitive, weighted voting scheme for classification. Also we advocate using a

contour-based feature which is more informative and systematic than the man-

ually marked line-pair edge segments considered in [Baysal et al., 2010]. Our

feature extraction is based on method by Dedeoglu et al. [2006] who defined a

distance signal over object contours. For action representation, however ,they

use template histograms of key poses in a temporal context. We, on the other

hand, avoid histograms or any other temporal model. This enables our action

recognition approach to be applicable for both image and video datasets.
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(a) (b) (c)

Figure 3.1: Extraction of the CDS feature: (a) original silhouette (b) the
contour (c) CDS with s = 200.

3.3 Contour-based Pose Representation

Extraction of efficient and informative features is crucial for success of human

activity recognition. Most pose-based approaches use global human representa-

tions that extract a binary silhouette of a person as a region of interest in each

frame and subsequently construct features using those silhouettes [Carlsson

and Sullivan, 2001, Niu and Abdel-Mottaleb, 2005, Martnez-Contreras et al.,

2009, Wang and Suter, 2007, Weinland and Boyer, 2008]. Since our focus in

this chapter is on learning discriminative key poses, we assume silhouettes im-

ages to be available, which is indeed the case for many well-known benchmark

datasets. Given a human silhouette, we extract its contour and transform it

into a contour distance signal (CDS) as in [Dedeoglu et al., 2006]. Details of

this representation are described below.

For a given binary silhouette image H consisting of n pixels, we determine its

center of mass C = (xc, yc) where

xc =

∑n
i=1xi
n

, yc =

∑n
i=1yi
n

(3.1)

and n is the number of silhouette pixels.

Let P = [p1, p2, ..., pn] be the ordered set of contour points such that p1 corre-

sponds to the extreme left point on H and successive pi are listed in a clockwise

fashion (see Fig. 3.1). A distance vector d = [d1, d2, ..., dn] is formed by calcu-

lating the Euclidean distance between pi and C, i.e.
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di = ‖pi − C‖ , ∀i ∈ [1, 2, ..., n] (3.2)

In order to provide robustness against varying image sizes and shapes, d is

scaled to a vector D̂ of constant size s such that

D̂ [i] = d

⌈
i ∗ n
s

⌉
, ∀i ∈ [1, 2, ..., s] (3.3)

where d·e is the ceiling function.

Finally, the scaled distance vector D̂ is normalized to have a unit sum:

D [i] =
D̂ [i]∑s
1 D̂ [i]

(3.4)

In the rest of this chapter, D is referred to as the contour distance signal (CDS).

Obviously, this contour-based feature is scale-invariant and can be efficiently

extracted from silhouettes. Compared to the size of the original image, the

size of the CDS is much smaller. For example, in the MuHAVi dataset, the

resolution of the original silhouette images is 720 × 576 pixels, whereas the

contours of the silhouettes consist of only a few hundred pixels. The CDS

can be further scaled down if s < n. This implicit dimensionality reduction

through transforming the silhouette to the CDS ultimately enables efficient

learning and classification.

3.4 Learning Discriminative Key Poses

In this section, we describe how we determine discriminative key poses for

different actions. Two major steps in the underlying process are (a) extraction

of key poses and (b) learning the appropriate weights for those key poses. Our

approach to key-pose extraction builds on [Baysal et al., 2010], where key poses

are learned over a space of line-pair segments. A significant characteristic

of our approach is its ability to adapt to and exploit the importance of key

poses. Figure 3.2 summarizes the computational steps involved in the proposed

framework.

Given a set of labeled video sequences or still images, silhouettes are extracted
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Figure 3.2: Overview of our discriminative key pose approach

for all frames through a background subtraction method, which can be done

reliably in controlled videos. For several benchmark datasets, including those

considered in this chapter, binary silhouettes are readily available, which per-

mits us to focus on the problem of pose-based action recognition. Given an

extracted silhouette, each input frame is mapped to the normalized contour

distance signal D of size s (as described in the previous section). The granu-

larity of the resulting feature may be controlled by setting the value of s – a

free parameter of the distance transform.

Determining action-specific discriminative key poses from the available training

data consists of two successive steps. In the first stage, representative key
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Algorithm 1 Learning discriminative key poses

Input: Silhouettes for all input frames of all training videos
Output: Key poses and their weights
Let k represents the number of clusters,
A = {a1, a2, ...ar} be the set of actions,
pij denotes j − th key pose of action i and wij be the its
weight

1: for all action a ∈ A do
2: Cluster all frames into k groups using k-means
3: Take cluster centers as key poses thus ending up with r × k key poses
4: end for
5: for all actions a ∈ A do
6: for all frames f ∈ a do
7: Assign the key pose pij to f such that ‖f − pij‖ is minimum
8: end for
9: end for

10: Let nij and n
′

ij respectively denotes number of within-class assignments
and number of out-of-class assignments to pij

11: wij :=
nij

nij + n
′
ij

∀i, j

poses are determined for each action by clustering all frames belonging to the

corresponding class. In the second stage, weights are assigned to these key

poses according to their ability to discriminate among different actions in the

training data. Algorithm 1 formally summarizes the procedure.

Lines 1 – 4 corresponds to key-pose extraction stage. We employ k −means
clustering with Euclidean distances to calculate key poses for each action.

Notice that we determine key poses for each action category separately. In

our early experiments, we observed that using global key poses undermines

classification performance. This could be explained by the very nature of the

clustering algorithms as they would retrieve more centroids from the classes

involving high pose variation (e.g. “kick“) as compared to the classes involving

low pose variation (e.g. “walk“). As our model is strictly non-temporal, we

do not create any ordered histogram of key poses (KPs). Thus, key poses

represent a set of different possible states of an action. For example, key poses

for the action “kick” may correspond to spatial states such as “standing”,

“arm adjustment”, or “pulling the leg”. Figure 3.3 gives an example of 8

key poses extracted from a video of the action KickRight in the MuHAVi
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KP-1 KP-2 KP-3 KP-4

KP-5 KP-6 KP-7 KP-8

Figure 3.3: Different key poses for action KickRight in MuHAVi dataset

dataset. Notice that KP-2 and KP-6 through KP-8 do not seem to represent

distinctive states of the action. Instead, they look more related to actions such

as “walk”, ”punch”, or “guard”. Still, they are automatically extracted since

they apparently represent significant parts of the action sequence.

The problem of common or ambiguous key poses is resolved by adopting a

simple and intuitive mechanism of assigning rewards and penalties to key poses

(Lines 5 – 11 of Algorithm 1). This procedure computes relative importance

weights of key poses for different actions. For each frame f in the training

data, the closest key pose pij is determined by taking into account all key

poses of every action. Each time a key pose pij is favored by some frame, the

actual label of that frame is compared with the action class i of the favored

key pose. Thus for each key pose pij, two values nij and n
′

ij are stored, where

the former denotes the number of correct classifications to the key pose and

the latter denotes number of false assignments to the key pose. In this way,

those key poses which frequently match to the frames from other classes, will

have lower weights (Line 11). On the other hand, key poses which appear only

within one class will get higher weights. From the perspective of key poses:

if a key pose corresponds to frames from different action classes, it will have

some false assignments which would decrease its weight. From the perspective

of action classes: key poses which are common only within the action class and

are discriminative with respect to other action classes will have higher weights.
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w1 = 1.0 w2 = 1.0 w3 = 1.0
w4 = 0.84 w5 = 0.74 w6 = 0.67 w7 = 0.14 w8 = 0.08

w1 = 0.83 w2 = 0.80 w3 = 0.69 w4 = 0.52 w5 = 0.43 w6 = 0.28 w7 = 0.20 w8 = 0.16

Figure 3.4: The 8 high-ranking key poses and their weights for the two over-
lapping actions KickRight(first-row) and GuardToKick(second-row) in the
MuHAVi dataset. The most distinctive and representative key poses have
higher weights. Key poses corresponding to overlapping states have different
relative importance e.g. w7 of KickRight and w2 of GuardToKick.

This mechanism also allows for automatically eliminating effects of overlapping

actions. For instance, KickRight and GuardToKick in the MuHAVi datasets

are two such actions for they share many common states, such as ”standing

straight” or ”standing in a punching position”. Figure 3.4 shows the 8 top

ranking key poses and their weights as determined by our approach. Notice

that (a) the larger weights are assigned to more discriminative key poses (b)

the poses corresponding to overlapping states (such as ”standing in punching

position” depicted by the 7th key pose of KickRight and the 2nd key pose

of GuardToKick) have very different importance for the two actions. This

indicates the ability of our approach to learn the relative importance of key

poses.

In the application phase, in order to classify a given frame sequence, we first

extract its contour feature. Then we determine the classes and the weights of

the closest key poses, with respect to Euclidean distance, for each query frame.

Based on these weights, we apply a simple weighted voting scheme. Weights

are accumulated for all related key poses, and the label of the action class

which has highest sum of weights is chosen. Notice that more discriminative

poses dominate this process. In contrast to approaches such as [Thurau and
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Hlavac, 2008, Baysal et al., 2010], this allows all query frames and all key poses

to participate in the classification process. Due to a compact and non-temporal

feature representation and a moderate number of key poses, we thus achieve

real-time classification.

3.5 Experiments

To evaluate the robustness and effectiveness of our approach, we performed

experiments on two well-known controlled datasets, namely the Weizmann

collection [Blank et al., 2005] and the MuHAVi set [Singh et al., 2010]. In

comparison to single-view Weizmann data, MuHAVi is a versatile multi-view

action dataset with more primitive action classes. All experiments presented in

this section were carried out on a standard notebook computer using MATLAB

7. The average processing rate was measured to be 56 frames per second,

indicating the real-time applicability of the approach. In the following, we

elaborate on the two datasets, our experimental results, and their significance

in comparison to state-of-the-art methods.

3.5.1 Results on Weizmann Dataset

The Weizmann data [Blank et al., 2005] is a popular single-view action dataset

which contains 93 video samples for 10 different actions performed by 9 actors.

These actions include: walking, running, jumping, galloping sideways (side),

bending, one-hand waving (wave1), two-hands waving (wave2), jumping in

place (pjump), jumping jack, and skipping. A common tradition is to consider

only 9 actions by eliminating the samples of the action “skip” or otherwise

excluding some noisy samples. Here, we consider readily available silhouettes

for the all the 93 videos in Weizmann dataset. It is worth noting that many

of these silhouettes are very noisy (e.g. see Figure 3.5). We use them as they

are without any preprocessing.

To judge the performance of our approach on this dataset, we applied leave-

one-out cross validation. We used 200 points on the contour. The best perfor-

mance was achieved for 40 key poses per action. Figure 3.6 shows the resulting

confusing matrix. Notice that among the 6 misclassified instances, 3 belong to

a single class: “skip“.
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jack pjump side wave2

Figure 3.5: Examples of some noisy silhouettes in Weizmann dataset

Figure 3.6: Confusion matrix for Weizmann dataset

Table 3.1 compares our approach to other methods. While there are a number

of motion-based action recognition approaches which report accuracies between

90% and 100%, we compare our approach to the existing non-temporal (key

pose based) methods. Only [Weinland and Boyer, 2008] achieved significantly

higher accuracy than the proposed method. However, recall that, in contrast

to their method, our approach does not require any subsampling of the data.

Moreover their approach is based on forward selection of key poses, which

is computationally expensive for large and versatile action datasets. Thurau

[2007] reported accuracies of 86.6% and 94.4% by using non-temporal uni-

grams and 2-frame temporal bigrams, respectively. In terms of methodology,

the work of Baysal et al. [2010] is most close to our approach. It follows

that by using contour-based pose features, we can achieve significantly higher

accuracy. Moreover, our approach is very efficient for its feature extraction,

dimensionality reduction, and the similarity measure.
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Approach Act. Seq. Acc.(%)

[Baysal et al., 2010] 9 81 92.6
[Thurau, 2007] 10 90 86.6
[Weinland and Boyer, 2008] 10 90 100

Our approach
9 81 97.5
10 93 93.5

Table 3.1: Comparison of our approach with other non-temporal approaches
on Weizmann dataset

Figure 3.7: Confusion matrix for MuHAVi-14

3.5.2 Results on MuHAVi Dataset

MuHAVi [Singh et al., 2010] is another multi-camera and multi-action con-

trolled video dataset. It consists of videos of 17 activities performed multiple

times by 14 actors. The action sequences are captured by 8 different CCTV

cameras, each with an angular difference of 45◦. Silhouettes of 14 primitive

actions performed by 2 actors (A1 and A4) captured from 2 views (45◦ and

90◦) were manually annotated and made publicly available. This dataset (also

known as MuHAVi-MAS) contains 136 annotated silhouette sequences and

provides a test bed for benchmarking silhouette-based action recognition ap-

proaches. In the following discussion, we refer to this data as MuHAVi-14.

The contained primitive actions can be further grouped into 8 action classes.
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Figure 3.8: Confusion matrix for MuHAVi-8

For example, “WalkLeftToRight” and “WalkRightToLeft” may be merged into

“Walk”. We refer to this merged dataset as MuHAVi-8.

In order to validate our approach w.r.t. the multi-view, multi-actor nature of

the dataset, we performed different experiments, as suggested in [Singh et al.,

2010].

Leave-one-out Cross Validation

In this test, we iteratively trained the classifier on all instances except one, and

tested it on the left-out instance. Finally, the average accuracy was calculated

over all 136 silhouettes. By using k = 60, we achieved an accuracy of up to

86.03% and 95.58% for MuHAVi-14 and MuHAVi-8, respectively. See Figs. 3.7

and 3.8 for the resulting confusion matrices.

Notice that our approach is able to distinguish between actions involving simi-

lar poses in different temporal order. For instance, “Collapse” and “Standup”

as well as actions involving many overlapping poses in the same order (e.g.

“GuardToKick” and “KickRight”) can be distinguished. Action-wise com-

parisons to the temporal baseline approach [Singh et al., 2010] are listed in

Tables 3.2 and 3.3.

Identical Training and Test Cameras, Novel Test Actor

In this experiment, we trained our classifier on all instances related to one ac-

tor, tested on the data of the other actor, and calculated average classification
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Accuracy (%)
Action Baseline[Singh et al., 2010] Our Approach

CollapseLeft 50.0 87.5
CollapseRight 62.5 87.5
GuardToKick 81.2 75.0
GuardToPunch 62.5 62.5
KickRight 93.7 100.0
PunchRight 100.0 100.0
RunLeftToRight 87.5 87.5
RunRightToLeft 87.5 100.0
StandUpLeft 0.0 25.0
StandUpRight 100.0 100.0
TurnBackLeft 100.0 50.0
TurnBackRight 87.5 87.5
WalkLeftToRight 100.0 100.0
WalkRightToLeft 87.5 100.0

82.35 86.03

Table 3.2: Action-wise comparison of our approach with the baseline on
MuHAVi-14

Accuracy (%)
Action Baseline[Singh et al., 2010] Our Approach

Collapse 100.0 100.0
Guard 100.0 96.9
KickRight 93.7 100.0
PunchRight 100.0 93.7
Run 93.7 93.7
StandUp 100.0 100.0
TurnBack 91.7 75.0
Walk 100.0 100.0

97.80 95.58

Table 3.3: Action-wise comparison of our approach with the baseline on
MuHAVi-8

rates. A comparison with the baseline is given in Tables 3.4 and 3.5. Note that

the baseline evaluation in [Singh et al., 2010] was based on training on Actor-1

and testing on Actor-4. However, we alternatively considered both actors for

training and testing.

Again, we observed a significant improvement in accuracy for both MuHAVi-

14 and MuHAVi-8 collections. An increase of about 12% in accuracy, for

MuHAVi-14, shows the relative robustness of the proposed approach towards
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Accuracy (%)
Action Baseline[Singh et al., 2010] Our Approach

CollapseLeft 75.0 87.5
CollapseRight 50.0 87.5
GuardToKick 0.0 68.7
GuardToPunch 0.0 25.0
KickRight 87.5 81.3
PunchRight 100.0 68.7
RunLeftToRight 100.0 75.0
RunRightToLeft 75.0 100.0
StandUpLeft 0.0 50.0
StandUpRight 100.0 75.0
TurnBackLeft 50.0 75.0
TurnBackRight 50.0 75.0
WalkLeftToRight 100.0 100.0
WalkRightToLeft 100.0 75.0

61.76 73.53

Table 3.4: Novel actor validation on MuHAVi-14

Accuracy (%)
Action Baseline[Singh et al., 2010] Our Approach

Collapse 75.0 100.0
Guard 50.5 75.0
KickRight 87.5 81.25
PunchRight 100.0 62.5
Run 87.5 75.0
StandUp 83.3 100.0
TurnBack 50.0 83.3
Walk 100.0 100.0

76.47 83.08

Table 3.5: Novel actor validation on MuHAVi-8

individual characteristics of actors. Although human silhouettes differ in test

and training data, the novel combination of scale-invariant features with dis-

criminative key-pose learning exhibits improved performance.

Identical Training and Test Actors, Novel Test Camera

In this scenario, we aimed to determine the robustness of the algorithm to-

wards changes in viewpoint. Here, we trained our classifier on all instances

captured by one camera and tested on data captured by the other camera.

We alternatively considered both camera-views for training and testing. Our
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Accuracy (%)
Action Baseline[Singh et al., 2010] Our Approach

CollapseLeft 0.0 87.5
CollapseRight 50.0 37.5
GuardToKick 0.0 50.0
GuardToPunch 25.0 0.0
KickRight 87.5 100.0
PunchRight 75.0 62.5
RunLeftToRight 0.0 50.0
RunRightToLeft 0.0 50.0
StandUpLeft 50.5 25.0
StandUpRight 100.0 62.5
TurnBackLeft 100.0 25.0
TurnBackRight 75.0 62.5
WalkLeftToRight 0.0 0.0
WalkRightToLeft 75.0 62.0

42.6 50.0

Table 3.6: Novel view validation on MuHAVi-14

Accuracy (%)
Action Baseline[Singh et al., 2010] Our Approach

Collapse 62.5 56.3
Guard 18.7 40.6
KickRight 87.5 87.5
PunchRight 75.0 56.2
Run 0.0 37.5
StandUp 83.3 91.6
TurnBack 83.3 83.3
Walk 37.5 37.5

50.0 57.4

Table 3.7: Novel view validation on MuHAVi-8

average results for the two cases are compared with the baseline in Tables 3.6

and 3.7.

Although our approach outperformed the baseline method, the accuracy results

demonstrate the challenging nature of this problem. We notice, in particular,

a lower performance of our pose-based approach for actions where the novel

pose involves high self-occlusion (e.g. GuardToPunch and PunchRight). Given

that our approach relies on shape information only, a large change in viewpoint

(45◦ in this case) can obviously affect its performance. We expect that, if the

size and variety of training data were increased (e.g. by adding more actors
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Approach Weizmann MuHAVi-14 MuHAVi-8

Discriminative Weights 93.5 86.03 95.58
Majority Voting 86 81.6 91.9

Table 3.8: Significance of our discriminative weighting scheme

or views to the training set), our simple yet effective approach would perform

even better.

3.6 Conclusion

In this chapter, we presented a novel, simple yet effective approach to pose-

based action recognition in constrained videos and silhouette images. We could

show that by employing a contour-based pose representation and an efficient

weighting scheme that favors distinctive key poses, a very high recognition

accuracy could be achieved on standard benchmark data, even though the

presented approach does not incorporate any temporal information or implicit

modeling of the underlying sequence of key poses. The contribution of the

proposed CDS key poses is apparent from experimental results on the Weiz-

mann dataset (Table 3.1), where our approach outperforms [Baysal et al., 2010]

and [Thurau, 2007], who use mutual information based weighting, but employ

line-pairs or HOG-based feature representations. In order to show the signifi-

cance of learning discriminative weights, we compared our algorithm to a naive

majority-based approach that represents each action as a set of CDS key poses

without weights (lines 1–4 in Algorithm 1) and uses majority voting to classify

a given sequence. The (highest) results by leave-one-out cross validation given

in Table 3.8 show the significance of our discriminative weighting scheme.

While we are confident that the addition of temporal information might further

increase accuracy, the high recognition rates for a strictly pose-based approach

are an interesting result. Although our approach already outperforms a recent

baseline in more difficult novel-view and novel-actor scenarios, it may be fur-

ther improved by enlarging the set of training data. The proposed approach

is directly applicable to controlled scenarios such as surveillance and human-

computer interaction. However, it will be interesting to see the benefits of

discriminative key poses in complex scenarios.
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To this end, Liu et al. [2013] recently used a similar weighting scheme to

determine a set of discriminative key poses for action recognition in more

realistic scenarios (e.g. a subset of HMDB videos that contain single-person

actions). They used features that encode contour, orientation, and intensity

information. Compared to the one-shot weight learning in our approach, they

used Adaboost to iteratively determine the difficult (discriminative) key poses.

In contrast to our hard assignment of key poses to query frames, they used soft

assignment and achieved state-of-the-art performance on a number of activity

recognition datasets. Other recent approaches that relate-to or extend our

approach include: [Chaaraoui et al., 2012], [Zanfir et al., 2013] and [Climent-

Prez et al., 2013]. For example, Climent-Prez et al. [2013] adopted the CDS

representation to 3D skeletal data and applied a similar weighting scheme

to determine discriminative joints for action recognition in MSR-Action3D

data[Li et al., 2010].

Summary

Pose-based action recognition has generated a growing interest for its effi-

ciency and robustness towards missing data, observational latency, and online

classification. This chapter described a novel, efficient, pose-based approach.

The proposed approach represents a human pose as a contour distance sig-

nal (CDS) feature that takes into account the distances of the contour points

from the center of mass. The CDS is a compact representation, and it can

be efficiently extracted from silhouettes. Each action category is represented

by a set of (keypose, weight) pairs where the key poses are determined by

k-means clustering for each class. The weights are learned by a novel mutual

information-based scheme that favors distinctive key poses (only present within

specific action classes) and moderates ambiguous key poses (common among

different actions). A query sequence is classified by identifying the nearest

neighbor key poses and their classes for all of its frames and accumulating the

corresponding weights per class. In this way, we achieve real-time classifica-

tion with high recognition accuracy for single- as well as multi-view controlled

action datasets. Recently, many researchers have directly used or extended the

ideas discussed in this chapter to action recognition in more challenging sce-

narios (unconstrained videos and 3D data). Consequently, they have presented
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more sophisticated systems of learning discriminative key poses ([Climent-Prez

et al., 2013], [Zanfir et al., 2013], [Liu et al., 2013]) and exploiting contour-

based information ([Chaaraoui et al., 2012], [Liu et al., 2013], [Climent-Prez

et al., 2013]).
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Applicability of Keypose based

Learning to Large Scale Gait

Recognition

The approach proposed in the previous chapter builds on three concepts: (a) a

contour based representation of silhouette images (b) a key pose based repre-

sentation of action categories and (c) a weighting scheme that identifies most

discriminative key poses based on inter-class and intra-class variation. While,

our approach [Cheema et al., 2011] and related work [Chaaraoui et al., 2012,

Liu et al., 2013, Climent-Prez et al., 2013, Zanfir et al., 2013] show promising

results on different action datasets, we are interested in extending the appli-

cability of key pose based classification to a related large-scale problem – gait

recognition. Gait recognition, which aims to recognize people by the way they

walk, historically benefited from developments in action recognition and often

serves as a test bed for evaluating the scalability of the methods used in ac-

tion recognition. Note that while action recognition assumes and maximizes

inter-class variation, gait recognition faces low inter-class variation since dif-

ferent classes (person labels) are deviations of a single action, “walk“. Our

experimental evaluation on a large gait dataset shows that the high inter-class

ambiguities at large scale may undermine the discriminative weighting scheme.

Still the contour-based features combined with key poses and a simple majority

voting scheme outperforms most other approaches that model individual gait

patterns as sequences of temporal templates either by determining gait cycles

or by aggregating spatio-temporal information into a 2D signature [Cheema

et al., 2012b].
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4.1 Introduction

Most existing benchmarks for pose-based action recognition in controlled (surveil-

lance) environments are restricted to a few primitive actions such as “run“,

“kick“, “punch“, etc. These primitive actions can be considered as different se-

quences or combinations obtained from a set of basic gestures or poses. While

different actions may share some poses, they are usually characterized by their

very discriminative poses or execution order. In such cases, a (discrimina-

tive) key pose based framework may perform well – as seen in the previous

chapter. In this chapter, we investigate applicability of the contour distance

signal (CDS) and key pose based recognition to a large-scale activity recogni-

tion scenario. Specifically, we focus on gait recognition that can be considered

as a fine-grained action recognition problem with low inter- and intra-class

variation.

Gait recognition research can be divided into two categories: model-based

approaches that consider the motion of joints and model-free approaches that

rely on holistic features of shapes (silhouettes) or motions of human bodies as

a whole. Model-based methods are usually robust to changes in view and scale.

Nonetheless, they are sensitive to image quality and incur high computational

cost in RGB videos. Model-free approaches are insensitive to the quality of

silhouettes and can be computed efficiently. Most of the current approaches

are model-free. Our keypose based approach, when applied to gait recognition,

can be considered model-free. Note that the idea of extending human action

recognition to gait recognition is by no means novel. Often gait recognition

approaches benefit from developments in action recognition and vice versa. For

example, gait energy images (GEI) [Han and Bhanu, 2006] and gait history

images (GHI) [Jianyi and Nanning, 2007] are built on the ideas of motion

energy images (MEI) and motion history images (MEI) presented for action

recognition in [Bobick and Davis, 2001]. However, to our knowledge, we are

the first to propose a strictly non-temporal pose-based approach to large-scale

gait recognition [Cheema et al., 2012b].

Our experimental results show that, though the discriminative weighting does

not scale to such problems, a naive combination of CDS shape (model-free)

representation, key pose based category representation and majority voting

based classification can achieve state-of-the-art performance on benchmark gait
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data. On the one hand, this approach, by its very nature, does not compromise

useful information concerning spatio-temporal variations. On the other hand,

it does not require any temporal alignment or dynamic time warping for gait

classification. Furthermore, intrinsic dimensionality reduction is accomplished

by using the CDS compact feature. These characteristics make the proposed

approach highly accurate and capable of real-time computation.

4.2 Related Work

Over the last decade, a number of vision-based techniques for gait recognition

have been proposed [Wang et al., 2003b, Han and Bhanu, 2006, Zhang et al.,

2009, Chen et al., 2009, Goffredo et al., 2010, Kusakunniran et al., 2011]. Most

recent approaches are model-free, i.e. they rely on holistic shape or motion

features and do not try to estimate joint locations. For example, gait energy

images (GEI) [Han and Bhanu, 2006] and gait history images (GHI) [Jianyi

and Nanning, 2007] convert spatio-temporal information of a walk sequence

into a single 2D image. Chen et al. [2009] proposed frame difference energy

images (FDEI) to preserve kinetic and static information in each frame, even

when the silhouettes are incomplete.

Many model-free approaches employ Procrustes shape analysis (PSA) to ob-

tain affine invariant descriptors known as Procrustes mean shape (PMS) [Wang

et al., 2003a]. Zhang et al. [2009] used a computationally expensive combina-

tion of shape context (SC) and PMS to address gait recognition. Kusakunniran

et al. [2011] proposed the so-called pairwise shape configuration (PSC) which

embeds local shape information, opposed to the holistic nature of PMS. The

local spatial information in PSC is embedded by automatically determining

head and feet position. Other approaches represent gait by extracting multi-

ple frames from gait cycles. For example, Collins et al. [2002] chose four frames

that correspond to peaks and valleys of a gait cycle. In [Wang et al., 2003b], dy-

namic time warping is used for comparing average gait cycles based on contour

distance features. In [Chen et al., 2011], a two-level dynamic Bayesian network

(layered time series model (LTSM)) is proposed which models each cluster of

temporally adjacent frames as logistic dynamic texture. Recently, Iosifidis

et al. [2012] employed linear discriminant analysis (LDA) and fuzzy vector

quantization (FVQ) on raw silhouettes for person identification.
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Figure 4.1: 6 top and 6 bottom key poses of an individual’s walk and their
coverage

Reviewing state-of-the-art methods, we notice that: (a) almost all approaches

depend on reliable estimation of gait cycles, which are not feasible in many

scenarios, e.g. in case of interrupted or partially visible walk sequences, (b)

although model-free approaches are relatively efficient, most of them still incur

high computational cost due to frame by frame alignments, (c) most existing

approaches (e.g. GEI, GHI, PMS) tend to compress information of the walking

behavior of an individual into a single template, which may neglect useful

information about spatio-temporal variations.

4.3 Learning (Distributed) Key Poses for Gait Recog-

nition

Here, for the sake of completeness, we briefly describe our key pose based

approach. Given training sequences of silhouettes for C classes, we first ex-

tract CDS features for each frame of every sample. These feature vectors are

grouped together for each class without preserving any order of the gait cycles

or sequences. K-means clustering with Euclidean distance is then employed

to determine k cluster centers for each class. For a sufficient value of k, these

cluster centroids represent common poses as well as less frequent poses of an

individual’s walk. This can be seen in Fig. 4.1, which shows the coverage of

training data by different key poses for and individuaĺs walk sequences. To

classify a given query video (sequence of CDS), we determine the nearest key

poses for all frames and apply majority voting to compute the class label. We

notice that in the case of gait recognition, majority voting outperform several

action recognition weighting schemes [Thurau and Hlavac, 2008, Baysal et al.,
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(a) (b) (c)

(d)

Figure 4.2: Invariance of CDS feature against small changes in viewpoint and
body shape: (a) Original frame (b) with an 18◦ change in viewpoint (c) with
a 15% longer neck (d) comparison of CDS’s of (a), (b), (c).

2010, Cheema et al., 2011] by 20% to 30%.

In contrast to existing gait recognition methods, we represent a gait pattern as

a collection of non-temporal key poses distributed over a whole walk sequence.

Also, we do not embed any temporal context into the features or into the

classifier. Our representation is distributed in the sense that an individual’s

gait is modeled as a set of key poses that are determined without explicitly

approximating the gait cycles but still cover different gait phases. In contrast

to other approaches, the underlying gait representation is not constrained by

any structural limitations imposed by gait cycles or aggregate templates.

A major advantage of our approach is the use of CDS feature, which is scale

invariant and can be efficiently computed. Compared to the size of the original

image, the size of the contour is much smaller. This implicit dimensionality

reduction through transforming a silhouette to CDS consequently enables ef-

ficient learning and classification. Furthermore, CDS is invariant to a realistic

(small) change in viewpoint. This is apparent from Fig. 4.2, where we com-

pare the CDS of a silhouette with respect to a small change in viewpoint and

a small change in body configuration. This invariance is achieved because: (a)

extreme points including p1 remain extreme after a small change in viewpoint

and (b) relative positions of points on contour remain (almost) intact.
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Figure 4.3: CMS curves for person identification with the same unchanged
viewpoint and with 18◦ change

4.4 Experimental Results

We performed an experimental evaluation on the CASIA-B dataset which is

one of the largest and most used benchmarks for gait recognition [Yu et al.,

20006]. CASIA-B contains walk sequences of 124 subjects captured from 11

different viewpoints, ranging from 0◦(front view) to 180◦(back view). As with

most competing methods (see Table 4.1), we consider the “normal“ videos

that do not include samples where the individual wears a coat or carries a

bag. There are 6 videos for each person under each different viewing angle and

silhouettes are provided. Sequences which contain very noisy silhouettes (e.g.

3 connected components of almost equal size) are discarded6. After filtering

this way, the data of 106 subjects were considered for the evaluation.

Following the standard practice, for each person, the first 4 sequences were

chosen for training and the remaining 2 for testing. For classification of a

given test sequence, each of its frames was compared to key poses of candi-

date classes, and a decision was made by majority voting. We evaluated our

approach for the following two cases: (i) the viewpoint remains the same for

training and testing data (ii) there is a 18◦ difference in the viewpoints of the

two sets. Results are reported for settings k = 48 and s = 200.

In case of an unchanged view, we achieved a very high average recognition

accuracy of 97.3%, which is among the highest scores obtained on this dataset.

6Many of the silhouettes are very noisy. In fact, 14 subjects have more than 30% incomplete

frames [Chen et al., 2009]
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(Test, Train) PMS-PSA GEI-MDA Model-based PSC-PSA Our

(0◦, 0◦) – – – – 98.6
(0◦, 18◦) – – – – 46.2

(18◦, 0◦) – – – – 22.2
(18◦, 18◦) – – – – 98.6
(18◦, 36◦) – – – – 71.2

(36◦, 18◦) 45.0 39.5 – 65.6 68.9
(36◦, 36◦) 76.7 98.1 72.1 96.0 99.1
(36◦, 54◦) 23.3 33.2 64.6 77.6 65.6

(54◦, 36◦) 21.1 27.7 56.5 78.1 64.2
(54◦, 54◦) 75.4 98.0 79.5 97.7 97.1
(54◦, 72◦) 22.0 21.5 65.1 74.2 58.0

(72◦, 54◦) 18.3 16.3 72.1 80.1 51.4
(72◦, 72◦) 77.2 98.3 85.0 97.7 97.7
(72◦, 90◦) 38.7 46.5 64.0 74.2 63.7

(90◦, 72◦) 36.8 50.4 72.6 84.5 63.2
(90◦, 90◦) 77.4 99.2 86.5 97.7 94.4
(90◦, 108◦) 46.9 73.7 69.2 85.3 70.3

(108◦, 90◦) 45.0 65.5 64.0 70.0 55.2
(108◦, 108◦) 72.4 98.8 82.3 96.0 93.9
(108◦, 126◦) 33.1 28.8 72.8 75.9 78.3

(126◦, 108◦) 45.0 31.7 67.6 78.2 76.4
(126◦, 126◦) 79.0 98.1 81.1 95.8 98.1
(126◦, 144◦) 46.0 36.2 – 78.0 74.1

(144◦, 126◦) 44.0 37.6 – 70.3 72.2
(144◦, 144◦) 78.0 98.7 – 96.5 98.6
(144◦, 162◦) 16.0 4.4 – 33.9 28.3

(162◦, 144◦) – – – – 48.1
(162◦, 162◦) – – – – 97.7
(162◦, 180◦) – – – – 17.9

(180◦, 162◦) – – – – 24.1
(180◦, 180◦) – – – – 97.7

Avg* 45.0 57.2 72.2 81.1 74.7

Table 4.1: Comparison of our approach with other representative approaches.
*To make a fair comparison, the average was calculated for Test ∈ [36◦, 144◦].

For a small change in viewing angle, we achieved a very reasonable average

recognition rate of 56% over all viewpoints and 63.6% on commonly reported

lateral viewpoints, i.e. between 36◦ and 144◦. Figure 4.3 plots the Cumulative

Match Score (CMS) for the two cases. The CMS is computed by finding

the rank of the query among an ordered list of predicted classes. Notice, in

particular, that under small view changes, the probability of having the correct

subject among the 12 top-ranking subjects is above 90%.

Table 4.1 shows detailed results of our approach for different viewpoints and
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Approach same-view changed-view

PMS-PSA [Wang et al., 2003a] 76.6 29.2
GEI-MDA [Han and Bhanu, 2006] 98.5 36.6
GEI-HMM [Chen et al., 2009] 83.2 –
GHI-HMM [Chen et al., 2009] 62.1 –
FDEI-HMM [Chen et al., 2009] 93.9 –
Model-based self calibration [Goffredo et al., 2010] 81.1 65.5
PCA-MDA [Liu et al., 2010] 97.7 –
PSC-PSA [Kusakunniran et al., 2011] 96.7 73.2
Wavelet-LTSM [Chen et al., 2011] 95.7 –
FVQ-LDA [Iosifidis et al., 2012] 93.3 –

Our approach 97.3 63.6

Table 4.2: Comparison of our approach with other representative approaches.

compare them to other multi-view approaches. Table 4.2 presents a further

comparison of our approach with state-of-the-art approaches for the two cases

(no change and a small change in viewpoint). Only pair-wise shape configura-

tion [Kusakunniran et al., 2011] shows a matching performance. However note

that [Kusakunniran et al., 2011] is a semi model based approach which de-

pends on localizing the left and right foot. Consequently, it can not be applied

to (near) frontal or (near) back views (See second-last column of Table 4.1).

Notice also that the GEI-based approach [Han and Bhanu, 2006], though rel-

atively accurate for unchanged-views, is not robust against small changes in

viewing angle. Our approach of learning key poses based on the contour dis-

tance signal, on the other hand, shows a high and consistent performance. All

experiments were carried out on a standard laptop using MATLAB 7, and we

achieved nearly real-time classification performance, i.e. 12 frames per second,

using a single core.

4.5 Conclusion

We applied an efficient, key pose based approach to large-scale gait-based hu-

man identification. We could show that, using a contour-based pose represen-

tation and key pose learning, very high recognition accuracy can be achieved

on standard benchmark data, even though the presented approach does not in-

corporate any temporal information or implicit modeling of the underlying se-

quence of key poses. Although, static key pose based approaches have recently
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been applied successfully to activity recognition, hardly any such approach

was applied on gait recognition. This chapter thus establishes the effective-

ness of non-temporal pose-based methods for large-scale activity recognition

problems such as gait recognition. Also, from the perspective of our key pose

based classification presented in the previous chapter, we could (a) identify

the limitation of the discriminative weighting scheme to some scenarios, and

(b) express the strength of CDS representation and key pose based learning to

model human activities at a different level of granularity.

Our CDS features, like any other shape-based descriptor [Han and Bhanu,

2006, Zhang et al., 2009, Iosifidis et al., 2012], may suffer from medium to

large changes in a person’s appearance e.g. due to carrying a bag. Although

this is not within the core focus of our research, it will be interesting to see

in future how such pose-based approaches can perform in conjunction with

domain adaptation methods i.e. by learning transformations from a normal

case to different conditions such as clothing and carrying objects. Another

interesting idea is building models of motion in consecutive frames and then

applying key pose based learning. Such approaches have successfully been

applied to action recognition (e.g. Bigrams [Thurau and Hlavac, 2008] and

Moving Poses [Zanfir et al., 2013]).

Summary

Gait recognition can be considered a fine-grained activity recognition problem

which is receiving increasing attention from computer vision researchers for

its applicability in areas such as visual surveillance, access control, and smart

interfaces. Most existing research attempts to model individual gait patterns

as sequences of temporal templates either by determining gait cycles or by

aggregating spatio-temporal information into a 2D signature. In this chapter,

we extended the application of the contour distance signal and key pose based

classification to large-scale gait recognition. We achieved high recognition

accuracy and real-time classification on a multi-view gait dataset with over 100

subjects [Cheema et al., 2012b]. In short, we have established the effectiveness

of an efficient combination of the contour-based features and key pose based

learning for human activity analysis in a controlled environment.
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Chapter 5

Activity Recognition in High

Dimension Low Sample Size

Unconstrained Data

Human activity recognition in large unconstrained databases such as YouTube

and Flicker is a challenging task due to the presence of cluttered backgrounds,

poor illumination conditions, camera motion, different viewpoints, occlusions,

poor quality of the medium, and the evolution of the data. These challenges

impede most approaches designed for activity analysis in controlled environ-

ments. Building efficient applications (such as content-based retrieval systems)

for such realistic data calls for robust algorithms that can efficiently organize,

analyze, classify, and retrieve this data. While the problem is largely unsolved,

approaches that are based on extracting spatio-temporal features around in-

terest points or motion trajectories have shown promising results in terms

of recognition accuracy [Laptev et al., 2008, Kliper-Gross et al., 2012, Wang

et al., 2013]. The dimensionality of these spatio-temporal features often ranges

in the tens of thousands, whereas the number of classes and the number of la-

beled instances per class usually ranges between ten and a hundred. Such high

dimension, low sample size (HDLSS) data are prone to neighborliness – the

lack of a proper neighborhood among the instances in a very high dimensional

space [Donoho and Tanner, 2005, Ahn et al., 2007]. Asymptotic studies show

a tendency for HDLSS data to lie at the vertices of a regular simplex [Hall

et al., 2005, Donoho and Tanner, 2005].

Existing methods of recognizing human activities in the wild, however, over-

look the underlying distribution of the data and employ off-the-shelf classifiers

such as Nearest Neighbor(NN) and Support Vector Machine(SVM). Such naive

application may cause over-fitting, e.g. in case of SVMs that are observed to
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use nearly all the training data as a support of decision function; or it may

result in under-fitting, e.g. in case of NNs that assume that the nearby points

have the same label (high inductive bias). Moreover, for online HDLSS set-

tings, they may compromise on accuracy (e.g. kNN) or efficiency (e.g. SVM).

In this chapter, we address these issues and through extensive experimenta-

tion, we affirm the lack of neighborhoods within HDLSS data that undermines

most existing classifiers. Consequently, we propose a QR factorization ap-

proach to Nearest Affine Hull (NAH) classification which remedies the HDLSS

dilemma and noticeably reduces the time and memory requirements of ex-

isting methods. We show that the resulting non-parametric models provide

smooth decision surfaces and yield efficient and accurate solutions in multi-

class HDLSS scenarios. On a number of established benchmark datasets, the

proposed NAH-lsq classifier outperforms other instance-based methods and

shows competitive or superior performance compared to SVMs. In addition,

for online settings, NAH-lsq is faster than online SVMs, as SVMs would need

complete retraining.

5.1 Introduction

Modern computer vision and pattern recognition tasks deal with large amounts

of data of arguably moderate dimensionality. High dimension, low sample size

(HDLSS) data therefore constitute a special case which, however, is becoming

increasingly common in practical settings. Consider, for example, the prob-

lem of recognizing activities in unconstrained web videos. The dimensionality

of spatio-temporal features for videos often ranges in the tens of thousands

whereas number of classes and the number of labeled instances per class usu-

ally ranges between ten and hundred. Classification of such multiclass data

poses several challenges. For example, the curse of dimensionality as it is com-

monly known leads to a scenario where the neighborhood among the instances

in a very high dimensional space tends to be uniform [Donoho and Tanner,

2005, Ahn et al., 2007].

The scarcity and sparsity of labeled training data results in simplicial class re-

gions in the feature space where every data instance is a vertex of the convex

hull of the dataset. Consequently, the principles underlying popular classifica-

tion methods viz (a) approximation of class regions, (b) discrimination across
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HDLSS high dimension low sample size
LDA linear discriminant analysis
kNN k nearest neighbor
MNP minimum norm point
NAH nearest affine hull
NCH nearest convex hull
NHD nearest hyperdisk
SVM-OAA one-against-all SVM
SVM-OAO one-against-one SVM
SVM support vector machine
SVM-SGD SVM with stochastic gradient descent
SVD singular value decomposition

Table 5.1: Acronyms used throughout this chapter

different class regions, and (c) low-rank approximations of the data, suffer

from artifacts of high dimensionality. It is therefore important to understand

and analyze the elemental distribution and geometry of the data in multiclass

HDLSS scenarios. Most existing approaches in computer vision, and in par-

ticular in human activity recognition, do not pay attention to these issues.

The popular trend is to use an off-the-shelf classifier such as Support Vector

Machines, Linear Discriminant Analysis, or k− Nearest Neighbors.

This chapter investigates the geometry of subspaces spanned by high dimen-

sional feature descriptors related to human activities and our experimental

results affirm the neighbourlessness of these data. Accordingly, we show that

Affine Hulls, being loose approximations of class regions, tend to facilitate bet-

ter or competitive classification in multi-class HDLSS. While the applicability

of the existing SVD-based NAH approach [Cevikalp et al., 2008] to HDLSS

classification is constrained by a compromise between time and memory, we

propose an efficient NAH approach by adopting a least squares method based

on QR factorization. We compare the empirical performance of the proposed

NAH-lsq classifiers with that of the other hull-based methods classifiers with

that of other hull-based methods, namely Nearest Hyperdisk, Nearest Convex

Hull, and NAH-svd, as well as with more traditional approaches such as Min-

imum Norm Point, kNN, LDA, and SVM which represent different classes of

algorithms. For instance, kNN classifiers are based on the principle of local

proximity; LDAs focus on low rank approximations, and SVMs are based on

the principle of maximum margin separation.
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Our results show that the proposed NAH-lsq classifiers are competitive with

SVMs in terms of accuracy and efficiency and far superior to all other classifiers

in our tests. The decision surfaces of NAHs and one-against-all SVMs are

among the most smooth surfaces – offering better generalization. Note that

unlike most other methods (e.g. SVM and kNN), NAHs are inherently non-

parametric, and like other lazy classifiers (e.g. kNN and NCH), they ideally

require no training. We also show the efficiency of NAH-lsq to be comparable

to one-against-one SVMs and that it is far superior to other instance-based

approaches, including NAH-svd.

The empirical evaluation also reveals that optimal classification of HDLSS data

is achieved when using almost all the training data as support of the decision

surfaces. Consequently, we show that NAH-lsq is well suited for online learn-

ing where the fast SVM-based methods, e.g. LASVM [Bordes et al., 2005] and

SVM-SGD [Bottou, 2010], suffer from expensive retraining. Furthermore, the

non-parametric nature of NAH-lsq, that facilitates efficient model fitting with-

out any cross validation, offers a clear advantage in online settings. In short,

our work in this chapter provides important empirical insights into the com-

plexity of the multiclass HDLSS classification problem (e.g. neighbourlessness

and over-fitting) and the simplicity of the solution (e.g. due to NAH-lsq).

The rest of the chapter is organized as follows: Section 5.2 discusses re-

lated work on HDLSS classification. In Section 5.3, we describe different

representation-based (geometric) classifiers. NAH-lsq, an efficient approach

to Nearest Affine Hull for HDLSS classification, is presented in Section 5.4.

Section 5.5 provides details as to our benchmark datasets and feature extrac-

tion methodology while Section 5.6 reports our results. Finally, Section 5.7

discusses the results and future directions.

5.2 Related Work

Analysis of HDLSS data has been an active area of theoretical and applied

research throughout the last decade. Asymptotic studies reveal a tendency for

high dimensional data to lie at the vertices of a regular simplex [Hall et al.,

2005, Donoho and Tanner, 2005]. Hall et al. [2005] proved that for two sets X

and Y in Rd where d >> |X|+ |Y | and no k points lie in a k− 2 dimensional
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hyperplane, it is always possible to find a hyperplane that separates X and Y .

Donoho and Tanner [2005] show that the projection of a simplex from very

large n dimensions to a lower d = ρn dimensional polytope does not reduce the

number of corresponding l−dimensional faces for l ≤ bρdc. Even the property

of k-neighborliness holds for a certain range of values of k. A polytope is called

k-neighborly if every subset of k vertices forms a (k − 1)-face [Gruenbaum,

2003]. [Ahn et al., 2007] proved that such a geometric representation of the

data holds under mild conditions such as non-independent samples.

Other researchers have quantified the extent or degree of ultrametricity in a

dataset [Rammal et al., 1985, Murtagh, 2009]. Murtagh [2009] argued that ul-

trametricity becomes pervasive as dimensionality and spatial sparsity increase

and used this property for model-based clustering. Klement et al. [2008] proved

that, for d→∞, random and non-random scenarios are not distinguished by

any metric-based measure, i.e. distances become approximately equal. They

also showed that the soft-margin approach does not improve the generaliza-

tion performance of SVMs on HDLSS data. Zhang and Lin [2011] compared

the performance of several conventional classifiers on simulated and two-class

data and reported that SVM and Distance Weighted Discriminant techniques

achieve relatively better performance than Mean Difference and the Naive

Bayes classifiers. Recent work in [Bolivar-Cime and Marron, 2013] evaluates

different binary discrimination methods in the context of HDLSS Gaussian

data and points out that these methods are asymptotically equivalent except

for Naive Bayes, which may have a different asymptotic behavior as d tends

to infinity.

A conventional approach to high dimensional classification consists in fitting

models that maximally separate the class regions; common examples are SVM

and LDA. Another common approach is to build a geometric model of each

class that approximates the region covered by it. Such approximations include

affine hulls [Vincent and Bengio, 2001], convex hulls and polytopes [Nalbantov

et al., 2007, Sekitani and Yamamoto, 1993], bounding hyperspheres [Tax and

Duin, 2004] and bounding hyperdisks [Cevikalp et al., 2008]. Unlike margin-

based classifiers, these region- or volume-based classifiers are instance based

in the sense that they do not require an explicit formulation of a decision

boundary between classes. All these models represent a class as a bounded
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region in a corresponding subspace, except for the affine hull-based approach

which covers the whole affine subspace spanned by given data points. For

high dimensional data, these models are preferred over conventional instance-

based models such as kNN, since kNN implicitly assumes a dense sampling

which requires training sets that are exponentially large in the dimensionality

of the underlying feature space. Cevikalp et al. [2008] suggested the use of

NHD7 as a compromise between too loose a structure of affine hulls and too

tight a structure of convex hulls. Recently, large margin classifiers based on

NAH, NCH, and NHD have been studied further in [Cevikalp and Triggs,

2009, Cevikalp et al., 2010, Cevikalp and Triggs, 2013]. Moreover, affine hull

based modeling is elegantly applied in [Hu et al., 2012] in order to approximate

unseen appearances in the context of image set classification.

Human activity recognition in unconstrained videos and still images poses a

practical problem that underlines the importance of investigating the perfor-

mance of several approaches in real-world HDLSS data classification. The

experimental evaluations in this chapter were performed on recent challenging

benchmark datasets of unconstrained videos [Kuehne et al., 2011, Reddy and

Shah, 2013], still images [Ikizler-Cinbis et al., 2009], and depth and skeletal

data [Ofli et al., 2013] on which most prior works applied SVMs with linear

or Gaussian kernels. An increasingly popular trend in human activity classi-

fication is to use multiple feature descriptors such as motion cues, pose- and

scene-related information [Yao et al., 2011b, Reddy and Shah, 2013, Wang

et al., 2013]. These methods employ either early fusion of feature descriptors

or late fusion of ensemble classifiers. Regular SVM or multiple-kernel-based

SVM classifiers are used accordingly. Obviously, these techniques can achieve

higher performance as compared to settings where a single feature descriptor

is used. Since the analysis of ensemble classifiers or multiple features is not

the focal point of this chapter, we restrict our practical experiments to re-

cent single descriptors which are known to exhibit good performance on these

datasets.

7Refer to Table 5.1 for acronyms
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xq

Figure 5.1: Visualization of the idea of nearest affine hull classification. The
class assignment for a query point xq is based on the minimal distance to its
projections on affine subspaces.

5.3 Representation-based Classification

Essentially every approach to classification aims at discriminating between

different classes either by determining appropriate decision functions in the

feature space (e.g. SVMs or Decision Trees) or by relying on local or global

instance-based representations of the classes (e.g. kNN or NCH). SVMs are

often used de facto without paying attention to the geometry or distribution of

class regions. This becomes very important in high dimensional classification

problems. In this section, we review representative geometric classification

methods in the context of high dimensional data.

5.3.1 Nearest Affine Hull Classification

The affine hull of a set of data is the smallest affine subspace that contains

all the samples. Given training samples xci ∈ Rd where c ∈ {1, 2, ..., C} and

i ∈ {1, 2, ..., Nc} are class and instance indices, their affine hull is defined as

Φaff
c =

{
x =

Nc∑
i=1

αixci

∣∣∣∣∣ ∑
i

αi = 1

}
. (5.1)

The affine hull provides a loose approximation of the class region in that it

ignores exact locations of the training data, but models each class as an affine

subspace. Consequently, it is least affected by artifacts that arise from assum-

ing neighborliness in high dimensional spaces. The distance d(xq,Φ
aff
c ) from

a query point xq to an affine hull is the norm of the displacement from the
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xq

Figure 5.2: A visualization of nearest convex hull classification. The decision
is based on minimal distance to the projection on convex hull facets.

closest point x∗c on the hull. Equivalently, d(xq,Φ
aff
c ) can be expressed as the

orthogonal projection of the normal to the subspace. Figure 5.1 visualizes the

concept of nearest affine hull classification.

Surprisingly, there are only few reports on affine hull based classifiers for high

dimensional data. The work in [Cevikalp et al., 2008] proposed an offline

training procedure using SVD and projections. There approach proceedes as

follows: Let Xc denote a data matrix whose columns correspond to training

examples from class c. The orthogonal projection Pc onto the spanning sub-

space can be determined by SVD of the centered matrix Xm
c = Xc−µc, where

µc is the centroid of the class c. In particular, Pc = UUT where the matrix

U contains the left singular vectors of Xm
c , i.e. Xm

c = UTΣV. Given a query

instance xq, its distance d(x,Φaff
c ) from the affine hull of Xc can be directly

computed as the orthogonal projection of xq normal to the subspace, i.e.

d(xq,Φ
aff
c ) =

∥∥(I−Pc)(xq − µc)
∥∥. (5.2)

5.3.2 Nearest Convex Hull Classification

The convex hull of a given set of points is the minimal convex set that encloses

them. Given training samples xci ∈ Rd, their convex hull is defined as

Φconv
c =

{
x =

∑
i

αixci

∣∣∣∣∣∑
i

αi = 1, αi ≥ 0

}
(5.3)
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Figure 5.3: A 2D example of decision boundaries of (a) NCH (b) SVM

Compared to the affine hull, the convex hull provides a tight approximation

of the class region because of the non-negativity constraints αi ≥ 0 on the

coefficients. The distance d(x,Φconv
c ) between a query instance xq and the

convex hull of class c is calculated as the norm of the displacement of xq to

the closest point x∗c on the convex hull. Unlike for affine hulls, where class

regions are unbound subspace and the exact boundaries of the regions are not

important, convex hull classification projects data onto class-specific regions

within a subspace. In fact, the convex hull of Xc lies within the affine hull

of Xc. To determine the closest point on the convex hull requires solving the

following constrained quadratic program

min
αc

∥∥xq −Xcαc

∥∥2
s.t.

Nc∑
i=1

αci = 1

αci ≥ 0. (5.4)

The optimal solution α∗c of this problem provides the mixture coefficients to

obtain x∗c = Xcαc. Thus the distance between the query and the class region

becomes

d(xq,Φ
conv
c ) = ‖xq −Xcα

∗
c‖ . (5.5)

Note that every time a query instance arrives, a nearest point needs to be

determined by solving the above problem. Compared to other instance-based

approaches such as kNN or NAH, this approach is rather slow and may not be

feasible for high dimensional data. Instead, SVMs work according to a similar
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principle and determine maximal margin hyperplanes in parametric forms in

order to facilitate efficient classification. If a query instance xq is considered

as a class of its own, the problem of finding a maximum margin between this

class and any other class c is equivalent to finding the closest points on the

convex hulls Φconv
c and Φconv

xq
[Bennett and Bredensteiner, 2000]. In this sense,

NCH classification is equivalent to SVM classification and the piecewise linear

decision boundary of NCH contains the query-vs-class boundary of an SVM

as a facet (see Fig. 5.3).

5.3.3 Nearest Hyperdisk Classification

A hyperdisk as proposed in [Cevikalp et al., 2008] can be understood as a

compromise between the tight convex hull model of a class and the looser

affine hull representation. Given data from a class c, its hyperdisk is defined

as the intersection of the minimum enclosing hypersphere and the affine hull

of the data; formally this amounts to

Φdisk
c =

{
x =

∑
i

αixci

∣∣∣∣∣∑
i

αi = 1, ‖x− sc‖2 ≤ r2c

}
(5.6)

where sc =
Nc∑
i=1

αixci is the center and rc the radius of the bounding hyper-

sphere. In order to determine the radius of the bounding hypersphere, the

following constrained quadratic programming problem needs to be solved

min
α

∑
i,j

αiαj 〈xci,xcj〉 −
∑
i

αi 〈xci,xci〉

s.t.
Nc∑
i=1

αi = 1

0 ≤ αi ≤ γ (5.7)

where αi are Lagrange multipliers and γ ∈ [0, 1] is used to exclude distant

points (outliers). The radius of the hypersphere becomes rc = ‖xci − sc‖ for

any xci, with 0 ≤ αi ≤ γ.

The distance between a query instance xq and a hyperdisk Φdisk
c of class c

is determined by two terms: (i) the norm of the displacement from xq to its
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xq

Figure 5.4: Nearest hyperdisk classification. The decision is based on projec-
tion on affine hull and distance from hypersphere

projection xaff
q on the affine hull (5.2) and (ii) the distance of xaff

q to the

boundary of the hypersphere, that is

d(xq,Φ
disk
c ) =

√∥∥∥xq − xaff
q

∥∥∥+ max
(∥∥∥xaff

q − sc

∥∥∥− rc, 0)2 (5.8)

The distance used for NHD classification couples a neighbourlessness affine

hull distance and neighborhood-based hypersphere distance (see Fig. 5.4). In-

terestingly, as can be seen in our results (Section 5.6), the involvement of the

neighborhood term (hypersphere distance) does not result in a gain of classi-

fication accuracy, instead we notice degraded performances in many cases.

In terms of efficiency, NHD outperforms NCH since the model parameters,

i.e. those related to hypersphere and affine hull, can be computed beforehand

or lately by the least squares method. Obviously, NHD is slower than NAH

methods where only the affine hull is needed. The complexity of the underlying

one-class model is again a compromise between NAH and NCH.

5.3.4 Minimum Norm Point Classification

A classical view of the problem of determining the closest point on a convex hull

is the minimum norm point (MNP) problem. In his seminal work [Wolfe, 1976],

Wolfe provided several basic results and proposed an iterative algorithm for

the problem of finding the minimal Euclidean distance between a query point

and the convex hull of a given set of points. Given a query point xq and a set

X, the smallest norm point x̂ ∈ Φconv(X) can be determined by transforming
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all the data such that xq becomes the origin, i.e. using X̄ = {x−xq,∀x ∈ X}.
Let H(p, α) = {x | 〈p,x〉 = α} and H+(p, α) = {x | 〈p,x〉 ≥ α} respectively

denote the hyperplane and the half space due to a point p and a real number

α. Then, according to [Wolfe, 1976]

Theorem 1 x̂ ∈ Φconv
c (X̄) is a minimum norm point iff X ⊆ H+(x̂, ‖x̂‖) or

equivalently ‖x̂‖ ≤ 〈x̂,x〉∀x ∈ X

The Wolfe algorithm for finding the minimum norm point forms a simplex of a

subset of several affinely independent points Q, starting with Q = ∅. It solves

a system of linear equations and finds a minimum norm point on the affine

hull containing the simplex. If the point lies inside the relative interior of the

simplex, it extends Q with another point of X̄ and forms a higher dimensional

simplex. Otherwise, it drops a point from Q and forms a simplex of a lower

dimension. The algorithm stops once x̂ = 0 or the hyperplane H(x̂, ‖x̂‖)
separates X̄ from the origin.

However, for our investigation in this chapter, we applied an even more efficient

recursive algorithm proposed in [Sekitani and Yamamoto, 1993] that does not

require solving linear equations. Instead, it iterates over vertices and facets of

the data polytope without repetition. Although the worst case complexity of

both these MNP algorithms is O(Nd), they usually converge quickly.

5.4 NAH-lsq: An Efficient Nearest Affine Hull Classi-

fier

Most instance-based representations, such as Voronoi Diagrams, Convex Hull,

Bounding Hyperdisk, and Bounding Hypersphere, rely on the notion of neigh-

borhoods within the training data. Affine Hulls, however, give a loose ap-

proximation of class regions as they model each class as an affine subspace.

Therefore NAH classification may prove a promising instance-based classifier

in HDLSS settings where the notion of a neighborhood breaks down [Donoho

and Tanner, 2005, Hall et al., 2005, Murtagh, 2009].

The existing SVD-based method to NAH classification discussed in Section 5.3.1

is space- and time- consuming. It requires storing a d× d matrix Pc for every

class, which is unreasonable when d is large. For example, fitting an NAH-svd
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model for the HMDB activity dataset would require more than 80 GB of mem-

ory. An alternative solution is to store the Nc × d matrix Uc during training

and to compute Pc during classification. This is still very demanding since the

computing of Pc = UcU
T
c requires efforts on the order of O(d2Nc).

We propose an efficient least squares approach to NAH that exploits the QR

factorization. Our approach builds on the observation that HDLSS training

matrices Xc are of full rank since high dimensional data are vertices of a

simplex and hence linearly independent [Hall et al., 2005, Donoho and Tanner,

2005]. We therefore propose to compute NAH classification in an entirely lazy

fashion by finding a point x∗ in the affine hull that is closest to xq. This

requires solving

min
αc

‖xq −Xcαc‖2

s.t.
∑
i

αci = 1, i = 1, 2, ..., Nc . (5.9)

This problem does not involve inequality constraints and can therefore be cast

as a simple least squares problem[
Xc

1

]
[α] =

[
xq

1

]
(5.10)

where 1 is a row vector of all 1s of dimension Nc. Then, the distance from the

query point is

d(xq,Φ
aff
c ) = ‖xq − x∗‖ (5.11)

Again, in HDLSS settings, data matrices are (nearly) of full rank so that a

stable solution of the system in (5.10) can be computed efficiently using the

QR factorization. Compared to the computational complexity of NAH-svd

O(d2Nc), our approach of NAH-lsq involves significantly reduced computa-

tional effort, i.e. O(dN2
c ). Note that for the datasets considered in this chapter,

d ≈ N2
c .
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Dataset Type #samples #classes dim. of features

Ikizler Image 2,458 5 13,312
MHAD-skl Mocap 660 11 2,400
MHAD-mhg Depth 660 11 2,000
HMDB Video 6,766 51 14,965
UCF50 Video 6,681 50 14,965

Table 5.2: Human activity recognition benchmark datasets

5.5 Datasets and Features

In this work, we consider 4 well-known datasets containing unconstrained

videos, images or Kinect depth data (Table 5.2). Note that a popular trend

in human activity recognition in the wild is to use multiple feature descriptors

such as motion cues, pose, and scene context information. These methods use

either early fusion of feature descriptors or late fusion of ensemble classifiers.

Since the analysis of ensemble classifiers or multiple features is beyond the

scope of this chapter, we restrict our practical experiments to recent single de-

scriptors which are known to show good performance on these datasets. Below

we give details of the datasets and how we performed the feature extraction

on each dataset.

5.5.1 HMDB and UCF50 Video Datasets

HMDB [Kuehne et al., 2011] is one of the largest and most versatile datasets

for action recognition in videos. It contains 6,766 video sequences of 51 action

categories such as facial action, body movement, and human interaction. The

UCF50 data [Reddy and Shah, 2013] consists of 6,681 real-world videos re-

trieved from YouTube that shoe of 50 action categories. For all 50 categories,

the videos are split into 25 groups. For both of these datasets, we used action

bank templates [Sadanand and Corso, 2012] as features for classification since

they have shown very good performance in combination with linear SVM clas-

sification. Action bank feature extraction is based on spotting several motion

templates in the multiscale spatio-temporal cuboids – resulting in a 14, 965

dimensional feature.
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5.5.2 Ikizler Image Dataset

The Ikizler action dataset [Ikizler-Cinbis et al., 2009] contains 2458 still images

downloaded from the internet. The images show five different human actions:

dancing, playing golf, sitting, running, and walking. The dataset represents

a hard challenge as it requires coping with a wide range of pose variations

ranging from actions like dancing to sitting. We operated on the processed

version of the dataset with cropped images of aligned human postures with

respect to head position. Still, many of the training examples provided suffer

from severe occlusions and invisible body parts. We used VLFeat [Vedaldi and

Fulkerson, 2008] to extract local SIFT descriptors over multiple scales which

were used to build a code book of size 1, 024. Each image was then divided

into a three-level spatial pyramid and quantization was carried on each grid

component – resulting in 13, 312 dimensional feature vector.

5.5.3 Berkeley MHAD Datasets

The recently introduced Berkeley Multimodal Human Action Database (MHAD)

[Ofli et al., 2013] consists of 660 sequences of 11 actions performed repeatedly

by 12 people and captured by multiple sensors. In our experiments, we used

two modalities: skeleton information from a motion capture system and depth

information from a Kinect sensor. In each case, we divided the video into Ns

overlapping temporal segments or windows. In addition, we adapted the pop-

ular Bag-of-Features (BoF) approach to quantize all frames within a temporal

window. To this end, we built a vocabulary of Nw skeletal or visual words

using k-means. Finally, every action sequence was represented as a vector of

length K = Ns ×Nw.

Mocap Data

The MHAD-Mocap data was acquired by tracking the relative 3D positions of

43 LED markers placed on different body parts and joints. Consequently, we

represented each activity as a sequence of a skeletal vector of length 129. First,

we sampled 100, 000 skeletal vectors from all the data and built a vocabulary

of Nw = 60 skeletal words. We set Ns = 40, and as a result represented each

action sequence by a vector of length 2, 400.
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Kinect Depth Data

The Kinect-based depth videos divided into 8 disjoint Depth-Layered Multi-

Channel (DLMC) are provided by the owners of the MHAD dataset. We

used only channel C-3 DLMC videos since almost all the subjects and their

movements lie within this depth range. Our feature representation for this

modality is based on motion histograms features similar to [Escalante et al.,

2013]. Given a sequence of gray scale depth images I = I1, I2, ...In, a set

of motion energy images D = {D1, D2, ...D(n−1)} is obtained where Di =

I(i+1) − Ii. Each difference image is divided into a grid with equal number

of cells and average motion energy is estimated for each cell. The 2D grid

of motion energies is transformed into a vector of length Nb, where Nb is the

number of cells in the grid. We considered 20×20 sized cells, so Nb = 768. For

BoW representation, we sampled 100, 000 feature vectors from all the data and

built a vocabulary of Nw = 100 words. Finally we set Ns = 20 to represent

each action sequence by a vector of length 2, 000.

5.6 Experimental Results and Discussion

We evaluate the NAH-lsq and other geometric classification methods (discussed

in Section 5.3) and compare their performance to traditional approaches such

SVM, kNN, and LDA. For the two parametric methods kNN and SVM, we

report the best results over choices of hyper-parameters. For linear SVMs,

the optimal penalty parameter was determined within the range between 10−5

and 105. For kNN classifiers, the parameter k was varied in the range from

1 to Nc. All methods discussed in Sections 5.3 and 5.4 were implemented in

Python. For other methods, we used implementations and wrappers provided

by the Python-based machine learning library Scikit-learn8. All experiments

were carried out on a PC with 16GB RAM using a single core.

For each dataset, we adopted the popular cross validation scheme and report

average results over all iterations. For HMDB, we used the original three train-

test splits [Kuehne et al., 2011], where in each case for each action, 70 videos

were used for training and another 30 for testing. For UCF50, we applied a

5-fold Leave-Five-Groups-Out approach, and for MHAD datasets we use the

8http://scikit-learn.org
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Ikizler MHAD-skl MHAD-mhg HMDB UCF50
kNN 42.89 75.45 67.72 14.81 36.20
LDA 53.61 65.6 80.30 22.37 15.93
MNP 52.5 75.76 79.24 3.51 9.87
NCH 52.0 76.96 81.51 23.59 49.99
NHD-svd 53.98 77.12 79.84 5.86 9.87
NHD-lsq 53.72 77.12 79.54 5.80 9.73
NAH-svd 55.25 77.12 81.81 27.02 55.88
NAH-lsq 54.94 77.12 81.67 27.08 55.94
SVM 56.05 75.45 84.54 25.23 57.58

Table 5.3: Accuracy (%) of different classifiers on high dimensional activity
recognition

Leave-One-Actor-Out scheme. For the Ikizler dataset, we randomly sampled

100 images from each class for training, while the rest were used for testing.

5.6.1 Recognition Accuracy

Table 5.3 compares recognition accuracies obtained from the different classifiers

tested. While NHD exhibits good performance on some datasets, it does poorly

when the number of classes is high. The piecewise boundaries of NCH also

do not generalize well enough to compete with SVMs. All instance-based

methods that bound the class regions (kNN, NCH, MNP, and NHD) suffer

from a loss of performance in one way or another. On the other hand, NAH

methods, which represent classes as an (unbounded) affine subspaces, are least

affected by artifacts due to high dimensional neighbourlessness. Notice NAH-

lsq achieves an accuracy similar to NAH-svd, indicating the stability of rather

efficient QR factorization on HDLSS matrices. In short, non-parametric NAH-

based classifiers outperform other instance-based methods in all cases and show

better results than the optimal SVM in some cases.

5.6.2 Efficiency

Instance based methods usually do not require any training and model fitting

is deferred to the classification phase. Other classifiers such as LDA, SVM,

and Decision Trees / Random Forests explicitly learn a model from the train-

ing data in an offline manner. Consequently, these approaches are efficient

during classification. In those cases, the classification time also depends on

the complexity of the decision surface. For example for C number of classes,
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Figure 5.5: Overall training and test times on HMDB (above) and
UCF50(below) datasets

the decision surface of SVM-OAO will have C(C−1)/2 different d-dimensional

hyperplanes, whereas SVM-OAA will have only C hyperplanes. However, de-

termining those C hyperplanes in SVM-OAA is often more time consuming

than fitting an SVM-OAO since the complexity of SVM training is between

O(N2) and O(N3) and the number of input examples N can be significantly

large for an SVM-OAA.

Figure 5.5 plots overall logarithmic training and testing times (in CPU seconds)
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Local Low rank Param. Dec. Surf. Tr. Time Te. Time Acc.
kNN X × X • • • • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
LDA × X × • • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦
MNP X × × • • • • ◦ • ◦ ◦ ◦ ◦ • • • • • • • • ◦ ◦
NCH X × × • • • • ◦ • ◦ ◦ ◦ ◦ • • • • ◦ • • • • ◦
NHD-svd X × × • • • ◦ ◦ • • • ◦ ◦ • • • • ◦ • • • ◦ ◦
NHD-lsq X × × • • • ◦ ◦ • ◦ ◦ ◦ ◦ • • • ◦ ◦ • • • ◦ ◦
NAH-svd × × × • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • • • ◦ • • • • •
NAH-lsq × × × • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • • ◦ ◦ • • • • •
SVM-OAO × × X • • • ◦ ◦ • • • ◦ ◦ • • • ◦ ◦ • • • • •
SVM-OAA × × X • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • • • •

Table 5.4: A comparison of different classifiers on HDLSS activity data

for all methods on various datasets. The non-zero training time of instance-

based methods NAH-lsq, NAH-svd, NHD, kNN, MNP and NCH reflects an

overhead due to preprocessing (indexing and storage) of the training data. No-

tice that the proposed least squares approach NAH-lsq is more efficient than

any other hull-based method and is competitive with kNN classification. In

particular, NAH-lsq gains significantly over NAH-svd. It also shows a compet-

itive classification time when compared to SVM-OAO. Table 5.4 summarizes

several theoretical, structural, and empirical aspects of a number of classifiers.

The last four columns are based directly on the complexity of decision surfaces,

training and testing time, and accuracy on the 5 datasets.

5.6.3 Applicability in Online Learning

The empirical results discussed in the previous sections clearly indicate the

effectiveness of NAH-lsq in high dimensional classification. The only compet-

itive method is the classical SVM. The theoretical foundations, geometrical

simplicity, and computational efficiency (model fitting) of NAH as compared

to the more complex SVM illustrates the power of simple linear models in

high dimensional data processing. In practice, we observed that almost all the

training samples form the support of the decision surfaces. Table 5.5 shows

the percentage (to the nearest integer) of training data of a class that is used

to determine individual piecewise boundaries (point-hull and class-class) and

overall decision surfaces. For example, in the case of the HMDB dataset, a sin-

gle binary decision surface of SVM-OAO was observed to require, on average,

34% of the data of each of the two corresponding classes as support vectors

and, for a given class, almost every instance became a support to one or more
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Dataset
NCH SVM NAH

point-hull class-class class-all all

HMDB 12% 34% 98% 100%
UCF50 9% 26% 90% 100%

Table 5.5: Proportion of the training examples of a class used as support of
decision surfaces

binary decision surfaces.

On the one hand, these observations confirm the lack of structure within the

class regions. On the other hand, they justify the use of affine subspaces in

classification. They also hint at an advantage of using NAH-lsq over SVM in

online settings, since online SVMs would require (nearly) complete retraining

when, at a previous time step, most data had been selected as support vectors.

Let N be the number of instances, S be the number of support vectors, and

R ≤ S be the number of support vectors such that 0 ≤ |αi| ≤ C: ifN ≡ S ≡ R,

then according to [Bordes et al., 2005], the training time of online SVM (even

by only adding a single example) is the same as that for a regular SVM.

We empirically evaluated the performance of SVM combined with stochastic

gradient descent optimization scheme, as suggested in [Bottou, 2010]. Below,

we briefly describe SVM-SGD, an online SVM approach based on stochastic

gradient descent.

Given a training set
{

(xi, yi),xi ∈ Rd
}

, several supervised classification ap-

proaches aim to determine a decision function f(x) = wTx + b by minimizing

an error function of the form:

E(w, b) =
n∑

i=1

L(yi, f(xi)) + αR(w) (5.12)

where L and R are loss and penalty functions, respectively. In the case of

SVMs, the error function is composed of the Hinge loss function and the L2

norm of w. A stochastic gradient descent algorithm is an iterative procedure

to determine the optimal w by applying the following update rule:

w← w − η
{
α
∂R(w)

∂w
+
∂L(wTxi + b, yi)

∂w

}
(5.13)

where η is the learning rate.
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Figure 5.6: Comparison of NAH and SVM-SGD in online settings on and
HMDB (left) and UCF50 (right) dataset in terms of (first row) accuracy, (sec-
ond row) overall training time, (third row) overall classification time, and (last
row) average model fitting time per instance
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Stochastic gradient descent based optimization, in combination with popular

classifiers such as SVMs and CRFs, has gained popularity recently for its

applicability to large-scale online classification problems [Bottou, 2010, Zhu

et al., 2009]. We compared the performance of the NAH-lsq and one-against-

all SVM-SGD in online settings for two large datasets: HMDB and UCF50. For

HMDB, we used the split-1 [Kuehne et al., 2011] for training and testing. For

UCF50, we chose videos belonging to all groups from g6 to g25 for training

and the rest for testing. We trained each classifier initially on 40% of the

training data and subsequently added equal amounts of the remaining data in

10 episodes. While NAH-lsq has to explicitly fit a new model on arrival of new

data, SVM-SGD takes a warm start from the current optimal w and iterates

until convergence or until a maximum number of iterations have been executed.

The optimal hyper-parameters of SGD were determined offline through cross

validation.

The results are presented in Fig. 5.6. In each case, the first row shows that

the performance of NAH-lsq consistently improves with an increase in training

data while the performance of SVM-SGD may occasionally suffer, e.g. when

the distribution of new data points differs significantly from the one for which

the previous solution w was estimated. The second and third rows plot training

and test time respectively after each episode. While NAH-lsq spent most

of their time on lazy classification, adding new data almost always caused

a complete retraining of SVM too. Usually, in online settings, the model

estimation costs are not distinguished for training and classification phases.

The fourth row in Fig. 5.6 plots combined average time, per instance, for

model fitting in training or classification phases. It can be seen that the NAH-

lsq emerges to outperform SVM-SGD in terms of efficiency.

5.7 Conclusions and Future Directions

In this chapter, we investigated an important but overlooked aspect of human

activity recognition in large unconstrained databases. In particular, we ex-

amined the underlying geometry of class regions for HDLSS classification of

real-world human activities by employing several geometric classifiers. For such

scenarios, we empirically affirm the lack of neighborhoodness in HDLSS activ-

ity data. On the one hand, neighborliness negatively affects the performance
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of neighborhood-based classification methods such as kNN, NCH, or NHD; on

the other, it causes over fitting artifacts for SVMs. Our results show that rep-

resenting each class as an affine subspace spanned by its members remedies this

situation. We propose NAH-lsq, a least square- and QR factorization-based

approach that significantly reduces time and memory requirements of the ex-

isting NAH methods. Consequently, NAH-lsq appears to be a suitable choice

for multiclass HDLSS activity recognition as it provides parameter-free mod-

els, yields smooth decision surfaces, achieves high accuracy; and is efficient.

On several challenging datasets, we found the NAH-lsq classifier to show com-

petitive or superior performance than the the widely used SVMs. Moreover,

despite its lazy classification approach, NAH-lsq appears to be a faster ap-

proach when compared to SVMs in online settings (a major application area).

To conclude, we (a) provided an empirical insight into the complexity of the

multiclass HDLSS activity recognition problem and (b) proposed a simple yet

powerful solution.

Although we have observed competitive performance of NAH-lsq as compared

to SVM regardless of the choice of svm kernel, it will be interesting to see in

future how kernelization can improve the performance of NAHs. In fact, it

is not clear whether kernelization helps SVM-based classification of HDLSS

data either. To this end, our preliminary experiments on the UCF50 and

HMDB datasets show that for a given feature descriptor, linear SVMs achieve

an accuracy similar to that of non-linear SVMs. Other possible directions

of future work are modeling joint affine subspaces by using multiple feature

descriptors and clustering data points represented as affine subspaces [Hu et al.,

2012, Lee and Schulman, 2013].

Summary

Currently, most research on human activity recognition in unconstrained data

focuses on developing ever more complex features and naively choosing off-the-

shelf classifiers. This may not be suitable when efficiency and model flexibility

are of concern. To this end, we investigated the popular discriminative and

not-so-popular geometrical classifiers in the context of high dimension, low

sample size (HDLSS) human activity recognition and proposed an efficient

least squares and QR factorization-based approach to Nearest Affine Hull clas-
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sification. Through extensive experimentation on 5 benchmark datasets, we

showed that the proposed parameter-free NAH-lsq achieves recognition accu-

racy as high as SVM and NAH-SVD and is much faster. It also turns out that

NAH-lsq is most effective for on-line classification of large-scale data where

SVMs would need expensive retraining. In short, this chapter (a) discussed

issues that, to our knowledge, have not yet been studied by the human ac-

tion recognition community (b) presented the NAH-lsq method that is distin-

guished by its high recognition accuracy, parameter-free modeling, efficiency

and applicability to intended computer vision applications.
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Chapter 6

Human Activity Recognition in 3D by

Separating Style and Content

Recent advances in 3D sensor technology, such as the invention of Microsoft

Kinect sensors, has boosted low-cost imagery capture in the form of different

modalities. Accordingly, there is a boost in research on human activity recog-

nition in emerging environments. On the one hand, the underlying 3D pose

and motion information has facilitated reliable action recognition (e.g. [Wang

et al., 2012, Ofli et al., 2013]). On the other hand, it invites researchers to

think of out-of-the-box applications, e.g. physiotherapy exercises, interactive

gaming, and home security. Most existing approaches, however, have focused

only on a single aspect – recognition of actions.

This chapter introduces our approach to a new direction of research in human

activity recognition. It builds on studies in psychophysics [Cutting and Ko-

zlowski, 1977, Thoroughhman and Shadmehr, 1999] which suggest that people

tend to perform different actions in their own style. Specifically, we handle the

novel issue of recognizing human actions and the underlying execution styles

(actors) in 3D videos using motion dynamics only. We propose a hierarchical

approach that is based on conventional action recognition and asymmetrical

bilinear factorization. In particular, we apply bilinear decomposition on the

tensorial representation of action videos to characterize styles of performing

different actions. The proposed approach is solely based on the dynamics of

the underlying action. Our model is evaluated on the Inria-IXMAS and the

Berkeley-MHAD action datasets using different modalities based on optical

motion capture, Kinect depth videos, and 3D motion history volumes. The

proposed approach achieves high recognition accuracy in comparison to al-

ternate methods, i.e. Nearest Neighbor classification and symmetric bilinear

modeling. Our approach is not only directly applicable to interactive 3D envi-
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ronments and surveillance systems, but can also work as a baseline for future

research towards multifactor activity analysis in unconstrained videos.

6.1 Introduction

Most existing research on human activity analysis has focused on the very sin-

gle aspect i.e. recognition of human actions. However, people tend to perform

different actions and activities such as walking, kicking and cooking in their

own personal style. Prominent studies in psychophysics and biomechanics have

shown that individuals build specific internal models for different movements

and they can be recognized solely from their motion dynamics [Cutting and

Kozlowski, 1977, Thoroughhman and Shadmehr, 1999]. In this line, corre-

sponding research on vision-based gait recognition has shown great success in

the last decade [Wang et al., 2010].

A significant development in recent years is the availability of 3D data through

low-cost image capturing. Compared to projected data in monocular videos,

3D videos are becoming increasingly popular for their robustness against (self-)

occlusion and rich pose and motion information. Such information may be of

great impact for non-conventional activity analysis, e.g. when modeling both

inter-class and intra-class variations.

In this chapter, we are interested in determining if it is possible to recognize

both the actions and the actors in 3D sequences using motion dynamics only.

This problem is related to the well-known issue of separating style from content

in areas such as handwriting or face recognition. We treat observed actions

as resulting from a generative process with two factors, namely actor (style)

and action (content). We use bilinear factorization to model underlying phe-

nomena since bilinear models immediately lend themselves towards two-factor

classification and since they can be efficiently determined through singular

value decomposition (SVD).

Conventional symmetric bilinear models assume independence between con-

tent and style factors (e.g. face and illumination). This is not the case in

motion-based action recognition since both actions and execution styles are

based on the variation of the same cue, i.e. motion. Due to challenges posed

by the high level of articulation of human bodies, a conventional symmetric
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Figure 6.1: Block diagram of our hierarchical bilinear approach

bilinear model would not suffice to separate content and style in human ac-

tivity videos. We therefore use a two-step approach to classify a given test

video (query video). In the first step, we apply a classical action classification

to predict the underlying action of the query video. In the second step, we

use this prediction to generate a style-specific basis for the query video using

an asymmetric bilinear model. Finally, we compare this basis with the style-

specific basis learned from training data in order to identify the most likely

style.

Figure 6.1 gives an overview of our approach. For experimental evaluation,

we consider two multi-actor, multi-action datasets namely the Inria Xmas Mo-

tion Acquisition Sequences (IXMAS) [Weinland et al., 2006] and the Berkeley

Multimodal Human Action Database (MHAD) [Ofli et al., 2013]. We show

that, compared to naive nearest neighbor classification and symmetric bilinear

modeling, the proposed hierarchical model significantly improves results for

different motion cues. Consequently our approach extends motion-based per-

son identification to multiple common actions and shows that the identification

is not limited to walking or running actions. To the best of our knowledge,

our approach is the first at such an attempt in the context of human action

recognition.

The remainder of this chapter is organized as follows: Section 6.2 briefly dis-

cusses related research on separating style and content. Section 6.3 reviews the

basics of bilinear models. Section 6.4 presents how we deal with action recog-

nition by using nearest neighbor classifiers and asymmetric bilinear models.

Section 6.5 reports details on our benchmark data, experiments, and results.
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Finally, Section 6.6 concludes the work.

6.2 Related Work

Separating style and content has been of great interest for the recognition of

speech, handwriting, and faces since the idea was pioneered by Tanenbaum and

Freeman [2000]. There, the authors employed bilinear modeling and showed

promising results on classical problems such as handwritten character, face, or

pose recognition. Chaung and Bregler [2005] used bilinear factorization to sep-

arate emotional styles from speech content in order to create expressive facial

animations. Shin et al. [2008] proposed an efficient approach to ”illumination-

robust” face recognition, based on symmetric bilinear modeling, by separating

an identity factor and an illumination factor.

Despite a great deal of research on human action recognition [Laptev et al.,

2008, Marszalek et al., 2009, Wang et al., 2011, Reddy and Shah, 2013], hardly

any efforts have yet been made to separate style from content. Most of the

existing work in this direction deals with person identification for a single ac-

tion [Elgammal and Lee, 2004, Cuzzolin, 2006, Perera et al., 2009]. Elgammal

and Lee [2004] applied a non-linear model for separating poses from walking

patterns of individuals; Cuzzolin [2006] used bilinear separation models for

different gait gestures.

The approach presented in [Yam et al., 2002] was the first to consider styles of

running in recognizing individuals. Perera et al. [2009] employed multifactor

tensor decomposition to identify different styles of the dancing action using

motion capture data. Recently, Iosifidis et al. [2011] trained person-specific

activity classifiers to improve recognition of different human actions. The is-

sue of varying styles for human activities has been discussed by Taralova et al.

[2011], who presented a source-constrained clustering approach to accommo-

date different sources (e.g. actors). However, their focus is on clustering from

known sources and not on identifying the sources.
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6.3 Bilinear Models

In this section, we review basic concepts of bilinear models for separating

style from content; our terminology is similar to that used by Tanenbaum

and Freeman [2000]. A bilinear model is a generative model where each K

dimensional observation y in a style s ∈ [1, 2, ..., S] and content class c ∈
[1, 2, ..., C] is given in the form:

ysck =
I∑

i=1

J∑
j=1

wijka
s
i b

c
j , k ∈ [1, 2, ..., K] (6.1)

where as and bc are I and J dimensional coefficient vectors representing style

s and content c and the entries wijk govern the interaction between the two

underlying factors. Let Wk represent kth matrix of dimension I × J then

Eq. (6.1) becomes:

ysck = asTWkb
c (6.2)

The matrices Wk define bilinear mapping from content and style space to the

K dimensional observation space. The model in Eq. (6.1) and Eq. (6.2) is

called the symmetric bilinear model.

While the symmetric model assumes the independence of the interaction terms

wijk w.r.t style and content classes, the asymmetric bilinear model lets these

terms vary with one of the factors (by convention with style) and thus allows

for more flexibility. For instance, with a style-specific basis as
jk =

∑
i

asiwijk,

Eq. (6.1) becomes:

ysck =
J∑

j=1

as
jkb

c
j (6.3)

Equivalently in matrix notation we write:

ysc = Asbc (6.4)

such that As denotes K × J matrix with entries as
jk. Here, As represents a

style-specific map from the content space to the observation space.
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Figure 6.2: Stacked representation of a tensor and its vector transpose (VT)

6.3.1 Training an Asymmetric Bilinear Model

Let y(t) denote the tth training sample (t = 1, . . . , T ) and let χsc(t) be a

characteristic function such that χsc(t) = 1 if y(t) has style s and content c

and 0 otherwise. Then, the sum of squared errors E for the asymmetric model

over all training data is given by

E =
T∑
t=1

S∑
s=1

C∑
c=1

χsc(t)
∥∥y(t)−Asbc

∥∥2. (6.5)

Fitting an asymmetric model aims at finding solutions for As and bc that

minimize E. If a given sample of training data consists of nearly equal numbers

of observations for each style and content (as in the case of this chapter), a

closed form procedure can be adopted from using SVD.

Let ysc denote the mean of all observations in style s and content c. The

training set can be thought of as a 3rd order tensor YS×K×C . For making

efficient use of matrix algebra, Y is represented as a stacked matrix with

dimensions (SK)× C such that each of C columns contains S parts of K × 1

vectors. Further, the vector transpose operation V T is defined for stacked

matrices as follows: the vector transpose of an (AK)×B matrix Q is a (BK)×
A matrix QV T such that the (l,m) entry of Q becomes the (mK+mod(l,K), l)

entry of QV T (See Fig. 6.2).

For training data in stacked matrix form, the asymmetric model can then be

expressed as Y = AB, such that A =
[
A1...AS

]′
is a (SK)×J matrix of style-

specific basis and B =
[
b1...bC

]
is a J × C is matrix of content parameters.

A least squares optimal solution is obtained by computing the SVD of Y such
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that Y = UΣVT . The style-specific basis matrix A is obtained from the first

J columns of US and the content parameter matrix B is defined by the first

J rows of V T .

6.3.2 Training a Symmetric Bilinear Model

The sum of squared errors for the symmetric model in Eq. (6.2) is

E =
T∑
t=1

S∑
s=1

C∑
c=1

K∑
k=1

χsc(t)
∥∥yk(t)− asT Wkb

c
∥∥2. (6.6)

To solve this optimization problem, asymmetric modeling through SVD is it-

erated by alternatively switching the roles of content and style and an expecta-

tion maximization (EM) approach is used to simultaneously update parameters

of style and content. This process is based on the following relationship where

the the symmetric model is given as

Y =
(
WV TA

)V T
B (6.7)

or equivalently

Y
V T

= (WB)V T A (6.8)

where W, A, and B are (IK)× J , I × S, and J × C matrices, respectively.

An EM algorithm is used to iteratively update estimates of A and B (See

Algorithm 2). The procedure starts by initializing B. From the orthogonal-

ity of B and Eq. (6.7), we derive (YBT )V T = WV TA. Now, the SVD of

(YBT )V T = UΣVT is computed and the estimate for A is updated to be the

first I rows of VT . Since A is orthogonal, Eq. (6.8) yields (Y
V T

AT )V T = WB.

This estimate of A is used for the SVD of (Y
V T

AT )V T = UΣVT and B is

updated to be the first J rows of VT . This completes one iteration of the EM

procedure. Upon convergence, the basis vectors are computed as

W =
((

YBT
)V T

AT
)V T

. (6.9)
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Algorithm 2 Fitting a symmetric bilinear model

Initialize B using asymmetric assumption

while Not converged do

From orthogonality of B and (6.7), we have (YBT )V T = WV TA and SVD

of (YBT )V T = UΣVT

Set A equal to the first I rows of VT

From orthoganility of A and (6.8), we have (Y
V T

AT )V T = WB and SVD

of (Y
V T

AT )V T = UΣVT

Set B equal to the first J rows of VT .

end while

Set W =
((

YBT
)V T

AT
)V T

6.4 Our Approach

Asymmetric bilinear models do not enforce independence among the factors

and therefore allow more flexibility if one of the factors is known. On the other

hand, symmetric models do not assume any dependency or prior knowledge as

to one of the factors and simultaneously update content and style parameters.

In the literature, symmetric bilinear models have been successfully applied to

several domains, such as separating emotional speech styles from facial ex-

pressions [Chaung and Bregler, 2005], jointly modeling body shapes and gait

motion [Elgammal and Lee, 2004], and to separate identity factor from illu-

mination factor for robust face recognition [Shin et al., 2008]. Since the style

and content factors, e.g. face and illumination, are obviously independent in

those cases, symmetric modeling achieves good results. In contrast, for the

problem of recognition of human action and the execution style, the content

and the style are based on the same generative process – human motion. Con-

sequently, we observed a low performance by symmetric models for our task

(Section 6.5).

This motivated us to develop a two-stage procedure where one factor class is

identified in each stage and the estimation from the first stage informs the

classification in the second stage. We empirically evaluated the individual

discriminativeness of the two factors by implementing separate single-label

classification using NN, i.e. by considering the problem as being either action-
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Figure 6.3: 3D color plot in cylindrical coordinates (r, θ, z) of average Motion
History Volumes of 3 actions each performed 3 times by 4 different actors in
IXMAS dataset

or actor-recognition. We observed high accuracy for action classification as

compared to actor classification. This is also obvious from Fig. 6.3, which

shows 3D color plots in cylindrical coordinates of average Motion History Vol-

umes of some of the actions and actors in the IXMAS action data. It is clear

from the figure that discrimination is more evident among actions (columns)

than among styles (rows).

We, therefore apply an action recognition module in the first stage of our

system and use its output as the input (predicted content parameters) to the

second module, which is based on asymmetric bilinear models with actor-

specific bases. The second module classifies the style of the query observation

by using the learned basis and the predicted content class. Here, we model the

training data as follows

Ytrain = A(SK)×JBJ×C (6.10)

where A =
[
A1...AS

]′
and B =

[
b1...bc

]
are obtained as described in Section

6.3.1.

During classification, the action-recognition module predicts an action class c̃
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for the K× 1 query observation ỹ. In the second step, we use ỹ = Ãbc̃, where

bc̃ is c̃-th column of B (see Eq. 6.10) to determine Ã, i.e. the style of ỹ. To

this end, we compute

Ã = ỹ × (bc̃)† (6.11)

where (bc̃)† is the Moore-Penrose pseudo inverse of bc̃.

Finally, we compare the (1K)× J style matrix Ã for each of the S chunks of

A and select s̃ such that argmins |Ã −As|; this procedure yields an optimal

label-pair (c̃, s̃) for ỹ.

6.5 Data and Experiments

To evaluate our approach, we consider two 3D datasets: Inria Xmas Motion

Acquisition Sequences (IXMAS) [Weinland et al., 2006] and Berkeley Multi-

modal Human Action Database (MHAD) [Ofli et al., 2013]. IXMAS is a popu-

lar multi-actor and multi-view dataset, for which features based on 3D motion

history volumes have shown good results for action recognition. Whereas the

recently proposed MHAD consists of data captured from different sensors,

including optical motion capture (mocap) system, Kinect depth sensors, mul-

tiview stereo cameras, wearable accelerometers and microphones. In both of

the datasets, each subject performs every action multiple times (runs). Multi-

ple executions of the same action in the same environment allow us to focus on

the question of whether humans have unique styles for executing actions? For

both datasets, we provide an empirical insight by evaluating the individual dis-

criminativeness of the two factors by implementing single-label classification

using NN approaches, i.e. by considering the problem as being either action or

actor recognition. We observe (as expected from Fig. 6.3) high accuracy for

action classification as compared to actor classification in all cases.

For the multi-label classification problem, i.e. action-actor recognition, we

compare our approach with pure symmetric modeling and with NN classifica-

tion. In these settings, a query instance with the actual label (c, s) and the

predicted label (c̃, s̃) is considered a true positive only if (c, s) = (c̃, s̃). Accord-

ingly, all accuracies are based on the correct classification of the action-actor

pairs. Recall that while the symmetric bilinear modeling approach predicts

the label (c̃, s̃) in a single step, our hierarchical approach first determines c̃
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and then uses it to predict s̃. The NN adaptation to action-actor classification

is also achieved in two steps. In the first step, an action label c̃ is predicted

by NN-based action classification on all training data Ytrain. Subsequently, an

actor label s̃ is predicted by NN based actor classification on the action-specific

subset of the training data, i.e. Yc̃
train.

We also examined another possible implementation of multi-label NN by con-

sidering the number of classes equal to the number of contents times the num-

ber of styles. However, the results were similar. The role of the number of

training samples per action-actor pair in the recognition task is explained in

Section 6.5.3. All our experimental results are based on leave-one-run-out cross

validation. In each iteration of this scheme, samples from all but one run are

selected for training and the rest are used for testing. For each experiment,

we report the average accuracy over all runs.

6.5.1 IXMAS Dataset

IXMAS is a popular multiview action recognition dataset. It consists of videos

of 11 actions performed 3 times by 10 different actors, i.e. 330 video sequences.

These videos are acquired by using 5 cameras. The actors were free to choose

their location and orientation for each run. Weinland et al. [2006] generated

3D motion history volumes from those videos and used a Fourier transform of

cylindrical coordinates to get locations, scale, and rotation invariant features

(Fig. 6.4). PCA was then applied to reduce feature space dimensionality. We

used the same motion history volume features with the dimensionality equal

to 329.

Figure 6.5 shows the confusion matrices for the individual factors by NN classi-

fication. As expected, a high average accuracy for action classification (88.79%)

was observed as compared to actor classification (58.48%). Notice that actions

such as sitdown, getup, turnaround, and walk that involve full body move-

ments were more distinguishable than the other actions, such as checkwatch

and scratchhead.

For action-actor classification, we achieved around 31.21% and 58.67% ac-

curacies for symmetric bilinear modeling and nearest neighbor approaches,

respectively. On average, symmetric bilinear models took 60 iterations to con-
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Figure 6.4: Feature extraction using motion history volumes [Weinland et al.,
2006].
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Figure 6.5: IXMAS: confusion matrices for (a) action recognition (b) actor
recognition

verge to optimal style and content parameters. Our proposed approach yields

a significantly higher accuracy of 88.79%. Figure 6.6(a–c) plots accuracies for

identification of each (action, actor) pair for the three methods. Figure 6.6(d)

compares the accuracies of the three approaches across different actions. The

columns represent style or person-specific uniqueness for different actions with

standard error. It shows that our approach consistently outperforms other

methods. Notice, in particular, the poor performance of nearest neighbor and

symmetric bilinear approaches to style recognition for actions that involve full

body movements, e.g. sitdown, getup, walk and turnaround. In contrast, the

highest style separability is obtained for all actions by our approach, which in-

dicates its robustness towards the activities involving articulations at different
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Figure 6.6: Results on IXMAS: (a–c) accuracy for actor-action recognition by
symmetric bilinear model, NN, and our approach respectively (d) Comparison
of style recognition per action

scales.

6.5.2 Berkeley-MHAD Dataset

Berkeley-MHAD [Ofli et al., 2013] is a multimodal dataset consisting of se-

quences of 11 actions performed 5 times by 12 different subjects for a total

of 660 action sequences. These activities are captured in different modali-

ties including mocap, audio, body acceleration, color, and depth data. In our

experiments, we used two modalities: skeleton information from motion cap-

ture system and depth information from Kinect sensors. The bag-of-features

extraction using temporal segmentation is the same as discussed in the previ-

ous chapter (Section 5.5.3). Next, we discuss the results for our action-actor

recognition problem.
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Figure 6.7: MHAD-Mocap: confusion matrices for (a) action recognition (b)
actor recognition

Mocap data

Figure 6.7 shows the confusion matrices for the single-factor action and ac-

tor recognition by nearest neighbor approach. A high action classification

rate (89.85%) was observed compared to actor classification (79.39%). In-

terestingly, it turns out that the identification of the style (independent of

automatic action recognition) in skeletal motion data is convincingly plausi-

ble.

Experimental results of multi-factor classification show 33.94%, 68.79% and

87.83% accuracies for symmetric bilinear modeling, nearest neighbor and our

approach respectively. Figure 6.8(a–c) plots accuracies for identification of

each (action, actor) pair for the three methods. Figure 6.8(d) compares the

accuracies of the three approaches across different actions. Clearly, our ap-

proach achieves high recognition accuracy for all actions except the action

throw. This is mainly due to the miss-classification of throw in the first stage

(See Fig. 6.7 (a)).

Kinect depth data

Figure 6.9 shows the resulting confusion matrices for the single-factor action

and actor recognition using NN. For the two cases, we achieved 77.73% and

57.73% accuracy, respectively. While some actions such as jack, bend, wave
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Figure 6.8: Results on MHAD-Mocap: (a–c) accuracy for actor-action recog-
nition by symmetric bilinear model, NN, and our approach respectively (d)
Comparison of style recognition per action

and sitstand show high recognition rate, the others, such as throw and jump

appear to be less discernible. Similarly, actors such as a09 and a01 were more

consistent with respect to their style as compared to the other actors.

Figure 6.10 provides a detailed comparison for action-actor classification and

shows that our approach (73.03%) significantly outperforms symmetric bilin-

ear modeling (30%) and nearest neighbor classification (47.73%). By com-

paring Fig. 6.8 with Fig. 6.10, one can notice that (i) for most of the actions

(except jump, clap and throw), our approach is capable of almost correctly

identifying human actions and actors from both the mocap and the depth

sequences and (ii) although higher recognition rates were achieved on mocap

data, the results on depth data are still significant. We expect that even higher

recognition accuracy can be achieved on depth imagery using information from

other DLMC channels (See [Ofli et al., 2013]).
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Figure 6.9: MHAD-Depth: confusion matrices for (a) action recognition (b)
actor recognition

6.5.3 The Role of the Number of Training Examples per Action-

actor Pair

Apparently, there are no theoretical and technical constraints on our approach

to use multiple instances per action-actor pair. However, we empirically eval-

uated the extent to which the number of training instances influences the per-

formance of the multi-factor classification. To this end, we considered MHAD

datasets, which contain 5 instances for every combination of action and ac-

tor (due to 5 repetitions of each action by each person). Again, we adopted

the leave-one-run-out scheme such that, in each iteration, we first selected all

samples of a run as query instances, i.e. one test instance per action-actor

pair. From the remaining data, we (randomly) formed 4 training subsets

Si, 1 ≤ i ≤ 4, such that each Si consisted of exactly i unique samples per

action-actor pair. For each i, the average accuracy was determined across all

the runs.

Figure 6.11 plots average accuracies of single-label action or actor recognition

while Fig. 6.12 plots multifactor action-actor recognition for different values

of i. The results show that (a) providing more data for training improves

the classification performance as, for instance, it allows a robust estimation of

the underlying style-specific basis in our hierarchical approach, (b) however,

the rate of this gain decreases in our experimental data, e.g. increasing the

number of training instances per action-actor pair from 2 to 3 or 4 from the
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Figure 6.10: Results on MHAD-Depth: (a–c) accuracy for actor-action recog-
nition by symmetric bilinear model, NN, and our approach respectively (d)
Comparison of style recognition per action
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Figure 6.11: Effect of number of training instances per action-actor pair on
individual recognition of actions or actors on (a) MHAD-Mocap (b) MHAD-
Depth datasets

MHAD-Mocap data did not yield a significant gain, (c) the recognition rate of

our hierarchical action-actor classification apporach is proportional to the rate

of action recognition in the first step and with more samples per action-actor

pair, our approach can achieve an accuracy which is near to that of regular

action recognition, and (d) the proposed hierarchical approach outperforms

other methods regardless of the amount of available data (Fig. 6.12).
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Figure 6.12: Effect of number of training instances per action-actor pair on
multi-factor recognition on (a) MHAD-Mocap and (b) MHAD-Depth datasets

Task Approach
IXMAS Berkeley-MHAD

3D-Volumes Mocap Depth

action recognition Nearest Neighbor 88.79% 89.85% 77.73%
actor recognition Nearest Neighbor 58.48% 79.39% 57.73%

action-actor recognition
Symmetric Bilinear 31.21% 33.94% 30.0%
Nearest Neighbor 58.67% 68.79% 47.73%
Our Approach 88.79% 87.73% 73.03%

Table 6.1: Accuracies of different approaches

6.6 Conclusion and Future Directions

This chapter extends the applicability of human action recognition in 3D se-

quences. It discusses a novel but important problem of recognition of actions

and the people performing those actions in 3D videos. We presented a hier-

archical approach based on conventional action recognition and asymmetric

bilinear modeling of styles. We were able to achieve high accuracy on different

benchmark action datasets by using features that are based on motion cues. In

particular, we demonstrated the capability of our approach to identify actions

and people in sequences captured in the form of motion capture dynamics, 3D

motion history volumes constructed by using a multi-camera system or depth

images obtained from a single Kinect camera. To the best of our knowledge,

this is the first such investigation in the area of human action recognition.

In constrained scenarios, such as surveillance or Kinect-depth imagery, our

approach is directly applicable. In the context of biomechanics, this chap-

ter establishes that person identification is possible by recognizing execution

styles of a number of human actions. In particular, we showed that person
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identification through motion dynamics is not limited to walking and running.

We also showed that ou hierarchical approach outperforms symmetric bilinear

modeling and nearest neighbor when the underlying factors result from the

same generative process (motion cues in our case). This promises the applica-

bility of our approach towards multifactor classification in different fields such

as speech and facial emotions recognition.

Although the proposed system is evaluated on the readily available benchmark

multi-actor multi-action datasets that have a maximum of 11 actions and 12

individuals, its performance to the larger datasets will depend at first hand

on the discriminativeness of the actions. The experimental results show that

our approach to action-actor classification can achieve an accuracy which is

near to that of regular action recognition (Table 6.1). Seemingly, there are no

theoretical and technical bounds on the applicability of asymmetric bilinear

modeling to large scale recognition. However, it will be interesting to see how

it scales to even larger and more versatile set of activities such as those con-

taining unconstrained videos. A promising future direction can be extending

our hierarchical framework to incorporate multiple factors including action,

view, actor, scenario, camera motion, and visibility. This work may require

databases larger than the existing realistic datasets such as HMDB [Kuehne

et al., 2011] and UCF50 [Reddy and Shah, 2013] since they do not contain

samples for many possible combination of the factors.

Summary

Although significant research efforts are now devoted to action recognition in

emerging 3D environments (e..g. [Wang et al., 2012, Ofli et al., 2013]), the rich

pose and motion information invites researchers to scale up the applications

and the problem itself. Motivated by this objective, we treated the novel issue

of recognizing human actions and the underlying execution styles (actors) in

videos using motion dynamics only. While there exist profound studies in psy-

chophysics [Cutting and Kozlowski, 1977, Thoroughhman and Shadmehr, 1999]

which suggest that people tend to perform different actions in their own style,

this chapter is among the first vision-based attempts that consider recogniz-

ing activities and performing styles for various human actions. We presented

a hierarchical approach that is based on conventional action recognition and
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asymmetrical bilinear decomposition. In particular, we applied bilinear fac-

torization on the tensorial representation of the action videos to characterize

styles of performing different actions. Given a query sequence, we first apply

a classical action classification to predict underlying action of the query video

and then use this prediction to generate a style-specific basis for the query

video using an asymmetric bilinear model. Finally, we compare this basis with

the style-specific basis learned from training data in order to identify the most

likely style. Through extensive experimentation on multiple depth and skeletal

datasets, we showed that our hierarchical approach significantly improves re-

sults compared to naive nearest neighbor classification and symmetric bilinear

modeling. A major contribution of this work is suggesting horizontal expan-

sion of the problem of activity recognition. Seemingly, there are no theoretical

and technical bounds on the applicability of asymmetric bilinear modeling to

large-scale recognition. However, it will be interesting to see how it scales

to even larger and more versatile set of activities such as those containing

unconstrained videos. A salient direction of future research is extending the

hierarchical bilinear framework to incorporate multiple factors including ac-

tion, view, actor, scenario, visibility, and camera motion. This may eventually

allow to apply such models to large-scale realistic action datasets.
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Chapter 7

Learning Spatial Interest Regions from

Videos for Action Recognition in Still

Images

In Chapters 3 and 4, we observed how non-temporal approaches can be applied

to efficient recognition of human activities in videos. Especially in Chapter 3,

we presented a simple yet powerful approach to learn weights for the key poses

that can optimally discriminate different action sequences. Complementing

that work, this chapter presents a novel approach to action recognition in still

images that exploits motion cues to determine salient image regions for dis-

criminating different actions. This is of particular interest given that most

approaches to human action recognition in still images are based on comput-

ing local descriptors in the vicinity of spatial key points. The key points either

result from running a key point detector or from dense random sampling of

pixel coordinates. Furthermore, they are not a-priori related to human activi-

ties and thus might not be very informative with regard to action recognition.

Other approaches involve manual efforts and construct saliency maps using

human visual attention or by making a set of discriminative postures called

poselets.

We investigate the possibility and applicability of automatically identifying

action-specific key points or regions of interest in still images based on infor-

mation extracted from video data. This chapter presents our novel method for

extracting spatial interest regions where we apply non-negative matrix factor-

ization to optical flow fields extracted from videos. The resulting basis flows

imply image regions that are specific to certain actions and therefore allow for

an informed sampling of key points for feature extraction. We thus present a

generative model for action recognition in still images that allows for charac-
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terizing joint distributions of regions of interest, local image features (visual

words), and human actions. Experimental results shows that (a) our approach

is able to extract interest regions that are greatly associated with those body

parts most relevant for different actions and (b) our generative model achieves

high recognition accuracy in action classification.

7.1 Introduction

Recognizing human actions in still images is a challenging task due to a num-

ber of factors such as lack of any motion cue or 3D shape information, partial

occlusion, influence of texture, and noise. The problem has received consid-

erable attention throughout the last decade, and efforts are still in progress.

Corresponding research is motivated by promising applications in areas such

as automatic indexing of large image repositories, automatic scene description,

context-dependent object recognition, and pose estimation [Sun and Savarese,

2011, Johnson and Everingham, 2011, Weinland et al., 2011]. Recent ap-

proaches to action recognition (in still images) can be broadly divided into

two main classes: (a) pose-based and (b) bag-of-features (BoF) approaches.

Following the idea of poselets [Bourdev and Malik, 2009] – a notion of dis-

tributed part-based templates – pose-based approaches have recently been

met with rekindled interest [Yang et al., 2010, Maji et al., 2011, Yao et al.,

2011b]. However, the construction of poselets still requires a cumbersome pro-

cedure of manual annotation which impedes their use on large training sets.

BoF approaches based on local descriptors are known for their state-of-the-art

performance in object recognition and therefore have been adapted to action

recognition [Deltaire et al., 2010]. In these approaches, the local image de-

scriptors are typically computed in the vicinity of key points that result from

low-level signal analysis or from dense or random sampling. Consequently,

those key points are uninformative and independent of the activity depicted

in an image.

Significant research efforts (e.g. [Sharma et al., 2012, Bilen et al., 2013, Sharma

et al., 2013]) are now being made towards enhancing action classification by

determining salient or most relevant key points/patches in images. These ap-

proaches build on the observation that most people can infer human activities

in still images just by looking at the posture or configuration of particular
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Figure 7.1: Examples of image patches in which human activities can be rec-
ognized even though the full body is not visible.

body parts. For instance, consider the images shown in Fig. 7.1 which one

can interpret even without having a full view of the human body. This raises

the question of whether it is possible to automatically learn or identify action-

specific, informative, regions of interest in still images without having to rely

on exhaustive mining of low-level image descriptors or labor-intensive annota-

tions.

This chapter presents our attempt to answer this question and gives details

of an efficient yet effective approach towards automatic learning of action spe-

cific regions of interest in still images. Based on the observation that activities

are temporal phenomena (as they are characterized by articulation and move-

ment of different body parts), we make use of information that is available

from video analysis. Figure 7.2 presents a diagram of the components of the

proposed approach towards determining action-specific regions of interest and

subsequent image classification.

Given a set of training videos, each showing a single human performing some

action, we compute optical flow fields and determine the magnitudes of the

flow vectors in each frame of a video. We represent the set of all frames

of flow magnitudes as a matrix and apply non-negative matrix factorization

(NMF) to obtain basis flows. These basis flows are indicative of the position

and configuration of different limbs or body parts whose motion characterizes

certain activities. Viewed as images, the basis flows exhibit action-specific

regions of interest and therefore allow for an informed sampling of interest

points or regions for subsequent feature extraction. For action classification in
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still images, we formulated a generative probabilistic model that characterizes

joint distributions of interest regions, local image descriptors (visual words)

and human actions.

The major contributions of this chapter are the following: (i) we present a

novel approach for determining discriminative spatial regions for action recog-

nition in still images using simple videos; (ii) we apply NMF to determine

action-specific regions of interest from motion flows; (iii) we incorporate ac-

tion saliency maps based on videos and local spatial features of action images

in a Bayesian framework for human action classification.

In Section 7.2, we review related work on human action recognition in still

images. Section 7.3 describes our method of learning action-specific interest

regions from videos. In Section 7.4, we present a generative model for action

classification. In section 7.5, we evaluate both components of our approach. In

particular, Section 7.5.1 evaluates the usefulness of regions of interest contained

in basis flows for different actions by comparing correspondences between re-

gions of interest that were automatically learned from videos and manually

annotated locations of human body parts that are available from an indepen-

dent set of still images. Section 7.5.2 shows that, even in the absence of any

annotation of joints or body parts, our generative model achieves high accu-

racy for action classification in still images. Finally, Section 7.6 summarizes

our work and results.

7.2 Related Work

Human action recognition in still images has been a topic of great interest to

vision researchers. A number of approaches have been proposed in the last

decade. Here, we restrict our discussion to the two arguably most popular

approaches in the recent literature. In addition, we briefly review related

matrix factorization methods. Similar to the case of videos, the idea of bags

of visual words (BoWs9) is popular also in human action recognition in still

images for its known simplicity, robustness, and good performance in content-

based multimedia classification. Corresponding research treats an image as

9Throughout this chapter we will use the terms bag-of-features(BoF) and bag-of-words(BoW)

interchangeably.
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Figure 7.2: General diagram of our approach. In the training phase, we learn
the actions’ priors P(Location | Action) from training videos, and code book
priors P(Word | Action,Location) from training images in order to perform
human action recognition for new test queries in a fully Baysian setup.

a collection of independent visual descriptors computed at certain key point

locations. Determining those key points is crucial within the BoW framework

since it preselects image patches for subsequent classification. Naturally, one

would like to focus only on those patches that are most discriminative.

BoW approaches such as [Matikainen et al., 2009, Laptev et al., 2008] based

on key points detection [Harris and Stephens, 1988, Schmid et al., 2000, Lowe,

2004, Laptev, 2005, Jhuang et al., 2007, Willems et al., 2008, Bay et al., 2008],

though generally discriminative, do not regard task specific objectives in key

point localization. Rather, key points are determined from low-level proper-

ties of the image or video signal. Moreover, corresponding approaches typically

assume key points to be independent and therefore fail to explain character-

istic spatial and temporal layouts. Kovashka and Grauman [2010] addressed

this limitation and proposed a mid-level representation that encodes spatial

and temporal relationships among key points. The authors of [Gilbert et al.,

2011, Liu et al., 2012] employed data mining to build high-level compound

features from noisy and over-complete sets of low-level spatio-temporal fea-
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tures. In [Song et al., 2003], a triangular lattice of grouped point features was

used to encode spatial layouts. Research presented in [Coates and Ng, 2011,

Malinowski and Fritz, 2013, Sharma et al., 2012] explicated the importance of

weighting local features while pooling in a way that regards the classification

task in hand. Still, these approaches also center around low-level signal proper-

ties which do not necessarily provide an accurate account of the characteristics

of an activity.

Some recent approaches proposed human-based fixation for sampling key points

[Vig et al., 2012, Mathe and Sminchisescu, 2012, Itti and Koch, 2000]. Mathe

and Sminchisescu [2012] proposed a saliency map learned from eye movements.

Vig et al. [2012] presented a saliency-based descriptor for action recognition.

These approaches show that using saliency maps learned from human fixation

locations enhances the performance in comparison to other sampling tech-

niques, while using an order of magnitude fewer feature descriptors. As op-

posed to these methods, our approach automatically learns the saliency maps

from training videos (without human intervention) by analyzing their motion

fields using NMF. Some object discovery approaches exploit temporal infor-

mation for automatic detection of salient objects [Herbst et al., 2011, Garca

et al., 2013]. For example, Herbst et al. [2011] consider a sequence over time

and detect changes in two 3D maps for subtracting background (motion) and

locating objects in a scene. Garca et al. [2013] also observe a scene over time,

estimate so called proto-objects, and refine them to build object models. How-

ever, the extent to use motion information in order to build saliency map for

human action recognition in still images is not yet explored.

Sampling techniques such as random sampling have also shown state-of-the-art

action recognition performance. Nowak et al. [2006] empirically showed that

random sampling provides equal or better activity classifiers than several so-

phisticated multi-scale interest point detectors; yet their work also illustrates

that the most important aspect of sampling is the number of sample points

extracted. Wang et al. [2009] states that dense sampling outperform all point

detectors in realistic scenarios. However, recent work in [Gall et al., 2011]

demonstrated that state-of-the-art action classification can also be obtained

from only a few randomly sampled key points. It therefore appears to be an

open issue whether to use dense or random sampling. It is, however, obvious
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that the success of dense sampling is bought at the expense of memory- and

runtime-efficiency, whereas random sampling methods do not provide statisti-

cal guarantees as to their adequacy for the task at hand. Therefore, methods

which mark a middle ground– namely informed sampling– seem to merit closer

investigation.

Part-based approaches, too, are popular in research on human action recogni-

tion and were indeed shown to successfully cope with the PASCAL visual

object recognition challenge10. Felzenszwalb et al. [2010] described a de-

formable model for human detection which was used to achieve state-of-the-

art performance in action recognition on benchmark datasets [Deltaire et al.,

2010]. Bourdev and Malik [2009] introduced exemplar-based pose representa-

tion, named poselets, for human detection. The term poselet denotes a set of

patches with similar pose configurations. Maji et al. [2011] utilized poselets

to identify human poses as well as actions in still images. Sun and Savarese

[2011] proposed an articulated part-based model for human pose estimation

and detection which adapts a hierarchical (coarse-to-fine, poselet-like) repre-

sentation. Yang et al. [2010] exploited poselets as a coarse representation of a

human pose and treated them as latent variables for action recognition. De-

spite their recent success, it is still questionable if these methods can make

use of the favorable statistics of present-day large-scale datasets because the

construction of suitable poselets requires extensive human intervention and

manual labeling in the training phase.

Non-negative matrix factorization (NMF) is an unsupervised matrix factoriza-

tion approach, which is often used to learn parts of objects [Lee and Seung,

1999]. Recent applications of NMF to human action recognition have shown

that the extracted spatial parts entail semantic correspondence to human body

parts. For example, Thurau and Hlavac [2008] employed NMF to learn a set of

pose and background primitives for action recognition. In [Agarwal and Triggs,

2006] also, the human upper body pose was estimated through NMF. Eweiwi

et al. [2013] presented a supervised approach to multiview human action recog-

nition based on discriminative joint NMF. In these cases, NMF is employed

to determine the part-based representation in image feature space. The work

presented in this chapter, however, applies NMF to motion sequences in order

10http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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Figure 7.3: (a–g) Examples of training videos from the Weizmann and KTH
datasets; (h) examples of basis flows obtained from applying NMF on optical
flow fields.

to determine salient activity regions in person bounding boxes.

An empirical evaluation of pose- and appearance-based features is given in [Yao

et al., 2011a]. The authors concluded that even for rather coarse pose repre-

sentations, pose-based features either match or outperform appearance-based

features. However, they acknowledge that appearance-based features still rep-

resent an ideal resort for cases of considerable visual occlusion. Accordingly,

it appears worthwhile to study methods that allow for integrating both ap-

proaches into a single framework. Next, we discuss how we indeed exploit

pose articulation from videos for the informed sampling of key points for

appearance-based action recognition in images.

7.3 Learning Action-specific Interest Regions from Videos

Our approach identifies discriminative regions in the image plane and subse-

quently learns the relative importance of these regions for different actions.

In order to identify salient spatial locations, we apply NMF to optical flow

fields obtained from videos. Furthermore, we make use of NMF mixture coef-

ficients in order to derive a generative probabilistic model that features joint

distributions of local features, regions of interest, and human actions.
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Figure 7.4: Relative importance of bases with respect to different actions as
characterized by P (wk|ai). Note that action flows can be approximated by a
small number of basis vectors.

7.3.1 Learning Basis Flows using NMF

For a given set of training videos of different actions, we determine optical flow

magnitudes at each pixel within a bounding box of constant size surrounding

a person visible in the video. Each frame can thus be transformed into a d

dimensional non-negative vector u. Let ni represent the number of frames for

an action ai ∈ A = {a1, a2, ..., ar} and let N =
r∑

i=1

ni. We build a data matrix

U of dimension d × N containing the flow magnitude vectors of all frames.

The NMF of U yields K basis vectors, or basis flows, such that U ≈ WH,

where the columns of Wd×K are non-negative basis elements and the columns

of HK×N encode non-negative mixture coefficients.

In order to determine the factors W and H, we apply the gradient descent

algorithm according to [Lee and Seung, 1999]. This method is known to yield

sparse basis elements, for it converges to vectors that lie in the facets of the

simplicial cone spanned by the data (see the discussions in [Donoho and Stod-

den, 2004, Klingenberg et al., 2008, Thurau et al., 2011]). Accordingly, we

can expect the resulting basis flows to be sparse in the sense that most en-

tries of a basis element wk will be (close to) zero and only a few entries will

have noticeable values. Figure 7.3 (h) shows that this is indeed the case. It

depicts pictorial representations of exemplary basis vectors wk resulting from

our NMF step. Note that, for each basis element, only a few pixels are larger

than zero; in each case, these pixels apparently form distinct, more or less

compact patches in the image plane.
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7.3.2 Learning the Action-specific Importance of Basis Flows

Different actions are characterized by the articulation and movements of dif-

ferent body parts. The NMF basis vectors determined through factorization

of frame-wise optical flow magnitudes appear to indicate image regions of im-

portance for different actions. Here, we aim to learn the relative importance of

different basis elements with respect to different actions. To this end, we con-

sider the matrix H because its entries encode linear mixing coefficients required

to reconstruct the vectors in U from the basis flows in W. Consequently, the

columns of H represent the relevant importance of a basis for a given frame.

Their (L1) normalization to stochastic vectors allows us to estimate a joint

probability distribution of actions and bases. The conditional probability of

basis wk given an action ai is determined as:

P (wk|ai) =

∑
f∈ai

hkf

K∑
j=1

∑
f∈ai

hjf

(7.1)

Note in Fig. 7.4 that the resulting probability distribution, i.e. the weights

of the basis elements w.r.t. different actions, again is sparse. Therefore, the

distribution in Eq. (7.1) immediately allows us to determine how characteristic

a certain basis flow is for an action. As an example, Fig. 7.5 shows the three

highest ranking basis elements for a few exemplary actions from KTH and

Weizmann datasets.

7.3.3 Action Signatures and Salient Regions

The probability distribution P (wk|ai) in Eq. (7.1) also allows us to consider

action signatures, which we define to be the conditional expectations

si =
K∑
k=1

P (wk|ai)wk. (7.2)

Computing and plotting action signatures si for different actions ai, we find

that characteristically different regions in the image plane are intensified for

different actions. Figure 7.6 shows examples of action signatures which we

obtained from basis flows extracted from the Weizmann and KTH datasets.
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Bend Clap Jack Punch Run Wave Walk

Figure 7.5: Top 3 bases for selected actions based on P (wk|ai). Note that these
bases are sparse and shared among all actions with different mixing coefficients
based on their contribution to their corresponding actions

Bend Clap Jack Punch Run Walk Wave

Figure 7.6: Examples of action signatures resulting from equation (7.2).

Apparently, these action signatures may serve two purposes. Firstly, they

provide us with a prior distribution for the sampling of interest points from

still images showing people in order to compute action-specific local features

for activity classification. Secondly, action signatures may be used as templates

or filter masks for pose-based activity recognition. Regarding the former, each

action signature si, i.e. a d−dimensional vector in the image space, can be used

to derive an action-specific spatial saliency for an image region lk, namely

P (lk|ai) =
∑
j∈lk

si. (7.3)
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7.4 Action Classification in Still Images using Spatial

Interest Regions

In this section, we describe a Bayesian framework for action classification that

combines the Bag-of-Words approach used for still images with action signa-

tures learned from videos. For a given set of training images F = {(fi, yi), i =

1, 2, ...M} where yi ∈ A, each image is first divided into a set L of cells (or

locations) and a local histogram of oriented gradient are extracted for each

of the locations. A vocabulary of visual words V = {v1,v2, ...,vm} is then

learned using k-means clustering based on the L2 norm. Thus, each training

image is represented as a vector of |L| visual words.

Our classification approach considers the likelihood of an action given spatial

locations (with their relative importance) and visual words for those locations.

This likelihood P (ai|vj, lk) is estimated as

P (ai|vj, lk) =
P (vj|ai, lk)P (ai|lk)

P (vj|lk)
(7.4)

=
P (vj|ai, lk)P (lk|ai)P (ai)

P (vj|lk)P (lk)
(7.5)

= α
P (vj|ai, lk)P (lk|ai)

P (vj|lk)
(7.6)

where α is the normalization factor and priors P (ai) and P (lk) are assumed

to be uniformly distributed. The three conditional probabilities on the right

hand side of Eq. (7.6) are estimated from the training data (U and F).

P (lk|ai) represents the action-specific importance of each region and is derived

from action signatures that were learned from action videos (see Eq. 7.3). The

term P (vj|lk) denotes the likelihood of visual word vj given location lk and is

determined by

P (vj|lk) =

∑
f∈F

χ(vj, lk)

|F|
(7.7)

where χ is an indicator function that has value 1 only if vj is assigned to lk.

While the measure P (vj|lk) indicates the overall probability of the occurrence

of a visual word at a specific location, the action-specific likelihood P (vj|ai, lk)

further specifies the relevant importance of visual words at different locations
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for different actions. This is achieved by computing

P (vj|ai, lk) =

∑
f∈F(aj)

χ(vj, lk)∣∣F(aj)
∣∣ |L| (7.8)

where F(aj) ⊂ F are those training images that contain examples of action ai.

In summary, our generative model is composed of three components: P (Word|Location),

P (Location|Action) and P (Word|Action, Location) (See Eq. 7.6). Among

these, the factor P (Location|Action) is learned by NMF of action videos while

P (Word|Location) and P (Word|Action, Location) are learned by image fea-

tures. The generative nature of our framework makes it flexible enough to

adapt to different kinds of variations and constraints. For example, if the

training videos are not available for some action, a uniform distribution can

be assigned to P (Location|Action) and in this way our approach reduces to

the standard BoW model without a saliency map for those actions. Moreover,

any other saliency approach can be used to determine P (Location|Action).

Our experimental results, however, show that learning action signatures from

videos results in more informative saliency maps compared to those based on

low-level key point detection in spatial space.

7.5 Experimental Results

Experimental evaluation of our approach mainly addresses two tasks: (i) the

matching of video-based action-specific regions of interests to important body

parts in still images (Section 7.5.1) and (ii) the classification of action images

using regions of interest or signatures (Section 7.5.2).

In order to learn action-specific regions of interest, we used videos of different

actions available in the Weizmann and KTH datasets. As these videos show

little change in background and viewpoint, they allowed us to focus on estimat-

ing the importance of different body parts for different actions. In particular,

we considered the following actions: Bending, Claping, Jacking, Punching,

Running, Walking, and Waving. We used the bounding boxes provided by

[Yao et al., 2010] and resized them to a common size of 96 × 64 pixels. To

determine optical flows, we considered the methods due to Lucas-Kanade [Lu-
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Figure 7.7: Examples of images showing different actions.

cas and Kanade, 1981] and Farnebäck [Farnebäck, 2003]. In both cases, we

used the corresponding OpenCV implementations. However, similar to [Wang

et al., 2011], we finally adopted the Farnebäck algorithm as we observed a

higher efficiency and robust performance in the extraction of our actions sig-

natures. All of the results reported in this section were obtained using 200

basis flows wi.

In order to evaluate the proposed approach on the target domain, i.e. still

images, we collected 270 images from the H3D [Bourdev and Malik, 2009]

and the VOC2011 [Everingham et al.] datasets, which we also resized to a

resolution of 96× 64 pixels. Each of these images shows a person performing

an action. Figure 7.7 gives several example images for each action. It is obvious

that most of the images include background clutter and occlusion.

7.5.1 Interest Regions and Salient Body Parts

We evaluated how far regions of interest extracted by our approach described in

Section 7.3 correspond to locations of human body parts in real images. In this

regard, we exploited the manually annotated positions of limbs or joints that

are available in the H3D and VOC2011 datasets. In particular, we computed

the joint probability distribution of actions, interest regions, and body parts.
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Given the locations of a body part bj in an image of action ai, we have

P (bj,wk, ai) = P (bj|wk, ai)P (wk|ai)P (ai)

= P (bj|wk)P (bj|ai)P (wk|ai)P (ai) (7.9)

where P (bj|wk) is chosen to be inversely proportional to the Euclidean distance

between the location of bj and the center of a region in wk. The prior P (ai)

is assumed to be uniform. The conditional distribution P (bj|ai) is obtained

by marginalizing over the K bases and all training images corresponding to

action ai. Thus, P (bj|ai) can be understood to encode the relative importance

of different body parts for an action ai.

We made use of all 270 annotated images and determined the joint distribution

of actions, interest regions, and body parts. For each of the selected action

categories, we are interested in estimating the most likely location of 13 body

parts or joints including, for example, the head, feet, knees, hips, shoulders,

elbows, and hands.

We compared the interest regions resulting from our approach to key points

extracted by two popular detectors, the Harris corners detector [Harris and

Stephens, 1988] and the SIFT key points detector [Lowe, 2004]. In each case,

we selected key points with the highest response in every image, assigned them

to their nearest annotated body part, and normalized the resulting histogram.

In this way, we obtained a stochastic vector for each action by iterating over

all images of that action – thus mimicking the conditional distribution P (bj|ai)
discussed in Section 7.3.

Figure 7.8 compares results from our method for extracting interesting regions

from video data to the ones obtained from using Harris and SIFT key points.

The visualization emphasizes the relative importance of the body parts for a

particular action given different sampling schemes. The size of the plotted

body part corresponds to the frequency or the importance of locations around

that part. The stick figures are shown in a standing pose only for better

visualization i.e. in order to avoid occlusion of some joints due to large size of

others.

We observe that, in the case of Harris and SIFT key points, head and feet

dominate other limbs regardless of action (Fig. 7.8 rows 1 and 2). Moreover,
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Figure 7.8: Stick figures depicting the relevance of different body parts for
different actions. Important key points computed using the Harris detector
(first row) and SIFT detector (second row) hardly correlate to action-specific
body parts; interest regions from our approach correlate better (third row).

in these cases, the probabilities for other body parts are almost uniformly

distributed and do not convincingly relate to different actions. For example,

body parts naturally related to the activity of clapping, i.e. elbows and hands,

achieve rather low scores compared to other limbs or parts.

Our approach, on the other hand, exhibits logically coherent relationships be-

tween body parts and actions (Fig. 7.8 third row). Compare, for example, the

varying importance of different body parts for clapping and running. Clearly,

the lower body parts are dominant for the action of running while the arms

are of higher importance for the action of clapping. From the perspective of

body parts, observe that, for instance, the head is less relevant for actions such

as claping or running compared to bending. We therefore expect that this fa-

vorable property of our approach can ultimately be used to establish rigorous

and discriminative action models through an informed sampling phase that fo-

cuses on the distinctive patterns of an action rather than on random or coarse

sampling.
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Figure 7.9: (left) Classification accuracies using various approaches. (right)
Confusion matrix for action classification by the proposed approach

7.5.2 Action Classification

After establishing the effectiveness of our approach in identifying salient re-

gions (body parts) for different actions, we then evaluated its utility for action

recognition in still images. To this end, we used all images in our dataset with-

out considering any annotation of body parts or joints. In the training phase,

we again divided each image into L rectangular regions (see Section 7.4) where

we used a 16× 16 grid of overlapping cells. Within each cell, we extracted an

L2 normalized 6-bin local histogram of oriented gradients. To compute an op-

timal vocabulary V of visual words, we considered different numbers of words

and observed good performance for 64 to 120 words. Next, we estimated the

probability distributions P (Word|Location) and P (Word|Action, Location)

(see Eq.7.6). Note again that P (Location|Action) is determined by action

signatures learned from videos.

To classify a given query image, we identify the best matching visual word

v(lk) at each location and assign the query image the action with the highest

likelihood as follows

argmaxai

L∑
k=1

P (ai|v(lk), lk) (7.10)

= argmaxai

L∑
k=1

P (v(lk)|ai, lk)P (lk|ai)
P (v(lk)|lk)

(7.11)
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In a 5-fold cross validation, our approach achieved an average accuracy of about

55.2% for action recognition. We compared our approach to the standard BoW

approach based on spatial pyramid binning (SPM) and to other global template

matching techniques using the histograms of oriented gradients (HOG). For

SPM, we densely sampled local features every 6 pixels at multiple scales and

computed SIFT features [Lowe, 2004]. Then we constructed a code book using

K-means and used the code book to encode the extracted local features from

the image. The codes were pooled afterwords over three levels of the spatial

pyramid of the image plane per [Lazebnik et al., 2006]. Figure 7.9 compares

our approach to these baseline methods. The confusion matrix obtained from

using our approach is shown in Fig. 7.9. Note that most of the ambiguity is

due to the actions of waving, jacking, and clapping, as all of them share similar

body part appearances. On the other hand, actions such as punching and

bending were accurately classified by our approach.

Note that the closest SPM model depends on a dense (uniform) sampling to

extract local image features. This produces large numbers of local image de-

scriptors which may be unnecessary for action recognition. Given a test image,

our approach would require determining features only at most salient locations,

whereas SPM-based models need to compute all features at all location at mul-

tiple levels. Existing literature suggests that although SPMs are better than

HOG+SVM and BOW, saliency information can be used to achieve similar

or higher performance by using fewer features [Vig et al., 2012, Mathe and

Sminchisescu, 2012]. This is also affirmed by our results, where we showed

that the proposed saliency approach could achieve results better than SPM.

Finally, we evaluated the impact of the number of training videos on our

saliency map P (location|action). In the extreme case, when training videos are

not present, our model assigns a uniform distribution of location importance

to P (location|action). As discussed earlier, this is similar to an orderless BoW

model, and as anticipated, the performance was close to it (42.71%). By using

only two training videos per action, our model achieved an accuracy as high

as HOG+SVM (51.02%). The best performance of 55.2% was obtained by

considering only 4 videos per action. Adding more training videos did not

significantly improve the overall classification. To conclude, it appears that a

few videos are sufficient for constructing discriminative action signatures that

126



Chapter 7. Spatial Interest Regions from Videos for Action Recognition in Images

cover all different execution styles of an action.

7.6 Conclusion

We have presented a novel approach to human action recognition in still im-

ages based on the notion of regions of interest. Since human activities are

inherently dynamic phenomena, we analyzed optical flow fields extracted from

simple video sequences showing human activities in order to learn about salient

regions for action recognition. We employed non-negative matrix factorization

to obtain sets of basis flows which were found to be indicative of the location

of different limbs or joints in different actions. Then we exploited this saliency

in a generative Bayesian model for action classification which integrates infor-

mation as to regions of interests and local spatial image features.

Through experimental validation, we found a clear relationship between re-

gions of interest determined by our approach and action-specific body parts.

Our approach achieves higher action recognition accuracies than three recent

baseline methods. This is noteworthy since our approach fundamentally dif-

fers from existing approaches for action recognition in still images. Firstly,

although we consider rather low-level signal properties of videos of activities,

the characteristics of optical flow enable us to identify locations of body parts

whose articulation distinguish an action from others. Our approach, unlike

common bag-of-features approaches, facilitates an informed sampling of key

points in still images. Secondly, the concept of action signatures provides

probabilistic templates for pose-based recognition. Compared to common ap-

proaches based on distributed pose representations, our approach does not

require thorough manual annotation of images or frames and thus offers better

scalability and convenience for large datasets. Also, compared to conventional

part-based approaches, our approach does not assume an underlying elastic

model of the body but provides priors even for cluttered scenes or images of

partly occluded human bodies. To conclude we have established a baseline for

video-based feature selection and classification towards action recognition in

still images.

Given spatial features that could better encode individual body parts, our ap-

proach may perform even better than it does now. While our approach deter-
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mines action signatures by NMF of controlled videos, our generative framework

allows the use of saliency P (Location|Action) derived by any other method,

e.g. by Kinect skeletal data.

Summary

In this chapter, we discussed the issue of human action recognition in still

images using automatically generated saliency maps. The state-of-the art ap-

proaches to action recognition in still images either compute a large number

of features on multiple spatial levels (SPM); make use of poselets, the manu-

ally determined patches representing (partial) human pose; or use a low-level

key point detector in appearance space (e.g. Harris and SIFT) and apply

the Bag-of-Word model for image representation. These approaches either in-

volve manual efforts (e.g. poselets) or suffer from uninformedness of the key

points (e.g. appearance-based key points). We have proposed a saliency-based

approach that exploits controlled videos to determine the respective salient

regions for different human actions. These saliency maps, called action signa-

tures, are built automatically from non-negative matrix factorization of optical

flow fields. Unlike poselets, this approach involves no manual effort and there-

fore offers better scalability and convenience on large datasets. Our empirical

results show that, compared to Harris and SIFT key points, the action signa-

tures better correspond to the location of salient limbs or joints in different

actions in target images. Accordingly, we presented a generative Bayesian

framework which integrates information as to regions of interests, local spa-

tial image features, and human actions. Through experimental validation on

a challenging image set, we showed that our approach achieves higher action

recognition accuracies than three recent baseline methods.
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Chapter 8

Conclusion and Future Perspectives

8.1 Conclusion

Human activity recognition is a growing area of research. Major components

of an automatic activity recognition system include data sources, feature ex-

traction, feature representation, model building, and classification. A great

amount of research has been devoted to this field in the last decade. These ef-

forts have led to: (a) sophisticated feature extraction and saliency approaches

such as optical flow, spatial or spatio-temporal interest points, and dense tra-

jectories (b) informative local or global feature representations such as silhou-

ette contours, local binary patterns, and motion boundary histograms, and

(c) discriminative or generative classification models such as latent support

vector machines, convolutional neural networks, and hidden Markov models.

Over time, some of these components have become the de facto standards in

certain domains. For example, support vector machine classification with Bag-

of-Words features representations is often used for human action recognition

in large unconstrained data without paying attention to the underlying distri-

bution of the sparse high dimensional data. As another example, appearance-

based corner points and manually labeled poselets are employed frequently in

image classification. This trend is ongoing, and as a result, issues of scalability

and efficiency remain open.

The efficiency and scalability of vision-based human action recognition sys-

tems also needs to be addressed seriously because past few years have seen

rapid developments in terms of advancement in image capturing devices, the

availability of large-scale of multimedia data, and the emergence of sophisti-

cated application areas. The demand to develop efficient large-scale activity

recognition systems such as visual surveillance and content-based image/video

retrieval is inevitable. This thesis treats the problem of action recognition
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from different application perspectives, discusses important issues of scalabil-

ity and efficiency, and proposes several simple yet powerful methods to human

action recognition. For this purpose, we categorize activity recognition in

four scenarios of increasing complexity: controlled scenarios such as indoor

video surveillance, uncontrolled and unconstrained video databases such as

YouTube, multimodal emerging environments such as those captured through

Kinect sensory, and still images. Activity recognition in these scenarios poses

challenges of different natures and scales. So no single common framework can

be suitable to all. Therefore, our scientific investigations are based on general

principles, e.g. simple features, discriminative poses, and latent factors, as

well as on domain-specific constraints, e.g. high dimension low sample size

data. We have achieved state-of-the art activity recognition performance on a

number of benchmark datasets representing various levels of complexity.

For action recognition in a controlled video environment, where person local-

ization and background subtraction can be reliably achieved, we proposed a

novel key pose based method in Chapter 3. Each class is represented by a

collection of key poses obtained by k-mean clustering of corresponding frames.

It turns out that representing a human pose by a simple contour-based feature

can achieve high recognition accuracy. Further, we devised a mutual informa-

tion weighting scheme that determines most discriminative key poses based

on inter-class and intra-class variation. Experimental evaluation on single and

multi-view benchmark datasets show that learning weights (latent factors) for

key poses of different actions enhances classification performance. Chapter 4

extended the applicability of pose-based classification to large-scale person

identification by gait sequence. We have achieved state-of-the-art recognition

performance on a multi-view gait dataset with 124 classes. Efficient feature

extraction, low dimensionality, and instance-based classification leads to real-

time classification. Such demonstration of accuracy and efficiency is of great

importance towards large-scale activity recognition problems (e.g. surveil-

lance) that are characterized by involving missing data, observational latency,

and online classification.

The demand of activity recognition in more complex scenarios, i.e. large

databases of unconstrained images and videos, has recently led a paradigm

shift from traditional pose-based activity recognition approaches to feature-
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intensive approaches. Currently, most successful approaches in this domain

extract vast amount of spatio-temporal features around interest points or dense

trajectories and apply off-the-shelf classifiers [Laptev et al., 2008, Kliper-Gross

et al., 2012, Wang et al., 2013] without paying attention to the underlying dis-

tribution of the high dimensional data. Chapter 5 discussed the issues of

classification of such high dimension low sample size data (HDLSS). It turns

out that most traditional proximity-based methods such k-Nearest Neighbors

and Nearest Convex Hull suffer from lack of neighborhood structure in HDLSS

feature spaces. The discriminative methods such as SVMs, on the other hand,

lead to severe over-fitting. Based on the statistical studies that prove that

HDLSS data lie on a simplex [Hall et al., 2005, Donoho and Tanner, 2005],

we suggest representing each class as an affine hull spanned by its instances.

Compared to the tight representations such as convex hull and hyperdisk, an

affine hull offers a loose structure without bounding the class regions. This

loose structure becomes of vital importance in HDLSS, where the likelihood

of new data to lie within an existing neighborhood is negligible. The existing

SVD- based method of nearest affine hull classification [Cevikalp et al., 2008]

is time and computation intensive and may not be applicable to large-scale

problems. To this end, we proposed a novel approach: NAH-lsq based on QR

factorization and least squares. The QR factorization takes advantage of the

fact that the HDLSS data is usually full rank. Extensive experimentation on

5 different datasets and 8 different methods shows that NAH-lsq outperforms

other instance-based methods and exhibits performance competitive or supe-

rior to SVMs. For online settings (a major application area), the proposed

NAH-lsq method is faster than online-SVMs, as SVMs would need complete

retraining. To our knowledge, this is the first such study in the domain of

human activity recognition. We expect that this investigation of classifiers

and our experimental results will motivate activity recognition researchers to

revisit instance-based classification and simple representation schemes.

A significant recent development in computer vision is the introduction of

low-cost 3D image capturing, e.g. Kinect. Much research is now devoted to

recognize human actions in such skeletal or depth data. Most successful ap-

proaches in this domain build on principles of existing 2D pose- or part-based

methods [Wang et al., 2012, Ofli et al., 2013]. Nevertheless, high recognition

performance is achieved by these methods by exploiting the rich pose and mo-
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tion cues. The richness of such imagery also invites researchers to think of

out-of-the-box applications. In this line, we investigated an interesting area

motivated by studies in psychophysics which state that the people tend to

perform different actions in their own personal manner. A novel hierarchical

approach was introduced in Chapter 6 that enables the recognition of both

actions and actors using only motion cues from 3D data. The proposed ap-

proach is based on conventional action recognition and bilinear modeling of

contents and styles [Tanenbaum and Freeman, 2000]. Experimental evalua-

tion on different kinds of activity sequences (motion capture, skeletal, motion

history volumes) affirms that people tend to perform different actions in dif-

ferent styles and that our approach is most suitable for this problem [Cheema

et al., 2013]. Furthermore, it can be directly applied to in-depth human action

recognition in interactive environments such as multi-player video games or

smart homes.

Finally, we showed that how information from controlled videos can be used

to efficiently classify unconstrained action images (Chapter 7). Common ap-

proaches to activity recognition in still images build histograms of local features

determined around key points that are selected through running a key point

detector or by dense random sampling of pixel coordinates. These key points

are not a-priorily related to human activities and thus might not be very in-

formative for action recognition. We proposed a novel approach that applies

non-negative matrix factorization (NMF) to optical flow fields from simple ac-

tion videos to find salient regions in image space. The NMF produces a set

of sparse basis which are then combined to determine action-specific saliency

maps called action signatures. Consequently, a generative Bayesian frame-

work based on action signatures, local spatial image features, and human ac-

tions was presented. Experimental evaluation on a challenging image dataset

showed that our identified interest regions (peaks of action signatures), when

compared to appearance-based key points, are highly correlated to those body

parts that characterize corresponding actions. Accordingly, high accuracy was

achieved for action classification in images. Unlike poselets, we do not require

manually labeled template patches and offer better scalability and convenience

on large datasets. Since acquisition of skeleton data is becoming efficient and

reliable (e.g. through by OpenKinect 11 wrappers for Kinect), our generative

11http://openkinect.org
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framework can be directly used to build action signatures from skeletal data

in future.

To conclude, we have presented several novel approaches for efficiently recog-

nizing human activities in different scenarios. Our research mainly benefits

from efficient feature representations, instance-based learning, and latent fac-

tor models. In particular, we showed how latent factor models such as QR

factorization, bilinear factorization, and non-negative matrix factorization can

be employed for efficient and informed human action recognition. We also

highlight limitations of main-stream approaches e.g. due to high dimension,

low sample size video data; as well as opportunities of future research e.g.

multi-modal and multi-factor human activity recognition.

8.2 Future Perspectives

Throughout our research, we have posed novel questions and presented our

research on those issues. Some ideas, such as action recognition using discrim-

inative key poses or contour-based features [Cheema et al., 2011], are already

receiving significant attention from the vision community [Chaaraoui et al.,

2012, Liu et al., 2013, Climent-Prez et al., 2013, Zanfir et al., 2013]. We be-

lieve that there remain challenges and opportunities for future research at each

scale.

Our approach to classification of HDLSS human activity data (Chapter 5) is

arguably the first such attempt. We have shown that affine hull-based rep-

resentation of low sample size data can remedy the issues caused by lack of

proper neighborhood in HDLSS data. This approach can be tailored to other

domains such as video set classification in Big Data (e.g. YouTube portal).

For example, large-scale classification of weakly labeled YouTube videos using

video co-watch data can benefit from affine hull-based representation. Note

that several image set classification methods (e.g. [Hu et al., 2012] and [Wu

et al., 2013]) already employ affine hull representation to project image sub-

sets as points on a Grassmanian manifold for classification. Harandi et al.

[2013] modeled Auto Regression Moving Average (ARMA) features along a

simple video as an affine subspace, represented it as a point on a Grassmanian

manifold, and employed discriminant analysis for action recognition. How-
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ever, their frame-by-frame feature representations may become cumbersome

for unconstrained videos where the compact bag-of-features representation is

more practical. There are hardly any approaches to video set classification, in

particular to human action recognition in Big Data. However, with access to

computational resources and a large amount of (weakly) labeled video data,

affine hull-based representation may be of great impact in future research on

Big Vision12.

Another promising area of future research is multi-factor analysis of activ-

ity videos. We have shown that it is possible to determine multiple factors,

namely actions and actors, that characterize a human motion sequence in 3D

(Chapter 6). Extending our hierarchical bilinear framework towards incorpo-

rating multiple factors, including action, view, actor, scenario, camera motion,

and visibility, is a natural next step. In fact, Cuzzolin [2014] has recently

proposed multilinear classifiers which use higher order singular value decom-

position (HOSVD) and asymmetric modeling. While that model has shown

robust results on gait recognition, it would be interesting to see how such

multilinear models behave for action recognition in unconstrained images and

videos. Such an investigation may need databases larger than the existing re-

alistic datasets such as HMDB [Kuehne et al., 2011] and UCF50 [Reddy and

Shah, 2013], since they do not contain samples for all possible combinations of

the factors.

12https://sites.google.com/site/bigvision2012/
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